1 //===--------------------- SemaLookup.cpp - Name Lookup ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements name lookup for C, C++, Objective-C, and 10 // Objective-C++. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/CXXInheritance.h" 16 #include "clang/AST/Decl.h" 17 #include "clang/AST/DeclCXX.h" 18 #include "clang/AST/DeclLookups.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/Expr.h" 22 #include "clang/AST/ExprCXX.h" 23 #include "clang/Basic/Builtins.h" 24 #include "clang/Basic/FileManager.h" 25 #include "clang/Basic/LangOptions.h" 26 #include "clang/Lex/HeaderSearch.h" 27 #include "clang/Lex/ModuleLoader.h" 28 #include "clang/Lex/Preprocessor.h" 29 #include "clang/Sema/DeclSpec.h" 30 #include "clang/Sema/Lookup.h" 31 #include "clang/Sema/Overload.h" 32 #include "clang/Sema/RISCVIntrinsicManager.h" 33 #include "clang/Sema/Scope.h" 34 #include "clang/Sema/ScopeInfo.h" 35 #include "clang/Sema/Sema.h" 36 #include "clang/Sema/SemaInternal.h" 37 #include "clang/Sema/TemplateDeduction.h" 38 #include "clang/Sema/TypoCorrection.h" 39 #include "llvm/ADT/STLExtras.h" 40 #include "llvm/ADT/SmallPtrSet.h" 41 #include "llvm/ADT/TinyPtrVector.h" 42 #include "llvm/ADT/edit_distance.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include <algorithm> 46 #include <iterator> 47 #include <list> 48 #include <optional> 49 #include <set> 50 #include <utility> 51 #include <vector> 52 53 #include "OpenCLBuiltins.inc" 54 55 using namespace clang; 56 using namespace sema; 57 58 namespace { 59 class UnqualUsingEntry { 60 const DeclContext *Nominated; 61 const DeclContext *CommonAncestor; 62 63 public: 64 UnqualUsingEntry(const DeclContext *Nominated, 65 const DeclContext *CommonAncestor) 66 : Nominated(Nominated), CommonAncestor(CommonAncestor) { 67 } 68 69 const DeclContext *getCommonAncestor() const { 70 return CommonAncestor; 71 } 72 73 const DeclContext *getNominatedNamespace() const { 74 return Nominated; 75 } 76 77 // Sort by the pointer value of the common ancestor. 78 struct Comparator { 79 bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) { 80 return L.getCommonAncestor() < R.getCommonAncestor(); 81 } 82 83 bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) { 84 return E.getCommonAncestor() < DC; 85 } 86 87 bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) { 88 return DC < E.getCommonAncestor(); 89 } 90 }; 91 }; 92 93 /// A collection of using directives, as used by C++ unqualified 94 /// lookup. 95 class UnqualUsingDirectiveSet { 96 Sema &SemaRef; 97 98 typedef SmallVector<UnqualUsingEntry, 8> ListTy; 99 100 ListTy list; 101 llvm::SmallPtrSet<DeclContext*, 8> visited; 102 103 public: 104 UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {} 105 106 void visitScopeChain(Scope *S, Scope *InnermostFileScope) { 107 // C++ [namespace.udir]p1: 108 // During unqualified name lookup, the names appear as if they 109 // were declared in the nearest enclosing namespace which contains 110 // both the using-directive and the nominated namespace. 111 DeclContext *InnermostFileDC = InnermostFileScope->getEntity(); 112 assert(InnermostFileDC && InnermostFileDC->isFileContext()); 113 114 for (; S; S = S->getParent()) { 115 // C++ [namespace.udir]p1: 116 // A using-directive shall not appear in class scope, but may 117 // appear in namespace scope or in block scope. 118 DeclContext *Ctx = S->getEntity(); 119 if (Ctx && Ctx->isFileContext()) { 120 visit(Ctx, Ctx); 121 } else if (!Ctx || Ctx->isFunctionOrMethod()) { 122 for (auto *I : S->using_directives()) 123 if (SemaRef.isVisible(I)) 124 visit(I, InnermostFileDC); 125 } 126 } 127 } 128 129 // Visits a context and collect all of its using directives 130 // recursively. Treats all using directives as if they were 131 // declared in the context. 132 // 133 // A given context is only every visited once, so it is important 134 // that contexts be visited from the inside out in order to get 135 // the effective DCs right. 136 void visit(DeclContext *DC, DeclContext *EffectiveDC) { 137 if (!visited.insert(DC).second) 138 return; 139 140 addUsingDirectives(DC, EffectiveDC); 141 } 142 143 // Visits a using directive and collects all of its using 144 // directives recursively. Treats all using directives as if they 145 // were declared in the effective DC. 146 void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { 147 DeclContext *NS = UD->getNominatedNamespace(); 148 if (!visited.insert(NS).second) 149 return; 150 151 addUsingDirective(UD, EffectiveDC); 152 addUsingDirectives(NS, EffectiveDC); 153 } 154 155 // Adds all the using directives in a context (and those nominated 156 // by its using directives, transitively) as if they appeared in 157 // the given effective context. 158 void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) { 159 SmallVector<DeclContext*, 4> queue; 160 while (true) { 161 for (auto *UD : DC->using_directives()) { 162 DeclContext *NS = UD->getNominatedNamespace(); 163 if (SemaRef.isVisible(UD) && visited.insert(NS).second) { 164 addUsingDirective(UD, EffectiveDC); 165 queue.push_back(NS); 166 } 167 } 168 169 if (queue.empty()) 170 return; 171 172 DC = queue.pop_back_val(); 173 } 174 } 175 176 // Add a using directive as if it had been declared in the given 177 // context. This helps implement C++ [namespace.udir]p3: 178 // The using-directive is transitive: if a scope contains a 179 // using-directive that nominates a second namespace that itself 180 // contains using-directives, the effect is as if the 181 // using-directives from the second namespace also appeared in 182 // the first. 183 void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { 184 // Find the common ancestor between the effective context and 185 // the nominated namespace. 186 DeclContext *Common = UD->getNominatedNamespace(); 187 while (!Common->Encloses(EffectiveDC)) 188 Common = Common->getParent(); 189 Common = Common->getPrimaryContext(); 190 191 list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common)); 192 } 193 194 void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); } 195 196 typedef ListTy::const_iterator const_iterator; 197 198 const_iterator begin() const { return list.begin(); } 199 const_iterator end() const { return list.end(); } 200 201 llvm::iterator_range<const_iterator> 202 getNamespacesFor(DeclContext *DC) const { 203 return llvm::make_range(std::equal_range(begin(), end(), 204 DC->getPrimaryContext(), 205 UnqualUsingEntry::Comparator())); 206 } 207 }; 208 } // end anonymous namespace 209 210 // Retrieve the set of identifier namespaces that correspond to a 211 // specific kind of name lookup. 212 static inline unsigned getIDNS(Sema::LookupNameKind NameKind, 213 bool CPlusPlus, 214 bool Redeclaration) { 215 unsigned IDNS = 0; 216 switch (NameKind) { 217 case Sema::LookupObjCImplicitSelfParam: 218 case Sema::LookupOrdinaryName: 219 case Sema::LookupRedeclarationWithLinkage: 220 case Sema::LookupLocalFriendName: 221 case Sema::LookupDestructorName: 222 IDNS = Decl::IDNS_Ordinary; 223 if (CPlusPlus) { 224 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace; 225 if (Redeclaration) 226 IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend; 227 } 228 if (Redeclaration) 229 IDNS |= Decl::IDNS_LocalExtern; 230 break; 231 232 case Sema::LookupOperatorName: 233 // Operator lookup is its own crazy thing; it is not the same 234 // as (e.g.) looking up an operator name for redeclaration. 235 assert(!Redeclaration && "cannot do redeclaration operator lookup"); 236 IDNS = Decl::IDNS_NonMemberOperator; 237 break; 238 239 case Sema::LookupTagName: 240 if (CPlusPlus) { 241 IDNS = Decl::IDNS_Type; 242 243 // When looking for a redeclaration of a tag name, we add: 244 // 1) TagFriend to find undeclared friend decls 245 // 2) Namespace because they can't "overload" with tag decls. 246 // 3) Tag because it includes class templates, which can't 247 // "overload" with tag decls. 248 if (Redeclaration) 249 IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace; 250 } else { 251 IDNS = Decl::IDNS_Tag; 252 } 253 break; 254 255 case Sema::LookupLabel: 256 IDNS = Decl::IDNS_Label; 257 break; 258 259 case Sema::LookupMemberName: 260 IDNS = Decl::IDNS_Member; 261 if (CPlusPlus) 262 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary; 263 break; 264 265 case Sema::LookupNestedNameSpecifierName: 266 IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace; 267 break; 268 269 case Sema::LookupNamespaceName: 270 IDNS = Decl::IDNS_Namespace; 271 break; 272 273 case Sema::LookupUsingDeclName: 274 assert(Redeclaration && "should only be used for redecl lookup"); 275 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member | 276 Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend | 277 Decl::IDNS_LocalExtern; 278 break; 279 280 case Sema::LookupObjCProtocolName: 281 IDNS = Decl::IDNS_ObjCProtocol; 282 break; 283 284 case Sema::LookupOMPReductionName: 285 IDNS = Decl::IDNS_OMPReduction; 286 break; 287 288 case Sema::LookupOMPMapperName: 289 IDNS = Decl::IDNS_OMPMapper; 290 break; 291 292 case Sema::LookupAnyName: 293 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member 294 | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol 295 | Decl::IDNS_Type; 296 break; 297 } 298 return IDNS; 299 } 300 301 void LookupResult::configure() { 302 IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus, 303 isForRedeclaration()); 304 305 // If we're looking for one of the allocation or deallocation 306 // operators, make sure that the implicitly-declared new and delete 307 // operators can be found. 308 switch (NameInfo.getName().getCXXOverloadedOperator()) { 309 case OO_New: 310 case OO_Delete: 311 case OO_Array_New: 312 case OO_Array_Delete: 313 getSema().DeclareGlobalNewDelete(); 314 break; 315 316 default: 317 break; 318 } 319 320 // Compiler builtins are always visible, regardless of where they end 321 // up being declared. 322 if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) { 323 if (unsigned BuiltinID = Id->getBuiltinID()) { 324 if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 325 AllowHidden = true; 326 } 327 } 328 } 329 330 bool LookupResult::checkDebugAssumptions() const { 331 // This function is never called by NDEBUG builds. 332 assert(ResultKind != NotFound || Decls.size() == 0); 333 assert(ResultKind != Found || Decls.size() == 1); 334 assert(ResultKind != FoundOverloaded || Decls.size() > 1 || 335 (Decls.size() == 1 && 336 isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))); 337 assert(ResultKind != FoundUnresolvedValue || checkUnresolved()); 338 assert(ResultKind != Ambiguous || Decls.size() > 1 || 339 (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || 340 Ambiguity == AmbiguousBaseSubobjectTypes))); 341 assert((Paths != nullptr) == (ResultKind == Ambiguous && 342 (Ambiguity == AmbiguousBaseSubobjectTypes || 343 Ambiguity == AmbiguousBaseSubobjects))); 344 return true; 345 } 346 347 // Necessary because CXXBasePaths is not complete in Sema.h 348 void LookupResult::deletePaths(CXXBasePaths *Paths) { 349 delete Paths; 350 } 351 352 /// Get a representative context for a declaration such that two declarations 353 /// will have the same context if they were found within the same scope. 354 static DeclContext *getContextForScopeMatching(Decl *D) { 355 // For function-local declarations, use that function as the context. This 356 // doesn't account for scopes within the function; the caller must deal with 357 // those. 358 DeclContext *DC = D->getLexicalDeclContext(); 359 if (DC->isFunctionOrMethod()) 360 return DC; 361 362 // Otherwise, look at the semantic context of the declaration. The 363 // declaration must have been found there. 364 return D->getDeclContext()->getRedeclContext(); 365 } 366 367 /// Determine whether \p D is a better lookup result than \p Existing, 368 /// given that they declare the same entity. 369 static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind, 370 NamedDecl *D, NamedDecl *Existing) { 371 // When looking up redeclarations of a using declaration, prefer a using 372 // shadow declaration over any other declaration of the same entity. 373 if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) && 374 !isa<UsingShadowDecl>(Existing)) 375 return true; 376 377 auto *DUnderlying = D->getUnderlyingDecl(); 378 auto *EUnderlying = Existing->getUnderlyingDecl(); 379 380 // If they have different underlying declarations, prefer a typedef over the 381 // original type (this happens when two type declarations denote the same 382 // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef 383 // might carry additional semantic information, such as an alignment override. 384 // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag 385 // declaration over a typedef. Also prefer a tag over a typedef for 386 // destructor name lookup because in some contexts we only accept a 387 // class-name in a destructor declaration. 388 if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) { 389 assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying)); 390 bool HaveTag = isa<TagDecl>(EUnderlying); 391 bool WantTag = 392 Kind == Sema::LookupTagName || Kind == Sema::LookupDestructorName; 393 return HaveTag != WantTag; 394 } 395 396 // Pick the function with more default arguments. 397 // FIXME: In the presence of ambiguous default arguments, we should keep both, 398 // so we can diagnose the ambiguity if the default argument is needed. 399 // See C++ [over.match.best]p3. 400 if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) { 401 auto *EFD = cast<FunctionDecl>(EUnderlying); 402 unsigned DMin = DFD->getMinRequiredArguments(); 403 unsigned EMin = EFD->getMinRequiredArguments(); 404 // If D has more default arguments, it is preferred. 405 if (DMin != EMin) 406 return DMin < EMin; 407 // FIXME: When we track visibility for default function arguments, check 408 // that we pick the declaration with more visible default arguments. 409 } 410 411 // Pick the template with more default template arguments. 412 if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) { 413 auto *ETD = cast<TemplateDecl>(EUnderlying); 414 unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments(); 415 unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments(); 416 // If D has more default arguments, it is preferred. Note that default 417 // arguments (and their visibility) is monotonically increasing across the 418 // redeclaration chain, so this is a quick proxy for "is more recent". 419 if (DMin != EMin) 420 return DMin < EMin; 421 // If D has more *visible* default arguments, it is preferred. Note, an 422 // earlier default argument being visible does not imply that a later 423 // default argument is visible, so we can't just check the first one. 424 for (unsigned I = DMin, N = DTD->getTemplateParameters()->size(); 425 I != N; ++I) { 426 if (!S.hasVisibleDefaultArgument( 427 ETD->getTemplateParameters()->getParam(I)) && 428 S.hasVisibleDefaultArgument( 429 DTD->getTemplateParameters()->getParam(I))) 430 return true; 431 } 432 } 433 434 // VarDecl can have incomplete array types, prefer the one with more complete 435 // array type. 436 if (VarDecl *DVD = dyn_cast<VarDecl>(DUnderlying)) { 437 VarDecl *EVD = cast<VarDecl>(EUnderlying); 438 if (EVD->getType()->isIncompleteType() && 439 !DVD->getType()->isIncompleteType()) { 440 // Prefer the decl with a more complete type if visible. 441 return S.isVisible(DVD); 442 } 443 return false; // Avoid picking up a newer decl, just because it was newer. 444 } 445 446 // For most kinds of declaration, it doesn't really matter which one we pick. 447 if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) { 448 // If the existing declaration is hidden, prefer the new one. Otherwise, 449 // keep what we've got. 450 return !S.isVisible(Existing); 451 } 452 453 // Pick the newer declaration; it might have a more precise type. 454 for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev; 455 Prev = Prev->getPreviousDecl()) 456 if (Prev == EUnderlying) 457 return true; 458 return false; 459 } 460 461 /// Determine whether \p D can hide a tag declaration. 462 static bool canHideTag(NamedDecl *D) { 463 // C++ [basic.scope.declarative]p4: 464 // Given a set of declarations in a single declarative region [...] 465 // exactly one declaration shall declare a class name or enumeration name 466 // that is not a typedef name and the other declarations shall all refer to 467 // the same variable, non-static data member, or enumerator, or all refer 468 // to functions and function templates; in this case the class name or 469 // enumeration name is hidden. 470 // C++ [basic.scope.hiding]p2: 471 // A class name or enumeration name can be hidden by the name of a 472 // variable, data member, function, or enumerator declared in the same 473 // scope. 474 // An UnresolvedUsingValueDecl always instantiates to one of these. 475 D = D->getUnderlyingDecl(); 476 return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) || 477 isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) || 478 isa<UnresolvedUsingValueDecl>(D); 479 } 480 481 /// Resolves the result kind of this lookup. 482 void LookupResult::resolveKind() { 483 unsigned N = Decls.size(); 484 485 // Fast case: no possible ambiguity. 486 if (N == 0) { 487 assert(ResultKind == NotFound || 488 ResultKind == NotFoundInCurrentInstantiation); 489 return; 490 } 491 492 // If there's a single decl, we need to examine it to decide what 493 // kind of lookup this is. 494 if (N == 1) { 495 NamedDecl *D = (*Decls.begin())->getUnderlyingDecl(); 496 if (isa<FunctionTemplateDecl>(D)) 497 ResultKind = FoundOverloaded; 498 else if (isa<UnresolvedUsingValueDecl>(D)) 499 ResultKind = FoundUnresolvedValue; 500 return; 501 } 502 503 // Don't do any extra resolution if we've already resolved as ambiguous. 504 if (ResultKind == Ambiguous) return; 505 506 llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique; 507 llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes; 508 509 bool Ambiguous = false; 510 bool HasTag = false, HasFunction = false; 511 bool HasFunctionTemplate = false, HasUnresolved = false; 512 NamedDecl *HasNonFunction = nullptr; 513 514 llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions; 515 516 unsigned UniqueTagIndex = 0; 517 518 unsigned I = 0; 519 while (I < N) { 520 NamedDecl *D = Decls[I]->getUnderlyingDecl(); 521 D = cast<NamedDecl>(D->getCanonicalDecl()); 522 523 // Ignore an invalid declaration unless it's the only one left. 524 // Also ignore HLSLBufferDecl which not have name conflict with other Decls. 525 if ((D->isInvalidDecl() || isa<HLSLBufferDecl>(D)) && !(I == 0 && N == 1)) { 526 Decls[I] = Decls[--N]; 527 continue; 528 } 529 530 std::optional<unsigned> ExistingI; 531 532 // Redeclarations of types via typedef can occur both within a scope 533 // and, through using declarations and directives, across scopes. There is 534 // no ambiguity if they all refer to the same type, so unique based on the 535 // canonical type. 536 if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) { 537 QualType T = getSema().Context.getTypeDeclType(TD); 538 auto UniqueResult = UniqueTypes.insert( 539 std::make_pair(getSema().Context.getCanonicalType(T), I)); 540 if (!UniqueResult.second) { 541 // The type is not unique. 542 ExistingI = UniqueResult.first->second; 543 } 544 } 545 546 // For non-type declarations, check for a prior lookup result naming this 547 // canonical declaration. 548 if (!ExistingI) { 549 auto UniqueResult = Unique.insert(std::make_pair(D, I)); 550 if (!UniqueResult.second) { 551 // We've seen this entity before. 552 ExistingI = UniqueResult.first->second; 553 } 554 } 555 556 if (ExistingI) { 557 // This is not a unique lookup result. Pick one of the results and 558 // discard the other. 559 if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I], 560 Decls[*ExistingI])) 561 Decls[*ExistingI] = Decls[I]; 562 Decls[I] = Decls[--N]; 563 continue; 564 } 565 566 // Otherwise, do some decl type analysis and then continue. 567 568 if (isa<UnresolvedUsingValueDecl>(D)) { 569 HasUnresolved = true; 570 } else if (isa<TagDecl>(D)) { 571 if (HasTag) 572 Ambiguous = true; 573 UniqueTagIndex = I; 574 HasTag = true; 575 } else if (isa<FunctionTemplateDecl>(D)) { 576 HasFunction = true; 577 HasFunctionTemplate = true; 578 } else if (isa<FunctionDecl>(D)) { 579 HasFunction = true; 580 } else { 581 if (HasNonFunction) { 582 // If we're about to create an ambiguity between two declarations that 583 // are equivalent, but one is an internal linkage declaration from one 584 // module and the other is an internal linkage declaration from another 585 // module, just skip it. 586 if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction, 587 D)) { 588 EquivalentNonFunctions.push_back(D); 589 Decls[I] = Decls[--N]; 590 continue; 591 } 592 593 Ambiguous = true; 594 } 595 HasNonFunction = D; 596 } 597 I++; 598 } 599 600 // C++ [basic.scope.hiding]p2: 601 // A class name or enumeration name can be hidden by the name of 602 // an object, function, or enumerator declared in the same 603 // scope. If a class or enumeration name and an object, function, 604 // or enumerator are declared in the same scope (in any order) 605 // with the same name, the class or enumeration name is hidden 606 // wherever the object, function, or enumerator name is visible. 607 // But it's still an error if there are distinct tag types found, 608 // even if they're not visible. (ref?) 609 if (N > 1 && HideTags && HasTag && !Ambiguous && 610 (HasFunction || HasNonFunction || HasUnresolved)) { 611 NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1]; 612 if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) && 613 getContextForScopeMatching(Decls[UniqueTagIndex])->Equals( 614 getContextForScopeMatching(OtherDecl)) && 615 canHideTag(OtherDecl)) 616 Decls[UniqueTagIndex] = Decls[--N]; 617 else 618 Ambiguous = true; 619 } 620 621 // FIXME: This diagnostic should really be delayed until we're done with 622 // the lookup result, in case the ambiguity is resolved by the caller. 623 if (!EquivalentNonFunctions.empty() && !Ambiguous) 624 getSema().diagnoseEquivalentInternalLinkageDeclarations( 625 getNameLoc(), HasNonFunction, EquivalentNonFunctions); 626 627 Decls.truncate(N); 628 629 if (HasNonFunction && (HasFunction || HasUnresolved)) 630 Ambiguous = true; 631 632 if (Ambiguous) 633 setAmbiguous(LookupResult::AmbiguousReference); 634 else if (HasUnresolved) 635 ResultKind = LookupResult::FoundUnresolvedValue; 636 else if (N > 1 || HasFunctionTemplate) 637 ResultKind = LookupResult::FoundOverloaded; 638 else 639 ResultKind = LookupResult::Found; 640 } 641 642 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) { 643 CXXBasePaths::const_paths_iterator I, E; 644 for (I = P.begin(), E = P.end(); I != E; ++I) 645 for (DeclContext::lookup_iterator DI = I->Decls, DE = DI.end(); DI != DE; 646 ++DI) 647 addDecl(*DI); 648 } 649 650 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) { 651 Paths = new CXXBasePaths; 652 Paths->swap(P); 653 addDeclsFromBasePaths(*Paths); 654 resolveKind(); 655 setAmbiguous(AmbiguousBaseSubobjects); 656 } 657 658 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) { 659 Paths = new CXXBasePaths; 660 Paths->swap(P); 661 addDeclsFromBasePaths(*Paths); 662 resolveKind(); 663 setAmbiguous(AmbiguousBaseSubobjectTypes); 664 } 665 666 void LookupResult::print(raw_ostream &Out) { 667 Out << Decls.size() << " result(s)"; 668 if (isAmbiguous()) Out << ", ambiguous"; 669 if (Paths) Out << ", base paths present"; 670 671 for (iterator I = begin(), E = end(); I != E; ++I) { 672 Out << "\n"; 673 (*I)->print(Out, 2); 674 } 675 } 676 677 LLVM_DUMP_METHOD void LookupResult::dump() { 678 llvm::errs() << "lookup results for " << getLookupName().getAsString() 679 << ":\n"; 680 for (NamedDecl *D : *this) 681 D->dump(); 682 } 683 684 /// Diagnose a missing builtin type. 685 static QualType diagOpenCLBuiltinTypeError(Sema &S, llvm::StringRef TypeClass, 686 llvm::StringRef Name) { 687 S.Diag(SourceLocation(), diag::err_opencl_type_not_found) 688 << TypeClass << Name; 689 return S.Context.VoidTy; 690 } 691 692 /// Lookup an OpenCL enum type. 693 static QualType getOpenCLEnumType(Sema &S, llvm::StringRef Name) { 694 LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(), 695 Sema::LookupTagName); 696 S.LookupName(Result, S.TUScope); 697 if (Result.empty()) 698 return diagOpenCLBuiltinTypeError(S, "enum", Name); 699 EnumDecl *Decl = Result.getAsSingle<EnumDecl>(); 700 if (!Decl) 701 return diagOpenCLBuiltinTypeError(S, "enum", Name); 702 return S.Context.getEnumType(Decl); 703 } 704 705 /// Lookup an OpenCL typedef type. 706 static QualType getOpenCLTypedefType(Sema &S, llvm::StringRef Name) { 707 LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(), 708 Sema::LookupOrdinaryName); 709 S.LookupName(Result, S.TUScope); 710 if (Result.empty()) 711 return diagOpenCLBuiltinTypeError(S, "typedef", Name); 712 TypedefNameDecl *Decl = Result.getAsSingle<TypedefNameDecl>(); 713 if (!Decl) 714 return diagOpenCLBuiltinTypeError(S, "typedef", Name); 715 return S.Context.getTypedefType(Decl); 716 } 717 718 /// Get the QualType instances of the return type and arguments for an OpenCL 719 /// builtin function signature. 720 /// \param S (in) The Sema instance. 721 /// \param OpenCLBuiltin (in) The signature currently handled. 722 /// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic 723 /// type used as return type or as argument. 724 /// Only meaningful for generic types, otherwise equals 1. 725 /// \param RetTypes (out) List of the possible return types. 726 /// \param ArgTypes (out) List of the possible argument types. For each 727 /// argument, ArgTypes contains QualTypes for the Cartesian product 728 /// of (vector sizes) x (types) . 729 static void GetQualTypesForOpenCLBuiltin( 730 Sema &S, const OpenCLBuiltinStruct &OpenCLBuiltin, unsigned &GenTypeMaxCnt, 731 SmallVector<QualType, 1> &RetTypes, 732 SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) { 733 // Get the QualType instances of the return types. 734 unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex]; 735 OCL2Qual(S, TypeTable[Sig], RetTypes); 736 GenTypeMaxCnt = RetTypes.size(); 737 738 // Get the QualType instances of the arguments. 739 // First type is the return type, skip it. 740 for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) { 741 SmallVector<QualType, 1> Ty; 742 OCL2Qual(S, TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]], 743 Ty); 744 GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt; 745 ArgTypes.push_back(std::move(Ty)); 746 } 747 } 748 749 /// Create a list of the candidate function overloads for an OpenCL builtin 750 /// function. 751 /// \param Context (in) The ASTContext instance. 752 /// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic 753 /// type used as return type or as argument. 754 /// Only meaningful for generic types, otherwise equals 1. 755 /// \param FunctionList (out) List of FunctionTypes. 756 /// \param RetTypes (in) List of the possible return types. 757 /// \param ArgTypes (in) List of the possible types for the arguments. 758 static void GetOpenCLBuiltinFctOverloads( 759 ASTContext &Context, unsigned GenTypeMaxCnt, 760 std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes, 761 SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) { 762 FunctionProtoType::ExtProtoInfo PI( 763 Context.getDefaultCallingConvention(false, false, true)); 764 PI.Variadic = false; 765 766 // Do not attempt to create any FunctionTypes if there are no return types, 767 // which happens when a type belongs to a disabled extension. 768 if (RetTypes.size() == 0) 769 return; 770 771 // Create FunctionTypes for each (gen)type. 772 for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) { 773 SmallVector<QualType, 5> ArgList; 774 775 for (unsigned A = 0; A < ArgTypes.size(); A++) { 776 // Bail out if there is an argument that has no available types. 777 if (ArgTypes[A].size() == 0) 778 return; 779 780 // Builtins such as "max" have an "sgentype" argument that represents 781 // the corresponding scalar type of a gentype. The number of gentypes 782 // must be a multiple of the number of sgentypes. 783 assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 && 784 "argument type count not compatible with gentype type count"); 785 unsigned Idx = IGenType % ArgTypes[A].size(); 786 ArgList.push_back(ArgTypes[A][Idx]); 787 } 788 789 FunctionList.push_back(Context.getFunctionType( 790 RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI)); 791 } 792 } 793 794 /// When trying to resolve a function name, if isOpenCLBuiltin() returns a 795 /// non-null <Index, Len> pair, then the name is referencing an OpenCL 796 /// builtin function. Add all candidate signatures to the LookUpResult. 797 /// 798 /// \param S (in) The Sema instance. 799 /// \param LR (inout) The LookupResult instance. 800 /// \param II (in) The identifier being resolved. 801 /// \param FctIndex (in) Starting index in the BuiltinTable. 802 /// \param Len (in) The signature list has Len elements. 803 static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR, 804 IdentifierInfo *II, 805 const unsigned FctIndex, 806 const unsigned Len) { 807 // The builtin function declaration uses generic types (gentype). 808 bool HasGenType = false; 809 810 // Maximum number of types contained in a generic type used as return type or 811 // as argument. Only meaningful for generic types, otherwise equals 1. 812 unsigned GenTypeMaxCnt; 813 814 ASTContext &Context = S.Context; 815 816 for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) { 817 const OpenCLBuiltinStruct &OpenCLBuiltin = 818 BuiltinTable[FctIndex + SignatureIndex]; 819 820 // Ignore this builtin function if it is not available in the currently 821 // selected language version. 822 if (!isOpenCLVersionContainedInMask(Context.getLangOpts(), 823 OpenCLBuiltin.Versions)) 824 continue; 825 826 // Ignore this builtin function if it carries an extension macro that is 827 // not defined. This indicates that the extension is not supported by the 828 // target, so the builtin function should not be available. 829 StringRef Extensions = FunctionExtensionTable[OpenCLBuiltin.Extension]; 830 if (!Extensions.empty()) { 831 SmallVector<StringRef, 2> ExtVec; 832 Extensions.split(ExtVec, " "); 833 bool AllExtensionsDefined = true; 834 for (StringRef Ext : ExtVec) { 835 if (!S.getPreprocessor().isMacroDefined(Ext)) { 836 AllExtensionsDefined = false; 837 break; 838 } 839 } 840 if (!AllExtensionsDefined) 841 continue; 842 } 843 844 SmallVector<QualType, 1> RetTypes; 845 SmallVector<SmallVector<QualType, 1>, 5> ArgTypes; 846 847 // Obtain QualType lists for the function signature. 848 GetQualTypesForOpenCLBuiltin(S, OpenCLBuiltin, GenTypeMaxCnt, RetTypes, 849 ArgTypes); 850 if (GenTypeMaxCnt > 1) { 851 HasGenType = true; 852 } 853 854 // Create function overload for each type combination. 855 std::vector<QualType> FunctionList; 856 GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes, 857 ArgTypes); 858 859 SourceLocation Loc = LR.getNameLoc(); 860 DeclContext *Parent = Context.getTranslationUnitDecl(); 861 FunctionDecl *NewOpenCLBuiltin; 862 863 for (const auto &FTy : FunctionList) { 864 NewOpenCLBuiltin = FunctionDecl::Create( 865 Context, Parent, Loc, Loc, II, FTy, /*TInfo=*/nullptr, SC_Extern, 866 S.getCurFPFeatures().isFPConstrained(), false, 867 FTy->isFunctionProtoType()); 868 NewOpenCLBuiltin->setImplicit(); 869 870 // Create Decl objects for each parameter, adding them to the 871 // FunctionDecl. 872 const auto *FP = cast<FunctionProtoType>(FTy); 873 SmallVector<ParmVarDecl *, 4> ParmList; 874 for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) { 875 ParmVarDecl *Parm = ParmVarDecl::Create( 876 Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(), 877 nullptr, FP->getParamType(IParm), nullptr, SC_None, nullptr); 878 Parm->setScopeInfo(0, IParm); 879 ParmList.push_back(Parm); 880 } 881 NewOpenCLBuiltin->setParams(ParmList); 882 883 // Add function attributes. 884 if (OpenCLBuiltin.IsPure) 885 NewOpenCLBuiltin->addAttr(PureAttr::CreateImplicit(Context)); 886 if (OpenCLBuiltin.IsConst) 887 NewOpenCLBuiltin->addAttr(ConstAttr::CreateImplicit(Context)); 888 if (OpenCLBuiltin.IsConv) 889 NewOpenCLBuiltin->addAttr(ConvergentAttr::CreateImplicit(Context)); 890 891 if (!S.getLangOpts().OpenCLCPlusPlus) 892 NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context)); 893 894 LR.addDecl(NewOpenCLBuiltin); 895 } 896 } 897 898 // If we added overloads, need to resolve the lookup result. 899 if (Len > 1 || HasGenType) 900 LR.resolveKind(); 901 } 902 903 /// Lookup a builtin function, when name lookup would otherwise 904 /// fail. 905 bool Sema::LookupBuiltin(LookupResult &R) { 906 Sema::LookupNameKind NameKind = R.getLookupKind(); 907 908 // If we didn't find a use of this identifier, and if the identifier 909 // corresponds to a compiler builtin, create the decl object for the builtin 910 // now, injecting it into translation unit scope, and return it. 911 if (NameKind == Sema::LookupOrdinaryName || 912 NameKind == Sema::LookupRedeclarationWithLinkage) { 913 IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo(); 914 if (II) { 915 if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) { 916 if (II == getASTContext().getMakeIntegerSeqName()) { 917 R.addDecl(getASTContext().getMakeIntegerSeqDecl()); 918 return true; 919 } else if (II == getASTContext().getTypePackElementName()) { 920 R.addDecl(getASTContext().getTypePackElementDecl()); 921 return true; 922 } 923 } 924 925 // Check if this is an OpenCL Builtin, and if so, insert its overloads. 926 if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) { 927 auto Index = isOpenCLBuiltin(II->getName()); 928 if (Index.first) { 929 InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1, 930 Index.second); 931 return true; 932 } 933 } 934 935 if (DeclareRISCVVBuiltins) { 936 if (!RVIntrinsicManager) 937 RVIntrinsicManager = CreateRISCVIntrinsicManager(*this); 938 939 if (RVIntrinsicManager->CreateIntrinsicIfFound(R, II, PP)) 940 return true; 941 } 942 943 // If this is a builtin on this (or all) targets, create the decl. 944 if (unsigned BuiltinID = II->getBuiltinID()) { 945 // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined 946 // library functions like 'malloc'. Instead, we'll just error. 947 if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) && 948 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 949 return false; 950 951 if (NamedDecl *D = 952 LazilyCreateBuiltin(II, BuiltinID, TUScope, 953 R.isForRedeclaration(), R.getNameLoc())) { 954 R.addDecl(D); 955 return true; 956 } 957 } 958 } 959 } 960 961 return false; 962 } 963 964 /// Looks up the declaration of "struct objc_super" and 965 /// saves it for later use in building builtin declaration of 966 /// objc_msgSendSuper and objc_msgSendSuper_stret. 967 static void LookupPredefedObjCSuperType(Sema &Sema, Scope *S) { 968 ASTContext &Context = Sema.Context; 969 LookupResult Result(Sema, &Context.Idents.get("objc_super"), SourceLocation(), 970 Sema::LookupTagName); 971 Sema.LookupName(Result, S); 972 if (Result.getResultKind() == LookupResult::Found) 973 if (const TagDecl *TD = Result.getAsSingle<TagDecl>()) 974 Context.setObjCSuperType(Context.getTagDeclType(TD)); 975 } 976 977 void Sema::LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID) { 978 if (ID == Builtin::BIobjc_msgSendSuper) 979 LookupPredefedObjCSuperType(*this, S); 980 } 981 982 /// Determine whether we can declare a special member function within 983 /// the class at this point. 984 static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) { 985 // We need to have a definition for the class. 986 if (!Class->getDefinition() || Class->isDependentContext()) 987 return false; 988 989 // We can't be in the middle of defining the class. 990 return !Class->isBeingDefined(); 991 } 992 993 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) { 994 if (!CanDeclareSpecialMemberFunction(Class)) 995 return; 996 997 // If the default constructor has not yet been declared, do so now. 998 if (Class->needsImplicitDefaultConstructor()) 999 DeclareImplicitDefaultConstructor(Class); 1000 1001 // If the copy constructor has not yet been declared, do so now. 1002 if (Class->needsImplicitCopyConstructor()) 1003 DeclareImplicitCopyConstructor(Class); 1004 1005 // If the copy assignment operator has not yet been declared, do so now. 1006 if (Class->needsImplicitCopyAssignment()) 1007 DeclareImplicitCopyAssignment(Class); 1008 1009 if (getLangOpts().CPlusPlus11) { 1010 // If the move constructor has not yet been declared, do so now. 1011 if (Class->needsImplicitMoveConstructor()) 1012 DeclareImplicitMoveConstructor(Class); 1013 1014 // If the move assignment operator has not yet been declared, do so now. 1015 if (Class->needsImplicitMoveAssignment()) 1016 DeclareImplicitMoveAssignment(Class); 1017 } 1018 1019 // If the destructor has not yet been declared, do so now. 1020 if (Class->needsImplicitDestructor()) 1021 DeclareImplicitDestructor(Class); 1022 } 1023 1024 /// Determine whether this is the name of an implicitly-declared 1025 /// special member function. 1026 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) { 1027 switch (Name.getNameKind()) { 1028 case DeclarationName::CXXConstructorName: 1029 case DeclarationName::CXXDestructorName: 1030 return true; 1031 1032 case DeclarationName::CXXOperatorName: 1033 return Name.getCXXOverloadedOperator() == OO_Equal; 1034 1035 default: 1036 break; 1037 } 1038 1039 return false; 1040 } 1041 1042 /// If there are any implicit member functions with the given name 1043 /// that need to be declared in the given declaration context, do so. 1044 static void DeclareImplicitMemberFunctionsWithName(Sema &S, 1045 DeclarationName Name, 1046 SourceLocation Loc, 1047 const DeclContext *DC) { 1048 if (!DC) 1049 return; 1050 1051 switch (Name.getNameKind()) { 1052 case DeclarationName::CXXConstructorName: 1053 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) 1054 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) { 1055 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record); 1056 if (Record->needsImplicitDefaultConstructor()) 1057 S.DeclareImplicitDefaultConstructor(Class); 1058 if (Record->needsImplicitCopyConstructor()) 1059 S.DeclareImplicitCopyConstructor(Class); 1060 if (S.getLangOpts().CPlusPlus11 && 1061 Record->needsImplicitMoveConstructor()) 1062 S.DeclareImplicitMoveConstructor(Class); 1063 } 1064 break; 1065 1066 case DeclarationName::CXXDestructorName: 1067 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) 1068 if (Record->getDefinition() && Record->needsImplicitDestructor() && 1069 CanDeclareSpecialMemberFunction(Record)) 1070 S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record)); 1071 break; 1072 1073 case DeclarationName::CXXOperatorName: 1074 if (Name.getCXXOverloadedOperator() != OO_Equal) 1075 break; 1076 1077 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) { 1078 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) { 1079 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record); 1080 if (Record->needsImplicitCopyAssignment()) 1081 S.DeclareImplicitCopyAssignment(Class); 1082 if (S.getLangOpts().CPlusPlus11 && 1083 Record->needsImplicitMoveAssignment()) 1084 S.DeclareImplicitMoveAssignment(Class); 1085 } 1086 } 1087 break; 1088 1089 case DeclarationName::CXXDeductionGuideName: 1090 S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc); 1091 break; 1092 1093 default: 1094 break; 1095 } 1096 } 1097 1098 // Adds all qualifying matches for a name within a decl context to the 1099 // given lookup result. Returns true if any matches were found. 1100 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) { 1101 bool Found = false; 1102 1103 // Lazily declare C++ special member functions. 1104 if (S.getLangOpts().CPlusPlus) 1105 DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(), 1106 DC); 1107 1108 // Perform lookup into this declaration context. 1109 DeclContext::lookup_result DR = DC->lookup(R.getLookupName()); 1110 for (NamedDecl *D : DR) { 1111 if ((D = R.getAcceptableDecl(D))) { 1112 R.addDecl(D); 1113 Found = true; 1114 } 1115 } 1116 1117 if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R)) 1118 return true; 1119 1120 if (R.getLookupName().getNameKind() 1121 != DeclarationName::CXXConversionFunctionName || 1122 R.getLookupName().getCXXNameType()->isDependentType() || 1123 !isa<CXXRecordDecl>(DC)) 1124 return Found; 1125 1126 // C++ [temp.mem]p6: 1127 // A specialization of a conversion function template is not found by 1128 // name lookup. Instead, any conversion function templates visible in the 1129 // context of the use are considered. [...] 1130 const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); 1131 if (!Record->isCompleteDefinition()) 1132 return Found; 1133 1134 // For conversion operators, 'operator auto' should only match 1135 // 'operator auto'. Since 'auto' is not a type, it shouldn't be considered 1136 // as a candidate for template substitution. 1137 auto *ContainedDeducedType = 1138 R.getLookupName().getCXXNameType()->getContainedDeducedType(); 1139 if (R.getLookupName().getNameKind() == 1140 DeclarationName::CXXConversionFunctionName && 1141 ContainedDeducedType && ContainedDeducedType->isUndeducedType()) 1142 return Found; 1143 1144 for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(), 1145 UEnd = Record->conversion_end(); U != UEnd; ++U) { 1146 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U); 1147 if (!ConvTemplate) 1148 continue; 1149 1150 // When we're performing lookup for the purposes of redeclaration, just 1151 // add the conversion function template. When we deduce template 1152 // arguments for specializations, we'll end up unifying the return 1153 // type of the new declaration with the type of the function template. 1154 if (R.isForRedeclaration()) { 1155 R.addDecl(ConvTemplate); 1156 Found = true; 1157 continue; 1158 } 1159 1160 // C++ [temp.mem]p6: 1161 // [...] For each such operator, if argument deduction succeeds 1162 // (14.9.2.3), the resulting specialization is used as if found by 1163 // name lookup. 1164 // 1165 // When referencing a conversion function for any purpose other than 1166 // a redeclaration (such that we'll be building an expression with the 1167 // result), perform template argument deduction and place the 1168 // specialization into the result set. We do this to avoid forcing all 1169 // callers to perform special deduction for conversion functions. 1170 TemplateDeductionInfo Info(R.getNameLoc()); 1171 FunctionDecl *Specialization = nullptr; 1172 1173 const FunctionProtoType *ConvProto 1174 = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>(); 1175 assert(ConvProto && "Nonsensical conversion function template type"); 1176 1177 // Compute the type of the function that we would expect the conversion 1178 // function to have, if it were to match the name given. 1179 // FIXME: Calling convention! 1180 FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo(); 1181 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C); 1182 EPI.ExceptionSpec = EST_None; 1183 QualType ExpectedType = R.getSema().Context.getFunctionType( 1184 R.getLookupName().getCXXNameType(), std::nullopt, EPI); 1185 1186 // Perform template argument deduction against the type that we would 1187 // expect the function to have. 1188 if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType, 1189 Specialization, Info) 1190 == Sema::TDK_Success) { 1191 R.addDecl(Specialization); 1192 Found = true; 1193 } 1194 } 1195 1196 return Found; 1197 } 1198 1199 // Performs C++ unqualified lookup into the given file context. 1200 static bool 1201 CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context, 1202 DeclContext *NS, UnqualUsingDirectiveSet &UDirs) { 1203 1204 assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!"); 1205 1206 // Perform direct name lookup into the LookupCtx. 1207 bool Found = LookupDirect(S, R, NS); 1208 1209 // Perform direct name lookup into the namespaces nominated by the 1210 // using directives whose common ancestor is this namespace. 1211 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS)) 1212 if (LookupDirect(S, R, UUE.getNominatedNamespace())) 1213 Found = true; 1214 1215 R.resolveKind(); 1216 1217 return Found; 1218 } 1219 1220 static bool isNamespaceOrTranslationUnitScope(Scope *S) { 1221 if (DeclContext *Ctx = S->getEntity()) 1222 return Ctx->isFileContext(); 1223 return false; 1224 } 1225 1226 /// Find the outer declaration context from this scope. This indicates the 1227 /// context that we should search up to (exclusive) before considering the 1228 /// parent of the specified scope. 1229 static DeclContext *findOuterContext(Scope *S) { 1230 for (Scope *OuterS = S->getParent(); OuterS; OuterS = OuterS->getParent()) 1231 if (DeclContext *DC = OuterS->getLookupEntity()) 1232 return DC; 1233 return nullptr; 1234 } 1235 1236 namespace { 1237 /// An RAII object to specify that we want to find block scope extern 1238 /// declarations. 1239 struct FindLocalExternScope { 1240 FindLocalExternScope(LookupResult &R) 1241 : R(R), OldFindLocalExtern(R.getIdentifierNamespace() & 1242 Decl::IDNS_LocalExtern) { 1243 R.setFindLocalExtern(R.getIdentifierNamespace() & 1244 (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator)); 1245 } 1246 void restore() { 1247 R.setFindLocalExtern(OldFindLocalExtern); 1248 } 1249 ~FindLocalExternScope() { 1250 restore(); 1251 } 1252 LookupResult &R; 1253 bool OldFindLocalExtern; 1254 }; 1255 } // end anonymous namespace 1256 1257 bool Sema::CppLookupName(LookupResult &R, Scope *S) { 1258 assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup"); 1259 1260 DeclarationName Name = R.getLookupName(); 1261 Sema::LookupNameKind NameKind = R.getLookupKind(); 1262 1263 // If this is the name of an implicitly-declared special member function, 1264 // go through the scope stack to implicitly declare 1265 if (isImplicitlyDeclaredMemberFunctionName(Name)) { 1266 for (Scope *PreS = S; PreS; PreS = PreS->getParent()) 1267 if (DeclContext *DC = PreS->getEntity()) 1268 DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC); 1269 } 1270 1271 // Implicitly declare member functions with the name we're looking for, if in 1272 // fact we are in a scope where it matters. 1273 1274 Scope *Initial = S; 1275 IdentifierResolver::iterator 1276 I = IdResolver.begin(Name), 1277 IEnd = IdResolver.end(); 1278 1279 // First we lookup local scope. 1280 // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir] 1281 // ...During unqualified name lookup (3.4.1), the names appear as if 1282 // they were declared in the nearest enclosing namespace which contains 1283 // both the using-directive and the nominated namespace. 1284 // [Note: in this context, "contains" means "contains directly or 1285 // indirectly". 1286 // 1287 // For example: 1288 // namespace A { int i; } 1289 // void foo() { 1290 // int i; 1291 // { 1292 // using namespace A; 1293 // ++i; // finds local 'i', A::i appears at global scope 1294 // } 1295 // } 1296 // 1297 UnqualUsingDirectiveSet UDirs(*this); 1298 bool VisitedUsingDirectives = false; 1299 bool LeftStartingScope = false; 1300 1301 // When performing a scope lookup, we want to find local extern decls. 1302 FindLocalExternScope FindLocals(R); 1303 1304 for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) { 1305 bool SearchNamespaceScope = true; 1306 // Check whether the IdResolver has anything in this scope. 1307 for (; I != IEnd && S->isDeclScope(*I); ++I) { 1308 if (NamedDecl *ND = R.getAcceptableDecl(*I)) { 1309 if (NameKind == LookupRedeclarationWithLinkage && 1310 !(*I)->isTemplateParameter()) { 1311 // If it's a template parameter, we still find it, so we can diagnose 1312 // the invalid redeclaration. 1313 1314 // Determine whether this (or a previous) declaration is 1315 // out-of-scope. 1316 if (!LeftStartingScope && !Initial->isDeclScope(*I)) 1317 LeftStartingScope = true; 1318 1319 // If we found something outside of our starting scope that 1320 // does not have linkage, skip it. 1321 if (LeftStartingScope && !((*I)->hasLinkage())) { 1322 R.setShadowed(); 1323 continue; 1324 } 1325 } else { 1326 // We found something in this scope, we should not look at the 1327 // namespace scope 1328 SearchNamespaceScope = false; 1329 } 1330 R.addDecl(ND); 1331 } 1332 } 1333 if (!SearchNamespaceScope) { 1334 R.resolveKind(); 1335 if (S->isClassScope()) 1336 if (CXXRecordDecl *Record = 1337 dyn_cast_or_null<CXXRecordDecl>(S->getEntity())) 1338 R.setNamingClass(Record); 1339 return true; 1340 } 1341 1342 if (NameKind == LookupLocalFriendName && !S->isClassScope()) { 1343 // C++11 [class.friend]p11: 1344 // If a friend declaration appears in a local class and the name 1345 // specified is an unqualified name, a prior declaration is 1346 // looked up without considering scopes that are outside the 1347 // innermost enclosing non-class scope. 1348 return false; 1349 } 1350 1351 if (DeclContext *Ctx = S->getLookupEntity()) { 1352 DeclContext *OuterCtx = findOuterContext(S); 1353 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) { 1354 // We do not directly look into transparent contexts, since 1355 // those entities will be found in the nearest enclosing 1356 // non-transparent context. 1357 if (Ctx->isTransparentContext()) 1358 continue; 1359 1360 // We do not look directly into function or method contexts, 1361 // since all of the local variables and parameters of the 1362 // function/method are present within the Scope. 1363 if (Ctx->isFunctionOrMethod()) { 1364 // If we have an Objective-C instance method, look for ivars 1365 // in the corresponding interface. 1366 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) { 1367 if (Method->isInstanceMethod() && Name.getAsIdentifierInfo()) 1368 if (ObjCInterfaceDecl *Class = Method->getClassInterface()) { 1369 ObjCInterfaceDecl *ClassDeclared; 1370 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable( 1371 Name.getAsIdentifierInfo(), 1372 ClassDeclared)) { 1373 if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) { 1374 R.addDecl(ND); 1375 R.resolveKind(); 1376 return true; 1377 } 1378 } 1379 } 1380 } 1381 1382 continue; 1383 } 1384 1385 // If this is a file context, we need to perform unqualified name 1386 // lookup considering using directives. 1387 if (Ctx->isFileContext()) { 1388 // If we haven't handled using directives yet, do so now. 1389 if (!VisitedUsingDirectives) { 1390 // Add using directives from this context up to the top level. 1391 for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) { 1392 if (UCtx->isTransparentContext()) 1393 continue; 1394 1395 UDirs.visit(UCtx, UCtx); 1396 } 1397 1398 // Find the innermost file scope, so we can add using directives 1399 // from local scopes. 1400 Scope *InnermostFileScope = S; 1401 while (InnermostFileScope && 1402 !isNamespaceOrTranslationUnitScope(InnermostFileScope)) 1403 InnermostFileScope = InnermostFileScope->getParent(); 1404 UDirs.visitScopeChain(Initial, InnermostFileScope); 1405 1406 UDirs.done(); 1407 1408 VisitedUsingDirectives = true; 1409 } 1410 1411 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) { 1412 R.resolveKind(); 1413 return true; 1414 } 1415 1416 continue; 1417 } 1418 1419 // Perform qualified name lookup into this context. 1420 // FIXME: In some cases, we know that every name that could be found by 1421 // this qualified name lookup will also be on the identifier chain. For 1422 // example, inside a class without any base classes, we never need to 1423 // perform qualified lookup because all of the members are on top of the 1424 // identifier chain. 1425 if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true)) 1426 return true; 1427 } 1428 } 1429 } 1430 1431 // Stop if we ran out of scopes. 1432 // FIXME: This really, really shouldn't be happening. 1433 if (!S) return false; 1434 1435 // If we are looking for members, no need to look into global/namespace scope. 1436 if (NameKind == LookupMemberName) 1437 return false; 1438 1439 // Collect UsingDirectiveDecls in all scopes, and recursively all 1440 // nominated namespaces by those using-directives. 1441 // 1442 // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we 1443 // don't build it for each lookup! 1444 if (!VisitedUsingDirectives) { 1445 UDirs.visitScopeChain(Initial, S); 1446 UDirs.done(); 1447 } 1448 1449 // If we're not performing redeclaration lookup, do not look for local 1450 // extern declarations outside of a function scope. 1451 if (!R.isForRedeclaration()) 1452 FindLocals.restore(); 1453 1454 // Lookup namespace scope, and global scope. 1455 // Unqualified name lookup in C++ requires looking into scopes 1456 // that aren't strictly lexical, and therefore we walk through the 1457 // context as well as walking through the scopes. 1458 for (; S; S = S->getParent()) { 1459 // Check whether the IdResolver has anything in this scope. 1460 bool Found = false; 1461 for (; I != IEnd && S->isDeclScope(*I); ++I) { 1462 if (NamedDecl *ND = R.getAcceptableDecl(*I)) { 1463 // We found something. Look for anything else in our scope 1464 // with this same name and in an acceptable identifier 1465 // namespace, so that we can construct an overload set if we 1466 // need to. 1467 Found = true; 1468 R.addDecl(ND); 1469 } 1470 } 1471 1472 if (Found && S->isTemplateParamScope()) { 1473 R.resolveKind(); 1474 return true; 1475 } 1476 1477 DeclContext *Ctx = S->getLookupEntity(); 1478 if (Ctx) { 1479 DeclContext *OuterCtx = findOuterContext(S); 1480 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) { 1481 // We do not directly look into transparent contexts, since 1482 // those entities will be found in the nearest enclosing 1483 // non-transparent context. 1484 if (Ctx->isTransparentContext()) 1485 continue; 1486 1487 // If we have a context, and it's not a context stashed in the 1488 // template parameter scope for an out-of-line definition, also 1489 // look into that context. 1490 if (!(Found && S->isTemplateParamScope())) { 1491 assert(Ctx->isFileContext() && 1492 "We should have been looking only at file context here already."); 1493 1494 // Look into context considering using-directives. 1495 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) 1496 Found = true; 1497 } 1498 1499 if (Found) { 1500 R.resolveKind(); 1501 return true; 1502 } 1503 1504 if (R.isForRedeclaration() && !Ctx->isTransparentContext()) 1505 return false; 1506 } 1507 } 1508 1509 if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext()) 1510 return false; 1511 } 1512 1513 return !R.empty(); 1514 } 1515 1516 void Sema::makeMergedDefinitionVisible(NamedDecl *ND) { 1517 if (auto *M = getCurrentModule()) 1518 Context.mergeDefinitionIntoModule(ND, M); 1519 else 1520 // We're not building a module; just make the definition visible. 1521 ND->setVisibleDespiteOwningModule(); 1522 1523 // If ND is a template declaration, make the template parameters 1524 // visible too. They're not (necessarily) within a mergeable DeclContext. 1525 if (auto *TD = dyn_cast<TemplateDecl>(ND)) 1526 for (auto *Param : *TD->getTemplateParameters()) 1527 makeMergedDefinitionVisible(Param); 1528 } 1529 1530 /// Find the module in which the given declaration was defined. 1531 static Module *getDefiningModule(Sema &S, Decl *Entity) { 1532 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) { 1533 // If this function was instantiated from a template, the defining module is 1534 // the module containing the pattern. 1535 if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern()) 1536 Entity = Pattern; 1537 } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) { 1538 if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern()) 1539 Entity = Pattern; 1540 } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) { 1541 if (auto *Pattern = ED->getTemplateInstantiationPattern()) 1542 Entity = Pattern; 1543 } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) { 1544 if (VarDecl *Pattern = VD->getTemplateInstantiationPattern()) 1545 Entity = Pattern; 1546 } 1547 1548 // Walk up to the containing context. That might also have been instantiated 1549 // from a template. 1550 DeclContext *Context = Entity->getLexicalDeclContext(); 1551 if (Context->isFileContext()) 1552 return S.getOwningModule(Entity); 1553 return getDefiningModule(S, cast<Decl>(Context)); 1554 } 1555 1556 llvm::DenseSet<Module*> &Sema::getLookupModules() { 1557 unsigned N = CodeSynthesisContexts.size(); 1558 for (unsigned I = CodeSynthesisContextLookupModules.size(); 1559 I != N; ++I) { 1560 Module *M = CodeSynthesisContexts[I].Entity ? 1561 getDefiningModule(*this, CodeSynthesisContexts[I].Entity) : 1562 nullptr; 1563 if (M && !LookupModulesCache.insert(M).second) 1564 M = nullptr; 1565 CodeSynthesisContextLookupModules.push_back(M); 1566 } 1567 return LookupModulesCache; 1568 } 1569 1570 /// Determine if we could use all the declarations in the module. 1571 bool Sema::isUsableModule(const Module *M) { 1572 assert(M && "We shouldn't check nullness for module here"); 1573 // Return quickly if we cached the result. 1574 if (UsableModuleUnitsCache.count(M)) 1575 return true; 1576 1577 // If M is the global module fragment of the current translation unit. So it 1578 // should be usable. 1579 // [module.global.frag]p1: 1580 // The global module fragment can be used to provide declarations that are 1581 // attached to the global module and usable within the module unit. 1582 if (M == GlobalModuleFragment || 1583 // If M is the module we're parsing, it should be usable. This covers the 1584 // private module fragment. The private module fragment is usable only if 1585 // it is within the current module unit. And it must be the current 1586 // parsing module unit if it is within the current module unit according 1587 // to the grammar of the private module fragment. NOTE: This is covered by 1588 // the following condition. The intention of the check is to avoid string 1589 // comparison as much as possible. 1590 M == getCurrentModule() || 1591 // The module unit which is in the same module with the current module 1592 // unit is usable. 1593 // 1594 // FIXME: Here we judge if they are in the same module by comparing the 1595 // string. Is there any better solution? 1596 M->getPrimaryModuleInterfaceName() == 1597 llvm::StringRef(getLangOpts().CurrentModule).split(':').first) { 1598 UsableModuleUnitsCache.insert(M); 1599 return true; 1600 } 1601 1602 return false; 1603 } 1604 1605 bool Sema::hasVisibleMergedDefinition(NamedDecl *Def) { 1606 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def)) 1607 if (isModuleVisible(Merged)) 1608 return true; 1609 return false; 1610 } 1611 1612 bool Sema::hasMergedDefinitionInCurrentModule(NamedDecl *Def) { 1613 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def)) 1614 if (isUsableModule(Merged)) 1615 return true; 1616 return false; 1617 } 1618 1619 template <typename ParmDecl> 1620 static bool 1621 hasAcceptableDefaultArgument(Sema &S, const ParmDecl *D, 1622 llvm::SmallVectorImpl<Module *> *Modules, 1623 Sema::AcceptableKind Kind) { 1624 if (!D->hasDefaultArgument()) 1625 return false; 1626 1627 llvm::SmallPtrSet<const ParmDecl *, 4> Visited; 1628 while (D && Visited.insert(D).second) { 1629 auto &DefaultArg = D->getDefaultArgStorage(); 1630 if (!DefaultArg.isInherited() && S.isAcceptable(D, Kind)) 1631 return true; 1632 1633 if (!DefaultArg.isInherited() && Modules) { 1634 auto *NonConstD = const_cast<ParmDecl*>(D); 1635 Modules->push_back(S.getOwningModule(NonConstD)); 1636 } 1637 1638 // If there was a previous default argument, maybe its parameter is 1639 // acceptable. 1640 D = DefaultArg.getInheritedFrom(); 1641 } 1642 return false; 1643 } 1644 1645 bool Sema::hasAcceptableDefaultArgument( 1646 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules, 1647 Sema::AcceptableKind Kind) { 1648 if (auto *P = dyn_cast<TemplateTypeParmDecl>(D)) 1649 return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind); 1650 1651 if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D)) 1652 return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind); 1653 1654 return ::hasAcceptableDefaultArgument( 1655 *this, cast<TemplateTemplateParmDecl>(D), Modules, Kind); 1656 } 1657 1658 bool Sema::hasVisibleDefaultArgument(const NamedDecl *D, 1659 llvm::SmallVectorImpl<Module *> *Modules) { 1660 return hasAcceptableDefaultArgument(D, Modules, 1661 Sema::AcceptableKind::Visible); 1662 } 1663 1664 bool Sema::hasReachableDefaultArgument( 1665 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 1666 return hasAcceptableDefaultArgument(D, Modules, 1667 Sema::AcceptableKind::Reachable); 1668 } 1669 1670 template <typename Filter> 1671 static bool 1672 hasAcceptableDeclarationImpl(Sema &S, const NamedDecl *D, 1673 llvm::SmallVectorImpl<Module *> *Modules, Filter F, 1674 Sema::AcceptableKind Kind) { 1675 bool HasFilteredRedecls = false; 1676 1677 for (auto *Redecl : D->redecls()) { 1678 auto *R = cast<NamedDecl>(Redecl); 1679 if (!F(R)) 1680 continue; 1681 1682 if (S.isAcceptable(R, Kind)) 1683 return true; 1684 1685 HasFilteredRedecls = true; 1686 1687 if (Modules) 1688 Modules->push_back(R->getOwningModule()); 1689 } 1690 1691 // Only return false if there is at least one redecl that is not filtered out. 1692 if (HasFilteredRedecls) 1693 return false; 1694 1695 return true; 1696 } 1697 1698 static bool 1699 hasAcceptableExplicitSpecialization(Sema &S, const NamedDecl *D, 1700 llvm::SmallVectorImpl<Module *> *Modules, 1701 Sema::AcceptableKind Kind) { 1702 return hasAcceptableDeclarationImpl( 1703 S, D, Modules, 1704 [](const NamedDecl *D) { 1705 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) 1706 return RD->getTemplateSpecializationKind() == 1707 TSK_ExplicitSpecialization; 1708 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1709 return FD->getTemplateSpecializationKind() == 1710 TSK_ExplicitSpecialization; 1711 if (auto *VD = dyn_cast<VarDecl>(D)) 1712 return VD->getTemplateSpecializationKind() == 1713 TSK_ExplicitSpecialization; 1714 llvm_unreachable("unknown explicit specialization kind"); 1715 }, 1716 Kind); 1717 } 1718 1719 bool Sema::hasVisibleExplicitSpecialization( 1720 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 1721 return ::hasAcceptableExplicitSpecialization(*this, D, Modules, 1722 Sema::AcceptableKind::Visible); 1723 } 1724 1725 bool Sema::hasReachableExplicitSpecialization( 1726 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 1727 return ::hasAcceptableExplicitSpecialization(*this, D, Modules, 1728 Sema::AcceptableKind::Reachable); 1729 } 1730 1731 static bool 1732 hasAcceptableMemberSpecialization(Sema &S, const NamedDecl *D, 1733 llvm::SmallVectorImpl<Module *> *Modules, 1734 Sema::AcceptableKind Kind) { 1735 assert(isa<CXXRecordDecl>(D->getDeclContext()) && 1736 "not a member specialization"); 1737 return hasAcceptableDeclarationImpl( 1738 S, D, Modules, 1739 [](const NamedDecl *D) { 1740 // If the specialization is declared at namespace scope, then it's a 1741 // member specialization declaration. If it's lexically inside the class 1742 // definition then it was instantiated. 1743 // 1744 // FIXME: This is a hack. There should be a better way to determine 1745 // this. 1746 // FIXME: What about MS-style explicit specializations declared within a 1747 // class definition? 1748 return D->getLexicalDeclContext()->isFileContext(); 1749 }, 1750 Kind); 1751 } 1752 1753 bool Sema::hasVisibleMemberSpecialization( 1754 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 1755 return hasAcceptableMemberSpecialization(*this, D, Modules, 1756 Sema::AcceptableKind::Visible); 1757 } 1758 1759 bool Sema::hasReachableMemberSpecialization( 1760 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 1761 return hasAcceptableMemberSpecialization(*this, D, Modules, 1762 Sema::AcceptableKind::Reachable); 1763 } 1764 1765 /// Determine whether a declaration is acceptable to name lookup. 1766 /// 1767 /// This routine determines whether the declaration D is acceptable in the 1768 /// current lookup context, taking into account the current template 1769 /// instantiation stack. During template instantiation, a declaration is 1770 /// acceptable if it is acceptable from a module containing any entity on the 1771 /// template instantiation path (by instantiating a template, you allow it to 1772 /// see the declarations that your module can see, including those later on in 1773 /// your module). 1774 bool LookupResult::isAcceptableSlow(Sema &SemaRef, NamedDecl *D, 1775 Sema::AcceptableKind Kind) { 1776 assert(!D->isUnconditionallyVisible() && 1777 "should not call this: not in slow case"); 1778 1779 Module *DeclModule = SemaRef.getOwningModule(D); 1780 assert(DeclModule && "hidden decl has no owning module"); 1781 1782 // If the owning module is visible, the decl is acceptable. 1783 if (SemaRef.isModuleVisible(DeclModule, 1784 D->isInvisibleOutsideTheOwningModule())) 1785 return true; 1786 1787 // Determine whether a decl context is a file context for the purpose of 1788 // visibility/reachability. This looks through some (export and linkage spec) 1789 // transparent contexts, but not others (enums). 1790 auto IsEffectivelyFileContext = [](const DeclContext *DC) { 1791 return DC->isFileContext() || isa<LinkageSpecDecl>(DC) || 1792 isa<ExportDecl>(DC); 1793 }; 1794 1795 // If this declaration is not at namespace scope 1796 // then it is acceptable if its lexical parent has a acceptable definition. 1797 DeclContext *DC = D->getLexicalDeclContext(); 1798 if (DC && !IsEffectivelyFileContext(DC)) { 1799 // For a parameter, check whether our current template declaration's 1800 // lexical context is acceptable, not whether there's some other acceptable 1801 // definition of it, because parameters aren't "within" the definition. 1802 // 1803 // In C++ we need to check for a acceptable definition due to ODR merging, 1804 // and in C we must not because each declaration of a function gets its own 1805 // set of declarations for tags in prototype scope. 1806 bool AcceptableWithinParent; 1807 if (D->isTemplateParameter()) { 1808 bool SearchDefinitions = true; 1809 if (const auto *DCD = dyn_cast<Decl>(DC)) { 1810 if (const auto *TD = DCD->getDescribedTemplate()) { 1811 TemplateParameterList *TPL = TD->getTemplateParameters(); 1812 auto Index = getDepthAndIndex(D).second; 1813 SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D; 1814 } 1815 } 1816 if (SearchDefinitions) 1817 AcceptableWithinParent = 1818 SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind); 1819 else 1820 AcceptableWithinParent = 1821 isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind); 1822 } else if (isa<ParmVarDecl>(D) || 1823 (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus)) 1824 AcceptableWithinParent = isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind); 1825 else if (D->isModulePrivate()) { 1826 // A module-private declaration is only acceptable if an enclosing lexical 1827 // parent was merged with another definition in the current module. 1828 AcceptableWithinParent = false; 1829 do { 1830 if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) { 1831 AcceptableWithinParent = true; 1832 break; 1833 } 1834 DC = DC->getLexicalParent(); 1835 } while (!IsEffectivelyFileContext(DC)); 1836 } else { 1837 AcceptableWithinParent = 1838 SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind); 1839 } 1840 1841 if (AcceptableWithinParent && SemaRef.CodeSynthesisContexts.empty() && 1842 Kind == Sema::AcceptableKind::Visible && 1843 // FIXME: Do something better in this case. 1844 !SemaRef.getLangOpts().ModulesLocalVisibility) { 1845 // Cache the fact that this declaration is implicitly visible because 1846 // its parent has a visible definition. 1847 D->setVisibleDespiteOwningModule(); 1848 } 1849 return AcceptableWithinParent; 1850 } 1851 1852 if (Kind == Sema::AcceptableKind::Visible) 1853 return false; 1854 1855 assert(Kind == Sema::AcceptableKind::Reachable && 1856 "Additional Sema::AcceptableKind?"); 1857 return isReachableSlow(SemaRef, D); 1858 } 1859 1860 bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) { 1861 // [module.global.frag]p2: 1862 // A global-module-fragment specifies the contents of the global module 1863 // fragment for a module unit. The global module fragment can be used to 1864 // provide declarations that are attached to the global module and usable 1865 // within the module unit. 1866 // 1867 // Global module fragment is special. Global Module fragment is only usable 1868 // within the module unit it got defined [module.global.frag]p2. So here we 1869 // check if the Module is the global module fragment in current translation 1870 // unit. 1871 if (M->isGlobalModule() && M != this->GlobalModuleFragment) 1872 return false; 1873 1874 // The module might be ordinarily visible. For a module-private query, that 1875 // means it is part of the current module. 1876 if (ModulePrivate && isUsableModule(M)) 1877 return true; 1878 1879 // For a query which is not module-private, that means it is in our visible 1880 // module set. 1881 if (!ModulePrivate && VisibleModules.isVisible(M)) 1882 return true; 1883 1884 // Otherwise, it might be visible by virtue of the query being within a 1885 // template instantiation or similar that is permitted to look inside M. 1886 1887 // Find the extra places where we need to look. 1888 const auto &LookupModules = getLookupModules(); 1889 if (LookupModules.empty()) 1890 return false; 1891 1892 // If our lookup set contains the module, it's visible. 1893 if (LookupModules.count(M)) 1894 return true; 1895 1896 // For a module-private query, that's everywhere we get to look. 1897 if (ModulePrivate) 1898 return false; 1899 1900 // Check whether M is transitively exported to an import of the lookup set. 1901 return llvm::any_of(LookupModules, [&](const Module *LookupM) { 1902 return LookupM->isModuleVisible(M); 1903 }); 1904 } 1905 1906 // FIXME: Return false directly if we don't have an interface dependency on the 1907 // translation unit containing D. 1908 bool LookupResult::isReachableSlow(Sema &SemaRef, NamedDecl *D) { 1909 assert(!isVisible(SemaRef, D) && "Shouldn't call the slow case.\n"); 1910 1911 Module *DeclModule = SemaRef.getOwningModule(D); 1912 assert(DeclModule && "hidden decl has no owning module"); 1913 1914 // Entities in module map modules are reachable only if they're visible. 1915 if (DeclModule->isModuleMapModule()) 1916 return false; 1917 1918 // If D comes from a module and SemaRef doesn't own a module, it implies D 1919 // comes from another TU. In case SemaRef owns a module, we could judge if D 1920 // comes from another TU by comparing the module unit. 1921 if (SemaRef.isModuleUnitOfCurrentTU(DeclModule)) 1922 return true; 1923 1924 // [module.reach]/p3: 1925 // A declaration D is reachable from a point P if: 1926 // ... 1927 // - D is not discarded ([module.global.frag]), appears in a translation unit 1928 // that is reachable from P, and does not appear within a private module 1929 // fragment. 1930 // 1931 // A declaration that's discarded in the GMF should be module-private. 1932 if (D->isModulePrivate()) 1933 return false; 1934 1935 // [module.reach]/p1 1936 // A translation unit U is necessarily reachable from a point P if U is a 1937 // module interface unit on which the translation unit containing P has an 1938 // interface dependency, or the translation unit containing P imports U, in 1939 // either case prior to P ([module.import]). 1940 // 1941 // [module.import]/p10 1942 // A translation unit has an interface dependency on a translation unit U if 1943 // it contains a declaration (possibly a module-declaration) that imports U 1944 // or if it has an interface dependency on a translation unit that has an 1945 // interface dependency on U. 1946 // 1947 // So we could conclude the module unit U is necessarily reachable if: 1948 // (1) The module unit U is module interface unit. 1949 // (2) The current unit has an interface dependency on the module unit U. 1950 // 1951 // Here we only check for the first condition. Since we couldn't see 1952 // DeclModule if it isn't (transitively) imported. 1953 if (DeclModule->getTopLevelModule()->isModuleInterfaceUnit()) 1954 return true; 1955 1956 // [module.reach]/p2 1957 // Additional translation units on 1958 // which the point within the program has an interface dependency may be 1959 // considered reachable, but it is unspecified which are and under what 1960 // circumstances. 1961 // 1962 // The decision here is to treat all additional tranditional units as 1963 // unreachable. 1964 return false; 1965 } 1966 1967 bool Sema::isAcceptableSlow(const NamedDecl *D, Sema::AcceptableKind Kind) { 1968 return LookupResult::isAcceptable(*this, const_cast<NamedDecl *>(D), Kind); 1969 } 1970 1971 bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) { 1972 // FIXME: If there are both visible and hidden declarations, we need to take 1973 // into account whether redeclaration is possible. Example: 1974 // 1975 // Non-imported module: 1976 // int f(T); // #1 1977 // Some TU: 1978 // static int f(U); // #2, not a redeclaration of #1 1979 // int f(T); // #3, finds both, should link with #1 if T != U, but 1980 // // with #2 if T == U; neither should be ambiguous. 1981 for (auto *D : R) { 1982 if (isVisible(D)) 1983 return true; 1984 assert(D->isExternallyDeclarable() && 1985 "should not have hidden, non-externally-declarable result here"); 1986 } 1987 1988 // This function is called once "New" is essentially complete, but before a 1989 // previous declaration is attached. We can't query the linkage of "New" in 1990 // general, because attaching the previous declaration can change the 1991 // linkage of New to match the previous declaration. 1992 // 1993 // However, because we've just determined that there is no *visible* prior 1994 // declaration, we can compute the linkage here. There are two possibilities: 1995 // 1996 // * This is not a redeclaration; it's safe to compute the linkage now. 1997 // 1998 // * This is a redeclaration of a prior declaration that is externally 1999 // redeclarable. In that case, the linkage of the declaration is not 2000 // changed by attaching the prior declaration, because both are externally 2001 // declarable (and thus ExternalLinkage or VisibleNoLinkage). 2002 // 2003 // FIXME: This is subtle and fragile. 2004 return New->isExternallyDeclarable(); 2005 } 2006 2007 /// Retrieve the visible declaration corresponding to D, if any. 2008 /// 2009 /// This routine determines whether the declaration D is visible in the current 2010 /// module, with the current imports. If not, it checks whether any 2011 /// redeclaration of D is visible, and if so, returns that declaration. 2012 /// 2013 /// \returns D, or a visible previous declaration of D, whichever is more recent 2014 /// and visible. If no declaration of D is visible, returns null. 2015 static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D, 2016 unsigned IDNS) { 2017 assert(!LookupResult::isAvailableForLookup(SemaRef, D) && "not in slow case"); 2018 2019 for (auto *RD : D->redecls()) { 2020 // Don't bother with extra checks if we already know this one isn't visible. 2021 if (RD == D) 2022 continue; 2023 2024 auto ND = cast<NamedDecl>(RD); 2025 // FIXME: This is wrong in the case where the previous declaration is not 2026 // visible in the same scope as D. This needs to be done much more 2027 // carefully. 2028 if (ND->isInIdentifierNamespace(IDNS) && 2029 LookupResult::isAvailableForLookup(SemaRef, ND)) 2030 return ND; 2031 } 2032 2033 return nullptr; 2034 } 2035 2036 bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D, 2037 llvm::SmallVectorImpl<Module *> *Modules) { 2038 assert(!isVisible(D) && "not in slow case"); 2039 return hasAcceptableDeclarationImpl( 2040 *this, D, Modules, [](const NamedDecl *) { return true; }, 2041 Sema::AcceptableKind::Visible); 2042 } 2043 2044 bool Sema::hasReachableDeclarationSlow( 2045 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 2046 assert(!isReachable(D) && "not in slow case"); 2047 return hasAcceptableDeclarationImpl( 2048 *this, D, Modules, [](const NamedDecl *) { return true; }, 2049 Sema::AcceptableKind::Reachable); 2050 } 2051 2052 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const { 2053 if (auto *ND = dyn_cast<NamespaceDecl>(D)) { 2054 // Namespaces are a bit of a special case: we expect there to be a lot of 2055 // redeclarations of some namespaces, all declarations of a namespace are 2056 // essentially interchangeable, all declarations are found by name lookup 2057 // if any is, and namespaces are never looked up during template 2058 // instantiation. So we benefit from caching the check in this case, and 2059 // it is correct to do so. 2060 auto *Key = ND->getCanonicalDecl(); 2061 if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key)) 2062 return Acceptable; 2063 auto *Acceptable = isVisible(getSema(), Key) 2064 ? Key 2065 : findAcceptableDecl(getSema(), Key, IDNS); 2066 if (Acceptable) 2067 getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable)); 2068 return Acceptable; 2069 } 2070 2071 return findAcceptableDecl(getSema(), D, IDNS); 2072 } 2073 2074 bool LookupResult::isVisible(Sema &SemaRef, NamedDecl *D) { 2075 // If this declaration is already visible, return it directly. 2076 if (D->isUnconditionallyVisible()) 2077 return true; 2078 2079 // During template instantiation, we can refer to hidden declarations, if 2080 // they were visible in any module along the path of instantiation. 2081 return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Visible); 2082 } 2083 2084 bool LookupResult::isReachable(Sema &SemaRef, NamedDecl *D) { 2085 if (D->isUnconditionallyVisible()) 2086 return true; 2087 2088 return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Reachable); 2089 } 2090 2091 bool LookupResult::isAvailableForLookup(Sema &SemaRef, NamedDecl *ND) { 2092 // We should check the visibility at the callsite already. 2093 if (isVisible(SemaRef, ND)) 2094 return true; 2095 2096 // Deduction guide lives in namespace scope generally, but it is just a 2097 // hint to the compilers. What we actually lookup for is the generated member 2098 // of the corresponding template. So it is sufficient to check the 2099 // reachability of the template decl. 2100 if (auto *DeductionGuide = ND->getDeclName().getCXXDeductionGuideTemplate()) 2101 return SemaRef.hasReachableDefinition(DeductionGuide); 2102 2103 // FIXME: The lookup for allocation function is a standalone process. 2104 // (We can find the logics in Sema::FindAllocationFunctions) 2105 // 2106 // Such structure makes it a problem when we instantiate a template 2107 // declaration using placement allocation function if the placement 2108 // allocation function is invisible. 2109 // (See https://github.com/llvm/llvm-project/issues/59601) 2110 // 2111 // Here we workaround it by making the placement allocation functions 2112 // always acceptable. The downside is that we can't diagnose the direct 2113 // use of the invisible placement allocation functions. (Although such uses 2114 // should be rare). 2115 if (auto *FD = dyn_cast<FunctionDecl>(ND); 2116 FD && FD->isReservedGlobalPlacementOperator()) 2117 return true; 2118 2119 auto *DC = ND->getDeclContext(); 2120 // If ND is not visible and it is at namespace scope, it shouldn't be found 2121 // by name lookup. 2122 if (DC->isFileContext()) 2123 return false; 2124 2125 // [module.interface]p7 2126 // Class and enumeration member names can be found by name lookup in any 2127 // context in which a definition of the type is reachable. 2128 // 2129 // FIXME: The current implementation didn't consider about scope. For example, 2130 // ``` 2131 // // m.cppm 2132 // export module m; 2133 // enum E1 { e1 }; 2134 // // Use.cpp 2135 // import m; 2136 // void test() { 2137 // auto a = E1::e1; // Error as expected. 2138 // auto b = e1; // Should be error. namespace-scope name e1 is not visible 2139 // } 2140 // ``` 2141 // For the above example, the current implementation would emit error for `a` 2142 // correctly. However, the implementation wouldn't diagnose about `b` now. 2143 // Since we only check the reachability for the parent only. 2144 // See clang/test/CXX/module/module.interface/p7.cpp for example. 2145 if (auto *TD = dyn_cast<TagDecl>(DC)) 2146 return SemaRef.hasReachableDefinition(TD); 2147 2148 return false; 2149 } 2150 2151 /// Perform unqualified name lookup starting from a given 2152 /// scope. 2153 /// 2154 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is 2155 /// used to find names within the current scope. For example, 'x' in 2156 /// @code 2157 /// int x; 2158 /// int f() { 2159 /// return x; // unqualified name look finds 'x' in the global scope 2160 /// } 2161 /// @endcode 2162 /// 2163 /// Different lookup criteria can find different names. For example, a 2164 /// particular scope can have both a struct and a function of the same 2165 /// name, and each can be found by certain lookup criteria. For more 2166 /// information about lookup criteria, see the documentation for the 2167 /// class LookupCriteria. 2168 /// 2169 /// @param S The scope from which unqualified name lookup will 2170 /// begin. If the lookup criteria permits, name lookup may also search 2171 /// in the parent scopes. 2172 /// 2173 /// @param [in,out] R Specifies the lookup to perform (e.g., the name to 2174 /// look up and the lookup kind), and is updated with the results of lookup 2175 /// including zero or more declarations and possibly additional information 2176 /// used to diagnose ambiguities. 2177 /// 2178 /// @returns \c true if lookup succeeded and false otherwise. 2179 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation, 2180 bool ForceNoCPlusPlus) { 2181 DeclarationName Name = R.getLookupName(); 2182 if (!Name) return false; 2183 2184 LookupNameKind NameKind = R.getLookupKind(); 2185 2186 if (!getLangOpts().CPlusPlus || ForceNoCPlusPlus) { 2187 // Unqualified name lookup in C/Objective-C is purely lexical, so 2188 // search in the declarations attached to the name. 2189 if (NameKind == Sema::LookupRedeclarationWithLinkage) { 2190 // Find the nearest non-transparent declaration scope. 2191 while (!(S->getFlags() & Scope::DeclScope) || 2192 (S->getEntity() && S->getEntity()->isTransparentContext())) 2193 S = S->getParent(); 2194 } 2195 2196 // When performing a scope lookup, we want to find local extern decls. 2197 FindLocalExternScope FindLocals(R); 2198 2199 // Scan up the scope chain looking for a decl that matches this 2200 // identifier that is in the appropriate namespace. This search 2201 // should not take long, as shadowing of names is uncommon, and 2202 // deep shadowing is extremely uncommon. 2203 bool LeftStartingScope = false; 2204 2205 for (IdentifierResolver::iterator I = IdResolver.begin(Name), 2206 IEnd = IdResolver.end(); 2207 I != IEnd; ++I) 2208 if (NamedDecl *D = R.getAcceptableDecl(*I)) { 2209 if (NameKind == LookupRedeclarationWithLinkage) { 2210 // Determine whether this (or a previous) declaration is 2211 // out-of-scope. 2212 if (!LeftStartingScope && !S->isDeclScope(*I)) 2213 LeftStartingScope = true; 2214 2215 // If we found something outside of our starting scope that 2216 // does not have linkage, skip it. 2217 if (LeftStartingScope && !((*I)->hasLinkage())) { 2218 R.setShadowed(); 2219 continue; 2220 } 2221 } 2222 else if (NameKind == LookupObjCImplicitSelfParam && 2223 !isa<ImplicitParamDecl>(*I)) 2224 continue; 2225 2226 R.addDecl(D); 2227 2228 // Check whether there are any other declarations with the same name 2229 // and in the same scope. 2230 if (I != IEnd) { 2231 // Find the scope in which this declaration was declared (if it 2232 // actually exists in a Scope). 2233 while (S && !S->isDeclScope(D)) 2234 S = S->getParent(); 2235 2236 // If the scope containing the declaration is the translation unit, 2237 // then we'll need to perform our checks based on the matching 2238 // DeclContexts rather than matching scopes. 2239 if (S && isNamespaceOrTranslationUnitScope(S)) 2240 S = nullptr; 2241 2242 // Compute the DeclContext, if we need it. 2243 DeclContext *DC = nullptr; 2244 if (!S) 2245 DC = (*I)->getDeclContext()->getRedeclContext(); 2246 2247 IdentifierResolver::iterator LastI = I; 2248 for (++LastI; LastI != IEnd; ++LastI) { 2249 if (S) { 2250 // Match based on scope. 2251 if (!S->isDeclScope(*LastI)) 2252 break; 2253 } else { 2254 // Match based on DeclContext. 2255 DeclContext *LastDC 2256 = (*LastI)->getDeclContext()->getRedeclContext(); 2257 if (!LastDC->Equals(DC)) 2258 break; 2259 } 2260 2261 // If the declaration is in the right namespace and visible, add it. 2262 if (NamedDecl *LastD = R.getAcceptableDecl(*LastI)) 2263 R.addDecl(LastD); 2264 } 2265 2266 R.resolveKind(); 2267 } 2268 2269 return true; 2270 } 2271 } else { 2272 // Perform C++ unqualified name lookup. 2273 if (CppLookupName(R, S)) 2274 return true; 2275 } 2276 2277 // If we didn't find a use of this identifier, and if the identifier 2278 // corresponds to a compiler builtin, create the decl object for the builtin 2279 // now, injecting it into translation unit scope, and return it. 2280 if (AllowBuiltinCreation && LookupBuiltin(R)) 2281 return true; 2282 2283 // If we didn't find a use of this identifier, the ExternalSource 2284 // may be able to handle the situation. 2285 // Note: some lookup failures are expected! 2286 // See e.g. R.isForRedeclaration(). 2287 return (ExternalSource && ExternalSource->LookupUnqualified(R, S)); 2288 } 2289 2290 /// Perform qualified name lookup in the namespaces nominated by 2291 /// using directives by the given context. 2292 /// 2293 /// C++98 [namespace.qual]p2: 2294 /// Given X::m (where X is a user-declared namespace), or given \::m 2295 /// (where X is the global namespace), let S be the set of all 2296 /// declarations of m in X and in the transitive closure of all 2297 /// namespaces nominated by using-directives in X and its used 2298 /// namespaces, except that using-directives are ignored in any 2299 /// namespace, including X, directly containing one or more 2300 /// declarations of m. No namespace is searched more than once in 2301 /// the lookup of a name. If S is the empty set, the program is 2302 /// ill-formed. Otherwise, if S has exactly one member, or if the 2303 /// context of the reference is a using-declaration 2304 /// (namespace.udecl), S is the required set of declarations of 2305 /// m. Otherwise if the use of m is not one that allows a unique 2306 /// declaration to be chosen from S, the program is ill-formed. 2307 /// 2308 /// C++98 [namespace.qual]p5: 2309 /// During the lookup of a qualified namespace member name, if the 2310 /// lookup finds more than one declaration of the member, and if one 2311 /// declaration introduces a class name or enumeration name and the 2312 /// other declarations either introduce the same object, the same 2313 /// enumerator or a set of functions, the non-type name hides the 2314 /// class or enumeration name if and only if the declarations are 2315 /// from the same namespace; otherwise (the declarations are from 2316 /// different namespaces), the program is ill-formed. 2317 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R, 2318 DeclContext *StartDC) { 2319 assert(StartDC->isFileContext() && "start context is not a file context"); 2320 2321 // We have not yet looked into these namespaces, much less added 2322 // their "using-children" to the queue. 2323 SmallVector<NamespaceDecl*, 8> Queue; 2324 2325 // We have at least added all these contexts to the queue. 2326 llvm::SmallPtrSet<DeclContext*, 8> Visited; 2327 Visited.insert(StartDC); 2328 2329 // We have already looked into the initial namespace; seed the queue 2330 // with its using-children. 2331 for (auto *I : StartDC->using_directives()) { 2332 NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace(); 2333 if (S.isVisible(I) && Visited.insert(ND).second) 2334 Queue.push_back(ND); 2335 } 2336 2337 // The easiest way to implement the restriction in [namespace.qual]p5 2338 // is to check whether any of the individual results found a tag 2339 // and, if so, to declare an ambiguity if the final result is not 2340 // a tag. 2341 bool FoundTag = false; 2342 bool FoundNonTag = false; 2343 2344 LookupResult LocalR(LookupResult::Temporary, R); 2345 2346 bool Found = false; 2347 while (!Queue.empty()) { 2348 NamespaceDecl *ND = Queue.pop_back_val(); 2349 2350 // We go through some convolutions here to avoid copying results 2351 // between LookupResults. 2352 bool UseLocal = !R.empty(); 2353 LookupResult &DirectR = UseLocal ? LocalR : R; 2354 bool FoundDirect = LookupDirect(S, DirectR, ND); 2355 2356 if (FoundDirect) { 2357 // First do any local hiding. 2358 DirectR.resolveKind(); 2359 2360 // If the local result is a tag, remember that. 2361 if (DirectR.isSingleTagDecl()) 2362 FoundTag = true; 2363 else 2364 FoundNonTag = true; 2365 2366 // Append the local results to the total results if necessary. 2367 if (UseLocal) { 2368 R.addAllDecls(LocalR); 2369 LocalR.clear(); 2370 } 2371 } 2372 2373 // If we find names in this namespace, ignore its using directives. 2374 if (FoundDirect) { 2375 Found = true; 2376 continue; 2377 } 2378 2379 for (auto *I : ND->using_directives()) { 2380 NamespaceDecl *Nom = I->getNominatedNamespace(); 2381 if (S.isVisible(I) && Visited.insert(Nom).second) 2382 Queue.push_back(Nom); 2383 } 2384 } 2385 2386 if (Found) { 2387 if (FoundTag && FoundNonTag) 2388 R.setAmbiguousQualifiedTagHiding(); 2389 else 2390 R.resolveKind(); 2391 } 2392 2393 return Found; 2394 } 2395 2396 /// Perform qualified name lookup into a given context. 2397 /// 2398 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find 2399 /// names when the context of those names is explicit specified, e.g., 2400 /// "std::vector" or "x->member", or as part of unqualified name lookup. 2401 /// 2402 /// Different lookup criteria can find different names. For example, a 2403 /// particular scope can have both a struct and a function of the same 2404 /// name, and each can be found by certain lookup criteria. For more 2405 /// information about lookup criteria, see the documentation for the 2406 /// class LookupCriteria. 2407 /// 2408 /// \param R captures both the lookup criteria and any lookup results found. 2409 /// 2410 /// \param LookupCtx The context in which qualified name lookup will 2411 /// search. If the lookup criteria permits, name lookup may also search 2412 /// in the parent contexts or (for C++ classes) base classes. 2413 /// 2414 /// \param InUnqualifiedLookup true if this is qualified name lookup that 2415 /// occurs as part of unqualified name lookup. 2416 /// 2417 /// \returns true if lookup succeeded, false if it failed. 2418 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, 2419 bool InUnqualifiedLookup) { 2420 assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context"); 2421 2422 if (!R.getLookupName()) 2423 return false; 2424 2425 // Make sure that the declaration context is complete. 2426 assert((!isa<TagDecl>(LookupCtx) || 2427 LookupCtx->isDependentContext() || 2428 cast<TagDecl>(LookupCtx)->isCompleteDefinition() || 2429 cast<TagDecl>(LookupCtx)->isBeingDefined()) && 2430 "Declaration context must already be complete!"); 2431 2432 struct QualifiedLookupInScope { 2433 bool oldVal; 2434 DeclContext *Context; 2435 // Set flag in DeclContext informing debugger that we're looking for qualified name 2436 QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) { 2437 oldVal = ctx->setUseQualifiedLookup(); 2438 } 2439 ~QualifiedLookupInScope() { 2440 Context->setUseQualifiedLookup(oldVal); 2441 } 2442 } QL(LookupCtx); 2443 2444 if (LookupDirect(*this, R, LookupCtx)) { 2445 R.resolveKind(); 2446 if (isa<CXXRecordDecl>(LookupCtx)) 2447 R.setNamingClass(cast<CXXRecordDecl>(LookupCtx)); 2448 return true; 2449 } 2450 2451 // Don't descend into implied contexts for redeclarations. 2452 // C++98 [namespace.qual]p6: 2453 // In a declaration for a namespace member in which the 2454 // declarator-id is a qualified-id, given that the qualified-id 2455 // for the namespace member has the form 2456 // nested-name-specifier unqualified-id 2457 // the unqualified-id shall name a member of the namespace 2458 // designated by the nested-name-specifier. 2459 // See also [class.mfct]p5 and [class.static.data]p2. 2460 if (R.isForRedeclaration()) 2461 return false; 2462 2463 // If this is a namespace, look it up in the implied namespaces. 2464 if (LookupCtx->isFileContext()) 2465 return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx); 2466 2467 // If this isn't a C++ class, we aren't allowed to look into base 2468 // classes, we're done. 2469 CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx); 2470 if (!LookupRec || !LookupRec->getDefinition()) 2471 return false; 2472 2473 // We're done for lookups that can never succeed for C++ classes. 2474 if (R.getLookupKind() == LookupOperatorName || 2475 R.getLookupKind() == LookupNamespaceName || 2476 R.getLookupKind() == LookupObjCProtocolName || 2477 R.getLookupKind() == LookupLabel) 2478 return false; 2479 2480 // If we're performing qualified name lookup into a dependent class, 2481 // then we are actually looking into a current instantiation. If we have any 2482 // dependent base classes, then we either have to delay lookup until 2483 // template instantiation time (at which point all bases will be available) 2484 // or we have to fail. 2485 if (!InUnqualifiedLookup && LookupRec->isDependentContext() && 2486 LookupRec->hasAnyDependentBases()) { 2487 R.setNotFoundInCurrentInstantiation(); 2488 return false; 2489 } 2490 2491 // Perform lookup into our base classes. 2492 2493 DeclarationName Name = R.getLookupName(); 2494 unsigned IDNS = R.getIdentifierNamespace(); 2495 2496 // Look for this member in our base classes. 2497 auto BaseCallback = [Name, IDNS](const CXXBaseSpecifier *Specifier, 2498 CXXBasePath &Path) -> bool { 2499 CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl(); 2500 // Drop leading non-matching lookup results from the declaration list so 2501 // we don't need to consider them again below. 2502 for (Path.Decls = BaseRecord->lookup(Name).begin(); 2503 Path.Decls != Path.Decls.end(); ++Path.Decls) { 2504 if ((*Path.Decls)->isInIdentifierNamespace(IDNS)) 2505 return true; 2506 } 2507 return false; 2508 }; 2509 2510 CXXBasePaths Paths; 2511 Paths.setOrigin(LookupRec); 2512 if (!LookupRec->lookupInBases(BaseCallback, Paths)) 2513 return false; 2514 2515 R.setNamingClass(LookupRec); 2516 2517 // C++ [class.member.lookup]p2: 2518 // [...] If the resulting set of declarations are not all from 2519 // sub-objects of the same type, or the set has a nonstatic member 2520 // and includes members from distinct sub-objects, there is an 2521 // ambiguity and the program is ill-formed. Otherwise that set is 2522 // the result of the lookup. 2523 QualType SubobjectType; 2524 int SubobjectNumber = 0; 2525 AccessSpecifier SubobjectAccess = AS_none; 2526 2527 // Check whether the given lookup result contains only static members. 2528 auto HasOnlyStaticMembers = [&](DeclContext::lookup_iterator Result) { 2529 for (DeclContext::lookup_iterator I = Result, E = I.end(); I != E; ++I) 2530 if ((*I)->isInIdentifierNamespace(IDNS) && (*I)->isCXXInstanceMember()) 2531 return false; 2532 return true; 2533 }; 2534 2535 bool TemplateNameLookup = R.isTemplateNameLookup(); 2536 2537 // Determine whether two sets of members contain the same members, as 2538 // required by C++ [class.member.lookup]p6. 2539 auto HasSameDeclarations = [&](DeclContext::lookup_iterator A, 2540 DeclContext::lookup_iterator B) { 2541 using Iterator = DeclContextLookupResult::iterator; 2542 using Result = const void *; 2543 2544 auto Next = [&](Iterator &It, Iterator End) -> Result { 2545 while (It != End) { 2546 NamedDecl *ND = *It++; 2547 if (!ND->isInIdentifierNamespace(IDNS)) 2548 continue; 2549 2550 // C++ [temp.local]p3: 2551 // A lookup that finds an injected-class-name (10.2) can result in 2552 // an ambiguity in certain cases (for example, if it is found in 2553 // more than one base class). If all of the injected-class-names 2554 // that are found refer to specializations of the same class 2555 // template, and if the name is used as a template-name, the 2556 // reference refers to the class template itself and not a 2557 // specialization thereof, and is not ambiguous. 2558 if (TemplateNameLookup) 2559 if (auto *TD = getAsTemplateNameDecl(ND)) 2560 ND = TD; 2561 2562 // C++ [class.member.lookup]p3: 2563 // type declarations (including injected-class-names) are replaced by 2564 // the types they designate 2565 if (const TypeDecl *TD = dyn_cast<TypeDecl>(ND->getUnderlyingDecl())) { 2566 QualType T = Context.getTypeDeclType(TD); 2567 return T.getCanonicalType().getAsOpaquePtr(); 2568 } 2569 2570 return ND->getUnderlyingDecl()->getCanonicalDecl(); 2571 } 2572 return nullptr; 2573 }; 2574 2575 // We'll often find the declarations are in the same order. Handle this 2576 // case (and the special case of only one declaration) efficiently. 2577 Iterator AIt = A, BIt = B, AEnd, BEnd; 2578 while (true) { 2579 Result AResult = Next(AIt, AEnd); 2580 Result BResult = Next(BIt, BEnd); 2581 if (!AResult && !BResult) 2582 return true; 2583 if (!AResult || !BResult) 2584 return false; 2585 if (AResult != BResult) { 2586 // Found a mismatch; carefully check both lists, accounting for the 2587 // possibility of declarations appearing more than once. 2588 llvm::SmallDenseMap<Result, bool, 32> AResults; 2589 for (; AResult; AResult = Next(AIt, AEnd)) 2590 AResults.insert({AResult, /*FoundInB*/false}); 2591 unsigned Found = 0; 2592 for (; BResult; BResult = Next(BIt, BEnd)) { 2593 auto It = AResults.find(BResult); 2594 if (It == AResults.end()) 2595 return false; 2596 if (!It->second) { 2597 It->second = true; 2598 ++Found; 2599 } 2600 } 2601 return AResults.size() == Found; 2602 } 2603 } 2604 }; 2605 2606 for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end(); 2607 Path != PathEnd; ++Path) { 2608 const CXXBasePathElement &PathElement = Path->back(); 2609 2610 // Pick the best (i.e. most permissive i.e. numerically lowest) access 2611 // across all paths. 2612 SubobjectAccess = std::min(SubobjectAccess, Path->Access); 2613 2614 // Determine whether we're looking at a distinct sub-object or not. 2615 if (SubobjectType.isNull()) { 2616 // This is the first subobject we've looked at. Record its type. 2617 SubobjectType = Context.getCanonicalType(PathElement.Base->getType()); 2618 SubobjectNumber = PathElement.SubobjectNumber; 2619 continue; 2620 } 2621 2622 if (SubobjectType != 2623 Context.getCanonicalType(PathElement.Base->getType())) { 2624 // We found members of the given name in two subobjects of 2625 // different types. If the declaration sets aren't the same, this 2626 // lookup is ambiguous. 2627 // 2628 // FIXME: The language rule says that this applies irrespective of 2629 // whether the sets contain only static members. 2630 if (HasOnlyStaticMembers(Path->Decls) && 2631 HasSameDeclarations(Paths.begin()->Decls, Path->Decls)) 2632 continue; 2633 2634 R.setAmbiguousBaseSubobjectTypes(Paths); 2635 return true; 2636 } 2637 2638 // FIXME: This language rule no longer exists. Checking for ambiguous base 2639 // subobjects should be done as part of formation of a class member access 2640 // expression (when converting the object parameter to the member's type). 2641 if (SubobjectNumber != PathElement.SubobjectNumber) { 2642 // We have a different subobject of the same type. 2643 2644 // C++ [class.member.lookup]p5: 2645 // A static member, a nested type or an enumerator defined in 2646 // a base class T can unambiguously be found even if an object 2647 // has more than one base class subobject of type T. 2648 if (HasOnlyStaticMembers(Path->Decls)) 2649 continue; 2650 2651 // We have found a nonstatic member name in multiple, distinct 2652 // subobjects. Name lookup is ambiguous. 2653 R.setAmbiguousBaseSubobjects(Paths); 2654 return true; 2655 } 2656 } 2657 2658 // Lookup in a base class succeeded; return these results. 2659 2660 for (DeclContext::lookup_iterator I = Paths.front().Decls, E = I.end(); 2661 I != E; ++I) { 2662 AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess, 2663 (*I)->getAccess()); 2664 if (NamedDecl *ND = R.getAcceptableDecl(*I)) 2665 R.addDecl(ND, AS); 2666 } 2667 R.resolveKind(); 2668 return true; 2669 } 2670 2671 /// Performs qualified name lookup or special type of lookup for 2672 /// "__super::" scope specifier. 2673 /// 2674 /// This routine is a convenience overload meant to be called from contexts 2675 /// that need to perform a qualified name lookup with an optional C++ scope 2676 /// specifier that might require special kind of lookup. 2677 /// 2678 /// \param R captures both the lookup criteria and any lookup results found. 2679 /// 2680 /// \param LookupCtx The context in which qualified name lookup will 2681 /// search. 2682 /// 2683 /// \param SS An optional C++ scope-specifier. 2684 /// 2685 /// \returns true if lookup succeeded, false if it failed. 2686 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, 2687 CXXScopeSpec &SS) { 2688 auto *NNS = SS.getScopeRep(); 2689 if (NNS && NNS->getKind() == NestedNameSpecifier::Super) 2690 return LookupInSuper(R, NNS->getAsRecordDecl()); 2691 else 2692 2693 return LookupQualifiedName(R, LookupCtx); 2694 } 2695 2696 /// Performs name lookup for a name that was parsed in the 2697 /// source code, and may contain a C++ scope specifier. 2698 /// 2699 /// This routine is a convenience routine meant to be called from 2700 /// contexts that receive a name and an optional C++ scope specifier 2701 /// (e.g., "N::M::x"). It will then perform either qualified or 2702 /// unqualified name lookup (with LookupQualifiedName or LookupName, 2703 /// respectively) on the given name and return those results. It will 2704 /// perform a special type of lookup for "__super::" scope specifier. 2705 /// 2706 /// @param S The scope from which unqualified name lookup will 2707 /// begin. 2708 /// 2709 /// @param SS An optional C++ scope-specifier, e.g., "::N::M". 2710 /// 2711 /// @param EnteringContext Indicates whether we are going to enter the 2712 /// context of the scope-specifier SS (if present). 2713 /// 2714 /// @returns True if any decls were found (but possibly ambiguous) 2715 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS, 2716 bool AllowBuiltinCreation, bool EnteringContext) { 2717 if (SS && SS->isInvalid()) { 2718 // When the scope specifier is invalid, don't even look for 2719 // anything. 2720 return false; 2721 } 2722 2723 if (SS && SS->isSet()) { 2724 NestedNameSpecifier *NNS = SS->getScopeRep(); 2725 if (NNS->getKind() == NestedNameSpecifier::Super) 2726 return LookupInSuper(R, NNS->getAsRecordDecl()); 2727 2728 if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) { 2729 // We have resolved the scope specifier to a particular declaration 2730 // contex, and will perform name lookup in that context. 2731 if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC)) 2732 return false; 2733 2734 R.setContextRange(SS->getRange()); 2735 return LookupQualifiedName(R, DC); 2736 } 2737 2738 // We could not resolve the scope specified to a specific declaration 2739 // context, which means that SS refers to an unknown specialization. 2740 // Name lookup can't find anything in this case. 2741 R.setNotFoundInCurrentInstantiation(); 2742 R.setContextRange(SS->getRange()); 2743 return false; 2744 } 2745 2746 // Perform unqualified name lookup starting in the given scope. 2747 return LookupName(R, S, AllowBuiltinCreation); 2748 } 2749 2750 /// Perform qualified name lookup into all base classes of the given 2751 /// class. 2752 /// 2753 /// \param R captures both the lookup criteria and any lookup results found. 2754 /// 2755 /// \param Class The context in which qualified name lookup will 2756 /// search. Name lookup will search in all base classes merging the results. 2757 /// 2758 /// @returns True if any decls were found (but possibly ambiguous) 2759 bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) { 2760 // The access-control rules we use here are essentially the rules for 2761 // doing a lookup in Class that just magically skipped the direct 2762 // members of Class itself. That is, the naming class is Class, and the 2763 // access includes the access of the base. 2764 for (const auto &BaseSpec : Class->bases()) { 2765 CXXRecordDecl *RD = cast<CXXRecordDecl>( 2766 BaseSpec.getType()->castAs<RecordType>()->getDecl()); 2767 LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind()); 2768 Result.setBaseObjectType(Context.getRecordType(Class)); 2769 LookupQualifiedName(Result, RD); 2770 2771 // Copy the lookup results into the target, merging the base's access into 2772 // the path access. 2773 for (auto I = Result.begin(), E = Result.end(); I != E; ++I) { 2774 R.addDecl(I.getDecl(), 2775 CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(), 2776 I.getAccess())); 2777 } 2778 2779 Result.suppressDiagnostics(); 2780 } 2781 2782 R.resolveKind(); 2783 R.setNamingClass(Class); 2784 2785 return !R.empty(); 2786 } 2787 2788 /// Produce a diagnostic describing the ambiguity that resulted 2789 /// from name lookup. 2790 /// 2791 /// \param Result The result of the ambiguous lookup to be diagnosed. 2792 void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) { 2793 assert(Result.isAmbiguous() && "Lookup result must be ambiguous"); 2794 2795 DeclarationName Name = Result.getLookupName(); 2796 SourceLocation NameLoc = Result.getNameLoc(); 2797 SourceRange LookupRange = Result.getContextRange(); 2798 2799 switch (Result.getAmbiguityKind()) { 2800 case LookupResult::AmbiguousBaseSubobjects: { 2801 CXXBasePaths *Paths = Result.getBasePaths(); 2802 QualType SubobjectType = Paths->front().back().Base->getType(); 2803 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects) 2804 << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths) 2805 << LookupRange; 2806 2807 DeclContext::lookup_iterator Found = Paths->front().Decls; 2808 while (isa<CXXMethodDecl>(*Found) && 2809 cast<CXXMethodDecl>(*Found)->isStatic()) 2810 ++Found; 2811 2812 Diag((*Found)->getLocation(), diag::note_ambiguous_member_found); 2813 break; 2814 } 2815 2816 case LookupResult::AmbiguousBaseSubobjectTypes: { 2817 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types) 2818 << Name << LookupRange; 2819 2820 CXXBasePaths *Paths = Result.getBasePaths(); 2821 std::set<const NamedDecl *> DeclsPrinted; 2822 for (CXXBasePaths::paths_iterator Path = Paths->begin(), 2823 PathEnd = Paths->end(); 2824 Path != PathEnd; ++Path) { 2825 const NamedDecl *D = *Path->Decls; 2826 if (!D->isInIdentifierNamespace(Result.getIdentifierNamespace())) 2827 continue; 2828 if (DeclsPrinted.insert(D).second) { 2829 if (const auto *TD = dyn_cast<TypedefNameDecl>(D->getUnderlyingDecl())) 2830 Diag(D->getLocation(), diag::note_ambiguous_member_type_found) 2831 << TD->getUnderlyingType(); 2832 else if (const auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl())) 2833 Diag(D->getLocation(), diag::note_ambiguous_member_type_found) 2834 << Context.getTypeDeclType(TD); 2835 else 2836 Diag(D->getLocation(), diag::note_ambiguous_member_found); 2837 } 2838 } 2839 break; 2840 } 2841 2842 case LookupResult::AmbiguousTagHiding: { 2843 Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange; 2844 2845 llvm::SmallPtrSet<NamedDecl*, 8> TagDecls; 2846 2847 for (auto *D : Result) 2848 if (TagDecl *TD = dyn_cast<TagDecl>(D)) { 2849 TagDecls.insert(TD); 2850 Diag(TD->getLocation(), diag::note_hidden_tag); 2851 } 2852 2853 for (auto *D : Result) 2854 if (!isa<TagDecl>(D)) 2855 Diag(D->getLocation(), diag::note_hiding_object); 2856 2857 // For recovery purposes, go ahead and implement the hiding. 2858 LookupResult::Filter F = Result.makeFilter(); 2859 while (F.hasNext()) { 2860 if (TagDecls.count(F.next())) 2861 F.erase(); 2862 } 2863 F.done(); 2864 break; 2865 } 2866 2867 case LookupResult::AmbiguousReference: { 2868 Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange; 2869 2870 for (auto *D : Result) 2871 Diag(D->getLocation(), diag::note_ambiguous_candidate) << D; 2872 break; 2873 } 2874 } 2875 } 2876 2877 namespace { 2878 struct AssociatedLookup { 2879 AssociatedLookup(Sema &S, SourceLocation InstantiationLoc, 2880 Sema::AssociatedNamespaceSet &Namespaces, 2881 Sema::AssociatedClassSet &Classes) 2882 : S(S), Namespaces(Namespaces), Classes(Classes), 2883 InstantiationLoc(InstantiationLoc) { 2884 } 2885 2886 bool addClassTransitive(CXXRecordDecl *RD) { 2887 Classes.insert(RD); 2888 return ClassesTransitive.insert(RD); 2889 } 2890 2891 Sema &S; 2892 Sema::AssociatedNamespaceSet &Namespaces; 2893 Sema::AssociatedClassSet &Classes; 2894 SourceLocation InstantiationLoc; 2895 2896 private: 2897 Sema::AssociatedClassSet ClassesTransitive; 2898 }; 2899 } // end anonymous namespace 2900 2901 static void 2902 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T); 2903 2904 // Given the declaration context \param Ctx of a class, class template or 2905 // enumeration, add the associated namespaces to \param Namespaces as described 2906 // in [basic.lookup.argdep]p2. 2907 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces, 2908 DeclContext *Ctx) { 2909 // The exact wording has been changed in C++14 as a result of 2910 // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally 2911 // to all language versions since it is possible to return a local type 2912 // from a lambda in C++11. 2913 // 2914 // C++14 [basic.lookup.argdep]p2: 2915 // If T is a class type [...]. Its associated namespaces are the innermost 2916 // enclosing namespaces of its associated classes. [...] 2917 // 2918 // If T is an enumeration type, its associated namespace is the innermost 2919 // enclosing namespace of its declaration. [...] 2920 2921 // We additionally skip inline namespaces. The innermost non-inline namespace 2922 // contains all names of all its nested inline namespaces anyway, so we can 2923 // replace the entire inline namespace tree with its root. 2924 while (!Ctx->isFileContext() || Ctx->isInlineNamespace()) 2925 Ctx = Ctx->getParent(); 2926 2927 Namespaces.insert(Ctx->getPrimaryContext()); 2928 } 2929 2930 // Add the associated classes and namespaces for argument-dependent 2931 // lookup that involves a template argument (C++ [basic.lookup.argdep]p2). 2932 static void 2933 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, 2934 const TemplateArgument &Arg) { 2935 // C++ [basic.lookup.argdep]p2, last bullet: 2936 // -- [...] ; 2937 switch (Arg.getKind()) { 2938 case TemplateArgument::Null: 2939 break; 2940 2941 case TemplateArgument::Type: 2942 // [...] the namespaces and classes associated with the types of the 2943 // template arguments provided for template type parameters (excluding 2944 // template template parameters) 2945 addAssociatedClassesAndNamespaces(Result, Arg.getAsType()); 2946 break; 2947 2948 case TemplateArgument::Template: 2949 case TemplateArgument::TemplateExpansion: { 2950 // [...] the namespaces in which any template template arguments are 2951 // defined; and the classes in which any member templates used as 2952 // template template arguments are defined. 2953 TemplateName Template = Arg.getAsTemplateOrTemplatePattern(); 2954 if (ClassTemplateDecl *ClassTemplate 2955 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) { 2956 DeclContext *Ctx = ClassTemplate->getDeclContext(); 2957 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) 2958 Result.Classes.insert(EnclosingClass); 2959 // Add the associated namespace for this class. 2960 CollectEnclosingNamespace(Result.Namespaces, Ctx); 2961 } 2962 break; 2963 } 2964 2965 case TemplateArgument::Declaration: 2966 case TemplateArgument::Integral: 2967 case TemplateArgument::Expression: 2968 case TemplateArgument::NullPtr: 2969 // [Note: non-type template arguments do not contribute to the set of 2970 // associated namespaces. ] 2971 break; 2972 2973 case TemplateArgument::Pack: 2974 for (const auto &P : Arg.pack_elements()) 2975 addAssociatedClassesAndNamespaces(Result, P); 2976 break; 2977 } 2978 } 2979 2980 // Add the associated classes and namespaces for argument-dependent lookup 2981 // with an argument of class type (C++ [basic.lookup.argdep]p2). 2982 static void 2983 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, 2984 CXXRecordDecl *Class) { 2985 2986 // Just silently ignore anything whose name is __va_list_tag. 2987 if (Class->getDeclName() == Result.S.VAListTagName) 2988 return; 2989 2990 // C++ [basic.lookup.argdep]p2: 2991 // [...] 2992 // -- If T is a class type (including unions), its associated 2993 // classes are: the class itself; the class of which it is a 2994 // member, if any; and its direct and indirect base classes. 2995 // Its associated namespaces are the innermost enclosing 2996 // namespaces of its associated classes. 2997 2998 // Add the class of which it is a member, if any. 2999 DeclContext *Ctx = Class->getDeclContext(); 3000 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) 3001 Result.Classes.insert(EnclosingClass); 3002 3003 // Add the associated namespace for this class. 3004 CollectEnclosingNamespace(Result.Namespaces, Ctx); 3005 3006 // -- If T is a template-id, its associated namespaces and classes are 3007 // the namespace in which the template is defined; for member 3008 // templates, the member template's class; the namespaces and classes 3009 // associated with the types of the template arguments provided for 3010 // template type parameters (excluding template template parameters); the 3011 // namespaces in which any template template arguments are defined; and 3012 // the classes in which any member templates used as template template 3013 // arguments are defined. [Note: non-type template arguments do not 3014 // contribute to the set of associated namespaces. ] 3015 if (ClassTemplateSpecializationDecl *Spec 3016 = dyn_cast<ClassTemplateSpecializationDecl>(Class)) { 3017 DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext(); 3018 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) 3019 Result.Classes.insert(EnclosingClass); 3020 // Add the associated namespace for this class. 3021 CollectEnclosingNamespace(Result.Namespaces, Ctx); 3022 3023 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); 3024 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 3025 addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]); 3026 } 3027 3028 // Add the class itself. If we've already transitively visited this class, 3029 // we don't need to visit base classes. 3030 if (!Result.addClassTransitive(Class)) 3031 return; 3032 3033 // Only recurse into base classes for complete types. 3034 if (!Result.S.isCompleteType(Result.InstantiationLoc, 3035 Result.S.Context.getRecordType(Class))) 3036 return; 3037 3038 // Add direct and indirect base classes along with their associated 3039 // namespaces. 3040 SmallVector<CXXRecordDecl *, 32> Bases; 3041 Bases.push_back(Class); 3042 while (!Bases.empty()) { 3043 // Pop this class off the stack. 3044 Class = Bases.pop_back_val(); 3045 3046 // Visit the base classes. 3047 for (const auto &Base : Class->bases()) { 3048 const RecordType *BaseType = Base.getType()->getAs<RecordType>(); 3049 // In dependent contexts, we do ADL twice, and the first time around, 3050 // the base type might be a dependent TemplateSpecializationType, or a 3051 // TemplateTypeParmType. If that happens, simply ignore it. 3052 // FIXME: If we want to support export, we probably need to add the 3053 // namespace of the template in a TemplateSpecializationType, or even 3054 // the classes and namespaces of known non-dependent arguments. 3055 if (!BaseType) 3056 continue; 3057 CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl()); 3058 if (Result.addClassTransitive(BaseDecl)) { 3059 // Find the associated namespace for this base class. 3060 DeclContext *BaseCtx = BaseDecl->getDeclContext(); 3061 CollectEnclosingNamespace(Result.Namespaces, BaseCtx); 3062 3063 // Make sure we visit the bases of this base class. 3064 if (BaseDecl->bases_begin() != BaseDecl->bases_end()) 3065 Bases.push_back(BaseDecl); 3066 } 3067 } 3068 } 3069 } 3070 3071 // Add the associated classes and namespaces for 3072 // argument-dependent lookup with an argument of type T 3073 // (C++ [basic.lookup.koenig]p2). 3074 static void 3075 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) { 3076 // C++ [basic.lookup.koenig]p2: 3077 // 3078 // For each argument type T in the function call, there is a set 3079 // of zero or more associated namespaces and a set of zero or more 3080 // associated classes to be considered. The sets of namespaces and 3081 // classes is determined entirely by the types of the function 3082 // arguments (and the namespace of any template template 3083 // argument). Typedef names and using-declarations used to specify 3084 // the types do not contribute to this set. The sets of namespaces 3085 // and classes are determined in the following way: 3086 3087 SmallVector<const Type *, 16> Queue; 3088 const Type *T = Ty->getCanonicalTypeInternal().getTypePtr(); 3089 3090 while (true) { 3091 switch (T->getTypeClass()) { 3092 3093 #define TYPE(Class, Base) 3094 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 3095 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 3096 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: 3097 #define ABSTRACT_TYPE(Class, Base) 3098 #include "clang/AST/TypeNodes.inc" 3099 // T is canonical. We can also ignore dependent types because 3100 // we don't need to do ADL at the definition point, but if we 3101 // wanted to implement template export (or if we find some other 3102 // use for associated classes and namespaces...) this would be 3103 // wrong. 3104 break; 3105 3106 // -- If T is a pointer to U or an array of U, its associated 3107 // namespaces and classes are those associated with U. 3108 case Type::Pointer: 3109 T = cast<PointerType>(T)->getPointeeType().getTypePtr(); 3110 continue; 3111 case Type::ConstantArray: 3112 case Type::IncompleteArray: 3113 case Type::VariableArray: 3114 T = cast<ArrayType>(T)->getElementType().getTypePtr(); 3115 continue; 3116 3117 // -- If T is a fundamental type, its associated sets of 3118 // namespaces and classes are both empty. 3119 case Type::Builtin: 3120 break; 3121 3122 // -- If T is a class type (including unions), its associated 3123 // classes are: the class itself; the class of which it is 3124 // a member, if any; and its direct and indirect base classes. 3125 // Its associated namespaces are the innermost enclosing 3126 // namespaces of its associated classes. 3127 case Type::Record: { 3128 CXXRecordDecl *Class = 3129 cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl()); 3130 addAssociatedClassesAndNamespaces(Result, Class); 3131 break; 3132 } 3133 3134 // -- If T is an enumeration type, its associated namespace 3135 // is the innermost enclosing namespace of its declaration. 3136 // If it is a class member, its associated class is the 3137 // member’s class; else it has no associated class. 3138 case Type::Enum: { 3139 EnumDecl *Enum = cast<EnumType>(T)->getDecl(); 3140 3141 DeclContext *Ctx = Enum->getDeclContext(); 3142 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) 3143 Result.Classes.insert(EnclosingClass); 3144 3145 // Add the associated namespace for this enumeration. 3146 CollectEnclosingNamespace(Result.Namespaces, Ctx); 3147 3148 break; 3149 } 3150 3151 // -- If T is a function type, its associated namespaces and 3152 // classes are those associated with the function parameter 3153 // types and those associated with the return type. 3154 case Type::FunctionProto: { 3155 const FunctionProtoType *Proto = cast<FunctionProtoType>(T); 3156 for (const auto &Arg : Proto->param_types()) 3157 Queue.push_back(Arg.getTypePtr()); 3158 // fallthrough 3159 [[fallthrough]]; 3160 } 3161 case Type::FunctionNoProto: { 3162 const FunctionType *FnType = cast<FunctionType>(T); 3163 T = FnType->getReturnType().getTypePtr(); 3164 continue; 3165 } 3166 3167 // -- If T is a pointer to a member function of a class X, its 3168 // associated namespaces and classes are those associated 3169 // with the function parameter types and return type, 3170 // together with those associated with X. 3171 // 3172 // -- If T is a pointer to a data member of class X, its 3173 // associated namespaces and classes are those associated 3174 // with the member type together with those associated with 3175 // X. 3176 case Type::MemberPointer: { 3177 const MemberPointerType *MemberPtr = cast<MemberPointerType>(T); 3178 3179 // Queue up the class type into which this points. 3180 Queue.push_back(MemberPtr->getClass()); 3181 3182 // And directly continue with the pointee type. 3183 T = MemberPtr->getPointeeType().getTypePtr(); 3184 continue; 3185 } 3186 3187 // As an extension, treat this like a normal pointer. 3188 case Type::BlockPointer: 3189 T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr(); 3190 continue; 3191 3192 // References aren't covered by the standard, but that's such an 3193 // obvious defect that we cover them anyway. 3194 case Type::LValueReference: 3195 case Type::RValueReference: 3196 T = cast<ReferenceType>(T)->getPointeeType().getTypePtr(); 3197 continue; 3198 3199 // These are fundamental types. 3200 case Type::Vector: 3201 case Type::ExtVector: 3202 case Type::ConstantMatrix: 3203 case Type::Complex: 3204 case Type::BitInt: 3205 break; 3206 3207 // Non-deduced auto types only get here for error cases. 3208 case Type::Auto: 3209 case Type::DeducedTemplateSpecialization: 3210 break; 3211 3212 // If T is an Objective-C object or interface type, or a pointer to an 3213 // object or interface type, the associated namespace is the global 3214 // namespace. 3215 case Type::ObjCObject: 3216 case Type::ObjCInterface: 3217 case Type::ObjCObjectPointer: 3218 Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl()); 3219 break; 3220 3221 // Atomic types are just wrappers; use the associations of the 3222 // contained type. 3223 case Type::Atomic: 3224 T = cast<AtomicType>(T)->getValueType().getTypePtr(); 3225 continue; 3226 case Type::Pipe: 3227 T = cast<PipeType>(T)->getElementType().getTypePtr(); 3228 continue; 3229 } 3230 3231 if (Queue.empty()) 3232 break; 3233 T = Queue.pop_back_val(); 3234 } 3235 } 3236 3237 /// Find the associated classes and namespaces for 3238 /// argument-dependent lookup for a call with the given set of 3239 /// arguments. 3240 /// 3241 /// This routine computes the sets of associated classes and associated 3242 /// namespaces searched by argument-dependent lookup 3243 /// (C++ [basic.lookup.argdep]) for a given set of arguments. 3244 void Sema::FindAssociatedClassesAndNamespaces( 3245 SourceLocation InstantiationLoc, ArrayRef<Expr *> Args, 3246 AssociatedNamespaceSet &AssociatedNamespaces, 3247 AssociatedClassSet &AssociatedClasses) { 3248 AssociatedNamespaces.clear(); 3249 AssociatedClasses.clear(); 3250 3251 AssociatedLookup Result(*this, InstantiationLoc, 3252 AssociatedNamespaces, AssociatedClasses); 3253 3254 // C++ [basic.lookup.koenig]p2: 3255 // For each argument type T in the function call, there is a set 3256 // of zero or more associated namespaces and a set of zero or more 3257 // associated classes to be considered. The sets of namespaces and 3258 // classes is determined entirely by the types of the function 3259 // arguments (and the namespace of any template template 3260 // argument). 3261 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) { 3262 Expr *Arg = Args[ArgIdx]; 3263 3264 if (Arg->getType() != Context.OverloadTy) { 3265 addAssociatedClassesAndNamespaces(Result, Arg->getType()); 3266 continue; 3267 } 3268 3269 // [...] In addition, if the argument is the name or address of a 3270 // set of overloaded functions and/or function templates, its 3271 // associated classes and namespaces are the union of those 3272 // associated with each of the members of the set: the namespace 3273 // in which the function or function template is defined and the 3274 // classes and namespaces associated with its (non-dependent) 3275 // parameter types and return type. 3276 OverloadExpr *OE = OverloadExpr::find(Arg).Expression; 3277 3278 for (const NamedDecl *D : OE->decls()) { 3279 // Look through any using declarations to find the underlying function. 3280 const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction(); 3281 3282 // Add the classes and namespaces associated with the parameter 3283 // types and return type of this function. 3284 addAssociatedClassesAndNamespaces(Result, FDecl->getType()); 3285 } 3286 } 3287 } 3288 3289 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name, 3290 SourceLocation Loc, 3291 LookupNameKind NameKind, 3292 RedeclarationKind Redecl) { 3293 LookupResult R(*this, Name, Loc, NameKind, Redecl); 3294 LookupName(R, S); 3295 return R.getAsSingle<NamedDecl>(); 3296 } 3297 3298 /// Find the protocol with the given name, if any. 3299 ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II, 3300 SourceLocation IdLoc, 3301 RedeclarationKind Redecl) { 3302 Decl *D = LookupSingleName(TUScope, II, IdLoc, 3303 LookupObjCProtocolName, Redecl); 3304 return cast_or_null<ObjCProtocolDecl>(D); 3305 } 3306 3307 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S, 3308 UnresolvedSetImpl &Functions) { 3309 // C++ [over.match.oper]p3: 3310 // -- The set of non-member candidates is the result of the 3311 // unqualified lookup of operator@ in the context of the 3312 // expression according to the usual rules for name lookup in 3313 // unqualified function calls (3.4.2) except that all member 3314 // functions are ignored. 3315 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 3316 LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName); 3317 LookupName(Operators, S); 3318 3319 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous"); 3320 Functions.append(Operators.begin(), Operators.end()); 3321 } 3322 3323 Sema::SpecialMemberOverloadResult Sema::LookupSpecialMember(CXXRecordDecl *RD, 3324 CXXSpecialMember SM, 3325 bool ConstArg, 3326 bool VolatileArg, 3327 bool RValueThis, 3328 bool ConstThis, 3329 bool VolatileThis) { 3330 assert(CanDeclareSpecialMemberFunction(RD) && 3331 "doing special member lookup into record that isn't fully complete"); 3332 RD = RD->getDefinition(); 3333 if (RValueThis || ConstThis || VolatileThis) 3334 assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) && 3335 "constructors and destructors always have unqualified lvalue this"); 3336 if (ConstArg || VolatileArg) 3337 assert((SM != CXXDefaultConstructor && SM != CXXDestructor) && 3338 "parameter-less special members can't have qualified arguments"); 3339 3340 // FIXME: Get the caller to pass in a location for the lookup. 3341 SourceLocation LookupLoc = RD->getLocation(); 3342 3343 llvm::FoldingSetNodeID ID; 3344 ID.AddPointer(RD); 3345 ID.AddInteger(SM); 3346 ID.AddInteger(ConstArg); 3347 ID.AddInteger(VolatileArg); 3348 ID.AddInteger(RValueThis); 3349 ID.AddInteger(ConstThis); 3350 ID.AddInteger(VolatileThis); 3351 3352 void *InsertPoint; 3353 SpecialMemberOverloadResultEntry *Result = 3354 SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint); 3355 3356 // This was already cached 3357 if (Result) 3358 return *Result; 3359 3360 Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>(); 3361 Result = new (Result) SpecialMemberOverloadResultEntry(ID); 3362 SpecialMemberCache.InsertNode(Result, InsertPoint); 3363 3364 if (SM == CXXDestructor) { 3365 if (RD->needsImplicitDestructor()) { 3366 runWithSufficientStackSpace(RD->getLocation(), [&] { 3367 DeclareImplicitDestructor(RD); 3368 }); 3369 } 3370 CXXDestructorDecl *DD = RD->getDestructor(); 3371 Result->setMethod(DD); 3372 Result->setKind(DD && !DD->isDeleted() 3373 ? SpecialMemberOverloadResult::Success 3374 : SpecialMemberOverloadResult::NoMemberOrDeleted); 3375 return *Result; 3376 } 3377 3378 // Prepare for overload resolution. Here we construct a synthetic argument 3379 // if necessary and make sure that implicit functions are declared. 3380 CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD)); 3381 DeclarationName Name; 3382 Expr *Arg = nullptr; 3383 unsigned NumArgs; 3384 3385 QualType ArgType = CanTy; 3386 ExprValueKind VK = VK_LValue; 3387 3388 if (SM == CXXDefaultConstructor) { 3389 Name = Context.DeclarationNames.getCXXConstructorName(CanTy); 3390 NumArgs = 0; 3391 if (RD->needsImplicitDefaultConstructor()) { 3392 runWithSufficientStackSpace(RD->getLocation(), [&] { 3393 DeclareImplicitDefaultConstructor(RD); 3394 }); 3395 } 3396 } else { 3397 if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) { 3398 Name = Context.DeclarationNames.getCXXConstructorName(CanTy); 3399 if (RD->needsImplicitCopyConstructor()) { 3400 runWithSufficientStackSpace(RD->getLocation(), [&] { 3401 DeclareImplicitCopyConstructor(RD); 3402 }); 3403 } 3404 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) { 3405 runWithSufficientStackSpace(RD->getLocation(), [&] { 3406 DeclareImplicitMoveConstructor(RD); 3407 }); 3408 } 3409 } else { 3410 Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); 3411 if (RD->needsImplicitCopyAssignment()) { 3412 runWithSufficientStackSpace(RD->getLocation(), [&] { 3413 DeclareImplicitCopyAssignment(RD); 3414 }); 3415 } 3416 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) { 3417 runWithSufficientStackSpace(RD->getLocation(), [&] { 3418 DeclareImplicitMoveAssignment(RD); 3419 }); 3420 } 3421 } 3422 3423 if (ConstArg) 3424 ArgType.addConst(); 3425 if (VolatileArg) 3426 ArgType.addVolatile(); 3427 3428 // This isn't /really/ specified by the standard, but it's implied 3429 // we should be working from a PRValue in the case of move to ensure 3430 // that we prefer to bind to rvalue references, and an LValue in the 3431 // case of copy to ensure we don't bind to rvalue references. 3432 // Possibly an XValue is actually correct in the case of move, but 3433 // there is no semantic difference for class types in this restricted 3434 // case. 3435 if (SM == CXXCopyConstructor || SM == CXXCopyAssignment) 3436 VK = VK_LValue; 3437 else 3438 VK = VK_PRValue; 3439 } 3440 3441 OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK); 3442 3443 if (SM != CXXDefaultConstructor) { 3444 NumArgs = 1; 3445 Arg = &FakeArg; 3446 } 3447 3448 // Create the object argument 3449 QualType ThisTy = CanTy; 3450 if (ConstThis) 3451 ThisTy.addConst(); 3452 if (VolatileThis) 3453 ThisTy.addVolatile(); 3454 Expr::Classification Classification = 3455 OpaqueValueExpr(LookupLoc, ThisTy, RValueThis ? VK_PRValue : VK_LValue) 3456 .Classify(Context); 3457 3458 // Now we perform lookup on the name we computed earlier and do overload 3459 // resolution. Lookup is only performed directly into the class since there 3460 // will always be a (possibly implicit) declaration to shadow any others. 3461 OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal); 3462 DeclContext::lookup_result R = RD->lookup(Name); 3463 3464 if (R.empty()) { 3465 // We might have no default constructor because we have a lambda's closure 3466 // type, rather than because there's some other declared constructor. 3467 // Every class has a copy/move constructor, copy/move assignment, and 3468 // destructor. 3469 assert(SM == CXXDefaultConstructor && 3470 "lookup for a constructor or assignment operator was empty"); 3471 Result->setMethod(nullptr); 3472 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); 3473 return *Result; 3474 } 3475 3476 // Copy the candidates as our processing of them may load new declarations 3477 // from an external source and invalidate lookup_result. 3478 SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end()); 3479 3480 for (NamedDecl *CandDecl : Candidates) { 3481 if (CandDecl->isInvalidDecl()) 3482 continue; 3483 3484 DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public); 3485 auto CtorInfo = getConstructorInfo(Cand); 3486 if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) { 3487 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment) 3488 AddMethodCandidate(M, Cand, RD, ThisTy, Classification, 3489 llvm::ArrayRef(&Arg, NumArgs), OCS, true); 3490 else if (CtorInfo) 3491 AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl, 3492 llvm::ArrayRef(&Arg, NumArgs), OCS, 3493 /*SuppressUserConversions*/ true); 3494 else 3495 AddOverloadCandidate(M, Cand, llvm::ArrayRef(&Arg, NumArgs), OCS, 3496 /*SuppressUserConversions*/ true); 3497 } else if (FunctionTemplateDecl *Tmpl = 3498 dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) { 3499 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment) 3500 AddMethodTemplateCandidate(Tmpl, Cand, RD, nullptr, ThisTy, 3501 Classification, 3502 llvm::ArrayRef(&Arg, NumArgs), OCS, true); 3503 else if (CtorInfo) 3504 AddTemplateOverloadCandidate(CtorInfo.ConstructorTmpl, 3505 CtorInfo.FoundDecl, nullptr, 3506 llvm::ArrayRef(&Arg, NumArgs), OCS, true); 3507 else 3508 AddTemplateOverloadCandidate(Tmpl, Cand, nullptr, 3509 llvm::ArrayRef(&Arg, NumArgs), OCS, true); 3510 } else { 3511 assert(isa<UsingDecl>(Cand.getDecl()) && 3512 "illegal Kind of operator = Decl"); 3513 } 3514 } 3515 3516 OverloadCandidateSet::iterator Best; 3517 switch (OCS.BestViableFunction(*this, LookupLoc, Best)) { 3518 case OR_Success: 3519 Result->setMethod(cast<CXXMethodDecl>(Best->Function)); 3520 Result->setKind(SpecialMemberOverloadResult::Success); 3521 break; 3522 3523 case OR_Deleted: 3524 Result->setMethod(cast<CXXMethodDecl>(Best->Function)); 3525 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); 3526 break; 3527 3528 case OR_Ambiguous: 3529 Result->setMethod(nullptr); 3530 Result->setKind(SpecialMemberOverloadResult::Ambiguous); 3531 break; 3532 3533 case OR_No_Viable_Function: 3534 Result->setMethod(nullptr); 3535 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); 3536 break; 3537 } 3538 3539 return *Result; 3540 } 3541 3542 /// Look up the default constructor for the given class. 3543 CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) { 3544 SpecialMemberOverloadResult Result = 3545 LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false, 3546 false, false); 3547 3548 return cast_or_null<CXXConstructorDecl>(Result.getMethod()); 3549 } 3550 3551 /// Look up the copying constructor for the given class. 3552 CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class, 3553 unsigned Quals) { 3554 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && 3555 "non-const, non-volatile qualifiers for copy ctor arg"); 3556 SpecialMemberOverloadResult Result = 3557 LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const, 3558 Quals & Qualifiers::Volatile, false, false, false); 3559 3560 return cast_or_null<CXXConstructorDecl>(Result.getMethod()); 3561 } 3562 3563 /// Look up the moving constructor for the given class. 3564 CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class, 3565 unsigned Quals) { 3566 SpecialMemberOverloadResult Result = 3567 LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const, 3568 Quals & Qualifiers::Volatile, false, false, false); 3569 3570 return cast_or_null<CXXConstructorDecl>(Result.getMethod()); 3571 } 3572 3573 /// Look up the constructors for the given class. 3574 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) { 3575 // If the implicit constructors have not yet been declared, do so now. 3576 if (CanDeclareSpecialMemberFunction(Class)) { 3577 runWithSufficientStackSpace(Class->getLocation(), [&] { 3578 if (Class->needsImplicitDefaultConstructor()) 3579 DeclareImplicitDefaultConstructor(Class); 3580 if (Class->needsImplicitCopyConstructor()) 3581 DeclareImplicitCopyConstructor(Class); 3582 if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor()) 3583 DeclareImplicitMoveConstructor(Class); 3584 }); 3585 } 3586 3587 CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class)); 3588 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T); 3589 return Class->lookup(Name); 3590 } 3591 3592 /// Look up the copying assignment operator for the given class. 3593 CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class, 3594 unsigned Quals, bool RValueThis, 3595 unsigned ThisQuals) { 3596 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && 3597 "non-const, non-volatile qualifiers for copy assignment arg"); 3598 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && 3599 "non-const, non-volatile qualifiers for copy assignment this"); 3600 SpecialMemberOverloadResult Result = 3601 LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const, 3602 Quals & Qualifiers::Volatile, RValueThis, 3603 ThisQuals & Qualifiers::Const, 3604 ThisQuals & Qualifiers::Volatile); 3605 3606 return Result.getMethod(); 3607 } 3608 3609 /// Look up the moving assignment operator for the given class. 3610 CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class, 3611 unsigned Quals, 3612 bool RValueThis, 3613 unsigned ThisQuals) { 3614 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && 3615 "non-const, non-volatile qualifiers for copy assignment this"); 3616 SpecialMemberOverloadResult Result = 3617 LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const, 3618 Quals & Qualifiers::Volatile, RValueThis, 3619 ThisQuals & Qualifiers::Const, 3620 ThisQuals & Qualifiers::Volatile); 3621 3622 return Result.getMethod(); 3623 } 3624 3625 /// Look for the destructor of the given class. 3626 /// 3627 /// During semantic analysis, this routine should be used in lieu of 3628 /// CXXRecordDecl::getDestructor(). 3629 /// 3630 /// \returns The destructor for this class. 3631 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) { 3632 return cast_or_null<CXXDestructorDecl>( 3633 LookupSpecialMember(Class, CXXDestructor, false, false, false, false, 3634 false) 3635 .getMethod()); 3636 } 3637 3638 /// LookupLiteralOperator - Determine which literal operator should be used for 3639 /// a user-defined literal, per C++11 [lex.ext]. 3640 /// 3641 /// Normal overload resolution is not used to select which literal operator to 3642 /// call for a user-defined literal. Look up the provided literal operator name, 3643 /// and filter the results to the appropriate set for the given argument types. 3644 Sema::LiteralOperatorLookupResult 3645 Sema::LookupLiteralOperator(Scope *S, LookupResult &R, 3646 ArrayRef<QualType> ArgTys, bool AllowRaw, 3647 bool AllowTemplate, bool AllowStringTemplatePack, 3648 bool DiagnoseMissing, StringLiteral *StringLit) { 3649 LookupName(R, S); 3650 assert(R.getResultKind() != LookupResult::Ambiguous && 3651 "literal operator lookup can't be ambiguous"); 3652 3653 // Filter the lookup results appropriately. 3654 LookupResult::Filter F = R.makeFilter(); 3655 3656 bool AllowCooked = true; 3657 bool FoundRaw = false; 3658 bool FoundTemplate = false; 3659 bool FoundStringTemplatePack = false; 3660 bool FoundCooked = false; 3661 3662 while (F.hasNext()) { 3663 Decl *D = F.next(); 3664 if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D)) 3665 D = USD->getTargetDecl(); 3666 3667 // If the declaration we found is invalid, skip it. 3668 if (D->isInvalidDecl()) { 3669 F.erase(); 3670 continue; 3671 } 3672 3673 bool IsRaw = false; 3674 bool IsTemplate = false; 3675 bool IsStringTemplatePack = false; 3676 bool IsCooked = false; 3677 3678 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 3679 if (FD->getNumParams() == 1 && 3680 FD->getParamDecl(0)->getType()->getAs<PointerType>()) 3681 IsRaw = true; 3682 else if (FD->getNumParams() == ArgTys.size()) { 3683 IsCooked = true; 3684 for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) { 3685 QualType ParamTy = FD->getParamDecl(ArgIdx)->getType(); 3686 if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) { 3687 IsCooked = false; 3688 break; 3689 } 3690 } 3691 } 3692 } 3693 if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) { 3694 TemplateParameterList *Params = FD->getTemplateParameters(); 3695 if (Params->size() == 1) { 3696 IsTemplate = true; 3697 if (!Params->getParam(0)->isTemplateParameterPack() && !StringLit) { 3698 // Implied but not stated: user-defined integer and floating literals 3699 // only ever use numeric literal operator templates, not templates 3700 // taking a parameter of class type. 3701 F.erase(); 3702 continue; 3703 } 3704 3705 // A string literal template is only considered if the string literal 3706 // is a well-formed template argument for the template parameter. 3707 if (StringLit) { 3708 SFINAETrap Trap(*this); 3709 SmallVector<TemplateArgument, 1> SugaredChecked, CanonicalChecked; 3710 TemplateArgumentLoc Arg(TemplateArgument(StringLit), StringLit); 3711 if (CheckTemplateArgument( 3712 Params->getParam(0), Arg, FD, R.getNameLoc(), R.getNameLoc(), 3713 0, SugaredChecked, CanonicalChecked, CTAK_Specified) || 3714 Trap.hasErrorOccurred()) 3715 IsTemplate = false; 3716 } 3717 } else { 3718 IsStringTemplatePack = true; 3719 } 3720 } 3721 3722 if (AllowTemplate && StringLit && IsTemplate) { 3723 FoundTemplate = true; 3724 AllowRaw = false; 3725 AllowCooked = false; 3726 AllowStringTemplatePack = false; 3727 if (FoundRaw || FoundCooked || FoundStringTemplatePack) { 3728 F.restart(); 3729 FoundRaw = FoundCooked = FoundStringTemplatePack = false; 3730 } 3731 } else if (AllowCooked && IsCooked) { 3732 FoundCooked = true; 3733 AllowRaw = false; 3734 AllowTemplate = StringLit; 3735 AllowStringTemplatePack = false; 3736 if (FoundRaw || FoundTemplate || FoundStringTemplatePack) { 3737 // Go through again and remove the raw and template decls we've 3738 // already found. 3739 F.restart(); 3740 FoundRaw = FoundTemplate = FoundStringTemplatePack = false; 3741 } 3742 } else if (AllowRaw && IsRaw) { 3743 FoundRaw = true; 3744 } else if (AllowTemplate && IsTemplate) { 3745 FoundTemplate = true; 3746 } else if (AllowStringTemplatePack && IsStringTemplatePack) { 3747 FoundStringTemplatePack = true; 3748 } else { 3749 F.erase(); 3750 } 3751 } 3752 3753 F.done(); 3754 3755 // Per C++20 [lex.ext]p5, we prefer the template form over the non-template 3756 // form for string literal operator templates. 3757 if (StringLit && FoundTemplate) 3758 return LOLR_Template; 3759 3760 // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching 3761 // parameter type, that is used in preference to a raw literal operator 3762 // or literal operator template. 3763 if (FoundCooked) 3764 return LOLR_Cooked; 3765 3766 // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal 3767 // operator template, but not both. 3768 if (FoundRaw && FoundTemplate) { 3769 Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName(); 3770 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) 3771 NoteOverloadCandidate(*I, (*I)->getUnderlyingDecl()->getAsFunction()); 3772 return LOLR_Error; 3773 } 3774 3775 if (FoundRaw) 3776 return LOLR_Raw; 3777 3778 if (FoundTemplate) 3779 return LOLR_Template; 3780 3781 if (FoundStringTemplatePack) 3782 return LOLR_StringTemplatePack; 3783 3784 // Didn't find anything we could use. 3785 if (DiagnoseMissing) { 3786 Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator) 3787 << R.getLookupName() << (int)ArgTys.size() << ArgTys[0] 3788 << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw 3789 << (AllowTemplate || AllowStringTemplatePack); 3790 return LOLR_Error; 3791 } 3792 3793 return LOLR_ErrorNoDiagnostic; 3794 } 3795 3796 void ADLResult::insert(NamedDecl *New) { 3797 NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())]; 3798 3799 // If we haven't yet seen a decl for this key, or the last decl 3800 // was exactly this one, we're done. 3801 if (Old == nullptr || Old == New) { 3802 Old = New; 3803 return; 3804 } 3805 3806 // Otherwise, decide which is a more recent redeclaration. 3807 FunctionDecl *OldFD = Old->getAsFunction(); 3808 FunctionDecl *NewFD = New->getAsFunction(); 3809 3810 FunctionDecl *Cursor = NewFD; 3811 while (true) { 3812 Cursor = Cursor->getPreviousDecl(); 3813 3814 // If we got to the end without finding OldFD, OldFD is the newer 3815 // declaration; leave things as they are. 3816 if (!Cursor) return; 3817 3818 // If we do find OldFD, then NewFD is newer. 3819 if (Cursor == OldFD) break; 3820 3821 // Otherwise, keep looking. 3822 } 3823 3824 Old = New; 3825 } 3826 3827 void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc, 3828 ArrayRef<Expr *> Args, ADLResult &Result) { 3829 // Find all of the associated namespaces and classes based on the 3830 // arguments we have. 3831 AssociatedNamespaceSet AssociatedNamespaces; 3832 AssociatedClassSet AssociatedClasses; 3833 FindAssociatedClassesAndNamespaces(Loc, Args, 3834 AssociatedNamespaces, 3835 AssociatedClasses); 3836 3837 // C++ [basic.lookup.argdep]p3: 3838 // Let X be the lookup set produced by unqualified lookup (3.4.1) 3839 // and let Y be the lookup set produced by argument dependent 3840 // lookup (defined as follows). If X contains [...] then Y is 3841 // empty. Otherwise Y is the set of declarations found in the 3842 // namespaces associated with the argument types as described 3843 // below. The set of declarations found by the lookup of the name 3844 // is the union of X and Y. 3845 // 3846 // Here, we compute Y and add its members to the overloaded 3847 // candidate set. 3848 for (auto *NS : AssociatedNamespaces) { 3849 // When considering an associated namespace, the lookup is the 3850 // same as the lookup performed when the associated namespace is 3851 // used as a qualifier (3.4.3.2) except that: 3852 // 3853 // -- Any using-directives in the associated namespace are 3854 // ignored. 3855 // 3856 // -- Any namespace-scope friend functions declared in 3857 // associated classes are visible within their respective 3858 // namespaces even if they are not visible during an ordinary 3859 // lookup (11.4). 3860 // 3861 // C++20 [basic.lookup.argdep] p4.3 3862 // -- are exported, are attached to a named module M, do not appear 3863 // in the translation unit containing the point of the lookup, and 3864 // have the same innermost enclosing non-inline namespace scope as 3865 // a declaration of an associated entity attached to M. 3866 DeclContext::lookup_result R = NS->lookup(Name); 3867 for (auto *D : R) { 3868 auto *Underlying = D; 3869 if (auto *USD = dyn_cast<UsingShadowDecl>(D)) 3870 Underlying = USD->getTargetDecl(); 3871 3872 if (!isa<FunctionDecl>(Underlying) && 3873 !isa<FunctionTemplateDecl>(Underlying)) 3874 continue; 3875 3876 // The declaration is visible to argument-dependent lookup if either 3877 // it's ordinarily visible or declared as a friend in an associated 3878 // class. 3879 bool Visible = false; 3880 for (D = D->getMostRecentDecl(); D; 3881 D = cast_or_null<NamedDecl>(D->getPreviousDecl())) { 3882 if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) { 3883 if (isVisible(D)) { 3884 Visible = true; 3885 break; 3886 } else if (getLangOpts().CPlusPlusModules && 3887 D->isInExportDeclContext()) { 3888 // C++20 [basic.lookup.argdep] p4.3 .. are exported ... 3889 Module *FM = D->getOwningModule(); 3890 // exports are only valid in module purview and outside of any 3891 // PMF (although a PMF should not even be present in a module 3892 // with an import). 3893 assert(FM && FM->isModulePurview() && !FM->isPrivateModule() && 3894 "bad export context"); 3895 // .. are attached to a named module M, do not appear in the 3896 // translation unit containing the point of the lookup.. 3897 if (!isModuleUnitOfCurrentTU(FM) && 3898 llvm::any_of(AssociatedClasses, [&](auto *E) { 3899 // ... and have the same innermost enclosing non-inline 3900 // namespace scope as a declaration of an associated entity 3901 // attached to M 3902 if (!E->hasOwningModule() || 3903 E->getOwningModule()->getTopLevelModuleName() != 3904 FM->getTopLevelModuleName()) 3905 return false; 3906 // TODO: maybe this could be cached when generating the 3907 // associated namespaces / entities. 3908 DeclContext *Ctx = E->getDeclContext(); 3909 while (!Ctx->isFileContext() || Ctx->isInlineNamespace()) 3910 Ctx = Ctx->getParent(); 3911 return Ctx == NS; 3912 })) { 3913 Visible = true; 3914 break; 3915 } 3916 } 3917 } else if (D->getFriendObjectKind()) { 3918 auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext()); 3919 // [basic.lookup.argdep]p4: 3920 // Argument-dependent lookup finds all declarations of functions and 3921 // function templates that 3922 // - ... 3923 // - are declared as a friend ([class.friend]) of any class with a 3924 // reachable definition in the set of associated entities, 3925 // 3926 // FIXME: If there's a merged definition of D that is reachable, then 3927 // the friend declaration should be considered. 3928 if (AssociatedClasses.count(RD) && isReachable(D)) { 3929 Visible = true; 3930 break; 3931 } 3932 } 3933 } 3934 3935 // FIXME: Preserve D as the FoundDecl. 3936 if (Visible) 3937 Result.insert(Underlying); 3938 } 3939 } 3940 } 3941 3942 //---------------------------------------------------------------------------- 3943 // Search for all visible declarations. 3944 //---------------------------------------------------------------------------- 3945 VisibleDeclConsumer::~VisibleDeclConsumer() { } 3946 3947 bool VisibleDeclConsumer::includeHiddenDecls() const { return false; } 3948 3949 namespace { 3950 3951 class ShadowContextRAII; 3952 3953 class VisibleDeclsRecord { 3954 public: 3955 /// An entry in the shadow map, which is optimized to store a 3956 /// single declaration (the common case) but can also store a list 3957 /// of declarations. 3958 typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry; 3959 3960 private: 3961 /// A mapping from declaration names to the declarations that have 3962 /// this name within a particular scope. 3963 typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap; 3964 3965 /// A list of shadow maps, which is used to model name hiding. 3966 std::list<ShadowMap> ShadowMaps; 3967 3968 /// The declaration contexts we have already visited. 3969 llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts; 3970 3971 friend class ShadowContextRAII; 3972 3973 public: 3974 /// Determine whether we have already visited this context 3975 /// (and, if not, note that we are going to visit that context now). 3976 bool visitedContext(DeclContext *Ctx) { 3977 return !VisitedContexts.insert(Ctx).second; 3978 } 3979 3980 bool alreadyVisitedContext(DeclContext *Ctx) { 3981 return VisitedContexts.count(Ctx); 3982 } 3983 3984 /// Determine whether the given declaration is hidden in the 3985 /// current scope. 3986 /// 3987 /// \returns the declaration that hides the given declaration, or 3988 /// NULL if no such declaration exists. 3989 NamedDecl *checkHidden(NamedDecl *ND); 3990 3991 /// Add a declaration to the current shadow map. 3992 void add(NamedDecl *ND) { 3993 ShadowMaps.back()[ND->getDeclName()].push_back(ND); 3994 } 3995 }; 3996 3997 /// RAII object that records when we've entered a shadow context. 3998 class ShadowContextRAII { 3999 VisibleDeclsRecord &Visible; 4000 4001 typedef VisibleDeclsRecord::ShadowMap ShadowMap; 4002 4003 public: 4004 ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) { 4005 Visible.ShadowMaps.emplace_back(); 4006 } 4007 4008 ~ShadowContextRAII() { 4009 Visible.ShadowMaps.pop_back(); 4010 } 4011 }; 4012 4013 } // end anonymous namespace 4014 4015 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) { 4016 unsigned IDNS = ND->getIdentifierNamespace(); 4017 std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin(); 4018 for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend(); 4019 SM != SMEnd; ++SM) { 4020 ShadowMap::iterator Pos = SM->find(ND->getDeclName()); 4021 if (Pos == SM->end()) 4022 continue; 4023 4024 for (auto *D : Pos->second) { 4025 // A tag declaration does not hide a non-tag declaration. 4026 if (D->hasTagIdentifierNamespace() && 4027 (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary | 4028 Decl::IDNS_ObjCProtocol))) 4029 continue; 4030 4031 // Protocols are in distinct namespaces from everything else. 4032 if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol) 4033 || (IDNS & Decl::IDNS_ObjCProtocol)) && 4034 D->getIdentifierNamespace() != IDNS) 4035 continue; 4036 4037 // Functions and function templates in the same scope overload 4038 // rather than hide. FIXME: Look for hiding based on function 4039 // signatures! 4040 if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() && 4041 ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() && 4042 SM == ShadowMaps.rbegin()) 4043 continue; 4044 4045 // A shadow declaration that's created by a resolved using declaration 4046 // is not hidden by the same using declaration. 4047 if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) && 4048 cast<UsingShadowDecl>(ND)->getIntroducer() == D) 4049 continue; 4050 4051 // We've found a declaration that hides this one. 4052 return D; 4053 } 4054 } 4055 4056 return nullptr; 4057 } 4058 4059 namespace { 4060 class LookupVisibleHelper { 4061 public: 4062 LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases, 4063 bool LoadExternal) 4064 : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases), 4065 LoadExternal(LoadExternal) {} 4066 4067 void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind, 4068 bool IncludeGlobalScope) { 4069 // Determine the set of using directives available during 4070 // unqualified name lookup. 4071 Scope *Initial = S; 4072 UnqualUsingDirectiveSet UDirs(SemaRef); 4073 if (SemaRef.getLangOpts().CPlusPlus) { 4074 // Find the first namespace or translation-unit scope. 4075 while (S && !isNamespaceOrTranslationUnitScope(S)) 4076 S = S->getParent(); 4077 4078 UDirs.visitScopeChain(Initial, S); 4079 } 4080 UDirs.done(); 4081 4082 // Look for visible declarations. 4083 LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind); 4084 Result.setAllowHidden(Consumer.includeHiddenDecls()); 4085 if (!IncludeGlobalScope) 4086 Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl()); 4087 ShadowContextRAII Shadow(Visited); 4088 lookupInScope(Initial, Result, UDirs); 4089 } 4090 4091 void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx, 4092 Sema::LookupNameKind Kind, bool IncludeGlobalScope) { 4093 LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind); 4094 Result.setAllowHidden(Consumer.includeHiddenDecls()); 4095 if (!IncludeGlobalScope) 4096 Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl()); 4097 4098 ShadowContextRAII Shadow(Visited); 4099 lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true, 4100 /*InBaseClass=*/false); 4101 } 4102 4103 private: 4104 void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result, 4105 bool QualifiedNameLookup, bool InBaseClass) { 4106 if (!Ctx) 4107 return; 4108 4109 // Make sure we don't visit the same context twice. 4110 if (Visited.visitedContext(Ctx->getPrimaryContext())) 4111 return; 4112 4113 Consumer.EnteredContext(Ctx); 4114 4115 // Outside C++, lookup results for the TU live on identifiers. 4116 if (isa<TranslationUnitDecl>(Ctx) && 4117 !Result.getSema().getLangOpts().CPlusPlus) { 4118 auto &S = Result.getSema(); 4119 auto &Idents = S.Context.Idents; 4120 4121 // Ensure all external identifiers are in the identifier table. 4122 if (LoadExternal) 4123 if (IdentifierInfoLookup *External = 4124 Idents.getExternalIdentifierLookup()) { 4125 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers()); 4126 for (StringRef Name = Iter->Next(); !Name.empty(); 4127 Name = Iter->Next()) 4128 Idents.get(Name); 4129 } 4130 4131 // Walk all lookup results in the TU for each identifier. 4132 for (const auto &Ident : Idents) { 4133 for (auto I = S.IdResolver.begin(Ident.getValue()), 4134 E = S.IdResolver.end(); 4135 I != E; ++I) { 4136 if (S.IdResolver.isDeclInScope(*I, Ctx)) { 4137 if (NamedDecl *ND = Result.getAcceptableDecl(*I)) { 4138 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass); 4139 Visited.add(ND); 4140 } 4141 } 4142 } 4143 } 4144 4145 return; 4146 } 4147 4148 if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx)) 4149 Result.getSema().ForceDeclarationOfImplicitMembers(Class); 4150 4151 llvm::SmallVector<NamedDecl *, 4> DeclsToVisit; 4152 // We sometimes skip loading namespace-level results (they tend to be huge). 4153 bool Load = LoadExternal || 4154 !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx)); 4155 // Enumerate all of the results in this context. 4156 for (DeclContextLookupResult R : 4157 Load ? Ctx->lookups() 4158 : Ctx->noload_lookups(/*PreserveInternalState=*/false)) { 4159 for (auto *D : R) { 4160 if (auto *ND = Result.getAcceptableDecl(D)) { 4161 // Rather than visit immediately, we put ND into a vector and visit 4162 // all decls, in order, outside of this loop. The reason is that 4163 // Consumer.FoundDecl() may invalidate the iterators used in the two 4164 // loops above. 4165 DeclsToVisit.push_back(ND); 4166 } 4167 } 4168 } 4169 4170 for (auto *ND : DeclsToVisit) { 4171 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass); 4172 Visited.add(ND); 4173 } 4174 DeclsToVisit.clear(); 4175 4176 // Traverse using directives for qualified name lookup. 4177 if (QualifiedNameLookup) { 4178 ShadowContextRAII Shadow(Visited); 4179 for (auto *I : Ctx->using_directives()) { 4180 if (!Result.getSema().isVisible(I)) 4181 continue; 4182 lookupInDeclContext(I->getNominatedNamespace(), Result, 4183 QualifiedNameLookup, InBaseClass); 4184 } 4185 } 4186 4187 // Traverse the contexts of inherited C++ classes. 4188 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) { 4189 if (!Record->hasDefinition()) 4190 return; 4191 4192 for (const auto &B : Record->bases()) { 4193 QualType BaseType = B.getType(); 4194 4195 RecordDecl *RD; 4196 if (BaseType->isDependentType()) { 4197 if (!IncludeDependentBases) { 4198 // Don't look into dependent bases, because name lookup can't look 4199 // there anyway. 4200 continue; 4201 } 4202 const auto *TST = BaseType->getAs<TemplateSpecializationType>(); 4203 if (!TST) 4204 continue; 4205 TemplateName TN = TST->getTemplateName(); 4206 const auto *TD = 4207 dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl()); 4208 if (!TD) 4209 continue; 4210 RD = TD->getTemplatedDecl(); 4211 } else { 4212 const auto *Record = BaseType->getAs<RecordType>(); 4213 if (!Record) 4214 continue; 4215 RD = Record->getDecl(); 4216 } 4217 4218 // FIXME: It would be nice to be able to determine whether referencing 4219 // a particular member would be ambiguous. For example, given 4220 // 4221 // struct A { int member; }; 4222 // struct B { int member; }; 4223 // struct C : A, B { }; 4224 // 4225 // void f(C *c) { c->### } 4226 // 4227 // accessing 'member' would result in an ambiguity. However, we 4228 // could be smart enough to qualify the member with the base 4229 // class, e.g., 4230 // 4231 // c->B::member 4232 // 4233 // or 4234 // 4235 // c->A::member 4236 4237 // Find results in this base class (and its bases). 4238 ShadowContextRAII Shadow(Visited); 4239 lookupInDeclContext(RD, Result, QualifiedNameLookup, 4240 /*InBaseClass=*/true); 4241 } 4242 } 4243 4244 // Traverse the contexts of Objective-C classes. 4245 if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) { 4246 // Traverse categories. 4247 for (auto *Cat : IFace->visible_categories()) { 4248 ShadowContextRAII Shadow(Visited); 4249 lookupInDeclContext(Cat, Result, QualifiedNameLookup, 4250 /*InBaseClass=*/false); 4251 } 4252 4253 // Traverse protocols. 4254 for (auto *I : IFace->all_referenced_protocols()) { 4255 ShadowContextRAII Shadow(Visited); 4256 lookupInDeclContext(I, Result, QualifiedNameLookup, 4257 /*InBaseClass=*/false); 4258 } 4259 4260 // Traverse the superclass. 4261 if (IFace->getSuperClass()) { 4262 ShadowContextRAII Shadow(Visited); 4263 lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup, 4264 /*InBaseClass=*/true); 4265 } 4266 4267 // If there is an implementation, traverse it. We do this to find 4268 // synthesized ivars. 4269 if (IFace->getImplementation()) { 4270 ShadowContextRAII Shadow(Visited); 4271 lookupInDeclContext(IFace->getImplementation(), Result, 4272 QualifiedNameLookup, InBaseClass); 4273 } 4274 } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) { 4275 for (auto *I : Protocol->protocols()) { 4276 ShadowContextRAII Shadow(Visited); 4277 lookupInDeclContext(I, Result, QualifiedNameLookup, 4278 /*InBaseClass=*/false); 4279 } 4280 } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) { 4281 for (auto *I : Category->protocols()) { 4282 ShadowContextRAII Shadow(Visited); 4283 lookupInDeclContext(I, Result, QualifiedNameLookup, 4284 /*InBaseClass=*/false); 4285 } 4286 4287 // If there is an implementation, traverse it. 4288 if (Category->getImplementation()) { 4289 ShadowContextRAII Shadow(Visited); 4290 lookupInDeclContext(Category->getImplementation(), Result, 4291 QualifiedNameLookup, /*InBaseClass=*/true); 4292 } 4293 } 4294 } 4295 4296 void lookupInScope(Scope *S, LookupResult &Result, 4297 UnqualUsingDirectiveSet &UDirs) { 4298 // No clients run in this mode and it's not supported. Please add tests and 4299 // remove the assertion if you start relying on it. 4300 assert(!IncludeDependentBases && "Unsupported flag for lookupInScope"); 4301 4302 if (!S) 4303 return; 4304 4305 if (!S->getEntity() || 4306 (!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) || 4307 (S->getEntity())->isFunctionOrMethod()) { 4308 FindLocalExternScope FindLocals(Result); 4309 // Walk through the declarations in this Scope. The consumer might add new 4310 // decls to the scope as part of deserialization, so make a copy first. 4311 SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end()); 4312 for (Decl *D : ScopeDecls) { 4313 if (NamedDecl *ND = dyn_cast<NamedDecl>(D)) 4314 if ((ND = Result.getAcceptableDecl(ND))) { 4315 Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false); 4316 Visited.add(ND); 4317 } 4318 } 4319 } 4320 4321 DeclContext *Entity = S->getLookupEntity(); 4322 if (Entity) { 4323 // Look into this scope's declaration context, along with any of its 4324 // parent lookup contexts (e.g., enclosing classes), up to the point 4325 // where we hit the context stored in the next outer scope. 4326 DeclContext *OuterCtx = findOuterContext(S); 4327 4328 for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx); 4329 Ctx = Ctx->getLookupParent()) { 4330 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) { 4331 if (Method->isInstanceMethod()) { 4332 // For instance methods, look for ivars in the method's interface. 4333 LookupResult IvarResult(Result.getSema(), Result.getLookupName(), 4334 Result.getNameLoc(), 4335 Sema::LookupMemberName); 4336 if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) { 4337 lookupInDeclContext(IFace, IvarResult, 4338 /*QualifiedNameLookup=*/false, 4339 /*InBaseClass=*/false); 4340 } 4341 } 4342 4343 // We've already performed all of the name lookup that we need 4344 // to for Objective-C methods; the next context will be the 4345 // outer scope. 4346 break; 4347 } 4348 4349 if (Ctx->isFunctionOrMethod()) 4350 continue; 4351 4352 lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false, 4353 /*InBaseClass=*/false); 4354 } 4355 } else if (!S->getParent()) { 4356 // Look into the translation unit scope. We walk through the translation 4357 // unit's declaration context, because the Scope itself won't have all of 4358 // the declarations if we loaded a precompiled header. 4359 // FIXME: We would like the translation unit's Scope object to point to 4360 // the translation unit, so we don't need this special "if" branch. 4361 // However, doing so would force the normal C++ name-lookup code to look 4362 // into the translation unit decl when the IdentifierInfo chains would 4363 // suffice. Once we fix that problem (which is part of a more general 4364 // "don't look in DeclContexts unless we have to" optimization), we can 4365 // eliminate this. 4366 Entity = Result.getSema().Context.getTranslationUnitDecl(); 4367 lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false, 4368 /*InBaseClass=*/false); 4369 } 4370 4371 if (Entity) { 4372 // Lookup visible declarations in any namespaces found by using 4373 // directives. 4374 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity)) 4375 lookupInDeclContext( 4376 const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result, 4377 /*QualifiedNameLookup=*/false, 4378 /*InBaseClass=*/false); 4379 } 4380 4381 // Lookup names in the parent scope. 4382 ShadowContextRAII Shadow(Visited); 4383 lookupInScope(S->getParent(), Result, UDirs); 4384 } 4385 4386 private: 4387 VisibleDeclsRecord Visited; 4388 VisibleDeclConsumer &Consumer; 4389 bool IncludeDependentBases; 4390 bool LoadExternal; 4391 }; 4392 } // namespace 4393 4394 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind, 4395 VisibleDeclConsumer &Consumer, 4396 bool IncludeGlobalScope, bool LoadExternal) { 4397 LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false, 4398 LoadExternal); 4399 H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope); 4400 } 4401 4402 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind, 4403 VisibleDeclConsumer &Consumer, 4404 bool IncludeGlobalScope, 4405 bool IncludeDependentBases, bool LoadExternal) { 4406 LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal); 4407 H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope); 4408 } 4409 4410 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name. 4411 /// If GnuLabelLoc is a valid source location, then this is a definition 4412 /// of an __label__ label name, otherwise it is a normal label definition 4413 /// or use. 4414 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc, 4415 SourceLocation GnuLabelLoc) { 4416 // Do a lookup to see if we have a label with this name already. 4417 NamedDecl *Res = nullptr; 4418 4419 if (GnuLabelLoc.isValid()) { 4420 // Local label definitions always shadow existing labels. 4421 Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc); 4422 Scope *S = CurScope; 4423 PushOnScopeChains(Res, S, true); 4424 return cast<LabelDecl>(Res); 4425 } 4426 4427 // Not a GNU local label. 4428 Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration); 4429 // If we found a label, check to see if it is in the same context as us. 4430 // When in a Block, we don't want to reuse a label in an enclosing function. 4431 if (Res && Res->getDeclContext() != CurContext) 4432 Res = nullptr; 4433 if (!Res) { 4434 // If not forward referenced or defined already, create the backing decl. 4435 Res = LabelDecl::Create(Context, CurContext, Loc, II); 4436 Scope *S = CurScope->getFnParent(); 4437 assert(S && "Not in a function?"); 4438 PushOnScopeChains(Res, S, true); 4439 } 4440 return cast<LabelDecl>(Res); 4441 } 4442 4443 //===----------------------------------------------------------------------===// 4444 // Typo correction 4445 //===----------------------------------------------------------------------===// 4446 4447 static bool isCandidateViable(CorrectionCandidateCallback &CCC, 4448 TypoCorrection &Candidate) { 4449 Candidate.setCallbackDistance(CCC.RankCandidate(Candidate)); 4450 return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance; 4451 } 4452 4453 static void LookupPotentialTypoResult(Sema &SemaRef, 4454 LookupResult &Res, 4455 IdentifierInfo *Name, 4456 Scope *S, CXXScopeSpec *SS, 4457 DeclContext *MemberContext, 4458 bool EnteringContext, 4459 bool isObjCIvarLookup, 4460 bool FindHidden); 4461 4462 /// Check whether the declarations found for a typo correction are 4463 /// visible. Set the correction's RequiresImport flag to true if none of the 4464 /// declarations are visible, false otherwise. 4465 static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) { 4466 TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end(); 4467 4468 for (/**/; DI != DE; ++DI) 4469 if (!LookupResult::isVisible(SemaRef, *DI)) 4470 break; 4471 // No filtering needed if all decls are visible. 4472 if (DI == DE) { 4473 TC.setRequiresImport(false); 4474 return; 4475 } 4476 4477 llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI); 4478 bool AnyVisibleDecls = !NewDecls.empty(); 4479 4480 for (/**/; DI != DE; ++DI) { 4481 if (LookupResult::isVisible(SemaRef, *DI)) { 4482 if (!AnyVisibleDecls) { 4483 // Found a visible decl, discard all hidden ones. 4484 AnyVisibleDecls = true; 4485 NewDecls.clear(); 4486 } 4487 NewDecls.push_back(*DI); 4488 } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate()) 4489 NewDecls.push_back(*DI); 4490 } 4491 4492 if (NewDecls.empty()) 4493 TC = TypoCorrection(); 4494 else { 4495 TC.setCorrectionDecls(NewDecls); 4496 TC.setRequiresImport(!AnyVisibleDecls); 4497 } 4498 } 4499 4500 // Fill the supplied vector with the IdentifierInfo pointers for each piece of 4501 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::", 4502 // fill the vector with the IdentifierInfo pointers for "foo" and "bar"). 4503 static void getNestedNameSpecifierIdentifiers( 4504 NestedNameSpecifier *NNS, 4505 SmallVectorImpl<const IdentifierInfo*> &Identifiers) { 4506 if (NestedNameSpecifier *Prefix = NNS->getPrefix()) 4507 getNestedNameSpecifierIdentifiers(Prefix, Identifiers); 4508 else 4509 Identifiers.clear(); 4510 4511 const IdentifierInfo *II = nullptr; 4512 4513 switch (NNS->getKind()) { 4514 case NestedNameSpecifier::Identifier: 4515 II = NNS->getAsIdentifier(); 4516 break; 4517 4518 case NestedNameSpecifier::Namespace: 4519 if (NNS->getAsNamespace()->isAnonymousNamespace()) 4520 return; 4521 II = NNS->getAsNamespace()->getIdentifier(); 4522 break; 4523 4524 case NestedNameSpecifier::NamespaceAlias: 4525 II = NNS->getAsNamespaceAlias()->getIdentifier(); 4526 break; 4527 4528 case NestedNameSpecifier::TypeSpecWithTemplate: 4529 case NestedNameSpecifier::TypeSpec: 4530 II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier(); 4531 break; 4532 4533 case NestedNameSpecifier::Global: 4534 case NestedNameSpecifier::Super: 4535 return; 4536 } 4537 4538 if (II) 4539 Identifiers.push_back(II); 4540 } 4541 4542 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding, 4543 DeclContext *Ctx, bool InBaseClass) { 4544 // Don't consider hidden names for typo correction. 4545 if (Hiding) 4546 return; 4547 4548 // Only consider entities with identifiers for names, ignoring 4549 // special names (constructors, overloaded operators, selectors, 4550 // etc.). 4551 IdentifierInfo *Name = ND->getIdentifier(); 4552 if (!Name) 4553 return; 4554 4555 // Only consider visible declarations and declarations from modules with 4556 // names that exactly match. 4557 if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo) 4558 return; 4559 4560 FoundName(Name->getName()); 4561 } 4562 4563 void TypoCorrectionConsumer::FoundName(StringRef Name) { 4564 // Compute the edit distance between the typo and the name of this 4565 // entity, and add the identifier to the list of results. 4566 addName(Name, nullptr); 4567 } 4568 4569 void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) { 4570 // Compute the edit distance between the typo and this keyword, 4571 // and add the keyword to the list of results. 4572 addName(Keyword, nullptr, nullptr, true); 4573 } 4574 4575 void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND, 4576 NestedNameSpecifier *NNS, bool isKeyword) { 4577 // Use a simple length-based heuristic to determine the minimum possible 4578 // edit distance. If the minimum isn't good enough, bail out early. 4579 StringRef TypoStr = Typo->getName(); 4580 unsigned MinED = abs((int)Name.size() - (int)TypoStr.size()); 4581 if (MinED && TypoStr.size() / MinED < 3) 4582 return; 4583 4584 // Compute an upper bound on the allowable edit distance, so that the 4585 // edit-distance algorithm can short-circuit. 4586 unsigned UpperBound = (TypoStr.size() + 2) / 3; 4587 unsigned ED = TypoStr.edit_distance(Name, true, UpperBound); 4588 if (ED > UpperBound) return; 4589 4590 TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED); 4591 if (isKeyword) TC.makeKeyword(); 4592 TC.setCorrectionRange(nullptr, Result.getLookupNameInfo()); 4593 addCorrection(TC); 4594 } 4595 4596 static const unsigned MaxTypoDistanceResultSets = 5; 4597 4598 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) { 4599 StringRef TypoStr = Typo->getName(); 4600 StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName(); 4601 4602 // For very short typos, ignore potential corrections that have a different 4603 // base identifier from the typo or which have a normalized edit distance 4604 // longer than the typo itself. 4605 if (TypoStr.size() < 3 && 4606 (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size())) 4607 return; 4608 4609 // If the correction is resolved but is not viable, ignore it. 4610 if (Correction.isResolved()) { 4611 checkCorrectionVisibility(SemaRef, Correction); 4612 if (!Correction || !isCandidateViable(*CorrectionValidator, Correction)) 4613 return; 4614 } 4615 4616 TypoResultList &CList = 4617 CorrectionResults[Correction.getEditDistance(false)][Name]; 4618 4619 if (!CList.empty() && !CList.back().isResolved()) 4620 CList.pop_back(); 4621 if (NamedDecl *NewND = Correction.getCorrectionDecl()) { 4622 auto RI = llvm::find_if(CList, [NewND](const TypoCorrection &TypoCorr) { 4623 return TypoCorr.getCorrectionDecl() == NewND; 4624 }); 4625 if (RI != CList.end()) { 4626 // The Correction refers to a decl already in the list. No insertion is 4627 // necessary and all further cases will return. 4628 4629 auto IsDeprecated = [](Decl *D) { 4630 while (D) { 4631 if (D->isDeprecated()) 4632 return true; 4633 D = llvm::dyn_cast_or_null<NamespaceDecl>(D->getDeclContext()); 4634 } 4635 return false; 4636 }; 4637 4638 // Prefer non deprecated Corrections over deprecated and only then 4639 // sort using an alphabetical order. 4640 std::pair<bool, std::string> NewKey = { 4641 IsDeprecated(Correction.getFoundDecl()), 4642 Correction.getAsString(SemaRef.getLangOpts())}; 4643 4644 std::pair<bool, std::string> PrevKey = { 4645 IsDeprecated(RI->getFoundDecl()), 4646 RI->getAsString(SemaRef.getLangOpts())}; 4647 4648 if (NewKey < PrevKey) 4649 *RI = Correction; 4650 return; 4651 } 4652 } 4653 if (CList.empty() || Correction.isResolved()) 4654 CList.push_back(Correction); 4655 4656 while (CorrectionResults.size() > MaxTypoDistanceResultSets) 4657 CorrectionResults.erase(std::prev(CorrectionResults.end())); 4658 } 4659 4660 void TypoCorrectionConsumer::addNamespaces( 4661 const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) { 4662 SearchNamespaces = true; 4663 4664 for (auto KNPair : KnownNamespaces) 4665 Namespaces.addNameSpecifier(KNPair.first); 4666 4667 bool SSIsTemplate = false; 4668 if (NestedNameSpecifier *NNS = 4669 (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) { 4670 if (const Type *T = NNS->getAsType()) 4671 SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization; 4672 } 4673 // Do not transform this into an iterator-based loop. The loop body can 4674 // trigger the creation of further types (through lazy deserialization) and 4675 // invalid iterators into this list. 4676 auto &Types = SemaRef.getASTContext().getTypes(); 4677 for (unsigned I = 0; I != Types.size(); ++I) { 4678 const auto *TI = Types[I]; 4679 if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) { 4680 CD = CD->getCanonicalDecl(); 4681 if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() && 4682 !CD->isUnion() && CD->getIdentifier() && 4683 (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) && 4684 (CD->isBeingDefined() || CD->isCompleteDefinition())) 4685 Namespaces.addNameSpecifier(CD); 4686 } 4687 } 4688 } 4689 4690 const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() { 4691 if (++CurrentTCIndex < ValidatedCorrections.size()) 4692 return ValidatedCorrections[CurrentTCIndex]; 4693 4694 CurrentTCIndex = ValidatedCorrections.size(); 4695 while (!CorrectionResults.empty()) { 4696 auto DI = CorrectionResults.begin(); 4697 if (DI->second.empty()) { 4698 CorrectionResults.erase(DI); 4699 continue; 4700 } 4701 4702 auto RI = DI->second.begin(); 4703 if (RI->second.empty()) { 4704 DI->second.erase(RI); 4705 performQualifiedLookups(); 4706 continue; 4707 } 4708 4709 TypoCorrection TC = RI->second.pop_back_val(); 4710 if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) { 4711 ValidatedCorrections.push_back(TC); 4712 return ValidatedCorrections[CurrentTCIndex]; 4713 } 4714 } 4715 return ValidatedCorrections[0]; // The empty correction. 4716 } 4717 4718 bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) { 4719 IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo(); 4720 DeclContext *TempMemberContext = MemberContext; 4721 CXXScopeSpec *TempSS = SS.get(); 4722 retry_lookup: 4723 LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext, 4724 EnteringContext, 4725 CorrectionValidator->IsObjCIvarLookup, 4726 Name == Typo && !Candidate.WillReplaceSpecifier()); 4727 switch (Result.getResultKind()) { 4728 case LookupResult::NotFound: 4729 case LookupResult::NotFoundInCurrentInstantiation: 4730 case LookupResult::FoundUnresolvedValue: 4731 if (TempSS) { 4732 // Immediately retry the lookup without the given CXXScopeSpec 4733 TempSS = nullptr; 4734 Candidate.WillReplaceSpecifier(true); 4735 goto retry_lookup; 4736 } 4737 if (TempMemberContext) { 4738 if (SS && !TempSS) 4739 TempSS = SS.get(); 4740 TempMemberContext = nullptr; 4741 goto retry_lookup; 4742 } 4743 if (SearchNamespaces) 4744 QualifiedResults.push_back(Candidate); 4745 break; 4746 4747 case LookupResult::Ambiguous: 4748 // We don't deal with ambiguities. 4749 break; 4750 4751 case LookupResult::Found: 4752 case LookupResult::FoundOverloaded: 4753 // Store all of the Decls for overloaded symbols 4754 for (auto *TRD : Result) 4755 Candidate.addCorrectionDecl(TRD); 4756 checkCorrectionVisibility(SemaRef, Candidate); 4757 if (!isCandidateViable(*CorrectionValidator, Candidate)) { 4758 if (SearchNamespaces) 4759 QualifiedResults.push_back(Candidate); 4760 break; 4761 } 4762 Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo()); 4763 return true; 4764 } 4765 return false; 4766 } 4767 4768 void TypoCorrectionConsumer::performQualifiedLookups() { 4769 unsigned TypoLen = Typo->getName().size(); 4770 for (const TypoCorrection &QR : QualifiedResults) { 4771 for (const auto &NSI : Namespaces) { 4772 DeclContext *Ctx = NSI.DeclCtx; 4773 const Type *NSType = NSI.NameSpecifier->getAsType(); 4774 4775 // If the current NestedNameSpecifier refers to a class and the 4776 // current correction candidate is the name of that class, then skip 4777 // it as it is unlikely a qualified version of the class' constructor 4778 // is an appropriate correction. 4779 if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() : 4780 nullptr) { 4781 if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo()) 4782 continue; 4783 } 4784 4785 TypoCorrection TC(QR); 4786 TC.ClearCorrectionDecls(); 4787 TC.setCorrectionSpecifier(NSI.NameSpecifier); 4788 TC.setQualifierDistance(NSI.EditDistance); 4789 TC.setCallbackDistance(0); // Reset the callback distance 4790 4791 // If the current correction candidate and namespace combination are 4792 // too far away from the original typo based on the normalized edit 4793 // distance, then skip performing a qualified name lookup. 4794 unsigned TmpED = TC.getEditDistance(true); 4795 if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED && 4796 TypoLen / TmpED < 3) 4797 continue; 4798 4799 Result.clear(); 4800 Result.setLookupName(QR.getCorrectionAsIdentifierInfo()); 4801 if (!SemaRef.LookupQualifiedName(Result, Ctx)) 4802 continue; 4803 4804 // Any corrections added below will be validated in subsequent 4805 // iterations of the main while() loop over the Consumer's contents. 4806 switch (Result.getResultKind()) { 4807 case LookupResult::Found: 4808 case LookupResult::FoundOverloaded: { 4809 if (SS && SS->isValid()) { 4810 std::string NewQualified = TC.getAsString(SemaRef.getLangOpts()); 4811 std::string OldQualified; 4812 llvm::raw_string_ostream OldOStream(OldQualified); 4813 SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy()); 4814 OldOStream << Typo->getName(); 4815 // If correction candidate would be an identical written qualified 4816 // identifier, then the existing CXXScopeSpec probably included a 4817 // typedef that didn't get accounted for properly. 4818 if (OldOStream.str() == NewQualified) 4819 break; 4820 } 4821 for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end(); 4822 TRD != TRDEnd; ++TRD) { 4823 if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(), 4824 NSType ? NSType->getAsCXXRecordDecl() 4825 : nullptr, 4826 TRD.getPair()) == Sema::AR_accessible) 4827 TC.addCorrectionDecl(*TRD); 4828 } 4829 if (TC.isResolved()) { 4830 TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo()); 4831 addCorrection(TC); 4832 } 4833 break; 4834 } 4835 case LookupResult::NotFound: 4836 case LookupResult::NotFoundInCurrentInstantiation: 4837 case LookupResult::Ambiguous: 4838 case LookupResult::FoundUnresolvedValue: 4839 break; 4840 } 4841 } 4842 } 4843 QualifiedResults.clear(); 4844 } 4845 4846 TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet( 4847 ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec) 4848 : Context(Context), CurContextChain(buildContextChain(CurContext)) { 4849 if (NestedNameSpecifier *NNS = 4850 CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) { 4851 llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier); 4852 NNS->print(SpecifierOStream, Context.getPrintingPolicy()); 4853 4854 getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers); 4855 } 4856 // Build the list of identifiers that would be used for an absolute 4857 // (from the global context) NestedNameSpecifier referring to the current 4858 // context. 4859 for (DeclContext *C : llvm::reverse(CurContextChain)) { 4860 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) 4861 CurContextIdentifiers.push_back(ND->getIdentifier()); 4862 } 4863 4864 // Add the global context as a NestedNameSpecifier 4865 SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()), 4866 NestedNameSpecifier::GlobalSpecifier(Context), 1}; 4867 DistanceMap[1].push_back(SI); 4868 } 4869 4870 auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain( 4871 DeclContext *Start) -> DeclContextList { 4872 assert(Start && "Building a context chain from a null context"); 4873 DeclContextList Chain; 4874 for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr; 4875 DC = DC->getLookupParent()) { 4876 NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC); 4877 if (!DC->isInlineNamespace() && !DC->isTransparentContext() && 4878 !(ND && ND->isAnonymousNamespace())) 4879 Chain.push_back(DC->getPrimaryContext()); 4880 } 4881 return Chain; 4882 } 4883 4884 unsigned 4885 TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier( 4886 DeclContextList &DeclChain, NestedNameSpecifier *&NNS) { 4887 unsigned NumSpecifiers = 0; 4888 for (DeclContext *C : llvm::reverse(DeclChain)) { 4889 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) { 4890 NNS = NestedNameSpecifier::Create(Context, NNS, ND); 4891 ++NumSpecifiers; 4892 } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) { 4893 NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(), 4894 RD->getTypeForDecl()); 4895 ++NumSpecifiers; 4896 } 4897 } 4898 return NumSpecifiers; 4899 } 4900 4901 void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier( 4902 DeclContext *Ctx) { 4903 NestedNameSpecifier *NNS = nullptr; 4904 unsigned NumSpecifiers = 0; 4905 DeclContextList NamespaceDeclChain(buildContextChain(Ctx)); 4906 DeclContextList FullNamespaceDeclChain(NamespaceDeclChain); 4907 4908 // Eliminate common elements from the two DeclContext chains. 4909 for (DeclContext *C : llvm::reverse(CurContextChain)) { 4910 if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C) 4911 break; 4912 NamespaceDeclChain.pop_back(); 4913 } 4914 4915 // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain 4916 NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS); 4917 4918 // Add an explicit leading '::' specifier if needed. 4919 if (NamespaceDeclChain.empty()) { 4920 // Rebuild the NestedNameSpecifier as a globally-qualified specifier. 4921 NNS = NestedNameSpecifier::GlobalSpecifier(Context); 4922 NumSpecifiers = 4923 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS); 4924 } else if (NamedDecl *ND = 4925 dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) { 4926 IdentifierInfo *Name = ND->getIdentifier(); 4927 bool SameNameSpecifier = false; 4928 if (llvm::is_contained(CurNameSpecifierIdentifiers, Name)) { 4929 std::string NewNameSpecifier; 4930 llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier); 4931 SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers; 4932 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers); 4933 NNS->print(SpecifierOStream, Context.getPrintingPolicy()); 4934 SpecifierOStream.flush(); 4935 SameNameSpecifier = NewNameSpecifier == CurNameSpecifier; 4936 } 4937 if (SameNameSpecifier || llvm::is_contained(CurContextIdentifiers, Name)) { 4938 // Rebuild the NestedNameSpecifier as a globally-qualified specifier. 4939 NNS = NestedNameSpecifier::GlobalSpecifier(Context); 4940 NumSpecifiers = 4941 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS); 4942 } 4943 } 4944 4945 // If the built NestedNameSpecifier would be replacing an existing 4946 // NestedNameSpecifier, use the number of component identifiers that 4947 // would need to be changed as the edit distance instead of the number 4948 // of components in the built NestedNameSpecifier. 4949 if (NNS && !CurNameSpecifierIdentifiers.empty()) { 4950 SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers; 4951 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers); 4952 NumSpecifiers = 4953 llvm::ComputeEditDistance(llvm::ArrayRef(CurNameSpecifierIdentifiers), 4954 llvm::ArrayRef(NewNameSpecifierIdentifiers)); 4955 } 4956 4957 SpecifierInfo SI = {Ctx, NNS, NumSpecifiers}; 4958 DistanceMap[NumSpecifiers].push_back(SI); 4959 } 4960 4961 /// Perform name lookup for a possible result for typo correction. 4962 static void LookupPotentialTypoResult(Sema &SemaRef, 4963 LookupResult &Res, 4964 IdentifierInfo *Name, 4965 Scope *S, CXXScopeSpec *SS, 4966 DeclContext *MemberContext, 4967 bool EnteringContext, 4968 bool isObjCIvarLookup, 4969 bool FindHidden) { 4970 Res.suppressDiagnostics(); 4971 Res.clear(); 4972 Res.setLookupName(Name); 4973 Res.setAllowHidden(FindHidden); 4974 if (MemberContext) { 4975 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) { 4976 if (isObjCIvarLookup) { 4977 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) { 4978 Res.addDecl(Ivar); 4979 Res.resolveKind(); 4980 return; 4981 } 4982 } 4983 4984 if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration( 4985 Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { 4986 Res.addDecl(Prop); 4987 Res.resolveKind(); 4988 return; 4989 } 4990 } 4991 4992 SemaRef.LookupQualifiedName(Res, MemberContext); 4993 return; 4994 } 4995 4996 SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false, 4997 EnteringContext); 4998 4999 // Fake ivar lookup; this should really be part of 5000 // LookupParsedName. 5001 if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) { 5002 if (Method->isInstanceMethod() && Method->getClassInterface() && 5003 (Res.empty() || 5004 (Res.isSingleResult() && 5005 Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) { 5006 if (ObjCIvarDecl *IV 5007 = Method->getClassInterface()->lookupInstanceVariable(Name)) { 5008 Res.addDecl(IV); 5009 Res.resolveKind(); 5010 } 5011 } 5012 } 5013 } 5014 5015 /// Add keywords to the consumer as possible typo corrections. 5016 static void AddKeywordsToConsumer(Sema &SemaRef, 5017 TypoCorrectionConsumer &Consumer, 5018 Scope *S, CorrectionCandidateCallback &CCC, 5019 bool AfterNestedNameSpecifier) { 5020 if (AfterNestedNameSpecifier) { 5021 // For 'X::', we know exactly which keywords can appear next. 5022 Consumer.addKeywordResult("template"); 5023 if (CCC.WantExpressionKeywords) 5024 Consumer.addKeywordResult("operator"); 5025 return; 5026 } 5027 5028 if (CCC.WantObjCSuper) 5029 Consumer.addKeywordResult("super"); 5030 5031 if (CCC.WantTypeSpecifiers) { 5032 // Add type-specifier keywords to the set of results. 5033 static const char *const CTypeSpecs[] = { 5034 "char", "const", "double", "enum", "float", "int", "long", "short", 5035 "signed", "struct", "union", "unsigned", "void", "volatile", 5036 "_Complex", "_Imaginary", 5037 // storage-specifiers as well 5038 "extern", "inline", "static", "typedef" 5039 }; 5040 5041 for (const auto *CTS : CTypeSpecs) 5042 Consumer.addKeywordResult(CTS); 5043 5044 if (SemaRef.getLangOpts().C99) 5045 Consumer.addKeywordResult("restrict"); 5046 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) 5047 Consumer.addKeywordResult("bool"); 5048 else if (SemaRef.getLangOpts().C99) 5049 Consumer.addKeywordResult("_Bool"); 5050 5051 if (SemaRef.getLangOpts().CPlusPlus) { 5052 Consumer.addKeywordResult("class"); 5053 Consumer.addKeywordResult("typename"); 5054 Consumer.addKeywordResult("wchar_t"); 5055 5056 if (SemaRef.getLangOpts().CPlusPlus11) { 5057 Consumer.addKeywordResult("char16_t"); 5058 Consumer.addKeywordResult("char32_t"); 5059 Consumer.addKeywordResult("constexpr"); 5060 Consumer.addKeywordResult("decltype"); 5061 Consumer.addKeywordResult("thread_local"); 5062 } 5063 } 5064 5065 if (SemaRef.getLangOpts().GNUKeywords) 5066 Consumer.addKeywordResult("typeof"); 5067 } else if (CCC.WantFunctionLikeCasts) { 5068 static const char *const CastableTypeSpecs[] = { 5069 "char", "double", "float", "int", "long", "short", 5070 "signed", "unsigned", "void" 5071 }; 5072 for (auto *kw : CastableTypeSpecs) 5073 Consumer.addKeywordResult(kw); 5074 } 5075 5076 if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) { 5077 Consumer.addKeywordResult("const_cast"); 5078 Consumer.addKeywordResult("dynamic_cast"); 5079 Consumer.addKeywordResult("reinterpret_cast"); 5080 Consumer.addKeywordResult("static_cast"); 5081 } 5082 5083 if (CCC.WantExpressionKeywords) { 5084 Consumer.addKeywordResult("sizeof"); 5085 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) { 5086 Consumer.addKeywordResult("false"); 5087 Consumer.addKeywordResult("true"); 5088 } 5089 5090 if (SemaRef.getLangOpts().CPlusPlus) { 5091 static const char *const CXXExprs[] = { 5092 "delete", "new", "operator", "throw", "typeid" 5093 }; 5094 for (const auto *CE : CXXExprs) 5095 Consumer.addKeywordResult(CE); 5096 5097 if (isa<CXXMethodDecl>(SemaRef.CurContext) && 5098 cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance()) 5099 Consumer.addKeywordResult("this"); 5100 5101 if (SemaRef.getLangOpts().CPlusPlus11) { 5102 Consumer.addKeywordResult("alignof"); 5103 Consumer.addKeywordResult("nullptr"); 5104 } 5105 } 5106 5107 if (SemaRef.getLangOpts().C11) { 5108 // FIXME: We should not suggest _Alignof if the alignof macro 5109 // is present. 5110 Consumer.addKeywordResult("_Alignof"); 5111 } 5112 } 5113 5114 if (CCC.WantRemainingKeywords) { 5115 if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) { 5116 // Statements. 5117 static const char *const CStmts[] = { 5118 "do", "else", "for", "goto", "if", "return", "switch", "while" }; 5119 for (const auto *CS : CStmts) 5120 Consumer.addKeywordResult(CS); 5121 5122 if (SemaRef.getLangOpts().CPlusPlus) { 5123 Consumer.addKeywordResult("catch"); 5124 Consumer.addKeywordResult("try"); 5125 } 5126 5127 if (S && S->getBreakParent()) 5128 Consumer.addKeywordResult("break"); 5129 5130 if (S && S->getContinueParent()) 5131 Consumer.addKeywordResult("continue"); 5132 5133 if (SemaRef.getCurFunction() && 5134 !SemaRef.getCurFunction()->SwitchStack.empty()) { 5135 Consumer.addKeywordResult("case"); 5136 Consumer.addKeywordResult("default"); 5137 } 5138 } else { 5139 if (SemaRef.getLangOpts().CPlusPlus) { 5140 Consumer.addKeywordResult("namespace"); 5141 Consumer.addKeywordResult("template"); 5142 } 5143 5144 if (S && S->isClassScope()) { 5145 Consumer.addKeywordResult("explicit"); 5146 Consumer.addKeywordResult("friend"); 5147 Consumer.addKeywordResult("mutable"); 5148 Consumer.addKeywordResult("private"); 5149 Consumer.addKeywordResult("protected"); 5150 Consumer.addKeywordResult("public"); 5151 Consumer.addKeywordResult("virtual"); 5152 } 5153 } 5154 5155 if (SemaRef.getLangOpts().CPlusPlus) { 5156 Consumer.addKeywordResult("using"); 5157 5158 if (SemaRef.getLangOpts().CPlusPlus11) 5159 Consumer.addKeywordResult("static_assert"); 5160 } 5161 } 5162 } 5163 5164 std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer( 5165 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind, 5166 Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, 5167 DeclContext *MemberContext, bool EnteringContext, 5168 const ObjCObjectPointerType *OPT, bool ErrorRecovery) { 5169 5170 if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking || 5171 DisableTypoCorrection) 5172 return nullptr; 5173 5174 // In Microsoft mode, don't perform typo correction in a template member 5175 // function dependent context because it interferes with the "lookup into 5176 // dependent bases of class templates" feature. 5177 if (getLangOpts().MSVCCompat && CurContext->isDependentContext() && 5178 isa<CXXMethodDecl>(CurContext)) 5179 return nullptr; 5180 5181 // We only attempt to correct typos for identifiers. 5182 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); 5183 if (!Typo) 5184 return nullptr; 5185 5186 // If the scope specifier itself was invalid, don't try to correct 5187 // typos. 5188 if (SS && SS->isInvalid()) 5189 return nullptr; 5190 5191 // Never try to correct typos during any kind of code synthesis. 5192 if (!CodeSynthesisContexts.empty()) 5193 return nullptr; 5194 5195 // Don't try to correct 'super'. 5196 if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier()) 5197 return nullptr; 5198 5199 // Abort if typo correction already failed for this specific typo. 5200 IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo); 5201 if (locs != TypoCorrectionFailures.end() && 5202 locs->second.count(TypoName.getLoc())) 5203 return nullptr; 5204 5205 // Don't try to correct the identifier "vector" when in AltiVec mode. 5206 // TODO: Figure out why typo correction misbehaves in this case, fix it, and 5207 // remove this workaround. 5208 if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector")) 5209 return nullptr; 5210 5211 // Provide a stop gap for files that are just seriously broken. Trying 5212 // to correct all typos can turn into a HUGE performance penalty, causing 5213 // some files to take minutes to get rejected by the parser. 5214 unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit; 5215 if (Limit && TyposCorrected >= Limit) 5216 return nullptr; 5217 ++TyposCorrected; 5218 5219 // If we're handling a missing symbol error, using modules, and the 5220 // special search all modules option is used, look for a missing import. 5221 if (ErrorRecovery && getLangOpts().Modules && 5222 getLangOpts().ModulesSearchAll) { 5223 // The following has the side effect of loading the missing module. 5224 getModuleLoader().lookupMissingImports(Typo->getName(), 5225 TypoName.getBeginLoc()); 5226 } 5227 5228 // Extend the lifetime of the callback. We delayed this until here 5229 // to avoid allocations in the hot path (which is where no typo correction 5230 // occurs). Note that CorrectionCandidateCallback is polymorphic and 5231 // initially stack-allocated. 5232 std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone(); 5233 auto Consumer = std::make_unique<TypoCorrectionConsumer>( 5234 *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext, 5235 EnteringContext); 5236 5237 // Perform name lookup to find visible, similarly-named entities. 5238 bool IsUnqualifiedLookup = false; 5239 DeclContext *QualifiedDC = MemberContext; 5240 if (MemberContext) { 5241 LookupVisibleDecls(MemberContext, LookupKind, *Consumer); 5242 5243 // Look in qualified interfaces. 5244 if (OPT) { 5245 for (auto *I : OPT->quals()) 5246 LookupVisibleDecls(I, LookupKind, *Consumer); 5247 } 5248 } else if (SS && SS->isSet()) { 5249 QualifiedDC = computeDeclContext(*SS, EnteringContext); 5250 if (!QualifiedDC) 5251 return nullptr; 5252 5253 LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer); 5254 } else { 5255 IsUnqualifiedLookup = true; 5256 } 5257 5258 // Determine whether we are going to search in the various namespaces for 5259 // corrections. 5260 bool SearchNamespaces 5261 = getLangOpts().CPlusPlus && 5262 (IsUnqualifiedLookup || (SS && SS->isSet())); 5263 5264 if (IsUnqualifiedLookup || SearchNamespaces) { 5265 // For unqualified lookup, look through all of the names that we have 5266 // seen in this translation unit. 5267 // FIXME: Re-add the ability to skip very unlikely potential corrections. 5268 for (const auto &I : Context.Idents) 5269 Consumer->FoundName(I.getKey()); 5270 5271 // Walk through identifiers in external identifier sources. 5272 // FIXME: Re-add the ability to skip very unlikely potential corrections. 5273 if (IdentifierInfoLookup *External 5274 = Context.Idents.getExternalIdentifierLookup()) { 5275 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers()); 5276 do { 5277 StringRef Name = Iter->Next(); 5278 if (Name.empty()) 5279 break; 5280 5281 Consumer->FoundName(Name); 5282 } while (true); 5283 } 5284 } 5285 5286 AddKeywordsToConsumer(*this, *Consumer, S, 5287 *Consumer->getCorrectionValidator(), 5288 SS && SS->isNotEmpty()); 5289 5290 // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going 5291 // to search those namespaces. 5292 if (SearchNamespaces) { 5293 // Load any externally-known namespaces. 5294 if (ExternalSource && !LoadedExternalKnownNamespaces) { 5295 SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces; 5296 LoadedExternalKnownNamespaces = true; 5297 ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces); 5298 for (auto *N : ExternalKnownNamespaces) 5299 KnownNamespaces[N] = true; 5300 } 5301 5302 Consumer->addNamespaces(KnownNamespaces); 5303 } 5304 5305 return Consumer; 5306 } 5307 5308 /// Try to "correct" a typo in the source code by finding 5309 /// visible declarations whose names are similar to the name that was 5310 /// present in the source code. 5311 /// 5312 /// \param TypoName the \c DeclarationNameInfo structure that contains 5313 /// the name that was present in the source code along with its location. 5314 /// 5315 /// \param LookupKind the name-lookup criteria used to search for the name. 5316 /// 5317 /// \param S the scope in which name lookup occurs. 5318 /// 5319 /// \param SS the nested-name-specifier that precedes the name we're 5320 /// looking for, if present. 5321 /// 5322 /// \param CCC A CorrectionCandidateCallback object that provides further 5323 /// validation of typo correction candidates. It also provides flags for 5324 /// determining the set of keywords permitted. 5325 /// 5326 /// \param MemberContext if non-NULL, the context in which to look for 5327 /// a member access expression. 5328 /// 5329 /// \param EnteringContext whether we're entering the context described by 5330 /// the nested-name-specifier SS. 5331 /// 5332 /// \param OPT when non-NULL, the search for visible declarations will 5333 /// also walk the protocols in the qualified interfaces of \p OPT. 5334 /// 5335 /// \returns a \c TypoCorrection containing the corrected name if the typo 5336 /// along with information such as the \c NamedDecl where the corrected name 5337 /// was declared, and any additional \c NestedNameSpecifier needed to access 5338 /// it (C++ only). The \c TypoCorrection is empty if there is no correction. 5339 TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName, 5340 Sema::LookupNameKind LookupKind, 5341 Scope *S, CXXScopeSpec *SS, 5342 CorrectionCandidateCallback &CCC, 5343 CorrectTypoKind Mode, 5344 DeclContext *MemberContext, 5345 bool EnteringContext, 5346 const ObjCObjectPointerType *OPT, 5347 bool RecordFailure) { 5348 // Always let the ExternalSource have the first chance at correction, even 5349 // if we would otherwise have given up. 5350 if (ExternalSource) { 5351 if (TypoCorrection Correction = 5352 ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC, 5353 MemberContext, EnteringContext, OPT)) 5354 return Correction; 5355 } 5356 5357 // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver; 5358 // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for 5359 // some instances of CTC_Unknown, while WantRemainingKeywords is true 5360 // for CTC_Unknown but not for CTC_ObjCMessageReceiver. 5361 bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords; 5362 5363 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); 5364 auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC, 5365 MemberContext, EnteringContext, 5366 OPT, Mode == CTK_ErrorRecovery); 5367 5368 if (!Consumer) 5369 return TypoCorrection(); 5370 5371 // If we haven't found anything, we're done. 5372 if (Consumer->empty()) 5373 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5374 5375 // Make sure the best edit distance (prior to adding any namespace qualifiers) 5376 // is not more that about a third of the length of the typo's identifier. 5377 unsigned ED = Consumer->getBestEditDistance(true); 5378 unsigned TypoLen = Typo->getName().size(); 5379 if (ED > 0 && TypoLen / ED < 3) 5380 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5381 5382 TypoCorrection BestTC = Consumer->getNextCorrection(); 5383 TypoCorrection SecondBestTC = Consumer->getNextCorrection(); 5384 if (!BestTC) 5385 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5386 5387 ED = BestTC.getEditDistance(); 5388 5389 if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) { 5390 // If this was an unqualified lookup and we believe the callback 5391 // object wouldn't have filtered out possible corrections, note 5392 // that no correction was found. 5393 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5394 } 5395 5396 // If only a single name remains, return that result. 5397 if (!SecondBestTC || 5398 SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) { 5399 const TypoCorrection &Result = BestTC; 5400 5401 // Don't correct to a keyword that's the same as the typo; the keyword 5402 // wasn't actually in scope. 5403 if (ED == 0 && Result.isKeyword()) 5404 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5405 5406 TypoCorrection TC = Result; 5407 TC.setCorrectionRange(SS, TypoName); 5408 checkCorrectionVisibility(*this, TC); 5409 return TC; 5410 } else if (SecondBestTC && ObjCMessageReceiver) { 5411 // Prefer 'super' when we're completing in a message-receiver 5412 // context. 5413 5414 if (BestTC.getCorrection().getAsString() != "super") { 5415 if (SecondBestTC.getCorrection().getAsString() == "super") 5416 BestTC = SecondBestTC; 5417 else if ((*Consumer)["super"].front().isKeyword()) 5418 BestTC = (*Consumer)["super"].front(); 5419 } 5420 // Don't correct to a keyword that's the same as the typo; the keyword 5421 // wasn't actually in scope. 5422 if (BestTC.getEditDistance() == 0 || 5423 BestTC.getCorrection().getAsString() != "super") 5424 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5425 5426 BestTC.setCorrectionRange(SS, TypoName); 5427 return BestTC; 5428 } 5429 5430 // Record the failure's location if needed and return an empty correction. If 5431 // this was an unqualified lookup and we believe the callback object did not 5432 // filter out possible corrections, also cache the failure for the typo. 5433 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC); 5434 } 5435 5436 /// Try to "correct" a typo in the source code by finding 5437 /// visible declarations whose names are similar to the name that was 5438 /// present in the source code. 5439 /// 5440 /// \param TypoName the \c DeclarationNameInfo structure that contains 5441 /// the name that was present in the source code along with its location. 5442 /// 5443 /// \param LookupKind the name-lookup criteria used to search for the name. 5444 /// 5445 /// \param S the scope in which name lookup occurs. 5446 /// 5447 /// \param SS the nested-name-specifier that precedes the name we're 5448 /// looking for, if present. 5449 /// 5450 /// \param CCC A CorrectionCandidateCallback object that provides further 5451 /// validation of typo correction candidates. It also provides flags for 5452 /// determining the set of keywords permitted. 5453 /// 5454 /// \param TDG A TypoDiagnosticGenerator functor that will be used to print 5455 /// diagnostics when the actual typo correction is attempted. 5456 /// 5457 /// \param TRC A TypoRecoveryCallback functor that will be used to build an 5458 /// Expr from a typo correction candidate. 5459 /// 5460 /// \param MemberContext if non-NULL, the context in which to look for 5461 /// a member access expression. 5462 /// 5463 /// \param EnteringContext whether we're entering the context described by 5464 /// the nested-name-specifier SS. 5465 /// 5466 /// \param OPT when non-NULL, the search for visible declarations will 5467 /// also walk the protocols in the qualified interfaces of \p OPT. 5468 /// 5469 /// \returns a new \c TypoExpr that will later be replaced in the AST with an 5470 /// Expr representing the result of performing typo correction, or nullptr if 5471 /// typo correction is not possible. If nullptr is returned, no diagnostics will 5472 /// be emitted and it is the responsibility of the caller to emit any that are 5473 /// needed. 5474 TypoExpr *Sema::CorrectTypoDelayed( 5475 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind, 5476 Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, 5477 TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode, 5478 DeclContext *MemberContext, bool EnteringContext, 5479 const ObjCObjectPointerType *OPT) { 5480 auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC, 5481 MemberContext, EnteringContext, 5482 OPT, Mode == CTK_ErrorRecovery); 5483 5484 // Give the external sema source a chance to correct the typo. 5485 TypoCorrection ExternalTypo; 5486 if (ExternalSource && Consumer) { 5487 ExternalTypo = ExternalSource->CorrectTypo( 5488 TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(), 5489 MemberContext, EnteringContext, OPT); 5490 if (ExternalTypo) 5491 Consumer->addCorrection(ExternalTypo); 5492 } 5493 5494 if (!Consumer || Consumer->empty()) 5495 return nullptr; 5496 5497 // Make sure the best edit distance (prior to adding any namespace qualifiers) 5498 // is not more that about a third of the length of the typo's identifier. 5499 unsigned ED = Consumer->getBestEditDistance(true); 5500 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); 5501 if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3) 5502 return nullptr; 5503 ExprEvalContexts.back().NumTypos++; 5504 return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC), 5505 TypoName.getLoc()); 5506 } 5507 5508 void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) { 5509 if (!CDecl) return; 5510 5511 if (isKeyword()) 5512 CorrectionDecls.clear(); 5513 5514 CorrectionDecls.push_back(CDecl); 5515 5516 if (!CorrectionName) 5517 CorrectionName = CDecl->getDeclName(); 5518 } 5519 5520 std::string TypoCorrection::getAsString(const LangOptions &LO) const { 5521 if (CorrectionNameSpec) { 5522 std::string tmpBuffer; 5523 llvm::raw_string_ostream PrefixOStream(tmpBuffer); 5524 CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO)); 5525 PrefixOStream << CorrectionName; 5526 return PrefixOStream.str(); 5527 } 5528 5529 return CorrectionName.getAsString(); 5530 } 5531 5532 bool CorrectionCandidateCallback::ValidateCandidate( 5533 const TypoCorrection &candidate) { 5534 if (!candidate.isResolved()) 5535 return true; 5536 5537 if (candidate.isKeyword()) 5538 return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts || 5539 WantRemainingKeywords || WantObjCSuper; 5540 5541 bool HasNonType = false; 5542 bool HasStaticMethod = false; 5543 bool HasNonStaticMethod = false; 5544 for (Decl *D : candidate) { 5545 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D)) 5546 D = FTD->getTemplatedDecl(); 5547 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 5548 if (Method->isStatic()) 5549 HasStaticMethod = true; 5550 else 5551 HasNonStaticMethod = true; 5552 } 5553 if (!isa<TypeDecl>(D)) 5554 HasNonType = true; 5555 } 5556 5557 if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod && 5558 !candidate.getCorrectionSpecifier()) 5559 return false; 5560 5561 return WantTypeSpecifiers || HasNonType; 5562 } 5563 5564 FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs, 5565 bool HasExplicitTemplateArgs, 5566 MemberExpr *ME) 5567 : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs), 5568 CurContext(SemaRef.CurContext), MemberFn(ME) { 5569 WantTypeSpecifiers = false; 5570 WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus && 5571 !HasExplicitTemplateArgs && NumArgs == 1; 5572 WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1; 5573 WantRemainingKeywords = false; 5574 } 5575 5576 bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) { 5577 if (!candidate.getCorrectionDecl()) 5578 return candidate.isKeyword(); 5579 5580 for (auto *C : candidate) { 5581 FunctionDecl *FD = nullptr; 5582 NamedDecl *ND = C->getUnderlyingDecl(); 5583 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 5584 FD = FTD->getTemplatedDecl(); 5585 if (!HasExplicitTemplateArgs && !FD) { 5586 if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) { 5587 // If the Decl is neither a function nor a template function, 5588 // determine if it is a pointer or reference to a function. If so, 5589 // check against the number of arguments expected for the pointee. 5590 QualType ValType = cast<ValueDecl>(ND)->getType(); 5591 if (ValType.isNull()) 5592 continue; 5593 if (ValType->isAnyPointerType() || ValType->isReferenceType()) 5594 ValType = ValType->getPointeeType(); 5595 if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>()) 5596 if (FPT->getNumParams() == NumArgs) 5597 return true; 5598 } 5599 } 5600 5601 // A typo for a function-style cast can look like a function call in C++. 5602 if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr 5603 : isa<TypeDecl>(ND)) && 5604 CurContext->getParentASTContext().getLangOpts().CPlusPlus) 5605 // Only a class or class template can take two or more arguments. 5606 return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND); 5607 5608 // Skip the current candidate if it is not a FunctionDecl or does not accept 5609 // the current number of arguments. 5610 if (!FD || !(FD->getNumParams() >= NumArgs && 5611 FD->getMinRequiredArguments() <= NumArgs)) 5612 continue; 5613 5614 // If the current candidate is a non-static C++ method, skip the candidate 5615 // unless the method being corrected--or the current DeclContext, if the 5616 // function being corrected is not a method--is a method in the same class 5617 // or a descendent class of the candidate's parent class. 5618 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 5619 if (MemberFn || !MD->isStatic()) { 5620 CXXMethodDecl *CurMD = 5621 MemberFn 5622 ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl()) 5623 : dyn_cast_or_null<CXXMethodDecl>(CurContext); 5624 CXXRecordDecl *CurRD = 5625 CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr; 5626 CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl(); 5627 if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD))) 5628 continue; 5629 } 5630 } 5631 return true; 5632 } 5633 return false; 5634 } 5635 5636 void Sema::diagnoseTypo(const TypoCorrection &Correction, 5637 const PartialDiagnostic &TypoDiag, 5638 bool ErrorRecovery) { 5639 diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl), 5640 ErrorRecovery); 5641 } 5642 5643 /// Find which declaration we should import to provide the definition of 5644 /// the given declaration. 5645 static NamedDecl *getDefinitionToImport(NamedDecl *D) { 5646 if (VarDecl *VD = dyn_cast<VarDecl>(D)) 5647 return VD->getDefinition(); 5648 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) 5649 return FD->getDefinition(); 5650 if (TagDecl *TD = dyn_cast<TagDecl>(D)) 5651 return TD->getDefinition(); 5652 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D)) 5653 return ID->getDefinition(); 5654 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D)) 5655 return PD->getDefinition(); 5656 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) 5657 if (NamedDecl *TTD = TD->getTemplatedDecl()) 5658 return getDefinitionToImport(TTD); 5659 return nullptr; 5660 } 5661 5662 void Sema::diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl, 5663 MissingImportKind MIK, bool Recover) { 5664 // Suggest importing a module providing the definition of this entity, if 5665 // possible. 5666 NamedDecl *Def = getDefinitionToImport(Decl); 5667 if (!Def) 5668 Def = Decl; 5669 5670 Module *Owner = getOwningModule(Def); 5671 assert(Owner && "definition of hidden declaration is not in a module"); 5672 5673 llvm::SmallVector<Module*, 8> OwningModules; 5674 OwningModules.push_back(Owner); 5675 auto Merged = Context.getModulesWithMergedDefinition(Def); 5676 OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end()); 5677 5678 diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK, 5679 Recover); 5680 } 5681 5682 /// Get a "quoted.h" or <angled.h> include path to use in a diagnostic 5683 /// suggesting the addition of a #include of the specified file. 5684 static std::string getHeaderNameForHeader(Preprocessor &PP, const FileEntry *E, 5685 llvm::StringRef IncludingFile) { 5686 bool IsSystem = false; 5687 auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics( 5688 E, IncludingFile, &IsSystem); 5689 return (IsSystem ? '<' : '"') + Path + (IsSystem ? '>' : '"'); 5690 } 5691 5692 void Sema::diagnoseMissingImport(SourceLocation UseLoc, NamedDecl *Decl, 5693 SourceLocation DeclLoc, 5694 ArrayRef<Module *> Modules, 5695 MissingImportKind MIK, bool Recover) { 5696 assert(!Modules.empty()); 5697 5698 auto NotePrevious = [&] { 5699 // FIXME: Suppress the note backtrace even under 5700 // -fdiagnostics-show-note-include-stack. We don't care how this 5701 // declaration was previously reached. 5702 Diag(DeclLoc, diag::note_unreachable_entity) << (int)MIK; 5703 }; 5704 5705 // Weed out duplicates from module list. 5706 llvm::SmallVector<Module*, 8> UniqueModules; 5707 llvm::SmallDenseSet<Module*, 8> UniqueModuleSet; 5708 for (auto *M : Modules) { 5709 if (M->isGlobalModule() || M->isPrivateModule()) 5710 continue; 5711 if (UniqueModuleSet.insert(M).second) 5712 UniqueModules.push_back(M); 5713 } 5714 5715 // Try to find a suitable header-name to #include. 5716 std::string HeaderName; 5717 if (const FileEntry *Header = 5718 PP.getHeaderToIncludeForDiagnostics(UseLoc, DeclLoc)) { 5719 if (const FileEntry *FE = 5720 SourceMgr.getFileEntryForID(SourceMgr.getFileID(UseLoc))) 5721 HeaderName = getHeaderNameForHeader(PP, Header, FE->tryGetRealPathName()); 5722 } 5723 5724 // If we have a #include we should suggest, or if all definition locations 5725 // were in global module fragments, don't suggest an import. 5726 if (!HeaderName.empty() || UniqueModules.empty()) { 5727 // FIXME: Find a smart place to suggest inserting a #include, and add 5728 // a FixItHint there. 5729 Diag(UseLoc, diag::err_module_unimported_use_header) 5730 << (int)MIK << Decl << !HeaderName.empty() << HeaderName; 5731 // Produce a note showing where the entity was declared. 5732 NotePrevious(); 5733 if (Recover) 5734 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]); 5735 return; 5736 } 5737 5738 Modules = UniqueModules; 5739 5740 if (Modules.size() > 1) { 5741 std::string ModuleList; 5742 unsigned N = 0; 5743 for (Module *M : Modules) { 5744 ModuleList += "\n "; 5745 if (++N == 5 && N != Modules.size()) { 5746 ModuleList += "[...]"; 5747 break; 5748 } 5749 ModuleList += M->getFullModuleName(); 5750 } 5751 5752 Diag(UseLoc, diag::err_module_unimported_use_multiple) 5753 << (int)MIK << Decl << ModuleList; 5754 } else { 5755 // FIXME: Add a FixItHint that imports the corresponding module. 5756 Diag(UseLoc, diag::err_module_unimported_use) 5757 << (int)MIK << Decl << Modules[0]->getFullModuleName(); 5758 } 5759 5760 NotePrevious(); 5761 5762 // Try to recover by implicitly importing this module. 5763 if (Recover) 5764 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]); 5765 } 5766 5767 /// Diagnose a successfully-corrected typo. Separated from the correction 5768 /// itself to allow external validation of the result, etc. 5769 /// 5770 /// \param Correction The result of performing typo correction. 5771 /// \param TypoDiag The diagnostic to produce. This will have the corrected 5772 /// string added to it (and usually also a fixit). 5773 /// \param PrevNote A note to use when indicating the location of the entity to 5774 /// which we are correcting. Will have the correction string added to it. 5775 /// \param ErrorRecovery If \c true (the default), the caller is going to 5776 /// recover from the typo as if the corrected string had been typed. 5777 /// In this case, \c PDiag must be an error, and we will attach a fixit 5778 /// to it. 5779 void Sema::diagnoseTypo(const TypoCorrection &Correction, 5780 const PartialDiagnostic &TypoDiag, 5781 const PartialDiagnostic &PrevNote, 5782 bool ErrorRecovery) { 5783 std::string CorrectedStr = Correction.getAsString(getLangOpts()); 5784 std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts()); 5785 FixItHint FixTypo = FixItHint::CreateReplacement( 5786 Correction.getCorrectionRange(), CorrectedStr); 5787 5788 // Maybe we're just missing a module import. 5789 if (Correction.requiresImport()) { 5790 NamedDecl *Decl = Correction.getFoundDecl(); 5791 assert(Decl && "import required but no declaration to import"); 5792 5793 diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl, 5794 MissingImportKind::Declaration, ErrorRecovery); 5795 return; 5796 } 5797 5798 Diag(Correction.getCorrectionRange().getBegin(), TypoDiag) 5799 << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint()); 5800 5801 NamedDecl *ChosenDecl = 5802 Correction.isKeyword() ? nullptr : Correction.getFoundDecl(); 5803 if (PrevNote.getDiagID() && ChosenDecl) 5804 Diag(ChosenDecl->getLocation(), PrevNote) 5805 << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo); 5806 5807 // Add any extra diagnostics. 5808 for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics()) 5809 Diag(Correction.getCorrectionRange().getBegin(), PD); 5810 } 5811 5812 TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC, 5813 TypoDiagnosticGenerator TDG, 5814 TypoRecoveryCallback TRC, 5815 SourceLocation TypoLoc) { 5816 assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer"); 5817 auto TE = new (Context) TypoExpr(Context.DependentTy, TypoLoc); 5818 auto &State = DelayedTypos[TE]; 5819 State.Consumer = std::move(TCC); 5820 State.DiagHandler = std::move(TDG); 5821 State.RecoveryHandler = std::move(TRC); 5822 if (TE) 5823 TypoExprs.push_back(TE); 5824 return TE; 5825 } 5826 5827 const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const { 5828 auto Entry = DelayedTypos.find(TE); 5829 assert(Entry != DelayedTypos.end() && 5830 "Failed to get the state for a TypoExpr!"); 5831 return Entry->second; 5832 } 5833 5834 void Sema::clearDelayedTypo(TypoExpr *TE) { 5835 DelayedTypos.erase(TE); 5836 } 5837 5838 void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) { 5839 DeclarationNameInfo Name(II, IILoc); 5840 LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration); 5841 R.suppressDiagnostics(); 5842 R.setHideTags(false); 5843 LookupName(R, S); 5844 R.dump(); 5845 } 5846