1 //===--------------------- SemaLookup.cpp - Name Lookup ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements name lookup for C, C++, Objective-C, and 10 // Objective-C++. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/CXXInheritance.h" 16 #include "clang/AST/Decl.h" 17 #include "clang/AST/DeclCXX.h" 18 #include "clang/AST/DeclLookups.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/Expr.h" 22 #include "clang/AST/ExprCXX.h" 23 #include "clang/Basic/Builtins.h" 24 #include "clang/Basic/FileManager.h" 25 #include "clang/Basic/LangOptions.h" 26 #include "clang/Lex/HeaderSearch.h" 27 #include "clang/Lex/ModuleLoader.h" 28 #include "clang/Lex/Preprocessor.h" 29 #include "clang/Sema/DeclSpec.h" 30 #include "clang/Sema/Lookup.h" 31 #include "clang/Sema/Overload.h" 32 #include "clang/Sema/RISCVIntrinsicManager.h" 33 #include "clang/Sema/Scope.h" 34 #include "clang/Sema/ScopeInfo.h" 35 #include "clang/Sema/Sema.h" 36 #include "clang/Sema/SemaInternal.h" 37 #include "clang/Sema/TemplateDeduction.h" 38 #include "clang/Sema/TypoCorrection.h" 39 #include "llvm/ADT/STLExtras.h" 40 #include "llvm/ADT/SmallPtrSet.h" 41 #include "llvm/ADT/TinyPtrVector.h" 42 #include "llvm/ADT/edit_distance.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include <algorithm> 46 #include <iterator> 47 #include <list> 48 #include <optional> 49 #include <set> 50 #include <utility> 51 #include <vector> 52 53 #include "OpenCLBuiltins.inc" 54 55 using namespace clang; 56 using namespace sema; 57 58 namespace { 59 class UnqualUsingEntry { 60 const DeclContext *Nominated; 61 const DeclContext *CommonAncestor; 62 63 public: 64 UnqualUsingEntry(const DeclContext *Nominated, 65 const DeclContext *CommonAncestor) 66 : Nominated(Nominated), CommonAncestor(CommonAncestor) { 67 } 68 69 const DeclContext *getCommonAncestor() const { 70 return CommonAncestor; 71 } 72 73 const DeclContext *getNominatedNamespace() const { 74 return Nominated; 75 } 76 77 // Sort by the pointer value of the common ancestor. 78 struct Comparator { 79 bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) { 80 return L.getCommonAncestor() < R.getCommonAncestor(); 81 } 82 83 bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) { 84 return E.getCommonAncestor() < DC; 85 } 86 87 bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) { 88 return DC < E.getCommonAncestor(); 89 } 90 }; 91 }; 92 93 /// A collection of using directives, as used by C++ unqualified 94 /// lookup. 95 class UnqualUsingDirectiveSet { 96 Sema &SemaRef; 97 98 typedef SmallVector<UnqualUsingEntry, 8> ListTy; 99 100 ListTy list; 101 llvm::SmallPtrSet<DeclContext*, 8> visited; 102 103 public: 104 UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {} 105 106 void visitScopeChain(Scope *S, Scope *InnermostFileScope) { 107 // C++ [namespace.udir]p1: 108 // During unqualified name lookup, the names appear as if they 109 // were declared in the nearest enclosing namespace which contains 110 // both the using-directive and the nominated namespace. 111 DeclContext *InnermostFileDC = InnermostFileScope->getEntity(); 112 assert(InnermostFileDC && InnermostFileDC->isFileContext()); 113 114 for (; S; S = S->getParent()) { 115 // C++ [namespace.udir]p1: 116 // A using-directive shall not appear in class scope, but may 117 // appear in namespace scope or in block scope. 118 DeclContext *Ctx = S->getEntity(); 119 if (Ctx && Ctx->isFileContext()) { 120 visit(Ctx, Ctx); 121 } else if (!Ctx || Ctx->isFunctionOrMethod()) { 122 for (auto *I : S->using_directives()) 123 if (SemaRef.isVisible(I)) 124 visit(I, InnermostFileDC); 125 } 126 } 127 } 128 129 // Visits a context and collect all of its using directives 130 // recursively. Treats all using directives as if they were 131 // declared in the context. 132 // 133 // A given context is only every visited once, so it is important 134 // that contexts be visited from the inside out in order to get 135 // the effective DCs right. 136 void visit(DeclContext *DC, DeclContext *EffectiveDC) { 137 if (!visited.insert(DC).second) 138 return; 139 140 addUsingDirectives(DC, EffectiveDC); 141 } 142 143 // Visits a using directive and collects all of its using 144 // directives recursively. Treats all using directives as if they 145 // were declared in the effective DC. 146 void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { 147 DeclContext *NS = UD->getNominatedNamespace(); 148 if (!visited.insert(NS).second) 149 return; 150 151 addUsingDirective(UD, EffectiveDC); 152 addUsingDirectives(NS, EffectiveDC); 153 } 154 155 // Adds all the using directives in a context (and those nominated 156 // by its using directives, transitively) as if they appeared in 157 // the given effective context. 158 void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) { 159 SmallVector<DeclContext*, 4> queue; 160 while (true) { 161 for (auto *UD : DC->using_directives()) { 162 DeclContext *NS = UD->getNominatedNamespace(); 163 if (SemaRef.isVisible(UD) && visited.insert(NS).second) { 164 addUsingDirective(UD, EffectiveDC); 165 queue.push_back(NS); 166 } 167 } 168 169 if (queue.empty()) 170 return; 171 172 DC = queue.pop_back_val(); 173 } 174 } 175 176 // Add a using directive as if it had been declared in the given 177 // context. This helps implement C++ [namespace.udir]p3: 178 // The using-directive is transitive: if a scope contains a 179 // using-directive that nominates a second namespace that itself 180 // contains using-directives, the effect is as if the 181 // using-directives from the second namespace also appeared in 182 // the first. 183 void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { 184 // Find the common ancestor between the effective context and 185 // the nominated namespace. 186 DeclContext *Common = UD->getNominatedNamespace(); 187 while (!Common->Encloses(EffectiveDC)) 188 Common = Common->getParent(); 189 Common = Common->getPrimaryContext(); 190 191 list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common)); 192 } 193 194 void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); } 195 196 typedef ListTy::const_iterator const_iterator; 197 198 const_iterator begin() const { return list.begin(); } 199 const_iterator end() const { return list.end(); } 200 201 llvm::iterator_range<const_iterator> 202 getNamespacesFor(const DeclContext *DC) const { 203 return llvm::make_range(std::equal_range(begin(), end(), 204 DC->getPrimaryContext(), 205 UnqualUsingEntry::Comparator())); 206 } 207 }; 208 } // end anonymous namespace 209 210 // Retrieve the set of identifier namespaces that correspond to a 211 // specific kind of name lookup. 212 static inline unsigned getIDNS(Sema::LookupNameKind NameKind, 213 bool CPlusPlus, 214 bool Redeclaration) { 215 unsigned IDNS = 0; 216 switch (NameKind) { 217 case Sema::LookupObjCImplicitSelfParam: 218 case Sema::LookupOrdinaryName: 219 case Sema::LookupRedeclarationWithLinkage: 220 case Sema::LookupLocalFriendName: 221 case Sema::LookupDestructorName: 222 IDNS = Decl::IDNS_Ordinary; 223 if (CPlusPlus) { 224 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace; 225 if (Redeclaration) 226 IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend; 227 } 228 if (Redeclaration) 229 IDNS |= Decl::IDNS_LocalExtern; 230 break; 231 232 case Sema::LookupOperatorName: 233 // Operator lookup is its own crazy thing; it is not the same 234 // as (e.g.) looking up an operator name for redeclaration. 235 assert(!Redeclaration && "cannot do redeclaration operator lookup"); 236 IDNS = Decl::IDNS_NonMemberOperator; 237 break; 238 239 case Sema::LookupTagName: 240 if (CPlusPlus) { 241 IDNS = Decl::IDNS_Type; 242 243 // When looking for a redeclaration of a tag name, we add: 244 // 1) TagFriend to find undeclared friend decls 245 // 2) Namespace because they can't "overload" with tag decls. 246 // 3) Tag because it includes class templates, which can't 247 // "overload" with tag decls. 248 if (Redeclaration) 249 IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace; 250 } else { 251 IDNS = Decl::IDNS_Tag; 252 } 253 break; 254 255 case Sema::LookupLabel: 256 IDNS = Decl::IDNS_Label; 257 break; 258 259 case Sema::LookupMemberName: 260 IDNS = Decl::IDNS_Member; 261 if (CPlusPlus) 262 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary; 263 break; 264 265 case Sema::LookupNestedNameSpecifierName: 266 IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace; 267 break; 268 269 case Sema::LookupNamespaceName: 270 IDNS = Decl::IDNS_Namespace; 271 break; 272 273 case Sema::LookupUsingDeclName: 274 assert(Redeclaration && "should only be used for redecl lookup"); 275 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member | 276 Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend | 277 Decl::IDNS_LocalExtern; 278 break; 279 280 case Sema::LookupObjCProtocolName: 281 IDNS = Decl::IDNS_ObjCProtocol; 282 break; 283 284 case Sema::LookupOMPReductionName: 285 IDNS = Decl::IDNS_OMPReduction; 286 break; 287 288 case Sema::LookupOMPMapperName: 289 IDNS = Decl::IDNS_OMPMapper; 290 break; 291 292 case Sema::LookupAnyName: 293 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member 294 | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol 295 | Decl::IDNS_Type; 296 break; 297 } 298 return IDNS; 299 } 300 301 void LookupResult::configure() { 302 IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus, 303 isForRedeclaration()); 304 305 // If we're looking for one of the allocation or deallocation 306 // operators, make sure that the implicitly-declared new and delete 307 // operators can be found. 308 switch (NameInfo.getName().getCXXOverloadedOperator()) { 309 case OO_New: 310 case OO_Delete: 311 case OO_Array_New: 312 case OO_Array_Delete: 313 getSema().DeclareGlobalNewDelete(); 314 break; 315 316 default: 317 break; 318 } 319 320 // Compiler builtins are always visible, regardless of where they end 321 // up being declared. 322 if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) { 323 if (unsigned BuiltinID = Id->getBuiltinID()) { 324 if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 325 AllowHidden = true; 326 } 327 } 328 } 329 330 bool LookupResult::checkDebugAssumptions() const { 331 // This function is never called by NDEBUG builds. 332 assert(ResultKind != NotFound || Decls.size() == 0); 333 assert(ResultKind != Found || Decls.size() == 1); 334 assert(ResultKind != FoundOverloaded || Decls.size() > 1 || 335 (Decls.size() == 1 && 336 isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))); 337 assert(ResultKind != FoundUnresolvedValue || checkUnresolved()); 338 assert(ResultKind != Ambiguous || Decls.size() > 1 || 339 (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || 340 Ambiguity == AmbiguousBaseSubobjectTypes))); 341 assert((Paths != nullptr) == (ResultKind == Ambiguous && 342 (Ambiguity == AmbiguousBaseSubobjectTypes || 343 Ambiguity == AmbiguousBaseSubobjects))); 344 return true; 345 } 346 347 // Necessary because CXXBasePaths is not complete in Sema.h 348 void LookupResult::deletePaths(CXXBasePaths *Paths) { 349 delete Paths; 350 } 351 352 /// Get a representative context for a declaration such that two declarations 353 /// will have the same context if they were found within the same scope. 354 static const DeclContext *getContextForScopeMatching(const Decl *D) { 355 // For function-local declarations, use that function as the context. This 356 // doesn't account for scopes within the function; the caller must deal with 357 // those. 358 if (const DeclContext *DC = D->getLexicalDeclContext(); 359 DC->isFunctionOrMethod()) 360 return DC; 361 362 // Otherwise, look at the semantic context of the declaration. The 363 // declaration must have been found there. 364 return D->getDeclContext()->getRedeclContext(); 365 } 366 367 /// Determine whether \p D is a better lookup result than \p Existing, 368 /// given that they declare the same entity. 369 static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind, 370 const NamedDecl *D, 371 const NamedDecl *Existing) { 372 // When looking up redeclarations of a using declaration, prefer a using 373 // shadow declaration over any other declaration of the same entity. 374 if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) && 375 !isa<UsingShadowDecl>(Existing)) 376 return true; 377 378 const auto *DUnderlying = D->getUnderlyingDecl(); 379 const auto *EUnderlying = Existing->getUnderlyingDecl(); 380 381 // If they have different underlying declarations, prefer a typedef over the 382 // original type (this happens when two type declarations denote the same 383 // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef 384 // might carry additional semantic information, such as an alignment override. 385 // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag 386 // declaration over a typedef. Also prefer a tag over a typedef for 387 // destructor name lookup because in some contexts we only accept a 388 // class-name in a destructor declaration. 389 if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) { 390 assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying)); 391 bool HaveTag = isa<TagDecl>(EUnderlying); 392 bool WantTag = 393 Kind == Sema::LookupTagName || Kind == Sema::LookupDestructorName; 394 return HaveTag != WantTag; 395 } 396 397 // Pick the function with more default arguments. 398 // FIXME: In the presence of ambiguous default arguments, we should keep both, 399 // so we can diagnose the ambiguity if the default argument is needed. 400 // See C++ [over.match.best]p3. 401 if (const auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) { 402 const auto *EFD = cast<FunctionDecl>(EUnderlying); 403 unsigned DMin = DFD->getMinRequiredArguments(); 404 unsigned EMin = EFD->getMinRequiredArguments(); 405 // If D has more default arguments, it is preferred. 406 if (DMin != EMin) 407 return DMin < EMin; 408 // FIXME: When we track visibility for default function arguments, check 409 // that we pick the declaration with more visible default arguments. 410 } 411 412 // Pick the template with more default template arguments. 413 if (const auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) { 414 const auto *ETD = cast<TemplateDecl>(EUnderlying); 415 unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments(); 416 unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments(); 417 // If D has more default arguments, it is preferred. Note that default 418 // arguments (and their visibility) is monotonically increasing across the 419 // redeclaration chain, so this is a quick proxy for "is more recent". 420 if (DMin != EMin) 421 return DMin < EMin; 422 // If D has more *visible* default arguments, it is preferred. Note, an 423 // earlier default argument being visible does not imply that a later 424 // default argument is visible, so we can't just check the first one. 425 for (unsigned I = DMin, N = DTD->getTemplateParameters()->size(); 426 I != N; ++I) { 427 if (!S.hasVisibleDefaultArgument( 428 ETD->getTemplateParameters()->getParam(I)) && 429 S.hasVisibleDefaultArgument( 430 DTD->getTemplateParameters()->getParam(I))) 431 return true; 432 } 433 } 434 435 // VarDecl can have incomplete array types, prefer the one with more complete 436 // array type. 437 if (const auto *DVD = dyn_cast<VarDecl>(DUnderlying)) { 438 const auto *EVD = cast<VarDecl>(EUnderlying); 439 if (EVD->getType()->isIncompleteType() && 440 !DVD->getType()->isIncompleteType()) { 441 // Prefer the decl with a more complete type if visible. 442 return S.isVisible(DVD); 443 } 444 return false; // Avoid picking up a newer decl, just because it was newer. 445 } 446 447 // For most kinds of declaration, it doesn't really matter which one we pick. 448 if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) { 449 // If the existing declaration is hidden, prefer the new one. Otherwise, 450 // keep what we've got. 451 return !S.isVisible(Existing); 452 } 453 454 // Pick the newer declaration; it might have a more precise type. 455 for (const Decl *Prev = DUnderlying->getPreviousDecl(); Prev; 456 Prev = Prev->getPreviousDecl()) 457 if (Prev == EUnderlying) 458 return true; 459 return false; 460 } 461 462 /// Determine whether \p D can hide a tag declaration. 463 static bool canHideTag(const NamedDecl *D) { 464 // C++ [basic.scope.declarative]p4: 465 // Given a set of declarations in a single declarative region [...] 466 // exactly one declaration shall declare a class name or enumeration name 467 // that is not a typedef name and the other declarations shall all refer to 468 // the same variable, non-static data member, or enumerator, or all refer 469 // to functions and function templates; in this case the class name or 470 // enumeration name is hidden. 471 // C++ [basic.scope.hiding]p2: 472 // A class name or enumeration name can be hidden by the name of a 473 // variable, data member, function, or enumerator declared in the same 474 // scope. 475 // An UnresolvedUsingValueDecl always instantiates to one of these. 476 D = D->getUnderlyingDecl(); 477 return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) || 478 isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) || 479 isa<UnresolvedUsingValueDecl>(D); 480 } 481 482 /// Resolves the result kind of this lookup. 483 void LookupResult::resolveKind() { 484 unsigned N = Decls.size(); 485 486 // Fast case: no possible ambiguity. 487 if (N == 0) { 488 assert(ResultKind == NotFound || 489 ResultKind == NotFoundInCurrentInstantiation); 490 return; 491 } 492 493 // If there's a single decl, we need to examine it to decide what 494 // kind of lookup this is. 495 if (N == 1) { 496 const NamedDecl *D = (*Decls.begin())->getUnderlyingDecl(); 497 if (isa<FunctionTemplateDecl>(D)) 498 ResultKind = FoundOverloaded; 499 else if (isa<UnresolvedUsingValueDecl>(D)) 500 ResultKind = FoundUnresolvedValue; 501 return; 502 } 503 504 // Don't do any extra resolution if we've already resolved as ambiguous. 505 if (ResultKind == Ambiguous) return; 506 507 llvm::SmallDenseMap<const NamedDecl *, unsigned, 16> Unique; 508 llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes; 509 510 bool Ambiguous = false; 511 bool HasTag = false, HasFunction = false; 512 bool HasFunctionTemplate = false, HasUnresolved = false; 513 const NamedDecl *HasNonFunction = nullptr; 514 515 llvm::SmallVector<const NamedDecl *, 4> EquivalentNonFunctions; 516 517 unsigned UniqueTagIndex = 0; 518 519 unsigned I = 0; 520 while (I < N) { 521 const NamedDecl *D = Decls[I]->getUnderlyingDecl(); 522 D = cast<NamedDecl>(D->getCanonicalDecl()); 523 524 // Ignore an invalid declaration unless it's the only one left. 525 // Also ignore HLSLBufferDecl which not have name conflict with other Decls. 526 if ((D->isInvalidDecl() || isa<HLSLBufferDecl>(D)) && !(I == 0 && N == 1)) { 527 Decls[I] = Decls[--N]; 528 continue; 529 } 530 531 std::optional<unsigned> ExistingI; 532 533 // Redeclarations of types via typedef can occur both within a scope 534 // and, through using declarations and directives, across scopes. There is 535 // no ambiguity if they all refer to the same type, so unique based on the 536 // canonical type. 537 if (const auto *TD = dyn_cast<TypeDecl>(D)) { 538 QualType T = getSema().Context.getTypeDeclType(TD); 539 auto UniqueResult = UniqueTypes.insert( 540 std::make_pair(getSema().Context.getCanonicalType(T), I)); 541 if (!UniqueResult.second) { 542 // The type is not unique. 543 ExistingI = UniqueResult.first->second; 544 } 545 } 546 547 // For non-type declarations, check for a prior lookup result naming this 548 // canonical declaration. 549 if (!ExistingI) { 550 auto UniqueResult = Unique.insert(std::make_pair(D, I)); 551 if (!UniqueResult.second) { 552 // We've seen this entity before. 553 ExistingI = UniqueResult.first->second; 554 } 555 } 556 557 if (ExistingI) { 558 // This is not a unique lookup result. Pick one of the results and 559 // discard the other. 560 if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I], 561 Decls[*ExistingI])) 562 Decls[*ExistingI] = Decls[I]; 563 Decls[I] = Decls[--N]; 564 continue; 565 } 566 567 // Otherwise, do some decl type analysis and then continue. 568 569 if (isa<UnresolvedUsingValueDecl>(D)) { 570 HasUnresolved = true; 571 } else if (isa<TagDecl>(D)) { 572 if (HasTag) 573 Ambiguous = true; 574 UniqueTagIndex = I; 575 HasTag = true; 576 } else if (isa<FunctionTemplateDecl>(D)) { 577 HasFunction = true; 578 HasFunctionTemplate = true; 579 } else if (isa<FunctionDecl>(D)) { 580 HasFunction = true; 581 } else { 582 if (HasNonFunction) { 583 // If we're about to create an ambiguity between two declarations that 584 // are equivalent, but one is an internal linkage declaration from one 585 // module and the other is an internal linkage declaration from another 586 // module, just skip it. 587 if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction, 588 D)) { 589 EquivalentNonFunctions.push_back(D); 590 Decls[I] = Decls[--N]; 591 continue; 592 } 593 594 Ambiguous = true; 595 } 596 HasNonFunction = D; 597 } 598 I++; 599 } 600 601 // C++ [basic.scope.hiding]p2: 602 // A class name or enumeration name can be hidden by the name of 603 // an object, function, or enumerator declared in the same 604 // scope. If a class or enumeration name and an object, function, 605 // or enumerator are declared in the same scope (in any order) 606 // with the same name, the class or enumeration name is hidden 607 // wherever the object, function, or enumerator name is visible. 608 // But it's still an error if there are distinct tag types found, 609 // even if they're not visible. (ref?) 610 if (N > 1 && HideTags && HasTag && !Ambiguous && 611 (HasFunction || HasNonFunction || HasUnresolved)) { 612 const NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1]; 613 if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) && 614 getContextForScopeMatching(Decls[UniqueTagIndex])->Equals( 615 getContextForScopeMatching(OtherDecl)) && 616 canHideTag(OtherDecl)) 617 Decls[UniqueTagIndex] = Decls[--N]; 618 else 619 Ambiguous = true; 620 } 621 622 // FIXME: This diagnostic should really be delayed until we're done with 623 // the lookup result, in case the ambiguity is resolved by the caller. 624 if (!EquivalentNonFunctions.empty() && !Ambiguous) 625 getSema().diagnoseEquivalentInternalLinkageDeclarations( 626 getNameLoc(), HasNonFunction, EquivalentNonFunctions); 627 628 Decls.truncate(N); 629 630 if (HasNonFunction && (HasFunction || HasUnresolved)) 631 Ambiguous = true; 632 633 if (Ambiguous) 634 setAmbiguous(LookupResult::AmbiguousReference); 635 else if (HasUnresolved) 636 ResultKind = LookupResult::FoundUnresolvedValue; 637 else if (N > 1 || HasFunctionTemplate) 638 ResultKind = LookupResult::FoundOverloaded; 639 else 640 ResultKind = LookupResult::Found; 641 } 642 643 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) { 644 CXXBasePaths::const_paths_iterator I, E; 645 for (I = P.begin(), E = P.end(); I != E; ++I) 646 for (DeclContext::lookup_iterator DI = I->Decls, DE = DI.end(); DI != DE; 647 ++DI) 648 addDecl(*DI); 649 } 650 651 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) { 652 Paths = new CXXBasePaths; 653 Paths->swap(P); 654 addDeclsFromBasePaths(*Paths); 655 resolveKind(); 656 setAmbiguous(AmbiguousBaseSubobjects); 657 } 658 659 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) { 660 Paths = new CXXBasePaths; 661 Paths->swap(P); 662 addDeclsFromBasePaths(*Paths); 663 resolveKind(); 664 setAmbiguous(AmbiguousBaseSubobjectTypes); 665 } 666 667 void LookupResult::print(raw_ostream &Out) { 668 Out << Decls.size() << " result(s)"; 669 if (isAmbiguous()) Out << ", ambiguous"; 670 if (Paths) Out << ", base paths present"; 671 672 for (iterator I = begin(), E = end(); I != E; ++I) { 673 Out << "\n"; 674 (*I)->print(Out, 2); 675 } 676 } 677 678 LLVM_DUMP_METHOD void LookupResult::dump() { 679 llvm::errs() << "lookup results for " << getLookupName().getAsString() 680 << ":\n"; 681 for (NamedDecl *D : *this) 682 D->dump(); 683 } 684 685 /// Diagnose a missing builtin type. 686 static QualType diagOpenCLBuiltinTypeError(Sema &S, llvm::StringRef TypeClass, 687 llvm::StringRef Name) { 688 S.Diag(SourceLocation(), diag::err_opencl_type_not_found) 689 << TypeClass << Name; 690 return S.Context.VoidTy; 691 } 692 693 /// Lookup an OpenCL enum type. 694 static QualType getOpenCLEnumType(Sema &S, llvm::StringRef Name) { 695 LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(), 696 Sema::LookupTagName); 697 S.LookupName(Result, S.TUScope); 698 if (Result.empty()) 699 return diagOpenCLBuiltinTypeError(S, "enum", Name); 700 EnumDecl *Decl = Result.getAsSingle<EnumDecl>(); 701 if (!Decl) 702 return diagOpenCLBuiltinTypeError(S, "enum", Name); 703 return S.Context.getEnumType(Decl); 704 } 705 706 /// Lookup an OpenCL typedef type. 707 static QualType getOpenCLTypedefType(Sema &S, llvm::StringRef Name) { 708 LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(), 709 Sema::LookupOrdinaryName); 710 S.LookupName(Result, S.TUScope); 711 if (Result.empty()) 712 return diagOpenCLBuiltinTypeError(S, "typedef", Name); 713 TypedefNameDecl *Decl = Result.getAsSingle<TypedefNameDecl>(); 714 if (!Decl) 715 return diagOpenCLBuiltinTypeError(S, "typedef", Name); 716 return S.Context.getTypedefType(Decl); 717 } 718 719 /// Get the QualType instances of the return type and arguments for an OpenCL 720 /// builtin function signature. 721 /// \param S (in) The Sema instance. 722 /// \param OpenCLBuiltin (in) The signature currently handled. 723 /// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic 724 /// type used as return type or as argument. 725 /// Only meaningful for generic types, otherwise equals 1. 726 /// \param RetTypes (out) List of the possible return types. 727 /// \param ArgTypes (out) List of the possible argument types. For each 728 /// argument, ArgTypes contains QualTypes for the Cartesian product 729 /// of (vector sizes) x (types) . 730 static void GetQualTypesForOpenCLBuiltin( 731 Sema &S, const OpenCLBuiltinStruct &OpenCLBuiltin, unsigned &GenTypeMaxCnt, 732 SmallVector<QualType, 1> &RetTypes, 733 SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) { 734 // Get the QualType instances of the return types. 735 unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex]; 736 OCL2Qual(S, TypeTable[Sig], RetTypes); 737 GenTypeMaxCnt = RetTypes.size(); 738 739 // Get the QualType instances of the arguments. 740 // First type is the return type, skip it. 741 for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) { 742 SmallVector<QualType, 1> Ty; 743 OCL2Qual(S, TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]], 744 Ty); 745 GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt; 746 ArgTypes.push_back(std::move(Ty)); 747 } 748 } 749 750 /// Create a list of the candidate function overloads for an OpenCL builtin 751 /// function. 752 /// \param Context (in) The ASTContext instance. 753 /// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic 754 /// type used as return type or as argument. 755 /// Only meaningful for generic types, otherwise equals 1. 756 /// \param FunctionList (out) List of FunctionTypes. 757 /// \param RetTypes (in) List of the possible return types. 758 /// \param ArgTypes (in) List of the possible types for the arguments. 759 static void GetOpenCLBuiltinFctOverloads( 760 ASTContext &Context, unsigned GenTypeMaxCnt, 761 std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes, 762 SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) { 763 FunctionProtoType::ExtProtoInfo PI( 764 Context.getDefaultCallingConvention(false, false, true)); 765 PI.Variadic = false; 766 767 // Do not attempt to create any FunctionTypes if there are no return types, 768 // which happens when a type belongs to a disabled extension. 769 if (RetTypes.size() == 0) 770 return; 771 772 // Create FunctionTypes for each (gen)type. 773 for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) { 774 SmallVector<QualType, 5> ArgList; 775 776 for (unsigned A = 0; A < ArgTypes.size(); A++) { 777 // Bail out if there is an argument that has no available types. 778 if (ArgTypes[A].size() == 0) 779 return; 780 781 // Builtins such as "max" have an "sgentype" argument that represents 782 // the corresponding scalar type of a gentype. The number of gentypes 783 // must be a multiple of the number of sgentypes. 784 assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 && 785 "argument type count not compatible with gentype type count"); 786 unsigned Idx = IGenType % ArgTypes[A].size(); 787 ArgList.push_back(ArgTypes[A][Idx]); 788 } 789 790 FunctionList.push_back(Context.getFunctionType( 791 RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI)); 792 } 793 } 794 795 /// When trying to resolve a function name, if isOpenCLBuiltin() returns a 796 /// non-null <Index, Len> pair, then the name is referencing an OpenCL 797 /// builtin function. Add all candidate signatures to the LookUpResult. 798 /// 799 /// \param S (in) The Sema instance. 800 /// \param LR (inout) The LookupResult instance. 801 /// \param II (in) The identifier being resolved. 802 /// \param FctIndex (in) Starting index in the BuiltinTable. 803 /// \param Len (in) The signature list has Len elements. 804 static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR, 805 IdentifierInfo *II, 806 const unsigned FctIndex, 807 const unsigned Len) { 808 // The builtin function declaration uses generic types (gentype). 809 bool HasGenType = false; 810 811 // Maximum number of types contained in a generic type used as return type or 812 // as argument. Only meaningful for generic types, otherwise equals 1. 813 unsigned GenTypeMaxCnt; 814 815 ASTContext &Context = S.Context; 816 817 for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) { 818 const OpenCLBuiltinStruct &OpenCLBuiltin = 819 BuiltinTable[FctIndex + SignatureIndex]; 820 821 // Ignore this builtin function if it is not available in the currently 822 // selected language version. 823 if (!isOpenCLVersionContainedInMask(Context.getLangOpts(), 824 OpenCLBuiltin.Versions)) 825 continue; 826 827 // Ignore this builtin function if it carries an extension macro that is 828 // not defined. This indicates that the extension is not supported by the 829 // target, so the builtin function should not be available. 830 StringRef Extensions = FunctionExtensionTable[OpenCLBuiltin.Extension]; 831 if (!Extensions.empty()) { 832 SmallVector<StringRef, 2> ExtVec; 833 Extensions.split(ExtVec, " "); 834 bool AllExtensionsDefined = true; 835 for (StringRef Ext : ExtVec) { 836 if (!S.getPreprocessor().isMacroDefined(Ext)) { 837 AllExtensionsDefined = false; 838 break; 839 } 840 } 841 if (!AllExtensionsDefined) 842 continue; 843 } 844 845 SmallVector<QualType, 1> RetTypes; 846 SmallVector<SmallVector<QualType, 1>, 5> ArgTypes; 847 848 // Obtain QualType lists for the function signature. 849 GetQualTypesForOpenCLBuiltin(S, OpenCLBuiltin, GenTypeMaxCnt, RetTypes, 850 ArgTypes); 851 if (GenTypeMaxCnt > 1) { 852 HasGenType = true; 853 } 854 855 // Create function overload for each type combination. 856 std::vector<QualType> FunctionList; 857 GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes, 858 ArgTypes); 859 860 SourceLocation Loc = LR.getNameLoc(); 861 DeclContext *Parent = Context.getTranslationUnitDecl(); 862 FunctionDecl *NewOpenCLBuiltin; 863 864 for (const auto &FTy : FunctionList) { 865 NewOpenCLBuiltin = FunctionDecl::Create( 866 Context, Parent, Loc, Loc, II, FTy, /*TInfo=*/nullptr, SC_Extern, 867 S.getCurFPFeatures().isFPConstrained(), false, 868 FTy->isFunctionProtoType()); 869 NewOpenCLBuiltin->setImplicit(); 870 871 // Create Decl objects for each parameter, adding them to the 872 // FunctionDecl. 873 const auto *FP = cast<FunctionProtoType>(FTy); 874 SmallVector<ParmVarDecl *, 4> ParmList; 875 for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) { 876 ParmVarDecl *Parm = ParmVarDecl::Create( 877 Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(), 878 nullptr, FP->getParamType(IParm), nullptr, SC_None, nullptr); 879 Parm->setScopeInfo(0, IParm); 880 ParmList.push_back(Parm); 881 } 882 NewOpenCLBuiltin->setParams(ParmList); 883 884 // Add function attributes. 885 if (OpenCLBuiltin.IsPure) 886 NewOpenCLBuiltin->addAttr(PureAttr::CreateImplicit(Context)); 887 if (OpenCLBuiltin.IsConst) 888 NewOpenCLBuiltin->addAttr(ConstAttr::CreateImplicit(Context)); 889 if (OpenCLBuiltin.IsConv) 890 NewOpenCLBuiltin->addAttr(ConvergentAttr::CreateImplicit(Context)); 891 892 if (!S.getLangOpts().OpenCLCPlusPlus) 893 NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context)); 894 895 LR.addDecl(NewOpenCLBuiltin); 896 } 897 } 898 899 // If we added overloads, need to resolve the lookup result. 900 if (Len > 1 || HasGenType) 901 LR.resolveKind(); 902 } 903 904 /// Lookup a builtin function, when name lookup would otherwise 905 /// fail. 906 bool Sema::LookupBuiltin(LookupResult &R) { 907 Sema::LookupNameKind NameKind = R.getLookupKind(); 908 909 // If we didn't find a use of this identifier, and if the identifier 910 // corresponds to a compiler builtin, create the decl object for the builtin 911 // now, injecting it into translation unit scope, and return it. 912 if (NameKind == Sema::LookupOrdinaryName || 913 NameKind == Sema::LookupRedeclarationWithLinkage) { 914 IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo(); 915 if (II) { 916 if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) { 917 if (II == getASTContext().getMakeIntegerSeqName()) { 918 R.addDecl(getASTContext().getMakeIntegerSeqDecl()); 919 return true; 920 } else if (II == getASTContext().getTypePackElementName()) { 921 R.addDecl(getASTContext().getTypePackElementDecl()); 922 return true; 923 } 924 } 925 926 // Check if this is an OpenCL Builtin, and if so, insert its overloads. 927 if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) { 928 auto Index = isOpenCLBuiltin(II->getName()); 929 if (Index.first) { 930 InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1, 931 Index.second); 932 return true; 933 } 934 } 935 936 if (DeclareRISCVVBuiltins || DeclareRISCVSiFiveVectorBuiltins) { 937 if (!RVIntrinsicManager) 938 RVIntrinsicManager = CreateRISCVIntrinsicManager(*this); 939 940 RVIntrinsicManager->InitIntrinsicList(); 941 942 if (RVIntrinsicManager->CreateIntrinsicIfFound(R, II, PP)) 943 return true; 944 } 945 946 // If this is a builtin on this (or all) targets, create the decl. 947 if (unsigned BuiltinID = II->getBuiltinID()) { 948 // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined 949 // library functions like 'malloc'. Instead, we'll just error. 950 if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) && 951 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 952 return false; 953 954 if (NamedDecl *D = 955 LazilyCreateBuiltin(II, BuiltinID, TUScope, 956 R.isForRedeclaration(), R.getNameLoc())) { 957 R.addDecl(D); 958 return true; 959 } 960 } 961 } 962 } 963 964 return false; 965 } 966 967 /// Looks up the declaration of "struct objc_super" and 968 /// saves it for later use in building builtin declaration of 969 /// objc_msgSendSuper and objc_msgSendSuper_stret. 970 static void LookupPredefedObjCSuperType(Sema &Sema, Scope *S) { 971 ASTContext &Context = Sema.Context; 972 LookupResult Result(Sema, &Context.Idents.get("objc_super"), SourceLocation(), 973 Sema::LookupTagName); 974 Sema.LookupName(Result, S); 975 if (Result.getResultKind() == LookupResult::Found) 976 if (const TagDecl *TD = Result.getAsSingle<TagDecl>()) 977 Context.setObjCSuperType(Context.getTagDeclType(TD)); 978 } 979 980 void Sema::LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID) { 981 if (ID == Builtin::BIobjc_msgSendSuper) 982 LookupPredefedObjCSuperType(*this, S); 983 } 984 985 /// Determine whether we can declare a special member function within 986 /// the class at this point. 987 static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) { 988 // We need to have a definition for the class. 989 if (!Class->getDefinition() || Class->isDependentContext()) 990 return false; 991 992 // We can't be in the middle of defining the class. 993 return !Class->isBeingDefined(); 994 } 995 996 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) { 997 if (!CanDeclareSpecialMemberFunction(Class)) 998 return; 999 1000 // If the default constructor has not yet been declared, do so now. 1001 if (Class->needsImplicitDefaultConstructor()) 1002 DeclareImplicitDefaultConstructor(Class); 1003 1004 // If the copy constructor has not yet been declared, do so now. 1005 if (Class->needsImplicitCopyConstructor()) 1006 DeclareImplicitCopyConstructor(Class); 1007 1008 // If the copy assignment operator has not yet been declared, do so now. 1009 if (Class->needsImplicitCopyAssignment()) 1010 DeclareImplicitCopyAssignment(Class); 1011 1012 if (getLangOpts().CPlusPlus11) { 1013 // If the move constructor has not yet been declared, do so now. 1014 if (Class->needsImplicitMoveConstructor()) 1015 DeclareImplicitMoveConstructor(Class); 1016 1017 // If the move assignment operator has not yet been declared, do so now. 1018 if (Class->needsImplicitMoveAssignment()) 1019 DeclareImplicitMoveAssignment(Class); 1020 } 1021 1022 // If the destructor has not yet been declared, do so now. 1023 if (Class->needsImplicitDestructor()) 1024 DeclareImplicitDestructor(Class); 1025 } 1026 1027 /// Determine whether this is the name of an implicitly-declared 1028 /// special member function. 1029 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) { 1030 switch (Name.getNameKind()) { 1031 case DeclarationName::CXXConstructorName: 1032 case DeclarationName::CXXDestructorName: 1033 return true; 1034 1035 case DeclarationName::CXXOperatorName: 1036 return Name.getCXXOverloadedOperator() == OO_Equal; 1037 1038 default: 1039 break; 1040 } 1041 1042 return false; 1043 } 1044 1045 /// If there are any implicit member functions with the given name 1046 /// that need to be declared in the given declaration context, do so. 1047 static void DeclareImplicitMemberFunctionsWithName(Sema &S, 1048 DeclarationName Name, 1049 SourceLocation Loc, 1050 const DeclContext *DC) { 1051 if (!DC) 1052 return; 1053 1054 switch (Name.getNameKind()) { 1055 case DeclarationName::CXXConstructorName: 1056 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) 1057 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) { 1058 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record); 1059 if (Record->needsImplicitDefaultConstructor()) 1060 S.DeclareImplicitDefaultConstructor(Class); 1061 if (Record->needsImplicitCopyConstructor()) 1062 S.DeclareImplicitCopyConstructor(Class); 1063 if (S.getLangOpts().CPlusPlus11 && 1064 Record->needsImplicitMoveConstructor()) 1065 S.DeclareImplicitMoveConstructor(Class); 1066 } 1067 break; 1068 1069 case DeclarationName::CXXDestructorName: 1070 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) 1071 if (Record->getDefinition() && Record->needsImplicitDestructor() && 1072 CanDeclareSpecialMemberFunction(Record)) 1073 S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record)); 1074 break; 1075 1076 case DeclarationName::CXXOperatorName: 1077 if (Name.getCXXOverloadedOperator() != OO_Equal) 1078 break; 1079 1080 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) { 1081 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) { 1082 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record); 1083 if (Record->needsImplicitCopyAssignment()) 1084 S.DeclareImplicitCopyAssignment(Class); 1085 if (S.getLangOpts().CPlusPlus11 && 1086 Record->needsImplicitMoveAssignment()) 1087 S.DeclareImplicitMoveAssignment(Class); 1088 } 1089 } 1090 break; 1091 1092 case DeclarationName::CXXDeductionGuideName: 1093 S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc); 1094 break; 1095 1096 default: 1097 break; 1098 } 1099 } 1100 1101 // Adds all qualifying matches for a name within a decl context to the 1102 // given lookup result. Returns true if any matches were found. 1103 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) { 1104 bool Found = false; 1105 1106 // Lazily declare C++ special member functions. 1107 if (S.getLangOpts().CPlusPlus) 1108 DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(), 1109 DC); 1110 1111 // Perform lookup into this declaration context. 1112 DeclContext::lookup_result DR = DC->lookup(R.getLookupName()); 1113 for (NamedDecl *D : DR) { 1114 if ((D = R.getAcceptableDecl(D))) { 1115 R.addDecl(D); 1116 Found = true; 1117 } 1118 } 1119 1120 if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R)) 1121 return true; 1122 1123 if (R.getLookupName().getNameKind() 1124 != DeclarationName::CXXConversionFunctionName || 1125 R.getLookupName().getCXXNameType()->isDependentType() || 1126 !isa<CXXRecordDecl>(DC)) 1127 return Found; 1128 1129 // C++ [temp.mem]p6: 1130 // A specialization of a conversion function template is not found by 1131 // name lookup. Instead, any conversion function templates visible in the 1132 // context of the use are considered. [...] 1133 const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); 1134 if (!Record->isCompleteDefinition()) 1135 return Found; 1136 1137 // For conversion operators, 'operator auto' should only match 1138 // 'operator auto'. Since 'auto' is not a type, it shouldn't be considered 1139 // as a candidate for template substitution. 1140 auto *ContainedDeducedType = 1141 R.getLookupName().getCXXNameType()->getContainedDeducedType(); 1142 if (R.getLookupName().getNameKind() == 1143 DeclarationName::CXXConversionFunctionName && 1144 ContainedDeducedType && ContainedDeducedType->isUndeducedType()) 1145 return Found; 1146 1147 for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(), 1148 UEnd = Record->conversion_end(); U != UEnd; ++U) { 1149 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U); 1150 if (!ConvTemplate) 1151 continue; 1152 1153 // When we're performing lookup for the purposes of redeclaration, just 1154 // add the conversion function template. When we deduce template 1155 // arguments for specializations, we'll end up unifying the return 1156 // type of the new declaration with the type of the function template. 1157 if (R.isForRedeclaration()) { 1158 R.addDecl(ConvTemplate); 1159 Found = true; 1160 continue; 1161 } 1162 1163 // C++ [temp.mem]p6: 1164 // [...] For each such operator, if argument deduction succeeds 1165 // (14.9.2.3), the resulting specialization is used as if found by 1166 // name lookup. 1167 // 1168 // When referencing a conversion function for any purpose other than 1169 // a redeclaration (such that we'll be building an expression with the 1170 // result), perform template argument deduction and place the 1171 // specialization into the result set. We do this to avoid forcing all 1172 // callers to perform special deduction for conversion functions. 1173 TemplateDeductionInfo Info(R.getNameLoc()); 1174 FunctionDecl *Specialization = nullptr; 1175 1176 const FunctionProtoType *ConvProto 1177 = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>(); 1178 assert(ConvProto && "Nonsensical conversion function template type"); 1179 1180 // Compute the type of the function that we would expect the conversion 1181 // function to have, if it were to match the name given. 1182 // FIXME: Calling convention! 1183 FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo(); 1184 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C); 1185 EPI.ExceptionSpec = EST_None; 1186 QualType ExpectedType = R.getSema().Context.getFunctionType( 1187 R.getLookupName().getCXXNameType(), std::nullopt, EPI); 1188 1189 // Perform template argument deduction against the type that we would 1190 // expect the function to have. 1191 if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType, 1192 Specialization, Info) 1193 == Sema::TDK_Success) { 1194 R.addDecl(Specialization); 1195 Found = true; 1196 } 1197 } 1198 1199 return Found; 1200 } 1201 1202 // Performs C++ unqualified lookup into the given file context. 1203 static bool CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context, 1204 const DeclContext *NS, 1205 UnqualUsingDirectiveSet &UDirs) { 1206 1207 assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!"); 1208 1209 // Perform direct name lookup into the LookupCtx. 1210 bool Found = LookupDirect(S, R, NS); 1211 1212 // Perform direct name lookup into the namespaces nominated by the 1213 // using directives whose common ancestor is this namespace. 1214 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS)) 1215 if (LookupDirect(S, R, UUE.getNominatedNamespace())) 1216 Found = true; 1217 1218 R.resolveKind(); 1219 1220 return Found; 1221 } 1222 1223 static bool isNamespaceOrTranslationUnitScope(Scope *S) { 1224 if (DeclContext *Ctx = S->getEntity()) 1225 return Ctx->isFileContext(); 1226 return false; 1227 } 1228 1229 /// Find the outer declaration context from this scope. This indicates the 1230 /// context that we should search up to (exclusive) before considering the 1231 /// parent of the specified scope. 1232 static DeclContext *findOuterContext(Scope *S) { 1233 for (Scope *OuterS = S->getParent(); OuterS; OuterS = OuterS->getParent()) 1234 if (DeclContext *DC = OuterS->getLookupEntity()) 1235 return DC; 1236 return nullptr; 1237 } 1238 1239 namespace { 1240 /// An RAII object to specify that we want to find block scope extern 1241 /// declarations. 1242 struct FindLocalExternScope { 1243 FindLocalExternScope(LookupResult &R) 1244 : R(R), OldFindLocalExtern(R.getIdentifierNamespace() & 1245 Decl::IDNS_LocalExtern) { 1246 R.setFindLocalExtern(R.getIdentifierNamespace() & 1247 (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator)); 1248 } 1249 void restore() { 1250 R.setFindLocalExtern(OldFindLocalExtern); 1251 } 1252 ~FindLocalExternScope() { 1253 restore(); 1254 } 1255 LookupResult &R; 1256 bool OldFindLocalExtern; 1257 }; 1258 } // end anonymous namespace 1259 1260 bool Sema::CppLookupName(LookupResult &R, Scope *S) { 1261 assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup"); 1262 1263 DeclarationName Name = R.getLookupName(); 1264 Sema::LookupNameKind NameKind = R.getLookupKind(); 1265 1266 // If this is the name of an implicitly-declared special member function, 1267 // go through the scope stack to implicitly declare 1268 if (isImplicitlyDeclaredMemberFunctionName(Name)) { 1269 for (Scope *PreS = S; PreS; PreS = PreS->getParent()) 1270 if (DeclContext *DC = PreS->getEntity()) 1271 DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC); 1272 } 1273 1274 // Implicitly declare member functions with the name we're looking for, if in 1275 // fact we are in a scope where it matters. 1276 1277 Scope *Initial = S; 1278 IdentifierResolver::iterator 1279 I = IdResolver.begin(Name), 1280 IEnd = IdResolver.end(); 1281 1282 // First we lookup local scope. 1283 // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir] 1284 // ...During unqualified name lookup (3.4.1), the names appear as if 1285 // they were declared in the nearest enclosing namespace which contains 1286 // both the using-directive and the nominated namespace. 1287 // [Note: in this context, "contains" means "contains directly or 1288 // indirectly". 1289 // 1290 // For example: 1291 // namespace A { int i; } 1292 // void foo() { 1293 // int i; 1294 // { 1295 // using namespace A; 1296 // ++i; // finds local 'i', A::i appears at global scope 1297 // } 1298 // } 1299 // 1300 UnqualUsingDirectiveSet UDirs(*this); 1301 bool VisitedUsingDirectives = false; 1302 bool LeftStartingScope = false; 1303 1304 // When performing a scope lookup, we want to find local extern decls. 1305 FindLocalExternScope FindLocals(R); 1306 1307 for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) { 1308 bool SearchNamespaceScope = true; 1309 // Check whether the IdResolver has anything in this scope. 1310 for (; I != IEnd && S->isDeclScope(*I); ++I) { 1311 if (NamedDecl *ND = R.getAcceptableDecl(*I)) { 1312 if (NameKind == LookupRedeclarationWithLinkage && 1313 !(*I)->isTemplateParameter()) { 1314 // If it's a template parameter, we still find it, so we can diagnose 1315 // the invalid redeclaration. 1316 1317 // Determine whether this (or a previous) declaration is 1318 // out-of-scope. 1319 if (!LeftStartingScope && !Initial->isDeclScope(*I)) 1320 LeftStartingScope = true; 1321 1322 // If we found something outside of our starting scope that 1323 // does not have linkage, skip it. 1324 if (LeftStartingScope && !((*I)->hasLinkage())) { 1325 R.setShadowed(); 1326 continue; 1327 } 1328 } else { 1329 // We found something in this scope, we should not look at the 1330 // namespace scope 1331 SearchNamespaceScope = false; 1332 } 1333 R.addDecl(ND); 1334 } 1335 } 1336 if (!SearchNamespaceScope) { 1337 R.resolveKind(); 1338 if (S->isClassScope()) 1339 if (auto *Record = dyn_cast_if_present<CXXRecordDecl>(S->getEntity())) 1340 R.setNamingClass(Record); 1341 return true; 1342 } 1343 1344 if (NameKind == LookupLocalFriendName && !S->isClassScope()) { 1345 // C++11 [class.friend]p11: 1346 // If a friend declaration appears in a local class and the name 1347 // specified is an unqualified name, a prior declaration is 1348 // looked up without considering scopes that are outside the 1349 // innermost enclosing non-class scope. 1350 return false; 1351 } 1352 1353 if (DeclContext *Ctx = S->getLookupEntity()) { 1354 DeclContext *OuterCtx = findOuterContext(S); 1355 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) { 1356 // We do not directly look into transparent contexts, since 1357 // those entities will be found in the nearest enclosing 1358 // non-transparent context. 1359 if (Ctx->isTransparentContext()) 1360 continue; 1361 1362 // We do not look directly into function or method contexts, 1363 // since all of the local variables and parameters of the 1364 // function/method are present within the Scope. 1365 if (Ctx->isFunctionOrMethod()) { 1366 // If we have an Objective-C instance method, look for ivars 1367 // in the corresponding interface. 1368 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) { 1369 if (Method->isInstanceMethod() && Name.getAsIdentifierInfo()) 1370 if (ObjCInterfaceDecl *Class = Method->getClassInterface()) { 1371 ObjCInterfaceDecl *ClassDeclared; 1372 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable( 1373 Name.getAsIdentifierInfo(), 1374 ClassDeclared)) { 1375 if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) { 1376 R.addDecl(ND); 1377 R.resolveKind(); 1378 return true; 1379 } 1380 } 1381 } 1382 } 1383 1384 continue; 1385 } 1386 1387 // If this is a file context, we need to perform unqualified name 1388 // lookup considering using directives. 1389 if (Ctx->isFileContext()) { 1390 // If we haven't handled using directives yet, do so now. 1391 if (!VisitedUsingDirectives) { 1392 // Add using directives from this context up to the top level. 1393 for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) { 1394 if (UCtx->isTransparentContext()) 1395 continue; 1396 1397 UDirs.visit(UCtx, UCtx); 1398 } 1399 1400 // Find the innermost file scope, so we can add using directives 1401 // from local scopes. 1402 Scope *InnermostFileScope = S; 1403 while (InnermostFileScope && 1404 !isNamespaceOrTranslationUnitScope(InnermostFileScope)) 1405 InnermostFileScope = InnermostFileScope->getParent(); 1406 UDirs.visitScopeChain(Initial, InnermostFileScope); 1407 1408 UDirs.done(); 1409 1410 VisitedUsingDirectives = true; 1411 } 1412 1413 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) { 1414 R.resolveKind(); 1415 return true; 1416 } 1417 1418 continue; 1419 } 1420 1421 // Perform qualified name lookup into this context. 1422 // FIXME: In some cases, we know that every name that could be found by 1423 // this qualified name lookup will also be on the identifier chain. For 1424 // example, inside a class without any base classes, we never need to 1425 // perform qualified lookup because all of the members are on top of the 1426 // identifier chain. 1427 if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true)) 1428 return true; 1429 } 1430 } 1431 } 1432 1433 // Stop if we ran out of scopes. 1434 // FIXME: This really, really shouldn't be happening. 1435 if (!S) return false; 1436 1437 // If we are looking for members, no need to look into global/namespace scope. 1438 if (NameKind == LookupMemberName) 1439 return false; 1440 1441 // Collect UsingDirectiveDecls in all scopes, and recursively all 1442 // nominated namespaces by those using-directives. 1443 // 1444 // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we 1445 // don't build it for each lookup! 1446 if (!VisitedUsingDirectives) { 1447 UDirs.visitScopeChain(Initial, S); 1448 UDirs.done(); 1449 } 1450 1451 // If we're not performing redeclaration lookup, do not look for local 1452 // extern declarations outside of a function scope. 1453 if (!R.isForRedeclaration()) 1454 FindLocals.restore(); 1455 1456 // Lookup namespace scope, and global scope. 1457 // Unqualified name lookup in C++ requires looking into scopes 1458 // that aren't strictly lexical, and therefore we walk through the 1459 // context as well as walking through the scopes. 1460 for (; S; S = S->getParent()) { 1461 // Check whether the IdResolver has anything in this scope. 1462 bool Found = false; 1463 for (; I != IEnd && S->isDeclScope(*I); ++I) { 1464 if (NamedDecl *ND = R.getAcceptableDecl(*I)) { 1465 // We found something. Look for anything else in our scope 1466 // with this same name and in an acceptable identifier 1467 // namespace, so that we can construct an overload set if we 1468 // need to. 1469 Found = true; 1470 R.addDecl(ND); 1471 } 1472 } 1473 1474 if (Found && S->isTemplateParamScope()) { 1475 R.resolveKind(); 1476 return true; 1477 } 1478 1479 DeclContext *Ctx = S->getLookupEntity(); 1480 if (Ctx) { 1481 DeclContext *OuterCtx = findOuterContext(S); 1482 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) { 1483 // We do not directly look into transparent contexts, since 1484 // those entities will be found in the nearest enclosing 1485 // non-transparent context. 1486 if (Ctx->isTransparentContext()) 1487 continue; 1488 1489 // If we have a context, and it's not a context stashed in the 1490 // template parameter scope for an out-of-line definition, also 1491 // look into that context. 1492 if (!(Found && S->isTemplateParamScope())) { 1493 assert(Ctx->isFileContext() && 1494 "We should have been looking only at file context here already."); 1495 1496 // Look into context considering using-directives. 1497 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) 1498 Found = true; 1499 } 1500 1501 if (Found) { 1502 R.resolveKind(); 1503 return true; 1504 } 1505 1506 if (R.isForRedeclaration() && !Ctx->isTransparentContext()) 1507 return false; 1508 } 1509 } 1510 1511 if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext()) 1512 return false; 1513 } 1514 1515 return !R.empty(); 1516 } 1517 1518 void Sema::makeMergedDefinitionVisible(NamedDecl *ND) { 1519 if (auto *M = getCurrentModule()) 1520 Context.mergeDefinitionIntoModule(ND, M); 1521 else 1522 // We're not building a module; just make the definition visible. 1523 ND->setVisibleDespiteOwningModule(); 1524 1525 // If ND is a template declaration, make the template parameters 1526 // visible too. They're not (necessarily) within a mergeable DeclContext. 1527 if (auto *TD = dyn_cast<TemplateDecl>(ND)) 1528 for (auto *Param : *TD->getTemplateParameters()) 1529 makeMergedDefinitionVisible(Param); 1530 } 1531 1532 /// Find the module in which the given declaration was defined. 1533 static Module *getDefiningModule(Sema &S, Decl *Entity) { 1534 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) { 1535 // If this function was instantiated from a template, the defining module is 1536 // the module containing the pattern. 1537 if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern()) 1538 Entity = Pattern; 1539 } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) { 1540 if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern()) 1541 Entity = Pattern; 1542 } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) { 1543 if (auto *Pattern = ED->getTemplateInstantiationPattern()) 1544 Entity = Pattern; 1545 } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) { 1546 if (VarDecl *Pattern = VD->getTemplateInstantiationPattern()) 1547 Entity = Pattern; 1548 } 1549 1550 // Walk up to the containing context. That might also have been instantiated 1551 // from a template. 1552 DeclContext *Context = Entity->getLexicalDeclContext(); 1553 if (Context->isFileContext()) 1554 return S.getOwningModule(Entity); 1555 return getDefiningModule(S, cast<Decl>(Context)); 1556 } 1557 1558 llvm::DenseSet<Module*> &Sema::getLookupModules() { 1559 unsigned N = CodeSynthesisContexts.size(); 1560 for (unsigned I = CodeSynthesisContextLookupModules.size(); 1561 I != N; ++I) { 1562 Module *M = CodeSynthesisContexts[I].Entity ? 1563 getDefiningModule(*this, CodeSynthesisContexts[I].Entity) : 1564 nullptr; 1565 if (M && !LookupModulesCache.insert(M).second) 1566 M = nullptr; 1567 CodeSynthesisContextLookupModules.push_back(M); 1568 } 1569 return LookupModulesCache; 1570 } 1571 1572 /// Determine if we could use all the declarations in the module. 1573 bool Sema::isUsableModule(const Module *M) { 1574 assert(M && "We shouldn't check nullness for module here"); 1575 // Return quickly if we cached the result. 1576 if (UsableModuleUnitsCache.count(M)) 1577 return true; 1578 1579 // If M is the global module fragment of the current translation unit. So it 1580 // should be usable. 1581 // [module.global.frag]p1: 1582 // The global module fragment can be used to provide declarations that are 1583 // attached to the global module and usable within the module unit. 1584 if (M == TheGlobalModuleFragment || M == TheImplicitGlobalModuleFragment || 1585 M == TheExportedImplicitGlobalModuleFragment || 1586 // If M is the module we're parsing, it should be usable. This covers the 1587 // private module fragment. The private module fragment is usable only if 1588 // it is within the current module unit. And it must be the current 1589 // parsing module unit if it is within the current module unit according 1590 // to the grammar of the private module fragment. NOTE: This is covered by 1591 // the following condition. The intention of the check is to avoid string 1592 // comparison as much as possible. 1593 M == getCurrentModule() || 1594 // The module unit which is in the same module with the current module 1595 // unit is usable. 1596 // 1597 // FIXME: Here we judge if they are in the same module by comparing the 1598 // string. Is there any better solution? 1599 M->getPrimaryModuleInterfaceName() == 1600 llvm::StringRef(getLangOpts().CurrentModule).split(':').first) { 1601 UsableModuleUnitsCache.insert(M); 1602 return true; 1603 } 1604 1605 return false; 1606 } 1607 1608 bool Sema::hasVisibleMergedDefinition(const NamedDecl *Def) { 1609 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def)) 1610 if (isModuleVisible(Merged)) 1611 return true; 1612 return false; 1613 } 1614 1615 bool Sema::hasMergedDefinitionInCurrentModule(const NamedDecl *Def) { 1616 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def)) 1617 if (isUsableModule(Merged)) 1618 return true; 1619 return false; 1620 } 1621 1622 template <typename ParmDecl> 1623 static bool 1624 hasAcceptableDefaultArgument(Sema &S, const ParmDecl *D, 1625 llvm::SmallVectorImpl<Module *> *Modules, 1626 Sema::AcceptableKind Kind) { 1627 if (!D->hasDefaultArgument()) 1628 return false; 1629 1630 llvm::SmallPtrSet<const ParmDecl *, 4> Visited; 1631 while (D && Visited.insert(D).second) { 1632 auto &DefaultArg = D->getDefaultArgStorage(); 1633 if (!DefaultArg.isInherited() && S.isAcceptable(D, Kind)) 1634 return true; 1635 1636 if (!DefaultArg.isInherited() && Modules) { 1637 auto *NonConstD = const_cast<ParmDecl*>(D); 1638 Modules->push_back(S.getOwningModule(NonConstD)); 1639 } 1640 1641 // If there was a previous default argument, maybe its parameter is 1642 // acceptable. 1643 D = DefaultArg.getInheritedFrom(); 1644 } 1645 return false; 1646 } 1647 1648 bool Sema::hasAcceptableDefaultArgument( 1649 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules, 1650 Sema::AcceptableKind Kind) { 1651 if (auto *P = dyn_cast<TemplateTypeParmDecl>(D)) 1652 return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind); 1653 1654 if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D)) 1655 return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind); 1656 1657 return ::hasAcceptableDefaultArgument( 1658 *this, cast<TemplateTemplateParmDecl>(D), Modules, Kind); 1659 } 1660 1661 bool Sema::hasVisibleDefaultArgument(const NamedDecl *D, 1662 llvm::SmallVectorImpl<Module *> *Modules) { 1663 return hasAcceptableDefaultArgument(D, Modules, 1664 Sema::AcceptableKind::Visible); 1665 } 1666 1667 bool Sema::hasReachableDefaultArgument( 1668 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 1669 return hasAcceptableDefaultArgument(D, Modules, 1670 Sema::AcceptableKind::Reachable); 1671 } 1672 1673 template <typename Filter> 1674 static bool 1675 hasAcceptableDeclarationImpl(Sema &S, const NamedDecl *D, 1676 llvm::SmallVectorImpl<Module *> *Modules, Filter F, 1677 Sema::AcceptableKind Kind) { 1678 bool HasFilteredRedecls = false; 1679 1680 for (auto *Redecl : D->redecls()) { 1681 auto *R = cast<NamedDecl>(Redecl); 1682 if (!F(R)) 1683 continue; 1684 1685 if (S.isAcceptable(R, Kind)) 1686 return true; 1687 1688 HasFilteredRedecls = true; 1689 1690 if (Modules) 1691 Modules->push_back(R->getOwningModule()); 1692 } 1693 1694 // Only return false if there is at least one redecl that is not filtered out. 1695 if (HasFilteredRedecls) 1696 return false; 1697 1698 return true; 1699 } 1700 1701 static bool 1702 hasAcceptableExplicitSpecialization(Sema &S, const NamedDecl *D, 1703 llvm::SmallVectorImpl<Module *> *Modules, 1704 Sema::AcceptableKind Kind) { 1705 return hasAcceptableDeclarationImpl( 1706 S, D, Modules, 1707 [](const NamedDecl *D) { 1708 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) 1709 return RD->getTemplateSpecializationKind() == 1710 TSK_ExplicitSpecialization; 1711 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1712 return FD->getTemplateSpecializationKind() == 1713 TSK_ExplicitSpecialization; 1714 if (auto *VD = dyn_cast<VarDecl>(D)) 1715 return VD->getTemplateSpecializationKind() == 1716 TSK_ExplicitSpecialization; 1717 llvm_unreachable("unknown explicit specialization kind"); 1718 }, 1719 Kind); 1720 } 1721 1722 bool Sema::hasVisibleExplicitSpecialization( 1723 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 1724 return ::hasAcceptableExplicitSpecialization(*this, D, Modules, 1725 Sema::AcceptableKind::Visible); 1726 } 1727 1728 bool Sema::hasReachableExplicitSpecialization( 1729 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 1730 return ::hasAcceptableExplicitSpecialization(*this, D, Modules, 1731 Sema::AcceptableKind::Reachable); 1732 } 1733 1734 static bool 1735 hasAcceptableMemberSpecialization(Sema &S, const NamedDecl *D, 1736 llvm::SmallVectorImpl<Module *> *Modules, 1737 Sema::AcceptableKind Kind) { 1738 assert(isa<CXXRecordDecl>(D->getDeclContext()) && 1739 "not a member specialization"); 1740 return hasAcceptableDeclarationImpl( 1741 S, D, Modules, 1742 [](const NamedDecl *D) { 1743 // If the specialization is declared at namespace scope, then it's a 1744 // member specialization declaration. If it's lexically inside the class 1745 // definition then it was instantiated. 1746 // 1747 // FIXME: This is a hack. There should be a better way to determine 1748 // this. 1749 // FIXME: What about MS-style explicit specializations declared within a 1750 // class definition? 1751 return D->getLexicalDeclContext()->isFileContext(); 1752 }, 1753 Kind); 1754 } 1755 1756 bool Sema::hasVisibleMemberSpecialization( 1757 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 1758 return hasAcceptableMemberSpecialization(*this, D, Modules, 1759 Sema::AcceptableKind::Visible); 1760 } 1761 1762 bool Sema::hasReachableMemberSpecialization( 1763 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 1764 return hasAcceptableMemberSpecialization(*this, D, Modules, 1765 Sema::AcceptableKind::Reachable); 1766 } 1767 1768 /// Determine whether a declaration is acceptable to name lookup. 1769 /// 1770 /// This routine determines whether the declaration D is acceptable in the 1771 /// current lookup context, taking into account the current template 1772 /// instantiation stack. During template instantiation, a declaration is 1773 /// acceptable if it is acceptable from a module containing any entity on the 1774 /// template instantiation path (by instantiating a template, you allow it to 1775 /// see the declarations that your module can see, including those later on in 1776 /// your module). 1777 bool LookupResult::isAcceptableSlow(Sema &SemaRef, NamedDecl *D, 1778 Sema::AcceptableKind Kind) { 1779 assert(!D->isUnconditionallyVisible() && 1780 "should not call this: not in slow case"); 1781 1782 Module *DeclModule = SemaRef.getOwningModule(D); 1783 assert(DeclModule && "hidden decl has no owning module"); 1784 1785 // If the owning module is visible, the decl is acceptable. 1786 if (SemaRef.isModuleVisible(DeclModule, 1787 D->isInvisibleOutsideTheOwningModule())) 1788 return true; 1789 1790 // Determine whether a decl context is a file context for the purpose of 1791 // visibility/reachability. This looks through some (export and linkage spec) 1792 // transparent contexts, but not others (enums). 1793 auto IsEffectivelyFileContext = [](const DeclContext *DC) { 1794 return DC->isFileContext() || isa<LinkageSpecDecl>(DC) || 1795 isa<ExportDecl>(DC); 1796 }; 1797 1798 // If this declaration is not at namespace scope 1799 // then it is acceptable if its lexical parent has a acceptable definition. 1800 DeclContext *DC = D->getLexicalDeclContext(); 1801 if (DC && !IsEffectivelyFileContext(DC)) { 1802 // For a parameter, check whether our current template declaration's 1803 // lexical context is acceptable, not whether there's some other acceptable 1804 // definition of it, because parameters aren't "within" the definition. 1805 // 1806 // In C++ we need to check for a acceptable definition due to ODR merging, 1807 // and in C we must not because each declaration of a function gets its own 1808 // set of declarations for tags in prototype scope. 1809 bool AcceptableWithinParent; 1810 if (D->isTemplateParameter()) { 1811 bool SearchDefinitions = true; 1812 if (const auto *DCD = dyn_cast<Decl>(DC)) { 1813 if (const auto *TD = DCD->getDescribedTemplate()) { 1814 TemplateParameterList *TPL = TD->getTemplateParameters(); 1815 auto Index = getDepthAndIndex(D).second; 1816 SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D; 1817 } 1818 } 1819 if (SearchDefinitions) 1820 AcceptableWithinParent = 1821 SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind); 1822 else 1823 AcceptableWithinParent = 1824 isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind); 1825 } else if (isa<ParmVarDecl>(D) || 1826 (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus)) 1827 AcceptableWithinParent = isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind); 1828 else if (D->isModulePrivate()) { 1829 // A module-private declaration is only acceptable if an enclosing lexical 1830 // parent was merged with another definition in the current module. 1831 AcceptableWithinParent = false; 1832 do { 1833 if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) { 1834 AcceptableWithinParent = true; 1835 break; 1836 } 1837 DC = DC->getLexicalParent(); 1838 } while (!IsEffectivelyFileContext(DC)); 1839 } else { 1840 AcceptableWithinParent = 1841 SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind); 1842 } 1843 1844 if (AcceptableWithinParent && SemaRef.CodeSynthesisContexts.empty() && 1845 Kind == Sema::AcceptableKind::Visible && 1846 // FIXME: Do something better in this case. 1847 !SemaRef.getLangOpts().ModulesLocalVisibility) { 1848 // Cache the fact that this declaration is implicitly visible because 1849 // its parent has a visible definition. 1850 D->setVisibleDespiteOwningModule(); 1851 } 1852 return AcceptableWithinParent; 1853 } 1854 1855 if (Kind == Sema::AcceptableKind::Visible) 1856 return false; 1857 1858 assert(Kind == Sema::AcceptableKind::Reachable && 1859 "Additional Sema::AcceptableKind?"); 1860 return isReachableSlow(SemaRef, D); 1861 } 1862 1863 bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) { 1864 // The module might be ordinarily visible. For a module-private query, that 1865 // means it is part of the current module. 1866 if (ModulePrivate && isUsableModule(M)) 1867 return true; 1868 1869 // For a query which is not module-private, that means it is in our visible 1870 // module set. 1871 if (!ModulePrivate && VisibleModules.isVisible(M)) 1872 return true; 1873 1874 // Otherwise, it might be visible by virtue of the query being within a 1875 // template instantiation or similar that is permitted to look inside M. 1876 1877 // Find the extra places where we need to look. 1878 const auto &LookupModules = getLookupModules(); 1879 if (LookupModules.empty()) 1880 return false; 1881 1882 // If our lookup set contains the module, it's visible. 1883 if (LookupModules.count(M)) 1884 return true; 1885 1886 // The global module fragments are visible to its corresponding module unit. 1887 // So the global module fragment should be visible if the its corresponding 1888 // module unit is visible. 1889 if (M->isGlobalModule() && LookupModules.count(M->getTopLevelModule())) 1890 return true; 1891 1892 // For a module-private query, that's everywhere we get to look. 1893 if (ModulePrivate) 1894 return false; 1895 1896 // Check whether M is transitively exported to an import of the lookup set. 1897 return llvm::any_of(LookupModules, [&](const Module *LookupM) { 1898 return LookupM->isModuleVisible(M); 1899 }); 1900 } 1901 1902 // FIXME: Return false directly if we don't have an interface dependency on the 1903 // translation unit containing D. 1904 bool LookupResult::isReachableSlow(Sema &SemaRef, NamedDecl *D) { 1905 assert(!isVisible(SemaRef, D) && "Shouldn't call the slow case.\n"); 1906 1907 Module *DeclModule = SemaRef.getOwningModule(D); 1908 assert(DeclModule && "hidden decl has no owning module"); 1909 1910 // Entities in header like modules are reachable only if they're visible. 1911 if (DeclModule->isHeaderLikeModule()) 1912 return false; 1913 1914 if (!D->isInAnotherModuleUnit()) 1915 return true; 1916 1917 // [module.reach]/p3: 1918 // A declaration D is reachable from a point P if: 1919 // ... 1920 // - D is not discarded ([module.global.frag]), appears in a translation unit 1921 // that is reachable from P, and does not appear within a private module 1922 // fragment. 1923 // 1924 // A declaration that's discarded in the GMF should be module-private. 1925 if (D->isModulePrivate()) 1926 return false; 1927 1928 // [module.reach]/p1 1929 // A translation unit U is necessarily reachable from a point P if U is a 1930 // module interface unit on which the translation unit containing P has an 1931 // interface dependency, or the translation unit containing P imports U, in 1932 // either case prior to P ([module.import]). 1933 // 1934 // [module.import]/p10 1935 // A translation unit has an interface dependency on a translation unit U if 1936 // it contains a declaration (possibly a module-declaration) that imports U 1937 // or if it has an interface dependency on a translation unit that has an 1938 // interface dependency on U. 1939 // 1940 // So we could conclude the module unit U is necessarily reachable if: 1941 // (1) The module unit U is module interface unit. 1942 // (2) The current unit has an interface dependency on the module unit U. 1943 // 1944 // Here we only check for the first condition. Since we couldn't see 1945 // DeclModule if it isn't (transitively) imported. 1946 if (DeclModule->getTopLevelModule()->isModuleInterfaceUnit()) 1947 return true; 1948 1949 // [module.reach]/p2 1950 // Additional translation units on 1951 // which the point within the program has an interface dependency may be 1952 // considered reachable, but it is unspecified which are and under what 1953 // circumstances. 1954 // 1955 // The decision here is to treat all additional tranditional units as 1956 // unreachable. 1957 return false; 1958 } 1959 1960 bool Sema::isAcceptableSlow(const NamedDecl *D, Sema::AcceptableKind Kind) { 1961 return LookupResult::isAcceptable(*this, const_cast<NamedDecl *>(D), Kind); 1962 } 1963 1964 bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) { 1965 // FIXME: If there are both visible and hidden declarations, we need to take 1966 // into account whether redeclaration is possible. Example: 1967 // 1968 // Non-imported module: 1969 // int f(T); // #1 1970 // Some TU: 1971 // static int f(U); // #2, not a redeclaration of #1 1972 // int f(T); // #3, finds both, should link with #1 if T != U, but 1973 // // with #2 if T == U; neither should be ambiguous. 1974 for (auto *D : R) { 1975 if (isVisible(D)) 1976 return true; 1977 assert(D->isExternallyDeclarable() && 1978 "should not have hidden, non-externally-declarable result here"); 1979 } 1980 1981 // This function is called once "New" is essentially complete, but before a 1982 // previous declaration is attached. We can't query the linkage of "New" in 1983 // general, because attaching the previous declaration can change the 1984 // linkage of New to match the previous declaration. 1985 // 1986 // However, because we've just determined that there is no *visible* prior 1987 // declaration, we can compute the linkage here. There are two possibilities: 1988 // 1989 // * This is not a redeclaration; it's safe to compute the linkage now. 1990 // 1991 // * This is a redeclaration of a prior declaration that is externally 1992 // redeclarable. In that case, the linkage of the declaration is not 1993 // changed by attaching the prior declaration, because both are externally 1994 // declarable (and thus ExternalLinkage or VisibleNoLinkage). 1995 // 1996 // FIXME: This is subtle and fragile. 1997 return New->isExternallyDeclarable(); 1998 } 1999 2000 /// Retrieve the visible declaration corresponding to D, if any. 2001 /// 2002 /// This routine determines whether the declaration D is visible in the current 2003 /// module, with the current imports. If not, it checks whether any 2004 /// redeclaration of D is visible, and if so, returns that declaration. 2005 /// 2006 /// \returns D, or a visible previous declaration of D, whichever is more recent 2007 /// and visible. If no declaration of D is visible, returns null. 2008 static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D, 2009 unsigned IDNS) { 2010 assert(!LookupResult::isAvailableForLookup(SemaRef, D) && "not in slow case"); 2011 2012 for (auto *RD : D->redecls()) { 2013 // Don't bother with extra checks if we already know this one isn't visible. 2014 if (RD == D) 2015 continue; 2016 2017 auto ND = cast<NamedDecl>(RD); 2018 // FIXME: This is wrong in the case where the previous declaration is not 2019 // visible in the same scope as D. This needs to be done much more 2020 // carefully. 2021 if (ND->isInIdentifierNamespace(IDNS) && 2022 LookupResult::isAvailableForLookup(SemaRef, ND)) 2023 return ND; 2024 } 2025 2026 return nullptr; 2027 } 2028 2029 bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D, 2030 llvm::SmallVectorImpl<Module *> *Modules) { 2031 assert(!isVisible(D) && "not in slow case"); 2032 return hasAcceptableDeclarationImpl( 2033 *this, D, Modules, [](const NamedDecl *) { return true; }, 2034 Sema::AcceptableKind::Visible); 2035 } 2036 2037 bool Sema::hasReachableDeclarationSlow( 2038 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 2039 assert(!isReachable(D) && "not in slow case"); 2040 return hasAcceptableDeclarationImpl( 2041 *this, D, Modules, [](const NamedDecl *) { return true; }, 2042 Sema::AcceptableKind::Reachable); 2043 } 2044 2045 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const { 2046 if (auto *ND = dyn_cast<NamespaceDecl>(D)) { 2047 // Namespaces are a bit of a special case: we expect there to be a lot of 2048 // redeclarations of some namespaces, all declarations of a namespace are 2049 // essentially interchangeable, all declarations are found by name lookup 2050 // if any is, and namespaces are never looked up during template 2051 // instantiation. So we benefit from caching the check in this case, and 2052 // it is correct to do so. 2053 auto *Key = ND->getCanonicalDecl(); 2054 if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key)) 2055 return Acceptable; 2056 auto *Acceptable = isVisible(getSema(), Key) 2057 ? Key 2058 : findAcceptableDecl(getSema(), Key, IDNS); 2059 if (Acceptable) 2060 getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable)); 2061 return Acceptable; 2062 } 2063 2064 return findAcceptableDecl(getSema(), D, IDNS); 2065 } 2066 2067 bool LookupResult::isVisible(Sema &SemaRef, NamedDecl *D) { 2068 // If this declaration is already visible, return it directly. 2069 if (D->isUnconditionallyVisible()) 2070 return true; 2071 2072 // During template instantiation, we can refer to hidden declarations, if 2073 // they were visible in any module along the path of instantiation. 2074 return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Visible); 2075 } 2076 2077 bool LookupResult::isReachable(Sema &SemaRef, NamedDecl *D) { 2078 if (D->isUnconditionallyVisible()) 2079 return true; 2080 2081 return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Reachable); 2082 } 2083 2084 bool LookupResult::isAvailableForLookup(Sema &SemaRef, NamedDecl *ND) { 2085 // We should check the visibility at the callsite already. 2086 if (isVisible(SemaRef, ND)) 2087 return true; 2088 2089 // Deduction guide lives in namespace scope generally, but it is just a 2090 // hint to the compilers. What we actually lookup for is the generated member 2091 // of the corresponding template. So it is sufficient to check the 2092 // reachability of the template decl. 2093 if (auto *DeductionGuide = ND->getDeclName().getCXXDeductionGuideTemplate()) 2094 return SemaRef.hasReachableDefinition(DeductionGuide); 2095 2096 // FIXME: The lookup for allocation function is a standalone process. 2097 // (We can find the logics in Sema::FindAllocationFunctions) 2098 // 2099 // Such structure makes it a problem when we instantiate a template 2100 // declaration using placement allocation function if the placement 2101 // allocation function is invisible. 2102 // (See https://github.com/llvm/llvm-project/issues/59601) 2103 // 2104 // Here we workaround it by making the placement allocation functions 2105 // always acceptable. The downside is that we can't diagnose the direct 2106 // use of the invisible placement allocation functions. (Although such uses 2107 // should be rare). 2108 if (auto *FD = dyn_cast<FunctionDecl>(ND); 2109 FD && FD->isReservedGlobalPlacementOperator()) 2110 return true; 2111 2112 auto *DC = ND->getDeclContext(); 2113 // If ND is not visible and it is at namespace scope, it shouldn't be found 2114 // by name lookup. 2115 if (DC->isFileContext()) 2116 return false; 2117 2118 // [module.interface]p7 2119 // Class and enumeration member names can be found by name lookup in any 2120 // context in which a definition of the type is reachable. 2121 // 2122 // FIXME: The current implementation didn't consider about scope. For example, 2123 // ``` 2124 // // m.cppm 2125 // export module m; 2126 // enum E1 { e1 }; 2127 // // Use.cpp 2128 // import m; 2129 // void test() { 2130 // auto a = E1::e1; // Error as expected. 2131 // auto b = e1; // Should be error. namespace-scope name e1 is not visible 2132 // } 2133 // ``` 2134 // For the above example, the current implementation would emit error for `a` 2135 // correctly. However, the implementation wouldn't diagnose about `b` now. 2136 // Since we only check the reachability for the parent only. 2137 // See clang/test/CXX/module/module.interface/p7.cpp for example. 2138 if (auto *TD = dyn_cast<TagDecl>(DC)) 2139 return SemaRef.hasReachableDefinition(TD); 2140 2141 return false; 2142 } 2143 2144 /// Perform unqualified name lookup starting from a given 2145 /// scope. 2146 /// 2147 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is 2148 /// used to find names within the current scope. For example, 'x' in 2149 /// @code 2150 /// int x; 2151 /// int f() { 2152 /// return x; // unqualified name look finds 'x' in the global scope 2153 /// } 2154 /// @endcode 2155 /// 2156 /// Different lookup criteria can find different names. For example, a 2157 /// particular scope can have both a struct and a function of the same 2158 /// name, and each can be found by certain lookup criteria. For more 2159 /// information about lookup criteria, see the documentation for the 2160 /// class LookupCriteria. 2161 /// 2162 /// @param S The scope from which unqualified name lookup will 2163 /// begin. If the lookup criteria permits, name lookup may also search 2164 /// in the parent scopes. 2165 /// 2166 /// @param [in,out] R Specifies the lookup to perform (e.g., the name to 2167 /// look up and the lookup kind), and is updated with the results of lookup 2168 /// including zero or more declarations and possibly additional information 2169 /// used to diagnose ambiguities. 2170 /// 2171 /// @returns \c true if lookup succeeded and false otherwise. 2172 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation, 2173 bool ForceNoCPlusPlus) { 2174 DeclarationName Name = R.getLookupName(); 2175 if (!Name) return false; 2176 2177 LookupNameKind NameKind = R.getLookupKind(); 2178 2179 if (!getLangOpts().CPlusPlus || ForceNoCPlusPlus) { 2180 // Unqualified name lookup in C/Objective-C is purely lexical, so 2181 // search in the declarations attached to the name. 2182 if (NameKind == Sema::LookupRedeclarationWithLinkage) { 2183 // Find the nearest non-transparent declaration scope. 2184 while (!(S->getFlags() & Scope::DeclScope) || 2185 (S->getEntity() && S->getEntity()->isTransparentContext())) 2186 S = S->getParent(); 2187 } 2188 2189 // When performing a scope lookup, we want to find local extern decls. 2190 FindLocalExternScope FindLocals(R); 2191 2192 // Scan up the scope chain looking for a decl that matches this 2193 // identifier that is in the appropriate namespace. This search 2194 // should not take long, as shadowing of names is uncommon, and 2195 // deep shadowing is extremely uncommon. 2196 bool LeftStartingScope = false; 2197 2198 for (IdentifierResolver::iterator I = IdResolver.begin(Name), 2199 IEnd = IdResolver.end(); 2200 I != IEnd; ++I) 2201 if (NamedDecl *D = R.getAcceptableDecl(*I)) { 2202 if (NameKind == LookupRedeclarationWithLinkage) { 2203 // Determine whether this (or a previous) declaration is 2204 // out-of-scope. 2205 if (!LeftStartingScope && !S->isDeclScope(*I)) 2206 LeftStartingScope = true; 2207 2208 // If we found something outside of our starting scope that 2209 // does not have linkage, skip it. 2210 if (LeftStartingScope && !((*I)->hasLinkage())) { 2211 R.setShadowed(); 2212 continue; 2213 } 2214 } 2215 else if (NameKind == LookupObjCImplicitSelfParam && 2216 !isa<ImplicitParamDecl>(*I)) 2217 continue; 2218 2219 R.addDecl(D); 2220 2221 // Check whether there are any other declarations with the same name 2222 // and in the same scope. 2223 if (I != IEnd) { 2224 // Find the scope in which this declaration was declared (if it 2225 // actually exists in a Scope). 2226 while (S && !S->isDeclScope(D)) 2227 S = S->getParent(); 2228 2229 // If the scope containing the declaration is the translation unit, 2230 // then we'll need to perform our checks based on the matching 2231 // DeclContexts rather than matching scopes. 2232 if (S && isNamespaceOrTranslationUnitScope(S)) 2233 S = nullptr; 2234 2235 // Compute the DeclContext, if we need it. 2236 DeclContext *DC = nullptr; 2237 if (!S) 2238 DC = (*I)->getDeclContext()->getRedeclContext(); 2239 2240 IdentifierResolver::iterator LastI = I; 2241 for (++LastI; LastI != IEnd; ++LastI) { 2242 if (S) { 2243 // Match based on scope. 2244 if (!S->isDeclScope(*LastI)) 2245 break; 2246 } else { 2247 // Match based on DeclContext. 2248 DeclContext *LastDC 2249 = (*LastI)->getDeclContext()->getRedeclContext(); 2250 if (!LastDC->Equals(DC)) 2251 break; 2252 } 2253 2254 // If the declaration is in the right namespace and visible, add it. 2255 if (NamedDecl *LastD = R.getAcceptableDecl(*LastI)) 2256 R.addDecl(LastD); 2257 } 2258 2259 R.resolveKind(); 2260 } 2261 2262 return true; 2263 } 2264 } else { 2265 // Perform C++ unqualified name lookup. 2266 if (CppLookupName(R, S)) 2267 return true; 2268 } 2269 2270 // If we didn't find a use of this identifier, and if the identifier 2271 // corresponds to a compiler builtin, create the decl object for the builtin 2272 // now, injecting it into translation unit scope, and return it. 2273 if (AllowBuiltinCreation && LookupBuiltin(R)) 2274 return true; 2275 2276 // If we didn't find a use of this identifier, the ExternalSource 2277 // may be able to handle the situation. 2278 // Note: some lookup failures are expected! 2279 // See e.g. R.isForRedeclaration(). 2280 return (ExternalSource && ExternalSource->LookupUnqualified(R, S)); 2281 } 2282 2283 /// Perform qualified name lookup in the namespaces nominated by 2284 /// using directives by the given context. 2285 /// 2286 /// C++98 [namespace.qual]p2: 2287 /// Given X::m (where X is a user-declared namespace), or given \::m 2288 /// (where X is the global namespace), let S be the set of all 2289 /// declarations of m in X and in the transitive closure of all 2290 /// namespaces nominated by using-directives in X and its used 2291 /// namespaces, except that using-directives are ignored in any 2292 /// namespace, including X, directly containing one or more 2293 /// declarations of m. No namespace is searched more than once in 2294 /// the lookup of a name. If S is the empty set, the program is 2295 /// ill-formed. Otherwise, if S has exactly one member, or if the 2296 /// context of the reference is a using-declaration 2297 /// (namespace.udecl), S is the required set of declarations of 2298 /// m. Otherwise if the use of m is not one that allows a unique 2299 /// declaration to be chosen from S, the program is ill-formed. 2300 /// 2301 /// C++98 [namespace.qual]p5: 2302 /// During the lookup of a qualified namespace member name, if the 2303 /// lookup finds more than one declaration of the member, and if one 2304 /// declaration introduces a class name or enumeration name and the 2305 /// other declarations either introduce the same object, the same 2306 /// enumerator or a set of functions, the non-type name hides the 2307 /// class or enumeration name if and only if the declarations are 2308 /// from the same namespace; otherwise (the declarations are from 2309 /// different namespaces), the program is ill-formed. 2310 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R, 2311 DeclContext *StartDC) { 2312 assert(StartDC->isFileContext() && "start context is not a file context"); 2313 2314 // We have not yet looked into these namespaces, much less added 2315 // their "using-children" to the queue. 2316 SmallVector<NamespaceDecl*, 8> Queue; 2317 2318 // We have at least added all these contexts to the queue. 2319 llvm::SmallPtrSet<DeclContext*, 8> Visited; 2320 Visited.insert(StartDC); 2321 2322 // We have already looked into the initial namespace; seed the queue 2323 // with its using-children. 2324 for (auto *I : StartDC->using_directives()) { 2325 NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace(); 2326 if (S.isVisible(I) && Visited.insert(ND).second) 2327 Queue.push_back(ND); 2328 } 2329 2330 // The easiest way to implement the restriction in [namespace.qual]p5 2331 // is to check whether any of the individual results found a tag 2332 // and, if so, to declare an ambiguity if the final result is not 2333 // a tag. 2334 bool FoundTag = false; 2335 bool FoundNonTag = false; 2336 2337 LookupResult LocalR(LookupResult::Temporary, R); 2338 2339 bool Found = false; 2340 while (!Queue.empty()) { 2341 NamespaceDecl *ND = Queue.pop_back_val(); 2342 2343 // We go through some convolutions here to avoid copying results 2344 // between LookupResults. 2345 bool UseLocal = !R.empty(); 2346 LookupResult &DirectR = UseLocal ? LocalR : R; 2347 bool FoundDirect = LookupDirect(S, DirectR, ND); 2348 2349 if (FoundDirect) { 2350 // First do any local hiding. 2351 DirectR.resolveKind(); 2352 2353 // If the local result is a tag, remember that. 2354 if (DirectR.isSingleTagDecl()) 2355 FoundTag = true; 2356 else 2357 FoundNonTag = true; 2358 2359 // Append the local results to the total results if necessary. 2360 if (UseLocal) { 2361 R.addAllDecls(LocalR); 2362 LocalR.clear(); 2363 } 2364 } 2365 2366 // If we find names in this namespace, ignore its using directives. 2367 if (FoundDirect) { 2368 Found = true; 2369 continue; 2370 } 2371 2372 for (auto *I : ND->using_directives()) { 2373 NamespaceDecl *Nom = I->getNominatedNamespace(); 2374 if (S.isVisible(I) && Visited.insert(Nom).second) 2375 Queue.push_back(Nom); 2376 } 2377 } 2378 2379 if (Found) { 2380 if (FoundTag && FoundNonTag) 2381 R.setAmbiguousQualifiedTagHiding(); 2382 else 2383 R.resolveKind(); 2384 } 2385 2386 return Found; 2387 } 2388 2389 /// Perform qualified name lookup into a given context. 2390 /// 2391 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find 2392 /// names when the context of those names is explicit specified, e.g., 2393 /// "std::vector" or "x->member", or as part of unqualified name lookup. 2394 /// 2395 /// Different lookup criteria can find different names. For example, a 2396 /// particular scope can have both a struct and a function of the same 2397 /// name, and each can be found by certain lookup criteria. For more 2398 /// information about lookup criteria, see the documentation for the 2399 /// class LookupCriteria. 2400 /// 2401 /// \param R captures both the lookup criteria and any lookup results found. 2402 /// 2403 /// \param LookupCtx The context in which qualified name lookup will 2404 /// search. If the lookup criteria permits, name lookup may also search 2405 /// in the parent contexts or (for C++ classes) base classes. 2406 /// 2407 /// \param InUnqualifiedLookup true if this is qualified name lookup that 2408 /// occurs as part of unqualified name lookup. 2409 /// 2410 /// \returns true if lookup succeeded, false if it failed. 2411 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, 2412 bool InUnqualifiedLookup) { 2413 assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context"); 2414 2415 if (!R.getLookupName()) 2416 return false; 2417 2418 // Make sure that the declaration context is complete. 2419 assert((!isa<TagDecl>(LookupCtx) || 2420 LookupCtx->isDependentContext() || 2421 cast<TagDecl>(LookupCtx)->isCompleteDefinition() || 2422 cast<TagDecl>(LookupCtx)->isBeingDefined()) && 2423 "Declaration context must already be complete!"); 2424 2425 struct QualifiedLookupInScope { 2426 bool oldVal; 2427 DeclContext *Context; 2428 // Set flag in DeclContext informing debugger that we're looking for qualified name 2429 QualifiedLookupInScope(DeclContext *ctx) 2430 : oldVal(ctx->shouldUseQualifiedLookup()), Context(ctx) { 2431 ctx->setUseQualifiedLookup(); 2432 } 2433 ~QualifiedLookupInScope() { 2434 Context->setUseQualifiedLookup(oldVal); 2435 } 2436 } QL(LookupCtx); 2437 2438 if (LookupDirect(*this, R, LookupCtx)) { 2439 R.resolveKind(); 2440 if (isa<CXXRecordDecl>(LookupCtx)) 2441 R.setNamingClass(cast<CXXRecordDecl>(LookupCtx)); 2442 return true; 2443 } 2444 2445 // Don't descend into implied contexts for redeclarations. 2446 // C++98 [namespace.qual]p6: 2447 // In a declaration for a namespace member in which the 2448 // declarator-id is a qualified-id, given that the qualified-id 2449 // for the namespace member has the form 2450 // nested-name-specifier unqualified-id 2451 // the unqualified-id shall name a member of the namespace 2452 // designated by the nested-name-specifier. 2453 // See also [class.mfct]p5 and [class.static.data]p2. 2454 if (R.isForRedeclaration()) 2455 return false; 2456 2457 // If this is a namespace, look it up in the implied namespaces. 2458 if (LookupCtx->isFileContext()) 2459 return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx); 2460 2461 // If this isn't a C++ class, we aren't allowed to look into base 2462 // classes, we're done. 2463 CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx); 2464 if (!LookupRec || !LookupRec->getDefinition()) 2465 return false; 2466 2467 // We're done for lookups that can never succeed for C++ classes. 2468 if (R.getLookupKind() == LookupOperatorName || 2469 R.getLookupKind() == LookupNamespaceName || 2470 R.getLookupKind() == LookupObjCProtocolName || 2471 R.getLookupKind() == LookupLabel) 2472 return false; 2473 2474 // If we're performing qualified name lookup into a dependent class, 2475 // then we are actually looking into a current instantiation. If we have any 2476 // dependent base classes, then we either have to delay lookup until 2477 // template instantiation time (at which point all bases will be available) 2478 // or we have to fail. 2479 if (!InUnqualifiedLookup && LookupRec->isDependentContext() && 2480 LookupRec->hasAnyDependentBases()) { 2481 R.setNotFoundInCurrentInstantiation(); 2482 return false; 2483 } 2484 2485 // Perform lookup into our base classes. 2486 2487 DeclarationName Name = R.getLookupName(); 2488 unsigned IDNS = R.getIdentifierNamespace(); 2489 2490 // Look for this member in our base classes. 2491 auto BaseCallback = [Name, IDNS](const CXXBaseSpecifier *Specifier, 2492 CXXBasePath &Path) -> bool { 2493 CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl(); 2494 // Drop leading non-matching lookup results from the declaration list so 2495 // we don't need to consider them again below. 2496 for (Path.Decls = BaseRecord->lookup(Name).begin(); 2497 Path.Decls != Path.Decls.end(); ++Path.Decls) { 2498 if ((*Path.Decls)->isInIdentifierNamespace(IDNS)) 2499 return true; 2500 } 2501 return false; 2502 }; 2503 2504 CXXBasePaths Paths; 2505 Paths.setOrigin(LookupRec); 2506 if (!LookupRec->lookupInBases(BaseCallback, Paths)) 2507 return false; 2508 2509 R.setNamingClass(LookupRec); 2510 2511 // C++ [class.member.lookup]p2: 2512 // [...] If the resulting set of declarations are not all from 2513 // sub-objects of the same type, or the set has a nonstatic member 2514 // and includes members from distinct sub-objects, there is an 2515 // ambiguity and the program is ill-formed. Otherwise that set is 2516 // the result of the lookup. 2517 QualType SubobjectType; 2518 int SubobjectNumber = 0; 2519 AccessSpecifier SubobjectAccess = AS_none; 2520 2521 // Check whether the given lookup result contains only static members. 2522 auto HasOnlyStaticMembers = [&](DeclContext::lookup_iterator Result) { 2523 for (DeclContext::lookup_iterator I = Result, E = I.end(); I != E; ++I) 2524 if ((*I)->isInIdentifierNamespace(IDNS) && (*I)->isCXXInstanceMember()) 2525 return false; 2526 return true; 2527 }; 2528 2529 bool TemplateNameLookup = R.isTemplateNameLookup(); 2530 2531 // Determine whether two sets of members contain the same members, as 2532 // required by C++ [class.member.lookup]p6. 2533 auto HasSameDeclarations = [&](DeclContext::lookup_iterator A, 2534 DeclContext::lookup_iterator B) { 2535 using Iterator = DeclContextLookupResult::iterator; 2536 using Result = const void *; 2537 2538 auto Next = [&](Iterator &It, Iterator End) -> Result { 2539 while (It != End) { 2540 NamedDecl *ND = *It++; 2541 if (!ND->isInIdentifierNamespace(IDNS)) 2542 continue; 2543 2544 // C++ [temp.local]p3: 2545 // A lookup that finds an injected-class-name (10.2) can result in 2546 // an ambiguity in certain cases (for example, if it is found in 2547 // more than one base class). If all of the injected-class-names 2548 // that are found refer to specializations of the same class 2549 // template, and if the name is used as a template-name, the 2550 // reference refers to the class template itself and not a 2551 // specialization thereof, and is not ambiguous. 2552 if (TemplateNameLookup) 2553 if (auto *TD = getAsTemplateNameDecl(ND)) 2554 ND = TD; 2555 2556 // C++ [class.member.lookup]p3: 2557 // type declarations (including injected-class-names) are replaced by 2558 // the types they designate 2559 if (const TypeDecl *TD = dyn_cast<TypeDecl>(ND->getUnderlyingDecl())) { 2560 QualType T = Context.getTypeDeclType(TD); 2561 return T.getCanonicalType().getAsOpaquePtr(); 2562 } 2563 2564 return ND->getUnderlyingDecl()->getCanonicalDecl(); 2565 } 2566 return nullptr; 2567 }; 2568 2569 // We'll often find the declarations are in the same order. Handle this 2570 // case (and the special case of only one declaration) efficiently. 2571 Iterator AIt = A, BIt = B, AEnd, BEnd; 2572 while (true) { 2573 Result AResult = Next(AIt, AEnd); 2574 Result BResult = Next(BIt, BEnd); 2575 if (!AResult && !BResult) 2576 return true; 2577 if (!AResult || !BResult) 2578 return false; 2579 if (AResult != BResult) { 2580 // Found a mismatch; carefully check both lists, accounting for the 2581 // possibility of declarations appearing more than once. 2582 llvm::SmallDenseMap<Result, bool, 32> AResults; 2583 for (; AResult; AResult = Next(AIt, AEnd)) 2584 AResults.insert({AResult, /*FoundInB*/false}); 2585 unsigned Found = 0; 2586 for (; BResult; BResult = Next(BIt, BEnd)) { 2587 auto It = AResults.find(BResult); 2588 if (It == AResults.end()) 2589 return false; 2590 if (!It->second) { 2591 It->second = true; 2592 ++Found; 2593 } 2594 } 2595 return AResults.size() == Found; 2596 } 2597 } 2598 }; 2599 2600 for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end(); 2601 Path != PathEnd; ++Path) { 2602 const CXXBasePathElement &PathElement = Path->back(); 2603 2604 // Pick the best (i.e. most permissive i.e. numerically lowest) access 2605 // across all paths. 2606 SubobjectAccess = std::min(SubobjectAccess, Path->Access); 2607 2608 // Determine whether we're looking at a distinct sub-object or not. 2609 if (SubobjectType.isNull()) { 2610 // This is the first subobject we've looked at. Record its type. 2611 SubobjectType = Context.getCanonicalType(PathElement.Base->getType()); 2612 SubobjectNumber = PathElement.SubobjectNumber; 2613 continue; 2614 } 2615 2616 if (SubobjectType != 2617 Context.getCanonicalType(PathElement.Base->getType())) { 2618 // We found members of the given name in two subobjects of 2619 // different types. If the declaration sets aren't the same, this 2620 // lookup is ambiguous. 2621 // 2622 // FIXME: The language rule says that this applies irrespective of 2623 // whether the sets contain only static members. 2624 if (HasOnlyStaticMembers(Path->Decls) && 2625 HasSameDeclarations(Paths.begin()->Decls, Path->Decls)) 2626 continue; 2627 2628 R.setAmbiguousBaseSubobjectTypes(Paths); 2629 return true; 2630 } 2631 2632 // FIXME: This language rule no longer exists. Checking for ambiguous base 2633 // subobjects should be done as part of formation of a class member access 2634 // expression (when converting the object parameter to the member's type). 2635 if (SubobjectNumber != PathElement.SubobjectNumber) { 2636 // We have a different subobject of the same type. 2637 2638 // C++ [class.member.lookup]p5: 2639 // A static member, a nested type or an enumerator defined in 2640 // a base class T can unambiguously be found even if an object 2641 // has more than one base class subobject of type T. 2642 if (HasOnlyStaticMembers(Path->Decls)) 2643 continue; 2644 2645 // We have found a nonstatic member name in multiple, distinct 2646 // subobjects. Name lookup is ambiguous. 2647 R.setAmbiguousBaseSubobjects(Paths); 2648 return true; 2649 } 2650 } 2651 2652 // Lookup in a base class succeeded; return these results. 2653 2654 for (DeclContext::lookup_iterator I = Paths.front().Decls, E = I.end(); 2655 I != E; ++I) { 2656 AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess, 2657 (*I)->getAccess()); 2658 if (NamedDecl *ND = R.getAcceptableDecl(*I)) 2659 R.addDecl(ND, AS); 2660 } 2661 R.resolveKind(); 2662 return true; 2663 } 2664 2665 /// Performs qualified name lookup or special type of lookup for 2666 /// "__super::" scope specifier. 2667 /// 2668 /// This routine is a convenience overload meant to be called from contexts 2669 /// that need to perform a qualified name lookup with an optional C++ scope 2670 /// specifier that might require special kind of lookup. 2671 /// 2672 /// \param R captures both the lookup criteria and any lookup results found. 2673 /// 2674 /// \param LookupCtx The context in which qualified name lookup will 2675 /// search. 2676 /// 2677 /// \param SS An optional C++ scope-specifier. 2678 /// 2679 /// \returns true if lookup succeeded, false if it failed. 2680 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, 2681 CXXScopeSpec &SS) { 2682 auto *NNS = SS.getScopeRep(); 2683 if (NNS && NNS->getKind() == NestedNameSpecifier::Super) 2684 return LookupInSuper(R, NNS->getAsRecordDecl()); 2685 else 2686 2687 return LookupQualifiedName(R, LookupCtx); 2688 } 2689 2690 /// Performs name lookup for a name that was parsed in the 2691 /// source code, and may contain a C++ scope specifier. 2692 /// 2693 /// This routine is a convenience routine meant to be called from 2694 /// contexts that receive a name and an optional C++ scope specifier 2695 /// (e.g., "N::M::x"). It will then perform either qualified or 2696 /// unqualified name lookup (with LookupQualifiedName or LookupName, 2697 /// respectively) on the given name and return those results. It will 2698 /// perform a special type of lookup for "__super::" scope specifier. 2699 /// 2700 /// @param S The scope from which unqualified name lookup will 2701 /// begin. 2702 /// 2703 /// @param SS An optional C++ scope-specifier, e.g., "::N::M". 2704 /// 2705 /// @param EnteringContext Indicates whether we are going to enter the 2706 /// context of the scope-specifier SS (if present). 2707 /// 2708 /// @returns True if any decls were found (but possibly ambiguous) 2709 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS, 2710 bool AllowBuiltinCreation, bool EnteringContext) { 2711 if (SS && SS->isInvalid()) { 2712 // When the scope specifier is invalid, don't even look for 2713 // anything. 2714 return false; 2715 } 2716 2717 if (SS && SS->isSet()) { 2718 NestedNameSpecifier *NNS = SS->getScopeRep(); 2719 if (NNS->getKind() == NestedNameSpecifier::Super) 2720 return LookupInSuper(R, NNS->getAsRecordDecl()); 2721 2722 if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) { 2723 // We have resolved the scope specifier to a particular declaration 2724 // contex, and will perform name lookup in that context. 2725 if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC)) 2726 return false; 2727 2728 R.setContextRange(SS->getRange()); 2729 return LookupQualifiedName(R, DC); 2730 } 2731 2732 // We could not resolve the scope specified to a specific declaration 2733 // context, which means that SS refers to an unknown specialization. 2734 // Name lookup can't find anything in this case. 2735 R.setNotFoundInCurrentInstantiation(); 2736 R.setContextRange(SS->getRange()); 2737 return false; 2738 } 2739 2740 // Perform unqualified name lookup starting in the given scope. 2741 return LookupName(R, S, AllowBuiltinCreation); 2742 } 2743 2744 /// Perform qualified name lookup into all base classes of the given 2745 /// class. 2746 /// 2747 /// \param R captures both the lookup criteria and any lookup results found. 2748 /// 2749 /// \param Class The context in which qualified name lookup will 2750 /// search. Name lookup will search in all base classes merging the results. 2751 /// 2752 /// @returns True if any decls were found (but possibly ambiguous) 2753 bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) { 2754 // The access-control rules we use here are essentially the rules for 2755 // doing a lookup in Class that just magically skipped the direct 2756 // members of Class itself. That is, the naming class is Class, and the 2757 // access includes the access of the base. 2758 for (const auto &BaseSpec : Class->bases()) { 2759 CXXRecordDecl *RD = cast<CXXRecordDecl>( 2760 BaseSpec.getType()->castAs<RecordType>()->getDecl()); 2761 LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind()); 2762 Result.setBaseObjectType(Context.getRecordType(Class)); 2763 LookupQualifiedName(Result, RD); 2764 2765 // Copy the lookup results into the target, merging the base's access into 2766 // the path access. 2767 for (auto I = Result.begin(), E = Result.end(); I != E; ++I) { 2768 R.addDecl(I.getDecl(), 2769 CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(), 2770 I.getAccess())); 2771 } 2772 2773 Result.suppressDiagnostics(); 2774 } 2775 2776 R.resolveKind(); 2777 R.setNamingClass(Class); 2778 2779 return !R.empty(); 2780 } 2781 2782 /// Produce a diagnostic describing the ambiguity that resulted 2783 /// from name lookup. 2784 /// 2785 /// \param Result The result of the ambiguous lookup to be diagnosed. 2786 void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) { 2787 assert(Result.isAmbiguous() && "Lookup result must be ambiguous"); 2788 2789 DeclarationName Name = Result.getLookupName(); 2790 SourceLocation NameLoc = Result.getNameLoc(); 2791 SourceRange LookupRange = Result.getContextRange(); 2792 2793 switch (Result.getAmbiguityKind()) { 2794 case LookupResult::AmbiguousBaseSubobjects: { 2795 CXXBasePaths *Paths = Result.getBasePaths(); 2796 QualType SubobjectType = Paths->front().back().Base->getType(); 2797 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects) 2798 << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths) 2799 << LookupRange; 2800 2801 DeclContext::lookup_iterator Found = Paths->front().Decls; 2802 while (isa<CXXMethodDecl>(*Found) && 2803 cast<CXXMethodDecl>(*Found)->isStatic()) 2804 ++Found; 2805 2806 Diag((*Found)->getLocation(), diag::note_ambiguous_member_found); 2807 break; 2808 } 2809 2810 case LookupResult::AmbiguousBaseSubobjectTypes: { 2811 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types) 2812 << Name << LookupRange; 2813 2814 CXXBasePaths *Paths = Result.getBasePaths(); 2815 std::set<const NamedDecl *> DeclsPrinted; 2816 for (CXXBasePaths::paths_iterator Path = Paths->begin(), 2817 PathEnd = Paths->end(); 2818 Path != PathEnd; ++Path) { 2819 const NamedDecl *D = *Path->Decls; 2820 if (!D->isInIdentifierNamespace(Result.getIdentifierNamespace())) 2821 continue; 2822 if (DeclsPrinted.insert(D).second) { 2823 if (const auto *TD = dyn_cast<TypedefNameDecl>(D->getUnderlyingDecl())) 2824 Diag(D->getLocation(), diag::note_ambiguous_member_type_found) 2825 << TD->getUnderlyingType(); 2826 else if (const auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl())) 2827 Diag(D->getLocation(), diag::note_ambiguous_member_type_found) 2828 << Context.getTypeDeclType(TD); 2829 else 2830 Diag(D->getLocation(), diag::note_ambiguous_member_found); 2831 } 2832 } 2833 break; 2834 } 2835 2836 case LookupResult::AmbiguousTagHiding: { 2837 Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange; 2838 2839 llvm::SmallPtrSet<NamedDecl*, 8> TagDecls; 2840 2841 for (auto *D : Result) 2842 if (TagDecl *TD = dyn_cast<TagDecl>(D)) { 2843 TagDecls.insert(TD); 2844 Diag(TD->getLocation(), diag::note_hidden_tag); 2845 } 2846 2847 for (auto *D : Result) 2848 if (!isa<TagDecl>(D)) 2849 Diag(D->getLocation(), diag::note_hiding_object); 2850 2851 // For recovery purposes, go ahead and implement the hiding. 2852 LookupResult::Filter F = Result.makeFilter(); 2853 while (F.hasNext()) { 2854 if (TagDecls.count(F.next())) 2855 F.erase(); 2856 } 2857 F.done(); 2858 break; 2859 } 2860 2861 case LookupResult::AmbiguousReference: { 2862 Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange; 2863 2864 for (auto *D : Result) 2865 Diag(D->getLocation(), diag::note_ambiguous_candidate) << D; 2866 break; 2867 } 2868 } 2869 } 2870 2871 namespace { 2872 struct AssociatedLookup { 2873 AssociatedLookup(Sema &S, SourceLocation InstantiationLoc, 2874 Sema::AssociatedNamespaceSet &Namespaces, 2875 Sema::AssociatedClassSet &Classes) 2876 : S(S), Namespaces(Namespaces), Classes(Classes), 2877 InstantiationLoc(InstantiationLoc) { 2878 } 2879 2880 bool addClassTransitive(CXXRecordDecl *RD) { 2881 Classes.insert(RD); 2882 return ClassesTransitive.insert(RD); 2883 } 2884 2885 Sema &S; 2886 Sema::AssociatedNamespaceSet &Namespaces; 2887 Sema::AssociatedClassSet &Classes; 2888 SourceLocation InstantiationLoc; 2889 2890 private: 2891 Sema::AssociatedClassSet ClassesTransitive; 2892 }; 2893 } // end anonymous namespace 2894 2895 static void 2896 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T); 2897 2898 // Given the declaration context \param Ctx of a class, class template or 2899 // enumeration, add the associated namespaces to \param Namespaces as described 2900 // in [basic.lookup.argdep]p2. 2901 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces, 2902 DeclContext *Ctx) { 2903 // The exact wording has been changed in C++14 as a result of 2904 // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally 2905 // to all language versions since it is possible to return a local type 2906 // from a lambda in C++11. 2907 // 2908 // C++14 [basic.lookup.argdep]p2: 2909 // If T is a class type [...]. Its associated namespaces are the innermost 2910 // enclosing namespaces of its associated classes. [...] 2911 // 2912 // If T is an enumeration type, its associated namespace is the innermost 2913 // enclosing namespace of its declaration. [...] 2914 2915 // We additionally skip inline namespaces. The innermost non-inline namespace 2916 // contains all names of all its nested inline namespaces anyway, so we can 2917 // replace the entire inline namespace tree with its root. 2918 while (!Ctx->isFileContext() || Ctx->isInlineNamespace()) 2919 Ctx = Ctx->getParent(); 2920 2921 Namespaces.insert(Ctx->getPrimaryContext()); 2922 } 2923 2924 // Add the associated classes and namespaces for argument-dependent 2925 // lookup that involves a template argument (C++ [basic.lookup.argdep]p2). 2926 static void 2927 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, 2928 const TemplateArgument &Arg) { 2929 // C++ [basic.lookup.argdep]p2, last bullet: 2930 // -- [...] ; 2931 switch (Arg.getKind()) { 2932 case TemplateArgument::Null: 2933 break; 2934 2935 case TemplateArgument::Type: 2936 // [...] the namespaces and classes associated with the types of the 2937 // template arguments provided for template type parameters (excluding 2938 // template template parameters) 2939 addAssociatedClassesAndNamespaces(Result, Arg.getAsType()); 2940 break; 2941 2942 case TemplateArgument::Template: 2943 case TemplateArgument::TemplateExpansion: { 2944 // [...] the namespaces in which any template template arguments are 2945 // defined; and the classes in which any member templates used as 2946 // template template arguments are defined. 2947 TemplateName Template = Arg.getAsTemplateOrTemplatePattern(); 2948 if (ClassTemplateDecl *ClassTemplate 2949 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) { 2950 DeclContext *Ctx = ClassTemplate->getDeclContext(); 2951 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) 2952 Result.Classes.insert(EnclosingClass); 2953 // Add the associated namespace for this class. 2954 CollectEnclosingNamespace(Result.Namespaces, Ctx); 2955 } 2956 break; 2957 } 2958 2959 case TemplateArgument::Declaration: 2960 case TemplateArgument::Integral: 2961 case TemplateArgument::Expression: 2962 case TemplateArgument::NullPtr: 2963 // [Note: non-type template arguments do not contribute to the set of 2964 // associated namespaces. ] 2965 break; 2966 2967 case TemplateArgument::Pack: 2968 for (const auto &P : Arg.pack_elements()) 2969 addAssociatedClassesAndNamespaces(Result, P); 2970 break; 2971 } 2972 } 2973 2974 // Add the associated classes and namespaces for argument-dependent lookup 2975 // with an argument of class type (C++ [basic.lookup.argdep]p2). 2976 static void 2977 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, 2978 CXXRecordDecl *Class) { 2979 2980 // Just silently ignore anything whose name is __va_list_tag. 2981 if (Class->getDeclName() == Result.S.VAListTagName) 2982 return; 2983 2984 // C++ [basic.lookup.argdep]p2: 2985 // [...] 2986 // -- If T is a class type (including unions), its associated 2987 // classes are: the class itself; the class of which it is a 2988 // member, if any; and its direct and indirect base classes. 2989 // Its associated namespaces are the innermost enclosing 2990 // namespaces of its associated classes. 2991 2992 // Add the class of which it is a member, if any. 2993 DeclContext *Ctx = Class->getDeclContext(); 2994 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) 2995 Result.Classes.insert(EnclosingClass); 2996 2997 // Add the associated namespace for this class. 2998 CollectEnclosingNamespace(Result.Namespaces, Ctx); 2999 3000 // -- If T is a template-id, its associated namespaces and classes are 3001 // the namespace in which the template is defined; for member 3002 // templates, the member template's class; the namespaces and classes 3003 // associated with the types of the template arguments provided for 3004 // template type parameters (excluding template template parameters); the 3005 // namespaces in which any template template arguments are defined; and 3006 // the classes in which any member templates used as template template 3007 // arguments are defined. [Note: non-type template arguments do not 3008 // contribute to the set of associated namespaces. ] 3009 if (ClassTemplateSpecializationDecl *Spec 3010 = dyn_cast<ClassTemplateSpecializationDecl>(Class)) { 3011 DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext(); 3012 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) 3013 Result.Classes.insert(EnclosingClass); 3014 // Add the associated namespace for this class. 3015 CollectEnclosingNamespace(Result.Namespaces, Ctx); 3016 3017 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); 3018 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 3019 addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]); 3020 } 3021 3022 // Add the class itself. If we've already transitively visited this class, 3023 // we don't need to visit base classes. 3024 if (!Result.addClassTransitive(Class)) 3025 return; 3026 3027 // Only recurse into base classes for complete types. 3028 if (!Result.S.isCompleteType(Result.InstantiationLoc, 3029 Result.S.Context.getRecordType(Class))) 3030 return; 3031 3032 // Add direct and indirect base classes along with their associated 3033 // namespaces. 3034 SmallVector<CXXRecordDecl *, 32> Bases; 3035 Bases.push_back(Class); 3036 while (!Bases.empty()) { 3037 // Pop this class off the stack. 3038 Class = Bases.pop_back_val(); 3039 3040 // Visit the base classes. 3041 for (const auto &Base : Class->bases()) { 3042 const RecordType *BaseType = Base.getType()->getAs<RecordType>(); 3043 // In dependent contexts, we do ADL twice, and the first time around, 3044 // the base type might be a dependent TemplateSpecializationType, or a 3045 // TemplateTypeParmType. If that happens, simply ignore it. 3046 // FIXME: If we want to support export, we probably need to add the 3047 // namespace of the template in a TemplateSpecializationType, or even 3048 // the classes and namespaces of known non-dependent arguments. 3049 if (!BaseType) 3050 continue; 3051 CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl()); 3052 if (Result.addClassTransitive(BaseDecl)) { 3053 // Find the associated namespace for this base class. 3054 DeclContext *BaseCtx = BaseDecl->getDeclContext(); 3055 CollectEnclosingNamespace(Result.Namespaces, BaseCtx); 3056 3057 // Make sure we visit the bases of this base class. 3058 if (BaseDecl->bases_begin() != BaseDecl->bases_end()) 3059 Bases.push_back(BaseDecl); 3060 } 3061 } 3062 } 3063 } 3064 3065 // Add the associated classes and namespaces for 3066 // argument-dependent lookup with an argument of type T 3067 // (C++ [basic.lookup.koenig]p2). 3068 static void 3069 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) { 3070 // C++ [basic.lookup.koenig]p2: 3071 // 3072 // For each argument type T in the function call, there is a set 3073 // of zero or more associated namespaces and a set of zero or more 3074 // associated classes to be considered. The sets of namespaces and 3075 // classes is determined entirely by the types of the function 3076 // arguments (and the namespace of any template template 3077 // argument). Typedef names and using-declarations used to specify 3078 // the types do not contribute to this set. The sets of namespaces 3079 // and classes are determined in the following way: 3080 3081 SmallVector<const Type *, 16> Queue; 3082 const Type *T = Ty->getCanonicalTypeInternal().getTypePtr(); 3083 3084 while (true) { 3085 switch (T->getTypeClass()) { 3086 3087 #define TYPE(Class, Base) 3088 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 3089 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 3090 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: 3091 #define ABSTRACT_TYPE(Class, Base) 3092 #include "clang/AST/TypeNodes.inc" 3093 // T is canonical. We can also ignore dependent types because 3094 // we don't need to do ADL at the definition point, but if we 3095 // wanted to implement template export (or if we find some other 3096 // use for associated classes and namespaces...) this would be 3097 // wrong. 3098 break; 3099 3100 // -- If T is a pointer to U or an array of U, its associated 3101 // namespaces and classes are those associated with U. 3102 case Type::Pointer: 3103 T = cast<PointerType>(T)->getPointeeType().getTypePtr(); 3104 continue; 3105 case Type::ConstantArray: 3106 case Type::IncompleteArray: 3107 case Type::VariableArray: 3108 T = cast<ArrayType>(T)->getElementType().getTypePtr(); 3109 continue; 3110 3111 // -- If T is a fundamental type, its associated sets of 3112 // namespaces and classes are both empty. 3113 case Type::Builtin: 3114 break; 3115 3116 // -- If T is a class type (including unions), its associated 3117 // classes are: the class itself; the class of which it is 3118 // a member, if any; and its direct and indirect base classes. 3119 // Its associated namespaces are the innermost enclosing 3120 // namespaces of its associated classes. 3121 case Type::Record: { 3122 CXXRecordDecl *Class = 3123 cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl()); 3124 addAssociatedClassesAndNamespaces(Result, Class); 3125 break; 3126 } 3127 3128 // -- If T is an enumeration type, its associated namespace 3129 // is the innermost enclosing namespace of its declaration. 3130 // If it is a class member, its associated class is the 3131 // member’s class; else it has no associated class. 3132 case Type::Enum: { 3133 EnumDecl *Enum = cast<EnumType>(T)->getDecl(); 3134 3135 DeclContext *Ctx = Enum->getDeclContext(); 3136 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) 3137 Result.Classes.insert(EnclosingClass); 3138 3139 // Add the associated namespace for this enumeration. 3140 CollectEnclosingNamespace(Result.Namespaces, Ctx); 3141 3142 break; 3143 } 3144 3145 // -- If T is a function type, its associated namespaces and 3146 // classes are those associated with the function parameter 3147 // types and those associated with the return type. 3148 case Type::FunctionProto: { 3149 const FunctionProtoType *Proto = cast<FunctionProtoType>(T); 3150 for (const auto &Arg : Proto->param_types()) 3151 Queue.push_back(Arg.getTypePtr()); 3152 // fallthrough 3153 [[fallthrough]]; 3154 } 3155 case Type::FunctionNoProto: { 3156 const FunctionType *FnType = cast<FunctionType>(T); 3157 T = FnType->getReturnType().getTypePtr(); 3158 continue; 3159 } 3160 3161 // -- If T is a pointer to a member function of a class X, its 3162 // associated namespaces and classes are those associated 3163 // with the function parameter types and return type, 3164 // together with those associated with X. 3165 // 3166 // -- If T is a pointer to a data member of class X, its 3167 // associated namespaces and classes are those associated 3168 // with the member type together with those associated with 3169 // X. 3170 case Type::MemberPointer: { 3171 const MemberPointerType *MemberPtr = cast<MemberPointerType>(T); 3172 3173 // Queue up the class type into which this points. 3174 Queue.push_back(MemberPtr->getClass()); 3175 3176 // And directly continue with the pointee type. 3177 T = MemberPtr->getPointeeType().getTypePtr(); 3178 continue; 3179 } 3180 3181 // As an extension, treat this like a normal pointer. 3182 case Type::BlockPointer: 3183 T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr(); 3184 continue; 3185 3186 // References aren't covered by the standard, but that's such an 3187 // obvious defect that we cover them anyway. 3188 case Type::LValueReference: 3189 case Type::RValueReference: 3190 T = cast<ReferenceType>(T)->getPointeeType().getTypePtr(); 3191 continue; 3192 3193 // These are fundamental types. 3194 case Type::Vector: 3195 case Type::ExtVector: 3196 case Type::ConstantMatrix: 3197 case Type::Complex: 3198 case Type::BitInt: 3199 break; 3200 3201 // Non-deduced auto types only get here for error cases. 3202 case Type::Auto: 3203 case Type::DeducedTemplateSpecialization: 3204 break; 3205 3206 // If T is an Objective-C object or interface type, or a pointer to an 3207 // object or interface type, the associated namespace is the global 3208 // namespace. 3209 case Type::ObjCObject: 3210 case Type::ObjCInterface: 3211 case Type::ObjCObjectPointer: 3212 Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl()); 3213 break; 3214 3215 // Atomic types are just wrappers; use the associations of the 3216 // contained type. 3217 case Type::Atomic: 3218 T = cast<AtomicType>(T)->getValueType().getTypePtr(); 3219 continue; 3220 case Type::Pipe: 3221 T = cast<PipeType>(T)->getElementType().getTypePtr(); 3222 continue; 3223 } 3224 3225 if (Queue.empty()) 3226 break; 3227 T = Queue.pop_back_val(); 3228 } 3229 } 3230 3231 /// Find the associated classes and namespaces for 3232 /// argument-dependent lookup for a call with the given set of 3233 /// arguments. 3234 /// 3235 /// This routine computes the sets of associated classes and associated 3236 /// namespaces searched by argument-dependent lookup 3237 /// (C++ [basic.lookup.argdep]) for a given set of arguments. 3238 void Sema::FindAssociatedClassesAndNamespaces( 3239 SourceLocation InstantiationLoc, ArrayRef<Expr *> Args, 3240 AssociatedNamespaceSet &AssociatedNamespaces, 3241 AssociatedClassSet &AssociatedClasses) { 3242 AssociatedNamespaces.clear(); 3243 AssociatedClasses.clear(); 3244 3245 AssociatedLookup Result(*this, InstantiationLoc, 3246 AssociatedNamespaces, AssociatedClasses); 3247 3248 // C++ [basic.lookup.koenig]p2: 3249 // For each argument type T in the function call, there is a set 3250 // of zero or more associated namespaces and a set of zero or more 3251 // associated classes to be considered. The sets of namespaces and 3252 // classes is determined entirely by the types of the function 3253 // arguments (and the namespace of any template template 3254 // argument). 3255 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) { 3256 Expr *Arg = Args[ArgIdx]; 3257 3258 if (Arg->getType() != Context.OverloadTy) { 3259 addAssociatedClassesAndNamespaces(Result, Arg->getType()); 3260 continue; 3261 } 3262 3263 // [...] In addition, if the argument is the name or address of a 3264 // set of overloaded functions and/or function templates, its 3265 // associated classes and namespaces are the union of those 3266 // associated with each of the members of the set: the namespace 3267 // in which the function or function template is defined and the 3268 // classes and namespaces associated with its (non-dependent) 3269 // parameter types and return type. 3270 OverloadExpr *OE = OverloadExpr::find(Arg).Expression; 3271 3272 for (const NamedDecl *D : OE->decls()) { 3273 // Look through any using declarations to find the underlying function. 3274 const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction(); 3275 3276 // Add the classes and namespaces associated with the parameter 3277 // types and return type of this function. 3278 addAssociatedClassesAndNamespaces(Result, FDecl->getType()); 3279 } 3280 } 3281 } 3282 3283 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name, 3284 SourceLocation Loc, 3285 LookupNameKind NameKind, 3286 RedeclarationKind Redecl) { 3287 LookupResult R(*this, Name, Loc, NameKind, Redecl); 3288 LookupName(R, S); 3289 return R.getAsSingle<NamedDecl>(); 3290 } 3291 3292 /// Find the protocol with the given name, if any. 3293 ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II, 3294 SourceLocation IdLoc, 3295 RedeclarationKind Redecl) { 3296 Decl *D = LookupSingleName(TUScope, II, IdLoc, 3297 LookupObjCProtocolName, Redecl); 3298 return cast_or_null<ObjCProtocolDecl>(D); 3299 } 3300 3301 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S, 3302 UnresolvedSetImpl &Functions) { 3303 // C++ [over.match.oper]p3: 3304 // -- The set of non-member candidates is the result of the 3305 // unqualified lookup of operator@ in the context of the 3306 // expression according to the usual rules for name lookup in 3307 // unqualified function calls (3.4.2) except that all member 3308 // functions are ignored. 3309 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 3310 LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName); 3311 LookupName(Operators, S); 3312 3313 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous"); 3314 Functions.append(Operators.begin(), Operators.end()); 3315 } 3316 3317 Sema::SpecialMemberOverloadResult Sema::LookupSpecialMember(CXXRecordDecl *RD, 3318 CXXSpecialMember SM, 3319 bool ConstArg, 3320 bool VolatileArg, 3321 bool RValueThis, 3322 bool ConstThis, 3323 bool VolatileThis) { 3324 assert(CanDeclareSpecialMemberFunction(RD) && 3325 "doing special member lookup into record that isn't fully complete"); 3326 RD = RD->getDefinition(); 3327 if (RValueThis || ConstThis || VolatileThis) 3328 assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) && 3329 "constructors and destructors always have unqualified lvalue this"); 3330 if (ConstArg || VolatileArg) 3331 assert((SM != CXXDefaultConstructor && SM != CXXDestructor) && 3332 "parameter-less special members can't have qualified arguments"); 3333 3334 // FIXME: Get the caller to pass in a location for the lookup. 3335 SourceLocation LookupLoc = RD->getLocation(); 3336 3337 llvm::FoldingSetNodeID ID; 3338 ID.AddPointer(RD); 3339 ID.AddInteger(SM); 3340 ID.AddInteger(ConstArg); 3341 ID.AddInteger(VolatileArg); 3342 ID.AddInteger(RValueThis); 3343 ID.AddInteger(ConstThis); 3344 ID.AddInteger(VolatileThis); 3345 3346 void *InsertPoint; 3347 SpecialMemberOverloadResultEntry *Result = 3348 SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint); 3349 3350 // This was already cached 3351 if (Result) 3352 return *Result; 3353 3354 Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>(); 3355 Result = new (Result) SpecialMemberOverloadResultEntry(ID); 3356 SpecialMemberCache.InsertNode(Result, InsertPoint); 3357 3358 if (SM == CXXDestructor) { 3359 if (RD->needsImplicitDestructor()) { 3360 runWithSufficientStackSpace(RD->getLocation(), [&] { 3361 DeclareImplicitDestructor(RD); 3362 }); 3363 } 3364 CXXDestructorDecl *DD = RD->getDestructor(); 3365 Result->setMethod(DD); 3366 Result->setKind(DD && !DD->isDeleted() 3367 ? SpecialMemberOverloadResult::Success 3368 : SpecialMemberOverloadResult::NoMemberOrDeleted); 3369 return *Result; 3370 } 3371 3372 // Prepare for overload resolution. Here we construct a synthetic argument 3373 // if necessary and make sure that implicit functions are declared. 3374 CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD)); 3375 DeclarationName Name; 3376 Expr *Arg = nullptr; 3377 unsigned NumArgs; 3378 3379 QualType ArgType = CanTy; 3380 ExprValueKind VK = VK_LValue; 3381 3382 if (SM == CXXDefaultConstructor) { 3383 Name = Context.DeclarationNames.getCXXConstructorName(CanTy); 3384 NumArgs = 0; 3385 if (RD->needsImplicitDefaultConstructor()) { 3386 runWithSufficientStackSpace(RD->getLocation(), [&] { 3387 DeclareImplicitDefaultConstructor(RD); 3388 }); 3389 } 3390 } else { 3391 if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) { 3392 Name = Context.DeclarationNames.getCXXConstructorName(CanTy); 3393 if (RD->needsImplicitCopyConstructor()) { 3394 runWithSufficientStackSpace(RD->getLocation(), [&] { 3395 DeclareImplicitCopyConstructor(RD); 3396 }); 3397 } 3398 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) { 3399 runWithSufficientStackSpace(RD->getLocation(), [&] { 3400 DeclareImplicitMoveConstructor(RD); 3401 }); 3402 } 3403 } else { 3404 Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); 3405 if (RD->needsImplicitCopyAssignment()) { 3406 runWithSufficientStackSpace(RD->getLocation(), [&] { 3407 DeclareImplicitCopyAssignment(RD); 3408 }); 3409 } 3410 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) { 3411 runWithSufficientStackSpace(RD->getLocation(), [&] { 3412 DeclareImplicitMoveAssignment(RD); 3413 }); 3414 } 3415 } 3416 3417 if (ConstArg) 3418 ArgType.addConst(); 3419 if (VolatileArg) 3420 ArgType.addVolatile(); 3421 3422 // This isn't /really/ specified by the standard, but it's implied 3423 // we should be working from a PRValue in the case of move to ensure 3424 // that we prefer to bind to rvalue references, and an LValue in the 3425 // case of copy to ensure we don't bind to rvalue references. 3426 // Possibly an XValue is actually correct in the case of move, but 3427 // there is no semantic difference for class types in this restricted 3428 // case. 3429 if (SM == CXXCopyConstructor || SM == CXXCopyAssignment) 3430 VK = VK_LValue; 3431 else 3432 VK = VK_PRValue; 3433 } 3434 3435 OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK); 3436 3437 if (SM != CXXDefaultConstructor) { 3438 NumArgs = 1; 3439 Arg = &FakeArg; 3440 } 3441 3442 // Create the object argument 3443 QualType ThisTy = CanTy; 3444 if (ConstThis) 3445 ThisTy.addConst(); 3446 if (VolatileThis) 3447 ThisTy.addVolatile(); 3448 Expr::Classification Classification = 3449 OpaqueValueExpr(LookupLoc, ThisTy, RValueThis ? VK_PRValue : VK_LValue) 3450 .Classify(Context); 3451 3452 // Now we perform lookup on the name we computed earlier and do overload 3453 // resolution. Lookup is only performed directly into the class since there 3454 // will always be a (possibly implicit) declaration to shadow any others. 3455 OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal); 3456 DeclContext::lookup_result R = RD->lookup(Name); 3457 3458 if (R.empty()) { 3459 // We might have no default constructor because we have a lambda's closure 3460 // type, rather than because there's some other declared constructor. 3461 // Every class has a copy/move constructor, copy/move assignment, and 3462 // destructor. 3463 assert(SM == CXXDefaultConstructor && 3464 "lookup for a constructor or assignment operator was empty"); 3465 Result->setMethod(nullptr); 3466 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); 3467 return *Result; 3468 } 3469 3470 // Copy the candidates as our processing of them may load new declarations 3471 // from an external source and invalidate lookup_result. 3472 SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end()); 3473 3474 for (NamedDecl *CandDecl : Candidates) { 3475 if (CandDecl->isInvalidDecl()) 3476 continue; 3477 3478 DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public); 3479 auto CtorInfo = getConstructorInfo(Cand); 3480 if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) { 3481 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment) 3482 AddMethodCandidate(M, Cand, RD, ThisTy, Classification, 3483 llvm::ArrayRef(&Arg, NumArgs), OCS, true); 3484 else if (CtorInfo) 3485 AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl, 3486 llvm::ArrayRef(&Arg, NumArgs), OCS, 3487 /*SuppressUserConversions*/ true); 3488 else 3489 AddOverloadCandidate(M, Cand, llvm::ArrayRef(&Arg, NumArgs), OCS, 3490 /*SuppressUserConversions*/ true); 3491 } else if (FunctionTemplateDecl *Tmpl = 3492 dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) { 3493 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment) 3494 AddMethodTemplateCandidate(Tmpl, Cand, RD, nullptr, ThisTy, 3495 Classification, 3496 llvm::ArrayRef(&Arg, NumArgs), OCS, true); 3497 else if (CtorInfo) 3498 AddTemplateOverloadCandidate(CtorInfo.ConstructorTmpl, 3499 CtorInfo.FoundDecl, nullptr, 3500 llvm::ArrayRef(&Arg, NumArgs), OCS, true); 3501 else 3502 AddTemplateOverloadCandidate(Tmpl, Cand, nullptr, 3503 llvm::ArrayRef(&Arg, NumArgs), OCS, true); 3504 } else { 3505 assert(isa<UsingDecl>(Cand.getDecl()) && 3506 "illegal Kind of operator = Decl"); 3507 } 3508 } 3509 3510 OverloadCandidateSet::iterator Best; 3511 switch (OCS.BestViableFunction(*this, LookupLoc, Best)) { 3512 case OR_Success: 3513 Result->setMethod(cast<CXXMethodDecl>(Best->Function)); 3514 Result->setKind(SpecialMemberOverloadResult::Success); 3515 break; 3516 3517 case OR_Deleted: 3518 Result->setMethod(cast<CXXMethodDecl>(Best->Function)); 3519 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); 3520 break; 3521 3522 case OR_Ambiguous: 3523 Result->setMethod(nullptr); 3524 Result->setKind(SpecialMemberOverloadResult::Ambiguous); 3525 break; 3526 3527 case OR_No_Viable_Function: 3528 Result->setMethod(nullptr); 3529 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); 3530 break; 3531 } 3532 3533 return *Result; 3534 } 3535 3536 /// Look up the default constructor for the given class. 3537 CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) { 3538 SpecialMemberOverloadResult Result = 3539 LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false, 3540 false, false); 3541 3542 return cast_or_null<CXXConstructorDecl>(Result.getMethod()); 3543 } 3544 3545 /// Look up the copying constructor for the given class. 3546 CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class, 3547 unsigned Quals) { 3548 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && 3549 "non-const, non-volatile qualifiers for copy ctor arg"); 3550 SpecialMemberOverloadResult Result = 3551 LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const, 3552 Quals & Qualifiers::Volatile, false, false, false); 3553 3554 return cast_or_null<CXXConstructorDecl>(Result.getMethod()); 3555 } 3556 3557 /// Look up the moving constructor for the given class. 3558 CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class, 3559 unsigned Quals) { 3560 SpecialMemberOverloadResult Result = 3561 LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const, 3562 Quals & Qualifiers::Volatile, false, false, false); 3563 3564 return cast_or_null<CXXConstructorDecl>(Result.getMethod()); 3565 } 3566 3567 /// Look up the constructors for the given class. 3568 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) { 3569 // If the implicit constructors have not yet been declared, do so now. 3570 if (CanDeclareSpecialMemberFunction(Class)) { 3571 runWithSufficientStackSpace(Class->getLocation(), [&] { 3572 if (Class->needsImplicitDefaultConstructor()) 3573 DeclareImplicitDefaultConstructor(Class); 3574 if (Class->needsImplicitCopyConstructor()) 3575 DeclareImplicitCopyConstructor(Class); 3576 if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor()) 3577 DeclareImplicitMoveConstructor(Class); 3578 }); 3579 } 3580 3581 CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class)); 3582 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T); 3583 return Class->lookup(Name); 3584 } 3585 3586 /// Look up the copying assignment operator for the given class. 3587 CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class, 3588 unsigned Quals, bool RValueThis, 3589 unsigned ThisQuals) { 3590 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && 3591 "non-const, non-volatile qualifiers for copy assignment arg"); 3592 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && 3593 "non-const, non-volatile qualifiers for copy assignment this"); 3594 SpecialMemberOverloadResult Result = 3595 LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const, 3596 Quals & Qualifiers::Volatile, RValueThis, 3597 ThisQuals & Qualifiers::Const, 3598 ThisQuals & Qualifiers::Volatile); 3599 3600 return Result.getMethod(); 3601 } 3602 3603 /// Look up the moving assignment operator for the given class. 3604 CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class, 3605 unsigned Quals, 3606 bool RValueThis, 3607 unsigned ThisQuals) { 3608 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && 3609 "non-const, non-volatile qualifiers for copy assignment this"); 3610 SpecialMemberOverloadResult Result = 3611 LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const, 3612 Quals & Qualifiers::Volatile, RValueThis, 3613 ThisQuals & Qualifiers::Const, 3614 ThisQuals & Qualifiers::Volatile); 3615 3616 return Result.getMethod(); 3617 } 3618 3619 /// Look for the destructor of the given class. 3620 /// 3621 /// During semantic analysis, this routine should be used in lieu of 3622 /// CXXRecordDecl::getDestructor(). 3623 /// 3624 /// \returns The destructor for this class. 3625 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) { 3626 return cast_or_null<CXXDestructorDecl>( 3627 LookupSpecialMember(Class, CXXDestructor, false, false, false, false, 3628 false) 3629 .getMethod()); 3630 } 3631 3632 /// LookupLiteralOperator - Determine which literal operator should be used for 3633 /// a user-defined literal, per C++11 [lex.ext]. 3634 /// 3635 /// Normal overload resolution is not used to select which literal operator to 3636 /// call for a user-defined literal. Look up the provided literal operator name, 3637 /// and filter the results to the appropriate set for the given argument types. 3638 Sema::LiteralOperatorLookupResult 3639 Sema::LookupLiteralOperator(Scope *S, LookupResult &R, 3640 ArrayRef<QualType> ArgTys, bool AllowRaw, 3641 bool AllowTemplate, bool AllowStringTemplatePack, 3642 bool DiagnoseMissing, StringLiteral *StringLit) { 3643 LookupName(R, S); 3644 assert(R.getResultKind() != LookupResult::Ambiguous && 3645 "literal operator lookup can't be ambiguous"); 3646 3647 // Filter the lookup results appropriately. 3648 LookupResult::Filter F = R.makeFilter(); 3649 3650 bool AllowCooked = true; 3651 bool FoundRaw = false; 3652 bool FoundTemplate = false; 3653 bool FoundStringTemplatePack = false; 3654 bool FoundCooked = false; 3655 3656 while (F.hasNext()) { 3657 Decl *D = F.next(); 3658 if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D)) 3659 D = USD->getTargetDecl(); 3660 3661 // If the declaration we found is invalid, skip it. 3662 if (D->isInvalidDecl()) { 3663 F.erase(); 3664 continue; 3665 } 3666 3667 bool IsRaw = false; 3668 bool IsTemplate = false; 3669 bool IsStringTemplatePack = false; 3670 bool IsCooked = false; 3671 3672 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 3673 if (FD->getNumParams() == 1 && 3674 FD->getParamDecl(0)->getType()->getAs<PointerType>()) 3675 IsRaw = true; 3676 else if (FD->getNumParams() == ArgTys.size()) { 3677 IsCooked = true; 3678 for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) { 3679 QualType ParamTy = FD->getParamDecl(ArgIdx)->getType(); 3680 if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) { 3681 IsCooked = false; 3682 break; 3683 } 3684 } 3685 } 3686 } 3687 if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) { 3688 TemplateParameterList *Params = FD->getTemplateParameters(); 3689 if (Params->size() == 1) { 3690 IsTemplate = true; 3691 if (!Params->getParam(0)->isTemplateParameterPack() && !StringLit) { 3692 // Implied but not stated: user-defined integer and floating literals 3693 // only ever use numeric literal operator templates, not templates 3694 // taking a parameter of class type. 3695 F.erase(); 3696 continue; 3697 } 3698 3699 // A string literal template is only considered if the string literal 3700 // is a well-formed template argument for the template parameter. 3701 if (StringLit) { 3702 SFINAETrap Trap(*this); 3703 SmallVector<TemplateArgument, 1> SugaredChecked, CanonicalChecked; 3704 TemplateArgumentLoc Arg(TemplateArgument(StringLit), StringLit); 3705 if (CheckTemplateArgument( 3706 Params->getParam(0), Arg, FD, R.getNameLoc(), R.getNameLoc(), 3707 0, SugaredChecked, CanonicalChecked, CTAK_Specified) || 3708 Trap.hasErrorOccurred()) 3709 IsTemplate = false; 3710 } 3711 } else { 3712 IsStringTemplatePack = true; 3713 } 3714 } 3715 3716 if (AllowTemplate && StringLit && IsTemplate) { 3717 FoundTemplate = true; 3718 AllowRaw = false; 3719 AllowCooked = false; 3720 AllowStringTemplatePack = false; 3721 if (FoundRaw || FoundCooked || FoundStringTemplatePack) { 3722 F.restart(); 3723 FoundRaw = FoundCooked = FoundStringTemplatePack = false; 3724 } 3725 } else if (AllowCooked && IsCooked) { 3726 FoundCooked = true; 3727 AllowRaw = false; 3728 AllowTemplate = StringLit; 3729 AllowStringTemplatePack = false; 3730 if (FoundRaw || FoundTemplate || FoundStringTemplatePack) { 3731 // Go through again and remove the raw and template decls we've 3732 // already found. 3733 F.restart(); 3734 FoundRaw = FoundTemplate = FoundStringTemplatePack = false; 3735 } 3736 } else if (AllowRaw && IsRaw) { 3737 FoundRaw = true; 3738 } else if (AllowTemplate && IsTemplate) { 3739 FoundTemplate = true; 3740 } else if (AllowStringTemplatePack && IsStringTemplatePack) { 3741 FoundStringTemplatePack = true; 3742 } else { 3743 F.erase(); 3744 } 3745 } 3746 3747 F.done(); 3748 3749 // Per C++20 [lex.ext]p5, we prefer the template form over the non-template 3750 // form for string literal operator templates. 3751 if (StringLit && FoundTemplate) 3752 return LOLR_Template; 3753 3754 // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching 3755 // parameter type, that is used in preference to a raw literal operator 3756 // or literal operator template. 3757 if (FoundCooked) 3758 return LOLR_Cooked; 3759 3760 // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal 3761 // operator template, but not both. 3762 if (FoundRaw && FoundTemplate) { 3763 Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName(); 3764 for (const NamedDecl *D : R) 3765 NoteOverloadCandidate(D, D->getUnderlyingDecl()->getAsFunction()); 3766 return LOLR_Error; 3767 } 3768 3769 if (FoundRaw) 3770 return LOLR_Raw; 3771 3772 if (FoundTemplate) 3773 return LOLR_Template; 3774 3775 if (FoundStringTemplatePack) 3776 return LOLR_StringTemplatePack; 3777 3778 // Didn't find anything we could use. 3779 if (DiagnoseMissing) { 3780 Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator) 3781 << R.getLookupName() << (int)ArgTys.size() << ArgTys[0] 3782 << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw 3783 << (AllowTemplate || AllowStringTemplatePack); 3784 return LOLR_Error; 3785 } 3786 3787 return LOLR_ErrorNoDiagnostic; 3788 } 3789 3790 void ADLResult::insert(NamedDecl *New) { 3791 NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())]; 3792 3793 // If we haven't yet seen a decl for this key, or the last decl 3794 // was exactly this one, we're done. 3795 if (Old == nullptr || Old == New) { 3796 Old = New; 3797 return; 3798 } 3799 3800 // Otherwise, decide which is a more recent redeclaration. 3801 FunctionDecl *OldFD = Old->getAsFunction(); 3802 FunctionDecl *NewFD = New->getAsFunction(); 3803 3804 FunctionDecl *Cursor = NewFD; 3805 while (true) { 3806 Cursor = Cursor->getPreviousDecl(); 3807 3808 // If we got to the end without finding OldFD, OldFD is the newer 3809 // declaration; leave things as they are. 3810 if (!Cursor) return; 3811 3812 // If we do find OldFD, then NewFD is newer. 3813 if (Cursor == OldFD) break; 3814 3815 // Otherwise, keep looking. 3816 } 3817 3818 Old = New; 3819 } 3820 3821 void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc, 3822 ArrayRef<Expr *> Args, ADLResult &Result) { 3823 // Find all of the associated namespaces and classes based on the 3824 // arguments we have. 3825 AssociatedNamespaceSet AssociatedNamespaces; 3826 AssociatedClassSet AssociatedClasses; 3827 FindAssociatedClassesAndNamespaces(Loc, Args, 3828 AssociatedNamespaces, 3829 AssociatedClasses); 3830 3831 // C++ [basic.lookup.argdep]p3: 3832 // Let X be the lookup set produced by unqualified lookup (3.4.1) 3833 // and let Y be the lookup set produced by argument dependent 3834 // lookup (defined as follows). If X contains [...] then Y is 3835 // empty. Otherwise Y is the set of declarations found in the 3836 // namespaces associated with the argument types as described 3837 // below. The set of declarations found by the lookup of the name 3838 // is the union of X and Y. 3839 // 3840 // Here, we compute Y and add its members to the overloaded 3841 // candidate set. 3842 for (auto *NS : AssociatedNamespaces) { 3843 // When considering an associated namespace, the lookup is the 3844 // same as the lookup performed when the associated namespace is 3845 // used as a qualifier (3.4.3.2) except that: 3846 // 3847 // -- Any using-directives in the associated namespace are 3848 // ignored. 3849 // 3850 // -- Any namespace-scope friend functions declared in 3851 // associated classes are visible within their respective 3852 // namespaces even if they are not visible during an ordinary 3853 // lookup (11.4). 3854 // 3855 // C++20 [basic.lookup.argdep] p4.3 3856 // -- are exported, are attached to a named module M, do not appear 3857 // in the translation unit containing the point of the lookup, and 3858 // have the same innermost enclosing non-inline namespace scope as 3859 // a declaration of an associated entity attached to M. 3860 DeclContext::lookup_result R = NS->lookup(Name); 3861 for (auto *D : R) { 3862 auto *Underlying = D; 3863 if (auto *USD = dyn_cast<UsingShadowDecl>(D)) 3864 Underlying = USD->getTargetDecl(); 3865 3866 if (!isa<FunctionDecl>(Underlying) && 3867 !isa<FunctionTemplateDecl>(Underlying)) 3868 continue; 3869 3870 // The declaration is visible to argument-dependent lookup if either 3871 // it's ordinarily visible or declared as a friend in an associated 3872 // class. 3873 bool Visible = false; 3874 for (D = D->getMostRecentDecl(); D; 3875 D = cast_or_null<NamedDecl>(D->getPreviousDecl())) { 3876 if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) { 3877 if (isVisible(D)) { 3878 Visible = true; 3879 break; 3880 } 3881 3882 if (!getLangOpts().CPlusPlusModules) 3883 continue; 3884 3885 if (D->isInExportDeclContext()) { 3886 Module *FM = D->getOwningModule(); 3887 // C++20 [basic.lookup.argdep] p4.3 .. are exported ... 3888 // exports are only valid in module purview and outside of any 3889 // PMF (although a PMF should not even be present in a module 3890 // with an import). 3891 assert(FM && FM->isModulePurview() && !FM->isPrivateModule() && 3892 "bad export context"); 3893 // .. are attached to a named module M, do not appear in the 3894 // translation unit containing the point of the lookup.. 3895 if (D->isInAnotherModuleUnit() && 3896 llvm::any_of(AssociatedClasses, [&](auto *E) { 3897 // ... and have the same innermost enclosing non-inline 3898 // namespace scope as a declaration of an associated entity 3899 // attached to M 3900 if (E->getOwningModule() != FM) 3901 return false; 3902 // TODO: maybe this could be cached when generating the 3903 // associated namespaces / entities. 3904 DeclContext *Ctx = E->getDeclContext(); 3905 while (!Ctx->isFileContext() || Ctx->isInlineNamespace()) 3906 Ctx = Ctx->getParent(); 3907 return Ctx == NS; 3908 })) { 3909 Visible = true; 3910 break; 3911 } 3912 } 3913 } else if (D->getFriendObjectKind()) { 3914 auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext()); 3915 // [basic.lookup.argdep]p4: 3916 // Argument-dependent lookup finds all declarations of functions and 3917 // function templates that 3918 // - ... 3919 // - are declared as a friend ([class.friend]) of any class with a 3920 // reachable definition in the set of associated entities, 3921 // 3922 // FIXME: If there's a merged definition of D that is reachable, then 3923 // the friend declaration should be considered. 3924 if (AssociatedClasses.count(RD) && isReachable(D)) { 3925 Visible = true; 3926 break; 3927 } 3928 } 3929 } 3930 3931 // FIXME: Preserve D as the FoundDecl. 3932 if (Visible) 3933 Result.insert(Underlying); 3934 } 3935 } 3936 } 3937 3938 //---------------------------------------------------------------------------- 3939 // Search for all visible declarations. 3940 //---------------------------------------------------------------------------- 3941 VisibleDeclConsumer::~VisibleDeclConsumer() { } 3942 3943 bool VisibleDeclConsumer::includeHiddenDecls() const { return false; } 3944 3945 namespace { 3946 3947 class ShadowContextRAII; 3948 3949 class VisibleDeclsRecord { 3950 public: 3951 /// An entry in the shadow map, which is optimized to store a 3952 /// single declaration (the common case) but can also store a list 3953 /// of declarations. 3954 typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry; 3955 3956 private: 3957 /// A mapping from declaration names to the declarations that have 3958 /// this name within a particular scope. 3959 typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap; 3960 3961 /// A list of shadow maps, which is used to model name hiding. 3962 std::list<ShadowMap> ShadowMaps; 3963 3964 /// The declaration contexts we have already visited. 3965 llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts; 3966 3967 friend class ShadowContextRAII; 3968 3969 public: 3970 /// Determine whether we have already visited this context 3971 /// (and, if not, note that we are going to visit that context now). 3972 bool visitedContext(DeclContext *Ctx) { 3973 return !VisitedContexts.insert(Ctx).second; 3974 } 3975 3976 bool alreadyVisitedContext(DeclContext *Ctx) { 3977 return VisitedContexts.count(Ctx); 3978 } 3979 3980 /// Determine whether the given declaration is hidden in the 3981 /// current scope. 3982 /// 3983 /// \returns the declaration that hides the given declaration, or 3984 /// NULL if no such declaration exists. 3985 NamedDecl *checkHidden(NamedDecl *ND); 3986 3987 /// Add a declaration to the current shadow map. 3988 void add(NamedDecl *ND) { 3989 ShadowMaps.back()[ND->getDeclName()].push_back(ND); 3990 } 3991 }; 3992 3993 /// RAII object that records when we've entered a shadow context. 3994 class ShadowContextRAII { 3995 VisibleDeclsRecord &Visible; 3996 3997 typedef VisibleDeclsRecord::ShadowMap ShadowMap; 3998 3999 public: 4000 ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) { 4001 Visible.ShadowMaps.emplace_back(); 4002 } 4003 4004 ~ShadowContextRAII() { 4005 Visible.ShadowMaps.pop_back(); 4006 } 4007 }; 4008 4009 } // end anonymous namespace 4010 4011 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) { 4012 unsigned IDNS = ND->getIdentifierNamespace(); 4013 std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin(); 4014 for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend(); 4015 SM != SMEnd; ++SM) { 4016 ShadowMap::iterator Pos = SM->find(ND->getDeclName()); 4017 if (Pos == SM->end()) 4018 continue; 4019 4020 for (auto *D : Pos->second) { 4021 // A tag declaration does not hide a non-tag declaration. 4022 if (D->hasTagIdentifierNamespace() && 4023 (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary | 4024 Decl::IDNS_ObjCProtocol))) 4025 continue; 4026 4027 // Protocols are in distinct namespaces from everything else. 4028 if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol) 4029 || (IDNS & Decl::IDNS_ObjCProtocol)) && 4030 D->getIdentifierNamespace() != IDNS) 4031 continue; 4032 4033 // Functions and function templates in the same scope overload 4034 // rather than hide. FIXME: Look for hiding based on function 4035 // signatures! 4036 if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() && 4037 ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() && 4038 SM == ShadowMaps.rbegin()) 4039 continue; 4040 4041 // A shadow declaration that's created by a resolved using declaration 4042 // is not hidden by the same using declaration. 4043 if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) && 4044 cast<UsingShadowDecl>(ND)->getIntroducer() == D) 4045 continue; 4046 4047 // We've found a declaration that hides this one. 4048 return D; 4049 } 4050 } 4051 4052 return nullptr; 4053 } 4054 4055 namespace { 4056 class LookupVisibleHelper { 4057 public: 4058 LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases, 4059 bool LoadExternal) 4060 : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases), 4061 LoadExternal(LoadExternal) {} 4062 4063 void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind, 4064 bool IncludeGlobalScope) { 4065 // Determine the set of using directives available during 4066 // unqualified name lookup. 4067 Scope *Initial = S; 4068 UnqualUsingDirectiveSet UDirs(SemaRef); 4069 if (SemaRef.getLangOpts().CPlusPlus) { 4070 // Find the first namespace or translation-unit scope. 4071 while (S && !isNamespaceOrTranslationUnitScope(S)) 4072 S = S->getParent(); 4073 4074 UDirs.visitScopeChain(Initial, S); 4075 } 4076 UDirs.done(); 4077 4078 // Look for visible declarations. 4079 LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind); 4080 Result.setAllowHidden(Consumer.includeHiddenDecls()); 4081 if (!IncludeGlobalScope) 4082 Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl()); 4083 ShadowContextRAII Shadow(Visited); 4084 lookupInScope(Initial, Result, UDirs); 4085 } 4086 4087 void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx, 4088 Sema::LookupNameKind Kind, bool IncludeGlobalScope) { 4089 LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind); 4090 Result.setAllowHidden(Consumer.includeHiddenDecls()); 4091 if (!IncludeGlobalScope) 4092 Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl()); 4093 4094 ShadowContextRAII Shadow(Visited); 4095 lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true, 4096 /*InBaseClass=*/false); 4097 } 4098 4099 private: 4100 void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result, 4101 bool QualifiedNameLookup, bool InBaseClass) { 4102 if (!Ctx) 4103 return; 4104 4105 // Make sure we don't visit the same context twice. 4106 if (Visited.visitedContext(Ctx->getPrimaryContext())) 4107 return; 4108 4109 Consumer.EnteredContext(Ctx); 4110 4111 // Outside C++, lookup results for the TU live on identifiers. 4112 if (isa<TranslationUnitDecl>(Ctx) && 4113 !Result.getSema().getLangOpts().CPlusPlus) { 4114 auto &S = Result.getSema(); 4115 auto &Idents = S.Context.Idents; 4116 4117 // Ensure all external identifiers are in the identifier table. 4118 if (LoadExternal) 4119 if (IdentifierInfoLookup *External = 4120 Idents.getExternalIdentifierLookup()) { 4121 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers()); 4122 for (StringRef Name = Iter->Next(); !Name.empty(); 4123 Name = Iter->Next()) 4124 Idents.get(Name); 4125 } 4126 4127 // Walk all lookup results in the TU for each identifier. 4128 for (const auto &Ident : Idents) { 4129 for (auto I = S.IdResolver.begin(Ident.getValue()), 4130 E = S.IdResolver.end(); 4131 I != E; ++I) { 4132 if (S.IdResolver.isDeclInScope(*I, Ctx)) { 4133 if (NamedDecl *ND = Result.getAcceptableDecl(*I)) { 4134 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass); 4135 Visited.add(ND); 4136 } 4137 } 4138 } 4139 } 4140 4141 return; 4142 } 4143 4144 if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx)) 4145 Result.getSema().ForceDeclarationOfImplicitMembers(Class); 4146 4147 llvm::SmallVector<NamedDecl *, 4> DeclsToVisit; 4148 // We sometimes skip loading namespace-level results (they tend to be huge). 4149 bool Load = LoadExternal || 4150 !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx)); 4151 // Enumerate all of the results in this context. 4152 for (DeclContextLookupResult R : 4153 Load ? Ctx->lookups() 4154 : Ctx->noload_lookups(/*PreserveInternalState=*/false)) 4155 for (auto *D : R) 4156 // Rather than visit immediately, we put ND into a vector and visit 4157 // all decls, in order, outside of this loop. The reason is that 4158 // Consumer.FoundDecl() and LookupResult::getAcceptableDecl(D) 4159 // may invalidate the iterators used in the two 4160 // loops above. 4161 DeclsToVisit.push_back(D); 4162 4163 for (auto *D : DeclsToVisit) 4164 if (auto *ND = Result.getAcceptableDecl(D)) { 4165 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass); 4166 Visited.add(ND); 4167 } 4168 4169 DeclsToVisit.clear(); 4170 4171 // Traverse using directives for qualified name lookup. 4172 if (QualifiedNameLookup) { 4173 ShadowContextRAII Shadow(Visited); 4174 for (auto *I : Ctx->using_directives()) { 4175 if (!Result.getSema().isVisible(I)) 4176 continue; 4177 lookupInDeclContext(I->getNominatedNamespace(), Result, 4178 QualifiedNameLookup, InBaseClass); 4179 } 4180 } 4181 4182 // Traverse the contexts of inherited C++ classes. 4183 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) { 4184 if (!Record->hasDefinition()) 4185 return; 4186 4187 for (const auto &B : Record->bases()) { 4188 QualType BaseType = B.getType(); 4189 4190 RecordDecl *RD; 4191 if (BaseType->isDependentType()) { 4192 if (!IncludeDependentBases) { 4193 // Don't look into dependent bases, because name lookup can't look 4194 // there anyway. 4195 continue; 4196 } 4197 const auto *TST = BaseType->getAs<TemplateSpecializationType>(); 4198 if (!TST) 4199 continue; 4200 TemplateName TN = TST->getTemplateName(); 4201 const auto *TD = 4202 dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl()); 4203 if (!TD) 4204 continue; 4205 RD = TD->getTemplatedDecl(); 4206 } else { 4207 const auto *Record = BaseType->getAs<RecordType>(); 4208 if (!Record) 4209 continue; 4210 RD = Record->getDecl(); 4211 } 4212 4213 // FIXME: It would be nice to be able to determine whether referencing 4214 // a particular member would be ambiguous. For example, given 4215 // 4216 // struct A { int member; }; 4217 // struct B { int member; }; 4218 // struct C : A, B { }; 4219 // 4220 // void f(C *c) { c->### } 4221 // 4222 // accessing 'member' would result in an ambiguity. However, we 4223 // could be smart enough to qualify the member with the base 4224 // class, e.g., 4225 // 4226 // c->B::member 4227 // 4228 // or 4229 // 4230 // c->A::member 4231 4232 // Find results in this base class (and its bases). 4233 ShadowContextRAII Shadow(Visited); 4234 lookupInDeclContext(RD, Result, QualifiedNameLookup, 4235 /*InBaseClass=*/true); 4236 } 4237 } 4238 4239 // Traverse the contexts of Objective-C classes. 4240 if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) { 4241 // Traverse categories. 4242 for (auto *Cat : IFace->visible_categories()) { 4243 ShadowContextRAII Shadow(Visited); 4244 lookupInDeclContext(Cat, Result, QualifiedNameLookup, 4245 /*InBaseClass=*/false); 4246 } 4247 4248 // Traverse protocols. 4249 for (auto *I : IFace->all_referenced_protocols()) { 4250 ShadowContextRAII Shadow(Visited); 4251 lookupInDeclContext(I, Result, QualifiedNameLookup, 4252 /*InBaseClass=*/false); 4253 } 4254 4255 // Traverse the superclass. 4256 if (IFace->getSuperClass()) { 4257 ShadowContextRAII Shadow(Visited); 4258 lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup, 4259 /*InBaseClass=*/true); 4260 } 4261 4262 // If there is an implementation, traverse it. We do this to find 4263 // synthesized ivars. 4264 if (IFace->getImplementation()) { 4265 ShadowContextRAII Shadow(Visited); 4266 lookupInDeclContext(IFace->getImplementation(), Result, 4267 QualifiedNameLookup, InBaseClass); 4268 } 4269 } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) { 4270 for (auto *I : Protocol->protocols()) { 4271 ShadowContextRAII Shadow(Visited); 4272 lookupInDeclContext(I, Result, QualifiedNameLookup, 4273 /*InBaseClass=*/false); 4274 } 4275 } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) { 4276 for (auto *I : Category->protocols()) { 4277 ShadowContextRAII Shadow(Visited); 4278 lookupInDeclContext(I, Result, QualifiedNameLookup, 4279 /*InBaseClass=*/false); 4280 } 4281 4282 // If there is an implementation, traverse it. 4283 if (Category->getImplementation()) { 4284 ShadowContextRAII Shadow(Visited); 4285 lookupInDeclContext(Category->getImplementation(), Result, 4286 QualifiedNameLookup, /*InBaseClass=*/true); 4287 } 4288 } 4289 } 4290 4291 void lookupInScope(Scope *S, LookupResult &Result, 4292 UnqualUsingDirectiveSet &UDirs) { 4293 // No clients run in this mode and it's not supported. Please add tests and 4294 // remove the assertion if you start relying on it. 4295 assert(!IncludeDependentBases && "Unsupported flag for lookupInScope"); 4296 4297 if (!S) 4298 return; 4299 4300 if (!S->getEntity() || 4301 (!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) || 4302 (S->getEntity())->isFunctionOrMethod()) { 4303 FindLocalExternScope FindLocals(Result); 4304 // Walk through the declarations in this Scope. The consumer might add new 4305 // decls to the scope as part of deserialization, so make a copy first. 4306 SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end()); 4307 for (Decl *D : ScopeDecls) { 4308 if (NamedDecl *ND = dyn_cast<NamedDecl>(D)) 4309 if ((ND = Result.getAcceptableDecl(ND))) { 4310 Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false); 4311 Visited.add(ND); 4312 } 4313 } 4314 } 4315 4316 DeclContext *Entity = S->getLookupEntity(); 4317 if (Entity) { 4318 // Look into this scope's declaration context, along with any of its 4319 // parent lookup contexts (e.g., enclosing classes), up to the point 4320 // where we hit the context stored in the next outer scope. 4321 DeclContext *OuterCtx = findOuterContext(S); 4322 4323 for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx); 4324 Ctx = Ctx->getLookupParent()) { 4325 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) { 4326 if (Method->isInstanceMethod()) { 4327 // For instance methods, look for ivars in the method's interface. 4328 LookupResult IvarResult(Result.getSema(), Result.getLookupName(), 4329 Result.getNameLoc(), 4330 Sema::LookupMemberName); 4331 if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) { 4332 lookupInDeclContext(IFace, IvarResult, 4333 /*QualifiedNameLookup=*/false, 4334 /*InBaseClass=*/false); 4335 } 4336 } 4337 4338 // We've already performed all of the name lookup that we need 4339 // to for Objective-C methods; the next context will be the 4340 // outer scope. 4341 break; 4342 } 4343 4344 if (Ctx->isFunctionOrMethod()) 4345 continue; 4346 4347 lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false, 4348 /*InBaseClass=*/false); 4349 } 4350 } else if (!S->getParent()) { 4351 // Look into the translation unit scope. We walk through the translation 4352 // unit's declaration context, because the Scope itself won't have all of 4353 // the declarations if we loaded a precompiled header. 4354 // FIXME: We would like the translation unit's Scope object to point to 4355 // the translation unit, so we don't need this special "if" branch. 4356 // However, doing so would force the normal C++ name-lookup code to look 4357 // into the translation unit decl when the IdentifierInfo chains would 4358 // suffice. Once we fix that problem (which is part of a more general 4359 // "don't look in DeclContexts unless we have to" optimization), we can 4360 // eliminate this. 4361 Entity = Result.getSema().Context.getTranslationUnitDecl(); 4362 lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false, 4363 /*InBaseClass=*/false); 4364 } 4365 4366 if (Entity) { 4367 // Lookup visible declarations in any namespaces found by using 4368 // directives. 4369 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity)) 4370 lookupInDeclContext( 4371 const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result, 4372 /*QualifiedNameLookup=*/false, 4373 /*InBaseClass=*/false); 4374 } 4375 4376 // Lookup names in the parent scope. 4377 ShadowContextRAII Shadow(Visited); 4378 lookupInScope(S->getParent(), Result, UDirs); 4379 } 4380 4381 private: 4382 VisibleDeclsRecord Visited; 4383 VisibleDeclConsumer &Consumer; 4384 bool IncludeDependentBases; 4385 bool LoadExternal; 4386 }; 4387 } // namespace 4388 4389 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind, 4390 VisibleDeclConsumer &Consumer, 4391 bool IncludeGlobalScope, bool LoadExternal) { 4392 LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false, 4393 LoadExternal); 4394 H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope); 4395 } 4396 4397 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind, 4398 VisibleDeclConsumer &Consumer, 4399 bool IncludeGlobalScope, 4400 bool IncludeDependentBases, bool LoadExternal) { 4401 LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal); 4402 H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope); 4403 } 4404 4405 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name. 4406 /// If GnuLabelLoc is a valid source location, then this is a definition 4407 /// of an __label__ label name, otherwise it is a normal label definition 4408 /// or use. 4409 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc, 4410 SourceLocation GnuLabelLoc) { 4411 // Do a lookup to see if we have a label with this name already. 4412 NamedDecl *Res = nullptr; 4413 4414 if (GnuLabelLoc.isValid()) { 4415 // Local label definitions always shadow existing labels. 4416 Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc); 4417 Scope *S = CurScope; 4418 PushOnScopeChains(Res, S, true); 4419 return cast<LabelDecl>(Res); 4420 } 4421 4422 // Not a GNU local label. 4423 Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration); 4424 // If we found a label, check to see if it is in the same context as us. 4425 // When in a Block, we don't want to reuse a label in an enclosing function. 4426 if (Res && Res->getDeclContext() != CurContext) 4427 Res = nullptr; 4428 if (!Res) { 4429 // If not forward referenced or defined already, create the backing decl. 4430 Res = LabelDecl::Create(Context, CurContext, Loc, II); 4431 Scope *S = CurScope->getFnParent(); 4432 assert(S && "Not in a function?"); 4433 PushOnScopeChains(Res, S, true); 4434 } 4435 return cast<LabelDecl>(Res); 4436 } 4437 4438 //===----------------------------------------------------------------------===// 4439 // Typo correction 4440 //===----------------------------------------------------------------------===// 4441 4442 static bool isCandidateViable(CorrectionCandidateCallback &CCC, 4443 TypoCorrection &Candidate) { 4444 Candidate.setCallbackDistance(CCC.RankCandidate(Candidate)); 4445 return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance; 4446 } 4447 4448 static void LookupPotentialTypoResult(Sema &SemaRef, 4449 LookupResult &Res, 4450 IdentifierInfo *Name, 4451 Scope *S, CXXScopeSpec *SS, 4452 DeclContext *MemberContext, 4453 bool EnteringContext, 4454 bool isObjCIvarLookup, 4455 bool FindHidden); 4456 4457 /// Check whether the declarations found for a typo correction are 4458 /// visible. Set the correction's RequiresImport flag to true if none of the 4459 /// declarations are visible, false otherwise. 4460 static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) { 4461 TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end(); 4462 4463 for (/**/; DI != DE; ++DI) 4464 if (!LookupResult::isVisible(SemaRef, *DI)) 4465 break; 4466 // No filtering needed if all decls are visible. 4467 if (DI == DE) { 4468 TC.setRequiresImport(false); 4469 return; 4470 } 4471 4472 llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI); 4473 bool AnyVisibleDecls = !NewDecls.empty(); 4474 4475 for (/**/; DI != DE; ++DI) { 4476 if (LookupResult::isVisible(SemaRef, *DI)) { 4477 if (!AnyVisibleDecls) { 4478 // Found a visible decl, discard all hidden ones. 4479 AnyVisibleDecls = true; 4480 NewDecls.clear(); 4481 } 4482 NewDecls.push_back(*DI); 4483 } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate()) 4484 NewDecls.push_back(*DI); 4485 } 4486 4487 if (NewDecls.empty()) 4488 TC = TypoCorrection(); 4489 else { 4490 TC.setCorrectionDecls(NewDecls); 4491 TC.setRequiresImport(!AnyVisibleDecls); 4492 } 4493 } 4494 4495 // Fill the supplied vector with the IdentifierInfo pointers for each piece of 4496 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::", 4497 // fill the vector with the IdentifierInfo pointers for "foo" and "bar"). 4498 static void getNestedNameSpecifierIdentifiers( 4499 NestedNameSpecifier *NNS, 4500 SmallVectorImpl<const IdentifierInfo*> &Identifiers) { 4501 if (NestedNameSpecifier *Prefix = NNS->getPrefix()) 4502 getNestedNameSpecifierIdentifiers(Prefix, Identifiers); 4503 else 4504 Identifiers.clear(); 4505 4506 const IdentifierInfo *II = nullptr; 4507 4508 switch (NNS->getKind()) { 4509 case NestedNameSpecifier::Identifier: 4510 II = NNS->getAsIdentifier(); 4511 break; 4512 4513 case NestedNameSpecifier::Namespace: 4514 if (NNS->getAsNamespace()->isAnonymousNamespace()) 4515 return; 4516 II = NNS->getAsNamespace()->getIdentifier(); 4517 break; 4518 4519 case NestedNameSpecifier::NamespaceAlias: 4520 II = NNS->getAsNamespaceAlias()->getIdentifier(); 4521 break; 4522 4523 case NestedNameSpecifier::TypeSpecWithTemplate: 4524 case NestedNameSpecifier::TypeSpec: 4525 II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier(); 4526 break; 4527 4528 case NestedNameSpecifier::Global: 4529 case NestedNameSpecifier::Super: 4530 return; 4531 } 4532 4533 if (II) 4534 Identifiers.push_back(II); 4535 } 4536 4537 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding, 4538 DeclContext *Ctx, bool InBaseClass) { 4539 // Don't consider hidden names for typo correction. 4540 if (Hiding) 4541 return; 4542 4543 // Only consider entities with identifiers for names, ignoring 4544 // special names (constructors, overloaded operators, selectors, 4545 // etc.). 4546 IdentifierInfo *Name = ND->getIdentifier(); 4547 if (!Name) 4548 return; 4549 4550 // Only consider visible declarations and declarations from modules with 4551 // names that exactly match. 4552 if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo) 4553 return; 4554 4555 FoundName(Name->getName()); 4556 } 4557 4558 void TypoCorrectionConsumer::FoundName(StringRef Name) { 4559 // Compute the edit distance between the typo and the name of this 4560 // entity, and add the identifier to the list of results. 4561 addName(Name, nullptr); 4562 } 4563 4564 void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) { 4565 // Compute the edit distance between the typo and this keyword, 4566 // and add the keyword to the list of results. 4567 addName(Keyword, nullptr, nullptr, true); 4568 } 4569 4570 void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND, 4571 NestedNameSpecifier *NNS, bool isKeyword) { 4572 // Use a simple length-based heuristic to determine the minimum possible 4573 // edit distance. If the minimum isn't good enough, bail out early. 4574 StringRef TypoStr = Typo->getName(); 4575 unsigned MinED = abs((int)Name.size() - (int)TypoStr.size()); 4576 if (MinED && TypoStr.size() / MinED < 3) 4577 return; 4578 4579 // Compute an upper bound on the allowable edit distance, so that the 4580 // edit-distance algorithm can short-circuit. 4581 unsigned UpperBound = (TypoStr.size() + 2) / 3; 4582 unsigned ED = TypoStr.edit_distance(Name, true, UpperBound); 4583 if (ED > UpperBound) return; 4584 4585 TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED); 4586 if (isKeyword) TC.makeKeyword(); 4587 TC.setCorrectionRange(nullptr, Result.getLookupNameInfo()); 4588 addCorrection(TC); 4589 } 4590 4591 static const unsigned MaxTypoDistanceResultSets = 5; 4592 4593 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) { 4594 StringRef TypoStr = Typo->getName(); 4595 StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName(); 4596 4597 // For very short typos, ignore potential corrections that have a different 4598 // base identifier from the typo or which have a normalized edit distance 4599 // longer than the typo itself. 4600 if (TypoStr.size() < 3 && 4601 (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size())) 4602 return; 4603 4604 // If the correction is resolved but is not viable, ignore it. 4605 if (Correction.isResolved()) { 4606 checkCorrectionVisibility(SemaRef, Correction); 4607 if (!Correction || !isCandidateViable(*CorrectionValidator, Correction)) 4608 return; 4609 } 4610 4611 TypoResultList &CList = 4612 CorrectionResults[Correction.getEditDistance(false)][Name]; 4613 4614 if (!CList.empty() && !CList.back().isResolved()) 4615 CList.pop_back(); 4616 if (NamedDecl *NewND = Correction.getCorrectionDecl()) { 4617 auto RI = llvm::find_if(CList, [NewND](const TypoCorrection &TypoCorr) { 4618 return TypoCorr.getCorrectionDecl() == NewND; 4619 }); 4620 if (RI != CList.end()) { 4621 // The Correction refers to a decl already in the list. No insertion is 4622 // necessary and all further cases will return. 4623 4624 auto IsDeprecated = [](Decl *D) { 4625 while (D) { 4626 if (D->isDeprecated()) 4627 return true; 4628 D = llvm::dyn_cast_or_null<NamespaceDecl>(D->getDeclContext()); 4629 } 4630 return false; 4631 }; 4632 4633 // Prefer non deprecated Corrections over deprecated and only then 4634 // sort using an alphabetical order. 4635 std::pair<bool, std::string> NewKey = { 4636 IsDeprecated(Correction.getFoundDecl()), 4637 Correction.getAsString(SemaRef.getLangOpts())}; 4638 4639 std::pair<bool, std::string> PrevKey = { 4640 IsDeprecated(RI->getFoundDecl()), 4641 RI->getAsString(SemaRef.getLangOpts())}; 4642 4643 if (NewKey < PrevKey) 4644 *RI = Correction; 4645 return; 4646 } 4647 } 4648 if (CList.empty() || Correction.isResolved()) 4649 CList.push_back(Correction); 4650 4651 while (CorrectionResults.size() > MaxTypoDistanceResultSets) 4652 CorrectionResults.erase(std::prev(CorrectionResults.end())); 4653 } 4654 4655 void TypoCorrectionConsumer::addNamespaces( 4656 const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) { 4657 SearchNamespaces = true; 4658 4659 for (auto KNPair : KnownNamespaces) 4660 Namespaces.addNameSpecifier(KNPair.first); 4661 4662 bool SSIsTemplate = false; 4663 if (NestedNameSpecifier *NNS = 4664 (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) { 4665 if (const Type *T = NNS->getAsType()) 4666 SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization; 4667 } 4668 // Do not transform this into an iterator-based loop. The loop body can 4669 // trigger the creation of further types (through lazy deserialization) and 4670 // invalid iterators into this list. 4671 auto &Types = SemaRef.getASTContext().getTypes(); 4672 for (unsigned I = 0; I != Types.size(); ++I) { 4673 const auto *TI = Types[I]; 4674 if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) { 4675 CD = CD->getCanonicalDecl(); 4676 if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() && 4677 !CD->isUnion() && CD->getIdentifier() && 4678 (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) && 4679 (CD->isBeingDefined() || CD->isCompleteDefinition())) 4680 Namespaces.addNameSpecifier(CD); 4681 } 4682 } 4683 } 4684 4685 const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() { 4686 if (++CurrentTCIndex < ValidatedCorrections.size()) 4687 return ValidatedCorrections[CurrentTCIndex]; 4688 4689 CurrentTCIndex = ValidatedCorrections.size(); 4690 while (!CorrectionResults.empty()) { 4691 auto DI = CorrectionResults.begin(); 4692 if (DI->second.empty()) { 4693 CorrectionResults.erase(DI); 4694 continue; 4695 } 4696 4697 auto RI = DI->second.begin(); 4698 if (RI->second.empty()) { 4699 DI->second.erase(RI); 4700 performQualifiedLookups(); 4701 continue; 4702 } 4703 4704 TypoCorrection TC = RI->second.pop_back_val(); 4705 if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) { 4706 ValidatedCorrections.push_back(TC); 4707 return ValidatedCorrections[CurrentTCIndex]; 4708 } 4709 } 4710 return ValidatedCorrections[0]; // The empty correction. 4711 } 4712 4713 bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) { 4714 IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo(); 4715 DeclContext *TempMemberContext = MemberContext; 4716 CXXScopeSpec *TempSS = SS.get(); 4717 retry_lookup: 4718 LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext, 4719 EnteringContext, 4720 CorrectionValidator->IsObjCIvarLookup, 4721 Name == Typo && !Candidate.WillReplaceSpecifier()); 4722 switch (Result.getResultKind()) { 4723 case LookupResult::NotFound: 4724 case LookupResult::NotFoundInCurrentInstantiation: 4725 case LookupResult::FoundUnresolvedValue: 4726 if (TempSS) { 4727 // Immediately retry the lookup without the given CXXScopeSpec 4728 TempSS = nullptr; 4729 Candidate.WillReplaceSpecifier(true); 4730 goto retry_lookup; 4731 } 4732 if (TempMemberContext) { 4733 if (SS && !TempSS) 4734 TempSS = SS.get(); 4735 TempMemberContext = nullptr; 4736 goto retry_lookup; 4737 } 4738 if (SearchNamespaces) 4739 QualifiedResults.push_back(Candidate); 4740 break; 4741 4742 case LookupResult::Ambiguous: 4743 // We don't deal with ambiguities. 4744 break; 4745 4746 case LookupResult::Found: 4747 case LookupResult::FoundOverloaded: 4748 // Store all of the Decls for overloaded symbols 4749 for (auto *TRD : Result) 4750 Candidate.addCorrectionDecl(TRD); 4751 checkCorrectionVisibility(SemaRef, Candidate); 4752 if (!isCandidateViable(*CorrectionValidator, Candidate)) { 4753 if (SearchNamespaces) 4754 QualifiedResults.push_back(Candidate); 4755 break; 4756 } 4757 Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo()); 4758 return true; 4759 } 4760 return false; 4761 } 4762 4763 void TypoCorrectionConsumer::performQualifiedLookups() { 4764 unsigned TypoLen = Typo->getName().size(); 4765 for (const TypoCorrection &QR : QualifiedResults) { 4766 for (const auto &NSI : Namespaces) { 4767 DeclContext *Ctx = NSI.DeclCtx; 4768 const Type *NSType = NSI.NameSpecifier->getAsType(); 4769 4770 // If the current NestedNameSpecifier refers to a class and the 4771 // current correction candidate is the name of that class, then skip 4772 // it as it is unlikely a qualified version of the class' constructor 4773 // is an appropriate correction. 4774 if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() : 4775 nullptr) { 4776 if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo()) 4777 continue; 4778 } 4779 4780 TypoCorrection TC(QR); 4781 TC.ClearCorrectionDecls(); 4782 TC.setCorrectionSpecifier(NSI.NameSpecifier); 4783 TC.setQualifierDistance(NSI.EditDistance); 4784 TC.setCallbackDistance(0); // Reset the callback distance 4785 4786 // If the current correction candidate and namespace combination are 4787 // too far away from the original typo based on the normalized edit 4788 // distance, then skip performing a qualified name lookup. 4789 unsigned TmpED = TC.getEditDistance(true); 4790 if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED && 4791 TypoLen / TmpED < 3) 4792 continue; 4793 4794 Result.clear(); 4795 Result.setLookupName(QR.getCorrectionAsIdentifierInfo()); 4796 if (!SemaRef.LookupQualifiedName(Result, Ctx)) 4797 continue; 4798 4799 // Any corrections added below will be validated in subsequent 4800 // iterations of the main while() loop over the Consumer's contents. 4801 switch (Result.getResultKind()) { 4802 case LookupResult::Found: 4803 case LookupResult::FoundOverloaded: { 4804 if (SS && SS->isValid()) { 4805 std::string NewQualified = TC.getAsString(SemaRef.getLangOpts()); 4806 std::string OldQualified; 4807 llvm::raw_string_ostream OldOStream(OldQualified); 4808 SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy()); 4809 OldOStream << Typo->getName(); 4810 // If correction candidate would be an identical written qualified 4811 // identifier, then the existing CXXScopeSpec probably included a 4812 // typedef that didn't get accounted for properly. 4813 if (OldOStream.str() == NewQualified) 4814 break; 4815 } 4816 for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end(); 4817 TRD != TRDEnd; ++TRD) { 4818 if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(), 4819 NSType ? NSType->getAsCXXRecordDecl() 4820 : nullptr, 4821 TRD.getPair()) == Sema::AR_accessible) 4822 TC.addCorrectionDecl(*TRD); 4823 } 4824 if (TC.isResolved()) { 4825 TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo()); 4826 addCorrection(TC); 4827 } 4828 break; 4829 } 4830 case LookupResult::NotFound: 4831 case LookupResult::NotFoundInCurrentInstantiation: 4832 case LookupResult::Ambiguous: 4833 case LookupResult::FoundUnresolvedValue: 4834 break; 4835 } 4836 } 4837 } 4838 QualifiedResults.clear(); 4839 } 4840 4841 TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet( 4842 ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec) 4843 : Context(Context), CurContextChain(buildContextChain(CurContext)) { 4844 if (NestedNameSpecifier *NNS = 4845 CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) { 4846 llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier); 4847 NNS->print(SpecifierOStream, Context.getPrintingPolicy()); 4848 4849 getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers); 4850 } 4851 // Build the list of identifiers that would be used for an absolute 4852 // (from the global context) NestedNameSpecifier referring to the current 4853 // context. 4854 for (DeclContext *C : llvm::reverse(CurContextChain)) { 4855 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) 4856 CurContextIdentifiers.push_back(ND->getIdentifier()); 4857 } 4858 4859 // Add the global context as a NestedNameSpecifier 4860 SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()), 4861 NestedNameSpecifier::GlobalSpecifier(Context), 1}; 4862 DistanceMap[1].push_back(SI); 4863 } 4864 4865 auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain( 4866 DeclContext *Start) -> DeclContextList { 4867 assert(Start && "Building a context chain from a null context"); 4868 DeclContextList Chain; 4869 for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr; 4870 DC = DC->getLookupParent()) { 4871 NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC); 4872 if (!DC->isInlineNamespace() && !DC->isTransparentContext() && 4873 !(ND && ND->isAnonymousNamespace())) 4874 Chain.push_back(DC->getPrimaryContext()); 4875 } 4876 return Chain; 4877 } 4878 4879 unsigned 4880 TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier( 4881 DeclContextList &DeclChain, NestedNameSpecifier *&NNS) { 4882 unsigned NumSpecifiers = 0; 4883 for (DeclContext *C : llvm::reverse(DeclChain)) { 4884 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) { 4885 NNS = NestedNameSpecifier::Create(Context, NNS, ND); 4886 ++NumSpecifiers; 4887 } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) { 4888 NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(), 4889 RD->getTypeForDecl()); 4890 ++NumSpecifiers; 4891 } 4892 } 4893 return NumSpecifiers; 4894 } 4895 4896 void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier( 4897 DeclContext *Ctx) { 4898 NestedNameSpecifier *NNS = nullptr; 4899 unsigned NumSpecifiers = 0; 4900 DeclContextList NamespaceDeclChain(buildContextChain(Ctx)); 4901 DeclContextList FullNamespaceDeclChain(NamespaceDeclChain); 4902 4903 // Eliminate common elements from the two DeclContext chains. 4904 for (DeclContext *C : llvm::reverse(CurContextChain)) { 4905 if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C) 4906 break; 4907 NamespaceDeclChain.pop_back(); 4908 } 4909 4910 // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain 4911 NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS); 4912 4913 // Add an explicit leading '::' specifier if needed. 4914 if (NamespaceDeclChain.empty()) { 4915 // Rebuild the NestedNameSpecifier as a globally-qualified specifier. 4916 NNS = NestedNameSpecifier::GlobalSpecifier(Context); 4917 NumSpecifiers = 4918 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS); 4919 } else if (NamedDecl *ND = 4920 dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) { 4921 IdentifierInfo *Name = ND->getIdentifier(); 4922 bool SameNameSpecifier = false; 4923 if (llvm::is_contained(CurNameSpecifierIdentifiers, Name)) { 4924 std::string NewNameSpecifier; 4925 llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier); 4926 SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers; 4927 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers); 4928 NNS->print(SpecifierOStream, Context.getPrintingPolicy()); 4929 SpecifierOStream.flush(); 4930 SameNameSpecifier = NewNameSpecifier == CurNameSpecifier; 4931 } 4932 if (SameNameSpecifier || llvm::is_contained(CurContextIdentifiers, Name)) { 4933 // Rebuild the NestedNameSpecifier as a globally-qualified specifier. 4934 NNS = NestedNameSpecifier::GlobalSpecifier(Context); 4935 NumSpecifiers = 4936 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS); 4937 } 4938 } 4939 4940 // If the built NestedNameSpecifier would be replacing an existing 4941 // NestedNameSpecifier, use the number of component identifiers that 4942 // would need to be changed as the edit distance instead of the number 4943 // of components in the built NestedNameSpecifier. 4944 if (NNS && !CurNameSpecifierIdentifiers.empty()) { 4945 SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers; 4946 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers); 4947 NumSpecifiers = 4948 llvm::ComputeEditDistance(llvm::ArrayRef(CurNameSpecifierIdentifiers), 4949 llvm::ArrayRef(NewNameSpecifierIdentifiers)); 4950 } 4951 4952 SpecifierInfo SI = {Ctx, NNS, NumSpecifiers}; 4953 DistanceMap[NumSpecifiers].push_back(SI); 4954 } 4955 4956 /// Perform name lookup for a possible result for typo correction. 4957 static void LookupPotentialTypoResult(Sema &SemaRef, 4958 LookupResult &Res, 4959 IdentifierInfo *Name, 4960 Scope *S, CXXScopeSpec *SS, 4961 DeclContext *MemberContext, 4962 bool EnteringContext, 4963 bool isObjCIvarLookup, 4964 bool FindHidden) { 4965 Res.suppressDiagnostics(); 4966 Res.clear(); 4967 Res.setLookupName(Name); 4968 Res.setAllowHidden(FindHidden); 4969 if (MemberContext) { 4970 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) { 4971 if (isObjCIvarLookup) { 4972 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) { 4973 Res.addDecl(Ivar); 4974 Res.resolveKind(); 4975 return; 4976 } 4977 } 4978 4979 if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration( 4980 Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { 4981 Res.addDecl(Prop); 4982 Res.resolveKind(); 4983 return; 4984 } 4985 } 4986 4987 SemaRef.LookupQualifiedName(Res, MemberContext); 4988 return; 4989 } 4990 4991 SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false, 4992 EnteringContext); 4993 4994 // Fake ivar lookup; this should really be part of 4995 // LookupParsedName. 4996 if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) { 4997 if (Method->isInstanceMethod() && Method->getClassInterface() && 4998 (Res.empty() || 4999 (Res.isSingleResult() && 5000 Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) { 5001 if (ObjCIvarDecl *IV 5002 = Method->getClassInterface()->lookupInstanceVariable(Name)) { 5003 Res.addDecl(IV); 5004 Res.resolveKind(); 5005 } 5006 } 5007 } 5008 } 5009 5010 /// Add keywords to the consumer as possible typo corrections. 5011 static void AddKeywordsToConsumer(Sema &SemaRef, 5012 TypoCorrectionConsumer &Consumer, 5013 Scope *S, CorrectionCandidateCallback &CCC, 5014 bool AfterNestedNameSpecifier) { 5015 if (AfterNestedNameSpecifier) { 5016 // For 'X::', we know exactly which keywords can appear next. 5017 Consumer.addKeywordResult("template"); 5018 if (CCC.WantExpressionKeywords) 5019 Consumer.addKeywordResult("operator"); 5020 return; 5021 } 5022 5023 if (CCC.WantObjCSuper) 5024 Consumer.addKeywordResult("super"); 5025 5026 if (CCC.WantTypeSpecifiers) { 5027 // Add type-specifier keywords to the set of results. 5028 static const char *const CTypeSpecs[] = { 5029 "char", "const", "double", "enum", "float", "int", "long", "short", 5030 "signed", "struct", "union", "unsigned", "void", "volatile", 5031 "_Complex", "_Imaginary", 5032 // storage-specifiers as well 5033 "extern", "inline", "static", "typedef" 5034 }; 5035 5036 for (const auto *CTS : CTypeSpecs) 5037 Consumer.addKeywordResult(CTS); 5038 5039 if (SemaRef.getLangOpts().C99) 5040 Consumer.addKeywordResult("restrict"); 5041 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) 5042 Consumer.addKeywordResult("bool"); 5043 else if (SemaRef.getLangOpts().C99) 5044 Consumer.addKeywordResult("_Bool"); 5045 5046 if (SemaRef.getLangOpts().CPlusPlus) { 5047 Consumer.addKeywordResult("class"); 5048 Consumer.addKeywordResult("typename"); 5049 Consumer.addKeywordResult("wchar_t"); 5050 5051 if (SemaRef.getLangOpts().CPlusPlus11) { 5052 Consumer.addKeywordResult("char16_t"); 5053 Consumer.addKeywordResult("char32_t"); 5054 Consumer.addKeywordResult("constexpr"); 5055 Consumer.addKeywordResult("decltype"); 5056 Consumer.addKeywordResult("thread_local"); 5057 } 5058 } 5059 5060 if (SemaRef.getLangOpts().GNUKeywords) 5061 Consumer.addKeywordResult("typeof"); 5062 } else if (CCC.WantFunctionLikeCasts) { 5063 static const char *const CastableTypeSpecs[] = { 5064 "char", "double", "float", "int", "long", "short", 5065 "signed", "unsigned", "void" 5066 }; 5067 for (auto *kw : CastableTypeSpecs) 5068 Consumer.addKeywordResult(kw); 5069 } 5070 5071 if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) { 5072 Consumer.addKeywordResult("const_cast"); 5073 Consumer.addKeywordResult("dynamic_cast"); 5074 Consumer.addKeywordResult("reinterpret_cast"); 5075 Consumer.addKeywordResult("static_cast"); 5076 } 5077 5078 if (CCC.WantExpressionKeywords) { 5079 Consumer.addKeywordResult("sizeof"); 5080 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) { 5081 Consumer.addKeywordResult("false"); 5082 Consumer.addKeywordResult("true"); 5083 } 5084 5085 if (SemaRef.getLangOpts().CPlusPlus) { 5086 static const char *const CXXExprs[] = { 5087 "delete", "new", "operator", "throw", "typeid" 5088 }; 5089 for (const auto *CE : CXXExprs) 5090 Consumer.addKeywordResult(CE); 5091 5092 if (isa<CXXMethodDecl>(SemaRef.CurContext) && 5093 cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance()) 5094 Consumer.addKeywordResult("this"); 5095 5096 if (SemaRef.getLangOpts().CPlusPlus11) { 5097 Consumer.addKeywordResult("alignof"); 5098 Consumer.addKeywordResult("nullptr"); 5099 } 5100 } 5101 5102 if (SemaRef.getLangOpts().C11) { 5103 // FIXME: We should not suggest _Alignof if the alignof macro 5104 // is present. 5105 Consumer.addKeywordResult("_Alignof"); 5106 } 5107 } 5108 5109 if (CCC.WantRemainingKeywords) { 5110 if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) { 5111 // Statements. 5112 static const char *const CStmts[] = { 5113 "do", "else", "for", "goto", "if", "return", "switch", "while" }; 5114 for (const auto *CS : CStmts) 5115 Consumer.addKeywordResult(CS); 5116 5117 if (SemaRef.getLangOpts().CPlusPlus) { 5118 Consumer.addKeywordResult("catch"); 5119 Consumer.addKeywordResult("try"); 5120 } 5121 5122 if (S && S->getBreakParent()) 5123 Consumer.addKeywordResult("break"); 5124 5125 if (S && S->getContinueParent()) 5126 Consumer.addKeywordResult("continue"); 5127 5128 if (SemaRef.getCurFunction() && 5129 !SemaRef.getCurFunction()->SwitchStack.empty()) { 5130 Consumer.addKeywordResult("case"); 5131 Consumer.addKeywordResult("default"); 5132 } 5133 } else { 5134 if (SemaRef.getLangOpts().CPlusPlus) { 5135 Consumer.addKeywordResult("namespace"); 5136 Consumer.addKeywordResult("template"); 5137 } 5138 5139 if (S && S->isClassScope()) { 5140 Consumer.addKeywordResult("explicit"); 5141 Consumer.addKeywordResult("friend"); 5142 Consumer.addKeywordResult("mutable"); 5143 Consumer.addKeywordResult("private"); 5144 Consumer.addKeywordResult("protected"); 5145 Consumer.addKeywordResult("public"); 5146 Consumer.addKeywordResult("virtual"); 5147 } 5148 } 5149 5150 if (SemaRef.getLangOpts().CPlusPlus) { 5151 Consumer.addKeywordResult("using"); 5152 5153 if (SemaRef.getLangOpts().CPlusPlus11) 5154 Consumer.addKeywordResult("static_assert"); 5155 } 5156 } 5157 } 5158 5159 std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer( 5160 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind, 5161 Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, 5162 DeclContext *MemberContext, bool EnteringContext, 5163 const ObjCObjectPointerType *OPT, bool ErrorRecovery) { 5164 5165 if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking || 5166 DisableTypoCorrection) 5167 return nullptr; 5168 5169 // In Microsoft mode, don't perform typo correction in a template member 5170 // function dependent context because it interferes with the "lookup into 5171 // dependent bases of class templates" feature. 5172 if (getLangOpts().MSVCCompat && CurContext->isDependentContext() && 5173 isa<CXXMethodDecl>(CurContext)) 5174 return nullptr; 5175 5176 // We only attempt to correct typos for identifiers. 5177 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); 5178 if (!Typo) 5179 return nullptr; 5180 5181 // If the scope specifier itself was invalid, don't try to correct 5182 // typos. 5183 if (SS && SS->isInvalid()) 5184 return nullptr; 5185 5186 // Never try to correct typos during any kind of code synthesis. 5187 if (!CodeSynthesisContexts.empty()) 5188 return nullptr; 5189 5190 // Don't try to correct 'super'. 5191 if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier()) 5192 return nullptr; 5193 5194 // Abort if typo correction already failed for this specific typo. 5195 IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo); 5196 if (locs != TypoCorrectionFailures.end() && 5197 locs->second.count(TypoName.getLoc())) 5198 return nullptr; 5199 5200 // Don't try to correct the identifier "vector" when in AltiVec mode. 5201 // TODO: Figure out why typo correction misbehaves in this case, fix it, and 5202 // remove this workaround. 5203 if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector")) 5204 return nullptr; 5205 5206 // Provide a stop gap for files that are just seriously broken. Trying 5207 // to correct all typos can turn into a HUGE performance penalty, causing 5208 // some files to take minutes to get rejected by the parser. 5209 unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit; 5210 if (Limit && TyposCorrected >= Limit) 5211 return nullptr; 5212 ++TyposCorrected; 5213 5214 // If we're handling a missing symbol error, using modules, and the 5215 // special search all modules option is used, look for a missing import. 5216 if (ErrorRecovery && getLangOpts().Modules && 5217 getLangOpts().ModulesSearchAll) { 5218 // The following has the side effect of loading the missing module. 5219 getModuleLoader().lookupMissingImports(Typo->getName(), 5220 TypoName.getBeginLoc()); 5221 } 5222 5223 // Extend the lifetime of the callback. We delayed this until here 5224 // to avoid allocations in the hot path (which is where no typo correction 5225 // occurs). Note that CorrectionCandidateCallback is polymorphic and 5226 // initially stack-allocated. 5227 std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone(); 5228 auto Consumer = std::make_unique<TypoCorrectionConsumer>( 5229 *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext, 5230 EnteringContext); 5231 5232 // Perform name lookup to find visible, similarly-named entities. 5233 bool IsUnqualifiedLookup = false; 5234 DeclContext *QualifiedDC = MemberContext; 5235 if (MemberContext) { 5236 LookupVisibleDecls(MemberContext, LookupKind, *Consumer); 5237 5238 // Look in qualified interfaces. 5239 if (OPT) { 5240 for (auto *I : OPT->quals()) 5241 LookupVisibleDecls(I, LookupKind, *Consumer); 5242 } 5243 } else if (SS && SS->isSet()) { 5244 QualifiedDC = computeDeclContext(*SS, EnteringContext); 5245 if (!QualifiedDC) 5246 return nullptr; 5247 5248 LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer); 5249 } else { 5250 IsUnqualifiedLookup = true; 5251 } 5252 5253 // Determine whether we are going to search in the various namespaces for 5254 // corrections. 5255 bool SearchNamespaces 5256 = getLangOpts().CPlusPlus && 5257 (IsUnqualifiedLookup || (SS && SS->isSet())); 5258 5259 if (IsUnqualifiedLookup || SearchNamespaces) { 5260 // For unqualified lookup, look through all of the names that we have 5261 // seen in this translation unit. 5262 // FIXME: Re-add the ability to skip very unlikely potential corrections. 5263 for (const auto &I : Context.Idents) 5264 Consumer->FoundName(I.getKey()); 5265 5266 // Walk through identifiers in external identifier sources. 5267 // FIXME: Re-add the ability to skip very unlikely potential corrections. 5268 if (IdentifierInfoLookup *External 5269 = Context.Idents.getExternalIdentifierLookup()) { 5270 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers()); 5271 do { 5272 StringRef Name = Iter->Next(); 5273 if (Name.empty()) 5274 break; 5275 5276 Consumer->FoundName(Name); 5277 } while (true); 5278 } 5279 } 5280 5281 AddKeywordsToConsumer(*this, *Consumer, S, 5282 *Consumer->getCorrectionValidator(), 5283 SS && SS->isNotEmpty()); 5284 5285 // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going 5286 // to search those namespaces. 5287 if (SearchNamespaces) { 5288 // Load any externally-known namespaces. 5289 if (ExternalSource && !LoadedExternalKnownNamespaces) { 5290 SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces; 5291 LoadedExternalKnownNamespaces = true; 5292 ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces); 5293 for (auto *N : ExternalKnownNamespaces) 5294 KnownNamespaces[N] = true; 5295 } 5296 5297 Consumer->addNamespaces(KnownNamespaces); 5298 } 5299 5300 return Consumer; 5301 } 5302 5303 /// Try to "correct" a typo in the source code by finding 5304 /// visible declarations whose names are similar to the name that was 5305 /// present in the source code. 5306 /// 5307 /// \param TypoName the \c DeclarationNameInfo structure that contains 5308 /// the name that was present in the source code along with its location. 5309 /// 5310 /// \param LookupKind the name-lookup criteria used to search for the name. 5311 /// 5312 /// \param S the scope in which name lookup occurs. 5313 /// 5314 /// \param SS the nested-name-specifier that precedes the name we're 5315 /// looking for, if present. 5316 /// 5317 /// \param CCC A CorrectionCandidateCallback object that provides further 5318 /// validation of typo correction candidates. It also provides flags for 5319 /// determining the set of keywords permitted. 5320 /// 5321 /// \param MemberContext if non-NULL, the context in which to look for 5322 /// a member access expression. 5323 /// 5324 /// \param EnteringContext whether we're entering the context described by 5325 /// the nested-name-specifier SS. 5326 /// 5327 /// \param OPT when non-NULL, the search for visible declarations will 5328 /// also walk the protocols in the qualified interfaces of \p OPT. 5329 /// 5330 /// \returns a \c TypoCorrection containing the corrected name if the typo 5331 /// along with information such as the \c NamedDecl where the corrected name 5332 /// was declared, and any additional \c NestedNameSpecifier needed to access 5333 /// it (C++ only). The \c TypoCorrection is empty if there is no correction. 5334 TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName, 5335 Sema::LookupNameKind LookupKind, 5336 Scope *S, CXXScopeSpec *SS, 5337 CorrectionCandidateCallback &CCC, 5338 CorrectTypoKind Mode, 5339 DeclContext *MemberContext, 5340 bool EnteringContext, 5341 const ObjCObjectPointerType *OPT, 5342 bool RecordFailure) { 5343 // Always let the ExternalSource have the first chance at correction, even 5344 // if we would otherwise have given up. 5345 if (ExternalSource) { 5346 if (TypoCorrection Correction = 5347 ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC, 5348 MemberContext, EnteringContext, OPT)) 5349 return Correction; 5350 } 5351 5352 // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver; 5353 // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for 5354 // some instances of CTC_Unknown, while WantRemainingKeywords is true 5355 // for CTC_Unknown but not for CTC_ObjCMessageReceiver. 5356 bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords; 5357 5358 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); 5359 auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC, 5360 MemberContext, EnteringContext, 5361 OPT, Mode == CTK_ErrorRecovery); 5362 5363 if (!Consumer) 5364 return TypoCorrection(); 5365 5366 // If we haven't found anything, we're done. 5367 if (Consumer->empty()) 5368 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5369 5370 // Make sure the best edit distance (prior to adding any namespace qualifiers) 5371 // is not more that about a third of the length of the typo's identifier. 5372 unsigned ED = Consumer->getBestEditDistance(true); 5373 unsigned TypoLen = Typo->getName().size(); 5374 if (ED > 0 && TypoLen / ED < 3) 5375 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5376 5377 TypoCorrection BestTC = Consumer->getNextCorrection(); 5378 TypoCorrection SecondBestTC = Consumer->getNextCorrection(); 5379 if (!BestTC) 5380 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5381 5382 ED = BestTC.getEditDistance(); 5383 5384 if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) { 5385 // If this was an unqualified lookup and we believe the callback 5386 // object wouldn't have filtered out possible corrections, note 5387 // that no correction was found. 5388 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5389 } 5390 5391 // If only a single name remains, return that result. 5392 if (!SecondBestTC || 5393 SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) { 5394 const TypoCorrection &Result = BestTC; 5395 5396 // Don't correct to a keyword that's the same as the typo; the keyword 5397 // wasn't actually in scope. 5398 if (ED == 0 && Result.isKeyword()) 5399 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5400 5401 TypoCorrection TC = Result; 5402 TC.setCorrectionRange(SS, TypoName); 5403 checkCorrectionVisibility(*this, TC); 5404 return TC; 5405 } else if (SecondBestTC && ObjCMessageReceiver) { 5406 // Prefer 'super' when we're completing in a message-receiver 5407 // context. 5408 5409 if (BestTC.getCorrection().getAsString() != "super") { 5410 if (SecondBestTC.getCorrection().getAsString() == "super") 5411 BestTC = SecondBestTC; 5412 else if ((*Consumer)["super"].front().isKeyword()) 5413 BestTC = (*Consumer)["super"].front(); 5414 } 5415 // Don't correct to a keyword that's the same as the typo; the keyword 5416 // wasn't actually in scope. 5417 if (BestTC.getEditDistance() == 0 || 5418 BestTC.getCorrection().getAsString() != "super") 5419 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5420 5421 BestTC.setCorrectionRange(SS, TypoName); 5422 return BestTC; 5423 } 5424 5425 // Record the failure's location if needed and return an empty correction. If 5426 // this was an unqualified lookup and we believe the callback object did not 5427 // filter out possible corrections, also cache the failure for the typo. 5428 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC); 5429 } 5430 5431 /// Try to "correct" a typo in the source code by finding 5432 /// visible declarations whose names are similar to the name that was 5433 /// present in the source code. 5434 /// 5435 /// \param TypoName the \c DeclarationNameInfo structure that contains 5436 /// the name that was present in the source code along with its location. 5437 /// 5438 /// \param LookupKind the name-lookup criteria used to search for the name. 5439 /// 5440 /// \param S the scope in which name lookup occurs. 5441 /// 5442 /// \param SS the nested-name-specifier that precedes the name we're 5443 /// looking for, if present. 5444 /// 5445 /// \param CCC A CorrectionCandidateCallback object that provides further 5446 /// validation of typo correction candidates. It also provides flags for 5447 /// determining the set of keywords permitted. 5448 /// 5449 /// \param TDG A TypoDiagnosticGenerator functor that will be used to print 5450 /// diagnostics when the actual typo correction is attempted. 5451 /// 5452 /// \param TRC A TypoRecoveryCallback functor that will be used to build an 5453 /// Expr from a typo correction candidate. 5454 /// 5455 /// \param MemberContext if non-NULL, the context in which to look for 5456 /// a member access expression. 5457 /// 5458 /// \param EnteringContext whether we're entering the context described by 5459 /// the nested-name-specifier SS. 5460 /// 5461 /// \param OPT when non-NULL, the search for visible declarations will 5462 /// also walk the protocols in the qualified interfaces of \p OPT. 5463 /// 5464 /// \returns a new \c TypoExpr that will later be replaced in the AST with an 5465 /// Expr representing the result of performing typo correction, or nullptr if 5466 /// typo correction is not possible. If nullptr is returned, no diagnostics will 5467 /// be emitted and it is the responsibility of the caller to emit any that are 5468 /// needed. 5469 TypoExpr *Sema::CorrectTypoDelayed( 5470 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind, 5471 Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, 5472 TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode, 5473 DeclContext *MemberContext, bool EnteringContext, 5474 const ObjCObjectPointerType *OPT) { 5475 auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC, 5476 MemberContext, EnteringContext, 5477 OPT, Mode == CTK_ErrorRecovery); 5478 5479 // Give the external sema source a chance to correct the typo. 5480 TypoCorrection ExternalTypo; 5481 if (ExternalSource && Consumer) { 5482 ExternalTypo = ExternalSource->CorrectTypo( 5483 TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(), 5484 MemberContext, EnteringContext, OPT); 5485 if (ExternalTypo) 5486 Consumer->addCorrection(ExternalTypo); 5487 } 5488 5489 if (!Consumer || Consumer->empty()) 5490 return nullptr; 5491 5492 // Make sure the best edit distance (prior to adding any namespace qualifiers) 5493 // is not more that about a third of the length of the typo's identifier. 5494 unsigned ED = Consumer->getBestEditDistance(true); 5495 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); 5496 if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3) 5497 return nullptr; 5498 ExprEvalContexts.back().NumTypos++; 5499 return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC), 5500 TypoName.getLoc()); 5501 } 5502 5503 void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) { 5504 if (!CDecl) return; 5505 5506 if (isKeyword()) 5507 CorrectionDecls.clear(); 5508 5509 CorrectionDecls.push_back(CDecl); 5510 5511 if (!CorrectionName) 5512 CorrectionName = CDecl->getDeclName(); 5513 } 5514 5515 std::string TypoCorrection::getAsString(const LangOptions &LO) const { 5516 if (CorrectionNameSpec) { 5517 std::string tmpBuffer; 5518 llvm::raw_string_ostream PrefixOStream(tmpBuffer); 5519 CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO)); 5520 PrefixOStream << CorrectionName; 5521 return PrefixOStream.str(); 5522 } 5523 5524 return CorrectionName.getAsString(); 5525 } 5526 5527 bool CorrectionCandidateCallback::ValidateCandidate( 5528 const TypoCorrection &candidate) { 5529 if (!candidate.isResolved()) 5530 return true; 5531 5532 if (candidate.isKeyword()) 5533 return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts || 5534 WantRemainingKeywords || WantObjCSuper; 5535 5536 bool HasNonType = false; 5537 bool HasStaticMethod = false; 5538 bool HasNonStaticMethod = false; 5539 for (Decl *D : candidate) { 5540 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D)) 5541 D = FTD->getTemplatedDecl(); 5542 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 5543 if (Method->isStatic()) 5544 HasStaticMethod = true; 5545 else 5546 HasNonStaticMethod = true; 5547 } 5548 if (!isa<TypeDecl>(D)) 5549 HasNonType = true; 5550 } 5551 5552 if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod && 5553 !candidate.getCorrectionSpecifier()) 5554 return false; 5555 5556 return WantTypeSpecifiers || HasNonType; 5557 } 5558 5559 FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs, 5560 bool HasExplicitTemplateArgs, 5561 MemberExpr *ME) 5562 : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs), 5563 CurContext(SemaRef.CurContext), MemberFn(ME) { 5564 WantTypeSpecifiers = false; 5565 WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus && 5566 !HasExplicitTemplateArgs && NumArgs == 1; 5567 WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1; 5568 WantRemainingKeywords = false; 5569 } 5570 5571 bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) { 5572 if (!candidate.getCorrectionDecl()) 5573 return candidate.isKeyword(); 5574 5575 for (auto *C : candidate) { 5576 FunctionDecl *FD = nullptr; 5577 NamedDecl *ND = C->getUnderlyingDecl(); 5578 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 5579 FD = FTD->getTemplatedDecl(); 5580 if (!HasExplicitTemplateArgs && !FD) { 5581 if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) { 5582 // If the Decl is neither a function nor a template function, 5583 // determine if it is a pointer or reference to a function. If so, 5584 // check against the number of arguments expected for the pointee. 5585 QualType ValType = cast<ValueDecl>(ND)->getType(); 5586 if (ValType.isNull()) 5587 continue; 5588 if (ValType->isAnyPointerType() || ValType->isReferenceType()) 5589 ValType = ValType->getPointeeType(); 5590 if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>()) 5591 if (FPT->getNumParams() == NumArgs) 5592 return true; 5593 } 5594 } 5595 5596 // A typo for a function-style cast can look like a function call in C++. 5597 if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr 5598 : isa<TypeDecl>(ND)) && 5599 CurContext->getParentASTContext().getLangOpts().CPlusPlus) 5600 // Only a class or class template can take two or more arguments. 5601 return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND); 5602 5603 // Skip the current candidate if it is not a FunctionDecl or does not accept 5604 // the current number of arguments. 5605 if (!FD || !(FD->getNumParams() >= NumArgs && 5606 FD->getMinRequiredArguments() <= NumArgs)) 5607 continue; 5608 5609 // If the current candidate is a non-static C++ method, skip the candidate 5610 // unless the method being corrected--or the current DeclContext, if the 5611 // function being corrected is not a method--is a method in the same class 5612 // or a descendent class of the candidate's parent class. 5613 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 5614 if (MemberFn || !MD->isStatic()) { 5615 const auto *CurMD = 5616 MemberFn 5617 ? dyn_cast_if_present<CXXMethodDecl>(MemberFn->getMemberDecl()) 5618 : dyn_cast_if_present<CXXMethodDecl>(CurContext); 5619 const CXXRecordDecl *CurRD = 5620 CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr; 5621 const CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl(); 5622 if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD))) 5623 continue; 5624 } 5625 } 5626 return true; 5627 } 5628 return false; 5629 } 5630 5631 void Sema::diagnoseTypo(const TypoCorrection &Correction, 5632 const PartialDiagnostic &TypoDiag, 5633 bool ErrorRecovery) { 5634 diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl), 5635 ErrorRecovery); 5636 } 5637 5638 /// Find which declaration we should import to provide the definition of 5639 /// the given declaration. 5640 static const NamedDecl *getDefinitionToImport(const NamedDecl *D) { 5641 if (const auto *VD = dyn_cast<VarDecl>(D)) 5642 return VD->getDefinition(); 5643 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 5644 return FD->getDefinition(); 5645 if (const auto *TD = dyn_cast<TagDecl>(D)) 5646 return TD->getDefinition(); 5647 if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(D)) 5648 return ID->getDefinition(); 5649 if (const auto *PD = dyn_cast<ObjCProtocolDecl>(D)) 5650 return PD->getDefinition(); 5651 if (const auto *TD = dyn_cast<TemplateDecl>(D)) 5652 if (const NamedDecl *TTD = TD->getTemplatedDecl()) 5653 return getDefinitionToImport(TTD); 5654 return nullptr; 5655 } 5656 5657 void Sema::diagnoseMissingImport(SourceLocation Loc, const NamedDecl *Decl, 5658 MissingImportKind MIK, bool Recover) { 5659 // Suggest importing a module providing the definition of this entity, if 5660 // possible. 5661 const NamedDecl *Def = getDefinitionToImport(Decl); 5662 if (!Def) 5663 Def = Decl; 5664 5665 Module *Owner = getOwningModule(Def); 5666 assert(Owner && "definition of hidden declaration is not in a module"); 5667 5668 llvm::SmallVector<Module*, 8> OwningModules; 5669 OwningModules.push_back(Owner); 5670 auto Merged = Context.getModulesWithMergedDefinition(Def); 5671 OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end()); 5672 5673 diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK, 5674 Recover); 5675 } 5676 5677 /// Get a "quoted.h" or <angled.h> include path to use in a diagnostic 5678 /// suggesting the addition of a #include of the specified file. 5679 static std::string getHeaderNameForHeader(Preprocessor &PP, const FileEntry *E, 5680 llvm::StringRef IncludingFile) { 5681 bool IsSystem = false; 5682 auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics( 5683 E, IncludingFile, &IsSystem); 5684 return (IsSystem ? '<' : '"') + Path + (IsSystem ? '>' : '"'); 5685 } 5686 5687 void Sema::diagnoseMissingImport(SourceLocation UseLoc, const NamedDecl *Decl, 5688 SourceLocation DeclLoc, 5689 ArrayRef<Module *> Modules, 5690 MissingImportKind MIK, bool Recover) { 5691 assert(!Modules.empty()); 5692 5693 auto NotePrevious = [&] { 5694 // FIXME: Suppress the note backtrace even under 5695 // -fdiagnostics-show-note-include-stack. We don't care how this 5696 // declaration was previously reached. 5697 Diag(DeclLoc, diag::note_unreachable_entity) << (int)MIK; 5698 }; 5699 5700 // Weed out duplicates from module list. 5701 llvm::SmallVector<Module*, 8> UniqueModules; 5702 llvm::SmallDenseSet<Module*, 8> UniqueModuleSet; 5703 for (auto *M : Modules) { 5704 if (M->isGlobalModule() || M->isPrivateModule()) 5705 continue; 5706 if (UniqueModuleSet.insert(M).second) 5707 UniqueModules.push_back(M); 5708 } 5709 5710 // Try to find a suitable header-name to #include. 5711 std::string HeaderName; 5712 if (const FileEntry *Header = 5713 PP.getHeaderToIncludeForDiagnostics(UseLoc, DeclLoc)) { 5714 if (const FileEntry *FE = 5715 SourceMgr.getFileEntryForID(SourceMgr.getFileID(UseLoc))) 5716 HeaderName = getHeaderNameForHeader(PP, Header, FE->tryGetRealPathName()); 5717 } 5718 5719 // If we have a #include we should suggest, or if all definition locations 5720 // were in global module fragments, don't suggest an import. 5721 if (!HeaderName.empty() || UniqueModules.empty()) { 5722 // FIXME: Find a smart place to suggest inserting a #include, and add 5723 // a FixItHint there. 5724 Diag(UseLoc, diag::err_module_unimported_use_header) 5725 << (int)MIK << Decl << !HeaderName.empty() << HeaderName; 5726 // Produce a note showing where the entity was declared. 5727 NotePrevious(); 5728 if (Recover) 5729 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]); 5730 return; 5731 } 5732 5733 Modules = UniqueModules; 5734 5735 if (Modules.size() > 1) { 5736 std::string ModuleList; 5737 unsigned N = 0; 5738 for (const auto *M : Modules) { 5739 ModuleList += "\n "; 5740 if (++N == 5 && N != Modules.size()) { 5741 ModuleList += "[...]"; 5742 break; 5743 } 5744 ModuleList += M->getFullModuleName(); 5745 } 5746 5747 Diag(UseLoc, diag::err_module_unimported_use_multiple) 5748 << (int)MIK << Decl << ModuleList; 5749 } else { 5750 // FIXME: Add a FixItHint that imports the corresponding module. 5751 Diag(UseLoc, diag::err_module_unimported_use) 5752 << (int)MIK << Decl << Modules[0]->getFullModuleName(); 5753 } 5754 5755 NotePrevious(); 5756 5757 // Try to recover by implicitly importing this module. 5758 if (Recover) 5759 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]); 5760 } 5761 5762 /// Diagnose a successfully-corrected typo. Separated from the correction 5763 /// itself to allow external validation of the result, etc. 5764 /// 5765 /// \param Correction The result of performing typo correction. 5766 /// \param TypoDiag The diagnostic to produce. This will have the corrected 5767 /// string added to it (and usually also a fixit). 5768 /// \param PrevNote A note to use when indicating the location of the entity to 5769 /// which we are correcting. Will have the correction string added to it. 5770 /// \param ErrorRecovery If \c true (the default), the caller is going to 5771 /// recover from the typo as if the corrected string had been typed. 5772 /// In this case, \c PDiag must be an error, and we will attach a fixit 5773 /// to it. 5774 void Sema::diagnoseTypo(const TypoCorrection &Correction, 5775 const PartialDiagnostic &TypoDiag, 5776 const PartialDiagnostic &PrevNote, 5777 bool ErrorRecovery) { 5778 std::string CorrectedStr = Correction.getAsString(getLangOpts()); 5779 std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts()); 5780 FixItHint FixTypo = FixItHint::CreateReplacement( 5781 Correction.getCorrectionRange(), CorrectedStr); 5782 5783 // Maybe we're just missing a module import. 5784 if (Correction.requiresImport()) { 5785 NamedDecl *Decl = Correction.getFoundDecl(); 5786 assert(Decl && "import required but no declaration to import"); 5787 5788 diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl, 5789 MissingImportKind::Declaration, ErrorRecovery); 5790 return; 5791 } 5792 5793 Diag(Correction.getCorrectionRange().getBegin(), TypoDiag) 5794 << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint()); 5795 5796 NamedDecl *ChosenDecl = 5797 Correction.isKeyword() ? nullptr : Correction.getFoundDecl(); 5798 if (PrevNote.getDiagID() && ChosenDecl) 5799 Diag(ChosenDecl->getLocation(), PrevNote) 5800 << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo); 5801 5802 // Add any extra diagnostics. 5803 for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics()) 5804 Diag(Correction.getCorrectionRange().getBegin(), PD); 5805 } 5806 5807 TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC, 5808 TypoDiagnosticGenerator TDG, 5809 TypoRecoveryCallback TRC, 5810 SourceLocation TypoLoc) { 5811 assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer"); 5812 auto TE = new (Context) TypoExpr(Context.DependentTy, TypoLoc); 5813 auto &State = DelayedTypos[TE]; 5814 State.Consumer = std::move(TCC); 5815 State.DiagHandler = std::move(TDG); 5816 State.RecoveryHandler = std::move(TRC); 5817 if (TE) 5818 TypoExprs.push_back(TE); 5819 return TE; 5820 } 5821 5822 const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const { 5823 auto Entry = DelayedTypos.find(TE); 5824 assert(Entry != DelayedTypos.end() && 5825 "Failed to get the state for a TypoExpr!"); 5826 return Entry->second; 5827 } 5828 5829 void Sema::clearDelayedTypo(TypoExpr *TE) { 5830 DelayedTypos.erase(TE); 5831 } 5832 5833 void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) { 5834 DeclarationNameInfo Name(II, IILoc); 5835 LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration); 5836 R.suppressDiagnostics(); 5837 R.setHideTags(false); 5838 LookupName(R, S); 5839 R.dump(); 5840 } 5841 5842 void Sema::ActOnPragmaDump(Expr *E) { 5843 E->dump(); 5844 } 5845