xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaLookup.cpp (revision e2eeea75eb8b6dd50c1298067a0655880d186734)
1 //===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements name lookup for C, C++, Objective-C, and
10 //  Objective-C++.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclLookups.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/Basic/Builtins.h"
24 #include "clang/Basic/FileManager.h"
25 #include "clang/Basic/LangOptions.h"
26 #include "clang/Lex/HeaderSearch.h"
27 #include "clang/Lex/ModuleLoader.h"
28 #include "clang/Lex/Preprocessor.h"
29 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/Lookup.h"
31 #include "clang/Sema/Overload.h"
32 #include "clang/Sema/Scope.h"
33 #include "clang/Sema/ScopeInfo.h"
34 #include "clang/Sema/Sema.h"
35 #include "clang/Sema/SemaInternal.h"
36 #include "clang/Sema/TemplateDeduction.h"
37 #include "clang/Sema/TypoCorrection.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/TinyPtrVector.h"
41 #include "llvm/ADT/edit_distance.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include <algorithm>
44 #include <iterator>
45 #include <list>
46 #include <set>
47 #include <utility>
48 #include <vector>
49 
50 #include "OpenCLBuiltins.inc"
51 
52 using namespace clang;
53 using namespace sema;
54 
55 namespace {
56   class UnqualUsingEntry {
57     const DeclContext *Nominated;
58     const DeclContext *CommonAncestor;
59 
60   public:
61     UnqualUsingEntry(const DeclContext *Nominated,
62                      const DeclContext *CommonAncestor)
63       : Nominated(Nominated), CommonAncestor(CommonAncestor) {
64     }
65 
66     const DeclContext *getCommonAncestor() const {
67       return CommonAncestor;
68     }
69 
70     const DeclContext *getNominatedNamespace() const {
71       return Nominated;
72     }
73 
74     // Sort by the pointer value of the common ancestor.
75     struct Comparator {
76       bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
77         return L.getCommonAncestor() < R.getCommonAncestor();
78       }
79 
80       bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
81         return E.getCommonAncestor() < DC;
82       }
83 
84       bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
85         return DC < E.getCommonAncestor();
86       }
87     };
88   };
89 
90   /// A collection of using directives, as used by C++ unqualified
91   /// lookup.
92   class UnqualUsingDirectiveSet {
93     Sema &SemaRef;
94 
95     typedef SmallVector<UnqualUsingEntry, 8> ListTy;
96 
97     ListTy list;
98     llvm::SmallPtrSet<DeclContext*, 8> visited;
99 
100   public:
101     UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {}
102 
103     void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
104       // C++ [namespace.udir]p1:
105       //   During unqualified name lookup, the names appear as if they
106       //   were declared in the nearest enclosing namespace which contains
107       //   both the using-directive and the nominated namespace.
108       DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
109       assert(InnermostFileDC && InnermostFileDC->isFileContext());
110 
111       for (; S; S = S->getParent()) {
112         // C++ [namespace.udir]p1:
113         //   A using-directive shall not appear in class scope, but may
114         //   appear in namespace scope or in block scope.
115         DeclContext *Ctx = S->getEntity();
116         if (Ctx && Ctx->isFileContext()) {
117           visit(Ctx, Ctx);
118         } else if (!Ctx || Ctx->isFunctionOrMethod()) {
119           for (auto *I : S->using_directives())
120             if (SemaRef.isVisible(I))
121               visit(I, InnermostFileDC);
122         }
123       }
124     }
125 
126     // Visits a context and collect all of its using directives
127     // recursively.  Treats all using directives as if they were
128     // declared in the context.
129     //
130     // A given context is only every visited once, so it is important
131     // that contexts be visited from the inside out in order to get
132     // the effective DCs right.
133     void visit(DeclContext *DC, DeclContext *EffectiveDC) {
134       if (!visited.insert(DC).second)
135         return;
136 
137       addUsingDirectives(DC, EffectiveDC);
138     }
139 
140     // Visits a using directive and collects all of its using
141     // directives recursively.  Treats all using directives as if they
142     // were declared in the effective DC.
143     void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
144       DeclContext *NS = UD->getNominatedNamespace();
145       if (!visited.insert(NS).second)
146         return;
147 
148       addUsingDirective(UD, EffectiveDC);
149       addUsingDirectives(NS, EffectiveDC);
150     }
151 
152     // Adds all the using directives in a context (and those nominated
153     // by its using directives, transitively) as if they appeared in
154     // the given effective context.
155     void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
156       SmallVector<DeclContext*, 4> queue;
157       while (true) {
158         for (auto UD : DC->using_directives()) {
159           DeclContext *NS = UD->getNominatedNamespace();
160           if (SemaRef.isVisible(UD) && visited.insert(NS).second) {
161             addUsingDirective(UD, EffectiveDC);
162             queue.push_back(NS);
163           }
164         }
165 
166         if (queue.empty())
167           return;
168 
169         DC = queue.pop_back_val();
170       }
171     }
172 
173     // Add a using directive as if it had been declared in the given
174     // context.  This helps implement C++ [namespace.udir]p3:
175     //   The using-directive is transitive: if a scope contains a
176     //   using-directive that nominates a second namespace that itself
177     //   contains using-directives, the effect is as if the
178     //   using-directives from the second namespace also appeared in
179     //   the first.
180     void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
181       // Find the common ancestor between the effective context and
182       // the nominated namespace.
183       DeclContext *Common = UD->getNominatedNamespace();
184       while (!Common->Encloses(EffectiveDC))
185         Common = Common->getParent();
186       Common = Common->getPrimaryContext();
187 
188       list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
189     }
190 
191     void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); }
192 
193     typedef ListTy::const_iterator const_iterator;
194 
195     const_iterator begin() const { return list.begin(); }
196     const_iterator end() const { return list.end(); }
197 
198     llvm::iterator_range<const_iterator>
199     getNamespacesFor(DeclContext *DC) const {
200       return llvm::make_range(std::equal_range(begin(), end(),
201                                                DC->getPrimaryContext(),
202                                                UnqualUsingEntry::Comparator()));
203     }
204   };
205 } // end anonymous namespace
206 
207 // Retrieve the set of identifier namespaces that correspond to a
208 // specific kind of name lookup.
209 static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
210                                bool CPlusPlus,
211                                bool Redeclaration) {
212   unsigned IDNS = 0;
213   switch (NameKind) {
214   case Sema::LookupObjCImplicitSelfParam:
215   case Sema::LookupOrdinaryName:
216   case Sema::LookupRedeclarationWithLinkage:
217   case Sema::LookupLocalFriendName:
218   case Sema::LookupDestructorName:
219     IDNS = Decl::IDNS_Ordinary;
220     if (CPlusPlus) {
221       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
222       if (Redeclaration)
223         IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
224     }
225     if (Redeclaration)
226       IDNS |= Decl::IDNS_LocalExtern;
227     break;
228 
229   case Sema::LookupOperatorName:
230     // Operator lookup is its own crazy thing;  it is not the same
231     // as (e.g.) looking up an operator name for redeclaration.
232     assert(!Redeclaration && "cannot do redeclaration operator lookup");
233     IDNS = Decl::IDNS_NonMemberOperator;
234     break;
235 
236   case Sema::LookupTagName:
237     if (CPlusPlus) {
238       IDNS = Decl::IDNS_Type;
239 
240       // When looking for a redeclaration of a tag name, we add:
241       // 1) TagFriend to find undeclared friend decls
242       // 2) Namespace because they can't "overload" with tag decls.
243       // 3) Tag because it includes class templates, which can't
244       //    "overload" with tag decls.
245       if (Redeclaration)
246         IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
247     } else {
248       IDNS = Decl::IDNS_Tag;
249     }
250     break;
251 
252   case Sema::LookupLabel:
253     IDNS = Decl::IDNS_Label;
254     break;
255 
256   case Sema::LookupMemberName:
257     IDNS = Decl::IDNS_Member;
258     if (CPlusPlus)
259       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
260     break;
261 
262   case Sema::LookupNestedNameSpecifierName:
263     IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
264     break;
265 
266   case Sema::LookupNamespaceName:
267     IDNS = Decl::IDNS_Namespace;
268     break;
269 
270   case Sema::LookupUsingDeclName:
271     assert(Redeclaration && "should only be used for redecl lookup");
272     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
273            Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
274            Decl::IDNS_LocalExtern;
275     break;
276 
277   case Sema::LookupObjCProtocolName:
278     IDNS = Decl::IDNS_ObjCProtocol;
279     break;
280 
281   case Sema::LookupOMPReductionName:
282     IDNS = Decl::IDNS_OMPReduction;
283     break;
284 
285   case Sema::LookupOMPMapperName:
286     IDNS = Decl::IDNS_OMPMapper;
287     break;
288 
289   case Sema::LookupAnyName:
290     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
291       | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
292       | Decl::IDNS_Type;
293     break;
294   }
295   return IDNS;
296 }
297 
298 void LookupResult::configure() {
299   IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
300                  isForRedeclaration());
301 
302   // If we're looking for one of the allocation or deallocation
303   // operators, make sure that the implicitly-declared new and delete
304   // operators can be found.
305   switch (NameInfo.getName().getCXXOverloadedOperator()) {
306   case OO_New:
307   case OO_Delete:
308   case OO_Array_New:
309   case OO_Array_Delete:
310     getSema().DeclareGlobalNewDelete();
311     break;
312 
313   default:
314     break;
315   }
316 
317   // Compiler builtins are always visible, regardless of where they end
318   // up being declared.
319   if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
320     if (unsigned BuiltinID = Id->getBuiltinID()) {
321       if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
322         AllowHidden = true;
323     }
324   }
325 }
326 
327 bool LookupResult::sanity() const {
328   // This function is never called by NDEBUG builds.
329   assert(ResultKind != NotFound || Decls.size() == 0);
330   assert(ResultKind != Found || Decls.size() == 1);
331   assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
332          (Decls.size() == 1 &&
333           isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
334   assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
335   assert(ResultKind != Ambiguous || Decls.size() > 1 ||
336          (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
337                                 Ambiguity == AmbiguousBaseSubobjectTypes)));
338   assert((Paths != nullptr) == (ResultKind == Ambiguous &&
339                                 (Ambiguity == AmbiguousBaseSubobjectTypes ||
340                                  Ambiguity == AmbiguousBaseSubobjects)));
341   return true;
342 }
343 
344 // Necessary because CXXBasePaths is not complete in Sema.h
345 void LookupResult::deletePaths(CXXBasePaths *Paths) {
346   delete Paths;
347 }
348 
349 /// Get a representative context for a declaration such that two declarations
350 /// will have the same context if they were found within the same scope.
351 static DeclContext *getContextForScopeMatching(Decl *D) {
352   // For function-local declarations, use that function as the context. This
353   // doesn't account for scopes within the function; the caller must deal with
354   // those.
355   DeclContext *DC = D->getLexicalDeclContext();
356   if (DC->isFunctionOrMethod())
357     return DC;
358 
359   // Otherwise, look at the semantic context of the declaration. The
360   // declaration must have been found there.
361   return D->getDeclContext()->getRedeclContext();
362 }
363 
364 /// Determine whether \p D is a better lookup result than \p Existing,
365 /// given that they declare the same entity.
366 static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind,
367                                     NamedDecl *D, NamedDecl *Existing) {
368   // When looking up redeclarations of a using declaration, prefer a using
369   // shadow declaration over any other declaration of the same entity.
370   if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
371       !isa<UsingShadowDecl>(Existing))
372     return true;
373 
374   auto *DUnderlying = D->getUnderlyingDecl();
375   auto *EUnderlying = Existing->getUnderlyingDecl();
376 
377   // If they have different underlying declarations, prefer a typedef over the
378   // original type (this happens when two type declarations denote the same
379   // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
380   // might carry additional semantic information, such as an alignment override.
381   // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
382   // declaration over a typedef. Also prefer a tag over a typedef for
383   // destructor name lookup because in some contexts we only accept a
384   // class-name in a destructor declaration.
385   if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
386     assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying));
387     bool HaveTag = isa<TagDecl>(EUnderlying);
388     bool WantTag =
389         Kind == Sema::LookupTagName || Kind == Sema::LookupDestructorName;
390     return HaveTag != WantTag;
391   }
392 
393   // Pick the function with more default arguments.
394   // FIXME: In the presence of ambiguous default arguments, we should keep both,
395   //        so we can diagnose the ambiguity if the default argument is needed.
396   //        See C++ [over.match.best]p3.
397   if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
398     auto *EFD = cast<FunctionDecl>(EUnderlying);
399     unsigned DMin = DFD->getMinRequiredArguments();
400     unsigned EMin = EFD->getMinRequiredArguments();
401     // If D has more default arguments, it is preferred.
402     if (DMin != EMin)
403       return DMin < EMin;
404     // FIXME: When we track visibility for default function arguments, check
405     // that we pick the declaration with more visible default arguments.
406   }
407 
408   // Pick the template with more default template arguments.
409   if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
410     auto *ETD = cast<TemplateDecl>(EUnderlying);
411     unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
412     unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
413     // If D has more default arguments, it is preferred. Note that default
414     // arguments (and their visibility) is monotonically increasing across the
415     // redeclaration chain, so this is a quick proxy for "is more recent".
416     if (DMin != EMin)
417       return DMin < EMin;
418     // If D has more *visible* default arguments, it is preferred. Note, an
419     // earlier default argument being visible does not imply that a later
420     // default argument is visible, so we can't just check the first one.
421     for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
422         I != N; ++I) {
423       if (!S.hasVisibleDefaultArgument(
424               ETD->getTemplateParameters()->getParam(I)) &&
425           S.hasVisibleDefaultArgument(
426               DTD->getTemplateParameters()->getParam(I)))
427         return true;
428     }
429   }
430 
431   // VarDecl can have incomplete array types, prefer the one with more complete
432   // array type.
433   if (VarDecl *DVD = dyn_cast<VarDecl>(DUnderlying)) {
434     VarDecl *EVD = cast<VarDecl>(EUnderlying);
435     if (EVD->getType()->isIncompleteType() &&
436         !DVD->getType()->isIncompleteType()) {
437       // Prefer the decl with a more complete type if visible.
438       return S.isVisible(DVD);
439     }
440     return false; // Avoid picking up a newer decl, just because it was newer.
441   }
442 
443   // For most kinds of declaration, it doesn't really matter which one we pick.
444   if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
445     // If the existing declaration is hidden, prefer the new one. Otherwise,
446     // keep what we've got.
447     return !S.isVisible(Existing);
448   }
449 
450   // Pick the newer declaration; it might have a more precise type.
451   for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
452        Prev = Prev->getPreviousDecl())
453     if (Prev == EUnderlying)
454       return true;
455   return false;
456 }
457 
458 /// Determine whether \p D can hide a tag declaration.
459 static bool canHideTag(NamedDecl *D) {
460   // C++ [basic.scope.declarative]p4:
461   //   Given a set of declarations in a single declarative region [...]
462   //   exactly one declaration shall declare a class name or enumeration name
463   //   that is not a typedef name and the other declarations shall all refer to
464   //   the same variable, non-static data member, or enumerator, or all refer
465   //   to functions and function templates; in this case the class name or
466   //   enumeration name is hidden.
467   // C++ [basic.scope.hiding]p2:
468   //   A class name or enumeration name can be hidden by the name of a
469   //   variable, data member, function, or enumerator declared in the same
470   //   scope.
471   // An UnresolvedUsingValueDecl always instantiates to one of these.
472   D = D->getUnderlyingDecl();
473   return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
474          isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) ||
475          isa<UnresolvedUsingValueDecl>(D);
476 }
477 
478 /// Resolves the result kind of this lookup.
479 void LookupResult::resolveKind() {
480   unsigned N = Decls.size();
481 
482   // Fast case: no possible ambiguity.
483   if (N == 0) {
484     assert(ResultKind == NotFound ||
485            ResultKind == NotFoundInCurrentInstantiation);
486     return;
487   }
488 
489   // If there's a single decl, we need to examine it to decide what
490   // kind of lookup this is.
491   if (N == 1) {
492     NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
493     if (isa<FunctionTemplateDecl>(D))
494       ResultKind = FoundOverloaded;
495     else if (isa<UnresolvedUsingValueDecl>(D))
496       ResultKind = FoundUnresolvedValue;
497     return;
498   }
499 
500   // Don't do any extra resolution if we've already resolved as ambiguous.
501   if (ResultKind == Ambiguous) return;
502 
503   llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique;
504   llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
505 
506   bool Ambiguous = false;
507   bool HasTag = false, HasFunction = false;
508   bool HasFunctionTemplate = false, HasUnresolved = false;
509   NamedDecl *HasNonFunction = nullptr;
510 
511   llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions;
512 
513   unsigned UniqueTagIndex = 0;
514 
515   unsigned I = 0;
516   while (I < N) {
517     NamedDecl *D = Decls[I]->getUnderlyingDecl();
518     D = cast<NamedDecl>(D->getCanonicalDecl());
519 
520     // Ignore an invalid declaration unless it's the only one left.
521     if (D->isInvalidDecl() && !(I == 0 && N == 1)) {
522       Decls[I] = Decls[--N];
523       continue;
524     }
525 
526     llvm::Optional<unsigned> ExistingI;
527 
528     // Redeclarations of types via typedef can occur both within a scope
529     // and, through using declarations and directives, across scopes. There is
530     // no ambiguity if they all refer to the same type, so unique based on the
531     // canonical type.
532     if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
533       QualType T = getSema().Context.getTypeDeclType(TD);
534       auto UniqueResult = UniqueTypes.insert(
535           std::make_pair(getSema().Context.getCanonicalType(T), I));
536       if (!UniqueResult.second) {
537         // The type is not unique.
538         ExistingI = UniqueResult.first->second;
539       }
540     }
541 
542     // For non-type declarations, check for a prior lookup result naming this
543     // canonical declaration.
544     if (!ExistingI) {
545       auto UniqueResult = Unique.insert(std::make_pair(D, I));
546       if (!UniqueResult.second) {
547         // We've seen this entity before.
548         ExistingI = UniqueResult.first->second;
549       }
550     }
551 
552     if (ExistingI) {
553       // This is not a unique lookup result. Pick one of the results and
554       // discard the other.
555       if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
556                                   Decls[*ExistingI]))
557         Decls[*ExistingI] = Decls[I];
558       Decls[I] = Decls[--N];
559       continue;
560     }
561 
562     // Otherwise, do some decl type analysis and then continue.
563 
564     if (isa<UnresolvedUsingValueDecl>(D)) {
565       HasUnresolved = true;
566     } else if (isa<TagDecl>(D)) {
567       if (HasTag)
568         Ambiguous = true;
569       UniqueTagIndex = I;
570       HasTag = true;
571     } else if (isa<FunctionTemplateDecl>(D)) {
572       HasFunction = true;
573       HasFunctionTemplate = true;
574     } else if (isa<FunctionDecl>(D)) {
575       HasFunction = true;
576     } else {
577       if (HasNonFunction) {
578         // If we're about to create an ambiguity between two declarations that
579         // are equivalent, but one is an internal linkage declaration from one
580         // module and the other is an internal linkage declaration from another
581         // module, just skip it.
582         if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
583                                                              D)) {
584           EquivalentNonFunctions.push_back(D);
585           Decls[I] = Decls[--N];
586           continue;
587         }
588 
589         Ambiguous = true;
590       }
591       HasNonFunction = D;
592     }
593     I++;
594   }
595 
596   // C++ [basic.scope.hiding]p2:
597   //   A class name or enumeration name can be hidden by the name of
598   //   an object, function, or enumerator declared in the same
599   //   scope. If a class or enumeration name and an object, function,
600   //   or enumerator are declared in the same scope (in any order)
601   //   with the same name, the class or enumeration name is hidden
602   //   wherever the object, function, or enumerator name is visible.
603   // But it's still an error if there are distinct tag types found,
604   // even if they're not visible. (ref?)
605   if (N > 1 && HideTags && HasTag && !Ambiguous &&
606       (HasFunction || HasNonFunction || HasUnresolved)) {
607     NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1];
608     if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) &&
609         getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
610             getContextForScopeMatching(OtherDecl)) &&
611         canHideTag(OtherDecl))
612       Decls[UniqueTagIndex] = Decls[--N];
613     else
614       Ambiguous = true;
615   }
616 
617   // FIXME: This diagnostic should really be delayed until we're done with
618   // the lookup result, in case the ambiguity is resolved by the caller.
619   if (!EquivalentNonFunctions.empty() && !Ambiguous)
620     getSema().diagnoseEquivalentInternalLinkageDeclarations(
621         getNameLoc(), HasNonFunction, EquivalentNonFunctions);
622 
623   Decls.set_size(N);
624 
625   if (HasNonFunction && (HasFunction || HasUnresolved))
626     Ambiguous = true;
627 
628   if (Ambiguous)
629     setAmbiguous(LookupResult::AmbiguousReference);
630   else if (HasUnresolved)
631     ResultKind = LookupResult::FoundUnresolvedValue;
632   else if (N > 1 || HasFunctionTemplate)
633     ResultKind = LookupResult::FoundOverloaded;
634   else
635     ResultKind = LookupResult::Found;
636 }
637 
638 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
639   CXXBasePaths::const_paths_iterator I, E;
640   for (I = P.begin(), E = P.end(); I != E; ++I)
641     for (DeclContext::lookup_iterator DI = I->Decls.begin(),
642          DE = I->Decls.end(); DI != DE; ++DI)
643       addDecl(*DI);
644 }
645 
646 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
647   Paths = new CXXBasePaths;
648   Paths->swap(P);
649   addDeclsFromBasePaths(*Paths);
650   resolveKind();
651   setAmbiguous(AmbiguousBaseSubobjects);
652 }
653 
654 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
655   Paths = new CXXBasePaths;
656   Paths->swap(P);
657   addDeclsFromBasePaths(*Paths);
658   resolveKind();
659   setAmbiguous(AmbiguousBaseSubobjectTypes);
660 }
661 
662 void LookupResult::print(raw_ostream &Out) {
663   Out << Decls.size() << " result(s)";
664   if (isAmbiguous()) Out << ", ambiguous";
665   if (Paths) Out << ", base paths present";
666 
667   for (iterator I = begin(), E = end(); I != E; ++I) {
668     Out << "\n";
669     (*I)->print(Out, 2);
670   }
671 }
672 
673 LLVM_DUMP_METHOD void LookupResult::dump() {
674   llvm::errs() << "lookup results for " << getLookupName().getAsString()
675                << ":\n";
676   for (NamedDecl *D : *this)
677     D->dump();
678 }
679 
680 /// Get the QualType instances of the return type and arguments for an OpenCL
681 /// builtin function signature.
682 /// \param Context (in) The Context instance.
683 /// \param OpenCLBuiltin (in) The signature currently handled.
684 /// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic
685 ///        type used as return type or as argument.
686 ///        Only meaningful for generic types, otherwise equals 1.
687 /// \param RetTypes (out) List of the possible return types.
688 /// \param ArgTypes (out) List of the possible argument types.  For each
689 ///        argument, ArgTypes contains QualTypes for the Cartesian product
690 ///        of (vector sizes) x (types) .
691 static void GetQualTypesForOpenCLBuiltin(
692     ASTContext &Context, const OpenCLBuiltinStruct &OpenCLBuiltin,
693     unsigned &GenTypeMaxCnt, SmallVector<QualType, 1> &RetTypes,
694     SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
695   // Get the QualType instances of the return types.
696   unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex];
697   OCL2Qual(Context, TypeTable[Sig], RetTypes);
698   GenTypeMaxCnt = RetTypes.size();
699 
700   // Get the QualType instances of the arguments.
701   // First type is the return type, skip it.
702   for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) {
703     SmallVector<QualType, 1> Ty;
704     OCL2Qual(Context,
705         TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]], Ty);
706     GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt;
707     ArgTypes.push_back(std::move(Ty));
708   }
709 }
710 
711 /// Create a list of the candidate function overloads for an OpenCL builtin
712 /// function.
713 /// \param Context (in) The ASTContext instance.
714 /// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic
715 ///        type used as return type or as argument.
716 ///        Only meaningful for generic types, otherwise equals 1.
717 /// \param FunctionList (out) List of FunctionTypes.
718 /// \param RetTypes (in) List of the possible return types.
719 /// \param ArgTypes (in) List of the possible types for the arguments.
720 static void GetOpenCLBuiltinFctOverloads(
721     ASTContext &Context, unsigned GenTypeMaxCnt,
722     std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes,
723     SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
724   FunctionProtoType::ExtProtoInfo PI;
725   PI.Variadic = false;
726 
727   // Create FunctionTypes for each (gen)type.
728   for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) {
729     SmallVector<QualType, 5> ArgList;
730 
731     for (unsigned A = 0; A < ArgTypes.size(); A++) {
732       // Builtins such as "max" have an "sgentype" argument that represents
733       // the corresponding scalar type of a gentype.  The number of gentypes
734       // must be a multiple of the number of sgentypes.
735       assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 &&
736              "argument type count not compatible with gentype type count");
737       unsigned Idx = IGenType % ArgTypes[A].size();
738       ArgList.push_back(ArgTypes[A][Idx]);
739     }
740 
741     FunctionList.push_back(Context.getFunctionType(
742         RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI));
743   }
744 }
745 
746 /// Add extensions to the function declaration.
747 /// \param S (in/out) The Sema instance.
748 /// \param BIDecl (in) Description of the builtin.
749 /// \param FDecl (in/out) FunctionDecl instance.
750 static void AddOpenCLExtensions(Sema &S, const OpenCLBuiltinStruct &BIDecl,
751                                 FunctionDecl *FDecl) {
752   // Fetch extension associated with a function prototype.
753   StringRef E = FunctionExtensionTable[BIDecl.Extension];
754   if (E != "")
755     S.setOpenCLExtensionForDecl(FDecl, E);
756 }
757 
758 /// When trying to resolve a function name, if isOpenCLBuiltin() returns a
759 /// non-null <Index, Len> pair, then the name is referencing an OpenCL
760 /// builtin function.  Add all candidate signatures to the LookUpResult.
761 ///
762 /// \param S (in) The Sema instance.
763 /// \param LR (inout) The LookupResult instance.
764 /// \param II (in) The identifier being resolved.
765 /// \param FctIndex (in) Starting index in the BuiltinTable.
766 /// \param Len (in) The signature list has Len elements.
767 static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR,
768                                                   IdentifierInfo *II,
769                                                   const unsigned FctIndex,
770                                                   const unsigned Len) {
771   // The builtin function declaration uses generic types (gentype).
772   bool HasGenType = false;
773 
774   // Maximum number of types contained in a generic type used as return type or
775   // as argument.  Only meaningful for generic types, otherwise equals 1.
776   unsigned GenTypeMaxCnt;
777 
778   for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) {
779     const OpenCLBuiltinStruct &OpenCLBuiltin =
780         BuiltinTable[FctIndex + SignatureIndex];
781     ASTContext &Context = S.Context;
782 
783     // Ignore this BIF if its version does not match the language options.
784     unsigned OpenCLVersion = Context.getLangOpts().OpenCLVersion;
785     if (Context.getLangOpts().OpenCLCPlusPlus)
786       OpenCLVersion = 200;
787     if (OpenCLVersion < OpenCLBuiltin.MinVersion)
788       continue;
789     if ((OpenCLBuiltin.MaxVersion != 0) &&
790         (OpenCLVersion >= OpenCLBuiltin.MaxVersion))
791       continue;
792 
793     SmallVector<QualType, 1> RetTypes;
794     SmallVector<SmallVector<QualType, 1>, 5> ArgTypes;
795 
796     // Obtain QualType lists for the function signature.
797     GetQualTypesForOpenCLBuiltin(Context, OpenCLBuiltin, GenTypeMaxCnt,
798                                  RetTypes, ArgTypes);
799     if (GenTypeMaxCnt > 1) {
800       HasGenType = true;
801     }
802 
803     // Create function overload for each type combination.
804     std::vector<QualType> FunctionList;
805     GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes,
806                                  ArgTypes);
807 
808     SourceLocation Loc = LR.getNameLoc();
809     DeclContext *Parent = Context.getTranslationUnitDecl();
810     FunctionDecl *NewOpenCLBuiltin;
811 
812     for (unsigned Index = 0; Index < GenTypeMaxCnt; Index++) {
813       NewOpenCLBuiltin = FunctionDecl::Create(
814           Context, Parent, Loc, Loc, II, FunctionList[Index],
815           /*TInfo=*/nullptr, SC_Extern, false,
816           FunctionList[Index]->isFunctionProtoType());
817       NewOpenCLBuiltin->setImplicit();
818 
819       // Create Decl objects for each parameter, adding them to the
820       // FunctionDecl.
821       if (const FunctionProtoType *FP =
822               dyn_cast<FunctionProtoType>(FunctionList[Index])) {
823         SmallVector<ParmVarDecl *, 16> ParmList;
824         for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) {
825           ParmVarDecl *Parm = ParmVarDecl::Create(
826               Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(),
827               nullptr, FP->getParamType(IParm),
828               /*TInfo=*/nullptr, SC_None, nullptr);
829           Parm->setScopeInfo(0, IParm);
830           ParmList.push_back(Parm);
831         }
832         NewOpenCLBuiltin->setParams(ParmList);
833       }
834 
835       // Add function attributes.
836       if (OpenCLBuiltin.IsPure)
837         NewOpenCLBuiltin->addAttr(PureAttr::CreateImplicit(Context));
838       if (OpenCLBuiltin.IsConst)
839         NewOpenCLBuiltin->addAttr(ConstAttr::CreateImplicit(Context));
840       if (OpenCLBuiltin.IsConv)
841         NewOpenCLBuiltin->addAttr(ConvergentAttr::CreateImplicit(Context));
842 
843       if (!S.getLangOpts().OpenCLCPlusPlus)
844         NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context));
845 
846       AddOpenCLExtensions(S, OpenCLBuiltin, NewOpenCLBuiltin);
847 
848       LR.addDecl(NewOpenCLBuiltin);
849     }
850   }
851 
852   // If we added overloads, need to resolve the lookup result.
853   if (Len > 1 || HasGenType)
854     LR.resolveKind();
855 }
856 
857 /// Lookup a builtin function, when name lookup would otherwise
858 /// fail.
859 bool Sema::LookupBuiltin(LookupResult &R) {
860   Sema::LookupNameKind NameKind = R.getLookupKind();
861 
862   // If we didn't find a use of this identifier, and if the identifier
863   // corresponds to a compiler builtin, create the decl object for the builtin
864   // now, injecting it into translation unit scope, and return it.
865   if (NameKind == Sema::LookupOrdinaryName ||
866       NameKind == Sema::LookupRedeclarationWithLinkage) {
867     IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
868     if (II) {
869       if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) {
870         if (II == getASTContext().getMakeIntegerSeqName()) {
871           R.addDecl(getASTContext().getMakeIntegerSeqDecl());
872           return true;
873         } else if (II == getASTContext().getTypePackElementName()) {
874           R.addDecl(getASTContext().getTypePackElementDecl());
875           return true;
876         }
877       }
878 
879       // Check if this is an OpenCL Builtin, and if so, insert its overloads.
880       if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) {
881         auto Index = isOpenCLBuiltin(II->getName());
882         if (Index.first) {
883           InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1,
884                                                 Index.second);
885           return true;
886         }
887       }
888 
889       // If this is a builtin on this (or all) targets, create the decl.
890       if (unsigned BuiltinID = II->getBuiltinID()) {
891         // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
892         // library functions like 'malloc'. Instead, we'll just error.
893         if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) &&
894             Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
895           return false;
896 
897         if (NamedDecl *D =
898                 LazilyCreateBuiltin(II, BuiltinID, TUScope,
899                                     R.isForRedeclaration(), R.getNameLoc())) {
900           R.addDecl(D);
901           return true;
902         }
903       }
904     }
905   }
906 
907   return false;
908 }
909 
910 /// Determine whether we can declare a special member function within
911 /// the class at this point.
912 static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
913   // We need to have a definition for the class.
914   if (!Class->getDefinition() || Class->isDependentContext())
915     return false;
916 
917   // We can't be in the middle of defining the class.
918   return !Class->isBeingDefined();
919 }
920 
921 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
922   if (!CanDeclareSpecialMemberFunction(Class))
923     return;
924 
925   // If the default constructor has not yet been declared, do so now.
926   if (Class->needsImplicitDefaultConstructor())
927     DeclareImplicitDefaultConstructor(Class);
928 
929   // If the copy constructor has not yet been declared, do so now.
930   if (Class->needsImplicitCopyConstructor())
931     DeclareImplicitCopyConstructor(Class);
932 
933   // If the copy assignment operator has not yet been declared, do so now.
934   if (Class->needsImplicitCopyAssignment())
935     DeclareImplicitCopyAssignment(Class);
936 
937   if (getLangOpts().CPlusPlus11) {
938     // If the move constructor has not yet been declared, do so now.
939     if (Class->needsImplicitMoveConstructor())
940       DeclareImplicitMoveConstructor(Class);
941 
942     // If the move assignment operator has not yet been declared, do so now.
943     if (Class->needsImplicitMoveAssignment())
944       DeclareImplicitMoveAssignment(Class);
945   }
946 
947   // If the destructor has not yet been declared, do so now.
948   if (Class->needsImplicitDestructor())
949     DeclareImplicitDestructor(Class);
950 }
951 
952 /// Determine whether this is the name of an implicitly-declared
953 /// special member function.
954 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
955   switch (Name.getNameKind()) {
956   case DeclarationName::CXXConstructorName:
957   case DeclarationName::CXXDestructorName:
958     return true;
959 
960   case DeclarationName::CXXOperatorName:
961     return Name.getCXXOverloadedOperator() == OO_Equal;
962 
963   default:
964     break;
965   }
966 
967   return false;
968 }
969 
970 /// If there are any implicit member functions with the given name
971 /// that need to be declared in the given declaration context, do so.
972 static void DeclareImplicitMemberFunctionsWithName(Sema &S,
973                                                    DeclarationName Name,
974                                                    SourceLocation Loc,
975                                                    const DeclContext *DC) {
976   if (!DC)
977     return;
978 
979   switch (Name.getNameKind()) {
980   case DeclarationName::CXXConstructorName:
981     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
982       if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
983         CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
984         if (Record->needsImplicitDefaultConstructor())
985           S.DeclareImplicitDefaultConstructor(Class);
986         if (Record->needsImplicitCopyConstructor())
987           S.DeclareImplicitCopyConstructor(Class);
988         if (S.getLangOpts().CPlusPlus11 &&
989             Record->needsImplicitMoveConstructor())
990           S.DeclareImplicitMoveConstructor(Class);
991       }
992     break;
993 
994   case DeclarationName::CXXDestructorName:
995     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
996       if (Record->getDefinition() && Record->needsImplicitDestructor() &&
997           CanDeclareSpecialMemberFunction(Record))
998         S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
999     break;
1000 
1001   case DeclarationName::CXXOperatorName:
1002     if (Name.getCXXOverloadedOperator() != OO_Equal)
1003       break;
1004 
1005     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
1006       if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
1007         CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
1008         if (Record->needsImplicitCopyAssignment())
1009           S.DeclareImplicitCopyAssignment(Class);
1010         if (S.getLangOpts().CPlusPlus11 &&
1011             Record->needsImplicitMoveAssignment())
1012           S.DeclareImplicitMoveAssignment(Class);
1013       }
1014     }
1015     break;
1016 
1017   case DeclarationName::CXXDeductionGuideName:
1018     S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc);
1019     break;
1020 
1021   default:
1022     break;
1023   }
1024 }
1025 
1026 // Adds all qualifying matches for a name within a decl context to the
1027 // given lookup result.  Returns true if any matches were found.
1028 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
1029   bool Found = false;
1030 
1031   // Lazily declare C++ special member functions.
1032   if (S.getLangOpts().CPlusPlus)
1033     DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(),
1034                                            DC);
1035 
1036   // Perform lookup into this declaration context.
1037   DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
1038   for (NamedDecl *D : DR) {
1039     if ((D = R.getAcceptableDecl(D))) {
1040       R.addDecl(D);
1041       Found = true;
1042     }
1043   }
1044 
1045   if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R))
1046     return true;
1047 
1048   if (R.getLookupName().getNameKind()
1049         != DeclarationName::CXXConversionFunctionName ||
1050       R.getLookupName().getCXXNameType()->isDependentType() ||
1051       !isa<CXXRecordDecl>(DC))
1052     return Found;
1053 
1054   // C++ [temp.mem]p6:
1055   //   A specialization of a conversion function template is not found by
1056   //   name lookup. Instead, any conversion function templates visible in the
1057   //   context of the use are considered. [...]
1058   const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1059   if (!Record->isCompleteDefinition())
1060     return Found;
1061 
1062   // For conversion operators, 'operator auto' should only match
1063   // 'operator auto'.  Since 'auto' is not a type, it shouldn't be considered
1064   // as a candidate for template substitution.
1065   auto *ContainedDeducedType =
1066       R.getLookupName().getCXXNameType()->getContainedDeducedType();
1067   if (R.getLookupName().getNameKind() ==
1068           DeclarationName::CXXConversionFunctionName &&
1069       ContainedDeducedType && ContainedDeducedType->isUndeducedType())
1070     return Found;
1071 
1072   for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
1073          UEnd = Record->conversion_end(); U != UEnd; ++U) {
1074     FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
1075     if (!ConvTemplate)
1076       continue;
1077 
1078     // When we're performing lookup for the purposes of redeclaration, just
1079     // add the conversion function template. When we deduce template
1080     // arguments for specializations, we'll end up unifying the return
1081     // type of the new declaration with the type of the function template.
1082     if (R.isForRedeclaration()) {
1083       R.addDecl(ConvTemplate);
1084       Found = true;
1085       continue;
1086     }
1087 
1088     // C++ [temp.mem]p6:
1089     //   [...] For each such operator, if argument deduction succeeds
1090     //   (14.9.2.3), the resulting specialization is used as if found by
1091     //   name lookup.
1092     //
1093     // When referencing a conversion function for any purpose other than
1094     // a redeclaration (such that we'll be building an expression with the
1095     // result), perform template argument deduction and place the
1096     // specialization into the result set. We do this to avoid forcing all
1097     // callers to perform special deduction for conversion functions.
1098     TemplateDeductionInfo Info(R.getNameLoc());
1099     FunctionDecl *Specialization = nullptr;
1100 
1101     const FunctionProtoType *ConvProto
1102       = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
1103     assert(ConvProto && "Nonsensical conversion function template type");
1104 
1105     // Compute the type of the function that we would expect the conversion
1106     // function to have, if it were to match the name given.
1107     // FIXME: Calling convention!
1108     FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
1109     EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
1110     EPI.ExceptionSpec = EST_None;
1111     QualType ExpectedType
1112       = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
1113                                             None, EPI);
1114 
1115     // Perform template argument deduction against the type that we would
1116     // expect the function to have.
1117     if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
1118                                             Specialization, Info)
1119           == Sema::TDK_Success) {
1120       R.addDecl(Specialization);
1121       Found = true;
1122     }
1123   }
1124 
1125   return Found;
1126 }
1127 
1128 // Performs C++ unqualified lookup into the given file context.
1129 static bool
1130 CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
1131                    DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
1132 
1133   assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
1134 
1135   // Perform direct name lookup into the LookupCtx.
1136   bool Found = LookupDirect(S, R, NS);
1137 
1138   // Perform direct name lookup into the namespaces nominated by the
1139   // using directives whose common ancestor is this namespace.
1140   for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
1141     if (LookupDirect(S, R, UUE.getNominatedNamespace()))
1142       Found = true;
1143 
1144   R.resolveKind();
1145 
1146   return Found;
1147 }
1148 
1149 static bool isNamespaceOrTranslationUnitScope(Scope *S) {
1150   if (DeclContext *Ctx = S->getEntity())
1151     return Ctx->isFileContext();
1152   return false;
1153 }
1154 
1155 /// Find the outer declaration context from this scope. This indicates the
1156 /// context that we should search up to (exclusive) before considering the
1157 /// parent of the specified scope.
1158 static DeclContext *findOuterContext(Scope *S) {
1159   for (Scope *OuterS = S->getParent(); OuterS; OuterS = OuterS->getParent())
1160     if (DeclContext *DC = OuterS->getLookupEntity())
1161       return DC;
1162   return nullptr;
1163 }
1164 
1165 namespace {
1166 /// An RAII object to specify that we want to find block scope extern
1167 /// declarations.
1168 struct FindLocalExternScope {
1169   FindLocalExternScope(LookupResult &R)
1170       : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
1171                                  Decl::IDNS_LocalExtern) {
1172     R.setFindLocalExtern(R.getIdentifierNamespace() &
1173                          (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator));
1174   }
1175   void restore() {
1176     R.setFindLocalExtern(OldFindLocalExtern);
1177   }
1178   ~FindLocalExternScope() {
1179     restore();
1180   }
1181   LookupResult &R;
1182   bool OldFindLocalExtern;
1183 };
1184 } // end anonymous namespace
1185 
1186 bool Sema::CppLookupName(LookupResult &R, Scope *S) {
1187   assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
1188 
1189   DeclarationName Name = R.getLookupName();
1190   Sema::LookupNameKind NameKind = R.getLookupKind();
1191 
1192   // If this is the name of an implicitly-declared special member function,
1193   // go through the scope stack to implicitly declare
1194   if (isImplicitlyDeclaredMemberFunctionName(Name)) {
1195     for (Scope *PreS = S; PreS; PreS = PreS->getParent())
1196       if (DeclContext *DC = PreS->getEntity())
1197         DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC);
1198   }
1199 
1200   // Implicitly declare member functions with the name we're looking for, if in
1201   // fact we are in a scope where it matters.
1202 
1203   Scope *Initial = S;
1204   IdentifierResolver::iterator
1205     I = IdResolver.begin(Name),
1206     IEnd = IdResolver.end();
1207 
1208   // First we lookup local scope.
1209   // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
1210   // ...During unqualified name lookup (3.4.1), the names appear as if
1211   // they were declared in the nearest enclosing namespace which contains
1212   // both the using-directive and the nominated namespace.
1213   // [Note: in this context, "contains" means "contains directly or
1214   // indirectly".
1215   //
1216   // For example:
1217   // namespace A { int i; }
1218   // void foo() {
1219   //   int i;
1220   //   {
1221   //     using namespace A;
1222   //     ++i; // finds local 'i', A::i appears at global scope
1223   //   }
1224   // }
1225   //
1226   UnqualUsingDirectiveSet UDirs(*this);
1227   bool VisitedUsingDirectives = false;
1228   bool LeftStartingScope = false;
1229 
1230   // When performing a scope lookup, we want to find local extern decls.
1231   FindLocalExternScope FindLocals(R);
1232 
1233   for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
1234     bool SearchNamespaceScope = true;
1235     // Check whether the IdResolver has anything in this scope.
1236     for (; I != IEnd && S->isDeclScope(*I); ++I) {
1237       if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1238         if (NameKind == LookupRedeclarationWithLinkage &&
1239             !(*I)->isTemplateParameter()) {
1240           // If it's a template parameter, we still find it, so we can diagnose
1241           // the invalid redeclaration.
1242 
1243           // Determine whether this (or a previous) declaration is
1244           // out-of-scope.
1245           if (!LeftStartingScope && !Initial->isDeclScope(*I))
1246             LeftStartingScope = true;
1247 
1248           // If we found something outside of our starting scope that
1249           // does not have linkage, skip it.
1250           if (LeftStartingScope && !((*I)->hasLinkage())) {
1251             R.setShadowed();
1252             continue;
1253           }
1254         } else {
1255           // We found something in this scope, we should not look at the
1256           // namespace scope
1257           SearchNamespaceScope = false;
1258         }
1259         R.addDecl(ND);
1260       }
1261     }
1262     if (!SearchNamespaceScope) {
1263       R.resolveKind();
1264       if (S->isClassScope())
1265         if (CXXRecordDecl *Record =
1266                 dyn_cast_or_null<CXXRecordDecl>(S->getEntity()))
1267           R.setNamingClass(Record);
1268       return true;
1269     }
1270 
1271     if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
1272       // C++11 [class.friend]p11:
1273       //   If a friend declaration appears in a local class and the name
1274       //   specified is an unqualified name, a prior declaration is
1275       //   looked up without considering scopes that are outside the
1276       //   innermost enclosing non-class scope.
1277       return false;
1278     }
1279 
1280     if (DeclContext *Ctx = S->getLookupEntity()) {
1281       DeclContext *OuterCtx = findOuterContext(S);
1282       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1283         // We do not directly look into transparent contexts, since
1284         // those entities will be found in the nearest enclosing
1285         // non-transparent context.
1286         if (Ctx->isTransparentContext())
1287           continue;
1288 
1289         // We do not look directly into function or method contexts,
1290         // since all of the local variables and parameters of the
1291         // function/method are present within the Scope.
1292         if (Ctx->isFunctionOrMethod()) {
1293           // If we have an Objective-C instance method, look for ivars
1294           // in the corresponding interface.
1295           if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1296             if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1297               if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1298                 ObjCInterfaceDecl *ClassDeclared;
1299                 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1300                                                  Name.getAsIdentifierInfo(),
1301                                                              ClassDeclared)) {
1302                   if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1303                     R.addDecl(ND);
1304                     R.resolveKind();
1305                     return true;
1306                   }
1307                 }
1308               }
1309           }
1310 
1311           continue;
1312         }
1313 
1314         // If this is a file context, we need to perform unqualified name
1315         // lookup considering using directives.
1316         if (Ctx->isFileContext()) {
1317           // If we haven't handled using directives yet, do so now.
1318           if (!VisitedUsingDirectives) {
1319             // Add using directives from this context up to the top level.
1320             for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1321               if (UCtx->isTransparentContext())
1322                 continue;
1323 
1324               UDirs.visit(UCtx, UCtx);
1325             }
1326 
1327             // Find the innermost file scope, so we can add using directives
1328             // from local scopes.
1329             Scope *InnermostFileScope = S;
1330             while (InnermostFileScope &&
1331                    !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1332               InnermostFileScope = InnermostFileScope->getParent();
1333             UDirs.visitScopeChain(Initial, InnermostFileScope);
1334 
1335             UDirs.done();
1336 
1337             VisitedUsingDirectives = true;
1338           }
1339 
1340           if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1341             R.resolveKind();
1342             return true;
1343           }
1344 
1345           continue;
1346         }
1347 
1348         // Perform qualified name lookup into this context.
1349         // FIXME: In some cases, we know that every name that could be found by
1350         // this qualified name lookup will also be on the identifier chain. For
1351         // example, inside a class without any base classes, we never need to
1352         // perform qualified lookup because all of the members are on top of the
1353         // identifier chain.
1354         if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1355           return true;
1356       }
1357     }
1358   }
1359 
1360   // Stop if we ran out of scopes.
1361   // FIXME:  This really, really shouldn't be happening.
1362   if (!S) return false;
1363 
1364   // If we are looking for members, no need to look into global/namespace scope.
1365   if (NameKind == LookupMemberName)
1366     return false;
1367 
1368   // Collect UsingDirectiveDecls in all scopes, and recursively all
1369   // nominated namespaces by those using-directives.
1370   //
1371   // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1372   // don't build it for each lookup!
1373   if (!VisitedUsingDirectives) {
1374     UDirs.visitScopeChain(Initial, S);
1375     UDirs.done();
1376   }
1377 
1378   // If we're not performing redeclaration lookup, do not look for local
1379   // extern declarations outside of a function scope.
1380   if (!R.isForRedeclaration())
1381     FindLocals.restore();
1382 
1383   // Lookup namespace scope, and global scope.
1384   // Unqualified name lookup in C++ requires looking into scopes
1385   // that aren't strictly lexical, and therefore we walk through the
1386   // context as well as walking through the scopes.
1387   for (; S; S = S->getParent()) {
1388     // Check whether the IdResolver has anything in this scope.
1389     bool Found = false;
1390     for (; I != IEnd && S->isDeclScope(*I); ++I) {
1391       if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1392         // We found something.  Look for anything else in our scope
1393         // with this same name and in an acceptable identifier
1394         // namespace, so that we can construct an overload set if we
1395         // need to.
1396         Found = true;
1397         R.addDecl(ND);
1398       }
1399     }
1400 
1401     if (Found && S->isTemplateParamScope()) {
1402       R.resolveKind();
1403       return true;
1404     }
1405 
1406     DeclContext *Ctx = S->getLookupEntity();
1407     if (Ctx) {
1408       DeclContext *OuterCtx = findOuterContext(S);
1409       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1410         // We do not directly look into transparent contexts, since
1411         // those entities will be found in the nearest enclosing
1412         // non-transparent context.
1413         if (Ctx->isTransparentContext())
1414           continue;
1415 
1416         // If we have a context, and it's not a context stashed in the
1417         // template parameter scope for an out-of-line definition, also
1418         // look into that context.
1419         if (!(Found && S->isTemplateParamScope())) {
1420           assert(Ctx->isFileContext() &&
1421               "We should have been looking only at file context here already.");
1422 
1423           // Look into context considering using-directives.
1424           if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1425             Found = true;
1426         }
1427 
1428         if (Found) {
1429           R.resolveKind();
1430           return true;
1431         }
1432 
1433         if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1434           return false;
1435       }
1436     }
1437 
1438     if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1439       return false;
1440   }
1441 
1442   return !R.empty();
1443 }
1444 
1445 void Sema::makeMergedDefinitionVisible(NamedDecl *ND) {
1446   if (auto *M = getCurrentModule())
1447     Context.mergeDefinitionIntoModule(ND, M);
1448   else
1449     // We're not building a module; just make the definition visible.
1450     ND->setVisibleDespiteOwningModule();
1451 
1452   // If ND is a template declaration, make the template parameters
1453   // visible too. They're not (necessarily) within a mergeable DeclContext.
1454   if (auto *TD = dyn_cast<TemplateDecl>(ND))
1455     for (auto *Param : *TD->getTemplateParameters())
1456       makeMergedDefinitionVisible(Param);
1457 }
1458 
1459 /// Find the module in which the given declaration was defined.
1460 static Module *getDefiningModule(Sema &S, Decl *Entity) {
1461   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1462     // If this function was instantiated from a template, the defining module is
1463     // the module containing the pattern.
1464     if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1465       Entity = Pattern;
1466   } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1467     if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
1468       Entity = Pattern;
1469   } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1470     if (auto *Pattern = ED->getTemplateInstantiationPattern())
1471       Entity = Pattern;
1472   } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1473     if (VarDecl *Pattern = VD->getTemplateInstantiationPattern())
1474       Entity = Pattern;
1475   }
1476 
1477   // Walk up to the containing context. That might also have been instantiated
1478   // from a template.
1479   DeclContext *Context = Entity->getLexicalDeclContext();
1480   if (Context->isFileContext())
1481     return S.getOwningModule(Entity);
1482   return getDefiningModule(S, cast<Decl>(Context));
1483 }
1484 
1485 llvm::DenseSet<Module*> &Sema::getLookupModules() {
1486   unsigned N = CodeSynthesisContexts.size();
1487   for (unsigned I = CodeSynthesisContextLookupModules.size();
1488        I != N; ++I) {
1489     Module *M = CodeSynthesisContexts[I].Entity ?
1490                 getDefiningModule(*this, CodeSynthesisContexts[I].Entity) :
1491                 nullptr;
1492     if (M && !LookupModulesCache.insert(M).second)
1493       M = nullptr;
1494     CodeSynthesisContextLookupModules.push_back(M);
1495   }
1496   return LookupModulesCache;
1497 }
1498 
1499 /// Determine whether the module M is part of the current module from the
1500 /// perspective of a module-private visibility check.
1501 static bool isInCurrentModule(const Module *M, const LangOptions &LangOpts) {
1502   // If M is the global module fragment of a module that we've not yet finished
1503   // parsing, then it must be part of the current module.
1504   return M->getTopLevelModuleName() == LangOpts.CurrentModule ||
1505          (M->Kind == Module::GlobalModuleFragment && !M->Parent);
1506 }
1507 
1508 bool Sema::hasVisibleMergedDefinition(NamedDecl *Def) {
1509   for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1510     if (isModuleVisible(Merged))
1511       return true;
1512   return false;
1513 }
1514 
1515 bool Sema::hasMergedDefinitionInCurrentModule(NamedDecl *Def) {
1516   for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1517     if (isInCurrentModule(Merged, getLangOpts()))
1518       return true;
1519   return false;
1520 }
1521 
1522 template<typename ParmDecl>
1523 static bool
1524 hasVisibleDefaultArgument(Sema &S, const ParmDecl *D,
1525                           llvm::SmallVectorImpl<Module *> *Modules) {
1526   if (!D->hasDefaultArgument())
1527     return false;
1528 
1529   while (D) {
1530     auto &DefaultArg = D->getDefaultArgStorage();
1531     if (!DefaultArg.isInherited() && S.isVisible(D))
1532       return true;
1533 
1534     if (!DefaultArg.isInherited() && Modules) {
1535       auto *NonConstD = const_cast<ParmDecl*>(D);
1536       Modules->push_back(S.getOwningModule(NonConstD));
1537     }
1538 
1539     // If there was a previous default argument, maybe its parameter is visible.
1540     D = DefaultArg.getInheritedFrom();
1541   }
1542   return false;
1543 }
1544 
1545 bool Sema::hasVisibleDefaultArgument(const NamedDecl *D,
1546                                      llvm::SmallVectorImpl<Module *> *Modules) {
1547   if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
1548     return ::hasVisibleDefaultArgument(*this, P, Modules);
1549   if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
1550     return ::hasVisibleDefaultArgument(*this, P, Modules);
1551   return ::hasVisibleDefaultArgument(*this, cast<TemplateTemplateParmDecl>(D),
1552                                      Modules);
1553 }
1554 
1555 template<typename Filter>
1556 static bool hasVisibleDeclarationImpl(Sema &S, const NamedDecl *D,
1557                                       llvm::SmallVectorImpl<Module *> *Modules,
1558                                       Filter F) {
1559   bool HasFilteredRedecls = false;
1560 
1561   for (auto *Redecl : D->redecls()) {
1562     auto *R = cast<NamedDecl>(Redecl);
1563     if (!F(R))
1564       continue;
1565 
1566     if (S.isVisible(R))
1567       return true;
1568 
1569     HasFilteredRedecls = true;
1570 
1571     if (Modules)
1572       Modules->push_back(R->getOwningModule());
1573   }
1574 
1575   // Only return false if there is at least one redecl that is not filtered out.
1576   if (HasFilteredRedecls)
1577     return false;
1578 
1579   return true;
1580 }
1581 
1582 bool Sema::hasVisibleExplicitSpecialization(
1583     const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1584   return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1585     if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1586       return RD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1587     if (auto *FD = dyn_cast<FunctionDecl>(D))
1588       return FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1589     if (auto *VD = dyn_cast<VarDecl>(D))
1590       return VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1591     llvm_unreachable("unknown explicit specialization kind");
1592   });
1593 }
1594 
1595 bool Sema::hasVisibleMemberSpecialization(
1596     const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1597   assert(isa<CXXRecordDecl>(D->getDeclContext()) &&
1598          "not a member specialization");
1599   return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1600     // If the specialization is declared at namespace scope, then it's a member
1601     // specialization declaration. If it's lexically inside the class
1602     // definition then it was instantiated.
1603     //
1604     // FIXME: This is a hack. There should be a better way to determine this.
1605     // FIXME: What about MS-style explicit specializations declared within a
1606     //        class definition?
1607     return D->getLexicalDeclContext()->isFileContext();
1608   });
1609 }
1610 
1611 /// Determine whether a declaration is visible to name lookup.
1612 ///
1613 /// This routine determines whether the declaration D is visible in the current
1614 /// lookup context, taking into account the current template instantiation
1615 /// stack. During template instantiation, a declaration is visible if it is
1616 /// visible from a module containing any entity on the template instantiation
1617 /// path (by instantiating a template, you allow it to see the declarations that
1618 /// your module can see, including those later on in your module).
1619 bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
1620   assert(!D->isUnconditionallyVisible() &&
1621          "should not call this: not in slow case");
1622 
1623   Module *DeclModule = SemaRef.getOwningModule(D);
1624   assert(DeclModule && "hidden decl has no owning module");
1625 
1626   // If the owning module is visible, the decl is visible.
1627   if (SemaRef.isModuleVisible(DeclModule, D->isModulePrivate()))
1628     return true;
1629 
1630   // Determine whether a decl context is a file context for the purpose of
1631   // visibility. This looks through some (export and linkage spec) transparent
1632   // contexts, but not others (enums).
1633   auto IsEffectivelyFileContext = [](const DeclContext *DC) {
1634     return DC->isFileContext() || isa<LinkageSpecDecl>(DC) ||
1635            isa<ExportDecl>(DC);
1636   };
1637 
1638   // If this declaration is not at namespace scope
1639   // then it is visible if its lexical parent has a visible definition.
1640   DeclContext *DC = D->getLexicalDeclContext();
1641   if (DC && !IsEffectivelyFileContext(DC)) {
1642     // For a parameter, check whether our current template declaration's
1643     // lexical context is visible, not whether there's some other visible
1644     // definition of it, because parameters aren't "within" the definition.
1645     //
1646     // In C++ we need to check for a visible definition due to ODR merging,
1647     // and in C we must not because each declaration of a function gets its own
1648     // set of declarations for tags in prototype scope.
1649     bool VisibleWithinParent;
1650     if (D->isTemplateParameter()) {
1651       bool SearchDefinitions = true;
1652       if (const auto *DCD = dyn_cast<Decl>(DC)) {
1653         if (const auto *TD = DCD->getDescribedTemplate()) {
1654           TemplateParameterList *TPL = TD->getTemplateParameters();
1655           auto Index = getDepthAndIndex(D).second;
1656           SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D;
1657         }
1658       }
1659       if (SearchDefinitions)
1660         VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC));
1661       else
1662         VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC));
1663     } else if (isa<ParmVarDecl>(D) ||
1664                (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus))
1665       VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC));
1666     else if (D->isModulePrivate()) {
1667       // A module-private declaration is only visible if an enclosing lexical
1668       // parent was merged with another definition in the current module.
1669       VisibleWithinParent = false;
1670       do {
1671         if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) {
1672           VisibleWithinParent = true;
1673           break;
1674         }
1675         DC = DC->getLexicalParent();
1676       } while (!IsEffectivelyFileContext(DC));
1677     } else {
1678       VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC));
1679     }
1680 
1681     if (VisibleWithinParent && SemaRef.CodeSynthesisContexts.empty() &&
1682         // FIXME: Do something better in this case.
1683         !SemaRef.getLangOpts().ModulesLocalVisibility) {
1684       // Cache the fact that this declaration is implicitly visible because
1685       // its parent has a visible definition.
1686       D->setVisibleDespiteOwningModule();
1687     }
1688     return VisibleWithinParent;
1689   }
1690 
1691   return false;
1692 }
1693 
1694 bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) {
1695   // The module might be ordinarily visible. For a module-private query, that
1696   // means it is part of the current module. For any other query, that means it
1697   // is in our visible module set.
1698   if (ModulePrivate) {
1699     if (isInCurrentModule(M, getLangOpts()))
1700       return true;
1701   } else {
1702     if (VisibleModules.isVisible(M))
1703       return true;
1704   }
1705 
1706   // Otherwise, it might be visible by virtue of the query being within a
1707   // template instantiation or similar that is permitted to look inside M.
1708 
1709   // Find the extra places where we need to look.
1710   const auto &LookupModules = getLookupModules();
1711   if (LookupModules.empty())
1712     return false;
1713 
1714   // If our lookup set contains the module, it's visible.
1715   if (LookupModules.count(M))
1716     return true;
1717 
1718   // For a module-private query, that's everywhere we get to look.
1719   if (ModulePrivate)
1720     return false;
1721 
1722   // Check whether M is transitively exported to an import of the lookup set.
1723   return llvm::any_of(LookupModules, [&](const Module *LookupM) {
1724     return LookupM->isModuleVisible(M);
1725   });
1726 }
1727 
1728 bool Sema::isVisibleSlow(const NamedDecl *D) {
1729   return LookupResult::isVisible(*this, const_cast<NamedDecl*>(D));
1730 }
1731 
1732 bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
1733   // FIXME: If there are both visible and hidden declarations, we need to take
1734   // into account whether redeclaration is possible. Example:
1735   //
1736   // Non-imported module:
1737   //   int f(T);        // #1
1738   // Some TU:
1739   //   static int f(U); // #2, not a redeclaration of #1
1740   //   int f(T);        // #3, finds both, should link with #1 if T != U, but
1741   //                    // with #2 if T == U; neither should be ambiguous.
1742   for (auto *D : R) {
1743     if (isVisible(D))
1744       return true;
1745     assert(D->isExternallyDeclarable() &&
1746            "should not have hidden, non-externally-declarable result here");
1747   }
1748 
1749   // This function is called once "New" is essentially complete, but before a
1750   // previous declaration is attached. We can't query the linkage of "New" in
1751   // general, because attaching the previous declaration can change the
1752   // linkage of New to match the previous declaration.
1753   //
1754   // However, because we've just determined that there is no *visible* prior
1755   // declaration, we can compute the linkage here. There are two possibilities:
1756   //
1757   //  * This is not a redeclaration; it's safe to compute the linkage now.
1758   //
1759   //  * This is a redeclaration of a prior declaration that is externally
1760   //    redeclarable. In that case, the linkage of the declaration is not
1761   //    changed by attaching the prior declaration, because both are externally
1762   //    declarable (and thus ExternalLinkage or VisibleNoLinkage).
1763   //
1764   // FIXME: This is subtle and fragile.
1765   return New->isExternallyDeclarable();
1766 }
1767 
1768 /// Retrieve the visible declaration corresponding to D, if any.
1769 ///
1770 /// This routine determines whether the declaration D is visible in the current
1771 /// module, with the current imports. If not, it checks whether any
1772 /// redeclaration of D is visible, and if so, returns that declaration.
1773 ///
1774 /// \returns D, or a visible previous declaration of D, whichever is more recent
1775 /// and visible. If no declaration of D is visible, returns null.
1776 static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D,
1777                                      unsigned IDNS) {
1778   assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case");
1779 
1780   for (auto RD : D->redecls()) {
1781     // Don't bother with extra checks if we already know this one isn't visible.
1782     if (RD == D)
1783       continue;
1784 
1785     auto ND = cast<NamedDecl>(RD);
1786     // FIXME: This is wrong in the case where the previous declaration is not
1787     // visible in the same scope as D. This needs to be done much more
1788     // carefully.
1789     if (ND->isInIdentifierNamespace(IDNS) &&
1790         LookupResult::isVisible(SemaRef, ND))
1791       return ND;
1792   }
1793 
1794   return nullptr;
1795 }
1796 
1797 bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D,
1798                                      llvm::SmallVectorImpl<Module *> *Modules) {
1799   assert(!isVisible(D) && "not in slow case");
1800   return hasVisibleDeclarationImpl(*this, D, Modules,
1801                                    [](const NamedDecl *) { return true; });
1802 }
1803 
1804 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
1805   if (auto *ND = dyn_cast<NamespaceDecl>(D)) {
1806     // Namespaces are a bit of a special case: we expect there to be a lot of
1807     // redeclarations of some namespaces, all declarations of a namespace are
1808     // essentially interchangeable, all declarations are found by name lookup
1809     // if any is, and namespaces are never looked up during template
1810     // instantiation. So we benefit from caching the check in this case, and
1811     // it is correct to do so.
1812     auto *Key = ND->getCanonicalDecl();
1813     if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key))
1814       return Acceptable;
1815     auto *Acceptable = isVisible(getSema(), Key)
1816                            ? Key
1817                            : findAcceptableDecl(getSema(), Key, IDNS);
1818     if (Acceptable)
1819       getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable));
1820     return Acceptable;
1821   }
1822 
1823   return findAcceptableDecl(getSema(), D, IDNS);
1824 }
1825 
1826 /// Perform unqualified name lookup starting from a given
1827 /// scope.
1828 ///
1829 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1830 /// used to find names within the current scope. For example, 'x' in
1831 /// @code
1832 /// int x;
1833 /// int f() {
1834 ///   return x; // unqualified name look finds 'x' in the global scope
1835 /// }
1836 /// @endcode
1837 ///
1838 /// Different lookup criteria can find different names. For example, a
1839 /// particular scope can have both a struct and a function of the same
1840 /// name, and each can be found by certain lookup criteria. For more
1841 /// information about lookup criteria, see the documentation for the
1842 /// class LookupCriteria.
1843 ///
1844 /// @param S        The scope from which unqualified name lookup will
1845 /// begin. If the lookup criteria permits, name lookup may also search
1846 /// in the parent scopes.
1847 ///
1848 /// @param [in,out] R Specifies the lookup to perform (e.g., the name to
1849 /// look up and the lookup kind), and is updated with the results of lookup
1850 /// including zero or more declarations and possibly additional information
1851 /// used to diagnose ambiguities.
1852 ///
1853 /// @returns \c true if lookup succeeded and false otherwise.
1854 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1855   DeclarationName Name = R.getLookupName();
1856   if (!Name) return false;
1857 
1858   LookupNameKind NameKind = R.getLookupKind();
1859 
1860   if (!getLangOpts().CPlusPlus) {
1861     // Unqualified name lookup in C/Objective-C is purely lexical, so
1862     // search in the declarations attached to the name.
1863     if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1864       // Find the nearest non-transparent declaration scope.
1865       while (!(S->getFlags() & Scope::DeclScope) ||
1866              (S->getEntity() && S->getEntity()->isTransparentContext()))
1867         S = S->getParent();
1868     }
1869 
1870     // When performing a scope lookup, we want to find local extern decls.
1871     FindLocalExternScope FindLocals(R);
1872 
1873     // Scan up the scope chain looking for a decl that matches this
1874     // identifier that is in the appropriate namespace.  This search
1875     // should not take long, as shadowing of names is uncommon, and
1876     // deep shadowing is extremely uncommon.
1877     bool LeftStartingScope = false;
1878 
1879     for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1880                                    IEnd = IdResolver.end();
1881          I != IEnd; ++I)
1882       if (NamedDecl *D = R.getAcceptableDecl(*I)) {
1883         if (NameKind == LookupRedeclarationWithLinkage) {
1884           // Determine whether this (or a previous) declaration is
1885           // out-of-scope.
1886           if (!LeftStartingScope && !S->isDeclScope(*I))
1887             LeftStartingScope = true;
1888 
1889           // If we found something outside of our starting scope that
1890           // does not have linkage, skip it.
1891           if (LeftStartingScope && !((*I)->hasLinkage())) {
1892             R.setShadowed();
1893             continue;
1894           }
1895         }
1896         else if (NameKind == LookupObjCImplicitSelfParam &&
1897                  !isa<ImplicitParamDecl>(*I))
1898           continue;
1899 
1900         R.addDecl(D);
1901 
1902         // Check whether there are any other declarations with the same name
1903         // and in the same scope.
1904         if (I != IEnd) {
1905           // Find the scope in which this declaration was declared (if it
1906           // actually exists in a Scope).
1907           while (S && !S->isDeclScope(D))
1908             S = S->getParent();
1909 
1910           // If the scope containing the declaration is the translation unit,
1911           // then we'll need to perform our checks based on the matching
1912           // DeclContexts rather than matching scopes.
1913           if (S && isNamespaceOrTranslationUnitScope(S))
1914             S = nullptr;
1915 
1916           // Compute the DeclContext, if we need it.
1917           DeclContext *DC = nullptr;
1918           if (!S)
1919             DC = (*I)->getDeclContext()->getRedeclContext();
1920 
1921           IdentifierResolver::iterator LastI = I;
1922           for (++LastI; LastI != IEnd; ++LastI) {
1923             if (S) {
1924               // Match based on scope.
1925               if (!S->isDeclScope(*LastI))
1926                 break;
1927             } else {
1928               // Match based on DeclContext.
1929               DeclContext *LastDC
1930                 = (*LastI)->getDeclContext()->getRedeclContext();
1931               if (!LastDC->Equals(DC))
1932                 break;
1933             }
1934 
1935             // If the declaration is in the right namespace and visible, add it.
1936             if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
1937               R.addDecl(LastD);
1938           }
1939 
1940           R.resolveKind();
1941         }
1942 
1943         return true;
1944       }
1945   } else {
1946     // Perform C++ unqualified name lookup.
1947     if (CppLookupName(R, S))
1948       return true;
1949   }
1950 
1951   // If we didn't find a use of this identifier, and if the identifier
1952   // corresponds to a compiler builtin, create the decl object for the builtin
1953   // now, injecting it into translation unit scope, and return it.
1954   if (AllowBuiltinCreation && LookupBuiltin(R))
1955     return true;
1956 
1957   // If we didn't find a use of this identifier, the ExternalSource
1958   // may be able to handle the situation.
1959   // Note: some lookup failures are expected!
1960   // See e.g. R.isForRedeclaration().
1961   return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
1962 }
1963 
1964 /// Perform qualified name lookup in the namespaces nominated by
1965 /// using directives by the given context.
1966 ///
1967 /// C++98 [namespace.qual]p2:
1968 ///   Given X::m (where X is a user-declared namespace), or given \::m
1969 ///   (where X is the global namespace), let S be the set of all
1970 ///   declarations of m in X and in the transitive closure of all
1971 ///   namespaces nominated by using-directives in X and its used
1972 ///   namespaces, except that using-directives are ignored in any
1973 ///   namespace, including X, directly containing one or more
1974 ///   declarations of m. No namespace is searched more than once in
1975 ///   the lookup of a name. If S is the empty set, the program is
1976 ///   ill-formed. Otherwise, if S has exactly one member, or if the
1977 ///   context of the reference is a using-declaration
1978 ///   (namespace.udecl), S is the required set of declarations of
1979 ///   m. Otherwise if the use of m is not one that allows a unique
1980 ///   declaration to be chosen from S, the program is ill-formed.
1981 ///
1982 /// C++98 [namespace.qual]p5:
1983 ///   During the lookup of a qualified namespace member name, if the
1984 ///   lookup finds more than one declaration of the member, and if one
1985 ///   declaration introduces a class name or enumeration name and the
1986 ///   other declarations either introduce the same object, the same
1987 ///   enumerator or a set of functions, the non-type name hides the
1988 ///   class or enumeration name if and only if the declarations are
1989 ///   from the same namespace; otherwise (the declarations are from
1990 ///   different namespaces), the program is ill-formed.
1991 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
1992                                                  DeclContext *StartDC) {
1993   assert(StartDC->isFileContext() && "start context is not a file context");
1994 
1995   // We have not yet looked into these namespaces, much less added
1996   // their "using-children" to the queue.
1997   SmallVector<NamespaceDecl*, 8> Queue;
1998 
1999   // We have at least added all these contexts to the queue.
2000   llvm::SmallPtrSet<DeclContext*, 8> Visited;
2001   Visited.insert(StartDC);
2002 
2003   // We have already looked into the initial namespace; seed the queue
2004   // with its using-children.
2005   for (auto *I : StartDC->using_directives()) {
2006     NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
2007     if (S.isVisible(I) && Visited.insert(ND).second)
2008       Queue.push_back(ND);
2009   }
2010 
2011   // The easiest way to implement the restriction in [namespace.qual]p5
2012   // is to check whether any of the individual results found a tag
2013   // and, if so, to declare an ambiguity if the final result is not
2014   // a tag.
2015   bool FoundTag = false;
2016   bool FoundNonTag = false;
2017 
2018   LookupResult LocalR(LookupResult::Temporary, R);
2019 
2020   bool Found = false;
2021   while (!Queue.empty()) {
2022     NamespaceDecl *ND = Queue.pop_back_val();
2023 
2024     // We go through some convolutions here to avoid copying results
2025     // between LookupResults.
2026     bool UseLocal = !R.empty();
2027     LookupResult &DirectR = UseLocal ? LocalR : R;
2028     bool FoundDirect = LookupDirect(S, DirectR, ND);
2029 
2030     if (FoundDirect) {
2031       // First do any local hiding.
2032       DirectR.resolveKind();
2033 
2034       // If the local result is a tag, remember that.
2035       if (DirectR.isSingleTagDecl())
2036         FoundTag = true;
2037       else
2038         FoundNonTag = true;
2039 
2040       // Append the local results to the total results if necessary.
2041       if (UseLocal) {
2042         R.addAllDecls(LocalR);
2043         LocalR.clear();
2044       }
2045     }
2046 
2047     // If we find names in this namespace, ignore its using directives.
2048     if (FoundDirect) {
2049       Found = true;
2050       continue;
2051     }
2052 
2053     for (auto I : ND->using_directives()) {
2054       NamespaceDecl *Nom = I->getNominatedNamespace();
2055       if (S.isVisible(I) && Visited.insert(Nom).second)
2056         Queue.push_back(Nom);
2057     }
2058   }
2059 
2060   if (Found) {
2061     if (FoundTag && FoundNonTag)
2062       R.setAmbiguousQualifiedTagHiding();
2063     else
2064       R.resolveKind();
2065   }
2066 
2067   return Found;
2068 }
2069 
2070 /// Callback that looks for any member of a class with the given name.
2071 static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
2072                             CXXBasePath &Path, DeclarationName Name) {
2073   RecordDecl *BaseRecord = Specifier->getType()->castAs<RecordType>()->getDecl();
2074 
2075   Path.Decls = BaseRecord->lookup(Name);
2076   return !Path.Decls.empty();
2077 }
2078 
2079 /// Determine whether the given set of member declarations contains only
2080 /// static members, nested types, and enumerators.
2081 template<typename InputIterator>
2082 static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
2083   Decl *D = (*First)->getUnderlyingDecl();
2084   if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
2085     return true;
2086 
2087   if (isa<CXXMethodDecl>(D)) {
2088     // Determine whether all of the methods are static.
2089     bool AllMethodsAreStatic = true;
2090     for(; First != Last; ++First) {
2091       D = (*First)->getUnderlyingDecl();
2092 
2093       if (!isa<CXXMethodDecl>(D)) {
2094         assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
2095         break;
2096       }
2097 
2098       if (!cast<CXXMethodDecl>(D)->isStatic()) {
2099         AllMethodsAreStatic = false;
2100         break;
2101       }
2102     }
2103 
2104     if (AllMethodsAreStatic)
2105       return true;
2106   }
2107 
2108   return false;
2109 }
2110 
2111 /// Perform qualified name lookup into a given context.
2112 ///
2113 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
2114 /// names when the context of those names is explicit specified, e.g.,
2115 /// "std::vector" or "x->member", or as part of unqualified name lookup.
2116 ///
2117 /// Different lookup criteria can find different names. For example, a
2118 /// particular scope can have both a struct and a function of the same
2119 /// name, and each can be found by certain lookup criteria. For more
2120 /// information about lookup criteria, see the documentation for the
2121 /// class LookupCriteria.
2122 ///
2123 /// \param R captures both the lookup criteria and any lookup results found.
2124 ///
2125 /// \param LookupCtx The context in which qualified name lookup will
2126 /// search. If the lookup criteria permits, name lookup may also search
2127 /// in the parent contexts or (for C++ classes) base classes.
2128 ///
2129 /// \param InUnqualifiedLookup true if this is qualified name lookup that
2130 /// occurs as part of unqualified name lookup.
2131 ///
2132 /// \returns true if lookup succeeded, false if it failed.
2133 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2134                                bool InUnqualifiedLookup) {
2135   assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
2136 
2137   if (!R.getLookupName())
2138     return false;
2139 
2140   // Make sure that the declaration context is complete.
2141   assert((!isa<TagDecl>(LookupCtx) ||
2142           LookupCtx->isDependentContext() ||
2143           cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
2144           cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
2145          "Declaration context must already be complete!");
2146 
2147   struct QualifiedLookupInScope {
2148     bool oldVal;
2149     DeclContext *Context;
2150     // Set flag in DeclContext informing debugger that we're looking for qualified name
2151     QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) {
2152       oldVal = ctx->setUseQualifiedLookup();
2153     }
2154     ~QualifiedLookupInScope() {
2155       Context->setUseQualifiedLookup(oldVal);
2156     }
2157   } QL(LookupCtx);
2158 
2159   if (LookupDirect(*this, R, LookupCtx)) {
2160     R.resolveKind();
2161     if (isa<CXXRecordDecl>(LookupCtx))
2162       R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
2163     return true;
2164   }
2165 
2166   // Don't descend into implied contexts for redeclarations.
2167   // C++98 [namespace.qual]p6:
2168   //   In a declaration for a namespace member in which the
2169   //   declarator-id is a qualified-id, given that the qualified-id
2170   //   for the namespace member has the form
2171   //     nested-name-specifier unqualified-id
2172   //   the unqualified-id shall name a member of the namespace
2173   //   designated by the nested-name-specifier.
2174   // See also [class.mfct]p5 and [class.static.data]p2.
2175   if (R.isForRedeclaration())
2176     return false;
2177 
2178   // If this is a namespace, look it up in the implied namespaces.
2179   if (LookupCtx->isFileContext())
2180     return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
2181 
2182   // If this isn't a C++ class, we aren't allowed to look into base
2183   // classes, we're done.
2184   CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
2185   if (!LookupRec || !LookupRec->getDefinition())
2186     return false;
2187 
2188   // If we're performing qualified name lookup into a dependent class,
2189   // then we are actually looking into a current instantiation. If we have any
2190   // dependent base classes, then we either have to delay lookup until
2191   // template instantiation time (at which point all bases will be available)
2192   // or we have to fail.
2193   if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
2194       LookupRec->hasAnyDependentBases()) {
2195     R.setNotFoundInCurrentInstantiation();
2196     return false;
2197   }
2198 
2199   // Perform lookup into our base classes.
2200   CXXBasePaths Paths;
2201   Paths.setOrigin(LookupRec);
2202 
2203   // Look for this member in our base classes
2204   bool (*BaseCallback)(const CXXBaseSpecifier *Specifier, CXXBasePath &Path,
2205                        DeclarationName Name) = nullptr;
2206   switch (R.getLookupKind()) {
2207     case LookupObjCImplicitSelfParam:
2208     case LookupOrdinaryName:
2209     case LookupMemberName:
2210     case LookupRedeclarationWithLinkage:
2211     case LookupLocalFriendName:
2212     case LookupDestructorName:
2213       BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
2214       break;
2215 
2216     case LookupTagName:
2217       BaseCallback = &CXXRecordDecl::FindTagMember;
2218       break;
2219 
2220     case LookupAnyName:
2221       BaseCallback = &LookupAnyMember;
2222       break;
2223 
2224     case LookupOMPReductionName:
2225       BaseCallback = &CXXRecordDecl::FindOMPReductionMember;
2226       break;
2227 
2228     case LookupOMPMapperName:
2229       BaseCallback = &CXXRecordDecl::FindOMPMapperMember;
2230       break;
2231 
2232     case LookupUsingDeclName:
2233       // This lookup is for redeclarations only.
2234 
2235     case LookupOperatorName:
2236     case LookupNamespaceName:
2237     case LookupObjCProtocolName:
2238     case LookupLabel:
2239       // These lookups will never find a member in a C++ class (or base class).
2240       return false;
2241 
2242     case LookupNestedNameSpecifierName:
2243       BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
2244       break;
2245   }
2246 
2247   DeclarationName Name = R.getLookupName();
2248   if (!LookupRec->lookupInBases(
2249           [=](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
2250             return BaseCallback(Specifier, Path, Name);
2251           },
2252           Paths))
2253     return false;
2254 
2255   R.setNamingClass(LookupRec);
2256 
2257   // C++ [class.member.lookup]p2:
2258   //   [...] If the resulting set of declarations are not all from
2259   //   sub-objects of the same type, or the set has a nonstatic member
2260   //   and includes members from distinct sub-objects, there is an
2261   //   ambiguity and the program is ill-formed. Otherwise that set is
2262   //   the result of the lookup.
2263   QualType SubobjectType;
2264   int SubobjectNumber = 0;
2265   AccessSpecifier SubobjectAccess = AS_none;
2266 
2267   for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
2268        Path != PathEnd; ++Path) {
2269     const CXXBasePathElement &PathElement = Path->back();
2270 
2271     // Pick the best (i.e. most permissive i.e. numerically lowest) access
2272     // across all paths.
2273     SubobjectAccess = std::min(SubobjectAccess, Path->Access);
2274 
2275     // Determine whether we're looking at a distinct sub-object or not.
2276     if (SubobjectType.isNull()) {
2277       // This is the first subobject we've looked at. Record its type.
2278       SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
2279       SubobjectNumber = PathElement.SubobjectNumber;
2280       continue;
2281     }
2282 
2283     if (SubobjectType
2284                  != Context.getCanonicalType(PathElement.Base->getType())) {
2285       // We found members of the given name in two subobjects of
2286       // different types. If the declaration sets aren't the same, this
2287       // lookup is ambiguous.
2288       if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
2289         CXXBasePaths::paths_iterator FirstPath = Paths.begin();
2290         DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
2291         DeclContext::lookup_iterator CurrentD = Path->Decls.begin();
2292 
2293         // Get the decl that we should use for deduplicating this lookup.
2294         auto GetRepresentativeDecl = [&](NamedDecl *D) -> Decl * {
2295           // C++ [temp.local]p3:
2296           //   A lookup that finds an injected-class-name (10.2) can result in
2297           //   an ambiguity in certain cases (for example, if it is found in
2298           //   more than one base class). If all of the injected-class-names
2299           //   that are found refer to specializations of the same class
2300           //   template, and if the name is used as a template-name, the
2301           //   reference refers to the class template itself and not a
2302           //   specialization thereof, and is not ambiguous.
2303           if (R.isTemplateNameLookup())
2304             if (auto *TD = getAsTemplateNameDecl(D))
2305               D = TD;
2306           return D->getUnderlyingDecl()->getCanonicalDecl();
2307         };
2308 
2309         while (FirstD != FirstPath->Decls.end() &&
2310                CurrentD != Path->Decls.end()) {
2311           if (GetRepresentativeDecl(*FirstD) !=
2312               GetRepresentativeDecl(*CurrentD))
2313             break;
2314 
2315           ++FirstD;
2316           ++CurrentD;
2317         }
2318 
2319         if (FirstD == FirstPath->Decls.end() &&
2320             CurrentD == Path->Decls.end())
2321           continue;
2322       }
2323 
2324       R.setAmbiguousBaseSubobjectTypes(Paths);
2325       return true;
2326     }
2327 
2328     if (SubobjectNumber != PathElement.SubobjectNumber) {
2329       // We have a different subobject of the same type.
2330 
2331       // C++ [class.member.lookup]p5:
2332       //   A static member, a nested type or an enumerator defined in
2333       //   a base class T can unambiguously be found even if an object
2334       //   has more than one base class subobject of type T.
2335       if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
2336         continue;
2337 
2338       // We have found a nonstatic member name in multiple, distinct
2339       // subobjects. Name lookup is ambiguous.
2340       R.setAmbiguousBaseSubobjects(Paths);
2341       return true;
2342     }
2343   }
2344 
2345   // Lookup in a base class succeeded; return these results.
2346 
2347   for (auto *D : Paths.front().Decls) {
2348     AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
2349                                                     D->getAccess());
2350     R.addDecl(D, AS);
2351   }
2352   R.resolveKind();
2353   return true;
2354 }
2355 
2356 /// Performs qualified name lookup or special type of lookup for
2357 /// "__super::" scope specifier.
2358 ///
2359 /// This routine is a convenience overload meant to be called from contexts
2360 /// that need to perform a qualified name lookup with an optional C++ scope
2361 /// specifier that might require special kind of lookup.
2362 ///
2363 /// \param R captures both the lookup criteria and any lookup results found.
2364 ///
2365 /// \param LookupCtx The context in which qualified name lookup will
2366 /// search.
2367 ///
2368 /// \param SS An optional C++ scope-specifier.
2369 ///
2370 /// \returns true if lookup succeeded, false if it failed.
2371 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2372                                CXXScopeSpec &SS) {
2373   auto *NNS = SS.getScopeRep();
2374   if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
2375     return LookupInSuper(R, NNS->getAsRecordDecl());
2376   else
2377 
2378     return LookupQualifiedName(R, LookupCtx);
2379 }
2380 
2381 /// Performs name lookup for a name that was parsed in the
2382 /// source code, and may contain a C++ scope specifier.
2383 ///
2384 /// This routine is a convenience routine meant to be called from
2385 /// contexts that receive a name and an optional C++ scope specifier
2386 /// (e.g., "N::M::x"). It will then perform either qualified or
2387 /// unqualified name lookup (with LookupQualifiedName or LookupName,
2388 /// respectively) on the given name and return those results. It will
2389 /// perform a special type of lookup for "__super::" scope specifier.
2390 ///
2391 /// @param S        The scope from which unqualified name lookup will
2392 /// begin.
2393 ///
2394 /// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
2395 ///
2396 /// @param EnteringContext Indicates whether we are going to enter the
2397 /// context of the scope-specifier SS (if present).
2398 ///
2399 /// @returns True if any decls were found (but possibly ambiguous)
2400 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
2401                             bool AllowBuiltinCreation, bool EnteringContext) {
2402   if (SS && SS->isInvalid()) {
2403     // When the scope specifier is invalid, don't even look for
2404     // anything.
2405     return false;
2406   }
2407 
2408   if (SS && SS->isSet()) {
2409     NestedNameSpecifier *NNS = SS->getScopeRep();
2410     if (NNS->getKind() == NestedNameSpecifier::Super)
2411       return LookupInSuper(R, NNS->getAsRecordDecl());
2412 
2413     if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
2414       // We have resolved the scope specifier to a particular declaration
2415       // contex, and will perform name lookup in that context.
2416       if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
2417         return false;
2418 
2419       R.setContextRange(SS->getRange());
2420       return LookupQualifiedName(R, DC);
2421     }
2422 
2423     // We could not resolve the scope specified to a specific declaration
2424     // context, which means that SS refers to an unknown specialization.
2425     // Name lookup can't find anything in this case.
2426     R.setNotFoundInCurrentInstantiation();
2427     R.setContextRange(SS->getRange());
2428     return false;
2429   }
2430 
2431   // Perform unqualified name lookup starting in the given scope.
2432   return LookupName(R, S, AllowBuiltinCreation);
2433 }
2434 
2435 /// Perform qualified name lookup into all base classes of the given
2436 /// class.
2437 ///
2438 /// \param R captures both the lookup criteria and any lookup results found.
2439 ///
2440 /// \param Class The context in which qualified name lookup will
2441 /// search. Name lookup will search in all base classes merging the results.
2442 ///
2443 /// @returns True if any decls were found (but possibly ambiguous)
2444 bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
2445   // The access-control rules we use here are essentially the rules for
2446   // doing a lookup in Class that just magically skipped the direct
2447   // members of Class itself.  That is, the naming class is Class, and the
2448   // access includes the access of the base.
2449   for (const auto &BaseSpec : Class->bases()) {
2450     CXXRecordDecl *RD = cast<CXXRecordDecl>(
2451         BaseSpec.getType()->castAs<RecordType>()->getDecl());
2452     LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
2453     Result.setBaseObjectType(Context.getRecordType(Class));
2454     LookupQualifiedName(Result, RD);
2455 
2456     // Copy the lookup results into the target, merging the base's access into
2457     // the path access.
2458     for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
2459       R.addDecl(I.getDecl(),
2460                 CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
2461                                            I.getAccess()));
2462     }
2463 
2464     Result.suppressDiagnostics();
2465   }
2466 
2467   R.resolveKind();
2468   R.setNamingClass(Class);
2469 
2470   return !R.empty();
2471 }
2472 
2473 /// Produce a diagnostic describing the ambiguity that resulted
2474 /// from name lookup.
2475 ///
2476 /// \param Result The result of the ambiguous lookup to be diagnosed.
2477 void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
2478   assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
2479 
2480   DeclarationName Name = Result.getLookupName();
2481   SourceLocation NameLoc = Result.getNameLoc();
2482   SourceRange LookupRange = Result.getContextRange();
2483 
2484   switch (Result.getAmbiguityKind()) {
2485   case LookupResult::AmbiguousBaseSubobjects: {
2486     CXXBasePaths *Paths = Result.getBasePaths();
2487     QualType SubobjectType = Paths->front().back().Base->getType();
2488     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
2489       << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
2490       << LookupRange;
2491 
2492     DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
2493     while (isa<CXXMethodDecl>(*Found) &&
2494            cast<CXXMethodDecl>(*Found)->isStatic())
2495       ++Found;
2496 
2497     Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
2498     break;
2499   }
2500 
2501   case LookupResult::AmbiguousBaseSubobjectTypes: {
2502     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
2503       << Name << LookupRange;
2504 
2505     CXXBasePaths *Paths = Result.getBasePaths();
2506     std::set<Decl *> DeclsPrinted;
2507     for (CXXBasePaths::paths_iterator Path = Paths->begin(),
2508                                       PathEnd = Paths->end();
2509          Path != PathEnd; ++Path) {
2510       Decl *D = Path->Decls.front();
2511       if (DeclsPrinted.insert(D).second)
2512         Diag(D->getLocation(), diag::note_ambiguous_member_found);
2513     }
2514     break;
2515   }
2516 
2517   case LookupResult::AmbiguousTagHiding: {
2518     Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
2519 
2520     llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
2521 
2522     for (auto *D : Result)
2523       if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
2524         TagDecls.insert(TD);
2525         Diag(TD->getLocation(), diag::note_hidden_tag);
2526       }
2527 
2528     for (auto *D : Result)
2529       if (!isa<TagDecl>(D))
2530         Diag(D->getLocation(), diag::note_hiding_object);
2531 
2532     // For recovery purposes, go ahead and implement the hiding.
2533     LookupResult::Filter F = Result.makeFilter();
2534     while (F.hasNext()) {
2535       if (TagDecls.count(F.next()))
2536         F.erase();
2537     }
2538     F.done();
2539     break;
2540   }
2541 
2542   case LookupResult::AmbiguousReference: {
2543     Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
2544 
2545     for (auto *D : Result)
2546       Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
2547     break;
2548   }
2549   }
2550 }
2551 
2552 namespace {
2553   struct AssociatedLookup {
2554     AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
2555                      Sema::AssociatedNamespaceSet &Namespaces,
2556                      Sema::AssociatedClassSet &Classes)
2557       : S(S), Namespaces(Namespaces), Classes(Classes),
2558         InstantiationLoc(InstantiationLoc) {
2559     }
2560 
2561     bool addClassTransitive(CXXRecordDecl *RD) {
2562       Classes.insert(RD);
2563       return ClassesTransitive.insert(RD);
2564     }
2565 
2566     Sema &S;
2567     Sema::AssociatedNamespaceSet &Namespaces;
2568     Sema::AssociatedClassSet &Classes;
2569     SourceLocation InstantiationLoc;
2570 
2571   private:
2572     Sema::AssociatedClassSet ClassesTransitive;
2573   };
2574 } // end anonymous namespace
2575 
2576 static void
2577 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
2578 
2579 // Given the declaration context \param Ctx of a class, class template or
2580 // enumeration, add the associated namespaces to \param Namespaces as described
2581 // in [basic.lookup.argdep]p2.
2582 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
2583                                       DeclContext *Ctx) {
2584   // The exact wording has been changed in C++14 as a result of
2585   // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally
2586   // to all language versions since it is possible to return a local type
2587   // from a lambda in C++11.
2588   //
2589   // C++14 [basic.lookup.argdep]p2:
2590   //   If T is a class type [...]. Its associated namespaces are the innermost
2591   //   enclosing namespaces of its associated classes. [...]
2592   //
2593   //   If T is an enumeration type, its associated namespace is the innermost
2594   //   enclosing namespace of its declaration. [...]
2595 
2596   // We additionally skip inline namespaces. The innermost non-inline namespace
2597   // contains all names of all its nested inline namespaces anyway, so we can
2598   // replace the entire inline namespace tree with its root.
2599   while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
2600     Ctx = Ctx->getParent();
2601 
2602   Namespaces.insert(Ctx->getPrimaryContext());
2603 }
2604 
2605 // Add the associated classes and namespaces for argument-dependent
2606 // lookup that involves a template argument (C++ [basic.lookup.argdep]p2).
2607 static void
2608 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2609                                   const TemplateArgument &Arg) {
2610   // C++ [basic.lookup.argdep]p2, last bullet:
2611   //   -- [...] ;
2612   switch (Arg.getKind()) {
2613     case TemplateArgument::Null:
2614       break;
2615 
2616     case TemplateArgument::Type:
2617       // [...] the namespaces and classes associated with the types of the
2618       // template arguments provided for template type parameters (excluding
2619       // template template parameters)
2620       addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
2621       break;
2622 
2623     case TemplateArgument::Template:
2624     case TemplateArgument::TemplateExpansion: {
2625       // [...] the namespaces in which any template template arguments are
2626       // defined; and the classes in which any member templates used as
2627       // template template arguments are defined.
2628       TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
2629       if (ClassTemplateDecl *ClassTemplate
2630                  = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
2631         DeclContext *Ctx = ClassTemplate->getDeclContext();
2632         if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2633           Result.Classes.insert(EnclosingClass);
2634         // Add the associated namespace for this class.
2635         CollectEnclosingNamespace(Result.Namespaces, Ctx);
2636       }
2637       break;
2638     }
2639 
2640     case TemplateArgument::Declaration:
2641     case TemplateArgument::Integral:
2642     case TemplateArgument::Expression:
2643     case TemplateArgument::NullPtr:
2644       // [Note: non-type template arguments do not contribute to the set of
2645       //  associated namespaces. ]
2646       break;
2647 
2648     case TemplateArgument::Pack:
2649       for (const auto &P : Arg.pack_elements())
2650         addAssociatedClassesAndNamespaces(Result, P);
2651       break;
2652   }
2653 }
2654 
2655 // Add the associated classes and namespaces for argument-dependent lookup
2656 // with an argument of class type (C++ [basic.lookup.argdep]p2).
2657 static void
2658 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2659                                   CXXRecordDecl *Class) {
2660 
2661   // Just silently ignore anything whose name is __va_list_tag.
2662   if (Class->getDeclName() == Result.S.VAListTagName)
2663     return;
2664 
2665   // C++ [basic.lookup.argdep]p2:
2666   //   [...]
2667   //     -- If T is a class type (including unions), its associated
2668   //        classes are: the class itself; the class of which it is a
2669   //        member, if any; and its direct and indirect base classes.
2670   //        Its associated namespaces are the innermost enclosing
2671   //        namespaces of its associated classes.
2672 
2673   // Add the class of which it is a member, if any.
2674   DeclContext *Ctx = Class->getDeclContext();
2675   if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2676     Result.Classes.insert(EnclosingClass);
2677 
2678   // Add the associated namespace for this class.
2679   CollectEnclosingNamespace(Result.Namespaces, Ctx);
2680 
2681   // -- If T is a template-id, its associated namespaces and classes are
2682   //    the namespace in which the template is defined; for member
2683   //    templates, the member template's class; the namespaces and classes
2684   //    associated with the types of the template arguments provided for
2685   //    template type parameters (excluding template template parameters); the
2686   //    namespaces in which any template template arguments are defined; and
2687   //    the classes in which any member templates used as template template
2688   //    arguments are defined. [Note: non-type template arguments do not
2689   //    contribute to the set of associated namespaces. ]
2690   if (ClassTemplateSpecializationDecl *Spec
2691         = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
2692     DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
2693     if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2694       Result.Classes.insert(EnclosingClass);
2695     // Add the associated namespace for this class.
2696     CollectEnclosingNamespace(Result.Namespaces, Ctx);
2697 
2698     const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
2699     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2700       addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
2701   }
2702 
2703   // Add the class itself. If we've already transitively visited this class,
2704   // we don't need to visit base classes.
2705   if (!Result.addClassTransitive(Class))
2706     return;
2707 
2708   // Only recurse into base classes for complete types.
2709   if (!Result.S.isCompleteType(Result.InstantiationLoc,
2710                                Result.S.Context.getRecordType(Class)))
2711     return;
2712 
2713   // Add direct and indirect base classes along with their associated
2714   // namespaces.
2715   SmallVector<CXXRecordDecl *, 32> Bases;
2716   Bases.push_back(Class);
2717   while (!Bases.empty()) {
2718     // Pop this class off the stack.
2719     Class = Bases.pop_back_val();
2720 
2721     // Visit the base classes.
2722     for (const auto &Base : Class->bases()) {
2723       const RecordType *BaseType = Base.getType()->getAs<RecordType>();
2724       // In dependent contexts, we do ADL twice, and the first time around,
2725       // the base type might be a dependent TemplateSpecializationType, or a
2726       // TemplateTypeParmType. If that happens, simply ignore it.
2727       // FIXME: If we want to support export, we probably need to add the
2728       // namespace of the template in a TemplateSpecializationType, or even
2729       // the classes and namespaces of known non-dependent arguments.
2730       if (!BaseType)
2731         continue;
2732       CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
2733       if (Result.addClassTransitive(BaseDecl)) {
2734         // Find the associated namespace for this base class.
2735         DeclContext *BaseCtx = BaseDecl->getDeclContext();
2736         CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
2737 
2738         // Make sure we visit the bases of this base class.
2739         if (BaseDecl->bases_begin() != BaseDecl->bases_end())
2740           Bases.push_back(BaseDecl);
2741       }
2742     }
2743   }
2744 }
2745 
2746 // Add the associated classes and namespaces for
2747 // argument-dependent lookup with an argument of type T
2748 // (C++ [basic.lookup.koenig]p2).
2749 static void
2750 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
2751   // C++ [basic.lookup.koenig]p2:
2752   //
2753   //   For each argument type T in the function call, there is a set
2754   //   of zero or more associated namespaces and a set of zero or more
2755   //   associated classes to be considered. The sets of namespaces and
2756   //   classes is determined entirely by the types of the function
2757   //   arguments (and the namespace of any template template
2758   //   argument). Typedef names and using-declarations used to specify
2759   //   the types do not contribute to this set. The sets of namespaces
2760   //   and classes are determined in the following way:
2761 
2762   SmallVector<const Type *, 16> Queue;
2763   const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
2764 
2765   while (true) {
2766     switch (T->getTypeClass()) {
2767 
2768 #define TYPE(Class, Base)
2769 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2770 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2771 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
2772 #define ABSTRACT_TYPE(Class, Base)
2773 #include "clang/AST/TypeNodes.inc"
2774       // T is canonical.  We can also ignore dependent types because
2775       // we don't need to do ADL at the definition point, but if we
2776       // wanted to implement template export (or if we find some other
2777       // use for associated classes and namespaces...) this would be
2778       // wrong.
2779       break;
2780 
2781     //    -- If T is a pointer to U or an array of U, its associated
2782     //       namespaces and classes are those associated with U.
2783     case Type::Pointer:
2784       T = cast<PointerType>(T)->getPointeeType().getTypePtr();
2785       continue;
2786     case Type::ConstantArray:
2787     case Type::IncompleteArray:
2788     case Type::VariableArray:
2789       T = cast<ArrayType>(T)->getElementType().getTypePtr();
2790       continue;
2791 
2792     //     -- If T is a fundamental type, its associated sets of
2793     //        namespaces and classes are both empty.
2794     case Type::Builtin:
2795       break;
2796 
2797     //     -- If T is a class type (including unions), its associated
2798     //        classes are: the class itself; the class of which it is
2799     //        a member, if any; and its direct and indirect base classes.
2800     //        Its associated namespaces are the innermost enclosing
2801     //        namespaces of its associated classes.
2802     case Type::Record: {
2803       CXXRecordDecl *Class =
2804           cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
2805       addAssociatedClassesAndNamespaces(Result, Class);
2806       break;
2807     }
2808 
2809     //     -- If T is an enumeration type, its associated namespace
2810     //        is the innermost enclosing namespace of its declaration.
2811     //        If it is a class member, its associated class is the
2812     //        member’s class; else it has no associated class.
2813     case Type::Enum: {
2814       EnumDecl *Enum = cast<EnumType>(T)->getDecl();
2815 
2816       DeclContext *Ctx = Enum->getDeclContext();
2817       if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2818         Result.Classes.insert(EnclosingClass);
2819 
2820       // Add the associated namespace for this enumeration.
2821       CollectEnclosingNamespace(Result.Namespaces, Ctx);
2822 
2823       break;
2824     }
2825 
2826     //     -- If T is a function type, its associated namespaces and
2827     //        classes are those associated with the function parameter
2828     //        types and those associated with the return type.
2829     case Type::FunctionProto: {
2830       const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2831       for (const auto &Arg : Proto->param_types())
2832         Queue.push_back(Arg.getTypePtr());
2833       // fallthrough
2834       LLVM_FALLTHROUGH;
2835     }
2836     case Type::FunctionNoProto: {
2837       const FunctionType *FnType = cast<FunctionType>(T);
2838       T = FnType->getReturnType().getTypePtr();
2839       continue;
2840     }
2841 
2842     //     -- If T is a pointer to a member function of a class X, its
2843     //        associated namespaces and classes are those associated
2844     //        with the function parameter types and return type,
2845     //        together with those associated with X.
2846     //
2847     //     -- If T is a pointer to a data member of class X, its
2848     //        associated namespaces and classes are those associated
2849     //        with the member type together with those associated with
2850     //        X.
2851     case Type::MemberPointer: {
2852       const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
2853 
2854       // Queue up the class type into which this points.
2855       Queue.push_back(MemberPtr->getClass());
2856 
2857       // And directly continue with the pointee type.
2858       T = MemberPtr->getPointeeType().getTypePtr();
2859       continue;
2860     }
2861 
2862     // As an extension, treat this like a normal pointer.
2863     case Type::BlockPointer:
2864       T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
2865       continue;
2866 
2867     // References aren't covered by the standard, but that's such an
2868     // obvious defect that we cover them anyway.
2869     case Type::LValueReference:
2870     case Type::RValueReference:
2871       T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
2872       continue;
2873 
2874     // These are fundamental types.
2875     case Type::Vector:
2876     case Type::ExtVector:
2877     case Type::ConstantMatrix:
2878     case Type::Complex:
2879     case Type::ExtInt:
2880       break;
2881 
2882     // Non-deduced auto types only get here for error cases.
2883     case Type::Auto:
2884     case Type::DeducedTemplateSpecialization:
2885       break;
2886 
2887     // If T is an Objective-C object or interface type, or a pointer to an
2888     // object or interface type, the associated namespace is the global
2889     // namespace.
2890     case Type::ObjCObject:
2891     case Type::ObjCInterface:
2892     case Type::ObjCObjectPointer:
2893       Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
2894       break;
2895 
2896     // Atomic types are just wrappers; use the associations of the
2897     // contained type.
2898     case Type::Atomic:
2899       T = cast<AtomicType>(T)->getValueType().getTypePtr();
2900       continue;
2901     case Type::Pipe:
2902       T = cast<PipeType>(T)->getElementType().getTypePtr();
2903       continue;
2904     }
2905 
2906     if (Queue.empty())
2907       break;
2908     T = Queue.pop_back_val();
2909   }
2910 }
2911 
2912 /// Find the associated classes and namespaces for
2913 /// argument-dependent lookup for a call with the given set of
2914 /// arguments.
2915 ///
2916 /// This routine computes the sets of associated classes and associated
2917 /// namespaces searched by argument-dependent lookup
2918 /// (C++ [basic.lookup.argdep]) for a given set of arguments.
2919 void Sema::FindAssociatedClassesAndNamespaces(
2920     SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
2921     AssociatedNamespaceSet &AssociatedNamespaces,
2922     AssociatedClassSet &AssociatedClasses) {
2923   AssociatedNamespaces.clear();
2924   AssociatedClasses.clear();
2925 
2926   AssociatedLookup Result(*this, InstantiationLoc,
2927                           AssociatedNamespaces, AssociatedClasses);
2928 
2929   // C++ [basic.lookup.koenig]p2:
2930   //   For each argument type T in the function call, there is a set
2931   //   of zero or more associated namespaces and a set of zero or more
2932   //   associated classes to be considered. The sets of namespaces and
2933   //   classes is determined entirely by the types of the function
2934   //   arguments (and the namespace of any template template
2935   //   argument).
2936   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
2937     Expr *Arg = Args[ArgIdx];
2938 
2939     if (Arg->getType() != Context.OverloadTy) {
2940       addAssociatedClassesAndNamespaces(Result, Arg->getType());
2941       continue;
2942     }
2943 
2944     // [...] In addition, if the argument is the name or address of a
2945     // set of overloaded functions and/or function templates, its
2946     // associated classes and namespaces are the union of those
2947     // associated with each of the members of the set: the namespace
2948     // in which the function or function template is defined and the
2949     // classes and namespaces associated with its (non-dependent)
2950     // parameter types and return type.
2951     OverloadExpr *OE = OverloadExpr::find(Arg).Expression;
2952 
2953     for (const NamedDecl *D : OE->decls()) {
2954       // Look through any using declarations to find the underlying function.
2955       const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
2956 
2957       // Add the classes and namespaces associated with the parameter
2958       // types and return type of this function.
2959       addAssociatedClassesAndNamespaces(Result, FDecl->getType());
2960     }
2961   }
2962 }
2963 
2964 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
2965                                   SourceLocation Loc,
2966                                   LookupNameKind NameKind,
2967                                   RedeclarationKind Redecl) {
2968   LookupResult R(*this, Name, Loc, NameKind, Redecl);
2969   LookupName(R, S);
2970   return R.getAsSingle<NamedDecl>();
2971 }
2972 
2973 /// Find the protocol with the given name, if any.
2974 ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
2975                                        SourceLocation IdLoc,
2976                                        RedeclarationKind Redecl) {
2977   Decl *D = LookupSingleName(TUScope, II, IdLoc,
2978                              LookupObjCProtocolName, Redecl);
2979   return cast_or_null<ObjCProtocolDecl>(D);
2980 }
2981 
2982 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
2983                                         QualType T1, QualType T2,
2984                                         UnresolvedSetImpl &Functions) {
2985   // C++ [over.match.oper]p3:
2986   //     -- The set of non-member candidates is the result of the
2987   //        unqualified lookup of operator@ in the context of the
2988   //        expression according to the usual rules for name lookup in
2989   //        unqualified function calls (3.4.2) except that all member
2990   //        functions are ignored.
2991   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2992   LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
2993   LookupName(Operators, S);
2994 
2995   assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
2996   Functions.append(Operators.begin(), Operators.end());
2997 }
2998 
2999 Sema::SpecialMemberOverloadResult Sema::LookupSpecialMember(CXXRecordDecl *RD,
3000                                                            CXXSpecialMember SM,
3001                                                            bool ConstArg,
3002                                                            bool VolatileArg,
3003                                                            bool RValueThis,
3004                                                            bool ConstThis,
3005                                                            bool VolatileThis) {
3006   assert(CanDeclareSpecialMemberFunction(RD) &&
3007          "doing special member lookup into record that isn't fully complete");
3008   RD = RD->getDefinition();
3009   if (RValueThis || ConstThis || VolatileThis)
3010     assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
3011            "constructors and destructors always have unqualified lvalue this");
3012   if (ConstArg || VolatileArg)
3013     assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
3014            "parameter-less special members can't have qualified arguments");
3015 
3016   // FIXME: Get the caller to pass in a location for the lookup.
3017   SourceLocation LookupLoc = RD->getLocation();
3018 
3019   llvm::FoldingSetNodeID ID;
3020   ID.AddPointer(RD);
3021   ID.AddInteger(SM);
3022   ID.AddInteger(ConstArg);
3023   ID.AddInteger(VolatileArg);
3024   ID.AddInteger(RValueThis);
3025   ID.AddInteger(ConstThis);
3026   ID.AddInteger(VolatileThis);
3027 
3028   void *InsertPoint;
3029   SpecialMemberOverloadResultEntry *Result =
3030     SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
3031 
3032   // This was already cached
3033   if (Result)
3034     return *Result;
3035 
3036   Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>();
3037   Result = new (Result) SpecialMemberOverloadResultEntry(ID);
3038   SpecialMemberCache.InsertNode(Result, InsertPoint);
3039 
3040   if (SM == CXXDestructor) {
3041     if (RD->needsImplicitDestructor()) {
3042       runWithSufficientStackSpace(RD->getLocation(), [&] {
3043         DeclareImplicitDestructor(RD);
3044       });
3045     }
3046     CXXDestructorDecl *DD = RD->getDestructor();
3047     Result->setMethod(DD);
3048     Result->setKind(DD && !DD->isDeleted()
3049                         ? SpecialMemberOverloadResult::Success
3050                         : SpecialMemberOverloadResult::NoMemberOrDeleted);
3051     return *Result;
3052   }
3053 
3054   // Prepare for overload resolution. Here we construct a synthetic argument
3055   // if necessary and make sure that implicit functions are declared.
3056   CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
3057   DeclarationName Name;
3058   Expr *Arg = nullptr;
3059   unsigned NumArgs;
3060 
3061   QualType ArgType = CanTy;
3062   ExprValueKind VK = VK_LValue;
3063 
3064   if (SM == CXXDefaultConstructor) {
3065     Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3066     NumArgs = 0;
3067     if (RD->needsImplicitDefaultConstructor()) {
3068       runWithSufficientStackSpace(RD->getLocation(), [&] {
3069         DeclareImplicitDefaultConstructor(RD);
3070       });
3071     }
3072   } else {
3073     if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
3074       Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3075       if (RD->needsImplicitCopyConstructor()) {
3076         runWithSufficientStackSpace(RD->getLocation(), [&] {
3077           DeclareImplicitCopyConstructor(RD);
3078         });
3079       }
3080       if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) {
3081         runWithSufficientStackSpace(RD->getLocation(), [&] {
3082           DeclareImplicitMoveConstructor(RD);
3083         });
3084       }
3085     } else {
3086       Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
3087       if (RD->needsImplicitCopyAssignment()) {
3088         runWithSufficientStackSpace(RD->getLocation(), [&] {
3089           DeclareImplicitCopyAssignment(RD);
3090         });
3091       }
3092       if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) {
3093         runWithSufficientStackSpace(RD->getLocation(), [&] {
3094           DeclareImplicitMoveAssignment(RD);
3095         });
3096       }
3097     }
3098 
3099     if (ConstArg)
3100       ArgType.addConst();
3101     if (VolatileArg)
3102       ArgType.addVolatile();
3103 
3104     // This isn't /really/ specified by the standard, but it's implied
3105     // we should be working from an RValue in the case of move to ensure
3106     // that we prefer to bind to rvalue references, and an LValue in the
3107     // case of copy to ensure we don't bind to rvalue references.
3108     // Possibly an XValue is actually correct in the case of move, but
3109     // there is no semantic difference for class types in this restricted
3110     // case.
3111     if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
3112       VK = VK_LValue;
3113     else
3114       VK = VK_RValue;
3115   }
3116 
3117   OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK);
3118 
3119   if (SM != CXXDefaultConstructor) {
3120     NumArgs = 1;
3121     Arg = &FakeArg;
3122   }
3123 
3124   // Create the object argument
3125   QualType ThisTy = CanTy;
3126   if (ConstThis)
3127     ThisTy.addConst();
3128   if (VolatileThis)
3129     ThisTy.addVolatile();
3130   Expr::Classification Classification =
3131     OpaqueValueExpr(LookupLoc, ThisTy,
3132                     RValueThis ? VK_RValue : VK_LValue).Classify(Context);
3133 
3134   // Now we perform lookup on the name we computed earlier and do overload
3135   // resolution. Lookup is only performed directly into the class since there
3136   // will always be a (possibly implicit) declaration to shadow any others.
3137   OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal);
3138   DeclContext::lookup_result R = RD->lookup(Name);
3139 
3140   if (R.empty()) {
3141     // We might have no default constructor because we have a lambda's closure
3142     // type, rather than because there's some other declared constructor.
3143     // Every class has a copy/move constructor, copy/move assignment, and
3144     // destructor.
3145     assert(SM == CXXDefaultConstructor &&
3146            "lookup for a constructor or assignment operator was empty");
3147     Result->setMethod(nullptr);
3148     Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3149     return *Result;
3150   }
3151 
3152   // Copy the candidates as our processing of them may load new declarations
3153   // from an external source and invalidate lookup_result.
3154   SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
3155 
3156   for (NamedDecl *CandDecl : Candidates) {
3157     if (CandDecl->isInvalidDecl())
3158       continue;
3159 
3160     DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public);
3161     auto CtorInfo = getConstructorInfo(Cand);
3162     if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
3163       if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3164         AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
3165                            llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3166       else if (CtorInfo)
3167         AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
3168                              llvm::makeArrayRef(&Arg, NumArgs), OCS,
3169                              /*SuppressUserConversions*/ true);
3170       else
3171         AddOverloadCandidate(M, Cand, llvm::makeArrayRef(&Arg, NumArgs), OCS,
3172                              /*SuppressUserConversions*/ true);
3173     } else if (FunctionTemplateDecl *Tmpl =
3174                  dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) {
3175       if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3176         AddMethodTemplateCandidate(
3177             Tmpl, Cand, RD, nullptr, ThisTy, Classification,
3178             llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3179       else if (CtorInfo)
3180         AddTemplateOverloadCandidate(
3181             CtorInfo.ConstructorTmpl, CtorInfo.FoundDecl, nullptr,
3182             llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3183       else
3184         AddTemplateOverloadCandidate(
3185             Tmpl, Cand, nullptr, llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3186     } else {
3187       assert(isa<UsingDecl>(Cand.getDecl()) &&
3188              "illegal Kind of operator = Decl");
3189     }
3190   }
3191 
3192   OverloadCandidateSet::iterator Best;
3193   switch (OCS.BestViableFunction(*this, LookupLoc, Best)) {
3194     case OR_Success:
3195       Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3196       Result->setKind(SpecialMemberOverloadResult::Success);
3197       break;
3198 
3199     case OR_Deleted:
3200       Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3201       Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3202       break;
3203 
3204     case OR_Ambiguous:
3205       Result->setMethod(nullptr);
3206       Result->setKind(SpecialMemberOverloadResult::Ambiguous);
3207       break;
3208 
3209     case OR_No_Viable_Function:
3210       Result->setMethod(nullptr);
3211       Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3212       break;
3213   }
3214 
3215   return *Result;
3216 }
3217 
3218 /// Look up the default constructor for the given class.
3219 CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
3220   SpecialMemberOverloadResult Result =
3221     LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
3222                         false, false);
3223 
3224   return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3225 }
3226 
3227 /// Look up the copying constructor for the given class.
3228 CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
3229                                                    unsigned Quals) {
3230   assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3231          "non-const, non-volatile qualifiers for copy ctor arg");
3232   SpecialMemberOverloadResult Result =
3233     LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
3234                         Quals & Qualifiers::Volatile, false, false, false);
3235 
3236   return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3237 }
3238 
3239 /// Look up the moving constructor for the given class.
3240 CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
3241                                                   unsigned Quals) {
3242   SpecialMemberOverloadResult Result =
3243     LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
3244                         Quals & Qualifiers::Volatile, false, false, false);
3245 
3246   return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3247 }
3248 
3249 /// Look up the constructors for the given class.
3250 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
3251   // If the implicit constructors have not yet been declared, do so now.
3252   if (CanDeclareSpecialMemberFunction(Class)) {
3253     runWithSufficientStackSpace(Class->getLocation(), [&] {
3254       if (Class->needsImplicitDefaultConstructor())
3255         DeclareImplicitDefaultConstructor(Class);
3256       if (Class->needsImplicitCopyConstructor())
3257         DeclareImplicitCopyConstructor(Class);
3258       if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
3259         DeclareImplicitMoveConstructor(Class);
3260     });
3261   }
3262 
3263   CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
3264   DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
3265   return Class->lookup(Name);
3266 }
3267 
3268 /// Look up the copying assignment operator for the given class.
3269 CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
3270                                              unsigned Quals, bool RValueThis,
3271                                              unsigned ThisQuals) {
3272   assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3273          "non-const, non-volatile qualifiers for copy assignment arg");
3274   assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3275          "non-const, non-volatile qualifiers for copy assignment this");
3276   SpecialMemberOverloadResult Result =
3277     LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
3278                         Quals & Qualifiers::Volatile, RValueThis,
3279                         ThisQuals & Qualifiers::Const,
3280                         ThisQuals & Qualifiers::Volatile);
3281 
3282   return Result.getMethod();
3283 }
3284 
3285 /// Look up the moving assignment operator for the given class.
3286 CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
3287                                             unsigned Quals,
3288                                             bool RValueThis,
3289                                             unsigned ThisQuals) {
3290   assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3291          "non-const, non-volatile qualifiers for copy assignment this");
3292   SpecialMemberOverloadResult Result =
3293     LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
3294                         Quals & Qualifiers::Volatile, RValueThis,
3295                         ThisQuals & Qualifiers::Const,
3296                         ThisQuals & Qualifiers::Volatile);
3297 
3298   return Result.getMethod();
3299 }
3300 
3301 /// Look for the destructor of the given class.
3302 ///
3303 /// During semantic analysis, this routine should be used in lieu of
3304 /// CXXRecordDecl::getDestructor().
3305 ///
3306 /// \returns The destructor for this class.
3307 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
3308   return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
3309                                                      false, false, false,
3310                                                      false, false).getMethod());
3311 }
3312 
3313 /// LookupLiteralOperator - Determine which literal operator should be used for
3314 /// a user-defined literal, per C++11 [lex.ext].
3315 ///
3316 /// Normal overload resolution is not used to select which literal operator to
3317 /// call for a user-defined literal. Look up the provided literal operator name,
3318 /// and filter the results to the appropriate set for the given argument types.
3319 Sema::LiteralOperatorLookupResult
3320 Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
3321                             ArrayRef<QualType> ArgTys,
3322                             bool AllowRaw, bool AllowTemplate,
3323                             bool AllowStringTemplate, bool DiagnoseMissing) {
3324   LookupName(R, S);
3325   assert(R.getResultKind() != LookupResult::Ambiguous &&
3326          "literal operator lookup can't be ambiguous");
3327 
3328   // Filter the lookup results appropriately.
3329   LookupResult::Filter F = R.makeFilter();
3330 
3331   bool FoundRaw = false;
3332   bool FoundTemplate = false;
3333   bool FoundStringTemplate = false;
3334   bool FoundExactMatch = false;
3335 
3336   while (F.hasNext()) {
3337     Decl *D = F.next();
3338     if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
3339       D = USD->getTargetDecl();
3340 
3341     // If the declaration we found is invalid, skip it.
3342     if (D->isInvalidDecl()) {
3343       F.erase();
3344       continue;
3345     }
3346 
3347     bool IsRaw = false;
3348     bool IsTemplate = false;
3349     bool IsStringTemplate = false;
3350     bool IsExactMatch = false;
3351 
3352     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3353       if (FD->getNumParams() == 1 &&
3354           FD->getParamDecl(0)->getType()->getAs<PointerType>())
3355         IsRaw = true;
3356       else if (FD->getNumParams() == ArgTys.size()) {
3357         IsExactMatch = true;
3358         for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
3359           QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
3360           if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
3361             IsExactMatch = false;
3362             break;
3363           }
3364         }
3365       }
3366     }
3367     if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
3368       TemplateParameterList *Params = FD->getTemplateParameters();
3369       if (Params->size() == 1)
3370         IsTemplate = true;
3371       else
3372         IsStringTemplate = true;
3373     }
3374 
3375     if (IsExactMatch) {
3376       FoundExactMatch = true;
3377       AllowRaw = false;
3378       AllowTemplate = false;
3379       AllowStringTemplate = false;
3380       if (FoundRaw || FoundTemplate || FoundStringTemplate) {
3381         // Go through again and remove the raw and template decls we've
3382         // already found.
3383         F.restart();
3384         FoundRaw = FoundTemplate = FoundStringTemplate = false;
3385       }
3386     } else if (AllowRaw && IsRaw) {
3387       FoundRaw = true;
3388     } else if (AllowTemplate && IsTemplate) {
3389       FoundTemplate = true;
3390     } else if (AllowStringTemplate && IsStringTemplate) {
3391       FoundStringTemplate = true;
3392     } else {
3393       F.erase();
3394     }
3395   }
3396 
3397   F.done();
3398 
3399   // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
3400   // parameter type, that is used in preference to a raw literal operator
3401   // or literal operator template.
3402   if (FoundExactMatch)
3403     return LOLR_Cooked;
3404 
3405   // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
3406   // operator template, but not both.
3407   if (FoundRaw && FoundTemplate) {
3408     Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
3409     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3410       NoteOverloadCandidate(*I, (*I)->getUnderlyingDecl()->getAsFunction());
3411     return LOLR_Error;
3412   }
3413 
3414   if (FoundRaw)
3415     return LOLR_Raw;
3416 
3417   if (FoundTemplate)
3418     return LOLR_Template;
3419 
3420   if (FoundStringTemplate)
3421     return LOLR_StringTemplate;
3422 
3423   // Didn't find anything we could use.
3424   if (DiagnoseMissing) {
3425     Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
3426         << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
3427         << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
3428         << (AllowTemplate || AllowStringTemplate);
3429     return LOLR_Error;
3430   }
3431 
3432   return LOLR_ErrorNoDiagnostic;
3433 }
3434 
3435 void ADLResult::insert(NamedDecl *New) {
3436   NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
3437 
3438   // If we haven't yet seen a decl for this key, or the last decl
3439   // was exactly this one, we're done.
3440   if (Old == nullptr || Old == New) {
3441     Old = New;
3442     return;
3443   }
3444 
3445   // Otherwise, decide which is a more recent redeclaration.
3446   FunctionDecl *OldFD = Old->getAsFunction();
3447   FunctionDecl *NewFD = New->getAsFunction();
3448 
3449   FunctionDecl *Cursor = NewFD;
3450   while (true) {
3451     Cursor = Cursor->getPreviousDecl();
3452 
3453     // If we got to the end without finding OldFD, OldFD is the newer
3454     // declaration;  leave things as they are.
3455     if (!Cursor) return;
3456 
3457     // If we do find OldFD, then NewFD is newer.
3458     if (Cursor == OldFD) break;
3459 
3460     // Otherwise, keep looking.
3461   }
3462 
3463   Old = New;
3464 }
3465 
3466 void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
3467                                    ArrayRef<Expr *> Args, ADLResult &Result) {
3468   // Find all of the associated namespaces and classes based on the
3469   // arguments we have.
3470   AssociatedNamespaceSet AssociatedNamespaces;
3471   AssociatedClassSet AssociatedClasses;
3472   FindAssociatedClassesAndNamespaces(Loc, Args,
3473                                      AssociatedNamespaces,
3474                                      AssociatedClasses);
3475 
3476   // C++ [basic.lookup.argdep]p3:
3477   //   Let X be the lookup set produced by unqualified lookup (3.4.1)
3478   //   and let Y be the lookup set produced by argument dependent
3479   //   lookup (defined as follows). If X contains [...] then Y is
3480   //   empty. Otherwise Y is the set of declarations found in the
3481   //   namespaces associated with the argument types as described
3482   //   below. The set of declarations found by the lookup of the name
3483   //   is the union of X and Y.
3484   //
3485   // Here, we compute Y and add its members to the overloaded
3486   // candidate set.
3487   for (auto *NS : AssociatedNamespaces) {
3488     //   When considering an associated namespace, the lookup is the
3489     //   same as the lookup performed when the associated namespace is
3490     //   used as a qualifier (3.4.3.2) except that:
3491     //
3492     //     -- Any using-directives in the associated namespace are
3493     //        ignored.
3494     //
3495     //     -- Any namespace-scope friend functions declared in
3496     //        associated classes are visible within their respective
3497     //        namespaces even if they are not visible during an ordinary
3498     //        lookup (11.4).
3499     DeclContext::lookup_result R = NS->lookup(Name);
3500     for (auto *D : R) {
3501       auto *Underlying = D;
3502       if (auto *USD = dyn_cast<UsingShadowDecl>(D))
3503         Underlying = USD->getTargetDecl();
3504 
3505       if (!isa<FunctionDecl>(Underlying) &&
3506           !isa<FunctionTemplateDecl>(Underlying))
3507         continue;
3508 
3509       // The declaration is visible to argument-dependent lookup if either
3510       // it's ordinarily visible or declared as a friend in an associated
3511       // class.
3512       bool Visible = false;
3513       for (D = D->getMostRecentDecl(); D;
3514            D = cast_or_null<NamedDecl>(D->getPreviousDecl())) {
3515         if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) {
3516           if (isVisible(D)) {
3517             Visible = true;
3518             break;
3519           }
3520         } else if (D->getFriendObjectKind()) {
3521           auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext());
3522           if (AssociatedClasses.count(RD) && isVisible(D)) {
3523             Visible = true;
3524             break;
3525           }
3526         }
3527       }
3528 
3529       // FIXME: Preserve D as the FoundDecl.
3530       if (Visible)
3531         Result.insert(Underlying);
3532     }
3533   }
3534 }
3535 
3536 //----------------------------------------------------------------------------
3537 // Search for all visible declarations.
3538 //----------------------------------------------------------------------------
3539 VisibleDeclConsumer::~VisibleDeclConsumer() { }
3540 
3541 bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
3542 
3543 namespace {
3544 
3545 class ShadowContextRAII;
3546 
3547 class VisibleDeclsRecord {
3548 public:
3549   /// An entry in the shadow map, which is optimized to store a
3550   /// single declaration (the common case) but can also store a list
3551   /// of declarations.
3552   typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
3553 
3554 private:
3555   /// A mapping from declaration names to the declarations that have
3556   /// this name within a particular scope.
3557   typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
3558 
3559   /// A list of shadow maps, which is used to model name hiding.
3560   std::list<ShadowMap> ShadowMaps;
3561 
3562   /// The declaration contexts we have already visited.
3563   llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
3564 
3565   friend class ShadowContextRAII;
3566 
3567 public:
3568   /// Determine whether we have already visited this context
3569   /// (and, if not, note that we are going to visit that context now).
3570   bool visitedContext(DeclContext *Ctx) {
3571     return !VisitedContexts.insert(Ctx).second;
3572   }
3573 
3574   bool alreadyVisitedContext(DeclContext *Ctx) {
3575     return VisitedContexts.count(Ctx);
3576   }
3577 
3578   /// Determine whether the given declaration is hidden in the
3579   /// current scope.
3580   ///
3581   /// \returns the declaration that hides the given declaration, or
3582   /// NULL if no such declaration exists.
3583   NamedDecl *checkHidden(NamedDecl *ND);
3584 
3585   /// Add a declaration to the current shadow map.
3586   void add(NamedDecl *ND) {
3587     ShadowMaps.back()[ND->getDeclName()].push_back(ND);
3588   }
3589 };
3590 
3591 /// RAII object that records when we've entered a shadow context.
3592 class ShadowContextRAII {
3593   VisibleDeclsRecord &Visible;
3594 
3595   typedef VisibleDeclsRecord::ShadowMap ShadowMap;
3596 
3597 public:
3598   ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
3599     Visible.ShadowMaps.emplace_back();
3600   }
3601 
3602   ~ShadowContextRAII() {
3603     Visible.ShadowMaps.pop_back();
3604   }
3605 };
3606 
3607 } // end anonymous namespace
3608 
3609 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
3610   unsigned IDNS = ND->getIdentifierNamespace();
3611   std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
3612   for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
3613        SM != SMEnd; ++SM) {
3614     ShadowMap::iterator Pos = SM->find(ND->getDeclName());
3615     if (Pos == SM->end())
3616       continue;
3617 
3618     for (auto *D : Pos->second) {
3619       // A tag declaration does not hide a non-tag declaration.
3620       if (D->hasTagIdentifierNamespace() &&
3621           (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
3622                    Decl::IDNS_ObjCProtocol)))
3623         continue;
3624 
3625       // Protocols are in distinct namespaces from everything else.
3626       if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
3627            || (IDNS & Decl::IDNS_ObjCProtocol)) &&
3628           D->getIdentifierNamespace() != IDNS)
3629         continue;
3630 
3631       // Functions and function templates in the same scope overload
3632       // rather than hide.  FIXME: Look for hiding based on function
3633       // signatures!
3634       if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3635           ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3636           SM == ShadowMaps.rbegin())
3637         continue;
3638 
3639       // A shadow declaration that's created by a resolved using declaration
3640       // is not hidden by the same using declaration.
3641       if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) &&
3642           cast<UsingShadowDecl>(ND)->getUsingDecl() == D)
3643         continue;
3644 
3645       // We've found a declaration that hides this one.
3646       return D;
3647     }
3648   }
3649 
3650   return nullptr;
3651 }
3652 
3653 namespace {
3654 class LookupVisibleHelper {
3655 public:
3656   LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases,
3657                       bool LoadExternal)
3658       : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases),
3659         LoadExternal(LoadExternal) {}
3660 
3661   void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind,
3662                           bool IncludeGlobalScope) {
3663     // Determine the set of using directives available during
3664     // unqualified name lookup.
3665     Scope *Initial = S;
3666     UnqualUsingDirectiveSet UDirs(SemaRef);
3667     if (SemaRef.getLangOpts().CPlusPlus) {
3668       // Find the first namespace or translation-unit scope.
3669       while (S && !isNamespaceOrTranslationUnitScope(S))
3670         S = S->getParent();
3671 
3672       UDirs.visitScopeChain(Initial, S);
3673     }
3674     UDirs.done();
3675 
3676     // Look for visible declarations.
3677     LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
3678     Result.setAllowHidden(Consumer.includeHiddenDecls());
3679     if (!IncludeGlobalScope)
3680       Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
3681     ShadowContextRAII Shadow(Visited);
3682     lookupInScope(Initial, Result, UDirs);
3683   }
3684 
3685   void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx,
3686                           Sema::LookupNameKind Kind, bool IncludeGlobalScope) {
3687     LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
3688     Result.setAllowHidden(Consumer.includeHiddenDecls());
3689     if (!IncludeGlobalScope)
3690       Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
3691 
3692     ShadowContextRAII Shadow(Visited);
3693     lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true,
3694                         /*InBaseClass=*/false);
3695   }
3696 
3697 private:
3698   void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result,
3699                            bool QualifiedNameLookup, bool InBaseClass) {
3700     if (!Ctx)
3701       return;
3702 
3703     // Make sure we don't visit the same context twice.
3704     if (Visited.visitedContext(Ctx->getPrimaryContext()))
3705       return;
3706 
3707     Consumer.EnteredContext(Ctx);
3708 
3709     // Outside C++, lookup results for the TU live on identifiers.
3710     if (isa<TranslationUnitDecl>(Ctx) &&
3711         !Result.getSema().getLangOpts().CPlusPlus) {
3712       auto &S = Result.getSema();
3713       auto &Idents = S.Context.Idents;
3714 
3715       // Ensure all external identifiers are in the identifier table.
3716       if (LoadExternal)
3717         if (IdentifierInfoLookup *External =
3718                 Idents.getExternalIdentifierLookup()) {
3719           std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
3720           for (StringRef Name = Iter->Next(); !Name.empty();
3721                Name = Iter->Next())
3722             Idents.get(Name);
3723         }
3724 
3725       // Walk all lookup results in the TU for each identifier.
3726       for (const auto &Ident : Idents) {
3727         for (auto I = S.IdResolver.begin(Ident.getValue()),
3728                   E = S.IdResolver.end();
3729              I != E; ++I) {
3730           if (S.IdResolver.isDeclInScope(*I, Ctx)) {
3731             if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
3732               Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3733               Visited.add(ND);
3734             }
3735           }
3736         }
3737       }
3738 
3739       return;
3740     }
3741 
3742     if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
3743       Result.getSema().ForceDeclarationOfImplicitMembers(Class);
3744 
3745     // We sometimes skip loading namespace-level results (they tend to be huge).
3746     bool Load = LoadExternal ||
3747                 !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx));
3748     // Enumerate all of the results in this context.
3749     for (DeclContextLookupResult R :
3750          Load ? Ctx->lookups()
3751               : Ctx->noload_lookups(/*PreserveInternalState=*/false)) {
3752       for (auto *D : R) {
3753         if (auto *ND = Result.getAcceptableDecl(D)) {
3754           Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3755           Visited.add(ND);
3756         }
3757       }
3758     }
3759 
3760     // Traverse using directives for qualified name lookup.
3761     if (QualifiedNameLookup) {
3762       ShadowContextRAII Shadow(Visited);
3763       for (auto I : Ctx->using_directives()) {
3764         if (!Result.getSema().isVisible(I))
3765           continue;
3766         lookupInDeclContext(I->getNominatedNamespace(), Result,
3767                             QualifiedNameLookup, InBaseClass);
3768       }
3769     }
3770 
3771     // Traverse the contexts of inherited C++ classes.
3772     if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
3773       if (!Record->hasDefinition())
3774         return;
3775 
3776       for (const auto &B : Record->bases()) {
3777         QualType BaseType = B.getType();
3778 
3779         RecordDecl *RD;
3780         if (BaseType->isDependentType()) {
3781           if (!IncludeDependentBases) {
3782             // Don't look into dependent bases, because name lookup can't look
3783             // there anyway.
3784             continue;
3785           }
3786           const auto *TST = BaseType->getAs<TemplateSpecializationType>();
3787           if (!TST)
3788             continue;
3789           TemplateName TN = TST->getTemplateName();
3790           const auto *TD =
3791               dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
3792           if (!TD)
3793             continue;
3794           RD = TD->getTemplatedDecl();
3795         } else {
3796           const auto *Record = BaseType->getAs<RecordType>();
3797           if (!Record)
3798             continue;
3799           RD = Record->getDecl();
3800         }
3801 
3802         // FIXME: It would be nice to be able to determine whether referencing
3803         // a particular member would be ambiguous. For example, given
3804         //
3805         //   struct A { int member; };
3806         //   struct B { int member; };
3807         //   struct C : A, B { };
3808         //
3809         //   void f(C *c) { c->### }
3810         //
3811         // accessing 'member' would result in an ambiguity. However, we
3812         // could be smart enough to qualify the member with the base
3813         // class, e.g.,
3814         //
3815         //   c->B::member
3816         //
3817         // or
3818         //
3819         //   c->A::member
3820 
3821         // Find results in this base class (and its bases).
3822         ShadowContextRAII Shadow(Visited);
3823         lookupInDeclContext(RD, Result, QualifiedNameLookup,
3824                             /*InBaseClass=*/true);
3825       }
3826     }
3827 
3828     // Traverse the contexts of Objective-C classes.
3829     if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
3830       // Traverse categories.
3831       for (auto *Cat : IFace->visible_categories()) {
3832         ShadowContextRAII Shadow(Visited);
3833         lookupInDeclContext(Cat, Result, QualifiedNameLookup,
3834                             /*InBaseClass=*/false);
3835       }
3836 
3837       // Traverse protocols.
3838       for (auto *I : IFace->all_referenced_protocols()) {
3839         ShadowContextRAII Shadow(Visited);
3840         lookupInDeclContext(I, Result, QualifiedNameLookup,
3841                             /*InBaseClass=*/false);
3842       }
3843 
3844       // Traverse the superclass.
3845       if (IFace->getSuperClass()) {
3846         ShadowContextRAII Shadow(Visited);
3847         lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup,
3848                             /*InBaseClass=*/true);
3849       }
3850 
3851       // If there is an implementation, traverse it. We do this to find
3852       // synthesized ivars.
3853       if (IFace->getImplementation()) {
3854         ShadowContextRAII Shadow(Visited);
3855         lookupInDeclContext(IFace->getImplementation(), Result,
3856                             QualifiedNameLookup, InBaseClass);
3857       }
3858     } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
3859       for (auto *I : Protocol->protocols()) {
3860         ShadowContextRAII Shadow(Visited);
3861         lookupInDeclContext(I, Result, QualifiedNameLookup,
3862                             /*InBaseClass=*/false);
3863       }
3864     } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
3865       for (auto *I : Category->protocols()) {
3866         ShadowContextRAII Shadow(Visited);
3867         lookupInDeclContext(I, Result, QualifiedNameLookup,
3868                             /*InBaseClass=*/false);
3869       }
3870 
3871       // If there is an implementation, traverse it.
3872       if (Category->getImplementation()) {
3873         ShadowContextRAII Shadow(Visited);
3874         lookupInDeclContext(Category->getImplementation(), Result,
3875                             QualifiedNameLookup, /*InBaseClass=*/true);
3876       }
3877     }
3878   }
3879 
3880   void lookupInScope(Scope *S, LookupResult &Result,
3881                      UnqualUsingDirectiveSet &UDirs) {
3882     // No clients run in this mode and it's not supported. Please add tests and
3883     // remove the assertion if you start relying on it.
3884     assert(!IncludeDependentBases && "Unsupported flag for lookupInScope");
3885 
3886     if (!S)
3887       return;
3888 
3889     if (!S->getEntity() ||
3890         (!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) ||
3891         (S->getEntity())->isFunctionOrMethod()) {
3892       FindLocalExternScope FindLocals(Result);
3893       // Walk through the declarations in this Scope. The consumer might add new
3894       // decls to the scope as part of deserialization, so make a copy first.
3895       SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end());
3896       for (Decl *D : ScopeDecls) {
3897         if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
3898           if ((ND = Result.getAcceptableDecl(ND))) {
3899             Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
3900             Visited.add(ND);
3901           }
3902       }
3903     }
3904 
3905     DeclContext *Entity = S->getLookupEntity();
3906     if (Entity) {
3907       // Look into this scope's declaration context, along with any of its
3908       // parent lookup contexts (e.g., enclosing classes), up to the point
3909       // where we hit the context stored in the next outer scope.
3910       DeclContext *OuterCtx = findOuterContext(S);
3911 
3912       for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
3913            Ctx = Ctx->getLookupParent()) {
3914         if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
3915           if (Method->isInstanceMethod()) {
3916             // For instance methods, look for ivars in the method's interface.
3917             LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
3918                                     Result.getNameLoc(),
3919                                     Sema::LookupMemberName);
3920             if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
3921               lookupInDeclContext(IFace, IvarResult,
3922                                   /*QualifiedNameLookup=*/false,
3923                                   /*InBaseClass=*/false);
3924             }
3925           }
3926 
3927           // We've already performed all of the name lookup that we need
3928           // to for Objective-C methods; the next context will be the
3929           // outer scope.
3930           break;
3931         }
3932 
3933         if (Ctx->isFunctionOrMethod())
3934           continue;
3935 
3936         lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false,
3937                             /*InBaseClass=*/false);
3938       }
3939     } else if (!S->getParent()) {
3940       // Look into the translation unit scope. We walk through the translation
3941       // unit's declaration context, because the Scope itself won't have all of
3942       // the declarations if we loaded a precompiled header.
3943       // FIXME: We would like the translation unit's Scope object to point to
3944       // the translation unit, so we don't need this special "if" branch.
3945       // However, doing so would force the normal C++ name-lookup code to look
3946       // into the translation unit decl when the IdentifierInfo chains would
3947       // suffice. Once we fix that problem (which is part of a more general
3948       // "don't look in DeclContexts unless we have to" optimization), we can
3949       // eliminate this.
3950       Entity = Result.getSema().Context.getTranslationUnitDecl();
3951       lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false,
3952                           /*InBaseClass=*/false);
3953     }
3954 
3955     if (Entity) {
3956       // Lookup visible declarations in any namespaces found by using
3957       // directives.
3958       for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
3959         lookupInDeclContext(
3960             const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result,
3961             /*QualifiedNameLookup=*/false,
3962             /*InBaseClass=*/false);
3963     }
3964 
3965     // Lookup names in the parent scope.
3966     ShadowContextRAII Shadow(Visited);
3967     lookupInScope(S->getParent(), Result, UDirs);
3968   }
3969 
3970 private:
3971   VisibleDeclsRecord Visited;
3972   VisibleDeclConsumer &Consumer;
3973   bool IncludeDependentBases;
3974   bool LoadExternal;
3975 };
3976 } // namespace
3977 
3978 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
3979                               VisibleDeclConsumer &Consumer,
3980                               bool IncludeGlobalScope, bool LoadExternal) {
3981   LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false,
3982                         LoadExternal);
3983   H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope);
3984 }
3985 
3986 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
3987                               VisibleDeclConsumer &Consumer,
3988                               bool IncludeGlobalScope,
3989                               bool IncludeDependentBases, bool LoadExternal) {
3990   LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal);
3991   H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope);
3992 }
3993 
3994 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
3995 /// If GnuLabelLoc is a valid source location, then this is a definition
3996 /// of an __label__ label name, otherwise it is a normal label definition
3997 /// or use.
3998 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
3999                                      SourceLocation GnuLabelLoc) {
4000   // Do a lookup to see if we have a label with this name already.
4001   NamedDecl *Res = nullptr;
4002 
4003   if (GnuLabelLoc.isValid()) {
4004     // Local label definitions always shadow existing labels.
4005     Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
4006     Scope *S = CurScope;
4007     PushOnScopeChains(Res, S, true);
4008     return cast<LabelDecl>(Res);
4009   }
4010 
4011   // Not a GNU local label.
4012   Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
4013   // If we found a label, check to see if it is in the same context as us.
4014   // When in a Block, we don't want to reuse a label in an enclosing function.
4015   if (Res && Res->getDeclContext() != CurContext)
4016     Res = nullptr;
4017   if (!Res) {
4018     // If not forward referenced or defined already, create the backing decl.
4019     Res = LabelDecl::Create(Context, CurContext, Loc, II);
4020     Scope *S = CurScope->getFnParent();
4021     assert(S && "Not in a function?");
4022     PushOnScopeChains(Res, S, true);
4023   }
4024   return cast<LabelDecl>(Res);
4025 }
4026 
4027 //===----------------------------------------------------------------------===//
4028 // Typo correction
4029 //===----------------------------------------------------------------------===//
4030 
4031 static bool isCandidateViable(CorrectionCandidateCallback &CCC,
4032                               TypoCorrection &Candidate) {
4033   Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
4034   return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
4035 }
4036 
4037 static void LookupPotentialTypoResult(Sema &SemaRef,
4038                                       LookupResult &Res,
4039                                       IdentifierInfo *Name,
4040                                       Scope *S, CXXScopeSpec *SS,
4041                                       DeclContext *MemberContext,
4042                                       bool EnteringContext,
4043                                       bool isObjCIvarLookup,
4044                                       bool FindHidden);
4045 
4046 /// Check whether the declarations found for a typo correction are
4047 /// visible. Set the correction's RequiresImport flag to true if none of the
4048 /// declarations are visible, false otherwise.
4049 static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
4050   TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
4051 
4052   for (/**/; DI != DE; ++DI)
4053     if (!LookupResult::isVisible(SemaRef, *DI))
4054       break;
4055   // No filtering needed if all decls are visible.
4056   if (DI == DE) {
4057     TC.setRequiresImport(false);
4058     return;
4059   }
4060 
4061   llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
4062   bool AnyVisibleDecls = !NewDecls.empty();
4063 
4064   for (/**/; DI != DE; ++DI) {
4065     if (LookupResult::isVisible(SemaRef, *DI)) {
4066       if (!AnyVisibleDecls) {
4067         // Found a visible decl, discard all hidden ones.
4068         AnyVisibleDecls = true;
4069         NewDecls.clear();
4070       }
4071       NewDecls.push_back(*DI);
4072     } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
4073       NewDecls.push_back(*DI);
4074   }
4075 
4076   if (NewDecls.empty())
4077     TC = TypoCorrection();
4078   else {
4079     TC.setCorrectionDecls(NewDecls);
4080     TC.setRequiresImport(!AnyVisibleDecls);
4081   }
4082 }
4083 
4084 // Fill the supplied vector with the IdentifierInfo pointers for each piece of
4085 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
4086 // fill the vector with the IdentifierInfo pointers for "foo" and "bar").
4087 static void getNestedNameSpecifierIdentifiers(
4088     NestedNameSpecifier *NNS,
4089     SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
4090   if (NestedNameSpecifier *Prefix = NNS->getPrefix())
4091     getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
4092   else
4093     Identifiers.clear();
4094 
4095   const IdentifierInfo *II = nullptr;
4096 
4097   switch (NNS->getKind()) {
4098   case NestedNameSpecifier::Identifier:
4099     II = NNS->getAsIdentifier();
4100     break;
4101 
4102   case NestedNameSpecifier::Namespace:
4103     if (NNS->getAsNamespace()->isAnonymousNamespace())
4104       return;
4105     II = NNS->getAsNamespace()->getIdentifier();
4106     break;
4107 
4108   case NestedNameSpecifier::NamespaceAlias:
4109     II = NNS->getAsNamespaceAlias()->getIdentifier();
4110     break;
4111 
4112   case NestedNameSpecifier::TypeSpecWithTemplate:
4113   case NestedNameSpecifier::TypeSpec:
4114     II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
4115     break;
4116 
4117   case NestedNameSpecifier::Global:
4118   case NestedNameSpecifier::Super:
4119     return;
4120   }
4121 
4122   if (II)
4123     Identifiers.push_back(II);
4124 }
4125 
4126 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
4127                                        DeclContext *Ctx, bool InBaseClass) {
4128   // Don't consider hidden names for typo correction.
4129   if (Hiding)
4130     return;
4131 
4132   // Only consider entities with identifiers for names, ignoring
4133   // special names (constructors, overloaded operators, selectors,
4134   // etc.).
4135   IdentifierInfo *Name = ND->getIdentifier();
4136   if (!Name)
4137     return;
4138 
4139   // Only consider visible declarations and declarations from modules with
4140   // names that exactly match.
4141   if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo)
4142     return;
4143 
4144   FoundName(Name->getName());
4145 }
4146 
4147 void TypoCorrectionConsumer::FoundName(StringRef Name) {
4148   // Compute the edit distance between the typo and the name of this
4149   // entity, and add the identifier to the list of results.
4150   addName(Name, nullptr);
4151 }
4152 
4153 void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
4154   // Compute the edit distance between the typo and this keyword,
4155   // and add the keyword to the list of results.
4156   addName(Keyword, nullptr, nullptr, true);
4157 }
4158 
4159 void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
4160                                      NestedNameSpecifier *NNS, bool isKeyword) {
4161   // Use a simple length-based heuristic to determine the minimum possible
4162   // edit distance. If the minimum isn't good enough, bail out early.
4163   StringRef TypoStr = Typo->getName();
4164   unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
4165   if (MinED && TypoStr.size() / MinED < 3)
4166     return;
4167 
4168   // Compute an upper bound on the allowable edit distance, so that the
4169   // edit-distance algorithm can short-circuit.
4170   unsigned UpperBound = (TypoStr.size() + 2) / 3;
4171   unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
4172   if (ED > UpperBound) return;
4173 
4174   TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
4175   if (isKeyword) TC.makeKeyword();
4176   TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
4177   addCorrection(TC);
4178 }
4179 
4180 static const unsigned MaxTypoDistanceResultSets = 5;
4181 
4182 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
4183   StringRef TypoStr = Typo->getName();
4184   StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
4185 
4186   // For very short typos, ignore potential corrections that have a different
4187   // base identifier from the typo or which have a normalized edit distance
4188   // longer than the typo itself.
4189   if (TypoStr.size() < 3 &&
4190       (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
4191     return;
4192 
4193   // If the correction is resolved but is not viable, ignore it.
4194   if (Correction.isResolved()) {
4195     checkCorrectionVisibility(SemaRef, Correction);
4196     if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
4197       return;
4198   }
4199 
4200   TypoResultList &CList =
4201       CorrectionResults[Correction.getEditDistance(false)][Name];
4202 
4203   if (!CList.empty() && !CList.back().isResolved())
4204     CList.pop_back();
4205   if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
4206     std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
4207     for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
4208          RI != RIEnd; ++RI) {
4209       // If the Correction refers to a decl already in the result list,
4210       // replace the existing result if the string representation of Correction
4211       // comes before the current result alphabetically, then stop as there is
4212       // nothing more to be done to add Correction to the candidate set.
4213       if (RI->getCorrectionDecl() == NewND) {
4214         if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
4215           *RI = Correction;
4216         return;
4217       }
4218     }
4219   }
4220   if (CList.empty() || Correction.isResolved())
4221     CList.push_back(Correction);
4222 
4223   while (CorrectionResults.size() > MaxTypoDistanceResultSets)
4224     CorrectionResults.erase(std::prev(CorrectionResults.end()));
4225 }
4226 
4227 void TypoCorrectionConsumer::addNamespaces(
4228     const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
4229   SearchNamespaces = true;
4230 
4231   for (auto KNPair : KnownNamespaces)
4232     Namespaces.addNameSpecifier(KNPair.first);
4233 
4234   bool SSIsTemplate = false;
4235   if (NestedNameSpecifier *NNS =
4236           (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
4237     if (const Type *T = NNS->getAsType())
4238       SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
4239   }
4240   // Do not transform this into an iterator-based loop. The loop body can
4241   // trigger the creation of further types (through lazy deserialization) and
4242   // invalid iterators into this list.
4243   auto &Types = SemaRef.getASTContext().getTypes();
4244   for (unsigned I = 0; I != Types.size(); ++I) {
4245     const auto *TI = Types[I];
4246     if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
4247       CD = CD->getCanonicalDecl();
4248       if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
4249           !CD->isUnion() && CD->getIdentifier() &&
4250           (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
4251           (CD->isBeingDefined() || CD->isCompleteDefinition()))
4252         Namespaces.addNameSpecifier(CD);
4253     }
4254   }
4255 }
4256 
4257 const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
4258   if (++CurrentTCIndex < ValidatedCorrections.size())
4259     return ValidatedCorrections[CurrentTCIndex];
4260 
4261   CurrentTCIndex = ValidatedCorrections.size();
4262   while (!CorrectionResults.empty()) {
4263     auto DI = CorrectionResults.begin();
4264     if (DI->second.empty()) {
4265       CorrectionResults.erase(DI);
4266       continue;
4267     }
4268 
4269     auto RI = DI->second.begin();
4270     if (RI->second.empty()) {
4271       DI->second.erase(RI);
4272       performQualifiedLookups();
4273       continue;
4274     }
4275 
4276     TypoCorrection TC = RI->second.pop_back_val();
4277     if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
4278       ValidatedCorrections.push_back(TC);
4279       return ValidatedCorrections[CurrentTCIndex];
4280     }
4281   }
4282   return ValidatedCorrections[0];  // The empty correction.
4283 }
4284 
4285 bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
4286   IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
4287   DeclContext *TempMemberContext = MemberContext;
4288   CXXScopeSpec *TempSS = SS.get();
4289 retry_lookup:
4290   LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
4291                             EnteringContext,
4292                             CorrectionValidator->IsObjCIvarLookup,
4293                             Name == Typo && !Candidate.WillReplaceSpecifier());
4294   switch (Result.getResultKind()) {
4295   case LookupResult::NotFound:
4296   case LookupResult::NotFoundInCurrentInstantiation:
4297   case LookupResult::FoundUnresolvedValue:
4298     if (TempSS) {
4299       // Immediately retry the lookup without the given CXXScopeSpec
4300       TempSS = nullptr;
4301       Candidate.WillReplaceSpecifier(true);
4302       goto retry_lookup;
4303     }
4304     if (TempMemberContext) {
4305       if (SS && !TempSS)
4306         TempSS = SS.get();
4307       TempMemberContext = nullptr;
4308       goto retry_lookup;
4309     }
4310     if (SearchNamespaces)
4311       QualifiedResults.push_back(Candidate);
4312     break;
4313 
4314   case LookupResult::Ambiguous:
4315     // We don't deal with ambiguities.
4316     break;
4317 
4318   case LookupResult::Found:
4319   case LookupResult::FoundOverloaded:
4320     // Store all of the Decls for overloaded symbols
4321     for (auto *TRD : Result)
4322       Candidate.addCorrectionDecl(TRD);
4323     checkCorrectionVisibility(SemaRef, Candidate);
4324     if (!isCandidateViable(*CorrectionValidator, Candidate)) {
4325       if (SearchNamespaces)
4326         QualifiedResults.push_back(Candidate);
4327       break;
4328     }
4329     Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4330     return true;
4331   }
4332   return false;
4333 }
4334 
4335 void TypoCorrectionConsumer::performQualifiedLookups() {
4336   unsigned TypoLen = Typo->getName().size();
4337   for (const TypoCorrection &QR : QualifiedResults) {
4338     for (const auto &NSI : Namespaces) {
4339       DeclContext *Ctx = NSI.DeclCtx;
4340       const Type *NSType = NSI.NameSpecifier->getAsType();
4341 
4342       // If the current NestedNameSpecifier refers to a class and the
4343       // current correction candidate is the name of that class, then skip
4344       // it as it is unlikely a qualified version of the class' constructor
4345       // is an appropriate correction.
4346       if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
4347                                            nullptr) {
4348         if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
4349           continue;
4350       }
4351 
4352       TypoCorrection TC(QR);
4353       TC.ClearCorrectionDecls();
4354       TC.setCorrectionSpecifier(NSI.NameSpecifier);
4355       TC.setQualifierDistance(NSI.EditDistance);
4356       TC.setCallbackDistance(0); // Reset the callback distance
4357 
4358       // If the current correction candidate and namespace combination are
4359       // too far away from the original typo based on the normalized edit
4360       // distance, then skip performing a qualified name lookup.
4361       unsigned TmpED = TC.getEditDistance(true);
4362       if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
4363           TypoLen / TmpED < 3)
4364         continue;
4365 
4366       Result.clear();
4367       Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
4368       if (!SemaRef.LookupQualifiedName(Result, Ctx))
4369         continue;
4370 
4371       // Any corrections added below will be validated in subsequent
4372       // iterations of the main while() loop over the Consumer's contents.
4373       switch (Result.getResultKind()) {
4374       case LookupResult::Found:
4375       case LookupResult::FoundOverloaded: {
4376         if (SS && SS->isValid()) {
4377           std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
4378           std::string OldQualified;
4379           llvm::raw_string_ostream OldOStream(OldQualified);
4380           SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
4381           OldOStream << Typo->getName();
4382           // If correction candidate would be an identical written qualified
4383           // identifier, then the existing CXXScopeSpec probably included a
4384           // typedef that didn't get accounted for properly.
4385           if (OldOStream.str() == NewQualified)
4386             break;
4387         }
4388         for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
4389              TRD != TRDEnd; ++TRD) {
4390           if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
4391                                         NSType ? NSType->getAsCXXRecordDecl()
4392                                                : nullptr,
4393                                         TRD.getPair()) == Sema::AR_accessible)
4394             TC.addCorrectionDecl(*TRD);
4395         }
4396         if (TC.isResolved()) {
4397           TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4398           addCorrection(TC);
4399         }
4400         break;
4401       }
4402       case LookupResult::NotFound:
4403       case LookupResult::NotFoundInCurrentInstantiation:
4404       case LookupResult::Ambiguous:
4405       case LookupResult::FoundUnresolvedValue:
4406         break;
4407       }
4408     }
4409   }
4410   QualifiedResults.clear();
4411 }
4412 
4413 TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
4414     ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
4415     : Context(Context), CurContextChain(buildContextChain(CurContext)) {
4416   if (NestedNameSpecifier *NNS =
4417           CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
4418     llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
4419     NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4420 
4421     getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
4422   }
4423   // Build the list of identifiers that would be used for an absolute
4424   // (from the global context) NestedNameSpecifier referring to the current
4425   // context.
4426   for (DeclContext *C : llvm::reverse(CurContextChain)) {
4427     if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C))
4428       CurContextIdentifiers.push_back(ND->getIdentifier());
4429   }
4430 
4431   // Add the global context as a NestedNameSpecifier
4432   SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
4433                       NestedNameSpecifier::GlobalSpecifier(Context), 1};
4434   DistanceMap[1].push_back(SI);
4435 }
4436 
4437 auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
4438     DeclContext *Start) -> DeclContextList {
4439   assert(Start && "Building a context chain from a null context");
4440   DeclContextList Chain;
4441   for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
4442        DC = DC->getLookupParent()) {
4443     NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
4444     if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
4445         !(ND && ND->isAnonymousNamespace()))
4446       Chain.push_back(DC->getPrimaryContext());
4447   }
4448   return Chain;
4449 }
4450 
4451 unsigned
4452 TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
4453     DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
4454   unsigned NumSpecifiers = 0;
4455   for (DeclContext *C : llvm::reverse(DeclChain)) {
4456     if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) {
4457       NNS = NestedNameSpecifier::Create(Context, NNS, ND);
4458       ++NumSpecifiers;
4459     } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) {
4460       NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
4461                                         RD->getTypeForDecl());
4462       ++NumSpecifiers;
4463     }
4464   }
4465   return NumSpecifiers;
4466 }
4467 
4468 void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
4469     DeclContext *Ctx) {
4470   NestedNameSpecifier *NNS = nullptr;
4471   unsigned NumSpecifiers = 0;
4472   DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
4473   DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
4474 
4475   // Eliminate common elements from the two DeclContext chains.
4476   for (DeclContext *C : llvm::reverse(CurContextChain)) {
4477     if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C)
4478       break;
4479     NamespaceDeclChain.pop_back();
4480   }
4481 
4482   // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
4483   NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
4484 
4485   // Add an explicit leading '::' specifier if needed.
4486   if (NamespaceDeclChain.empty()) {
4487     // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4488     NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4489     NumSpecifiers =
4490         buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4491   } else if (NamedDecl *ND =
4492                  dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
4493     IdentifierInfo *Name = ND->getIdentifier();
4494     bool SameNameSpecifier = false;
4495     if (std::find(CurNameSpecifierIdentifiers.begin(),
4496                   CurNameSpecifierIdentifiers.end(),
4497                   Name) != CurNameSpecifierIdentifiers.end()) {
4498       std::string NewNameSpecifier;
4499       llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
4500       SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
4501       getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4502       NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4503       SpecifierOStream.flush();
4504       SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
4505     }
4506     if (SameNameSpecifier || llvm::find(CurContextIdentifiers, Name) !=
4507                                  CurContextIdentifiers.end()) {
4508       // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4509       NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4510       NumSpecifiers =
4511           buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4512     }
4513   }
4514 
4515   // If the built NestedNameSpecifier would be replacing an existing
4516   // NestedNameSpecifier, use the number of component identifiers that
4517   // would need to be changed as the edit distance instead of the number
4518   // of components in the built NestedNameSpecifier.
4519   if (NNS && !CurNameSpecifierIdentifiers.empty()) {
4520     SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
4521     getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4522     NumSpecifiers = llvm::ComputeEditDistance(
4523         llvm::makeArrayRef(CurNameSpecifierIdentifiers),
4524         llvm::makeArrayRef(NewNameSpecifierIdentifiers));
4525   }
4526 
4527   SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
4528   DistanceMap[NumSpecifiers].push_back(SI);
4529 }
4530 
4531 /// Perform name lookup for a possible result for typo correction.
4532 static void LookupPotentialTypoResult(Sema &SemaRef,
4533                                       LookupResult &Res,
4534                                       IdentifierInfo *Name,
4535                                       Scope *S, CXXScopeSpec *SS,
4536                                       DeclContext *MemberContext,
4537                                       bool EnteringContext,
4538                                       bool isObjCIvarLookup,
4539                                       bool FindHidden) {
4540   Res.suppressDiagnostics();
4541   Res.clear();
4542   Res.setLookupName(Name);
4543   Res.setAllowHidden(FindHidden);
4544   if (MemberContext) {
4545     if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
4546       if (isObjCIvarLookup) {
4547         if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
4548           Res.addDecl(Ivar);
4549           Res.resolveKind();
4550           return;
4551         }
4552       }
4553 
4554       if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(
4555               Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
4556         Res.addDecl(Prop);
4557         Res.resolveKind();
4558         return;
4559       }
4560     }
4561 
4562     SemaRef.LookupQualifiedName(Res, MemberContext);
4563     return;
4564   }
4565 
4566   SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
4567                            EnteringContext);
4568 
4569   // Fake ivar lookup; this should really be part of
4570   // LookupParsedName.
4571   if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
4572     if (Method->isInstanceMethod() && Method->getClassInterface() &&
4573         (Res.empty() ||
4574          (Res.isSingleResult() &&
4575           Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
4576        if (ObjCIvarDecl *IV
4577              = Method->getClassInterface()->lookupInstanceVariable(Name)) {
4578          Res.addDecl(IV);
4579          Res.resolveKind();
4580        }
4581      }
4582   }
4583 }
4584 
4585 /// Add keywords to the consumer as possible typo corrections.
4586 static void AddKeywordsToConsumer(Sema &SemaRef,
4587                                   TypoCorrectionConsumer &Consumer,
4588                                   Scope *S, CorrectionCandidateCallback &CCC,
4589                                   bool AfterNestedNameSpecifier) {
4590   if (AfterNestedNameSpecifier) {
4591     // For 'X::', we know exactly which keywords can appear next.
4592     Consumer.addKeywordResult("template");
4593     if (CCC.WantExpressionKeywords)
4594       Consumer.addKeywordResult("operator");
4595     return;
4596   }
4597 
4598   if (CCC.WantObjCSuper)
4599     Consumer.addKeywordResult("super");
4600 
4601   if (CCC.WantTypeSpecifiers) {
4602     // Add type-specifier keywords to the set of results.
4603     static const char *const CTypeSpecs[] = {
4604       "char", "const", "double", "enum", "float", "int", "long", "short",
4605       "signed", "struct", "union", "unsigned", "void", "volatile",
4606       "_Complex", "_Imaginary",
4607       // storage-specifiers as well
4608       "extern", "inline", "static", "typedef"
4609     };
4610 
4611     const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
4612     for (unsigned I = 0; I != NumCTypeSpecs; ++I)
4613       Consumer.addKeywordResult(CTypeSpecs[I]);
4614 
4615     if (SemaRef.getLangOpts().C99)
4616       Consumer.addKeywordResult("restrict");
4617     if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
4618       Consumer.addKeywordResult("bool");
4619     else if (SemaRef.getLangOpts().C99)
4620       Consumer.addKeywordResult("_Bool");
4621 
4622     if (SemaRef.getLangOpts().CPlusPlus) {
4623       Consumer.addKeywordResult("class");
4624       Consumer.addKeywordResult("typename");
4625       Consumer.addKeywordResult("wchar_t");
4626 
4627       if (SemaRef.getLangOpts().CPlusPlus11) {
4628         Consumer.addKeywordResult("char16_t");
4629         Consumer.addKeywordResult("char32_t");
4630         Consumer.addKeywordResult("constexpr");
4631         Consumer.addKeywordResult("decltype");
4632         Consumer.addKeywordResult("thread_local");
4633       }
4634     }
4635 
4636     if (SemaRef.getLangOpts().GNUKeywords)
4637       Consumer.addKeywordResult("typeof");
4638   } else if (CCC.WantFunctionLikeCasts) {
4639     static const char *const CastableTypeSpecs[] = {
4640       "char", "double", "float", "int", "long", "short",
4641       "signed", "unsigned", "void"
4642     };
4643     for (auto *kw : CastableTypeSpecs)
4644       Consumer.addKeywordResult(kw);
4645   }
4646 
4647   if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
4648     Consumer.addKeywordResult("const_cast");
4649     Consumer.addKeywordResult("dynamic_cast");
4650     Consumer.addKeywordResult("reinterpret_cast");
4651     Consumer.addKeywordResult("static_cast");
4652   }
4653 
4654   if (CCC.WantExpressionKeywords) {
4655     Consumer.addKeywordResult("sizeof");
4656     if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
4657       Consumer.addKeywordResult("false");
4658       Consumer.addKeywordResult("true");
4659     }
4660 
4661     if (SemaRef.getLangOpts().CPlusPlus) {
4662       static const char *const CXXExprs[] = {
4663         "delete", "new", "operator", "throw", "typeid"
4664       };
4665       const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
4666       for (unsigned I = 0; I != NumCXXExprs; ++I)
4667         Consumer.addKeywordResult(CXXExprs[I]);
4668 
4669       if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
4670           cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
4671         Consumer.addKeywordResult("this");
4672 
4673       if (SemaRef.getLangOpts().CPlusPlus11) {
4674         Consumer.addKeywordResult("alignof");
4675         Consumer.addKeywordResult("nullptr");
4676       }
4677     }
4678 
4679     if (SemaRef.getLangOpts().C11) {
4680       // FIXME: We should not suggest _Alignof if the alignof macro
4681       // is present.
4682       Consumer.addKeywordResult("_Alignof");
4683     }
4684   }
4685 
4686   if (CCC.WantRemainingKeywords) {
4687     if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
4688       // Statements.
4689       static const char *const CStmts[] = {
4690         "do", "else", "for", "goto", "if", "return", "switch", "while" };
4691       const unsigned NumCStmts = llvm::array_lengthof(CStmts);
4692       for (unsigned I = 0; I != NumCStmts; ++I)
4693         Consumer.addKeywordResult(CStmts[I]);
4694 
4695       if (SemaRef.getLangOpts().CPlusPlus) {
4696         Consumer.addKeywordResult("catch");
4697         Consumer.addKeywordResult("try");
4698       }
4699 
4700       if (S && S->getBreakParent())
4701         Consumer.addKeywordResult("break");
4702 
4703       if (S && S->getContinueParent())
4704         Consumer.addKeywordResult("continue");
4705 
4706       if (SemaRef.getCurFunction() &&
4707           !SemaRef.getCurFunction()->SwitchStack.empty()) {
4708         Consumer.addKeywordResult("case");
4709         Consumer.addKeywordResult("default");
4710       }
4711     } else {
4712       if (SemaRef.getLangOpts().CPlusPlus) {
4713         Consumer.addKeywordResult("namespace");
4714         Consumer.addKeywordResult("template");
4715       }
4716 
4717       if (S && S->isClassScope()) {
4718         Consumer.addKeywordResult("explicit");
4719         Consumer.addKeywordResult("friend");
4720         Consumer.addKeywordResult("mutable");
4721         Consumer.addKeywordResult("private");
4722         Consumer.addKeywordResult("protected");
4723         Consumer.addKeywordResult("public");
4724         Consumer.addKeywordResult("virtual");
4725       }
4726     }
4727 
4728     if (SemaRef.getLangOpts().CPlusPlus) {
4729       Consumer.addKeywordResult("using");
4730 
4731       if (SemaRef.getLangOpts().CPlusPlus11)
4732         Consumer.addKeywordResult("static_assert");
4733     }
4734   }
4735 }
4736 
4737 std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
4738     const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4739     Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
4740     DeclContext *MemberContext, bool EnteringContext,
4741     const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
4742 
4743   if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
4744       DisableTypoCorrection)
4745     return nullptr;
4746 
4747   // In Microsoft mode, don't perform typo correction in a template member
4748   // function dependent context because it interferes with the "lookup into
4749   // dependent bases of class templates" feature.
4750   if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
4751       isa<CXXMethodDecl>(CurContext))
4752     return nullptr;
4753 
4754   // We only attempt to correct typos for identifiers.
4755   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4756   if (!Typo)
4757     return nullptr;
4758 
4759   // If the scope specifier itself was invalid, don't try to correct
4760   // typos.
4761   if (SS && SS->isInvalid())
4762     return nullptr;
4763 
4764   // Never try to correct typos during any kind of code synthesis.
4765   if (!CodeSynthesisContexts.empty())
4766     return nullptr;
4767 
4768   // Don't try to correct 'super'.
4769   if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
4770     return nullptr;
4771 
4772   // Abort if typo correction already failed for this specific typo.
4773   IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
4774   if (locs != TypoCorrectionFailures.end() &&
4775       locs->second.count(TypoName.getLoc()))
4776     return nullptr;
4777 
4778   // Don't try to correct the identifier "vector" when in AltiVec mode.
4779   // TODO: Figure out why typo correction misbehaves in this case, fix it, and
4780   // remove this workaround.
4781   if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
4782     return nullptr;
4783 
4784   // Provide a stop gap for files that are just seriously broken.  Trying
4785   // to correct all typos can turn into a HUGE performance penalty, causing
4786   // some files to take minutes to get rejected by the parser.
4787   unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
4788   if (Limit && TyposCorrected >= Limit)
4789     return nullptr;
4790   ++TyposCorrected;
4791 
4792   // If we're handling a missing symbol error, using modules, and the
4793   // special search all modules option is used, look for a missing import.
4794   if (ErrorRecovery && getLangOpts().Modules &&
4795       getLangOpts().ModulesSearchAll) {
4796     // The following has the side effect of loading the missing module.
4797     getModuleLoader().lookupMissingImports(Typo->getName(),
4798                                            TypoName.getBeginLoc());
4799   }
4800 
4801   // Extend the lifetime of the callback. We delayed this until here
4802   // to avoid allocations in the hot path (which is where no typo correction
4803   // occurs). Note that CorrectionCandidateCallback is polymorphic and
4804   // initially stack-allocated.
4805   std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone();
4806   auto Consumer = std::make_unique<TypoCorrectionConsumer>(
4807       *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext,
4808       EnteringContext);
4809 
4810   // Perform name lookup to find visible, similarly-named entities.
4811   bool IsUnqualifiedLookup = false;
4812   DeclContext *QualifiedDC = MemberContext;
4813   if (MemberContext) {
4814     LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
4815 
4816     // Look in qualified interfaces.
4817     if (OPT) {
4818       for (auto *I : OPT->quals())
4819         LookupVisibleDecls(I, LookupKind, *Consumer);
4820     }
4821   } else if (SS && SS->isSet()) {
4822     QualifiedDC = computeDeclContext(*SS, EnteringContext);
4823     if (!QualifiedDC)
4824       return nullptr;
4825 
4826     LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
4827   } else {
4828     IsUnqualifiedLookup = true;
4829   }
4830 
4831   // Determine whether we are going to search in the various namespaces for
4832   // corrections.
4833   bool SearchNamespaces
4834     = getLangOpts().CPlusPlus &&
4835       (IsUnqualifiedLookup || (SS && SS->isSet()));
4836 
4837   if (IsUnqualifiedLookup || SearchNamespaces) {
4838     // For unqualified lookup, look through all of the names that we have
4839     // seen in this translation unit.
4840     // FIXME: Re-add the ability to skip very unlikely potential corrections.
4841     for (const auto &I : Context.Idents)
4842       Consumer->FoundName(I.getKey());
4843 
4844     // Walk through identifiers in external identifier sources.
4845     // FIXME: Re-add the ability to skip very unlikely potential corrections.
4846     if (IdentifierInfoLookup *External
4847                             = Context.Idents.getExternalIdentifierLookup()) {
4848       std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4849       do {
4850         StringRef Name = Iter->Next();
4851         if (Name.empty())
4852           break;
4853 
4854         Consumer->FoundName(Name);
4855       } while (true);
4856     }
4857   }
4858 
4859   AddKeywordsToConsumer(*this, *Consumer, S,
4860                         *Consumer->getCorrectionValidator(),
4861                         SS && SS->isNotEmpty());
4862 
4863   // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
4864   // to search those namespaces.
4865   if (SearchNamespaces) {
4866     // Load any externally-known namespaces.
4867     if (ExternalSource && !LoadedExternalKnownNamespaces) {
4868       SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
4869       LoadedExternalKnownNamespaces = true;
4870       ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
4871       for (auto *N : ExternalKnownNamespaces)
4872         KnownNamespaces[N] = true;
4873     }
4874 
4875     Consumer->addNamespaces(KnownNamespaces);
4876   }
4877 
4878   return Consumer;
4879 }
4880 
4881 /// Try to "correct" a typo in the source code by finding
4882 /// visible declarations whose names are similar to the name that was
4883 /// present in the source code.
4884 ///
4885 /// \param TypoName the \c DeclarationNameInfo structure that contains
4886 /// the name that was present in the source code along with its location.
4887 ///
4888 /// \param LookupKind the name-lookup criteria used to search for the name.
4889 ///
4890 /// \param S the scope in which name lookup occurs.
4891 ///
4892 /// \param SS the nested-name-specifier that precedes the name we're
4893 /// looking for, if present.
4894 ///
4895 /// \param CCC A CorrectionCandidateCallback object that provides further
4896 /// validation of typo correction candidates. It also provides flags for
4897 /// determining the set of keywords permitted.
4898 ///
4899 /// \param MemberContext if non-NULL, the context in which to look for
4900 /// a member access expression.
4901 ///
4902 /// \param EnteringContext whether we're entering the context described by
4903 /// the nested-name-specifier SS.
4904 ///
4905 /// \param OPT when non-NULL, the search for visible declarations will
4906 /// also walk the protocols in the qualified interfaces of \p OPT.
4907 ///
4908 /// \returns a \c TypoCorrection containing the corrected name if the typo
4909 /// along with information such as the \c NamedDecl where the corrected name
4910 /// was declared, and any additional \c NestedNameSpecifier needed to access
4911 /// it (C++ only). The \c TypoCorrection is empty if there is no correction.
4912 TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
4913                                  Sema::LookupNameKind LookupKind,
4914                                  Scope *S, CXXScopeSpec *SS,
4915                                  CorrectionCandidateCallback &CCC,
4916                                  CorrectTypoKind Mode,
4917                                  DeclContext *MemberContext,
4918                                  bool EnteringContext,
4919                                  const ObjCObjectPointerType *OPT,
4920                                  bool RecordFailure) {
4921   // Always let the ExternalSource have the first chance at correction, even
4922   // if we would otherwise have given up.
4923   if (ExternalSource) {
4924     if (TypoCorrection Correction =
4925             ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC,
4926                                         MemberContext, EnteringContext, OPT))
4927       return Correction;
4928   }
4929 
4930   // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
4931   // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
4932   // some instances of CTC_Unknown, while WantRemainingKeywords is true
4933   // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
4934   bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords;
4935 
4936   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4937   auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
4938                                              MemberContext, EnteringContext,
4939                                              OPT, Mode == CTK_ErrorRecovery);
4940 
4941   if (!Consumer)
4942     return TypoCorrection();
4943 
4944   // If we haven't found anything, we're done.
4945   if (Consumer->empty())
4946     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4947 
4948   // Make sure the best edit distance (prior to adding any namespace qualifiers)
4949   // is not more that about a third of the length of the typo's identifier.
4950   unsigned ED = Consumer->getBestEditDistance(true);
4951   unsigned TypoLen = Typo->getName().size();
4952   if (ED > 0 && TypoLen / ED < 3)
4953     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4954 
4955   TypoCorrection BestTC = Consumer->getNextCorrection();
4956   TypoCorrection SecondBestTC = Consumer->getNextCorrection();
4957   if (!BestTC)
4958     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4959 
4960   ED = BestTC.getEditDistance();
4961 
4962   if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
4963     // If this was an unqualified lookup and we believe the callback
4964     // object wouldn't have filtered out possible corrections, note
4965     // that no correction was found.
4966     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4967   }
4968 
4969   // If only a single name remains, return that result.
4970   if (!SecondBestTC ||
4971       SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
4972     const TypoCorrection &Result = BestTC;
4973 
4974     // Don't correct to a keyword that's the same as the typo; the keyword
4975     // wasn't actually in scope.
4976     if (ED == 0 && Result.isKeyword())
4977       return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4978 
4979     TypoCorrection TC = Result;
4980     TC.setCorrectionRange(SS, TypoName);
4981     checkCorrectionVisibility(*this, TC);
4982     return TC;
4983   } else if (SecondBestTC && ObjCMessageReceiver) {
4984     // Prefer 'super' when we're completing in a message-receiver
4985     // context.
4986 
4987     if (BestTC.getCorrection().getAsString() != "super") {
4988       if (SecondBestTC.getCorrection().getAsString() == "super")
4989         BestTC = SecondBestTC;
4990       else if ((*Consumer)["super"].front().isKeyword())
4991         BestTC = (*Consumer)["super"].front();
4992     }
4993     // Don't correct to a keyword that's the same as the typo; the keyword
4994     // wasn't actually in scope.
4995     if (BestTC.getEditDistance() == 0 ||
4996         BestTC.getCorrection().getAsString() != "super")
4997       return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4998 
4999     BestTC.setCorrectionRange(SS, TypoName);
5000     return BestTC;
5001   }
5002 
5003   // Record the failure's location if needed and return an empty correction. If
5004   // this was an unqualified lookup and we believe the callback object did not
5005   // filter out possible corrections, also cache the failure for the typo.
5006   return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
5007 }
5008 
5009 /// Try to "correct" a typo in the source code by finding
5010 /// visible declarations whose names are similar to the name that was
5011 /// present in the source code.
5012 ///
5013 /// \param TypoName the \c DeclarationNameInfo structure that contains
5014 /// the name that was present in the source code along with its location.
5015 ///
5016 /// \param LookupKind the name-lookup criteria used to search for the name.
5017 ///
5018 /// \param S the scope in which name lookup occurs.
5019 ///
5020 /// \param SS the nested-name-specifier that precedes the name we're
5021 /// looking for, if present.
5022 ///
5023 /// \param CCC A CorrectionCandidateCallback object that provides further
5024 /// validation of typo correction candidates. It also provides flags for
5025 /// determining the set of keywords permitted.
5026 ///
5027 /// \param TDG A TypoDiagnosticGenerator functor that will be used to print
5028 /// diagnostics when the actual typo correction is attempted.
5029 ///
5030 /// \param TRC A TypoRecoveryCallback functor that will be used to build an
5031 /// Expr from a typo correction candidate.
5032 ///
5033 /// \param MemberContext if non-NULL, the context in which to look for
5034 /// a member access expression.
5035 ///
5036 /// \param EnteringContext whether we're entering the context described by
5037 /// the nested-name-specifier SS.
5038 ///
5039 /// \param OPT when non-NULL, the search for visible declarations will
5040 /// also walk the protocols in the qualified interfaces of \p OPT.
5041 ///
5042 /// \returns a new \c TypoExpr that will later be replaced in the AST with an
5043 /// Expr representing the result of performing typo correction, or nullptr if
5044 /// typo correction is not possible. If nullptr is returned, no diagnostics will
5045 /// be emitted and it is the responsibility of the caller to emit any that are
5046 /// needed.
5047 TypoExpr *Sema::CorrectTypoDelayed(
5048     const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
5049     Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
5050     TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
5051     DeclContext *MemberContext, bool EnteringContext,
5052     const ObjCObjectPointerType *OPT) {
5053   auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5054                                              MemberContext, EnteringContext,
5055                                              OPT, Mode == CTK_ErrorRecovery);
5056 
5057   // Give the external sema source a chance to correct the typo.
5058   TypoCorrection ExternalTypo;
5059   if (ExternalSource && Consumer) {
5060     ExternalTypo = ExternalSource->CorrectTypo(
5061         TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(),
5062         MemberContext, EnteringContext, OPT);
5063     if (ExternalTypo)
5064       Consumer->addCorrection(ExternalTypo);
5065   }
5066 
5067   if (!Consumer || Consumer->empty())
5068     return nullptr;
5069 
5070   // Make sure the best edit distance (prior to adding any namespace qualifiers)
5071   // is not more that about a third of the length of the typo's identifier.
5072   unsigned ED = Consumer->getBestEditDistance(true);
5073   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5074   if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3)
5075     return nullptr;
5076   ExprEvalContexts.back().NumTypos++;
5077   return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC),
5078                            TypoName.getLoc());
5079 }
5080 
5081 void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
5082   if (!CDecl) return;
5083 
5084   if (isKeyword())
5085     CorrectionDecls.clear();
5086 
5087   CorrectionDecls.push_back(CDecl);
5088 
5089   if (!CorrectionName)
5090     CorrectionName = CDecl->getDeclName();
5091 }
5092 
5093 std::string TypoCorrection::getAsString(const LangOptions &LO) const {
5094   if (CorrectionNameSpec) {
5095     std::string tmpBuffer;
5096     llvm::raw_string_ostream PrefixOStream(tmpBuffer);
5097     CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
5098     PrefixOStream << CorrectionName;
5099     return PrefixOStream.str();
5100   }
5101 
5102   return CorrectionName.getAsString();
5103 }
5104 
5105 bool CorrectionCandidateCallback::ValidateCandidate(
5106     const TypoCorrection &candidate) {
5107   if (!candidate.isResolved())
5108     return true;
5109 
5110   if (candidate.isKeyword())
5111     return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
5112            WantRemainingKeywords || WantObjCSuper;
5113 
5114   bool HasNonType = false;
5115   bool HasStaticMethod = false;
5116   bool HasNonStaticMethod = false;
5117   for (Decl *D : candidate) {
5118     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
5119       D = FTD->getTemplatedDecl();
5120     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5121       if (Method->isStatic())
5122         HasStaticMethod = true;
5123       else
5124         HasNonStaticMethod = true;
5125     }
5126     if (!isa<TypeDecl>(D))
5127       HasNonType = true;
5128   }
5129 
5130   if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
5131       !candidate.getCorrectionSpecifier())
5132     return false;
5133 
5134   return WantTypeSpecifiers || HasNonType;
5135 }
5136 
5137 FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
5138                                              bool HasExplicitTemplateArgs,
5139                                              MemberExpr *ME)
5140     : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
5141       CurContext(SemaRef.CurContext), MemberFn(ME) {
5142   WantTypeSpecifiers = false;
5143   WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus &&
5144                           !HasExplicitTemplateArgs && NumArgs == 1;
5145   WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1;
5146   WantRemainingKeywords = false;
5147 }
5148 
5149 bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
5150   if (!candidate.getCorrectionDecl())
5151     return candidate.isKeyword();
5152 
5153   for (auto *C : candidate) {
5154     FunctionDecl *FD = nullptr;
5155     NamedDecl *ND = C->getUnderlyingDecl();
5156     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
5157       FD = FTD->getTemplatedDecl();
5158     if (!HasExplicitTemplateArgs && !FD) {
5159       if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
5160         // If the Decl is neither a function nor a template function,
5161         // determine if it is a pointer or reference to a function. If so,
5162         // check against the number of arguments expected for the pointee.
5163         QualType ValType = cast<ValueDecl>(ND)->getType();
5164         if (ValType.isNull())
5165           continue;
5166         if (ValType->isAnyPointerType() || ValType->isReferenceType())
5167           ValType = ValType->getPointeeType();
5168         if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
5169           if (FPT->getNumParams() == NumArgs)
5170             return true;
5171       }
5172     }
5173 
5174     // A typo for a function-style cast can look like a function call in C++.
5175     if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr
5176                                  : isa<TypeDecl>(ND)) &&
5177         CurContext->getParentASTContext().getLangOpts().CPlusPlus)
5178       // Only a class or class template can take two or more arguments.
5179       return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND);
5180 
5181     // Skip the current candidate if it is not a FunctionDecl or does not accept
5182     // the current number of arguments.
5183     if (!FD || !(FD->getNumParams() >= NumArgs &&
5184                  FD->getMinRequiredArguments() <= NumArgs))
5185       continue;
5186 
5187     // If the current candidate is a non-static C++ method, skip the candidate
5188     // unless the method being corrected--or the current DeclContext, if the
5189     // function being corrected is not a method--is a method in the same class
5190     // or a descendent class of the candidate's parent class.
5191     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5192       if (MemberFn || !MD->isStatic()) {
5193         CXXMethodDecl *CurMD =
5194             MemberFn
5195                 ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
5196                 : dyn_cast_or_null<CXXMethodDecl>(CurContext);
5197         CXXRecordDecl *CurRD =
5198             CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
5199         CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
5200         if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
5201           continue;
5202       }
5203     }
5204     return true;
5205   }
5206   return false;
5207 }
5208 
5209 void Sema::diagnoseTypo(const TypoCorrection &Correction,
5210                         const PartialDiagnostic &TypoDiag,
5211                         bool ErrorRecovery) {
5212   diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
5213                ErrorRecovery);
5214 }
5215 
5216 /// Find which declaration we should import to provide the definition of
5217 /// the given declaration.
5218 static NamedDecl *getDefinitionToImport(NamedDecl *D) {
5219   if (VarDecl *VD = dyn_cast<VarDecl>(D))
5220     return VD->getDefinition();
5221   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
5222     return FD->getDefinition();
5223   if (TagDecl *TD = dyn_cast<TagDecl>(D))
5224     return TD->getDefinition();
5225   // The first definition for this ObjCInterfaceDecl might be in the TU
5226   // and not associated with any module. Use the one we know to be complete
5227   // and have just seen in a module.
5228   if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
5229     return ID;
5230   if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
5231     return PD->getDefinition();
5232   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
5233     if (NamedDecl *TTD = TD->getTemplatedDecl())
5234       return getDefinitionToImport(TTD);
5235   return nullptr;
5236 }
5237 
5238 void Sema::diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
5239                                  MissingImportKind MIK, bool Recover) {
5240   // Suggest importing a module providing the definition of this entity, if
5241   // possible.
5242   NamedDecl *Def = getDefinitionToImport(Decl);
5243   if (!Def)
5244     Def = Decl;
5245 
5246   Module *Owner = getOwningModule(Def);
5247   assert(Owner && "definition of hidden declaration is not in a module");
5248 
5249   llvm::SmallVector<Module*, 8> OwningModules;
5250   OwningModules.push_back(Owner);
5251   auto Merged = Context.getModulesWithMergedDefinition(Def);
5252   OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
5253 
5254   diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK,
5255                         Recover);
5256 }
5257 
5258 /// Get a "quoted.h" or <angled.h> include path to use in a diagnostic
5259 /// suggesting the addition of a #include of the specified file.
5260 static std::string getHeaderNameForHeader(Preprocessor &PP, const FileEntry *E,
5261                                           llvm::StringRef IncludingFile) {
5262   bool IsSystem = false;
5263   auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics(
5264       E, IncludingFile, &IsSystem);
5265   return (IsSystem ? '<' : '"') + Path + (IsSystem ? '>' : '"');
5266 }
5267 
5268 void Sema::diagnoseMissingImport(SourceLocation UseLoc, NamedDecl *Decl,
5269                                  SourceLocation DeclLoc,
5270                                  ArrayRef<Module *> Modules,
5271                                  MissingImportKind MIK, bool Recover) {
5272   assert(!Modules.empty());
5273 
5274   auto NotePrevious = [&] {
5275     // FIXME: Suppress the note backtrace even under
5276     // -fdiagnostics-show-note-include-stack. We don't care how this
5277     // declaration was previously reached.
5278     Diag(DeclLoc, diag::note_unreachable_entity) << (int)MIK;
5279   };
5280 
5281   // Weed out duplicates from module list.
5282   llvm::SmallVector<Module*, 8> UniqueModules;
5283   llvm::SmallDenseSet<Module*, 8> UniqueModuleSet;
5284   for (auto *M : Modules) {
5285     if (M->Kind == Module::GlobalModuleFragment)
5286       continue;
5287     if (UniqueModuleSet.insert(M).second)
5288       UniqueModules.push_back(M);
5289   }
5290 
5291   // Try to find a suitable header-name to #include.
5292   std::string HeaderName;
5293   if (const FileEntry *Header =
5294           PP.getHeaderToIncludeForDiagnostics(UseLoc, DeclLoc)) {
5295     if (const FileEntry *FE =
5296             SourceMgr.getFileEntryForID(SourceMgr.getFileID(UseLoc)))
5297       HeaderName = getHeaderNameForHeader(PP, Header, FE->tryGetRealPathName());
5298   }
5299 
5300   // If we have a #include we should suggest, or if all definition locations
5301   // were in global module fragments, don't suggest an import.
5302   if (!HeaderName.empty() || UniqueModules.empty()) {
5303     // FIXME: Find a smart place to suggest inserting a #include, and add
5304     // a FixItHint there.
5305     Diag(UseLoc, diag::err_module_unimported_use_header)
5306         << (int)MIK << Decl << !HeaderName.empty() << HeaderName;
5307     // Produce a note showing where the entity was declared.
5308     NotePrevious();
5309     if (Recover)
5310       createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5311     return;
5312   }
5313 
5314   Modules = UniqueModules;
5315 
5316   if (Modules.size() > 1) {
5317     std::string ModuleList;
5318     unsigned N = 0;
5319     for (Module *M : Modules) {
5320       ModuleList += "\n        ";
5321       if (++N == 5 && N != Modules.size()) {
5322         ModuleList += "[...]";
5323         break;
5324       }
5325       ModuleList += M->getFullModuleName();
5326     }
5327 
5328     Diag(UseLoc, diag::err_module_unimported_use_multiple)
5329       << (int)MIK << Decl << ModuleList;
5330   } else {
5331     // FIXME: Add a FixItHint that imports the corresponding module.
5332     Diag(UseLoc, diag::err_module_unimported_use)
5333       << (int)MIK << Decl << Modules[0]->getFullModuleName();
5334   }
5335 
5336   NotePrevious();
5337 
5338   // Try to recover by implicitly importing this module.
5339   if (Recover)
5340     createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5341 }
5342 
5343 /// Diagnose a successfully-corrected typo. Separated from the correction
5344 /// itself to allow external validation of the result, etc.
5345 ///
5346 /// \param Correction The result of performing typo correction.
5347 /// \param TypoDiag The diagnostic to produce. This will have the corrected
5348 ///        string added to it (and usually also a fixit).
5349 /// \param PrevNote A note to use when indicating the location of the entity to
5350 ///        which we are correcting. Will have the correction string added to it.
5351 /// \param ErrorRecovery If \c true (the default), the caller is going to
5352 ///        recover from the typo as if the corrected string had been typed.
5353 ///        In this case, \c PDiag must be an error, and we will attach a fixit
5354 ///        to it.
5355 void Sema::diagnoseTypo(const TypoCorrection &Correction,
5356                         const PartialDiagnostic &TypoDiag,
5357                         const PartialDiagnostic &PrevNote,
5358                         bool ErrorRecovery) {
5359   std::string CorrectedStr = Correction.getAsString(getLangOpts());
5360   std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
5361   FixItHint FixTypo = FixItHint::CreateReplacement(
5362       Correction.getCorrectionRange(), CorrectedStr);
5363 
5364   // Maybe we're just missing a module import.
5365   if (Correction.requiresImport()) {
5366     NamedDecl *Decl = Correction.getFoundDecl();
5367     assert(Decl && "import required but no declaration to import");
5368 
5369     diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
5370                           MissingImportKind::Declaration, ErrorRecovery);
5371     return;
5372   }
5373 
5374   Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
5375     << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
5376 
5377   NamedDecl *ChosenDecl =
5378       Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
5379   if (PrevNote.getDiagID() && ChosenDecl)
5380     Diag(ChosenDecl->getLocation(), PrevNote)
5381       << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
5382 
5383   // Add any extra diagnostics.
5384   for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics())
5385     Diag(Correction.getCorrectionRange().getBegin(), PD);
5386 }
5387 
5388 TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
5389                                   TypoDiagnosticGenerator TDG,
5390                                   TypoRecoveryCallback TRC,
5391                                   SourceLocation TypoLoc) {
5392   assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer");
5393   auto TE = new (Context) TypoExpr(Context.DependentTy, TypoLoc);
5394   auto &State = DelayedTypos[TE];
5395   State.Consumer = std::move(TCC);
5396   State.DiagHandler = std::move(TDG);
5397   State.RecoveryHandler = std::move(TRC);
5398   if (TE)
5399     TypoExprs.push_back(TE);
5400   return TE;
5401 }
5402 
5403 const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
5404   auto Entry = DelayedTypos.find(TE);
5405   assert(Entry != DelayedTypos.end() &&
5406          "Failed to get the state for a TypoExpr!");
5407   return Entry->second;
5408 }
5409 
5410 void Sema::clearDelayedTypo(TypoExpr *TE) {
5411   DelayedTypos.erase(TE);
5412 }
5413 
5414 void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) {
5415   DeclarationNameInfo Name(II, IILoc);
5416   LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration);
5417   R.suppressDiagnostics();
5418   R.setHideTags(false);
5419   LookupName(R, S);
5420   R.dump();
5421 }
5422