xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaOverload.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides Sema routines for C++ overloading.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/CXXInheritance.h"
15 #include "clang/AST/DeclObjC.h"
16 #include "clang/AST/DependenceFlags.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/AST/TypeOrdering.h"
21 #include "clang/Basic/Diagnostic.h"
22 #include "clang/Basic/DiagnosticOptions.h"
23 #include "clang/Basic/PartialDiagnostic.h"
24 #include "clang/Basic/SourceManager.h"
25 #include "clang/Basic/TargetInfo.h"
26 #include "clang/Sema/Initialization.h"
27 #include "clang/Sema/Lookup.h"
28 #include "clang/Sema/Overload.h"
29 #include "clang/Sema/SemaInternal.h"
30 #include "clang/Sema/Template.h"
31 #include "clang/Sema/TemplateDeduction.h"
32 #include "llvm/ADT/DenseSet.h"
33 #include "llvm/ADT/Optional.h"
34 #include "llvm/ADT/STLExtras.h"
35 #include "llvm/ADT/SmallPtrSet.h"
36 #include "llvm/ADT/SmallString.h"
37 #include <algorithm>
38 #include <cstdlib>
39 
40 using namespace clang;
41 using namespace sema;
42 
43 using AllowedExplicit = Sema::AllowedExplicit;
44 
45 static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) {
46   return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) {
47     return P->hasAttr<PassObjectSizeAttr>();
48   });
49 }
50 
51 /// A convenience routine for creating a decayed reference to a function.
52 static ExprResult
53 CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl,
54                       const Expr *Base, bool HadMultipleCandidates,
55                       SourceLocation Loc = SourceLocation(),
56                       const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
57   if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
58     return ExprError();
59   // If FoundDecl is different from Fn (such as if one is a template
60   // and the other a specialization), make sure DiagnoseUseOfDecl is
61   // called on both.
62   // FIXME: This would be more comprehensively addressed by modifying
63   // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
64   // being used.
65   if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
66     return ExprError();
67   DeclRefExpr *DRE = new (S.Context)
68       DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo);
69   if (HadMultipleCandidates)
70     DRE->setHadMultipleCandidates(true);
71 
72   S.MarkDeclRefReferenced(DRE, Base);
73   if (auto *FPT = DRE->getType()->getAs<FunctionProtoType>()) {
74     if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
75       S.ResolveExceptionSpec(Loc, FPT);
76       DRE->setType(Fn->getType());
77     }
78   }
79   return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()),
80                              CK_FunctionToPointerDecay);
81 }
82 
83 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
84                                  bool InOverloadResolution,
85                                  StandardConversionSequence &SCS,
86                                  bool CStyle,
87                                  bool AllowObjCWritebackConversion);
88 
89 static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
90                                                  QualType &ToType,
91                                                  bool InOverloadResolution,
92                                                  StandardConversionSequence &SCS,
93                                                  bool CStyle);
94 static OverloadingResult
95 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
96                         UserDefinedConversionSequence& User,
97                         OverloadCandidateSet& Conversions,
98                         AllowedExplicit AllowExplicit,
99                         bool AllowObjCConversionOnExplicit);
100 
101 static ImplicitConversionSequence::CompareKind
102 CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
103                                    const StandardConversionSequence& SCS1,
104                                    const StandardConversionSequence& SCS2);
105 
106 static ImplicitConversionSequence::CompareKind
107 CompareQualificationConversions(Sema &S,
108                                 const StandardConversionSequence& SCS1,
109                                 const StandardConversionSequence& SCS2);
110 
111 static ImplicitConversionSequence::CompareKind
112 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
113                                 const StandardConversionSequence& SCS1,
114                                 const StandardConversionSequence& SCS2);
115 
116 /// GetConversionRank - Retrieve the implicit conversion rank
117 /// corresponding to the given implicit conversion kind.
118 ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) {
119   static const ImplicitConversionRank
120     Rank[(int)ICK_Num_Conversion_Kinds] = {
121     ICR_Exact_Match,
122     ICR_Exact_Match,
123     ICR_Exact_Match,
124     ICR_Exact_Match,
125     ICR_Exact_Match,
126     ICR_Exact_Match,
127     ICR_Promotion,
128     ICR_Promotion,
129     ICR_Promotion,
130     ICR_Conversion,
131     ICR_Conversion,
132     ICR_Conversion,
133     ICR_Conversion,
134     ICR_Conversion,
135     ICR_Conversion,
136     ICR_Conversion,
137     ICR_Conversion,
138     ICR_Conversion,
139     ICR_Conversion,
140     ICR_Conversion,
141     ICR_OCL_Scalar_Widening,
142     ICR_Complex_Real_Conversion,
143     ICR_Conversion,
144     ICR_Conversion,
145     ICR_Writeback_Conversion,
146     ICR_Exact_Match, // NOTE(gbiv): This may not be completely right --
147                      // it was omitted by the patch that added
148                      // ICK_Zero_Event_Conversion
149     ICR_C_Conversion,
150     ICR_C_Conversion_Extension
151   };
152   return Rank[(int)Kind];
153 }
154 
155 /// GetImplicitConversionName - Return the name of this kind of
156 /// implicit conversion.
157 static const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
158   static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
159     "No conversion",
160     "Lvalue-to-rvalue",
161     "Array-to-pointer",
162     "Function-to-pointer",
163     "Function pointer conversion",
164     "Qualification",
165     "Integral promotion",
166     "Floating point promotion",
167     "Complex promotion",
168     "Integral conversion",
169     "Floating conversion",
170     "Complex conversion",
171     "Floating-integral conversion",
172     "Pointer conversion",
173     "Pointer-to-member conversion",
174     "Boolean conversion",
175     "Compatible-types conversion",
176     "Derived-to-base conversion",
177     "Vector conversion",
178     "SVE Vector conversion",
179     "Vector splat",
180     "Complex-real conversion",
181     "Block Pointer conversion",
182     "Transparent Union Conversion",
183     "Writeback conversion",
184     "OpenCL Zero Event Conversion",
185     "C specific type conversion",
186     "Incompatible pointer conversion"
187   };
188   return Name[Kind];
189 }
190 
191 /// StandardConversionSequence - Set the standard conversion
192 /// sequence to the identity conversion.
193 void StandardConversionSequence::setAsIdentityConversion() {
194   First = ICK_Identity;
195   Second = ICK_Identity;
196   Third = ICK_Identity;
197   DeprecatedStringLiteralToCharPtr = false;
198   QualificationIncludesObjCLifetime = false;
199   ReferenceBinding = false;
200   DirectBinding = false;
201   IsLvalueReference = true;
202   BindsToFunctionLvalue = false;
203   BindsToRvalue = false;
204   BindsImplicitObjectArgumentWithoutRefQualifier = false;
205   ObjCLifetimeConversionBinding = false;
206   CopyConstructor = nullptr;
207 }
208 
209 /// getRank - Retrieve the rank of this standard conversion sequence
210 /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
211 /// implicit conversions.
212 ImplicitConversionRank StandardConversionSequence::getRank() const {
213   ImplicitConversionRank Rank = ICR_Exact_Match;
214   if  (GetConversionRank(First) > Rank)
215     Rank = GetConversionRank(First);
216   if  (GetConversionRank(Second) > Rank)
217     Rank = GetConversionRank(Second);
218   if  (GetConversionRank(Third) > Rank)
219     Rank = GetConversionRank(Third);
220   return Rank;
221 }
222 
223 /// isPointerConversionToBool - Determines whether this conversion is
224 /// a conversion of a pointer or pointer-to-member to bool. This is
225 /// used as part of the ranking of standard conversion sequences
226 /// (C++ 13.3.3.2p4).
227 bool StandardConversionSequence::isPointerConversionToBool() const {
228   // Note that FromType has not necessarily been transformed by the
229   // array-to-pointer or function-to-pointer implicit conversions, so
230   // check for their presence as well as checking whether FromType is
231   // a pointer.
232   if (getToType(1)->isBooleanType() &&
233       (getFromType()->isPointerType() ||
234        getFromType()->isMemberPointerType() ||
235        getFromType()->isObjCObjectPointerType() ||
236        getFromType()->isBlockPointerType() ||
237        First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
238     return true;
239 
240   return false;
241 }
242 
243 /// isPointerConversionToVoidPointer - Determines whether this
244 /// conversion is a conversion of a pointer to a void pointer. This is
245 /// used as part of the ranking of standard conversion sequences (C++
246 /// 13.3.3.2p4).
247 bool
248 StandardConversionSequence::
249 isPointerConversionToVoidPointer(ASTContext& Context) const {
250   QualType FromType = getFromType();
251   QualType ToType = getToType(1);
252 
253   // Note that FromType has not necessarily been transformed by the
254   // array-to-pointer implicit conversion, so check for its presence
255   // and redo the conversion to get a pointer.
256   if (First == ICK_Array_To_Pointer)
257     FromType = Context.getArrayDecayedType(FromType);
258 
259   if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
260     if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
261       return ToPtrType->getPointeeType()->isVoidType();
262 
263   return false;
264 }
265 
266 /// Skip any implicit casts which could be either part of a narrowing conversion
267 /// or after one in an implicit conversion.
268 static const Expr *IgnoreNarrowingConversion(ASTContext &Ctx,
269                                              const Expr *Converted) {
270   // We can have cleanups wrapping the converted expression; these need to be
271   // preserved so that destructors run if necessary.
272   if (auto *EWC = dyn_cast<ExprWithCleanups>(Converted)) {
273     Expr *Inner =
274         const_cast<Expr *>(IgnoreNarrowingConversion(Ctx, EWC->getSubExpr()));
275     return ExprWithCleanups::Create(Ctx, Inner, EWC->cleanupsHaveSideEffects(),
276                                     EWC->getObjects());
277   }
278 
279   while (auto *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
280     switch (ICE->getCastKind()) {
281     case CK_NoOp:
282     case CK_IntegralCast:
283     case CK_IntegralToBoolean:
284     case CK_IntegralToFloating:
285     case CK_BooleanToSignedIntegral:
286     case CK_FloatingToIntegral:
287     case CK_FloatingToBoolean:
288     case CK_FloatingCast:
289       Converted = ICE->getSubExpr();
290       continue;
291 
292     default:
293       return Converted;
294     }
295   }
296 
297   return Converted;
298 }
299 
300 /// Check if this standard conversion sequence represents a narrowing
301 /// conversion, according to C++11 [dcl.init.list]p7.
302 ///
303 /// \param Ctx  The AST context.
304 /// \param Converted  The result of applying this standard conversion sequence.
305 /// \param ConstantValue  If this is an NK_Constant_Narrowing conversion, the
306 ///        value of the expression prior to the narrowing conversion.
307 /// \param ConstantType  If this is an NK_Constant_Narrowing conversion, the
308 ///        type of the expression prior to the narrowing conversion.
309 /// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions
310 ///        from floating point types to integral types should be ignored.
311 NarrowingKind StandardConversionSequence::getNarrowingKind(
312     ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue,
313     QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const {
314   assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");
315 
316   // C++11 [dcl.init.list]p7:
317   //   A narrowing conversion is an implicit conversion ...
318   QualType FromType = getToType(0);
319   QualType ToType = getToType(1);
320 
321   // A conversion to an enumeration type is narrowing if the conversion to
322   // the underlying type is narrowing. This only arises for expressions of
323   // the form 'Enum{init}'.
324   if (auto *ET = ToType->getAs<EnumType>())
325     ToType = ET->getDecl()->getIntegerType();
326 
327   switch (Second) {
328   // 'bool' is an integral type; dispatch to the right place to handle it.
329   case ICK_Boolean_Conversion:
330     if (FromType->isRealFloatingType())
331       goto FloatingIntegralConversion;
332     if (FromType->isIntegralOrUnscopedEnumerationType())
333       goto IntegralConversion;
334     // -- from a pointer type or pointer-to-member type to bool, or
335     return NK_Type_Narrowing;
336 
337   // -- from a floating-point type to an integer type, or
338   //
339   // -- from an integer type or unscoped enumeration type to a floating-point
340   //    type, except where the source is a constant expression and the actual
341   //    value after conversion will fit into the target type and will produce
342   //    the original value when converted back to the original type, or
343   case ICK_Floating_Integral:
344   FloatingIntegralConversion:
345     if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
346       return NK_Type_Narrowing;
347     } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
348                ToType->isRealFloatingType()) {
349       if (IgnoreFloatToIntegralConversion)
350         return NK_Not_Narrowing;
351       const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
352       assert(Initializer && "Unknown conversion expression");
353 
354       // If it's value-dependent, we can't tell whether it's narrowing.
355       if (Initializer->isValueDependent())
356         return NK_Dependent_Narrowing;
357 
358       if (Optional<llvm::APSInt> IntConstantValue =
359               Initializer->getIntegerConstantExpr(Ctx)) {
360         // Convert the integer to the floating type.
361         llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
362         Result.convertFromAPInt(*IntConstantValue, IntConstantValue->isSigned(),
363                                 llvm::APFloat::rmNearestTiesToEven);
364         // And back.
365         llvm::APSInt ConvertedValue = *IntConstantValue;
366         bool ignored;
367         Result.convertToInteger(ConvertedValue,
368                                 llvm::APFloat::rmTowardZero, &ignored);
369         // If the resulting value is different, this was a narrowing conversion.
370         if (*IntConstantValue != ConvertedValue) {
371           ConstantValue = APValue(*IntConstantValue);
372           ConstantType = Initializer->getType();
373           return NK_Constant_Narrowing;
374         }
375       } else {
376         // Variables are always narrowings.
377         return NK_Variable_Narrowing;
378       }
379     }
380     return NK_Not_Narrowing;
381 
382   // -- from long double to double or float, or from double to float, except
383   //    where the source is a constant expression and the actual value after
384   //    conversion is within the range of values that can be represented (even
385   //    if it cannot be represented exactly), or
386   case ICK_Floating_Conversion:
387     if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
388         Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
389       // FromType is larger than ToType.
390       const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
391 
392       // If it's value-dependent, we can't tell whether it's narrowing.
393       if (Initializer->isValueDependent())
394         return NK_Dependent_Narrowing;
395 
396       if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
397         // Constant!
398         assert(ConstantValue.isFloat());
399         llvm::APFloat FloatVal = ConstantValue.getFloat();
400         // Convert the source value into the target type.
401         bool ignored;
402         llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
403           Ctx.getFloatTypeSemantics(ToType),
404           llvm::APFloat::rmNearestTiesToEven, &ignored);
405         // If there was no overflow, the source value is within the range of
406         // values that can be represented.
407         if (ConvertStatus & llvm::APFloat::opOverflow) {
408           ConstantType = Initializer->getType();
409           return NK_Constant_Narrowing;
410         }
411       } else {
412         return NK_Variable_Narrowing;
413       }
414     }
415     return NK_Not_Narrowing;
416 
417   // -- from an integer type or unscoped enumeration type to an integer type
418   //    that cannot represent all the values of the original type, except where
419   //    the source is a constant expression and the actual value after
420   //    conversion will fit into the target type and will produce the original
421   //    value when converted back to the original type.
422   case ICK_Integral_Conversion:
423   IntegralConversion: {
424     assert(FromType->isIntegralOrUnscopedEnumerationType());
425     assert(ToType->isIntegralOrUnscopedEnumerationType());
426     const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
427     const unsigned FromWidth = Ctx.getIntWidth(FromType);
428     const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
429     const unsigned ToWidth = Ctx.getIntWidth(ToType);
430 
431     if (FromWidth > ToWidth ||
432         (FromWidth == ToWidth && FromSigned != ToSigned) ||
433         (FromSigned && !ToSigned)) {
434       // Not all values of FromType can be represented in ToType.
435       const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
436 
437       // If it's value-dependent, we can't tell whether it's narrowing.
438       if (Initializer->isValueDependent())
439         return NK_Dependent_Narrowing;
440 
441       Optional<llvm::APSInt> OptInitializerValue;
442       if (!(OptInitializerValue = Initializer->getIntegerConstantExpr(Ctx))) {
443         // Such conversions on variables are always narrowing.
444         return NK_Variable_Narrowing;
445       }
446       llvm::APSInt &InitializerValue = *OptInitializerValue;
447       bool Narrowing = false;
448       if (FromWidth < ToWidth) {
449         // Negative -> unsigned is narrowing. Otherwise, more bits is never
450         // narrowing.
451         if (InitializerValue.isSigned() && InitializerValue.isNegative())
452           Narrowing = true;
453       } else {
454         // Add a bit to the InitializerValue so we don't have to worry about
455         // signed vs. unsigned comparisons.
456         InitializerValue = InitializerValue.extend(
457           InitializerValue.getBitWidth() + 1);
458         // Convert the initializer to and from the target width and signed-ness.
459         llvm::APSInt ConvertedValue = InitializerValue;
460         ConvertedValue = ConvertedValue.trunc(ToWidth);
461         ConvertedValue.setIsSigned(ToSigned);
462         ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
463         ConvertedValue.setIsSigned(InitializerValue.isSigned());
464         // If the result is different, this was a narrowing conversion.
465         if (ConvertedValue != InitializerValue)
466           Narrowing = true;
467       }
468       if (Narrowing) {
469         ConstantType = Initializer->getType();
470         ConstantValue = APValue(InitializerValue);
471         return NK_Constant_Narrowing;
472       }
473     }
474     return NK_Not_Narrowing;
475   }
476 
477   default:
478     // Other kinds of conversions are not narrowings.
479     return NK_Not_Narrowing;
480   }
481 }
482 
483 /// dump - Print this standard conversion sequence to standard
484 /// error. Useful for debugging overloading issues.
485 LLVM_DUMP_METHOD void StandardConversionSequence::dump() const {
486   raw_ostream &OS = llvm::errs();
487   bool PrintedSomething = false;
488   if (First != ICK_Identity) {
489     OS << GetImplicitConversionName(First);
490     PrintedSomething = true;
491   }
492 
493   if (Second != ICK_Identity) {
494     if (PrintedSomething) {
495       OS << " -> ";
496     }
497     OS << GetImplicitConversionName(Second);
498 
499     if (CopyConstructor) {
500       OS << " (by copy constructor)";
501     } else if (DirectBinding) {
502       OS << " (direct reference binding)";
503     } else if (ReferenceBinding) {
504       OS << " (reference binding)";
505     }
506     PrintedSomething = true;
507   }
508 
509   if (Third != ICK_Identity) {
510     if (PrintedSomething) {
511       OS << " -> ";
512     }
513     OS << GetImplicitConversionName(Third);
514     PrintedSomething = true;
515   }
516 
517   if (!PrintedSomething) {
518     OS << "No conversions required";
519   }
520 }
521 
522 /// dump - Print this user-defined conversion sequence to standard
523 /// error. Useful for debugging overloading issues.
524 void UserDefinedConversionSequence::dump() const {
525   raw_ostream &OS = llvm::errs();
526   if (Before.First || Before.Second || Before.Third) {
527     Before.dump();
528     OS << " -> ";
529   }
530   if (ConversionFunction)
531     OS << '\'' << *ConversionFunction << '\'';
532   else
533     OS << "aggregate initialization";
534   if (After.First || After.Second || After.Third) {
535     OS << " -> ";
536     After.dump();
537   }
538 }
539 
540 /// dump - Print this implicit conversion sequence to standard
541 /// error. Useful for debugging overloading issues.
542 void ImplicitConversionSequence::dump() const {
543   raw_ostream &OS = llvm::errs();
544   if (isStdInitializerListElement())
545     OS << "Worst std::initializer_list element conversion: ";
546   switch (ConversionKind) {
547   case StandardConversion:
548     OS << "Standard conversion: ";
549     Standard.dump();
550     break;
551   case UserDefinedConversion:
552     OS << "User-defined conversion: ";
553     UserDefined.dump();
554     break;
555   case EllipsisConversion:
556     OS << "Ellipsis conversion";
557     break;
558   case AmbiguousConversion:
559     OS << "Ambiguous conversion";
560     break;
561   case BadConversion:
562     OS << "Bad conversion";
563     break;
564   }
565 
566   OS << "\n";
567 }
568 
569 void AmbiguousConversionSequence::construct() {
570   new (&conversions()) ConversionSet();
571 }
572 
573 void AmbiguousConversionSequence::destruct() {
574   conversions().~ConversionSet();
575 }
576 
577 void
578 AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
579   FromTypePtr = O.FromTypePtr;
580   ToTypePtr = O.ToTypePtr;
581   new (&conversions()) ConversionSet(O.conversions());
582 }
583 
584 namespace {
585   // Structure used by DeductionFailureInfo to store
586   // template argument information.
587   struct DFIArguments {
588     TemplateArgument FirstArg;
589     TemplateArgument SecondArg;
590   };
591   // Structure used by DeductionFailureInfo to store
592   // template parameter and template argument information.
593   struct DFIParamWithArguments : DFIArguments {
594     TemplateParameter Param;
595   };
596   // Structure used by DeductionFailureInfo to store template argument
597   // information and the index of the problematic call argument.
598   struct DFIDeducedMismatchArgs : DFIArguments {
599     TemplateArgumentList *TemplateArgs;
600     unsigned CallArgIndex;
601   };
602   // Structure used by DeductionFailureInfo to store information about
603   // unsatisfied constraints.
604   struct CNSInfo {
605     TemplateArgumentList *TemplateArgs;
606     ConstraintSatisfaction Satisfaction;
607   };
608 }
609 
610 /// Convert from Sema's representation of template deduction information
611 /// to the form used in overload-candidate information.
612 DeductionFailureInfo
613 clang::MakeDeductionFailureInfo(ASTContext &Context,
614                                 Sema::TemplateDeductionResult TDK,
615                                 TemplateDeductionInfo &Info) {
616   DeductionFailureInfo Result;
617   Result.Result = static_cast<unsigned>(TDK);
618   Result.HasDiagnostic = false;
619   switch (TDK) {
620   case Sema::TDK_Invalid:
621   case Sema::TDK_InstantiationDepth:
622   case Sema::TDK_TooManyArguments:
623   case Sema::TDK_TooFewArguments:
624   case Sema::TDK_MiscellaneousDeductionFailure:
625   case Sema::TDK_CUDATargetMismatch:
626     Result.Data = nullptr;
627     break;
628 
629   case Sema::TDK_Incomplete:
630   case Sema::TDK_InvalidExplicitArguments:
631     Result.Data = Info.Param.getOpaqueValue();
632     break;
633 
634   case Sema::TDK_DeducedMismatch:
635   case Sema::TDK_DeducedMismatchNested: {
636     // FIXME: Should allocate from normal heap so that we can free this later.
637     auto *Saved = new (Context) DFIDeducedMismatchArgs;
638     Saved->FirstArg = Info.FirstArg;
639     Saved->SecondArg = Info.SecondArg;
640     Saved->TemplateArgs = Info.take();
641     Saved->CallArgIndex = Info.CallArgIndex;
642     Result.Data = Saved;
643     break;
644   }
645 
646   case Sema::TDK_NonDeducedMismatch: {
647     // FIXME: Should allocate from normal heap so that we can free this later.
648     DFIArguments *Saved = new (Context) DFIArguments;
649     Saved->FirstArg = Info.FirstArg;
650     Saved->SecondArg = Info.SecondArg;
651     Result.Data = Saved;
652     break;
653   }
654 
655   case Sema::TDK_IncompletePack:
656     // FIXME: It's slightly wasteful to allocate two TemplateArguments for this.
657   case Sema::TDK_Inconsistent:
658   case Sema::TDK_Underqualified: {
659     // FIXME: Should allocate from normal heap so that we can free this later.
660     DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
661     Saved->Param = Info.Param;
662     Saved->FirstArg = Info.FirstArg;
663     Saved->SecondArg = Info.SecondArg;
664     Result.Data = Saved;
665     break;
666   }
667 
668   case Sema::TDK_SubstitutionFailure:
669     Result.Data = Info.take();
670     if (Info.hasSFINAEDiagnostic()) {
671       PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
672           SourceLocation(), PartialDiagnostic::NullDiagnostic());
673       Info.takeSFINAEDiagnostic(*Diag);
674       Result.HasDiagnostic = true;
675     }
676     break;
677 
678   case Sema::TDK_ConstraintsNotSatisfied: {
679     CNSInfo *Saved = new (Context) CNSInfo;
680     Saved->TemplateArgs = Info.take();
681     Saved->Satisfaction = Info.AssociatedConstraintsSatisfaction;
682     Result.Data = Saved;
683     break;
684   }
685 
686   case Sema::TDK_Success:
687   case Sema::TDK_NonDependentConversionFailure:
688     llvm_unreachable("not a deduction failure");
689   }
690 
691   return Result;
692 }
693 
694 void DeductionFailureInfo::Destroy() {
695   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
696   case Sema::TDK_Success:
697   case Sema::TDK_Invalid:
698   case Sema::TDK_InstantiationDepth:
699   case Sema::TDK_Incomplete:
700   case Sema::TDK_TooManyArguments:
701   case Sema::TDK_TooFewArguments:
702   case Sema::TDK_InvalidExplicitArguments:
703   case Sema::TDK_CUDATargetMismatch:
704   case Sema::TDK_NonDependentConversionFailure:
705     break;
706 
707   case Sema::TDK_IncompletePack:
708   case Sema::TDK_Inconsistent:
709   case Sema::TDK_Underqualified:
710   case Sema::TDK_DeducedMismatch:
711   case Sema::TDK_DeducedMismatchNested:
712   case Sema::TDK_NonDeducedMismatch:
713     // FIXME: Destroy the data?
714     Data = nullptr;
715     break;
716 
717   case Sema::TDK_SubstitutionFailure:
718     // FIXME: Destroy the template argument list?
719     Data = nullptr;
720     if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
721       Diag->~PartialDiagnosticAt();
722       HasDiagnostic = false;
723     }
724     break;
725 
726   case Sema::TDK_ConstraintsNotSatisfied:
727     // FIXME: Destroy the template argument list?
728     Data = nullptr;
729     if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
730       Diag->~PartialDiagnosticAt();
731       HasDiagnostic = false;
732     }
733     break;
734 
735   // Unhandled
736   case Sema::TDK_MiscellaneousDeductionFailure:
737     break;
738   }
739 }
740 
741 PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
742   if (HasDiagnostic)
743     return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
744   return nullptr;
745 }
746 
747 TemplateParameter DeductionFailureInfo::getTemplateParameter() {
748   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
749   case Sema::TDK_Success:
750   case Sema::TDK_Invalid:
751   case Sema::TDK_InstantiationDepth:
752   case Sema::TDK_TooManyArguments:
753   case Sema::TDK_TooFewArguments:
754   case Sema::TDK_SubstitutionFailure:
755   case Sema::TDK_DeducedMismatch:
756   case Sema::TDK_DeducedMismatchNested:
757   case Sema::TDK_NonDeducedMismatch:
758   case Sema::TDK_CUDATargetMismatch:
759   case Sema::TDK_NonDependentConversionFailure:
760   case Sema::TDK_ConstraintsNotSatisfied:
761     return TemplateParameter();
762 
763   case Sema::TDK_Incomplete:
764   case Sema::TDK_InvalidExplicitArguments:
765     return TemplateParameter::getFromOpaqueValue(Data);
766 
767   case Sema::TDK_IncompletePack:
768   case Sema::TDK_Inconsistent:
769   case Sema::TDK_Underqualified:
770     return static_cast<DFIParamWithArguments*>(Data)->Param;
771 
772   // Unhandled
773   case Sema::TDK_MiscellaneousDeductionFailure:
774     break;
775   }
776 
777   return TemplateParameter();
778 }
779 
780 TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
781   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
782   case Sema::TDK_Success:
783   case Sema::TDK_Invalid:
784   case Sema::TDK_InstantiationDepth:
785   case Sema::TDK_TooManyArguments:
786   case Sema::TDK_TooFewArguments:
787   case Sema::TDK_Incomplete:
788   case Sema::TDK_IncompletePack:
789   case Sema::TDK_InvalidExplicitArguments:
790   case Sema::TDK_Inconsistent:
791   case Sema::TDK_Underqualified:
792   case Sema::TDK_NonDeducedMismatch:
793   case Sema::TDK_CUDATargetMismatch:
794   case Sema::TDK_NonDependentConversionFailure:
795     return nullptr;
796 
797   case Sema::TDK_DeducedMismatch:
798   case Sema::TDK_DeducedMismatchNested:
799     return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs;
800 
801   case Sema::TDK_SubstitutionFailure:
802     return static_cast<TemplateArgumentList*>(Data);
803 
804   case Sema::TDK_ConstraintsNotSatisfied:
805     return static_cast<CNSInfo*>(Data)->TemplateArgs;
806 
807   // Unhandled
808   case Sema::TDK_MiscellaneousDeductionFailure:
809     break;
810   }
811 
812   return nullptr;
813 }
814 
815 const TemplateArgument *DeductionFailureInfo::getFirstArg() {
816   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
817   case Sema::TDK_Success:
818   case Sema::TDK_Invalid:
819   case Sema::TDK_InstantiationDepth:
820   case Sema::TDK_Incomplete:
821   case Sema::TDK_TooManyArguments:
822   case Sema::TDK_TooFewArguments:
823   case Sema::TDK_InvalidExplicitArguments:
824   case Sema::TDK_SubstitutionFailure:
825   case Sema::TDK_CUDATargetMismatch:
826   case Sema::TDK_NonDependentConversionFailure:
827   case Sema::TDK_ConstraintsNotSatisfied:
828     return nullptr;
829 
830   case Sema::TDK_IncompletePack:
831   case Sema::TDK_Inconsistent:
832   case Sema::TDK_Underqualified:
833   case Sema::TDK_DeducedMismatch:
834   case Sema::TDK_DeducedMismatchNested:
835   case Sema::TDK_NonDeducedMismatch:
836     return &static_cast<DFIArguments*>(Data)->FirstArg;
837 
838   // Unhandled
839   case Sema::TDK_MiscellaneousDeductionFailure:
840     break;
841   }
842 
843   return nullptr;
844 }
845 
846 const TemplateArgument *DeductionFailureInfo::getSecondArg() {
847   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
848   case Sema::TDK_Success:
849   case Sema::TDK_Invalid:
850   case Sema::TDK_InstantiationDepth:
851   case Sema::TDK_Incomplete:
852   case Sema::TDK_IncompletePack:
853   case Sema::TDK_TooManyArguments:
854   case Sema::TDK_TooFewArguments:
855   case Sema::TDK_InvalidExplicitArguments:
856   case Sema::TDK_SubstitutionFailure:
857   case Sema::TDK_CUDATargetMismatch:
858   case Sema::TDK_NonDependentConversionFailure:
859   case Sema::TDK_ConstraintsNotSatisfied:
860     return nullptr;
861 
862   case Sema::TDK_Inconsistent:
863   case Sema::TDK_Underqualified:
864   case Sema::TDK_DeducedMismatch:
865   case Sema::TDK_DeducedMismatchNested:
866   case Sema::TDK_NonDeducedMismatch:
867     return &static_cast<DFIArguments*>(Data)->SecondArg;
868 
869   // Unhandled
870   case Sema::TDK_MiscellaneousDeductionFailure:
871     break;
872   }
873 
874   return nullptr;
875 }
876 
877 llvm::Optional<unsigned> DeductionFailureInfo::getCallArgIndex() {
878   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
879   case Sema::TDK_DeducedMismatch:
880   case Sema::TDK_DeducedMismatchNested:
881     return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex;
882 
883   default:
884     return llvm::None;
885   }
886 }
887 
888 bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed(
889     OverloadedOperatorKind Op) {
890   if (!AllowRewrittenCandidates)
891     return false;
892   return Op == OO_EqualEqual || Op == OO_Spaceship;
893 }
894 
895 bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed(
896     ASTContext &Ctx, const FunctionDecl *FD) {
897   if (!shouldAddReversed(FD->getDeclName().getCXXOverloadedOperator()))
898     return false;
899   // Don't bother adding a reversed candidate that can never be a better
900   // match than the non-reversed version.
901   return FD->getNumParams() != 2 ||
902          !Ctx.hasSameUnqualifiedType(FD->getParamDecl(0)->getType(),
903                                      FD->getParamDecl(1)->getType()) ||
904          FD->hasAttr<EnableIfAttr>();
905 }
906 
907 void OverloadCandidateSet::destroyCandidates() {
908   for (iterator i = begin(), e = end(); i != e; ++i) {
909     for (auto &C : i->Conversions)
910       C.~ImplicitConversionSequence();
911     if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
912       i->DeductionFailure.Destroy();
913   }
914 }
915 
916 void OverloadCandidateSet::clear(CandidateSetKind CSK) {
917   destroyCandidates();
918   SlabAllocator.Reset();
919   NumInlineBytesUsed = 0;
920   Candidates.clear();
921   Functions.clear();
922   Kind = CSK;
923 }
924 
925 namespace {
926   class UnbridgedCastsSet {
927     struct Entry {
928       Expr **Addr;
929       Expr *Saved;
930     };
931     SmallVector<Entry, 2> Entries;
932 
933   public:
934     void save(Sema &S, Expr *&E) {
935       assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
936       Entry entry = { &E, E };
937       Entries.push_back(entry);
938       E = S.stripARCUnbridgedCast(E);
939     }
940 
941     void restore() {
942       for (SmallVectorImpl<Entry>::iterator
943              i = Entries.begin(), e = Entries.end(); i != e; ++i)
944         *i->Addr = i->Saved;
945     }
946   };
947 }
948 
949 /// checkPlaceholderForOverload - Do any interesting placeholder-like
950 /// preprocessing on the given expression.
951 ///
952 /// \param unbridgedCasts a collection to which to add unbridged casts;
953 ///   without this, they will be immediately diagnosed as errors
954 ///
955 /// Return true on unrecoverable error.
956 static bool
957 checkPlaceholderForOverload(Sema &S, Expr *&E,
958                             UnbridgedCastsSet *unbridgedCasts = nullptr) {
959   if (const BuiltinType *placeholder =  E->getType()->getAsPlaceholderType()) {
960     // We can't handle overloaded expressions here because overload
961     // resolution might reasonably tweak them.
962     if (placeholder->getKind() == BuiltinType::Overload) return false;
963 
964     // If the context potentially accepts unbridged ARC casts, strip
965     // the unbridged cast and add it to the collection for later restoration.
966     if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
967         unbridgedCasts) {
968       unbridgedCasts->save(S, E);
969       return false;
970     }
971 
972     // Go ahead and check everything else.
973     ExprResult result = S.CheckPlaceholderExpr(E);
974     if (result.isInvalid())
975       return true;
976 
977     E = result.get();
978     return false;
979   }
980 
981   // Nothing to do.
982   return false;
983 }
984 
985 /// checkArgPlaceholdersForOverload - Check a set of call operands for
986 /// placeholders.
987 static bool checkArgPlaceholdersForOverload(Sema &S,
988                                             MultiExprArg Args,
989                                             UnbridgedCastsSet &unbridged) {
990   for (unsigned i = 0, e = Args.size(); i != e; ++i)
991     if (checkPlaceholderForOverload(S, Args[i], &unbridged))
992       return true;
993 
994   return false;
995 }
996 
997 /// Determine whether the given New declaration is an overload of the
998 /// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if
999 /// New and Old cannot be overloaded, e.g., if New has the same signature as
1000 /// some function in Old (C++ 1.3.10) or if the Old declarations aren't
1001 /// functions (or function templates) at all. When it does return Ovl_Match or
1002 /// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be
1003 /// overloaded with. This decl may be a UsingShadowDecl on top of the underlying
1004 /// declaration.
1005 ///
1006 /// Example: Given the following input:
1007 ///
1008 ///   void f(int, float); // #1
1009 ///   void f(int, int); // #2
1010 ///   int f(int, int); // #3
1011 ///
1012 /// When we process #1, there is no previous declaration of "f", so IsOverload
1013 /// will not be used.
1014 ///
1015 /// When we process #2, Old contains only the FunctionDecl for #1. By comparing
1016 /// the parameter types, we see that #1 and #2 are overloaded (since they have
1017 /// different signatures), so this routine returns Ovl_Overload; MatchedDecl is
1018 /// unchanged.
1019 ///
1020 /// When we process #3, Old is an overload set containing #1 and #2. We compare
1021 /// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then
1022 /// #3 to #2. Since the signatures of #3 and #2 are identical (return types of
1023 /// functions are not part of the signature), IsOverload returns Ovl_Match and
1024 /// MatchedDecl will be set to point to the FunctionDecl for #2.
1025 ///
1026 /// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class
1027 /// by a using declaration. The rules for whether to hide shadow declarations
1028 /// ignore some properties which otherwise figure into a function template's
1029 /// signature.
1030 Sema::OverloadKind
1031 Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
1032                     NamedDecl *&Match, bool NewIsUsingDecl) {
1033   for (LookupResult::iterator I = Old.begin(), E = Old.end();
1034          I != E; ++I) {
1035     NamedDecl *OldD = *I;
1036 
1037     bool OldIsUsingDecl = false;
1038     if (isa<UsingShadowDecl>(OldD)) {
1039       OldIsUsingDecl = true;
1040 
1041       // We can always introduce two using declarations into the same
1042       // context, even if they have identical signatures.
1043       if (NewIsUsingDecl) continue;
1044 
1045       OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
1046     }
1047 
1048     // A using-declaration does not conflict with another declaration
1049     // if one of them is hidden.
1050     if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I))
1051       continue;
1052 
1053     // If either declaration was introduced by a using declaration,
1054     // we'll need to use slightly different rules for matching.
1055     // Essentially, these rules are the normal rules, except that
1056     // function templates hide function templates with different
1057     // return types or template parameter lists.
1058     bool UseMemberUsingDeclRules =
1059       (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
1060       !New->getFriendObjectKind();
1061 
1062     if (FunctionDecl *OldF = OldD->getAsFunction()) {
1063       if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
1064         if (UseMemberUsingDeclRules && OldIsUsingDecl) {
1065           HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
1066           continue;
1067         }
1068 
1069         if (!isa<FunctionTemplateDecl>(OldD) &&
1070             !shouldLinkPossiblyHiddenDecl(*I, New))
1071           continue;
1072 
1073         Match = *I;
1074         return Ovl_Match;
1075       }
1076 
1077       // Builtins that have custom typechecking or have a reference should
1078       // not be overloadable or redeclarable.
1079       if (!getASTContext().canBuiltinBeRedeclared(OldF)) {
1080         Match = *I;
1081         return Ovl_NonFunction;
1082       }
1083     } else if (isa<UsingDecl>(OldD) || isa<UsingPackDecl>(OldD)) {
1084       // We can overload with these, which can show up when doing
1085       // redeclaration checks for UsingDecls.
1086       assert(Old.getLookupKind() == LookupUsingDeclName);
1087     } else if (isa<TagDecl>(OldD)) {
1088       // We can always overload with tags by hiding them.
1089     } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) {
1090       // Optimistically assume that an unresolved using decl will
1091       // overload; if it doesn't, we'll have to diagnose during
1092       // template instantiation.
1093       //
1094       // Exception: if the scope is dependent and this is not a class
1095       // member, the using declaration can only introduce an enumerator.
1096       if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) {
1097         Match = *I;
1098         return Ovl_NonFunction;
1099       }
1100     } else {
1101       // (C++ 13p1):
1102       //   Only function declarations can be overloaded; object and type
1103       //   declarations cannot be overloaded.
1104       Match = *I;
1105       return Ovl_NonFunction;
1106     }
1107   }
1108 
1109   // C++ [temp.friend]p1:
1110   //   For a friend function declaration that is not a template declaration:
1111   //    -- if the name of the friend is a qualified or unqualified template-id,
1112   //       [...], otherwise
1113   //    -- if the name of the friend is a qualified-id and a matching
1114   //       non-template function is found in the specified class or namespace,
1115   //       the friend declaration refers to that function, otherwise,
1116   //    -- if the name of the friend is a qualified-id and a matching function
1117   //       template is found in the specified class or namespace, the friend
1118   //       declaration refers to the deduced specialization of that function
1119   //       template, otherwise
1120   //    -- the name shall be an unqualified-id [...]
1121   // If we get here for a qualified friend declaration, we've just reached the
1122   // third bullet. If the type of the friend is dependent, skip this lookup
1123   // until instantiation.
1124   if (New->getFriendObjectKind() && New->getQualifier() &&
1125       !New->getDescribedFunctionTemplate() &&
1126       !New->getDependentSpecializationInfo() &&
1127       !New->getType()->isDependentType()) {
1128     LookupResult TemplateSpecResult(LookupResult::Temporary, Old);
1129     TemplateSpecResult.addAllDecls(Old);
1130     if (CheckFunctionTemplateSpecialization(New, nullptr, TemplateSpecResult,
1131                                             /*QualifiedFriend*/true)) {
1132       New->setInvalidDecl();
1133       return Ovl_Overload;
1134     }
1135 
1136     Match = TemplateSpecResult.getAsSingle<FunctionDecl>();
1137     return Ovl_Match;
1138   }
1139 
1140   return Ovl_Overload;
1141 }
1142 
1143 bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
1144                       bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs,
1145                       bool ConsiderRequiresClauses) {
1146   // C++ [basic.start.main]p2: This function shall not be overloaded.
1147   if (New->isMain())
1148     return false;
1149 
1150   // MSVCRT user defined entry points cannot be overloaded.
1151   if (New->isMSVCRTEntryPoint())
1152     return false;
1153 
1154   FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
1155   FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
1156 
1157   // C++ [temp.fct]p2:
1158   //   A function template can be overloaded with other function templates
1159   //   and with normal (non-template) functions.
1160   if ((OldTemplate == nullptr) != (NewTemplate == nullptr))
1161     return true;
1162 
1163   // Is the function New an overload of the function Old?
1164   QualType OldQType = Context.getCanonicalType(Old->getType());
1165   QualType NewQType = Context.getCanonicalType(New->getType());
1166 
1167   // Compare the signatures (C++ 1.3.10) of the two functions to
1168   // determine whether they are overloads. If we find any mismatch
1169   // in the signature, they are overloads.
1170 
1171   // If either of these functions is a K&R-style function (no
1172   // prototype), then we consider them to have matching signatures.
1173   if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
1174       isa<FunctionNoProtoType>(NewQType.getTypePtr()))
1175     return false;
1176 
1177   const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType);
1178   const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType);
1179 
1180   // The signature of a function includes the types of its
1181   // parameters (C++ 1.3.10), which includes the presence or absence
1182   // of the ellipsis; see C++ DR 357).
1183   if (OldQType != NewQType &&
1184       (OldType->getNumParams() != NewType->getNumParams() ||
1185        OldType->isVariadic() != NewType->isVariadic() ||
1186        !FunctionParamTypesAreEqual(OldType, NewType)))
1187     return true;
1188 
1189   // C++ [temp.over.link]p4:
1190   //   The signature of a function template consists of its function
1191   //   signature, its return type and its template parameter list. The names
1192   //   of the template parameters are significant only for establishing the
1193   //   relationship between the template parameters and the rest of the
1194   //   signature.
1195   //
1196   // We check the return type and template parameter lists for function
1197   // templates first; the remaining checks follow.
1198   //
1199   // However, we don't consider either of these when deciding whether
1200   // a member introduced by a shadow declaration is hidden.
1201   if (!UseMemberUsingDeclRules && NewTemplate &&
1202       (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
1203                                        OldTemplate->getTemplateParameters(),
1204                                        false, TPL_TemplateMatch) ||
1205        !Context.hasSameType(Old->getDeclaredReturnType(),
1206                             New->getDeclaredReturnType())))
1207     return true;
1208 
1209   // If the function is a class member, its signature includes the
1210   // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
1211   //
1212   // As part of this, also check whether one of the member functions
1213   // is static, in which case they are not overloads (C++
1214   // 13.1p2). While not part of the definition of the signature,
1215   // this check is important to determine whether these functions
1216   // can be overloaded.
1217   CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
1218   CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
1219   if (OldMethod && NewMethod &&
1220       !OldMethod->isStatic() && !NewMethod->isStatic()) {
1221     if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
1222       if (!UseMemberUsingDeclRules &&
1223           (OldMethod->getRefQualifier() == RQ_None ||
1224            NewMethod->getRefQualifier() == RQ_None)) {
1225         // C++0x [over.load]p2:
1226         //   - Member function declarations with the same name and the same
1227         //     parameter-type-list as well as member function template
1228         //     declarations with the same name, the same parameter-type-list, and
1229         //     the same template parameter lists cannot be overloaded if any of
1230         //     them, but not all, have a ref-qualifier (8.3.5).
1231         Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
1232           << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
1233         Diag(OldMethod->getLocation(), diag::note_previous_declaration);
1234       }
1235       return true;
1236     }
1237 
1238     // We may not have applied the implicit const for a constexpr member
1239     // function yet (because we haven't yet resolved whether this is a static
1240     // or non-static member function). Add it now, on the assumption that this
1241     // is a redeclaration of OldMethod.
1242     auto OldQuals = OldMethod->getMethodQualifiers();
1243     auto NewQuals = NewMethod->getMethodQualifiers();
1244     if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() &&
1245         !isa<CXXConstructorDecl>(NewMethod))
1246       NewQuals.addConst();
1247     // We do not allow overloading based off of '__restrict'.
1248     OldQuals.removeRestrict();
1249     NewQuals.removeRestrict();
1250     if (OldQuals != NewQuals)
1251       return true;
1252   }
1253 
1254   // Though pass_object_size is placed on parameters and takes an argument, we
1255   // consider it to be a function-level modifier for the sake of function
1256   // identity. Either the function has one or more parameters with
1257   // pass_object_size or it doesn't.
1258   if (functionHasPassObjectSizeParams(New) !=
1259       functionHasPassObjectSizeParams(Old))
1260     return true;
1261 
1262   // enable_if attributes are an order-sensitive part of the signature.
1263   for (specific_attr_iterator<EnableIfAttr>
1264          NewI = New->specific_attr_begin<EnableIfAttr>(),
1265          NewE = New->specific_attr_end<EnableIfAttr>(),
1266          OldI = Old->specific_attr_begin<EnableIfAttr>(),
1267          OldE = Old->specific_attr_end<EnableIfAttr>();
1268        NewI != NewE || OldI != OldE; ++NewI, ++OldI) {
1269     if (NewI == NewE || OldI == OldE)
1270       return true;
1271     llvm::FoldingSetNodeID NewID, OldID;
1272     NewI->getCond()->Profile(NewID, Context, true);
1273     OldI->getCond()->Profile(OldID, Context, true);
1274     if (NewID != OldID)
1275       return true;
1276   }
1277 
1278   if (getLangOpts().CUDA && ConsiderCudaAttrs) {
1279     // Don't allow overloading of destructors.  (In theory we could, but it
1280     // would be a giant change to clang.)
1281     if (!isa<CXXDestructorDecl>(New)) {
1282       CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New),
1283                          OldTarget = IdentifyCUDATarget(Old);
1284       if (NewTarget != CFT_InvalidTarget) {
1285         assert((OldTarget != CFT_InvalidTarget) &&
1286                "Unexpected invalid target.");
1287 
1288         // Allow overloading of functions with same signature and different CUDA
1289         // target attributes.
1290         if (NewTarget != OldTarget)
1291           return true;
1292       }
1293     }
1294   }
1295 
1296   if (ConsiderRequiresClauses) {
1297     Expr *NewRC = New->getTrailingRequiresClause(),
1298          *OldRC = Old->getTrailingRequiresClause();
1299     if ((NewRC != nullptr) != (OldRC != nullptr))
1300       // RC are most certainly different - these are overloads.
1301       return true;
1302 
1303     if (NewRC) {
1304       llvm::FoldingSetNodeID NewID, OldID;
1305       NewRC->Profile(NewID, Context, /*Canonical=*/true);
1306       OldRC->Profile(OldID, Context, /*Canonical=*/true);
1307       if (NewID != OldID)
1308         // RCs are not equivalent - these are overloads.
1309         return true;
1310     }
1311   }
1312 
1313   // The signatures match; this is not an overload.
1314   return false;
1315 }
1316 
1317 /// Tries a user-defined conversion from From to ToType.
1318 ///
1319 /// Produces an implicit conversion sequence for when a standard conversion
1320 /// is not an option. See TryImplicitConversion for more information.
1321 static ImplicitConversionSequence
1322 TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
1323                          bool SuppressUserConversions,
1324                          AllowedExplicit AllowExplicit,
1325                          bool InOverloadResolution,
1326                          bool CStyle,
1327                          bool AllowObjCWritebackConversion,
1328                          bool AllowObjCConversionOnExplicit) {
1329   ImplicitConversionSequence ICS;
1330 
1331   if (SuppressUserConversions) {
1332     // We're not in the case above, so there is no conversion that
1333     // we can perform.
1334     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1335     return ICS;
1336   }
1337 
1338   // Attempt user-defined conversion.
1339   OverloadCandidateSet Conversions(From->getExprLoc(),
1340                                    OverloadCandidateSet::CSK_Normal);
1341   switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined,
1342                                   Conversions, AllowExplicit,
1343                                   AllowObjCConversionOnExplicit)) {
1344   case OR_Success:
1345   case OR_Deleted:
1346     ICS.setUserDefined();
1347     // C++ [over.ics.user]p4:
1348     //   A conversion of an expression of class type to the same class
1349     //   type is given Exact Match rank, and a conversion of an
1350     //   expression of class type to a base class of that type is
1351     //   given Conversion rank, in spite of the fact that a copy
1352     //   constructor (i.e., a user-defined conversion function) is
1353     //   called for those cases.
1354     if (CXXConstructorDecl *Constructor
1355           = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1356       QualType FromCanon
1357         = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1358       QualType ToCanon
1359         = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1360       if (Constructor->isCopyConstructor() &&
1361           (FromCanon == ToCanon ||
1362            S.IsDerivedFrom(From->getBeginLoc(), FromCanon, ToCanon))) {
1363         // Turn this into a "standard" conversion sequence, so that it
1364         // gets ranked with standard conversion sequences.
1365         DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction;
1366         ICS.setStandard();
1367         ICS.Standard.setAsIdentityConversion();
1368         ICS.Standard.setFromType(From->getType());
1369         ICS.Standard.setAllToTypes(ToType);
1370         ICS.Standard.CopyConstructor = Constructor;
1371         ICS.Standard.FoundCopyConstructor = Found;
1372         if (ToCanon != FromCanon)
1373           ICS.Standard.Second = ICK_Derived_To_Base;
1374       }
1375     }
1376     break;
1377 
1378   case OR_Ambiguous:
1379     ICS.setAmbiguous();
1380     ICS.Ambiguous.setFromType(From->getType());
1381     ICS.Ambiguous.setToType(ToType);
1382     for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1383          Cand != Conversions.end(); ++Cand)
1384       if (Cand->Best)
1385         ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
1386     break;
1387 
1388     // Fall through.
1389   case OR_No_Viable_Function:
1390     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1391     break;
1392   }
1393 
1394   return ICS;
1395 }
1396 
1397 /// TryImplicitConversion - Attempt to perform an implicit conversion
1398 /// from the given expression (Expr) to the given type (ToType). This
1399 /// function returns an implicit conversion sequence that can be used
1400 /// to perform the initialization. Given
1401 ///
1402 ///   void f(float f);
1403 ///   void g(int i) { f(i); }
1404 ///
1405 /// this routine would produce an implicit conversion sequence to
1406 /// describe the initialization of f from i, which will be a standard
1407 /// conversion sequence containing an lvalue-to-rvalue conversion (C++
1408 /// 4.1) followed by a floating-integral conversion (C++ 4.9).
1409 //
1410 /// Note that this routine only determines how the conversion can be
1411 /// performed; it does not actually perform the conversion. As such,
1412 /// it will not produce any diagnostics if no conversion is available,
1413 /// but will instead return an implicit conversion sequence of kind
1414 /// "BadConversion".
1415 ///
1416 /// If @p SuppressUserConversions, then user-defined conversions are
1417 /// not permitted.
1418 /// If @p AllowExplicit, then explicit user-defined conversions are
1419 /// permitted.
1420 ///
1421 /// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1422 /// writeback conversion, which allows __autoreleasing id* parameters to
1423 /// be initialized with __strong id* or __weak id* arguments.
1424 static ImplicitConversionSequence
1425 TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1426                       bool SuppressUserConversions,
1427                       AllowedExplicit AllowExplicit,
1428                       bool InOverloadResolution,
1429                       bool CStyle,
1430                       bool AllowObjCWritebackConversion,
1431                       bool AllowObjCConversionOnExplicit) {
1432   ImplicitConversionSequence ICS;
1433   if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1434                            ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1435     ICS.setStandard();
1436     return ICS;
1437   }
1438 
1439   if (!S.getLangOpts().CPlusPlus) {
1440     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1441     return ICS;
1442   }
1443 
1444   // C++ [over.ics.user]p4:
1445   //   A conversion of an expression of class type to the same class
1446   //   type is given Exact Match rank, and a conversion of an
1447   //   expression of class type to a base class of that type is
1448   //   given Conversion rank, in spite of the fact that a copy/move
1449   //   constructor (i.e., a user-defined conversion function) is
1450   //   called for those cases.
1451   QualType FromType = From->getType();
1452   if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1453       (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1454        S.IsDerivedFrom(From->getBeginLoc(), FromType, ToType))) {
1455     ICS.setStandard();
1456     ICS.Standard.setAsIdentityConversion();
1457     ICS.Standard.setFromType(FromType);
1458     ICS.Standard.setAllToTypes(ToType);
1459 
1460     // We don't actually check at this point whether there is a valid
1461     // copy/move constructor, since overloading just assumes that it
1462     // exists. When we actually perform initialization, we'll find the
1463     // appropriate constructor to copy the returned object, if needed.
1464     ICS.Standard.CopyConstructor = nullptr;
1465 
1466     // Determine whether this is considered a derived-to-base conversion.
1467     if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1468       ICS.Standard.Second = ICK_Derived_To_Base;
1469 
1470     return ICS;
1471   }
1472 
1473   return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1474                                   AllowExplicit, InOverloadResolution, CStyle,
1475                                   AllowObjCWritebackConversion,
1476                                   AllowObjCConversionOnExplicit);
1477 }
1478 
1479 ImplicitConversionSequence
1480 Sema::TryImplicitConversion(Expr *From, QualType ToType,
1481                             bool SuppressUserConversions,
1482                             AllowedExplicit AllowExplicit,
1483                             bool InOverloadResolution,
1484                             bool CStyle,
1485                             bool AllowObjCWritebackConversion) {
1486   return ::TryImplicitConversion(*this, From, ToType, SuppressUserConversions,
1487                                  AllowExplicit, InOverloadResolution, CStyle,
1488                                  AllowObjCWritebackConversion,
1489                                  /*AllowObjCConversionOnExplicit=*/false);
1490 }
1491 
1492 /// PerformImplicitConversion - Perform an implicit conversion of the
1493 /// expression From to the type ToType. Returns the
1494 /// converted expression. Flavor is the kind of conversion we're
1495 /// performing, used in the error message. If @p AllowExplicit,
1496 /// explicit user-defined conversions are permitted.
1497 ExprResult Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1498                                            AssignmentAction Action,
1499                                            bool AllowExplicit) {
1500   if (checkPlaceholderForOverload(*this, From))
1501     return ExprError();
1502 
1503   // Objective-C ARC: Determine whether we will allow the writeback conversion.
1504   bool AllowObjCWritebackConversion
1505     = getLangOpts().ObjCAutoRefCount &&
1506       (Action == AA_Passing || Action == AA_Sending);
1507   if (getLangOpts().ObjC)
1508     CheckObjCBridgeRelatedConversions(From->getBeginLoc(), ToType,
1509                                       From->getType(), From);
1510   ImplicitConversionSequence ICS = ::TryImplicitConversion(
1511       *this, From, ToType,
1512       /*SuppressUserConversions=*/false,
1513       AllowExplicit ? AllowedExplicit::All : AllowedExplicit::None,
1514       /*InOverloadResolution=*/false,
1515       /*CStyle=*/false, AllowObjCWritebackConversion,
1516       /*AllowObjCConversionOnExplicit=*/false);
1517   return PerformImplicitConversion(From, ToType, ICS, Action);
1518 }
1519 
1520 /// Determine whether the conversion from FromType to ToType is a valid
1521 /// conversion that strips "noexcept" or "noreturn" off the nested function
1522 /// type.
1523 bool Sema::IsFunctionConversion(QualType FromType, QualType ToType,
1524                                 QualType &ResultTy) {
1525   if (Context.hasSameUnqualifiedType(FromType, ToType))
1526     return false;
1527 
1528   // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1529   //                    or F(t noexcept) -> F(t)
1530   // where F adds one of the following at most once:
1531   //   - a pointer
1532   //   - a member pointer
1533   //   - a block pointer
1534   // Changes here need matching changes in FindCompositePointerType.
1535   CanQualType CanTo = Context.getCanonicalType(ToType);
1536   CanQualType CanFrom = Context.getCanonicalType(FromType);
1537   Type::TypeClass TyClass = CanTo->getTypeClass();
1538   if (TyClass != CanFrom->getTypeClass()) return false;
1539   if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1540     if (TyClass == Type::Pointer) {
1541       CanTo = CanTo.castAs<PointerType>()->getPointeeType();
1542       CanFrom = CanFrom.castAs<PointerType>()->getPointeeType();
1543     } else if (TyClass == Type::BlockPointer) {
1544       CanTo = CanTo.castAs<BlockPointerType>()->getPointeeType();
1545       CanFrom = CanFrom.castAs<BlockPointerType>()->getPointeeType();
1546     } else if (TyClass == Type::MemberPointer) {
1547       auto ToMPT = CanTo.castAs<MemberPointerType>();
1548       auto FromMPT = CanFrom.castAs<MemberPointerType>();
1549       // A function pointer conversion cannot change the class of the function.
1550       if (ToMPT->getClass() != FromMPT->getClass())
1551         return false;
1552       CanTo = ToMPT->getPointeeType();
1553       CanFrom = FromMPT->getPointeeType();
1554     } else {
1555       return false;
1556     }
1557 
1558     TyClass = CanTo->getTypeClass();
1559     if (TyClass != CanFrom->getTypeClass()) return false;
1560     if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1561       return false;
1562   }
1563 
1564   const auto *FromFn = cast<FunctionType>(CanFrom);
1565   FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
1566 
1567   const auto *ToFn = cast<FunctionType>(CanTo);
1568   FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
1569 
1570   bool Changed = false;
1571 
1572   // Drop 'noreturn' if not present in target type.
1573   if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) {
1574     FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false));
1575     Changed = true;
1576   }
1577 
1578   // Drop 'noexcept' if not present in target type.
1579   if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) {
1580     const auto *ToFPT = cast<FunctionProtoType>(ToFn);
1581     if (FromFPT->isNothrow() && !ToFPT->isNothrow()) {
1582       FromFn = cast<FunctionType>(
1583           Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0),
1584                                                    EST_None)
1585                  .getTypePtr());
1586       Changed = true;
1587     }
1588 
1589     // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid
1590     // only if the ExtParameterInfo lists of the two function prototypes can be
1591     // merged and the merged list is identical to ToFPT's ExtParameterInfo list.
1592     SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
1593     bool CanUseToFPT, CanUseFromFPT;
1594     if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT,
1595                                       CanUseFromFPT, NewParamInfos) &&
1596         CanUseToFPT && !CanUseFromFPT) {
1597       FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo();
1598       ExtInfo.ExtParameterInfos =
1599           NewParamInfos.empty() ? nullptr : NewParamInfos.data();
1600       QualType QT = Context.getFunctionType(FromFPT->getReturnType(),
1601                                             FromFPT->getParamTypes(), ExtInfo);
1602       FromFn = QT->getAs<FunctionType>();
1603       Changed = true;
1604     }
1605   }
1606 
1607   if (!Changed)
1608     return false;
1609 
1610   assert(QualType(FromFn, 0).isCanonical());
1611   if (QualType(FromFn, 0) != CanTo) return false;
1612 
1613   ResultTy = ToType;
1614   return true;
1615 }
1616 
1617 /// Determine whether the conversion from FromType to ToType is a valid
1618 /// vector conversion.
1619 ///
1620 /// \param ICK Will be set to the vector conversion kind, if this is a vector
1621 /// conversion.
1622 static bool IsVectorConversion(Sema &S, QualType FromType,
1623                                QualType ToType, ImplicitConversionKind &ICK) {
1624   // We need at least one of these types to be a vector type to have a vector
1625   // conversion.
1626   if (!ToType->isVectorType() && !FromType->isVectorType())
1627     return false;
1628 
1629   // Identical types require no conversions.
1630   if (S.Context.hasSameUnqualifiedType(FromType, ToType))
1631     return false;
1632 
1633   // There are no conversions between extended vector types, only identity.
1634   if (ToType->isExtVectorType()) {
1635     // There are no conversions between extended vector types other than the
1636     // identity conversion.
1637     if (FromType->isExtVectorType())
1638       return false;
1639 
1640     // Vector splat from any arithmetic type to a vector.
1641     if (FromType->isArithmeticType()) {
1642       ICK = ICK_Vector_Splat;
1643       return true;
1644     }
1645   }
1646 
1647   if (ToType->isSizelessBuiltinType() || FromType->isSizelessBuiltinType())
1648     if (S.Context.areCompatibleSveTypes(FromType, ToType) ||
1649         S.Context.areLaxCompatibleSveTypes(FromType, ToType)) {
1650       ICK = ICK_SVE_Vector_Conversion;
1651       return true;
1652     }
1653 
1654   // We can perform the conversion between vector types in the following cases:
1655   // 1)vector types are equivalent AltiVec and GCC vector types
1656   // 2)lax vector conversions are permitted and the vector types are of the
1657   //   same size
1658   // 3)the destination type does not have the ARM MVE strict-polymorphism
1659   //   attribute, which inhibits lax vector conversion for overload resolution
1660   //   only
1661   if (ToType->isVectorType() && FromType->isVectorType()) {
1662     if (S.Context.areCompatibleVectorTypes(FromType, ToType) ||
1663         (S.isLaxVectorConversion(FromType, ToType) &&
1664          !ToType->hasAttr(attr::ArmMveStrictPolymorphism))) {
1665       ICK = ICK_Vector_Conversion;
1666       return true;
1667     }
1668   }
1669 
1670   return false;
1671 }
1672 
1673 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
1674                                 bool InOverloadResolution,
1675                                 StandardConversionSequence &SCS,
1676                                 bool CStyle);
1677 
1678 /// IsStandardConversion - Determines whether there is a standard
1679 /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1680 /// expression From to the type ToType. Standard conversion sequences
1681 /// only consider non-class types; for conversions that involve class
1682 /// types, use TryImplicitConversion. If a conversion exists, SCS will
1683 /// contain the standard conversion sequence required to perform this
1684 /// conversion and this routine will return true. Otherwise, this
1685 /// routine will return false and the value of SCS is unspecified.
1686 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1687                                  bool InOverloadResolution,
1688                                  StandardConversionSequence &SCS,
1689                                  bool CStyle,
1690                                  bool AllowObjCWritebackConversion) {
1691   QualType FromType = From->getType();
1692 
1693   // Standard conversions (C++ [conv])
1694   SCS.setAsIdentityConversion();
1695   SCS.IncompatibleObjC = false;
1696   SCS.setFromType(FromType);
1697   SCS.CopyConstructor = nullptr;
1698 
1699   // There are no standard conversions for class types in C++, so
1700   // abort early. When overloading in C, however, we do permit them.
1701   if (S.getLangOpts().CPlusPlus &&
1702       (FromType->isRecordType() || ToType->isRecordType()))
1703     return false;
1704 
1705   // The first conversion can be an lvalue-to-rvalue conversion,
1706   // array-to-pointer conversion, or function-to-pointer conversion
1707   // (C++ 4p1).
1708 
1709   if (FromType == S.Context.OverloadTy) {
1710     DeclAccessPair AccessPair;
1711     if (FunctionDecl *Fn
1712           = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1713                                                  AccessPair)) {
1714       // We were able to resolve the address of the overloaded function,
1715       // so we can convert to the type of that function.
1716       FromType = Fn->getType();
1717       SCS.setFromType(FromType);
1718 
1719       // we can sometimes resolve &foo<int> regardless of ToType, so check
1720       // if the type matches (identity) or we are converting to bool
1721       if (!S.Context.hasSameUnqualifiedType(
1722                       S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1723         QualType resultTy;
1724         // if the function type matches except for [[noreturn]], it's ok
1725         if (!S.IsFunctionConversion(FromType,
1726               S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1727           // otherwise, only a boolean conversion is standard
1728           if (!ToType->isBooleanType())
1729             return false;
1730       }
1731 
1732       // Check if the "from" expression is taking the address of an overloaded
1733       // function and recompute the FromType accordingly. Take advantage of the
1734       // fact that non-static member functions *must* have such an address-of
1735       // expression.
1736       CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1737       if (Method && !Method->isStatic()) {
1738         assert(isa<UnaryOperator>(From->IgnoreParens()) &&
1739                "Non-unary operator on non-static member address");
1740         assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
1741                == UO_AddrOf &&
1742                "Non-address-of operator on non-static member address");
1743         const Type *ClassType
1744           = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1745         FromType = S.Context.getMemberPointerType(FromType, ClassType);
1746       } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1747         assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
1748                UO_AddrOf &&
1749                "Non-address-of operator for overloaded function expression");
1750         FromType = S.Context.getPointerType(FromType);
1751       }
1752 
1753       // Check that we've computed the proper type after overload resolution.
1754       // FIXME: FixOverloadedFunctionReference has side-effects; we shouldn't
1755       // be calling it from within an NDEBUG block.
1756       assert(S.Context.hasSameType(
1757         FromType,
1758         S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
1759     } else {
1760       return false;
1761     }
1762   }
1763   // Lvalue-to-rvalue conversion (C++11 4.1):
1764   //   A glvalue (3.10) of a non-function, non-array type T can
1765   //   be converted to a prvalue.
1766   bool argIsLValue = From->isGLValue();
1767   if (argIsLValue &&
1768       !FromType->isFunctionType() && !FromType->isArrayType() &&
1769       S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1770     SCS.First = ICK_Lvalue_To_Rvalue;
1771 
1772     // C11 6.3.2.1p2:
1773     //   ... if the lvalue has atomic type, the value has the non-atomic version
1774     //   of the type of the lvalue ...
1775     if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
1776       FromType = Atomic->getValueType();
1777 
1778     // If T is a non-class type, the type of the rvalue is the
1779     // cv-unqualified version of T. Otherwise, the type of the rvalue
1780     // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1781     // just strip the qualifiers because they don't matter.
1782     FromType = FromType.getUnqualifiedType();
1783   } else if (FromType->isArrayType()) {
1784     // Array-to-pointer conversion (C++ 4.2)
1785     SCS.First = ICK_Array_To_Pointer;
1786 
1787     // An lvalue or rvalue of type "array of N T" or "array of unknown
1788     // bound of T" can be converted to an rvalue of type "pointer to
1789     // T" (C++ 4.2p1).
1790     FromType = S.Context.getArrayDecayedType(FromType);
1791 
1792     if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1793       // This conversion is deprecated in C++03 (D.4)
1794       SCS.DeprecatedStringLiteralToCharPtr = true;
1795 
1796       // For the purpose of ranking in overload resolution
1797       // (13.3.3.1.1), this conversion is considered an
1798       // array-to-pointer conversion followed by a qualification
1799       // conversion (4.4). (C++ 4.2p2)
1800       SCS.Second = ICK_Identity;
1801       SCS.Third = ICK_Qualification;
1802       SCS.QualificationIncludesObjCLifetime = false;
1803       SCS.setAllToTypes(FromType);
1804       return true;
1805     }
1806   } else if (FromType->isFunctionType() && argIsLValue) {
1807     // Function-to-pointer conversion (C++ 4.3).
1808     SCS.First = ICK_Function_To_Pointer;
1809 
1810     if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts()))
1811       if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
1812         if (!S.checkAddressOfFunctionIsAvailable(FD))
1813           return false;
1814 
1815     // An lvalue of function type T can be converted to an rvalue of
1816     // type "pointer to T." The result is a pointer to the
1817     // function. (C++ 4.3p1).
1818     FromType = S.Context.getPointerType(FromType);
1819   } else {
1820     // We don't require any conversions for the first step.
1821     SCS.First = ICK_Identity;
1822   }
1823   SCS.setToType(0, FromType);
1824 
1825   // The second conversion can be an integral promotion, floating
1826   // point promotion, integral conversion, floating point conversion,
1827   // floating-integral conversion, pointer conversion,
1828   // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1829   // For overloading in C, this can also be a "compatible-type"
1830   // conversion.
1831   bool IncompatibleObjC = false;
1832   ImplicitConversionKind SecondICK = ICK_Identity;
1833   if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1834     // The unqualified versions of the types are the same: there's no
1835     // conversion to do.
1836     SCS.Second = ICK_Identity;
1837   } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1838     // Integral promotion (C++ 4.5).
1839     SCS.Second = ICK_Integral_Promotion;
1840     FromType = ToType.getUnqualifiedType();
1841   } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1842     // Floating point promotion (C++ 4.6).
1843     SCS.Second = ICK_Floating_Promotion;
1844     FromType = ToType.getUnqualifiedType();
1845   } else if (S.IsComplexPromotion(FromType, ToType)) {
1846     // Complex promotion (Clang extension)
1847     SCS.Second = ICK_Complex_Promotion;
1848     FromType = ToType.getUnqualifiedType();
1849   } else if (ToType->isBooleanType() &&
1850              (FromType->isArithmeticType() ||
1851               FromType->isAnyPointerType() ||
1852               FromType->isBlockPointerType() ||
1853               FromType->isMemberPointerType())) {
1854     // Boolean conversions (C++ 4.12).
1855     SCS.Second = ICK_Boolean_Conversion;
1856     FromType = S.Context.BoolTy;
1857   } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1858              ToType->isIntegralType(S.Context)) {
1859     // Integral conversions (C++ 4.7).
1860     SCS.Second = ICK_Integral_Conversion;
1861     FromType = ToType.getUnqualifiedType();
1862   } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
1863     // Complex conversions (C99 6.3.1.6)
1864     SCS.Second = ICK_Complex_Conversion;
1865     FromType = ToType.getUnqualifiedType();
1866   } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1867              (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1868     // Complex-real conversions (C99 6.3.1.7)
1869     SCS.Second = ICK_Complex_Real;
1870     FromType = ToType.getUnqualifiedType();
1871   } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1872     // FIXME: disable conversions between long double and __float128 if
1873     // their representation is different until there is back end support
1874     // We of course allow this conversion if long double is really double.
1875 
1876     // Conversions between bfloat and other floats are not permitted.
1877     if (FromType == S.Context.BFloat16Ty || ToType == S.Context.BFloat16Ty)
1878       return false;
1879     if (&S.Context.getFloatTypeSemantics(FromType) !=
1880         &S.Context.getFloatTypeSemantics(ToType)) {
1881       bool Float128AndLongDouble = ((FromType == S.Context.Float128Ty &&
1882                                     ToType == S.Context.LongDoubleTy) ||
1883                                    (FromType == S.Context.LongDoubleTy &&
1884                                     ToType == S.Context.Float128Ty));
1885       if (Float128AndLongDouble &&
1886           (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) ==
1887            &llvm::APFloat::PPCDoubleDouble()))
1888         return false;
1889     }
1890     // Floating point conversions (C++ 4.8).
1891     SCS.Second = ICK_Floating_Conversion;
1892     FromType = ToType.getUnqualifiedType();
1893   } else if ((FromType->isRealFloatingType() &&
1894               ToType->isIntegralType(S.Context)) ||
1895              (FromType->isIntegralOrUnscopedEnumerationType() &&
1896               ToType->isRealFloatingType())) {
1897     // Conversions between bfloat and int are not permitted.
1898     if (FromType->isBFloat16Type() || ToType->isBFloat16Type())
1899       return false;
1900 
1901     // Floating-integral conversions (C++ 4.9).
1902     SCS.Second = ICK_Floating_Integral;
1903     FromType = ToType.getUnqualifiedType();
1904   } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1905     SCS.Second = ICK_Block_Pointer_Conversion;
1906   } else if (AllowObjCWritebackConversion &&
1907              S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1908     SCS.Second = ICK_Writeback_Conversion;
1909   } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1910                                    FromType, IncompatibleObjC)) {
1911     // Pointer conversions (C++ 4.10).
1912     SCS.Second = ICK_Pointer_Conversion;
1913     SCS.IncompatibleObjC = IncompatibleObjC;
1914     FromType = FromType.getUnqualifiedType();
1915   } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1916                                          InOverloadResolution, FromType)) {
1917     // Pointer to member conversions (4.11).
1918     SCS.Second = ICK_Pointer_Member;
1919   } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) {
1920     SCS.Second = SecondICK;
1921     FromType = ToType.getUnqualifiedType();
1922   } else if (!S.getLangOpts().CPlusPlus &&
1923              S.Context.typesAreCompatible(ToType, FromType)) {
1924     // Compatible conversions (Clang extension for C function overloading)
1925     SCS.Second = ICK_Compatible_Conversion;
1926     FromType = ToType.getUnqualifiedType();
1927   } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1928                                              InOverloadResolution,
1929                                              SCS, CStyle)) {
1930     SCS.Second = ICK_TransparentUnionConversion;
1931     FromType = ToType;
1932   } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
1933                                  CStyle)) {
1934     // tryAtomicConversion has updated the standard conversion sequence
1935     // appropriately.
1936     return true;
1937   } else if (ToType->isEventT() &&
1938              From->isIntegerConstantExpr(S.getASTContext()) &&
1939              From->EvaluateKnownConstInt(S.getASTContext()) == 0) {
1940     SCS.Second = ICK_Zero_Event_Conversion;
1941     FromType = ToType;
1942   } else if (ToType->isQueueT() &&
1943              From->isIntegerConstantExpr(S.getASTContext()) &&
1944              (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) {
1945     SCS.Second = ICK_Zero_Queue_Conversion;
1946     FromType = ToType;
1947   } else if (ToType->isSamplerT() &&
1948              From->isIntegerConstantExpr(S.getASTContext())) {
1949     SCS.Second = ICK_Compatible_Conversion;
1950     FromType = ToType;
1951   } else {
1952     // No second conversion required.
1953     SCS.Second = ICK_Identity;
1954   }
1955   SCS.setToType(1, FromType);
1956 
1957   // The third conversion can be a function pointer conversion or a
1958   // qualification conversion (C++ [conv.fctptr], [conv.qual]).
1959   bool ObjCLifetimeConversion;
1960   if (S.IsFunctionConversion(FromType, ToType, FromType)) {
1961     // Function pointer conversions (removing 'noexcept') including removal of
1962     // 'noreturn' (Clang extension).
1963     SCS.Third = ICK_Function_Conversion;
1964   } else if (S.IsQualificationConversion(FromType, ToType, CStyle,
1965                                          ObjCLifetimeConversion)) {
1966     SCS.Third = ICK_Qualification;
1967     SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1968     FromType = ToType;
1969   } else {
1970     // No conversion required
1971     SCS.Third = ICK_Identity;
1972   }
1973 
1974   // C++ [over.best.ics]p6:
1975   //   [...] Any difference in top-level cv-qualification is
1976   //   subsumed by the initialization itself and does not constitute
1977   //   a conversion. [...]
1978   QualType CanonFrom = S.Context.getCanonicalType(FromType);
1979   QualType CanonTo = S.Context.getCanonicalType(ToType);
1980   if (CanonFrom.getLocalUnqualifiedType()
1981                                      == CanonTo.getLocalUnqualifiedType() &&
1982       CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
1983     FromType = ToType;
1984     CanonFrom = CanonTo;
1985   }
1986 
1987   SCS.setToType(2, FromType);
1988 
1989   if (CanonFrom == CanonTo)
1990     return true;
1991 
1992   // If we have not converted the argument type to the parameter type,
1993   // this is a bad conversion sequence, unless we're resolving an overload in C.
1994   if (S.getLangOpts().CPlusPlus || !InOverloadResolution)
1995     return false;
1996 
1997   ExprResult ER = ExprResult{From};
1998   Sema::AssignConvertType Conv =
1999       S.CheckSingleAssignmentConstraints(ToType, ER,
2000                                          /*Diagnose=*/false,
2001                                          /*DiagnoseCFAudited=*/false,
2002                                          /*ConvertRHS=*/false);
2003   ImplicitConversionKind SecondConv;
2004   switch (Conv) {
2005   case Sema::Compatible:
2006     SecondConv = ICK_C_Only_Conversion;
2007     break;
2008   // For our purposes, discarding qualifiers is just as bad as using an
2009   // incompatible pointer. Note that an IncompatiblePointer conversion can drop
2010   // qualifiers, as well.
2011   case Sema::CompatiblePointerDiscardsQualifiers:
2012   case Sema::IncompatiblePointer:
2013   case Sema::IncompatiblePointerSign:
2014     SecondConv = ICK_Incompatible_Pointer_Conversion;
2015     break;
2016   default:
2017     return false;
2018   }
2019 
2020   // First can only be an lvalue conversion, so we pretend that this was the
2021   // second conversion. First should already be valid from earlier in the
2022   // function.
2023   SCS.Second = SecondConv;
2024   SCS.setToType(1, ToType);
2025 
2026   // Third is Identity, because Second should rank us worse than any other
2027   // conversion. This could also be ICK_Qualification, but it's simpler to just
2028   // lump everything in with the second conversion, and we don't gain anything
2029   // from making this ICK_Qualification.
2030   SCS.Third = ICK_Identity;
2031   SCS.setToType(2, ToType);
2032   return true;
2033 }
2034 
2035 static bool
2036 IsTransparentUnionStandardConversion(Sema &S, Expr* From,
2037                                      QualType &ToType,
2038                                      bool InOverloadResolution,
2039                                      StandardConversionSequence &SCS,
2040                                      bool CStyle) {
2041 
2042   const RecordType *UT = ToType->getAsUnionType();
2043   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
2044     return false;
2045   // The field to initialize within the transparent union.
2046   RecordDecl *UD = UT->getDecl();
2047   // It's compatible if the expression matches any of the fields.
2048   for (const auto *it : UD->fields()) {
2049     if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
2050                              CStyle, /*AllowObjCWritebackConversion=*/false)) {
2051       ToType = it->getType();
2052       return true;
2053     }
2054   }
2055   return false;
2056 }
2057 
2058 /// IsIntegralPromotion - Determines whether the conversion from the
2059 /// expression From (whose potentially-adjusted type is FromType) to
2060 /// ToType is an integral promotion (C++ 4.5). If so, returns true and
2061 /// sets PromotedType to the promoted type.
2062 bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
2063   const BuiltinType *To = ToType->getAs<BuiltinType>();
2064   // All integers are built-in.
2065   if (!To) {
2066     return false;
2067   }
2068 
2069   // An rvalue of type char, signed char, unsigned char, short int, or
2070   // unsigned short int can be converted to an rvalue of type int if
2071   // int can represent all the values of the source type; otherwise,
2072   // the source rvalue can be converted to an rvalue of type unsigned
2073   // int (C++ 4.5p1).
2074   if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
2075       !FromType->isEnumeralType()) {
2076     if (// We can promote any signed, promotable integer type to an int
2077         (FromType->isSignedIntegerType() ||
2078          // We can promote any unsigned integer type whose size is
2079          // less than int to an int.
2080          Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) {
2081       return To->getKind() == BuiltinType::Int;
2082     }
2083 
2084     return To->getKind() == BuiltinType::UInt;
2085   }
2086 
2087   // C++11 [conv.prom]p3:
2088   //   A prvalue of an unscoped enumeration type whose underlying type is not
2089   //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the
2090   //   following types that can represent all the values of the enumeration
2091   //   (i.e., the values in the range bmin to bmax as described in 7.2): int,
2092   //   unsigned int, long int, unsigned long int, long long int, or unsigned
2093   //   long long int. If none of the types in that list can represent all the
2094   //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration
2095   //   type can be converted to an rvalue a prvalue of the extended integer type
2096   //   with lowest integer conversion rank (4.13) greater than the rank of long
2097   //   long in which all the values of the enumeration can be represented. If
2098   //   there are two such extended types, the signed one is chosen.
2099   // C++11 [conv.prom]p4:
2100   //   A prvalue of an unscoped enumeration type whose underlying type is fixed
2101   //   can be converted to a prvalue of its underlying type. Moreover, if
2102   //   integral promotion can be applied to its underlying type, a prvalue of an
2103   //   unscoped enumeration type whose underlying type is fixed can also be
2104   //   converted to a prvalue of the promoted underlying type.
2105   if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
2106     // C++0x 7.2p9: Note that this implicit enum to int conversion is not
2107     // provided for a scoped enumeration.
2108     if (FromEnumType->getDecl()->isScoped())
2109       return false;
2110 
2111     // We can perform an integral promotion to the underlying type of the enum,
2112     // even if that's not the promoted type. Note that the check for promoting
2113     // the underlying type is based on the type alone, and does not consider
2114     // the bitfield-ness of the actual source expression.
2115     if (FromEnumType->getDecl()->isFixed()) {
2116       QualType Underlying = FromEnumType->getDecl()->getIntegerType();
2117       return Context.hasSameUnqualifiedType(Underlying, ToType) ||
2118              IsIntegralPromotion(nullptr, Underlying, ToType);
2119     }
2120 
2121     // We have already pre-calculated the promotion type, so this is trivial.
2122     if (ToType->isIntegerType() &&
2123         isCompleteType(From->getBeginLoc(), FromType))
2124       return Context.hasSameUnqualifiedType(
2125           ToType, FromEnumType->getDecl()->getPromotionType());
2126 
2127     // C++ [conv.prom]p5:
2128     //   If the bit-field has an enumerated type, it is treated as any other
2129     //   value of that type for promotion purposes.
2130     //
2131     // ... so do not fall through into the bit-field checks below in C++.
2132     if (getLangOpts().CPlusPlus)
2133       return false;
2134   }
2135 
2136   // C++0x [conv.prom]p2:
2137   //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
2138   //   to an rvalue a prvalue of the first of the following types that can
2139   //   represent all the values of its underlying type: int, unsigned int,
2140   //   long int, unsigned long int, long long int, or unsigned long long int.
2141   //   If none of the types in that list can represent all the values of its
2142   //   underlying type, an rvalue a prvalue of type char16_t, char32_t,
2143   //   or wchar_t can be converted to an rvalue a prvalue of its underlying
2144   //   type.
2145   if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
2146       ToType->isIntegerType()) {
2147     // Determine whether the type we're converting from is signed or
2148     // unsigned.
2149     bool FromIsSigned = FromType->isSignedIntegerType();
2150     uint64_t FromSize = Context.getTypeSize(FromType);
2151 
2152     // The types we'll try to promote to, in the appropriate
2153     // order. Try each of these types.
2154     QualType PromoteTypes[6] = {
2155       Context.IntTy, Context.UnsignedIntTy,
2156       Context.LongTy, Context.UnsignedLongTy ,
2157       Context.LongLongTy, Context.UnsignedLongLongTy
2158     };
2159     for (int Idx = 0; Idx < 6; ++Idx) {
2160       uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
2161       if (FromSize < ToSize ||
2162           (FromSize == ToSize &&
2163            FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
2164         // We found the type that we can promote to. If this is the
2165         // type we wanted, we have a promotion. Otherwise, no
2166         // promotion.
2167         return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
2168       }
2169     }
2170   }
2171 
2172   // An rvalue for an integral bit-field (9.6) can be converted to an
2173   // rvalue of type int if int can represent all the values of the
2174   // bit-field; otherwise, it can be converted to unsigned int if
2175   // unsigned int can represent all the values of the bit-field. If
2176   // the bit-field is larger yet, no integral promotion applies to
2177   // it. If the bit-field has an enumerated type, it is treated as any
2178   // other value of that type for promotion purposes (C++ 4.5p3).
2179   // FIXME: We should delay checking of bit-fields until we actually perform the
2180   // conversion.
2181   //
2182   // FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be
2183   // promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum
2184   // bit-fields and those whose underlying type is larger than int) for GCC
2185   // compatibility.
2186   if (From) {
2187     if (FieldDecl *MemberDecl = From->getSourceBitField()) {
2188       Optional<llvm::APSInt> BitWidth;
2189       if (FromType->isIntegralType(Context) &&
2190           (BitWidth =
2191                MemberDecl->getBitWidth()->getIntegerConstantExpr(Context))) {
2192         llvm::APSInt ToSize(BitWidth->getBitWidth(), BitWidth->isUnsigned());
2193         ToSize = Context.getTypeSize(ToType);
2194 
2195         // Are we promoting to an int from a bitfield that fits in an int?
2196         if (*BitWidth < ToSize ||
2197             (FromType->isSignedIntegerType() && *BitWidth <= ToSize)) {
2198           return To->getKind() == BuiltinType::Int;
2199         }
2200 
2201         // Are we promoting to an unsigned int from an unsigned bitfield
2202         // that fits into an unsigned int?
2203         if (FromType->isUnsignedIntegerType() && *BitWidth <= ToSize) {
2204           return To->getKind() == BuiltinType::UInt;
2205         }
2206 
2207         return false;
2208       }
2209     }
2210   }
2211 
2212   // An rvalue of type bool can be converted to an rvalue of type int,
2213   // with false becoming zero and true becoming one (C++ 4.5p4).
2214   if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
2215     return true;
2216   }
2217 
2218   return false;
2219 }
2220 
2221 /// IsFloatingPointPromotion - Determines whether the conversion from
2222 /// FromType to ToType is a floating point promotion (C++ 4.6). If so,
2223 /// returns true and sets PromotedType to the promoted type.
2224 bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
2225   if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
2226     if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
2227       /// An rvalue of type float can be converted to an rvalue of type
2228       /// double. (C++ 4.6p1).
2229       if (FromBuiltin->getKind() == BuiltinType::Float &&
2230           ToBuiltin->getKind() == BuiltinType::Double)
2231         return true;
2232 
2233       // C99 6.3.1.5p1:
2234       //   When a float is promoted to double or long double, or a
2235       //   double is promoted to long double [...].
2236       if (!getLangOpts().CPlusPlus &&
2237           (FromBuiltin->getKind() == BuiltinType::Float ||
2238            FromBuiltin->getKind() == BuiltinType::Double) &&
2239           (ToBuiltin->getKind() == BuiltinType::LongDouble ||
2240            ToBuiltin->getKind() == BuiltinType::Float128))
2241         return true;
2242 
2243       // Half can be promoted to float.
2244       if (!getLangOpts().NativeHalfType &&
2245            FromBuiltin->getKind() == BuiltinType::Half &&
2246           ToBuiltin->getKind() == BuiltinType::Float)
2247         return true;
2248     }
2249 
2250   return false;
2251 }
2252 
2253 /// Determine if a conversion is a complex promotion.
2254 ///
2255 /// A complex promotion is defined as a complex -> complex conversion
2256 /// where the conversion between the underlying real types is a
2257 /// floating-point or integral promotion.
2258 bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
2259   const ComplexType *FromComplex = FromType->getAs<ComplexType>();
2260   if (!FromComplex)
2261     return false;
2262 
2263   const ComplexType *ToComplex = ToType->getAs<ComplexType>();
2264   if (!ToComplex)
2265     return false;
2266 
2267   return IsFloatingPointPromotion(FromComplex->getElementType(),
2268                                   ToComplex->getElementType()) ||
2269     IsIntegralPromotion(nullptr, FromComplex->getElementType(),
2270                         ToComplex->getElementType());
2271 }
2272 
2273 /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
2274 /// the pointer type FromPtr to a pointer to type ToPointee, with the
2275 /// same type qualifiers as FromPtr has on its pointee type. ToType,
2276 /// if non-empty, will be a pointer to ToType that may or may not have
2277 /// the right set of qualifiers on its pointee.
2278 ///
2279 static QualType
2280 BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
2281                                    QualType ToPointee, QualType ToType,
2282                                    ASTContext &Context,
2283                                    bool StripObjCLifetime = false) {
2284   assert((FromPtr->getTypeClass() == Type::Pointer ||
2285           FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
2286          "Invalid similarly-qualified pointer type");
2287 
2288   /// Conversions to 'id' subsume cv-qualifier conversions.
2289   if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
2290     return ToType.getUnqualifiedType();
2291 
2292   QualType CanonFromPointee
2293     = Context.getCanonicalType(FromPtr->getPointeeType());
2294   QualType CanonToPointee = Context.getCanonicalType(ToPointee);
2295   Qualifiers Quals = CanonFromPointee.getQualifiers();
2296 
2297   if (StripObjCLifetime)
2298     Quals.removeObjCLifetime();
2299 
2300   // Exact qualifier match -> return the pointer type we're converting to.
2301   if (CanonToPointee.getLocalQualifiers() == Quals) {
2302     // ToType is exactly what we need. Return it.
2303     if (!ToType.isNull())
2304       return ToType.getUnqualifiedType();
2305 
2306     // Build a pointer to ToPointee. It has the right qualifiers
2307     // already.
2308     if (isa<ObjCObjectPointerType>(ToType))
2309       return Context.getObjCObjectPointerType(ToPointee);
2310     return Context.getPointerType(ToPointee);
2311   }
2312 
2313   // Just build a canonical type that has the right qualifiers.
2314   QualType QualifiedCanonToPointee
2315     = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
2316 
2317   if (isa<ObjCObjectPointerType>(ToType))
2318     return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
2319   return Context.getPointerType(QualifiedCanonToPointee);
2320 }
2321 
2322 static bool isNullPointerConstantForConversion(Expr *Expr,
2323                                                bool InOverloadResolution,
2324                                                ASTContext &Context) {
2325   // Handle value-dependent integral null pointer constants correctly.
2326   // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
2327   if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
2328       Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
2329     return !InOverloadResolution;
2330 
2331   return Expr->isNullPointerConstant(Context,
2332                     InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2333                                         : Expr::NPC_ValueDependentIsNull);
2334 }
2335 
2336 /// IsPointerConversion - Determines whether the conversion of the
2337 /// expression From, which has the (possibly adjusted) type FromType,
2338 /// can be converted to the type ToType via a pointer conversion (C++
2339 /// 4.10). If so, returns true and places the converted type (that
2340 /// might differ from ToType in its cv-qualifiers at some level) into
2341 /// ConvertedType.
2342 ///
2343 /// This routine also supports conversions to and from block pointers
2344 /// and conversions with Objective-C's 'id', 'id<protocols...>', and
2345 /// pointers to interfaces. FIXME: Once we've determined the
2346 /// appropriate overloading rules for Objective-C, we may want to
2347 /// split the Objective-C checks into a different routine; however,
2348 /// GCC seems to consider all of these conversions to be pointer
2349 /// conversions, so for now they live here. IncompatibleObjC will be
2350 /// set if the conversion is an allowed Objective-C conversion that
2351 /// should result in a warning.
2352 bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
2353                                bool InOverloadResolution,
2354                                QualType& ConvertedType,
2355                                bool &IncompatibleObjC) {
2356   IncompatibleObjC = false;
2357   if (isObjCPointerConversion(FromType, ToType, ConvertedType,
2358                               IncompatibleObjC))
2359     return true;
2360 
2361   // Conversion from a null pointer constant to any Objective-C pointer type.
2362   if (ToType->isObjCObjectPointerType() &&
2363       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2364     ConvertedType = ToType;
2365     return true;
2366   }
2367 
2368   // Blocks: Block pointers can be converted to void*.
2369   if (FromType->isBlockPointerType() && ToType->isPointerType() &&
2370       ToType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
2371     ConvertedType = ToType;
2372     return true;
2373   }
2374   // Blocks: A null pointer constant can be converted to a block
2375   // pointer type.
2376   if (ToType->isBlockPointerType() &&
2377       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2378     ConvertedType = ToType;
2379     return true;
2380   }
2381 
2382   // If the left-hand-side is nullptr_t, the right side can be a null
2383   // pointer constant.
2384   if (ToType->isNullPtrType() &&
2385       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2386     ConvertedType = ToType;
2387     return true;
2388   }
2389 
2390   const PointerType* ToTypePtr = ToType->getAs<PointerType>();
2391   if (!ToTypePtr)
2392     return false;
2393 
2394   // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
2395   if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2396     ConvertedType = ToType;
2397     return true;
2398   }
2399 
2400   // Beyond this point, both types need to be pointers
2401   // , including objective-c pointers.
2402   QualType ToPointeeType = ToTypePtr->getPointeeType();
2403   if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
2404       !getLangOpts().ObjCAutoRefCount) {
2405     ConvertedType = BuildSimilarlyQualifiedPointerType(
2406                                       FromType->getAs<ObjCObjectPointerType>(),
2407                                                        ToPointeeType,
2408                                                        ToType, Context);
2409     return true;
2410   }
2411   const PointerType *FromTypePtr = FromType->getAs<PointerType>();
2412   if (!FromTypePtr)
2413     return false;
2414 
2415   QualType FromPointeeType = FromTypePtr->getPointeeType();
2416 
2417   // If the unqualified pointee types are the same, this can't be a
2418   // pointer conversion, so don't do all of the work below.
2419   if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
2420     return false;
2421 
2422   // An rvalue of type "pointer to cv T," where T is an object type,
2423   // can be converted to an rvalue of type "pointer to cv void" (C++
2424   // 4.10p2).
2425   if (FromPointeeType->isIncompleteOrObjectType() &&
2426       ToPointeeType->isVoidType()) {
2427     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2428                                                        ToPointeeType,
2429                                                        ToType, Context,
2430                                                    /*StripObjCLifetime=*/true);
2431     return true;
2432   }
2433 
2434   // MSVC allows implicit function to void* type conversion.
2435   if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() &&
2436       ToPointeeType->isVoidType()) {
2437     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2438                                                        ToPointeeType,
2439                                                        ToType, Context);
2440     return true;
2441   }
2442 
2443   // When we're overloading in C, we allow a special kind of pointer
2444   // conversion for compatible-but-not-identical pointee types.
2445   if (!getLangOpts().CPlusPlus &&
2446       Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
2447     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2448                                                        ToPointeeType,
2449                                                        ToType, Context);
2450     return true;
2451   }
2452 
2453   // C++ [conv.ptr]p3:
2454   //
2455   //   An rvalue of type "pointer to cv D," where D is a class type,
2456   //   can be converted to an rvalue of type "pointer to cv B," where
2457   //   B is a base class (clause 10) of D. If B is an inaccessible
2458   //   (clause 11) or ambiguous (10.2) base class of D, a program that
2459   //   necessitates this conversion is ill-formed. The result of the
2460   //   conversion is a pointer to the base class sub-object of the
2461   //   derived class object. The null pointer value is converted to
2462   //   the null pointer value of the destination type.
2463   //
2464   // Note that we do not check for ambiguity or inaccessibility
2465   // here. That is handled by CheckPointerConversion.
2466   if (getLangOpts().CPlusPlus && FromPointeeType->isRecordType() &&
2467       ToPointeeType->isRecordType() &&
2468       !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
2469       IsDerivedFrom(From->getBeginLoc(), FromPointeeType, ToPointeeType)) {
2470     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2471                                                        ToPointeeType,
2472                                                        ToType, Context);
2473     return true;
2474   }
2475 
2476   if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
2477       Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
2478     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2479                                                        ToPointeeType,
2480                                                        ToType, Context);
2481     return true;
2482   }
2483 
2484   return false;
2485 }
2486 
2487 /// Adopt the given qualifiers for the given type.
2488 static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
2489   Qualifiers TQs = T.getQualifiers();
2490 
2491   // Check whether qualifiers already match.
2492   if (TQs == Qs)
2493     return T;
2494 
2495   if (Qs.compatiblyIncludes(TQs))
2496     return Context.getQualifiedType(T, Qs);
2497 
2498   return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
2499 }
2500 
2501 /// isObjCPointerConversion - Determines whether this is an
2502 /// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2503 /// with the same arguments and return values.
2504 bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2505                                    QualType& ConvertedType,
2506                                    bool &IncompatibleObjC) {
2507   if (!getLangOpts().ObjC)
2508     return false;
2509 
2510   // The set of qualifiers on the type we're converting from.
2511   Qualifiers FromQualifiers = FromType.getQualifiers();
2512 
2513   // First, we handle all conversions on ObjC object pointer types.
2514   const ObjCObjectPointerType* ToObjCPtr =
2515     ToType->getAs<ObjCObjectPointerType>();
2516   const ObjCObjectPointerType *FromObjCPtr =
2517     FromType->getAs<ObjCObjectPointerType>();
2518 
2519   if (ToObjCPtr && FromObjCPtr) {
2520     // If the pointee types are the same (ignoring qualifications),
2521     // then this is not a pointer conversion.
2522     if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2523                                        FromObjCPtr->getPointeeType()))
2524       return false;
2525 
2526     // Conversion between Objective-C pointers.
2527     if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2528       const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2529       const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2530       if (getLangOpts().CPlusPlus && LHS && RHS &&
2531           !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2532                                                 FromObjCPtr->getPointeeType()))
2533         return false;
2534       ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2535                                                    ToObjCPtr->getPointeeType(),
2536                                                          ToType, Context);
2537       ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2538       return true;
2539     }
2540 
2541     if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2542       // Okay: this is some kind of implicit downcast of Objective-C
2543       // interfaces, which is permitted. However, we're going to
2544       // complain about it.
2545       IncompatibleObjC = true;
2546       ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2547                                                    ToObjCPtr->getPointeeType(),
2548                                                          ToType, Context);
2549       ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2550       return true;
2551     }
2552   }
2553   // Beyond this point, both types need to be C pointers or block pointers.
2554   QualType ToPointeeType;
2555   if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2556     ToPointeeType = ToCPtr->getPointeeType();
2557   else if (const BlockPointerType *ToBlockPtr =
2558             ToType->getAs<BlockPointerType>()) {
2559     // Objective C++: We're able to convert from a pointer to any object
2560     // to a block pointer type.
2561     if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2562       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2563       return true;
2564     }
2565     ToPointeeType = ToBlockPtr->getPointeeType();
2566   }
2567   else if (FromType->getAs<BlockPointerType>() &&
2568            ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2569     // Objective C++: We're able to convert from a block pointer type to a
2570     // pointer to any object.
2571     ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2572     return true;
2573   }
2574   else
2575     return false;
2576 
2577   QualType FromPointeeType;
2578   if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2579     FromPointeeType = FromCPtr->getPointeeType();
2580   else if (const BlockPointerType *FromBlockPtr =
2581            FromType->getAs<BlockPointerType>())
2582     FromPointeeType = FromBlockPtr->getPointeeType();
2583   else
2584     return false;
2585 
2586   // If we have pointers to pointers, recursively check whether this
2587   // is an Objective-C conversion.
2588   if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2589       isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2590                               IncompatibleObjC)) {
2591     // We always complain about this conversion.
2592     IncompatibleObjC = true;
2593     ConvertedType = Context.getPointerType(ConvertedType);
2594     ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2595     return true;
2596   }
2597   // Allow conversion of pointee being objective-c pointer to another one;
2598   // as in I* to id.
2599   if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2600       ToPointeeType->getAs<ObjCObjectPointerType>() &&
2601       isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2602                               IncompatibleObjC)) {
2603 
2604     ConvertedType = Context.getPointerType(ConvertedType);
2605     ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2606     return true;
2607   }
2608 
2609   // If we have pointers to functions or blocks, check whether the only
2610   // differences in the argument and result types are in Objective-C
2611   // pointer conversions. If so, we permit the conversion (but
2612   // complain about it).
2613   const FunctionProtoType *FromFunctionType
2614     = FromPointeeType->getAs<FunctionProtoType>();
2615   const FunctionProtoType *ToFunctionType
2616     = ToPointeeType->getAs<FunctionProtoType>();
2617   if (FromFunctionType && ToFunctionType) {
2618     // If the function types are exactly the same, this isn't an
2619     // Objective-C pointer conversion.
2620     if (Context.getCanonicalType(FromPointeeType)
2621           == Context.getCanonicalType(ToPointeeType))
2622       return false;
2623 
2624     // Perform the quick checks that will tell us whether these
2625     // function types are obviously different.
2626     if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2627         FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2628         FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals())
2629       return false;
2630 
2631     bool HasObjCConversion = false;
2632     if (Context.getCanonicalType(FromFunctionType->getReturnType()) ==
2633         Context.getCanonicalType(ToFunctionType->getReturnType())) {
2634       // Okay, the types match exactly. Nothing to do.
2635     } else if (isObjCPointerConversion(FromFunctionType->getReturnType(),
2636                                        ToFunctionType->getReturnType(),
2637                                        ConvertedType, IncompatibleObjC)) {
2638       // Okay, we have an Objective-C pointer conversion.
2639       HasObjCConversion = true;
2640     } else {
2641       // Function types are too different. Abort.
2642       return false;
2643     }
2644 
2645     // Check argument types.
2646     for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2647          ArgIdx != NumArgs; ++ArgIdx) {
2648       QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2649       QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2650       if (Context.getCanonicalType(FromArgType)
2651             == Context.getCanonicalType(ToArgType)) {
2652         // Okay, the types match exactly. Nothing to do.
2653       } else if (isObjCPointerConversion(FromArgType, ToArgType,
2654                                          ConvertedType, IncompatibleObjC)) {
2655         // Okay, we have an Objective-C pointer conversion.
2656         HasObjCConversion = true;
2657       } else {
2658         // Argument types are too different. Abort.
2659         return false;
2660       }
2661     }
2662 
2663     if (HasObjCConversion) {
2664       // We had an Objective-C conversion. Allow this pointer
2665       // conversion, but complain about it.
2666       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2667       IncompatibleObjC = true;
2668       return true;
2669     }
2670   }
2671 
2672   return false;
2673 }
2674 
2675 /// Determine whether this is an Objective-C writeback conversion,
2676 /// used for parameter passing when performing automatic reference counting.
2677 ///
2678 /// \param FromType The type we're converting form.
2679 ///
2680 /// \param ToType The type we're converting to.
2681 ///
2682 /// \param ConvertedType The type that will be produced after applying
2683 /// this conversion.
2684 bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2685                                      QualType &ConvertedType) {
2686   if (!getLangOpts().ObjCAutoRefCount ||
2687       Context.hasSameUnqualifiedType(FromType, ToType))
2688     return false;
2689 
2690   // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2691   QualType ToPointee;
2692   if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2693     ToPointee = ToPointer->getPointeeType();
2694   else
2695     return false;
2696 
2697   Qualifiers ToQuals = ToPointee.getQualifiers();
2698   if (!ToPointee->isObjCLifetimeType() ||
2699       ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2700       !ToQuals.withoutObjCLifetime().empty())
2701     return false;
2702 
2703   // Argument must be a pointer to __strong to __weak.
2704   QualType FromPointee;
2705   if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2706     FromPointee = FromPointer->getPointeeType();
2707   else
2708     return false;
2709 
2710   Qualifiers FromQuals = FromPointee.getQualifiers();
2711   if (!FromPointee->isObjCLifetimeType() ||
2712       (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2713        FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2714     return false;
2715 
2716   // Make sure that we have compatible qualifiers.
2717   FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2718   if (!ToQuals.compatiblyIncludes(FromQuals))
2719     return false;
2720 
2721   // Remove qualifiers from the pointee type we're converting from; they
2722   // aren't used in the compatibility check belong, and we'll be adding back
2723   // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2724   FromPointee = FromPointee.getUnqualifiedType();
2725 
2726   // The unqualified form of the pointee types must be compatible.
2727   ToPointee = ToPointee.getUnqualifiedType();
2728   bool IncompatibleObjC;
2729   if (Context.typesAreCompatible(FromPointee, ToPointee))
2730     FromPointee = ToPointee;
2731   else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2732                                     IncompatibleObjC))
2733     return false;
2734 
2735   /// Construct the type we're converting to, which is a pointer to
2736   /// __autoreleasing pointee.
2737   FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2738   ConvertedType = Context.getPointerType(FromPointee);
2739   return true;
2740 }
2741 
2742 bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2743                                     QualType& ConvertedType) {
2744   QualType ToPointeeType;
2745   if (const BlockPointerType *ToBlockPtr =
2746         ToType->getAs<BlockPointerType>())
2747     ToPointeeType = ToBlockPtr->getPointeeType();
2748   else
2749     return false;
2750 
2751   QualType FromPointeeType;
2752   if (const BlockPointerType *FromBlockPtr =
2753       FromType->getAs<BlockPointerType>())
2754     FromPointeeType = FromBlockPtr->getPointeeType();
2755   else
2756     return false;
2757   // We have pointer to blocks, check whether the only
2758   // differences in the argument and result types are in Objective-C
2759   // pointer conversions. If so, we permit the conversion.
2760 
2761   const FunctionProtoType *FromFunctionType
2762     = FromPointeeType->getAs<FunctionProtoType>();
2763   const FunctionProtoType *ToFunctionType
2764     = ToPointeeType->getAs<FunctionProtoType>();
2765 
2766   if (!FromFunctionType || !ToFunctionType)
2767     return false;
2768 
2769   if (Context.hasSameType(FromPointeeType, ToPointeeType))
2770     return true;
2771 
2772   // Perform the quick checks that will tell us whether these
2773   // function types are obviously different.
2774   if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2775       FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2776     return false;
2777 
2778   FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2779   FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2780   if (FromEInfo != ToEInfo)
2781     return false;
2782 
2783   bool IncompatibleObjC = false;
2784   if (Context.hasSameType(FromFunctionType->getReturnType(),
2785                           ToFunctionType->getReturnType())) {
2786     // Okay, the types match exactly. Nothing to do.
2787   } else {
2788     QualType RHS = FromFunctionType->getReturnType();
2789     QualType LHS = ToFunctionType->getReturnType();
2790     if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
2791         !RHS.hasQualifiers() && LHS.hasQualifiers())
2792        LHS = LHS.getUnqualifiedType();
2793 
2794      if (Context.hasSameType(RHS,LHS)) {
2795        // OK exact match.
2796      } else if (isObjCPointerConversion(RHS, LHS,
2797                                         ConvertedType, IncompatibleObjC)) {
2798      if (IncompatibleObjC)
2799        return false;
2800      // Okay, we have an Objective-C pointer conversion.
2801      }
2802      else
2803        return false;
2804    }
2805 
2806    // Check argument types.
2807    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2808         ArgIdx != NumArgs; ++ArgIdx) {
2809      IncompatibleObjC = false;
2810      QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2811      QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2812      if (Context.hasSameType(FromArgType, ToArgType)) {
2813        // Okay, the types match exactly. Nothing to do.
2814      } else if (isObjCPointerConversion(ToArgType, FromArgType,
2815                                         ConvertedType, IncompatibleObjC)) {
2816        if (IncompatibleObjC)
2817          return false;
2818        // Okay, we have an Objective-C pointer conversion.
2819      } else
2820        // Argument types are too different. Abort.
2821        return false;
2822    }
2823 
2824    SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
2825    bool CanUseToFPT, CanUseFromFPT;
2826    if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType,
2827                                       CanUseToFPT, CanUseFromFPT,
2828                                       NewParamInfos))
2829      return false;
2830 
2831    ConvertedType = ToType;
2832    return true;
2833 }
2834 
2835 enum {
2836   ft_default,
2837   ft_different_class,
2838   ft_parameter_arity,
2839   ft_parameter_mismatch,
2840   ft_return_type,
2841   ft_qualifer_mismatch,
2842   ft_noexcept
2843 };
2844 
2845 /// Attempts to get the FunctionProtoType from a Type. Handles
2846 /// MemberFunctionPointers properly.
2847 static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) {
2848   if (auto *FPT = FromType->getAs<FunctionProtoType>())
2849     return FPT;
2850 
2851   if (auto *MPT = FromType->getAs<MemberPointerType>())
2852     return MPT->getPointeeType()->getAs<FunctionProtoType>();
2853 
2854   return nullptr;
2855 }
2856 
2857 /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2858 /// function types.  Catches different number of parameter, mismatch in
2859 /// parameter types, and different return types.
2860 void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2861                                       QualType FromType, QualType ToType) {
2862   // If either type is not valid, include no extra info.
2863   if (FromType.isNull() || ToType.isNull()) {
2864     PDiag << ft_default;
2865     return;
2866   }
2867 
2868   // Get the function type from the pointers.
2869   if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2870     const auto *FromMember = FromType->castAs<MemberPointerType>(),
2871                *ToMember = ToType->castAs<MemberPointerType>();
2872     if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) {
2873       PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2874             << QualType(FromMember->getClass(), 0);
2875       return;
2876     }
2877     FromType = FromMember->getPointeeType();
2878     ToType = ToMember->getPointeeType();
2879   }
2880 
2881   if (FromType->isPointerType())
2882     FromType = FromType->getPointeeType();
2883   if (ToType->isPointerType())
2884     ToType = ToType->getPointeeType();
2885 
2886   // Remove references.
2887   FromType = FromType.getNonReferenceType();
2888   ToType = ToType.getNonReferenceType();
2889 
2890   // Don't print extra info for non-specialized template functions.
2891   if (FromType->isInstantiationDependentType() &&
2892       !FromType->getAs<TemplateSpecializationType>()) {
2893     PDiag << ft_default;
2894     return;
2895   }
2896 
2897   // No extra info for same types.
2898   if (Context.hasSameType(FromType, ToType)) {
2899     PDiag << ft_default;
2900     return;
2901   }
2902 
2903   const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType),
2904                           *ToFunction = tryGetFunctionProtoType(ToType);
2905 
2906   // Both types need to be function types.
2907   if (!FromFunction || !ToFunction) {
2908     PDiag << ft_default;
2909     return;
2910   }
2911 
2912   if (FromFunction->getNumParams() != ToFunction->getNumParams()) {
2913     PDiag << ft_parameter_arity << ToFunction->getNumParams()
2914           << FromFunction->getNumParams();
2915     return;
2916   }
2917 
2918   // Handle different parameter types.
2919   unsigned ArgPos;
2920   if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
2921     PDiag << ft_parameter_mismatch << ArgPos + 1
2922           << ToFunction->getParamType(ArgPos)
2923           << FromFunction->getParamType(ArgPos);
2924     return;
2925   }
2926 
2927   // Handle different return type.
2928   if (!Context.hasSameType(FromFunction->getReturnType(),
2929                            ToFunction->getReturnType())) {
2930     PDiag << ft_return_type << ToFunction->getReturnType()
2931           << FromFunction->getReturnType();
2932     return;
2933   }
2934 
2935   if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) {
2936     PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals()
2937           << FromFunction->getMethodQuals();
2938     return;
2939   }
2940 
2941   // Handle exception specification differences on canonical type (in C++17
2942   // onwards).
2943   if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified())
2944           ->isNothrow() !=
2945       cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified())
2946           ->isNothrow()) {
2947     PDiag << ft_noexcept;
2948     return;
2949   }
2950 
2951   // Unable to find a difference, so add no extra info.
2952   PDiag << ft_default;
2953 }
2954 
2955 /// FunctionParamTypesAreEqual - This routine checks two function proto types
2956 /// for equality of their argument types. Caller has already checked that
2957 /// they have same number of arguments.  If the parameters are different,
2958 /// ArgPos will have the parameter index of the first different parameter.
2959 bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
2960                                       const FunctionProtoType *NewType,
2961                                       unsigned *ArgPos) {
2962   for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(),
2963                                               N = NewType->param_type_begin(),
2964                                               E = OldType->param_type_end();
2965        O && (O != E); ++O, ++N) {
2966     // Ignore address spaces in pointee type. This is to disallow overloading
2967     // on __ptr32/__ptr64 address spaces.
2968     QualType Old = Context.removePtrSizeAddrSpace(O->getUnqualifiedType());
2969     QualType New = Context.removePtrSizeAddrSpace(N->getUnqualifiedType());
2970 
2971     if (!Context.hasSameType(Old, New)) {
2972       if (ArgPos)
2973         *ArgPos = O - OldType->param_type_begin();
2974       return false;
2975     }
2976   }
2977   return true;
2978 }
2979 
2980 /// CheckPointerConversion - Check the pointer conversion from the
2981 /// expression From to the type ToType. This routine checks for
2982 /// ambiguous or inaccessible derived-to-base pointer
2983 /// conversions for which IsPointerConversion has already returned
2984 /// true. It returns true and produces a diagnostic if there was an
2985 /// error, or returns false otherwise.
2986 bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2987                                   CastKind &Kind,
2988                                   CXXCastPath& BasePath,
2989                                   bool IgnoreBaseAccess,
2990                                   bool Diagnose) {
2991   QualType FromType = From->getType();
2992   bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2993 
2994   Kind = CK_BitCast;
2995 
2996   if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
2997       From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
2998           Expr::NPCK_ZeroExpression) {
2999     if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
3000       DiagRuntimeBehavior(From->getExprLoc(), From,
3001                           PDiag(diag::warn_impcast_bool_to_null_pointer)
3002                             << ToType << From->getSourceRange());
3003     else if (!isUnevaluatedContext())
3004       Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
3005         << ToType << From->getSourceRange();
3006   }
3007   if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
3008     if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
3009       QualType FromPointeeType = FromPtrType->getPointeeType(),
3010                ToPointeeType   = ToPtrType->getPointeeType();
3011 
3012       if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
3013           !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
3014         // We must have a derived-to-base conversion. Check an
3015         // ambiguous or inaccessible conversion.
3016         unsigned InaccessibleID = 0;
3017         unsigned AmbiguousID = 0;
3018         if (Diagnose) {
3019           InaccessibleID = diag::err_upcast_to_inaccessible_base;
3020           AmbiguousID = diag::err_ambiguous_derived_to_base_conv;
3021         }
3022         if (CheckDerivedToBaseConversion(
3023                 FromPointeeType, ToPointeeType, InaccessibleID, AmbiguousID,
3024                 From->getExprLoc(), From->getSourceRange(), DeclarationName(),
3025                 &BasePath, IgnoreBaseAccess))
3026           return true;
3027 
3028         // The conversion was successful.
3029         Kind = CK_DerivedToBase;
3030       }
3031 
3032       if (Diagnose && !IsCStyleOrFunctionalCast &&
3033           FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) {
3034         assert(getLangOpts().MSVCCompat &&
3035                "this should only be possible with MSVCCompat!");
3036         Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj)
3037             << From->getSourceRange();
3038       }
3039     }
3040   } else if (const ObjCObjectPointerType *ToPtrType =
3041                ToType->getAs<ObjCObjectPointerType>()) {
3042     if (const ObjCObjectPointerType *FromPtrType =
3043           FromType->getAs<ObjCObjectPointerType>()) {
3044       // Objective-C++ conversions are always okay.
3045       // FIXME: We should have a different class of conversions for the
3046       // Objective-C++ implicit conversions.
3047       if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
3048         return false;
3049     } else if (FromType->isBlockPointerType()) {
3050       Kind = CK_BlockPointerToObjCPointerCast;
3051     } else {
3052       Kind = CK_CPointerToObjCPointerCast;
3053     }
3054   } else if (ToType->isBlockPointerType()) {
3055     if (!FromType->isBlockPointerType())
3056       Kind = CK_AnyPointerToBlockPointerCast;
3057   }
3058 
3059   // We shouldn't fall into this case unless it's valid for other
3060   // reasons.
3061   if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
3062     Kind = CK_NullToPointer;
3063 
3064   return false;
3065 }
3066 
3067 /// IsMemberPointerConversion - Determines whether the conversion of the
3068 /// expression From, which has the (possibly adjusted) type FromType, can be
3069 /// converted to the type ToType via a member pointer conversion (C++ 4.11).
3070 /// If so, returns true and places the converted type (that might differ from
3071 /// ToType in its cv-qualifiers at some level) into ConvertedType.
3072 bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
3073                                      QualType ToType,
3074                                      bool InOverloadResolution,
3075                                      QualType &ConvertedType) {
3076   const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
3077   if (!ToTypePtr)
3078     return false;
3079 
3080   // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
3081   if (From->isNullPointerConstant(Context,
3082                     InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
3083                                         : Expr::NPC_ValueDependentIsNull)) {
3084     ConvertedType = ToType;
3085     return true;
3086   }
3087 
3088   // Otherwise, both types have to be member pointers.
3089   const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
3090   if (!FromTypePtr)
3091     return false;
3092 
3093   // A pointer to member of B can be converted to a pointer to member of D,
3094   // where D is derived from B (C++ 4.11p2).
3095   QualType FromClass(FromTypePtr->getClass(), 0);
3096   QualType ToClass(ToTypePtr->getClass(), 0);
3097 
3098   if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
3099       IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass)) {
3100     ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
3101                                                  ToClass.getTypePtr());
3102     return true;
3103   }
3104 
3105   return false;
3106 }
3107 
3108 /// CheckMemberPointerConversion - Check the member pointer conversion from the
3109 /// expression From to the type ToType. This routine checks for ambiguous or
3110 /// virtual or inaccessible base-to-derived member pointer conversions
3111 /// for which IsMemberPointerConversion has already returned true. It returns
3112 /// true and produces a diagnostic if there was an error, or returns false
3113 /// otherwise.
3114 bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
3115                                         CastKind &Kind,
3116                                         CXXCastPath &BasePath,
3117                                         bool IgnoreBaseAccess) {
3118   QualType FromType = From->getType();
3119   const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
3120   if (!FromPtrType) {
3121     // This must be a null pointer to member pointer conversion
3122     assert(From->isNullPointerConstant(Context,
3123                                        Expr::NPC_ValueDependentIsNull) &&
3124            "Expr must be null pointer constant!");
3125     Kind = CK_NullToMemberPointer;
3126     return false;
3127   }
3128 
3129   const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
3130   assert(ToPtrType && "No member pointer cast has a target type "
3131                       "that is not a member pointer.");
3132 
3133   QualType FromClass = QualType(FromPtrType->getClass(), 0);
3134   QualType ToClass   = QualType(ToPtrType->getClass(), 0);
3135 
3136   // FIXME: What about dependent types?
3137   assert(FromClass->isRecordType() && "Pointer into non-class.");
3138   assert(ToClass->isRecordType() && "Pointer into non-class.");
3139 
3140   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3141                      /*DetectVirtual=*/true);
3142   bool DerivationOkay =
3143       IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass, Paths);
3144   assert(DerivationOkay &&
3145          "Should not have been called if derivation isn't OK.");
3146   (void)DerivationOkay;
3147 
3148   if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
3149                                   getUnqualifiedType())) {
3150     std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
3151     Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
3152       << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
3153     return true;
3154   }
3155 
3156   if (const RecordType *VBase = Paths.getDetectedVirtual()) {
3157     Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
3158       << FromClass << ToClass << QualType(VBase, 0)
3159       << From->getSourceRange();
3160     return true;
3161   }
3162 
3163   if (!IgnoreBaseAccess)
3164     CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
3165                          Paths.front(),
3166                          diag::err_downcast_from_inaccessible_base);
3167 
3168   // Must be a base to derived member conversion.
3169   BuildBasePathArray(Paths, BasePath);
3170   Kind = CK_BaseToDerivedMemberPointer;
3171   return false;
3172 }
3173 
3174 /// Determine whether the lifetime conversion between the two given
3175 /// qualifiers sets is nontrivial.
3176 static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,
3177                                                Qualifiers ToQuals) {
3178   // Converting anything to const __unsafe_unretained is trivial.
3179   if (ToQuals.hasConst() &&
3180       ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone)
3181     return false;
3182 
3183   return true;
3184 }
3185 
3186 /// Perform a single iteration of the loop for checking if a qualification
3187 /// conversion is valid.
3188 ///
3189 /// Specifically, check whether any change between the qualifiers of \p
3190 /// FromType and \p ToType is permissible, given knowledge about whether every
3191 /// outer layer is const-qualified.
3192 static bool isQualificationConversionStep(QualType FromType, QualType ToType,
3193                                           bool CStyle, bool IsTopLevel,
3194                                           bool &PreviousToQualsIncludeConst,
3195                                           bool &ObjCLifetimeConversion) {
3196   Qualifiers FromQuals = FromType.getQualifiers();
3197   Qualifiers ToQuals = ToType.getQualifiers();
3198 
3199   // Ignore __unaligned qualifier if this type is void.
3200   if (ToType.getUnqualifiedType()->isVoidType())
3201     FromQuals.removeUnaligned();
3202 
3203   // Objective-C ARC:
3204   //   Check Objective-C lifetime conversions.
3205   if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime()) {
3206     if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
3207       if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals))
3208         ObjCLifetimeConversion = true;
3209       FromQuals.removeObjCLifetime();
3210       ToQuals.removeObjCLifetime();
3211     } else {
3212       // Qualification conversions cannot cast between different
3213       // Objective-C lifetime qualifiers.
3214       return false;
3215     }
3216   }
3217 
3218   // Allow addition/removal of GC attributes but not changing GC attributes.
3219   if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
3220       (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
3221     FromQuals.removeObjCGCAttr();
3222     ToQuals.removeObjCGCAttr();
3223   }
3224 
3225   //   -- for every j > 0, if const is in cv 1,j then const is in cv
3226   //      2,j, and similarly for volatile.
3227   if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
3228     return false;
3229 
3230   // If address spaces mismatch:
3231   //  - in top level it is only valid to convert to addr space that is a
3232   //    superset in all cases apart from C-style casts where we allow
3233   //    conversions between overlapping address spaces.
3234   //  - in non-top levels it is not a valid conversion.
3235   if (ToQuals.getAddressSpace() != FromQuals.getAddressSpace() &&
3236       (!IsTopLevel ||
3237        !(ToQuals.isAddressSpaceSupersetOf(FromQuals) ||
3238          (CStyle && FromQuals.isAddressSpaceSupersetOf(ToQuals)))))
3239     return false;
3240 
3241   //   -- if the cv 1,j and cv 2,j are different, then const is in
3242   //      every cv for 0 < k < j.
3243   if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers() &&
3244       !PreviousToQualsIncludeConst)
3245     return false;
3246 
3247   // Keep track of whether all prior cv-qualifiers in the "to" type
3248   // include const.
3249   PreviousToQualsIncludeConst =
3250       PreviousToQualsIncludeConst && ToQuals.hasConst();
3251   return true;
3252 }
3253 
3254 /// IsQualificationConversion - Determines whether the conversion from
3255 /// an rvalue of type FromType to ToType is a qualification conversion
3256 /// (C++ 4.4).
3257 ///
3258 /// \param ObjCLifetimeConversion Output parameter that will be set to indicate
3259 /// when the qualification conversion involves a change in the Objective-C
3260 /// object lifetime.
3261 bool
3262 Sema::IsQualificationConversion(QualType FromType, QualType ToType,
3263                                 bool CStyle, bool &ObjCLifetimeConversion) {
3264   FromType = Context.getCanonicalType(FromType);
3265   ToType = Context.getCanonicalType(ToType);
3266   ObjCLifetimeConversion = false;
3267 
3268   // If FromType and ToType are the same type, this is not a
3269   // qualification conversion.
3270   if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
3271     return false;
3272 
3273   // (C++ 4.4p4):
3274   //   A conversion can add cv-qualifiers at levels other than the first
3275   //   in multi-level pointers, subject to the following rules: [...]
3276   bool PreviousToQualsIncludeConst = true;
3277   bool UnwrappedAnyPointer = false;
3278   while (Context.UnwrapSimilarTypes(FromType, ToType)) {
3279     if (!isQualificationConversionStep(
3280             FromType, ToType, CStyle, !UnwrappedAnyPointer,
3281             PreviousToQualsIncludeConst, ObjCLifetimeConversion))
3282       return false;
3283     UnwrappedAnyPointer = true;
3284   }
3285 
3286   // We are left with FromType and ToType being the pointee types
3287   // after unwrapping the original FromType and ToType the same number
3288   // of times. If we unwrapped any pointers, and if FromType and
3289   // ToType have the same unqualified type (since we checked
3290   // qualifiers above), then this is a qualification conversion.
3291   return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
3292 }
3293 
3294 /// - Determine whether this is a conversion from a scalar type to an
3295 /// atomic type.
3296 ///
3297 /// If successful, updates \c SCS's second and third steps in the conversion
3298 /// sequence to finish the conversion.
3299 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
3300                                 bool InOverloadResolution,
3301                                 StandardConversionSequence &SCS,
3302                                 bool CStyle) {
3303   const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
3304   if (!ToAtomic)
3305     return false;
3306 
3307   StandardConversionSequence InnerSCS;
3308   if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
3309                             InOverloadResolution, InnerSCS,
3310                             CStyle, /*AllowObjCWritebackConversion=*/false))
3311     return false;
3312 
3313   SCS.Second = InnerSCS.Second;
3314   SCS.setToType(1, InnerSCS.getToType(1));
3315   SCS.Third = InnerSCS.Third;
3316   SCS.QualificationIncludesObjCLifetime
3317     = InnerSCS.QualificationIncludesObjCLifetime;
3318   SCS.setToType(2, InnerSCS.getToType(2));
3319   return true;
3320 }
3321 
3322 static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
3323                                               CXXConstructorDecl *Constructor,
3324                                               QualType Type) {
3325   const auto *CtorType = Constructor->getType()->castAs<FunctionProtoType>();
3326   if (CtorType->getNumParams() > 0) {
3327     QualType FirstArg = CtorType->getParamType(0);
3328     if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
3329       return true;
3330   }
3331   return false;
3332 }
3333 
3334 static OverloadingResult
3335 IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
3336                                        CXXRecordDecl *To,
3337                                        UserDefinedConversionSequence &User,
3338                                        OverloadCandidateSet &CandidateSet,
3339                                        bool AllowExplicit) {
3340   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3341   for (auto *D : S.LookupConstructors(To)) {
3342     auto Info = getConstructorInfo(D);
3343     if (!Info)
3344       continue;
3345 
3346     bool Usable = !Info.Constructor->isInvalidDecl() &&
3347                   S.isInitListConstructor(Info.Constructor);
3348     if (Usable) {
3349       bool SuppressUserConversions = false;
3350       if (Info.ConstructorTmpl)
3351         S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3352                                        /*ExplicitArgs*/ nullptr, From,
3353                                        CandidateSet, SuppressUserConversions,
3354                                        /*PartialOverloading*/ false,
3355                                        AllowExplicit);
3356       else
3357         S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From,
3358                                CandidateSet, SuppressUserConversions,
3359                                /*PartialOverloading*/ false, AllowExplicit);
3360     }
3361   }
3362 
3363   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3364 
3365   OverloadCandidateSet::iterator Best;
3366   switch (auto Result =
3367               CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3368   case OR_Deleted:
3369   case OR_Success: {
3370     // Record the standard conversion we used and the conversion function.
3371     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3372     QualType ThisType = Constructor->getThisType();
3373     // Initializer lists don't have conversions as such.
3374     User.Before.setAsIdentityConversion();
3375     User.HadMultipleCandidates = HadMultipleCandidates;
3376     User.ConversionFunction = Constructor;
3377     User.FoundConversionFunction = Best->FoundDecl;
3378     User.After.setAsIdentityConversion();
3379     User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
3380     User.After.setAllToTypes(ToType);
3381     return Result;
3382   }
3383 
3384   case OR_No_Viable_Function:
3385     return OR_No_Viable_Function;
3386   case OR_Ambiguous:
3387     return OR_Ambiguous;
3388   }
3389 
3390   llvm_unreachable("Invalid OverloadResult!");
3391 }
3392 
3393 /// Determines whether there is a user-defined conversion sequence
3394 /// (C++ [over.ics.user]) that converts expression From to the type
3395 /// ToType. If such a conversion exists, User will contain the
3396 /// user-defined conversion sequence that performs such a conversion
3397 /// and this routine will return true. Otherwise, this routine returns
3398 /// false and User is unspecified.
3399 ///
3400 /// \param AllowExplicit  true if the conversion should consider C++0x
3401 /// "explicit" conversion functions as well as non-explicit conversion
3402 /// functions (C++0x [class.conv.fct]p2).
3403 ///
3404 /// \param AllowObjCConversionOnExplicit true if the conversion should
3405 /// allow an extra Objective-C pointer conversion on uses of explicit
3406 /// constructors. Requires \c AllowExplicit to also be set.
3407 static OverloadingResult
3408 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
3409                         UserDefinedConversionSequence &User,
3410                         OverloadCandidateSet &CandidateSet,
3411                         AllowedExplicit AllowExplicit,
3412                         bool AllowObjCConversionOnExplicit) {
3413   assert(AllowExplicit != AllowedExplicit::None ||
3414          !AllowObjCConversionOnExplicit);
3415   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3416 
3417   // Whether we will only visit constructors.
3418   bool ConstructorsOnly = false;
3419 
3420   // If the type we are conversion to is a class type, enumerate its
3421   // constructors.
3422   if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
3423     // C++ [over.match.ctor]p1:
3424     //   When objects of class type are direct-initialized (8.5), or
3425     //   copy-initialized from an expression of the same or a
3426     //   derived class type (8.5), overload resolution selects the
3427     //   constructor. [...] For copy-initialization, the candidate
3428     //   functions are all the converting constructors (12.3.1) of
3429     //   that class. The argument list is the expression-list within
3430     //   the parentheses of the initializer.
3431     if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
3432         (From->getType()->getAs<RecordType>() &&
3433          S.IsDerivedFrom(From->getBeginLoc(), From->getType(), ToType)))
3434       ConstructorsOnly = true;
3435 
3436     if (!S.isCompleteType(From->getExprLoc(), ToType)) {
3437       // We're not going to find any constructors.
3438     } else if (CXXRecordDecl *ToRecordDecl
3439                  = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
3440 
3441       Expr **Args = &From;
3442       unsigned NumArgs = 1;
3443       bool ListInitializing = false;
3444       if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
3445         // But first, see if there is an init-list-constructor that will work.
3446         OverloadingResult Result = IsInitializerListConstructorConversion(
3447             S, From, ToType, ToRecordDecl, User, CandidateSet,
3448             AllowExplicit == AllowedExplicit::All);
3449         if (Result != OR_No_Viable_Function)
3450           return Result;
3451         // Never mind.
3452         CandidateSet.clear(
3453             OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3454 
3455         // If we're list-initializing, we pass the individual elements as
3456         // arguments, not the entire list.
3457         Args = InitList->getInits();
3458         NumArgs = InitList->getNumInits();
3459         ListInitializing = true;
3460       }
3461 
3462       for (auto *D : S.LookupConstructors(ToRecordDecl)) {
3463         auto Info = getConstructorInfo(D);
3464         if (!Info)
3465           continue;
3466 
3467         bool Usable = !Info.Constructor->isInvalidDecl();
3468         if (!ListInitializing)
3469           Usable = Usable && Info.Constructor->isConvertingConstructor(
3470                                  /*AllowExplicit*/ true);
3471         if (Usable) {
3472           bool SuppressUserConversions = !ConstructorsOnly;
3473           // C++20 [over.best.ics.general]/4.5:
3474           //   if the target is the first parameter of a constructor [of class
3475           //   X] and the constructor [...] is a candidate by [...] the second
3476           //   phase of [over.match.list] when the initializer list has exactly
3477           //   one element that is itself an initializer list, [...] and the
3478           //   conversion is to X or reference to cv X, user-defined conversion
3479           //   sequences are not cnosidered.
3480           if (SuppressUserConversions && ListInitializing) {
3481             SuppressUserConversions =
3482                 NumArgs == 1 && isa<InitListExpr>(Args[0]) &&
3483                 isFirstArgumentCompatibleWithType(S.Context, Info.Constructor,
3484                                                   ToType);
3485           }
3486           if (Info.ConstructorTmpl)
3487             S.AddTemplateOverloadCandidate(
3488                 Info.ConstructorTmpl, Info.FoundDecl,
3489                 /*ExplicitArgs*/ nullptr, llvm::makeArrayRef(Args, NumArgs),
3490                 CandidateSet, SuppressUserConversions,
3491                 /*PartialOverloading*/ false,
3492                 AllowExplicit == AllowedExplicit::All);
3493           else
3494             // Allow one user-defined conversion when user specifies a
3495             // From->ToType conversion via an static cast (c-style, etc).
3496             S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
3497                                    llvm::makeArrayRef(Args, NumArgs),
3498                                    CandidateSet, SuppressUserConversions,
3499                                    /*PartialOverloading*/ false,
3500                                    AllowExplicit == AllowedExplicit::All);
3501         }
3502       }
3503     }
3504   }
3505 
3506   // Enumerate conversion functions, if we're allowed to.
3507   if (ConstructorsOnly || isa<InitListExpr>(From)) {
3508   } else if (!S.isCompleteType(From->getBeginLoc(), From->getType())) {
3509     // No conversion functions from incomplete types.
3510   } else if (const RecordType *FromRecordType =
3511                  From->getType()->getAs<RecordType>()) {
3512     if (CXXRecordDecl *FromRecordDecl
3513          = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
3514       // Add all of the conversion functions as candidates.
3515       const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions();
3516       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3517         DeclAccessPair FoundDecl = I.getPair();
3518         NamedDecl *D = FoundDecl.getDecl();
3519         CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
3520         if (isa<UsingShadowDecl>(D))
3521           D = cast<UsingShadowDecl>(D)->getTargetDecl();
3522 
3523         CXXConversionDecl *Conv;
3524         FunctionTemplateDecl *ConvTemplate;
3525         if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
3526           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3527         else
3528           Conv = cast<CXXConversionDecl>(D);
3529 
3530         if (ConvTemplate)
3531           S.AddTemplateConversionCandidate(
3532               ConvTemplate, FoundDecl, ActingContext, From, ToType,
3533               CandidateSet, AllowObjCConversionOnExplicit,
3534               AllowExplicit != AllowedExplicit::None);
3535         else
3536           S.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, ToType,
3537                                    CandidateSet, AllowObjCConversionOnExplicit,
3538                                    AllowExplicit != AllowedExplicit::None);
3539       }
3540     }
3541   }
3542 
3543   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3544 
3545   OverloadCandidateSet::iterator Best;
3546   switch (auto Result =
3547               CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3548   case OR_Success:
3549   case OR_Deleted:
3550     // Record the standard conversion we used and the conversion function.
3551     if (CXXConstructorDecl *Constructor
3552           = dyn_cast<CXXConstructorDecl>(Best->Function)) {
3553       // C++ [over.ics.user]p1:
3554       //   If the user-defined conversion is specified by a
3555       //   constructor (12.3.1), the initial standard conversion
3556       //   sequence converts the source type to the type required by
3557       //   the argument of the constructor.
3558       //
3559       QualType ThisType = Constructor->getThisType();
3560       if (isa<InitListExpr>(From)) {
3561         // Initializer lists don't have conversions as such.
3562         User.Before.setAsIdentityConversion();
3563       } else {
3564         if (Best->Conversions[0].isEllipsis())
3565           User.EllipsisConversion = true;
3566         else {
3567           User.Before = Best->Conversions[0].Standard;
3568           User.EllipsisConversion = false;
3569         }
3570       }
3571       User.HadMultipleCandidates = HadMultipleCandidates;
3572       User.ConversionFunction = Constructor;
3573       User.FoundConversionFunction = Best->FoundDecl;
3574       User.After.setAsIdentityConversion();
3575       User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
3576       User.After.setAllToTypes(ToType);
3577       return Result;
3578     }
3579     if (CXXConversionDecl *Conversion
3580                  = dyn_cast<CXXConversionDecl>(Best->Function)) {
3581       // C++ [over.ics.user]p1:
3582       //
3583       //   [...] If the user-defined conversion is specified by a
3584       //   conversion function (12.3.2), the initial standard
3585       //   conversion sequence converts the source type to the
3586       //   implicit object parameter of the conversion function.
3587       User.Before = Best->Conversions[0].Standard;
3588       User.HadMultipleCandidates = HadMultipleCandidates;
3589       User.ConversionFunction = Conversion;
3590       User.FoundConversionFunction = Best->FoundDecl;
3591       User.EllipsisConversion = false;
3592 
3593       // C++ [over.ics.user]p2:
3594       //   The second standard conversion sequence converts the
3595       //   result of the user-defined conversion to the target type
3596       //   for the sequence. Since an implicit conversion sequence
3597       //   is an initialization, the special rules for
3598       //   initialization by user-defined conversion apply when
3599       //   selecting the best user-defined conversion for a
3600       //   user-defined conversion sequence (see 13.3.3 and
3601       //   13.3.3.1).
3602       User.After = Best->FinalConversion;
3603       return Result;
3604     }
3605     llvm_unreachable("Not a constructor or conversion function?");
3606 
3607   case OR_No_Viable_Function:
3608     return OR_No_Viable_Function;
3609 
3610   case OR_Ambiguous:
3611     return OR_Ambiguous;
3612   }
3613 
3614   llvm_unreachable("Invalid OverloadResult!");
3615 }
3616 
3617 bool
3618 Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
3619   ImplicitConversionSequence ICS;
3620   OverloadCandidateSet CandidateSet(From->getExprLoc(),
3621                                     OverloadCandidateSet::CSK_Normal);
3622   OverloadingResult OvResult =
3623     IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
3624                             CandidateSet, AllowedExplicit::None, false);
3625 
3626   if (!(OvResult == OR_Ambiguous ||
3627         (OvResult == OR_No_Viable_Function && !CandidateSet.empty())))
3628     return false;
3629 
3630   auto Cands = CandidateSet.CompleteCandidates(
3631       *this,
3632       OvResult == OR_Ambiguous ? OCD_AmbiguousCandidates : OCD_AllCandidates,
3633       From);
3634   if (OvResult == OR_Ambiguous)
3635     Diag(From->getBeginLoc(), diag::err_typecheck_ambiguous_condition)
3636         << From->getType() << ToType << From->getSourceRange();
3637   else { // OR_No_Viable_Function && !CandidateSet.empty()
3638     if (!RequireCompleteType(From->getBeginLoc(), ToType,
3639                              diag::err_typecheck_nonviable_condition_incomplete,
3640                              From->getType(), From->getSourceRange()))
3641       Diag(From->getBeginLoc(), diag::err_typecheck_nonviable_condition)
3642           << false << From->getType() << From->getSourceRange() << ToType;
3643   }
3644 
3645   CandidateSet.NoteCandidates(
3646                               *this, From, Cands);
3647   return true;
3648 }
3649 
3650 // Helper for compareConversionFunctions that gets the FunctionType that the
3651 // conversion-operator return  value 'points' to, or nullptr.
3652 static const FunctionType *
3653 getConversionOpReturnTyAsFunction(CXXConversionDecl *Conv) {
3654   const FunctionType *ConvFuncTy = Conv->getType()->castAs<FunctionType>();
3655   const PointerType *RetPtrTy =
3656       ConvFuncTy->getReturnType()->getAs<PointerType>();
3657 
3658   if (!RetPtrTy)
3659     return nullptr;
3660 
3661   return RetPtrTy->getPointeeType()->getAs<FunctionType>();
3662 }
3663 
3664 /// Compare the user-defined conversion functions or constructors
3665 /// of two user-defined conversion sequences to determine whether any ordering
3666 /// is possible.
3667 static ImplicitConversionSequence::CompareKind
3668 compareConversionFunctions(Sema &S, FunctionDecl *Function1,
3669                            FunctionDecl *Function2) {
3670   CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1);
3671   CXXConversionDecl *Conv2 = dyn_cast_or_null<CXXConversionDecl>(Function2);
3672   if (!Conv1 || !Conv2)
3673     return ImplicitConversionSequence::Indistinguishable;
3674 
3675   if (!Conv1->getParent()->isLambda() || !Conv2->getParent()->isLambda())
3676     return ImplicitConversionSequence::Indistinguishable;
3677 
3678   // Objective-C++:
3679   //   If both conversion functions are implicitly-declared conversions from
3680   //   a lambda closure type to a function pointer and a block pointer,
3681   //   respectively, always prefer the conversion to a function pointer,
3682   //   because the function pointer is more lightweight and is more likely
3683   //   to keep code working.
3684   if (S.getLangOpts().ObjC && S.getLangOpts().CPlusPlus11) {
3685     bool Block1 = Conv1->getConversionType()->isBlockPointerType();
3686     bool Block2 = Conv2->getConversionType()->isBlockPointerType();
3687     if (Block1 != Block2)
3688       return Block1 ? ImplicitConversionSequence::Worse
3689                     : ImplicitConversionSequence::Better;
3690   }
3691 
3692   // In order to support multiple calling conventions for the lambda conversion
3693   // operator (such as when the free and member function calling convention is
3694   // different), prefer the 'free' mechanism, followed by the calling-convention
3695   // of operator(). The latter is in place to support the MSVC-like solution of
3696   // defining ALL of the possible conversions in regards to calling-convention.
3697   const FunctionType *Conv1FuncRet = getConversionOpReturnTyAsFunction(Conv1);
3698   const FunctionType *Conv2FuncRet = getConversionOpReturnTyAsFunction(Conv2);
3699 
3700   if (Conv1FuncRet && Conv2FuncRet &&
3701       Conv1FuncRet->getCallConv() != Conv2FuncRet->getCallConv()) {
3702     CallingConv Conv1CC = Conv1FuncRet->getCallConv();
3703     CallingConv Conv2CC = Conv2FuncRet->getCallConv();
3704 
3705     CXXMethodDecl *CallOp = Conv2->getParent()->getLambdaCallOperator();
3706     const FunctionProtoType *CallOpProto =
3707         CallOp->getType()->getAs<FunctionProtoType>();
3708 
3709     CallingConv CallOpCC =
3710         CallOp->getType()->castAs<FunctionType>()->getCallConv();
3711     CallingConv DefaultFree = S.Context.getDefaultCallingConvention(
3712         CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
3713     CallingConv DefaultMember = S.Context.getDefaultCallingConvention(
3714         CallOpProto->isVariadic(), /*IsCXXMethod=*/true);
3715 
3716     CallingConv PrefOrder[] = {DefaultFree, DefaultMember, CallOpCC};
3717     for (CallingConv CC : PrefOrder) {
3718       if (Conv1CC == CC)
3719         return ImplicitConversionSequence::Better;
3720       if (Conv2CC == CC)
3721         return ImplicitConversionSequence::Worse;
3722     }
3723   }
3724 
3725   return ImplicitConversionSequence::Indistinguishable;
3726 }
3727 
3728 static bool hasDeprecatedStringLiteralToCharPtrConversion(
3729     const ImplicitConversionSequence &ICS) {
3730   return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) ||
3731          (ICS.isUserDefined() &&
3732           ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr);
3733 }
3734 
3735 /// CompareImplicitConversionSequences - Compare two implicit
3736 /// conversion sequences to determine whether one is better than the
3737 /// other or if they are indistinguishable (C++ 13.3.3.2).
3738 static ImplicitConversionSequence::CompareKind
3739 CompareImplicitConversionSequences(Sema &S, SourceLocation Loc,
3740                                    const ImplicitConversionSequence& ICS1,
3741                                    const ImplicitConversionSequence& ICS2)
3742 {
3743   // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
3744   // conversion sequences (as defined in 13.3.3.1)
3745   //   -- a standard conversion sequence (13.3.3.1.1) is a better
3746   //      conversion sequence than a user-defined conversion sequence or
3747   //      an ellipsis conversion sequence, and
3748   //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
3749   //      conversion sequence than an ellipsis conversion sequence
3750   //      (13.3.3.1.3).
3751   //
3752   // C++0x [over.best.ics]p10:
3753   //   For the purpose of ranking implicit conversion sequences as
3754   //   described in 13.3.3.2, the ambiguous conversion sequence is
3755   //   treated as a user-defined sequence that is indistinguishable
3756   //   from any other user-defined conversion sequence.
3757 
3758   // String literal to 'char *' conversion has been deprecated in C++03. It has
3759   // been removed from C++11. We still accept this conversion, if it happens at
3760   // the best viable function. Otherwise, this conversion is considered worse
3761   // than ellipsis conversion. Consider this as an extension; this is not in the
3762   // standard. For example:
3763   //
3764   // int &f(...);    // #1
3765   // void f(char*);  // #2
3766   // void g() { int &r = f("foo"); }
3767   //
3768   // In C++03, we pick #2 as the best viable function.
3769   // In C++11, we pick #1 as the best viable function, because ellipsis
3770   // conversion is better than string-literal to char* conversion (since there
3771   // is no such conversion in C++11). If there was no #1 at all or #1 couldn't
3772   // convert arguments, #2 would be the best viable function in C++11.
3773   // If the best viable function has this conversion, a warning will be issued
3774   // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11.
3775 
3776   if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
3777       hasDeprecatedStringLiteralToCharPtrConversion(ICS1) !=
3778       hasDeprecatedStringLiteralToCharPtrConversion(ICS2))
3779     return hasDeprecatedStringLiteralToCharPtrConversion(ICS1)
3780                ? ImplicitConversionSequence::Worse
3781                : ImplicitConversionSequence::Better;
3782 
3783   if (ICS1.getKindRank() < ICS2.getKindRank())
3784     return ImplicitConversionSequence::Better;
3785   if (ICS2.getKindRank() < ICS1.getKindRank())
3786     return ImplicitConversionSequence::Worse;
3787 
3788   // The following checks require both conversion sequences to be of
3789   // the same kind.
3790   if (ICS1.getKind() != ICS2.getKind())
3791     return ImplicitConversionSequence::Indistinguishable;
3792 
3793   ImplicitConversionSequence::CompareKind Result =
3794       ImplicitConversionSequence::Indistinguishable;
3795 
3796   // Two implicit conversion sequences of the same form are
3797   // indistinguishable conversion sequences unless one of the
3798   // following rules apply: (C++ 13.3.3.2p3):
3799 
3800   // List-initialization sequence L1 is a better conversion sequence than
3801   // list-initialization sequence L2 if:
3802   // - L1 converts to std::initializer_list<X> for some X and L2 does not, or,
3803   //   if not that,
3804   // - L1 converts to type "array of N1 T", L2 converts to type "array of N2 T",
3805   //   and N1 is smaller than N2.,
3806   // even if one of the other rules in this paragraph would otherwise apply.
3807   if (!ICS1.isBad()) {
3808     if (ICS1.isStdInitializerListElement() &&
3809         !ICS2.isStdInitializerListElement())
3810       return ImplicitConversionSequence::Better;
3811     if (!ICS1.isStdInitializerListElement() &&
3812         ICS2.isStdInitializerListElement())
3813       return ImplicitConversionSequence::Worse;
3814   }
3815 
3816   if (ICS1.isStandard())
3817     // Standard conversion sequence S1 is a better conversion sequence than
3818     // standard conversion sequence S2 if [...]
3819     Result = CompareStandardConversionSequences(S, Loc,
3820                                                 ICS1.Standard, ICS2.Standard);
3821   else if (ICS1.isUserDefined()) {
3822     // User-defined conversion sequence U1 is a better conversion
3823     // sequence than another user-defined conversion sequence U2 if
3824     // they contain the same user-defined conversion function or
3825     // constructor and if the second standard conversion sequence of
3826     // U1 is better than the second standard conversion sequence of
3827     // U2 (C++ 13.3.3.2p3).
3828     if (ICS1.UserDefined.ConversionFunction ==
3829           ICS2.UserDefined.ConversionFunction)
3830       Result = CompareStandardConversionSequences(S, Loc,
3831                                                   ICS1.UserDefined.After,
3832                                                   ICS2.UserDefined.After);
3833     else
3834       Result = compareConversionFunctions(S,
3835                                           ICS1.UserDefined.ConversionFunction,
3836                                           ICS2.UserDefined.ConversionFunction);
3837   }
3838 
3839   return Result;
3840 }
3841 
3842 // Per 13.3.3.2p3, compare the given standard conversion sequences to
3843 // determine if one is a proper subset of the other.
3844 static ImplicitConversionSequence::CompareKind
3845 compareStandardConversionSubsets(ASTContext &Context,
3846                                  const StandardConversionSequence& SCS1,
3847                                  const StandardConversionSequence& SCS2) {
3848   ImplicitConversionSequence::CompareKind Result
3849     = ImplicitConversionSequence::Indistinguishable;
3850 
3851   // the identity conversion sequence is considered to be a subsequence of
3852   // any non-identity conversion sequence
3853   if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
3854     return ImplicitConversionSequence::Better;
3855   else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
3856     return ImplicitConversionSequence::Worse;
3857 
3858   if (SCS1.Second != SCS2.Second) {
3859     if (SCS1.Second == ICK_Identity)
3860       Result = ImplicitConversionSequence::Better;
3861     else if (SCS2.Second == ICK_Identity)
3862       Result = ImplicitConversionSequence::Worse;
3863     else
3864       return ImplicitConversionSequence::Indistinguishable;
3865   } else if (!Context.hasSimilarType(SCS1.getToType(1), SCS2.getToType(1)))
3866     return ImplicitConversionSequence::Indistinguishable;
3867 
3868   if (SCS1.Third == SCS2.Third) {
3869     return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
3870                              : ImplicitConversionSequence::Indistinguishable;
3871   }
3872 
3873   if (SCS1.Third == ICK_Identity)
3874     return Result == ImplicitConversionSequence::Worse
3875              ? ImplicitConversionSequence::Indistinguishable
3876              : ImplicitConversionSequence::Better;
3877 
3878   if (SCS2.Third == ICK_Identity)
3879     return Result == ImplicitConversionSequence::Better
3880              ? ImplicitConversionSequence::Indistinguishable
3881              : ImplicitConversionSequence::Worse;
3882 
3883   return ImplicitConversionSequence::Indistinguishable;
3884 }
3885 
3886 /// Determine whether one of the given reference bindings is better
3887 /// than the other based on what kind of bindings they are.
3888 static bool
3889 isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
3890                              const StandardConversionSequence &SCS2) {
3891   // C++0x [over.ics.rank]p3b4:
3892   //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
3893   //      implicit object parameter of a non-static member function declared
3894   //      without a ref-qualifier, and *either* S1 binds an rvalue reference
3895   //      to an rvalue and S2 binds an lvalue reference *or S1 binds an
3896   //      lvalue reference to a function lvalue and S2 binds an rvalue
3897   //      reference*.
3898   //
3899   // FIXME: Rvalue references. We're going rogue with the above edits,
3900   // because the semantics in the current C++0x working paper (N3225 at the
3901   // time of this writing) break the standard definition of std::forward
3902   // and std::reference_wrapper when dealing with references to functions.
3903   // Proposed wording changes submitted to CWG for consideration.
3904   if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
3905       SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
3906     return false;
3907 
3908   return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
3909           SCS2.IsLvalueReference) ||
3910          (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
3911           !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue);
3912 }
3913 
3914 enum class FixedEnumPromotion {
3915   None,
3916   ToUnderlyingType,
3917   ToPromotedUnderlyingType
3918 };
3919 
3920 /// Returns kind of fixed enum promotion the \a SCS uses.
3921 static FixedEnumPromotion
3922 getFixedEnumPromtion(Sema &S, const StandardConversionSequence &SCS) {
3923 
3924   if (SCS.Second != ICK_Integral_Promotion)
3925     return FixedEnumPromotion::None;
3926 
3927   QualType FromType = SCS.getFromType();
3928   if (!FromType->isEnumeralType())
3929     return FixedEnumPromotion::None;
3930 
3931   EnumDecl *Enum = FromType->castAs<EnumType>()->getDecl();
3932   if (!Enum->isFixed())
3933     return FixedEnumPromotion::None;
3934 
3935   QualType UnderlyingType = Enum->getIntegerType();
3936   if (S.Context.hasSameType(SCS.getToType(1), UnderlyingType))
3937     return FixedEnumPromotion::ToUnderlyingType;
3938 
3939   return FixedEnumPromotion::ToPromotedUnderlyingType;
3940 }
3941 
3942 /// CompareStandardConversionSequences - Compare two standard
3943 /// conversion sequences to determine whether one is better than the
3944 /// other or if they are indistinguishable (C++ 13.3.3.2p3).
3945 static ImplicitConversionSequence::CompareKind
3946 CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
3947                                    const StandardConversionSequence& SCS1,
3948                                    const StandardConversionSequence& SCS2)
3949 {
3950   // Standard conversion sequence S1 is a better conversion sequence
3951   // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
3952 
3953   //  -- S1 is a proper subsequence of S2 (comparing the conversion
3954   //     sequences in the canonical form defined by 13.3.3.1.1,
3955   //     excluding any Lvalue Transformation; the identity conversion
3956   //     sequence is considered to be a subsequence of any
3957   //     non-identity conversion sequence) or, if not that,
3958   if (ImplicitConversionSequence::CompareKind CK
3959         = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
3960     return CK;
3961 
3962   //  -- the rank of S1 is better than the rank of S2 (by the rules
3963   //     defined below), or, if not that,
3964   ImplicitConversionRank Rank1 = SCS1.getRank();
3965   ImplicitConversionRank Rank2 = SCS2.getRank();
3966   if (Rank1 < Rank2)
3967     return ImplicitConversionSequence::Better;
3968   else if (Rank2 < Rank1)
3969     return ImplicitConversionSequence::Worse;
3970 
3971   // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
3972   // are indistinguishable unless one of the following rules
3973   // applies:
3974 
3975   //   A conversion that is not a conversion of a pointer, or
3976   //   pointer to member, to bool is better than another conversion
3977   //   that is such a conversion.
3978   if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
3979     return SCS2.isPointerConversionToBool()
3980              ? ImplicitConversionSequence::Better
3981              : ImplicitConversionSequence::Worse;
3982 
3983   // C++14 [over.ics.rank]p4b2:
3984   // This is retroactively applied to C++11 by CWG 1601.
3985   //
3986   //   A conversion that promotes an enumeration whose underlying type is fixed
3987   //   to its underlying type is better than one that promotes to the promoted
3988   //   underlying type, if the two are different.
3989   FixedEnumPromotion FEP1 = getFixedEnumPromtion(S, SCS1);
3990   FixedEnumPromotion FEP2 = getFixedEnumPromtion(S, SCS2);
3991   if (FEP1 != FixedEnumPromotion::None && FEP2 != FixedEnumPromotion::None &&
3992       FEP1 != FEP2)
3993     return FEP1 == FixedEnumPromotion::ToUnderlyingType
3994                ? ImplicitConversionSequence::Better
3995                : ImplicitConversionSequence::Worse;
3996 
3997   // C++ [over.ics.rank]p4b2:
3998   //
3999   //   If class B is derived directly or indirectly from class A,
4000   //   conversion of B* to A* is better than conversion of B* to
4001   //   void*, and conversion of A* to void* is better than conversion
4002   //   of B* to void*.
4003   bool SCS1ConvertsToVoid
4004     = SCS1.isPointerConversionToVoidPointer(S.Context);
4005   bool SCS2ConvertsToVoid
4006     = SCS2.isPointerConversionToVoidPointer(S.Context);
4007   if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
4008     // Exactly one of the conversion sequences is a conversion to
4009     // a void pointer; it's the worse conversion.
4010     return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
4011                               : ImplicitConversionSequence::Worse;
4012   } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
4013     // Neither conversion sequence converts to a void pointer; compare
4014     // their derived-to-base conversions.
4015     if (ImplicitConversionSequence::CompareKind DerivedCK
4016           = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2))
4017       return DerivedCK;
4018   } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
4019              !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
4020     // Both conversion sequences are conversions to void
4021     // pointers. Compare the source types to determine if there's an
4022     // inheritance relationship in their sources.
4023     QualType FromType1 = SCS1.getFromType();
4024     QualType FromType2 = SCS2.getFromType();
4025 
4026     // Adjust the types we're converting from via the array-to-pointer
4027     // conversion, if we need to.
4028     if (SCS1.First == ICK_Array_To_Pointer)
4029       FromType1 = S.Context.getArrayDecayedType(FromType1);
4030     if (SCS2.First == ICK_Array_To_Pointer)
4031       FromType2 = S.Context.getArrayDecayedType(FromType2);
4032 
4033     QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
4034     QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
4035 
4036     if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4037       return ImplicitConversionSequence::Better;
4038     else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4039       return ImplicitConversionSequence::Worse;
4040 
4041     // Objective-C++: If one interface is more specific than the
4042     // other, it is the better one.
4043     const ObjCObjectPointerType* FromObjCPtr1
4044       = FromType1->getAs<ObjCObjectPointerType>();
4045     const ObjCObjectPointerType* FromObjCPtr2
4046       = FromType2->getAs<ObjCObjectPointerType>();
4047     if (FromObjCPtr1 && FromObjCPtr2) {
4048       bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
4049                                                           FromObjCPtr2);
4050       bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
4051                                                            FromObjCPtr1);
4052       if (AssignLeft != AssignRight) {
4053         return AssignLeft? ImplicitConversionSequence::Better
4054                          : ImplicitConversionSequence::Worse;
4055       }
4056     }
4057   }
4058 
4059   if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
4060     // Check for a better reference binding based on the kind of bindings.
4061     if (isBetterReferenceBindingKind(SCS1, SCS2))
4062       return ImplicitConversionSequence::Better;
4063     else if (isBetterReferenceBindingKind(SCS2, SCS1))
4064       return ImplicitConversionSequence::Worse;
4065   }
4066 
4067   // Compare based on qualification conversions (C++ 13.3.3.2p3,
4068   // bullet 3).
4069   if (ImplicitConversionSequence::CompareKind QualCK
4070         = CompareQualificationConversions(S, SCS1, SCS2))
4071     return QualCK;
4072 
4073   if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
4074     // C++ [over.ics.rank]p3b4:
4075     //   -- S1 and S2 are reference bindings (8.5.3), and the types to
4076     //      which the references refer are the same type except for
4077     //      top-level cv-qualifiers, and the type to which the reference
4078     //      initialized by S2 refers is more cv-qualified than the type
4079     //      to which the reference initialized by S1 refers.
4080     QualType T1 = SCS1.getToType(2);
4081     QualType T2 = SCS2.getToType(2);
4082     T1 = S.Context.getCanonicalType(T1);
4083     T2 = S.Context.getCanonicalType(T2);
4084     Qualifiers T1Quals, T2Quals;
4085     QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
4086     QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
4087     if (UnqualT1 == UnqualT2) {
4088       // Objective-C++ ARC: If the references refer to objects with different
4089       // lifetimes, prefer bindings that don't change lifetime.
4090       if (SCS1.ObjCLifetimeConversionBinding !=
4091                                           SCS2.ObjCLifetimeConversionBinding) {
4092         return SCS1.ObjCLifetimeConversionBinding
4093                                            ? ImplicitConversionSequence::Worse
4094                                            : ImplicitConversionSequence::Better;
4095       }
4096 
4097       // If the type is an array type, promote the element qualifiers to the
4098       // type for comparison.
4099       if (isa<ArrayType>(T1) && T1Quals)
4100         T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
4101       if (isa<ArrayType>(T2) && T2Quals)
4102         T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
4103       if (T2.isMoreQualifiedThan(T1))
4104         return ImplicitConversionSequence::Better;
4105       if (T1.isMoreQualifiedThan(T2))
4106         return ImplicitConversionSequence::Worse;
4107     }
4108   }
4109 
4110   // In Microsoft mode (below 19.28), prefer an integral conversion to a
4111   // floating-to-integral conversion if the integral conversion
4112   // is between types of the same size.
4113   // For example:
4114   // void f(float);
4115   // void f(int);
4116   // int main {
4117   //    long a;
4118   //    f(a);
4119   // }
4120   // Here, MSVC will call f(int) instead of generating a compile error
4121   // as clang will do in standard mode.
4122   if (S.getLangOpts().MSVCCompat &&
4123       !S.getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2019_8) &&
4124       SCS1.Second == ICK_Integral_Conversion &&
4125       SCS2.Second == ICK_Floating_Integral &&
4126       S.Context.getTypeSize(SCS1.getFromType()) ==
4127           S.Context.getTypeSize(SCS1.getToType(2)))
4128     return ImplicitConversionSequence::Better;
4129 
4130   // Prefer a compatible vector conversion over a lax vector conversion
4131   // For example:
4132   //
4133   // typedef float __v4sf __attribute__((__vector_size__(16)));
4134   // void f(vector float);
4135   // void f(vector signed int);
4136   // int main() {
4137   //   __v4sf a;
4138   //   f(a);
4139   // }
4140   // Here, we'd like to choose f(vector float) and not
4141   // report an ambiguous call error
4142   if (SCS1.Second == ICK_Vector_Conversion &&
4143       SCS2.Second == ICK_Vector_Conversion) {
4144     bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
4145         SCS1.getFromType(), SCS1.getToType(2));
4146     bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
4147         SCS2.getFromType(), SCS2.getToType(2));
4148 
4149     if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion)
4150       return SCS1IsCompatibleVectorConversion
4151                  ? ImplicitConversionSequence::Better
4152                  : ImplicitConversionSequence::Worse;
4153   }
4154 
4155   if (SCS1.Second == ICK_SVE_Vector_Conversion &&
4156       SCS2.Second == ICK_SVE_Vector_Conversion) {
4157     bool SCS1IsCompatibleSVEVectorConversion =
4158         S.Context.areCompatibleSveTypes(SCS1.getFromType(), SCS1.getToType(2));
4159     bool SCS2IsCompatibleSVEVectorConversion =
4160         S.Context.areCompatibleSveTypes(SCS2.getFromType(), SCS2.getToType(2));
4161 
4162     if (SCS1IsCompatibleSVEVectorConversion !=
4163         SCS2IsCompatibleSVEVectorConversion)
4164       return SCS1IsCompatibleSVEVectorConversion
4165                  ? ImplicitConversionSequence::Better
4166                  : ImplicitConversionSequence::Worse;
4167   }
4168 
4169   return ImplicitConversionSequence::Indistinguishable;
4170 }
4171 
4172 /// CompareQualificationConversions - Compares two standard conversion
4173 /// sequences to determine whether they can be ranked based on their
4174 /// qualification conversions (C++ 13.3.3.2p3 bullet 3).
4175 static ImplicitConversionSequence::CompareKind
4176 CompareQualificationConversions(Sema &S,
4177                                 const StandardConversionSequence& SCS1,
4178                                 const StandardConversionSequence& SCS2) {
4179   // C++ 13.3.3.2p3:
4180   //  -- S1 and S2 differ only in their qualification conversion and
4181   //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
4182   //     cv-qualification signature of type T1 is a proper subset of
4183   //     the cv-qualification signature of type T2, and S1 is not the
4184   //     deprecated string literal array-to-pointer conversion (4.2).
4185   if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
4186       SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
4187     return ImplicitConversionSequence::Indistinguishable;
4188 
4189   // FIXME: the example in the standard doesn't use a qualification
4190   // conversion (!)
4191   QualType T1 = SCS1.getToType(2);
4192   QualType T2 = SCS2.getToType(2);
4193   T1 = S.Context.getCanonicalType(T1);
4194   T2 = S.Context.getCanonicalType(T2);
4195   assert(!T1->isReferenceType() && !T2->isReferenceType());
4196   Qualifiers T1Quals, T2Quals;
4197   QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
4198   QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
4199 
4200   // If the types are the same, we won't learn anything by unwrapping
4201   // them.
4202   if (UnqualT1 == UnqualT2)
4203     return ImplicitConversionSequence::Indistinguishable;
4204 
4205   ImplicitConversionSequence::CompareKind Result
4206     = ImplicitConversionSequence::Indistinguishable;
4207 
4208   // Objective-C++ ARC:
4209   //   Prefer qualification conversions not involving a change in lifetime
4210   //   to qualification conversions that do not change lifetime.
4211   if (SCS1.QualificationIncludesObjCLifetime !=
4212                                       SCS2.QualificationIncludesObjCLifetime) {
4213     Result = SCS1.QualificationIncludesObjCLifetime
4214                ? ImplicitConversionSequence::Worse
4215                : ImplicitConversionSequence::Better;
4216   }
4217 
4218   while (S.Context.UnwrapSimilarTypes(T1, T2)) {
4219     // Within each iteration of the loop, we check the qualifiers to
4220     // determine if this still looks like a qualification
4221     // conversion. Then, if all is well, we unwrap one more level of
4222     // pointers or pointers-to-members and do it all again
4223     // until there are no more pointers or pointers-to-members left
4224     // to unwrap. This essentially mimics what
4225     // IsQualificationConversion does, but here we're checking for a
4226     // strict subset of qualifiers.
4227     if (T1.getQualifiers().withoutObjCLifetime() ==
4228         T2.getQualifiers().withoutObjCLifetime())
4229       // The qualifiers are the same, so this doesn't tell us anything
4230       // about how the sequences rank.
4231       // ObjC ownership quals are omitted above as they interfere with
4232       // the ARC overload rule.
4233       ;
4234     else if (T2.isMoreQualifiedThan(T1)) {
4235       // T1 has fewer qualifiers, so it could be the better sequence.
4236       if (Result == ImplicitConversionSequence::Worse)
4237         // Neither has qualifiers that are a subset of the other's
4238         // qualifiers.
4239         return ImplicitConversionSequence::Indistinguishable;
4240 
4241       Result = ImplicitConversionSequence::Better;
4242     } else if (T1.isMoreQualifiedThan(T2)) {
4243       // T2 has fewer qualifiers, so it could be the better sequence.
4244       if (Result == ImplicitConversionSequence::Better)
4245         // Neither has qualifiers that are a subset of the other's
4246         // qualifiers.
4247         return ImplicitConversionSequence::Indistinguishable;
4248 
4249       Result = ImplicitConversionSequence::Worse;
4250     } else {
4251       // Qualifiers are disjoint.
4252       return ImplicitConversionSequence::Indistinguishable;
4253     }
4254 
4255     // If the types after this point are equivalent, we're done.
4256     if (S.Context.hasSameUnqualifiedType(T1, T2))
4257       break;
4258   }
4259 
4260   // Check that the winning standard conversion sequence isn't using
4261   // the deprecated string literal array to pointer conversion.
4262   switch (Result) {
4263   case ImplicitConversionSequence::Better:
4264     if (SCS1.DeprecatedStringLiteralToCharPtr)
4265       Result = ImplicitConversionSequence::Indistinguishable;
4266     break;
4267 
4268   case ImplicitConversionSequence::Indistinguishable:
4269     break;
4270 
4271   case ImplicitConversionSequence::Worse:
4272     if (SCS2.DeprecatedStringLiteralToCharPtr)
4273       Result = ImplicitConversionSequence::Indistinguishable;
4274     break;
4275   }
4276 
4277   return Result;
4278 }
4279 
4280 /// CompareDerivedToBaseConversions - Compares two standard conversion
4281 /// sequences to determine whether they can be ranked based on their
4282 /// various kinds of derived-to-base conversions (C++
4283 /// [over.ics.rank]p4b3).  As part of these checks, we also look at
4284 /// conversions between Objective-C interface types.
4285 static ImplicitConversionSequence::CompareKind
4286 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
4287                                 const StandardConversionSequence& SCS1,
4288                                 const StandardConversionSequence& SCS2) {
4289   QualType FromType1 = SCS1.getFromType();
4290   QualType ToType1 = SCS1.getToType(1);
4291   QualType FromType2 = SCS2.getFromType();
4292   QualType ToType2 = SCS2.getToType(1);
4293 
4294   // Adjust the types we're converting from via the array-to-pointer
4295   // conversion, if we need to.
4296   if (SCS1.First == ICK_Array_To_Pointer)
4297     FromType1 = S.Context.getArrayDecayedType(FromType1);
4298   if (SCS2.First == ICK_Array_To_Pointer)
4299     FromType2 = S.Context.getArrayDecayedType(FromType2);
4300 
4301   // Canonicalize all of the types.
4302   FromType1 = S.Context.getCanonicalType(FromType1);
4303   ToType1 = S.Context.getCanonicalType(ToType1);
4304   FromType2 = S.Context.getCanonicalType(FromType2);
4305   ToType2 = S.Context.getCanonicalType(ToType2);
4306 
4307   // C++ [over.ics.rank]p4b3:
4308   //
4309   //   If class B is derived directly or indirectly from class A and
4310   //   class C is derived directly or indirectly from B,
4311   //
4312   // Compare based on pointer conversions.
4313   if (SCS1.Second == ICK_Pointer_Conversion &&
4314       SCS2.Second == ICK_Pointer_Conversion &&
4315       /*FIXME: Remove if Objective-C id conversions get their own rank*/
4316       FromType1->isPointerType() && FromType2->isPointerType() &&
4317       ToType1->isPointerType() && ToType2->isPointerType()) {
4318     QualType FromPointee1 =
4319         FromType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4320     QualType ToPointee1 =
4321         ToType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4322     QualType FromPointee2 =
4323         FromType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4324     QualType ToPointee2 =
4325         ToType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4326 
4327     //   -- conversion of C* to B* is better than conversion of C* to A*,
4328     if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4329       if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4330         return ImplicitConversionSequence::Better;
4331       else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4332         return ImplicitConversionSequence::Worse;
4333     }
4334 
4335     //   -- conversion of B* to A* is better than conversion of C* to A*,
4336     if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
4337       if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4338         return ImplicitConversionSequence::Better;
4339       else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4340         return ImplicitConversionSequence::Worse;
4341     }
4342   } else if (SCS1.Second == ICK_Pointer_Conversion &&
4343              SCS2.Second == ICK_Pointer_Conversion) {
4344     const ObjCObjectPointerType *FromPtr1
4345       = FromType1->getAs<ObjCObjectPointerType>();
4346     const ObjCObjectPointerType *FromPtr2
4347       = FromType2->getAs<ObjCObjectPointerType>();
4348     const ObjCObjectPointerType *ToPtr1
4349       = ToType1->getAs<ObjCObjectPointerType>();
4350     const ObjCObjectPointerType *ToPtr2
4351       = ToType2->getAs<ObjCObjectPointerType>();
4352 
4353     if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
4354       // Apply the same conversion ranking rules for Objective-C pointer types
4355       // that we do for C++ pointers to class types. However, we employ the
4356       // Objective-C pseudo-subtyping relationship used for assignment of
4357       // Objective-C pointer types.
4358       bool FromAssignLeft
4359         = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
4360       bool FromAssignRight
4361         = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
4362       bool ToAssignLeft
4363         = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
4364       bool ToAssignRight
4365         = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
4366 
4367       // A conversion to an a non-id object pointer type or qualified 'id'
4368       // type is better than a conversion to 'id'.
4369       if (ToPtr1->isObjCIdType() &&
4370           (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
4371         return ImplicitConversionSequence::Worse;
4372       if (ToPtr2->isObjCIdType() &&
4373           (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
4374         return ImplicitConversionSequence::Better;
4375 
4376       // A conversion to a non-id object pointer type is better than a
4377       // conversion to a qualified 'id' type
4378       if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
4379         return ImplicitConversionSequence::Worse;
4380       if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
4381         return ImplicitConversionSequence::Better;
4382 
4383       // A conversion to an a non-Class object pointer type or qualified 'Class'
4384       // type is better than a conversion to 'Class'.
4385       if (ToPtr1->isObjCClassType() &&
4386           (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
4387         return ImplicitConversionSequence::Worse;
4388       if (ToPtr2->isObjCClassType() &&
4389           (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
4390         return ImplicitConversionSequence::Better;
4391 
4392       // A conversion to a non-Class object pointer type is better than a
4393       // conversion to a qualified 'Class' type.
4394       if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
4395         return ImplicitConversionSequence::Worse;
4396       if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
4397         return ImplicitConversionSequence::Better;
4398 
4399       //   -- "conversion of C* to B* is better than conversion of C* to A*,"
4400       if (S.Context.hasSameType(FromType1, FromType2) &&
4401           !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
4402           (ToAssignLeft != ToAssignRight)) {
4403         if (FromPtr1->isSpecialized()) {
4404           // "conversion of B<A> * to B * is better than conversion of B * to
4405           // C *.
4406           bool IsFirstSame =
4407               FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl();
4408           bool IsSecondSame =
4409               FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl();
4410           if (IsFirstSame) {
4411             if (!IsSecondSame)
4412               return ImplicitConversionSequence::Better;
4413           } else if (IsSecondSame)
4414             return ImplicitConversionSequence::Worse;
4415         }
4416         return ToAssignLeft? ImplicitConversionSequence::Worse
4417                            : ImplicitConversionSequence::Better;
4418       }
4419 
4420       //   -- "conversion of B* to A* is better than conversion of C* to A*,"
4421       if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
4422           (FromAssignLeft != FromAssignRight))
4423         return FromAssignLeft? ImplicitConversionSequence::Better
4424         : ImplicitConversionSequence::Worse;
4425     }
4426   }
4427 
4428   // Ranking of member-pointer types.
4429   if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
4430       FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
4431       ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
4432     const auto *FromMemPointer1 = FromType1->castAs<MemberPointerType>();
4433     const auto *ToMemPointer1 = ToType1->castAs<MemberPointerType>();
4434     const auto *FromMemPointer2 = FromType2->castAs<MemberPointerType>();
4435     const auto *ToMemPointer2 = ToType2->castAs<MemberPointerType>();
4436     const Type *FromPointeeType1 = FromMemPointer1->getClass();
4437     const Type *ToPointeeType1 = ToMemPointer1->getClass();
4438     const Type *FromPointeeType2 = FromMemPointer2->getClass();
4439     const Type *ToPointeeType2 = ToMemPointer2->getClass();
4440     QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
4441     QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
4442     QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
4443     QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
4444     // conversion of A::* to B::* is better than conversion of A::* to C::*,
4445     if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4446       if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4447         return ImplicitConversionSequence::Worse;
4448       else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4449         return ImplicitConversionSequence::Better;
4450     }
4451     // conversion of B::* to C::* is better than conversion of A::* to C::*
4452     if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
4453       if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4454         return ImplicitConversionSequence::Better;
4455       else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4456         return ImplicitConversionSequence::Worse;
4457     }
4458   }
4459 
4460   if (SCS1.Second == ICK_Derived_To_Base) {
4461     //   -- conversion of C to B is better than conversion of C to A,
4462     //   -- binding of an expression of type C to a reference of type
4463     //      B& is better than binding an expression of type C to a
4464     //      reference of type A&,
4465     if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4466         !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4467       if (S.IsDerivedFrom(Loc, ToType1, ToType2))
4468         return ImplicitConversionSequence::Better;
4469       else if (S.IsDerivedFrom(Loc, ToType2, ToType1))
4470         return ImplicitConversionSequence::Worse;
4471     }
4472 
4473     //   -- conversion of B to A is better than conversion of C to A.
4474     //   -- binding of an expression of type B to a reference of type
4475     //      A& is better than binding an expression of type C to a
4476     //      reference of type A&,
4477     if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4478         S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4479       if (S.IsDerivedFrom(Loc, FromType2, FromType1))
4480         return ImplicitConversionSequence::Better;
4481       else if (S.IsDerivedFrom(Loc, FromType1, FromType2))
4482         return ImplicitConversionSequence::Worse;
4483     }
4484   }
4485 
4486   return ImplicitConversionSequence::Indistinguishable;
4487 }
4488 
4489 /// Determine whether the given type is valid, e.g., it is not an invalid
4490 /// C++ class.
4491 static bool isTypeValid(QualType T) {
4492   if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
4493     return !Record->isInvalidDecl();
4494 
4495   return true;
4496 }
4497 
4498 static QualType withoutUnaligned(ASTContext &Ctx, QualType T) {
4499   if (!T.getQualifiers().hasUnaligned())
4500     return T;
4501 
4502   Qualifiers Q;
4503   T = Ctx.getUnqualifiedArrayType(T, Q);
4504   Q.removeUnaligned();
4505   return Ctx.getQualifiedType(T, Q);
4506 }
4507 
4508 /// CompareReferenceRelationship - Compare the two types T1 and T2 to
4509 /// determine whether they are reference-compatible,
4510 /// reference-related, or incompatible, for use in C++ initialization by
4511 /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4512 /// type, and the first type (T1) is the pointee type of the reference
4513 /// type being initialized.
4514 Sema::ReferenceCompareResult
4515 Sema::CompareReferenceRelationship(SourceLocation Loc,
4516                                    QualType OrigT1, QualType OrigT2,
4517                                    ReferenceConversions *ConvOut) {
4518   assert(!OrigT1->isReferenceType() &&
4519     "T1 must be the pointee type of the reference type");
4520   assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
4521 
4522   QualType T1 = Context.getCanonicalType(OrigT1);
4523   QualType T2 = Context.getCanonicalType(OrigT2);
4524   Qualifiers T1Quals, T2Quals;
4525   QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4526   QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4527 
4528   ReferenceConversions ConvTmp;
4529   ReferenceConversions &Conv = ConvOut ? *ConvOut : ConvTmp;
4530   Conv = ReferenceConversions();
4531 
4532   // C++2a [dcl.init.ref]p4:
4533   //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4534   //   reference-related to "cv2 T2" if T1 is similar to T2, or
4535   //   T1 is a base class of T2.
4536   //   "cv1 T1" is reference-compatible with "cv2 T2" if
4537   //   a prvalue of type "pointer to cv2 T2" can be converted to the type
4538   //   "pointer to cv1 T1" via a standard conversion sequence.
4539 
4540   // Check for standard conversions we can apply to pointers: derived-to-base
4541   // conversions, ObjC pointer conversions, and function pointer conversions.
4542   // (Qualification conversions are checked last.)
4543   QualType ConvertedT2;
4544   if (UnqualT1 == UnqualT2) {
4545     // Nothing to do.
4546   } else if (isCompleteType(Loc, OrigT2) &&
4547              isTypeValid(UnqualT1) && isTypeValid(UnqualT2) &&
4548              IsDerivedFrom(Loc, UnqualT2, UnqualT1))
4549     Conv |= ReferenceConversions::DerivedToBase;
4550   else if (UnqualT1->isObjCObjectOrInterfaceType() &&
4551            UnqualT2->isObjCObjectOrInterfaceType() &&
4552            Context.canBindObjCObjectType(UnqualT1, UnqualT2))
4553     Conv |= ReferenceConversions::ObjC;
4554   else if (UnqualT2->isFunctionType() &&
4555            IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2)) {
4556     Conv |= ReferenceConversions::Function;
4557     // No need to check qualifiers; function types don't have them.
4558     return Ref_Compatible;
4559   }
4560   bool ConvertedReferent = Conv != 0;
4561 
4562   // We can have a qualification conversion. Compute whether the types are
4563   // similar at the same time.
4564   bool PreviousToQualsIncludeConst = true;
4565   bool TopLevel = true;
4566   do {
4567     if (T1 == T2)
4568       break;
4569 
4570     // We will need a qualification conversion.
4571     Conv |= ReferenceConversions::Qualification;
4572 
4573     // Track whether we performed a qualification conversion anywhere other
4574     // than the top level. This matters for ranking reference bindings in
4575     // overload resolution.
4576     if (!TopLevel)
4577       Conv |= ReferenceConversions::NestedQualification;
4578 
4579     // MS compiler ignores __unaligned qualifier for references; do the same.
4580     T1 = withoutUnaligned(Context, T1);
4581     T2 = withoutUnaligned(Context, T2);
4582 
4583     // If we find a qualifier mismatch, the types are not reference-compatible,
4584     // but are still be reference-related if they're similar.
4585     bool ObjCLifetimeConversion = false;
4586     if (!isQualificationConversionStep(T2, T1, /*CStyle=*/false, TopLevel,
4587                                        PreviousToQualsIncludeConst,
4588                                        ObjCLifetimeConversion))
4589       return (ConvertedReferent || Context.hasSimilarType(T1, T2))
4590                  ? Ref_Related
4591                  : Ref_Incompatible;
4592 
4593     // FIXME: Should we track this for any level other than the first?
4594     if (ObjCLifetimeConversion)
4595       Conv |= ReferenceConversions::ObjCLifetime;
4596 
4597     TopLevel = false;
4598   } while (Context.UnwrapSimilarTypes(T1, T2));
4599 
4600   // At this point, if the types are reference-related, we must either have the
4601   // same inner type (ignoring qualifiers), or must have already worked out how
4602   // to convert the referent.
4603   return (ConvertedReferent || Context.hasSameUnqualifiedType(T1, T2))
4604              ? Ref_Compatible
4605              : Ref_Incompatible;
4606 }
4607 
4608 /// Look for a user-defined conversion to a value reference-compatible
4609 ///        with DeclType. Return true if something definite is found.
4610 static bool
4611 FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
4612                          QualType DeclType, SourceLocation DeclLoc,
4613                          Expr *Init, QualType T2, bool AllowRvalues,
4614                          bool AllowExplicit) {
4615   assert(T2->isRecordType() && "Can only find conversions of record types.");
4616   auto *T2RecordDecl = cast<CXXRecordDecl>(T2->castAs<RecordType>()->getDecl());
4617 
4618   OverloadCandidateSet CandidateSet(
4619       DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4620   const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4621   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4622     NamedDecl *D = *I;
4623     CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4624     if (isa<UsingShadowDecl>(D))
4625       D = cast<UsingShadowDecl>(D)->getTargetDecl();
4626 
4627     FunctionTemplateDecl *ConvTemplate
4628       = dyn_cast<FunctionTemplateDecl>(D);
4629     CXXConversionDecl *Conv;
4630     if (ConvTemplate)
4631       Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4632     else
4633       Conv = cast<CXXConversionDecl>(D);
4634 
4635     if (AllowRvalues) {
4636       // If we are initializing an rvalue reference, don't permit conversion
4637       // functions that return lvalues.
4638       if (!ConvTemplate && DeclType->isRValueReferenceType()) {
4639         const ReferenceType *RefType
4640           = Conv->getConversionType()->getAs<LValueReferenceType>();
4641         if (RefType && !RefType->getPointeeType()->isFunctionType())
4642           continue;
4643       }
4644 
4645       if (!ConvTemplate &&
4646           S.CompareReferenceRelationship(
4647               DeclLoc,
4648               Conv->getConversionType()
4649                   .getNonReferenceType()
4650                   .getUnqualifiedType(),
4651               DeclType.getNonReferenceType().getUnqualifiedType()) ==
4652               Sema::Ref_Incompatible)
4653         continue;
4654     } else {
4655       // If the conversion function doesn't return a reference type,
4656       // it can't be considered for this conversion. An rvalue reference
4657       // is only acceptable if its referencee is a function type.
4658 
4659       const ReferenceType *RefType =
4660         Conv->getConversionType()->getAs<ReferenceType>();
4661       if (!RefType ||
4662           (!RefType->isLValueReferenceType() &&
4663            !RefType->getPointeeType()->isFunctionType()))
4664         continue;
4665     }
4666 
4667     if (ConvTemplate)
4668       S.AddTemplateConversionCandidate(
4669           ConvTemplate, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4670           /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4671     else
4672       S.AddConversionCandidate(
4673           Conv, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4674           /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4675   }
4676 
4677   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4678 
4679   OverloadCandidateSet::iterator Best;
4680   switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
4681   case OR_Success:
4682     // C++ [over.ics.ref]p1:
4683     //
4684     //   [...] If the parameter binds directly to the result of
4685     //   applying a conversion function to the argument
4686     //   expression, the implicit conversion sequence is a
4687     //   user-defined conversion sequence (13.3.3.1.2), with the
4688     //   second standard conversion sequence either an identity
4689     //   conversion or, if the conversion function returns an
4690     //   entity of a type that is a derived class of the parameter
4691     //   type, a derived-to-base Conversion.
4692     if (!Best->FinalConversion.DirectBinding)
4693       return false;
4694 
4695     ICS.setUserDefined();
4696     ICS.UserDefined.Before = Best->Conversions[0].Standard;
4697     ICS.UserDefined.After = Best->FinalConversion;
4698     ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
4699     ICS.UserDefined.ConversionFunction = Best->Function;
4700     ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
4701     ICS.UserDefined.EllipsisConversion = false;
4702     assert(ICS.UserDefined.After.ReferenceBinding &&
4703            ICS.UserDefined.After.DirectBinding &&
4704            "Expected a direct reference binding!");
4705     return true;
4706 
4707   case OR_Ambiguous:
4708     ICS.setAmbiguous();
4709     for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4710          Cand != CandidateSet.end(); ++Cand)
4711       if (Cand->Best)
4712         ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
4713     return true;
4714 
4715   case OR_No_Viable_Function:
4716   case OR_Deleted:
4717     // There was no suitable conversion, or we found a deleted
4718     // conversion; continue with other checks.
4719     return false;
4720   }
4721 
4722   llvm_unreachable("Invalid OverloadResult!");
4723 }
4724 
4725 /// Compute an implicit conversion sequence for reference
4726 /// initialization.
4727 static ImplicitConversionSequence
4728 TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
4729                  SourceLocation DeclLoc,
4730                  bool SuppressUserConversions,
4731                  bool AllowExplicit) {
4732   assert(DeclType->isReferenceType() && "Reference init needs a reference");
4733 
4734   // Most paths end in a failed conversion.
4735   ImplicitConversionSequence ICS;
4736   ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4737 
4738   QualType T1 = DeclType->castAs<ReferenceType>()->getPointeeType();
4739   QualType T2 = Init->getType();
4740 
4741   // If the initializer is the address of an overloaded function, try
4742   // to resolve the overloaded function. If all goes well, T2 is the
4743   // type of the resulting function.
4744   if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4745     DeclAccessPair Found;
4746     if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
4747                                                                 false, Found))
4748       T2 = Fn->getType();
4749   }
4750 
4751   // Compute some basic properties of the types and the initializer.
4752   bool isRValRef = DeclType->isRValueReferenceType();
4753   Expr::Classification InitCategory = Init->Classify(S.Context);
4754 
4755   Sema::ReferenceConversions RefConv;
4756   Sema::ReferenceCompareResult RefRelationship =
4757       S.CompareReferenceRelationship(DeclLoc, T1, T2, &RefConv);
4758 
4759   auto SetAsReferenceBinding = [&](bool BindsDirectly) {
4760     ICS.setStandard();
4761     ICS.Standard.First = ICK_Identity;
4762     // FIXME: A reference binding can be a function conversion too. We should
4763     // consider that when ordering reference-to-function bindings.
4764     ICS.Standard.Second = (RefConv & Sema::ReferenceConversions::DerivedToBase)
4765                               ? ICK_Derived_To_Base
4766                               : (RefConv & Sema::ReferenceConversions::ObjC)
4767                                     ? ICK_Compatible_Conversion
4768                                     : ICK_Identity;
4769     // FIXME: As a speculative fix to a defect introduced by CWG2352, we rank
4770     // a reference binding that performs a non-top-level qualification
4771     // conversion as a qualification conversion, not as an identity conversion.
4772     ICS.Standard.Third = (RefConv &
4773                               Sema::ReferenceConversions::NestedQualification)
4774                              ? ICK_Qualification
4775                              : ICK_Identity;
4776     ICS.Standard.setFromType(T2);
4777     ICS.Standard.setToType(0, T2);
4778     ICS.Standard.setToType(1, T1);
4779     ICS.Standard.setToType(2, T1);
4780     ICS.Standard.ReferenceBinding = true;
4781     ICS.Standard.DirectBinding = BindsDirectly;
4782     ICS.Standard.IsLvalueReference = !isRValRef;
4783     ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4784     ICS.Standard.BindsToRvalue = InitCategory.isRValue();
4785     ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4786     ICS.Standard.ObjCLifetimeConversionBinding =
4787         (RefConv & Sema::ReferenceConversions::ObjCLifetime) != 0;
4788     ICS.Standard.CopyConstructor = nullptr;
4789     ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4790   };
4791 
4792   // C++0x [dcl.init.ref]p5:
4793   //   A reference to type "cv1 T1" is initialized by an expression
4794   //   of type "cv2 T2" as follows:
4795 
4796   //     -- If reference is an lvalue reference and the initializer expression
4797   if (!isRValRef) {
4798     //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4799     //        reference-compatible with "cv2 T2," or
4800     //
4801     // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
4802     if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) {
4803       // C++ [over.ics.ref]p1:
4804       //   When a parameter of reference type binds directly (8.5.3)
4805       //   to an argument expression, the implicit conversion sequence
4806       //   is the identity conversion, unless the argument expression
4807       //   has a type that is a derived class of the parameter type,
4808       //   in which case the implicit conversion sequence is a
4809       //   derived-to-base Conversion (13.3.3.1).
4810       SetAsReferenceBinding(/*BindsDirectly=*/true);
4811 
4812       // Nothing more to do: the inaccessibility/ambiguity check for
4813       // derived-to-base conversions is suppressed when we're
4814       // computing the implicit conversion sequence (C++
4815       // [over.best.ics]p2).
4816       return ICS;
4817     }
4818 
4819     //       -- has a class type (i.e., T2 is a class type), where T1 is
4820     //          not reference-related to T2, and can be implicitly
4821     //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
4822     //          is reference-compatible with "cv3 T3" 92) (this
4823     //          conversion is selected by enumerating the applicable
4824     //          conversion functions (13.3.1.6) and choosing the best
4825     //          one through overload resolution (13.3)),
4826     if (!SuppressUserConversions && T2->isRecordType() &&
4827         S.isCompleteType(DeclLoc, T2) &&
4828         RefRelationship == Sema::Ref_Incompatible) {
4829       if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4830                                    Init, T2, /*AllowRvalues=*/false,
4831                                    AllowExplicit))
4832         return ICS;
4833     }
4834   }
4835 
4836   //     -- Otherwise, the reference shall be an lvalue reference to a
4837   //        non-volatile const type (i.e., cv1 shall be const), or the reference
4838   //        shall be an rvalue reference.
4839   if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified())) {
4840     if (InitCategory.isRValue() && RefRelationship != Sema::Ref_Incompatible)
4841       ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType);
4842     return ICS;
4843   }
4844 
4845   //       -- If the initializer expression
4846   //
4847   //            -- is an xvalue, class prvalue, array prvalue or function
4848   //               lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
4849   if (RefRelationship == Sema::Ref_Compatible &&
4850       (InitCategory.isXValue() ||
4851        (InitCategory.isPRValue() &&
4852           (T2->isRecordType() || T2->isArrayType())) ||
4853        (InitCategory.isLValue() && T2->isFunctionType()))) {
4854     // In C++11, this is always a direct binding. In C++98/03, it's a direct
4855     // binding unless we're binding to a class prvalue.
4856     // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
4857     // allow the use of rvalue references in C++98/03 for the benefit of
4858     // standard library implementors; therefore, we need the xvalue check here.
4859     SetAsReferenceBinding(/*BindsDirectly=*/S.getLangOpts().CPlusPlus11 ||
4860                           !(InitCategory.isPRValue() || T2->isRecordType()));
4861     return ICS;
4862   }
4863 
4864   //            -- has a class type (i.e., T2 is a class type), where T1 is not
4865   //               reference-related to T2, and can be implicitly converted to
4866   //               an xvalue, class prvalue, or function lvalue of type
4867   //               "cv3 T3", where "cv1 T1" is reference-compatible with
4868   //               "cv3 T3",
4869   //
4870   //          then the reference is bound to the value of the initializer
4871   //          expression in the first case and to the result of the conversion
4872   //          in the second case (or, in either case, to an appropriate base
4873   //          class subobject).
4874   if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4875       T2->isRecordType() && S.isCompleteType(DeclLoc, T2) &&
4876       FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4877                                Init, T2, /*AllowRvalues=*/true,
4878                                AllowExplicit)) {
4879     // In the second case, if the reference is an rvalue reference
4880     // and the second standard conversion sequence of the
4881     // user-defined conversion sequence includes an lvalue-to-rvalue
4882     // conversion, the program is ill-formed.
4883     if (ICS.isUserDefined() && isRValRef &&
4884         ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
4885       ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4886 
4887     return ICS;
4888   }
4889 
4890   // A temporary of function type cannot be created; don't even try.
4891   if (T1->isFunctionType())
4892     return ICS;
4893 
4894   //       -- Otherwise, a temporary of type "cv1 T1" is created and
4895   //          initialized from the initializer expression using the
4896   //          rules for a non-reference copy initialization (8.5). The
4897   //          reference is then bound to the temporary. If T1 is
4898   //          reference-related to T2, cv1 must be the same
4899   //          cv-qualification as, or greater cv-qualification than,
4900   //          cv2; otherwise, the program is ill-formed.
4901   if (RefRelationship == Sema::Ref_Related) {
4902     // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4903     // we would be reference-compatible or reference-compatible with
4904     // added qualification. But that wasn't the case, so the reference
4905     // initialization fails.
4906     //
4907     // Note that we only want to check address spaces and cvr-qualifiers here.
4908     // ObjC GC, lifetime and unaligned qualifiers aren't important.
4909     Qualifiers T1Quals = T1.getQualifiers();
4910     Qualifiers T2Quals = T2.getQualifiers();
4911     T1Quals.removeObjCGCAttr();
4912     T1Quals.removeObjCLifetime();
4913     T2Quals.removeObjCGCAttr();
4914     T2Quals.removeObjCLifetime();
4915     // MS compiler ignores __unaligned qualifier for references; do the same.
4916     T1Quals.removeUnaligned();
4917     T2Quals.removeUnaligned();
4918     if (!T1Quals.compatiblyIncludes(T2Quals))
4919       return ICS;
4920   }
4921 
4922   // If at least one of the types is a class type, the types are not
4923   // related, and we aren't allowed any user conversions, the
4924   // reference binding fails. This case is important for breaking
4925   // recursion, since TryImplicitConversion below will attempt to
4926   // create a temporary through the use of a copy constructor.
4927   if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4928       (T1->isRecordType() || T2->isRecordType()))
4929     return ICS;
4930 
4931   // If T1 is reference-related to T2 and the reference is an rvalue
4932   // reference, the initializer expression shall not be an lvalue.
4933   if (RefRelationship >= Sema::Ref_Related && isRValRef &&
4934       Init->Classify(S.Context).isLValue()) {
4935     ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, Init, DeclType);
4936     return ICS;
4937   }
4938 
4939   // C++ [over.ics.ref]p2:
4940   //   When a parameter of reference type is not bound directly to
4941   //   an argument expression, the conversion sequence is the one
4942   //   required to convert the argument expression to the
4943   //   underlying type of the reference according to
4944   //   13.3.3.1. Conceptually, this conversion sequence corresponds
4945   //   to copy-initializing a temporary of the underlying type with
4946   //   the argument expression. Any difference in top-level
4947   //   cv-qualification is subsumed by the initialization itself
4948   //   and does not constitute a conversion.
4949   ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
4950                               AllowedExplicit::None,
4951                               /*InOverloadResolution=*/false,
4952                               /*CStyle=*/false,
4953                               /*AllowObjCWritebackConversion=*/false,
4954                               /*AllowObjCConversionOnExplicit=*/false);
4955 
4956   // Of course, that's still a reference binding.
4957   if (ICS.isStandard()) {
4958     ICS.Standard.ReferenceBinding = true;
4959     ICS.Standard.IsLvalueReference = !isRValRef;
4960     ICS.Standard.BindsToFunctionLvalue = false;
4961     ICS.Standard.BindsToRvalue = true;
4962     ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4963     ICS.Standard.ObjCLifetimeConversionBinding = false;
4964   } else if (ICS.isUserDefined()) {
4965     const ReferenceType *LValRefType =
4966         ICS.UserDefined.ConversionFunction->getReturnType()
4967             ->getAs<LValueReferenceType>();
4968 
4969     // C++ [over.ics.ref]p3:
4970     //   Except for an implicit object parameter, for which see 13.3.1, a
4971     //   standard conversion sequence cannot be formed if it requires [...]
4972     //   binding an rvalue reference to an lvalue other than a function
4973     //   lvalue.
4974     // Note that the function case is not possible here.
4975     if (isRValRef && LValRefType) {
4976       ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4977       return ICS;
4978     }
4979 
4980     ICS.UserDefined.After.ReferenceBinding = true;
4981     ICS.UserDefined.After.IsLvalueReference = !isRValRef;
4982     ICS.UserDefined.After.BindsToFunctionLvalue = false;
4983     ICS.UserDefined.After.BindsToRvalue = !LValRefType;
4984     ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4985     ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
4986   }
4987 
4988   return ICS;
4989 }
4990 
4991 static ImplicitConversionSequence
4992 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4993                       bool SuppressUserConversions,
4994                       bool InOverloadResolution,
4995                       bool AllowObjCWritebackConversion,
4996                       bool AllowExplicit = false);
4997 
4998 /// TryListConversion - Try to copy-initialize a value of type ToType from the
4999 /// initializer list From.
5000 static ImplicitConversionSequence
5001 TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
5002                   bool SuppressUserConversions,
5003                   bool InOverloadResolution,
5004                   bool AllowObjCWritebackConversion) {
5005   // C++11 [over.ics.list]p1:
5006   //   When an argument is an initializer list, it is not an expression and
5007   //   special rules apply for converting it to a parameter type.
5008 
5009   ImplicitConversionSequence Result;
5010   Result.setBad(BadConversionSequence::no_conversion, From, ToType);
5011 
5012   // We need a complete type for what follows. Incomplete types can never be
5013   // initialized from init lists.
5014   if (!S.isCompleteType(From->getBeginLoc(), ToType))
5015     return Result;
5016 
5017   // Per DR1467:
5018   //   If the parameter type is a class X and the initializer list has a single
5019   //   element of type cv U, where U is X or a class derived from X, the
5020   //   implicit conversion sequence is the one required to convert the element
5021   //   to the parameter type.
5022   //
5023   //   Otherwise, if the parameter type is a character array [... ]
5024   //   and the initializer list has a single element that is an
5025   //   appropriately-typed string literal (8.5.2 [dcl.init.string]), the
5026   //   implicit conversion sequence is the identity conversion.
5027   if (From->getNumInits() == 1) {
5028     if (ToType->isRecordType()) {
5029       QualType InitType = From->getInit(0)->getType();
5030       if (S.Context.hasSameUnqualifiedType(InitType, ToType) ||
5031           S.IsDerivedFrom(From->getBeginLoc(), InitType, ToType))
5032         return TryCopyInitialization(S, From->getInit(0), ToType,
5033                                      SuppressUserConversions,
5034                                      InOverloadResolution,
5035                                      AllowObjCWritebackConversion);
5036     }
5037 
5038     if (const auto *AT = S.Context.getAsArrayType(ToType)) {
5039       if (S.IsStringInit(From->getInit(0), AT)) {
5040         InitializedEntity Entity =
5041           InitializedEntity::InitializeParameter(S.Context, ToType,
5042                                                  /*Consumed=*/false);
5043         if (S.CanPerformCopyInitialization(Entity, From)) {
5044           Result.setStandard();
5045           Result.Standard.setAsIdentityConversion();
5046           Result.Standard.setFromType(ToType);
5047           Result.Standard.setAllToTypes(ToType);
5048           return Result;
5049         }
5050       }
5051     }
5052   }
5053 
5054   // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below).
5055   // C++11 [over.ics.list]p2:
5056   //   If the parameter type is std::initializer_list<X> or "array of X" and
5057   //   all the elements can be implicitly converted to X, the implicit
5058   //   conversion sequence is the worst conversion necessary to convert an
5059   //   element of the list to X.
5060   //
5061   // C++14 [over.ics.list]p3:
5062   //   Otherwise, if the parameter type is "array of N X", if the initializer
5063   //   list has exactly N elements or if it has fewer than N elements and X is
5064   //   default-constructible, and if all the elements of the initializer list
5065   //   can be implicitly converted to X, the implicit conversion sequence is
5066   //   the worst conversion necessary to convert an element of the list to X.
5067   //
5068   // FIXME: We're missing a lot of these checks.
5069   bool toStdInitializerList = false;
5070   QualType X;
5071   if (ToType->isArrayType())
5072     X = S.Context.getAsArrayType(ToType)->getElementType();
5073   else
5074     toStdInitializerList = S.isStdInitializerList(ToType, &X);
5075   if (!X.isNull()) {
5076     for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
5077       Expr *Init = From->getInit(i);
5078       ImplicitConversionSequence ICS =
5079           TryCopyInitialization(S, Init, X, SuppressUserConversions,
5080                                 InOverloadResolution,
5081                                 AllowObjCWritebackConversion);
5082       // If a single element isn't convertible, fail.
5083       if (ICS.isBad()) {
5084         Result = ICS;
5085         break;
5086       }
5087       // Otherwise, look for the worst conversion.
5088       if (Result.isBad() || CompareImplicitConversionSequences(
5089                                 S, From->getBeginLoc(), ICS, Result) ==
5090                                 ImplicitConversionSequence::Worse)
5091         Result = ICS;
5092     }
5093 
5094     // For an empty list, we won't have computed any conversion sequence.
5095     // Introduce the identity conversion sequence.
5096     if (From->getNumInits() == 0) {
5097       Result.setStandard();
5098       Result.Standard.setAsIdentityConversion();
5099       Result.Standard.setFromType(ToType);
5100       Result.Standard.setAllToTypes(ToType);
5101     }
5102 
5103     Result.setStdInitializerListElement(toStdInitializerList);
5104     return Result;
5105   }
5106 
5107   // C++14 [over.ics.list]p4:
5108   // C++11 [over.ics.list]p3:
5109   //   Otherwise, if the parameter is a non-aggregate class X and overload
5110   //   resolution chooses a single best constructor [...] the implicit
5111   //   conversion sequence is a user-defined conversion sequence. If multiple
5112   //   constructors are viable but none is better than the others, the
5113   //   implicit conversion sequence is a user-defined conversion sequence.
5114   if (ToType->isRecordType() && !ToType->isAggregateType()) {
5115     // This function can deal with initializer lists.
5116     return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
5117                                     AllowedExplicit::None,
5118                                     InOverloadResolution, /*CStyle=*/false,
5119                                     AllowObjCWritebackConversion,
5120                                     /*AllowObjCConversionOnExplicit=*/false);
5121   }
5122 
5123   // C++14 [over.ics.list]p5:
5124   // C++11 [over.ics.list]p4:
5125   //   Otherwise, if the parameter has an aggregate type which can be
5126   //   initialized from the initializer list [...] the implicit conversion
5127   //   sequence is a user-defined conversion sequence.
5128   if (ToType->isAggregateType()) {
5129     // Type is an aggregate, argument is an init list. At this point it comes
5130     // down to checking whether the initialization works.
5131     // FIXME: Find out whether this parameter is consumed or not.
5132     InitializedEntity Entity =
5133         InitializedEntity::InitializeParameter(S.Context, ToType,
5134                                                /*Consumed=*/false);
5135     if (S.CanPerformAggregateInitializationForOverloadResolution(Entity,
5136                                                                  From)) {
5137       Result.setUserDefined();
5138       Result.UserDefined.Before.setAsIdentityConversion();
5139       // Initializer lists don't have a type.
5140       Result.UserDefined.Before.setFromType(QualType());
5141       Result.UserDefined.Before.setAllToTypes(QualType());
5142 
5143       Result.UserDefined.After.setAsIdentityConversion();
5144       Result.UserDefined.After.setFromType(ToType);
5145       Result.UserDefined.After.setAllToTypes(ToType);
5146       Result.UserDefined.ConversionFunction = nullptr;
5147     }
5148     return Result;
5149   }
5150 
5151   // C++14 [over.ics.list]p6:
5152   // C++11 [over.ics.list]p5:
5153   //   Otherwise, if the parameter is a reference, see 13.3.3.1.4.
5154   if (ToType->isReferenceType()) {
5155     // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
5156     // mention initializer lists in any way. So we go by what list-
5157     // initialization would do and try to extrapolate from that.
5158 
5159     QualType T1 = ToType->castAs<ReferenceType>()->getPointeeType();
5160 
5161     // If the initializer list has a single element that is reference-related
5162     // to the parameter type, we initialize the reference from that.
5163     if (From->getNumInits() == 1) {
5164       Expr *Init = From->getInit(0);
5165 
5166       QualType T2 = Init->getType();
5167 
5168       // If the initializer is the address of an overloaded function, try
5169       // to resolve the overloaded function. If all goes well, T2 is the
5170       // type of the resulting function.
5171       if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
5172         DeclAccessPair Found;
5173         if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
5174                                    Init, ToType, false, Found))
5175           T2 = Fn->getType();
5176       }
5177 
5178       // Compute some basic properties of the types and the initializer.
5179       Sema::ReferenceCompareResult RefRelationship =
5180           S.CompareReferenceRelationship(From->getBeginLoc(), T1, T2);
5181 
5182       if (RefRelationship >= Sema::Ref_Related) {
5183         return TryReferenceInit(S, Init, ToType, /*FIXME*/ From->getBeginLoc(),
5184                                 SuppressUserConversions,
5185                                 /*AllowExplicit=*/false);
5186       }
5187     }
5188 
5189     // Otherwise, we bind the reference to a temporary created from the
5190     // initializer list.
5191     Result = TryListConversion(S, From, T1, SuppressUserConversions,
5192                                InOverloadResolution,
5193                                AllowObjCWritebackConversion);
5194     if (Result.isFailure())
5195       return Result;
5196     assert(!Result.isEllipsis() &&
5197            "Sub-initialization cannot result in ellipsis conversion.");
5198 
5199     // Can we even bind to a temporary?
5200     if (ToType->isRValueReferenceType() ||
5201         (T1.isConstQualified() && !T1.isVolatileQualified())) {
5202       StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
5203                                             Result.UserDefined.After;
5204       SCS.ReferenceBinding = true;
5205       SCS.IsLvalueReference = ToType->isLValueReferenceType();
5206       SCS.BindsToRvalue = true;
5207       SCS.BindsToFunctionLvalue = false;
5208       SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
5209       SCS.ObjCLifetimeConversionBinding = false;
5210     } else
5211       Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
5212                     From, ToType);
5213     return Result;
5214   }
5215 
5216   // C++14 [over.ics.list]p7:
5217   // C++11 [over.ics.list]p6:
5218   //   Otherwise, if the parameter type is not a class:
5219   if (!ToType->isRecordType()) {
5220     //    - if the initializer list has one element that is not itself an
5221     //      initializer list, the implicit conversion sequence is the one
5222     //      required to convert the element to the parameter type.
5223     unsigned NumInits = From->getNumInits();
5224     if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0)))
5225       Result = TryCopyInitialization(S, From->getInit(0), ToType,
5226                                      SuppressUserConversions,
5227                                      InOverloadResolution,
5228                                      AllowObjCWritebackConversion);
5229     //    - if the initializer list has no elements, the implicit conversion
5230     //      sequence is the identity conversion.
5231     else if (NumInits == 0) {
5232       Result.setStandard();
5233       Result.Standard.setAsIdentityConversion();
5234       Result.Standard.setFromType(ToType);
5235       Result.Standard.setAllToTypes(ToType);
5236     }
5237     return Result;
5238   }
5239 
5240   // C++14 [over.ics.list]p8:
5241   // C++11 [over.ics.list]p7:
5242   //   In all cases other than those enumerated above, no conversion is possible
5243   return Result;
5244 }
5245 
5246 /// TryCopyInitialization - Try to copy-initialize a value of type
5247 /// ToType from the expression From. Return the implicit conversion
5248 /// sequence required to pass this argument, which may be a bad
5249 /// conversion sequence (meaning that the argument cannot be passed to
5250 /// a parameter of this type). If @p SuppressUserConversions, then we
5251 /// do not permit any user-defined conversion sequences.
5252 static ImplicitConversionSequence
5253 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
5254                       bool SuppressUserConversions,
5255                       bool InOverloadResolution,
5256                       bool AllowObjCWritebackConversion,
5257                       bool AllowExplicit) {
5258   if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
5259     return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
5260                              InOverloadResolution,AllowObjCWritebackConversion);
5261 
5262   if (ToType->isReferenceType())
5263     return TryReferenceInit(S, From, ToType,
5264                             /*FIXME:*/ From->getBeginLoc(),
5265                             SuppressUserConversions, AllowExplicit);
5266 
5267   return TryImplicitConversion(S, From, ToType,
5268                                SuppressUserConversions,
5269                                AllowedExplicit::None,
5270                                InOverloadResolution,
5271                                /*CStyle=*/false,
5272                                AllowObjCWritebackConversion,
5273                                /*AllowObjCConversionOnExplicit=*/false);
5274 }
5275 
5276 static bool TryCopyInitialization(const CanQualType FromQTy,
5277                                   const CanQualType ToQTy,
5278                                   Sema &S,
5279                                   SourceLocation Loc,
5280                                   ExprValueKind FromVK) {
5281   OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
5282   ImplicitConversionSequence ICS =
5283     TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
5284 
5285   return !ICS.isBad();
5286 }
5287 
5288 /// TryObjectArgumentInitialization - Try to initialize the object
5289 /// parameter of the given member function (@c Method) from the
5290 /// expression @p From.
5291 static ImplicitConversionSequence
5292 TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType,
5293                                 Expr::Classification FromClassification,
5294                                 CXXMethodDecl *Method,
5295                                 CXXRecordDecl *ActingContext) {
5296   QualType ClassType = S.Context.getTypeDeclType(ActingContext);
5297   // [class.dtor]p2: A destructor can be invoked for a const, volatile or
5298   //                 const volatile object.
5299   Qualifiers Quals = Method->getMethodQualifiers();
5300   if (isa<CXXDestructorDecl>(Method)) {
5301     Quals.addConst();
5302     Quals.addVolatile();
5303   }
5304 
5305   QualType ImplicitParamType = S.Context.getQualifiedType(ClassType, Quals);
5306 
5307   // Set up the conversion sequence as a "bad" conversion, to allow us
5308   // to exit early.
5309   ImplicitConversionSequence ICS;
5310 
5311   // We need to have an object of class type.
5312   if (const PointerType *PT = FromType->getAs<PointerType>()) {
5313     FromType = PT->getPointeeType();
5314 
5315     // When we had a pointer, it's implicitly dereferenced, so we
5316     // better have an lvalue.
5317     assert(FromClassification.isLValue());
5318   }
5319 
5320   assert(FromType->isRecordType());
5321 
5322   // C++0x [over.match.funcs]p4:
5323   //   For non-static member functions, the type of the implicit object
5324   //   parameter is
5325   //
5326   //     - "lvalue reference to cv X" for functions declared without a
5327   //        ref-qualifier or with the & ref-qualifier
5328   //     - "rvalue reference to cv X" for functions declared with the &&
5329   //        ref-qualifier
5330   //
5331   // where X is the class of which the function is a member and cv is the
5332   // cv-qualification on the member function declaration.
5333   //
5334   // However, when finding an implicit conversion sequence for the argument, we
5335   // are not allowed to perform user-defined conversions
5336   // (C++ [over.match.funcs]p5). We perform a simplified version of
5337   // reference binding here, that allows class rvalues to bind to
5338   // non-constant references.
5339 
5340   // First check the qualifiers.
5341   QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
5342   if (ImplicitParamType.getCVRQualifiers()
5343                                     != FromTypeCanon.getLocalCVRQualifiers() &&
5344       !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
5345     ICS.setBad(BadConversionSequence::bad_qualifiers,
5346                FromType, ImplicitParamType);
5347     return ICS;
5348   }
5349 
5350   if (FromTypeCanon.hasAddressSpace()) {
5351     Qualifiers QualsImplicitParamType = ImplicitParamType.getQualifiers();
5352     Qualifiers QualsFromType = FromTypeCanon.getQualifiers();
5353     if (!QualsImplicitParamType.isAddressSpaceSupersetOf(QualsFromType)) {
5354       ICS.setBad(BadConversionSequence::bad_qualifiers,
5355                  FromType, ImplicitParamType);
5356       return ICS;
5357     }
5358   }
5359 
5360   // Check that we have either the same type or a derived type. It
5361   // affects the conversion rank.
5362   QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
5363   ImplicitConversionKind SecondKind;
5364   if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
5365     SecondKind = ICK_Identity;
5366   } else if (S.IsDerivedFrom(Loc, FromType, ClassType))
5367     SecondKind = ICK_Derived_To_Base;
5368   else {
5369     ICS.setBad(BadConversionSequence::unrelated_class,
5370                FromType, ImplicitParamType);
5371     return ICS;
5372   }
5373 
5374   // Check the ref-qualifier.
5375   switch (Method->getRefQualifier()) {
5376   case RQ_None:
5377     // Do nothing; we don't care about lvalueness or rvalueness.
5378     break;
5379 
5380   case RQ_LValue:
5381     if (!FromClassification.isLValue() && !Quals.hasOnlyConst()) {
5382       // non-const lvalue reference cannot bind to an rvalue
5383       ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
5384                  ImplicitParamType);
5385       return ICS;
5386     }
5387     break;
5388 
5389   case RQ_RValue:
5390     if (!FromClassification.isRValue()) {
5391       // rvalue reference cannot bind to an lvalue
5392       ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
5393                  ImplicitParamType);
5394       return ICS;
5395     }
5396     break;
5397   }
5398 
5399   // Success. Mark this as a reference binding.
5400   ICS.setStandard();
5401   ICS.Standard.setAsIdentityConversion();
5402   ICS.Standard.Second = SecondKind;
5403   ICS.Standard.setFromType(FromType);
5404   ICS.Standard.setAllToTypes(ImplicitParamType);
5405   ICS.Standard.ReferenceBinding = true;
5406   ICS.Standard.DirectBinding = true;
5407   ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
5408   ICS.Standard.BindsToFunctionLvalue = false;
5409   ICS.Standard.BindsToRvalue = FromClassification.isRValue();
5410   ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
5411     = (Method->getRefQualifier() == RQ_None);
5412   return ICS;
5413 }
5414 
5415 /// PerformObjectArgumentInitialization - Perform initialization of
5416 /// the implicit object parameter for the given Method with the given
5417 /// expression.
5418 ExprResult
5419 Sema::PerformObjectArgumentInitialization(Expr *From,
5420                                           NestedNameSpecifier *Qualifier,
5421                                           NamedDecl *FoundDecl,
5422                                           CXXMethodDecl *Method) {
5423   QualType FromRecordType, DestType;
5424   QualType ImplicitParamRecordType  =
5425     Method->getThisType()->castAs<PointerType>()->getPointeeType();
5426 
5427   Expr::Classification FromClassification;
5428   if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
5429     FromRecordType = PT->getPointeeType();
5430     DestType = Method->getThisType();
5431     FromClassification = Expr::Classification::makeSimpleLValue();
5432   } else {
5433     FromRecordType = From->getType();
5434     DestType = ImplicitParamRecordType;
5435     FromClassification = From->Classify(Context);
5436 
5437     // When performing member access on a prvalue, materialize a temporary.
5438     if (From->isPRValue()) {
5439       From = CreateMaterializeTemporaryExpr(FromRecordType, From,
5440                                             Method->getRefQualifier() !=
5441                                                 RefQualifierKind::RQ_RValue);
5442     }
5443   }
5444 
5445   // Note that we always use the true parent context when performing
5446   // the actual argument initialization.
5447   ImplicitConversionSequence ICS = TryObjectArgumentInitialization(
5448       *this, From->getBeginLoc(), From->getType(), FromClassification, Method,
5449       Method->getParent());
5450   if (ICS.isBad()) {
5451     switch (ICS.Bad.Kind) {
5452     case BadConversionSequence::bad_qualifiers: {
5453       Qualifiers FromQs = FromRecordType.getQualifiers();
5454       Qualifiers ToQs = DestType.getQualifiers();
5455       unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
5456       if (CVR) {
5457         Diag(From->getBeginLoc(), diag::err_member_function_call_bad_cvr)
5458             << Method->getDeclName() << FromRecordType << (CVR - 1)
5459             << From->getSourceRange();
5460         Diag(Method->getLocation(), diag::note_previous_decl)
5461           << Method->getDeclName();
5462         return ExprError();
5463       }
5464       break;
5465     }
5466 
5467     case BadConversionSequence::lvalue_ref_to_rvalue:
5468     case BadConversionSequence::rvalue_ref_to_lvalue: {
5469       bool IsRValueQualified =
5470         Method->getRefQualifier() == RefQualifierKind::RQ_RValue;
5471       Diag(From->getBeginLoc(), diag::err_member_function_call_bad_ref)
5472           << Method->getDeclName() << FromClassification.isRValue()
5473           << IsRValueQualified;
5474       Diag(Method->getLocation(), diag::note_previous_decl)
5475         << Method->getDeclName();
5476       return ExprError();
5477     }
5478 
5479     case BadConversionSequence::no_conversion:
5480     case BadConversionSequence::unrelated_class:
5481       break;
5482     }
5483 
5484     return Diag(From->getBeginLoc(), diag::err_member_function_call_bad_type)
5485            << ImplicitParamRecordType << FromRecordType
5486            << From->getSourceRange();
5487   }
5488 
5489   if (ICS.Standard.Second == ICK_Derived_To_Base) {
5490     ExprResult FromRes =
5491       PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
5492     if (FromRes.isInvalid())
5493       return ExprError();
5494     From = FromRes.get();
5495   }
5496 
5497   if (!Context.hasSameType(From->getType(), DestType)) {
5498     CastKind CK;
5499     QualType PteeTy = DestType->getPointeeType();
5500     LangAS DestAS =
5501         PteeTy.isNull() ? DestType.getAddressSpace() : PteeTy.getAddressSpace();
5502     if (FromRecordType.getAddressSpace() != DestAS)
5503       CK = CK_AddressSpaceConversion;
5504     else
5505       CK = CK_NoOp;
5506     From = ImpCastExprToType(From, DestType, CK, From->getValueKind()).get();
5507   }
5508   return From;
5509 }
5510 
5511 /// TryContextuallyConvertToBool - Attempt to contextually convert the
5512 /// expression From to bool (C++0x [conv]p3).
5513 static ImplicitConversionSequence
5514 TryContextuallyConvertToBool(Sema &S, Expr *From) {
5515   // C++ [dcl.init]/17.8:
5516   //   - Otherwise, if the initialization is direct-initialization, the source
5517   //     type is std::nullptr_t, and the destination type is bool, the initial
5518   //     value of the object being initialized is false.
5519   if (From->getType()->isNullPtrType())
5520     return ImplicitConversionSequence::getNullptrToBool(From->getType(),
5521                                                         S.Context.BoolTy,
5522                                                         From->isGLValue());
5523 
5524   // All other direct-initialization of bool is equivalent to an implicit
5525   // conversion to bool in which explicit conversions are permitted.
5526   return TryImplicitConversion(S, From, S.Context.BoolTy,
5527                                /*SuppressUserConversions=*/false,
5528                                AllowedExplicit::Conversions,
5529                                /*InOverloadResolution=*/false,
5530                                /*CStyle=*/false,
5531                                /*AllowObjCWritebackConversion=*/false,
5532                                /*AllowObjCConversionOnExplicit=*/false);
5533 }
5534 
5535 /// PerformContextuallyConvertToBool - Perform a contextual conversion
5536 /// of the expression From to bool (C++0x [conv]p3).
5537 ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
5538   if (checkPlaceholderForOverload(*this, From))
5539     return ExprError();
5540 
5541   ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
5542   if (!ICS.isBad())
5543     return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
5544 
5545   if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
5546     return Diag(From->getBeginLoc(), diag::err_typecheck_bool_condition)
5547            << From->getType() << From->getSourceRange();
5548   return ExprError();
5549 }
5550 
5551 /// Check that the specified conversion is permitted in a converted constant
5552 /// expression, according to C++11 [expr.const]p3. Return true if the conversion
5553 /// is acceptable.
5554 static bool CheckConvertedConstantConversions(Sema &S,
5555                                               StandardConversionSequence &SCS) {
5556   // Since we know that the target type is an integral or unscoped enumeration
5557   // type, most conversion kinds are impossible. All possible First and Third
5558   // conversions are fine.
5559   switch (SCS.Second) {
5560   case ICK_Identity:
5561   case ICK_Integral_Promotion:
5562   case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere.
5563   case ICK_Zero_Queue_Conversion:
5564     return true;
5565 
5566   case ICK_Boolean_Conversion:
5567     // Conversion from an integral or unscoped enumeration type to bool is
5568     // classified as ICK_Boolean_Conversion, but it's also arguably an integral
5569     // conversion, so we allow it in a converted constant expression.
5570     //
5571     // FIXME: Per core issue 1407, we should not allow this, but that breaks
5572     // a lot of popular code. We should at least add a warning for this
5573     // (non-conforming) extension.
5574     return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
5575            SCS.getToType(2)->isBooleanType();
5576 
5577   case ICK_Pointer_Conversion:
5578   case ICK_Pointer_Member:
5579     // C++1z: null pointer conversions and null member pointer conversions are
5580     // only permitted if the source type is std::nullptr_t.
5581     return SCS.getFromType()->isNullPtrType();
5582 
5583   case ICK_Floating_Promotion:
5584   case ICK_Complex_Promotion:
5585   case ICK_Floating_Conversion:
5586   case ICK_Complex_Conversion:
5587   case ICK_Floating_Integral:
5588   case ICK_Compatible_Conversion:
5589   case ICK_Derived_To_Base:
5590   case ICK_Vector_Conversion:
5591   case ICK_SVE_Vector_Conversion:
5592   case ICK_Vector_Splat:
5593   case ICK_Complex_Real:
5594   case ICK_Block_Pointer_Conversion:
5595   case ICK_TransparentUnionConversion:
5596   case ICK_Writeback_Conversion:
5597   case ICK_Zero_Event_Conversion:
5598   case ICK_C_Only_Conversion:
5599   case ICK_Incompatible_Pointer_Conversion:
5600     return false;
5601 
5602   case ICK_Lvalue_To_Rvalue:
5603   case ICK_Array_To_Pointer:
5604   case ICK_Function_To_Pointer:
5605     llvm_unreachable("found a first conversion kind in Second");
5606 
5607   case ICK_Function_Conversion:
5608   case ICK_Qualification:
5609     llvm_unreachable("found a third conversion kind in Second");
5610 
5611   case ICK_Num_Conversion_Kinds:
5612     break;
5613   }
5614 
5615   llvm_unreachable("unknown conversion kind");
5616 }
5617 
5618 /// CheckConvertedConstantExpression - Check that the expression From is a
5619 /// converted constant expression of type T, perform the conversion and produce
5620 /// the converted expression, per C++11 [expr.const]p3.
5621 static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From,
5622                                                    QualType T, APValue &Value,
5623                                                    Sema::CCEKind CCE,
5624                                                    bool RequireInt,
5625                                                    NamedDecl *Dest) {
5626   assert(S.getLangOpts().CPlusPlus11 &&
5627          "converted constant expression outside C++11");
5628 
5629   if (checkPlaceholderForOverload(S, From))
5630     return ExprError();
5631 
5632   // C++1z [expr.const]p3:
5633   //  A converted constant expression of type T is an expression,
5634   //  implicitly converted to type T, where the converted
5635   //  expression is a constant expression and the implicit conversion
5636   //  sequence contains only [... list of conversions ...].
5637   ImplicitConversionSequence ICS =
5638       CCE == Sema::CCEK_ExplicitBool
5639           ? TryContextuallyConvertToBool(S, From)
5640           : TryCopyInitialization(S, From, T,
5641                                   /*SuppressUserConversions=*/false,
5642                                   /*InOverloadResolution=*/false,
5643                                   /*AllowObjCWritebackConversion=*/false,
5644                                   /*AllowExplicit=*/false);
5645   StandardConversionSequence *SCS = nullptr;
5646   switch (ICS.getKind()) {
5647   case ImplicitConversionSequence::StandardConversion:
5648     SCS = &ICS.Standard;
5649     break;
5650   case ImplicitConversionSequence::UserDefinedConversion:
5651     if (T->isRecordType())
5652       SCS = &ICS.UserDefined.Before;
5653     else
5654       SCS = &ICS.UserDefined.After;
5655     break;
5656   case ImplicitConversionSequence::AmbiguousConversion:
5657   case ImplicitConversionSequence::BadConversion:
5658     if (!S.DiagnoseMultipleUserDefinedConversion(From, T))
5659       return S.Diag(From->getBeginLoc(),
5660                     diag::err_typecheck_converted_constant_expression)
5661              << From->getType() << From->getSourceRange() << T;
5662     return ExprError();
5663 
5664   case ImplicitConversionSequence::EllipsisConversion:
5665     llvm_unreachable("ellipsis conversion in converted constant expression");
5666   }
5667 
5668   // Check that we would only use permitted conversions.
5669   if (!CheckConvertedConstantConversions(S, *SCS)) {
5670     return S.Diag(From->getBeginLoc(),
5671                   diag::err_typecheck_converted_constant_expression_disallowed)
5672            << From->getType() << From->getSourceRange() << T;
5673   }
5674   // [...] and where the reference binding (if any) binds directly.
5675   if (SCS->ReferenceBinding && !SCS->DirectBinding) {
5676     return S.Diag(From->getBeginLoc(),
5677                   diag::err_typecheck_converted_constant_expression_indirect)
5678            << From->getType() << From->getSourceRange() << T;
5679   }
5680 
5681   // Usually we can simply apply the ImplicitConversionSequence we formed
5682   // earlier, but that's not guaranteed to work when initializing an object of
5683   // class type.
5684   ExprResult Result;
5685   if (T->isRecordType()) {
5686     assert(CCE == Sema::CCEK_TemplateArg &&
5687            "unexpected class type converted constant expr");
5688     Result = S.PerformCopyInitialization(
5689         InitializedEntity::InitializeTemplateParameter(
5690             T, cast<NonTypeTemplateParmDecl>(Dest)),
5691         SourceLocation(), From);
5692   } else {
5693     Result = S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting);
5694   }
5695   if (Result.isInvalid())
5696     return Result;
5697 
5698   // C++2a [intro.execution]p5:
5699   //   A full-expression is [...] a constant-expression [...]
5700   Result =
5701       S.ActOnFinishFullExpr(Result.get(), From->getExprLoc(),
5702                             /*DiscardedValue=*/false, /*IsConstexpr=*/true);
5703   if (Result.isInvalid())
5704     return Result;
5705 
5706   // Check for a narrowing implicit conversion.
5707   bool ReturnPreNarrowingValue = false;
5708   APValue PreNarrowingValue;
5709   QualType PreNarrowingType;
5710   switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue,
5711                                 PreNarrowingType)) {
5712   case NK_Dependent_Narrowing:
5713     // Implicit conversion to a narrower type, but the expression is
5714     // value-dependent so we can't tell whether it's actually narrowing.
5715   case NK_Variable_Narrowing:
5716     // Implicit conversion to a narrower type, and the value is not a constant
5717     // expression. We'll diagnose this in a moment.
5718   case NK_Not_Narrowing:
5719     break;
5720 
5721   case NK_Constant_Narrowing:
5722     if (CCE == Sema::CCEK_ArrayBound &&
5723         PreNarrowingType->isIntegralOrEnumerationType() &&
5724         PreNarrowingValue.isInt()) {
5725       // Don't diagnose array bound narrowing here; we produce more precise
5726       // errors by allowing the un-narrowed value through.
5727       ReturnPreNarrowingValue = true;
5728       break;
5729     }
5730     S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
5731         << CCE << /*Constant*/ 1
5732         << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T;
5733     break;
5734 
5735   case NK_Type_Narrowing:
5736     // FIXME: It would be better to diagnose that the expression is not a
5737     // constant expression.
5738     S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
5739         << CCE << /*Constant*/ 0 << From->getType() << T;
5740     break;
5741   }
5742 
5743   if (Result.get()->isValueDependent()) {
5744     Value = APValue();
5745     return Result;
5746   }
5747 
5748   // Check the expression is a constant expression.
5749   SmallVector<PartialDiagnosticAt, 8> Notes;
5750   Expr::EvalResult Eval;
5751   Eval.Diag = &Notes;
5752 
5753   ConstantExprKind Kind;
5754   if (CCE == Sema::CCEK_TemplateArg && T->isRecordType())
5755     Kind = ConstantExprKind::ClassTemplateArgument;
5756   else if (CCE == Sema::CCEK_TemplateArg)
5757     Kind = ConstantExprKind::NonClassTemplateArgument;
5758   else
5759     Kind = ConstantExprKind::Normal;
5760 
5761   if (!Result.get()->EvaluateAsConstantExpr(Eval, S.Context, Kind) ||
5762       (RequireInt && !Eval.Val.isInt())) {
5763     // The expression can't be folded, so we can't keep it at this position in
5764     // the AST.
5765     Result = ExprError();
5766   } else {
5767     Value = Eval.Val;
5768 
5769     if (Notes.empty()) {
5770       // It's a constant expression.
5771       Expr *E = ConstantExpr::Create(S.Context, Result.get(), Value);
5772       if (ReturnPreNarrowingValue)
5773         Value = std::move(PreNarrowingValue);
5774       return E;
5775     }
5776   }
5777 
5778   // It's not a constant expression. Produce an appropriate diagnostic.
5779   if (Notes.size() == 1 &&
5780       Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr) {
5781     S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
5782   } else if (!Notes.empty() && Notes[0].second.getDiagID() ==
5783                                    diag::note_constexpr_invalid_template_arg) {
5784     Notes[0].second.setDiagID(diag::err_constexpr_invalid_template_arg);
5785     for (unsigned I = 0; I < Notes.size(); ++I)
5786       S.Diag(Notes[I].first, Notes[I].second);
5787   } else {
5788     S.Diag(From->getBeginLoc(), diag::err_expr_not_cce)
5789         << CCE << From->getSourceRange();
5790     for (unsigned I = 0; I < Notes.size(); ++I)
5791       S.Diag(Notes[I].first, Notes[I].second);
5792   }
5793   return ExprError();
5794 }
5795 
5796 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5797                                                   APValue &Value, CCEKind CCE,
5798                                                   NamedDecl *Dest) {
5799   return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false,
5800                                             Dest);
5801 }
5802 
5803 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5804                                                   llvm::APSInt &Value,
5805                                                   CCEKind CCE) {
5806   assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
5807 
5808   APValue V;
5809   auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true,
5810                                               /*Dest=*/nullptr);
5811   if (!R.isInvalid() && !R.get()->isValueDependent())
5812     Value = V.getInt();
5813   return R;
5814 }
5815 
5816 
5817 /// dropPointerConversions - If the given standard conversion sequence
5818 /// involves any pointer conversions, remove them.  This may change
5819 /// the result type of the conversion sequence.
5820 static void dropPointerConversion(StandardConversionSequence &SCS) {
5821   if (SCS.Second == ICK_Pointer_Conversion) {
5822     SCS.Second = ICK_Identity;
5823     SCS.Third = ICK_Identity;
5824     SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
5825   }
5826 }
5827 
5828 /// TryContextuallyConvertToObjCPointer - Attempt to contextually
5829 /// convert the expression From to an Objective-C pointer type.
5830 static ImplicitConversionSequence
5831 TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
5832   // Do an implicit conversion to 'id'.
5833   QualType Ty = S.Context.getObjCIdType();
5834   ImplicitConversionSequence ICS
5835     = TryImplicitConversion(S, From, Ty,
5836                             // FIXME: Are these flags correct?
5837                             /*SuppressUserConversions=*/false,
5838                             AllowedExplicit::Conversions,
5839                             /*InOverloadResolution=*/false,
5840                             /*CStyle=*/false,
5841                             /*AllowObjCWritebackConversion=*/false,
5842                             /*AllowObjCConversionOnExplicit=*/true);
5843 
5844   // Strip off any final conversions to 'id'.
5845   switch (ICS.getKind()) {
5846   case ImplicitConversionSequence::BadConversion:
5847   case ImplicitConversionSequence::AmbiguousConversion:
5848   case ImplicitConversionSequence::EllipsisConversion:
5849     break;
5850 
5851   case ImplicitConversionSequence::UserDefinedConversion:
5852     dropPointerConversion(ICS.UserDefined.After);
5853     break;
5854 
5855   case ImplicitConversionSequence::StandardConversion:
5856     dropPointerConversion(ICS.Standard);
5857     break;
5858   }
5859 
5860   return ICS;
5861 }
5862 
5863 /// PerformContextuallyConvertToObjCPointer - Perform a contextual
5864 /// conversion of the expression From to an Objective-C pointer type.
5865 /// Returns a valid but null ExprResult if no conversion sequence exists.
5866 ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
5867   if (checkPlaceholderForOverload(*this, From))
5868     return ExprError();
5869 
5870   QualType Ty = Context.getObjCIdType();
5871   ImplicitConversionSequence ICS =
5872     TryContextuallyConvertToObjCPointer(*this, From);
5873   if (!ICS.isBad())
5874     return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
5875   return ExprResult();
5876 }
5877 
5878 /// Determine whether the provided type is an integral type, or an enumeration
5879 /// type of a permitted flavor.
5880 bool Sema::ICEConvertDiagnoser::match(QualType T) {
5881   return AllowScopedEnumerations ? T->isIntegralOrEnumerationType()
5882                                  : T->isIntegralOrUnscopedEnumerationType();
5883 }
5884 
5885 static ExprResult
5886 diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From,
5887                             Sema::ContextualImplicitConverter &Converter,
5888                             QualType T, UnresolvedSetImpl &ViableConversions) {
5889 
5890   if (Converter.Suppress)
5891     return ExprError();
5892 
5893   Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange();
5894   for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5895     CXXConversionDecl *Conv =
5896         cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
5897     QualType ConvTy = Conv->getConversionType().getNonReferenceType();
5898     Converter.noteAmbiguous(SemaRef, Conv, ConvTy);
5899   }
5900   return From;
5901 }
5902 
5903 static bool
5904 diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5905                            Sema::ContextualImplicitConverter &Converter,
5906                            QualType T, bool HadMultipleCandidates,
5907                            UnresolvedSetImpl &ExplicitConversions) {
5908   if (ExplicitConversions.size() == 1 && !Converter.Suppress) {
5909     DeclAccessPair Found = ExplicitConversions[0];
5910     CXXConversionDecl *Conversion =
5911         cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5912 
5913     // The user probably meant to invoke the given explicit
5914     // conversion; use it.
5915     QualType ConvTy = Conversion->getConversionType().getNonReferenceType();
5916     std::string TypeStr;
5917     ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy());
5918 
5919     Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy)
5920         << FixItHint::CreateInsertion(From->getBeginLoc(),
5921                                       "static_cast<" + TypeStr + ">(")
5922         << FixItHint::CreateInsertion(
5923                SemaRef.getLocForEndOfToken(From->getEndLoc()), ")");
5924     Converter.noteExplicitConv(SemaRef, Conversion, ConvTy);
5925 
5926     // If we aren't in a SFINAE context, build a call to the
5927     // explicit conversion function.
5928     if (SemaRef.isSFINAEContext())
5929       return true;
5930 
5931     SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5932     ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5933                                                        HadMultipleCandidates);
5934     if (Result.isInvalid())
5935       return true;
5936     // Record usage of conversion in an implicit cast.
5937     From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5938                                     CK_UserDefinedConversion, Result.get(),
5939                                     nullptr, Result.get()->getValueKind(),
5940                                     SemaRef.CurFPFeatureOverrides());
5941   }
5942   return false;
5943 }
5944 
5945 static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5946                              Sema::ContextualImplicitConverter &Converter,
5947                              QualType T, bool HadMultipleCandidates,
5948                              DeclAccessPair &Found) {
5949   CXXConversionDecl *Conversion =
5950       cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5951   SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5952 
5953   QualType ToType = Conversion->getConversionType().getNonReferenceType();
5954   if (!Converter.SuppressConversion) {
5955     if (SemaRef.isSFINAEContext())
5956       return true;
5957 
5958     Converter.diagnoseConversion(SemaRef, Loc, T, ToType)
5959         << From->getSourceRange();
5960   }
5961 
5962   ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5963                                                      HadMultipleCandidates);
5964   if (Result.isInvalid())
5965     return true;
5966   // Record usage of conversion in an implicit cast.
5967   From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5968                                   CK_UserDefinedConversion, Result.get(),
5969                                   nullptr, Result.get()->getValueKind(),
5970                                   SemaRef.CurFPFeatureOverrides());
5971   return false;
5972 }
5973 
5974 static ExprResult finishContextualImplicitConversion(
5975     Sema &SemaRef, SourceLocation Loc, Expr *From,
5976     Sema::ContextualImplicitConverter &Converter) {
5977   if (!Converter.match(From->getType()) && !Converter.Suppress)
5978     Converter.diagnoseNoMatch(SemaRef, Loc, From->getType())
5979         << From->getSourceRange();
5980 
5981   return SemaRef.DefaultLvalueConversion(From);
5982 }
5983 
5984 static void
5985 collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType,
5986                                   UnresolvedSetImpl &ViableConversions,
5987                                   OverloadCandidateSet &CandidateSet) {
5988   for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5989     DeclAccessPair FoundDecl = ViableConversions[I];
5990     NamedDecl *D = FoundDecl.getDecl();
5991     CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
5992     if (isa<UsingShadowDecl>(D))
5993       D = cast<UsingShadowDecl>(D)->getTargetDecl();
5994 
5995     CXXConversionDecl *Conv;
5996     FunctionTemplateDecl *ConvTemplate;
5997     if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
5998       Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5999     else
6000       Conv = cast<CXXConversionDecl>(D);
6001 
6002     if (ConvTemplate)
6003       SemaRef.AddTemplateConversionCandidate(
6004           ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet,
6005           /*AllowObjCConversionOnExplicit=*/false, /*AllowExplicit*/ true);
6006     else
6007       SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From,
6008                                      ToType, CandidateSet,
6009                                      /*AllowObjCConversionOnExplicit=*/false,
6010                                      /*AllowExplicit*/ true);
6011   }
6012 }
6013 
6014 /// Attempt to convert the given expression to a type which is accepted
6015 /// by the given converter.
6016 ///
6017 /// This routine will attempt to convert an expression of class type to a
6018 /// type accepted by the specified converter. In C++11 and before, the class
6019 /// must have a single non-explicit conversion function converting to a matching
6020 /// type. In C++1y, there can be multiple such conversion functions, but only
6021 /// one target type.
6022 ///
6023 /// \param Loc The source location of the construct that requires the
6024 /// conversion.
6025 ///
6026 /// \param From The expression we're converting from.
6027 ///
6028 /// \param Converter Used to control and diagnose the conversion process.
6029 ///
6030 /// \returns The expression, converted to an integral or enumeration type if
6031 /// successful.
6032 ExprResult Sema::PerformContextualImplicitConversion(
6033     SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) {
6034   // We can't perform any more checking for type-dependent expressions.
6035   if (From->isTypeDependent())
6036     return From;
6037 
6038   // Process placeholders immediately.
6039   if (From->hasPlaceholderType()) {
6040     ExprResult result = CheckPlaceholderExpr(From);
6041     if (result.isInvalid())
6042       return result;
6043     From = result.get();
6044   }
6045 
6046   // If the expression already has a matching type, we're golden.
6047   QualType T = From->getType();
6048   if (Converter.match(T))
6049     return DefaultLvalueConversion(From);
6050 
6051   // FIXME: Check for missing '()' if T is a function type?
6052 
6053   // We can only perform contextual implicit conversions on objects of class
6054   // type.
6055   const RecordType *RecordTy = T->getAs<RecordType>();
6056   if (!RecordTy || !getLangOpts().CPlusPlus) {
6057     if (!Converter.Suppress)
6058       Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange();
6059     return From;
6060   }
6061 
6062   // We must have a complete class type.
6063   struct TypeDiagnoserPartialDiag : TypeDiagnoser {
6064     ContextualImplicitConverter &Converter;
6065     Expr *From;
6066 
6067     TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From)
6068         : Converter(Converter), From(From) {}
6069 
6070     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
6071       Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
6072     }
6073   } IncompleteDiagnoser(Converter, From);
6074 
6075   if (Converter.Suppress ? !isCompleteType(Loc, T)
6076                          : RequireCompleteType(Loc, T, IncompleteDiagnoser))
6077     return From;
6078 
6079   // Look for a conversion to an integral or enumeration type.
6080   UnresolvedSet<4>
6081       ViableConversions; // These are *potentially* viable in C++1y.
6082   UnresolvedSet<4> ExplicitConversions;
6083   const auto &Conversions =
6084       cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
6085 
6086   bool HadMultipleCandidates =
6087       (std::distance(Conversions.begin(), Conversions.end()) > 1);
6088 
6089   // To check that there is only one target type, in C++1y:
6090   QualType ToType;
6091   bool HasUniqueTargetType = true;
6092 
6093   // Collect explicit or viable (potentially in C++1y) conversions.
6094   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
6095     NamedDecl *D = (*I)->getUnderlyingDecl();
6096     CXXConversionDecl *Conversion;
6097     FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
6098     if (ConvTemplate) {
6099       if (getLangOpts().CPlusPlus14)
6100         Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
6101       else
6102         continue; // C++11 does not consider conversion operator templates(?).
6103     } else
6104       Conversion = cast<CXXConversionDecl>(D);
6105 
6106     assert((!ConvTemplate || getLangOpts().CPlusPlus14) &&
6107            "Conversion operator templates are considered potentially "
6108            "viable in C++1y");
6109 
6110     QualType CurToType = Conversion->getConversionType().getNonReferenceType();
6111     if (Converter.match(CurToType) || ConvTemplate) {
6112 
6113       if (Conversion->isExplicit()) {
6114         // FIXME: For C++1y, do we need this restriction?
6115         // cf. diagnoseNoViableConversion()
6116         if (!ConvTemplate)
6117           ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
6118       } else {
6119         if (!ConvTemplate && getLangOpts().CPlusPlus14) {
6120           if (ToType.isNull())
6121             ToType = CurToType.getUnqualifiedType();
6122           else if (HasUniqueTargetType &&
6123                    (CurToType.getUnqualifiedType() != ToType))
6124             HasUniqueTargetType = false;
6125         }
6126         ViableConversions.addDecl(I.getDecl(), I.getAccess());
6127       }
6128     }
6129   }
6130 
6131   if (getLangOpts().CPlusPlus14) {
6132     // C++1y [conv]p6:
6133     // ... An expression e of class type E appearing in such a context
6134     // is said to be contextually implicitly converted to a specified
6135     // type T and is well-formed if and only if e can be implicitly
6136     // converted to a type T that is determined as follows: E is searched
6137     // for conversion functions whose return type is cv T or reference to
6138     // cv T such that T is allowed by the context. There shall be
6139     // exactly one such T.
6140 
6141     // If no unique T is found:
6142     if (ToType.isNull()) {
6143       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
6144                                      HadMultipleCandidates,
6145                                      ExplicitConversions))
6146         return ExprError();
6147       return finishContextualImplicitConversion(*this, Loc, From, Converter);
6148     }
6149 
6150     // If more than one unique Ts are found:
6151     if (!HasUniqueTargetType)
6152       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
6153                                          ViableConversions);
6154 
6155     // If one unique T is found:
6156     // First, build a candidate set from the previously recorded
6157     // potentially viable conversions.
6158     OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6159     collectViableConversionCandidates(*this, From, ToType, ViableConversions,
6160                                       CandidateSet);
6161 
6162     // Then, perform overload resolution over the candidate set.
6163     OverloadCandidateSet::iterator Best;
6164     switch (CandidateSet.BestViableFunction(*this, Loc, Best)) {
6165     case OR_Success: {
6166       // Apply this conversion.
6167       DeclAccessPair Found =
6168           DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess());
6169       if (recordConversion(*this, Loc, From, Converter, T,
6170                            HadMultipleCandidates, Found))
6171         return ExprError();
6172       break;
6173     }
6174     case OR_Ambiguous:
6175       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
6176                                          ViableConversions);
6177     case OR_No_Viable_Function:
6178       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
6179                                      HadMultipleCandidates,
6180                                      ExplicitConversions))
6181         return ExprError();
6182       LLVM_FALLTHROUGH;
6183     case OR_Deleted:
6184       // We'll complain below about a non-integral condition type.
6185       break;
6186     }
6187   } else {
6188     switch (ViableConversions.size()) {
6189     case 0: {
6190       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
6191                                      HadMultipleCandidates,
6192                                      ExplicitConversions))
6193         return ExprError();
6194 
6195       // We'll complain below about a non-integral condition type.
6196       break;
6197     }
6198     case 1: {
6199       // Apply this conversion.
6200       DeclAccessPair Found = ViableConversions[0];
6201       if (recordConversion(*this, Loc, From, Converter, T,
6202                            HadMultipleCandidates, Found))
6203         return ExprError();
6204       break;
6205     }
6206     default:
6207       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
6208                                          ViableConversions);
6209     }
6210   }
6211 
6212   return finishContextualImplicitConversion(*this, Loc, From, Converter);
6213 }
6214 
6215 /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
6216 /// an acceptable non-member overloaded operator for a call whose
6217 /// arguments have types T1 (and, if non-empty, T2). This routine
6218 /// implements the check in C++ [over.match.oper]p3b2 concerning
6219 /// enumeration types.
6220 static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context,
6221                                                    FunctionDecl *Fn,
6222                                                    ArrayRef<Expr *> Args) {
6223   QualType T1 = Args[0]->getType();
6224   QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType();
6225 
6226   if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
6227     return true;
6228 
6229   if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
6230     return true;
6231 
6232   const auto *Proto = Fn->getType()->castAs<FunctionProtoType>();
6233   if (Proto->getNumParams() < 1)
6234     return false;
6235 
6236   if (T1->isEnumeralType()) {
6237     QualType ArgType = Proto->getParamType(0).getNonReferenceType();
6238     if (Context.hasSameUnqualifiedType(T1, ArgType))
6239       return true;
6240   }
6241 
6242   if (Proto->getNumParams() < 2)
6243     return false;
6244 
6245   if (!T2.isNull() && T2->isEnumeralType()) {
6246     QualType ArgType = Proto->getParamType(1).getNonReferenceType();
6247     if (Context.hasSameUnqualifiedType(T2, ArgType))
6248       return true;
6249   }
6250 
6251   return false;
6252 }
6253 
6254 /// AddOverloadCandidate - Adds the given function to the set of
6255 /// candidate functions, using the given function call arguments.  If
6256 /// @p SuppressUserConversions, then don't allow user-defined
6257 /// conversions via constructors or conversion operators.
6258 ///
6259 /// \param PartialOverloading true if we are performing "partial" overloading
6260 /// based on an incomplete set of function arguments. This feature is used by
6261 /// code completion.
6262 void Sema::AddOverloadCandidate(
6263     FunctionDecl *Function, DeclAccessPair FoundDecl, ArrayRef<Expr *> Args,
6264     OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
6265     bool PartialOverloading, bool AllowExplicit, bool AllowExplicitConversions,
6266     ADLCallKind IsADLCandidate, ConversionSequenceList EarlyConversions,
6267     OverloadCandidateParamOrder PO) {
6268   const FunctionProtoType *Proto
6269     = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
6270   assert(Proto && "Functions without a prototype cannot be overloaded");
6271   assert(!Function->getDescribedFunctionTemplate() &&
6272          "Use AddTemplateOverloadCandidate for function templates");
6273 
6274   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
6275     if (!isa<CXXConstructorDecl>(Method)) {
6276       // If we get here, it's because we're calling a member function
6277       // that is named without a member access expression (e.g.,
6278       // "this->f") that was either written explicitly or created
6279       // implicitly. This can happen with a qualified call to a member
6280       // function, e.g., X::f(). We use an empty type for the implied
6281       // object argument (C++ [over.call.func]p3), and the acting context
6282       // is irrelevant.
6283       AddMethodCandidate(Method, FoundDecl, Method->getParent(), QualType(),
6284                          Expr::Classification::makeSimpleLValue(), Args,
6285                          CandidateSet, SuppressUserConversions,
6286                          PartialOverloading, EarlyConversions, PO);
6287       return;
6288     }
6289     // We treat a constructor like a non-member function, since its object
6290     // argument doesn't participate in overload resolution.
6291   }
6292 
6293   if (!CandidateSet.isNewCandidate(Function, PO))
6294     return;
6295 
6296   // C++11 [class.copy]p11: [DR1402]
6297   //   A defaulted move constructor that is defined as deleted is ignored by
6298   //   overload resolution.
6299   CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function);
6300   if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() &&
6301       Constructor->isMoveConstructor())
6302     return;
6303 
6304   // Overload resolution is always an unevaluated context.
6305   EnterExpressionEvaluationContext Unevaluated(
6306       *this, Sema::ExpressionEvaluationContext::Unevaluated);
6307 
6308   // C++ [over.match.oper]p3:
6309   //   if no operand has a class type, only those non-member functions in the
6310   //   lookup set that have a first parameter of type T1 or "reference to
6311   //   (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there
6312   //   is a right operand) a second parameter of type T2 or "reference to
6313   //   (possibly cv-qualified) T2", when T2 is an enumeration type, are
6314   //   candidate functions.
6315   if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator &&
6316       !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args))
6317     return;
6318 
6319   // Add this candidate
6320   OverloadCandidate &Candidate =
6321       CandidateSet.addCandidate(Args.size(), EarlyConversions);
6322   Candidate.FoundDecl = FoundDecl;
6323   Candidate.Function = Function;
6324   Candidate.Viable = true;
6325   Candidate.RewriteKind =
6326       CandidateSet.getRewriteInfo().getRewriteKind(Function, PO);
6327   Candidate.IsSurrogate = false;
6328   Candidate.IsADLCandidate = IsADLCandidate;
6329   Candidate.IgnoreObjectArgument = false;
6330   Candidate.ExplicitCallArguments = Args.size();
6331 
6332   // Explicit functions are not actually candidates at all if we're not
6333   // allowing them in this context, but keep them around so we can point
6334   // to them in diagnostics.
6335   if (!AllowExplicit && ExplicitSpecifier::getFromDecl(Function).isExplicit()) {
6336     Candidate.Viable = false;
6337     Candidate.FailureKind = ovl_fail_explicit;
6338     return;
6339   }
6340 
6341   if (Function->isMultiVersion() && Function->hasAttr<TargetAttr>() &&
6342       !Function->getAttr<TargetAttr>()->isDefaultVersion()) {
6343     Candidate.Viable = false;
6344     Candidate.FailureKind = ovl_non_default_multiversion_function;
6345     return;
6346   }
6347 
6348   if (Constructor) {
6349     // C++ [class.copy]p3:
6350     //   A member function template is never instantiated to perform the copy
6351     //   of a class object to an object of its class type.
6352     QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
6353     if (Args.size() == 1 && Constructor->isSpecializationCopyingObject() &&
6354         (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
6355          IsDerivedFrom(Args[0]->getBeginLoc(), Args[0]->getType(),
6356                        ClassType))) {
6357       Candidate.Viable = false;
6358       Candidate.FailureKind = ovl_fail_illegal_constructor;
6359       return;
6360     }
6361 
6362     // C++ [over.match.funcs]p8: (proposed DR resolution)
6363     //   A constructor inherited from class type C that has a first parameter
6364     //   of type "reference to P" (including such a constructor instantiated
6365     //   from a template) is excluded from the set of candidate functions when
6366     //   constructing an object of type cv D if the argument list has exactly
6367     //   one argument and D is reference-related to P and P is reference-related
6368     //   to C.
6369     auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl.getDecl());
6370     if (Shadow && Args.size() == 1 && Constructor->getNumParams() >= 1 &&
6371         Constructor->getParamDecl(0)->getType()->isReferenceType()) {
6372       QualType P = Constructor->getParamDecl(0)->getType()->getPointeeType();
6373       QualType C = Context.getRecordType(Constructor->getParent());
6374       QualType D = Context.getRecordType(Shadow->getParent());
6375       SourceLocation Loc = Args.front()->getExprLoc();
6376       if ((Context.hasSameUnqualifiedType(P, C) || IsDerivedFrom(Loc, P, C)) &&
6377           (Context.hasSameUnqualifiedType(D, P) || IsDerivedFrom(Loc, D, P))) {
6378         Candidate.Viable = false;
6379         Candidate.FailureKind = ovl_fail_inhctor_slice;
6380         return;
6381       }
6382     }
6383 
6384     // Check that the constructor is capable of constructing an object in the
6385     // destination address space.
6386     if (!Qualifiers::isAddressSpaceSupersetOf(
6387             Constructor->getMethodQualifiers().getAddressSpace(),
6388             CandidateSet.getDestAS())) {
6389       Candidate.Viable = false;
6390       Candidate.FailureKind = ovl_fail_object_addrspace_mismatch;
6391     }
6392   }
6393 
6394   unsigned NumParams = Proto->getNumParams();
6395 
6396   // (C++ 13.3.2p2): A candidate function having fewer than m
6397   // parameters is viable only if it has an ellipsis in its parameter
6398   // list (8.3.5).
6399   if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
6400       !Proto->isVariadic()) {
6401     Candidate.Viable = false;
6402     Candidate.FailureKind = ovl_fail_too_many_arguments;
6403     return;
6404   }
6405 
6406   // (C++ 13.3.2p2): A candidate function having more than m parameters
6407   // is viable only if the (m+1)st parameter has a default argument
6408   // (8.3.6). For the purposes of overload resolution, the
6409   // parameter list is truncated on the right, so that there are
6410   // exactly m parameters.
6411   unsigned MinRequiredArgs = Function->getMinRequiredArguments();
6412   if (Args.size() < MinRequiredArgs && !PartialOverloading) {
6413     // Not enough arguments.
6414     Candidate.Viable = false;
6415     Candidate.FailureKind = ovl_fail_too_few_arguments;
6416     return;
6417   }
6418 
6419   // (CUDA B.1): Check for invalid calls between targets.
6420   if (getLangOpts().CUDA)
6421     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
6422       // Skip the check for callers that are implicit members, because in this
6423       // case we may not yet know what the member's target is; the target is
6424       // inferred for the member automatically, based on the bases and fields of
6425       // the class.
6426       if (!Caller->isImplicit() && !IsAllowedCUDACall(Caller, Function)) {
6427         Candidate.Viable = false;
6428         Candidate.FailureKind = ovl_fail_bad_target;
6429         return;
6430       }
6431 
6432   if (Function->getTrailingRequiresClause()) {
6433     ConstraintSatisfaction Satisfaction;
6434     if (CheckFunctionConstraints(Function, Satisfaction) ||
6435         !Satisfaction.IsSatisfied) {
6436       Candidate.Viable = false;
6437       Candidate.FailureKind = ovl_fail_constraints_not_satisfied;
6438       return;
6439     }
6440   }
6441 
6442   // Determine the implicit conversion sequences for each of the
6443   // arguments.
6444   for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
6445     unsigned ConvIdx =
6446         PO == OverloadCandidateParamOrder::Reversed ? 1 - ArgIdx : ArgIdx;
6447     if (Candidate.Conversions[ConvIdx].isInitialized()) {
6448       // We already formed a conversion sequence for this parameter during
6449       // template argument deduction.
6450     } else if (ArgIdx < NumParams) {
6451       // (C++ 13.3.2p3): for F to be a viable function, there shall
6452       // exist for each argument an implicit conversion sequence
6453       // (13.3.3.1) that converts that argument to the corresponding
6454       // parameter of F.
6455       QualType ParamType = Proto->getParamType(ArgIdx);
6456       Candidate.Conversions[ConvIdx] = TryCopyInitialization(
6457           *this, Args[ArgIdx], ParamType, SuppressUserConversions,
6458           /*InOverloadResolution=*/true,
6459           /*AllowObjCWritebackConversion=*/
6460           getLangOpts().ObjCAutoRefCount, AllowExplicitConversions);
6461       if (Candidate.Conversions[ConvIdx].isBad()) {
6462         Candidate.Viable = false;
6463         Candidate.FailureKind = ovl_fail_bad_conversion;
6464         return;
6465       }
6466     } else {
6467       // (C++ 13.3.2p2): For the purposes of overload resolution, any
6468       // argument for which there is no corresponding parameter is
6469       // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
6470       Candidate.Conversions[ConvIdx].setEllipsis();
6471     }
6472   }
6473 
6474   if (EnableIfAttr *FailedAttr =
6475           CheckEnableIf(Function, CandidateSet.getLocation(), Args)) {
6476     Candidate.Viable = false;
6477     Candidate.FailureKind = ovl_fail_enable_if;
6478     Candidate.DeductionFailure.Data = FailedAttr;
6479     return;
6480   }
6481 }
6482 
6483 ObjCMethodDecl *
6484 Sema::SelectBestMethod(Selector Sel, MultiExprArg Args, bool IsInstance,
6485                        SmallVectorImpl<ObjCMethodDecl *> &Methods) {
6486   if (Methods.size() <= 1)
6487     return nullptr;
6488 
6489   for (unsigned b = 0, e = Methods.size(); b < e; b++) {
6490     bool Match = true;
6491     ObjCMethodDecl *Method = Methods[b];
6492     unsigned NumNamedArgs = Sel.getNumArgs();
6493     // Method might have more arguments than selector indicates. This is due
6494     // to addition of c-style arguments in method.
6495     if (Method->param_size() > NumNamedArgs)
6496       NumNamedArgs = Method->param_size();
6497     if (Args.size() < NumNamedArgs)
6498       continue;
6499 
6500     for (unsigned i = 0; i < NumNamedArgs; i++) {
6501       // We can't do any type-checking on a type-dependent argument.
6502       if (Args[i]->isTypeDependent()) {
6503         Match = false;
6504         break;
6505       }
6506 
6507       ParmVarDecl *param = Method->parameters()[i];
6508       Expr *argExpr = Args[i];
6509       assert(argExpr && "SelectBestMethod(): missing expression");
6510 
6511       // Strip the unbridged-cast placeholder expression off unless it's
6512       // a consumed argument.
6513       if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) &&
6514           !param->hasAttr<CFConsumedAttr>())
6515         argExpr = stripARCUnbridgedCast(argExpr);
6516 
6517       // If the parameter is __unknown_anytype, move on to the next method.
6518       if (param->getType() == Context.UnknownAnyTy) {
6519         Match = false;
6520         break;
6521       }
6522 
6523       ImplicitConversionSequence ConversionState
6524         = TryCopyInitialization(*this, argExpr, param->getType(),
6525                                 /*SuppressUserConversions*/false,
6526                                 /*InOverloadResolution=*/true,
6527                                 /*AllowObjCWritebackConversion=*/
6528                                 getLangOpts().ObjCAutoRefCount,
6529                                 /*AllowExplicit*/false);
6530       // This function looks for a reasonably-exact match, so we consider
6531       // incompatible pointer conversions to be a failure here.
6532       if (ConversionState.isBad() ||
6533           (ConversionState.isStandard() &&
6534            ConversionState.Standard.Second ==
6535                ICK_Incompatible_Pointer_Conversion)) {
6536         Match = false;
6537         break;
6538       }
6539     }
6540     // Promote additional arguments to variadic methods.
6541     if (Match && Method->isVariadic()) {
6542       for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) {
6543         if (Args[i]->isTypeDependent()) {
6544           Match = false;
6545           break;
6546         }
6547         ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
6548                                                           nullptr);
6549         if (Arg.isInvalid()) {
6550           Match = false;
6551           break;
6552         }
6553       }
6554     } else {
6555       // Check for extra arguments to non-variadic methods.
6556       if (Args.size() != NumNamedArgs)
6557         Match = false;
6558       else if (Match && NumNamedArgs == 0 && Methods.size() > 1) {
6559         // Special case when selectors have no argument. In this case, select
6560         // one with the most general result type of 'id'.
6561         for (unsigned b = 0, e = Methods.size(); b < e; b++) {
6562           QualType ReturnT = Methods[b]->getReturnType();
6563           if (ReturnT->isObjCIdType())
6564             return Methods[b];
6565         }
6566       }
6567     }
6568 
6569     if (Match)
6570       return Method;
6571   }
6572   return nullptr;
6573 }
6574 
6575 static bool convertArgsForAvailabilityChecks(
6576     Sema &S, FunctionDecl *Function, Expr *ThisArg, SourceLocation CallLoc,
6577     ArrayRef<Expr *> Args, Sema::SFINAETrap &Trap, bool MissingImplicitThis,
6578     Expr *&ConvertedThis, SmallVectorImpl<Expr *> &ConvertedArgs) {
6579   if (ThisArg) {
6580     CXXMethodDecl *Method = cast<CXXMethodDecl>(Function);
6581     assert(!isa<CXXConstructorDecl>(Method) &&
6582            "Shouldn't have `this` for ctors!");
6583     assert(!Method->isStatic() && "Shouldn't have `this` for static methods!");
6584     ExprResult R = S.PerformObjectArgumentInitialization(
6585         ThisArg, /*Qualifier=*/nullptr, Method, Method);
6586     if (R.isInvalid())
6587       return false;
6588     ConvertedThis = R.get();
6589   } else {
6590     if (auto *MD = dyn_cast<CXXMethodDecl>(Function)) {
6591       (void)MD;
6592       assert((MissingImplicitThis || MD->isStatic() ||
6593               isa<CXXConstructorDecl>(MD)) &&
6594              "Expected `this` for non-ctor instance methods");
6595     }
6596     ConvertedThis = nullptr;
6597   }
6598 
6599   // Ignore any variadic arguments. Converting them is pointless, since the
6600   // user can't refer to them in the function condition.
6601   unsigned ArgSizeNoVarargs = std::min(Function->param_size(), Args.size());
6602 
6603   // Convert the arguments.
6604   for (unsigned I = 0; I != ArgSizeNoVarargs; ++I) {
6605     ExprResult R;
6606     R = S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
6607                                         S.Context, Function->getParamDecl(I)),
6608                                     SourceLocation(), Args[I]);
6609 
6610     if (R.isInvalid())
6611       return false;
6612 
6613     ConvertedArgs.push_back(R.get());
6614   }
6615 
6616   if (Trap.hasErrorOccurred())
6617     return false;
6618 
6619   // Push default arguments if needed.
6620   if (!Function->isVariadic() && Args.size() < Function->getNumParams()) {
6621     for (unsigned i = Args.size(), e = Function->getNumParams(); i != e; ++i) {
6622       ParmVarDecl *P = Function->getParamDecl(i);
6623       if (!P->hasDefaultArg())
6624         return false;
6625       ExprResult R = S.BuildCXXDefaultArgExpr(CallLoc, Function, P);
6626       if (R.isInvalid())
6627         return false;
6628       ConvertedArgs.push_back(R.get());
6629     }
6630 
6631     if (Trap.hasErrorOccurred())
6632       return false;
6633   }
6634   return true;
6635 }
6636 
6637 EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function,
6638                                   SourceLocation CallLoc,
6639                                   ArrayRef<Expr *> Args,
6640                                   bool MissingImplicitThis) {
6641   auto EnableIfAttrs = Function->specific_attrs<EnableIfAttr>();
6642   if (EnableIfAttrs.begin() == EnableIfAttrs.end())
6643     return nullptr;
6644 
6645   SFINAETrap Trap(*this);
6646   SmallVector<Expr *, 16> ConvertedArgs;
6647   // FIXME: We should look into making enable_if late-parsed.
6648   Expr *DiscardedThis;
6649   if (!convertArgsForAvailabilityChecks(
6650           *this, Function, /*ThisArg=*/nullptr, CallLoc, Args, Trap,
6651           /*MissingImplicitThis=*/true, DiscardedThis, ConvertedArgs))
6652     return *EnableIfAttrs.begin();
6653 
6654   for (auto *EIA : EnableIfAttrs) {
6655     APValue Result;
6656     // FIXME: This doesn't consider value-dependent cases, because doing so is
6657     // very difficult. Ideally, we should handle them more gracefully.
6658     if (EIA->getCond()->isValueDependent() ||
6659         !EIA->getCond()->EvaluateWithSubstitution(
6660             Result, Context, Function, llvm::makeArrayRef(ConvertedArgs)))
6661       return EIA;
6662 
6663     if (!Result.isInt() || !Result.getInt().getBoolValue())
6664       return EIA;
6665   }
6666   return nullptr;
6667 }
6668 
6669 template <typename CheckFn>
6670 static bool diagnoseDiagnoseIfAttrsWith(Sema &S, const NamedDecl *ND,
6671                                         bool ArgDependent, SourceLocation Loc,
6672                                         CheckFn &&IsSuccessful) {
6673   SmallVector<const DiagnoseIfAttr *, 8> Attrs;
6674   for (const auto *DIA : ND->specific_attrs<DiagnoseIfAttr>()) {
6675     if (ArgDependent == DIA->getArgDependent())
6676       Attrs.push_back(DIA);
6677   }
6678 
6679   // Common case: No diagnose_if attributes, so we can quit early.
6680   if (Attrs.empty())
6681     return false;
6682 
6683   auto WarningBegin = std::stable_partition(
6684       Attrs.begin(), Attrs.end(),
6685       [](const DiagnoseIfAttr *DIA) { return DIA->isError(); });
6686 
6687   // Note that diagnose_if attributes are late-parsed, so they appear in the
6688   // correct order (unlike enable_if attributes).
6689   auto ErrAttr = llvm::find_if(llvm::make_range(Attrs.begin(), WarningBegin),
6690                                IsSuccessful);
6691   if (ErrAttr != WarningBegin) {
6692     const DiagnoseIfAttr *DIA = *ErrAttr;
6693     S.Diag(Loc, diag::err_diagnose_if_succeeded) << DIA->getMessage();
6694     S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
6695         << DIA->getParent() << DIA->getCond()->getSourceRange();
6696     return true;
6697   }
6698 
6699   for (const auto *DIA : llvm::make_range(WarningBegin, Attrs.end()))
6700     if (IsSuccessful(DIA)) {
6701       S.Diag(Loc, diag::warn_diagnose_if_succeeded) << DIA->getMessage();
6702       S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
6703           << DIA->getParent() << DIA->getCond()->getSourceRange();
6704     }
6705 
6706   return false;
6707 }
6708 
6709 bool Sema::diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function,
6710                                                const Expr *ThisArg,
6711                                                ArrayRef<const Expr *> Args,
6712                                                SourceLocation Loc) {
6713   return diagnoseDiagnoseIfAttrsWith(
6714       *this, Function, /*ArgDependent=*/true, Loc,
6715       [&](const DiagnoseIfAttr *DIA) {
6716         APValue Result;
6717         // It's sane to use the same Args for any redecl of this function, since
6718         // EvaluateWithSubstitution only cares about the position of each
6719         // argument in the arg list, not the ParmVarDecl* it maps to.
6720         if (!DIA->getCond()->EvaluateWithSubstitution(
6721                 Result, Context, cast<FunctionDecl>(DIA->getParent()), Args, ThisArg))
6722           return false;
6723         return Result.isInt() && Result.getInt().getBoolValue();
6724       });
6725 }
6726 
6727 bool Sema::diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND,
6728                                                  SourceLocation Loc) {
6729   return diagnoseDiagnoseIfAttrsWith(
6730       *this, ND, /*ArgDependent=*/false, Loc,
6731       [&](const DiagnoseIfAttr *DIA) {
6732         bool Result;
6733         return DIA->getCond()->EvaluateAsBooleanCondition(Result, Context) &&
6734                Result;
6735       });
6736 }
6737 
6738 /// Add all of the function declarations in the given function set to
6739 /// the overload candidate set.
6740 void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
6741                                  ArrayRef<Expr *> Args,
6742                                  OverloadCandidateSet &CandidateSet,
6743                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
6744                                  bool SuppressUserConversions,
6745                                  bool PartialOverloading,
6746                                  bool FirstArgumentIsBase) {
6747   for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
6748     NamedDecl *D = F.getDecl()->getUnderlyingDecl();
6749     ArrayRef<Expr *> FunctionArgs = Args;
6750 
6751     FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
6752     FunctionDecl *FD =
6753         FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D);
6754 
6755     if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) {
6756       QualType ObjectType;
6757       Expr::Classification ObjectClassification;
6758       if (Args.size() > 0) {
6759         if (Expr *E = Args[0]) {
6760           // Use the explicit base to restrict the lookup:
6761           ObjectType = E->getType();
6762           // Pointers in the object arguments are implicitly dereferenced, so we
6763           // always classify them as l-values.
6764           if (!ObjectType.isNull() && ObjectType->isPointerType())
6765             ObjectClassification = Expr::Classification::makeSimpleLValue();
6766           else
6767             ObjectClassification = E->Classify(Context);
6768         } // .. else there is an implicit base.
6769         FunctionArgs = Args.slice(1);
6770       }
6771       if (FunTmpl) {
6772         AddMethodTemplateCandidate(
6773             FunTmpl, F.getPair(),
6774             cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
6775             ExplicitTemplateArgs, ObjectType, ObjectClassification,
6776             FunctionArgs, CandidateSet, SuppressUserConversions,
6777             PartialOverloading);
6778       } else {
6779         AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
6780                            cast<CXXMethodDecl>(FD)->getParent(), ObjectType,
6781                            ObjectClassification, FunctionArgs, CandidateSet,
6782                            SuppressUserConversions, PartialOverloading);
6783       }
6784     } else {
6785       // This branch handles both standalone functions and static methods.
6786 
6787       // Slice the first argument (which is the base) when we access
6788       // static method as non-static.
6789       if (Args.size() > 0 &&
6790           (!Args[0] || (FirstArgumentIsBase && isa<CXXMethodDecl>(FD) &&
6791                         !isa<CXXConstructorDecl>(FD)))) {
6792         assert(cast<CXXMethodDecl>(FD)->isStatic());
6793         FunctionArgs = Args.slice(1);
6794       }
6795       if (FunTmpl) {
6796         AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
6797                                      ExplicitTemplateArgs, FunctionArgs,
6798                                      CandidateSet, SuppressUserConversions,
6799                                      PartialOverloading);
6800       } else {
6801         AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet,
6802                              SuppressUserConversions, PartialOverloading);
6803       }
6804     }
6805   }
6806 }
6807 
6808 /// AddMethodCandidate - Adds a named decl (which is some kind of
6809 /// method) as a method candidate to the given overload set.
6810 void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, QualType ObjectType,
6811                               Expr::Classification ObjectClassification,
6812                               ArrayRef<Expr *> Args,
6813                               OverloadCandidateSet &CandidateSet,
6814                               bool SuppressUserConversions,
6815                               OverloadCandidateParamOrder PO) {
6816   NamedDecl *Decl = FoundDecl.getDecl();
6817   CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
6818 
6819   if (isa<UsingShadowDecl>(Decl))
6820     Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
6821 
6822   if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
6823     assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
6824            "Expected a member function template");
6825     AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
6826                                /*ExplicitArgs*/ nullptr, ObjectType,
6827                                ObjectClassification, Args, CandidateSet,
6828                                SuppressUserConversions, false, PO);
6829   } else {
6830     AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
6831                        ObjectType, ObjectClassification, Args, CandidateSet,
6832                        SuppressUserConversions, false, None, PO);
6833   }
6834 }
6835 
6836 /// AddMethodCandidate - Adds the given C++ member function to the set
6837 /// of candidate functions, using the given function call arguments
6838 /// and the object argument (@c Object). For example, in a call
6839 /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
6840 /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
6841 /// allow user-defined conversions via constructors or conversion
6842 /// operators.
6843 void
6844 Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
6845                          CXXRecordDecl *ActingContext, QualType ObjectType,
6846                          Expr::Classification ObjectClassification,
6847                          ArrayRef<Expr *> Args,
6848                          OverloadCandidateSet &CandidateSet,
6849                          bool SuppressUserConversions,
6850                          bool PartialOverloading,
6851                          ConversionSequenceList EarlyConversions,
6852                          OverloadCandidateParamOrder PO) {
6853   const FunctionProtoType *Proto
6854     = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
6855   assert(Proto && "Methods without a prototype cannot be overloaded");
6856   assert(!isa<CXXConstructorDecl>(Method) &&
6857          "Use AddOverloadCandidate for constructors");
6858 
6859   if (!CandidateSet.isNewCandidate(Method, PO))
6860     return;
6861 
6862   // C++11 [class.copy]p23: [DR1402]
6863   //   A defaulted move assignment operator that is defined as deleted is
6864   //   ignored by overload resolution.
6865   if (Method->isDefaulted() && Method->isDeleted() &&
6866       Method->isMoveAssignmentOperator())
6867     return;
6868 
6869   // Overload resolution is always an unevaluated context.
6870   EnterExpressionEvaluationContext Unevaluated(
6871       *this, Sema::ExpressionEvaluationContext::Unevaluated);
6872 
6873   // Add this candidate
6874   OverloadCandidate &Candidate =
6875       CandidateSet.addCandidate(Args.size() + 1, EarlyConversions);
6876   Candidate.FoundDecl = FoundDecl;
6877   Candidate.Function = Method;
6878   Candidate.RewriteKind =
6879       CandidateSet.getRewriteInfo().getRewriteKind(Method, PO);
6880   Candidate.IsSurrogate = false;
6881   Candidate.IgnoreObjectArgument = false;
6882   Candidate.ExplicitCallArguments = Args.size();
6883 
6884   unsigned NumParams = Proto->getNumParams();
6885 
6886   // (C++ 13.3.2p2): A candidate function having fewer than m
6887   // parameters is viable only if it has an ellipsis in its parameter
6888   // list (8.3.5).
6889   if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
6890       !Proto->isVariadic()) {
6891     Candidate.Viable = false;
6892     Candidate.FailureKind = ovl_fail_too_many_arguments;
6893     return;
6894   }
6895 
6896   // (C++ 13.3.2p2): A candidate function having more than m parameters
6897   // is viable only if the (m+1)st parameter has a default argument
6898   // (8.3.6). For the purposes of overload resolution, the
6899   // parameter list is truncated on the right, so that there are
6900   // exactly m parameters.
6901   unsigned MinRequiredArgs = Method->getMinRequiredArguments();
6902   if (Args.size() < MinRequiredArgs && !PartialOverloading) {
6903     // Not enough arguments.
6904     Candidate.Viable = false;
6905     Candidate.FailureKind = ovl_fail_too_few_arguments;
6906     return;
6907   }
6908 
6909   Candidate.Viable = true;
6910 
6911   if (Method->isStatic() || ObjectType.isNull())
6912     // The implicit object argument is ignored.
6913     Candidate.IgnoreObjectArgument = true;
6914   else {
6915     unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0;
6916     // Determine the implicit conversion sequence for the object
6917     // parameter.
6918     Candidate.Conversions[ConvIdx] = TryObjectArgumentInitialization(
6919         *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
6920         Method, ActingContext);
6921     if (Candidate.Conversions[ConvIdx].isBad()) {
6922       Candidate.Viable = false;
6923       Candidate.FailureKind = ovl_fail_bad_conversion;
6924       return;
6925     }
6926   }
6927 
6928   // (CUDA B.1): Check for invalid calls between targets.
6929   if (getLangOpts().CUDA)
6930     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
6931       if (!IsAllowedCUDACall(Caller, Method)) {
6932         Candidate.Viable = false;
6933         Candidate.FailureKind = ovl_fail_bad_target;
6934         return;
6935       }
6936 
6937   if (Method->getTrailingRequiresClause()) {
6938     ConstraintSatisfaction Satisfaction;
6939     if (CheckFunctionConstraints(Method, Satisfaction) ||
6940         !Satisfaction.IsSatisfied) {
6941       Candidate.Viable = false;
6942       Candidate.FailureKind = ovl_fail_constraints_not_satisfied;
6943       return;
6944     }
6945   }
6946 
6947   // Determine the implicit conversion sequences for each of the
6948   // arguments.
6949   for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
6950     unsigned ConvIdx =
6951         PO == OverloadCandidateParamOrder::Reversed ? 0 : (ArgIdx + 1);
6952     if (Candidate.Conversions[ConvIdx].isInitialized()) {
6953       // We already formed a conversion sequence for this parameter during
6954       // template argument deduction.
6955     } else if (ArgIdx < NumParams) {
6956       // (C++ 13.3.2p3): for F to be a viable function, there shall
6957       // exist for each argument an implicit conversion sequence
6958       // (13.3.3.1) that converts that argument to the corresponding
6959       // parameter of F.
6960       QualType ParamType = Proto->getParamType(ArgIdx);
6961       Candidate.Conversions[ConvIdx]
6962         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
6963                                 SuppressUserConversions,
6964                                 /*InOverloadResolution=*/true,
6965                                 /*AllowObjCWritebackConversion=*/
6966                                   getLangOpts().ObjCAutoRefCount);
6967       if (Candidate.Conversions[ConvIdx].isBad()) {
6968         Candidate.Viable = false;
6969         Candidate.FailureKind = ovl_fail_bad_conversion;
6970         return;
6971       }
6972     } else {
6973       // (C++ 13.3.2p2): For the purposes of overload resolution, any
6974       // argument for which there is no corresponding parameter is
6975       // considered to "match the ellipsis" (C+ 13.3.3.1.3).
6976       Candidate.Conversions[ConvIdx].setEllipsis();
6977     }
6978   }
6979 
6980   if (EnableIfAttr *FailedAttr =
6981           CheckEnableIf(Method, CandidateSet.getLocation(), Args, true)) {
6982     Candidate.Viable = false;
6983     Candidate.FailureKind = ovl_fail_enable_if;
6984     Candidate.DeductionFailure.Data = FailedAttr;
6985     return;
6986   }
6987 
6988   if (Method->isMultiVersion() && Method->hasAttr<TargetAttr>() &&
6989       !Method->getAttr<TargetAttr>()->isDefaultVersion()) {
6990     Candidate.Viable = false;
6991     Candidate.FailureKind = ovl_non_default_multiversion_function;
6992   }
6993 }
6994 
6995 /// Add a C++ member function template as a candidate to the candidate
6996 /// set, using template argument deduction to produce an appropriate member
6997 /// function template specialization.
6998 void Sema::AddMethodTemplateCandidate(
6999     FunctionTemplateDecl *MethodTmpl, DeclAccessPair FoundDecl,
7000     CXXRecordDecl *ActingContext,
7001     TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ObjectType,
7002     Expr::Classification ObjectClassification, ArrayRef<Expr *> Args,
7003     OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
7004     bool PartialOverloading, OverloadCandidateParamOrder PO) {
7005   if (!CandidateSet.isNewCandidate(MethodTmpl, PO))
7006     return;
7007 
7008   // C++ [over.match.funcs]p7:
7009   //   In each case where a candidate is a function template, candidate
7010   //   function template specializations are generated using template argument
7011   //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
7012   //   candidate functions in the usual way.113) A given name can refer to one
7013   //   or more function templates and also to a set of overloaded non-template
7014   //   functions. In such a case, the candidate functions generated from each
7015   //   function template are combined with the set of non-template candidate
7016   //   functions.
7017   TemplateDeductionInfo Info(CandidateSet.getLocation());
7018   FunctionDecl *Specialization = nullptr;
7019   ConversionSequenceList Conversions;
7020   if (TemplateDeductionResult Result = DeduceTemplateArguments(
7021           MethodTmpl, ExplicitTemplateArgs, Args, Specialization, Info,
7022           PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
7023             return CheckNonDependentConversions(
7024                 MethodTmpl, ParamTypes, Args, CandidateSet, Conversions,
7025                 SuppressUserConversions, ActingContext, ObjectType,
7026                 ObjectClassification, PO);
7027           })) {
7028     OverloadCandidate &Candidate =
7029         CandidateSet.addCandidate(Conversions.size(), Conversions);
7030     Candidate.FoundDecl = FoundDecl;
7031     Candidate.Function = MethodTmpl->getTemplatedDecl();
7032     Candidate.Viable = false;
7033     Candidate.RewriteKind =
7034       CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO);
7035     Candidate.IsSurrogate = false;
7036     Candidate.IgnoreObjectArgument =
7037         cast<CXXMethodDecl>(Candidate.Function)->isStatic() ||
7038         ObjectType.isNull();
7039     Candidate.ExplicitCallArguments = Args.size();
7040     if (Result == TDK_NonDependentConversionFailure)
7041       Candidate.FailureKind = ovl_fail_bad_conversion;
7042     else {
7043       Candidate.FailureKind = ovl_fail_bad_deduction;
7044       Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
7045                                                             Info);
7046     }
7047     return;
7048   }
7049 
7050   // Add the function template specialization produced by template argument
7051   // deduction as a candidate.
7052   assert(Specialization && "Missing member function template specialization?");
7053   assert(isa<CXXMethodDecl>(Specialization) &&
7054          "Specialization is not a member function?");
7055   AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
7056                      ActingContext, ObjectType, ObjectClassification, Args,
7057                      CandidateSet, SuppressUserConversions, PartialOverloading,
7058                      Conversions, PO);
7059 }
7060 
7061 /// Determine whether a given function template has a simple explicit specifier
7062 /// or a non-value-dependent explicit-specification that evaluates to true.
7063 static bool isNonDependentlyExplicit(FunctionTemplateDecl *FTD) {
7064   return ExplicitSpecifier::getFromDecl(FTD->getTemplatedDecl()).isExplicit();
7065 }
7066 
7067 /// Add a C++ function template specialization as a candidate
7068 /// in the candidate set, using template argument deduction to produce
7069 /// an appropriate function template specialization.
7070 void Sema::AddTemplateOverloadCandidate(
7071     FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
7072     TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
7073     OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
7074     bool PartialOverloading, bool AllowExplicit, ADLCallKind IsADLCandidate,
7075     OverloadCandidateParamOrder PO) {
7076   if (!CandidateSet.isNewCandidate(FunctionTemplate, PO))
7077     return;
7078 
7079   // If the function template has a non-dependent explicit specification,
7080   // exclude it now if appropriate; we are not permitted to perform deduction
7081   // and substitution in this case.
7082   if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) {
7083     OverloadCandidate &Candidate = CandidateSet.addCandidate();
7084     Candidate.FoundDecl = FoundDecl;
7085     Candidate.Function = FunctionTemplate->getTemplatedDecl();
7086     Candidate.Viable = false;
7087     Candidate.FailureKind = ovl_fail_explicit;
7088     return;
7089   }
7090 
7091   // C++ [over.match.funcs]p7:
7092   //   In each case where a candidate is a function template, candidate
7093   //   function template specializations are generated using template argument
7094   //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
7095   //   candidate functions in the usual way.113) A given name can refer to one
7096   //   or more function templates and also to a set of overloaded non-template
7097   //   functions. In such a case, the candidate functions generated from each
7098   //   function template are combined with the set of non-template candidate
7099   //   functions.
7100   TemplateDeductionInfo Info(CandidateSet.getLocation());
7101   FunctionDecl *Specialization = nullptr;
7102   ConversionSequenceList Conversions;
7103   if (TemplateDeductionResult Result = DeduceTemplateArguments(
7104           FunctionTemplate, ExplicitTemplateArgs, Args, Specialization, Info,
7105           PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
7106             return CheckNonDependentConversions(
7107                 FunctionTemplate, ParamTypes, Args, CandidateSet, Conversions,
7108                 SuppressUserConversions, nullptr, QualType(), {}, PO);
7109           })) {
7110     OverloadCandidate &Candidate =
7111         CandidateSet.addCandidate(Conversions.size(), Conversions);
7112     Candidate.FoundDecl = FoundDecl;
7113     Candidate.Function = FunctionTemplate->getTemplatedDecl();
7114     Candidate.Viable = false;
7115     Candidate.RewriteKind =
7116       CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO);
7117     Candidate.IsSurrogate = false;
7118     Candidate.IsADLCandidate = IsADLCandidate;
7119     // Ignore the object argument if there is one, since we don't have an object
7120     // type.
7121     Candidate.IgnoreObjectArgument =
7122         isa<CXXMethodDecl>(Candidate.Function) &&
7123         !isa<CXXConstructorDecl>(Candidate.Function);
7124     Candidate.ExplicitCallArguments = Args.size();
7125     if (Result == TDK_NonDependentConversionFailure)
7126       Candidate.FailureKind = ovl_fail_bad_conversion;
7127     else {
7128       Candidate.FailureKind = ovl_fail_bad_deduction;
7129       Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
7130                                                             Info);
7131     }
7132     return;
7133   }
7134 
7135   // Add the function template specialization produced by template argument
7136   // deduction as a candidate.
7137   assert(Specialization && "Missing function template specialization?");
7138   AddOverloadCandidate(
7139       Specialization, FoundDecl, Args, CandidateSet, SuppressUserConversions,
7140       PartialOverloading, AllowExplicit,
7141       /*AllowExplicitConversions*/ false, IsADLCandidate, Conversions, PO);
7142 }
7143 
7144 /// Check that implicit conversion sequences can be formed for each argument
7145 /// whose corresponding parameter has a non-dependent type, per DR1391's
7146 /// [temp.deduct.call]p10.
7147 bool Sema::CheckNonDependentConversions(
7148     FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes,
7149     ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet,
7150     ConversionSequenceList &Conversions, bool SuppressUserConversions,
7151     CXXRecordDecl *ActingContext, QualType ObjectType,
7152     Expr::Classification ObjectClassification, OverloadCandidateParamOrder PO) {
7153   // FIXME: The cases in which we allow explicit conversions for constructor
7154   // arguments never consider calling a constructor template. It's not clear
7155   // that is correct.
7156   const bool AllowExplicit = false;
7157 
7158   auto *FD = FunctionTemplate->getTemplatedDecl();
7159   auto *Method = dyn_cast<CXXMethodDecl>(FD);
7160   bool HasThisConversion = Method && !isa<CXXConstructorDecl>(Method);
7161   unsigned ThisConversions = HasThisConversion ? 1 : 0;
7162 
7163   Conversions =
7164       CandidateSet.allocateConversionSequences(ThisConversions + Args.size());
7165 
7166   // Overload resolution is always an unevaluated context.
7167   EnterExpressionEvaluationContext Unevaluated(
7168       *this, Sema::ExpressionEvaluationContext::Unevaluated);
7169 
7170   // For a method call, check the 'this' conversion here too. DR1391 doesn't
7171   // require that, but this check should never result in a hard error, and
7172   // overload resolution is permitted to sidestep instantiations.
7173   if (HasThisConversion && !cast<CXXMethodDecl>(FD)->isStatic() &&
7174       !ObjectType.isNull()) {
7175     unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0;
7176     Conversions[ConvIdx] = TryObjectArgumentInitialization(
7177         *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
7178         Method, ActingContext);
7179     if (Conversions[ConvIdx].isBad())
7180       return true;
7181   }
7182 
7183   for (unsigned I = 0, N = std::min(ParamTypes.size(), Args.size()); I != N;
7184        ++I) {
7185     QualType ParamType = ParamTypes[I];
7186     if (!ParamType->isDependentType()) {
7187       unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed
7188                              ? 0
7189                              : (ThisConversions + I);
7190       Conversions[ConvIdx]
7191         = TryCopyInitialization(*this, Args[I], ParamType,
7192                                 SuppressUserConversions,
7193                                 /*InOverloadResolution=*/true,
7194                                 /*AllowObjCWritebackConversion=*/
7195                                   getLangOpts().ObjCAutoRefCount,
7196                                 AllowExplicit);
7197       if (Conversions[ConvIdx].isBad())
7198         return true;
7199     }
7200   }
7201 
7202   return false;
7203 }
7204 
7205 /// Determine whether this is an allowable conversion from the result
7206 /// of an explicit conversion operator to the expected type, per C++
7207 /// [over.match.conv]p1 and [over.match.ref]p1.
7208 ///
7209 /// \param ConvType The return type of the conversion function.
7210 ///
7211 /// \param ToType The type we are converting to.
7212 ///
7213 /// \param AllowObjCPointerConversion Allow a conversion from one
7214 /// Objective-C pointer to another.
7215 ///
7216 /// \returns true if the conversion is allowable, false otherwise.
7217 static bool isAllowableExplicitConversion(Sema &S,
7218                                           QualType ConvType, QualType ToType,
7219                                           bool AllowObjCPointerConversion) {
7220   QualType ToNonRefType = ToType.getNonReferenceType();
7221 
7222   // Easy case: the types are the same.
7223   if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType))
7224     return true;
7225 
7226   // Allow qualification conversions.
7227   bool ObjCLifetimeConversion;
7228   if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false,
7229                                   ObjCLifetimeConversion))
7230     return true;
7231 
7232   // If we're not allowed to consider Objective-C pointer conversions,
7233   // we're done.
7234   if (!AllowObjCPointerConversion)
7235     return false;
7236 
7237   // Is this an Objective-C pointer conversion?
7238   bool IncompatibleObjC = false;
7239   QualType ConvertedType;
7240   return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType,
7241                                    IncompatibleObjC);
7242 }
7243 
7244 /// AddConversionCandidate - Add a C++ conversion function as a
7245 /// candidate in the candidate set (C++ [over.match.conv],
7246 /// C++ [over.match.copy]). From is the expression we're converting from,
7247 /// and ToType is the type that we're eventually trying to convert to
7248 /// (which may or may not be the same type as the type that the
7249 /// conversion function produces).
7250 void Sema::AddConversionCandidate(
7251     CXXConversionDecl *Conversion, DeclAccessPair FoundDecl,
7252     CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
7253     OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
7254     bool AllowExplicit, bool AllowResultConversion) {
7255   assert(!Conversion->getDescribedFunctionTemplate() &&
7256          "Conversion function templates use AddTemplateConversionCandidate");
7257   QualType ConvType = Conversion->getConversionType().getNonReferenceType();
7258   if (!CandidateSet.isNewCandidate(Conversion))
7259     return;
7260 
7261   // If the conversion function has an undeduced return type, trigger its
7262   // deduction now.
7263   if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) {
7264     if (DeduceReturnType(Conversion, From->getExprLoc()))
7265       return;
7266     ConvType = Conversion->getConversionType().getNonReferenceType();
7267   }
7268 
7269   // If we don't allow any conversion of the result type, ignore conversion
7270   // functions that don't convert to exactly (possibly cv-qualified) T.
7271   if (!AllowResultConversion &&
7272       !Context.hasSameUnqualifiedType(Conversion->getConversionType(), ToType))
7273     return;
7274 
7275   // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion
7276   // operator is only a candidate if its return type is the target type or
7277   // can be converted to the target type with a qualification conversion.
7278   //
7279   // FIXME: Include such functions in the candidate list and explain why we
7280   // can't select them.
7281   if (Conversion->isExplicit() &&
7282       !isAllowableExplicitConversion(*this, ConvType, ToType,
7283                                      AllowObjCConversionOnExplicit))
7284     return;
7285 
7286   // Overload resolution is always an unevaluated context.
7287   EnterExpressionEvaluationContext Unevaluated(
7288       *this, Sema::ExpressionEvaluationContext::Unevaluated);
7289 
7290   // Add this candidate
7291   OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
7292   Candidate.FoundDecl = FoundDecl;
7293   Candidate.Function = Conversion;
7294   Candidate.IsSurrogate = false;
7295   Candidate.IgnoreObjectArgument = false;
7296   Candidate.FinalConversion.setAsIdentityConversion();
7297   Candidate.FinalConversion.setFromType(ConvType);
7298   Candidate.FinalConversion.setAllToTypes(ToType);
7299   Candidate.Viable = true;
7300   Candidate.ExplicitCallArguments = 1;
7301 
7302   // Explicit functions are not actually candidates at all if we're not
7303   // allowing them in this context, but keep them around so we can point
7304   // to them in diagnostics.
7305   if (!AllowExplicit && Conversion->isExplicit()) {
7306     Candidate.Viable = false;
7307     Candidate.FailureKind = ovl_fail_explicit;
7308     return;
7309   }
7310 
7311   // C++ [over.match.funcs]p4:
7312   //   For conversion functions, the function is considered to be a member of
7313   //   the class of the implicit implied object argument for the purpose of
7314   //   defining the type of the implicit object parameter.
7315   //
7316   // Determine the implicit conversion sequence for the implicit
7317   // object parameter.
7318   QualType ImplicitParamType = From->getType();
7319   if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
7320     ImplicitParamType = FromPtrType->getPointeeType();
7321   CXXRecordDecl *ConversionContext
7322     = cast<CXXRecordDecl>(ImplicitParamType->castAs<RecordType>()->getDecl());
7323 
7324   Candidate.Conversions[0] = TryObjectArgumentInitialization(
7325       *this, CandidateSet.getLocation(), From->getType(),
7326       From->Classify(Context), Conversion, ConversionContext);
7327 
7328   if (Candidate.Conversions[0].isBad()) {
7329     Candidate.Viable = false;
7330     Candidate.FailureKind = ovl_fail_bad_conversion;
7331     return;
7332   }
7333 
7334   if (Conversion->getTrailingRequiresClause()) {
7335     ConstraintSatisfaction Satisfaction;
7336     if (CheckFunctionConstraints(Conversion, Satisfaction) ||
7337         !Satisfaction.IsSatisfied) {
7338       Candidate.Viable = false;
7339       Candidate.FailureKind = ovl_fail_constraints_not_satisfied;
7340       return;
7341     }
7342   }
7343 
7344   // We won't go through a user-defined type conversion function to convert a
7345   // derived to base as such conversions are given Conversion Rank. They only
7346   // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
7347   QualType FromCanon
7348     = Context.getCanonicalType(From->getType().getUnqualifiedType());
7349   QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
7350   if (FromCanon == ToCanon ||
7351       IsDerivedFrom(CandidateSet.getLocation(), FromCanon, ToCanon)) {
7352     Candidate.Viable = false;
7353     Candidate.FailureKind = ovl_fail_trivial_conversion;
7354     return;
7355   }
7356 
7357   // To determine what the conversion from the result of calling the
7358   // conversion function to the type we're eventually trying to
7359   // convert to (ToType), we need to synthesize a call to the
7360   // conversion function and attempt copy initialization from it. This
7361   // makes sure that we get the right semantics with respect to
7362   // lvalues/rvalues and the type. Fortunately, we can allocate this
7363   // call on the stack and we don't need its arguments to be
7364   // well-formed.
7365   DeclRefExpr ConversionRef(Context, Conversion, false, Conversion->getType(),
7366                             VK_LValue, From->getBeginLoc());
7367   ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
7368                                 Context.getPointerType(Conversion->getType()),
7369                                 CK_FunctionToPointerDecay, &ConversionRef,
7370                                 VK_PRValue, FPOptionsOverride());
7371 
7372   QualType ConversionType = Conversion->getConversionType();
7373   if (!isCompleteType(From->getBeginLoc(), ConversionType)) {
7374     Candidate.Viable = false;
7375     Candidate.FailureKind = ovl_fail_bad_final_conversion;
7376     return;
7377   }
7378 
7379   ExprValueKind VK = Expr::getValueKindForType(ConversionType);
7380 
7381   // Note that it is safe to allocate CallExpr on the stack here because
7382   // there are 0 arguments (i.e., nothing is allocated using ASTContext's
7383   // allocator).
7384   QualType CallResultType = ConversionType.getNonLValueExprType(Context);
7385 
7386   alignas(CallExpr) char Buffer[sizeof(CallExpr) + sizeof(Stmt *)];
7387   CallExpr *TheTemporaryCall = CallExpr::CreateTemporary(
7388       Buffer, &ConversionFn, CallResultType, VK, From->getBeginLoc());
7389 
7390   ImplicitConversionSequence ICS =
7391       TryCopyInitialization(*this, TheTemporaryCall, ToType,
7392                             /*SuppressUserConversions=*/true,
7393                             /*InOverloadResolution=*/false,
7394                             /*AllowObjCWritebackConversion=*/false);
7395 
7396   switch (ICS.getKind()) {
7397   case ImplicitConversionSequence::StandardConversion:
7398     Candidate.FinalConversion = ICS.Standard;
7399 
7400     // C++ [over.ics.user]p3:
7401     //   If the user-defined conversion is specified by a specialization of a
7402     //   conversion function template, the second standard conversion sequence
7403     //   shall have exact match rank.
7404     if (Conversion->getPrimaryTemplate() &&
7405         GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
7406       Candidate.Viable = false;
7407       Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
7408       return;
7409     }
7410 
7411     // C++0x [dcl.init.ref]p5:
7412     //    In the second case, if the reference is an rvalue reference and
7413     //    the second standard conversion sequence of the user-defined
7414     //    conversion sequence includes an lvalue-to-rvalue conversion, the
7415     //    program is ill-formed.
7416     if (ToType->isRValueReferenceType() &&
7417         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
7418       Candidate.Viable = false;
7419       Candidate.FailureKind = ovl_fail_bad_final_conversion;
7420       return;
7421     }
7422     break;
7423 
7424   case ImplicitConversionSequence::BadConversion:
7425     Candidate.Viable = false;
7426     Candidate.FailureKind = ovl_fail_bad_final_conversion;
7427     return;
7428 
7429   default:
7430     llvm_unreachable(
7431            "Can only end up with a standard conversion sequence or failure");
7432   }
7433 
7434   if (EnableIfAttr *FailedAttr =
7435           CheckEnableIf(Conversion, CandidateSet.getLocation(), None)) {
7436     Candidate.Viable = false;
7437     Candidate.FailureKind = ovl_fail_enable_if;
7438     Candidate.DeductionFailure.Data = FailedAttr;
7439     return;
7440   }
7441 
7442   if (Conversion->isMultiVersion() && Conversion->hasAttr<TargetAttr>() &&
7443       !Conversion->getAttr<TargetAttr>()->isDefaultVersion()) {
7444     Candidate.Viable = false;
7445     Candidate.FailureKind = ovl_non_default_multiversion_function;
7446   }
7447 }
7448 
7449 /// Adds a conversion function template specialization
7450 /// candidate to the overload set, using template argument deduction
7451 /// to deduce the template arguments of the conversion function
7452 /// template from the type that we are converting to (C++
7453 /// [temp.deduct.conv]).
7454 void Sema::AddTemplateConversionCandidate(
7455     FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
7456     CXXRecordDecl *ActingDC, Expr *From, QualType ToType,
7457     OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
7458     bool AllowExplicit, bool AllowResultConversion) {
7459   assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
7460          "Only conversion function templates permitted here");
7461 
7462   if (!CandidateSet.isNewCandidate(FunctionTemplate))
7463     return;
7464 
7465   // If the function template has a non-dependent explicit specification,
7466   // exclude it now if appropriate; we are not permitted to perform deduction
7467   // and substitution in this case.
7468   if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) {
7469     OverloadCandidate &Candidate = CandidateSet.addCandidate();
7470     Candidate.FoundDecl = FoundDecl;
7471     Candidate.Function = FunctionTemplate->getTemplatedDecl();
7472     Candidate.Viable = false;
7473     Candidate.FailureKind = ovl_fail_explicit;
7474     return;
7475   }
7476 
7477   TemplateDeductionInfo Info(CandidateSet.getLocation());
7478   CXXConversionDecl *Specialization = nullptr;
7479   if (TemplateDeductionResult Result
7480         = DeduceTemplateArguments(FunctionTemplate, ToType,
7481                                   Specialization, Info)) {
7482     OverloadCandidate &Candidate = CandidateSet.addCandidate();
7483     Candidate.FoundDecl = FoundDecl;
7484     Candidate.Function = FunctionTemplate->getTemplatedDecl();
7485     Candidate.Viable = false;
7486     Candidate.FailureKind = ovl_fail_bad_deduction;
7487     Candidate.IsSurrogate = false;
7488     Candidate.IgnoreObjectArgument = false;
7489     Candidate.ExplicitCallArguments = 1;
7490     Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
7491                                                           Info);
7492     return;
7493   }
7494 
7495   // Add the conversion function template specialization produced by
7496   // template argument deduction as a candidate.
7497   assert(Specialization && "Missing function template specialization?");
7498   AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
7499                          CandidateSet, AllowObjCConversionOnExplicit,
7500                          AllowExplicit, AllowResultConversion);
7501 }
7502 
7503 /// AddSurrogateCandidate - Adds a "surrogate" candidate function that
7504 /// converts the given @c Object to a function pointer via the
7505 /// conversion function @c Conversion, and then attempts to call it
7506 /// with the given arguments (C++ [over.call.object]p2-4). Proto is
7507 /// the type of function that we'll eventually be calling.
7508 void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
7509                                  DeclAccessPair FoundDecl,
7510                                  CXXRecordDecl *ActingContext,
7511                                  const FunctionProtoType *Proto,
7512                                  Expr *Object,
7513                                  ArrayRef<Expr *> Args,
7514                                  OverloadCandidateSet& CandidateSet) {
7515   if (!CandidateSet.isNewCandidate(Conversion))
7516     return;
7517 
7518   // Overload resolution is always an unevaluated context.
7519   EnterExpressionEvaluationContext Unevaluated(
7520       *this, Sema::ExpressionEvaluationContext::Unevaluated);
7521 
7522   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
7523   Candidate.FoundDecl = FoundDecl;
7524   Candidate.Function = nullptr;
7525   Candidate.Surrogate = Conversion;
7526   Candidate.Viable = true;
7527   Candidate.IsSurrogate = true;
7528   Candidate.IgnoreObjectArgument = false;
7529   Candidate.ExplicitCallArguments = Args.size();
7530 
7531   // Determine the implicit conversion sequence for the implicit
7532   // object parameter.
7533   ImplicitConversionSequence ObjectInit = TryObjectArgumentInitialization(
7534       *this, CandidateSet.getLocation(), Object->getType(),
7535       Object->Classify(Context), Conversion, ActingContext);
7536   if (ObjectInit.isBad()) {
7537     Candidate.Viable = false;
7538     Candidate.FailureKind = ovl_fail_bad_conversion;
7539     Candidate.Conversions[0] = ObjectInit;
7540     return;
7541   }
7542 
7543   // The first conversion is actually a user-defined conversion whose
7544   // first conversion is ObjectInit's standard conversion (which is
7545   // effectively a reference binding). Record it as such.
7546   Candidate.Conversions[0].setUserDefined();
7547   Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
7548   Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
7549   Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
7550   Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
7551   Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
7552   Candidate.Conversions[0].UserDefined.After
7553     = Candidate.Conversions[0].UserDefined.Before;
7554   Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
7555 
7556   // Find the
7557   unsigned NumParams = Proto->getNumParams();
7558 
7559   // (C++ 13.3.2p2): A candidate function having fewer than m
7560   // parameters is viable only if it has an ellipsis in its parameter
7561   // list (8.3.5).
7562   if (Args.size() > NumParams && !Proto->isVariadic()) {
7563     Candidate.Viable = false;
7564     Candidate.FailureKind = ovl_fail_too_many_arguments;
7565     return;
7566   }
7567 
7568   // Function types don't have any default arguments, so just check if
7569   // we have enough arguments.
7570   if (Args.size() < NumParams) {
7571     // Not enough arguments.
7572     Candidate.Viable = false;
7573     Candidate.FailureKind = ovl_fail_too_few_arguments;
7574     return;
7575   }
7576 
7577   // Determine the implicit conversion sequences for each of the
7578   // arguments.
7579   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7580     if (ArgIdx < NumParams) {
7581       // (C++ 13.3.2p3): for F to be a viable function, there shall
7582       // exist for each argument an implicit conversion sequence
7583       // (13.3.3.1) that converts that argument to the corresponding
7584       // parameter of F.
7585       QualType ParamType = Proto->getParamType(ArgIdx);
7586       Candidate.Conversions[ArgIdx + 1]
7587         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
7588                                 /*SuppressUserConversions=*/false,
7589                                 /*InOverloadResolution=*/false,
7590                                 /*AllowObjCWritebackConversion=*/
7591                                   getLangOpts().ObjCAutoRefCount);
7592       if (Candidate.Conversions[ArgIdx + 1].isBad()) {
7593         Candidate.Viable = false;
7594         Candidate.FailureKind = ovl_fail_bad_conversion;
7595         return;
7596       }
7597     } else {
7598       // (C++ 13.3.2p2): For the purposes of overload resolution, any
7599       // argument for which there is no corresponding parameter is
7600       // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
7601       Candidate.Conversions[ArgIdx + 1].setEllipsis();
7602     }
7603   }
7604 
7605   if (EnableIfAttr *FailedAttr =
7606           CheckEnableIf(Conversion, CandidateSet.getLocation(), None)) {
7607     Candidate.Viable = false;
7608     Candidate.FailureKind = ovl_fail_enable_if;
7609     Candidate.DeductionFailure.Data = FailedAttr;
7610     return;
7611   }
7612 }
7613 
7614 /// Add all of the non-member operator function declarations in the given
7615 /// function set to the overload candidate set.
7616 void Sema::AddNonMemberOperatorCandidates(
7617     const UnresolvedSetImpl &Fns, ArrayRef<Expr *> Args,
7618     OverloadCandidateSet &CandidateSet,
7619     TemplateArgumentListInfo *ExplicitTemplateArgs) {
7620   for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
7621     NamedDecl *D = F.getDecl()->getUnderlyingDecl();
7622     ArrayRef<Expr *> FunctionArgs = Args;
7623 
7624     FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
7625     FunctionDecl *FD =
7626         FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D);
7627 
7628     // Don't consider rewritten functions if we're not rewriting.
7629     if (!CandidateSet.getRewriteInfo().isAcceptableCandidate(FD))
7630       continue;
7631 
7632     assert(!isa<CXXMethodDecl>(FD) &&
7633            "unqualified operator lookup found a member function");
7634 
7635     if (FunTmpl) {
7636       AddTemplateOverloadCandidate(FunTmpl, F.getPair(), ExplicitTemplateArgs,
7637                                    FunctionArgs, CandidateSet);
7638       if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD))
7639         AddTemplateOverloadCandidate(
7640             FunTmpl, F.getPair(), ExplicitTemplateArgs,
7641             {FunctionArgs[1], FunctionArgs[0]}, CandidateSet, false, false,
7642             true, ADLCallKind::NotADL, OverloadCandidateParamOrder::Reversed);
7643     } else {
7644       if (ExplicitTemplateArgs)
7645         continue;
7646       AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet);
7647       if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD))
7648         AddOverloadCandidate(FD, F.getPair(),
7649                              {FunctionArgs[1], FunctionArgs[0]}, CandidateSet,
7650                              false, false, true, false, ADLCallKind::NotADL,
7651                              None, OverloadCandidateParamOrder::Reversed);
7652     }
7653   }
7654 }
7655 
7656 /// Add overload candidates for overloaded operators that are
7657 /// member functions.
7658 ///
7659 /// Add the overloaded operator candidates that are member functions
7660 /// for the operator Op that was used in an operator expression such
7661 /// as "x Op y". , Args/NumArgs provides the operator arguments, and
7662 /// CandidateSet will store the added overload candidates. (C++
7663 /// [over.match.oper]).
7664 void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
7665                                        SourceLocation OpLoc,
7666                                        ArrayRef<Expr *> Args,
7667                                        OverloadCandidateSet &CandidateSet,
7668                                        OverloadCandidateParamOrder PO) {
7669   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
7670 
7671   // C++ [over.match.oper]p3:
7672   //   For a unary operator @ with an operand of a type whose
7673   //   cv-unqualified version is T1, and for a binary operator @ with
7674   //   a left operand of a type whose cv-unqualified version is T1 and
7675   //   a right operand of a type whose cv-unqualified version is T2,
7676   //   three sets of candidate functions, designated member
7677   //   candidates, non-member candidates and built-in candidates, are
7678   //   constructed as follows:
7679   QualType T1 = Args[0]->getType();
7680 
7681   //     -- If T1 is a complete class type or a class currently being
7682   //        defined, the set of member candidates is the result of the
7683   //        qualified lookup of T1::operator@ (13.3.1.1.1); otherwise,
7684   //        the set of member candidates is empty.
7685   if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
7686     // Complete the type if it can be completed.
7687     if (!isCompleteType(OpLoc, T1) && !T1Rec->isBeingDefined())
7688       return;
7689     // If the type is neither complete nor being defined, bail out now.
7690     if (!T1Rec->getDecl()->getDefinition())
7691       return;
7692 
7693     LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
7694     LookupQualifiedName(Operators, T1Rec->getDecl());
7695     Operators.suppressDiagnostics();
7696 
7697     for (LookupResult::iterator Oper = Operators.begin(),
7698                              OperEnd = Operators.end();
7699          Oper != OperEnd;
7700          ++Oper)
7701       AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
7702                          Args[0]->Classify(Context), Args.slice(1),
7703                          CandidateSet, /*SuppressUserConversion=*/false, PO);
7704   }
7705 }
7706 
7707 /// AddBuiltinCandidate - Add a candidate for a built-in
7708 /// operator. ResultTy and ParamTys are the result and parameter types
7709 /// of the built-in candidate, respectively. Args and NumArgs are the
7710 /// arguments being passed to the candidate. IsAssignmentOperator
7711 /// should be true when this built-in candidate is an assignment
7712 /// operator. NumContextualBoolArguments is the number of arguments
7713 /// (at the beginning of the argument list) that will be contextually
7714 /// converted to bool.
7715 void Sema::AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args,
7716                                OverloadCandidateSet& CandidateSet,
7717                                bool IsAssignmentOperator,
7718                                unsigned NumContextualBoolArguments) {
7719   // Overload resolution is always an unevaluated context.
7720   EnterExpressionEvaluationContext Unevaluated(
7721       *this, Sema::ExpressionEvaluationContext::Unevaluated);
7722 
7723   // Add this candidate
7724   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
7725   Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none);
7726   Candidate.Function = nullptr;
7727   Candidate.IsSurrogate = false;
7728   Candidate.IgnoreObjectArgument = false;
7729   std::copy(ParamTys, ParamTys + Args.size(), Candidate.BuiltinParamTypes);
7730 
7731   // Determine the implicit conversion sequences for each of the
7732   // arguments.
7733   Candidate.Viable = true;
7734   Candidate.ExplicitCallArguments = Args.size();
7735   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7736     // C++ [over.match.oper]p4:
7737     //   For the built-in assignment operators, conversions of the
7738     //   left operand are restricted as follows:
7739     //     -- no temporaries are introduced to hold the left operand, and
7740     //     -- no user-defined conversions are applied to the left
7741     //        operand to achieve a type match with the left-most
7742     //        parameter of a built-in candidate.
7743     //
7744     // We block these conversions by turning off user-defined
7745     // conversions, since that is the only way that initialization of
7746     // a reference to a non-class type can occur from something that
7747     // is not of the same type.
7748     if (ArgIdx < NumContextualBoolArguments) {
7749       assert(ParamTys[ArgIdx] == Context.BoolTy &&
7750              "Contextual conversion to bool requires bool type");
7751       Candidate.Conversions[ArgIdx]
7752         = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
7753     } else {
7754       Candidate.Conversions[ArgIdx]
7755         = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
7756                                 ArgIdx == 0 && IsAssignmentOperator,
7757                                 /*InOverloadResolution=*/false,
7758                                 /*AllowObjCWritebackConversion=*/
7759                                   getLangOpts().ObjCAutoRefCount);
7760     }
7761     if (Candidate.Conversions[ArgIdx].isBad()) {
7762       Candidate.Viable = false;
7763       Candidate.FailureKind = ovl_fail_bad_conversion;
7764       break;
7765     }
7766   }
7767 }
7768 
7769 namespace {
7770 
7771 /// BuiltinCandidateTypeSet - A set of types that will be used for the
7772 /// candidate operator functions for built-in operators (C++
7773 /// [over.built]). The types are separated into pointer types and
7774 /// enumeration types.
7775 class BuiltinCandidateTypeSet  {
7776   /// TypeSet - A set of types.
7777   typedef llvm::SetVector<QualType, SmallVector<QualType, 8>,
7778                           llvm::SmallPtrSet<QualType, 8>> TypeSet;
7779 
7780   /// PointerTypes - The set of pointer types that will be used in the
7781   /// built-in candidates.
7782   TypeSet PointerTypes;
7783 
7784   /// MemberPointerTypes - The set of member pointer types that will be
7785   /// used in the built-in candidates.
7786   TypeSet MemberPointerTypes;
7787 
7788   /// EnumerationTypes - The set of enumeration types that will be
7789   /// used in the built-in candidates.
7790   TypeSet EnumerationTypes;
7791 
7792   /// The set of vector types that will be used in the built-in
7793   /// candidates.
7794   TypeSet VectorTypes;
7795 
7796   /// The set of matrix types that will be used in the built-in
7797   /// candidates.
7798   TypeSet MatrixTypes;
7799 
7800   /// A flag indicating non-record types are viable candidates
7801   bool HasNonRecordTypes;
7802 
7803   /// A flag indicating whether either arithmetic or enumeration types
7804   /// were present in the candidate set.
7805   bool HasArithmeticOrEnumeralTypes;
7806 
7807   /// A flag indicating whether the nullptr type was present in the
7808   /// candidate set.
7809   bool HasNullPtrType;
7810 
7811   /// Sema - The semantic analysis instance where we are building the
7812   /// candidate type set.
7813   Sema &SemaRef;
7814 
7815   /// Context - The AST context in which we will build the type sets.
7816   ASTContext &Context;
7817 
7818   bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
7819                                                const Qualifiers &VisibleQuals);
7820   bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
7821 
7822 public:
7823   /// iterator - Iterates through the types that are part of the set.
7824   typedef TypeSet::iterator iterator;
7825 
7826   BuiltinCandidateTypeSet(Sema &SemaRef)
7827     : HasNonRecordTypes(false),
7828       HasArithmeticOrEnumeralTypes(false),
7829       HasNullPtrType(false),
7830       SemaRef(SemaRef),
7831       Context(SemaRef.Context) { }
7832 
7833   void AddTypesConvertedFrom(QualType Ty,
7834                              SourceLocation Loc,
7835                              bool AllowUserConversions,
7836                              bool AllowExplicitConversions,
7837                              const Qualifiers &VisibleTypeConversionsQuals);
7838 
7839   llvm::iterator_range<iterator> pointer_types() { return PointerTypes; }
7840   llvm::iterator_range<iterator> member_pointer_types() {
7841     return MemberPointerTypes;
7842   }
7843   llvm::iterator_range<iterator> enumeration_types() {
7844     return EnumerationTypes;
7845   }
7846   llvm::iterator_range<iterator> vector_types() { return VectorTypes; }
7847   llvm::iterator_range<iterator> matrix_types() { return MatrixTypes; }
7848 
7849   bool containsMatrixType(QualType Ty) const { return MatrixTypes.count(Ty); }
7850   bool hasNonRecordTypes() { return HasNonRecordTypes; }
7851   bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
7852   bool hasNullPtrType() const { return HasNullPtrType; }
7853 };
7854 
7855 } // end anonymous namespace
7856 
7857 /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
7858 /// the set of pointer types along with any more-qualified variants of
7859 /// that type. For example, if @p Ty is "int const *", this routine
7860 /// will add "int const *", "int const volatile *", "int const
7861 /// restrict *", and "int const volatile restrict *" to the set of
7862 /// pointer types. Returns true if the add of @p Ty itself succeeded,
7863 /// false otherwise.
7864 ///
7865 /// FIXME: what to do about extended qualifiers?
7866 bool
7867 BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
7868                                              const Qualifiers &VisibleQuals) {
7869 
7870   // Insert this type.
7871   if (!PointerTypes.insert(Ty))
7872     return false;
7873 
7874   QualType PointeeTy;
7875   const PointerType *PointerTy = Ty->getAs<PointerType>();
7876   bool buildObjCPtr = false;
7877   if (!PointerTy) {
7878     const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
7879     PointeeTy = PTy->getPointeeType();
7880     buildObjCPtr = true;
7881   } else {
7882     PointeeTy = PointerTy->getPointeeType();
7883   }
7884 
7885   // Don't add qualified variants of arrays. For one, they're not allowed
7886   // (the qualifier would sink to the element type), and for another, the
7887   // only overload situation where it matters is subscript or pointer +- int,
7888   // and those shouldn't have qualifier variants anyway.
7889   if (PointeeTy->isArrayType())
7890     return true;
7891 
7892   unsigned BaseCVR = PointeeTy.getCVRQualifiers();
7893   bool hasVolatile = VisibleQuals.hasVolatile();
7894   bool hasRestrict = VisibleQuals.hasRestrict();
7895 
7896   // Iterate through all strict supersets of BaseCVR.
7897   for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
7898     if ((CVR | BaseCVR) != CVR) continue;
7899     // Skip over volatile if no volatile found anywhere in the types.
7900     if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
7901 
7902     // Skip over restrict if no restrict found anywhere in the types, or if
7903     // the type cannot be restrict-qualified.
7904     if ((CVR & Qualifiers::Restrict) &&
7905         (!hasRestrict ||
7906          (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
7907       continue;
7908 
7909     // Build qualified pointee type.
7910     QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
7911 
7912     // Build qualified pointer type.
7913     QualType QPointerTy;
7914     if (!buildObjCPtr)
7915       QPointerTy = Context.getPointerType(QPointeeTy);
7916     else
7917       QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
7918 
7919     // Insert qualified pointer type.
7920     PointerTypes.insert(QPointerTy);
7921   }
7922 
7923   return true;
7924 }
7925 
7926 /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
7927 /// to the set of pointer types along with any more-qualified variants of
7928 /// that type. For example, if @p Ty is "int const *", this routine
7929 /// will add "int const *", "int const volatile *", "int const
7930 /// restrict *", and "int const volatile restrict *" to the set of
7931 /// pointer types. Returns true if the add of @p Ty itself succeeded,
7932 /// false otherwise.
7933 ///
7934 /// FIXME: what to do about extended qualifiers?
7935 bool
7936 BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
7937     QualType Ty) {
7938   // Insert this type.
7939   if (!MemberPointerTypes.insert(Ty))
7940     return false;
7941 
7942   const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
7943   assert(PointerTy && "type was not a member pointer type!");
7944 
7945   QualType PointeeTy = PointerTy->getPointeeType();
7946   // Don't add qualified variants of arrays. For one, they're not allowed
7947   // (the qualifier would sink to the element type), and for another, the
7948   // only overload situation where it matters is subscript or pointer +- int,
7949   // and those shouldn't have qualifier variants anyway.
7950   if (PointeeTy->isArrayType())
7951     return true;
7952   const Type *ClassTy = PointerTy->getClass();
7953 
7954   // Iterate through all strict supersets of the pointee type's CVR
7955   // qualifiers.
7956   unsigned BaseCVR = PointeeTy.getCVRQualifiers();
7957   for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
7958     if ((CVR | BaseCVR) != CVR) continue;
7959 
7960     QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
7961     MemberPointerTypes.insert(
7962       Context.getMemberPointerType(QPointeeTy, ClassTy));
7963   }
7964 
7965   return true;
7966 }
7967 
7968 /// AddTypesConvertedFrom - Add each of the types to which the type @p
7969 /// Ty can be implicit converted to the given set of @p Types. We're
7970 /// primarily interested in pointer types and enumeration types. We also
7971 /// take member pointer types, for the conditional operator.
7972 /// AllowUserConversions is true if we should look at the conversion
7973 /// functions of a class type, and AllowExplicitConversions if we
7974 /// should also include the explicit conversion functions of a class
7975 /// type.
7976 void
7977 BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
7978                                                SourceLocation Loc,
7979                                                bool AllowUserConversions,
7980                                                bool AllowExplicitConversions,
7981                                                const Qualifiers &VisibleQuals) {
7982   // Only deal with canonical types.
7983   Ty = Context.getCanonicalType(Ty);
7984 
7985   // Look through reference types; they aren't part of the type of an
7986   // expression for the purposes of conversions.
7987   if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
7988     Ty = RefTy->getPointeeType();
7989 
7990   // If we're dealing with an array type, decay to the pointer.
7991   if (Ty->isArrayType())
7992     Ty = SemaRef.Context.getArrayDecayedType(Ty);
7993 
7994   // Otherwise, we don't care about qualifiers on the type.
7995   Ty = Ty.getLocalUnqualifiedType();
7996 
7997   // Flag if we ever add a non-record type.
7998   const RecordType *TyRec = Ty->getAs<RecordType>();
7999   HasNonRecordTypes = HasNonRecordTypes || !TyRec;
8000 
8001   // Flag if we encounter an arithmetic type.
8002   HasArithmeticOrEnumeralTypes =
8003     HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
8004 
8005   if (Ty->isObjCIdType() || Ty->isObjCClassType())
8006     PointerTypes.insert(Ty);
8007   else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
8008     // Insert our type, and its more-qualified variants, into the set
8009     // of types.
8010     if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
8011       return;
8012   } else if (Ty->isMemberPointerType()) {
8013     // Member pointers are far easier, since the pointee can't be converted.
8014     if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
8015       return;
8016   } else if (Ty->isEnumeralType()) {
8017     HasArithmeticOrEnumeralTypes = true;
8018     EnumerationTypes.insert(Ty);
8019   } else if (Ty->isVectorType()) {
8020     // We treat vector types as arithmetic types in many contexts as an
8021     // extension.
8022     HasArithmeticOrEnumeralTypes = true;
8023     VectorTypes.insert(Ty);
8024   } else if (Ty->isMatrixType()) {
8025     // Similar to vector types, we treat vector types as arithmetic types in
8026     // many contexts as an extension.
8027     HasArithmeticOrEnumeralTypes = true;
8028     MatrixTypes.insert(Ty);
8029   } else if (Ty->isNullPtrType()) {
8030     HasNullPtrType = true;
8031   } else if (AllowUserConversions && TyRec) {
8032     // No conversion functions in incomplete types.
8033     if (!SemaRef.isCompleteType(Loc, Ty))
8034       return;
8035 
8036     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
8037     for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
8038       if (isa<UsingShadowDecl>(D))
8039         D = cast<UsingShadowDecl>(D)->getTargetDecl();
8040 
8041       // Skip conversion function templates; they don't tell us anything
8042       // about which builtin types we can convert to.
8043       if (isa<FunctionTemplateDecl>(D))
8044         continue;
8045 
8046       CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
8047       if (AllowExplicitConversions || !Conv->isExplicit()) {
8048         AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
8049                               VisibleQuals);
8050       }
8051     }
8052   }
8053 }
8054 /// Helper function for adjusting address spaces for the pointer or reference
8055 /// operands of builtin operators depending on the argument.
8056 static QualType AdjustAddressSpaceForBuiltinOperandType(Sema &S, QualType T,
8057                                                         Expr *Arg) {
8058   return S.Context.getAddrSpaceQualType(T, Arg->getType().getAddressSpace());
8059 }
8060 
8061 /// Helper function for AddBuiltinOperatorCandidates() that adds
8062 /// the volatile- and non-volatile-qualified assignment operators for the
8063 /// given type to the candidate set.
8064 static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
8065                                                    QualType T,
8066                                                    ArrayRef<Expr *> Args,
8067                                     OverloadCandidateSet &CandidateSet) {
8068   QualType ParamTypes[2];
8069 
8070   // T& operator=(T&, T)
8071   ParamTypes[0] = S.Context.getLValueReferenceType(
8072       AdjustAddressSpaceForBuiltinOperandType(S, T, Args[0]));
8073   ParamTypes[1] = T;
8074   S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8075                         /*IsAssignmentOperator=*/true);
8076 
8077   if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
8078     // volatile T& operator=(volatile T&, T)
8079     ParamTypes[0] = S.Context.getLValueReferenceType(
8080         AdjustAddressSpaceForBuiltinOperandType(S, S.Context.getVolatileType(T),
8081                                                 Args[0]));
8082     ParamTypes[1] = T;
8083     S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8084                           /*IsAssignmentOperator=*/true);
8085   }
8086 }
8087 
8088 /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
8089 /// if any, found in visible type conversion functions found in ArgExpr's type.
8090 static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
8091     Qualifiers VRQuals;
8092     const RecordType *TyRec;
8093     if (const MemberPointerType *RHSMPType =
8094         ArgExpr->getType()->getAs<MemberPointerType>())
8095       TyRec = RHSMPType->getClass()->getAs<RecordType>();
8096     else
8097       TyRec = ArgExpr->getType()->getAs<RecordType>();
8098     if (!TyRec) {
8099       // Just to be safe, assume the worst case.
8100       VRQuals.addVolatile();
8101       VRQuals.addRestrict();
8102       return VRQuals;
8103     }
8104 
8105     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
8106     if (!ClassDecl->hasDefinition())
8107       return VRQuals;
8108 
8109     for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
8110       if (isa<UsingShadowDecl>(D))
8111         D = cast<UsingShadowDecl>(D)->getTargetDecl();
8112       if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
8113         QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
8114         if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
8115           CanTy = ResTypeRef->getPointeeType();
8116         // Need to go down the pointer/mempointer chain and add qualifiers
8117         // as see them.
8118         bool done = false;
8119         while (!done) {
8120           if (CanTy.isRestrictQualified())
8121             VRQuals.addRestrict();
8122           if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
8123             CanTy = ResTypePtr->getPointeeType();
8124           else if (const MemberPointerType *ResTypeMPtr =
8125                 CanTy->getAs<MemberPointerType>())
8126             CanTy = ResTypeMPtr->getPointeeType();
8127           else
8128             done = true;
8129           if (CanTy.isVolatileQualified())
8130             VRQuals.addVolatile();
8131           if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
8132             return VRQuals;
8133         }
8134       }
8135     }
8136     return VRQuals;
8137 }
8138 
8139 namespace {
8140 
8141 /// Helper class to manage the addition of builtin operator overload
8142 /// candidates. It provides shared state and utility methods used throughout
8143 /// the process, as well as a helper method to add each group of builtin
8144 /// operator overloads from the standard to a candidate set.
8145 class BuiltinOperatorOverloadBuilder {
8146   // Common instance state available to all overload candidate addition methods.
8147   Sema &S;
8148   ArrayRef<Expr *> Args;
8149   Qualifiers VisibleTypeConversionsQuals;
8150   bool HasArithmeticOrEnumeralCandidateType;
8151   SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
8152   OverloadCandidateSet &CandidateSet;
8153 
8154   static constexpr int ArithmeticTypesCap = 24;
8155   SmallVector<CanQualType, ArithmeticTypesCap> ArithmeticTypes;
8156 
8157   // Define some indices used to iterate over the arithmetic types in
8158   // ArithmeticTypes.  The "promoted arithmetic types" are the arithmetic
8159   // types are that preserved by promotion (C++ [over.built]p2).
8160   unsigned FirstIntegralType,
8161            LastIntegralType;
8162   unsigned FirstPromotedIntegralType,
8163            LastPromotedIntegralType;
8164   unsigned FirstPromotedArithmeticType,
8165            LastPromotedArithmeticType;
8166   unsigned NumArithmeticTypes;
8167 
8168   void InitArithmeticTypes() {
8169     // Start of promoted types.
8170     FirstPromotedArithmeticType = 0;
8171     ArithmeticTypes.push_back(S.Context.FloatTy);
8172     ArithmeticTypes.push_back(S.Context.DoubleTy);
8173     ArithmeticTypes.push_back(S.Context.LongDoubleTy);
8174     if (S.Context.getTargetInfo().hasFloat128Type())
8175       ArithmeticTypes.push_back(S.Context.Float128Ty);
8176 
8177     // Start of integral types.
8178     FirstIntegralType = ArithmeticTypes.size();
8179     FirstPromotedIntegralType = ArithmeticTypes.size();
8180     ArithmeticTypes.push_back(S.Context.IntTy);
8181     ArithmeticTypes.push_back(S.Context.LongTy);
8182     ArithmeticTypes.push_back(S.Context.LongLongTy);
8183     if (S.Context.getTargetInfo().hasInt128Type() ||
8184         (S.Context.getAuxTargetInfo() &&
8185          S.Context.getAuxTargetInfo()->hasInt128Type()))
8186       ArithmeticTypes.push_back(S.Context.Int128Ty);
8187     ArithmeticTypes.push_back(S.Context.UnsignedIntTy);
8188     ArithmeticTypes.push_back(S.Context.UnsignedLongTy);
8189     ArithmeticTypes.push_back(S.Context.UnsignedLongLongTy);
8190     if (S.Context.getTargetInfo().hasInt128Type() ||
8191         (S.Context.getAuxTargetInfo() &&
8192          S.Context.getAuxTargetInfo()->hasInt128Type()))
8193       ArithmeticTypes.push_back(S.Context.UnsignedInt128Ty);
8194     LastPromotedIntegralType = ArithmeticTypes.size();
8195     LastPromotedArithmeticType = ArithmeticTypes.size();
8196     // End of promoted types.
8197 
8198     ArithmeticTypes.push_back(S.Context.BoolTy);
8199     ArithmeticTypes.push_back(S.Context.CharTy);
8200     ArithmeticTypes.push_back(S.Context.WCharTy);
8201     if (S.Context.getLangOpts().Char8)
8202       ArithmeticTypes.push_back(S.Context.Char8Ty);
8203     ArithmeticTypes.push_back(S.Context.Char16Ty);
8204     ArithmeticTypes.push_back(S.Context.Char32Ty);
8205     ArithmeticTypes.push_back(S.Context.SignedCharTy);
8206     ArithmeticTypes.push_back(S.Context.ShortTy);
8207     ArithmeticTypes.push_back(S.Context.UnsignedCharTy);
8208     ArithmeticTypes.push_back(S.Context.UnsignedShortTy);
8209     LastIntegralType = ArithmeticTypes.size();
8210     NumArithmeticTypes = ArithmeticTypes.size();
8211     // End of integral types.
8212     // FIXME: What about complex? What about half?
8213 
8214     assert(ArithmeticTypes.size() <= ArithmeticTypesCap &&
8215            "Enough inline storage for all arithmetic types.");
8216   }
8217 
8218   /// Helper method to factor out the common pattern of adding overloads
8219   /// for '++' and '--' builtin operators.
8220   void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
8221                                            bool HasVolatile,
8222                                            bool HasRestrict) {
8223     QualType ParamTypes[2] = {
8224       S.Context.getLValueReferenceType(CandidateTy),
8225       S.Context.IntTy
8226     };
8227 
8228     // Non-volatile version.
8229     S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8230 
8231     // Use a heuristic to reduce number of builtin candidates in the set:
8232     // add volatile version only if there are conversions to a volatile type.
8233     if (HasVolatile) {
8234       ParamTypes[0] =
8235         S.Context.getLValueReferenceType(
8236           S.Context.getVolatileType(CandidateTy));
8237       S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8238     }
8239 
8240     // Add restrict version only if there are conversions to a restrict type
8241     // and our candidate type is a non-restrict-qualified pointer.
8242     if (HasRestrict && CandidateTy->isAnyPointerType() &&
8243         !CandidateTy.isRestrictQualified()) {
8244       ParamTypes[0]
8245         = S.Context.getLValueReferenceType(
8246             S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
8247       S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8248 
8249       if (HasVolatile) {
8250         ParamTypes[0]
8251           = S.Context.getLValueReferenceType(
8252               S.Context.getCVRQualifiedType(CandidateTy,
8253                                             (Qualifiers::Volatile |
8254                                              Qualifiers::Restrict)));
8255         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8256       }
8257     }
8258 
8259   }
8260 
8261   /// Helper to add an overload candidate for a binary builtin with types \p L
8262   /// and \p R.
8263   void AddCandidate(QualType L, QualType R) {
8264     QualType LandR[2] = {L, R};
8265     S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8266   }
8267 
8268 public:
8269   BuiltinOperatorOverloadBuilder(
8270     Sema &S, ArrayRef<Expr *> Args,
8271     Qualifiers VisibleTypeConversionsQuals,
8272     bool HasArithmeticOrEnumeralCandidateType,
8273     SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
8274     OverloadCandidateSet &CandidateSet)
8275     : S(S), Args(Args),
8276       VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
8277       HasArithmeticOrEnumeralCandidateType(
8278         HasArithmeticOrEnumeralCandidateType),
8279       CandidateTypes(CandidateTypes),
8280       CandidateSet(CandidateSet) {
8281 
8282     InitArithmeticTypes();
8283   }
8284 
8285   // Increment is deprecated for bool since C++17.
8286   //
8287   // C++ [over.built]p3:
8288   //
8289   //   For every pair (T, VQ), where T is an arithmetic type other
8290   //   than bool, and VQ is either volatile or empty, there exist
8291   //   candidate operator functions of the form
8292   //
8293   //       VQ T&      operator++(VQ T&);
8294   //       T          operator++(VQ T&, int);
8295   //
8296   // C++ [over.built]p4:
8297   //
8298   //   For every pair (T, VQ), where T is an arithmetic type other
8299   //   than bool, and VQ is either volatile or empty, there exist
8300   //   candidate operator functions of the form
8301   //
8302   //       VQ T&      operator--(VQ T&);
8303   //       T          operator--(VQ T&, int);
8304   void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
8305     if (!HasArithmeticOrEnumeralCandidateType)
8306       return;
8307 
8308     for (unsigned Arith = 0; Arith < NumArithmeticTypes; ++Arith) {
8309       const auto TypeOfT = ArithmeticTypes[Arith];
8310       if (TypeOfT == S.Context.BoolTy) {
8311         if (Op == OO_MinusMinus)
8312           continue;
8313         if (Op == OO_PlusPlus && S.getLangOpts().CPlusPlus17)
8314           continue;
8315       }
8316       addPlusPlusMinusMinusStyleOverloads(
8317         TypeOfT,
8318         VisibleTypeConversionsQuals.hasVolatile(),
8319         VisibleTypeConversionsQuals.hasRestrict());
8320     }
8321   }
8322 
8323   // C++ [over.built]p5:
8324   //
8325   //   For every pair (T, VQ), where T is a cv-qualified or
8326   //   cv-unqualified object type, and VQ is either volatile or
8327   //   empty, there exist candidate operator functions of the form
8328   //
8329   //       T*VQ&      operator++(T*VQ&);
8330   //       T*VQ&      operator--(T*VQ&);
8331   //       T*         operator++(T*VQ&, int);
8332   //       T*         operator--(T*VQ&, int);
8333   void addPlusPlusMinusMinusPointerOverloads() {
8334     for (QualType PtrTy : CandidateTypes[0].pointer_types()) {
8335       // Skip pointer types that aren't pointers to object types.
8336       if (!PtrTy->getPointeeType()->isObjectType())
8337         continue;
8338 
8339       addPlusPlusMinusMinusStyleOverloads(
8340           PtrTy,
8341           (!PtrTy.isVolatileQualified() &&
8342            VisibleTypeConversionsQuals.hasVolatile()),
8343           (!PtrTy.isRestrictQualified() &&
8344            VisibleTypeConversionsQuals.hasRestrict()));
8345     }
8346   }
8347 
8348   // C++ [over.built]p6:
8349   //   For every cv-qualified or cv-unqualified object type T, there
8350   //   exist candidate operator functions of the form
8351   //
8352   //       T&         operator*(T*);
8353   //
8354   // C++ [over.built]p7:
8355   //   For every function type T that does not have cv-qualifiers or a
8356   //   ref-qualifier, there exist candidate operator functions of the form
8357   //       T&         operator*(T*);
8358   void addUnaryStarPointerOverloads() {
8359     for (QualType ParamTy : CandidateTypes[0].pointer_types()) {
8360       QualType PointeeTy = ParamTy->getPointeeType();
8361       if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
8362         continue;
8363 
8364       if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
8365         if (Proto->getMethodQuals() || Proto->getRefQualifier())
8366           continue;
8367 
8368       S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
8369     }
8370   }
8371 
8372   // C++ [over.built]p9:
8373   //  For every promoted arithmetic type T, there exist candidate
8374   //  operator functions of the form
8375   //
8376   //       T         operator+(T);
8377   //       T         operator-(T);
8378   void addUnaryPlusOrMinusArithmeticOverloads() {
8379     if (!HasArithmeticOrEnumeralCandidateType)
8380       return;
8381 
8382     for (unsigned Arith = FirstPromotedArithmeticType;
8383          Arith < LastPromotedArithmeticType; ++Arith) {
8384       QualType ArithTy = ArithmeticTypes[Arith];
8385       S.AddBuiltinCandidate(&ArithTy, Args, CandidateSet);
8386     }
8387 
8388     // Extension: We also add these operators for vector types.
8389     for (QualType VecTy : CandidateTypes[0].vector_types())
8390       S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
8391   }
8392 
8393   // C++ [over.built]p8:
8394   //   For every type T, there exist candidate operator functions of
8395   //   the form
8396   //
8397   //       T*         operator+(T*);
8398   void addUnaryPlusPointerOverloads() {
8399     for (QualType ParamTy : CandidateTypes[0].pointer_types())
8400       S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
8401   }
8402 
8403   // C++ [over.built]p10:
8404   //   For every promoted integral type T, there exist candidate
8405   //   operator functions of the form
8406   //
8407   //        T         operator~(T);
8408   void addUnaryTildePromotedIntegralOverloads() {
8409     if (!HasArithmeticOrEnumeralCandidateType)
8410       return;
8411 
8412     for (unsigned Int = FirstPromotedIntegralType;
8413          Int < LastPromotedIntegralType; ++Int) {
8414       QualType IntTy = ArithmeticTypes[Int];
8415       S.AddBuiltinCandidate(&IntTy, Args, CandidateSet);
8416     }
8417 
8418     // Extension: We also add this operator for vector types.
8419     for (QualType VecTy : CandidateTypes[0].vector_types())
8420       S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
8421   }
8422 
8423   // C++ [over.match.oper]p16:
8424   //   For every pointer to member type T or type std::nullptr_t, there
8425   //   exist candidate operator functions of the form
8426   //
8427   //        bool operator==(T,T);
8428   //        bool operator!=(T,T);
8429   void addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads() {
8430     /// Set of (canonical) types that we've already handled.
8431     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8432 
8433     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8434       for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) {
8435         // Don't add the same builtin candidate twice.
8436         if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second)
8437           continue;
8438 
8439         QualType ParamTypes[2] = {MemPtrTy, MemPtrTy};
8440         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8441       }
8442 
8443       if (CandidateTypes[ArgIdx].hasNullPtrType()) {
8444         CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
8445         if (AddedTypes.insert(NullPtrTy).second) {
8446           QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
8447           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8448         }
8449       }
8450     }
8451   }
8452 
8453   // C++ [over.built]p15:
8454   //
8455   //   For every T, where T is an enumeration type or a pointer type,
8456   //   there exist candidate operator functions of the form
8457   //
8458   //        bool       operator<(T, T);
8459   //        bool       operator>(T, T);
8460   //        bool       operator<=(T, T);
8461   //        bool       operator>=(T, T);
8462   //        bool       operator==(T, T);
8463   //        bool       operator!=(T, T);
8464   //           R       operator<=>(T, T)
8465   void addGenericBinaryPointerOrEnumeralOverloads(bool IsSpaceship) {
8466     // C++ [over.match.oper]p3:
8467     //   [...]the built-in candidates include all of the candidate operator
8468     //   functions defined in 13.6 that, compared to the given operator, [...]
8469     //   do not have the same parameter-type-list as any non-template non-member
8470     //   candidate.
8471     //
8472     // Note that in practice, this only affects enumeration types because there
8473     // aren't any built-in candidates of record type, and a user-defined operator
8474     // must have an operand of record or enumeration type. Also, the only other
8475     // overloaded operator with enumeration arguments, operator=,
8476     // cannot be overloaded for enumeration types, so this is the only place
8477     // where we must suppress candidates like this.
8478     llvm::DenseSet<std::pair<CanQualType, CanQualType> >
8479       UserDefinedBinaryOperators;
8480 
8481     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8482       if (!CandidateTypes[ArgIdx].enumeration_types().empty()) {
8483         for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
8484                                          CEnd = CandidateSet.end();
8485              C != CEnd; ++C) {
8486           if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
8487             continue;
8488 
8489           if (C->Function->isFunctionTemplateSpecialization())
8490             continue;
8491 
8492           // We interpret "same parameter-type-list" as applying to the
8493           // "synthesized candidate, with the order of the two parameters
8494           // reversed", not to the original function.
8495           bool Reversed = C->isReversed();
8496           QualType FirstParamType = C->Function->getParamDecl(Reversed ? 1 : 0)
8497                                         ->getType()
8498                                         .getUnqualifiedType();
8499           QualType SecondParamType = C->Function->getParamDecl(Reversed ? 0 : 1)
8500                                          ->getType()
8501                                          .getUnqualifiedType();
8502 
8503           // Skip if either parameter isn't of enumeral type.
8504           if (!FirstParamType->isEnumeralType() ||
8505               !SecondParamType->isEnumeralType())
8506             continue;
8507 
8508           // Add this operator to the set of known user-defined operators.
8509           UserDefinedBinaryOperators.insert(
8510             std::make_pair(S.Context.getCanonicalType(FirstParamType),
8511                            S.Context.getCanonicalType(SecondParamType)));
8512         }
8513       }
8514     }
8515 
8516     /// Set of (canonical) types that we've already handled.
8517     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8518 
8519     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8520       for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) {
8521         // Don't add the same builtin candidate twice.
8522         if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second)
8523           continue;
8524         if (IsSpaceship && PtrTy->isFunctionPointerType())
8525           continue;
8526 
8527         QualType ParamTypes[2] = {PtrTy, PtrTy};
8528         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8529       }
8530       for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) {
8531         CanQualType CanonType = S.Context.getCanonicalType(EnumTy);
8532 
8533         // Don't add the same builtin candidate twice, or if a user defined
8534         // candidate exists.
8535         if (!AddedTypes.insert(CanonType).second ||
8536             UserDefinedBinaryOperators.count(std::make_pair(CanonType,
8537                                                             CanonType)))
8538           continue;
8539         QualType ParamTypes[2] = {EnumTy, EnumTy};
8540         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8541       }
8542     }
8543   }
8544 
8545   // C++ [over.built]p13:
8546   //
8547   //   For every cv-qualified or cv-unqualified object type T
8548   //   there exist candidate operator functions of the form
8549   //
8550   //      T*         operator+(T*, ptrdiff_t);
8551   //      T&         operator[](T*, ptrdiff_t);    [BELOW]
8552   //      T*         operator-(T*, ptrdiff_t);
8553   //      T*         operator+(ptrdiff_t, T*);
8554   //      T&         operator[](ptrdiff_t, T*);    [BELOW]
8555   //
8556   // C++ [over.built]p14:
8557   //
8558   //   For every T, where T is a pointer to object type, there
8559   //   exist candidate operator functions of the form
8560   //
8561   //      ptrdiff_t  operator-(T, T);
8562   void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
8563     /// Set of (canonical) types that we've already handled.
8564     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8565 
8566     for (int Arg = 0; Arg < 2; ++Arg) {
8567       QualType AsymmetricParamTypes[2] = {
8568         S.Context.getPointerDiffType(),
8569         S.Context.getPointerDiffType(),
8570       };
8571       for (QualType PtrTy : CandidateTypes[Arg].pointer_types()) {
8572         QualType PointeeTy = PtrTy->getPointeeType();
8573         if (!PointeeTy->isObjectType())
8574           continue;
8575 
8576         AsymmetricParamTypes[Arg] = PtrTy;
8577         if (Arg == 0 || Op == OO_Plus) {
8578           // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
8579           // T* operator+(ptrdiff_t, T*);
8580           S.AddBuiltinCandidate(AsymmetricParamTypes, Args, CandidateSet);
8581         }
8582         if (Op == OO_Minus) {
8583           // ptrdiff_t operator-(T, T);
8584           if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second)
8585             continue;
8586 
8587           QualType ParamTypes[2] = {PtrTy, PtrTy};
8588           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8589         }
8590       }
8591     }
8592   }
8593 
8594   // C++ [over.built]p12:
8595   //
8596   //   For every pair of promoted arithmetic types L and R, there
8597   //   exist candidate operator functions of the form
8598   //
8599   //        LR         operator*(L, R);
8600   //        LR         operator/(L, R);
8601   //        LR         operator+(L, R);
8602   //        LR         operator-(L, R);
8603   //        bool       operator<(L, R);
8604   //        bool       operator>(L, R);
8605   //        bool       operator<=(L, R);
8606   //        bool       operator>=(L, R);
8607   //        bool       operator==(L, R);
8608   //        bool       operator!=(L, R);
8609   //
8610   //   where LR is the result of the usual arithmetic conversions
8611   //   between types L and R.
8612   //
8613   // C++ [over.built]p24:
8614   //
8615   //   For every pair of promoted arithmetic types L and R, there exist
8616   //   candidate operator functions of the form
8617   //
8618   //        LR       operator?(bool, L, R);
8619   //
8620   //   where LR is the result of the usual arithmetic conversions
8621   //   between types L and R.
8622   // Our candidates ignore the first parameter.
8623   void addGenericBinaryArithmeticOverloads() {
8624     if (!HasArithmeticOrEnumeralCandidateType)
8625       return;
8626 
8627     for (unsigned Left = FirstPromotedArithmeticType;
8628          Left < LastPromotedArithmeticType; ++Left) {
8629       for (unsigned Right = FirstPromotedArithmeticType;
8630            Right < LastPromotedArithmeticType; ++Right) {
8631         QualType LandR[2] = { ArithmeticTypes[Left],
8632                               ArithmeticTypes[Right] };
8633         S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8634       }
8635     }
8636 
8637     // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
8638     // conditional operator for vector types.
8639     for (QualType Vec1Ty : CandidateTypes[0].vector_types())
8640       for (QualType Vec2Ty : CandidateTypes[1].vector_types()) {
8641         QualType LandR[2] = {Vec1Ty, Vec2Ty};
8642         S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8643       }
8644   }
8645 
8646   /// Add binary operator overloads for each candidate matrix type M1, M2:
8647   ///  * (M1, M1) -> M1
8648   ///  * (M1, M1.getElementType()) -> M1
8649   ///  * (M2.getElementType(), M2) -> M2
8650   ///  * (M2, M2) -> M2 // Only if M2 is not part of CandidateTypes[0].
8651   void addMatrixBinaryArithmeticOverloads() {
8652     if (!HasArithmeticOrEnumeralCandidateType)
8653       return;
8654 
8655     for (QualType M1 : CandidateTypes[0].matrix_types()) {
8656       AddCandidate(M1, cast<MatrixType>(M1)->getElementType());
8657       AddCandidate(M1, M1);
8658     }
8659 
8660     for (QualType M2 : CandidateTypes[1].matrix_types()) {
8661       AddCandidate(cast<MatrixType>(M2)->getElementType(), M2);
8662       if (!CandidateTypes[0].containsMatrixType(M2))
8663         AddCandidate(M2, M2);
8664     }
8665   }
8666 
8667   // C++2a [over.built]p14:
8668   //
8669   //   For every integral type T there exists a candidate operator function
8670   //   of the form
8671   //
8672   //        std::strong_ordering operator<=>(T, T)
8673   //
8674   // C++2a [over.built]p15:
8675   //
8676   //   For every pair of floating-point types L and R, there exists a candidate
8677   //   operator function of the form
8678   //
8679   //       std::partial_ordering operator<=>(L, R);
8680   //
8681   // FIXME: The current specification for integral types doesn't play nice with
8682   // the direction of p0946r0, which allows mixed integral and unscoped-enum
8683   // comparisons. Under the current spec this can lead to ambiguity during
8684   // overload resolution. For example:
8685   //
8686   //   enum A : int {a};
8687   //   auto x = (a <=> (long)42);
8688   //
8689   //   error: call is ambiguous for arguments 'A' and 'long'.
8690   //   note: candidate operator<=>(int, int)
8691   //   note: candidate operator<=>(long, long)
8692   //
8693   // To avoid this error, this function deviates from the specification and adds
8694   // the mixed overloads `operator<=>(L, R)` where L and R are promoted
8695   // arithmetic types (the same as the generic relational overloads).
8696   //
8697   // For now this function acts as a placeholder.
8698   void addThreeWayArithmeticOverloads() {
8699     addGenericBinaryArithmeticOverloads();
8700   }
8701 
8702   // C++ [over.built]p17:
8703   //
8704   //   For every pair of promoted integral types L and R, there
8705   //   exist candidate operator functions of the form
8706   //
8707   //      LR         operator%(L, R);
8708   //      LR         operator&(L, R);
8709   //      LR         operator^(L, R);
8710   //      LR         operator|(L, R);
8711   //      L          operator<<(L, R);
8712   //      L          operator>>(L, R);
8713   //
8714   //   where LR is the result of the usual arithmetic conversions
8715   //   between types L and R.
8716   void addBinaryBitwiseArithmeticOverloads() {
8717     if (!HasArithmeticOrEnumeralCandidateType)
8718       return;
8719 
8720     for (unsigned Left = FirstPromotedIntegralType;
8721          Left < LastPromotedIntegralType; ++Left) {
8722       for (unsigned Right = FirstPromotedIntegralType;
8723            Right < LastPromotedIntegralType; ++Right) {
8724         QualType LandR[2] = { ArithmeticTypes[Left],
8725                               ArithmeticTypes[Right] };
8726         S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8727       }
8728     }
8729   }
8730 
8731   // C++ [over.built]p20:
8732   //
8733   //   For every pair (T, VQ), where T is an enumeration or
8734   //   pointer to member type and VQ is either volatile or
8735   //   empty, there exist candidate operator functions of the form
8736   //
8737   //        VQ T&      operator=(VQ T&, T);
8738   void addAssignmentMemberPointerOrEnumeralOverloads() {
8739     /// Set of (canonical) types that we've already handled.
8740     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8741 
8742     for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
8743       for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) {
8744         if (!AddedTypes.insert(S.Context.getCanonicalType(EnumTy)).second)
8745           continue;
8746 
8747         AddBuiltinAssignmentOperatorCandidates(S, EnumTy, Args, CandidateSet);
8748       }
8749 
8750       for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) {
8751         if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second)
8752           continue;
8753 
8754         AddBuiltinAssignmentOperatorCandidates(S, MemPtrTy, Args, CandidateSet);
8755       }
8756     }
8757   }
8758 
8759   // C++ [over.built]p19:
8760   //
8761   //   For every pair (T, VQ), where T is any type and VQ is either
8762   //   volatile or empty, there exist candidate operator functions
8763   //   of the form
8764   //
8765   //        T*VQ&      operator=(T*VQ&, T*);
8766   //
8767   // C++ [over.built]p21:
8768   //
8769   //   For every pair (T, VQ), where T is a cv-qualified or
8770   //   cv-unqualified object type and VQ is either volatile or
8771   //   empty, there exist candidate operator functions of the form
8772   //
8773   //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
8774   //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
8775   void addAssignmentPointerOverloads(bool isEqualOp) {
8776     /// Set of (canonical) types that we've already handled.
8777     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8778 
8779     for (QualType PtrTy : CandidateTypes[0].pointer_types()) {
8780       // If this is operator=, keep track of the builtin candidates we added.
8781       if (isEqualOp)
8782         AddedTypes.insert(S.Context.getCanonicalType(PtrTy));
8783       else if (!PtrTy->getPointeeType()->isObjectType())
8784         continue;
8785 
8786       // non-volatile version
8787       QualType ParamTypes[2] = {
8788           S.Context.getLValueReferenceType(PtrTy),
8789           isEqualOp ? PtrTy : S.Context.getPointerDiffType(),
8790       };
8791       S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8792                             /*IsAssignmentOperator=*/ isEqualOp);
8793 
8794       bool NeedVolatile = !PtrTy.isVolatileQualified() &&
8795                           VisibleTypeConversionsQuals.hasVolatile();
8796       if (NeedVolatile) {
8797         // volatile version
8798         ParamTypes[0] =
8799             S.Context.getLValueReferenceType(S.Context.getVolatileType(PtrTy));
8800         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8801                               /*IsAssignmentOperator=*/isEqualOp);
8802       }
8803 
8804       if (!PtrTy.isRestrictQualified() &&
8805           VisibleTypeConversionsQuals.hasRestrict()) {
8806         // restrict version
8807         ParamTypes[0] =
8808             S.Context.getLValueReferenceType(S.Context.getRestrictType(PtrTy));
8809         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8810                               /*IsAssignmentOperator=*/isEqualOp);
8811 
8812         if (NeedVolatile) {
8813           // volatile restrict version
8814           ParamTypes[0] =
8815               S.Context.getLValueReferenceType(S.Context.getCVRQualifiedType(
8816                   PtrTy, (Qualifiers::Volatile | Qualifiers::Restrict)));
8817           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8818                                 /*IsAssignmentOperator=*/isEqualOp);
8819         }
8820       }
8821     }
8822 
8823     if (isEqualOp) {
8824       for (QualType PtrTy : CandidateTypes[1].pointer_types()) {
8825         // Make sure we don't add the same candidate twice.
8826         if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second)
8827           continue;
8828 
8829         QualType ParamTypes[2] = {
8830             S.Context.getLValueReferenceType(PtrTy),
8831             PtrTy,
8832         };
8833 
8834         // non-volatile version
8835         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8836                               /*IsAssignmentOperator=*/true);
8837 
8838         bool NeedVolatile = !PtrTy.isVolatileQualified() &&
8839                             VisibleTypeConversionsQuals.hasVolatile();
8840         if (NeedVolatile) {
8841           // volatile version
8842           ParamTypes[0] = S.Context.getLValueReferenceType(
8843               S.Context.getVolatileType(PtrTy));
8844           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8845                                 /*IsAssignmentOperator=*/true);
8846         }
8847 
8848         if (!PtrTy.isRestrictQualified() &&
8849             VisibleTypeConversionsQuals.hasRestrict()) {
8850           // restrict version
8851           ParamTypes[0] = S.Context.getLValueReferenceType(
8852               S.Context.getRestrictType(PtrTy));
8853           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8854                                 /*IsAssignmentOperator=*/true);
8855 
8856           if (NeedVolatile) {
8857             // volatile restrict version
8858             ParamTypes[0] =
8859                 S.Context.getLValueReferenceType(S.Context.getCVRQualifiedType(
8860                     PtrTy, (Qualifiers::Volatile | Qualifiers::Restrict)));
8861             S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8862                                   /*IsAssignmentOperator=*/true);
8863           }
8864         }
8865       }
8866     }
8867   }
8868 
8869   // C++ [over.built]p18:
8870   //
8871   //   For every triple (L, VQ, R), where L is an arithmetic type,
8872   //   VQ is either volatile or empty, and R is a promoted
8873   //   arithmetic type, there exist candidate operator functions of
8874   //   the form
8875   //
8876   //        VQ L&      operator=(VQ L&, R);
8877   //        VQ L&      operator*=(VQ L&, R);
8878   //        VQ L&      operator/=(VQ L&, R);
8879   //        VQ L&      operator+=(VQ L&, R);
8880   //        VQ L&      operator-=(VQ L&, R);
8881   void addAssignmentArithmeticOverloads(bool isEqualOp) {
8882     if (!HasArithmeticOrEnumeralCandidateType)
8883       return;
8884 
8885     for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
8886       for (unsigned Right = FirstPromotedArithmeticType;
8887            Right < LastPromotedArithmeticType; ++Right) {
8888         QualType ParamTypes[2];
8889         ParamTypes[1] = ArithmeticTypes[Right];
8890         auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType(
8891             S, ArithmeticTypes[Left], Args[0]);
8892         // Add this built-in operator as a candidate (VQ is empty).
8893         ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy);
8894         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8895                               /*IsAssignmentOperator=*/isEqualOp);
8896 
8897         // Add this built-in operator as a candidate (VQ is 'volatile').
8898         if (VisibleTypeConversionsQuals.hasVolatile()) {
8899           ParamTypes[0] = S.Context.getVolatileType(LeftBaseTy);
8900           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8901           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8902                                 /*IsAssignmentOperator=*/isEqualOp);
8903         }
8904       }
8905     }
8906 
8907     // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
8908     for (QualType Vec1Ty : CandidateTypes[0].vector_types())
8909       for (QualType Vec2Ty : CandidateTypes[0].vector_types()) {
8910         QualType ParamTypes[2];
8911         ParamTypes[1] = Vec2Ty;
8912         // Add this built-in operator as a candidate (VQ is empty).
8913         ParamTypes[0] = S.Context.getLValueReferenceType(Vec1Ty);
8914         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8915                               /*IsAssignmentOperator=*/isEqualOp);
8916 
8917         // Add this built-in operator as a candidate (VQ is 'volatile').
8918         if (VisibleTypeConversionsQuals.hasVolatile()) {
8919           ParamTypes[0] = S.Context.getVolatileType(Vec1Ty);
8920           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8921           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8922                                 /*IsAssignmentOperator=*/isEqualOp);
8923         }
8924       }
8925   }
8926 
8927   // C++ [over.built]p22:
8928   //
8929   //   For every triple (L, VQ, R), where L is an integral type, VQ
8930   //   is either volatile or empty, and R is a promoted integral
8931   //   type, there exist candidate operator functions of the form
8932   //
8933   //        VQ L&       operator%=(VQ L&, R);
8934   //        VQ L&       operator<<=(VQ L&, R);
8935   //        VQ L&       operator>>=(VQ L&, R);
8936   //        VQ L&       operator&=(VQ L&, R);
8937   //        VQ L&       operator^=(VQ L&, R);
8938   //        VQ L&       operator|=(VQ L&, R);
8939   void addAssignmentIntegralOverloads() {
8940     if (!HasArithmeticOrEnumeralCandidateType)
8941       return;
8942 
8943     for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
8944       for (unsigned Right = FirstPromotedIntegralType;
8945            Right < LastPromotedIntegralType; ++Right) {
8946         QualType ParamTypes[2];
8947         ParamTypes[1] = ArithmeticTypes[Right];
8948         auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType(
8949             S, ArithmeticTypes[Left], Args[0]);
8950         // Add this built-in operator as a candidate (VQ is empty).
8951         ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy);
8952         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8953         if (VisibleTypeConversionsQuals.hasVolatile()) {
8954           // Add this built-in operator as a candidate (VQ is 'volatile').
8955           ParamTypes[0] = LeftBaseTy;
8956           ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
8957           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8958           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8959         }
8960       }
8961     }
8962   }
8963 
8964   // C++ [over.operator]p23:
8965   //
8966   //   There also exist candidate operator functions of the form
8967   //
8968   //        bool        operator!(bool);
8969   //        bool        operator&&(bool, bool);
8970   //        bool        operator||(bool, bool);
8971   void addExclaimOverload() {
8972     QualType ParamTy = S.Context.BoolTy;
8973     S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet,
8974                           /*IsAssignmentOperator=*/false,
8975                           /*NumContextualBoolArguments=*/1);
8976   }
8977   void addAmpAmpOrPipePipeOverload() {
8978     QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
8979     S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8980                           /*IsAssignmentOperator=*/false,
8981                           /*NumContextualBoolArguments=*/2);
8982   }
8983 
8984   // C++ [over.built]p13:
8985   //
8986   //   For every cv-qualified or cv-unqualified object type T there
8987   //   exist candidate operator functions of the form
8988   //
8989   //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
8990   //        T&         operator[](T*, ptrdiff_t);
8991   //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
8992   //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
8993   //        T&         operator[](ptrdiff_t, T*);
8994   void addSubscriptOverloads() {
8995     for (QualType PtrTy : CandidateTypes[0].pointer_types()) {
8996       QualType ParamTypes[2] = {PtrTy, S.Context.getPointerDiffType()};
8997       QualType PointeeType = PtrTy->getPointeeType();
8998       if (!PointeeType->isObjectType())
8999         continue;
9000 
9001       // T& operator[](T*, ptrdiff_t)
9002       S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9003     }
9004 
9005     for (QualType PtrTy : CandidateTypes[1].pointer_types()) {
9006       QualType ParamTypes[2] = {S.Context.getPointerDiffType(), PtrTy};
9007       QualType PointeeType = PtrTy->getPointeeType();
9008       if (!PointeeType->isObjectType())
9009         continue;
9010 
9011       // T& operator[](ptrdiff_t, T*)
9012       S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9013     }
9014   }
9015 
9016   // C++ [over.built]p11:
9017   //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
9018   //    C1 is the same type as C2 or is a derived class of C2, T is an object
9019   //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
9020   //    there exist candidate operator functions of the form
9021   //
9022   //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
9023   //
9024   //    where CV12 is the union of CV1 and CV2.
9025   void addArrowStarOverloads() {
9026     for (QualType PtrTy : CandidateTypes[0].pointer_types()) {
9027       QualType C1Ty = PtrTy;
9028       QualType C1;
9029       QualifierCollector Q1;
9030       C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
9031       if (!isa<RecordType>(C1))
9032         continue;
9033       // heuristic to reduce number of builtin candidates in the set.
9034       // Add volatile/restrict version only if there are conversions to a
9035       // volatile/restrict type.
9036       if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
9037         continue;
9038       if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
9039         continue;
9040       for (QualType MemPtrTy : CandidateTypes[1].member_pointer_types()) {
9041         const MemberPointerType *mptr = cast<MemberPointerType>(MemPtrTy);
9042         QualType C2 = QualType(mptr->getClass(), 0);
9043         C2 = C2.getUnqualifiedType();
9044         if (C1 != C2 && !S.IsDerivedFrom(CandidateSet.getLocation(), C1, C2))
9045           break;
9046         QualType ParamTypes[2] = {PtrTy, MemPtrTy};
9047         // build CV12 T&
9048         QualType T = mptr->getPointeeType();
9049         if (!VisibleTypeConversionsQuals.hasVolatile() &&
9050             T.isVolatileQualified())
9051           continue;
9052         if (!VisibleTypeConversionsQuals.hasRestrict() &&
9053             T.isRestrictQualified())
9054           continue;
9055         T = Q1.apply(S.Context, T);
9056         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9057       }
9058     }
9059   }
9060 
9061   // Note that we don't consider the first argument, since it has been
9062   // contextually converted to bool long ago. The candidates below are
9063   // therefore added as binary.
9064   //
9065   // C++ [over.built]p25:
9066   //   For every type T, where T is a pointer, pointer-to-member, or scoped
9067   //   enumeration type, there exist candidate operator functions of the form
9068   //
9069   //        T        operator?(bool, T, T);
9070   //
9071   void addConditionalOperatorOverloads() {
9072     /// Set of (canonical) types that we've already handled.
9073     llvm::SmallPtrSet<QualType, 8> AddedTypes;
9074 
9075     for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
9076       for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) {
9077         if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second)
9078           continue;
9079 
9080         QualType ParamTypes[2] = {PtrTy, PtrTy};
9081         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9082       }
9083 
9084       for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) {
9085         if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second)
9086           continue;
9087 
9088         QualType ParamTypes[2] = {MemPtrTy, MemPtrTy};
9089         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9090       }
9091 
9092       if (S.getLangOpts().CPlusPlus11) {
9093         for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) {
9094           if (!EnumTy->castAs<EnumType>()->getDecl()->isScoped())
9095             continue;
9096 
9097           if (!AddedTypes.insert(S.Context.getCanonicalType(EnumTy)).second)
9098             continue;
9099 
9100           QualType ParamTypes[2] = {EnumTy, EnumTy};
9101           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9102         }
9103       }
9104     }
9105   }
9106 };
9107 
9108 } // end anonymous namespace
9109 
9110 /// AddBuiltinOperatorCandidates - Add the appropriate built-in
9111 /// operator overloads to the candidate set (C++ [over.built]), based
9112 /// on the operator @p Op and the arguments given. For example, if the
9113 /// operator is a binary '+', this routine might add "int
9114 /// operator+(int, int)" to cover integer addition.
9115 void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
9116                                         SourceLocation OpLoc,
9117                                         ArrayRef<Expr *> Args,
9118                                         OverloadCandidateSet &CandidateSet) {
9119   // Find all of the types that the arguments can convert to, but only
9120   // if the operator we're looking at has built-in operator candidates
9121   // that make use of these types. Also record whether we encounter non-record
9122   // candidate types or either arithmetic or enumeral candidate types.
9123   Qualifiers VisibleTypeConversionsQuals;
9124   VisibleTypeConversionsQuals.addConst();
9125   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
9126     VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
9127 
9128   bool HasNonRecordCandidateType = false;
9129   bool HasArithmeticOrEnumeralCandidateType = false;
9130   SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
9131   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
9132     CandidateTypes.emplace_back(*this);
9133     CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
9134                                                  OpLoc,
9135                                                  true,
9136                                                  (Op == OO_Exclaim ||
9137                                                   Op == OO_AmpAmp ||
9138                                                   Op == OO_PipePipe),
9139                                                  VisibleTypeConversionsQuals);
9140     HasNonRecordCandidateType = HasNonRecordCandidateType ||
9141         CandidateTypes[ArgIdx].hasNonRecordTypes();
9142     HasArithmeticOrEnumeralCandidateType =
9143         HasArithmeticOrEnumeralCandidateType ||
9144         CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
9145   }
9146 
9147   // Exit early when no non-record types have been added to the candidate set
9148   // for any of the arguments to the operator.
9149   //
9150   // We can't exit early for !, ||, or &&, since there we have always have
9151   // 'bool' overloads.
9152   if (!HasNonRecordCandidateType &&
9153       !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
9154     return;
9155 
9156   // Setup an object to manage the common state for building overloads.
9157   BuiltinOperatorOverloadBuilder OpBuilder(*this, Args,
9158                                            VisibleTypeConversionsQuals,
9159                                            HasArithmeticOrEnumeralCandidateType,
9160                                            CandidateTypes, CandidateSet);
9161 
9162   // Dispatch over the operation to add in only those overloads which apply.
9163   switch (Op) {
9164   case OO_None:
9165   case NUM_OVERLOADED_OPERATORS:
9166     llvm_unreachable("Expected an overloaded operator");
9167 
9168   case OO_New:
9169   case OO_Delete:
9170   case OO_Array_New:
9171   case OO_Array_Delete:
9172   case OO_Call:
9173     llvm_unreachable(
9174                     "Special operators don't use AddBuiltinOperatorCandidates");
9175 
9176   case OO_Comma:
9177   case OO_Arrow:
9178   case OO_Coawait:
9179     // C++ [over.match.oper]p3:
9180     //   -- For the operator ',', the unary operator '&', the
9181     //      operator '->', or the operator 'co_await', the
9182     //      built-in candidates set is empty.
9183     break;
9184 
9185   case OO_Plus: // '+' is either unary or binary
9186     if (Args.size() == 1)
9187       OpBuilder.addUnaryPlusPointerOverloads();
9188     LLVM_FALLTHROUGH;
9189 
9190   case OO_Minus: // '-' is either unary or binary
9191     if (Args.size() == 1) {
9192       OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
9193     } else {
9194       OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
9195       OpBuilder.addGenericBinaryArithmeticOverloads();
9196       OpBuilder.addMatrixBinaryArithmeticOverloads();
9197     }
9198     break;
9199 
9200   case OO_Star: // '*' is either unary or binary
9201     if (Args.size() == 1)
9202       OpBuilder.addUnaryStarPointerOverloads();
9203     else {
9204       OpBuilder.addGenericBinaryArithmeticOverloads();
9205       OpBuilder.addMatrixBinaryArithmeticOverloads();
9206     }
9207     break;
9208 
9209   case OO_Slash:
9210     OpBuilder.addGenericBinaryArithmeticOverloads();
9211     break;
9212 
9213   case OO_PlusPlus:
9214   case OO_MinusMinus:
9215     OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
9216     OpBuilder.addPlusPlusMinusMinusPointerOverloads();
9217     break;
9218 
9219   case OO_EqualEqual:
9220   case OO_ExclaimEqual:
9221     OpBuilder.addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads();
9222     OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/false);
9223     OpBuilder.addGenericBinaryArithmeticOverloads();
9224     break;
9225 
9226   case OO_Less:
9227   case OO_Greater:
9228   case OO_LessEqual:
9229   case OO_GreaterEqual:
9230     OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/false);
9231     OpBuilder.addGenericBinaryArithmeticOverloads();
9232     break;
9233 
9234   case OO_Spaceship:
9235     OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/true);
9236     OpBuilder.addThreeWayArithmeticOverloads();
9237     break;
9238 
9239   case OO_Percent:
9240   case OO_Caret:
9241   case OO_Pipe:
9242   case OO_LessLess:
9243   case OO_GreaterGreater:
9244     OpBuilder.addBinaryBitwiseArithmeticOverloads();
9245     break;
9246 
9247   case OO_Amp: // '&' is either unary or binary
9248     if (Args.size() == 1)
9249       // C++ [over.match.oper]p3:
9250       //   -- For the operator ',', the unary operator '&', or the
9251       //      operator '->', the built-in candidates set is empty.
9252       break;
9253 
9254     OpBuilder.addBinaryBitwiseArithmeticOverloads();
9255     break;
9256 
9257   case OO_Tilde:
9258     OpBuilder.addUnaryTildePromotedIntegralOverloads();
9259     break;
9260 
9261   case OO_Equal:
9262     OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
9263     LLVM_FALLTHROUGH;
9264 
9265   case OO_PlusEqual:
9266   case OO_MinusEqual:
9267     OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
9268     LLVM_FALLTHROUGH;
9269 
9270   case OO_StarEqual:
9271   case OO_SlashEqual:
9272     OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
9273     break;
9274 
9275   case OO_PercentEqual:
9276   case OO_LessLessEqual:
9277   case OO_GreaterGreaterEqual:
9278   case OO_AmpEqual:
9279   case OO_CaretEqual:
9280   case OO_PipeEqual:
9281     OpBuilder.addAssignmentIntegralOverloads();
9282     break;
9283 
9284   case OO_Exclaim:
9285     OpBuilder.addExclaimOverload();
9286     break;
9287 
9288   case OO_AmpAmp:
9289   case OO_PipePipe:
9290     OpBuilder.addAmpAmpOrPipePipeOverload();
9291     break;
9292 
9293   case OO_Subscript:
9294     OpBuilder.addSubscriptOverloads();
9295     break;
9296 
9297   case OO_ArrowStar:
9298     OpBuilder.addArrowStarOverloads();
9299     break;
9300 
9301   case OO_Conditional:
9302     OpBuilder.addConditionalOperatorOverloads();
9303     OpBuilder.addGenericBinaryArithmeticOverloads();
9304     break;
9305   }
9306 }
9307 
9308 /// Add function candidates found via argument-dependent lookup
9309 /// to the set of overloading candidates.
9310 ///
9311 /// This routine performs argument-dependent name lookup based on the
9312 /// given function name (which may also be an operator name) and adds
9313 /// all of the overload candidates found by ADL to the overload
9314 /// candidate set (C++ [basic.lookup.argdep]).
9315 void
9316 Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
9317                                            SourceLocation Loc,
9318                                            ArrayRef<Expr *> Args,
9319                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
9320                                            OverloadCandidateSet& CandidateSet,
9321                                            bool PartialOverloading) {
9322   ADLResult Fns;
9323 
9324   // FIXME: This approach for uniquing ADL results (and removing
9325   // redundant candidates from the set) relies on pointer-equality,
9326   // which means we need to key off the canonical decl.  However,
9327   // always going back to the canonical decl might not get us the
9328   // right set of default arguments.  What default arguments are
9329   // we supposed to consider on ADL candidates, anyway?
9330 
9331   // FIXME: Pass in the explicit template arguments?
9332   ArgumentDependentLookup(Name, Loc, Args, Fns);
9333 
9334   // Erase all of the candidates we already knew about.
9335   for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
9336                                    CandEnd = CandidateSet.end();
9337        Cand != CandEnd; ++Cand)
9338     if (Cand->Function) {
9339       Fns.erase(Cand->Function);
9340       if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
9341         Fns.erase(FunTmpl);
9342     }
9343 
9344   // For each of the ADL candidates we found, add it to the overload
9345   // set.
9346   for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
9347     DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
9348 
9349     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
9350       if (ExplicitTemplateArgs)
9351         continue;
9352 
9353       AddOverloadCandidate(
9354           FD, FoundDecl, Args, CandidateSet, /*SuppressUserConversions=*/false,
9355           PartialOverloading, /*AllowExplicit=*/true,
9356           /*AllowExplicitConversions=*/false, ADLCallKind::UsesADL);
9357       if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD)) {
9358         AddOverloadCandidate(
9359             FD, FoundDecl, {Args[1], Args[0]}, CandidateSet,
9360             /*SuppressUserConversions=*/false, PartialOverloading,
9361             /*AllowExplicit=*/true, /*AllowExplicitConversions=*/false,
9362             ADLCallKind::UsesADL, None, OverloadCandidateParamOrder::Reversed);
9363       }
9364     } else {
9365       auto *FTD = cast<FunctionTemplateDecl>(*I);
9366       AddTemplateOverloadCandidate(
9367           FTD, FoundDecl, ExplicitTemplateArgs, Args, CandidateSet,
9368           /*SuppressUserConversions=*/false, PartialOverloading,
9369           /*AllowExplicit=*/true, ADLCallKind::UsesADL);
9370       if (CandidateSet.getRewriteInfo().shouldAddReversed(
9371               Context, FTD->getTemplatedDecl())) {
9372         AddTemplateOverloadCandidate(
9373             FTD, FoundDecl, ExplicitTemplateArgs, {Args[1], Args[0]},
9374             CandidateSet, /*SuppressUserConversions=*/false, PartialOverloading,
9375             /*AllowExplicit=*/true, ADLCallKind::UsesADL,
9376             OverloadCandidateParamOrder::Reversed);
9377       }
9378     }
9379   }
9380 }
9381 
9382 namespace {
9383 enum class Comparison { Equal, Better, Worse };
9384 }
9385 
9386 /// Compares the enable_if attributes of two FunctionDecls, for the purposes of
9387 /// overload resolution.
9388 ///
9389 /// Cand1's set of enable_if attributes are said to be "better" than Cand2's iff
9390 /// Cand1's first N enable_if attributes have precisely the same conditions as
9391 /// Cand2's first N enable_if attributes (where N = the number of enable_if
9392 /// attributes on Cand2), and Cand1 has more than N enable_if attributes.
9393 ///
9394 /// Note that you can have a pair of candidates such that Cand1's enable_if
9395 /// attributes are worse than Cand2's, and Cand2's enable_if attributes are
9396 /// worse than Cand1's.
9397 static Comparison compareEnableIfAttrs(const Sema &S, const FunctionDecl *Cand1,
9398                                        const FunctionDecl *Cand2) {
9399   // Common case: One (or both) decls don't have enable_if attrs.
9400   bool Cand1Attr = Cand1->hasAttr<EnableIfAttr>();
9401   bool Cand2Attr = Cand2->hasAttr<EnableIfAttr>();
9402   if (!Cand1Attr || !Cand2Attr) {
9403     if (Cand1Attr == Cand2Attr)
9404       return Comparison::Equal;
9405     return Cand1Attr ? Comparison::Better : Comparison::Worse;
9406   }
9407 
9408   auto Cand1Attrs = Cand1->specific_attrs<EnableIfAttr>();
9409   auto Cand2Attrs = Cand2->specific_attrs<EnableIfAttr>();
9410 
9411   llvm::FoldingSetNodeID Cand1ID, Cand2ID;
9412   for (auto Pair : zip_longest(Cand1Attrs, Cand2Attrs)) {
9413     Optional<EnableIfAttr *> Cand1A = std::get<0>(Pair);
9414     Optional<EnableIfAttr *> Cand2A = std::get<1>(Pair);
9415 
9416     // It's impossible for Cand1 to be better than (or equal to) Cand2 if Cand1
9417     // has fewer enable_if attributes than Cand2, and vice versa.
9418     if (!Cand1A)
9419       return Comparison::Worse;
9420     if (!Cand2A)
9421       return Comparison::Better;
9422 
9423     Cand1ID.clear();
9424     Cand2ID.clear();
9425 
9426     (*Cand1A)->getCond()->Profile(Cand1ID, S.getASTContext(), true);
9427     (*Cand2A)->getCond()->Profile(Cand2ID, S.getASTContext(), true);
9428     if (Cand1ID != Cand2ID)
9429       return Comparison::Worse;
9430   }
9431 
9432   return Comparison::Equal;
9433 }
9434 
9435 static Comparison
9436 isBetterMultiversionCandidate(const OverloadCandidate &Cand1,
9437                               const OverloadCandidate &Cand2) {
9438   if (!Cand1.Function || !Cand1.Function->isMultiVersion() || !Cand2.Function ||
9439       !Cand2.Function->isMultiVersion())
9440     return Comparison::Equal;
9441 
9442   // If both are invalid, they are equal. If one of them is invalid, the other
9443   // is better.
9444   if (Cand1.Function->isInvalidDecl()) {
9445     if (Cand2.Function->isInvalidDecl())
9446       return Comparison::Equal;
9447     return Comparison::Worse;
9448   }
9449   if (Cand2.Function->isInvalidDecl())
9450     return Comparison::Better;
9451 
9452   // If this is a cpu_dispatch/cpu_specific multiversion situation, prefer
9453   // cpu_dispatch, else arbitrarily based on the identifiers.
9454   bool Cand1CPUDisp = Cand1.Function->hasAttr<CPUDispatchAttr>();
9455   bool Cand2CPUDisp = Cand2.Function->hasAttr<CPUDispatchAttr>();
9456   const auto *Cand1CPUSpec = Cand1.Function->getAttr<CPUSpecificAttr>();
9457   const auto *Cand2CPUSpec = Cand2.Function->getAttr<CPUSpecificAttr>();
9458 
9459   if (!Cand1CPUDisp && !Cand2CPUDisp && !Cand1CPUSpec && !Cand2CPUSpec)
9460     return Comparison::Equal;
9461 
9462   if (Cand1CPUDisp && !Cand2CPUDisp)
9463     return Comparison::Better;
9464   if (Cand2CPUDisp && !Cand1CPUDisp)
9465     return Comparison::Worse;
9466 
9467   if (Cand1CPUSpec && Cand2CPUSpec) {
9468     if (Cand1CPUSpec->cpus_size() != Cand2CPUSpec->cpus_size())
9469       return Cand1CPUSpec->cpus_size() < Cand2CPUSpec->cpus_size()
9470                  ? Comparison::Better
9471                  : Comparison::Worse;
9472 
9473     std::pair<CPUSpecificAttr::cpus_iterator, CPUSpecificAttr::cpus_iterator>
9474         FirstDiff = std::mismatch(
9475             Cand1CPUSpec->cpus_begin(), Cand1CPUSpec->cpus_end(),
9476             Cand2CPUSpec->cpus_begin(),
9477             [](const IdentifierInfo *LHS, const IdentifierInfo *RHS) {
9478               return LHS->getName() == RHS->getName();
9479             });
9480 
9481     assert(FirstDiff.first != Cand1CPUSpec->cpus_end() &&
9482            "Two different cpu-specific versions should not have the same "
9483            "identifier list, otherwise they'd be the same decl!");
9484     return (*FirstDiff.first)->getName() < (*FirstDiff.second)->getName()
9485                ? Comparison::Better
9486                : Comparison::Worse;
9487   }
9488   llvm_unreachable("No way to get here unless both had cpu_dispatch");
9489 }
9490 
9491 /// Compute the type of the implicit object parameter for the given function,
9492 /// if any. Returns None if there is no implicit object parameter, and a null
9493 /// QualType if there is a 'matches anything' implicit object parameter.
9494 static Optional<QualType> getImplicitObjectParamType(ASTContext &Context,
9495                                                      const FunctionDecl *F) {
9496   if (!isa<CXXMethodDecl>(F) || isa<CXXConstructorDecl>(F))
9497     return llvm::None;
9498 
9499   auto *M = cast<CXXMethodDecl>(F);
9500   // Static member functions' object parameters match all types.
9501   if (M->isStatic())
9502     return QualType();
9503 
9504   QualType T = M->getThisObjectType();
9505   if (M->getRefQualifier() == RQ_RValue)
9506     return Context.getRValueReferenceType(T);
9507   return Context.getLValueReferenceType(T);
9508 }
9509 
9510 static bool haveSameParameterTypes(ASTContext &Context, const FunctionDecl *F1,
9511                                    const FunctionDecl *F2, unsigned NumParams) {
9512   if (declaresSameEntity(F1, F2))
9513     return true;
9514 
9515   auto NextParam = [&](const FunctionDecl *F, unsigned &I, bool First) {
9516     if (First) {
9517       if (Optional<QualType> T = getImplicitObjectParamType(Context, F))
9518         return *T;
9519     }
9520     assert(I < F->getNumParams());
9521     return F->getParamDecl(I++)->getType();
9522   };
9523 
9524   unsigned I1 = 0, I2 = 0;
9525   for (unsigned I = 0; I != NumParams; ++I) {
9526     QualType T1 = NextParam(F1, I1, I == 0);
9527     QualType T2 = NextParam(F2, I2, I == 0);
9528     if (!T1.isNull() && !T1.isNull() && !Context.hasSameUnqualifiedType(T1, T2))
9529       return false;
9530   }
9531   return true;
9532 }
9533 
9534 /// isBetterOverloadCandidate - Determines whether the first overload
9535 /// candidate is a better candidate than the second (C++ 13.3.3p1).
9536 bool clang::isBetterOverloadCandidate(
9537     Sema &S, const OverloadCandidate &Cand1, const OverloadCandidate &Cand2,
9538     SourceLocation Loc, OverloadCandidateSet::CandidateSetKind Kind) {
9539   // Define viable functions to be better candidates than non-viable
9540   // functions.
9541   if (!Cand2.Viable)
9542     return Cand1.Viable;
9543   else if (!Cand1.Viable)
9544     return false;
9545 
9546   // [CUDA] A function with 'never' preference is marked not viable, therefore
9547   // is never shown up here. The worst preference shown up here is 'wrong side',
9548   // e.g. an H function called by a HD function in device compilation. This is
9549   // valid AST as long as the HD function is not emitted, e.g. it is an inline
9550   // function which is called only by an H function. A deferred diagnostic will
9551   // be triggered if it is emitted. However a wrong-sided function is still
9552   // a viable candidate here.
9553   //
9554   // If Cand1 can be emitted and Cand2 cannot be emitted in the current
9555   // context, Cand1 is better than Cand2. If Cand1 can not be emitted and Cand2
9556   // can be emitted, Cand1 is not better than Cand2. This rule should have
9557   // precedence over other rules.
9558   //
9559   // If both Cand1 and Cand2 can be emitted, or neither can be emitted, then
9560   // other rules should be used to determine which is better. This is because
9561   // host/device based overloading resolution is mostly for determining
9562   // viability of a function. If two functions are both viable, other factors
9563   // should take precedence in preference, e.g. the standard-defined preferences
9564   // like argument conversion ranks or enable_if partial-ordering. The
9565   // preference for pass-object-size parameters is probably most similar to a
9566   // type-based-overloading decision and so should take priority.
9567   //
9568   // If other rules cannot determine which is better, CUDA preference will be
9569   // used again to determine which is better.
9570   //
9571   // TODO: Currently IdentifyCUDAPreference does not return correct values
9572   // for functions called in global variable initializers due to missing
9573   // correct context about device/host. Therefore we can only enforce this
9574   // rule when there is a caller. We should enforce this rule for functions
9575   // in global variable initializers once proper context is added.
9576   //
9577   // TODO: We can only enable the hostness based overloading resolution when
9578   // -fgpu-exclude-wrong-side-overloads is on since this requires deferring
9579   // overloading resolution diagnostics.
9580   if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function &&
9581       S.getLangOpts().GPUExcludeWrongSideOverloads) {
9582     if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext)) {
9583       bool IsCallerImplicitHD = Sema::isCUDAImplicitHostDeviceFunction(Caller);
9584       bool IsCand1ImplicitHD =
9585           Sema::isCUDAImplicitHostDeviceFunction(Cand1.Function);
9586       bool IsCand2ImplicitHD =
9587           Sema::isCUDAImplicitHostDeviceFunction(Cand2.Function);
9588       auto P1 = S.IdentifyCUDAPreference(Caller, Cand1.Function);
9589       auto P2 = S.IdentifyCUDAPreference(Caller, Cand2.Function);
9590       assert(P1 != Sema::CFP_Never && P2 != Sema::CFP_Never);
9591       // The implicit HD function may be a function in a system header which
9592       // is forced by pragma. In device compilation, if we prefer HD candidates
9593       // over wrong-sided candidates, overloading resolution may change, which
9594       // may result in non-deferrable diagnostics. As a workaround, we let
9595       // implicit HD candidates take equal preference as wrong-sided candidates.
9596       // This will preserve the overloading resolution.
9597       // TODO: We still need special handling of implicit HD functions since
9598       // they may incur other diagnostics to be deferred. We should make all
9599       // host/device related diagnostics deferrable and remove special handling
9600       // of implicit HD functions.
9601       auto EmitThreshold =
9602           (S.getLangOpts().CUDAIsDevice && IsCallerImplicitHD &&
9603            (IsCand1ImplicitHD || IsCand2ImplicitHD))
9604               ? Sema::CFP_Never
9605               : Sema::CFP_WrongSide;
9606       auto Cand1Emittable = P1 > EmitThreshold;
9607       auto Cand2Emittable = P2 > EmitThreshold;
9608       if (Cand1Emittable && !Cand2Emittable)
9609         return true;
9610       if (!Cand1Emittable && Cand2Emittable)
9611         return false;
9612     }
9613   }
9614 
9615   // C++ [over.match.best]p1:
9616   //
9617   //   -- if F is a static member function, ICS1(F) is defined such
9618   //      that ICS1(F) is neither better nor worse than ICS1(G) for
9619   //      any function G, and, symmetrically, ICS1(G) is neither
9620   //      better nor worse than ICS1(F).
9621   unsigned StartArg = 0;
9622   if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
9623     StartArg = 1;
9624 
9625   auto IsIllFormedConversion = [&](const ImplicitConversionSequence &ICS) {
9626     // We don't allow incompatible pointer conversions in C++.
9627     if (!S.getLangOpts().CPlusPlus)
9628       return ICS.isStandard() &&
9629              ICS.Standard.Second == ICK_Incompatible_Pointer_Conversion;
9630 
9631     // The only ill-formed conversion we allow in C++ is the string literal to
9632     // char* conversion, which is only considered ill-formed after C++11.
9633     return S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
9634            hasDeprecatedStringLiteralToCharPtrConversion(ICS);
9635   };
9636 
9637   // Define functions that don't require ill-formed conversions for a given
9638   // argument to be better candidates than functions that do.
9639   unsigned NumArgs = Cand1.Conversions.size();
9640   assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
9641   bool HasBetterConversion = false;
9642   for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
9643     bool Cand1Bad = IsIllFormedConversion(Cand1.Conversions[ArgIdx]);
9644     bool Cand2Bad = IsIllFormedConversion(Cand2.Conversions[ArgIdx]);
9645     if (Cand1Bad != Cand2Bad) {
9646       if (Cand1Bad)
9647         return false;
9648       HasBetterConversion = true;
9649     }
9650   }
9651 
9652   if (HasBetterConversion)
9653     return true;
9654 
9655   // C++ [over.match.best]p1:
9656   //   A viable function F1 is defined to be a better function than another
9657   //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
9658   //   conversion sequence than ICSi(F2), and then...
9659   bool HasWorseConversion = false;
9660   for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
9661     switch (CompareImplicitConversionSequences(S, Loc,
9662                                                Cand1.Conversions[ArgIdx],
9663                                                Cand2.Conversions[ArgIdx])) {
9664     case ImplicitConversionSequence::Better:
9665       // Cand1 has a better conversion sequence.
9666       HasBetterConversion = true;
9667       break;
9668 
9669     case ImplicitConversionSequence::Worse:
9670       if (Cand1.Function && Cand2.Function &&
9671           Cand1.isReversed() != Cand2.isReversed() &&
9672           haveSameParameterTypes(S.Context, Cand1.Function, Cand2.Function,
9673                                  NumArgs)) {
9674         // Work around large-scale breakage caused by considering reversed
9675         // forms of operator== in C++20:
9676         //
9677         // When comparing a function against a reversed function with the same
9678         // parameter types, if we have a better conversion for one argument and
9679         // a worse conversion for the other, the implicit conversion sequences
9680         // are treated as being equally good.
9681         //
9682         // This prevents a comparison function from being considered ambiguous
9683         // with a reversed form that is written in the same way.
9684         //
9685         // We diagnose this as an extension from CreateOverloadedBinOp.
9686         HasWorseConversion = true;
9687         break;
9688       }
9689 
9690       // Cand1 can't be better than Cand2.
9691       return false;
9692 
9693     case ImplicitConversionSequence::Indistinguishable:
9694       // Do nothing.
9695       break;
9696     }
9697   }
9698 
9699   //    -- for some argument j, ICSj(F1) is a better conversion sequence than
9700   //       ICSj(F2), or, if not that,
9701   if (HasBetterConversion && !HasWorseConversion)
9702     return true;
9703 
9704   //   -- the context is an initialization by user-defined conversion
9705   //      (see 8.5, 13.3.1.5) and the standard conversion sequence
9706   //      from the return type of F1 to the destination type (i.e.,
9707   //      the type of the entity being initialized) is a better
9708   //      conversion sequence than the standard conversion sequence
9709   //      from the return type of F2 to the destination type.
9710   if (Kind == OverloadCandidateSet::CSK_InitByUserDefinedConversion &&
9711       Cand1.Function && Cand2.Function &&
9712       isa<CXXConversionDecl>(Cand1.Function) &&
9713       isa<CXXConversionDecl>(Cand2.Function)) {
9714     // First check whether we prefer one of the conversion functions over the
9715     // other. This only distinguishes the results in non-standard, extension
9716     // cases such as the conversion from a lambda closure type to a function
9717     // pointer or block.
9718     ImplicitConversionSequence::CompareKind Result =
9719         compareConversionFunctions(S, Cand1.Function, Cand2.Function);
9720     if (Result == ImplicitConversionSequence::Indistinguishable)
9721       Result = CompareStandardConversionSequences(S, Loc,
9722                                                   Cand1.FinalConversion,
9723                                                   Cand2.FinalConversion);
9724 
9725     if (Result != ImplicitConversionSequence::Indistinguishable)
9726       return Result == ImplicitConversionSequence::Better;
9727 
9728     // FIXME: Compare kind of reference binding if conversion functions
9729     // convert to a reference type used in direct reference binding, per
9730     // C++14 [over.match.best]p1 section 2 bullet 3.
9731   }
9732 
9733   // FIXME: Work around a defect in the C++17 guaranteed copy elision wording,
9734   // as combined with the resolution to CWG issue 243.
9735   //
9736   // When the context is initialization by constructor ([over.match.ctor] or
9737   // either phase of [over.match.list]), a constructor is preferred over
9738   // a conversion function.
9739   if (Kind == OverloadCandidateSet::CSK_InitByConstructor && NumArgs == 1 &&
9740       Cand1.Function && Cand2.Function &&
9741       isa<CXXConstructorDecl>(Cand1.Function) !=
9742           isa<CXXConstructorDecl>(Cand2.Function))
9743     return isa<CXXConstructorDecl>(Cand1.Function);
9744 
9745   //    -- F1 is a non-template function and F2 is a function template
9746   //       specialization, or, if not that,
9747   bool Cand1IsSpecialization = Cand1.Function &&
9748                                Cand1.Function->getPrimaryTemplate();
9749   bool Cand2IsSpecialization = Cand2.Function &&
9750                                Cand2.Function->getPrimaryTemplate();
9751   if (Cand1IsSpecialization != Cand2IsSpecialization)
9752     return Cand2IsSpecialization;
9753 
9754   //   -- F1 and F2 are function template specializations, and the function
9755   //      template for F1 is more specialized than the template for F2
9756   //      according to the partial ordering rules described in 14.5.5.2, or,
9757   //      if not that,
9758   if (Cand1IsSpecialization && Cand2IsSpecialization) {
9759     if (FunctionTemplateDecl *BetterTemplate = S.getMoreSpecializedTemplate(
9760             Cand1.Function->getPrimaryTemplate(),
9761             Cand2.Function->getPrimaryTemplate(), Loc,
9762             isa<CXXConversionDecl>(Cand1.Function) ? TPOC_Conversion
9763                                                    : TPOC_Call,
9764             Cand1.ExplicitCallArguments, Cand2.ExplicitCallArguments,
9765             Cand1.isReversed() ^ Cand2.isReversed()))
9766       return BetterTemplate == Cand1.Function->getPrimaryTemplate();
9767   }
9768 
9769   //   -— F1 and F2 are non-template functions with the same
9770   //      parameter-type-lists, and F1 is more constrained than F2 [...],
9771   if (Cand1.Function && Cand2.Function && !Cand1IsSpecialization &&
9772       !Cand2IsSpecialization && Cand1.Function->hasPrototype() &&
9773       Cand2.Function->hasPrototype()) {
9774     auto *PT1 = cast<FunctionProtoType>(Cand1.Function->getFunctionType());
9775     auto *PT2 = cast<FunctionProtoType>(Cand2.Function->getFunctionType());
9776     if (PT1->getNumParams() == PT2->getNumParams() &&
9777         PT1->isVariadic() == PT2->isVariadic() &&
9778         S.FunctionParamTypesAreEqual(PT1, PT2)) {
9779       Expr *RC1 = Cand1.Function->getTrailingRequiresClause();
9780       Expr *RC2 = Cand2.Function->getTrailingRequiresClause();
9781       if (RC1 && RC2) {
9782         bool AtLeastAsConstrained1, AtLeastAsConstrained2;
9783         if (S.IsAtLeastAsConstrained(Cand1.Function, {RC1}, Cand2.Function,
9784                                      {RC2}, AtLeastAsConstrained1) ||
9785             S.IsAtLeastAsConstrained(Cand2.Function, {RC2}, Cand1.Function,
9786                                      {RC1}, AtLeastAsConstrained2))
9787           return false;
9788         if (AtLeastAsConstrained1 != AtLeastAsConstrained2)
9789           return AtLeastAsConstrained1;
9790       } else if (RC1 || RC2) {
9791         return RC1 != nullptr;
9792       }
9793     }
9794   }
9795 
9796   //   -- F1 is a constructor for a class D, F2 is a constructor for a base
9797   //      class B of D, and for all arguments the corresponding parameters of
9798   //      F1 and F2 have the same type.
9799   // FIXME: Implement the "all parameters have the same type" check.
9800   bool Cand1IsInherited =
9801       dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand1.FoundDecl.getDecl());
9802   bool Cand2IsInherited =
9803       dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand2.FoundDecl.getDecl());
9804   if (Cand1IsInherited != Cand2IsInherited)
9805     return Cand2IsInherited;
9806   else if (Cand1IsInherited) {
9807     assert(Cand2IsInherited);
9808     auto *Cand1Class = cast<CXXRecordDecl>(Cand1.Function->getDeclContext());
9809     auto *Cand2Class = cast<CXXRecordDecl>(Cand2.Function->getDeclContext());
9810     if (Cand1Class->isDerivedFrom(Cand2Class))
9811       return true;
9812     if (Cand2Class->isDerivedFrom(Cand1Class))
9813       return false;
9814     // Inherited from sibling base classes: still ambiguous.
9815   }
9816 
9817   //   -- F2 is a rewritten candidate (12.4.1.2) and F1 is not
9818   //   -- F1 and F2 are rewritten candidates, and F2 is a synthesized candidate
9819   //      with reversed order of parameters and F1 is not
9820   //
9821   // We rank reversed + different operator as worse than just reversed, but
9822   // that comparison can never happen, because we only consider reversing for
9823   // the maximally-rewritten operator (== or <=>).
9824   if (Cand1.RewriteKind != Cand2.RewriteKind)
9825     return Cand1.RewriteKind < Cand2.RewriteKind;
9826 
9827   // Check C++17 tie-breakers for deduction guides.
9828   {
9829     auto *Guide1 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand1.Function);
9830     auto *Guide2 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand2.Function);
9831     if (Guide1 && Guide2) {
9832       //  -- F1 is generated from a deduction-guide and F2 is not
9833       if (Guide1->isImplicit() != Guide2->isImplicit())
9834         return Guide2->isImplicit();
9835 
9836       //  -- F1 is the copy deduction candidate(16.3.1.8) and F2 is not
9837       if (Guide1->isCopyDeductionCandidate())
9838         return true;
9839     }
9840   }
9841 
9842   // Check for enable_if value-based overload resolution.
9843   if (Cand1.Function && Cand2.Function) {
9844     Comparison Cmp = compareEnableIfAttrs(S, Cand1.Function, Cand2.Function);
9845     if (Cmp != Comparison::Equal)
9846       return Cmp == Comparison::Better;
9847   }
9848 
9849   bool HasPS1 = Cand1.Function != nullptr &&
9850                 functionHasPassObjectSizeParams(Cand1.Function);
9851   bool HasPS2 = Cand2.Function != nullptr &&
9852                 functionHasPassObjectSizeParams(Cand2.Function);
9853   if (HasPS1 != HasPS2 && HasPS1)
9854     return true;
9855 
9856   auto MV = isBetterMultiversionCandidate(Cand1, Cand2);
9857   if (MV == Comparison::Better)
9858     return true;
9859   if (MV == Comparison::Worse)
9860     return false;
9861 
9862   // If other rules cannot determine which is better, CUDA preference is used
9863   // to determine which is better.
9864   if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function) {
9865     FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
9866     return S.IdentifyCUDAPreference(Caller, Cand1.Function) >
9867            S.IdentifyCUDAPreference(Caller, Cand2.Function);
9868   }
9869 
9870   // General member function overloading is handled above, so this only handles
9871   // constructors with address spaces.
9872   // This only handles address spaces since C++ has no other
9873   // qualifier that can be used with constructors.
9874   const auto *CD1 = dyn_cast_or_null<CXXConstructorDecl>(Cand1.Function);
9875   const auto *CD2 = dyn_cast_or_null<CXXConstructorDecl>(Cand2.Function);
9876   if (CD1 && CD2) {
9877     LangAS AS1 = CD1->getMethodQualifiers().getAddressSpace();
9878     LangAS AS2 = CD2->getMethodQualifiers().getAddressSpace();
9879     if (AS1 != AS2) {
9880       if (Qualifiers::isAddressSpaceSupersetOf(AS2, AS1))
9881         return true;
9882       if (Qualifiers::isAddressSpaceSupersetOf(AS2, AS1))
9883         return false;
9884     }
9885   }
9886 
9887   return false;
9888 }
9889 
9890 /// Determine whether two declarations are "equivalent" for the purposes of
9891 /// name lookup and overload resolution. This applies when the same internal/no
9892 /// linkage entity is defined by two modules (probably by textually including
9893 /// the same header). In such a case, we don't consider the declarations to
9894 /// declare the same entity, but we also don't want lookups with both
9895 /// declarations visible to be ambiguous in some cases (this happens when using
9896 /// a modularized libstdc++).
9897 bool Sema::isEquivalentInternalLinkageDeclaration(const NamedDecl *A,
9898                                                   const NamedDecl *B) {
9899   auto *VA = dyn_cast_or_null<ValueDecl>(A);
9900   auto *VB = dyn_cast_or_null<ValueDecl>(B);
9901   if (!VA || !VB)
9902     return false;
9903 
9904   // The declarations must be declaring the same name as an internal linkage
9905   // entity in different modules.
9906   if (!VA->getDeclContext()->getRedeclContext()->Equals(
9907           VB->getDeclContext()->getRedeclContext()) ||
9908       getOwningModule(VA) == getOwningModule(VB) ||
9909       VA->isExternallyVisible() || VB->isExternallyVisible())
9910     return false;
9911 
9912   // Check that the declarations appear to be equivalent.
9913   //
9914   // FIXME: Checking the type isn't really enough to resolve the ambiguity.
9915   // For constants and functions, we should check the initializer or body is
9916   // the same. For non-constant variables, we shouldn't allow it at all.
9917   if (Context.hasSameType(VA->getType(), VB->getType()))
9918     return true;
9919 
9920   // Enum constants within unnamed enumerations will have different types, but
9921   // may still be similar enough to be interchangeable for our purposes.
9922   if (auto *EA = dyn_cast<EnumConstantDecl>(VA)) {
9923     if (auto *EB = dyn_cast<EnumConstantDecl>(VB)) {
9924       // Only handle anonymous enums. If the enumerations were named and
9925       // equivalent, they would have been merged to the same type.
9926       auto *EnumA = cast<EnumDecl>(EA->getDeclContext());
9927       auto *EnumB = cast<EnumDecl>(EB->getDeclContext());
9928       if (EnumA->hasNameForLinkage() || EnumB->hasNameForLinkage() ||
9929           !Context.hasSameType(EnumA->getIntegerType(),
9930                                EnumB->getIntegerType()))
9931         return false;
9932       // Allow this only if the value is the same for both enumerators.
9933       return llvm::APSInt::isSameValue(EA->getInitVal(), EB->getInitVal());
9934     }
9935   }
9936 
9937   // Nothing else is sufficiently similar.
9938   return false;
9939 }
9940 
9941 void Sema::diagnoseEquivalentInternalLinkageDeclarations(
9942     SourceLocation Loc, const NamedDecl *D, ArrayRef<const NamedDecl *> Equiv) {
9943   assert(D && "Unknown declaration");
9944   Diag(Loc, diag::ext_equivalent_internal_linkage_decl_in_modules) << D;
9945 
9946   Module *M = getOwningModule(D);
9947   Diag(D->getLocation(), diag::note_equivalent_internal_linkage_decl)
9948       << !M << (M ? M->getFullModuleName() : "");
9949 
9950   for (auto *E : Equiv) {
9951     Module *M = getOwningModule(E);
9952     Diag(E->getLocation(), diag::note_equivalent_internal_linkage_decl)
9953         << !M << (M ? M->getFullModuleName() : "");
9954   }
9955 }
9956 
9957 /// Computes the best viable function (C++ 13.3.3)
9958 /// within an overload candidate set.
9959 ///
9960 /// \param Loc The location of the function name (or operator symbol) for
9961 /// which overload resolution occurs.
9962 ///
9963 /// \param Best If overload resolution was successful or found a deleted
9964 /// function, \p Best points to the candidate function found.
9965 ///
9966 /// \returns The result of overload resolution.
9967 OverloadingResult
9968 OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
9969                                          iterator &Best) {
9970   llvm::SmallVector<OverloadCandidate *, 16> Candidates;
9971   std::transform(begin(), end(), std::back_inserter(Candidates),
9972                  [](OverloadCandidate &Cand) { return &Cand; });
9973 
9974   // [CUDA] HD->H or HD->D calls are technically not allowed by CUDA but
9975   // are accepted by both clang and NVCC. However, during a particular
9976   // compilation mode only one call variant is viable. We need to
9977   // exclude non-viable overload candidates from consideration based
9978   // only on their host/device attributes. Specifically, if one
9979   // candidate call is WrongSide and the other is SameSide, we ignore
9980   // the WrongSide candidate.
9981   // We only need to remove wrong-sided candidates here if
9982   // -fgpu-exclude-wrong-side-overloads is off. When
9983   // -fgpu-exclude-wrong-side-overloads is on, all candidates are compared
9984   // uniformly in isBetterOverloadCandidate.
9985   if (S.getLangOpts().CUDA && !S.getLangOpts().GPUExcludeWrongSideOverloads) {
9986     const FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
9987     bool ContainsSameSideCandidate =
9988         llvm::any_of(Candidates, [&](OverloadCandidate *Cand) {
9989           // Check viable function only.
9990           return Cand->Viable && Cand->Function &&
9991                  S.IdentifyCUDAPreference(Caller, Cand->Function) ==
9992                      Sema::CFP_SameSide;
9993         });
9994     if (ContainsSameSideCandidate) {
9995       auto IsWrongSideCandidate = [&](OverloadCandidate *Cand) {
9996         // Check viable function only to avoid unnecessary data copying/moving.
9997         return Cand->Viable && Cand->Function &&
9998                S.IdentifyCUDAPreference(Caller, Cand->Function) ==
9999                    Sema::CFP_WrongSide;
10000       };
10001       llvm::erase_if(Candidates, IsWrongSideCandidate);
10002     }
10003   }
10004 
10005   // Find the best viable function.
10006   Best = end();
10007   for (auto *Cand : Candidates) {
10008     Cand->Best = false;
10009     if (Cand->Viable)
10010       if (Best == end() ||
10011           isBetterOverloadCandidate(S, *Cand, *Best, Loc, Kind))
10012         Best = Cand;
10013   }
10014 
10015   // If we didn't find any viable functions, abort.
10016   if (Best == end())
10017     return OR_No_Viable_Function;
10018 
10019   llvm::SmallVector<const NamedDecl *, 4> EquivalentCands;
10020 
10021   llvm::SmallVector<OverloadCandidate*, 4> PendingBest;
10022   PendingBest.push_back(&*Best);
10023   Best->Best = true;
10024 
10025   // Make sure that this function is better than every other viable
10026   // function. If not, we have an ambiguity.
10027   while (!PendingBest.empty()) {
10028     auto *Curr = PendingBest.pop_back_val();
10029     for (auto *Cand : Candidates) {
10030       if (Cand->Viable && !Cand->Best &&
10031           !isBetterOverloadCandidate(S, *Curr, *Cand, Loc, Kind)) {
10032         PendingBest.push_back(Cand);
10033         Cand->Best = true;
10034 
10035         if (S.isEquivalentInternalLinkageDeclaration(Cand->Function,
10036                                                      Curr->Function))
10037           EquivalentCands.push_back(Cand->Function);
10038         else
10039           Best = end();
10040       }
10041     }
10042   }
10043 
10044   // If we found more than one best candidate, this is ambiguous.
10045   if (Best == end())
10046     return OR_Ambiguous;
10047 
10048   // Best is the best viable function.
10049   if (Best->Function && Best->Function->isDeleted())
10050     return OR_Deleted;
10051 
10052   if (!EquivalentCands.empty())
10053     S.diagnoseEquivalentInternalLinkageDeclarations(Loc, Best->Function,
10054                                                     EquivalentCands);
10055 
10056   return OR_Success;
10057 }
10058 
10059 namespace {
10060 
10061 enum OverloadCandidateKind {
10062   oc_function,
10063   oc_method,
10064   oc_reversed_binary_operator,
10065   oc_constructor,
10066   oc_implicit_default_constructor,
10067   oc_implicit_copy_constructor,
10068   oc_implicit_move_constructor,
10069   oc_implicit_copy_assignment,
10070   oc_implicit_move_assignment,
10071   oc_implicit_equality_comparison,
10072   oc_inherited_constructor
10073 };
10074 
10075 enum OverloadCandidateSelect {
10076   ocs_non_template,
10077   ocs_template,
10078   ocs_described_template,
10079 };
10080 
10081 static std::pair<OverloadCandidateKind, OverloadCandidateSelect>
10082 ClassifyOverloadCandidate(Sema &S, NamedDecl *Found, FunctionDecl *Fn,
10083                           OverloadCandidateRewriteKind CRK,
10084                           std::string &Description) {
10085 
10086   bool isTemplate = Fn->isTemplateDecl() || Found->isTemplateDecl();
10087   if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
10088     isTemplate = true;
10089     Description = S.getTemplateArgumentBindingsText(
10090         FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
10091   }
10092 
10093   OverloadCandidateSelect Select = [&]() {
10094     if (!Description.empty())
10095       return ocs_described_template;
10096     return isTemplate ? ocs_template : ocs_non_template;
10097   }();
10098 
10099   OverloadCandidateKind Kind = [&]() {
10100     if (Fn->isImplicit() && Fn->getOverloadedOperator() == OO_EqualEqual)
10101       return oc_implicit_equality_comparison;
10102 
10103     if (CRK & CRK_Reversed)
10104       return oc_reversed_binary_operator;
10105 
10106     if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
10107       if (!Ctor->isImplicit()) {
10108         if (isa<ConstructorUsingShadowDecl>(Found))
10109           return oc_inherited_constructor;
10110         else
10111           return oc_constructor;
10112       }
10113 
10114       if (Ctor->isDefaultConstructor())
10115         return oc_implicit_default_constructor;
10116 
10117       if (Ctor->isMoveConstructor())
10118         return oc_implicit_move_constructor;
10119 
10120       assert(Ctor->isCopyConstructor() &&
10121              "unexpected sort of implicit constructor");
10122       return oc_implicit_copy_constructor;
10123     }
10124 
10125     if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
10126       // This actually gets spelled 'candidate function' for now, but
10127       // it doesn't hurt to split it out.
10128       if (!Meth->isImplicit())
10129         return oc_method;
10130 
10131       if (Meth->isMoveAssignmentOperator())
10132         return oc_implicit_move_assignment;
10133 
10134       if (Meth->isCopyAssignmentOperator())
10135         return oc_implicit_copy_assignment;
10136 
10137       assert(isa<CXXConversionDecl>(Meth) && "expected conversion");
10138       return oc_method;
10139     }
10140 
10141     return oc_function;
10142   }();
10143 
10144   return std::make_pair(Kind, Select);
10145 }
10146 
10147 void MaybeEmitInheritedConstructorNote(Sema &S, Decl *FoundDecl) {
10148   // FIXME: It'd be nice to only emit a note once per using-decl per overload
10149   // set.
10150   if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl))
10151     S.Diag(FoundDecl->getLocation(),
10152            diag::note_ovl_candidate_inherited_constructor)
10153       << Shadow->getNominatedBaseClass();
10154 }
10155 
10156 } // end anonymous namespace
10157 
10158 static bool isFunctionAlwaysEnabled(const ASTContext &Ctx,
10159                                     const FunctionDecl *FD) {
10160   for (auto *EnableIf : FD->specific_attrs<EnableIfAttr>()) {
10161     bool AlwaysTrue;
10162     if (EnableIf->getCond()->isValueDependent() ||
10163         !EnableIf->getCond()->EvaluateAsBooleanCondition(AlwaysTrue, Ctx))
10164       return false;
10165     if (!AlwaysTrue)
10166       return false;
10167   }
10168   return true;
10169 }
10170 
10171 /// Returns true if we can take the address of the function.
10172 ///
10173 /// \param Complain - If true, we'll emit a diagnostic
10174 /// \param InOverloadResolution - For the purposes of emitting a diagnostic, are
10175 ///   we in overload resolution?
10176 /// \param Loc - The location of the statement we're complaining about. Ignored
10177 ///   if we're not complaining, or if we're in overload resolution.
10178 static bool checkAddressOfFunctionIsAvailable(Sema &S, const FunctionDecl *FD,
10179                                               bool Complain,
10180                                               bool InOverloadResolution,
10181                                               SourceLocation Loc) {
10182   if (!isFunctionAlwaysEnabled(S.Context, FD)) {
10183     if (Complain) {
10184       if (InOverloadResolution)
10185         S.Diag(FD->getBeginLoc(),
10186                diag::note_addrof_ovl_candidate_disabled_by_enable_if_attr);
10187       else
10188         S.Diag(Loc, diag::err_addrof_function_disabled_by_enable_if_attr) << FD;
10189     }
10190     return false;
10191   }
10192 
10193   if (FD->getTrailingRequiresClause()) {
10194     ConstraintSatisfaction Satisfaction;
10195     if (S.CheckFunctionConstraints(FD, Satisfaction, Loc))
10196       return false;
10197     if (!Satisfaction.IsSatisfied) {
10198       if (Complain) {
10199         if (InOverloadResolution)
10200           S.Diag(FD->getBeginLoc(),
10201                  diag::note_ovl_candidate_unsatisfied_constraints);
10202         else
10203           S.Diag(Loc, diag::err_addrof_function_constraints_not_satisfied)
10204               << FD;
10205         S.DiagnoseUnsatisfiedConstraint(Satisfaction);
10206       }
10207       return false;
10208     }
10209   }
10210 
10211   auto I = llvm::find_if(FD->parameters(), [](const ParmVarDecl *P) {
10212     return P->hasAttr<PassObjectSizeAttr>();
10213   });
10214   if (I == FD->param_end())
10215     return true;
10216 
10217   if (Complain) {
10218     // Add one to ParamNo because it's user-facing
10219     unsigned ParamNo = std::distance(FD->param_begin(), I) + 1;
10220     if (InOverloadResolution)
10221       S.Diag(FD->getLocation(),
10222              diag::note_ovl_candidate_has_pass_object_size_params)
10223           << ParamNo;
10224     else
10225       S.Diag(Loc, diag::err_address_of_function_with_pass_object_size_params)
10226           << FD << ParamNo;
10227   }
10228   return false;
10229 }
10230 
10231 static bool checkAddressOfCandidateIsAvailable(Sema &S,
10232                                                const FunctionDecl *FD) {
10233   return checkAddressOfFunctionIsAvailable(S, FD, /*Complain=*/true,
10234                                            /*InOverloadResolution=*/true,
10235                                            /*Loc=*/SourceLocation());
10236 }
10237 
10238 bool Sema::checkAddressOfFunctionIsAvailable(const FunctionDecl *Function,
10239                                              bool Complain,
10240                                              SourceLocation Loc) {
10241   return ::checkAddressOfFunctionIsAvailable(*this, Function, Complain,
10242                                              /*InOverloadResolution=*/false,
10243                                              Loc);
10244 }
10245 
10246 // Don't print candidates other than the one that matches the calling
10247 // convention of the call operator, since that is guaranteed to exist.
10248 static bool shouldSkipNotingLambdaConversionDecl(FunctionDecl *Fn) {
10249   const auto *ConvD = dyn_cast<CXXConversionDecl>(Fn);
10250 
10251   if (!ConvD)
10252     return false;
10253   const auto *RD = cast<CXXRecordDecl>(Fn->getParent());
10254   if (!RD->isLambda())
10255     return false;
10256 
10257   CXXMethodDecl *CallOp = RD->getLambdaCallOperator();
10258   CallingConv CallOpCC =
10259       CallOp->getType()->castAs<FunctionType>()->getCallConv();
10260   QualType ConvRTy = ConvD->getType()->castAs<FunctionType>()->getReturnType();
10261   CallingConv ConvToCC =
10262       ConvRTy->getPointeeType()->castAs<FunctionType>()->getCallConv();
10263 
10264   return ConvToCC != CallOpCC;
10265 }
10266 
10267 // Notes the location of an overload candidate.
10268 void Sema::NoteOverloadCandidate(NamedDecl *Found, FunctionDecl *Fn,
10269                                  OverloadCandidateRewriteKind RewriteKind,
10270                                  QualType DestType, bool TakingAddress) {
10271   if (TakingAddress && !checkAddressOfCandidateIsAvailable(*this, Fn))
10272     return;
10273   if (Fn->isMultiVersion() && Fn->hasAttr<TargetAttr>() &&
10274       !Fn->getAttr<TargetAttr>()->isDefaultVersion())
10275     return;
10276   if (shouldSkipNotingLambdaConversionDecl(Fn))
10277     return;
10278 
10279   std::string FnDesc;
10280   std::pair<OverloadCandidateKind, OverloadCandidateSelect> KSPair =
10281       ClassifyOverloadCandidate(*this, Found, Fn, RewriteKind, FnDesc);
10282   PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
10283                          << (unsigned)KSPair.first << (unsigned)KSPair.second
10284                          << Fn << FnDesc;
10285 
10286   HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
10287   Diag(Fn->getLocation(), PD);
10288   MaybeEmitInheritedConstructorNote(*this, Found);
10289 }
10290 
10291 static void
10292 MaybeDiagnoseAmbiguousConstraints(Sema &S, ArrayRef<OverloadCandidate> Cands) {
10293   // Perhaps the ambiguity was caused by two atomic constraints that are
10294   // 'identical' but not equivalent:
10295   //
10296   // void foo() requires (sizeof(T) > 4) { } // #1
10297   // void foo() requires (sizeof(T) > 4) && T::value { } // #2
10298   //
10299   // The 'sizeof(T) > 4' constraints are seemingly equivalent and should cause
10300   // #2 to subsume #1, but these constraint are not considered equivalent
10301   // according to the subsumption rules because they are not the same
10302   // source-level construct. This behavior is quite confusing and we should try
10303   // to help the user figure out what happened.
10304 
10305   SmallVector<const Expr *, 3> FirstAC, SecondAC;
10306   FunctionDecl *FirstCand = nullptr, *SecondCand = nullptr;
10307   for (auto I = Cands.begin(), E = Cands.end(); I != E; ++I) {
10308     if (!I->Function)
10309       continue;
10310     SmallVector<const Expr *, 3> AC;
10311     if (auto *Template = I->Function->getPrimaryTemplate())
10312       Template->getAssociatedConstraints(AC);
10313     else
10314       I->Function->getAssociatedConstraints(AC);
10315     if (AC.empty())
10316       continue;
10317     if (FirstCand == nullptr) {
10318       FirstCand = I->Function;
10319       FirstAC = AC;
10320     } else if (SecondCand == nullptr) {
10321       SecondCand = I->Function;
10322       SecondAC = AC;
10323     } else {
10324       // We have more than one pair of constrained functions - this check is
10325       // expensive and we'd rather not try to diagnose it.
10326       return;
10327     }
10328   }
10329   if (!SecondCand)
10330     return;
10331   // The diagnostic can only happen if there are associated constraints on
10332   // both sides (there needs to be some identical atomic constraint).
10333   if (S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(FirstCand, FirstAC,
10334                                                       SecondCand, SecondAC))
10335     // Just show the user one diagnostic, they'll probably figure it out
10336     // from here.
10337     return;
10338 }
10339 
10340 // Notes the location of all overload candidates designated through
10341 // OverloadedExpr
10342 void Sema::NoteAllOverloadCandidates(Expr *OverloadedExpr, QualType DestType,
10343                                      bool TakingAddress) {
10344   assert(OverloadedExpr->getType() == Context.OverloadTy);
10345 
10346   OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
10347   OverloadExpr *OvlExpr = Ovl.Expression;
10348 
10349   for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
10350                             IEnd = OvlExpr->decls_end();
10351        I != IEnd; ++I) {
10352     if (FunctionTemplateDecl *FunTmpl =
10353                 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
10354       NoteOverloadCandidate(*I, FunTmpl->getTemplatedDecl(), CRK_None, DestType,
10355                             TakingAddress);
10356     } else if (FunctionDecl *Fun
10357                       = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
10358       NoteOverloadCandidate(*I, Fun, CRK_None, DestType, TakingAddress);
10359     }
10360   }
10361 }
10362 
10363 /// Diagnoses an ambiguous conversion.  The partial diagnostic is the
10364 /// "lead" diagnostic; it will be given two arguments, the source and
10365 /// target types of the conversion.
10366 void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
10367                                  Sema &S,
10368                                  SourceLocation CaretLoc,
10369                                  const PartialDiagnostic &PDiag) const {
10370   S.Diag(CaretLoc, PDiag)
10371     << Ambiguous.getFromType() << Ambiguous.getToType();
10372   unsigned CandsShown = 0;
10373   AmbiguousConversionSequence::const_iterator I, E;
10374   for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
10375     if (CandsShown >= S.Diags.getNumOverloadCandidatesToShow())
10376       break;
10377     ++CandsShown;
10378     S.NoteOverloadCandidate(I->first, I->second);
10379   }
10380   S.Diags.overloadCandidatesShown(CandsShown);
10381   if (I != E)
10382     S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I);
10383 }
10384 
10385 static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand,
10386                                   unsigned I, bool TakingCandidateAddress) {
10387   const ImplicitConversionSequence &Conv = Cand->Conversions[I];
10388   assert(Conv.isBad());
10389   assert(Cand->Function && "for now, candidate must be a function");
10390   FunctionDecl *Fn = Cand->Function;
10391 
10392   // There's a conversion slot for the object argument if this is a
10393   // non-constructor method.  Note that 'I' corresponds the
10394   // conversion-slot index.
10395   bool isObjectArgument = false;
10396   if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
10397     if (I == 0)
10398       isObjectArgument = true;
10399     else
10400       I--;
10401   }
10402 
10403   std::string FnDesc;
10404   std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
10405       ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, Cand->getRewriteKind(),
10406                                 FnDesc);
10407 
10408   Expr *FromExpr = Conv.Bad.FromExpr;
10409   QualType FromTy = Conv.Bad.getFromType();
10410   QualType ToTy = Conv.Bad.getToType();
10411 
10412   if (FromTy == S.Context.OverloadTy) {
10413     assert(FromExpr && "overload set argument came from implicit argument?");
10414     Expr *E = FromExpr->IgnoreParens();
10415     if (isa<UnaryOperator>(E))
10416       E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
10417     DeclarationName Name = cast<OverloadExpr>(E)->getName();
10418 
10419     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
10420         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10421         << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << ToTy
10422         << Name << I + 1;
10423     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10424     return;
10425   }
10426 
10427   // Do some hand-waving analysis to see if the non-viability is due
10428   // to a qualifier mismatch.
10429   CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
10430   CanQualType CToTy = S.Context.getCanonicalType(ToTy);
10431   if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
10432     CToTy = RT->getPointeeType();
10433   else {
10434     // TODO: detect and diagnose the full richness of const mismatches.
10435     if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
10436       if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) {
10437         CFromTy = FromPT->getPointeeType();
10438         CToTy = ToPT->getPointeeType();
10439       }
10440   }
10441 
10442   if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
10443       !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
10444     Qualifiers FromQs = CFromTy.getQualifiers();
10445     Qualifiers ToQs = CToTy.getQualifiers();
10446 
10447     if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
10448       if (isObjectArgument)
10449         S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace_this)
10450             << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10451             << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10452             << FromQs.getAddressSpace() << ToQs.getAddressSpace();
10453       else
10454         S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
10455             << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10456             << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10457             << FromQs.getAddressSpace() << ToQs.getAddressSpace()
10458             << ToTy->isReferenceType() << I + 1;
10459       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10460       return;
10461     }
10462 
10463     if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
10464       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
10465           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10466           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10467           << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
10468           << (unsigned)isObjectArgument << I + 1;
10469       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10470       return;
10471     }
10472 
10473     if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
10474       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
10475           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10476           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10477           << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
10478           << (unsigned)isObjectArgument << I + 1;
10479       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10480       return;
10481     }
10482 
10483     if (FromQs.hasUnaligned() != ToQs.hasUnaligned()) {
10484       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_unaligned)
10485           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10486           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10487           << FromQs.hasUnaligned() << I + 1;
10488       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10489       return;
10490     }
10491 
10492     unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
10493     assert(CVR && "expected qualifiers mismatch");
10494 
10495     if (isObjectArgument) {
10496       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
10497           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10498           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10499           << (CVR - 1);
10500     } else {
10501       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
10502           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10503           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10504           << (CVR - 1) << I + 1;
10505     }
10506     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10507     return;
10508   }
10509 
10510   if (Conv.Bad.Kind == BadConversionSequence::lvalue_ref_to_rvalue ||
10511       Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue) {
10512     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_value_category)
10513         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10514         << (unsigned)isObjectArgument << I + 1
10515         << (Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue)
10516         << (FromExpr ? FromExpr->getSourceRange() : SourceRange());
10517     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10518     return;
10519   }
10520 
10521   // Special diagnostic for failure to convert an initializer list, since
10522   // telling the user that it has type void is not useful.
10523   if (FromExpr && isa<InitListExpr>(FromExpr)) {
10524     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
10525         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10526         << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10527         << ToTy << (unsigned)isObjectArgument << I + 1;
10528     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10529     return;
10530   }
10531 
10532   // Diagnose references or pointers to incomplete types differently,
10533   // since it's far from impossible that the incompleteness triggered
10534   // the failure.
10535   QualType TempFromTy = FromTy.getNonReferenceType();
10536   if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
10537     TempFromTy = PTy->getPointeeType();
10538   if (TempFromTy->isIncompleteType()) {
10539     // Emit the generic diagnostic and, optionally, add the hints to it.
10540     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
10541         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10542         << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10543         << ToTy << (unsigned)isObjectArgument << I + 1
10544         << (unsigned)(Cand->Fix.Kind);
10545 
10546     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10547     return;
10548   }
10549 
10550   // Diagnose base -> derived pointer conversions.
10551   unsigned BaseToDerivedConversion = 0;
10552   if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
10553     if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
10554       if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
10555                                                FromPtrTy->getPointeeType()) &&
10556           !FromPtrTy->getPointeeType()->isIncompleteType() &&
10557           !ToPtrTy->getPointeeType()->isIncompleteType() &&
10558           S.IsDerivedFrom(SourceLocation(), ToPtrTy->getPointeeType(),
10559                           FromPtrTy->getPointeeType()))
10560         BaseToDerivedConversion = 1;
10561     }
10562   } else if (const ObjCObjectPointerType *FromPtrTy
10563                                     = FromTy->getAs<ObjCObjectPointerType>()) {
10564     if (const ObjCObjectPointerType *ToPtrTy
10565                                         = ToTy->getAs<ObjCObjectPointerType>())
10566       if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
10567         if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
10568           if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
10569                                                 FromPtrTy->getPointeeType()) &&
10570               FromIface->isSuperClassOf(ToIface))
10571             BaseToDerivedConversion = 2;
10572   } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
10573     if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
10574         !FromTy->isIncompleteType() &&
10575         !ToRefTy->getPointeeType()->isIncompleteType() &&
10576         S.IsDerivedFrom(SourceLocation(), ToRefTy->getPointeeType(), FromTy)) {
10577       BaseToDerivedConversion = 3;
10578     }
10579   }
10580 
10581   if (BaseToDerivedConversion) {
10582     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_base_to_derived_conv)
10583         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10584         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10585         << (BaseToDerivedConversion - 1) << FromTy << ToTy << I + 1;
10586     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10587     return;
10588   }
10589 
10590   if (isa<ObjCObjectPointerType>(CFromTy) &&
10591       isa<PointerType>(CToTy)) {
10592       Qualifiers FromQs = CFromTy.getQualifiers();
10593       Qualifiers ToQs = CToTy.getQualifiers();
10594       if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
10595         S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
10596             << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10597             << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10598             << FromTy << ToTy << (unsigned)isObjectArgument << I + 1;
10599         MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10600         return;
10601       }
10602   }
10603 
10604   if (TakingCandidateAddress &&
10605       !checkAddressOfCandidateIsAvailable(S, Cand->Function))
10606     return;
10607 
10608   // Emit the generic diagnostic and, optionally, add the hints to it.
10609   PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
10610   FDiag << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10611         << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10612         << ToTy << (unsigned)isObjectArgument << I + 1
10613         << (unsigned)(Cand->Fix.Kind);
10614 
10615   // If we can fix the conversion, suggest the FixIts.
10616   for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
10617        HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
10618     FDiag << *HI;
10619   S.Diag(Fn->getLocation(), FDiag);
10620 
10621   MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10622 }
10623 
10624 /// Additional arity mismatch diagnosis specific to a function overload
10625 /// candidates. This is not covered by the more general DiagnoseArityMismatch()
10626 /// over a candidate in any candidate set.
10627 static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand,
10628                                unsigned NumArgs) {
10629   FunctionDecl *Fn = Cand->Function;
10630   unsigned MinParams = Fn->getMinRequiredArguments();
10631 
10632   // With invalid overloaded operators, it's possible that we think we
10633   // have an arity mismatch when in fact it looks like we have the
10634   // right number of arguments, because only overloaded operators have
10635   // the weird behavior of overloading member and non-member functions.
10636   // Just don't report anything.
10637   if (Fn->isInvalidDecl() &&
10638       Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
10639     return true;
10640 
10641   if (NumArgs < MinParams) {
10642     assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
10643            (Cand->FailureKind == ovl_fail_bad_deduction &&
10644             Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
10645   } else {
10646     assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
10647            (Cand->FailureKind == ovl_fail_bad_deduction &&
10648             Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
10649   }
10650 
10651   return false;
10652 }
10653 
10654 /// General arity mismatch diagnosis over a candidate in a candidate set.
10655 static void DiagnoseArityMismatch(Sema &S, NamedDecl *Found, Decl *D,
10656                                   unsigned NumFormalArgs) {
10657   assert(isa<FunctionDecl>(D) &&
10658       "The templated declaration should at least be a function"
10659       " when diagnosing bad template argument deduction due to too many"
10660       " or too few arguments");
10661 
10662   FunctionDecl *Fn = cast<FunctionDecl>(D);
10663 
10664   // TODO: treat calls to a missing default constructor as a special case
10665   const auto *FnTy = Fn->getType()->castAs<FunctionProtoType>();
10666   unsigned MinParams = Fn->getMinRequiredArguments();
10667 
10668   // at least / at most / exactly
10669   unsigned mode, modeCount;
10670   if (NumFormalArgs < MinParams) {
10671     if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() ||
10672         FnTy->isTemplateVariadic())
10673       mode = 0; // "at least"
10674     else
10675       mode = 2; // "exactly"
10676     modeCount = MinParams;
10677   } else {
10678     if (MinParams != FnTy->getNumParams())
10679       mode = 1; // "at most"
10680     else
10681       mode = 2; // "exactly"
10682     modeCount = FnTy->getNumParams();
10683   }
10684 
10685   std::string Description;
10686   std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
10687       ClassifyOverloadCandidate(S, Found, Fn, CRK_None, Description);
10688 
10689   if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
10690     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
10691         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10692         << Description << mode << Fn->getParamDecl(0) << NumFormalArgs;
10693   else
10694     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
10695         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10696         << Description << mode << modeCount << NumFormalArgs;
10697 
10698   MaybeEmitInheritedConstructorNote(S, Found);
10699 }
10700 
10701 /// Arity mismatch diagnosis specific to a function overload candidate.
10702 static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
10703                                   unsigned NumFormalArgs) {
10704   if (!CheckArityMismatch(S, Cand, NumFormalArgs))
10705     DiagnoseArityMismatch(S, Cand->FoundDecl, Cand->Function, NumFormalArgs);
10706 }
10707 
10708 static TemplateDecl *getDescribedTemplate(Decl *Templated) {
10709   if (TemplateDecl *TD = Templated->getDescribedTemplate())
10710     return TD;
10711   llvm_unreachable("Unsupported: Getting the described template declaration"
10712                    " for bad deduction diagnosis");
10713 }
10714 
10715 /// Diagnose a failed template-argument deduction.
10716 static void DiagnoseBadDeduction(Sema &S, NamedDecl *Found, Decl *Templated,
10717                                  DeductionFailureInfo &DeductionFailure,
10718                                  unsigned NumArgs,
10719                                  bool TakingCandidateAddress) {
10720   TemplateParameter Param = DeductionFailure.getTemplateParameter();
10721   NamedDecl *ParamD;
10722   (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
10723   (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
10724   (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
10725   switch (DeductionFailure.Result) {
10726   case Sema::TDK_Success:
10727     llvm_unreachable("TDK_success while diagnosing bad deduction");
10728 
10729   case Sema::TDK_Incomplete: {
10730     assert(ParamD && "no parameter found for incomplete deduction result");
10731     S.Diag(Templated->getLocation(),
10732            diag::note_ovl_candidate_incomplete_deduction)
10733         << ParamD->getDeclName();
10734     MaybeEmitInheritedConstructorNote(S, Found);
10735     return;
10736   }
10737 
10738   case Sema::TDK_IncompletePack: {
10739     assert(ParamD && "no parameter found for incomplete deduction result");
10740     S.Diag(Templated->getLocation(),
10741            diag::note_ovl_candidate_incomplete_deduction_pack)
10742         << ParamD->getDeclName()
10743         << (DeductionFailure.getFirstArg()->pack_size() + 1)
10744         << *DeductionFailure.getFirstArg();
10745     MaybeEmitInheritedConstructorNote(S, Found);
10746     return;
10747   }
10748 
10749   case Sema::TDK_Underqualified: {
10750     assert(ParamD && "no parameter found for bad qualifiers deduction result");
10751     TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
10752 
10753     QualType Param = DeductionFailure.getFirstArg()->getAsType();
10754 
10755     // Param will have been canonicalized, but it should just be a
10756     // qualified version of ParamD, so move the qualifiers to that.
10757     QualifierCollector Qs;
10758     Qs.strip(Param);
10759     QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
10760     assert(S.Context.hasSameType(Param, NonCanonParam));
10761 
10762     // Arg has also been canonicalized, but there's nothing we can do
10763     // about that.  It also doesn't matter as much, because it won't
10764     // have any template parameters in it (because deduction isn't
10765     // done on dependent types).
10766     QualType Arg = DeductionFailure.getSecondArg()->getAsType();
10767 
10768     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified)
10769         << ParamD->getDeclName() << Arg << NonCanonParam;
10770     MaybeEmitInheritedConstructorNote(S, Found);
10771     return;
10772   }
10773 
10774   case Sema::TDK_Inconsistent: {
10775     assert(ParamD && "no parameter found for inconsistent deduction result");
10776     int which = 0;
10777     if (isa<TemplateTypeParmDecl>(ParamD))
10778       which = 0;
10779     else if (isa<NonTypeTemplateParmDecl>(ParamD)) {
10780       // Deduction might have failed because we deduced arguments of two
10781       // different types for a non-type template parameter.
10782       // FIXME: Use a different TDK value for this.
10783       QualType T1 =
10784           DeductionFailure.getFirstArg()->getNonTypeTemplateArgumentType();
10785       QualType T2 =
10786           DeductionFailure.getSecondArg()->getNonTypeTemplateArgumentType();
10787       if (!T1.isNull() && !T2.isNull() && !S.Context.hasSameType(T1, T2)) {
10788         S.Diag(Templated->getLocation(),
10789                diag::note_ovl_candidate_inconsistent_deduction_types)
10790           << ParamD->getDeclName() << *DeductionFailure.getFirstArg() << T1
10791           << *DeductionFailure.getSecondArg() << T2;
10792         MaybeEmitInheritedConstructorNote(S, Found);
10793         return;
10794       }
10795 
10796       which = 1;
10797     } else {
10798       which = 2;
10799     }
10800 
10801     // Tweak the diagnostic if the problem is that we deduced packs of
10802     // different arities. We'll print the actual packs anyway in case that
10803     // includes additional useful information.
10804     if (DeductionFailure.getFirstArg()->getKind() == TemplateArgument::Pack &&
10805         DeductionFailure.getSecondArg()->getKind() == TemplateArgument::Pack &&
10806         DeductionFailure.getFirstArg()->pack_size() !=
10807             DeductionFailure.getSecondArg()->pack_size()) {
10808       which = 3;
10809     }
10810 
10811     S.Diag(Templated->getLocation(),
10812            diag::note_ovl_candidate_inconsistent_deduction)
10813         << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg()
10814         << *DeductionFailure.getSecondArg();
10815     MaybeEmitInheritedConstructorNote(S, Found);
10816     return;
10817   }
10818 
10819   case Sema::TDK_InvalidExplicitArguments:
10820     assert(ParamD && "no parameter found for invalid explicit arguments");
10821     if (ParamD->getDeclName())
10822       S.Diag(Templated->getLocation(),
10823              diag::note_ovl_candidate_explicit_arg_mismatch_named)
10824           << ParamD->getDeclName();
10825     else {
10826       int index = 0;
10827       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
10828         index = TTP->getIndex();
10829       else if (NonTypeTemplateParmDecl *NTTP
10830                                   = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
10831         index = NTTP->getIndex();
10832       else
10833         index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
10834       S.Diag(Templated->getLocation(),
10835              diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
10836           << (index + 1);
10837     }
10838     MaybeEmitInheritedConstructorNote(S, Found);
10839     return;
10840 
10841   case Sema::TDK_ConstraintsNotSatisfied: {
10842     // Format the template argument list into the argument string.
10843     SmallString<128> TemplateArgString;
10844     TemplateArgumentList *Args = DeductionFailure.getTemplateArgumentList();
10845     TemplateArgString = " ";
10846     TemplateArgString += S.getTemplateArgumentBindingsText(
10847         getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
10848     if (TemplateArgString.size() == 1)
10849       TemplateArgString.clear();
10850     S.Diag(Templated->getLocation(),
10851            diag::note_ovl_candidate_unsatisfied_constraints)
10852         << TemplateArgString;
10853 
10854     S.DiagnoseUnsatisfiedConstraint(
10855         static_cast<CNSInfo*>(DeductionFailure.Data)->Satisfaction);
10856     return;
10857   }
10858   case Sema::TDK_TooManyArguments:
10859   case Sema::TDK_TooFewArguments:
10860     DiagnoseArityMismatch(S, Found, Templated, NumArgs);
10861     return;
10862 
10863   case Sema::TDK_InstantiationDepth:
10864     S.Diag(Templated->getLocation(),
10865            diag::note_ovl_candidate_instantiation_depth);
10866     MaybeEmitInheritedConstructorNote(S, Found);
10867     return;
10868 
10869   case Sema::TDK_SubstitutionFailure: {
10870     // Format the template argument list into the argument string.
10871     SmallString<128> TemplateArgString;
10872     if (TemplateArgumentList *Args =
10873             DeductionFailure.getTemplateArgumentList()) {
10874       TemplateArgString = " ";
10875       TemplateArgString += S.getTemplateArgumentBindingsText(
10876           getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
10877       if (TemplateArgString.size() == 1)
10878         TemplateArgString.clear();
10879     }
10880 
10881     // If this candidate was disabled by enable_if, say so.
10882     PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic();
10883     if (PDiag && PDiag->second.getDiagID() ==
10884           diag::err_typename_nested_not_found_enable_if) {
10885       // FIXME: Use the source range of the condition, and the fully-qualified
10886       //        name of the enable_if template. These are both present in PDiag.
10887       S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
10888         << "'enable_if'" << TemplateArgString;
10889       return;
10890     }
10891 
10892     // We found a specific requirement that disabled the enable_if.
10893     if (PDiag && PDiag->second.getDiagID() ==
10894         diag::err_typename_nested_not_found_requirement) {
10895       S.Diag(Templated->getLocation(),
10896              diag::note_ovl_candidate_disabled_by_requirement)
10897         << PDiag->second.getStringArg(0) << TemplateArgString;
10898       return;
10899     }
10900 
10901     // Format the SFINAE diagnostic into the argument string.
10902     // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
10903     //        formatted message in another diagnostic.
10904     SmallString<128> SFINAEArgString;
10905     SourceRange R;
10906     if (PDiag) {
10907       SFINAEArgString = ": ";
10908       R = SourceRange(PDiag->first, PDiag->first);
10909       PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
10910     }
10911 
10912     S.Diag(Templated->getLocation(),
10913            diag::note_ovl_candidate_substitution_failure)
10914         << TemplateArgString << SFINAEArgString << R;
10915     MaybeEmitInheritedConstructorNote(S, Found);
10916     return;
10917   }
10918 
10919   case Sema::TDK_DeducedMismatch:
10920   case Sema::TDK_DeducedMismatchNested: {
10921     // Format the template argument list into the argument string.
10922     SmallString<128> TemplateArgString;
10923     if (TemplateArgumentList *Args =
10924             DeductionFailure.getTemplateArgumentList()) {
10925       TemplateArgString = " ";
10926       TemplateArgString += S.getTemplateArgumentBindingsText(
10927           getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
10928       if (TemplateArgString.size() == 1)
10929         TemplateArgString.clear();
10930     }
10931 
10932     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_deduced_mismatch)
10933         << (*DeductionFailure.getCallArgIndex() + 1)
10934         << *DeductionFailure.getFirstArg() << *DeductionFailure.getSecondArg()
10935         << TemplateArgString
10936         << (DeductionFailure.Result == Sema::TDK_DeducedMismatchNested);
10937     break;
10938   }
10939 
10940   case Sema::TDK_NonDeducedMismatch: {
10941     // FIXME: Provide a source location to indicate what we couldn't match.
10942     TemplateArgument FirstTA = *DeductionFailure.getFirstArg();
10943     TemplateArgument SecondTA = *DeductionFailure.getSecondArg();
10944     if (FirstTA.getKind() == TemplateArgument::Template &&
10945         SecondTA.getKind() == TemplateArgument::Template) {
10946       TemplateName FirstTN = FirstTA.getAsTemplate();
10947       TemplateName SecondTN = SecondTA.getAsTemplate();
10948       if (FirstTN.getKind() == TemplateName::Template &&
10949           SecondTN.getKind() == TemplateName::Template) {
10950         if (FirstTN.getAsTemplateDecl()->getName() ==
10951             SecondTN.getAsTemplateDecl()->getName()) {
10952           // FIXME: This fixes a bad diagnostic where both templates are named
10953           // the same.  This particular case is a bit difficult since:
10954           // 1) It is passed as a string to the diagnostic printer.
10955           // 2) The diagnostic printer only attempts to find a better
10956           //    name for types, not decls.
10957           // Ideally, this should folded into the diagnostic printer.
10958           S.Diag(Templated->getLocation(),
10959                  diag::note_ovl_candidate_non_deduced_mismatch_qualified)
10960               << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl();
10961           return;
10962         }
10963       }
10964     }
10965 
10966     if (TakingCandidateAddress && isa<FunctionDecl>(Templated) &&
10967         !checkAddressOfCandidateIsAvailable(S, cast<FunctionDecl>(Templated)))
10968       return;
10969 
10970     // FIXME: For generic lambda parameters, check if the function is a lambda
10971     // call operator, and if so, emit a prettier and more informative
10972     // diagnostic that mentions 'auto' and lambda in addition to
10973     // (or instead of?) the canonical template type parameters.
10974     S.Diag(Templated->getLocation(),
10975            diag::note_ovl_candidate_non_deduced_mismatch)
10976         << FirstTA << SecondTA;
10977     return;
10978   }
10979   // TODO: diagnose these individually, then kill off
10980   // note_ovl_candidate_bad_deduction, which is uselessly vague.
10981   case Sema::TDK_MiscellaneousDeductionFailure:
10982     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction);
10983     MaybeEmitInheritedConstructorNote(S, Found);
10984     return;
10985   case Sema::TDK_CUDATargetMismatch:
10986     S.Diag(Templated->getLocation(),
10987            diag::note_cuda_ovl_candidate_target_mismatch);
10988     return;
10989   }
10990 }
10991 
10992 /// Diagnose a failed template-argument deduction, for function calls.
10993 static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
10994                                  unsigned NumArgs,
10995                                  bool TakingCandidateAddress) {
10996   unsigned TDK = Cand->DeductionFailure.Result;
10997   if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) {
10998     if (CheckArityMismatch(S, Cand, NumArgs))
10999       return;
11000   }
11001   DiagnoseBadDeduction(S, Cand->FoundDecl, Cand->Function, // pattern
11002                        Cand->DeductionFailure, NumArgs, TakingCandidateAddress);
11003 }
11004 
11005 /// CUDA: diagnose an invalid call across targets.
11006 static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
11007   FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
11008   FunctionDecl *Callee = Cand->Function;
11009 
11010   Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
11011                            CalleeTarget = S.IdentifyCUDATarget(Callee);
11012 
11013   std::string FnDesc;
11014   std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
11015       ClassifyOverloadCandidate(S, Cand->FoundDecl, Callee,
11016                                 Cand->getRewriteKind(), FnDesc);
11017 
11018   S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
11019       << (unsigned)FnKindPair.first << (unsigned)ocs_non_template
11020       << FnDesc /* Ignored */
11021       << CalleeTarget << CallerTarget;
11022 
11023   // This could be an implicit constructor for which we could not infer the
11024   // target due to a collsion. Diagnose that case.
11025   CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee);
11026   if (Meth != nullptr && Meth->isImplicit()) {
11027     CXXRecordDecl *ParentClass = Meth->getParent();
11028     Sema::CXXSpecialMember CSM;
11029 
11030     switch (FnKindPair.first) {
11031     default:
11032       return;
11033     case oc_implicit_default_constructor:
11034       CSM = Sema::CXXDefaultConstructor;
11035       break;
11036     case oc_implicit_copy_constructor:
11037       CSM = Sema::CXXCopyConstructor;
11038       break;
11039     case oc_implicit_move_constructor:
11040       CSM = Sema::CXXMoveConstructor;
11041       break;
11042     case oc_implicit_copy_assignment:
11043       CSM = Sema::CXXCopyAssignment;
11044       break;
11045     case oc_implicit_move_assignment:
11046       CSM = Sema::CXXMoveAssignment;
11047       break;
11048     };
11049 
11050     bool ConstRHS = false;
11051     if (Meth->getNumParams()) {
11052       if (const ReferenceType *RT =
11053               Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) {
11054         ConstRHS = RT->getPointeeType().isConstQualified();
11055       }
11056     }
11057 
11058     S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth,
11059                                               /* ConstRHS */ ConstRHS,
11060                                               /* Diagnose */ true);
11061   }
11062 }
11063 
11064 static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) {
11065   FunctionDecl *Callee = Cand->Function;
11066   EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data);
11067 
11068   S.Diag(Callee->getLocation(),
11069          diag::note_ovl_candidate_disabled_by_function_cond_attr)
11070       << Attr->getCond()->getSourceRange() << Attr->getMessage();
11071 }
11072 
11073 static void DiagnoseFailedExplicitSpec(Sema &S, OverloadCandidate *Cand) {
11074   ExplicitSpecifier ES = ExplicitSpecifier::getFromDecl(Cand->Function);
11075   assert(ES.isExplicit() && "not an explicit candidate");
11076 
11077   unsigned Kind;
11078   switch (Cand->Function->getDeclKind()) {
11079   case Decl::Kind::CXXConstructor:
11080     Kind = 0;
11081     break;
11082   case Decl::Kind::CXXConversion:
11083     Kind = 1;
11084     break;
11085   case Decl::Kind::CXXDeductionGuide:
11086     Kind = Cand->Function->isImplicit() ? 0 : 2;
11087     break;
11088   default:
11089     llvm_unreachable("invalid Decl");
11090   }
11091 
11092   // Note the location of the first (in-class) declaration; a redeclaration
11093   // (particularly an out-of-class definition) will typically lack the
11094   // 'explicit' specifier.
11095   // FIXME: This is probably a good thing to do for all 'candidate' notes.
11096   FunctionDecl *First = Cand->Function->getFirstDecl();
11097   if (FunctionDecl *Pattern = First->getTemplateInstantiationPattern())
11098     First = Pattern->getFirstDecl();
11099 
11100   S.Diag(First->getLocation(),
11101          diag::note_ovl_candidate_explicit)
11102       << Kind << (ES.getExpr() ? 1 : 0)
11103       << (ES.getExpr() ? ES.getExpr()->getSourceRange() : SourceRange());
11104 }
11105 
11106 /// Generates a 'note' diagnostic for an overload candidate.  We've
11107 /// already generated a primary error at the call site.
11108 ///
11109 /// It really does need to be a single diagnostic with its caret
11110 /// pointed at the candidate declaration.  Yes, this creates some
11111 /// major challenges of technical writing.  Yes, this makes pointing
11112 /// out problems with specific arguments quite awkward.  It's still
11113 /// better than generating twenty screens of text for every failed
11114 /// overload.
11115 ///
11116 /// It would be great to be able to express per-candidate problems
11117 /// more richly for those diagnostic clients that cared, but we'd
11118 /// still have to be just as careful with the default diagnostics.
11119 /// \param CtorDestAS Addr space of object being constructed (for ctor
11120 /// candidates only).
11121 static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
11122                                   unsigned NumArgs,
11123                                   bool TakingCandidateAddress,
11124                                   LangAS CtorDestAS = LangAS::Default) {
11125   FunctionDecl *Fn = Cand->Function;
11126   if (shouldSkipNotingLambdaConversionDecl(Fn))
11127     return;
11128 
11129   // Note deleted candidates, but only if they're viable.
11130   if (Cand->Viable) {
11131     if (Fn->isDeleted()) {
11132       std::string FnDesc;
11133       std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
11134           ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn,
11135                                     Cand->getRewriteKind(), FnDesc);
11136 
11137       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
11138           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
11139           << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
11140       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
11141       return;
11142     }
11143 
11144     // We don't really have anything else to say about viable candidates.
11145     S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind());
11146     return;
11147   }
11148 
11149   switch (Cand->FailureKind) {
11150   case ovl_fail_too_many_arguments:
11151   case ovl_fail_too_few_arguments:
11152     return DiagnoseArityMismatch(S, Cand, NumArgs);
11153 
11154   case ovl_fail_bad_deduction:
11155     return DiagnoseBadDeduction(S, Cand, NumArgs,
11156                                 TakingCandidateAddress);
11157 
11158   case ovl_fail_illegal_constructor: {
11159     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor)
11160       << (Fn->getPrimaryTemplate() ? 1 : 0);
11161     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
11162     return;
11163   }
11164 
11165   case ovl_fail_object_addrspace_mismatch: {
11166     Qualifiers QualsForPrinting;
11167     QualsForPrinting.setAddressSpace(CtorDestAS);
11168     S.Diag(Fn->getLocation(),
11169            diag::note_ovl_candidate_illegal_constructor_adrspace_mismatch)
11170         << QualsForPrinting;
11171     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
11172     return;
11173   }
11174 
11175   case ovl_fail_trivial_conversion:
11176   case ovl_fail_bad_final_conversion:
11177   case ovl_fail_final_conversion_not_exact:
11178     return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind());
11179 
11180   case ovl_fail_bad_conversion: {
11181     unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
11182     for (unsigned N = Cand->Conversions.size(); I != N; ++I)
11183       if (Cand->Conversions[I].isBad())
11184         return DiagnoseBadConversion(S, Cand, I, TakingCandidateAddress);
11185 
11186     // FIXME: this currently happens when we're called from SemaInit
11187     // when user-conversion overload fails.  Figure out how to handle
11188     // those conditions and diagnose them well.
11189     return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind());
11190   }
11191 
11192   case ovl_fail_bad_target:
11193     return DiagnoseBadTarget(S, Cand);
11194 
11195   case ovl_fail_enable_if:
11196     return DiagnoseFailedEnableIfAttr(S, Cand);
11197 
11198   case ovl_fail_explicit:
11199     return DiagnoseFailedExplicitSpec(S, Cand);
11200 
11201   case ovl_fail_inhctor_slice:
11202     // It's generally not interesting to note copy/move constructors here.
11203     if (cast<CXXConstructorDecl>(Fn)->isCopyOrMoveConstructor())
11204       return;
11205     S.Diag(Fn->getLocation(),
11206            diag::note_ovl_candidate_inherited_constructor_slice)
11207       << (Fn->getPrimaryTemplate() ? 1 : 0)
11208       << Fn->getParamDecl(0)->getType()->isRValueReferenceType();
11209     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
11210     return;
11211 
11212   case ovl_fail_addr_not_available: {
11213     bool Available = checkAddressOfCandidateIsAvailable(S, Cand->Function);
11214     (void)Available;
11215     assert(!Available);
11216     break;
11217   }
11218   case ovl_non_default_multiversion_function:
11219     // Do nothing, these should simply be ignored.
11220     break;
11221 
11222   case ovl_fail_constraints_not_satisfied: {
11223     std::string FnDesc;
11224     std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
11225         ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn,
11226                                   Cand->getRewriteKind(), FnDesc);
11227 
11228     S.Diag(Fn->getLocation(),
11229            diag::note_ovl_candidate_constraints_not_satisfied)
11230         << (unsigned)FnKindPair.first << (unsigned)ocs_non_template
11231         << FnDesc /* Ignored */;
11232     ConstraintSatisfaction Satisfaction;
11233     if (S.CheckFunctionConstraints(Fn, Satisfaction))
11234       break;
11235     S.DiagnoseUnsatisfiedConstraint(Satisfaction);
11236   }
11237   }
11238 }
11239 
11240 static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
11241   if (shouldSkipNotingLambdaConversionDecl(Cand->Surrogate))
11242     return;
11243 
11244   // Desugar the type of the surrogate down to a function type,
11245   // retaining as many typedefs as possible while still showing
11246   // the function type (and, therefore, its parameter types).
11247   QualType FnType = Cand->Surrogate->getConversionType();
11248   bool isLValueReference = false;
11249   bool isRValueReference = false;
11250   bool isPointer = false;
11251   if (const LValueReferenceType *FnTypeRef =
11252         FnType->getAs<LValueReferenceType>()) {
11253     FnType = FnTypeRef->getPointeeType();
11254     isLValueReference = true;
11255   } else if (const RValueReferenceType *FnTypeRef =
11256                FnType->getAs<RValueReferenceType>()) {
11257     FnType = FnTypeRef->getPointeeType();
11258     isRValueReference = true;
11259   }
11260   if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
11261     FnType = FnTypePtr->getPointeeType();
11262     isPointer = true;
11263   }
11264   // Desugar down to a function type.
11265   FnType = QualType(FnType->getAs<FunctionType>(), 0);
11266   // Reconstruct the pointer/reference as appropriate.
11267   if (isPointer) FnType = S.Context.getPointerType(FnType);
11268   if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
11269   if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
11270 
11271   S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
11272     << FnType;
11273 }
11274 
11275 static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc,
11276                                          SourceLocation OpLoc,
11277                                          OverloadCandidate *Cand) {
11278   assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
11279   std::string TypeStr("operator");
11280   TypeStr += Opc;
11281   TypeStr += "(";
11282   TypeStr += Cand->BuiltinParamTypes[0].getAsString();
11283   if (Cand->Conversions.size() == 1) {
11284     TypeStr += ")";
11285     S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr;
11286   } else {
11287     TypeStr += ", ";
11288     TypeStr += Cand->BuiltinParamTypes[1].getAsString();
11289     TypeStr += ")";
11290     S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr;
11291   }
11292 }
11293 
11294 static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
11295                                          OverloadCandidate *Cand) {
11296   for (const ImplicitConversionSequence &ICS : Cand->Conversions) {
11297     if (ICS.isBad()) break; // all meaningless after first invalid
11298     if (!ICS.isAmbiguous()) continue;
11299 
11300     ICS.DiagnoseAmbiguousConversion(
11301         S, OpLoc, S.PDiag(diag::note_ambiguous_type_conversion));
11302   }
11303 }
11304 
11305 static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
11306   if (Cand->Function)
11307     return Cand->Function->getLocation();
11308   if (Cand->IsSurrogate)
11309     return Cand->Surrogate->getLocation();
11310   return SourceLocation();
11311 }
11312 
11313 static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) {
11314   switch ((Sema::TemplateDeductionResult)DFI.Result) {
11315   case Sema::TDK_Success:
11316   case Sema::TDK_NonDependentConversionFailure:
11317     llvm_unreachable("non-deduction failure while diagnosing bad deduction");
11318 
11319   case Sema::TDK_Invalid:
11320   case Sema::TDK_Incomplete:
11321   case Sema::TDK_IncompletePack:
11322     return 1;
11323 
11324   case Sema::TDK_Underqualified:
11325   case Sema::TDK_Inconsistent:
11326     return 2;
11327 
11328   case Sema::TDK_SubstitutionFailure:
11329   case Sema::TDK_DeducedMismatch:
11330   case Sema::TDK_ConstraintsNotSatisfied:
11331   case Sema::TDK_DeducedMismatchNested:
11332   case Sema::TDK_NonDeducedMismatch:
11333   case Sema::TDK_MiscellaneousDeductionFailure:
11334   case Sema::TDK_CUDATargetMismatch:
11335     return 3;
11336 
11337   case Sema::TDK_InstantiationDepth:
11338     return 4;
11339 
11340   case Sema::TDK_InvalidExplicitArguments:
11341     return 5;
11342 
11343   case Sema::TDK_TooManyArguments:
11344   case Sema::TDK_TooFewArguments:
11345     return 6;
11346   }
11347   llvm_unreachable("Unhandled deduction result");
11348 }
11349 
11350 namespace {
11351 struct CompareOverloadCandidatesForDisplay {
11352   Sema &S;
11353   SourceLocation Loc;
11354   size_t NumArgs;
11355   OverloadCandidateSet::CandidateSetKind CSK;
11356 
11357   CompareOverloadCandidatesForDisplay(
11358       Sema &S, SourceLocation Loc, size_t NArgs,
11359       OverloadCandidateSet::CandidateSetKind CSK)
11360       : S(S), NumArgs(NArgs), CSK(CSK) {}
11361 
11362   OverloadFailureKind EffectiveFailureKind(const OverloadCandidate *C) const {
11363     // If there are too many or too few arguments, that's the high-order bit we
11364     // want to sort by, even if the immediate failure kind was something else.
11365     if (C->FailureKind == ovl_fail_too_many_arguments ||
11366         C->FailureKind == ovl_fail_too_few_arguments)
11367       return static_cast<OverloadFailureKind>(C->FailureKind);
11368 
11369     if (C->Function) {
11370       if (NumArgs > C->Function->getNumParams() && !C->Function->isVariadic())
11371         return ovl_fail_too_many_arguments;
11372       if (NumArgs < C->Function->getMinRequiredArguments())
11373         return ovl_fail_too_few_arguments;
11374     }
11375 
11376     return static_cast<OverloadFailureKind>(C->FailureKind);
11377   }
11378 
11379   bool operator()(const OverloadCandidate *L,
11380                   const OverloadCandidate *R) {
11381     // Fast-path this check.
11382     if (L == R) return false;
11383 
11384     // Order first by viability.
11385     if (L->Viable) {
11386       if (!R->Viable) return true;
11387 
11388       // TODO: introduce a tri-valued comparison for overload
11389       // candidates.  Would be more worthwhile if we had a sort
11390       // that could exploit it.
11391       if (isBetterOverloadCandidate(S, *L, *R, SourceLocation(), CSK))
11392         return true;
11393       if (isBetterOverloadCandidate(S, *R, *L, SourceLocation(), CSK))
11394         return false;
11395     } else if (R->Viable)
11396       return false;
11397 
11398     assert(L->Viable == R->Viable);
11399 
11400     // Criteria by which we can sort non-viable candidates:
11401     if (!L->Viable) {
11402       OverloadFailureKind LFailureKind = EffectiveFailureKind(L);
11403       OverloadFailureKind RFailureKind = EffectiveFailureKind(R);
11404 
11405       // 1. Arity mismatches come after other candidates.
11406       if (LFailureKind == ovl_fail_too_many_arguments ||
11407           LFailureKind == ovl_fail_too_few_arguments) {
11408         if (RFailureKind == ovl_fail_too_many_arguments ||
11409             RFailureKind == ovl_fail_too_few_arguments) {
11410           int LDist = std::abs((int)L->getNumParams() - (int)NumArgs);
11411           int RDist = std::abs((int)R->getNumParams() - (int)NumArgs);
11412           if (LDist == RDist) {
11413             if (LFailureKind == RFailureKind)
11414               // Sort non-surrogates before surrogates.
11415               return !L->IsSurrogate && R->IsSurrogate;
11416             // Sort candidates requiring fewer parameters than there were
11417             // arguments given after candidates requiring more parameters
11418             // than there were arguments given.
11419             return LFailureKind == ovl_fail_too_many_arguments;
11420           }
11421           return LDist < RDist;
11422         }
11423         return false;
11424       }
11425       if (RFailureKind == ovl_fail_too_many_arguments ||
11426           RFailureKind == ovl_fail_too_few_arguments)
11427         return true;
11428 
11429       // 2. Bad conversions come first and are ordered by the number
11430       // of bad conversions and quality of good conversions.
11431       if (LFailureKind == ovl_fail_bad_conversion) {
11432         if (RFailureKind != ovl_fail_bad_conversion)
11433           return true;
11434 
11435         // The conversion that can be fixed with a smaller number of changes,
11436         // comes first.
11437         unsigned numLFixes = L->Fix.NumConversionsFixed;
11438         unsigned numRFixes = R->Fix.NumConversionsFixed;
11439         numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
11440         numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
11441         if (numLFixes != numRFixes) {
11442           return numLFixes < numRFixes;
11443         }
11444 
11445         // If there's any ordering between the defined conversions...
11446         // FIXME: this might not be transitive.
11447         assert(L->Conversions.size() == R->Conversions.size());
11448 
11449         int leftBetter = 0;
11450         unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
11451         for (unsigned E = L->Conversions.size(); I != E; ++I) {
11452           switch (CompareImplicitConversionSequences(S, Loc,
11453                                                      L->Conversions[I],
11454                                                      R->Conversions[I])) {
11455           case ImplicitConversionSequence::Better:
11456             leftBetter++;
11457             break;
11458 
11459           case ImplicitConversionSequence::Worse:
11460             leftBetter--;
11461             break;
11462 
11463           case ImplicitConversionSequence::Indistinguishable:
11464             break;
11465           }
11466         }
11467         if (leftBetter > 0) return true;
11468         if (leftBetter < 0) return false;
11469 
11470       } else if (RFailureKind == ovl_fail_bad_conversion)
11471         return false;
11472 
11473       if (LFailureKind == ovl_fail_bad_deduction) {
11474         if (RFailureKind != ovl_fail_bad_deduction)
11475           return true;
11476 
11477         if (L->DeductionFailure.Result != R->DeductionFailure.Result)
11478           return RankDeductionFailure(L->DeductionFailure)
11479                < RankDeductionFailure(R->DeductionFailure);
11480       } else if (RFailureKind == ovl_fail_bad_deduction)
11481         return false;
11482 
11483       // TODO: others?
11484     }
11485 
11486     // Sort everything else by location.
11487     SourceLocation LLoc = GetLocationForCandidate(L);
11488     SourceLocation RLoc = GetLocationForCandidate(R);
11489 
11490     // Put candidates without locations (e.g. builtins) at the end.
11491     if (LLoc.isInvalid()) return false;
11492     if (RLoc.isInvalid()) return true;
11493 
11494     return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
11495   }
11496 };
11497 }
11498 
11499 /// CompleteNonViableCandidate - Normally, overload resolution only
11500 /// computes up to the first bad conversion. Produces the FixIt set if
11501 /// possible.
11502 static void
11503 CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
11504                            ArrayRef<Expr *> Args,
11505                            OverloadCandidateSet::CandidateSetKind CSK) {
11506   assert(!Cand->Viable);
11507 
11508   // Don't do anything on failures other than bad conversion.
11509   if (Cand->FailureKind != ovl_fail_bad_conversion)
11510     return;
11511 
11512   // We only want the FixIts if all the arguments can be corrected.
11513   bool Unfixable = false;
11514   // Use a implicit copy initialization to check conversion fixes.
11515   Cand->Fix.setConversionChecker(TryCopyInitialization);
11516 
11517   // Attempt to fix the bad conversion.
11518   unsigned ConvCount = Cand->Conversions.size();
11519   for (unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); /**/;
11520        ++ConvIdx) {
11521     assert(ConvIdx != ConvCount && "no bad conversion in candidate");
11522     if (Cand->Conversions[ConvIdx].isInitialized() &&
11523         Cand->Conversions[ConvIdx].isBad()) {
11524       Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
11525       break;
11526     }
11527   }
11528 
11529   // FIXME: this should probably be preserved from the overload
11530   // operation somehow.
11531   bool SuppressUserConversions = false;
11532 
11533   unsigned ConvIdx = 0;
11534   unsigned ArgIdx = 0;
11535   ArrayRef<QualType> ParamTypes;
11536   bool Reversed = Cand->isReversed();
11537 
11538   if (Cand->IsSurrogate) {
11539     QualType ConvType
11540       = Cand->Surrogate->getConversionType().getNonReferenceType();
11541     if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
11542       ConvType = ConvPtrType->getPointeeType();
11543     ParamTypes = ConvType->castAs<FunctionProtoType>()->getParamTypes();
11544     // Conversion 0 is 'this', which doesn't have a corresponding parameter.
11545     ConvIdx = 1;
11546   } else if (Cand->Function) {
11547     ParamTypes =
11548         Cand->Function->getType()->castAs<FunctionProtoType>()->getParamTypes();
11549     if (isa<CXXMethodDecl>(Cand->Function) &&
11550         !isa<CXXConstructorDecl>(Cand->Function) && !Reversed) {
11551       // Conversion 0 is 'this', which doesn't have a corresponding parameter.
11552       ConvIdx = 1;
11553       if (CSK == OverloadCandidateSet::CSK_Operator &&
11554           Cand->Function->getDeclName().getCXXOverloadedOperator() != OO_Call)
11555         // Argument 0 is 'this', which doesn't have a corresponding parameter.
11556         ArgIdx = 1;
11557     }
11558   } else {
11559     // Builtin operator.
11560     assert(ConvCount <= 3);
11561     ParamTypes = Cand->BuiltinParamTypes;
11562   }
11563 
11564   // Fill in the rest of the conversions.
11565   for (unsigned ParamIdx = Reversed ? ParamTypes.size() - 1 : 0;
11566        ConvIdx != ConvCount;
11567        ++ConvIdx, ++ArgIdx, ParamIdx += (Reversed ? -1 : 1)) {
11568     assert(ArgIdx < Args.size() && "no argument for this arg conversion");
11569     if (Cand->Conversions[ConvIdx].isInitialized()) {
11570       // We've already checked this conversion.
11571     } else if (ParamIdx < ParamTypes.size()) {
11572       if (ParamTypes[ParamIdx]->isDependentType())
11573         Cand->Conversions[ConvIdx].setAsIdentityConversion(
11574             Args[ArgIdx]->getType());
11575       else {
11576         Cand->Conversions[ConvIdx] =
11577             TryCopyInitialization(S, Args[ArgIdx], ParamTypes[ParamIdx],
11578                                   SuppressUserConversions,
11579                                   /*InOverloadResolution=*/true,
11580                                   /*AllowObjCWritebackConversion=*/
11581                                   S.getLangOpts().ObjCAutoRefCount);
11582         // Store the FixIt in the candidate if it exists.
11583         if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
11584           Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
11585       }
11586     } else
11587       Cand->Conversions[ConvIdx].setEllipsis();
11588   }
11589 }
11590 
11591 SmallVector<OverloadCandidate *, 32> OverloadCandidateSet::CompleteCandidates(
11592     Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args,
11593     SourceLocation OpLoc,
11594     llvm::function_ref<bool(OverloadCandidate &)> Filter) {
11595   // Sort the candidates by viability and position.  Sorting directly would
11596   // be prohibitive, so we make a set of pointers and sort those.
11597   SmallVector<OverloadCandidate*, 32> Cands;
11598   if (OCD == OCD_AllCandidates) Cands.reserve(size());
11599   for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
11600     if (!Filter(*Cand))
11601       continue;
11602     switch (OCD) {
11603     case OCD_AllCandidates:
11604       if (!Cand->Viable) {
11605         if (!Cand->Function && !Cand->IsSurrogate) {
11606           // This a non-viable builtin candidate.  We do not, in general,
11607           // want to list every possible builtin candidate.
11608           continue;
11609         }
11610         CompleteNonViableCandidate(S, Cand, Args, Kind);
11611       }
11612       break;
11613 
11614     case OCD_ViableCandidates:
11615       if (!Cand->Viable)
11616         continue;
11617       break;
11618 
11619     case OCD_AmbiguousCandidates:
11620       if (!Cand->Best)
11621         continue;
11622       break;
11623     }
11624 
11625     Cands.push_back(Cand);
11626   }
11627 
11628   llvm::stable_sort(
11629       Cands, CompareOverloadCandidatesForDisplay(S, OpLoc, Args.size(), Kind));
11630 
11631   return Cands;
11632 }
11633 
11634 bool OverloadCandidateSet::shouldDeferDiags(Sema &S, ArrayRef<Expr *> Args,
11635                                             SourceLocation OpLoc) {
11636   bool DeferHint = false;
11637   if (S.getLangOpts().CUDA && S.getLangOpts().GPUDeferDiag) {
11638     // Defer diagnostic for CUDA/HIP if there are wrong-sided candidates or
11639     // host device candidates.
11640     auto WrongSidedCands =
11641         CompleteCandidates(S, OCD_AllCandidates, Args, OpLoc, [](auto &Cand) {
11642           return (Cand.Viable == false &&
11643                   Cand.FailureKind == ovl_fail_bad_target) ||
11644                  (Cand.Function &&
11645                   Cand.Function->template hasAttr<CUDAHostAttr>() &&
11646                   Cand.Function->template hasAttr<CUDADeviceAttr>());
11647         });
11648     DeferHint = !WrongSidedCands.empty();
11649   }
11650   return DeferHint;
11651 }
11652 
11653 /// When overload resolution fails, prints diagnostic messages containing the
11654 /// candidates in the candidate set.
11655 void OverloadCandidateSet::NoteCandidates(
11656     PartialDiagnosticAt PD, Sema &S, OverloadCandidateDisplayKind OCD,
11657     ArrayRef<Expr *> Args, StringRef Opc, SourceLocation OpLoc,
11658     llvm::function_ref<bool(OverloadCandidate &)> Filter) {
11659 
11660   auto Cands = CompleteCandidates(S, OCD, Args, OpLoc, Filter);
11661 
11662   S.Diag(PD.first, PD.second, shouldDeferDiags(S, Args, OpLoc));
11663 
11664   NoteCandidates(S, Args, Cands, Opc, OpLoc);
11665 
11666   if (OCD == OCD_AmbiguousCandidates)
11667     MaybeDiagnoseAmbiguousConstraints(S, {begin(), end()});
11668 }
11669 
11670 void OverloadCandidateSet::NoteCandidates(Sema &S, ArrayRef<Expr *> Args,
11671                                           ArrayRef<OverloadCandidate *> Cands,
11672                                           StringRef Opc, SourceLocation OpLoc) {
11673   bool ReportedAmbiguousConversions = false;
11674 
11675   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
11676   unsigned CandsShown = 0;
11677   auto I = Cands.begin(), E = Cands.end();
11678   for (; I != E; ++I) {
11679     OverloadCandidate *Cand = *I;
11680 
11681     if (CandsShown >= S.Diags.getNumOverloadCandidatesToShow() &&
11682         ShowOverloads == Ovl_Best) {
11683       break;
11684     }
11685     ++CandsShown;
11686 
11687     if (Cand->Function)
11688       NoteFunctionCandidate(S, Cand, Args.size(),
11689                             /*TakingCandidateAddress=*/false, DestAS);
11690     else if (Cand->IsSurrogate)
11691       NoteSurrogateCandidate(S, Cand);
11692     else {
11693       assert(Cand->Viable &&
11694              "Non-viable built-in candidates are not added to Cands.");
11695       // Generally we only see ambiguities including viable builtin
11696       // operators if overload resolution got screwed up by an
11697       // ambiguous user-defined conversion.
11698       //
11699       // FIXME: It's quite possible for different conversions to see
11700       // different ambiguities, though.
11701       if (!ReportedAmbiguousConversions) {
11702         NoteAmbiguousUserConversions(S, OpLoc, Cand);
11703         ReportedAmbiguousConversions = true;
11704       }
11705 
11706       // If this is a viable builtin, print it.
11707       NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
11708     }
11709   }
11710 
11711   // Inform S.Diags that we've shown an overload set with N elements.  This may
11712   // inform the future value of S.Diags.getNumOverloadCandidatesToShow().
11713   S.Diags.overloadCandidatesShown(CandsShown);
11714 
11715   if (I != E)
11716     S.Diag(OpLoc, diag::note_ovl_too_many_candidates,
11717            shouldDeferDiags(S, Args, OpLoc))
11718         << int(E - I);
11719 }
11720 
11721 static SourceLocation
11722 GetLocationForCandidate(const TemplateSpecCandidate *Cand) {
11723   return Cand->Specialization ? Cand->Specialization->getLocation()
11724                               : SourceLocation();
11725 }
11726 
11727 namespace {
11728 struct CompareTemplateSpecCandidatesForDisplay {
11729   Sema &S;
11730   CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {}
11731 
11732   bool operator()(const TemplateSpecCandidate *L,
11733                   const TemplateSpecCandidate *R) {
11734     // Fast-path this check.
11735     if (L == R)
11736       return false;
11737 
11738     // Assuming that both candidates are not matches...
11739 
11740     // Sort by the ranking of deduction failures.
11741     if (L->DeductionFailure.Result != R->DeductionFailure.Result)
11742       return RankDeductionFailure(L->DeductionFailure) <
11743              RankDeductionFailure(R->DeductionFailure);
11744 
11745     // Sort everything else by location.
11746     SourceLocation LLoc = GetLocationForCandidate(L);
11747     SourceLocation RLoc = GetLocationForCandidate(R);
11748 
11749     // Put candidates without locations (e.g. builtins) at the end.
11750     if (LLoc.isInvalid())
11751       return false;
11752     if (RLoc.isInvalid())
11753       return true;
11754 
11755     return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
11756   }
11757 };
11758 }
11759 
11760 /// Diagnose a template argument deduction failure.
11761 /// We are treating these failures as overload failures due to bad
11762 /// deductions.
11763 void TemplateSpecCandidate::NoteDeductionFailure(Sema &S,
11764                                                  bool ForTakingAddress) {
11765   DiagnoseBadDeduction(S, FoundDecl, Specialization, // pattern
11766                        DeductionFailure, /*NumArgs=*/0, ForTakingAddress);
11767 }
11768 
11769 void TemplateSpecCandidateSet::destroyCandidates() {
11770   for (iterator i = begin(), e = end(); i != e; ++i) {
11771     i->DeductionFailure.Destroy();
11772   }
11773 }
11774 
11775 void TemplateSpecCandidateSet::clear() {
11776   destroyCandidates();
11777   Candidates.clear();
11778 }
11779 
11780 /// NoteCandidates - When no template specialization match is found, prints
11781 /// diagnostic messages containing the non-matching specializations that form
11782 /// the candidate set.
11783 /// This is analoguous to OverloadCandidateSet::NoteCandidates() with
11784 /// OCD == OCD_AllCandidates and Cand->Viable == false.
11785 void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) {
11786   // Sort the candidates by position (assuming no candidate is a match).
11787   // Sorting directly would be prohibitive, so we make a set of pointers
11788   // and sort those.
11789   SmallVector<TemplateSpecCandidate *, 32> Cands;
11790   Cands.reserve(size());
11791   for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
11792     if (Cand->Specialization)
11793       Cands.push_back(Cand);
11794     // Otherwise, this is a non-matching builtin candidate.  We do not,
11795     // in general, want to list every possible builtin candidate.
11796   }
11797 
11798   llvm::sort(Cands, CompareTemplateSpecCandidatesForDisplay(S));
11799 
11800   // FIXME: Perhaps rename OverloadsShown and getShowOverloads()
11801   // for generalization purposes (?).
11802   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
11803 
11804   SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E;
11805   unsigned CandsShown = 0;
11806   for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
11807     TemplateSpecCandidate *Cand = *I;
11808 
11809     // Set an arbitrary limit on the number of candidates we'll spam
11810     // the user with.  FIXME: This limit should depend on details of the
11811     // candidate list.
11812     if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
11813       break;
11814     ++CandsShown;
11815 
11816     assert(Cand->Specialization &&
11817            "Non-matching built-in candidates are not added to Cands.");
11818     Cand->NoteDeductionFailure(S, ForTakingAddress);
11819   }
11820 
11821   if (I != E)
11822     S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I);
11823 }
11824 
11825 // [PossiblyAFunctionType]  -->   [Return]
11826 // NonFunctionType --> NonFunctionType
11827 // R (A) --> R(A)
11828 // R (*)(A) --> R (A)
11829 // R (&)(A) --> R (A)
11830 // R (S::*)(A) --> R (A)
11831 QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
11832   QualType Ret = PossiblyAFunctionType;
11833   if (const PointerType *ToTypePtr =
11834     PossiblyAFunctionType->getAs<PointerType>())
11835     Ret = ToTypePtr->getPointeeType();
11836   else if (const ReferenceType *ToTypeRef =
11837     PossiblyAFunctionType->getAs<ReferenceType>())
11838     Ret = ToTypeRef->getPointeeType();
11839   else if (const MemberPointerType *MemTypePtr =
11840     PossiblyAFunctionType->getAs<MemberPointerType>())
11841     Ret = MemTypePtr->getPointeeType();
11842   Ret =
11843     Context.getCanonicalType(Ret).getUnqualifiedType();
11844   return Ret;
11845 }
11846 
11847 static bool completeFunctionType(Sema &S, FunctionDecl *FD, SourceLocation Loc,
11848                                  bool Complain = true) {
11849   if (S.getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
11850       S.DeduceReturnType(FD, Loc, Complain))
11851     return true;
11852 
11853   auto *FPT = FD->getType()->castAs<FunctionProtoType>();
11854   if (S.getLangOpts().CPlusPlus17 &&
11855       isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
11856       !S.ResolveExceptionSpec(Loc, FPT))
11857     return true;
11858 
11859   return false;
11860 }
11861 
11862 namespace {
11863 // A helper class to help with address of function resolution
11864 // - allows us to avoid passing around all those ugly parameters
11865 class AddressOfFunctionResolver {
11866   Sema& S;
11867   Expr* SourceExpr;
11868   const QualType& TargetType;
11869   QualType TargetFunctionType; // Extracted function type from target type
11870 
11871   bool Complain;
11872   //DeclAccessPair& ResultFunctionAccessPair;
11873   ASTContext& Context;
11874 
11875   bool TargetTypeIsNonStaticMemberFunction;
11876   bool FoundNonTemplateFunction;
11877   bool StaticMemberFunctionFromBoundPointer;
11878   bool HasComplained;
11879 
11880   OverloadExpr::FindResult OvlExprInfo;
11881   OverloadExpr *OvlExpr;
11882   TemplateArgumentListInfo OvlExplicitTemplateArgs;
11883   SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
11884   TemplateSpecCandidateSet FailedCandidates;
11885 
11886 public:
11887   AddressOfFunctionResolver(Sema &S, Expr *SourceExpr,
11888                             const QualType &TargetType, bool Complain)
11889       : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
11890         Complain(Complain), Context(S.getASTContext()),
11891         TargetTypeIsNonStaticMemberFunction(
11892             !!TargetType->getAs<MemberPointerType>()),
11893         FoundNonTemplateFunction(false),
11894         StaticMemberFunctionFromBoundPointer(false),
11895         HasComplained(false),
11896         OvlExprInfo(OverloadExpr::find(SourceExpr)),
11897         OvlExpr(OvlExprInfo.Expression),
11898         FailedCandidates(OvlExpr->getNameLoc(), /*ForTakingAddress=*/true) {
11899     ExtractUnqualifiedFunctionTypeFromTargetType();
11900 
11901     if (TargetFunctionType->isFunctionType()) {
11902       if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr))
11903         if (!UME->isImplicitAccess() &&
11904             !S.ResolveSingleFunctionTemplateSpecialization(UME))
11905           StaticMemberFunctionFromBoundPointer = true;
11906     } else if (OvlExpr->hasExplicitTemplateArgs()) {
11907       DeclAccessPair dap;
11908       if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization(
11909               OvlExpr, false, &dap)) {
11910         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
11911           if (!Method->isStatic()) {
11912             // If the target type is a non-function type and the function found
11913             // is a non-static member function, pretend as if that was the
11914             // target, it's the only possible type to end up with.
11915             TargetTypeIsNonStaticMemberFunction = true;
11916 
11917             // And skip adding the function if its not in the proper form.
11918             // We'll diagnose this due to an empty set of functions.
11919             if (!OvlExprInfo.HasFormOfMemberPointer)
11920               return;
11921           }
11922 
11923         Matches.push_back(std::make_pair(dap, Fn));
11924       }
11925       return;
11926     }
11927 
11928     if (OvlExpr->hasExplicitTemplateArgs())
11929       OvlExpr->copyTemplateArgumentsInto(OvlExplicitTemplateArgs);
11930 
11931     if (FindAllFunctionsThatMatchTargetTypeExactly()) {
11932       // C++ [over.over]p4:
11933       //   If more than one function is selected, [...]
11934       if (Matches.size() > 1 && !eliminiateSuboptimalOverloadCandidates()) {
11935         if (FoundNonTemplateFunction)
11936           EliminateAllTemplateMatches();
11937         else
11938           EliminateAllExceptMostSpecializedTemplate();
11939       }
11940     }
11941 
11942     if (S.getLangOpts().CUDA && Matches.size() > 1)
11943       EliminateSuboptimalCudaMatches();
11944   }
11945 
11946   bool hasComplained() const { return HasComplained; }
11947 
11948 private:
11949   bool candidateHasExactlyCorrectType(const FunctionDecl *FD) {
11950     QualType Discard;
11951     return Context.hasSameUnqualifiedType(TargetFunctionType, FD->getType()) ||
11952            S.IsFunctionConversion(FD->getType(), TargetFunctionType, Discard);
11953   }
11954 
11955   /// \return true if A is considered a better overload candidate for the
11956   /// desired type than B.
11957   bool isBetterCandidate(const FunctionDecl *A, const FunctionDecl *B) {
11958     // If A doesn't have exactly the correct type, we don't want to classify it
11959     // as "better" than anything else. This way, the user is required to
11960     // disambiguate for us if there are multiple candidates and no exact match.
11961     return candidateHasExactlyCorrectType(A) &&
11962            (!candidateHasExactlyCorrectType(B) ||
11963             compareEnableIfAttrs(S, A, B) == Comparison::Better);
11964   }
11965 
11966   /// \return true if we were able to eliminate all but one overload candidate,
11967   /// false otherwise.
11968   bool eliminiateSuboptimalOverloadCandidates() {
11969     // Same algorithm as overload resolution -- one pass to pick the "best",
11970     // another pass to be sure that nothing is better than the best.
11971     auto Best = Matches.begin();
11972     for (auto I = Matches.begin()+1, E = Matches.end(); I != E; ++I)
11973       if (isBetterCandidate(I->second, Best->second))
11974         Best = I;
11975 
11976     const FunctionDecl *BestFn = Best->second;
11977     auto IsBestOrInferiorToBest = [this, BestFn](
11978         const std::pair<DeclAccessPair, FunctionDecl *> &Pair) {
11979       return BestFn == Pair.second || isBetterCandidate(BestFn, Pair.second);
11980     };
11981 
11982     // Note: We explicitly leave Matches unmodified if there isn't a clear best
11983     // option, so we can potentially give the user a better error
11984     if (!llvm::all_of(Matches, IsBestOrInferiorToBest))
11985       return false;
11986     Matches[0] = *Best;
11987     Matches.resize(1);
11988     return true;
11989   }
11990 
11991   bool isTargetTypeAFunction() const {
11992     return TargetFunctionType->isFunctionType();
11993   }
11994 
11995   // [ToType]     [Return]
11996 
11997   // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
11998   // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
11999   // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
12000   void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
12001     TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
12002   }
12003 
12004   // return true if any matching specializations were found
12005   bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
12006                                    const DeclAccessPair& CurAccessFunPair) {
12007     if (CXXMethodDecl *Method
12008               = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
12009       // Skip non-static function templates when converting to pointer, and
12010       // static when converting to member pointer.
12011       if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
12012         return false;
12013     }
12014     else if (TargetTypeIsNonStaticMemberFunction)
12015       return false;
12016 
12017     // C++ [over.over]p2:
12018     //   If the name is a function template, template argument deduction is
12019     //   done (14.8.2.2), and if the argument deduction succeeds, the
12020     //   resulting template argument list is used to generate a single
12021     //   function template specialization, which is added to the set of
12022     //   overloaded functions considered.
12023     FunctionDecl *Specialization = nullptr;
12024     TemplateDeductionInfo Info(FailedCandidates.getLocation());
12025     if (Sema::TemplateDeductionResult Result
12026           = S.DeduceTemplateArguments(FunctionTemplate,
12027                                       &OvlExplicitTemplateArgs,
12028                                       TargetFunctionType, Specialization,
12029                                       Info, /*IsAddressOfFunction*/true)) {
12030       // Make a note of the failed deduction for diagnostics.
12031       FailedCandidates.addCandidate()
12032           .set(CurAccessFunPair, FunctionTemplate->getTemplatedDecl(),
12033                MakeDeductionFailureInfo(Context, Result, Info));
12034       return false;
12035     }
12036 
12037     // Template argument deduction ensures that we have an exact match or
12038     // compatible pointer-to-function arguments that would be adjusted by ICS.
12039     // This function template specicalization works.
12040     assert(S.isSameOrCompatibleFunctionType(
12041               Context.getCanonicalType(Specialization->getType()),
12042               Context.getCanonicalType(TargetFunctionType)));
12043 
12044     if (!S.checkAddressOfFunctionIsAvailable(Specialization))
12045       return false;
12046 
12047     Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
12048     return true;
12049   }
12050 
12051   bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
12052                                       const DeclAccessPair& CurAccessFunPair) {
12053     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
12054       // Skip non-static functions when converting to pointer, and static
12055       // when converting to member pointer.
12056       if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
12057         return false;
12058     }
12059     else if (TargetTypeIsNonStaticMemberFunction)
12060       return false;
12061 
12062     if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
12063       if (S.getLangOpts().CUDA)
12064         if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
12065           if (!Caller->isImplicit() && !S.IsAllowedCUDACall(Caller, FunDecl))
12066             return false;
12067       if (FunDecl->isMultiVersion()) {
12068         const auto *TA = FunDecl->getAttr<TargetAttr>();
12069         if (TA && !TA->isDefaultVersion())
12070           return false;
12071       }
12072 
12073       // If any candidate has a placeholder return type, trigger its deduction
12074       // now.
12075       if (completeFunctionType(S, FunDecl, SourceExpr->getBeginLoc(),
12076                                Complain)) {
12077         HasComplained |= Complain;
12078         return false;
12079       }
12080 
12081       if (!S.checkAddressOfFunctionIsAvailable(FunDecl))
12082         return false;
12083 
12084       // If we're in C, we need to support types that aren't exactly identical.
12085       if (!S.getLangOpts().CPlusPlus ||
12086           candidateHasExactlyCorrectType(FunDecl)) {
12087         Matches.push_back(std::make_pair(
12088             CurAccessFunPair, cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
12089         FoundNonTemplateFunction = true;
12090         return true;
12091       }
12092     }
12093 
12094     return false;
12095   }
12096 
12097   bool FindAllFunctionsThatMatchTargetTypeExactly() {
12098     bool Ret = false;
12099 
12100     // If the overload expression doesn't have the form of a pointer to
12101     // member, don't try to convert it to a pointer-to-member type.
12102     if (IsInvalidFormOfPointerToMemberFunction())
12103       return false;
12104 
12105     for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
12106                                E = OvlExpr->decls_end();
12107          I != E; ++I) {
12108       // Look through any using declarations to find the underlying function.
12109       NamedDecl *Fn = (*I)->getUnderlyingDecl();
12110 
12111       // C++ [over.over]p3:
12112       //   Non-member functions and static member functions match
12113       //   targets of type "pointer-to-function" or "reference-to-function."
12114       //   Nonstatic member functions match targets of
12115       //   type "pointer-to-member-function."
12116       // Note that according to DR 247, the containing class does not matter.
12117       if (FunctionTemplateDecl *FunctionTemplate
12118                                         = dyn_cast<FunctionTemplateDecl>(Fn)) {
12119         if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
12120           Ret = true;
12121       }
12122       // If we have explicit template arguments supplied, skip non-templates.
12123       else if (!OvlExpr->hasExplicitTemplateArgs() &&
12124                AddMatchingNonTemplateFunction(Fn, I.getPair()))
12125         Ret = true;
12126     }
12127     assert(Ret || Matches.empty());
12128     return Ret;
12129   }
12130 
12131   void EliminateAllExceptMostSpecializedTemplate() {
12132     //   [...] and any given function template specialization F1 is
12133     //   eliminated if the set contains a second function template
12134     //   specialization whose function template is more specialized
12135     //   than the function template of F1 according to the partial
12136     //   ordering rules of 14.5.5.2.
12137 
12138     // The algorithm specified above is quadratic. We instead use a
12139     // two-pass algorithm (similar to the one used to identify the
12140     // best viable function in an overload set) that identifies the
12141     // best function template (if it exists).
12142 
12143     UnresolvedSet<4> MatchesCopy; // TODO: avoid!
12144     for (unsigned I = 0, E = Matches.size(); I != E; ++I)
12145       MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
12146 
12147     // TODO: It looks like FailedCandidates does not serve much purpose
12148     // here, since the no_viable diagnostic has index 0.
12149     UnresolvedSetIterator Result = S.getMostSpecialized(
12150         MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates,
12151         SourceExpr->getBeginLoc(), S.PDiag(),
12152         S.PDiag(diag::err_addr_ovl_ambiguous)
12153             << Matches[0].second->getDeclName(),
12154         S.PDiag(diag::note_ovl_candidate)
12155             << (unsigned)oc_function << (unsigned)ocs_described_template,
12156         Complain, TargetFunctionType);
12157 
12158     if (Result != MatchesCopy.end()) {
12159       // Make it the first and only element
12160       Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
12161       Matches[0].second = cast<FunctionDecl>(*Result);
12162       Matches.resize(1);
12163     } else
12164       HasComplained |= Complain;
12165   }
12166 
12167   void EliminateAllTemplateMatches() {
12168     //   [...] any function template specializations in the set are
12169     //   eliminated if the set also contains a non-template function, [...]
12170     for (unsigned I = 0, N = Matches.size(); I != N; ) {
12171       if (Matches[I].second->getPrimaryTemplate() == nullptr)
12172         ++I;
12173       else {
12174         Matches[I] = Matches[--N];
12175         Matches.resize(N);
12176       }
12177     }
12178   }
12179 
12180   void EliminateSuboptimalCudaMatches() {
12181     S.EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(S.CurContext), Matches);
12182   }
12183 
12184 public:
12185   void ComplainNoMatchesFound() const {
12186     assert(Matches.empty());
12187     S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_no_viable)
12188         << OvlExpr->getName() << TargetFunctionType
12189         << OvlExpr->getSourceRange();
12190     if (FailedCandidates.empty())
12191       S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
12192                                   /*TakingAddress=*/true);
12193     else {
12194       // We have some deduction failure messages. Use them to diagnose
12195       // the function templates, and diagnose the non-template candidates
12196       // normally.
12197       for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
12198                                  IEnd = OvlExpr->decls_end();
12199            I != IEnd; ++I)
12200         if (FunctionDecl *Fun =
12201                 dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
12202           if (!functionHasPassObjectSizeParams(Fun))
12203             S.NoteOverloadCandidate(*I, Fun, CRK_None, TargetFunctionType,
12204                                     /*TakingAddress=*/true);
12205       FailedCandidates.NoteCandidates(S, OvlExpr->getBeginLoc());
12206     }
12207   }
12208 
12209   bool IsInvalidFormOfPointerToMemberFunction() const {
12210     return TargetTypeIsNonStaticMemberFunction &&
12211       !OvlExprInfo.HasFormOfMemberPointer;
12212   }
12213 
12214   void ComplainIsInvalidFormOfPointerToMemberFunction() const {
12215       // TODO: Should we condition this on whether any functions might
12216       // have matched, or is it more appropriate to do that in callers?
12217       // TODO: a fixit wouldn't hurt.
12218       S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
12219         << TargetType << OvlExpr->getSourceRange();
12220   }
12221 
12222   bool IsStaticMemberFunctionFromBoundPointer() const {
12223     return StaticMemberFunctionFromBoundPointer;
12224   }
12225 
12226   void ComplainIsStaticMemberFunctionFromBoundPointer() const {
12227     S.Diag(OvlExpr->getBeginLoc(),
12228            diag::err_invalid_form_pointer_member_function)
12229         << OvlExpr->getSourceRange();
12230   }
12231 
12232   void ComplainOfInvalidConversion() const {
12233     S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_not_func_ptrref)
12234         << OvlExpr->getName() << TargetType;
12235   }
12236 
12237   void ComplainMultipleMatchesFound() const {
12238     assert(Matches.size() > 1);
12239     S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_ambiguous)
12240         << OvlExpr->getName() << OvlExpr->getSourceRange();
12241     S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
12242                                 /*TakingAddress=*/true);
12243   }
12244 
12245   bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
12246 
12247   int getNumMatches() const { return Matches.size(); }
12248 
12249   FunctionDecl* getMatchingFunctionDecl() const {
12250     if (Matches.size() != 1) return nullptr;
12251     return Matches[0].second;
12252   }
12253 
12254   const DeclAccessPair* getMatchingFunctionAccessPair() const {
12255     if (Matches.size() != 1) return nullptr;
12256     return &Matches[0].first;
12257   }
12258 };
12259 }
12260 
12261 /// ResolveAddressOfOverloadedFunction - Try to resolve the address of
12262 /// an overloaded function (C++ [over.over]), where @p From is an
12263 /// expression with overloaded function type and @p ToType is the type
12264 /// we're trying to resolve to. For example:
12265 ///
12266 /// @code
12267 /// int f(double);
12268 /// int f(int);
12269 ///
12270 /// int (*pfd)(double) = f; // selects f(double)
12271 /// @endcode
12272 ///
12273 /// This routine returns the resulting FunctionDecl if it could be
12274 /// resolved, and NULL otherwise. When @p Complain is true, this
12275 /// routine will emit diagnostics if there is an error.
12276 FunctionDecl *
12277 Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
12278                                          QualType TargetType,
12279                                          bool Complain,
12280                                          DeclAccessPair &FoundResult,
12281                                          bool *pHadMultipleCandidates) {
12282   assert(AddressOfExpr->getType() == Context.OverloadTy);
12283 
12284   AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
12285                                      Complain);
12286   int NumMatches = Resolver.getNumMatches();
12287   FunctionDecl *Fn = nullptr;
12288   bool ShouldComplain = Complain && !Resolver.hasComplained();
12289   if (NumMatches == 0 && ShouldComplain) {
12290     if (Resolver.IsInvalidFormOfPointerToMemberFunction())
12291       Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
12292     else
12293       Resolver.ComplainNoMatchesFound();
12294   }
12295   else if (NumMatches > 1 && ShouldComplain)
12296     Resolver.ComplainMultipleMatchesFound();
12297   else if (NumMatches == 1) {
12298     Fn = Resolver.getMatchingFunctionDecl();
12299     assert(Fn);
12300     if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>())
12301       ResolveExceptionSpec(AddressOfExpr->getExprLoc(), FPT);
12302     FoundResult = *Resolver.getMatchingFunctionAccessPair();
12303     if (Complain) {
12304       if (Resolver.IsStaticMemberFunctionFromBoundPointer())
12305         Resolver.ComplainIsStaticMemberFunctionFromBoundPointer();
12306       else
12307         CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
12308     }
12309   }
12310 
12311   if (pHadMultipleCandidates)
12312     *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
12313   return Fn;
12314 }
12315 
12316 /// Given an expression that refers to an overloaded function, try to
12317 /// resolve that function to a single function that can have its address taken.
12318 /// This will modify `Pair` iff it returns non-null.
12319 ///
12320 /// This routine can only succeed if from all of the candidates in the overload
12321 /// set for SrcExpr that can have their addresses taken, there is one candidate
12322 /// that is more constrained than the rest.
12323 FunctionDecl *
12324 Sema::resolveAddressOfSingleOverloadCandidate(Expr *E, DeclAccessPair &Pair) {
12325   OverloadExpr::FindResult R = OverloadExpr::find(E);
12326   OverloadExpr *Ovl = R.Expression;
12327   bool IsResultAmbiguous = false;
12328   FunctionDecl *Result = nullptr;
12329   DeclAccessPair DAP;
12330   SmallVector<FunctionDecl *, 2> AmbiguousDecls;
12331 
12332   auto CheckMoreConstrained =
12333       [&] (FunctionDecl *FD1, FunctionDecl *FD2) -> Optional<bool> {
12334         SmallVector<const Expr *, 1> AC1, AC2;
12335         FD1->getAssociatedConstraints(AC1);
12336         FD2->getAssociatedConstraints(AC2);
12337         bool AtLeastAsConstrained1, AtLeastAsConstrained2;
12338         if (IsAtLeastAsConstrained(FD1, AC1, FD2, AC2, AtLeastAsConstrained1))
12339           return None;
12340         if (IsAtLeastAsConstrained(FD2, AC2, FD1, AC1, AtLeastAsConstrained2))
12341           return None;
12342         if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
12343           return None;
12344         return AtLeastAsConstrained1;
12345       };
12346 
12347   // Don't use the AddressOfResolver because we're specifically looking for
12348   // cases where we have one overload candidate that lacks
12349   // enable_if/pass_object_size/...
12350   for (auto I = Ovl->decls_begin(), E = Ovl->decls_end(); I != E; ++I) {
12351     auto *FD = dyn_cast<FunctionDecl>(I->getUnderlyingDecl());
12352     if (!FD)
12353       return nullptr;
12354 
12355     if (!checkAddressOfFunctionIsAvailable(FD))
12356       continue;
12357 
12358     // We have more than one result - see if it is more constrained than the
12359     // previous one.
12360     if (Result) {
12361       Optional<bool> MoreConstrainedThanPrevious = CheckMoreConstrained(FD,
12362                                                                         Result);
12363       if (!MoreConstrainedThanPrevious) {
12364         IsResultAmbiguous = true;
12365         AmbiguousDecls.push_back(FD);
12366         continue;
12367       }
12368       if (!*MoreConstrainedThanPrevious)
12369         continue;
12370       // FD is more constrained - replace Result with it.
12371     }
12372     IsResultAmbiguous = false;
12373     DAP = I.getPair();
12374     Result = FD;
12375   }
12376 
12377   if (IsResultAmbiguous)
12378     return nullptr;
12379 
12380   if (Result) {
12381     SmallVector<const Expr *, 1> ResultAC;
12382     // We skipped over some ambiguous declarations which might be ambiguous with
12383     // the selected result.
12384     for (FunctionDecl *Skipped : AmbiguousDecls)
12385       if (!CheckMoreConstrained(Skipped, Result).hasValue())
12386         return nullptr;
12387     Pair = DAP;
12388   }
12389   return Result;
12390 }
12391 
12392 /// Given an overloaded function, tries to turn it into a non-overloaded
12393 /// function reference using resolveAddressOfSingleOverloadCandidate. This
12394 /// will perform access checks, diagnose the use of the resultant decl, and, if
12395 /// requested, potentially perform a function-to-pointer decay.
12396 ///
12397 /// Returns false if resolveAddressOfSingleOverloadCandidate fails.
12398 /// Otherwise, returns true. This may emit diagnostics and return true.
12399 bool Sema::resolveAndFixAddressOfSingleOverloadCandidate(
12400     ExprResult &SrcExpr, bool DoFunctionPointerConverion) {
12401   Expr *E = SrcExpr.get();
12402   assert(E->getType() == Context.OverloadTy && "SrcExpr must be an overload");
12403 
12404   DeclAccessPair DAP;
12405   FunctionDecl *Found = resolveAddressOfSingleOverloadCandidate(E, DAP);
12406   if (!Found || Found->isCPUDispatchMultiVersion() ||
12407       Found->isCPUSpecificMultiVersion())
12408     return false;
12409 
12410   // Emitting multiple diagnostics for a function that is both inaccessible and
12411   // unavailable is consistent with our behavior elsewhere. So, always check
12412   // for both.
12413   DiagnoseUseOfDecl(Found, E->getExprLoc());
12414   CheckAddressOfMemberAccess(E, DAP);
12415   Expr *Fixed = FixOverloadedFunctionReference(E, DAP, Found);
12416   if (DoFunctionPointerConverion && Fixed->getType()->isFunctionType())
12417     SrcExpr = DefaultFunctionArrayConversion(Fixed, /*Diagnose=*/false);
12418   else
12419     SrcExpr = Fixed;
12420   return true;
12421 }
12422 
12423 /// Given an expression that refers to an overloaded function, try to
12424 /// resolve that overloaded function expression down to a single function.
12425 ///
12426 /// This routine can only resolve template-ids that refer to a single function
12427 /// template, where that template-id refers to a single template whose template
12428 /// arguments are either provided by the template-id or have defaults,
12429 /// as described in C++0x [temp.arg.explicit]p3.
12430 ///
12431 /// If no template-ids are found, no diagnostics are emitted and NULL is
12432 /// returned.
12433 FunctionDecl *
12434 Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
12435                                                   bool Complain,
12436                                                   DeclAccessPair *FoundResult) {
12437   // C++ [over.over]p1:
12438   //   [...] [Note: any redundant set of parentheses surrounding the
12439   //   overloaded function name is ignored (5.1). ]
12440   // C++ [over.over]p1:
12441   //   [...] The overloaded function name can be preceded by the &
12442   //   operator.
12443 
12444   // If we didn't actually find any template-ids, we're done.
12445   if (!ovl->hasExplicitTemplateArgs())
12446     return nullptr;
12447 
12448   TemplateArgumentListInfo ExplicitTemplateArgs;
12449   ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs);
12450   TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc());
12451 
12452   // Look through all of the overloaded functions, searching for one
12453   // whose type matches exactly.
12454   FunctionDecl *Matched = nullptr;
12455   for (UnresolvedSetIterator I = ovl->decls_begin(),
12456          E = ovl->decls_end(); I != E; ++I) {
12457     // C++0x [temp.arg.explicit]p3:
12458     //   [...] In contexts where deduction is done and fails, or in contexts
12459     //   where deduction is not done, if a template argument list is
12460     //   specified and it, along with any default template arguments,
12461     //   identifies a single function template specialization, then the
12462     //   template-id is an lvalue for the function template specialization.
12463     FunctionTemplateDecl *FunctionTemplate
12464       = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
12465 
12466     // C++ [over.over]p2:
12467     //   If the name is a function template, template argument deduction is
12468     //   done (14.8.2.2), and if the argument deduction succeeds, the
12469     //   resulting template argument list is used to generate a single
12470     //   function template specialization, which is added to the set of
12471     //   overloaded functions considered.
12472     FunctionDecl *Specialization = nullptr;
12473     TemplateDeductionInfo Info(FailedCandidates.getLocation());
12474     if (TemplateDeductionResult Result
12475           = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
12476                                     Specialization, Info,
12477                                     /*IsAddressOfFunction*/true)) {
12478       // Make a note of the failed deduction for diagnostics.
12479       // TODO: Actually use the failed-deduction info?
12480       FailedCandidates.addCandidate()
12481           .set(I.getPair(), FunctionTemplate->getTemplatedDecl(),
12482                MakeDeductionFailureInfo(Context, Result, Info));
12483       continue;
12484     }
12485 
12486     assert(Specialization && "no specialization and no error?");
12487 
12488     // Multiple matches; we can't resolve to a single declaration.
12489     if (Matched) {
12490       if (Complain) {
12491         Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
12492           << ovl->getName();
12493         NoteAllOverloadCandidates(ovl);
12494       }
12495       return nullptr;
12496     }
12497 
12498     Matched = Specialization;
12499     if (FoundResult) *FoundResult = I.getPair();
12500   }
12501 
12502   if (Matched &&
12503       completeFunctionType(*this, Matched, ovl->getExprLoc(), Complain))
12504     return nullptr;
12505 
12506   return Matched;
12507 }
12508 
12509 // Resolve and fix an overloaded expression that can be resolved
12510 // because it identifies a single function template specialization.
12511 //
12512 // Last three arguments should only be supplied if Complain = true
12513 //
12514 // Return true if it was logically possible to so resolve the
12515 // expression, regardless of whether or not it succeeded.  Always
12516 // returns true if 'complain' is set.
12517 bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
12518                       ExprResult &SrcExpr, bool doFunctionPointerConverion,
12519                       bool complain, SourceRange OpRangeForComplaining,
12520                                            QualType DestTypeForComplaining,
12521                                             unsigned DiagIDForComplaining) {
12522   assert(SrcExpr.get()->getType() == Context.OverloadTy);
12523 
12524   OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
12525 
12526   DeclAccessPair found;
12527   ExprResult SingleFunctionExpression;
12528   if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
12529                            ovl.Expression, /*complain*/ false, &found)) {
12530     if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getBeginLoc())) {
12531       SrcExpr = ExprError();
12532       return true;
12533     }
12534 
12535     // It is only correct to resolve to an instance method if we're
12536     // resolving a form that's permitted to be a pointer to member.
12537     // Otherwise we'll end up making a bound member expression, which
12538     // is illegal in all the contexts we resolve like this.
12539     if (!ovl.HasFormOfMemberPointer &&
12540         isa<CXXMethodDecl>(fn) &&
12541         cast<CXXMethodDecl>(fn)->isInstance()) {
12542       if (!complain) return false;
12543 
12544       Diag(ovl.Expression->getExprLoc(),
12545            diag::err_bound_member_function)
12546         << 0 << ovl.Expression->getSourceRange();
12547 
12548       // TODO: I believe we only end up here if there's a mix of
12549       // static and non-static candidates (otherwise the expression
12550       // would have 'bound member' type, not 'overload' type).
12551       // Ideally we would note which candidate was chosen and why
12552       // the static candidates were rejected.
12553       SrcExpr = ExprError();
12554       return true;
12555     }
12556 
12557     // Fix the expression to refer to 'fn'.
12558     SingleFunctionExpression =
12559         FixOverloadedFunctionReference(SrcExpr.get(), found, fn);
12560 
12561     // If desired, do function-to-pointer decay.
12562     if (doFunctionPointerConverion) {
12563       SingleFunctionExpression =
12564         DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get());
12565       if (SingleFunctionExpression.isInvalid()) {
12566         SrcExpr = ExprError();
12567         return true;
12568       }
12569     }
12570   }
12571 
12572   if (!SingleFunctionExpression.isUsable()) {
12573     if (complain) {
12574       Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
12575         << ovl.Expression->getName()
12576         << DestTypeForComplaining
12577         << OpRangeForComplaining
12578         << ovl.Expression->getQualifierLoc().getSourceRange();
12579       NoteAllOverloadCandidates(SrcExpr.get());
12580 
12581       SrcExpr = ExprError();
12582       return true;
12583     }
12584 
12585     return false;
12586   }
12587 
12588   SrcExpr = SingleFunctionExpression;
12589   return true;
12590 }
12591 
12592 /// Add a single candidate to the overload set.
12593 static void AddOverloadedCallCandidate(Sema &S,
12594                                        DeclAccessPair FoundDecl,
12595                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
12596                                        ArrayRef<Expr *> Args,
12597                                        OverloadCandidateSet &CandidateSet,
12598                                        bool PartialOverloading,
12599                                        bool KnownValid) {
12600   NamedDecl *Callee = FoundDecl.getDecl();
12601   if (isa<UsingShadowDecl>(Callee))
12602     Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
12603 
12604   if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
12605     if (ExplicitTemplateArgs) {
12606       assert(!KnownValid && "Explicit template arguments?");
12607       return;
12608     }
12609     // Prevent ill-formed function decls to be added as overload candidates.
12610     if (!dyn_cast<FunctionProtoType>(Func->getType()->getAs<FunctionType>()))
12611       return;
12612 
12613     S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet,
12614                            /*SuppressUserConversions=*/false,
12615                            PartialOverloading);
12616     return;
12617   }
12618 
12619   if (FunctionTemplateDecl *FuncTemplate
12620       = dyn_cast<FunctionTemplateDecl>(Callee)) {
12621     S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
12622                                    ExplicitTemplateArgs, Args, CandidateSet,
12623                                    /*SuppressUserConversions=*/false,
12624                                    PartialOverloading);
12625     return;
12626   }
12627 
12628   assert(!KnownValid && "unhandled case in overloaded call candidate");
12629 }
12630 
12631 /// Add the overload candidates named by callee and/or found by argument
12632 /// dependent lookup to the given overload set.
12633 void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
12634                                        ArrayRef<Expr *> Args,
12635                                        OverloadCandidateSet &CandidateSet,
12636                                        bool PartialOverloading) {
12637 
12638 #ifndef NDEBUG
12639   // Verify that ArgumentDependentLookup is consistent with the rules
12640   // in C++0x [basic.lookup.argdep]p3:
12641   //
12642   //   Let X be the lookup set produced by unqualified lookup (3.4.1)
12643   //   and let Y be the lookup set produced by argument dependent
12644   //   lookup (defined as follows). If X contains
12645   //
12646   //     -- a declaration of a class member, or
12647   //
12648   //     -- a block-scope function declaration that is not a
12649   //        using-declaration, or
12650   //
12651   //     -- a declaration that is neither a function or a function
12652   //        template
12653   //
12654   //   then Y is empty.
12655 
12656   if (ULE->requiresADL()) {
12657     for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
12658            E = ULE->decls_end(); I != E; ++I) {
12659       assert(!(*I)->getDeclContext()->isRecord());
12660       assert(isa<UsingShadowDecl>(*I) ||
12661              !(*I)->getDeclContext()->isFunctionOrMethod());
12662       assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
12663     }
12664   }
12665 #endif
12666 
12667   // It would be nice to avoid this copy.
12668   TemplateArgumentListInfo TABuffer;
12669   TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
12670   if (ULE->hasExplicitTemplateArgs()) {
12671     ULE->copyTemplateArgumentsInto(TABuffer);
12672     ExplicitTemplateArgs = &TABuffer;
12673   }
12674 
12675   for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
12676          E = ULE->decls_end(); I != E; ++I)
12677     AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
12678                                CandidateSet, PartialOverloading,
12679                                /*KnownValid*/ true);
12680 
12681   if (ULE->requiresADL())
12682     AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(),
12683                                          Args, ExplicitTemplateArgs,
12684                                          CandidateSet, PartialOverloading);
12685 }
12686 
12687 /// Add the call candidates from the given set of lookup results to the given
12688 /// overload set. Non-function lookup results are ignored.
12689 void Sema::AddOverloadedCallCandidates(
12690     LookupResult &R, TemplateArgumentListInfo *ExplicitTemplateArgs,
12691     ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet) {
12692   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
12693     AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
12694                                CandidateSet, false, /*KnownValid*/ false);
12695 }
12696 
12697 /// Determine whether a declaration with the specified name could be moved into
12698 /// a different namespace.
12699 static bool canBeDeclaredInNamespace(const DeclarationName &Name) {
12700   switch (Name.getCXXOverloadedOperator()) {
12701   case OO_New: case OO_Array_New:
12702   case OO_Delete: case OO_Array_Delete:
12703     return false;
12704 
12705   default:
12706     return true;
12707   }
12708 }
12709 
12710 /// Attempt to recover from an ill-formed use of a non-dependent name in a
12711 /// template, where the non-dependent name was declared after the template
12712 /// was defined. This is common in code written for a compilers which do not
12713 /// correctly implement two-stage name lookup.
12714 ///
12715 /// Returns true if a viable candidate was found and a diagnostic was issued.
12716 static bool DiagnoseTwoPhaseLookup(
12717     Sema &SemaRef, SourceLocation FnLoc, const CXXScopeSpec &SS,
12718     LookupResult &R, OverloadCandidateSet::CandidateSetKind CSK,
12719     TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
12720     CXXRecordDecl **FoundInClass = nullptr) {
12721   if (!SemaRef.inTemplateInstantiation() || !SS.isEmpty())
12722     return false;
12723 
12724   for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
12725     if (DC->isTransparentContext())
12726       continue;
12727 
12728     SemaRef.LookupQualifiedName(R, DC);
12729 
12730     if (!R.empty()) {
12731       R.suppressDiagnostics();
12732 
12733       OverloadCandidateSet Candidates(FnLoc, CSK);
12734       SemaRef.AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args,
12735                                           Candidates);
12736 
12737       OverloadCandidateSet::iterator Best;
12738       OverloadingResult OR =
12739           Candidates.BestViableFunction(SemaRef, FnLoc, Best);
12740 
12741       if (auto *RD = dyn_cast<CXXRecordDecl>(DC)) {
12742         // We either found non-function declarations or a best viable function
12743         // at class scope. A class-scope lookup result disables ADL. Don't
12744         // look past this, but let the caller know that we found something that
12745         // either is, or might be, usable in this class.
12746         if (FoundInClass) {
12747           *FoundInClass = RD;
12748           if (OR == OR_Success) {
12749             R.clear();
12750             R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess());
12751             R.resolveKind();
12752           }
12753         }
12754         return false;
12755       }
12756 
12757       if (OR != OR_Success) {
12758         // There wasn't a unique best function or function template.
12759         return false;
12760       }
12761 
12762       // Find the namespaces where ADL would have looked, and suggest
12763       // declaring the function there instead.
12764       Sema::AssociatedNamespaceSet AssociatedNamespaces;
12765       Sema::AssociatedClassSet AssociatedClasses;
12766       SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
12767                                                  AssociatedNamespaces,
12768                                                  AssociatedClasses);
12769       Sema::AssociatedNamespaceSet SuggestedNamespaces;
12770       if (canBeDeclaredInNamespace(R.getLookupName())) {
12771         DeclContext *Std = SemaRef.getStdNamespace();
12772         for (Sema::AssociatedNamespaceSet::iterator
12773                it = AssociatedNamespaces.begin(),
12774                end = AssociatedNamespaces.end(); it != end; ++it) {
12775           // Never suggest declaring a function within namespace 'std'.
12776           if (Std && Std->Encloses(*it))
12777             continue;
12778 
12779           // Never suggest declaring a function within a namespace with a
12780           // reserved name, like __gnu_cxx.
12781           NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it);
12782           if (NS &&
12783               NS->getQualifiedNameAsString().find("__") != std::string::npos)
12784             continue;
12785 
12786           SuggestedNamespaces.insert(*it);
12787         }
12788       }
12789 
12790       SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
12791         << R.getLookupName();
12792       if (SuggestedNamespaces.empty()) {
12793         SemaRef.Diag(Best->Function->getLocation(),
12794                      diag::note_not_found_by_two_phase_lookup)
12795           << R.getLookupName() << 0;
12796       } else if (SuggestedNamespaces.size() == 1) {
12797         SemaRef.Diag(Best->Function->getLocation(),
12798                      diag::note_not_found_by_two_phase_lookup)
12799           << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
12800       } else {
12801         // FIXME: It would be useful to list the associated namespaces here,
12802         // but the diagnostics infrastructure doesn't provide a way to produce
12803         // a localized representation of a list of items.
12804         SemaRef.Diag(Best->Function->getLocation(),
12805                      diag::note_not_found_by_two_phase_lookup)
12806           << R.getLookupName() << 2;
12807       }
12808 
12809       // Try to recover by calling this function.
12810       return true;
12811     }
12812 
12813     R.clear();
12814   }
12815 
12816   return false;
12817 }
12818 
12819 /// Attempt to recover from ill-formed use of a non-dependent operator in a
12820 /// template, where the non-dependent operator was declared after the template
12821 /// was defined.
12822 ///
12823 /// Returns true if a viable candidate was found and a diagnostic was issued.
12824 static bool
12825 DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
12826                                SourceLocation OpLoc,
12827                                ArrayRef<Expr *> Args) {
12828   DeclarationName OpName =
12829     SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
12830   LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
12831   return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
12832                                 OverloadCandidateSet::CSK_Operator,
12833                                 /*ExplicitTemplateArgs=*/nullptr, Args);
12834 }
12835 
12836 namespace {
12837 class BuildRecoveryCallExprRAII {
12838   Sema &SemaRef;
12839 public:
12840   BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) {
12841     assert(SemaRef.IsBuildingRecoveryCallExpr == false);
12842     SemaRef.IsBuildingRecoveryCallExpr = true;
12843   }
12844 
12845   ~BuildRecoveryCallExprRAII() {
12846     SemaRef.IsBuildingRecoveryCallExpr = false;
12847   }
12848 };
12849 
12850 }
12851 
12852 /// Attempts to recover from a call where no functions were found.
12853 ///
12854 /// This function will do one of three things:
12855 ///  * Diagnose, recover, and return a recovery expression.
12856 ///  * Diagnose, fail to recover, and return ExprError().
12857 ///  * Do not diagnose, do not recover, and return ExprResult(). The caller is
12858 ///    expected to diagnose as appropriate.
12859 static ExprResult
12860 BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
12861                       UnresolvedLookupExpr *ULE,
12862                       SourceLocation LParenLoc,
12863                       MutableArrayRef<Expr *> Args,
12864                       SourceLocation RParenLoc,
12865                       bool EmptyLookup, bool AllowTypoCorrection) {
12866   // Do not try to recover if it is already building a recovery call.
12867   // This stops infinite loops for template instantiations like
12868   //
12869   // template <typename T> auto foo(T t) -> decltype(foo(t)) {}
12870   // template <typename T> auto foo(T t) -> decltype(foo(&t)) {}
12871   if (SemaRef.IsBuildingRecoveryCallExpr)
12872     return ExprResult();
12873   BuildRecoveryCallExprRAII RCE(SemaRef);
12874 
12875   CXXScopeSpec SS;
12876   SS.Adopt(ULE->getQualifierLoc());
12877   SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
12878 
12879   TemplateArgumentListInfo TABuffer;
12880   TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
12881   if (ULE->hasExplicitTemplateArgs()) {
12882     ULE->copyTemplateArgumentsInto(TABuffer);
12883     ExplicitTemplateArgs = &TABuffer;
12884   }
12885 
12886   LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
12887                  Sema::LookupOrdinaryName);
12888   CXXRecordDecl *FoundInClass = nullptr;
12889   if (DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
12890                              OverloadCandidateSet::CSK_Normal,
12891                              ExplicitTemplateArgs, Args, &FoundInClass)) {
12892     // OK, diagnosed a two-phase lookup issue.
12893   } else if (EmptyLookup) {
12894     // Try to recover from an empty lookup with typo correction.
12895     R.clear();
12896     NoTypoCorrectionCCC NoTypoValidator{};
12897     FunctionCallFilterCCC FunctionCallValidator(SemaRef, Args.size(),
12898                                                 ExplicitTemplateArgs != nullptr,
12899                                                 dyn_cast<MemberExpr>(Fn));
12900     CorrectionCandidateCallback &Validator =
12901         AllowTypoCorrection
12902             ? static_cast<CorrectionCandidateCallback &>(FunctionCallValidator)
12903             : static_cast<CorrectionCandidateCallback &>(NoTypoValidator);
12904     if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Validator, ExplicitTemplateArgs,
12905                                     Args))
12906       return ExprError();
12907   } else if (FoundInClass && SemaRef.getLangOpts().MSVCCompat) {
12908     // We found a usable declaration of the name in a dependent base of some
12909     // enclosing class.
12910     // FIXME: We should also explain why the candidates found by name lookup
12911     // were not viable.
12912     if (SemaRef.DiagnoseDependentMemberLookup(R))
12913       return ExprError();
12914   } else {
12915     // We had viable candidates and couldn't recover; let the caller diagnose
12916     // this.
12917     return ExprResult();
12918   }
12919 
12920   // If we get here, we should have issued a diagnostic and formed a recovery
12921   // lookup result.
12922   assert(!R.empty() && "lookup results empty despite recovery");
12923 
12924   // If recovery created an ambiguity, just bail out.
12925   if (R.isAmbiguous()) {
12926     R.suppressDiagnostics();
12927     return ExprError();
12928   }
12929 
12930   // Build an implicit member call if appropriate.  Just drop the
12931   // casts and such from the call, we don't really care.
12932   ExprResult NewFn = ExprError();
12933   if ((*R.begin())->isCXXClassMember())
12934     NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R,
12935                                                     ExplicitTemplateArgs, S);
12936   else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
12937     NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
12938                                         ExplicitTemplateArgs);
12939   else
12940     NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
12941 
12942   if (NewFn.isInvalid())
12943     return ExprError();
12944 
12945   // This shouldn't cause an infinite loop because we're giving it
12946   // an expression with viable lookup results, which should never
12947   // end up here.
12948   return SemaRef.BuildCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc,
12949                                MultiExprArg(Args.data(), Args.size()),
12950                                RParenLoc);
12951 }
12952 
12953 /// Constructs and populates an OverloadedCandidateSet from
12954 /// the given function.
12955 /// \returns true when an the ExprResult output parameter has been set.
12956 bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
12957                                   UnresolvedLookupExpr *ULE,
12958                                   MultiExprArg Args,
12959                                   SourceLocation RParenLoc,
12960                                   OverloadCandidateSet *CandidateSet,
12961                                   ExprResult *Result) {
12962 #ifndef NDEBUG
12963   if (ULE->requiresADL()) {
12964     // To do ADL, we must have found an unqualified name.
12965     assert(!ULE->getQualifier() && "qualified name with ADL");
12966 
12967     // We don't perform ADL for implicit declarations of builtins.
12968     // Verify that this was correctly set up.
12969     FunctionDecl *F;
12970     if (ULE->decls_begin() != ULE->decls_end() &&
12971         ULE->decls_begin() + 1 == ULE->decls_end() &&
12972         (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
12973         F->getBuiltinID() && F->isImplicit())
12974       llvm_unreachable("performing ADL for builtin");
12975 
12976     // We don't perform ADL in C.
12977     assert(getLangOpts().CPlusPlus && "ADL enabled in C");
12978   }
12979 #endif
12980 
12981   UnbridgedCastsSet UnbridgedCasts;
12982   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) {
12983     *Result = ExprError();
12984     return true;
12985   }
12986 
12987   // Add the functions denoted by the callee to the set of candidate
12988   // functions, including those from argument-dependent lookup.
12989   AddOverloadedCallCandidates(ULE, Args, *CandidateSet);
12990 
12991   if (getLangOpts().MSVCCompat &&
12992       CurContext->isDependentContext() && !isSFINAEContext() &&
12993       (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
12994 
12995     OverloadCandidateSet::iterator Best;
12996     if (CandidateSet->empty() ||
12997         CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best) ==
12998             OR_No_Viable_Function) {
12999       // In Microsoft mode, if we are inside a template class member function
13000       // then create a type dependent CallExpr. The goal is to postpone name
13001       // lookup to instantiation time to be able to search into type dependent
13002       // base classes.
13003       CallExpr *CE =
13004           CallExpr::Create(Context, Fn, Args, Context.DependentTy, VK_PRValue,
13005                            RParenLoc, CurFPFeatureOverrides());
13006       CE->markDependentForPostponedNameLookup();
13007       *Result = CE;
13008       return true;
13009     }
13010   }
13011 
13012   if (CandidateSet->empty())
13013     return false;
13014 
13015   UnbridgedCasts.restore();
13016   return false;
13017 }
13018 
13019 // Guess at what the return type for an unresolvable overload should be.
13020 static QualType chooseRecoveryType(OverloadCandidateSet &CS,
13021                                    OverloadCandidateSet::iterator *Best) {
13022   llvm::Optional<QualType> Result;
13023   // Adjust Type after seeing a candidate.
13024   auto ConsiderCandidate = [&](const OverloadCandidate &Candidate) {
13025     if (!Candidate.Function)
13026       return;
13027     if (Candidate.Function->isInvalidDecl())
13028       return;
13029     QualType T = Candidate.Function->getReturnType();
13030     if (T.isNull())
13031       return;
13032     if (!Result)
13033       Result = T;
13034     else if (Result != T)
13035       Result = QualType();
13036   };
13037 
13038   // Look for an unambiguous type from a progressively larger subset.
13039   // e.g. if types disagree, but all *viable* overloads return int, choose int.
13040   //
13041   // First, consider only the best candidate.
13042   if (Best && *Best != CS.end())
13043     ConsiderCandidate(**Best);
13044   // Next, consider only viable candidates.
13045   if (!Result)
13046     for (const auto &C : CS)
13047       if (C.Viable)
13048         ConsiderCandidate(C);
13049   // Finally, consider all candidates.
13050   if (!Result)
13051     for (const auto &C : CS)
13052       ConsiderCandidate(C);
13053 
13054   if (!Result)
13055     return QualType();
13056   auto Value = Result.getValue();
13057   if (Value.isNull() || Value->isUndeducedType())
13058     return QualType();
13059   return Value;
13060 }
13061 
13062 /// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
13063 /// the completed call expression. If overload resolution fails, emits
13064 /// diagnostics and returns ExprError()
13065 static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
13066                                            UnresolvedLookupExpr *ULE,
13067                                            SourceLocation LParenLoc,
13068                                            MultiExprArg Args,
13069                                            SourceLocation RParenLoc,
13070                                            Expr *ExecConfig,
13071                                            OverloadCandidateSet *CandidateSet,
13072                                            OverloadCandidateSet::iterator *Best,
13073                                            OverloadingResult OverloadResult,
13074                                            bool AllowTypoCorrection) {
13075   switch (OverloadResult) {
13076   case OR_Success: {
13077     FunctionDecl *FDecl = (*Best)->Function;
13078     SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
13079     if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()))
13080       return ExprError();
13081     Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
13082     return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
13083                                          ExecConfig, /*IsExecConfig=*/false,
13084                                          (*Best)->IsADLCandidate);
13085   }
13086 
13087   case OR_No_Viable_Function: {
13088     // Try to recover by looking for viable functions which the user might
13089     // have meant to call.
13090     ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
13091                                                 Args, RParenLoc,
13092                                                 CandidateSet->empty(),
13093                                                 AllowTypoCorrection);
13094     if (Recovery.isInvalid() || Recovery.isUsable())
13095       return Recovery;
13096 
13097     // If the user passes in a function that we can't take the address of, we
13098     // generally end up emitting really bad error messages. Here, we attempt to
13099     // emit better ones.
13100     for (const Expr *Arg : Args) {
13101       if (!Arg->getType()->isFunctionType())
13102         continue;
13103       if (auto *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts())) {
13104         auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
13105         if (FD &&
13106             !SemaRef.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
13107                                                        Arg->getExprLoc()))
13108           return ExprError();
13109       }
13110     }
13111 
13112     CandidateSet->NoteCandidates(
13113         PartialDiagnosticAt(
13114             Fn->getBeginLoc(),
13115             SemaRef.PDiag(diag::err_ovl_no_viable_function_in_call)
13116                 << ULE->getName() << Fn->getSourceRange()),
13117         SemaRef, OCD_AllCandidates, Args);
13118     break;
13119   }
13120 
13121   case OR_Ambiguous:
13122     CandidateSet->NoteCandidates(
13123         PartialDiagnosticAt(Fn->getBeginLoc(),
13124                             SemaRef.PDiag(diag::err_ovl_ambiguous_call)
13125                                 << ULE->getName() << Fn->getSourceRange()),
13126         SemaRef, OCD_AmbiguousCandidates, Args);
13127     break;
13128 
13129   case OR_Deleted: {
13130     CandidateSet->NoteCandidates(
13131         PartialDiagnosticAt(Fn->getBeginLoc(),
13132                             SemaRef.PDiag(diag::err_ovl_deleted_call)
13133                                 << ULE->getName() << Fn->getSourceRange()),
13134         SemaRef, OCD_AllCandidates, Args);
13135 
13136     // We emitted an error for the unavailable/deleted function call but keep
13137     // the call in the AST.
13138     FunctionDecl *FDecl = (*Best)->Function;
13139     Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
13140     return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
13141                                          ExecConfig, /*IsExecConfig=*/false,
13142                                          (*Best)->IsADLCandidate);
13143   }
13144   }
13145 
13146   // Overload resolution failed, try to recover.
13147   SmallVector<Expr *, 8> SubExprs = {Fn};
13148   SubExprs.append(Args.begin(), Args.end());
13149   return SemaRef.CreateRecoveryExpr(Fn->getBeginLoc(), RParenLoc, SubExprs,
13150                                     chooseRecoveryType(*CandidateSet, Best));
13151 }
13152 
13153 static void markUnaddressableCandidatesUnviable(Sema &S,
13154                                                 OverloadCandidateSet &CS) {
13155   for (auto I = CS.begin(), E = CS.end(); I != E; ++I) {
13156     if (I->Viable &&
13157         !S.checkAddressOfFunctionIsAvailable(I->Function, /*Complain=*/false)) {
13158       I->Viable = false;
13159       I->FailureKind = ovl_fail_addr_not_available;
13160     }
13161   }
13162 }
13163 
13164 /// BuildOverloadedCallExpr - Given the call expression that calls Fn
13165 /// (which eventually refers to the declaration Func) and the call
13166 /// arguments Args/NumArgs, attempt to resolve the function call down
13167 /// to a specific function. If overload resolution succeeds, returns
13168 /// the call expression produced by overload resolution.
13169 /// Otherwise, emits diagnostics and returns ExprError.
13170 ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
13171                                          UnresolvedLookupExpr *ULE,
13172                                          SourceLocation LParenLoc,
13173                                          MultiExprArg Args,
13174                                          SourceLocation RParenLoc,
13175                                          Expr *ExecConfig,
13176                                          bool AllowTypoCorrection,
13177                                          bool CalleesAddressIsTaken) {
13178   OverloadCandidateSet CandidateSet(Fn->getExprLoc(),
13179                                     OverloadCandidateSet::CSK_Normal);
13180   ExprResult result;
13181 
13182   if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet,
13183                              &result))
13184     return result;
13185 
13186   // If the user handed us something like `(&Foo)(Bar)`, we need to ensure that
13187   // functions that aren't addressible are considered unviable.
13188   if (CalleesAddressIsTaken)
13189     markUnaddressableCandidatesUnviable(*this, CandidateSet);
13190 
13191   OverloadCandidateSet::iterator Best;
13192   OverloadingResult OverloadResult =
13193       CandidateSet.BestViableFunction(*this, Fn->getBeginLoc(), Best);
13194 
13195   return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args, RParenLoc,
13196                                   ExecConfig, &CandidateSet, &Best,
13197                                   OverloadResult, AllowTypoCorrection);
13198 }
13199 
13200 static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
13201   return Functions.size() > 1 ||
13202          (Functions.size() == 1 &&
13203           isa<FunctionTemplateDecl>((*Functions.begin())->getUnderlyingDecl()));
13204 }
13205 
13206 ExprResult Sema::CreateUnresolvedLookupExpr(CXXRecordDecl *NamingClass,
13207                                             NestedNameSpecifierLoc NNSLoc,
13208                                             DeclarationNameInfo DNI,
13209                                             const UnresolvedSetImpl &Fns,
13210                                             bool PerformADL) {
13211   return UnresolvedLookupExpr::Create(Context, NamingClass, NNSLoc, DNI,
13212                                       PerformADL, IsOverloaded(Fns),
13213                                       Fns.begin(), Fns.end());
13214 }
13215 
13216 /// Create a unary operation that may resolve to an overloaded
13217 /// operator.
13218 ///
13219 /// \param OpLoc The location of the operator itself (e.g., '*').
13220 ///
13221 /// \param Opc The UnaryOperatorKind that describes this operator.
13222 ///
13223 /// \param Fns The set of non-member functions that will be
13224 /// considered by overload resolution. The caller needs to build this
13225 /// set based on the context using, e.g.,
13226 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
13227 /// set should not contain any member functions; those will be added
13228 /// by CreateOverloadedUnaryOp().
13229 ///
13230 /// \param Input The input argument.
13231 ExprResult
13232 Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc,
13233                               const UnresolvedSetImpl &Fns,
13234                               Expr *Input, bool PerformADL) {
13235   OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
13236   assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
13237   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
13238   // TODO: provide better source location info.
13239   DeclarationNameInfo OpNameInfo(OpName, OpLoc);
13240 
13241   if (checkPlaceholderForOverload(*this, Input))
13242     return ExprError();
13243 
13244   Expr *Args[2] = { Input, nullptr };
13245   unsigned NumArgs = 1;
13246 
13247   // For post-increment and post-decrement, add the implicit '0' as
13248   // the second argument, so that we know this is a post-increment or
13249   // post-decrement.
13250   if (Opc == UO_PostInc || Opc == UO_PostDec) {
13251     llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
13252     Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
13253                                      SourceLocation());
13254     NumArgs = 2;
13255   }
13256 
13257   ArrayRef<Expr *> ArgsArray(Args, NumArgs);
13258 
13259   if (Input->isTypeDependent()) {
13260     if (Fns.empty())
13261       return UnaryOperator::Create(Context, Input, Opc, Context.DependentTy,
13262                                    VK_PRValue, OK_Ordinary, OpLoc, false,
13263                                    CurFPFeatureOverrides());
13264 
13265     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
13266     ExprResult Fn = CreateUnresolvedLookupExpr(
13267         NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns);
13268     if (Fn.isInvalid())
13269       return ExprError();
13270     return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), ArgsArray,
13271                                        Context.DependentTy, VK_PRValue, OpLoc,
13272                                        CurFPFeatureOverrides());
13273   }
13274 
13275   // Build an empty overload set.
13276   OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
13277 
13278   // Add the candidates from the given function set.
13279   AddNonMemberOperatorCandidates(Fns, ArgsArray, CandidateSet);
13280 
13281   // Add operator candidates that are member functions.
13282   AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
13283 
13284   // Add candidates from ADL.
13285   if (PerformADL) {
13286     AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray,
13287                                          /*ExplicitTemplateArgs*/nullptr,
13288                                          CandidateSet);
13289   }
13290 
13291   // Add builtin operator candidates.
13292   AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
13293 
13294   bool HadMultipleCandidates = (CandidateSet.size() > 1);
13295 
13296   // Perform overload resolution.
13297   OverloadCandidateSet::iterator Best;
13298   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
13299   case OR_Success: {
13300     // We found a built-in operator or an overloaded operator.
13301     FunctionDecl *FnDecl = Best->Function;
13302 
13303     if (FnDecl) {
13304       Expr *Base = nullptr;
13305       // We matched an overloaded operator. Build a call to that
13306       // operator.
13307 
13308       // Convert the arguments.
13309       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
13310         CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl);
13311 
13312         ExprResult InputRes =
13313           PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr,
13314                                               Best->FoundDecl, Method);
13315         if (InputRes.isInvalid())
13316           return ExprError();
13317         Base = Input = InputRes.get();
13318       } else {
13319         // Convert the arguments.
13320         ExprResult InputInit
13321           = PerformCopyInitialization(InitializedEntity::InitializeParameter(
13322                                                       Context,
13323                                                       FnDecl->getParamDecl(0)),
13324                                       SourceLocation(),
13325                                       Input);
13326         if (InputInit.isInvalid())
13327           return ExprError();
13328         Input = InputInit.get();
13329       }
13330 
13331       // Build the actual expression node.
13332       ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl,
13333                                                 Base, HadMultipleCandidates,
13334                                                 OpLoc);
13335       if (FnExpr.isInvalid())
13336         return ExprError();
13337 
13338       // Determine the result type.
13339       QualType ResultTy = FnDecl->getReturnType();
13340       ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13341       ResultTy = ResultTy.getNonLValueExprType(Context);
13342 
13343       Args[0] = Input;
13344       CallExpr *TheCall = CXXOperatorCallExpr::Create(
13345           Context, Op, FnExpr.get(), ArgsArray, ResultTy, VK, OpLoc,
13346           CurFPFeatureOverrides(), Best->IsADLCandidate);
13347 
13348       if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl))
13349         return ExprError();
13350 
13351       if (CheckFunctionCall(FnDecl, TheCall,
13352                             FnDecl->getType()->castAs<FunctionProtoType>()))
13353         return ExprError();
13354       return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FnDecl);
13355     } else {
13356       // We matched a built-in operator. Convert the arguments, then
13357       // break out so that we will build the appropriate built-in
13358       // operator node.
13359       ExprResult InputRes = PerformImplicitConversion(
13360           Input, Best->BuiltinParamTypes[0], Best->Conversions[0], AA_Passing,
13361           CCK_ForBuiltinOverloadedOp);
13362       if (InputRes.isInvalid())
13363         return ExprError();
13364       Input = InputRes.get();
13365       break;
13366     }
13367   }
13368 
13369   case OR_No_Viable_Function:
13370     // This is an erroneous use of an operator which can be overloaded by
13371     // a non-member function. Check for non-member operators which were
13372     // defined too late to be candidates.
13373     if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray))
13374       // FIXME: Recover by calling the found function.
13375       return ExprError();
13376 
13377     // No viable function; fall through to handling this as a
13378     // built-in operator, which will produce an error message for us.
13379     break;
13380 
13381   case OR_Ambiguous:
13382     CandidateSet.NoteCandidates(
13383         PartialDiagnosticAt(OpLoc,
13384                             PDiag(diag::err_ovl_ambiguous_oper_unary)
13385                                 << UnaryOperator::getOpcodeStr(Opc)
13386                                 << Input->getType() << Input->getSourceRange()),
13387         *this, OCD_AmbiguousCandidates, ArgsArray,
13388         UnaryOperator::getOpcodeStr(Opc), OpLoc);
13389     return ExprError();
13390 
13391   case OR_Deleted:
13392     CandidateSet.NoteCandidates(
13393         PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
13394                                        << UnaryOperator::getOpcodeStr(Opc)
13395                                        << Input->getSourceRange()),
13396         *this, OCD_AllCandidates, ArgsArray, UnaryOperator::getOpcodeStr(Opc),
13397         OpLoc);
13398     return ExprError();
13399   }
13400 
13401   // Either we found no viable overloaded operator or we matched a
13402   // built-in operator. In either case, fall through to trying to
13403   // build a built-in operation.
13404   return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
13405 }
13406 
13407 /// Perform lookup for an overloaded binary operator.
13408 void Sema::LookupOverloadedBinOp(OverloadCandidateSet &CandidateSet,
13409                                  OverloadedOperatorKind Op,
13410                                  const UnresolvedSetImpl &Fns,
13411                                  ArrayRef<Expr *> Args, bool PerformADL) {
13412   SourceLocation OpLoc = CandidateSet.getLocation();
13413 
13414   OverloadedOperatorKind ExtraOp =
13415       CandidateSet.getRewriteInfo().AllowRewrittenCandidates
13416           ? getRewrittenOverloadedOperator(Op)
13417           : OO_None;
13418 
13419   // Add the candidates from the given function set. This also adds the
13420   // rewritten candidates using these functions if necessary.
13421   AddNonMemberOperatorCandidates(Fns, Args, CandidateSet);
13422 
13423   // Add operator candidates that are member functions.
13424   AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet);
13425   if (CandidateSet.getRewriteInfo().shouldAddReversed(Op))
13426     AddMemberOperatorCandidates(Op, OpLoc, {Args[1], Args[0]}, CandidateSet,
13427                                 OverloadCandidateParamOrder::Reversed);
13428 
13429   // In C++20, also add any rewritten member candidates.
13430   if (ExtraOp) {
13431     AddMemberOperatorCandidates(ExtraOp, OpLoc, Args, CandidateSet);
13432     if (CandidateSet.getRewriteInfo().shouldAddReversed(ExtraOp))
13433       AddMemberOperatorCandidates(ExtraOp, OpLoc, {Args[1], Args[0]},
13434                                   CandidateSet,
13435                                   OverloadCandidateParamOrder::Reversed);
13436   }
13437 
13438   // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not
13439   // performed for an assignment operator (nor for operator[] nor operator->,
13440   // which don't get here).
13441   if (Op != OO_Equal && PerformADL) {
13442     DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
13443     AddArgumentDependentLookupCandidates(OpName, OpLoc, Args,
13444                                          /*ExplicitTemplateArgs*/ nullptr,
13445                                          CandidateSet);
13446     if (ExtraOp) {
13447       DeclarationName ExtraOpName =
13448           Context.DeclarationNames.getCXXOperatorName(ExtraOp);
13449       AddArgumentDependentLookupCandidates(ExtraOpName, OpLoc, Args,
13450                                            /*ExplicitTemplateArgs*/ nullptr,
13451                                            CandidateSet);
13452     }
13453   }
13454 
13455   // Add builtin operator candidates.
13456   //
13457   // FIXME: We don't add any rewritten candidates here. This is strictly
13458   // incorrect; a builtin candidate could be hidden by a non-viable candidate,
13459   // resulting in our selecting a rewritten builtin candidate. For example:
13460   //
13461   //   enum class E { e };
13462   //   bool operator!=(E, E) requires false;
13463   //   bool k = E::e != E::e;
13464   //
13465   // ... should select the rewritten builtin candidate 'operator==(E, E)'. But
13466   // it seems unreasonable to consider rewritten builtin candidates. A core
13467   // issue has been filed proposing to removed this requirement.
13468   AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet);
13469 }
13470 
13471 /// Create a binary operation that may resolve to an overloaded
13472 /// operator.
13473 ///
13474 /// \param OpLoc The location of the operator itself (e.g., '+').
13475 ///
13476 /// \param Opc The BinaryOperatorKind that describes this operator.
13477 ///
13478 /// \param Fns The set of non-member functions that will be
13479 /// considered by overload resolution. The caller needs to build this
13480 /// set based on the context using, e.g.,
13481 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
13482 /// set should not contain any member functions; those will be added
13483 /// by CreateOverloadedBinOp().
13484 ///
13485 /// \param LHS Left-hand argument.
13486 /// \param RHS Right-hand argument.
13487 /// \param PerformADL Whether to consider operator candidates found by ADL.
13488 /// \param AllowRewrittenCandidates Whether to consider candidates found by
13489 ///        C++20 operator rewrites.
13490 /// \param DefaultedFn If we are synthesizing a defaulted operator function,
13491 ///        the function in question. Such a function is never a candidate in
13492 ///        our overload resolution. This also enables synthesizing a three-way
13493 ///        comparison from < and == as described in C++20 [class.spaceship]p1.
13494 ExprResult Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
13495                                        BinaryOperatorKind Opc,
13496                                        const UnresolvedSetImpl &Fns, Expr *LHS,
13497                                        Expr *RHS, bool PerformADL,
13498                                        bool AllowRewrittenCandidates,
13499                                        FunctionDecl *DefaultedFn) {
13500   Expr *Args[2] = { LHS, RHS };
13501   LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple
13502 
13503   if (!getLangOpts().CPlusPlus20)
13504     AllowRewrittenCandidates = false;
13505 
13506   OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
13507 
13508   // If either side is type-dependent, create an appropriate dependent
13509   // expression.
13510   if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
13511     if (Fns.empty()) {
13512       // If there are no functions to store, just build a dependent
13513       // BinaryOperator or CompoundAssignment.
13514       if (BinaryOperator::isCompoundAssignmentOp(Opc))
13515         return CompoundAssignOperator::Create(
13516             Context, Args[0], Args[1], Opc, Context.DependentTy, VK_LValue,
13517             OK_Ordinary, OpLoc, CurFPFeatureOverrides(), Context.DependentTy,
13518             Context.DependentTy);
13519       return BinaryOperator::Create(
13520           Context, Args[0], Args[1], Opc, Context.DependentTy, VK_PRValue,
13521           OK_Ordinary, OpLoc, CurFPFeatureOverrides());
13522     }
13523 
13524     // FIXME: save results of ADL from here?
13525     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
13526     // TODO: provide better source location info in DNLoc component.
13527     DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
13528     DeclarationNameInfo OpNameInfo(OpName, OpLoc);
13529     ExprResult Fn = CreateUnresolvedLookupExpr(
13530         NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns, PerformADL);
13531     if (Fn.isInvalid())
13532       return ExprError();
13533     return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), Args,
13534                                        Context.DependentTy, VK_PRValue, OpLoc,
13535                                        CurFPFeatureOverrides());
13536   }
13537 
13538   // Always do placeholder-like conversions on the RHS.
13539   if (checkPlaceholderForOverload(*this, Args[1]))
13540     return ExprError();
13541 
13542   // Do placeholder-like conversion on the LHS; note that we should
13543   // not get here with a PseudoObject LHS.
13544   assert(Args[0]->getObjectKind() != OK_ObjCProperty);
13545   if (checkPlaceholderForOverload(*this, Args[0]))
13546     return ExprError();
13547 
13548   // If this is the assignment operator, we only perform overload resolution
13549   // if the left-hand side is a class or enumeration type. This is actually
13550   // a hack. The standard requires that we do overload resolution between the
13551   // various built-in candidates, but as DR507 points out, this can lead to
13552   // problems. So we do it this way, which pretty much follows what GCC does.
13553   // Note that we go the traditional code path for compound assignment forms.
13554   if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
13555     return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
13556 
13557   // If this is the .* operator, which is not overloadable, just
13558   // create a built-in binary operator.
13559   if (Opc == BO_PtrMemD)
13560     return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
13561 
13562   // Build the overload set.
13563   OverloadCandidateSet CandidateSet(
13564       OpLoc, OverloadCandidateSet::CSK_Operator,
13565       OverloadCandidateSet::OperatorRewriteInfo(Op, AllowRewrittenCandidates));
13566   if (DefaultedFn)
13567     CandidateSet.exclude(DefaultedFn);
13568   LookupOverloadedBinOp(CandidateSet, Op, Fns, Args, PerformADL);
13569 
13570   bool HadMultipleCandidates = (CandidateSet.size() > 1);
13571 
13572   // Perform overload resolution.
13573   OverloadCandidateSet::iterator Best;
13574   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
13575     case OR_Success: {
13576       // We found a built-in operator or an overloaded operator.
13577       FunctionDecl *FnDecl = Best->Function;
13578 
13579       bool IsReversed = Best->isReversed();
13580       if (IsReversed)
13581         std::swap(Args[0], Args[1]);
13582 
13583       if (FnDecl) {
13584         Expr *Base = nullptr;
13585         // We matched an overloaded operator. Build a call to that
13586         // operator.
13587 
13588         OverloadedOperatorKind ChosenOp =
13589             FnDecl->getDeclName().getCXXOverloadedOperator();
13590 
13591         // C++2a [over.match.oper]p9:
13592         //   If a rewritten operator== candidate is selected by overload
13593         //   resolution for an operator@, its return type shall be cv bool
13594         if (Best->RewriteKind && ChosenOp == OO_EqualEqual &&
13595             !FnDecl->getReturnType()->isBooleanType()) {
13596           bool IsExtension =
13597               FnDecl->getReturnType()->isIntegralOrUnscopedEnumerationType();
13598           Diag(OpLoc, IsExtension ? diag::ext_ovl_rewrite_equalequal_not_bool
13599                                   : diag::err_ovl_rewrite_equalequal_not_bool)
13600               << FnDecl->getReturnType() << BinaryOperator::getOpcodeStr(Opc)
13601               << Args[0]->getSourceRange() << Args[1]->getSourceRange();
13602           Diag(FnDecl->getLocation(), diag::note_declared_at);
13603           if (!IsExtension)
13604             return ExprError();
13605         }
13606 
13607         if (AllowRewrittenCandidates && !IsReversed &&
13608             CandidateSet.getRewriteInfo().isReversible()) {
13609           // We could have reversed this operator, but didn't. Check if some
13610           // reversed form was a viable candidate, and if so, if it had a
13611           // better conversion for either parameter. If so, this call is
13612           // formally ambiguous, and allowing it is an extension.
13613           llvm::SmallVector<FunctionDecl*, 4> AmbiguousWith;
13614           for (OverloadCandidate &Cand : CandidateSet) {
13615             if (Cand.Viable && Cand.Function && Cand.isReversed() &&
13616                 haveSameParameterTypes(Context, Cand.Function, FnDecl, 2)) {
13617               for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
13618                 if (CompareImplicitConversionSequences(
13619                         *this, OpLoc, Cand.Conversions[ArgIdx],
13620                         Best->Conversions[ArgIdx]) ==
13621                     ImplicitConversionSequence::Better) {
13622                   AmbiguousWith.push_back(Cand.Function);
13623                   break;
13624                 }
13625               }
13626             }
13627           }
13628 
13629           if (!AmbiguousWith.empty()) {
13630             bool AmbiguousWithSelf =
13631                 AmbiguousWith.size() == 1 &&
13632                 declaresSameEntity(AmbiguousWith.front(), FnDecl);
13633             Diag(OpLoc, diag::ext_ovl_ambiguous_oper_binary_reversed)
13634                 << BinaryOperator::getOpcodeStr(Opc)
13635                 << Args[0]->getType() << Args[1]->getType() << AmbiguousWithSelf
13636                 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
13637             if (AmbiguousWithSelf) {
13638               Diag(FnDecl->getLocation(),
13639                    diag::note_ovl_ambiguous_oper_binary_reversed_self);
13640             } else {
13641               Diag(FnDecl->getLocation(),
13642                    diag::note_ovl_ambiguous_oper_binary_selected_candidate);
13643               for (auto *F : AmbiguousWith)
13644                 Diag(F->getLocation(),
13645                      diag::note_ovl_ambiguous_oper_binary_reversed_candidate);
13646             }
13647           }
13648         }
13649 
13650         // Convert the arguments.
13651         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
13652           // Best->Access is only meaningful for class members.
13653           CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
13654 
13655           ExprResult Arg1 =
13656             PerformCopyInitialization(
13657               InitializedEntity::InitializeParameter(Context,
13658                                                      FnDecl->getParamDecl(0)),
13659               SourceLocation(), Args[1]);
13660           if (Arg1.isInvalid())
13661             return ExprError();
13662 
13663           ExprResult Arg0 =
13664             PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
13665                                                 Best->FoundDecl, Method);
13666           if (Arg0.isInvalid())
13667             return ExprError();
13668           Base = Args[0] = Arg0.getAs<Expr>();
13669           Args[1] = RHS = Arg1.getAs<Expr>();
13670         } else {
13671           // Convert the arguments.
13672           ExprResult Arg0 = PerformCopyInitialization(
13673             InitializedEntity::InitializeParameter(Context,
13674                                                    FnDecl->getParamDecl(0)),
13675             SourceLocation(), Args[0]);
13676           if (Arg0.isInvalid())
13677             return ExprError();
13678 
13679           ExprResult Arg1 =
13680             PerformCopyInitialization(
13681               InitializedEntity::InitializeParameter(Context,
13682                                                      FnDecl->getParamDecl(1)),
13683               SourceLocation(), Args[1]);
13684           if (Arg1.isInvalid())
13685             return ExprError();
13686           Args[0] = LHS = Arg0.getAs<Expr>();
13687           Args[1] = RHS = Arg1.getAs<Expr>();
13688         }
13689 
13690         // Build the actual expression node.
13691         ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
13692                                                   Best->FoundDecl, Base,
13693                                                   HadMultipleCandidates, OpLoc);
13694         if (FnExpr.isInvalid())
13695           return ExprError();
13696 
13697         // Determine the result type.
13698         QualType ResultTy = FnDecl->getReturnType();
13699         ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13700         ResultTy = ResultTy.getNonLValueExprType(Context);
13701 
13702         CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
13703             Context, ChosenOp, FnExpr.get(), Args, ResultTy, VK, OpLoc,
13704             CurFPFeatureOverrides(), Best->IsADLCandidate);
13705 
13706         if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall,
13707                                 FnDecl))
13708           return ExprError();
13709 
13710         ArrayRef<const Expr *> ArgsArray(Args, 2);
13711         const Expr *ImplicitThis = nullptr;
13712         // Cut off the implicit 'this'.
13713         if (isa<CXXMethodDecl>(FnDecl)) {
13714           ImplicitThis = ArgsArray[0];
13715           ArgsArray = ArgsArray.slice(1);
13716         }
13717 
13718         // Check for a self move.
13719         if (Op == OO_Equal)
13720           DiagnoseSelfMove(Args[0], Args[1], OpLoc);
13721 
13722         if (ImplicitThis) {
13723           QualType ThisType = Context.getPointerType(ImplicitThis->getType());
13724           QualType ThisTypeFromDecl = Context.getPointerType(
13725               cast<CXXMethodDecl>(FnDecl)->getThisObjectType());
13726 
13727           CheckArgAlignment(OpLoc, FnDecl, "'this'", ThisType,
13728                             ThisTypeFromDecl);
13729         }
13730 
13731         checkCall(FnDecl, nullptr, ImplicitThis, ArgsArray,
13732                   isa<CXXMethodDecl>(FnDecl), OpLoc, TheCall->getSourceRange(),
13733                   VariadicDoesNotApply);
13734 
13735         ExprResult R = MaybeBindToTemporary(TheCall);
13736         if (R.isInvalid())
13737           return ExprError();
13738 
13739         R = CheckForImmediateInvocation(R, FnDecl);
13740         if (R.isInvalid())
13741           return ExprError();
13742 
13743         // For a rewritten candidate, we've already reversed the arguments
13744         // if needed. Perform the rest of the rewrite now.
13745         if ((Best->RewriteKind & CRK_DifferentOperator) ||
13746             (Op == OO_Spaceship && IsReversed)) {
13747           if (Op == OO_ExclaimEqual) {
13748             assert(ChosenOp == OO_EqualEqual && "unexpected operator name");
13749             R = CreateBuiltinUnaryOp(OpLoc, UO_LNot, R.get());
13750           } else {
13751             assert(ChosenOp == OO_Spaceship && "unexpected operator name");
13752             llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
13753             Expr *ZeroLiteral =
13754                 IntegerLiteral::Create(Context, Zero, Context.IntTy, OpLoc);
13755 
13756             Sema::CodeSynthesisContext Ctx;
13757             Ctx.Kind = Sema::CodeSynthesisContext::RewritingOperatorAsSpaceship;
13758             Ctx.Entity = FnDecl;
13759             pushCodeSynthesisContext(Ctx);
13760 
13761             R = CreateOverloadedBinOp(
13762                 OpLoc, Opc, Fns, IsReversed ? ZeroLiteral : R.get(),
13763                 IsReversed ? R.get() : ZeroLiteral, PerformADL,
13764                 /*AllowRewrittenCandidates=*/false);
13765 
13766             popCodeSynthesisContext();
13767           }
13768           if (R.isInvalid())
13769             return ExprError();
13770         } else {
13771           assert(ChosenOp == Op && "unexpected operator name");
13772         }
13773 
13774         // Make a note in the AST if we did any rewriting.
13775         if (Best->RewriteKind != CRK_None)
13776           R = new (Context) CXXRewrittenBinaryOperator(R.get(), IsReversed);
13777 
13778         return R;
13779       } else {
13780         // We matched a built-in operator. Convert the arguments, then
13781         // break out so that we will build the appropriate built-in
13782         // operator node.
13783         ExprResult ArgsRes0 = PerformImplicitConversion(
13784             Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0],
13785             AA_Passing, CCK_ForBuiltinOverloadedOp);
13786         if (ArgsRes0.isInvalid())
13787           return ExprError();
13788         Args[0] = ArgsRes0.get();
13789 
13790         ExprResult ArgsRes1 = PerformImplicitConversion(
13791             Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1],
13792             AA_Passing, CCK_ForBuiltinOverloadedOp);
13793         if (ArgsRes1.isInvalid())
13794           return ExprError();
13795         Args[1] = ArgsRes1.get();
13796         break;
13797       }
13798     }
13799 
13800     case OR_No_Viable_Function: {
13801       // C++ [over.match.oper]p9:
13802       //   If the operator is the operator , [...] and there are no
13803       //   viable functions, then the operator is assumed to be the
13804       //   built-in operator and interpreted according to clause 5.
13805       if (Opc == BO_Comma)
13806         break;
13807 
13808       // When defaulting an 'operator<=>', we can try to synthesize a three-way
13809       // compare result using '==' and '<'.
13810       if (DefaultedFn && Opc == BO_Cmp) {
13811         ExprResult E = BuildSynthesizedThreeWayComparison(OpLoc, Fns, Args[0],
13812                                                           Args[1], DefaultedFn);
13813         if (E.isInvalid() || E.isUsable())
13814           return E;
13815       }
13816 
13817       // For class as left operand for assignment or compound assignment
13818       // operator do not fall through to handling in built-in, but report that
13819       // no overloaded assignment operator found
13820       ExprResult Result = ExprError();
13821       StringRef OpcStr = BinaryOperator::getOpcodeStr(Opc);
13822       auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates,
13823                                                    Args, OpLoc);
13824       DeferDiagsRAII DDR(*this,
13825                          CandidateSet.shouldDeferDiags(*this, Args, OpLoc));
13826       if (Args[0]->getType()->isRecordType() &&
13827           Opc >= BO_Assign && Opc <= BO_OrAssign) {
13828         Diag(OpLoc,  diag::err_ovl_no_viable_oper)
13829              << BinaryOperator::getOpcodeStr(Opc)
13830              << Args[0]->getSourceRange() << Args[1]->getSourceRange();
13831         if (Args[0]->getType()->isIncompleteType()) {
13832           Diag(OpLoc, diag::note_assign_lhs_incomplete)
13833             << Args[0]->getType()
13834             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
13835         }
13836       } else {
13837         // This is an erroneous use of an operator which can be overloaded by
13838         // a non-member function. Check for non-member operators which were
13839         // defined too late to be candidates.
13840         if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
13841           // FIXME: Recover by calling the found function.
13842           return ExprError();
13843 
13844         // No viable function; try to create a built-in operation, which will
13845         // produce an error. Then, show the non-viable candidates.
13846         Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
13847       }
13848       assert(Result.isInvalid() &&
13849              "C++ binary operator overloading is missing candidates!");
13850       CandidateSet.NoteCandidates(*this, Args, Cands, OpcStr, OpLoc);
13851       return Result;
13852     }
13853 
13854     case OR_Ambiguous:
13855       CandidateSet.NoteCandidates(
13856           PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_binary)
13857                                          << BinaryOperator::getOpcodeStr(Opc)
13858                                          << Args[0]->getType()
13859                                          << Args[1]->getType()
13860                                          << Args[0]->getSourceRange()
13861                                          << Args[1]->getSourceRange()),
13862           *this, OCD_AmbiguousCandidates, Args, BinaryOperator::getOpcodeStr(Opc),
13863           OpLoc);
13864       return ExprError();
13865 
13866     case OR_Deleted:
13867       if (isImplicitlyDeleted(Best->Function)) {
13868         FunctionDecl *DeletedFD = Best->Function;
13869         DefaultedFunctionKind DFK = getDefaultedFunctionKind(DeletedFD);
13870         if (DFK.isSpecialMember()) {
13871           Diag(OpLoc, diag::err_ovl_deleted_special_oper)
13872             << Args[0]->getType() << DFK.asSpecialMember();
13873         } else {
13874           assert(DFK.isComparison());
13875           Diag(OpLoc, diag::err_ovl_deleted_comparison)
13876             << Args[0]->getType() << DeletedFD;
13877         }
13878 
13879         // The user probably meant to call this special member. Just
13880         // explain why it's deleted.
13881         NoteDeletedFunction(DeletedFD);
13882         return ExprError();
13883       }
13884       CandidateSet.NoteCandidates(
13885           PartialDiagnosticAt(
13886               OpLoc, PDiag(diag::err_ovl_deleted_oper)
13887                          << getOperatorSpelling(Best->Function->getDeclName()
13888                                                     .getCXXOverloadedOperator())
13889                          << Args[0]->getSourceRange()
13890                          << Args[1]->getSourceRange()),
13891           *this, OCD_AllCandidates, Args, BinaryOperator::getOpcodeStr(Opc),
13892           OpLoc);
13893       return ExprError();
13894   }
13895 
13896   // We matched a built-in operator; build it.
13897   return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
13898 }
13899 
13900 ExprResult Sema::BuildSynthesizedThreeWayComparison(
13901     SourceLocation OpLoc, const UnresolvedSetImpl &Fns, Expr *LHS, Expr *RHS,
13902     FunctionDecl *DefaultedFn) {
13903   const ComparisonCategoryInfo *Info =
13904       Context.CompCategories.lookupInfoForType(DefaultedFn->getReturnType());
13905   // If we're not producing a known comparison category type, we can't
13906   // synthesize a three-way comparison. Let the caller diagnose this.
13907   if (!Info)
13908     return ExprResult((Expr*)nullptr);
13909 
13910   // If we ever want to perform this synthesis more generally, we will need to
13911   // apply the temporary materialization conversion to the operands.
13912   assert(LHS->isGLValue() && RHS->isGLValue() &&
13913          "cannot use prvalue expressions more than once");
13914   Expr *OrigLHS = LHS;
13915   Expr *OrigRHS = RHS;
13916 
13917   // Replace the LHS and RHS with OpaqueValueExprs; we're going to refer to
13918   // each of them multiple times below.
13919   LHS = new (Context)
13920       OpaqueValueExpr(LHS->getExprLoc(), LHS->getType(), LHS->getValueKind(),
13921                       LHS->getObjectKind(), LHS);
13922   RHS = new (Context)
13923       OpaqueValueExpr(RHS->getExprLoc(), RHS->getType(), RHS->getValueKind(),
13924                       RHS->getObjectKind(), RHS);
13925 
13926   ExprResult Eq = CreateOverloadedBinOp(OpLoc, BO_EQ, Fns, LHS, RHS, true, true,
13927                                         DefaultedFn);
13928   if (Eq.isInvalid())
13929     return ExprError();
13930 
13931   ExprResult Less = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, LHS, RHS, true,
13932                                           true, DefaultedFn);
13933   if (Less.isInvalid())
13934     return ExprError();
13935 
13936   ExprResult Greater;
13937   if (Info->isPartial()) {
13938     Greater = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, RHS, LHS, true, true,
13939                                     DefaultedFn);
13940     if (Greater.isInvalid())
13941       return ExprError();
13942   }
13943 
13944   // Form the list of comparisons we're going to perform.
13945   struct Comparison {
13946     ExprResult Cmp;
13947     ComparisonCategoryResult Result;
13948   } Comparisons[4] =
13949   { {Eq, Info->isStrong() ? ComparisonCategoryResult::Equal
13950                           : ComparisonCategoryResult::Equivalent},
13951     {Less, ComparisonCategoryResult::Less},
13952     {Greater, ComparisonCategoryResult::Greater},
13953     {ExprResult(), ComparisonCategoryResult::Unordered},
13954   };
13955 
13956   int I = Info->isPartial() ? 3 : 2;
13957 
13958   // Combine the comparisons with suitable conditional expressions.
13959   ExprResult Result;
13960   for (; I >= 0; --I) {
13961     // Build a reference to the comparison category constant.
13962     auto *VI = Info->lookupValueInfo(Comparisons[I].Result);
13963     // FIXME: Missing a constant for a comparison category. Diagnose this?
13964     if (!VI)
13965       return ExprResult((Expr*)nullptr);
13966     ExprResult ThisResult =
13967         BuildDeclarationNameExpr(CXXScopeSpec(), DeclarationNameInfo(), VI->VD);
13968     if (ThisResult.isInvalid())
13969       return ExprError();
13970 
13971     // Build a conditional unless this is the final case.
13972     if (Result.get()) {
13973       Result = ActOnConditionalOp(OpLoc, OpLoc, Comparisons[I].Cmp.get(),
13974                                   ThisResult.get(), Result.get());
13975       if (Result.isInvalid())
13976         return ExprError();
13977     } else {
13978       Result = ThisResult;
13979     }
13980   }
13981 
13982   // Build a PseudoObjectExpr to model the rewriting of an <=> operator, and to
13983   // bind the OpaqueValueExprs before they're (repeatedly) used.
13984   Expr *SyntacticForm = BinaryOperator::Create(
13985       Context, OrigLHS, OrigRHS, BO_Cmp, Result.get()->getType(),
13986       Result.get()->getValueKind(), Result.get()->getObjectKind(), OpLoc,
13987       CurFPFeatureOverrides());
13988   Expr *SemanticForm[] = {LHS, RHS, Result.get()};
13989   return PseudoObjectExpr::Create(Context, SyntacticForm, SemanticForm, 2);
13990 }
13991 
13992 ExprResult
13993 Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
13994                                          SourceLocation RLoc,
13995                                          Expr *Base, Expr *Idx) {
13996   Expr *Args[2] = { Base, Idx };
13997   DeclarationName OpName =
13998       Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
13999 
14000   // If either side is type-dependent, create an appropriate dependent
14001   // expression.
14002   if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
14003 
14004     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
14005     // CHECKME: no 'operator' keyword?
14006     DeclarationNameInfo OpNameInfo(OpName, LLoc);
14007     OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
14008     ExprResult Fn = CreateUnresolvedLookupExpr(
14009         NamingClass, NestedNameSpecifierLoc(), OpNameInfo, UnresolvedSet<0>());
14010     if (Fn.isInvalid())
14011       return ExprError();
14012     // Can't add any actual overloads yet
14013 
14014     return CXXOperatorCallExpr::Create(Context, OO_Subscript, Fn.get(), Args,
14015                                        Context.DependentTy, VK_PRValue, RLoc,
14016                                        CurFPFeatureOverrides());
14017   }
14018 
14019   // Handle placeholders on both operands.
14020   if (checkPlaceholderForOverload(*this, Args[0]))
14021     return ExprError();
14022   if (checkPlaceholderForOverload(*this, Args[1]))
14023     return ExprError();
14024 
14025   // Build an empty overload set.
14026   OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator);
14027 
14028   // Subscript can only be overloaded as a member function.
14029 
14030   // Add operator candidates that are member functions.
14031   AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
14032 
14033   // Add builtin operator candidates.
14034   AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
14035 
14036   bool HadMultipleCandidates = (CandidateSet.size() > 1);
14037 
14038   // Perform overload resolution.
14039   OverloadCandidateSet::iterator Best;
14040   switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
14041     case OR_Success: {
14042       // We found a built-in operator or an overloaded operator.
14043       FunctionDecl *FnDecl = Best->Function;
14044 
14045       if (FnDecl) {
14046         // We matched an overloaded operator. Build a call to that
14047         // operator.
14048 
14049         CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
14050 
14051         // Convert the arguments.
14052         CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
14053         ExprResult Arg0 =
14054           PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
14055                                               Best->FoundDecl, Method);
14056         if (Arg0.isInvalid())
14057           return ExprError();
14058         Args[0] = Arg0.get();
14059 
14060         // Convert the arguments.
14061         ExprResult InputInit
14062           = PerformCopyInitialization(InitializedEntity::InitializeParameter(
14063                                                       Context,
14064                                                       FnDecl->getParamDecl(0)),
14065                                       SourceLocation(),
14066                                       Args[1]);
14067         if (InputInit.isInvalid())
14068           return ExprError();
14069 
14070         Args[1] = InputInit.getAs<Expr>();
14071 
14072         // Build the actual expression node.
14073         DeclarationNameInfo OpLocInfo(OpName, LLoc);
14074         OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
14075         ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
14076                                                   Best->FoundDecl,
14077                                                   Base,
14078                                                   HadMultipleCandidates,
14079                                                   OpLocInfo.getLoc(),
14080                                                   OpLocInfo.getInfo());
14081         if (FnExpr.isInvalid())
14082           return ExprError();
14083 
14084         // Determine the result type
14085         QualType ResultTy = FnDecl->getReturnType();
14086         ExprValueKind VK = Expr::getValueKindForType(ResultTy);
14087         ResultTy = ResultTy.getNonLValueExprType(Context);
14088 
14089         CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
14090             Context, OO_Subscript, FnExpr.get(), Args, ResultTy, VK, RLoc,
14091             CurFPFeatureOverrides());
14092         if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl))
14093           return ExprError();
14094 
14095         if (CheckFunctionCall(Method, TheCall,
14096                               Method->getType()->castAs<FunctionProtoType>()))
14097           return ExprError();
14098 
14099         return MaybeBindToTemporary(TheCall);
14100       } else {
14101         // We matched a built-in operator. Convert the arguments, then
14102         // break out so that we will build the appropriate built-in
14103         // operator node.
14104         ExprResult ArgsRes0 = PerformImplicitConversion(
14105             Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0],
14106             AA_Passing, CCK_ForBuiltinOverloadedOp);
14107         if (ArgsRes0.isInvalid())
14108           return ExprError();
14109         Args[0] = ArgsRes0.get();
14110 
14111         ExprResult ArgsRes1 = PerformImplicitConversion(
14112             Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1],
14113             AA_Passing, CCK_ForBuiltinOverloadedOp);
14114         if (ArgsRes1.isInvalid())
14115           return ExprError();
14116         Args[1] = ArgsRes1.get();
14117 
14118         break;
14119       }
14120     }
14121 
14122     case OR_No_Viable_Function: {
14123       PartialDiagnostic PD = CandidateSet.empty()
14124           ? (PDiag(diag::err_ovl_no_oper)
14125              << Args[0]->getType() << /*subscript*/ 0
14126              << Args[0]->getSourceRange() << Args[1]->getSourceRange())
14127           : (PDiag(diag::err_ovl_no_viable_subscript)
14128              << Args[0]->getType() << Args[0]->getSourceRange()
14129              << Args[1]->getSourceRange());
14130       CandidateSet.NoteCandidates(PartialDiagnosticAt(LLoc, PD), *this,
14131                                   OCD_AllCandidates, Args, "[]", LLoc);
14132       return ExprError();
14133     }
14134 
14135     case OR_Ambiguous:
14136       CandidateSet.NoteCandidates(
14137           PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_ambiguous_oper_binary)
14138                                         << "[]" << Args[0]->getType()
14139                                         << Args[1]->getType()
14140                                         << Args[0]->getSourceRange()
14141                                         << Args[1]->getSourceRange()),
14142           *this, OCD_AmbiguousCandidates, Args, "[]", LLoc);
14143       return ExprError();
14144 
14145     case OR_Deleted:
14146       CandidateSet.NoteCandidates(
14147           PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_deleted_oper)
14148                                         << "[]" << Args[0]->getSourceRange()
14149                                         << Args[1]->getSourceRange()),
14150           *this, OCD_AllCandidates, Args, "[]", LLoc);
14151       return ExprError();
14152     }
14153 
14154   // We matched a built-in operator; build it.
14155   return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
14156 }
14157 
14158 /// BuildCallToMemberFunction - Build a call to a member
14159 /// function. MemExpr is the expression that refers to the member
14160 /// function (and includes the object parameter), Args/NumArgs are the
14161 /// arguments to the function call (not including the object
14162 /// parameter). The caller needs to validate that the member
14163 /// expression refers to a non-static member function or an overloaded
14164 /// member function.
14165 ExprResult Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
14166                                            SourceLocation LParenLoc,
14167                                            MultiExprArg Args,
14168                                            SourceLocation RParenLoc,
14169                                            bool AllowRecovery) {
14170   assert(MemExprE->getType() == Context.BoundMemberTy ||
14171          MemExprE->getType() == Context.OverloadTy);
14172 
14173   // Dig out the member expression. This holds both the object
14174   // argument and the member function we're referring to.
14175   Expr *NakedMemExpr = MemExprE->IgnoreParens();
14176 
14177   // Determine whether this is a call to a pointer-to-member function.
14178   if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
14179     assert(op->getType() == Context.BoundMemberTy);
14180     assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
14181 
14182     QualType fnType =
14183       op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
14184 
14185     const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
14186     QualType resultType = proto->getCallResultType(Context);
14187     ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType());
14188 
14189     // Check that the object type isn't more qualified than the
14190     // member function we're calling.
14191     Qualifiers funcQuals = proto->getMethodQuals();
14192 
14193     QualType objectType = op->getLHS()->getType();
14194     if (op->getOpcode() == BO_PtrMemI)
14195       objectType = objectType->castAs<PointerType>()->getPointeeType();
14196     Qualifiers objectQuals = objectType.getQualifiers();
14197 
14198     Qualifiers difference = objectQuals - funcQuals;
14199     difference.removeObjCGCAttr();
14200     difference.removeAddressSpace();
14201     if (difference) {
14202       std::string qualsString = difference.getAsString();
14203       Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
14204         << fnType.getUnqualifiedType()
14205         << qualsString
14206         << (qualsString.find(' ') == std::string::npos ? 1 : 2);
14207     }
14208 
14209     CXXMemberCallExpr *call = CXXMemberCallExpr::Create(
14210         Context, MemExprE, Args, resultType, valueKind, RParenLoc,
14211         CurFPFeatureOverrides(), proto->getNumParams());
14212 
14213     if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getBeginLoc(),
14214                             call, nullptr))
14215       return ExprError();
14216 
14217     if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc))
14218       return ExprError();
14219 
14220     if (CheckOtherCall(call, proto))
14221       return ExprError();
14222 
14223     return MaybeBindToTemporary(call);
14224   }
14225 
14226   // We only try to build a recovery expr at this level if we can preserve
14227   // the return type, otherwise we return ExprError() and let the caller
14228   // recover.
14229   auto BuildRecoveryExpr = [&](QualType Type) {
14230     if (!AllowRecovery)
14231       return ExprError();
14232     std::vector<Expr *> SubExprs = {MemExprE};
14233     llvm::for_each(Args, [&SubExprs](Expr *E) { SubExprs.push_back(E); });
14234     return CreateRecoveryExpr(MemExprE->getBeginLoc(), RParenLoc, SubExprs,
14235                               Type);
14236   };
14237   if (isa<CXXPseudoDestructorExpr>(NakedMemExpr))
14238     return CallExpr::Create(Context, MemExprE, Args, Context.VoidTy, VK_PRValue,
14239                             RParenLoc, CurFPFeatureOverrides());
14240 
14241   UnbridgedCastsSet UnbridgedCasts;
14242   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
14243     return ExprError();
14244 
14245   MemberExpr *MemExpr;
14246   CXXMethodDecl *Method = nullptr;
14247   DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public);
14248   NestedNameSpecifier *Qualifier = nullptr;
14249   if (isa<MemberExpr>(NakedMemExpr)) {
14250     MemExpr = cast<MemberExpr>(NakedMemExpr);
14251     Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
14252     FoundDecl = MemExpr->getFoundDecl();
14253     Qualifier = MemExpr->getQualifier();
14254     UnbridgedCasts.restore();
14255   } else {
14256     UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
14257     Qualifier = UnresExpr->getQualifier();
14258 
14259     QualType ObjectType = UnresExpr->getBaseType();
14260     Expr::Classification ObjectClassification
14261       = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
14262                             : UnresExpr->getBase()->Classify(Context);
14263 
14264     // Add overload candidates
14265     OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(),
14266                                       OverloadCandidateSet::CSK_Normal);
14267 
14268     // FIXME: avoid copy.
14269     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
14270     if (UnresExpr->hasExplicitTemplateArgs()) {
14271       UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
14272       TemplateArgs = &TemplateArgsBuffer;
14273     }
14274 
14275     for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
14276            E = UnresExpr->decls_end(); I != E; ++I) {
14277 
14278       NamedDecl *Func = *I;
14279       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
14280       if (isa<UsingShadowDecl>(Func))
14281         Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
14282 
14283 
14284       // Microsoft supports direct constructor calls.
14285       if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
14286         AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args,
14287                              CandidateSet,
14288                              /*SuppressUserConversions*/ false);
14289       } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
14290         // If explicit template arguments were provided, we can't call a
14291         // non-template member function.
14292         if (TemplateArgs)
14293           continue;
14294 
14295         AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
14296                            ObjectClassification, Args, CandidateSet,
14297                            /*SuppressUserConversions=*/false);
14298       } else {
14299         AddMethodTemplateCandidate(
14300             cast<FunctionTemplateDecl>(Func), I.getPair(), ActingDC,
14301             TemplateArgs, ObjectType, ObjectClassification, Args, CandidateSet,
14302             /*SuppressUserConversions=*/false);
14303       }
14304     }
14305 
14306     DeclarationName DeclName = UnresExpr->getMemberName();
14307 
14308     UnbridgedCasts.restore();
14309 
14310     OverloadCandidateSet::iterator Best;
14311     bool Succeeded = false;
14312     switch (CandidateSet.BestViableFunction(*this, UnresExpr->getBeginLoc(),
14313                                             Best)) {
14314     case OR_Success:
14315       Method = cast<CXXMethodDecl>(Best->Function);
14316       FoundDecl = Best->FoundDecl;
14317       CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
14318       if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()))
14319         break;
14320       // If FoundDecl is different from Method (such as if one is a template
14321       // and the other a specialization), make sure DiagnoseUseOfDecl is
14322       // called on both.
14323       // FIXME: This would be more comprehensively addressed by modifying
14324       // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
14325       // being used.
14326       if (Method != FoundDecl.getDecl() &&
14327                       DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc()))
14328         break;
14329       Succeeded = true;
14330       break;
14331 
14332     case OR_No_Viable_Function:
14333       CandidateSet.NoteCandidates(
14334           PartialDiagnosticAt(
14335               UnresExpr->getMemberLoc(),
14336               PDiag(diag::err_ovl_no_viable_member_function_in_call)
14337                   << DeclName << MemExprE->getSourceRange()),
14338           *this, OCD_AllCandidates, Args);
14339       break;
14340     case OR_Ambiguous:
14341       CandidateSet.NoteCandidates(
14342           PartialDiagnosticAt(UnresExpr->getMemberLoc(),
14343                               PDiag(diag::err_ovl_ambiguous_member_call)
14344                                   << DeclName << MemExprE->getSourceRange()),
14345           *this, OCD_AmbiguousCandidates, Args);
14346       break;
14347     case OR_Deleted:
14348       CandidateSet.NoteCandidates(
14349           PartialDiagnosticAt(UnresExpr->getMemberLoc(),
14350                               PDiag(diag::err_ovl_deleted_member_call)
14351                                   << DeclName << MemExprE->getSourceRange()),
14352           *this, OCD_AllCandidates, Args);
14353       break;
14354     }
14355     // Overload resolution fails, try to recover.
14356     if (!Succeeded)
14357       return BuildRecoveryExpr(chooseRecoveryType(CandidateSet, &Best));
14358 
14359     MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
14360 
14361     // If overload resolution picked a static member, build a
14362     // non-member call based on that function.
14363     if (Method->isStatic()) {
14364       return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args,
14365                                    RParenLoc);
14366     }
14367 
14368     MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
14369   }
14370 
14371   QualType ResultType = Method->getReturnType();
14372   ExprValueKind VK = Expr::getValueKindForType(ResultType);
14373   ResultType = ResultType.getNonLValueExprType(Context);
14374 
14375   assert(Method && "Member call to something that isn't a method?");
14376   const auto *Proto = Method->getType()->castAs<FunctionProtoType>();
14377   CXXMemberCallExpr *TheCall = CXXMemberCallExpr::Create(
14378       Context, MemExprE, Args, ResultType, VK, RParenLoc,
14379       CurFPFeatureOverrides(), Proto->getNumParams());
14380 
14381   // Check for a valid return type.
14382   if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(),
14383                           TheCall, Method))
14384     return BuildRecoveryExpr(ResultType);
14385 
14386   // Convert the object argument (for a non-static member function call).
14387   // We only need to do this if there was actually an overload; otherwise
14388   // it was done at lookup.
14389   if (!Method->isStatic()) {
14390     ExprResult ObjectArg =
14391       PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
14392                                           FoundDecl, Method);
14393     if (ObjectArg.isInvalid())
14394       return ExprError();
14395     MemExpr->setBase(ObjectArg.get());
14396   }
14397 
14398   // Convert the rest of the arguments
14399   if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args,
14400                               RParenLoc))
14401     return BuildRecoveryExpr(ResultType);
14402 
14403   DiagnoseSentinelCalls(Method, LParenLoc, Args);
14404 
14405   if (CheckFunctionCall(Method, TheCall, Proto))
14406     return ExprError();
14407 
14408   // In the case the method to call was not selected by the overloading
14409   // resolution process, we still need to handle the enable_if attribute. Do
14410   // that here, so it will not hide previous -- and more relevant -- errors.
14411   if (auto *MemE = dyn_cast<MemberExpr>(NakedMemExpr)) {
14412     if (const EnableIfAttr *Attr =
14413             CheckEnableIf(Method, LParenLoc, Args, true)) {
14414       Diag(MemE->getMemberLoc(),
14415            diag::err_ovl_no_viable_member_function_in_call)
14416           << Method << Method->getSourceRange();
14417       Diag(Method->getLocation(),
14418            diag::note_ovl_candidate_disabled_by_function_cond_attr)
14419           << Attr->getCond()->getSourceRange() << Attr->getMessage();
14420       return ExprError();
14421     }
14422   }
14423 
14424   if ((isa<CXXConstructorDecl>(CurContext) ||
14425        isa<CXXDestructorDecl>(CurContext)) &&
14426       TheCall->getMethodDecl()->isPure()) {
14427     const CXXMethodDecl *MD = TheCall->getMethodDecl();
14428 
14429     if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts()) &&
14430         MemExpr->performsVirtualDispatch(getLangOpts())) {
14431       Diag(MemExpr->getBeginLoc(),
14432            diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
14433           << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
14434           << MD->getParent();
14435 
14436       Diag(MD->getBeginLoc(), diag::note_previous_decl) << MD->getDeclName();
14437       if (getLangOpts().AppleKext)
14438         Diag(MemExpr->getBeginLoc(), diag::note_pure_qualified_call_kext)
14439             << MD->getParent() << MD->getDeclName();
14440     }
14441   }
14442 
14443   if (CXXDestructorDecl *DD =
14444           dyn_cast<CXXDestructorDecl>(TheCall->getMethodDecl())) {
14445     // a->A::f() doesn't go through the vtable, except in AppleKext mode.
14446     bool CallCanBeVirtual = !MemExpr->hasQualifier() || getLangOpts().AppleKext;
14447     CheckVirtualDtorCall(DD, MemExpr->getBeginLoc(), /*IsDelete=*/false,
14448                          CallCanBeVirtual, /*WarnOnNonAbstractTypes=*/true,
14449                          MemExpr->getMemberLoc());
14450   }
14451 
14452   return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall),
14453                                      TheCall->getMethodDecl());
14454 }
14455 
14456 /// BuildCallToObjectOfClassType - Build a call to an object of class
14457 /// type (C++ [over.call.object]), which can end up invoking an
14458 /// overloaded function call operator (@c operator()) or performing a
14459 /// user-defined conversion on the object argument.
14460 ExprResult
14461 Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
14462                                    SourceLocation LParenLoc,
14463                                    MultiExprArg Args,
14464                                    SourceLocation RParenLoc) {
14465   if (checkPlaceholderForOverload(*this, Obj))
14466     return ExprError();
14467   ExprResult Object = Obj;
14468 
14469   UnbridgedCastsSet UnbridgedCasts;
14470   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
14471     return ExprError();
14472 
14473   assert(Object.get()->getType()->isRecordType() &&
14474          "Requires object type argument");
14475 
14476   // C++ [over.call.object]p1:
14477   //  If the primary-expression E in the function call syntax
14478   //  evaluates to a class object of type "cv T", then the set of
14479   //  candidate functions includes at least the function call
14480   //  operators of T. The function call operators of T are obtained by
14481   //  ordinary lookup of the name operator() in the context of
14482   //  (E).operator().
14483   OverloadCandidateSet CandidateSet(LParenLoc,
14484                                     OverloadCandidateSet::CSK_Operator);
14485   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
14486 
14487   if (RequireCompleteType(LParenLoc, Object.get()->getType(),
14488                           diag::err_incomplete_object_call, Object.get()))
14489     return true;
14490 
14491   const auto *Record = Object.get()->getType()->castAs<RecordType>();
14492   LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
14493   LookupQualifiedName(R, Record->getDecl());
14494   R.suppressDiagnostics();
14495 
14496   for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
14497        Oper != OperEnd; ++Oper) {
14498     AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
14499                        Object.get()->Classify(Context), Args, CandidateSet,
14500                        /*SuppressUserConversion=*/false);
14501   }
14502 
14503   // C++ [over.call.object]p2:
14504   //   In addition, for each (non-explicit in C++0x) conversion function
14505   //   declared in T of the form
14506   //
14507   //        operator conversion-type-id () cv-qualifier;
14508   //
14509   //   where cv-qualifier is the same cv-qualification as, or a
14510   //   greater cv-qualification than, cv, and where conversion-type-id
14511   //   denotes the type "pointer to function of (P1,...,Pn) returning
14512   //   R", or the type "reference to pointer to function of
14513   //   (P1,...,Pn) returning R", or the type "reference to function
14514   //   of (P1,...,Pn) returning R", a surrogate call function [...]
14515   //   is also considered as a candidate function. Similarly,
14516   //   surrogate call functions are added to the set of candidate
14517   //   functions for each conversion function declared in an
14518   //   accessible base class provided the function is not hidden
14519   //   within T by another intervening declaration.
14520   const auto &Conversions =
14521       cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
14522   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
14523     NamedDecl *D = *I;
14524     CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
14525     if (isa<UsingShadowDecl>(D))
14526       D = cast<UsingShadowDecl>(D)->getTargetDecl();
14527 
14528     // Skip over templated conversion functions; they aren't
14529     // surrogates.
14530     if (isa<FunctionTemplateDecl>(D))
14531       continue;
14532 
14533     CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
14534     if (!Conv->isExplicit()) {
14535       // Strip the reference type (if any) and then the pointer type (if
14536       // any) to get down to what might be a function type.
14537       QualType ConvType = Conv->getConversionType().getNonReferenceType();
14538       if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
14539         ConvType = ConvPtrType->getPointeeType();
14540 
14541       if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
14542       {
14543         AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
14544                               Object.get(), Args, CandidateSet);
14545       }
14546     }
14547   }
14548 
14549   bool HadMultipleCandidates = (CandidateSet.size() > 1);
14550 
14551   // Perform overload resolution.
14552   OverloadCandidateSet::iterator Best;
14553   switch (CandidateSet.BestViableFunction(*this, Object.get()->getBeginLoc(),
14554                                           Best)) {
14555   case OR_Success:
14556     // Overload resolution succeeded; we'll build the appropriate call
14557     // below.
14558     break;
14559 
14560   case OR_No_Viable_Function: {
14561     PartialDiagnostic PD =
14562         CandidateSet.empty()
14563             ? (PDiag(diag::err_ovl_no_oper)
14564                << Object.get()->getType() << /*call*/ 1
14565                << Object.get()->getSourceRange())
14566             : (PDiag(diag::err_ovl_no_viable_object_call)
14567                << Object.get()->getType() << Object.get()->getSourceRange());
14568     CandidateSet.NoteCandidates(
14569         PartialDiagnosticAt(Object.get()->getBeginLoc(), PD), *this,
14570         OCD_AllCandidates, Args);
14571     break;
14572   }
14573   case OR_Ambiguous:
14574     CandidateSet.NoteCandidates(
14575         PartialDiagnosticAt(Object.get()->getBeginLoc(),
14576                             PDiag(diag::err_ovl_ambiguous_object_call)
14577                                 << Object.get()->getType()
14578                                 << Object.get()->getSourceRange()),
14579         *this, OCD_AmbiguousCandidates, Args);
14580     break;
14581 
14582   case OR_Deleted:
14583     CandidateSet.NoteCandidates(
14584         PartialDiagnosticAt(Object.get()->getBeginLoc(),
14585                             PDiag(diag::err_ovl_deleted_object_call)
14586                                 << Object.get()->getType()
14587                                 << Object.get()->getSourceRange()),
14588         *this, OCD_AllCandidates, Args);
14589     break;
14590   }
14591 
14592   if (Best == CandidateSet.end())
14593     return true;
14594 
14595   UnbridgedCasts.restore();
14596 
14597   if (Best->Function == nullptr) {
14598     // Since there is no function declaration, this is one of the
14599     // surrogate candidates. Dig out the conversion function.
14600     CXXConversionDecl *Conv
14601       = cast<CXXConversionDecl>(
14602                          Best->Conversions[0].UserDefined.ConversionFunction);
14603 
14604     CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr,
14605                               Best->FoundDecl);
14606     if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc))
14607       return ExprError();
14608     assert(Conv == Best->FoundDecl.getDecl() &&
14609              "Found Decl & conversion-to-functionptr should be same, right?!");
14610     // We selected one of the surrogate functions that converts the
14611     // object parameter to a function pointer. Perform the conversion
14612     // on the object argument, then let BuildCallExpr finish the job.
14613 
14614     // Create an implicit member expr to refer to the conversion operator.
14615     // and then call it.
14616     ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
14617                                              Conv, HadMultipleCandidates);
14618     if (Call.isInvalid())
14619       return ExprError();
14620     // Record usage of conversion in an implicit cast.
14621     Call = ImplicitCastExpr::Create(
14622         Context, Call.get()->getType(), CK_UserDefinedConversion, Call.get(),
14623         nullptr, VK_PRValue, CurFPFeatureOverrides());
14624 
14625     return BuildCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc);
14626   }
14627 
14628   CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl);
14629 
14630   // We found an overloaded operator(). Build a CXXOperatorCallExpr
14631   // that calls this method, using Object for the implicit object
14632   // parameter and passing along the remaining arguments.
14633   CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
14634 
14635   // An error diagnostic has already been printed when parsing the declaration.
14636   if (Method->isInvalidDecl())
14637     return ExprError();
14638 
14639   const auto *Proto = Method->getType()->castAs<FunctionProtoType>();
14640   unsigned NumParams = Proto->getNumParams();
14641 
14642   DeclarationNameInfo OpLocInfo(
14643                Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
14644   OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
14645   ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
14646                                            Obj, HadMultipleCandidates,
14647                                            OpLocInfo.getLoc(),
14648                                            OpLocInfo.getInfo());
14649   if (NewFn.isInvalid())
14650     return true;
14651 
14652   // The number of argument slots to allocate in the call. If we have default
14653   // arguments we need to allocate space for them as well. We additionally
14654   // need one more slot for the object parameter.
14655   unsigned NumArgsSlots = 1 + std::max<unsigned>(Args.size(), NumParams);
14656 
14657   // Build the full argument list for the method call (the implicit object
14658   // parameter is placed at the beginning of the list).
14659   SmallVector<Expr *, 8> MethodArgs(NumArgsSlots);
14660 
14661   bool IsError = false;
14662 
14663   // Initialize the implicit object parameter.
14664   ExprResult ObjRes =
14665     PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/nullptr,
14666                                         Best->FoundDecl, Method);
14667   if (ObjRes.isInvalid())
14668     IsError = true;
14669   else
14670     Object = ObjRes;
14671   MethodArgs[0] = Object.get();
14672 
14673   // Check the argument types.
14674   for (unsigned i = 0; i != NumParams; i++) {
14675     Expr *Arg;
14676     if (i < Args.size()) {
14677       Arg = Args[i];
14678 
14679       // Pass the argument.
14680 
14681       ExprResult InputInit
14682         = PerformCopyInitialization(InitializedEntity::InitializeParameter(
14683                                                     Context,
14684                                                     Method->getParamDecl(i)),
14685                                     SourceLocation(), Arg);
14686 
14687       IsError |= InputInit.isInvalid();
14688       Arg = InputInit.getAs<Expr>();
14689     } else {
14690       ExprResult DefArg
14691         = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
14692       if (DefArg.isInvalid()) {
14693         IsError = true;
14694         break;
14695       }
14696 
14697       Arg = DefArg.getAs<Expr>();
14698     }
14699 
14700     MethodArgs[i + 1] = Arg;
14701   }
14702 
14703   // If this is a variadic call, handle args passed through "...".
14704   if (Proto->isVariadic()) {
14705     // Promote the arguments (C99 6.5.2.2p7).
14706     for (unsigned i = NumParams, e = Args.size(); i < e; i++) {
14707       ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
14708                                                         nullptr);
14709       IsError |= Arg.isInvalid();
14710       MethodArgs[i + 1] = Arg.get();
14711     }
14712   }
14713 
14714   if (IsError)
14715     return true;
14716 
14717   DiagnoseSentinelCalls(Method, LParenLoc, Args);
14718 
14719   // Once we've built TheCall, all of the expressions are properly owned.
14720   QualType ResultTy = Method->getReturnType();
14721   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
14722   ResultTy = ResultTy.getNonLValueExprType(Context);
14723 
14724   CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
14725       Context, OO_Call, NewFn.get(), MethodArgs, ResultTy, VK, RParenLoc,
14726       CurFPFeatureOverrides());
14727 
14728   if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method))
14729     return true;
14730 
14731   if (CheckFunctionCall(Method, TheCall, Proto))
14732     return true;
14733 
14734   return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), Method);
14735 }
14736 
14737 /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
14738 ///  (if one exists), where @c Base is an expression of class type and
14739 /// @c Member is the name of the member we're trying to find.
14740 ExprResult
14741 Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
14742                                bool *NoArrowOperatorFound) {
14743   assert(Base->getType()->isRecordType() &&
14744          "left-hand side must have class type");
14745 
14746   if (checkPlaceholderForOverload(*this, Base))
14747     return ExprError();
14748 
14749   SourceLocation Loc = Base->getExprLoc();
14750 
14751   // C++ [over.ref]p1:
14752   //
14753   //   [...] An expression x->m is interpreted as (x.operator->())->m
14754   //   for a class object x of type T if T::operator->() exists and if
14755   //   the operator is selected as the best match function by the
14756   //   overload resolution mechanism (13.3).
14757   DeclarationName OpName =
14758     Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
14759   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator);
14760 
14761   if (RequireCompleteType(Loc, Base->getType(),
14762                           diag::err_typecheck_incomplete_tag, Base))
14763     return ExprError();
14764 
14765   LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
14766   LookupQualifiedName(R, Base->getType()->castAs<RecordType>()->getDecl());
14767   R.suppressDiagnostics();
14768 
14769   for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
14770        Oper != OperEnd; ++Oper) {
14771     AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
14772                        None, CandidateSet, /*SuppressUserConversion=*/false);
14773   }
14774 
14775   bool HadMultipleCandidates = (CandidateSet.size() > 1);
14776 
14777   // Perform overload resolution.
14778   OverloadCandidateSet::iterator Best;
14779   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
14780   case OR_Success:
14781     // Overload resolution succeeded; we'll build the call below.
14782     break;
14783 
14784   case OR_No_Viable_Function: {
14785     auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, Base);
14786     if (CandidateSet.empty()) {
14787       QualType BaseType = Base->getType();
14788       if (NoArrowOperatorFound) {
14789         // Report this specific error to the caller instead of emitting a
14790         // diagnostic, as requested.
14791         *NoArrowOperatorFound = true;
14792         return ExprError();
14793       }
14794       Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
14795         << BaseType << Base->getSourceRange();
14796       if (BaseType->isRecordType() && !BaseType->isPointerType()) {
14797         Diag(OpLoc, diag::note_typecheck_member_reference_suggestion)
14798           << FixItHint::CreateReplacement(OpLoc, ".");
14799       }
14800     } else
14801       Diag(OpLoc, diag::err_ovl_no_viable_oper)
14802         << "operator->" << Base->getSourceRange();
14803     CandidateSet.NoteCandidates(*this, Base, Cands);
14804     return ExprError();
14805   }
14806   case OR_Ambiguous:
14807     CandidateSet.NoteCandidates(
14808         PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_unary)
14809                                        << "->" << Base->getType()
14810                                        << Base->getSourceRange()),
14811         *this, OCD_AmbiguousCandidates, Base);
14812     return ExprError();
14813 
14814   case OR_Deleted:
14815     CandidateSet.NoteCandidates(
14816         PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
14817                                        << "->" << Base->getSourceRange()),
14818         *this, OCD_AllCandidates, Base);
14819     return ExprError();
14820   }
14821 
14822   CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl);
14823 
14824   // Convert the object parameter.
14825   CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
14826   ExprResult BaseResult =
14827     PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr,
14828                                         Best->FoundDecl, Method);
14829   if (BaseResult.isInvalid())
14830     return ExprError();
14831   Base = BaseResult.get();
14832 
14833   // Build the operator call.
14834   ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
14835                                             Base, HadMultipleCandidates, OpLoc);
14836   if (FnExpr.isInvalid())
14837     return ExprError();
14838 
14839   QualType ResultTy = Method->getReturnType();
14840   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
14841   ResultTy = ResultTy.getNonLValueExprType(Context);
14842   CXXOperatorCallExpr *TheCall =
14843       CXXOperatorCallExpr::Create(Context, OO_Arrow, FnExpr.get(), Base,
14844                                   ResultTy, VK, OpLoc, CurFPFeatureOverrides());
14845 
14846   if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method))
14847     return ExprError();
14848 
14849   if (CheckFunctionCall(Method, TheCall,
14850                         Method->getType()->castAs<FunctionProtoType>()))
14851     return ExprError();
14852 
14853   return MaybeBindToTemporary(TheCall);
14854 }
14855 
14856 /// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
14857 /// a literal operator described by the provided lookup results.
14858 ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
14859                                           DeclarationNameInfo &SuffixInfo,
14860                                           ArrayRef<Expr*> Args,
14861                                           SourceLocation LitEndLoc,
14862                                        TemplateArgumentListInfo *TemplateArgs) {
14863   SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
14864 
14865   OverloadCandidateSet CandidateSet(UDSuffixLoc,
14866                                     OverloadCandidateSet::CSK_Normal);
14867   AddNonMemberOperatorCandidates(R.asUnresolvedSet(), Args, CandidateSet,
14868                                  TemplateArgs);
14869 
14870   bool HadMultipleCandidates = (CandidateSet.size() > 1);
14871 
14872   // Perform overload resolution. This will usually be trivial, but might need
14873   // to perform substitutions for a literal operator template.
14874   OverloadCandidateSet::iterator Best;
14875   switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
14876   case OR_Success:
14877   case OR_Deleted:
14878     break;
14879 
14880   case OR_No_Viable_Function:
14881     CandidateSet.NoteCandidates(
14882         PartialDiagnosticAt(UDSuffixLoc,
14883                             PDiag(diag::err_ovl_no_viable_function_in_call)
14884                                 << R.getLookupName()),
14885         *this, OCD_AllCandidates, Args);
14886     return ExprError();
14887 
14888   case OR_Ambiguous:
14889     CandidateSet.NoteCandidates(
14890         PartialDiagnosticAt(R.getNameLoc(), PDiag(diag::err_ovl_ambiguous_call)
14891                                                 << R.getLookupName()),
14892         *this, OCD_AmbiguousCandidates, Args);
14893     return ExprError();
14894   }
14895 
14896   FunctionDecl *FD = Best->Function;
14897   ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl,
14898                                         nullptr, HadMultipleCandidates,
14899                                         SuffixInfo.getLoc(),
14900                                         SuffixInfo.getInfo());
14901   if (Fn.isInvalid())
14902     return true;
14903 
14904   // Check the argument types. This should almost always be a no-op, except
14905   // that array-to-pointer decay is applied to string literals.
14906   Expr *ConvArgs[2];
14907   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
14908     ExprResult InputInit = PerformCopyInitialization(
14909       InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
14910       SourceLocation(), Args[ArgIdx]);
14911     if (InputInit.isInvalid())
14912       return true;
14913     ConvArgs[ArgIdx] = InputInit.get();
14914   }
14915 
14916   QualType ResultTy = FD->getReturnType();
14917   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
14918   ResultTy = ResultTy.getNonLValueExprType(Context);
14919 
14920   UserDefinedLiteral *UDL = UserDefinedLiteral::Create(
14921       Context, Fn.get(), llvm::makeArrayRef(ConvArgs, Args.size()), ResultTy,
14922       VK, LitEndLoc, UDSuffixLoc, CurFPFeatureOverrides());
14923 
14924   if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD))
14925     return ExprError();
14926 
14927   if (CheckFunctionCall(FD, UDL, nullptr))
14928     return ExprError();
14929 
14930   return CheckForImmediateInvocation(MaybeBindToTemporary(UDL), FD);
14931 }
14932 
14933 /// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
14934 /// given LookupResult is non-empty, it is assumed to describe a member which
14935 /// will be invoked. Otherwise, the function will be found via argument
14936 /// dependent lookup.
14937 /// CallExpr is set to a valid expression and FRS_Success returned on success,
14938 /// otherwise CallExpr is set to ExprError() and some non-success value
14939 /// is returned.
14940 Sema::ForRangeStatus
14941 Sema::BuildForRangeBeginEndCall(SourceLocation Loc,
14942                                 SourceLocation RangeLoc,
14943                                 const DeclarationNameInfo &NameInfo,
14944                                 LookupResult &MemberLookup,
14945                                 OverloadCandidateSet *CandidateSet,
14946                                 Expr *Range, ExprResult *CallExpr) {
14947   Scope *S = nullptr;
14948 
14949   CandidateSet->clear(OverloadCandidateSet::CSK_Normal);
14950   if (!MemberLookup.empty()) {
14951     ExprResult MemberRef =
14952         BuildMemberReferenceExpr(Range, Range->getType(), Loc,
14953                                  /*IsPtr=*/false, CXXScopeSpec(),
14954                                  /*TemplateKWLoc=*/SourceLocation(),
14955                                  /*FirstQualifierInScope=*/nullptr,
14956                                  MemberLookup,
14957                                  /*TemplateArgs=*/nullptr, S);
14958     if (MemberRef.isInvalid()) {
14959       *CallExpr = ExprError();
14960       return FRS_DiagnosticIssued;
14961     }
14962     *CallExpr = BuildCallExpr(S, MemberRef.get(), Loc, None, Loc, nullptr);
14963     if (CallExpr->isInvalid()) {
14964       *CallExpr = ExprError();
14965       return FRS_DiagnosticIssued;
14966     }
14967   } else {
14968     ExprResult FnR = CreateUnresolvedLookupExpr(/*NamingClass=*/nullptr,
14969                                                 NestedNameSpecifierLoc(),
14970                                                 NameInfo, UnresolvedSet<0>());
14971     if (FnR.isInvalid())
14972       return FRS_DiagnosticIssued;
14973     UnresolvedLookupExpr *Fn = cast<UnresolvedLookupExpr>(FnR.get());
14974 
14975     bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc,
14976                                                     CandidateSet, CallExpr);
14977     if (CandidateSet->empty() || CandidateSetError) {
14978       *CallExpr = ExprError();
14979       return FRS_NoViableFunction;
14980     }
14981     OverloadCandidateSet::iterator Best;
14982     OverloadingResult OverloadResult =
14983         CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best);
14984 
14985     if (OverloadResult == OR_No_Viable_Function) {
14986       *CallExpr = ExprError();
14987       return FRS_NoViableFunction;
14988     }
14989     *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range,
14990                                          Loc, nullptr, CandidateSet, &Best,
14991                                          OverloadResult,
14992                                          /*AllowTypoCorrection=*/false);
14993     if (CallExpr->isInvalid() || OverloadResult != OR_Success) {
14994       *CallExpr = ExprError();
14995       return FRS_DiagnosticIssued;
14996     }
14997   }
14998   return FRS_Success;
14999 }
15000 
15001 
15002 /// FixOverloadedFunctionReference - E is an expression that refers to
15003 /// a C++ overloaded function (possibly with some parentheses and
15004 /// perhaps a '&' around it). We have resolved the overloaded function
15005 /// to the function declaration Fn, so patch up the expression E to
15006 /// refer (possibly indirectly) to Fn. Returns the new expr.
15007 Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
15008                                            FunctionDecl *Fn) {
15009   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
15010     Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
15011                                                    Found, Fn);
15012     if (SubExpr == PE->getSubExpr())
15013       return PE;
15014 
15015     return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
15016   }
15017 
15018   if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
15019     Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
15020                                                    Found, Fn);
15021     assert(Context.hasSameType(ICE->getSubExpr()->getType(),
15022                                SubExpr->getType()) &&
15023            "Implicit cast type cannot be determined from overload");
15024     assert(ICE->path_empty() && "fixing up hierarchy conversion?");
15025     if (SubExpr == ICE->getSubExpr())
15026       return ICE;
15027 
15028     return ImplicitCastExpr::Create(Context, ICE->getType(), ICE->getCastKind(),
15029                                     SubExpr, nullptr, ICE->getValueKind(),
15030                                     CurFPFeatureOverrides());
15031   }
15032 
15033   if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) {
15034     if (!GSE->isResultDependent()) {
15035       Expr *SubExpr =
15036           FixOverloadedFunctionReference(GSE->getResultExpr(), Found, Fn);
15037       if (SubExpr == GSE->getResultExpr())
15038         return GSE;
15039 
15040       // Replace the resulting type information before rebuilding the generic
15041       // selection expression.
15042       ArrayRef<Expr *> A = GSE->getAssocExprs();
15043       SmallVector<Expr *, 4> AssocExprs(A.begin(), A.end());
15044       unsigned ResultIdx = GSE->getResultIndex();
15045       AssocExprs[ResultIdx] = SubExpr;
15046 
15047       return GenericSelectionExpr::Create(
15048           Context, GSE->getGenericLoc(), GSE->getControllingExpr(),
15049           GSE->getAssocTypeSourceInfos(), AssocExprs, GSE->getDefaultLoc(),
15050           GSE->getRParenLoc(), GSE->containsUnexpandedParameterPack(),
15051           ResultIdx);
15052     }
15053     // Rather than fall through to the unreachable, return the original generic
15054     // selection expression.
15055     return GSE;
15056   }
15057 
15058   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
15059     assert(UnOp->getOpcode() == UO_AddrOf &&
15060            "Can only take the address of an overloaded function");
15061     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
15062       if (Method->isStatic()) {
15063         // Do nothing: static member functions aren't any different
15064         // from non-member functions.
15065       } else {
15066         // Fix the subexpression, which really has to be an
15067         // UnresolvedLookupExpr holding an overloaded member function
15068         // or template.
15069         Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
15070                                                        Found, Fn);
15071         if (SubExpr == UnOp->getSubExpr())
15072           return UnOp;
15073 
15074         assert(isa<DeclRefExpr>(SubExpr)
15075                && "fixed to something other than a decl ref");
15076         assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
15077                && "fixed to a member ref with no nested name qualifier");
15078 
15079         // We have taken the address of a pointer to member
15080         // function. Perform the computation here so that we get the
15081         // appropriate pointer to member type.
15082         QualType ClassType
15083           = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
15084         QualType MemPtrType
15085           = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
15086         // Under the MS ABI, lock down the inheritance model now.
15087         if (Context.getTargetInfo().getCXXABI().isMicrosoft())
15088           (void)isCompleteType(UnOp->getOperatorLoc(), MemPtrType);
15089 
15090         return UnaryOperator::Create(
15091             Context, SubExpr, UO_AddrOf, MemPtrType, VK_PRValue, OK_Ordinary,
15092             UnOp->getOperatorLoc(), false, CurFPFeatureOverrides());
15093       }
15094     }
15095     Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
15096                                                    Found, Fn);
15097     if (SubExpr == UnOp->getSubExpr())
15098       return UnOp;
15099 
15100     return UnaryOperator::Create(
15101         Context, SubExpr, UO_AddrOf, Context.getPointerType(SubExpr->getType()),
15102         VK_PRValue, OK_Ordinary, UnOp->getOperatorLoc(), false,
15103         CurFPFeatureOverrides());
15104   }
15105 
15106   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
15107     // FIXME: avoid copy.
15108     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
15109     if (ULE->hasExplicitTemplateArgs()) {
15110       ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
15111       TemplateArgs = &TemplateArgsBuffer;
15112     }
15113 
15114     DeclRefExpr *DRE =
15115         BuildDeclRefExpr(Fn, Fn->getType(), VK_LValue, ULE->getNameInfo(),
15116                          ULE->getQualifierLoc(), Found.getDecl(),
15117                          ULE->getTemplateKeywordLoc(), TemplateArgs);
15118     DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
15119     return DRE;
15120   }
15121 
15122   if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
15123     // FIXME: avoid copy.
15124     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
15125     if (MemExpr->hasExplicitTemplateArgs()) {
15126       MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
15127       TemplateArgs = &TemplateArgsBuffer;
15128     }
15129 
15130     Expr *Base;
15131 
15132     // If we're filling in a static method where we used to have an
15133     // implicit member access, rewrite to a simple decl ref.
15134     if (MemExpr->isImplicitAccess()) {
15135       if (cast<CXXMethodDecl>(Fn)->isStatic()) {
15136         DeclRefExpr *DRE = BuildDeclRefExpr(
15137             Fn, Fn->getType(), VK_LValue, MemExpr->getNameInfo(),
15138             MemExpr->getQualifierLoc(), Found.getDecl(),
15139             MemExpr->getTemplateKeywordLoc(), TemplateArgs);
15140         DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
15141         return DRE;
15142       } else {
15143         SourceLocation Loc = MemExpr->getMemberLoc();
15144         if (MemExpr->getQualifier())
15145           Loc = MemExpr->getQualifierLoc().getBeginLoc();
15146         Base =
15147             BuildCXXThisExpr(Loc, MemExpr->getBaseType(), /*IsImplicit=*/true);
15148       }
15149     } else
15150       Base = MemExpr->getBase();
15151 
15152     ExprValueKind valueKind;
15153     QualType type;
15154     if (cast<CXXMethodDecl>(Fn)->isStatic()) {
15155       valueKind = VK_LValue;
15156       type = Fn->getType();
15157     } else {
15158       valueKind = VK_PRValue;
15159       type = Context.BoundMemberTy;
15160     }
15161 
15162     return BuildMemberExpr(
15163         Base, MemExpr->isArrow(), MemExpr->getOperatorLoc(),
15164         MemExpr->getQualifierLoc(), MemExpr->getTemplateKeywordLoc(), Fn, Found,
15165         /*HadMultipleCandidates=*/true, MemExpr->getMemberNameInfo(),
15166         type, valueKind, OK_Ordinary, TemplateArgs);
15167   }
15168 
15169   llvm_unreachable("Invalid reference to overloaded function");
15170 }
15171 
15172 ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
15173                                                 DeclAccessPair Found,
15174                                                 FunctionDecl *Fn) {
15175   return FixOverloadedFunctionReference(E.get(), Found, Fn);
15176 }
15177