xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaLookup.cpp (revision d13def78ccef6dbc25c2e197089ee5fc4d7b82c3)
1 //===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements name lookup for C, C++, Objective-C, and
10 //  Objective-C++.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclLookups.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/Basic/Builtins.h"
24 #include "clang/Basic/FileManager.h"
25 #include "clang/Basic/LangOptions.h"
26 #include "clang/Lex/HeaderSearch.h"
27 #include "clang/Lex/ModuleLoader.h"
28 #include "clang/Lex/Preprocessor.h"
29 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/Lookup.h"
31 #include "clang/Sema/Overload.h"
32 #include "clang/Sema/Scope.h"
33 #include "clang/Sema/ScopeInfo.h"
34 #include "clang/Sema/Sema.h"
35 #include "clang/Sema/SemaInternal.h"
36 #include "clang/Sema/TemplateDeduction.h"
37 #include "clang/Sema/TypoCorrection.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/TinyPtrVector.h"
41 #include "llvm/ADT/edit_distance.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include <algorithm>
44 #include <iterator>
45 #include <list>
46 #include <set>
47 #include <utility>
48 #include <vector>
49 
50 #include "OpenCLBuiltins.inc"
51 
52 using namespace clang;
53 using namespace sema;
54 
55 namespace {
56   class UnqualUsingEntry {
57     const DeclContext *Nominated;
58     const DeclContext *CommonAncestor;
59 
60   public:
61     UnqualUsingEntry(const DeclContext *Nominated,
62                      const DeclContext *CommonAncestor)
63       : Nominated(Nominated), CommonAncestor(CommonAncestor) {
64     }
65 
66     const DeclContext *getCommonAncestor() const {
67       return CommonAncestor;
68     }
69 
70     const DeclContext *getNominatedNamespace() const {
71       return Nominated;
72     }
73 
74     // Sort by the pointer value of the common ancestor.
75     struct Comparator {
76       bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
77         return L.getCommonAncestor() < R.getCommonAncestor();
78       }
79 
80       bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
81         return E.getCommonAncestor() < DC;
82       }
83 
84       bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
85         return DC < E.getCommonAncestor();
86       }
87     };
88   };
89 
90   /// A collection of using directives, as used by C++ unqualified
91   /// lookup.
92   class UnqualUsingDirectiveSet {
93     Sema &SemaRef;
94 
95     typedef SmallVector<UnqualUsingEntry, 8> ListTy;
96 
97     ListTy list;
98     llvm::SmallPtrSet<DeclContext*, 8> visited;
99 
100   public:
101     UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {}
102 
103     void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
104       // C++ [namespace.udir]p1:
105       //   During unqualified name lookup, the names appear as if they
106       //   were declared in the nearest enclosing namespace which contains
107       //   both the using-directive and the nominated namespace.
108       DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
109       assert(InnermostFileDC && InnermostFileDC->isFileContext());
110 
111       for (; S; S = S->getParent()) {
112         // C++ [namespace.udir]p1:
113         //   A using-directive shall not appear in class scope, but may
114         //   appear in namespace scope or in block scope.
115         DeclContext *Ctx = S->getEntity();
116         if (Ctx && Ctx->isFileContext()) {
117           visit(Ctx, Ctx);
118         } else if (!Ctx || Ctx->isFunctionOrMethod()) {
119           for (auto *I : S->using_directives())
120             if (SemaRef.isVisible(I))
121               visit(I, InnermostFileDC);
122         }
123       }
124     }
125 
126     // Visits a context and collect all of its using directives
127     // recursively.  Treats all using directives as if they were
128     // declared in the context.
129     //
130     // A given context is only every visited once, so it is important
131     // that contexts be visited from the inside out in order to get
132     // the effective DCs right.
133     void visit(DeclContext *DC, DeclContext *EffectiveDC) {
134       if (!visited.insert(DC).second)
135         return;
136 
137       addUsingDirectives(DC, EffectiveDC);
138     }
139 
140     // Visits a using directive and collects all of its using
141     // directives recursively.  Treats all using directives as if they
142     // were declared in the effective DC.
143     void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
144       DeclContext *NS = UD->getNominatedNamespace();
145       if (!visited.insert(NS).second)
146         return;
147 
148       addUsingDirective(UD, EffectiveDC);
149       addUsingDirectives(NS, EffectiveDC);
150     }
151 
152     // Adds all the using directives in a context (and those nominated
153     // by its using directives, transitively) as if they appeared in
154     // the given effective context.
155     void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
156       SmallVector<DeclContext*, 4> queue;
157       while (true) {
158         for (auto UD : DC->using_directives()) {
159           DeclContext *NS = UD->getNominatedNamespace();
160           if (SemaRef.isVisible(UD) && visited.insert(NS).second) {
161             addUsingDirective(UD, EffectiveDC);
162             queue.push_back(NS);
163           }
164         }
165 
166         if (queue.empty())
167           return;
168 
169         DC = queue.pop_back_val();
170       }
171     }
172 
173     // Add a using directive as if it had been declared in the given
174     // context.  This helps implement C++ [namespace.udir]p3:
175     //   The using-directive is transitive: if a scope contains a
176     //   using-directive that nominates a second namespace that itself
177     //   contains using-directives, the effect is as if the
178     //   using-directives from the second namespace also appeared in
179     //   the first.
180     void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
181       // Find the common ancestor between the effective context and
182       // the nominated namespace.
183       DeclContext *Common = UD->getNominatedNamespace();
184       while (!Common->Encloses(EffectiveDC))
185         Common = Common->getParent();
186       Common = Common->getPrimaryContext();
187 
188       list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
189     }
190 
191     void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); }
192 
193     typedef ListTy::const_iterator const_iterator;
194 
195     const_iterator begin() const { return list.begin(); }
196     const_iterator end() const { return list.end(); }
197 
198     llvm::iterator_range<const_iterator>
199     getNamespacesFor(DeclContext *DC) const {
200       return llvm::make_range(std::equal_range(begin(), end(),
201                                                DC->getPrimaryContext(),
202                                                UnqualUsingEntry::Comparator()));
203     }
204   };
205 } // end anonymous namespace
206 
207 // Retrieve the set of identifier namespaces that correspond to a
208 // specific kind of name lookup.
209 static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
210                                bool CPlusPlus,
211                                bool Redeclaration) {
212   unsigned IDNS = 0;
213   switch (NameKind) {
214   case Sema::LookupObjCImplicitSelfParam:
215   case Sema::LookupOrdinaryName:
216   case Sema::LookupRedeclarationWithLinkage:
217   case Sema::LookupLocalFriendName:
218     IDNS = Decl::IDNS_Ordinary;
219     if (CPlusPlus) {
220       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
221       if (Redeclaration)
222         IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
223     }
224     if (Redeclaration)
225       IDNS |= Decl::IDNS_LocalExtern;
226     break;
227 
228   case Sema::LookupOperatorName:
229     // Operator lookup is its own crazy thing;  it is not the same
230     // as (e.g.) looking up an operator name for redeclaration.
231     assert(!Redeclaration && "cannot do redeclaration operator lookup");
232     IDNS = Decl::IDNS_NonMemberOperator;
233     break;
234 
235   case Sema::LookupTagName:
236     if (CPlusPlus) {
237       IDNS = Decl::IDNS_Type;
238 
239       // When looking for a redeclaration of a tag name, we add:
240       // 1) TagFriend to find undeclared friend decls
241       // 2) Namespace because they can't "overload" with tag decls.
242       // 3) Tag because it includes class templates, which can't
243       //    "overload" with tag decls.
244       if (Redeclaration)
245         IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
246     } else {
247       IDNS = Decl::IDNS_Tag;
248     }
249     break;
250 
251   case Sema::LookupLabel:
252     IDNS = Decl::IDNS_Label;
253     break;
254 
255   case Sema::LookupMemberName:
256     IDNS = Decl::IDNS_Member;
257     if (CPlusPlus)
258       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
259     break;
260 
261   case Sema::LookupNestedNameSpecifierName:
262     IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
263     break;
264 
265   case Sema::LookupNamespaceName:
266     IDNS = Decl::IDNS_Namespace;
267     break;
268 
269   case Sema::LookupUsingDeclName:
270     assert(Redeclaration && "should only be used for redecl lookup");
271     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
272            Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
273            Decl::IDNS_LocalExtern;
274     break;
275 
276   case Sema::LookupObjCProtocolName:
277     IDNS = Decl::IDNS_ObjCProtocol;
278     break;
279 
280   case Sema::LookupOMPReductionName:
281     IDNS = Decl::IDNS_OMPReduction;
282     break;
283 
284   case Sema::LookupOMPMapperName:
285     IDNS = Decl::IDNS_OMPMapper;
286     break;
287 
288   case Sema::LookupAnyName:
289     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
290       | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
291       | Decl::IDNS_Type;
292     break;
293   }
294   return IDNS;
295 }
296 
297 void LookupResult::configure() {
298   IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
299                  isForRedeclaration());
300 
301   // If we're looking for one of the allocation or deallocation
302   // operators, make sure that the implicitly-declared new and delete
303   // operators can be found.
304   switch (NameInfo.getName().getCXXOverloadedOperator()) {
305   case OO_New:
306   case OO_Delete:
307   case OO_Array_New:
308   case OO_Array_Delete:
309     getSema().DeclareGlobalNewDelete();
310     break;
311 
312   default:
313     break;
314   }
315 
316   // Compiler builtins are always visible, regardless of where they end
317   // up being declared.
318   if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
319     if (unsigned BuiltinID = Id->getBuiltinID()) {
320       if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
321         AllowHidden = true;
322     }
323   }
324 }
325 
326 bool LookupResult::sanity() const {
327   // This function is never called by NDEBUG builds.
328   assert(ResultKind != NotFound || Decls.size() == 0);
329   assert(ResultKind != Found || Decls.size() == 1);
330   assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
331          (Decls.size() == 1 &&
332           isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
333   assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
334   assert(ResultKind != Ambiguous || Decls.size() > 1 ||
335          (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
336                                 Ambiguity == AmbiguousBaseSubobjectTypes)));
337   assert((Paths != nullptr) == (ResultKind == Ambiguous &&
338                                 (Ambiguity == AmbiguousBaseSubobjectTypes ||
339                                  Ambiguity == AmbiguousBaseSubobjects)));
340   return true;
341 }
342 
343 // Necessary because CXXBasePaths is not complete in Sema.h
344 void LookupResult::deletePaths(CXXBasePaths *Paths) {
345   delete Paths;
346 }
347 
348 /// Get a representative context for a declaration such that two declarations
349 /// will have the same context if they were found within the same scope.
350 static DeclContext *getContextForScopeMatching(Decl *D) {
351   // For function-local declarations, use that function as the context. This
352   // doesn't account for scopes within the function; the caller must deal with
353   // those.
354   DeclContext *DC = D->getLexicalDeclContext();
355   if (DC->isFunctionOrMethod())
356     return DC;
357 
358   // Otherwise, look at the semantic context of the declaration. The
359   // declaration must have been found there.
360   return D->getDeclContext()->getRedeclContext();
361 }
362 
363 /// Determine whether \p D is a better lookup result than \p Existing,
364 /// given that they declare the same entity.
365 static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind,
366                                     NamedDecl *D, NamedDecl *Existing) {
367   // When looking up redeclarations of a using declaration, prefer a using
368   // shadow declaration over any other declaration of the same entity.
369   if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
370       !isa<UsingShadowDecl>(Existing))
371     return true;
372 
373   auto *DUnderlying = D->getUnderlyingDecl();
374   auto *EUnderlying = Existing->getUnderlyingDecl();
375 
376   // If they have different underlying declarations, prefer a typedef over the
377   // original type (this happens when two type declarations denote the same
378   // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
379   // might carry additional semantic information, such as an alignment override.
380   // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
381   // declaration over a typedef.
382   if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
383     assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying));
384     bool HaveTag = isa<TagDecl>(EUnderlying);
385     bool WantTag = Kind == Sema::LookupTagName;
386     return HaveTag != WantTag;
387   }
388 
389   // Pick the function with more default arguments.
390   // FIXME: In the presence of ambiguous default arguments, we should keep both,
391   //        so we can diagnose the ambiguity if the default argument is needed.
392   //        See C++ [over.match.best]p3.
393   if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
394     auto *EFD = cast<FunctionDecl>(EUnderlying);
395     unsigned DMin = DFD->getMinRequiredArguments();
396     unsigned EMin = EFD->getMinRequiredArguments();
397     // If D has more default arguments, it is preferred.
398     if (DMin != EMin)
399       return DMin < EMin;
400     // FIXME: When we track visibility for default function arguments, check
401     // that we pick the declaration with more visible default arguments.
402   }
403 
404   // Pick the template with more default template arguments.
405   if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
406     auto *ETD = cast<TemplateDecl>(EUnderlying);
407     unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
408     unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
409     // If D has more default arguments, it is preferred. Note that default
410     // arguments (and their visibility) is monotonically increasing across the
411     // redeclaration chain, so this is a quick proxy for "is more recent".
412     if (DMin != EMin)
413       return DMin < EMin;
414     // If D has more *visible* default arguments, it is preferred. Note, an
415     // earlier default argument being visible does not imply that a later
416     // default argument is visible, so we can't just check the first one.
417     for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
418         I != N; ++I) {
419       if (!S.hasVisibleDefaultArgument(
420               ETD->getTemplateParameters()->getParam(I)) &&
421           S.hasVisibleDefaultArgument(
422               DTD->getTemplateParameters()->getParam(I)))
423         return true;
424     }
425   }
426 
427   // VarDecl can have incomplete array types, prefer the one with more complete
428   // array type.
429   if (VarDecl *DVD = dyn_cast<VarDecl>(DUnderlying)) {
430     VarDecl *EVD = cast<VarDecl>(EUnderlying);
431     if (EVD->getType()->isIncompleteType() &&
432         !DVD->getType()->isIncompleteType()) {
433       // Prefer the decl with a more complete type if visible.
434       return S.isVisible(DVD);
435     }
436     return false; // Avoid picking up a newer decl, just because it was newer.
437   }
438 
439   // For most kinds of declaration, it doesn't really matter which one we pick.
440   if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
441     // If the existing declaration is hidden, prefer the new one. Otherwise,
442     // keep what we've got.
443     return !S.isVisible(Existing);
444   }
445 
446   // Pick the newer declaration; it might have a more precise type.
447   for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
448        Prev = Prev->getPreviousDecl())
449     if (Prev == EUnderlying)
450       return true;
451   return false;
452 }
453 
454 /// Determine whether \p D can hide a tag declaration.
455 static bool canHideTag(NamedDecl *D) {
456   // C++ [basic.scope.declarative]p4:
457   //   Given a set of declarations in a single declarative region [...]
458   //   exactly one declaration shall declare a class name or enumeration name
459   //   that is not a typedef name and the other declarations shall all refer to
460   //   the same variable, non-static data member, or enumerator, or all refer
461   //   to functions and function templates; in this case the class name or
462   //   enumeration name is hidden.
463   // C++ [basic.scope.hiding]p2:
464   //   A class name or enumeration name can be hidden by the name of a
465   //   variable, data member, function, or enumerator declared in the same
466   //   scope.
467   // An UnresolvedUsingValueDecl always instantiates to one of these.
468   D = D->getUnderlyingDecl();
469   return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
470          isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) ||
471          isa<UnresolvedUsingValueDecl>(D);
472 }
473 
474 /// Resolves the result kind of this lookup.
475 void LookupResult::resolveKind() {
476   unsigned N = Decls.size();
477 
478   // Fast case: no possible ambiguity.
479   if (N == 0) {
480     assert(ResultKind == NotFound ||
481            ResultKind == NotFoundInCurrentInstantiation);
482     return;
483   }
484 
485   // If there's a single decl, we need to examine it to decide what
486   // kind of lookup this is.
487   if (N == 1) {
488     NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
489     if (isa<FunctionTemplateDecl>(D))
490       ResultKind = FoundOverloaded;
491     else if (isa<UnresolvedUsingValueDecl>(D))
492       ResultKind = FoundUnresolvedValue;
493     return;
494   }
495 
496   // Don't do any extra resolution if we've already resolved as ambiguous.
497   if (ResultKind == Ambiguous) return;
498 
499   llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique;
500   llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
501 
502   bool Ambiguous = false;
503   bool HasTag = false, HasFunction = false;
504   bool HasFunctionTemplate = false, HasUnresolved = false;
505   NamedDecl *HasNonFunction = nullptr;
506 
507   llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions;
508 
509   unsigned UniqueTagIndex = 0;
510 
511   unsigned I = 0;
512   while (I < N) {
513     NamedDecl *D = Decls[I]->getUnderlyingDecl();
514     D = cast<NamedDecl>(D->getCanonicalDecl());
515 
516     // Ignore an invalid declaration unless it's the only one left.
517     if (D->isInvalidDecl() && !(I == 0 && N == 1)) {
518       Decls[I] = Decls[--N];
519       continue;
520     }
521 
522     llvm::Optional<unsigned> ExistingI;
523 
524     // Redeclarations of types via typedef can occur both within a scope
525     // and, through using declarations and directives, across scopes. There is
526     // no ambiguity if they all refer to the same type, so unique based on the
527     // canonical type.
528     if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
529       QualType T = getSema().Context.getTypeDeclType(TD);
530       auto UniqueResult = UniqueTypes.insert(
531           std::make_pair(getSema().Context.getCanonicalType(T), I));
532       if (!UniqueResult.second) {
533         // The type is not unique.
534         ExistingI = UniqueResult.first->second;
535       }
536     }
537 
538     // For non-type declarations, check for a prior lookup result naming this
539     // canonical declaration.
540     if (!ExistingI) {
541       auto UniqueResult = Unique.insert(std::make_pair(D, I));
542       if (!UniqueResult.second) {
543         // We've seen this entity before.
544         ExistingI = UniqueResult.first->second;
545       }
546     }
547 
548     if (ExistingI) {
549       // This is not a unique lookup result. Pick one of the results and
550       // discard the other.
551       if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
552                                   Decls[*ExistingI]))
553         Decls[*ExistingI] = Decls[I];
554       Decls[I] = Decls[--N];
555       continue;
556     }
557 
558     // Otherwise, do some decl type analysis and then continue.
559 
560     if (isa<UnresolvedUsingValueDecl>(D)) {
561       HasUnresolved = true;
562     } else if (isa<TagDecl>(D)) {
563       if (HasTag)
564         Ambiguous = true;
565       UniqueTagIndex = I;
566       HasTag = true;
567     } else if (isa<FunctionTemplateDecl>(D)) {
568       HasFunction = true;
569       HasFunctionTemplate = true;
570     } else if (isa<FunctionDecl>(D)) {
571       HasFunction = true;
572     } else {
573       if (HasNonFunction) {
574         // If we're about to create an ambiguity between two declarations that
575         // are equivalent, but one is an internal linkage declaration from one
576         // module and the other is an internal linkage declaration from another
577         // module, just skip it.
578         if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
579                                                              D)) {
580           EquivalentNonFunctions.push_back(D);
581           Decls[I] = Decls[--N];
582           continue;
583         }
584 
585         Ambiguous = true;
586       }
587       HasNonFunction = D;
588     }
589     I++;
590   }
591 
592   // C++ [basic.scope.hiding]p2:
593   //   A class name or enumeration name can be hidden by the name of
594   //   an object, function, or enumerator declared in the same
595   //   scope. If a class or enumeration name and an object, function,
596   //   or enumerator are declared in the same scope (in any order)
597   //   with the same name, the class or enumeration name is hidden
598   //   wherever the object, function, or enumerator name is visible.
599   // But it's still an error if there are distinct tag types found,
600   // even if they're not visible. (ref?)
601   if (N > 1 && HideTags && HasTag && !Ambiguous &&
602       (HasFunction || HasNonFunction || HasUnresolved)) {
603     NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1];
604     if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) &&
605         getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
606             getContextForScopeMatching(OtherDecl)) &&
607         canHideTag(OtherDecl))
608       Decls[UniqueTagIndex] = Decls[--N];
609     else
610       Ambiguous = true;
611   }
612 
613   // FIXME: This diagnostic should really be delayed until we're done with
614   // the lookup result, in case the ambiguity is resolved by the caller.
615   if (!EquivalentNonFunctions.empty() && !Ambiguous)
616     getSema().diagnoseEquivalentInternalLinkageDeclarations(
617         getNameLoc(), HasNonFunction, EquivalentNonFunctions);
618 
619   Decls.set_size(N);
620 
621   if (HasNonFunction && (HasFunction || HasUnresolved))
622     Ambiguous = true;
623 
624   if (Ambiguous)
625     setAmbiguous(LookupResult::AmbiguousReference);
626   else if (HasUnresolved)
627     ResultKind = LookupResult::FoundUnresolvedValue;
628   else if (N > 1 || HasFunctionTemplate)
629     ResultKind = LookupResult::FoundOverloaded;
630   else
631     ResultKind = LookupResult::Found;
632 }
633 
634 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
635   CXXBasePaths::const_paths_iterator I, E;
636   for (I = P.begin(), E = P.end(); I != E; ++I)
637     for (DeclContext::lookup_iterator DI = I->Decls.begin(),
638          DE = I->Decls.end(); DI != DE; ++DI)
639       addDecl(*DI);
640 }
641 
642 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
643   Paths = new CXXBasePaths;
644   Paths->swap(P);
645   addDeclsFromBasePaths(*Paths);
646   resolveKind();
647   setAmbiguous(AmbiguousBaseSubobjects);
648 }
649 
650 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
651   Paths = new CXXBasePaths;
652   Paths->swap(P);
653   addDeclsFromBasePaths(*Paths);
654   resolveKind();
655   setAmbiguous(AmbiguousBaseSubobjectTypes);
656 }
657 
658 void LookupResult::print(raw_ostream &Out) {
659   Out << Decls.size() << " result(s)";
660   if (isAmbiguous()) Out << ", ambiguous";
661   if (Paths) Out << ", base paths present";
662 
663   for (iterator I = begin(), E = end(); I != E; ++I) {
664     Out << "\n";
665     (*I)->print(Out, 2);
666   }
667 }
668 
669 LLVM_DUMP_METHOD void LookupResult::dump() {
670   llvm::errs() << "lookup results for " << getLookupName().getAsString()
671                << ":\n";
672   for (NamedDecl *D : *this)
673     D->dump();
674 }
675 
676 /// Get the QualType instances of the return type and arguments for an OpenCL
677 /// builtin function signature.
678 /// \param Context (in) The Context instance.
679 /// \param OpenCLBuiltin (in) The signature currently handled.
680 /// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic
681 ///        type used as return type or as argument.
682 ///        Only meaningful for generic types, otherwise equals 1.
683 /// \param RetTypes (out) List of the possible return types.
684 /// \param ArgTypes (out) List of the possible argument types.  For each
685 ///        argument, ArgTypes contains QualTypes for the Cartesian product
686 ///        of (vector sizes) x (types) .
687 static void GetQualTypesForOpenCLBuiltin(
688     ASTContext &Context, const OpenCLBuiltinStruct &OpenCLBuiltin,
689     unsigned &GenTypeMaxCnt, SmallVector<QualType, 1> &RetTypes,
690     SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
691   // Get the QualType instances of the return types.
692   unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex];
693   OCL2Qual(Context, TypeTable[Sig], RetTypes);
694   GenTypeMaxCnt = RetTypes.size();
695 
696   // Get the QualType instances of the arguments.
697   // First type is the return type, skip it.
698   for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) {
699     SmallVector<QualType, 1> Ty;
700     OCL2Qual(Context,
701         TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]], Ty);
702     GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt;
703     ArgTypes.push_back(std::move(Ty));
704   }
705 }
706 
707 /// Create a list of the candidate function overloads for an OpenCL builtin
708 /// function.
709 /// \param Context (in) The ASTContext instance.
710 /// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic
711 ///        type used as return type or as argument.
712 ///        Only meaningful for generic types, otherwise equals 1.
713 /// \param FunctionList (out) List of FunctionTypes.
714 /// \param RetTypes (in) List of the possible return types.
715 /// \param ArgTypes (in) List of the possible types for the arguments.
716 static void GetOpenCLBuiltinFctOverloads(
717     ASTContext &Context, unsigned GenTypeMaxCnt,
718     std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes,
719     SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
720   FunctionProtoType::ExtProtoInfo PI;
721   PI.Variadic = false;
722 
723   // Create FunctionTypes for each (gen)type.
724   for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) {
725     SmallVector<QualType, 5> ArgList;
726 
727     for (unsigned A = 0; A < ArgTypes.size(); A++) {
728       // Builtins such as "max" have an "sgentype" argument that represents
729       // the corresponding scalar type of a gentype.  The number of gentypes
730       // must be a multiple of the number of sgentypes.
731       assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 &&
732              "argument type count not compatible with gentype type count");
733       unsigned Idx = IGenType % ArgTypes[A].size();
734       ArgList.push_back(ArgTypes[A][Idx]);
735     }
736 
737     FunctionList.push_back(Context.getFunctionType(
738         RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI));
739   }
740 }
741 
742 /// Add extensions to the function declaration.
743 /// \param S (in/out) The Sema instance.
744 /// \param BIDecl (in) Description of the builtin.
745 /// \param FDecl (in/out) FunctionDecl instance.
746 static void AddOpenCLExtensions(Sema &S, const OpenCLBuiltinStruct &BIDecl,
747                                 FunctionDecl *FDecl) {
748   // Fetch extension associated with a function prototype.
749   StringRef E = FunctionExtensionTable[BIDecl.Extension];
750   if (E != "")
751     S.setOpenCLExtensionForDecl(FDecl, E);
752 }
753 
754 /// When trying to resolve a function name, if isOpenCLBuiltin() returns a
755 /// non-null <Index, Len> pair, then the name is referencing an OpenCL
756 /// builtin function.  Add all candidate signatures to the LookUpResult.
757 ///
758 /// \param S (in) The Sema instance.
759 /// \param LR (inout) The LookupResult instance.
760 /// \param II (in) The identifier being resolved.
761 /// \param FctIndex (in) Starting index in the BuiltinTable.
762 /// \param Len (in) The signature list has Len elements.
763 static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR,
764                                                   IdentifierInfo *II,
765                                                   const unsigned FctIndex,
766                                                   const unsigned Len) {
767   // The builtin function declaration uses generic types (gentype).
768   bool HasGenType = false;
769 
770   // Maximum number of types contained in a generic type used as return type or
771   // as argument.  Only meaningful for generic types, otherwise equals 1.
772   unsigned GenTypeMaxCnt;
773 
774   for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) {
775     const OpenCLBuiltinStruct &OpenCLBuiltin =
776         BuiltinTable[FctIndex + SignatureIndex];
777     ASTContext &Context = S.Context;
778 
779     // Ignore this BIF if its version does not match the language options.
780     unsigned OpenCLVersion = Context.getLangOpts().OpenCLVersion;
781     if (Context.getLangOpts().OpenCLCPlusPlus)
782       OpenCLVersion = 200;
783     if (OpenCLVersion < OpenCLBuiltin.MinVersion)
784       continue;
785     if ((OpenCLBuiltin.MaxVersion != 0) &&
786         (OpenCLVersion >= OpenCLBuiltin.MaxVersion))
787       continue;
788 
789     SmallVector<QualType, 1> RetTypes;
790     SmallVector<SmallVector<QualType, 1>, 5> ArgTypes;
791 
792     // Obtain QualType lists for the function signature.
793     GetQualTypesForOpenCLBuiltin(Context, OpenCLBuiltin, GenTypeMaxCnt,
794                                  RetTypes, ArgTypes);
795     if (GenTypeMaxCnt > 1) {
796       HasGenType = true;
797     }
798 
799     // Create function overload for each type combination.
800     std::vector<QualType> FunctionList;
801     GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes,
802                                  ArgTypes);
803 
804     SourceLocation Loc = LR.getNameLoc();
805     DeclContext *Parent = Context.getTranslationUnitDecl();
806     FunctionDecl *NewOpenCLBuiltin;
807 
808     for (unsigned Index = 0; Index < GenTypeMaxCnt; Index++) {
809       NewOpenCLBuiltin = FunctionDecl::Create(
810           Context, Parent, Loc, Loc, II, FunctionList[Index],
811           /*TInfo=*/nullptr, SC_Extern, false,
812           FunctionList[Index]->isFunctionProtoType());
813       NewOpenCLBuiltin->setImplicit();
814 
815       // Create Decl objects for each parameter, adding them to the
816       // FunctionDecl.
817       if (const FunctionProtoType *FP =
818               dyn_cast<FunctionProtoType>(FunctionList[Index])) {
819         SmallVector<ParmVarDecl *, 16> ParmList;
820         for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) {
821           ParmVarDecl *Parm = ParmVarDecl::Create(
822               Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(),
823               nullptr, FP->getParamType(IParm),
824               /*TInfo=*/nullptr, SC_None, nullptr);
825           Parm->setScopeInfo(0, IParm);
826           ParmList.push_back(Parm);
827         }
828         NewOpenCLBuiltin->setParams(ParmList);
829       }
830 
831       // Add function attributes.
832       if (OpenCLBuiltin.IsPure)
833         NewOpenCLBuiltin->addAttr(PureAttr::CreateImplicit(Context));
834       if (OpenCLBuiltin.IsConst)
835         NewOpenCLBuiltin->addAttr(ConstAttr::CreateImplicit(Context));
836       if (OpenCLBuiltin.IsConv)
837         NewOpenCLBuiltin->addAttr(ConvergentAttr::CreateImplicit(Context));
838 
839       if (!S.getLangOpts().OpenCLCPlusPlus)
840         NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context));
841 
842       AddOpenCLExtensions(S, OpenCLBuiltin, NewOpenCLBuiltin);
843 
844       LR.addDecl(NewOpenCLBuiltin);
845     }
846   }
847 
848   // If we added overloads, need to resolve the lookup result.
849   if (Len > 1 || HasGenType)
850     LR.resolveKind();
851 }
852 
853 /// Lookup a builtin function, when name lookup would otherwise
854 /// fail.
855 bool Sema::LookupBuiltin(LookupResult &R) {
856   Sema::LookupNameKind NameKind = R.getLookupKind();
857 
858   // If we didn't find a use of this identifier, and if the identifier
859   // corresponds to a compiler builtin, create the decl object for the builtin
860   // now, injecting it into translation unit scope, and return it.
861   if (NameKind == Sema::LookupOrdinaryName ||
862       NameKind == Sema::LookupRedeclarationWithLinkage) {
863     IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
864     if (II) {
865       if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) {
866         if (II == getASTContext().getMakeIntegerSeqName()) {
867           R.addDecl(getASTContext().getMakeIntegerSeqDecl());
868           return true;
869         } else if (II == getASTContext().getTypePackElementName()) {
870           R.addDecl(getASTContext().getTypePackElementDecl());
871           return true;
872         }
873       }
874 
875       // Check if this is an OpenCL Builtin, and if so, insert its overloads.
876       if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) {
877         auto Index = isOpenCLBuiltin(II->getName());
878         if (Index.first) {
879           InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1,
880                                                 Index.second);
881           return true;
882         }
883       }
884 
885       // If this is a builtin on this (or all) targets, create the decl.
886       if (unsigned BuiltinID = II->getBuiltinID()) {
887         // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
888         // library functions like 'malloc'. Instead, we'll just error.
889         if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) &&
890             Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
891           return false;
892 
893         if (NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II,
894                                                BuiltinID, TUScope,
895                                                R.isForRedeclaration(),
896                                                R.getNameLoc())) {
897           R.addDecl(D);
898           return true;
899         }
900       }
901     }
902   }
903 
904   return false;
905 }
906 
907 /// Determine whether we can declare a special member function within
908 /// the class at this point.
909 static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
910   // We need to have a definition for the class.
911   if (!Class->getDefinition() || Class->isDependentContext())
912     return false;
913 
914   // We can't be in the middle of defining the class.
915   return !Class->isBeingDefined();
916 }
917 
918 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
919   if (!CanDeclareSpecialMemberFunction(Class))
920     return;
921 
922   // If the default constructor has not yet been declared, do so now.
923   if (Class->needsImplicitDefaultConstructor())
924     DeclareImplicitDefaultConstructor(Class);
925 
926   // If the copy constructor has not yet been declared, do so now.
927   if (Class->needsImplicitCopyConstructor())
928     DeclareImplicitCopyConstructor(Class);
929 
930   // If the copy assignment operator has not yet been declared, do so now.
931   if (Class->needsImplicitCopyAssignment())
932     DeclareImplicitCopyAssignment(Class);
933 
934   if (getLangOpts().CPlusPlus11) {
935     // If the move constructor has not yet been declared, do so now.
936     if (Class->needsImplicitMoveConstructor())
937       DeclareImplicitMoveConstructor(Class);
938 
939     // If the move assignment operator has not yet been declared, do so now.
940     if (Class->needsImplicitMoveAssignment())
941       DeclareImplicitMoveAssignment(Class);
942   }
943 
944   // If the destructor has not yet been declared, do so now.
945   if (Class->needsImplicitDestructor())
946     DeclareImplicitDestructor(Class);
947 }
948 
949 /// Determine whether this is the name of an implicitly-declared
950 /// special member function.
951 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
952   switch (Name.getNameKind()) {
953   case DeclarationName::CXXConstructorName:
954   case DeclarationName::CXXDestructorName:
955     return true;
956 
957   case DeclarationName::CXXOperatorName:
958     return Name.getCXXOverloadedOperator() == OO_Equal;
959 
960   default:
961     break;
962   }
963 
964   return false;
965 }
966 
967 /// If there are any implicit member functions with the given name
968 /// that need to be declared in the given declaration context, do so.
969 static void DeclareImplicitMemberFunctionsWithName(Sema &S,
970                                                    DeclarationName Name,
971                                                    SourceLocation Loc,
972                                                    const DeclContext *DC) {
973   if (!DC)
974     return;
975 
976   switch (Name.getNameKind()) {
977   case DeclarationName::CXXConstructorName:
978     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
979       if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
980         CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
981         if (Record->needsImplicitDefaultConstructor())
982           S.DeclareImplicitDefaultConstructor(Class);
983         if (Record->needsImplicitCopyConstructor())
984           S.DeclareImplicitCopyConstructor(Class);
985         if (S.getLangOpts().CPlusPlus11 &&
986             Record->needsImplicitMoveConstructor())
987           S.DeclareImplicitMoveConstructor(Class);
988       }
989     break;
990 
991   case DeclarationName::CXXDestructorName:
992     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
993       if (Record->getDefinition() && Record->needsImplicitDestructor() &&
994           CanDeclareSpecialMemberFunction(Record))
995         S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
996     break;
997 
998   case DeclarationName::CXXOperatorName:
999     if (Name.getCXXOverloadedOperator() != OO_Equal)
1000       break;
1001 
1002     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
1003       if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
1004         CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
1005         if (Record->needsImplicitCopyAssignment())
1006           S.DeclareImplicitCopyAssignment(Class);
1007         if (S.getLangOpts().CPlusPlus11 &&
1008             Record->needsImplicitMoveAssignment())
1009           S.DeclareImplicitMoveAssignment(Class);
1010       }
1011     }
1012     break;
1013 
1014   case DeclarationName::CXXDeductionGuideName:
1015     S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc);
1016     break;
1017 
1018   default:
1019     break;
1020   }
1021 }
1022 
1023 // Adds all qualifying matches for a name within a decl context to the
1024 // given lookup result.  Returns true if any matches were found.
1025 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
1026   bool Found = false;
1027 
1028   // Lazily declare C++ special member functions.
1029   if (S.getLangOpts().CPlusPlus)
1030     DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(),
1031                                            DC);
1032 
1033   // Perform lookup into this declaration context.
1034   DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
1035   for (NamedDecl *D : DR) {
1036     if ((D = R.getAcceptableDecl(D))) {
1037       R.addDecl(D);
1038       Found = true;
1039     }
1040   }
1041 
1042   if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R))
1043     return true;
1044 
1045   if (R.getLookupName().getNameKind()
1046         != DeclarationName::CXXConversionFunctionName ||
1047       R.getLookupName().getCXXNameType()->isDependentType() ||
1048       !isa<CXXRecordDecl>(DC))
1049     return Found;
1050 
1051   // C++ [temp.mem]p6:
1052   //   A specialization of a conversion function template is not found by
1053   //   name lookup. Instead, any conversion function templates visible in the
1054   //   context of the use are considered. [...]
1055   const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1056   if (!Record->isCompleteDefinition())
1057     return Found;
1058 
1059   // For conversion operators, 'operator auto' should only match
1060   // 'operator auto'.  Since 'auto' is not a type, it shouldn't be considered
1061   // as a candidate for template substitution.
1062   auto *ContainedDeducedType =
1063       R.getLookupName().getCXXNameType()->getContainedDeducedType();
1064   if (R.getLookupName().getNameKind() ==
1065           DeclarationName::CXXConversionFunctionName &&
1066       ContainedDeducedType && ContainedDeducedType->isUndeducedType())
1067     return Found;
1068 
1069   for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
1070          UEnd = Record->conversion_end(); U != UEnd; ++U) {
1071     FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
1072     if (!ConvTemplate)
1073       continue;
1074 
1075     // When we're performing lookup for the purposes of redeclaration, just
1076     // add the conversion function template. When we deduce template
1077     // arguments for specializations, we'll end up unifying the return
1078     // type of the new declaration with the type of the function template.
1079     if (R.isForRedeclaration()) {
1080       R.addDecl(ConvTemplate);
1081       Found = true;
1082       continue;
1083     }
1084 
1085     // C++ [temp.mem]p6:
1086     //   [...] For each such operator, if argument deduction succeeds
1087     //   (14.9.2.3), the resulting specialization is used as if found by
1088     //   name lookup.
1089     //
1090     // When referencing a conversion function for any purpose other than
1091     // a redeclaration (such that we'll be building an expression with the
1092     // result), perform template argument deduction and place the
1093     // specialization into the result set. We do this to avoid forcing all
1094     // callers to perform special deduction for conversion functions.
1095     TemplateDeductionInfo Info(R.getNameLoc());
1096     FunctionDecl *Specialization = nullptr;
1097 
1098     const FunctionProtoType *ConvProto
1099       = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
1100     assert(ConvProto && "Nonsensical conversion function template type");
1101 
1102     // Compute the type of the function that we would expect the conversion
1103     // function to have, if it were to match the name given.
1104     // FIXME: Calling convention!
1105     FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
1106     EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
1107     EPI.ExceptionSpec = EST_None;
1108     QualType ExpectedType
1109       = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
1110                                             None, EPI);
1111 
1112     // Perform template argument deduction against the type that we would
1113     // expect the function to have.
1114     if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
1115                                             Specialization, Info)
1116           == Sema::TDK_Success) {
1117       R.addDecl(Specialization);
1118       Found = true;
1119     }
1120   }
1121 
1122   return Found;
1123 }
1124 
1125 // Performs C++ unqualified lookup into the given file context.
1126 static bool
1127 CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
1128                    DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
1129 
1130   assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
1131 
1132   // Perform direct name lookup into the LookupCtx.
1133   bool Found = LookupDirect(S, R, NS);
1134 
1135   // Perform direct name lookup into the namespaces nominated by the
1136   // using directives whose common ancestor is this namespace.
1137   for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
1138     if (LookupDirect(S, R, UUE.getNominatedNamespace()))
1139       Found = true;
1140 
1141   R.resolveKind();
1142 
1143   return Found;
1144 }
1145 
1146 static bool isNamespaceOrTranslationUnitScope(Scope *S) {
1147   if (DeclContext *Ctx = S->getEntity())
1148     return Ctx->isFileContext();
1149   return false;
1150 }
1151 
1152 // Find the next outer declaration context from this scope. This
1153 // routine actually returns the semantic outer context, which may
1154 // differ from the lexical context (encoded directly in the Scope
1155 // stack) when we are parsing a member of a class template. In this
1156 // case, the second element of the pair will be true, to indicate that
1157 // name lookup should continue searching in this semantic context when
1158 // it leaves the current template parameter scope.
1159 static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
1160   DeclContext *DC = S->getEntity();
1161   DeclContext *Lexical = nullptr;
1162   for (Scope *OuterS = S->getParent(); OuterS;
1163        OuterS = OuterS->getParent()) {
1164     if (OuterS->getEntity()) {
1165       Lexical = OuterS->getEntity();
1166       break;
1167     }
1168   }
1169 
1170   // C++ [temp.local]p8:
1171   //   In the definition of a member of a class template that appears
1172   //   outside of the namespace containing the class template
1173   //   definition, the name of a template-parameter hides the name of
1174   //   a member of this namespace.
1175   //
1176   // Example:
1177   //
1178   //   namespace N {
1179   //     class C { };
1180   //
1181   //     template<class T> class B {
1182   //       void f(T);
1183   //     };
1184   //   }
1185   //
1186   //   template<class C> void N::B<C>::f(C) {
1187   //     C b;  // C is the template parameter, not N::C
1188   //   }
1189   //
1190   // In this example, the lexical context we return is the
1191   // TranslationUnit, while the semantic context is the namespace N.
1192   if (!Lexical || !DC || !S->getParent() ||
1193       !S->getParent()->isTemplateParamScope())
1194     return std::make_pair(Lexical, false);
1195 
1196   // Find the outermost template parameter scope.
1197   // For the example, this is the scope for the template parameters of
1198   // template<class C>.
1199   Scope *OutermostTemplateScope = S->getParent();
1200   while (OutermostTemplateScope->getParent() &&
1201          OutermostTemplateScope->getParent()->isTemplateParamScope())
1202     OutermostTemplateScope = OutermostTemplateScope->getParent();
1203 
1204   // Find the namespace context in which the original scope occurs. In
1205   // the example, this is namespace N.
1206   DeclContext *Semantic = DC;
1207   while (!Semantic->isFileContext())
1208     Semantic = Semantic->getParent();
1209 
1210   // Find the declaration context just outside of the template
1211   // parameter scope. This is the context in which the template is
1212   // being lexically declaration (a namespace context). In the
1213   // example, this is the global scope.
1214   if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
1215       Lexical->Encloses(Semantic))
1216     return std::make_pair(Semantic, true);
1217 
1218   return std::make_pair(Lexical, false);
1219 }
1220 
1221 namespace {
1222 /// An RAII object to specify that we want to find block scope extern
1223 /// declarations.
1224 struct FindLocalExternScope {
1225   FindLocalExternScope(LookupResult &R)
1226       : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
1227                                  Decl::IDNS_LocalExtern) {
1228     R.setFindLocalExtern(R.getIdentifierNamespace() &
1229                          (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator));
1230   }
1231   void restore() {
1232     R.setFindLocalExtern(OldFindLocalExtern);
1233   }
1234   ~FindLocalExternScope() {
1235     restore();
1236   }
1237   LookupResult &R;
1238   bool OldFindLocalExtern;
1239 };
1240 } // end anonymous namespace
1241 
1242 bool Sema::CppLookupName(LookupResult &R, Scope *S) {
1243   assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
1244 
1245   DeclarationName Name = R.getLookupName();
1246   Sema::LookupNameKind NameKind = R.getLookupKind();
1247 
1248   // If this is the name of an implicitly-declared special member function,
1249   // go through the scope stack to implicitly declare
1250   if (isImplicitlyDeclaredMemberFunctionName(Name)) {
1251     for (Scope *PreS = S; PreS; PreS = PreS->getParent())
1252       if (DeclContext *DC = PreS->getEntity())
1253         DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC);
1254   }
1255 
1256   // Implicitly declare member functions with the name we're looking for, if in
1257   // fact we are in a scope where it matters.
1258 
1259   Scope *Initial = S;
1260   IdentifierResolver::iterator
1261     I = IdResolver.begin(Name),
1262     IEnd = IdResolver.end();
1263 
1264   // First we lookup local scope.
1265   // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
1266   // ...During unqualified name lookup (3.4.1), the names appear as if
1267   // they were declared in the nearest enclosing namespace which contains
1268   // both the using-directive and the nominated namespace.
1269   // [Note: in this context, "contains" means "contains directly or
1270   // indirectly".
1271   //
1272   // For example:
1273   // namespace A { int i; }
1274   // void foo() {
1275   //   int i;
1276   //   {
1277   //     using namespace A;
1278   //     ++i; // finds local 'i', A::i appears at global scope
1279   //   }
1280   // }
1281   //
1282   UnqualUsingDirectiveSet UDirs(*this);
1283   bool VisitedUsingDirectives = false;
1284   bool LeftStartingScope = false;
1285   DeclContext *OutsideOfTemplateParamDC = nullptr;
1286 
1287   // When performing a scope lookup, we want to find local extern decls.
1288   FindLocalExternScope FindLocals(R);
1289 
1290   for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
1291     DeclContext *Ctx = S->getEntity();
1292     bool SearchNamespaceScope = true;
1293     // Check whether the IdResolver has anything in this scope.
1294     for (; I != IEnd && S->isDeclScope(*I); ++I) {
1295       if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1296         if (NameKind == LookupRedeclarationWithLinkage &&
1297             !(*I)->isTemplateParameter()) {
1298           // If it's a template parameter, we still find it, so we can diagnose
1299           // the invalid redeclaration.
1300 
1301           // Determine whether this (or a previous) declaration is
1302           // out-of-scope.
1303           if (!LeftStartingScope && !Initial->isDeclScope(*I))
1304             LeftStartingScope = true;
1305 
1306           // If we found something outside of our starting scope that
1307           // does not have linkage, skip it.
1308           if (LeftStartingScope && !((*I)->hasLinkage())) {
1309             R.setShadowed();
1310             continue;
1311           }
1312         } else {
1313           // We found something in this scope, we should not look at the
1314           // namespace scope
1315           SearchNamespaceScope = false;
1316         }
1317         R.addDecl(ND);
1318       }
1319     }
1320     if (!SearchNamespaceScope) {
1321       R.resolveKind();
1322       if (S->isClassScope())
1323         if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
1324           R.setNamingClass(Record);
1325       return true;
1326     }
1327 
1328     if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
1329       // C++11 [class.friend]p11:
1330       //   If a friend declaration appears in a local class and the name
1331       //   specified is an unqualified name, a prior declaration is
1332       //   looked up without considering scopes that are outside the
1333       //   innermost enclosing non-class scope.
1334       return false;
1335     }
1336 
1337     if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1338         S->getParent() && !S->getParent()->isTemplateParamScope()) {
1339       // We've just searched the last template parameter scope and
1340       // found nothing, so look into the contexts between the
1341       // lexical and semantic declaration contexts returned by
1342       // findOuterContext(). This implements the name lookup behavior
1343       // of C++ [temp.local]p8.
1344       Ctx = OutsideOfTemplateParamDC;
1345       OutsideOfTemplateParamDC = nullptr;
1346     }
1347 
1348     if (Ctx) {
1349       DeclContext *OuterCtx;
1350       bool SearchAfterTemplateScope;
1351       std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1352       if (SearchAfterTemplateScope)
1353         OutsideOfTemplateParamDC = OuterCtx;
1354 
1355       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1356         // We do not directly look into transparent contexts, since
1357         // those entities will be found in the nearest enclosing
1358         // non-transparent context.
1359         if (Ctx->isTransparentContext())
1360           continue;
1361 
1362         // We do not look directly into function or method contexts,
1363         // since all of the local variables and parameters of the
1364         // function/method are present within the Scope.
1365         if (Ctx->isFunctionOrMethod()) {
1366           // If we have an Objective-C instance method, look for ivars
1367           // in the corresponding interface.
1368           if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1369             if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1370               if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1371                 ObjCInterfaceDecl *ClassDeclared;
1372                 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1373                                                  Name.getAsIdentifierInfo(),
1374                                                              ClassDeclared)) {
1375                   if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1376                     R.addDecl(ND);
1377                     R.resolveKind();
1378                     return true;
1379                   }
1380                 }
1381               }
1382           }
1383 
1384           continue;
1385         }
1386 
1387         // If this is a file context, we need to perform unqualified name
1388         // lookup considering using directives.
1389         if (Ctx->isFileContext()) {
1390           // If we haven't handled using directives yet, do so now.
1391           if (!VisitedUsingDirectives) {
1392             // Add using directives from this context up to the top level.
1393             for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1394               if (UCtx->isTransparentContext())
1395                 continue;
1396 
1397               UDirs.visit(UCtx, UCtx);
1398             }
1399 
1400             // Find the innermost file scope, so we can add using directives
1401             // from local scopes.
1402             Scope *InnermostFileScope = S;
1403             while (InnermostFileScope &&
1404                    !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1405               InnermostFileScope = InnermostFileScope->getParent();
1406             UDirs.visitScopeChain(Initial, InnermostFileScope);
1407 
1408             UDirs.done();
1409 
1410             VisitedUsingDirectives = true;
1411           }
1412 
1413           if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1414             R.resolveKind();
1415             return true;
1416           }
1417 
1418           continue;
1419         }
1420 
1421         // Perform qualified name lookup into this context.
1422         // FIXME: In some cases, we know that every name that could be found by
1423         // this qualified name lookup will also be on the identifier chain. For
1424         // example, inside a class without any base classes, we never need to
1425         // perform qualified lookup because all of the members are on top of the
1426         // identifier chain.
1427         if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1428           return true;
1429       }
1430     }
1431   }
1432 
1433   // Stop if we ran out of scopes.
1434   // FIXME:  This really, really shouldn't be happening.
1435   if (!S) return false;
1436 
1437   // If we are looking for members, no need to look into global/namespace scope.
1438   if (NameKind == LookupMemberName)
1439     return false;
1440 
1441   // Collect UsingDirectiveDecls in all scopes, and recursively all
1442   // nominated namespaces by those using-directives.
1443   //
1444   // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1445   // don't build it for each lookup!
1446   if (!VisitedUsingDirectives) {
1447     UDirs.visitScopeChain(Initial, S);
1448     UDirs.done();
1449   }
1450 
1451   // If we're not performing redeclaration lookup, do not look for local
1452   // extern declarations outside of a function scope.
1453   if (!R.isForRedeclaration())
1454     FindLocals.restore();
1455 
1456   // Lookup namespace scope, and global scope.
1457   // Unqualified name lookup in C++ requires looking into scopes
1458   // that aren't strictly lexical, and therefore we walk through the
1459   // context as well as walking through the scopes.
1460   for (; S; S = S->getParent()) {
1461     // Check whether the IdResolver has anything in this scope.
1462     bool Found = false;
1463     for (; I != IEnd && S->isDeclScope(*I); ++I) {
1464       if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1465         // We found something.  Look for anything else in our scope
1466         // with this same name and in an acceptable identifier
1467         // namespace, so that we can construct an overload set if we
1468         // need to.
1469         Found = true;
1470         R.addDecl(ND);
1471       }
1472     }
1473 
1474     if (Found && S->isTemplateParamScope()) {
1475       R.resolveKind();
1476       return true;
1477     }
1478 
1479     DeclContext *Ctx = S->getEntity();
1480     if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1481         S->getParent() && !S->getParent()->isTemplateParamScope()) {
1482       // We've just searched the last template parameter scope and
1483       // found nothing, so look into the contexts between the
1484       // lexical and semantic declaration contexts returned by
1485       // findOuterContext(). This implements the name lookup behavior
1486       // of C++ [temp.local]p8.
1487       Ctx = OutsideOfTemplateParamDC;
1488       OutsideOfTemplateParamDC = nullptr;
1489     }
1490 
1491     if (Ctx) {
1492       DeclContext *OuterCtx;
1493       bool SearchAfterTemplateScope;
1494       std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1495       if (SearchAfterTemplateScope)
1496         OutsideOfTemplateParamDC = OuterCtx;
1497 
1498       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1499         // We do not directly look into transparent contexts, since
1500         // those entities will be found in the nearest enclosing
1501         // non-transparent context.
1502         if (Ctx->isTransparentContext())
1503           continue;
1504 
1505         // If we have a context, and it's not a context stashed in the
1506         // template parameter scope for an out-of-line definition, also
1507         // look into that context.
1508         if (!(Found && S->isTemplateParamScope())) {
1509           assert(Ctx->isFileContext() &&
1510               "We should have been looking only at file context here already.");
1511 
1512           // Look into context considering using-directives.
1513           if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1514             Found = true;
1515         }
1516 
1517         if (Found) {
1518           R.resolveKind();
1519           return true;
1520         }
1521 
1522         if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1523           return false;
1524       }
1525     }
1526 
1527     if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1528       return false;
1529   }
1530 
1531   return !R.empty();
1532 }
1533 
1534 void Sema::makeMergedDefinitionVisible(NamedDecl *ND) {
1535   if (auto *M = getCurrentModule())
1536     Context.mergeDefinitionIntoModule(ND, M);
1537   else
1538     // We're not building a module; just make the definition visible.
1539     ND->setVisibleDespiteOwningModule();
1540 
1541   // If ND is a template declaration, make the template parameters
1542   // visible too. They're not (necessarily) within a mergeable DeclContext.
1543   if (auto *TD = dyn_cast<TemplateDecl>(ND))
1544     for (auto *Param : *TD->getTemplateParameters())
1545       makeMergedDefinitionVisible(Param);
1546 }
1547 
1548 /// Find the module in which the given declaration was defined.
1549 static Module *getDefiningModule(Sema &S, Decl *Entity) {
1550   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1551     // If this function was instantiated from a template, the defining module is
1552     // the module containing the pattern.
1553     if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1554       Entity = Pattern;
1555   } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1556     if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
1557       Entity = Pattern;
1558   } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1559     if (auto *Pattern = ED->getTemplateInstantiationPattern())
1560       Entity = Pattern;
1561   } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1562     if (VarDecl *Pattern = VD->getTemplateInstantiationPattern())
1563       Entity = Pattern;
1564   }
1565 
1566   // Walk up to the containing context. That might also have been instantiated
1567   // from a template.
1568   DeclContext *Context = Entity->getLexicalDeclContext();
1569   if (Context->isFileContext())
1570     return S.getOwningModule(Entity);
1571   return getDefiningModule(S, cast<Decl>(Context));
1572 }
1573 
1574 llvm::DenseSet<Module*> &Sema::getLookupModules() {
1575   unsigned N = CodeSynthesisContexts.size();
1576   for (unsigned I = CodeSynthesisContextLookupModules.size();
1577        I != N; ++I) {
1578     Module *M = CodeSynthesisContexts[I].Entity ?
1579                 getDefiningModule(*this, CodeSynthesisContexts[I].Entity) :
1580                 nullptr;
1581     if (M && !LookupModulesCache.insert(M).second)
1582       M = nullptr;
1583     CodeSynthesisContextLookupModules.push_back(M);
1584   }
1585   return LookupModulesCache;
1586 }
1587 
1588 /// Determine whether the module M is part of the current module from the
1589 /// perspective of a module-private visibility check.
1590 static bool isInCurrentModule(const Module *M, const LangOptions &LangOpts) {
1591   // If M is the global module fragment of a module that we've not yet finished
1592   // parsing, then it must be part of the current module.
1593   return M->getTopLevelModuleName() == LangOpts.CurrentModule ||
1594          (M->Kind == Module::GlobalModuleFragment && !M->Parent);
1595 }
1596 
1597 bool Sema::hasVisibleMergedDefinition(NamedDecl *Def) {
1598   for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1599     if (isModuleVisible(Merged))
1600       return true;
1601   return false;
1602 }
1603 
1604 bool Sema::hasMergedDefinitionInCurrentModule(NamedDecl *Def) {
1605   for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1606     if (isInCurrentModule(Merged, getLangOpts()))
1607       return true;
1608   return false;
1609 }
1610 
1611 template<typename ParmDecl>
1612 static bool
1613 hasVisibleDefaultArgument(Sema &S, const ParmDecl *D,
1614                           llvm::SmallVectorImpl<Module *> *Modules) {
1615   if (!D->hasDefaultArgument())
1616     return false;
1617 
1618   while (D) {
1619     auto &DefaultArg = D->getDefaultArgStorage();
1620     if (!DefaultArg.isInherited() && S.isVisible(D))
1621       return true;
1622 
1623     if (!DefaultArg.isInherited() && Modules) {
1624       auto *NonConstD = const_cast<ParmDecl*>(D);
1625       Modules->push_back(S.getOwningModule(NonConstD));
1626     }
1627 
1628     // If there was a previous default argument, maybe its parameter is visible.
1629     D = DefaultArg.getInheritedFrom();
1630   }
1631   return false;
1632 }
1633 
1634 bool Sema::hasVisibleDefaultArgument(const NamedDecl *D,
1635                                      llvm::SmallVectorImpl<Module *> *Modules) {
1636   if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
1637     return ::hasVisibleDefaultArgument(*this, P, Modules);
1638   if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
1639     return ::hasVisibleDefaultArgument(*this, P, Modules);
1640   return ::hasVisibleDefaultArgument(*this, cast<TemplateTemplateParmDecl>(D),
1641                                      Modules);
1642 }
1643 
1644 template<typename Filter>
1645 static bool hasVisibleDeclarationImpl(Sema &S, const NamedDecl *D,
1646                                       llvm::SmallVectorImpl<Module *> *Modules,
1647                                       Filter F) {
1648   bool HasFilteredRedecls = false;
1649 
1650   for (auto *Redecl : D->redecls()) {
1651     auto *R = cast<NamedDecl>(Redecl);
1652     if (!F(R))
1653       continue;
1654 
1655     if (S.isVisible(R))
1656       return true;
1657 
1658     HasFilteredRedecls = true;
1659 
1660     if (Modules)
1661       Modules->push_back(R->getOwningModule());
1662   }
1663 
1664   // Only return false if there is at least one redecl that is not filtered out.
1665   if (HasFilteredRedecls)
1666     return false;
1667 
1668   return true;
1669 }
1670 
1671 bool Sema::hasVisibleExplicitSpecialization(
1672     const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1673   return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1674     if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1675       return RD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1676     if (auto *FD = dyn_cast<FunctionDecl>(D))
1677       return FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1678     if (auto *VD = dyn_cast<VarDecl>(D))
1679       return VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1680     llvm_unreachable("unknown explicit specialization kind");
1681   });
1682 }
1683 
1684 bool Sema::hasVisibleMemberSpecialization(
1685     const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1686   assert(isa<CXXRecordDecl>(D->getDeclContext()) &&
1687          "not a member specialization");
1688   return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1689     // If the specialization is declared at namespace scope, then it's a member
1690     // specialization declaration. If it's lexically inside the class
1691     // definition then it was instantiated.
1692     //
1693     // FIXME: This is a hack. There should be a better way to determine this.
1694     // FIXME: What about MS-style explicit specializations declared within a
1695     //        class definition?
1696     return D->getLexicalDeclContext()->isFileContext();
1697   });
1698 }
1699 
1700 /// Determine whether a declaration is visible to name lookup.
1701 ///
1702 /// This routine determines whether the declaration D is visible in the current
1703 /// lookup context, taking into account the current template instantiation
1704 /// stack. During template instantiation, a declaration is visible if it is
1705 /// visible from a module containing any entity on the template instantiation
1706 /// path (by instantiating a template, you allow it to see the declarations that
1707 /// your module can see, including those later on in your module).
1708 bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
1709   assert(D->isHidden() && "should not call this: not in slow case");
1710 
1711   Module *DeclModule = SemaRef.getOwningModule(D);
1712   assert(DeclModule && "hidden decl has no owning module");
1713 
1714   // If the owning module is visible, the decl is visible.
1715   if (SemaRef.isModuleVisible(DeclModule, D->isModulePrivate()))
1716     return true;
1717 
1718   // Determine whether a decl context is a file context for the purpose of
1719   // visibility. This looks through some (export and linkage spec) transparent
1720   // contexts, but not others (enums).
1721   auto IsEffectivelyFileContext = [](const DeclContext *DC) {
1722     return DC->isFileContext() || isa<LinkageSpecDecl>(DC) ||
1723            isa<ExportDecl>(DC);
1724   };
1725 
1726   // If this declaration is not at namespace scope
1727   // then it is visible if its lexical parent has a visible definition.
1728   DeclContext *DC = D->getLexicalDeclContext();
1729   if (DC && !IsEffectivelyFileContext(DC)) {
1730     // For a parameter, check whether our current template declaration's
1731     // lexical context is visible, not whether there's some other visible
1732     // definition of it, because parameters aren't "within" the definition.
1733     //
1734     // In C++ we need to check for a visible definition due to ODR merging,
1735     // and in C we must not because each declaration of a function gets its own
1736     // set of declarations for tags in prototype scope.
1737     bool VisibleWithinParent;
1738     if (D->isTemplateParameter()) {
1739       bool SearchDefinitions = true;
1740       if (const auto *DCD = dyn_cast<Decl>(DC)) {
1741         if (const auto *TD = DCD->getDescribedTemplate()) {
1742           TemplateParameterList *TPL = TD->getTemplateParameters();
1743           auto Index = getDepthAndIndex(D).second;
1744           SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D;
1745         }
1746       }
1747       if (SearchDefinitions)
1748         VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC));
1749       else
1750         VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC));
1751     } else if (isa<ParmVarDecl>(D) ||
1752                (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus))
1753       VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC));
1754     else if (D->isModulePrivate()) {
1755       // A module-private declaration is only visible if an enclosing lexical
1756       // parent was merged with another definition in the current module.
1757       VisibleWithinParent = false;
1758       do {
1759         if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) {
1760           VisibleWithinParent = true;
1761           break;
1762         }
1763         DC = DC->getLexicalParent();
1764       } while (!IsEffectivelyFileContext(DC));
1765     } else {
1766       VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC));
1767     }
1768 
1769     if (VisibleWithinParent && SemaRef.CodeSynthesisContexts.empty() &&
1770         // FIXME: Do something better in this case.
1771         !SemaRef.getLangOpts().ModulesLocalVisibility) {
1772       // Cache the fact that this declaration is implicitly visible because
1773       // its parent has a visible definition.
1774       D->setVisibleDespiteOwningModule();
1775     }
1776     return VisibleWithinParent;
1777   }
1778 
1779   return false;
1780 }
1781 
1782 bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) {
1783   // The module might be ordinarily visible. For a module-private query, that
1784   // means it is part of the current module. For any other query, that means it
1785   // is in our visible module set.
1786   if (ModulePrivate) {
1787     if (isInCurrentModule(M, getLangOpts()))
1788       return true;
1789   } else {
1790     if (VisibleModules.isVisible(M))
1791       return true;
1792   }
1793 
1794   // Otherwise, it might be visible by virtue of the query being within a
1795   // template instantiation or similar that is permitted to look inside M.
1796 
1797   // Find the extra places where we need to look.
1798   const auto &LookupModules = getLookupModules();
1799   if (LookupModules.empty())
1800     return false;
1801 
1802   // If our lookup set contains the module, it's visible.
1803   if (LookupModules.count(M))
1804     return true;
1805 
1806   // For a module-private query, that's everywhere we get to look.
1807   if (ModulePrivate)
1808     return false;
1809 
1810   // Check whether M is transitively exported to an import of the lookup set.
1811   return llvm::any_of(LookupModules, [&](const Module *LookupM) {
1812     return LookupM->isModuleVisible(M);
1813   });
1814 }
1815 
1816 bool Sema::isVisibleSlow(const NamedDecl *D) {
1817   return LookupResult::isVisible(*this, const_cast<NamedDecl*>(D));
1818 }
1819 
1820 bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
1821   // FIXME: If there are both visible and hidden declarations, we need to take
1822   // into account whether redeclaration is possible. Example:
1823   //
1824   // Non-imported module:
1825   //   int f(T);        // #1
1826   // Some TU:
1827   //   static int f(U); // #2, not a redeclaration of #1
1828   //   int f(T);        // #3, finds both, should link with #1 if T != U, but
1829   //                    // with #2 if T == U; neither should be ambiguous.
1830   for (auto *D : R) {
1831     if (isVisible(D))
1832       return true;
1833     assert(D->isExternallyDeclarable() &&
1834            "should not have hidden, non-externally-declarable result here");
1835   }
1836 
1837   // This function is called once "New" is essentially complete, but before a
1838   // previous declaration is attached. We can't query the linkage of "New" in
1839   // general, because attaching the previous declaration can change the
1840   // linkage of New to match the previous declaration.
1841   //
1842   // However, because we've just determined that there is no *visible* prior
1843   // declaration, we can compute the linkage here. There are two possibilities:
1844   //
1845   //  * This is not a redeclaration; it's safe to compute the linkage now.
1846   //
1847   //  * This is a redeclaration of a prior declaration that is externally
1848   //    redeclarable. In that case, the linkage of the declaration is not
1849   //    changed by attaching the prior declaration, because both are externally
1850   //    declarable (and thus ExternalLinkage or VisibleNoLinkage).
1851   //
1852   // FIXME: This is subtle and fragile.
1853   return New->isExternallyDeclarable();
1854 }
1855 
1856 /// Retrieve the visible declaration corresponding to D, if any.
1857 ///
1858 /// This routine determines whether the declaration D is visible in the current
1859 /// module, with the current imports. If not, it checks whether any
1860 /// redeclaration of D is visible, and if so, returns that declaration.
1861 ///
1862 /// \returns D, or a visible previous declaration of D, whichever is more recent
1863 /// and visible. If no declaration of D is visible, returns null.
1864 static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D,
1865                                      unsigned IDNS) {
1866   assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case");
1867 
1868   for (auto RD : D->redecls()) {
1869     // Don't bother with extra checks if we already know this one isn't visible.
1870     if (RD == D)
1871       continue;
1872 
1873     auto ND = cast<NamedDecl>(RD);
1874     // FIXME: This is wrong in the case where the previous declaration is not
1875     // visible in the same scope as D. This needs to be done much more
1876     // carefully.
1877     if (ND->isInIdentifierNamespace(IDNS) &&
1878         LookupResult::isVisible(SemaRef, ND))
1879       return ND;
1880   }
1881 
1882   return nullptr;
1883 }
1884 
1885 bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D,
1886                                      llvm::SmallVectorImpl<Module *> *Modules) {
1887   assert(!isVisible(D) && "not in slow case");
1888   return hasVisibleDeclarationImpl(*this, D, Modules,
1889                                    [](const NamedDecl *) { return true; });
1890 }
1891 
1892 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
1893   if (auto *ND = dyn_cast<NamespaceDecl>(D)) {
1894     // Namespaces are a bit of a special case: we expect there to be a lot of
1895     // redeclarations of some namespaces, all declarations of a namespace are
1896     // essentially interchangeable, all declarations are found by name lookup
1897     // if any is, and namespaces are never looked up during template
1898     // instantiation. So we benefit from caching the check in this case, and
1899     // it is correct to do so.
1900     auto *Key = ND->getCanonicalDecl();
1901     if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key))
1902       return Acceptable;
1903     auto *Acceptable = isVisible(getSema(), Key)
1904                            ? Key
1905                            : findAcceptableDecl(getSema(), Key, IDNS);
1906     if (Acceptable)
1907       getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable));
1908     return Acceptable;
1909   }
1910 
1911   return findAcceptableDecl(getSema(), D, IDNS);
1912 }
1913 
1914 /// Perform unqualified name lookup starting from a given
1915 /// scope.
1916 ///
1917 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1918 /// used to find names within the current scope. For example, 'x' in
1919 /// @code
1920 /// int x;
1921 /// int f() {
1922 ///   return x; // unqualified name look finds 'x' in the global scope
1923 /// }
1924 /// @endcode
1925 ///
1926 /// Different lookup criteria can find different names. For example, a
1927 /// particular scope can have both a struct and a function of the same
1928 /// name, and each can be found by certain lookup criteria. For more
1929 /// information about lookup criteria, see the documentation for the
1930 /// class LookupCriteria.
1931 ///
1932 /// @param S        The scope from which unqualified name lookup will
1933 /// begin. If the lookup criteria permits, name lookup may also search
1934 /// in the parent scopes.
1935 ///
1936 /// @param [in,out] R Specifies the lookup to perform (e.g., the name to
1937 /// look up and the lookup kind), and is updated with the results of lookup
1938 /// including zero or more declarations and possibly additional information
1939 /// used to diagnose ambiguities.
1940 ///
1941 /// @returns \c true if lookup succeeded and false otherwise.
1942 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1943   DeclarationName Name = R.getLookupName();
1944   if (!Name) return false;
1945 
1946   LookupNameKind NameKind = R.getLookupKind();
1947 
1948   if (!getLangOpts().CPlusPlus) {
1949     // Unqualified name lookup in C/Objective-C is purely lexical, so
1950     // search in the declarations attached to the name.
1951     if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1952       // Find the nearest non-transparent declaration scope.
1953       while (!(S->getFlags() & Scope::DeclScope) ||
1954              (S->getEntity() && S->getEntity()->isTransparentContext()))
1955         S = S->getParent();
1956     }
1957 
1958     // When performing a scope lookup, we want to find local extern decls.
1959     FindLocalExternScope FindLocals(R);
1960 
1961     // Scan up the scope chain looking for a decl that matches this
1962     // identifier that is in the appropriate namespace.  This search
1963     // should not take long, as shadowing of names is uncommon, and
1964     // deep shadowing is extremely uncommon.
1965     bool LeftStartingScope = false;
1966 
1967     for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1968                                    IEnd = IdResolver.end();
1969          I != IEnd; ++I)
1970       if (NamedDecl *D = R.getAcceptableDecl(*I)) {
1971         if (NameKind == LookupRedeclarationWithLinkage) {
1972           // Determine whether this (or a previous) declaration is
1973           // out-of-scope.
1974           if (!LeftStartingScope && !S->isDeclScope(*I))
1975             LeftStartingScope = true;
1976 
1977           // If we found something outside of our starting scope that
1978           // does not have linkage, skip it.
1979           if (LeftStartingScope && !((*I)->hasLinkage())) {
1980             R.setShadowed();
1981             continue;
1982           }
1983         }
1984         else if (NameKind == LookupObjCImplicitSelfParam &&
1985                  !isa<ImplicitParamDecl>(*I))
1986           continue;
1987 
1988         R.addDecl(D);
1989 
1990         // Check whether there are any other declarations with the same name
1991         // and in the same scope.
1992         if (I != IEnd) {
1993           // Find the scope in which this declaration was declared (if it
1994           // actually exists in a Scope).
1995           while (S && !S->isDeclScope(D))
1996             S = S->getParent();
1997 
1998           // If the scope containing the declaration is the translation unit,
1999           // then we'll need to perform our checks based on the matching
2000           // DeclContexts rather than matching scopes.
2001           if (S && isNamespaceOrTranslationUnitScope(S))
2002             S = nullptr;
2003 
2004           // Compute the DeclContext, if we need it.
2005           DeclContext *DC = nullptr;
2006           if (!S)
2007             DC = (*I)->getDeclContext()->getRedeclContext();
2008 
2009           IdentifierResolver::iterator LastI = I;
2010           for (++LastI; LastI != IEnd; ++LastI) {
2011             if (S) {
2012               // Match based on scope.
2013               if (!S->isDeclScope(*LastI))
2014                 break;
2015             } else {
2016               // Match based on DeclContext.
2017               DeclContext *LastDC
2018                 = (*LastI)->getDeclContext()->getRedeclContext();
2019               if (!LastDC->Equals(DC))
2020                 break;
2021             }
2022 
2023             // If the declaration is in the right namespace and visible, add it.
2024             if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
2025               R.addDecl(LastD);
2026           }
2027 
2028           R.resolveKind();
2029         }
2030 
2031         return true;
2032       }
2033   } else {
2034     // Perform C++ unqualified name lookup.
2035     if (CppLookupName(R, S))
2036       return true;
2037   }
2038 
2039   // If we didn't find a use of this identifier, and if the identifier
2040   // corresponds to a compiler builtin, create the decl object for the builtin
2041   // now, injecting it into translation unit scope, and return it.
2042   if (AllowBuiltinCreation && LookupBuiltin(R))
2043     return true;
2044 
2045   // If we didn't find a use of this identifier, the ExternalSource
2046   // may be able to handle the situation.
2047   // Note: some lookup failures are expected!
2048   // See e.g. R.isForRedeclaration().
2049   return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
2050 }
2051 
2052 /// Perform qualified name lookup in the namespaces nominated by
2053 /// using directives by the given context.
2054 ///
2055 /// C++98 [namespace.qual]p2:
2056 ///   Given X::m (where X is a user-declared namespace), or given \::m
2057 ///   (where X is the global namespace), let S be the set of all
2058 ///   declarations of m in X and in the transitive closure of all
2059 ///   namespaces nominated by using-directives in X and its used
2060 ///   namespaces, except that using-directives are ignored in any
2061 ///   namespace, including X, directly containing one or more
2062 ///   declarations of m. No namespace is searched more than once in
2063 ///   the lookup of a name. If S is the empty set, the program is
2064 ///   ill-formed. Otherwise, if S has exactly one member, or if the
2065 ///   context of the reference is a using-declaration
2066 ///   (namespace.udecl), S is the required set of declarations of
2067 ///   m. Otherwise if the use of m is not one that allows a unique
2068 ///   declaration to be chosen from S, the program is ill-formed.
2069 ///
2070 /// C++98 [namespace.qual]p5:
2071 ///   During the lookup of a qualified namespace member name, if the
2072 ///   lookup finds more than one declaration of the member, and if one
2073 ///   declaration introduces a class name or enumeration name and the
2074 ///   other declarations either introduce the same object, the same
2075 ///   enumerator or a set of functions, the non-type name hides the
2076 ///   class or enumeration name if and only if the declarations are
2077 ///   from the same namespace; otherwise (the declarations are from
2078 ///   different namespaces), the program is ill-formed.
2079 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
2080                                                  DeclContext *StartDC) {
2081   assert(StartDC->isFileContext() && "start context is not a file context");
2082 
2083   // We have not yet looked into these namespaces, much less added
2084   // their "using-children" to the queue.
2085   SmallVector<NamespaceDecl*, 8> Queue;
2086 
2087   // We have at least added all these contexts to the queue.
2088   llvm::SmallPtrSet<DeclContext*, 8> Visited;
2089   Visited.insert(StartDC);
2090 
2091   // We have already looked into the initial namespace; seed the queue
2092   // with its using-children.
2093   for (auto *I : StartDC->using_directives()) {
2094     NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
2095     if (S.isVisible(I) && Visited.insert(ND).second)
2096       Queue.push_back(ND);
2097   }
2098 
2099   // The easiest way to implement the restriction in [namespace.qual]p5
2100   // is to check whether any of the individual results found a tag
2101   // and, if so, to declare an ambiguity if the final result is not
2102   // a tag.
2103   bool FoundTag = false;
2104   bool FoundNonTag = false;
2105 
2106   LookupResult LocalR(LookupResult::Temporary, R);
2107 
2108   bool Found = false;
2109   while (!Queue.empty()) {
2110     NamespaceDecl *ND = Queue.pop_back_val();
2111 
2112     // We go through some convolutions here to avoid copying results
2113     // between LookupResults.
2114     bool UseLocal = !R.empty();
2115     LookupResult &DirectR = UseLocal ? LocalR : R;
2116     bool FoundDirect = LookupDirect(S, DirectR, ND);
2117 
2118     if (FoundDirect) {
2119       // First do any local hiding.
2120       DirectR.resolveKind();
2121 
2122       // If the local result is a tag, remember that.
2123       if (DirectR.isSingleTagDecl())
2124         FoundTag = true;
2125       else
2126         FoundNonTag = true;
2127 
2128       // Append the local results to the total results if necessary.
2129       if (UseLocal) {
2130         R.addAllDecls(LocalR);
2131         LocalR.clear();
2132       }
2133     }
2134 
2135     // If we find names in this namespace, ignore its using directives.
2136     if (FoundDirect) {
2137       Found = true;
2138       continue;
2139     }
2140 
2141     for (auto I : ND->using_directives()) {
2142       NamespaceDecl *Nom = I->getNominatedNamespace();
2143       if (S.isVisible(I) && Visited.insert(Nom).second)
2144         Queue.push_back(Nom);
2145     }
2146   }
2147 
2148   if (Found) {
2149     if (FoundTag && FoundNonTag)
2150       R.setAmbiguousQualifiedTagHiding();
2151     else
2152       R.resolveKind();
2153   }
2154 
2155   return Found;
2156 }
2157 
2158 /// Callback that looks for any member of a class with the given name.
2159 static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
2160                             CXXBasePath &Path, DeclarationName Name) {
2161   RecordDecl *BaseRecord = Specifier->getType()->castAs<RecordType>()->getDecl();
2162 
2163   Path.Decls = BaseRecord->lookup(Name);
2164   return !Path.Decls.empty();
2165 }
2166 
2167 /// Determine whether the given set of member declarations contains only
2168 /// static members, nested types, and enumerators.
2169 template<typename InputIterator>
2170 static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
2171   Decl *D = (*First)->getUnderlyingDecl();
2172   if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
2173     return true;
2174 
2175   if (isa<CXXMethodDecl>(D)) {
2176     // Determine whether all of the methods are static.
2177     bool AllMethodsAreStatic = true;
2178     for(; First != Last; ++First) {
2179       D = (*First)->getUnderlyingDecl();
2180 
2181       if (!isa<CXXMethodDecl>(D)) {
2182         assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
2183         break;
2184       }
2185 
2186       if (!cast<CXXMethodDecl>(D)->isStatic()) {
2187         AllMethodsAreStatic = false;
2188         break;
2189       }
2190     }
2191 
2192     if (AllMethodsAreStatic)
2193       return true;
2194   }
2195 
2196   return false;
2197 }
2198 
2199 /// Perform qualified name lookup into a given context.
2200 ///
2201 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
2202 /// names when the context of those names is explicit specified, e.g.,
2203 /// "std::vector" or "x->member", or as part of unqualified name lookup.
2204 ///
2205 /// Different lookup criteria can find different names. For example, a
2206 /// particular scope can have both a struct and a function of the same
2207 /// name, and each can be found by certain lookup criteria. For more
2208 /// information about lookup criteria, see the documentation for the
2209 /// class LookupCriteria.
2210 ///
2211 /// \param R captures both the lookup criteria and any lookup results found.
2212 ///
2213 /// \param LookupCtx The context in which qualified name lookup will
2214 /// search. If the lookup criteria permits, name lookup may also search
2215 /// in the parent contexts or (for C++ classes) base classes.
2216 ///
2217 /// \param InUnqualifiedLookup true if this is qualified name lookup that
2218 /// occurs as part of unqualified name lookup.
2219 ///
2220 /// \returns true if lookup succeeded, false if it failed.
2221 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2222                                bool InUnqualifiedLookup) {
2223   assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
2224 
2225   if (!R.getLookupName())
2226     return false;
2227 
2228   // Make sure that the declaration context is complete.
2229   assert((!isa<TagDecl>(LookupCtx) ||
2230           LookupCtx->isDependentContext() ||
2231           cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
2232           cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
2233          "Declaration context must already be complete!");
2234 
2235   struct QualifiedLookupInScope {
2236     bool oldVal;
2237     DeclContext *Context;
2238     // Set flag in DeclContext informing debugger that we're looking for qualified name
2239     QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) {
2240       oldVal = ctx->setUseQualifiedLookup();
2241     }
2242     ~QualifiedLookupInScope() {
2243       Context->setUseQualifiedLookup(oldVal);
2244     }
2245   } QL(LookupCtx);
2246 
2247   if (LookupDirect(*this, R, LookupCtx)) {
2248     R.resolveKind();
2249     if (isa<CXXRecordDecl>(LookupCtx))
2250       R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
2251     return true;
2252   }
2253 
2254   // Don't descend into implied contexts for redeclarations.
2255   // C++98 [namespace.qual]p6:
2256   //   In a declaration for a namespace member in which the
2257   //   declarator-id is a qualified-id, given that the qualified-id
2258   //   for the namespace member has the form
2259   //     nested-name-specifier unqualified-id
2260   //   the unqualified-id shall name a member of the namespace
2261   //   designated by the nested-name-specifier.
2262   // See also [class.mfct]p5 and [class.static.data]p2.
2263   if (R.isForRedeclaration())
2264     return false;
2265 
2266   // If this is a namespace, look it up in the implied namespaces.
2267   if (LookupCtx->isFileContext())
2268     return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
2269 
2270   // If this isn't a C++ class, we aren't allowed to look into base
2271   // classes, we're done.
2272   CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
2273   if (!LookupRec || !LookupRec->getDefinition())
2274     return false;
2275 
2276   // If we're performing qualified name lookup into a dependent class,
2277   // then we are actually looking into a current instantiation. If we have any
2278   // dependent base classes, then we either have to delay lookup until
2279   // template instantiation time (at which point all bases will be available)
2280   // or we have to fail.
2281   if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
2282       LookupRec->hasAnyDependentBases()) {
2283     R.setNotFoundInCurrentInstantiation();
2284     return false;
2285   }
2286 
2287   // Perform lookup into our base classes.
2288   CXXBasePaths Paths;
2289   Paths.setOrigin(LookupRec);
2290 
2291   // Look for this member in our base classes
2292   bool (*BaseCallback)(const CXXBaseSpecifier *Specifier, CXXBasePath &Path,
2293                        DeclarationName Name) = nullptr;
2294   switch (R.getLookupKind()) {
2295     case LookupObjCImplicitSelfParam:
2296     case LookupOrdinaryName:
2297     case LookupMemberName:
2298     case LookupRedeclarationWithLinkage:
2299     case LookupLocalFriendName:
2300       BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
2301       break;
2302 
2303     case LookupTagName:
2304       BaseCallback = &CXXRecordDecl::FindTagMember;
2305       break;
2306 
2307     case LookupAnyName:
2308       BaseCallback = &LookupAnyMember;
2309       break;
2310 
2311     case LookupOMPReductionName:
2312       BaseCallback = &CXXRecordDecl::FindOMPReductionMember;
2313       break;
2314 
2315     case LookupOMPMapperName:
2316       BaseCallback = &CXXRecordDecl::FindOMPMapperMember;
2317       break;
2318 
2319     case LookupUsingDeclName:
2320       // This lookup is for redeclarations only.
2321 
2322     case LookupOperatorName:
2323     case LookupNamespaceName:
2324     case LookupObjCProtocolName:
2325     case LookupLabel:
2326       // These lookups will never find a member in a C++ class (or base class).
2327       return false;
2328 
2329     case LookupNestedNameSpecifierName:
2330       BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
2331       break;
2332   }
2333 
2334   DeclarationName Name = R.getLookupName();
2335   if (!LookupRec->lookupInBases(
2336           [=](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
2337             return BaseCallback(Specifier, Path, Name);
2338           },
2339           Paths))
2340     return false;
2341 
2342   R.setNamingClass(LookupRec);
2343 
2344   // C++ [class.member.lookup]p2:
2345   //   [...] If the resulting set of declarations are not all from
2346   //   sub-objects of the same type, or the set has a nonstatic member
2347   //   and includes members from distinct sub-objects, there is an
2348   //   ambiguity and the program is ill-formed. Otherwise that set is
2349   //   the result of the lookup.
2350   QualType SubobjectType;
2351   int SubobjectNumber = 0;
2352   AccessSpecifier SubobjectAccess = AS_none;
2353 
2354   for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
2355        Path != PathEnd; ++Path) {
2356     const CXXBasePathElement &PathElement = Path->back();
2357 
2358     // Pick the best (i.e. most permissive i.e. numerically lowest) access
2359     // across all paths.
2360     SubobjectAccess = std::min(SubobjectAccess, Path->Access);
2361 
2362     // Determine whether we're looking at a distinct sub-object or not.
2363     if (SubobjectType.isNull()) {
2364       // This is the first subobject we've looked at. Record its type.
2365       SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
2366       SubobjectNumber = PathElement.SubobjectNumber;
2367       continue;
2368     }
2369 
2370     if (SubobjectType
2371                  != Context.getCanonicalType(PathElement.Base->getType())) {
2372       // We found members of the given name in two subobjects of
2373       // different types. If the declaration sets aren't the same, this
2374       // lookup is ambiguous.
2375       if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
2376         CXXBasePaths::paths_iterator FirstPath = Paths.begin();
2377         DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
2378         DeclContext::lookup_iterator CurrentD = Path->Decls.begin();
2379 
2380         // Get the decl that we should use for deduplicating this lookup.
2381         auto GetRepresentativeDecl = [&](NamedDecl *D) -> Decl * {
2382           // C++ [temp.local]p3:
2383           //   A lookup that finds an injected-class-name (10.2) can result in
2384           //   an ambiguity in certain cases (for example, if it is found in
2385           //   more than one base class). If all of the injected-class-names
2386           //   that are found refer to specializations of the same class
2387           //   template, and if the name is used as a template-name, the
2388           //   reference refers to the class template itself and not a
2389           //   specialization thereof, and is not ambiguous.
2390           if (R.isTemplateNameLookup())
2391             if (auto *TD = getAsTemplateNameDecl(D))
2392               D = TD;
2393           return D->getUnderlyingDecl()->getCanonicalDecl();
2394         };
2395 
2396         while (FirstD != FirstPath->Decls.end() &&
2397                CurrentD != Path->Decls.end()) {
2398           if (GetRepresentativeDecl(*FirstD) !=
2399               GetRepresentativeDecl(*CurrentD))
2400             break;
2401 
2402           ++FirstD;
2403           ++CurrentD;
2404         }
2405 
2406         if (FirstD == FirstPath->Decls.end() &&
2407             CurrentD == Path->Decls.end())
2408           continue;
2409       }
2410 
2411       R.setAmbiguousBaseSubobjectTypes(Paths);
2412       return true;
2413     }
2414 
2415     if (SubobjectNumber != PathElement.SubobjectNumber) {
2416       // We have a different subobject of the same type.
2417 
2418       // C++ [class.member.lookup]p5:
2419       //   A static member, a nested type or an enumerator defined in
2420       //   a base class T can unambiguously be found even if an object
2421       //   has more than one base class subobject of type T.
2422       if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
2423         continue;
2424 
2425       // We have found a nonstatic member name in multiple, distinct
2426       // subobjects. Name lookup is ambiguous.
2427       R.setAmbiguousBaseSubobjects(Paths);
2428       return true;
2429     }
2430   }
2431 
2432   // Lookup in a base class succeeded; return these results.
2433 
2434   for (auto *D : Paths.front().Decls) {
2435     AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
2436                                                     D->getAccess());
2437     R.addDecl(D, AS);
2438   }
2439   R.resolveKind();
2440   return true;
2441 }
2442 
2443 /// Performs qualified name lookup or special type of lookup for
2444 /// "__super::" scope specifier.
2445 ///
2446 /// This routine is a convenience overload meant to be called from contexts
2447 /// that need to perform a qualified name lookup with an optional C++ scope
2448 /// specifier that might require special kind of lookup.
2449 ///
2450 /// \param R captures both the lookup criteria and any lookup results found.
2451 ///
2452 /// \param LookupCtx The context in which qualified name lookup will
2453 /// search.
2454 ///
2455 /// \param SS An optional C++ scope-specifier.
2456 ///
2457 /// \returns true if lookup succeeded, false if it failed.
2458 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2459                                CXXScopeSpec &SS) {
2460   auto *NNS = SS.getScopeRep();
2461   if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
2462     return LookupInSuper(R, NNS->getAsRecordDecl());
2463   else
2464 
2465     return LookupQualifiedName(R, LookupCtx);
2466 }
2467 
2468 /// Performs name lookup for a name that was parsed in the
2469 /// source code, and may contain a C++ scope specifier.
2470 ///
2471 /// This routine is a convenience routine meant to be called from
2472 /// contexts that receive a name and an optional C++ scope specifier
2473 /// (e.g., "N::M::x"). It will then perform either qualified or
2474 /// unqualified name lookup (with LookupQualifiedName or LookupName,
2475 /// respectively) on the given name and return those results. It will
2476 /// perform a special type of lookup for "__super::" scope specifier.
2477 ///
2478 /// @param S        The scope from which unqualified name lookup will
2479 /// begin.
2480 ///
2481 /// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
2482 ///
2483 /// @param EnteringContext Indicates whether we are going to enter the
2484 /// context of the scope-specifier SS (if present).
2485 ///
2486 /// @returns True if any decls were found (but possibly ambiguous)
2487 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
2488                             bool AllowBuiltinCreation, bool EnteringContext) {
2489   if (SS && SS->isInvalid()) {
2490     // When the scope specifier is invalid, don't even look for
2491     // anything.
2492     return false;
2493   }
2494 
2495   if (SS && SS->isSet()) {
2496     NestedNameSpecifier *NNS = SS->getScopeRep();
2497     if (NNS->getKind() == NestedNameSpecifier::Super)
2498       return LookupInSuper(R, NNS->getAsRecordDecl());
2499 
2500     if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
2501       // We have resolved the scope specifier to a particular declaration
2502       // contex, and will perform name lookup in that context.
2503       if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
2504         return false;
2505 
2506       R.setContextRange(SS->getRange());
2507       return LookupQualifiedName(R, DC);
2508     }
2509 
2510     // We could not resolve the scope specified to a specific declaration
2511     // context, which means that SS refers to an unknown specialization.
2512     // Name lookup can't find anything in this case.
2513     R.setNotFoundInCurrentInstantiation();
2514     R.setContextRange(SS->getRange());
2515     return false;
2516   }
2517 
2518   // Perform unqualified name lookup starting in the given scope.
2519   return LookupName(R, S, AllowBuiltinCreation);
2520 }
2521 
2522 /// Perform qualified name lookup into all base classes of the given
2523 /// class.
2524 ///
2525 /// \param R captures both the lookup criteria and any lookup results found.
2526 ///
2527 /// \param Class The context in which qualified name lookup will
2528 /// search. Name lookup will search in all base classes merging the results.
2529 ///
2530 /// @returns True if any decls were found (but possibly ambiguous)
2531 bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
2532   // The access-control rules we use here are essentially the rules for
2533   // doing a lookup in Class that just magically skipped the direct
2534   // members of Class itself.  That is, the naming class is Class, and the
2535   // access includes the access of the base.
2536   for (const auto &BaseSpec : Class->bases()) {
2537     CXXRecordDecl *RD = cast<CXXRecordDecl>(
2538         BaseSpec.getType()->castAs<RecordType>()->getDecl());
2539     LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
2540     Result.setBaseObjectType(Context.getRecordType(Class));
2541     LookupQualifiedName(Result, RD);
2542 
2543     // Copy the lookup results into the target, merging the base's access into
2544     // the path access.
2545     for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
2546       R.addDecl(I.getDecl(),
2547                 CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
2548                                            I.getAccess()));
2549     }
2550 
2551     Result.suppressDiagnostics();
2552   }
2553 
2554   R.resolveKind();
2555   R.setNamingClass(Class);
2556 
2557   return !R.empty();
2558 }
2559 
2560 /// Produce a diagnostic describing the ambiguity that resulted
2561 /// from name lookup.
2562 ///
2563 /// \param Result The result of the ambiguous lookup to be diagnosed.
2564 void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
2565   assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
2566 
2567   DeclarationName Name = Result.getLookupName();
2568   SourceLocation NameLoc = Result.getNameLoc();
2569   SourceRange LookupRange = Result.getContextRange();
2570 
2571   switch (Result.getAmbiguityKind()) {
2572   case LookupResult::AmbiguousBaseSubobjects: {
2573     CXXBasePaths *Paths = Result.getBasePaths();
2574     QualType SubobjectType = Paths->front().back().Base->getType();
2575     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
2576       << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
2577       << LookupRange;
2578 
2579     DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
2580     while (isa<CXXMethodDecl>(*Found) &&
2581            cast<CXXMethodDecl>(*Found)->isStatic())
2582       ++Found;
2583 
2584     Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
2585     break;
2586   }
2587 
2588   case LookupResult::AmbiguousBaseSubobjectTypes: {
2589     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
2590       << Name << LookupRange;
2591 
2592     CXXBasePaths *Paths = Result.getBasePaths();
2593     std::set<Decl *> DeclsPrinted;
2594     for (CXXBasePaths::paths_iterator Path = Paths->begin(),
2595                                       PathEnd = Paths->end();
2596          Path != PathEnd; ++Path) {
2597       Decl *D = Path->Decls.front();
2598       if (DeclsPrinted.insert(D).second)
2599         Diag(D->getLocation(), diag::note_ambiguous_member_found);
2600     }
2601     break;
2602   }
2603 
2604   case LookupResult::AmbiguousTagHiding: {
2605     Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
2606 
2607     llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
2608 
2609     for (auto *D : Result)
2610       if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
2611         TagDecls.insert(TD);
2612         Diag(TD->getLocation(), diag::note_hidden_tag);
2613       }
2614 
2615     for (auto *D : Result)
2616       if (!isa<TagDecl>(D))
2617         Diag(D->getLocation(), diag::note_hiding_object);
2618 
2619     // For recovery purposes, go ahead and implement the hiding.
2620     LookupResult::Filter F = Result.makeFilter();
2621     while (F.hasNext()) {
2622       if (TagDecls.count(F.next()))
2623         F.erase();
2624     }
2625     F.done();
2626     break;
2627   }
2628 
2629   case LookupResult::AmbiguousReference: {
2630     Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
2631 
2632     for (auto *D : Result)
2633       Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
2634     break;
2635   }
2636   }
2637 }
2638 
2639 namespace {
2640   struct AssociatedLookup {
2641     AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
2642                      Sema::AssociatedNamespaceSet &Namespaces,
2643                      Sema::AssociatedClassSet &Classes)
2644       : S(S), Namespaces(Namespaces), Classes(Classes),
2645         InstantiationLoc(InstantiationLoc) {
2646     }
2647 
2648     bool addClassTransitive(CXXRecordDecl *RD) {
2649       Classes.insert(RD);
2650       return ClassesTransitive.insert(RD);
2651     }
2652 
2653     Sema &S;
2654     Sema::AssociatedNamespaceSet &Namespaces;
2655     Sema::AssociatedClassSet &Classes;
2656     SourceLocation InstantiationLoc;
2657 
2658   private:
2659     Sema::AssociatedClassSet ClassesTransitive;
2660   };
2661 } // end anonymous namespace
2662 
2663 static void
2664 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
2665 
2666 // Given the declaration context \param Ctx of a class, class template or
2667 // enumeration, add the associated namespaces to \param Namespaces as described
2668 // in [basic.lookup.argdep]p2.
2669 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
2670                                       DeclContext *Ctx) {
2671   // The exact wording has been changed in C++14 as a result of
2672   // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally
2673   // to all language versions since it is possible to return a local type
2674   // from a lambda in C++11.
2675   //
2676   // C++14 [basic.lookup.argdep]p2:
2677   //   If T is a class type [...]. Its associated namespaces are the innermost
2678   //   enclosing namespaces of its associated classes. [...]
2679   //
2680   //   If T is an enumeration type, its associated namespace is the innermost
2681   //   enclosing namespace of its declaration. [...]
2682 
2683   // We additionally skip inline namespaces. The innermost non-inline namespace
2684   // contains all names of all its nested inline namespaces anyway, so we can
2685   // replace the entire inline namespace tree with its root.
2686   while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
2687     Ctx = Ctx->getParent();
2688 
2689   Namespaces.insert(Ctx->getPrimaryContext());
2690 }
2691 
2692 // Add the associated classes and namespaces for argument-dependent
2693 // lookup that involves a template argument (C++ [basic.lookup.argdep]p2).
2694 static void
2695 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2696                                   const TemplateArgument &Arg) {
2697   // C++ [basic.lookup.argdep]p2, last bullet:
2698   //   -- [...] ;
2699   switch (Arg.getKind()) {
2700     case TemplateArgument::Null:
2701       break;
2702 
2703     case TemplateArgument::Type:
2704       // [...] the namespaces and classes associated with the types of the
2705       // template arguments provided for template type parameters (excluding
2706       // template template parameters)
2707       addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
2708       break;
2709 
2710     case TemplateArgument::Template:
2711     case TemplateArgument::TemplateExpansion: {
2712       // [...] the namespaces in which any template template arguments are
2713       // defined; and the classes in which any member templates used as
2714       // template template arguments are defined.
2715       TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
2716       if (ClassTemplateDecl *ClassTemplate
2717                  = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
2718         DeclContext *Ctx = ClassTemplate->getDeclContext();
2719         if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2720           Result.Classes.insert(EnclosingClass);
2721         // Add the associated namespace for this class.
2722         CollectEnclosingNamespace(Result.Namespaces, Ctx);
2723       }
2724       break;
2725     }
2726 
2727     case TemplateArgument::Declaration:
2728     case TemplateArgument::Integral:
2729     case TemplateArgument::Expression:
2730     case TemplateArgument::NullPtr:
2731       // [Note: non-type template arguments do not contribute to the set of
2732       //  associated namespaces. ]
2733       break;
2734 
2735     case TemplateArgument::Pack:
2736       for (const auto &P : Arg.pack_elements())
2737         addAssociatedClassesAndNamespaces(Result, P);
2738       break;
2739   }
2740 }
2741 
2742 // Add the associated classes and namespaces for argument-dependent lookup
2743 // with an argument of class type (C++ [basic.lookup.argdep]p2).
2744 static void
2745 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2746                                   CXXRecordDecl *Class) {
2747 
2748   // Just silently ignore anything whose name is __va_list_tag.
2749   if (Class->getDeclName() == Result.S.VAListTagName)
2750     return;
2751 
2752   // C++ [basic.lookup.argdep]p2:
2753   //   [...]
2754   //     -- If T is a class type (including unions), its associated
2755   //        classes are: the class itself; the class of which it is a
2756   //        member, if any; and its direct and indirect base classes.
2757   //        Its associated namespaces are the innermost enclosing
2758   //        namespaces of its associated classes.
2759 
2760   // Add the class of which it is a member, if any.
2761   DeclContext *Ctx = Class->getDeclContext();
2762   if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2763     Result.Classes.insert(EnclosingClass);
2764 
2765   // Add the associated namespace for this class.
2766   CollectEnclosingNamespace(Result.Namespaces, Ctx);
2767 
2768   // -- If T is a template-id, its associated namespaces and classes are
2769   //    the namespace in which the template is defined; for member
2770   //    templates, the member template's class; the namespaces and classes
2771   //    associated with the types of the template arguments provided for
2772   //    template type parameters (excluding template template parameters); the
2773   //    namespaces in which any template template arguments are defined; and
2774   //    the classes in which any member templates used as template template
2775   //    arguments are defined. [Note: non-type template arguments do not
2776   //    contribute to the set of associated namespaces. ]
2777   if (ClassTemplateSpecializationDecl *Spec
2778         = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
2779     DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
2780     if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2781       Result.Classes.insert(EnclosingClass);
2782     // Add the associated namespace for this class.
2783     CollectEnclosingNamespace(Result.Namespaces, Ctx);
2784 
2785     const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
2786     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2787       addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
2788   }
2789 
2790   // Add the class itself. If we've already transitively visited this class,
2791   // we don't need to visit base classes.
2792   if (!Result.addClassTransitive(Class))
2793     return;
2794 
2795   // Only recurse into base classes for complete types.
2796   if (!Result.S.isCompleteType(Result.InstantiationLoc,
2797                                Result.S.Context.getRecordType(Class)))
2798     return;
2799 
2800   // Add direct and indirect base classes along with their associated
2801   // namespaces.
2802   SmallVector<CXXRecordDecl *, 32> Bases;
2803   Bases.push_back(Class);
2804   while (!Bases.empty()) {
2805     // Pop this class off the stack.
2806     Class = Bases.pop_back_val();
2807 
2808     // Visit the base classes.
2809     for (const auto &Base : Class->bases()) {
2810       const RecordType *BaseType = Base.getType()->getAs<RecordType>();
2811       // In dependent contexts, we do ADL twice, and the first time around,
2812       // the base type might be a dependent TemplateSpecializationType, or a
2813       // TemplateTypeParmType. If that happens, simply ignore it.
2814       // FIXME: If we want to support export, we probably need to add the
2815       // namespace of the template in a TemplateSpecializationType, or even
2816       // the classes and namespaces of known non-dependent arguments.
2817       if (!BaseType)
2818         continue;
2819       CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
2820       if (Result.addClassTransitive(BaseDecl)) {
2821         // Find the associated namespace for this base class.
2822         DeclContext *BaseCtx = BaseDecl->getDeclContext();
2823         CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
2824 
2825         // Make sure we visit the bases of this base class.
2826         if (BaseDecl->bases_begin() != BaseDecl->bases_end())
2827           Bases.push_back(BaseDecl);
2828       }
2829     }
2830   }
2831 }
2832 
2833 // Add the associated classes and namespaces for
2834 // argument-dependent lookup with an argument of type T
2835 // (C++ [basic.lookup.koenig]p2).
2836 static void
2837 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
2838   // C++ [basic.lookup.koenig]p2:
2839   //
2840   //   For each argument type T in the function call, there is a set
2841   //   of zero or more associated namespaces and a set of zero or more
2842   //   associated classes to be considered. The sets of namespaces and
2843   //   classes is determined entirely by the types of the function
2844   //   arguments (and the namespace of any template template
2845   //   argument). Typedef names and using-declarations used to specify
2846   //   the types do not contribute to this set. The sets of namespaces
2847   //   and classes are determined in the following way:
2848 
2849   SmallVector<const Type *, 16> Queue;
2850   const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
2851 
2852   while (true) {
2853     switch (T->getTypeClass()) {
2854 
2855 #define TYPE(Class, Base)
2856 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2857 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2858 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
2859 #define ABSTRACT_TYPE(Class, Base)
2860 #include "clang/AST/TypeNodes.inc"
2861       // T is canonical.  We can also ignore dependent types because
2862       // we don't need to do ADL at the definition point, but if we
2863       // wanted to implement template export (or if we find some other
2864       // use for associated classes and namespaces...) this would be
2865       // wrong.
2866       break;
2867 
2868     //    -- If T is a pointer to U or an array of U, its associated
2869     //       namespaces and classes are those associated with U.
2870     case Type::Pointer:
2871       T = cast<PointerType>(T)->getPointeeType().getTypePtr();
2872       continue;
2873     case Type::ConstantArray:
2874     case Type::IncompleteArray:
2875     case Type::VariableArray:
2876       T = cast<ArrayType>(T)->getElementType().getTypePtr();
2877       continue;
2878 
2879     //     -- If T is a fundamental type, its associated sets of
2880     //        namespaces and classes are both empty.
2881     case Type::Builtin:
2882       break;
2883 
2884     //     -- If T is a class type (including unions), its associated
2885     //        classes are: the class itself; the class of which it is
2886     //        a member, if any; and its direct and indirect base classes.
2887     //        Its associated namespaces are the innermost enclosing
2888     //        namespaces of its associated classes.
2889     case Type::Record: {
2890       CXXRecordDecl *Class =
2891           cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
2892       addAssociatedClassesAndNamespaces(Result, Class);
2893       break;
2894     }
2895 
2896     //     -- If T is an enumeration type, its associated namespace
2897     //        is the innermost enclosing namespace of its declaration.
2898     //        If it is a class member, its associated class is the
2899     //        member’s class; else it has no associated class.
2900     case Type::Enum: {
2901       EnumDecl *Enum = cast<EnumType>(T)->getDecl();
2902 
2903       DeclContext *Ctx = Enum->getDeclContext();
2904       if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2905         Result.Classes.insert(EnclosingClass);
2906 
2907       // Add the associated namespace for this enumeration.
2908       CollectEnclosingNamespace(Result.Namespaces, Ctx);
2909 
2910       break;
2911     }
2912 
2913     //     -- If T is a function type, its associated namespaces and
2914     //        classes are those associated with the function parameter
2915     //        types and those associated with the return type.
2916     case Type::FunctionProto: {
2917       const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2918       for (const auto &Arg : Proto->param_types())
2919         Queue.push_back(Arg.getTypePtr());
2920       // fallthrough
2921       LLVM_FALLTHROUGH;
2922     }
2923     case Type::FunctionNoProto: {
2924       const FunctionType *FnType = cast<FunctionType>(T);
2925       T = FnType->getReturnType().getTypePtr();
2926       continue;
2927     }
2928 
2929     //     -- If T is a pointer to a member function of a class X, its
2930     //        associated namespaces and classes are those associated
2931     //        with the function parameter types and return type,
2932     //        together with those associated with X.
2933     //
2934     //     -- If T is a pointer to a data member of class X, its
2935     //        associated namespaces and classes are those associated
2936     //        with the member type together with those associated with
2937     //        X.
2938     case Type::MemberPointer: {
2939       const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
2940 
2941       // Queue up the class type into which this points.
2942       Queue.push_back(MemberPtr->getClass());
2943 
2944       // And directly continue with the pointee type.
2945       T = MemberPtr->getPointeeType().getTypePtr();
2946       continue;
2947     }
2948 
2949     // As an extension, treat this like a normal pointer.
2950     case Type::BlockPointer:
2951       T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
2952       continue;
2953 
2954     // References aren't covered by the standard, but that's such an
2955     // obvious defect that we cover them anyway.
2956     case Type::LValueReference:
2957     case Type::RValueReference:
2958       T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
2959       continue;
2960 
2961     // These are fundamental types.
2962     case Type::Vector:
2963     case Type::ExtVector:
2964     case Type::Complex:
2965       break;
2966 
2967     // Non-deduced auto types only get here for error cases.
2968     case Type::Auto:
2969     case Type::DeducedTemplateSpecialization:
2970       break;
2971 
2972     // If T is an Objective-C object or interface type, or a pointer to an
2973     // object or interface type, the associated namespace is the global
2974     // namespace.
2975     case Type::ObjCObject:
2976     case Type::ObjCInterface:
2977     case Type::ObjCObjectPointer:
2978       Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
2979       break;
2980 
2981     // Atomic types are just wrappers; use the associations of the
2982     // contained type.
2983     case Type::Atomic:
2984       T = cast<AtomicType>(T)->getValueType().getTypePtr();
2985       continue;
2986     case Type::Pipe:
2987       T = cast<PipeType>(T)->getElementType().getTypePtr();
2988       continue;
2989     }
2990 
2991     if (Queue.empty())
2992       break;
2993     T = Queue.pop_back_val();
2994   }
2995 }
2996 
2997 /// Find the associated classes and namespaces for
2998 /// argument-dependent lookup for a call with the given set of
2999 /// arguments.
3000 ///
3001 /// This routine computes the sets of associated classes and associated
3002 /// namespaces searched by argument-dependent lookup
3003 /// (C++ [basic.lookup.argdep]) for a given set of arguments.
3004 void Sema::FindAssociatedClassesAndNamespaces(
3005     SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
3006     AssociatedNamespaceSet &AssociatedNamespaces,
3007     AssociatedClassSet &AssociatedClasses) {
3008   AssociatedNamespaces.clear();
3009   AssociatedClasses.clear();
3010 
3011   AssociatedLookup Result(*this, InstantiationLoc,
3012                           AssociatedNamespaces, AssociatedClasses);
3013 
3014   // C++ [basic.lookup.koenig]p2:
3015   //   For each argument type T in the function call, there is a set
3016   //   of zero or more associated namespaces and a set of zero or more
3017   //   associated classes to be considered. The sets of namespaces and
3018   //   classes is determined entirely by the types of the function
3019   //   arguments (and the namespace of any template template
3020   //   argument).
3021   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
3022     Expr *Arg = Args[ArgIdx];
3023 
3024     if (Arg->getType() != Context.OverloadTy) {
3025       addAssociatedClassesAndNamespaces(Result, Arg->getType());
3026       continue;
3027     }
3028 
3029     // [...] In addition, if the argument is the name or address of a
3030     // set of overloaded functions and/or function templates, its
3031     // associated classes and namespaces are the union of those
3032     // associated with each of the members of the set: the namespace
3033     // in which the function or function template is defined and the
3034     // classes and namespaces associated with its (non-dependent)
3035     // parameter types and return type.
3036     OverloadExpr *OE = OverloadExpr::find(Arg).Expression;
3037 
3038     for (const NamedDecl *D : OE->decls()) {
3039       // Look through any using declarations to find the underlying function.
3040       const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
3041 
3042       // Add the classes and namespaces associated with the parameter
3043       // types and return type of this function.
3044       addAssociatedClassesAndNamespaces(Result, FDecl->getType());
3045     }
3046   }
3047 }
3048 
3049 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
3050                                   SourceLocation Loc,
3051                                   LookupNameKind NameKind,
3052                                   RedeclarationKind Redecl) {
3053   LookupResult R(*this, Name, Loc, NameKind, Redecl);
3054   LookupName(R, S);
3055   return R.getAsSingle<NamedDecl>();
3056 }
3057 
3058 /// Find the protocol with the given name, if any.
3059 ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
3060                                        SourceLocation IdLoc,
3061                                        RedeclarationKind Redecl) {
3062   Decl *D = LookupSingleName(TUScope, II, IdLoc,
3063                              LookupObjCProtocolName, Redecl);
3064   return cast_or_null<ObjCProtocolDecl>(D);
3065 }
3066 
3067 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
3068                                         QualType T1, QualType T2,
3069                                         UnresolvedSetImpl &Functions) {
3070   // C++ [over.match.oper]p3:
3071   //     -- The set of non-member candidates is the result of the
3072   //        unqualified lookup of operator@ in the context of the
3073   //        expression according to the usual rules for name lookup in
3074   //        unqualified function calls (3.4.2) except that all member
3075   //        functions are ignored.
3076   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3077   LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
3078   LookupName(Operators, S);
3079 
3080   assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
3081   Functions.append(Operators.begin(), Operators.end());
3082 }
3083 
3084 Sema::SpecialMemberOverloadResult Sema::LookupSpecialMember(CXXRecordDecl *RD,
3085                                                            CXXSpecialMember SM,
3086                                                            bool ConstArg,
3087                                                            bool VolatileArg,
3088                                                            bool RValueThis,
3089                                                            bool ConstThis,
3090                                                            bool VolatileThis) {
3091   assert(CanDeclareSpecialMemberFunction(RD) &&
3092          "doing special member lookup into record that isn't fully complete");
3093   RD = RD->getDefinition();
3094   if (RValueThis || ConstThis || VolatileThis)
3095     assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
3096            "constructors and destructors always have unqualified lvalue this");
3097   if (ConstArg || VolatileArg)
3098     assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
3099            "parameter-less special members can't have qualified arguments");
3100 
3101   // FIXME: Get the caller to pass in a location for the lookup.
3102   SourceLocation LookupLoc = RD->getLocation();
3103 
3104   llvm::FoldingSetNodeID ID;
3105   ID.AddPointer(RD);
3106   ID.AddInteger(SM);
3107   ID.AddInteger(ConstArg);
3108   ID.AddInteger(VolatileArg);
3109   ID.AddInteger(RValueThis);
3110   ID.AddInteger(ConstThis);
3111   ID.AddInteger(VolatileThis);
3112 
3113   void *InsertPoint;
3114   SpecialMemberOverloadResultEntry *Result =
3115     SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
3116 
3117   // This was already cached
3118   if (Result)
3119     return *Result;
3120 
3121   Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>();
3122   Result = new (Result) SpecialMemberOverloadResultEntry(ID);
3123   SpecialMemberCache.InsertNode(Result, InsertPoint);
3124 
3125   if (SM == CXXDestructor) {
3126     if (RD->needsImplicitDestructor()) {
3127       runWithSufficientStackSpace(RD->getLocation(), [&] {
3128         DeclareImplicitDestructor(RD);
3129       });
3130     }
3131     CXXDestructorDecl *DD = RD->getDestructor();
3132     Result->setMethod(DD);
3133     Result->setKind(DD && !DD->isDeleted()
3134                         ? SpecialMemberOverloadResult::Success
3135                         : SpecialMemberOverloadResult::NoMemberOrDeleted);
3136     return *Result;
3137   }
3138 
3139   // Prepare for overload resolution. Here we construct a synthetic argument
3140   // if necessary and make sure that implicit functions are declared.
3141   CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
3142   DeclarationName Name;
3143   Expr *Arg = nullptr;
3144   unsigned NumArgs;
3145 
3146   QualType ArgType = CanTy;
3147   ExprValueKind VK = VK_LValue;
3148 
3149   if (SM == CXXDefaultConstructor) {
3150     Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3151     NumArgs = 0;
3152     if (RD->needsImplicitDefaultConstructor()) {
3153       runWithSufficientStackSpace(RD->getLocation(), [&] {
3154         DeclareImplicitDefaultConstructor(RD);
3155       });
3156     }
3157   } else {
3158     if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
3159       Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3160       if (RD->needsImplicitCopyConstructor()) {
3161         runWithSufficientStackSpace(RD->getLocation(), [&] {
3162           DeclareImplicitCopyConstructor(RD);
3163         });
3164       }
3165       if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) {
3166         runWithSufficientStackSpace(RD->getLocation(), [&] {
3167           DeclareImplicitMoveConstructor(RD);
3168         });
3169       }
3170     } else {
3171       Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
3172       if (RD->needsImplicitCopyAssignment()) {
3173         runWithSufficientStackSpace(RD->getLocation(), [&] {
3174           DeclareImplicitCopyAssignment(RD);
3175         });
3176       }
3177       if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) {
3178         runWithSufficientStackSpace(RD->getLocation(), [&] {
3179           DeclareImplicitMoveAssignment(RD);
3180         });
3181       }
3182     }
3183 
3184     if (ConstArg)
3185       ArgType.addConst();
3186     if (VolatileArg)
3187       ArgType.addVolatile();
3188 
3189     // This isn't /really/ specified by the standard, but it's implied
3190     // we should be working from an RValue in the case of move to ensure
3191     // that we prefer to bind to rvalue references, and an LValue in the
3192     // case of copy to ensure we don't bind to rvalue references.
3193     // Possibly an XValue is actually correct in the case of move, but
3194     // there is no semantic difference for class types in this restricted
3195     // case.
3196     if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
3197       VK = VK_LValue;
3198     else
3199       VK = VK_RValue;
3200   }
3201 
3202   OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK);
3203 
3204   if (SM != CXXDefaultConstructor) {
3205     NumArgs = 1;
3206     Arg = &FakeArg;
3207   }
3208 
3209   // Create the object argument
3210   QualType ThisTy = CanTy;
3211   if (ConstThis)
3212     ThisTy.addConst();
3213   if (VolatileThis)
3214     ThisTy.addVolatile();
3215   Expr::Classification Classification =
3216     OpaqueValueExpr(LookupLoc, ThisTy,
3217                     RValueThis ? VK_RValue : VK_LValue).Classify(Context);
3218 
3219   // Now we perform lookup on the name we computed earlier and do overload
3220   // resolution. Lookup is only performed directly into the class since there
3221   // will always be a (possibly implicit) declaration to shadow any others.
3222   OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal);
3223   DeclContext::lookup_result R = RD->lookup(Name);
3224 
3225   if (R.empty()) {
3226     // We might have no default constructor because we have a lambda's closure
3227     // type, rather than because there's some other declared constructor.
3228     // Every class has a copy/move constructor, copy/move assignment, and
3229     // destructor.
3230     assert(SM == CXXDefaultConstructor &&
3231            "lookup for a constructor or assignment operator was empty");
3232     Result->setMethod(nullptr);
3233     Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3234     return *Result;
3235   }
3236 
3237   // Copy the candidates as our processing of them may load new declarations
3238   // from an external source and invalidate lookup_result.
3239   SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
3240 
3241   for (NamedDecl *CandDecl : Candidates) {
3242     if (CandDecl->isInvalidDecl())
3243       continue;
3244 
3245     DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public);
3246     auto CtorInfo = getConstructorInfo(Cand);
3247     if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
3248       if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3249         AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
3250                            llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3251       else if (CtorInfo)
3252         AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
3253                              llvm::makeArrayRef(&Arg, NumArgs), OCS,
3254                              /*SuppressUserConversions*/ true);
3255       else
3256         AddOverloadCandidate(M, Cand, llvm::makeArrayRef(&Arg, NumArgs), OCS,
3257                              /*SuppressUserConversions*/ true);
3258     } else if (FunctionTemplateDecl *Tmpl =
3259                  dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) {
3260       if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3261         AddMethodTemplateCandidate(
3262             Tmpl, Cand, RD, nullptr, ThisTy, Classification,
3263             llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3264       else if (CtorInfo)
3265         AddTemplateOverloadCandidate(
3266             CtorInfo.ConstructorTmpl, CtorInfo.FoundDecl, nullptr,
3267             llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3268       else
3269         AddTemplateOverloadCandidate(
3270             Tmpl, Cand, nullptr, llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3271     } else {
3272       assert(isa<UsingDecl>(Cand.getDecl()) &&
3273              "illegal Kind of operator = Decl");
3274     }
3275   }
3276 
3277   OverloadCandidateSet::iterator Best;
3278   switch (OCS.BestViableFunction(*this, LookupLoc, Best)) {
3279     case OR_Success:
3280       Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3281       Result->setKind(SpecialMemberOverloadResult::Success);
3282       break;
3283 
3284     case OR_Deleted:
3285       Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3286       Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3287       break;
3288 
3289     case OR_Ambiguous:
3290       Result->setMethod(nullptr);
3291       Result->setKind(SpecialMemberOverloadResult::Ambiguous);
3292       break;
3293 
3294     case OR_No_Viable_Function:
3295       Result->setMethod(nullptr);
3296       Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3297       break;
3298   }
3299 
3300   return *Result;
3301 }
3302 
3303 /// Look up the default constructor for the given class.
3304 CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
3305   SpecialMemberOverloadResult Result =
3306     LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
3307                         false, false);
3308 
3309   return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3310 }
3311 
3312 /// Look up the copying constructor for the given class.
3313 CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
3314                                                    unsigned Quals) {
3315   assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3316          "non-const, non-volatile qualifiers for copy ctor arg");
3317   SpecialMemberOverloadResult Result =
3318     LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
3319                         Quals & Qualifiers::Volatile, false, false, false);
3320 
3321   return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3322 }
3323 
3324 /// Look up the moving constructor for the given class.
3325 CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
3326                                                   unsigned Quals) {
3327   SpecialMemberOverloadResult Result =
3328     LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
3329                         Quals & Qualifiers::Volatile, false, false, false);
3330 
3331   return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3332 }
3333 
3334 /// Look up the constructors for the given class.
3335 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
3336   // If the implicit constructors have not yet been declared, do so now.
3337   if (CanDeclareSpecialMemberFunction(Class)) {
3338     runWithSufficientStackSpace(Class->getLocation(), [&] {
3339       if (Class->needsImplicitDefaultConstructor())
3340         DeclareImplicitDefaultConstructor(Class);
3341       if (Class->needsImplicitCopyConstructor())
3342         DeclareImplicitCopyConstructor(Class);
3343       if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
3344         DeclareImplicitMoveConstructor(Class);
3345     });
3346   }
3347 
3348   CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
3349   DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
3350   return Class->lookup(Name);
3351 }
3352 
3353 /// Look up the copying assignment operator for the given class.
3354 CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
3355                                              unsigned Quals, bool RValueThis,
3356                                              unsigned ThisQuals) {
3357   assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3358          "non-const, non-volatile qualifiers for copy assignment arg");
3359   assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3360          "non-const, non-volatile qualifiers for copy assignment this");
3361   SpecialMemberOverloadResult Result =
3362     LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
3363                         Quals & Qualifiers::Volatile, RValueThis,
3364                         ThisQuals & Qualifiers::Const,
3365                         ThisQuals & Qualifiers::Volatile);
3366 
3367   return Result.getMethod();
3368 }
3369 
3370 /// Look up the moving assignment operator for the given class.
3371 CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
3372                                             unsigned Quals,
3373                                             bool RValueThis,
3374                                             unsigned ThisQuals) {
3375   assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3376          "non-const, non-volatile qualifiers for copy assignment this");
3377   SpecialMemberOverloadResult Result =
3378     LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
3379                         Quals & Qualifiers::Volatile, RValueThis,
3380                         ThisQuals & Qualifiers::Const,
3381                         ThisQuals & Qualifiers::Volatile);
3382 
3383   return Result.getMethod();
3384 }
3385 
3386 /// Look for the destructor of the given class.
3387 ///
3388 /// During semantic analysis, this routine should be used in lieu of
3389 /// CXXRecordDecl::getDestructor().
3390 ///
3391 /// \returns The destructor for this class.
3392 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
3393   return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
3394                                                      false, false, false,
3395                                                      false, false).getMethod());
3396 }
3397 
3398 /// LookupLiteralOperator - Determine which literal operator should be used for
3399 /// a user-defined literal, per C++11 [lex.ext].
3400 ///
3401 /// Normal overload resolution is not used to select which literal operator to
3402 /// call for a user-defined literal. Look up the provided literal operator name,
3403 /// and filter the results to the appropriate set for the given argument types.
3404 Sema::LiteralOperatorLookupResult
3405 Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
3406                             ArrayRef<QualType> ArgTys,
3407                             bool AllowRaw, bool AllowTemplate,
3408                             bool AllowStringTemplate, bool DiagnoseMissing) {
3409   LookupName(R, S);
3410   assert(R.getResultKind() != LookupResult::Ambiguous &&
3411          "literal operator lookup can't be ambiguous");
3412 
3413   // Filter the lookup results appropriately.
3414   LookupResult::Filter F = R.makeFilter();
3415 
3416   bool FoundRaw = false;
3417   bool FoundTemplate = false;
3418   bool FoundStringTemplate = false;
3419   bool FoundExactMatch = false;
3420 
3421   while (F.hasNext()) {
3422     Decl *D = F.next();
3423     if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
3424       D = USD->getTargetDecl();
3425 
3426     // If the declaration we found is invalid, skip it.
3427     if (D->isInvalidDecl()) {
3428       F.erase();
3429       continue;
3430     }
3431 
3432     bool IsRaw = false;
3433     bool IsTemplate = false;
3434     bool IsStringTemplate = false;
3435     bool IsExactMatch = false;
3436 
3437     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3438       if (FD->getNumParams() == 1 &&
3439           FD->getParamDecl(0)->getType()->getAs<PointerType>())
3440         IsRaw = true;
3441       else if (FD->getNumParams() == ArgTys.size()) {
3442         IsExactMatch = true;
3443         for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
3444           QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
3445           if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
3446             IsExactMatch = false;
3447             break;
3448           }
3449         }
3450       }
3451     }
3452     if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
3453       TemplateParameterList *Params = FD->getTemplateParameters();
3454       if (Params->size() == 1)
3455         IsTemplate = true;
3456       else
3457         IsStringTemplate = true;
3458     }
3459 
3460     if (IsExactMatch) {
3461       FoundExactMatch = true;
3462       AllowRaw = false;
3463       AllowTemplate = false;
3464       AllowStringTemplate = false;
3465       if (FoundRaw || FoundTemplate || FoundStringTemplate) {
3466         // Go through again and remove the raw and template decls we've
3467         // already found.
3468         F.restart();
3469         FoundRaw = FoundTemplate = FoundStringTemplate = false;
3470       }
3471     } else if (AllowRaw && IsRaw) {
3472       FoundRaw = true;
3473     } else if (AllowTemplate && IsTemplate) {
3474       FoundTemplate = true;
3475     } else if (AllowStringTemplate && IsStringTemplate) {
3476       FoundStringTemplate = true;
3477     } else {
3478       F.erase();
3479     }
3480   }
3481 
3482   F.done();
3483 
3484   // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
3485   // parameter type, that is used in preference to a raw literal operator
3486   // or literal operator template.
3487   if (FoundExactMatch)
3488     return LOLR_Cooked;
3489 
3490   // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
3491   // operator template, but not both.
3492   if (FoundRaw && FoundTemplate) {
3493     Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
3494     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3495       NoteOverloadCandidate(*I, (*I)->getUnderlyingDecl()->getAsFunction());
3496     return LOLR_Error;
3497   }
3498 
3499   if (FoundRaw)
3500     return LOLR_Raw;
3501 
3502   if (FoundTemplate)
3503     return LOLR_Template;
3504 
3505   if (FoundStringTemplate)
3506     return LOLR_StringTemplate;
3507 
3508   // Didn't find anything we could use.
3509   if (DiagnoseMissing) {
3510     Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
3511         << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
3512         << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
3513         << (AllowTemplate || AllowStringTemplate);
3514     return LOLR_Error;
3515   }
3516 
3517   return LOLR_ErrorNoDiagnostic;
3518 }
3519 
3520 void ADLResult::insert(NamedDecl *New) {
3521   NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
3522 
3523   // If we haven't yet seen a decl for this key, or the last decl
3524   // was exactly this one, we're done.
3525   if (Old == nullptr || Old == New) {
3526     Old = New;
3527     return;
3528   }
3529 
3530   // Otherwise, decide which is a more recent redeclaration.
3531   FunctionDecl *OldFD = Old->getAsFunction();
3532   FunctionDecl *NewFD = New->getAsFunction();
3533 
3534   FunctionDecl *Cursor = NewFD;
3535   while (true) {
3536     Cursor = Cursor->getPreviousDecl();
3537 
3538     // If we got to the end without finding OldFD, OldFD is the newer
3539     // declaration;  leave things as they are.
3540     if (!Cursor) return;
3541 
3542     // If we do find OldFD, then NewFD is newer.
3543     if (Cursor == OldFD) break;
3544 
3545     // Otherwise, keep looking.
3546   }
3547 
3548   Old = New;
3549 }
3550 
3551 void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
3552                                    ArrayRef<Expr *> Args, ADLResult &Result) {
3553   // Find all of the associated namespaces and classes based on the
3554   // arguments we have.
3555   AssociatedNamespaceSet AssociatedNamespaces;
3556   AssociatedClassSet AssociatedClasses;
3557   FindAssociatedClassesAndNamespaces(Loc, Args,
3558                                      AssociatedNamespaces,
3559                                      AssociatedClasses);
3560 
3561   // C++ [basic.lookup.argdep]p3:
3562   //   Let X be the lookup set produced by unqualified lookup (3.4.1)
3563   //   and let Y be the lookup set produced by argument dependent
3564   //   lookup (defined as follows). If X contains [...] then Y is
3565   //   empty. Otherwise Y is the set of declarations found in the
3566   //   namespaces associated with the argument types as described
3567   //   below. The set of declarations found by the lookup of the name
3568   //   is the union of X and Y.
3569   //
3570   // Here, we compute Y and add its members to the overloaded
3571   // candidate set.
3572   for (auto *NS : AssociatedNamespaces) {
3573     //   When considering an associated namespace, the lookup is the
3574     //   same as the lookup performed when the associated namespace is
3575     //   used as a qualifier (3.4.3.2) except that:
3576     //
3577     //     -- Any using-directives in the associated namespace are
3578     //        ignored.
3579     //
3580     //     -- Any namespace-scope friend functions declared in
3581     //        associated classes are visible within their respective
3582     //        namespaces even if they are not visible during an ordinary
3583     //        lookup (11.4).
3584     DeclContext::lookup_result R = NS->lookup(Name);
3585     for (auto *D : R) {
3586       auto *Underlying = D;
3587       if (auto *USD = dyn_cast<UsingShadowDecl>(D))
3588         Underlying = USD->getTargetDecl();
3589 
3590       if (!isa<FunctionDecl>(Underlying) &&
3591           !isa<FunctionTemplateDecl>(Underlying))
3592         continue;
3593 
3594       // The declaration is visible to argument-dependent lookup if either
3595       // it's ordinarily visible or declared as a friend in an associated
3596       // class.
3597       bool Visible = false;
3598       for (D = D->getMostRecentDecl(); D;
3599            D = cast_or_null<NamedDecl>(D->getPreviousDecl())) {
3600         if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) {
3601           if (isVisible(D)) {
3602             Visible = true;
3603             break;
3604           }
3605         } else if (D->getFriendObjectKind()) {
3606           auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext());
3607           if (AssociatedClasses.count(RD) && isVisible(D)) {
3608             Visible = true;
3609             break;
3610           }
3611         }
3612       }
3613 
3614       // FIXME: Preserve D as the FoundDecl.
3615       if (Visible)
3616         Result.insert(Underlying);
3617     }
3618   }
3619 }
3620 
3621 //----------------------------------------------------------------------------
3622 // Search for all visible declarations.
3623 //----------------------------------------------------------------------------
3624 VisibleDeclConsumer::~VisibleDeclConsumer() { }
3625 
3626 bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
3627 
3628 namespace {
3629 
3630 class ShadowContextRAII;
3631 
3632 class VisibleDeclsRecord {
3633 public:
3634   /// An entry in the shadow map, which is optimized to store a
3635   /// single declaration (the common case) but can also store a list
3636   /// of declarations.
3637   typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
3638 
3639 private:
3640   /// A mapping from declaration names to the declarations that have
3641   /// this name within a particular scope.
3642   typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
3643 
3644   /// A list of shadow maps, which is used to model name hiding.
3645   std::list<ShadowMap> ShadowMaps;
3646 
3647   /// The declaration contexts we have already visited.
3648   llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
3649 
3650   friend class ShadowContextRAII;
3651 
3652 public:
3653   /// Determine whether we have already visited this context
3654   /// (and, if not, note that we are going to visit that context now).
3655   bool visitedContext(DeclContext *Ctx) {
3656     return !VisitedContexts.insert(Ctx).second;
3657   }
3658 
3659   bool alreadyVisitedContext(DeclContext *Ctx) {
3660     return VisitedContexts.count(Ctx);
3661   }
3662 
3663   /// Determine whether the given declaration is hidden in the
3664   /// current scope.
3665   ///
3666   /// \returns the declaration that hides the given declaration, or
3667   /// NULL if no such declaration exists.
3668   NamedDecl *checkHidden(NamedDecl *ND);
3669 
3670   /// Add a declaration to the current shadow map.
3671   void add(NamedDecl *ND) {
3672     ShadowMaps.back()[ND->getDeclName()].push_back(ND);
3673   }
3674 };
3675 
3676 /// RAII object that records when we've entered a shadow context.
3677 class ShadowContextRAII {
3678   VisibleDeclsRecord &Visible;
3679 
3680   typedef VisibleDeclsRecord::ShadowMap ShadowMap;
3681 
3682 public:
3683   ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
3684     Visible.ShadowMaps.emplace_back();
3685   }
3686 
3687   ~ShadowContextRAII() {
3688     Visible.ShadowMaps.pop_back();
3689   }
3690 };
3691 
3692 } // end anonymous namespace
3693 
3694 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
3695   unsigned IDNS = ND->getIdentifierNamespace();
3696   std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
3697   for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
3698        SM != SMEnd; ++SM) {
3699     ShadowMap::iterator Pos = SM->find(ND->getDeclName());
3700     if (Pos == SM->end())
3701       continue;
3702 
3703     for (auto *D : Pos->second) {
3704       // A tag declaration does not hide a non-tag declaration.
3705       if (D->hasTagIdentifierNamespace() &&
3706           (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
3707                    Decl::IDNS_ObjCProtocol)))
3708         continue;
3709 
3710       // Protocols are in distinct namespaces from everything else.
3711       if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
3712            || (IDNS & Decl::IDNS_ObjCProtocol)) &&
3713           D->getIdentifierNamespace() != IDNS)
3714         continue;
3715 
3716       // Functions and function templates in the same scope overload
3717       // rather than hide.  FIXME: Look for hiding based on function
3718       // signatures!
3719       if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3720           ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3721           SM == ShadowMaps.rbegin())
3722         continue;
3723 
3724       // A shadow declaration that's created by a resolved using declaration
3725       // is not hidden by the same using declaration.
3726       if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) &&
3727           cast<UsingShadowDecl>(ND)->getUsingDecl() == D)
3728         continue;
3729 
3730       // We've found a declaration that hides this one.
3731       return D;
3732     }
3733   }
3734 
3735   return nullptr;
3736 }
3737 
3738 namespace {
3739 class LookupVisibleHelper {
3740 public:
3741   LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases,
3742                       bool LoadExternal)
3743       : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases),
3744         LoadExternal(LoadExternal) {}
3745 
3746   void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind,
3747                           bool IncludeGlobalScope) {
3748     // Determine the set of using directives available during
3749     // unqualified name lookup.
3750     Scope *Initial = S;
3751     UnqualUsingDirectiveSet UDirs(SemaRef);
3752     if (SemaRef.getLangOpts().CPlusPlus) {
3753       // Find the first namespace or translation-unit scope.
3754       while (S && !isNamespaceOrTranslationUnitScope(S))
3755         S = S->getParent();
3756 
3757       UDirs.visitScopeChain(Initial, S);
3758     }
3759     UDirs.done();
3760 
3761     // Look for visible declarations.
3762     LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
3763     Result.setAllowHidden(Consumer.includeHiddenDecls());
3764     if (!IncludeGlobalScope)
3765       Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
3766     ShadowContextRAII Shadow(Visited);
3767     lookupInScope(Initial, Result, UDirs);
3768   }
3769 
3770   void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx,
3771                           Sema::LookupNameKind Kind, bool IncludeGlobalScope) {
3772     LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
3773     Result.setAllowHidden(Consumer.includeHiddenDecls());
3774     if (!IncludeGlobalScope)
3775       Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
3776 
3777     ShadowContextRAII Shadow(Visited);
3778     lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true,
3779                         /*InBaseClass=*/false);
3780   }
3781 
3782 private:
3783   void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result,
3784                            bool QualifiedNameLookup, bool InBaseClass) {
3785     if (!Ctx)
3786       return;
3787 
3788     // Make sure we don't visit the same context twice.
3789     if (Visited.visitedContext(Ctx->getPrimaryContext()))
3790       return;
3791 
3792     Consumer.EnteredContext(Ctx);
3793 
3794     // Outside C++, lookup results for the TU live on identifiers.
3795     if (isa<TranslationUnitDecl>(Ctx) &&
3796         !Result.getSema().getLangOpts().CPlusPlus) {
3797       auto &S = Result.getSema();
3798       auto &Idents = S.Context.Idents;
3799 
3800       // Ensure all external identifiers are in the identifier table.
3801       if (LoadExternal)
3802         if (IdentifierInfoLookup *External =
3803                 Idents.getExternalIdentifierLookup()) {
3804           std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
3805           for (StringRef Name = Iter->Next(); !Name.empty();
3806                Name = Iter->Next())
3807             Idents.get(Name);
3808         }
3809 
3810       // Walk all lookup results in the TU for each identifier.
3811       for (const auto &Ident : Idents) {
3812         for (auto I = S.IdResolver.begin(Ident.getValue()),
3813                   E = S.IdResolver.end();
3814              I != E; ++I) {
3815           if (S.IdResolver.isDeclInScope(*I, Ctx)) {
3816             if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
3817               Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3818               Visited.add(ND);
3819             }
3820           }
3821         }
3822       }
3823 
3824       return;
3825     }
3826 
3827     if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
3828       Result.getSema().ForceDeclarationOfImplicitMembers(Class);
3829 
3830     // We sometimes skip loading namespace-level results (they tend to be huge).
3831     bool Load = LoadExternal ||
3832                 !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx));
3833     // Enumerate all of the results in this context.
3834     for (DeclContextLookupResult R :
3835          Load ? Ctx->lookups()
3836               : Ctx->noload_lookups(/*PreserveInternalState=*/false)) {
3837       for (auto *D : R) {
3838         if (auto *ND = Result.getAcceptableDecl(D)) {
3839           Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3840           Visited.add(ND);
3841         }
3842       }
3843     }
3844 
3845     // Traverse using directives for qualified name lookup.
3846     if (QualifiedNameLookup) {
3847       ShadowContextRAII Shadow(Visited);
3848       for (auto I : Ctx->using_directives()) {
3849         if (!Result.getSema().isVisible(I))
3850           continue;
3851         lookupInDeclContext(I->getNominatedNamespace(), Result,
3852                             QualifiedNameLookup, InBaseClass);
3853       }
3854     }
3855 
3856     // Traverse the contexts of inherited C++ classes.
3857     if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
3858       if (!Record->hasDefinition())
3859         return;
3860 
3861       for (const auto &B : Record->bases()) {
3862         QualType BaseType = B.getType();
3863 
3864         RecordDecl *RD;
3865         if (BaseType->isDependentType()) {
3866           if (!IncludeDependentBases) {
3867             // Don't look into dependent bases, because name lookup can't look
3868             // there anyway.
3869             continue;
3870           }
3871           const auto *TST = BaseType->getAs<TemplateSpecializationType>();
3872           if (!TST)
3873             continue;
3874           TemplateName TN = TST->getTemplateName();
3875           const auto *TD =
3876               dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
3877           if (!TD)
3878             continue;
3879           RD = TD->getTemplatedDecl();
3880         } else {
3881           const auto *Record = BaseType->getAs<RecordType>();
3882           if (!Record)
3883             continue;
3884           RD = Record->getDecl();
3885         }
3886 
3887         // FIXME: It would be nice to be able to determine whether referencing
3888         // a particular member would be ambiguous. For example, given
3889         //
3890         //   struct A { int member; };
3891         //   struct B { int member; };
3892         //   struct C : A, B { };
3893         //
3894         //   void f(C *c) { c->### }
3895         //
3896         // accessing 'member' would result in an ambiguity. However, we
3897         // could be smart enough to qualify the member with the base
3898         // class, e.g.,
3899         //
3900         //   c->B::member
3901         //
3902         // or
3903         //
3904         //   c->A::member
3905 
3906         // Find results in this base class (and its bases).
3907         ShadowContextRAII Shadow(Visited);
3908         lookupInDeclContext(RD, Result, QualifiedNameLookup,
3909                             /*InBaseClass=*/true);
3910       }
3911     }
3912 
3913     // Traverse the contexts of Objective-C classes.
3914     if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
3915       // Traverse categories.
3916       for (auto *Cat : IFace->visible_categories()) {
3917         ShadowContextRAII Shadow(Visited);
3918         lookupInDeclContext(Cat, Result, QualifiedNameLookup,
3919                             /*InBaseClass=*/false);
3920       }
3921 
3922       // Traverse protocols.
3923       for (auto *I : IFace->all_referenced_protocols()) {
3924         ShadowContextRAII Shadow(Visited);
3925         lookupInDeclContext(I, Result, QualifiedNameLookup,
3926                             /*InBaseClass=*/false);
3927       }
3928 
3929       // Traverse the superclass.
3930       if (IFace->getSuperClass()) {
3931         ShadowContextRAII Shadow(Visited);
3932         lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup,
3933                             /*InBaseClass=*/true);
3934       }
3935 
3936       // If there is an implementation, traverse it. We do this to find
3937       // synthesized ivars.
3938       if (IFace->getImplementation()) {
3939         ShadowContextRAII Shadow(Visited);
3940         lookupInDeclContext(IFace->getImplementation(), Result,
3941                             QualifiedNameLookup, InBaseClass);
3942       }
3943     } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
3944       for (auto *I : Protocol->protocols()) {
3945         ShadowContextRAII Shadow(Visited);
3946         lookupInDeclContext(I, Result, QualifiedNameLookup,
3947                             /*InBaseClass=*/false);
3948       }
3949     } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
3950       for (auto *I : Category->protocols()) {
3951         ShadowContextRAII Shadow(Visited);
3952         lookupInDeclContext(I, Result, QualifiedNameLookup,
3953                             /*InBaseClass=*/false);
3954       }
3955 
3956       // If there is an implementation, traverse it.
3957       if (Category->getImplementation()) {
3958         ShadowContextRAII Shadow(Visited);
3959         lookupInDeclContext(Category->getImplementation(), Result,
3960                             QualifiedNameLookup, /*InBaseClass=*/true);
3961       }
3962     }
3963   }
3964 
3965   void lookupInScope(Scope *S, LookupResult &Result,
3966                      UnqualUsingDirectiveSet &UDirs) {
3967     // No clients run in this mode and it's not supported. Please add tests and
3968     // remove the assertion if you start relying on it.
3969     assert(!IncludeDependentBases && "Unsupported flag for lookupInScope");
3970 
3971     if (!S)
3972       return;
3973 
3974     if (!S->getEntity() ||
3975         (!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) ||
3976         (S->getEntity())->isFunctionOrMethod()) {
3977       FindLocalExternScope FindLocals(Result);
3978       // Walk through the declarations in this Scope. The consumer might add new
3979       // decls to the scope as part of deserialization, so make a copy first.
3980       SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end());
3981       for (Decl *D : ScopeDecls) {
3982         if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
3983           if ((ND = Result.getAcceptableDecl(ND))) {
3984             Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
3985             Visited.add(ND);
3986           }
3987       }
3988     }
3989 
3990     // FIXME: C++ [temp.local]p8
3991     DeclContext *Entity = nullptr;
3992     if (S->getEntity()) {
3993       // Look into this scope's declaration context, along with any of its
3994       // parent lookup contexts (e.g., enclosing classes), up to the point
3995       // where we hit the context stored in the next outer scope.
3996       Entity = S->getEntity();
3997       DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
3998 
3999       for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
4000            Ctx = Ctx->getLookupParent()) {
4001         if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
4002           if (Method->isInstanceMethod()) {
4003             // For instance methods, look for ivars in the method's interface.
4004             LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
4005                                     Result.getNameLoc(),
4006                                     Sema::LookupMemberName);
4007             if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
4008               lookupInDeclContext(IFace, IvarResult,
4009                                   /*QualifiedNameLookup=*/false,
4010                                   /*InBaseClass=*/false);
4011             }
4012           }
4013 
4014           // We've already performed all of the name lookup that we need
4015           // to for Objective-C methods; the next context will be the
4016           // outer scope.
4017           break;
4018         }
4019 
4020         if (Ctx->isFunctionOrMethod())
4021           continue;
4022 
4023         lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false,
4024                             /*InBaseClass=*/false);
4025       }
4026     } else if (!S->getParent()) {
4027       // Look into the translation unit scope. We walk through the translation
4028       // unit's declaration context, because the Scope itself won't have all of
4029       // the declarations if we loaded a precompiled header.
4030       // FIXME: We would like the translation unit's Scope object to point to
4031       // the translation unit, so we don't need this special "if" branch.
4032       // However, doing so would force the normal C++ name-lookup code to look
4033       // into the translation unit decl when the IdentifierInfo chains would
4034       // suffice. Once we fix that problem (which is part of a more general
4035       // "don't look in DeclContexts unless we have to" optimization), we can
4036       // eliminate this.
4037       Entity = Result.getSema().Context.getTranslationUnitDecl();
4038       lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false,
4039                           /*InBaseClass=*/false);
4040     }
4041 
4042     if (Entity) {
4043       // Lookup visible declarations in any namespaces found by using
4044       // directives.
4045       for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
4046         lookupInDeclContext(
4047             const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result,
4048             /*QualifiedNameLookup=*/false,
4049             /*InBaseClass=*/false);
4050     }
4051 
4052     // Lookup names in the parent scope.
4053     ShadowContextRAII Shadow(Visited);
4054     lookupInScope(S->getParent(), Result, UDirs);
4055   }
4056 
4057 private:
4058   VisibleDeclsRecord Visited;
4059   VisibleDeclConsumer &Consumer;
4060   bool IncludeDependentBases;
4061   bool LoadExternal;
4062 };
4063 } // namespace
4064 
4065 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
4066                               VisibleDeclConsumer &Consumer,
4067                               bool IncludeGlobalScope, bool LoadExternal) {
4068   LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false,
4069                         LoadExternal);
4070   H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope);
4071 }
4072 
4073 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
4074                               VisibleDeclConsumer &Consumer,
4075                               bool IncludeGlobalScope,
4076                               bool IncludeDependentBases, bool LoadExternal) {
4077   LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal);
4078   H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope);
4079 }
4080 
4081 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
4082 /// If GnuLabelLoc is a valid source location, then this is a definition
4083 /// of an __label__ label name, otherwise it is a normal label definition
4084 /// or use.
4085 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
4086                                      SourceLocation GnuLabelLoc) {
4087   // Do a lookup to see if we have a label with this name already.
4088   NamedDecl *Res = nullptr;
4089 
4090   if (GnuLabelLoc.isValid()) {
4091     // Local label definitions always shadow existing labels.
4092     Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
4093     Scope *S = CurScope;
4094     PushOnScopeChains(Res, S, true);
4095     return cast<LabelDecl>(Res);
4096   }
4097 
4098   // Not a GNU local label.
4099   Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
4100   // If we found a label, check to see if it is in the same context as us.
4101   // When in a Block, we don't want to reuse a label in an enclosing function.
4102   if (Res && Res->getDeclContext() != CurContext)
4103     Res = nullptr;
4104   if (!Res) {
4105     // If not forward referenced or defined already, create the backing decl.
4106     Res = LabelDecl::Create(Context, CurContext, Loc, II);
4107     Scope *S = CurScope->getFnParent();
4108     assert(S && "Not in a function?");
4109     PushOnScopeChains(Res, S, true);
4110   }
4111   return cast<LabelDecl>(Res);
4112 }
4113 
4114 //===----------------------------------------------------------------------===//
4115 // Typo correction
4116 //===----------------------------------------------------------------------===//
4117 
4118 static bool isCandidateViable(CorrectionCandidateCallback &CCC,
4119                               TypoCorrection &Candidate) {
4120   Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
4121   return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
4122 }
4123 
4124 static void LookupPotentialTypoResult(Sema &SemaRef,
4125                                       LookupResult &Res,
4126                                       IdentifierInfo *Name,
4127                                       Scope *S, CXXScopeSpec *SS,
4128                                       DeclContext *MemberContext,
4129                                       bool EnteringContext,
4130                                       bool isObjCIvarLookup,
4131                                       bool FindHidden);
4132 
4133 /// Check whether the declarations found for a typo correction are
4134 /// visible. Set the correction's RequiresImport flag to true if none of the
4135 /// declarations are visible, false otherwise.
4136 static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
4137   TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
4138 
4139   for (/**/; DI != DE; ++DI)
4140     if (!LookupResult::isVisible(SemaRef, *DI))
4141       break;
4142   // No filtering needed if all decls are visible.
4143   if (DI == DE) {
4144     TC.setRequiresImport(false);
4145     return;
4146   }
4147 
4148   llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
4149   bool AnyVisibleDecls = !NewDecls.empty();
4150 
4151   for (/**/; DI != DE; ++DI) {
4152     if (LookupResult::isVisible(SemaRef, *DI)) {
4153       if (!AnyVisibleDecls) {
4154         // Found a visible decl, discard all hidden ones.
4155         AnyVisibleDecls = true;
4156         NewDecls.clear();
4157       }
4158       NewDecls.push_back(*DI);
4159     } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
4160       NewDecls.push_back(*DI);
4161   }
4162 
4163   if (NewDecls.empty())
4164     TC = TypoCorrection();
4165   else {
4166     TC.setCorrectionDecls(NewDecls);
4167     TC.setRequiresImport(!AnyVisibleDecls);
4168   }
4169 }
4170 
4171 // Fill the supplied vector with the IdentifierInfo pointers for each piece of
4172 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
4173 // fill the vector with the IdentifierInfo pointers for "foo" and "bar").
4174 static void getNestedNameSpecifierIdentifiers(
4175     NestedNameSpecifier *NNS,
4176     SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
4177   if (NestedNameSpecifier *Prefix = NNS->getPrefix())
4178     getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
4179   else
4180     Identifiers.clear();
4181 
4182   const IdentifierInfo *II = nullptr;
4183 
4184   switch (NNS->getKind()) {
4185   case NestedNameSpecifier::Identifier:
4186     II = NNS->getAsIdentifier();
4187     break;
4188 
4189   case NestedNameSpecifier::Namespace:
4190     if (NNS->getAsNamespace()->isAnonymousNamespace())
4191       return;
4192     II = NNS->getAsNamespace()->getIdentifier();
4193     break;
4194 
4195   case NestedNameSpecifier::NamespaceAlias:
4196     II = NNS->getAsNamespaceAlias()->getIdentifier();
4197     break;
4198 
4199   case NestedNameSpecifier::TypeSpecWithTemplate:
4200   case NestedNameSpecifier::TypeSpec:
4201     II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
4202     break;
4203 
4204   case NestedNameSpecifier::Global:
4205   case NestedNameSpecifier::Super:
4206     return;
4207   }
4208 
4209   if (II)
4210     Identifiers.push_back(II);
4211 }
4212 
4213 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
4214                                        DeclContext *Ctx, bool InBaseClass) {
4215   // Don't consider hidden names for typo correction.
4216   if (Hiding)
4217     return;
4218 
4219   // Only consider entities with identifiers for names, ignoring
4220   // special names (constructors, overloaded operators, selectors,
4221   // etc.).
4222   IdentifierInfo *Name = ND->getIdentifier();
4223   if (!Name)
4224     return;
4225 
4226   // Only consider visible declarations and declarations from modules with
4227   // names that exactly match.
4228   if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo)
4229     return;
4230 
4231   FoundName(Name->getName());
4232 }
4233 
4234 void TypoCorrectionConsumer::FoundName(StringRef Name) {
4235   // Compute the edit distance between the typo and the name of this
4236   // entity, and add the identifier to the list of results.
4237   addName(Name, nullptr);
4238 }
4239 
4240 void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
4241   // Compute the edit distance between the typo and this keyword,
4242   // and add the keyword to the list of results.
4243   addName(Keyword, nullptr, nullptr, true);
4244 }
4245 
4246 void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
4247                                      NestedNameSpecifier *NNS, bool isKeyword) {
4248   // Use a simple length-based heuristic to determine the minimum possible
4249   // edit distance. If the minimum isn't good enough, bail out early.
4250   StringRef TypoStr = Typo->getName();
4251   unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
4252   if (MinED && TypoStr.size() / MinED < 3)
4253     return;
4254 
4255   // Compute an upper bound on the allowable edit distance, so that the
4256   // edit-distance algorithm can short-circuit.
4257   unsigned UpperBound = (TypoStr.size() + 2) / 3;
4258   unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
4259   if (ED > UpperBound) return;
4260 
4261   TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
4262   if (isKeyword) TC.makeKeyword();
4263   TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
4264   addCorrection(TC);
4265 }
4266 
4267 static const unsigned MaxTypoDistanceResultSets = 5;
4268 
4269 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
4270   StringRef TypoStr = Typo->getName();
4271   StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
4272 
4273   // For very short typos, ignore potential corrections that have a different
4274   // base identifier from the typo or which have a normalized edit distance
4275   // longer than the typo itself.
4276   if (TypoStr.size() < 3 &&
4277       (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
4278     return;
4279 
4280   // If the correction is resolved but is not viable, ignore it.
4281   if (Correction.isResolved()) {
4282     checkCorrectionVisibility(SemaRef, Correction);
4283     if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
4284       return;
4285   }
4286 
4287   TypoResultList &CList =
4288       CorrectionResults[Correction.getEditDistance(false)][Name];
4289 
4290   if (!CList.empty() && !CList.back().isResolved())
4291     CList.pop_back();
4292   if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
4293     std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
4294     for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
4295          RI != RIEnd; ++RI) {
4296       // If the Correction refers to a decl already in the result list,
4297       // replace the existing result if the string representation of Correction
4298       // comes before the current result alphabetically, then stop as there is
4299       // nothing more to be done to add Correction to the candidate set.
4300       if (RI->getCorrectionDecl() == NewND) {
4301         if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
4302           *RI = Correction;
4303         return;
4304       }
4305     }
4306   }
4307   if (CList.empty() || Correction.isResolved())
4308     CList.push_back(Correction);
4309 
4310   while (CorrectionResults.size() > MaxTypoDistanceResultSets)
4311     CorrectionResults.erase(std::prev(CorrectionResults.end()));
4312 }
4313 
4314 void TypoCorrectionConsumer::addNamespaces(
4315     const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
4316   SearchNamespaces = true;
4317 
4318   for (auto KNPair : KnownNamespaces)
4319     Namespaces.addNameSpecifier(KNPair.first);
4320 
4321   bool SSIsTemplate = false;
4322   if (NestedNameSpecifier *NNS =
4323           (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
4324     if (const Type *T = NNS->getAsType())
4325       SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
4326   }
4327   // Do not transform this into an iterator-based loop. The loop body can
4328   // trigger the creation of further types (through lazy deserialization) and
4329   // invalid iterators into this list.
4330   auto &Types = SemaRef.getASTContext().getTypes();
4331   for (unsigned I = 0; I != Types.size(); ++I) {
4332     const auto *TI = Types[I];
4333     if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
4334       CD = CD->getCanonicalDecl();
4335       if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
4336           !CD->isUnion() && CD->getIdentifier() &&
4337           (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
4338           (CD->isBeingDefined() || CD->isCompleteDefinition()))
4339         Namespaces.addNameSpecifier(CD);
4340     }
4341   }
4342 }
4343 
4344 const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
4345   if (++CurrentTCIndex < ValidatedCorrections.size())
4346     return ValidatedCorrections[CurrentTCIndex];
4347 
4348   CurrentTCIndex = ValidatedCorrections.size();
4349   while (!CorrectionResults.empty()) {
4350     auto DI = CorrectionResults.begin();
4351     if (DI->second.empty()) {
4352       CorrectionResults.erase(DI);
4353       continue;
4354     }
4355 
4356     auto RI = DI->second.begin();
4357     if (RI->second.empty()) {
4358       DI->second.erase(RI);
4359       performQualifiedLookups();
4360       continue;
4361     }
4362 
4363     TypoCorrection TC = RI->second.pop_back_val();
4364     if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
4365       ValidatedCorrections.push_back(TC);
4366       return ValidatedCorrections[CurrentTCIndex];
4367     }
4368   }
4369   return ValidatedCorrections[0];  // The empty correction.
4370 }
4371 
4372 bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
4373   IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
4374   DeclContext *TempMemberContext = MemberContext;
4375   CXXScopeSpec *TempSS = SS.get();
4376 retry_lookup:
4377   LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
4378                             EnteringContext,
4379                             CorrectionValidator->IsObjCIvarLookup,
4380                             Name == Typo && !Candidate.WillReplaceSpecifier());
4381   switch (Result.getResultKind()) {
4382   case LookupResult::NotFound:
4383   case LookupResult::NotFoundInCurrentInstantiation:
4384   case LookupResult::FoundUnresolvedValue:
4385     if (TempSS) {
4386       // Immediately retry the lookup without the given CXXScopeSpec
4387       TempSS = nullptr;
4388       Candidate.WillReplaceSpecifier(true);
4389       goto retry_lookup;
4390     }
4391     if (TempMemberContext) {
4392       if (SS && !TempSS)
4393         TempSS = SS.get();
4394       TempMemberContext = nullptr;
4395       goto retry_lookup;
4396     }
4397     if (SearchNamespaces)
4398       QualifiedResults.push_back(Candidate);
4399     break;
4400 
4401   case LookupResult::Ambiguous:
4402     // We don't deal with ambiguities.
4403     break;
4404 
4405   case LookupResult::Found:
4406   case LookupResult::FoundOverloaded:
4407     // Store all of the Decls for overloaded symbols
4408     for (auto *TRD : Result)
4409       Candidate.addCorrectionDecl(TRD);
4410     checkCorrectionVisibility(SemaRef, Candidate);
4411     if (!isCandidateViable(*CorrectionValidator, Candidate)) {
4412       if (SearchNamespaces)
4413         QualifiedResults.push_back(Candidate);
4414       break;
4415     }
4416     Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4417     return true;
4418   }
4419   return false;
4420 }
4421 
4422 void TypoCorrectionConsumer::performQualifiedLookups() {
4423   unsigned TypoLen = Typo->getName().size();
4424   for (const TypoCorrection &QR : QualifiedResults) {
4425     for (const auto &NSI : Namespaces) {
4426       DeclContext *Ctx = NSI.DeclCtx;
4427       const Type *NSType = NSI.NameSpecifier->getAsType();
4428 
4429       // If the current NestedNameSpecifier refers to a class and the
4430       // current correction candidate is the name of that class, then skip
4431       // it as it is unlikely a qualified version of the class' constructor
4432       // is an appropriate correction.
4433       if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
4434                                            nullptr) {
4435         if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
4436           continue;
4437       }
4438 
4439       TypoCorrection TC(QR);
4440       TC.ClearCorrectionDecls();
4441       TC.setCorrectionSpecifier(NSI.NameSpecifier);
4442       TC.setQualifierDistance(NSI.EditDistance);
4443       TC.setCallbackDistance(0); // Reset the callback distance
4444 
4445       // If the current correction candidate and namespace combination are
4446       // too far away from the original typo based on the normalized edit
4447       // distance, then skip performing a qualified name lookup.
4448       unsigned TmpED = TC.getEditDistance(true);
4449       if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
4450           TypoLen / TmpED < 3)
4451         continue;
4452 
4453       Result.clear();
4454       Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
4455       if (!SemaRef.LookupQualifiedName(Result, Ctx))
4456         continue;
4457 
4458       // Any corrections added below will be validated in subsequent
4459       // iterations of the main while() loop over the Consumer's contents.
4460       switch (Result.getResultKind()) {
4461       case LookupResult::Found:
4462       case LookupResult::FoundOverloaded: {
4463         if (SS && SS->isValid()) {
4464           std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
4465           std::string OldQualified;
4466           llvm::raw_string_ostream OldOStream(OldQualified);
4467           SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
4468           OldOStream << Typo->getName();
4469           // If correction candidate would be an identical written qualified
4470           // identifier, then the existing CXXScopeSpec probably included a
4471           // typedef that didn't get accounted for properly.
4472           if (OldOStream.str() == NewQualified)
4473             break;
4474         }
4475         for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
4476              TRD != TRDEnd; ++TRD) {
4477           if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
4478                                         NSType ? NSType->getAsCXXRecordDecl()
4479                                                : nullptr,
4480                                         TRD.getPair()) == Sema::AR_accessible)
4481             TC.addCorrectionDecl(*TRD);
4482         }
4483         if (TC.isResolved()) {
4484           TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4485           addCorrection(TC);
4486         }
4487         break;
4488       }
4489       case LookupResult::NotFound:
4490       case LookupResult::NotFoundInCurrentInstantiation:
4491       case LookupResult::Ambiguous:
4492       case LookupResult::FoundUnresolvedValue:
4493         break;
4494       }
4495     }
4496   }
4497   QualifiedResults.clear();
4498 }
4499 
4500 TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
4501     ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
4502     : Context(Context), CurContextChain(buildContextChain(CurContext)) {
4503   if (NestedNameSpecifier *NNS =
4504           CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
4505     llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
4506     NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4507 
4508     getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
4509   }
4510   // Build the list of identifiers that would be used for an absolute
4511   // (from the global context) NestedNameSpecifier referring to the current
4512   // context.
4513   for (DeclContext *C : llvm::reverse(CurContextChain)) {
4514     if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C))
4515       CurContextIdentifiers.push_back(ND->getIdentifier());
4516   }
4517 
4518   // Add the global context as a NestedNameSpecifier
4519   SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
4520                       NestedNameSpecifier::GlobalSpecifier(Context), 1};
4521   DistanceMap[1].push_back(SI);
4522 }
4523 
4524 auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
4525     DeclContext *Start) -> DeclContextList {
4526   assert(Start && "Building a context chain from a null context");
4527   DeclContextList Chain;
4528   for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
4529        DC = DC->getLookupParent()) {
4530     NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
4531     if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
4532         !(ND && ND->isAnonymousNamespace()))
4533       Chain.push_back(DC->getPrimaryContext());
4534   }
4535   return Chain;
4536 }
4537 
4538 unsigned
4539 TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
4540     DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
4541   unsigned NumSpecifiers = 0;
4542   for (DeclContext *C : llvm::reverse(DeclChain)) {
4543     if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) {
4544       NNS = NestedNameSpecifier::Create(Context, NNS, ND);
4545       ++NumSpecifiers;
4546     } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) {
4547       NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
4548                                         RD->getTypeForDecl());
4549       ++NumSpecifiers;
4550     }
4551   }
4552   return NumSpecifiers;
4553 }
4554 
4555 void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
4556     DeclContext *Ctx) {
4557   NestedNameSpecifier *NNS = nullptr;
4558   unsigned NumSpecifiers = 0;
4559   DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
4560   DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
4561 
4562   // Eliminate common elements from the two DeclContext chains.
4563   for (DeclContext *C : llvm::reverse(CurContextChain)) {
4564     if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C)
4565       break;
4566     NamespaceDeclChain.pop_back();
4567   }
4568 
4569   // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
4570   NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
4571 
4572   // Add an explicit leading '::' specifier if needed.
4573   if (NamespaceDeclChain.empty()) {
4574     // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4575     NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4576     NumSpecifiers =
4577         buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4578   } else if (NamedDecl *ND =
4579                  dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
4580     IdentifierInfo *Name = ND->getIdentifier();
4581     bool SameNameSpecifier = false;
4582     if (std::find(CurNameSpecifierIdentifiers.begin(),
4583                   CurNameSpecifierIdentifiers.end(),
4584                   Name) != CurNameSpecifierIdentifiers.end()) {
4585       std::string NewNameSpecifier;
4586       llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
4587       SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
4588       getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4589       NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4590       SpecifierOStream.flush();
4591       SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
4592     }
4593     if (SameNameSpecifier || llvm::find(CurContextIdentifiers, Name) !=
4594                                  CurContextIdentifiers.end()) {
4595       // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4596       NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4597       NumSpecifiers =
4598           buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4599     }
4600   }
4601 
4602   // If the built NestedNameSpecifier would be replacing an existing
4603   // NestedNameSpecifier, use the number of component identifiers that
4604   // would need to be changed as the edit distance instead of the number
4605   // of components in the built NestedNameSpecifier.
4606   if (NNS && !CurNameSpecifierIdentifiers.empty()) {
4607     SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
4608     getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4609     NumSpecifiers = llvm::ComputeEditDistance(
4610         llvm::makeArrayRef(CurNameSpecifierIdentifiers),
4611         llvm::makeArrayRef(NewNameSpecifierIdentifiers));
4612   }
4613 
4614   SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
4615   DistanceMap[NumSpecifiers].push_back(SI);
4616 }
4617 
4618 /// Perform name lookup for a possible result for typo correction.
4619 static void LookupPotentialTypoResult(Sema &SemaRef,
4620                                       LookupResult &Res,
4621                                       IdentifierInfo *Name,
4622                                       Scope *S, CXXScopeSpec *SS,
4623                                       DeclContext *MemberContext,
4624                                       bool EnteringContext,
4625                                       bool isObjCIvarLookup,
4626                                       bool FindHidden) {
4627   Res.suppressDiagnostics();
4628   Res.clear();
4629   Res.setLookupName(Name);
4630   Res.setAllowHidden(FindHidden);
4631   if (MemberContext) {
4632     if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
4633       if (isObjCIvarLookup) {
4634         if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
4635           Res.addDecl(Ivar);
4636           Res.resolveKind();
4637           return;
4638         }
4639       }
4640 
4641       if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(
4642               Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
4643         Res.addDecl(Prop);
4644         Res.resolveKind();
4645         return;
4646       }
4647     }
4648 
4649     SemaRef.LookupQualifiedName(Res, MemberContext);
4650     return;
4651   }
4652 
4653   SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
4654                            EnteringContext);
4655 
4656   // Fake ivar lookup; this should really be part of
4657   // LookupParsedName.
4658   if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
4659     if (Method->isInstanceMethod() && Method->getClassInterface() &&
4660         (Res.empty() ||
4661          (Res.isSingleResult() &&
4662           Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
4663        if (ObjCIvarDecl *IV
4664              = Method->getClassInterface()->lookupInstanceVariable(Name)) {
4665          Res.addDecl(IV);
4666          Res.resolveKind();
4667        }
4668      }
4669   }
4670 }
4671 
4672 /// Add keywords to the consumer as possible typo corrections.
4673 static void AddKeywordsToConsumer(Sema &SemaRef,
4674                                   TypoCorrectionConsumer &Consumer,
4675                                   Scope *S, CorrectionCandidateCallback &CCC,
4676                                   bool AfterNestedNameSpecifier) {
4677   if (AfterNestedNameSpecifier) {
4678     // For 'X::', we know exactly which keywords can appear next.
4679     Consumer.addKeywordResult("template");
4680     if (CCC.WantExpressionKeywords)
4681       Consumer.addKeywordResult("operator");
4682     return;
4683   }
4684 
4685   if (CCC.WantObjCSuper)
4686     Consumer.addKeywordResult("super");
4687 
4688   if (CCC.WantTypeSpecifiers) {
4689     // Add type-specifier keywords to the set of results.
4690     static const char *const CTypeSpecs[] = {
4691       "char", "const", "double", "enum", "float", "int", "long", "short",
4692       "signed", "struct", "union", "unsigned", "void", "volatile",
4693       "_Complex", "_Imaginary",
4694       // storage-specifiers as well
4695       "extern", "inline", "static", "typedef"
4696     };
4697 
4698     const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
4699     for (unsigned I = 0; I != NumCTypeSpecs; ++I)
4700       Consumer.addKeywordResult(CTypeSpecs[I]);
4701 
4702     if (SemaRef.getLangOpts().C99)
4703       Consumer.addKeywordResult("restrict");
4704     if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
4705       Consumer.addKeywordResult("bool");
4706     else if (SemaRef.getLangOpts().C99)
4707       Consumer.addKeywordResult("_Bool");
4708 
4709     if (SemaRef.getLangOpts().CPlusPlus) {
4710       Consumer.addKeywordResult("class");
4711       Consumer.addKeywordResult("typename");
4712       Consumer.addKeywordResult("wchar_t");
4713 
4714       if (SemaRef.getLangOpts().CPlusPlus11) {
4715         Consumer.addKeywordResult("char16_t");
4716         Consumer.addKeywordResult("char32_t");
4717         Consumer.addKeywordResult("constexpr");
4718         Consumer.addKeywordResult("decltype");
4719         Consumer.addKeywordResult("thread_local");
4720       }
4721     }
4722 
4723     if (SemaRef.getLangOpts().GNUKeywords)
4724       Consumer.addKeywordResult("typeof");
4725   } else if (CCC.WantFunctionLikeCasts) {
4726     static const char *const CastableTypeSpecs[] = {
4727       "char", "double", "float", "int", "long", "short",
4728       "signed", "unsigned", "void"
4729     };
4730     for (auto *kw : CastableTypeSpecs)
4731       Consumer.addKeywordResult(kw);
4732   }
4733 
4734   if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
4735     Consumer.addKeywordResult("const_cast");
4736     Consumer.addKeywordResult("dynamic_cast");
4737     Consumer.addKeywordResult("reinterpret_cast");
4738     Consumer.addKeywordResult("static_cast");
4739   }
4740 
4741   if (CCC.WantExpressionKeywords) {
4742     Consumer.addKeywordResult("sizeof");
4743     if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
4744       Consumer.addKeywordResult("false");
4745       Consumer.addKeywordResult("true");
4746     }
4747 
4748     if (SemaRef.getLangOpts().CPlusPlus) {
4749       static const char *const CXXExprs[] = {
4750         "delete", "new", "operator", "throw", "typeid"
4751       };
4752       const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
4753       for (unsigned I = 0; I != NumCXXExprs; ++I)
4754         Consumer.addKeywordResult(CXXExprs[I]);
4755 
4756       if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
4757           cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
4758         Consumer.addKeywordResult("this");
4759 
4760       if (SemaRef.getLangOpts().CPlusPlus11) {
4761         Consumer.addKeywordResult("alignof");
4762         Consumer.addKeywordResult("nullptr");
4763       }
4764     }
4765 
4766     if (SemaRef.getLangOpts().C11) {
4767       // FIXME: We should not suggest _Alignof if the alignof macro
4768       // is present.
4769       Consumer.addKeywordResult("_Alignof");
4770     }
4771   }
4772 
4773   if (CCC.WantRemainingKeywords) {
4774     if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
4775       // Statements.
4776       static const char *const CStmts[] = {
4777         "do", "else", "for", "goto", "if", "return", "switch", "while" };
4778       const unsigned NumCStmts = llvm::array_lengthof(CStmts);
4779       for (unsigned I = 0; I != NumCStmts; ++I)
4780         Consumer.addKeywordResult(CStmts[I]);
4781 
4782       if (SemaRef.getLangOpts().CPlusPlus) {
4783         Consumer.addKeywordResult("catch");
4784         Consumer.addKeywordResult("try");
4785       }
4786 
4787       if (S && S->getBreakParent())
4788         Consumer.addKeywordResult("break");
4789 
4790       if (S && S->getContinueParent())
4791         Consumer.addKeywordResult("continue");
4792 
4793       if (SemaRef.getCurFunction() &&
4794           !SemaRef.getCurFunction()->SwitchStack.empty()) {
4795         Consumer.addKeywordResult("case");
4796         Consumer.addKeywordResult("default");
4797       }
4798     } else {
4799       if (SemaRef.getLangOpts().CPlusPlus) {
4800         Consumer.addKeywordResult("namespace");
4801         Consumer.addKeywordResult("template");
4802       }
4803 
4804       if (S && S->isClassScope()) {
4805         Consumer.addKeywordResult("explicit");
4806         Consumer.addKeywordResult("friend");
4807         Consumer.addKeywordResult("mutable");
4808         Consumer.addKeywordResult("private");
4809         Consumer.addKeywordResult("protected");
4810         Consumer.addKeywordResult("public");
4811         Consumer.addKeywordResult("virtual");
4812       }
4813     }
4814 
4815     if (SemaRef.getLangOpts().CPlusPlus) {
4816       Consumer.addKeywordResult("using");
4817 
4818       if (SemaRef.getLangOpts().CPlusPlus11)
4819         Consumer.addKeywordResult("static_assert");
4820     }
4821   }
4822 }
4823 
4824 std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
4825     const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4826     Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
4827     DeclContext *MemberContext, bool EnteringContext,
4828     const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
4829 
4830   if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
4831       DisableTypoCorrection)
4832     return nullptr;
4833 
4834   // In Microsoft mode, don't perform typo correction in a template member
4835   // function dependent context because it interferes with the "lookup into
4836   // dependent bases of class templates" feature.
4837   if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
4838       isa<CXXMethodDecl>(CurContext))
4839     return nullptr;
4840 
4841   // We only attempt to correct typos for identifiers.
4842   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4843   if (!Typo)
4844     return nullptr;
4845 
4846   // If the scope specifier itself was invalid, don't try to correct
4847   // typos.
4848   if (SS && SS->isInvalid())
4849     return nullptr;
4850 
4851   // Never try to correct typos during any kind of code synthesis.
4852   if (!CodeSynthesisContexts.empty())
4853     return nullptr;
4854 
4855   // Don't try to correct 'super'.
4856   if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
4857     return nullptr;
4858 
4859   // Abort if typo correction already failed for this specific typo.
4860   IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
4861   if (locs != TypoCorrectionFailures.end() &&
4862       locs->second.count(TypoName.getLoc()))
4863     return nullptr;
4864 
4865   // Don't try to correct the identifier "vector" when in AltiVec mode.
4866   // TODO: Figure out why typo correction misbehaves in this case, fix it, and
4867   // remove this workaround.
4868   if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
4869     return nullptr;
4870 
4871   // Provide a stop gap for files that are just seriously broken.  Trying
4872   // to correct all typos can turn into a HUGE performance penalty, causing
4873   // some files to take minutes to get rejected by the parser.
4874   unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
4875   if (Limit && TyposCorrected >= Limit)
4876     return nullptr;
4877   ++TyposCorrected;
4878 
4879   // If we're handling a missing symbol error, using modules, and the
4880   // special search all modules option is used, look for a missing import.
4881   if (ErrorRecovery && getLangOpts().Modules &&
4882       getLangOpts().ModulesSearchAll) {
4883     // The following has the side effect of loading the missing module.
4884     getModuleLoader().lookupMissingImports(Typo->getName(),
4885                                            TypoName.getBeginLoc());
4886   }
4887 
4888   // Extend the lifetime of the callback. We delayed this until here
4889   // to avoid allocations in the hot path (which is where no typo correction
4890   // occurs). Note that CorrectionCandidateCallback is polymorphic and
4891   // initially stack-allocated.
4892   std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone();
4893   auto Consumer = std::make_unique<TypoCorrectionConsumer>(
4894       *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext,
4895       EnteringContext);
4896 
4897   // Perform name lookup to find visible, similarly-named entities.
4898   bool IsUnqualifiedLookup = false;
4899   DeclContext *QualifiedDC = MemberContext;
4900   if (MemberContext) {
4901     LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
4902 
4903     // Look in qualified interfaces.
4904     if (OPT) {
4905       for (auto *I : OPT->quals())
4906         LookupVisibleDecls(I, LookupKind, *Consumer);
4907     }
4908   } else if (SS && SS->isSet()) {
4909     QualifiedDC = computeDeclContext(*SS, EnteringContext);
4910     if (!QualifiedDC)
4911       return nullptr;
4912 
4913     LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
4914   } else {
4915     IsUnqualifiedLookup = true;
4916   }
4917 
4918   // Determine whether we are going to search in the various namespaces for
4919   // corrections.
4920   bool SearchNamespaces
4921     = getLangOpts().CPlusPlus &&
4922       (IsUnqualifiedLookup || (SS && SS->isSet()));
4923 
4924   if (IsUnqualifiedLookup || SearchNamespaces) {
4925     // For unqualified lookup, look through all of the names that we have
4926     // seen in this translation unit.
4927     // FIXME: Re-add the ability to skip very unlikely potential corrections.
4928     for (const auto &I : Context.Idents)
4929       Consumer->FoundName(I.getKey());
4930 
4931     // Walk through identifiers in external identifier sources.
4932     // FIXME: Re-add the ability to skip very unlikely potential corrections.
4933     if (IdentifierInfoLookup *External
4934                             = Context.Idents.getExternalIdentifierLookup()) {
4935       std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4936       do {
4937         StringRef Name = Iter->Next();
4938         if (Name.empty())
4939           break;
4940 
4941         Consumer->FoundName(Name);
4942       } while (true);
4943     }
4944   }
4945 
4946   AddKeywordsToConsumer(*this, *Consumer, S,
4947                         *Consumer->getCorrectionValidator(),
4948                         SS && SS->isNotEmpty());
4949 
4950   // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
4951   // to search those namespaces.
4952   if (SearchNamespaces) {
4953     // Load any externally-known namespaces.
4954     if (ExternalSource && !LoadedExternalKnownNamespaces) {
4955       SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
4956       LoadedExternalKnownNamespaces = true;
4957       ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
4958       for (auto *N : ExternalKnownNamespaces)
4959         KnownNamespaces[N] = true;
4960     }
4961 
4962     Consumer->addNamespaces(KnownNamespaces);
4963   }
4964 
4965   return Consumer;
4966 }
4967 
4968 /// Try to "correct" a typo in the source code by finding
4969 /// visible declarations whose names are similar to the name that was
4970 /// present in the source code.
4971 ///
4972 /// \param TypoName the \c DeclarationNameInfo structure that contains
4973 /// the name that was present in the source code along with its location.
4974 ///
4975 /// \param LookupKind the name-lookup criteria used to search for the name.
4976 ///
4977 /// \param S the scope in which name lookup occurs.
4978 ///
4979 /// \param SS the nested-name-specifier that precedes the name we're
4980 /// looking for, if present.
4981 ///
4982 /// \param CCC A CorrectionCandidateCallback object that provides further
4983 /// validation of typo correction candidates. It also provides flags for
4984 /// determining the set of keywords permitted.
4985 ///
4986 /// \param MemberContext if non-NULL, the context in which to look for
4987 /// a member access expression.
4988 ///
4989 /// \param EnteringContext whether we're entering the context described by
4990 /// the nested-name-specifier SS.
4991 ///
4992 /// \param OPT when non-NULL, the search for visible declarations will
4993 /// also walk the protocols in the qualified interfaces of \p OPT.
4994 ///
4995 /// \returns a \c TypoCorrection containing the corrected name if the typo
4996 /// along with information such as the \c NamedDecl where the corrected name
4997 /// was declared, and any additional \c NestedNameSpecifier needed to access
4998 /// it (C++ only). The \c TypoCorrection is empty if there is no correction.
4999 TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
5000                                  Sema::LookupNameKind LookupKind,
5001                                  Scope *S, CXXScopeSpec *SS,
5002                                  CorrectionCandidateCallback &CCC,
5003                                  CorrectTypoKind Mode,
5004                                  DeclContext *MemberContext,
5005                                  bool EnteringContext,
5006                                  const ObjCObjectPointerType *OPT,
5007                                  bool RecordFailure) {
5008   // Always let the ExternalSource have the first chance at correction, even
5009   // if we would otherwise have given up.
5010   if (ExternalSource) {
5011     if (TypoCorrection Correction =
5012             ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC,
5013                                         MemberContext, EnteringContext, OPT))
5014       return Correction;
5015   }
5016 
5017   // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
5018   // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
5019   // some instances of CTC_Unknown, while WantRemainingKeywords is true
5020   // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
5021   bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords;
5022 
5023   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5024   auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5025                                              MemberContext, EnteringContext,
5026                                              OPT, Mode == CTK_ErrorRecovery);
5027 
5028   if (!Consumer)
5029     return TypoCorrection();
5030 
5031   // If we haven't found anything, we're done.
5032   if (Consumer->empty())
5033     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5034 
5035   // Make sure the best edit distance (prior to adding any namespace qualifiers)
5036   // is not more that about a third of the length of the typo's identifier.
5037   unsigned ED = Consumer->getBestEditDistance(true);
5038   unsigned TypoLen = Typo->getName().size();
5039   if (ED > 0 && TypoLen / ED < 3)
5040     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5041 
5042   TypoCorrection BestTC = Consumer->getNextCorrection();
5043   TypoCorrection SecondBestTC = Consumer->getNextCorrection();
5044   if (!BestTC)
5045     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5046 
5047   ED = BestTC.getEditDistance();
5048 
5049   if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
5050     // If this was an unqualified lookup and we believe the callback
5051     // object wouldn't have filtered out possible corrections, note
5052     // that no correction was found.
5053     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5054   }
5055 
5056   // If only a single name remains, return that result.
5057   if (!SecondBestTC ||
5058       SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
5059     const TypoCorrection &Result = BestTC;
5060 
5061     // Don't correct to a keyword that's the same as the typo; the keyword
5062     // wasn't actually in scope.
5063     if (ED == 0 && Result.isKeyword())
5064       return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5065 
5066     TypoCorrection TC = Result;
5067     TC.setCorrectionRange(SS, TypoName);
5068     checkCorrectionVisibility(*this, TC);
5069     return TC;
5070   } else if (SecondBestTC && ObjCMessageReceiver) {
5071     // Prefer 'super' when we're completing in a message-receiver
5072     // context.
5073 
5074     if (BestTC.getCorrection().getAsString() != "super") {
5075       if (SecondBestTC.getCorrection().getAsString() == "super")
5076         BestTC = SecondBestTC;
5077       else if ((*Consumer)["super"].front().isKeyword())
5078         BestTC = (*Consumer)["super"].front();
5079     }
5080     // Don't correct to a keyword that's the same as the typo; the keyword
5081     // wasn't actually in scope.
5082     if (BestTC.getEditDistance() == 0 ||
5083         BestTC.getCorrection().getAsString() != "super")
5084       return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5085 
5086     BestTC.setCorrectionRange(SS, TypoName);
5087     return BestTC;
5088   }
5089 
5090   // Record the failure's location if needed and return an empty correction. If
5091   // this was an unqualified lookup and we believe the callback object did not
5092   // filter out possible corrections, also cache the failure for the typo.
5093   return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
5094 }
5095 
5096 /// Try to "correct" a typo in the source code by finding
5097 /// visible declarations whose names are similar to the name that was
5098 /// present in the source code.
5099 ///
5100 /// \param TypoName the \c DeclarationNameInfo structure that contains
5101 /// the name that was present in the source code along with its location.
5102 ///
5103 /// \param LookupKind the name-lookup criteria used to search for the name.
5104 ///
5105 /// \param S the scope in which name lookup occurs.
5106 ///
5107 /// \param SS the nested-name-specifier that precedes the name we're
5108 /// looking for, if present.
5109 ///
5110 /// \param CCC A CorrectionCandidateCallback object that provides further
5111 /// validation of typo correction candidates. It also provides flags for
5112 /// determining the set of keywords permitted.
5113 ///
5114 /// \param TDG A TypoDiagnosticGenerator functor that will be used to print
5115 /// diagnostics when the actual typo correction is attempted.
5116 ///
5117 /// \param TRC A TypoRecoveryCallback functor that will be used to build an
5118 /// Expr from a typo correction candidate.
5119 ///
5120 /// \param MemberContext if non-NULL, the context in which to look for
5121 /// a member access expression.
5122 ///
5123 /// \param EnteringContext whether we're entering the context described by
5124 /// the nested-name-specifier SS.
5125 ///
5126 /// \param OPT when non-NULL, the search for visible declarations will
5127 /// also walk the protocols in the qualified interfaces of \p OPT.
5128 ///
5129 /// \returns a new \c TypoExpr that will later be replaced in the AST with an
5130 /// Expr representing the result of performing typo correction, or nullptr if
5131 /// typo correction is not possible. If nullptr is returned, no diagnostics will
5132 /// be emitted and it is the responsibility of the caller to emit any that are
5133 /// needed.
5134 TypoExpr *Sema::CorrectTypoDelayed(
5135     const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
5136     Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
5137     TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
5138     DeclContext *MemberContext, bool EnteringContext,
5139     const ObjCObjectPointerType *OPT) {
5140   auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5141                                              MemberContext, EnteringContext,
5142                                              OPT, Mode == CTK_ErrorRecovery);
5143 
5144   // Give the external sema source a chance to correct the typo.
5145   TypoCorrection ExternalTypo;
5146   if (ExternalSource && Consumer) {
5147     ExternalTypo = ExternalSource->CorrectTypo(
5148         TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(),
5149         MemberContext, EnteringContext, OPT);
5150     if (ExternalTypo)
5151       Consumer->addCorrection(ExternalTypo);
5152   }
5153 
5154   if (!Consumer || Consumer->empty())
5155     return nullptr;
5156 
5157   // Make sure the best edit distance (prior to adding any namespace qualifiers)
5158   // is not more that about a third of the length of the typo's identifier.
5159   unsigned ED = Consumer->getBestEditDistance(true);
5160   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5161   if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3)
5162     return nullptr;
5163 
5164   ExprEvalContexts.back().NumTypos++;
5165   return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC));
5166 }
5167 
5168 void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
5169   if (!CDecl) return;
5170 
5171   if (isKeyword())
5172     CorrectionDecls.clear();
5173 
5174   CorrectionDecls.push_back(CDecl);
5175 
5176   if (!CorrectionName)
5177     CorrectionName = CDecl->getDeclName();
5178 }
5179 
5180 std::string TypoCorrection::getAsString(const LangOptions &LO) const {
5181   if (CorrectionNameSpec) {
5182     std::string tmpBuffer;
5183     llvm::raw_string_ostream PrefixOStream(tmpBuffer);
5184     CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
5185     PrefixOStream << CorrectionName;
5186     return PrefixOStream.str();
5187   }
5188 
5189   return CorrectionName.getAsString();
5190 }
5191 
5192 bool CorrectionCandidateCallback::ValidateCandidate(
5193     const TypoCorrection &candidate) {
5194   if (!candidate.isResolved())
5195     return true;
5196 
5197   if (candidate.isKeyword())
5198     return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
5199            WantRemainingKeywords || WantObjCSuper;
5200 
5201   bool HasNonType = false;
5202   bool HasStaticMethod = false;
5203   bool HasNonStaticMethod = false;
5204   for (Decl *D : candidate) {
5205     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
5206       D = FTD->getTemplatedDecl();
5207     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5208       if (Method->isStatic())
5209         HasStaticMethod = true;
5210       else
5211         HasNonStaticMethod = true;
5212     }
5213     if (!isa<TypeDecl>(D))
5214       HasNonType = true;
5215   }
5216 
5217   if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
5218       !candidate.getCorrectionSpecifier())
5219     return false;
5220 
5221   return WantTypeSpecifiers || HasNonType;
5222 }
5223 
5224 FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
5225                                              bool HasExplicitTemplateArgs,
5226                                              MemberExpr *ME)
5227     : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
5228       CurContext(SemaRef.CurContext), MemberFn(ME) {
5229   WantTypeSpecifiers = false;
5230   WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus &&
5231                           !HasExplicitTemplateArgs && NumArgs == 1;
5232   WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1;
5233   WantRemainingKeywords = false;
5234 }
5235 
5236 bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
5237   if (!candidate.getCorrectionDecl())
5238     return candidate.isKeyword();
5239 
5240   for (auto *C : candidate) {
5241     FunctionDecl *FD = nullptr;
5242     NamedDecl *ND = C->getUnderlyingDecl();
5243     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
5244       FD = FTD->getTemplatedDecl();
5245     if (!HasExplicitTemplateArgs && !FD) {
5246       if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
5247         // If the Decl is neither a function nor a template function,
5248         // determine if it is a pointer or reference to a function. If so,
5249         // check against the number of arguments expected for the pointee.
5250         QualType ValType = cast<ValueDecl>(ND)->getType();
5251         if (ValType.isNull())
5252           continue;
5253         if (ValType->isAnyPointerType() || ValType->isReferenceType())
5254           ValType = ValType->getPointeeType();
5255         if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
5256           if (FPT->getNumParams() == NumArgs)
5257             return true;
5258       }
5259     }
5260 
5261     // A typo for a function-style cast can look like a function call in C++.
5262     if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr
5263                                  : isa<TypeDecl>(ND)) &&
5264         CurContext->getParentASTContext().getLangOpts().CPlusPlus)
5265       // Only a class or class template can take two or more arguments.
5266       return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND);
5267 
5268     // Skip the current candidate if it is not a FunctionDecl or does not accept
5269     // the current number of arguments.
5270     if (!FD || !(FD->getNumParams() >= NumArgs &&
5271                  FD->getMinRequiredArguments() <= NumArgs))
5272       continue;
5273 
5274     // If the current candidate is a non-static C++ method, skip the candidate
5275     // unless the method being corrected--or the current DeclContext, if the
5276     // function being corrected is not a method--is a method in the same class
5277     // or a descendent class of the candidate's parent class.
5278     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5279       if (MemberFn || !MD->isStatic()) {
5280         CXXMethodDecl *CurMD =
5281             MemberFn
5282                 ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
5283                 : dyn_cast_or_null<CXXMethodDecl>(CurContext);
5284         CXXRecordDecl *CurRD =
5285             CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
5286         CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
5287         if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
5288           continue;
5289       }
5290     }
5291     return true;
5292   }
5293   return false;
5294 }
5295 
5296 void Sema::diagnoseTypo(const TypoCorrection &Correction,
5297                         const PartialDiagnostic &TypoDiag,
5298                         bool ErrorRecovery) {
5299   diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
5300                ErrorRecovery);
5301 }
5302 
5303 /// Find which declaration we should import to provide the definition of
5304 /// the given declaration.
5305 static NamedDecl *getDefinitionToImport(NamedDecl *D) {
5306   if (VarDecl *VD = dyn_cast<VarDecl>(D))
5307     return VD->getDefinition();
5308   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
5309     return FD->getDefinition();
5310   if (TagDecl *TD = dyn_cast<TagDecl>(D))
5311     return TD->getDefinition();
5312   // The first definition for this ObjCInterfaceDecl might be in the TU
5313   // and not associated with any module. Use the one we know to be complete
5314   // and have just seen in a module.
5315   if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
5316     return ID;
5317   if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
5318     return PD->getDefinition();
5319   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
5320     if (NamedDecl *TTD = TD->getTemplatedDecl())
5321       return getDefinitionToImport(TTD);
5322   return nullptr;
5323 }
5324 
5325 void Sema::diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
5326                                  MissingImportKind MIK, bool Recover) {
5327   // Suggest importing a module providing the definition of this entity, if
5328   // possible.
5329   NamedDecl *Def = getDefinitionToImport(Decl);
5330   if (!Def)
5331     Def = Decl;
5332 
5333   Module *Owner = getOwningModule(Def);
5334   assert(Owner && "definition of hidden declaration is not in a module");
5335 
5336   llvm::SmallVector<Module*, 8> OwningModules;
5337   OwningModules.push_back(Owner);
5338   auto Merged = Context.getModulesWithMergedDefinition(Def);
5339   OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
5340 
5341   diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK,
5342                         Recover);
5343 }
5344 
5345 /// Get a "quoted.h" or <angled.h> include path to use in a diagnostic
5346 /// suggesting the addition of a #include of the specified file.
5347 static std::string getIncludeStringForHeader(Preprocessor &PP,
5348                                              const FileEntry *E,
5349                                              llvm::StringRef IncludingFile) {
5350   bool IsSystem = false;
5351   auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics(
5352       E, IncludingFile, &IsSystem);
5353   return (IsSystem ? '<' : '"') + Path + (IsSystem ? '>' : '"');
5354 }
5355 
5356 void Sema::diagnoseMissingImport(SourceLocation UseLoc, NamedDecl *Decl,
5357                                  SourceLocation DeclLoc,
5358                                  ArrayRef<Module *> Modules,
5359                                  MissingImportKind MIK, bool Recover) {
5360   assert(!Modules.empty());
5361 
5362   auto NotePrevious = [&] {
5363     unsigned DiagID;
5364     switch (MIK) {
5365     case MissingImportKind::Declaration:
5366       DiagID = diag::note_previous_declaration;
5367       break;
5368     case MissingImportKind::Definition:
5369       DiagID = diag::note_previous_definition;
5370       break;
5371     case MissingImportKind::DefaultArgument:
5372       DiagID = diag::note_default_argument_declared_here;
5373       break;
5374     case MissingImportKind::ExplicitSpecialization:
5375       DiagID = diag::note_explicit_specialization_declared_here;
5376       break;
5377     case MissingImportKind::PartialSpecialization:
5378       DiagID = diag::note_partial_specialization_declared_here;
5379       break;
5380     }
5381     Diag(DeclLoc, DiagID);
5382   };
5383 
5384   // Weed out duplicates from module list.
5385   llvm::SmallVector<Module*, 8> UniqueModules;
5386   llvm::SmallDenseSet<Module*, 8> UniqueModuleSet;
5387   for (auto *M : Modules) {
5388     if (M->Kind == Module::GlobalModuleFragment)
5389       continue;
5390     if (UniqueModuleSet.insert(M).second)
5391       UniqueModules.push_back(M);
5392   }
5393 
5394   llvm::StringRef IncludingFile;
5395   if (const FileEntry *FE =
5396           SourceMgr.getFileEntryForID(SourceMgr.getFileID(UseLoc)))
5397     IncludingFile = FE->tryGetRealPathName();
5398 
5399   if (UniqueModules.empty()) {
5400     // All candidates were global module fragments. Try to suggest a #include.
5401     const FileEntry *E =
5402         PP.getModuleHeaderToIncludeForDiagnostics(UseLoc, Modules[0], DeclLoc);
5403     // FIXME: Find a smart place to suggest inserting a #include, and add
5404     // a FixItHint there.
5405     Diag(UseLoc, diag::err_module_unimported_use_global_module_fragment)
5406         << (int)MIK << Decl << !!E
5407         << (E ? getIncludeStringForHeader(PP, E, IncludingFile) : "");
5408     // Produce a "previous" note if it will point to a header rather than some
5409     // random global module fragment.
5410     // FIXME: Suppress the note backtrace even under
5411     // -fdiagnostics-show-note-include-stack.
5412     if (E)
5413       NotePrevious();
5414     if (Recover)
5415       createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5416     return;
5417   }
5418 
5419   Modules = UniqueModules;
5420 
5421   if (Modules.size() > 1) {
5422     std::string ModuleList;
5423     unsigned N = 0;
5424     for (Module *M : Modules) {
5425       ModuleList += "\n        ";
5426       if (++N == 5 && N != Modules.size()) {
5427         ModuleList += "[...]";
5428         break;
5429       }
5430       ModuleList += M->getFullModuleName();
5431     }
5432 
5433     Diag(UseLoc, diag::err_module_unimported_use_multiple)
5434       << (int)MIK << Decl << ModuleList;
5435   } else if (const FileEntry *E = PP.getModuleHeaderToIncludeForDiagnostics(
5436                  UseLoc, Modules[0], DeclLoc)) {
5437     // The right way to make the declaration visible is to include a header;
5438     // suggest doing so.
5439     //
5440     // FIXME: Find a smart place to suggest inserting a #include, and add
5441     // a FixItHint there.
5442     Diag(UseLoc, diag::err_module_unimported_use_header)
5443         << (int)MIK << Decl << Modules[0]->getFullModuleName()
5444         << getIncludeStringForHeader(PP, E, IncludingFile);
5445   } else {
5446     // FIXME: Add a FixItHint that imports the corresponding module.
5447     Diag(UseLoc, diag::err_module_unimported_use)
5448       << (int)MIK << Decl << Modules[0]->getFullModuleName();
5449   }
5450 
5451   NotePrevious();
5452 
5453   // Try to recover by implicitly importing this module.
5454   if (Recover)
5455     createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5456 }
5457 
5458 /// Diagnose a successfully-corrected typo. Separated from the correction
5459 /// itself to allow external validation of the result, etc.
5460 ///
5461 /// \param Correction The result of performing typo correction.
5462 /// \param TypoDiag The diagnostic to produce. This will have the corrected
5463 ///        string added to it (and usually also a fixit).
5464 /// \param PrevNote A note to use when indicating the location of the entity to
5465 ///        which we are correcting. Will have the correction string added to it.
5466 /// \param ErrorRecovery If \c true (the default), the caller is going to
5467 ///        recover from the typo as if the corrected string had been typed.
5468 ///        In this case, \c PDiag must be an error, and we will attach a fixit
5469 ///        to it.
5470 void Sema::diagnoseTypo(const TypoCorrection &Correction,
5471                         const PartialDiagnostic &TypoDiag,
5472                         const PartialDiagnostic &PrevNote,
5473                         bool ErrorRecovery) {
5474   std::string CorrectedStr = Correction.getAsString(getLangOpts());
5475   std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
5476   FixItHint FixTypo = FixItHint::CreateReplacement(
5477       Correction.getCorrectionRange(), CorrectedStr);
5478 
5479   // Maybe we're just missing a module import.
5480   if (Correction.requiresImport()) {
5481     NamedDecl *Decl = Correction.getFoundDecl();
5482     assert(Decl && "import required but no declaration to import");
5483 
5484     diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
5485                           MissingImportKind::Declaration, ErrorRecovery);
5486     return;
5487   }
5488 
5489   Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
5490     << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
5491 
5492   NamedDecl *ChosenDecl =
5493       Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
5494   if (PrevNote.getDiagID() && ChosenDecl)
5495     Diag(ChosenDecl->getLocation(), PrevNote)
5496       << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
5497 
5498   // Add any extra diagnostics.
5499   for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics())
5500     Diag(Correction.getCorrectionRange().getBegin(), PD);
5501 }
5502 
5503 TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
5504                                   TypoDiagnosticGenerator TDG,
5505                                   TypoRecoveryCallback TRC) {
5506   assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer");
5507   auto TE = new (Context) TypoExpr(Context.DependentTy);
5508   auto &State = DelayedTypos[TE];
5509   State.Consumer = std::move(TCC);
5510   State.DiagHandler = std::move(TDG);
5511   State.RecoveryHandler = std::move(TRC);
5512   if (TE)
5513     TypoExprs.push_back(TE);
5514   return TE;
5515 }
5516 
5517 const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
5518   auto Entry = DelayedTypos.find(TE);
5519   assert(Entry != DelayedTypos.end() &&
5520          "Failed to get the state for a TypoExpr!");
5521   return Entry->second;
5522 }
5523 
5524 void Sema::clearDelayedTypo(TypoExpr *TE) {
5525   DelayedTypos.erase(TE);
5526 }
5527 
5528 void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) {
5529   DeclarationNameInfo Name(II, IILoc);
5530   LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration);
5531   R.suppressDiagnostics();
5532   R.setHideTags(false);
5533   LookupName(R, S);
5534   R.dump();
5535 }
5536