1 //===--- SemaModule.cpp - Semantic Analysis for Modules -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for modules (C++ modules syntax, 10 // Objective-C modules syntax, and Clang header modules). 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/ASTConsumer.h" 15 #include "clang/Lex/HeaderSearch.h" 16 #include "clang/Lex/Preprocessor.h" 17 #include "clang/Sema/SemaInternal.h" 18 19 using namespace clang; 20 using namespace sema; 21 22 static void checkModuleImportContext(Sema &S, Module *M, 23 SourceLocation ImportLoc, DeclContext *DC, 24 bool FromInclude = false) { 25 SourceLocation ExternCLoc; 26 27 if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) { 28 switch (LSD->getLanguage()) { 29 case LinkageSpecDecl::lang_c: 30 if (ExternCLoc.isInvalid()) 31 ExternCLoc = LSD->getBeginLoc(); 32 break; 33 case LinkageSpecDecl::lang_cxx: 34 break; 35 } 36 DC = LSD->getParent(); 37 } 38 39 while (isa<LinkageSpecDecl>(DC) || isa<ExportDecl>(DC)) 40 DC = DC->getParent(); 41 42 if (!isa<TranslationUnitDecl>(DC)) { 43 S.Diag(ImportLoc, (FromInclude && S.isModuleVisible(M)) 44 ? diag::ext_module_import_not_at_top_level_noop 45 : diag::err_module_import_not_at_top_level_fatal) 46 << M->getFullModuleName() << DC; 47 S.Diag(cast<Decl>(DC)->getBeginLoc(), 48 diag::note_module_import_not_at_top_level) 49 << DC; 50 } else if (!M->IsExternC && ExternCLoc.isValid()) { 51 S.Diag(ImportLoc, diag::ext_module_import_in_extern_c) 52 << M->getFullModuleName(); 53 S.Diag(ExternCLoc, diag::note_extern_c_begins_here); 54 } 55 } 56 57 // We represent the primary and partition names as 'Paths' which are sections 58 // of the hierarchical access path for a clang module. However for C++20 59 // the periods in a name are just another character, and we will need to 60 // flatten them into a string. 61 static std::string stringFromPath(ModuleIdPath Path) { 62 std::string Name; 63 if (Path.empty()) 64 return Name; 65 66 for (auto &Piece : Path) { 67 if (!Name.empty()) 68 Name += "."; 69 Name += Piece.first->getName(); 70 } 71 return Name; 72 } 73 74 Sema::DeclGroupPtrTy 75 Sema::ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc) { 76 if (!ModuleScopes.empty() && 77 ModuleScopes.back().Module->Kind == Module::GlobalModuleFragment) { 78 // Under -std=c++2a -fmodules-ts, we can find an explicit 'module;' after 79 // already implicitly entering the global module fragment. That's OK. 80 assert(getLangOpts().CPlusPlusModules && getLangOpts().ModulesTS && 81 "unexpectedly encountered multiple global module fragment decls"); 82 ModuleScopes.back().BeginLoc = ModuleLoc; 83 return nullptr; 84 } 85 86 // We start in the global module; all those declarations are implicitly 87 // module-private (though they do not have module linkage). 88 Module *GlobalModule = 89 PushGlobalModuleFragment(ModuleLoc, /*IsImplicit=*/false); 90 91 // All declarations created from now on are owned by the global module. 92 auto *TU = Context.getTranslationUnitDecl(); 93 // [module.global.frag]p2 94 // A global-module-fragment specifies the contents of the global module 95 // fragment for a module unit. The global module fragment can be used to 96 // provide declarations that are attached to the global module and usable 97 // within the module unit. 98 // 99 // So the declations in the global module shouldn't be visible by default. 100 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported); 101 TU->setLocalOwningModule(GlobalModule); 102 103 // FIXME: Consider creating an explicit representation of this declaration. 104 return nullptr; 105 } 106 107 void Sema::HandleStartOfHeaderUnit() { 108 assert(getLangOpts().CPlusPlusModules && 109 "Header units are only valid for C++20 modules"); 110 SourceLocation StartOfTU = 111 SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()); 112 113 StringRef HUName = getLangOpts().CurrentModule; 114 if (HUName.empty()) { 115 HUName = SourceMgr.getFileEntryForID(SourceMgr.getMainFileID())->getName(); 116 const_cast<LangOptions &>(getLangOpts()).CurrentModule = HUName.str(); 117 } 118 119 // TODO: Make the C++20 header lookup independent. 120 // When the input is pre-processed source, we need a file ref to the original 121 // file for the header map. 122 auto F = SourceMgr.getFileManager().getFile(HUName); 123 // For the sake of error recovery (if someone has moved the original header 124 // after creating the pre-processed output) fall back to obtaining the file 125 // ref for the input file, which must be present. 126 if (!F) 127 F = SourceMgr.getFileEntryForID(SourceMgr.getMainFileID()); 128 assert(F && "failed to find the header unit source?"); 129 Module::Header H{HUName.str(), HUName.str(), *F}; 130 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 131 Module *Mod = Map.createHeaderUnit(StartOfTU, HUName, H); 132 assert(Mod && "module creation should not fail"); 133 ModuleScopes.push_back({}); // No GMF 134 ModuleScopes.back().BeginLoc = StartOfTU; 135 ModuleScopes.back().Module = Mod; 136 ModuleScopes.back().ModuleInterface = true; 137 ModuleScopes.back().IsPartition = false; 138 VisibleModules.setVisible(Mod, StartOfTU); 139 140 // From now on, we have an owning module for all declarations we see. 141 // All of these are implicitly exported. 142 auto *TU = Context.getTranslationUnitDecl(); 143 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::Visible); 144 TU->setLocalOwningModule(Mod); 145 } 146 147 Sema::DeclGroupPtrTy 148 Sema::ActOnModuleDecl(SourceLocation StartLoc, SourceLocation ModuleLoc, 149 ModuleDeclKind MDK, ModuleIdPath Path, 150 ModuleIdPath Partition, ModuleImportState &ImportState) { 151 assert((getLangOpts().ModulesTS || getLangOpts().CPlusPlusModules) && 152 "should only have module decl in Modules TS or C++20"); 153 154 bool IsFirstDecl = ImportState == ModuleImportState::FirstDecl; 155 bool SeenGMF = ImportState == ModuleImportState::GlobalFragment; 156 // If any of the steps here fail, we count that as invalidating C++20 157 // module state; 158 ImportState = ModuleImportState::NotACXX20Module; 159 160 bool IsPartition = !Partition.empty(); 161 if (IsPartition) 162 switch (MDK) { 163 case ModuleDeclKind::Implementation: 164 MDK = ModuleDeclKind::PartitionImplementation; 165 break; 166 case ModuleDeclKind::Interface: 167 MDK = ModuleDeclKind::PartitionInterface; 168 break; 169 default: 170 llvm_unreachable("how did we get a partition type set?"); 171 } 172 173 // A (non-partition) module implementation unit requires that we are not 174 // compiling a module of any kind. A partition implementation emits an 175 // interface (and the AST for the implementation), which will subsequently 176 // be consumed to emit a binary. 177 // A module interface unit requires that we are not compiling a module map. 178 switch (getLangOpts().getCompilingModule()) { 179 case LangOptions::CMK_None: 180 // It's OK to compile a module interface as a normal translation unit. 181 break; 182 183 case LangOptions::CMK_ModuleInterface: 184 if (MDK != ModuleDeclKind::Implementation) 185 break; 186 187 // We were asked to compile a module interface unit but this is a module 188 // implementation unit. 189 Diag(ModuleLoc, diag::err_module_interface_implementation_mismatch) 190 << FixItHint::CreateInsertion(ModuleLoc, "export "); 191 MDK = ModuleDeclKind::Interface; 192 break; 193 194 case LangOptions::CMK_ModuleMap: 195 Diag(ModuleLoc, diag::err_module_decl_in_module_map_module); 196 return nullptr; 197 198 case LangOptions::CMK_HeaderModule: 199 case LangOptions::CMK_HeaderUnit: 200 Diag(ModuleLoc, diag::err_module_decl_in_header_module); 201 return nullptr; 202 } 203 204 assert(ModuleScopes.size() <= 1 && "expected to be at global module scope"); 205 206 // FIXME: Most of this work should be done by the preprocessor rather than 207 // here, in order to support macro import. 208 209 // Only one module-declaration is permitted per source file. 210 if (!ModuleScopes.empty() && 211 ModuleScopes.back().Module->isModulePurview()) { 212 Diag(ModuleLoc, diag::err_module_redeclaration); 213 Diag(VisibleModules.getImportLoc(ModuleScopes.back().Module), 214 diag::note_prev_module_declaration); 215 return nullptr; 216 } 217 218 // Find the global module fragment we're adopting into this module, if any. 219 Module *GlobalModuleFragment = nullptr; 220 if (!ModuleScopes.empty() && 221 ModuleScopes.back().Module->Kind == Module::GlobalModuleFragment) 222 GlobalModuleFragment = ModuleScopes.back().Module; 223 224 assert((!getLangOpts().CPlusPlusModules || getLangOpts().ModulesTS || 225 SeenGMF == (bool)GlobalModuleFragment) && 226 "mismatched global module state"); 227 228 // In C++20, the module-declaration must be the first declaration if there 229 // is no global module fragment. 230 if (getLangOpts().CPlusPlusModules && !IsFirstDecl && !SeenGMF) { 231 Diag(ModuleLoc, diag::err_module_decl_not_at_start); 232 SourceLocation BeginLoc = 233 ModuleScopes.empty() 234 ? SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()) 235 : ModuleScopes.back().BeginLoc; 236 if (BeginLoc.isValid()) { 237 Diag(BeginLoc, diag::note_global_module_introducer_missing) 238 << FixItHint::CreateInsertion(BeginLoc, "module;\n"); 239 } 240 } 241 242 // Flatten the dots in a module name. Unlike Clang's hierarchical module map 243 // modules, the dots here are just another character that can appear in a 244 // module name. 245 std::string ModuleName = stringFromPath(Path); 246 if (IsPartition) { 247 ModuleName += ":"; 248 ModuleName += stringFromPath(Partition); 249 } 250 // If a module name was explicitly specified on the command line, it must be 251 // correct. 252 if (!getLangOpts().CurrentModule.empty() && 253 getLangOpts().CurrentModule != ModuleName) { 254 Diag(Path.front().second, diag::err_current_module_name_mismatch) 255 << SourceRange(Path.front().second, IsPartition 256 ? Partition.back().second 257 : Path.back().second) 258 << getLangOpts().CurrentModule; 259 return nullptr; 260 } 261 const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName; 262 263 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 264 Module *Mod; 265 266 switch (MDK) { 267 case ModuleDeclKind::Interface: 268 case ModuleDeclKind::PartitionInterface: { 269 // We can't have parsed or imported a definition of this module or parsed a 270 // module map defining it already. 271 if (auto *M = Map.findModule(ModuleName)) { 272 Diag(Path[0].second, diag::err_module_redefinition) << ModuleName; 273 if (M->DefinitionLoc.isValid()) 274 Diag(M->DefinitionLoc, diag::note_prev_module_definition); 275 else if (Optional<FileEntryRef> FE = M->getASTFile()) 276 Diag(M->DefinitionLoc, diag::note_prev_module_definition_from_ast_file) 277 << FE->getName(); 278 Mod = M; 279 break; 280 } 281 282 // Create a Module for the module that we're defining. 283 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName, 284 GlobalModuleFragment); 285 if (MDK == ModuleDeclKind::PartitionInterface) 286 Mod->Kind = Module::ModulePartitionInterface; 287 assert(Mod && "module creation should not fail"); 288 break; 289 } 290 291 case ModuleDeclKind::Implementation: { 292 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc( 293 PP.getIdentifierInfo(ModuleName), Path[0].second); 294 // C++20 A module-declaration that contains neither an export- 295 // keyword nor a module-partition implicitly imports the primary 296 // module interface unit of the module as if by a module-import- 297 // declaration. 298 Mod = getModuleLoader().loadModule(ModuleLoc, {ModuleNameLoc}, 299 Module::AllVisible, 300 /*IsInclusionDirective=*/false); 301 if (!Mod) { 302 Diag(ModuleLoc, diag::err_module_not_defined) << ModuleName; 303 // Create an empty module interface unit for error recovery. 304 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName, 305 GlobalModuleFragment); 306 } 307 } break; 308 309 case ModuleDeclKind::PartitionImplementation: 310 // Create an interface, but note that it is an implementation 311 // unit. 312 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName, 313 GlobalModuleFragment); 314 Mod->Kind = Module::ModulePartitionImplementation; 315 break; 316 } 317 318 if (!GlobalModuleFragment) { 319 ModuleScopes.push_back({}); 320 if (getLangOpts().ModulesLocalVisibility) 321 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules); 322 } else { 323 // We're done with the global module fragment now. 324 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Global); 325 } 326 327 // Switch from the global module fragment (if any) to the named module. 328 ModuleScopes.back().BeginLoc = StartLoc; 329 ModuleScopes.back().Module = Mod; 330 ModuleScopes.back().ModuleInterface = MDK != ModuleDeclKind::Implementation; 331 ModuleScopes.back().IsPartition = IsPartition; 332 VisibleModules.setVisible(Mod, ModuleLoc); 333 334 // From now on, we have an owning module for all declarations we see. 335 // In C++20 modules, those declaration would be reachable when imported 336 // unless explicitily exported. 337 // Otherwise, those declarations are module-private unless explicitly 338 // exported. 339 auto *TU = Context.getTranslationUnitDecl(); 340 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported); 341 TU->setLocalOwningModule(Mod); 342 343 // We are in the module purview, but before any other (non import) 344 // statements, so imports are allowed. 345 ImportState = ModuleImportState::ImportAllowed; 346 347 // For an implementation, We already made an implicit import (its interface). 348 // Make and return the import decl to be added to the current TU. 349 if (MDK == ModuleDeclKind::Implementation) { 350 // Make the import decl for the interface. 351 ImportDecl *Import = 352 ImportDecl::Create(Context, CurContext, ModuleLoc, Mod, Path[0].second); 353 // and return it to be added. 354 return ConvertDeclToDeclGroup(Import); 355 } 356 357 // FIXME: Create a ModuleDecl. 358 return nullptr; 359 } 360 361 Sema::DeclGroupPtrTy 362 Sema::ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc, 363 SourceLocation PrivateLoc) { 364 // C++20 [basic.link]/2: 365 // A private-module-fragment shall appear only in a primary module 366 // interface unit. 367 switch (ModuleScopes.empty() ? Module::GlobalModuleFragment 368 : ModuleScopes.back().Module->Kind) { 369 case Module::ModuleMapModule: 370 case Module::GlobalModuleFragment: 371 case Module::ModulePartitionImplementation: 372 case Module::ModulePartitionInterface: 373 case Module::ModuleHeaderUnit: 374 Diag(PrivateLoc, diag::err_private_module_fragment_not_module); 375 return nullptr; 376 377 case Module::PrivateModuleFragment: 378 Diag(PrivateLoc, diag::err_private_module_fragment_redefined); 379 Diag(ModuleScopes.back().BeginLoc, diag::note_previous_definition); 380 return nullptr; 381 382 case Module::ModuleInterfaceUnit: 383 break; 384 } 385 386 if (!ModuleScopes.back().ModuleInterface) { 387 Diag(PrivateLoc, diag::err_private_module_fragment_not_module_interface); 388 Diag(ModuleScopes.back().BeginLoc, 389 diag::note_not_module_interface_add_export) 390 << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export "); 391 return nullptr; 392 } 393 394 // FIXME: Check this isn't a module interface partition. 395 // FIXME: Check that this translation unit does not import any partitions; 396 // such imports would violate [basic.link]/2's "shall be the only module unit" 397 // restriction. 398 399 // We've finished the public fragment of the translation unit. 400 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Normal); 401 402 auto &Map = PP.getHeaderSearchInfo().getModuleMap(); 403 Module *PrivateModuleFragment = 404 Map.createPrivateModuleFragmentForInterfaceUnit( 405 ModuleScopes.back().Module, PrivateLoc); 406 assert(PrivateModuleFragment && "module creation should not fail"); 407 408 // Enter the scope of the private module fragment. 409 ModuleScopes.push_back({}); 410 ModuleScopes.back().BeginLoc = ModuleLoc; 411 ModuleScopes.back().Module = PrivateModuleFragment; 412 ModuleScopes.back().ModuleInterface = true; 413 VisibleModules.setVisible(PrivateModuleFragment, ModuleLoc); 414 415 // All declarations created from now on are scoped to the private module 416 // fragment (and are neither visible nor reachable in importers of the module 417 // interface). 418 auto *TU = Context.getTranslationUnitDecl(); 419 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ModulePrivate); 420 TU->setLocalOwningModule(PrivateModuleFragment); 421 422 // FIXME: Consider creating an explicit representation of this declaration. 423 return nullptr; 424 } 425 426 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc, 427 SourceLocation ExportLoc, 428 SourceLocation ImportLoc, ModuleIdPath Path, 429 bool IsPartition) { 430 431 bool Cxx20Mode = getLangOpts().CPlusPlusModules || getLangOpts().ModulesTS; 432 assert((!IsPartition || Cxx20Mode) && "partition seen in non-C++20 code?"); 433 434 // For a C++20 module name, flatten into a single identifier with the source 435 // location of the first component. 436 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc; 437 438 std::string ModuleName; 439 if (IsPartition) { 440 // We already checked that we are in a module purview in the parser. 441 assert(!ModuleScopes.empty() && "in a module purview, but no module?"); 442 Module *NamedMod = ModuleScopes.back().Module; 443 // If we are importing into a partition, find the owning named module, 444 // otherwise, the name of the importing named module. 445 ModuleName = NamedMod->getPrimaryModuleInterfaceName().str(); 446 ModuleName += ":"; 447 ModuleName += stringFromPath(Path); 448 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second}; 449 Path = ModuleIdPath(ModuleNameLoc); 450 } else if (Cxx20Mode) { 451 ModuleName = stringFromPath(Path); 452 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second}; 453 Path = ModuleIdPath(ModuleNameLoc); 454 } 455 456 // Diagnose self-import before attempting a load. 457 // [module.import]/9 458 // A module implementation unit of a module M that is not a module partition 459 // shall not contain a module-import-declaration nominating M. 460 // (for an implementation, the module interface is imported implicitly, 461 // but that's handled in the module decl code). 462 463 if (getLangOpts().CPlusPlusModules && isCurrentModulePurview() && 464 getCurrentModule()->Name == ModuleName) { 465 Diag(ImportLoc, diag::err_module_self_import_cxx20) 466 << ModuleName << !ModuleScopes.back().ModuleInterface; 467 return true; 468 } 469 470 Module *Mod = getModuleLoader().loadModule( 471 ImportLoc, Path, Module::AllVisible, /*IsInclusionDirective=*/false); 472 if (!Mod) 473 return true; 474 475 return ActOnModuleImport(StartLoc, ExportLoc, ImportLoc, Mod, Path); 476 } 477 478 /// Determine whether \p D is lexically within an export-declaration. 479 static const ExportDecl *getEnclosingExportDecl(const Decl *D) { 480 for (auto *DC = D->getLexicalDeclContext(); DC; DC = DC->getLexicalParent()) 481 if (auto *ED = dyn_cast<ExportDecl>(DC)) 482 return ED; 483 return nullptr; 484 } 485 486 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc, 487 SourceLocation ExportLoc, 488 SourceLocation ImportLoc, Module *Mod, 489 ModuleIdPath Path) { 490 VisibleModules.setVisible(Mod, ImportLoc); 491 492 checkModuleImportContext(*this, Mod, ImportLoc, CurContext); 493 494 // FIXME: we should support importing a submodule within a different submodule 495 // of the same top-level module. Until we do, make it an error rather than 496 // silently ignoring the import. 497 // FIXME: Should we warn on a redundant import of the current module? 498 if (Mod->getTopLevelModuleName() == getLangOpts().CurrentModule && 499 (getLangOpts().isCompilingModule() || !getLangOpts().ModulesTS)) { 500 Diag(ImportLoc, getLangOpts().isCompilingModule() 501 ? diag::err_module_self_import 502 : diag::err_module_import_in_implementation) 503 << Mod->getFullModuleName() << getLangOpts().CurrentModule; 504 } 505 506 SmallVector<SourceLocation, 2> IdentifierLocs; 507 508 if (Path.empty()) { 509 // If this was a header import, pad out with dummy locations. 510 // FIXME: Pass in and use the location of the header-name token in this 511 // case. 512 for (Module *ModCheck = Mod; ModCheck; ModCheck = ModCheck->Parent) 513 IdentifierLocs.push_back(SourceLocation()); 514 } else if (getLangOpts().CPlusPlusModules && !Mod->Parent) { 515 // A single identifier for the whole name. 516 IdentifierLocs.push_back(Path[0].second); 517 } else { 518 Module *ModCheck = Mod; 519 for (unsigned I = 0, N = Path.size(); I != N; ++I) { 520 // If we've run out of module parents, just drop the remaining 521 // identifiers. We need the length to be consistent. 522 if (!ModCheck) 523 break; 524 ModCheck = ModCheck->Parent; 525 526 IdentifierLocs.push_back(Path[I].second); 527 } 528 } 529 530 ImportDecl *Import = ImportDecl::Create(Context, CurContext, StartLoc, 531 Mod, IdentifierLocs); 532 CurContext->addDecl(Import); 533 534 // Sequence initialization of the imported module before that of the current 535 // module, if any. 536 if (!ModuleScopes.empty()) 537 Context.addModuleInitializer(ModuleScopes.back().Module, Import); 538 539 // A module (partition) implementation unit shall not be exported. 540 if (getLangOpts().CPlusPlusModules && ExportLoc.isValid() && 541 Mod->Kind == Module::ModuleKind::ModulePartitionImplementation) { 542 Diag(ExportLoc, diag::err_export_partition_impl) 543 << SourceRange(ExportLoc, Path.back().second); 544 } else if (!ModuleScopes.empty() && 545 (ModuleScopes.back().ModuleInterface || 546 (getLangOpts().CPlusPlusModules && 547 ModuleScopes.back().Module->isGlobalModule()))) { 548 assert((!ModuleScopes.back().Module->isGlobalModule() || 549 Mod->Kind == Module::ModuleKind::ModuleHeaderUnit) && 550 "should only be importing a header unit into the GMF"); 551 // Re-export the module if the imported module is exported. 552 // Note that we don't need to add re-exported module to Imports field 553 // since `Exports` implies the module is imported already. 554 if (ExportLoc.isValid() || getEnclosingExportDecl(Import)) 555 getCurrentModule()->Exports.emplace_back(Mod, false); 556 else 557 getCurrentModule()->Imports.insert(Mod); 558 } else if (ExportLoc.isValid()) { 559 // [module.interface]p1: 560 // An export-declaration shall inhabit a namespace scope and appear in the 561 // purview of a module interface unit. 562 Diag(ExportLoc, diag::err_export_not_in_module_interface) 563 << (!ModuleScopes.empty() && 564 !ModuleScopes.back().ImplicitGlobalModuleFragment); 565 } else if (getLangOpts().isCompilingModule()) { 566 Module *ThisModule = PP.getHeaderSearchInfo().lookupModule( 567 getLangOpts().CurrentModule, ExportLoc, false, false); 568 (void)ThisModule; 569 assert(ThisModule && "was expecting a module if building one"); 570 } 571 572 // In some cases we need to know if an entity was present in a directly- 573 // imported module (as opposed to a transitive import). This avoids 574 // searching both Imports and Exports. 575 DirectModuleImports.insert(Mod); 576 577 return Import; 578 } 579 580 void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) { 581 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true); 582 BuildModuleInclude(DirectiveLoc, Mod); 583 } 584 585 void Sema::BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod) { 586 // Determine whether we're in the #include buffer for a module. The #includes 587 // in that buffer do not qualify as module imports; they're just an 588 // implementation detail of us building the module. 589 // 590 // FIXME: Should we even get ActOnModuleInclude calls for those? 591 bool IsInModuleIncludes = 592 TUKind == TU_Module && 593 getSourceManager().isWrittenInMainFile(DirectiveLoc); 594 595 bool ShouldAddImport = !IsInModuleIncludes; 596 597 // If this module import was due to an inclusion directive, create an 598 // implicit import declaration to capture it in the AST. 599 if (ShouldAddImport) { 600 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); 601 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, 602 DirectiveLoc, Mod, 603 DirectiveLoc); 604 if (!ModuleScopes.empty()) 605 Context.addModuleInitializer(ModuleScopes.back().Module, ImportD); 606 TU->addDecl(ImportD); 607 Consumer.HandleImplicitImportDecl(ImportD); 608 } 609 610 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc); 611 VisibleModules.setVisible(Mod, DirectiveLoc); 612 613 if (getLangOpts().isCompilingModule()) { 614 Module *ThisModule = PP.getHeaderSearchInfo().lookupModule( 615 getLangOpts().CurrentModule, DirectiveLoc, false, false); 616 (void)ThisModule; 617 assert(ThisModule && "was expecting a module if building one"); 618 } 619 } 620 621 void Sema::ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod) { 622 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true); 623 624 ModuleScopes.push_back({}); 625 ModuleScopes.back().Module = Mod; 626 if (getLangOpts().ModulesLocalVisibility) 627 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules); 628 629 VisibleModules.setVisible(Mod, DirectiveLoc); 630 631 // The enclosing context is now part of this module. 632 // FIXME: Consider creating a child DeclContext to hold the entities 633 // lexically within the module. 634 if (getLangOpts().trackLocalOwningModule()) { 635 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) { 636 cast<Decl>(DC)->setModuleOwnershipKind( 637 getLangOpts().ModulesLocalVisibility 638 ? Decl::ModuleOwnershipKind::VisibleWhenImported 639 : Decl::ModuleOwnershipKind::Visible); 640 cast<Decl>(DC)->setLocalOwningModule(Mod); 641 } 642 } 643 } 644 645 void Sema::ActOnModuleEnd(SourceLocation EomLoc, Module *Mod) { 646 if (getLangOpts().ModulesLocalVisibility) { 647 VisibleModules = std::move(ModuleScopes.back().OuterVisibleModules); 648 // Leaving a module hides namespace names, so our visible namespace cache 649 // is now out of date. 650 VisibleNamespaceCache.clear(); 651 } 652 653 assert(!ModuleScopes.empty() && ModuleScopes.back().Module == Mod && 654 "left the wrong module scope"); 655 ModuleScopes.pop_back(); 656 657 // We got to the end of processing a local module. Create an 658 // ImportDecl as we would for an imported module. 659 FileID File = getSourceManager().getFileID(EomLoc); 660 SourceLocation DirectiveLoc; 661 if (EomLoc == getSourceManager().getLocForEndOfFile(File)) { 662 // We reached the end of a #included module header. Use the #include loc. 663 assert(File != getSourceManager().getMainFileID() && 664 "end of submodule in main source file"); 665 DirectiveLoc = getSourceManager().getIncludeLoc(File); 666 } else { 667 // We reached an EOM pragma. Use the pragma location. 668 DirectiveLoc = EomLoc; 669 } 670 BuildModuleInclude(DirectiveLoc, Mod); 671 672 // Any further declarations are in whatever module we returned to. 673 if (getLangOpts().trackLocalOwningModule()) { 674 // The parser guarantees that this is the same context that we entered 675 // the module within. 676 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) { 677 cast<Decl>(DC)->setLocalOwningModule(getCurrentModule()); 678 if (!getCurrentModule()) 679 cast<Decl>(DC)->setModuleOwnershipKind( 680 Decl::ModuleOwnershipKind::Unowned); 681 } 682 } 683 } 684 685 void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc, 686 Module *Mod) { 687 // Bail if we're not allowed to implicitly import a module here. 688 if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery || 689 VisibleModules.isVisible(Mod)) 690 return; 691 692 // Create the implicit import declaration. 693 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); 694 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, 695 Loc, Mod, Loc); 696 TU->addDecl(ImportD); 697 Consumer.HandleImplicitImportDecl(ImportD); 698 699 // Make the module visible. 700 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc); 701 VisibleModules.setVisible(Mod, Loc); 702 } 703 704 /// We have parsed the start of an export declaration, including the '{' 705 /// (if present). 706 Decl *Sema::ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc, 707 SourceLocation LBraceLoc) { 708 ExportDecl *D = ExportDecl::Create(Context, CurContext, ExportLoc); 709 710 // Set this temporarily so we know the export-declaration was braced. 711 D->setRBraceLoc(LBraceLoc); 712 713 CurContext->addDecl(D); 714 PushDeclContext(S, D); 715 716 // C++2a [module.interface]p1: 717 // An export-declaration shall appear only [...] in the purview of a module 718 // interface unit. An export-declaration shall not appear directly or 719 // indirectly within [...] a private-module-fragment. 720 if (ModuleScopes.empty() || !ModuleScopes.back().Module->isModulePurview()) { 721 Diag(ExportLoc, diag::err_export_not_in_module_interface) << 0; 722 D->setInvalidDecl(); 723 return D; 724 } else if (!ModuleScopes.back().ModuleInterface) { 725 Diag(ExportLoc, diag::err_export_not_in_module_interface) << 1; 726 Diag(ModuleScopes.back().BeginLoc, 727 diag::note_not_module_interface_add_export) 728 << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export "); 729 D->setInvalidDecl(); 730 return D; 731 } else if (ModuleScopes.back().Module->Kind == 732 Module::PrivateModuleFragment) { 733 Diag(ExportLoc, diag::err_export_in_private_module_fragment); 734 Diag(ModuleScopes.back().BeginLoc, diag::note_private_module_fragment); 735 D->setInvalidDecl(); 736 return D; 737 } 738 739 for (const DeclContext *DC = CurContext; DC; DC = DC->getLexicalParent()) { 740 if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) { 741 // An export-declaration shall not appear directly or indirectly within 742 // an unnamed namespace [...] 743 if (ND->isAnonymousNamespace()) { 744 Diag(ExportLoc, diag::err_export_within_anonymous_namespace); 745 Diag(ND->getLocation(), diag::note_anonymous_namespace); 746 // Don't diagnose internal-linkage declarations in this region. 747 D->setInvalidDecl(); 748 return D; 749 } 750 751 // A declaration is exported if it is [...] a namespace-definition 752 // that contains an exported declaration. 753 // 754 // Defer exporting the namespace until after we leave it, in order to 755 // avoid marking all subsequent declarations in the namespace as exported. 756 if (!DeferredExportedNamespaces.insert(ND).second) 757 break; 758 } 759 } 760 761 // [...] its declaration or declaration-seq shall not contain an 762 // export-declaration. 763 if (auto *ED = getEnclosingExportDecl(D)) { 764 Diag(ExportLoc, diag::err_export_within_export); 765 if (ED->hasBraces()) 766 Diag(ED->getLocation(), diag::note_export); 767 D->setInvalidDecl(); 768 return D; 769 } 770 771 D->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported); 772 return D; 773 } 774 775 static bool checkExportedDeclContext(Sema &S, DeclContext *DC, 776 SourceLocation BlockStart); 777 778 namespace { 779 enum class UnnamedDeclKind { 780 Empty, 781 StaticAssert, 782 Asm, 783 UsingDirective, 784 Namespace, 785 Context 786 }; 787 } 788 789 static llvm::Optional<UnnamedDeclKind> getUnnamedDeclKind(Decl *D) { 790 if (isa<EmptyDecl>(D)) 791 return UnnamedDeclKind::Empty; 792 if (isa<StaticAssertDecl>(D)) 793 return UnnamedDeclKind::StaticAssert; 794 if (isa<FileScopeAsmDecl>(D)) 795 return UnnamedDeclKind::Asm; 796 if (isa<UsingDirectiveDecl>(D)) 797 return UnnamedDeclKind::UsingDirective; 798 // Everything else either introduces one or more names or is ill-formed. 799 return llvm::None; 800 } 801 802 unsigned getUnnamedDeclDiag(UnnamedDeclKind UDK, bool InBlock) { 803 switch (UDK) { 804 case UnnamedDeclKind::Empty: 805 case UnnamedDeclKind::StaticAssert: 806 // Allow empty-declarations and static_asserts in an export block as an 807 // extension. 808 return InBlock ? diag::ext_export_no_name_block : diag::err_export_no_name; 809 810 case UnnamedDeclKind::UsingDirective: 811 // Allow exporting using-directives as an extension. 812 return diag::ext_export_using_directive; 813 814 case UnnamedDeclKind::Namespace: 815 // Anonymous namespace with no content. 816 return diag::introduces_no_names; 817 818 case UnnamedDeclKind::Context: 819 // Allow exporting DeclContexts that transitively contain no declarations 820 // as an extension. 821 return diag::ext_export_no_names; 822 823 case UnnamedDeclKind::Asm: 824 return diag::err_export_no_name; 825 } 826 llvm_unreachable("unknown kind"); 827 } 828 829 static void diagExportedUnnamedDecl(Sema &S, UnnamedDeclKind UDK, Decl *D, 830 SourceLocation BlockStart) { 831 S.Diag(D->getLocation(), getUnnamedDeclDiag(UDK, BlockStart.isValid())) 832 << (unsigned)UDK; 833 if (BlockStart.isValid()) 834 S.Diag(BlockStart, diag::note_export); 835 } 836 837 /// Check that it's valid to export \p D. 838 static bool checkExportedDecl(Sema &S, Decl *D, SourceLocation BlockStart) { 839 // C++2a [module.interface]p3: 840 // An exported declaration shall declare at least one name 841 if (auto UDK = getUnnamedDeclKind(D)) 842 diagExportedUnnamedDecl(S, *UDK, D, BlockStart); 843 844 // [...] shall not declare a name with internal linkage. 845 bool HasName = false; 846 if (auto *ND = dyn_cast<NamedDecl>(D)) { 847 // Don't diagnose anonymous union objects; we'll diagnose their members 848 // instead. 849 HasName = (bool)ND->getDeclName(); 850 if (HasName && ND->getFormalLinkage() == InternalLinkage) { 851 S.Diag(ND->getLocation(), diag::err_export_internal) << ND; 852 if (BlockStart.isValid()) 853 S.Diag(BlockStart, diag::note_export); 854 } 855 } 856 857 // C++2a [module.interface]p5: 858 // all entities to which all of the using-declarators ultimately refer 859 // shall have been introduced with a name having external linkage 860 if (auto *USD = dyn_cast<UsingShadowDecl>(D)) { 861 NamedDecl *Target = USD->getUnderlyingDecl(); 862 Linkage Lk = Target->getFormalLinkage(); 863 if (Lk == InternalLinkage || Lk == ModuleLinkage) { 864 S.Diag(USD->getLocation(), diag::err_export_using_internal) 865 << (Lk == InternalLinkage ? 0 : 1) << Target; 866 S.Diag(Target->getLocation(), diag::note_using_decl_target); 867 if (BlockStart.isValid()) 868 S.Diag(BlockStart, diag::note_export); 869 } 870 } 871 872 // Recurse into namespace-scope DeclContexts. (Only namespace-scope 873 // declarations are exported.). 874 if (auto *DC = dyn_cast<DeclContext>(D)) { 875 if (isa<NamespaceDecl>(D) && DC->decls().empty()) { 876 if (!HasName) 877 // We don't allow an empty anonymous namespace (we don't allow decls 878 // in them either, but that's handled in the recursion). 879 diagExportedUnnamedDecl(S, UnnamedDeclKind::Namespace, D, BlockStart); 880 // We allow an empty named namespace decl. 881 } else if (DC->getRedeclContext()->isFileContext() && !isa<EnumDecl>(D)) 882 return checkExportedDeclContext(S, DC, BlockStart); 883 } 884 return false; 885 } 886 887 /// Check that it's valid to export all the declarations in \p DC. 888 static bool checkExportedDeclContext(Sema &S, DeclContext *DC, 889 SourceLocation BlockStart) { 890 bool AllUnnamed = true; 891 for (auto *D : DC->decls()) 892 AllUnnamed &= checkExportedDecl(S, D, BlockStart); 893 return AllUnnamed; 894 } 895 896 /// Complete the definition of an export declaration. 897 Decl *Sema::ActOnFinishExportDecl(Scope *S, Decl *D, SourceLocation RBraceLoc) { 898 auto *ED = cast<ExportDecl>(D); 899 if (RBraceLoc.isValid()) 900 ED->setRBraceLoc(RBraceLoc); 901 902 PopDeclContext(); 903 904 if (!D->isInvalidDecl()) { 905 SourceLocation BlockStart = 906 ED->hasBraces() ? ED->getBeginLoc() : SourceLocation(); 907 for (auto *Child : ED->decls()) { 908 if (checkExportedDecl(*this, Child, BlockStart)) { 909 // If a top-level child is a linkage-spec declaration, it might contain 910 // no declarations (transitively), in which case it's ill-formed. 911 diagExportedUnnamedDecl(*this, UnnamedDeclKind::Context, Child, 912 BlockStart); 913 } 914 } 915 } 916 917 return D; 918 } 919 920 Module *Sema::PushGlobalModuleFragment(SourceLocation BeginLoc, 921 bool IsImplicit) { 922 // We shouldn't create new global module fragment if there is already 923 // one. 924 if (!GlobalModuleFragment) { 925 ModuleMap &Map = PP.getHeaderSearchInfo().getModuleMap(); 926 GlobalModuleFragment = Map.createGlobalModuleFragmentForModuleUnit( 927 BeginLoc, getCurrentModule()); 928 } 929 930 assert(GlobalModuleFragment && "module creation should not fail"); 931 932 // Enter the scope of the global module. 933 ModuleScopes.push_back({BeginLoc, GlobalModuleFragment, 934 /*ModuleInterface=*/false, 935 /*IsPartition=*/false, 936 /*ImplicitGlobalModuleFragment=*/IsImplicit, 937 /*OuterVisibleModules=*/{}}); 938 VisibleModules.setVisible(GlobalModuleFragment, BeginLoc); 939 940 return GlobalModuleFragment; 941 } 942 943 void Sema::PopGlobalModuleFragment() { 944 assert(!ModuleScopes.empty() && getCurrentModule()->isGlobalModule() && 945 "left the wrong module scope, which is not global module fragment"); 946 ModuleScopes.pop_back(); 947 } 948 949 bool Sema::isModuleUnitOfCurrentTU(const Module *M) const { 950 assert(M); 951 952 Module *CurrentModuleUnit = getCurrentModule(); 953 954 // If we are not in a module currently, M must not be the module unit of 955 // current TU. 956 if (!CurrentModuleUnit) 957 return false; 958 959 return M->isSubModuleOf(CurrentModuleUnit->getTopLevelModule()); 960 } 961