1 //===--------------------- SemaLookup.cpp - Name Lookup ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements name lookup for C, C++, Objective-C, and 10 // Objective-C++. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/CXXInheritance.h" 16 #include "clang/AST/Decl.h" 17 #include "clang/AST/DeclCXX.h" 18 #include "clang/AST/DeclLookups.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/Expr.h" 22 #include "clang/AST/ExprCXX.h" 23 #include "clang/Basic/Builtins.h" 24 #include "clang/Basic/FileManager.h" 25 #include "clang/Basic/LangOptions.h" 26 #include "clang/Lex/HeaderSearch.h" 27 #include "clang/Lex/ModuleLoader.h" 28 #include "clang/Lex/Preprocessor.h" 29 #include "clang/Sema/DeclSpec.h" 30 #include "clang/Sema/Lookup.h" 31 #include "clang/Sema/Overload.h" 32 #include "clang/Sema/RISCVIntrinsicManager.h" 33 #include "clang/Sema/Scope.h" 34 #include "clang/Sema/ScopeInfo.h" 35 #include "clang/Sema/Sema.h" 36 #include "clang/Sema/SemaInternal.h" 37 #include "clang/Sema/SemaRISCV.h" 38 #include "clang/Sema/TemplateDeduction.h" 39 #include "clang/Sema/TypoCorrection.h" 40 #include "llvm/ADT/STLExtras.h" 41 #include "llvm/ADT/STLForwardCompat.h" 42 #include "llvm/ADT/SmallPtrSet.h" 43 #include "llvm/ADT/TinyPtrVector.h" 44 #include "llvm/ADT/edit_distance.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include <algorithm> 48 #include <iterator> 49 #include <list> 50 #include <optional> 51 #include <set> 52 #include <utility> 53 #include <vector> 54 55 #include "OpenCLBuiltins.inc" 56 57 using namespace clang; 58 using namespace sema; 59 60 namespace { 61 class UnqualUsingEntry { 62 const DeclContext *Nominated; 63 const DeclContext *CommonAncestor; 64 65 public: 66 UnqualUsingEntry(const DeclContext *Nominated, 67 const DeclContext *CommonAncestor) 68 : Nominated(Nominated), CommonAncestor(CommonAncestor) { 69 } 70 71 const DeclContext *getCommonAncestor() const { 72 return CommonAncestor; 73 } 74 75 const DeclContext *getNominatedNamespace() const { 76 return Nominated; 77 } 78 79 // Sort by the pointer value of the common ancestor. 80 struct Comparator { 81 bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) { 82 return L.getCommonAncestor() < R.getCommonAncestor(); 83 } 84 85 bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) { 86 return E.getCommonAncestor() < DC; 87 } 88 89 bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) { 90 return DC < E.getCommonAncestor(); 91 } 92 }; 93 }; 94 95 /// A collection of using directives, as used by C++ unqualified 96 /// lookup. 97 class UnqualUsingDirectiveSet { 98 Sema &SemaRef; 99 100 typedef SmallVector<UnqualUsingEntry, 8> ListTy; 101 102 ListTy list; 103 llvm::SmallPtrSet<DeclContext*, 8> visited; 104 105 public: 106 UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {} 107 108 void visitScopeChain(Scope *S, Scope *InnermostFileScope) { 109 // C++ [namespace.udir]p1: 110 // During unqualified name lookup, the names appear as if they 111 // were declared in the nearest enclosing namespace which contains 112 // both the using-directive and the nominated namespace. 113 DeclContext *InnermostFileDC = InnermostFileScope->getEntity(); 114 assert(InnermostFileDC && InnermostFileDC->isFileContext()); 115 116 for (; S; S = S->getParent()) { 117 // C++ [namespace.udir]p1: 118 // A using-directive shall not appear in class scope, but may 119 // appear in namespace scope or in block scope. 120 DeclContext *Ctx = S->getEntity(); 121 if (Ctx && Ctx->isFileContext()) { 122 visit(Ctx, Ctx); 123 } else if (!Ctx || Ctx->isFunctionOrMethod()) { 124 for (auto *I : S->using_directives()) 125 if (SemaRef.isVisible(I)) 126 visit(I, InnermostFileDC); 127 } 128 } 129 } 130 131 // Visits a context and collect all of its using directives 132 // recursively. Treats all using directives as if they were 133 // declared in the context. 134 // 135 // A given context is only every visited once, so it is important 136 // that contexts be visited from the inside out in order to get 137 // the effective DCs right. 138 void visit(DeclContext *DC, DeclContext *EffectiveDC) { 139 if (!visited.insert(DC).second) 140 return; 141 142 addUsingDirectives(DC, EffectiveDC); 143 } 144 145 // Visits a using directive and collects all of its using 146 // directives recursively. Treats all using directives as if they 147 // were declared in the effective DC. 148 void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { 149 DeclContext *NS = UD->getNominatedNamespace(); 150 if (!visited.insert(NS).second) 151 return; 152 153 addUsingDirective(UD, EffectiveDC); 154 addUsingDirectives(NS, EffectiveDC); 155 } 156 157 // Adds all the using directives in a context (and those nominated 158 // by its using directives, transitively) as if they appeared in 159 // the given effective context. 160 void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) { 161 SmallVector<DeclContext*, 4> queue; 162 while (true) { 163 for (auto *UD : DC->using_directives()) { 164 DeclContext *NS = UD->getNominatedNamespace(); 165 if (SemaRef.isVisible(UD) && visited.insert(NS).second) { 166 addUsingDirective(UD, EffectiveDC); 167 queue.push_back(NS); 168 } 169 } 170 171 if (queue.empty()) 172 return; 173 174 DC = queue.pop_back_val(); 175 } 176 } 177 178 // Add a using directive as if it had been declared in the given 179 // context. This helps implement C++ [namespace.udir]p3: 180 // The using-directive is transitive: if a scope contains a 181 // using-directive that nominates a second namespace that itself 182 // contains using-directives, the effect is as if the 183 // using-directives from the second namespace also appeared in 184 // the first. 185 void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { 186 // Find the common ancestor between the effective context and 187 // the nominated namespace. 188 DeclContext *Common = UD->getNominatedNamespace(); 189 while (!Common->Encloses(EffectiveDC)) 190 Common = Common->getParent(); 191 Common = Common->getPrimaryContext(); 192 193 list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common)); 194 } 195 196 void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); } 197 198 typedef ListTy::const_iterator const_iterator; 199 200 const_iterator begin() const { return list.begin(); } 201 const_iterator end() const { return list.end(); } 202 203 llvm::iterator_range<const_iterator> 204 getNamespacesFor(const DeclContext *DC) const { 205 return llvm::make_range(std::equal_range(begin(), end(), 206 DC->getPrimaryContext(), 207 UnqualUsingEntry::Comparator())); 208 } 209 }; 210 } // end anonymous namespace 211 212 // Retrieve the set of identifier namespaces that correspond to a 213 // specific kind of name lookup. 214 static inline unsigned getIDNS(Sema::LookupNameKind NameKind, 215 bool CPlusPlus, 216 bool Redeclaration) { 217 unsigned IDNS = 0; 218 switch (NameKind) { 219 case Sema::LookupObjCImplicitSelfParam: 220 case Sema::LookupOrdinaryName: 221 case Sema::LookupRedeclarationWithLinkage: 222 case Sema::LookupLocalFriendName: 223 case Sema::LookupDestructorName: 224 IDNS = Decl::IDNS_Ordinary; 225 if (CPlusPlus) { 226 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace; 227 if (Redeclaration) 228 IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend; 229 } 230 if (Redeclaration) 231 IDNS |= Decl::IDNS_LocalExtern; 232 break; 233 234 case Sema::LookupOperatorName: 235 // Operator lookup is its own crazy thing; it is not the same 236 // as (e.g.) looking up an operator name for redeclaration. 237 assert(!Redeclaration && "cannot do redeclaration operator lookup"); 238 IDNS = Decl::IDNS_NonMemberOperator; 239 break; 240 241 case Sema::LookupTagName: 242 if (CPlusPlus) { 243 IDNS = Decl::IDNS_Type; 244 245 // When looking for a redeclaration of a tag name, we add: 246 // 1) TagFriend to find undeclared friend decls 247 // 2) Namespace because they can't "overload" with tag decls. 248 // 3) Tag because it includes class templates, which can't 249 // "overload" with tag decls. 250 if (Redeclaration) 251 IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace; 252 } else { 253 IDNS = Decl::IDNS_Tag; 254 } 255 break; 256 257 case Sema::LookupLabel: 258 IDNS = Decl::IDNS_Label; 259 break; 260 261 case Sema::LookupMemberName: 262 IDNS = Decl::IDNS_Member; 263 if (CPlusPlus) 264 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary; 265 break; 266 267 case Sema::LookupNestedNameSpecifierName: 268 IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace; 269 break; 270 271 case Sema::LookupNamespaceName: 272 IDNS = Decl::IDNS_Namespace; 273 break; 274 275 case Sema::LookupUsingDeclName: 276 assert(Redeclaration && "should only be used for redecl lookup"); 277 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member | 278 Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend | 279 Decl::IDNS_LocalExtern; 280 break; 281 282 case Sema::LookupObjCProtocolName: 283 IDNS = Decl::IDNS_ObjCProtocol; 284 break; 285 286 case Sema::LookupOMPReductionName: 287 IDNS = Decl::IDNS_OMPReduction; 288 break; 289 290 case Sema::LookupOMPMapperName: 291 IDNS = Decl::IDNS_OMPMapper; 292 break; 293 294 case Sema::LookupAnyName: 295 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member 296 | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol 297 | Decl::IDNS_Type; 298 break; 299 } 300 return IDNS; 301 } 302 303 void LookupResult::configure() { 304 IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus, 305 isForRedeclaration()); 306 307 // If we're looking for one of the allocation or deallocation 308 // operators, make sure that the implicitly-declared new and delete 309 // operators can be found. 310 switch (NameInfo.getName().getCXXOverloadedOperator()) { 311 case OO_New: 312 case OO_Delete: 313 case OO_Array_New: 314 case OO_Array_Delete: 315 getSema().DeclareGlobalNewDelete(); 316 break; 317 318 default: 319 break; 320 } 321 322 // Compiler builtins are always visible, regardless of where they end 323 // up being declared. 324 if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) { 325 if (unsigned BuiltinID = Id->getBuiltinID()) { 326 if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 327 AllowHidden = true; 328 } 329 } 330 } 331 332 bool LookupResult::checkDebugAssumptions() const { 333 // This function is never called by NDEBUG builds. 334 assert(ResultKind != NotFound || Decls.size() == 0); 335 assert(ResultKind != Found || Decls.size() == 1); 336 assert(ResultKind != FoundOverloaded || Decls.size() > 1 || 337 (Decls.size() == 1 && 338 isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))); 339 assert(ResultKind != FoundUnresolvedValue || checkUnresolved()); 340 assert(ResultKind != Ambiguous || Decls.size() > 1 || 341 (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || 342 Ambiguity == AmbiguousBaseSubobjectTypes))); 343 assert((Paths != nullptr) == (ResultKind == Ambiguous && 344 (Ambiguity == AmbiguousBaseSubobjectTypes || 345 Ambiguity == AmbiguousBaseSubobjects))); 346 return true; 347 } 348 349 // Necessary because CXXBasePaths is not complete in Sema.h 350 void LookupResult::deletePaths(CXXBasePaths *Paths) { 351 delete Paths; 352 } 353 354 /// Get a representative context for a declaration such that two declarations 355 /// will have the same context if they were found within the same scope. 356 static const DeclContext *getContextForScopeMatching(const Decl *D) { 357 // For function-local declarations, use that function as the context. This 358 // doesn't account for scopes within the function; the caller must deal with 359 // those. 360 if (const DeclContext *DC = D->getLexicalDeclContext(); 361 DC->isFunctionOrMethod()) 362 return DC; 363 364 // Otherwise, look at the semantic context of the declaration. The 365 // declaration must have been found there. 366 return D->getDeclContext()->getRedeclContext(); 367 } 368 369 /// Determine whether \p D is a better lookup result than \p Existing, 370 /// given that they declare the same entity. 371 static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind, 372 const NamedDecl *D, 373 const NamedDecl *Existing) { 374 // When looking up redeclarations of a using declaration, prefer a using 375 // shadow declaration over any other declaration of the same entity. 376 if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) && 377 !isa<UsingShadowDecl>(Existing)) 378 return true; 379 380 const auto *DUnderlying = D->getUnderlyingDecl(); 381 const auto *EUnderlying = Existing->getUnderlyingDecl(); 382 383 // If they have different underlying declarations, prefer a typedef over the 384 // original type (this happens when two type declarations denote the same 385 // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef 386 // might carry additional semantic information, such as an alignment override. 387 // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag 388 // declaration over a typedef. Also prefer a tag over a typedef for 389 // destructor name lookup because in some contexts we only accept a 390 // class-name in a destructor declaration. 391 if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) { 392 assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying)); 393 bool HaveTag = isa<TagDecl>(EUnderlying); 394 bool WantTag = 395 Kind == Sema::LookupTagName || Kind == Sema::LookupDestructorName; 396 return HaveTag != WantTag; 397 } 398 399 // Pick the function with more default arguments. 400 // FIXME: In the presence of ambiguous default arguments, we should keep both, 401 // so we can diagnose the ambiguity if the default argument is needed. 402 // See C++ [over.match.best]p3. 403 if (const auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) { 404 const auto *EFD = cast<FunctionDecl>(EUnderlying); 405 unsigned DMin = DFD->getMinRequiredArguments(); 406 unsigned EMin = EFD->getMinRequiredArguments(); 407 // If D has more default arguments, it is preferred. 408 if (DMin != EMin) 409 return DMin < EMin; 410 // FIXME: When we track visibility for default function arguments, check 411 // that we pick the declaration with more visible default arguments. 412 } 413 414 // Pick the template with more default template arguments. 415 if (const auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) { 416 const auto *ETD = cast<TemplateDecl>(EUnderlying); 417 unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments(); 418 unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments(); 419 // If D has more default arguments, it is preferred. Note that default 420 // arguments (and their visibility) is monotonically increasing across the 421 // redeclaration chain, so this is a quick proxy for "is more recent". 422 if (DMin != EMin) 423 return DMin < EMin; 424 // If D has more *visible* default arguments, it is preferred. Note, an 425 // earlier default argument being visible does not imply that a later 426 // default argument is visible, so we can't just check the first one. 427 for (unsigned I = DMin, N = DTD->getTemplateParameters()->size(); 428 I != N; ++I) { 429 if (!S.hasVisibleDefaultArgument( 430 ETD->getTemplateParameters()->getParam(I)) && 431 S.hasVisibleDefaultArgument( 432 DTD->getTemplateParameters()->getParam(I))) 433 return true; 434 } 435 } 436 437 // VarDecl can have incomplete array types, prefer the one with more complete 438 // array type. 439 if (const auto *DVD = dyn_cast<VarDecl>(DUnderlying)) { 440 const auto *EVD = cast<VarDecl>(EUnderlying); 441 if (EVD->getType()->isIncompleteType() && 442 !DVD->getType()->isIncompleteType()) { 443 // Prefer the decl with a more complete type if visible. 444 return S.isVisible(DVD); 445 } 446 return false; // Avoid picking up a newer decl, just because it was newer. 447 } 448 449 // For most kinds of declaration, it doesn't really matter which one we pick. 450 if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) { 451 // If the existing declaration is hidden, prefer the new one. Otherwise, 452 // keep what we've got. 453 return !S.isVisible(Existing); 454 } 455 456 // Pick the newer declaration; it might have a more precise type. 457 for (const Decl *Prev = DUnderlying->getPreviousDecl(); Prev; 458 Prev = Prev->getPreviousDecl()) 459 if (Prev == EUnderlying) 460 return true; 461 return false; 462 } 463 464 /// Determine whether \p D can hide a tag declaration. 465 static bool canHideTag(const NamedDecl *D) { 466 // C++ [basic.scope.declarative]p4: 467 // Given a set of declarations in a single declarative region [...] 468 // exactly one declaration shall declare a class name or enumeration name 469 // that is not a typedef name and the other declarations shall all refer to 470 // the same variable, non-static data member, or enumerator, or all refer 471 // to functions and function templates; in this case the class name or 472 // enumeration name is hidden. 473 // C++ [basic.scope.hiding]p2: 474 // A class name or enumeration name can be hidden by the name of a 475 // variable, data member, function, or enumerator declared in the same 476 // scope. 477 // An UnresolvedUsingValueDecl always instantiates to one of these. 478 D = D->getUnderlyingDecl(); 479 return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) || 480 isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) || 481 isa<UnresolvedUsingValueDecl>(D); 482 } 483 484 /// Resolves the result kind of this lookup. 485 void LookupResult::resolveKind() { 486 unsigned N = Decls.size(); 487 488 // Fast case: no possible ambiguity. 489 if (N == 0) { 490 assert(ResultKind == NotFound || 491 ResultKind == NotFoundInCurrentInstantiation); 492 return; 493 } 494 495 // If there's a single decl, we need to examine it to decide what 496 // kind of lookup this is. 497 if (N == 1) { 498 const NamedDecl *D = (*Decls.begin())->getUnderlyingDecl(); 499 if (isa<FunctionTemplateDecl>(D)) 500 ResultKind = FoundOverloaded; 501 else if (isa<UnresolvedUsingValueDecl>(D)) 502 ResultKind = FoundUnresolvedValue; 503 return; 504 } 505 506 // Don't do any extra resolution if we've already resolved as ambiguous. 507 if (ResultKind == Ambiguous) return; 508 509 llvm::SmallDenseMap<const NamedDecl *, unsigned, 16> Unique; 510 llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes; 511 512 bool Ambiguous = false; 513 bool ReferenceToPlaceHolderVariable = false; 514 bool HasTag = false, HasFunction = false; 515 bool HasFunctionTemplate = false, HasUnresolved = false; 516 const NamedDecl *HasNonFunction = nullptr; 517 518 llvm::SmallVector<const NamedDecl *, 4> EquivalentNonFunctions; 519 llvm::BitVector RemovedDecls(N); 520 521 for (unsigned I = 0; I < N; I++) { 522 const NamedDecl *D = Decls[I]->getUnderlyingDecl(); 523 D = cast<NamedDecl>(D->getCanonicalDecl()); 524 525 // Ignore an invalid declaration unless it's the only one left. 526 // Also ignore HLSLBufferDecl which not have name conflict with other Decls. 527 if ((D->isInvalidDecl() || isa<HLSLBufferDecl>(D)) && 528 N - RemovedDecls.count() > 1) { 529 RemovedDecls.set(I); 530 continue; 531 } 532 533 // C++ [basic.scope.hiding]p2: 534 // A class name or enumeration name can be hidden by the name of 535 // an object, function, or enumerator declared in the same 536 // scope. If a class or enumeration name and an object, function, 537 // or enumerator are declared in the same scope (in any order) 538 // with the same name, the class or enumeration name is hidden 539 // wherever the object, function, or enumerator name is visible. 540 if (HideTags && isa<TagDecl>(D)) { 541 bool Hidden = false; 542 for (auto *OtherDecl : Decls) { 543 if (canHideTag(OtherDecl) && !OtherDecl->isInvalidDecl() && 544 getContextForScopeMatching(OtherDecl)->Equals( 545 getContextForScopeMatching(Decls[I]))) { 546 RemovedDecls.set(I); 547 Hidden = true; 548 break; 549 } 550 } 551 if (Hidden) 552 continue; 553 } 554 555 std::optional<unsigned> ExistingI; 556 557 // Redeclarations of types via typedef can occur both within a scope 558 // and, through using declarations and directives, across scopes. There is 559 // no ambiguity if they all refer to the same type, so unique based on the 560 // canonical type. 561 if (const auto *TD = dyn_cast<TypeDecl>(D)) { 562 QualType T = getSema().Context.getTypeDeclType(TD); 563 auto UniqueResult = UniqueTypes.insert( 564 std::make_pair(getSema().Context.getCanonicalType(T), I)); 565 if (!UniqueResult.second) { 566 // The type is not unique. 567 ExistingI = UniqueResult.first->second; 568 } 569 } 570 571 // For non-type declarations, check for a prior lookup result naming this 572 // canonical declaration. 573 if (!ExistingI) { 574 auto UniqueResult = Unique.insert(std::make_pair(D, I)); 575 if (!UniqueResult.second) { 576 // We've seen this entity before. 577 ExistingI = UniqueResult.first->second; 578 } 579 } 580 581 if (ExistingI) { 582 // This is not a unique lookup result. Pick one of the results and 583 // discard the other. 584 if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I], 585 Decls[*ExistingI])) 586 Decls[*ExistingI] = Decls[I]; 587 RemovedDecls.set(I); 588 continue; 589 } 590 591 // Otherwise, do some decl type analysis and then continue. 592 593 if (isa<UnresolvedUsingValueDecl>(D)) { 594 HasUnresolved = true; 595 } else if (isa<TagDecl>(D)) { 596 if (HasTag) 597 Ambiguous = true; 598 HasTag = true; 599 } else if (isa<FunctionTemplateDecl>(D)) { 600 HasFunction = true; 601 HasFunctionTemplate = true; 602 } else if (isa<FunctionDecl>(D)) { 603 HasFunction = true; 604 } else { 605 if (HasNonFunction) { 606 // If we're about to create an ambiguity between two declarations that 607 // are equivalent, but one is an internal linkage declaration from one 608 // module and the other is an internal linkage declaration from another 609 // module, just skip it. 610 if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction, 611 D)) { 612 EquivalentNonFunctions.push_back(D); 613 RemovedDecls.set(I); 614 continue; 615 } 616 if (D->isPlaceholderVar(getSema().getLangOpts()) && 617 getContextForScopeMatching(D) == 618 getContextForScopeMatching(Decls[I])) { 619 ReferenceToPlaceHolderVariable = true; 620 } 621 Ambiguous = true; 622 } 623 HasNonFunction = D; 624 } 625 } 626 627 // FIXME: This diagnostic should really be delayed until we're done with 628 // the lookup result, in case the ambiguity is resolved by the caller. 629 if (!EquivalentNonFunctions.empty() && !Ambiguous) 630 getSema().diagnoseEquivalentInternalLinkageDeclarations( 631 getNameLoc(), HasNonFunction, EquivalentNonFunctions); 632 633 // Remove decls by replacing them with decls from the end (which 634 // means that we need to iterate from the end) and then truncating 635 // to the new size. 636 for (int I = RemovedDecls.find_last(); I >= 0; I = RemovedDecls.find_prev(I)) 637 Decls[I] = Decls[--N]; 638 Decls.truncate(N); 639 640 if ((HasNonFunction && (HasFunction || HasUnresolved)) || 641 (HideTags && HasTag && (HasFunction || HasNonFunction || HasUnresolved))) 642 Ambiguous = true; 643 644 if (Ambiguous && ReferenceToPlaceHolderVariable) 645 setAmbiguous(LookupResult::AmbiguousReferenceToPlaceholderVariable); 646 else if (Ambiguous) 647 setAmbiguous(LookupResult::AmbiguousReference); 648 else if (HasUnresolved) 649 ResultKind = LookupResult::FoundUnresolvedValue; 650 else if (N > 1 || HasFunctionTemplate) 651 ResultKind = LookupResult::FoundOverloaded; 652 else 653 ResultKind = LookupResult::Found; 654 } 655 656 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) { 657 CXXBasePaths::const_paths_iterator I, E; 658 for (I = P.begin(), E = P.end(); I != E; ++I) 659 for (DeclContext::lookup_iterator DI = I->Decls, DE = DI.end(); DI != DE; 660 ++DI) 661 addDecl(*DI); 662 } 663 664 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) { 665 Paths = new CXXBasePaths; 666 Paths->swap(P); 667 addDeclsFromBasePaths(*Paths); 668 resolveKind(); 669 setAmbiguous(AmbiguousBaseSubobjects); 670 } 671 672 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) { 673 Paths = new CXXBasePaths; 674 Paths->swap(P); 675 addDeclsFromBasePaths(*Paths); 676 resolveKind(); 677 setAmbiguous(AmbiguousBaseSubobjectTypes); 678 } 679 680 void LookupResult::print(raw_ostream &Out) { 681 Out << Decls.size() << " result(s)"; 682 if (isAmbiguous()) Out << ", ambiguous"; 683 if (Paths) Out << ", base paths present"; 684 685 for (iterator I = begin(), E = end(); I != E; ++I) { 686 Out << "\n"; 687 (*I)->print(Out, 2); 688 } 689 } 690 691 LLVM_DUMP_METHOD void LookupResult::dump() { 692 llvm::errs() << "lookup results for " << getLookupName().getAsString() 693 << ":\n"; 694 for (NamedDecl *D : *this) 695 D->dump(); 696 } 697 698 /// Diagnose a missing builtin type. 699 static QualType diagOpenCLBuiltinTypeError(Sema &S, llvm::StringRef TypeClass, 700 llvm::StringRef Name) { 701 S.Diag(SourceLocation(), diag::err_opencl_type_not_found) 702 << TypeClass << Name; 703 return S.Context.VoidTy; 704 } 705 706 /// Lookup an OpenCL enum type. 707 static QualType getOpenCLEnumType(Sema &S, llvm::StringRef Name) { 708 LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(), 709 Sema::LookupTagName); 710 S.LookupName(Result, S.TUScope); 711 if (Result.empty()) 712 return diagOpenCLBuiltinTypeError(S, "enum", Name); 713 EnumDecl *Decl = Result.getAsSingle<EnumDecl>(); 714 if (!Decl) 715 return diagOpenCLBuiltinTypeError(S, "enum", Name); 716 return S.Context.getEnumType(Decl); 717 } 718 719 /// Lookup an OpenCL typedef type. 720 static QualType getOpenCLTypedefType(Sema &S, llvm::StringRef Name) { 721 LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(), 722 Sema::LookupOrdinaryName); 723 S.LookupName(Result, S.TUScope); 724 if (Result.empty()) 725 return diagOpenCLBuiltinTypeError(S, "typedef", Name); 726 TypedefNameDecl *Decl = Result.getAsSingle<TypedefNameDecl>(); 727 if (!Decl) 728 return diagOpenCLBuiltinTypeError(S, "typedef", Name); 729 return S.Context.getTypedefType(Decl); 730 } 731 732 /// Get the QualType instances of the return type and arguments for an OpenCL 733 /// builtin function signature. 734 /// \param S (in) The Sema instance. 735 /// \param OpenCLBuiltin (in) The signature currently handled. 736 /// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic 737 /// type used as return type or as argument. 738 /// Only meaningful for generic types, otherwise equals 1. 739 /// \param RetTypes (out) List of the possible return types. 740 /// \param ArgTypes (out) List of the possible argument types. For each 741 /// argument, ArgTypes contains QualTypes for the Cartesian product 742 /// of (vector sizes) x (types) . 743 static void GetQualTypesForOpenCLBuiltin( 744 Sema &S, const OpenCLBuiltinStruct &OpenCLBuiltin, unsigned &GenTypeMaxCnt, 745 SmallVector<QualType, 1> &RetTypes, 746 SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) { 747 // Get the QualType instances of the return types. 748 unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex]; 749 OCL2Qual(S, TypeTable[Sig], RetTypes); 750 GenTypeMaxCnt = RetTypes.size(); 751 752 // Get the QualType instances of the arguments. 753 // First type is the return type, skip it. 754 for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) { 755 SmallVector<QualType, 1> Ty; 756 OCL2Qual(S, TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]], 757 Ty); 758 GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt; 759 ArgTypes.push_back(std::move(Ty)); 760 } 761 } 762 763 /// Create a list of the candidate function overloads for an OpenCL builtin 764 /// function. 765 /// \param Context (in) The ASTContext instance. 766 /// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic 767 /// type used as return type or as argument. 768 /// Only meaningful for generic types, otherwise equals 1. 769 /// \param FunctionList (out) List of FunctionTypes. 770 /// \param RetTypes (in) List of the possible return types. 771 /// \param ArgTypes (in) List of the possible types for the arguments. 772 static void GetOpenCLBuiltinFctOverloads( 773 ASTContext &Context, unsigned GenTypeMaxCnt, 774 std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes, 775 SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) { 776 FunctionProtoType::ExtProtoInfo PI( 777 Context.getDefaultCallingConvention(false, false, true)); 778 PI.Variadic = false; 779 780 // Do not attempt to create any FunctionTypes if there are no return types, 781 // which happens when a type belongs to a disabled extension. 782 if (RetTypes.size() == 0) 783 return; 784 785 // Create FunctionTypes for each (gen)type. 786 for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) { 787 SmallVector<QualType, 5> ArgList; 788 789 for (unsigned A = 0; A < ArgTypes.size(); A++) { 790 // Bail out if there is an argument that has no available types. 791 if (ArgTypes[A].size() == 0) 792 return; 793 794 // Builtins such as "max" have an "sgentype" argument that represents 795 // the corresponding scalar type of a gentype. The number of gentypes 796 // must be a multiple of the number of sgentypes. 797 assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 && 798 "argument type count not compatible with gentype type count"); 799 unsigned Idx = IGenType % ArgTypes[A].size(); 800 ArgList.push_back(ArgTypes[A][Idx]); 801 } 802 803 FunctionList.push_back(Context.getFunctionType( 804 RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI)); 805 } 806 } 807 808 /// When trying to resolve a function name, if isOpenCLBuiltin() returns a 809 /// non-null <Index, Len> pair, then the name is referencing an OpenCL 810 /// builtin function. Add all candidate signatures to the LookUpResult. 811 /// 812 /// \param S (in) The Sema instance. 813 /// \param LR (inout) The LookupResult instance. 814 /// \param II (in) The identifier being resolved. 815 /// \param FctIndex (in) Starting index in the BuiltinTable. 816 /// \param Len (in) The signature list has Len elements. 817 static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR, 818 IdentifierInfo *II, 819 const unsigned FctIndex, 820 const unsigned Len) { 821 // The builtin function declaration uses generic types (gentype). 822 bool HasGenType = false; 823 824 // Maximum number of types contained in a generic type used as return type or 825 // as argument. Only meaningful for generic types, otherwise equals 1. 826 unsigned GenTypeMaxCnt; 827 828 ASTContext &Context = S.Context; 829 830 for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) { 831 const OpenCLBuiltinStruct &OpenCLBuiltin = 832 BuiltinTable[FctIndex + SignatureIndex]; 833 834 // Ignore this builtin function if it is not available in the currently 835 // selected language version. 836 if (!isOpenCLVersionContainedInMask(Context.getLangOpts(), 837 OpenCLBuiltin.Versions)) 838 continue; 839 840 // Ignore this builtin function if it carries an extension macro that is 841 // not defined. This indicates that the extension is not supported by the 842 // target, so the builtin function should not be available. 843 StringRef Extensions = FunctionExtensionTable[OpenCLBuiltin.Extension]; 844 if (!Extensions.empty()) { 845 SmallVector<StringRef, 2> ExtVec; 846 Extensions.split(ExtVec, " "); 847 bool AllExtensionsDefined = true; 848 for (StringRef Ext : ExtVec) { 849 if (!S.getPreprocessor().isMacroDefined(Ext)) { 850 AllExtensionsDefined = false; 851 break; 852 } 853 } 854 if (!AllExtensionsDefined) 855 continue; 856 } 857 858 SmallVector<QualType, 1> RetTypes; 859 SmallVector<SmallVector<QualType, 1>, 5> ArgTypes; 860 861 // Obtain QualType lists for the function signature. 862 GetQualTypesForOpenCLBuiltin(S, OpenCLBuiltin, GenTypeMaxCnt, RetTypes, 863 ArgTypes); 864 if (GenTypeMaxCnt > 1) { 865 HasGenType = true; 866 } 867 868 // Create function overload for each type combination. 869 std::vector<QualType> FunctionList; 870 GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes, 871 ArgTypes); 872 873 SourceLocation Loc = LR.getNameLoc(); 874 DeclContext *Parent = Context.getTranslationUnitDecl(); 875 FunctionDecl *NewOpenCLBuiltin; 876 877 for (const auto &FTy : FunctionList) { 878 NewOpenCLBuiltin = FunctionDecl::Create( 879 Context, Parent, Loc, Loc, II, FTy, /*TInfo=*/nullptr, SC_Extern, 880 S.getCurFPFeatures().isFPConstrained(), false, 881 FTy->isFunctionProtoType()); 882 NewOpenCLBuiltin->setImplicit(); 883 884 // Create Decl objects for each parameter, adding them to the 885 // FunctionDecl. 886 const auto *FP = cast<FunctionProtoType>(FTy); 887 SmallVector<ParmVarDecl *, 4> ParmList; 888 for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) { 889 ParmVarDecl *Parm = ParmVarDecl::Create( 890 Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(), 891 nullptr, FP->getParamType(IParm), nullptr, SC_None, nullptr); 892 Parm->setScopeInfo(0, IParm); 893 ParmList.push_back(Parm); 894 } 895 NewOpenCLBuiltin->setParams(ParmList); 896 897 // Add function attributes. 898 if (OpenCLBuiltin.IsPure) 899 NewOpenCLBuiltin->addAttr(PureAttr::CreateImplicit(Context)); 900 if (OpenCLBuiltin.IsConst) 901 NewOpenCLBuiltin->addAttr(ConstAttr::CreateImplicit(Context)); 902 if (OpenCLBuiltin.IsConv) 903 NewOpenCLBuiltin->addAttr(ConvergentAttr::CreateImplicit(Context)); 904 905 if (!S.getLangOpts().OpenCLCPlusPlus) 906 NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context)); 907 908 LR.addDecl(NewOpenCLBuiltin); 909 } 910 } 911 912 // If we added overloads, need to resolve the lookup result. 913 if (Len > 1 || HasGenType) 914 LR.resolveKind(); 915 } 916 917 bool Sema::LookupBuiltin(LookupResult &R) { 918 Sema::LookupNameKind NameKind = R.getLookupKind(); 919 920 // If we didn't find a use of this identifier, and if the identifier 921 // corresponds to a compiler builtin, create the decl object for the builtin 922 // now, injecting it into translation unit scope, and return it. 923 if (NameKind == Sema::LookupOrdinaryName || 924 NameKind == Sema::LookupRedeclarationWithLinkage) { 925 IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo(); 926 if (II) { 927 if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) { 928 if (II == getASTContext().getMakeIntegerSeqName()) { 929 R.addDecl(getASTContext().getMakeIntegerSeqDecl()); 930 return true; 931 } else if (II == getASTContext().getTypePackElementName()) { 932 R.addDecl(getASTContext().getTypePackElementDecl()); 933 return true; 934 } 935 } 936 937 // Check if this is an OpenCL Builtin, and if so, insert its overloads. 938 if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) { 939 auto Index = isOpenCLBuiltin(II->getName()); 940 if (Index.first) { 941 InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1, 942 Index.second); 943 return true; 944 } 945 } 946 947 if (RISCV().DeclareRVVBuiltins || RISCV().DeclareSiFiveVectorBuiltins) { 948 if (!RISCV().IntrinsicManager) 949 RISCV().IntrinsicManager = CreateRISCVIntrinsicManager(*this); 950 951 RISCV().IntrinsicManager->InitIntrinsicList(); 952 953 if (RISCV().IntrinsicManager->CreateIntrinsicIfFound(R, II, PP)) 954 return true; 955 } 956 957 // If this is a builtin on this (or all) targets, create the decl. 958 if (unsigned BuiltinID = II->getBuiltinID()) { 959 // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined 960 // library functions like 'malloc'. Instead, we'll just error. 961 if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) && 962 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 963 return false; 964 965 if (NamedDecl *D = 966 LazilyCreateBuiltin(II, BuiltinID, TUScope, 967 R.isForRedeclaration(), R.getNameLoc())) { 968 R.addDecl(D); 969 return true; 970 } 971 } 972 } 973 } 974 975 return false; 976 } 977 978 /// Looks up the declaration of "struct objc_super" and 979 /// saves it for later use in building builtin declaration of 980 /// objc_msgSendSuper and objc_msgSendSuper_stret. 981 static void LookupPredefedObjCSuperType(Sema &Sema, Scope *S) { 982 ASTContext &Context = Sema.Context; 983 LookupResult Result(Sema, &Context.Idents.get("objc_super"), SourceLocation(), 984 Sema::LookupTagName); 985 Sema.LookupName(Result, S); 986 if (Result.getResultKind() == LookupResult::Found) 987 if (const TagDecl *TD = Result.getAsSingle<TagDecl>()) 988 Context.setObjCSuperType(Context.getTagDeclType(TD)); 989 } 990 991 void Sema::LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID) { 992 if (ID == Builtin::BIobjc_msgSendSuper) 993 LookupPredefedObjCSuperType(*this, S); 994 } 995 996 /// Determine whether we can declare a special member function within 997 /// the class at this point. 998 static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) { 999 // We need to have a definition for the class. 1000 if (!Class->getDefinition() || Class->isDependentContext()) 1001 return false; 1002 1003 // We can't be in the middle of defining the class. 1004 return !Class->isBeingDefined(); 1005 } 1006 1007 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) { 1008 if (!CanDeclareSpecialMemberFunction(Class)) 1009 return; 1010 1011 // If the default constructor has not yet been declared, do so now. 1012 if (Class->needsImplicitDefaultConstructor()) 1013 DeclareImplicitDefaultConstructor(Class); 1014 1015 // If the copy constructor has not yet been declared, do so now. 1016 if (Class->needsImplicitCopyConstructor()) 1017 DeclareImplicitCopyConstructor(Class); 1018 1019 // If the copy assignment operator has not yet been declared, do so now. 1020 if (Class->needsImplicitCopyAssignment()) 1021 DeclareImplicitCopyAssignment(Class); 1022 1023 if (getLangOpts().CPlusPlus11) { 1024 // If the move constructor has not yet been declared, do so now. 1025 if (Class->needsImplicitMoveConstructor()) 1026 DeclareImplicitMoveConstructor(Class); 1027 1028 // If the move assignment operator has not yet been declared, do so now. 1029 if (Class->needsImplicitMoveAssignment()) 1030 DeclareImplicitMoveAssignment(Class); 1031 } 1032 1033 // If the destructor has not yet been declared, do so now. 1034 if (Class->needsImplicitDestructor()) 1035 DeclareImplicitDestructor(Class); 1036 } 1037 1038 /// Determine whether this is the name of an implicitly-declared 1039 /// special member function. 1040 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) { 1041 switch (Name.getNameKind()) { 1042 case DeclarationName::CXXConstructorName: 1043 case DeclarationName::CXXDestructorName: 1044 return true; 1045 1046 case DeclarationName::CXXOperatorName: 1047 return Name.getCXXOverloadedOperator() == OO_Equal; 1048 1049 default: 1050 break; 1051 } 1052 1053 return false; 1054 } 1055 1056 /// If there are any implicit member functions with the given name 1057 /// that need to be declared in the given declaration context, do so. 1058 static void DeclareImplicitMemberFunctionsWithName(Sema &S, 1059 DeclarationName Name, 1060 SourceLocation Loc, 1061 const DeclContext *DC) { 1062 if (!DC) 1063 return; 1064 1065 switch (Name.getNameKind()) { 1066 case DeclarationName::CXXConstructorName: 1067 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) 1068 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) { 1069 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record); 1070 if (Record->needsImplicitDefaultConstructor()) 1071 S.DeclareImplicitDefaultConstructor(Class); 1072 if (Record->needsImplicitCopyConstructor()) 1073 S.DeclareImplicitCopyConstructor(Class); 1074 if (S.getLangOpts().CPlusPlus11 && 1075 Record->needsImplicitMoveConstructor()) 1076 S.DeclareImplicitMoveConstructor(Class); 1077 } 1078 break; 1079 1080 case DeclarationName::CXXDestructorName: 1081 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) 1082 if (Record->getDefinition() && Record->needsImplicitDestructor() && 1083 CanDeclareSpecialMemberFunction(Record)) 1084 S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record)); 1085 break; 1086 1087 case DeclarationName::CXXOperatorName: 1088 if (Name.getCXXOverloadedOperator() != OO_Equal) 1089 break; 1090 1091 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) { 1092 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) { 1093 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record); 1094 if (Record->needsImplicitCopyAssignment()) 1095 S.DeclareImplicitCopyAssignment(Class); 1096 if (S.getLangOpts().CPlusPlus11 && 1097 Record->needsImplicitMoveAssignment()) 1098 S.DeclareImplicitMoveAssignment(Class); 1099 } 1100 } 1101 break; 1102 1103 case DeclarationName::CXXDeductionGuideName: 1104 S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc); 1105 break; 1106 1107 default: 1108 break; 1109 } 1110 } 1111 1112 // Adds all qualifying matches for a name within a decl context to the 1113 // given lookup result. Returns true if any matches were found. 1114 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) { 1115 bool Found = false; 1116 1117 // Lazily declare C++ special member functions. 1118 if (S.getLangOpts().CPlusPlus) 1119 DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(), 1120 DC); 1121 1122 // Perform lookup into this declaration context. 1123 DeclContext::lookup_result DR = DC->lookup(R.getLookupName()); 1124 for (NamedDecl *D : DR) { 1125 if ((D = R.getAcceptableDecl(D))) { 1126 R.addDecl(D); 1127 Found = true; 1128 } 1129 } 1130 1131 if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R)) 1132 return true; 1133 1134 if (R.getLookupName().getNameKind() 1135 != DeclarationName::CXXConversionFunctionName || 1136 R.getLookupName().getCXXNameType()->isDependentType() || 1137 !isa<CXXRecordDecl>(DC)) 1138 return Found; 1139 1140 // C++ [temp.mem]p6: 1141 // A specialization of a conversion function template is not found by 1142 // name lookup. Instead, any conversion function templates visible in the 1143 // context of the use are considered. [...] 1144 const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); 1145 if (!Record->isCompleteDefinition()) 1146 return Found; 1147 1148 // For conversion operators, 'operator auto' should only match 1149 // 'operator auto'. Since 'auto' is not a type, it shouldn't be considered 1150 // as a candidate for template substitution. 1151 auto *ContainedDeducedType = 1152 R.getLookupName().getCXXNameType()->getContainedDeducedType(); 1153 if (R.getLookupName().getNameKind() == 1154 DeclarationName::CXXConversionFunctionName && 1155 ContainedDeducedType && ContainedDeducedType->isUndeducedType()) 1156 return Found; 1157 1158 for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(), 1159 UEnd = Record->conversion_end(); U != UEnd; ++U) { 1160 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U); 1161 if (!ConvTemplate) 1162 continue; 1163 1164 // When we're performing lookup for the purposes of redeclaration, just 1165 // add the conversion function template. When we deduce template 1166 // arguments for specializations, we'll end up unifying the return 1167 // type of the new declaration with the type of the function template. 1168 if (R.isForRedeclaration()) { 1169 R.addDecl(ConvTemplate); 1170 Found = true; 1171 continue; 1172 } 1173 1174 // C++ [temp.mem]p6: 1175 // [...] For each such operator, if argument deduction succeeds 1176 // (14.9.2.3), the resulting specialization is used as if found by 1177 // name lookup. 1178 // 1179 // When referencing a conversion function for any purpose other than 1180 // a redeclaration (such that we'll be building an expression with the 1181 // result), perform template argument deduction and place the 1182 // specialization into the result set. We do this to avoid forcing all 1183 // callers to perform special deduction for conversion functions. 1184 TemplateDeductionInfo Info(R.getNameLoc()); 1185 FunctionDecl *Specialization = nullptr; 1186 1187 const FunctionProtoType *ConvProto 1188 = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>(); 1189 assert(ConvProto && "Nonsensical conversion function template type"); 1190 1191 // Compute the type of the function that we would expect the conversion 1192 // function to have, if it were to match the name given. 1193 // FIXME: Calling convention! 1194 FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo(); 1195 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C); 1196 EPI.ExceptionSpec = EST_None; 1197 QualType ExpectedType = R.getSema().Context.getFunctionType( 1198 R.getLookupName().getCXXNameType(), std::nullopt, EPI); 1199 1200 // Perform template argument deduction against the type that we would 1201 // expect the function to have. 1202 if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType, 1203 Specialization, Info) == 1204 TemplateDeductionResult::Success) { 1205 R.addDecl(Specialization); 1206 Found = true; 1207 } 1208 } 1209 1210 return Found; 1211 } 1212 1213 // Performs C++ unqualified lookup into the given file context. 1214 static bool CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context, 1215 const DeclContext *NS, 1216 UnqualUsingDirectiveSet &UDirs) { 1217 1218 assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!"); 1219 1220 // Perform direct name lookup into the LookupCtx. 1221 bool Found = LookupDirect(S, R, NS); 1222 1223 // Perform direct name lookup into the namespaces nominated by the 1224 // using directives whose common ancestor is this namespace. 1225 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS)) 1226 if (LookupDirect(S, R, UUE.getNominatedNamespace())) 1227 Found = true; 1228 1229 R.resolveKind(); 1230 1231 return Found; 1232 } 1233 1234 static bool isNamespaceOrTranslationUnitScope(Scope *S) { 1235 if (DeclContext *Ctx = S->getEntity()) 1236 return Ctx->isFileContext(); 1237 return false; 1238 } 1239 1240 /// Find the outer declaration context from this scope. This indicates the 1241 /// context that we should search up to (exclusive) before considering the 1242 /// parent of the specified scope. 1243 static DeclContext *findOuterContext(Scope *S) { 1244 for (Scope *OuterS = S->getParent(); OuterS; OuterS = OuterS->getParent()) 1245 if (DeclContext *DC = OuterS->getLookupEntity()) 1246 return DC; 1247 return nullptr; 1248 } 1249 1250 namespace { 1251 /// An RAII object to specify that we want to find block scope extern 1252 /// declarations. 1253 struct FindLocalExternScope { 1254 FindLocalExternScope(LookupResult &R) 1255 : R(R), OldFindLocalExtern(R.getIdentifierNamespace() & 1256 Decl::IDNS_LocalExtern) { 1257 R.setFindLocalExtern(R.getIdentifierNamespace() & 1258 (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator)); 1259 } 1260 void restore() { 1261 R.setFindLocalExtern(OldFindLocalExtern); 1262 } 1263 ~FindLocalExternScope() { 1264 restore(); 1265 } 1266 LookupResult &R; 1267 bool OldFindLocalExtern; 1268 }; 1269 } // end anonymous namespace 1270 1271 bool Sema::CppLookupName(LookupResult &R, Scope *S) { 1272 assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup"); 1273 1274 DeclarationName Name = R.getLookupName(); 1275 Sema::LookupNameKind NameKind = R.getLookupKind(); 1276 1277 // If this is the name of an implicitly-declared special member function, 1278 // go through the scope stack to implicitly declare 1279 if (isImplicitlyDeclaredMemberFunctionName(Name)) { 1280 for (Scope *PreS = S; PreS; PreS = PreS->getParent()) 1281 if (DeclContext *DC = PreS->getEntity()) 1282 DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC); 1283 } 1284 1285 // C++23 [temp.dep.general]p2: 1286 // The component name of an unqualified-id is dependent if 1287 // - it is a conversion-function-id whose conversion-type-id 1288 // is dependent, or 1289 // - it is operator= and the current class is a templated entity, or 1290 // - the unqualified-id is the postfix-expression in a dependent call. 1291 if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName && 1292 Name.getCXXNameType()->isDependentType()) { 1293 R.setNotFoundInCurrentInstantiation(); 1294 return false; 1295 } 1296 1297 // Implicitly declare member functions with the name we're looking for, if in 1298 // fact we are in a scope where it matters. 1299 1300 Scope *Initial = S; 1301 IdentifierResolver::iterator 1302 I = IdResolver.begin(Name), 1303 IEnd = IdResolver.end(); 1304 1305 // First we lookup local scope. 1306 // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir] 1307 // ...During unqualified name lookup (3.4.1), the names appear as if 1308 // they were declared in the nearest enclosing namespace which contains 1309 // both the using-directive and the nominated namespace. 1310 // [Note: in this context, "contains" means "contains directly or 1311 // indirectly". 1312 // 1313 // For example: 1314 // namespace A { int i; } 1315 // void foo() { 1316 // int i; 1317 // { 1318 // using namespace A; 1319 // ++i; // finds local 'i', A::i appears at global scope 1320 // } 1321 // } 1322 // 1323 UnqualUsingDirectiveSet UDirs(*this); 1324 bool VisitedUsingDirectives = false; 1325 bool LeftStartingScope = false; 1326 1327 // When performing a scope lookup, we want to find local extern decls. 1328 FindLocalExternScope FindLocals(R); 1329 1330 for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) { 1331 bool SearchNamespaceScope = true; 1332 // Check whether the IdResolver has anything in this scope. 1333 for (; I != IEnd && S->isDeclScope(*I); ++I) { 1334 if (NamedDecl *ND = R.getAcceptableDecl(*I)) { 1335 if (NameKind == LookupRedeclarationWithLinkage && 1336 !(*I)->isTemplateParameter()) { 1337 // If it's a template parameter, we still find it, so we can diagnose 1338 // the invalid redeclaration. 1339 1340 // Determine whether this (or a previous) declaration is 1341 // out-of-scope. 1342 if (!LeftStartingScope && !Initial->isDeclScope(*I)) 1343 LeftStartingScope = true; 1344 1345 // If we found something outside of our starting scope that 1346 // does not have linkage, skip it. 1347 if (LeftStartingScope && !((*I)->hasLinkage())) { 1348 R.setShadowed(); 1349 continue; 1350 } 1351 } else { 1352 // We found something in this scope, we should not look at the 1353 // namespace scope 1354 SearchNamespaceScope = false; 1355 } 1356 R.addDecl(ND); 1357 } 1358 } 1359 if (!SearchNamespaceScope) { 1360 R.resolveKind(); 1361 if (S->isClassScope()) 1362 if (auto *Record = dyn_cast_if_present<CXXRecordDecl>(S->getEntity())) 1363 R.setNamingClass(Record); 1364 return true; 1365 } 1366 1367 if (NameKind == LookupLocalFriendName && !S->isClassScope()) { 1368 // C++11 [class.friend]p11: 1369 // If a friend declaration appears in a local class and the name 1370 // specified is an unqualified name, a prior declaration is 1371 // looked up without considering scopes that are outside the 1372 // innermost enclosing non-class scope. 1373 return false; 1374 } 1375 1376 if (DeclContext *Ctx = S->getLookupEntity()) { 1377 DeclContext *OuterCtx = findOuterContext(S); 1378 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) { 1379 // We do not directly look into transparent contexts, since 1380 // those entities will be found in the nearest enclosing 1381 // non-transparent context. 1382 if (Ctx->isTransparentContext()) 1383 continue; 1384 1385 // We do not look directly into function or method contexts, 1386 // since all of the local variables and parameters of the 1387 // function/method are present within the Scope. 1388 if (Ctx->isFunctionOrMethod()) { 1389 // If we have an Objective-C instance method, look for ivars 1390 // in the corresponding interface. 1391 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) { 1392 if (Method->isInstanceMethod() && Name.getAsIdentifierInfo()) 1393 if (ObjCInterfaceDecl *Class = Method->getClassInterface()) { 1394 ObjCInterfaceDecl *ClassDeclared; 1395 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable( 1396 Name.getAsIdentifierInfo(), 1397 ClassDeclared)) { 1398 if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) { 1399 R.addDecl(ND); 1400 R.resolveKind(); 1401 return true; 1402 } 1403 } 1404 } 1405 } 1406 1407 continue; 1408 } 1409 1410 // If this is a file context, we need to perform unqualified name 1411 // lookup considering using directives. 1412 if (Ctx->isFileContext()) { 1413 // If we haven't handled using directives yet, do so now. 1414 if (!VisitedUsingDirectives) { 1415 // Add using directives from this context up to the top level. 1416 for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) { 1417 if (UCtx->isTransparentContext()) 1418 continue; 1419 1420 UDirs.visit(UCtx, UCtx); 1421 } 1422 1423 // Find the innermost file scope, so we can add using directives 1424 // from local scopes. 1425 Scope *InnermostFileScope = S; 1426 while (InnermostFileScope && 1427 !isNamespaceOrTranslationUnitScope(InnermostFileScope)) 1428 InnermostFileScope = InnermostFileScope->getParent(); 1429 UDirs.visitScopeChain(Initial, InnermostFileScope); 1430 1431 UDirs.done(); 1432 1433 VisitedUsingDirectives = true; 1434 } 1435 1436 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) { 1437 R.resolveKind(); 1438 return true; 1439 } 1440 1441 continue; 1442 } 1443 1444 // Perform qualified name lookup into this context. 1445 // FIXME: In some cases, we know that every name that could be found by 1446 // this qualified name lookup will also be on the identifier chain. For 1447 // example, inside a class without any base classes, we never need to 1448 // perform qualified lookup because all of the members are on top of the 1449 // identifier chain. 1450 if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true)) 1451 return true; 1452 } 1453 } 1454 } 1455 1456 // Stop if we ran out of scopes. 1457 // FIXME: This really, really shouldn't be happening. 1458 if (!S) return false; 1459 1460 // If we are looking for members, no need to look into global/namespace scope. 1461 if (NameKind == LookupMemberName) 1462 return false; 1463 1464 // Collect UsingDirectiveDecls in all scopes, and recursively all 1465 // nominated namespaces by those using-directives. 1466 // 1467 // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we 1468 // don't build it for each lookup! 1469 if (!VisitedUsingDirectives) { 1470 UDirs.visitScopeChain(Initial, S); 1471 UDirs.done(); 1472 } 1473 1474 // If we're not performing redeclaration lookup, do not look for local 1475 // extern declarations outside of a function scope. 1476 if (!R.isForRedeclaration()) 1477 FindLocals.restore(); 1478 1479 // Lookup namespace scope, and global scope. 1480 // Unqualified name lookup in C++ requires looking into scopes 1481 // that aren't strictly lexical, and therefore we walk through the 1482 // context as well as walking through the scopes. 1483 for (; S; S = S->getParent()) { 1484 // Check whether the IdResolver has anything in this scope. 1485 bool Found = false; 1486 for (; I != IEnd && S->isDeclScope(*I); ++I) { 1487 if (NamedDecl *ND = R.getAcceptableDecl(*I)) { 1488 // We found something. Look for anything else in our scope 1489 // with this same name and in an acceptable identifier 1490 // namespace, so that we can construct an overload set if we 1491 // need to. 1492 Found = true; 1493 R.addDecl(ND); 1494 } 1495 } 1496 1497 if (Found && S->isTemplateParamScope()) { 1498 R.resolveKind(); 1499 return true; 1500 } 1501 1502 DeclContext *Ctx = S->getLookupEntity(); 1503 if (Ctx) { 1504 DeclContext *OuterCtx = findOuterContext(S); 1505 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) { 1506 // We do not directly look into transparent contexts, since 1507 // those entities will be found in the nearest enclosing 1508 // non-transparent context. 1509 if (Ctx->isTransparentContext()) 1510 continue; 1511 1512 // If we have a context, and it's not a context stashed in the 1513 // template parameter scope for an out-of-line definition, also 1514 // look into that context. 1515 if (!(Found && S->isTemplateParamScope())) { 1516 assert(Ctx->isFileContext() && 1517 "We should have been looking only at file context here already."); 1518 1519 // Look into context considering using-directives. 1520 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) 1521 Found = true; 1522 } 1523 1524 if (Found) { 1525 R.resolveKind(); 1526 return true; 1527 } 1528 1529 if (R.isForRedeclaration() && !Ctx->isTransparentContext()) 1530 return false; 1531 } 1532 } 1533 1534 if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext()) 1535 return false; 1536 } 1537 1538 return !R.empty(); 1539 } 1540 1541 void Sema::makeMergedDefinitionVisible(NamedDecl *ND) { 1542 if (auto *M = getCurrentModule()) 1543 Context.mergeDefinitionIntoModule(ND, M); 1544 else 1545 // We're not building a module; just make the definition visible. 1546 ND->setVisibleDespiteOwningModule(); 1547 1548 // If ND is a template declaration, make the template parameters 1549 // visible too. They're not (necessarily) within a mergeable DeclContext. 1550 if (auto *TD = dyn_cast<TemplateDecl>(ND)) 1551 for (auto *Param : *TD->getTemplateParameters()) 1552 makeMergedDefinitionVisible(Param); 1553 } 1554 1555 /// Find the module in which the given declaration was defined. 1556 static Module *getDefiningModule(Sema &S, Decl *Entity) { 1557 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) { 1558 // If this function was instantiated from a template, the defining module is 1559 // the module containing the pattern. 1560 if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern()) 1561 Entity = Pattern; 1562 } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) { 1563 if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern()) 1564 Entity = Pattern; 1565 } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) { 1566 if (auto *Pattern = ED->getTemplateInstantiationPattern()) 1567 Entity = Pattern; 1568 } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) { 1569 if (VarDecl *Pattern = VD->getTemplateInstantiationPattern()) 1570 Entity = Pattern; 1571 } 1572 1573 // Walk up to the containing context. That might also have been instantiated 1574 // from a template. 1575 DeclContext *Context = Entity->getLexicalDeclContext(); 1576 if (Context->isFileContext()) 1577 return S.getOwningModule(Entity); 1578 return getDefiningModule(S, cast<Decl>(Context)); 1579 } 1580 1581 llvm::DenseSet<Module*> &Sema::getLookupModules() { 1582 unsigned N = CodeSynthesisContexts.size(); 1583 for (unsigned I = CodeSynthesisContextLookupModules.size(); 1584 I != N; ++I) { 1585 Module *M = CodeSynthesisContexts[I].Entity ? 1586 getDefiningModule(*this, CodeSynthesisContexts[I].Entity) : 1587 nullptr; 1588 if (M && !LookupModulesCache.insert(M).second) 1589 M = nullptr; 1590 CodeSynthesisContextLookupModules.push_back(M); 1591 } 1592 return LookupModulesCache; 1593 } 1594 1595 bool Sema::isUsableModule(const Module *M) { 1596 assert(M && "We shouldn't check nullness for module here"); 1597 // Return quickly if we cached the result. 1598 if (UsableModuleUnitsCache.count(M)) 1599 return true; 1600 1601 // If M is the global module fragment of the current translation unit. So it 1602 // should be usable. 1603 // [module.global.frag]p1: 1604 // The global module fragment can be used to provide declarations that are 1605 // attached to the global module and usable within the module unit. 1606 if (M == TheGlobalModuleFragment || M == TheImplicitGlobalModuleFragment) { 1607 UsableModuleUnitsCache.insert(M); 1608 return true; 1609 } 1610 1611 // Otherwise, the global module fragment from other translation unit is not 1612 // directly usable. 1613 if (M->isGlobalModule()) 1614 return false; 1615 1616 Module *Current = getCurrentModule(); 1617 1618 // If we're not parsing a module, we can't use all the declarations from 1619 // another module easily. 1620 if (!Current) 1621 return false; 1622 1623 // If M is the module we're parsing or M and the current module unit lives in 1624 // the same module, M should be usable. 1625 // 1626 // Note: It should be fine to search the vector `ModuleScopes` linearly since 1627 // it should be generally small enough. There should be rare module fragments 1628 // in a named module unit. 1629 if (llvm::count_if(ModuleScopes, 1630 [&M](const ModuleScope &MS) { return MS.Module == M; }) || 1631 getASTContext().isInSameModule(M, Current)) { 1632 UsableModuleUnitsCache.insert(M); 1633 return true; 1634 } 1635 1636 return false; 1637 } 1638 1639 bool Sema::hasVisibleMergedDefinition(const NamedDecl *Def) { 1640 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def)) 1641 if (isModuleVisible(Merged)) 1642 return true; 1643 return false; 1644 } 1645 1646 bool Sema::hasMergedDefinitionInCurrentModule(const NamedDecl *Def) { 1647 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def)) 1648 if (isUsableModule(Merged)) 1649 return true; 1650 return false; 1651 } 1652 1653 template <typename ParmDecl> 1654 static bool 1655 hasAcceptableDefaultArgument(Sema &S, const ParmDecl *D, 1656 llvm::SmallVectorImpl<Module *> *Modules, 1657 Sema::AcceptableKind Kind) { 1658 if (!D->hasDefaultArgument()) 1659 return false; 1660 1661 llvm::SmallPtrSet<const ParmDecl *, 4> Visited; 1662 while (D && Visited.insert(D).second) { 1663 auto &DefaultArg = D->getDefaultArgStorage(); 1664 if (!DefaultArg.isInherited() && S.isAcceptable(D, Kind)) 1665 return true; 1666 1667 if (!DefaultArg.isInherited() && Modules) { 1668 auto *NonConstD = const_cast<ParmDecl*>(D); 1669 Modules->push_back(S.getOwningModule(NonConstD)); 1670 } 1671 1672 // If there was a previous default argument, maybe its parameter is 1673 // acceptable. 1674 D = DefaultArg.getInheritedFrom(); 1675 } 1676 return false; 1677 } 1678 1679 bool Sema::hasAcceptableDefaultArgument( 1680 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules, 1681 Sema::AcceptableKind Kind) { 1682 if (auto *P = dyn_cast<TemplateTypeParmDecl>(D)) 1683 return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind); 1684 1685 if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D)) 1686 return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind); 1687 1688 return ::hasAcceptableDefaultArgument( 1689 *this, cast<TemplateTemplateParmDecl>(D), Modules, Kind); 1690 } 1691 1692 bool Sema::hasVisibleDefaultArgument(const NamedDecl *D, 1693 llvm::SmallVectorImpl<Module *> *Modules) { 1694 return hasAcceptableDefaultArgument(D, Modules, 1695 Sema::AcceptableKind::Visible); 1696 } 1697 1698 bool Sema::hasReachableDefaultArgument( 1699 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 1700 return hasAcceptableDefaultArgument(D, Modules, 1701 Sema::AcceptableKind::Reachable); 1702 } 1703 1704 template <typename Filter> 1705 static bool 1706 hasAcceptableDeclarationImpl(Sema &S, const NamedDecl *D, 1707 llvm::SmallVectorImpl<Module *> *Modules, Filter F, 1708 Sema::AcceptableKind Kind) { 1709 bool HasFilteredRedecls = false; 1710 1711 for (auto *Redecl : D->redecls()) { 1712 auto *R = cast<NamedDecl>(Redecl); 1713 if (!F(R)) 1714 continue; 1715 1716 if (S.isAcceptable(R, Kind)) 1717 return true; 1718 1719 HasFilteredRedecls = true; 1720 1721 if (Modules) 1722 Modules->push_back(R->getOwningModule()); 1723 } 1724 1725 // Only return false if there is at least one redecl that is not filtered out. 1726 if (HasFilteredRedecls) 1727 return false; 1728 1729 return true; 1730 } 1731 1732 static bool 1733 hasAcceptableExplicitSpecialization(Sema &S, const NamedDecl *D, 1734 llvm::SmallVectorImpl<Module *> *Modules, 1735 Sema::AcceptableKind Kind) { 1736 return hasAcceptableDeclarationImpl( 1737 S, D, Modules, 1738 [](const NamedDecl *D) { 1739 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) 1740 return RD->getTemplateSpecializationKind() == 1741 TSK_ExplicitSpecialization; 1742 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1743 return FD->getTemplateSpecializationKind() == 1744 TSK_ExplicitSpecialization; 1745 if (auto *VD = dyn_cast<VarDecl>(D)) 1746 return VD->getTemplateSpecializationKind() == 1747 TSK_ExplicitSpecialization; 1748 llvm_unreachable("unknown explicit specialization kind"); 1749 }, 1750 Kind); 1751 } 1752 1753 bool Sema::hasVisibleExplicitSpecialization( 1754 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 1755 return ::hasAcceptableExplicitSpecialization(*this, D, Modules, 1756 Sema::AcceptableKind::Visible); 1757 } 1758 1759 bool Sema::hasReachableExplicitSpecialization( 1760 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 1761 return ::hasAcceptableExplicitSpecialization(*this, D, Modules, 1762 Sema::AcceptableKind::Reachable); 1763 } 1764 1765 static bool 1766 hasAcceptableMemberSpecialization(Sema &S, const NamedDecl *D, 1767 llvm::SmallVectorImpl<Module *> *Modules, 1768 Sema::AcceptableKind Kind) { 1769 assert(isa<CXXRecordDecl>(D->getDeclContext()) && 1770 "not a member specialization"); 1771 return hasAcceptableDeclarationImpl( 1772 S, D, Modules, 1773 [](const NamedDecl *D) { 1774 // If the specialization is declared at namespace scope, then it's a 1775 // member specialization declaration. If it's lexically inside the class 1776 // definition then it was instantiated. 1777 // 1778 // FIXME: This is a hack. There should be a better way to determine 1779 // this. 1780 // FIXME: What about MS-style explicit specializations declared within a 1781 // class definition? 1782 return D->getLexicalDeclContext()->isFileContext(); 1783 }, 1784 Kind); 1785 } 1786 1787 bool Sema::hasVisibleMemberSpecialization( 1788 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 1789 return hasAcceptableMemberSpecialization(*this, D, Modules, 1790 Sema::AcceptableKind::Visible); 1791 } 1792 1793 bool Sema::hasReachableMemberSpecialization( 1794 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 1795 return hasAcceptableMemberSpecialization(*this, D, Modules, 1796 Sema::AcceptableKind::Reachable); 1797 } 1798 1799 /// Determine whether a declaration is acceptable to name lookup. 1800 /// 1801 /// This routine determines whether the declaration D is acceptable in the 1802 /// current lookup context, taking into account the current template 1803 /// instantiation stack. During template instantiation, a declaration is 1804 /// acceptable if it is acceptable from a module containing any entity on the 1805 /// template instantiation path (by instantiating a template, you allow it to 1806 /// see the declarations that your module can see, including those later on in 1807 /// your module). 1808 bool LookupResult::isAcceptableSlow(Sema &SemaRef, NamedDecl *D, 1809 Sema::AcceptableKind Kind) { 1810 assert(!D->isUnconditionallyVisible() && 1811 "should not call this: not in slow case"); 1812 1813 Module *DeclModule = SemaRef.getOwningModule(D); 1814 assert(DeclModule && "hidden decl has no owning module"); 1815 1816 // If the owning module is visible, the decl is acceptable. 1817 if (SemaRef.isModuleVisible(DeclModule, 1818 D->isInvisibleOutsideTheOwningModule())) 1819 return true; 1820 1821 // Determine whether a decl context is a file context for the purpose of 1822 // visibility/reachability. This looks through some (export and linkage spec) 1823 // transparent contexts, but not others (enums). 1824 auto IsEffectivelyFileContext = [](const DeclContext *DC) { 1825 return DC->isFileContext() || isa<LinkageSpecDecl>(DC) || 1826 isa<ExportDecl>(DC); 1827 }; 1828 1829 // If this declaration is not at namespace scope 1830 // then it is acceptable if its lexical parent has a acceptable definition. 1831 DeclContext *DC = D->getLexicalDeclContext(); 1832 if (DC && !IsEffectivelyFileContext(DC)) { 1833 // For a parameter, check whether our current template declaration's 1834 // lexical context is acceptable, not whether there's some other acceptable 1835 // definition of it, because parameters aren't "within" the definition. 1836 // 1837 // In C++ we need to check for a acceptable definition due to ODR merging, 1838 // and in C we must not because each declaration of a function gets its own 1839 // set of declarations for tags in prototype scope. 1840 bool AcceptableWithinParent; 1841 if (D->isTemplateParameter()) { 1842 bool SearchDefinitions = true; 1843 if (const auto *DCD = dyn_cast<Decl>(DC)) { 1844 if (const auto *TD = DCD->getDescribedTemplate()) { 1845 TemplateParameterList *TPL = TD->getTemplateParameters(); 1846 auto Index = getDepthAndIndex(D).second; 1847 SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D; 1848 } 1849 } 1850 if (SearchDefinitions) 1851 AcceptableWithinParent = 1852 SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind); 1853 else 1854 AcceptableWithinParent = 1855 isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind); 1856 } else if (isa<ParmVarDecl>(D) || 1857 (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus)) 1858 AcceptableWithinParent = isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind); 1859 else if (D->isModulePrivate()) { 1860 // A module-private declaration is only acceptable if an enclosing lexical 1861 // parent was merged with another definition in the current module. 1862 AcceptableWithinParent = false; 1863 do { 1864 if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) { 1865 AcceptableWithinParent = true; 1866 break; 1867 } 1868 DC = DC->getLexicalParent(); 1869 } while (!IsEffectivelyFileContext(DC)); 1870 } else { 1871 AcceptableWithinParent = 1872 SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind); 1873 } 1874 1875 if (AcceptableWithinParent && SemaRef.CodeSynthesisContexts.empty() && 1876 Kind == Sema::AcceptableKind::Visible && 1877 // FIXME: Do something better in this case. 1878 !SemaRef.getLangOpts().ModulesLocalVisibility) { 1879 // Cache the fact that this declaration is implicitly visible because 1880 // its parent has a visible definition. 1881 D->setVisibleDespiteOwningModule(); 1882 } 1883 return AcceptableWithinParent; 1884 } 1885 1886 if (Kind == Sema::AcceptableKind::Visible) 1887 return false; 1888 1889 assert(Kind == Sema::AcceptableKind::Reachable && 1890 "Additional Sema::AcceptableKind?"); 1891 return isReachableSlow(SemaRef, D); 1892 } 1893 1894 bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) { 1895 // The module might be ordinarily visible. For a module-private query, that 1896 // means it is part of the current module. 1897 if (ModulePrivate && isUsableModule(M)) 1898 return true; 1899 1900 // For a query which is not module-private, that means it is in our visible 1901 // module set. 1902 if (!ModulePrivate && VisibleModules.isVisible(M)) 1903 return true; 1904 1905 // Otherwise, it might be visible by virtue of the query being within a 1906 // template instantiation or similar that is permitted to look inside M. 1907 1908 // Find the extra places where we need to look. 1909 const auto &LookupModules = getLookupModules(); 1910 if (LookupModules.empty()) 1911 return false; 1912 1913 // If our lookup set contains the module, it's visible. 1914 if (LookupModules.count(M)) 1915 return true; 1916 1917 // The global module fragments are visible to its corresponding module unit. 1918 // So the global module fragment should be visible if the its corresponding 1919 // module unit is visible. 1920 if (M->isGlobalModule() && LookupModules.count(M->getTopLevelModule())) 1921 return true; 1922 1923 // For a module-private query, that's everywhere we get to look. 1924 if (ModulePrivate) 1925 return false; 1926 1927 // Check whether M is transitively exported to an import of the lookup set. 1928 return llvm::any_of(LookupModules, [&](const Module *LookupM) { 1929 return LookupM->isModuleVisible(M); 1930 }); 1931 } 1932 1933 // FIXME: Return false directly if we don't have an interface dependency on the 1934 // translation unit containing D. 1935 bool LookupResult::isReachableSlow(Sema &SemaRef, NamedDecl *D) { 1936 assert(!isVisible(SemaRef, D) && "Shouldn't call the slow case.\n"); 1937 1938 Module *DeclModule = SemaRef.getOwningModule(D); 1939 assert(DeclModule && "hidden decl has no owning module"); 1940 1941 // Entities in header like modules are reachable only if they're visible. 1942 if (DeclModule->isHeaderLikeModule()) 1943 return false; 1944 1945 if (!D->isInAnotherModuleUnit()) 1946 return true; 1947 1948 // [module.reach]/p3: 1949 // A declaration D is reachable from a point P if: 1950 // ... 1951 // - D is not discarded ([module.global.frag]), appears in a translation unit 1952 // that is reachable from P, and does not appear within a private module 1953 // fragment. 1954 // 1955 // A declaration that's discarded in the GMF should be module-private. 1956 if (D->isModulePrivate()) 1957 return false; 1958 1959 // [module.reach]/p1 1960 // A translation unit U is necessarily reachable from a point P if U is a 1961 // module interface unit on which the translation unit containing P has an 1962 // interface dependency, or the translation unit containing P imports U, in 1963 // either case prior to P ([module.import]). 1964 // 1965 // [module.import]/p10 1966 // A translation unit has an interface dependency on a translation unit U if 1967 // it contains a declaration (possibly a module-declaration) that imports U 1968 // or if it has an interface dependency on a translation unit that has an 1969 // interface dependency on U. 1970 // 1971 // So we could conclude the module unit U is necessarily reachable if: 1972 // (1) The module unit U is module interface unit. 1973 // (2) The current unit has an interface dependency on the module unit U. 1974 // 1975 // Here we only check for the first condition. Since we couldn't see 1976 // DeclModule if it isn't (transitively) imported. 1977 if (DeclModule->getTopLevelModule()->isModuleInterfaceUnit()) 1978 return true; 1979 1980 // [module.reach]/p2 1981 // Additional translation units on 1982 // which the point within the program has an interface dependency may be 1983 // considered reachable, but it is unspecified which are and under what 1984 // circumstances. 1985 // 1986 // The decision here is to treat all additional tranditional units as 1987 // unreachable. 1988 return false; 1989 } 1990 1991 bool Sema::isAcceptableSlow(const NamedDecl *D, Sema::AcceptableKind Kind) { 1992 return LookupResult::isAcceptable(*this, const_cast<NamedDecl *>(D), Kind); 1993 } 1994 1995 bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) { 1996 // FIXME: If there are both visible and hidden declarations, we need to take 1997 // into account whether redeclaration is possible. Example: 1998 // 1999 // Non-imported module: 2000 // int f(T); // #1 2001 // Some TU: 2002 // static int f(U); // #2, not a redeclaration of #1 2003 // int f(T); // #3, finds both, should link with #1 if T != U, but 2004 // // with #2 if T == U; neither should be ambiguous. 2005 for (auto *D : R) { 2006 if (isVisible(D)) 2007 return true; 2008 assert(D->isExternallyDeclarable() && 2009 "should not have hidden, non-externally-declarable result here"); 2010 } 2011 2012 // This function is called once "New" is essentially complete, but before a 2013 // previous declaration is attached. We can't query the linkage of "New" in 2014 // general, because attaching the previous declaration can change the 2015 // linkage of New to match the previous declaration. 2016 // 2017 // However, because we've just determined that there is no *visible* prior 2018 // declaration, we can compute the linkage here. There are two possibilities: 2019 // 2020 // * This is not a redeclaration; it's safe to compute the linkage now. 2021 // 2022 // * This is a redeclaration of a prior declaration that is externally 2023 // redeclarable. In that case, the linkage of the declaration is not 2024 // changed by attaching the prior declaration, because both are externally 2025 // declarable (and thus ExternalLinkage or VisibleNoLinkage). 2026 // 2027 // FIXME: This is subtle and fragile. 2028 return New->isExternallyDeclarable(); 2029 } 2030 2031 /// Retrieve the visible declaration corresponding to D, if any. 2032 /// 2033 /// This routine determines whether the declaration D is visible in the current 2034 /// module, with the current imports. If not, it checks whether any 2035 /// redeclaration of D is visible, and if so, returns that declaration. 2036 /// 2037 /// \returns D, or a visible previous declaration of D, whichever is more recent 2038 /// and visible. If no declaration of D is visible, returns null. 2039 static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D, 2040 unsigned IDNS) { 2041 assert(!LookupResult::isAvailableForLookup(SemaRef, D) && "not in slow case"); 2042 2043 for (auto *RD : D->redecls()) { 2044 // Don't bother with extra checks if we already know this one isn't visible. 2045 if (RD == D) 2046 continue; 2047 2048 auto ND = cast<NamedDecl>(RD); 2049 // FIXME: This is wrong in the case where the previous declaration is not 2050 // visible in the same scope as D. This needs to be done much more 2051 // carefully. 2052 if (ND->isInIdentifierNamespace(IDNS) && 2053 LookupResult::isAvailableForLookup(SemaRef, ND)) 2054 return ND; 2055 } 2056 2057 return nullptr; 2058 } 2059 2060 bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D, 2061 llvm::SmallVectorImpl<Module *> *Modules) { 2062 assert(!isVisible(D) && "not in slow case"); 2063 return hasAcceptableDeclarationImpl( 2064 *this, D, Modules, [](const NamedDecl *) { return true; }, 2065 Sema::AcceptableKind::Visible); 2066 } 2067 2068 bool Sema::hasReachableDeclarationSlow( 2069 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 2070 assert(!isReachable(D) && "not in slow case"); 2071 return hasAcceptableDeclarationImpl( 2072 *this, D, Modules, [](const NamedDecl *) { return true; }, 2073 Sema::AcceptableKind::Reachable); 2074 } 2075 2076 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const { 2077 if (auto *ND = dyn_cast<NamespaceDecl>(D)) { 2078 // Namespaces are a bit of a special case: we expect there to be a lot of 2079 // redeclarations of some namespaces, all declarations of a namespace are 2080 // essentially interchangeable, all declarations are found by name lookup 2081 // if any is, and namespaces are never looked up during template 2082 // instantiation. So we benefit from caching the check in this case, and 2083 // it is correct to do so. 2084 auto *Key = ND->getCanonicalDecl(); 2085 if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key)) 2086 return Acceptable; 2087 auto *Acceptable = isVisible(getSema(), Key) 2088 ? Key 2089 : findAcceptableDecl(getSema(), Key, IDNS); 2090 if (Acceptable) 2091 getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable)); 2092 return Acceptable; 2093 } 2094 2095 return findAcceptableDecl(getSema(), D, IDNS); 2096 } 2097 2098 bool LookupResult::isVisible(Sema &SemaRef, NamedDecl *D) { 2099 // If this declaration is already visible, return it directly. 2100 if (D->isUnconditionallyVisible()) 2101 return true; 2102 2103 // During template instantiation, we can refer to hidden declarations, if 2104 // they were visible in any module along the path of instantiation. 2105 return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Visible); 2106 } 2107 2108 bool LookupResult::isReachable(Sema &SemaRef, NamedDecl *D) { 2109 if (D->isUnconditionallyVisible()) 2110 return true; 2111 2112 return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Reachable); 2113 } 2114 2115 bool LookupResult::isAvailableForLookup(Sema &SemaRef, NamedDecl *ND) { 2116 // We should check the visibility at the callsite already. 2117 if (isVisible(SemaRef, ND)) 2118 return true; 2119 2120 // Deduction guide lives in namespace scope generally, but it is just a 2121 // hint to the compilers. What we actually lookup for is the generated member 2122 // of the corresponding template. So it is sufficient to check the 2123 // reachability of the template decl. 2124 if (auto *DeductionGuide = ND->getDeclName().getCXXDeductionGuideTemplate()) 2125 return SemaRef.hasReachableDefinition(DeductionGuide); 2126 2127 // FIXME: The lookup for allocation function is a standalone process. 2128 // (We can find the logics in Sema::FindAllocationFunctions) 2129 // 2130 // Such structure makes it a problem when we instantiate a template 2131 // declaration using placement allocation function if the placement 2132 // allocation function is invisible. 2133 // (See https://github.com/llvm/llvm-project/issues/59601) 2134 // 2135 // Here we workaround it by making the placement allocation functions 2136 // always acceptable. The downside is that we can't diagnose the direct 2137 // use of the invisible placement allocation functions. (Although such uses 2138 // should be rare). 2139 if (auto *FD = dyn_cast<FunctionDecl>(ND); 2140 FD && FD->isReservedGlobalPlacementOperator()) 2141 return true; 2142 2143 auto *DC = ND->getDeclContext(); 2144 // If ND is not visible and it is at namespace scope, it shouldn't be found 2145 // by name lookup. 2146 if (DC->isFileContext()) 2147 return false; 2148 2149 // [module.interface]p7 2150 // Class and enumeration member names can be found by name lookup in any 2151 // context in which a definition of the type is reachable. 2152 // 2153 // FIXME: The current implementation didn't consider about scope. For example, 2154 // ``` 2155 // // m.cppm 2156 // export module m; 2157 // enum E1 { e1 }; 2158 // // Use.cpp 2159 // import m; 2160 // void test() { 2161 // auto a = E1::e1; // Error as expected. 2162 // auto b = e1; // Should be error. namespace-scope name e1 is not visible 2163 // } 2164 // ``` 2165 // For the above example, the current implementation would emit error for `a` 2166 // correctly. However, the implementation wouldn't diagnose about `b` now. 2167 // Since we only check the reachability for the parent only. 2168 // See clang/test/CXX/module/module.interface/p7.cpp for example. 2169 if (auto *TD = dyn_cast<TagDecl>(DC)) 2170 return SemaRef.hasReachableDefinition(TD); 2171 2172 return false; 2173 } 2174 2175 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation, 2176 bool ForceNoCPlusPlus) { 2177 DeclarationName Name = R.getLookupName(); 2178 if (!Name) return false; 2179 2180 LookupNameKind NameKind = R.getLookupKind(); 2181 2182 if (!getLangOpts().CPlusPlus || ForceNoCPlusPlus) { 2183 // Unqualified name lookup in C/Objective-C is purely lexical, so 2184 // search in the declarations attached to the name. 2185 if (NameKind == Sema::LookupRedeclarationWithLinkage) { 2186 // Find the nearest non-transparent declaration scope. 2187 while (!(S->getFlags() & Scope::DeclScope) || 2188 (S->getEntity() && S->getEntity()->isTransparentContext())) 2189 S = S->getParent(); 2190 } 2191 2192 // When performing a scope lookup, we want to find local extern decls. 2193 FindLocalExternScope FindLocals(R); 2194 2195 // Scan up the scope chain looking for a decl that matches this 2196 // identifier that is in the appropriate namespace. This search 2197 // should not take long, as shadowing of names is uncommon, and 2198 // deep shadowing is extremely uncommon. 2199 bool LeftStartingScope = false; 2200 2201 for (IdentifierResolver::iterator I = IdResolver.begin(Name), 2202 IEnd = IdResolver.end(); 2203 I != IEnd; ++I) 2204 if (NamedDecl *D = R.getAcceptableDecl(*I)) { 2205 if (NameKind == LookupRedeclarationWithLinkage) { 2206 // Determine whether this (or a previous) declaration is 2207 // out-of-scope. 2208 if (!LeftStartingScope && !S->isDeclScope(*I)) 2209 LeftStartingScope = true; 2210 2211 // If we found something outside of our starting scope that 2212 // does not have linkage, skip it. 2213 if (LeftStartingScope && !((*I)->hasLinkage())) { 2214 R.setShadowed(); 2215 continue; 2216 } 2217 } 2218 else if (NameKind == LookupObjCImplicitSelfParam && 2219 !isa<ImplicitParamDecl>(*I)) 2220 continue; 2221 2222 R.addDecl(D); 2223 2224 // Check whether there are any other declarations with the same name 2225 // and in the same scope. 2226 if (I != IEnd) { 2227 // Find the scope in which this declaration was declared (if it 2228 // actually exists in a Scope). 2229 while (S && !S->isDeclScope(D)) 2230 S = S->getParent(); 2231 2232 // If the scope containing the declaration is the translation unit, 2233 // then we'll need to perform our checks based on the matching 2234 // DeclContexts rather than matching scopes. 2235 if (S && isNamespaceOrTranslationUnitScope(S)) 2236 S = nullptr; 2237 2238 // Compute the DeclContext, if we need it. 2239 DeclContext *DC = nullptr; 2240 if (!S) 2241 DC = (*I)->getDeclContext()->getRedeclContext(); 2242 2243 IdentifierResolver::iterator LastI = I; 2244 for (++LastI; LastI != IEnd; ++LastI) { 2245 if (S) { 2246 // Match based on scope. 2247 if (!S->isDeclScope(*LastI)) 2248 break; 2249 } else { 2250 // Match based on DeclContext. 2251 DeclContext *LastDC 2252 = (*LastI)->getDeclContext()->getRedeclContext(); 2253 if (!LastDC->Equals(DC)) 2254 break; 2255 } 2256 2257 // If the declaration is in the right namespace and visible, add it. 2258 if (NamedDecl *LastD = R.getAcceptableDecl(*LastI)) 2259 R.addDecl(LastD); 2260 } 2261 2262 R.resolveKind(); 2263 } 2264 2265 return true; 2266 } 2267 } else { 2268 // Perform C++ unqualified name lookup. 2269 if (CppLookupName(R, S)) 2270 return true; 2271 } 2272 2273 // If we didn't find a use of this identifier, and if the identifier 2274 // corresponds to a compiler builtin, create the decl object for the builtin 2275 // now, injecting it into translation unit scope, and return it. 2276 if (AllowBuiltinCreation && LookupBuiltin(R)) 2277 return true; 2278 2279 // If we didn't find a use of this identifier, the ExternalSource 2280 // may be able to handle the situation. 2281 // Note: some lookup failures are expected! 2282 // See e.g. R.isForRedeclaration(). 2283 return (ExternalSource && ExternalSource->LookupUnqualified(R, S)); 2284 } 2285 2286 /// Perform qualified name lookup in the namespaces nominated by 2287 /// using directives by the given context. 2288 /// 2289 /// C++98 [namespace.qual]p2: 2290 /// Given X::m (where X is a user-declared namespace), or given \::m 2291 /// (where X is the global namespace), let S be the set of all 2292 /// declarations of m in X and in the transitive closure of all 2293 /// namespaces nominated by using-directives in X and its used 2294 /// namespaces, except that using-directives are ignored in any 2295 /// namespace, including X, directly containing one or more 2296 /// declarations of m. No namespace is searched more than once in 2297 /// the lookup of a name. If S is the empty set, the program is 2298 /// ill-formed. Otherwise, if S has exactly one member, or if the 2299 /// context of the reference is a using-declaration 2300 /// (namespace.udecl), S is the required set of declarations of 2301 /// m. Otherwise if the use of m is not one that allows a unique 2302 /// declaration to be chosen from S, the program is ill-formed. 2303 /// 2304 /// C++98 [namespace.qual]p5: 2305 /// During the lookup of a qualified namespace member name, if the 2306 /// lookup finds more than one declaration of the member, and if one 2307 /// declaration introduces a class name or enumeration name and the 2308 /// other declarations either introduce the same object, the same 2309 /// enumerator or a set of functions, the non-type name hides the 2310 /// class or enumeration name if and only if the declarations are 2311 /// from the same namespace; otherwise (the declarations are from 2312 /// different namespaces), the program is ill-formed. 2313 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R, 2314 DeclContext *StartDC) { 2315 assert(StartDC->isFileContext() && "start context is not a file context"); 2316 2317 // We have not yet looked into these namespaces, much less added 2318 // their "using-children" to the queue. 2319 SmallVector<NamespaceDecl*, 8> Queue; 2320 2321 // We have at least added all these contexts to the queue. 2322 llvm::SmallPtrSet<DeclContext*, 8> Visited; 2323 Visited.insert(StartDC); 2324 2325 // We have already looked into the initial namespace; seed the queue 2326 // with its using-children. 2327 for (auto *I : StartDC->using_directives()) { 2328 NamespaceDecl *ND = I->getNominatedNamespace()->getFirstDecl(); 2329 if (S.isVisible(I) && Visited.insert(ND).second) 2330 Queue.push_back(ND); 2331 } 2332 2333 // The easiest way to implement the restriction in [namespace.qual]p5 2334 // is to check whether any of the individual results found a tag 2335 // and, if so, to declare an ambiguity if the final result is not 2336 // a tag. 2337 bool FoundTag = false; 2338 bool FoundNonTag = false; 2339 2340 LookupResult LocalR(LookupResult::Temporary, R); 2341 2342 bool Found = false; 2343 while (!Queue.empty()) { 2344 NamespaceDecl *ND = Queue.pop_back_val(); 2345 2346 // We go through some convolutions here to avoid copying results 2347 // between LookupResults. 2348 bool UseLocal = !R.empty(); 2349 LookupResult &DirectR = UseLocal ? LocalR : R; 2350 bool FoundDirect = LookupDirect(S, DirectR, ND); 2351 2352 if (FoundDirect) { 2353 // First do any local hiding. 2354 DirectR.resolveKind(); 2355 2356 // If the local result is a tag, remember that. 2357 if (DirectR.isSingleTagDecl()) 2358 FoundTag = true; 2359 else 2360 FoundNonTag = true; 2361 2362 // Append the local results to the total results if necessary. 2363 if (UseLocal) { 2364 R.addAllDecls(LocalR); 2365 LocalR.clear(); 2366 } 2367 } 2368 2369 // If we find names in this namespace, ignore its using directives. 2370 if (FoundDirect) { 2371 Found = true; 2372 continue; 2373 } 2374 2375 for (auto *I : ND->using_directives()) { 2376 NamespaceDecl *Nom = I->getNominatedNamespace(); 2377 if (S.isVisible(I) && Visited.insert(Nom).second) 2378 Queue.push_back(Nom); 2379 } 2380 } 2381 2382 if (Found) { 2383 if (FoundTag && FoundNonTag) 2384 R.setAmbiguousQualifiedTagHiding(); 2385 else 2386 R.resolveKind(); 2387 } 2388 2389 return Found; 2390 } 2391 2392 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, 2393 bool InUnqualifiedLookup) { 2394 assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context"); 2395 2396 if (!R.getLookupName()) 2397 return false; 2398 2399 // Make sure that the declaration context is complete. 2400 assert((!isa<TagDecl>(LookupCtx) || 2401 LookupCtx->isDependentContext() || 2402 cast<TagDecl>(LookupCtx)->isCompleteDefinition() || 2403 cast<TagDecl>(LookupCtx)->isBeingDefined()) && 2404 "Declaration context must already be complete!"); 2405 2406 struct QualifiedLookupInScope { 2407 bool oldVal; 2408 DeclContext *Context; 2409 // Set flag in DeclContext informing debugger that we're looking for qualified name 2410 QualifiedLookupInScope(DeclContext *ctx) 2411 : oldVal(ctx->shouldUseQualifiedLookup()), Context(ctx) { 2412 ctx->setUseQualifiedLookup(); 2413 } 2414 ~QualifiedLookupInScope() { 2415 Context->setUseQualifiedLookup(oldVal); 2416 } 2417 } QL(LookupCtx); 2418 2419 CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx); 2420 // FIXME: Per [temp.dep.general]p2, an unqualified name is also dependent 2421 // if it's a dependent conversion-function-id or operator= where the current 2422 // class is a templated entity. This should be handled in LookupName. 2423 if (!InUnqualifiedLookup && !R.isForRedeclaration()) { 2424 // C++23 [temp.dep.type]p5: 2425 // A qualified name is dependent if 2426 // - it is a conversion-function-id whose conversion-type-id 2427 // is dependent, or 2428 // - [...] 2429 // - its lookup context is the current instantiation and it 2430 // is operator=, or 2431 // - [...] 2432 if (DeclarationName Name = R.getLookupName(); 2433 Name.getNameKind() == DeclarationName::CXXConversionFunctionName && 2434 Name.getCXXNameType()->isDependentType()) { 2435 R.setNotFoundInCurrentInstantiation(); 2436 return false; 2437 } 2438 } 2439 2440 if (LookupDirect(*this, R, LookupCtx)) { 2441 R.resolveKind(); 2442 if (LookupRec) 2443 R.setNamingClass(LookupRec); 2444 return true; 2445 } 2446 2447 // Don't descend into implied contexts for redeclarations. 2448 // C++98 [namespace.qual]p6: 2449 // In a declaration for a namespace member in which the 2450 // declarator-id is a qualified-id, given that the qualified-id 2451 // for the namespace member has the form 2452 // nested-name-specifier unqualified-id 2453 // the unqualified-id shall name a member of the namespace 2454 // designated by the nested-name-specifier. 2455 // See also [class.mfct]p5 and [class.static.data]p2. 2456 if (R.isForRedeclaration()) 2457 return false; 2458 2459 // If this is a namespace, look it up in the implied namespaces. 2460 if (LookupCtx->isFileContext()) 2461 return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx); 2462 2463 // If this isn't a C++ class, we aren't allowed to look into base 2464 // classes, we're done. 2465 if (!LookupRec || !LookupRec->getDefinition()) 2466 return false; 2467 2468 // We're done for lookups that can never succeed for C++ classes. 2469 if (R.getLookupKind() == LookupOperatorName || 2470 R.getLookupKind() == LookupNamespaceName || 2471 R.getLookupKind() == LookupObjCProtocolName || 2472 R.getLookupKind() == LookupLabel) 2473 return false; 2474 2475 // If we're performing qualified name lookup into a dependent class, 2476 // then we are actually looking into a current instantiation. If we have any 2477 // dependent base classes, then we either have to delay lookup until 2478 // template instantiation time (at which point all bases will be available) 2479 // or we have to fail. 2480 if (!InUnqualifiedLookup && LookupRec->isDependentContext() && 2481 LookupRec->hasAnyDependentBases()) { 2482 R.setNotFoundInCurrentInstantiation(); 2483 return false; 2484 } 2485 2486 // Perform lookup into our base classes. 2487 2488 DeclarationName Name = R.getLookupName(); 2489 unsigned IDNS = R.getIdentifierNamespace(); 2490 2491 // Look for this member in our base classes. 2492 auto BaseCallback = [Name, IDNS](const CXXBaseSpecifier *Specifier, 2493 CXXBasePath &Path) -> bool { 2494 CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl(); 2495 // Drop leading non-matching lookup results from the declaration list so 2496 // we don't need to consider them again below. 2497 for (Path.Decls = BaseRecord->lookup(Name).begin(); 2498 Path.Decls != Path.Decls.end(); ++Path.Decls) { 2499 if ((*Path.Decls)->isInIdentifierNamespace(IDNS)) 2500 return true; 2501 } 2502 return false; 2503 }; 2504 2505 CXXBasePaths Paths; 2506 Paths.setOrigin(LookupRec); 2507 if (!LookupRec->lookupInBases(BaseCallback, Paths)) 2508 return false; 2509 2510 R.setNamingClass(LookupRec); 2511 2512 // C++ [class.member.lookup]p2: 2513 // [...] If the resulting set of declarations are not all from 2514 // sub-objects of the same type, or the set has a nonstatic member 2515 // and includes members from distinct sub-objects, there is an 2516 // ambiguity and the program is ill-formed. Otherwise that set is 2517 // the result of the lookup. 2518 QualType SubobjectType; 2519 int SubobjectNumber = 0; 2520 AccessSpecifier SubobjectAccess = AS_none; 2521 2522 // Check whether the given lookup result contains only static members. 2523 auto HasOnlyStaticMembers = [&](DeclContext::lookup_iterator Result) { 2524 for (DeclContext::lookup_iterator I = Result, E = I.end(); I != E; ++I) 2525 if ((*I)->isInIdentifierNamespace(IDNS) && (*I)->isCXXInstanceMember()) 2526 return false; 2527 return true; 2528 }; 2529 2530 bool TemplateNameLookup = R.isTemplateNameLookup(); 2531 2532 // Determine whether two sets of members contain the same members, as 2533 // required by C++ [class.member.lookup]p6. 2534 auto HasSameDeclarations = [&](DeclContext::lookup_iterator A, 2535 DeclContext::lookup_iterator B) { 2536 using Iterator = DeclContextLookupResult::iterator; 2537 using Result = const void *; 2538 2539 auto Next = [&](Iterator &It, Iterator End) -> Result { 2540 while (It != End) { 2541 NamedDecl *ND = *It++; 2542 if (!ND->isInIdentifierNamespace(IDNS)) 2543 continue; 2544 2545 // C++ [temp.local]p3: 2546 // A lookup that finds an injected-class-name (10.2) can result in 2547 // an ambiguity in certain cases (for example, if it is found in 2548 // more than one base class). If all of the injected-class-names 2549 // that are found refer to specializations of the same class 2550 // template, and if the name is used as a template-name, the 2551 // reference refers to the class template itself and not a 2552 // specialization thereof, and is not ambiguous. 2553 if (TemplateNameLookup) 2554 if (auto *TD = getAsTemplateNameDecl(ND)) 2555 ND = TD; 2556 2557 // C++ [class.member.lookup]p3: 2558 // type declarations (including injected-class-names) are replaced by 2559 // the types they designate 2560 if (const TypeDecl *TD = dyn_cast<TypeDecl>(ND->getUnderlyingDecl())) { 2561 QualType T = Context.getTypeDeclType(TD); 2562 return T.getCanonicalType().getAsOpaquePtr(); 2563 } 2564 2565 return ND->getUnderlyingDecl()->getCanonicalDecl(); 2566 } 2567 return nullptr; 2568 }; 2569 2570 // We'll often find the declarations are in the same order. Handle this 2571 // case (and the special case of only one declaration) efficiently. 2572 Iterator AIt = A, BIt = B, AEnd, BEnd; 2573 while (true) { 2574 Result AResult = Next(AIt, AEnd); 2575 Result BResult = Next(BIt, BEnd); 2576 if (!AResult && !BResult) 2577 return true; 2578 if (!AResult || !BResult) 2579 return false; 2580 if (AResult != BResult) { 2581 // Found a mismatch; carefully check both lists, accounting for the 2582 // possibility of declarations appearing more than once. 2583 llvm::SmallDenseMap<Result, bool, 32> AResults; 2584 for (; AResult; AResult = Next(AIt, AEnd)) 2585 AResults.insert({AResult, /*FoundInB*/false}); 2586 unsigned Found = 0; 2587 for (; BResult; BResult = Next(BIt, BEnd)) { 2588 auto It = AResults.find(BResult); 2589 if (It == AResults.end()) 2590 return false; 2591 if (!It->second) { 2592 It->second = true; 2593 ++Found; 2594 } 2595 } 2596 return AResults.size() == Found; 2597 } 2598 } 2599 }; 2600 2601 for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end(); 2602 Path != PathEnd; ++Path) { 2603 const CXXBasePathElement &PathElement = Path->back(); 2604 2605 // Pick the best (i.e. most permissive i.e. numerically lowest) access 2606 // across all paths. 2607 SubobjectAccess = std::min(SubobjectAccess, Path->Access); 2608 2609 // Determine whether we're looking at a distinct sub-object or not. 2610 if (SubobjectType.isNull()) { 2611 // This is the first subobject we've looked at. Record its type. 2612 SubobjectType = Context.getCanonicalType(PathElement.Base->getType()); 2613 SubobjectNumber = PathElement.SubobjectNumber; 2614 continue; 2615 } 2616 2617 if (SubobjectType != 2618 Context.getCanonicalType(PathElement.Base->getType())) { 2619 // We found members of the given name in two subobjects of 2620 // different types. If the declaration sets aren't the same, this 2621 // lookup is ambiguous. 2622 // 2623 // FIXME: The language rule says that this applies irrespective of 2624 // whether the sets contain only static members. 2625 if (HasOnlyStaticMembers(Path->Decls) && 2626 HasSameDeclarations(Paths.begin()->Decls, Path->Decls)) 2627 continue; 2628 2629 R.setAmbiguousBaseSubobjectTypes(Paths); 2630 return true; 2631 } 2632 2633 // FIXME: This language rule no longer exists. Checking for ambiguous base 2634 // subobjects should be done as part of formation of a class member access 2635 // expression (when converting the object parameter to the member's type). 2636 if (SubobjectNumber != PathElement.SubobjectNumber) { 2637 // We have a different subobject of the same type. 2638 2639 // C++ [class.member.lookup]p5: 2640 // A static member, a nested type or an enumerator defined in 2641 // a base class T can unambiguously be found even if an object 2642 // has more than one base class subobject of type T. 2643 if (HasOnlyStaticMembers(Path->Decls)) 2644 continue; 2645 2646 // We have found a nonstatic member name in multiple, distinct 2647 // subobjects. Name lookup is ambiguous. 2648 R.setAmbiguousBaseSubobjects(Paths); 2649 return true; 2650 } 2651 } 2652 2653 // Lookup in a base class succeeded; return these results. 2654 2655 for (DeclContext::lookup_iterator I = Paths.front().Decls, E = I.end(); 2656 I != E; ++I) { 2657 AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess, 2658 (*I)->getAccess()); 2659 if (NamedDecl *ND = R.getAcceptableDecl(*I)) 2660 R.addDecl(ND, AS); 2661 } 2662 R.resolveKind(); 2663 return true; 2664 } 2665 2666 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, 2667 CXXScopeSpec &SS) { 2668 auto *NNS = SS.getScopeRep(); 2669 if (NNS && NNS->getKind() == NestedNameSpecifier::Super) 2670 return LookupInSuper(R, NNS->getAsRecordDecl()); 2671 else 2672 2673 return LookupQualifiedName(R, LookupCtx); 2674 } 2675 2676 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS, 2677 QualType ObjectType, bool AllowBuiltinCreation, 2678 bool EnteringContext) { 2679 // When the scope specifier is invalid, don't even look for anything. 2680 if (SS && SS->isInvalid()) 2681 return false; 2682 2683 // Determine where to perform name lookup 2684 DeclContext *DC = nullptr; 2685 bool IsDependent = false; 2686 if (!ObjectType.isNull()) { 2687 // This nested-name-specifier occurs in a member access expression, e.g., 2688 // x->B::f, and we are looking into the type of the object. 2689 assert((!SS || SS->isEmpty()) && 2690 "ObjectType and scope specifier cannot coexist"); 2691 DC = computeDeclContext(ObjectType); 2692 IsDependent = !DC && ObjectType->isDependentType(); 2693 assert(((!DC && ObjectType->isDependentType()) || 2694 !ObjectType->isIncompleteType() || !ObjectType->getAs<TagType>() || 2695 ObjectType->castAs<TagType>()->isBeingDefined()) && 2696 "Caller should have completed object type"); 2697 } else if (SS && SS->isNotEmpty()) { 2698 // This nested-name-specifier occurs after another nested-name-specifier, 2699 // so long into the context associated with the prior nested-name-specifier. 2700 if ((DC = computeDeclContext(*SS, EnteringContext))) { 2701 // The declaration context must be complete. 2702 if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC)) 2703 return false; 2704 R.setContextRange(SS->getRange()); 2705 // FIXME: '__super' lookup semantics could be implemented by a 2706 // LookupResult::isSuperLookup flag which skips the initial search of 2707 // the lookup context in LookupQualified. 2708 if (NestedNameSpecifier *NNS = SS->getScopeRep(); 2709 NNS->getKind() == NestedNameSpecifier::Super) 2710 return LookupInSuper(R, NNS->getAsRecordDecl()); 2711 } 2712 IsDependent = !DC && isDependentScopeSpecifier(*SS); 2713 } else { 2714 // Perform unqualified name lookup starting in the given scope. 2715 return LookupName(R, S, AllowBuiltinCreation); 2716 } 2717 2718 // If we were able to compute a declaration context, perform qualified name 2719 // lookup in that context. 2720 if (DC) 2721 return LookupQualifiedName(R, DC); 2722 else if (IsDependent) 2723 // We could not resolve the scope specified to a specific declaration 2724 // context, which means that SS refers to an unknown specialization. 2725 // Name lookup can't find anything in this case. 2726 R.setNotFoundInCurrentInstantiation(); 2727 return false; 2728 } 2729 2730 bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) { 2731 // The access-control rules we use here are essentially the rules for 2732 // doing a lookup in Class that just magically skipped the direct 2733 // members of Class itself. That is, the naming class is Class, and the 2734 // access includes the access of the base. 2735 for (const auto &BaseSpec : Class->bases()) { 2736 CXXRecordDecl *RD = cast<CXXRecordDecl>( 2737 BaseSpec.getType()->castAs<RecordType>()->getDecl()); 2738 LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind()); 2739 Result.setBaseObjectType(Context.getRecordType(Class)); 2740 LookupQualifiedName(Result, RD); 2741 2742 // Copy the lookup results into the target, merging the base's access into 2743 // the path access. 2744 for (auto I = Result.begin(), E = Result.end(); I != E; ++I) { 2745 R.addDecl(I.getDecl(), 2746 CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(), 2747 I.getAccess())); 2748 } 2749 2750 Result.suppressDiagnostics(); 2751 } 2752 2753 R.resolveKind(); 2754 R.setNamingClass(Class); 2755 2756 return !R.empty(); 2757 } 2758 2759 void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) { 2760 assert(Result.isAmbiguous() && "Lookup result must be ambiguous"); 2761 2762 DeclarationName Name = Result.getLookupName(); 2763 SourceLocation NameLoc = Result.getNameLoc(); 2764 SourceRange LookupRange = Result.getContextRange(); 2765 2766 switch (Result.getAmbiguityKind()) { 2767 case LookupResult::AmbiguousBaseSubobjects: { 2768 CXXBasePaths *Paths = Result.getBasePaths(); 2769 QualType SubobjectType = Paths->front().back().Base->getType(); 2770 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects) 2771 << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths) 2772 << LookupRange; 2773 2774 DeclContext::lookup_iterator Found = Paths->front().Decls; 2775 while (isa<CXXMethodDecl>(*Found) && 2776 cast<CXXMethodDecl>(*Found)->isStatic()) 2777 ++Found; 2778 2779 Diag((*Found)->getLocation(), diag::note_ambiguous_member_found); 2780 break; 2781 } 2782 2783 case LookupResult::AmbiguousBaseSubobjectTypes: { 2784 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types) 2785 << Name << LookupRange; 2786 2787 CXXBasePaths *Paths = Result.getBasePaths(); 2788 std::set<const NamedDecl *> DeclsPrinted; 2789 for (CXXBasePaths::paths_iterator Path = Paths->begin(), 2790 PathEnd = Paths->end(); 2791 Path != PathEnd; ++Path) { 2792 const NamedDecl *D = *Path->Decls; 2793 if (!D->isInIdentifierNamespace(Result.getIdentifierNamespace())) 2794 continue; 2795 if (DeclsPrinted.insert(D).second) { 2796 if (const auto *TD = dyn_cast<TypedefNameDecl>(D->getUnderlyingDecl())) 2797 Diag(D->getLocation(), diag::note_ambiguous_member_type_found) 2798 << TD->getUnderlyingType(); 2799 else if (const auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl())) 2800 Diag(D->getLocation(), diag::note_ambiguous_member_type_found) 2801 << Context.getTypeDeclType(TD); 2802 else 2803 Diag(D->getLocation(), diag::note_ambiguous_member_found); 2804 } 2805 } 2806 break; 2807 } 2808 2809 case LookupResult::AmbiguousTagHiding: { 2810 Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange; 2811 2812 llvm::SmallPtrSet<NamedDecl*, 8> TagDecls; 2813 2814 for (auto *D : Result) 2815 if (TagDecl *TD = dyn_cast<TagDecl>(D)) { 2816 TagDecls.insert(TD); 2817 Diag(TD->getLocation(), diag::note_hidden_tag); 2818 } 2819 2820 for (auto *D : Result) 2821 if (!isa<TagDecl>(D)) 2822 Diag(D->getLocation(), diag::note_hiding_object); 2823 2824 // For recovery purposes, go ahead and implement the hiding. 2825 LookupResult::Filter F = Result.makeFilter(); 2826 while (F.hasNext()) { 2827 if (TagDecls.count(F.next())) 2828 F.erase(); 2829 } 2830 F.done(); 2831 break; 2832 } 2833 2834 case LookupResult::AmbiguousReferenceToPlaceholderVariable: { 2835 Diag(NameLoc, diag::err_using_placeholder_variable) << Name << LookupRange; 2836 DeclContext *DC = nullptr; 2837 for (auto *D : Result) { 2838 Diag(D->getLocation(), diag::note_reference_placeholder) << D; 2839 if (DC != nullptr && DC != D->getDeclContext()) 2840 break; 2841 DC = D->getDeclContext(); 2842 } 2843 break; 2844 } 2845 2846 case LookupResult::AmbiguousReference: { 2847 Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange; 2848 2849 for (auto *D : Result) 2850 Diag(D->getLocation(), diag::note_ambiguous_candidate) << D; 2851 break; 2852 } 2853 } 2854 } 2855 2856 namespace { 2857 struct AssociatedLookup { 2858 AssociatedLookup(Sema &S, SourceLocation InstantiationLoc, 2859 Sema::AssociatedNamespaceSet &Namespaces, 2860 Sema::AssociatedClassSet &Classes) 2861 : S(S), Namespaces(Namespaces), Classes(Classes), 2862 InstantiationLoc(InstantiationLoc) { 2863 } 2864 2865 bool addClassTransitive(CXXRecordDecl *RD) { 2866 Classes.insert(RD); 2867 return ClassesTransitive.insert(RD); 2868 } 2869 2870 Sema &S; 2871 Sema::AssociatedNamespaceSet &Namespaces; 2872 Sema::AssociatedClassSet &Classes; 2873 SourceLocation InstantiationLoc; 2874 2875 private: 2876 Sema::AssociatedClassSet ClassesTransitive; 2877 }; 2878 } // end anonymous namespace 2879 2880 static void 2881 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T); 2882 2883 // Given the declaration context \param Ctx of a class, class template or 2884 // enumeration, add the associated namespaces to \param Namespaces as described 2885 // in [basic.lookup.argdep]p2. 2886 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces, 2887 DeclContext *Ctx) { 2888 // The exact wording has been changed in C++14 as a result of 2889 // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally 2890 // to all language versions since it is possible to return a local type 2891 // from a lambda in C++11. 2892 // 2893 // C++14 [basic.lookup.argdep]p2: 2894 // If T is a class type [...]. Its associated namespaces are the innermost 2895 // enclosing namespaces of its associated classes. [...] 2896 // 2897 // If T is an enumeration type, its associated namespace is the innermost 2898 // enclosing namespace of its declaration. [...] 2899 2900 // We additionally skip inline namespaces. The innermost non-inline namespace 2901 // contains all names of all its nested inline namespaces anyway, so we can 2902 // replace the entire inline namespace tree with its root. 2903 while (!Ctx->isFileContext() || Ctx->isInlineNamespace()) 2904 Ctx = Ctx->getParent(); 2905 2906 Namespaces.insert(Ctx->getPrimaryContext()); 2907 } 2908 2909 // Add the associated classes and namespaces for argument-dependent 2910 // lookup that involves a template argument (C++ [basic.lookup.argdep]p2). 2911 static void 2912 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, 2913 const TemplateArgument &Arg) { 2914 // C++ [basic.lookup.argdep]p2, last bullet: 2915 // -- [...] ; 2916 switch (Arg.getKind()) { 2917 case TemplateArgument::Null: 2918 break; 2919 2920 case TemplateArgument::Type: 2921 // [...] the namespaces and classes associated with the types of the 2922 // template arguments provided for template type parameters (excluding 2923 // template template parameters) 2924 addAssociatedClassesAndNamespaces(Result, Arg.getAsType()); 2925 break; 2926 2927 case TemplateArgument::Template: 2928 case TemplateArgument::TemplateExpansion: { 2929 // [...] the namespaces in which any template template arguments are 2930 // defined; and the classes in which any member templates used as 2931 // template template arguments are defined. 2932 TemplateName Template = Arg.getAsTemplateOrTemplatePattern(); 2933 if (ClassTemplateDecl *ClassTemplate 2934 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) { 2935 DeclContext *Ctx = ClassTemplate->getDeclContext(); 2936 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) 2937 Result.Classes.insert(EnclosingClass); 2938 // Add the associated namespace for this class. 2939 CollectEnclosingNamespace(Result.Namespaces, Ctx); 2940 } 2941 break; 2942 } 2943 2944 case TemplateArgument::Declaration: 2945 case TemplateArgument::Integral: 2946 case TemplateArgument::Expression: 2947 case TemplateArgument::NullPtr: 2948 case TemplateArgument::StructuralValue: 2949 // [Note: non-type template arguments do not contribute to the set of 2950 // associated namespaces. ] 2951 break; 2952 2953 case TemplateArgument::Pack: 2954 for (const auto &P : Arg.pack_elements()) 2955 addAssociatedClassesAndNamespaces(Result, P); 2956 break; 2957 } 2958 } 2959 2960 // Add the associated classes and namespaces for argument-dependent lookup 2961 // with an argument of class type (C++ [basic.lookup.argdep]p2). 2962 static void 2963 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, 2964 CXXRecordDecl *Class) { 2965 2966 // Just silently ignore anything whose name is __va_list_tag. 2967 if (Class->getDeclName() == Result.S.VAListTagName) 2968 return; 2969 2970 // C++ [basic.lookup.argdep]p2: 2971 // [...] 2972 // -- If T is a class type (including unions), its associated 2973 // classes are: the class itself; the class of which it is a 2974 // member, if any; and its direct and indirect base classes. 2975 // Its associated namespaces are the innermost enclosing 2976 // namespaces of its associated classes. 2977 2978 // Add the class of which it is a member, if any. 2979 DeclContext *Ctx = Class->getDeclContext(); 2980 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) 2981 Result.Classes.insert(EnclosingClass); 2982 2983 // Add the associated namespace for this class. 2984 CollectEnclosingNamespace(Result.Namespaces, Ctx); 2985 2986 // -- If T is a template-id, its associated namespaces and classes are 2987 // the namespace in which the template is defined; for member 2988 // templates, the member template's class; the namespaces and classes 2989 // associated with the types of the template arguments provided for 2990 // template type parameters (excluding template template parameters); the 2991 // namespaces in which any template template arguments are defined; and 2992 // the classes in which any member templates used as template template 2993 // arguments are defined. [Note: non-type template arguments do not 2994 // contribute to the set of associated namespaces. ] 2995 if (ClassTemplateSpecializationDecl *Spec 2996 = dyn_cast<ClassTemplateSpecializationDecl>(Class)) { 2997 DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext(); 2998 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) 2999 Result.Classes.insert(EnclosingClass); 3000 // Add the associated namespace for this class. 3001 CollectEnclosingNamespace(Result.Namespaces, Ctx); 3002 3003 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); 3004 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 3005 addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]); 3006 } 3007 3008 // Add the class itself. If we've already transitively visited this class, 3009 // we don't need to visit base classes. 3010 if (!Result.addClassTransitive(Class)) 3011 return; 3012 3013 // Only recurse into base classes for complete types. 3014 if (!Result.S.isCompleteType(Result.InstantiationLoc, 3015 Result.S.Context.getRecordType(Class))) 3016 return; 3017 3018 // Add direct and indirect base classes along with their associated 3019 // namespaces. 3020 SmallVector<CXXRecordDecl *, 32> Bases; 3021 Bases.push_back(Class); 3022 while (!Bases.empty()) { 3023 // Pop this class off the stack. 3024 Class = Bases.pop_back_val(); 3025 3026 // Visit the base classes. 3027 for (const auto &Base : Class->bases()) { 3028 const RecordType *BaseType = Base.getType()->getAs<RecordType>(); 3029 // In dependent contexts, we do ADL twice, and the first time around, 3030 // the base type might be a dependent TemplateSpecializationType, or a 3031 // TemplateTypeParmType. If that happens, simply ignore it. 3032 // FIXME: If we want to support export, we probably need to add the 3033 // namespace of the template in a TemplateSpecializationType, or even 3034 // the classes and namespaces of known non-dependent arguments. 3035 if (!BaseType) 3036 continue; 3037 CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl()); 3038 if (Result.addClassTransitive(BaseDecl)) { 3039 // Find the associated namespace for this base class. 3040 DeclContext *BaseCtx = BaseDecl->getDeclContext(); 3041 CollectEnclosingNamespace(Result.Namespaces, BaseCtx); 3042 3043 // Make sure we visit the bases of this base class. 3044 if (BaseDecl->bases_begin() != BaseDecl->bases_end()) 3045 Bases.push_back(BaseDecl); 3046 } 3047 } 3048 } 3049 } 3050 3051 // Add the associated classes and namespaces for 3052 // argument-dependent lookup with an argument of type T 3053 // (C++ [basic.lookup.koenig]p2). 3054 static void 3055 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) { 3056 // C++ [basic.lookup.koenig]p2: 3057 // 3058 // For each argument type T in the function call, there is a set 3059 // of zero or more associated namespaces and a set of zero or more 3060 // associated classes to be considered. The sets of namespaces and 3061 // classes is determined entirely by the types of the function 3062 // arguments (and the namespace of any template template 3063 // argument). Typedef names and using-declarations used to specify 3064 // the types do not contribute to this set. The sets of namespaces 3065 // and classes are determined in the following way: 3066 3067 SmallVector<const Type *, 16> Queue; 3068 const Type *T = Ty->getCanonicalTypeInternal().getTypePtr(); 3069 3070 while (true) { 3071 switch (T->getTypeClass()) { 3072 3073 #define TYPE(Class, Base) 3074 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 3075 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 3076 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: 3077 #define ABSTRACT_TYPE(Class, Base) 3078 #include "clang/AST/TypeNodes.inc" 3079 // T is canonical. We can also ignore dependent types because 3080 // we don't need to do ADL at the definition point, but if we 3081 // wanted to implement template export (or if we find some other 3082 // use for associated classes and namespaces...) this would be 3083 // wrong. 3084 break; 3085 3086 // -- If T is a pointer to U or an array of U, its associated 3087 // namespaces and classes are those associated with U. 3088 case Type::Pointer: 3089 T = cast<PointerType>(T)->getPointeeType().getTypePtr(); 3090 continue; 3091 case Type::ConstantArray: 3092 case Type::IncompleteArray: 3093 case Type::VariableArray: 3094 T = cast<ArrayType>(T)->getElementType().getTypePtr(); 3095 continue; 3096 3097 // -- If T is a fundamental type, its associated sets of 3098 // namespaces and classes are both empty. 3099 case Type::Builtin: 3100 break; 3101 3102 // -- If T is a class type (including unions), its associated 3103 // classes are: the class itself; the class of which it is 3104 // a member, if any; and its direct and indirect base classes. 3105 // Its associated namespaces are the innermost enclosing 3106 // namespaces of its associated classes. 3107 case Type::Record: { 3108 CXXRecordDecl *Class = 3109 cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl()); 3110 addAssociatedClassesAndNamespaces(Result, Class); 3111 break; 3112 } 3113 3114 // -- If T is an enumeration type, its associated namespace 3115 // is the innermost enclosing namespace of its declaration. 3116 // If it is a class member, its associated class is the 3117 // member’s class; else it has no associated class. 3118 case Type::Enum: { 3119 EnumDecl *Enum = cast<EnumType>(T)->getDecl(); 3120 3121 DeclContext *Ctx = Enum->getDeclContext(); 3122 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) 3123 Result.Classes.insert(EnclosingClass); 3124 3125 // Add the associated namespace for this enumeration. 3126 CollectEnclosingNamespace(Result.Namespaces, Ctx); 3127 3128 break; 3129 } 3130 3131 // -- If T is a function type, its associated namespaces and 3132 // classes are those associated with the function parameter 3133 // types and those associated with the return type. 3134 case Type::FunctionProto: { 3135 const FunctionProtoType *Proto = cast<FunctionProtoType>(T); 3136 for (const auto &Arg : Proto->param_types()) 3137 Queue.push_back(Arg.getTypePtr()); 3138 // fallthrough 3139 [[fallthrough]]; 3140 } 3141 case Type::FunctionNoProto: { 3142 const FunctionType *FnType = cast<FunctionType>(T); 3143 T = FnType->getReturnType().getTypePtr(); 3144 continue; 3145 } 3146 3147 // -- If T is a pointer to a member function of a class X, its 3148 // associated namespaces and classes are those associated 3149 // with the function parameter types and return type, 3150 // together with those associated with X. 3151 // 3152 // -- If T is a pointer to a data member of class X, its 3153 // associated namespaces and classes are those associated 3154 // with the member type together with those associated with 3155 // X. 3156 case Type::MemberPointer: { 3157 const MemberPointerType *MemberPtr = cast<MemberPointerType>(T); 3158 3159 // Queue up the class type into which this points. 3160 Queue.push_back(MemberPtr->getClass()); 3161 3162 // And directly continue with the pointee type. 3163 T = MemberPtr->getPointeeType().getTypePtr(); 3164 continue; 3165 } 3166 3167 // As an extension, treat this like a normal pointer. 3168 case Type::BlockPointer: 3169 T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr(); 3170 continue; 3171 3172 // References aren't covered by the standard, but that's such an 3173 // obvious defect that we cover them anyway. 3174 case Type::LValueReference: 3175 case Type::RValueReference: 3176 T = cast<ReferenceType>(T)->getPointeeType().getTypePtr(); 3177 continue; 3178 3179 // These are fundamental types. 3180 case Type::Vector: 3181 case Type::ExtVector: 3182 case Type::ConstantMatrix: 3183 case Type::Complex: 3184 case Type::BitInt: 3185 break; 3186 3187 // Non-deduced auto types only get here for error cases. 3188 case Type::Auto: 3189 case Type::DeducedTemplateSpecialization: 3190 break; 3191 3192 // If T is an Objective-C object or interface type, or a pointer to an 3193 // object or interface type, the associated namespace is the global 3194 // namespace. 3195 case Type::ObjCObject: 3196 case Type::ObjCInterface: 3197 case Type::ObjCObjectPointer: 3198 Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl()); 3199 break; 3200 3201 // Atomic types are just wrappers; use the associations of the 3202 // contained type. 3203 case Type::Atomic: 3204 T = cast<AtomicType>(T)->getValueType().getTypePtr(); 3205 continue; 3206 case Type::Pipe: 3207 T = cast<PipeType>(T)->getElementType().getTypePtr(); 3208 continue; 3209 3210 // Array parameter types are treated as fundamental types. 3211 case Type::ArrayParameter: 3212 break; 3213 } 3214 3215 if (Queue.empty()) 3216 break; 3217 T = Queue.pop_back_val(); 3218 } 3219 } 3220 3221 void Sema::FindAssociatedClassesAndNamespaces( 3222 SourceLocation InstantiationLoc, ArrayRef<Expr *> Args, 3223 AssociatedNamespaceSet &AssociatedNamespaces, 3224 AssociatedClassSet &AssociatedClasses) { 3225 AssociatedNamespaces.clear(); 3226 AssociatedClasses.clear(); 3227 3228 AssociatedLookup Result(*this, InstantiationLoc, 3229 AssociatedNamespaces, AssociatedClasses); 3230 3231 // C++ [basic.lookup.koenig]p2: 3232 // For each argument type T in the function call, there is a set 3233 // of zero or more associated namespaces and a set of zero or more 3234 // associated classes to be considered. The sets of namespaces and 3235 // classes is determined entirely by the types of the function 3236 // arguments (and the namespace of any template template 3237 // argument). 3238 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) { 3239 Expr *Arg = Args[ArgIdx]; 3240 3241 if (Arg->getType() != Context.OverloadTy) { 3242 addAssociatedClassesAndNamespaces(Result, Arg->getType()); 3243 continue; 3244 } 3245 3246 // [...] In addition, if the argument is the name or address of a 3247 // set of overloaded functions and/or function templates, its 3248 // associated classes and namespaces are the union of those 3249 // associated with each of the members of the set: the namespace 3250 // in which the function or function template is defined and the 3251 // classes and namespaces associated with its (non-dependent) 3252 // parameter types and return type. 3253 OverloadExpr *OE = OverloadExpr::find(Arg).Expression; 3254 3255 for (const NamedDecl *D : OE->decls()) { 3256 // Look through any using declarations to find the underlying function. 3257 const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction(); 3258 3259 // Add the classes and namespaces associated with the parameter 3260 // types and return type of this function. 3261 addAssociatedClassesAndNamespaces(Result, FDecl->getType()); 3262 } 3263 } 3264 } 3265 3266 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name, 3267 SourceLocation Loc, 3268 LookupNameKind NameKind, 3269 RedeclarationKind Redecl) { 3270 LookupResult R(*this, Name, Loc, NameKind, Redecl); 3271 LookupName(R, S); 3272 return R.getAsSingle<NamedDecl>(); 3273 } 3274 3275 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S, 3276 UnresolvedSetImpl &Functions) { 3277 // C++ [over.match.oper]p3: 3278 // -- The set of non-member candidates is the result of the 3279 // unqualified lookup of operator@ in the context of the 3280 // expression according to the usual rules for name lookup in 3281 // unqualified function calls (3.4.2) except that all member 3282 // functions are ignored. 3283 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 3284 LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName); 3285 LookupName(Operators, S); 3286 3287 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous"); 3288 Functions.append(Operators.begin(), Operators.end()); 3289 } 3290 3291 Sema::SpecialMemberOverloadResult 3292 Sema::LookupSpecialMember(CXXRecordDecl *RD, CXXSpecialMemberKind SM, 3293 bool ConstArg, bool VolatileArg, bool RValueThis, 3294 bool ConstThis, bool VolatileThis) { 3295 assert(CanDeclareSpecialMemberFunction(RD) && 3296 "doing special member lookup into record that isn't fully complete"); 3297 RD = RD->getDefinition(); 3298 if (RValueThis || ConstThis || VolatileThis) 3299 assert((SM == CXXSpecialMemberKind::CopyAssignment || 3300 SM == CXXSpecialMemberKind::MoveAssignment) && 3301 "constructors and destructors always have unqualified lvalue this"); 3302 if (ConstArg || VolatileArg) 3303 assert((SM != CXXSpecialMemberKind::DefaultConstructor && 3304 SM != CXXSpecialMemberKind::Destructor) && 3305 "parameter-less special members can't have qualified arguments"); 3306 3307 // FIXME: Get the caller to pass in a location for the lookup. 3308 SourceLocation LookupLoc = RD->getLocation(); 3309 3310 llvm::FoldingSetNodeID ID; 3311 ID.AddPointer(RD); 3312 ID.AddInteger(llvm::to_underlying(SM)); 3313 ID.AddInteger(ConstArg); 3314 ID.AddInteger(VolatileArg); 3315 ID.AddInteger(RValueThis); 3316 ID.AddInteger(ConstThis); 3317 ID.AddInteger(VolatileThis); 3318 3319 void *InsertPoint; 3320 SpecialMemberOverloadResultEntry *Result = 3321 SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint); 3322 3323 // This was already cached 3324 if (Result) 3325 return *Result; 3326 3327 Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>(); 3328 Result = new (Result) SpecialMemberOverloadResultEntry(ID); 3329 SpecialMemberCache.InsertNode(Result, InsertPoint); 3330 3331 if (SM == CXXSpecialMemberKind::Destructor) { 3332 if (RD->needsImplicitDestructor()) { 3333 runWithSufficientStackSpace(RD->getLocation(), [&] { 3334 DeclareImplicitDestructor(RD); 3335 }); 3336 } 3337 CXXDestructorDecl *DD = RD->getDestructor(); 3338 Result->setMethod(DD); 3339 Result->setKind(DD && !DD->isDeleted() 3340 ? SpecialMemberOverloadResult::Success 3341 : SpecialMemberOverloadResult::NoMemberOrDeleted); 3342 return *Result; 3343 } 3344 3345 // Prepare for overload resolution. Here we construct a synthetic argument 3346 // if necessary and make sure that implicit functions are declared. 3347 CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD)); 3348 DeclarationName Name; 3349 Expr *Arg = nullptr; 3350 unsigned NumArgs; 3351 3352 QualType ArgType = CanTy; 3353 ExprValueKind VK = VK_LValue; 3354 3355 if (SM == CXXSpecialMemberKind::DefaultConstructor) { 3356 Name = Context.DeclarationNames.getCXXConstructorName(CanTy); 3357 NumArgs = 0; 3358 if (RD->needsImplicitDefaultConstructor()) { 3359 runWithSufficientStackSpace(RD->getLocation(), [&] { 3360 DeclareImplicitDefaultConstructor(RD); 3361 }); 3362 } 3363 } else { 3364 if (SM == CXXSpecialMemberKind::CopyConstructor || 3365 SM == CXXSpecialMemberKind::MoveConstructor) { 3366 Name = Context.DeclarationNames.getCXXConstructorName(CanTy); 3367 if (RD->needsImplicitCopyConstructor()) { 3368 runWithSufficientStackSpace(RD->getLocation(), [&] { 3369 DeclareImplicitCopyConstructor(RD); 3370 }); 3371 } 3372 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) { 3373 runWithSufficientStackSpace(RD->getLocation(), [&] { 3374 DeclareImplicitMoveConstructor(RD); 3375 }); 3376 } 3377 } else { 3378 Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); 3379 if (RD->needsImplicitCopyAssignment()) { 3380 runWithSufficientStackSpace(RD->getLocation(), [&] { 3381 DeclareImplicitCopyAssignment(RD); 3382 }); 3383 } 3384 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) { 3385 runWithSufficientStackSpace(RD->getLocation(), [&] { 3386 DeclareImplicitMoveAssignment(RD); 3387 }); 3388 } 3389 } 3390 3391 if (ConstArg) 3392 ArgType.addConst(); 3393 if (VolatileArg) 3394 ArgType.addVolatile(); 3395 3396 // This isn't /really/ specified by the standard, but it's implied 3397 // we should be working from a PRValue in the case of move to ensure 3398 // that we prefer to bind to rvalue references, and an LValue in the 3399 // case of copy to ensure we don't bind to rvalue references. 3400 // Possibly an XValue is actually correct in the case of move, but 3401 // there is no semantic difference for class types in this restricted 3402 // case. 3403 if (SM == CXXSpecialMemberKind::CopyConstructor || 3404 SM == CXXSpecialMemberKind::CopyAssignment) 3405 VK = VK_LValue; 3406 else 3407 VK = VK_PRValue; 3408 } 3409 3410 OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK); 3411 3412 if (SM != CXXSpecialMemberKind::DefaultConstructor) { 3413 NumArgs = 1; 3414 Arg = &FakeArg; 3415 } 3416 3417 // Create the object argument 3418 QualType ThisTy = CanTy; 3419 if (ConstThis) 3420 ThisTy.addConst(); 3421 if (VolatileThis) 3422 ThisTy.addVolatile(); 3423 Expr::Classification Classification = 3424 OpaqueValueExpr(LookupLoc, ThisTy, RValueThis ? VK_PRValue : VK_LValue) 3425 .Classify(Context); 3426 3427 // Now we perform lookup on the name we computed earlier and do overload 3428 // resolution. Lookup is only performed directly into the class since there 3429 // will always be a (possibly implicit) declaration to shadow any others. 3430 OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal); 3431 DeclContext::lookup_result R = RD->lookup(Name); 3432 3433 if (R.empty()) { 3434 // We might have no default constructor because we have a lambda's closure 3435 // type, rather than because there's some other declared constructor. 3436 // Every class has a copy/move constructor, copy/move assignment, and 3437 // destructor. 3438 assert(SM == CXXSpecialMemberKind::DefaultConstructor && 3439 "lookup for a constructor or assignment operator was empty"); 3440 Result->setMethod(nullptr); 3441 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); 3442 return *Result; 3443 } 3444 3445 // Copy the candidates as our processing of them may load new declarations 3446 // from an external source and invalidate lookup_result. 3447 SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end()); 3448 3449 for (NamedDecl *CandDecl : Candidates) { 3450 if (CandDecl->isInvalidDecl()) 3451 continue; 3452 3453 DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public); 3454 auto CtorInfo = getConstructorInfo(Cand); 3455 if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) { 3456 if (SM == CXXSpecialMemberKind::CopyAssignment || 3457 SM == CXXSpecialMemberKind::MoveAssignment) 3458 AddMethodCandidate(M, Cand, RD, ThisTy, Classification, 3459 llvm::ArrayRef(&Arg, NumArgs), OCS, true); 3460 else if (CtorInfo) 3461 AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl, 3462 llvm::ArrayRef(&Arg, NumArgs), OCS, 3463 /*SuppressUserConversions*/ true); 3464 else 3465 AddOverloadCandidate(M, Cand, llvm::ArrayRef(&Arg, NumArgs), OCS, 3466 /*SuppressUserConversions*/ true); 3467 } else if (FunctionTemplateDecl *Tmpl = 3468 dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) { 3469 if (SM == CXXSpecialMemberKind::CopyAssignment || 3470 SM == CXXSpecialMemberKind::MoveAssignment) 3471 AddMethodTemplateCandidate(Tmpl, Cand, RD, nullptr, ThisTy, 3472 Classification, 3473 llvm::ArrayRef(&Arg, NumArgs), OCS, true); 3474 else if (CtorInfo) 3475 AddTemplateOverloadCandidate(CtorInfo.ConstructorTmpl, 3476 CtorInfo.FoundDecl, nullptr, 3477 llvm::ArrayRef(&Arg, NumArgs), OCS, true); 3478 else 3479 AddTemplateOverloadCandidate(Tmpl, Cand, nullptr, 3480 llvm::ArrayRef(&Arg, NumArgs), OCS, true); 3481 } else { 3482 assert(isa<UsingDecl>(Cand.getDecl()) && 3483 "illegal Kind of operator = Decl"); 3484 } 3485 } 3486 3487 OverloadCandidateSet::iterator Best; 3488 switch (OCS.BestViableFunction(*this, LookupLoc, Best)) { 3489 case OR_Success: 3490 Result->setMethod(cast<CXXMethodDecl>(Best->Function)); 3491 Result->setKind(SpecialMemberOverloadResult::Success); 3492 break; 3493 3494 case OR_Deleted: 3495 Result->setMethod(cast<CXXMethodDecl>(Best->Function)); 3496 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); 3497 break; 3498 3499 case OR_Ambiguous: 3500 Result->setMethod(nullptr); 3501 Result->setKind(SpecialMemberOverloadResult::Ambiguous); 3502 break; 3503 3504 case OR_No_Viable_Function: 3505 Result->setMethod(nullptr); 3506 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); 3507 break; 3508 } 3509 3510 return *Result; 3511 } 3512 3513 CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) { 3514 SpecialMemberOverloadResult Result = 3515 LookupSpecialMember(Class, CXXSpecialMemberKind::DefaultConstructor, 3516 false, false, false, false, false); 3517 3518 return cast_or_null<CXXConstructorDecl>(Result.getMethod()); 3519 } 3520 3521 CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class, 3522 unsigned Quals) { 3523 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && 3524 "non-const, non-volatile qualifiers for copy ctor arg"); 3525 SpecialMemberOverloadResult Result = LookupSpecialMember( 3526 Class, CXXSpecialMemberKind::CopyConstructor, Quals & Qualifiers::Const, 3527 Quals & Qualifiers::Volatile, false, false, false); 3528 3529 return cast_or_null<CXXConstructorDecl>(Result.getMethod()); 3530 } 3531 3532 CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class, 3533 unsigned Quals) { 3534 SpecialMemberOverloadResult Result = LookupSpecialMember( 3535 Class, CXXSpecialMemberKind::MoveConstructor, Quals & Qualifiers::Const, 3536 Quals & Qualifiers::Volatile, false, false, false); 3537 3538 return cast_or_null<CXXConstructorDecl>(Result.getMethod()); 3539 } 3540 3541 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) { 3542 // If the implicit constructors have not yet been declared, do so now. 3543 if (CanDeclareSpecialMemberFunction(Class)) { 3544 runWithSufficientStackSpace(Class->getLocation(), [&] { 3545 if (Class->needsImplicitDefaultConstructor()) 3546 DeclareImplicitDefaultConstructor(Class); 3547 if (Class->needsImplicitCopyConstructor()) 3548 DeclareImplicitCopyConstructor(Class); 3549 if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor()) 3550 DeclareImplicitMoveConstructor(Class); 3551 }); 3552 } 3553 3554 CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class)); 3555 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T); 3556 return Class->lookup(Name); 3557 } 3558 3559 CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class, 3560 unsigned Quals, bool RValueThis, 3561 unsigned ThisQuals) { 3562 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && 3563 "non-const, non-volatile qualifiers for copy assignment arg"); 3564 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && 3565 "non-const, non-volatile qualifiers for copy assignment this"); 3566 SpecialMemberOverloadResult Result = LookupSpecialMember( 3567 Class, CXXSpecialMemberKind::CopyAssignment, Quals & Qualifiers::Const, 3568 Quals & Qualifiers::Volatile, RValueThis, ThisQuals & Qualifiers::Const, 3569 ThisQuals & Qualifiers::Volatile); 3570 3571 return Result.getMethod(); 3572 } 3573 3574 CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class, 3575 unsigned Quals, 3576 bool RValueThis, 3577 unsigned ThisQuals) { 3578 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && 3579 "non-const, non-volatile qualifiers for copy assignment this"); 3580 SpecialMemberOverloadResult Result = LookupSpecialMember( 3581 Class, CXXSpecialMemberKind::MoveAssignment, Quals & Qualifiers::Const, 3582 Quals & Qualifiers::Volatile, RValueThis, ThisQuals & Qualifiers::Const, 3583 ThisQuals & Qualifiers::Volatile); 3584 3585 return Result.getMethod(); 3586 } 3587 3588 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) { 3589 return cast_or_null<CXXDestructorDecl>( 3590 LookupSpecialMember(Class, CXXSpecialMemberKind::Destructor, false, false, 3591 false, false, false) 3592 .getMethod()); 3593 } 3594 3595 Sema::LiteralOperatorLookupResult 3596 Sema::LookupLiteralOperator(Scope *S, LookupResult &R, 3597 ArrayRef<QualType> ArgTys, bool AllowRaw, 3598 bool AllowTemplate, bool AllowStringTemplatePack, 3599 bool DiagnoseMissing, StringLiteral *StringLit) { 3600 LookupName(R, S); 3601 assert(R.getResultKind() != LookupResult::Ambiguous && 3602 "literal operator lookup can't be ambiguous"); 3603 3604 // Filter the lookup results appropriately. 3605 LookupResult::Filter F = R.makeFilter(); 3606 3607 bool AllowCooked = true; 3608 bool FoundRaw = false; 3609 bool FoundTemplate = false; 3610 bool FoundStringTemplatePack = false; 3611 bool FoundCooked = false; 3612 3613 while (F.hasNext()) { 3614 Decl *D = F.next(); 3615 if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D)) 3616 D = USD->getTargetDecl(); 3617 3618 // If the declaration we found is invalid, skip it. 3619 if (D->isInvalidDecl()) { 3620 F.erase(); 3621 continue; 3622 } 3623 3624 bool IsRaw = false; 3625 bool IsTemplate = false; 3626 bool IsStringTemplatePack = false; 3627 bool IsCooked = false; 3628 3629 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 3630 if (FD->getNumParams() == 1 && 3631 FD->getParamDecl(0)->getType()->getAs<PointerType>()) 3632 IsRaw = true; 3633 else if (FD->getNumParams() == ArgTys.size()) { 3634 IsCooked = true; 3635 for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) { 3636 QualType ParamTy = FD->getParamDecl(ArgIdx)->getType(); 3637 if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) { 3638 IsCooked = false; 3639 break; 3640 } 3641 } 3642 } 3643 } 3644 if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) { 3645 TemplateParameterList *Params = FD->getTemplateParameters(); 3646 if (Params->size() == 1) { 3647 IsTemplate = true; 3648 if (!Params->getParam(0)->isTemplateParameterPack() && !StringLit) { 3649 // Implied but not stated: user-defined integer and floating literals 3650 // only ever use numeric literal operator templates, not templates 3651 // taking a parameter of class type. 3652 F.erase(); 3653 continue; 3654 } 3655 3656 // A string literal template is only considered if the string literal 3657 // is a well-formed template argument for the template parameter. 3658 if (StringLit) { 3659 SFINAETrap Trap(*this); 3660 SmallVector<TemplateArgument, 1> SugaredChecked, CanonicalChecked; 3661 TemplateArgumentLoc Arg(TemplateArgument(StringLit), StringLit); 3662 if (CheckTemplateArgument( 3663 Params->getParam(0), Arg, FD, R.getNameLoc(), R.getNameLoc(), 3664 0, SugaredChecked, CanonicalChecked, CTAK_Specified) || 3665 Trap.hasErrorOccurred()) 3666 IsTemplate = false; 3667 } 3668 } else { 3669 IsStringTemplatePack = true; 3670 } 3671 } 3672 3673 if (AllowTemplate && StringLit && IsTemplate) { 3674 FoundTemplate = true; 3675 AllowRaw = false; 3676 AllowCooked = false; 3677 AllowStringTemplatePack = false; 3678 if (FoundRaw || FoundCooked || FoundStringTemplatePack) { 3679 F.restart(); 3680 FoundRaw = FoundCooked = FoundStringTemplatePack = false; 3681 } 3682 } else if (AllowCooked && IsCooked) { 3683 FoundCooked = true; 3684 AllowRaw = false; 3685 AllowTemplate = StringLit; 3686 AllowStringTemplatePack = false; 3687 if (FoundRaw || FoundTemplate || FoundStringTemplatePack) { 3688 // Go through again and remove the raw and template decls we've 3689 // already found. 3690 F.restart(); 3691 FoundRaw = FoundTemplate = FoundStringTemplatePack = false; 3692 } 3693 } else if (AllowRaw && IsRaw) { 3694 FoundRaw = true; 3695 } else if (AllowTemplate && IsTemplate) { 3696 FoundTemplate = true; 3697 } else if (AllowStringTemplatePack && IsStringTemplatePack) { 3698 FoundStringTemplatePack = true; 3699 } else { 3700 F.erase(); 3701 } 3702 } 3703 3704 F.done(); 3705 3706 // Per C++20 [lex.ext]p5, we prefer the template form over the non-template 3707 // form for string literal operator templates. 3708 if (StringLit && FoundTemplate) 3709 return LOLR_Template; 3710 3711 // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching 3712 // parameter type, that is used in preference to a raw literal operator 3713 // or literal operator template. 3714 if (FoundCooked) 3715 return LOLR_Cooked; 3716 3717 // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal 3718 // operator template, but not both. 3719 if (FoundRaw && FoundTemplate) { 3720 Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName(); 3721 for (const NamedDecl *D : R) 3722 NoteOverloadCandidate(D, D->getUnderlyingDecl()->getAsFunction()); 3723 return LOLR_Error; 3724 } 3725 3726 if (FoundRaw) 3727 return LOLR_Raw; 3728 3729 if (FoundTemplate) 3730 return LOLR_Template; 3731 3732 if (FoundStringTemplatePack) 3733 return LOLR_StringTemplatePack; 3734 3735 // Didn't find anything we could use. 3736 if (DiagnoseMissing) { 3737 Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator) 3738 << R.getLookupName() << (int)ArgTys.size() << ArgTys[0] 3739 << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw 3740 << (AllowTemplate || AllowStringTemplatePack); 3741 return LOLR_Error; 3742 } 3743 3744 return LOLR_ErrorNoDiagnostic; 3745 } 3746 3747 void ADLResult::insert(NamedDecl *New) { 3748 NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())]; 3749 3750 // If we haven't yet seen a decl for this key, or the last decl 3751 // was exactly this one, we're done. 3752 if (Old == nullptr || Old == New) { 3753 Old = New; 3754 return; 3755 } 3756 3757 // Otherwise, decide which is a more recent redeclaration. 3758 FunctionDecl *OldFD = Old->getAsFunction(); 3759 FunctionDecl *NewFD = New->getAsFunction(); 3760 3761 FunctionDecl *Cursor = NewFD; 3762 while (true) { 3763 Cursor = Cursor->getPreviousDecl(); 3764 3765 // If we got to the end without finding OldFD, OldFD is the newer 3766 // declaration; leave things as they are. 3767 if (!Cursor) return; 3768 3769 // If we do find OldFD, then NewFD is newer. 3770 if (Cursor == OldFD) break; 3771 3772 // Otherwise, keep looking. 3773 } 3774 3775 Old = New; 3776 } 3777 3778 void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc, 3779 ArrayRef<Expr *> Args, ADLResult &Result) { 3780 // Find all of the associated namespaces and classes based on the 3781 // arguments we have. 3782 AssociatedNamespaceSet AssociatedNamespaces; 3783 AssociatedClassSet AssociatedClasses; 3784 FindAssociatedClassesAndNamespaces(Loc, Args, 3785 AssociatedNamespaces, 3786 AssociatedClasses); 3787 3788 // C++ [basic.lookup.argdep]p3: 3789 // Let X be the lookup set produced by unqualified lookup (3.4.1) 3790 // and let Y be the lookup set produced by argument dependent 3791 // lookup (defined as follows). If X contains [...] then Y is 3792 // empty. Otherwise Y is the set of declarations found in the 3793 // namespaces associated with the argument types as described 3794 // below. The set of declarations found by the lookup of the name 3795 // is the union of X and Y. 3796 // 3797 // Here, we compute Y and add its members to the overloaded 3798 // candidate set. 3799 for (auto *NS : AssociatedNamespaces) { 3800 // When considering an associated namespace, the lookup is the 3801 // same as the lookup performed when the associated namespace is 3802 // used as a qualifier (3.4.3.2) except that: 3803 // 3804 // -- Any using-directives in the associated namespace are 3805 // ignored. 3806 // 3807 // -- Any namespace-scope friend functions declared in 3808 // associated classes are visible within their respective 3809 // namespaces even if they are not visible during an ordinary 3810 // lookup (11.4). 3811 // 3812 // C++20 [basic.lookup.argdep] p4.3 3813 // -- are exported, are attached to a named module M, do not appear 3814 // in the translation unit containing the point of the lookup, and 3815 // have the same innermost enclosing non-inline namespace scope as 3816 // a declaration of an associated entity attached to M. 3817 DeclContext::lookup_result R = NS->lookup(Name); 3818 for (auto *D : R) { 3819 auto *Underlying = D; 3820 if (auto *USD = dyn_cast<UsingShadowDecl>(D)) 3821 Underlying = USD->getTargetDecl(); 3822 3823 if (!isa<FunctionDecl>(Underlying) && 3824 !isa<FunctionTemplateDecl>(Underlying)) 3825 continue; 3826 3827 // The declaration is visible to argument-dependent lookup if either 3828 // it's ordinarily visible or declared as a friend in an associated 3829 // class. 3830 bool Visible = false; 3831 for (D = D->getMostRecentDecl(); D; 3832 D = cast_or_null<NamedDecl>(D->getPreviousDecl())) { 3833 if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) { 3834 if (isVisible(D)) { 3835 Visible = true; 3836 break; 3837 } 3838 3839 if (!getLangOpts().CPlusPlusModules) 3840 continue; 3841 3842 if (D->isInExportDeclContext()) { 3843 Module *FM = D->getOwningModule(); 3844 // C++20 [basic.lookup.argdep] p4.3 .. are exported ... 3845 // exports are only valid in module purview and outside of any 3846 // PMF (although a PMF should not even be present in a module 3847 // with an import). 3848 assert(FM && FM->isNamedModule() && !FM->isPrivateModule() && 3849 "bad export context"); 3850 // .. are attached to a named module M, do not appear in the 3851 // translation unit containing the point of the lookup.. 3852 if (D->isInAnotherModuleUnit() && 3853 llvm::any_of(AssociatedClasses, [&](auto *E) { 3854 // ... and have the same innermost enclosing non-inline 3855 // namespace scope as a declaration of an associated entity 3856 // attached to M 3857 if (E->getOwningModule() != FM) 3858 return false; 3859 // TODO: maybe this could be cached when generating the 3860 // associated namespaces / entities. 3861 DeclContext *Ctx = E->getDeclContext(); 3862 while (!Ctx->isFileContext() || Ctx->isInlineNamespace()) 3863 Ctx = Ctx->getParent(); 3864 return Ctx == NS; 3865 })) { 3866 Visible = true; 3867 break; 3868 } 3869 } 3870 } else if (D->getFriendObjectKind()) { 3871 auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext()); 3872 // [basic.lookup.argdep]p4: 3873 // Argument-dependent lookup finds all declarations of functions and 3874 // function templates that 3875 // - ... 3876 // - are declared as a friend ([class.friend]) of any class with a 3877 // reachable definition in the set of associated entities, 3878 // 3879 // FIXME: If there's a merged definition of D that is reachable, then 3880 // the friend declaration should be considered. 3881 if (AssociatedClasses.count(RD) && isReachable(D)) { 3882 Visible = true; 3883 break; 3884 } 3885 } 3886 } 3887 3888 // FIXME: Preserve D as the FoundDecl. 3889 if (Visible) 3890 Result.insert(Underlying); 3891 } 3892 } 3893 } 3894 3895 //---------------------------------------------------------------------------- 3896 // Search for all visible declarations. 3897 //---------------------------------------------------------------------------- 3898 VisibleDeclConsumer::~VisibleDeclConsumer() { } 3899 3900 bool VisibleDeclConsumer::includeHiddenDecls() const { return false; } 3901 3902 namespace { 3903 3904 class ShadowContextRAII; 3905 3906 class VisibleDeclsRecord { 3907 public: 3908 /// An entry in the shadow map, which is optimized to store a 3909 /// single declaration (the common case) but can also store a list 3910 /// of declarations. 3911 typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry; 3912 3913 private: 3914 /// A mapping from declaration names to the declarations that have 3915 /// this name within a particular scope. 3916 typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap; 3917 3918 /// A list of shadow maps, which is used to model name hiding. 3919 std::list<ShadowMap> ShadowMaps; 3920 3921 /// The declaration contexts we have already visited. 3922 llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts; 3923 3924 friend class ShadowContextRAII; 3925 3926 public: 3927 /// Determine whether we have already visited this context 3928 /// (and, if not, note that we are going to visit that context now). 3929 bool visitedContext(DeclContext *Ctx) { 3930 return !VisitedContexts.insert(Ctx).second; 3931 } 3932 3933 bool alreadyVisitedContext(DeclContext *Ctx) { 3934 return VisitedContexts.count(Ctx); 3935 } 3936 3937 /// Determine whether the given declaration is hidden in the 3938 /// current scope. 3939 /// 3940 /// \returns the declaration that hides the given declaration, or 3941 /// NULL if no such declaration exists. 3942 NamedDecl *checkHidden(NamedDecl *ND); 3943 3944 /// Add a declaration to the current shadow map. 3945 void add(NamedDecl *ND) { 3946 ShadowMaps.back()[ND->getDeclName()].push_back(ND); 3947 } 3948 }; 3949 3950 /// RAII object that records when we've entered a shadow context. 3951 class ShadowContextRAII { 3952 VisibleDeclsRecord &Visible; 3953 3954 typedef VisibleDeclsRecord::ShadowMap ShadowMap; 3955 3956 public: 3957 ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) { 3958 Visible.ShadowMaps.emplace_back(); 3959 } 3960 3961 ~ShadowContextRAII() { 3962 Visible.ShadowMaps.pop_back(); 3963 } 3964 }; 3965 3966 } // end anonymous namespace 3967 3968 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) { 3969 unsigned IDNS = ND->getIdentifierNamespace(); 3970 std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin(); 3971 for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend(); 3972 SM != SMEnd; ++SM) { 3973 ShadowMap::iterator Pos = SM->find(ND->getDeclName()); 3974 if (Pos == SM->end()) 3975 continue; 3976 3977 for (auto *D : Pos->second) { 3978 // A tag declaration does not hide a non-tag declaration. 3979 if (D->hasTagIdentifierNamespace() && 3980 (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary | 3981 Decl::IDNS_ObjCProtocol))) 3982 continue; 3983 3984 // Protocols are in distinct namespaces from everything else. 3985 if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol) 3986 || (IDNS & Decl::IDNS_ObjCProtocol)) && 3987 D->getIdentifierNamespace() != IDNS) 3988 continue; 3989 3990 // Functions and function templates in the same scope overload 3991 // rather than hide. FIXME: Look for hiding based on function 3992 // signatures! 3993 if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() && 3994 ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() && 3995 SM == ShadowMaps.rbegin()) 3996 continue; 3997 3998 // A shadow declaration that's created by a resolved using declaration 3999 // is not hidden by the same using declaration. 4000 if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) && 4001 cast<UsingShadowDecl>(ND)->getIntroducer() == D) 4002 continue; 4003 4004 // We've found a declaration that hides this one. 4005 return D; 4006 } 4007 } 4008 4009 return nullptr; 4010 } 4011 4012 namespace { 4013 class LookupVisibleHelper { 4014 public: 4015 LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases, 4016 bool LoadExternal) 4017 : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases), 4018 LoadExternal(LoadExternal) {} 4019 4020 void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind, 4021 bool IncludeGlobalScope) { 4022 // Determine the set of using directives available during 4023 // unqualified name lookup. 4024 Scope *Initial = S; 4025 UnqualUsingDirectiveSet UDirs(SemaRef); 4026 if (SemaRef.getLangOpts().CPlusPlus) { 4027 // Find the first namespace or translation-unit scope. 4028 while (S && !isNamespaceOrTranslationUnitScope(S)) 4029 S = S->getParent(); 4030 4031 UDirs.visitScopeChain(Initial, S); 4032 } 4033 UDirs.done(); 4034 4035 // Look for visible declarations. 4036 LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind); 4037 Result.setAllowHidden(Consumer.includeHiddenDecls()); 4038 if (!IncludeGlobalScope) 4039 Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl()); 4040 ShadowContextRAII Shadow(Visited); 4041 lookupInScope(Initial, Result, UDirs); 4042 } 4043 4044 void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx, 4045 Sema::LookupNameKind Kind, bool IncludeGlobalScope) { 4046 LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind); 4047 Result.setAllowHidden(Consumer.includeHiddenDecls()); 4048 if (!IncludeGlobalScope) 4049 Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl()); 4050 4051 ShadowContextRAII Shadow(Visited); 4052 lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true, 4053 /*InBaseClass=*/false); 4054 } 4055 4056 private: 4057 void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result, 4058 bool QualifiedNameLookup, bool InBaseClass) { 4059 if (!Ctx) 4060 return; 4061 4062 // Make sure we don't visit the same context twice. 4063 if (Visited.visitedContext(Ctx->getPrimaryContext())) 4064 return; 4065 4066 Consumer.EnteredContext(Ctx); 4067 4068 // Outside C++, lookup results for the TU live on identifiers. 4069 if (isa<TranslationUnitDecl>(Ctx) && 4070 !Result.getSema().getLangOpts().CPlusPlus) { 4071 auto &S = Result.getSema(); 4072 auto &Idents = S.Context.Idents; 4073 4074 // Ensure all external identifiers are in the identifier table. 4075 if (LoadExternal) 4076 if (IdentifierInfoLookup *External = 4077 Idents.getExternalIdentifierLookup()) { 4078 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers()); 4079 for (StringRef Name = Iter->Next(); !Name.empty(); 4080 Name = Iter->Next()) 4081 Idents.get(Name); 4082 } 4083 4084 // Walk all lookup results in the TU for each identifier. 4085 for (const auto &Ident : Idents) { 4086 for (auto I = S.IdResolver.begin(Ident.getValue()), 4087 E = S.IdResolver.end(); 4088 I != E; ++I) { 4089 if (S.IdResolver.isDeclInScope(*I, Ctx)) { 4090 if (NamedDecl *ND = Result.getAcceptableDecl(*I)) { 4091 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass); 4092 Visited.add(ND); 4093 } 4094 } 4095 } 4096 } 4097 4098 return; 4099 } 4100 4101 if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx)) 4102 Result.getSema().ForceDeclarationOfImplicitMembers(Class); 4103 4104 llvm::SmallVector<NamedDecl *, 4> DeclsToVisit; 4105 // We sometimes skip loading namespace-level results (they tend to be huge). 4106 bool Load = LoadExternal || 4107 !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx)); 4108 // Enumerate all of the results in this context. 4109 for (DeclContextLookupResult R : 4110 Load ? Ctx->lookups() 4111 : Ctx->noload_lookups(/*PreserveInternalState=*/false)) 4112 for (auto *D : R) 4113 // Rather than visit immediately, we put ND into a vector and visit 4114 // all decls, in order, outside of this loop. The reason is that 4115 // Consumer.FoundDecl() and LookupResult::getAcceptableDecl(D) 4116 // may invalidate the iterators used in the two 4117 // loops above. 4118 DeclsToVisit.push_back(D); 4119 4120 for (auto *D : DeclsToVisit) 4121 if (auto *ND = Result.getAcceptableDecl(D)) { 4122 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass); 4123 Visited.add(ND); 4124 } 4125 4126 DeclsToVisit.clear(); 4127 4128 // Traverse using directives for qualified name lookup. 4129 if (QualifiedNameLookup) { 4130 ShadowContextRAII Shadow(Visited); 4131 for (auto *I : Ctx->using_directives()) { 4132 if (!Result.getSema().isVisible(I)) 4133 continue; 4134 lookupInDeclContext(I->getNominatedNamespace(), Result, 4135 QualifiedNameLookup, InBaseClass); 4136 } 4137 } 4138 4139 // Traverse the contexts of inherited C++ classes. 4140 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) { 4141 if (!Record->hasDefinition()) 4142 return; 4143 4144 for (const auto &B : Record->bases()) { 4145 QualType BaseType = B.getType(); 4146 4147 RecordDecl *RD; 4148 if (BaseType->isDependentType()) { 4149 if (!IncludeDependentBases) { 4150 // Don't look into dependent bases, because name lookup can't look 4151 // there anyway. 4152 continue; 4153 } 4154 const auto *TST = BaseType->getAs<TemplateSpecializationType>(); 4155 if (!TST) 4156 continue; 4157 TemplateName TN = TST->getTemplateName(); 4158 const auto *TD = 4159 dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl()); 4160 if (!TD) 4161 continue; 4162 RD = TD->getTemplatedDecl(); 4163 } else { 4164 const auto *Record = BaseType->getAs<RecordType>(); 4165 if (!Record) 4166 continue; 4167 RD = Record->getDecl(); 4168 } 4169 4170 // FIXME: It would be nice to be able to determine whether referencing 4171 // a particular member would be ambiguous. For example, given 4172 // 4173 // struct A { int member; }; 4174 // struct B { int member; }; 4175 // struct C : A, B { }; 4176 // 4177 // void f(C *c) { c->### } 4178 // 4179 // accessing 'member' would result in an ambiguity. However, we 4180 // could be smart enough to qualify the member with the base 4181 // class, e.g., 4182 // 4183 // c->B::member 4184 // 4185 // or 4186 // 4187 // c->A::member 4188 4189 // Find results in this base class (and its bases). 4190 ShadowContextRAII Shadow(Visited); 4191 lookupInDeclContext(RD, Result, QualifiedNameLookup, 4192 /*InBaseClass=*/true); 4193 } 4194 } 4195 4196 // Traverse the contexts of Objective-C classes. 4197 if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) { 4198 // Traverse categories. 4199 for (auto *Cat : IFace->visible_categories()) { 4200 ShadowContextRAII Shadow(Visited); 4201 lookupInDeclContext(Cat, Result, QualifiedNameLookup, 4202 /*InBaseClass=*/false); 4203 } 4204 4205 // Traverse protocols. 4206 for (auto *I : IFace->all_referenced_protocols()) { 4207 ShadowContextRAII Shadow(Visited); 4208 lookupInDeclContext(I, Result, QualifiedNameLookup, 4209 /*InBaseClass=*/false); 4210 } 4211 4212 // Traverse the superclass. 4213 if (IFace->getSuperClass()) { 4214 ShadowContextRAII Shadow(Visited); 4215 lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup, 4216 /*InBaseClass=*/true); 4217 } 4218 4219 // If there is an implementation, traverse it. We do this to find 4220 // synthesized ivars. 4221 if (IFace->getImplementation()) { 4222 ShadowContextRAII Shadow(Visited); 4223 lookupInDeclContext(IFace->getImplementation(), Result, 4224 QualifiedNameLookup, InBaseClass); 4225 } 4226 } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) { 4227 for (auto *I : Protocol->protocols()) { 4228 ShadowContextRAII Shadow(Visited); 4229 lookupInDeclContext(I, Result, QualifiedNameLookup, 4230 /*InBaseClass=*/false); 4231 } 4232 } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) { 4233 for (auto *I : Category->protocols()) { 4234 ShadowContextRAII Shadow(Visited); 4235 lookupInDeclContext(I, Result, QualifiedNameLookup, 4236 /*InBaseClass=*/false); 4237 } 4238 4239 // If there is an implementation, traverse it. 4240 if (Category->getImplementation()) { 4241 ShadowContextRAII Shadow(Visited); 4242 lookupInDeclContext(Category->getImplementation(), Result, 4243 QualifiedNameLookup, /*InBaseClass=*/true); 4244 } 4245 } 4246 } 4247 4248 void lookupInScope(Scope *S, LookupResult &Result, 4249 UnqualUsingDirectiveSet &UDirs) { 4250 // No clients run in this mode and it's not supported. Please add tests and 4251 // remove the assertion if you start relying on it. 4252 assert(!IncludeDependentBases && "Unsupported flag for lookupInScope"); 4253 4254 if (!S) 4255 return; 4256 4257 if (!S->getEntity() || 4258 (!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) || 4259 (S->getEntity())->isFunctionOrMethod()) { 4260 FindLocalExternScope FindLocals(Result); 4261 // Walk through the declarations in this Scope. The consumer might add new 4262 // decls to the scope as part of deserialization, so make a copy first. 4263 SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end()); 4264 for (Decl *D : ScopeDecls) { 4265 if (NamedDecl *ND = dyn_cast<NamedDecl>(D)) 4266 if ((ND = Result.getAcceptableDecl(ND))) { 4267 Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false); 4268 Visited.add(ND); 4269 } 4270 } 4271 } 4272 4273 DeclContext *Entity = S->getLookupEntity(); 4274 if (Entity) { 4275 // Look into this scope's declaration context, along with any of its 4276 // parent lookup contexts (e.g., enclosing classes), up to the point 4277 // where we hit the context stored in the next outer scope. 4278 DeclContext *OuterCtx = findOuterContext(S); 4279 4280 for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx); 4281 Ctx = Ctx->getLookupParent()) { 4282 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) { 4283 if (Method->isInstanceMethod()) { 4284 // For instance methods, look for ivars in the method's interface. 4285 LookupResult IvarResult(Result.getSema(), Result.getLookupName(), 4286 Result.getNameLoc(), 4287 Sema::LookupMemberName); 4288 if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) { 4289 lookupInDeclContext(IFace, IvarResult, 4290 /*QualifiedNameLookup=*/false, 4291 /*InBaseClass=*/false); 4292 } 4293 } 4294 4295 // We've already performed all of the name lookup that we need 4296 // to for Objective-C methods; the next context will be the 4297 // outer scope. 4298 break; 4299 } 4300 4301 if (Ctx->isFunctionOrMethod()) 4302 continue; 4303 4304 lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false, 4305 /*InBaseClass=*/false); 4306 } 4307 } else if (!S->getParent()) { 4308 // Look into the translation unit scope. We walk through the translation 4309 // unit's declaration context, because the Scope itself won't have all of 4310 // the declarations if we loaded a precompiled header. 4311 // FIXME: We would like the translation unit's Scope object to point to 4312 // the translation unit, so we don't need this special "if" branch. 4313 // However, doing so would force the normal C++ name-lookup code to look 4314 // into the translation unit decl when the IdentifierInfo chains would 4315 // suffice. Once we fix that problem (which is part of a more general 4316 // "don't look in DeclContexts unless we have to" optimization), we can 4317 // eliminate this. 4318 Entity = Result.getSema().Context.getTranslationUnitDecl(); 4319 lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false, 4320 /*InBaseClass=*/false); 4321 } 4322 4323 if (Entity) { 4324 // Lookup visible declarations in any namespaces found by using 4325 // directives. 4326 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity)) 4327 lookupInDeclContext( 4328 const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result, 4329 /*QualifiedNameLookup=*/false, 4330 /*InBaseClass=*/false); 4331 } 4332 4333 // Lookup names in the parent scope. 4334 ShadowContextRAII Shadow(Visited); 4335 lookupInScope(S->getParent(), Result, UDirs); 4336 } 4337 4338 private: 4339 VisibleDeclsRecord Visited; 4340 VisibleDeclConsumer &Consumer; 4341 bool IncludeDependentBases; 4342 bool LoadExternal; 4343 }; 4344 } // namespace 4345 4346 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind, 4347 VisibleDeclConsumer &Consumer, 4348 bool IncludeGlobalScope, bool LoadExternal) { 4349 LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false, 4350 LoadExternal); 4351 H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope); 4352 } 4353 4354 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind, 4355 VisibleDeclConsumer &Consumer, 4356 bool IncludeGlobalScope, 4357 bool IncludeDependentBases, bool LoadExternal) { 4358 LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal); 4359 H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope); 4360 } 4361 4362 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc, 4363 SourceLocation GnuLabelLoc) { 4364 // Do a lookup to see if we have a label with this name already. 4365 NamedDecl *Res = nullptr; 4366 4367 if (GnuLabelLoc.isValid()) { 4368 // Local label definitions always shadow existing labels. 4369 Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc); 4370 Scope *S = CurScope; 4371 PushOnScopeChains(Res, S, true); 4372 return cast<LabelDecl>(Res); 4373 } 4374 4375 // Not a GNU local label. 4376 Res = LookupSingleName(CurScope, II, Loc, LookupLabel, 4377 RedeclarationKind::NotForRedeclaration); 4378 // If we found a label, check to see if it is in the same context as us. 4379 // When in a Block, we don't want to reuse a label in an enclosing function. 4380 if (Res && Res->getDeclContext() != CurContext) 4381 Res = nullptr; 4382 if (!Res) { 4383 // If not forward referenced or defined already, create the backing decl. 4384 Res = LabelDecl::Create(Context, CurContext, Loc, II); 4385 Scope *S = CurScope->getFnParent(); 4386 assert(S && "Not in a function?"); 4387 PushOnScopeChains(Res, S, true); 4388 } 4389 return cast<LabelDecl>(Res); 4390 } 4391 4392 //===----------------------------------------------------------------------===// 4393 // Typo correction 4394 //===----------------------------------------------------------------------===// 4395 4396 static bool isCandidateViable(CorrectionCandidateCallback &CCC, 4397 TypoCorrection &Candidate) { 4398 Candidate.setCallbackDistance(CCC.RankCandidate(Candidate)); 4399 return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance; 4400 } 4401 4402 static void LookupPotentialTypoResult(Sema &SemaRef, 4403 LookupResult &Res, 4404 IdentifierInfo *Name, 4405 Scope *S, CXXScopeSpec *SS, 4406 DeclContext *MemberContext, 4407 bool EnteringContext, 4408 bool isObjCIvarLookup, 4409 bool FindHidden); 4410 4411 /// Check whether the declarations found for a typo correction are 4412 /// visible. Set the correction's RequiresImport flag to true if none of the 4413 /// declarations are visible, false otherwise. 4414 static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) { 4415 TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end(); 4416 4417 for (/**/; DI != DE; ++DI) 4418 if (!LookupResult::isVisible(SemaRef, *DI)) 4419 break; 4420 // No filtering needed if all decls are visible. 4421 if (DI == DE) { 4422 TC.setRequiresImport(false); 4423 return; 4424 } 4425 4426 llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI); 4427 bool AnyVisibleDecls = !NewDecls.empty(); 4428 4429 for (/**/; DI != DE; ++DI) { 4430 if (LookupResult::isVisible(SemaRef, *DI)) { 4431 if (!AnyVisibleDecls) { 4432 // Found a visible decl, discard all hidden ones. 4433 AnyVisibleDecls = true; 4434 NewDecls.clear(); 4435 } 4436 NewDecls.push_back(*DI); 4437 } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate()) 4438 NewDecls.push_back(*DI); 4439 } 4440 4441 if (NewDecls.empty()) 4442 TC = TypoCorrection(); 4443 else { 4444 TC.setCorrectionDecls(NewDecls); 4445 TC.setRequiresImport(!AnyVisibleDecls); 4446 } 4447 } 4448 4449 // Fill the supplied vector with the IdentifierInfo pointers for each piece of 4450 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::", 4451 // fill the vector with the IdentifierInfo pointers for "foo" and "bar"). 4452 static void getNestedNameSpecifierIdentifiers( 4453 NestedNameSpecifier *NNS, 4454 SmallVectorImpl<const IdentifierInfo*> &Identifiers) { 4455 if (NestedNameSpecifier *Prefix = NNS->getPrefix()) 4456 getNestedNameSpecifierIdentifiers(Prefix, Identifiers); 4457 else 4458 Identifiers.clear(); 4459 4460 const IdentifierInfo *II = nullptr; 4461 4462 switch (NNS->getKind()) { 4463 case NestedNameSpecifier::Identifier: 4464 II = NNS->getAsIdentifier(); 4465 break; 4466 4467 case NestedNameSpecifier::Namespace: 4468 if (NNS->getAsNamespace()->isAnonymousNamespace()) 4469 return; 4470 II = NNS->getAsNamespace()->getIdentifier(); 4471 break; 4472 4473 case NestedNameSpecifier::NamespaceAlias: 4474 II = NNS->getAsNamespaceAlias()->getIdentifier(); 4475 break; 4476 4477 case NestedNameSpecifier::TypeSpecWithTemplate: 4478 case NestedNameSpecifier::TypeSpec: 4479 II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier(); 4480 break; 4481 4482 case NestedNameSpecifier::Global: 4483 case NestedNameSpecifier::Super: 4484 return; 4485 } 4486 4487 if (II) 4488 Identifiers.push_back(II); 4489 } 4490 4491 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding, 4492 DeclContext *Ctx, bool InBaseClass) { 4493 // Don't consider hidden names for typo correction. 4494 if (Hiding) 4495 return; 4496 4497 // Only consider entities with identifiers for names, ignoring 4498 // special names (constructors, overloaded operators, selectors, 4499 // etc.). 4500 IdentifierInfo *Name = ND->getIdentifier(); 4501 if (!Name) 4502 return; 4503 4504 // Only consider visible declarations and declarations from modules with 4505 // names that exactly match. 4506 if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo) 4507 return; 4508 4509 FoundName(Name->getName()); 4510 } 4511 4512 void TypoCorrectionConsumer::FoundName(StringRef Name) { 4513 // Compute the edit distance between the typo and the name of this 4514 // entity, and add the identifier to the list of results. 4515 addName(Name, nullptr); 4516 } 4517 4518 void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) { 4519 // Compute the edit distance between the typo and this keyword, 4520 // and add the keyword to the list of results. 4521 addName(Keyword, nullptr, nullptr, true); 4522 } 4523 4524 void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND, 4525 NestedNameSpecifier *NNS, bool isKeyword) { 4526 // Use a simple length-based heuristic to determine the minimum possible 4527 // edit distance. If the minimum isn't good enough, bail out early. 4528 StringRef TypoStr = Typo->getName(); 4529 unsigned MinED = abs((int)Name.size() - (int)TypoStr.size()); 4530 if (MinED && TypoStr.size() / MinED < 3) 4531 return; 4532 4533 // Compute an upper bound on the allowable edit distance, so that the 4534 // edit-distance algorithm can short-circuit. 4535 unsigned UpperBound = (TypoStr.size() + 2) / 3; 4536 unsigned ED = TypoStr.edit_distance(Name, true, UpperBound); 4537 if (ED > UpperBound) return; 4538 4539 TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED); 4540 if (isKeyword) TC.makeKeyword(); 4541 TC.setCorrectionRange(nullptr, Result.getLookupNameInfo()); 4542 addCorrection(TC); 4543 } 4544 4545 static const unsigned MaxTypoDistanceResultSets = 5; 4546 4547 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) { 4548 StringRef TypoStr = Typo->getName(); 4549 StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName(); 4550 4551 // For very short typos, ignore potential corrections that have a different 4552 // base identifier from the typo or which have a normalized edit distance 4553 // longer than the typo itself. 4554 if (TypoStr.size() < 3 && 4555 (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size())) 4556 return; 4557 4558 // If the correction is resolved but is not viable, ignore it. 4559 if (Correction.isResolved()) { 4560 checkCorrectionVisibility(SemaRef, Correction); 4561 if (!Correction || !isCandidateViable(*CorrectionValidator, Correction)) 4562 return; 4563 } 4564 4565 TypoResultList &CList = 4566 CorrectionResults[Correction.getEditDistance(false)][Name]; 4567 4568 if (!CList.empty() && !CList.back().isResolved()) 4569 CList.pop_back(); 4570 if (NamedDecl *NewND = Correction.getCorrectionDecl()) { 4571 auto RI = llvm::find_if(CList, [NewND](const TypoCorrection &TypoCorr) { 4572 return TypoCorr.getCorrectionDecl() == NewND; 4573 }); 4574 if (RI != CList.end()) { 4575 // The Correction refers to a decl already in the list. No insertion is 4576 // necessary and all further cases will return. 4577 4578 auto IsDeprecated = [](Decl *D) { 4579 while (D) { 4580 if (D->isDeprecated()) 4581 return true; 4582 D = llvm::dyn_cast_or_null<NamespaceDecl>(D->getDeclContext()); 4583 } 4584 return false; 4585 }; 4586 4587 // Prefer non deprecated Corrections over deprecated and only then 4588 // sort using an alphabetical order. 4589 std::pair<bool, std::string> NewKey = { 4590 IsDeprecated(Correction.getFoundDecl()), 4591 Correction.getAsString(SemaRef.getLangOpts())}; 4592 4593 std::pair<bool, std::string> PrevKey = { 4594 IsDeprecated(RI->getFoundDecl()), 4595 RI->getAsString(SemaRef.getLangOpts())}; 4596 4597 if (NewKey < PrevKey) 4598 *RI = Correction; 4599 return; 4600 } 4601 } 4602 if (CList.empty() || Correction.isResolved()) 4603 CList.push_back(Correction); 4604 4605 while (CorrectionResults.size() > MaxTypoDistanceResultSets) 4606 CorrectionResults.erase(std::prev(CorrectionResults.end())); 4607 } 4608 4609 void TypoCorrectionConsumer::addNamespaces( 4610 const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) { 4611 SearchNamespaces = true; 4612 4613 for (auto KNPair : KnownNamespaces) 4614 Namespaces.addNameSpecifier(KNPair.first); 4615 4616 bool SSIsTemplate = false; 4617 if (NestedNameSpecifier *NNS = 4618 (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) { 4619 if (const Type *T = NNS->getAsType()) 4620 SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization; 4621 } 4622 // Do not transform this into an iterator-based loop. The loop body can 4623 // trigger the creation of further types (through lazy deserialization) and 4624 // invalid iterators into this list. 4625 auto &Types = SemaRef.getASTContext().getTypes(); 4626 for (unsigned I = 0; I != Types.size(); ++I) { 4627 const auto *TI = Types[I]; 4628 if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) { 4629 CD = CD->getCanonicalDecl(); 4630 if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() && 4631 !CD->isUnion() && CD->getIdentifier() && 4632 (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) && 4633 (CD->isBeingDefined() || CD->isCompleteDefinition())) 4634 Namespaces.addNameSpecifier(CD); 4635 } 4636 } 4637 } 4638 4639 const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() { 4640 if (++CurrentTCIndex < ValidatedCorrections.size()) 4641 return ValidatedCorrections[CurrentTCIndex]; 4642 4643 CurrentTCIndex = ValidatedCorrections.size(); 4644 while (!CorrectionResults.empty()) { 4645 auto DI = CorrectionResults.begin(); 4646 if (DI->second.empty()) { 4647 CorrectionResults.erase(DI); 4648 continue; 4649 } 4650 4651 auto RI = DI->second.begin(); 4652 if (RI->second.empty()) { 4653 DI->second.erase(RI); 4654 performQualifiedLookups(); 4655 continue; 4656 } 4657 4658 TypoCorrection TC = RI->second.pop_back_val(); 4659 if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) { 4660 ValidatedCorrections.push_back(TC); 4661 return ValidatedCorrections[CurrentTCIndex]; 4662 } 4663 } 4664 return ValidatedCorrections[0]; // The empty correction. 4665 } 4666 4667 bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) { 4668 IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo(); 4669 DeclContext *TempMemberContext = MemberContext; 4670 CXXScopeSpec *TempSS = SS.get(); 4671 retry_lookup: 4672 LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext, 4673 EnteringContext, 4674 CorrectionValidator->IsObjCIvarLookup, 4675 Name == Typo && !Candidate.WillReplaceSpecifier()); 4676 switch (Result.getResultKind()) { 4677 case LookupResult::NotFound: 4678 case LookupResult::NotFoundInCurrentInstantiation: 4679 case LookupResult::FoundUnresolvedValue: 4680 if (TempSS) { 4681 // Immediately retry the lookup without the given CXXScopeSpec 4682 TempSS = nullptr; 4683 Candidate.WillReplaceSpecifier(true); 4684 goto retry_lookup; 4685 } 4686 if (TempMemberContext) { 4687 if (SS && !TempSS) 4688 TempSS = SS.get(); 4689 TempMemberContext = nullptr; 4690 goto retry_lookup; 4691 } 4692 if (SearchNamespaces) 4693 QualifiedResults.push_back(Candidate); 4694 break; 4695 4696 case LookupResult::Ambiguous: 4697 // We don't deal with ambiguities. 4698 break; 4699 4700 case LookupResult::Found: 4701 case LookupResult::FoundOverloaded: 4702 // Store all of the Decls for overloaded symbols 4703 for (auto *TRD : Result) 4704 Candidate.addCorrectionDecl(TRD); 4705 checkCorrectionVisibility(SemaRef, Candidate); 4706 if (!isCandidateViable(*CorrectionValidator, Candidate)) { 4707 if (SearchNamespaces) 4708 QualifiedResults.push_back(Candidate); 4709 break; 4710 } 4711 Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo()); 4712 return true; 4713 } 4714 return false; 4715 } 4716 4717 void TypoCorrectionConsumer::performQualifiedLookups() { 4718 unsigned TypoLen = Typo->getName().size(); 4719 for (const TypoCorrection &QR : QualifiedResults) { 4720 for (const auto &NSI : Namespaces) { 4721 DeclContext *Ctx = NSI.DeclCtx; 4722 const Type *NSType = NSI.NameSpecifier->getAsType(); 4723 4724 // If the current NestedNameSpecifier refers to a class and the 4725 // current correction candidate is the name of that class, then skip 4726 // it as it is unlikely a qualified version of the class' constructor 4727 // is an appropriate correction. 4728 if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() : 4729 nullptr) { 4730 if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo()) 4731 continue; 4732 } 4733 4734 TypoCorrection TC(QR); 4735 TC.ClearCorrectionDecls(); 4736 TC.setCorrectionSpecifier(NSI.NameSpecifier); 4737 TC.setQualifierDistance(NSI.EditDistance); 4738 TC.setCallbackDistance(0); // Reset the callback distance 4739 4740 // If the current correction candidate and namespace combination are 4741 // too far away from the original typo based on the normalized edit 4742 // distance, then skip performing a qualified name lookup. 4743 unsigned TmpED = TC.getEditDistance(true); 4744 if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED && 4745 TypoLen / TmpED < 3) 4746 continue; 4747 4748 Result.clear(); 4749 Result.setLookupName(QR.getCorrectionAsIdentifierInfo()); 4750 if (!SemaRef.LookupQualifiedName(Result, Ctx)) 4751 continue; 4752 4753 // Any corrections added below will be validated in subsequent 4754 // iterations of the main while() loop over the Consumer's contents. 4755 switch (Result.getResultKind()) { 4756 case LookupResult::Found: 4757 case LookupResult::FoundOverloaded: { 4758 if (SS && SS->isValid()) { 4759 std::string NewQualified = TC.getAsString(SemaRef.getLangOpts()); 4760 std::string OldQualified; 4761 llvm::raw_string_ostream OldOStream(OldQualified); 4762 SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy()); 4763 OldOStream << Typo->getName(); 4764 // If correction candidate would be an identical written qualified 4765 // identifier, then the existing CXXScopeSpec probably included a 4766 // typedef that didn't get accounted for properly. 4767 if (OldOStream.str() == NewQualified) 4768 break; 4769 } 4770 for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end(); 4771 TRD != TRDEnd; ++TRD) { 4772 if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(), 4773 NSType ? NSType->getAsCXXRecordDecl() 4774 : nullptr, 4775 TRD.getPair()) == Sema::AR_accessible) 4776 TC.addCorrectionDecl(*TRD); 4777 } 4778 if (TC.isResolved()) { 4779 TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo()); 4780 addCorrection(TC); 4781 } 4782 break; 4783 } 4784 case LookupResult::NotFound: 4785 case LookupResult::NotFoundInCurrentInstantiation: 4786 case LookupResult::Ambiguous: 4787 case LookupResult::FoundUnresolvedValue: 4788 break; 4789 } 4790 } 4791 } 4792 QualifiedResults.clear(); 4793 } 4794 4795 TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet( 4796 ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec) 4797 : Context(Context), CurContextChain(buildContextChain(CurContext)) { 4798 if (NestedNameSpecifier *NNS = 4799 CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) { 4800 llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier); 4801 NNS->print(SpecifierOStream, Context.getPrintingPolicy()); 4802 4803 getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers); 4804 } 4805 // Build the list of identifiers that would be used for an absolute 4806 // (from the global context) NestedNameSpecifier referring to the current 4807 // context. 4808 for (DeclContext *C : llvm::reverse(CurContextChain)) { 4809 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) 4810 CurContextIdentifiers.push_back(ND->getIdentifier()); 4811 } 4812 4813 // Add the global context as a NestedNameSpecifier 4814 SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()), 4815 NestedNameSpecifier::GlobalSpecifier(Context), 1}; 4816 DistanceMap[1].push_back(SI); 4817 } 4818 4819 auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain( 4820 DeclContext *Start) -> DeclContextList { 4821 assert(Start && "Building a context chain from a null context"); 4822 DeclContextList Chain; 4823 for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr; 4824 DC = DC->getLookupParent()) { 4825 NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC); 4826 if (!DC->isInlineNamespace() && !DC->isTransparentContext() && 4827 !(ND && ND->isAnonymousNamespace())) 4828 Chain.push_back(DC->getPrimaryContext()); 4829 } 4830 return Chain; 4831 } 4832 4833 unsigned 4834 TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier( 4835 DeclContextList &DeclChain, NestedNameSpecifier *&NNS) { 4836 unsigned NumSpecifiers = 0; 4837 for (DeclContext *C : llvm::reverse(DeclChain)) { 4838 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) { 4839 NNS = NestedNameSpecifier::Create(Context, NNS, ND); 4840 ++NumSpecifiers; 4841 } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) { 4842 NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(), 4843 RD->getTypeForDecl()); 4844 ++NumSpecifiers; 4845 } 4846 } 4847 return NumSpecifiers; 4848 } 4849 4850 void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier( 4851 DeclContext *Ctx) { 4852 NestedNameSpecifier *NNS = nullptr; 4853 unsigned NumSpecifiers = 0; 4854 DeclContextList NamespaceDeclChain(buildContextChain(Ctx)); 4855 DeclContextList FullNamespaceDeclChain(NamespaceDeclChain); 4856 4857 // Eliminate common elements from the two DeclContext chains. 4858 for (DeclContext *C : llvm::reverse(CurContextChain)) { 4859 if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C) 4860 break; 4861 NamespaceDeclChain.pop_back(); 4862 } 4863 4864 // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain 4865 NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS); 4866 4867 // Add an explicit leading '::' specifier if needed. 4868 if (NamespaceDeclChain.empty()) { 4869 // Rebuild the NestedNameSpecifier as a globally-qualified specifier. 4870 NNS = NestedNameSpecifier::GlobalSpecifier(Context); 4871 NumSpecifiers = 4872 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS); 4873 } else if (NamedDecl *ND = 4874 dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) { 4875 IdentifierInfo *Name = ND->getIdentifier(); 4876 bool SameNameSpecifier = false; 4877 if (llvm::is_contained(CurNameSpecifierIdentifiers, Name)) { 4878 std::string NewNameSpecifier; 4879 llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier); 4880 SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers; 4881 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers); 4882 NNS->print(SpecifierOStream, Context.getPrintingPolicy()); 4883 SpecifierOStream.flush(); 4884 SameNameSpecifier = NewNameSpecifier == CurNameSpecifier; 4885 } 4886 if (SameNameSpecifier || llvm::is_contained(CurContextIdentifiers, Name)) { 4887 // Rebuild the NestedNameSpecifier as a globally-qualified specifier. 4888 NNS = NestedNameSpecifier::GlobalSpecifier(Context); 4889 NumSpecifiers = 4890 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS); 4891 } 4892 } 4893 4894 // If the built NestedNameSpecifier would be replacing an existing 4895 // NestedNameSpecifier, use the number of component identifiers that 4896 // would need to be changed as the edit distance instead of the number 4897 // of components in the built NestedNameSpecifier. 4898 if (NNS && !CurNameSpecifierIdentifiers.empty()) { 4899 SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers; 4900 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers); 4901 NumSpecifiers = 4902 llvm::ComputeEditDistance(llvm::ArrayRef(CurNameSpecifierIdentifiers), 4903 llvm::ArrayRef(NewNameSpecifierIdentifiers)); 4904 } 4905 4906 SpecifierInfo SI = {Ctx, NNS, NumSpecifiers}; 4907 DistanceMap[NumSpecifiers].push_back(SI); 4908 } 4909 4910 /// Perform name lookup for a possible result for typo correction. 4911 static void LookupPotentialTypoResult(Sema &SemaRef, 4912 LookupResult &Res, 4913 IdentifierInfo *Name, 4914 Scope *S, CXXScopeSpec *SS, 4915 DeclContext *MemberContext, 4916 bool EnteringContext, 4917 bool isObjCIvarLookup, 4918 bool FindHidden) { 4919 Res.suppressDiagnostics(); 4920 Res.clear(); 4921 Res.setLookupName(Name); 4922 Res.setAllowHidden(FindHidden); 4923 if (MemberContext) { 4924 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) { 4925 if (isObjCIvarLookup) { 4926 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) { 4927 Res.addDecl(Ivar); 4928 Res.resolveKind(); 4929 return; 4930 } 4931 } 4932 4933 if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration( 4934 Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { 4935 Res.addDecl(Prop); 4936 Res.resolveKind(); 4937 return; 4938 } 4939 } 4940 4941 SemaRef.LookupQualifiedName(Res, MemberContext); 4942 return; 4943 } 4944 4945 SemaRef.LookupParsedName(Res, S, SS, 4946 /*ObjectType=*/QualType(), 4947 /*AllowBuiltinCreation=*/false, EnteringContext); 4948 4949 // Fake ivar lookup; this should really be part of 4950 // LookupParsedName. 4951 if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) { 4952 if (Method->isInstanceMethod() && Method->getClassInterface() && 4953 (Res.empty() || 4954 (Res.isSingleResult() && 4955 Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) { 4956 if (ObjCIvarDecl *IV 4957 = Method->getClassInterface()->lookupInstanceVariable(Name)) { 4958 Res.addDecl(IV); 4959 Res.resolveKind(); 4960 } 4961 } 4962 } 4963 } 4964 4965 /// Add keywords to the consumer as possible typo corrections. 4966 static void AddKeywordsToConsumer(Sema &SemaRef, 4967 TypoCorrectionConsumer &Consumer, 4968 Scope *S, CorrectionCandidateCallback &CCC, 4969 bool AfterNestedNameSpecifier) { 4970 if (AfterNestedNameSpecifier) { 4971 // For 'X::', we know exactly which keywords can appear next. 4972 Consumer.addKeywordResult("template"); 4973 if (CCC.WantExpressionKeywords) 4974 Consumer.addKeywordResult("operator"); 4975 return; 4976 } 4977 4978 if (CCC.WantObjCSuper) 4979 Consumer.addKeywordResult("super"); 4980 4981 if (CCC.WantTypeSpecifiers) { 4982 // Add type-specifier keywords to the set of results. 4983 static const char *const CTypeSpecs[] = { 4984 "char", "const", "double", "enum", "float", "int", "long", "short", 4985 "signed", "struct", "union", "unsigned", "void", "volatile", 4986 "_Complex", 4987 // storage-specifiers as well 4988 "extern", "inline", "static", "typedef" 4989 }; 4990 4991 for (const auto *CTS : CTypeSpecs) 4992 Consumer.addKeywordResult(CTS); 4993 4994 if (SemaRef.getLangOpts().C99 && !SemaRef.getLangOpts().C2y) 4995 Consumer.addKeywordResult("_Imaginary"); 4996 4997 if (SemaRef.getLangOpts().C99) 4998 Consumer.addKeywordResult("restrict"); 4999 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) 5000 Consumer.addKeywordResult("bool"); 5001 else if (SemaRef.getLangOpts().C99) 5002 Consumer.addKeywordResult("_Bool"); 5003 5004 if (SemaRef.getLangOpts().CPlusPlus) { 5005 Consumer.addKeywordResult("class"); 5006 Consumer.addKeywordResult("typename"); 5007 Consumer.addKeywordResult("wchar_t"); 5008 5009 if (SemaRef.getLangOpts().CPlusPlus11) { 5010 Consumer.addKeywordResult("char16_t"); 5011 Consumer.addKeywordResult("char32_t"); 5012 Consumer.addKeywordResult("constexpr"); 5013 Consumer.addKeywordResult("decltype"); 5014 Consumer.addKeywordResult("thread_local"); 5015 } 5016 } 5017 5018 if (SemaRef.getLangOpts().GNUKeywords) 5019 Consumer.addKeywordResult("typeof"); 5020 } else if (CCC.WantFunctionLikeCasts) { 5021 static const char *const CastableTypeSpecs[] = { 5022 "char", "double", "float", "int", "long", "short", 5023 "signed", "unsigned", "void" 5024 }; 5025 for (auto *kw : CastableTypeSpecs) 5026 Consumer.addKeywordResult(kw); 5027 } 5028 5029 if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) { 5030 Consumer.addKeywordResult("const_cast"); 5031 Consumer.addKeywordResult("dynamic_cast"); 5032 Consumer.addKeywordResult("reinterpret_cast"); 5033 Consumer.addKeywordResult("static_cast"); 5034 } 5035 5036 if (CCC.WantExpressionKeywords) { 5037 Consumer.addKeywordResult("sizeof"); 5038 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) { 5039 Consumer.addKeywordResult("false"); 5040 Consumer.addKeywordResult("true"); 5041 } 5042 5043 if (SemaRef.getLangOpts().CPlusPlus) { 5044 static const char *const CXXExprs[] = { 5045 "delete", "new", "operator", "throw", "typeid" 5046 }; 5047 for (const auto *CE : CXXExprs) 5048 Consumer.addKeywordResult(CE); 5049 5050 if (isa<CXXMethodDecl>(SemaRef.CurContext) && 5051 cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance()) 5052 Consumer.addKeywordResult("this"); 5053 5054 if (SemaRef.getLangOpts().CPlusPlus11) { 5055 Consumer.addKeywordResult("alignof"); 5056 Consumer.addKeywordResult("nullptr"); 5057 } 5058 } 5059 5060 if (SemaRef.getLangOpts().C11) { 5061 // FIXME: We should not suggest _Alignof if the alignof macro 5062 // is present. 5063 Consumer.addKeywordResult("_Alignof"); 5064 } 5065 } 5066 5067 if (CCC.WantRemainingKeywords) { 5068 if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) { 5069 // Statements. 5070 static const char *const CStmts[] = { 5071 "do", "else", "for", "goto", "if", "return", "switch", "while" }; 5072 for (const auto *CS : CStmts) 5073 Consumer.addKeywordResult(CS); 5074 5075 if (SemaRef.getLangOpts().CPlusPlus) { 5076 Consumer.addKeywordResult("catch"); 5077 Consumer.addKeywordResult("try"); 5078 } 5079 5080 if (S && S->getBreakParent()) 5081 Consumer.addKeywordResult("break"); 5082 5083 if (S && S->getContinueParent()) 5084 Consumer.addKeywordResult("continue"); 5085 5086 if (SemaRef.getCurFunction() && 5087 !SemaRef.getCurFunction()->SwitchStack.empty()) { 5088 Consumer.addKeywordResult("case"); 5089 Consumer.addKeywordResult("default"); 5090 } 5091 } else { 5092 if (SemaRef.getLangOpts().CPlusPlus) { 5093 Consumer.addKeywordResult("namespace"); 5094 Consumer.addKeywordResult("template"); 5095 } 5096 5097 if (S && S->isClassScope()) { 5098 Consumer.addKeywordResult("explicit"); 5099 Consumer.addKeywordResult("friend"); 5100 Consumer.addKeywordResult("mutable"); 5101 Consumer.addKeywordResult("private"); 5102 Consumer.addKeywordResult("protected"); 5103 Consumer.addKeywordResult("public"); 5104 Consumer.addKeywordResult("virtual"); 5105 } 5106 } 5107 5108 if (SemaRef.getLangOpts().CPlusPlus) { 5109 Consumer.addKeywordResult("using"); 5110 5111 if (SemaRef.getLangOpts().CPlusPlus11) 5112 Consumer.addKeywordResult("static_assert"); 5113 } 5114 } 5115 } 5116 5117 std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer( 5118 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind, 5119 Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, 5120 DeclContext *MemberContext, bool EnteringContext, 5121 const ObjCObjectPointerType *OPT, bool ErrorRecovery) { 5122 5123 if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking || 5124 DisableTypoCorrection) 5125 return nullptr; 5126 5127 // In Microsoft mode, don't perform typo correction in a template member 5128 // function dependent context because it interferes with the "lookup into 5129 // dependent bases of class templates" feature. 5130 if (getLangOpts().MSVCCompat && CurContext->isDependentContext() && 5131 isa<CXXMethodDecl>(CurContext)) 5132 return nullptr; 5133 5134 // We only attempt to correct typos for identifiers. 5135 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); 5136 if (!Typo) 5137 return nullptr; 5138 5139 // If the scope specifier itself was invalid, don't try to correct 5140 // typos. 5141 if (SS && SS->isInvalid()) 5142 return nullptr; 5143 5144 // Never try to correct typos during any kind of code synthesis. 5145 if (!CodeSynthesisContexts.empty()) 5146 return nullptr; 5147 5148 // Don't try to correct 'super'. 5149 if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier()) 5150 return nullptr; 5151 5152 // Abort if typo correction already failed for this specific typo. 5153 IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo); 5154 if (locs != TypoCorrectionFailures.end() && 5155 locs->second.count(TypoName.getLoc())) 5156 return nullptr; 5157 5158 // Don't try to correct the identifier "vector" when in AltiVec mode. 5159 // TODO: Figure out why typo correction misbehaves in this case, fix it, and 5160 // remove this workaround. 5161 if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector")) 5162 return nullptr; 5163 5164 // Provide a stop gap for files that are just seriously broken. Trying 5165 // to correct all typos can turn into a HUGE performance penalty, causing 5166 // some files to take minutes to get rejected by the parser. 5167 unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit; 5168 if (Limit && TyposCorrected >= Limit) 5169 return nullptr; 5170 ++TyposCorrected; 5171 5172 // If we're handling a missing symbol error, using modules, and the 5173 // special search all modules option is used, look for a missing import. 5174 if (ErrorRecovery && getLangOpts().Modules && 5175 getLangOpts().ModulesSearchAll) { 5176 // The following has the side effect of loading the missing module. 5177 getModuleLoader().lookupMissingImports(Typo->getName(), 5178 TypoName.getBeginLoc()); 5179 } 5180 5181 // Extend the lifetime of the callback. We delayed this until here 5182 // to avoid allocations in the hot path (which is where no typo correction 5183 // occurs). Note that CorrectionCandidateCallback is polymorphic and 5184 // initially stack-allocated. 5185 std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone(); 5186 auto Consumer = std::make_unique<TypoCorrectionConsumer>( 5187 *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext, 5188 EnteringContext); 5189 5190 // Perform name lookup to find visible, similarly-named entities. 5191 bool IsUnqualifiedLookup = false; 5192 DeclContext *QualifiedDC = MemberContext; 5193 if (MemberContext) { 5194 LookupVisibleDecls(MemberContext, LookupKind, *Consumer); 5195 5196 // Look in qualified interfaces. 5197 if (OPT) { 5198 for (auto *I : OPT->quals()) 5199 LookupVisibleDecls(I, LookupKind, *Consumer); 5200 } 5201 } else if (SS && SS->isSet()) { 5202 QualifiedDC = computeDeclContext(*SS, EnteringContext); 5203 if (!QualifiedDC) 5204 return nullptr; 5205 5206 LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer); 5207 } else { 5208 IsUnqualifiedLookup = true; 5209 } 5210 5211 // Determine whether we are going to search in the various namespaces for 5212 // corrections. 5213 bool SearchNamespaces 5214 = getLangOpts().CPlusPlus && 5215 (IsUnqualifiedLookup || (SS && SS->isSet())); 5216 5217 if (IsUnqualifiedLookup || SearchNamespaces) { 5218 // For unqualified lookup, look through all of the names that we have 5219 // seen in this translation unit. 5220 // FIXME: Re-add the ability to skip very unlikely potential corrections. 5221 for (const auto &I : Context.Idents) 5222 Consumer->FoundName(I.getKey()); 5223 5224 // Walk through identifiers in external identifier sources. 5225 // FIXME: Re-add the ability to skip very unlikely potential corrections. 5226 if (IdentifierInfoLookup *External 5227 = Context.Idents.getExternalIdentifierLookup()) { 5228 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers()); 5229 do { 5230 StringRef Name = Iter->Next(); 5231 if (Name.empty()) 5232 break; 5233 5234 Consumer->FoundName(Name); 5235 } while (true); 5236 } 5237 } 5238 5239 AddKeywordsToConsumer(*this, *Consumer, S, 5240 *Consumer->getCorrectionValidator(), 5241 SS && SS->isNotEmpty()); 5242 5243 // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going 5244 // to search those namespaces. 5245 if (SearchNamespaces) { 5246 // Load any externally-known namespaces. 5247 if (ExternalSource && !LoadedExternalKnownNamespaces) { 5248 SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces; 5249 LoadedExternalKnownNamespaces = true; 5250 ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces); 5251 for (auto *N : ExternalKnownNamespaces) 5252 KnownNamespaces[N] = true; 5253 } 5254 5255 Consumer->addNamespaces(KnownNamespaces); 5256 } 5257 5258 return Consumer; 5259 } 5260 5261 TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName, 5262 Sema::LookupNameKind LookupKind, 5263 Scope *S, CXXScopeSpec *SS, 5264 CorrectionCandidateCallback &CCC, 5265 CorrectTypoKind Mode, 5266 DeclContext *MemberContext, 5267 bool EnteringContext, 5268 const ObjCObjectPointerType *OPT, 5269 bool RecordFailure) { 5270 // Always let the ExternalSource have the first chance at correction, even 5271 // if we would otherwise have given up. 5272 if (ExternalSource) { 5273 if (TypoCorrection Correction = 5274 ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC, 5275 MemberContext, EnteringContext, OPT)) 5276 return Correction; 5277 } 5278 5279 // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver; 5280 // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for 5281 // some instances of CTC_Unknown, while WantRemainingKeywords is true 5282 // for CTC_Unknown but not for CTC_ObjCMessageReceiver. 5283 bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords; 5284 5285 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); 5286 auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC, 5287 MemberContext, EnteringContext, 5288 OPT, Mode == CTK_ErrorRecovery); 5289 5290 if (!Consumer) 5291 return TypoCorrection(); 5292 5293 // If we haven't found anything, we're done. 5294 if (Consumer->empty()) 5295 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5296 5297 // Make sure the best edit distance (prior to adding any namespace qualifiers) 5298 // is not more that about a third of the length of the typo's identifier. 5299 unsigned ED = Consumer->getBestEditDistance(true); 5300 unsigned TypoLen = Typo->getName().size(); 5301 if (ED > 0 && TypoLen / ED < 3) 5302 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5303 5304 TypoCorrection BestTC = Consumer->getNextCorrection(); 5305 TypoCorrection SecondBestTC = Consumer->getNextCorrection(); 5306 if (!BestTC) 5307 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5308 5309 ED = BestTC.getEditDistance(); 5310 5311 if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) { 5312 // If this was an unqualified lookup and we believe the callback 5313 // object wouldn't have filtered out possible corrections, note 5314 // that no correction was found. 5315 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5316 } 5317 5318 // If only a single name remains, return that result. 5319 if (!SecondBestTC || 5320 SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) { 5321 const TypoCorrection &Result = BestTC; 5322 5323 // Don't correct to a keyword that's the same as the typo; the keyword 5324 // wasn't actually in scope. 5325 if (ED == 0 && Result.isKeyword()) 5326 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5327 5328 TypoCorrection TC = Result; 5329 TC.setCorrectionRange(SS, TypoName); 5330 checkCorrectionVisibility(*this, TC); 5331 return TC; 5332 } else if (SecondBestTC && ObjCMessageReceiver) { 5333 // Prefer 'super' when we're completing in a message-receiver 5334 // context. 5335 5336 if (BestTC.getCorrection().getAsString() != "super") { 5337 if (SecondBestTC.getCorrection().getAsString() == "super") 5338 BestTC = SecondBestTC; 5339 else if ((*Consumer)["super"].front().isKeyword()) 5340 BestTC = (*Consumer)["super"].front(); 5341 } 5342 // Don't correct to a keyword that's the same as the typo; the keyword 5343 // wasn't actually in scope. 5344 if (BestTC.getEditDistance() == 0 || 5345 BestTC.getCorrection().getAsString() != "super") 5346 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5347 5348 BestTC.setCorrectionRange(SS, TypoName); 5349 return BestTC; 5350 } 5351 5352 // Record the failure's location if needed and return an empty correction. If 5353 // this was an unqualified lookup and we believe the callback object did not 5354 // filter out possible corrections, also cache the failure for the typo. 5355 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC); 5356 } 5357 5358 TypoExpr *Sema::CorrectTypoDelayed( 5359 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind, 5360 Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, 5361 TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode, 5362 DeclContext *MemberContext, bool EnteringContext, 5363 const ObjCObjectPointerType *OPT) { 5364 auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC, 5365 MemberContext, EnteringContext, 5366 OPT, Mode == CTK_ErrorRecovery); 5367 5368 // Give the external sema source a chance to correct the typo. 5369 TypoCorrection ExternalTypo; 5370 if (ExternalSource && Consumer) { 5371 ExternalTypo = ExternalSource->CorrectTypo( 5372 TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(), 5373 MemberContext, EnteringContext, OPT); 5374 if (ExternalTypo) 5375 Consumer->addCorrection(ExternalTypo); 5376 } 5377 5378 if (!Consumer || Consumer->empty()) 5379 return nullptr; 5380 5381 // Make sure the best edit distance (prior to adding any namespace qualifiers) 5382 // is not more that about a third of the length of the typo's identifier. 5383 unsigned ED = Consumer->getBestEditDistance(true); 5384 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); 5385 if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3) 5386 return nullptr; 5387 ExprEvalContexts.back().NumTypos++; 5388 return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC), 5389 TypoName.getLoc()); 5390 } 5391 5392 void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) { 5393 if (!CDecl) return; 5394 5395 if (isKeyword()) 5396 CorrectionDecls.clear(); 5397 5398 CorrectionDecls.push_back(CDecl); 5399 5400 if (!CorrectionName) 5401 CorrectionName = CDecl->getDeclName(); 5402 } 5403 5404 std::string TypoCorrection::getAsString(const LangOptions &LO) const { 5405 if (CorrectionNameSpec) { 5406 std::string tmpBuffer; 5407 llvm::raw_string_ostream PrefixOStream(tmpBuffer); 5408 CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO)); 5409 PrefixOStream << CorrectionName; 5410 return PrefixOStream.str(); 5411 } 5412 5413 return CorrectionName.getAsString(); 5414 } 5415 5416 bool CorrectionCandidateCallback::ValidateCandidate( 5417 const TypoCorrection &candidate) { 5418 if (!candidate.isResolved()) 5419 return true; 5420 5421 if (candidate.isKeyword()) 5422 return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts || 5423 WantRemainingKeywords || WantObjCSuper; 5424 5425 bool HasNonType = false; 5426 bool HasStaticMethod = false; 5427 bool HasNonStaticMethod = false; 5428 for (Decl *D : candidate) { 5429 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D)) 5430 D = FTD->getTemplatedDecl(); 5431 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 5432 if (Method->isStatic()) 5433 HasStaticMethod = true; 5434 else 5435 HasNonStaticMethod = true; 5436 } 5437 if (!isa<TypeDecl>(D)) 5438 HasNonType = true; 5439 } 5440 5441 if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod && 5442 !candidate.getCorrectionSpecifier()) 5443 return false; 5444 5445 return WantTypeSpecifiers || HasNonType; 5446 } 5447 5448 FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs, 5449 bool HasExplicitTemplateArgs, 5450 MemberExpr *ME) 5451 : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs), 5452 CurContext(SemaRef.CurContext), MemberFn(ME) { 5453 WantTypeSpecifiers = false; 5454 WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus && 5455 !HasExplicitTemplateArgs && NumArgs == 1; 5456 WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1; 5457 WantRemainingKeywords = false; 5458 } 5459 5460 bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) { 5461 if (!candidate.getCorrectionDecl()) 5462 return candidate.isKeyword(); 5463 5464 for (auto *C : candidate) { 5465 FunctionDecl *FD = nullptr; 5466 NamedDecl *ND = C->getUnderlyingDecl(); 5467 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 5468 FD = FTD->getTemplatedDecl(); 5469 if (!HasExplicitTemplateArgs && !FD) { 5470 if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) { 5471 // If the Decl is neither a function nor a template function, 5472 // determine if it is a pointer or reference to a function. If so, 5473 // check against the number of arguments expected for the pointee. 5474 QualType ValType = cast<ValueDecl>(ND)->getType(); 5475 if (ValType.isNull()) 5476 continue; 5477 if (ValType->isAnyPointerType() || ValType->isReferenceType()) 5478 ValType = ValType->getPointeeType(); 5479 if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>()) 5480 if (FPT->getNumParams() == NumArgs) 5481 return true; 5482 } 5483 } 5484 5485 // A typo for a function-style cast can look like a function call in C++. 5486 if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr 5487 : isa<TypeDecl>(ND)) && 5488 CurContext->getParentASTContext().getLangOpts().CPlusPlus) 5489 // Only a class or class template can take two or more arguments. 5490 return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND); 5491 5492 // Skip the current candidate if it is not a FunctionDecl or does not accept 5493 // the current number of arguments. 5494 if (!FD || !(FD->getNumParams() >= NumArgs && 5495 FD->getMinRequiredArguments() <= NumArgs)) 5496 continue; 5497 5498 // If the current candidate is a non-static C++ method, skip the candidate 5499 // unless the method being corrected--or the current DeclContext, if the 5500 // function being corrected is not a method--is a method in the same class 5501 // or a descendent class of the candidate's parent class. 5502 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 5503 if (MemberFn || !MD->isStatic()) { 5504 const auto *CurMD = 5505 MemberFn 5506 ? dyn_cast_if_present<CXXMethodDecl>(MemberFn->getMemberDecl()) 5507 : dyn_cast_if_present<CXXMethodDecl>(CurContext); 5508 const CXXRecordDecl *CurRD = 5509 CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr; 5510 const CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl(); 5511 if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD))) 5512 continue; 5513 } 5514 } 5515 return true; 5516 } 5517 return false; 5518 } 5519 5520 void Sema::diagnoseTypo(const TypoCorrection &Correction, 5521 const PartialDiagnostic &TypoDiag, 5522 bool ErrorRecovery) { 5523 diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl), 5524 ErrorRecovery); 5525 } 5526 5527 /// Find which declaration we should import to provide the definition of 5528 /// the given declaration. 5529 static const NamedDecl *getDefinitionToImport(const NamedDecl *D) { 5530 if (const auto *VD = dyn_cast<VarDecl>(D)) 5531 return VD->getDefinition(); 5532 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 5533 return FD->getDefinition(); 5534 if (const auto *TD = dyn_cast<TagDecl>(D)) 5535 return TD->getDefinition(); 5536 if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(D)) 5537 return ID->getDefinition(); 5538 if (const auto *PD = dyn_cast<ObjCProtocolDecl>(D)) 5539 return PD->getDefinition(); 5540 if (const auto *TD = dyn_cast<TemplateDecl>(D)) 5541 if (const NamedDecl *TTD = TD->getTemplatedDecl()) 5542 return getDefinitionToImport(TTD); 5543 return nullptr; 5544 } 5545 5546 void Sema::diagnoseMissingImport(SourceLocation Loc, const NamedDecl *Decl, 5547 MissingImportKind MIK, bool Recover) { 5548 // Suggest importing a module providing the definition of this entity, if 5549 // possible. 5550 const NamedDecl *Def = getDefinitionToImport(Decl); 5551 if (!Def) 5552 Def = Decl; 5553 5554 Module *Owner = getOwningModule(Def); 5555 assert(Owner && "definition of hidden declaration is not in a module"); 5556 5557 llvm::SmallVector<Module*, 8> OwningModules; 5558 OwningModules.push_back(Owner); 5559 auto Merged = Context.getModulesWithMergedDefinition(Def); 5560 OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end()); 5561 5562 diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK, 5563 Recover); 5564 } 5565 5566 /// Get a "quoted.h" or <angled.h> include path to use in a diagnostic 5567 /// suggesting the addition of a #include of the specified file. 5568 static std::string getHeaderNameForHeader(Preprocessor &PP, FileEntryRef E, 5569 llvm::StringRef IncludingFile) { 5570 bool IsAngled = false; 5571 auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics( 5572 E, IncludingFile, &IsAngled); 5573 return (IsAngled ? '<' : '"') + Path + (IsAngled ? '>' : '"'); 5574 } 5575 5576 void Sema::diagnoseMissingImport(SourceLocation UseLoc, const NamedDecl *Decl, 5577 SourceLocation DeclLoc, 5578 ArrayRef<Module *> Modules, 5579 MissingImportKind MIK, bool Recover) { 5580 assert(!Modules.empty()); 5581 5582 // See https://github.com/llvm/llvm-project/issues/73893. It is generally 5583 // confusing than helpful to show the namespace is not visible. 5584 if (isa<NamespaceDecl>(Decl)) 5585 return; 5586 5587 auto NotePrevious = [&] { 5588 // FIXME: Suppress the note backtrace even under 5589 // -fdiagnostics-show-note-include-stack. We don't care how this 5590 // declaration was previously reached. 5591 Diag(DeclLoc, diag::note_unreachable_entity) << (int)MIK; 5592 }; 5593 5594 // Weed out duplicates from module list. 5595 llvm::SmallVector<Module*, 8> UniqueModules; 5596 llvm::SmallDenseSet<Module*, 8> UniqueModuleSet; 5597 for (auto *M : Modules) { 5598 if (M->isExplicitGlobalModule() || M->isPrivateModule()) 5599 continue; 5600 if (UniqueModuleSet.insert(M).second) 5601 UniqueModules.push_back(M); 5602 } 5603 5604 // Try to find a suitable header-name to #include. 5605 std::string HeaderName; 5606 if (OptionalFileEntryRef Header = 5607 PP.getHeaderToIncludeForDiagnostics(UseLoc, DeclLoc)) { 5608 if (const FileEntry *FE = 5609 SourceMgr.getFileEntryForID(SourceMgr.getFileID(UseLoc))) 5610 HeaderName = 5611 getHeaderNameForHeader(PP, *Header, FE->tryGetRealPathName()); 5612 } 5613 5614 // If we have a #include we should suggest, or if all definition locations 5615 // were in global module fragments, don't suggest an import. 5616 if (!HeaderName.empty() || UniqueModules.empty()) { 5617 // FIXME: Find a smart place to suggest inserting a #include, and add 5618 // a FixItHint there. 5619 Diag(UseLoc, diag::err_module_unimported_use_header) 5620 << (int)MIK << Decl << !HeaderName.empty() << HeaderName; 5621 // Produce a note showing where the entity was declared. 5622 NotePrevious(); 5623 if (Recover) 5624 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]); 5625 return; 5626 } 5627 5628 Modules = UniqueModules; 5629 5630 auto GetModuleNameForDiagnostic = [this](const Module *M) -> std::string { 5631 if (M->isModuleMapModule()) 5632 return M->getFullModuleName(); 5633 5634 if (M->isImplicitGlobalModule()) 5635 M = M->getTopLevelModule(); 5636 5637 // If the current module unit is in the same module with M, it is OK to show 5638 // the partition name. Otherwise, it'll be sufficient to show the primary 5639 // module name. 5640 if (getASTContext().isInSameModule(M, getCurrentModule())) 5641 return M->getTopLevelModuleName().str(); 5642 else 5643 return M->getPrimaryModuleInterfaceName().str(); 5644 }; 5645 5646 if (Modules.size() > 1) { 5647 std::string ModuleList; 5648 unsigned N = 0; 5649 for (const auto *M : Modules) { 5650 ModuleList += "\n "; 5651 if (++N == 5 && N != Modules.size()) { 5652 ModuleList += "[...]"; 5653 break; 5654 } 5655 ModuleList += GetModuleNameForDiagnostic(M); 5656 } 5657 5658 Diag(UseLoc, diag::err_module_unimported_use_multiple) 5659 << (int)MIK << Decl << ModuleList; 5660 } else { 5661 // FIXME: Add a FixItHint that imports the corresponding module. 5662 Diag(UseLoc, diag::err_module_unimported_use) 5663 << (int)MIK << Decl << GetModuleNameForDiagnostic(Modules[0]); 5664 } 5665 5666 NotePrevious(); 5667 5668 // Try to recover by implicitly importing this module. 5669 if (Recover) 5670 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]); 5671 } 5672 5673 void Sema::diagnoseTypo(const TypoCorrection &Correction, 5674 const PartialDiagnostic &TypoDiag, 5675 const PartialDiagnostic &PrevNote, 5676 bool ErrorRecovery) { 5677 std::string CorrectedStr = Correction.getAsString(getLangOpts()); 5678 std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts()); 5679 FixItHint FixTypo = FixItHint::CreateReplacement( 5680 Correction.getCorrectionRange(), CorrectedStr); 5681 5682 // Maybe we're just missing a module import. 5683 if (Correction.requiresImport()) { 5684 NamedDecl *Decl = Correction.getFoundDecl(); 5685 assert(Decl && "import required but no declaration to import"); 5686 5687 diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl, 5688 MissingImportKind::Declaration, ErrorRecovery); 5689 return; 5690 } 5691 5692 Diag(Correction.getCorrectionRange().getBegin(), TypoDiag) 5693 << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint()); 5694 5695 NamedDecl *ChosenDecl = 5696 Correction.isKeyword() ? nullptr : Correction.getFoundDecl(); 5697 5698 // For builtin functions which aren't declared anywhere in source, 5699 // don't emit the "declared here" note. 5700 if (const auto *FD = dyn_cast_if_present<FunctionDecl>(ChosenDecl); 5701 FD && FD->getBuiltinID() && 5702 PrevNote.getDiagID() == diag::note_previous_decl && 5703 Correction.getCorrectionRange().getBegin() == FD->getBeginLoc()) { 5704 ChosenDecl = nullptr; 5705 } 5706 5707 if (PrevNote.getDiagID() && ChosenDecl) 5708 Diag(ChosenDecl->getLocation(), PrevNote) 5709 << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo); 5710 5711 // Add any extra diagnostics. 5712 for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics()) 5713 Diag(Correction.getCorrectionRange().getBegin(), PD); 5714 } 5715 5716 TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC, 5717 TypoDiagnosticGenerator TDG, 5718 TypoRecoveryCallback TRC, 5719 SourceLocation TypoLoc) { 5720 assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer"); 5721 auto TE = new (Context) TypoExpr(Context.DependentTy, TypoLoc); 5722 auto &State = DelayedTypos[TE]; 5723 State.Consumer = std::move(TCC); 5724 State.DiagHandler = std::move(TDG); 5725 State.RecoveryHandler = std::move(TRC); 5726 if (TE) 5727 TypoExprs.push_back(TE); 5728 return TE; 5729 } 5730 5731 const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const { 5732 auto Entry = DelayedTypos.find(TE); 5733 assert(Entry != DelayedTypos.end() && 5734 "Failed to get the state for a TypoExpr!"); 5735 return Entry->second; 5736 } 5737 5738 void Sema::clearDelayedTypo(TypoExpr *TE) { 5739 DelayedTypos.erase(TE); 5740 } 5741 5742 void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) { 5743 DeclarationNameInfo Name(II, IILoc); 5744 LookupResult R(*this, Name, LookupAnyName, 5745 RedeclarationKind::NotForRedeclaration); 5746 R.suppressDiagnostics(); 5747 R.setHideTags(false); 5748 LookupName(R, S); 5749 R.dump(); 5750 } 5751 5752 void Sema::ActOnPragmaDump(Expr *E) { 5753 E->dump(); 5754 } 5755 5756 RedeclarationKind Sema::forRedeclarationInCurContext() const { 5757 // A declaration with an owning module for linkage can never link against 5758 // anything that is not visible. We don't need to check linkage here; if 5759 // the context has internal linkage, redeclaration lookup won't find things 5760 // from other TUs, and we can't safely compute linkage yet in general. 5761 if (cast<Decl>(CurContext)->getOwningModuleForLinkage()) 5762 return RedeclarationKind::ForVisibleRedeclaration; 5763 return RedeclarationKind::ForExternalRedeclaration; 5764 } 5765