xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaLookup.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements name lookup for C, C++, Objective-C, and
10 //  Objective-C++.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclLookups.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/Basic/Builtins.h"
24 #include "clang/Basic/FileManager.h"
25 #include "clang/Basic/LangOptions.h"
26 #include "clang/Lex/HeaderSearch.h"
27 #include "clang/Lex/ModuleLoader.h"
28 #include "clang/Lex/Preprocessor.h"
29 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/Lookup.h"
31 #include "clang/Sema/Overload.h"
32 #include "clang/Sema/Scope.h"
33 #include "clang/Sema/ScopeInfo.h"
34 #include "clang/Sema/Sema.h"
35 #include "clang/Sema/SemaInternal.h"
36 #include "clang/Sema/TemplateDeduction.h"
37 #include "clang/Sema/TypoCorrection.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/TinyPtrVector.h"
41 #include "llvm/ADT/edit_distance.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include <algorithm>
44 #include <iterator>
45 #include <list>
46 #include <set>
47 #include <utility>
48 #include <vector>
49 
50 #include "OpenCLBuiltins.inc"
51 
52 using namespace clang;
53 using namespace sema;
54 
55 namespace {
56   class UnqualUsingEntry {
57     const DeclContext *Nominated;
58     const DeclContext *CommonAncestor;
59 
60   public:
61     UnqualUsingEntry(const DeclContext *Nominated,
62                      const DeclContext *CommonAncestor)
63       : Nominated(Nominated), CommonAncestor(CommonAncestor) {
64     }
65 
66     const DeclContext *getCommonAncestor() const {
67       return CommonAncestor;
68     }
69 
70     const DeclContext *getNominatedNamespace() const {
71       return Nominated;
72     }
73 
74     // Sort by the pointer value of the common ancestor.
75     struct Comparator {
76       bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
77         return L.getCommonAncestor() < R.getCommonAncestor();
78       }
79 
80       bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
81         return E.getCommonAncestor() < DC;
82       }
83 
84       bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
85         return DC < E.getCommonAncestor();
86       }
87     };
88   };
89 
90   /// A collection of using directives, as used by C++ unqualified
91   /// lookup.
92   class UnqualUsingDirectiveSet {
93     Sema &SemaRef;
94 
95     typedef SmallVector<UnqualUsingEntry, 8> ListTy;
96 
97     ListTy list;
98     llvm::SmallPtrSet<DeclContext*, 8> visited;
99 
100   public:
101     UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {}
102 
103     void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
104       // C++ [namespace.udir]p1:
105       //   During unqualified name lookup, the names appear as if they
106       //   were declared in the nearest enclosing namespace which contains
107       //   both the using-directive and the nominated namespace.
108       DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
109       assert(InnermostFileDC && InnermostFileDC->isFileContext());
110 
111       for (; S; S = S->getParent()) {
112         // C++ [namespace.udir]p1:
113         //   A using-directive shall not appear in class scope, but may
114         //   appear in namespace scope or in block scope.
115         DeclContext *Ctx = S->getEntity();
116         if (Ctx && Ctx->isFileContext()) {
117           visit(Ctx, Ctx);
118         } else if (!Ctx || Ctx->isFunctionOrMethod()) {
119           for (auto *I : S->using_directives())
120             if (SemaRef.isVisible(I))
121               visit(I, InnermostFileDC);
122         }
123       }
124     }
125 
126     // Visits a context and collect all of its using directives
127     // recursively.  Treats all using directives as if they were
128     // declared in the context.
129     //
130     // A given context is only every visited once, so it is important
131     // that contexts be visited from the inside out in order to get
132     // the effective DCs right.
133     void visit(DeclContext *DC, DeclContext *EffectiveDC) {
134       if (!visited.insert(DC).second)
135         return;
136 
137       addUsingDirectives(DC, EffectiveDC);
138     }
139 
140     // Visits a using directive and collects all of its using
141     // directives recursively.  Treats all using directives as if they
142     // were declared in the effective DC.
143     void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
144       DeclContext *NS = UD->getNominatedNamespace();
145       if (!visited.insert(NS).second)
146         return;
147 
148       addUsingDirective(UD, EffectiveDC);
149       addUsingDirectives(NS, EffectiveDC);
150     }
151 
152     // Adds all the using directives in a context (and those nominated
153     // by its using directives, transitively) as if they appeared in
154     // the given effective context.
155     void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
156       SmallVector<DeclContext*, 4> queue;
157       while (true) {
158         for (auto UD : DC->using_directives()) {
159           DeclContext *NS = UD->getNominatedNamespace();
160           if (SemaRef.isVisible(UD) && visited.insert(NS).second) {
161             addUsingDirective(UD, EffectiveDC);
162             queue.push_back(NS);
163           }
164         }
165 
166         if (queue.empty())
167           return;
168 
169         DC = queue.pop_back_val();
170       }
171     }
172 
173     // Add a using directive as if it had been declared in the given
174     // context.  This helps implement C++ [namespace.udir]p3:
175     //   The using-directive is transitive: if a scope contains a
176     //   using-directive that nominates a second namespace that itself
177     //   contains using-directives, the effect is as if the
178     //   using-directives from the second namespace also appeared in
179     //   the first.
180     void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
181       // Find the common ancestor between the effective context and
182       // the nominated namespace.
183       DeclContext *Common = UD->getNominatedNamespace();
184       while (!Common->Encloses(EffectiveDC))
185         Common = Common->getParent();
186       Common = Common->getPrimaryContext();
187 
188       list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
189     }
190 
191     void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); }
192 
193     typedef ListTy::const_iterator const_iterator;
194 
195     const_iterator begin() const { return list.begin(); }
196     const_iterator end() const { return list.end(); }
197 
198     llvm::iterator_range<const_iterator>
199     getNamespacesFor(DeclContext *DC) const {
200       return llvm::make_range(std::equal_range(begin(), end(),
201                                                DC->getPrimaryContext(),
202                                                UnqualUsingEntry::Comparator()));
203     }
204   };
205 } // end anonymous namespace
206 
207 // Retrieve the set of identifier namespaces that correspond to a
208 // specific kind of name lookup.
209 static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
210                                bool CPlusPlus,
211                                bool Redeclaration) {
212   unsigned IDNS = 0;
213   switch (NameKind) {
214   case Sema::LookupObjCImplicitSelfParam:
215   case Sema::LookupOrdinaryName:
216   case Sema::LookupRedeclarationWithLinkage:
217   case Sema::LookupLocalFriendName:
218   case Sema::LookupDestructorName:
219     IDNS = Decl::IDNS_Ordinary;
220     if (CPlusPlus) {
221       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
222       if (Redeclaration)
223         IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
224     }
225     if (Redeclaration)
226       IDNS |= Decl::IDNS_LocalExtern;
227     break;
228 
229   case Sema::LookupOperatorName:
230     // Operator lookup is its own crazy thing;  it is not the same
231     // as (e.g.) looking up an operator name for redeclaration.
232     assert(!Redeclaration && "cannot do redeclaration operator lookup");
233     IDNS = Decl::IDNS_NonMemberOperator;
234     break;
235 
236   case Sema::LookupTagName:
237     if (CPlusPlus) {
238       IDNS = Decl::IDNS_Type;
239 
240       // When looking for a redeclaration of a tag name, we add:
241       // 1) TagFriend to find undeclared friend decls
242       // 2) Namespace because they can't "overload" with tag decls.
243       // 3) Tag because it includes class templates, which can't
244       //    "overload" with tag decls.
245       if (Redeclaration)
246         IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
247     } else {
248       IDNS = Decl::IDNS_Tag;
249     }
250     break;
251 
252   case Sema::LookupLabel:
253     IDNS = Decl::IDNS_Label;
254     break;
255 
256   case Sema::LookupMemberName:
257     IDNS = Decl::IDNS_Member;
258     if (CPlusPlus)
259       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
260     break;
261 
262   case Sema::LookupNestedNameSpecifierName:
263     IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
264     break;
265 
266   case Sema::LookupNamespaceName:
267     IDNS = Decl::IDNS_Namespace;
268     break;
269 
270   case Sema::LookupUsingDeclName:
271     assert(Redeclaration && "should only be used for redecl lookup");
272     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
273            Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
274            Decl::IDNS_LocalExtern;
275     break;
276 
277   case Sema::LookupObjCProtocolName:
278     IDNS = Decl::IDNS_ObjCProtocol;
279     break;
280 
281   case Sema::LookupOMPReductionName:
282     IDNS = Decl::IDNS_OMPReduction;
283     break;
284 
285   case Sema::LookupOMPMapperName:
286     IDNS = Decl::IDNS_OMPMapper;
287     break;
288 
289   case Sema::LookupAnyName:
290     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
291       | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
292       | Decl::IDNS_Type;
293     break;
294   }
295   return IDNS;
296 }
297 
298 void LookupResult::configure() {
299   IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
300                  isForRedeclaration());
301 
302   // If we're looking for one of the allocation or deallocation
303   // operators, make sure that the implicitly-declared new and delete
304   // operators can be found.
305   switch (NameInfo.getName().getCXXOverloadedOperator()) {
306   case OO_New:
307   case OO_Delete:
308   case OO_Array_New:
309   case OO_Array_Delete:
310     getSema().DeclareGlobalNewDelete();
311     break;
312 
313   default:
314     break;
315   }
316 
317   // Compiler builtins are always visible, regardless of where they end
318   // up being declared.
319   if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
320     if (unsigned BuiltinID = Id->getBuiltinID()) {
321       if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
322         AllowHidden = true;
323     }
324   }
325 }
326 
327 bool LookupResult::sanity() const {
328   // This function is never called by NDEBUG builds.
329   assert(ResultKind != NotFound || Decls.size() == 0);
330   assert(ResultKind != Found || Decls.size() == 1);
331   assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
332          (Decls.size() == 1 &&
333           isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
334   assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
335   assert(ResultKind != Ambiguous || Decls.size() > 1 ||
336          (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
337                                 Ambiguity == AmbiguousBaseSubobjectTypes)));
338   assert((Paths != nullptr) == (ResultKind == Ambiguous &&
339                                 (Ambiguity == AmbiguousBaseSubobjectTypes ||
340                                  Ambiguity == AmbiguousBaseSubobjects)));
341   return true;
342 }
343 
344 // Necessary because CXXBasePaths is not complete in Sema.h
345 void LookupResult::deletePaths(CXXBasePaths *Paths) {
346   delete Paths;
347 }
348 
349 /// Get a representative context for a declaration such that two declarations
350 /// will have the same context if they were found within the same scope.
351 static DeclContext *getContextForScopeMatching(Decl *D) {
352   // For function-local declarations, use that function as the context. This
353   // doesn't account for scopes within the function; the caller must deal with
354   // those.
355   DeclContext *DC = D->getLexicalDeclContext();
356   if (DC->isFunctionOrMethod())
357     return DC;
358 
359   // Otherwise, look at the semantic context of the declaration. The
360   // declaration must have been found there.
361   return D->getDeclContext()->getRedeclContext();
362 }
363 
364 /// Determine whether \p D is a better lookup result than \p Existing,
365 /// given that they declare the same entity.
366 static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind,
367                                     NamedDecl *D, NamedDecl *Existing) {
368   // When looking up redeclarations of a using declaration, prefer a using
369   // shadow declaration over any other declaration of the same entity.
370   if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
371       !isa<UsingShadowDecl>(Existing))
372     return true;
373 
374   auto *DUnderlying = D->getUnderlyingDecl();
375   auto *EUnderlying = Existing->getUnderlyingDecl();
376 
377   // If they have different underlying declarations, prefer a typedef over the
378   // original type (this happens when two type declarations denote the same
379   // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
380   // might carry additional semantic information, such as an alignment override.
381   // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
382   // declaration over a typedef. Also prefer a tag over a typedef for
383   // destructor name lookup because in some contexts we only accept a
384   // class-name in a destructor declaration.
385   if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
386     assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying));
387     bool HaveTag = isa<TagDecl>(EUnderlying);
388     bool WantTag =
389         Kind == Sema::LookupTagName || Kind == Sema::LookupDestructorName;
390     return HaveTag != WantTag;
391   }
392 
393   // Pick the function with more default arguments.
394   // FIXME: In the presence of ambiguous default arguments, we should keep both,
395   //        so we can diagnose the ambiguity if the default argument is needed.
396   //        See C++ [over.match.best]p3.
397   if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
398     auto *EFD = cast<FunctionDecl>(EUnderlying);
399     unsigned DMin = DFD->getMinRequiredArguments();
400     unsigned EMin = EFD->getMinRequiredArguments();
401     // If D has more default arguments, it is preferred.
402     if (DMin != EMin)
403       return DMin < EMin;
404     // FIXME: When we track visibility for default function arguments, check
405     // that we pick the declaration with more visible default arguments.
406   }
407 
408   // Pick the template with more default template arguments.
409   if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
410     auto *ETD = cast<TemplateDecl>(EUnderlying);
411     unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
412     unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
413     // If D has more default arguments, it is preferred. Note that default
414     // arguments (and their visibility) is monotonically increasing across the
415     // redeclaration chain, so this is a quick proxy for "is more recent".
416     if (DMin != EMin)
417       return DMin < EMin;
418     // If D has more *visible* default arguments, it is preferred. Note, an
419     // earlier default argument being visible does not imply that a later
420     // default argument is visible, so we can't just check the first one.
421     for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
422         I != N; ++I) {
423       if (!S.hasVisibleDefaultArgument(
424               ETD->getTemplateParameters()->getParam(I)) &&
425           S.hasVisibleDefaultArgument(
426               DTD->getTemplateParameters()->getParam(I)))
427         return true;
428     }
429   }
430 
431   // VarDecl can have incomplete array types, prefer the one with more complete
432   // array type.
433   if (VarDecl *DVD = dyn_cast<VarDecl>(DUnderlying)) {
434     VarDecl *EVD = cast<VarDecl>(EUnderlying);
435     if (EVD->getType()->isIncompleteType() &&
436         !DVD->getType()->isIncompleteType()) {
437       // Prefer the decl with a more complete type if visible.
438       return S.isVisible(DVD);
439     }
440     return false; // Avoid picking up a newer decl, just because it was newer.
441   }
442 
443   // For most kinds of declaration, it doesn't really matter which one we pick.
444   if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
445     // If the existing declaration is hidden, prefer the new one. Otherwise,
446     // keep what we've got.
447     return !S.isVisible(Existing);
448   }
449 
450   // Pick the newer declaration; it might have a more precise type.
451   for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
452        Prev = Prev->getPreviousDecl())
453     if (Prev == EUnderlying)
454       return true;
455   return false;
456 }
457 
458 /// Determine whether \p D can hide a tag declaration.
459 static bool canHideTag(NamedDecl *D) {
460   // C++ [basic.scope.declarative]p4:
461   //   Given a set of declarations in a single declarative region [...]
462   //   exactly one declaration shall declare a class name or enumeration name
463   //   that is not a typedef name and the other declarations shall all refer to
464   //   the same variable, non-static data member, or enumerator, or all refer
465   //   to functions and function templates; in this case the class name or
466   //   enumeration name is hidden.
467   // C++ [basic.scope.hiding]p2:
468   //   A class name or enumeration name can be hidden by the name of a
469   //   variable, data member, function, or enumerator declared in the same
470   //   scope.
471   // An UnresolvedUsingValueDecl always instantiates to one of these.
472   D = D->getUnderlyingDecl();
473   return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
474          isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) ||
475          isa<UnresolvedUsingValueDecl>(D);
476 }
477 
478 /// Resolves the result kind of this lookup.
479 void LookupResult::resolveKind() {
480   unsigned N = Decls.size();
481 
482   // Fast case: no possible ambiguity.
483   if (N == 0) {
484     assert(ResultKind == NotFound ||
485            ResultKind == NotFoundInCurrentInstantiation);
486     return;
487   }
488 
489   // If there's a single decl, we need to examine it to decide what
490   // kind of lookup this is.
491   if (N == 1) {
492     NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
493     if (isa<FunctionTemplateDecl>(D))
494       ResultKind = FoundOverloaded;
495     else if (isa<UnresolvedUsingValueDecl>(D))
496       ResultKind = FoundUnresolvedValue;
497     return;
498   }
499 
500   // Don't do any extra resolution if we've already resolved as ambiguous.
501   if (ResultKind == Ambiguous) return;
502 
503   llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique;
504   llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
505 
506   bool Ambiguous = false;
507   bool HasTag = false, HasFunction = false;
508   bool HasFunctionTemplate = false, HasUnresolved = false;
509   NamedDecl *HasNonFunction = nullptr;
510 
511   llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions;
512 
513   unsigned UniqueTagIndex = 0;
514 
515   unsigned I = 0;
516   while (I < N) {
517     NamedDecl *D = Decls[I]->getUnderlyingDecl();
518     D = cast<NamedDecl>(D->getCanonicalDecl());
519 
520     // Ignore an invalid declaration unless it's the only one left.
521     if (D->isInvalidDecl() && !(I == 0 && N == 1)) {
522       Decls[I] = Decls[--N];
523       continue;
524     }
525 
526     llvm::Optional<unsigned> ExistingI;
527 
528     // Redeclarations of types via typedef can occur both within a scope
529     // and, through using declarations and directives, across scopes. There is
530     // no ambiguity if they all refer to the same type, so unique based on the
531     // canonical type.
532     if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
533       QualType T = getSema().Context.getTypeDeclType(TD);
534       auto UniqueResult = UniqueTypes.insert(
535           std::make_pair(getSema().Context.getCanonicalType(T), I));
536       if (!UniqueResult.second) {
537         // The type is not unique.
538         ExistingI = UniqueResult.first->second;
539       }
540     }
541 
542     // For non-type declarations, check for a prior lookup result naming this
543     // canonical declaration.
544     if (!ExistingI) {
545       auto UniqueResult = Unique.insert(std::make_pair(D, I));
546       if (!UniqueResult.second) {
547         // We've seen this entity before.
548         ExistingI = UniqueResult.first->second;
549       }
550     }
551 
552     if (ExistingI) {
553       // This is not a unique lookup result. Pick one of the results and
554       // discard the other.
555       if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
556                                   Decls[*ExistingI]))
557         Decls[*ExistingI] = Decls[I];
558       Decls[I] = Decls[--N];
559       continue;
560     }
561 
562     // Otherwise, do some decl type analysis and then continue.
563 
564     if (isa<UnresolvedUsingValueDecl>(D)) {
565       HasUnresolved = true;
566     } else if (isa<TagDecl>(D)) {
567       if (HasTag)
568         Ambiguous = true;
569       UniqueTagIndex = I;
570       HasTag = true;
571     } else if (isa<FunctionTemplateDecl>(D)) {
572       HasFunction = true;
573       HasFunctionTemplate = true;
574     } else if (isa<FunctionDecl>(D)) {
575       HasFunction = true;
576     } else {
577       if (HasNonFunction) {
578         // If we're about to create an ambiguity between two declarations that
579         // are equivalent, but one is an internal linkage declaration from one
580         // module and the other is an internal linkage declaration from another
581         // module, just skip it.
582         if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
583                                                              D)) {
584           EquivalentNonFunctions.push_back(D);
585           Decls[I] = Decls[--N];
586           continue;
587         }
588 
589         Ambiguous = true;
590       }
591       HasNonFunction = D;
592     }
593     I++;
594   }
595 
596   // C++ [basic.scope.hiding]p2:
597   //   A class name or enumeration name can be hidden by the name of
598   //   an object, function, or enumerator declared in the same
599   //   scope. If a class or enumeration name and an object, function,
600   //   or enumerator are declared in the same scope (in any order)
601   //   with the same name, the class or enumeration name is hidden
602   //   wherever the object, function, or enumerator name is visible.
603   // But it's still an error if there are distinct tag types found,
604   // even if they're not visible. (ref?)
605   if (N > 1 && HideTags && HasTag && !Ambiguous &&
606       (HasFunction || HasNonFunction || HasUnresolved)) {
607     NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1];
608     if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) &&
609         getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
610             getContextForScopeMatching(OtherDecl)) &&
611         canHideTag(OtherDecl))
612       Decls[UniqueTagIndex] = Decls[--N];
613     else
614       Ambiguous = true;
615   }
616 
617   // FIXME: This diagnostic should really be delayed until we're done with
618   // the lookup result, in case the ambiguity is resolved by the caller.
619   if (!EquivalentNonFunctions.empty() && !Ambiguous)
620     getSema().diagnoseEquivalentInternalLinkageDeclarations(
621         getNameLoc(), HasNonFunction, EquivalentNonFunctions);
622 
623   Decls.set_size(N);
624 
625   if (HasNonFunction && (HasFunction || HasUnresolved))
626     Ambiguous = true;
627 
628   if (Ambiguous)
629     setAmbiguous(LookupResult::AmbiguousReference);
630   else if (HasUnresolved)
631     ResultKind = LookupResult::FoundUnresolvedValue;
632   else if (N > 1 || HasFunctionTemplate)
633     ResultKind = LookupResult::FoundOverloaded;
634   else
635     ResultKind = LookupResult::Found;
636 }
637 
638 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
639   CXXBasePaths::const_paths_iterator I, E;
640   for (I = P.begin(), E = P.end(); I != E; ++I)
641     for (DeclContext::lookup_iterator DI = I->Decls, DE = DI.end(); DI != DE;
642          ++DI)
643       addDecl(*DI);
644 }
645 
646 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
647   Paths = new CXXBasePaths;
648   Paths->swap(P);
649   addDeclsFromBasePaths(*Paths);
650   resolveKind();
651   setAmbiguous(AmbiguousBaseSubobjects);
652 }
653 
654 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
655   Paths = new CXXBasePaths;
656   Paths->swap(P);
657   addDeclsFromBasePaths(*Paths);
658   resolveKind();
659   setAmbiguous(AmbiguousBaseSubobjectTypes);
660 }
661 
662 void LookupResult::print(raw_ostream &Out) {
663   Out << Decls.size() << " result(s)";
664   if (isAmbiguous()) Out << ", ambiguous";
665   if (Paths) Out << ", base paths present";
666 
667   for (iterator I = begin(), E = end(); I != E; ++I) {
668     Out << "\n";
669     (*I)->print(Out, 2);
670   }
671 }
672 
673 LLVM_DUMP_METHOD void LookupResult::dump() {
674   llvm::errs() << "lookup results for " << getLookupName().getAsString()
675                << ":\n";
676   for (NamedDecl *D : *this)
677     D->dump();
678 }
679 
680 /// Diagnose a missing builtin type.
681 static QualType diagOpenCLBuiltinTypeError(Sema &S, llvm::StringRef TypeClass,
682                                            llvm::StringRef Name) {
683   S.Diag(SourceLocation(), diag::err_opencl_type_not_found)
684       << TypeClass << Name;
685   return S.Context.VoidTy;
686 }
687 
688 /// Lookup an OpenCL enum type.
689 static QualType getOpenCLEnumType(Sema &S, llvm::StringRef Name) {
690   LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(),
691                       Sema::LookupTagName);
692   S.LookupName(Result, S.TUScope);
693   if (Result.empty())
694     return diagOpenCLBuiltinTypeError(S, "enum", Name);
695   EnumDecl *Decl = Result.getAsSingle<EnumDecl>();
696   if (!Decl)
697     return diagOpenCLBuiltinTypeError(S, "enum", Name);
698   return S.Context.getEnumType(Decl);
699 }
700 
701 /// Lookup an OpenCL typedef type.
702 static QualType getOpenCLTypedefType(Sema &S, llvm::StringRef Name) {
703   LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(),
704                       Sema::LookupOrdinaryName);
705   S.LookupName(Result, S.TUScope);
706   if (Result.empty())
707     return diagOpenCLBuiltinTypeError(S, "typedef", Name);
708   TypedefNameDecl *Decl = Result.getAsSingle<TypedefNameDecl>();
709   if (!Decl)
710     return diagOpenCLBuiltinTypeError(S, "typedef", Name);
711   return S.Context.getTypedefType(Decl);
712 }
713 
714 /// Get the QualType instances of the return type and arguments for an OpenCL
715 /// builtin function signature.
716 /// \param S (in) The Sema instance.
717 /// \param OpenCLBuiltin (in) The signature currently handled.
718 /// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic
719 ///        type used as return type or as argument.
720 ///        Only meaningful for generic types, otherwise equals 1.
721 /// \param RetTypes (out) List of the possible return types.
722 /// \param ArgTypes (out) List of the possible argument types.  For each
723 ///        argument, ArgTypes contains QualTypes for the Cartesian product
724 ///        of (vector sizes) x (types) .
725 static void GetQualTypesForOpenCLBuiltin(
726     Sema &S, const OpenCLBuiltinStruct &OpenCLBuiltin, unsigned &GenTypeMaxCnt,
727     SmallVector<QualType, 1> &RetTypes,
728     SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
729   // Get the QualType instances of the return types.
730   unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex];
731   OCL2Qual(S, TypeTable[Sig], RetTypes);
732   GenTypeMaxCnt = RetTypes.size();
733 
734   // Get the QualType instances of the arguments.
735   // First type is the return type, skip it.
736   for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) {
737     SmallVector<QualType, 1> Ty;
738     OCL2Qual(S, TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]],
739              Ty);
740     GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt;
741     ArgTypes.push_back(std::move(Ty));
742   }
743 }
744 
745 /// Create a list of the candidate function overloads for an OpenCL builtin
746 /// function.
747 /// \param Context (in) The ASTContext instance.
748 /// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic
749 ///        type used as return type or as argument.
750 ///        Only meaningful for generic types, otherwise equals 1.
751 /// \param FunctionList (out) List of FunctionTypes.
752 /// \param RetTypes (in) List of the possible return types.
753 /// \param ArgTypes (in) List of the possible types for the arguments.
754 static void GetOpenCLBuiltinFctOverloads(
755     ASTContext &Context, unsigned GenTypeMaxCnt,
756     std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes,
757     SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
758   FunctionProtoType::ExtProtoInfo PI(
759       Context.getDefaultCallingConvention(false, false, true));
760   PI.Variadic = false;
761 
762   // Do not attempt to create any FunctionTypes if there are no return types,
763   // which happens when a type belongs to a disabled extension.
764   if (RetTypes.size() == 0)
765     return;
766 
767   // Create FunctionTypes for each (gen)type.
768   for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) {
769     SmallVector<QualType, 5> ArgList;
770 
771     for (unsigned A = 0; A < ArgTypes.size(); A++) {
772       // Bail out if there is an argument that has no available types.
773       if (ArgTypes[A].size() == 0)
774         return;
775 
776       // Builtins such as "max" have an "sgentype" argument that represents
777       // the corresponding scalar type of a gentype.  The number of gentypes
778       // must be a multiple of the number of sgentypes.
779       assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 &&
780              "argument type count not compatible with gentype type count");
781       unsigned Idx = IGenType % ArgTypes[A].size();
782       ArgList.push_back(ArgTypes[A][Idx]);
783     }
784 
785     FunctionList.push_back(Context.getFunctionType(
786         RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI));
787   }
788 }
789 
790 /// When trying to resolve a function name, if isOpenCLBuiltin() returns a
791 /// non-null <Index, Len> pair, then the name is referencing an OpenCL
792 /// builtin function.  Add all candidate signatures to the LookUpResult.
793 ///
794 /// \param S (in) The Sema instance.
795 /// \param LR (inout) The LookupResult instance.
796 /// \param II (in) The identifier being resolved.
797 /// \param FctIndex (in) Starting index in the BuiltinTable.
798 /// \param Len (in) The signature list has Len elements.
799 static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR,
800                                                   IdentifierInfo *II,
801                                                   const unsigned FctIndex,
802                                                   const unsigned Len) {
803   // The builtin function declaration uses generic types (gentype).
804   bool HasGenType = false;
805 
806   // Maximum number of types contained in a generic type used as return type or
807   // as argument.  Only meaningful for generic types, otherwise equals 1.
808   unsigned GenTypeMaxCnt;
809 
810   ASTContext &Context = S.Context;
811 
812   for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) {
813     const OpenCLBuiltinStruct &OpenCLBuiltin =
814         BuiltinTable[FctIndex + SignatureIndex];
815 
816     // Ignore this builtin function if it is not available in the currently
817     // selected language version.
818     if (!isOpenCLVersionContainedInMask(Context.getLangOpts(),
819                                         OpenCLBuiltin.Versions))
820       continue;
821 
822     // Ignore this builtin function if it carries an extension macro that is
823     // not defined. This indicates that the extension is not supported by the
824     // target, so the builtin function should not be available.
825     StringRef Extensions = FunctionExtensionTable[OpenCLBuiltin.Extension];
826     if (!Extensions.empty()) {
827       SmallVector<StringRef, 2> ExtVec;
828       Extensions.split(ExtVec, " ");
829       bool AllExtensionsDefined = true;
830       for (StringRef Ext : ExtVec) {
831         if (!S.getPreprocessor().isMacroDefined(Ext)) {
832           AllExtensionsDefined = false;
833           break;
834         }
835       }
836       if (!AllExtensionsDefined)
837         continue;
838     }
839 
840     SmallVector<QualType, 1> RetTypes;
841     SmallVector<SmallVector<QualType, 1>, 5> ArgTypes;
842 
843     // Obtain QualType lists for the function signature.
844     GetQualTypesForOpenCLBuiltin(S, OpenCLBuiltin, GenTypeMaxCnt, RetTypes,
845                                  ArgTypes);
846     if (GenTypeMaxCnt > 1) {
847       HasGenType = true;
848     }
849 
850     // Create function overload for each type combination.
851     std::vector<QualType> FunctionList;
852     GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes,
853                                  ArgTypes);
854 
855     SourceLocation Loc = LR.getNameLoc();
856     DeclContext *Parent = Context.getTranslationUnitDecl();
857     FunctionDecl *NewOpenCLBuiltin;
858 
859     for (const auto &FTy : FunctionList) {
860       NewOpenCLBuiltin = FunctionDecl::Create(
861           Context, Parent, Loc, Loc, II, FTy, /*TInfo=*/nullptr, SC_Extern,
862           false, FTy->isFunctionProtoType());
863       NewOpenCLBuiltin->setImplicit();
864 
865       // Create Decl objects for each parameter, adding them to the
866       // FunctionDecl.
867       const auto *FP = cast<FunctionProtoType>(FTy);
868       SmallVector<ParmVarDecl *, 4> ParmList;
869       for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) {
870         ParmVarDecl *Parm = ParmVarDecl::Create(
871             Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(),
872             nullptr, FP->getParamType(IParm), nullptr, SC_None, nullptr);
873         Parm->setScopeInfo(0, IParm);
874         ParmList.push_back(Parm);
875       }
876       NewOpenCLBuiltin->setParams(ParmList);
877 
878       // Add function attributes.
879       if (OpenCLBuiltin.IsPure)
880         NewOpenCLBuiltin->addAttr(PureAttr::CreateImplicit(Context));
881       if (OpenCLBuiltin.IsConst)
882         NewOpenCLBuiltin->addAttr(ConstAttr::CreateImplicit(Context));
883       if (OpenCLBuiltin.IsConv)
884         NewOpenCLBuiltin->addAttr(ConvergentAttr::CreateImplicit(Context));
885 
886       if (!S.getLangOpts().OpenCLCPlusPlus)
887         NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context));
888 
889       LR.addDecl(NewOpenCLBuiltin);
890     }
891   }
892 
893   // If we added overloads, need to resolve the lookup result.
894   if (Len > 1 || HasGenType)
895     LR.resolveKind();
896 }
897 
898 /// Lookup a builtin function, when name lookup would otherwise
899 /// fail.
900 bool Sema::LookupBuiltin(LookupResult &R) {
901   Sema::LookupNameKind NameKind = R.getLookupKind();
902 
903   // If we didn't find a use of this identifier, and if the identifier
904   // corresponds to a compiler builtin, create the decl object for the builtin
905   // now, injecting it into translation unit scope, and return it.
906   if (NameKind == Sema::LookupOrdinaryName ||
907       NameKind == Sema::LookupRedeclarationWithLinkage) {
908     IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
909     if (II) {
910       if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) {
911         if (II == getASTContext().getMakeIntegerSeqName()) {
912           R.addDecl(getASTContext().getMakeIntegerSeqDecl());
913           return true;
914         } else if (II == getASTContext().getTypePackElementName()) {
915           R.addDecl(getASTContext().getTypePackElementDecl());
916           return true;
917         }
918       }
919 
920       // Check if this is an OpenCL Builtin, and if so, insert its overloads.
921       if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) {
922         auto Index = isOpenCLBuiltin(II->getName());
923         if (Index.first) {
924           InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1,
925                                                 Index.second);
926           return true;
927         }
928       }
929 
930       // If this is a builtin on this (or all) targets, create the decl.
931       if (unsigned BuiltinID = II->getBuiltinID()) {
932         // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
933         // library functions like 'malloc'. Instead, we'll just error.
934         if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) &&
935             Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
936           return false;
937 
938         if (NamedDecl *D =
939                 LazilyCreateBuiltin(II, BuiltinID, TUScope,
940                                     R.isForRedeclaration(), R.getNameLoc())) {
941           R.addDecl(D);
942           return true;
943         }
944       }
945     }
946   }
947 
948   return false;
949 }
950 
951 /// Looks up the declaration of "struct objc_super" and
952 /// saves it for later use in building builtin declaration of
953 /// objc_msgSendSuper and objc_msgSendSuper_stret.
954 static void LookupPredefedObjCSuperType(Sema &Sema, Scope *S) {
955   ASTContext &Context = Sema.Context;
956   LookupResult Result(Sema, &Context.Idents.get("objc_super"), SourceLocation(),
957                       Sema::LookupTagName);
958   Sema.LookupName(Result, S);
959   if (Result.getResultKind() == LookupResult::Found)
960     if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
961       Context.setObjCSuperType(Context.getTagDeclType(TD));
962 }
963 
964 void Sema::LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID) {
965   if (ID == Builtin::BIobjc_msgSendSuper)
966     LookupPredefedObjCSuperType(*this, S);
967 }
968 
969 /// Determine whether we can declare a special member function within
970 /// the class at this point.
971 static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
972   // We need to have a definition for the class.
973   if (!Class->getDefinition() || Class->isDependentContext())
974     return false;
975 
976   // We can't be in the middle of defining the class.
977   return !Class->isBeingDefined();
978 }
979 
980 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
981   if (!CanDeclareSpecialMemberFunction(Class))
982     return;
983 
984   // If the default constructor has not yet been declared, do so now.
985   if (Class->needsImplicitDefaultConstructor())
986     DeclareImplicitDefaultConstructor(Class);
987 
988   // If the copy constructor has not yet been declared, do so now.
989   if (Class->needsImplicitCopyConstructor())
990     DeclareImplicitCopyConstructor(Class);
991 
992   // If the copy assignment operator has not yet been declared, do so now.
993   if (Class->needsImplicitCopyAssignment())
994     DeclareImplicitCopyAssignment(Class);
995 
996   if (getLangOpts().CPlusPlus11) {
997     // If the move constructor has not yet been declared, do so now.
998     if (Class->needsImplicitMoveConstructor())
999       DeclareImplicitMoveConstructor(Class);
1000 
1001     // If the move assignment operator has not yet been declared, do so now.
1002     if (Class->needsImplicitMoveAssignment())
1003       DeclareImplicitMoveAssignment(Class);
1004   }
1005 
1006   // If the destructor has not yet been declared, do so now.
1007   if (Class->needsImplicitDestructor())
1008     DeclareImplicitDestructor(Class);
1009 }
1010 
1011 /// Determine whether this is the name of an implicitly-declared
1012 /// special member function.
1013 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
1014   switch (Name.getNameKind()) {
1015   case DeclarationName::CXXConstructorName:
1016   case DeclarationName::CXXDestructorName:
1017     return true;
1018 
1019   case DeclarationName::CXXOperatorName:
1020     return Name.getCXXOverloadedOperator() == OO_Equal;
1021 
1022   default:
1023     break;
1024   }
1025 
1026   return false;
1027 }
1028 
1029 /// If there are any implicit member functions with the given name
1030 /// that need to be declared in the given declaration context, do so.
1031 static void DeclareImplicitMemberFunctionsWithName(Sema &S,
1032                                                    DeclarationName Name,
1033                                                    SourceLocation Loc,
1034                                                    const DeclContext *DC) {
1035   if (!DC)
1036     return;
1037 
1038   switch (Name.getNameKind()) {
1039   case DeclarationName::CXXConstructorName:
1040     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
1041       if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
1042         CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
1043         if (Record->needsImplicitDefaultConstructor())
1044           S.DeclareImplicitDefaultConstructor(Class);
1045         if (Record->needsImplicitCopyConstructor())
1046           S.DeclareImplicitCopyConstructor(Class);
1047         if (S.getLangOpts().CPlusPlus11 &&
1048             Record->needsImplicitMoveConstructor())
1049           S.DeclareImplicitMoveConstructor(Class);
1050       }
1051     break;
1052 
1053   case DeclarationName::CXXDestructorName:
1054     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
1055       if (Record->getDefinition() && Record->needsImplicitDestructor() &&
1056           CanDeclareSpecialMemberFunction(Record))
1057         S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
1058     break;
1059 
1060   case DeclarationName::CXXOperatorName:
1061     if (Name.getCXXOverloadedOperator() != OO_Equal)
1062       break;
1063 
1064     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
1065       if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
1066         CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
1067         if (Record->needsImplicitCopyAssignment())
1068           S.DeclareImplicitCopyAssignment(Class);
1069         if (S.getLangOpts().CPlusPlus11 &&
1070             Record->needsImplicitMoveAssignment())
1071           S.DeclareImplicitMoveAssignment(Class);
1072       }
1073     }
1074     break;
1075 
1076   case DeclarationName::CXXDeductionGuideName:
1077     S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc);
1078     break;
1079 
1080   default:
1081     break;
1082   }
1083 }
1084 
1085 // Adds all qualifying matches for a name within a decl context to the
1086 // given lookup result.  Returns true if any matches were found.
1087 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
1088   bool Found = false;
1089 
1090   // Lazily declare C++ special member functions.
1091   if (S.getLangOpts().CPlusPlus)
1092     DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(),
1093                                            DC);
1094 
1095   // Perform lookup into this declaration context.
1096   DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
1097   for (NamedDecl *D : DR) {
1098     if ((D = R.getAcceptableDecl(D))) {
1099       R.addDecl(D);
1100       Found = true;
1101     }
1102   }
1103 
1104   if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R))
1105     return true;
1106 
1107   if (R.getLookupName().getNameKind()
1108         != DeclarationName::CXXConversionFunctionName ||
1109       R.getLookupName().getCXXNameType()->isDependentType() ||
1110       !isa<CXXRecordDecl>(DC))
1111     return Found;
1112 
1113   // C++ [temp.mem]p6:
1114   //   A specialization of a conversion function template is not found by
1115   //   name lookup. Instead, any conversion function templates visible in the
1116   //   context of the use are considered. [...]
1117   const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1118   if (!Record->isCompleteDefinition())
1119     return Found;
1120 
1121   // For conversion operators, 'operator auto' should only match
1122   // 'operator auto'.  Since 'auto' is not a type, it shouldn't be considered
1123   // as a candidate for template substitution.
1124   auto *ContainedDeducedType =
1125       R.getLookupName().getCXXNameType()->getContainedDeducedType();
1126   if (R.getLookupName().getNameKind() ==
1127           DeclarationName::CXXConversionFunctionName &&
1128       ContainedDeducedType && ContainedDeducedType->isUndeducedType())
1129     return Found;
1130 
1131   for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
1132          UEnd = Record->conversion_end(); U != UEnd; ++U) {
1133     FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
1134     if (!ConvTemplate)
1135       continue;
1136 
1137     // When we're performing lookup for the purposes of redeclaration, just
1138     // add the conversion function template. When we deduce template
1139     // arguments for specializations, we'll end up unifying the return
1140     // type of the new declaration with the type of the function template.
1141     if (R.isForRedeclaration()) {
1142       R.addDecl(ConvTemplate);
1143       Found = true;
1144       continue;
1145     }
1146 
1147     // C++ [temp.mem]p6:
1148     //   [...] For each such operator, if argument deduction succeeds
1149     //   (14.9.2.3), the resulting specialization is used as if found by
1150     //   name lookup.
1151     //
1152     // When referencing a conversion function for any purpose other than
1153     // a redeclaration (such that we'll be building an expression with the
1154     // result), perform template argument deduction and place the
1155     // specialization into the result set. We do this to avoid forcing all
1156     // callers to perform special deduction for conversion functions.
1157     TemplateDeductionInfo Info(R.getNameLoc());
1158     FunctionDecl *Specialization = nullptr;
1159 
1160     const FunctionProtoType *ConvProto
1161       = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
1162     assert(ConvProto && "Nonsensical conversion function template type");
1163 
1164     // Compute the type of the function that we would expect the conversion
1165     // function to have, if it were to match the name given.
1166     // FIXME: Calling convention!
1167     FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
1168     EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
1169     EPI.ExceptionSpec = EST_None;
1170     QualType ExpectedType
1171       = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
1172                                             None, EPI);
1173 
1174     // Perform template argument deduction against the type that we would
1175     // expect the function to have.
1176     if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
1177                                             Specialization, Info)
1178           == Sema::TDK_Success) {
1179       R.addDecl(Specialization);
1180       Found = true;
1181     }
1182   }
1183 
1184   return Found;
1185 }
1186 
1187 // Performs C++ unqualified lookup into the given file context.
1188 static bool
1189 CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
1190                    DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
1191 
1192   assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
1193 
1194   // Perform direct name lookup into the LookupCtx.
1195   bool Found = LookupDirect(S, R, NS);
1196 
1197   // Perform direct name lookup into the namespaces nominated by the
1198   // using directives whose common ancestor is this namespace.
1199   for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
1200     if (LookupDirect(S, R, UUE.getNominatedNamespace()))
1201       Found = true;
1202 
1203   R.resolveKind();
1204 
1205   return Found;
1206 }
1207 
1208 static bool isNamespaceOrTranslationUnitScope(Scope *S) {
1209   if (DeclContext *Ctx = S->getEntity())
1210     return Ctx->isFileContext();
1211   return false;
1212 }
1213 
1214 /// Find the outer declaration context from this scope. This indicates the
1215 /// context that we should search up to (exclusive) before considering the
1216 /// parent of the specified scope.
1217 static DeclContext *findOuterContext(Scope *S) {
1218   for (Scope *OuterS = S->getParent(); OuterS; OuterS = OuterS->getParent())
1219     if (DeclContext *DC = OuterS->getLookupEntity())
1220       return DC;
1221   return nullptr;
1222 }
1223 
1224 namespace {
1225 /// An RAII object to specify that we want to find block scope extern
1226 /// declarations.
1227 struct FindLocalExternScope {
1228   FindLocalExternScope(LookupResult &R)
1229       : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
1230                                  Decl::IDNS_LocalExtern) {
1231     R.setFindLocalExtern(R.getIdentifierNamespace() &
1232                          (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator));
1233   }
1234   void restore() {
1235     R.setFindLocalExtern(OldFindLocalExtern);
1236   }
1237   ~FindLocalExternScope() {
1238     restore();
1239   }
1240   LookupResult &R;
1241   bool OldFindLocalExtern;
1242 };
1243 } // end anonymous namespace
1244 
1245 bool Sema::CppLookupName(LookupResult &R, Scope *S) {
1246   assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
1247 
1248   DeclarationName Name = R.getLookupName();
1249   Sema::LookupNameKind NameKind = R.getLookupKind();
1250 
1251   // If this is the name of an implicitly-declared special member function,
1252   // go through the scope stack to implicitly declare
1253   if (isImplicitlyDeclaredMemberFunctionName(Name)) {
1254     for (Scope *PreS = S; PreS; PreS = PreS->getParent())
1255       if (DeclContext *DC = PreS->getEntity())
1256         DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC);
1257   }
1258 
1259   // Implicitly declare member functions with the name we're looking for, if in
1260   // fact we are in a scope where it matters.
1261 
1262   Scope *Initial = S;
1263   IdentifierResolver::iterator
1264     I = IdResolver.begin(Name),
1265     IEnd = IdResolver.end();
1266 
1267   // First we lookup local scope.
1268   // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
1269   // ...During unqualified name lookup (3.4.1), the names appear as if
1270   // they were declared in the nearest enclosing namespace which contains
1271   // both the using-directive and the nominated namespace.
1272   // [Note: in this context, "contains" means "contains directly or
1273   // indirectly".
1274   //
1275   // For example:
1276   // namespace A { int i; }
1277   // void foo() {
1278   //   int i;
1279   //   {
1280   //     using namespace A;
1281   //     ++i; // finds local 'i', A::i appears at global scope
1282   //   }
1283   // }
1284   //
1285   UnqualUsingDirectiveSet UDirs(*this);
1286   bool VisitedUsingDirectives = false;
1287   bool LeftStartingScope = false;
1288 
1289   // When performing a scope lookup, we want to find local extern decls.
1290   FindLocalExternScope FindLocals(R);
1291 
1292   for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
1293     bool SearchNamespaceScope = true;
1294     // Check whether the IdResolver has anything in this scope.
1295     for (; I != IEnd && S->isDeclScope(*I); ++I) {
1296       if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1297         if (NameKind == LookupRedeclarationWithLinkage &&
1298             !(*I)->isTemplateParameter()) {
1299           // If it's a template parameter, we still find it, so we can diagnose
1300           // the invalid redeclaration.
1301 
1302           // Determine whether this (or a previous) declaration is
1303           // out-of-scope.
1304           if (!LeftStartingScope && !Initial->isDeclScope(*I))
1305             LeftStartingScope = true;
1306 
1307           // If we found something outside of our starting scope that
1308           // does not have linkage, skip it.
1309           if (LeftStartingScope && !((*I)->hasLinkage())) {
1310             R.setShadowed();
1311             continue;
1312           }
1313         } else {
1314           // We found something in this scope, we should not look at the
1315           // namespace scope
1316           SearchNamespaceScope = false;
1317         }
1318         R.addDecl(ND);
1319       }
1320     }
1321     if (!SearchNamespaceScope) {
1322       R.resolveKind();
1323       if (S->isClassScope())
1324         if (CXXRecordDecl *Record =
1325                 dyn_cast_or_null<CXXRecordDecl>(S->getEntity()))
1326           R.setNamingClass(Record);
1327       return true;
1328     }
1329 
1330     if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
1331       // C++11 [class.friend]p11:
1332       //   If a friend declaration appears in a local class and the name
1333       //   specified is an unqualified name, a prior declaration is
1334       //   looked up without considering scopes that are outside the
1335       //   innermost enclosing non-class scope.
1336       return false;
1337     }
1338 
1339     if (DeclContext *Ctx = S->getLookupEntity()) {
1340       DeclContext *OuterCtx = findOuterContext(S);
1341       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1342         // We do not directly look into transparent contexts, since
1343         // those entities will be found in the nearest enclosing
1344         // non-transparent context.
1345         if (Ctx->isTransparentContext())
1346           continue;
1347 
1348         // We do not look directly into function or method contexts,
1349         // since all of the local variables and parameters of the
1350         // function/method are present within the Scope.
1351         if (Ctx->isFunctionOrMethod()) {
1352           // If we have an Objective-C instance method, look for ivars
1353           // in the corresponding interface.
1354           if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1355             if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1356               if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1357                 ObjCInterfaceDecl *ClassDeclared;
1358                 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1359                                                  Name.getAsIdentifierInfo(),
1360                                                              ClassDeclared)) {
1361                   if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1362                     R.addDecl(ND);
1363                     R.resolveKind();
1364                     return true;
1365                   }
1366                 }
1367               }
1368           }
1369 
1370           continue;
1371         }
1372 
1373         // If this is a file context, we need to perform unqualified name
1374         // lookup considering using directives.
1375         if (Ctx->isFileContext()) {
1376           // If we haven't handled using directives yet, do so now.
1377           if (!VisitedUsingDirectives) {
1378             // Add using directives from this context up to the top level.
1379             for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1380               if (UCtx->isTransparentContext())
1381                 continue;
1382 
1383               UDirs.visit(UCtx, UCtx);
1384             }
1385 
1386             // Find the innermost file scope, so we can add using directives
1387             // from local scopes.
1388             Scope *InnermostFileScope = S;
1389             while (InnermostFileScope &&
1390                    !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1391               InnermostFileScope = InnermostFileScope->getParent();
1392             UDirs.visitScopeChain(Initial, InnermostFileScope);
1393 
1394             UDirs.done();
1395 
1396             VisitedUsingDirectives = true;
1397           }
1398 
1399           if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1400             R.resolveKind();
1401             return true;
1402           }
1403 
1404           continue;
1405         }
1406 
1407         // Perform qualified name lookup into this context.
1408         // FIXME: In some cases, we know that every name that could be found by
1409         // this qualified name lookup will also be on the identifier chain. For
1410         // example, inside a class without any base classes, we never need to
1411         // perform qualified lookup because all of the members are on top of the
1412         // identifier chain.
1413         if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1414           return true;
1415       }
1416     }
1417   }
1418 
1419   // Stop if we ran out of scopes.
1420   // FIXME:  This really, really shouldn't be happening.
1421   if (!S) return false;
1422 
1423   // If we are looking for members, no need to look into global/namespace scope.
1424   if (NameKind == LookupMemberName)
1425     return false;
1426 
1427   // Collect UsingDirectiveDecls in all scopes, and recursively all
1428   // nominated namespaces by those using-directives.
1429   //
1430   // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1431   // don't build it for each lookup!
1432   if (!VisitedUsingDirectives) {
1433     UDirs.visitScopeChain(Initial, S);
1434     UDirs.done();
1435   }
1436 
1437   // If we're not performing redeclaration lookup, do not look for local
1438   // extern declarations outside of a function scope.
1439   if (!R.isForRedeclaration())
1440     FindLocals.restore();
1441 
1442   // Lookup namespace scope, and global scope.
1443   // Unqualified name lookup in C++ requires looking into scopes
1444   // that aren't strictly lexical, and therefore we walk through the
1445   // context as well as walking through the scopes.
1446   for (; S; S = S->getParent()) {
1447     // Check whether the IdResolver has anything in this scope.
1448     bool Found = false;
1449     for (; I != IEnd && S->isDeclScope(*I); ++I) {
1450       if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1451         // We found something.  Look for anything else in our scope
1452         // with this same name and in an acceptable identifier
1453         // namespace, so that we can construct an overload set if we
1454         // need to.
1455         Found = true;
1456         R.addDecl(ND);
1457       }
1458     }
1459 
1460     if (Found && S->isTemplateParamScope()) {
1461       R.resolveKind();
1462       return true;
1463     }
1464 
1465     DeclContext *Ctx = S->getLookupEntity();
1466     if (Ctx) {
1467       DeclContext *OuterCtx = findOuterContext(S);
1468       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1469         // We do not directly look into transparent contexts, since
1470         // those entities will be found in the nearest enclosing
1471         // non-transparent context.
1472         if (Ctx->isTransparentContext())
1473           continue;
1474 
1475         // If we have a context, and it's not a context stashed in the
1476         // template parameter scope for an out-of-line definition, also
1477         // look into that context.
1478         if (!(Found && S->isTemplateParamScope())) {
1479           assert(Ctx->isFileContext() &&
1480               "We should have been looking only at file context here already.");
1481 
1482           // Look into context considering using-directives.
1483           if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1484             Found = true;
1485         }
1486 
1487         if (Found) {
1488           R.resolveKind();
1489           return true;
1490         }
1491 
1492         if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1493           return false;
1494       }
1495     }
1496 
1497     if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1498       return false;
1499   }
1500 
1501   return !R.empty();
1502 }
1503 
1504 void Sema::makeMergedDefinitionVisible(NamedDecl *ND) {
1505   if (auto *M = getCurrentModule())
1506     Context.mergeDefinitionIntoModule(ND, M);
1507   else
1508     // We're not building a module; just make the definition visible.
1509     ND->setVisibleDespiteOwningModule();
1510 
1511   // If ND is a template declaration, make the template parameters
1512   // visible too. They're not (necessarily) within a mergeable DeclContext.
1513   if (auto *TD = dyn_cast<TemplateDecl>(ND))
1514     for (auto *Param : *TD->getTemplateParameters())
1515       makeMergedDefinitionVisible(Param);
1516 }
1517 
1518 /// Find the module in which the given declaration was defined.
1519 static Module *getDefiningModule(Sema &S, Decl *Entity) {
1520   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1521     // If this function was instantiated from a template, the defining module is
1522     // the module containing the pattern.
1523     if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1524       Entity = Pattern;
1525   } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1526     if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
1527       Entity = Pattern;
1528   } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1529     if (auto *Pattern = ED->getTemplateInstantiationPattern())
1530       Entity = Pattern;
1531   } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1532     if (VarDecl *Pattern = VD->getTemplateInstantiationPattern())
1533       Entity = Pattern;
1534   }
1535 
1536   // Walk up to the containing context. That might also have been instantiated
1537   // from a template.
1538   DeclContext *Context = Entity->getLexicalDeclContext();
1539   if (Context->isFileContext())
1540     return S.getOwningModule(Entity);
1541   return getDefiningModule(S, cast<Decl>(Context));
1542 }
1543 
1544 llvm::DenseSet<Module*> &Sema::getLookupModules() {
1545   unsigned N = CodeSynthesisContexts.size();
1546   for (unsigned I = CodeSynthesisContextLookupModules.size();
1547        I != N; ++I) {
1548     Module *M = CodeSynthesisContexts[I].Entity ?
1549                 getDefiningModule(*this, CodeSynthesisContexts[I].Entity) :
1550                 nullptr;
1551     if (M && !LookupModulesCache.insert(M).second)
1552       M = nullptr;
1553     CodeSynthesisContextLookupModules.push_back(M);
1554   }
1555   return LookupModulesCache;
1556 }
1557 
1558 /// Determine whether the module M is part of the current module from the
1559 /// perspective of a module-private visibility check.
1560 static bool isInCurrentModule(const Module *M, const LangOptions &LangOpts) {
1561   // If M is the global module fragment of a module that we've not yet finished
1562   // parsing, then it must be part of the current module.
1563   return M->getTopLevelModuleName() == LangOpts.CurrentModule ||
1564          (M->Kind == Module::GlobalModuleFragment && !M->Parent);
1565 }
1566 
1567 bool Sema::hasVisibleMergedDefinition(NamedDecl *Def) {
1568   for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1569     if (isModuleVisible(Merged))
1570       return true;
1571   return false;
1572 }
1573 
1574 bool Sema::hasMergedDefinitionInCurrentModule(NamedDecl *Def) {
1575   for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1576     if (isInCurrentModule(Merged, getLangOpts()))
1577       return true;
1578   return false;
1579 }
1580 
1581 template<typename ParmDecl>
1582 static bool
1583 hasVisibleDefaultArgument(Sema &S, const ParmDecl *D,
1584                           llvm::SmallVectorImpl<Module *> *Modules) {
1585   if (!D->hasDefaultArgument())
1586     return false;
1587 
1588   while (D) {
1589     auto &DefaultArg = D->getDefaultArgStorage();
1590     if (!DefaultArg.isInherited() && S.isVisible(D))
1591       return true;
1592 
1593     if (!DefaultArg.isInherited() && Modules) {
1594       auto *NonConstD = const_cast<ParmDecl*>(D);
1595       Modules->push_back(S.getOwningModule(NonConstD));
1596     }
1597 
1598     // If there was a previous default argument, maybe its parameter is visible.
1599     D = DefaultArg.getInheritedFrom();
1600   }
1601   return false;
1602 }
1603 
1604 bool Sema::hasVisibleDefaultArgument(const NamedDecl *D,
1605                                      llvm::SmallVectorImpl<Module *> *Modules) {
1606   if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
1607     return ::hasVisibleDefaultArgument(*this, P, Modules);
1608   if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
1609     return ::hasVisibleDefaultArgument(*this, P, Modules);
1610   return ::hasVisibleDefaultArgument(*this, cast<TemplateTemplateParmDecl>(D),
1611                                      Modules);
1612 }
1613 
1614 template<typename Filter>
1615 static bool hasVisibleDeclarationImpl(Sema &S, const NamedDecl *D,
1616                                       llvm::SmallVectorImpl<Module *> *Modules,
1617                                       Filter F) {
1618   bool HasFilteredRedecls = false;
1619 
1620   for (auto *Redecl : D->redecls()) {
1621     auto *R = cast<NamedDecl>(Redecl);
1622     if (!F(R))
1623       continue;
1624 
1625     if (S.isVisible(R))
1626       return true;
1627 
1628     HasFilteredRedecls = true;
1629 
1630     if (Modules)
1631       Modules->push_back(R->getOwningModule());
1632   }
1633 
1634   // Only return false if there is at least one redecl that is not filtered out.
1635   if (HasFilteredRedecls)
1636     return false;
1637 
1638   return true;
1639 }
1640 
1641 bool Sema::hasVisibleExplicitSpecialization(
1642     const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1643   return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1644     if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1645       return RD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1646     if (auto *FD = dyn_cast<FunctionDecl>(D))
1647       return FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1648     if (auto *VD = dyn_cast<VarDecl>(D))
1649       return VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1650     llvm_unreachable("unknown explicit specialization kind");
1651   });
1652 }
1653 
1654 bool Sema::hasVisibleMemberSpecialization(
1655     const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1656   assert(isa<CXXRecordDecl>(D->getDeclContext()) &&
1657          "not a member specialization");
1658   return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1659     // If the specialization is declared at namespace scope, then it's a member
1660     // specialization declaration. If it's lexically inside the class
1661     // definition then it was instantiated.
1662     //
1663     // FIXME: This is a hack. There should be a better way to determine this.
1664     // FIXME: What about MS-style explicit specializations declared within a
1665     //        class definition?
1666     return D->getLexicalDeclContext()->isFileContext();
1667   });
1668 }
1669 
1670 /// Determine whether a declaration is visible to name lookup.
1671 ///
1672 /// This routine determines whether the declaration D is visible in the current
1673 /// lookup context, taking into account the current template instantiation
1674 /// stack. During template instantiation, a declaration is visible if it is
1675 /// visible from a module containing any entity on the template instantiation
1676 /// path (by instantiating a template, you allow it to see the declarations that
1677 /// your module can see, including those later on in your module).
1678 bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
1679   assert(!D->isUnconditionallyVisible() &&
1680          "should not call this: not in slow case");
1681 
1682   Module *DeclModule = SemaRef.getOwningModule(D);
1683   assert(DeclModule && "hidden decl has no owning module");
1684 
1685   // If the owning module is visible, the decl is visible.
1686   if (SemaRef.isModuleVisible(DeclModule, D->isModulePrivate()))
1687     return true;
1688 
1689   // Determine whether a decl context is a file context for the purpose of
1690   // visibility. This looks through some (export and linkage spec) transparent
1691   // contexts, but not others (enums).
1692   auto IsEffectivelyFileContext = [](const DeclContext *DC) {
1693     return DC->isFileContext() || isa<LinkageSpecDecl>(DC) ||
1694            isa<ExportDecl>(DC);
1695   };
1696 
1697   // If this declaration is not at namespace scope
1698   // then it is visible if its lexical parent has a visible definition.
1699   DeclContext *DC = D->getLexicalDeclContext();
1700   if (DC && !IsEffectivelyFileContext(DC)) {
1701     // For a parameter, check whether our current template declaration's
1702     // lexical context is visible, not whether there's some other visible
1703     // definition of it, because parameters aren't "within" the definition.
1704     //
1705     // In C++ we need to check for a visible definition due to ODR merging,
1706     // and in C we must not because each declaration of a function gets its own
1707     // set of declarations for tags in prototype scope.
1708     bool VisibleWithinParent;
1709     if (D->isTemplateParameter()) {
1710       bool SearchDefinitions = true;
1711       if (const auto *DCD = dyn_cast<Decl>(DC)) {
1712         if (const auto *TD = DCD->getDescribedTemplate()) {
1713           TemplateParameterList *TPL = TD->getTemplateParameters();
1714           auto Index = getDepthAndIndex(D).second;
1715           SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D;
1716         }
1717       }
1718       if (SearchDefinitions)
1719         VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC));
1720       else
1721         VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC));
1722     } else if (isa<ParmVarDecl>(D) ||
1723                (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus))
1724       VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC));
1725     else if (D->isModulePrivate()) {
1726       // A module-private declaration is only visible if an enclosing lexical
1727       // parent was merged with another definition in the current module.
1728       VisibleWithinParent = false;
1729       do {
1730         if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) {
1731           VisibleWithinParent = true;
1732           break;
1733         }
1734         DC = DC->getLexicalParent();
1735       } while (!IsEffectivelyFileContext(DC));
1736     } else {
1737       VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC));
1738     }
1739 
1740     if (VisibleWithinParent && SemaRef.CodeSynthesisContexts.empty() &&
1741         // FIXME: Do something better in this case.
1742         !SemaRef.getLangOpts().ModulesLocalVisibility) {
1743       // Cache the fact that this declaration is implicitly visible because
1744       // its parent has a visible definition.
1745       D->setVisibleDespiteOwningModule();
1746     }
1747     return VisibleWithinParent;
1748   }
1749 
1750   return false;
1751 }
1752 
1753 bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) {
1754   // The module might be ordinarily visible. For a module-private query, that
1755   // means it is part of the current module. For any other query, that means it
1756   // is in our visible module set.
1757   if (ModulePrivate) {
1758     if (isInCurrentModule(M, getLangOpts()))
1759       return true;
1760   } else {
1761     if (VisibleModules.isVisible(M))
1762       return true;
1763   }
1764 
1765   // Otherwise, it might be visible by virtue of the query being within a
1766   // template instantiation or similar that is permitted to look inside M.
1767 
1768   // Find the extra places where we need to look.
1769   const auto &LookupModules = getLookupModules();
1770   if (LookupModules.empty())
1771     return false;
1772 
1773   // If our lookup set contains the module, it's visible.
1774   if (LookupModules.count(M))
1775     return true;
1776 
1777   // For a module-private query, that's everywhere we get to look.
1778   if (ModulePrivate)
1779     return false;
1780 
1781   // Check whether M is transitively exported to an import of the lookup set.
1782   return llvm::any_of(LookupModules, [&](const Module *LookupM) {
1783     return LookupM->isModuleVisible(M);
1784   });
1785 }
1786 
1787 bool Sema::isVisibleSlow(const NamedDecl *D) {
1788   return LookupResult::isVisible(*this, const_cast<NamedDecl*>(D));
1789 }
1790 
1791 bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
1792   // FIXME: If there are both visible and hidden declarations, we need to take
1793   // into account whether redeclaration is possible. Example:
1794   //
1795   // Non-imported module:
1796   //   int f(T);        // #1
1797   // Some TU:
1798   //   static int f(U); // #2, not a redeclaration of #1
1799   //   int f(T);        // #3, finds both, should link with #1 if T != U, but
1800   //                    // with #2 if T == U; neither should be ambiguous.
1801   for (auto *D : R) {
1802     if (isVisible(D))
1803       return true;
1804     assert(D->isExternallyDeclarable() &&
1805            "should not have hidden, non-externally-declarable result here");
1806   }
1807 
1808   // This function is called once "New" is essentially complete, but before a
1809   // previous declaration is attached. We can't query the linkage of "New" in
1810   // general, because attaching the previous declaration can change the
1811   // linkage of New to match the previous declaration.
1812   //
1813   // However, because we've just determined that there is no *visible* prior
1814   // declaration, we can compute the linkage here. There are two possibilities:
1815   //
1816   //  * This is not a redeclaration; it's safe to compute the linkage now.
1817   //
1818   //  * This is a redeclaration of a prior declaration that is externally
1819   //    redeclarable. In that case, the linkage of the declaration is not
1820   //    changed by attaching the prior declaration, because both are externally
1821   //    declarable (and thus ExternalLinkage or VisibleNoLinkage).
1822   //
1823   // FIXME: This is subtle and fragile.
1824   return New->isExternallyDeclarable();
1825 }
1826 
1827 /// Retrieve the visible declaration corresponding to D, if any.
1828 ///
1829 /// This routine determines whether the declaration D is visible in the current
1830 /// module, with the current imports. If not, it checks whether any
1831 /// redeclaration of D is visible, and if so, returns that declaration.
1832 ///
1833 /// \returns D, or a visible previous declaration of D, whichever is more recent
1834 /// and visible. If no declaration of D is visible, returns null.
1835 static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D,
1836                                      unsigned IDNS) {
1837   assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case");
1838 
1839   for (auto RD : D->redecls()) {
1840     // Don't bother with extra checks if we already know this one isn't visible.
1841     if (RD == D)
1842       continue;
1843 
1844     auto ND = cast<NamedDecl>(RD);
1845     // FIXME: This is wrong in the case where the previous declaration is not
1846     // visible in the same scope as D. This needs to be done much more
1847     // carefully.
1848     if (ND->isInIdentifierNamespace(IDNS) &&
1849         LookupResult::isVisible(SemaRef, ND))
1850       return ND;
1851   }
1852 
1853   return nullptr;
1854 }
1855 
1856 bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D,
1857                                      llvm::SmallVectorImpl<Module *> *Modules) {
1858   assert(!isVisible(D) && "not in slow case");
1859   return hasVisibleDeclarationImpl(*this, D, Modules,
1860                                    [](const NamedDecl *) { return true; });
1861 }
1862 
1863 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
1864   if (auto *ND = dyn_cast<NamespaceDecl>(D)) {
1865     // Namespaces are a bit of a special case: we expect there to be a lot of
1866     // redeclarations of some namespaces, all declarations of a namespace are
1867     // essentially interchangeable, all declarations are found by name lookup
1868     // if any is, and namespaces are never looked up during template
1869     // instantiation. So we benefit from caching the check in this case, and
1870     // it is correct to do so.
1871     auto *Key = ND->getCanonicalDecl();
1872     if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key))
1873       return Acceptable;
1874     auto *Acceptable = isVisible(getSema(), Key)
1875                            ? Key
1876                            : findAcceptableDecl(getSema(), Key, IDNS);
1877     if (Acceptable)
1878       getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable));
1879     return Acceptable;
1880   }
1881 
1882   return findAcceptableDecl(getSema(), D, IDNS);
1883 }
1884 
1885 /// Perform unqualified name lookup starting from a given
1886 /// scope.
1887 ///
1888 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1889 /// used to find names within the current scope. For example, 'x' in
1890 /// @code
1891 /// int x;
1892 /// int f() {
1893 ///   return x; // unqualified name look finds 'x' in the global scope
1894 /// }
1895 /// @endcode
1896 ///
1897 /// Different lookup criteria can find different names. For example, a
1898 /// particular scope can have both a struct and a function of the same
1899 /// name, and each can be found by certain lookup criteria. For more
1900 /// information about lookup criteria, see the documentation for the
1901 /// class LookupCriteria.
1902 ///
1903 /// @param S        The scope from which unqualified name lookup will
1904 /// begin. If the lookup criteria permits, name lookup may also search
1905 /// in the parent scopes.
1906 ///
1907 /// @param [in,out] R Specifies the lookup to perform (e.g., the name to
1908 /// look up and the lookup kind), and is updated with the results of lookup
1909 /// including zero or more declarations and possibly additional information
1910 /// used to diagnose ambiguities.
1911 ///
1912 /// @returns \c true if lookup succeeded and false otherwise.
1913 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1914   DeclarationName Name = R.getLookupName();
1915   if (!Name) return false;
1916 
1917   LookupNameKind NameKind = R.getLookupKind();
1918 
1919   if (!getLangOpts().CPlusPlus) {
1920     // Unqualified name lookup in C/Objective-C is purely lexical, so
1921     // search in the declarations attached to the name.
1922     if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1923       // Find the nearest non-transparent declaration scope.
1924       while (!(S->getFlags() & Scope::DeclScope) ||
1925              (S->getEntity() && S->getEntity()->isTransparentContext()))
1926         S = S->getParent();
1927     }
1928 
1929     // When performing a scope lookup, we want to find local extern decls.
1930     FindLocalExternScope FindLocals(R);
1931 
1932     // Scan up the scope chain looking for a decl that matches this
1933     // identifier that is in the appropriate namespace.  This search
1934     // should not take long, as shadowing of names is uncommon, and
1935     // deep shadowing is extremely uncommon.
1936     bool LeftStartingScope = false;
1937 
1938     for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1939                                    IEnd = IdResolver.end();
1940          I != IEnd; ++I)
1941       if (NamedDecl *D = R.getAcceptableDecl(*I)) {
1942         if (NameKind == LookupRedeclarationWithLinkage) {
1943           // Determine whether this (or a previous) declaration is
1944           // out-of-scope.
1945           if (!LeftStartingScope && !S->isDeclScope(*I))
1946             LeftStartingScope = true;
1947 
1948           // If we found something outside of our starting scope that
1949           // does not have linkage, skip it.
1950           if (LeftStartingScope && !((*I)->hasLinkage())) {
1951             R.setShadowed();
1952             continue;
1953           }
1954         }
1955         else if (NameKind == LookupObjCImplicitSelfParam &&
1956                  !isa<ImplicitParamDecl>(*I))
1957           continue;
1958 
1959         R.addDecl(D);
1960 
1961         // Check whether there are any other declarations with the same name
1962         // and in the same scope.
1963         if (I != IEnd) {
1964           // Find the scope in which this declaration was declared (if it
1965           // actually exists in a Scope).
1966           while (S && !S->isDeclScope(D))
1967             S = S->getParent();
1968 
1969           // If the scope containing the declaration is the translation unit,
1970           // then we'll need to perform our checks based on the matching
1971           // DeclContexts rather than matching scopes.
1972           if (S && isNamespaceOrTranslationUnitScope(S))
1973             S = nullptr;
1974 
1975           // Compute the DeclContext, if we need it.
1976           DeclContext *DC = nullptr;
1977           if (!S)
1978             DC = (*I)->getDeclContext()->getRedeclContext();
1979 
1980           IdentifierResolver::iterator LastI = I;
1981           for (++LastI; LastI != IEnd; ++LastI) {
1982             if (S) {
1983               // Match based on scope.
1984               if (!S->isDeclScope(*LastI))
1985                 break;
1986             } else {
1987               // Match based on DeclContext.
1988               DeclContext *LastDC
1989                 = (*LastI)->getDeclContext()->getRedeclContext();
1990               if (!LastDC->Equals(DC))
1991                 break;
1992             }
1993 
1994             // If the declaration is in the right namespace and visible, add it.
1995             if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
1996               R.addDecl(LastD);
1997           }
1998 
1999           R.resolveKind();
2000         }
2001 
2002         return true;
2003       }
2004   } else {
2005     // Perform C++ unqualified name lookup.
2006     if (CppLookupName(R, S))
2007       return true;
2008   }
2009 
2010   // If we didn't find a use of this identifier, and if the identifier
2011   // corresponds to a compiler builtin, create the decl object for the builtin
2012   // now, injecting it into translation unit scope, and return it.
2013   if (AllowBuiltinCreation && LookupBuiltin(R))
2014     return true;
2015 
2016   // If we didn't find a use of this identifier, the ExternalSource
2017   // may be able to handle the situation.
2018   // Note: some lookup failures are expected!
2019   // See e.g. R.isForRedeclaration().
2020   return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
2021 }
2022 
2023 /// Perform qualified name lookup in the namespaces nominated by
2024 /// using directives by the given context.
2025 ///
2026 /// C++98 [namespace.qual]p2:
2027 ///   Given X::m (where X is a user-declared namespace), or given \::m
2028 ///   (where X is the global namespace), let S be the set of all
2029 ///   declarations of m in X and in the transitive closure of all
2030 ///   namespaces nominated by using-directives in X and its used
2031 ///   namespaces, except that using-directives are ignored in any
2032 ///   namespace, including X, directly containing one or more
2033 ///   declarations of m. No namespace is searched more than once in
2034 ///   the lookup of a name. If S is the empty set, the program is
2035 ///   ill-formed. Otherwise, if S has exactly one member, or if the
2036 ///   context of the reference is a using-declaration
2037 ///   (namespace.udecl), S is the required set of declarations of
2038 ///   m. Otherwise if the use of m is not one that allows a unique
2039 ///   declaration to be chosen from S, the program is ill-formed.
2040 ///
2041 /// C++98 [namespace.qual]p5:
2042 ///   During the lookup of a qualified namespace member name, if the
2043 ///   lookup finds more than one declaration of the member, and if one
2044 ///   declaration introduces a class name or enumeration name and the
2045 ///   other declarations either introduce the same object, the same
2046 ///   enumerator or a set of functions, the non-type name hides the
2047 ///   class or enumeration name if and only if the declarations are
2048 ///   from the same namespace; otherwise (the declarations are from
2049 ///   different namespaces), the program is ill-formed.
2050 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
2051                                                  DeclContext *StartDC) {
2052   assert(StartDC->isFileContext() && "start context is not a file context");
2053 
2054   // We have not yet looked into these namespaces, much less added
2055   // their "using-children" to the queue.
2056   SmallVector<NamespaceDecl*, 8> Queue;
2057 
2058   // We have at least added all these contexts to the queue.
2059   llvm::SmallPtrSet<DeclContext*, 8> Visited;
2060   Visited.insert(StartDC);
2061 
2062   // We have already looked into the initial namespace; seed the queue
2063   // with its using-children.
2064   for (auto *I : StartDC->using_directives()) {
2065     NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
2066     if (S.isVisible(I) && Visited.insert(ND).second)
2067       Queue.push_back(ND);
2068   }
2069 
2070   // The easiest way to implement the restriction in [namespace.qual]p5
2071   // is to check whether any of the individual results found a tag
2072   // and, if so, to declare an ambiguity if the final result is not
2073   // a tag.
2074   bool FoundTag = false;
2075   bool FoundNonTag = false;
2076 
2077   LookupResult LocalR(LookupResult::Temporary, R);
2078 
2079   bool Found = false;
2080   while (!Queue.empty()) {
2081     NamespaceDecl *ND = Queue.pop_back_val();
2082 
2083     // We go through some convolutions here to avoid copying results
2084     // between LookupResults.
2085     bool UseLocal = !R.empty();
2086     LookupResult &DirectR = UseLocal ? LocalR : R;
2087     bool FoundDirect = LookupDirect(S, DirectR, ND);
2088 
2089     if (FoundDirect) {
2090       // First do any local hiding.
2091       DirectR.resolveKind();
2092 
2093       // If the local result is a tag, remember that.
2094       if (DirectR.isSingleTagDecl())
2095         FoundTag = true;
2096       else
2097         FoundNonTag = true;
2098 
2099       // Append the local results to the total results if necessary.
2100       if (UseLocal) {
2101         R.addAllDecls(LocalR);
2102         LocalR.clear();
2103       }
2104     }
2105 
2106     // If we find names in this namespace, ignore its using directives.
2107     if (FoundDirect) {
2108       Found = true;
2109       continue;
2110     }
2111 
2112     for (auto I : ND->using_directives()) {
2113       NamespaceDecl *Nom = I->getNominatedNamespace();
2114       if (S.isVisible(I) && Visited.insert(Nom).second)
2115         Queue.push_back(Nom);
2116     }
2117   }
2118 
2119   if (Found) {
2120     if (FoundTag && FoundNonTag)
2121       R.setAmbiguousQualifiedTagHiding();
2122     else
2123       R.resolveKind();
2124   }
2125 
2126   return Found;
2127 }
2128 
2129 /// Perform qualified name lookup into a given context.
2130 ///
2131 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
2132 /// names when the context of those names is explicit specified, e.g.,
2133 /// "std::vector" or "x->member", or as part of unqualified name lookup.
2134 ///
2135 /// Different lookup criteria can find different names. For example, a
2136 /// particular scope can have both a struct and a function of the same
2137 /// name, and each can be found by certain lookup criteria. For more
2138 /// information about lookup criteria, see the documentation for the
2139 /// class LookupCriteria.
2140 ///
2141 /// \param R captures both the lookup criteria and any lookup results found.
2142 ///
2143 /// \param LookupCtx The context in which qualified name lookup will
2144 /// search. If the lookup criteria permits, name lookup may also search
2145 /// in the parent contexts or (for C++ classes) base classes.
2146 ///
2147 /// \param InUnqualifiedLookup true if this is qualified name lookup that
2148 /// occurs as part of unqualified name lookup.
2149 ///
2150 /// \returns true if lookup succeeded, false if it failed.
2151 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2152                                bool InUnqualifiedLookup) {
2153   assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
2154 
2155   if (!R.getLookupName())
2156     return false;
2157 
2158   // Make sure that the declaration context is complete.
2159   assert((!isa<TagDecl>(LookupCtx) ||
2160           LookupCtx->isDependentContext() ||
2161           cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
2162           cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
2163          "Declaration context must already be complete!");
2164 
2165   struct QualifiedLookupInScope {
2166     bool oldVal;
2167     DeclContext *Context;
2168     // Set flag in DeclContext informing debugger that we're looking for qualified name
2169     QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) {
2170       oldVal = ctx->setUseQualifiedLookup();
2171     }
2172     ~QualifiedLookupInScope() {
2173       Context->setUseQualifiedLookup(oldVal);
2174     }
2175   } QL(LookupCtx);
2176 
2177   if (LookupDirect(*this, R, LookupCtx)) {
2178     R.resolveKind();
2179     if (isa<CXXRecordDecl>(LookupCtx))
2180       R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
2181     return true;
2182   }
2183 
2184   // Don't descend into implied contexts for redeclarations.
2185   // C++98 [namespace.qual]p6:
2186   //   In a declaration for a namespace member in which the
2187   //   declarator-id is a qualified-id, given that the qualified-id
2188   //   for the namespace member has the form
2189   //     nested-name-specifier unqualified-id
2190   //   the unqualified-id shall name a member of the namespace
2191   //   designated by the nested-name-specifier.
2192   // See also [class.mfct]p5 and [class.static.data]p2.
2193   if (R.isForRedeclaration())
2194     return false;
2195 
2196   // If this is a namespace, look it up in the implied namespaces.
2197   if (LookupCtx->isFileContext())
2198     return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
2199 
2200   // If this isn't a C++ class, we aren't allowed to look into base
2201   // classes, we're done.
2202   CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
2203   if (!LookupRec || !LookupRec->getDefinition())
2204     return false;
2205 
2206   // We're done for lookups that can never succeed for C++ classes.
2207   if (R.getLookupKind() == LookupOperatorName ||
2208       R.getLookupKind() == LookupNamespaceName ||
2209       R.getLookupKind() == LookupObjCProtocolName ||
2210       R.getLookupKind() == LookupLabel)
2211     return false;
2212 
2213   // If we're performing qualified name lookup into a dependent class,
2214   // then we are actually looking into a current instantiation. If we have any
2215   // dependent base classes, then we either have to delay lookup until
2216   // template instantiation time (at which point all bases will be available)
2217   // or we have to fail.
2218   if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
2219       LookupRec->hasAnyDependentBases()) {
2220     R.setNotFoundInCurrentInstantiation();
2221     return false;
2222   }
2223 
2224   // Perform lookup into our base classes.
2225 
2226   DeclarationName Name = R.getLookupName();
2227   unsigned IDNS = R.getIdentifierNamespace();
2228 
2229   // Look for this member in our base classes.
2230   auto BaseCallback = [Name, IDNS](const CXXBaseSpecifier *Specifier,
2231                                    CXXBasePath &Path) -> bool {
2232     CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl();
2233     // Drop leading non-matching lookup results from the declaration list so
2234     // we don't need to consider them again below.
2235     for (Path.Decls = BaseRecord->lookup(Name).begin();
2236          Path.Decls != Path.Decls.end(); ++Path.Decls) {
2237       if ((*Path.Decls)->isInIdentifierNamespace(IDNS))
2238         return true;
2239     }
2240     return false;
2241   };
2242 
2243   CXXBasePaths Paths;
2244   Paths.setOrigin(LookupRec);
2245   if (!LookupRec->lookupInBases(BaseCallback, Paths))
2246     return false;
2247 
2248   R.setNamingClass(LookupRec);
2249 
2250   // C++ [class.member.lookup]p2:
2251   //   [...] If the resulting set of declarations are not all from
2252   //   sub-objects of the same type, or the set has a nonstatic member
2253   //   and includes members from distinct sub-objects, there is an
2254   //   ambiguity and the program is ill-formed. Otherwise that set is
2255   //   the result of the lookup.
2256   QualType SubobjectType;
2257   int SubobjectNumber = 0;
2258   AccessSpecifier SubobjectAccess = AS_none;
2259 
2260   // Check whether the given lookup result contains only static members.
2261   auto HasOnlyStaticMembers = [&](DeclContext::lookup_iterator Result) {
2262     for (DeclContext::lookup_iterator I = Result, E = I.end(); I != E; ++I)
2263       if ((*I)->isInIdentifierNamespace(IDNS) && (*I)->isCXXInstanceMember())
2264         return false;
2265     return true;
2266   };
2267 
2268   bool TemplateNameLookup = R.isTemplateNameLookup();
2269 
2270   // Determine whether two sets of members contain the same members, as
2271   // required by C++ [class.member.lookup]p6.
2272   auto HasSameDeclarations = [&](DeclContext::lookup_iterator A,
2273                                  DeclContext::lookup_iterator B) {
2274     using Iterator = DeclContextLookupResult::iterator;
2275     using Result = const void *;
2276 
2277     auto Next = [&](Iterator &It, Iterator End) -> Result {
2278       while (It != End) {
2279         NamedDecl *ND = *It++;
2280         if (!ND->isInIdentifierNamespace(IDNS))
2281           continue;
2282 
2283         // C++ [temp.local]p3:
2284         //   A lookup that finds an injected-class-name (10.2) can result in
2285         //   an ambiguity in certain cases (for example, if it is found in
2286         //   more than one base class). If all of the injected-class-names
2287         //   that are found refer to specializations of the same class
2288         //   template, and if the name is used as a template-name, the
2289         //   reference refers to the class template itself and not a
2290         //   specialization thereof, and is not ambiguous.
2291         if (TemplateNameLookup)
2292           if (auto *TD = getAsTemplateNameDecl(ND))
2293             ND = TD;
2294 
2295         // C++ [class.member.lookup]p3:
2296         //   type declarations (including injected-class-names) are replaced by
2297         //   the types they designate
2298         if (const TypeDecl *TD = dyn_cast<TypeDecl>(ND->getUnderlyingDecl())) {
2299           QualType T = Context.getTypeDeclType(TD);
2300           return T.getCanonicalType().getAsOpaquePtr();
2301         }
2302 
2303         return ND->getUnderlyingDecl()->getCanonicalDecl();
2304       }
2305       return nullptr;
2306     };
2307 
2308     // We'll often find the declarations are in the same order. Handle this
2309     // case (and the special case of only one declaration) efficiently.
2310     Iterator AIt = A, BIt = B, AEnd, BEnd;
2311     while (true) {
2312       Result AResult = Next(AIt, AEnd);
2313       Result BResult = Next(BIt, BEnd);
2314       if (!AResult && !BResult)
2315         return true;
2316       if (!AResult || !BResult)
2317         return false;
2318       if (AResult != BResult) {
2319         // Found a mismatch; carefully check both lists, accounting for the
2320         // possibility of declarations appearing more than once.
2321         llvm::SmallDenseMap<Result, bool, 32> AResults;
2322         for (; AResult; AResult = Next(AIt, AEnd))
2323           AResults.insert({AResult, /*FoundInB*/false});
2324         unsigned Found = 0;
2325         for (; BResult; BResult = Next(BIt, BEnd)) {
2326           auto It = AResults.find(BResult);
2327           if (It == AResults.end())
2328             return false;
2329           if (!It->second) {
2330             It->second = true;
2331             ++Found;
2332           }
2333         }
2334         return AResults.size() == Found;
2335       }
2336     }
2337   };
2338 
2339   for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
2340        Path != PathEnd; ++Path) {
2341     const CXXBasePathElement &PathElement = Path->back();
2342 
2343     // Pick the best (i.e. most permissive i.e. numerically lowest) access
2344     // across all paths.
2345     SubobjectAccess = std::min(SubobjectAccess, Path->Access);
2346 
2347     // Determine whether we're looking at a distinct sub-object or not.
2348     if (SubobjectType.isNull()) {
2349       // This is the first subobject we've looked at. Record its type.
2350       SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
2351       SubobjectNumber = PathElement.SubobjectNumber;
2352       continue;
2353     }
2354 
2355     if (SubobjectType !=
2356         Context.getCanonicalType(PathElement.Base->getType())) {
2357       // We found members of the given name in two subobjects of
2358       // different types. If the declaration sets aren't the same, this
2359       // lookup is ambiguous.
2360       //
2361       // FIXME: The language rule says that this applies irrespective of
2362       // whether the sets contain only static members.
2363       if (HasOnlyStaticMembers(Path->Decls) &&
2364           HasSameDeclarations(Paths.begin()->Decls, Path->Decls))
2365         continue;
2366 
2367       R.setAmbiguousBaseSubobjectTypes(Paths);
2368       return true;
2369     }
2370 
2371     // FIXME: This language rule no longer exists. Checking for ambiguous base
2372     // subobjects should be done as part of formation of a class member access
2373     // expression (when converting the object parameter to the member's type).
2374     if (SubobjectNumber != PathElement.SubobjectNumber) {
2375       // We have a different subobject of the same type.
2376 
2377       // C++ [class.member.lookup]p5:
2378       //   A static member, a nested type or an enumerator defined in
2379       //   a base class T can unambiguously be found even if an object
2380       //   has more than one base class subobject of type T.
2381       if (HasOnlyStaticMembers(Path->Decls))
2382         continue;
2383 
2384       // We have found a nonstatic member name in multiple, distinct
2385       // subobjects. Name lookup is ambiguous.
2386       R.setAmbiguousBaseSubobjects(Paths);
2387       return true;
2388     }
2389   }
2390 
2391   // Lookup in a base class succeeded; return these results.
2392 
2393   for (DeclContext::lookup_iterator I = Paths.front().Decls, E = I.end();
2394        I != E; ++I) {
2395     AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
2396                                                     (*I)->getAccess());
2397     if (NamedDecl *ND = R.getAcceptableDecl(*I))
2398       R.addDecl(ND, AS);
2399   }
2400   R.resolveKind();
2401   return true;
2402 }
2403 
2404 /// Performs qualified name lookup or special type of lookup for
2405 /// "__super::" scope specifier.
2406 ///
2407 /// This routine is a convenience overload meant to be called from contexts
2408 /// that need to perform a qualified name lookup with an optional C++ scope
2409 /// specifier that might require special kind of lookup.
2410 ///
2411 /// \param R captures both the lookup criteria and any lookup results found.
2412 ///
2413 /// \param LookupCtx The context in which qualified name lookup will
2414 /// search.
2415 ///
2416 /// \param SS An optional C++ scope-specifier.
2417 ///
2418 /// \returns true if lookup succeeded, false if it failed.
2419 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2420                                CXXScopeSpec &SS) {
2421   auto *NNS = SS.getScopeRep();
2422   if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
2423     return LookupInSuper(R, NNS->getAsRecordDecl());
2424   else
2425 
2426     return LookupQualifiedName(R, LookupCtx);
2427 }
2428 
2429 /// Performs name lookup for a name that was parsed in the
2430 /// source code, and may contain a C++ scope specifier.
2431 ///
2432 /// This routine is a convenience routine meant to be called from
2433 /// contexts that receive a name and an optional C++ scope specifier
2434 /// (e.g., "N::M::x"). It will then perform either qualified or
2435 /// unqualified name lookup (with LookupQualifiedName or LookupName,
2436 /// respectively) on the given name and return those results. It will
2437 /// perform a special type of lookup for "__super::" scope specifier.
2438 ///
2439 /// @param S        The scope from which unqualified name lookup will
2440 /// begin.
2441 ///
2442 /// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
2443 ///
2444 /// @param EnteringContext Indicates whether we are going to enter the
2445 /// context of the scope-specifier SS (if present).
2446 ///
2447 /// @returns True if any decls were found (but possibly ambiguous)
2448 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
2449                             bool AllowBuiltinCreation, bool EnteringContext) {
2450   if (SS && SS->isInvalid()) {
2451     // When the scope specifier is invalid, don't even look for
2452     // anything.
2453     return false;
2454   }
2455 
2456   if (SS && SS->isSet()) {
2457     NestedNameSpecifier *NNS = SS->getScopeRep();
2458     if (NNS->getKind() == NestedNameSpecifier::Super)
2459       return LookupInSuper(R, NNS->getAsRecordDecl());
2460 
2461     if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
2462       // We have resolved the scope specifier to a particular declaration
2463       // contex, and will perform name lookup in that context.
2464       if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
2465         return false;
2466 
2467       R.setContextRange(SS->getRange());
2468       return LookupQualifiedName(R, DC);
2469     }
2470 
2471     // We could not resolve the scope specified to a specific declaration
2472     // context, which means that SS refers to an unknown specialization.
2473     // Name lookup can't find anything in this case.
2474     R.setNotFoundInCurrentInstantiation();
2475     R.setContextRange(SS->getRange());
2476     return false;
2477   }
2478 
2479   // Perform unqualified name lookup starting in the given scope.
2480   return LookupName(R, S, AllowBuiltinCreation);
2481 }
2482 
2483 /// Perform qualified name lookup into all base classes of the given
2484 /// class.
2485 ///
2486 /// \param R captures both the lookup criteria and any lookup results found.
2487 ///
2488 /// \param Class The context in which qualified name lookup will
2489 /// search. Name lookup will search in all base classes merging the results.
2490 ///
2491 /// @returns True if any decls were found (but possibly ambiguous)
2492 bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
2493   // The access-control rules we use here are essentially the rules for
2494   // doing a lookup in Class that just magically skipped the direct
2495   // members of Class itself.  That is, the naming class is Class, and the
2496   // access includes the access of the base.
2497   for (const auto &BaseSpec : Class->bases()) {
2498     CXXRecordDecl *RD = cast<CXXRecordDecl>(
2499         BaseSpec.getType()->castAs<RecordType>()->getDecl());
2500     LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
2501     Result.setBaseObjectType(Context.getRecordType(Class));
2502     LookupQualifiedName(Result, RD);
2503 
2504     // Copy the lookup results into the target, merging the base's access into
2505     // the path access.
2506     for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
2507       R.addDecl(I.getDecl(),
2508                 CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
2509                                            I.getAccess()));
2510     }
2511 
2512     Result.suppressDiagnostics();
2513   }
2514 
2515   R.resolveKind();
2516   R.setNamingClass(Class);
2517 
2518   return !R.empty();
2519 }
2520 
2521 /// Produce a diagnostic describing the ambiguity that resulted
2522 /// from name lookup.
2523 ///
2524 /// \param Result The result of the ambiguous lookup to be diagnosed.
2525 void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
2526   assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
2527 
2528   DeclarationName Name = Result.getLookupName();
2529   SourceLocation NameLoc = Result.getNameLoc();
2530   SourceRange LookupRange = Result.getContextRange();
2531 
2532   switch (Result.getAmbiguityKind()) {
2533   case LookupResult::AmbiguousBaseSubobjects: {
2534     CXXBasePaths *Paths = Result.getBasePaths();
2535     QualType SubobjectType = Paths->front().back().Base->getType();
2536     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
2537       << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
2538       << LookupRange;
2539 
2540     DeclContext::lookup_iterator Found = Paths->front().Decls;
2541     while (isa<CXXMethodDecl>(*Found) &&
2542            cast<CXXMethodDecl>(*Found)->isStatic())
2543       ++Found;
2544 
2545     Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
2546     break;
2547   }
2548 
2549   case LookupResult::AmbiguousBaseSubobjectTypes: {
2550     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
2551       << Name << LookupRange;
2552 
2553     CXXBasePaths *Paths = Result.getBasePaths();
2554     std::set<const NamedDecl *> DeclsPrinted;
2555     for (CXXBasePaths::paths_iterator Path = Paths->begin(),
2556                                       PathEnd = Paths->end();
2557          Path != PathEnd; ++Path) {
2558       const NamedDecl *D = *Path->Decls;
2559       if (!D->isInIdentifierNamespace(Result.getIdentifierNamespace()))
2560         continue;
2561       if (DeclsPrinted.insert(D).second) {
2562         if (const auto *TD = dyn_cast<TypedefNameDecl>(D->getUnderlyingDecl()))
2563           Diag(D->getLocation(), diag::note_ambiguous_member_type_found)
2564               << TD->getUnderlyingType();
2565         else if (const auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
2566           Diag(D->getLocation(), diag::note_ambiguous_member_type_found)
2567               << Context.getTypeDeclType(TD);
2568         else
2569           Diag(D->getLocation(), diag::note_ambiguous_member_found);
2570       }
2571     }
2572     break;
2573   }
2574 
2575   case LookupResult::AmbiguousTagHiding: {
2576     Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
2577 
2578     llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
2579 
2580     for (auto *D : Result)
2581       if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
2582         TagDecls.insert(TD);
2583         Diag(TD->getLocation(), diag::note_hidden_tag);
2584       }
2585 
2586     for (auto *D : Result)
2587       if (!isa<TagDecl>(D))
2588         Diag(D->getLocation(), diag::note_hiding_object);
2589 
2590     // For recovery purposes, go ahead and implement the hiding.
2591     LookupResult::Filter F = Result.makeFilter();
2592     while (F.hasNext()) {
2593       if (TagDecls.count(F.next()))
2594         F.erase();
2595     }
2596     F.done();
2597     break;
2598   }
2599 
2600   case LookupResult::AmbiguousReference: {
2601     Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
2602 
2603     for (auto *D : Result)
2604       Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
2605     break;
2606   }
2607   }
2608 }
2609 
2610 namespace {
2611   struct AssociatedLookup {
2612     AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
2613                      Sema::AssociatedNamespaceSet &Namespaces,
2614                      Sema::AssociatedClassSet &Classes)
2615       : S(S), Namespaces(Namespaces), Classes(Classes),
2616         InstantiationLoc(InstantiationLoc) {
2617     }
2618 
2619     bool addClassTransitive(CXXRecordDecl *RD) {
2620       Classes.insert(RD);
2621       return ClassesTransitive.insert(RD);
2622     }
2623 
2624     Sema &S;
2625     Sema::AssociatedNamespaceSet &Namespaces;
2626     Sema::AssociatedClassSet &Classes;
2627     SourceLocation InstantiationLoc;
2628 
2629   private:
2630     Sema::AssociatedClassSet ClassesTransitive;
2631   };
2632 } // end anonymous namespace
2633 
2634 static void
2635 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
2636 
2637 // Given the declaration context \param Ctx of a class, class template or
2638 // enumeration, add the associated namespaces to \param Namespaces as described
2639 // in [basic.lookup.argdep]p2.
2640 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
2641                                       DeclContext *Ctx) {
2642   // The exact wording has been changed in C++14 as a result of
2643   // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally
2644   // to all language versions since it is possible to return a local type
2645   // from a lambda in C++11.
2646   //
2647   // C++14 [basic.lookup.argdep]p2:
2648   //   If T is a class type [...]. Its associated namespaces are the innermost
2649   //   enclosing namespaces of its associated classes. [...]
2650   //
2651   //   If T is an enumeration type, its associated namespace is the innermost
2652   //   enclosing namespace of its declaration. [...]
2653 
2654   // We additionally skip inline namespaces. The innermost non-inline namespace
2655   // contains all names of all its nested inline namespaces anyway, so we can
2656   // replace the entire inline namespace tree with its root.
2657   while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
2658     Ctx = Ctx->getParent();
2659 
2660   Namespaces.insert(Ctx->getPrimaryContext());
2661 }
2662 
2663 // Add the associated classes and namespaces for argument-dependent
2664 // lookup that involves a template argument (C++ [basic.lookup.argdep]p2).
2665 static void
2666 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2667                                   const TemplateArgument &Arg) {
2668   // C++ [basic.lookup.argdep]p2, last bullet:
2669   //   -- [...] ;
2670   switch (Arg.getKind()) {
2671     case TemplateArgument::Null:
2672       break;
2673 
2674     case TemplateArgument::Type:
2675       // [...] the namespaces and classes associated with the types of the
2676       // template arguments provided for template type parameters (excluding
2677       // template template parameters)
2678       addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
2679       break;
2680 
2681     case TemplateArgument::Template:
2682     case TemplateArgument::TemplateExpansion: {
2683       // [...] the namespaces in which any template template arguments are
2684       // defined; and the classes in which any member templates used as
2685       // template template arguments are defined.
2686       TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
2687       if (ClassTemplateDecl *ClassTemplate
2688                  = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
2689         DeclContext *Ctx = ClassTemplate->getDeclContext();
2690         if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2691           Result.Classes.insert(EnclosingClass);
2692         // Add the associated namespace for this class.
2693         CollectEnclosingNamespace(Result.Namespaces, Ctx);
2694       }
2695       break;
2696     }
2697 
2698     case TemplateArgument::Declaration:
2699     case TemplateArgument::Integral:
2700     case TemplateArgument::Expression:
2701     case TemplateArgument::NullPtr:
2702       // [Note: non-type template arguments do not contribute to the set of
2703       //  associated namespaces. ]
2704       break;
2705 
2706     case TemplateArgument::Pack:
2707       for (const auto &P : Arg.pack_elements())
2708         addAssociatedClassesAndNamespaces(Result, P);
2709       break;
2710   }
2711 }
2712 
2713 // Add the associated classes and namespaces for argument-dependent lookup
2714 // with an argument of class type (C++ [basic.lookup.argdep]p2).
2715 static void
2716 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2717                                   CXXRecordDecl *Class) {
2718 
2719   // Just silently ignore anything whose name is __va_list_tag.
2720   if (Class->getDeclName() == Result.S.VAListTagName)
2721     return;
2722 
2723   // C++ [basic.lookup.argdep]p2:
2724   //   [...]
2725   //     -- If T is a class type (including unions), its associated
2726   //        classes are: the class itself; the class of which it is a
2727   //        member, if any; and its direct and indirect base classes.
2728   //        Its associated namespaces are the innermost enclosing
2729   //        namespaces of its associated classes.
2730 
2731   // Add the class of which it is a member, if any.
2732   DeclContext *Ctx = Class->getDeclContext();
2733   if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2734     Result.Classes.insert(EnclosingClass);
2735 
2736   // Add the associated namespace for this class.
2737   CollectEnclosingNamespace(Result.Namespaces, Ctx);
2738 
2739   // -- If T is a template-id, its associated namespaces and classes are
2740   //    the namespace in which the template is defined; for member
2741   //    templates, the member template's class; the namespaces and classes
2742   //    associated with the types of the template arguments provided for
2743   //    template type parameters (excluding template template parameters); the
2744   //    namespaces in which any template template arguments are defined; and
2745   //    the classes in which any member templates used as template template
2746   //    arguments are defined. [Note: non-type template arguments do not
2747   //    contribute to the set of associated namespaces. ]
2748   if (ClassTemplateSpecializationDecl *Spec
2749         = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
2750     DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
2751     if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2752       Result.Classes.insert(EnclosingClass);
2753     // Add the associated namespace for this class.
2754     CollectEnclosingNamespace(Result.Namespaces, Ctx);
2755 
2756     const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
2757     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2758       addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
2759   }
2760 
2761   // Add the class itself. If we've already transitively visited this class,
2762   // we don't need to visit base classes.
2763   if (!Result.addClassTransitive(Class))
2764     return;
2765 
2766   // Only recurse into base classes for complete types.
2767   if (!Result.S.isCompleteType(Result.InstantiationLoc,
2768                                Result.S.Context.getRecordType(Class)))
2769     return;
2770 
2771   // Add direct and indirect base classes along with their associated
2772   // namespaces.
2773   SmallVector<CXXRecordDecl *, 32> Bases;
2774   Bases.push_back(Class);
2775   while (!Bases.empty()) {
2776     // Pop this class off the stack.
2777     Class = Bases.pop_back_val();
2778 
2779     // Visit the base classes.
2780     for (const auto &Base : Class->bases()) {
2781       const RecordType *BaseType = Base.getType()->getAs<RecordType>();
2782       // In dependent contexts, we do ADL twice, and the first time around,
2783       // the base type might be a dependent TemplateSpecializationType, or a
2784       // TemplateTypeParmType. If that happens, simply ignore it.
2785       // FIXME: If we want to support export, we probably need to add the
2786       // namespace of the template in a TemplateSpecializationType, or even
2787       // the classes and namespaces of known non-dependent arguments.
2788       if (!BaseType)
2789         continue;
2790       CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
2791       if (Result.addClassTransitive(BaseDecl)) {
2792         // Find the associated namespace for this base class.
2793         DeclContext *BaseCtx = BaseDecl->getDeclContext();
2794         CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
2795 
2796         // Make sure we visit the bases of this base class.
2797         if (BaseDecl->bases_begin() != BaseDecl->bases_end())
2798           Bases.push_back(BaseDecl);
2799       }
2800     }
2801   }
2802 }
2803 
2804 // Add the associated classes and namespaces for
2805 // argument-dependent lookup with an argument of type T
2806 // (C++ [basic.lookup.koenig]p2).
2807 static void
2808 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
2809   // C++ [basic.lookup.koenig]p2:
2810   //
2811   //   For each argument type T in the function call, there is a set
2812   //   of zero or more associated namespaces and a set of zero or more
2813   //   associated classes to be considered. The sets of namespaces and
2814   //   classes is determined entirely by the types of the function
2815   //   arguments (and the namespace of any template template
2816   //   argument). Typedef names and using-declarations used to specify
2817   //   the types do not contribute to this set. The sets of namespaces
2818   //   and classes are determined in the following way:
2819 
2820   SmallVector<const Type *, 16> Queue;
2821   const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
2822 
2823   while (true) {
2824     switch (T->getTypeClass()) {
2825 
2826 #define TYPE(Class, Base)
2827 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2828 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2829 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
2830 #define ABSTRACT_TYPE(Class, Base)
2831 #include "clang/AST/TypeNodes.inc"
2832       // T is canonical.  We can also ignore dependent types because
2833       // we don't need to do ADL at the definition point, but if we
2834       // wanted to implement template export (or if we find some other
2835       // use for associated classes and namespaces...) this would be
2836       // wrong.
2837       break;
2838 
2839     //    -- If T is a pointer to U or an array of U, its associated
2840     //       namespaces and classes are those associated with U.
2841     case Type::Pointer:
2842       T = cast<PointerType>(T)->getPointeeType().getTypePtr();
2843       continue;
2844     case Type::ConstantArray:
2845     case Type::IncompleteArray:
2846     case Type::VariableArray:
2847       T = cast<ArrayType>(T)->getElementType().getTypePtr();
2848       continue;
2849 
2850     //     -- If T is a fundamental type, its associated sets of
2851     //        namespaces and classes are both empty.
2852     case Type::Builtin:
2853       break;
2854 
2855     //     -- If T is a class type (including unions), its associated
2856     //        classes are: the class itself; the class of which it is
2857     //        a member, if any; and its direct and indirect base classes.
2858     //        Its associated namespaces are the innermost enclosing
2859     //        namespaces of its associated classes.
2860     case Type::Record: {
2861       CXXRecordDecl *Class =
2862           cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
2863       addAssociatedClassesAndNamespaces(Result, Class);
2864       break;
2865     }
2866 
2867     //     -- If T is an enumeration type, its associated namespace
2868     //        is the innermost enclosing namespace of its declaration.
2869     //        If it is a class member, its associated class is the
2870     //        member’s class; else it has no associated class.
2871     case Type::Enum: {
2872       EnumDecl *Enum = cast<EnumType>(T)->getDecl();
2873 
2874       DeclContext *Ctx = Enum->getDeclContext();
2875       if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2876         Result.Classes.insert(EnclosingClass);
2877 
2878       // Add the associated namespace for this enumeration.
2879       CollectEnclosingNamespace(Result.Namespaces, Ctx);
2880 
2881       break;
2882     }
2883 
2884     //     -- If T is a function type, its associated namespaces and
2885     //        classes are those associated with the function parameter
2886     //        types and those associated with the return type.
2887     case Type::FunctionProto: {
2888       const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2889       for (const auto &Arg : Proto->param_types())
2890         Queue.push_back(Arg.getTypePtr());
2891       // fallthrough
2892       LLVM_FALLTHROUGH;
2893     }
2894     case Type::FunctionNoProto: {
2895       const FunctionType *FnType = cast<FunctionType>(T);
2896       T = FnType->getReturnType().getTypePtr();
2897       continue;
2898     }
2899 
2900     //     -- If T is a pointer to a member function of a class X, its
2901     //        associated namespaces and classes are those associated
2902     //        with the function parameter types and return type,
2903     //        together with those associated with X.
2904     //
2905     //     -- If T is a pointer to a data member of class X, its
2906     //        associated namespaces and classes are those associated
2907     //        with the member type together with those associated with
2908     //        X.
2909     case Type::MemberPointer: {
2910       const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
2911 
2912       // Queue up the class type into which this points.
2913       Queue.push_back(MemberPtr->getClass());
2914 
2915       // And directly continue with the pointee type.
2916       T = MemberPtr->getPointeeType().getTypePtr();
2917       continue;
2918     }
2919 
2920     // As an extension, treat this like a normal pointer.
2921     case Type::BlockPointer:
2922       T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
2923       continue;
2924 
2925     // References aren't covered by the standard, but that's such an
2926     // obvious defect that we cover them anyway.
2927     case Type::LValueReference:
2928     case Type::RValueReference:
2929       T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
2930       continue;
2931 
2932     // These are fundamental types.
2933     case Type::Vector:
2934     case Type::ExtVector:
2935     case Type::ConstantMatrix:
2936     case Type::Complex:
2937     case Type::ExtInt:
2938       break;
2939 
2940     // Non-deduced auto types only get here for error cases.
2941     case Type::Auto:
2942     case Type::DeducedTemplateSpecialization:
2943       break;
2944 
2945     // If T is an Objective-C object or interface type, or a pointer to an
2946     // object or interface type, the associated namespace is the global
2947     // namespace.
2948     case Type::ObjCObject:
2949     case Type::ObjCInterface:
2950     case Type::ObjCObjectPointer:
2951       Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
2952       break;
2953 
2954     // Atomic types are just wrappers; use the associations of the
2955     // contained type.
2956     case Type::Atomic:
2957       T = cast<AtomicType>(T)->getValueType().getTypePtr();
2958       continue;
2959     case Type::Pipe:
2960       T = cast<PipeType>(T)->getElementType().getTypePtr();
2961       continue;
2962     }
2963 
2964     if (Queue.empty())
2965       break;
2966     T = Queue.pop_back_val();
2967   }
2968 }
2969 
2970 /// Find the associated classes and namespaces for
2971 /// argument-dependent lookup for a call with the given set of
2972 /// arguments.
2973 ///
2974 /// This routine computes the sets of associated classes and associated
2975 /// namespaces searched by argument-dependent lookup
2976 /// (C++ [basic.lookup.argdep]) for a given set of arguments.
2977 void Sema::FindAssociatedClassesAndNamespaces(
2978     SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
2979     AssociatedNamespaceSet &AssociatedNamespaces,
2980     AssociatedClassSet &AssociatedClasses) {
2981   AssociatedNamespaces.clear();
2982   AssociatedClasses.clear();
2983 
2984   AssociatedLookup Result(*this, InstantiationLoc,
2985                           AssociatedNamespaces, AssociatedClasses);
2986 
2987   // C++ [basic.lookup.koenig]p2:
2988   //   For each argument type T in the function call, there is a set
2989   //   of zero or more associated namespaces and a set of zero or more
2990   //   associated classes to be considered. The sets of namespaces and
2991   //   classes is determined entirely by the types of the function
2992   //   arguments (and the namespace of any template template
2993   //   argument).
2994   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
2995     Expr *Arg = Args[ArgIdx];
2996 
2997     if (Arg->getType() != Context.OverloadTy) {
2998       addAssociatedClassesAndNamespaces(Result, Arg->getType());
2999       continue;
3000     }
3001 
3002     // [...] In addition, if the argument is the name or address of a
3003     // set of overloaded functions and/or function templates, its
3004     // associated classes and namespaces are the union of those
3005     // associated with each of the members of the set: the namespace
3006     // in which the function or function template is defined and the
3007     // classes and namespaces associated with its (non-dependent)
3008     // parameter types and return type.
3009     OverloadExpr *OE = OverloadExpr::find(Arg).Expression;
3010 
3011     for (const NamedDecl *D : OE->decls()) {
3012       // Look through any using declarations to find the underlying function.
3013       const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
3014 
3015       // Add the classes and namespaces associated with the parameter
3016       // types and return type of this function.
3017       addAssociatedClassesAndNamespaces(Result, FDecl->getType());
3018     }
3019   }
3020 }
3021 
3022 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
3023                                   SourceLocation Loc,
3024                                   LookupNameKind NameKind,
3025                                   RedeclarationKind Redecl) {
3026   LookupResult R(*this, Name, Loc, NameKind, Redecl);
3027   LookupName(R, S);
3028   return R.getAsSingle<NamedDecl>();
3029 }
3030 
3031 /// Find the protocol with the given name, if any.
3032 ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
3033                                        SourceLocation IdLoc,
3034                                        RedeclarationKind Redecl) {
3035   Decl *D = LookupSingleName(TUScope, II, IdLoc,
3036                              LookupObjCProtocolName, Redecl);
3037   return cast_or_null<ObjCProtocolDecl>(D);
3038 }
3039 
3040 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
3041                                         UnresolvedSetImpl &Functions) {
3042   // C++ [over.match.oper]p3:
3043   //     -- The set of non-member candidates is the result of the
3044   //        unqualified lookup of operator@ in the context of the
3045   //        expression according to the usual rules for name lookup in
3046   //        unqualified function calls (3.4.2) except that all member
3047   //        functions are ignored.
3048   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3049   LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
3050   LookupName(Operators, S);
3051 
3052   assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
3053   Functions.append(Operators.begin(), Operators.end());
3054 }
3055 
3056 Sema::SpecialMemberOverloadResult Sema::LookupSpecialMember(CXXRecordDecl *RD,
3057                                                            CXXSpecialMember SM,
3058                                                            bool ConstArg,
3059                                                            bool VolatileArg,
3060                                                            bool RValueThis,
3061                                                            bool ConstThis,
3062                                                            bool VolatileThis) {
3063   assert(CanDeclareSpecialMemberFunction(RD) &&
3064          "doing special member lookup into record that isn't fully complete");
3065   RD = RD->getDefinition();
3066   if (RValueThis || ConstThis || VolatileThis)
3067     assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
3068            "constructors and destructors always have unqualified lvalue this");
3069   if (ConstArg || VolatileArg)
3070     assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
3071            "parameter-less special members can't have qualified arguments");
3072 
3073   // FIXME: Get the caller to pass in a location for the lookup.
3074   SourceLocation LookupLoc = RD->getLocation();
3075 
3076   llvm::FoldingSetNodeID ID;
3077   ID.AddPointer(RD);
3078   ID.AddInteger(SM);
3079   ID.AddInteger(ConstArg);
3080   ID.AddInteger(VolatileArg);
3081   ID.AddInteger(RValueThis);
3082   ID.AddInteger(ConstThis);
3083   ID.AddInteger(VolatileThis);
3084 
3085   void *InsertPoint;
3086   SpecialMemberOverloadResultEntry *Result =
3087     SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
3088 
3089   // This was already cached
3090   if (Result)
3091     return *Result;
3092 
3093   Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>();
3094   Result = new (Result) SpecialMemberOverloadResultEntry(ID);
3095   SpecialMemberCache.InsertNode(Result, InsertPoint);
3096 
3097   if (SM == CXXDestructor) {
3098     if (RD->needsImplicitDestructor()) {
3099       runWithSufficientStackSpace(RD->getLocation(), [&] {
3100         DeclareImplicitDestructor(RD);
3101       });
3102     }
3103     CXXDestructorDecl *DD = RD->getDestructor();
3104     Result->setMethod(DD);
3105     Result->setKind(DD && !DD->isDeleted()
3106                         ? SpecialMemberOverloadResult::Success
3107                         : SpecialMemberOverloadResult::NoMemberOrDeleted);
3108     return *Result;
3109   }
3110 
3111   // Prepare for overload resolution. Here we construct a synthetic argument
3112   // if necessary and make sure that implicit functions are declared.
3113   CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
3114   DeclarationName Name;
3115   Expr *Arg = nullptr;
3116   unsigned NumArgs;
3117 
3118   QualType ArgType = CanTy;
3119   ExprValueKind VK = VK_LValue;
3120 
3121   if (SM == CXXDefaultConstructor) {
3122     Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3123     NumArgs = 0;
3124     if (RD->needsImplicitDefaultConstructor()) {
3125       runWithSufficientStackSpace(RD->getLocation(), [&] {
3126         DeclareImplicitDefaultConstructor(RD);
3127       });
3128     }
3129   } else {
3130     if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
3131       Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3132       if (RD->needsImplicitCopyConstructor()) {
3133         runWithSufficientStackSpace(RD->getLocation(), [&] {
3134           DeclareImplicitCopyConstructor(RD);
3135         });
3136       }
3137       if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) {
3138         runWithSufficientStackSpace(RD->getLocation(), [&] {
3139           DeclareImplicitMoveConstructor(RD);
3140         });
3141       }
3142     } else {
3143       Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
3144       if (RD->needsImplicitCopyAssignment()) {
3145         runWithSufficientStackSpace(RD->getLocation(), [&] {
3146           DeclareImplicitCopyAssignment(RD);
3147         });
3148       }
3149       if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) {
3150         runWithSufficientStackSpace(RD->getLocation(), [&] {
3151           DeclareImplicitMoveAssignment(RD);
3152         });
3153       }
3154     }
3155 
3156     if (ConstArg)
3157       ArgType.addConst();
3158     if (VolatileArg)
3159       ArgType.addVolatile();
3160 
3161     // This isn't /really/ specified by the standard, but it's implied
3162     // we should be working from a PRValue in the case of move to ensure
3163     // that we prefer to bind to rvalue references, and an LValue in the
3164     // case of copy to ensure we don't bind to rvalue references.
3165     // Possibly an XValue is actually correct in the case of move, but
3166     // there is no semantic difference for class types in this restricted
3167     // case.
3168     if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
3169       VK = VK_LValue;
3170     else
3171       VK = VK_PRValue;
3172   }
3173 
3174   OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK);
3175 
3176   if (SM != CXXDefaultConstructor) {
3177     NumArgs = 1;
3178     Arg = &FakeArg;
3179   }
3180 
3181   // Create the object argument
3182   QualType ThisTy = CanTy;
3183   if (ConstThis)
3184     ThisTy.addConst();
3185   if (VolatileThis)
3186     ThisTy.addVolatile();
3187   Expr::Classification Classification =
3188       OpaqueValueExpr(LookupLoc, ThisTy, RValueThis ? VK_PRValue : VK_LValue)
3189           .Classify(Context);
3190 
3191   // Now we perform lookup on the name we computed earlier and do overload
3192   // resolution. Lookup is only performed directly into the class since there
3193   // will always be a (possibly implicit) declaration to shadow any others.
3194   OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal);
3195   DeclContext::lookup_result R = RD->lookup(Name);
3196 
3197   if (R.empty()) {
3198     // We might have no default constructor because we have a lambda's closure
3199     // type, rather than because there's some other declared constructor.
3200     // Every class has a copy/move constructor, copy/move assignment, and
3201     // destructor.
3202     assert(SM == CXXDefaultConstructor &&
3203            "lookup for a constructor or assignment operator was empty");
3204     Result->setMethod(nullptr);
3205     Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3206     return *Result;
3207   }
3208 
3209   // Copy the candidates as our processing of them may load new declarations
3210   // from an external source and invalidate lookup_result.
3211   SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
3212 
3213   for (NamedDecl *CandDecl : Candidates) {
3214     if (CandDecl->isInvalidDecl())
3215       continue;
3216 
3217     DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public);
3218     auto CtorInfo = getConstructorInfo(Cand);
3219     if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
3220       if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3221         AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
3222                            llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3223       else if (CtorInfo)
3224         AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
3225                              llvm::makeArrayRef(&Arg, NumArgs), OCS,
3226                              /*SuppressUserConversions*/ true);
3227       else
3228         AddOverloadCandidate(M, Cand, llvm::makeArrayRef(&Arg, NumArgs), OCS,
3229                              /*SuppressUserConversions*/ true);
3230     } else if (FunctionTemplateDecl *Tmpl =
3231                  dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) {
3232       if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3233         AddMethodTemplateCandidate(
3234             Tmpl, Cand, RD, nullptr, ThisTy, Classification,
3235             llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3236       else if (CtorInfo)
3237         AddTemplateOverloadCandidate(
3238             CtorInfo.ConstructorTmpl, CtorInfo.FoundDecl, nullptr,
3239             llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3240       else
3241         AddTemplateOverloadCandidate(
3242             Tmpl, Cand, nullptr, llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3243     } else {
3244       assert(isa<UsingDecl>(Cand.getDecl()) &&
3245              "illegal Kind of operator = Decl");
3246     }
3247   }
3248 
3249   OverloadCandidateSet::iterator Best;
3250   switch (OCS.BestViableFunction(*this, LookupLoc, Best)) {
3251     case OR_Success:
3252       Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3253       Result->setKind(SpecialMemberOverloadResult::Success);
3254       break;
3255 
3256     case OR_Deleted:
3257       Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3258       Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3259       break;
3260 
3261     case OR_Ambiguous:
3262       Result->setMethod(nullptr);
3263       Result->setKind(SpecialMemberOverloadResult::Ambiguous);
3264       break;
3265 
3266     case OR_No_Viable_Function:
3267       Result->setMethod(nullptr);
3268       Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3269       break;
3270   }
3271 
3272   return *Result;
3273 }
3274 
3275 /// Look up the default constructor for the given class.
3276 CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
3277   SpecialMemberOverloadResult Result =
3278     LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
3279                         false, false);
3280 
3281   return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3282 }
3283 
3284 /// Look up the copying constructor for the given class.
3285 CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
3286                                                    unsigned Quals) {
3287   assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3288          "non-const, non-volatile qualifiers for copy ctor arg");
3289   SpecialMemberOverloadResult Result =
3290     LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
3291                         Quals & Qualifiers::Volatile, false, false, false);
3292 
3293   return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3294 }
3295 
3296 /// Look up the moving constructor for the given class.
3297 CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
3298                                                   unsigned Quals) {
3299   SpecialMemberOverloadResult Result =
3300     LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
3301                         Quals & Qualifiers::Volatile, false, false, false);
3302 
3303   return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3304 }
3305 
3306 /// Look up the constructors for the given class.
3307 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
3308   // If the implicit constructors have not yet been declared, do so now.
3309   if (CanDeclareSpecialMemberFunction(Class)) {
3310     runWithSufficientStackSpace(Class->getLocation(), [&] {
3311       if (Class->needsImplicitDefaultConstructor())
3312         DeclareImplicitDefaultConstructor(Class);
3313       if (Class->needsImplicitCopyConstructor())
3314         DeclareImplicitCopyConstructor(Class);
3315       if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
3316         DeclareImplicitMoveConstructor(Class);
3317     });
3318   }
3319 
3320   CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
3321   DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
3322   return Class->lookup(Name);
3323 }
3324 
3325 /// Look up the copying assignment operator for the given class.
3326 CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
3327                                              unsigned Quals, bool RValueThis,
3328                                              unsigned ThisQuals) {
3329   assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3330          "non-const, non-volatile qualifiers for copy assignment arg");
3331   assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3332          "non-const, non-volatile qualifiers for copy assignment this");
3333   SpecialMemberOverloadResult Result =
3334     LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
3335                         Quals & Qualifiers::Volatile, RValueThis,
3336                         ThisQuals & Qualifiers::Const,
3337                         ThisQuals & Qualifiers::Volatile);
3338 
3339   return Result.getMethod();
3340 }
3341 
3342 /// Look up the moving assignment operator for the given class.
3343 CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
3344                                             unsigned Quals,
3345                                             bool RValueThis,
3346                                             unsigned ThisQuals) {
3347   assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3348          "non-const, non-volatile qualifiers for copy assignment this");
3349   SpecialMemberOverloadResult Result =
3350     LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
3351                         Quals & Qualifiers::Volatile, RValueThis,
3352                         ThisQuals & Qualifiers::Const,
3353                         ThisQuals & Qualifiers::Volatile);
3354 
3355   return Result.getMethod();
3356 }
3357 
3358 /// Look for the destructor of the given class.
3359 ///
3360 /// During semantic analysis, this routine should be used in lieu of
3361 /// CXXRecordDecl::getDestructor().
3362 ///
3363 /// \returns The destructor for this class.
3364 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
3365   return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
3366                                                      false, false, false,
3367                                                      false, false).getMethod());
3368 }
3369 
3370 /// LookupLiteralOperator - Determine which literal operator should be used for
3371 /// a user-defined literal, per C++11 [lex.ext].
3372 ///
3373 /// Normal overload resolution is not used to select which literal operator to
3374 /// call for a user-defined literal. Look up the provided literal operator name,
3375 /// and filter the results to the appropriate set for the given argument types.
3376 Sema::LiteralOperatorLookupResult
3377 Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
3378                             ArrayRef<QualType> ArgTys, bool AllowRaw,
3379                             bool AllowTemplate, bool AllowStringTemplatePack,
3380                             bool DiagnoseMissing, StringLiteral *StringLit) {
3381   LookupName(R, S);
3382   assert(R.getResultKind() != LookupResult::Ambiguous &&
3383          "literal operator lookup can't be ambiguous");
3384 
3385   // Filter the lookup results appropriately.
3386   LookupResult::Filter F = R.makeFilter();
3387 
3388   bool AllowCooked = true;
3389   bool FoundRaw = false;
3390   bool FoundTemplate = false;
3391   bool FoundStringTemplatePack = false;
3392   bool FoundCooked = false;
3393 
3394   while (F.hasNext()) {
3395     Decl *D = F.next();
3396     if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
3397       D = USD->getTargetDecl();
3398 
3399     // If the declaration we found is invalid, skip it.
3400     if (D->isInvalidDecl()) {
3401       F.erase();
3402       continue;
3403     }
3404 
3405     bool IsRaw = false;
3406     bool IsTemplate = false;
3407     bool IsStringTemplatePack = false;
3408     bool IsCooked = false;
3409 
3410     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3411       if (FD->getNumParams() == 1 &&
3412           FD->getParamDecl(0)->getType()->getAs<PointerType>())
3413         IsRaw = true;
3414       else if (FD->getNumParams() == ArgTys.size()) {
3415         IsCooked = true;
3416         for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
3417           QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
3418           if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
3419             IsCooked = false;
3420             break;
3421           }
3422         }
3423       }
3424     }
3425     if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
3426       TemplateParameterList *Params = FD->getTemplateParameters();
3427       if (Params->size() == 1) {
3428         IsTemplate = true;
3429         if (!Params->getParam(0)->isTemplateParameterPack() && !StringLit) {
3430           // Implied but not stated: user-defined integer and floating literals
3431           // only ever use numeric literal operator templates, not templates
3432           // taking a parameter of class type.
3433           F.erase();
3434           continue;
3435         }
3436 
3437         // A string literal template is only considered if the string literal
3438         // is a well-formed template argument for the template parameter.
3439         if (StringLit) {
3440           SFINAETrap Trap(*this);
3441           SmallVector<TemplateArgument, 1> Checked;
3442           TemplateArgumentLoc Arg(TemplateArgument(StringLit), StringLit);
3443           if (CheckTemplateArgument(Params->getParam(0), Arg, FD,
3444                                     R.getNameLoc(), R.getNameLoc(), 0,
3445                                     Checked) ||
3446               Trap.hasErrorOccurred())
3447             IsTemplate = false;
3448         }
3449       } else {
3450         IsStringTemplatePack = true;
3451       }
3452     }
3453 
3454     if (AllowTemplate && StringLit && IsTemplate) {
3455       FoundTemplate = true;
3456       AllowRaw = false;
3457       AllowCooked = false;
3458       AllowStringTemplatePack = false;
3459       if (FoundRaw || FoundCooked || FoundStringTemplatePack) {
3460         F.restart();
3461         FoundRaw = FoundCooked = FoundStringTemplatePack = false;
3462       }
3463     } else if (AllowCooked && IsCooked) {
3464       FoundCooked = true;
3465       AllowRaw = false;
3466       AllowTemplate = StringLit;
3467       AllowStringTemplatePack = false;
3468       if (FoundRaw || FoundTemplate || FoundStringTemplatePack) {
3469         // Go through again and remove the raw and template decls we've
3470         // already found.
3471         F.restart();
3472         FoundRaw = FoundTemplate = FoundStringTemplatePack = false;
3473       }
3474     } else if (AllowRaw && IsRaw) {
3475       FoundRaw = true;
3476     } else if (AllowTemplate && IsTemplate) {
3477       FoundTemplate = true;
3478     } else if (AllowStringTemplatePack && IsStringTemplatePack) {
3479       FoundStringTemplatePack = true;
3480     } else {
3481       F.erase();
3482     }
3483   }
3484 
3485   F.done();
3486 
3487   // Per C++20 [lex.ext]p5, we prefer the template form over the non-template
3488   // form for string literal operator templates.
3489   if (StringLit && FoundTemplate)
3490     return LOLR_Template;
3491 
3492   // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
3493   // parameter type, that is used in preference to a raw literal operator
3494   // or literal operator template.
3495   if (FoundCooked)
3496     return LOLR_Cooked;
3497 
3498   // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
3499   // operator template, but not both.
3500   if (FoundRaw && FoundTemplate) {
3501     Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
3502     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3503       NoteOverloadCandidate(*I, (*I)->getUnderlyingDecl()->getAsFunction());
3504     return LOLR_Error;
3505   }
3506 
3507   if (FoundRaw)
3508     return LOLR_Raw;
3509 
3510   if (FoundTemplate)
3511     return LOLR_Template;
3512 
3513   if (FoundStringTemplatePack)
3514     return LOLR_StringTemplatePack;
3515 
3516   // Didn't find anything we could use.
3517   if (DiagnoseMissing) {
3518     Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
3519         << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
3520         << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
3521         << (AllowTemplate || AllowStringTemplatePack);
3522     return LOLR_Error;
3523   }
3524 
3525   return LOLR_ErrorNoDiagnostic;
3526 }
3527 
3528 void ADLResult::insert(NamedDecl *New) {
3529   NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
3530 
3531   // If we haven't yet seen a decl for this key, or the last decl
3532   // was exactly this one, we're done.
3533   if (Old == nullptr || Old == New) {
3534     Old = New;
3535     return;
3536   }
3537 
3538   // Otherwise, decide which is a more recent redeclaration.
3539   FunctionDecl *OldFD = Old->getAsFunction();
3540   FunctionDecl *NewFD = New->getAsFunction();
3541 
3542   FunctionDecl *Cursor = NewFD;
3543   while (true) {
3544     Cursor = Cursor->getPreviousDecl();
3545 
3546     // If we got to the end without finding OldFD, OldFD is the newer
3547     // declaration;  leave things as they are.
3548     if (!Cursor) return;
3549 
3550     // If we do find OldFD, then NewFD is newer.
3551     if (Cursor == OldFD) break;
3552 
3553     // Otherwise, keep looking.
3554   }
3555 
3556   Old = New;
3557 }
3558 
3559 void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
3560                                    ArrayRef<Expr *> Args, ADLResult &Result) {
3561   // Find all of the associated namespaces and classes based on the
3562   // arguments we have.
3563   AssociatedNamespaceSet AssociatedNamespaces;
3564   AssociatedClassSet AssociatedClasses;
3565   FindAssociatedClassesAndNamespaces(Loc, Args,
3566                                      AssociatedNamespaces,
3567                                      AssociatedClasses);
3568 
3569   // C++ [basic.lookup.argdep]p3:
3570   //   Let X be the lookup set produced by unqualified lookup (3.4.1)
3571   //   and let Y be the lookup set produced by argument dependent
3572   //   lookup (defined as follows). If X contains [...] then Y is
3573   //   empty. Otherwise Y is the set of declarations found in the
3574   //   namespaces associated with the argument types as described
3575   //   below. The set of declarations found by the lookup of the name
3576   //   is the union of X and Y.
3577   //
3578   // Here, we compute Y and add its members to the overloaded
3579   // candidate set.
3580   for (auto *NS : AssociatedNamespaces) {
3581     //   When considering an associated namespace, the lookup is the
3582     //   same as the lookup performed when the associated namespace is
3583     //   used as a qualifier (3.4.3.2) except that:
3584     //
3585     //     -- Any using-directives in the associated namespace are
3586     //        ignored.
3587     //
3588     //     -- Any namespace-scope friend functions declared in
3589     //        associated classes are visible within their respective
3590     //        namespaces even if they are not visible during an ordinary
3591     //        lookup (11.4).
3592     DeclContext::lookup_result R = NS->lookup(Name);
3593     for (auto *D : R) {
3594       auto *Underlying = D;
3595       if (auto *USD = dyn_cast<UsingShadowDecl>(D))
3596         Underlying = USD->getTargetDecl();
3597 
3598       if (!isa<FunctionDecl>(Underlying) &&
3599           !isa<FunctionTemplateDecl>(Underlying))
3600         continue;
3601 
3602       // The declaration is visible to argument-dependent lookup if either
3603       // it's ordinarily visible or declared as a friend in an associated
3604       // class.
3605       bool Visible = false;
3606       for (D = D->getMostRecentDecl(); D;
3607            D = cast_or_null<NamedDecl>(D->getPreviousDecl())) {
3608         if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) {
3609           if (isVisible(D)) {
3610             Visible = true;
3611             break;
3612           }
3613         } else if (D->getFriendObjectKind()) {
3614           auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext());
3615           if (AssociatedClasses.count(RD) && isVisible(D)) {
3616             Visible = true;
3617             break;
3618           }
3619         }
3620       }
3621 
3622       // FIXME: Preserve D as the FoundDecl.
3623       if (Visible)
3624         Result.insert(Underlying);
3625     }
3626   }
3627 }
3628 
3629 //----------------------------------------------------------------------------
3630 // Search for all visible declarations.
3631 //----------------------------------------------------------------------------
3632 VisibleDeclConsumer::~VisibleDeclConsumer() { }
3633 
3634 bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
3635 
3636 namespace {
3637 
3638 class ShadowContextRAII;
3639 
3640 class VisibleDeclsRecord {
3641 public:
3642   /// An entry in the shadow map, which is optimized to store a
3643   /// single declaration (the common case) but can also store a list
3644   /// of declarations.
3645   typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
3646 
3647 private:
3648   /// A mapping from declaration names to the declarations that have
3649   /// this name within a particular scope.
3650   typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
3651 
3652   /// A list of shadow maps, which is used to model name hiding.
3653   std::list<ShadowMap> ShadowMaps;
3654 
3655   /// The declaration contexts we have already visited.
3656   llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
3657 
3658   friend class ShadowContextRAII;
3659 
3660 public:
3661   /// Determine whether we have already visited this context
3662   /// (and, if not, note that we are going to visit that context now).
3663   bool visitedContext(DeclContext *Ctx) {
3664     return !VisitedContexts.insert(Ctx).second;
3665   }
3666 
3667   bool alreadyVisitedContext(DeclContext *Ctx) {
3668     return VisitedContexts.count(Ctx);
3669   }
3670 
3671   /// Determine whether the given declaration is hidden in the
3672   /// current scope.
3673   ///
3674   /// \returns the declaration that hides the given declaration, or
3675   /// NULL if no such declaration exists.
3676   NamedDecl *checkHidden(NamedDecl *ND);
3677 
3678   /// Add a declaration to the current shadow map.
3679   void add(NamedDecl *ND) {
3680     ShadowMaps.back()[ND->getDeclName()].push_back(ND);
3681   }
3682 };
3683 
3684 /// RAII object that records when we've entered a shadow context.
3685 class ShadowContextRAII {
3686   VisibleDeclsRecord &Visible;
3687 
3688   typedef VisibleDeclsRecord::ShadowMap ShadowMap;
3689 
3690 public:
3691   ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
3692     Visible.ShadowMaps.emplace_back();
3693   }
3694 
3695   ~ShadowContextRAII() {
3696     Visible.ShadowMaps.pop_back();
3697   }
3698 };
3699 
3700 } // end anonymous namespace
3701 
3702 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
3703   unsigned IDNS = ND->getIdentifierNamespace();
3704   std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
3705   for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
3706        SM != SMEnd; ++SM) {
3707     ShadowMap::iterator Pos = SM->find(ND->getDeclName());
3708     if (Pos == SM->end())
3709       continue;
3710 
3711     for (auto *D : Pos->second) {
3712       // A tag declaration does not hide a non-tag declaration.
3713       if (D->hasTagIdentifierNamespace() &&
3714           (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
3715                    Decl::IDNS_ObjCProtocol)))
3716         continue;
3717 
3718       // Protocols are in distinct namespaces from everything else.
3719       if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
3720            || (IDNS & Decl::IDNS_ObjCProtocol)) &&
3721           D->getIdentifierNamespace() != IDNS)
3722         continue;
3723 
3724       // Functions and function templates in the same scope overload
3725       // rather than hide.  FIXME: Look for hiding based on function
3726       // signatures!
3727       if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3728           ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3729           SM == ShadowMaps.rbegin())
3730         continue;
3731 
3732       // A shadow declaration that's created by a resolved using declaration
3733       // is not hidden by the same using declaration.
3734       if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) &&
3735           cast<UsingShadowDecl>(ND)->getIntroducer() == D)
3736         continue;
3737 
3738       // We've found a declaration that hides this one.
3739       return D;
3740     }
3741   }
3742 
3743   return nullptr;
3744 }
3745 
3746 namespace {
3747 class LookupVisibleHelper {
3748 public:
3749   LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases,
3750                       bool LoadExternal)
3751       : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases),
3752         LoadExternal(LoadExternal) {}
3753 
3754   void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind,
3755                           bool IncludeGlobalScope) {
3756     // Determine the set of using directives available during
3757     // unqualified name lookup.
3758     Scope *Initial = S;
3759     UnqualUsingDirectiveSet UDirs(SemaRef);
3760     if (SemaRef.getLangOpts().CPlusPlus) {
3761       // Find the first namespace or translation-unit scope.
3762       while (S && !isNamespaceOrTranslationUnitScope(S))
3763         S = S->getParent();
3764 
3765       UDirs.visitScopeChain(Initial, S);
3766     }
3767     UDirs.done();
3768 
3769     // Look for visible declarations.
3770     LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
3771     Result.setAllowHidden(Consumer.includeHiddenDecls());
3772     if (!IncludeGlobalScope)
3773       Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
3774     ShadowContextRAII Shadow(Visited);
3775     lookupInScope(Initial, Result, UDirs);
3776   }
3777 
3778   void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx,
3779                           Sema::LookupNameKind Kind, bool IncludeGlobalScope) {
3780     LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
3781     Result.setAllowHidden(Consumer.includeHiddenDecls());
3782     if (!IncludeGlobalScope)
3783       Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
3784 
3785     ShadowContextRAII Shadow(Visited);
3786     lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true,
3787                         /*InBaseClass=*/false);
3788   }
3789 
3790 private:
3791   void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result,
3792                            bool QualifiedNameLookup, bool InBaseClass) {
3793     if (!Ctx)
3794       return;
3795 
3796     // Make sure we don't visit the same context twice.
3797     if (Visited.visitedContext(Ctx->getPrimaryContext()))
3798       return;
3799 
3800     Consumer.EnteredContext(Ctx);
3801 
3802     // Outside C++, lookup results for the TU live on identifiers.
3803     if (isa<TranslationUnitDecl>(Ctx) &&
3804         !Result.getSema().getLangOpts().CPlusPlus) {
3805       auto &S = Result.getSema();
3806       auto &Idents = S.Context.Idents;
3807 
3808       // Ensure all external identifiers are in the identifier table.
3809       if (LoadExternal)
3810         if (IdentifierInfoLookup *External =
3811                 Idents.getExternalIdentifierLookup()) {
3812           std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
3813           for (StringRef Name = Iter->Next(); !Name.empty();
3814                Name = Iter->Next())
3815             Idents.get(Name);
3816         }
3817 
3818       // Walk all lookup results in the TU for each identifier.
3819       for (const auto &Ident : Idents) {
3820         for (auto I = S.IdResolver.begin(Ident.getValue()),
3821                   E = S.IdResolver.end();
3822              I != E; ++I) {
3823           if (S.IdResolver.isDeclInScope(*I, Ctx)) {
3824             if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
3825               Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3826               Visited.add(ND);
3827             }
3828           }
3829         }
3830       }
3831 
3832       return;
3833     }
3834 
3835     if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
3836       Result.getSema().ForceDeclarationOfImplicitMembers(Class);
3837 
3838     llvm::SmallVector<NamedDecl *, 4> DeclsToVisit;
3839     // We sometimes skip loading namespace-level results (they tend to be huge).
3840     bool Load = LoadExternal ||
3841                 !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx));
3842     // Enumerate all of the results in this context.
3843     for (DeclContextLookupResult R :
3844          Load ? Ctx->lookups()
3845               : Ctx->noload_lookups(/*PreserveInternalState=*/false)) {
3846       for (auto *D : R) {
3847         if (auto *ND = Result.getAcceptableDecl(D)) {
3848           // Rather than visit immediatelly, we put ND into a vector and visit
3849           // all decls, in order, outside of this loop. The reason is that
3850           // Consumer.FoundDecl() may invalidate the iterators used in the two
3851           // loops above.
3852           DeclsToVisit.push_back(ND);
3853         }
3854       }
3855     }
3856 
3857     for (auto *ND : DeclsToVisit) {
3858       Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3859       Visited.add(ND);
3860     }
3861     DeclsToVisit.clear();
3862 
3863     // Traverse using directives for qualified name lookup.
3864     if (QualifiedNameLookup) {
3865       ShadowContextRAII Shadow(Visited);
3866       for (auto I : Ctx->using_directives()) {
3867         if (!Result.getSema().isVisible(I))
3868           continue;
3869         lookupInDeclContext(I->getNominatedNamespace(), Result,
3870                             QualifiedNameLookup, InBaseClass);
3871       }
3872     }
3873 
3874     // Traverse the contexts of inherited C++ classes.
3875     if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
3876       if (!Record->hasDefinition())
3877         return;
3878 
3879       for (const auto &B : Record->bases()) {
3880         QualType BaseType = B.getType();
3881 
3882         RecordDecl *RD;
3883         if (BaseType->isDependentType()) {
3884           if (!IncludeDependentBases) {
3885             // Don't look into dependent bases, because name lookup can't look
3886             // there anyway.
3887             continue;
3888           }
3889           const auto *TST = BaseType->getAs<TemplateSpecializationType>();
3890           if (!TST)
3891             continue;
3892           TemplateName TN = TST->getTemplateName();
3893           const auto *TD =
3894               dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
3895           if (!TD)
3896             continue;
3897           RD = TD->getTemplatedDecl();
3898         } else {
3899           const auto *Record = BaseType->getAs<RecordType>();
3900           if (!Record)
3901             continue;
3902           RD = Record->getDecl();
3903         }
3904 
3905         // FIXME: It would be nice to be able to determine whether referencing
3906         // a particular member would be ambiguous. For example, given
3907         //
3908         //   struct A { int member; };
3909         //   struct B { int member; };
3910         //   struct C : A, B { };
3911         //
3912         //   void f(C *c) { c->### }
3913         //
3914         // accessing 'member' would result in an ambiguity. However, we
3915         // could be smart enough to qualify the member with the base
3916         // class, e.g.,
3917         //
3918         //   c->B::member
3919         //
3920         // or
3921         //
3922         //   c->A::member
3923 
3924         // Find results in this base class (and its bases).
3925         ShadowContextRAII Shadow(Visited);
3926         lookupInDeclContext(RD, Result, QualifiedNameLookup,
3927                             /*InBaseClass=*/true);
3928       }
3929     }
3930 
3931     // Traverse the contexts of Objective-C classes.
3932     if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
3933       // Traverse categories.
3934       for (auto *Cat : IFace->visible_categories()) {
3935         ShadowContextRAII Shadow(Visited);
3936         lookupInDeclContext(Cat, Result, QualifiedNameLookup,
3937                             /*InBaseClass=*/false);
3938       }
3939 
3940       // Traverse protocols.
3941       for (auto *I : IFace->all_referenced_protocols()) {
3942         ShadowContextRAII Shadow(Visited);
3943         lookupInDeclContext(I, Result, QualifiedNameLookup,
3944                             /*InBaseClass=*/false);
3945       }
3946 
3947       // Traverse the superclass.
3948       if (IFace->getSuperClass()) {
3949         ShadowContextRAII Shadow(Visited);
3950         lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup,
3951                             /*InBaseClass=*/true);
3952       }
3953 
3954       // If there is an implementation, traverse it. We do this to find
3955       // synthesized ivars.
3956       if (IFace->getImplementation()) {
3957         ShadowContextRAII Shadow(Visited);
3958         lookupInDeclContext(IFace->getImplementation(), Result,
3959                             QualifiedNameLookup, InBaseClass);
3960       }
3961     } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
3962       for (auto *I : Protocol->protocols()) {
3963         ShadowContextRAII Shadow(Visited);
3964         lookupInDeclContext(I, Result, QualifiedNameLookup,
3965                             /*InBaseClass=*/false);
3966       }
3967     } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
3968       for (auto *I : Category->protocols()) {
3969         ShadowContextRAII Shadow(Visited);
3970         lookupInDeclContext(I, Result, QualifiedNameLookup,
3971                             /*InBaseClass=*/false);
3972       }
3973 
3974       // If there is an implementation, traverse it.
3975       if (Category->getImplementation()) {
3976         ShadowContextRAII Shadow(Visited);
3977         lookupInDeclContext(Category->getImplementation(), Result,
3978                             QualifiedNameLookup, /*InBaseClass=*/true);
3979       }
3980     }
3981   }
3982 
3983   void lookupInScope(Scope *S, LookupResult &Result,
3984                      UnqualUsingDirectiveSet &UDirs) {
3985     // No clients run in this mode and it's not supported. Please add tests and
3986     // remove the assertion if you start relying on it.
3987     assert(!IncludeDependentBases && "Unsupported flag for lookupInScope");
3988 
3989     if (!S)
3990       return;
3991 
3992     if (!S->getEntity() ||
3993         (!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) ||
3994         (S->getEntity())->isFunctionOrMethod()) {
3995       FindLocalExternScope FindLocals(Result);
3996       // Walk through the declarations in this Scope. The consumer might add new
3997       // decls to the scope as part of deserialization, so make a copy first.
3998       SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end());
3999       for (Decl *D : ScopeDecls) {
4000         if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
4001           if ((ND = Result.getAcceptableDecl(ND))) {
4002             Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
4003             Visited.add(ND);
4004           }
4005       }
4006     }
4007 
4008     DeclContext *Entity = S->getLookupEntity();
4009     if (Entity) {
4010       // Look into this scope's declaration context, along with any of its
4011       // parent lookup contexts (e.g., enclosing classes), up to the point
4012       // where we hit the context stored in the next outer scope.
4013       DeclContext *OuterCtx = findOuterContext(S);
4014 
4015       for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
4016            Ctx = Ctx->getLookupParent()) {
4017         if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
4018           if (Method->isInstanceMethod()) {
4019             // For instance methods, look for ivars in the method's interface.
4020             LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
4021                                     Result.getNameLoc(),
4022                                     Sema::LookupMemberName);
4023             if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
4024               lookupInDeclContext(IFace, IvarResult,
4025                                   /*QualifiedNameLookup=*/false,
4026                                   /*InBaseClass=*/false);
4027             }
4028           }
4029 
4030           // We've already performed all of the name lookup that we need
4031           // to for Objective-C methods; the next context will be the
4032           // outer scope.
4033           break;
4034         }
4035 
4036         if (Ctx->isFunctionOrMethod())
4037           continue;
4038 
4039         lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false,
4040                             /*InBaseClass=*/false);
4041       }
4042     } else if (!S->getParent()) {
4043       // Look into the translation unit scope. We walk through the translation
4044       // unit's declaration context, because the Scope itself won't have all of
4045       // the declarations if we loaded a precompiled header.
4046       // FIXME: We would like the translation unit's Scope object to point to
4047       // the translation unit, so we don't need this special "if" branch.
4048       // However, doing so would force the normal C++ name-lookup code to look
4049       // into the translation unit decl when the IdentifierInfo chains would
4050       // suffice. Once we fix that problem (which is part of a more general
4051       // "don't look in DeclContexts unless we have to" optimization), we can
4052       // eliminate this.
4053       Entity = Result.getSema().Context.getTranslationUnitDecl();
4054       lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false,
4055                           /*InBaseClass=*/false);
4056     }
4057 
4058     if (Entity) {
4059       // Lookup visible declarations in any namespaces found by using
4060       // directives.
4061       for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
4062         lookupInDeclContext(
4063             const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result,
4064             /*QualifiedNameLookup=*/false,
4065             /*InBaseClass=*/false);
4066     }
4067 
4068     // Lookup names in the parent scope.
4069     ShadowContextRAII Shadow(Visited);
4070     lookupInScope(S->getParent(), Result, UDirs);
4071   }
4072 
4073 private:
4074   VisibleDeclsRecord Visited;
4075   VisibleDeclConsumer &Consumer;
4076   bool IncludeDependentBases;
4077   bool LoadExternal;
4078 };
4079 } // namespace
4080 
4081 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
4082                               VisibleDeclConsumer &Consumer,
4083                               bool IncludeGlobalScope, bool LoadExternal) {
4084   LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false,
4085                         LoadExternal);
4086   H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope);
4087 }
4088 
4089 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
4090                               VisibleDeclConsumer &Consumer,
4091                               bool IncludeGlobalScope,
4092                               bool IncludeDependentBases, bool LoadExternal) {
4093   LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal);
4094   H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope);
4095 }
4096 
4097 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
4098 /// If GnuLabelLoc is a valid source location, then this is a definition
4099 /// of an __label__ label name, otherwise it is a normal label definition
4100 /// or use.
4101 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
4102                                      SourceLocation GnuLabelLoc) {
4103   // Do a lookup to see if we have a label with this name already.
4104   NamedDecl *Res = nullptr;
4105 
4106   if (GnuLabelLoc.isValid()) {
4107     // Local label definitions always shadow existing labels.
4108     Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
4109     Scope *S = CurScope;
4110     PushOnScopeChains(Res, S, true);
4111     return cast<LabelDecl>(Res);
4112   }
4113 
4114   // Not a GNU local label.
4115   Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
4116   // If we found a label, check to see if it is in the same context as us.
4117   // When in a Block, we don't want to reuse a label in an enclosing function.
4118   if (Res && Res->getDeclContext() != CurContext)
4119     Res = nullptr;
4120   if (!Res) {
4121     // If not forward referenced or defined already, create the backing decl.
4122     Res = LabelDecl::Create(Context, CurContext, Loc, II);
4123     Scope *S = CurScope->getFnParent();
4124     assert(S && "Not in a function?");
4125     PushOnScopeChains(Res, S, true);
4126   }
4127   return cast<LabelDecl>(Res);
4128 }
4129 
4130 //===----------------------------------------------------------------------===//
4131 // Typo correction
4132 //===----------------------------------------------------------------------===//
4133 
4134 static bool isCandidateViable(CorrectionCandidateCallback &CCC,
4135                               TypoCorrection &Candidate) {
4136   Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
4137   return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
4138 }
4139 
4140 static void LookupPotentialTypoResult(Sema &SemaRef,
4141                                       LookupResult &Res,
4142                                       IdentifierInfo *Name,
4143                                       Scope *S, CXXScopeSpec *SS,
4144                                       DeclContext *MemberContext,
4145                                       bool EnteringContext,
4146                                       bool isObjCIvarLookup,
4147                                       bool FindHidden);
4148 
4149 /// Check whether the declarations found for a typo correction are
4150 /// visible. Set the correction's RequiresImport flag to true if none of the
4151 /// declarations are visible, false otherwise.
4152 static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
4153   TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
4154 
4155   for (/**/; DI != DE; ++DI)
4156     if (!LookupResult::isVisible(SemaRef, *DI))
4157       break;
4158   // No filtering needed if all decls are visible.
4159   if (DI == DE) {
4160     TC.setRequiresImport(false);
4161     return;
4162   }
4163 
4164   llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
4165   bool AnyVisibleDecls = !NewDecls.empty();
4166 
4167   for (/**/; DI != DE; ++DI) {
4168     if (LookupResult::isVisible(SemaRef, *DI)) {
4169       if (!AnyVisibleDecls) {
4170         // Found a visible decl, discard all hidden ones.
4171         AnyVisibleDecls = true;
4172         NewDecls.clear();
4173       }
4174       NewDecls.push_back(*DI);
4175     } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
4176       NewDecls.push_back(*DI);
4177   }
4178 
4179   if (NewDecls.empty())
4180     TC = TypoCorrection();
4181   else {
4182     TC.setCorrectionDecls(NewDecls);
4183     TC.setRequiresImport(!AnyVisibleDecls);
4184   }
4185 }
4186 
4187 // Fill the supplied vector with the IdentifierInfo pointers for each piece of
4188 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
4189 // fill the vector with the IdentifierInfo pointers for "foo" and "bar").
4190 static void getNestedNameSpecifierIdentifiers(
4191     NestedNameSpecifier *NNS,
4192     SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
4193   if (NestedNameSpecifier *Prefix = NNS->getPrefix())
4194     getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
4195   else
4196     Identifiers.clear();
4197 
4198   const IdentifierInfo *II = nullptr;
4199 
4200   switch (NNS->getKind()) {
4201   case NestedNameSpecifier::Identifier:
4202     II = NNS->getAsIdentifier();
4203     break;
4204 
4205   case NestedNameSpecifier::Namespace:
4206     if (NNS->getAsNamespace()->isAnonymousNamespace())
4207       return;
4208     II = NNS->getAsNamespace()->getIdentifier();
4209     break;
4210 
4211   case NestedNameSpecifier::NamespaceAlias:
4212     II = NNS->getAsNamespaceAlias()->getIdentifier();
4213     break;
4214 
4215   case NestedNameSpecifier::TypeSpecWithTemplate:
4216   case NestedNameSpecifier::TypeSpec:
4217     II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
4218     break;
4219 
4220   case NestedNameSpecifier::Global:
4221   case NestedNameSpecifier::Super:
4222     return;
4223   }
4224 
4225   if (II)
4226     Identifiers.push_back(II);
4227 }
4228 
4229 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
4230                                        DeclContext *Ctx, bool InBaseClass) {
4231   // Don't consider hidden names for typo correction.
4232   if (Hiding)
4233     return;
4234 
4235   // Only consider entities with identifiers for names, ignoring
4236   // special names (constructors, overloaded operators, selectors,
4237   // etc.).
4238   IdentifierInfo *Name = ND->getIdentifier();
4239   if (!Name)
4240     return;
4241 
4242   // Only consider visible declarations and declarations from modules with
4243   // names that exactly match.
4244   if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo)
4245     return;
4246 
4247   FoundName(Name->getName());
4248 }
4249 
4250 void TypoCorrectionConsumer::FoundName(StringRef Name) {
4251   // Compute the edit distance between the typo and the name of this
4252   // entity, and add the identifier to the list of results.
4253   addName(Name, nullptr);
4254 }
4255 
4256 void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
4257   // Compute the edit distance between the typo and this keyword,
4258   // and add the keyword to the list of results.
4259   addName(Keyword, nullptr, nullptr, true);
4260 }
4261 
4262 void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
4263                                      NestedNameSpecifier *NNS, bool isKeyword) {
4264   // Use a simple length-based heuristic to determine the minimum possible
4265   // edit distance. If the minimum isn't good enough, bail out early.
4266   StringRef TypoStr = Typo->getName();
4267   unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
4268   if (MinED && TypoStr.size() / MinED < 3)
4269     return;
4270 
4271   // Compute an upper bound on the allowable edit distance, so that the
4272   // edit-distance algorithm can short-circuit.
4273   unsigned UpperBound = (TypoStr.size() + 2) / 3;
4274   unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
4275   if (ED > UpperBound) return;
4276 
4277   TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
4278   if (isKeyword) TC.makeKeyword();
4279   TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
4280   addCorrection(TC);
4281 }
4282 
4283 static const unsigned MaxTypoDistanceResultSets = 5;
4284 
4285 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
4286   StringRef TypoStr = Typo->getName();
4287   StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
4288 
4289   // For very short typos, ignore potential corrections that have a different
4290   // base identifier from the typo or which have a normalized edit distance
4291   // longer than the typo itself.
4292   if (TypoStr.size() < 3 &&
4293       (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
4294     return;
4295 
4296   // If the correction is resolved but is not viable, ignore it.
4297   if (Correction.isResolved()) {
4298     checkCorrectionVisibility(SemaRef, Correction);
4299     if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
4300       return;
4301   }
4302 
4303   TypoResultList &CList =
4304       CorrectionResults[Correction.getEditDistance(false)][Name];
4305 
4306   if (!CList.empty() && !CList.back().isResolved())
4307     CList.pop_back();
4308   if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
4309     std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
4310     for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
4311          RI != RIEnd; ++RI) {
4312       // If the Correction refers to a decl already in the result list,
4313       // replace the existing result if the string representation of Correction
4314       // comes before the current result alphabetically, then stop as there is
4315       // nothing more to be done to add Correction to the candidate set.
4316       if (RI->getCorrectionDecl() == NewND) {
4317         if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
4318           *RI = Correction;
4319         return;
4320       }
4321     }
4322   }
4323   if (CList.empty() || Correction.isResolved())
4324     CList.push_back(Correction);
4325 
4326   while (CorrectionResults.size() > MaxTypoDistanceResultSets)
4327     CorrectionResults.erase(std::prev(CorrectionResults.end()));
4328 }
4329 
4330 void TypoCorrectionConsumer::addNamespaces(
4331     const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
4332   SearchNamespaces = true;
4333 
4334   for (auto KNPair : KnownNamespaces)
4335     Namespaces.addNameSpecifier(KNPair.first);
4336 
4337   bool SSIsTemplate = false;
4338   if (NestedNameSpecifier *NNS =
4339           (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
4340     if (const Type *T = NNS->getAsType())
4341       SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
4342   }
4343   // Do not transform this into an iterator-based loop. The loop body can
4344   // trigger the creation of further types (through lazy deserialization) and
4345   // invalid iterators into this list.
4346   auto &Types = SemaRef.getASTContext().getTypes();
4347   for (unsigned I = 0; I != Types.size(); ++I) {
4348     const auto *TI = Types[I];
4349     if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
4350       CD = CD->getCanonicalDecl();
4351       if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
4352           !CD->isUnion() && CD->getIdentifier() &&
4353           (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
4354           (CD->isBeingDefined() || CD->isCompleteDefinition()))
4355         Namespaces.addNameSpecifier(CD);
4356     }
4357   }
4358 }
4359 
4360 const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
4361   if (++CurrentTCIndex < ValidatedCorrections.size())
4362     return ValidatedCorrections[CurrentTCIndex];
4363 
4364   CurrentTCIndex = ValidatedCorrections.size();
4365   while (!CorrectionResults.empty()) {
4366     auto DI = CorrectionResults.begin();
4367     if (DI->second.empty()) {
4368       CorrectionResults.erase(DI);
4369       continue;
4370     }
4371 
4372     auto RI = DI->second.begin();
4373     if (RI->second.empty()) {
4374       DI->second.erase(RI);
4375       performQualifiedLookups();
4376       continue;
4377     }
4378 
4379     TypoCorrection TC = RI->second.pop_back_val();
4380     if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
4381       ValidatedCorrections.push_back(TC);
4382       return ValidatedCorrections[CurrentTCIndex];
4383     }
4384   }
4385   return ValidatedCorrections[0];  // The empty correction.
4386 }
4387 
4388 bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
4389   IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
4390   DeclContext *TempMemberContext = MemberContext;
4391   CXXScopeSpec *TempSS = SS.get();
4392 retry_lookup:
4393   LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
4394                             EnteringContext,
4395                             CorrectionValidator->IsObjCIvarLookup,
4396                             Name == Typo && !Candidate.WillReplaceSpecifier());
4397   switch (Result.getResultKind()) {
4398   case LookupResult::NotFound:
4399   case LookupResult::NotFoundInCurrentInstantiation:
4400   case LookupResult::FoundUnresolvedValue:
4401     if (TempSS) {
4402       // Immediately retry the lookup without the given CXXScopeSpec
4403       TempSS = nullptr;
4404       Candidate.WillReplaceSpecifier(true);
4405       goto retry_lookup;
4406     }
4407     if (TempMemberContext) {
4408       if (SS && !TempSS)
4409         TempSS = SS.get();
4410       TempMemberContext = nullptr;
4411       goto retry_lookup;
4412     }
4413     if (SearchNamespaces)
4414       QualifiedResults.push_back(Candidate);
4415     break;
4416 
4417   case LookupResult::Ambiguous:
4418     // We don't deal with ambiguities.
4419     break;
4420 
4421   case LookupResult::Found:
4422   case LookupResult::FoundOverloaded:
4423     // Store all of the Decls for overloaded symbols
4424     for (auto *TRD : Result)
4425       Candidate.addCorrectionDecl(TRD);
4426     checkCorrectionVisibility(SemaRef, Candidate);
4427     if (!isCandidateViable(*CorrectionValidator, Candidate)) {
4428       if (SearchNamespaces)
4429         QualifiedResults.push_back(Candidate);
4430       break;
4431     }
4432     Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4433     return true;
4434   }
4435   return false;
4436 }
4437 
4438 void TypoCorrectionConsumer::performQualifiedLookups() {
4439   unsigned TypoLen = Typo->getName().size();
4440   for (const TypoCorrection &QR : QualifiedResults) {
4441     for (const auto &NSI : Namespaces) {
4442       DeclContext *Ctx = NSI.DeclCtx;
4443       const Type *NSType = NSI.NameSpecifier->getAsType();
4444 
4445       // If the current NestedNameSpecifier refers to a class and the
4446       // current correction candidate is the name of that class, then skip
4447       // it as it is unlikely a qualified version of the class' constructor
4448       // is an appropriate correction.
4449       if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
4450                                            nullptr) {
4451         if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
4452           continue;
4453       }
4454 
4455       TypoCorrection TC(QR);
4456       TC.ClearCorrectionDecls();
4457       TC.setCorrectionSpecifier(NSI.NameSpecifier);
4458       TC.setQualifierDistance(NSI.EditDistance);
4459       TC.setCallbackDistance(0); // Reset the callback distance
4460 
4461       // If the current correction candidate and namespace combination are
4462       // too far away from the original typo based on the normalized edit
4463       // distance, then skip performing a qualified name lookup.
4464       unsigned TmpED = TC.getEditDistance(true);
4465       if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
4466           TypoLen / TmpED < 3)
4467         continue;
4468 
4469       Result.clear();
4470       Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
4471       if (!SemaRef.LookupQualifiedName(Result, Ctx))
4472         continue;
4473 
4474       // Any corrections added below will be validated in subsequent
4475       // iterations of the main while() loop over the Consumer's contents.
4476       switch (Result.getResultKind()) {
4477       case LookupResult::Found:
4478       case LookupResult::FoundOverloaded: {
4479         if (SS && SS->isValid()) {
4480           std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
4481           std::string OldQualified;
4482           llvm::raw_string_ostream OldOStream(OldQualified);
4483           SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
4484           OldOStream << Typo->getName();
4485           // If correction candidate would be an identical written qualified
4486           // identifier, then the existing CXXScopeSpec probably included a
4487           // typedef that didn't get accounted for properly.
4488           if (OldOStream.str() == NewQualified)
4489             break;
4490         }
4491         for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
4492              TRD != TRDEnd; ++TRD) {
4493           if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
4494                                         NSType ? NSType->getAsCXXRecordDecl()
4495                                                : nullptr,
4496                                         TRD.getPair()) == Sema::AR_accessible)
4497             TC.addCorrectionDecl(*TRD);
4498         }
4499         if (TC.isResolved()) {
4500           TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4501           addCorrection(TC);
4502         }
4503         break;
4504       }
4505       case LookupResult::NotFound:
4506       case LookupResult::NotFoundInCurrentInstantiation:
4507       case LookupResult::Ambiguous:
4508       case LookupResult::FoundUnresolvedValue:
4509         break;
4510       }
4511     }
4512   }
4513   QualifiedResults.clear();
4514 }
4515 
4516 TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
4517     ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
4518     : Context(Context), CurContextChain(buildContextChain(CurContext)) {
4519   if (NestedNameSpecifier *NNS =
4520           CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
4521     llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
4522     NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4523 
4524     getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
4525   }
4526   // Build the list of identifiers that would be used for an absolute
4527   // (from the global context) NestedNameSpecifier referring to the current
4528   // context.
4529   for (DeclContext *C : llvm::reverse(CurContextChain)) {
4530     if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C))
4531       CurContextIdentifiers.push_back(ND->getIdentifier());
4532   }
4533 
4534   // Add the global context as a NestedNameSpecifier
4535   SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
4536                       NestedNameSpecifier::GlobalSpecifier(Context), 1};
4537   DistanceMap[1].push_back(SI);
4538 }
4539 
4540 auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
4541     DeclContext *Start) -> DeclContextList {
4542   assert(Start && "Building a context chain from a null context");
4543   DeclContextList Chain;
4544   for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
4545        DC = DC->getLookupParent()) {
4546     NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
4547     if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
4548         !(ND && ND->isAnonymousNamespace()))
4549       Chain.push_back(DC->getPrimaryContext());
4550   }
4551   return Chain;
4552 }
4553 
4554 unsigned
4555 TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
4556     DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
4557   unsigned NumSpecifiers = 0;
4558   for (DeclContext *C : llvm::reverse(DeclChain)) {
4559     if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) {
4560       NNS = NestedNameSpecifier::Create(Context, NNS, ND);
4561       ++NumSpecifiers;
4562     } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) {
4563       NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
4564                                         RD->getTypeForDecl());
4565       ++NumSpecifiers;
4566     }
4567   }
4568   return NumSpecifiers;
4569 }
4570 
4571 void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
4572     DeclContext *Ctx) {
4573   NestedNameSpecifier *NNS = nullptr;
4574   unsigned NumSpecifiers = 0;
4575   DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
4576   DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
4577 
4578   // Eliminate common elements from the two DeclContext chains.
4579   for (DeclContext *C : llvm::reverse(CurContextChain)) {
4580     if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C)
4581       break;
4582     NamespaceDeclChain.pop_back();
4583   }
4584 
4585   // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
4586   NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
4587 
4588   // Add an explicit leading '::' specifier if needed.
4589   if (NamespaceDeclChain.empty()) {
4590     // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4591     NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4592     NumSpecifiers =
4593         buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4594   } else if (NamedDecl *ND =
4595                  dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
4596     IdentifierInfo *Name = ND->getIdentifier();
4597     bool SameNameSpecifier = false;
4598     if (std::find(CurNameSpecifierIdentifiers.begin(),
4599                   CurNameSpecifierIdentifiers.end(),
4600                   Name) != CurNameSpecifierIdentifiers.end()) {
4601       std::string NewNameSpecifier;
4602       llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
4603       SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
4604       getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4605       NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4606       SpecifierOStream.flush();
4607       SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
4608     }
4609     if (SameNameSpecifier || llvm::find(CurContextIdentifiers, Name) !=
4610                                  CurContextIdentifiers.end()) {
4611       // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4612       NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4613       NumSpecifiers =
4614           buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4615     }
4616   }
4617 
4618   // If the built NestedNameSpecifier would be replacing an existing
4619   // NestedNameSpecifier, use the number of component identifiers that
4620   // would need to be changed as the edit distance instead of the number
4621   // of components in the built NestedNameSpecifier.
4622   if (NNS && !CurNameSpecifierIdentifiers.empty()) {
4623     SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
4624     getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4625     NumSpecifiers = llvm::ComputeEditDistance(
4626         llvm::makeArrayRef(CurNameSpecifierIdentifiers),
4627         llvm::makeArrayRef(NewNameSpecifierIdentifiers));
4628   }
4629 
4630   SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
4631   DistanceMap[NumSpecifiers].push_back(SI);
4632 }
4633 
4634 /// Perform name lookup for a possible result for typo correction.
4635 static void LookupPotentialTypoResult(Sema &SemaRef,
4636                                       LookupResult &Res,
4637                                       IdentifierInfo *Name,
4638                                       Scope *S, CXXScopeSpec *SS,
4639                                       DeclContext *MemberContext,
4640                                       bool EnteringContext,
4641                                       bool isObjCIvarLookup,
4642                                       bool FindHidden) {
4643   Res.suppressDiagnostics();
4644   Res.clear();
4645   Res.setLookupName(Name);
4646   Res.setAllowHidden(FindHidden);
4647   if (MemberContext) {
4648     if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
4649       if (isObjCIvarLookup) {
4650         if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
4651           Res.addDecl(Ivar);
4652           Res.resolveKind();
4653           return;
4654         }
4655       }
4656 
4657       if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(
4658               Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
4659         Res.addDecl(Prop);
4660         Res.resolveKind();
4661         return;
4662       }
4663     }
4664 
4665     SemaRef.LookupQualifiedName(Res, MemberContext);
4666     return;
4667   }
4668 
4669   SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
4670                            EnteringContext);
4671 
4672   // Fake ivar lookup; this should really be part of
4673   // LookupParsedName.
4674   if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
4675     if (Method->isInstanceMethod() && Method->getClassInterface() &&
4676         (Res.empty() ||
4677          (Res.isSingleResult() &&
4678           Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
4679        if (ObjCIvarDecl *IV
4680              = Method->getClassInterface()->lookupInstanceVariable(Name)) {
4681          Res.addDecl(IV);
4682          Res.resolveKind();
4683        }
4684      }
4685   }
4686 }
4687 
4688 /// Add keywords to the consumer as possible typo corrections.
4689 static void AddKeywordsToConsumer(Sema &SemaRef,
4690                                   TypoCorrectionConsumer &Consumer,
4691                                   Scope *S, CorrectionCandidateCallback &CCC,
4692                                   bool AfterNestedNameSpecifier) {
4693   if (AfterNestedNameSpecifier) {
4694     // For 'X::', we know exactly which keywords can appear next.
4695     Consumer.addKeywordResult("template");
4696     if (CCC.WantExpressionKeywords)
4697       Consumer.addKeywordResult("operator");
4698     return;
4699   }
4700 
4701   if (CCC.WantObjCSuper)
4702     Consumer.addKeywordResult("super");
4703 
4704   if (CCC.WantTypeSpecifiers) {
4705     // Add type-specifier keywords to the set of results.
4706     static const char *const CTypeSpecs[] = {
4707       "char", "const", "double", "enum", "float", "int", "long", "short",
4708       "signed", "struct", "union", "unsigned", "void", "volatile",
4709       "_Complex", "_Imaginary",
4710       // storage-specifiers as well
4711       "extern", "inline", "static", "typedef"
4712     };
4713 
4714     const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
4715     for (unsigned I = 0; I != NumCTypeSpecs; ++I)
4716       Consumer.addKeywordResult(CTypeSpecs[I]);
4717 
4718     if (SemaRef.getLangOpts().C99)
4719       Consumer.addKeywordResult("restrict");
4720     if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
4721       Consumer.addKeywordResult("bool");
4722     else if (SemaRef.getLangOpts().C99)
4723       Consumer.addKeywordResult("_Bool");
4724 
4725     if (SemaRef.getLangOpts().CPlusPlus) {
4726       Consumer.addKeywordResult("class");
4727       Consumer.addKeywordResult("typename");
4728       Consumer.addKeywordResult("wchar_t");
4729 
4730       if (SemaRef.getLangOpts().CPlusPlus11) {
4731         Consumer.addKeywordResult("char16_t");
4732         Consumer.addKeywordResult("char32_t");
4733         Consumer.addKeywordResult("constexpr");
4734         Consumer.addKeywordResult("decltype");
4735         Consumer.addKeywordResult("thread_local");
4736       }
4737     }
4738 
4739     if (SemaRef.getLangOpts().GNUKeywords)
4740       Consumer.addKeywordResult("typeof");
4741   } else if (CCC.WantFunctionLikeCasts) {
4742     static const char *const CastableTypeSpecs[] = {
4743       "char", "double", "float", "int", "long", "short",
4744       "signed", "unsigned", "void"
4745     };
4746     for (auto *kw : CastableTypeSpecs)
4747       Consumer.addKeywordResult(kw);
4748   }
4749 
4750   if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
4751     Consumer.addKeywordResult("const_cast");
4752     Consumer.addKeywordResult("dynamic_cast");
4753     Consumer.addKeywordResult("reinterpret_cast");
4754     Consumer.addKeywordResult("static_cast");
4755   }
4756 
4757   if (CCC.WantExpressionKeywords) {
4758     Consumer.addKeywordResult("sizeof");
4759     if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
4760       Consumer.addKeywordResult("false");
4761       Consumer.addKeywordResult("true");
4762     }
4763 
4764     if (SemaRef.getLangOpts().CPlusPlus) {
4765       static const char *const CXXExprs[] = {
4766         "delete", "new", "operator", "throw", "typeid"
4767       };
4768       const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
4769       for (unsigned I = 0; I != NumCXXExprs; ++I)
4770         Consumer.addKeywordResult(CXXExprs[I]);
4771 
4772       if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
4773           cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
4774         Consumer.addKeywordResult("this");
4775 
4776       if (SemaRef.getLangOpts().CPlusPlus11) {
4777         Consumer.addKeywordResult("alignof");
4778         Consumer.addKeywordResult("nullptr");
4779       }
4780     }
4781 
4782     if (SemaRef.getLangOpts().C11) {
4783       // FIXME: We should not suggest _Alignof if the alignof macro
4784       // is present.
4785       Consumer.addKeywordResult("_Alignof");
4786     }
4787   }
4788 
4789   if (CCC.WantRemainingKeywords) {
4790     if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
4791       // Statements.
4792       static const char *const CStmts[] = {
4793         "do", "else", "for", "goto", "if", "return", "switch", "while" };
4794       const unsigned NumCStmts = llvm::array_lengthof(CStmts);
4795       for (unsigned I = 0; I != NumCStmts; ++I)
4796         Consumer.addKeywordResult(CStmts[I]);
4797 
4798       if (SemaRef.getLangOpts().CPlusPlus) {
4799         Consumer.addKeywordResult("catch");
4800         Consumer.addKeywordResult("try");
4801       }
4802 
4803       if (S && S->getBreakParent())
4804         Consumer.addKeywordResult("break");
4805 
4806       if (S && S->getContinueParent())
4807         Consumer.addKeywordResult("continue");
4808 
4809       if (SemaRef.getCurFunction() &&
4810           !SemaRef.getCurFunction()->SwitchStack.empty()) {
4811         Consumer.addKeywordResult("case");
4812         Consumer.addKeywordResult("default");
4813       }
4814     } else {
4815       if (SemaRef.getLangOpts().CPlusPlus) {
4816         Consumer.addKeywordResult("namespace");
4817         Consumer.addKeywordResult("template");
4818       }
4819 
4820       if (S && S->isClassScope()) {
4821         Consumer.addKeywordResult("explicit");
4822         Consumer.addKeywordResult("friend");
4823         Consumer.addKeywordResult("mutable");
4824         Consumer.addKeywordResult("private");
4825         Consumer.addKeywordResult("protected");
4826         Consumer.addKeywordResult("public");
4827         Consumer.addKeywordResult("virtual");
4828       }
4829     }
4830 
4831     if (SemaRef.getLangOpts().CPlusPlus) {
4832       Consumer.addKeywordResult("using");
4833 
4834       if (SemaRef.getLangOpts().CPlusPlus11)
4835         Consumer.addKeywordResult("static_assert");
4836     }
4837   }
4838 }
4839 
4840 std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
4841     const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4842     Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
4843     DeclContext *MemberContext, bool EnteringContext,
4844     const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
4845 
4846   if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
4847       DisableTypoCorrection)
4848     return nullptr;
4849 
4850   // In Microsoft mode, don't perform typo correction in a template member
4851   // function dependent context because it interferes with the "lookup into
4852   // dependent bases of class templates" feature.
4853   if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
4854       isa<CXXMethodDecl>(CurContext))
4855     return nullptr;
4856 
4857   // We only attempt to correct typos for identifiers.
4858   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4859   if (!Typo)
4860     return nullptr;
4861 
4862   // If the scope specifier itself was invalid, don't try to correct
4863   // typos.
4864   if (SS && SS->isInvalid())
4865     return nullptr;
4866 
4867   // Never try to correct typos during any kind of code synthesis.
4868   if (!CodeSynthesisContexts.empty())
4869     return nullptr;
4870 
4871   // Don't try to correct 'super'.
4872   if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
4873     return nullptr;
4874 
4875   // Abort if typo correction already failed for this specific typo.
4876   IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
4877   if (locs != TypoCorrectionFailures.end() &&
4878       locs->second.count(TypoName.getLoc()))
4879     return nullptr;
4880 
4881   // Don't try to correct the identifier "vector" when in AltiVec mode.
4882   // TODO: Figure out why typo correction misbehaves in this case, fix it, and
4883   // remove this workaround.
4884   if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
4885     return nullptr;
4886 
4887   // Provide a stop gap for files that are just seriously broken.  Trying
4888   // to correct all typos can turn into a HUGE performance penalty, causing
4889   // some files to take minutes to get rejected by the parser.
4890   unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
4891   if (Limit && TyposCorrected >= Limit)
4892     return nullptr;
4893   ++TyposCorrected;
4894 
4895   // If we're handling a missing symbol error, using modules, and the
4896   // special search all modules option is used, look for a missing import.
4897   if (ErrorRecovery && getLangOpts().Modules &&
4898       getLangOpts().ModulesSearchAll) {
4899     // The following has the side effect of loading the missing module.
4900     getModuleLoader().lookupMissingImports(Typo->getName(),
4901                                            TypoName.getBeginLoc());
4902   }
4903 
4904   // Extend the lifetime of the callback. We delayed this until here
4905   // to avoid allocations in the hot path (which is where no typo correction
4906   // occurs). Note that CorrectionCandidateCallback is polymorphic and
4907   // initially stack-allocated.
4908   std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone();
4909   auto Consumer = std::make_unique<TypoCorrectionConsumer>(
4910       *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext,
4911       EnteringContext);
4912 
4913   // Perform name lookup to find visible, similarly-named entities.
4914   bool IsUnqualifiedLookup = false;
4915   DeclContext *QualifiedDC = MemberContext;
4916   if (MemberContext) {
4917     LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
4918 
4919     // Look in qualified interfaces.
4920     if (OPT) {
4921       for (auto *I : OPT->quals())
4922         LookupVisibleDecls(I, LookupKind, *Consumer);
4923     }
4924   } else if (SS && SS->isSet()) {
4925     QualifiedDC = computeDeclContext(*SS, EnteringContext);
4926     if (!QualifiedDC)
4927       return nullptr;
4928 
4929     LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
4930   } else {
4931     IsUnqualifiedLookup = true;
4932   }
4933 
4934   // Determine whether we are going to search in the various namespaces for
4935   // corrections.
4936   bool SearchNamespaces
4937     = getLangOpts().CPlusPlus &&
4938       (IsUnqualifiedLookup || (SS && SS->isSet()));
4939 
4940   if (IsUnqualifiedLookup || SearchNamespaces) {
4941     // For unqualified lookup, look through all of the names that we have
4942     // seen in this translation unit.
4943     // FIXME: Re-add the ability to skip very unlikely potential corrections.
4944     for (const auto &I : Context.Idents)
4945       Consumer->FoundName(I.getKey());
4946 
4947     // Walk through identifiers in external identifier sources.
4948     // FIXME: Re-add the ability to skip very unlikely potential corrections.
4949     if (IdentifierInfoLookup *External
4950                             = Context.Idents.getExternalIdentifierLookup()) {
4951       std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4952       do {
4953         StringRef Name = Iter->Next();
4954         if (Name.empty())
4955           break;
4956 
4957         Consumer->FoundName(Name);
4958       } while (true);
4959     }
4960   }
4961 
4962   AddKeywordsToConsumer(*this, *Consumer, S,
4963                         *Consumer->getCorrectionValidator(),
4964                         SS && SS->isNotEmpty());
4965 
4966   // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
4967   // to search those namespaces.
4968   if (SearchNamespaces) {
4969     // Load any externally-known namespaces.
4970     if (ExternalSource && !LoadedExternalKnownNamespaces) {
4971       SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
4972       LoadedExternalKnownNamespaces = true;
4973       ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
4974       for (auto *N : ExternalKnownNamespaces)
4975         KnownNamespaces[N] = true;
4976     }
4977 
4978     Consumer->addNamespaces(KnownNamespaces);
4979   }
4980 
4981   return Consumer;
4982 }
4983 
4984 /// Try to "correct" a typo in the source code by finding
4985 /// visible declarations whose names are similar to the name that was
4986 /// present in the source code.
4987 ///
4988 /// \param TypoName the \c DeclarationNameInfo structure that contains
4989 /// the name that was present in the source code along with its location.
4990 ///
4991 /// \param LookupKind the name-lookup criteria used to search for the name.
4992 ///
4993 /// \param S the scope in which name lookup occurs.
4994 ///
4995 /// \param SS the nested-name-specifier that precedes the name we're
4996 /// looking for, if present.
4997 ///
4998 /// \param CCC A CorrectionCandidateCallback object that provides further
4999 /// validation of typo correction candidates. It also provides flags for
5000 /// determining the set of keywords permitted.
5001 ///
5002 /// \param MemberContext if non-NULL, the context in which to look for
5003 /// a member access expression.
5004 ///
5005 /// \param EnteringContext whether we're entering the context described by
5006 /// the nested-name-specifier SS.
5007 ///
5008 /// \param OPT when non-NULL, the search for visible declarations will
5009 /// also walk the protocols in the qualified interfaces of \p OPT.
5010 ///
5011 /// \returns a \c TypoCorrection containing the corrected name if the typo
5012 /// along with information such as the \c NamedDecl where the corrected name
5013 /// was declared, and any additional \c NestedNameSpecifier needed to access
5014 /// it (C++ only). The \c TypoCorrection is empty if there is no correction.
5015 TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
5016                                  Sema::LookupNameKind LookupKind,
5017                                  Scope *S, CXXScopeSpec *SS,
5018                                  CorrectionCandidateCallback &CCC,
5019                                  CorrectTypoKind Mode,
5020                                  DeclContext *MemberContext,
5021                                  bool EnteringContext,
5022                                  const ObjCObjectPointerType *OPT,
5023                                  bool RecordFailure) {
5024   // Always let the ExternalSource have the first chance at correction, even
5025   // if we would otherwise have given up.
5026   if (ExternalSource) {
5027     if (TypoCorrection Correction =
5028             ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC,
5029                                         MemberContext, EnteringContext, OPT))
5030       return Correction;
5031   }
5032 
5033   // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
5034   // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
5035   // some instances of CTC_Unknown, while WantRemainingKeywords is true
5036   // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
5037   bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords;
5038 
5039   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5040   auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5041                                              MemberContext, EnteringContext,
5042                                              OPT, Mode == CTK_ErrorRecovery);
5043 
5044   if (!Consumer)
5045     return TypoCorrection();
5046 
5047   // If we haven't found anything, we're done.
5048   if (Consumer->empty())
5049     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5050 
5051   // Make sure the best edit distance (prior to adding any namespace qualifiers)
5052   // is not more that about a third of the length of the typo's identifier.
5053   unsigned ED = Consumer->getBestEditDistance(true);
5054   unsigned TypoLen = Typo->getName().size();
5055   if (ED > 0 && TypoLen / ED < 3)
5056     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5057 
5058   TypoCorrection BestTC = Consumer->getNextCorrection();
5059   TypoCorrection SecondBestTC = Consumer->getNextCorrection();
5060   if (!BestTC)
5061     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5062 
5063   ED = BestTC.getEditDistance();
5064 
5065   if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
5066     // If this was an unqualified lookup and we believe the callback
5067     // object wouldn't have filtered out possible corrections, note
5068     // that no correction was found.
5069     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5070   }
5071 
5072   // If only a single name remains, return that result.
5073   if (!SecondBestTC ||
5074       SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
5075     const TypoCorrection &Result = BestTC;
5076 
5077     // Don't correct to a keyword that's the same as the typo; the keyword
5078     // wasn't actually in scope.
5079     if (ED == 0 && Result.isKeyword())
5080       return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5081 
5082     TypoCorrection TC = Result;
5083     TC.setCorrectionRange(SS, TypoName);
5084     checkCorrectionVisibility(*this, TC);
5085     return TC;
5086   } else if (SecondBestTC && ObjCMessageReceiver) {
5087     // Prefer 'super' when we're completing in a message-receiver
5088     // context.
5089 
5090     if (BestTC.getCorrection().getAsString() != "super") {
5091       if (SecondBestTC.getCorrection().getAsString() == "super")
5092         BestTC = SecondBestTC;
5093       else if ((*Consumer)["super"].front().isKeyword())
5094         BestTC = (*Consumer)["super"].front();
5095     }
5096     // Don't correct to a keyword that's the same as the typo; the keyword
5097     // wasn't actually in scope.
5098     if (BestTC.getEditDistance() == 0 ||
5099         BestTC.getCorrection().getAsString() != "super")
5100       return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5101 
5102     BestTC.setCorrectionRange(SS, TypoName);
5103     return BestTC;
5104   }
5105 
5106   // Record the failure's location if needed and return an empty correction. If
5107   // this was an unqualified lookup and we believe the callback object did not
5108   // filter out possible corrections, also cache the failure for the typo.
5109   return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
5110 }
5111 
5112 /// Try to "correct" a typo in the source code by finding
5113 /// visible declarations whose names are similar to the name that was
5114 /// present in the source code.
5115 ///
5116 /// \param TypoName the \c DeclarationNameInfo structure that contains
5117 /// the name that was present in the source code along with its location.
5118 ///
5119 /// \param LookupKind the name-lookup criteria used to search for the name.
5120 ///
5121 /// \param S the scope in which name lookup occurs.
5122 ///
5123 /// \param SS the nested-name-specifier that precedes the name we're
5124 /// looking for, if present.
5125 ///
5126 /// \param CCC A CorrectionCandidateCallback object that provides further
5127 /// validation of typo correction candidates. It also provides flags for
5128 /// determining the set of keywords permitted.
5129 ///
5130 /// \param TDG A TypoDiagnosticGenerator functor that will be used to print
5131 /// diagnostics when the actual typo correction is attempted.
5132 ///
5133 /// \param TRC A TypoRecoveryCallback functor that will be used to build an
5134 /// Expr from a typo correction candidate.
5135 ///
5136 /// \param MemberContext if non-NULL, the context in which to look for
5137 /// a member access expression.
5138 ///
5139 /// \param EnteringContext whether we're entering the context described by
5140 /// the nested-name-specifier SS.
5141 ///
5142 /// \param OPT when non-NULL, the search for visible declarations will
5143 /// also walk the protocols in the qualified interfaces of \p OPT.
5144 ///
5145 /// \returns a new \c TypoExpr that will later be replaced in the AST with an
5146 /// Expr representing the result of performing typo correction, or nullptr if
5147 /// typo correction is not possible. If nullptr is returned, no diagnostics will
5148 /// be emitted and it is the responsibility of the caller to emit any that are
5149 /// needed.
5150 TypoExpr *Sema::CorrectTypoDelayed(
5151     const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
5152     Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
5153     TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
5154     DeclContext *MemberContext, bool EnteringContext,
5155     const ObjCObjectPointerType *OPT) {
5156   auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5157                                              MemberContext, EnteringContext,
5158                                              OPT, Mode == CTK_ErrorRecovery);
5159 
5160   // Give the external sema source a chance to correct the typo.
5161   TypoCorrection ExternalTypo;
5162   if (ExternalSource && Consumer) {
5163     ExternalTypo = ExternalSource->CorrectTypo(
5164         TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(),
5165         MemberContext, EnteringContext, OPT);
5166     if (ExternalTypo)
5167       Consumer->addCorrection(ExternalTypo);
5168   }
5169 
5170   if (!Consumer || Consumer->empty())
5171     return nullptr;
5172 
5173   // Make sure the best edit distance (prior to adding any namespace qualifiers)
5174   // is not more that about a third of the length of the typo's identifier.
5175   unsigned ED = Consumer->getBestEditDistance(true);
5176   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5177   if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3)
5178     return nullptr;
5179   ExprEvalContexts.back().NumTypos++;
5180   return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC),
5181                            TypoName.getLoc());
5182 }
5183 
5184 void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
5185   if (!CDecl) return;
5186 
5187   if (isKeyword())
5188     CorrectionDecls.clear();
5189 
5190   CorrectionDecls.push_back(CDecl);
5191 
5192   if (!CorrectionName)
5193     CorrectionName = CDecl->getDeclName();
5194 }
5195 
5196 std::string TypoCorrection::getAsString(const LangOptions &LO) const {
5197   if (CorrectionNameSpec) {
5198     std::string tmpBuffer;
5199     llvm::raw_string_ostream PrefixOStream(tmpBuffer);
5200     CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
5201     PrefixOStream << CorrectionName;
5202     return PrefixOStream.str();
5203   }
5204 
5205   return CorrectionName.getAsString();
5206 }
5207 
5208 bool CorrectionCandidateCallback::ValidateCandidate(
5209     const TypoCorrection &candidate) {
5210   if (!candidate.isResolved())
5211     return true;
5212 
5213   if (candidate.isKeyword())
5214     return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
5215            WantRemainingKeywords || WantObjCSuper;
5216 
5217   bool HasNonType = false;
5218   bool HasStaticMethod = false;
5219   bool HasNonStaticMethod = false;
5220   for (Decl *D : candidate) {
5221     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
5222       D = FTD->getTemplatedDecl();
5223     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5224       if (Method->isStatic())
5225         HasStaticMethod = true;
5226       else
5227         HasNonStaticMethod = true;
5228     }
5229     if (!isa<TypeDecl>(D))
5230       HasNonType = true;
5231   }
5232 
5233   if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
5234       !candidate.getCorrectionSpecifier())
5235     return false;
5236 
5237   return WantTypeSpecifiers || HasNonType;
5238 }
5239 
5240 FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
5241                                              bool HasExplicitTemplateArgs,
5242                                              MemberExpr *ME)
5243     : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
5244       CurContext(SemaRef.CurContext), MemberFn(ME) {
5245   WantTypeSpecifiers = false;
5246   WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus &&
5247                           !HasExplicitTemplateArgs && NumArgs == 1;
5248   WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1;
5249   WantRemainingKeywords = false;
5250 }
5251 
5252 bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
5253   if (!candidate.getCorrectionDecl())
5254     return candidate.isKeyword();
5255 
5256   for (auto *C : candidate) {
5257     FunctionDecl *FD = nullptr;
5258     NamedDecl *ND = C->getUnderlyingDecl();
5259     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
5260       FD = FTD->getTemplatedDecl();
5261     if (!HasExplicitTemplateArgs && !FD) {
5262       if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
5263         // If the Decl is neither a function nor a template function,
5264         // determine if it is a pointer or reference to a function. If so,
5265         // check against the number of arguments expected for the pointee.
5266         QualType ValType = cast<ValueDecl>(ND)->getType();
5267         if (ValType.isNull())
5268           continue;
5269         if (ValType->isAnyPointerType() || ValType->isReferenceType())
5270           ValType = ValType->getPointeeType();
5271         if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
5272           if (FPT->getNumParams() == NumArgs)
5273             return true;
5274       }
5275     }
5276 
5277     // A typo for a function-style cast can look like a function call in C++.
5278     if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr
5279                                  : isa<TypeDecl>(ND)) &&
5280         CurContext->getParentASTContext().getLangOpts().CPlusPlus)
5281       // Only a class or class template can take two or more arguments.
5282       return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND);
5283 
5284     // Skip the current candidate if it is not a FunctionDecl or does not accept
5285     // the current number of arguments.
5286     if (!FD || !(FD->getNumParams() >= NumArgs &&
5287                  FD->getMinRequiredArguments() <= NumArgs))
5288       continue;
5289 
5290     // If the current candidate is a non-static C++ method, skip the candidate
5291     // unless the method being corrected--or the current DeclContext, if the
5292     // function being corrected is not a method--is a method in the same class
5293     // or a descendent class of the candidate's parent class.
5294     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5295       if (MemberFn || !MD->isStatic()) {
5296         CXXMethodDecl *CurMD =
5297             MemberFn
5298                 ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
5299                 : dyn_cast_or_null<CXXMethodDecl>(CurContext);
5300         CXXRecordDecl *CurRD =
5301             CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
5302         CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
5303         if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
5304           continue;
5305       }
5306     }
5307     return true;
5308   }
5309   return false;
5310 }
5311 
5312 void Sema::diagnoseTypo(const TypoCorrection &Correction,
5313                         const PartialDiagnostic &TypoDiag,
5314                         bool ErrorRecovery) {
5315   diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
5316                ErrorRecovery);
5317 }
5318 
5319 /// Find which declaration we should import to provide the definition of
5320 /// the given declaration.
5321 static NamedDecl *getDefinitionToImport(NamedDecl *D) {
5322   if (VarDecl *VD = dyn_cast<VarDecl>(D))
5323     return VD->getDefinition();
5324   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
5325     return FD->getDefinition();
5326   if (TagDecl *TD = dyn_cast<TagDecl>(D))
5327     return TD->getDefinition();
5328   // The first definition for this ObjCInterfaceDecl might be in the TU
5329   // and not associated with any module. Use the one we know to be complete
5330   // and have just seen in a module.
5331   if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
5332     return ID;
5333   if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
5334     return PD->getDefinition();
5335   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
5336     if (NamedDecl *TTD = TD->getTemplatedDecl())
5337       return getDefinitionToImport(TTD);
5338   return nullptr;
5339 }
5340 
5341 void Sema::diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
5342                                  MissingImportKind MIK, bool Recover) {
5343   // Suggest importing a module providing the definition of this entity, if
5344   // possible.
5345   NamedDecl *Def = getDefinitionToImport(Decl);
5346   if (!Def)
5347     Def = Decl;
5348 
5349   Module *Owner = getOwningModule(Def);
5350   assert(Owner && "definition of hidden declaration is not in a module");
5351 
5352   llvm::SmallVector<Module*, 8> OwningModules;
5353   OwningModules.push_back(Owner);
5354   auto Merged = Context.getModulesWithMergedDefinition(Def);
5355   OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
5356 
5357   diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK,
5358                         Recover);
5359 }
5360 
5361 /// Get a "quoted.h" or <angled.h> include path to use in a diagnostic
5362 /// suggesting the addition of a #include of the specified file.
5363 static std::string getHeaderNameForHeader(Preprocessor &PP, const FileEntry *E,
5364                                           llvm::StringRef IncludingFile) {
5365   bool IsSystem = false;
5366   auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics(
5367       E, IncludingFile, &IsSystem);
5368   return (IsSystem ? '<' : '"') + Path + (IsSystem ? '>' : '"');
5369 }
5370 
5371 void Sema::diagnoseMissingImport(SourceLocation UseLoc, NamedDecl *Decl,
5372                                  SourceLocation DeclLoc,
5373                                  ArrayRef<Module *> Modules,
5374                                  MissingImportKind MIK, bool Recover) {
5375   assert(!Modules.empty());
5376 
5377   auto NotePrevious = [&] {
5378     // FIXME: Suppress the note backtrace even under
5379     // -fdiagnostics-show-note-include-stack. We don't care how this
5380     // declaration was previously reached.
5381     Diag(DeclLoc, diag::note_unreachable_entity) << (int)MIK;
5382   };
5383 
5384   // Weed out duplicates from module list.
5385   llvm::SmallVector<Module*, 8> UniqueModules;
5386   llvm::SmallDenseSet<Module*, 8> UniqueModuleSet;
5387   for (auto *M : Modules) {
5388     if (M->Kind == Module::GlobalModuleFragment)
5389       continue;
5390     if (UniqueModuleSet.insert(M).second)
5391       UniqueModules.push_back(M);
5392   }
5393 
5394   // Try to find a suitable header-name to #include.
5395   std::string HeaderName;
5396   if (const FileEntry *Header =
5397           PP.getHeaderToIncludeForDiagnostics(UseLoc, DeclLoc)) {
5398     if (const FileEntry *FE =
5399             SourceMgr.getFileEntryForID(SourceMgr.getFileID(UseLoc)))
5400       HeaderName = getHeaderNameForHeader(PP, Header, FE->tryGetRealPathName());
5401   }
5402 
5403   // If we have a #include we should suggest, or if all definition locations
5404   // were in global module fragments, don't suggest an import.
5405   if (!HeaderName.empty() || UniqueModules.empty()) {
5406     // FIXME: Find a smart place to suggest inserting a #include, and add
5407     // a FixItHint there.
5408     Diag(UseLoc, diag::err_module_unimported_use_header)
5409         << (int)MIK << Decl << !HeaderName.empty() << HeaderName;
5410     // Produce a note showing where the entity was declared.
5411     NotePrevious();
5412     if (Recover)
5413       createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5414     return;
5415   }
5416 
5417   Modules = UniqueModules;
5418 
5419   if (Modules.size() > 1) {
5420     std::string ModuleList;
5421     unsigned N = 0;
5422     for (Module *M : Modules) {
5423       ModuleList += "\n        ";
5424       if (++N == 5 && N != Modules.size()) {
5425         ModuleList += "[...]";
5426         break;
5427       }
5428       ModuleList += M->getFullModuleName();
5429     }
5430 
5431     Diag(UseLoc, diag::err_module_unimported_use_multiple)
5432       << (int)MIK << Decl << ModuleList;
5433   } else {
5434     // FIXME: Add a FixItHint that imports the corresponding module.
5435     Diag(UseLoc, diag::err_module_unimported_use)
5436       << (int)MIK << Decl << Modules[0]->getFullModuleName();
5437   }
5438 
5439   NotePrevious();
5440 
5441   // Try to recover by implicitly importing this module.
5442   if (Recover)
5443     createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5444 }
5445 
5446 /// Diagnose a successfully-corrected typo. Separated from the correction
5447 /// itself to allow external validation of the result, etc.
5448 ///
5449 /// \param Correction The result of performing typo correction.
5450 /// \param TypoDiag The diagnostic to produce. This will have the corrected
5451 ///        string added to it (and usually also a fixit).
5452 /// \param PrevNote A note to use when indicating the location of the entity to
5453 ///        which we are correcting. Will have the correction string added to it.
5454 /// \param ErrorRecovery If \c true (the default), the caller is going to
5455 ///        recover from the typo as if the corrected string had been typed.
5456 ///        In this case, \c PDiag must be an error, and we will attach a fixit
5457 ///        to it.
5458 void Sema::diagnoseTypo(const TypoCorrection &Correction,
5459                         const PartialDiagnostic &TypoDiag,
5460                         const PartialDiagnostic &PrevNote,
5461                         bool ErrorRecovery) {
5462   std::string CorrectedStr = Correction.getAsString(getLangOpts());
5463   std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
5464   FixItHint FixTypo = FixItHint::CreateReplacement(
5465       Correction.getCorrectionRange(), CorrectedStr);
5466 
5467   // Maybe we're just missing a module import.
5468   if (Correction.requiresImport()) {
5469     NamedDecl *Decl = Correction.getFoundDecl();
5470     assert(Decl && "import required but no declaration to import");
5471 
5472     diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
5473                           MissingImportKind::Declaration, ErrorRecovery);
5474     return;
5475   }
5476 
5477   Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
5478     << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
5479 
5480   NamedDecl *ChosenDecl =
5481       Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
5482   if (PrevNote.getDiagID() && ChosenDecl)
5483     Diag(ChosenDecl->getLocation(), PrevNote)
5484       << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
5485 
5486   // Add any extra diagnostics.
5487   for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics())
5488     Diag(Correction.getCorrectionRange().getBegin(), PD);
5489 }
5490 
5491 TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
5492                                   TypoDiagnosticGenerator TDG,
5493                                   TypoRecoveryCallback TRC,
5494                                   SourceLocation TypoLoc) {
5495   assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer");
5496   auto TE = new (Context) TypoExpr(Context.DependentTy, TypoLoc);
5497   auto &State = DelayedTypos[TE];
5498   State.Consumer = std::move(TCC);
5499   State.DiagHandler = std::move(TDG);
5500   State.RecoveryHandler = std::move(TRC);
5501   if (TE)
5502     TypoExprs.push_back(TE);
5503   return TE;
5504 }
5505 
5506 const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
5507   auto Entry = DelayedTypos.find(TE);
5508   assert(Entry != DelayedTypos.end() &&
5509          "Failed to get the state for a TypoExpr!");
5510   return Entry->second;
5511 }
5512 
5513 void Sema::clearDelayedTypo(TypoExpr *TE) {
5514   DelayedTypos.erase(TE);
5515 }
5516 
5517 void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) {
5518   DeclarationNameInfo Name(II, IILoc);
5519   LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration);
5520   R.suppressDiagnostics();
5521   R.setHideTags(false);
5522   LookupName(R, S);
5523   R.dump();
5524 }
5525