1 //===--- SemaOverload.cpp - C++ Overloading -------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file provides Sema routines for C++ overloading. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/CXXInheritance.h" 15 #include "clang/AST/DeclObjC.h" 16 #include "clang/AST/DependenceFlags.h" 17 #include "clang/AST/Expr.h" 18 #include "clang/AST/ExprCXX.h" 19 #include "clang/AST/ExprObjC.h" 20 #include "clang/AST/TypeOrdering.h" 21 #include "clang/Basic/Diagnostic.h" 22 #include "clang/Basic/DiagnosticOptions.h" 23 #include "clang/Basic/PartialDiagnostic.h" 24 #include "clang/Basic/SourceManager.h" 25 #include "clang/Basic/TargetInfo.h" 26 #include "clang/Sema/Initialization.h" 27 #include "clang/Sema/Lookup.h" 28 #include "clang/Sema/Overload.h" 29 #include "clang/Sema/SemaInternal.h" 30 #include "clang/Sema/Template.h" 31 #include "clang/Sema/TemplateDeduction.h" 32 #include "llvm/ADT/DenseSet.h" 33 #include "llvm/ADT/Optional.h" 34 #include "llvm/ADT/STLExtras.h" 35 #include "llvm/ADT/SmallPtrSet.h" 36 #include "llvm/ADT/SmallString.h" 37 #include <algorithm> 38 #include <cstdlib> 39 40 using namespace clang; 41 using namespace sema; 42 43 using AllowedExplicit = Sema::AllowedExplicit; 44 45 static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) { 46 return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) { 47 return P->hasAttr<PassObjectSizeAttr>(); 48 }); 49 } 50 51 /// A convenience routine for creating a decayed reference to a function. 52 static ExprResult 53 CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl, 54 const Expr *Base, bool HadMultipleCandidates, 55 SourceLocation Loc = SourceLocation(), 56 const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){ 57 if (S.DiagnoseUseOfDecl(FoundDecl, Loc)) 58 return ExprError(); 59 // If FoundDecl is different from Fn (such as if one is a template 60 // and the other a specialization), make sure DiagnoseUseOfDecl is 61 // called on both. 62 // FIXME: This would be more comprehensively addressed by modifying 63 // DiagnoseUseOfDecl to accept both the FoundDecl and the decl 64 // being used. 65 if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc)) 66 return ExprError(); 67 DeclRefExpr *DRE = new (S.Context) 68 DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo); 69 if (HadMultipleCandidates) 70 DRE->setHadMultipleCandidates(true); 71 72 S.MarkDeclRefReferenced(DRE, Base); 73 if (auto *FPT = DRE->getType()->getAs<FunctionProtoType>()) { 74 if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) { 75 S.ResolveExceptionSpec(Loc, FPT); 76 DRE->setType(Fn->getType()); 77 } 78 } 79 return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()), 80 CK_FunctionToPointerDecay); 81 } 82 83 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, 84 bool InOverloadResolution, 85 StandardConversionSequence &SCS, 86 bool CStyle, 87 bool AllowObjCWritebackConversion); 88 89 static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From, 90 QualType &ToType, 91 bool InOverloadResolution, 92 StandardConversionSequence &SCS, 93 bool CStyle); 94 static OverloadingResult 95 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 96 UserDefinedConversionSequence& User, 97 OverloadCandidateSet& Conversions, 98 AllowedExplicit AllowExplicit, 99 bool AllowObjCConversionOnExplicit); 100 101 static ImplicitConversionSequence::CompareKind 102 CompareStandardConversionSequences(Sema &S, SourceLocation Loc, 103 const StandardConversionSequence& SCS1, 104 const StandardConversionSequence& SCS2); 105 106 static ImplicitConversionSequence::CompareKind 107 CompareQualificationConversions(Sema &S, 108 const StandardConversionSequence& SCS1, 109 const StandardConversionSequence& SCS2); 110 111 static ImplicitConversionSequence::CompareKind 112 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc, 113 const StandardConversionSequence& SCS1, 114 const StandardConversionSequence& SCS2); 115 116 /// GetConversionRank - Retrieve the implicit conversion rank 117 /// corresponding to the given implicit conversion kind. 118 ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) { 119 static const ImplicitConversionRank 120 Rank[(int)ICK_Num_Conversion_Kinds] = { 121 ICR_Exact_Match, 122 ICR_Exact_Match, 123 ICR_Exact_Match, 124 ICR_Exact_Match, 125 ICR_Exact_Match, 126 ICR_Exact_Match, 127 ICR_Promotion, 128 ICR_Promotion, 129 ICR_Promotion, 130 ICR_Conversion, 131 ICR_Conversion, 132 ICR_Conversion, 133 ICR_Conversion, 134 ICR_Conversion, 135 ICR_Conversion, 136 ICR_Conversion, 137 ICR_Conversion, 138 ICR_Conversion, 139 ICR_Conversion, 140 ICR_Conversion, 141 ICR_OCL_Scalar_Widening, 142 ICR_Complex_Real_Conversion, 143 ICR_Conversion, 144 ICR_Conversion, 145 ICR_Writeback_Conversion, 146 ICR_Exact_Match, // NOTE(gbiv): This may not be completely right -- 147 // it was omitted by the patch that added 148 // ICK_Zero_Event_Conversion 149 ICR_C_Conversion, 150 ICR_C_Conversion_Extension 151 }; 152 return Rank[(int)Kind]; 153 } 154 155 /// GetImplicitConversionName - Return the name of this kind of 156 /// implicit conversion. 157 static const char* GetImplicitConversionName(ImplicitConversionKind Kind) { 158 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = { 159 "No conversion", 160 "Lvalue-to-rvalue", 161 "Array-to-pointer", 162 "Function-to-pointer", 163 "Function pointer conversion", 164 "Qualification", 165 "Integral promotion", 166 "Floating point promotion", 167 "Complex promotion", 168 "Integral conversion", 169 "Floating conversion", 170 "Complex conversion", 171 "Floating-integral conversion", 172 "Pointer conversion", 173 "Pointer-to-member conversion", 174 "Boolean conversion", 175 "Compatible-types conversion", 176 "Derived-to-base conversion", 177 "Vector conversion", 178 "SVE Vector conversion", 179 "Vector splat", 180 "Complex-real conversion", 181 "Block Pointer conversion", 182 "Transparent Union Conversion", 183 "Writeback conversion", 184 "OpenCL Zero Event Conversion", 185 "C specific type conversion", 186 "Incompatible pointer conversion" 187 }; 188 return Name[Kind]; 189 } 190 191 /// StandardConversionSequence - Set the standard conversion 192 /// sequence to the identity conversion. 193 void StandardConversionSequence::setAsIdentityConversion() { 194 First = ICK_Identity; 195 Second = ICK_Identity; 196 Third = ICK_Identity; 197 DeprecatedStringLiteralToCharPtr = false; 198 QualificationIncludesObjCLifetime = false; 199 ReferenceBinding = false; 200 DirectBinding = false; 201 IsLvalueReference = true; 202 BindsToFunctionLvalue = false; 203 BindsToRvalue = false; 204 BindsImplicitObjectArgumentWithoutRefQualifier = false; 205 ObjCLifetimeConversionBinding = false; 206 CopyConstructor = nullptr; 207 } 208 209 /// getRank - Retrieve the rank of this standard conversion sequence 210 /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the 211 /// implicit conversions. 212 ImplicitConversionRank StandardConversionSequence::getRank() const { 213 ImplicitConversionRank Rank = ICR_Exact_Match; 214 if (GetConversionRank(First) > Rank) 215 Rank = GetConversionRank(First); 216 if (GetConversionRank(Second) > Rank) 217 Rank = GetConversionRank(Second); 218 if (GetConversionRank(Third) > Rank) 219 Rank = GetConversionRank(Third); 220 return Rank; 221 } 222 223 /// isPointerConversionToBool - Determines whether this conversion is 224 /// a conversion of a pointer or pointer-to-member to bool. This is 225 /// used as part of the ranking of standard conversion sequences 226 /// (C++ 13.3.3.2p4). 227 bool StandardConversionSequence::isPointerConversionToBool() const { 228 // Note that FromType has not necessarily been transformed by the 229 // array-to-pointer or function-to-pointer implicit conversions, so 230 // check for their presence as well as checking whether FromType is 231 // a pointer. 232 if (getToType(1)->isBooleanType() && 233 (getFromType()->isPointerType() || 234 getFromType()->isMemberPointerType() || 235 getFromType()->isObjCObjectPointerType() || 236 getFromType()->isBlockPointerType() || 237 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) 238 return true; 239 240 return false; 241 } 242 243 /// isPointerConversionToVoidPointer - Determines whether this 244 /// conversion is a conversion of a pointer to a void pointer. This is 245 /// used as part of the ranking of standard conversion sequences (C++ 246 /// 13.3.3.2p4). 247 bool 248 StandardConversionSequence:: 249 isPointerConversionToVoidPointer(ASTContext& Context) const { 250 QualType FromType = getFromType(); 251 QualType ToType = getToType(1); 252 253 // Note that FromType has not necessarily been transformed by the 254 // array-to-pointer implicit conversion, so check for its presence 255 // and redo the conversion to get a pointer. 256 if (First == ICK_Array_To_Pointer) 257 FromType = Context.getArrayDecayedType(FromType); 258 259 if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType()) 260 if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) 261 return ToPtrType->getPointeeType()->isVoidType(); 262 263 return false; 264 } 265 266 /// Skip any implicit casts which could be either part of a narrowing conversion 267 /// or after one in an implicit conversion. 268 static const Expr *IgnoreNarrowingConversion(ASTContext &Ctx, 269 const Expr *Converted) { 270 // We can have cleanups wrapping the converted expression; these need to be 271 // preserved so that destructors run if necessary. 272 if (auto *EWC = dyn_cast<ExprWithCleanups>(Converted)) { 273 Expr *Inner = 274 const_cast<Expr *>(IgnoreNarrowingConversion(Ctx, EWC->getSubExpr())); 275 return ExprWithCleanups::Create(Ctx, Inner, EWC->cleanupsHaveSideEffects(), 276 EWC->getObjects()); 277 } 278 279 while (auto *ICE = dyn_cast<ImplicitCastExpr>(Converted)) { 280 switch (ICE->getCastKind()) { 281 case CK_NoOp: 282 case CK_IntegralCast: 283 case CK_IntegralToBoolean: 284 case CK_IntegralToFloating: 285 case CK_BooleanToSignedIntegral: 286 case CK_FloatingToIntegral: 287 case CK_FloatingToBoolean: 288 case CK_FloatingCast: 289 Converted = ICE->getSubExpr(); 290 continue; 291 292 default: 293 return Converted; 294 } 295 } 296 297 return Converted; 298 } 299 300 /// Check if this standard conversion sequence represents a narrowing 301 /// conversion, according to C++11 [dcl.init.list]p7. 302 /// 303 /// \param Ctx The AST context. 304 /// \param Converted The result of applying this standard conversion sequence. 305 /// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the 306 /// value of the expression prior to the narrowing conversion. 307 /// \param ConstantType If this is an NK_Constant_Narrowing conversion, the 308 /// type of the expression prior to the narrowing conversion. 309 /// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions 310 /// from floating point types to integral types should be ignored. 311 NarrowingKind StandardConversionSequence::getNarrowingKind( 312 ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue, 313 QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const { 314 assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++"); 315 316 // C++11 [dcl.init.list]p7: 317 // A narrowing conversion is an implicit conversion ... 318 QualType FromType = getToType(0); 319 QualType ToType = getToType(1); 320 321 // A conversion to an enumeration type is narrowing if the conversion to 322 // the underlying type is narrowing. This only arises for expressions of 323 // the form 'Enum{init}'. 324 if (auto *ET = ToType->getAs<EnumType>()) 325 ToType = ET->getDecl()->getIntegerType(); 326 327 switch (Second) { 328 // 'bool' is an integral type; dispatch to the right place to handle it. 329 case ICK_Boolean_Conversion: 330 if (FromType->isRealFloatingType()) 331 goto FloatingIntegralConversion; 332 if (FromType->isIntegralOrUnscopedEnumerationType()) 333 goto IntegralConversion; 334 // -- from a pointer type or pointer-to-member type to bool, or 335 return NK_Type_Narrowing; 336 337 // -- from a floating-point type to an integer type, or 338 // 339 // -- from an integer type or unscoped enumeration type to a floating-point 340 // type, except where the source is a constant expression and the actual 341 // value after conversion will fit into the target type and will produce 342 // the original value when converted back to the original type, or 343 case ICK_Floating_Integral: 344 FloatingIntegralConversion: 345 if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) { 346 return NK_Type_Narrowing; 347 } else if (FromType->isIntegralOrUnscopedEnumerationType() && 348 ToType->isRealFloatingType()) { 349 if (IgnoreFloatToIntegralConversion) 350 return NK_Not_Narrowing; 351 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); 352 assert(Initializer && "Unknown conversion expression"); 353 354 // If it's value-dependent, we can't tell whether it's narrowing. 355 if (Initializer->isValueDependent()) 356 return NK_Dependent_Narrowing; 357 358 if (Optional<llvm::APSInt> IntConstantValue = 359 Initializer->getIntegerConstantExpr(Ctx)) { 360 // Convert the integer to the floating type. 361 llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType)); 362 Result.convertFromAPInt(*IntConstantValue, IntConstantValue->isSigned(), 363 llvm::APFloat::rmNearestTiesToEven); 364 // And back. 365 llvm::APSInt ConvertedValue = *IntConstantValue; 366 bool ignored; 367 Result.convertToInteger(ConvertedValue, 368 llvm::APFloat::rmTowardZero, &ignored); 369 // If the resulting value is different, this was a narrowing conversion. 370 if (*IntConstantValue != ConvertedValue) { 371 ConstantValue = APValue(*IntConstantValue); 372 ConstantType = Initializer->getType(); 373 return NK_Constant_Narrowing; 374 } 375 } else { 376 // Variables are always narrowings. 377 return NK_Variable_Narrowing; 378 } 379 } 380 return NK_Not_Narrowing; 381 382 // -- from long double to double or float, or from double to float, except 383 // where the source is a constant expression and the actual value after 384 // conversion is within the range of values that can be represented (even 385 // if it cannot be represented exactly), or 386 case ICK_Floating_Conversion: 387 if (FromType->isRealFloatingType() && ToType->isRealFloatingType() && 388 Ctx.getFloatingTypeOrder(FromType, ToType) == 1) { 389 // FromType is larger than ToType. 390 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); 391 392 // If it's value-dependent, we can't tell whether it's narrowing. 393 if (Initializer->isValueDependent()) 394 return NK_Dependent_Narrowing; 395 396 if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) { 397 // Constant! 398 assert(ConstantValue.isFloat()); 399 llvm::APFloat FloatVal = ConstantValue.getFloat(); 400 // Convert the source value into the target type. 401 bool ignored; 402 llvm::APFloat::opStatus ConvertStatus = FloatVal.convert( 403 Ctx.getFloatTypeSemantics(ToType), 404 llvm::APFloat::rmNearestTiesToEven, &ignored); 405 // If there was no overflow, the source value is within the range of 406 // values that can be represented. 407 if (ConvertStatus & llvm::APFloat::opOverflow) { 408 ConstantType = Initializer->getType(); 409 return NK_Constant_Narrowing; 410 } 411 } else { 412 return NK_Variable_Narrowing; 413 } 414 } 415 return NK_Not_Narrowing; 416 417 // -- from an integer type or unscoped enumeration type to an integer type 418 // that cannot represent all the values of the original type, except where 419 // the source is a constant expression and the actual value after 420 // conversion will fit into the target type and will produce the original 421 // value when converted back to the original type. 422 case ICK_Integral_Conversion: 423 IntegralConversion: { 424 assert(FromType->isIntegralOrUnscopedEnumerationType()); 425 assert(ToType->isIntegralOrUnscopedEnumerationType()); 426 const bool FromSigned = FromType->isSignedIntegerOrEnumerationType(); 427 const unsigned FromWidth = Ctx.getIntWidth(FromType); 428 const bool ToSigned = ToType->isSignedIntegerOrEnumerationType(); 429 const unsigned ToWidth = Ctx.getIntWidth(ToType); 430 431 if (FromWidth > ToWidth || 432 (FromWidth == ToWidth && FromSigned != ToSigned) || 433 (FromSigned && !ToSigned)) { 434 // Not all values of FromType can be represented in ToType. 435 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); 436 437 // If it's value-dependent, we can't tell whether it's narrowing. 438 if (Initializer->isValueDependent()) 439 return NK_Dependent_Narrowing; 440 441 Optional<llvm::APSInt> OptInitializerValue; 442 if (!(OptInitializerValue = Initializer->getIntegerConstantExpr(Ctx))) { 443 // Such conversions on variables are always narrowing. 444 return NK_Variable_Narrowing; 445 } 446 llvm::APSInt &InitializerValue = *OptInitializerValue; 447 bool Narrowing = false; 448 if (FromWidth < ToWidth) { 449 // Negative -> unsigned is narrowing. Otherwise, more bits is never 450 // narrowing. 451 if (InitializerValue.isSigned() && InitializerValue.isNegative()) 452 Narrowing = true; 453 } else { 454 // Add a bit to the InitializerValue so we don't have to worry about 455 // signed vs. unsigned comparisons. 456 InitializerValue = InitializerValue.extend( 457 InitializerValue.getBitWidth() + 1); 458 // Convert the initializer to and from the target width and signed-ness. 459 llvm::APSInt ConvertedValue = InitializerValue; 460 ConvertedValue = ConvertedValue.trunc(ToWidth); 461 ConvertedValue.setIsSigned(ToSigned); 462 ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth()); 463 ConvertedValue.setIsSigned(InitializerValue.isSigned()); 464 // If the result is different, this was a narrowing conversion. 465 if (ConvertedValue != InitializerValue) 466 Narrowing = true; 467 } 468 if (Narrowing) { 469 ConstantType = Initializer->getType(); 470 ConstantValue = APValue(InitializerValue); 471 return NK_Constant_Narrowing; 472 } 473 } 474 return NK_Not_Narrowing; 475 } 476 477 default: 478 // Other kinds of conversions are not narrowings. 479 return NK_Not_Narrowing; 480 } 481 } 482 483 /// dump - Print this standard conversion sequence to standard 484 /// error. Useful for debugging overloading issues. 485 LLVM_DUMP_METHOD void StandardConversionSequence::dump() const { 486 raw_ostream &OS = llvm::errs(); 487 bool PrintedSomething = false; 488 if (First != ICK_Identity) { 489 OS << GetImplicitConversionName(First); 490 PrintedSomething = true; 491 } 492 493 if (Second != ICK_Identity) { 494 if (PrintedSomething) { 495 OS << " -> "; 496 } 497 OS << GetImplicitConversionName(Second); 498 499 if (CopyConstructor) { 500 OS << " (by copy constructor)"; 501 } else if (DirectBinding) { 502 OS << " (direct reference binding)"; 503 } else if (ReferenceBinding) { 504 OS << " (reference binding)"; 505 } 506 PrintedSomething = true; 507 } 508 509 if (Third != ICK_Identity) { 510 if (PrintedSomething) { 511 OS << " -> "; 512 } 513 OS << GetImplicitConversionName(Third); 514 PrintedSomething = true; 515 } 516 517 if (!PrintedSomething) { 518 OS << "No conversions required"; 519 } 520 } 521 522 /// dump - Print this user-defined conversion sequence to standard 523 /// error. Useful for debugging overloading issues. 524 void UserDefinedConversionSequence::dump() const { 525 raw_ostream &OS = llvm::errs(); 526 if (Before.First || Before.Second || Before.Third) { 527 Before.dump(); 528 OS << " -> "; 529 } 530 if (ConversionFunction) 531 OS << '\'' << *ConversionFunction << '\''; 532 else 533 OS << "aggregate initialization"; 534 if (After.First || After.Second || After.Third) { 535 OS << " -> "; 536 After.dump(); 537 } 538 } 539 540 /// dump - Print this implicit conversion sequence to standard 541 /// error. Useful for debugging overloading issues. 542 void ImplicitConversionSequence::dump() const { 543 raw_ostream &OS = llvm::errs(); 544 if (isStdInitializerListElement()) 545 OS << "Worst std::initializer_list element conversion: "; 546 switch (ConversionKind) { 547 case StandardConversion: 548 OS << "Standard conversion: "; 549 Standard.dump(); 550 break; 551 case UserDefinedConversion: 552 OS << "User-defined conversion: "; 553 UserDefined.dump(); 554 break; 555 case EllipsisConversion: 556 OS << "Ellipsis conversion"; 557 break; 558 case AmbiguousConversion: 559 OS << "Ambiguous conversion"; 560 break; 561 case BadConversion: 562 OS << "Bad conversion"; 563 break; 564 } 565 566 OS << "\n"; 567 } 568 569 void AmbiguousConversionSequence::construct() { 570 new (&conversions()) ConversionSet(); 571 } 572 573 void AmbiguousConversionSequence::destruct() { 574 conversions().~ConversionSet(); 575 } 576 577 void 578 AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { 579 FromTypePtr = O.FromTypePtr; 580 ToTypePtr = O.ToTypePtr; 581 new (&conversions()) ConversionSet(O.conversions()); 582 } 583 584 namespace { 585 // Structure used by DeductionFailureInfo to store 586 // template argument information. 587 struct DFIArguments { 588 TemplateArgument FirstArg; 589 TemplateArgument SecondArg; 590 }; 591 // Structure used by DeductionFailureInfo to store 592 // template parameter and template argument information. 593 struct DFIParamWithArguments : DFIArguments { 594 TemplateParameter Param; 595 }; 596 // Structure used by DeductionFailureInfo to store template argument 597 // information and the index of the problematic call argument. 598 struct DFIDeducedMismatchArgs : DFIArguments { 599 TemplateArgumentList *TemplateArgs; 600 unsigned CallArgIndex; 601 }; 602 // Structure used by DeductionFailureInfo to store information about 603 // unsatisfied constraints. 604 struct CNSInfo { 605 TemplateArgumentList *TemplateArgs; 606 ConstraintSatisfaction Satisfaction; 607 }; 608 } 609 610 /// Convert from Sema's representation of template deduction information 611 /// to the form used in overload-candidate information. 612 DeductionFailureInfo 613 clang::MakeDeductionFailureInfo(ASTContext &Context, 614 Sema::TemplateDeductionResult TDK, 615 TemplateDeductionInfo &Info) { 616 DeductionFailureInfo Result; 617 Result.Result = static_cast<unsigned>(TDK); 618 Result.HasDiagnostic = false; 619 switch (TDK) { 620 case Sema::TDK_Invalid: 621 case Sema::TDK_InstantiationDepth: 622 case Sema::TDK_TooManyArguments: 623 case Sema::TDK_TooFewArguments: 624 case Sema::TDK_MiscellaneousDeductionFailure: 625 case Sema::TDK_CUDATargetMismatch: 626 Result.Data = nullptr; 627 break; 628 629 case Sema::TDK_Incomplete: 630 case Sema::TDK_InvalidExplicitArguments: 631 Result.Data = Info.Param.getOpaqueValue(); 632 break; 633 634 case Sema::TDK_DeducedMismatch: 635 case Sema::TDK_DeducedMismatchNested: { 636 // FIXME: Should allocate from normal heap so that we can free this later. 637 auto *Saved = new (Context) DFIDeducedMismatchArgs; 638 Saved->FirstArg = Info.FirstArg; 639 Saved->SecondArg = Info.SecondArg; 640 Saved->TemplateArgs = Info.take(); 641 Saved->CallArgIndex = Info.CallArgIndex; 642 Result.Data = Saved; 643 break; 644 } 645 646 case Sema::TDK_NonDeducedMismatch: { 647 // FIXME: Should allocate from normal heap so that we can free this later. 648 DFIArguments *Saved = new (Context) DFIArguments; 649 Saved->FirstArg = Info.FirstArg; 650 Saved->SecondArg = Info.SecondArg; 651 Result.Data = Saved; 652 break; 653 } 654 655 case Sema::TDK_IncompletePack: 656 // FIXME: It's slightly wasteful to allocate two TemplateArguments for this. 657 case Sema::TDK_Inconsistent: 658 case Sema::TDK_Underqualified: { 659 // FIXME: Should allocate from normal heap so that we can free this later. 660 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments; 661 Saved->Param = Info.Param; 662 Saved->FirstArg = Info.FirstArg; 663 Saved->SecondArg = Info.SecondArg; 664 Result.Data = Saved; 665 break; 666 } 667 668 case Sema::TDK_SubstitutionFailure: 669 Result.Data = Info.take(); 670 if (Info.hasSFINAEDiagnostic()) { 671 PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt( 672 SourceLocation(), PartialDiagnostic::NullDiagnostic()); 673 Info.takeSFINAEDiagnostic(*Diag); 674 Result.HasDiagnostic = true; 675 } 676 break; 677 678 case Sema::TDK_ConstraintsNotSatisfied: { 679 CNSInfo *Saved = new (Context) CNSInfo; 680 Saved->TemplateArgs = Info.take(); 681 Saved->Satisfaction = Info.AssociatedConstraintsSatisfaction; 682 Result.Data = Saved; 683 break; 684 } 685 686 case Sema::TDK_Success: 687 case Sema::TDK_NonDependentConversionFailure: 688 llvm_unreachable("not a deduction failure"); 689 } 690 691 return Result; 692 } 693 694 void DeductionFailureInfo::Destroy() { 695 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 696 case Sema::TDK_Success: 697 case Sema::TDK_Invalid: 698 case Sema::TDK_InstantiationDepth: 699 case Sema::TDK_Incomplete: 700 case Sema::TDK_TooManyArguments: 701 case Sema::TDK_TooFewArguments: 702 case Sema::TDK_InvalidExplicitArguments: 703 case Sema::TDK_CUDATargetMismatch: 704 case Sema::TDK_NonDependentConversionFailure: 705 break; 706 707 case Sema::TDK_IncompletePack: 708 case Sema::TDK_Inconsistent: 709 case Sema::TDK_Underqualified: 710 case Sema::TDK_DeducedMismatch: 711 case Sema::TDK_DeducedMismatchNested: 712 case Sema::TDK_NonDeducedMismatch: 713 // FIXME: Destroy the data? 714 Data = nullptr; 715 break; 716 717 case Sema::TDK_SubstitutionFailure: 718 // FIXME: Destroy the template argument list? 719 Data = nullptr; 720 if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) { 721 Diag->~PartialDiagnosticAt(); 722 HasDiagnostic = false; 723 } 724 break; 725 726 case Sema::TDK_ConstraintsNotSatisfied: 727 // FIXME: Destroy the template argument list? 728 Data = nullptr; 729 if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) { 730 Diag->~PartialDiagnosticAt(); 731 HasDiagnostic = false; 732 } 733 break; 734 735 // Unhandled 736 case Sema::TDK_MiscellaneousDeductionFailure: 737 break; 738 } 739 } 740 741 PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() { 742 if (HasDiagnostic) 743 return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic)); 744 return nullptr; 745 } 746 747 TemplateParameter DeductionFailureInfo::getTemplateParameter() { 748 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 749 case Sema::TDK_Success: 750 case Sema::TDK_Invalid: 751 case Sema::TDK_InstantiationDepth: 752 case Sema::TDK_TooManyArguments: 753 case Sema::TDK_TooFewArguments: 754 case Sema::TDK_SubstitutionFailure: 755 case Sema::TDK_DeducedMismatch: 756 case Sema::TDK_DeducedMismatchNested: 757 case Sema::TDK_NonDeducedMismatch: 758 case Sema::TDK_CUDATargetMismatch: 759 case Sema::TDK_NonDependentConversionFailure: 760 case Sema::TDK_ConstraintsNotSatisfied: 761 return TemplateParameter(); 762 763 case Sema::TDK_Incomplete: 764 case Sema::TDK_InvalidExplicitArguments: 765 return TemplateParameter::getFromOpaqueValue(Data); 766 767 case Sema::TDK_IncompletePack: 768 case Sema::TDK_Inconsistent: 769 case Sema::TDK_Underqualified: 770 return static_cast<DFIParamWithArguments*>(Data)->Param; 771 772 // Unhandled 773 case Sema::TDK_MiscellaneousDeductionFailure: 774 break; 775 } 776 777 return TemplateParameter(); 778 } 779 780 TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() { 781 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 782 case Sema::TDK_Success: 783 case Sema::TDK_Invalid: 784 case Sema::TDK_InstantiationDepth: 785 case Sema::TDK_TooManyArguments: 786 case Sema::TDK_TooFewArguments: 787 case Sema::TDK_Incomplete: 788 case Sema::TDK_IncompletePack: 789 case Sema::TDK_InvalidExplicitArguments: 790 case Sema::TDK_Inconsistent: 791 case Sema::TDK_Underqualified: 792 case Sema::TDK_NonDeducedMismatch: 793 case Sema::TDK_CUDATargetMismatch: 794 case Sema::TDK_NonDependentConversionFailure: 795 return nullptr; 796 797 case Sema::TDK_DeducedMismatch: 798 case Sema::TDK_DeducedMismatchNested: 799 return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs; 800 801 case Sema::TDK_SubstitutionFailure: 802 return static_cast<TemplateArgumentList*>(Data); 803 804 case Sema::TDK_ConstraintsNotSatisfied: 805 return static_cast<CNSInfo*>(Data)->TemplateArgs; 806 807 // Unhandled 808 case Sema::TDK_MiscellaneousDeductionFailure: 809 break; 810 } 811 812 return nullptr; 813 } 814 815 const TemplateArgument *DeductionFailureInfo::getFirstArg() { 816 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 817 case Sema::TDK_Success: 818 case Sema::TDK_Invalid: 819 case Sema::TDK_InstantiationDepth: 820 case Sema::TDK_Incomplete: 821 case Sema::TDK_TooManyArguments: 822 case Sema::TDK_TooFewArguments: 823 case Sema::TDK_InvalidExplicitArguments: 824 case Sema::TDK_SubstitutionFailure: 825 case Sema::TDK_CUDATargetMismatch: 826 case Sema::TDK_NonDependentConversionFailure: 827 case Sema::TDK_ConstraintsNotSatisfied: 828 return nullptr; 829 830 case Sema::TDK_IncompletePack: 831 case Sema::TDK_Inconsistent: 832 case Sema::TDK_Underqualified: 833 case Sema::TDK_DeducedMismatch: 834 case Sema::TDK_DeducedMismatchNested: 835 case Sema::TDK_NonDeducedMismatch: 836 return &static_cast<DFIArguments*>(Data)->FirstArg; 837 838 // Unhandled 839 case Sema::TDK_MiscellaneousDeductionFailure: 840 break; 841 } 842 843 return nullptr; 844 } 845 846 const TemplateArgument *DeductionFailureInfo::getSecondArg() { 847 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 848 case Sema::TDK_Success: 849 case Sema::TDK_Invalid: 850 case Sema::TDK_InstantiationDepth: 851 case Sema::TDK_Incomplete: 852 case Sema::TDK_IncompletePack: 853 case Sema::TDK_TooManyArguments: 854 case Sema::TDK_TooFewArguments: 855 case Sema::TDK_InvalidExplicitArguments: 856 case Sema::TDK_SubstitutionFailure: 857 case Sema::TDK_CUDATargetMismatch: 858 case Sema::TDK_NonDependentConversionFailure: 859 case Sema::TDK_ConstraintsNotSatisfied: 860 return nullptr; 861 862 case Sema::TDK_Inconsistent: 863 case Sema::TDK_Underqualified: 864 case Sema::TDK_DeducedMismatch: 865 case Sema::TDK_DeducedMismatchNested: 866 case Sema::TDK_NonDeducedMismatch: 867 return &static_cast<DFIArguments*>(Data)->SecondArg; 868 869 // Unhandled 870 case Sema::TDK_MiscellaneousDeductionFailure: 871 break; 872 } 873 874 return nullptr; 875 } 876 877 llvm::Optional<unsigned> DeductionFailureInfo::getCallArgIndex() { 878 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 879 case Sema::TDK_DeducedMismatch: 880 case Sema::TDK_DeducedMismatchNested: 881 return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex; 882 883 default: 884 return llvm::None; 885 } 886 } 887 888 bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed( 889 OverloadedOperatorKind Op) { 890 if (!AllowRewrittenCandidates) 891 return false; 892 return Op == OO_EqualEqual || Op == OO_Spaceship; 893 } 894 895 bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed( 896 ASTContext &Ctx, const FunctionDecl *FD) { 897 if (!shouldAddReversed(FD->getDeclName().getCXXOverloadedOperator())) 898 return false; 899 // Don't bother adding a reversed candidate that can never be a better 900 // match than the non-reversed version. 901 return FD->getNumParams() != 2 || 902 !Ctx.hasSameUnqualifiedType(FD->getParamDecl(0)->getType(), 903 FD->getParamDecl(1)->getType()) || 904 FD->hasAttr<EnableIfAttr>(); 905 } 906 907 void OverloadCandidateSet::destroyCandidates() { 908 for (iterator i = begin(), e = end(); i != e; ++i) { 909 for (auto &C : i->Conversions) 910 C.~ImplicitConversionSequence(); 911 if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction) 912 i->DeductionFailure.Destroy(); 913 } 914 } 915 916 void OverloadCandidateSet::clear(CandidateSetKind CSK) { 917 destroyCandidates(); 918 SlabAllocator.Reset(); 919 NumInlineBytesUsed = 0; 920 Candidates.clear(); 921 Functions.clear(); 922 Kind = CSK; 923 } 924 925 namespace { 926 class UnbridgedCastsSet { 927 struct Entry { 928 Expr **Addr; 929 Expr *Saved; 930 }; 931 SmallVector<Entry, 2> Entries; 932 933 public: 934 void save(Sema &S, Expr *&E) { 935 assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)); 936 Entry entry = { &E, E }; 937 Entries.push_back(entry); 938 E = S.stripARCUnbridgedCast(E); 939 } 940 941 void restore() { 942 for (SmallVectorImpl<Entry>::iterator 943 i = Entries.begin(), e = Entries.end(); i != e; ++i) 944 *i->Addr = i->Saved; 945 } 946 }; 947 } 948 949 /// checkPlaceholderForOverload - Do any interesting placeholder-like 950 /// preprocessing on the given expression. 951 /// 952 /// \param unbridgedCasts a collection to which to add unbridged casts; 953 /// without this, they will be immediately diagnosed as errors 954 /// 955 /// Return true on unrecoverable error. 956 static bool 957 checkPlaceholderForOverload(Sema &S, Expr *&E, 958 UnbridgedCastsSet *unbridgedCasts = nullptr) { 959 if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) { 960 // We can't handle overloaded expressions here because overload 961 // resolution might reasonably tweak them. 962 if (placeholder->getKind() == BuiltinType::Overload) return false; 963 964 // If the context potentially accepts unbridged ARC casts, strip 965 // the unbridged cast and add it to the collection for later restoration. 966 if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast && 967 unbridgedCasts) { 968 unbridgedCasts->save(S, E); 969 return false; 970 } 971 972 // Go ahead and check everything else. 973 ExprResult result = S.CheckPlaceholderExpr(E); 974 if (result.isInvalid()) 975 return true; 976 977 E = result.get(); 978 return false; 979 } 980 981 // Nothing to do. 982 return false; 983 } 984 985 /// checkArgPlaceholdersForOverload - Check a set of call operands for 986 /// placeholders. 987 static bool checkArgPlaceholdersForOverload(Sema &S, 988 MultiExprArg Args, 989 UnbridgedCastsSet &unbridged) { 990 for (unsigned i = 0, e = Args.size(); i != e; ++i) 991 if (checkPlaceholderForOverload(S, Args[i], &unbridged)) 992 return true; 993 994 return false; 995 } 996 997 /// Determine whether the given New declaration is an overload of the 998 /// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if 999 /// New and Old cannot be overloaded, e.g., if New has the same signature as 1000 /// some function in Old (C++ 1.3.10) or if the Old declarations aren't 1001 /// functions (or function templates) at all. When it does return Ovl_Match or 1002 /// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be 1003 /// overloaded with. This decl may be a UsingShadowDecl on top of the underlying 1004 /// declaration. 1005 /// 1006 /// Example: Given the following input: 1007 /// 1008 /// void f(int, float); // #1 1009 /// void f(int, int); // #2 1010 /// int f(int, int); // #3 1011 /// 1012 /// When we process #1, there is no previous declaration of "f", so IsOverload 1013 /// will not be used. 1014 /// 1015 /// When we process #2, Old contains only the FunctionDecl for #1. By comparing 1016 /// the parameter types, we see that #1 and #2 are overloaded (since they have 1017 /// different signatures), so this routine returns Ovl_Overload; MatchedDecl is 1018 /// unchanged. 1019 /// 1020 /// When we process #3, Old is an overload set containing #1 and #2. We compare 1021 /// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then 1022 /// #3 to #2. Since the signatures of #3 and #2 are identical (return types of 1023 /// functions are not part of the signature), IsOverload returns Ovl_Match and 1024 /// MatchedDecl will be set to point to the FunctionDecl for #2. 1025 /// 1026 /// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class 1027 /// by a using declaration. The rules for whether to hide shadow declarations 1028 /// ignore some properties which otherwise figure into a function template's 1029 /// signature. 1030 Sema::OverloadKind 1031 Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old, 1032 NamedDecl *&Match, bool NewIsUsingDecl) { 1033 for (LookupResult::iterator I = Old.begin(), E = Old.end(); 1034 I != E; ++I) { 1035 NamedDecl *OldD = *I; 1036 1037 bool OldIsUsingDecl = false; 1038 if (isa<UsingShadowDecl>(OldD)) { 1039 OldIsUsingDecl = true; 1040 1041 // We can always introduce two using declarations into the same 1042 // context, even if they have identical signatures. 1043 if (NewIsUsingDecl) continue; 1044 1045 OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl(); 1046 } 1047 1048 // A using-declaration does not conflict with another declaration 1049 // if one of them is hidden. 1050 if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I)) 1051 continue; 1052 1053 // If either declaration was introduced by a using declaration, 1054 // we'll need to use slightly different rules for matching. 1055 // Essentially, these rules are the normal rules, except that 1056 // function templates hide function templates with different 1057 // return types or template parameter lists. 1058 bool UseMemberUsingDeclRules = 1059 (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() && 1060 !New->getFriendObjectKind(); 1061 1062 if (FunctionDecl *OldF = OldD->getAsFunction()) { 1063 if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) { 1064 if (UseMemberUsingDeclRules && OldIsUsingDecl) { 1065 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); 1066 continue; 1067 } 1068 1069 if (!isa<FunctionTemplateDecl>(OldD) && 1070 !shouldLinkPossiblyHiddenDecl(*I, New)) 1071 continue; 1072 1073 Match = *I; 1074 return Ovl_Match; 1075 } 1076 1077 // Builtins that have custom typechecking or have a reference should 1078 // not be overloadable or redeclarable. 1079 if (!getASTContext().canBuiltinBeRedeclared(OldF)) { 1080 Match = *I; 1081 return Ovl_NonFunction; 1082 } 1083 } else if (isa<UsingDecl>(OldD) || isa<UsingPackDecl>(OldD)) { 1084 // We can overload with these, which can show up when doing 1085 // redeclaration checks for UsingDecls. 1086 assert(Old.getLookupKind() == LookupUsingDeclName); 1087 } else if (isa<TagDecl>(OldD)) { 1088 // We can always overload with tags by hiding them. 1089 } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) { 1090 // Optimistically assume that an unresolved using decl will 1091 // overload; if it doesn't, we'll have to diagnose during 1092 // template instantiation. 1093 // 1094 // Exception: if the scope is dependent and this is not a class 1095 // member, the using declaration can only introduce an enumerator. 1096 if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) { 1097 Match = *I; 1098 return Ovl_NonFunction; 1099 } 1100 } else { 1101 // (C++ 13p1): 1102 // Only function declarations can be overloaded; object and type 1103 // declarations cannot be overloaded. 1104 Match = *I; 1105 return Ovl_NonFunction; 1106 } 1107 } 1108 1109 // C++ [temp.friend]p1: 1110 // For a friend function declaration that is not a template declaration: 1111 // -- if the name of the friend is a qualified or unqualified template-id, 1112 // [...], otherwise 1113 // -- if the name of the friend is a qualified-id and a matching 1114 // non-template function is found in the specified class or namespace, 1115 // the friend declaration refers to that function, otherwise, 1116 // -- if the name of the friend is a qualified-id and a matching function 1117 // template is found in the specified class or namespace, the friend 1118 // declaration refers to the deduced specialization of that function 1119 // template, otherwise 1120 // -- the name shall be an unqualified-id [...] 1121 // If we get here for a qualified friend declaration, we've just reached the 1122 // third bullet. If the type of the friend is dependent, skip this lookup 1123 // until instantiation. 1124 if (New->getFriendObjectKind() && New->getQualifier() && 1125 !New->getDescribedFunctionTemplate() && 1126 !New->getDependentSpecializationInfo() && 1127 !New->getType()->isDependentType()) { 1128 LookupResult TemplateSpecResult(LookupResult::Temporary, Old); 1129 TemplateSpecResult.addAllDecls(Old); 1130 if (CheckFunctionTemplateSpecialization(New, nullptr, TemplateSpecResult, 1131 /*QualifiedFriend*/true)) { 1132 New->setInvalidDecl(); 1133 return Ovl_Overload; 1134 } 1135 1136 Match = TemplateSpecResult.getAsSingle<FunctionDecl>(); 1137 return Ovl_Match; 1138 } 1139 1140 return Ovl_Overload; 1141 } 1142 1143 bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old, 1144 bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs, 1145 bool ConsiderRequiresClauses) { 1146 // C++ [basic.start.main]p2: This function shall not be overloaded. 1147 if (New->isMain()) 1148 return false; 1149 1150 // MSVCRT user defined entry points cannot be overloaded. 1151 if (New->isMSVCRTEntryPoint()) 1152 return false; 1153 1154 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); 1155 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); 1156 1157 // C++ [temp.fct]p2: 1158 // A function template can be overloaded with other function templates 1159 // and with normal (non-template) functions. 1160 if ((OldTemplate == nullptr) != (NewTemplate == nullptr)) 1161 return true; 1162 1163 // Is the function New an overload of the function Old? 1164 QualType OldQType = Context.getCanonicalType(Old->getType()); 1165 QualType NewQType = Context.getCanonicalType(New->getType()); 1166 1167 // Compare the signatures (C++ 1.3.10) of the two functions to 1168 // determine whether they are overloads. If we find any mismatch 1169 // in the signature, they are overloads. 1170 1171 // If either of these functions is a K&R-style function (no 1172 // prototype), then we consider them to have matching signatures. 1173 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || 1174 isa<FunctionNoProtoType>(NewQType.getTypePtr())) 1175 return false; 1176 1177 const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType); 1178 const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType); 1179 1180 // The signature of a function includes the types of its 1181 // parameters (C++ 1.3.10), which includes the presence or absence 1182 // of the ellipsis; see C++ DR 357). 1183 if (OldQType != NewQType && 1184 (OldType->getNumParams() != NewType->getNumParams() || 1185 OldType->isVariadic() != NewType->isVariadic() || 1186 !FunctionParamTypesAreEqual(OldType, NewType))) 1187 return true; 1188 1189 // C++ [temp.over.link]p4: 1190 // The signature of a function template consists of its function 1191 // signature, its return type and its template parameter list. The names 1192 // of the template parameters are significant only for establishing the 1193 // relationship between the template parameters and the rest of the 1194 // signature. 1195 // 1196 // We check the return type and template parameter lists for function 1197 // templates first; the remaining checks follow. 1198 // 1199 // However, we don't consider either of these when deciding whether 1200 // a member introduced by a shadow declaration is hidden. 1201 if (!UseMemberUsingDeclRules && NewTemplate && 1202 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 1203 OldTemplate->getTemplateParameters(), 1204 false, TPL_TemplateMatch) || 1205 !Context.hasSameType(Old->getDeclaredReturnType(), 1206 New->getDeclaredReturnType()))) 1207 return true; 1208 1209 // If the function is a class member, its signature includes the 1210 // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself. 1211 // 1212 // As part of this, also check whether one of the member functions 1213 // is static, in which case they are not overloads (C++ 1214 // 13.1p2). While not part of the definition of the signature, 1215 // this check is important to determine whether these functions 1216 // can be overloaded. 1217 CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old); 1218 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New); 1219 if (OldMethod && NewMethod && 1220 !OldMethod->isStatic() && !NewMethod->isStatic()) { 1221 if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) { 1222 if (!UseMemberUsingDeclRules && 1223 (OldMethod->getRefQualifier() == RQ_None || 1224 NewMethod->getRefQualifier() == RQ_None)) { 1225 // C++0x [over.load]p2: 1226 // - Member function declarations with the same name and the same 1227 // parameter-type-list as well as member function template 1228 // declarations with the same name, the same parameter-type-list, and 1229 // the same template parameter lists cannot be overloaded if any of 1230 // them, but not all, have a ref-qualifier (8.3.5). 1231 Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload) 1232 << NewMethod->getRefQualifier() << OldMethod->getRefQualifier(); 1233 Diag(OldMethod->getLocation(), diag::note_previous_declaration); 1234 } 1235 return true; 1236 } 1237 1238 // We may not have applied the implicit const for a constexpr member 1239 // function yet (because we haven't yet resolved whether this is a static 1240 // or non-static member function). Add it now, on the assumption that this 1241 // is a redeclaration of OldMethod. 1242 auto OldQuals = OldMethod->getMethodQualifiers(); 1243 auto NewQuals = NewMethod->getMethodQualifiers(); 1244 if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() && 1245 !isa<CXXConstructorDecl>(NewMethod)) 1246 NewQuals.addConst(); 1247 // We do not allow overloading based off of '__restrict'. 1248 OldQuals.removeRestrict(); 1249 NewQuals.removeRestrict(); 1250 if (OldQuals != NewQuals) 1251 return true; 1252 } 1253 1254 // Though pass_object_size is placed on parameters and takes an argument, we 1255 // consider it to be a function-level modifier for the sake of function 1256 // identity. Either the function has one or more parameters with 1257 // pass_object_size or it doesn't. 1258 if (functionHasPassObjectSizeParams(New) != 1259 functionHasPassObjectSizeParams(Old)) 1260 return true; 1261 1262 // enable_if attributes are an order-sensitive part of the signature. 1263 for (specific_attr_iterator<EnableIfAttr> 1264 NewI = New->specific_attr_begin<EnableIfAttr>(), 1265 NewE = New->specific_attr_end<EnableIfAttr>(), 1266 OldI = Old->specific_attr_begin<EnableIfAttr>(), 1267 OldE = Old->specific_attr_end<EnableIfAttr>(); 1268 NewI != NewE || OldI != OldE; ++NewI, ++OldI) { 1269 if (NewI == NewE || OldI == OldE) 1270 return true; 1271 llvm::FoldingSetNodeID NewID, OldID; 1272 NewI->getCond()->Profile(NewID, Context, true); 1273 OldI->getCond()->Profile(OldID, Context, true); 1274 if (NewID != OldID) 1275 return true; 1276 } 1277 1278 if (getLangOpts().CUDA && ConsiderCudaAttrs) { 1279 // Don't allow overloading of destructors. (In theory we could, but it 1280 // would be a giant change to clang.) 1281 if (!isa<CXXDestructorDecl>(New)) { 1282 CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New), 1283 OldTarget = IdentifyCUDATarget(Old); 1284 if (NewTarget != CFT_InvalidTarget) { 1285 assert((OldTarget != CFT_InvalidTarget) && 1286 "Unexpected invalid target."); 1287 1288 // Allow overloading of functions with same signature and different CUDA 1289 // target attributes. 1290 if (NewTarget != OldTarget) 1291 return true; 1292 } 1293 } 1294 } 1295 1296 if (ConsiderRequiresClauses) { 1297 Expr *NewRC = New->getTrailingRequiresClause(), 1298 *OldRC = Old->getTrailingRequiresClause(); 1299 if ((NewRC != nullptr) != (OldRC != nullptr)) 1300 // RC are most certainly different - these are overloads. 1301 return true; 1302 1303 if (NewRC) { 1304 llvm::FoldingSetNodeID NewID, OldID; 1305 NewRC->Profile(NewID, Context, /*Canonical=*/true); 1306 OldRC->Profile(OldID, Context, /*Canonical=*/true); 1307 if (NewID != OldID) 1308 // RCs are not equivalent - these are overloads. 1309 return true; 1310 } 1311 } 1312 1313 // The signatures match; this is not an overload. 1314 return false; 1315 } 1316 1317 /// Tries a user-defined conversion from From to ToType. 1318 /// 1319 /// Produces an implicit conversion sequence for when a standard conversion 1320 /// is not an option. See TryImplicitConversion for more information. 1321 static ImplicitConversionSequence 1322 TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 1323 bool SuppressUserConversions, 1324 AllowedExplicit AllowExplicit, 1325 bool InOverloadResolution, 1326 bool CStyle, 1327 bool AllowObjCWritebackConversion, 1328 bool AllowObjCConversionOnExplicit) { 1329 ImplicitConversionSequence ICS; 1330 1331 if (SuppressUserConversions) { 1332 // We're not in the case above, so there is no conversion that 1333 // we can perform. 1334 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 1335 return ICS; 1336 } 1337 1338 // Attempt user-defined conversion. 1339 OverloadCandidateSet Conversions(From->getExprLoc(), 1340 OverloadCandidateSet::CSK_Normal); 1341 switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, 1342 Conversions, AllowExplicit, 1343 AllowObjCConversionOnExplicit)) { 1344 case OR_Success: 1345 case OR_Deleted: 1346 ICS.setUserDefined(); 1347 // C++ [over.ics.user]p4: 1348 // A conversion of an expression of class type to the same class 1349 // type is given Exact Match rank, and a conversion of an 1350 // expression of class type to a base class of that type is 1351 // given Conversion rank, in spite of the fact that a copy 1352 // constructor (i.e., a user-defined conversion function) is 1353 // called for those cases. 1354 if (CXXConstructorDecl *Constructor 1355 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { 1356 QualType FromCanon 1357 = S.Context.getCanonicalType(From->getType().getUnqualifiedType()); 1358 QualType ToCanon 1359 = S.Context.getCanonicalType(ToType).getUnqualifiedType(); 1360 if (Constructor->isCopyConstructor() && 1361 (FromCanon == ToCanon || 1362 S.IsDerivedFrom(From->getBeginLoc(), FromCanon, ToCanon))) { 1363 // Turn this into a "standard" conversion sequence, so that it 1364 // gets ranked with standard conversion sequences. 1365 DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction; 1366 ICS.setStandard(); 1367 ICS.Standard.setAsIdentityConversion(); 1368 ICS.Standard.setFromType(From->getType()); 1369 ICS.Standard.setAllToTypes(ToType); 1370 ICS.Standard.CopyConstructor = Constructor; 1371 ICS.Standard.FoundCopyConstructor = Found; 1372 if (ToCanon != FromCanon) 1373 ICS.Standard.Second = ICK_Derived_To_Base; 1374 } 1375 } 1376 break; 1377 1378 case OR_Ambiguous: 1379 ICS.setAmbiguous(); 1380 ICS.Ambiguous.setFromType(From->getType()); 1381 ICS.Ambiguous.setToType(ToType); 1382 for (OverloadCandidateSet::iterator Cand = Conversions.begin(); 1383 Cand != Conversions.end(); ++Cand) 1384 if (Cand->Best) 1385 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function); 1386 break; 1387 1388 // Fall through. 1389 case OR_No_Viable_Function: 1390 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 1391 break; 1392 } 1393 1394 return ICS; 1395 } 1396 1397 /// TryImplicitConversion - Attempt to perform an implicit conversion 1398 /// from the given expression (Expr) to the given type (ToType). This 1399 /// function returns an implicit conversion sequence that can be used 1400 /// to perform the initialization. Given 1401 /// 1402 /// void f(float f); 1403 /// void g(int i) { f(i); } 1404 /// 1405 /// this routine would produce an implicit conversion sequence to 1406 /// describe the initialization of f from i, which will be a standard 1407 /// conversion sequence containing an lvalue-to-rvalue conversion (C++ 1408 /// 4.1) followed by a floating-integral conversion (C++ 4.9). 1409 // 1410 /// Note that this routine only determines how the conversion can be 1411 /// performed; it does not actually perform the conversion. As such, 1412 /// it will not produce any diagnostics if no conversion is available, 1413 /// but will instead return an implicit conversion sequence of kind 1414 /// "BadConversion". 1415 /// 1416 /// If @p SuppressUserConversions, then user-defined conversions are 1417 /// not permitted. 1418 /// If @p AllowExplicit, then explicit user-defined conversions are 1419 /// permitted. 1420 /// 1421 /// \param AllowObjCWritebackConversion Whether we allow the Objective-C 1422 /// writeback conversion, which allows __autoreleasing id* parameters to 1423 /// be initialized with __strong id* or __weak id* arguments. 1424 static ImplicitConversionSequence 1425 TryImplicitConversion(Sema &S, Expr *From, QualType ToType, 1426 bool SuppressUserConversions, 1427 AllowedExplicit AllowExplicit, 1428 bool InOverloadResolution, 1429 bool CStyle, 1430 bool AllowObjCWritebackConversion, 1431 bool AllowObjCConversionOnExplicit) { 1432 ImplicitConversionSequence ICS; 1433 if (IsStandardConversion(S, From, ToType, InOverloadResolution, 1434 ICS.Standard, CStyle, AllowObjCWritebackConversion)){ 1435 ICS.setStandard(); 1436 return ICS; 1437 } 1438 1439 if (!S.getLangOpts().CPlusPlus) { 1440 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 1441 return ICS; 1442 } 1443 1444 // C++ [over.ics.user]p4: 1445 // A conversion of an expression of class type to the same class 1446 // type is given Exact Match rank, and a conversion of an 1447 // expression of class type to a base class of that type is 1448 // given Conversion rank, in spite of the fact that a copy/move 1449 // constructor (i.e., a user-defined conversion function) is 1450 // called for those cases. 1451 QualType FromType = From->getType(); 1452 if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() && 1453 (S.Context.hasSameUnqualifiedType(FromType, ToType) || 1454 S.IsDerivedFrom(From->getBeginLoc(), FromType, ToType))) { 1455 ICS.setStandard(); 1456 ICS.Standard.setAsIdentityConversion(); 1457 ICS.Standard.setFromType(FromType); 1458 ICS.Standard.setAllToTypes(ToType); 1459 1460 // We don't actually check at this point whether there is a valid 1461 // copy/move constructor, since overloading just assumes that it 1462 // exists. When we actually perform initialization, we'll find the 1463 // appropriate constructor to copy the returned object, if needed. 1464 ICS.Standard.CopyConstructor = nullptr; 1465 1466 // Determine whether this is considered a derived-to-base conversion. 1467 if (!S.Context.hasSameUnqualifiedType(FromType, ToType)) 1468 ICS.Standard.Second = ICK_Derived_To_Base; 1469 1470 return ICS; 1471 } 1472 1473 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, 1474 AllowExplicit, InOverloadResolution, CStyle, 1475 AllowObjCWritebackConversion, 1476 AllowObjCConversionOnExplicit); 1477 } 1478 1479 ImplicitConversionSequence 1480 Sema::TryImplicitConversion(Expr *From, QualType ToType, 1481 bool SuppressUserConversions, 1482 AllowedExplicit AllowExplicit, 1483 bool InOverloadResolution, 1484 bool CStyle, 1485 bool AllowObjCWritebackConversion) { 1486 return ::TryImplicitConversion(*this, From, ToType, SuppressUserConversions, 1487 AllowExplicit, InOverloadResolution, CStyle, 1488 AllowObjCWritebackConversion, 1489 /*AllowObjCConversionOnExplicit=*/false); 1490 } 1491 1492 /// PerformImplicitConversion - Perform an implicit conversion of the 1493 /// expression From to the type ToType. Returns the 1494 /// converted expression. Flavor is the kind of conversion we're 1495 /// performing, used in the error message. If @p AllowExplicit, 1496 /// explicit user-defined conversions are permitted. 1497 ExprResult Sema::PerformImplicitConversion(Expr *From, QualType ToType, 1498 AssignmentAction Action, 1499 bool AllowExplicit) { 1500 if (checkPlaceholderForOverload(*this, From)) 1501 return ExprError(); 1502 1503 // Objective-C ARC: Determine whether we will allow the writeback conversion. 1504 bool AllowObjCWritebackConversion 1505 = getLangOpts().ObjCAutoRefCount && 1506 (Action == AA_Passing || Action == AA_Sending); 1507 if (getLangOpts().ObjC) 1508 CheckObjCBridgeRelatedConversions(From->getBeginLoc(), ToType, 1509 From->getType(), From); 1510 ImplicitConversionSequence ICS = ::TryImplicitConversion( 1511 *this, From, ToType, 1512 /*SuppressUserConversions=*/false, 1513 AllowExplicit ? AllowedExplicit::All : AllowedExplicit::None, 1514 /*InOverloadResolution=*/false, 1515 /*CStyle=*/false, AllowObjCWritebackConversion, 1516 /*AllowObjCConversionOnExplicit=*/false); 1517 return PerformImplicitConversion(From, ToType, ICS, Action); 1518 } 1519 1520 /// Determine whether the conversion from FromType to ToType is a valid 1521 /// conversion that strips "noexcept" or "noreturn" off the nested function 1522 /// type. 1523 bool Sema::IsFunctionConversion(QualType FromType, QualType ToType, 1524 QualType &ResultTy) { 1525 if (Context.hasSameUnqualifiedType(FromType, ToType)) 1526 return false; 1527 1528 // Permit the conversion F(t __attribute__((noreturn))) -> F(t) 1529 // or F(t noexcept) -> F(t) 1530 // where F adds one of the following at most once: 1531 // - a pointer 1532 // - a member pointer 1533 // - a block pointer 1534 // Changes here need matching changes in FindCompositePointerType. 1535 CanQualType CanTo = Context.getCanonicalType(ToType); 1536 CanQualType CanFrom = Context.getCanonicalType(FromType); 1537 Type::TypeClass TyClass = CanTo->getTypeClass(); 1538 if (TyClass != CanFrom->getTypeClass()) return false; 1539 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) { 1540 if (TyClass == Type::Pointer) { 1541 CanTo = CanTo.castAs<PointerType>()->getPointeeType(); 1542 CanFrom = CanFrom.castAs<PointerType>()->getPointeeType(); 1543 } else if (TyClass == Type::BlockPointer) { 1544 CanTo = CanTo.castAs<BlockPointerType>()->getPointeeType(); 1545 CanFrom = CanFrom.castAs<BlockPointerType>()->getPointeeType(); 1546 } else if (TyClass == Type::MemberPointer) { 1547 auto ToMPT = CanTo.castAs<MemberPointerType>(); 1548 auto FromMPT = CanFrom.castAs<MemberPointerType>(); 1549 // A function pointer conversion cannot change the class of the function. 1550 if (ToMPT->getClass() != FromMPT->getClass()) 1551 return false; 1552 CanTo = ToMPT->getPointeeType(); 1553 CanFrom = FromMPT->getPointeeType(); 1554 } else { 1555 return false; 1556 } 1557 1558 TyClass = CanTo->getTypeClass(); 1559 if (TyClass != CanFrom->getTypeClass()) return false; 1560 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) 1561 return false; 1562 } 1563 1564 const auto *FromFn = cast<FunctionType>(CanFrom); 1565 FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo(); 1566 1567 const auto *ToFn = cast<FunctionType>(CanTo); 1568 FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo(); 1569 1570 bool Changed = false; 1571 1572 // Drop 'noreturn' if not present in target type. 1573 if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) { 1574 FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false)); 1575 Changed = true; 1576 } 1577 1578 // Drop 'noexcept' if not present in target type. 1579 if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) { 1580 const auto *ToFPT = cast<FunctionProtoType>(ToFn); 1581 if (FromFPT->isNothrow() && !ToFPT->isNothrow()) { 1582 FromFn = cast<FunctionType>( 1583 Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0), 1584 EST_None) 1585 .getTypePtr()); 1586 Changed = true; 1587 } 1588 1589 // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid 1590 // only if the ExtParameterInfo lists of the two function prototypes can be 1591 // merged and the merged list is identical to ToFPT's ExtParameterInfo list. 1592 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos; 1593 bool CanUseToFPT, CanUseFromFPT; 1594 if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT, 1595 CanUseFromFPT, NewParamInfos) && 1596 CanUseToFPT && !CanUseFromFPT) { 1597 FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo(); 1598 ExtInfo.ExtParameterInfos = 1599 NewParamInfos.empty() ? nullptr : NewParamInfos.data(); 1600 QualType QT = Context.getFunctionType(FromFPT->getReturnType(), 1601 FromFPT->getParamTypes(), ExtInfo); 1602 FromFn = QT->getAs<FunctionType>(); 1603 Changed = true; 1604 } 1605 } 1606 1607 if (!Changed) 1608 return false; 1609 1610 assert(QualType(FromFn, 0).isCanonical()); 1611 if (QualType(FromFn, 0) != CanTo) return false; 1612 1613 ResultTy = ToType; 1614 return true; 1615 } 1616 1617 /// Determine whether the conversion from FromType to ToType is a valid 1618 /// vector conversion. 1619 /// 1620 /// \param ICK Will be set to the vector conversion kind, if this is a vector 1621 /// conversion. 1622 static bool IsVectorConversion(Sema &S, QualType FromType, 1623 QualType ToType, ImplicitConversionKind &ICK) { 1624 // We need at least one of these types to be a vector type to have a vector 1625 // conversion. 1626 if (!ToType->isVectorType() && !FromType->isVectorType()) 1627 return false; 1628 1629 // Identical types require no conversions. 1630 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) 1631 return false; 1632 1633 // There are no conversions between extended vector types, only identity. 1634 if (ToType->isExtVectorType()) { 1635 // There are no conversions between extended vector types other than the 1636 // identity conversion. 1637 if (FromType->isExtVectorType()) 1638 return false; 1639 1640 // Vector splat from any arithmetic type to a vector. 1641 if (FromType->isArithmeticType()) { 1642 ICK = ICK_Vector_Splat; 1643 return true; 1644 } 1645 } 1646 1647 if (ToType->isSizelessBuiltinType() || FromType->isSizelessBuiltinType()) 1648 if (S.Context.areCompatibleSveTypes(FromType, ToType) || 1649 S.Context.areLaxCompatibleSveTypes(FromType, ToType)) { 1650 ICK = ICK_SVE_Vector_Conversion; 1651 return true; 1652 } 1653 1654 // We can perform the conversion between vector types in the following cases: 1655 // 1)vector types are equivalent AltiVec and GCC vector types 1656 // 2)lax vector conversions are permitted and the vector types are of the 1657 // same size 1658 // 3)the destination type does not have the ARM MVE strict-polymorphism 1659 // attribute, which inhibits lax vector conversion for overload resolution 1660 // only 1661 if (ToType->isVectorType() && FromType->isVectorType()) { 1662 if (S.Context.areCompatibleVectorTypes(FromType, ToType) || 1663 (S.isLaxVectorConversion(FromType, ToType) && 1664 !ToType->hasAttr(attr::ArmMveStrictPolymorphism))) { 1665 ICK = ICK_Vector_Conversion; 1666 return true; 1667 } 1668 } 1669 1670 return false; 1671 } 1672 1673 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType, 1674 bool InOverloadResolution, 1675 StandardConversionSequence &SCS, 1676 bool CStyle); 1677 1678 /// IsStandardConversion - Determines whether there is a standard 1679 /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the 1680 /// expression From to the type ToType. Standard conversion sequences 1681 /// only consider non-class types; for conversions that involve class 1682 /// types, use TryImplicitConversion. If a conversion exists, SCS will 1683 /// contain the standard conversion sequence required to perform this 1684 /// conversion and this routine will return true. Otherwise, this 1685 /// routine will return false and the value of SCS is unspecified. 1686 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, 1687 bool InOverloadResolution, 1688 StandardConversionSequence &SCS, 1689 bool CStyle, 1690 bool AllowObjCWritebackConversion) { 1691 QualType FromType = From->getType(); 1692 1693 // Standard conversions (C++ [conv]) 1694 SCS.setAsIdentityConversion(); 1695 SCS.IncompatibleObjC = false; 1696 SCS.setFromType(FromType); 1697 SCS.CopyConstructor = nullptr; 1698 1699 // There are no standard conversions for class types in C++, so 1700 // abort early. When overloading in C, however, we do permit them. 1701 if (S.getLangOpts().CPlusPlus && 1702 (FromType->isRecordType() || ToType->isRecordType())) 1703 return false; 1704 1705 // The first conversion can be an lvalue-to-rvalue conversion, 1706 // array-to-pointer conversion, or function-to-pointer conversion 1707 // (C++ 4p1). 1708 1709 if (FromType == S.Context.OverloadTy) { 1710 DeclAccessPair AccessPair; 1711 if (FunctionDecl *Fn 1712 = S.ResolveAddressOfOverloadedFunction(From, ToType, false, 1713 AccessPair)) { 1714 // We were able to resolve the address of the overloaded function, 1715 // so we can convert to the type of that function. 1716 FromType = Fn->getType(); 1717 SCS.setFromType(FromType); 1718 1719 // we can sometimes resolve &foo<int> regardless of ToType, so check 1720 // if the type matches (identity) or we are converting to bool 1721 if (!S.Context.hasSameUnqualifiedType( 1722 S.ExtractUnqualifiedFunctionType(ToType), FromType)) { 1723 QualType resultTy; 1724 // if the function type matches except for [[noreturn]], it's ok 1725 if (!S.IsFunctionConversion(FromType, 1726 S.ExtractUnqualifiedFunctionType(ToType), resultTy)) 1727 // otherwise, only a boolean conversion is standard 1728 if (!ToType->isBooleanType()) 1729 return false; 1730 } 1731 1732 // Check if the "from" expression is taking the address of an overloaded 1733 // function and recompute the FromType accordingly. Take advantage of the 1734 // fact that non-static member functions *must* have such an address-of 1735 // expression. 1736 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn); 1737 if (Method && !Method->isStatic()) { 1738 assert(isa<UnaryOperator>(From->IgnoreParens()) && 1739 "Non-unary operator on non-static member address"); 1740 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() 1741 == UO_AddrOf && 1742 "Non-address-of operator on non-static member address"); 1743 const Type *ClassType 1744 = S.Context.getTypeDeclType(Method->getParent()).getTypePtr(); 1745 FromType = S.Context.getMemberPointerType(FromType, ClassType); 1746 } else if (isa<UnaryOperator>(From->IgnoreParens())) { 1747 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == 1748 UO_AddrOf && 1749 "Non-address-of operator for overloaded function expression"); 1750 FromType = S.Context.getPointerType(FromType); 1751 } 1752 1753 // Check that we've computed the proper type after overload resolution. 1754 // FIXME: FixOverloadedFunctionReference has side-effects; we shouldn't 1755 // be calling it from within an NDEBUG block. 1756 assert(S.Context.hasSameType( 1757 FromType, 1758 S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())); 1759 } else { 1760 return false; 1761 } 1762 } 1763 // Lvalue-to-rvalue conversion (C++11 4.1): 1764 // A glvalue (3.10) of a non-function, non-array type T can 1765 // be converted to a prvalue. 1766 bool argIsLValue = From->isGLValue(); 1767 if (argIsLValue && 1768 !FromType->isFunctionType() && !FromType->isArrayType() && 1769 S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) { 1770 SCS.First = ICK_Lvalue_To_Rvalue; 1771 1772 // C11 6.3.2.1p2: 1773 // ... if the lvalue has atomic type, the value has the non-atomic version 1774 // of the type of the lvalue ... 1775 if (const AtomicType *Atomic = FromType->getAs<AtomicType>()) 1776 FromType = Atomic->getValueType(); 1777 1778 // If T is a non-class type, the type of the rvalue is the 1779 // cv-unqualified version of T. Otherwise, the type of the rvalue 1780 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we 1781 // just strip the qualifiers because they don't matter. 1782 FromType = FromType.getUnqualifiedType(); 1783 } else if (FromType->isArrayType()) { 1784 // Array-to-pointer conversion (C++ 4.2) 1785 SCS.First = ICK_Array_To_Pointer; 1786 1787 // An lvalue or rvalue of type "array of N T" or "array of unknown 1788 // bound of T" can be converted to an rvalue of type "pointer to 1789 // T" (C++ 4.2p1). 1790 FromType = S.Context.getArrayDecayedType(FromType); 1791 1792 if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) { 1793 // This conversion is deprecated in C++03 (D.4) 1794 SCS.DeprecatedStringLiteralToCharPtr = true; 1795 1796 // For the purpose of ranking in overload resolution 1797 // (13.3.3.1.1), this conversion is considered an 1798 // array-to-pointer conversion followed by a qualification 1799 // conversion (4.4). (C++ 4.2p2) 1800 SCS.Second = ICK_Identity; 1801 SCS.Third = ICK_Qualification; 1802 SCS.QualificationIncludesObjCLifetime = false; 1803 SCS.setAllToTypes(FromType); 1804 return true; 1805 } 1806 } else if (FromType->isFunctionType() && argIsLValue) { 1807 // Function-to-pointer conversion (C++ 4.3). 1808 SCS.First = ICK_Function_To_Pointer; 1809 1810 if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts())) 1811 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) 1812 if (!S.checkAddressOfFunctionIsAvailable(FD)) 1813 return false; 1814 1815 // An lvalue of function type T can be converted to an rvalue of 1816 // type "pointer to T." The result is a pointer to the 1817 // function. (C++ 4.3p1). 1818 FromType = S.Context.getPointerType(FromType); 1819 } else { 1820 // We don't require any conversions for the first step. 1821 SCS.First = ICK_Identity; 1822 } 1823 SCS.setToType(0, FromType); 1824 1825 // The second conversion can be an integral promotion, floating 1826 // point promotion, integral conversion, floating point conversion, 1827 // floating-integral conversion, pointer conversion, 1828 // pointer-to-member conversion, or boolean conversion (C++ 4p1). 1829 // For overloading in C, this can also be a "compatible-type" 1830 // conversion. 1831 bool IncompatibleObjC = false; 1832 ImplicitConversionKind SecondICK = ICK_Identity; 1833 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) { 1834 // The unqualified versions of the types are the same: there's no 1835 // conversion to do. 1836 SCS.Second = ICK_Identity; 1837 } else if (S.IsIntegralPromotion(From, FromType, ToType)) { 1838 // Integral promotion (C++ 4.5). 1839 SCS.Second = ICK_Integral_Promotion; 1840 FromType = ToType.getUnqualifiedType(); 1841 } else if (S.IsFloatingPointPromotion(FromType, ToType)) { 1842 // Floating point promotion (C++ 4.6). 1843 SCS.Second = ICK_Floating_Promotion; 1844 FromType = ToType.getUnqualifiedType(); 1845 } else if (S.IsComplexPromotion(FromType, ToType)) { 1846 // Complex promotion (Clang extension) 1847 SCS.Second = ICK_Complex_Promotion; 1848 FromType = ToType.getUnqualifiedType(); 1849 } else if (ToType->isBooleanType() && 1850 (FromType->isArithmeticType() || 1851 FromType->isAnyPointerType() || 1852 FromType->isBlockPointerType() || 1853 FromType->isMemberPointerType())) { 1854 // Boolean conversions (C++ 4.12). 1855 SCS.Second = ICK_Boolean_Conversion; 1856 FromType = S.Context.BoolTy; 1857 } else if (FromType->isIntegralOrUnscopedEnumerationType() && 1858 ToType->isIntegralType(S.Context)) { 1859 // Integral conversions (C++ 4.7). 1860 SCS.Second = ICK_Integral_Conversion; 1861 FromType = ToType.getUnqualifiedType(); 1862 } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) { 1863 // Complex conversions (C99 6.3.1.6) 1864 SCS.Second = ICK_Complex_Conversion; 1865 FromType = ToType.getUnqualifiedType(); 1866 } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) || 1867 (ToType->isAnyComplexType() && FromType->isArithmeticType())) { 1868 // Complex-real conversions (C99 6.3.1.7) 1869 SCS.Second = ICK_Complex_Real; 1870 FromType = ToType.getUnqualifiedType(); 1871 } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) { 1872 // FIXME: disable conversions between long double and __float128 if 1873 // their representation is different until there is back end support 1874 // We of course allow this conversion if long double is really double. 1875 1876 // Conversions between bfloat and other floats are not permitted. 1877 if (FromType == S.Context.BFloat16Ty || ToType == S.Context.BFloat16Ty) 1878 return false; 1879 if (&S.Context.getFloatTypeSemantics(FromType) != 1880 &S.Context.getFloatTypeSemantics(ToType)) { 1881 bool Float128AndLongDouble = ((FromType == S.Context.Float128Ty && 1882 ToType == S.Context.LongDoubleTy) || 1883 (FromType == S.Context.LongDoubleTy && 1884 ToType == S.Context.Float128Ty)); 1885 if (Float128AndLongDouble && 1886 (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) == 1887 &llvm::APFloat::PPCDoubleDouble())) 1888 return false; 1889 } 1890 // Floating point conversions (C++ 4.8). 1891 SCS.Second = ICK_Floating_Conversion; 1892 FromType = ToType.getUnqualifiedType(); 1893 } else if ((FromType->isRealFloatingType() && 1894 ToType->isIntegralType(S.Context)) || 1895 (FromType->isIntegralOrUnscopedEnumerationType() && 1896 ToType->isRealFloatingType())) { 1897 // Conversions between bfloat and int are not permitted. 1898 if (FromType->isBFloat16Type() || ToType->isBFloat16Type()) 1899 return false; 1900 1901 // Floating-integral conversions (C++ 4.9). 1902 SCS.Second = ICK_Floating_Integral; 1903 FromType = ToType.getUnqualifiedType(); 1904 } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) { 1905 SCS.Second = ICK_Block_Pointer_Conversion; 1906 } else if (AllowObjCWritebackConversion && 1907 S.isObjCWritebackConversion(FromType, ToType, FromType)) { 1908 SCS.Second = ICK_Writeback_Conversion; 1909 } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution, 1910 FromType, IncompatibleObjC)) { 1911 // Pointer conversions (C++ 4.10). 1912 SCS.Second = ICK_Pointer_Conversion; 1913 SCS.IncompatibleObjC = IncompatibleObjC; 1914 FromType = FromType.getUnqualifiedType(); 1915 } else if (S.IsMemberPointerConversion(From, FromType, ToType, 1916 InOverloadResolution, FromType)) { 1917 // Pointer to member conversions (4.11). 1918 SCS.Second = ICK_Pointer_Member; 1919 } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) { 1920 SCS.Second = SecondICK; 1921 FromType = ToType.getUnqualifiedType(); 1922 } else if (!S.getLangOpts().CPlusPlus && 1923 S.Context.typesAreCompatible(ToType, FromType)) { 1924 // Compatible conversions (Clang extension for C function overloading) 1925 SCS.Second = ICK_Compatible_Conversion; 1926 FromType = ToType.getUnqualifiedType(); 1927 } else if (IsTransparentUnionStandardConversion(S, From, ToType, 1928 InOverloadResolution, 1929 SCS, CStyle)) { 1930 SCS.Second = ICK_TransparentUnionConversion; 1931 FromType = ToType; 1932 } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS, 1933 CStyle)) { 1934 // tryAtomicConversion has updated the standard conversion sequence 1935 // appropriately. 1936 return true; 1937 } else if (ToType->isEventT() && 1938 From->isIntegerConstantExpr(S.getASTContext()) && 1939 From->EvaluateKnownConstInt(S.getASTContext()) == 0) { 1940 SCS.Second = ICK_Zero_Event_Conversion; 1941 FromType = ToType; 1942 } else if (ToType->isQueueT() && 1943 From->isIntegerConstantExpr(S.getASTContext()) && 1944 (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) { 1945 SCS.Second = ICK_Zero_Queue_Conversion; 1946 FromType = ToType; 1947 } else if (ToType->isSamplerT() && 1948 From->isIntegerConstantExpr(S.getASTContext())) { 1949 SCS.Second = ICK_Compatible_Conversion; 1950 FromType = ToType; 1951 } else { 1952 // No second conversion required. 1953 SCS.Second = ICK_Identity; 1954 } 1955 SCS.setToType(1, FromType); 1956 1957 // The third conversion can be a function pointer conversion or a 1958 // qualification conversion (C++ [conv.fctptr], [conv.qual]). 1959 bool ObjCLifetimeConversion; 1960 if (S.IsFunctionConversion(FromType, ToType, FromType)) { 1961 // Function pointer conversions (removing 'noexcept') including removal of 1962 // 'noreturn' (Clang extension). 1963 SCS.Third = ICK_Function_Conversion; 1964 } else if (S.IsQualificationConversion(FromType, ToType, CStyle, 1965 ObjCLifetimeConversion)) { 1966 SCS.Third = ICK_Qualification; 1967 SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion; 1968 FromType = ToType; 1969 } else { 1970 // No conversion required 1971 SCS.Third = ICK_Identity; 1972 } 1973 1974 // C++ [over.best.ics]p6: 1975 // [...] Any difference in top-level cv-qualification is 1976 // subsumed by the initialization itself and does not constitute 1977 // a conversion. [...] 1978 QualType CanonFrom = S.Context.getCanonicalType(FromType); 1979 QualType CanonTo = S.Context.getCanonicalType(ToType); 1980 if (CanonFrom.getLocalUnqualifiedType() 1981 == CanonTo.getLocalUnqualifiedType() && 1982 CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) { 1983 FromType = ToType; 1984 CanonFrom = CanonTo; 1985 } 1986 1987 SCS.setToType(2, FromType); 1988 1989 if (CanonFrom == CanonTo) 1990 return true; 1991 1992 // If we have not converted the argument type to the parameter type, 1993 // this is a bad conversion sequence, unless we're resolving an overload in C. 1994 if (S.getLangOpts().CPlusPlus || !InOverloadResolution) 1995 return false; 1996 1997 ExprResult ER = ExprResult{From}; 1998 Sema::AssignConvertType Conv = 1999 S.CheckSingleAssignmentConstraints(ToType, ER, 2000 /*Diagnose=*/false, 2001 /*DiagnoseCFAudited=*/false, 2002 /*ConvertRHS=*/false); 2003 ImplicitConversionKind SecondConv; 2004 switch (Conv) { 2005 case Sema::Compatible: 2006 SecondConv = ICK_C_Only_Conversion; 2007 break; 2008 // For our purposes, discarding qualifiers is just as bad as using an 2009 // incompatible pointer. Note that an IncompatiblePointer conversion can drop 2010 // qualifiers, as well. 2011 case Sema::CompatiblePointerDiscardsQualifiers: 2012 case Sema::IncompatiblePointer: 2013 case Sema::IncompatiblePointerSign: 2014 SecondConv = ICK_Incompatible_Pointer_Conversion; 2015 break; 2016 default: 2017 return false; 2018 } 2019 2020 // First can only be an lvalue conversion, so we pretend that this was the 2021 // second conversion. First should already be valid from earlier in the 2022 // function. 2023 SCS.Second = SecondConv; 2024 SCS.setToType(1, ToType); 2025 2026 // Third is Identity, because Second should rank us worse than any other 2027 // conversion. This could also be ICK_Qualification, but it's simpler to just 2028 // lump everything in with the second conversion, and we don't gain anything 2029 // from making this ICK_Qualification. 2030 SCS.Third = ICK_Identity; 2031 SCS.setToType(2, ToType); 2032 return true; 2033 } 2034 2035 static bool 2036 IsTransparentUnionStandardConversion(Sema &S, Expr* From, 2037 QualType &ToType, 2038 bool InOverloadResolution, 2039 StandardConversionSequence &SCS, 2040 bool CStyle) { 2041 2042 const RecordType *UT = ToType->getAsUnionType(); 2043 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>()) 2044 return false; 2045 // The field to initialize within the transparent union. 2046 RecordDecl *UD = UT->getDecl(); 2047 // It's compatible if the expression matches any of the fields. 2048 for (const auto *it : UD->fields()) { 2049 if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS, 2050 CStyle, /*AllowObjCWritebackConversion=*/false)) { 2051 ToType = it->getType(); 2052 return true; 2053 } 2054 } 2055 return false; 2056 } 2057 2058 /// IsIntegralPromotion - Determines whether the conversion from the 2059 /// expression From (whose potentially-adjusted type is FromType) to 2060 /// ToType is an integral promotion (C++ 4.5). If so, returns true and 2061 /// sets PromotedType to the promoted type. 2062 bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { 2063 const BuiltinType *To = ToType->getAs<BuiltinType>(); 2064 // All integers are built-in. 2065 if (!To) { 2066 return false; 2067 } 2068 2069 // An rvalue of type char, signed char, unsigned char, short int, or 2070 // unsigned short int can be converted to an rvalue of type int if 2071 // int can represent all the values of the source type; otherwise, 2072 // the source rvalue can be converted to an rvalue of type unsigned 2073 // int (C++ 4.5p1). 2074 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() && 2075 !FromType->isEnumeralType()) { 2076 if (// We can promote any signed, promotable integer type to an int 2077 (FromType->isSignedIntegerType() || 2078 // We can promote any unsigned integer type whose size is 2079 // less than int to an int. 2080 Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) { 2081 return To->getKind() == BuiltinType::Int; 2082 } 2083 2084 return To->getKind() == BuiltinType::UInt; 2085 } 2086 2087 // C++11 [conv.prom]p3: 2088 // A prvalue of an unscoped enumeration type whose underlying type is not 2089 // fixed (7.2) can be converted to an rvalue a prvalue of the first of the 2090 // following types that can represent all the values of the enumeration 2091 // (i.e., the values in the range bmin to bmax as described in 7.2): int, 2092 // unsigned int, long int, unsigned long int, long long int, or unsigned 2093 // long long int. If none of the types in that list can represent all the 2094 // values of the enumeration, an rvalue a prvalue of an unscoped enumeration 2095 // type can be converted to an rvalue a prvalue of the extended integer type 2096 // with lowest integer conversion rank (4.13) greater than the rank of long 2097 // long in which all the values of the enumeration can be represented. If 2098 // there are two such extended types, the signed one is chosen. 2099 // C++11 [conv.prom]p4: 2100 // A prvalue of an unscoped enumeration type whose underlying type is fixed 2101 // can be converted to a prvalue of its underlying type. Moreover, if 2102 // integral promotion can be applied to its underlying type, a prvalue of an 2103 // unscoped enumeration type whose underlying type is fixed can also be 2104 // converted to a prvalue of the promoted underlying type. 2105 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) { 2106 // C++0x 7.2p9: Note that this implicit enum to int conversion is not 2107 // provided for a scoped enumeration. 2108 if (FromEnumType->getDecl()->isScoped()) 2109 return false; 2110 2111 // We can perform an integral promotion to the underlying type of the enum, 2112 // even if that's not the promoted type. Note that the check for promoting 2113 // the underlying type is based on the type alone, and does not consider 2114 // the bitfield-ness of the actual source expression. 2115 if (FromEnumType->getDecl()->isFixed()) { 2116 QualType Underlying = FromEnumType->getDecl()->getIntegerType(); 2117 return Context.hasSameUnqualifiedType(Underlying, ToType) || 2118 IsIntegralPromotion(nullptr, Underlying, ToType); 2119 } 2120 2121 // We have already pre-calculated the promotion type, so this is trivial. 2122 if (ToType->isIntegerType() && 2123 isCompleteType(From->getBeginLoc(), FromType)) 2124 return Context.hasSameUnqualifiedType( 2125 ToType, FromEnumType->getDecl()->getPromotionType()); 2126 2127 // C++ [conv.prom]p5: 2128 // If the bit-field has an enumerated type, it is treated as any other 2129 // value of that type for promotion purposes. 2130 // 2131 // ... so do not fall through into the bit-field checks below in C++. 2132 if (getLangOpts().CPlusPlus) 2133 return false; 2134 } 2135 2136 // C++0x [conv.prom]p2: 2137 // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted 2138 // to an rvalue a prvalue of the first of the following types that can 2139 // represent all the values of its underlying type: int, unsigned int, 2140 // long int, unsigned long int, long long int, or unsigned long long int. 2141 // If none of the types in that list can represent all the values of its 2142 // underlying type, an rvalue a prvalue of type char16_t, char32_t, 2143 // or wchar_t can be converted to an rvalue a prvalue of its underlying 2144 // type. 2145 if (FromType->isAnyCharacterType() && !FromType->isCharType() && 2146 ToType->isIntegerType()) { 2147 // Determine whether the type we're converting from is signed or 2148 // unsigned. 2149 bool FromIsSigned = FromType->isSignedIntegerType(); 2150 uint64_t FromSize = Context.getTypeSize(FromType); 2151 2152 // The types we'll try to promote to, in the appropriate 2153 // order. Try each of these types. 2154 QualType PromoteTypes[6] = { 2155 Context.IntTy, Context.UnsignedIntTy, 2156 Context.LongTy, Context.UnsignedLongTy , 2157 Context.LongLongTy, Context.UnsignedLongLongTy 2158 }; 2159 for (int Idx = 0; Idx < 6; ++Idx) { 2160 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); 2161 if (FromSize < ToSize || 2162 (FromSize == ToSize && 2163 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { 2164 // We found the type that we can promote to. If this is the 2165 // type we wanted, we have a promotion. Otherwise, no 2166 // promotion. 2167 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); 2168 } 2169 } 2170 } 2171 2172 // An rvalue for an integral bit-field (9.6) can be converted to an 2173 // rvalue of type int if int can represent all the values of the 2174 // bit-field; otherwise, it can be converted to unsigned int if 2175 // unsigned int can represent all the values of the bit-field. If 2176 // the bit-field is larger yet, no integral promotion applies to 2177 // it. If the bit-field has an enumerated type, it is treated as any 2178 // other value of that type for promotion purposes (C++ 4.5p3). 2179 // FIXME: We should delay checking of bit-fields until we actually perform the 2180 // conversion. 2181 // 2182 // FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be 2183 // promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum 2184 // bit-fields and those whose underlying type is larger than int) for GCC 2185 // compatibility. 2186 if (From) { 2187 if (FieldDecl *MemberDecl = From->getSourceBitField()) { 2188 Optional<llvm::APSInt> BitWidth; 2189 if (FromType->isIntegralType(Context) && 2190 (BitWidth = 2191 MemberDecl->getBitWidth()->getIntegerConstantExpr(Context))) { 2192 llvm::APSInt ToSize(BitWidth->getBitWidth(), BitWidth->isUnsigned()); 2193 ToSize = Context.getTypeSize(ToType); 2194 2195 // Are we promoting to an int from a bitfield that fits in an int? 2196 if (*BitWidth < ToSize || 2197 (FromType->isSignedIntegerType() && *BitWidth <= ToSize)) { 2198 return To->getKind() == BuiltinType::Int; 2199 } 2200 2201 // Are we promoting to an unsigned int from an unsigned bitfield 2202 // that fits into an unsigned int? 2203 if (FromType->isUnsignedIntegerType() && *BitWidth <= ToSize) { 2204 return To->getKind() == BuiltinType::UInt; 2205 } 2206 2207 return false; 2208 } 2209 } 2210 } 2211 2212 // An rvalue of type bool can be converted to an rvalue of type int, 2213 // with false becoming zero and true becoming one (C++ 4.5p4). 2214 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { 2215 return true; 2216 } 2217 2218 return false; 2219 } 2220 2221 /// IsFloatingPointPromotion - Determines whether the conversion from 2222 /// FromType to ToType is a floating point promotion (C++ 4.6). If so, 2223 /// returns true and sets PromotedType to the promoted type. 2224 bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { 2225 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) 2226 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { 2227 /// An rvalue of type float can be converted to an rvalue of type 2228 /// double. (C++ 4.6p1). 2229 if (FromBuiltin->getKind() == BuiltinType::Float && 2230 ToBuiltin->getKind() == BuiltinType::Double) 2231 return true; 2232 2233 // C99 6.3.1.5p1: 2234 // When a float is promoted to double or long double, or a 2235 // double is promoted to long double [...]. 2236 if (!getLangOpts().CPlusPlus && 2237 (FromBuiltin->getKind() == BuiltinType::Float || 2238 FromBuiltin->getKind() == BuiltinType::Double) && 2239 (ToBuiltin->getKind() == BuiltinType::LongDouble || 2240 ToBuiltin->getKind() == BuiltinType::Float128)) 2241 return true; 2242 2243 // Half can be promoted to float. 2244 if (!getLangOpts().NativeHalfType && 2245 FromBuiltin->getKind() == BuiltinType::Half && 2246 ToBuiltin->getKind() == BuiltinType::Float) 2247 return true; 2248 } 2249 2250 return false; 2251 } 2252 2253 /// Determine if a conversion is a complex promotion. 2254 /// 2255 /// A complex promotion is defined as a complex -> complex conversion 2256 /// where the conversion between the underlying real types is a 2257 /// floating-point or integral promotion. 2258 bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { 2259 const ComplexType *FromComplex = FromType->getAs<ComplexType>(); 2260 if (!FromComplex) 2261 return false; 2262 2263 const ComplexType *ToComplex = ToType->getAs<ComplexType>(); 2264 if (!ToComplex) 2265 return false; 2266 2267 return IsFloatingPointPromotion(FromComplex->getElementType(), 2268 ToComplex->getElementType()) || 2269 IsIntegralPromotion(nullptr, FromComplex->getElementType(), 2270 ToComplex->getElementType()); 2271 } 2272 2273 /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from 2274 /// the pointer type FromPtr to a pointer to type ToPointee, with the 2275 /// same type qualifiers as FromPtr has on its pointee type. ToType, 2276 /// if non-empty, will be a pointer to ToType that may or may not have 2277 /// the right set of qualifiers on its pointee. 2278 /// 2279 static QualType 2280 BuildSimilarlyQualifiedPointerType(const Type *FromPtr, 2281 QualType ToPointee, QualType ToType, 2282 ASTContext &Context, 2283 bool StripObjCLifetime = false) { 2284 assert((FromPtr->getTypeClass() == Type::Pointer || 2285 FromPtr->getTypeClass() == Type::ObjCObjectPointer) && 2286 "Invalid similarly-qualified pointer type"); 2287 2288 /// Conversions to 'id' subsume cv-qualifier conversions. 2289 if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType()) 2290 return ToType.getUnqualifiedType(); 2291 2292 QualType CanonFromPointee 2293 = Context.getCanonicalType(FromPtr->getPointeeType()); 2294 QualType CanonToPointee = Context.getCanonicalType(ToPointee); 2295 Qualifiers Quals = CanonFromPointee.getQualifiers(); 2296 2297 if (StripObjCLifetime) 2298 Quals.removeObjCLifetime(); 2299 2300 // Exact qualifier match -> return the pointer type we're converting to. 2301 if (CanonToPointee.getLocalQualifiers() == Quals) { 2302 // ToType is exactly what we need. Return it. 2303 if (!ToType.isNull()) 2304 return ToType.getUnqualifiedType(); 2305 2306 // Build a pointer to ToPointee. It has the right qualifiers 2307 // already. 2308 if (isa<ObjCObjectPointerType>(ToType)) 2309 return Context.getObjCObjectPointerType(ToPointee); 2310 return Context.getPointerType(ToPointee); 2311 } 2312 2313 // Just build a canonical type that has the right qualifiers. 2314 QualType QualifiedCanonToPointee 2315 = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals); 2316 2317 if (isa<ObjCObjectPointerType>(ToType)) 2318 return Context.getObjCObjectPointerType(QualifiedCanonToPointee); 2319 return Context.getPointerType(QualifiedCanonToPointee); 2320 } 2321 2322 static bool isNullPointerConstantForConversion(Expr *Expr, 2323 bool InOverloadResolution, 2324 ASTContext &Context) { 2325 // Handle value-dependent integral null pointer constants correctly. 2326 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 2327 if (Expr->isValueDependent() && !Expr->isTypeDependent() && 2328 Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType()) 2329 return !InOverloadResolution; 2330 2331 return Expr->isNullPointerConstant(Context, 2332 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 2333 : Expr::NPC_ValueDependentIsNull); 2334 } 2335 2336 /// IsPointerConversion - Determines whether the conversion of the 2337 /// expression From, which has the (possibly adjusted) type FromType, 2338 /// can be converted to the type ToType via a pointer conversion (C++ 2339 /// 4.10). If so, returns true and places the converted type (that 2340 /// might differ from ToType in its cv-qualifiers at some level) into 2341 /// ConvertedType. 2342 /// 2343 /// This routine also supports conversions to and from block pointers 2344 /// and conversions with Objective-C's 'id', 'id<protocols...>', and 2345 /// pointers to interfaces. FIXME: Once we've determined the 2346 /// appropriate overloading rules for Objective-C, we may want to 2347 /// split the Objective-C checks into a different routine; however, 2348 /// GCC seems to consider all of these conversions to be pointer 2349 /// conversions, so for now they live here. IncompatibleObjC will be 2350 /// set if the conversion is an allowed Objective-C conversion that 2351 /// should result in a warning. 2352 bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, 2353 bool InOverloadResolution, 2354 QualType& ConvertedType, 2355 bool &IncompatibleObjC) { 2356 IncompatibleObjC = false; 2357 if (isObjCPointerConversion(FromType, ToType, ConvertedType, 2358 IncompatibleObjC)) 2359 return true; 2360 2361 // Conversion from a null pointer constant to any Objective-C pointer type. 2362 if (ToType->isObjCObjectPointerType() && 2363 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 2364 ConvertedType = ToType; 2365 return true; 2366 } 2367 2368 // Blocks: Block pointers can be converted to void*. 2369 if (FromType->isBlockPointerType() && ToType->isPointerType() && 2370 ToType->castAs<PointerType>()->getPointeeType()->isVoidType()) { 2371 ConvertedType = ToType; 2372 return true; 2373 } 2374 // Blocks: A null pointer constant can be converted to a block 2375 // pointer type. 2376 if (ToType->isBlockPointerType() && 2377 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 2378 ConvertedType = ToType; 2379 return true; 2380 } 2381 2382 // If the left-hand-side is nullptr_t, the right side can be a null 2383 // pointer constant. 2384 if (ToType->isNullPtrType() && 2385 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 2386 ConvertedType = ToType; 2387 return true; 2388 } 2389 2390 const PointerType* ToTypePtr = ToType->getAs<PointerType>(); 2391 if (!ToTypePtr) 2392 return false; 2393 2394 // A null pointer constant can be converted to a pointer type (C++ 4.10p1). 2395 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 2396 ConvertedType = ToType; 2397 return true; 2398 } 2399 2400 // Beyond this point, both types need to be pointers 2401 // , including objective-c pointers. 2402 QualType ToPointeeType = ToTypePtr->getPointeeType(); 2403 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() && 2404 !getLangOpts().ObjCAutoRefCount) { 2405 ConvertedType = BuildSimilarlyQualifiedPointerType( 2406 FromType->getAs<ObjCObjectPointerType>(), 2407 ToPointeeType, 2408 ToType, Context); 2409 return true; 2410 } 2411 const PointerType *FromTypePtr = FromType->getAs<PointerType>(); 2412 if (!FromTypePtr) 2413 return false; 2414 2415 QualType FromPointeeType = FromTypePtr->getPointeeType(); 2416 2417 // If the unqualified pointee types are the same, this can't be a 2418 // pointer conversion, so don't do all of the work below. 2419 if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) 2420 return false; 2421 2422 // An rvalue of type "pointer to cv T," where T is an object type, 2423 // can be converted to an rvalue of type "pointer to cv void" (C++ 2424 // 4.10p2). 2425 if (FromPointeeType->isIncompleteOrObjectType() && 2426 ToPointeeType->isVoidType()) { 2427 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 2428 ToPointeeType, 2429 ToType, Context, 2430 /*StripObjCLifetime=*/true); 2431 return true; 2432 } 2433 2434 // MSVC allows implicit function to void* type conversion. 2435 if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() && 2436 ToPointeeType->isVoidType()) { 2437 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 2438 ToPointeeType, 2439 ToType, Context); 2440 return true; 2441 } 2442 2443 // When we're overloading in C, we allow a special kind of pointer 2444 // conversion for compatible-but-not-identical pointee types. 2445 if (!getLangOpts().CPlusPlus && 2446 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { 2447 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 2448 ToPointeeType, 2449 ToType, Context); 2450 return true; 2451 } 2452 2453 // C++ [conv.ptr]p3: 2454 // 2455 // An rvalue of type "pointer to cv D," where D is a class type, 2456 // can be converted to an rvalue of type "pointer to cv B," where 2457 // B is a base class (clause 10) of D. If B is an inaccessible 2458 // (clause 11) or ambiguous (10.2) base class of D, a program that 2459 // necessitates this conversion is ill-formed. The result of the 2460 // conversion is a pointer to the base class sub-object of the 2461 // derived class object. The null pointer value is converted to 2462 // the null pointer value of the destination type. 2463 // 2464 // Note that we do not check for ambiguity or inaccessibility 2465 // here. That is handled by CheckPointerConversion. 2466 if (getLangOpts().CPlusPlus && FromPointeeType->isRecordType() && 2467 ToPointeeType->isRecordType() && 2468 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) && 2469 IsDerivedFrom(From->getBeginLoc(), FromPointeeType, ToPointeeType)) { 2470 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 2471 ToPointeeType, 2472 ToType, Context); 2473 return true; 2474 } 2475 2476 if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() && 2477 Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) { 2478 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 2479 ToPointeeType, 2480 ToType, Context); 2481 return true; 2482 } 2483 2484 return false; 2485 } 2486 2487 /// Adopt the given qualifiers for the given type. 2488 static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){ 2489 Qualifiers TQs = T.getQualifiers(); 2490 2491 // Check whether qualifiers already match. 2492 if (TQs == Qs) 2493 return T; 2494 2495 if (Qs.compatiblyIncludes(TQs)) 2496 return Context.getQualifiedType(T, Qs); 2497 2498 return Context.getQualifiedType(T.getUnqualifiedType(), Qs); 2499 } 2500 2501 /// isObjCPointerConversion - Determines whether this is an 2502 /// Objective-C pointer conversion. Subroutine of IsPointerConversion, 2503 /// with the same arguments and return values. 2504 bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, 2505 QualType& ConvertedType, 2506 bool &IncompatibleObjC) { 2507 if (!getLangOpts().ObjC) 2508 return false; 2509 2510 // The set of qualifiers on the type we're converting from. 2511 Qualifiers FromQualifiers = FromType.getQualifiers(); 2512 2513 // First, we handle all conversions on ObjC object pointer types. 2514 const ObjCObjectPointerType* ToObjCPtr = 2515 ToType->getAs<ObjCObjectPointerType>(); 2516 const ObjCObjectPointerType *FromObjCPtr = 2517 FromType->getAs<ObjCObjectPointerType>(); 2518 2519 if (ToObjCPtr && FromObjCPtr) { 2520 // If the pointee types are the same (ignoring qualifications), 2521 // then this is not a pointer conversion. 2522 if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(), 2523 FromObjCPtr->getPointeeType())) 2524 return false; 2525 2526 // Conversion between Objective-C pointers. 2527 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { 2528 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType(); 2529 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType(); 2530 if (getLangOpts().CPlusPlus && LHS && RHS && 2531 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs( 2532 FromObjCPtr->getPointeeType())) 2533 return false; 2534 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, 2535 ToObjCPtr->getPointeeType(), 2536 ToType, Context); 2537 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 2538 return true; 2539 } 2540 2541 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { 2542 // Okay: this is some kind of implicit downcast of Objective-C 2543 // interfaces, which is permitted. However, we're going to 2544 // complain about it. 2545 IncompatibleObjC = true; 2546 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, 2547 ToObjCPtr->getPointeeType(), 2548 ToType, Context); 2549 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 2550 return true; 2551 } 2552 } 2553 // Beyond this point, both types need to be C pointers or block pointers. 2554 QualType ToPointeeType; 2555 if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) 2556 ToPointeeType = ToCPtr->getPointeeType(); 2557 else if (const BlockPointerType *ToBlockPtr = 2558 ToType->getAs<BlockPointerType>()) { 2559 // Objective C++: We're able to convert from a pointer to any object 2560 // to a block pointer type. 2561 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { 2562 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 2563 return true; 2564 } 2565 ToPointeeType = ToBlockPtr->getPointeeType(); 2566 } 2567 else if (FromType->getAs<BlockPointerType>() && 2568 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) { 2569 // Objective C++: We're able to convert from a block pointer type to a 2570 // pointer to any object. 2571 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 2572 return true; 2573 } 2574 else 2575 return false; 2576 2577 QualType FromPointeeType; 2578 if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) 2579 FromPointeeType = FromCPtr->getPointeeType(); 2580 else if (const BlockPointerType *FromBlockPtr = 2581 FromType->getAs<BlockPointerType>()) 2582 FromPointeeType = FromBlockPtr->getPointeeType(); 2583 else 2584 return false; 2585 2586 // If we have pointers to pointers, recursively check whether this 2587 // is an Objective-C conversion. 2588 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && 2589 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 2590 IncompatibleObjC)) { 2591 // We always complain about this conversion. 2592 IncompatibleObjC = true; 2593 ConvertedType = Context.getPointerType(ConvertedType); 2594 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 2595 return true; 2596 } 2597 // Allow conversion of pointee being objective-c pointer to another one; 2598 // as in I* to id. 2599 if (FromPointeeType->getAs<ObjCObjectPointerType>() && 2600 ToPointeeType->getAs<ObjCObjectPointerType>() && 2601 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 2602 IncompatibleObjC)) { 2603 2604 ConvertedType = Context.getPointerType(ConvertedType); 2605 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 2606 return true; 2607 } 2608 2609 // If we have pointers to functions or blocks, check whether the only 2610 // differences in the argument and result types are in Objective-C 2611 // pointer conversions. If so, we permit the conversion (but 2612 // complain about it). 2613 const FunctionProtoType *FromFunctionType 2614 = FromPointeeType->getAs<FunctionProtoType>(); 2615 const FunctionProtoType *ToFunctionType 2616 = ToPointeeType->getAs<FunctionProtoType>(); 2617 if (FromFunctionType && ToFunctionType) { 2618 // If the function types are exactly the same, this isn't an 2619 // Objective-C pointer conversion. 2620 if (Context.getCanonicalType(FromPointeeType) 2621 == Context.getCanonicalType(ToPointeeType)) 2622 return false; 2623 2624 // Perform the quick checks that will tell us whether these 2625 // function types are obviously different. 2626 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() || 2627 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || 2628 FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals()) 2629 return false; 2630 2631 bool HasObjCConversion = false; 2632 if (Context.getCanonicalType(FromFunctionType->getReturnType()) == 2633 Context.getCanonicalType(ToFunctionType->getReturnType())) { 2634 // Okay, the types match exactly. Nothing to do. 2635 } else if (isObjCPointerConversion(FromFunctionType->getReturnType(), 2636 ToFunctionType->getReturnType(), 2637 ConvertedType, IncompatibleObjC)) { 2638 // Okay, we have an Objective-C pointer conversion. 2639 HasObjCConversion = true; 2640 } else { 2641 // Function types are too different. Abort. 2642 return false; 2643 } 2644 2645 // Check argument types. 2646 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams(); 2647 ArgIdx != NumArgs; ++ArgIdx) { 2648 QualType FromArgType = FromFunctionType->getParamType(ArgIdx); 2649 QualType ToArgType = ToFunctionType->getParamType(ArgIdx); 2650 if (Context.getCanonicalType(FromArgType) 2651 == Context.getCanonicalType(ToArgType)) { 2652 // Okay, the types match exactly. Nothing to do. 2653 } else if (isObjCPointerConversion(FromArgType, ToArgType, 2654 ConvertedType, IncompatibleObjC)) { 2655 // Okay, we have an Objective-C pointer conversion. 2656 HasObjCConversion = true; 2657 } else { 2658 // Argument types are too different. Abort. 2659 return false; 2660 } 2661 } 2662 2663 if (HasObjCConversion) { 2664 // We had an Objective-C conversion. Allow this pointer 2665 // conversion, but complain about it. 2666 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 2667 IncompatibleObjC = true; 2668 return true; 2669 } 2670 } 2671 2672 return false; 2673 } 2674 2675 /// Determine whether this is an Objective-C writeback conversion, 2676 /// used for parameter passing when performing automatic reference counting. 2677 /// 2678 /// \param FromType The type we're converting form. 2679 /// 2680 /// \param ToType The type we're converting to. 2681 /// 2682 /// \param ConvertedType The type that will be produced after applying 2683 /// this conversion. 2684 bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType, 2685 QualType &ConvertedType) { 2686 if (!getLangOpts().ObjCAutoRefCount || 2687 Context.hasSameUnqualifiedType(FromType, ToType)) 2688 return false; 2689 2690 // Parameter must be a pointer to __autoreleasing (with no other qualifiers). 2691 QualType ToPointee; 2692 if (const PointerType *ToPointer = ToType->getAs<PointerType>()) 2693 ToPointee = ToPointer->getPointeeType(); 2694 else 2695 return false; 2696 2697 Qualifiers ToQuals = ToPointee.getQualifiers(); 2698 if (!ToPointee->isObjCLifetimeType() || 2699 ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing || 2700 !ToQuals.withoutObjCLifetime().empty()) 2701 return false; 2702 2703 // Argument must be a pointer to __strong to __weak. 2704 QualType FromPointee; 2705 if (const PointerType *FromPointer = FromType->getAs<PointerType>()) 2706 FromPointee = FromPointer->getPointeeType(); 2707 else 2708 return false; 2709 2710 Qualifiers FromQuals = FromPointee.getQualifiers(); 2711 if (!FromPointee->isObjCLifetimeType() || 2712 (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong && 2713 FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak)) 2714 return false; 2715 2716 // Make sure that we have compatible qualifiers. 2717 FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing); 2718 if (!ToQuals.compatiblyIncludes(FromQuals)) 2719 return false; 2720 2721 // Remove qualifiers from the pointee type we're converting from; they 2722 // aren't used in the compatibility check belong, and we'll be adding back 2723 // qualifiers (with __autoreleasing) if the compatibility check succeeds. 2724 FromPointee = FromPointee.getUnqualifiedType(); 2725 2726 // The unqualified form of the pointee types must be compatible. 2727 ToPointee = ToPointee.getUnqualifiedType(); 2728 bool IncompatibleObjC; 2729 if (Context.typesAreCompatible(FromPointee, ToPointee)) 2730 FromPointee = ToPointee; 2731 else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee, 2732 IncompatibleObjC)) 2733 return false; 2734 2735 /// Construct the type we're converting to, which is a pointer to 2736 /// __autoreleasing pointee. 2737 FromPointee = Context.getQualifiedType(FromPointee, FromQuals); 2738 ConvertedType = Context.getPointerType(FromPointee); 2739 return true; 2740 } 2741 2742 bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType, 2743 QualType& ConvertedType) { 2744 QualType ToPointeeType; 2745 if (const BlockPointerType *ToBlockPtr = 2746 ToType->getAs<BlockPointerType>()) 2747 ToPointeeType = ToBlockPtr->getPointeeType(); 2748 else 2749 return false; 2750 2751 QualType FromPointeeType; 2752 if (const BlockPointerType *FromBlockPtr = 2753 FromType->getAs<BlockPointerType>()) 2754 FromPointeeType = FromBlockPtr->getPointeeType(); 2755 else 2756 return false; 2757 // We have pointer to blocks, check whether the only 2758 // differences in the argument and result types are in Objective-C 2759 // pointer conversions. If so, we permit the conversion. 2760 2761 const FunctionProtoType *FromFunctionType 2762 = FromPointeeType->getAs<FunctionProtoType>(); 2763 const FunctionProtoType *ToFunctionType 2764 = ToPointeeType->getAs<FunctionProtoType>(); 2765 2766 if (!FromFunctionType || !ToFunctionType) 2767 return false; 2768 2769 if (Context.hasSameType(FromPointeeType, ToPointeeType)) 2770 return true; 2771 2772 // Perform the quick checks that will tell us whether these 2773 // function types are obviously different. 2774 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() || 2775 FromFunctionType->isVariadic() != ToFunctionType->isVariadic()) 2776 return false; 2777 2778 FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo(); 2779 FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo(); 2780 if (FromEInfo != ToEInfo) 2781 return false; 2782 2783 bool IncompatibleObjC = false; 2784 if (Context.hasSameType(FromFunctionType->getReturnType(), 2785 ToFunctionType->getReturnType())) { 2786 // Okay, the types match exactly. Nothing to do. 2787 } else { 2788 QualType RHS = FromFunctionType->getReturnType(); 2789 QualType LHS = ToFunctionType->getReturnType(); 2790 if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) && 2791 !RHS.hasQualifiers() && LHS.hasQualifiers()) 2792 LHS = LHS.getUnqualifiedType(); 2793 2794 if (Context.hasSameType(RHS,LHS)) { 2795 // OK exact match. 2796 } else if (isObjCPointerConversion(RHS, LHS, 2797 ConvertedType, IncompatibleObjC)) { 2798 if (IncompatibleObjC) 2799 return false; 2800 // Okay, we have an Objective-C pointer conversion. 2801 } 2802 else 2803 return false; 2804 } 2805 2806 // Check argument types. 2807 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams(); 2808 ArgIdx != NumArgs; ++ArgIdx) { 2809 IncompatibleObjC = false; 2810 QualType FromArgType = FromFunctionType->getParamType(ArgIdx); 2811 QualType ToArgType = ToFunctionType->getParamType(ArgIdx); 2812 if (Context.hasSameType(FromArgType, ToArgType)) { 2813 // Okay, the types match exactly. Nothing to do. 2814 } else if (isObjCPointerConversion(ToArgType, FromArgType, 2815 ConvertedType, IncompatibleObjC)) { 2816 if (IncompatibleObjC) 2817 return false; 2818 // Okay, we have an Objective-C pointer conversion. 2819 } else 2820 // Argument types are too different. Abort. 2821 return false; 2822 } 2823 2824 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos; 2825 bool CanUseToFPT, CanUseFromFPT; 2826 if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType, 2827 CanUseToFPT, CanUseFromFPT, 2828 NewParamInfos)) 2829 return false; 2830 2831 ConvertedType = ToType; 2832 return true; 2833 } 2834 2835 enum { 2836 ft_default, 2837 ft_different_class, 2838 ft_parameter_arity, 2839 ft_parameter_mismatch, 2840 ft_return_type, 2841 ft_qualifer_mismatch, 2842 ft_noexcept 2843 }; 2844 2845 /// Attempts to get the FunctionProtoType from a Type. Handles 2846 /// MemberFunctionPointers properly. 2847 static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) { 2848 if (auto *FPT = FromType->getAs<FunctionProtoType>()) 2849 return FPT; 2850 2851 if (auto *MPT = FromType->getAs<MemberPointerType>()) 2852 return MPT->getPointeeType()->getAs<FunctionProtoType>(); 2853 2854 return nullptr; 2855 } 2856 2857 /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing 2858 /// function types. Catches different number of parameter, mismatch in 2859 /// parameter types, and different return types. 2860 void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag, 2861 QualType FromType, QualType ToType) { 2862 // If either type is not valid, include no extra info. 2863 if (FromType.isNull() || ToType.isNull()) { 2864 PDiag << ft_default; 2865 return; 2866 } 2867 2868 // Get the function type from the pointers. 2869 if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) { 2870 const auto *FromMember = FromType->castAs<MemberPointerType>(), 2871 *ToMember = ToType->castAs<MemberPointerType>(); 2872 if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) { 2873 PDiag << ft_different_class << QualType(ToMember->getClass(), 0) 2874 << QualType(FromMember->getClass(), 0); 2875 return; 2876 } 2877 FromType = FromMember->getPointeeType(); 2878 ToType = ToMember->getPointeeType(); 2879 } 2880 2881 if (FromType->isPointerType()) 2882 FromType = FromType->getPointeeType(); 2883 if (ToType->isPointerType()) 2884 ToType = ToType->getPointeeType(); 2885 2886 // Remove references. 2887 FromType = FromType.getNonReferenceType(); 2888 ToType = ToType.getNonReferenceType(); 2889 2890 // Don't print extra info for non-specialized template functions. 2891 if (FromType->isInstantiationDependentType() && 2892 !FromType->getAs<TemplateSpecializationType>()) { 2893 PDiag << ft_default; 2894 return; 2895 } 2896 2897 // No extra info for same types. 2898 if (Context.hasSameType(FromType, ToType)) { 2899 PDiag << ft_default; 2900 return; 2901 } 2902 2903 const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType), 2904 *ToFunction = tryGetFunctionProtoType(ToType); 2905 2906 // Both types need to be function types. 2907 if (!FromFunction || !ToFunction) { 2908 PDiag << ft_default; 2909 return; 2910 } 2911 2912 if (FromFunction->getNumParams() != ToFunction->getNumParams()) { 2913 PDiag << ft_parameter_arity << ToFunction->getNumParams() 2914 << FromFunction->getNumParams(); 2915 return; 2916 } 2917 2918 // Handle different parameter types. 2919 unsigned ArgPos; 2920 if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) { 2921 PDiag << ft_parameter_mismatch << ArgPos + 1 2922 << ToFunction->getParamType(ArgPos) 2923 << FromFunction->getParamType(ArgPos); 2924 return; 2925 } 2926 2927 // Handle different return type. 2928 if (!Context.hasSameType(FromFunction->getReturnType(), 2929 ToFunction->getReturnType())) { 2930 PDiag << ft_return_type << ToFunction->getReturnType() 2931 << FromFunction->getReturnType(); 2932 return; 2933 } 2934 2935 if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) { 2936 PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals() 2937 << FromFunction->getMethodQuals(); 2938 return; 2939 } 2940 2941 // Handle exception specification differences on canonical type (in C++17 2942 // onwards). 2943 if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified()) 2944 ->isNothrow() != 2945 cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified()) 2946 ->isNothrow()) { 2947 PDiag << ft_noexcept; 2948 return; 2949 } 2950 2951 // Unable to find a difference, so add no extra info. 2952 PDiag << ft_default; 2953 } 2954 2955 /// FunctionParamTypesAreEqual - This routine checks two function proto types 2956 /// for equality of their argument types. Caller has already checked that 2957 /// they have same number of arguments. If the parameters are different, 2958 /// ArgPos will have the parameter index of the first different parameter. 2959 bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType, 2960 const FunctionProtoType *NewType, 2961 unsigned *ArgPos) { 2962 for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(), 2963 N = NewType->param_type_begin(), 2964 E = OldType->param_type_end(); 2965 O && (O != E); ++O, ++N) { 2966 // Ignore address spaces in pointee type. This is to disallow overloading 2967 // on __ptr32/__ptr64 address spaces. 2968 QualType Old = Context.removePtrSizeAddrSpace(O->getUnqualifiedType()); 2969 QualType New = Context.removePtrSizeAddrSpace(N->getUnqualifiedType()); 2970 2971 if (!Context.hasSameType(Old, New)) { 2972 if (ArgPos) 2973 *ArgPos = O - OldType->param_type_begin(); 2974 return false; 2975 } 2976 } 2977 return true; 2978 } 2979 2980 /// CheckPointerConversion - Check the pointer conversion from the 2981 /// expression From to the type ToType. This routine checks for 2982 /// ambiguous or inaccessible derived-to-base pointer 2983 /// conversions for which IsPointerConversion has already returned 2984 /// true. It returns true and produces a diagnostic if there was an 2985 /// error, or returns false otherwise. 2986 bool Sema::CheckPointerConversion(Expr *From, QualType ToType, 2987 CastKind &Kind, 2988 CXXCastPath& BasePath, 2989 bool IgnoreBaseAccess, 2990 bool Diagnose) { 2991 QualType FromType = From->getType(); 2992 bool IsCStyleOrFunctionalCast = IgnoreBaseAccess; 2993 2994 Kind = CK_BitCast; 2995 2996 if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() && 2997 From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) == 2998 Expr::NPCK_ZeroExpression) { 2999 if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy)) 3000 DiagRuntimeBehavior(From->getExprLoc(), From, 3001 PDiag(diag::warn_impcast_bool_to_null_pointer) 3002 << ToType << From->getSourceRange()); 3003 else if (!isUnevaluatedContext()) 3004 Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer) 3005 << ToType << From->getSourceRange(); 3006 } 3007 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { 3008 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) { 3009 QualType FromPointeeType = FromPtrType->getPointeeType(), 3010 ToPointeeType = ToPtrType->getPointeeType(); 3011 3012 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 3013 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) { 3014 // We must have a derived-to-base conversion. Check an 3015 // ambiguous or inaccessible conversion. 3016 unsigned InaccessibleID = 0; 3017 unsigned AmbiguousID = 0; 3018 if (Diagnose) { 3019 InaccessibleID = diag::err_upcast_to_inaccessible_base; 3020 AmbiguousID = diag::err_ambiguous_derived_to_base_conv; 3021 } 3022 if (CheckDerivedToBaseConversion( 3023 FromPointeeType, ToPointeeType, InaccessibleID, AmbiguousID, 3024 From->getExprLoc(), From->getSourceRange(), DeclarationName(), 3025 &BasePath, IgnoreBaseAccess)) 3026 return true; 3027 3028 // The conversion was successful. 3029 Kind = CK_DerivedToBase; 3030 } 3031 3032 if (Diagnose && !IsCStyleOrFunctionalCast && 3033 FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) { 3034 assert(getLangOpts().MSVCCompat && 3035 "this should only be possible with MSVCCompat!"); 3036 Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj) 3037 << From->getSourceRange(); 3038 } 3039 } 3040 } else if (const ObjCObjectPointerType *ToPtrType = 3041 ToType->getAs<ObjCObjectPointerType>()) { 3042 if (const ObjCObjectPointerType *FromPtrType = 3043 FromType->getAs<ObjCObjectPointerType>()) { 3044 // Objective-C++ conversions are always okay. 3045 // FIXME: We should have a different class of conversions for the 3046 // Objective-C++ implicit conversions. 3047 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) 3048 return false; 3049 } else if (FromType->isBlockPointerType()) { 3050 Kind = CK_BlockPointerToObjCPointerCast; 3051 } else { 3052 Kind = CK_CPointerToObjCPointerCast; 3053 } 3054 } else if (ToType->isBlockPointerType()) { 3055 if (!FromType->isBlockPointerType()) 3056 Kind = CK_AnyPointerToBlockPointerCast; 3057 } 3058 3059 // We shouldn't fall into this case unless it's valid for other 3060 // reasons. 3061 if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) 3062 Kind = CK_NullToPointer; 3063 3064 return false; 3065 } 3066 3067 /// IsMemberPointerConversion - Determines whether the conversion of the 3068 /// expression From, which has the (possibly adjusted) type FromType, can be 3069 /// converted to the type ToType via a member pointer conversion (C++ 4.11). 3070 /// If so, returns true and places the converted type (that might differ from 3071 /// ToType in its cv-qualifiers at some level) into ConvertedType. 3072 bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, 3073 QualType ToType, 3074 bool InOverloadResolution, 3075 QualType &ConvertedType) { 3076 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); 3077 if (!ToTypePtr) 3078 return false; 3079 3080 // A null pointer constant can be converted to a member pointer (C++ 4.11p1) 3081 if (From->isNullPointerConstant(Context, 3082 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 3083 : Expr::NPC_ValueDependentIsNull)) { 3084 ConvertedType = ToType; 3085 return true; 3086 } 3087 3088 // Otherwise, both types have to be member pointers. 3089 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); 3090 if (!FromTypePtr) 3091 return false; 3092 3093 // A pointer to member of B can be converted to a pointer to member of D, 3094 // where D is derived from B (C++ 4.11p2). 3095 QualType FromClass(FromTypePtr->getClass(), 0); 3096 QualType ToClass(ToTypePtr->getClass(), 0); 3097 3098 if (!Context.hasSameUnqualifiedType(FromClass, ToClass) && 3099 IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass)) { 3100 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), 3101 ToClass.getTypePtr()); 3102 return true; 3103 } 3104 3105 return false; 3106 } 3107 3108 /// CheckMemberPointerConversion - Check the member pointer conversion from the 3109 /// expression From to the type ToType. This routine checks for ambiguous or 3110 /// virtual or inaccessible base-to-derived member pointer conversions 3111 /// for which IsMemberPointerConversion has already returned true. It returns 3112 /// true and produces a diagnostic if there was an error, or returns false 3113 /// otherwise. 3114 bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, 3115 CastKind &Kind, 3116 CXXCastPath &BasePath, 3117 bool IgnoreBaseAccess) { 3118 QualType FromType = From->getType(); 3119 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); 3120 if (!FromPtrType) { 3121 // This must be a null pointer to member pointer conversion 3122 assert(From->isNullPointerConstant(Context, 3123 Expr::NPC_ValueDependentIsNull) && 3124 "Expr must be null pointer constant!"); 3125 Kind = CK_NullToMemberPointer; 3126 return false; 3127 } 3128 3129 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); 3130 assert(ToPtrType && "No member pointer cast has a target type " 3131 "that is not a member pointer."); 3132 3133 QualType FromClass = QualType(FromPtrType->getClass(), 0); 3134 QualType ToClass = QualType(ToPtrType->getClass(), 0); 3135 3136 // FIXME: What about dependent types? 3137 assert(FromClass->isRecordType() && "Pointer into non-class."); 3138 assert(ToClass->isRecordType() && "Pointer into non-class."); 3139 3140 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 3141 /*DetectVirtual=*/true); 3142 bool DerivationOkay = 3143 IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass, Paths); 3144 assert(DerivationOkay && 3145 "Should not have been called if derivation isn't OK."); 3146 (void)DerivationOkay; 3147 3148 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). 3149 getUnqualifiedType())) { 3150 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 3151 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) 3152 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); 3153 return true; 3154 } 3155 3156 if (const RecordType *VBase = Paths.getDetectedVirtual()) { 3157 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) 3158 << FromClass << ToClass << QualType(VBase, 0) 3159 << From->getSourceRange(); 3160 return true; 3161 } 3162 3163 if (!IgnoreBaseAccess) 3164 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass, 3165 Paths.front(), 3166 diag::err_downcast_from_inaccessible_base); 3167 3168 // Must be a base to derived member conversion. 3169 BuildBasePathArray(Paths, BasePath); 3170 Kind = CK_BaseToDerivedMemberPointer; 3171 return false; 3172 } 3173 3174 /// Determine whether the lifetime conversion between the two given 3175 /// qualifiers sets is nontrivial. 3176 static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals, 3177 Qualifiers ToQuals) { 3178 // Converting anything to const __unsafe_unretained is trivial. 3179 if (ToQuals.hasConst() && 3180 ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone) 3181 return false; 3182 3183 return true; 3184 } 3185 3186 /// Perform a single iteration of the loop for checking if a qualification 3187 /// conversion is valid. 3188 /// 3189 /// Specifically, check whether any change between the qualifiers of \p 3190 /// FromType and \p ToType is permissible, given knowledge about whether every 3191 /// outer layer is const-qualified. 3192 static bool isQualificationConversionStep(QualType FromType, QualType ToType, 3193 bool CStyle, bool IsTopLevel, 3194 bool &PreviousToQualsIncludeConst, 3195 bool &ObjCLifetimeConversion) { 3196 Qualifiers FromQuals = FromType.getQualifiers(); 3197 Qualifiers ToQuals = ToType.getQualifiers(); 3198 3199 // Ignore __unaligned qualifier if this type is void. 3200 if (ToType.getUnqualifiedType()->isVoidType()) 3201 FromQuals.removeUnaligned(); 3202 3203 // Objective-C ARC: 3204 // Check Objective-C lifetime conversions. 3205 if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime()) { 3206 if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) { 3207 if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals)) 3208 ObjCLifetimeConversion = true; 3209 FromQuals.removeObjCLifetime(); 3210 ToQuals.removeObjCLifetime(); 3211 } else { 3212 // Qualification conversions cannot cast between different 3213 // Objective-C lifetime qualifiers. 3214 return false; 3215 } 3216 } 3217 3218 // Allow addition/removal of GC attributes but not changing GC attributes. 3219 if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() && 3220 (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) { 3221 FromQuals.removeObjCGCAttr(); 3222 ToQuals.removeObjCGCAttr(); 3223 } 3224 3225 // -- for every j > 0, if const is in cv 1,j then const is in cv 3226 // 2,j, and similarly for volatile. 3227 if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals)) 3228 return false; 3229 3230 // If address spaces mismatch: 3231 // - in top level it is only valid to convert to addr space that is a 3232 // superset in all cases apart from C-style casts where we allow 3233 // conversions between overlapping address spaces. 3234 // - in non-top levels it is not a valid conversion. 3235 if (ToQuals.getAddressSpace() != FromQuals.getAddressSpace() && 3236 (!IsTopLevel || 3237 !(ToQuals.isAddressSpaceSupersetOf(FromQuals) || 3238 (CStyle && FromQuals.isAddressSpaceSupersetOf(ToQuals))))) 3239 return false; 3240 3241 // -- if the cv 1,j and cv 2,j are different, then const is in 3242 // every cv for 0 < k < j. 3243 if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers() && 3244 !PreviousToQualsIncludeConst) 3245 return false; 3246 3247 // Keep track of whether all prior cv-qualifiers in the "to" type 3248 // include const. 3249 PreviousToQualsIncludeConst = 3250 PreviousToQualsIncludeConst && ToQuals.hasConst(); 3251 return true; 3252 } 3253 3254 /// IsQualificationConversion - Determines whether the conversion from 3255 /// an rvalue of type FromType to ToType is a qualification conversion 3256 /// (C++ 4.4). 3257 /// 3258 /// \param ObjCLifetimeConversion Output parameter that will be set to indicate 3259 /// when the qualification conversion involves a change in the Objective-C 3260 /// object lifetime. 3261 bool 3262 Sema::IsQualificationConversion(QualType FromType, QualType ToType, 3263 bool CStyle, bool &ObjCLifetimeConversion) { 3264 FromType = Context.getCanonicalType(FromType); 3265 ToType = Context.getCanonicalType(ToType); 3266 ObjCLifetimeConversion = false; 3267 3268 // If FromType and ToType are the same type, this is not a 3269 // qualification conversion. 3270 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType()) 3271 return false; 3272 3273 // (C++ 4.4p4): 3274 // A conversion can add cv-qualifiers at levels other than the first 3275 // in multi-level pointers, subject to the following rules: [...] 3276 bool PreviousToQualsIncludeConst = true; 3277 bool UnwrappedAnyPointer = false; 3278 while (Context.UnwrapSimilarTypes(FromType, ToType)) { 3279 if (!isQualificationConversionStep( 3280 FromType, ToType, CStyle, !UnwrappedAnyPointer, 3281 PreviousToQualsIncludeConst, ObjCLifetimeConversion)) 3282 return false; 3283 UnwrappedAnyPointer = true; 3284 } 3285 3286 // We are left with FromType and ToType being the pointee types 3287 // after unwrapping the original FromType and ToType the same number 3288 // of times. If we unwrapped any pointers, and if FromType and 3289 // ToType have the same unqualified type (since we checked 3290 // qualifiers above), then this is a qualification conversion. 3291 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); 3292 } 3293 3294 /// - Determine whether this is a conversion from a scalar type to an 3295 /// atomic type. 3296 /// 3297 /// If successful, updates \c SCS's second and third steps in the conversion 3298 /// sequence to finish the conversion. 3299 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType, 3300 bool InOverloadResolution, 3301 StandardConversionSequence &SCS, 3302 bool CStyle) { 3303 const AtomicType *ToAtomic = ToType->getAs<AtomicType>(); 3304 if (!ToAtomic) 3305 return false; 3306 3307 StandardConversionSequence InnerSCS; 3308 if (!IsStandardConversion(S, From, ToAtomic->getValueType(), 3309 InOverloadResolution, InnerSCS, 3310 CStyle, /*AllowObjCWritebackConversion=*/false)) 3311 return false; 3312 3313 SCS.Second = InnerSCS.Second; 3314 SCS.setToType(1, InnerSCS.getToType(1)); 3315 SCS.Third = InnerSCS.Third; 3316 SCS.QualificationIncludesObjCLifetime 3317 = InnerSCS.QualificationIncludesObjCLifetime; 3318 SCS.setToType(2, InnerSCS.getToType(2)); 3319 return true; 3320 } 3321 3322 static bool isFirstArgumentCompatibleWithType(ASTContext &Context, 3323 CXXConstructorDecl *Constructor, 3324 QualType Type) { 3325 const auto *CtorType = Constructor->getType()->castAs<FunctionProtoType>(); 3326 if (CtorType->getNumParams() > 0) { 3327 QualType FirstArg = CtorType->getParamType(0); 3328 if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType())) 3329 return true; 3330 } 3331 return false; 3332 } 3333 3334 static OverloadingResult 3335 IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType, 3336 CXXRecordDecl *To, 3337 UserDefinedConversionSequence &User, 3338 OverloadCandidateSet &CandidateSet, 3339 bool AllowExplicit) { 3340 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 3341 for (auto *D : S.LookupConstructors(To)) { 3342 auto Info = getConstructorInfo(D); 3343 if (!Info) 3344 continue; 3345 3346 bool Usable = !Info.Constructor->isInvalidDecl() && 3347 S.isInitListConstructor(Info.Constructor); 3348 if (Usable) { 3349 bool SuppressUserConversions = false; 3350 if (Info.ConstructorTmpl) 3351 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl, 3352 /*ExplicitArgs*/ nullptr, From, 3353 CandidateSet, SuppressUserConversions, 3354 /*PartialOverloading*/ false, 3355 AllowExplicit); 3356 else 3357 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From, 3358 CandidateSet, SuppressUserConversions, 3359 /*PartialOverloading*/ false, AllowExplicit); 3360 } 3361 } 3362 3363 bool HadMultipleCandidates = (CandidateSet.size() > 1); 3364 3365 OverloadCandidateSet::iterator Best; 3366 switch (auto Result = 3367 CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) { 3368 case OR_Deleted: 3369 case OR_Success: { 3370 // Record the standard conversion we used and the conversion function. 3371 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); 3372 QualType ThisType = Constructor->getThisType(); 3373 // Initializer lists don't have conversions as such. 3374 User.Before.setAsIdentityConversion(); 3375 User.HadMultipleCandidates = HadMultipleCandidates; 3376 User.ConversionFunction = Constructor; 3377 User.FoundConversionFunction = Best->FoundDecl; 3378 User.After.setAsIdentityConversion(); 3379 User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType()); 3380 User.After.setAllToTypes(ToType); 3381 return Result; 3382 } 3383 3384 case OR_No_Viable_Function: 3385 return OR_No_Viable_Function; 3386 case OR_Ambiguous: 3387 return OR_Ambiguous; 3388 } 3389 3390 llvm_unreachable("Invalid OverloadResult!"); 3391 } 3392 3393 /// Determines whether there is a user-defined conversion sequence 3394 /// (C++ [over.ics.user]) that converts expression From to the type 3395 /// ToType. If such a conversion exists, User will contain the 3396 /// user-defined conversion sequence that performs such a conversion 3397 /// and this routine will return true. Otherwise, this routine returns 3398 /// false and User is unspecified. 3399 /// 3400 /// \param AllowExplicit true if the conversion should consider C++0x 3401 /// "explicit" conversion functions as well as non-explicit conversion 3402 /// functions (C++0x [class.conv.fct]p2). 3403 /// 3404 /// \param AllowObjCConversionOnExplicit true if the conversion should 3405 /// allow an extra Objective-C pointer conversion on uses of explicit 3406 /// constructors. Requires \c AllowExplicit to also be set. 3407 static OverloadingResult 3408 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 3409 UserDefinedConversionSequence &User, 3410 OverloadCandidateSet &CandidateSet, 3411 AllowedExplicit AllowExplicit, 3412 bool AllowObjCConversionOnExplicit) { 3413 assert(AllowExplicit != AllowedExplicit::None || 3414 !AllowObjCConversionOnExplicit); 3415 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 3416 3417 // Whether we will only visit constructors. 3418 bool ConstructorsOnly = false; 3419 3420 // If the type we are conversion to is a class type, enumerate its 3421 // constructors. 3422 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { 3423 // C++ [over.match.ctor]p1: 3424 // When objects of class type are direct-initialized (8.5), or 3425 // copy-initialized from an expression of the same or a 3426 // derived class type (8.5), overload resolution selects the 3427 // constructor. [...] For copy-initialization, the candidate 3428 // functions are all the converting constructors (12.3.1) of 3429 // that class. The argument list is the expression-list within 3430 // the parentheses of the initializer. 3431 if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) || 3432 (From->getType()->getAs<RecordType>() && 3433 S.IsDerivedFrom(From->getBeginLoc(), From->getType(), ToType))) 3434 ConstructorsOnly = true; 3435 3436 if (!S.isCompleteType(From->getExprLoc(), ToType)) { 3437 // We're not going to find any constructors. 3438 } else if (CXXRecordDecl *ToRecordDecl 3439 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { 3440 3441 Expr **Args = &From; 3442 unsigned NumArgs = 1; 3443 bool ListInitializing = false; 3444 if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) { 3445 // But first, see if there is an init-list-constructor that will work. 3446 OverloadingResult Result = IsInitializerListConstructorConversion( 3447 S, From, ToType, ToRecordDecl, User, CandidateSet, 3448 AllowExplicit == AllowedExplicit::All); 3449 if (Result != OR_No_Viable_Function) 3450 return Result; 3451 // Never mind. 3452 CandidateSet.clear( 3453 OverloadCandidateSet::CSK_InitByUserDefinedConversion); 3454 3455 // If we're list-initializing, we pass the individual elements as 3456 // arguments, not the entire list. 3457 Args = InitList->getInits(); 3458 NumArgs = InitList->getNumInits(); 3459 ListInitializing = true; 3460 } 3461 3462 for (auto *D : S.LookupConstructors(ToRecordDecl)) { 3463 auto Info = getConstructorInfo(D); 3464 if (!Info) 3465 continue; 3466 3467 bool Usable = !Info.Constructor->isInvalidDecl(); 3468 if (!ListInitializing) 3469 Usable = Usable && Info.Constructor->isConvertingConstructor( 3470 /*AllowExplicit*/ true); 3471 if (Usable) { 3472 bool SuppressUserConversions = !ConstructorsOnly; 3473 // C++20 [over.best.ics.general]/4.5: 3474 // if the target is the first parameter of a constructor [of class 3475 // X] and the constructor [...] is a candidate by [...] the second 3476 // phase of [over.match.list] when the initializer list has exactly 3477 // one element that is itself an initializer list, [...] and the 3478 // conversion is to X or reference to cv X, user-defined conversion 3479 // sequences are not cnosidered. 3480 if (SuppressUserConversions && ListInitializing) { 3481 SuppressUserConversions = 3482 NumArgs == 1 && isa<InitListExpr>(Args[0]) && 3483 isFirstArgumentCompatibleWithType(S.Context, Info.Constructor, 3484 ToType); 3485 } 3486 if (Info.ConstructorTmpl) 3487 S.AddTemplateOverloadCandidate( 3488 Info.ConstructorTmpl, Info.FoundDecl, 3489 /*ExplicitArgs*/ nullptr, llvm::makeArrayRef(Args, NumArgs), 3490 CandidateSet, SuppressUserConversions, 3491 /*PartialOverloading*/ false, 3492 AllowExplicit == AllowedExplicit::All); 3493 else 3494 // Allow one user-defined conversion when user specifies a 3495 // From->ToType conversion via an static cast (c-style, etc). 3496 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, 3497 llvm::makeArrayRef(Args, NumArgs), 3498 CandidateSet, SuppressUserConversions, 3499 /*PartialOverloading*/ false, 3500 AllowExplicit == AllowedExplicit::All); 3501 } 3502 } 3503 } 3504 } 3505 3506 // Enumerate conversion functions, if we're allowed to. 3507 if (ConstructorsOnly || isa<InitListExpr>(From)) { 3508 } else if (!S.isCompleteType(From->getBeginLoc(), From->getType())) { 3509 // No conversion functions from incomplete types. 3510 } else if (const RecordType *FromRecordType = 3511 From->getType()->getAs<RecordType>()) { 3512 if (CXXRecordDecl *FromRecordDecl 3513 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { 3514 // Add all of the conversion functions as candidates. 3515 const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions(); 3516 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 3517 DeclAccessPair FoundDecl = I.getPair(); 3518 NamedDecl *D = FoundDecl.getDecl(); 3519 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 3520 if (isa<UsingShadowDecl>(D)) 3521 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 3522 3523 CXXConversionDecl *Conv; 3524 FunctionTemplateDecl *ConvTemplate; 3525 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) 3526 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 3527 else 3528 Conv = cast<CXXConversionDecl>(D); 3529 3530 if (ConvTemplate) 3531 S.AddTemplateConversionCandidate( 3532 ConvTemplate, FoundDecl, ActingContext, From, ToType, 3533 CandidateSet, AllowObjCConversionOnExplicit, 3534 AllowExplicit != AllowedExplicit::None); 3535 else 3536 S.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, ToType, 3537 CandidateSet, AllowObjCConversionOnExplicit, 3538 AllowExplicit != AllowedExplicit::None); 3539 } 3540 } 3541 } 3542 3543 bool HadMultipleCandidates = (CandidateSet.size() > 1); 3544 3545 OverloadCandidateSet::iterator Best; 3546 switch (auto Result = 3547 CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) { 3548 case OR_Success: 3549 case OR_Deleted: 3550 // Record the standard conversion we used and the conversion function. 3551 if (CXXConstructorDecl *Constructor 3552 = dyn_cast<CXXConstructorDecl>(Best->Function)) { 3553 // C++ [over.ics.user]p1: 3554 // If the user-defined conversion is specified by a 3555 // constructor (12.3.1), the initial standard conversion 3556 // sequence converts the source type to the type required by 3557 // the argument of the constructor. 3558 // 3559 QualType ThisType = Constructor->getThisType(); 3560 if (isa<InitListExpr>(From)) { 3561 // Initializer lists don't have conversions as such. 3562 User.Before.setAsIdentityConversion(); 3563 } else { 3564 if (Best->Conversions[0].isEllipsis()) 3565 User.EllipsisConversion = true; 3566 else { 3567 User.Before = Best->Conversions[0].Standard; 3568 User.EllipsisConversion = false; 3569 } 3570 } 3571 User.HadMultipleCandidates = HadMultipleCandidates; 3572 User.ConversionFunction = Constructor; 3573 User.FoundConversionFunction = Best->FoundDecl; 3574 User.After.setAsIdentityConversion(); 3575 User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType()); 3576 User.After.setAllToTypes(ToType); 3577 return Result; 3578 } 3579 if (CXXConversionDecl *Conversion 3580 = dyn_cast<CXXConversionDecl>(Best->Function)) { 3581 // C++ [over.ics.user]p1: 3582 // 3583 // [...] If the user-defined conversion is specified by a 3584 // conversion function (12.3.2), the initial standard 3585 // conversion sequence converts the source type to the 3586 // implicit object parameter of the conversion function. 3587 User.Before = Best->Conversions[0].Standard; 3588 User.HadMultipleCandidates = HadMultipleCandidates; 3589 User.ConversionFunction = Conversion; 3590 User.FoundConversionFunction = Best->FoundDecl; 3591 User.EllipsisConversion = false; 3592 3593 // C++ [over.ics.user]p2: 3594 // The second standard conversion sequence converts the 3595 // result of the user-defined conversion to the target type 3596 // for the sequence. Since an implicit conversion sequence 3597 // is an initialization, the special rules for 3598 // initialization by user-defined conversion apply when 3599 // selecting the best user-defined conversion for a 3600 // user-defined conversion sequence (see 13.3.3 and 3601 // 13.3.3.1). 3602 User.After = Best->FinalConversion; 3603 return Result; 3604 } 3605 llvm_unreachable("Not a constructor or conversion function?"); 3606 3607 case OR_No_Viable_Function: 3608 return OR_No_Viable_Function; 3609 3610 case OR_Ambiguous: 3611 return OR_Ambiguous; 3612 } 3613 3614 llvm_unreachable("Invalid OverloadResult!"); 3615 } 3616 3617 bool 3618 Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { 3619 ImplicitConversionSequence ICS; 3620 OverloadCandidateSet CandidateSet(From->getExprLoc(), 3621 OverloadCandidateSet::CSK_Normal); 3622 OverloadingResult OvResult = 3623 IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined, 3624 CandidateSet, AllowedExplicit::None, false); 3625 3626 if (!(OvResult == OR_Ambiguous || 3627 (OvResult == OR_No_Viable_Function && !CandidateSet.empty()))) 3628 return false; 3629 3630 auto Cands = CandidateSet.CompleteCandidates( 3631 *this, 3632 OvResult == OR_Ambiguous ? OCD_AmbiguousCandidates : OCD_AllCandidates, 3633 From); 3634 if (OvResult == OR_Ambiguous) 3635 Diag(From->getBeginLoc(), diag::err_typecheck_ambiguous_condition) 3636 << From->getType() << ToType << From->getSourceRange(); 3637 else { // OR_No_Viable_Function && !CandidateSet.empty() 3638 if (!RequireCompleteType(From->getBeginLoc(), ToType, 3639 diag::err_typecheck_nonviable_condition_incomplete, 3640 From->getType(), From->getSourceRange())) 3641 Diag(From->getBeginLoc(), diag::err_typecheck_nonviable_condition) 3642 << false << From->getType() << From->getSourceRange() << ToType; 3643 } 3644 3645 CandidateSet.NoteCandidates( 3646 *this, From, Cands); 3647 return true; 3648 } 3649 3650 // Helper for compareConversionFunctions that gets the FunctionType that the 3651 // conversion-operator return value 'points' to, or nullptr. 3652 static const FunctionType * 3653 getConversionOpReturnTyAsFunction(CXXConversionDecl *Conv) { 3654 const FunctionType *ConvFuncTy = Conv->getType()->castAs<FunctionType>(); 3655 const PointerType *RetPtrTy = 3656 ConvFuncTy->getReturnType()->getAs<PointerType>(); 3657 3658 if (!RetPtrTy) 3659 return nullptr; 3660 3661 return RetPtrTy->getPointeeType()->getAs<FunctionType>(); 3662 } 3663 3664 /// Compare the user-defined conversion functions or constructors 3665 /// of two user-defined conversion sequences to determine whether any ordering 3666 /// is possible. 3667 static ImplicitConversionSequence::CompareKind 3668 compareConversionFunctions(Sema &S, FunctionDecl *Function1, 3669 FunctionDecl *Function2) { 3670 CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1); 3671 CXXConversionDecl *Conv2 = dyn_cast_or_null<CXXConversionDecl>(Function2); 3672 if (!Conv1 || !Conv2) 3673 return ImplicitConversionSequence::Indistinguishable; 3674 3675 if (!Conv1->getParent()->isLambda() || !Conv2->getParent()->isLambda()) 3676 return ImplicitConversionSequence::Indistinguishable; 3677 3678 // Objective-C++: 3679 // If both conversion functions are implicitly-declared conversions from 3680 // a lambda closure type to a function pointer and a block pointer, 3681 // respectively, always prefer the conversion to a function pointer, 3682 // because the function pointer is more lightweight and is more likely 3683 // to keep code working. 3684 if (S.getLangOpts().ObjC && S.getLangOpts().CPlusPlus11) { 3685 bool Block1 = Conv1->getConversionType()->isBlockPointerType(); 3686 bool Block2 = Conv2->getConversionType()->isBlockPointerType(); 3687 if (Block1 != Block2) 3688 return Block1 ? ImplicitConversionSequence::Worse 3689 : ImplicitConversionSequence::Better; 3690 } 3691 3692 // In order to support multiple calling conventions for the lambda conversion 3693 // operator (such as when the free and member function calling convention is 3694 // different), prefer the 'free' mechanism, followed by the calling-convention 3695 // of operator(). The latter is in place to support the MSVC-like solution of 3696 // defining ALL of the possible conversions in regards to calling-convention. 3697 const FunctionType *Conv1FuncRet = getConversionOpReturnTyAsFunction(Conv1); 3698 const FunctionType *Conv2FuncRet = getConversionOpReturnTyAsFunction(Conv2); 3699 3700 if (Conv1FuncRet && Conv2FuncRet && 3701 Conv1FuncRet->getCallConv() != Conv2FuncRet->getCallConv()) { 3702 CallingConv Conv1CC = Conv1FuncRet->getCallConv(); 3703 CallingConv Conv2CC = Conv2FuncRet->getCallConv(); 3704 3705 CXXMethodDecl *CallOp = Conv2->getParent()->getLambdaCallOperator(); 3706 const FunctionProtoType *CallOpProto = 3707 CallOp->getType()->getAs<FunctionProtoType>(); 3708 3709 CallingConv CallOpCC = 3710 CallOp->getType()->castAs<FunctionType>()->getCallConv(); 3711 CallingConv DefaultFree = S.Context.getDefaultCallingConvention( 3712 CallOpProto->isVariadic(), /*IsCXXMethod=*/false); 3713 CallingConv DefaultMember = S.Context.getDefaultCallingConvention( 3714 CallOpProto->isVariadic(), /*IsCXXMethod=*/true); 3715 3716 CallingConv PrefOrder[] = {DefaultFree, DefaultMember, CallOpCC}; 3717 for (CallingConv CC : PrefOrder) { 3718 if (Conv1CC == CC) 3719 return ImplicitConversionSequence::Better; 3720 if (Conv2CC == CC) 3721 return ImplicitConversionSequence::Worse; 3722 } 3723 } 3724 3725 return ImplicitConversionSequence::Indistinguishable; 3726 } 3727 3728 static bool hasDeprecatedStringLiteralToCharPtrConversion( 3729 const ImplicitConversionSequence &ICS) { 3730 return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) || 3731 (ICS.isUserDefined() && 3732 ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr); 3733 } 3734 3735 /// CompareImplicitConversionSequences - Compare two implicit 3736 /// conversion sequences to determine whether one is better than the 3737 /// other or if they are indistinguishable (C++ 13.3.3.2). 3738 static ImplicitConversionSequence::CompareKind 3739 CompareImplicitConversionSequences(Sema &S, SourceLocation Loc, 3740 const ImplicitConversionSequence& ICS1, 3741 const ImplicitConversionSequence& ICS2) 3742 { 3743 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit 3744 // conversion sequences (as defined in 13.3.3.1) 3745 // -- a standard conversion sequence (13.3.3.1.1) is a better 3746 // conversion sequence than a user-defined conversion sequence or 3747 // an ellipsis conversion sequence, and 3748 // -- a user-defined conversion sequence (13.3.3.1.2) is a better 3749 // conversion sequence than an ellipsis conversion sequence 3750 // (13.3.3.1.3). 3751 // 3752 // C++0x [over.best.ics]p10: 3753 // For the purpose of ranking implicit conversion sequences as 3754 // described in 13.3.3.2, the ambiguous conversion sequence is 3755 // treated as a user-defined sequence that is indistinguishable 3756 // from any other user-defined conversion sequence. 3757 3758 // String literal to 'char *' conversion has been deprecated in C++03. It has 3759 // been removed from C++11. We still accept this conversion, if it happens at 3760 // the best viable function. Otherwise, this conversion is considered worse 3761 // than ellipsis conversion. Consider this as an extension; this is not in the 3762 // standard. For example: 3763 // 3764 // int &f(...); // #1 3765 // void f(char*); // #2 3766 // void g() { int &r = f("foo"); } 3767 // 3768 // In C++03, we pick #2 as the best viable function. 3769 // In C++11, we pick #1 as the best viable function, because ellipsis 3770 // conversion is better than string-literal to char* conversion (since there 3771 // is no such conversion in C++11). If there was no #1 at all or #1 couldn't 3772 // convert arguments, #2 would be the best viable function in C++11. 3773 // If the best viable function has this conversion, a warning will be issued 3774 // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11. 3775 3776 if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings && 3777 hasDeprecatedStringLiteralToCharPtrConversion(ICS1) != 3778 hasDeprecatedStringLiteralToCharPtrConversion(ICS2)) 3779 return hasDeprecatedStringLiteralToCharPtrConversion(ICS1) 3780 ? ImplicitConversionSequence::Worse 3781 : ImplicitConversionSequence::Better; 3782 3783 if (ICS1.getKindRank() < ICS2.getKindRank()) 3784 return ImplicitConversionSequence::Better; 3785 if (ICS2.getKindRank() < ICS1.getKindRank()) 3786 return ImplicitConversionSequence::Worse; 3787 3788 // The following checks require both conversion sequences to be of 3789 // the same kind. 3790 if (ICS1.getKind() != ICS2.getKind()) 3791 return ImplicitConversionSequence::Indistinguishable; 3792 3793 ImplicitConversionSequence::CompareKind Result = 3794 ImplicitConversionSequence::Indistinguishable; 3795 3796 // Two implicit conversion sequences of the same form are 3797 // indistinguishable conversion sequences unless one of the 3798 // following rules apply: (C++ 13.3.3.2p3): 3799 3800 // List-initialization sequence L1 is a better conversion sequence than 3801 // list-initialization sequence L2 if: 3802 // - L1 converts to std::initializer_list<X> for some X and L2 does not, or, 3803 // if not that, 3804 // - L1 converts to type "array of N1 T", L2 converts to type "array of N2 T", 3805 // and N1 is smaller than N2., 3806 // even if one of the other rules in this paragraph would otherwise apply. 3807 if (!ICS1.isBad()) { 3808 if (ICS1.isStdInitializerListElement() && 3809 !ICS2.isStdInitializerListElement()) 3810 return ImplicitConversionSequence::Better; 3811 if (!ICS1.isStdInitializerListElement() && 3812 ICS2.isStdInitializerListElement()) 3813 return ImplicitConversionSequence::Worse; 3814 } 3815 3816 if (ICS1.isStandard()) 3817 // Standard conversion sequence S1 is a better conversion sequence than 3818 // standard conversion sequence S2 if [...] 3819 Result = CompareStandardConversionSequences(S, Loc, 3820 ICS1.Standard, ICS2.Standard); 3821 else if (ICS1.isUserDefined()) { 3822 // User-defined conversion sequence U1 is a better conversion 3823 // sequence than another user-defined conversion sequence U2 if 3824 // they contain the same user-defined conversion function or 3825 // constructor and if the second standard conversion sequence of 3826 // U1 is better than the second standard conversion sequence of 3827 // U2 (C++ 13.3.3.2p3). 3828 if (ICS1.UserDefined.ConversionFunction == 3829 ICS2.UserDefined.ConversionFunction) 3830 Result = CompareStandardConversionSequences(S, Loc, 3831 ICS1.UserDefined.After, 3832 ICS2.UserDefined.After); 3833 else 3834 Result = compareConversionFunctions(S, 3835 ICS1.UserDefined.ConversionFunction, 3836 ICS2.UserDefined.ConversionFunction); 3837 } 3838 3839 return Result; 3840 } 3841 3842 // Per 13.3.3.2p3, compare the given standard conversion sequences to 3843 // determine if one is a proper subset of the other. 3844 static ImplicitConversionSequence::CompareKind 3845 compareStandardConversionSubsets(ASTContext &Context, 3846 const StandardConversionSequence& SCS1, 3847 const StandardConversionSequence& SCS2) { 3848 ImplicitConversionSequence::CompareKind Result 3849 = ImplicitConversionSequence::Indistinguishable; 3850 3851 // the identity conversion sequence is considered to be a subsequence of 3852 // any non-identity conversion sequence 3853 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion()) 3854 return ImplicitConversionSequence::Better; 3855 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion()) 3856 return ImplicitConversionSequence::Worse; 3857 3858 if (SCS1.Second != SCS2.Second) { 3859 if (SCS1.Second == ICK_Identity) 3860 Result = ImplicitConversionSequence::Better; 3861 else if (SCS2.Second == ICK_Identity) 3862 Result = ImplicitConversionSequence::Worse; 3863 else 3864 return ImplicitConversionSequence::Indistinguishable; 3865 } else if (!Context.hasSimilarType(SCS1.getToType(1), SCS2.getToType(1))) 3866 return ImplicitConversionSequence::Indistinguishable; 3867 3868 if (SCS1.Third == SCS2.Third) { 3869 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result 3870 : ImplicitConversionSequence::Indistinguishable; 3871 } 3872 3873 if (SCS1.Third == ICK_Identity) 3874 return Result == ImplicitConversionSequence::Worse 3875 ? ImplicitConversionSequence::Indistinguishable 3876 : ImplicitConversionSequence::Better; 3877 3878 if (SCS2.Third == ICK_Identity) 3879 return Result == ImplicitConversionSequence::Better 3880 ? ImplicitConversionSequence::Indistinguishable 3881 : ImplicitConversionSequence::Worse; 3882 3883 return ImplicitConversionSequence::Indistinguishable; 3884 } 3885 3886 /// Determine whether one of the given reference bindings is better 3887 /// than the other based on what kind of bindings they are. 3888 static bool 3889 isBetterReferenceBindingKind(const StandardConversionSequence &SCS1, 3890 const StandardConversionSequence &SCS2) { 3891 // C++0x [over.ics.rank]p3b4: 3892 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an 3893 // implicit object parameter of a non-static member function declared 3894 // without a ref-qualifier, and *either* S1 binds an rvalue reference 3895 // to an rvalue and S2 binds an lvalue reference *or S1 binds an 3896 // lvalue reference to a function lvalue and S2 binds an rvalue 3897 // reference*. 3898 // 3899 // FIXME: Rvalue references. We're going rogue with the above edits, 3900 // because the semantics in the current C++0x working paper (N3225 at the 3901 // time of this writing) break the standard definition of std::forward 3902 // and std::reference_wrapper when dealing with references to functions. 3903 // Proposed wording changes submitted to CWG for consideration. 3904 if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier || 3905 SCS2.BindsImplicitObjectArgumentWithoutRefQualifier) 3906 return false; 3907 3908 return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue && 3909 SCS2.IsLvalueReference) || 3910 (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue && 3911 !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue); 3912 } 3913 3914 enum class FixedEnumPromotion { 3915 None, 3916 ToUnderlyingType, 3917 ToPromotedUnderlyingType 3918 }; 3919 3920 /// Returns kind of fixed enum promotion the \a SCS uses. 3921 static FixedEnumPromotion 3922 getFixedEnumPromtion(Sema &S, const StandardConversionSequence &SCS) { 3923 3924 if (SCS.Second != ICK_Integral_Promotion) 3925 return FixedEnumPromotion::None; 3926 3927 QualType FromType = SCS.getFromType(); 3928 if (!FromType->isEnumeralType()) 3929 return FixedEnumPromotion::None; 3930 3931 EnumDecl *Enum = FromType->castAs<EnumType>()->getDecl(); 3932 if (!Enum->isFixed()) 3933 return FixedEnumPromotion::None; 3934 3935 QualType UnderlyingType = Enum->getIntegerType(); 3936 if (S.Context.hasSameType(SCS.getToType(1), UnderlyingType)) 3937 return FixedEnumPromotion::ToUnderlyingType; 3938 3939 return FixedEnumPromotion::ToPromotedUnderlyingType; 3940 } 3941 3942 /// CompareStandardConversionSequences - Compare two standard 3943 /// conversion sequences to determine whether one is better than the 3944 /// other or if they are indistinguishable (C++ 13.3.3.2p3). 3945 static ImplicitConversionSequence::CompareKind 3946 CompareStandardConversionSequences(Sema &S, SourceLocation Loc, 3947 const StandardConversionSequence& SCS1, 3948 const StandardConversionSequence& SCS2) 3949 { 3950 // Standard conversion sequence S1 is a better conversion sequence 3951 // than standard conversion sequence S2 if (C++ 13.3.3.2p3): 3952 3953 // -- S1 is a proper subsequence of S2 (comparing the conversion 3954 // sequences in the canonical form defined by 13.3.3.1.1, 3955 // excluding any Lvalue Transformation; the identity conversion 3956 // sequence is considered to be a subsequence of any 3957 // non-identity conversion sequence) or, if not that, 3958 if (ImplicitConversionSequence::CompareKind CK 3959 = compareStandardConversionSubsets(S.Context, SCS1, SCS2)) 3960 return CK; 3961 3962 // -- the rank of S1 is better than the rank of S2 (by the rules 3963 // defined below), or, if not that, 3964 ImplicitConversionRank Rank1 = SCS1.getRank(); 3965 ImplicitConversionRank Rank2 = SCS2.getRank(); 3966 if (Rank1 < Rank2) 3967 return ImplicitConversionSequence::Better; 3968 else if (Rank2 < Rank1) 3969 return ImplicitConversionSequence::Worse; 3970 3971 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank 3972 // are indistinguishable unless one of the following rules 3973 // applies: 3974 3975 // A conversion that is not a conversion of a pointer, or 3976 // pointer to member, to bool is better than another conversion 3977 // that is such a conversion. 3978 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) 3979 return SCS2.isPointerConversionToBool() 3980 ? ImplicitConversionSequence::Better 3981 : ImplicitConversionSequence::Worse; 3982 3983 // C++14 [over.ics.rank]p4b2: 3984 // This is retroactively applied to C++11 by CWG 1601. 3985 // 3986 // A conversion that promotes an enumeration whose underlying type is fixed 3987 // to its underlying type is better than one that promotes to the promoted 3988 // underlying type, if the two are different. 3989 FixedEnumPromotion FEP1 = getFixedEnumPromtion(S, SCS1); 3990 FixedEnumPromotion FEP2 = getFixedEnumPromtion(S, SCS2); 3991 if (FEP1 != FixedEnumPromotion::None && FEP2 != FixedEnumPromotion::None && 3992 FEP1 != FEP2) 3993 return FEP1 == FixedEnumPromotion::ToUnderlyingType 3994 ? ImplicitConversionSequence::Better 3995 : ImplicitConversionSequence::Worse; 3996 3997 // C++ [over.ics.rank]p4b2: 3998 // 3999 // If class B is derived directly or indirectly from class A, 4000 // conversion of B* to A* is better than conversion of B* to 4001 // void*, and conversion of A* to void* is better than conversion 4002 // of B* to void*. 4003 bool SCS1ConvertsToVoid 4004 = SCS1.isPointerConversionToVoidPointer(S.Context); 4005 bool SCS2ConvertsToVoid 4006 = SCS2.isPointerConversionToVoidPointer(S.Context); 4007 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { 4008 // Exactly one of the conversion sequences is a conversion to 4009 // a void pointer; it's the worse conversion. 4010 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better 4011 : ImplicitConversionSequence::Worse; 4012 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { 4013 // Neither conversion sequence converts to a void pointer; compare 4014 // their derived-to-base conversions. 4015 if (ImplicitConversionSequence::CompareKind DerivedCK 4016 = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2)) 4017 return DerivedCK; 4018 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid && 4019 !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) { 4020 // Both conversion sequences are conversions to void 4021 // pointers. Compare the source types to determine if there's an 4022 // inheritance relationship in their sources. 4023 QualType FromType1 = SCS1.getFromType(); 4024 QualType FromType2 = SCS2.getFromType(); 4025 4026 // Adjust the types we're converting from via the array-to-pointer 4027 // conversion, if we need to. 4028 if (SCS1.First == ICK_Array_To_Pointer) 4029 FromType1 = S.Context.getArrayDecayedType(FromType1); 4030 if (SCS2.First == ICK_Array_To_Pointer) 4031 FromType2 = S.Context.getArrayDecayedType(FromType2); 4032 4033 QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType(); 4034 QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType(); 4035 4036 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) 4037 return ImplicitConversionSequence::Better; 4038 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) 4039 return ImplicitConversionSequence::Worse; 4040 4041 // Objective-C++: If one interface is more specific than the 4042 // other, it is the better one. 4043 const ObjCObjectPointerType* FromObjCPtr1 4044 = FromType1->getAs<ObjCObjectPointerType>(); 4045 const ObjCObjectPointerType* FromObjCPtr2 4046 = FromType2->getAs<ObjCObjectPointerType>(); 4047 if (FromObjCPtr1 && FromObjCPtr2) { 4048 bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1, 4049 FromObjCPtr2); 4050 bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2, 4051 FromObjCPtr1); 4052 if (AssignLeft != AssignRight) { 4053 return AssignLeft? ImplicitConversionSequence::Better 4054 : ImplicitConversionSequence::Worse; 4055 } 4056 } 4057 } 4058 4059 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 4060 // Check for a better reference binding based on the kind of bindings. 4061 if (isBetterReferenceBindingKind(SCS1, SCS2)) 4062 return ImplicitConversionSequence::Better; 4063 else if (isBetterReferenceBindingKind(SCS2, SCS1)) 4064 return ImplicitConversionSequence::Worse; 4065 } 4066 4067 // Compare based on qualification conversions (C++ 13.3.3.2p3, 4068 // bullet 3). 4069 if (ImplicitConversionSequence::CompareKind QualCK 4070 = CompareQualificationConversions(S, SCS1, SCS2)) 4071 return QualCK; 4072 4073 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 4074 // C++ [over.ics.rank]p3b4: 4075 // -- S1 and S2 are reference bindings (8.5.3), and the types to 4076 // which the references refer are the same type except for 4077 // top-level cv-qualifiers, and the type to which the reference 4078 // initialized by S2 refers is more cv-qualified than the type 4079 // to which the reference initialized by S1 refers. 4080 QualType T1 = SCS1.getToType(2); 4081 QualType T2 = SCS2.getToType(2); 4082 T1 = S.Context.getCanonicalType(T1); 4083 T2 = S.Context.getCanonicalType(T2); 4084 Qualifiers T1Quals, T2Quals; 4085 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); 4086 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); 4087 if (UnqualT1 == UnqualT2) { 4088 // Objective-C++ ARC: If the references refer to objects with different 4089 // lifetimes, prefer bindings that don't change lifetime. 4090 if (SCS1.ObjCLifetimeConversionBinding != 4091 SCS2.ObjCLifetimeConversionBinding) { 4092 return SCS1.ObjCLifetimeConversionBinding 4093 ? ImplicitConversionSequence::Worse 4094 : ImplicitConversionSequence::Better; 4095 } 4096 4097 // If the type is an array type, promote the element qualifiers to the 4098 // type for comparison. 4099 if (isa<ArrayType>(T1) && T1Quals) 4100 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); 4101 if (isa<ArrayType>(T2) && T2Quals) 4102 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); 4103 if (T2.isMoreQualifiedThan(T1)) 4104 return ImplicitConversionSequence::Better; 4105 if (T1.isMoreQualifiedThan(T2)) 4106 return ImplicitConversionSequence::Worse; 4107 } 4108 } 4109 4110 // In Microsoft mode (below 19.28), prefer an integral conversion to a 4111 // floating-to-integral conversion if the integral conversion 4112 // is between types of the same size. 4113 // For example: 4114 // void f(float); 4115 // void f(int); 4116 // int main { 4117 // long a; 4118 // f(a); 4119 // } 4120 // Here, MSVC will call f(int) instead of generating a compile error 4121 // as clang will do in standard mode. 4122 if (S.getLangOpts().MSVCCompat && 4123 !S.getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2019_8) && 4124 SCS1.Second == ICK_Integral_Conversion && 4125 SCS2.Second == ICK_Floating_Integral && 4126 S.Context.getTypeSize(SCS1.getFromType()) == 4127 S.Context.getTypeSize(SCS1.getToType(2))) 4128 return ImplicitConversionSequence::Better; 4129 4130 // Prefer a compatible vector conversion over a lax vector conversion 4131 // For example: 4132 // 4133 // typedef float __v4sf __attribute__((__vector_size__(16))); 4134 // void f(vector float); 4135 // void f(vector signed int); 4136 // int main() { 4137 // __v4sf a; 4138 // f(a); 4139 // } 4140 // Here, we'd like to choose f(vector float) and not 4141 // report an ambiguous call error 4142 if (SCS1.Second == ICK_Vector_Conversion && 4143 SCS2.Second == ICK_Vector_Conversion) { 4144 bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes( 4145 SCS1.getFromType(), SCS1.getToType(2)); 4146 bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes( 4147 SCS2.getFromType(), SCS2.getToType(2)); 4148 4149 if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion) 4150 return SCS1IsCompatibleVectorConversion 4151 ? ImplicitConversionSequence::Better 4152 : ImplicitConversionSequence::Worse; 4153 } 4154 4155 if (SCS1.Second == ICK_SVE_Vector_Conversion && 4156 SCS2.Second == ICK_SVE_Vector_Conversion) { 4157 bool SCS1IsCompatibleSVEVectorConversion = 4158 S.Context.areCompatibleSveTypes(SCS1.getFromType(), SCS1.getToType(2)); 4159 bool SCS2IsCompatibleSVEVectorConversion = 4160 S.Context.areCompatibleSveTypes(SCS2.getFromType(), SCS2.getToType(2)); 4161 4162 if (SCS1IsCompatibleSVEVectorConversion != 4163 SCS2IsCompatibleSVEVectorConversion) 4164 return SCS1IsCompatibleSVEVectorConversion 4165 ? ImplicitConversionSequence::Better 4166 : ImplicitConversionSequence::Worse; 4167 } 4168 4169 return ImplicitConversionSequence::Indistinguishable; 4170 } 4171 4172 /// CompareQualificationConversions - Compares two standard conversion 4173 /// sequences to determine whether they can be ranked based on their 4174 /// qualification conversions (C++ 13.3.3.2p3 bullet 3). 4175 static ImplicitConversionSequence::CompareKind 4176 CompareQualificationConversions(Sema &S, 4177 const StandardConversionSequence& SCS1, 4178 const StandardConversionSequence& SCS2) { 4179 // C++ 13.3.3.2p3: 4180 // -- S1 and S2 differ only in their qualification conversion and 4181 // yield similar types T1 and T2 (C++ 4.4), respectively, and the 4182 // cv-qualification signature of type T1 is a proper subset of 4183 // the cv-qualification signature of type T2, and S1 is not the 4184 // deprecated string literal array-to-pointer conversion (4.2). 4185 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || 4186 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) 4187 return ImplicitConversionSequence::Indistinguishable; 4188 4189 // FIXME: the example in the standard doesn't use a qualification 4190 // conversion (!) 4191 QualType T1 = SCS1.getToType(2); 4192 QualType T2 = SCS2.getToType(2); 4193 T1 = S.Context.getCanonicalType(T1); 4194 T2 = S.Context.getCanonicalType(T2); 4195 assert(!T1->isReferenceType() && !T2->isReferenceType()); 4196 Qualifiers T1Quals, T2Quals; 4197 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); 4198 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); 4199 4200 // If the types are the same, we won't learn anything by unwrapping 4201 // them. 4202 if (UnqualT1 == UnqualT2) 4203 return ImplicitConversionSequence::Indistinguishable; 4204 4205 ImplicitConversionSequence::CompareKind Result 4206 = ImplicitConversionSequence::Indistinguishable; 4207 4208 // Objective-C++ ARC: 4209 // Prefer qualification conversions not involving a change in lifetime 4210 // to qualification conversions that do not change lifetime. 4211 if (SCS1.QualificationIncludesObjCLifetime != 4212 SCS2.QualificationIncludesObjCLifetime) { 4213 Result = SCS1.QualificationIncludesObjCLifetime 4214 ? ImplicitConversionSequence::Worse 4215 : ImplicitConversionSequence::Better; 4216 } 4217 4218 while (S.Context.UnwrapSimilarTypes(T1, T2)) { 4219 // Within each iteration of the loop, we check the qualifiers to 4220 // determine if this still looks like a qualification 4221 // conversion. Then, if all is well, we unwrap one more level of 4222 // pointers or pointers-to-members and do it all again 4223 // until there are no more pointers or pointers-to-members left 4224 // to unwrap. This essentially mimics what 4225 // IsQualificationConversion does, but here we're checking for a 4226 // strict subset of qualifiers. 4227 if (T1.getQualifiers().withoutObjCLifetime() == 4228 T2.getQualifiers().withoutObjCLifetime()) 4229 // The qualifiers are the same, so this doesn't tell us anything 4230 // about how the sequences rank. 4231 // ObjC ownership quals are omitted above as they interfere with 4232 // the ARC overload rule. 4233 ; 4234 else if (T2.isMoreQualifiedThan(T1)) { 4235 // T1 has fewer qualifiers, so it could be the better sequence. 4236 if (Result == ImplicitConversionSequence::Worse) 4237 // Neither has qualifiers that are a subset of the other's 4238 // qualifiers. 4239 return ImplicitConversionSequence::Indistinguishable; 4240 4241 Result = ImplicitConversionSequence::Better; 4242 } else if (T1.isMoreQualifiedThan(T2)) { 4243 // T2 has fewer qualifiers, so it could be the better sequence. 4244 if (Result == ImplicitConversionSequence::Better) 4245 // Neither has qualifiers that are a subset of the other's 4246 // qualifiers. 4247 return ImplicitConversionSequence::Indistinguishable; 4248 4249 Result = ImplicitConversionSequence::Worse; 4250 } else { 4251 // Qualifiers are disjoint. 4252 return ImplicitConversionSequence::Indistinguishable; 4253 } 4254 4255 // If the types after this point are equivalent, we're done. 4256 if (S.Context.hasSameUnqualifiedType(T1, T2)) 4257 break; 4258 } 4259 4260 // Check that the winning standard conversion sequence isn't using 4261 // the deprecated string literal array to pointer conversion. 4262 switch (Result) { 4263 case ImplicitConversionSequence::Better: 4264 if (SCS1.DeprecatedStringLiteralToCharPtr) 4265 Result = ImplicitConversionSequence::Indistinguishable; 4266 break; 4267 4268 case ImplicitConversionSequence::Indistinguishable: 4269 break; 4270 4271 case ImplicitConversionSequence::Worse: 4272 if (SCS2.DeprecatedStringLiteralToCharPtr) 4273 Result = ImplicitConversionSequence::Indistinguishable; 4274 break; 4275 } 4276 4277 return Result; 4278 } 4279 4280 /// CompareDerivedToBaseConversions - Compares two standard conversion 4281 /// sequences to determine whether they can be ranked based on their 4282 /// various kinds of derived-to-base conversions (C++ 4283 /// [over.ics.rank]p4b3). As part of these checks, we also look at 4284 /// conversions between Objective-C interface types. 4285 static ImplicitConversionSequence::CompareKind 4286 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc, 4287 const StandardConversionSequence& SCS1, 4288 const StandardConversionSequence& SCS2) { 4289 QualType FromType1 = SCS1.getFromType(); 4290 QualType ToType1 = SCS1.getToType(1); 4291 QualType FromType2 = SCS2.getFromType(); 4292 QualType ToType2 = SCS2.getToType(1); 4293 4294 // Adjust the types we're converting from via the array-to-pointer 4295 // conversion, if we need to. 4296 if (SCS1.First == ICK_Array_To_Pointer) 4297 FromType1 = S.Context.getArrayDecayedType(FromType1); 4298 if (SCS2.First == ICK_Array_To_Pointer) 4299 FromType2 = S.Context.getArrayDecayedType(FromType2); 4300 4301 // Canonicalize all of the types. 4302 FromType1 = S.Context.getCanonicalType(FromType1); 4303 ToType1 = S.Context.getCanonicalType(ToType1); 4304 FromType2 = S.Context.getCanonicalType(FromType2); 4305 ToType2 = S.Context.getCanonicalType(ToType2); 4306 4307 // C++ [over.ics.rank]p4b3: 4308 // 4309 // If class B is derived directly or indirectly from class A and 4310 // class C is derived directly or indirectly from B, 4311 // 4312 // Compare based on pointer conversions. 4313 if (SCS1.Second == ICK_Pointer_Conversion && 4314 SCS2.Second == ICK_Pointer_Conversion && 4315 /*FIXME: Remove if Objective-C id conversions get their own rank*/ 4316 FromType1->isPointerType() && FromType2->isPointerType() && 4317 ToType1->isPointerType() && ToType2->isPointerType()) { 4318 QualType FromPointee1 = 4319 FromType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); 4320 QualType ToPointee1 = 4321 ToType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); 4322 QualType FromPointee2 = 4323 FromType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); 4324 QualType ToPointee2 = 4325 ToType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); 4326 4327 // -- conversion of C* to B* is better than conversion of C* to A*, 4328 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 4329 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2)) 4330 return ImplicitConversionSequence::Better; 4331 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1)) 4332 return ImplicitConversionSequence::Worse; 4333 } 4334 4335 // -- conversion of B* to A* is better than conversion of C* to A*, 4336 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { 4337 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) 4338 return ImplicitConversionSequence::Better; 4339 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) 4340 return ImplicitConversionSequence::Worse; 4341 } 4342 } else if (SCS1.Second == ICK_Pointer_Conversion && 4343 SCS2.Second == ICK_Pointer_Conversion) { 4344 const ObjCObjectPointerType *FromPtr1 4345 = FromType1->getAs<ObjCObjectPointerType>(); 4346 const ObjCObjectPointerType *FromPtr2 4347 = FromType2->getAs<ObjCObjectPointerType>(); 4348 const ObjCObjectPointerType *ToPtr1 4349 = ToType1->getAs<ObjCObjectPointerType>(); 4350 const ObjCObjectPointerType *ToPtr2 4351 = ToType2->getAs<ObjCObjectPointerType>(); 4352 4353 if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) { 4354 // Apply the same conversion ranking rules for Objective-C pointer types 4355 // that we do for C++ pointers to class types. However, we employ the 4356 // Objective-C pseudo-subtyping relationship used for assignment of 4357 // Objective-C pointer types. 4358 bool FromAssignLeft 4359 = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2); 4360 bool FromAssignRight 4361 = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1); 4362 bool ToAssignLeft 4363 = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2); 4364 bool ToAssignRight 4365 = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1); 4366 4367 // A conversion to an a non-id object pointer type or qualified 'id' 4368 // type is better than a conversion to 'id'. 4369 if (ToPtr1->isObjCIdType() && 4370 (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl())) 4371 return ImplicitConversionSequence::Worse; 4372 if (ToPtr2->isObjCIdType() && 4373 (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl())) 4374 return ImplicitConversionSequence::Better; 4375 4376 // A conversion to a non-id object pointer type is better than a 4377 // conversion to a qualified 'id' type 4378 if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl()) 4379 return ImplicitConversionSequence::Worse; 4380 if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl()) 4381 return ImplicitConversionSequence::Better; 4382 4383 // A conversion to an a non-Class object pointer type or qualified 'Class' 4384 // type is better than a conversion to 'Class'. 4385 if (ToPtr1->isObjCClassType() && 4386 (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl())) 4387 return ImplicitConversionSequence::Worse; 4388 if (ToPtr2->isObjCClassType() && 4389 (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl())) 4390 return ImplicitConversionSequence::Better; 4391 4392 // A conversion to a non-Class object pointer type is better than a 4393 // conversion to a qualified 'Class' type. 4394 if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl()) 4395 return ImplicitConversionSequence::Worse; 4396 if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl()) 4397 return ImplicitConversionSequence::Better; 4398 4399 // -- "conversion of C* to B* is better than conversion of C* to A*," 4400 if (S.Context.hasSameType(FromType1, FromType2) && 4401 !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() && 4402 (ToAssignLeft != ToAssignRight)) { 4403 if (FromPtr1->isSpecialized()) { 4404 // "conversion of B<A> * to B * is better than conversion of B * to 4405 // C *. 4406 bool IsFirstSame = 4407 FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl(); 4408 bool IsSecondSame = 4409 FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl(); 4410 if (IsFirstSame) { 4411 if (!IsSecondSame) 4412 return ImplicitConversionSequence::Better; 4413 } else if (IsSecondSame) 4414 return ImplicitConversionSequence::Worse; 4415 } 4416 return ToAssignLeft? ImplicitConversionSequence::Worse 4417 : ImplicitConversionSequence::Better; 4418 } 4419 4420 // -- "conversion of B* to A* is better than conversion of C* to A*," 4421 if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) && 4422 (FromAssignLeft != FromAssignRight)) 4423 return FromAssignLeft? ImplicitConversionSequence::Better 4424 : ImplicitConversionSequence::Worse; 4425 } 4426 } 4427 4428 // Ranking of member-pointer types. 4429 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && 4430 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && 4431 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { 4432 const auto *FromMemPointer1 = FromType1->castAs<MemberPointerType>(); 4433 const auto *ToMemPointer1 = ToType1->castAs<MemberPointerType>(); 4434 const auto *FromMemPointer2 = FromType2->castAs<MemberPointerType>(); 4435 const auto *ToMemPointer2 = ToType2->castAs<MemberPointerType>(); 4436 const Type *FromPointeeType1 = FromMemPointer1->getClass(); 4437 const Type *ToPointeeType1 = ToMemPointer1->getClass(); 4438 const Type *FromPointeeType2 = FromMemPointer2->getClass(); 4439 const Type *ToPointeeType2 = ToMemPointer2->getClass(); 4440 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); 4441 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); 4442 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); 4443 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); 4444 // conversion of A::* to B::* is better than conversion of A::* to C::*, 4445 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 4446 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2)) 4447 return ImplicitConversionSequence::Worse; 4448 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1)) 4449 return ImplicitConversionSequence::Better; 4450 } 4451 // conversion of B::* to C::* is better than conversion of A::* to C::* 4452 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { 4453 if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) 4454 return ImplicitConversionSequence::Better; 4455 else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) 4456 return ImplicitConversionSequence::Worse; 4457 } 4458 } 4459 4460 if (SCS1.Second == ICK_Derived_To_Base) { 4461 // -- conversion of C to B is better than conversion of C to A, 4462 // -- binding of an expression of type C to a reference of type 4463 // B& is better than binding an expression of type C to a 4464 // reference of type A&, 4465 if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) && 4466 !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { 4467 if (S.IsDerivedFrom(Loc, ToType1, ToType2)) 4468 return ImplicitConversionSequence::Better; 4469 else if (S.IsDerivedFrom(Loc, ToType2, ToType1)) 4470 return ImplicitConversionSequence::Worse; 4471 } 4472 4473 // -- conversion of B to A is better than conversion of C to A. 4474 // -- binding of an expression of type B to a reference of type 4475 // A& is better than binding an expression of type C to a 4476 // reference of type A&, 4477 if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) && 4478 S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { 4479 if (S.IsDerivedFrom(Loc, FromType2, FromType1)) 4480 return ImplicitConversionSequence::Better; 4481 else if (S.IsDerivedFrom(Loc, FromType1, FromType2)) 4482 return ImplicitConversionSequence::Worse; 4483 } 4484 } 4485 4486 return ImplicitConversionSequence::Indistinguishable; 4487 } 4488 4489 /// Determine whether the given type is valid, e.g., it is not an invalid 4490 /// C++ class. 4491 static bool isTypeValid(QualType T) { 4492 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) 4493 return !Record->isInvalidDecl(); 4494 4495 return true; 4496 } 4497 4498 static QualType withoutUnaligned(ASTContext &Ctx, QualType T) { 4499 if (!T.getQualifiers().hasUnaligned()) 4500 return T; 4501 4502 Qualifiers Q; 4503 T = Ctx.getUnqualifiedArrayType(T, Q); 4504 Q.removeUnaligned(); 4505 return Ctx.getQualifiedType(T, Q); 4506 } 4507 4508 /// CompareReferenceRelationship - Compare the two types T1 and T2 to 4509 /// determine whether they are reference-compatible, 4510 /// reference-related, or incompatible, for use in C++ initialization by 4511 /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference 4512 /// type, and the first type (T1) is the pointee type of the reference 4513 /// type being initialized. 4514 Sema::ReferenceCompareResult 4515 Sema::CompareReferenceRelationship(SourceLocation Loc, 4516 QualType OrigT1, QualType OrigT2, 4517 ReferenceConversions *ConvOut) { 4518 assert(!OrigT1->isReferenceType() && 4519 "T1 must be the pointee type of the reference type"); 4520 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type"); 4521 4522 QualType T1 = Context.getCanonicalType(OrigT1); 4523 QualType T2 = Context.getCanonicalType(OrigT2); 4524 Qualifiers T1Quals, T2Quals; 4525 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 4526 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 4527 4528 ReferenceConversions ConvTmp; 4529 ReferenceConversions &Conv = ConvOut ? *ConvOut : ConvTmp; 4530 Conv = ReferenceConversions(); 4531 4532 // C++2a [dcl.init.ref]p4: 4533 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is 4534 // reference-related to "cv2 T2" if T1 is similar to T2, or 4535 // T1 is a base class of T2. 4536 // "cv1 T1" is reference-compatible with "cv2 T2" if 4537 // a prvalue of type "pointer to cv2 T2" can be converted to the type 4538 // "pointer to cv1 T1" via a standard conversion sequence. 4539 4540 // Check for standard conversions we can apply to pointers: derived-to-base 4541 // conversions, ObjC pointer conversions, and function pointer conversions. 4542 // (Qualification conversions are checked last.) 4543 QualType ConvertedT2; 4544 if (UnqualT1 == UnqualT2) { 4545 // Nothing to do. 4546 } else if (isCompleteType(Loc, OrigT2) && 4547 isTypeValid(UnqualT1) && isTypeValid(UnqualT2) && 4548 IsDerivedFrom(Loc, UnqualT2, UnqualT1)) 4549 Conv |= ReferenceConversions::DerivedToBase; 4550 else if (UnqualT1->isObjCObjectOrInterfaceType() && 4551 UnqualT2->isObjCObjectOrInterfaceType() && 4552 Context.canBindObjCObjectType(UnqualT1, UnqualT2)) 4553 Conv |= ReferenceConversions::ObjC; 4554 else if (UnqualT2->isFunctionType() && 4555 IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2)) { 4556 Conv |= ReferenceConversions::Function; 4557 // No need to check qualifiers; function types don't have them. 4558 return Ref_Compatible; 4559 } 4560 bool ConvertedReferent = Conv != 0; 4561 4562 // We can have a qualification conversion. Compute whether the types are 4563 // similar at the same time. 4564 bool PreviousToQualsIncludeConst = true; 4565 bool TopLevel = true; 4566 do { 4567 if (T1 == T2) 4568 break; 4569 4570 // We will need a qualification conversion. 4571 Conv |= ReferenceConversions::Qualification; 4572 4573 // Track whether we performed a qualification conversion anywhere other 4574 // than the top level. This matters for ranking reference bindings in 4575 // overload resolution. 4576 if (!TopLevel) 4577 Conv |= ReferenceConversions::NestedQualification; 4578 4579 // MS compiler ignores __unaligned qualifier for references; do the same. 4580 T1 = withoutUnaligned(Context, T1); 4581 T2 = withoutUnaligned(Context, T2); 4582 4583 // If we find a qualifier mismatch, the types are not reference-compatible, 4584 // but are still be reference-related if they're similar. 4585 bool ObjCLifetimeConversion = false; 4586 if (!isQualificationConversionStep(T2, T1, /*CStyle=*/false, TopLevel, 4587 PreviousToQualsIncludeConst, 4588 ObjCLifetimeConversion)) 4589 return (ConvertedReferent || Context.hasSimilarType(T1, T2)) 4590 ? Ref_Related 4591 : Ref_Incompatible; 4592 4593 // FIXME: Should we track this for any level other than the first? 4594 if (ObjCLifetimeConversion) 4595 Conv |= ReferenceConversions::ObjCLifetime; 4596 4597 TopLevel = false; 4598 } while (Context.UnwrapSimilarTypes(T1, T2)); 4599 4600 // At this point, if the types are reference-related, we must either have the 4601 // same inner type (ignoring qualifiers), or must have already worked out how 4602 // to convert the referent. 4603 return (ConvertedReferent || Context.hasSameUnqualifiedType(T1, T2)) 4604 ? Ref_Compatible 4605 : Ref_Incompatible; 4606 } 4607 4608 /// Look for a user-defined conversion to a value reference-compatible 4609 /// with DeclType. Return true if something definite is found. 4610 static bool 4611 FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS, 4612 QualType DeclType, SourceLocation DeclLoc, 4613 Expr *Init, QualType T2, bool AllowRvalues, 4614 bool AllowExplicit) { 4615 assert(T2->isRecordType() && "Can only find conversions of record types."); 4616 auto *T2RecordDecl = cast<CXXRecordDecl>(T2->castAs<RecordType>()->getDecl()); 4617 4618 OverloadCandidateSet CandidateSet( 4619 DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion); 4620 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); 4621 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 4622 NamedDecl *D = *I; 4623 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 4624 if (isa<UsingShadowDecl>(D)) 4625 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4626 4627 FunctionTemplateDecl *ConvTemplate 4628 = dyn_cast<FunctionTemplateDecl>(D); 4629 CXXConversionDecl *Conv; 4630 if (ConvTemplate) 4631 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 4632 else 4633 Conv = cast<CXXConversionDecl>(D); 4634 4635 if (AllowRvalues) { 4636 // If we are initializing an rvalue reference, don't permit conversion 4637 // functions that return lvalues. 4638 if (!ConvTemplate && DeclType->isRValueReferenceType()) { 4639 const ReferenceType *RefType 4640 = Conv->getConversionType()->getAs<LValueReferenceType>(); 4641 if (RefType && !RefType->getPointeeType()->isFunctionType()) 4642 continue; 4643 } 4644 4645 if (!ConvTemplate && 4646 S.CompareReferenceRelationship( 4647 DeclLoc, 4648 Conv->getConversionType() 4649 .getNonReferenceType() 4650 .getUnqualifiedType(), 4651 DeclType.getNonReferenceType().getUnqualifiedType()) == 4652 Sema::Ref_Incompatible) 4653 continue; 4654 } else { 4655 // If the conversion function doesn't return a reference type, 4656 // it can't be considered for this conversion. An rvalue reference 4657 // is only acceptable if its referencee is a function type. 4658 4659 const ReferenceType *RefType = 4660 Conv->getConversionType()->getAs<ReferenceType>(); 4661 if (!RefType || 4662 (!RefType->isLValueReferenceType() && 4663 !RefType->getPointeeType()->isFunctionType())) 4664 continue; 4665 } 4666 4667 if (ConvTemplate) 4668 S.AddTemplateConversionCandidate( 4669 ConvTemplate, I.getPair(), ActingDC, Init, DeclType, CandidateSet, 4670 /*AllowObjCConversionOnExplicit=*/false, AllowExplicit); 4671 else 4672 S.AddConversionCandidate( 4673 Conv, I.getPair(), ActingDC, Init, DeclType, CandidateSet, 4674 /*AllowObjCConversionOnExplicit=*/false, AllowExplicit); 4675 } 4676 4677 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4678 4679 OverloadCandidateSet::iterator Best; 4680 switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) { 4681 case OR_Success: 4682 // C++ [over.ics.ref]p1: 4683 // 4684 // [...] If the parameter binds directly to the result of 4685 // applying a conversion function to the argument 4686 // expression, the implicit conversion sequence is a 4687 // user-defined conversion sequence (13.3.3.1.2), with the 4688 // second standard conversion sequence either an identity 4689 // conversion or, if the conversion function returns an 4690 // entity of a type that is a derived class of the parameter 4691 // type, a derived-to-base Conversion. 4692 if (!Best->FinalConversion.DirectBinding) 4693 return false; 4694 4695 ICS.setUserDefined(); 4696 ICS.UserDefined.Before = Best->Conversions[0].Standard; 4697 ICS.UserDefined.After = Best->FinalConversion; 4698 ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates; 4699 ICS.UserDefined.ConversionFunction = Best->Function; 4700 ICS.UserDefined.FoundConversionFunction = Best->FoundDecl; 4701 ICS.UserDefined.EllipsisConversion = false; 4702 assert(ICS.UserDefined.After.ReferenceBinding && 4703 ICS.UserDefined.After.DirectBinding && 4704 "Expected a direct reference binding!"); 4705 return true; 4706 4707 case OR_Ambiguous: 4708 ICS.setAmbiguous(); 4709 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 4710 Cand != CandidateSet.end(); ++Cand) 4711 if (Cand->Best) 4712 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function); 4713 return true; 4714 4715 case OR_No_Viable_Function: 4716 case OR_Deleted: 4717 // There was no suitable conversion, or we found a deleted 4718 // conversion; continue with other checks. 4719 return false; 4720 } 4721 4722 llvm_unreachable("Invalid OverloadResult!"); 4723 } 4724 4725 /// Compute an implicit conversion sequence for reference 4726 /// initialization. 4727 static ImplicitConversionSequence 4728 TryReferenceInit(Sema &S, Expr *Init, QualType DeclType, 4729 SourceLocation DeclLoc, 4730 bool SuppressUserConversions, 4731 bool AllowExplicit) { 4732 assert(DeclType->isReferenceType() && "Reference init needs a reference"); 4733 4734 // Most paths end in a failed conversion. 4735 ImplicitConversionSequence ICS; 4736 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 4737 4738 QualType T1 = DeclType->castAs<ReferenceType>()->getPointeeType(); 4739 QualType T2 = Init->getType(); 4740 4741 // If the initializer is the address of an overloaded function, try 4742 // to resolve the overloaded function. If all goes well, T2 is the 4743 // type of the resulting function. 4744 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { 4745 DeclAccessPair Found; 4746 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType, 4747 false, Found)) 4748 T2 = Fn->getType(); 4749 } 4750 4751 // Compute some basic properties of the types and the initializer. 4752 bool isRValRef = DeclType->isRValueReferenceType(); 4753 Expr::Classification InitCategory = Init->Classify(S.Context); 4754 4755 Sema::ReferenceConversions RefConv; 4756 Sema::ReferenceCompareResult RefRelationship = 4757 S.CompareReferenceRelationship(DeclLoc, T1, T2, &RefConv); 4758 4759 auto SetAsReferenceBinding = [&](bool BindsDirectly) { 4760 ICS.setStandard(); 4761 ICS.Standard.First = ICK_Identity; 4762 // FIXME: A reference binding can be a function conversion too. We should 4763 // consider that when ordering reference-to-function bindings. 4764 ICS.Standard.Second = (RefConv & Sema::ReferenceConversions::DerivedToBase) 4765 ? ICK_Derived_To_Base 4766 : (RefConv & Sema::ReferenceConversions::ObjC) 4767 ? ICK_Compatible_Conversion 4768 : ICK_Identity; 4769 // FIXME: As a speculative fix to a defect introduced by CWG2352, we rank 4770 // a reference binding that performs a non-top-level qualification 4771 // conversion as a qualification conversion, not as an identity conversion. 4772 ICS.Standard.Third = (RefConv & 4773 Sema::ReferenceConversions::NestedQualification) 4774 ? ICK_Qualification 4775 : ICK_Identity; 4776 ICS.Standard.setFromType(T2); 4777 ICS.Standard.setToType(0, T2); 4778 ICS.Standard.setToType(1, T1); 4779 ICS.Standard.setToType(2, T1); 4780 ICS.Standard.ReferenceBinding = true; 4781 ICS.Standard.DirectBinding = BindsDirectly; 4782 ICS.Standard.IsLvalueReference = !isRValRef; 4783 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 4784 ICS.Standard.BindsToRvalue = InitCategory.isRValue(); 4785 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 4786 ICS.Standard.ObjCLifetimeConversionBinding = 4787 (RefConv & Sema::ReferenceConversions::ObjCLifetime) != 0; 4788 ICS.Standard.CopyConstructor = nullptr; 4789 ICS.Standard.DeprecatedStringLiteralToCharPtr = false; 4790 }; 4791 4792 // C++0x [dcl.init.ref]p5: 4793 // A reference to type "cv1 T1" is initialized by an expression 4794 // of type "cv2 T2" as follows: 4795 4796 // -- If reference is an lvalue reference and the initializer expression 4797 if (!isRValRef) { 4798 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is 4799 // reference-compatible with "cv2 T2," or 4800 // 4801 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here. 4802 if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) { 4803 // C++ [over.ics.ref]p1: 4804 // When a parameter of reference type binds directly (8.5.3) 4805 // to an argument expression, the implicit conversion sequence 4806 // is the identity conversion, unless the argument expression 4807 // has a type that is a derived class of the parameter type, 4808 // in which case the implicit conversion sequence is a 4809 // derived-to-base Conversion (13.3.3.1). 4810 SetAsReferenceBinding(/*BindsDirectly=*/true); 4811 4812 // Nothing more to do: the inaccessibility/ambiguity check for 4813 // derived-to-base conversions is suppressed when we're 4814 // computing the implicit conversion sequence (C++ 4815 // [over.best.ics]p2). 4816 return ICS; 4817 } 4818 4819 // -- has a class type (i.e., T2 is a class type), where T1 is 4820 // not reference-related to T2, and can be implicitly 4821 // converted to an lvalue of type "cv3 T3," where "cv1 T1" 4822 // is reference-compatible with "cv3 T3" 92) (this 4823 // conversion is selected by enumerating the applicable 4824 // conversion functions (13.3.1.6) and choosing the best 4825 // one through overload resolution (13.3)), 4826 if (!SuppressUserConversions && T2->isRecordType() && 4827 S.isCompleteType(DeclLoc, T2) && 4828 RefRelationship == Sema::Ref_Incompatible) { 4829 if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 4830 Init, T2, /*AllowRvalues=*/false, 4831 AllowExplicit)) 4832 return ICS; 4833 } 4834 } 4835 4836 // -- Otherwise, the reference shall be an lvalue reference to a 4837 // non-volatile const type (i.e., cv1 shall be const), or the reference 4838 // shall be an rvalue reference. 4839 if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified())) { 4840 if (InitCategory.isRValue() && RefRelationship != Sema::Ref_Incompatible) 4841 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType); 4842 return ICS; 4843 } 4844 4845 // -- If the initializer expression 4846 // 4847 // -- is an xvalue, class prvalue, array prvalue or function 4848 // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or 4849 if (RefRelationship == Sema::Ref_Compatible && 4850 (InitCategory.isXValue() || 4851 (InitCategory.isPRValue() && 4852 (T2->isRecordType() || T2->isArrayType())) || 4853 (InitCategory.isLValue() && T2->isFunctionType()))) { 4854 // In C++11, this is always a direct binding. In C++98/03, it's a direct 4855 // binding unless we're binding to a class prvalue. 4856 // Note: Although xvalues wouldn't normally show up in C++98/03 code, we 4857 // allow the use of rvalue references in C++98/03 for the benefit of 4858 // standard library implementors; therefore, we need the xvalue check here. 4859 SetAsReferenceBinding(/*BindsDirectly=*/S.getLangOpts().CPlusPlus11 || 4860 !(InitCategory.isPRValue() || T2->isRecordType())); 4861 return ICS; 4862 } 4863 4864 // -- has a class type (i.e., T2 is a class type), where T1 is not 4865 // reference-related to T2, and can be implicitly converted to 4866 // an xvalue, class prvalue, or function lvalue of type 4867 // "cv3 T3", where "cv1 T1" is reference-compatible with 4868 // "cv3 T3", 4869 // 4870 // then the reference is bound to the value of the initializer 4871 // expression in the first case and to the result of the conversion 4872 // in the second case (or, in either case, to an appropriate base 4873 // class subobject). 4874 if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 4875 T2->isRecordType() && S.isCompleteType(DeclLoc, T2) && 4876 FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 4877 Init, T2, /*AllowRvalues=*/true, 4878 AllowExplicit)) { 4879 // In the second case, if the reference is an rvalue reference 4880 // and the second standard conversion sequence of the 4881 // user-defined conversion sequence includes an lvalue-to-rvalue 4882 // conversion, the program is ill-formed. 4883 if (ICS.isUserDefined() && isRValRef && 4884 ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue) 4885 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 4886 4887 return ICS; 4888 } 4889 4890 // A temporary of function type cannot be created; don't even try. 4891 if (T1->isFunctionType()) 4892 return ICS; 4893 4894 // -- Otherwise, a temporary of type "cv1 T1" is created and 4895 // initialized from the initializer expression using the 4896 // rules for a non-reference copy initialization (8.5). The 4897 // reference is then bound to the temporary. If T1 is 4898 // reference-related to T2, cv1 must be the same 4899 // cv-qualification as, or greater cv-qualification than, 4900 // cv2; otherwise, the program is ill-formed. 4901 if (RefRelationship == Sema::Ref_Related) { 4902 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then 4903 // we would be reference-compatible or reference-compatible with 4904 // added qualification. But that wasn't the case, so the reference 4905 // initialization fails. 4906 // 4907 // Note that we only want to check address spaces and cvr-qualifiers here. 4908 // ObjC GC, lifetime and unaligned qualifiers aren't important. 4909 Qualifiers T1Quals = T1.getQualifiers(); 4910 Qualifiers T2Quals = T2.getQualifiers(); 4911 T1Quals.removeObjCGCAttr(); 4912 T1Quals.removeObjCLifetime(); 4913 T2Quals.removeObjCGCAttr(); 4914 T2Quals.removeObjCLifetime(); 4915 // MS compiler ignores __unaligned qualifier for references; do the same. 4916 T1Quals.removeUnaligned(); 4917 T2Quals.removeUnaligned(); 4918 if (!T1Quals.compatiblyIncludes(T2Quals)) 4919 return ICS; 4920 } 4921 4922 // If at least one of the types is a class type, the types are not 4923 // related, and we aren't allowed any user conversions, the 4924 // reference binding fails. This case is important for breaking 4925 // recursion, since TryImplicitConversion below will attempt to 4926 // create a temporary through the use of a copy constructor. 4927 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 4928 (T1->isRecordType() || T2->isRecordType())) 4929 return ICS; 4930 4931 // If T1 is reference-related to T2 and the reference is an rvalue 4932 // reference, the initializer expression shall not be an lvalue. 4933 if (RefRelationship >= Sema::Ref_Related && isRValRef && 4934 Init->Classify(S.Context).isLValue()) { 4935 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, Init, DeclType); 4936 return ICS; 4937 } 4938 4939 // C++ [over.ics.ref]p2: 4940 // When a parameter of reference type is not bound directly to 4941 // an argument expression, the conversion sequence is the one 4942 // required to convert the argument expression to the 4943 // underlying type of the reference according to 4944 // 13.3.3.1. Conceptually, this conversion sequence corresponds 4945 // to copy-initializing a temporary of the underlying type with 4946 // the argument expression. Any difference in top-level 4947 // cv-qualification is subsumed by the initialization itself 4948 // and does not constitute a conversion. 4949 ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions, 4950 AllowedExplicit::None, 4951 /*InOverloadResolution=*/false, 4952 /*CStyle=*/false, 4953 /*AllowObjCWritebackConversion=*/false, 4954 /*AllowObjCConversionOnExplicit=*/false); 4955 4956 // Of course, that's still a reference binding. 4957 if (ICS.isStandard()) { 4958 ICS.Standard.ReferenceBinding = true; 4959 ICS.Standard.IsLvalueReference = !isRValRef; 4960 ICS.Standard.BindsToFunctionLvalue = false; 4961 ICS.Standard.BindsToRvalue = true; 4962 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 4963 ICS.Standard.ObjCLifetimeConversionBinding = false; 4964 } else if (ICS.isUserDefined()) { 4965 const ReferenceType *LValRefType = 4966 ICS.UserDefined.ConversionFunction->getReturnType() 4967 ->getAs<LValueReferenceType>(); 4968 4969 // C++ [over.ics.ref]p3: 4970 // Except for an implicit object parameter, for which see 13.3.1, a 4971 // standard conversion sequence cannot be formed if it requires [...] 4972 // binding an rvalue reference to an lvalue other than a function 4973 // lvalue. 4974 // Note that the function case is not possible here. 4975 if (isRValRef && LValRefType) { 4976 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 4977 return ICS; 4978 } 4979 4980 ICS.UserDefined.After.ReferenceBinding = true; 4981 ICS.UserDefined.After.IsLvalueReference = !isRValRef; 4982 ICS.UserDefined.After.BindsToFunctionLvalue = false; 4983 ICS.UserDefined.After.BindsToRvalue = !LValRefType; 4984 ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false; 4985 ICS.UserDefined.After.ObjCLifetimeConversionBinding = false; 4986 } 4987 4988 return ICS; 4989 } 4990 4991 static ImplicitConversionSequence 4992 TryCopyInitialization(Sema &S, Expr *From, QualType ToType, 4993 bool SuppressUserConversions, 4994 bool InOverloadResolution, 4995 bool AllowObjCWritebackConversion, 4996 bool AllowExplicit = false); 4997 4998 /// TryListConversion - Try to copy-initialize a value of type ToType from the 4999 /// initializer list From. 5000 static ImplicitConversionSequence 5001 TryListConversion(Sema &S, InitListExpr *From, QualType ToType, 5002 bool SuppressUserConversions, 5003 bool InOverloadResolution, 5004 bool AllowObjCWritebackConversion) { 5005 // C++11 [over.ics.list]p1: 5006 // When an argument is an initializer list, it is not an expression and 5007 // special rules apply for converting it to a parameter type. 5008 5009 ImplicitConversionSequence Result; 5010 Result.setBad(BadConversionSequence::no_conversion, From, ToType); 5011 5012 // We need a complete type for what follows. Incomplete types can never be 5013 // initialized from init lists. 5014 if (!S.isCompleteType(From->getBeginLoc(), ToType)) 5015 return Result; 5016 5017 // Per DR1467: 5018 // If the parameter type is a class X and the initializer list has a single 5019 // element of type cv U, where U is X or a class derived from X, the 5020 // implicit conversion sequence is the one required to convert the element 5021 // to the parameter type. 5022 // 5023 // Otherwise, if the parameter type is a character array [... ] 5024 // and the initializer list has a single element that is an 5025 // appropriately-typed string literal (8.5.2 [dcl.init.string]), the 5026 // implicit conversion sequence is the identity conversion. 5027 if (From->getNumInits() == 1) { 5028 if (ToType->isRecordType()) { 5029 QualType InitType = From->getInit(0)->getType(); 5030 if (S.Context.hasSameUnqualifiedType(InitType, ToType) || 5031 S.IsDerivedFrom(From->getBeginLoc(), InitType, ToType)) 5032 return TryCopyInitialization(S, From->getInit(0), ToType, 5033 SuppressUserConversions, 5034 InOverloadResolution, 5035 AllowObjCWritebackConversion); 5036 } 5037 5038 if (const auto *AT = S.Context.getAsArrayType(ToType)) { 5039 if (S.IsStringInit(From->getInit(0), AT)) { 5040 InitializedEntity Entity = 5041 InitializedEntity::InitializeParameter(S.Context, ToType, 5042 /*Consumed=*/false); 5043 if (S.CanPerformCopyInitialization(Entity, From)) { 5044 Result.setStandard(); 5045 Result.Standard.setAsIdentityConversion(); 5046 Result.Standard.setFromType(ToType); 5047 Result.Standard.setAllToTypes(ToType); 5048 return Result; 5049 } 5050 } 5051 } 5052 } 5053 5054 // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below). 5055 // C++11 [over.ics.list]p2: 5056 // If the parameter type is std::initializer_list<X> or "array of X" and 5057 // all the elements can be implicitly converted to X, the implicit 5058 // conversion sequence is the worst conversion necessary to convert an 5059 // element of the list to X. 5060 // 5061 // C++14 [over.ics.list]p3: 5062 // Otherwise, if the parameter type is "array of N X", if the initializer 5063 // list has exactly N elements or if it has fewer than N elements and X is 5064 // default-constructible, and if all the elements of the initializer list 5065 // can be implicitly converted to X, the implicit conversion sequence is 5066 // the worst conversion necessary to convert an element of the list to X. 5067 // 5068 // FIXME: We're missing a lot of these checks. 5069 bool toStdInitializerList = false; 5070 QualType X; 5071 if (ToType->isArrayType()) 5072 X = S.Context.getAsArrayType(ToType)->getElementType(); 5073 else 5074 toStdInitializerList = S.isStdInitializerList(ToType, &X); 5075 if (!X.isNull()) { 5076 for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) { 5077 Expr *Init = From->getInit(i); 5078 ImplicitConversionSequence ICS = 5079 TryCopyInitialization(S, Init, X, SuppressUserConversions, 5080 InOverloadResolution, 5081 AllowObjCWritebackConversion); 5082 // If a single element isn't convertible, fail. 5083 if (ICS.isBad()) { 5084 Result = ICS; 5085 break; 5086 } 5087 // Otherwise, look for the worst conversion. 5088 if (Result.isBad() || CompareImplicitConversionSequences( 5089 S, From->getBeginLoc(), ICS, Result) == 5090 ImplicitConversionSequence::Worse) 5091 Result = ICS; 5092 } 5093 5094 // For an empty list, we won't have computed any conversion sequence. 5095 // Introduce the identity conversion sequence. 5096 if (From->getNumInits() == 0) { 5097 Result.setStandard(); 5098 Result.Standard.setAsIdentityConversion(); 5099 Result.Standard.setFromType(ToType); 5100 Result.Standard.setAllToTypes(ToType); 5101 } 5102 5103 Result.setStdInitializerListElement(toStdInitializerList); 5104 return Result; 5105 } 5106 5107 // C++14 [over.ics.list]p4: 5108 // C++11 [over.ics.list]p3: 5109 // Otherwise, if the parameter is a non-aggregate class X and overload 5110 // resolution chooses a single best constructor [...] the implicit 5111 // conversion sequence is a user-defined conversion sequence. If multiple 5112 // constructors are viable but none is better than the others, the 5113 // implicit conversion sequence is a user-defined conversion sequence. 5114 if (ToType->isRecordType() && !ToType->isAggregateType()) { 5115 // This function can deal with initializer lists. 5116 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, 5117 AllowedExplicit::None, 5118 InOverloadResolution, /*CStyle=*/false, 5119 AllowObjCWritebackConversion, 5120 /*AllowObjCConversionOnExplicit=*/false); 5121 } 5122 5123 // C++14 [over.ics.list]p5: 5124 // C++11 [over.ics.list]p4: 5125 // Otherwise, if the parameter has an aggregate type which can be 5126 // initialized from the initializer list [...] the implicit conversion 5127 // sequence is a user-defined conversion sequence. 5128 if (ToType->isAggregateType()) { 5129 // Type is an aggregate, argument is an init list. At this point it comes 5130 // down to checking whether the initialization works. 5131 // FIXME: Find out whether this parameter is consumed or not. 5132 InitializedEntity Entity = 5133 InitializedEntity::InitializeParameter(S.Context, ToType, 5134 /*Consumed=*/false); 5135 if (S.CanPerformAggregateInitializationForOverloadResolution(Entity, 5136 From)) { 5137 Result.setUserDefined(); 5138 Result.UserDefined.Before.setAsIdentityConversion(); 5139 // Initializer lists don't have a type. 5140 Result.UserDefined.Before.setFromType(QualType()); 5141 Result.UserDefined.Before.setAllToTypes(QualType()); 5142 5143 Result.UserDefined.After.setAsIdentityConversion(); 5144 Result.UserDefined.After.setFromType(ToType); 5145 Result.UserDefined.After.setAllToTypes(ToType); 5146 Result.UserDefined.ConversionFunction = nullptr; 5147 } 5148 return Result; 5149 } 5150 5151 // C++14 [over.ics.list]p6: 5152 // C++11 [over.ics.list]p5: 5153 // Otherwise, if the parameter is a reference, see 13.3.3.1.4. 5154 if (ToType->isReferenceType()) { 5155 // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't 5156 // mention initializer lists in any way. So we go by what list- 5157 // initialization would do and try to extrapolate from that. 5158 5159 QualType T1 = ToType->castAs<ReferenceType>()->getPointeeType(); 5160 5161 // If the initializer list has a single element that is reference-related 5162 // to the parameter type, we initialize the reference from that. 5163 if (From->getNumInits() == 1) { 5164 Expr *Init = From->getInit(0); 5165 5166 QualType T2 = Init->getType(); 5167 5168 // If the initializer is the address of an overloaded function, try 5169 // to resolve the overloaded function. If all goes well, T2 is the 5170 // type of the resulting function. 5171 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { 5172 DeclAccessPair Found; 5173 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction( 5174 Init, ToType, false, Found)) 5175 T2 = Fn->getType(); 5176 } 5177 5178 // Compute some basic properties of the types and the initializer. 5179 Sema::ReferenceCompareResult RefRelationship = 5180 S.CompareReferenceRelationship(From->getBeginLoc(), T1, T2); 5181 5182 if (RefRelationship >= Sema::Ref_Related) { 5183 return TryReferenceInit(S, Init, ToType, /*FIXME*/ From->getBeginLoc(), 5184 SuppressUserConversions, 5185 /*AllowExplicit=*/false); 5186 } 5187 } 5188 5189 // Otherwise, we bind the reference to a temporary created from the 5190 // initializer list. 5191 Result = TryListConversion(S, From, T1, SuppressUserConversions, 5192 InOverloadResolution, 5193 AllowObjCWritebackConversion); 5194 if (Result.isFailure()) 5195 return Result; 5196 assert(!Result.isEllipsis() && 5197 "Sub-initialization cannot result in ellipsis conversion."); 5198 5199 // Can we even bind to a temporary? 5200 if (ToType->isRValueReferenceType() || 5201 (T1.isConstQualified() && !T1.isVolatileQualified())) { 5202 StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard : 5203 Result.UserDefined.After; 5204 SCS.ReferenceBinding = true; 5205 SCS.IsLvalueReference = ToType->isLValueReferenceType(); 5206 SCS.BindsToRvalue = true; 5207 SCS.BindsToFunctionLvalue = false; 5208 SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false; 5209 SCS.ObjCLifetimeConversionBinding = false; 5210 } else 5211 Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue, 5212 From, ToType); 5213 return Result; 5214 } 5215 5216 // C++14 [over.ics.list]p7: 5217 // C++11 [over.ics.list]p6: 5218 // Otherwise, if the parameter type is not a class: 5219 if (!ToType->isRecordType()) { 5220 // - if the initializer list has one element that is not itself an 5221 // initializer list, the implicit conversion sequence is the one 5222 // required to convert the element to the parameter type. 5223 unsigned NumInits = From->getNumInits(); 5224 if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0))) 5225 Result = TryCopyInitialization(S, From->getInit(0), ToType, 5226 SuppressUserConversions, 5227 InOverloadResolution, 5228 AllowObjCWritebackConversion); 5229 // - if the initializer list has no elements, the implicit conversion 5230 // sequence is the identity conversion. 5231 else if (NumInits == 0) { 5232 Result.setStandard(); 5233 Result.Standard.setAsIdentityConversion(); 5234 Result.Standard.setFromType(ToType); 5235 Result.Standard.setAllToTypes(ToType); 5236 } 5237 return Result; 5238 } 5239 5240 // C++14 [over.ics.list]p8: 5241 // C++11 [over.ics.list]p7: 5242 // In all cases other than those enumerated above, no conversion is possible 5243 return Result; 5244 } 5245 5246 /// TryCopyInitialization - Try to copy-initialize a value of type 5247 /// ToType from the expression From. Return the implicit conversion 5248 /// sequence required to pass this argument, which may be a bad 5249 /// conversion sequence (meaning that the argument cannot be passed to 5250 /// a parameter of this type). If @p SuppressUserConversions, then we 5251 /// do not permit any user-defined conversion sequences. 5252 static ImplicitConversionSequence 5253 TryCopyInitialization(Sema &S, Expr *From, QualType ToType, 5254 bool SuppressUserConversions, 5255 bool InOverloadResolution, 5256 bool AllowObjCWritebackConversion, 5257 bool AllowExplicit) { 5258 if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From)) 5259 return TryListConversion(S, FromInitList, ToType, SuppressUserConversions, 5260 InOverloadResolution,AllowObjCWritebackConversion); 5261 5262 if (ToType->isReferenceType()) 5263 return TryReferenceInit(S, From, ToType, 5264 /*FIXME:*/ From->getBeginLoc(), 5265 SuppressUserConversions, AllowExplicit); 5266 5267 return TryImplicitConversion(S, From, ToType, 5268 SuppressUserConversions, 5269 AllowedExplicit::None, 5270 InOverloadResolution, 5271 /*CStyle=*/false, 5272 AllowObjCWritebackConversion, 5273 /*AllowObjCConversionOnExplicit=*/false); 5274 } 5275 5276 static bool TryCopyInitialization(const CanQualType FromQTy, 5277 const CanQualType ToQTy, 5278 Sema &S, 5279 SourceLocation Loc, 5280 ExprValueKind FromVK) { 5281 OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK); 5282 ImplicitConversionSequence ICS = 5283 TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false); 5284 5285 return !ICS.isBad(); 5286 } 5287 5288 /// TryObjectArgumentInitialization - Try to initialize the object 5289 /// parameter of the given member function (@c Method) from the 5290 /// expression @p From. 5291 static ImplicitConversionSequence 5292 TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType, 5293 Expr::Classification FromClassification, 5294 CXXMethodDecl *Method, 5295 CXXRecordDecl *ActingContext) { 5296 QualType ClassType = S.Context.getTypeDeclType(ActingContext); 5297 // [class.dtor]p2: A destructor can be invoked for a const, volatile or 5298 // const volatile object. 5299 Qualifiers Quals = Method->getMethodQualifiers(); 5300 if (isa<CXXDestructorDecl>(Method)) { 5301 Quals.addConst(); 5302 Quals.addVolatile(); 5303 } 5304 5305 QualType ImplicitParamType = S.Context.getQualifiedType(ClassType, Quals); 5306 5307 // Set up the conversion sequence as a "bad" conversion, to allow us 5308 // to exit early. 5309 ImplicitConversionSequence ICS; 5310 5311 // We need to have an object of class type. 5312 if (const PointerType *PT = FromType->getAs<PointerType>()) { 5313 FromType = PT->getPointeeType(); 5314 5315 // When we had a pointer, it's implicitly dereferenced, so we 5316 // better have an lvalue. 5317 assert(FromClassification.isLValue()); 5318 } 5319 5320 assert(FromType->isRecordType()); 5321 5322 // C++0x [over.match.funcs]p4: 5323 // For non-static member functions, the type of the implicit object 5324 // parameter is 5325 // 5326 // - "lvalue reference to cv X" for functions declared without a 5327 // ref-qualifier or with the & ref-qualifier 5328 // - "rvalue reference to cv X" for functions declared with the && 5329 // ref-qualifier 5330 // 5331 // where X is the class of which the function is a member and cv is the 5332 // cv-qualification on the member function declaration. 5333 // 5334 // However, when finding an implicit conversion sequence for the argument, we 5335 // are not allowed to perform user-defined conversions 5336 // (C++ [over.match.funcs]p5). We perform a simplified version of 5337 // reference binding here, that allows class rvalues to bind to 5338 // non-constant references. 5339 5340 // First check the qualifiers. 5341 QualType FromTypeCanon = S.Context.getCanonicalType(FromType); 5342 if (ImplicitParamType.getCVRQualifiers() 5343 != FromTypeCanon.getLocalCVRQualifiers() && 5344 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) { 5345 ICS.setBad(BadConversionSequence::bad_qualifiers, 5346 FromType, ImplicitParamType); 5347 return ICS; 5348 } 5349 5350 if (FromTypeCanon.hasAddressSpace()) { 5351 Qualifiers QualsImplicitParamType = ImplicitParamType.getQualifiers(); 5352 Qualifiers QualsFromType = FromTypeCanon.getQualifiers(); 5353 if (!QualsImplicitParamType.isAddressSpaceSupersetOf(QualsFromType)) { 5354 ICS.setBad(BadConversionSequence::bad_qualifiers, 5355 FromType, ImplicitParamType); 5356 return ICS; 5357 } 5358 } 5359 5360 // Check that we have either the same type or a derived type. It 5361 // affects the conversion rank. 5362 QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType); 5363 ImplicitConversionKind SecondKind; 5364 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { 5365 SecondKind = ICK_Identity; 5366 } else if (S.IsDerivedFrom(Loc, FromType, ClassType)) 5367 SecondKind = ICK_Derived_To_Base; 5368 else { 5369 ICS.setBad(BadConversionSequence::unrelated_class, 5370 FromType, ImplicitParamType); 5371 return ICS; 5372 } 5373 5374 // Check the ref-qualifier. 5375 switch (Method->getRefQualifier()) { 5376 case RQ_None: 5377 // Do nothing; we don't care about lvalueness or rvalueness. 5378 break; 5379 5380 case RQ_LValue: 5381 if (!FromClassification.isLValue() && !Quals.hasOnlyConst()) { 5382 // non-const lvalue reference cannot bind to an rvalue 5383 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType, 5384 ImplicitParamType); 5385 return ICS; 5386 } 5387 break; 5388 5389 case RQ_RValue: 5390 if (!FromClassification.isRValue()) { 5391 // rvalue reference cannot bind to an lvalue 5392 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType, 5393 ImplicitParamType); 5394 return ICS; 5395 } 5396 break; 5397 } 5398 5399 // Success. Mark this as a reference binding. 5400 ICS.setStandard(); 5401 ICS.Standard.setAsIdentityConversion(); 5402 ICS.Standard.Second = SecondKind; 5403 ICS.Standard.setFromType(FromType); 5404 ICS.Standard.setAllToTypes(ImplicitParamType); 5405 ICS.Standard.ReferenceBinding = true; 5406 ICS.Standard.DirectBinding = true; 5407 ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue; 5408 ICS.Standard.BindsToFunctionLvalue = false; 5409 ICS.Standard.BindsToRvalue = FromClassification.isRValue(); 5410 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier 5411 = (Method->getRefQualifier() == RQ_None); 5412 return ICS; 5413 } 5414 5415 /// PerformObjectArgumentInitialization - Perform initialization of 5416 /// the implicit object parameter for the given Method with the given 5417 /// expression. 5418 ExprResult 5419 Sema::PerformObjectArgumentInitialization(Expr *From, 5420 NestedNameSpecifier *Qualifier, 5421 NamedDecl *FoundDecl, 5422 CXXMethodDecl *Method) { 5423 QualType FromRecordType, DestType; 5424 QualType ImplicitParamRecordType = 5425 Method->getThisType()->castAs<PointerType>()->getPointeeType(); 5426 5427 Expr::Classification FromClassification; 5428 if (const PointerType *PT = From->getType()->getAs<PointerType>()) { 5429 FromRecordType = PT->getPointeeType(); 5430 DestType = Method->getThisType(); 5431 FromClassification = Expr::Classification::makeSimpleLValue(); 5432 } else { 5433 FromRecordType = From->getType(); 5434 DestType = ImplicitParamRecordType; 5435 FromClassification = From->Classify(Context); 5436 5437 // When performing member access on a prvalue, materialize a temporary. 5438 if (From->isPRValue()) { 5439 From = CreateMaterializeTemporaryExpr(FromRecordType, From, 5440 Method->getRefQualifier() != 5441 RefQualifierKind::RQ_RValue); 5442 } 5443 } 5444 5445 // Note that we always use the true parent context when performing 5446 // the actual argument initialization. 5447 ImplicitConversionSequence ICS = TryObjectArgumentInitialization( 5448 *this, From->getBeginLoc(), From->getType(), FromClassification, Method, 5449 Method->getParent()); 5450 if (ICS.isBad()) { 5451 switch (ICS.Bad.Kind) { 5452 case BadConversionSequence::bad_qualifiers: { 5453 Qualifiers FromQs = FromRecordType.getQualifiers(); 5454 Qualifiers ToQs = DestType.getQualifiers(); 5455 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 5456 if (CVR) { 5457 Diag(From->getBeginLoc(), diag::err_member_function_call_bad_cvr) 5458 << Method->getDeclName() << FromRecordType << (CVR - 1) 5459 << From->getSourceRange(); 5460 Diag(Method->getLocation(), diag::note_previous_decl) 5461 << Method->getDeclName(); 5462 return ExprError(); 5463 } 5464 break; 5465 } 5466 5467 case BadConversionSequence::lvalue_ref_to_rvalue: 5468 case BadConversionSequence::rvalue_ref_to_lvalue: { 5469 bool IsRValueQualified = 5470 Method->getRefQualifier() == RefQualifierKind::RQ_RValue; 5471 Diag(From->getBeginLoc(), diag::err_member_function_call_bad_ref) 5472 << Method->getDeclName() << FromClassification.isRValue() 5473 << IsRValueQualified; 5474 Diag(Method->getLocation(), diag::note_previous_decl) 5475 << Method->getDeclName(); 5476 return ExprError(); 5477 } 5478 5479 case BadConversionSequence::no_conversion: 5480 case BadConversionSequence::unrelated_class: 5481 break; 5482 } 5483 5484 return Diag(From->getBeginLoc(), diag::err_member_function_call_bad_type) 5485 << ImplicitParamRecordType << FromRecordType 5486 << From->getSourceRange(); 5487 } 5488 5489 if (ICS.Standard.Second == ICK_Derived_To_Base) { 5490 ExprResult FromRes = 5491 PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method); 5492 if (FromRes.isInvalid()) 5493 return ExprError(); 5494 From = FromRes.get(); 5495 } 5496 5497 if (!Context.hasSameType(From->getType(), DestType)) { 5498 CastKind CK; 5499 QualType PteeTy = DestType->getPointeeType(); 5500 LangAS DestAS = 5501 PteeTy.isNull() ? DestType.getAddressSpace() : PteeTy.getAddressSpace(); 5502 if (FromRecordType.getAddressSpace() != DestAS) 5503 CK = CK_AddressSpaceConversion; 5504 else 5505 CK = CK_NoOp; 5506 From = ImpCastExprToType(From, DestType, CK, From->getValueKind()).get(); 5507 } 5508 return From; 5509 } 5510 5511 /// TryContextuallyConvertToBool - Attempt to contextually convert the 5512 /// expression From to bool (C++0x [conv]p3). 5513 static ImplicitConversionSequence 5514 TryContextuallyConvertToBool(Sema &S, Expr *From) { 5515 // C++ [dcl.init]/17.8: 5516 // - Otherwise, if the initialization is direct-initialization, the source 5517 // type is std::nullptr_t, and the destination type is bool, the initial 5518 // value of the object being initialized is false. 5519 if (From->getType()->isNullPtrType()) 5520 return ImplicitConversionSequence::getNullptrToBool(From->getType(), 5521 S.Context.BoolTy, 5522 From->isGLValue()); 5523 5524 // All other direct-initialization of bool is equivalent to an implicit 5525 // conversion to bool in which explicit conversions are permitted. 5526 return TryImplicitConversion(S, From, S.Context.BoolTy, 5527 /*SuppressUserConversions=*/false, 5528 AllowedExplicit::Conversions, 5529 /*InOverloadResolution=*/false, 5530 /*CStyle=*/false, 5531 /*AllowObjCWritebackConversion=*/false, 5532 /*AllowObjCConversionOnExplicit=*/false); 5533 } 5534 5535 /// PerformContextuallyConvertToBool - Perform a contextual conversion 5536 /// of the expression From to bool (C++0x [conv]p3). 5537 ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) { 5538 if (checkPlaceholderForOverload(*this, From)) 5539 return ExprError(); 5540 5541 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From); 5542 if (!ICS.isBad()) 5543 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); 5544 5545 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) 5546 return Diag(From->getBeginLoc(), diag::err_typecheck_bool_condition) 5547 << From->getType() << From->getSourceRange(); 5548 return ExprError(); 5549 } 5550 5551 /// Check that the specified conversion is permitted in a converted constant 5552 /// expression, according to C++11 [expr.const]p3. Return true if the conversion 5553 /// is acceptable. 5554 static bool CheckConvertedConstantConversions(Sema &S, 5555 StandardConversionSequence &SCS) { 5556 // Since we know that the target type is an integral or unscoped enumeration 5557 // type, most conversion kinds are impossible. All possible First and Third 5558 // conversions are fine. 5559 switch (SCS.Second) { 5560 case ICK_Identity: 5561 case ICK_Integral_Promotion: 5562 case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere. 5563 case ICK_Zero_Queue_Conversion: 5564 return true; 5565 5566 case ICK_Boolean_Conversion: 5567 // Conversion from an integral or unscoped enumeration type to bool is 5568 // classified as ICK_Boolean_Conversion, but it's also arguably an integral 5569 // conversion, so we allow it in a converted constant expression. 5570 // 5571 // FIXME: Per core issue 1407, we should not allow this, but that breaks 5572 // a lot of popular code. We should at least add a warning for this 5573 // (non-conforming) extension. 5574 return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() && 5575 SCS.getToType(2)->isBooleanType(); 5576 5577 case ICK_Pointer_Conversion: 5578 case ICK_Pointer_Member: 5579 // C++1z: null pointer conversions and null member pointer conversions are 5580 // only permitted if the source type is std::nullptr_t. 5581 return SCS.getFromType()->isNullPtrType(); 5582 5583 case ICK_Floating_Promotion: 5584 case ICK_Complex_Promotion: 5585 case ICK_Floating_Conversion: 5586 case ICK_Complex_Conversion: 5587 case ICK_Floating_Integral: 5588 case ICK_Compatible_Conversion: 5589 case ICK_Derived_To_Base: 5590 case ICK_Vector_Conversion: 5591 case ICK_SVE_Vector_Conversion: 5592 case ICK_Vector_Splat: 5593 case ICK_Complex_Real: 5594 case ICK_Block_Pointer_Conversion: 5595 case ICK_TransparentUnionConversion: 5596 case ICK_Writeback_Conversion: 5597 case ICK_Zero_Event_Conversion: 5598 case ICK_C_Only_Conversion: 5599 case ICK_Incompatible_Pointer_Conversion: 5600 return false; 5601 5602 case ICK_Lvalue_To_Rvalue: 5603 case ICK_Array_To_Pointer: 5604 case ICK_Function_To_Pointer: 5605 llvm_unreachable("found a first conversion kind in Second"); 5606 5607 case ICK_Function_Conversion: 5608 case ICK_Qualification: 5609 llvm_unreachable("found a third conversion kind in Second"); 5610 5611 case ICK_Num_Conversion_Kinds: 5612 break; 5613 } 5614 5615 llvm_unreachable("unknown conversion kind"); 5616 } 5617 5618 /// CheckConvertedConstantExpression - Check that the expression From is a 5619 /// converted constant expression of type T, perform the conversion and produce 5620 /// the converted expression, per C++11 [expr.const]p3. 5621 static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From, 5622 QualType T, APValue &Value, 5623 Sema::CCEKind CCE, 5624 bool RequireInt, 5625 NamedDecl *Dest) { 5626 assert(S.getLangOpts().CPlusPlus11 && 5627 "converted constant expression outside C++11"); 5628 5629 if (checkPlaceholderForOverload(S, From)) 5630 return ExprError(); 5631 5632 // C++1z [expr.const]p3: 5633 // A converted constant expression of type T is an expression, 5634 // implicitly converted to type T, where the converted 5635 // expression is a constant expression and the implicit conversion 5636 // sequence contains only [... list of conversions ...]. 5637 ImplicitConversionSequence ICS = 5638 CCE == Sema::CCEK_ExplicitBool 5639 ? TryContextuallyConvertToBool(S, From) 5640 : TryCopyInitialization(S, From, T, 5641 /*SuppressUserConversions=*/false, 5642 /*InOverloadResolution=*/false, 5643 /*AllowObjCWritebackConversion=*/false, 5644 /*AllowExplicit=*/false); 5645 StandardConversionSequence *SCS = nullptr; 5646 switch (ICS.getKind()) { 5647 case ImplicitConversionSequence::StandardConversion: 5648 SCS = &ICS.Standard; 5649 break; 5650 case ImplicitConversionSequence::UserDefinedConversion: 5651 if (T->isRecordType()) 5652 SCS = &ICS.UserDefined.Before; 5653 else 5654 SCS = &ICS.UserDefined.After; 5655 break; 5656 case ImplicitConversionSequence::AmbiguousConversion: 5657 case ImplicitConversionSequence::BadConversion: 5658 if (!S.DiagnoseMultipleUserDefinedConversion(From, T)) 5659 return S.Diag(From->getBeginLoc(), 5660 diag::err_typecheck_converted_constant_expression) 5661 << From->getType() << From->getSourceRange() << T; 5662 return ExprError(); 5663 5664 case ImplicitConversionSequence::EllipsisConversion: 5665 llvm_unreachable("ellipsis conversion in converted constant expression"); 5666 } 5667 5668 // Check that we would only use permitted conversions. 5669 if (!CheckConvertedConstantConversions(S, *SCS)) { 5670 return S.Diag(From->getBeginLoc(), 5671 diag::err_typecheck_converted_constant_expression_disallowed) 5672 << From->getType() << From->getSourceRange() << T; 5673 } 5674 // [...] and where the reference binding (if any) binds directly. 5675 if (SCS->ReferenceBinding && !SCS->DirectBinding) { 5676 return S.Diag(From->getBeginLoc(), 5677 diag::err_typecheck_converted_constant_expression_indirect) 5678 << From->getType() << From->getSourceRange() << T; 5679 } 5680 5681 // Usually we can simply apply the ImplicitConversionSequence we formed 5682 // earlier, but that's not guaranteed to work when initializing an object of 5683 // class type. 5684 ExprResult Result; 5685 if (T->isRecordType()) { 5686 assert(CCE == Sema::CCEK_TemplateArg && 5687 "unexpected class type converted constant expr"); 5688 Result = S.PerformCopyInitialization( 5689 InitializedEntity::InitializeTemplateParameter( 5690 T, cast<NonTypeTemplateParmDecl>(Dest)), 5691 SourceLocation(), From); 5692 } else { 5693 Result = S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting); 5694 } 5695 if (Result.isInvalid()) 5696 return Result; 5697 5698 // C++2a [intro.execution]p5: 5699 // A full-expression is [...] a constant-expression [...] 5700 Result = 5701 S.ActOnFinishFullExpr(Result.get(), From->getExprLoc(), 5702 /*DiscardedValue=*/false, /*IsConstexpr=*/true); 5703 if (Result.isInvalid()) 5704 return Result; 5705 5706 // Check for a narrowing implicit conversion. 5707 bool ReturnPreNarrowingValue = false; 5708 APValue PreNarrowingValue; 5709 QualType PreNarrowingType; 5710 switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue, 5711 PreNarrowingType)) { 5712 case NK_Dependent_Narrowing: 5713 // Implicit conversion to a narrower type, but the expression is 5714 // value-dependent so we can't tell whether it's actually narrowing. 5715 case NK_Variable_Narrowing: 5716 // Implicit conversion to a narrower type, and the value is not a constant 5717 // expression. We'll diagnose this in a moment. 5718 case NK_Not_Narrowing: 5719 break; 5720 5721 case NK_Constant_Narrowing: 5722 if (CCE == Sema::CCEK_ArrayBound && 5723 PreNarrowingType->isIntegralOrEnumerationType() && 5724 PreNarrowingValue.isInt()) { 5725 // Don't diagnose array bound narrowing here; we produce more precise 5726 // errors by allowing the un-narrowed value through. 5727 ReturnPreNarrowingValue = true; 5728 break; 5729 } 5730 S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing) 5731 << CCE << /*Constant*/ 1 5732 << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T; 5733 break; 5734 5735 case NK_Type_Narrowing: 5736 // FIXME: It would be better to diagnose that the expression is not a 5737 // constant expression. 5738 S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing) 5739 << CCE << /*Constant*/ 0 << From->getType() << T; 5740 break; 5741 } 5742 5743 if (Result.get()->isValueDependent()) { 5744 Value = APValue(); 5745 return Result; 5746 } 5747 5748 // Check the expression is a constant expression. 5749 SmallVector<PartialDiagnosticAt, 8> Notes; 5750 Expr::EvalResult Eval; 5751 Eval.Diag = &Notes; 5752 5753 ConstantExprKind Kind; 5754 if (CCE == Sema::CCEK_TemplateArg && T->isRecordType()) 5755 Kind = ConstantExprKind::ClassTemplateArgument; 5756 else if (CCE == Sema::CCEK_TemplateArg) 5757 Kind = ConstantExprKind::NonClassTemplateArgument; 5758 else 5759 Kind = ConstantExprKind::Normal; 5760 5761 if (!Result.get()->EvaluateAsConstantExpr(Eval, S.Context, Kind) || 5762 (RequireInt && !Eval.Val.isInt())) { 5763 // The expression can't be folded, so we can't keep it at this position in 5764 // the AST. 5765 Result = ExprError(); 5766 } else { 5767 Value = Eval.Val; 5768 5769 if (Notes.empty()) { 5770 // It's a constant expression. 5771 Expr *E = ConstantExpr::Create(S.Context, Result.get(), Value); 5772 if (ReturnPreNarrowingValue) 5773 Value = std::move(PreNarrowingValue); 5774 return E; 5775 } 5776 } 5777 5778 // It's not a constant expression. Produce an appropriate diagnostic. 5779 if (Notes.size() == 1 && 5780 Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr) { 5781 S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE; 5782 } else if (!Notes.empty() && Notes[0].second.getDiagID() == 5783 diag::note_constexpr_invalid_template_arg) { 5784 Notes[0].second.setDiagID(diag::err_constexpr_invalid_template_arg); 5785 for (unsigned I = 0; I < Notes.size(); ++I) 5786 S.Diag(Notes[I].first, Notes[I].second); 5787 } else { 5788 S.Diag(From->getBeginLoc(), diag::err_expr_not_cce) 5789 << CCE << From->getSourceRange(); 5790 for (unsigned I = 0; I < Notes.size(); ++I) 5791 S.Diag(Notes[I].first, Notes[I].second); 5792 } 5793 return ExprError(); 5794 } 5795 5796 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T, 5797 APValue &Value, CCEKind CCE, 5798 NamedDecl *Dest) { 5799 return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false, 5800 Dest); 5801 } 5802 5803 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T, 5804 llvm::APSInt &Value, 5805 CCEKind CCE) { 5806 assert(T->isIntegralOrEnumerationType() && "unexpected converted const type"); 5807 5808 APValue V; 5809 auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true, 5810 /*Dest=*/nullptr); 5811 if (!R.isInvalid() && !R.get()->isValueDependent()) 5812 Value = V.getInt(); 5813 return R; 5814 } 5815 5816 5817 /// dropPointerConversions - If the given standard conversion sequence 5818 /// involves any pointer conversions, remove them. This may change 5819 /// the result type of the conversion sequence. 5820 static void dropPointerConversion(StandardConversionSequence &SCS) { 5821 if (SCS.Second == ICK_Pointer_Conversion) { 5822 SCS.Second = ICK_Identity; 5823 SCS.Third = ICK_Identity; 5824 SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0]; 5825 } 5826 } 5827 5828 /// TryContextuallyConvertToObjCPointer - Attempt to contextually 5829 /// convert the expression From to an Objective-C pointer type. 5830 static ImplicitConversionSequence 5831 TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) { 5832 // Do an implicit conversion to 'id'. 5833 QualType Ty = S.Context.getObjCIdType(); 5834 ImplicitConversionSequence ICS 5835 = TryImplicitConversion(S, From, Ty, 5836 // FIXME: Are these flags correct? 5837 /*SuppressUserConversions=*/false, 5838 AllowedExplicit::Conversions, 5839 /*InOverloadResolution=*/false, 5840 /*CStyle=*/false, 5841 /*AllowObjCWritebackConversion=*/false, 5842 /*AllowObjCConversionOnExplicit=*/true); 5843 5844 // Strip off any final conversions to 'id'. 5845 switch (ICS.getKind()) { 5846 case ImplicitConversionSequence::BadConversion: 5847 case ImplicitConversionSequence::AmbiguousConversion: 5848 case ImplicitConversionSequence::EllipsisConversion: 5849 break; 5850 5851 case ImplicitConversionSequence::UserDefinedConversion: 5852 dropPointerConversion(ICS.UserDefined.After); 5853 break; 5854 5855 case ImplicitConversionSequence::StandardConversion: 5856 dropPointerConversion(ICS.Standard); 5857 break; 5858 } 5859 5860 return ICS; 5861 } 5862 5863 /// PerformContextuallyConvertToObjCPointer - Perform a contextual 5864 /// conversion of the expression From to an Objective-C pointer type. 5865 /// Returns a valid but null ExprResult if no conversion sequence exists. 5866 ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) { 5867 if (checkPlaceholderForOverload(*this, From)) 5868 return ExprError(); 5869 5870 QualType Ty = Context.getObjCIdType(); 5871 ImplicitConversionSequence ICS = 5872 TryContextuallyConvertToObjCPointer(*this, From); 5873 if (!ICS.isBad()) 5874 return PerformImplicitConversion(From, Ty, ICS, AA_Converting); 5875 return ExprResult(); 5876 } 5877 5878 /// Determine whether the provided type is an integral type, or an enumeration 5879 /// type of a permitted flavor. 5880 bool Sema::ICEConvertDiagnoser::match(QualType T) { 5881 return AllowScopedEnumerations ? T->isIntegralOrEnumerationType() 5882 : T->isIntegralOrUnscopedEnumerationType(); 5883 } 5884 5885 static ExprResult 5886 diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From, 5887 Sema::ContextualImplicitConverter &Converter, 5888 QualType T, UnresolvedSetImpl &ViableConversions) { 5889 5890 if (Converter.Suppress) 5891 return ExprError(); 5892 5893 Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange(); 5894 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { 5895 CXXConversionDecl *Conv = 5896 cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl()); 5897 QualType ConvTy = Conv->getConversionType().getNonReferenceType(); 5898 Converter.noteAmbiguous(SemaRef, Conv, ConvTy); 5899 } 5900 return From; 5901 } 5902 5903 static bool 5904 diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From, 5905 Sema::ContextualImplicitConverter &Converter, 5906 QualType T, bool HadMultipleCandidates, 5907 UnresolvedSetImpl &ExplicitConversions) { 5908 if (ExplicitConversions.size() == 1 && !Converter.Suppress) { 5909 DeclAccessPair Found = ExplicitConversions[0]; 5910 CXXConversionDecl *Conversion = 5911 cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 5912 5913 // The user probably meant to invoke the given explicit 5914 // conversion; use it. 5915 QualType ConvTy = Conversion->getConversionType().getNonReferenceType(); 5916 std::string TypeStr; 5917 ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy()); 5918 5919 Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy) 5920 << FixItHint::CreateInsertion(From->getBeginLoc(), 5921 "static_cast<" + TypeStr + ">(") 5922 << FixItHint::CreateInsertion( 5923 SemaRef.getLocForEndOfToken(From->getEndLoc()), ")"); 5924 Converter.noteExplicitConv(SemaRef, Conversion, ConvTy); 5925 5926 // If we aren't in a SFINAE context, build a call to the 5927 // explicit conversion function. 5928 if (SemaRef.isSFINAEContext()) 5929 return true; 5930 5931 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found); 5932 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion, 5933 HadMultipleCandidates); 5934 if (Result.isInvalid()) 5935 return true; 5936 // Record usage of conversion in an implicit cast. 5937 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(), 5938 CK_UserDefinedConversion, Result.get(), 5939 nullptr, Result.get()->getValueKind(), 5940 SemaRef.CurFPFeatureOverrides()); 5941 } 5942 return false; 5943 } 5944 5945 static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From, 5946 Sema::ContextualImplicitConverter &Converter, 5947 QualType T, bool HadMultipleCandidates, 5948 DeclAccessPair &Found) { 5949 CXXConversionDecl *Conversion = 5950 cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 5951 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found); 5952 5953 QualType ToType = Conversion->getConversionType().getNonReferenceType(); 5954 if (!Converter.SuppressConversion) { 5955 if (SemaRef.isSFINAEContext()) 5956 return true; 5957 5958 Converter.diagnoseConversion(SemaRef, Loc, T, ToType) 5959 << From->getSourceRange(); 5960 } 5961 5962 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion, 5963 HadMultipleCandidates); 5964 if (Result.isInvalid()) 5965 return true; 5966 // Record usage of conversion in an implicit cast. 5967 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(), 5968 CK_UserDefinedConversion, Result.get(), 5969 nullptr, Result.get()->getValueKind(), 5970 SemaRef.CurFPFeatureOverrides()); 5971 return false; 5972 } 5973 5974 static ExprResult finishContextualImplicitConversion( 5975 Sema &SemaRef, SourceLocation Loc, Expr *From, 5976 Sema::ContextualImplicitConverter &Converter) { 5977 if (!Converter.match(From->getType()) && !Converter.Suppress) 5978 Converter.diagnoseNoMatch(SemaRef, Loc, From->getType()) 5979 << From->getSourceRange(); 5980 5981 return SemaRef.DefaultLvalueConversion(From); 5982 } 5983 5984 static void 5985 collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType, 5986 UnresolvedSetImpl &ViableConversions, 5987 OverloadCandidateSet &CandidateSet) { 5988 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { 5989 DeclAccessPair FoundDecl = ViableConversions[I]; 5990 NamedDecl *D = FoundDecl.getDecl(); 5991 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 5992 if (isa<UsingShadowDecl>(D)) 5993 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 5994 5995 CXXConversionDecl *Conv; 5996 FunctionTemplateDecl *ConvTemplate; 5997 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) 5998 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 5999 else 6000 Conv = cast<CXXConversionDecl>(D); 6001 6002 if (ConvTemplate) 6003 SemaRef.AddTemplateConversionCandidate( 6004 ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet, 6005 /*AllowObjCConversionOnExplicit=*/false, /*AllowExplicit*/ true); 6006 else 6007 SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, 6008 ToType, CandidateSet, 6009 /*AllowObjCConversionOnExplicit=*/false, 6010 /*AllowExplicit*/ true); 6011 } 6012 } 6013 6014 /// Attempt to convert the given expression to a type which is accepted 6015 /// by the given converter. 6016 /// 6017 /// This routine will attempt to convert an expression of class type to a 6018 /// type accepted by the specified converter. In C++11 and before, the class 6019 /// must have a single non-explicit conversion function converting to a matching 6020 /// type. In C++1y, there can be multiple such conversion functions, but only 6021 /// one target type. 6022 /// 6023 /// \param Loc The source location of the construct that requires the 6024 /// conversion. 6025 /// 6026 /// \param From The expression we're converting from. 6027 /// 6028 /// \param Converter Used to control and diagnose the conversion process. 6029 /// 6030 /// \returns The expression, converted to an integral or enumeration type if 6031 /// successful. 6032 ExprResult Sema::PerformContextualImplicitConversion( 6033 SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) { 6034 // We can't perform any more checking for type-dependent expressions. 6035 if (From->isTypeDependent()) 6036 return From; 6037 6038 // Process placeholders immediately. 6039 if (From->hasPlaceholderType()) { 6040 ExprResult result = CheckPlaceholderExpr(From); 6041 if (result.isInvalid()) 6042 return result; 6043 From = result.get(); 6044 } 6045 6046 // If the expression already has a matching type, we're golden. 6047 QualType T = From->getType(); 6048 if (Converter.match(T)) 6049 return DefaultLvalueConversion(From); 6050 6051 // FIXME: Check for missing '()' if T is a function type? 6052 6053 // We can only perform contextual implicit conversions on objects of class 6054 // type. 6055 const RecordType *RecordTy = T->getAs<RecordType>(); 6056 if (!RecordTy || !getLangOpts().CPlusPlus) { 6057 if (!Converter.Suppress) 6058 Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange(); 6059 return From; 6060 } 6061 6062 // We must have a complete class type. 6063 struct TypeDiagnoserPartialDiag : TypeDiagnoser { 6064 ContextualImplicitConverter &Converter; 6065 Expr *From; 6066 6067 TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From) 6068 : Converter(Converter), From(From) {} 6069 6070 void diagnose(Sema &S, SourceLocation Loc, QualType T) override { 6071 Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange(); 6072 } 6073 } IncompleteDiagnoser(Converter, From); 6074 6075 if (Converter.Suppress ? !isCompleteType(Loc, T) 6076 : RequireCompleteType(Loc, T, IncompleteDiagnoser)) 6077 return From; 6078 6079 // Look for a conversion to an integral or enumeration type. 6080 UnresolvedSet<4> 6081 ViableConversions; // These are *potentially* viable in C++1y. 6082 UnresolvedSet<4> ExplicitConversions; 6083 const auto &Conversions = 6084 cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions(); 6085 6086 bool HadMultipleCandidates = 6087 (std::distance(Conversions.begin(), Conversions.end()) > 1); 6088 6089 // To check that there is only one target type, in C++1y: 6090 QualType ToType; 6091 bool HasUniqueTargetType = true; 6092 6093 // Collect explicit or viable (potentially in C++1y) conversions. 6094 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 6095 NamedDecl *D = (*I)->getUnderlyingDecl(); 6096 CXXConversionDecl *Conversion; 6097 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 6098 if (ConvTemplate) { 6099 if (getLangOpts().CPlusPlus14) 6100 Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 6101 else 6102 continue; // C++11 does not consider conversion operator templates(?). 6103 } else 6104 Conversion = cast<CXXConversionDecl>(D); 6105 6106 assert((!ConvTemplate || getLangOpts().CPlusPlus14) && 6107 "Conversion operator templates are considered potentially " 6108 "viable in C++1y"); 6109 6110 QualType CurToType = Conversion->getConversionType().getNonReferenceType(); 6111 if (Converter.match(CurToType) || ConvTemplate) { 6112 6113 if (Conversion->isExplicit()) { 6114 // FIXME: For C++1y, do we need this restriction? 6115 // cf. diagnoseNoViableConversion() 6116 if (!ConvTemplate) 6117 ExplicitConversions.addDecl(I.getDecl(), I.getAccess()); 6118 } else { 6119 if (!ConvTemplate && getLangOpts().CPlusPlus14) { 6120 if (ToType.isNull()) 6121 ToType = CurToType.getUnqualifiedType(); 6122 else if (HasUniqueTargetType && 6123 (CurToType.getUnqualifiedType() != ToType)) 6124 HasUniqueTargetType = false; 6125 } 6126 ViableConversions.addDecl(I.getDecl(), I.getAccess()); 6127 } 6128 } 6129 } 6130 6131 if (getLangOpts().CPlusPlus14) { 6132 // C++1y [conv]p6: 6133 // ... An expression e of class type E appearing in such a context 6134 // is said to be contextually implicitly converted to a specified 6135 // type T and is well-formed if and only if e can be implicitly 6136 // converted to a type T that is determined as follows: E is searched 6137 // for conversion functions whose return type is cv T or reference to 6138 // cv T such that T is allowed by the context. There shall be 6139 // exactly one such T. 6140 6141 // If no unique T is found: 6142 if (ToType.isNull()) { 6143 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T, 6144 HadMultipleCandidates, 6145 ExplicitConversions)) 6146 return ExprError(); 6147 return finishContextualImplicitConversion(*this, Loc, From, Converter); 6148 } 6149 6150 // If more than one unique Ts are found: 6151 if (!HasUniqueTargetType) 6152 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T, 6153 ViableConversions); 6154 6155 // If one unique T is found: 6156 // First, build a candidate set from the previously recorded 6157 // potentially viable conversions. 6158 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 6159 collectViableConversionCandidates(*this, From, ToType, ViableConversions, 6160 CandidateSet); 6161 6162 // Then, perform overload resolution over the candidate set. 6163 OverloadCandidateSet::iterator Best; 6164 switch (CandidateSet.BestViableFunction(*this, Loc, Best)) { 6165 case OR_Success: { 6166 // Apply this conversion. 6167 DeclAccessPair Found = 6168 DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess()); 6169 if (recordConversion(*this, Loc, From, Converter, T, 6170 HadMultipleCandidates, Found)) 6171 return ExprError(); 6172 break; 6173 } 6174 case OR_Ambiguous: 6175 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T, 6176 ViableConversions); 6177 case OR_No_Viable_Function: 6178 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T, 6179 HadMultipleCandidates, 6180 ExplicitConversions)) 6181 return ExprError(); 6182 LLVM_FALLTHROUGH; 6183 case OR_Deleted: 6184 // We'll complain below about a non-integral condition type. 6185 break; 6186 } 6187 } else { 6188 switch (ViableConversions.size()) { 6189 case 0: { 6190 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T, 6191 HadMultipleCandidates, 6192 ExplicitConversions)) 6193 return ExprError(); 6194 6195 // We'll complain below about a non-integral condition type. 6196 break; 6197 } 6198 case 1: { 6199 // Apply this conversion. 6200 DeclAccessPair Found = ViableConversions[0]; 6201 if (recordConversion(*this, Loc, From, Converter, T, 6202 HadMultipleCandidates, Found)) 6203 return ExprError(); 6204 break; 6205 } 6206 default: 6207 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T, 6208 ViableConversions); 6209 } 6210 } 6211 6212 return finishContextualImplicitConversion(*this, Loc, From, Converter); 6213 } 6214 6215 /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is 6216 /// an acceptable non-member overloaded operator for a call whose 6217 /// arguments have types T1 (and, if non-empty, T2). This routine 6218 /// implements the check in C++ [over.match.oper]p3b2 concerning 6219 /// enumeration types. 6220 static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context, 6221 FunctionDecl *Fn, 6222 ArrayRef<Expr *> Args) { 6223 QualType T1 = Args[0]->getType(); 6224 QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType(); 6225 6226 if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType())) 6227 return true; 6228 6229 if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType())) 6230 return true; 6231 6232 const auto *Proto = Fn->getType()->castAs<FunctionProtoType>(); 6233 if (Proto->getNumParams() < 1) 6234 return false; 6235 6236 if (T1->isEnumeralType()) { 6237 QualType ArgType = Proto->getParamType(0).getNonReferenceType(); 6238 if (Context.hasSameUnqualifiedType(T1, ArgType)) 6239 return true; 6240 } 6241 6242 if (Proto->getNumParams() < 2) 6243 return false; 6244 6245 if (!T2.isNull() && T2->isEnumeralType()) { 6246 QualType ArgType = Proto->getParamType(1).getNonReferenceType(); 6247 if (Context.hasSameUnqualifiedType(T2, ArgType)) 6248 return true; 6249 } 6250 6251 return false; 6252 } 6253 6254 /// AddOverloadCandidate - Adds the given function to the set of 6255 /// candidate functions, using the given function call arguments. If 6256 /// @p SuppressUserConversions, then don't allow user-defined 6257 /// conversions via constructors or conversion operators. 6258 /// 6259 /// \param PartialOverloading true if we are performing "partial" overloading 6260 /// based on an incomplete set of function arguments. This feature is used by 6261 /// code completion. 6262 void Sema::AddOverloadCandidate( 6263 FunctionDecl *Function, DeclAccessPair FoundDecl, ArrayRef<Expr *> Args, 6264 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions, 6265 bool PartialOverloading, bool AllowExplicit, bool AllowExplicitConversions, 6266 ADLCallKind IsADLCandidate, ConversionSequenceList EarlyConversions, 6267 OverloadCandidateParamOrder PO) { 6268 const FunctionProtoType *Proto 6269 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); 6270 assert(Proto && "Functions without a prototype cannot be overloaded"); 6271 assert(!Function->getDescribedFunctionTemplate() && 6272 "Use AddTemplateOverloadCandidate for function templates"); 6273 6274 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 6275 if (!isa<CXXConstructorDecl>(Method)) { 6276 // If we get here, it's because we're calling a member function 6277 // that is named without a member access expression (e.g., 6278 // "this->f") that was either written explicitly or created 6279 // implicitly. This can happen with a qualified call to a member 6280 // function, e.g., X::f(). We use an empty type for the implied 6281 // object argument (C++ [over.call.func]p3), and the acting context 6282 // is irrelevant. 6283 AddMethodCandidate(Method, FoundDecl, Method->getParent(), QualType(), 6284 Expr::Classification::makeSimpleLValue(), Args, 6285 CandidateSet, SuppressUserConversions, 6286 PartialOverloading, EarlyConversions, PO); 6287 return; 6288 } 6289 // We treat a constructor like a non-member function, since its object 6290 // argument doesn't participate in overload resolution. 6291 } 6292 6293 if (!CandidateSet.isNewCandidate(Function, PO)) 6294 return; 6295 6296 // C++11 [class.copy]p11: [DR1402] 6297 // A defaulted move constructor that is defined as deleted is ignored by 6298 // overload resolution. 6299 CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function); 6300 if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() && 6301 Constructor->isMoveConstructor()) 6302 return; 6303 6304 // Overload resolution is always an unevaluated context. 6305 EnterExpressionEvaluationContext Unevaluated( 6306 *this, Sema::ExpressionEvaluationContext::Unevaluated); 6307 6308 // C++ [over.match.oper]p3: 6309 // if no operand has a class type, only those non-member functions in the 6310 // lookup set that have a first parameter of type T1 or "reference to 6311 // (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there 6312 // is a right operand) a second parameter of type T2 or "reference to 6313 // (possibly cv-qualified) T2", when T2 is an enumeration type, are 6314 // candidate functions. 6315 if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator && 6316 !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args)) 6317 return; 6318 6319 // Add this candidate 6320 OverloadCandidate &Candidate = 6321 CandidateSet.addCandidate(Args.size(), EarlyConversions); 6322 Candidate.FoundDecl = FoundDecl; 6323 Candidate.Function = Function; 6324 Candidate.Viable = true; 6325 Candidate.RewriteKind = 6326 CandidateSet.getRewriteInfo().getRewriteKind(Function, PO); 6327 Candidate.IsSurrogate = false; 6328 Candidate.IsADLCandidate = IsADLCandidate; 6329 Candidate.IgnoreObjectArgument = false; 6330 Candidate.ExplicitCallArguments = Args.size(); 6331 6332 // Explicit functions are not actually candidates at all if we're not 6333 // allowing them in this context, but keep them around so we can point 6334 // to them in diagnostics. 6335 if (!AllowExplicit && ExplicitSpecifier::getFromDecl(Function).isExplicit()) { 6336 Candidate.Viable = false; 6337 Candidate.FailureKind = ovl_fail_explicit; 6338 return; 6339 } 6340 6341 if (Function->isMultiVersion() && Function->hasAttr<TargetAttr>() && 6342 !Function->getAttr<TargetAttr>()->isDefaultVersion()) { 6343 Candidate.Viable = false; 6344 Candidate.FailureKind = ovl_non_default_multiversion_function; 6345 return; 6346 } 6347 6348 if (Constructor) { 6349 // C++ [class.copy]p3: 6350 // A member function template is never instantiated to perform the copy 6351 // of a class object to an object of its class type. 6352 QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); 6353 if (Args.size() == 1 && Constructor->isSpecializationCopyingObject() && 6354 (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) || 6355 IsDerivedFrom(Args[0]->getBeginLoc(), Args[0]->getType(), 6356 ClassType))) { 6357 Candidate.Viable = false; 6358 Candidate.FailureKind = ovl_fail_illegal_constructor; 6359 return; 6360 } 6361 6362 // C++ [over.match.funcs]p8: (proposed DR resolution) 6363 // A constructor inherited from class type C that has a first parameter 6364 // of type "reference to P" (including such a constructor instantiated 6365 // from a template) is excluded from the set of candidate functions when 6366 // constructing an object of type cv D if the argument list has exactly 6367 // one argument and D is reference-related to P and P is reference-related 6368 // to C. 6369 auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl.getDecl()); 6370 if (Shadow && Args.size() == 1 && Constructor->getNumParams() >= 1 && 6371 Constructor->getParamDecl(0)->getType()->isReferenceType()) { 6372 QualType P = Constructor->getParamDecl(0)->getType()->getPointeeType(); 6373 QualType C = Context.getRecordType(Constructor->getParent()); 6374 QualType D = Context.getRecordType(Shadow->getParent()); 6375 SourceLocation Loc = Args.front()->getExprLoc(); 6376 if ((Context.hasSameUnqualifiedType(P, C) || IsDerivedFrom(Loc, P, C)) && 6377 (Context.hasSameUnqualifiedType(D, P) || IsDerivedFrom(Loc, D, P))) { 6378 Candidate.Viable = false; 6379 Candidate.FailureKind = ovl_fail_inhctor_slice; 6380 return; 6381 } 6382 } 6383 6384 // Check that the constructor is capable of constructing an object in the 6385 // destination address space. 6386 if (!Qualifiers::isAddressSpaceSupersetOf( 6387 Constructor->getMethodQualifiers().getAddressSpace(), 6388 CandidateSet.getDestAS())) { 6389 Candidate.Viable = false; 6390 Candidate.FailureKind = ovl_fail_object_addrspace_mismatch; 6391 } 6392 } 6393 6394 unsigned NumParams = Proto->getNumParams(); 6395 6396 // (C++ 13.3.2p2): A candidate function having fewer than m 6397 // parameters is viable only if it has an ellipsis in its parameter 6398 // list (8.3.5). 6399 if (TooManyArguments(NumParams, Args.size(), PartialOverloading) && 6400 !Proto->isVariadic()) { 6401 Candidate.Viable = false; 6402 Candidate.FailureKind = ovl_fail_too_many_arguments; 6403 return; 6404 } 6405 6406 // (C++ 13.3.2p2): A candidate function having more than m parameters 6407 // is viable only if the (m+1)st parameter has a default argument 6408 // (8.3.6). For the purposes of overload resolution, the 6409 // parameter list is truncated on the right, so that there are 6410 // exactly m parameters. 6411 unsigned MinRequiredArgs = Function->getMinRequiredArguments(); 6412 if (Args.size() < MinRequiredArgs && !PartialOverloading) { 6413 // Not enough arguments. 6414 Candidate.Viable = false; 6415 Candidate.FailureKind = ovl_fail_too_few_arguments; 6416 return; 6417 } 6418 6419 // (CUDA B.1): Check for invalid calls between targets. 6420 if (getLangOpts().CUDA) 6421 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext)) 6422 // Skip the check for callers that are implicit members, because in this 6423 // case we may not yet know what the member's target is; the target is 6424 // inferred for the member automatically, based on the bases and fields of 6425 // the class. 6426 if (!Caller->isImplicit() && !IsAllowedCUDACall(Caller, Function)) { 6427 Candidate.Viable = false; 6428 Candidate.FailureKind = ovl_fail_bad_target; 6429 return; 6430 } 6431 6432 if (Function->getTrailingRequiresClause()) { 6433 ConstraintSatisfaction Satisfaction; 6434 if (CheckFunctionConstraints(Function, Satisfaction) || 6435 !Satisfaction.IsSatisfied) { 6436 Candidate.Viable = false; 6437 Candidate.FailureKind = ovl_fail_constraints_not_satisfied; 6438 return; 6439 } 6440 } 6441 6442 // Determine the implicit conversion sequences for each of the 6443 // arguments. 6444 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) { 6445 unsigned ConvIdx = 6446 PO == OverloadCandidateParamOrder::Reversed ? 1 - ArgIdx : ArgIdx; 6447 if (Candidate.Conversions[ConvIdx].isInitialized()) { 6448 // We already formed a conversion sequence for this parameter during 6449 // template argument deduction. 6450 } else if (ArgIdx < NumParams) { 6451 // (C++ 13.3.2p3): for F to be a viable function, there shall 6452 // exist for each argument an implicit conversion sequence 6453 // (13.3.3.1) that converts that argument to the corresponding 6454 // parameter of F. 6455 QualType ParamType = Proto->getParamType(ArgIdx); 6456 Candidate.Conversions[ConvIdx] = TryCopyInitialization( 6457 *this, Args[ArgIdx], ParamType, SuppressUserConversions, 6458 /*InOverloadResolution=*/true, 6459 /*AllowObjCWritebackConversion=*/ 6460 getLangOpts().ObjCAutoRefCount, AllowExplicitConversions); 6461 if (Candidate.Conversions[ConvIdx].isBad()) { 6462 Candidate.Viable = false; 6463 Candidate.FailureKind = ovl_fail_bad_conversion; 6464 return; 6465 } 6466 } else { 6467 // (C++ 13.3.2p2): For the purposes of overload resolution, any 6468 // argument for which there is no corresponding parameter is 6469 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 6470 Candidate.Conversions[ConvIdx].setEllipsis(); 6471 } 6472 } 6473 6474 if (EnableIfAttr *FailedAttr = 6475 CheckEnableIf(Function, CandidateSet.getLocation(), Args)) { 6476 Candidate.Viable = false; 6477 Candidate.FailureKind = ovl_fail_enable_if; 6478 Candidate.DeductionFailure.Data = FailedAttr; 6479 return; 6480 } 6481 } 6482 6483 ObjCMethodDecl * 6484 Sema::SelectBestMethod(Selector Sel, MultiExprArg Args, bool IsInstance, 6485 SmallVectorImpl<ObjCMethodDecl *> &Methods) { 6486 if (Methods.size() <= 1) 6487 return nullptr; 6488 6489 for (unsigned b = 0, e = Methods.size(); b < e; b++) { 6490 bool Match = true; 6491 ObjCMethodDecl *Method = Methods[b]; 6492 unsigned NumNamedArgs = Sel.getNumArgs(); 6493 // Method might have more arguments than selector indicates. This is due 6494 // to addition of c-style arguments in method. 6495 if (Method->param_size() > NumNamedArgs) 6496 NumNamedArgs = Method->param_size(); 6497 if (Args.size() < NumNamedArgs) 6498 continue; 6499 6500 for (unsigned i = 0; i < NumNamedArgs; i++) { 6501 // We can't do any type-checking on a type-dependent argument. 6502 if (Args[i]->isTypeDependent()) { 6503 Match = false; 6504 break; 6505 } 6506 6507 ParmVarDecl *param = Method->parameters()[i]; 6508 Expr *argExpr = Args[i]; 6509 assert(argExpr && "SelectBestMethod(): missing expression"); 6510 6511 // Strip the unbridged-cast placeholder expression off unless it's 6512 // a consumed argument. 6513 if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) && 6514 !param->hasAttr<CFConsumedAttr>()) 6515 argExpr = stripARCUnbridgedCast(argExpr); 6516 6517 // If the parameter is __unknown_anytype, move on to the next method. 6518 if (param->getType() == Context.UnknownAnyTy) { 6519 Match = false; 6520 break; 6521 } 6522 6523 ImplicitConversionSequence ConversionState 6524 = TryCopyInitialization(*this, argExpr, param->getType(), 6525 /*SuppressUserConversions*/false, 6526 /*InOverloadResolution=*/true, 6527 /*AllowObjCWritebackConversion=*/ 6528 getLangOpts().ObjCAutoRefCount, 6529 /*AllowExplicit*/false); 6530 // This function looks for a reasonably-exact match, so we consider 6531 // incompatible pointer conversions to be a failure here. 6532 if (ConversionState.isBad() || 6533 (ConversionState.isStandard() && 6534 ConversionState.Standard.Second == 6535 ICK_Incompatible_Pointer_Conversion)) { 6536 Match = false; 6537 break; 6538 } 6539 } 6540 // Promote additional arguments to variadic methods. 6541 if (Match && Method->isVariadic()) { 6542 for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) { 6543 if (Args[i]->isTypeDependent()) { 6544 Match = false; 6545 break; 6546 } 6547 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 6548 nullptr); 6549 if (Arg.isInvalid()) { 6550 Match = false; 6551 break; 6552 } 6553 } 6554 } else { 6555 // Check for extra arguments to non-variadic methods. 6556 if (Args.size() != NumNamedArgs) 6557 Match = false; 6558 else if (Match && NumNamedArgs == 0 && Methods.size() > 1) { 6559 // Special case when selectors have no argument. In this case, select 6560 // one with the most general result type of 'id'. 6561 for (unsigned b = 0, e = Methods.size(); b < e; b++) { 6562 QualType ReturnT = Methods[b]->getReturnType(); 6563 if (ReturnT->isObjCIdType()) 6564 return Methods[b]; 6565 } 6566 } 6567 } 6568 6569 if (Match) 6570 return Method; 6571 } 6572 return nullptr; 6573 } 6574 6575 static bool convertArgsForAvailabilityChecks( 6576 Sema &S, FunctionDecl *Function, Expr *ThisArg, SourceLocation CallLoc, 6577 ArrayRef<Expr *> Args, Sema::SFINAETrap &Trap, bool MissingImplicitThis, 6578 Expr *&ConvertedThis, SmallVectorImpl<Expr *> &ConvertedArgs) { 6579 if (ThisArg) { 6580 CXXMethodDecl *Method = cast<CXXMethodDecl>(Function); 6581 assert(!isa<CXXConstructorDecl>(Method) && 6582 "Shouldn't have `this` for ctors!"); 6583 assert(!Method->isStatic() && "Shouldn't have `this` for static methods!"); 6584 ExprResult R = S.PerformObjectArgumentInitialization( 6585 ThisArg, /*Qualifier=*/nullptr, Method, Method); 6586 if (R.isInvalid()) 6587 return false; 6588 ConvertedThis = R.get(); 6589 } else { 6590 if (auto *MD = dyn_cast<CXXMethodDecl>(Function)) { 6591 (void)MD; 6592 assert((MissingImplicitThis || MD->isStatic() || 6593 isa<CXXConstructorDecl>(MD)) && 6594 "Expected `this` for non-ctor instance methods"); 6595 } 6596 ConvertedThis = nullptr; 6597 } 6598 6599 // Ignore any variadic arguments. Converting them is pointless, since the 6600 // user can't refer to them in the function condition. 6601 unsigned ArgSizeNoVarargs = std::min(Function->param_size(), Args.size()); 6602 6603 // Convert the arguments. 6604 for (unsigned I = 0; I != ArgSizeNoVarargs; ++I) { 6605 ExprResult R; 6606 R = S.PerformCopyInitialization(InitializedEntity::InitializeParameter( 6607 S.Context, Function->getParamDecl(I)), 6608 SourceLocation(), Args[I]); 6609 6610 if (R.isInvalid()) 6611 return false; 6612 6613 ConvertedArgs.push_back(R.get()); 6614 } 6615 6616 if (Trap.hasErrorOccurred()) 6617 return false; 6618 6619 // Push default arguments if needed. 6620 if (!Function->isVariadic() && Args.size() < Function->getNumParams()) { 6621 for (unsigned i = Args.size(), e = Function->getNumParams(); i != e; ++i) { 6622 ParmVarDecl *P = Function->getParamDecl(i); 6623 if (!P->hasDefaultArg()) 6624 return false; 6625 ExprResult R = S.BuildCXXDefaultArgExpr(CallLoc, Function, P); 6626 if (R.isInvalid()) 6627 return false; 6628 ConvertedArgs.push_back(R.get()); 6629 } 6630 6631 if (Trap.hasErrorOccurred()) 6632 return false; 6633 } 6634 return true; 6635 } 6636 6637 EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, 6638 SourceLocation CallLoc, 6639 ArrayRef<Expr *> Args, 6640 bool MissingImplicitThis) { 6641 auto EnableIfAttrs = Function->specific_attrs<EnableIfAttr>(); 6642 if (EnableIfAttrs.begin() == EnableIfAttrs.end()) 6643 return nullptr; 6644 6645 SFINAETrap Trap(*this); 6646 SmallVector<Expr *, 16> ConvertedArgs; 6647 // FIXME: We should look into making enable_if late-parsed. 6648 Expr *DiscardedThis; 6649 if (!convertArgsForAvailabilityChecks( 6650 *this, Function, /*ThisArg=*/nullptr, CallLoc, Args, Trap, 6651 /*MissingImplicitThis=*/true, DiscardedThis, ConvertedArgs)) 6652 return *EnableIfAttrs.begin(); 6653 6654 for (auto *EIA : EnableIfAttrs) { 6655 APValue Result; 6656 // FIXME: This doesn't consider value-dependent cases, because doing so is 6657 // very difficult. Ideally, we should handle them more gracefully. 6658 if (EIA->getCond()->isValueDependent() || 6659 !EIA->getCond()->EvaluateWithSubstitution( 6660 Result, Context, Function, llvm::makeArrayRef(ConvertedArgs))) 6661 return EIA; 6662 6663 if (!Result.isInt() || !Result.getInt().getBoolValue()) 6664 return EIA; 6665 } 6666 return nullptr; 6667 } 6668 6669 template <typename CheckFn> 6670 static bool diagnoseDiagnoseIfAttrsWith(Sema &S, const NamedDecl *ND, 6671 bool ArgDependent, SourceLocation Loc, 6672 CheckFn &&IsSuccessful) { 6673 SmallVector<const DiagnoseIfAttr *, 8> Attrs; 6674 for (const auto *DIA : ND->specific_attrs<DiagnoseIfAttr>()) { 6675 if (ArgDependent == DIA->getArgDependent()) 6676 Attrs.push_back(DIA); 6677 } 6678 6679 // Common case: No diagnose_if attributes, so we can quit early. 6680 if (Attrs.empty()) 6681 return false; 6682 6683 auto WarningBegin = std::stable_partition( 6684 Attrs.begin(), Attrs.end(), 6685 [](const DiagnoseIfAttr *DIA) { return DIA->isError(); }); 6686 6687 // Note that diagnose_if attributes are late-parsed, so they appear in the 6688 // correct order (unlike enable_if attributes). 6689 auto ErrAttr = llvm::find_if(llvm::make_range(Attrs.begin(), WarningBegin), 6690 IsSuccessful); 6691 if (ErrAttr != WarningBegin) { 6692 const DiagnoseIfAttr *DIA = *ErrAttr; 6693 S.Diag(Loc, diag::err_diagnose_if_succeeded) << DIA->getMessage(); 6694 S.Diag(DIA->getLocation(), diag::note_from_diagnose_if) 6695 << DIA->getParent() << DIA->getCond()->getSourceRange(); 6696 return true; 6697 } 6698 6699 for (const auto *DIA : llvm::make_range(WarningBegin, Attrs.end())) 6700 if (IsSuccessful(DIA)) { 6701 S.Diag(Loc, diag::warn_diagnose_if_succeeded) << DIA->getMessage(); 6702 S.Diag(DIA->getLocation(), diag::note_from_diagnose_if) 6703 << DIA->getParent() << DIA->getCond()->getSourceRange(); 6704 } 6705 6706 return false; 6707 } 6708 6709 bool Sema::diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function, 6710 const Expr *ThisArg, 6711 ArrayRef<const Expr *> Args, 6712 SourceLocation Loc) { 6713 return diagnoseDiagnoseIfAttrsWith( 6714 *this, Function, /*ArgDependent=*/true, Loc, 6715 [&](const DiagnoseIfAttr *DIA) { 6716 APValue Result; 6717 // It's sane to use the same Args for any redecl of this function, since 6718 // EvaluateWithSubstitution only cares about the position of each 6719 // argument in the arg list, not the ParmVarDecl* it maps to. 6720 if (!DIA->getCond()->EvaluateWithSubstitution( 6721 Result, Context, cast<FunctionDecl>(DIA->getParent()), Args, ThisArg)) 6722 return false; 6723 return Result.isInt() && Result.getInt().getBoolValue(); 6724 }); 6725 } 6726 6727 bool Sema::diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND, 6728 SourceLocation Loc) { 6729 return diagnoseDiagnoseIfAttrsWith( 6730 *this, ND, /*ArgDependent=*/false, Loc, 6731 [&](const DiagnoseIfAttr *DIA) { 6732 bool Result; 6733 return DIA->getCond()->EvaluateAsBooleanCondition(Result, Context) && 6734 Result; 6735 }); 6736 } 6737 6738 /// Add all of the function declarations in the given function set to 6739 /// the overload candidate set. 6740 void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns, 6741 ArrayRef<Expr *> Args, 6742 OverloadCandidateSet &CandidateSet, 6743 TemplateArgumentListInfo *ExplicitTemplateArgs, 6744 bool SuppressUserConversions, 6745 bool PartialOverloading, 6746 bool FirstArgumentIsBase) { 6747 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { 6748 NamedDecl *D = F.getDecl()->getUnderlyingDecl(); 6749 ArrayRef<Expr *> FunctionArgs = Args; 6750 6751 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D); 6752 FunctionDecl *FD = 6753 FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D); 6754 6755 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) { 6756 QualType ObjectType; 6757 Expr::Classification ObjectClassification; 6758 if (Args.size() > 0) { 6759 if (Expr *E = Args[0]) { 6760 // Use the explicit base to restrict the lookup: 6761 ObjectType = E->getType(); 6762 // Pointers in the object arguments are implicitly dereferenced, so we 6763 // always classify them as l-values. 6764 if (!ObjectType.isNull() && ObjectType->isPointerType()) 6765 ObjectClassification = Expr::Classification::makeSimpleLValue(); 6766 else 6767 ObjectClassification = E->Classify(Context); 6768 } // .. else there is an implicit base. 6769 FunctionArgs = Args.slice(1); 6770 } 6771 if (FunTmpl) { 6772 AddMethodTemplateCandidate( 6773 FunTmpl, F.getPair(), 6774 cast<CXXRecordDecl>(FunTmpl->getDeclContext()), 6775 ExplicitTemplateArgs, ObjectType, ObjectClassification, 6776 FunctionArgs, CandidateSet, SuppressUserConversions, 6777 PartialOverloading); 6778 } else { 6779 AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(), 6780 cast<CXXMethodDecl>(FD)->getParent(), ObjectType, 6781 ObjectClassification, FunctionArgs, CandidateSet, 6782 SuppressUserConversions, PartialOverloading); 6783 } 6784 } else { 6785 // This branch handles both standalone functions and static methods. 6786 6787 // Slice the first argument (which is the base) when we access 6788 // static method as non-static. 6789 if (Args.size() > 0 && 6790 (!Args[0] || (FirstArgumentIsBase && isa<CXXMethodDecl>(FD) && 6791 !isa<CXXConstructorDecl>(FD)))) { 6792 assert(cast<CXXMethodDecl>(FD)->isStatic()); 6793 FunctionArgs = Args.slice(1); 6794 } 6795 if (FunTmpl) { 6796 AddTemplateOverloadCandidate(FunTmpl, F.getPair(), 6797 ExplicitTemplateArgs, FunctionArgs, 6798 CandidateSet, SuppressUserConversions, 6799 PartialOverloading); 6800 } else { 6801 AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet, 6802 SuppressUserConversions, PartialOverloading); 6803 } 6804 } 6805 } 6806 } 6807 6808 /// AddMethodCandidate - Adds a named decl (which is some kind of 6809 /// method) as a method candidate to the given overload set. 6810 void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, QualType ObjectType, 6811 Expr::Classification ObjectClassification, 6812 ArrayRef<Expr *> Args, 6813 OverloadCandidateSet &CandidateSet, 6814 bool SuppressUserConversions, 6815 OverloadCandidateParamOrder PO) { 6816 NamedDecl *Decl = FoundDecl.getDecl(); 6817 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext()); 6818 6819 if (isa<UsingShadowDecl>(Decl)) 6820 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl(); 6821 6822 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) { 6823 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) && 6824 "Expected a member function template"); 6825 AddMethodTemplateCandidate(TD, FoundDecl, ActingContext, 6826 /*ExplicitArgs*/ nullptr, ObjectType, 6827 ObjectClassification, Args, CandidateSet, 6828 SuppressUserConversions, false, PO); 6829 } else { 6830 AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext, 6831 ObjectType, ObjectClassification, Args, CandidateSet, 6832 SuppressUserConversions, false, None, PO); 6833 } 6834 } 6835 6836 /// AddMethodCandidate - Adds the given C++ member function to the set 6837 /// of candidate functions, using the given function call arguments 6838 /// and the object argument (@c Object). For example, in a call 6839 /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain 6840 /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't 6841 /// allow user-defined conversions via constructors or conversion 6842 /// operators. 6843 void 6844 Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl, 6845 CXXRecordDecl *ActingContext, QualType ObjectType, 6846 Expr::Classification ObjectClassification, 6847 ArrayRef<Expr *> Args, 6848 OverloadCandidateSet &CandidateSet, 6849 bool SuppressUserConversions, 6850 bool PartialOverloading, 6851 ConversionSequenceList EarlyConversions, 6852 OverloadCandidateParamOrder PO) { 6853 const FunctionProtoType *Proto 6854 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); 6855 assert(Proto && "Methods without a prototype cannot be overloaded"); 6856 assert(!isa<CXXConstructorDecl>(Method) && 6857 "Use AddOverloadCandidate for constructors"); 6858 6859 if (!CandidateSet.isNewCandidate(Method, PO)) 6860 return; 6861 6862 // C++11 [class.copy]p23: [DR1402] 6863 // A defaulted move assignment operator that is defined as deleted is 6864 // ignored by overload resolution. 6865 if (Method->isDefaulted() && Method->isDeleted() && 6866 Method->isMoveAssignmentOperator()) 6867 return; 6868 6869 // Overload resolution is always an unevaluated context. 6870 EnterExpressionEvaluationContext Unevaluated( 6871 *this, Sema::ExpressionEvaluationContext::Unevaluated); 6872 6873 // Add this candidate 6874 OverloadCandidate &Candidate = 6875 CandidateSet.addCandidate(Args.size() + 1, EarlyConversions); 6876 Candidate.FoundDecl = FoundDecl; 6877 Candidate.Function = Method; 6878 Candidate.RewriteKind = 6879 CandidateSet.getRewriteInfo().getRewriteKind(Method, PO); 6880 Candidate.IsSurrogate = false; 6881 Candidate.IgnoreObjectArgument = false; 6882 Candidate.ExplicitCallArguments = Args.size(); 6883 6884 unsigned NumParams = Proto->getNumParams(); 6885 6886 // (C++ 13.3.2p2): A candidate function having fewer than m 6887 // parameters is viable only if it has an ellipsis in its parameter 6888 // list (8.3.5). 6889 if (TooManyArguments(NumParams, Args.size(), PartialOverloading) && 6890 !Proto->isVariadic()) { 6891 Candidate.Viable = false; 6892 Candidate.FailureKind = ovl_fail_too_many_arguments; 6893 return; 6894 } 6895 6896 // (C++ 13.3.2p2): A candidate function having more than m parameters 6897 // is viable only if the (m+1)st parameter has a default argument 6898 // (8.3.6). For the purposes of overload resolution, the 6899 // parameter list is truncated on the right, so that there are 6900 // exactly m parameters. 6901 unsigned MinRequiredArgs = Method->getMinRequiredArguments(); 6902 if (Args.size() < MinRequiredArgs && !PartialOverloading) { 6903 // Not enough arguments. 6904 Candidate.Viable = false; 6905 Candidate.FailureKind = ovl_fail_too_few_arguments; 6906 return; 6907 } 6908 6909 Candidate.Viable = true; 6910 6911 if (Method->isStatic() || ObjectType.isNull()) 6912 // The implicit object argument is ignored. 6913 Candidate.IgnoreObjectArgument = true; 6914 else { 6915 unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0; 6916 // Determine the implicit conversion sequence for the object 6917 // parameter. 6918 Candidate.Conversions[ConvIdx] = TryObjectArgumentInitialization( 6919 *this, CandidateSet.getLocation(), ObjectType, ObjectClassification, 6920 Method, ActingContext); 6921 if (Candidate.Conversions[ConvIdx].isBad()) { 6922 Candidate.Viable = false; 6923 Candidate.FailureKind = ovl_fail_bad_conversion; 6924 return; 6925 } 6926 } 6927 6928 // (CUDA B.1): Check for invalid calls between targets. 6929 if (getLangOpts().CUDA) 6930 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext)) 6931 if (!IsAllowedCUDACall(Caller, Method)) { 6932 Candidate.Viable = false; 6933 Candidate.FailureKind = ovl_fail_bad_target; 6934 return; 6935 } 6936 6937 if (Method->getTrailingRequiresClause()) { 6938 ConstraintSatisfaction Satisfaction; 6939 if (CheckFunctionConstraints(Method, Satisfaction) || 6940 !Satisfaction.IsSatisfied) { 6941 Candidate.Viable = false; 6942 Candidate.FailureKind = ovl_fail_constraints_not_satisfied; 6943 return; 6944 } 6945 } 6946 6947 // Determine the implicit conversion sequences for each of the 6948 // arguments. 6949 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) { 6950 unsigned ConvIdx = 6951 PO == OverloadCandidateParamOrder::Reversed ? 0 : (ArgIdx + 1); 6952 if (Candidate.Conversions[ConvIdx].isInitialized()) { 6953 // We already formed a conversion sequence for this parameter during 6954 // template argument deduction. 6955 } else if (ArgIdx < NumParams) { 6956 // (C++ 13.3.2p3): for F to be a viable function, there shall 6957 // exist for each argument an implicit conversion sequence 6958 // (13.3.3.1) that converts that argument to the corresponding 6959 // parameter of F. 6960 QualType ParamType = Proto->getParamType(ArgIdx); 6961 Candidate.Conversions[ConvIdx] 6962 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 6963 SuppressUserConversions, 6964 /*InOverloadResolution=*/true, 6965 /*AllowObjCWritebackConversion=*/ 6966 getLangOpts().ObjCAutoRefCount); 6967 if (Candidate.Conversions[ConvIdx].isBad()) { 6968 Candidate.Viable = false; 6969 Candidate.FailureKind = ovl_fail_bad_conversion; 6970 return; 6971 } 6972 } else { 6973 // (C++ 13.3.2p2): For the purposes of overload resolution, any 6974 // argument for which there is no corresponding parameter is 6975 // considered to "match the ellipsis" (C+ 13.3.3.1.3). 6976 Candidate.Conversions[ConvIdx].setEllipsis(); 6977 } 6978 } 6979 6980 if (EnableIfAttr *FailedAttr = 6981 CheckEnableIf(Method, CandidateSet.getLocation(), Args, true)) { 6982 Candidate.Viable = false; 6983 Candidate.FailureKind = ovl_fail_enable_if; 6984 Candidate.DeductionFailure.Data = FailedAttr; 6985 return; 6986 } 6987 6988 if (Method->isMultiVersion() && Method->hasAttr<TargetAttr>() && 6989 !Method->getAttr<TargetAttr>()->isDefaultVersion()) { 6990 Candidate.Viable = false; 6991 Candidate.FailureKind = ovl_non_default_multiversion_function; 6992 } 6993 } 6994 6995 /// Add a C++ member function template as a candidate to the candidate 6996 /// set, using template argument deduction to produce an appropriate member 6997 /// function template specialization. 6998 void Sema::AddMethodTemplateCandidate( 6999 FunctionTemplateDecl *MethodTmpl, DeclAccessPair FoundDecl, 7000 CXXRecordDecl *ActingContext, 7001 TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ObjectType, 7002 Expr::Classification ObjectClassification, ArrayRef<Expr *> Args, 7003 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions, 7004 bool PartialOverloading, OverloadCandidateParamOrder PO) { 7005 if (!CandidateSet.isNewCandidate(MethodTmpl, PO)) 7006 return; 7007 7008 // C++ [over.match.funcs]p7: 7009 // In each case where a candidate is a function template, candidate 7010 // function template specializations are generated using template argument 7011 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 7012 // candidate functions in the usual way.113) A given name can refer to one 7013 // or more function templates and also to a set of overloaded non-template 7014 // functions. In such a case, the candidate functions generated from each 7015 // function template are combined with the set of non-template candidate 7016 // functions. 7017 TemplateDeductionInfo Info(CandidateSet.getLocation()); 7018 FunctionDecl *Specialization = nullptr; 7019 ConversionSequenceList Conversions; 7020 if (TemplateDeductionResult Result = DeduceTemplateArguments( 7021 MethodTmpl, ExplicitTemplateArgs, Args, Specialization, Info, 7022 PartialOverloading, [&](ArrayRef<QualType> ParamTypes) { 7023 return CheckNonDependentConversions( 7024 MethodTmpl, ParamTypes, Args, CandidateSet, Conversions, 7025 SuppressUserConversions, ActingContext, ObjectType, 7026 ObjectClassification, PO); 7027 })) { 7028 OverloadCandidate &Candidate = 7029 CandidateSet.addCandidate(Conversions.size(), Conversions); 7030 Candidate.FoundDecl = FoundDecl; 7031 Candidate.Function = MethodTmpl->getTemplatedDecl(); 7032 Candidate.Viable = false; 7033 Candidate.RewriteKind = 7034 CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO); 7035 Candidate.IsSurrogate = false; 7036 Candidate.IgnoreObjectArgument = 7037 cast<CXXMethodDecl>(Candidate.Function)->isStatic() || 7038 ObjectType.isNull(); 7039 Candidate.ExplicitCallArguments = Args.size(); 7040 if (Result == TDK_NonDependentConversionFailure) 7041 Candidate.FailureKind = ovl_fail_bad_conversion; 7042 else { 7043 Candidate.FailureKind = ovl_fail_bad_deduction; 7044 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 7045 Info); 7046 } 7047 return; 7048 } 7049 7050 // Add the function template specialization produced by template argument 7051 // deduction as a candidate. 7052 assert(Specialization && "Missing member function template specialization?"); 7053 assert(isa<CXXMethodDecl>(Specialization) && 7054 "Specialization is not a member function?"); 7055 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl, 7056 ActingContext, ObjectType, ObjectClassification, Args, 7057 CandidateSet, SuppressUserConversions, PartialOverloading, 7058 Conversions, PO); 7059 } 7060 7061 /// Determine whether a given function template has a simple explicit specifier 7062 /// or a non-value-dependent explicit-specification that evaluates to true. 7063 static bool isNonDependentlyExplicit(FunctionTemplateDecl *FTD) { 7064 return ExplicitSpecifier::getFromDecl(FTD->getTemplatedDecl()).isExplicit(); 7065 } 7066 7067 /// Add a C++ function template specialization as a candidate 7068 /// in the candidate set, using template argument deduction to produce 7069 /// an appropriate function template specialization. 7070 void Sema::AddTemplateOverloadCandidate( 7071 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl, 7072 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args, 7073 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions, 7074 bool PartialOverloading, bool AllowExplicit, ADLCallKind IsADLCandidate, 7075 OverloadCandidateParamOrder PO) { 7076 if (!CandidateSet.isNewCandidate(FunctionTemplate, PO)) 7077 return; 7078 7079 // If the function template has a non-dependent explicit specification, 7080 // exclude it now if appropriate; we are not permitted to perform deduction 7081 // and substitution in this case. 7082 if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) { 7083 OverloadCandidate &Candidate = CandidateSet.addCandidate(); 7084 Candidate.FoundDecl = FoundDecl; 7085 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 7086 Candidate.Viable = false; 7087 Candidate.FailureKind = ovl_fail_explicit; 7088 return; 7089 } 7090 7091 // C++ [over.match.funcs]p7: 7092 // In each case where a candidate is a function template, candidate 7093 // function template specializations are generated using template argument 7094 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 7095 // candidate functions in the usual way.113) A given name can refer to one 7096 // or more function templates and also to a set of overloaded non-template 7097 // functions. In such a case, the candidate functions generated from each 7098 // function template are combined with the set of non-template candidate 7099 // functions. 7100 TemplateDeductionInfo Info(CandidateSet.getLocation()); 7101 FunctionDecl *Specialization = nullptr; 7102 ConversionSequenceList Conversions; 7103 if (TemplateDeductionResult Result = DeduceTemplateArguments( 7104 FunctionTemplate, ExplicitTemplateArgs, Args, Specialization, Info, 7105 PartialOverloading, [&](ArrayRef<QualType> ParamTypes) { 7106 return CheckNonDependentConversions( 7107 FunctionTemplate, ParamTypes, Args, CandidateSet, Conversions, 7108 SuppressUserConversions, nullptr, QualType(), {}, PO); 7109 })) { 7110 OverloadCandidate &Candidate = 7111 CandidateSet.addCandidate(Conversions.size(), Conversions); 7112 Candidate.FoundDecl = FoundDecl; 7113 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 7114 Candidate.Viable = false; 7115 Candidate.RewriteKind = 7116 CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO); 7117 Candidate.IsSurrogate = false; 7118 Candidate.IsADLCandidate = IsADLCandidate; 7119 // Ignore the object argument if there is one, since we don't have an object 7120 // type. 7121 Candidate.IgnoreObjectArgument = 7122 isa<CXXMethodDecl>(Candidate.Function) && 7123 !isa<CXXConstructorDecl>(Candidate.Function); 7124 Candidate.ExplicitCallArguments = Args.size(); 7125 if (Result == TDK_NonDependentConversionFailure) 7126 Candidate.FailureKind = ovl_fail_bad_conversion; 7127 else { 7128 Candidate.FailureKind = ovl_fail_bad_deduction; 7129 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 7130 Info); 7131 } 7132 return; 7133 } 7134 7135 // Add the function template specialization produced by template argument 7136 // deduction as a candidate. 7137 assert(Specialization && "Missing function template specialization?"); 7138 AddOverloadCandidate( 7139 Specialization, FoundDecl, Args, CandidateSet, SuppressUserConversions, 7140 PartialOverloading, AllowExplicit, 7141 /*AllowExplicitConversions*/ false, IsADLCandidate, Conversions, PO); 7142 } 7143 7144 /// Check that implicit conversion sequences can be formed for each argument 7145 /// whose corresponding parameter has a non-dependent type, per DR1391's 7146 /// [temp.deduct.call]p10. 7147 bool Sema::CheckNonDependentConversions( 7148 FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes, 7149 ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet, 7150 ConversionSequenceList &Conversions, bool SuppressUserConversions, 7151 CXXRecordDecl *ActingContext, QualType ObjectType, 7152 Expr::Classification ObjectClassification, OverloadCandidateParamOrder PO) { 7153 // FIXME: The cases in which we allow explicit conversions for constructor 7154 // arguments never consider calling a constructor template. It's not clear 7155 // that is correct. 7156 const bool AllowExplicit = false; 7157 7158 auto *FD = FunctionTemplate->getTemplatedDecl(); 7159 auto *Method = dyn_cast<CXXMethodDecl>(FD); 7160 bool HasThisConversion = Method && !isa<CXXConstructorDecl>(Method); 7161 unsigned ThisConversions = HasThisConversion ? 1 : 0; 7162 7163 Conversions = 7164 CandidateSet.allocateConversionSequences(ThisConversions + Args.size()); 7165 7166 // Overload resolution is always an unevaluated context. 7167 EnterExpressionEvaluationContext Unevaluated( 7168 *this, Sema::ExpressionEvaluationContext::Unevaluated); 7169 7170 // For a method call, check the 'this' conversion here too. DR1391 doesn't 7171 // require that, but this check should never result in a hard error, and 7172 // overload resolution is permitted to sidestep instantiations. 7173 if (HasThisConversion && !cast<CXXMethodDecl>(FD)->isStatic() && 7174 !ObjectType.isNull()) { 7175 unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0; 7176 Conversions[ConvIdx] = TryObjectArgumentInitialization( 7177 *this, CandidateSet.getLocation(), ObjectType, ObjectClassification, 7178 Method, ActingContext); 7179 if (Conversions[ConvIdx].isBad()) 7180 return true; 7181 } 7182 7183 for (unsigned I = 0, N = std::min(ParamTypes.size(), Args.size()); I != N; 7184 ++I) { 7185 QualType ParamType = ParamTypes[I]; 7186 if (!ParamType->isDependentType()) { 7187 unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed 7188 ? 0 7189 : (ThisConversions + I); 7190 Conversions[ConvIdx] 7191 = TryCopyInitialization(*this, Args[I], ParamType, 7192 SuppressUserConversions, 7193 /*InOverloadResolution=*/true, 7194 /*AllowObjCWritebackConversion=*/ 7195 getLangOpts().ObjCAutoRefCount, 7196 AllowExplicit); 7197 if (Conversions[ConvIdx].isBad()) 7198 return true; 7199 } 7200 } 7201 7202 return false; 7203 } 7204 7205 /// Determine whether this is an allowable conversion from the result 7206 /// of an explicit conversion operator to the expected type, per C++ 7207 /// [over.match.conv]p1 and [over.match.ref]p1. 7208 /// 7209 /// \param ConvType The return type of the conversion function. 7210 /// 7211 /// \param ToType The type we are converting to. 7212 /// 7213 /// \param AllowObjCPointerConversion Allow a conversion from one 7214 /// Objective-C pointer to another. 7215 /// 7216 /// \returns true if the conversion is allowable, false otherwise. 7217 static bool isAllowableExplicitConversion(Sema &S, 7218 QualType ConvType, QualType ToType, 7219 bool AllowObjCPointerConversion) { 7220 QualType ToNonRefType = ToType.getNonReferenceType(); 7221 7222 // Easy case: the types are the same. 7223 if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType)) 7224 return true; 7225 7226 // Allow qualification conversions. 7227 bool ObjCLifetimeConversion; 7228 if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false, 7229 ObjCLifetimeConversion)) 7230 return true; 7231 7232 // If we're not allowed to consider Objective-C pointer conversions, 7233 // we're done. 7234 if (!AllowObjCPointerConversion) 7235 return false; 7236 7237 // Is this an Objective-C pointer conversion? 7238 bool IncompatibleObjC = false; 7239 QualType ConvertedType; 7240 return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType, 7241 IncompatibleObjC); 7242 } 7243 7244 /// AddConversionCandidate - Add a C++ conversion function as a 7245 /// candidate in the candidate set (C++ [over.match.conv], 7246 /// C++ [over.match.copy]). From is the expression we're converting from, 7247 /// and ToType is the type that we're eventually trying to convert to 7248 /// (which may or may not be the same type as the type that the 7249 /// conversion function produces). 7250 void Sema::AddConversionCandidate( 7251 CXXConversionDecl *Conversion, DeclAccessPair FoundDecl, 7252 CXXRecordDecl *ActingContext, Expr *From, QualType ToType, 7253 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit, 7254 bool AllowExplicit, bool AllowResultConversion) { 7255 assert(!Conversion->getDescribedFunctionTemplate() && 7256 "Conversion function templates use AddTemplateConversionCandidate"); 7257 QualType ConvType = Conversion->getConversionType().getNonReferenceType(); 7258 if (!CandidateSet.isNewCandidate(Conversion)) 7259 return; 7260 7261 // If the conversion function has an undeduced return type, trigger its 7262 // deduction now. 7263 if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) { 7264 if (DeduceReturnType(Conversion, From->getExprLoc())) 7265 return; 7266 ConvType = Conversion->getConversionType().getNonReferenceType(); 7267 } 7268 7269 // If we don't allow any conversion of the result type, ignore conversion 7270 // functions that don't convert to exactly (possibly cv-qualified) T. 7271 if (!AllowResultConversion && 7272 !Context.hasSameUnqualifiedType(Conversion->getConversionType(), ToType)) 7273 return; 7274 7275 // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion 7276 // operator is only a candidate if its return type is the target type or 7277 // can be converted to the target type with a qualification conversion. 7278 // 7279 // FIXME: Include such functions in the candidate list and explain why we 7280 // can't select them. 7281 if (Conversion->isExplicit() && 7282 !isAllowableExplicitConversion(*this, ConvType, ToType, 7283 AllowObjCConversionOnExplicit)) 7284 return; 7285 7286 // Overload resolution is always an unevaluated context. 7287 EnterExpressionEvaluationContext Unevaluated( 7288 *this, Sema::ExpressionEvaluationContext::Unevaluated); 7289 7290 // Add this candidate 7291 OverloadCandidate &Candidate = CandidateSet.addCandidate(1); 7292 Candidate.FoundDecl = FoundDecl; 7293 Candidate.Function = Conversion; 7294 Candidate.IsSurrogate = false; 7295 Candidate.IgnoreObjectArgument = false; 7296 Candidate.FinalConversion.setAsIdentityConversion(); 7297 Candidate.FinalConversion.setFromType(ConvType); 7298 Candidate.FinalConversion.setAllToTypes(ToType); 7299 Candidate.Viable = true; 7300 Candidate.ExplicitCallArguments = 1; 7301 7302 // Explicit functions are not actually candidates at all if we're not 7303 // allowing them in this context, but keep them around so we can point 7304 // to them in diagnostics. 7305 if (!AllowExplicit && Conversion->isExplicit()) { 7306 Candidate.Viable = false; 7307 Candidate.FailureKind = ovl_fail_explicit; 7308 return; 7309 } 7310 7311 // C++ [over.match.funcs]p4: 7312 // For conversion functions, the function is considered to be a member of 7313 // the class of the implicit implied object argument for the purpose of 7314 // defining the type of the implicit object parameter. 7315 // 7316 // Determine the implicit conversion sequence for the implicit 7317 // object parameter. 7318 QualType ImplicitParamType = From->getType(); 7319 if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>()) 7320 ImplicitParamType = FromPtrType->getPointeeType(); 7321 CXXRecordDecl *ConversionContext 7322 = cast<CXXRecordDecl>(ImplicitParamType->castAs<RecordType>()->getDecl()); 7323 7324 Candidate.Conversions[0] = TryObjectArgumentInitialization( 7325 *this, CandidateSet.getLocation(), From->getType(), 7326 From->Classify(Context), Conversion, ConversionContext); 7327 7328 if (Candidate.Conversions[0].isBad()) { 7329 Candidate.Viable = false; 7330 Candidate.FailureKind = ovl_fail_bad_conversion; 7331 return; 7332 } 7333 7334 if (Conversion->getTrailingRequiresClause()) { 7335 ConstraintSatisfaction Satisfaction; 7336 if (CheckFunctionConstraints(Conversion, Satisfaction) || 7337 !Satisfaction.IsSatisfied) { 7338 Candidate.Viable = false; 7339 Candidate.FailureKind = ovl_fail_constraints_not_satisfied; 7340 return; 7341 } 7342 } 7343 7344 // We won't go through a user-defined type conversion function to convert a 7345 // derived to base as such conversions are given Conversion Rank. They only 7346 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] 7347 QualType FromCanon 7348 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 7349 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 7350 if (FromCanon == ToCanon || 7351 IsDerivedFrom(CandidateSet.getLocation(), FromCanon, ToCanon)) { 7352 Candidate.Viable = false; 7353 Candidate.FailureKind = ovl_fail_trivial_conversion; 7354 return; 7355 } 7356 7357 // To determine what the conversion from the result of calling the 7358 // conversion function to the type we're eventually trying to 7359 // convert to (ToType), we need to synthesize a call to the 7360 // conversion function and attempt copy initialization from it. This 7361 // makes sure that we get the right semantics with respect to 7362 // lvalues/rvalues and the type. Fortunately, we can allocate this 7363 // call on the stack and we don't need its arguments to be 7364 // well-formed. 7365 DeclRefExpr ConversionRef(Context, Conversion, false, Conversion->getType(), 7366 VK_LValue, From->getBeginLoc()); 7367 ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack, 7368 Context.getPointerType(Conversion->getType()), 7369 CK_FunctionToPointerDecay, &ConversionRef, 7370 VK_PRValue, FPOptionsOverride()); 7371 7372 QualType ConversionType = Conversion->getConversionType(); 7373 if (!isCompleteType(From->getBeginLoc(), ConversionType)) { 7374 Candidate.Viable = false; 7375 Candidate.FailureKind = ovl_fail_bad_final_conversion; 7376 return; 7377 } 7378 7379 ExprValueKind VK = Expr::getValueKindForType(ConversionType); 7380 7381 // Note that it is safe to allocate CallExpr on the stack here because 7382 // there are 0 arguments (i.e., nothing is allocated using ASTContext's 7383 // allocator). 7384 QualType CallResultType = ConversionType.getNonLValueExprType(Context); 7385 7386 alignas(CallExpr) char Buffer[sizeof(CallExpr) + sizeof(Stmt *)]; 7387 CallExpr *TheTemporaryCall = CallExpr::CreateTemporary( 7388 Buffer, &ConversionFn, CallResultType, VK, From->getBeginLoc()); 7389 7390 ImplicitConversionSequence ICS = 7391 TryCopyInitialization(*this, TheTemporaryCall, ToType, 7392 /*SuppressUserConversions=*/true, 7393 /*InOverloadResolution=*/false, 7394 /*AllowObjCWritebackConversion=*/false); 7395 7396 switch (ICS.getKind()) { 7397 case ImplicitConversionSequence::StandardConversion: 7398 Candidate.FinalConversion = ICS.Standard; 7399 7400 // C++ [over.ics.user]p3: 7401 // If the user-defined conversion is specified by a specialization of a 7402 // conversion function template, the second standard conversion sequence 7403 // shall have exact match rank. 7404 if (Conversion->getPrimaryTemplate() && 7405 GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) { 7406 Candidate.Viable = false; 7407 Candidate.FailureKind = ovl_fail_final_conversion_not_exact; 7408 return; 7409 } 7410 7411 // C++0x [dcl.init.ref]p5: 7412 // In the second case, if the reference is an rvalue reference and 7413 // the second standard conversion sequence of the user-defined 7414 // conversion sequence includes an lvalue-to-rvalue conversion, the 7415 // program is ill-formed. 7416 if (ToType->isRValueReferenceType() && 7417 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 7418 Candidate.Viable = false; 7419 Candidate.FailureKind = ovl_fail_bad_final_conversion; 7420 return; 7421 } 7422 break; 7423 7424 case ImplicitConversionSequence::BadConversion: 7425 Candidate.Viable = false; 7426 Candidate.FailureKind = ovl_fail_bad_final_conversion; 7427 return; 7428 7429 default: 7430 llvm_unreachable( 7431 "Can only end up with a standard conversion sequence or failure"); 7432 } 7433 7434 if (EnableIfAttr *FailedAttr = 7435 CheckEnableIf(Conversion, CandidateSet.getLocation(), None)) { 7436 Candidate.Viable = false; 7437 Candidate.FailureKind = ovl_fail_enable_if; 7438 Candidate.DeductionFailure.Data = FailedAttr; 7439 return; 7440 } 7441 7442 if (Conversion->isMultiVersion() && Conversion->hasAttr<TargetAttr>() && 7443 !Conversion->getAttr<TargetAttr>()->isDefaultVersion()) { 7444 Candidate.Viable = false; 7445 Candidate.FailureKind = ovl_non_default_multiversion_function; 7446 } 7447 } 7448 7449 /// Adds a conversion function template specialization 7450 /// candidate to the overload set, using template argument deduction 7451 /// to deduce the template arguments of the conversion function 7452 /// template from the type that we are converting to (C++ 7453 /// [temp.deduct.conv]). 7454 void Sema::AddTemplateConversionCandidate( 7455 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl, 7456 CXXRecordDecl *ActingDC, Expr *From, QualType ToType, 7457 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit, 7458 bool AllowExplicit, bool AllowResultConversion) { 7459 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && 7460 "Only conversion function templates permitted here"); 7461 7462 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 7463 return; 7464 7465 // If the function template has a non-dependent explicit specification, 7466 // exclude it now if appropriate; we are not permitted to perform deduction 7467 // and substitution in this case. 7468 if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) { 7469 OverloadCandidate &Candidate = CandidateSet.addCandidate(); 7470 Candidate.FoundDecl = FoundDecl; 7471 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 7472 Candidate.Viable = false; 7473 Candidate.FailureKind = ovl_fail_explicit; 7474 return; 7475 } 7476 7477 TemplateDeductionInfo Info(CandidateSet.getLocation()); 7478 CXXConversionDecl *Specialization = nullptr; 7479 if (TemplateDeductionResult Result 7480 = DeduceTemplateArguments(FunctionTemplate, ToType, 7481 Specialization, Info)) { 7482 OverloadCandidate &Candidate = CandidateSet.addCandidate(); 7483 Candidate.FoundDecl = FoundDecl; 7484 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 7485 Candidate.Viable = false; 7486 Candidate.FailureKind = ovl_fail_bad_deduction; 7487 Candidate.IsSurrogate = false; 7488 Candidate.IgnoreObjectArgument = false; 7489 Candidate.ExplicitCallArguments = 1; 7490 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 7491 Info); 7492 return; 7493 } 7494 7495 // Add the conversion function template specialization produced by 7496 // template argument deduction as a candidate. 7497 assert(Specialization && "Missing function template specialization?"); 7498 AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType, 7499 CandidateSet, AllowObjCConversionOnExplicit, 7500 AllowExplicit, AllowResultConversion); 7501 } 7502 7503 /// AddSurrogateCandidate - Adds a "surrogate" candidate function that 7504 /// converts the given @c Object to a function pointer via the 7505 /// conversion function @c Conversion, and then attempts to call it 7506 /// with the given arguments (C++ [over.call.object]p2-4). Proto is 7507 /// the type of function that we'll eventually be calling. 7508 void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, 7509 DeclAccessPair FoundDecl, 7510 CXXRecordDecl *ActingContext, 7511 const FunctionProtoType *Proto, 7512 Expr *Object, 7513 ArrayRef<Expr *> Args, 7514 OverloadCandidateSet& CandidateSet) { 7515 if (!CandidateSet.isNewCandidate(Conversion)) 7516 return; 7517 7518 // Overload resolution is always an unevaluated context. 7519 EnterExpressionEvaluationContext Unevaluated( 7520 *this, Sema::ExpressionEvaluationContext::Unevaluated); 7521 7522 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1); 7523 Candidate.FoundDecl = FoundDecl; 7524 Candidate.Function = nullptr; 7525 Candidate.Surrogate = Conversion; 7526 Candidate.Viable = true; 7527 Candidate.IsSurrogate = true; 7528 Candidate.IgnoreObjectArgument = false; 7529 Candidate.ExplicitCallArguments = Args.size(); 7530 7531 // Determine the implicit conversion sequence for the implicit 7532 // object parameter. 7533 ImplicitConversionSequence ObjectInit = TryObjectArgumentInitialization( 7534 *this, CandidateSet.getLocation(), Object->getType(), 7535 Object->Classify(Context), Conversion, ActingContext); 7536 if (ObjectInit.isBad()) { 7537 Candidate.Viable = false; 7538 Candidate.FailureKind = ovl_fail_bad_conversion; 7539 Candidate.Conversions[0] = ObjectInit; 7540 return; 7541 } 7542 7543 // The first conversion is actually a user-defined conversion whose 7544 // first conversion is ObjectInit's standard conversion (which is 7545 // effectively a reference binding). Record it as such. 7546 Candidate.Conversions[0].setUserDefined(); 7547 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; 7548 Candidate.Conversions[0].UserDefined.EllipsisConversion = false; 7549 Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false; 7550 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; 7551 Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl; 7552 Candidate.Conversions[0].UserDefined.After 7553 = Candidate.Conversions[0].UserDefined.Before; 7554 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); 7555 7556 // Find the 7557 unsigned NumParams = Proto->getNumParams(); 7558 7559 // (C++ 13.3.2p2): A candidate function having fewer than m 7560 // parameters is viable only if it has an ellipsis in its parameter 7561 // list (8.3.5). 7562 if (Args.size() > NumParams && !Proto->isVariadic()) { 7563 Candidate.Viable = false; 7564 Candidate.FailureKind = ovl_fail_too_many_arguments; 7565 return; 7566 } 7567 7568 // Function types don't have any default arguments, so just check if 7569 // we have enough arguments. 7570 if (Args.size() < NumParams) { 7571 // Not enough arguments. 7572 Candidate.Viable = false; 7573 Candidate.FailureKind = ovl_fail_too_few_arguments; 7574 return; 7575 } 7576 7577 // Determine the implicit conversion sequences for each of the 7578 // arguments. 7579 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 7580 if (ArgIdx < NumParams) { 7581 // (C++ 13.3.2p3): for F to be a viable function, there shall 7582 // exist for each argument an implicit conversion sequence 7583 // (13.3.3.1) that converts that argument to the corresponding 7584 // parameter of F. 7585 QualType ParamType = Proto->getParamType(ArgIdx); 7586 Candidate.Conversions[ArgIdx + 1] 7587 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 7588 /*SuppressUserConversions=*/false, 7589 /*InOverloadResolution=*/false, 7590 /*AllowObjCWritebackConversion=*/ 7591 getLangOpts().ObjCAutoRefCount); 7592 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 7593 Candidate.Viable = false; 7594 Candidate.FailureKind = ovl_fail_bad_conversion; 7595 return; 7596 } 7597 } else { 7598 // (C++ 13.3.2p2): For the purposes of overload resolution, any 7599 // argument for which there is no corresponding parameter is 7600 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 7601 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 7602 } 7603 } 7604 7605 if (EnableIfAttr *FailedAttr = 7606 CheckEnableIf(Conversion, CandidateSet.getLocation(), None)) { 7607 Candidate.Viable = false; 7608 Candidate.FailureKind = ovl_fail_enable_if; 7609 Candidate.DeductionFailure.Data = FailedAttr; 7610 return; 7611 } 7612 } 7613 7614 /// Add all of the non-member operator function declarations in the given 7615 /// function set to the overload candidate set. 7616 void Sema::AddNonMemberOperatorCandidates( 7617 const UnresolvedSetImpl &Fns, ArrayRef<Expr *> Args, 7618 OverloadCandidateSet &CandidateSet, 7619 TemplateArgumentListInfo *ExplicitTemplateArgs) { 7620 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { 7621 NamedDecl *D = F.getDecl()->getUnderlyingDecl(); 7622 ArrayRef<Expr *> FunctionArgs = Args; 7623 7624 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D); 7625 FunctionDecl *FD = 7626 FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D); 7627 7628 // Don't consider rewritten functions if we're not rewriting. 7629 if (!CandidateSet.getRewriteInfo().isAcceptableCandidate(FD)) 7630 continue; 7631 7632 assert(!isa<CXXMethodDecl>(FD) && 7633 "unqualified operator lookup found a member function"); 7634 7635 if (FunTmpl) { 7636 AddTemplateOverloadCandidate(FunTmpl, F.getPair(), ExplicitTemplateArgs, 7637 FunctionArgs, CandidateSet); 7638 if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD)) 7639 AddTemplateOverloadCandidate( 7640 FunTmpl, F.getPair(), ExplicitTemplateArgs, 7641 {FunctionArgs[1], FunctionArgs[0]}, CandidateSet, false, false, 7642 true, ADLCallKind::NotADL, OverloadCandidateParamOrder::Reversed); 7643 } else { 7644 if (ExplicitTemplateArgs) 7645 continue; 7646 AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet); 7647 if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD)) 7648 AddOverloadCandidate(FD, F.getPair(), 7649 {FunctionArgs[1], FunctionArgs[0]}, CandidateSet, 7650 false, false, true, false, ADLCallKind::NotADL, 7651 None, OverloadCandidateParamOrder::Reversed); 7652 } 7653 } 7654 } 7655 7656 /// Add overload candidates for overloaded operators that are 7657 /// member functions. 7658 /// 7659 /// Add the overloaded operator candidates that are member functions 7660 /// for the operator Op that was used in an operator expression such 7661 /// as "x Op y". , Args/NumArgs provides the operator arguments, and 7662 /// CandidateSet will store the added overload candidates. (C++ 7663 /// [over.match.oper]). 7664 void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, 7665 SourceLocation OpLoc, 7666 ArrayRef<Expr *> Args, 7667 OverloadCandidateSet &CandidateSet, 7668 OverloadCandidateParamOrder PO) { 7669 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 7670 7671 // C++ [over.match.oper]p3: 7672 // For a unary operator @ with an operand of a type whose 7673 // cv-unqualified version is T1, and for a binary operator @ with 7674 // a left operand of a type whose cv-unqualified version is T1 and 7675 // a right operand of a type whose cv-unqualified version is T2, 7676 // three sets of candidate functions, designated member 7677 // candidates, non-member candidates and built-in candidates, are 7678 // constructed as follows: 7679 QualType T1 = Args[0]->getType(); 7680 7681 // -- If T1 is a complete class type or a class currently being 7682 // defined, the set of member candidates is the result of the 7683 // qualified lookup of T1::operator@ (13.3.1.1.1); otherwise, 7684 // the set of member candidates is empty. 7685 if (const RecordType *T1Rec = T1->getAs<RecordType>()) { 7686 // Complete the type if it can be completed. 7687 if (!isCompleteType(OpLoc, T1) && !T1Rec->isBeingDefined()) 7688 return; 7689 // If the type is neither complete nor being defined, bail out now. 7690 if (!T1Rec->getDecl()->getDefinition()) 7691 return; 7692 7693 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); 7694 LookupQualifiedName(Operators, T1Rec->getDecl()); 7695 Operators.suppressDiagnostics(); 7696 7697 for (LookupResult::iterator Oper = Operators.begin(), 7698 OperEnd = Operators.end(); 7699 Oper != OperEnd; 7700 ++Oper) 7701 AddMethodCandidate(Oper.getPair(), Args[0]->getType(), 7702 Args[0]->Classify(Context), Args.slice(1), 7703 CandidateSet, /*SuppressUserConversion=*/false, PO); 7704 } 7705 } 7706 7707 /// AddBuiltinCandidate - Add a candidate for a built-in 7708 /// operator. ResultTy and ParamTys are the result and parameter types 7709 /// of the built-in candidate, respectively. Args and NumArgs are the 7710 /// arguments being passed to the candidate. IsAssignmentOperator 7711 /// should be true when this built-in candidate is an assignment 7712 /// operator. NumContextualBoolArguments is the number of arguments 7713 /// (at the beginning of the argument list) that will be contextually 7714 /// converted to bool. 7715 void Sema::AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args, 7716 OverloadCandidateSet& CandidateSet, 7717 bool IsAssignmentOperator, 7718 unsigned NumContextualBoolArguments) { 7719 // Overload resolution is always an unevaluated context. 7720 EnterExpressionEvaluationContext Unevaluated( 7721 *this, Sema::ExpressionEvaluationContext::Unevaluated); 7722 7723 // Add this candidate 7724 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size()); 7725 Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none); 7726 Candidate.Function = nullptr; 7727 Candidate.IsSurrogate = false; 7728 Candidate.IgnoreObjectArgument = false; 7729 std::copy(ParamTys, ParamTys + Args.size(), Candidate.BuiltinParamTypes); 7730 7731 // Determine the implicit conversion sequences for each of the 7732 // arguments. 7733 Candidate.Viable = true; 7734 Candidate.ExplicitCallArguments = Args.size(); 7735 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 7736 // C++ [over.match.oper]p4: 7737 // For the built-in assignment operators, conversions of the 7738 // left operand are restricted as follows: 7739 // -- no temporaries are introduced to hold the left operand, and 7740 // -- no user-defined conversions are applied to the left 7741 // operand to achieve a type match with the left-most 7742 // parameter of a built-in candidate. 7743 // 7744 // We block these conversions by turning off user-defined 7745 // conversions, since that is the only way that initialization of 7746 // a reference to a non-class type can occur from something that 7747 // is not of the same type. 7748 if (ArgIdx < NumContextualBoolArguments) { 7749 assert(ParamTys[ArgIdx] == Context.BoolTy && 7750 "Contextual conversion to bool requires bool type"); 7751 Candidate.Conversions[ArgIdx] 7752 = TryContextuallyConvertToBool(*this, Args[ArgIdx]); 7753 } else { 7754 Candidate.Conversions[ArgIdx] 7755 = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx], 7756 ArgIdx == 0 && IsAssignmentOperator, 7757 /*InOverloadResolution=*/false, 7758 /*AllowObjCWritebackConversion=*/ 7759 getLangOpts().ObjCAutoRefCount); 7760 } 7761 if (Candidate.Conversions[ArgIdx].isBad()) { 7762 Candidate.Viable = false; 7763 Candidate.FailureKind = ovl_fail_bad_conversion; 7764 break; 7765 } 7766 } 7767 } 7768 7769 namespace { 7770 7771 /// BuiltinCandidateTypeSet - A set of types that will be used for the 7772 /// candidate operator functions for built-in operators (C++ 7773 /// [over.built]). The types are separated into pointer types and 7774 /// enumeration types. 7775 class BuiltinCandidateTypeSet { 7776 /// TypeSet - A set of types. 7777 typedef llvm::SetVector<QualType, SmallVector<QualType, 8>, 7778 llvm::SmallPtrSet<QualType, 8>> TypeSet; 7779 7780 /// PointerTypes - The set of pointer types that will be used in the 7781 /// built-in candidates. 7782 TypeSet PointerTypes; 7783 7784 /// MemberPointerTypes - The set of member pointer types that will be 7785 /// used in the built-in candidates. 7786 TypeSet MemberPointerTypes; 7787 7788 /// EnumerationTypes - The set of enumeration types that will be 7789 /// used in the built-in candidates. 7790 TypeSet EnumerationTypes; 7791 7792 /// The set of vector types that will be used in the built-in 7793 /// candidates. 7794 TypeSet VectorTypes; 7795 7796 /// The set of matrix types that will be used in the built-in 7797 /// candidates. 7798 TypeSet MatrixTypes; 7799 7800 /// A flag indicating non-record types are viable candidates 7801 bool HasNonRecordTypes; 7802 7803 /// A flag indicating whether either arithmetic or enumeration types 7804 /// were present in the candidate set. 7805 bool HasArithmeticOrEnumeralTypes; 7806 7807 /// A flag indicating whether the nullptr type was present in the 7808 /// candidate set. 7809 bool HasNullPtrType; 7810 7811 /// Sema - The semantic analysis instance where we are building the 7812 /// candidate type set. 7813 Sema &SemaRef; 7814 7815 /// Context - The AST context in which we will build the type sets. 7816 ASTContext &Context; 7817 7818 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 7819 const Qualifiers &VisibleQuals); 7820 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); 7821 7822 public: 7823 /// iterator - Iterates through the types that are part of the set. 7824 typedef TypeSet::iterator iterator; 7825 7826 BuiltinCandidateTypeSet(Sema &SemaRef) 7827 : HasNonRecordTypes(false), 7828 HasArithmeticOrEnumeralTypes(false), 7829 HasNullPtrType(false), 7830 SemaRef(SemaRef), 7831 Context(SemaRef.Context) { } 7832 7833 void AddTypesConvertedFrom(QualType Ty, 7834 SourceLocation Loc, 7835 bool AllowUserConversions, 7836 bool AllowExplicitConversions, 7837 const Qualifiers &VisibleTypeConversionsQuals); 7838 7839 llvm::iterator_range<iterator> pointer_types() { return PointerTypes; } 7840 llvm::iterator_range<iterator> member_pointer_types() { 7841 return MemberPointerTypes; 7842 } 7843 llvm::iterator_range<iterator> enumeration_types() { 7844 return EnumerationTypes; 7845 } 7846 llvm::iterator_range<iterator> vector_types() { return VectorTypes; } 7847 llvm::iterator_range<iterator> matrix_types() { return MatrixTypes; } 7848 7849 bool containsMatrixType(QualType Ty) const { return MatrixTypes.count(Ty); } 7850 bool hasNonRecordTypes() { return HasNonRecordTypes; } 7851 bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; } 7852 bool hasNullPtrType() const { return HasNullPtrType; } 7853 }; 7854 7855 } // end anonymous namespace 7856 7857 /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to 7858 /// the set of pointer types along with any more-qualified variants of 7859 /// that type. For example, if @p Ty is "int const *", this routine 7860 /// will add "int const *", "int const volatile *", "int const 7861 /// restrict *", and "int const volatile restrict *" to the set of 7862 /// pointer types. Returns true if the add of @p Ty itself succeeded, 7863 /// false otherwise. 7864 /// 7865 /// FIXME: what to do about extended qualifiers? 7866 bool 7867 BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 7868 const Qualifiers &VisibleQuals) { 7869 7870 // Insert this type. 7871 if (!PointerTypes.insert(Ty)) 7872 return false; 7873 7874 QualType PointeeTy; 7875 const PointerType *PointerTy = Ty->getAs<PointerType>(); 7876 bool buildObjCPtr = false; 7877 if (!PointerTy) { 7878 const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>(); 7879 PointeeTy = PTy->getPointeeType(); 7880 buildObjCPtr = true; 7881 } else { 7882 PointeeTy = PointerTy->getPointeeType(); 7883 } 7884 7885 // Don't add qualified variants of arrays. For one, they're not allowed 7886 // (the qualifier would sink to the element type), and for another, the 7887 // only overload situation where it matters is subscript or pointer +- int, 7888 // and those shouldn't have qualifier variants anyway. 7889 if (PointeeTy->isArrayType()) 7890 return true; 7891 7892 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 7893 bool hasVolatile = VisibleQuals.hasVolatile(); 7894 bool hasRestrict = VisibleQuals.hasRestrict(); 7895 7896 // Iterate through all strict supersets of BaseCVR. 7897 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 7898 if ((CVR | BaseCVR) != CVR) continue; 7899 // Skip over volatile if no volatile found anywhere in the types. 7900 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; 7901 7902 // Skip over restrict if no restrict found anywhere in the types, or if 7903 // the type cannot be restrict-qualified. 7904 if ((CVR & Qualifiers::Restrict) && 7905 (!hasRestrict || 7906 (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType())))) 7907 continue; 7908 7909 // Build qualified pointee type. 7910 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 7911 7912 // Build qualified pointer type. 7913 QualType QPointerTy; 7914 if (!buildObjCPtr) 7915 QPointerTy = Context.getPointerType(QPointeeTy); 7916 else 7917 QPointerTy = Context.getObjCObjectPointerType(QPointeeTy); 7918 7919 // Insert qualified pointer type. 7920 PointerTypes.insert(QPointerTy); 7921 } 7922 7923 return true; 7924 } 7925 7926 /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty 7927 /// to the set of pointer types along with any more-qualified variants of 7928 /// that type. For example, if @p Ty is "int const *", this routine 7929 /// will add "int const *", "int const volatile *", "int const 7930 /// restrict *", and "int const volatile restrict *" to the set of 7931 /// pointer types. Returns true if the add of @p Ty itself succeeded, 7932 /// false otherwise. 7933 /// 7934 /// FIXME: what to do about extended qualifiers? 7935 bool 7936 BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( 7937 QualType Ty) { 7938 // Insert this type. 7939 if (!MemberPointerTypes.insert(Ty)) 7940 return false; 7941 7942 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); 7943 assert(PointerTy && "type was not a member pointer type!"); 7944 7945 QualType PointeeTy = PointerTy->getPointeeType(); 7946 // Don't add qualified variants of arrays. For one, they're not allowed 7947 // (the qualifier would sink to the element type), and for another, the 7948 // only overload situation where it matters is subscript or pointer +- int, 7949 // and those shouldn't have qualifier variants anyway. 7950 if (PointeeTy->isArrayType()) 7951 return true; 7952 const Type *ClassTy = PointerTy->getClass(); 7953 7954 // Iterate through all strict supersets of the pointee type's CVR 7955 // qualifiers. 7956 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 7957 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 7958 if ((CVR | BaseCVR) != CVR) continue; 7959 7960 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 7961 MemberPointerTypes.insert( 7962 Context.getMemberPointerType(QPointeeTy, ClassTy)); 7963 } 7964 7965 return true; 7966 } 7967 7968 /// AddTypesConvertedFrom - Add each of the types to which the type @p 7969 /// Ty can be implicit converted to the given set of @p Types. We're 7970 /// primarily interested in pointer types and enumeration types. We also 7971 /// take member pointer types, for the conditional operator. 7972 /// AllowUserConversions is true if we should look at the conversion 7973 /// functions of a class type, and AllowExplicitConversions if we 7974 /// should also include the explicit conversion functions of a class 7975 /// type. 7976 void 7977 BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, 7978 SourceLocation Loc, 7979 bool AllowUserConversions, 7980 bool AllowExplicitConversions, 7981 const Qualifiers &VisibleQuals) { 7982 // Only deal with canonical types. 7983 Ty = Context.getCanonicalType(Ty); 7984 7985 // Look through reference types; they aren't part of the type of an 7986 // expression for the purposes of conversions. 7987 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) 7988 Ty = RefTy->getPointeeType(); 7989 7990 // If we're dealing with an array type, decay to the pointer. 7991 if (Ty->isArrayType()) 7992 Ty = SemaRef.Context.getArrayDecayedType(Ty); 7993 7994 // Otherwise, we don't care about qualifiers on the type. 7995 Ty = Ty.getLocalUnqualifiedType(); 7996 7997 // Flag if we ever add a non-record type. 7998 const RecordType *TyRec = Ty->getAs<RecordType>(); 7999 HasNonRecordTypes = HasNonRecordTypes || !TyRec; 8000 8001 // Flag if we encounter an arithmetic type. 8002 HasArithmeticOrEnumeralTypes = 8003 HasArithmeticOrEnumeralTypes || Ty->isArithmeticType(); 8004 8005 if (Ty->isObjCIdType() || Ty->isObjCClassType()) 8006 PointerTypes.insert(Ty); 8007 else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) { 8008 // Insert our type, and its more-qualified variants, into the set 8009 // of types. 8010 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) 8011 return; 8012 } else if (Ty->isMemberPointerType()) { 8013 // Member pointers are far easier, since the pointee can't be converted. 8014 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) 8015 return; 8016 } else if (Ty->isEnumeralType()) { 8017 HasArithmeticOrEnumeralTypes = true; 8018 EnumerationTypes.insert(Ty); 8019 } else if (Ty->isVectorType()) { 8020 // We treat vector types as arithmetic types in many contexts as an 8021 // extension. 8022 HasArithmeticOrEnumeralTypes = true; 8023 VectorTypes.insert(Ty); 8024 } else if (Ty->isMatrixType()) { 8025 // Similar to vector types, we treat vector types as arithmetic types in 8026 // many contexts as an extension. 8027 HasArithmeticOrEnumeralTypes = true; 8028 MatrixTypes.insert(Ty); 8029 } else if (Ty->isNullPtrType()) { 8030 HasNullPtrType = true; 8031 } else if (AllowUserConversions && TyRec) { 8032 // No conversion functions in incomplete types. 8033 if (!SemaRef.isCompleteType(Loc, Ty)) 8034 return; 8035 8036 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 8037 for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) { 8038 if (isa<UsingShadowDecl>(D)) 8039 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 8040 8041 // Skip conversion function templates; they don't tell us anything 8042 // about which builtin types we can convert to. 8043 if (isa<FunctionTemplateDecl>(D)) 8044 continue; 8045 8046 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 8047 if (AllowExplicitConversions || !Conv->isExplicit()) { 8048 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, 8049 VisibleQuals); 8050 } 8051 } 8052 } 8053 } 8054 /// Helper function for adjusting address spaces for the pointer or reference 8055 /// operands of builtin operators depending on the argument. 8056 static QualType AdjustAddressSpaceForBuiltinOperandType(Sema &S, QualType T, 8057 Expr *Arg) { 8058 return S.Context.getAddrSpaceQualType(T, Arg->getType().getAddressSpace()); 8059 } 8060 8061 /// Helper function for AddBuiltinOperatorCandidates() that adds 8062 /// the volatile- and non-volatile-qualified assignment operators for the 8063 /// given type to the candidate set. 8064 static void AddBuiltinAssignmentOperatorCandidates(Sema &S, 8065 QualType T, 8066 ArrayRef<Expr *> Args, 8067 OverloadCandidateSet &CandidateSet) { 8068 QualType ParamTypes[2]; 8069 8070 // T& operator=(T&, T) 8071 ParamTypes[0] = S.Context.getLValueReferenceType( 8072 AdjustAddressSpaceForBuiltinOperandType(S, T, Args[0])); 8073 ParamTypes[1] = T; 8074 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8075 /*IsAssignmentOperator=*/true); 8076 8077 if (!S.Context.getCanonicalType(T).isVolatileQualified()) { 8078 // volatile T& operator=(volatile T&, T) 8079 ParamTypes[0] = S.Context.getLValueReferenceType( 8080 AdjustAddressSpaceForBuiltinOperandType(S, S.Context.getVolatileType(T), 8081 Args[0])); 8082 ParamTypes[1] = T; 8083 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8084 /*IsAssignmentOperator=*/true); 8085 } 8086 } 8087 8088 /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, 8089 /// if any, found in visible type conversion functions found in ArgExpr's type. 8090 static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { 8091 Qualifiers VRQuals; 8092 const RecordType *TyRec; 8093 if (const MemberPointerType *RHSMPType = 8094 ArgExpr->getType()->getAs<MemberPointerType>()) 8095 TyRec = RHSMPType->getClass()->getAs<RecordType>(); 8096 else 8097 TyRec = ArgExpr->getType()->getAs<RecordType>(); 8098 if (!TyRec) { 8099 // Just to be safe, assume the worst case. 8100 VRQuals.addVolatile(); 8101 VRQuals.addRestrict(); 8102 return VRQuals; 8103 } 8104 8105 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 8106 if (!ClassDecl->hasDefinition()) 8107 return VRQuals; 8108 8109 for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) { 8110 if (isa<UsingShadowDecl>(D)) 8111 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 8112 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) { 8113 QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); 8114 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) 8115 CanTy = ResTypeRef->getPointeeType(); 8116 // Need to go down the pointer/mempointer chain and add qualifiers 8117 // as see them. 8118 bool done = false; 8119 while (!done) { 8120 if (CanTy.isRestrictQualified()) 8121 VRQuals.addRestrict(); 8122 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) 8123 CanTy = ResTypePtr->getPointeeType(); 8124 else if (const MemberPointerType *ResTypeMPtr = 8125 CanTy->getAs<MemberPointerType>()) 8126 CanTy = ResTypeMPtr->getPointeeType(); 8127 else 8128 done = true; 8129 if (CanTy.isVolatileQualified()) 8130 VRQuals.addVolatile(); 8131 if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) 8132 return VRQuals; 8133 } 8134 } 8135 } 8136 return VRQuals; 8137 } 8138 8139 namespace { 8140 8141 /// Helper class to manage the addition of builtin operator overload 8142 /// candidates. It provides shared state and utility methods used throughout 8143 /// the process, as well as a helper method to add each group of builtin 8144 /// operator overloads from the standard to a candidate set. 8145 class BuiltinOperatorOverloadBuilder { 8146 // Common instance state available to all overload candidate addition methods. 8147 Sema &S; 8148 ArrayRef<Expr *> Args; 8149 Qualifiers VisibleTypeConversionsQuals; 8150 bool HasArithmeticOrEnumeralCandidateType; 8151 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes; 8152 OverloadCandidateSet &CandidateSet; 8153 8154 static constexpr int ArithmeticTypesCap = 24; 8155 SmallVector<CanQualType, ArithmeticTypesCap> ArithmeticTypes; 8156 8157 // Define some indices used to iterate over the arithmetic types in 8158 // ArithmeticTypes. The "promoted arithmetic types" are the arithmetic 8159 // types are that preserved by promotion (C++ [over.built]p2). 8160 unsigned FirstIntegralType, 8161 LastIntegralType; 8162 unsigned FirstPromotedIntegralType, 8163 LastPromotedIntegralType; 8164 unsigned FirstPromotedArithmeticType, 8165 LastPromotedArithmeticType; 8166 unsigned NumArithmeticTypes; 8167 8168 void InitArithmeticTypes() { 8169 // Start of promoted types. 8170 FirstPromotedArithmeticType = 0; 8171 ArithmeticTypes.push_back(S.Context.FloatTy); 8172 ArithmeticTypes.push_back(S.Context.DoubleTy); 8173 ArithmeticTypes.push_back(S.Context.LongDoubleTy); 8174 if (S.Context.getTargetInfo().hasFloat128Type()) 8175 ArithmeticTypes.push_back(S.Context.Float128Ty); 8176 8177 // Start of integral types. 8178 FirstIntegralType = ArithmeticTypes.size(); 8179 FirstPromotedIntegralType = ArithmeticTypes.size(); 8180 ArithmeticTypes.push_back(S.Context.IntTy); 8181 ArithmeticTypes.push_back(S.Context.LongTy); 8182 ArithmeticTypes.push_back(S.Context.LongLongTy); 8183 if (S.Context.getTargetInfo().hasInt128Type() || 8184 (S.Context.getAuxTargetInfo() && 8185 S.Context.getAuxTargetInfo()->hasInt128Type())) 8186 ArithmeticTypes.push_back(S.Context.Int128Ty); 8187 ArithmeticTypes.push_back(S.Context.UnsignedIntTy); 8188 ArithmeticTypes.push_back(S.Context.UnsignedLongTy); 8189 ArithmeticTypes.push_back(S.Context.UnsignedLongLongTy); 8190 if (S.Context.getTargetInfo().hasInt128Type() || 8191 (S.Context.getAuxTargetInfo() && 8192 S.Context.getAuxTargetInfo()->hasInt128Type())) 8193 ArithmeticTypes.push_back(S.Context.UnsignedInt128Ty); 8194 LastPromotedIntegralType = ArithmeticTypes.size(); 8195 LastPromotedArithmeticType = ArithmeticTypes.size(); 8196 // End of promoted types. 8197 8198 ArithmeticTypes.push_back(S.Context.BoolTy); 8199 ArithmeticTypes.push_back(S.Context.CharTy); 8200 ArithmeticTypes.push_back(S.Context.WCharTy); 8201 if (S.Context.getLangOpts().Char8) 8202 ArithmeticTypes.push_back(S.Context.Char8Ty); 8203 ArithmeticTypes.push_back(S.Context.Char16Ty); 8204 ArithmeticTypes.push_back(S.Context.Char32Ty); 8205 ArithmeticTypes.push_back(S.Context.SignedCharTy); 8206 ArithmeticTypes.push_back(S.Context.ShortTy); 8207 ArithmeticTypes.push_back(S.Context.UnsignedCharTy); 8208 ArithmeticTypes.push_back(S.Context.UnsignedShortTy); 8209 LastIntegralType = ArithmeticTypes.size(); 8210 NumArithmeticTypes = ArithmeticTypes.size(); 8211 // End of integral types. 8212 // FIXME: What about complex? What about half? 8213 8214 assert(ArithmeticTypes.size() <= ArithmeticTypesCap && 8215 "Enough inline storage for all arithmetic types."); 8216 } 8217 8218 /// Helper method to factor out the common pattern of adding overloads 8219 /// for '++' and '--' builtin operators. 8220 void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy, 8221 bool HasVolatile, 8222 bool HasRestrict) { 8223 QualType ParamTypes[2] = { 8224 S.Context.getLValueReferenceType(CandidateTy), 8225 S.Context.IntTy 8226 }; 8227 8228 // Non-volatile version. 8229 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8230 8231 // Use a heuristic to reduce number of builtin candidates in the set: 8232 // add volatile version only if there are conversions to a volatile type. 8233 if (HasVolatile) { 8234 ParamTypes[0] = 8235 S.Context.getLValueReferenceType( 8236 S.Context.getVolatileType(CandidateTy)); 8237 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8238 } 8239 8240 // Add restrict version only if there are conversions to a restrict type 8241 // and our candidate type is a non-restrict-qualified pointer. 8242 if (HasRestrict && CandidateTy->isAnyPointerType() && 8243 !CandidateTy.isRestrictQualified()) { 8244 ParamTypes[0] 8245 = S.Context.getLValueReferenceType( 8246 S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict)); 8247 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8248 8249 if (HasVolatile) { 8250 ParamTypes[0] 8251 = S.Context.getLValueReferenceType( 8252 S.Context.getCVRQualifiedType(CandidateTy, 8253 (Qualifiers::Volatile | 8254 Qualifiers::Restrict))); 8255 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8256 } 8257 } 8258 8259 } 8260 8261 /// Helper to add an overload candidate for a binary builtin with types \p L 8262 /// and \p R. 8263 void AddCandidate(QualType L, QualType R) { 8264 QualType LandR[2] = {L, R}; 8265 S.AddBuiltinCandidate(LandR, Args, CandidateSet); 8266 } 8267 8268 public: 8269 BuiltinOperatorOverloadBuilder( 8270 Sema &S, ArrayRef<Expr *> Args, 8271 Qualifiers VisibleTypeConversionsQuals, 8272 bool HasArithmeticOrEnumeralCandidateType, 8273 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes, 8274 OverloadCandidateSet &CandidateSet) 8275 : S(S), Args(Args), 8276 VisibleTypeConversionsQuals(VisibleTypeConversionsQuals), 8277 HasArithmeticOrEnumeralCandidateType( 8278 HasArithmeticOrEnumeralCandidateType), 8279 CandidateTypes(CandidateTypes), 8280 CandidateSet(CandidateSet) { 8281 8282 InitArithmeticTypes(); 8283 } 8284 8285 // Increment is deprecated for bool since C++17. 8286 // 8287 // C++ [over.built]p3: 8288 // 8289 // For every pair (T, VQ), where T is an arithmetic type other 8290 // than bool, and VQ is either volatile or empty, there exist 8291 // candidate operator functions of the form 8292 // 8293 // VQ T& operator++(VQ T&); 8294 // T operator++(VQ T&, int); 8295 // 8296 // C++ [over.built]p4: 8297 // 8298 // For every pair (T, VQ), where T is an arithmetic type other 8299 // than bool, and VQ is either volatile or empty, there exist 8300 // candidate operator functions of the form 8301 // 8302 // VQ T& operator--(VQ T&); 8303 // T operator--(VQ T&, int); 8304 void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) { 8305 if (!HasArithmeticOrEnumeralCandidateType) 8306 return; 8307 8308 for (unsigned Arith = 0; Arith < NumArithmeticTypes; ++Arith) { 8309 const auto TypeOfT = ArithmeticTypes[Arith]; 8310 if (TypeOfT == S.Context.BoolTy) { 8311 if (Op == OO_MinusMinus) 8312 continue; 8313 if (Op == OO_PlusPlus && S.getLangOpts().CPlusPlus17) 8314 continue; 8315 } 8316 addPlusPlusMinusMinusStyleOverloads( 8317 TypeOfT, 8318 VisibleTypeConversionsQuals.hasVolatile(), 8319 VisibleTypeConversionsQuals.hasRestrict()); 8320 } 8321 } 8322 8323 // C++ [over.built]p5: 8324 // 8325 // For every pair (T, VQ), where T is a cv-qualified or 8326 // cv-unqualified object type, and VQ is either volatile or 8327 // empty, there exist candidate operator functions of the form 8328 // 8329 // T*VQ& operator++(T*VQ&); 8330 // T*VQ& operator--(T*VQ&); 8331 // T* operator++(T*VQ&, int); 8332 // T* operator--(T*VQ&, int); 8333 void addPlusPlusMinusMinusPointerOverloads() { 8334 for (QualType PtrTy : CandidateTypes[0].pointer_types()) { 8335 // Skip pointer types that aren't pointers to object types. 8336 if (!PtrTy->getPointeeType()->isObjectType()) 8337 continue; 8338 8339 addPlusPlusMinusMinusStyleOverloads( 8340 PtrTy, 8341 (!PtrTy.isVolatileQualified() && 8342 VisibleTypeConversionsQuals.hasVolatile()), 8343 (!PtrTy.isRestrictQualified() && 8344 VisibleTypeConversionsQuals.hasRestrict())); 8345 } 8346 } 8347 8348 // C++ [over.built]p6: 8349 // For every cv-qualified or cv-unqualified object type T, there 8350 // exist candidate operator functions of the form 8351 // 8352 // T& operator*(T*); 8353 // 8354 // C++ [over.built]p7: 8355 // For every function type T that does not have cv-qualifiers or a 8356 // ref-qualifier, there exist candidate operator functions of the form 8357 // T& operator*(T*); 8358 void addUnaryStarPointerOverloads() { 8359 for (QualType ParamTy : CandidateTypes[0].pointer_types()) { 8360 QualType PointeeTy = ParamTy->getPointeeType(); 8361 if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType()) 8362 continue; 8363 8364 if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>()) 8365 if (Proto->getMethodQuals() || Proto->getRefQualifier()) 8366 continue; 8367 8368 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet); 8369 } 8370 } 8371 8372 // C++ [over.built]p9: 8373 // For every promoted arithmetic type T, there exist candidate 8374 // operator functions of the form 8375 // 8376 // T operator+(T); 8377 // T operator-(T); 8378 void addUnaryPlusOrMinusArithmeticOverloads() { 8379 if (!HasArithmeticOrEnumeralCandidateType) 8380 return; 8381 8382 for (unsigned Arith = FirstPromotedArithmeticType; 8383 Arith < LastPromotedArithmeticType; ++Arith) { 8384 QualType ArithTy = ArithmeticTypes[Arith]; 8385 S.AddBuiltinCandidate(&ArithTy, Args, CandidateSet); 8386 } 8387 8388 // Extension: We also add these operators for vector types. 8389 for (QualType VecTy : CandidateTypes[0].vector_types()) 8390 S.AddBuiltinCandidate(&VecTy, Args, CandidateSet); 8391 } 8392 8393 // C++ [over.built]p8: 8394 // For every type T, there exist candidate operator functions of 8395 // the form 8396 // 8397 // T* operator+(T*); 8398 void addUnaryPlusPointerOverloads() { 8399 for (QualType ParamTy : CandidateTypes[0].pointer_types()) 8400 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet); 8401 } 8402 8403 // C++ [over.built]p10: 8404 // For every promoted integral type T, there exist candidate 8405 // operator functions of the form 8406 // 8407 // T operator~(T); 8408 void addUnaryTildePromotedIntegralOverloads() { 8409 if (!HasArithmeticOrEnumeralCandidateType) 8410 return; 8411 8412 for (unsigned Int = FirstPromotedIntegralType; 8413 Int < LastPromotedIntegralType; ++Int) { 8414 QualType IntTy = ArithmeticTypes[Int]; 8415 S.AddBuiltinCandidate(&IntTy, Args, CandidateSet); 8416 } 8417 8418 // Extension: We also add this operator for vector types. 8419 for (QualType VecTy : CandidateTypes[0].vector_types()) 8420 S.AddBuiltinCandidate(&VecTy, Args, CandidateSet); 8421 } 8422 8423 // C++ [over.match.oper]p16: 8424 // For every pointer to member type T or type std::nullptr_t, there 8425 // exist candidate operator functions of the form 8426 // 8427 // bool operator==(T,T); 8428 // bool operator!=(T,T); 8429 void addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads() { 8430 /// Set of (canonical) types that we've already handled. 8431 llvm::SmallPtrSet<QualType, 8> AddedTypes; 8432 8433 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 8434 for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) { 8435 // Don't add the same builtin candidate twice. 8436 if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second) 8437 continue; 8438 8439 QualType ParamTypes[2] = {MemPtrTy, MemPtrTy}; 8440 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8441 } 8442 8443 if (CandidateTypes[ArgIdx].hasNullPtrType()) { 8444 CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy); 8445 if (AddedTypes.insert(NullPtrTy).second) { 8446 QualType ParamTypes[2] = { NullPtrTy, NullPtrTy }; 8447 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8448 } 8449 } 8450 } 8451 } 8452 8453 // C++ [over.built]p15: 8454 // 8455 // For every T, where T is an enumeration type or a pointer type, 8456 // there exist candidate operator functions of the form 8457 // 8458 // bool operator<(T, T); 8459 // bool operator>(T, T); 8460 // bool operator<=(T, T); 8461 // bool operator>=(T, T); 8462 // bool operator==(T, T); 8463 // bool operator!=(T, T); 8464 // R operator<=>(T, T) 8465 void addGenericBinaryPointerOrEnumeralOverloads(bool IsSpaceship) { 8466 // C++ [over.match.oper]p3: 8467 // [...]the built-in candidates include all of the candidate operator 8468 // functions defined in 13.6 that, compared to the given operator, [...] 8469 // do not have the same parameter-type-list as any non-template non-member 8470 // candidate. 8471 // 8472 // Note that in practice, this only affects enumeration types because there 8473 // aren't any built-in candidates of record type, and a user-defined operator 8474 // must have an operand of record or enumeration type. Also, the only other 8475 // overloaded operator with enumeration arguments, operator=, 8476 // cannot be overloaded for enumeration types, so this is the only place 8477 // where we must suppress candidates like this. 8478 llvm::DenseSet<std::pair<CanQualType, CanQualType> > 8479 UserDefinedBinaryOperators; 8480 8481 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 8482 if (!CandidateTypes[ArgIdx].enumeration_types().empty()) { 8483 for (OverloadCandidateSet::iterator C = CandidateSet.begin(), 8484 CEnd = CandidateSet.end(); 8485 C != CEnd; ++C) { 8486 if (!C->Viable || !C->Function || C->Function->getNumParams() != 2) 8487 continue; 8488 8489 if (C->Function->isFunctionTemplateSpecialization()) 8490 continue; 8491 8492 // We interpret "same parameter-type-list" as applying to the 8493 // "synthesized candidate, with the order of the two parameters 8494 // reversed", not to the original function. 8495 bool Reversed = C->isReversed(); 8496 QualType FirstParamType = C->Function->getParamDecl(Reversed ? 1 : 0) 8497 ->getType() 8498 .getUnqualifiedType(); 8499 QualType SecondParamType = C->Function->getParamDecl(Reversed ? 0 : 1) 8500 ->getType() 8501 .getUnqualifiedType(); 8502 8503 // Skip if either parameter isn't of enumeral type. 8504 if (!FirstParamType->isEnumeralType() || 8505 !SecondParamType->isEnumeralType()) 8506 continue; 8507 8508 // Add this operator to the set of known user-defined operators. 8509 UserDefinedBinaryOperators.insert( 8510 std::make_pair(S.Context.getCanonicalType(FirstParamType), 8511 S.Context.getCanonicalType(SecondParamType))); 8512 } 8513 } 8514 } 8515 8516 /// Set of (canonical) types that we've already handled. 8517 llvm::SmallPtrSet<QualType, 8> AddedTypes; 8518 8519 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 8520 for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) { 8521 // Don't add the same builtin candidate twice. 8522 if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second) 8523 continue; 8524 if (IsSpaceship && PtrTy->isFunctionPointerType()) 8525 continue; 8526 8527 QualType ParamTypes[2] = {PtrTy, PtrTy}; 8528 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8529 } 8530 for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) { 8531 CanQualType CanonType = S.Context.getCanonicalType(EnumTy); 8532 8533 // Don't add the same builtin candidate twice, or if a user defined 8534 // candidate exists. 8535 if (!AddedTypes.insert(CanonType).second || 8536 UserDefinedBinaryOperators.count(std::make_pair(CanonType, 8537 CanonType))) 8538 continue; 8539 QualType ParamTypes[2] = {EnumTy, EnumTy}; 8540 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8541 } 8542 } 8543 } 8544 8545 // C++ [over.built]p13: 8546 // 8547 // For every cv-qualified or cv-unqualified object type T 8548 // there exist candidate operator functions of the form 8549 // 8550 // T* operator+(T*, ptrdiff_t); 8551 // T& operator[](T*, ptrdiff_t); [BELOW] 8552 // T* operator-(T*, ptrdiff_t); 8553 // T* operator+(ptrdiff_t, T*); 8554 // T& operator[](ptrdiff_t, T*); [BELOW] 8555 // 8556 // C++ [over.built]p14: 8557 // 8558 // For every T, where T is a pointer to object type, there 8559 // exist candidate operator functions of the form 8560 // 8561 // ptrdiff_t operator-(T, T); 8562 void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) { 8563 /// Set of (canonical) types that we've already handled. 8564 llvm::SmallPtrSet<QualType, 8> AddedTypes; 8565 8566 for (int Arg = 0; Arg < 2; ++Arg) { 8567 QualType AsymmetricParamTypes[2] = { 8568 S.Context.getPointerDiffType(), 8569 S.Context.getPointerDiffType(), 8570 }; 8571 for (QualType PtrTy : CandidateTypes[Arg].pointer_types()) { 8572 QualType PointeeTy = PtrTy->getPointeeType(); 8573 if (!PointeeTy->isObjectType()) 8574 continue; 8575 8576 AsymmetricParamTypes[Arg] = PtrTy; 8577 if (Arg == 0 || Op == OO_Plus) { 8578 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) 8579 // T* operator+(ptrdiff_t, T*); 8580 S.AddBuiltinCandidate(AsymmetricParamTypes, Args, CandidateSet); 8581 } 8582 if (Op == OO_Minus) { 8583 // ptrdiff_t operator-(T, T); 8584 if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second) 8585 continue; 8586 8587 QualType ParamTypes[2] = {PtrTy, PtrTy}; 8588 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8589 } 8590 } 8591 } 8592 } 8593 8594 // C++ [over.built]p12: 8595 // 8596 // For every pair of promoted arithmetic types L and R, there 8597 // exist candidate operator functions of the form 8598 // 8599 // LR operator*(L, R); 8600 // LR operator/(L, R); 8601 // LR operator+(L, R); 8602 // LR operator-(L, R); 8603 // bool operator<(L, R); 8604 // bool operator>(L, R); 8605 // bool operator<=(L, R); 8606 // bool operator>=(L, R); 8607 // bool operator==(L, R); 8608 // bool operator!=(L, R); 8609 // 8610 // where LR is the result of the usual arithmetic conversions 8611 // between types L and R. 8612 // 8613 // C++ [over.built]p24: 8614 // 8615 // For every pair of promoted arithmetic types L and R, there exist 8616 // candidate operator functions of the form 8617 // 8618 // LR operator?(bool, L, R); 8619 // 8620 // where LR is the result of the usual arithmetic conversions 8621 // between types L and R. 8622 // Our candidates ignore the first parameter. 8623 void addGenericBinaryArithmeticOverloads() { 8624 if (!HasArithmeticOrEnumeralCandidateType) 8625 return; 8626 8627 for (unsigned Left = FirstPromotedArithmeticType; 8628 Left < LastPromotedArithmeticType; ++Left) { 8629 for (unsigned Right = FirstPromotedArithmeticType; 8630 Right < LastPromotedArithmeticType; ++Right) { 8631 QualType LandR[2] = { ArithmeticTypes[Left], 8632 ArithmeticTypes[Right] }; 8633 S.AddBuiltinCandidate(LandR, Args, CandidateSet); 8634 } 8635 } 8636 8637 // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the 8638 // conditional operator for vector types. 8639 for (QualType Vec1Ty : CandidateTypes[0].vector_types()) 8640 for (QualType Vec2Ty : CandidateTypes[1].vector_types()) { 8641 QualType LandR[2] = {Vec1Ty, Vec2Ty}; 8642 S.AddBuiltinCandidate(LandR, Args, CandidateSet); 8643 } 8644 } 8645 8646 /// Add binary operator overloads for each candidate matrix type M1, M2: 8647 /// * (M1, M1) -> M1 8648 /// * (M1, M1.getElementType()) -> M1 8649 /// * (M2.getElementType(), M2) -> M2 8650 /// * (M2, M2) -> M2 // Only if M2 is not part of CandidateTypes[0]. 8651 void addMatrixBinaryArithmeticOverloads() { 8652 if (!HasArithmeticOrEnumeralCandidateType) 8653 return; 8654 8655 for (QualType M1 : CandidateTypes[0].matrix_types()) { 8656 AddCandidate(M1, cast<MatrixType>(M1)->getElementType()); 8657 AddCandidate(M1, M1); 8658 } 8659 8660 for (QualType M2 : CandidateTypes[1].matrix_types()) { 8661 AddCandidate(cast<MatrixType>(M2)->getElementType(), M2); 8662 if (!CandidateTypes[0].containsMatrixType(M2)) 8663 AddCandidate(M2, M2); 8664 } 8665 } 8666 8667 // C++2a [over.built]p14: 8668 // 8669 // For every integral type T there exists a candidate operator function 8670 // of the form 8671 // 8672 // std::strong_ordering operator<=>(T, T) 8673 // 8674 // C++2a [over.built]p15: 8675 // 8676 // For every pair of floating-point types L and R, there exists a candidate 8677 // operator function of the form 8678 // 8679 // std::partial_ordering operator<=>(L, R); 8680 // 8681 // FIXME: The current specification for integral types doesn't play nice with 8682 // the direction of p0946r0, which allows mixed integral and unscoped-enum 8683 // comparisons. Under the current spec this can lead to ambiguity during 8684 // overload resolution. For example: 8685 // 8686 // enum A : int {a}; 8687 // auto x = (a <=> (long)42); 8688 // 8689 // error: call is ambiguous for arguments 'A' and 'long'. 8690 // note: candidate operator<=>(int, int) 8691 // note: candidate operator<=>(long, long) 8692 // 8693 // To avoid this error, this function deviates from the specification and adds 8694 // the mixed overloads `operator<=>(L, R)` where L and R are promoted 8695 // arithmetic types (the same as the generic relational overloads). 8696 // 8697 // For now this function acts as a placeholder. 8698 void addThreeWayArithmeticOverloads() { 8699 addGenericBinaryArithmeticOverloads(); 8700 } 8701 8702 // C++ [over.built]p17: 8703 // 8704 // For every pair of promoted integral types L and R, there 8705 // exist candidate operator functions of the form 8706 // 8707 // LR operator%(L, R); 8708 // LR operator&(L, R); 8709 // LR operator^(L, R); 8710 // LR operator|(L, R); 8711 // L operator<<(L, R); 8712 // L operator>>(L, R); 8713 // 8714 // where LR is the result of the usual arithmetic conversions 8715 // between types L and R. 8716 void addBinaryBitwiseArithmeticOverloads() { 8717 if (!HasArithmeticOrEnumeralCandidateType) 8718 return; 8719 8720 for (unsigned Left = FirstPromotedIntegralType; 8721 Left < LastPromotedIntegralType; ++Left) { 8722 for (unsigned Right = FirstPromotedIntegralType; 8723 Right < LastPromotedIntegralType; ++Right) { 8724 QualType LandR[2] = { ArithmeticTypes[Left], 8725 ArithmeticTypes[Right] }; 8726 S.AddBuiltinCandidate(LandR, Args, CandidateSet); 8727 } 8728 } 8729 } 8730 8731 // C++ [over.built]p20: 8732 // 8733 // For every pair (T, VQ), where T is an enumeration or 8734 // pointer to member type and VQ is either volatile or 8735 // empty, there exist candidate operator functions of the form 8736 // 8737 // VQ T& operator=(VQ T&, T); 8738 void addAssignmentMemberPointerOrEnumeralOverloads() { 8739 /// Set of (canonical) types that we've already handled. 8740 llvm::SmallPtrSet<QualType, 8> AddedTypes; 8741 8742 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { 8743 for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) { 8744 if (!AddedTypes.insert(S.Context.getCanonicalType(EnumTy)).second) 8745 continue; 8746 8747 AddBuiltinAssignmentOperatorCandidates(S, EnumTy, Args, CandidateSet); 8748 } 8749 8750 for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) { 8751 if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second) 8752 continue; 8753 8754 AddBuiltinAssignmentOperatorCandidates(S, MemPtrTy, Args, CandidateSet); 8755 } 8756 } 8757 } 8758 8759 // C++ [over.built]p19: 8760 // 8761 // For every pair (T, VQ), where T is any type and VQ is either 8762 // volatile or empty, there exist candidate operator functions 8763 // of the form 8764 // 8765 // T*VQ& operator=(T*VQ&, T*); 8766 // 8767 // C++ [over.built]p21: 8768 // 8769 // For every pair (T, VQ), where T is a cv-qualified or 8770 // cv-unqualified object type and VQ is either volatile or 8771 // empty, there exist candidate operator functions of the form 8772 // 8773 // T*VQ& operator+=(T*VQ&, ptrdiff_t); 8774 // T*VQ& operator-=(T*VQ&, ptrdiff_t); 8775 void addAssignmentPointerOverloads(bool isEqualOp) { 8776 /// Set of (canonical) types that we've already handled. 8777 llvm::SmallPtrSet<QualType, 8> AddedTypes; 8778 8779 for (QualType PtrTy : CandidateTypes[0].pointer_types()) { 8780 // If this is operator=, keep track of the builtin candidates we added. 8781 if (isEqualOp) 8782 AddedTypes.insert(S.Context.getCanonicalType(PtrTy)); 8783 else if (!PtrTy->getPointeeType()->isObjectType()) 8784 continue; 8785 8786 // non-volatile version 8787 QualType ParamTypes[2] = { 8788 S.Context.getLValueReferenceType(PtrTy), 8789 isEqualOp ? PtrTy : S.Context.getPointerDiffType(), 8790 }; 8791 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8792 /*IsAssignmentOperator=*/ isEqualOp); 8793 8794 bool NeedVolatile = !PtrTy.isVolatileQualified() && 8795 VisibleTypeConversionsQuals.hasVolatile(); 8796 if (NeedVolatile) { 8797 // volatile version 8798 ParamTypes[0] = 8799 S.Context.getLValueReferenceType(S.Context.getVolatileType(PtrTy)); 8800 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8801 /*IsAssignmentOperator=*/isEqualOp); 8802 } 8803 8804 if (!PtrTy.isRestrictQualified() && 8805 VisibleTypeConversionsQuals.hasRestrict()) { 8806 // restrict version 8807 ParamTypes[0] = 8808 S.Context.getLValueReferenceType(S.Context.getRestrictType(PtrTy)); 8809 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8810 /*IsAssignmentOperator=*/isEqualOp); 8811 8812 if (NeedVolatile) { 8813 // volatile restrict version 8814 ParamTypes[0] = 8815 S.Context.getLValueReferenceType(S.Context.getCVRQualifiedType( 8816 PtrTy, (Qualifiers::Volatile | Qualifiers::Restrict))); 8817 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8818 /*IsAssignmentOperator=*/isEqualOp); 8819 } 8820 } 8821 } 8822 8823 if (isEqualOp) { 8824 for (QualType PtrTy : CandidateTypes[1].pointer_types()) { 8825 // Make sure we don't add the same candidate twice. 8826 if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second) 8827 continue; 8828 8829 QualType ParamTypes[2] = { 8830 S.Context.getLValueReferenceType(PtrTy), 8831 PtrTy, 8832 }; 8833 8834 // non-volatile version 8835 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8836 /*IsAssignmentOperator=*/true); 8837 8838 bool NeedVolatile = !PtrTy.isVolatileQualified() && 8839 VisibleTypeConversionsQuals.hasVolatile(); 8840 if (NeedVolatile) { 8841 // volatile version 8842 ParamTypes[0] = S.Context.getLValueReferenceType( 8843 S.Context.getVolatileType(PtrTy)); 8844 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8845 /*IsAssignmentOperator=*/true); 8846 } 8847 8848 if (!PtrTy.isRestrictQualified() && 8849 VisibleTypeConversionsQuals.hasRestrict()) { 8850 // restrict version 8851 ParamTypes[0] = S.Context.getLValueReferenceType( 8852 S.Context.getRestrictType(PtrTy)); 8853 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8854 /*IsAssignmentOperator=*/true); 8855 8856 if (NeedVolatile) { 8857 // volatile restrict version 8858 ParamTypes[0] = 8859 S.Context.getLValueReferenceType(S.Context.getCVRQualifiedType( 8860 PtrTy, (Qualifiers::Volatile | Qualifiers::Restrict))); 8861 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8862 /*IsAssignmentOperator=*/true); 8863 } 8864 } 8865 } 8866 } 8867 } 8868 8869 // C++ [over.built]p18: 8870 // 8871 // For every triple (L, VQ, R), where L is an arithmetic type, 8872 // VQ is either volatile or empty, and R is a promoted 8873 // arithmetic type, there exist candidate operator functions of 8874 // the form 8875 // 8876 // VQ L& operator=(VQ L&, R); 8877 // VQ L& operator*=(VQ L&, R); 8878 // VQ L& operator/=(VQ L&, R); 8879 // VQ L& operator+=(VQ L&, R); 8880 // VQ L& operator-=(VQ L&, R); 8881 void addAssignmentArithmeticOverloads(bool isEqualOp) { 8882 if (!HasArithmeticOrEnumeralCandidateType) 8883 return; 8884 8885 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { 8886 for (unsigned Right = FirstPromotedArithmeticType; 8887 Right < LastPromotedArithmeticType; ++Right) { 8888 QualType ParamTypes[2]; 8889 ParamTypes[1] = ArithmeticTypes[Right]; 8890 auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType( 8891 S, ArithmeticTypes[Left], Args[0]); 8892 // Add this built-in operator as a candidate (VQ is empty). 8893 ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy); 8894 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8895 /*IsAssignmentOperator=*/isEqualOp); 8896 8897 // Add this built-in operator as a candidate (VQ is 'volatile'). 8898 if (VisibleTypeConversionsQuals.hasVolatile()) { 8899 ParamTypes[0] = S.Context.getVolatileType(LeftBaseTy); 8900 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 8901 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8902 /*IsAssignmentOperator=*/isEqualOp); 8903 } 8904 } 8905 } 8906 8907 // Extension: Add the binary operators =, +=, -=, *=, /= for vector types. 8908 for (QualType Vec1Ty : CandidateTypes[0].vector_types()) 8909 for (QualType Vec2Ty : CandidateTypes[0].vector_types()) { 8910 QualType ParamTypes[2]; 8911 ParamTypes[1] = Vec2Ty; 8912 // Add this built-in operator as a candidate (VQ is empty). 8913 ParamTypes[0] = S.Context.getLValueReferenceType(Vec1Ty); 8914 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8915 /*IsAssignmentOperator=*/isEqualOp); 8916 8917 // Add this built-in operator as a candidate (VQ is 'volatile'). 8918 if (VisibleTypeConversionsQuals.hasVolatile()) { 8919 ParamTypes[0] = S.Context.getVolatileType(Vec1Ty); 8920 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 8921 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8922 /*IsAssignmentOperator=*/isEqualOp); 8923 } 8924 } 8925 } 8926 8927 // C++ [over.built]p22: 8928 // 8929 // For every triple (L, VQ, R), where L is an integral type, VQ 8930 // is either volatile or empty, and R is a promoted integral 8931 // type, there exist candidate operator functions of the form 8932 // 8933 // VQ L& operator%=(VQ L&, R); 8934 // VQ L& operator<<=(VQ L&, R); 8935 // VQ L& operator>>=(VQ L&, R); 8936 // VQ L& operator&=(VQ L&, R); 8937 // VQ L& operator^=(VQ L&, R); 8938 // VQ L& operator|=(VQ L&, R); 8939 void addAssignmentIntegralOverloads() { 8940 if (!HasArithmeticOrEnumeralCandidateType) 8941 return; 8942 8943 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { 8944 for (unsigned Right = FirstPromotedIntegralType; 8945 Right < LastPromotedIntegralType; ++Right) { 8946 QualType ParamTypes[2]; 8947 ParamTypes[1] = ArithmeticTypes[Right]; 8948 auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType( 8949 S, ArithmeticTypes[Left], Args[0]); 8950 // Add this built-in operator as a candidate (VQ is empty). 8951 ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy); 8952 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8953 if (VisibleTypeConversionsQuals.hasVolatile()) { 8954 // Add this built-in operator as a candidate (VQ is 'volatile'). 8955 ParamTypes[0] = LeftBaseTy; 8956 ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]); 8957 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 8958 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8959 } 8960 } 8961 } 8962 } 8963 8964 // C++ [over.operator]p23: 8965 // 8966 // There also exist candidate operator functions of the form 8967 // 8968 // bool operator!(bool); 8969 // bool operator&&(bool, bool); 8970 // bool operator||(bool, bool); 8971 void addExclaimOverload() { 8972 QualType ParamTy = S.Context.BoolTy; 8973 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet, 8974 /*IsAssignmentOperator=*/false, 8975 /*NumContextualBoolArguments=*/1); 8976 } 8977 void addAmpAmpOrPipePipeOverload() { 8978 QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy }; 8979 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8980 /*IsAssignmentOperator=*/false, 8981 /*NumContextualBoolArguments=*/2); 8982 } 8983 8984 // C++ [over.built]p13: 8985 // 8986 // For every cv-qualified or cv-unqualified object type T there 8987 // exist candidate operator functions of the form 8988 // 8989 // T* operator+(T*, ptrdiff_t); [ABOVE] 8990 // T& operator[](T*, ptrdiff_t); 8991 // T* operator-(T*, ptrdiff_t); [ABOVE] 8992 // T* operator+(ptrdiff_t, T*); [ABOVE] 8993 // T& operator[](ptrdiff_t, T*); 8994 void addSubscriptOverloads() { 8995 for (QualType PtrTy : CandidateTypes[0].pointer_types()) { 8996 QualType ParamTypes[2] = {PtrTy, S.Context.getPointerDiffType()}; 8997 QualType PointeeType = PtrTy->getPointeeType(); 8998 if (!PointeeType->isObjectType()) 8999 continue; 9000 9001 // T& operator[](T*, ptrdiff_t) 9002 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 9003 } 9004 9005 for (QualType PtrTy : CandidateTypes[1].pointer_types()) { 9006 QualType ParamTypes[2] = {S.Context.getPointerDiffType(), PtrTy}; 9007 QualType PointeeType = PtrTy->getPointeeType(); 9008 if (!PointeeType->isObjectType()) 9009 continue; 9010 9011 // T& operator[](ptrdiff_t, T*) 9012 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 9013 } 9014 } 9015 9016 // C++ [over.built]p11: 9017 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, 9018 // C1 is the same type as C2 or is a derived class of C2, T is an object 9019 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, 9020 // there exist candidate operator functions of the form 9021 // 9022 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); 9023 // 9024 // where CV12 is the union of CV1 and CV2. 9025 void addArrowStarOverloads() { 9026 for (QualType PtrTy : CandidateTypes[0].pointer_types()) { 9027 QualType C1Ty = PtrTy; 9028 QualType C1; 9029 QualifierCollector Q1; 9030 C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0); 9031 if (!isa<RecordType>(C1)) 9032 continue; 9033 // heuristic to reduce number of builtin candidates in the set. 9034 // Add volatile/restrict version only if there are conversions to a 9035 // volatile/restrict type. 9036 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) 9037 continue; 9038 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) 9039 continue; 9040 for (QualType MemPtrTy : CandidateTypes[1].member_pointer_types()) { 9041 const MemberPointerType *mptr = cast<MemberPointerType>(MemPtrTy); 9042 QualType C2 = QualType(mptr->getClass(), 0); 9043 C2 = C2.getUnqualifiedType(); 9044 if (C1 != C2 && !S.IsDerivedFrom(CandidateSet.getLocation(), C1, C2)) 9045 break; 9046 QualType ParamTypes[2] = {PtrTy, MemPtrTy}; 9047 // build CV12 T& 9048 QualType T = mptr->getPointeeType(); 9049 if (!VisibleTypeConversionsQuals.hasVolatile() && 9050 T.isVolatileQualified()) 9051 continue; 9052 if (!VisibleTypeConversionsQuals.hasRestrict() && 9053 T.isRestrictQualified()) 9054 continue; 9055 T = Q1.apply(S.Context, T); 9056 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 9057 } 9058 } 9059 } 9060 9061 // Note that we don't consider the first argument, since it has been 9062 // contextually converted to bool long ago. The candidates below are 9063 // therefore added as binary. 9064 // 9065 // C++ [over.built]p25: 9066 // For every type T, where T is a pointer, pointer-to-member, or scoped 9067 // enumeration type, there exist candidate operator functions of the form 9068 // 9069 // T operator?(bool, T, T); 9070 // 9071 void addConditionalOperatorOverloads() { 9072 /// Set of (canonical) types that we've already handled. 9073 llvm::SmallPtrSet<QualType, 8> AddedTypes; 9074 9075 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { 9076 for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) { 9077 if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second) 9078 continue; 9079 9080 QualType ParamTypes[2] = {PtrTy, PtrTy}; 9081 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 9082 } 9083 9084 for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) { 9085 if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second) 9086 continue; 9087 9088 QualType ParamTypes[2] = {MemPtrTy, MemPtrTy}; 9089 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 9090 } 9091 9092 if (S.getLangOpts().CPlusPlus11) { 9093 for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) { 9094 if (!EnumTy->castAs<EnumType>()->getDecl()->isScoped()) 9095 continue; 9096 9097 if (!AddedTypes.insert(S.Context.getCanonicalType(EnumTy)).second) 9098 continue; 9099 9100 QualType ParamTypes[2] = {EnumTy, EnumTy}; 9101 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 9102 } 9103 } 9104 } 9105 } 9106 }; 9107 9108 } // end anonymous namespace 9109 9110 /// AddBuiltinOperatorCandidates - Add the appropriate built-in 9111 /// operator overloads to the candidate set (C++ [over.built]), based 9112 /// on the operator @p Op and the arguments given. For example, if the 9113 /// operator is a binary '+', this routine might add "int 9114 /// operator+(int, int)" to cover integer addition. 9115 void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, 9116 SourceLocation OpLoc, 9117 ArrayRef<Expr *> Args, 9118 OverloadCandidateSet &CandidateSet) { 9119 // Find all of the types that the arguments can convert to, but only 9120 // if the operator we're looking at has built-in operator candidates 9121 // that make use of these types. Also record whether we encounter non-record 9122 // candidate types or either arithmetic or enumeral candidate types. 9123 Qualifiers VisibleTypeConversionsQuals; 9124 VisibleTypeConversionsQuals.addConst(); 9125 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) 9126 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); 9127 9128 bool HasNonRecordCandidateType = false; 9129 bool HasArithmeticOrEnumeralCandidateType = false; 9130 SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes; 9131 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 9132 CandidateTypes.emplace_back(*this); 9133 CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(), 9134 OpLoc, 9135 true, 9136 (Op == OO_Exclaim || 9137 Op == OO_AmpAmp || 9138 Op == OO_PipePipe), 9139 VisibleTypeConversionsQuals); 9140 HasNonRecordCandidateType = HasNonRecordCandidateType || 9141 CandidateTypes[ArgIdx].hasNonRecordTypes(); 9142 HasArithmeticOrEnumeralCandidateType = 9143 HasArithmeticOrEnumeralCandidateType || 9144 CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes(); 9145 } 9146 9147 // Exit early when no non-record types have been added to the candidate set 9148 // for any of the arguments to the operator. 9149 // 9150 // We can't exit early for !, ||, or &&, since there we have always have 9151 // 'bool' overloads. 9152 if (!HasNonRecordCandidateType && 9153 !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe)) 9154 return; 9155 9156 // Setup an object to manage the common state for building overloads. 9157 BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, 9158 VisibleTypeConversionsQuals, 9159 HasArithmeticOrEnumeralCandidateType, 9160 CandidateTypes, CandidateSet); 9161 9162 // Dispatch over the operation to add in only those overloads which apply. 9163 switch (Op) { 9164 case OO_None: 9165 case NUM_OVERLOADED_OPERATORS: 9166 llvm_unreachable("Expected an overloaded operator"); 9167 9168 case OO_New: 9169 case OO_Delete: 9170 case OO_Array_New: 9171 case OO_Array_Delete: 9172 case OO_Call: 9173 llvm_unreachable( 9174 "Special operators don't use AddBuiltinOperatorCandidates"); 9175 9176 case OO_Comma: 9177 case OO_Arrow: 9178 case OO_Coawait: 9179 // C++ [over.match.oper]p3: 9180 // -- For the operator ',', the unary operator '&', the 9181 // operator '->', or the operator 'co_await', the 9182 // built-in candidates set is empty. 9183 break; 9184 9185 case OO_Plus: // '+' is either unary or binary 9186 if (Args.size() == 1) 9187 OpBuilder.addUnaryPlusPointerOverloads(); 9188 LLVM_FALLTHROUGH; 9189 9190 case OO_Minus: // '-' is either unary or binary 9191 if (Args.size() == 1) { 9192 OpBuilder.addUnaryPlusOrMinusArithmeticOverloads(); 9193 } else { 9194 OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op); 9195 OpBuilder.addGenericBinaryArithmeticOverloads(); 9196 OpBuilder.addMatrixBinaryArithmeticOverloads(); 9197 } 9198 break; 9199 9200 case OO_Star: // '*' is either unary or binary 9201 if (Args.size() == 1) 9202 OpBuilder.addUnaryStarPointerOverloads(); 9203 else { 9204 OpBuilder.addGenericBinaryArithmeticOverloads(); 9205 OpBuilder.addMatrixBinaryArithmeticOverloads(); 9206 } 9207 break; 9208 9209 case OO_Slash: 9210 OpBuilder.addGenericBinaryArithmeticOverloads(); 9211 break; 9212 9213 case OO_PlusPlus: 9214 case OO_MinusMinus: 9215 OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op); 9216 OpBuilder.addPlusPlusMinusMinusPointerOverloads(); 9217 break; 9218 9219 case OO_EqualEqual: 9220 case OO_ExclaimEqual: 9221 OpBuilder.addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads(); 9222 OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/false); 9223 OpBuilder.addGenericBinaryArithmeticOverloads(); 9224 break; 9225 9226 case OO_Less: 9227 case OO_Greater: 9228 case OO_LessEqual: 9229 case OO_GreaterEqual: 9230 OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/false); 9231 OpBuilder.addGenericBinaryArithmeticOverloads(); 9232 break; 9233 9234 case OO_Spaceship: 9235 OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/true); 9236 OpBuilder.addThreeWayArithmeticOverloads(); 9237 break; 9238 9239 case OO_Percent: 9240 case OO_Caret: 9241 case OO_Pipe: 9242 case OO_LessLess: 9243 case OO_GreaterGreater: 9244 OpBuilder.addBinaryBitwiseArithmeticOverloads(); 9245 break; 9246 9247 case OO_Amp: // '&' is either unary or binary 9248 if (Args.size() == 1) 9249 // C++ [over.match.oper]p3: 9250 // -- For the operator ',', the unary operator '&', or the 9251 // operator '->', the built-in candidates set is empty. 9252 break; 9253 9254 OpBuilder.addBinaryBitwiseArithmeticOverloads(); 9255 break; 9256 9257 case OO_Tilde: 9258 OpBuilder.addUnaryTildePromotedIntegralOverloads(); 9259 break; 9260 9261 case OO_Equal: 9262 OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads(); 9263 LLVM_FALLTHROUGH; 9264 9265 case OO_PlusEqual: 9266 case OO_MinusEqual: 9267 OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal); 9268 LLVM_FALLTHROUGH; 9269 9270 case OO_StarEqual: 9271 case OO_SlashEqual: 9272 OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal); 9273 break; 9274 9275 case OO_PercentEqual: 9276 case OO_LessLessEqual: 9277 case OO_GreaterGreaterEqual: 9278 case OO_AmpEqual: 9279 case OO_CaretEqual: 9280 case OO_PipeEqual: 9281 OpBuilder.addAssignmentIntegralOverloads(); 9282 break; 9283 9284 case OO_Exclaim: 9285 OpBuilder.addExclaimOverload(); 9286 break; 9287 9288 case OO_AmpAmp: 9289 case OO_PipePipe: 9290 OpBuilder.addAmpAmpOrPipePipeOverload(); 9291 break; 9292 9293 case OO_Subscript: 9294 OpBuilder.addSubscriptOverloads(); 9295 break; 9296 9297 case OO_ArrowStar: 9298 OpBuilder.addArrowStarOverloads(); 9299 break; 9300 9301 case OO_Conditional: 9302 OpBuilder.addConditionalOperatorOverloads(); 9303 OpBuilder.addGenericBinaryArithmeticOverloads(); 9304 break; 9305 } 9306 } 9307 9308 /// Add function candidates found via argument-dependent lookup 9309 /// to the set of overloading candidates. 9310 /// 9311 /// This routine performs argument-dependent name lookup based on the 9312 /// given function name (which may also be an operator name) and adds 9313 /// all of the overload candidates found by ADL to the overload 9314 /// candidate set (C++ [basic.lookup.argdep]). 9315 void 9316 Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, 9317 SourceLocation Loc, 9318 ArrayRef<Expr *> Args, 9319 TemplateArgumentListInfo *ExplicitTemplateArgs, 9320 OverloadCandidateSet& CandidateSet, 9321 bool PartialOverloading) { 9322 ADLResult Fns; 9323 9324 // FIXME: This approach for uniquing ADL results (and removing 9325 // redundant candidates from the set) relies on pointer-equality, 9326 // which means we need to key off the canonical decl. However, 9327 // always going back to the canonical decl might not get us the 9328 // right set of default arguments. What default arguments are 9329 // we supposed to consider on ADL candidates, anyway? 9330 9331 // FIXME: Pass in the explicit template arguments? 9332 ArgumentDependentLookup(Name, Loc, Args, Fns); 9333 9334 // Erase all of the candidates we already knew about. 9335 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 9336 CandEnd = CandidateSet.end(); 9337 Cand != CandEnd; ++Cand) 9338 if (Cand->Function) { 9339 Fns.erase(Cand->Function); 9340 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 9341 Fns.erase(FunTmpl); 9342 } 9343 9344 // For each of the ADL candidates we found, add it to the overload 9345 // set. 9346 for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 9347 DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none); 9348 9349 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { 9350 if (ExplicitTemplateArgs) 9351 continue; 9352 9353 AddOverloadCandidate( 9354 FD, FoundDecl, Args, CandidateSet, /*SuppressUserConversions=*/false, 9355 PartialOverloading, /*AllowExplicit=*/true, 9356 /*AllowExplicitConversions=*/false, ADLCallKind::UsesADL); 9357 if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD)) { 9358 AddOverloadCandidate( 9359 FD, FoundDecl, {Args[1], Args[0]}, CandidateSet, 9360 /*SuppressUserConversions=*/false, PartialOverloading, 9361 /*AllowExplicit=*/true, /*AllowExplicitConversions=*/false, 9362 ADLCallKind::UsesADL, None, OverloadCandidateParamOrder::Reversed); 9363 } 9364 } else { 9365 auto *FTD = cast<FunctionTemplateDecl>(*I); 9366 AddTemplateOverloadCandidate( 9367 FTD, FoundDecl, ExplicitTemplateArgs, Args, CandidateSet, 9368 /*SuppressUserConversions=*/false, PartialOverloading, 9369 /*AllowExplicit=*/true, ADLCallKind::UsesADL); 9370 if (CandidateSet.getRewriteInfo().shouldAddReversed( 9371 Context, FTD->getTemplatedDecl())) { 9372 AddTemplateOverloadCandidate( 9373 FTD, FoundDecl, ExplicitTemplateArgs, {Args[1], Args[0]}, 9374 CandidateSet, /*SuppressUserConversions=*/false, PartialOverloading, 9375 /*AllowExplicit=*/true, ADLCallKind::UsesADL, 9376 OverloadCandidateParamOrder::Reversed); 9377 } 9378 } 9379 } 9380 } 9381 9382 namespace { 9383 enum class Comparison { Equal, Better, Worse }; 9384 } 9385 9386 /// Compares the enable_if attributes of two FunctionDecls, for the purposes of 9387 /// overload resolution. 9388 /// 9389 /// Cand1's set of enable_if attributes are said to be "better" than Cand2's iff 9390 /// Cand1's first N enable_if attributes have precisely the same conditions as 9391 /// Cand2's first N enable_if attributes (where N = the number of enable_if 9392 /// attributes on Cand2), and Cand1 has more than N enable_if attributes. 9393 /// 9394 /// Note that you can have a pair of candidates such that Cand1's enable_if 9395 /// attributes are worse than Cand2's, and Cand2's enable_if attributes are 9396 /// worse than Cand1's. 9397 static Comparison compareEnableIfAttrs(const Sema &S, const FunctionDecl *Cand1, 9398 const FunctionDecl *Cand2) { 9399 // Common case: One (or both) decls don't have enable_if attrs. 9400 bool Cand1Attr = Cand1->hasAttr<EnableIfAttr>(); 9401 bool Cand2Attr = Cand2->hasAttr<EnableIfAttr>(); 9402 if (!Cand1Attr || !Cand2Attr) { 9403 if (Cand1Attr == Cand2Attr) 9404 return Comparison::Equal; 9405 return Cand1Attr ? Comparison::Better : Comparison::Worse; 9406 } 9407 9408 auto Cand1Attrs = Cand1->specific_attrs<EnableIfAttr>(); 9409 auto Cand2Attrs = Cand2->specific_attrs<EnableIfAttr>(); 9410 9411 llvm::FoldingSetNodeID Cand1ID, Cand2ID; 9412 for (auto Pair : zip_longest(Cand1Attrs, Cand2Attrs)) { 9413 Optional<EnableIfAttr *> Cand1A = std::get<0>(Pair); 9414 Optional<EnableIfAttr *> Cand2A = std::get<1>(Pair); 9415 9416 // It's impossible for Cand1 to be better than (or equal to) Cand2 if Cand1 9417 // has fewer enable_if attributes than Cand2, and vice versa. 9418 if (!Cand1A) 9419 return Comparison::Worse; 9420 if (!Cand2A) 9421 return Comparison::Better; 9422 9423 Cand1ID.clear(); 9424 Cand2ID.clear(); 9425 9426 (*Cand1A)->getCond()->Profile(Cand1ID, S.getASTContext(), true); 9427 (*Cand2A)->getCond()->Profile(Cand2ID, S.getASTContext(), true); 9428 if (Cand1ID != Cand2ID) 9429 return Comparison::Worse; 9430 } 9431 9432 return Comparison::Equal; 9433 } 9434 9435 static Comparison 9436 isBetterMultiversionCandidate(const OverloadCandidate &Cand1, 9437 const OverloadCandidate &Cand2) { 9438 if (!Cand1.Function || !Cand1.Function->isMultiVersion() || !Cand2.Function || 9439 !Cand2.Function->isMultiVersion()) 9440 return Comparison::Equal; 9441 9442 // If both are invalid, they are equal. If one of them is invalid, the other 9443 // is better. 9444 if (Cand1.Function->isInvalidDecl()) { 9445 if (Cand2.Function->isInvalidDecl()) 9446 return Comparison::Equal; 9447 return Comparison::Worse; 9448 } 9449 if (Cand2.Function->isInvalidDecl()) 9450 return Comparison::Better; 9451 9452 // If this is a cpu_dispatch/cpu_specific multiversion situation, prefer 9453 // cpu_dispatch, else arbitrarily based on the identifiers. 9454 bool Cand1CPUDisp = Cand1.Function->hasAttr<CPUDispatchAttr>(); 9455 bool Cand2CPUDisp = Cand2.Function->hasAttr<CPUDispatchAttr>(); 9456 const auto *Cand1CPUSpec = Cand1.Function->getAttr<CPUSpecificAttr>(); 9457 const auto *Cand2CPUSpec = Cand2.Function->getAttr<CPUSpecificAttr>(); 9458 9459 if (!Cand1CPUDisp && !Cand2CPUDisp && !Cand1CPUSpec && !Cand2CPUSpec) 9460 return Comparison::Equal; 9461 9462 if (Cand1CPUDisp && !Cand2CPUDisp) 9463 return Comparison::Better; 9464 if (Cand2CPUDisp && !Cand1CPUDisp) 9465 return Comparison::Worse; 9466 9467 if (Cand1CPUSpec && Cand2CPUSpec) { 9468 if (Cand1CPUSpec->cpus_size() != Cand2CPUSpec->cpus_size()) 9469 return Cand1CPUSpec->cpus_size() < Cand2CPUSpec->cpus_size() 9470 ? Comparison::Better 9471 : Comparison::Worse; 9472 9473 std::pair<CPUSpecificAttr::cpus_iterator, CPUSpecificAttr::cpus_iterator> 9474 FirstDiff = std::mismatch( 9475 Cand1CPUSpec->cpus_begin(), Cand1CPUSpec->cpus_end(), 9476 Cand2CPUSpec->cpus_begin(), 9477 [](const IdentifierInfo *LHS, const IdentifierInfo *RHS) { 9478 return LHS->getName() == RHS->getName(); 9479 }); 9480 9481 assert(FirstDiff.first != Cand1CPUSpec->cpus_end() && 9482 "Two different cpu-specific versions should not have the same " 9483 "identifier list, otherwise they'd be the same decl!"); 9484 return (*FirstDiff.first)->getName() < (*FirstDiff.second)->getName() 9485 ? Comparison::Better 9486 : Comparison::Worse; 9487 } 9488 llvm_unreachable("No way to get here unless both had cpu_dispatch"); 9489 } 9490 9491 /// Compute the type of the implicit object parameter for the given function, 9492 /// if any. Returns None if there is no implicit object parameter, and a null 9493 /// QualType if there is a 'matches anything' implicit object parameter. 9494 static Optional<QualType> getImplicitObjectParamType(ASTContext &Context, 9495 const FunctionDecl *F) { 9496 if (!isa<CXXMethodDecl>(F) || isa<CXXConstructorDecl>(F)) 9497 return llvm::None; 9498 9499 auto *M = cast<CXXMethodDecl>(F); 9500 // Static member functions' object parameters match all types. 9501 if (M->isStatic()) 9502 return QualType(); 9503 9504 QualType T = M->getThisObjectType(); 9505 if (M->getRefQualifier() == RQ_RValue) 9506 return Context.getRValueReferenceType(T); 9507 return Context.getLValueReferenceType(T); 9508 } 9509 9510 static bool haveSameParameterTypes(ASTContext &Context, const FunctionDecl *F1, 9511 const FunctionDecl *F2, unsigned NumParams) { 9512 if (declaresSameEntity(F1, F2)) 9513 return true; 9514 9515 auto NextParam = [&](const FunctionDecl *F, unsigned &I, bool First) { 9516 if (First) { 9517 if (Optional<QualType> T = getImplicitObjectParamType(Context, F)) 9518 return *T; 9519 } 9520 assert(I < F->getNumParams()); 9521 return F->getParamDecl(I++)->getType(); 9522 }; 9523 9524 unsigned I1 = 0, I2 = 0; 9525 for (unsigned I = 0; I != NumParams; ++I) { 9526 QualType T1 = NextParam(F1, I1, I == 0); 9527 QualType T2 = NextParam(F2, I2, I == 0); 9528 if (!T1.isNull() && !T1.isNull() && !Context.hasSameUnqualifiedType(T1, T2)) 9529 return false; 9530 } 9531 return true; 9532 } 9533 9534 /// isBetterOverloadCandidate - Determines whether the first overload 9535 /// candidate is a better candidate than the second (C++ 13.3.3p1). 9536 bool clang::isBetterOverloadCandidate( 9537 Sema &S, const OverloadCandidate &Cand1, const OverloadCandidate &Cand2, 9538 SourceLocation Loc, OverloadCandidateSet::CandidateSetKind Kind) { 9539 // Define viable functions to be better candidates than non-viable 9540 // functions. 9541 if (!Cand2.Viable) 9542 return Cand1.Viable; 9543 else if (!Cand1.Viable) 9544 return false; 9545 9546 // [CUDA] A function with 'never' preference is marked not viable, therefore 9547 // is never shown up here. The worst preference shown up here is 'wrong side', 9548 // e.g. an H function called by a HD function in device compilation. This is 9549 // valid AST as long as the HD function is not emitted, e.g. it is an inline 9550 // function which is called only by an H function. A deferred diagnostic will 9551 // be triggered if it is emitted. However a wrong-sided function is still 9552 // a viable candidate here. 9553 // 9554 // If Cand1 can be emitted and Cand2 cannot be emitted in the current 9555 // context, Cand1 is better than Cand2. If Cand1 can not be emitted and Cand2 9556 // can be emitted, Cand1 is not better than Cand2. This rule should have 9557 // precedence over other rules. 9558 // 9559 // If both Cand1 and Cand2 can be emitted, or neither can be emitted, then 9560 // other rules should be used to determine which is better. This is because 9561 // host/device based overloading resolution is mostly for determining 9562 // viability of a function. If two functions are both viable, other factors 9563 // should take precedence in preference, e.g. the standard-defined preferences 9564 // like argument conversion ranks or enable_if partial-ordering. The 9565 // preference for pass-object-size parameters is probably most similar to a 9566 // type-based-overloading decision and so should take priority. 9567 // 9568 // If other rules cannot determine which is better, CUDA preference will be 9569 // used again to determine which is better. 9570 // 9571 // TODO: Currently IdentifyCUDAPreference does not return correct values 9572 // for functions called in global variable initializers due to missing 9573 // correct context about device/host. Therefore we can only enforce this 9574 // rule when there is a caller. We should enforce this rule for functions 9575 // in global variable initializers once proper context is added. 9576 // 9577 // TODO: We can only enable the hostness based overloading resolution when 9578 // -fgpu-exclude-wrong-side-overloads is on since this requires deferring 9579 // overloading resolution diagnostics. 9580 if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function && 9581 S.getLangOpts().GPUExcludeWrongSideOverloads) { 9582 if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext)) { 9583 bool IsCallerImplicitHD = Sema::isCUDAImplicitHostDeviceFunction(Caller); 9584 bool IsCand1ImplicitHD = 9585 Sema::isCUDAImplicitHostDeviceFunction(Cand1.Function); 9586 bool IsCand2ImplicitHD = 9587 Sema::isCUDAImplicitHostDeviceFunction(Cand2.Function); 9588 auto P1 = S.IdentifyCUDAPreference(Caller, Cand1.Function); 9589 auto P2 = S.IdentifyCUDAPreference(Caller, Cand2.Function); 9590 assert(P1 != Sema::CFP_Never && P2 != Sema::CFP_Never); 9591 // The implicit HD function may be a function in a system header which 9592 // is forced by pragma. In device compilation, if we prefer HD candidates 9593 // over wrong-sided candidates, overloading resolution may change, which 9594 // may result in non-deferrable diagnostics. As a workaround, we let 9595 // implicit HD candidates take equal preference as wrong-sided candidates. 9596 // This will preserve the overloading resolution. 9597 // TODO: We still need special handling of implicit HD functions since 9598 // they may incur other diagnostics to be deferred. We should make all 9599 // host/device related diagnostics deferrable and remove special handling 9600 // of implicit HD functions. 9601 auto EmitThreshold = 9602 (S.getLangOpts().CUDAIsDevice && IsCallerImplicitHD && 9603 (IsCand1ImplicitHD || IsCand2ImplicitHD)) 9604 ? Sema::CFP_Never 9605 : Sema::CFP_WrongSide; 9606 auto Cand1Emittable = P1 > EmitThreshold; 9607 auto Cand2Emittable = P2 > EmitThreshold; 9608 if (Cand1Emittable && !Cand2Emittable) 9609 return true; 9610 if (!Cand1Emittable && Cand2Emittable) 9611 return false; 9612 } 9613 } 9614 9615 // C++ [over.match.best]p1: 9616 // 9617 // -- if F is a static member function, ICS1(F) is defined such 9618 // that ICS1(F) is neither better nor worse than ICS1(G) for 9619 // any function G, and, symmetrically, ICS1(G) is neither 9620 // better nor worse than ICS1(F). 9621 unsigned StartArg = 0; 9622 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) 9623 StartArg = 1; 9624 9625 auto IsIllFormedConversion = [&](const ImplicitConversionSequence &ICS) { 9626 // We don't allow incompatible pointer conversions in C++. 9627 if (!S.getLangOpts().CPlusPlus) 9628 return ICS.isStandard() && 9629 ICS.Standard.Second == ICK_Incompatible_Pointer_Conversion; 9630 9631 // The only ill-formed conversion we allow in C++ is the string literal to 9632 // char* conversion, which is only considered ill-formed after C++11. 9633 return S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings && 9634 hasDeprecatedStringLiteralToCharPtrConversion(ICS); 9635 }; 9636 9637 // Define functions that don't require ill-formed conversions for a given 9638 // argument to be better candidates than functions that do. 9639 unsigned NumArgs = Cand1.Conversions.size(); 9640 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); 9641 bool HasBetterConversion = false; 9642 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 9643 bool Cand1Bad = IsIllFormedConversion(Cand1.Conversions[ArgIdx]); 9644 bool Cand2Bad = IsIllFormedConversion(Cand2.Conversions[ArgIdx]); 9645 if (Cand1Bad != Cand2Bad) { 9646 if (Cand1Bad) 9647 return false; 9648 HasBetterConversion = true; 9649 } 9650 } 9651 9652 if (HasBetterConversion) 9653 return true; 9654 9655 // C++ [over.match.best]p1: 9656 // A viable function F1 is defined to be a better function than another 9657 // viable function F2 if for all arguments i, ICSi(F1) is not a worse 9658 // conversion sequence than ICSi(F2), and then... 9659 bool HasWorseConversion = false; 9660 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 9661 switch (CompareImplicitConversionSequences(S, Loc, 9662 Cand1.Conversions[ArgIdx], 9663 Cand2.Conversions[ArgIdx])) { 9664 case ImplicitConversionSequence::Better: 9665 // Cand1 has a better conversion sequence. 9666 HasBetterConversion = true; 9667 break; 9668 9669 case ImplicitConversionSequence::Worse: 9670 if (Cand1.Function && Cand2.Function && 9671 Cand1.isReversed() != Cand2.isReversed() && 9672 haveSameParameterTypes(S.Context, Cand1.Function, Cand2.Function, 9673 NumArgs)) { 9674 // Work around large-scale breakage caused by considering reversed 9675 // forms of operator== in C++20: 9676 // 9677 // When comparing a function against a reversed function with the same 9678 // parameter types, if we have a better conversion for one argument and 9679 // a worse conversion for the other, the implicit conversion sequences 9680 // are treated as being equally good. 9681 // 9682 // This prevents a comparison function from being considered ambiguous 9683 // with a reversed form that is written in the same way. 9684 // 9685 // We diagnose this as an extension from CreateOverloadedBinOp. 9686 HasWorseConversion = true; 9687 break; 9688 } 9689 9690 // Cand1 can't be better than Cand2. 9691 return false; 9692 9693 case ImplicitConversionSequence::Indistinguishable: 9694 // Do nothing. 9695 break; 9696 } 9697 } 9698 9699 // -- for some argument j, ICSj(F1) is a better conversion sequence than 9700 // ICSj(F2), or, if not that, 9701 if (HasBetterConversion && !HasWorseConversion) 9702 return true; 9703 9704 // -- the context is an initialization by user-defined conversion 9705 // (see 8.5, 13.3.1.5) and the standard conversion sequence 9706 // from the return type of F1 to the destination type (i.e., 9707 // the type of the entity being initialized) is a better 9708 // conversion sequence than the standard conversion sequence 9709 // from the return type of F2 to the destination type. 9710 if (Kind == OverloadCandidateSet::CSK_InitByUserDefinedConversion && 9711 Cand1.Function && Cand2.Function && 9712 isa<CXXConversionDecl>(Cand1.Function) && 9713 isa<CXXConversionDecl>(Cand2.Function)) { 9714 // First check whether we prefer one of the conversion functions over the 9715 // other. This only distinguishes the results in non-standard, extension 9716 // cases such as the conversion from a lambda closure type to a function 9717 // pointer or block. 9718 ImplicitConversionSequence::CompareKind Result = 9719 compareConversionFunctions(S, Cand1.Function, Cand2.Function); 9720 if (Result == ImplicitConversionSequence::Indistinguishable) 9721 Result = CompareStandardConversionSequences(S, Loc, 9722 Cand1.FinalConversion, 9723 Cand2.FinalConversion); 9724 9725 if (Result != ImplicitConversionSequence::Indistinguishable) 9726 return Result == ImplicitConversionSequence::Better; 9727 9728 // FIXME: Compare kind of reference binding if conversion functions 9729 // convert to a reference type used in direct reference binding, per 9730 // C++14 [over.match.best]p1 section 2 bullet 3. 9731 } 9732 9733 // FIXME: Work around a defect in the C++17 guaranteed copy elision wording, 9734 // as combined with the resolution to CWG issue 243. 9735 // 9736 // When the context is initialization by constructor ([over.match.ctor] or 9737 // either phase of [over.match.list]), a constructor is preferred over 9738 // a conversion function. 9739 if (Kind == OverloadCandidateSet::CSK_InitByConstructor && NumArgs == 1 && 9740 Cand1.Function && Cand2.Function && 9741 isa<CXXConstructorDecl>(Cand1.Function) != 9742 isa<CXXConstructorDecl>(Cand2.Function)) 9743 return isa<CXXConstructorDecl>(Cand1.Function); 9744 9745 // -- F1 is a non-template function and F2 is a function template 9746 // specialization, or, if not that, 9747 bool Cand1IsSpecialization = Cand1.Function && 9748 Cand1.Function->getPrimaryTemplate(); 9749 bool Cand2IsSpecialization = Cand2.Function && 9750 Cand2.Function->getPrimaryTemplate(); 9751 if (Cand1IsSpecialization != Cand2IsSpecialization) 9752 return Cand2IsSpecialization; 9753 9754 // -- F1 and F2 are function template specializations, and the function 9755 // template for F1 is more specialized than the template for F2 9756 // according to the partial ordering rules described in 14.5.5.2, or, 9757 // if not that, 9758 if (Cand1IsSpecialization && Cand2IsSpecialization) { 9759 if (FunctionTemplateDecl *BetterTemplate = S.getMoreSpecializedTemplate( 9760 Cand1.Function->getPrimaryTemplate(), 9761 Cand2.Function->getPrimaryTemplate(), Loc, 9762 isa<CXXConversionDecl>(Cand1.Function) ? TPOC_Conversion 9763 : TPOC_Call, 9764 Cand1.ExplicitCallArguments, Cand2.ExplicitCallArguments, 9765 Cand1.isReversed() ^ Cand2.isReversed())) 9766 return BetterTemplate == Cand1.Function->getPrimaryTemplate(); 9767 } 9768 9769 // -— F1 and F2 are non-template functions with the same 9770 // parameter-type-lists, and F1 is more constrained than F2 [...], 9771 if (Cand1.Function && Cand2.Function && !Cand1IsSpecialization && 9772 !Cand2IsSpecialization && Cand1.Function->hasPrototype() && 9773 Cand2.Function->hasPrototype()) { 9774 auto *PT1 = cast<FunctionProtoType>(Cand1.Function->getFunctionType()); 9775 auto *PT2 = cast<FunctionProtoType>(Cand2.Function->getFunctionType()); 9776 if (PT1->getNumParams() == PT2->getNumParams() && 9777 PT1->isVariadic() == PT2->isVariadic() && 9778 S.FunctionParamTypesAreEqual(PT1, PT2)) { 9779 Expr *RC1 = Cand1.Function->getTrailingRequiresClause(); 9780 Expr *RC2 = Cand2.Function->getTrailingRequiresClause(); 9781 if (RC1 && RC2) { 9782 bool AtLeastAsConstrained1, AtLeastAsConstrained2; 9783 if (S.IsAtLeastAsConstrained(Cand1.Function, {RC1}, Cand2.Function, 9784 {RC2}, AtLeastAsConstrained1) || 9785 S.IsAtLeastAsConstrained(Cand2.Function, {RC2}, Cand1.Function, 9786 {RC1}, AtLeastAsConstrained2)) 9787 return false; 9788 if (AtLeastAsConstrained1 != AtLeastAsConstrained2) 9789 return AtLeastAsConstrained1; 9790 } else if (RC1 || RC2) { 9791 return RC1 != nullptr; 9792 } 9793 } 9794 } 9795 9796 // -- F1 is a constructor for a class D, F2 is a constructor for a base 9797 // class B of D, and for all arguments the corresponding parameters of 9798 // F1 and F2 have the same type. 9799 // FIXME: Implement the "all parameters have the same type" check. 9800 bool Cand1IsInherited = 9801 dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand1.FoundDecl.getDecl()); 9802 bool Cand2IsInherited = 9803 dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand2.FoundDecl.getDecl()); 9804 if (Cand1IsInherited != Cand2IsInherited) 9805 return Cand2IsInherited; 9806 else if (Cand1IsInherited) { 9807 assert(Cand2IsInherited); 9808 auto *Cand1Class = cast<CXXRecordDecl>(Cand1.Function->getDeclContext()); 9809 auto *Cand2Class = cast<CXXRecordDecl>(Cand2.Function->getDeclContext()); 9810 if (Cand1Class->isDerivedFrom(Cand2Class)) 9811 return true; 9812 if (Cand2Class->isDerivedFrom(Cand1Class)) 9813 return false; 9814 // Inherited from sibling base classes: still ambiguous. 9815 } 9816 9817 // -- F2 is a rewritten candidate (12.4.1.2) and F1 is not 9818 // -- F1 and F2 are rewritten candidates, and F2 is a synthesized candidate 9819 // with reversed order of parameters and F1 is not 9820 // 9821 // We rank reversed + different operator as worse than just reversed, but 9822 // that comparison can never happen, because we only consider reversing for 9823 // the maximally-rewritten operator (== or <=>). 9824 if (Cand1.RewriteKind != Cand2.RewriteKind) 9825 return Cand1.RewriteKind < Cand2.RewriteKind; 9826 9827 // Check C++17 tie-breakers for deduction guides. 9828 { 9829 auto *Guide1 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand1.Function); 9830 auto *Guide2 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand2.Function); 9831 if (Guide1 && Guide2) { 9832 // -- F1 is generated from a deduction-guide and F2 is not 9833 if (Guide1->isImplicit() != Guide2->isImplicit()) 9834 return Guide2->isImplicit(); 9835 9836 // -- F1 is the copy deduction candidate(16.3.1.8) and F2 is not 9837 if (Guide1->isCopyDeductionCandidate()) 9838 return true; 9839 } 9840 } 9841 9842 // Check for enable_if value-based overload resolution. 9843 if (Cand1.Function && Cand2.Function) { 9844 Comparison Cmp = compareEnableIfAttrs(S, Cand1.Function, Cand2.Function); 9845 if (Cmp != Comparison::Equal) 9846 return Cmp == Comparison::Better; 9847 } 9848 9849 bool HasPS1 = Cand1.Function != nullptr && 9850 functionHasPassObjectSizeParams(Cand1.Function); 9851 bool HasPS2 = Cand2.Function != nullptr && 9852 functionHasPassObjectSizeParams(Cand2.Function); 9853 if (HasPS1 != HasPS2 && HasPS1) 9854 return true; 9855 9856 auto MV = isBetterMultiversionCandidate(Cand1, Cand2); 9857 if (MV == Comparison::Better) 9858 return true; 9859 if (MV == Comparison::Worse) 9860 return false; 9861 9862 // If other rules cannot determine which is better, CUDA preference is used 9863 // to determine which is better. 9864 if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function) { 9865 FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext); 9866 return S.IdentifyCUDAPreference(Caller, Cand1.Function) > 9867 S.IdentifyCUDAPreference(Caller, Cand2.Function); 9868 } 9869 9870 // General member function overloading is handled above, so this only handles 9871 // constructors with address spaces. 9872 // This only handles address spaces since C++ has no other 9873 // qualifier that can be used with constructors. 9874 const auto *CD1 = dyn_cast_or_null<CXXConstructorDecl>(Cand1.Function); 9875 const auto *CD2 = dyn_cast_or_null<CXXConstructorDecl>(Cand2.Function); 9876 if (CD1 && CD2) { 9877 LangAS AS1 = CD1->getMethodQualifiers().getAddressSpace(); 9878 LangAS AS2 = CD2->getMethodQualifiers().getAddressSpace(); 9879 if (AS1 != AS2) { 9880 if (Qualifiers::isAddressSpaceSupersetOf(AS2, AS1)) 9881 return true; 9882 if (Qualifiers::isAddressSpaceSupersetOf(AS2, AS1)) 9883 return false; 9884 } 9885 } 9886 9887 return false; 9888 } 9889 9890 /// Determine whether two declarations are "equivalent" for the purposes of 9891 /// name lookup and overload resolution. This applies when the same internal/no 9892 /// linkage entity is defined by two modules (probably by textually including 9893 /// the same header). In such a case, we don't consider the declarations to 9894 /// declare the same entity, but we also don't want lookups with both 9895 /// declarations visible to be ambiguous in some cases (this happens when using 9896 /// a modularized libstdc++). 9897 bool Sema::isEquivalentInternalLinkageDeclaration(const NamedDecl *A, 9898 const NamedDecl *B) { 9899 auto *VA = dyn_cast_or_null<ValueDecl>(A); 9900 auto *VB = dyn_cast_or_null<ValueDecl>(B); 9901 if (!VA || !VB) 9902 return false; 9903 9904 // The declarations must be declaring the same name as an internal linkage 9905 // entity in different modules. 9906 if (!VA->getDeclContext()->getRedeclContext()->Equals( 9907 VB->getDeclContext()->getRedeclContext()) || 9908 getOwningModule(VA) == getOwningModule(VB) || 9909 VA->isExternallyVisible() || VB->isExternallyVisible()) 9910 return false; 9911 9912 // Check that the declarations appear to be equivalent. 9913 // 9914 // FIXME: Checking the type isn't really enough to resolve the ambiguity. 9915 // For constants and functions, we should check the initializer or body is 9916 // the same. For non-constant variables, we shouldn't allow it at all. 9917 if (Context.hasSameType(VA->getType(), VB->getType())) 9918 return true; 9919 9920 // Enum constants within unnamed enumerations will have different types, but 9921 // may still be similar enough to be interchangeable for our purposes. 9922 if (auto *EA = dyn_cast<EnumConstantDecl>(VA)) { 9923 if (auto *EB = dyn_cast<EnumConstantDecl>(VB)) { 9924 // Only handle anonymous enums. If the enumerations were named and 9925 // equivalent, they would have been merged to the same type. 9926 auto *EnumA = cast<EnumDecl>(EA->getDeclContext()); 9927 auto *EnumB = cast<EnumDecl>(EB->getDeclContext()); 9928 if (EnumA->hasNameForLinkage() || EnumB->hasNameForLinkage() || 9929 !Context.hasSameType(EnumA->getIntegerType(), 9930 EnumB->getIntegerType())) 9931 return false; 9932 // Allow this only if the value is the same for both enumerators. 9933 return llvm::APSInt::isSameValue(EA->getInitVal(), EB->getInitVal()); 9934 } 9935 } 9936 9937 // Nothing else is sufficiently similar. 9938 return false; 9939 } 9940 9941 void Sema::diagnoseEquivalentInternalLinkageDeclarations( 9942 SourceLocation Loc, const NamedDecl *D, ArrayRef<const NamedDecl *> Equiv) { 9943 assert(D && "Unknown declaration"); 9944 Diag(Loc, diag::ext_equivalent_internal_linkage_decl_in_modules) << D; 9945 9946 Module *M = getOwningModule(D); 9947 Diag(D->getLocation(), diag::note_equivalent_internal_linkage_decl) 9948 << !M << (M ? M->getFullModuleName() : ""); 9949 9950 for (auto *E : Equiv) { 9951 Module *M = getOwningModule(E); 9952 Diag(E->getLocation(), diag::note_equivalent_internal_linkage_decl) 9953 << !M << (M ? M->getFullModuleName() : ""); 9954 } 9955 } 9956 9957 /// Computes the best viable function (C++ 13.3.3) 9958 /// within an overload candidate set. 9959 /// 9960 /// \param Loc The location of the function name (or operator symbol) for 9961 /// which overload resolution occurs. 9962 /// 9963 /// \param Best If overload resolution was successful or found a deleted 9964 /// function, \p Best points to the candidate function found. 9965 /// 9966 /// \returns The result of overload resolution. 9967 OverloadingResult 9968 OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc, 9969 iterator &Best) { 9970 llvm::SmallVector<OverloadCandidate *, 16> Candidates; 9971 std::transform(begin(), end(), std::back_inserter(Candidates), 9972 [](OverloadCandidate &Cand) { return &Cand; }); 9973 9974 // [CUDA] HD->H or HD->D calls are technically not allowed by CUDA but 9975 // are accepted by both clang and NVCC. However, during a particular 9976 // compilation mode only one call variant is viable. We need to 9977 // exclude non-viable overload candidates from consideration based 9978 // only on their host/device attributes. Specifically, if one 9979 // candidate call is WrongSide and the other is SameSide, we ignore 9980 // the WrongSide candidate. 9981 // We only need to remove wrong-sided candidates here if 9982 // -fgpu-exclude-wrong-side-overloads is off. When 9983 // -fgpu-exclude-wrong-side-overloads is on, all candidates are compared 9984 // uniformly in isBetterOverloadCandidate. 9985 if (S.getLangOpts().CUDA && !S.getLangOpts().GPUExcludeWrongSideOverloads) { 9986 const FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext); 9987 bool ContainsSameSideCandidate = 9988 llvm::any_of(Candidates, [&](OverloadCandidate *Cand) { 9989 // Check viable function only. 9990 return Cand->Viable && Cand->Function && 9991 S.IdentifyCUDAPreference(Caller, Cand->Function) == 9992 Sema::CFP_SameSide; 9993 }); 9994 if (ContainsSameSideCandidate) { 9995 auto IsWrongSideCandidate = [&](OverloadCandidate *Cand) { 9996 // Check viable function only to avoid unnecessary data copying/moving. 9997 return Cand->Viable && Cand->Function && 9998 S.IdentifyCUDAPreference(Caller, Cand->Function) == 9999 Sema::CFP_WrongSide; 10000 }; 10001 llvm::erase_if(Candidates, IsWrongSideCandidate); 10002 } 10003 } 10004 10005 // Find the best viable function. 10006 Best = end(); 10007 for (auto *Cand : Candidates) { 10008 Cand->Best = false; 10009 if (Cand->Viable) 10010 if (Best == end() || 10011 isBetterOverloadCandidate(S, *Cand, *Best, Loc, Kind)) 10012 Best = Cand; 10013 } 10014 10015 // If we didn't find any viable functions, abort. 10016 if (Best == end()) 10017 return OR_No_Viable_Function; 10018 10019 llvm::SmallVector<const NamedDecl *, 4> EquivalentCands; 10020 10021 llvm::SmallVector<OverloadCandidate*, 4> PendingBest; 10022 PendingBest.push_back(&*Best); 10023 Best->Best = true; 10024 10025 // Make sure that this function is better than every other viable 10026 // function. If not, we have an ambiguity. 10027 while (!PendingBest.empty()) { 10028 auto *Curr = PendingBest.pop_back_val(); 10029 for (auto *Cand : Candidates) { 10030 if (Cand->Viable && !Cand->Best && 10031 !isBetterOverloadCandidate(S, *Curr, *Cand, Loc, Kind)) { 10032 PendingBest.push_back(Cand); 10033 Cand->Best = true; 10034 10035 if (S.isEquivalentInternalLinkageDeclaration(Cand->Function, 10036 Curr->Function)) 10037 EquivalentCands.push_back(Cand->Function); 10038 else 10039 Best = end(); 10040 } 10041 } 10042 } 10043 10044 // If we found more than one best candidate, this is ambiguous. 10045 if (Best == end()) 10046 return OR_Ambiguous; 10047 10048 // Best is the best viable function. 10049 if (Best->Function && Best->Function->isDeleted()) 10050 return OR_Deleted; 10051 10052 if (!EquivalentCands.empty()) 10053 S.diagnoseEquivalentInternalLinkageDeclarations(Loc, Best->Function, 10054 EquivalentCands); 10055 10056 return OR_Success; 10057 } 10058 10059 namespace { 10060 10061 enum OverloadCandidateKind { 10062 oc_function, 10063 oc_method, 10064 oc_reversed_binary_operator, 10065 oc_constructor, 10066 oc_implicit_default_constructor, 10067 oc_implicit_copy_constructor, 10068 oc_implicit_move_constructor, 10069 oc_implicit_copy_assignment, 10070 oc_implicit_move_assignment, 10071 oc_implicit_equality_comparison, 10072 oc_inherited_constructor 10073 }; 10074 10075 enum OverloadCandidateSelect { 10076 ocs_non_template, 10077 ocs_template, 10078 ocs_described_template, 10079 }; 10080 10081 static std::pair<OverloadCandidateKind, OverloadCandidateSelect> 10082 ClassifyOverloadCandidate(Sema &S, NamedDecl *Found, FunctionDecl *Fn, 10083 OverloadCandidateRewriteKind CRK, 10084 std::string &Description) { 10085 10086 bool isTemplate = Fn->isTemplateDecl() || Found->isTemplateDecl(); 10087 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) { 10088 isTemplate = true; 10089 Description = S.getTemplateArgumentBindingsText( 10090 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs()); 10091 } 10092 10093 OverloadCandidateSelect Select = [&]() { 10094 if (!Description.empty()) 10095 return ocs_described_template; 10096 return isTemplate ? ocs_template : ocs_non_template; 10097 }(); 10098 10099 OverloadCandidateKind Kind = [&]() { 10100 if (Fn->isImplicit() && Fn->getOverloadedOperator() == OO_EqualEqual) 10101 return oc_implicit_equality_comparison; 10102 10103 if (CRK & CRK_Reversed) 10104 return oc_reversed_binary_operator; 10105 10106 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) { 10107 if (!Ctor->isImplicit()) { 10108 if (isa<ConstructorUsingShadowDecl>(Found)) 10109 return oc_inherited_constructor; 10110 else 10111 return oc_constructor; 10112 } 10113 10114 if (Ctor->isDefaultConstructor()) 10115 return oc_implicit_default_constructor; 10116 10117 if (Ctor->isMoveConstructor()) 10118 return oc_implicit_move_constructor; 10119 10120 assert(Ctor->isCopyConstructor() && 10121 "unexpected sort of implicit constructor"); 10122 return oc_implicit_copy_constructor; 10123 } 10124 10125 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) { 10126 // This actually gets spelled 'candidate function' for now, but 10127 // it doesn't hurt to split it out. 10128 if (!Meth->isImplicit()) 10129 return oc_method; 10130 10131 if (Meth->isMoveAssignmentOperator()) 10132 return oc_implicit_move_assignment; 10133 10134 if (Meth->isCopyAssignmentOperator()) 10135 return oc_implicit_copy_assignment; 10136 10137 assert(isa<CXXConversionDecl>(Meth) && "expected conversion"); 10138 return oc_method; 10139 } 10140 10141 return oc_function; 10142 }(); 10143 10144 return std::make_pair(Kind, Select); 10145 } 10146 10147 void MaybeEmitInheritedConstructorNote(Sema &S, Decl *FoundDecl) { 10148 // FIXME: It'd be nice to only emit a note once per using-decl per overload 10149 // set. 10150 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl)) 10151 S.Diag(FoundDecl->getLocation(), 10152 diag::note_ovl_candidate_inherited_constructor) 10153 << Shadow->getNominatedBaseClass(); 10154 } 10155 10156 } // end anonymous namespace 10157 10158 static bool isFunctionAlwaysEnabled(const ASTContext &Ctx, 10159 const FunctionDecl *FD) { 10160 for (auto *EnableIf : FD->specific_attrs<EnableIfAttr>()) { 10161 bool AlwaysTrue; 10162 if (EnableIf->getCond()->isValueDependent() || 10163 !EnableIf->getCond()->EvaluateAsBooleanCondition(AlwaysTrue, Ctx)) 10164 return false; 10165 if (!AlwaysTrue) 10166 return false; 10167 } 10168 return true; 10169 } 10170 10171 /// Returns true if we can take the address of the function. 10172 /// 10173 /// \param Complain - If true, we'll emit a diagnostic 10174 /// \param InOverloadResolution - For the purposes of emitting a diagnostic, are 10175 /// we in overload resolution? 10176 /// \param Loc - The location of the statement we're complaining about. Ignored 10177 /// if we're not complaining, or if we're in overload resolution. 10178 static bool checkAddressOfFunctionIsAvailable(Sema &S, const FunctionDecl *FD, 10179 bool Complain, 10180 bool InOverloadResolution, 10181 SourceLocation Loc) { 10182 if (!isFunctionAlwaysEnabled(S.Context, FD)) { 10183 if (Complain) { 10184 if (InOverloadResolution) 10185 S.Diag(FD->getBeginLoc(), 10186 diag::note_addrof_ovl_candidate_disabled_by_enable_if_attr); 10187 else 10188 S.Diag(Loc, diag::err_addrof_function_disabled_by_enable_if_attr) << FD; 10189 } 10190 return false; 10191 } 10192 10193 if (FD->getTrailingRequiresClause()) { 10194 ConstraintSatisfaction Satisfaction; 10195 if (S.CheckFunctionConstraints(FD, Satisfaction, Loc)) 10196 return false; 10197 if (!Satisfaction.IsSatisfied) { 10198 if (Complain) { 10199 if (InOverloadResolution) 10200 S.Diag(FD->getBeginLoc(), 10201 diag::note_ovl_candidate_unsatisfied_constraints); 10202 else 10203 S.Diag(Loc, diag::err_addrof_function_constraints_not_satisfied) 10204 << FD; 10205 S.DiagnoseUnsatisfiedConstraint(Satisfaction); 10206 } 10207 return false; 10208 } 10209 } 10210 10211 auto I = llvm::find_if(FD->parameters(), [](const ParmVarDecl *P) { 10212 return P->hasAttr<PassObjectSizeAttr>(); 10213 }); 10214 if (I == FD->param_end()) 10215 return true; 10216 10217 if (Complain) { 10218 // Add one to ParamNo because it's user-facing 10219 unsigned ParamNo = std::distance(FD->param_begin(), I) + 1; 10220 if (InOverloadResolution) 10221 S.Diag(FD->getLocation(), 10222 diag::note_ovl_candidate_has_pass_object_size_params) 10223 << ParamNo; 10224 else 10225 S.Diag(Loc, diag::err_address_of_function_with_pass_object_size_params) 10226 << FD << ParamNo; 10227 } 10228 return false; 10229 } 10230 10231 static bool checkAddressOfCandidateIsAvailable(Sema &S, 10232 const FunctionDecl *FD) { 10233 return checkAddressOfFunctionIsAvailable(S, FD, /*Complain=*/true, 10234 /*InOverloadResolution=*/true, 10235 /*Loc=*/SourceLocation()); 10236 } 10237 10238 bool Sema::checkAddressOfFunctionIsAvailable(const FunctionDecl *Function, 10239 bool Complain, 10240 SourceLocation Loc) { 10241 return ::checkAddressOfFunctionIsAvailable(*this, Function, Complain, 10242 /*InOverloadResolution=*/false, 10243 Loc); 10244 } 10245 10246 // Don't print candidates other than the one that matches the calling 10247 // convention of the call operator, since that is guaranteed to exist. 10248 static bool shouldSkipNotingLambdaConversionDecl(FunctionDecl *Fn) { 10249 const auto *ConvD = dyn_cast<CXXConversionDecl>(Fn); 10250 10251 if (!ConvD) 10252 return false; 10253 const auto *RD = cast<CXXRecordDecl>(Fn->getParent()); 10254 if (!RD->isLambda()) 10255 return false; 10256 10257 CXXMethodDecl *CallOp = RD->getLambdaCallOperator(); 10258 CallingConv CallOpCC = 10259 CallOp->getType()->castAs<FunctionType>()->getCallConv(); 10260 QualType ConvRTy = ConvD->getType()->castAs<FunctionType>()->getReturnType(); 10261 CallingConv ConvToCC = 10262 ConvRTy->getPointeeType()->castAs<FunctionType>()->getCallConv(); 10263 10264 return ConvToCC != CallOpCC; 10265 } 10266 10267 // Notes the location of an overload candidate. 10268 void Sema::NoteOverloadCandidate(NamedDecl *Found, FunctionDecl *Fn, 10269 OverloadCandidateRewriteKind RewriteKind, 10270 QualType DestType, bool TakingAddress) { 10271 if (TakingAddress && !checkAddressOfCandidateIsAvailable(*this, Fn)) 10272 return; 10273 if (Fn->isMultiVersion() && Fn->hasAttr<TargetAttr>() && 10274 !Fn->getAttr<TargetAttr>()->isDefaultVersion()) 10275 return; 10276 if (shouldSkipNotingLambdaConversionDecl(Fn)) 10277 return; 10278 10279 std::string FnDesc; 10280 std::pair<OverloadCandidateKind, OverloadCandidateSelect> KSPair = 10281 ClassifyOverloadCandidate(*this, Found, Fn, RewriteKind, FnDesc); 10282 PartialDiagnostic PD = PDiag(diag::note_ovl_candidate) 10283 << (unsigned)KSPair.first << (unsigned)KSPair.second 10284 << Fn << FnDesc; 10285 10286 HandleFunctionTypeMismatch(PD, Fn->getType(), DestType); 10287 Diag(Fn->getLocation(), PD); 10288 MaybeEmitInheritedConstructorNote(*this, Found); 10289 } 10290 10291 static void 10292 MaybeDiagnoseAmbiguousConstraints(Sema &S, ArrayRef<OverloadCandidate> Cands) { 10293 // Perhaps the ambiguity was caused by two atomic constraints that are 10294 // 'identical' but not equivalent: 10295 // 10296 // void foo() requires (sizeof(T) > 4) { } // #1 10297 // void foo() requires (sizeof(T) > 4) && T::value { } // #2 10298 // 10299 // The 'sizeof(T) > 4' constraints are seemingly equivalent and should cause 10300 // #2 to subsume #1, but these constraint are not considered equivalent 10301 // according to the subsumption rules because they are not the same 10302 // source-level construct. This behavior is quite confusing and we should try 10303 // to help the user figure out what happened. 10304 10305 SmallVector<const Expr *, 3> FirstAC, SecondAC; 10306 FunctionDecl *FirstCand = nullptr, *SecondCand = nullptr; 10307 for (auto I = Cands.begin(), E = Cands.end(); I != E; ++I) { 10308 if (!I->Function) 10309 continue; 10310 SmallVector<const Expr *, 3> AC; 10311 if (auto *Template = I->Function->getPrimaryTemplate()) 10312 Template->getAssociatedConstraints(AC); 10313 else 10314 I->Function->getAssociatedConstraints(AC); 10315 if (AC.empty()) 10316 continue; 10317 if (FirstCand == nullptr) { 10318 FirstCand = I->Function; 10319 FirstAC = AC; 10320 } else if (SecondCand == nullptr) { 10321 SecondCand = I->Function; 10322 SecondAC = AC; 10323 } else { 10324 // We have more than one pair of constrained functions - this check is 10325 // expensive and we'd rather not try to diagnose it. 10326 return; 10327 } 10328 } 10329 if (!SecondCand) 10330 return; 10331 // The diagnostic can only happen if there are associated constraints on 10332 // both sides (there needs to be some identical atomic constraint). 10333 if (S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(FirstCand, FirstAC, 10334 SecondCand, SecondAC)) 10335 // Just show the user one diagnostic, they'll probably figure it out 10336 // from here. 10337 return; 10338 } 10339 10340 // Notes the location of all overload candidates designated through 10341 // OverloadedExpr 10342 void Sema::NoteAllOverloadCandidates(Expr *OverloadedExpr, QualType DestType, 10343 bool TakingAddress) { 10344 assert(OverloadedExpr->getType() == Context.OverloadTy); 10345 10346 OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr); 10347 OverloadExpr *OvlExpr = Ovl.Expression; 10348 10349 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 10350 IEnd = OvlExpr->decls_end(); 10351 I != IEnd; ++I) { 10352 if (FunctionTemplateDecl *FunTmpl = 10353 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) { 10354 NoteOverloadCandidate(*I, FunTmpl->getTemplatedDecl(), CRK_None, DestType, 10355 TakingAddress); 10356 } else if (FunctionDecl *Fun 10357 = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) { 10358 NoteOverloadCandidate(*I, Fun, CRK_None, DestType, TakingAddress); 10359 } 10360 } 10361 } 10362 10363 /// Diagnoses an ambiguous conversion. The partial diagnostic is the 10364 /// "lead" diagnostic; it will be given two arguments, the source and 10365 /// target types of the conversion. 10366 void ImplicitConversionSequence::DiagnoseAmbiguousConversion( 10367 Sema &S, 10368 SourceLocation CaretLoc, 10369 const PartialDiagnostic &PDiag) const { 10370 S.Diag(CaretLoc, PDiag) 10371 << Ambiguous.getFromType() << Ambiguous.getToType(); 10372 unsigned CandsShown = 0; 10373 AmbiguousConversionSequence::const_iterator I, E; 10374 for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) { 10375 if (CandsShown >= S.Diags.getNumOverloadCandidatesToShow()) 10376 break; 10377 ++CandsShown; 10378 S.NoteOverloadCandidate(I->first, I->second); 10379 } 10380 S.Diags.overloadCandidatesShown(CandsShown); 10381 if (I != E) 10382 S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I); 10383 } 10384 10385 static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, 10386 unsigned I, bool TakingCandidateAddress) { 10387 const ImplicitConversionSequence &Conv = Cand->Conversions[I]; 10388 assert(Conv.isBad()); 10389 assert(Cand->Function && "for now, candidate must be a function"); 10390 FunctionDecl *Fn = Cand->Function; 10391 10392 // There's a conversion slot for the object argument if this is a 10393 // non-constructor method. Note that 'I' corresponds the 10394 // conversion-slot index. 10395 bool isObjectArgument = false; 10396 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) { 10397 if (I == 0) 10398 isObjectArgument = true; 10399 else 10400 I--; 10401 } 10402 10403 std::string FnDesc; 10404 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = 10405 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, Cand->getRewriteKind(), 10406 FnDesc); 10407 10408 Expr *FromExpr = Conv.Bad.FromExpr; 10409 QualType FromTy = Conv.Bad.getFromType(); 10410 QualType ToTy = Conv.Bad.getToType(); 10411 10412 if (FromTy == S.Context.OverloadTy) { 10413 assert(FromExpr && "overload set argument came from implicit argument?"); 10414 Expr *E = FromExpr->IgnoreParens(); 10415 if (isa<UnaryOperator>(E)) 10416 E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); 10417 DeclarationName Name = cast<OverloadExpr>(E)->getName(); 10418 10419 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload) 10420 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10421 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << ToTy 10422 << Name << I + 1; 10423 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10424 return; 10425 } 10426 10427 // Do some hand-waving analysis to see if the non-viability is due 10428 // to a qualifier mismatch. 10429 CanQualType CFromTy = S.Context.getCanonicalType(FromTy); 10430 CanQualType CToTy = S.Context.getCanonicalType(ToTy); 10431 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>()) 10432 CToTy = RT->getPointeeType(); 10433 else { 10434 // TODO: detect and diagnose the full richness of const mismatches. 10435 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>()) 10436 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) { 10437 CFromTy = FromPT->getPointeeType(); 10438 CToTy = ToPT->getPointeeType(); 10439 } 10440 } 10441 10442 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() && 10443 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) { 10444 Qualifiers FromQs = CFromTy.getQualifiers(); 10445 Qualifiers ToQs = CToTy.getQualifiers(); 10446 10447 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) { 10448 if (isObjectArgument) 10449 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace_this) 10450 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second 10451 << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 10452 << FromQs.getAddressSpace() << ToQs.getAddressSpace(); 10453 else 10454 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace) 10455 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second 10456 << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 10457 << FromQs.getAddressSpace() << ToQs.getAddressSpace() 10458 << ToTy->isReferenceType() << I + 1; 10459 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10460 return; 10461 } 10462 10463 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) { 10464 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership) 10465 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10466 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10467 << FromQs.getObjCLifetime() << ToQs.getObjCLifetime() 10468 << (unsigned)isObjectArgument << I + 1; 10469 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10470 return; 10471 } 10472 10473 if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) { 10474 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc) 10475 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10476 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10477 << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr() 10478 << (unsigned)isObjectArgument << I + 1; 10479 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10480 return; 10481 } 10482 10483 if (FromQs.hasUnaligned() != ToQs.hasUnaligned()) { 10484 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_unaligned) 10485 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10486 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10487 << FromQs.hasUnaligned() << I + 1; 10488 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10489 return; 10490 } 10491 10492 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 10493 assert(CVR && "expected qualifiers mismatch"); 10494 10495 if (isObjectArgument) { 10496 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this) 10497 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10498 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10499 << (CVR - 1); 10500 } else { 10501 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr) 10502 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10503 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10504 << (CVR - 1) << I + 1; 10505 } 10506 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10507 return; 10508 } 10509 10510 if (Conv.Bad.Kind == BadConversionSequence::lvalue_ref_to_rvalue || 10511 Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue) { 10512 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_value_category) 10513 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10514 << (unsigned)isObjectArgument << I + 1 10515 << (Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue) 10516 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()); 10517 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10518 return; 10519 } 10520 10521 // Special diagnostic for failure to convert an initializer list, since 10522 // telling the user that it has type void is not useful. 10523 if (FromExpr && isa<InitListExpr>(FromExpr)) { 10524 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument) 10525 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10526 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10527 << ToTy << (unsigned)isObjectArgument << I + 1; 10528 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10529 return; 10530 } 10531 10532 // Diagnose references or pointers to incomplete types differently, 10533 // since it's far from impossible that the incompleteness triggered 10534 // the failure. 10535 QualType TempFromTy = FromTy.getNonReferenceType(); 10536 if (const PointerType *PTy = TempFromTy->getAs<PointerType>()) 10537 TempFromTy = PTy->getPointeeType(); 10538 if (TempFromTy->isIncompleteType()) { 10539 // Emit the generic diagnostic and, optionally, add the hints to it. 10540 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete) 10541 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10542 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10543 << ToTy << (unsigned)isObjectArgument << I + 1 10544 << (unsigned)(Cand->Fix.Kind); 10545 10546 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10547 return; 10548 } 10549 10550 // Diagnose base -> derived pointer conversions. 10551 unsigned BaseToDerivedConversion = 0; 10552 if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) { 10553 if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) { 10554 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 10555 FromPtrTy->getPointeeType()) && 10556 !FromPtrTy->getPointeeType()->isIncompleteType() && 10557 !ToPtrTy->getPointeeType()->isIncompleteType() && 10558 S.IsDerivedFrom(SourceLocation(), ToPtrTy->getPointeeType(), 10559 FromPtrTy->getPointeeType())) 10560 BaseToDerivedConversion = 1; 10561 } 10562 } else if (const ObjCObjectPointerType *FromPtrTy 10563 = FromTy->getAs<ObjCObjectPointerType>()) { 10564 if (const ObjCObjectPointerType *ToPtrTy 10565 = ToTy->getAs<ObjCObjectPointerType>()) 10566 if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl()) 10567 if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl()) 10568 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 10569 FromPtrTy->getPointeeType()) && 10570 FromIface->isSuperClassOf(ToIface)) 10571 BaseToDerivedConversion = 2; 10572 } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) { 10573 if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) && 10574 !FromTy->isIncompleteType() && 10575 !ToRefTy->getPointeeType()->isIncompleteType() && 10576 S.IsDerivedFrom(SourceLocation(), ToRefTy->getPointeeType(), FromTy)) { 10577 BaseToDerivedConversion = 3; 10578 } 10579 } 10580 10581 if (BaseToDerivedConversion) { 10582 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_base_to_derived_conv) 10583 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10584 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 10585 << (BaseToDerivedConversion - 1) << FromTy << ToTy << I + 1; 10586 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10587 return; 10588 } 10589 10590 if (isa<ObjCObjectPointerType>(CFromTy) && 10591 isa<PointerType>(CToTy)) { 10592 Qualifiers FromQs = CFromTy.getQualifiers(); 10593 Qualifiers ToQs = CToTy.getQualifiers(); 10594 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) { 10595 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv) 10596 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second 10597 << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 10598 << FromTy << ToTy << (unsigned)isObjectArgument << I + 1; 10599 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10600 return; 10601 } 10602 } 10603 10604 if (TakingCandidateAddress && 10605 !checkAddressOfCandidateIsAvailable(S, Cand->Function)) 10606 return; 10607 10608 // Emit the generic diagnostic and, optionally, add the hints to it. 10609 PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv); 10610 FDiag << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10611 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10612 << ToTy << (unsigned)isObjectArgument << I + 1 10613 << (unsigned)(Cand->Fix.Kind); 10614 10615 // If we can fix the conversion, suggest the FixIts. 10616 for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(), 10617 HE = Cand->Fix.Hints.end(); HI != HE; ++HI) 10618 FDiag << *HI; 10619 S.Diag(Fn->getLocation(), FDiag); 10620 10621 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10622 } 10623 10624 /// Additional arity mismatch diagnosis specific to a function overload 10625 /// candidates. This is not covered by the more general DiagnoseArityMismatch() 10626 /// over a candidate in any candidate set. 10627 static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand, 10628 unsigned NumArgs) { 10629 FunctionDecl *Fn = Cand->Function; 10630 unsigned MinParams = Fn->getMinRequiredArguments(); 10631 10632 // With invalid overloaded operators, it's possible that we think we 10633 // have an arity mismatch when in fact it looks like we have the 10634 // right number of arguments, because only overloaded operators have 10635 // the weird behavior of overloading member and non-member functions. 10636 // Just don't report anything. 10637 if (Fn->isInvalidDecl() && 10638 Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName) 10639 return true; 10640 10641 if (NumArgs < MinParams) { 10642 assert((Cand->FailureKind == ovl_fail_too_few_arguments) || 10643 (Cand->FailureKind == ovl_fail_bad_deduction && 10644 Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)); 10645 } else { 10646 assert((Cand->FailureKind == ovl_fail_too_many_arguments) || 10647 (Cand->FailureKind == ovl_fail_bad_deduction && 10648 Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)); 10649 } 10650 10651 return false; 10652 } 10653 10654 /// General arity mismatch diagnosis over a candidate in a candidate set. 10655 static void DiagnoseArityMismatch(Sema &S, NamedDecl *Found, Decl *D, 10656 unsigned NumFormalArgs) { 10657 assert(isa<FunctionDecl>(D) && 10658 "The templated declaration should at least be a function" 10659 " when diagnosing bad template argument deduction due to too many" 10660 " or too few arguments"); 10661 10662 FunctionDecl *Fn = cast<FunctionDecl>(D); 10663 10664 // TODO: treat calls to a missing default constructor as a special case 10665 const auto *FnTy = Fn->getType()->castAs<FunctionProtoType>(); 10666 unsigned MinParams = Fn->getMinRequiredArguments(); 10667 10668 // at least / at most / exactly 10669 unsigned mode, modeCount; 10670 if (NumFormalArgs < MinParams) { 10671 if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() || 10672 FnTy->isTemplateVariadic()) 10673 mode = 0; // "at least" 10674 else 10675 mode = 2; // "exactly" 10676 modeCount = MinParams; 10677 } else { 10678 if (MinParams != FnTy->getNumParams()) 10679 mode = 1; // "at most" 10680 else 10681 mode = 2; // "exactly" 10682 modeCount = FnTy->getNumParams(); 10683 } 10684 10685 std::string Description; 10686 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = 10687 ClassifyOverloadCandidate(S, Found, Fn, CRK_None, Description); 10688 10689 if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName()) 10690 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one) 10691 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second 10692 << Description << mode << Fn->getParamDecl(0) << NumFormalArgs; 10693 else 10694 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity) 10695 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second 10696 << Description << mode << modeCount << NumFormalArgs; 10697 10698 MaybeEmitInheritedConstructorNote(S, Found); 10699 } 10700 10701 /// Arity mismatch diagnosis specific to a function overload candidate. 10702 static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand, 10703 unsigned NumFormalArgs) { 10704 if (!CheckArityMismatch(S, Cand, NumFormalArgs)) 10705 DiagnoseArityMismatch(S, Cand->FoundDecl, Cand->Function, NumFormalArgs); 10706 } 10707 10708 static TemplateDecl *getDescribedTemplate(Decl *Templated) { 10709 if (TemplateDecl *TD = Templated->getDescribedTemplate()) 10710 return TD; 10711 llvm_unreachable("Unsupported: Getting the described template declaration" 10712 " for bad deduction diagnosis"); 10713 } 10714 10715 /// Diagnose a failed template-argument deduction. 10716 static void DiagnoseBadDeduction(Sema &S, NamedDecl *Found, Decl *Templated, 10717 DeductionFailureInfo &DeductionFailure, 10718 unsigned NumArgs, 10719 bool TakingCandidateAddress) { 10720 TemplateParameter Param = DeductionFailure.getTemplateParameter(); 10721 NamedDecl *ParamD; 10722 (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) || 10723 (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) || 10724 (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>()); 10725 switch (DeductionFailure.Result) { 10726 case Sema::TDK_Success: 10727 llvm_unreachable("TDK_success while diagnosing bad deduction"); 10728 10729 case Sema::TDK_Incomplete: { 10730 assert(ParamD && "no parameter found for incomplete deduction result"); 10731 S.Diag(Templated->getLocation(), 10732 diag::note_ovl_candidate_incomplete_deduction) 10733 << ParamD->getDeclName(); 10734 MaybeEmitInheritedConstructorNote(S, Found); 10735 return; 10736 } 10737 10738 case Sema::TDK_IncompletePack: { 10739 assert(ParamD && "no parameter found for incomplete deduction result"); 10740 S.Diag(Templated->getLocation(), 10741 diag::note_ovl_candidate_incomplete_deduction_pack) 10742 << ParamD->getDeclName() 10743 << (DeductionFailure.getFirstArg()->pack_size() + 1) 10744 << *DeductionFailure.getFirstArg(); 10745 MaybeEmitInheritedConstructorNote(S, Found); 10746 return; 10747 } 10748 10749 case Sema::TDK_Underqualified: { 10750 assert(ParamD && "no parameter found for bad qualifiers deduction result"); 10751 TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD); 10752 10753 QualType Param = DeductionFailure.getFirstArg()->getAsType(); 10754 10755 // Param will have been canonicalized, but it should just be a 10756 // qualified version of ParamD, so move the qualifiers to that. 10757 QualifierCollector Qs; 10758 Qs.strip(Param); 10759 QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl()); 10760 assert(S.Context.hasSameType(Param, NonCanonParam)); 10761 10762 // Arg has also been canonicalized, but there's nothing we can do 10763 // about that. It also doesn't matter as much, because it won't 10764 // have any template parameters in it (because deduction isn't 10765 // done on dependent types). 10766 QualType Arg = DeductionFailure.getSecondArg()->getAsType(); 10767 10768 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified) 10769 << ParamD->getDeclName() << Arg << NonCanonParam; 10770 MaybeEmitInheritedConstructorNote(S, Found); 10771 return; 10772 } 10773 10774 case Sema::TDK_Inconsistent: { 10775 assert(ParamD && "no parameter found for inconsistent deduction result"); 10776 int which = 0; 10777 if (isa<TemplateTypeParmDecl>(ParamD)) 10778 which = 0; 10779 else if (isa<NonTypeTemplateParmDecl>(ParamD)) { 10780 // Deduction might have failed because we deduced arguments of two 10781 // different types for a non-type template parameter. 10782 // FIXME: Use a different TDK value for this. 10783 QualType T1 = 10784 DeductionFailure.getFirstArg()->getNonTypeTemplateArgumentType(); 10785 QualType T2 = 10786 DeductionFailure.getSecondArg()->getNonTypeTemplateArgumentType(); 10787 if (!T1.isNull() && !T2.isNull() && !S.Context.hasSameType(T1, T2)) { 10788 S.Diag(Templated->getLocation(), 10789 diag::note_ovl_candidate_inconsistent_deduction_types) 10790 << ParamD->getDeclName() << *DeductionFailure.getFirstArg() << T1 10791 << *DeductionFailure.getSecondArg() << T2; 10792 MaybeEmitInheritedConstructorNote(S, Found); 10793 return; 10794 } 10795 10796 which = 1; 10797 } else { 10798 which = 2; 10799 } 10800 10801 // Tweak the diagnostic if the problem is that we deduced packs of 10802 // different arities. We'll print the actual packs anyway in case that 10803 // includes additional useful information. 10804 if (DeductionFailure.getFirstArg()->getKind() == TemplateArgument::Pack && 10805 DeductionFailure.getSecondArg()->getKind() == TemplateArgument::Pack && 10806 DeductionFailure.getFirstArg()->pack_size() != 10807 DeductionFailure.getSecondArg()->pack_size()) { 10808 which = 3; 10809 } 10810 10811 S.Diag(Templated->getLocation(), 10812 diag::note_ovl_candidate_inconsistent_deduction) 10813 << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg() 10814 << *DeductionFailure.getSecondArg(); 10815 MaybeEmitInheritedConstructorNote(S, Found); 10816 return; 10817 } 10818 10819 case Sema::TDK_InvalidExplicitArguments: 10820 assert(ParamD && "no parameter found for invalid explicit arguments"); 10821 if (ParamD->getDeclName()) 10822 S.Diag(Templated->getLocation(), 10823 diag::note_ovl_candidate_explicit_arg_mismatch_named) 10824 << ParamD->getDeclName(); 10825 else { 10826 int index = 0; 10827 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD)) 10828 index = TTP->getIndex(); 10829 else if (NonTypeTemplateParmDecl *NTTP 10830 = dyn_cast<NonTypeTemplateParmDecl>(ParamD)) 10831 index = NTTP->getIndex(); 10832 else 10833 index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex(); 10834 S.Diag(Templated->getLocation(), 10835 diag::note_ovl_candidate_explicit_arg_mismatch_unnamed) 10836 << (index + 1); 10837 } 10838 MaybeEmitInheritedConstructorNote(S, Found); 10839 return; 10840 10841 case Sema::TDK_ConstraintsNotSatisfied: { 10842 // Format the template argument list into the argument string. 10843 SmallString<128> TemplateArgString; 10844 TemplateArgumentList *Args = DeductionFailure.getTemplateArgumentList(); 10845 TemplateArgString = " "; 10846 TemplateArgString += S.getTemplateArgumentBindingsText( 10847 getDescribedTemplate(Templated)->getTemplateParameters(), *Args); 10848 if (TemplateArgString.size() == 1) 10849 TemplateArgString.clear(); 10850 S.Diag(Templated->getLocation(), 10851 diag::note_ovl_candidate_unsatisfied_constraints) 10852 << TemplateArgString; 10853 10854 S.DiagnoseUnsatisfiedConstraint( 10855 static_cast<CNSInfo*>(DeductionFailure.Data)->Satisfaction); 10856 return; 10857 } 10858 case Sema::TDK_TooManyArguments: 10859 case Sema::TDK_TooFewArguments: 10860 DiagnoseArityMismatch(S, Found, Templated, NumArgs); 10861 return; 10862 10863 case Sema::TDK_InstantiationDepth: 10864 S.Diag(Templated->getLocation(), 10865 diag::note_ovl_candidate_instantiation_depth); 10866 MaybeEmitInheritedConstructorNote(S, Found); 10867 return; 10868 10869 case Sema::TDK_SubstitutionFailure: { 10870 // Format the template argument list into the argument string. 10871 SmallString<128> TemplateArgString; 10872 if (TemplateArgumentList *Args = 10873 DeductionFailure.getTemplateArgumentList()) { 10874 TemplateArgString = " "; 10875 TemplateArgString += S.getTemplateArgumentBindingsText( 10876 getDescribedTemplate(Templated)->getTemplateParameters(), *Args); 10877 if (TemplateArgString.size() == 1) 10878 TemplateArgString.clear(); 10879 } 10880 10881 // If this candidate was disabled by enable_if, say so. 10882 PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic(); 10883 if (PDiag && PDiag->second.getDiagID() == 10884 diag::err_typename_nested_not_found_enable_if) { 10885 // FIXME: Use the source range of the condition, and the fully-qualified 10886 // name of the enable_if template. These are both present in PDiag. 10887 S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if) 10888 << "'enable_if'" << TemplateArgString; 10889 return; 10890 } 10891 10892 // We found a specific requirement that disabled the enable_if. 10893 if (PDiag && PDiag->second.getDiagID() == 10894 diag::err_typename_nested_not_found_requirement) { 10895 S.Diag(Templated->getLocation(), 10896 diag::note_ovl_candidate_disabled_by_requirement) 10897 << PDiag->second.getStringArg(0) << TemplateArgString; 10898 return; 10899 } 10900 10901 // Format the SFINAE diagnostic into the argument string. 10902 // FIXME: Add a general mechanism to include a PartialDiagnostic *'s 10903 // formatted message in another diagnostic. 10904 SmallString<128> SFINAEArgString; 10905 SourceRange R; 10906 if (PDiag) { 10907 SFINAEArgString = ": "; 10908 R = SourceRange(PDiag->first, PDiag->first); 10909 PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString); 10910 } 10911 10912 S.Diag(Templated->getLocation(), 10913 diag::note_ovl_candidate_substitution_failure) 10914 << TemplateArgString << SFINAEArgString << R; 10915 MaybeEmitInheritedConstructorNote(S, Found); 10916 return; 10917 } 10918 10919 case Sema::TDK_DeducedMismatch: 10920 case Sema::TDK_DeducedMismatchNested: { 10921 // Format the template argument list into the argument string. 10922 SmallString<128> TemplateArgString; 10923 if (TemplateArgumentList *Args = 10924 DeductionFailure.getTemplateArgumentList()) { 10925 TemplateArgString = " "; 10926 TemplateArgString += S.getTemplateArgumentBindingsText( 10927 getDescribedTemplate(Templated)->getTemplateParameters(), *Args); 10928 if (TemplateArgString.size() == 1) 10929 TemplateArgString.clear(); 10930 } 10931 10932 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_deduced_mismatch) 10933 << (*DeductionFailure.getCallArgIndex() + 1) 10934 << *DeductionFailure.getFirstArg() << *DeductionFailure.getSecondArg() 10935 << TemplateArgString 10936 << (DeductionFailure.Result == Sema::TDK_DeducedMismatchNested); 10937 break; 10938 } 10939 10940 case Sema::TDK_NonDeducedMismatch: { 10941 // FIXME: Provide a source location to indicate what we couldn't match. 10942 TemplateArgument FirstTA = *DeductionFailure.getFirstArg(); 10943 TemplateArgument SecondTA = *DeductionFailure.getSecondArg(); 10944 if (FirstTA.getKind() == TemplateArgument::Template && 10945 SecondTA.getKind() == TemplateArgument::Template) { 10946 TemplateName FirstTN = FirstTA.getAsTemplate(); 10947 TemplateName SecondTN = SecondTA.getAsTemplate(); 10948 if (FirstTN.getKind() == TemplateName::Template && 10949 SecondTN.getKind() == TemplateName::Template) { 10950 if (FirstTN.getAsTemplateDecl()->getName() == 10951 SecondTN.getAsTemplateDecl()->getName()) { 10952 // FIXME: This fixes a bad diagnostic where both templates are named 10953 // the same. This particular case is a bit difficult since: 10954 // 1) It is passed as a string to the diagnostic printer. 10955 // 2) The diagnostic printer only attempts to find a better 10956 // name for types, not decls. 10957 // Ideally, this should folded into the diagnostic printer. 10958 S.Diag(Templated->getLocation(), 10959 diag::note_ovl_candidate_non_deduced_mismatch_qualified) 10960 << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl(); 10961 return; 10962 } 10963 } 10964 } 10965 10966 if (TakingCandidateAddress && isa<FunctionDecl>(Templated) && 10967 !checkAddressOfCandidateIsAvailable(S, cast<FunctionDecl>(Templated))) 10968 return; 10969 10970 // FIXME: For generic lambda parameters, check if the function is a lambda 10971 // call operator, and if so, emit a prettier and more informative 10972 // diagnostic that mentions 'auto' and lambda in addition to 10973 // (or instead of?) the canonical template type parameters. 10974 S.Diag(Templated->getLocation(), 10975 diag::note_ovl_candidate_non_deduced_mismatch) 10976 << FirstTA << SecondTA; 10977 return; 10978 } 10979 // TODO: diagnose these individually, then kill off 10980 // note_ovl_candidate_bad_deduction, which is uselessly vague. 10981 case Sema::TDK_MiscellaneousDeductionFailure: 10982 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction); 10983 MaybeEmitInheritedConstructorNote(S, Found); 10984 return; 10985 case Sema::TDK_CUDATargetMismatch: 10986 S.Diag(Templated->getLocation(), 10987 diag::note_cuda_ovl_candidate_target_mismatch); 10988 return; 10989 } 10990 } 10991 10992 /// Diagnose a failed template-argument deduction, for function calls. 10993 static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, 10994 unsigned NumArgs, 10995 bool TakingCandidateAddress) { 10996 unsigned TDK = Cand->DeductionFailure.Result; 10997 if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) { 10998 if (CheckArityMismatch(S, Cand, NumArgs)) 10999 return; 11000 } 11001 DiagnoseBadDeduction(S, Cand->FoundDecl, Cand->Function, // pattern 11002 Cand->DeductionFailure, NumArgs, TakingCandidateAddress); 11003 } 11004 11005 /// CUDA: diagnose an invalid call across targets. 11006 static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) { 11007 FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext); 11008 FunctionDecl *Callee = Cand->Function; 11009 11010 Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller), 11011 CalleeTarget = S.IdentifyCUDATarget(Callee); 11012 11013 std::string FnDesc; 11014 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = 11015 ClassifyOverloadCandidate(S, Cand->FoundDecl, Callee, 11016 Cand->getRewriteKind(), FnDesc); 11017 11018 S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target) 11019 << (unsigned)FnKindPair.first << (unsigned)ocs_non_template 11020 << FnDesc /* Ignored */ 11021 << CalleeTarget << CallerTarget; 11022 11023 // This could be an implicit constructor for which we could not infer the 11024 // target due to a collsion. Diagnose that case. 11025 CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee); 11026 if (Meth != nullptr && Meth->isImplicit()) { 11027 CXXRecordDecl *ParentClass = Meth->getParent(); 11028 Sema::CXXSpecialMember CSM; 11029 11030 switch (FnKindPair.first) { 11031 default: 11032 return; 11033 case oc_implicit_default_constructor: 11034 CSM = Sema::CXXDefaultConstructor; 11035 break; 11036 case oc_implicit_copy_constructor: 11037 CSM = Sema::CXXCopyConstructor; 11038 break; 11039 case oc_implicit_move_constructor: 11040 CSM = Sema::CXXMoveConstructor; 11041 break; 11042 case oc_implicit_copy_assignment: 11043 CSM = Sema::CXXCopyAssignment; 11044 break; 11045 case oc_implicit_move_assignment: 11046 CSM = Sema::CXXMoveAssignment; 11047 break; 11048 }; 11049 11050 bool ConstRHS = false; 11051 if (Meth->getNumParams()) { 11052 if (const ReferenceType *RT = 11053 Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) { 11054 ConstRHS = RT->getPointeeType().isConstQualified(); 11055 } 11056 } 11057 11058 S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth, 11059 /* ConstRHS */ ConstRHS, 11060 /* Diagnose */ true); 11061 } 11062 } 11063 11064 static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) { 11065 FunctionDecl *Callee = Cand->Function; 11066 EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data); 11067 11068 S.Diag(Callee->getLocation(), 11069 diag::note_ovl_candidate_disabled_by_function_cond_attr) 11070 << Attr->getCond()->getSourceRange() << Attr->getMessage(); 11071 } 11072 11073 static void DiagnoseFailedExplicitSpec(Sema &S, OverloadCandidate *Cand) { 11074 ExplicitSpecifier ES = ExplicitSpecifier::getFromDecl(Cand->Function); 11075 assert(ES.isExplicit() && "not an explicit candidate"); 11076 11077 unsigned Kind; 11078 switch (Cand->Function->getDeclKind()) { 11079 case Decl::Kind::CXXConstructor: 11080 Kind = 0; 11081 break; 11082 case Decl::Kind::CXXConversion: 11083 Kind = 1; 11084 break; 11085 case Decl::Kind::CXXDeductionGuide: 11086 Kind = Cand->Function->isImplicit() ? 0 : 2; 11087 break; 11088 default: 11089 llvm_unreachable("invalid Decl"); 11090 } 11091 11092 // Note the location of the first (in-class) declaration; a redeclaration 11093 // (particularly an out-of-class definition) will typically lack the 11094 // 'explicit' specifier. 11095 // FIXME: This is probably a good thing to do for all 'candidate' notes. 11096 FunctionDecl *First = Cand->Function->getFirstDecl(); 11097 if (FunctionDecl *Pattern = First->getTemplateInstantiationPattern()) 11098 First = Pattern->getFirstDecl(); 11099 11100 S.Diag(First->getLocation(), 11101 diag::note_ovl_candidate_explicit) 11102 << Kind << (ES.getExpr() ? 1 : 0) 11103 << (ES.getExpr() ? ES.getExpr()->getSourceRange() : SourceRange()); 11104 } 11105 11106 /// Generates a 'note' diagnostic for an overload candidate. We've 11107 /// already generated a primary error at the call site. 11108 /// 11109 /// It really does need to be a single diagnostic with its caret 11110 /// pointed at the candidate declaration. Yes, this creates some 11111 /// major challenges of technical writing. Yes, this makes pointing 11112 /// out problems with specific arguments quite awkward. It's still 11113 /// better than generating twenty screens of text for every failed 11114 /// overload. 11115 /// 11116 /// It would be great to be able to express per-candidate problems 11117 /// more richly for those diagnostic clients that cared, but we'd 11118 /// still have to be just as careful with the default diagnostics. 11119 /// \param CtorDestAS Addr space of object being constructed (for ctor 11120 /// candidates only). 11121 static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand, 11122 unsigned NumArgs, 11123 bool TakingCandidateAddress, 11124 LangAS CtorDestAS = LangAS::Default) { 11125 FunctionDecl *Fn = Cand->Function; 11126 if (shouldSkipNotingLambdaConversionDecl(Fn)) 11127 return; 11128 11129 // Note deleted candidates, but only if they're viable. 11130 if (Cand->Viable) { 11131 if (Fn->isDeleted()) { 11132 std::string FnDesc; 11133 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = 11134 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, 11135 Cand->getRewriteKind(), FnDesc); 11136 11137 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted) 11138 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 11139 << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0); 11140 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 11141 return; 11142 } 11143 11144 // We don't really have anything else to say about viable candidates. 11145 S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind()); 11146 return; 11147 } 11148 11149 switch (Cand->FailureKind) { 11150 case ovl_fail_too_many_arguments: 11151 case ovl_fail_too_few_arguments: 11152 return DiagnoseArityMismatch(S, Cand, NumArgs); 11153 11154 case ovl_fail_bad_deduction: 11155 return DiagnoseBadDeduction(S, Cand, NumArgs, 11156 TakingCandidateAddress); 11157 11158 case ovl_fail_illegal_constructor: { 11159 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor) 11160 << (Fn->getPrimaryTemplate() ? 1 : 0); 11161 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 11162 return; 11163 } 11164 11165 case ovl_fail_object_addrspace_mismatch: { 11166 Qualifiers QualsForPrinting; 11167 QualsForPrinting.setAddressSpace(CtorDestAS); 11168 S.Diag(Fn->getLocation(), 11169 diag::note_ovl_candidate_illegal_constructor_adrspace_mismatch) 11170 << QualsForPrinting; 11171 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 11172 return; 11173 } 11174 11175 case ovl_fail_trivial_conversion: 11176 case ovl_fail_bad_final_conversion: 11177 case ovl_fail_final_conversion_not_exact: 11178 return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind()); 11179 11180 case ovl_fail_bad_conversion: { 11181 unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0); 11182 for (unsigned N = Cand->Conversions.size(); I != N; ++I) 11183 if (Cand->Conversions[I].isBad()) 11184 return DiagnoseBadConversion(S, Cand, I, TakingCandidateAddress); 11185 11186 // FIXME: this currently happens when we're called from SemaInit 11187 // when user-conversion overload fails. Figure out how to handle 11188 // those conditions and diagnose them well. 11189 return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind()); 11190 } 11191 11192 case ovl_fail_bad_target: 11193 return DiagnoseBadTarget(S, Cand); 11194 11195 case ovl_fail_enable_if: 11196 return DiagnoseFailedEnableIfAttr(S, Cand); 11197 11198 case ovl_fail_explicit: 11199 return DiagnoseFailedExplicitSpec(S, Cand); 11200 11201 case ovl_fail_inhctor_slice: 11202 // It's generally not interesting to note copy/move constructors here. 11203 if (cast<CXXConstructorDecl>(Fn)->isCopyOrMoveConstructor()) 11204 return; 11205 S.Diag(Fn->getLocation(), 11206 diag::note_ovl_candidate_inherited_constructor_slice) 11207 << (Fn->getPrimaryTemplate() ? 1 : 0) 11208 << Fn->getParamDecl(0)->getType()->isRValueReferenceType(); 11209 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 11210 return; 11211 11212 case ovl_fail_addr_not_available: { 11213 bool Available = checkAddressOfCandidateIsAvailable(S, Cand->Function); 11214 (void)Available; 11215 assert(!Available); 11216 break; 11217 } 11218 case ovl_non_default_multiversion_function: 11219 // Do nothing, these should simply be ignored. 11220 break; 11221 11222 case ovl_fail_constraints_not_satisfied: { 11223 std::string FnDesc; 11224 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = 11225 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, 11226 Cand->getRewriteKind(), FnDesc); 11227 11228 S.Diag(Fn->getLocation(), 11229 diag::note_ovl_candidate_constraints_not_satisfied) 11230 << (unsigned)FnKindPair.first << (unsigned)ocs_non_template 11231 << FnDesc /* Ignored */; 11232 ConstraintSatisfaction Satisfaction; 11233 if (S.CheckFunctionConstraints(Fn, Satisfaction)) 11234 break; 11235 S.DiagnoseUnsatisfiedConstraint(Satisfaction); 11236 } 11237 } 11238 } 11239 11240 static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) { 11241 if (shouldSkipNotingLambdaConversionDecl(Cand->Surrogate)) 11242 return; 11243 11244 // Desugar the type of the surrogate down to a function type, 11245 // retaining as many typedefs as possible while still showing 11246 // the function type (and, therefore, its parameter types). 11247 QualType FnType = Cand->Surrogate->getConversionType(); 11248 bool isLValueReference = false; 11249 bool isRValueReference = false; 11250 bool isPointer = false; 11251 if (const LValueReferenceType *FnTypeRef = 11252 FnType->getAs<LValueReferenceType>()) { 11253 FnType = FnTypeRef->getPointeeType(); 11254 isLValueReference = true; 11255 } else if (const RValueReferenceType *FnTypeRef = 11256 FnType->getAs<RValueReferenceType>()) { 11257 FnType = FnTypeRef->getPointeeType(); 11258 isRValueReference = true; 11259 } 11260 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { 11261 FnType = FnTypePtr->getPointeeType(); 11262 isPointer = true; 11263 } 11264 // Desugar down to a function type. 11265 FnType = QualType(FnType->getAs<FunctionType>(), 0); 11266 // Reconstruct the pointer/reference as appropriate. 11267 if (isPointer) FnType = S.Context.getPointerType(FnType); 11268 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType); 11269 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType); 11270 11271 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand) 11272 << FnType; 11273 } 11274 11275 static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc, 11276 SourceLocation OpLoc, 11277 OverloadCandidate *Cand) { 11278 assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary"); 11279 std::string TypeStr("operator"); 11280 TypeStr += Opc; 11281 TypeStr += "("; 11282 TypeStr += Cand->BuiltinParamTypes[0].getAsString(); 11283 if (Cand->Conversions.size() == 1) { 11284 TypeStr += ")"; 11285 S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr; 11286 } else { 11287 TypeStr += ", "; 11288 TypeStr += Cand->BuiltinParamTypes[1].getAsString(); 11289 TypeStr += ")"; 11290 S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr; 11291 } 11292 } 11293 11294 static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc, 11295 OverloadCandidate *Cand) { 11296 for (const ImplicitConversionSequence &ICS : Cand->Conversions) { 11297 if (ICS.isBad()) break; // all meaningless after first invalid 11298 if (!ICS.isAmbiguous()) continue; 11299 11300 ICS.DiagnoseAmbiguousConversion( 11301 S, OpLoc, S.PDiag(diag::note_ambiguous_type_conversion)); 11302 } 11303 } 11304 11305 static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) { 11306 if (Cand->Function) 11307 return Cand->Function->getLocation(); 11308 if (Cand->IsSurrogate) 11309 return Cand->Surrogate->getLocation(); 11310 return SourceLocation(); 11311 } 11312 11313 static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) { 11314 switch ((Sema::TemplateDeductionResult)DFI.Result) { 11315 case Sema::TDK_Success: 11316 case Sema::TDK_NonDependentConversionFailure: 11317 llvm_unreachable("non-deduction failure while diagnosing bad deduction"); 11318 11319 case Sema::TDK_Invalid: 11320 case Sema::TDK_Incomplete: 11321 case Sema::TDK_IncompletePack: 11322 return 1; 11323 11324 case Sema::TDK_Underqualified: 11325 case Sema::TDK_Inconsistent: 11326 return 2; 11327 11328 case Sema::TDK_SubstitutionFailure: 11329 case Sema::TDK_DeducedMismatch: 11330 case Sema::TDK_ConstraintsNotSatisfied: 11331 case Sema::TDK_DeducedMismatchNested: 11332 case Sema::TDK_NonDeducedMismatch: 11333 case Sema::TDK_MiscellaneousDeductionFailure: 11334 case Sema::TDK_CUDATargetMismatch: 11335 return 3; 11336 11337 case Sema::TDK_InstantiationDepth: 11338 return 4; 11339 11340 case Sema::TDK_InvalidExplicitArguments: 11341 return 5; 11342 11343 case Sema::TDK_TooManyArguments: 11344 case Sema::TDK_TooFewArguments: 11345 return 6; 11346 } 11347 llvm_unreachable("Unhandled deduction result"); 11348 } 11349 11350 namespace { 11351 struct CompareOverloadCandidatesForDisplay { 11352 Sema &S; 11353 SourceLocation Loc; 11354 size_t NumArgs; 11355 OverloadCandidateSet::CandidateSetKind CSK; 11356 11357 CompareOverloadCandidatesForDisplay( 11358 Sema &S, SourceLocation Loc, size_t NArgs, 11359 OverloadCandidateSet::CandidateSetKind CSK) 11360 : S(S), NumArgs(NArgs), CSK(CSK) {} 11361 11362 OverloadFailureKind EffectiveFailureKind(const OverloadCandidate *C) const { 11363 // If there are too many or too few arguments, that's the high-order bit we 11364 // want to sort by, even if the immediate failure kind was something else. 11365 if (C->FailureKind == ovl_fail_too_many_arguments || 11366 C->FailureKind == ovl_fail_too_few_arguments) 11367 return static_cast<OverloadFailureKind>(C->FailureKind); 11368 11369 if (C->Function) { 11370 if (NumArgs > C->Function->getNumParams() && !C->Function->isVariadic()) 11371 return ovl_fail_too_many_arguments; 11372 if (NumArgs < C->Function->getMinRequiredArguments()) 11373 return ovl_fail_too_few_arguments; 11374 } 11375 11376 return static_cast<OverloadFailureKind>(C->FailureKind); 11377 } 11378 11379 bool operator()(const OverloadCandidate *L, 11380 const OverloadCandidate *R) { 11381 // Fast-path this check. 11382 if (L == R) return false; 11383 11384 // Order first by viability. 11385 if (L->Viable) { 11386 if (!R->Viable) return true; 11387 11388 // TODO: introduce a tri-valued comparison for overload 11389 // candidates. Would be more worthwhile if we had a sort 11390 // that could exploit it. 11391 if (isBetterOverloadCandidate(S, *L, *R, SourceLocation(), CSK)) 11392 return true; 11393 if (isBetterOverloadCandidate(S, *R, *L, SourceLocation(), CSK)) 11394 return false; 11395 } else if (R->Viable) 11396 return false; 11397 11398 assert(L->Viable == R->Viable); 11399 11400 // Criteria by which we can sort non-viable candidates: 11401 if (!L->Viable) { 11402 OverloadFailureKind LFailureKind = EffectiveFailureKind(L); 11403 OverloadFailureKind RFailureKind = EffectiveFailureKind(R); 11404 11405 // 1. Arity mismatches come after other candidates. 11406 if (LFailureKind == ovl_fail_too_many_arguments || 11407 LFailureKind == ovl_fail_too_few_arguments) { 11408 if (RFailureKind == ovl_fail_too_many_arguments || 11409 RFailureKind == ovl_fail_too_few_arguments) { 11410 int LDist = std::abs((int)L->getNumParams() - (int)NumArgs); 11411 int RDist = std::abs((int)R->getNumParams() - (int)NumArgs); 11412 if (LDist == RDist) { 11413 if (LFailureKind == RFailureKind) 11414 // Sort non-surrogates before surrogates. 11415 return !L->IsSurrogate && R->IsSurrogate; 11416 // Sort candidates requiring fewer parameters than there were 11417 // arguments given after candidates requiring more parameters 11418 // than there were arguments given. 11419 return LFailureKind == ovl_fail_too_many_arguments; 11420 } 11421 return LDist < RDist; 11422 } 11423 return false; 11424 } 11425 if (RFailureKind == ovl_fail_too_many_arguments || 11426 RFailureKind == ovl_fail_too_few_arguments) 11427 return true; 11428 11429 // 2. Bad conversions come first and are ordered by the number 11430 // of bad conversions and quality of good conversions. 11431 if (LFailureKind == ovl_fail_bad_conversion) { 11432 if (RFailureKind != ovl_fail_bad_conversion) 11433 return true; 11434 11435 // The conversion that can be fixed with a smaller number of changes, 11436 // comes first. 11437 unsigned numLFixes = L->Fix.NumConversionsFixed; 11438 unsigned numRFixes = R->Fix.NumConversionsFixed; 11439 numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes; 11440 numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes; 11441 if (numLFixes != numRFixes) { 11442 return numLFixes < numRFixes; 11443 } 11444 11445 // If there's any ordering between the defined conversions... 11446 // FIXME: this might not be transitive. 11447 assert(L->Conversions.size() == R->Conversions.size()); 11448 11449 int leftBetter = 0; 11450 unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument); 11451 for (unsigned E = L->Conversions.size(); I != E; ++I) { 11452 switch (CompareImplicitConversionSequences(S, Loc, 11453 L->Conversions[I], 11454 R->Conversions[I])) { 11455 case ImplicitConversionSequence::Better: 11456 leftBetter++; 11457 break; 11458 11459 case ImplicitConversionSequence::Worse: 11460 leftBetter--; 11461 break; 11462 11463 case ImplicitConversionSequence::Indistinguishable: 11464 break; 11465 } 11466 } 11467 if (leftBetter > 0) return true; 11468 if (leftBetter < 0) return false; 11469 11470 } else if (RFailureKind == ovl_fail_bad_conversion) 11471 return false; 11472 11473 if (LFailureKind == ovl_fail_bad_deduction) { 11474 if (RFailureKind != ovl_fail_bad_deduction) 11475 return true; 11476 11477 if (L->DeductionFailure.Result != R->DeductionFailure.Result) 11478 return RankDeductionFailure(L->DeductionFailure) 11479 < RankDeductionFailure(R->DeductionFailure); 11480 } else if (RFailureKind == ovl_fail_bad_deduction) 11481 return false; 11482 11483 // TODO: others? 11484 } 11485 11486 // Sort everything else by location. 11487 SourceLocation LLoc = GetLocationForCandidate(L); 11488 SourceLocation RLoc = GetLocationForCandidate(R); 11489 11490 // Put candidates without locations (e.g. builtins) at the end. 11491 if (LLoc.isInvalid()) return false; 11492 if (RLoc.isInvalid()) return true; 11493 11494 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); 11495 } 11496 }; 11497 } 11498 11499 /// CompleteNonViableCandidate - Normally, overload resolution only 11500 /// computes up to the first bad conversion. Produces the FixIt set if 11501 /// possible. 11502 static void 11503 CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand, 11504 ArrayRef<Expr *> Args, 11505 OverloadCandidateSet::CandidateSetKind CSK) { 11506 assert(!Cand->Viable); 11507 11508 // Don't do anything on failures other than bad conversion. 11509 if (Cand->FailureKind != ovl_fail_bad_conversion) 11510 return; 11511 11512 // We only want the FixIts if all the arguments can be corrected. 11513 bool Unfixable = false; 11514 // Use a implicit copy initialization to check conversion fixes. 11515 Cand->Fix.setConversionChecker(TryCopyInitialization); 11516 11517 // Attempt to fix the bad conversion. 11518 unsigned ConvCount = Cand->Conversions.size(); 11519 for (unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); /**/; 11520 ++ConvIdx) { 11521 assert(ConvIdx != ConvCount && "no bad conversion in candidate"); 11522 if (Cand->Conversions[ConvIdx].isInitialized() && 11523 Cand->Conversions[ConvIdx].isBad()) { 11524 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S); 11525 break; 11526 } 11527 } 11528 11529 // FIXME: this should probably be preserved from the overload 11530 // operation somehow. 11531 bool SuppressUserConversions = false; 11532 11533 unsigned ConvIdx = 0; 11534 unsigned ArgIdx = 0; 11535 ArrayRef<QualType> ParamTypes; 11536 bool Reversed = Cand->isReversed(); 11537 11538 if (Cand->IsSurrogate) { 11539 QualType ConvType 11540 = Cand->Surrogate->getConversionType().getNonReferenceType(); 11541 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 11542 ConvType = ConvPtrType->getPointeeType(); 11543 ParamTypes = ConvType->castAs<FunctionProtoType>()->getParamTypes(); 11544 // Conversion 0 is 'this', which doesn't have a corresponding parameter. 11545 ConvIdx = 1; 11546 } else if (Cand->Function) { 11547 ParamTypes = 11548 Cand->Function->getType()->castAs<FunctionProtoType>()->getParamTypes(); 11549 if (isa<CXXMethodDecl>(Cand->Function) && 11550 !isa<CXXConstructorDecl>(Cand->Function) && !Reversed) { 11551 // Conversion 0 is 'this', which doesn't have a corresponding parameter. 11552 ConvIdx = 1; 11553 if (CSK == OverloadCandidateSet::CSK_Operator && 11554 Cand->Function->getDeclName().getCXXOverloadedOperator() != OO_Call) 11555 // Argument 0 is 'this', which doesn't have a corresponding parameter. 11556 ArgIdx = 1; 11557 } 11558 } else { 11559 // Builtin operator. 11560 assert(ConvCount <= 3); 11561 ParamTypes = Cand->BuiltinParamTypes; 11562 } 11563 11564 // Fill in the rest of the conversions. 11565 for (unsigned ParamIdx = Reversed ? ParamTypes.size() - 1 : 0; 11566 ConvIdx != ConvCount; 11567 ++ConvIdx, ++ArgIdx, ParamIdx += (Reversed ? -1 : 1)) { 11568 assert(ArgIdx < Args.size() && "no argument for this arg conversion"); 11569 if (Cand->Conversions[ConvIdx].isInitialized()) { 11570 // We've already checked this conversion. 11571 } else if (ParamIdx < ParamTypes.size()) { 11572 if (ParamTypes[ParamIdx]->isDependentType()) 11573 Cand->Conversions[ConvIdx].setAsIdentityConversion( 11574 Args[ArgIdx]->getType()); 11575 else { 11576 Cand->Conversions[ConvIdx] = 11577 TryCopyInitialization(S, Args[ArgIdx], ParamTypes[ParamIdx], 11578 SuppressUserConversions, 11579 /*InOverloadResolution=*/true, 11580 /*AllowObjCWritebackConversion=*/ 11581 S.getLangOpts().ObjCAutoRefCount); 11582 // Store the FixIt in the candidate if it exists. 11583 if (!Unfixable && Cand->Conversions[ConvIdx].isBad()) 11584 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S); 11585 } 11586 } else 11587 Cand->Conversions[ConvIdx].setEllipsis(); 11588 } 11589 } 11590 11591 SmallVector<OverloadCandidate *, 32> OverloadCandidateSet::CompleteCandidates( 11592 Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args, 11593 SourceLocation OpLoc, 11594 llvm::function_ref<bool(OverloadCandidate &)> Filter) { 11595 // Sort the candidates by viability and position. Sorting directly would 11596 // be prohibitive, so we make a set of pointers and sort those. 11597 SmallVector<OverloadCandidate*, 32> Cands; 11598 if (OCD == OCD_AllCandidates) Cands.reserve(size()); 11599 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) { 11600 if (!Filter(*Cand)) 11601 continue; 11602 switch (OCD) { 11603 case OCD_AllCandidates: 11604 if (!Cand->Viable) { 11605 if (!Cand->Function && !Cand->IsSurrogate) { 11606 // This a non-viable builtin candidate. We do not, in general, 11607 // want to list every possible builtin candidate. 11608 continue; 11609 } 11610 CompleteNonViableCandidate(S, Cand, Args, Kind); 11611 } 11612 break; 11613 11614 case OCD_ViableCandidates: 11615 if (!Cand->Viable) 11616 continue; 11617 break; 11618 11619 case OCD_AmbiguousCandidates: 11620 if (!Cand->Best) 11621 continue; 11622 break; 11623 } 11624 11625 Cands.push_back(Cand); 11626 } 11627 11628 llvm::stable_sort( 11629 Cands, CompareOverloadCandidatesForDisplay(S, OpLoc, Args.size(), Kind)); 11630 11631 return Cands; 11632 } 11633 11634 bool OverloadCandidateSet::shouldDeferDiags(Sema &S, ArrayRef<Expr *> Args, 11635 SourceLocation OpLoc) { 11636 bool DeferHint = false; 11637 if (S.getLangOpts().CUDA && S.getLangOpts().GPUDeferDiag) { 11638 // Defer diagnostic for CUDA/HIP if there are wrong-sided candidates or 11639 // host device candidates. 11640 auto WrongSidedCands = 11641 CompleteCandidates(S, OCD_AllCandidates, Args, OpLoc, [](auto &Cand) { 11642 return (Cand.Viable == false && 11643 Cand.FailureKind == ovl_fail_bad_target) || 11644 (Cand.Function && 11645 Cand.Function->template hasAttr<CUDAHostAttr>() && 11646 Cand.Function->template hasAttr<CUDADeviceAttr>()); 11647 }); 11648 DeferHint = !WrongSidedCands.empty(); 11649 } 11650 return DeferHint; 11651 } 11652 11653 /// When overload resolution fails, prints diagnostic messages containing the 11654 /// candidates in the candidate set. 11655 void OverloadCandidateSet::NoteCandidates( 11656 PartialDiagnosticAt PD, Sema &S, OverloadCandidateDisplayKind OCD, 11657 ArrayRef<Expr *> Args, StringRef Opc, SourceLocation OpLoc, 11658 llvm::function_ref<bool(OverloadCandidate &)> Filter) { 11659 11660 auto Cands = CompleteCandidates(S, OCD, Args, OpLoc, Filter); 11661 11662 S.Diag(PD.first, PD.second, shouldDeferDiags(S, Args, OpLoc)); 11663 11664 NoteCandidates(S, Args, Cands, Opc, OpLoc); 11665 11666 if (OCD == OCD_AmbiguousCandidates) 11667 MaybeDiagnoseAmbiguousConstraints(S, {begin(), end()}); 11668 } 11669 11670 void OverloadCandidateSet::NoteCandidates(Sema &S, ArrayRef<Expr *> Args, 11671 ArrayRef<OverloadCandidate *> Cands, 11672 StringRef Opc, SourceLocation OpLoc) { 11673 bool ReportedAmbiguousConversions = false; 11674 11675 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads(); 11676 unsigned CandsShown = 0; 11677 auto I = Cands.begin(), E = Cands.end(); 11678 for (; I != E; ++I) { 11679 OverloadCandidate *Cand = *I; 11680 11681 if (CandsShown >= S.Diags.getNumOverloadCandidatesToShow() && 11682 ShowOverloads == Ovl_Best) { 11683 break; 11684 } 11685 ++CandsShown; 11686 11687 if (Cand->Function) 11688 NoteFunctionCandidate(S, Cand, Args.size(), 11689 /*TakingCandidateAddress=*/false, DestAS); 11690 else if (Cand->IsSurrogate) 11691 NoteSurrogateCandidate(S, Cand); 11692 else { 11693 assert(Cand->Viable && 11694 "Non-viable built-in candidates are not added to Cands."); 11695 // Generally we only see ambiguities including viable builtin 11696 // operators if overload resolution got screwed up by an 11697 // ambiguous user-defined conversion. 11698 // 11699 // FIXME: It's quite possible for different conversions to see 11700 // different ambiguities, though. 11701 if (!ReportedAmbiguousConversions) { 11702 NoteAmbiguousUserConversions(S, OpLoc, Cand); 11703 ReportedAmbiguousConversions = true; 11704 } 11705 11706 // If this is a viable builtin, print it. 11707 NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand); 11708 } 11709 } 11710 11711 // Inform S.Diags that we've shown an overload set with N elements. This may 11712 // inform the future value of S.Diags.getNumOverloadCandidatesToShow(). 11713 S.Diags.overloadCandidatesShown(CandsShown); 11714 11715 if (I != E) 11716 S.Diag(OpLoc, diag::note_ovl_too_many_candidates, 11717 shouldDeferDiags(S, Args, OpLoc)) 11718 << int(E - I); 11719 } 11720 11721 static SourceLocation 11722 GetLocationForCandidate(const TemplateSpecCandidate *Cand) { 11723 return Cand->Specialization ? Cand->Specialization->getLocation() 11724 : SourceLocation(); 11725 } 11726 11727 namespace { 11728 struct CompareTemplateSpecCandidatesForDisplay { 11729 Sema &S; 11730 CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {} 11731 11732 bool operator()(const TemplateSpecCandidate *L, 11733 const TemplateSpecCandidate *R) { 11734 // Fast-path this check. 11735 if (L == R) 11736 return false; 11737 11738 // Assuming that both candidates are not matches... 11739 11740 // Sort by the ranking of deduction failures. 11741 if (L->DeductionFailure.Result != R->DeductionFailure.Result) 11742 return RankDeductionFailure(L->DeductionFailure) < 11743 RankDeductionFailure(R->DeductionFailure); 11744 11745 // Sort everything else by location. 11746 SourceLocation LLoc = GetLocationForCandidate(L); 11747 SourceLocation RLoc = GetLocationForCandidate(R); 11748 11749 // Put candidates without locations (e.g. builtins) at the end. 11750 if (LLoc.isInvalid()) 11751 return false; 11752 if (RLoc.isInvalid()) 11753 return true; 11754 11755 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); 11756 } 11757 }; 11758 } 11759 11760 /// Diagnose a template argument deduction failure. 11761 /// We are treating these failures as overload failures due to bad 11762 /// deductions. 11763 void TemplateSpecCandidate::NoteDeductionFailure(Sema &S, 11764 bool ForTakingAddress) { 11765 DiagnoseBadDeduction(S, FoundDecl, Specialization, // pattern 11766 DeductionFailure, /*NumArgs=*/0, ForTakingAddress); 11767 } 11768 11769 void TemplateSpecCandidateSet::destroyCandidates() { 11770 for (iterator i = begin(), e = end(); i != e; ++i) { 11771 i->DeductionFailure.Destroy(); 11772 } 11773 } 11774 11775 void TemplateSpecCandidateSet::clear() { 11776 destroyCandidates(); 11777 Candidates.clear(); 11778 } 11779 11780 /// NoteCandidates - When no template specialization match is found, prints 11781 /// diagnostic messages containing the non-matching specializations that form 11782 /// the candidate set. 11783 /// This is analoguous to OverloadCandidateSet::NoteCandidates() with 11784 /// OCD == OCD_AllCandidates and Cand->Viable == false. 11785 void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) { 11786 // Sort the candidates by position (assuming no candidate is a match). 11787 // Sorting directly would be prohibitive, so we make a set of pointers 11788 // and sort those. 11789 SmallVector<TemplateSpecCandidate *, 32> Cands; 11790 Cands.reserve(size()); 11791 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) { 11792 if (Cand->Specialization) 11793 Cands.push_back(Cand); 11794 // Otherwise, this is a non-matching builtin candidate. We do not, 11795 // in general, want to list every possible builtin candidate. 11796 } 11797 11798 llvm::sort(Cands, CompareTemplateSpecCandidatesForDisplay(S)); 11799 11800 // FIXME: Perhaps rename OverloadsShown and getShowOverloads() 11801 // for generalization purposes (?). 11802 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads(); 11803 11804 SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E; 11805 unsigned CandsShown = 0; 11806 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) { 11807 TemplateSpecCandidate *Cand = *I; 11808 11809 // Set an arbitrary limit on the number of candidates we'll spam 11810 // the user with. FIXME: This limit should depend on details of the 11811 // candidate list. 11812 if (CandsShown >= 4 && ShowOverloads == Ovl_Best) 11813 break; 11814 ++CandsShown; 11815 11816 assert(Cand->Specialization && 11817 "Non-matching built-in candidates are not added to Cands."); 11818 Cand->NoteDeductionFailure(S, ForTakingAddress); 11819 } 11820 11821 if (I != E) 11822 S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I); 11823 } 11824 11825 // [PossiblyAFunctionType] --> [Return] 11826 // NonFunctionType --> NonFunctionType 11827 // R (A) --> R(A) 11828 // R (*)(A) --> R (A) 11829 // R (&)(A) --> R (A) 11830 // R (S::*)(A) --> R (A) 11831 QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) { 11832 QualType Ret = PossiblyAFunctionType; 11833 if (const PointerType *ToTypePtr = 11834 PossiblyAFunctionType->getAs<PointerType>()) 11835 Ret = ToTypePtr->getPointeeType(); 11836 else if (const ReferenceType *ToTypeRef = 11837 PossiblyAFunctionType->getAs<ReferenceType>()) 11838 Ret = ToTypeRef->getPointeeType(); 11839 else if (const MemberPointerType *MemTypePtr = 11840 PossiblyAFunctionType->getAs<MemberPointerType>()) 11841 Ret = MemTypePtr->getPointeeType(); 11842 Ret = 11843 Context.getCanonicalType(Ret).getUnqualifiedType(); 11844 return Ret; 11845 } 11846 11847 static bool completeFunctionType(Sema &S, FunctionDecl *FD, SourceLocation Loc, 11848 bool Complain = true) { 11849 if (S.getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() && 11850 S.DeduceReturnType(FD, Loc, Complain)) 11851 return true; 11852 11853 auto *FPT = FD->getType()->castAs<FunctionProtoType>(); 11854 if (S.getLangOpts().CPlusPlus17 && 11855 isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 11856 !S.ResolveExceptionSpec(Loc, FPT)) 11857 return true; 11858 11859 return false; 11860 } 11861 11862 namespace { 11863 // A helper class to help with address of function resolution 11864 // - allows us to avoid passing around all those ugly parameters 11865 class AddressOfFunctionResolver { 11866 Sema& S; 11867 Expr* SourceExpr; 11868 const QualType& TargetType; 11869 QualType TargetFunctionType; // Extracted function type from target type 11870 11871 bool Complain; 11872 //DeclAccessPair& ResultFunctionAccessPair; 11873 ASTContext& Context; 11874 11875 bool TargetTypeIsNonStaticMemberFunction; 11876 bool FoundNonTemplateFunction; 11877 bool StaticMemberFunctionFromBoundPointer; 11878 bool HasComplained; 11879 11880 OverloadExpr::FindResult OvlExprInfo; 11881 OverloadExpr *OvlExpr; 11882 TemplateArgumentListInfo OvlExplicitTemplateArgs; 11883 SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches; 11884 TemplateSpecCandidateSet FailedCandidates; 11885 11886 public: 11887 AddressOfFunctionResolver(Sema &S, Expr *SourceExpr, 11888 const QualType &TargetType, bool Complain) 11889 : S(S), SourceExpr(SourceExpr), TargetType(TargetType), 11890 Complain(Complain), Context(S.getASTContext()), 11891 TargetTypeIsNonStaticMemberFunction( 11892 !!TargetType->getAs<MemberPointerType>()), 11893 FoundNonTemplateFunction(false), 11894 StaticMemberFunctionFromBoundPointer(false), 11895 HasComplained(false), 11896 OvlExprInfo(OverloadExpr::find(SourceExpr)), 11897 OvlExpr(OvlExprInfo.Expression), 11898 FailedCandidates(OvlExpr->getNameLoc(), /*ForTakingAddress=*/true) { 11899 ExtractUnqualifiedFunctionTypeFromTargetType(); 11900 11901 if (TargetFunctionType->isFunctionType()) { 11902 if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr)) 11903 if (!UME->isImplicitAccess() && 11904 !S.ResolveSingleFunctionTemplateSpecialization(UME)) 11905 StaticMemberFunctionFromBoundPointer = true; 11906 } else if (OvlExpr->hasExplicitTemplateArgs()) { 11907 DeclAccessPair dap; 11908 if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization( 11909 OvlExpr, false, &dap)) { 11910 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) 11911 if (!Method->isStatic()) { 11912 // If the target type is a non-function type and the function found 11913 // is a non-static member function, pretend as if that was the 11914 // target, it's the only possible type to end up with. 11915 TargetTypeIsNonStaticMemberFunction = true; 11916 11917 // And skip adding the function if its not in the proper form. 11918 // We'll diagnose this due to an empty set of functions. 11919 if (!OvlExprInfo.HasFormOfMemberPointer) 11920 return; 11921 } 11922 11923 Matches.push_back(std::make_pair(dap, Fn)); 11924 } 11925 return; 11926 } 11927 11928 if (OvlExpr->hasExplicitTemplateArgs()) 11929 OvlExpr->copyTemplateArgumentsInto(OvlExplicitTemplateArgs); 11930 11931 if (FindAllFunctionsThatMatchTargetTypeExactly()) { 11932 // C++ [over.over]p4: 11933 // If more than one function is selected, [...] 11934 if (Matches.size() > 1 && !eliminiateSuboptimalOverloadCandidates()) { 11935 if (FoundNonTemplateFunction) 11936 EliminateAllTemplateMatches(); 11937 else 11938 EliminateAllExceptMostSpecializedTemplate(); 11939 } 11940 } 11941 11942 if (S.getLangOpts().CUDA && Matches.size() > 1) 11943 EliminateSuboptimalCudaMatches(); 11944 } 11945 11946 bool hasComplained() const { return HasComplained; } 11947 11948 private: 11949 bool candidateHasExactlyCorrectType(const FunctionDecl *FD) { 11950 QualType Discard; 11951 return Context.hasSameUnqualifiedType(TargetFunctionType, FD->getType()) || 11952 S.IsFunctionConversion(FD->getType(), TargetFunctionType, Discard); 11953 } 11954 11955 /// \return true if A is considered a better overload candidate for the 11956 /// desired type than B. 11957 bool isBetterCandidate(const FunctionDecl *A, const FunctionDecl *B) { 11958 // If A doesn't have exactly the correct type, we don't want to classify it 11959 // as "better" than anything else. This way, the user is required to 11960 // disambiguate for us if there are multiple candidates and no exact match. 11961 return candidateHasExactlyCorrectType(A) && 11962 (!candidateHasExactlyCorrectType(B) || 11963 compareEnableIfAttrs(S, A, B) == Comparison::Better); 11964 } 11965 11966 /// \return true if we were able to eliminate all but one overload candidate, 11967 /// false otherwise. 11968 bool eliminiateSuboptimalOverloadCandidates() { 11969 // Same algorithm as overload resolution -- one pass to pick the "best", 11970 // another pass to be sure that nothing is better than the best. 11971 auto Best = Matches.begin(); 11972 for (auto I = Matches.begin()+1, E = Matches.end(); I != E; ++I) 11973 if (isBetterCandidate(I->second, Best->second)) 11974 Best = I; 11975 11976 const FunctionDecl *BestFn = Best->second; 11977 auto IsBestOrInferiorToBest = [this, BestFn]( 11978 const std::pair<DeclAccessPair, FunctionDecl *> &Pair) { 11979 return BestFn == Pair.second || isBetterCandidate(BestFn, Pair.second); 11980 }; 11981 11982 // Note: We explicitly leave Matches unmodified if there isn't a clear best 11983 // option, so we can potentially give the user a better error 11984 if (!llvm::all_of(Matches, IsBestOrInferiorToBest)) 11985 return false; 11986 Matches[0] = *Best; 11987 Matches.resize(1); 11988 return true; 11989 } 11990 11991 bool isTargetTypeAFunction() const { 11992 return TargetFunctionType->isFunctionType(); 11993 } 11994 11995 // [ToType] [Return] 11996 11997 // R (*)(A) --> R (A), IsNonStaticMemberFunction = false 11998 // R (&)(A) --> R (A), IsNonStaticMemberFunction = false 11999 // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true 12000 void inline ExtractUnqualifiedFunctionTypeFromTargetType() { 12001 TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType); 12002 } 12003 12004 // return true if any matching specializations were found 12005 bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate, 12006 const DeclAccessPair& CurAccessFunPair) { 12007 if (CXXMethodDecl *Method 12008 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { 12009 // Skip non-static function templates when converting to pointer, and 12010 // static when converting to member pointer. 12011 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction) 12012 return false; 12013 } 12014 else if (TargetTypeIsNonStaticMemberFunction) 12015 return false; 12016 12017 // C++ [over.over]p2: 12018 // If the name is a function template, template argument deduction is 12019 // done (14.8.2.2), and if the argument deduction succeeds, the 12020 // resulting template argument list is used to generate a single 12021 // function template specialization, which is added to the set of 12022 // overloaded functions considered. 12023 FunctionDecl *Specialization = nullptr; 12024 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 12025 if (Sema::TemplateDeductionResult Result 12026 = S.DeduceTemplateArguments(FunctionTemplate, 12027 &OvlExplicitTemplateArgs, 12028 TargetFunctionType, Specialization, 12029 Info, /*IsAddressOfFunction*/true)) { 12030 // Make a note of the failed deduction for diagnostics. 12031 FailedCandidates.addCandidate() 12032 .set(CurAccessFunPair, FunctionTemplate->getTemplatedDecl(), 12033 MakeDeductionFailureInfo(Context, Result, Info)); 12034 return false; 12035 } 12036 12037 // Template argument deduction ensures that we have an exact match or 12038 // compatible pointer-to-function arguments that would be adjusted by ICS. 12039 // This function template specicalization works. 12040 assert(S.isSameOrCompatibleFunctionType( 12041 Context.getCanonicalType(Specialization->getType()), 12042 Context.getCanonicalType(TargetFunctionType))); 12043 12044 if (!S.checkAddressOfFunctionIsAvailable(Specialization)) 12045 return false; 12046 12047 Matches.push_back(std::make_pair(CurAccessFunPair, Specialization)); 12048 return true; 12049 } 12050 12051 bool AddMatchingNonTemplateFunction(NamedDecl* Fn, 12052 const DeclAccessPair& CurAccessFunPair) { 12053 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 12054 // Skip non-static functions when converting to pointer, and static 12055 // when converting to member pointer. 12056 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction) 12057 return false; 12058 } 12059 else if (TargetTypeIsNonStaticMemberFunction) 12060 return false; 12061 12062 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) { 12063 if (S.getLangOpts().CUDA) 12064 if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext)) 12065 if (!Caller->isImplicit() && !S.IsAllowedCUDACall(Caller, FunDecl)) 12066 return false; 12067 if (FunDecl->isMultiVersion()) { 12068 const auto *TA = FunDecl->getAttr<TargetAttr>(); 12069 if (TA && !TA->isDefaultVersion()) 12070 return false; 12071 } 12072 12073 // If any candidate has a placeholder return type, trigger its deduction 12074 // now. 12075 if (completeFunctionType(S, FunDecl, SourceExpr->getBeginLoc(), 12076 Complain)) { 12077 HasComplained |= Complain; 12078 return false; 12079 } 12080 12081 if (!S.checkAddressOfFunctionIsAvailable(FunDecl)) 12082 return false; 12083 12084 // If we're in C, we need to support types that aren't exactly identical. 12085 if (!S.getLangOpts().CPlusPlus || 12086 candidateHasExactlyCorrectType(FunDecl)) { 12087 Matches.push_back(std::make_pair( 12088 CurAccessFunPair, cast<FunctionDecl>(FunDecl->getCanonicalDecl()))); 12089 FoundNonTemplateFunction = true; 12090 return true; 12091 } 12092 } 12093 12094 return false; 12095 } 12096 12097 bool FindAllFunctionsThatMatchTargetTypeExactly() { 12098 bool Ret = false; 12099 12100 // If the overload expression doesn't have the form of a pointer to 12101 // member, don't try to convert it to a pointer-to-member type. 12102 if (IsInvalidFormOfPointerToMemberFunction()) 12103 return false; 12104 12105 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 12106 E = OvlExpr->decls_end(); 12107 I != E; ++I) { 12108 // Look through any using declarations to find the underlying function. 12109 NamedDecl *Fn = (*I)->getUnderlyingDecl(); 12110 12111 // C++ [over.over]p3: 12112 // Non-member functions and static member functions match 12113 // targets of type "pointer-to-function" or "reference-to-function." 12114 // Nonstatic member functions match targets of 12115 // type "pointer-to-member-function." 12116 // Note that according to DR 247, the containing class does not matter. 12117 if (FunctionTemplateDecl *FunctionTemplate 12118 = dyn_cast<FunctionTemplateDecl>(Fn)) { 12119 if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair())) 12120 Ret = true; 12121 } 12122 // If we have explicit template arguments supplied, skip non-templates. 12123 else if (!OvlExpr->hasExplicitTemplateArgs() && 12124 AddMatchingNonTemplateFunction(Fn, I.getPair())) 12125 Ret = true; 12126 } 12127 assert(Ret || Matches.empty()); 12128 return Ret; 12129 } 12130 12131 void EliminateAllExceptMostSpecializedTemplate() { 12132 // [...] and any given function template specialization F1 is 12133 // eliminated if the set contains a second function template 12134 // specialization whose function template is more specialized 12135 // than the function template of F1 according to the partial 12136 // ordering rules of 14.5.5.2. 12137 12138 // The algorithm specified above is quadratic. We instead use a 12139 // two-pass algorithm (similar to the one used to identify the 12140 // best viable function in an overload set) that identifies the 12141 // best function template (if it exists). 12142 12143 UnresolvedSet<4> MatchesCopy; // TODO: avoid! 12144 for (unsigned I = 0, E = Matches.size(); I != E; ++I) 12145 MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess()); 12146 12147 // TODO: It looks like FailedCandidates does not serve much purpose 12148 // here, since the no_viable diagnostic has index 0. 12149 UnresolvedSetIterator Result = S.getMostSpecialized( 12150 MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates, 12151 SourceExpr->getBeginLoc(), S.PDiag(), 12152 S.PDiag(diag::err_addr_ovl_ambiguous) 12153 << Matches[0].second->getDeclName(), 12154 S.PDiag(diag::note_ovl_candidate) 12155 << (unsigned)oc_function << (unsigned)ocs_described_template, 12156 Complain, TargetFunctionType); 12157 12158 if (Result != MatchesCopy.end()) { 12159 // Make it the first and only element 12160 Matches[0].first = Matches[Result - MatchesCopy.begin()].first; 12161 Matches[0].second = cast<FunctionDecl>(*Result); 12162 Matches.resize(1); 12163 } else 12164 HasComplained |= Complain; 12165 } 12166 12167 void EliminateAllTemplateMatches() { 12168 // [...] any function template specializations in the set are 12169 // eliminated if the set also contains a non-template function, [...] 12170 for (unsigned I = 0, N = Matches.size(); I != N; ) { 12171 if (Matches[I].second->getPrimaryTemplate() == nullptr) 12172 ++I; 12173 else { 12174 Matches[I] = Matches[--N]; 12175 Matches.resize(N); 12176 } 12177 } 12178 } 12179 12180 void EliminateSuboptimalCudaMatches() { 12181 S.EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(S.CurContext), Matches); 12182 } 12183 12184 public: 12185 void ComplainNoMatchesFound() const { 12186 assert(Matches.empty()); 12187 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_no_viable) 12188 << OvlExpr->getName() << TargetFunctionType 12189 << OvlExpr->getSourceRange(); 12190 if (FailedCandidates.empty()) 12191 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType, 12192 /*TakingAddress=*/true); 12193 else { 12194 // We have some deduction failure messages. Use them to diagnose 12195 // the function templates, and diagnose the non-template candidates 12196 // normally. 12197 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 12198 IEnd = OvlExpr->decls_end(); 12199 I != IEnd; ++I) 12200 if (FunctionDecl *Fun = 12201 dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl())) 12202 if (!functionHasPassObjectSizeParams(Fun)) 12203 S.NoteOverloadCandidate(*I, Fun, CRK_None, TargetFunctionType, 12204 /*TakingAddress=*/true); 12205 FailedCandidates.NoteCandidates(S, OvlExpr->getBeginLoc()); 12206 } 12207 } 12208 12209 bool IsInvalidFormOfPointerToMemberFunction() const { 12210 return TargetTypeIsNonStaticMemberFunction && 12211 !OvlExprInfo.HasFormOfMemberPointer; 12212 } 12213 12214 void ComplainIsInvalidFormOfPointerToMemberFunction() const { 12215 // TODO: Should we condition this on whether any functions might 12216 // have matched, or is it more appropriate to do that in callers? 12217 // TODO: a fixit wouldn't hurt. 12218 S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier) 12219 << TargetType << OvlExpr->getSourceRange(); 12220 } 12221 12222 bool IsStaticMemberFunctionFromBoundPointer() const { 12223 return StaticMemberFunctionFromBoundPointer; 12224 } 12225 12226 void ComplainIsStaticMemberFunctionFromBoundPointer() const { 12227 S.Diag(OvlExpr->getBeginLoc(), 12228 diag::err_invalid_form_pointer_member_function) 12229 << OvlExpr->getSourceRange(); 12230 } 12231 12232 void ComplainOfInvalidConversion() const { 12233 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_not_func_ptrref) 12234 << OvlExpr->getName() << TargetType; 12235 } 12236 12237 void ComplainMultipleMatchesFound() const { 12238 assert(Matches.size() > 1); 12239 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_ambiguous) 12240 << OvlExpr->getName() << OvlExpr->getSourceRange(); 12241 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType, 12242 /*TakingAddress=*/true); 12243 } 12244 12245 bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); } 12246 12247 int getNumMatches() const { return Matches.size(); } 12248 12249 FunctionDecl* getMatchingFunctionDecl() const { 12250 if (Matches.size() != 1) return nullptr; 12251 return Matches[0].second; 12252 } 12253 12254 const DeclAccessPair* getMatchingFunctionAccessPair() const { 12255 if (Matches.size() != 1) return nullptr; 12256 return &Matches[0].first; 12257 } 12258 }; 12259 } 12260 12261 /// ResolveAddressOfOverloadedFunction - Try to resolve the address of 12262 /// an overloaded function (C++ [over.over]), where @p From is an 12263 /// expression with overloaded function type and @p ToType is the type 12264 /// we're trying to resolve to. For example: 12265 /// 12266 /// @code 12267 /// int f(double); 12268 /// int f(int); 12269 /// 12270 /// int (*pfd)(double) = f; // selects f(double) 12271 /// @endcode 12272 /// 12273 /// This routine returns the resulting FunctionDecl if it could be 12274 /// resolved, and NULL otherwise. When @p Complain is true, this 12275 /// routine will emit diagnostics if there is an error. 12276 FunctionDecl * 12277 Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr, 12278 QualType TargetType, 12279 bool Complain, 12280 DeclAccessPair &FoundResult, 12281 bool *pHadMultipleCandidates) { 12282 assert(AddressOfExpr->getType() == Context.OverloadTy); 12283 12284 AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType, 12285 Complain); 12286 int NumMatches = Resolver.getNumMatches(); 12287 FunctionDecl *Fn = nullptr; 12288 bool ShouldComplain = Complain && !Resolver.hasComplained(); 12289 if (NumMatches == 0 && ShouldComplain) { 12290 if (Resolver.IsInvalidFormOfPointerToMemberFunction()) 12291 Resolver.ComplainIsInvalidFormOfPointerToMemberFunction(); 12292 else 12293 Resolver.ComplainNoMatchesFound(); 12294 } 12295 else if (NumMatches > 1 && ShouldComplain) 12296 Resolver.ComplainMultipleMatchesFound(); 12297 else if (NumMatches == 1) { 12298 Fn = Resolver.getMatchingFunctionDecl(); 12299 assert(Fn); 12300 if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>()) 12301 ResolveExceptionSpec(AddressOfExpr->getExprLoc(), FPT); 12302 FoundResult = *Resolver.getMatchingFunctionAccessPair(); 12303 if (Complain) { 12304 if (Resolver.IsStaticMemberFunctionFromBoundPointer()) 12305 Resolver.ComplainIsStaticMemberFunctionFromBoundPointer(); 12306 else 12307 CheckAddressOfMemberAccess(AddressOfExpr, FoundResult); 12308 } 12309 } 12310 12311 if (pHadMultipleCandidates) 12312 *pHadMultipleCandidates = Resolver.hadMultipleCandidates(); 12313 return Fn; 12314 } 12315 12316 /// Given an expression that refers to an overloaded function, try to 12317 /// resolve that function to a single function that can have its address taken. 12318 /// This will modify `Pair` iff it returns non-null. 12319 /// 12320 /// This routine can only succeed if from all of the candidates in the overload 12321 /// set for SrcExpr that can have their addresses taken, there is one candidate 12322 /// that is more constrained than the rest. 12323 FunctionDecl * 12324 Sema::resolveAddressOfSingleOverloadCandidate(Expr *E, DeclAccessPair &Pair) { 12325 OverloadExpr::FindResult R = OverloadExpr::find(E); 12326 OverloadExpr *Ovl = R.Expression; 12327 bool IsResultAmbiguous = false; 12328 FunctionDecl *Result = nullptr; 12329 DeclAccessPair DAP; 12330 SmallVector<FunctionDecl *, 2> AmbiguousDecls; 12331 12332 auto CheckMoreConstrained = 12333 [&] (FunctionDecl *FD1, FunctionDecl *FD2) -> Optional<bool> { 12334 SmallVector<const Expr *, 1> AC1, AC2; 12335 FD1->getAssociatedConstraints(AC1); 12336 FD2->getAssociatedConstraints(AC2); 12337 bool AtLeastAsConstrained1, AtLeastAsConstrained2; 12338 if (IsAtLeastAsConstrained(FD1, AC1, FD2, AC2, AtLeastAsConstrained1)) 12339 return None; 12340 if (IsAtLeastAsConstrained(FD2, AC2, FD1, AC1, AtLeastAsConstrained2)) 12341 return None; 12342 if (AtLeastAsConstrained1 == AtLeastAsConstrained2) 12343 return None; 12344 return AtLeastAsConstrained1; 12345 }; 12346 12347 // Don't use the AddressOfResolver because we're specifically looking for 12348 // cases where we have one overload candidate that lacks 12349 // enable_if/pass_object_size/... 12350 for (auto I = Ovl->decls_begin(), E = Ovl->decls_end(); I != E; ++I) { 12351 auto *FD = dyn_cast<FunctionDecl>(I->getUnderlyingDecl()); 12352 if (!FD) 12353 return nullptr; 12354 12355 if (!checkAddressOfFunctionIsAvailable(FD)) 12356 continue; 12357 12358 // We have more than one result - see if it is more constrained than the 12359 // previous one. 12360 if (Result) { 12361 Optional<bool> MoreConstrainedThanPrevious = CheckMoreConstrained(FD, 12362 Result); 12363 if (!MoreConstrainedThanPrevious) { 12364 IsResultAmbiguous = true; 12365 AmbiguousDecls.push_back(FD); 12366 continue; 12367 } 12368 if (!*MoreConstrainedThanPrevious) 12369 continue; 12370 // FD is more constrained - replace Result with it. 12371 } 12372 IsResultAmbiguous = false; 12373 DAP = I.getPair(); 12374 Result = FD; 12375 } 12376 12377 if (IsResultAmbiguous) 12378 return nullptr; 12379 12380 if (Result) { 12381 SmallVector<const Expr *, 1> ResultAC; 12382 // We skipped over some ambiguous declarations which might be ambiguous with 12383 // the selected result. 12384 for (FunctionDecl *Skipped : AmbiguousDecls) 12385 if (!CheckMoreConstrained(Skipped, Result).hasValue()) 12386 return nullptr; 12387 Pair = DAP; 12388 } 12389 return Result; 12390 } 12391 12392 /// Given an overloaded function, tries to turn it into a non-overloaded 12393 /// function reference using resolveAddressOfSingleOverloadCandidate. This 12394 /// will perform access checks, diagnose the use of the resultant decl, and, if 12395 /// requested, potentially perform a function-to-pointer decay. 12396 /// 12397 /// Returns false if resolveAddressOfSingleOverloadCandidate fails. 12398 /// Otherwise, returns true. This may emit diagnostics and return true. 12399 bool Sema::resolveAndFixAddressOfSingleOverloadCandidate( 12400 ExprResult &SrcExpr, bool DoFunctionPointerConverion) { 12401 Expr *E = SrcExpr.get(); 12402 assert(E->getType() == Context.OverloadTy && "SrcExpr must be an overload"); 12403 12404 DeclAccessPair DAP; 12405 FunctionDecl *Found = resolveAddressOfSingleOverloadCandidate(E, DAP); 12406 if (!Found || Found->isCPUDispatchMultiVersion() || 12407 Found->isCPUSpecificMultiVersion()) 12408 return false; 12409 12410 // Emitting multiple diagnostics for a function that is both inaccessible and 12411 // unavailable is consistent with our behavior elsewhere. So, always check 12412 // for both. 12413 DiagnoseUseOfDecl(Found, E->getExprLoc()); 12414 CheckAddressOfMemberAccess(E, DAP); 12415 Expr *Fixed = FixOverloadedFunctionReference(E, DAP, Found); 12416 if (DoFunctionPointerConverion && Fixed->getType()->isFunctionType()) 12417 SrcExpr = DefaultFunctionArrayConversion(Fixed, /*Diagnose=*/false); 12418 else 12419 SrcExpr = Fixed; 12420 return true; 12421 } 12422 12423 /// Given an expression that refers to an overloaded function, try to 12424 /// resolve that overloaded function expression down to a single function. 12425 /// 12426 /// This routine can only resolve template-ids that refer to a single function 12427 /// template, where that template-id refers to a single template whose template 12428 /// arguments are either provided by the template-id or have defaults, 12429 /// as described in C++0x [temp.arg.explicit]p3. 12430 /// 12431 /// If no template-ids are found, no diagnostics are emitted and NULL is 12432 /// returned. 12433 FunctionDecl * 12434 Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl, 12435 bool Complain, 12436 DeclAccessPair *FoundResult) { 12437 // C++ [over.over]p1: 12438 // [...] [Note: any redundant set of parentheses surrounding the 12439 // overloaded function name is ignored (5.1). ] 12440 // C++ [over.over]p1: 12441 // [...] The overloaded function name can be preceded by the & 12442 // operator. 12443 12444 // If we didn't actually find any template-ids, we're done. 12445 if (!ovl->hasExplicitTemplateArgs()) 12446 return nullptr; 12447 12448 TemplateArgumentListInfo ExplicitTemplateArgs; 12449 ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs); 12450 TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc()); 12451 12452 // Look through all of the overloaded functions, searching for one 12453 // whose type matches exactly. 12454 FunctionDecl *Matched = nullptr; 12455 for (UnresolvedSetIterator I = ovl->decls_begin(), 12456 E = ovl->decls_end(); I != E; ++I) { 12457 // C++0x [temp.arg.explicit]p3: 12458 // [...] In contexts where deduction is done and fails, or in contexts 12459 // where deduction is not done, if a template argument list is 12460 // specified and it, along with any default template arguments, 12461 // identifies a single function template specialization, then the 12462 // template-id is an lvalue for the function template specialization. 12463 FunctionTemplateDecl *FunctionTemplate 12464 = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()); 12465 12466 // C++ [over.over]p2: 12467 // If the name is a function template, template argument deduction is 12468 // done (14.8.2.2), and if the argument deduction succeeds, the 12469 // resulting template argument list is used to generate a single 12470 // function template specialization, which is added to the set of 12471 // overloaded functions considered. 12472 FunctionDecl *Specialization = nullptr; 12473 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 12474 if (TemplateDeductionResult Result 12475 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs, 12476 Specialization, Info, 12477 /*IsAddressOfFunction*/true)) { 12478 // Make a note of the failed deduction for diagnostics. 12479 // TODO: Actually use the failed-deduction info? 12480 FailedCandidates.addCandidate() 12481 .set(I.getPair(), FunctionTemplate->getTemplatedDecl(), 12482 MakeDeductionFailureInfo(Context, Result, Info)); 12483 continue; 12484 } 12485 12486 assert(Specialization && "no specialization and no error?"); 12487 12488 // Multiple matches; we can't resolve to a single declaration. 12489 if (Matched) { 12490 if (Complain) { 12491 Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous) 12492 << ovl->getName(); 12493 NoteAllOverloadCandidates(ovl); 12494 } 12495 return nullptr; 12496 } 12497 12498 Matched = Specialization; 12499 if (FoundResult) *FoundResult = I.getPair(); 12500 } 12501 12502 if (Matched && 12503 completeFunctionType(*this, Matched, ovl->getExprLoc(), Complain)) 12504 return nullptr; 12505 12506 return Matched; 12507 } 12508 12509 // Resolve and fix an overloaded expression that can be resolved 12510 // because it identifies a single function template specialization. 12511 // 12512 // Last three arguments should only be supplied if Complain = true 12513 // 12514 // Return true if it was logically possible to so resolve the 12515 // expression, regardless of whether or not it succeeded. Always 12516 // returns true if 'complain' is set. 12517 bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization( 12518 ExprResult &SrcExpr, bool doFunctionPointerConverion, 12519 bool complain, SourceRange OpRangeForComplaining, 12520 QualType DestTypeForComplaining, 12521 unsigned DiagIDForComplaining) { 12522 assert(SrcExpr.get()->getType() == Context.OverloadTy); 12523 12524 OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get()); 12525 12526 DeclAccessPair found; 12527 ExprResult SingleFunctionExpression; 12528 if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization( 12529 ovl.Expression, /*complain*/ false, &found)) { 12530 if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getBeginLoc())) { 12531 SrcExpr = ExprError(); 12532 return true; 12533 } 12534 12535 // It is only correct to resolve to an instance method if we're 12536 // resolving a form that's permitted to be a pointer to member. 12537 // Otherwise we'll end up making a bound member expression, which 12538 // is illegal in all the contexts we resolve like this. 12539 if (!ovl.HasFormOfMemberPointer && 12540 isa<CXXMethodDecl>(fn) && 12541 cast<CXXMethodDecl>(fn)->isInstance()) { 12542 if (!complain) return false; 12543 12544 Diag(ovl.Expression->getExprLoc(), 12545 diag::err_bound_member_function) 12546 << 0 << ovl.Expression->getSourceRange(); 12547 12548 // TODO: I believe we only end up here if there's a mix of 12549 // static and non-static candidates (otherwise the expression 12550 // would have 'bound member' type, not 'overload' type). 12551 // Ideally we would note which candidate was chosen and why 12552 // the static candidates were rejected. 12553 SrcExpr = ExprError(); 12554 return true; 12555 } 12556 12557 // Fix the expression to refer to 'fn'. 12558 SingleFunctionExpression = 12559 FixOverloadedFunctionReference(SrcExpr.get(), found, fn); 12560 12561 // If desired, do function-to-pointer decay. 12562 if (doFunctionPointerConverion) { 12563 SingleFunctionExpression = 12564 DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get()); 12565 if (SingleFunctionExpression.isInvalid()) { 12566 SrcExpr = ExprError(); 12567 return true; 12568 } 12569 } 12570 } 12571 12572 if (!SingleFunctionExpression.isUsable()) { 12573 if (complain) { 12574 Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining) 12575 << ovl.Expression->getName() 12576 << DestTypeForComplaining 12577 << OpRangeForComplaining 12578 << ovl.Expression->getQualifierLoc().getSourceRange(); 12579 NoteAllOverloadCandidates(SrcExpr.get()); 12580 12581 SrcExpr = ExprError(); 12582 return true; 12583 } 12584 12585 return false; 12586 } 12587 12588 SrcExpr = SingleFunctionExpression; 12589 return true; 12590 } 12591 12592 /// Add a single candidate to the overload set. 12593 static void AddOverloadedCallCandidate(Sema &S, 12594 DeclAccessPair FoundDecl, 12595 TemplateArgumentListInfo *ExplicitTemplateArgs, 12596 ArrayRef<Expr *> Args, 12597 OverloadCandidateSet &CandidateSet, 12598 bool PartialOverloading, 12599 bool KnownValid) { 12600 NamedDecl *Callee = FoundDecl.getDecl(); 12601 if (isa<UsingShadowDecl>(Callee)) 12602 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl(); 12603 12604 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { 12605 if (ExplicitTemplateArgs) { 12606 assert(!KnownValid && "Explicit template arguments?"); 12607 return; 12608 } 12609 // Prevent ill-formed function decls to be added as overload candidates. 12610 if (!dyn_cast<FunctionProtoType>(Func->getType()->getAs<FunctionType>())) 12611 return; 12612 12613 S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet, 12614 /*SuppressUserConversions=*/false, 12615 PartialOverloading); 12616 return; 12617 } 12618 12619 if (FunctionTemplateDecl *FuncTemplate 12620 = dyn_cast<FunctionTemplateDecl>(Callee)) { 12621 S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl, 12622 ExplicitTemplateArgs, Args, CandidateSet, 12623 /*SuppressUserConversions=*/false, 12624 PartialOverloading); 12625 return; 12626 } 12627 12628 assert(!KnownValid && "unhandled case in overloaded call candidate"); 12629 } 12630 12631 /// Add the overload candidates named by callee and/or found by argument 12632 /// dependent lookup to the given overload set. 12633 void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, 12634 ArrayRef<Expr *> Args, 12635 OverloadCandidateSet &CandidateSet, 12636 bool PartialOverloading) { 12637 12638 #ifndef NDEBUG 12639 // Verify that ArgumentDependentLookup is consistent with the rules 12640 // in C++0x [basic.lookup.argdep]p3: 12641 // 12642 // Let X be the lookup set produced by unqualified lookup (3.4.1) 12643 // and let Y be the lookup set produced by argument dependent 12644 // lookup (defined as follows). If X contains 12645 // 12646 // -- a declaration of a class member, or 12647 // 12648 // -- a block-scope function declaration that is not a 12649 // using-declaration, or 12650 // 12651 // -- a declaration that is neither a function or a function 12652 // template 12653 // 12654 // then Y is empty. 12655 12656 if (ULE->requiresADL()) { 12657 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 12658 E = ULE->decls_end(); I != E; ++I) { 12659 assert(!(*I)->getDeclContext()->isRecord()); 12660 assert(isa<UsingShadowDecl>(*I) || 12661 !(*I)->getDeclContext()->isFunctionOrMethod()); 12662 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()); 12663 } 12664 } 12665 #endif 12666 12667 // It would be nice to avoid this copy. 12668 TemplateArgumentListInfo TABuffer; 12669 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr; 12670 if (ULE->hasExplicitTemplateArgs()) { 12671 ULE->copyTemplateArgumentsInto(TABuffer); 12672 ExplicitTemplateArgs = &TABuffer; 12673 } 12674 12675 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 12676 E = ULE->decls_end(); I != E; ++I) 12677 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args, 12678 CandidateSet, PartialOverloading, 12679 /*KnownValid*/ true); 12680 12681 if (ULE->requiresADL()) 12682 AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(), 12683 Args, ExplicitTemplateArgs, 12684 CandidateSet, PartialOverloading); 12685 } 12686 12687 /// Add the call candidates from the given set of lookup results to the given 12688 /// overload set. Non-function lookup results are ignored. 12689 void Sema::AddOverloadedCallCandidates( 12690 LookupResult &R, TemplateArgumentListInfo *ExplicitTemplateArgs, 12691 ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet) { 12692 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) 12693 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args, 12694 CandidateSet, false, /*KnownValid*/ false); 12695 } 12696 12697 /// Determine whether a declaration with the specified name could be moved into 12698 /// a different namespace. 12699 static bool canBeDeclaredInNamespace(const DeclarationName &Name) { 12700 switch (Name.getCXXOverloadedOperator()) { 12701 case OO_New: case OO_Array_New: 12702 case OO_Delete: case OO_Array_Delete: 12703 return false; 12704 12705 default: 12706 return true; 12707 } 12708 } 12709 12710 /// Attempt to recover from an ill-formed use of a non-dependent name in a 12711 /// template, where the non-dependent name was declared after the template 12712 /// was defined. This is common in code written for a compilers which do not 12713 /// correctly implement two-stage name lookup. 12714 /// 12715 /// Returns true if a viable candidate was found and a diagnostic was issued. 12716 static bool DiagnoseTwoPhaseLookup( 12717 Sema &SemaRef, SourceLocation FnLoc, const CXXScopeSpec &SS, 12718 LookupResult &R, OverloadCandidateSet::CandidateSetKind CSK, 12719 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args, 12720 CXXRecordDecl **FoundInClass = nullptr) { 12721 if (!SemaRef.inTemplateInstantiation() || !SS.isEmpty()) 12722 return false; 12723 12724 for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) { 12725 if (DC->isTransparentContext()) 12726 continue; 12727 12728 SemaRef.LookupQualifiedName(R, DC); 12729 12730 if (!R.empty()) { 12731 R.suppressDiagnostics(); 12732 12733 OverloadCandidateSet Candidates(FnLoc, CSK); 12734 SemaRef.AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, 12735 Candidates); 12736 12737 OverloadCandidateSet::iterator Best; 12738 OverloadingResult OR = 12739 Candidates.BestViableFunction(SemaRef, FnLoc, Best); 12740 12741 if (auto *RD = dyn_cast<CXXRecordDecl>(DC)) { 12742 // We either found non-function declarations or a best viable function 12743 // at class scope. A class-scope lookup result disables ADL. Don't 12744 // look past this, but let the caller know that we found something that 12745 // either is, or might be, usable in this class. 12746 if (FoundInClass) { 12747 *FoundInClass = RD; 12748 if (OR == OR_Success) { 12749 R.clear(); 12750 R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess()); 12751 R.resolveKind(); 12752 } 12753 } 12754 return false; 12755 } 12756 12757 if (OR != OR_Success) { 12758 // There wasn't a unique best function or function template. 12759 return false; 12760 } 12761 12762 // Find the namespaces where ADL would have looked, and suggest 12763 // declaring the function there instead. 12764 Sema::AssociatedNamespaceSet AssociatedNamespaces; 12765 Sema::AssociatedClassSet AssociatedClasses; 12766 SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args, 12767 AssociatedNamespaces, 12768 AssociatedClasses); 12769 Sema::AssociatedNamespaceSet SuggestedNamespaces; 12770 if (canBeDeclaredInNamespace(R.getLookupName())) { 12771 DeclContext *Std = SemaRef.getStdNamespace(); 12772 for (Sema::AssociatedNamespaceSet::iterator 12773 it = AssociatedNamespaces.begin(), 12774 end = AssociatedNamespaces.end(); it != end; ++it) { 12775 // Never suggest declaring a function within namespace 'std'. 12776 if (Std && Std->Encloses(*it)) 12777 continue; 12778 12779 // Never suggest declaring a function within a namespace with a 12780 // reserved name, like __gnu_cxx. 12781 NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it); 12782 if (NS && 12783 NS->getQualifiedNameAsString().find("__") != std::string::npos) 12784 continue; 12785 12786 SuggestedNamespaces.insert(*it); 12787 } 12788 } 12789 12790 SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup) 12791 << R.getLookupName(); 12792 if (SuggestedNamespaces.empty()) { 12793 SemaRef.Diag(Best->Function->getLocation(), 12794 diag::note_not_found_by_two_phase_lookup) 12795 << R.getLookupName() << 0; 12796 } else if (SuggestedNamespaces.size() == 1) { 12797 SemaRef.Diag(Best->Function->getLocation(), 12798 diag::note_not_found_by_two_phase_lookup) 12799 << R.getLookupName() << 1 << *SuggestedNamespaces.begin(); 12800 } else { 12801 // FIXME: It would be useful to list the associated namespaces here, 12802 // but the diagnostics infrastructure doesn't provide a way to produce 12803 // a localized representation of a list of items. 12804 SemaRef.Diag(Best->Function->getLocation(), 12805 diag::note_not_found_by_two_phase_lookup) 12806 << R.getLookupName() << 2; 12807 } 12808 12809 // Try to recover by calling this function. 12810 return true; 12811 } 12812 12813 R.clear(); 12814 } 12815 12816 return false; 12817 } 12818 12819 /// Attempt to recover from ill-formed use of a non-dependent operator in a 12820 /// template, where the non-dependent operator was declared after the template 12821 /// was defined. 12822 /// 12823 /// Returns true if a viable candidate was found and a diagnostic was issued. 12824 static bool 12825 DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op, 12826 SourceLocation OpLoc, 12827 ArrayRef<Expr *> Args) { 12828 DeclarationName OpName = 12829 SemaRef.Context.DeclarationNames.getCXXOperatorName(Op); 12830 LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName); 12831 return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R, 12832 OverloadCandidateSet::CSK_Operator, 12833 /*ExplicitTemplateArgs=*/nullptr, Args); 12834 } 12835 12836 namespace { 12837 class BuildRecoveryCallExprRAII { 12838 Sema &SemaRef; 12839 public: 12840 BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) { 12841 assert(SemaRef.IsBuildingRecoveryCallExpr == false); 12842 SemaRef.IsBuildingRecoveryCallExpr = true; 12843 } 12844 12845 ~BuildRecoveryCallExprRAII() { 12846 SemaRef.IsBuildingRecoveryCallExpr = false; 12847 } 12848 }; 12849 12850 } 12851 12852 /// Attempts to recover from a call where no functions were found. 12853 /// 12854 /// This function will do one of three things: 12855 /// * Diagnose, recover, and return a recovery expression. 12856 /// * Diagnose, fail to recover, and return ExprError(). 12857 /// * Do not diagnose, do not recover, and return ExprResult(). The caller is 12858 /// expected to diagnose as appropriate. 12859 static ExprResult 12860 BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, 12861 UnresolvedLookupExpr *ULE, 12862 SourceLocation LParenLoc, 12863 MutableArrayRef<Expr *> Args, 12864 SourceLocation RParenLoc, 12865 bool EmptyLookup, bool AllowTypoCorrection) { 12866 // Do not try to recover if it is already building a recovery call. 12867 // This stops infinite loops for template instantiations like 12868 // 12869 // template <typename T> auto foo(T t) -> decltype(foo(t)) {} 12870 // template <typename T> auto foo(T t) -> decltype(foo(&t)) {} 12871 if (SemaRef.IsBuildingRecoveryCallExpr) 12872 return ExprResult(); 12873 BuildRecoveryCallExprRAII RCE(SemaRef); 12874 12875 CXXScopeSpec SS; 12876 SS.Adopt(ULE->getQualifierLoc()); 12877 SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc(); 12878 12879 TemplateArgumentListInfo TABuffer; 12880 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr; 12881 if (ULE->hasExplicitTemplateArgs()) { 12882 ULE->copyTemplateArgumentsInto(TABuffer); 12883 ExplicitTemplateArgs = &TABuffer; 12884 } 12885 12886 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), 12887 Sema::LookupOrdinaryName); 12888 CXXRecordDecl *FoundInClass = nullptr; 12889 if (DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R, 12890 OverloadCandidateSet::CSK_Normal, 12891 ExplicitTemplateArgs, Args, &FoundInClass)) { 12892 // OK, diagnosed a two-phase lookup issue. 12893 } else if (EmptyLookup) { 12894 // Try to recover from an empty lookup with typo correction. 12895 R.clear(); 12896 NoTypoCorrectionCCC NoTypoValidator{}; 12897 FunctionCallFilterCCC FunctionCallValidator(SemaRef, Args.size(), 12898 ExplicitTemplateArgs != nullptr, 12899 dyn_cast<MemberExpr>(Fn)); 12900 CorrectionCandidateCallback &Validator = 12901 AllowTypoCorrection 12902 ? static_cast<CorrectionCandidateCallback &>(FunctionCallValidator) 12903 : static_cast<CorrectionCandidateCallback &>(NoTypoValidator); 12904 if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Validator, ExplicitTemplateArgs, 12905 Args)) 12906 return ExprError(); 12907 } else if (FoundInClass && SemaRef.getLangOpts().MSVCCompat) { 12908 // We found a usable declaration of the name in a dependent base of some 12909 // enclosing class. 12910 // FIXME: We should also explain why the candidates found by name lookup 12911 // were not viable. 12912 if (SemaRef.DiagnoseDependentMemberLookup(R)) 12913 return ExprError(); 12914 } else { 12915 // We had viable candidates and couldn't recover; let the caller diagnose 12916 // this. 12917 return ExprResult(); 12918 } 12919 12920 // If we get here, we should have issued a diagnostic and formed a recovery 12921 // lookup result. 12922 assert(!R.empty() && "lookup results empty despite recovery"); 12923 12924 // If recovery created an ambiguity, just bail out. 12925 if (R.isAmbiguous()) { 12926 R.suppressDiagnostics(); 12927 return ExprError(); 12928 } 12929 12930 // Build an implicit member call if appropriate. Just drop the 12931 // casts and such from the call, we don't really care. 12932 ExprResult NewFn = ExprError(); 12933 if ((*R.begin())->isCXXClassMember()) 12934 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R, 12935 ExplicitTemplateArgs, S); 12936 else if (ExplicitTemplateArgs || TemplateKWLoc.isValid()) 12937 NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, 12938 ExplicitTemplateArgs); 12939 else 12940 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false); 12941 12942 if (NewFn.isInvalid()) 12943 return ExprError(); 12944 12945 // This shouldn't cause an infinite loop because we're giving it 12946 // an expression with viable lookup results, which should never 12947 // end up here. 12948 return SemaRef.BuildCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc, 12949 MultiExprArg(Args.data(), Args.size()), 12950 RParenLoc); 12951 } 12952 12953 /// Constructs and populates an OverloadedCandidateSet from 12954 /// the given function. 12955 /// \returns true when an the ExprResult output parameter has been set. 12956 bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn, 12957 UnresolvedLookupExpr *ULE, 12958 MultiExprArg Args, 12959 SourceLocation RParenLoc, 12960 OverloadCandidateSet *CandidateSet, 12961 ExprResult *Result) { 12962 #ifndef NDEBUG 12963 if (ULE->requiresADL()) { 12964 // To do ADL, we must have found an unqualified name. 12965 assert(!ULE->getQualifier() && "qualified name with ADL"); 12966 12967 // We don't perform ADL for implicit declarations of builtins. 12968 // Verify that this was correctly set up. 12969 FunctionDecl *F; 12970 if (ULE->decls_begin() != ULE->decls_end() && 12971 ULE->decls_begin() + 1 == ULE->decls_end() && 12972 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) && 12973 F->getBuiltinID() && F->isImplicit()) 12974 llvm_unreachable("performing ADL for builtin"); 12975 12976 // We don't perform ADL in C. 12977 assert(getLangOpts().CPlusPlus && "ADL enabled in C"); 12978 } 12979 #endif 12980 12981 UnbridgedCastsSet UnbridgedCasts; 12982 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) { 12983 *Result = ExprError(); 12984 return true; 12985 } 12986 12987 // Add the functions denoted by the callee to the set of candidate 12988 // functions, including those from argument-dependent lookup. 12989 AddOverloadedCallCandidates(ULE, Args, *CandidateSet); 12990 12991 if (getLangOpts().MSVCCompat && 12992 CurContext->isDependentContext() && !isSFINAEContext() && 12993 (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) { 12994 12995 OverloadCandidateSet::iterator Best; 12996 if (CandidateSet->empty() || 12997 CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best) == 12998 OR_No_Viable_Function) { 12999 // In Microsoft mode, if we are inside a template class member function 13000 // then create a type dependent CallExpr. The goal is to postpone name 13001 // lookup to instantiation time to be able to search into type dependent 13002 // base classes. 13003 CallExpr *CE = 13004 CallExpr::Create(Context, Fn, Args, Context.DependentTy, VK_PRValue, 13005 RParenLoc, CurFPFeatureOverrides()); 13006 CE->markDependentForPostponedNameLookup(); 13007 *Result = CE; 13008 return true; 13009 } 13010 } 13011 13012 if (CandidateSet->empty()) 13013 return false; 13014 13015 UnbridgedCasts.restore(); 13016 return false; 13017 } 13018 13019 // Guess at what the return type for an unresolvable overload should be. 13020 static QualType chooseRecoveryType(OverloadCandidateSet &CS, 13021 OverloadCandidateSet::iterator *Best) { 13022 llvm::Optional<QualType> Result; 13023 // Adjust Type after seeing a candidate. 13024 auto ConsiderCandidate = [&](const OverloadCandidate &Candidate) { 13025 if (!Candidate.Function) 13026 return; 13027 if (Candidate.Function->isInvalidDecl()) 13028 return; 13029 QualType T = Candidate.Function->getReturnType(); 13030 if (T.isNull()) 13031 return; 13032 if (!Result) 13033 Result = T; 13034 else if (Result != T) 13035 Result = QualType(); 13036 }; 13037 13038 // Look for an unambiguous type from a progressively larger subset. 13039 // e.g. if types disagree, but all *viable* overloads return int, choose int. 13040 // 13041 // First, consider only the best candidate. 13042 if (Best && *Best != CS.end()) 13043 ConsiderCandidate(**Best); 13044 // Next, consider only viable candidates. 13045 if (!Result) 13046 for (const auto &C : CS) 13047 if (C.Viable) 13048 ConsiderCandidate(C); 13049 // Finally, consider all candidates. 13050 if (!Result) 13051 for (const auto &C : CS) 13052 ConsiderCandidate(C); 13053 13054 if (!Result) 13055 return QualType(); 13056 auto Value = Result.getValue(); 13057 if (Value.isNull() || Value->isUndeducedType()) 13058 return QualType(); 13059 return Value; 13060 } 13061 13062 /// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns 13063 /// the completed call expression. If overload resolution fails, emits 13064 /// diagnostics and returns ExprError() 13065 static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, 13066 UnresolvedLookupExpr *ULE, 13067 SourceLocation LParenLoc, 13068 MultiExprArg Args, 13069 SourceLocation RParenLoc, 13070 Expr *ExecConfig, 13071 OverloadCandidateSet *CandidateSet, 13072 OverloadCandidateSet::iterator *Best, 13073 OverloadingResult OverloadResult, 13074 bool AllowTypoCorrection) { 13075 switch (OverloadResult) { 13076 case OR_Success: { 13077 FunctionDecl *FDecl = (*Best)->Function; 13078 SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl); 13079 if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc())) 13080 return ExprError(); 13081 Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl); 13082 return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc, 13083 ExecConfig, /*IsExecConfig=*/false, 13084 (*Best)->IsADLCandidate); 13085 } 13086 13087 case OR_No_Viable_Function: { 13088 // Try to recover by looking for viable functions which the user might 13089 // have meant to call. 13090 ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, 13091 Args, RParenLoc, 13092 CandidateSet->empty(), 13093 AllowTypoCorrection); 13094 if (Recovery.isInvalid() || Recovery.isUsable()) 13095 return Recovery; 13096 13097 // If the user passes in a function that we can't take the address of, we 13098 // generally end up emitting really bad error messages. Here, we attempt to 13099 // emit better ones. 13100 for (const Expr *Arg : Args) { 13101 if (!Arg->getType()->isFunctionType()) 13102 continue; 13103 if (auto *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts())) { 13104 auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()); 13105 if (FD && 13106 !SemaRef.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 13107 Arg->getExprLoc())) 13108 return ExprError(); 13109 } 13110 } 13111 13112 CandidateSet->NoteCandidates( 13113 PartialDiagnosticAt( 13114 Fn->getBeginLoc(), 13115 SemaRef.PDiag(diag::err_ovl_no_viable_function_in_call) 13116 << ULE->getName() << Fn->getSourceRange()), 13117 SemaRef, OCD_AllCandidates, Args); 13118 break; 13119 } 13120 13121 case OR_Ambiguous: 13122 CandidateSet->NoteCandidates( 13123 PartialDiagnosticAt(Fn->getBeginLoc(), 13124 SemaRef.PDiag(diag::err_ovl_ambiguous_call) 13125 << ULE->getName() << Fn->getSourceRange()), 13126 SemaRef, OCD_AmbiguousCandidates, Args); 13127 break; 13128 13129 case OR_Deleted: { 13130 CandidateSet->NoteCandidates( 13131 PartialDiagnosticAt(Fn->getBeginLoc(), 13132 SemaRef.PDiag(diag::err_ovl_deleted_call) 13133 << ULE->getName() << Fn->getSourceRange()), 13134 SemaRef, OCD_AllCandidates, Args); 13135 13136 // We emitted an error for the unavailable/deleted function call but keep 13137 // the call in the AST. 13138 FunctionDecl *FDecl = (*Best)->Function; 13139 Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl); 13140 return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc, 13141 ExecConfig, /*IsExecConfig=*/false, 13142 (*Best)->IsADLCandidate); 13143 } 13144 } 13145 13146 // Overload resolution failed, try to recover. 13147 SmallVector<Expr *, 8> SubExprs = {Fn}; 13148 SubExprs.append(Args.begin(), Args.end()); 13149 return SemaRef.CreateRecoveryExpr(Fn->getBeginLoc(), RParenLoc, SubExprs, 13150 chooseRecoveryType(*CandidateSet, Best)); 13151 } 13152 13153 static void markUnaddressableCandidatesUnviable(Sema &S, 13154 OverloadCandidateSet &CS) { 13155 for (auto I = CS.begin(), E = CS.end(); I != E; ++I) { 13156 if (I->Viable && 13157 !S.checkAddressOfFunctionIsAvailable(I->Function, /*Complain=*/false)) { 13158 I->Viable = false; 13159 I->FailureKind = ovl_fail_addr_not_available; 13160 } 13161 } 13162 } 13163 13164 /// BuildOverloadedCallExpr - Given the call expression that calls Fn 13165 /// (which eventually refers to the declaration Func) and the call 13166 /// arguments Args/NumArgs, attempt to resolve the function call down 13167 /// to a specific function. If overload resolution succeeds, returns 13168 /// the call expression produced by overload resolution. 13169 /// Otherwise, emits diagnostics and returns ExprError. 13170 ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, 13171 UnresolvedLookupExpr *ULE, 13172 SourceLocation LParenLoc, 13173 MultiExprArg Args, 13174 SourceLocation RParenLoc, 13175 Expr *ExecConfig, 13176 bool AllowTypoCorrection, 13177 bool CalleesAddressIsTaken) { 13178 OverloadCandidateSet CandidateSet(Fn->getExprLoc(), 13179 OverloadCandidateSet::CSK_Normal); 13180 ExprResult result; 13181 13182 if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet, 13183 &result)) 13184 return result; 13185 13186 // If the user handed us something like `(&Foo)(Bar)`, we need to ensure that 13187 // functions that aren't addressible are considered unviable. 13188 if (CalleesAddressIsTaken) 13189 markUnaddressableCandidatesUnviable(*this, CandidateSet); 13190 13191 OverloadCandidateSet::iterator Best; 13192 OverloadingResult OverloadResult = 13193 CandidateSet.BestViableFunction(*this, Fn->getBeginLoc(), Best); 13194 13195 return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args, RParenLoc, 13196 ExecConfig, &CandidateSet, &Best, 13197 OverloadResult, AllowTypoCorrection); 13198 } 13199 13200 static bool IsOverloaded(const UnresolvedSetImpl &Functions) { 13201 return Functions.size() > 1 || 13202 (Functions.size() == 1 && 13203 isa<FunctionTemplateDecl>((*Functions.begin())->getUnderlyingDecl())); 13204 } 13205 13206 ExprResult Sema::CreateUnresolvedLookupExpr(CXXRecordDecl *NamingClass, 13207 NestedNameSpecifierLoc NNSLoc, 13208 DeclarationNameInfo DNI, 13209 const UnresolvedSetImpl &Fns, 13210 bool PerformADL) { 13211 return UnresolvedLookupExpr::Create(Context, NamingClass, NNSLoc, DNI, 13212 PerformADL, IsOverloaded(Fns), 13213 Fns.begin(), Fns.end()); 13214 } 13215 13216 /// Create a unary operation that may resolve to an overloaded 13217 /// operator. 13218 /// 13219 /// \param OpLoc The location of the operator itself (e.g., '*'). 13220 /// 13221 /// \param Opc The UnaryOperatorKind that describes this operator. 13222 /// 13223 /// \param Fns The set of non-member functions that will be 13224 /// considered by overload resolution. The caller needs to build this 13225 /// set based on the context using, e.g., 13226 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 13227 /// set should not contain any member functions; those will be added 13228 /// by CreateOverloadedUnaryOp(). 13229 /// 13230 /// \param Input The input argument. 13231 ExprResult 13232 Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc, 13233 const UnresolvedSetImpl &Fns, 13234 Expr *Input, bool PerformADL) { 13235 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); 13236 assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); 13237 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 13238 // TODO: provide better source location info. 13239 DeclarationNameInfo OpNameInfo(OpName, OpLoc); 13240 13241 if (checkPlaceholderForOverload(*this, Input)) 13242 return ExprError(); 13243 13244 Expr *Args[2] = { Input, nullptr }; 13245 unsigned NumArgs = 1; 13246 13247 // For post-increment and post-decrement, add the implicit '0' as 13248 // the second argument, so that we know this is a post-increment or 13249 // post-decrement. 13250 if (Opc == UO_PostInc || Opc == UO_PostDec) { 13251 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 13252 Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy, 13253 SourceLocation()); 13254 NumArgs = 2; 13255 } 13256 13257 ArrayRef<Expr *> ArgsArray(Args, NumArgs); 13258 13259 if (Input->isTypeDependent()) { 13260 if (Fns.empty()) 13261 return UnaryOperator::Create(Context, Input, Opc, Context.DependentTy, 13262 VK_PRValue, OK_Ordinary, OpLoc, false, 13263 CurFPFeatureOverrides()); 13264 13265 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators 13266 ExprResult Fn = CreateUnresolvedLookupExpr( 13267 NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns); 13268 if (Fn.isInvalid()) 13269 return ExprError(); 13270 return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), ArgsArray, 13271 Context.DependentTy, VK_PRValue, OpLoc, 13272 CurFPFeatureOverrides()); 13273 } 13274 13275 // Build an empty overload set. 13276 OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator); 13277 13278 // Add the candidates from the given function set. 13279 AddNonMemberOperatorCandidates(Fns, ArgsArray, CandidateSet); 13280 13281 // Add operator candidates that are member functions. 13282 AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet); 13283 13284 // Add candidates from ADL. 13285 if (PerformADL) { 13286 AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray, 13287 /*ExplicitTemplateArgs*/nullptr, 13288 CandidateSet); 13289 } 13290 13291 // Add builtin operator candidates. 13292 AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet); 13293 13294 bool HadMultipleCandidates = (CandidateSet.size() > 1); 13295 13296 // Perform overload resolution. 13297 OverloadCandidateSet::iterator Best; 13298 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 13299 case OR_Success: { 13300 // We found a built-in operator or an overloaded operator. 13301 FunctionDecl *FnDecl = Best->Function; 13302 13303 if (FnDecl) { 13304 Expr *Base = nullptr; 13305 // We matched an overloaded operator. Build a call to that 13306 // operator. 13307 13308 // Convert the arguments. 13309 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 13310 CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl); 13311 13312 ExprResult InputRes = 13313 PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr, 13314 Best->FoundDecl, Method); 13315 if (InputRes.isInvalid()) 13316 return ExprError(); 13317 Base = Input = InputRes.get(); 13318 } else { 13319 // Convert the arguments. 13320 ExprResult InputInit 13321 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 13322 Context, 13323 FnDecl->getParamDecl(0)), 13324 SourceLocation(), 13325 Input); 13326 if (InputInit.isInvalid()) 13327 return ExprError(); 13328 Input = InputInit.get(); 13329 } 13330 13331 // Build the actual expression node. 13332 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl, 13333 Base, HadMultipleCandidates, 13334 OpLoc); 13335 if (FnExpr.isInvalid()) 13336 return ExprError(); 13337 13338 // Determine the result type. 13339 QualType ResultTy = FnDecl->getReturnType(); 13340 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 13341 ResultTy = ResultTy.getNonLValueExprType(Context); 13342 13343 Args[0] = Input; 13344 CallExpr *TheCall = CXXOperatorCallExpr::Create( 13345 Context, Op, FnExpr.get(), ArgsArray, ResultTy, VK, OpLoc, 13346 CurFPFeatureOverrides(), Best->IsADLCandidate); 13347 13348 if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl)) 13349 return ExprError(); 13350 13351 if (CheckFunctionCall(FnDecl, TheCall, 13352 FnDecl->getType()->castAs<FunctionProtoType>())) 13353 return ExprError(); 13354 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FnDecl); 13355 } else { 13356 // We matched a built-in operator. Convert the arguments, then 13357 // break out so that we will build the appropriate built-in 13358 // operator node. 13359 ExprResult InputRes = PerformImplicitConversion( 13360 Input, Best->BuiltinParamTypes[0], Best->Conversions[0], AA_Passing, 13361 CCK_ForBuiltinOverloadedOp); 13362 if (InputRes.isInvalid()) 13363 return ExprError(); 13364 Input = InputRes.get(); 13365 break; 13366 } 13367 } 13368 13369 case OR_No_Viable_Function: 13370 // This is an erroneous use of an operator which can be overloaded by 13371 // a non-member function. Check for non-member operators which were 13372 // defined too late to be candidates. 13373 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray)) 13374 // FIXME: Recover by calling the found function. 13375 return ExprError(); 13376 13377 // No viable function; fall through to handling this as a 13378 // built-in operator, which will produce an error message for us. 13379 break; 13380 13381 case OR_Ambiguous: 13382 CandidateSet.NoteCandidates( 13383 PartialDiagnosticAt(OpLoc, 13384 PDiag(diag::err_ovl_ambiguous_oper_unary) 13385 << UnaryOperator::getOpcodeStr(Opc) 13386 << Input->getType() << Input->getSourceRange()), 13387 *this, OCD_AmbiguousCandidates, ArgsArray, 13388 UnaryOperator::getOpcodeStr(Opc), OpLoc); 13389 return ExprError(); 13390 13391 case OR_Deleted: 13392 CandidateSet.NoteCandidates( 13393 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper) 13394 << UnaryOperator::getOpcodeStr(Opc) 13395 << Input->getSourceRange()), 13396 *this, OCD_AllCandidates, ArgsArray, UnaryOperator::getOpcodeStr(Opc), 13397 OpLoc); 13398 return ExprError(); 13399 } 13400 13401 // Either we found no viable overloaded operator or we matched a 13402 // built-in operator. In either case, fall through to trying to 13403 // build a built-in operation. 13404 return CreateBuiltinUnaryOp(OpLoc, Opc, Input); 13405 } 13406 13407 /// Perform lookup for an overloaded binary operator. 13408 void Sema::LookupOverloadedBinOp(OverloadCandidateSet &CandidateSet, 13409 OverloadedOperatorKind Op, 13410 const UnresolvedSetImpl &Fns, 13411 ArrayRef<Expr *> Args, bool PerformADL) { 13412 SourceLocation OpLoc = CandidateSet.getLocation(); 13413 13414 OverloadedOperatorKind ExtraOp = 13415 CandidateSet.getRewriteInfo().AllowRewrittenCandidates 13416 ? getRewrittenOverloadedOperator(Op) 13417 : OO_None; 13418 13419 // Add the candidates from the given function set. This also adds the 13420 // rewritten candidates using these functions if necessary. 13421 AddNonMemberOperatorCandidates(Fns, Args, CandidateSet); 13422 13423 // Add operator candidates that are member functions. 13424 AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet); 13425 if (CandidateSet.getRewriteInfo().shouldAddReversed(Op)) 13426 AddMemberOperatorCandidates(Op, OpLoc, {Args[1], Args[0]}, CandidateSet, 13427 OverloadCandidateParamOrder::Reversed); 13428 13429 // In C++20, also add any rewritten member candidates. 13430 if (ExtraOp) { 13431 AddMemberOperatorCandidates(ExtraOp, OpLoc, Args, CandidateSet); 13432 if (CandidateSet.getRewriteInfo().shouldAddReversed(ExtraOp)) 13433 AddMemberOperatorCandidates(ExtraOp, OpLoc, {Args[1], Args[0]}, 13434 CandidateSet, 13435 OverloadCandidateParamOrder::Reversed); 13436 } 13437 13438 // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not 13439 // performed for an assignment operator (nor for operator[] nor operator->, 13440 // which don't get here). 13441 if (Op != OO_Equal && PerformADL) { 13442 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 13443 AddArgumentDependentLookupCandidates(OpName, OpLoc, Args, 13444 /*ExplicitTemplateArgs*/ nullptr, 13445 CandidateSet); 13446 if (ExtraOp) { 13447 DeclarationName ExtraOpName = 13448 Context.DeclarationNames.getCXXOperatorName(ExtraOp); 13449 AddArgumentDependentLookupCandidates(ExtraOpName, OpLoc, Args, 13450 /*ExplicitTemplateArgs*/ nullptr, 13451 CandidateSet); 13452 } 13453 } 13454 13455 // Add builtin operator candidates. 13456 // 13457 // FIXME: We don't add any rewritten candidates here. This is strictly 13458 // incorrect; a builtin candidate could be hidden by a non-viable candidate, 13459 // resulting in our selecting a rewritten builtin candidate. For example: 13460 // 13461 // enum class E { e }; 13462 // bool operator!=(E, E) requires false; 13463 // bool k = E::e != E::e; 13464 // 13465 // ... should select the rewritten builtin candidate 'operator==(E, E)'. But 13466 // it seems unreasonable to consider rewritten builtin candidates. A core 13467 // issue has been filed proposing to removed this requirement. 13468 AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet); 13469 } 13470 13471 /// Create a binary operation that may resolve to an overloaded 13472 /// operator. 13473 /// 13474 /// \param OpLoc The location of the operator itself (e.g., '+'). 13475 /// 13476 /// \param Opc The BinaryOperatorKind that describes this operator. 13477 /// 13478 /// \param Fns The set of non-member functions that will be 13479 /// considered by overload resolution. The caller needs to build this 13480 /// set based on the context using, e.g., 13481 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 13482 /// set should not contain any member functions; those will be added 13483 /// by CreateOverloadedBinOp(). 13484 /// 13485 /// \param LHS Left-hand argument. 13486 /// \param RHS Right-hand argument. 13487 /// \param PerformADL Whether to consider operator candidates found by ADL. 13488 /// \param AllowRewrittenCandidates Whether to consider candidates found by 13489 /// C++20 operator rewrites. 13490 /// \param DefaultedFn If we are synthesizing a defaulted operator function, 13491 /// the function in question. Such a function is never a candidate in 13492 /// our overload resolution. This also enables synthesizing a three-way 13493 /// comparison from < and == as described in C++20 [class.spaceship]p1. 13494 ExprResult Sema::CreateOverloadedBinOp(SourceLocation OpLoc, 13495 BinaryOperatorKind Opc, 13496 const UnresolvedSetImpl &Fns, Expr *LHS, 13497 Expr *RHS, bool PerformADL, 13498 bool AllowRewrittenCandidates, 13499 FunctionDecl *DefaultedFn) { 13500 Expr *Args[2] = { LHS, RHS }; 13501 LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple 13502 13503 if (!getLangOpts().CPlusPlus20) 13504 AllowRewrittenCandidates = false; 13505 13506 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); 13507 13508 // If either side is type-dependent, create an appropriate dependent 13509 // expression. 13510 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 13511 if (Fns.empty()) { 13512 // If there are no functions to store, just build a dependent 13513 // BinaryOperator or CompoundAssignment. 13514 if (BinaryOperator::isCompoundAssignmentOp(Opc)) 13515 return CompoundAssignOperator::Create( 13516 Context, Args[0], Args[1], Opc, Context.DependentTy, VK_LValue, 13517 OK_Ordinary, OpLoc, CurFPFeatureOverrides(), Context.DependentTy, 13518 Context.DependentTy); 13519 return BinaryOperator::Create( 13520 Context, Args[0], Args[1], Opc, Context.DependentTy, VK_PRValue, 13521 OK_Ordinary, OpLoc, CurFPFeatureOverrides()); 13522 } 13523 13524 // FIXME: save results of ADL from here? 13525 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators 13526 // TODO: provide better source location info in DNLoc component. 13527 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 13528 DeclarationNameInfo OpNameInfo(OpName, OpLoc); 13529 ExprResult Fn = CreateUnresolvedLookupExpr( 13530 NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns, PerformADL); 13531 if (Fn.isInvalid()) 13532 return ExprError(); 13533 return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), Args, 13534 Context.DependentTy, VK_PRValue, OpLoc, 13535 CurFPFeatureOverrides()); 13536 } 13537 13538 // Always do placeholder-like conversions on the RHS. 13539 if (checkPlaceholderForOverload(*this, Args[1])) 13540 return ExprError(); 13541 13542 // Do placeholder-like conversion on the LHS; note that we should 13543 // not get here with a PseudoObject LHS. 13544 assert(Args[0]->getObjectKind() != OK_ObjCProperty); 13545 if (checkPlaceholderForOverload(*this, Args[0])) 13546 return ExprError(); 13547 13548 // If this is the assignment operator, we only perform overload resolution 13549 // if the left-hand side is a class or enumeration type. This is actually 13550 // a hack. The standard requires that we do overload resolution between the 13551 // various built-in candidates, but as DR507 points out, this can lead to 13552 // problems. So we do it this way, which pretty much follows what GCC does. 13553 // Note that we go the traditional code path for compound assignment forms. 13554 if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType()) 13555 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 13556 13557 // If this is the .* operator, which is not overloadable, just 13558 // create a built-in binary operator. 13559 if (Opc == BO_PtrMemD) 13560 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 13561 13562 // Build the overload set. 13563 OverloadCandidateSet CandidateSet( 13564 OpLoc, OverloadCandidateSet::CSK_Operator, 13565 OverloadCandidateSet::OperatorRewriteInfo(Op, AllowRewrittenCandidates)); 13566 if (DefaultedFn) 13567 CandidateSet.exclude(DefaultedFn); 13568 LookupOverloadedBinOp(CandidateSet, Op, Fns, Args, PerformADL); 13569 13570 bool HadMultipleCandidates = (CandidateSet.size() > 1); 13571 13572 // Perform overload resolution. 13573 OverloadCandidateSet::iterator Best; 13574 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 13575 case OR_Success: { 13576 // We found a built-in operator or an overloaded operator. 13577 FunctionDecl *FnDecl = Best->Function; 13578 13579 bool IsReversed = Best->isReversed(); 13580 if (IsReversed) 13581 std::swap(Args[0], Args[1]); 13582 13583 if (FnDecl) { 13584 Expr *Base = nullptr; 13585 // We matched an overloaded operator. Build a call to that 13586 // operator. 13587 13588 OverloadedOperatorKind ChosenOp = 13589 FnDecl->getDeclName().getCXXOverloadedOperator(); 13590 13591 // C++2a [over.match.oper]p9: 13592 // If a rewritten operator== candidate is selected by overload 13593 // resolution for an operator@, its return type shall be cv bool 13594 if (Best->RewriteKind && ChosenOp == OO_EqualEqual && 13595 !FnDecl->getReturnType()->isBooleanType()) { 13596 bool IsExtension = 13597 FnDecl->getReturnType()->isIntegralOrUnscopedEnumerationType(); 13598 Diag(OpLoc, IsExtension ? diag::ext_ovl_rewrite_equalequal_not_bool 13599 : diag::err_ovl_rewrite_equalequal_not_bool) 13600 << FnDecl->getReturnType() << BinaryOperator::getOpcodeStr(Opc) 13601 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 13602 Diag(FnDecl->getLocation(), diag::note_declared_at); 13603 if (!IsExtension) 13604 return ExprError(); 13605 } 13606 13607 if (AllowRewrittenCandidates && !IsReversed && 13608 CandidateSet.getRewriteInfo().isReversible()) { 13609 // We could have reversed this operator, but didn't. Check if some 13610 // reversed form was a viable candidate, and if so, if it had a 13611 // better conversion for either parameter. If so, this call is 13612 // formally ambiguous, and allowing it is an extension. 13613 llvm::SmallVector<FunctionDecl*, 4> AmbiguousWith; 13614 for (OverloadCandidate &Cand : CandidateSet) { 13615 if (Cand.Viable && Cand.Function && Cand.isReversed() && 13616 haveSameParameterTypes(Context, Cand.Function, FnDecl, 2)) { 13617 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { 13618 if (CompareImplicitConversionSequences( 13619 *this, OpLoc, Cand.Conversions[ArgIdx], 13620 Best->Conversions[ArgIdx]) == 13621 ImplicitConversionSequence::Better) { 13622 AmbiguousWith.push_back(Cand.Function); 13623 break; 13624 } 13625 } 13626 } 13627 } 13628 13629 if (!AmbiguousWith.empty()) { 13630 bool AmbiguousWithSelf = 13631 AmbiguousWith.size() == 1 && 13632 declaresSameEntity(AmbiguousWith.front(), FnDecl); 13633 Diag(OpLoc, diag::ext_ovl_ambiguous_oper_binary_reversed) 13634 << BinaryOperator::getOpcodeStr(Opc) 13635 << Args[0]->getType() << Args[1]->getType() << AmbiguousWithSelf 13636 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 13637 if (AmbiguousWithSelf) { 13638 Diag(FnDecl->getLocation(), 13639 diag::note_ovl_ambiguous_oper_binary_reversed_self); 13640 } else { 13641 Diag(FnDecl->getLocation(), 13642 diag::note_ovl_ambiguous_oper_binary_selected_candidate); 13643 for (auto *F : AmbiguousWith) 13644 Diag(F->getLocation(), 13645 diag::note_ovl_ambiguous_oper_binary_reversed_candidate); 13646 } 13647 } 13648 } 13649 13650 // Convert the arguments. 13651 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 13652 // Best->Access is only meaningful for class members. 13653 CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl); 13654 13655 ExprResult Arg1 = 13656 PerformCopyInitialization( 13657 InitializedEntity::InitializeParameter(Context, 13658 FnDecl->getParamDecl(0)), 13659 SourceLocation(), Args[1]); 13660 if (Arg1.isInvalid()) 13661 return ExprError(); 13662 13663 ExprResult Arg0 = 13664 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr, 13665 Best->FoundDecl, Method); 13666 if (Arg0.isInvalid()) 13667 return ExprError(); 13668 Base = Args[0] = Arg0.getAs<Expr>(); 13669 Args[1] = RHS = Arg1.getAs<Expr>(); 13670 } else { 13671 // Convert the arguments. 13672 ExprResult Arg0 = PerformCopyInitialization( 13673 InitializedEntity::InitializeParameter(Context, 13674 FnDecl->getParamDecl(0)), 13675 SourceLocation(), Args[0]); 13676 if (Arg0.isInvalid()) 13677 return ExprError(); 13678 13679 ExprResult Arg1 = 13680 PerformCopyInitialization( 13681 InitializedEntity::InitializeParameter(Context, 13682 FnDecl->getParamDecl(1)), 13683 SourceLocation(), Args[1]); 13684 if (Arg1.isInvalid()) 13685 return ExprError(); 13686 Args[0] = LHS = Arg0.getAs<Expr>(); 13687 Args[1] = RHS = Arg1.getAs<Expr>(); 13688 } 13689 13690 // Build the actual expression node. 13691 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, 13692 Best->FoundDecl, Base, 13693 HadMultipleCandidates, OpLoc); 13694 if (FnExpr.isInvalid()) 13695 return ExprError(); 13696 13697 // Determine the result type. 13698 QualType ResultTy = FnDecl->getReturnType(); 13699 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 13700 ResultTy = ResultTy.getNonLValueExprType(Context); 13701 13702 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create( 13703 Context, ChosenOp, FnExpr.get(), Args, ResultTy, VK, OpLoc, 13704 CurFPFeatureOverrides(), Best->IsADLCandidate); 13705 13706 if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, 13707 FnDecl)) 13708 return ExprError(); 13709 13710 ArrayRef<const Expr *> ArgsArray(Args, 2); 13711 const Expr *ImplicitThis = nullptr; 13712 // Cut off the implicit 'this'. 13713 if (isa<CXXMethodDecl>(FnDecl)) { 13714 ImplicitThis = ArgsArray[0]; 13715 ArgsArray = ArgsArray.slice(1); 13716 } 13717 13718 // Check for a self move. 13719 if (Op == OO_Equal) 13720 DiagnoseSelfMove(Args[0], Args[1], OpLoc); 13721 13722 if (ImplicitThis) { 13723 QualType ThisType = Context.getPointerType(ImplicitThis->getType()); 13724 QualType ThisTypeFromDecl = Context.getPointerType( 13725 cast<CXXMethodDecl>(FnDecl)->getThisObjectType()); 13726 13727 CheckArgAlignment(OpLoc, FnDecl, "'this'", ThisType, 13728 ThisTypeFromDecl); 13729 } 13730 13731 checkCall(FnDecl, nullptr, ImplicitThis, ArgsArray, 13732 isa<CXXMethodDecl>(FnDecl), OpLoc, TheCall->getSourceRange(), 13733 VariadicDoesNotApply); 13734 13735 ExprResult R = MaybeBindToTemporary(TheCall); 13736 if (R.isInvalid()) 13737 return ExprError(); 13738 13739 R = CheckForImmediateInvocation(R, FnDecl); 13740 if (R.isInvalid()) 13741 return ExprError(); 13742 13743 // For a rewritten candidate, we've already reversed the arguments 13744 // if needed. Perform the rest of the rewrite now. 13745 if ((Best->RewriteKind & CRK_DifferentOperator) || 13746 (Op == OO_Spaceship && IsReversed)) { 13747 if (Op == OO_ExclaimEqual) { 13748 assert(ChosenOp == OO_EqualEqual && "unexpected operator name"); 13749 R = CreateBuiltinUnaryOp(OpLoc, UO_LNot, R.get()); 13750 } else { 13751 assert(ChosenOp == OO_Spaceship && "unexpected operator name"); 13752 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 13753 Expr *ZeroLiteral = 13754 IntegerLiteral::Create(Context, Zero, Context.IntTy, OpLoc); 13755 13756 Sema::CodeSynthesisContext Ctx; 13757 Ctx.Kind = Sema::CodeSynthesisContext::RewritingOperatorAsSpaceship; 13758 Ctx.Entity = FnDecl; 13759 pushCodeSynthesisContext(Ctx); 13760 13761 R = CreateOverloadedBinOp( 13762 OpLoc, Opc, Fns, IsReversed ? ZeroLiteral : R.get(), 13763 IsReversed ? R.get() : ZeroLiteral, PerformADL, 13764 /*AllowRewrittenCandidates=*/false); 13765 13766 popCodeSynthesisContext(); 13767 } 13768 if (R.isInvalid()) 13769 return ExprError(); 13770 } else { 13771 assert(ChosenOp == Op && "unexpected operator name"); 13772 } 13773 13774 // Make a note in the AST if we did any rewriting. 13775 if (Best->RewriteKind != CRK_None) 13776 R = new (Context) CXXRewrittenBinaryOperator(R.get(), IsReversed); 13777 13778 return R; 13779 } else { 13780 // We matched a built-in operator. Convert the arguments, then 13781 // break out so that we will build the appropriate built-in 13782 // operator node. 13783 ExprResult ArgsRes0 = PerformImplicitConversion( 13784 Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0], 13785 AA_Passing, CCK_ForBuiltinOverloadedOp); 13786 if (ArgsRes0.isInvalid()) 13787 return ExprError(); 13788 Args[0] = ArgsRes0.get(); 13789 13790 ExprResult ArgsRes1 = PerformImplicitConversion( 13791 Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1], 13792 AA_Passing, CCK_ForBuiltinOverloadedOp); 13793 if (ArgsRes1.isInvalid()) 13794 return ExprError(); 13795 Args[1] = ArgsRes1.get(); 13796 break; 13797 } 13798 } 13799 13800 case OR_No_Viable_Function: { 13801 // C++ [over.match.oper]p9: 13802 // If the operator is the operator , [...] and there are no 13803 // viable functions, then the operator is assumed to be the 13804 // built-in operator and interpreted according to clause 5. 13805 if (Opc == BO_Comma) 13806 break; 13807 13808 // When defaulting an 'operator<=>', we can try to synthesize a three-way 13809 // compare result using '==' and '<'. 13810 if (DefaultedFn && Opc == BO_Cmp) { 13811 ExprResult E = BuildSynthesizedThreeWayComparison(OpLoc, Fns, Args[0], 13812 Args[1], DefaultedFn); 13813 if (E.isInvalid() || E.isUsable()) 13814 return E; 13815 } 13816 13817 // For class as left operand for assignment or compound assignment 13818 // operator do not fall through to handling in built-in, but report that 13819 // no overloaded assignment operator found 13820 ExprResult Result = ExprError(); 13821 StringRef OpcStr = BinaryOperator::getOpcodeStr(Opc); 13822 auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, 13823 Args, OpLoc); 13824 DeferDiagsRAII DDR(*this, 13825 CandidateSet.shouldDeferDiags(*this, Args, OpLoc)); 13826 if (Args[0]->getType()->isRecordType() && 13827 Opc >= BO_Assign && Opc <= BO_OrAssign) { 13828 Diag(OpLoc, diag::err_ovl_no_viable_oper) 13829 << BinaryOperator::getOpcodeStr(Opc) 13830 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 13831 if (Args[0]->getType()->isIncompleteType()) { 13832 Diag(OpLoc, diag::note_assign_lhs_incomplete) 13833 << Args[0]->getType() 13834 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 13835 } 13836 } else { 13837 // This is an erroneous use of an operator which can be overloaded by 13838 // a non-member function. Check for non-member operators which were 13839 // defined too late to be candidates. 13840 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args)) 13841 // FIXME: Recover by calling the found function. 13842 return ExprError(); 13843 13844 // No viable function; try to create a built-in operation, which will 13845 // produce an error. Then, show the non-viable candidates. 13846 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 13847 } 13848 assert(Result.isInvalid() && 13849 "C++ binary operator overloading is missing candidates!"); 13850 CandidateSet.NoteCandidates(*this, Args, Cands, OpcStr, OpLoc); 13851 return Result; 13852 } 13853 13854 case OR_Ambiguous: 13855 CandidateSet.NoteCandidates( 13856 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_binary) 13857 << BinaryOperator::getOpcodeStr(Opc) 13858 << Args[0]->getType() 13859 << Args[1]->getType() 13860 << Args[0]->getSourceRange() 13861 << Args[1]->getSourceRange()), 13862 *this, OCD_AmbiguousCandidates, Args, BinaryOperator::getOpcodeStr(Opc), 13863 OpLoc); 13864 return ExprError(); 13865 13866 case OR_Deleted: 13867 if (isImplicitlyDeleted(Best->Function)) { 13868 FunctionDecl *DeletedFD = Best->Function; 13869 DefaultedFunctionKind DFK = getDefaultedFunctionKind(DeletedFD); 13870 if (DFK.isSpecialMember()) { 13871 Diag(OpLoc, diag::err_ovl_deleted_special_oper) 13872 << Args[0]->getType() << DFK.asSpecialMember(); 13873 } else { 13874 assert(DFK.isComparison()); 13875 Diag(OpLoc, diag::err_ovl_deleted_comparison) 13876 << Args[0]->getType() << DeletedFD; 13877 } 13878 13879 // The user probably meant to call this special member. Just 13880 // explain why it's deleted. 13881 NoteDeletedFunction(DeletedFD); 13882 return ExprError(); 13883 } 13884 CandidateSet.NoteCandidates( 13885 PartialDiagnosticAt( 13886 OpLoc, PDiag(diag::err_ovl_deleted_oper) 13887 << getOperatorSpelling(Best->Function->getDeclName() 13888 .getCXXOverloadedOperator()) 13889 << Args[0]->getSourceRange() 13890 << Args[1]->getSourceRange()), 13891 *this, OCD_AllCandidates, Args, BinaryOperator::getOpcodeStr(Opc), 13892 OpLoc); 13893 return ExprError(); 13894 } 13895 13896 // We matched a built-in operator; build it. 13897 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 13898 } 13899 13900 ExprResult Sema::BuildSynthesizedThreeWayComparison( 13901 SourceLocation OpLoc, const UnresolvedSetImpl &Fns, Expr *LHS, Expr *RHS, 13902 FunctionDecl *DefaultedFn) { 13903 const ComparisonCategoryInfo *Info = 13904 Context.CompCategories.lookupInfoForType(DefaultedFn->getReturnType()); 13905 // If we're not producing a known comparison category type, we can't 13906 // synthesize a three-way comparison. Let the caller diagnose this. 13907 if (!Info) 13908 return ExprResult((Expr*)nullptr); 13909 13910 // If we ever want to perform this synthesis more generally, we will need to 13911 // apply the temporary materialization conversion to the operands. 13912 assert(LHS->isGLValue() && RHS->isGLValue() && 13913 "cannot use prvalue expressions more than once"); 13914 Expr *OrigLHS = LHS; 13915 Expr *OrigRHS = RHS; 13916 13917 // Replace the LHS and RHS with OpaqueValueExprs; we're going to refer to 13918 // each of them multiple times below. 13919 LHS = new (Context) 13920 OpaqueValueExpr(LHS->getExprLoc(), LHS->getType(), LHS->getValueKind(), 13921 LHS->getObjectKind(), LHS); 13922 RHS = new (Context) 13923 OpaqueValueExpr(RHS->getExprLoc(), RHS->getType(), RHS->getValueKind(), 13924 RHS->getObjectKind(), RHS); 13925 13926 ExprResult Eq = CreateOverloadedBinOp(OpLoc, BO_EQ, Fns, LHS, RHS, true, true, 13927 DefaultedFn); 13928 if (Eq.isInvalid()) 13929 return ExprError(); 13930 13931 ExprResult Less = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, LHS, RHS, true, 13932 true, DefaultedFn); 13933 if (Less.isInvalid()) 13934 return ExprError(); 13935 13936 ExprResult Greater; 13937 if (Info->isPartial()) { 13938 Greater = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, RHS, LHS, true, true, 13939 DefaultedFn); 13940 if (Greater.isInvalid()) 13941 return ExprError(); 13942 } 13943 13944 // Form the list of comparisons we're going to perform. 13945 struct Comparison { 13946 ExprResult Cmp; 13947 ComparisonCategoryResult Result; 13948 } Comparisons[4] = 13949 { {Eq, Info->isStrong() ? ComparisonCategoryResult::Equal 13950 : ComparisonCategoryResult::Equivalent}, 13951 {Less, ComparisonCategoryResult::Less}, 13952 {Greater, ComparisonCategoryResult::Greater}, 13953 {ExprResult(), ComparisonCategoryResult::Unordered}, 13954 }; 13955 13956 int I = Info->isPartial() ? 3 : 2; 13957 13958 // Combine the comparisons with suitable conditional expressions. 13959 ExprResult Result; 13960 for (; I >= 0; --I) { 13961 // Build a reference to the comparison category constant. 13962 auto *VI = Info->lookupValueInfo(Comparisons[I].Result); 13963 // FIXME: Missing a constant for a comparison category. Diagnose this? 13964 if (!VI) 13965 return ExprResult((Expr*)nullptr); 13966 ExprResult ThisResult = 13967 BuildDeclarationNameExpr(CXXScopeSpec(), DeclarationNameInfo(), VI->VD); 13968 if (ThisResult.isInvalid()) 13969 return ExprError(); 13970 13971 // Build a conditional unless this is the final case. 13972 if (Result.get()) { 13973 Result = ActOnConditionalOp(OpLoc, OpLoc, Comparisons[I].Cmp.get(), 13974 ThisResult.get(), Result.get()); 13975 if (Result.isInvalid()) 13976 return ExprError(); 13977 } else { 13978 Result = ThisResult; 13979 } 13980 } 13981 13982 // Build a PseudoObjectExpr to model the rewriting of an <=> operator, and to 13983 // bind the OpaqueValueExprs before they're (repeatedly) used. 13984 Expr *SyntacticForm = BinaryOperator::Create( 13985 Context, OrigLHS, OrigRHS, BO_Cmp, Result.get()->getType(), 13986 Result.get()->getValueKind(), Result.get()->getObjectKind(), OpLoc, 13987 CurFPFeatureOverrides()); 13988 Expr *SemanticForm[] = {LHS, RHS, Result.get()}; 13989 return PseudoObjectExpr::Create(Context, SyntacticForm, SemanticForm, 2); 13990 } 13991 13992 ExprResult 13993 Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, 13994 SourceLocation RLoc, 13995 Expr *Base, Expr *Idx) { 13996 Expr *Args[2] = { Base, Idx }; 13997 DeclarationName OpName = 13998 Context.DeclarationNames.getCXXOperatorName(OO_Subscript); 13999 14000 // If either side is type-dependent, create an appropriate dependent 14001 // expression. 14002 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 14003 14004 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators 14005 // CHECKME: no 'operator' keyword? 14006 DeclarationNameInfo OpNameInfo(OpName, LLoc); 14007 OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); 14008 ExprResult Fn = CreateUnresolvedLookupExpr( 14009 NamingClass, NestedNameSpecifierLoc(), OpNameInfo, UnresolvedSet<0>()); 14010 if (Fn.isInvalid()) 14011 return ExprError(); 14012 // Can't add any actual overloads yet 14013 14014 return CXXOperatorCallExpr::Create(Context, OO_Subscript, Fn.get(), Args, 14015 Context.DependentTy, VK_PRValue, RLoc, 14016 CurFPFeatureOverrides()); 14017 } 14018 14019 // Handle placeholders on both operands. 14020 if (checkPlaceholderForOverload(*this, Args[0])) 14021 return ExprError(); 14022 if (checkPlaceholderForOverload(*this, Args[1])) 14023 return ExprError(); 14024 14025 // Build an empty overload set. 14026 OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator); 14027 14028 // Subscript can only be overloaded as a member function. 14029 14030 // Add operator candidates that are member functions. 14031 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet); 14032 14033 // Add builtin operator candidates. 14034 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet); 14035 14036 bool HadMultipleCandidates = (CandidateSet.size() > 1); 14037 14038 // Perform overload resolution. 14039 OverloadCandidateSet::iterator Best; 14040 switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) { 14041 case OR_Success: { 14042 // We found a built-in operator or an overloaded operator. 14043 FunctionDecl *FnDecl = Best->Function; 14044 14045 if (FnDecl) { 14046 // We matched an overloaded operator. Build a call to that 14047 // operator. 14048 14049 CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl); 14050 14051 // Convert the arguments. 14052 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); 14053 ExprResult Arg0 = 14054 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr, 14055 Best->FoundDecl, Method); 14056 if (Arg0.isInvalid()) 14057 return ExprError(); 14058 Args[0] = Arg0.get(); 14059 14060 // Convert the arguments. 14061 ExprResult InputInit 14062 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 14063 Context, 14064 FnDecl->getParamDecl(0)), 14065 SourceLocation(), 14066 Args[1]); 14067 if (InputInit.isInvalid()) 14068 return ExprError(); 14069 14070 Args[1] = InputInit.getAs<Expr>(); 14071 14072 // Build the actual expression node. 14073 DeclarationNameInfo OpLocInfo(OpName, LLoc); 14074 OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); 14075 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, 14076 Best->FoundDecl, 14077 Base, 14078 HadMultipleCandidates, 14079 OpLocInfo.getLoc(), 14080 OpLocInfo.getInfo()); 14081 if (FnExpr.isInvalid()) 14082 return ExprError(); 14083 14084 // Determine the result type 14085 QualType ResultTy = FnDecl->getReturnType(); 14086 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 14087 ResultTy = ResultTy.getNonLValueExprType(Context); 14088 14089 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create( 14090 Context, OO_Subscript, FnExpr.get(), Args, ResultTy, VK, RLoc, 14091 CurFPFeatureOverrides()); 14092 if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl)) 14093 return ExprError(); 14094 14095 if (CheckFunctionCall(Method, TheCall, 14096 Method->getType()->castAs<FunctionProtoType>())) 14097 return ExprError(); 14098 14099 return MaybeBindToTemporary(TheCall); 14100 } else { 14101 // We matched a built-in operator. Convert the arguments, then 14102 // break out so that we will build the appropriate built-in 14103 // operator node. 14104 ExprResult ArgsRes0 = PerformImplicitConversion( 14105 Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0], 14106 AA_Passing, CCK_ForBuiltinOverloadedOp); 14107 if (ArgsRes0.isInvalid()) 14108 return ExprError(); 14109 Args[0] = ArgsRes0.get(); 14110 14111 ExprResult ArgsRes1 = PerformImplicitConversion( 14112 Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1], 14113 AA_Passing, CCK_ForBuiltinOverloadedOp); 14114 if (ArgsRes1.isInvalid()) 14115 return ExprError(); 14116 Args[1] = ArgsRes1.get(); 14117 14118 break; 14119 } 14120 } 14121 14122 case OR_No_Viable_Function: { 14123 PartialDiagnostic PD = CandidateSet.empty() 14124 ? (PDiag(diag::err_ovl_no_oper) 14125 << Args[0]->getType() << /*subscript*/ 0 14126 << Args[0]->getSourceRange() << Args[1]->getSourceRange()) 14127 : (PDiag(diag::err_ovl_no_viable_subscript) 14128 << Args[0]->getType() << Args[0]->getSourceRange() 14129 << Args[1]->getSourceRange()); 14130 CandidateSet.NoteCandidates(PartialDiagnosticAt(LLoc, PD), *this, 14131 OCD_AllCandidates, Args, "[]", LLoc); 14132 return ExprError(); 14133 } 14134 14135 case OR_Ambiguous: 14136 CandidateSet.NoteCandidates( 14137 PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_ambiguous_oper_binary) 14138 << "[]" << Args[0]->getType() 14139 << Args[1]->getType() 14140 << Args[0]->getSourceRange() 14141 << Args[1]->getSourceRange()), 14142 *this, OCD_AmbiguousCandidates, Args, "[]", LLoc); 14143 return ExprError(); 14144 14145 case OR_Deleted: 14146 CandidateSet.NoteCandidates( 14147 PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_deleted_oper) 14148 << "[]" << Args[0]->getSourceRange() 14149 << Args[1]->getSourceRange()), 14150 *this, OCD_AllCandidates, Args, "[]", LLoc); 14151 return ExprError(); 14152 } 14153 14154 // We matched a built-in operator; build it. 14155 return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc); 14156 } 14157 14158 /// BuildCallToMemberFunction - Build a call to a member 14159 /// function. MemExpr is the expression that refers to the member 14160 /// function (and includes the object parameter), Args/NumArgs are the 14161 /// arguments to the function call (not including the object 14162 /// parameter). The caller needs to validate that the member 14163 /// expression refers to a non-static member function or an overloaded 14164 /// member function. 14165 ExprResult Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, 14166 SourceLocation LParenLoc, 14167 MultiExprArg Args, 14168 SourceLocation RParenLoc, 14169 bool AllowRecovery) { 14170 assert(MemExprE->getType() == Context.BoundMemberTy || 14171 MemExprE->getType() == Context.OverloadTy); 14172 14173 // Dig out the member expression. This holds both the object 14174 // argument and the member function we're referring to. 14175 Expr *NakedMemExpr = MemExprE->IgnoreParens(); 14176 14177 // Determine whether this is a call to a pointer-to-member function. 14178 if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) { 14179 assert(op->getType() == Context.BoundMemberTy); 14180 assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI); 14181 14182 QualType fnType = 14183 op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType(); 14184 14185 const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>(); 14186 QualType resultType = proto->getCallResultType(Context); 14187 ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType()); 14188 14189 // Check that the object type isn't more qualified than the 14190 // member function we're calling. 14191 Qualifiers funcQuals = proto->getMethodQuals(); 14192 14193 QualType objectType = op->getLHS()->getType(); 14194 if (op->getOpcode() == BO_PtrMemI) 14195 objectType = objectType->castAs<PointerType>()->getPointeeType(); 14196 Qualifiers objectQuals = objectType.getQualifiers(); 14197 14198 Qualifiers difference = objectQuals - funcQuals; 14199 difference.removeObjCGCAttr(); 14200 difference.removeAddressSpace(); 14201 if (difference) { 14202 std::string qualsString = difference.getAsString(); 14203 Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals) 14204 << fnType.getUnqualifiedType() 14205 << qualsString 14206 << (qualsString.find(' ') == std::string::npos ? 1 : 2); 14207 } 14208 14209 CXXMemberCallExpr *call = CXXMemberCallExpr::Create( 14210 Context, MemExprE, Args, resultType, valueKind, RParenLoc, 14211 CurFPFeatureOverrides(), proto->getNumParams()); 14212 14213 if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getBeginLoc(), 14214 call, nullptr)) 14215 return ExprError(); 14216 14217 if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc)) 14218 return ExprError(); 14219 14220 if (CheckOtherCall(call, proto)) 14221 return ExprError(); 14222 14223 return MaybeBindToTemporary(call); 14224 } 14225 14226 // We only try to build a recovery expr at this level if we can preserve 14227 // the return type, otherwise we return ExprError() and let the caller 14228 // recover. 14229 auto BuildRecoveryExpr = [&](QualType Type) { 14230 if (!AllowRecovery) 14231 return ExprError(); 14232 std::vector<Expr *> SubExprs = {MemExprE}; 14233 llvm::for_each(Args, [&SubExprs](Expr *E) { SubExprs.push_back(E); }); 14234 return CreateRecoveryExpr(MemExprE->getBeginLoc(), RParenLoc, SubExprs, 14235 Type); 14236 }; 14237 if (isa<CXXPseudoDestructorExpr>(NakedMemExpr)) 14238 return CallExpr::Create(Context, MemExprE, Args, Context.VoidTy, VK_PRValue, 14239 RParenLoc, CurFPFeatureOverrides()); 14240 14241 UnbridgedCastsSet UnbridgedCasts; 14242 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) 14243 return ExprError(); 14244 14245 MemberExpr *MemExpr; 14246 CXXMethodDecl *Method = nullptr; 14247 DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public); 14248 NestedNameSpecifier *Qualifier = nullptr; 14249 if (isa<MemberExpr>(NakedMemExpr)) { 14250 MemExpr = cast<MemberExpr>(NakedMemExpr); 14251 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl()); 14252 FoundDecl = MemExpr->getFoundDecl(); 14253 Qualifier = MemExpr->getQualifier(); 14254 UnbridgedCasts.restore(); 14255 } else { 14256 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr); 14257 Qualifier = UnresExpr->getQualifier(); 14258 14259 QualType ObjectType = UnresExpr->getBaseType(); 14260 Expr::Classification ObjectClassification 14261 = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue() 14262 : UnresExpr->getBase()->Classify(Context); 14263 14264 // Add overload candidates 14265 OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(), 14266 OverloadCandidateSet::CSK_Normal); 14267 14268 // FIXME: avoid copy. 14269 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr; 14270 if (UnresExpr->hasExplicitTemplateArgs()) { 14271 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 14272 TemplateArgs = &TemplateArgsBuffer; 14273 } 14274 14275 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(), 14276 E = UnresExpr->decls_end(); I != E; ++I) { 14277 14278 NamedDecl *Func = *I; 14279 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext()); 14280 if (isa<UsingShadowDecl>(Func)) 14281 Func = cast<UsingShadowDecl>(Func)->getTargetDecl(); 14282 14283 14284 // Microsoft supports direct constructor calls. 14285 if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) { 14286 AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args, 14287 CandidateSet, 14288 /*SuppressUserConversions*/ false); 14289 } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) { 14290 // If explicit template arguments were provided, we can't call a 14291 // non-template member function. 14292 if (TemplateArgs) 14293 continue; 14294 14295 AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType, 14296 ObjectClassification, Args, CandidateSet, 14297 /*SuppressUserConversions=*/false); 14298 } else { 14299 AddMethodTemplateCandidate( 14300 cast<FunctionTemplateDecl>(Func), I.getPair(), ActingDC, 14301 TemplateArgs, ObjectType, ObjectClassification, Args, CandidateSet, 14302 /*SuppressUserConversions=*/false); 14303 } 14304 } 14305 14306 DeclarationName DeclName = UnresExpr->getMemberName(); 14307 14308 UnbridgedCasts.restore(); 14309 14310 OverloadCandidateSet::iterator Best; 14311 bool Succeeded = false; 14312 switch (CandidateSet.BestViableFunction(*this, UnresExpr->getBeginLoc(), 14313 Best)) { 14314 case OR_Success: 14315 Method = cast<CXXMethodDecl>(Best->Function); 14316 FoundDecl = Best->FoundDecl; 14317 CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl); 14318 if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc())) 14319 break; 14320 // If FoundDecl is different from Method (such as if one is a template 14321 // and the other a specialization), make sure DiagnoseUseOfDecl is 14322 // called on both. 14323 // FIXME: This would be more comprehensively addressed by modifying 14324 // DiagnoseUseOfDecl to accept both the FoundDecl and the decl 14325 // being used. 14326 if (Method != FoundDecl.getDecl() && 14327 DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc())) 14328 break; 14329 Succeeded = true; 14330 break; 14331 14332 case OR_No_Viable_Function: 14333 CandidateSet.NoteCandidates( 14334 PartialDiagnosticAt( 14335 UnresExpr->getMemberLoc(), 14336 PDiag(diag::err_ovl_no_viable_member_function_in_call) 14337 << DeclName << MemExprE->getSourceRange()), 14338 *this, OCD_AllCandidates, Args); 14339 break; 14340 case OR_Ambiguous: 14341 CandidateSet.NoteCandidates( 14342 PartialDiagnosticAt(UnresExpr->getMemberLoc(), 14343 PDiag(diag::err_ovl_ambiguous_member_call) 14344 << DeclName << MemExprE->getSourceRange()), 14345 *this, OCD_AmbiguousCandidates, Args); 14346 break; 14347 case OR_Deleted: 14348 CandidateSet.NoteCandidates( 14349 PartialDiagnosticAt(UnresExpr->getMemberLoc(), 14350 PDiag(diag::err_ovl_deleted_member_call) 14351 << DeclName << MemExprE->getSourceRange()), 14352 *this, OCD_AllCandidates, Args); 14353 break; 14354 } 14355 // Overload resolution fails, try to recover. 14356 if (!Succeeded) 14357 return BuildRecoveryExpr(chooseRecoveryType(CandidateSet, &Best)); 14358 14359 MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method); 14360 14361 // If overload resolution picked a static member, build a 14362 // non-member call based on that function. 14363 if (Method->isStatic()) { 14364 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args, 14365 RParenLoc); 14366 } 14367 14368 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens()); 14369 } 14370 14371 QualType ResultType = Method->getReturnType(); 14372 ExprValueKind VK = Expr::getValueKindForType(ResultType); 14373 ResultType = ResultType.getNonLValueExprType(Context); 14374 14375 assert(Method && "Member call to something that isn't a method?"); 14376 const auto *Proto = Method->getType()->castAs<FunctionProtoType>(); 14377 CXXMemberCallExpr *TheCall = CXXMemberCallExpr::Create( 14378 Context, MemExprE, Args, ResultType, VK, RParenLoc, 14379 CurFPFeatureOverrides(), Proto->getNumParams()); 14380 14381 // Check for a valid return type. 14382 if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(), 14383 TheCall, Method)) 14384 return BuildRecoveryExpr(ResultType); 14385 14386 // Convert the object argument (for a non-static member function call). 14387 // We only need to do this if there was actually an overload; otherwise 14388 // it was done at lookup. 14389 if (!Method->isStatic()) { 14390 ExprResult ObjectArg = 14391 PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier, 14392 FoundDecl, Method); 14393 if (ObjectArg.isInvalid()) 14394 return ExprError(); 14395 MemExpr->setBase(ObjectArg.get()); 14396 } 14397 14398 // Convert the rest of the arguments 14399 if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, 14400 RParenLoc)) 14401 return BuildRecoveryExpr(ResultType); 14402 14403 DiagnoseSentinelCalls(Method, LParenLoc, Args); 14404 14405 if (CheckFunctionCall(Method, TheCall, Proto)) 14406 return ExprError(); 14407 14408 // In the case the method to call was not selected by the overloading 14409 // resolution process, we still need to handle the enable_if attribute. Do 14410 // that here, so it will not hide previous -- and more relevant -- errors. 14411 if (auto *MemE = dyn_cast<MemberExpr>(NakedMemExpr)) { 14412 if (const EnableIfAttr *Attr = 14413 CheckEnableIf(Method, LParenLoc, Args, true)) { 14414 Diag(MemE->getMemberLoc(), 14415 diag::err_ovl_no_viable_member_function_in_call) 14416 << Method << Method->getSourceRange(); 14417 Diag(Method->getLocation(), 14418 diag::note_ovl_candidate_disabled_by_function_cond_attr) 14419 << Attr->getCond()->getSourceRange() << Attr->getMessage(); 14420 return ExprError(); 14421 } 14422 } 14423 14424 if ((isa<CXXConstructorDecl>(CurContext) || 14425 isa<CXXDestructorDecl>(CurContext)) && 14426 TheCall->getMethodDecl()->isPure()) { 14427 const CXXMethodDecl *MD = TheCall->getMethodDecl(); 14428 14429 if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts()) && 14430 MemExpr->performsVirtualDispatch(getLangOpts())) { 14431 Diag(MemExpr->getBeginLoc(), 14432 diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor) 14433 << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext) 14434 << MD->getParent(); 14435 14436 Diag(MD->getBeginLoc(), diag::note_previous_decl) << MD->getDeclName(); 14437 if (getLangOpts().AppleKext) 14438 Diag(MemExpr->getBeginLoc(), diag::note_pure_qualified_call_kext) 14439 << MD->getParent() << MD->getDeclName(); 14440 } 14441 } 14442 14443 if (CXXDestructorDecl *DD = 14444 dyn_cast<CXXDestructorDecl>(TheCall->getMethodDecl())) { 14445 // a->A::f() doesn't go through the vtable, except in AppleKext mode. 14446 bool CallCanBeVirtual = !MemExpr->hasQualifier() || getLangOpts().AppleKext; 14447 CheckVirtualDtorCall(DD, MemExpr->getBeginLoc(), /*IsDelete=*/false, 14448 CallCanBeVirtual, /*WarnOnNonAbstractTypes=*/true, 14449 MemExpr->getMemberLoc()); 14450 } 14451 14452 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), 14453 TheCall->getMethodDecl()); 14454 } 14455 14456 /// BuildCallToObjectOfClassType - Build a call to an object of class 14457 /// type (C++ [over.call.object]), which can end up invoking an 14458 /// overloaded function call operator (@c operator()) or performing a 14459 /// user-defined conversion on the object argument. 14460 ExprResult 14461 Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj, 14462 SourceLocation LParenLoc, 14463 MultiExprArg Args, 14464 SourceLocation RParenLoc) { 14465 if (checkPlaceholderForOverload(*this, Obj)) 14466 return ExprError(); 14467 ExprResult Object = Obj; 14468 14469 UnbridgedCastsSet UnbridgedCasts; 14470 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) 14471 return ExprError(); 14472 14473 assert(Object.get()->getType()->isRecordType() && 14474 "Requires object type argument"); 14475 14476 // C++ [over.call.object]p1: 14477 // If the primary-expression E in the function call syntax 14478 // evaluates to a class object of type "cv T", then the set of 14479 // candidate functions includes at least the function call 14480 // operators of T. The function call operators of T are obtained by 14481 // ordinary lookup of the name operator() in the context of 14482 // (E).operator(). 14483 OverloadCandidateSet CandidateSet(LParenLoc, 14484 OverloadCandidateSet::CSK_Operator); 14485 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); 14486 14487 if (RequireCompleteType(LParenLoc, Object.get()->getType(), 14488 diag::err_incomplete_object_call, Object.get())) 14489 return true; 14490 14491 const auto *Record = Object.get()->getType()->castAs<RecordType>(); 14492 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); 14493 LookupQualifiedName(R, Record->getDecl()); 14494 R.suppressDiagnostics(); 14495 14496 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 14497 Oper != OperEnd; ++Oper) { 14498 AddMethodCandidate(Oper.getPair(), Object.get()->getType(), 14499 Object.get()->Classify(Context), Args, CandidateSet, 14500 /*SuppressUserConversion=*/false); 14501 } 14502 14503 // C++ [over.call.object]p2: 14504 // In addition, for each (non-explicit in C++0x) conversion function 14505 // declared in T of the form 14506 // 14507 // operator conversion-type-id () cv-qualifier; 14508 // 14509 // where cv-qualifier is the same cv-qualification as, or a 14510 // greater cv-qualification than, cv, and where conversion-type-id 14511 // denotes the type "pointer to function of (P1,...,Pn) returning 14512 // R", or the type "reference to pointer to function of 14513 // (P1,...,Pn) returning R", or the type "reference to function 14514 // of (P1,...,Pn) returning R", a surrogate call function [...] 14515 // is also considered as a candidate function. Similarly, 14516 // surrogate call functions are added to the set of candidate 14517 // functions for each conversion function declared in an 14518 // accessible base class provided the function is not hidden 14519 // within T by another intervening declaration. 14520 const auto &Conversions = 14521 cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions(); 14522 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 14523 NamedDecl *D = *I; 14524 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 14525 if (isa<UsingShadowDecl>(D)) 14526 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 14527 14528 // Skip over templated conversion functions; they aren't 14529 // surrogates. 14530 if (isa<FunctionTemplateDecl>(D)) 14531 continue; 14532 14533 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 14534 if (!Conv->isExplicit()) { 14535 // Strip the reference type (if any) and then the pointer type (if 14536 // any) to get down to what might be a function type. 14537 QualType ConvType = Conv->getConversionType().getNonReferenceType(); 14538 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 14539 ConvType = ConvPtrType->getPointeeType(); 14540 14541 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) 14542 { 14543 AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto, 14544 Object.get(), Args, CandidateSet); 14545 } 14546 } 14547 } 14548 14549 bool HadMultipleCandidates = (CandidateSet.size() > 1); 14550 14551 // Perform overload resolution. 14552 OverloadCandidateSet::iterator Best; 14553 switch (CandidateSet.BestViableFunction(*this, Object.get()->getBeginLoc(), 14554 Best)) { 14555 case OR_Success: 14556 // Overload resolution succeeded; we'll build the appropriate call 14557 // below. 14558 break; 14559 14560 case OR_No_Viable_Function: { 14561 PartialDiagnostic PD = 14562 CandidateSet.empty() 14563 ? (PDiag(diag::err_ovl_no_oper) 14564 << Object.get()->getType() << /*call*/ 1 14565 << Object.get()->getSourceRange()) 14566 : (PDiag(diag::err_ovl_no_viable_object_call) 14567 << Object.get()->getType() << Object.get()->getSourceRange()); 14568 CandidateSet.NoteCandidates( 14569 PartialDiagnosticAt(Object.get()->getBeginLoc(), PD), *this, 14570 OCD_AllCandidates, Args); 14571 break; 14572 } 14573 case OR_Ambiguous: 14574 CandidateSet.NoteCandidates( 14575 PartialDiagnosticAt(Object.get()->getBeginLoc(), 14576 PDiag(diag::err_ovl_ambiguous_object_call) 14577 << Object.get()->getType() 14578 << Object.get()->getSourceRange()), 14579 *this, OCD_AmbiguousCandidates, Args); 14580 break; 14581 14582 case OR_Deleted: 14583 CandidateSet.NoteCandidates( 14584 PartialDiagnosticAt(Object.get()->getBeginLoc(), 14585 PDiag(diag::err_ovl_deleted_object_call) 14586 << Object.get()->getType() 14587 << Object.get()->getSourceRange()), 14588 *this, OCD_AllCandidates, Args); 14589 break; 14590 } 14591 14592 if (Best == CandidateSet.end()) 14593 return true; 14594 14595 UnbridgedCasts.restore(); 14596 14597 if (Best->Function == nullptr) { 14598 // Since there is no function declaration, this is one of the 14599 // surrogate candidates. Dig out the conversion function. 14600 CXXConversionDecl *Conv 14601 = cast<CXXConversionDecl>( 14602 Best->Conversions[0].UserDefined.ConversionFunction); 14603 14604 CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, 14605 Best->FoundDecl); 14606 if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc)) 14607 return ExprError(); 14608 assert(Conv == Best->FoundDecl.getDecl() && 14609 "Found Decl & conversion-to-functionptr should be same, right?!"); 14610 // We selected one of the surrogate functions that converts the 14611 // object parameter to a function pointer. Perform the conversion 14612 // on the object argument, then let BuildCallExpr finish the job. 14613 14614 // Create an implicit member expr to refer to the conversion operator. 14615 // and then call it. 14616 ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl, 14617 Conv, HadMultipleCandidates); 14618 if (Call.isInvalid()) 14619 return ExprError(); 14620 // Record usage of conversion in an implicit cast. 14621 Call = ImplicitCastExpr::Create( 14622 Context, Call.get()->getType(), CK_UserDefinedConversion, Call.get(), 14623 nullptr, VK_PRValue, CurFPFeatureOverrides()); 14624 14625 return BuildCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc); 14626 } 14627 14628 CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl); 14629 14630 // We found an overloaded operator(). Build a CXXOperatorCallExpr 14631 // that calls this method, using Object for the implicit object 14632 // parameter and passing along the remaining arguments. 14633 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 14634 14635 // An error diagnostic has already been printed when parsing the declaration. 14636 if (Method->isInvalidDecl()) 14637 return ExprError(); 14638 14639 const auto *Proto = Method->getType()->castAs<FunctionProtoType>(); 14640 unsigned NumParams = Proto->getNumParams(); 14641 14642 DeclarationNameInfo OpLocInfo( 14643 Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc); 14644 OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc)); 14645 ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl, 14646 Obj, HadMultipleCandidates, 14647 OpLocInfo.getLoc(), 14648 OpLocInfo.getInfo()); 14649 if (NewFn.isInvalid()) 14650 return true; 14651 14652 // The number of argument slots to allocate in the call. If we have default 14653 // arguments we need to allocate space for them as well. We additionally 14654 // need one more slot for the object parameter. 14655 unsigned NumArgsSlots = 1 + std::max<unsigned>(Args.size(), NumParams); 14656 14657 // Build the full argument list for the method call (the implicit object 14658 // parameter is placed at the beginning of the list). 14659 SmallVector<Expr *, 8> MethodArgs(NumArgsSlots); 14660 14661 bool IsError = false; 14662 14663 // Initialize the implicit object parameter. 14664 ExprResult ObjRes = 14665 PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/nullptr, 14666 Best->FoundDecl, Method); 14667 if (ObjRes.isInvalid()) 14668 IsError = true; 14669 else 14670 Object = ObjRes; 14671 MethodArgs[0] = Object.get(); 14672 14673 // Check the argument types. 14674 for (unsigned i = 0; i != NumParams; i++) { 14675 Expr *Arg; 14676 if (i < Args.size()) { 14677 Arg = Args[i]; 14678 14679 // Pass the argument. 14680 14681 ExprResult InputInit 14682 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 14683 Context, 14684 Method->getParamDecl(i)), 14685 SourceLocation(), Arg); 14686 14687 IsError |= InputInit.isInvalid(); 14688 Arg = InputInit.getAs<Expr>(); 14689 } else { 14690 ExprResult DefArg 14691 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); 14692 if (DefArg.isInvalid()) { 14693 IsError = true; 14694 break; 14695 } 14696 14697 Arg = DefArg.getAs<Expr>(); 14698 } 14699 14700 MethodArgs[i + 1] = Arg; 14701 } 14702 14703 // If this is a variadic call, handle args passed through "...". 14704 if (Proto->isVariadic()) { 14705 // Promote the arguments (C99 6.5.2.2p7). 14706 for (unsigned i = NumParams, e = Args.size(); i < e; i++) { 14707 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 14708 nullptr); 14709 IsError |= Arg.isInvalid(); 14710 MethodArgs[i + 1] = Arg.get(); 14711 } 14712 } 14713 14714 if (IsError) 14715 return true; 14716 14717 DiagnoseSentinelCalls(Method, LParenLoc, Args); 14718 14719 // Once we've built TheCall, all of the expressions are properly owned. 14720 QualType ResultTy = Method->getReturnType(); 14721 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 14722 ResultTy = ResultTy.getNonLValueExprType(Context); 14723 14724 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create( 14725 Context, OO_Call, NewFn.get(), MethodArgs, ResultTy, VK, RParenLoc, 14726 CurFPFeatureOverrides()); 14727 14728 if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method)) 14729 return true; 14730 14731 if (CheckFunctionCall(Method, TheCall, Proto)) 14732 return true; 14733 14734 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), Method); 14735 } 14736 14737 /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> 14738 /// (if one exists), where @c Base is an expression of class type and 14739 /// @c Member is the name of the member we're trying to find. 14740 ExprResult 14741 Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc, 14742 bool *NoArrowOperatorFound) { 14743 assert(Base->getType()->isRecordType() && 14744 "left-hand side must have class type"); 14745 14746 if (checkPlaceholderForOverload(*this, Base)) 14747 return ExprError(); 14748 14749 SourceLocation Loc = Base->getExprLoc(); 14750 14751 // C++ [over.ref]p1: 14752 // 14753 // [...] An expression x->m is interpreted as (x.operator->())->m 14754 // for a class object x of type T if T::operator->() exists and if 14755 // the operator is selected as the best match function by the 14756 // overload resolution mechanism (13.3). 14757 DeclarationName OpName = 14758 Context.DeclarationNames.getCXXOperatorName(OO_Arrow); 14759 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator); 14760 14761 if (RequireCompleteType(Loc, Base->getType(), 14762 diag::err_typecheck_incomplete_tag, Base)) 14763 return ExprError(); 14764 14765 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); 14766 LookupQualifiedName(R, Base->getType()->castAs<RecordType>()->getDecl()); 14767 R.suppressDiagnostics(); 14768 14769 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 14770 Oper != OperEnd; ++Oper) { 14771 AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context), 14772 None, CandidateSet, /*SuppressUserConversion=*/false); 14773 } 14774 14775 bool HadMultipleCandidates = (CandidateSet.size() > 1); 14776 14777 // Perform overload resolution. 14778 OverloadCandidateSet::iterator Best; 14779 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 14780 case OR_Success: 14781 // Overload resolution succeeded; we'll build the call below. 14782 break; 14783 14784 case OR_No_Viable_Function: { 14785 auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, Base); 14786 if (CandidateSet.empty()) { 14787 QualType BaseType = Base->getType(); 14788 if (NoArrowOperatorFound) { 14789 // Report this specific error to the caller instead of emitting a 14790 // diagnostic, as requested. 14791 *NoArrowOperatorFound = true; 14792 return ExprError(); 14793 } 14794 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 14795 << BaseType << Base->getSourceRange(); 14796 if (BaseType->isRecordType() && !BaseType->isPointerType()) { 14797 Diag(OpLoc, diag::note_typecheck_member_reference_suggestion) 14798 << FixItHint::CreateReplacement(OpLoc, "."); 14799 } 14800 } else 14801 Diag(OpLoc, diag::err_ovl_no_viable_oper) 14802 << "operator->" << Base->getSourceRange(); 14803 CandidateSet.NoteCandidates(*this, Base, Cands); 14804 return ExprError(); 14805 } 14806 case OR_Ambiguous: 14807 CandidateSet.NoteCandidates( 14808 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_unary) 14809 << "->" << Base->getType() 14810 << Base->getSourceRange()), 14811 *this, OCD_AmbiguousCandidates, Base); 14812 return ExprError(); 14813 14814 case OR_Deleted: 14815 CandidateSet.NoteCandidates( 14816 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper) 14817 << "->" << Base->getSourceRange()), 14818 *this, OCD_AllCandidates, Base); 14819 return ExprError(); 14820 } 14821 14822 CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl); 14823 14824 // Convert the object parameter. 14825 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 14826 ExprResult BaseResult = 14827 PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr, 14828 Best->FoundDecl, Method); 14829 if (BaseResult.isInvalid()) 14830 return ExprError(); 14831 Base = BaseResult.get(); 14832 14833 // Build the operator call. 14834 ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl, 14835 Base, HadMultipleCandidates, OpLoc); 14836 if (FnExpr.isInvalid()) 14837 return ExprError(); 14838 14839 QualType ResultTy = Method->getReturnType(); 14840 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 14841 ResultTy = ResultTy.getNonLValueExprType(Context); 14842 CXXOperatorCallExpr *TheCall = 14843 CXXOperatorCallExpr::Create(Context, OO_Arrow, FnExpr.get(), Base, 14844 ResultTy, VK, OpLoc, CurFPFeatureOverrides()); 14845 14846 if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method)) 14847 return ExprError(); 14848 14849 if (CheckFunctionCall(Method, TheCall, 14850 Method->getType()->castAs<FunctionProtoType>())) 14851 return ExprError(); 14852 14853 return MaybeBindToTemporary(TheCall); 14854 } 14855 14856 /// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to 14857 /// a literal operator described by the provided lookup results. 14858 ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R, 14859 DeclarationNameInfo &SuffixInfo, 14860 ArrayRef<Expr*> Args, 14861 SourceLocation LitEndLoc, 14862 TemplateArgumentListInfo *TemplateArgs) { 14863 SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc(); 14864 14865 OverloadCandidateSet CandidateSet(UDSuffixLoc, 14866 OverloadCandidateSet::CSK_Normal); 14867 AddNonMemberOperatorCandidates(R.asUnresolvedSet(), Args, CandidateSet, 14868 TemplateArgs); 14869 14870 bool HadMultipleCandidates = (CandidateSet.size() > 1); 14871 14872 // Perform overload resolution. This will usually be trivial, but might need 14873 // to perform substitutions for a literal operator template. 14874 OverloadCandidateSet::iterator Best; 14875 switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) { 14876 case OR_Success: 14877 case OR_Deleted: 14878 break; 14879 14880 case OR_No_Viable_Function: 14881 CandidateSet.NoteCandidates( 14882 PartialDiagnosticAt(UDSuffixLoc, 14883 PDiag(diag::err_ovl_no_viable_function_in_call) 14884 << R.getLookupName()), 14885 *this, OCD_AllCandidates, Args); 14886 return ExprError(); 14887 14888 case OR_Ambiguous: 14889 CandidateSet.NoteCandidates( 14890 PartialDiagnosticAt(R.getNameLoc(), PDiag(diag::err_ovl_ambiguous_call) 14891 << R.getLookupName()), 14892 *this, OCD_AmbiguousCandidates, Args); 14893 return ExprError(); 14894 } 14895 14896 FunctionDecl *FD = Best->Function; 14897 ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl, 14898 nullptr, HadMultipleCandidates, 14899 SuffixInfo.getLoc(), 14900 SuffixInfo.getInfo()); 14901 if (Fn.isInvalid()) 14902 return true; 14903 14904 // Check the argument types. This should almost always be a no-op, except 14905 // that array-to-pointer decay is applied to string literals. 14906 Expr *ConvArgs[2]; 14907 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 14908 ExprResult InputInit = PerformCopyInitialization( 14909 InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)), 14910 SourceLocation(), Args[ArgIdx]); 14911 if (InputInit.isInvalid()) 14912 return true; 14913 ConvArgs[ArgIdx] = InputInit.get(); 14914 } 14915 14916 QualType ResultTy = FD->getReturnType(); 14917 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 14918 ResultTy = ResultTy.getNonLValueExprType(Context); 14919 14920 UserDefinedLiteral *UDL = UserDefinedLiteral::Create( 14921 Context, Fn.get(), llvm::makeArrayRef(ConvArgs, Args.size()), ResultTy, 14922 VK, LitEndLoc, UDSuffixLoc, CurFPFeatureOverrides()); 14923 14924 if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD)) 14925 return ExprError(); 14926 14927 if (CheckFunctionCall(FD, UDL, nullptr)) 14928 return ExprError(); 14929 14930 return CheckForImmediateInvocation(MaybeBindToTemporary(UDL), FD); 14931 } 14932 14933 /// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the 14934 /// given LookupResult is non-empty, it is assumed to describe a member which 14935 /// will be invoked. Otherwise, the function will be found via argument 14936 /// dependent lookup. 14937 /// CallExpr is set to a valid expression and FRS_Success returned on success, 14938 /// otherwise CallExpr is set to ExprError() and some non-success value 14939 /// is returned. 14940 Sema::ForRangeStatus 14941 Sema::BuildForRangeBeginEndCall(SourceLocation Loc, 14942 SourceLocation RangeLoc, 14943 const DeclarationNameInfo &NameInfo, 14944 LookupResult &MemberLookup, 14945 OverloadCandidateSet *CandidateSet, 14946 Expr *Range, ExprResult *CallExpr) { 14947 Scope *S = nullptr; 14948 14949 CandidateSet->clear(OverloadCandidateSet::CSK_Normal); 14950 if (!MemberLookup.empty()) { 14951 ExprResult MemberRef = 14952 BuildMemberReferenceExpr(Range, Range->getType(), Loc, 14953 /*IsPtr=*/false, CXXScopeSpec(), 14954 /*TemplateKWLoc=*/SourceLocation(), 14955 /*FirstQualifierInScope=*/nullptr, 14956 MemberLookup, 14957 /*TemplateArgs=*/nullptr, S); 14958 if (MemberRef.isInvalid()) { 14959 *CallExpr = ExprError(); 14960 return FRS_DiagnosticIssued; 14961 } 14962 *CallExpr = BuildCallExpr(S, MemberRef.get(), Loc, None, Loc, nullptr); 14963 if (CallExpr->isInvalid()) { 14964 *CallExpr = ExprError(); 14965 return FRS_DiagnosticIssued; 14966 } 14967 } else { 14968 ExprResult FnR = CreateUnresolvedLookupExpr(/*NamingClass=*/nullptr, 14969 NestedNameSpecifierLoc(), 14970 NameInfo, UnresolvedSet<0>()); 14971 if (FnR.isInvalid()) 14972 return FRS_DiagnosticIssued; 14973 UnresolvedLookupExpr *Fn = cast<UnresolvedLookupExpr>(FnR.get()); 14974 14975 bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc, 14976 CandidateSet, CallExpr); 14977 if (CandidateSet->empty() || CandidateSetError) { 14978 *CallExpr = ExprError(); 14979 return FRS_NoViableFunction; 14980 } 14981 OverloadCandidateSet::iterator Best; 14982 OverloadingResult OverloadResult = 14983 CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best); 14984 14985 if (OverloadResult == OR_No_Viable_Function) { 14986 *CallExpr = ExprError(); 14987 return FRS_NoViableFunction; 14988 } 14989 *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range, 14990 Loc, nullptr, CandidateSet, &Best, 14991 OverloadResult, 14992 /*AllowTypoCorrection=*/false); 14993 if (CallExpr->isInvalid() || OverloadResult != OR_Success) { 14994 *CallExpr = ExprError(); 14995 return FRS_DiagnosticIssued; 14996 } 14997 } 14998 return FRS_Success; 14999 } 15000 15001 15002 /// FixOverloadedFunctionReference - E is an expression that refers to 15003 /// a C++ overloaded function (possibly with some parentheses and 15004 /// perhaps a '&' around it). We have resolved the overloaded function 15005 /// to the function declaration Fn, so patch up the expression E to 15006 /// refer (possibly indirectly) to Fn. Returns the new expr. 15007 Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found, 15008 FunctionDecl *Fn) { 15009 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 15010 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), 15011 Found, Fn); 15012 if (SubExpr == PE->getSubExpr()) 15013 return PE; 15014 15015 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr); 15016 } 15017 15018 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 15019 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), 15020 Found, Fn); 15021 assert(Context.hasSameType(ICE->getSubExpr()->getType(), 15022 SubExpr->getType()) && 15023 "Implicit cast type cannot be determined from overload"); 15024 assert(ICE->path_empty() && "fixing up hierarchy conversion?"); 15025 if (SubExpr == ICE->getSubExpr()) 15026 return ICE; 15027 15028 return ImplicitCastExpr::Create(Context, ICE->getType(), ICE->getCastKind(), 15029 SubExpr, nullptr, ICE->getValueKind(), 15030 CurFPFeatureOverrides()); 15031 } 15032 15033 if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) { 15034 if (!GSE->isResultDependent()) { 15035 Expr *SubExpr = 15036 FixOverloadedFunctionReference(GSE->getResultExpr(), Found, Fn); 15037 if (SubExpr == GSE->getResultExpr()) 15038 return GSE; 15039 15040 // Replace the resulting type information before rebuilding the generic 15041 // selection expression. 15042 ArrayRef<Expr *> A = GSE->getAssocExprs(); 15043 SmallVector<Expr *, 4> AssocExprs(A.begin(), A.end()); 15044 unsigned ResultIdx = GSE->getResultIndex(); 15045 AssocExprs[ResultIdx] = SubExpr; 15046 15047 return GenericSelectionExpr::Create( 15048 Context, GSE->getGenericLoc(), GSE->getControllingExpr(), 15049 GSE->getAssocTypeSourceInfos(), AssocExprs, GSE->getDefaultLoc(), 15050 GSE->getRParenLoc(), GSE->containsUnexpandedParameterPack(), 15051 ResultIdx); 15052 } 15053 // Rather than fall through to the unreachable, return the original generic 15054 // selection expression. 15055 return GSE; 15056 } 15057 15058 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { 15059 assert(UnOp->getOpcode() == UO_AddrOf && 15060 "Can only take the address of an overloaded function"); 15061 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 15062 if (Method->isStatic()) { 15063 // Do nothing: static member functions aren't any different 15064 // from non-member functions. 15065 } else { 15066 // Fix the subexpression, which really has to be an 15067 // UnresolvedLookupExpr holding an overloaded member function 15068 // or template. 15069 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 15070 Found, Fn); 15071 if (SubExpr == UnOp->getSubExpr()) 15072 return UnOp; 15073 15074 assert(isa<DeclRefExpr>(SubExpr) 15075 && "fixed to something other than a decl ref"); 15076 assert(cast<DeclRefExpr>(SubExpr)->getQualifier() 15077 && "fixed to a member ref with no nested name qualifier"); 15078 15079 // We have taken the address of a pointer to member 15080 // function. Perform the computation here so that we get the 15081 // appropriate pointer to member type. 15082 QualType ClassType 15083 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); 15084 QualType MemPtrType 15085 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr()); 15086 // Under the MS ABI, lock down the inheritance model now. 15087 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) 15088 (void)isCompleteType(UnOp->getOperatorLoc(), MemPtrType); 15089 15090 return UnaryOperator::Create( 15091 Context, SubExpr, UO_AddrOf, MemPtrType, VK_PRValue, OK_Ordinary, 15092 UnOp->getOperatorLoc(), false, CurFPFeatureOverrides()); 15093 } 15094 } 15095 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 15096 Found, Fn); 15097 if (SubExpr == UnOp->getSubExpr()) 15098 return UnOp; 15099 15100 return UnaryOperator::Create( 15101 Context, SubExpr, UO_AddrOf, Context.getPointerType(SubExpr->getType()), 15102 VK_PRValue, OK_Ordinary, UnOp->getOperatorLoc(), false, 15103 CurFPFeatureOverrides()); 15104 } 15105 15106 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { 15107 // FIXME: avoid copy. 15108 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr; 15109 if (ULE->hasExplicitTemplateArgs()) { 15110 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer); 15111 TemplateArgs = &TemplateArgsBuffer; 15112 } 15113 15114 DeclRefExpr *DRE = 15115 BuildDeclRefExpr(Fn, Fn->getType(), VK_LValue, ULE->getNameInfo(), 15116 ULE->getQualifierLoc(), Found.getDecl(), 15117 ULE->getTemplateKeywordLoc(), TemplateArgs); 15118 DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1); 15119 return DRE; 15120 } 15121 15122 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) { 15123 // FIXME: avoid copy. 15124 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr; 15125 if (MemExpr->hasExplicitTemplateArgs()) { 15126 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 15127 TemplateArgs = &TemplateArgsBuffer; 15128 } 15129 15130 Expr *Base; 15131 15132 // If we're filling in a static method where we used to have an 15133 // implicit member access, rewrite to a simple decl ref. 15134 if (MemExpr->isImplicitAccess()) { 15135 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 15136 DeclRefExpr *DRE = BuildDeclRefExpr( 15137 Fn, Fn->getType(), VK_LValue, MemExpr->getNameInfo(), 15138 MemExpr->getQualifierLoc(), Found.getDecl(), 15139 MemExpr->getTemplateKeywordLoc(), TemplateArgs); 15140 DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1); 15141 return DRE; 15142 } else { 15143 SourceLocation Loc = MemExpr->getMemberLoc(); 15144 if (MemExpr->getQualifier()) 15145 Loc = MemExpr->getQualifierLoc().getBeginLoc(); 15146 Base = 15147 BuildCXXThisExpr(Loc, MemExpr->getBaseType(), /*IsImplicit=*/true); 15148 } 15149 } else 15150 Base = MemExpr->getBase(); 15151 15152 ExprValueKind valueKind; 15153 QualType type; 15154 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 15155 valueKind = VK_LValue; 15156 type = Fn->getType(); 15157 } else { 15158 valueKind = VK_PRValue; 15159 type = Context.BoundMemberTy; 15160 } 15161 15162 return BuildMemberExpr( 15163 Base, MemExpr->isArrow(), MemExpr->getOperatorLoc(), 15164 MemExpr->getQualifierLoc(), MemExpr->getTemplateKeywordLoc(), Fn, Found, 15165 /*HadMultipleCandidates=*/true, MemExpr->getMemberNameInfo(), 15166 type, valueKind, OK_Ordinary, TemplateArgs); 15167 } 15168 15169 llvm_unreachable("Invalid reference to overloaded function"); 15170 } 15171 15172 ExprResult Sema::FixOverloadedFunctionReference(ExprResult E, 15173 DeclAccessPair Found, 15174 FunctionDecl *Fn) { 15175 return FixOverloadedFunctionReference(E.get(), Found, Fn); 15176 } 15177