xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaLookup.cpp (revision 6132212808e8dccedc9e5d85fea4390c2f38059a)
1 //===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements name lookup for C, C++, Objective-C, and
10 //  Objective-C++.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclLookups.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/Basic/Builtins.h"
24 #include "clang/Basic/FileManager.h"
25 #include "clang/Basic/LangOptions.h"
26 #include "clang/Lex/HeaderSearch.h"
27 #include "clang/Lex/ModuleLoader.h"
28 #include "clang/Lex/Preprocessor.h"
29 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/Lookup.h"
31 #include "clang/Sema/Overload.h"
32 #include "clang/Sema/Scope.h"
33 #include "clang/Sema/ScopeInfo.h"
34 #include "clang/Sema/Sema.h"
35 #include "clang/Sema/SemaInternal.h"
36 #include "clang/Sema/TemplateDeduction.h"
37 #include "clang/Sema/TypoCorrection.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/TinyPtrVector.h"
41 #include "llvm/ADT/edit_distance.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include <algorithm>
44 #include <iterator>
45 #include <list>
46 #include <set>
47 #include <utility>
48 #include <vector>
49 
50 #include "OpenCLBuiltins.inc"
51 
52 using namespace clang;
53 using namespace sema;
54 
55 namespace {
56   class UnqualUsingEntry {
57     const DeclContext *Nominated;
58     const DeclContext *CommonAncestor;
59 
60   public:
61     UnqualUsingEntry(const DeclContext *Nominated,
62                      const DeclContext *CommonAncestor)
63       : Nominated(Nominated), CommonAncestor(CommonAncestor) {
64     }
65 
66     const DeclContext *getCommonAncestor() const {
67       return CommonAncestor;
68     }
69 
70     const DeclContext *getNominatedNamespace() const {
71       return Nominated;
72     }
73 
74     // Sort by the pointer value of the common ancestor.
75     struct Comparator {
76       bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
77         return L.getCommonAncestor() < R.getCommonAncestor();
78       }
79 
80       bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
81         return E.getCommonAncestor() < DC;
82       }
83 
84       bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
85         return DC < E.getCommonAncestor();
86       }
87     };
88   };
89 
90   /// A collection of using directives, as used by C++ unqualified
91   /// lookup.
92   class UnqualUsingDirectiveSet {
93     Sema &SemaRef;
94 
95     typedef SmallVector<UnqualUsingEntry, 8> ListTy;
96 
97     ListTy list;
98     llvm::SmallPtrSet<DeclContext*, 8> visited;
99 
100   public:
101     UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {}
102 
103     void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
104       // C++ [namespace.udir]p1:
105       //   During unqualified name lookup, the names appear as if they
106       //   were declared in the nearest enclosing namespace which contains
107       //   both the using-directive and the nominated namespace.
108       DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
109       assert(InnermostFileDC && InnermostFileDC->isFileContext());
110 
111       for (; S; S = S->getParent()) {
112         // C++ [namespace.udir]p1:
113         //   A using-directive shall not appear in class scope, but may
114         //   appear in namespace scope or in block scope.
115         DeclContext *Ctx = S->getEntity();
116         if (Ctx && Ctx->isFileContext()) {
117           visit(Ctx, Ctx);
118         } else if (!Ctx || Ctx->isFunctionOrMethod()) {
119           for (auto *I : S->using_directives())
120             if (SemaRef.isVisible(I))
121               visit(I, InnermostFileDC);
122         }
123       }
124     }
125 
126     // Visits a context and collect all of its using directives
127     // recursively.  Treats all using directives as if they were
128     // declared in the context.
129     //
130     // A given context is only every visited once, so it is important
131     // that contexts be visited from the inside out in order to get
132     // the effective DCs right.
133     void visit(DeclContext *DC, DeclContext *EffectiveDC) {
134       if (!visited.insert(DC).second)
135         return;
136 
137       addUsingDirectives(DC, EffectiveDC);
138     }
139 
140     // Visits a using directive and collects all of its using
141     // directives recursively.  Treats all using directives as if they
142     // were declared in the effective DC.
143     void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
144       DeclContext *NS = UD->getNominatedNamespace();
145       if (!visited.insert(NS).second)
146         return;
147 
148       addUsingDirective(UD, EffectiveDC);
149       addUsingDirectives(NS, EffectiveDC);
150     }
151 
152     // Adds all the using directives in a context (and those nominated
153     // by its using directives, transitively) as if they appeared in
154     // the given effective context.
155     void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
156       SmallVector<DeclContext*, 4> queue;
157       while (true) {
158         for (auto UD : DC->using_directives()) {
159           DeclContext *NS = UD->getNominatedNamespace();
160           if (SemaRef.isVisible(UD) && visited.insert(NS).second) {
161             addUsingDirective(UD, EffectiveDC);
162             queue.push_back(NS);
163           }
164         }
165 
166         if (queue.empty())
167           return;
168 
169         DC = queue.pop_back_val();
170       }
171     }
172 
173     // Add a using directive as if it had been declared in the given
174     // context.  This helps implement C++ [namespace.udir]p3:
175     //   The using-directive is transitive: if a scope contains a
176     //   using-directive that nominates a second namespace that itself
177     //   contains using-directives, the effect is as if the
178     //   using-directives from the second namespace also appeared in
179     //   the first.
180     void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
181       // Find the common ancestor between the effective context and
182       // the nominated namespace.
183       DeclContext *Common = UD->getNominatedNamespace();
184       while (!Common->Encloses(EffectiveDC))
185         Common = Common->getParent();
186       Common = Common->getPrimaryContext();
187 
188       list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
189     }
190 
191     void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); }
192 
193     typedef ListTy::const_iterator const_iterator;
194 
195     const_iterator begin() const { return list.begin(); }
196     const_iterator end() const { return list.end(); }
197 
198     llvm::iterator_range<const_iterator>
199     getNamespacesFor(DeclContext *DC) const {
200       return llvm::make_range(std::equal_range(begin(), end(),
201                                                DC->getPrimaryContext(),
202                                                UnqualUsingEntry::Comparator()));
203     }
204   };
205 } // end anonymous namespace
206 
207 // Retrieve the set of identifier namespaces that correspond to a
208 // specific kind of name lookup.
209 static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
210                                bool CPlusPlus,
211                                bool Redeclaration) {
212   unsigned IDNS = 0;
213   switch (NameKind) {
214   case Sema::LookupObjCImplicitSelfParam:
215   case Sema::LookupOrdinaryName:
216   case Sema::LookupRedeclarationWithLinkage:
217   case Sema::LookupLocalFriendName:
218   case Sema::LookupDestructorName:
219     IDNS = Decl::IDNS_Ordinary;
220     if (CPlusPlus) {
221       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
222       if (Redeclaration)
223         IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
224     }
225     if (Redeclaration)
226       IDNS |= Decl::IDNS_LocalExtern;
227     break;
228 
229   case Sema::LookupOperatorName:
230     // Operator lookup is its own crazy thing;  it is not the same
231     // as (e.g.) looking up an operator name for redeclaration.
232     assert(!Redeclaration && "cannot do redeclaration operator lookup");
233     IDNS = Decl::IDNS_NonMemberOperator;
234     break;
235 
236   case Sema::LookupTagName:
237     if (CPlusPlus) {
238       IDNS = Decl::IDNS_Type;
239 
240       // When looking for a redeclaration of a tag name, we add:
241       // 1) TagFriend to find undeclared friend decls
242       // 2) Namespace because they can't "overload" with tag decls.
243       // 3) Tag because it includes class templates, which can't
244       //    "overload" with tag decls.
245       if (Redeclaration)
246         IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
247     } else {
248       IDNS = Decl::IDNS_Tag;
249     }
250     break;
251 
252   case Sema::LookupLabel:
253     IDNS = Decl::IDNS_Label;
254     break;
255 
256   case Sema::LookupMemberName:
257     IDNS = Decl::IDNS_Member;
258     if (CPlusPlus)
259       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
260     break;
261 
262   case Sema::LookupNestedNameSpecifierName:
263     IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
264     break;
265 
266   case Sema::LookupNamespaceName:
267     IDNS = Decl::IDNS_Namespace;
268     break;
269 
270   case Sema::LookupUsingDeclName:
271     assert(Redeclaration && "should only be used for redecl lookup");
272     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
273            Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
274            Decl::IDNS_LocalExtern;
275     break;
276 
277   case Sema::LookupObjCProtocolName:
278     IDNS = Decl::IDNS_ObjCProtocol;
279     break;
280 
281   case Sema::LookupOMPReductionName:
282     IDNS = Decl::IDNS_OMPReduction;
283     break;
284 
285   case Sema::LookupOMPMapperName:
286     IDNS = Decl::IDNS_OMPMapper;
287     break;
288 
289   case Sema::LookupAnyName:
290     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
291       | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
292       | Decl::IDNS_Type;
293     break;
294   }
295   return IDNS;
296 }
297 
298 void LookupResult::configure() {
299   IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
300                  isForRedeclaration());
301 
302   // If we're looking for one of the allocation or deallocation
303   // operators, make sure that the implicitly-declared new and delete
304   // operators can be found.
305   switch (NameInfo.getName().getCXXOverloadedOperator()) {
306   case OO_New:
307   case OO_Delete:
308   case OO_Array_New:
309   case OO_Array_Delete:
310     getSema().DeclareGlobalNewDelete();
311     break;
312 
313   default:
314     break;
315   }
316 
317   // Compiler builtins are always visible, regardless of where they end
318   // up being declared.
319   if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
320     if (unsigned BuiltinID = Id->getBuiltinID()) {
321       if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
322         AllowHidden = true;
323     }
324   }
325 }
326 
327 bool LookupResult::sanity() const {
328   // This function is never called by NDEBUG builds.
329   assert(ResultKind != NotFound || Decls.size() == 0);
330   assert(ResultKind != Found || Decls.size() == 1);
331   assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
332          (Decls.size() == 1 &&
333           isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
334   assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
335   assert(ResultKind != Ambiguous || Decls.size() > 1 ||
336          (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
337                                 Ambiguity == AmbiguousBaseSubobjectTypes)));
338   assert((Paths != nullptr) == (ResultKind == Ambiguous &&
339                                 (Ambiguity == AmbiguousBaseSubobjectTypes ||
340                                  Ambiguity == AmbiguousBaseSubobjects)));
341   return true;
342 }
343 
344 // Necessary because CXXBasePaths is not complete in Sema.h
345 void LookupResult::deletePaths(CXXBasePaths *Paths) {
346   delete Paths;
347 }
348 
349 /// Get a representative context for a declaration such that two declarations
350 /// will have the same context if they were found within the same scope.
351 static DeclContext *getContextForScopeMatching(Decl *D) {
352   // For function-local declarations, use that function as the context. This
353   // doesn't account for scopes within the function; the caller must deal with
354   // those.
355   DeclContext *DC = D->getLexicalDeclContext();
356   if (DC->isFunctionOrMethod())
357     return DC;
358 
359   // Otherwise, look at the semantic context of the declaration. The
360   // declaration must have been found there.
361   return D->getDeclContext()->getRedeclContext();
362 }
363 
364 /// Determine whether \p D is a better lookup result than \p Existing,
365 /// given that they declare the same entity.
366 static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind,
367                                     NamedDecl *D, NamedDecl *Existing) {
368   // When looking up redeclarations of a using declaration, prefer a using
369   // shadow declaration over any other declaration of the same entity.
370   if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
371       !isa<UsingShadowDecl>(Existing))
372     return true;
373 
374   auto *DUnderlying = D->getUnderlyingDecl();
375   auto *EUnderlying = Existing->getUnderlyingDecl();
376 
377   // If they have different underlying declarations, prefer a typedef over the
378   // original type (this happens when two type declarations denote the same
379   // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
380   // might carry additional semantic information, such as an alignment override.
381   // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
382   // declaration over a typedef. Also prefer a tag over a typedef for
383   // destructor name lookup because in some contexts we only accept a
384   // class-name in a destructor declaration.
385   if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
386     assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying));
387     bool HaveTag = isa<TagDecl>(EUnderlying);
388     bool WantTag =
389         Kind == Sema::LookupTagName || Kind == Sema::LookupDestructorName;
390     return HaveTag != WantTag;
391   }
392 
393   // Pick the function with more default arguments.
394   // FIXME: In the presence of ambiguous default arguments, we should keep both,
395   //        so we can diagnose the ambiguity if the default argument is needed.
396   //        See C++ [over.match.best]p3.
397   if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
398     auto *EFD = cast<FunctionDecl>(EUnderlying);
399     unsigned DMin = DFD->getMinRequiredArguments();
400     unsigned EMin = EFD->getMinRequiredArguments();
401     // If D has more default arguments, it is preferred.
402     if (DMin != EMin)
403       return DMin < EMin;
404     // FIXME: When we track visibility for default function arguments, check
405     // that we pick the declaration with more visible default arguments.
406   }
407 
408   // Pick the template with more default template arguments.
409   if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
410     auto *ETD = cast<TemplateDecl>(EUnderlying);
411     unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
412     unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
413     // If D has more default arguments, it is preferred. Note that default
414     // arguments (and their visibility) is monotonically increasing across the
415     // redeclaration chain, so this is a quick proxy for "is more recent".
416     if (DMin != EMin)
417       return DMin < EMin;
418     // If D has more *visible* default arguments, it is preferred. Note, an
419     // earlier default argument being visible does not imply that a later
420     // default argument is visible, so we can't just check the first one.
421     for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
422         I != N; ++I) {
423       if (!S.hasVisibleDefaultArgument(
424               ETD->getTemplateParameters()->getParam(I)) &&
425           S.hasVisibleDefaultArgument(
426               DTD->getTemplateParameters()->getParam(I)))
427         return true;
428     }
429   }
430 
431   // VarDecl can have incomplete array types, prefer the one with more complete
432   // array type.
433   if (VarDecl *DVD = dyn_cast<VarDecl>(DUnderlying)) {
434     VarDecl *EVD = cast<VarDecl>(EUnderlying);
435     if (EVD->getType()->isIncompleteType() &&
436         !DVD->getType()->isIncompleteType()) {
437       // Prefer the decl with a more complete type if visible.
438       return S.isVisible(DVD);
439     }
440     return false; // Avoid picking up a newer decl, just because it was newer.
441   }
442 
443   // For most kinds of declaration, it doesn't really matter which one we pick.
444   if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
445     // If the existing declaration is hidden, prefer the new one. Otherwise,
446     // keep what we've got.
447     return !S.isVisible(Existing);
448   }
449 
450   // Pick the newer declaration; it might have a more precise type.
451   for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
452        Prev = Prev->getPreviousDecl())
453     if (Prev == EUnderlying)
454       return true;
455   return false;
456 }
457 
458 /// Determine whether \p D can hide a tag declaration.
459 static bool canHideTag(NamedDecl *D) {
460   // C++ [basic.scope.declarative]p4:
461   //   Given a set of declarations in a single declarative region [...]
462   //   exactly one declaration shall declare a class name or enumeration name
463   //   that is not a typedef name and the other declarations shall all refer to
464   //   the same variable, non-static data member, or enumerator, or all refer
465   //   to functions and function templates; in this case the class name or
466   //   enumeration name is hidden.
467   // C++ [basic.scope.hiding]p2:
468   //   A class name or enumeration name can be hidden by the name of a
469   //   variable, data member, function, or enumerator declared in the same
470   //   scope.
471   // An UnresolvedUsingValueDecl always instantiates to one of these.
472   D = D->getUnderlyingDecl();
473   return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
474          isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) ||
475          isa<UnresolvedUsingValueDecl>(D);
476 }
477 
478 /// Resolves the result kind of this lookup.
479 void LookupResult::resolveKind() {
480   unsigned N = Decls.size();
481 
482   // Fast case: no possible ambiguity.
483   if (N == 0) {
484     assert(ResultKind == NotFound ||
485            ResultKind == NotFoundInCurrentInstantiation);
486     return;
487   }
488 
489   // If there's a single decl, we need to examine it to decide what
490   // kind of lookup this is.
491   if (N == 1) {
492     NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
493     if (isa<FunctionTemplateDecl>(D))
494       ResultKind = FoundOverloaded;
495     else if (isa<UnresolvedUsingValueDecl>(D))
496       ResultKind = FoundUnresolvedValue;
497     return;
498   }
499 
500   // Don't do any extra resolution if we've already resolved as ambiguous.
501   if (ResultKind == Ambiguous) return;
502 
503   llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique;
504   llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
505 
506   bool Ambiguous = false;
507   bool HasTag = false, HasFunction = false;
508   bool HasFunctionTemplate = false, HasUnresolved = false;
509   NamedDecl *HasNonFunction = nullptr;
510 
511   llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions;
512 
513   unsigned UniqueTagIndex = 0;
514 
515   unsigned I = 0;
516   while (I < N) {
517     NamedDecl *D = Decls[I]->getUnderlyingDecl();
518     D = cast<NamedDecl>(D->getCanonicalDecl());
519 
520     // Ignore an invalid declaration unless it's the only one left.
521     if (D->isInvalidDecl() && !(I == 0 && N == 1)) {
522       Decls[I] = Decls[--N];
523       continue;
524     }
525 
526     llvm::Optional<unsigned> ExistingI;
527 
528     // Redeclarations of types via typedef can occur both within a scope
529     // and, through using declarations and directives, across scopes. There is
530     // no ambiguity if they all refer to the same type, so unique based on the
531     // canonical type.
532     if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
533       QualType T = getSema().Context.getTypeDeclType(TD);
534       auto UniqueResult = UniqueTypes.insert(
535           std::make_pair(getSema().Context.getCanonicalType(T), I));
536       if (!UniqueResult.second) {
537         // The type is not unique.
538         ExistingI = UniqueResult.first->second;
539       }
540     }
541 
542     // For non-type declarations, check for a prior lookup result naming this
543     // canonical declaration.
544     if (!ExistingI) {
545       auto UniqueResult = Unique.insert(std::make_pair(D, I));
546       if (!UniqueResult.second) {
547         // We've seen this entity before.
548         ExistingI = UniqueResult.first->second;
549       }
550     }
551 
552     if (ExistingI) {
553       // This is not a unique lookup result. Pick one of the results and
554       // discard the other.
555       if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
556                                   Decls[*ExistingI]))
557         Decls[*ExistingI] = Decls[I];
558       Decls[I] = Decls[--N];
559       continue;
560     }
561 
562     // Otherwise, do some decl type analysis and then continue.
563 
564     if (isa<UnresolvedUsingValueDecl>(D)) {
565       HasUnresolved = true;
566     } else if (isa<TagDecl>(D)) {
567       if (HasTag)
568         Ambiguous = true;
569       UniqueTagIndex = I;
570       HasTag = true;
571     } else if (isa<FunctionTemplateDecl>(D)) {
572       HasFunction = true;
573       HasFunctionTemplate = true;
574     } else if (isa<FunctionDecl>(D)) {
575       HasFunction = true;
576     } else {
577       if (HasNonFunction) {
578         // If we're about to create an ambiguity between two declarations that
579         // are equivalent, but one is an internal linkage declaration from one
580         // module and the other is an internal linkage declaration from another
581         // module, just skip it.
582         if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
583                                                              D)) {
584           EquivalentNonFunctions.push_back(D);
585           Decls[I] = Decls[--N];
586           continue;
587         }
588 
589         Ambiguous = true;
590       }
591       HasNonFunction = D;
592     }
593     I++;
594   }
595 
596   // C++ [basic.scope.hiding]p2:
597   //   A class name or enumeration name can be hidden by the name of
598   //   an object, function, or enumerator declared in the same
599   //   scope. If a class or enumeration name and an object, function,
600   //   or enumerator are declared in the same scope (in any order)
601   //   with the same name, the class or enumeration name is hidden
602   //   wherever the object, function, or enumerator name is visible.
603   // But it's still an error if there are distinct tag types found,
604   // even if they're not visible. (ref?)
605   if (N > 1 && HideTags && HasTag && !Ambiguous &&
606       (HasFunction || HasNonFunction || HasUnresolved)) {
607     NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1];
608     if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) &&
609         getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
610             getContextForScopeMatching(OtherDecl)) &&
611         canHideTag(OtherDecl))
612       Decls[UniqueTagIndex] = Decls[--N];
613     else
614       Ambiguous = true;
615   }
616 
617   // FIXME: This diagnostic should really be delayed until we're done with
618   // the lookup result, in case the ambiguity is resolved by the caller.
619   if (!EquivalentNonFunctions.empty() && !Ambiguous)
620     getSema().diagnoseEquivalentInternalLinkageDeclarations(
621         getNameLoc(), HasNonFunction, EquivalentNonFunctions);
622 
623   Decls.set_size(N);
624 
625   if (HasNonFunction && (HasFunction || HasUnresolved))
626     Ambiguous = true;
627 
628   if (Ambiguous)
629     setAmbiguous(LookupResult::AmbiguousReference);
630   else if (HasUnresolved)
631     ResultKind = LookupResult::FoundUnresolvedValue;
632   else if (N > 1 || HasFunctionTemplate)
633     ResultKind = LookupResult::FoundOverloaded;
634   else
635     ResultKind = LookupResult::Found;
636 }
637 
638 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
639   CXXBasePaths::const_paths_iterator I, E;
640   for (I = P.begin(), E = P.end(); I != E; ++I)
641     for (DeclContext::lookup_iterator DI = I->Decls.begin(),
642          DE = I->Decls.end(); DI != DE; ++DI)
643       addDecl(*DI);
644 }
645 
646 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
647   Paths = new CXXBasePaths;
648   Paths->swap(P);
649   addDeclsFromBasePaths(*Paths);
650   resolveKind();
651   setAmbiguous(AmbiguousBaseSubobjects);
652 }
653 
654 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
655   Paths = new CXXBasePaths;
656   Paths->swap(P);
657   addDeclsFromBasePaths(*Paths);
658   resolveKind();
659   setAmbiguous(AmbiguousBaseSubobjectTypes);
660 }
661 
662 void LookupResult::print(raw_ostream &Out) {
663   Out << Decls.size() << " result(s)";
664   if (isAmbiguous()) Out << ", ambiguous";
665   if (Paths) Out << ", base paths present";
666 
667   for (iterator I = begin(), E = end(); I != E; ++I) {
668     Out << "\n";
669     (*I)->print(Out, 2);
670   }
671 }
672 
673 LLVM_DUMP_METHOD void LookupResult::dump() {
674   llvm::errs() << "lookup results for " << getLookupName().getAsString()
675                << ":\n";
676   for (NamedDecl *D : *this)
677     D->dump();
678 }
679 
680 /// Get the QualType instances of the return type and arguments for an OpenCL
681 /// builtin function signature.
682 /// \param Context (in) The Context instance.
683 /// \param OpenCLBuiltin (in) The signature currently handled.
684 /// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic
685 ///        type used as return type or as argument.
686 ///        Only meaningful for generic types, otherwise equals 1.
687 /// \param RetTypes (out) List of the possible return types.
688 /// \param ArgTypes (out) List of the possible argument types.  For each
689 ///        argument, ArgTypes contains QualTypes for the Cartesian product
690 ///        of (vector sizes) x (types) .
691 static void GetQualTypesForOpenCLBuiltin(
692     ASTContext &Context, const OpenCLBuiltinStruct &OpenCLBuiltin,
693     unsigned &GenTypeMaxCnt, SmallVector<QualType, 1> &RetTypes,
694     SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
695   // Get the QualType instances of the return types.
696   unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex];
697   OCL2Qual(Context, TypeTable[Sig], RetTypes);
698   GenTypeMaxCnt = RetTypes.size();
699 
700   // Get the QualType instances of the arguments.
701   // First type is the return type, skip it.
702   for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) {
703     SmallVector<QualType, 1> Ty;
704     OCL2Qual(Context,
705         TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]], Ty);
706     GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt;
707     ArgTypes.push_back(std::move(Ty));
708   }
709 }
710 
711 /// Create a list of the candidate function overloads for an OpenCL builtin
712 /// function.
713 /// \param Context (in) The ASTContext instance.
714 /// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic
715 ///        type used as return type or as argument.
716 ///        Only meaningful for generic types, otherwise equals 1.
717 /// \param FunctionList (out) List of FunctionTypes.
718 /// \param RetTypes (in) List of the possible return types.
719 /// \param ArgTypes (in) List of the possible types for the arguments.
720 static void GetOpenCLBuiltinFctOverloads(
721     ASTContext &Context, unsigned GenTypeMaxCnt,
722     std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes,
723     SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
724   FunctionProtoType::ExtProtoInfo PI;
725   PI.Variadic = false;
726 
727   // Create FunctionTypes for each (gen)type.
728   for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) {
729     SmallVector<QualType, 5> ArgList;
730 
731     for (unsigned A = 0; A < ArgTypes.size(); A++) {
732       // Builtins such as "max" have an "sgentype" argument that represents
733       // the corresponding scalar type of a gentype.  The number of gentypes
734       // must be a multiple of the number of sgentypes.
735       assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 &&
736              "argument type count not compatible with gentype type count");
737       unsigned Idx = IGenType % ArgTypes[A].size();
738       ArgList.push_back(ArgTypes[A][Idx]);
739     }
740 
741     FunctionList.push_back(Context.getFunctionType(
742         RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI));
743   }
744 }
745 
746 /// Add extensions to the function declaration.
747 /// \param S (in/out) The Sema instance.
748 /// \param BIDecl (in) Description of the builtin.
749 /// \param FDecl (in/out) FunctionDecl instance.
750 static void AddOpenCLExtensions(Sema &S, const OpenCLBuiltinStruct &BIDecl,
751                                 FunctionDecl *FDecl) {
752   // Fetch extension associated with a function prototype.
753   StringRef E = FunctionExtensionTable[BIDecl.Extension];
754   if (E != "")
755     S.setOpenCLExtensionForDecl(FDecl, E);
756 }
757 
758 /// When trying to resolve a function name, if isOpenCLBuiltin() returns a
759 /// non-null <Index, Len> pair, then the name is referencing an OpenCL
760 /// builtin function.  Add all candidate signatures to the LookUpResult.
761 ///
762 /// \param S (in) The Sema instance.
763 /// \param LR (inout) The LookupResult instance.
764 /// \param II (in) The identifier being resolved.
765 /// \param FctIndex (in) Starting index in the BuiltinTable.
766 /// \param Len (in) The signature list has Len elements.
767 static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR,
768                                                   IdentifierInfo *II,
769                                                   const unsigned FctIndex,
770                                                   const unsigned Len) {
771   // The builtin function declaration uses generic types (gentype).
772   bool HasGenType = false;
773 
774   // Maximum number of types contained in a generic type used as return type or
775   // as argument.  Only meaningful for generic types, otherwise equals 1.
776   unsigned GenTypeMaxCnt;
777 
778   for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) {
779     const OpenCLBuiltinStruct &OpenCLBuiltin =
780         BuiltinTable[FctIndex + SignatureIndex];
781     ASTContext &Context = S.Context;
782 
783     // Ignore this BIF if its version does not match the language options.
784     unsigned OpenCLVersion = Context.getLangOpts().OpenCLVersion;
785     if (Context.getLangOpts().OpenCLCPlusPlus)
786       OpenCLVersion = 200;
787     if (OpenCLVersion < OpenCLBuiltin.MinVersion)
788       continue;
789     if ((OpenCLBuiltin.MaxVersion != 0) &&
790         (OpenCLVersion >= OpenCLBuiltin.MaxVersion))
791       continue;
792 
793     SmallVector<QualType, 1> RetTypes;
794     SmallVector<SmallVector<QualType, 1>, 5> ArgTypes;
795 
796     // Obtain QualType lists for the function signature.
797     GetQualTypesForOpenCLBuiltin(Context, OpenCLBuiltin, GenTypeMaxCnt,
798                                  RetTypes, ArgTypes);
799     if (GenTypeMaxCnt > 1) {
800       HasGenType = true;
801     }
802 
803     // Create function overload for each type combination.
804     std::vector<QualType> FunctionList;
805     GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes,
806                                  ArgTypes);
807 
808     SourceLocation Loc = LR.getNameLoc();
809     DeclContext *Parent = Context.getTranslationUnitDecl();
810     FunctionDecl *NewOpenCLBuiltin;
811 
812     for (unsigned Index = 0; Index < GenTypeMaxCnt; Index++) {
813       NewOpenCLBuiltin = FunctionDecl::Create(
814           Context, Parent, Loc, Loc, II, FunctionList[Index],
815           /*TInfo=*/nullptr, SC_Extern, false,
816           FunctionList[Index]->isFunctionProtoType());
817       NewOpenCLBuiltin->setImplicit();
818 
819       // Create Decl objects for each parameter, adding them to the
820       // FunctionDecl.
821       if (const FunctionProtoType *FP =
822               dyn_cast<FunctionProtoType>(FunctionList[Index])) {
823         SmallVector<ParmVarDecl *, 16> ParmList;
824         for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) {
825           ParmVarDecl *Parm = ParmVarDecl::Create(
826               Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(),
827               nullptr, FP->getParamType(IParm),
828               /*TInfo=*/nullptr, SC_None, nullptr);
829           Parm->setScopeInfo(0, IParm);
830           ParmList.push_back(Parm);
831         }
832         NewOpenCLBuiltin->setParams(ParmList);
833       }
834 
835       // Add function attributes.
836       if (OpenCLBuiltin.IsPure)
837         NewOpenCLBuiltin->addAttr(PureAttr::CreateImplicit(Context));
838       if (OpenCLBuiltin.IsConst)
839         NewOpenCLBuiltin->addAttr(ConstAttr::CreateImplicit(Context));
840       if (OpenCLBuiltin.IsConv)
841         NewOpenCLBuiltin->addAttr(ConvergentAttr::CreateImplicit(Context));
842 
843       if (!S.getLangOpts().OpenCLCPlusPlus)
844         NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context));
845 
846       AddOpenCLExtensions(S, OpenCLBuiltin, NewOpenCLBuiltin);
847 
848       LR.addDecl(NewOpenCLBuiltin);
849     }
850   }
851 
852   // If we added overloads, need to resolve the lookup result.
853   if (Len > 1 || HasGenType)
854     LR.resolveKind();
855 }
856 
857 /// Lookup a builtin function, when name lookup would otherwise
858 /// fail.
859 bool Sema::LookupBuiltin(LookupResult &R) {
860   Sema::LookupNameKind NameKind = R.getLookupKind();
861 
862   // If we didn't find a use of this identifier, and if the identifier
863   // corresponds to a compiler builtin, create the decl object for the builtin
864   // now, injecting it into translation unit scope, and return it.
865   if (NameKind == Sema::LookupOrdinaryName ||
866       NameKind == Sema::LookupRedeclarationWithLinkage) {
867     IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
868     if (II) {
869       if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) {
870         if (II == getASTContext().getMakeIntegerSeqName()) {
871           R.addDecl(getASTContext().getMakeIntegerSeqDecl());
872           return true;
873         } else if (II == getASTContext().getTypePackElementName()) {
874           R.addDecl(getASTContext().getTypePackElementDecl());
875           return true;
876         }
877       }
878 
879       // Check if this is an OpenCL Builtin, and if so, insert its overloads.
880       if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) {
881         auto Index = isOpenCLBuiltin(II->getName());
882         if (Index.first) {
883           InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1,
884                                                 Index.second);
885           return true;
886         }
887       }
888 
889       // If this is a builtin on this (or all) targets, create the decl.
890       if (unsigned BuiltinID = II->getBuiltinID()) {
891         // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
892         // library functions like 'malloc'. Instead, we'll just error.
893         if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) &&
894             Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
895           return false;
896 
897         if (NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II,
898                                                BuiltinID, TUScope,
899                                                R.isForRedeclaration(),
900                                                R.getNameLoc())) {
901           R.addDecl(D);
902           return true;
903         }
904       }
905     }
906   }
907 
908   return false;
909 }
910 
911 /// Determine whether we can declare a special member function within
912 /// the class at this point.
913 static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
914   // We need to have a definition for the class.
915   if (!Class->getDefinition() || Class->isDependentContext())
916     return false;
917 
918   // We can't be in the middle of defining the class.
919   return !Class->isBeingDefined();
920 }
921 
922 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
923   if (!CanDeclareSpecialMemberFunction(Class))
924     return;
925 
926   // If the default constructor has not yet been declared, do so now.
927   if (Class->needsImplicitDefaultConstructor())
928     DeclareImplicitDefaultConstructor(Class);
929 
930   // If the copy constructor has not yet been declared, do so now.
931   if (Class->needsImplicitCopyConstructor())
932     DeclareImplicitCopyConstructor(Class);
933 
934   // If the copy assignment operator has not yet been declared, do so now.
935   if (Class->needsImplicitCopyAssignment())
936     DeclareImplicitCopyAssignment(Class);
937 
938   if (getLangOpts().CPlusPlus11) {
939     // If the move constructor has not yet been declared, do so now.
940     if (Class->needsImplicitMoveConstructor())
941       DeclareImplicitMoveConstructor(Class);
942 
943     // If the move assignment operator has not yet been declared, do so now.
944     if (Class->needsImplicitMoveAssignment())
945       DeclareImplicitMoveAssignment(Class);
946   }
947 
948   // If the destructor has not yet been declared, do so now.
949   if (Class->needsImplicitDestructor())
950     DeclareImplicitDestructor(Class);
951 }
952 
953 /// Determine whether this is the name of an implicitly-declared
954 /// special member function.
955 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
956   switch (Name.getNameKind()) {
957   case DeclarationName::CXXConstructorName:
958   case DeclarationName::CXXDestructorName:
959     return true;
960 
961   case DeclarationName::CXXOperatorName:
962     return Name.getCXXOverloadedOperator() == OO_Equal;
963 
964   default:
965     break;
966   }
967 
968   return false;
969 }
970 
971 /// If there are any implicit member functions with the given name
972 /// that need to be declared in the given declaration context, do so.
973 static void DeclareImplicitMemberFunctionsWithName(Sema &S,
974                                                    DeclarationName Name,
975                                                    SourceLocation Loc,
976                                                    const DeclContext *DC) {
977   if (!DC)
978     return;
979 
980   switch (Name.getNameKind()) {
981   case DeclarationName::CXXConstructorName:
982     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
983       if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
984         CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
985         if (Record->needsImplicitDefaultConstructor())
986           S.DeclareImplicitDefaultConstructor(Class);
987         if (Record->needsImplicitCopyConstructor())
988           S.DeclareImplicitCopyConstructor(Class);
989         if (S.getLangOpts().CPlusPlus11 &&
990             Record->needsImplicitMoveConstructor())
991           S.DeclareImplicitMoveConstructor(Class);
992       }
993     break;
994 
995   case DeclarationName::CXXDestructorName:
996     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
997       if (Record->getDefinition() && Record->needsImplicitDestructor() &&
998           CanDeclareSpecialMemberFunction(Record))
999         S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
1000     break;
1001 
1002   case DeclarationName::CXXOperatorName:
1003     if (Name.getCXXOverloadedOperator() != OO_Equal)
1004       break;
1005 
1006     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
1007       if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
1008         CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
1009         if (Record->needsImplicitCopyAssignment())
1010           S.DeclareImplicitCopyAssignment(Class);
1011         if (S.getLangOpts().CPlusPlus11 &&
1012             Record->needsImplicitMoveAssignment())
1013           S.DeclareImplicitMoveAssignment(Class);
1014       }
1015     }
1016     break;
1017 
1018   case DeclarationName::CXXDeductionGuideName:
1019     S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc);
1020     break;
1021 
1022   default:
1023     break;
1024   }
1025 }
1026 
1027 // Adds all qualifying matches for a name within a decl context to the
1028 // given lookup result.  Returns true if any matches were found.
1029 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
1030   bool Found = false;
1031 
1032   // Lazily declare C++ special member functions.
1033   if (S.getLangOpts().CPlusPlus)
1034     DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(),
1035                                            DC);
1036 
1037   // Perform lookup into this declaration context.
1038   DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
1039   for (NamedDecl *D : DR) {
1040     if ((D = R.getAcceptableDecl(D))) {
1041       R.addDecl(D);
1042       Found = true;
1043     }
1044   }
1045 
1046   if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R))
1047     return true;
1048 
1049   if (R.getLookupName().getNameKind()
1050         != DeclarationName::CXXConversionFunctionName ||
1051       R.getLookupName().getCXXNameType()->isDependentType() ||
1052       !isa<CXXRecordDecl>(DC))
1053     return Found;
1054 
1055   // C++ [temp.mem]p6:
1056   //   A specialization of a conversion function template is not found by
1057   //   name lookup. Instead, any conversion function templates visible in the
1058   //   context of the use are considered. [...]
1059   const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1060   if (!Record->isCompleteDefinition())
1061     return Found;
1062 
1063   // For conversion operators, 'operator auto' should only match
1064   // 'operator auto'.  Since 'auto' is not a type, it shouldn't be considered
1065   // as a candidate for template substitution.
1066   auto *ContainedDeducedType =
1067       R.getLookupName().getCXXNameType()->getContainedDeducedType();
1068   if (R.getLookupName().getNameKind() ==
1069           DeclarationName::CXXConversionFunctionName &&
1070       ContainedDeducedType && ContainedDeducedType->isUndeducedType())
1071     return Found;
1072 
1073   for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
1074          UEnd = Record->conversion_end(); U != UEnd; ++U) {
1075     FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
1076     if (!ConvTemplate)
1077       continue;
1078 
1079     // When we're performing lookup for the purposes of redeclaration, just
1080     // add the conversion function template. When we deduce template
1081     // arguments for specializations, we'll end up unifying the return
1082     // type of the new declaration with the type of the function template.
1083     if (R.isForRedeclaration()) {
1084       R.addDecl(ConvTemplate);
1085       Found = true;
1086       continue;
1087     }
1088 
1089     // C++ [temp.mem]p6:
1090     //   [...] For each such operator, if argument deduction succeeds
1091     //   (14.9.2.3), the resulting specialization is used as if found by
1092     //   name lookup.
1093     //
1094     // When referencing a conversion function for any purpose other than
1095     // a redeclaration (such that we'll be building an expression with the
1096     // result), perform template argument deduction and place the
1097     // specialization into the result set. We do this to avoid forcing all
1098     // callers to perform special deduction for conversion functions.
1099     TemplateDeductionInfo Info(R.getNameLoc());
1100     FunctionDecl *Specialization = nullptr;
1101 
1102     const FunctionProtoType *ConvProto
1103       = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
1104     assert(ConvProto && "Nonsensical conversion function template type");
1105 
1106     // Compute the type of the function that we would expect the conversion
1107     // function to have, if it were to match the name given.
1108     // FIXME: Calling convention!
1109     FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
1110     EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
1111     EPI.ExceptionSpec = EST_None;
1112     QualType ExpectedType
1113       = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
1114                                             None, EPI);
1115 
1116     // Perform template argument deduction against the type that we would
1117     // expect the function to have.
1118     if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
1119                                             Specialization, Info)
1120           == Sema::TDK_Success) {
1121       R.addDecl(Specialization);
1122       Found = true;
1123     }
1124   }
1125 
1126   return Found;
1127 }
1128 
1129 // Performs C++ unqualified lookup into the given file context.
1130 static bool
1131 CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
1132                    DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
1133 
1134   assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
1135 
1136   // Perform direct name lookup into the LookupCtx.
1137   bool Found = LookupDirect(S, R, NS);
1138 
1139   // Perform direct name lookup into the namespaces nominated by the
1140   // using directives whose common ancestor is this namespace.
1141   for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
1142     if (LookupDirect(S, R, UUE.getNominatedNamespace()))
1143       Found = true;
1144 
1145   R.resolveKind();
1146 
1147   return Found;
1148 }
1149 
1150 static bool isNamespaceOrTranslationUnitScope(Scope *S) {
1151   if (DeclContext *Ctx = S->getEntity())
1152     return Ctx->isFileContext();
1153   return false;
1154 }
1155 
1156 /// Find the outer declaration context from this scope. This indicates the
1157 /// context that we should search up to (exclusive) before considering the
1158 /// parent of the specified scope.
1159 static DeclContext *findOuterContext(Scope *S) {
1160   for (Scope *OuterS = S->getParent(); OuterS; OuterS = OuterS->getParent())
1161     if (DeclContext *DC = OuterS->getLookupEntity())
1162       return DC;
1163   return nullptr;
1164 }
1165 
1166 namespace {
1167 /// An RAII object to specify that we want to find block scope extern
1168 /// declarations.
1169 struct FindLocalExternScope {
1170   FindLocalExternScope(LookupResult &R)
1171       : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
1172                                  Decl::IDNS_LocalExtern) {
1173     R.setFindLocalExtern(R.getIdentifierNamespace() &
1174                          (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator));
1175   }
1176   void restore() {
1177     R.setFindLocalExtern(OldFindLocalExtern);
1178   }
1179   ~FindLocalExternScope() {
1180     restore();
1181   }
1182   LookupResult &R;
1183   bool OldFindLocalExtern;
1184 };
1185 } // end anonymous namespace
1186 
1187 bool Sema::CppLookupName(LookupResult &R, Scope *S) {
1188   assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
1189 
1190   DeclarationName Name = R.getLookupName();
1191   Sema::LookupNameKind NameKind = R.getLookupKind();
1192 
1193   // If this is the name of an implicitly-declared special member function,
1194   // go through the scope stack to implicitly declare
1195   if (isImplicitlyDeclaredMemberFunctionName(Name)) {
1196     for (Scope *PreS = S; PreS; PreS = PreS->getParent())
1197       if (DeclContext *DC = PreS->getEntity())
1198         DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC);
1199   }
1200 
1201   // Implicitly declare member functions with the name we're looking for, if in
1202   // fact we are in a scope where it matters.
1203 
1204   Scope *Initial = S;
1205   IdentifierResolver::iterator
1206     I = IdResolver.begin(Name),
1207     IEnd = IdResolver.end();
1208 
1209   // First we lookup local scope.
1210   // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
1211   // ...During unqualified name lookup (3.4.1), the names appear as if
1212   // they were declared in the nearest enclosing namespace which contains
1213   // both the using-directive and the nominated namespace.
1214   // [Note: in this context, "contains" means "contains directly or
1215   // indirectly".
1216   //
1217   // For example:
1218   // namespace A { int i; }
1219   // void foo() {
1220   //   int i;
1221   //   {
1222   //     using namespace A;
1223   //     ++i; // finds local 'i', A::i appears at global scope
1224   //   }
1225   // }
1226   //
1227   UnqualUsingDirectiveSet UDirs(*this);
1228   bool VisitedUsingDirectives = false;
1229   bool LeftStartingScope = false;
1230 
1231   // When performing a scope lookup, we want to find local extern decls.
1232   FindLocalExternScope FindLocals(R);
1233 
1234   for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
1235     bool SearchNamespaceScope = true;
1236     // Check whether the IdResolver has anything in this scope.
1237     for (; I != IEnd && S->isDeclScope(*I); ++I) {
1238       if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1239         if (NameKind == LookupRedeclarationWithLinkage &&
1240             !(*I)->isTemplateParameter()) {
1241           // If it's a template parameter, we still find it, so we can diagnose
1242           // the invalid redeclaration.
1243 
1244           // Determine whether this (or a previous) declaration is
1245           // out-of-scope.
1246           if (!LeftStartingScope && !Initial->isDeclScope(*I))
1247             LeftStartingScope = true;
1248 
1249           // If we found something outside of our starting scope that
1250           // does not have linkage, skip it.
1251           if (LeftStartingScope && !((*I)->hasLinkage())) {
1252             R.setShadowed();
1253             continue;
1254           }
1255         } else {
1256           // We found something in this scope, we should not look at the
1257           // namespace scope
1258           SearchNamespaceScope = false;
1259         }
1260         R.addDecl(ND);
1261       }
1262     }
1263     if (!SearchNamespaceScope) {
1264       R.resolveKind();
1265       if (S->isClassScope())
1266         if (CXXRecordDecl *Record =
1267                 dyn_cast_or_null<CXXRecordDecl>(S->getEntity()))
1268           R.setNamingClass(Record);
1269       return true;
1270     }
1271 
1272     if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
1273       // C++11 [class.friend]p11:
1274       //   If a friend declaration appears in a local class and the name
1275       //   specified is an unqualified name, a prior declaration is
1276       //   looked up without considering scopes that are outside the
1277       //   innermost enclosing non-class scope.
1278       return false;
1279     }
1280 
1281     if (DeclContext *Ctx = S->getLookupEntity()) {
1282       DeclContext *OuterCtx = findOuterContext(S);
1283       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1284         // We do not directly look into transparent contexts, since
1285         // those entities will be found in the nearest enclosing
1286         // non-transparent context.
1287         if (Ctx->isTransparentContext())
1288           continue;
1289 
1290         // We do not look directly into function or method contexts,
1291         // since all of the local variables and parameters of the
1292         // function/method are present within the Scope.
1293         if (Ctx->isFunctionOrMethod()) {
1294           // If we have an Objective-C instance method, look for ivars
1295           // in the corresponding interface.
1296           if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1297             if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1298               if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1299                 ObjCInterfaceDecl *ClassDeclared;
1300                 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1301                                                  Name.getAsIdentifierInfo(),
1302                                                              ClassDeclared)) {
1303                   if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1304                     R.addDecl(ND);
1305                     R.resolveKind();
1306                     return true;
1307                   }
1308                 }
1309               }
1310           }
1311 
1312           continue;
1313         }
1314 
1315         // If this is a file context, we need to perform unqualified name
1316         // lookup considering using directives.
1317         if (Ctx->isFileContext()) {
1318           // If we haven't handled using directives yet, do so now.
1319           if (!VisitedUsingDirectives) {
1320             // Add using directives from this context up to the top level.
1321             for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1322               if (UCtx->isTransparentContext())
1323                 continue;
1324 
1325               UDirs.visit(UCtx, UCtx);
1326             }
1327 
1328             // Find the innermost file scope, so we can add using directives
1329             // from local scopes.
1330             Scope *InnermostFileScope = S;
1331             while (InnermostFileScope &&
1332                    !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1333               InnermostFileScope = InnermostFileScope->getParent();
1334             UDirs.visitScopeChain(Initial, InnermostFileScope);
1335 
1336             UDirs.done();
1337 
1338             VisitedUsingDirectives = true;
1339           }
1340 
1341           if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1342             R.resolveKind();
1343             return true;
1344           }
1345 
1346           continue;
1347         }
1348 
1349         // Perform qualified name lookup into this context.
1350         // FIXME: In some cases, we know that every name that could be found by
1351         // this qualified name lookup will also be on the identifier chain. For
1352         // example, inside a class without any base classes, we never need to
1353         // perform qualified lookup because all of the members are on top of the
1354         // identifier chain.
1355         if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1356           return true;
1357       }
1358     }
1359   }
1360 
1361   // Stop if we ran out of scopes.
1362   // FIXME:  This really, really shouldn't be happening.
1363   if (!S) return false;
1364 
1365   // If we are looking for members, no need to look into global/namespace scope.
1366   if (NameKind == LookupMemberName)
1367     return false;
1368 
1369   // Collect UsingDirectiveDecls in all scopes, and recursively all
1370   // nominated namespaces by those using-directives.
1371   //
1372   // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1373   // don't build it for each lookup!
1374   if (!VisitedUsingDirectives) {
1375     UDirs.visitScopeChain(Initial, S);
1376     UDirs.done();
1377   }
1378 
1379   // If we're not performing redeclaration lookup, do not look for local
1380   // extern declarations outside of a function scope.
1381   if (!R.isForRedeclaration())
1382     FindLocals.restore();
1383 
1384   // Lookup namespace scope, and global scope.
1385   // Unqualified name lookup in C++ requires looking into scopes
1386   // that aren't strictly lexical, and therefore we walk through the
1387   // context as well as walking through the scopes.
1388   for (; S; S = S->getParent()) {
1389     // Check whether the IdResolver has anything in this scope.
1390     bool Found = false;
1391     for (; I != IEnd && S->isDeclScope(*I); ++I) {
1392       if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1393         // We found something.  Look for anything else in our scope
1394         // with this same name and in an acceptable identifier
1395         // namespace, so that we can construct an overload set if we
1396         // need to.
1397         Found = true;
1398         R.addDecl(ND);
1399       }
1400     }
1401 
1402     if (Found && S->isTemplateParamScope()) {
1403       R.resolveKind();
1404       return true;
1405     }
1406 
1407     DeclContext *Ctx = S->getLookupEntity();
1408     if (Ctx) {
1409       DeclContext *OuterCtx = findOuterContext(S);
1410       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1411         // We do not directly look into transparent contexts, since
1412         // those entities will be found in the nearest enclosing
1413         // non-transparent context.
1414         if (Ctx->isTransparentContext())
1415           continue;
1416 
1417         // If we have a context, and it's not a context stashed in the
1418         // template parameter scope for an out-of-line definition, also
1419         // look into that context.
1420         if (!(Found && S->isTemplateParamScope())) {
1421           assert(Ctx->isFileContext() &&
1422               "We should have been looking only at file context here already.");
1423 
1424           // Look into context considering using-directives.
1425           if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1426             Found = true;
1427         }
1428 
1429         if (Found) {
1430           R.resolveKind();
1431           return true;
1432         }
1433 
1434         if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1435           return false;
1436       }
1437     }
1438 
1439     if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1440       return false;
1441   }
1442 
1443   return !R.empty();
1444 }
1445 
1446 void Sema::makeMergedDefinitionVisible(NamedDecl *ND) {
1447   if (auto *M = getCurrentModule())
1448     Context.mergeDefinitionIntoModule(ND, M);
1449   else
1450     // We're not building a module; just make the definition visible.
1451     ND->setVisibleDespiteOwningModule();
1452 
1453   // If ND is a template declaration, make the template parameters
1454   // visible too. They're not (necessarily) within a mergeable DeclContext.
1455   if (auto *TD = dyn_cast<TemplateDecl>(ND))
1456     for (auto *Param : *TD->getTemplateParameters())
1457       makeMergedDefinitionVisible(Param);
1458 }
1459 
1460 /// Find the module in which the given declaration was defined.
1461 static Module *getDefiningModule(Sema &S, Decl *Entity) {
1462   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1463     // If this function was instantiated from a template, the defining module is
1464     // the module containing the pattern.
1465     if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1466       Entity = Pattern;
1467   } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1468     if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
1469       Entity = Pattern;
1470   } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1471     if (auto *Pattern = ED->getTemplateInstantiationPattern())
1472       Entity = Pattern;
1473   } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1474     if (VarDecl *Pattern = VD->getTemplateInstantiationPattern())
1475       Entity = Pattern;
1476   }
1477 
1478   // Walk up to the containing context. That might also have been instantiated
1479   // from a template.
1480   DeclContext *Context = Entity->getLexicalDeclContext();
1481   if (Context->isFileContext())
1482     return S.getOwningModule(Entity);
1483   return getDefiningModule(S, cast<Decl>(Context));
1484 }
1485 
1486 llvm::DenseSet<Module*> &Sema::getLookupModules() {
1487   unsigned N = CodeSynthesisContexts.size();
1488   for (unsigned I = CodeSynthesisContextLookupModules.size();
1489        I != N; ++I) {
1490     Module *M = CodeSynthesisContexts[I].Entity ?
1491                 getDefiningModule(*this, CodeSynthesisContexts[I].Entity) :
1492                 nullptr;
1493     if (M && !LookupModulesCache.insert(M).second)
1494       M = nullptr;
1495     CodeSynthesisContextLookupModules.push_back(M);
1496   }
1497   return LookupModulesCache;
1498 }
1499 
1500 /// Determine whether the module M is part of the current module from the
1501 /// perspective of a module-private visibility check.
1502 static bool isInCurrentModule(const Module *M, const LangOptions &LangOpts) {
1503   // If M is the global module fragment of a module that we've not yet finished
1504   // parsing, then it must be part of the current module.
1505   return M->getTopLevelModuleName() == LangOpts.CurrentModule ||
1506          (M->Kind == Module::GlobalModuleFragment && !M->Parent);
1507 }
1508 
1509 bool Sema::hasVisibleMergedDefinition(NamedDecl *Def) {
1510   for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1511     if (isModuleVisible(Merged))
1512       return true;
1513   return false;
1514 }
1515 
1516 bool Sema::hasMergedDefinitionInCurrentModule(NamedDecl *Def) {
1517   for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1518     if (isInCurrentModule(Merged, getLangOpts()))
1519       return true;
1520   return false;
1521 }
1522 
1523 template<typename ParmDecl>
1524 static bool
1525 hasVisibleDefaultArgument(Sema &S, const ParmDecl *D,
1526                           llvm::SmallVectorImpl<Module *> *Modules) {
1527   if (!D->hasDefaultArgument())
1528     return false;
1529 
1530   while (D) {
1531     auto &DefaultArg = D->getDefaultArgStorage();
1532     if (!DefaultArg.isInherited() && S.isVisible(D))
1533       return true;
1534 
1535     if (!DefaultArg.isInherited() && Modules) {
1536       auto *NonConstD = const_cast<ParmDecl*>(D);
1537       Modules->push_back(S.getOwningModule(NonConstD));
1538     }
1539 
1540     // If there was a previous default argument, maybe its parameter is visible.
1541     D = DefaultArg.getInheritedFrom();
1542   }
1543   return false;
1544 }
1545 
1546 bool Sema::hasVisibleDefaultArgument(const NamedDecl *D,
1547                                      llvm::SmallVectorImpl<Module *> *Modules) {
1548   if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
1549     return ::hasVisibleDefaultArgument(*this, P, Modules);
1550   if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
1551     return ::hasVisibleDefaultArgument(*this, P, Modules);
1552   return ::hasVisibleDefaultArgument(*this, cast<TemplateTemplateParmDecl>(D),
1553                                      Modules);
1554 }
1555 
1556 template<typename Filter>
1557 static bool hasVisibleDeclarationImpl(Sema &S, const NamedDecl *D,
1558                                       llvm::SmallVectorImpl<Module *> *Modules,
1559                                       Filter F) {
1560   bool HasFilteredRedecls = false;
1561 
1562   for (auto *Redecl : D->redecls()) {
1563     auto *R = cast<NamedDecl>(Redecl);
1564     if (!F(R))
1565       continue;
1566 
1567     if (S.isVisible(R))
1568       return true;
1569 
1570     HasFilteredRedecls = true;
1571 
1572     if (Modules)
1573       Modules->push_back(R->getOwningModule());
1574   }
1575 
1576   // Only return false if there is at least one redecl that is not filtered out.
1577   if (HasFilteredRedecls)
1578     return false;
1579 
1580   return true;
1581 }
1582 
1583 bool Sema::hasVisibleExplicitSpecialization(
1584     const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1585   return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1586     if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1587       return RD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1588     if (auto *FD = dyn_cast<FunctionDecl>(D))
1589       return FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1590     if (auto *VD = dyn_cast<VarDecl>(D))
1591       return VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1592     llvm_unreachable("unknown explicit specialization kind");
1593   });
1594 }
1595 
1596 bool Sema::hasVisibleMemberSpecialization(
1597     const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1598   assert(isa<CXXRecordDecl>(D->getDeclContext()) &&
1599          "not a member specialization");
1600   return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1601     // If the specialization is declared at namespace scope, then it's a member
1602     // specialization declaration. If it's lexically inside the class
1603     // definition then it was instantiated.
1604     //
1605     // FIXME: This is a hack. There should be a better way to determine this.
1606     // FIXME: What about MS-style explicit specializations declared within a
1607     //        class definition?
1608     return D->getLexicalDeclContext()->isFileContext();
1609   });
1610 }
1611 
1612 /// Determine whether a declaration is visible to name lookup.
1613 ///
1614 /// This routine determines whether the declaration D is visible in the current
1615 /// lookup context, taking into account the current template instantiation
1616 /// stack. During template instantiation, a declaration is visible if it is
1617 /// visible from a module containing any entity on the template instantiation
1618 /// path (by instantiating a template, you allow it to see the declarations that
1619 /// your module can see, including those later on in your module).
1620 bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
1621   assert(!D->isUnconditionallyVisible() &&
1622          "should not call this: not in slow case");
1623 
1624   Module *DeclModule = SemaRef.getOwningModule(D);
1625   assert(DeclModule && "hidden decl has no owning module");
1626 
1627   // If the owning module is visible, the decl is visible.
1628   if (SemaRef.isModuleVisible(DeclModule, D->isModulePrivate()))
1629     return true;
1630 
1631   // Determine whether a decl context is a file context for the purpose of
1632   // visibility. This looks through some (export and linkage spec) transparent
1633   // contexts, but not others (enums).
1634   auto IsEffectivelyFileContext = [](const DeclContext *DC) {
1635     return DC->isFileContext() || isa<LinkageSpecDecl>(DC) ||
1636            isa<ExportDecl>(DC);
1637   };
1638 
1639   // If this declaration is not at namespace scope
1640   // then it is visible if its lexical parent has a visible definition.
1641   DeclContext *DC = D->getLexicalDeclContext();
1642   if (DC && !IsEffectivelyFileContext(DC)) {
1643     // For a parameter, check whether our current template declaration's
1644     // lexical context is visible, not whether there's some other visible
1645     // definition of it, because parameters aren't "within" the definition.
1646     //
1647     // In C++ we need to check for a visible definition due to ODR merging,
1648     // and in C we must not because each declaration of a function gets its own
1649     // set of declarations for tags in prototype scope.
1650     bool VisibleWithinParent;
1651     if (D->isTemplateParameter()) {
1652       bool SearchDefinitions = true;
1653       if (const auto *DCD = dyn_cast<Decl>(DC)) {
1654         if (const auto *TD = DCD->getDescribedTemplate()) {
1655           TemplateParameterList *TPL = TD->getTemplateParameters();
1656           auto Index = getDepthAndIndex(D).second;
1657           SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D;
1658         }
1659       }
1660       if (SearchDefinitions)
1661         VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC));
1662       else
1663         VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC));
1664     } else if (isa<ParmVarDecl>(D) ||
1665                (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus))
1666       VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC));
1667     else if (D->isModulePrivate()) {
1668       // A module-private declaration is only visible if an enclosing lexical
1669       // parent was merged with another definition in the current module.
1670       VisibleWithinParent = false;
1671       do {
1672         if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) {
1673           VisibleWithinParent = true;
1674           break;
1675         }
1676         DC = DC->getLexicalParent();
1677       } while (!IsEffectivelyFileContext(DC));
1678     } else {
1679       VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC));
1680     }
1681 
1682     if (VisibleWithinParent && SemaRef.CodeSynthesisContexts.empty() &&
1683         // FIXME: Do something better in this case.
1684         !SemaRef.getLangOpts().ModulesLocalVisibility) {
1685       // Cache the fact that this declaration is implicitly visible because
1686       // its parent has a visible definition.
1687       D->setVisibleDespiteOwningModule();
1688     }
1689     return VisibleWithinParent;
1690   }
1691 
1692   return false;
1693 }
1694 
1695 bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) {
1696   // The module might be ordinarily visible. For a module-private query, that
1697   // means it is part of the current module. For any other query, that means it
1698   // is in our visible module set.
1699   if (ModulePrivate) {
1700     if (isInCurrentModule(M, getLangOpts()))
1701       return true;
1702   } else {
1703     if (VisibleModules.isVisible(M))
1704       return true;
1705   }
1706 
1707   // Otherwise, it might be visible by virtue of the query being within a
1708   // template instantiation or similar that is permitted to look inside M.
1709 
1710   // Find the extra places where we need to look.
1711   const auto &LookupModules = getLookupModules();
1712   if (LookupModules.empty())
1713     return false;
1714 
1715   // If our lookup set contains the module, it's visible.
1716   if (LookupModules.count(M))
1717     return true;
1718 
1719   // For a module-private query, that's everywhere we get to look.
1720   if (ModulePrivate)
1721     return false;
1722 
1723   // Check whether M is transitively exported to an import of the lookup set.
1724   return llvm::any_of(LookupModules, [&](const Module *LookupM) {
1725     return LookupM->isModuleVisible(M);
1726   });
1727 }
1728 
1729 bool Sema::isVisibleSlow(const NamedDecl *D) {
1730   return LookupResult::isVisible(*this, const_cast<NamedDecl*>(D));
1731 }
1732 
1733 bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
1734   // FIXME: If there are both visible and hidden declarations, we need to take
1735   // into account whether redeclaration is possible. Example:
1736   //
1737   // Non-imported module:
1738   //   int f(T);        // #1
1739   // Some TU:
1740   //   static int f(U); // #2, not a redeclaration of #1
1741   //   int f(T);        // #3, finds both, should link with #1 if T != U, but
1742   //                    // with #2 if T == U; neither should be ambiguous.
1743   for (auto *D : R) {
1744     if (isVisible(D))
1745       return true;
1746     assert(D->isExternallyDeclarable() &&
1747            "should not have hidden, non-externally-declarable result here");
1748   }
1749 
1750   // This function is called once "New" is essentially complete, but before a
1751   // previous declaration is attached. We can't query the linkage of "New" in
1752   // general, because attaching the previous declaration can change the
1753   // linkage of New to match the previous declaration.
1754   //
1755   // However, because we've just determined that there is no *visible* prior
1756   // declaration, we can compute the linkage here. There are two possibilities:
1757   //
1758   //  * This is not a redeclaration; it's safe to compute the linkage now.
1759   //
1760   //  * This is a redeclaration of a prior declaration that is externally
1761   //    redeclarable. In that case, the linkage of the declaration is not
1762   //    changed by attaching the prior declaration, because both are externally
1763   //    declarable (and thus ExternalLinkage or VisibleNoLinkage).
1764   //
1765   // FIXME: This is subtle and fragile.
1766   return New->isExternallyDeclarable();
1767 }
1768 
1769 /// Retrieve the visible declaration corresponding to D, if any.
1770 ///
1771 /// This routine determines whether the declaration D is visible in the current
1772 /// module, with the current imports. If not, it checks whether any
1773 /// redeclaration of D is visible, and if so, returns that declaration.
1774 ///
1775 /// \returns D, or a visible previous declaration of D, whichever is more recent
1776 /// and visible. If no declaration of D is visible, returns null.
1777 static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D,
1778                                      unsigned IDNS) {
1779   assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case");
1780 
1781   for (auto RD : D->redecls()) {
1782     // Don't bother with extra checks if we already know this one isn't visible.
1783     if (RD == D)
1784       continue;
1785 
1786     auto ND = cast<NamedDecl>(RD);
1787     // FIXME: This is wrong in the case where the previous declaration is not
1788     // visible in the same scope as D. This needs to be done much more
1789     // carefully.
1790     if (ND->isInIdentifierNamespace(IDNS) &&
1791         LookupResult::isVisible(SemaRef, ND))
1792       return ND;
1793   }
1794 
1795   return nullptr;
1796 }
1797 
1798 bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D,
1799                                      llvm::SmallVectorImpl<Module *> *Modules) {
1800   assert(!isVisible(D) && "not in slow case");
1801   return hasVisibleDeclarationImpl(*this, D, Modules,
1802                                    [](const NamedDecl *) { return true; });
1803 }
1804 
1805 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
1806   if (auto *ND = dyn_cast<NamespaceDecl>(D)) {
1807     // Namespaces are a bit of a special case: we expect there to be a lot of
1808     // redeclarations of some namespaces, all declarations of a namespace are
1809     // essentially interchangeable, all declarations are found by name lookup
1810     // if any is, and namespaces are never looked up during template
1811     // instantiation. So we benefit from caching the check in this case, and
1812     // it is correct to do so.
1813     auto *Key = ND->getCanonicalDecl();
1814     if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key))
1815       return Acceptable;
1816     auto *Acceptable = isVisible(getSema(), Key)
1817                            ? Key
1818                            : findAcceptableDecl(getSema(), Key, IDNS);
1819     if (Acceptable)
1820       getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable));
1821     return Acceptable;
1822   }
1823 
1824   return findAcceptableDecl(getSema(), D, IDNS);
1825 }
1826 
1827 /// Perform unqualified name lookup starting from a given
1828 /// scope.
1829 ///
1830 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1831 /// used to find names within the current scope. For example, 'x' in
1832 /// @code
1833 /// int x;
1834 /// int f() {
1835 ///   return x; // unqualified name look finds 'x' in the global scope
1836 /// }
1837 /// @endcode
1838 ///
1839 /// Different lookup criteria can find different names. For example, a
1840 /// particular scope can have both a struct and a function of the same
1841 /// name, and each can be found by certain lookup criteria. For more
1842 /// information about lookup criteria, see the documentation for the
1843 /// class LookupCriteria.
1844 ///
1845 /// @param S        The scope from which unqualified name lookup will
1846 /// begin. If the lookup criteria permits, name lookup may also search
1847 /// in the parent scopes.
1848 ///
1849 /// @param [in,out] R Specifies the lookup to perform (e.g., the name to
1850 /// look up and the lookup kind), and is updated with the results of lookup
1851 /// including zero or more declarations and possibly additional information
1852 /// used to diagnose ambiguities.
1853 ///
1854 /// @returns \c true if lookup succeeded and false otherwise.
1855 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1856   DeclarationName Name = R.getLookupName();
1857   if (!Name) return false;
1858 
1859   LookupNameKind NameKind = R.getLookupKind();
1860 
1861   if (!getLangOpts().CPlusPlus) {
1862     // Unqualified name lookup in C/Objective-C is purely lexical, so
1863     // search in the declarations attached to the name.
1864     if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1865       // Find the nearest non-transparent declaration scope.
1866       while (!(S->getFlags() & Scope::DeclScope) ||
1867              (S->getEntity() && S->getEntity()->isTransparentContext()))
1868         S = S->getParent();
1869     }
1870 
1871     // When performing a scope lookup, we want to find local extern decls.
1872     FindLocalExternScope FindLocals(R);
1873 
1874     // Scan up the scope chain looking for a decl that matches this
1875     // identifier that is in the appropriate namespace.  This search
1876     // should not take long, as shadowing of names is uncommon, and
1877     // deep shadowing is extremely uncommon.
1878     bool LeftStartingScope = false;
1879 
1880     for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1881                                    IEnd = IdResolver.end();
1882          I != IEnd; ++I)
1883       if (NamedDecl *D = R.getAcceptableDecl(*I)) {
1884         if (NameKind == LookupRedeclarationWithLinkage) {
1885           // Determine whether this (or a previous) declaration is
1886           // out-of-scope.
1887           if (!LeftStartingScope && !S->isDeclScope(*I))
1888             LeftStartingScope = true;
1889 
1890           // If we found something outside of our starting scope that
1891           // does not have linkage, skip it.
1892           if (LeftStartingScope && !((*I)->hasLinkage())) {
1893             R.setShadowed();
1894             continue;
1895           }
1896         }
1897         else if (NameKind == LookupObjCImplicitSelfParam &&
1898                  !isa<ImplicitParamDecl>(*I))
1899           continue;
1900 
1901         R.addDecl(D);
1902 
1903         // Check whether there are any other declarations with the same name
1904         // and in the same scope.
1905         if (I != IEnd) {
1906           // Find the scope in which this declaration was declared (if it
1907           // actually exists in a Scope).
1908           while (S && !S->isDeclScope(D))
1909             S = S->getParent();
1910 
1911           // If the scope containing the declaration is the translation unit,
1912           // then we'll need to perform our checks based on the matching
1913           // DeclContexts rather than matching scopes.
1914           if (S && isNamespaceOrTranslationUnitScope(S))
1915             S = nullptr;
1916 
1917           // Compute the DeclContext, if we need it.
1918           DeclContext *DC = nullptr;
1919           if (!S)
1920             DC = (*I)->getDeclContext()->getRedeclContext();
1921 
1922           IdentifierResolver::iterator LastI = I;
1923           for (++LastI; LastI != IEnd; ++LastI) {
1924             if (S) {
1925               // Match based on scope.
1926               if (!S->isDeclScope(*LastI))
1927                 break;
1928             } else {
1929               // Match based on DeclContext.
1930               DeclContext *LastDC
1931                 = (*LastI)->getDeclContext()->getRedeclContext();
1932               if (!LastDC->Equals(DC))
1933                 break;
1934             }
1935 
1936             // If the declaration is in the right namespace and visible, add it.
1937             if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
1938               R.addDecl(LastD);
1939           }
1940 
1941           R.resolveKind();
1942         }
1943 
1944         return true;
1945       }
1946   } else {
1947     // Perform C++ unqualified name lookup.
1948     if (CppLookupName(R, S))
1949       return true;
1950   }
1951 
1952   // If we didn't find a use of this identifier, and if the identifier
1953   // corresponds to a compiler builtin, create the decl object for the builtin
1954   // now, injecting it into translation unit scope, and return it.
1955   if (AllowBuiltinCreation && LookupBuiltin(R))
1956     return true;
1957 
1958   // If we didn't find a use of this identifier, the ExternalSource
1959   // may be able to handle the situation.
1960   // Note: some lookup failures are expected!
1961   // See e.g. R.isForRedeclaration().
1962   return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
1963 }
1964 
1965 /// Perform qualified name lookup in the namespaces nominated by
1966 /// using directives by the given context.
1967 ///
1968 /// C++98 [namespace.qual]p2:
1969 ///   Given X::m (where X is a user-declared namespace), or given \::m
1970 ///   (where X is the global namespace), let S be the set of all
1971 ///   declarations of m in X and in the transitive closure of all
1972 ///   namespaces nominated by using-directives in X and its used
1973 ///   namespaces, except that using-directives are ignored in any
1974 ///   namespace, including X, directly containing one or more
1975 ///   declarations of m. No namespace is searched more than once in
1976 ///   the lookup of a name. If S is the empty set, the program is
1977 ///   ill-formed. Otherwise, if S has exactly one member, or if the
1978 ///   context of the reference is a using-declaration
1979 ///   (namespace.udecl), S is the required set of declarations of
1980 ///   m. Otherwise if the use of m is not one that allows a unique
1981 ///   declaration to be chosen from S, the program is ill-formed.
1982 ///
1983 /// C++98 [namespace.qual]p5:
1984 ///   During the lookup of a qualified namespace member name, if the
1985 ///   lookup finds more than one declaration of the member, and if one
1986 ///   declaration introduces a class name or enumeration name and the
1987 ///   other declarations either introduce the same object, the same
1988 ///   enumerator or a set of functions, the non-type name hides the
1989 ///   class or enumeration name if and only if the declarations are
1990 ///   from the same namespace; otherwise (the declarations are from
1991 ///   different namespaces), the program is ill-formed.
1992 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
1993                                                  DeclContext *StartDC) {
1994   assert(StartDC->isFileContext() && "start context is not a file context");
1995 
1996   // We have not yet looked into these namespaces, much less added
1997   // their "using-children" to the queue.
1998   SmallVector<NamespaceDecl*, 8> Queue;
1999 
2000   // We have at least added all these contexts to the queue.
2001   llvm::SmallPtrSet<DeclContext*, 8> Visited;
2002   Visited.insert(StartDC);
2003 
2004   // We have already looked into the initial namespace; seed the queue
2005   // with its using-children.
2006   for (auto *I : StartDC->using_directives()) {
2007     NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
2008     if (S.isVisible(I) && Visited.insert(ND).second)
2009       Queue.push_back(ND);
2010   }
2011 
2012   // The easiest way to implement the restriction in [namespace.qual]p5
2013   // is to check whether any of the individual results found a tag
2014   // and, if so, to declare an ambiguity if the final result is not
2015   // a tag.
2016   bool FoundTag = false;
2017   bool FoundNonTag = false;
2018 
2019   LookupResult LocalR(LookupResult::Temporary, R);
2020 
2021   bool Found = false;
2022   while (!Queue.empty()) {
2023     NamespaceDecl *ND = Queue.pop_back_val();
2024 
2025     // We go through some convolutions here to avoid copying results
2026     // between LookupResults.
2027     bool UseLocal = !R.empty();
2028     LookupResult &DirectR = UseLocal ? LocalR : R;
2029     bool FoundDirect = LookupDirect(S, DirectR, ND);
2030 
2031     if (FoundDirect) {
2032       // First do any local hiding.
2033       DirectR.resolveKind();
2034 
2035       // If the local result is a tag, remember that.
2036       if (DirectR.isSingleTagDecl())
2037         FoundTag = true;
2038       else
2039         FoundNonTag = true;
2040 
2041       // Append the local results to the total results if necessary.
2042       if (UseLocal) {
2043         R.addAllDecls(LocalR);
2044         LocalR.clear();
2045       }
2046     }
2047 
2048     // If we find names in this namespace, ignore its using directives.
2049     if (FoundDirect) {
2050       Found = true;
2051       continue;
2052     }
2053 
2054     for (auto I : ND->using_directives()) {
2055       NamespaceDecl *Nom = I->getNominatedNamespace();
2056       if (S.isVisible(I) && Visited.insert(Nom).second)
2057         Queue.push_back(Nom);
2058     }
2059   }
2060 
2061   if (Found) {
2062     if (FoundTag && FoundNonTag)
2063       R.setAmbiguousQualifiedTagHiding();
2064     else
2065       R.resolveKind();
2066   }
2067 
2068   return Found;
2069 }
2070 
2071 /// Callback that looks for any member of a class with the given name.
2072 static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
2073                             CXXBasePath &Path, DeclarationName Name) {
2074   RecordDecl *BaseRecord = Specifier->getType()->castAs<RecordType>()->getDecl();
2075 
2076   Path.Decls = BaseRecord->lookup(Name);
2077   return !Path.Decls.empty();
2078 }
2079 
2080 /// Determine whether the given set of member declarations contains only
2081 /// static members, nested types, and enumerators.
2082 template<typename InputIterator>
2083 static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
2084   Decl *D = (*First)->getUnderlyingDecl();
2085   if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
2086     return true;
2087 
2088   if (isa<CXXMethodDecl>(D)) {
2089     // Determine whether all of the methods are static.
2090     bool AllMethodsAreStatic = true;
2091     for(; First != Last; ++First) {
2092       D = (*First)->getUnderlyingDecl();
2093 
2094       if (!isa<CXXMethodDecl>(D)) {
2095         assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
2096         break;
2097       }
2098 
2099       if (!cast<CXXMethodDecl>(D)->isStatic()) {
2100         AllMethodsAreStatic = false;
2101         break;
2102       }
2103     }
2104 
2105     if (AllMethodsAreStatic)
2106       return true;
2107   }
2108 
2109   return false;
2110 }
2111 
2112 /// Perform qualified name lookup into a given context.
2113 ///
2114 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
2115 /// names when the context of those names is explicit specified, e.g.,
2116 /// "std::vector" or "x->member", or as part of unqualified name lookup.
2117 ///
2118 /// Different lookup criteria can find different names. For example, a
2119 /// particular scope can have both a struct and a function of the same
2120 /// name, and each can be found by certain lookup criteria. For more
2121 /// information about lookup criteria, see the documentation for the
2122 /// class LookupCriteria.
2123 ///
2124 /// \param R captures both the lookup criteria and any lookup results found.
2125 ///
2126 /// \param LookupCtx The context in which qualified name lookup will
2127 /// search. If the lookup criteria permits, name lookup may also search
2128 /// in the parent contexts or (for C++ classes) base classes.
2129 ///
2130 /// \param InUnqualifiedLookup true if this is qualified name lookup that
2131 /// occurs as part of unqualified name lookup.
2132 ///
2133 /// \returns true if lookup succeeded, false if it failed.
2134 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2135                                bool InUnqualifiedLookup) {
2136   assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
2137 
2138   if (!R.getLookupName())
2139     return false;
2140 
2141   // Make sure that the declaration context is complete.
2142   assert((!isa<TagDecl>(LookupCtx) ||
2143           LookupCtx->isDependentContext() ||
2144           cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
2145           cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
2146          "Declaration context must already be complete!");
2147 
2148   struct QualifiedLookupInScope {
2149     bool oldVal;
2150     DeclContext *Context;
2151     // Set flag in DeclContext informing debugger that we're looking for qualified name
2152     QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) {
2153       oldVal = ctx->setUseQualifiedLookup();
2154     }
2155     ~QualifiedLookupInScope() {
2156       Context->setUseQualifiedLookup(oldVal);
2157     }
2158   } QL(LookupCtx);
2159 
2160   if (LookupDirect(*this, R, LookupCtx)) {
2161     R.resolveKind();
2162     if (isa<CXXRecordDecl>(LookupCtx))
2163       R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
2164     return true;
2165   }
2166 
2167   // Don't descend into implied contexts for redeclarations.
2168   // C++98 [namespace.qual]p6:
2169   //   In a declaration for a namespace member in which the
2170   //   declarator-id is a qualified-id, given that the qualified-id
2171   //   for the namespace member has the form
2172   //     nested-name-specifier unqualified-id
2173   //   the unqualified-id shall name a member of the namespace
2174   //   designated by the nested-name-specifier.
2175   // See also [class.mfct]p5 and [class.static.data]p2.
2176   if (R.isForRedeclaration())
2177     return false;
2178 
2179   // If this is a namespace, look it up in the implied namespaces.
2180   if (LookupCtx->isFileContext())
2181     return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
2182 
2183   // If this isn't a C++ class, we aren't allowed to look into base
2184   // classes, we're done.
2185   CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
2186   if (!LookupRec || !LookupRec->getDefinition())
2187     return false;
2188 
2189   // If we're performing qualified name lookup into a dependent class,
2190   // then we are actually looking into a current instantiation. If we have any
2191   // dependent base classes, then we either have to delay lookup until
2192   // template instantiation time (at which point all bases will be available)
2193   // or we have to fail.
2194   if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
2195       LookupRec->hasAnyDependentBases()) {
2196     R.setNotFoundInCurrentInstantiation();
2197     return false;
2198   }
2199 
2200   // Perform lookup into our base classes.
2201   CXXBasePaths Paths;
2202   Paths.setOrigin(LookupRec);
2203 
2204   // Look for this member in our base classes
2205   bool (*BaseCallback)(const CXXBaseSpecifier *Specifier, CXXBasePath &Path,
2206                        DeclarationName Name) = nullptr;
2207   switch (R.getLookupKind()) {
2208     case LookupObjCImplicitSelfParam:
2209     case LookupOrdinaryName:
2210     case LookupMemberName:
2211     case LookupRedeclarationWithLinkage:
2212     case LookupLocalFriendName:
2213     case LookupDestructorName:
2214       BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
2215       break;
2216 
2217     case LookupTagName:
2218       BaseCallback = &CXXRecordDecl::FindTagMember;
2219       break;
2220 
2221     case LookupAnyName:
2222       BaseCallback = &LookupAnyMember;
2223       break;
2224 
2225     case LookupOMPReductionName:
2226       BaseCallback = &CXXRecordDecl::FindOMPReductionMember;
2227       break;
2228 
2229     case LookupOMPMapperName:
2230       BaseCallback = &CXXRecordDecl::FindOMPMapperMember;
2231       break;
2232 
2233     case LookupUsingDeclName:
2234       // This lookup is for redeclarations only.
2235 
2236     case LookupOperatorName:
2237     case LookupNamespaceName:
2238     case LookupObjCProtocolName:
2239     case LookupLabel:
2240       // These lookups will never find a member in a C++ class (or base class).
2241       return false;
2242 
2243     case LookupNestedNameSpecifierName:
2244       BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
2245       break;
2246   }
2247 
2248   DeclarationName Name = R.getLookupName();
2249   if (!LookupRec->lookupInBases(
2250           [=](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
2251             return BaseCallback(Specifier, Path, Name);
2252           },
2253           Paths))
2254     return false;
2255 
2256   R.setNamingClass(LookupRec);
2257 
2258   // C++ [class.member.lookup]p2:
2259   //   [...] If the resulting set of declarations are not all from
2260   //   sub-objects of the same type, or the set has a nonstatic member
2261   //   and includes members from distinct sub-objects, there is an
2262   //   ambiguity and the program is ill-formed. Otherwise that set is
2263   //   the result of the lookup.
2264   QualType SubobjectType;
2265   int SubobjectNumber = 0;
2266   AccessSpecifier SubobjectAccess = AS_none;
2267 
2268   for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
2269        Path != PathEnd; ++Path) {
2270     const CXXBasePathElement &PathElement = Path->back();
2271 
2272     // Pick the best (i.e. most permissive i.e. numerically lowest) access
2273     // across all paths.
2274     SubobjectAccess = std::min(SubobjectAccess, Path->Access);
2275 
2276     // Determine whether we're looking at a distinct sub-object or not.
2277     if (SubobjectType.isNull()) {
2278       // This is the first subobject we've looked at. Record its type.
2279       SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
2280       SubobjectNumber = PathElement.SubobjectNumber;
2281       continue;
2282     }
2283 
2284     if (SubobjectType
2285                  != Context.getCanonicalType(PathElement.Base->getType())) {
2286       // We found members of the given name in two subobjects of
2287       // different types. If the declaration sets aren't the same, this
2288       // lookup is ambiguous.
2289       if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
2290         CXXBasePaths::paths_iterator FirstPath = Paths.begin();
2291         DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
2292         DeclContext::lookup_iterator CurrentD = Path->Decls.begin();
2293 
2294         // Get the decl that we should use for deduplicating this lookup.
2295         auto GetRepresentativeDecl = [&](NamedDecl *D) -> Decl * {
2296           // C++ [temp.local]p3:
2297           //   A lookup that finds an injected-class-name (10.2) can result in
2298           //   an ambiguity in certain cases (for example, if it is found in
2299           //   more than one base class). If all of the injected-class-names
2300           //   that are found refer to specializations of the same class
2301           //   template, and if the name is used as a template-name, the
2302           //   reference refers to the class template itself and not a
2303           //   specialization thereof, and is not ambiguous.
2304           if (R.isTemplateNameLookup())
2305             if (auto *TD = getAsTemplateNameDecl(D))
2306               D = TD;
2307           return D->getUnderlyingDecl()->getCanonicalDecl();
2308         };
2309 
2310         while (FirstD != FirstPath->Decls.end() &&
2311                CurrentD != Path->Decls.end()) {
2312           if (GetRepresentativeDecl(*FirstD) !=
2313               GetRepresentativeDecl(*CurrentD))
2314             break;
2315 
2316           ++FirstD;
2317           ++CurrentD;
2318         }
2319 
2320         if (FirstD == FirstPath->Decls.end() &&
2321             CurrentD == Path->Decls.end())
2322           continue;
2323       }
2324 
2325       R.setAmbiguousBaseSubobjectTypes(Paths);
2326       return true;
2327     }
2328 
2329     if (SubobjectNumber != PathElement.SubobjectNumber) {
2330       // We have a different subobject of the same type.
2331 
2332       // C++ [class.member.lookup]p5:
2333       //   A static member, a nested type or an enumerator defined in
2334       //   a base class T can unambiguously be found even if an object
2335       //   has more than one base class subobject of type T.
2336       if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
2337         continue;
2338 
2339       // We have found a nonstatic member name in multiple, distinct
2340       // subobjects. Name lookup is ambiguous.
2341       R.setAmbiguousBaseSubobjects(Paths);
2342       return true;
2343     }
2344   }
2345 
2346   // Lookup in a base class succeeded; return these results.
2347 
2348   for (auto *D : Paths.front().Decls) {
2349     AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
2350                                                     D->getAccess());
2351     R.addDecl(D, AS);
2352   }
2353   R.resolveKind();
2354   return true;
2355 }
2356 
2357 /// Performs qualified name lookup or special type of lookup for
2358 /// "__super::" scope specifier.
2359 ///
2360 /// This routine is a convenience overload meant to be called from contexts
2361 /// that need to perform a qualified name lookup with an optional C++ scope
2362 /// specifier that might require special kind of lookup.
2363 ///
2364 /// \param R captures both the lookup criteria and any lookup results found.
2365 ///
2366 /// \param LookupCtx The context in which qualified name lookup will
2367 /// search.
2368 ///
2369 /// \param SS An optional C++ scope-specifier.
2370 ///
2371 /// \returns true if lookup succeeded, false if it failed.
2372 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2373                                CXXScopeSpec &SS) {
2374   auto *NNS = SS.getScopeRep();
2375   if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
2376     return LookupInSuper(R, NNS->getAsRecordDecl());
2377   else
2378 
2379     return LookupQualifiedName(R, LookupCtx);
2380 }
2381 
2382 /// Performs name lookup for a name that was parsed in the
2383 /// source code, and may contain a C++ scope specifier.
2384 ///
2385 /// This routine is a convenience routine meant to be called from
2386 /// contexts that receive a name and an optional C++ scope specifier
2387 /// (e.g., "N::M::x"). It will then perform either qualified or
2388 /// unqualified name lookup (with LookupQualifiedName or LookupName,
2389 /// respectively) on the given name and return those results. It will
2390 /// perform a special type of lookup for "__super::" scope specifier.
2391 ///
2392 /// @param S        The scope from which unqualified name lookup will
2393 /// begin.
2394 ///
2395 /// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
2396 ///
2397 /// @param EnteringContext Indicates whether we are going to enter the
2398 /// context of the scope-specifier SS (if present).
2399 ///
2400 /// @returns True if any decls were found (but possibly ambiguous)
2401 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
2402                             bool AllowBuiltinCreation, bool EnteringContext) {
2403   if (SS && SS->isInvalid()) {
2404     // When the scope specifier is invalid, don't even look for
2405     // anything.
2406     return false;
2407   }
2408 
2409   if (SS && SS->isSet()) {
2410     NestedNameSpecifier *NNS = SS->getScopeRep();
2411     if (NNS->getKind() == NestedNameSpecifier::Super)
2412       return LookupInSuper(R, NNS->getAsRecordDecl());
2413 
2414     if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
2415       // We have resolved the scope specifier to a particular declaration
2416       // contex, and will perform name lookup in that context.
2417       if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
2418         return false;
2419 
2420       R.setContextRange(SS->getRange());
2421       return LookupQualifiedName(R, DC);
2422     }
2423 
2424     // We could not resolve the scope specified to a specific declaration
2425     // context, which means that SS refers to an unknown specialization.
2426     // Name lookup can't find anything in this case.
2427     R.setNotFoundInCurrentInstantiation();
2428     R.setContextRange(SS->getRange());
2429     return false;
2430   }
2431 
2432   // Perform unqualified name lookup starting in the given scope.
2433   return LookupName(R, S, AllowBuiltinCreation);
2434 }
2435 
2436 /// Perform qualified name lookup into all base classes of the given
2437 /// class.
2438 ///
2439 /// \param R captures both the lookup criteria and any lookup results found.
2440 ///
2441 /// \param Class The context in which qualified name lookup will
2442 /// search. Name lookup will search in all base classes merging the results.
2443 ///
2444 /// @returns True if any decls were found (but possibly ambiguous)
2445 bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
2446   // The access-control rules we use here are essentially the rules for
2447   // doing a lookup in Class that just magically skipped the direct
2448   // members of Class itself.  That is, the naming class is Class, and the
2449   // access includes the access of the base.
2450   for (const auto &BaseSpec : Class->bases()) {
2451     CXXRecordDecl *RD = cast<CXXRecordDecl>(
2452         BaseSpec.getType()->castAs<RecordType>()->getDecl());
2453     LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
2454     Result.setBaseObjectType(Context.getRecordType(Class));
2455     LookupQualifiedName(Result, RD);
2456 
2457     // Copy the lookup results into the target, merging the base's access into
2458     // the path access.
2459     for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
2460       R.addDecl(I.getDecl(),
2461                 CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
2462                                            I.getAccess()));
2463     }
2464 
2465     Result.suppressDiagnostics();
2466   }
2467 
2468   R.resolveKind();
2469   R.setNamingClass(Class);
2470 
2471   return !R.empty();
2472 }
2473 
2474 /// Produce a diagnostic describing the ambiguity that resulted
2475 /// from name lookup.
2476 ///
2477 /// \param Result The result of the ambiguous lookup to be diagnosed.
2478 void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
2479   assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
2480 
2481   DeclarationName Name = Result.getLookupName();
2482   SourceLocation NameLoc = Result.getNameLoc();
2483   SourceRange LookupRange = Result.getContextRange();
2484 
2485   switch (Result.getAmbiguityKind()) {
2486   case LookupResult::AmbiguousBaseSubobjects: {
2487     CXXBasePaths *Paths = Result.getBasePaths();
2488     QualType SubobjectType = Paths->front().back().Base->getType();
2489     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
2490       << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
2491       << LookupRange;
2492 
2493     DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
2494     while (isa<CXXMethodDecl>(*Found) &&
2495            cast<CXXMethodDecl>(*Found)->isStatic())
2496       ++Found;
2497 
2498     Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
2499     break;
2500   }
2501 
2502   case LookupResult::AmbiguousBaseSubobjectTypes: {
2503     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
2504       << Name << LookupRange;
2505 
2506     CXXBasePaths *Paths = Result.getBasePaths();
2507     std::set<Decl *> DeclsPrinted;
2508     for (CXXBasePaths::paths_iterator Path = Paths->begin(),
2509                                       PathEnd = Paths->end();
2510          Path != PathEnd; ++Path) {
2511       Decl *D = Path->Decls.front();
2512       if (DeclsPrinted.insert(D).second)
2513         Diag(D->getLocation(), diag::note_ambiguous_member_found);
2514     }
2515     break;
2516   }
2517 
2518   case LookupResult::AmbiguousTagHiding: {
2519     Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
2520 
2521     llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
2522 
2523     for (auto *D : Result)
2524       if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
2525         TagDecls.insert(TD);
2526         Diag(TD->getLocation(), diag::note_hidden_tag);
2527       }
2528 
2529     for (auto *D : Result)
2530       if (!isa<TagDecl>(D))
2531         Diag(D->getLocation(), diag::note_hiding_object);
2532 
2533     // For recovery purposes, go ahead and implement the hiding.
2534     LookupResult::Filter F = Result.makeFilter();
2535     while (F.hasNext()) {
2536       if (TagDecls.count(F.next()))
2537         F.erase();
2538     }
2539     F.done();
2540     break;
2541   }
2542 
2543   case LookupResult::AmbiguousReference: {
2544     Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
2545 
2546     for (auto *D : Result)
2547       Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
2548     break;
2549   }
2550   }
2551 }
2552 
2553 namespace {
2554   struct AssociatedLookup {
2555     AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
2556                      Sema::AssociatedNamespaceSet &Namespaces,
2557                      Sema::AssociatedClassSet &Classes)
2558       : S(S), Namespaces(Namespaces), Classes(Classes),
2559         InstantiationLoc(InstantiationLoc) {
2560     }
2561 
2562     bool addClassTransitive(CXXRecordDecl *RD) {
2563       Classes.insert(RD);
2564       return ClassesTransitive.insert(RD);
2565     }
2566 
2567     Sema &S;
2568     Sema::AssociatedNamespaceSet &Namespaces;
2569     Sema::AssociatedClassSet &Classes;
2570     SourceLocation InstantiationLoc;
2571 
2572   private:
2573     Sema::AssociatedClassSet ClassesTransitive;
2574   };
2575 } // end anonymous namespace
2576 
2577 static void
2578 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
2579 
2580 // Given the declaration context \param Ctx of a class, class template or
2581 // enumeration, add the associated namespaces to \param Namespaces as described
2582 // in [basic.lookup.argdep]p2.
2583 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
2584                                       DeclContext *Ctx) {
2585   // The exact wording has been changed in C++14 as a result of
2586   // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally
2587   // to all language versions since it is possible to return a local type
2588   // from a lambda in C++11.
2589   //
2590   // C++14 [basic.lookup.argdep]p2:
2591   //   If T is a class type [...]. Its associated namespaces are the innermost
2592   //   enclosing namespaces of its associated classes. [...]
2593   //
2594   //   If T is an enumeration type, its associated namespace is the innermost
2595   //   enclosing namespace of its declaration. [...]
2596 
2597   // We additionally skip inline namespaces. The innermost non-inline namespace
2598   // contains all names of all its nested inline namespaces anyway, so we can
2599   // replace the entire inline namespace tree with its root.
2600   while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
2601     Ctx = Ctx->getParent();
2602 
2603   Namespaces.insert(Ctx->getPrimaryContext());
2604 }
2605 
2606 // Add the associated classes and namespaces for argument-dependent
2607 // lookup that involves a template argument (C++ [basic.lookup.argdep]p2).
2608 static void
2609 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2610                                   const TemplateArgument &Arg) {
2611   // C++ [basic.lookup.argdep]p2, last bullet:
2612   //   -- [...] ;
2613   switch (Arg.getKind()) {
2614     case TemplateArgument::Null:
2615       break;
2616 
2617     case TemplateArgument::Type:
2618       // [...] the namespaces and classes associated with the types of the
2619       // template arguments provided for template type parameters (excluding
2620       // template template parameters)
2621       addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
2622       break;
2623 
2624     case TemplateArgument::Template:
2625     case TemplateArgument::TemplateExpansion: {
2626       // [...] the namespaces in which any template template arguments are
2627       // defined; and the classes in which any member templates used as
2628       // template template arguments are defined.
2629       TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
2630       if (ClassTemplateDecl *ClassTemplate
2631                  = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
2632         DeclContext *Ctx = ClassTemplate->getDeclContext();
2633         if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2634           Result.Classes.insert(EnclosingClass);
2635         // Add the associated namespace for this class.
2636         CollectEnclosingNamespace(Result.Namespaces, Ctx);
2637       }
2638       break;
2639     }
2640 
2641     case TemplateArgument::Declaration:
2642     case TemplateArgument::Integral:
2643     case TemplateArgument::Expression:
2644     case TemplateArgument::NullPtr:
2645       // [Note: non-type template arguments do not contribute to the set of
2646       //  associated namespaces. ]
2647       break;
2648 
2649     case TemplateArgument::Pack:
2650       for (const auto &P : Arg.pack_elements())
2651         addAssociatedClassesAndNamespaces(Result, P);
2652       break;
2653   }
2654 }
2655 
2656 // Add the associated classes and namespaces for argument-dependent lookup
2657 // with an argument of class type (C++ [basic.lookup.argdep]p2).
2658 static void
2659 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2660                                   CXXRecordDecl *Class) {
2661 
2662   // Just silently ignore anything whose name is __va_list_tag.
2663   if (Class->getDeclName() == Result.S.VAListTagName)
2664     return;
2665 
2666   // C++ [basic.lookup.argdep]p2:
2667   //   [...]
2668   //     -- If T is a class type (including unions), its associated
2669   //        classes are: the class itself; the class of which it is a
2670   //        member, if any; and its direct and indirect base classes.
2671   //        Its associated namespaces are the innermost enclosing
2672   //        namespaces of its associated classes.
2673 
2674   // Add the class of which it is a member, if any.
2675   DeclContext *Ctx = Class->getDeclContext();
2676   if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2677     Result.Classes.insert(EnclosingClass);
2678 
2679   // Add the associated namespace for this class.
2680   CollectEnclosingNamespace(Result.Namespaces, Ctx);
2681 
2682   // -- If T is a template-id, its associated namespaces and classes are
2683   //    the namespace in which the template is defined; for member
2684   //    templates, the member template's class; the namespaces and classes
2685   //    associated with the types of the template arguments provided for
2686   //    template type parameters (excluding template template parameters); the
2687   //    namespaces in which any template template arguments are defined; and
2688   //    the classes in which any member templates used as template template
2689   //    arguments are defined. [Note: non-type template arguments do not
2690   //    contribute to the set of associated namespaces. ]
2691   if (ClassTemplateSpecializationDecl *Spec
2692         = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
2693     DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
2694     if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2695       Result.Classes.insert(EnclosingClass);
2696     // Add the associated namespace for this class.
2697     CollectEnclosingNamespace(Result.Namespaces, Ctx);
2698 
2699     const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
2700     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2701       addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
2702   }
2703 
2704   // Add the class itself. If we've already transitively visited this class,
2705   // we don't need to visit base classes.
2706   if (!Result.addClassTransitive(Class))
2707     return;
2708 
2709   // Only recurse into base classes for complete types.
2710   if (!Result.S.isCompleteType(Result.InstantiationLoc,
2711                                Result.S.Context.getRecordType(Class)))
2712     return;
2713 
2714   // Add direct and indirect base classes along with their associated
2715   // namespaces.
2716   SmallVector<CXXRecordDecl *, 32> Bases;
2717   Bases.push_back(Class);
2718   while (!Bases.empty()) {
2719     // Pop this class off the stack.
2720     Class = Bases.pop_back_val();
2721 
2722     // Visit the base classes.
2723     for (const auto &Base : Class->bases()) {
2724       const RecordType *BaseType = Base.getType()->getAs<RecordType>();
2725       // In dependent contexts, we do ADL twice, and the first time around,
2726       // the base type might be a dependent TemplateSpecializationType, or a
2727       // TemplateTypeParmType. If that happens, simply ignore it.
2728       // FIXME: If we want to support export, we probably need to add the
2729       // namespace of the template in a TemplateSpecializationType, or even
2730       // the classes and namespaces of known non-dependent arguments.
2731       if (!BaseType)
2732         continue;
2733       CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
2734       if (Result.addClassTransitive(BaseDecl)) {
2735         // Find the associated namespace for this base class.
2736         DeclContext *BaseCtx = BaseDecl->getDeclContext();
2737         CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
2738 
2739         // Make sure we visit the bases of this base class.
2740         if (BaseDecl->bases_begin() != BaseDecl->bases_end())
2741           Bases.push_back(BaseDecl);
2742       }
2743     }
2744   }
2745 }
2746 
2747 // Add the associated classes and namespaces for
2748 // argument-dependent lookup with an argument of type T
2749 // (C++ [basic.lookup.koenig]p2).
2750 static void
2751 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
2752   // C++ [basic.lookup.koenig]p2:
2753   //
2754   //   For each argument type T in the function call, there is a set
2755   //   of zero or more associated namespaces and a set of zero or more
2756   //   associated classes to be considered. The sets of namespaces and
2757   //   classes is determined entirely by the types of the function
2758   //   arguments (and the namespace of any template template
2759   //   argument). Typedef names and using-declarations used to specify
2760   //   the types do not contribute to this set. The sets of namespaces
2761   //   and classes are determined in the following way:
2762 
2763   SmallVector<const Type *, 16> Queue;
2764   const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
2765 
2766   while (true) {
2767     switch (T->getTypeClass()) {
2768 
2769 #define TYPE(Class, Base)
2770 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2771 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2772 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
2773 #define ABSTRACT_TYPE(Class, Base)
2774 #include "clang/AST/TypeNodes.inc"
2775       // T is canonical.  We can also ignore dependent types because
2776       // we don't need to do ADL at the definition point, but if we
2777       // wanted to implement template export (or if we find some other
2778       // use for associated classes and namespaces...) this would be
2779       // wrong.
2780       break;
2781 
2782     //    -- If T is a pointer to U or an array of U, its associated
2783     //       namespaces and classes are those associated with U.
2784     case Type::Pointer:
2785       T = cast<PointerType>(T)->getPointeeType().getTypePtr();
2786       continue;
2787     case Type::ConstantArray:
2788     case Type::IncompleteArray:
2789     case Type::VariableArray:
2790       T = cast<ArrayType>(T)->getElementType().getTypePtr();
2791       continue;
2792 
2793     //     -- If T is a fundamental type, its associated sets of
2794     //        namespaces and classes are both empty.
2795     case Type::Builtin:
2796       break;
2797 
2798     //     -- If T is a class type (including unions), its associated
2799     //        classes are: the class itself; the class of which it is
2800     //        a member, if any; and its direct and indirect base classes.
2801     //        Its associated namespaces are the innermost enclosing
2802     //        namespaces of its associated classes.
2803     case Type::Record: {
2804       CXXRecordDecl *Class =
2805           cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
2806       addAssociatedClassesAndNamespaces(Result, Class);
2807       break;
2808     }
2809 
2810     //     -- If T is an enumeration type, its associated namespace
2811     //        is the innermost enclosing namespace of its declaration.
2812     //        If it is a class member, its associated class is the
2813     //        member’s class; else it has no associated class.
2814     case Type::Enum: {
2815       EnumDecl *Enum = cast<EnumType>(T)->getDecl();
2816 
2817       DeclContext *Ctx = Enum->getDeclContext();
2818       if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2819         Result.Classes.insert(EnclosingClass);
2820 
2821       // Add the associated namespace for this enumeration.
2822       CollectEnclosingNamespace(Result.Namespaces, Ctx);
2823 
2824       break;
2825     }
2826 
2827     //     -- If T is a function type, its associated namespaces and
2828     //        classes are those associated with the function parameter
2829     //        types and those associated with the return type.
2830     case Type::FunctionProto: {
2831       const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2832       for (const auto &Arg : Proto->param_types())
2833         Queue.push_back(Arg.getTypePtr());
2834       // fallthrough
2835       LLVM_FALLTHROUGH;
2836     }
2837     case Type::FunctionNoProto: {
2838       const FunctionType *FnType = cast<FunctionType>(T);
2839       T = FnType->getReturnType().getTypePtr();
2840       continue;
2841     }
2842 
2843     //     -- If T is a pointer to a member function of a class X, its
2844     //        associated namespaces and classes are those associated
2845     //        with the function parameter types and return type,
2846     //        together with those associated with X.
2847     //
2848     //     -- If T is a pointer to a data member of class X, its
2849     //        associated namespaces and classes are those associated
2850     //        with the member type together with those associated with
2851     //        X.
2852     case Type::MemberPointer: {
2853       const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
2854 
2855       // Queue up the class type into which this points.
2856       Queue.push_back(MemberPtr->getClass());
2857 
2858       // And directly continue with the pointee type.
2859       T = MemberPtr->getPointeeType().getTypePtr();
2860       continue;
2861     }
2862 
2863     // As an extension, treat this like a normal pointer.
2864     case Type::BlockPointer:
2865       T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
2866       continue;
2867 
2868     // References aren't covered by the standard, but that's such an
2869     // obvious defect that we cover them anyway.
2870     case Type::LValueReference:
2871     case Type::RValueReference:
2872       T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
2873       continue;
2874 
2875     // These are fundamental types.
2876     case Type::Vector:
2877     case Type::ExtVector:
2878     case Type::ConstantMatrix:
2879     case Type::Complex:
2880     case Type::ExtInt:
2881       break;
2882 
2883     // Non-deduced auto types only get here for error cases.
2884     case Type::Auto:
2885     case Type::DeducedTemplateSpecialization:
2886       break;
2887 
2888     // If T is an Objective-C object or interface type, or a pointer to an
2889     // object or interface type, the associated namespace is the global
2890     // namespace.
2891     case Type::ObjCObject:
2892     case Type::ObjCInterface:
2893     case Type::ObjCObjectPointer:
2894       Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
2895       break;
2896 
2897     // Atomic types are just wrappers; use the associations of the
2898     // contained type.
2899     case Type::Atomic:
2900       T = cast<AtomicType>(T)->getValueType().getTypePtr();
2901       continue;
2902     case Type::Pipe:
2903       T = cast<PipeType>(T)->getElementType().getTypePtr();
2904       continue;
2905     }
2906 
2907     if (Queue.empty())
2908       break;
2909     T = Queue.pop_back_val();
2910   }
2911 }
2912 
2913 /// Find the associated classes and namespaces for
2914 /// argument-dependent lookup for a call with the given set of
2915 /// arguments.
2916 ///
2917 /// This routine computes the sets of associated classes and associated
2918 /// namespaces searched by argument-dependent lookup
2919 /// (C++ [basic.lookup.argdep]) for a given set of arguments.
2920 void Sema::FindAssociatedClassesAndNamespaces(
2921     SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
2922     AssociatedNamespaceSet &AssociatedNamespaces,
2923     AssociatedClassSet &AssociatedClasses) {
2924   AssociatedNamespaces.clear();
2925   AssociatedClasses.clear();
2926 
2927   AssociatedLookup Result(*this, InstantiationLoc,
2928                           AssociatedNamespaces, AssociatedClasses);
2929 
2930   // C++ [basic.lookup.koenig]p2:
2931   //   For each argument type T in the function call, there is a set
2932   //   of zero or more associated namespaces and a set of zero or more
2933   //   associated classes to be considered. The sets of namespaces and
2934   //   classes is determined entirely by the types of the function
2935   //   arguments (and the namespace of any template template
2936   //   argument).
2937   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
2938     Expr *Arg = Args[ArgIdx];
2939 
2940     if (Arg->getType() != Context.OverloadTy) {
2941       addAssociatedClassesAndNamespaces(Result, Arg->getType());
2942       continue;
2943     }
2944 
2945     // [...] In addition, if the argument is the name or address of a
2946     // set of overloaded functions and/or function templates, its
2947     // associated classes and namespaces are the union of those
2948     // associated with each of the members of the set: the namespace
2949     // in which the function or function template is defined and the
2950     // classes and namespaces associated with its (non-dependent)
2951     // parameter types and return type.
2952     OverloadExpr *OE = OverloadExpr::find(Arg).Expression;
2953 
2954     for (const NamedDecl *D : OE->decls()) {
2955       // Look through any using declarations to find the underlying function.
2956       const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
2957 
2958       // Add the classes and namespaces associated with the parameter
2959       // types and return type of this function.
2960       addAssociatedClassesAndNamespaces(Result, FDecl->getType());
2961     }
2962   }
2963 }
2964 
2965 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
2966                                   SourceLocation Loc,
2967                                   LookupNameKind NameKind,
2968                                   RedeclarationKind Redecl) {
2969   LookupResult R(*this, Name, Loc, NameKind, Redecl);
2970   LookupName(R, S);
2971   return R.getAsSingle<NamedDecl>();
2972 }
2973 
2974 /// Find the protocol with the given name, if any.
2975 ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
2976                                        SourceLocation IdLoc,
2977                                        RedeclarationKind Redecl) {
2978   Decl *D = LookupSingleName(TUScope, II, IdLoc,
2979                              LookupObjCProtocolName, Redecl);
2980   return cast_or_null<ObjCProtocolDecl>(D);
2981 }
2982 
2983 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
2984                                         QualType T1, QualType T2,
2985                                         UnresolvedSetImpl &Functions) {
2986   // C++ [over.match.oper]p3:
2987   //     -- The set of non-member candidates is the result of the
2988   //        unqualified lookup of operator@ in the context of the
2989   //        expression according to the usual rules for name lookup in
2990   //        unqualified function calls (3.4.2) except that all member
2991   //        functions are ignored.
2992   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2993   LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
2994   LookupName(Operators, S);
2995 
2996   assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
2997   Functions.append(Operators.begin(), Operators.end());
2998 }
2999 
3000 Sema::SpecialMemberOverloadResult Sema::LookupSpecialMember(CXXRecordDecl *RD,
3001                                                            CXXSpecialMember SM,
3002                                                            bool ConstArg,
3003                                                            bool VolatileArg,
3004                                                            bool RValueThis,
3005                                                            bool ConstThis,
3006                                                            bool VolatileThis) {
3007   assert(CanDeclareSpecialMemberFunction(RD) &&
3008          "doing special member lookup into record that isn't fully complete");
3009   RD = RD->getDefinition();
3010   if (RValueThis || ConstThis || VolatileThis)
3011     assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
3012            "constructors and destructors always have unqualified lvalue this");
3013   if (ConstArg || VolatileArg)
3014     assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
3015            "parameter-less special members can't have qualified arguments");
3016 
3017   // FIXME: Get the caller to pass in a location for the lookup.
3018   SourceLocation LookupLoc = RD->getLocation();
3019 
3020   llvm::FoldingSetNodeID ID;
3021   ID.AddPointer(RD);
3022   ID.AddInteger(SM);
3023   ID.AddInteger(ConstArg);
3024   ID.AddInteger(VolatileArg);
3025   ID.AddInteger(RValueThis);
3026   ID.AddInteger(ConstThis);
3027   ID.AddInteger(VolatileThis);
3028 
3029   void *InsertPoint;
3030   SpecialMemberOverloadResultEntry *Result =
3031     SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
3032 
3033   // This was already cached
3034   if (Result)
3035     return *Result;
3036 
3037   Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>();
3038   Result = new (Result) SpecialMemberOverloadResultEntry(ID);
3039   SpecialMemberCache.InsertNode(Result, InsertPoint);
3040 
3041   if (SM == CXXDestructor) {
3042     if (RD->needsImplicitDestructor()) {
3043       runWithSufficientStackSpace(RD->getLocation(), [&] {
3044         DeclareImplicitDestructor(RD);
3045       });
3046     }
3047     CXXDestructorDecl *DD = RD->getDestructor();
3048     Result->setMethod(DD);
3049     Result->setKind(DD && !DD->isDeleted()
3050                         ? SpecialMemberOverloadResult::Success
3051                         : SpecialMemberOverloadResult::NoMemberOrDeleted);
3052     return *Result;
3053   }
3054 
3055   // Prepare for overload resolution. Here we construct a synthetic argument
3056   // if necessary and make sure that implicit functions are declared.
3057   CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
3058   DeclarationName Name;
3059   Expr *Arg = nullptr;
3060   unsigned NumArgs;
3061 
3062   QualType ArgType = CanTy;
3063   ExprValueKind VK = VK_LValue;
3064 
3065   if (SM == CXXDefaultConstructor) {
3066     Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3067     NumArgs = 0;
3068     if (RD->needsImplicitDefaultConstructor()) {
3069       runWithSufficientStackSpace(RD->getLocation(), [&] {
3070         DeclareImplicitDefaultConstructor(RD);
3071       });
3072     }
3073   } else {
3074     if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
3075       Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3076       if (RD->needsImplicitCopyConstructor()) {
3077         runWithSufficientStackSpace(RD->getLocation(), [&] {
3078           DeclareImplicitCopyConstructor(RD);
3079         });
3080       }
3081       if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) {
3082         runWithSufficientStackSpace(RD->getLocation(), [&] {
3083           DeclareImplicitMoveConstructor(RD);
3084         });
3085       }
3086     } else {
3087       Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
3088       if (RD->needsImplicitCopyAssignment()) {
3089         runWithSufficientStackSpace(RD->getLocation(), [&] {
3090           DeclareImplicitCopyAssignment(RD);
3091         });
3092       }
3093       if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) {
3094         runWithSufficientStackSpace(RD->getLocation(), [&] {
3095           DeclareImplicitMoveAssignment(RD);
3096         });
3097       }
3098     }
3099 
3100     if (ConstArg)
3101       ArgType.addConst();
3102     if (VolatileArg)
3103       ArgType.addVolatile();
3104 
3105     // This isn't /really/ specified by the standard, but it's implied
3106     // we should be working from an RValue in the case of move to ensure
3107     // that we prefer to bind to rvalue references, and an LValue in the
3108     // case of copy to ensure we don't bind to rvalue references.
3109     // Possibly an XValue is actually correct in the case of move, but
3110     // there is no semantic difference for class types in this restricted
3111     // case.
3112     if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
3113       VK = VK_LValue;
3114     else
3115       VK = VK_RValue;
3116   }
3117 
3118   OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK);
3119 
3120   if (SM != CXXDefaultConstructor) {
3121     NumArgs = 1;
3122     Arg = &FakeArg;
3123   }
3124 
3125   // Create the object argument
3126   QualType ThisTy = CanTy;
3127   if (ConstThis)
3128     ThisTy.addConst();
3129   if (VolatileThis)
3130     ThisTy.addVolatile();
3131   Expr::Classification Classification =
3132     OpaqueValueExpr(LookupLoc, ThisTy,
3133                     RValueThis ? VK_RValue : VK_LValue).Classify(Context);
3134 
3135   // Now we perform lookup on the name we computed earlier and do overload
3136   // resolution. Lookup is only performed directly into the class since there
3137   // will always be a (possibly implicit) declaration to shadow any others.
3138   OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal);
3139   DeclContext::lookup_result R = RD->lookup(Name);
3140 
3141   if (R.empty()) {
3142     // We might have no default constructor because we have a lambda's closure
3143     // type, rather than because there's some other declared constructor.
3144     // Every class has a copy/move constructor, copy/move assignment, and
3145     // destructor.
3146     assert(SM == CXXDefaultConstructor &&
3147            "lookup for a constructor or assignment operator was empty");
3148     Result->setMethod(nullptr);
3149     Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3150     return *Result;
3151   }
3152 
3153   // Copy the candidates as our processing of them may load new declarations
3154   // from an external source and invalidate lookup_result.
3155   SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
3156 
3157   for (NamedDecl *CandDecl : Candidates) {
3158     if (CandDecl->isInvalidDecl())
3159       continue;
3160 
3161     DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public);
3162     auto CtorInfo = getConstructorInfo(Cand);
3163     if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
3164       if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3165         AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
3166                            llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3167       else if (CtorInfo)
3168         AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
3169                              llvm::makeArrayRef(&Arg, NumArgs), OCS,
3170                              /*SuppressUserConversions*/ true);
3171       else
3172         AddOverloadCandidate(M, Cand, llvm::makeArrayRef(&Arg, NumArgs), OCS,
3173                              /*SuppressUserConversions*/ true);
3174     } else if (FunctionTemplateDecl *Tmpl =
3175                  dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) {
3176       if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3177         AddMethodTemplateCandidate(
3178             Tmpl, Cand, RD, nullptr, ThisTy, Classification,
3179             llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3180       else if (CtorInfo)
3181         AddTemplateOverloadCandidate(
3182             CtorInfo.ConstructorTmpl, CtorInfo.FoundDecl, nullptr,
3183             llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3184       else
3185         AddTemplateOverloadCandidate(
3186             Tmpl, Cand, nullptr, llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3187     } else {
3188       assert(isa<UsingDecl>(Cand.getDecl()) &&
3189              "illegal Kind of operator = Decl");
3190     }
3191   }
3192 
3193   OverloadCandidateSet::iterator Best;
3194   switch (OCS.BestViableFunction(*this, LookupLoc, Best)) {
3195     case OR_Success:
3196       Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3197       Result->setKind(SpecialMemberOverloadResult::Success);
3198       break;
3199 
3200     case OR_Deleted:
3201       Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3202       Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3203       break;
3204 
3205     case OR_Ambiguous:
3206       Result->setMethod(nullptr);
3207       Result->setKind(SpecialMemberOverloadResult::Ambiguous);
3208       break;
3209 
3210     case OR_No_Viable_Function:
3211       Result->setMethod(nullptr);
3212       Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3213       break;
3214   }
3215 
3216   return *Result;
3217 }
3218 
3219 /// Look up the default constructor for the given class.
3220 CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
3221   SpecialMemberOverloadResult Result =
3222     LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
3223                         false, false);
3224 
3225   return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3226 }
3227 
3228 /// Look up the copying constructor for the given class.
3229 CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
3230                                                    unsigned Quals) {
3231   assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3232          "non-const, non-volatile qualifiers for copy ctor arg");
3233   SpecialMemberOverloadResult Result =
3234     LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
3235                         Quals & Qualifiers::Volatile, false, false, false);
3236 
3237   return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3238 }
3239 
3240 /// Look up the moving constructor for the given class.
3241 CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
3242                                                   unsigned Quals) {
3243   SpecialMemberOverloadResult Result =
3244     LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
3245                         Quals & Qualifiers::Volatile, false, false, false);
3246 
3247   return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3248 }
3249 
3250 /// Look up the constructors for the given class.
3251 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
3252   // If the implicit constructors have not yet been declared, do so now.
3253   if (CanDeclareSpecialMemberFunction(Class)) {
3254     runWithSufficientStackSpace(Class->getLocation(), [&] {
3255       if (Class->needsImplicitDefaultConstructor())
3256         DeclareImplicitDefaultConstructor(Class);
3257       if (Class->needsImplicitCopyConstructor())
3258         DeclareImplicitCopyConstructor(Class);
3259       if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
3260         DeclareImplicitMoveConstructor(Class);
3261     });
3262   }
3263 
3264   CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
3265   DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
3266   return Class->lookup(Name);
3267 }
3268 
3269 /// Look up the copying assignment operator for the given class.
3270 CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
3271                                              unsigned Quals, bool RValueThis,
3272                                              unsigned ThisQuals) {
3273   assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3274          "non-const, non-volatile qualifiers for copy assignment arg");
3275   assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3276          "non-const, non-volatile qualifiers for copy assignment this");
3277   SpecialMemberOverloadResult Result =
3278     LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
3279                         Quals & Qualifiers::Volatile, RValueThis,
3280                         ThisQuals & Qualifiers::Const,
3281                         ThisQuals & Qualifiers::Volatile);
3282 
3283   return Result.getMethod();
3284 }
3285 
3286 /// Look up the moving assignment operator for the given class.
3287 CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
3288                                             unsigned Quals,
3289                                             bool RValueThis,
3290                                             unsigned ThisQuals) {
3291   assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3292          "non-const, non-volatile qualifiers for copy assignment this");
3293   SpecialMemberOverloadResult Result =
3294     LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
3295                         Quals & Qualifiers::Volatile, RValueThis,
3296                         ThisQuals & Qualifiers::Const,
3297                         ThisQuals & Qualifiers::Volatile);
3298 
3299   return Result.getMethod();
3300 }
3301 
3302 /// Look for the destructor of the given class.
3303 ///
3304 /// During semantic analysis, this routine should be used in lieu of
3305 /// CXXRecordDecl::getDestructor().
3306 ///
3307 /// \returns The destructor for this class.
3308 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
3309   return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
3310                                                      false, false, false,
3311                                                      false, false).getMethod());
3312 }
3313 
3314 /// LookupLiteralOperator - Determine which literal operator should be used for
3315 /// a user-defined literal, per C++11 [lex.ext].
3316 ///
3317 /// Normal overload resolution is not used to select which literal operator to
3318 /// call for a user-defined literal. Look up the provided literal operator name,
3319 /// and filter the results to the appropriate set for the given argument types.
3320 Sema::LiteralOperatorLookupResult
3321 Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
3322                             ArrayRef<QualType> ArgTys,
3323                             bool AllowRaw, bool AllowTemplate,
3324                             bool AllowStringTemplate, bool DiagnoseMissing) {
3325   LookupName(R, S);
3326   assert(R.getResultKind() != LookupResult::Ambiguous &&
3327          "literal operator lookup can't be ambiguous");
3328 
3329   // Filter the lookup results appropriately.
3330   LookupResult::Filter F = R.makeFilter();
3331 
3332   bool FoundRaw = false;
3333   bool FoundTemplate = false;
3334   bool FoundStringTemplate = false;
3335   bool FoundExactMatch = false;
3336 
3337   while (F.hasNext()) {
3338     Decl *D = F.next();
3339     if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
3340       D = USD->getTargetDecl();
3341 
3342     // If the declaration we found is invalid, skip it.
3343     if (D->isInvalidDecl()) {
3344       F.erase();
3345       continue;
3346     }
3347 
3348     bool IsRaw = false;
3349     bool IsTemplate = false;
3350     bool IsStringTemplate = false;
3351     bool IsExactMatch = false;
3352 
3353     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3354       if (FD->getNumParams() == 1 &&
3355           FD->getParamDecl(0)->getType()->getAs<PointerType>())
3356         IsRaw = true;
3357       else if (FD->getNumParams() == ArgTys.size()) {
3358         IsExactMatch = true;
3359         for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
3360           QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
3361           if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
3362             IsExactMatch = false;
3363             break;
3364           }
3365         }
3366       }
3367     }
3368     if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
3369       TemplateParameterList *Params = FD->getTemplateParameters();
3370       if (Params->size() == 1)
3371         IsTemplate = true;
3372       else
3373         IsStringTemplate = true;
3374     }
3375 
3376     if (IsExactMatch) {
3377       FoundExactMatch = true;
3378       AllowRaw = false;
3379       AllowTemplate = false;
3380       AllowStringTemplate = false;
3381       if (FoundRaw || FoundTemplate || FoundStringTemplate) {
3382         // Go through again and remove the raw and template decls we've
3383         // already found.
3384         F.restart();
3385         FoundRaw = FoundTemplate = FoundStringTemplate = false;
3386       }
3387     } else if (AllowRaw && IsRaw) {
3388       FoundRaw = true;
3389     } else if (AllowTemplate && IsTemplate) {
3390       FoundTemplate = true;
3391     } else if (AllowStringTemplate && IsStringTemplate) {
3392       FoundStringTemplate = true;
3393     } else {
3394       F.erase();
3395     }
3396   }
3397 
3398   F.done();
3399 
3400   // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
3401   // parameter type, that is used in preference to a raw literal operator
3402   // or literal operator template.
3403   if (FoundExactMatch)
3404     return LOLR_Cooked;
3405 
3406   // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
3407   // operator template, but not both.
3408   if (FoundRaw && FoundTemplate) {
3409     Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
3410     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3411       NoteOverloadCandidate(*I, (*I)->getUnderlyingDecl()->getAsFunction());
3412     return LOLR_Error;
3413   }
3414 
3415   if (FoundRaw)
3416     return LOLR_Raw;
3417 
3418   if (FoundTemplate)
3419     return LOLR_Template;
3420 
3421   if (FoundStringTemplate)
3422     return LOLR_StringTemplate;
3423 
3424   // Didn't find anything we could use.
3425   if (DiagnoseMissing) {
3426     Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
3427         << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
3428         << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
3429         << (AllowTemplate || AllowStringTemplate);
3430     return LOLR_Error;
3431   }
3432 
3433   return LOLR_ErrorNoDiagnostic;
3434 }
3435 
3436 void ADLResult::insert(NamedDecl *New) {
3437   NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
3438 
3439   // If we haven't yet seen a decl for this key, or the last decl
3440   // was exactly this one, we're done.
3441   if (Old == nullptr || Old == New) {
3442     Old = New;
3443     return;
3444   }
3445 
3446   // Otherwise, decide which is a more recent redeclaration.
3447   FunctionDecl *OldFD = Old->getAsFunction();
3448   FunctionDecl *NewFD = New->getAsFunction();
3449 
3450   FunctionDecl *Cursor = NewFD;
3451   while (true) {
3452     Cursor = Cursor->getPreviousDecl();
3453 
3454     // If we got to the end without finding OldFD, OldFD is the newer
3455     // declaration;  leave things as they are.
3456     if (!Cursor) return;
3457 
3458     // If we do find OldFD, then NewFD is newer.
3459     if (Cursor == OldFD) break;
3460 
3461     // Otherwise, keep looking.
3462   }
3463 
3464   Old = New;
3465 }
3466 
3467 void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
3468                                    ArrayRef<Expr *> Args, ADLResult &Result) {
3469   // Find all of the associated namespaces and classes based on the
3470   // arguments we have.
3471   AssociatedNamespaceSet AssociatedNamespaces;
3472   AssociatedClassSet AssociatedClasses;
3473   FindAssociatedClassesAndNamespaces(Loc, Args,
3474                                      AssociatedNamespaces,
3475                                      AssociatedClasses);
3476 
3477   // C++ [basic.lookup.argdep]p3:
3478   //   Let X be the lookup set produced by unqualified lookup (3.4.1)
3479   //   and let Y be the lookup set produced by argument dependent
3480   //   lookup (defined as follows). If X contains [...] then Y is
3481   //   empty. Otherwise Y is the set of declarations found in the
3482   //   namespaces associated with the argument types as described
3483   //   below. The set of declarations found by the lookup of the name
3484   //   is the union of X and Y.
3485   //
3486   // Here, we compute Y and add its members to the overloaded
3487   // candidate set.
3488   for (auto *NS : AssociatedNamespaces) {
3489     //   When considering an associated namespace, the lookup is the
3490     //   same as the lookup performed when the associated namespace is
3491     //   used as a qualifier (3.4.3.2) except that:
3492     //
3493     //     -- Any using-directives in the associated namespace are
3494     //        ignored.
3495     //
3496     //     -- Any namespace-scope friend functions declared in
3497     //        associated classes are visible within their respective
3498     //        namespaces even if they are not visible during an ordinary
3499     //        lookup (11.4).
3500     DeclContext::lookup_result R = NS->lookup(Name);
3501     for (auto *D : R) {
3502       auto *Underlying = D;
3503       if (auto *USD = dyn_cast<UsingShadowDecl>(D))
3504         Underlying = USD->getTargetDecl();
3505 
3506       if (!isa<FunctionDecl>(Underlying) &&
3507           !isa<FunctionTemplateDecl>(Underlying))
3508         continue;
3509 
3510       // The declaration is visible to argument-dependent lookup if either
3511       // it's ordinarily visible or declared as a friend in an associated
3512       // class.
3513       bool Visible = false;
3514       for (D = D->getMostRecentDecl(); D;
3515            D = cast_or_null<NamedDecl>(D->getPreviousDecl())) {
3516         if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) {
3517           if (isVisible(D)) {
3518             Visible = true;
3519             break;
3520           }
3521         } else if (D->getFriendObjectKind()) {
3522           auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext());
3523           if (AssociatedClasses.count(RD) && isVisible(D)) {
3524             Visible = true;
3525             break;
3526           }
3527         }
3528       }
3529 
3530       // FIXME: Preserve D as the FoundDecl.
3531       if (Visible)
3532         Result.insert(Underlying);
3533     }
3534   }
3535 }
3536 
3537 //----------------------------------------------------------------------------
3538 // Search for all visible declarations.
3539 //----------------------------------------------------------------------------
3540 VisibleDeclConsumer::~VisibleDeclConsumer() { }
3541 
3542 bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
3543 
3544 namespace {
3545 
3546 class ShadowContextRAII;
3547 
3548 class VisibleDeclsRecord {
3549 public:
3550   /// An entry in the shadow map, which is optimized to store a
3551   /// single declaration (the common case) but can also store a list
3552   /// of declarations.
3553   typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
3554 
3555 private:
3556   /// A mapping from declaration names to the declarations that have
3557   /// this name within a particular scope.
3558   typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
3559 
3560   /// A list of shadow maps, which is used to model name hiding.
3561   std::list<ShadowMap> ShadowMaps;
3562 
3563   /// The declaration contexts we have already visited.
3564   llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
3565 
3566   friend class ShadowContextRAII;
3567 
3568 public:
3569   /// Determine whether we have already visited this context
3570   /// (and, if not, note that we are going to visit that context now).
3571   bool visitedContext(DeclContext *Ctx) {
3572     return !VisitedContexts.insert(Ctx).second;
3573   }
3574 
3575   bool alreadyVisitedContext(DeclContext *Ctx) {
3576     return VisitedContexts.count(Ctx);
3577   }
3578 
3579   /// Determine whether the given declaration is hidden in the
3580   /// current scope.
3581   ///
3582   /// \returns the declaration that hides the given declaration, or
3583   /// NULL if no such declaration exists.
3584   NamedDecl *checkHidden(NamedDecl *ND);
3585 
3586   /// Add a declaration to the current shadow map.
3587   void add(NamedDecl *ND) {
3588     ShadowMaps.back()[ND->getDeclName()].push_back(ND);
3589   }
3590 };
3591 
3592 /// RAII object that records when we've entered a shadow context.
3593 class ShadowContextRAII {
3594   VisibleDeclsRecord &Visible;
3595 
3596   typedef VisibleDeclsRecord::ShadowMap ShadowMap;
3597 
3598 public:
3599   ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
3600     Visible.ShadowMaps.emplace_back();
3601   }
3602 
3603   ~ShadowContextRAII() {
3604     Visible.ShadowMaps.pop_back();
3605   }
3606 };
3607 
3608 } // end anonymous namespace
3609 
3610 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
3611   unsigned IDNS = ND->getIdentifierNamespace();
3612   std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
3613   for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
3614        SM != SMEnd; ++SM) {
3615     ShadowMap::iterator Pos = SM->find(ND->getDeclName());
3616     if (Pos == SM->end())
3617       continue;
3618 
3619     for (auto *D : Pos->second) {
3620       // A tag declaration does not hide a non-tag declaration.
3621       if (D->hasTagIdentifierNamespace() &&
3622           (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
3623                    Decl::IDNS_ObjCProtocol)))
3624         continue;
3625 
3626       // Protocols are in distinct namespaces from everything else.
3627       if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
3628            || (IDNS & Decl::IDNS_ObjCProtocol)) &&
3629           D->getIdentifierNamespace() != IDNS)
3630         continue;
3631 
3632       // Functions and function templates in the same scope overload
3633       // rather than hide.  FIXME: Look for hiding based on function
3634       // signatures!
3635       if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3636           ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3637           SM == ShadowMaps.rbegin())
3638         continue;
3639 
3640       // A shadow declaration that's created by a resolved using declaration
3641       // is not hidden by the same using declaration.
3642       if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) &&
3643           cast<UsingShadowDecl>(ND)->getUsingDecl() == D)
3644         continue;
3645 
3646       // We've found a declaration that hides this one.
3647       return D;
3648     }
3649   }
3650 
3651   return nullptr;
3652 }
3653 
3654 namespace {
3655 class LookupVisibleHelper {
3656 public:
3657   LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases,
3658                       bool LoadExternal)
3659       : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases),
3660         LoadExternal(LoadExternal) {}
3661 
3662   void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind,
3663                           bool IncludeGlobalScope) {
3664     // Determine the set of using directives available during
3665     // unqualified name lookup.
3666     Scope *Initial = S;
3667     UnqualUsingDirectiveSet UDirs(SemaRef);
3668     if (SemaRef.getLangOpts().CPlusPlus) {
3669       // Find the first namespace or translation-unit scope.
3670       while (S && !isNamespaceOrTranslationUnitScope(S))
3671         S = S->getParent();
3672 
3673       UDirs.visitScopeChain(Initial, S);
3674     }
3675     UDirs.done();
3676 
3677     // Look for visible declarations.
3678     LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
3679     Result.setAllowHidden(Consumer.includeHiddenDecls());
3680     if (!IncludeGlobalScope)
3681       Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
3682     ShadowContextRAII Shadow(Visited);
3683     lookupInScope(Initial, Result, UDirs);
3684   }
3685 
3686   void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx,
3687                           Sema::LookupNameKind Kind, bool IncludeGlobalScope) {
3688     LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
3689     Result.setAllowHidden(Consumer.includeHiddenDecls());
3690     if (!IncludeGlobalScope)
3691       Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
3692 
3693     ShadowContextRAII Shadow(Visited);
3694     lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true,
3695                         /*InBaseClass=*/false);
3696   }
3697 
3698 private:
3699   void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result,
3700                            bool QualifiedNameLookup, bool InBaseClass) {
3701     if (!Ctx)
3702       return;
3703 
3704     // Make sure we don't visit the same context twice.
3705     if (Visited.visitedContext(Ctx->getPrimaryContext()))
3706       return;
3707 
3708     Consumer.EnteredContext(Ctx);
3709 
3710     // Outside C++, lookup results for the TU live on identifiers.
3711     if (isa<TranslationUnitDecl>(Ctx) &&
3712         !Result.getSema().getLangOpts().CPlusPlus) {
3713       auto &S = Result.getSema();
3714       auto &Idents = S.Context.Idents;
3715 
3716       // Ensure all external identifiers are in the identifier table.
3717       if (LoadExternal)
3718         if (IdentifierInfoLookup *External =
3719                 Idents.getExternalIdentifierLookup()) {
3720           std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
3721           for (StringRef Name = Iter->Next(); !Name.empty();
3722                Name = Iter->Next())
3723             Idents.get(Name);
3724         }
3725 
3726       // Walk all lookup results in the TU for each identifier.
3727       for (const auto &Ident : Idents) {
3728         for (auto I = S.IdResolver.begin(Ident.getValue()),
3729                   E = S.IdResolver.end();
3730              I != E; ++I) {
3731           if (S.IdResolver.isDeclInScope(*I, Ctx)) {
3732             if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
3733               Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3734               Visited.add(ND);
3735             }
3736           }
3737         }
3738       }
3739 
3740       return;
3741     }
3742 
3743     if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
3744       Result.getSema().ForceDeclarationOfImplicitMembers(Class);
3745 
3746     // We sometimes skip loading namespace-level results (they tend to be huge).
3747     bool Load = LoadExternal ||
3748                 !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx));
3749     // Enumerate all of the results in this context.
3750     for (DeclContextLookupResult R :
3751          Load ? Ctx->lookups()
3752               : Ctx->noload_lookups(/*PreserveInternalState=*/false)) {
3753       for (auto *D : R) {
3754         if (auto *ND = Result.getAcceptableDecl(D)) {
3755           Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3756           Visited.add(ND);
3757         }
3758       }
3759     }
3760 
3761     // Traverse using directives for qualified name lookup.
3762     if (QualifiedNameLookup) {
3763       ShadowContextRAII Shadow(Visited);
3764       for (auto I : Ctx->using_directives()) {
3765         if (!Result.getSema().isVisible(I))
3766           continue;
3767         lookupInDeclContext(I->getNominatedNamespace(), Result,
3768                             QualifiedNameLookup, InBaseClass);
3769       }
3770     }
3771 
3772     // Traverse the contexts of inherited C++ classes.
3773     if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
3774       if (!Record->hasDefinition())
3775         return;
3776 
3777       for (const auto &B : Record->bases()) {
3778         QualType BaseType = B.getType();
3779 
3780         RecordDecl *RD;
3781         if (BaseType->isDependentType()) {
3782           if (!IncludeDependentBases) {
3783             // Don't look into dependent bases, because name lookup can't look
3784             // there anyway.
3785             continue;
3786           }
3787           const auto *TST = BaseType->getAs<TemplateSpecializationType>();
3788           if (!TST)
3789             continue;
3790           TemplateName TN = TST->getTemplateName();
3791           const auto *TD =
3792               dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
3793           if (!TD)
3794             continue;
3795           RD = TD->getTemplatedDecl();
3796         } else {
3797           const auto *Record = BaseType->getAs<RecordType>();
3798           if (!Record)
3799             continue;
3800           RD = Record->getDecl();
3801         }
3802 
3803         // FIXME: It would be nice to be able to determine whether referencing
3804         // a particular member would be ambiguous. For example, given
3805         //
3806         //   struct A { int member; };
3807         //   struct B { int member; };
3808         //   struct C : A, B { };
3809         //
3810         //   void f(C *c) { c->### }
3811         //
3812         // accessing 'member' would result in an ambiguity. However, we
3813         // could be smart enough to qualify the member with the base
3814         // class, e.g.,
3815         //
3816         //   c->B::member
3817         //
3818         // or
3819         //
3820         //   c->A::member
3821 
3822         // Find results in this base class (and its bases).
3823         ShadowContextRAII Shadow(Visited);
3824         lookupInDeclContext(RD, Result, QualifiedNameLookup,
3825                             /*InBaseClass=*/true);
3826       }
3827     }
3828 
3829     // Traverse the contexts of Objective-C classes.
3830     if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
3831       // Traverse categories.
3832       for (auto *Cat : IFace->visible_categories()) {
3833         ShadowContextRAII Shadow(Visited);
3834         lookupInDeclContext(Cat, Result, QualifiedNameLookup,
3835                             /*InBaseClass=*/false);
3836       }
3837 
3838       // Traverse protocols.
3839       for (auto *I : IFace->all_referenced_protocols()) {
3840         ShadowContextRAII Shadow(Visited);
3841         lookupInDeclContext(I, Result, QualifiedNameLookup,
3842                             /*InBaseClass=*/false);
3843       }
3844 
3845       // Traverse the superclass.
3846       if (IFace->getSuperClass()) {
3847         ShadowContextRAII Shadow(Visited);
3848         lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup,
3849                             /*InBaseClass=*/true);
3850       }
3851 
3852       // If there is an implementation, traverse it. We do this to find
3853       // synthesized ivars.
3854       if (IFace->getImplementation()) {
3855         ShadowContextRAII Shadow(Visited);
3856         lookupInDeclContext(IFace->getImplementation(), Result,
3857                             QualifiedNameLookup, InBaseClass);
3858       }
3859     } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
3860       for (auto *I : Protocol->protocols()) {
3861         ShadowContextRAII Shadow(Visited);
3862         lookupInDeclContext(I, Result, QualifiedNameLookup,
3863                             /*InBaseClass=*/false);
3864       }
3865     } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
3866       for (auto *I : Category->protocols()) {
3867         ShadowContextRAII Shadow(Visited);
3868         lookupInDeclContext(I, Result, QualifiedNameLookup,
3869                             /*InBaseClass=*/false);
3870       }
3871 
3872       // If there is an implementation, traverse it.
3873       if (Category->getImplementation()) {
3874         ShadowContextRAII Shadow(Visited);
3875         lookupInDeclContext(Category->getImplementation(), Result,
3876                             QualifiedNameLookup, /*InBaseClass=*/true);
3877       }
3878     }
3879   }
3880 
3881   void lookupInScope(Scope *S, LookupResult &Result,
3882                      UnqualUsingDirectiveSet &UDirs) {
3883     // No clients run in this mode and it's not supported. Please add tests and
3884     // remove the assertion if you start relying on it.
3885     assert(!IncludeDependentBases && "Unsupported flag for lookupInScope");
3886 
3887     if (!S)
3888       return;
3889 
3890     if (!S->getEntity() ||
3891         (!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) ||
3892         (S->getEntity())->isFunctionOrMethod()) {
3893       FindLocalExternScope FindLocals(Result);
3894       // Walk through the declarations in this Scope. The consumer might add new
3895       // decls to the scope as part of deserialization, so make a copy first.
3896       SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end());
3897       for (Decl *D : ScopeDecls) {
3898         if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
3899           if ((ND = Result.getAcceptableDecl(ND))) {
3900             Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
3901             Visited.add(ND);
3902           }
3903       }
3904     }
3905 
3906     DeclContext *Entity = S->getLookupEntity();
3907     if (Entity) {
3908       // Look into this scope's declaration context, along with any of its
3909       // parent lookup contexts (e.g., enclosing classes), up to the point
3910       // where we hit the context stored in the next outer scope.
3911       DeclContext *OuterCtx = findOuterContext(S);
3912 
3913       for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
3914            Ctx = Ctx->getLookupParent()) {
3915         if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
3916           if (Method->isInstanceMethod()) {
3917             // For instance methods, look for ivars in the method's interface.
3918             LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
3919                                     Result.getNameLoc(),
3920                                     Sema::LookupMemberName);
3921             if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
3922               lookupInDeclContext(IFace, IvarResult,
3923                                   /*QualifiedNameLookup=*/false,
3924                                   /*InBaseClass=*/false);
3925             }
3926           }
3927 
3928           // We've already performed all of the name lookup that we need
3929           // to for Objective-C methods; the next context will be the
3930           // outer scope.
3931           break;
3932         }
3933 
3934         if (Ctx->isFunctionOrMethod())
3935           continue;
3936 
3937         lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false,
3938                             /*InBaseClass=*/false);
3939       }
3940     } else if (!S->getParent()) {
3941       // Look into the translation unit scope. We walk through the translation
3942       // unit's declaration context, because the Scope itself won't have all of
3943       // the declarations if we loaded a precompiled header.
3944       // FIXME: We would like the translation unit's Scope object to point to
3945       // the translation unit, so we don't need this special "if" branch.
3946       // However, doing so would force the normal C++ name-lookup code to look
3947       // into the translation unit decl when the IdentifierInfo chains would
3948       // suffice. Once we fix that problem (which is part of a more general
3949       // "don't look in DeclContexts unless we have to" optimization), we can
3950       // eliminate this.
3951       Entity = Result.getSema().Context.getTranslationUnitDecl();
3952       lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false,
3953                           /*InBaseClass=*/false);
3954     }
3955 
3956     if (Entity) {
3957       // Lookup visible declarations in any namespaces found by using
3958       // directives.
3959       for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
3960         lookupInDeclContext(
3961             const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result,
3962             /*QualifiedNameLookup=*/false,
3963             /*InBaseClass=*/false);
3964     }
3965 
3966     // Lookup names in the parent scope.
3967     ShadowContextRAII Shadow(Visited);
3968     lookupInScope(S->getParent(), Result, UDirs);
3969   }
3970 
3971 private:
3972   VisibleDeclsRecord Visited;
3973   VisibleDeclConsumer &Consumer;
3974   bool IncludeDependentBases;
3975   bool LoadExternal;
3976 };
3977 } // namespace
3978 
3979 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
3980                               VisibleDeclConsumer &Consumer,
3981                               bool IncludeGlobalScope, bool LoadExternal) {
3982   LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false,
3983                         LoadExternal);
3984   H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope);
3985 }
3986 
3987 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
3988                               VisibleDeclConsumer &Consumer,
3989                               bool IncludeGlobalScope,
3990                               bool IncludeDependentBases, bool LoadExternal) {
3991   LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal);
3992   H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope);
3993 }
3994 
3995 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
3996 /// If GnuLabelLoc is a valid source location, then this is a definition
3997 /// of an __label__ label name, otherwise it is a normal label definition
3998 /// or use.
3999 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
4000                                      SourceLocation GnuLabelLoc) {
4001   // Do a lookup to see if we have a label with this name already.
4002   NamedDecl *Res = nullptr;
4003 
4004   if (GnuLabelLoc.isValid()) {
4005     // Local label definitions always shadow existing labels.
4006     Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
4007     Scope *S = CurScope;
4008     PushOnScopeChains(Res, S, true);
4009     return cast<LabelDecl>(Res);
4010   }
4011 
4012   // Not a GNU local label.
4013   Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
4014   // If we found a label, check to see if it is in the same context as us.
4015   // When in a Block, we don't want to reuse a label in an enclosing function.
4016   if (Res && Res->getDeclContext() != CurContext)
4017     Res = nullptr;
4018   if (!Res) {
4019     // If not forward referenced or defined already, create the backing decl.
4020     Res = LabelDecl::Create(Context, CurContext, Loc, II);
4021     Scope *S = CurScope->getFnParent();
4022     assert(S && "Not in a function?");
4023     PushOnScopeChains(Res, S, true);
4024   }
4025   return cast<LabelDecl>(Res);
4026 }
4027 
4028 //===----------------------------------------------------------------------===//
4029 // Typo correction
4030 //===----------------------------------------------------------------------===//
4031 
4032 static bool isCandidateViable(CorrectionCandidateCallback &CCC,
4033                               TypoCorrection &Candidate) {
4034   Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
4035   return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
4036 }
4037 
4038 static void LookupPotentialTypoResult(Sema &SemaRef,
4039                                       LookupResult &Res,
4040                                       IdentifierInfo *Name,
4041                                       Scope *S, CXXScopeSpec *SS,
4042                                       DeclContext *MemberContext,
4043                                       bool EnteringContext,
4044                                       bool isObjCIvarLookup,
4045                                       bool FindHidden);
4046 
4047 /// Check whether the declarations found for a typo correction are
4048 /// visible. Set the correction's RequiresImport flag to true if none of the
4049 /// declarations are visible, false otherwise.
4050 static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
4051   TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
4052 
4053   for (/**/; DI != DE; ++DI)
4054     if (!LookupResult::isVisible(SemaRef, *DI))
4055       break;
4056   // No filtering needed if all decls are visible.
4057   if (DI == DE) {
4058     TC.setRequiresImport(false);
4059     return;
4060   }
4061 
4062   llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
4063   bool AnyVisibleDecls = !NewDecls.empty();
4064 
4065   for (/**/; DI != DE; ++DI) {
4066     if (LookupResult::isVisible(SemaRef, *DI)) {
4067       if (!AnyVisibleDecls) {
4068         // Found a visible decl, discard all hidden ones.
4069         AnyVisibleDecls = true;
4070         NewDecls.clear();
4071       }
4072       NewDecls.push_back(*DI);
4073     } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
4074       NewDecls.push_back(*DI);
4075   }
4076 
4077   if (NewDecls.empty())
4078     TC = TypoCorrection();
4079   else {
4080     TC.setCorrectionDecls(NewDecls);
4081     TC.setRequiresImport(!AnyVisibleDecls);
4082   }
4083 }
4084 
4085 // Fill the supplied vector with the IdentifierInfo pointers for each piece of
4086 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
4087 // fill the vector with the IdentifierInfo pointers for "foo" and "bar").
4088 static void getNestedNameSpecifierIdentifiers(
4089     NestedNameSpecifier *NNS,
4090     SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
4091   if (NestedNameSpecifier *Prefix = NNS->getPrefix())
4092     getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
4093   else
4094     Identifiers.clear();
4095 
4096   const IdentifierInfo *II = nullptr;
4097 
4098   switch (NNS->getKind()) {
4099   case NestedNameSpecifier::Identifier:
4100     II = NNS->getAsIdentifier();
4101     break;
4102 
4103   case NestedNameSpecifier::Namespace:
4104     if (NNS->getAsNamespace()->isAnonymousNamespace())
4105       return;
4106     II = NNS->getAsNamespace()->getIdentifier();
4107     break;
4108 
4109   case NestedNameSpecifier::NamespaceAlias:
4110     II = NNS->getAsNamespaceAlias()->getIdentifier();
4111     break;
4112 
4113   case NestedNameSpecifier::TypeSpecWithTemplate:
4114   case NestedNameSpecifier::TypeSpec:
4115     II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
4116     break;
4117 
4118   case NestedNameSpecifier::Global:
4119   case NestedNameSpecifier::Super:
4120     return;
4121   }
4122 
4123   if (II)
4124     Identifiers.push_back(II);
4125 }
4126 
4127 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
4128                                        DeclContext *Ctx, bool InBaseClass) {
4129   // Don't consider hidden names for typo correction.
4130   if (Hiding)
4131     return;
4132 
4133   // Only consider entities with identifiers for names, ignoring
4134   // special names (constructors, overloaded operators, selectors,
4135   // etc.).
4136   IdentifierInfo *Name = ND->getIdentifier();
4137   if (!Name)
4138     return;
4139 
4140   // Only consider visible declarations and declarations from modules with
4141   // names that exactly match.
4142   if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo)
4143     return;
4144 
4145   FoundName(Name->getName());
4146 }
4147 
4148 void TypoCorrectionConsumer::FoundName(StringRef Name) {
4149   // Compute the edit distance between the typo and the name of this
4150   // entity, and add the identifier to the list of results.
4151   addName(Name, nullptr);
4152 }
4153 
4154 void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
4155   // Compute the edit distance between the typo and this keyword,
4156   // and add the keyword to the list of results.
4157   addName(Keyword, nullptr, nullptr, true);
4158 }
4159 
4160 void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
4161                                      NestedNameSpecifier *NNS, bool isKeyword) {
4162   // Use a simple length-based heuristic to determine the minimum possible
4163   // edit distance. If the minimum isn't good enough, bail out early.
4164   StringRef TypoStr = Typo->getName();
4165   unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
4166   if (MinED && TypoStr.size() / MinED < 3)
4167     return;
4168 
4169   // Compute an upper bound on the allowable edit distance, so that the
4170   // edit-distance algorithm can short-circuit.
4171   unsigned UpperBound = (TypoStr.size() + 2) / 3;
4172   unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
4173   if (ED > UpperBound) return;
4174 
4175   TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
4176   if (isKeyword) TC.makeKeyword();
4177   TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
4178   addCorrection(TC);
4179 }
4180 
4181 static const unsigned MaxTypoDistanceResultSets = 5;
4182 
4183 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
4184   StringRef TypoStr = Typo->getName();
4185   StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
4186 
4187   // For very short typos, ignore potential corrections that have a different
4188   // base identifier from the typo or which have a normalized edit distance
4189   // longer than the typo itself.
4190   if (TypoStr.size() < 3 &&
4191       (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
4192     return;
4193 
4194   // If the correction is resolved but is not viable, ignore it.
4195   if (Correction.isResolved()) {
4196     checkCorrectionVisibility(SemaRef, Correction);
4197     if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
4198       return;
4199   }
4200 
4201   TypoResultList &CList =
4202       CorrectionResults[Correction.getEditDistance(false)][Name];
4203 
4204   if (!CList.empty() && !CList.back().isResolved())
4205     CList.pop_back();
4206   if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
4207     std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
4208     for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
4209          RI != RIEnd; ++RI) {
4210       // If the Correction refers to a decl already in the result list,
4211       // replace the existing result if the string representation of Correction
4212       // comes before the current result alphabetically, then stop as there is
4213       // nothing more to be done to add Correction to the candidate set.
4214       if (RI->getCorrectionDecl() == NewND) {
4215         if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
4216           *RI = Correction;
4217         return;
4218       }
4219     }
4220   }
4221   if (CList.empty() || Correction.isResolved())
4222     CList.push_back(Correction);
4223 
4224   while (CorrectionResults.size() > MaxTypoDistanceResultSets)
4225     CorrectionResults.erase(std::prev(CorrectionResults.end()));
4226 }
4227 
4228 void TypoCorrectionConsumer::addNamespaces(
4229     const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
4230   SearchNamespaces = true;
4231 
4232   for (auto KNPair : KnownNamespaces)
4233     Namespaces.addNameSpecifier(KNPair.first);
4234 
4235   bool SSIsTemplate = false;
4236   if (NestedNameSpecifier *NNS =
4237           (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
4238     if (const Type *T = NNS->getAsType())
4239       SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
4240   }
4241   // Do not transform this into an iterator-based loop. The loop body can
4242   // trigger the creation of further types (through lazy deserialization) and
4243   // invalid iterators into this list.
4244   auto &Types = SemaRef.getASTContext().getTypes();
4245   for (unsigned I = 0; I != Types.size(); ++I) {
4246     const auto *TI = Types[I];
4247     if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
4248       CD = CD->getCanonicalDecl();
4249       if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
4250           !CD->isUnion() && CD->getIdentifier() &&
4251           (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
4252           (CD->isBeingDefined() || CD->isCompleteDefinition()))
4253         Namespaces.addNameSpecifier(CD);
4254     }
4255   }
4256 }
4257 
4258 const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
4259   if (++CurrentTCIndex < ValidatedCorrections.size())
4260     return ValidatedCorrections[CurrentTCIndex];
4261 
4262   CurrentTCIndex = ValidatedCorrections.size();
4263   while (!CorrectionResults.empty()) {
4264     auto DI = CorrectionResults.begin();
4265     if (DI->second.empty()) {
4266       CorrectionResults.erase(DI);
4267       continue;
4268     }
4269 
4270     auto RI = DI->second.begin();
4271     if (RI->second.empty()) {
4272       DI->second.erase(RI);
4273       performQualifiedLookups();
4274       continue;
4275     }
4276 
4277     TypoCorrection TC = RI->second.pop_back_val();
4278     if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
4279       ValidatedCorrections.push_back(TC);
4280       return ValidatedCorrections[CurrentTCIndex];
4281     }
4282   }
4283   return ValidatedCorrections[0];  // The empty correction.
4284 }
4285 
4286 bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
4287   IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
4288   DeclContext *TempMemberContext = MemberContext;
4289   CXXScopeSpec *TempSS = SS.get();
4290 retry_lookup:
4291   LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
4292                             EnteringContext,
4293                             CorrectionValidator->IsObjCIvarLookup,
4294                             Name == Typo && !Candidate.WillReplaceSpecifier());
4295   switch (Result.getResultKind()) {
4296   case LookupResult::NotFound:
4297   case LookupResult::NotFoundInCurrentInstantiation:
4298   case LookupResult::FoundUnresolvedValue:
4299     if (TempSS) {
4300       // Immediately retry the lookup without the given CXXScopeSpec
4301       TempSS = nullptr;
4302       Candidate.WillReplaceSpecifier(true);
4303       goto retry_lookup;
4304     }
4305     if (TempMemberContext) {
4306       if (SS && !TempSS)
4307         TempSS = SS.get();
4308       TempMemberContext = nullptr;
4309       goto retry_lookup;
4310     }
4311     if (SearchNamespaces)
4312       QualifiedResults.push_back(Candidate);
4313     break;
4314 
4315   case LookupResult::Ambiguous:
4316     // We don't deal with ambiguities.
4317     break;
4318 
4319   case LookupResult::Found:
4320   case LookupResult::FoundOverloaded:
4321     // Store all of the Decls for overloaded symbols
4322     for (auto *TRD : Result)
4323       Candidate.addCorrectionDecl(TRD);
4324     checkCorrectionVisibility(SemaRef, Candidate);
4325     if (!isCandidateViable(*CorrectionValidator, Candidate)) {
4326       if (SearchNamespaces)
4327         QualifiedResults.push_back(Candidate);
4328       break;
4329     }
4330     Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4331     return true;
4332   }
4333   return false;
4334 }
4335 
4336 void TypoCorrectionConsumer::performQualifiedLookups() {
4337   unsigned TypoLen = Typo->getName().size();
4338   for (const TypoCorrection &QR : QualifiedResults) {
4339     for (const auto &NSI : Namespaces) {
4340       DeclContext *Ctx = NSI.DeclCtx;
4341       const Type *NSType = NSI.NameSpecifier->getAsType();
4342 
4343       // If the current NestedNameSpecifier refers to a class and the
4344       // current correction candidate is the name of that class, then skip
4345       // it as it is unlikely a qualified version of the class' constructor
4346       // is an appropriate correction.
4347       if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
4348                                            nullptr) {
4349         if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
4350           continue;
4351       }
4352 
4353       TypoCorrection TC(QR);
4354       TC.ClearCorrectionDecls();
4355       TC.setCorrectionSpecifier(NSI.NameSpecifier);
4356       TC.setQualifierDistance(NSI.EditDistance);
4357       TC.setCallbackDistance(0); // Reset the callback distance
4358 
4359       // If the current correction candidate and namespace combination are
4360       // too far away from the original typo based on the normalized edit
4361       // distance, then skip performing a qualified name lookup.
4362       unsigned TmpED = TC.getEditDistance(true);
4363       if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
4364           TypoLen / TmpED < 3)
4365         continue;
4366 
4367       Result.clear();
4368       Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
4369       if (!SemaRef.LookupQualifiedName(Result, Ctx))
4370         continue;
4371 
4372       // Any corrections added below will be validated in subsequent
4373       // iterations of the main while() loop over the Consumer's contents.
4374       switch (Result.getResultKind()) {
4375       case LookupResult::Found:
4376       case LookupResult::FoundOverloaded: {
4377         if (SS && SS->isValid()) {
4378           std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
4379           std::string OldQualified;
4380           llvm::raw_string_ostream OldOStream(OldQualified);
4381           SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
4382           OldOStream << Typo->getName();
4383           // If correction candidate would be an identical written qualified
4384           // identifier, then the existing CXXScopeSpec probably included a
4385           // typedef that didn't get accounted for properly.
4386           if (OldOStream.str() == NewQualified)
4387             break;
4388         }
4389         for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
4390              TRD != TRDEnd; ++TRD) {
4391           if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
4392                                         NSType ? NSType->getAsCXXRecordDecl()
4393                                                : nullptr,
4394                                         TRD.getPair()) == Sema::AR_accessible)
4395             TC.addCorrectionDecl(*TRD);
4396         }
4397         if (TC.isResolved()) {
4398           TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4399           addCorrection(TC);
4400         }
4401         break;
4402       }
4403       case LookupResult::NotFound:
4404       case LookupResult::NotFoundInCurrentInstantiation:
4405       case LookupResult::Ambiguous:
4406       case LookupResult::FoundUnresolvedValue:
4407         break;
4408       }
4409     }
4410   }
4411   QualifiedResults.clear();
4412 }
4413 
4414 TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
4415     ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
4416     : Context(Context), CurContextChain(buildContextChain(CurContext)) {
4417   if (NestedNameSpecifier *NNS =
4418           CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
4419     llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
4420     NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4421 
4422     getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
4423   }
4424   // Build the list of identifiers that would be used for an absolute
4425   // (from the global context) NestedNameSpecifier referring to the current
4426   // context.
4427   for (DeclContext *C : llvm::reverse(CurContextChain)) {
4428     if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C))
4429       CurContextIdentifiers.push_back(ND->getIdentifier());
4430   }
4431 
4432   // Add the global context as a NestedNameSpecifier
4433   SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
4434                       NestedNameSpecifier::GlobalSpecifier(Context), 1};
4435   DistanceMap[1].push_back(SI);
4436 }
4437 
4438 auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
4439     DeclContext *Start) -> DeclContextList {
4440   assert(Start && "Building a context chain from a null context");
4441   DeclContextList Chain;
4442   for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
4443        DC = DC->getLookupParent()) {
4444     NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
4445     if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
4446         !(ND && ND->isAnonymousNamespace()))
4447       Chain.push_back(DC->getPrimaryContext());
4448   }
4449   return Chain;
4450 }
4451 
4452 unsigned
4453 TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
4454     DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
4455   unsigned NumSpecifiers = 0;
4456   for (DeclContext *C : llvm::reverse(DeclChain)) {
4457     if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) {
4458       NNS = NestedNameSpecifier::Create(Context, NNS, ND);
4459       ++NumSpecifiers;
4460     } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) {
4461       NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
4462                                         RD->getTypeForDecl());
4463       ++NumSpecifiers;
4464     }
4465   }
4466   return NumSpecifiers;
4467 }
4468 
4469 void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
4470     DeclContext *Ctx) {
4471   NestedNameSpecifier *NNS = nullptr;
4472   unsigned NumSpecifiers = 0;
4473   DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
4474   DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
4475 
4476   // Eliminate common elements from the two DeclContext chains.
4477   for (DeclContext *C : llvm::reverse(CurContextChain)) {
4478     if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C)
4479       break;
4480     NamespaceDeclChain.pop_back();
4481   }
4482 
4483   // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
4484   NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
4485 
4486   // Add an explicit leading '::' specifier if needed.
4487   if (NamespaceDeclChain.empty()) {
4488     // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4489     NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4490     NumSpecifiers =
4491         buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4492   } else if (NamedDecl *ND =
4493                  dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
4494     IdentifierInfo *Name = ND->getIdentifier();
4495     bool SameNameSpecifier = false;
4496     if (std::find(CurNameSpecifierIdentifiers.begin(),
4497                   CurNameSpecifierIdentifiers.end(),
4498                   Name) != CurNameSpecifierIdentifiers.end()) {
4499       std::string NewNameSpecifier;
4500       llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
4501       SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
4502       getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4503       NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4504       SpecifierOStream.flush();
4505       SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
4506     }
4507     if (SameNameSpecifier || llvm::find(CurContextIdentifiers, Name) !=
4508                                  CurContextIdentifiers.end()) {
4509       // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4510       NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4511       NumSpecifiers =
4512           buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4513     }
4514   }
4515 
4516   // If the built NestedNameSpecifier would be replacing an existing
4517   // NestedNameSpecifier, use the number of component identifiers that
4518   // would need to be changed as the edit distance instead of the number
4519   // of components in the built NestedNameSpecifier.
4520   if (NNS && !CurNameSpecifierIdentifiers.empty()) {
4521     SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
4522     getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4523     NumSpecifiers = llvm::ComputeEditDistance(
4524         llvm::makeArrayRef(CurNameSpecifierIdentifiers),
4525         llvm::makeArrayRef(NewNameSpecifierIdentifiers));
4526   }
4527 
4528   SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
4529   DistanceMap[NumSpecifiers].push_back(SI);
4530 }
4531 
4532 /// Perform name lookup for a possible result for typo correction.
4533 static void LookupPotentialTypoResult(Sema &SemaRef,
4534                                       LookupResult &Res,
4535                                       IdentifierInfo *Name,
4536                                       Scope *S, CXXScopeSpec *SS,
4537                                       DeclContext *MemberContext,
4538                                       bool EnteringContext,
4539                                       bool isObjCIvarLookup,
4540                                       bool FindHidden) {
4541   Res.suppressDiagnostics();
4542   Res.clear();
4543   Res.setLookupName(Name);
4544   Res.setAllowHidden(FindHidden);
4545   if (MemberContext) {
4546     if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
4547       if (isObjCIvarLookup) {
4548         if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
4549           Res.addDecl(Ivar);
4550           Res.resolveKind();
4551           return;
4552         }
4553       }
4554 
4555       if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(
4556               Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
4557         Res.addDecl(Prop);
4558         Res.resolveKind();
4559         return;
4560       }
4561     }
4562 
4563     SemaRef.LookupQualifiedName(Res, MemberContext);
4564     return;
4565   }
4566 
4567   SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
4568                            EnteringContext);
4569 
4570   // Fake ivar lookup; this should really be part of
4571   // LookupParsedName.
4572   if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
4573     if (Method->isInstanceMethod() && Method->getClassInterface() &&
4574         (Res.empty() ||
4575          (Res.isSingleResult() &&
4576           Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
4577        if (ObjCIvarDecl *IV
4578              = Method->getClassInterface()->lookupInstanceVariable(Name)) {
4579          Res.addDecl(IV);
4580          Res.resolveKind();
4581        }
4582      }
4583   }
4584 }
4585 
4586 /// Add keywords to the consumer as possible typo corrections.
4587 static void AddKeywordsToConsumer(Sema &SemaRef,
4588                                   TypoCorrectionConsumer &Consumer,
4589                                   Scope *S, CorrectionCandidateCallback &CCC,
4590                                   bool AfterNestedNameSpecifier) {
4591   if (AfterNestedNameSpecifier) {
4592     // For 'X::', we know exactly which keywords can appear next.
4593     Consumer.addKeywordResult("template");
4594     if (CCC.WantExpressionKeywords)
4595       Consumer.addKeywordResult("operator");
4596     return;
4597   }
4598 
4599   if (CCC.WantObjCSuper)
4600     Consumer.addKeywordResult("super");
4601 
4602   if (CCC.WantTypeSpecifiers) {
4603     // Add type-specifier keywords to the set of results.
4604     static const char *const CTypeSpecs[] = {
4605       "char", "const", "double", "enum", "float", "int", "long", "short",
4606       "signed", "struct", "union", "unsigned", "void", "volatile",
4607       "_Complex", "_Imaginary",
4608       // storage-specifiers as well
4609       "extern", "inline", "static", "typedef"
4610     };
4611 
4612     const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
4613     for (unsigned I = 0; I != NumCTypeSpecs; ++I)
4614       Consumer.addKeywordResult(CTypeSpecs[I]);
4615 
4616     if (SemaRef.getLangOpts().C99)
4617       Consumer.addKeywordResult("restrict");
4618     if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
4619       Consumer.addKeywordResult("bool");
4620     else if (SemaRef.getLangOpts().C99)
4621       Consumer.addKeywordResult("_Bool");
4622 
4623     if (SemaRef.getLangOpts().CPlusPlus) {
4624       Consumer.addKeywordResult("class");
4625       Consumer.addKeywordResult("typename");
4626       Consumer.addKeywordResult("wchar_t");
4627 
4628       if (SemaRef.getLangOpts().CPlusPlus11) {
4629         Consumer.addKeywordResult("char16_t");
4630         Consumer.addKeywordResult("char32_t");
4631         Consumer.addKeywordResult("constexpr");
4632         Consumer.addKeywordResult("decltype");
4633         Consumer.addKeywordResult("thread_local");
4634       }
4635     }
4636 
4637     if (SemaRef.getLangOpts().GNUKeywords)
4638       Consumer.addKeywordResult("typeof");
4639   } else if (CCC.WantFunctionLikeCasts) {
4640     static const char *const CastableTypeSpecs[] = {
4641       "char", "double", "float", "int", "long", "short",
4642       "signed", "unsigned", "void"
4643     };
4644     for (auto *kw : CastableTypeSpecs)
4645       Consumer.addKeywordResult(kw);
4646   }
4647 
4648   if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
4649     Consumer.addKeywordResult("const_cast");
4650     Consumer.addKeywordResult("dynamic_cast");
4651     Consumer.addKeywordResult("reinterpret_cast");
4652     Consumer.addKeywordResult("static_cast");
4653   }
4654 
4655   if (CCC.WantExpressionKeywords) {
4656     Consumer.addKeywordResult("sizeof");
4657     if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
4658       Consumer.addKeywordResult("false");
4659       Consumer.addKeywordResult("true");
4660     }
4661 
4662     if (SemaRef.getLangOpts().CPlusPlus) {
4663       static const char *const CXXExprs[] = {
4664         "delete", "new", "operator", "throw", "typeid"
4665       };
4666       const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
4667       for (unsigned I = 0; I != NumCXXExprs; ++I)
4668         Consumer.addKeywordResult(CXXExprs[I]);
4669 
4670       if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
4671           cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
4672         Consumer.addKeywordResult("this");
4673 
4674       if (SemaRef.getLangOpts().CPlusPlus11) {
4675         Consumer.addKeywordResult("alignof");
4676         Consumer.addKeywordResult("nullptr");
4677       }
4678     }
4679 
4680     if (SemaRef.getLangOpts().C11) {
4681       // FIXME: We should not suggest _Alignof if the alignof macro
4682       // is present.
4683       Consumer.addKeywordResult("_Alignof");
4684     }
4685   }
4686 
4687   if (CCC.WantRemainingKeywords) {
4688     if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
4689       // Statements.
4690       static const char *const CStmts[] = {
4691         "do", "else", "for", "goto", "if", "return", "switch", "while" };
4692       const unsigned NumCStmts = llvm::array_lengthof(CStmts);
4693       for (unsigned I = 0; I != NumCStmts; ++I)
4694         Consumer.addKeywordResult(CStmts[I]);
4695 
4696       if (SemaRef.getLangOpts().CPlusPlus) {
4697         Consumer.addKeywordResult("catch");
4698         Consumer.addKeywordResult("try");
4699       }
4700 
4701       if (S && S->getBreakParent())
4702         Consumer.addKeywordResult("break");
4703 
4704       if (S && S->getContinueParent())
4705         Consumer.addKeywordResult("continue");
4706 
4707       if (SemaRef.getCurFunction() &&
4708           !SemaRef.getCurFunction()->SwitchStack.empty()) {
4709         Consumer.addKeywordResult("case");
4710         Consumer.addKeywordResult("default");
4711       }
4712     } else {
4713       if (SemaRef.getLangOpts().CPlusPlus) {
4714         Consumer.addKeywordResult("namespace");
4715         Consumer.addKeywordResult("template");
4716       }
4717 
4718       if (S && S->isClassScope()) {
4719         Consumer.addKeywordResult("explicit");
4720         Consumer.addKeywordResult("friend");
4721         Consumer.addKeywordResult("mutable");
4722         Consumer.addKeywordResult("private");
4723         Consumer.addKeywordResult("protected");
4724         Consumer.addKeywordResult("public");
4725         Consumer.addKeywordResult("virtual");
4726       }
4727     }
4728 
4729     if (SemaRef.getLangOpts().CPlusPlus) {
4730       Consumer.addKeywordResult("using");
4731 
4732       if (SemaRef.getLangOpts().CPlusPlus11)
4733         Consumer.addKeywordResult("static_assert");
4734     }
4735   }
4736 }
4737 
4738 std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
4739     const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4740     Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
4741     DeclContext *MemberContext, bool EnteringContext,
4742     const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
4743 
4744   if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
4745       DisableTypoCorrection)
4746     return nullptr;
4747 
4748   // In Microsoft mode, don't perform typo correction in a template member
4749   // function dependent context because it interferes with the "lookup into
4750   // dependent bases of class templates" feature.
4751   if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
4752       isa<CXXMethodDecl>(CurContext))
4753     return nullptr;
4754 
4755   // We only attempt to correct typos for identifiers.
4756   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4757   if (!Typo)
4758     return nullptr;
4759 
4760   // If the scope specifier itself was invalid, don't try to correct
4761   // typos.
4762   if (SS && SS->isInvalid())
4763     return nullptr;
4764 
4765   // Never try to correct typos during any kind of code synthesis.
4766   if (!CodeSynthesisContexts.empty())
4767     return nullptr;
4768 
4769   // Don't try to correct 'super'.
4770   if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
4771     return nullptr;
4772 
4773   // Abort if typo correction already failed for this specific typo.
4774   IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
4775   if (locs != TypoCorrectionFailures.end() &&
4776       locs->second.count(TypoName.getLoc()))
4777     return nullptr;
4778 
4779   // Don't try to correct the identifier "vector" when in AltiVec mode.
4780   // TODO: Figure out why typo correction misbehaves in this case, fix it, and
4781   // remove this workaround.
4782   if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
4783     return nullptr;
4784 
4785   // Provide a stop gap for files that are just seriously broken.  Trying
4786   // to correct all typos can turn into a HUGE performance penalty, causing
4787   // some files to take minutes to get rejected by the parser.
4788   unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
4789   if (Limit && TyposCorrected >= Limit)
4790     return nullptr;
4791   ++TyposCorrected;
4792 
4793   // If we're handling a missing symbol error, using modules, and the
4794   // special search all modules option is used, look for a missing import.
4795   if (ErrorRecovery && getLangOpts().Modules &&
4796       getLangOpts().ModulesSearchAll) {
4797     // The following has the side effect of loading the missing module.
4798     getModuleLoader().lookupMissingImports(Typo->getName(),
4799                                            TypoName.getBeginLoc());
4800   }
4801 
4802   // Extend the lifetime of the callback. We delayed this until here
4803   // to avoid allocations in the hot path (which is where no typo correction
4804   // occurs). Note that CorrectionCandidateCallback is polymorphic and
4805   // initially stack-allocated.
4806   std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone();
4807   auto Consumer = std::make_unique<TypoCorrectionConsumer>(
4808       *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext,
4809       EnteringContext);
4810 
4811   // Perform name lookup to find visible, similarly-named entities.
4812   bool IsUnqualifiedLookup = false;
4813   DeclContext *QualifiedDC = MemberContext;
4814   if (MemberContext) {
4815     LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
4816 
4817     // Look in qualified interfaces.
4818     if (OPT) {
4819       for (auto *I : OPT->quals())
4820         LookupVisibleDecls(I, LookupKind, *Consumer);
4821     }
4822   } else if (SS && SS->isSet()) {
4823     QualifiedDC = computeDeclContext(*SS, EnteringContext);
4824     if (!QualifiedDC)
4825       return nullptr;
4826 
4827     LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
4828   } else {
4829     IsUnqualifiedLookup = true;
4830   }
4831 
4832   // Determine whether we are going to search in the various namespaces for
4833   // corrections.
4834   bool SearchNamespaces
4835     = getLangOpts().CPlusPlus &&
4836       (IsUnqualifiedLookup || (SS && SS->isSet()));
4837 
4838   if (IsUnqualifiedLookup || SearchNamespaces) {
4839     // For unqualified lookup, look through all of the names that we have
4840     // seen in this translation unit.
4841     // FIXME: Re-add the ability to skip very unlikely potential corrections.
4842     for (const auto &I : Context.Idents)
4843       Consumer->FoundName(I.getKey());
4844 
4845     // Walk through identifiers in external identifier sources.
4846     // FIXME: Re-add the ability to skip very unlikely potential corrections.
4847     if (IdentifierInfoLookup *External
4848                             = Context.Idents.getExternalIdentifierLookup()) {
4849       std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4850       do {
4851         StringRef Name = Iter->Next();
4852         if (Name.empty())
4853           break;
4854 
4855         Consumer->FoundName(Name);
4856       } while (true);
4857     }
4858   }
4859 
4860   AddKeywordsToConsumer(*this, *Consumer, S,
4861                         *Consumer->getCorrectionValidator(),
4862                         SS && SS->isNotEmpty());
4863 
4864   // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
4865   // to search those namespaces.
4866   if (SearchNamespaces) {
4867     // Load any externally-known namespaces.
4868     if (ExternalSource && !LoadedExternalKnownNamespaces) {
4869       SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
4870       LoadedExternalKnownNamespaces = true;
4871       ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
4872       for (auto *N : ExternalKnownNamespaces)
4873         KnownNamespaces[N] = true;
4874     }
4875 
4876     Consumer->addNamespaces(KnownNamespaces);
4877   }
4878 
4879   return Consumer;
4880 }
4881 
4882 /// Try to "correct" a typo in the source code by finding
4883 /// visible declarations whose names are similar to the name that was
4884 /// present in the source code.
4885 ///
4886 /// \param TypoName the \c DeclarationNameInfo structure that contains
4887 /// the name that was present in the source code along with its location.
4888 ///
4889 /// \param LookupKind the name-lookup criteria used to search for the name.
4890 ///
4891 /// \param S the scope in which name lookup occurs.
4892 ///
4893 /// \param SS the nested-name-specifier that precedes the name we're
4894 /// looking for, if present.
4895 ///
4896 /// \param CCC A CorrectionCandidateCallback object that provides further
4897 /// validation of typo correction candidates. It also provides flags for
4898 /// determining the set of keywords permitted.
4899 ///
4900 /// \param MemberContext if non-NULL, the context in which to look for
4901 /// a member access expression.
4902 ///
4903 /// \param EnteringContext whether we're entering the context described by
4904 /// the nested-name-specifier SS.
4905 ///
4906 /// \param OPT when non-NULL, the search for visible declarations will
4907 /// also walk the protocols in the qualified interfaces of \p OPT.
4908 ///
4909 /// \returns a \c TypoCorrection containing the corrected name if the typo
4910 /// along with information such as the \c NamedDecl where the corrected name
4911 /// was declared, and any additional \c NestedNameSpecifier needed to access
4912 /// it (C++ only). The \c TypoCorrection is empty if there is no correction.
4913 TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
4914                                  Sema::LookupNameKind LookupKind,
4915                                  Scope *S, CXXScopeSpec *SS,
4916                                  CorrectionCandidateCallback &CCC,
4917                                  CorrectTypoKind Mode,
4918                                  DeclContext *MemberContext,
4919                                  bool EnteringContext,
4920                                  const ObjCObjectPointerType *OPT,
4921                                  bool RecordFailure) {
4922   // Always let the ExternalSource have the first chance at correction, even
4923   // if we would otherwise have given up.
4924   if (ExternalSource) {
4925     if (TypoCorrection Correction =
4926             ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC,
4927                                         MemberContext, EnteringContext, OPT))
4928       return Correction;
4929   }
4930 
4931   // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
4932   // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
4933   // some instances of CTC_Unknown, while WantRemainingKeywords is true
4934   // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
4935   bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords;
4936 
4937   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4938   auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
4939                                              MemberContext, EnteringContext,
4940                                              OPT, Mode == CTK_ErrorRecovery);
4941 
4942   if (!Consumer)
4943     return TypoCorrection();
4944 
4945   // If we haven't found anything, we're done.
4946   if (Consumer->empty())
4947     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4948 
4949   // Make sure the best edit distance (prior to adding any namespace qualifiers)
4950   // is not more that about a third of the length of the typo's identifier.
4951   unsigned ED = Consumer->getBestEditDistance(true);
4952   unsigned TypoLen = Typo->getName().size();
4953   if (ED > 0 && TypoLen / ED < 3)
4954     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4955 
4956   TypoCorrection BestTC = Consumer->getNextCorrection();
4957   TypoCorrection SecondBestTC = Consumer->getNextCorrection();
4958   if (!BestTC)
4959     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4960 
4961   ED = BestTC.getEditDistance();
4962 
4963   if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
4964     // If this was an unqualified lookup and we believe the callback
4965     // object wouldn't have filtered out possible corrections, note
4966     // that no correction was found.
4967     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4968   }
4969 
4970   // If only a single name remains, return that result.
4971   if (!SecondBestTC ||
4972       SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
4973     const TypoCorrection &Result = BestTC;
4974 
4975     // Don't correct to a keyword that's the same as the typo; the keyword
4976     // wasn't actually in scope.
4977     if (ED == 0 && Result.isKeyword())
4978       return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4979 
4980     TypoCorrection TC = Result;
4981     TC.setCorrectionRange(SS, TypoName);
4982     checkCorrectionVisibility(*this, TC);
4983     return TC;
4984   } else if (SecondBestTC && ObjCMessageReceiver) {
4985     // Prefer 'super' when we're completing in a message-receiver
4986     // context.
4987 
4988     if (BestTC.getCorrection().getAsString() != "super") {
4989       if (SecondBestTC.getCorrection().getAsString() == "super")
4990         BestTC = SecondBestTC;
4991       else if ((*Consumer)["super"].front().isKeyword())
4992         BestTC = (*Consumer)["super"].front();
4993     }
4994     // Don't correct to a keyword that's the same as the typo; the keyword
4995     // wasn't actually in scope.
4996     if (BestTC.getEditDistance() == 0 ||
4997         BestTC.getCorrection().getAsString() != "super")
4998       return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4999 
5000     BestTC.setCorrectionRange(SS, TypoName);
5001     return BestTC;
5002   }
5003 
5004   // Record the failure's location if needed and return an empty correction. If
5005   // this was an unqualified lookup and we believe the callback object did not
5006   // filter out possible corrections, also cache the failure for the typo.
5007   return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
5008 }
5009 
5010 /// Try to "correct" a typo in the source code by finding
5011 /// visible declarations whose names are similar to the name that was
5012 /// present in the source code.
5013 ///
5014 /// \param TypoName the \c DeclarationNameInfo structure that contains
5015 /// the name that was present in the source code along with its location.
5016 ///
5017 /// \param LookupKind the name-lookup criteria used to search for the name.
5018 ///
5019 /// \param S the scope in which name lookup occurs.
5020 ///
5021 /// \param SS the nested-name-specifier that precedes the name we're
5022 /// looking for, if present.
5023 ///
5024 /// \param CCC A CorrectionCandidateCallback object that provides further
5025 /// validation of typo correction candidates. It also provides flags for
5026 /// determining the set of keywords permitted.
5027 ///
5028 /// \param TDG A TypoDiagnosticGenerator functor that will be used to print
5029 /// diagnostics when the actual typo correction is attempted.
5030 ///
5031 /// \param TRC A TypoRecoveryCallback functor that will be used to build an
5032 /// Expr from a typo correction candidate.
5033 ///
5034 /// \param MemberContext if non-NULL, the context in which to look for
5035 /// a member access expression.
5036 ///
5037 /// \param EnteringContext whether we're entering the context described by
5038 /// the nested-name-specifier SS.
5039 ///
5040 /// \param OPT when non-NULL, the search for visible declarations will
5041 /// also walk the protocols in the qualified interfaces of \p OPT.
5042 ///
5043 /// \returns a new \c TypoExpr that will later be replaced in the AST with an
5044 /// Expr representing the result of performing typo correction, or nullptr if
5045 /// typo correction is not possible. If nullptr is returned, no diagnostics will
5046 /// be emitted and it is the responsibility of the caller to emit any that are
5047 /// needed.
5048 TypoExpr *Sema::CorrectTypoDelayed(
5049     const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
5050     Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
5051     TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
5052     DeclContext *MemberContext, bool EnteringContext,
5053     const ObjCObjectPointerType *OPT) {
5054   auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5055                                              MemberContext, EnteringContext,
5056                                              OPT, Mode == CTK_ErrorRecovery);
5057 
5058   // Give the external sema source a chance to correct the typo.
5059   TypoCorrection ExternalTypo;
5060   if (ExternalSource && Consumer) {
5061     ExternalTypo = ExternalSource->CorrectTypo(
5062         TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(),
5063         MemberContext, EnteringContext, OPT);
5064     if (ExternalTypo)
5065       Consumer->addCorrection(ExternalTypo);
5066   }
5067 
5068   if (!Consumer || Consumer->empty())
5069     return nullptr;
5070 
5071   // Make sure the best edit distance (prior to adding any namespace qualifiers)
5072   // is not more that about a third of the length of the typo's identifier.
5073   unsigned ED = Consumer->getBestEditDistance(true);
5074   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5075   if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3)
5076     return nullptr;
5077   ExprEvalContexts.back().NumTypos++;
5078   return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC),
5079                            TypoName.getLoc());
5080 }
5081 
5082 void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
5083   if (!CDecl) return;
5084 
5085   if (isKeyword())
5086     CorrectionDecls.clear();
5087 
5088   CorrectionDecls.push_back(CDecl);
5089 
5090   if (!CorrectionName)
5091     CorrectionName = CDecl->getDeclName();
5092 }
5093 
5094 std::string TypoCorrection::getAsString(const LangOptions &LO) const {
5095   if (CorrectionNameSpec) {
5096     std::string tmpBuffer;
5097     llvm::raw_string_ostream PrefixOStream(tmpBuffer);
5098     CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
5099     PrefixOStream << CorrectionName;
5100     return PrefixOStream.str();
5101   }
5102 
5103   return CorrectionName.getAsString();
5104 }
5105 
5106 bool CorrectionCandidateCallback::ValidateCandidate(
5107     const TypoCorrection &candidate) {
5108   if (!candidate.isResolved())
5109     return true;
5110 
5111   if (candidate.isKeyword())
5112     return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
5113            WantRemainingKeywords || WantObjCSuper;
5114 
5115   bool HasNonType = false;
5116   bool HasStaticMethod = false;
5117   bool HasNonStaticMethod = false;
5118   for (Decl *D : candidate) {
5119     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
5120       D = FTD->getTemplatedDecl();
5121     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5122       if (Method->isStatic())
5123         HasStaticMethod = true;
5124       else
5125         HasNonStaticMethod = true;
5126     }
5127     if (!isa<TypeDecl>(D))
5128       HasNonType = true;
5129   }
5130 
5131   if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
5132       !candidate.getCorrectionSpecifier())
5133     return false;
5134 
5135   return WantTypeSpecifiers || HasNonType;
5136 }
5137 
5138 FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
5139                                              bool HasExplicitTemplateArgs,
5140                                              MemberExpr *ME)
5141     : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
5142       CurContext(SemaRef.CurContext), MemberFn(ME) {
5143   WantTypeSpecifiers = false;
5144   WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus &&
5145                           !HasExplicitTemplateArgs && NumArgs == 1;
5146   WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1;
5147   WantRemainingKeywords = false;
5148 }
5149 
5150 bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
5151   if (!candidate.getCorrectionDecl())
5152     return candidate.isKeyword();
5153 
5154   for (auto *C : candidate) {
5155     FunctionDecl *FD = nullptr;
5156     NamedDecl *ND = C->getUnderlyingDecl();
5157     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
5158       FD = FTD->getTemplatedDecl();
5159     if (!HasExplicitTemplateArgs && !FD) {
5160       if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
5161         // If the Decl is neither a function nor a template function,
5162         // determine if it is a pointer or reference to a function. If so,
5163         // check against the number of arguments expected for the pointee.
5164         QualType ValType = cast<ValueDecl>(ND)->getType();
5165         if (ValType.isNull())
5166           continue;
5167         if (ValType->isAnyPointerType() || ValType->isReferenceType())
5168           ValType = ValType->getPointeeType();
5169         if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
5170           if (FPT->getNumParams() == NumArgs)
5171             return true;
5172       }
5173     }
5174 
5175     // A typo for a function-style cast can look like a function call in C++.
5176     if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr
5177                                  : isa<TypeDecl>(ND)) &&
5178         CurContext->getParentASTContext().getLangOpts().CPlusPlus)
5179       // Only a class or class template can take two or more arguments.
5180       return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND);
5181 
5182     // Skip the current candidate if it is not a FunctionDecl or does not accept
5183     // the current number of arguments.
5184     if (!FD || !(FD->getNumParams() >= NumArgs &&
5185                  FD->getMinRequiredArguments() <= NumArgs))
5186       continue;
5187 
5188     // If the current candidate is a non-static C++ method, skip the candidate
5189     // unless the method being corrected--or the current DeclContext, if the
5190     // function being corrected is not a method--is a method in the same class
5191     // or a descendent class of the candidate's parent class.
5192     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5193       if (MemberFn || !MD->isStatic()) {
5194         CXXMethodDecl *CurMD =
5195             MemberFn
5196                 ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
5197                 : dyn_cast_or_null<CXXMethodDecl>(CurContext);
5198         CXXRecordDecl *CurRD =
5199             CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
5200         CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
5201         if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
5202           continue;
5203       }
5204     }
5205     return true;
5206   }
5207   return false;
5208 }
5209 
5210 void Sema::diagnoseTypo(const TypoCorrection &Correction,
5211                         const PartialDiagnostic &TypoDiag,
5212                         bool ErrorRecovery) {
5213   diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
5214                ErrorRecovery);
5215 }
5216 
5217 /// Find which declaration we should import to provide the definition of
5218 /// the given declaration.
5219 static NamedDecl *getDefinitionToImport(NamedDecl *D) {
5220   if (VarDecl *VD = dyn_cast<VarDecl>(D))
5221     return VD->getDefinition();
5222   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
5223     return FD->getDefinition();
5224   if (TagDecl *TD = dyn_cast<TagDecl>(D))
5225     return TD->getDefinition();
5226   // The first definition for this ObjCInterfaceDecl might be in the TU
5227   // and not associated with any module. Use the one we know to be complete
5228   // and have just seen in a module.
5229   if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
5230     return ID;
5231   if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
5232     return PD->getDefinition();
5233   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
5234     if (NamedDecl *TTD = TD->getTemplatedDecl())
5235       return getDefinitionToImport(TTD);
5236   return nullptr;
5237 }
5238 
5239 void Sema::diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
5240                                  MissingImportKind MIK, bool Recover) {
5241   // Suggest importing a module providing the definition of this entity, if
5242   // possible.
5243   NamedDecl *Def = getDefinitionToImport(Decl);
5244   if (!Def)
5245     Def = Decl;
5246 
5247   Module *Owner = getOwningModule(Def);
5248   assert(Owner && "definition of hidden declaration is not in a module");
5249 
5250   llvm::SmallVector<Module*, 8> OwningModules;
5251   OwningModules.push_back(Owner);
5252   auto Merged = Context.getModulesWithMergedDefinition(Def);
5253   OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
5254 
5255   diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK,
5256                         Recover);
5257 }
5258 
5259 /// Get a "quoted.h" or <angled.h> include path to use in a diagnostic
5260 /// suggesting the addition of a #include of the specified file.
5261 static std::string getHeaderNameForHeader(Preprocessor &PP, const FileEntry *E,
5262                                           llvm::StringRef IncludingFile) {
5263   bool IsSystem = false;
5264   auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics(
5265       E, IncludingFile, &IsSystem);
5266   return (IsSystem ? '<' : '"') + Path + (IsSystem ? '>' : '"');
5267 }
5268 
5269 void Sema::diagnoseMissingImport(SourceLocation UseLoc, NamedDecl *Decl,
5270                                  SourceLocation DeclLoc,
5271                                  ArrayRef<Module *> Modules,
5272                                  MissingImportKind MIK, bool Recover) {
5273   assert(!Modules.empty());
5274 
5275   auto NotePrevious = [&] {
5276     // FIXME: Suppress the note backtrace even under
5277     // -fdiagnostics-show-note-include-stack. We don't care how this
5278     // declaration was previously reached.
5279     Diag(DeclLoc, diag::note_unreachable_entity) << (int)MIK;
5280   };
5281 
5282   // Weed out duplicates from module list.
5283   llvm::SmallVector<Module*, 8> UniqueModules;
5284   llvm::SmallDenseSet<Module*, 8> UniqueModuleSet;
5285   for (auto *M : Modules) {
5286     if (M->Kind == Module::GlobalModuleFragment)
5287       continue;
5288     if (UniqueModuleSet.insert(M).second)
5289       UniqueModules.push_back(M);
5290   }
5291 
5292   // Try to find a suitable header-name to #include.
5293   std::string HeaderName;
5294   if (const FileEntry *Header =
5295           PP.getHeaderToIncludeForDiagnostics(UseLoc, DeclLoc)) {
5296     if (const FileEntry *FE =
5297             SourceMgr.getFileEntryForID(SourceMgr.getFileID(UseLoc)))
5298       HeaderName = getHeaderNameForHeader(PP, Header, FE->tryGetRealPathName());
5299   }
5300 
5301   // If we have a #include we should suggest, or if all definition locations
5302   // were in global module fragments, don't suggest an import.
5303   if (!HeaderName.empty() || UniqueModules.empty()) {
5304     // FIXME: Find a smart place to suggest inserting a #include, and add
5305     // a FixItHint there.
5306     Diag(UseLoc, diag::err_module_unimported_use_header)
5307         << (int)MIK << Decl << !HeaderName.empty() << HeaderName;
5308     // Produce a note showing where the entity was declared.
5309     NotePrevious();
5310     if (Recover)
5311       createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5312     return;
5313   }
5314 
5315   Modules = UniqueModules;
5316 
5317   if (Modules.size() > 1) {
5318     std::string ModuleList;
5319     unsigned N = 0;
5320     for (Module *M : Modules) {
5321       ModuleList += "\n        ";
5322       if (++N == 5 && N != Modules.size()) {
5323         ModuleList += "[...]";
5324         break;
5325       }
5326       ModuleList += M->getFullModuleName();
5327     }
5328 
5329     Diag(UseLoc, diag::err_module_unimported_use_multiple)
5330       << (int)MIK << Decl << ModuleList;
5331   } else {
5332     // FIXME: Add a FixItHint that imports the corresponding module.
5333     Diag(UseLoc, diag::err_module_unimported_use)
5334       << (int)MIK << Decl << Modules[0]->getFullModuleName();
5335   }
5336 
5337   NotePrevious();
5338 
5339   // Try to recover by implicitly importing this module.
5340   if (Recover)
5341     createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5342 }
5343 
5344 /// Diagnose a successfully-corrected typo. Separated from the correction
5345 /// itself to allow external validation of the result, etc.
5346 ///
5347 /// \param Correction The result of performing typo correction.
5348 /// \param TypoDiag The diagnostic to produce. This will have the corrected
5349 ///        string added to it (and usually also a fixit).
5350 /// \param PrevNote A note to use when indicating the location of the entity to
5351 ///        which we are correcting. Will have the correction string added to it.
5352 /// \param ErrorRecovery If \c true (the default), the caller is going to
5353 ///        recover from the typo as if the corrected string had been typed.
5354 ///        In this case, \c PDiag must be an error, and we will attach a fixit
5355 ///        to it.
5356 void Sema::diagnoseTypo(const TypoCorrection &Correction,
5357                         const PartialDiagnostic &TypoDiag,
5358                         const PartialDiagnostic &PrevNote,
5359                         bool ErrorRecovery) {
5360   std::string CorrectedStr = Correction.getAsString(getLangOpts());
5361   std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
5362   FixItHint FixTypo = FixItHint::CreateReplacement(
5363       Correction.getCorrectionRange(), CorrectedStr);
5364 
5365   // Maybe we're just missing a module import.
5366   if (Correction.requiresImport()) {
5367     NamedDecl *Decl = Correction.getFoundDecl();
5368     assert(Decl && "import required but no declaration to import");
5369 
5370     diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
5371                           MissingImportKind::Declaration, ErrorRecovery);
5372     return;
5373   }
5374 
5375   Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
5376     << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
5377 
5378   NamedDecl *ChosenDecl =
5379       Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
5380   if (PrevNote.getDiagID() && ChosenDecl)
5381     Diag(ChosenDecl->getLocation(), PrevNote)
5382       << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
5383 
5384   // Add any extra diagnostics.
5385   for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics())
5386     Diag(Correction.getCorrectionRange().getBegin(), PD);
5387 }
5388 
5389 TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
5390                                   TypoDiagnosticGenerator TDG,
5391                                   TypoRecoveryCallback TRC,
5392                                   SourceLocation TypoLoc) {
5393   assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer");
5394   auto TE = new (Context) TypoExpr(Context.DependentTy, TypoLoc);
5395   auto &State = DelayedTypos[TE];
5396   State.Consumer = std::move(TCC);
5397   State.DiagHandler = std::move(TDG);
5398   State.RecoveryHandler = std::move(TRC);
5399   if (TE)
5400     TypoExprs.push_back(TE);
5401   return TE;
5402 }
5403 
5404 const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
5405   auto Entry = DelayedTypos.find(TE);
5406   assert(Entry != DelayedTypos.end() &&
5407          "Failed to get the state for a TypoExpr!");
5408   return Entry->second;
5409 }
5410 
5411 void Sema::clearDelayedTypo(TypoExpr *TE) {
5412   DelayedTypos.erase(TE);
5413 }
5414 
5415 void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) {
5416   DeclarationNameInfo Name(II, IILoc);
5417   LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration);
5418   R.suppressDiagnostics();
5419   R.setHideTags(false);
5420   LookupName(R, S);
5421   R.dump();
5422 }
5423