xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaLookup.cpp (revision 06c3fb2749bda94cb5201f81ffdb8fa6c3161b2e)
1 //===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements name lookup for C, C++, Objective-C, and
10 //  Objective-C++.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclLookups.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/Basic/Builtins.h"
24 #include "clang/Basic/FileManager.h"
25 #include "clang/Basic/LangOptions.h"
26 #include "clang/Lex/HeaderSearch.h"
27 #include "clang/Lex/ModuleLoader.h"
28 #include "clang/Lex/Preprocessor.h"
29 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/Lookup.h"
31 #include "clang/Sema/Overload.h"
32 #include "clang/Sema/RISCVIntrinsicManager.h"
33 #include "clang/Sema/Scope.h"
34 #include "clang/Sema/ScopeInfo.h"
35 #include "clang/Sema/Sema.h"
36 #include "clang/Sema/SemaInternal.h"
37 #include "clang/Sema/TemplateDeduction.h"
38 #include "clang/Sema/TypoCorrection.h"
39 #include "llvm/ADT/STLExtras.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/TinyPtrVector.h"
42 #include "llvm/ADT/edit_distance.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include <algorithm>
46 #include <iterator>
47 #include <list>
48 #include <optional>
49 #include <set>
50 #include <utility>
51 #include <vector>
52 
53 #include "OpenCLBuiltins.inc"
54 
55 using namespace clang;
56 using namespace sema;
57 
58 namespace {
59   class UnqualUsingEntry {
60     const DeclContext *Nominated;
61     const DeclContext *CommonAncestor;
62 
63   public:
64     UnqualUsingEntry(const DeclContext *Nominated,
65                      const DeclContext *CommonAncestor)
66       : Nominated(Nominated), CommonAncestor(CommonAncestor) {
67     }
68 
69     const DeclContext *getCommonAncestor() const {
70       return CommonAncestor;
71     }
72 
73     const DeclContext *getNominatedNamespace() const {
74       return Nominated;
75     }
76 
77     // Sort by the pointer value of the common ancestor.
78     struct Comparator {
79       bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
80         return L.getCommonAncestor() < R.getCommonAncestor();
81       }
82 
83       bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
84         return E.getCommonAncestor() < DC;
85       }
86 
87       bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
88         return DC < E.getCommonAncestor();
89       }
90     };
91   };
92 
93   /// A collection of using directives, as used by C++ unqualified
94   /// lookup.
95   class UnqualUsingDirectiveSet {
96     Sema &SemaRef;
97 
98     typedef SmallVector<UnqualUsingEntry, 8> ListTy;
99 
100     ListTy list;
101     llvm::SmallPtrSet<DeclContext*, 8> visited;
102 
103   public:
104     UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {}
105 
106     void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
107       // C++ [namespace.udir]p1:
108       //   During unqualified name lookup, the names appear as if they
109       //   were declared in the nearest enclosing namespace which contains
110       //   both the using-directive and the nominated namespace.
111       DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
112       assert(InnermostFileDC && InnermostFileDC->isFileContext());
113 
114       for (; S; S = S->getParent()) {
115         // C++ [namespace.udir]p1:
116         //   A using-directive shall not appear in class scope, but may
117         //   appear in namespace scope or in block scope.
118         DeclContext *Ctx = S->getEntity();
119         if (Ctx && Ctx->isFileContext()) {
120           visit(Ctx, Ctx);
121         } else if (!Ctx || Ctx->isFunctionOrMethod()) {
122           for (auto *I : S->using_directives())
123             if (SemaRef.isVisible(I))
124               visit(I, InnermostFileDC);
125         }
126       }
127     }
128 
129     // Visits a context and collect all of its using directives
130     // recursively.  Treats all using directives as if they were
131     // declared in the context.
132     //
133     // A given context is only every visited once, so it is important
134     // that contexts be visited from the inside out in order to get
135     // the effective DCs right.
136     void visit(DeclContext *DC, DeclContext *EffectiveDC) {
137       if (!visited.insert(DC).second)
138         return;
139 
140       addUsingDirectives(DC, EffectiveDC);
141     }
142 
143     // Visits a using directive and collects all of its using
144     // directives recursively.  Treats all using directives as if they
145     // were declared in the effective DC.
146     void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
147       DeclContext *NS = UD->getNominatedNamespace();
148       if (!visited.insert(NS).second)
149         return;
150 
151       addUsingDirective(UD, EffectiveDC);
152       addUsingDirectives(NS, EffectiveDC);
153     }
154 
155     // Adds all the using directives in a context (and those nominated
156     // by its using directives, transitively) as if they appeared in
157     // the given effective context.
158     void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
159       SmallVector<DeclContext*, 4> queue;
160       while (true) {
161         for (auto *UD : DC->using_directives()) {
162           DeclContext *NS = UD->getNominatedNamespace();
163           if (SemaRef.isVisible(UD) && visited.insert(NS).second) {
164             addUsingDirective(UD, EffectiveDC);
165             queue.push_back(NS);
166           }
167         }
168 
169         if (queue.empty())
170           return;
171 
172         DC = queue.pop_back_val();
173       }
174     }
175 
176     // Add a using directive as if it had been declared in the given
177     // context.  This helps implement C++ [namespace.udir]p3:
178     //   The using-directive is transitive: if a scope contains a
179     //   using-directive that nominates a second namespace that itself
180     //   contains using-directives, the effect is as if the
181     //   using-directives from the second namespace also appeared in
182     //   the first.
183     void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
184       // Find the common ancestor between the effective context and
185       // the nominated namespace.
186       DeclContext *Common = UD->getNominatedNamespace();
187       while (!Common->Encloses(EffectiveDC))
188         Common = Common->getParent();
189       Common = Common->getPrimaryContext();
190 
191       list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
192     }
193 
194     void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); }
195 
196     typedef ListTy::const_iterator const_iterator;
197 
198     const_iterator begin() const { return list.begin(); }
199     const_iterator end() const { return list.end(); }
200 
201     llvm::iterator_range<const_iterator>
202     getNamespacesFor(const DeclContext *DC) const {
203       return llvm::make_range(std::equal_range(begin(), end(),
204                                                DC->getPrimaryContext(),
205                                                UnqualUsingEntry::Comparator()));
206     }
207   };
208 } // end anonymous namespace
209 
210 // Retrieve the set of identifier namespaces that correspond to a
211 // specific kind of name lookup.
212 static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
213                                bool CPlusPlus,
214                                bool Redeclaration) {
215   unsigned IDNS = 0;
216   switch (NameKind) {
217   case Sema::LookupObjCImplicitSelfParam:
218   case Sema::LookupOrdinaryName:
219   case Sema::LookupRedeclarationWithLinkage:
220   case Sema::LookupLocalFriendName:
221   case Sema::LookupDestructorName:
222     IDNS = Decl::IDNS_Ordinary;
223     if (CPlusPlus) {
224       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
225       if (Redeclaration)
226         IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
227     }
228     if (Redeclaration)
229       IDNS |= Decl::IDNS_LocalExtern;
230     break;
231 
232   case Sema::LookupOperatorName:
233     // Operator lookup is its own crazy thing;  it is not the same
234     // as (e.g.) looking up an operator name for redeclaration.
235     assert(!Redeclaration && "cannot do redeclaration operator lookup");
236     IDNS = Decl::IDNS_NonMemberOperator;
237     break;
238 
239   case Sema::LookupTagName:
240     if (CPlusPlus) {
241       IDNS = Decl::IDNS_Type;
242 
243       // When looking for a redeclaration of a tag name, we add:
244       // 1) TagFriend to find undeclared friend decls
245       // 2) Namespace because they can't "overload" with tag decls.
246       // 3) Tag because it includes class templates, which can't
247       //    "overload" with tag decls.
248       if (Redeclaration)
249         IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
250     } else {
251       IDNS = Decl::IDNS_Tag;
252     }
253     break;
254 
255   case Sema::LookupLabel:
256     IDNS = Decl::IDNS_Label;
257     break;
258 
259   case Sema::LookupMemberName:
260     IDNS = Decl::IDNS_Member;
261     if (CPlusPlus)
262       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
263     break;
264 
265   case Sema::LookupNestedNameSpecifierName:
266     IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
267     break;
268 
269   case Sema::LookupNamespaceName:
270     IDNS = Decl::IDNS_Namespace;
271     break;
272 
273   case Sema::LookupUsingDeclName:
274     assert(Redeclaration && "should only be used for redecl lookup");
275     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
276            Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
277            Decl::IDNS_LocalExtern;
278     break;
279 
280   case Sema::LookupObjCProtocolName:
281     IDNS = Decl::IDNS_ObjCProtocol;
282     break;
283 
284   case Sema::LookupOMPReductionName:
285     IDNS = Decl::IDNS_OMPReduction;
286     break;
287 
288   case Sema::LookupOMPMapperName:
289     IDNS = Decl::IDNS_OMPMapper;
290     break;
291 
292   case Sema::LookupAnyName:
293     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
294       | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
295       | Decl::IDNS_Type;
296     break;
297   }
298   return IDNS;
299 }
300 
301 void LookupResult::configure() {
302   IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
303                  isForRedeclaration());
304 
305   // If we're looking for one of the allocation or deallocation
306   // operators, make sure that the implicitly-declared new and delete
307   // operators can be found.
308   switch (NameInfo.getName().getCXXOverloadedOperator()) {
309   case OO_New:
310   case OO_Delete:
311   case OO_Array_New:
312   case OO_Array_Delete:
313     getSema().DeclareGlobalNewDelete();
314     break;
315 
316   default:
317     break;
318   }
319 
320   // Compiler builtins are always visible, regardless of where they end
321   // up being declared.
322   if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
323     if (unsigned BuiltinID = Id->getBuiltinID()) {
324       if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
325         AllowHidden = true;
326     }
327   }
328 }
329 
330 bool LookupResult::checkDebugAssumptions() const {
331   // This function is never called by NDEBUG builds.
332   assert(ResultKind != NotFound || Decls.size() == 0);
333   assert(ResultKind != Found || Decls.size() == 1);
334   assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
335          (Decls.size() == 1 &&
336           isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
337   assert(ResultKind != FoundUnresolvedValue || checkUnresolved());
338   assert(ResultKind != Ambiguous || Decls.size() > 1 ||
339          (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
340                                 Ambiguity == AmbiguousBaseSubobjectTypes)));
341   assert((Paths != nullptr) == (ResultKind == Ambiguous &&
342                                 (Ambiguity == AmbiguousBaseSubobjectTypes ||
343                                  Ambiguity == AmbiguousBaseSubobjects)));
344   return true;
345 }
346 
347 // Necessary because CXXBasePaths is not complete in Sema.h
348 void LookupResult::deletePaths(CXXBasePaths *Paths) {
349   delete Paths;
350 }
351 
352 /// Get a representative context for a declaration such that two declarations
353 /// will have the same context if they were found within the same scope.
354 static const DeclContext *getContextForScopeMatching(const Decl *D) {
355   // For function-local declarations, use that function as the context. This
356   // doesn't account for scopes within the function; the caller must deal with
357   // those.
358   if (const DeclContext *DC = D->getLexicalDeclContext();
359       DC->isFunctionOrMethod())
360     return DC;
361 
362   // Otherwise, look at the semantic context of the declaration. The
363   // declaration must have been found there.
364   return D->getDeclContext()->getRedeclContext();
365 }
366 
367 /// Determine whether \p D is a better lookup result than \p Existing,
368 /// given that they declare the same entity.
369 static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind,
370                                     const NamedDecl *D,
371                                     const NamedDecl *Existing) {
372   // When looking up redeclarations of a using declaration, prefer a using
373   // shadow declaration over any other declaration of the same entity.
374   if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
375       !isa<UsingShadowDecl>(Existing))
376     return true;
377 
378   const auto *DUnderlying = D->getUnderlyingDecl();
379   const auto *EUnderlying = Existing->getUnderlyingDecl();
380 
381   // If they have different underlying declarations, prefer a typedef over the
382   // original type (this happens when two type declarations denote the same
383   // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
384   // might carry additional semantic information, such as an alignment override.
385   // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
386   // declaration over a typedef. Also prefer a tag over a typedef for
387   // destructor name lookup because in some contexts we only accept a
388   // class-name in a destructor declaration.
389   if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
390     assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying));
391     bool HaveTag = isa<TagDecl>(EUnderlying);
392     bool WantTag =
393         Kind == Sema::LookupTagName || Kind == Sema::LookupDestructorName;
394     return HaveTag != WantTag;
395   }
396 
397   // Pick the function with more default arguments.
398   // FIXME: In the presence of ambiguous default arguments, we should keep both,
399   //        so we can diagnose the ambiguity if the default argument is needed.
400   //        See C++ [over.match.best]p3.
401   if (const auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
402     const auto *EFD = cast<FunctionDecl>(EUnderlying);
403     unsigned DMin = DFD->getMinRequiredArguments();
404     unsigned EMin = EFD->getMinRequiredArguments();
405     // If D has more default arguments, it is preferred.
406     if (DMin != EMin)
407       return DMin < EMin;
408     // FIXME: When we track visibility for default function arguments, check
409     // that we pick the declaration with more visible default arguments.
410   }
411 
412   // Pick the template with more default template arguments.
413   if (const auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
414     const auto *ETD = cast<TemplateDecl>(EUnderlying);
415     unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
416     unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
417     // If D has more default arguments, it is preferred. Note that default
418     // arguments (and their visibility) is monotonically increasing across the
419     // redeclaration chain, so this is a quick proxy for "is more recent".
420     if (DMin != EMin)
421       return DMin < EMin;
422     // If D has more *visible* default arguments, it is preferred. Note, an
423     // earlier default argument being visible does not imply that a later
424     // default argument is visible, so we can't just check the first one.
425     for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
426         I != N; ++I) {
427       if (!S.hasVisibleDefaultArgument(
428               ETD->getTemplateParameters()->getParam(I)) &&
429           S.hasVisibleDefaultArgument(
430               DTD->getTemplateParameters()->getParam(I)))
431         return true;
432     }
433   }
434 
435   // VarDecl can have incomplete array types, prefer the one with more complete
436   // array type.
437   if (const auto *DVD = dyn_cast<VarDecl>(DUnderlying)) {
438     const auto *EVD = cast<VarDecl>(EUnderlying);
439     if (EVD->getType()->isIncompleteType() &&
440         !DVD->getType()->isIncompleteType()) {
441       // Prefer the decl with a more complete type if visible.
442       return S.isVisible(DVD);
443     }
444     return false; // Avoid picking up a newer decl, just because it was newer.
445   }
446 
447   // For most kinds of declaration, it doesn't really matter which one we pick.
448   if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
449     // If the existing declaration is hidden, prefer the new one. Otherwise,
450     // keep what we've got.
451     return !S.isVisible(Existing);
452   }
453 
454   // Pick the newer declaration; it might have a more precise type.
455   for (const Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
456        Prev = Prev->getPreviousDecl())
457     if (Prev == EUnderlying)
458       return true;
459   return false;
460 }
461 
462 /// Determine whether \p D can hide a tag declaration.
463 static bool canHideTag(const NamedDecl *D) {
464   // C++ [basic.scope.declarative]p4:
465   //   Given a set of declarations in a single declarative region [...]
466   //   exactly one declaration shall declare a class name or enumeration name
467   //   that is not a typedef name and the other declarations shall all refer to
468   //   the same variable, non-static data member, or enumerator, or all refer
469   //   to functions and function templates; in this case the class name or
470   //   enumeration name is hidden.
471   // C++ [basic.scope.hiding]p2:
472   //   A class name or enumeration name can be hidden by the name of a
473   //   variable, data member, function, or enumerator declared in the same
474   //   scope.
475   // An UnresolvedUsingValueDecl always instantiates to one of these.
476   D = D->getUnderlyingDecl();
477   return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
478          isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) ||
479          isa<UnresolvedUsingValueDecl>(D);
480 }
481 
482 /// Resolves the result kind of this lookup.
483 void LookupResult::resolveKind() {
484   unsigned N = Decls.size();
485 
486   // Fast case: no possible ambiguity.
487   if (N == 0) {
488     assert(ResultKind == NotFound ||
489            ResultKind == NotFoundInCurrentInstantiation);
490     return;
491   }
492 
493   // If there's a single decl, we need to examine it to decide what
494   // kind of lookup this is.
495   if (N == 1) {
496     const NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
497     if (isa<FunctionTemplateDecl>(D))
498       ResultKind = FoundOverloaded;
499     else if (isa<UnresolvedUsingValueDecl>(D))
500       ResultKind = FoundUnresolvedValue;
501     return;
502   }
503 
504   // Don't do any extra resolution if we've already resolved as ambiguous.
505   if (ResultKind == Ambiguous) return;
506 
507   llvm::SmallDenseMap<const NamedDecl *, unsigned, 16> Unique;
508   llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
509 
510   bool Ambiguous = false;
511   bool HasTag = false, HasFunction = false;
512   bool HasFunctionTemplate = false, HasUnresolved = false;
513   const NamedDecl *HasNonFunction = nullptr;
514 
515   llvm::SmallVector<const NamedDecl *, 4> EquivalentNonFunctions;
516   llvm::BitVector RemovedDecls(N);
517 
518   for (unsigned I = 0; I < N; I++) {
519     const NamedDecl *D = Decls[I]->getUnderlyingDecl();
520     D = cast<NamedDecl>(D->getCanonicalDecl());
521 
522     // Ignore an invalid declaration unless it's the only one left.
523     // Also ignore HLSLBufferDecl which not have name conflict with other Decls.
524     if ((D->isInvalidDecl() || isa<HLSLBufferDecl>(D)) &&
525         N - RemovedDecls.count() > 1) {
526       RemovedDecls.set(I);
527       continue;
528     }
529 
530     // C++ [basic.scope.hiding]p2:
531     //   A class name or enumeration name can be hidden by the name of
532     //   an object, function, or enumerator declared in the same
533     //   scope. If a class or enumeration name and an object, function,
534     //   or enumerator are declared in the same scope (in any order)
535     //   with the same name, the class or enumeration name is hidden
536     //   wherever the object, function, or enumerator name is visible.
537     if (HideTags && isa<TagDecl>(D)) {
538       bool Hidden = false;
539       for (auto *OtherDecl : Decls) {
540         if (canHideTag(OtherDecl) &&
541             getContextForScopeMatching(OtherDecl)->Equals(
542                 getContextForScopeMatching(Decls[I]))) {
543           RemovedDecls.set(I);
544           Hidden = true;
545           break;
546         }
547       }
548       if (Hidden)
549         continue;
550     }
551 
552     std::optional<unsigned> ExistingI;
553 
554     // Redeclarations of types via typedef can occur both within a scope
555     // and, through using declarations and directives, across scopes. There is
556     // no ambiguity if they all refer to the same type, so unique based on the
557     // canonical type.
558     if (const auto *TD = dyn_cast<TypeDecl>(D)) {
559       QualType T = getSema().Context.getTypeDeclType(TD);
560       auto UniqueResult = UniqueTypes.insert(
561           std::make_pair(getSema().Context.getCanonicalType(T), I));
562       if (!UniqueResult.second) {
563         // The type is not unique.
564         ExistingI = UniqueResult.first->second;
565       }
566     }
567 
568     // For non-type declarations, check for a prior lookup result naming this
569     // canonical declaration.
570     if (!ExistingI) {
571       auto UniqueResult = Unique.insert(std::make_pair(D, I));
572       if (!UniqueResult.second) {
573         // We've seen this entity before.
574         ExistingI = UniqueResult.first->second;
575       }
576     }
577 
578     if (ExistingI) {
579       // This is not a unique lookup result. Pick one of the results and
580       // discard the other.
581       if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
582                                   Decls[*ExistingI]))
583         Decls[*ExistingI] = Decls[I];
584       RemovedDecls.set(I);
585       continue;
586     }
587 
588     // Otherwise, do some decl type analysis and then continue.
589 
590     if (isa<UnresolvedUsingValueDecl>(D)) {
591       HasUnresolved = true;
592     } else if (isa<TagDecl>(D)) {
593       if (HasTag)
594         Ambiguous = true;
595       HasTag = true;
596     } else if (isa<FunctionTemplateDecl>(D)) {
597       HasFunction = true;
598       HasFunctionTemplate = true;
599     } else if (isa<FunctionDecl>(D)) {
600       HasFunction = true;
601     } else {
602       if (HasNonFunction) {
603         // If we're about to create an ambiguity between two declarations that
604         // are equivalent, but one is an internal linkage declaration from one
605         // module and the other is an internal linkage declaration from another
606         // module, just skip it.
607         if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
608                                                              D)) {
609           EquivalentNonFunctions.push_back(D);
610           RemovedDecls.set(I);
611           continue;
612         }
613 
614         Ambiguous = true;
615       }
616       HasNonFunction = D;
617     }
618   }
619 
620   // FIXME: This diagnostic should really be delayed until we're done with
621   // the lookup result, in case the ambiguity is resolved by the caller.
622   if (!EquivalentNonFunctions.empty() && !Ambiguous)
623     getSema().diagnoseEquivalentInternalLinkageDeclarations(
624         getNameLoc(), HasNonFunction, EquivalentNonFunctions);
625 
626   // Remove decls by replacing them with decls from the end (which
627   // means that we need to iterate from the end) and then truncating
628   // to the new size.
629   for (int I = RemovedDecls.find_last(); I >= 0; I = RemovedDecls.find_prev(I))
630     Decls[I] = Decls[--N];
631   Decls.truncate(N);
632 
633   if ((HasNonFunction && (HasFunction || HasUnresolved)) ||
634       (HideTags && HasTag && (HasFunction || HasNonFunction || HasUnresolved)))
635     Ambiguous = true;
636 
637   if (Ambiguous)
638     setAmbiguous(LookupResult::AmbiguousReference);
639   else if (HasUnresolved)
640     ResultKind = LookupResult::FoundUnresolvedValue;
641   else if (N > 1 || HasFunctionTemplate)
642     ResultKind = LookupResult::FoundOverloaded;
643   else
644     ResultKind = LookupResult::Found;
645 }
646 
647 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
648   CXXBasePaths::const_paths_iterator I, E;
649   for (I = P.begin(), E = P.end(); I != E; ++I)
650     for (DeclContext::lookup_iterator DI = I->Decls, DE = DI.end(); DI != DE;
651          ++DI)
652       addDecl(*DI);
653 }
654 
655 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
656   Paths = new CXXBasePaths;
657   Paths->swap(P);
658   addDeclsFromBasePaths(*Paths);
659   resolveKind();
660   setAmbiguous(AmbiguousBaseSubobjects);
661 }
662 
663 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
664   Paths = new CXXBasePaths;
665   Paths->swap(P);
666   addDeclsFromBasePaths(*Paths);
667   resolveKind();
668   setAmbiguous(AmbiguousBaseSubobjectTypes);
669 }
670 
671 void LookupResult::print(raw_ostream &Out) {
672   Out << Decls.size() << " result(s)";
673   if (isAmbiguous()) Out << ", ambiguous";
674   if (Paths) Out << ", base paths present";
675 
676   for (iterator I = begin(), E = end(); I != E; ++I) {
677     Out << "\n";
678     (*I)->print(Out, 2);
679   }
680 }
681 
682 LLVM_DUMP_METHOD void LookupResult::dump() {
683   llvm::errs() << "lookup results for " << getLookupName().getAsString()
684                << ":\n";
685   for (NamedDecl *D : *this)
686     D->dump();
687 }
688 
689 /// Diagnose a missing builtin type.
690 static QualType diagOpenCLBuiltinTypeError(Sema &S, llvm::StringRef TypeClass,
691                                            llvm::StringRef Name) {
692   S.Diag(SourceLocation(), diag::err_opencl_type_not_found)
693       << TypeClass << Name;
694   return S.Context.VoidTy;
695 }
696 
697 /// Lookup an OpenCL enum type.
698 static QualType getOpenCLEnumType(Sema &S, llvm::StringRef Name) {
699   LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(),
700                       Sema::LookupTagName);
701   S.LookupName(Result, S.TUScope);
702   if (Result.empty())
703     return diagOpenCLBuiltinTypeError(S, "enum", Name);
704   EnumDecl *Decl = Result.getAsSingle<EnumDecl>();
705   if (!Decl)
706     return diagOpenCLBuiltinTypeError(S, "enum", Name);
707   return S.Context.getEnumType(Decl);
708 }
709 
710 /// Lookup an OpenCL typedef type.
711 static QualType getOpenCLTypedefType(Sema &S, llvm::StringRef Name) {
712   LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(),
713                       Sema::LookupOrdinaryName);
714   S.LookupName(Result, S.TUScope);
715   if (Result.empty())
716     return diagOpenCLBuiltinTypeError(S, "typedef", Name);
717   TypedefNameDecl *Decl = Result.getAsSingle<TypedefNameDecl>();
718   if (!Decl)
719     return diagOpenCLBuiltinTypeError(S, "typedef", Name);
720   return S.Context.getTypedefType(Decl);
721 }
722 
723 /// Get the QualType instances of the return type and arguments for an OpenCL
724 /// builtin function signature.
725 /// \param S (in) The Sema instance.
726 /// \param OpenCLBuiltin (in) The signature currently handled.
727 /// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic
728 ///        type used as return type or as argument.
729 ///        Only meaningful for generic types, otherwise equals 1.
730 /// \param RetTypes (out) List of the possible return types.
731 /// \param ArgTypes (out) List of the possible argument types.  For each
732 ///        argument, ArgTypes contains QualTypes for the Cartesian product
733 ///        of (vector sizes) x (types) .
734 static void GetQualTypesForOpenCLBuiltin(
735     Sema &S, const OpenCLBuiltinStruct &OpenCLBuiltin, unsigned &GenTypeMaxCnt,
736     SmallVector<QualType, 1> &RetTypes,
737     SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
738   // Get the QualType instances of the return types.
739   unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex];
740   OCL2Qual(S, TypeTable[Sig], RetTypes);
741   GenTypeMaxCnt = RetTypes.size();
742 
743   // Get the QualType instances of the arguments.
744   // First type is the return type, skip it.
745   for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) {
746     SmallVector<QualType, 1> Ty;
747     OCL2Qual(S, TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]],
748              Ty);
749     GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt;
750     ArgTypes.push_back(std::move(Ty));
751   }
752 }
753 
754 /// Create a list of the candidate function overloads for an OpenCL builtin
755 /// function.
756 /// \param Context (in) The ASTContext instance.
757 /// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic
758 ///        type used as return type or as argument.
759 ///        Only meaningful for generic types, otherwise equals 1.
760 /// \param FunctionList (out) List of FunctionTypes.
761 /// \param RetTypes (in) List of the possible return types.
762 /// \param ArgTypes (in) List of the possible types for the arguments.
763 static void GetOpenCLBuiltinFctOverloads(
764     ASTContext &Context, unsigned GenTypeMaxCnt,
765     std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes,
766     SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
767   FunctionProtoType::ExtProtoInfo PI(
768       Context.getDefaultCallingConvention(false, false, true));
769   PI.Variadic = false;
770 
771   // Do not attempt to create any FunctionTypes if there are no return types,
772   // which happens when a type belongs to a disabled extension.
773   if (RetTypes.size() == 0)
774     return;
775 
776   // Create FunctionTypes for each (gen)type.
777   for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) {
778     SmallVector<QualType, 5> ArgList;
779 
780     for (unsigned A = 0; A < ArgTypes.size(); A++) {
781       // Bail out if there is an argument that has no available types.
782       if (ArgTypes[A].size() == 0)
783         return;
784 
785       // Builtins such as "max" have an "sgentype" argument that represents
786       // the corresponding scalar type of a gentype.  The number of gentypes
787       // must be a multiple of the number of sgentypes.
788       assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 &&
789              "argument type count not compatible with gentype type count");
790       unsigned Idx = IGenType % ArgTypes[A].size();
791       ArgList.push_back(ArgTypes[A][Idx]);
792     }
793 
794     FunctionList.push_back(Context.getFunctionType(
795         RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI));
796   }
797 }
798 
799 /// When trying to resolve a function name, if isOpenCLBuiltin() returns a
800 /// non-null <Index, Len> pair, then the name is referencing an OpenCL
801 /// builtin function.  Add all candidate signatures to the LookUpResult.
802 ///
803 /// \param S (in) The Sema instance.
804 /// \param LR (inout) The LookupResult instance.
805 /// \param II (in) The identifier being resolved.
806 /// \param FctIndex (in) Starting index in the BuiltinTable.
807 /// \param Len (in) The signature list has Len elements.
808 static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR,
809                                                   IdentifierInfo *II,
810                                                   const unsigned FctIndex,
811                                                   const unsigned Len) {
812   // The builtin function declaration uses generic types (gentype).
813   bool HasGenType = false;
814 
815   // Maximum number of types contained in a generic type used as return type or
816   // as argument.  Only meaningful for generic types, otherwise equals 1.
817   unsigned GenTypeMaxCnt;
818 
819   ASTContext &Context = S.Context;
820 
821   for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) {
822     const OpenCLBuiltinStruct &OpenCLBuiltin =
823         BuiltinTable[FctIndex + SignatureIndex];
824 
825     // Ignore this builtin function if it is not available in the currently
826     // selected language version.
827     if (!isOpenCLVersionContainedInMask(Context.getLangOpts(),
828                                         OpenCLBuiltin.Versions))
829       continue;
830 
831     // Ignore this builtin function if it carries an extension macro that is
832     // not defined. This indicates that the extension is not supported by the
833     // target, so the builtin function should not be available.
834     StringRef Extensions = FunctionExtensionTable[OpenCLBuiltin.Extension];
835     if (!Extensions.empty()) {
836       SmallVector<StringRef, 2> ExtVec;
837       Extensions.split(ExtVec, " ");
838       bool AllExtensionsDefined = true;
839       for (StringRef Ext : ExtVec) {
840         if (!S.getPreprocessor().isMacroDefined(Ext)) {
841           AllExtensionsDefined = false;
842           break;
843         }
844       }
845       if (!AllExtensionsDefined)
846         continue;
847     }
848 
849     SmallVector<QualType, 1> RetTypes;
850     SmallVector<SmallVector<QualType, 1>, 5> ArgTypes;
851 
852     // Obtain QualType lists for the function signature.
853     GetQualTypesForOpenCLBuiltin(S, OpenCLBuiltin, GenTypeMaxCnt, RetTypes,
854                                  ArgTypes);
855     if (GenTypeMaxCnt > 1) {
856       HasGenType = true;
857     }
858 
859     // Create function overload for each type combination.
860     std::vector<QualType> FunctionList;
861     GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes,
862                                  ArgTypes);
863 
864     SourceLocation Loc = LR.getNameLoc();
865     DeclContext *Parent = Context.getTranslationUnitDecl();
866     FunctionDecl *NewOpenCLBuiltin;
867 
868     for (const auto &FTy : FunctionList) {
869       NewOpenCLBuiltin = FunctionDecl::Create(
870           Context, Parent, Loc, Loc, II, FTy, /*TInfo=*/nullptr, SC_Extern,
871           S.getCurFPFeatures().isFPConstrained(), false,
872           FTy->isFunctionProtoType());
873       NewOpenCLBuiltin->setImplicit();
874 
875       // Create Decl objects for each parameter, adding them to the
876       // FunctionDecl.
877       const auto *FP = cast<FunctionProtoType>(FTy);
878       SmallVector<ParmVarDecl *, 4> ParmList;
879       for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) {
880         ParmVarDecl *Parm = ParmVarDecl::Create(
881             Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(),
882             nullptr, FP->getParamType(IParm), nullptr, SC_None, nullptr);
883         Parm->setScopeInfo(0, IParm);
884         ParmList.push_back(Parm);
885       }
886       NewOpenCLBuiltin->setParams(ParmList);
887 
888       // Add function attributes.
889       if (OpenCLBuiltin.IsPure)
890         NewOpenCLBuiltin->addAttr(PureAttr::CreateImplicit(Context));
891       if (OpenCLBuiltin.IsConst)
892         NewOpenCLBuiltin->addAttr(ConstAttr::CreateImplicit(Context));
893       if (OpenCLBuiltin.IsConv)
894         NewOpenCLBuiltin->addAttr(ConvergentAttr::CreateImplicit(Context));
895 
896       if (!S.getLangOpts().OpenCLCPlusPlus)
897         NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context));
898 
899       LR.addDecl(NewOpenCLBuiltin);
900     }
901   }
902 
903   // If we added overloads, need to resolve the lookup result.
904   if (Len > 1 || HasGenType)
905     LR.resolveKind();
906 }
907 
908 /// Lookup a builtin function, when name lookup would otherwise
909 /// fail.
910 bool Sema::LookupBuiltin(LookupResult &R) {
911   Sema::LookupNameKind NameKind = R.getLookupKind();
912 
913   // If we didn't find a use of this identifier, and if the identifier
914   // corresponds to a compiler builtin, create the decl object for the builtin
915   // now, injecting it into translation unit scope, and return it.
916   if (NameKind == Sema::LookupOrdinaryName ||
917       NameKind == Sema::LookupRedeclarationWithLinkage) {
918     IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
919     if (II) {
920       if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) {
921         if (II == getASTContext().getMakeIntegerSeqName()) {
922           R.addDecl(getASTContext().getMakeIntegerSeqDecl());
923           return true;
924         } else if (II == getASTContext().getTypePackElementName()) {
925           R.addDecl(getASTContext().getTypePackElementDecl());
926           return true;
927         }
928       }
929 
930       // Check if this is an OpenCL Builtin, and if so, insert its overloads.
931       if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) {
932         auto Index = isOpenCLBuiltin(II->getName());
933         if (Index.first) {
934           InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1,
935                                                 Index.second);
936           return true;
937         }
938       }
939 
940       if (DeclareRISCVVBuiltins || DeclareRISCVSiFiveVectorBuiltins) {
941         if (!RVIntrinsicManager)
942           RVIntrinsicManager = CreateRISCVIntrinsicManager(*this);
943 
944         RVIntrinsicManager->InitIntrinsicList();
945 
946         if (RVIntrinsicManager->CreateIntrinsicIfFound(R, II, PP))
947           return true;
948       }
949 
950       // If this is a builtin on this (or all) targets, create the decl.
951       if (unsigned BuiltinID = II->getBuiltinID()) {
952         // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
953         // library functions like 'malloc'. Instead, we'll just error.
954         if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) &&
955             Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
956           return false;
957 
958         if (NamedDecl *D =
959                 LazilyCreateBuiltin(II, BuiltinID, TUScope,
960                                     R.isForRedeclaration(), R.getNameLoc())) {
961           R.addDecl(D);
962           return true;
963         }
964       }
965     }
966   }
967 
968   return false;
969 }
970 
971 /// Looks up the declaration of "struct objc_super" and
972 /// saves it for later use in building builtin declaration of
973 /// objc_msgSendSuper and objc_msgSendSuper_stret.
974 static void LookupPredefedObjCSuperType(Sema &Sema, Scope *S) {
975   ASTContext &Context = Sema.Context;
976   LookupResult Result(Sema, &Context.Idents.get("objc_super"), SourceLocation(),
977                       Sema::LookupTagName);
978   Sema.LookupName(Result, S);
979   if (Result.getResultKind() == LookupResult::Found)
980     if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
981       Context.setObjCSuperType(Context.getTagDeclType(TD));
982 }
983 
984 void Sema::LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID) {
985   if (ID == Builtin::BIobjc_msgSendSuper)
986     LookupPredefedObjCSuperType(*this, S);
987 }
988 
989 /// Determine whether we can declare a special member function within
990 /// the class at this point.
991 static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
992   // We need to have a definition for the class.
993   if (!Class->getDefinition() || Class->isDependentContext())
994     return false;
995 
996   // We can't be in the middle of defining the class.
997   return !Class->isBeingDefined();
998 }
999 
1000 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
1001   if (!CanDeclareSpecialMemberFunction(Class))
1002     return;
1003 
1004   // If the default constructor has not yet been declared, do so now.
1005   if (Class->needsImplicitDefaultConstructor())
1006     DeclareImplicitDefaultConstructor(Class);
1007 
1008   // If the copy constructor has not yet been declared, do so now.
1009   if (Class->needsImplicitCopyConstructor())
1010     DeclareImplicitCopyConstructor(Class);
1011 
1012   // If the copy assignment operator has not yet been declared, do so now.
1013   if (Class->needsImplicitCopyAssignment())
1014     DeclareImplicitCopyAssignment(Class);
1015 
1016   if (getLangOpts().CPlusPlus11) {
1017     // If the move constructor has not yet been declared, do so now.
1018     if (Class->needsImplicitMoveConstructor())
1019       DeclareImplicitMoveConstructor(Class);
1020 
1021     // If the move assignment operator has not yet been declared, do so now.
1022     if (Class->needsImplicitMoveAssignment())
1023       DeclareImplicitMoveAssignment(Class);
1024   }
1025 
1026   // If the destructor has not yet been declared, do so now.
1027   if (Class->needsImplicitDestructor())
1028     DeclareImplicitDestructor(Class);
1029 }
1030 
1031 /// Determine whether this is the name of an implicitly-declared
1032 /// special member function.
1033 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
1034   switch (Name.getNameKind()) {
1035   case DeclarationName::CXXConstructorName:
1036   case DeclarationName::CXXDestructorName:
1037     return true;
1038 
1039   case DeclarationName::CXXOperatorName:
1040     return Name.getCXXOverloadedOperator() == OO_Equal;
1041 
1042   default:
1043     break;
1044   }
1045 
1046   return false;
1047 }
1048 
1049 /// If there are any implicit member functions with the given name
1050 /// that need to be declared in the given declaration context, do so.
1051 static void DeclareImplicitMemberFunctionsWithName(Sema &S,
1052                                                    DeclarationName Name,
1053                                                    SourceLocation Loc,
1054                                                    const DeclContext *DC) {
1055   if (!DC)
1056     return;
1057 
1058   switch (Name.getNameKind()) {
1059   case DeclarationName::CXXConstructorName:
1060     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
1061       if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
1062         CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
1063         if (Record->needsImplicitDefaultConstructor())
1064           S.DeclareImplicitDefaultConstructor(Class);
1065         if (Record->needsImplicitCopyConstructor())
1066           S.DeclareImplicitCopyConstructor(Class);
1067         if (S.getLangOpts().CPlusPlus11 &&
1068             Record->needsImplicitMoveConstructor())
1069           S.DeclareImplicitMoveConstructor(Class);
1070       }
1071     break;
1072 
1073   case DeclarationName::CXXDestructorName:
1074     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
1075       if (Record->getDefinition() && Record->needsImplicitDestructor() &&
1076           CanDeclareSpecialMemberFunction(Record))
1077         S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
1078     break;
1079 
1080   case DeclarationName::CXXOperatorName:
1081     if (Name.getCXXOverloadedOperator() != OO_Equal)
1082       break;
1083 
1084     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
1085       if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
1086         CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
1087         if (Record->needsImplicitCopyAssignment())
1088           S.DeclareImplicitCopyAssignment(Class);
1089         if (S.getLangOpts().CPlusPlus11 &&
1090             Record->needsImplicitMoveAssignment())
1091           S.DeclareImplicitMoveAssignment(Class);
1092       }
1093     }
1094     break;
1095 
1096   case DeclarationName::CXXDeductionGuideName:
1097     S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc);
1098     break;
1099 
1100   default:
1101     break;
1102   }
1103 }
1104 
1105 // Adds all qualifying matches for a name within a decl context to the
1106 // given lookup result.  Returns true if any matches were found.
1107 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
1108   bool Found = false;
1109 
1110   // Lazily declare C++ special member functions.
1111   if (S.getLangOpts().CPlusPlus)
1112     DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(),
1113                                            DC);
1114 
1115   // Perform lookup into this declaration context.
1116   DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
1117   for (NamedDecl *D : DR) {
1118     if ((D = R.getAcceptableDecl(D))) {
1119       R.addDecl(D);
1120       Found = true;
1121     }
1122   }
1123 
1124   if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R))
1125     return true;
1126 
1127   if (R.getLookupName().getNameKind()
1128         != DeclarationName::CXXConversionFunctionName ||
1129       R.getLookupName().getCXXNameType()->isDependentType() ||
1130       !isa<CXXRecordDecl>(DC))
1131     return Found;
1132 
1133   // C++ [temp.mem]p6:
1134   //   A specialization of a conversion function template is not found by
1135   //   name lookup. Instead, any conversion function templates visible in the
1136   //   context of the use are considered. [...]
1137   const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1138   if (!Record->isCompleteDefinition())
1139     return Found;
1140 
1141   // For conversion operators, 'operator auto' should only match
1142   // 'operator auto'.  Since 'auto' is not a type, it shouldn't be considered
1143   // as a candidate for template substitution.
1144   auto *ContainedDeducedType =
1145       R.getLookupName().getCXXNameType()->getContainedDeducedType();
1146   if (R.getLookupName().getNameKind() ==
1147           DeclarationName::CXXConversionFunctionName &&
1148       ContainedDeducedType && ContainedDeducedType->isUndeducedType())
1149     return Found;
1150 
1151   for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
1152          UEnd = Record->conversion_end(); U != UEnd; ++U) {
1153     FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
1154     if (!ConvTemplate)
1155       continue;
1156 
1157     // When we're performing lookup for the purposes of redeclaration, just
1158     // add the conversion function template. When we deduce template
1159     // arguments for specializations, we'll end up unifying the return
1160     // type of the new declaration with the type of the function template.
1161     if (R.isForRedeclaration()) {
1162       R.addDecl(ConvTemplate);
1163       Found = true;
1164       continue;
1165     }
1166 
1167     // C++ [temp.mem]p6:
1168     //   [...] For each such operator, if argument deduction succeeds
1169     //   (14.9.2.3), the resulting specialization is used as if found by
1170     //   name lookup.
1171     //
1172     // When referencing a conversion function for any purpose other than
1173     // a redeclaration (such that we'll be building an expression with the
1174     // result), perform template argument deduction and place the
1175     // specialization into the result set. We do this to avoid forcing all
1176     // callers to perform special deduction for conversion functions.
1177     TemplateDeductionInfo Info(R.getNameLoc());
1178     FunctionDecl *Specialization = nullptr;
1179 
1180     const FunctionProtoType *ConvProto
1181       = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
1182     assert(ConvProto && "Nonsensical conversion function template type");
1183 
1184     // Compute the type of the function that we would expect the conversion
1185     // function to have, if it were to match the name given.
1186     // FIXME: Calling convention!
1187     FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
1188     EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
1189     EPI.ExceptionSpec = EST_None;
1190     QualType ExpectedType = R.getSema().Context.getFunctionType(
1191         R.getLookupName().getCXXNameType(), std::nullopt, EPI);
1192 
1193     // Perform template argument deduction against the type that we would
1194     // expect the function to have.
1195     if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
1196                                             Specialization, Info)
1197           == Sema::TDK_Success) {
1198       R.addDecl(Specialization);
1199       Found = true;
1200     }
1201   }
1202 
1203   return Found;
1204 }
1205 
1206 // Performs C++ unqualified lookup into the given file context.
1207 static bool CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
1208                                const DeclContext *NS,
1209                                UnqualUsingDirectiveSet &UDirs) {
1210 
1211   assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
1212 
1213   // Perform direct name lookup into the LookupCtx.
1214   bool Found = LookupDirect(S, R, NS);
1215 
1216   // Perform direct name lookup into the namespaces nominated by the
1217   // using directives whose common ancestor is this namespace.
1218   for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
1219     if (LookupDirect(S, R, UUE.getNominatedNamespace()))
1220       Found = true;
1221 
1222   R.resolveKind();
1223 
1224   return Found;
1225 }
1226 
1227 static bool isNamespaceOrTranslationUnitScope(Scope *S) {
1228   if (DeclContext *Ctx = S->getEntity())
1229     return Ctx->isFileContext();
1230   return false;
1231 }
1232 
1233 /// Find the outer declaration context from this scope. This indicates the
1234 /// context that we should search up to (exclusive) before considering the
1235 /// parent of the specified scope.
1236 static DeclContext *findOuterContext(Scope *S) {
1237   for (Scope *OuterS = S->getParent(); OuterS; OuterS = OuterS->getParent())
1238     if (DeclContext *DC = OuterS->getLookupEntity())
1239       return DC;
1240   return nullptr;
1241 }
1242 
1243 namespace {
1244 /// An RAII object to specify that we want to find block scope extern
1245 /// declarations.
1246 struct FindLocalExternScope {
1247   FindLocalExternScope(LookupResult &R)
1248       : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
1249                                  Decl::IDNS_LocalExtern) {
1250     R.setFindLocalExtern(R.getIdentifierNamespace() &
1251                          (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator));
1252   }
1253   void restore() {
1254     R.setFindLocalExtern(OldFindLocalExtern);
1255   }
1256   ~FindLocalExternScope() {
1257     restore();
1258   }
1259   LookupResult &R;
1260   bool OldFindLocalExtern;
1261 };
1262 } // end anonymous namespace
1263 
1264 bool Sema::CppLookupName(LookupResult &R, Scope *S) {
1265   assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
1266 
1267   DeclarationName Name = R.getLookupName();
1268   Sema::LookupNameKind NameKind = R.getLookupKind();
1269 
1270   // If this is the name of an implicitly-declared special member function,
1271   // go through the scope stack to implicitly declare
1272   if (isImplicitlyDeclaredMemberFunctionName(Name)) {
1273     for (Scope *PreS = S; PreS; PreS = PreS->getParent())
1274       if (DeclContext *DC = PreS->getEntity())
1275         DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC);
1276   }
1277 
1278   // Implicitly declare member functions with the name we're looking for, if in
1279   // fact we are in a scope where it matters.
1280 
1281   Scope *Initial = S;
1282   IdentifierResolver::iterator
1283     I = IdResolver.begin(Name),
1284     IEnd = IdResolver.end();
1285 
1286   // First we lookup local scope.
1287   // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
1288   // ...During unqualified name lookup (3.4.1), the names appear as if
1289   // they were declared in the nearest enclosing namespace which contains
1290   // both the using-directive and the nominated namespace.
1291   // [Note: in this context, "contains" means "contains directly or
1292   // indirectly".
1293   //
1294   // For example:
1295   // namespace A { int i; }
1296   // void foo() {
1297   //   int i;
1298   //   {
1299   //     using namespace A;
1300   //     ++i; // finds local 'i', A::i appears at global scope
1301   //   }
1302   // }
1303   //
1304   UnqualUsingDirectiveSet UDirs(*this);
1305   bool VisitedUsingDirectives = false;
1306   bool LeftStartingScope = false;
1307 
1308   // When performing a scope lookup, we want to find local extern decls.
1309   FindLocalExternScope FindLocals(R);
1310 
1311   for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
1312     bool SearchNamespaceScope = true;
1313     // Check whether the IdResolver has anything in this scope.
1314     for (; I != IEnd && S->isDeclScope(*I); ++I) {
1315       if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1316         if (NameKind == LookupRedeclarationWithLinkage &&
1317             !(*I)->isTemplateParameter()) {
1318           // If it's a template parameter, we still find it, so we can diagnose
1319           // the invalid redeclaration.
1320 
1321           // Determine whether this (or a previous) declaration is
1322           // out-of-scope.
1323           if (!LeftStartingScope && !Initial->isDeclScope(*I))
1324             LeftStartingScope = true;
1325 
1326           // If we found something outside of our starting scope that
1327           // does not have linkage, skip it.
1328           if (LeftStartingScope && !((*I)->hasLinkage())) {
1329             R.setShadowed();
1330             continue;
1331           }
1332         } else {
1333           // We found something in this scope, we should not look at the
1334           // namespace scope
1335           SearchNamespaceScope = false;
1336         }
1337         R.addDecl(ND);
1338       }
1339     }
1340     if (!SearchNamespaceScope) {
1341       R.resolveKind();
1342       if (S->isClassScope())
1343         if (auto *Record = dyn_cast_if_present<CXXRecordDecl>(S->getEntity()))
1344           R.setNamingClass(Record);
1345       return true;
1346     }
1347 
1348     if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
1349       // C++11 [class.friend]p11:
1350       //   If a friend declaration appears in a local class and the name
1351       //   specified is an unqualified name, a prior declaration is
1352       //   looked up without considering scopes that are outside the
1353       //   innermost enclosing non-class scope.
1354       return false;
1355     }
1356 
1357     if (DeclContext *Ctx = S->getLookupEntity()) {
1358       DeclContext *OuterCtx = findOuterContext(S);
1359       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1360         // We do not directly look into transparent contexts, since
1361         // those entities will be found in the nearest enclosing
1362         // non-transparent context.
1363         if (Ctx->isTransparentContext())
1364           continue;
1365 
1366         // We do not look directly into function or method contexts,
1367         // since all of the local variables and parameters of the
1368         // function/method are present within the Scope.
1369         if (Ctx->isFunctionOrMethod()) {
1370           // If we have an Objective-C instance method, look for ivars
1371           // in the corresponding interface.
1372           if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1373             if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1374               if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1375                 ObjCInterfaceDecl *ClassDeclared;
1376                 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1377                                                  Name.getAsIdentifierInfo(),
1378                                                              ClassDeclared)) {
1379                   if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1380                     R.addDecl(ND);
1381                     R.resolveKind();
1382                     return true;
1383                   }
1384                 }
1385               }
1386           }
1387 
1388           continue;
1389         }
1390 
1391         // If this is a file context, we need to perform unqualified name
1392         // lookup considering using directives.
1393         if (Ctx->isFileContext()) {
1394           // If we haven't handled using directives yet, do so now.
1395           if (!VisitedUsingDirectives) {
1396             // Add using directives from this context up to the top level.
1397             for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1398               if (UCtx->isTransparentContext())
1399                 continue;
1400 
1401               UDirs.visit(UCtx, UCtx);
1402             }
1403 
1404             // Find the innermost file scope, so we can add using directives
1405             // from local scopes.
1406             Scope *InnermostFileScope = S;
1407             while (InnermostFileScope &&
1408                    !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1409               InnermostFileScope = InnermostFileScope->getParent();
1410             UDirs.visitScopeChain(Initial, InnermostFileScope);
1411 
1412             UDirs.done();
1413 
1414             VisitedUsingDirectives = true;
1415           }
1416 
1417           if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1418             R.resolveKind();
1419             return true;
1420           }
1421 
1422           continue;
1423         }
1424 
1425         // Perform qualified name lookup into this context.
1426         // FIXME: In some cases, we know that every name that could be found by
1427         // this qualified name lookup will also be on the identifier chain. For
1428         // example, inside a class without any base classes, we never need to
1429         // perform qualified lookup because all of the members are on top of the
1430         // identifier chain.
1431         if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1432           return true;
1433       }
1434     }
1435   }
1436 
1437   // Stop if we ran out of scopes.
1438   // FIXME:  This really, really shouldn't be happening.
1439   if (!S) return false;
1440 
1441   // If we are looking for members, no need to look into global/namespace scope.
1442   if (NameKind == LookupMemberName)
1443     return false;
1444 
1445   // Collect UsingDirectiveDecls in all scopes, and recursively all
1446   // nominated namespaces by those using-directives.
1447   //
1448   // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1449   // don't build it for each lookup!
1450   if (!VisitedUsingDirectives) {
1451     UDirs.visitScopeChain(Initial, S);
1452     UDirs.done();
1453   }
1454 
1455   // If we're not performing redeclaration lookup, do not look for local
1456   // extern declarations outside of a function scope.
1457   if (!R.isForRedeclaration())
1458     FindLocals.restore();
1459 
1460   // Lookup namespace scope, and global scope.
1461   // Unqualified name lookup in C++ requires looking into scopes
1462   // that aren't strictly lexical, and therefore we walk through the
1463   // context as well as walking through the scopes.
1464   for (; S; S = S->getParent()) {
1465     // Check whether the IdResolver has anything in this scope.
1466     bool Found = false;
1467     for (; I != IEnd && S->isDeclScope(*I); ++I) {
1468       if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1469         // We found something.  Look for anything else in our scope
1470         // with this same name and in an acceptable identifier
1471         // namespace, so that we can construct an overload set if we
1472         // need to.
1473         Found = true;
1474         R.addDecl(ND);
1475       }
1476     }
1477 
1478     if (Found && S->isTemplateParamScope()) {
1479       R.resolveKind();
1480       return true;
1481     }
1482 
1483     DeclContext *Ctx = S->getLookupEntity();
1484     if (Ctx) {
1485       DeclContext *OuterCtx = findOuterContext(S);
1486       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1487         // We do not directly look into transparent contexts, since
1488         // those entities will be found in the nearest enclosing
1489         // non-transparent context.
1490         if (Ctx->isTransparentContext())
1491           continue;
1492 
1493         // If we have a context, and it's not a context stashed in the
1494         // template parameter scope for an out-of-line definition, also
1495         // look into that context.
1496         if (!(Found && S->isTemplateParamScope())) {
1497           assert(Ctx->isFileContext() &&
1498               "We should have been looking only at file context here already.");
1499 
1500           // Look into context considering using-directives.
1501           if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1502             Found = true;
1503         }
1504 
1505         if (Found) {
1506           R.resolveKind();
1507           return true;
1508         }
1509 
1510         if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1511           return false;
1512       }
1513     }
1514 
1515     if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1516       return false;
1517   }
1518 
1519   return !R.empty();
1520 }
1521 
1522 void Sema::makeMergedDefinitionVisible(NamedDecl *ND) {
1523   if (auto *M = getCurrentModule())
1524     Context.mergeDefinitionIntoModule(ND, M);
1525   else
1526     // We're not building a module; just make the definition visible.
1527     ND->setVisibleDespiteOwningModule();
1528 
1529   // If ND is a template declaration, make the template parameters
1530   // visible too. They're not (necessarily) within a mergeable DeclContext.
1531   if (auto *TD = dyn_cast<TemplateDecl>(ND))
1532     for (auto *Param : *TD->getTemplateParameters())
1533       makeMergedDefinitionVisible(Param);
1534 }
1535 
1536 /// Find the module in which the given declaration was defined.
1537 static Module *getDefiningModule(Sema &S, Decl *Entity) {
1538   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1539     // If this function was instantiated from a template, the defining module is
1540     // the module containing the pattern.
1541     if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1542       Entity = Pattern;
1543   } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1544     if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
1545       Entity = Pattern;
1546   } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1547     if (auto *Pattern = ED->getTemplateInstantiationPattern())
1548       Entity = Pattern;
1549   } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1550     if (VarDecl *Pattern = VD->getTemplateInstantiationPattern())
1551       Entity = Pattern;
1552   }
1553 
1554   // Walk up to the containing context. That might also have been instantiated
1555   // from a template.
1556   DeclContext *Context = Entity->getLexicalDeclContext();
1557   if (Context->isFileContext())
1558     return S.getOwningModule(Entity);
1559   return getDefiningModule(S, cast<Decl>(Context));
1560 }
1561 
1562 llvm::DenseSet<Module*> &Sema::getLookupModules() {
1563   unsigned N = CodeSynthesisContexts.size();
1564   for (unsigned I = CodeSynthesisContextLookupModules.size();
1565        I != N; ++I) {
1566     Module *M = CodeSynthesisContexts[I].Entity ?
1567                 getDefiningModule(*this, CodeSynthesisContexts[I].Entity) :
1568                 nullptr;
1569     if (M && !LookupModulesCache.insert(M).second)
1570       M = nullptr;
1571     CodeSynthesisContextLookupModules.push_back(M);
1572   }
1573   return LookupModulesCache;
1574 }
1575 
1576 /// Determine if we could use all the declarations in the module.
1577 bool Sema::isUsableModule(const Module *M) {
1578   assert(M && "We shouldn't check nullness for module here");
1579   // Return quickly if we cached the result.
1580   if (UsableModuleUnitsCache.count(M))
1581     return true;
1582 
1583   // If M is the global module fragment of the current translation unit. So it
1584   // should be usable.
1585   // [module.global.frag]p1:
1586   //   The global module fragment can be used to provide declarations that are
1587   //   attached to the global module and usable within the module unit.
1588   if (M == TheGlobalModuleFragment || M == TheImplicitGlobalModuleFragment ||
1589       M == TheExportedImplicitGlobalModuleFragment ||
1590       // If M is the module we're parsing, it should be usable. This covers the
1591       // private module fragment. The private module fragment is usable only if
1592       // it is within the current module unit. And it must be the current
1593       // parsing module unit if it is within the current module unit according
1594       // to the grammar of the private module fragment. NOTE: This is covered by
1595       // the following condition. The intention of the check is to avoid string
1596       // comparison as much as possible.
1597       M == getCurrentModule() ||
1598       // The module unit which is in the same module with the current module
1599       // unit is usable.
1600       //
1601       // FIXME: Here we judge if they are in the same module by comparing the
1602       // string. Is there any better solution?
1603       M->getPrimaryModuleInterfaceName() ==
1604           llvm::StringRef(getLangOpts().CurrentModule).split(':').first) {
1605     UsableModuleUnitsCache.insert(M);
1606     return true;
1607   }
1608 
1609   return false;
1610 }
1611 
1612 bool Sema::hasVisibleMergedDefinition(const NamedDecl *Def) {
1613   for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1614     if (isModuleVisible(Merged))
1615       return true;
1616   return false;
1617 }
1618 
1619 bool Sema::hasMergedDefinitionInCurrentModule(const NamedDecl *Def) {
1620   for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1621     if (isUsableModule(Merged))
1622       return true;
1623   return false;
1624 }
1625 
1626 template <typename ParmDecl>
1627 static bool
1628 hasAcceptableDefaultArgument(Sema &S, const ParmDecl *D,
1629                              llvm::SmallVectorImpl<Module *> *Modules,
1630                              Sema::AcceptableKind Kind) {
1631   if (!D->hasDefaultArgument())
1632     return false;
1633 
1634   llvm::SmallPtrSet<const ParmDecl *, 4> Visited;
1635   while (D && Visited.insert(D).second) {
1636     auto &DefaultArg = D->getDefaultArgStorage();
1637     if (!DefaultArg.isInherited() && S.isAcceptable(D, Kind))
1638       return true;
1639 
1640     if (!DefaultArg.isInherited() && Modules) {
1641       auto *NonConstD = const_cast<ParmDecl*>(D);
1642       Modules->push_back(S.getOwningModule(NonConstD));
1643     }
1644 
1645     // If there was a previous default argument, maybe its parameter is
1646     // acceptable.
1647     D = DefaultArg.getInheritedFrom();
1648   }
1649   return false;
1650 }
1651 
1652 bool Sema::hasAcceptableDefaultArgument(
1653     const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules,
1654     Sema::AcceptableKind Kind) {
1655   if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
1656     return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind);
1657 
1658   if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
1659     return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind);
1660 
1661   return ::hasAcceptableDefaultArgument(
1662       *this, cast<TemplateTemplateParmDecl>(D), Modules, Kind);
1663 }
1664 
1665 bool Sema::hasVisibleDefaultArgument(const NamedDecl *D,
1666                                      llvm::SmallVectorImpl<Module *> *Modules) {
1667   return hasAcceptableDefaultArgument(D, Modules,
1668                                       Sema::AcceptableKind::Visible);
1669 }
1670 
1671 bool Sema::hasReachableDefaultArgument(
1672     const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1673   return hasAcceptableDefaultArgument(D, Modules,
1674                                       Sema::AcceptableKind::Reachable);
1675 }
1676 
1677 template <typename Filter>
1678 static bool
1679 hasAcceptableDeclarationImpl(Sema &S, const NamedDecl *D,
1680                              llvm::SmallVectorImpl<Module *> *Modules, Filter F,
1681                              Sema::AcceptableKind Kind) {
1682   bool HasFilteredRedecls = false;
1683 
1684   for (auto *Redecl : D->redecls()) {
1685     auto *R = cast<NamedDecl>(Redecl);
1686     if (!F(R))
1687       continue;
1688 
1689     if (S.isAcceptable(R, Kind))
1690       return true;
1691 
1692     HasFilteredRedecls = true;
1693 
1694     if (Modules)
1695       Modules->push_back(R->getOwningModule());
1696   }
1697 
1698   // Only return false if there is at least one redecl that is not filtered out.
1699   if (HasFilteredRedecls)
1700     return false;
1701 
1702   return true;
1703 }
1704 
1705 static bool
1706 hasAcceptableExplicitSpecialization(Sema &S, const NamedDecl *D,
1707                                     llvm::SmallVectorImpl<Module *> *Modules,
1708                                     Sema::AcceptableKind Kind) {
1709   return hasAcceptableDeclarationImpl(
1710       S, D, Modules,
1711       [](const NamedDecl *D) {
1712         if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1713           return RD->getTemplateSpecializationKind() ==
1714                  TSK_ExplicitSpecialization;
1715         if (auto *FD = dyn_cast<FunctionDecl>(D))
1716           return FD->getTemplateSpecializationKind() ==
1717                  TSK_ExplicitSpecialization;
1718         if (auto *VD = dyn_cast<VarDecl>(D))
1719           return VD->getTemplateSpecializationKind() ==
1720                  TSK_ExplicitSpecialization;
1721         llvm_unreachable("unknown explicit specialization kind");
1722       },
1723       Kind);
1724 }
1725 
1726 bool Sema::hasVisibleExplicitSpecialization(
1727     const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1728   return ::hasAcceptableExplicitSpecialization(*this, D, Modules,
1729                                                Sema::AcceptableKind::Visible);
1730 }
1731 
1732 bool Sema::hasReachableExplicitSpecialization(
1733     const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1734   return ::hasAcceptableExplicitSpecialization(*this, D, Modules,
1735                                                Sema::AcceptableKind::Reachable);
1736 }
1737 
1738 static bool
1739 hasAcceptableMemberSpecialization(Sema &S, const NamedDecl *D,
1740                                   llvm::SmallVectorImpl<Module *> *Modules,
1741                                   Sema::AcceptableKind Kind) {
1742   assert(isa<CXXRecordDecl>(D->getDeclContext()) &&
1743          "not a member specialization");
1744   return hasAcceptableDeclarationImpl(
1745       S, D, Modules,
1746       [](const NamedDecl *D) {
1747         // If the specialization is declared at namespace scope, then it's a
1748         // member specialization declaration. If it's lexically inside the class
1749         // definition then it was instantiated.
1750         //
1751         // FIXME: This is a hack. There should be a better way to determine
1752         // this.
1753         // FIXME: What about MS-style explicit specializations declared within a
1754         //        class definition?
1755         return D->getLexicalDeclContext()->isFileContext();
1756       },
1757       Kind);
1758 }
1759 
1760 bool Sema::hasVisibleMemberSpecialization(
1761     const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1762   return hasAcceptableMemberSpecialization(*this, D, Modules,
1763                                            Sema::AcceptableKind::Visible);
1764 }
1765 
1766 bool Sema::hasReachableMemberSpecialization(
1767     const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1768   return hasAcceptableMemberSpecialization(*this, D, Modules,
1769                                            Sema::AcceptableKind::Reachable);
1770 }
1771 
1772 /// Determine whether a declaration is acceptable to name lookup.
1773 ///
1774 /// This routine determines whether the declaration D is acceptable in the
1775 /// current lookup context, taking into account the current template
1776 /// instantiation stack. During template instantiation, a declaration is
1777 /// acceptable if it is acceptable from a module containing any entity on the
1778 /// template instantiation path (by instantiating a template, you allow it to
1779 /// see the declarations that your module can see, including those later on in
1780 /// your module).
1781 bool LookupResult::isAcceptableSlow(Sema &SemaRef, NamedDecl *D,
1782                                     Sema::AcceptableKind Kind) {
1783   assert(!D->isUnconditionallyVisible() &&
1784          "should not call this: not in slow case");
1785 
1786   Module *DeclModule = SemaRef.getOwningModule(D);
1787   assert(DeclModule && "hidden decl has no owning module");
1788 
1789   // If the owning module is visible, the decl is acceptable.
1790   if (SemaRef.isModuleVisible(DeclModule,
1791                               D->isInvisibleOutsideTheOwningModule()))
1792     return true;
1793 
1794   // Determine whether a decl context is a file context for the purpose of
1795   // visibility/reachability. This looks through some (export and linkage spec)
1796   // transparent contexts, but not others (enums).
1797   auto IsEffectivelyFileContext = [](const DeclContext *DC) {
1798     return DC->isFileContext() || isa<LinkageSpecDecl>(DC) ||
1799            isa<ExportDecl>(DC);
1800   };
1801 
1802   // If this declaration is not at namespace scope
1803   // then it is acceptable if its lexical parent has a acceptable definition.
1804   DeclContext *DC = D->getLexicalDeclContext();
1805   if (DC && !IsEffectivelyFileContext(DC)) {
1806     // For a parameter, check whether our current template declaration's
1807     // lexical context is acceptable, not whether there's some other acceptable
1808     // definition of it, because parameters aren't "within" the definition.
1809     //
1810     // In C++ we need to check for a acceptable definition due to ODR merging,
1811     // and in C we must not because each declaration of a function gets its own
1812     // set of declarations for tags in prototype scope.
1813     bool AcceptableWithinParent;
1814     if (D->isTemplateParameter()) {
1815       bool SearchDefinitions = true;
1816       if (const auto *DCD = dyn_cast<Decl>(DC)) {
1817         if (const auto *TD = DCD->getDescribedTemplate()) {
1818           TemplateParameterList *TPL = TD->getTemplateParameters();
1819           auto Index = getDepthAndIndex(D).second;
1820           SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D;
1821         }
1822       }
1823       if (SearchDefinitions)
1824         AcceptableWithinParent =
1825             SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind);
1826       else
1827         AcceptableWithinParent =
1828             isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind);
1829     } else if (isa<ParmVarDecl>(D) ||
1830                (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus))
1831       AcceptableWithinParent = isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind);
1832     else if (D->isModulePrivate()) {
1833       // A module-private declaration is only acceptable if an enclosing lexical
1834       // parent was merged with another definition in the current module.
1835       AcceptableWithinParent = false;
1836       do {
1837         if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) {
1838           AcceptableWithinParent = true;
1839           break;
1840         }
1841         DC = DC->getLexicalParent();
1842       } while (!IsEffectivelyFileContext(DC));
1843     } else {
1844       AcceptableWithinParent =
1845           SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind);
1846     }
1847 
1848     if (AcceptableWithinParent && SemaRef.CodeSynthesisContexts.empty() &&
1849         Kind == Sema::AcceptableKind::Visible &&
1850         // FIXME: Do something better in this case.
1851         !SemaRef.getLangOpts().ModulesLocalVisibility) {
1852       // Cache the fact that this declaration is implicitly visible because
1853       // its parent has a visible definition.
1854       D->setVisibleDespiteOwningModule();
1855     }
1856     return AcceptableWithinParent;
1857   }
1858 
1859   if (Kind == Sema::AcceptableKind::Visible)
1860     return false;
1861 
1862   assert(Kind == Sema::AcceptableKind::Reachable &&
1863          "Additional Sema::AcceptableKind?");
1864   return isReachableSlow(SemaRef, D);
1865 }
1866 
1867 bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) {
1868   // The module might be ordinarily visible. For a module-private query, that
1869   // means it is part of the current module.
1870   if (ModulePrivate && isUsableModule(M))
1871     return true;
1872 
1873   // For a query which is not module-private, that means it is in our visible
1874   // module set.
1875   if (!ModulePrivate && VisibleModules.isVisible(M))
1876     return true;
1877 
1878   // Otherwise, it might be visible by virtue of the query being within a
1879   // template instantiation or similar that is permitted to look inside M.
1880 
1881   // Find the extra places where we need to look.
1882   const auto &LookupModules = getLookupModules();
1883   if (LookupModules.empty())
1884     return false;
1885 
1886   // If our lookup set contains the module, it's visible.
1887   if (LookupModules.count(M))
1888     return true;
1889 
1890   // The global module fragments are visible to its corresponding module unit.
1891   // So the global module fragment should be visible if the its corresponding
1892   // module unit is visible.
1893   if (M->isGlobalModule() && LookupModules.count(M->getTopLevelModule()))
1894     return true;
1895 
1896   // For a module-private query, that's everywhere we get to look.
1897   if (ModulePrivate)
1898     return false;
1899 
1900   // Check whether M is transitively exported to an import of the lookup set.
1901   return llvm::any_of(LookupModules, [&](const Module *LookupM) {
1902     return LookupM->isModuleVisible(M);
1903   });
1904 }
1905 
1906 // FIXME: Return false directly if we don't have an interface dependency on the
1907 // translation unit containing D.
1908 bool LookupResult::isReachableSlow(Sema &SemaRef, NamedDecl *D) {
1909   assert(!isVisible(SemaRef, D) && "Shouldn't call the slow case.\n");
1910 
1911   Module *DeclModule = SemaRef.getOwningModule(D);
1912   assert(DeclModule && "hidden decl has no owning module");
1913 
1914   // Entities in header like modules are reachable only if they're visible.
1915   if (DeclModule->isHeaderLikeModule())
1916     return false;
1917 
1918   if (!D->isInAnotherModuleUnit())
1919     return true;
1920 
1921   // [module.reach]/p3:
1922   // A declaration D is reachable from a point P if:
1923   // ...
1924   // - D is not discarded ([module.global.frag]), appears in a translation unit
1925   //   that is reachable from P, and does not appear within a private module
1926   //   fragment.
1927   //
1928   // A declaration that's discarded in the GMF should be module-private.
1929   if (D->isModulePrivate())
1930     return false;
1931 
1932   // [module.reach]/p1
1933   //   A translation unit U is necessarily reachable from a point P if U is a
1934   //   module interface unit on which the translation unit containing P has an
1935   //   interface dependency, or the translation unit containing P imports U, in
1936   //   either case prior to P ([module.import]).
1937   //
1938   // [module.import]/p10
1939   //   A translation unit has an interface dependency on a translation unit U if
1940   //   it contains a declaration (possibly a module-declaration) that imports U
1941   //   or if it has an interface dependency on a translation unit that has an
1942   //   interface dependency on U.
1943   //
1944   // So we could conclude the module unit U is necessarily reachable if:
1945   // (1) The module unit U is module interface unit.
1946   // (2) The current unit has an interface dependency on the module unit U.
1947   //
1948   // Here we only check for the first condition. Since we couldn't see
1949   // DeclModule if it isn't (transitively) imported.
1950   if (DeclModule->getTopLevelModule()->isModuleInterfaceUnit())
1951     return true;
1952 
1953   // [module.reach]/p2
1954   //   Additional translation units on
1955   //   which the point within the program has an interface dependency may be
1956   //   considered reachable, but it is unspecified which are and under what
1957   //   circumstances.
1958   //
1959   // The decision here is to treat all additional tranditional units as
1960   // unreachable.
1961   return false;
1962 }
1963 
1964 bool Sema::isAcceptableSlow(const NamedDecl *D, Sema::AcceptableKind Kind) {
1965   return LookupResult::isAcceptable(*this, const_cast<NamedDecl *>(D), Kind);
1966 }
1967 
1968 bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
1969   // FIXME: If there are both visible and hidden declarations, we need to take
1970   // into account whether redeclaration is possible. Example:
1971   //
1972   // Non-imported module:
1973   //   int f(T);        // #1
1974   // Some TU:
1975   //   static int f(U); // #2, not a redeclaration of #1
1976   //   int f(T);        // #3, finds both, should link with #1 if T != U, but
1977   //                    // with #2 if T == U; neither should be ambiguous.
1978   for (auto *D : R) {
1979     if (isVisible(D))
1980       return true;
1981     assert(D->isExternallyDeclarable() &&
1982            "should not have hidden, non-externally-declarable result here");
1983   }
1984 
1985   // This function is called once "New" is essentially complete, but before a
1986   // previous declaration is attached. We can't query the linkage of "New" in
1987   // general, because attaching the previous declaration can change the
1988   // linkage of New to match the previous declaration.
1989   //
1990   // However, because we've just determined that there is no *visible* prior
1991   // declaration, we can compute the linkage here. There are two possibilities:
1992   //
1993   //  * This is not a redeclaration; it's safe to compute the linkage now.
1994   //
1995   //  * This is a redeclaration of a prior declaration that is externally
1996   //    redeclarable. In that case, the linkage of the declaration is not
1997   //    changed by attaching the prior declaration, because both are externally
1998   //    declarable (and thus ExternalLinkage or VisibleNoLinkage).
1999   //
2000   // FIXME: This is subtle and fragile.
2001   return New->isExternallyDeclarable();
2002 }
2003 
2004 /// Retrieve the visible declaration corresponding to D, if any.
2005 ///
2006 /// This routine determines whether the declaration D is visible in the current
2007 /// module, with the current imports. If not, it checks whether any
2008 /// redeclaration of D is visible, and if so, returns that declaration.
2009 ///
2010 /// \returns D, or a visible previous declaration of D, whichever is more recent
2011 /// and visible. If no declaration of D is visible, returns null.
2012 static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D,
2013                                      unsigned IDNS) {
2014   assert(!LookupResult::isAvailableForLookup(SemaRef, D) && "not in slow case");
2015 
2016   for (auto *RD : D->redecls()) {
2017     // Don't bother with extra checks if we already know this one isn't visible.
2018     if (RD == D)
2019       continue;
2020 
2021     auto ND = cast<NamedDecl>(RD);
2022     // FIXME: This is wrong in the case where the previous declaration is not
2023     // visible in the same scope as D. This needs to be done much more
2024     // carefully.
2025     if (ND->isInIdentifierNamespace(IDNS) &&
2026         LookupResult::isAvailableForLookup(SemaRef, ND))
2027       return ND;
2028   }
2029 
2030   return nullptr;
2031 }
2032 
2033 bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D,
2034                                      llvm::SmallVectorImpl<Module *> *Modules) {
2035   assert(!isVisible(D) && "not in slow case");
2036   return hasAcceptableDeclarationImpl(
2037       *this, D, Modules, [](const NamedDecl *) { return true; },
2038       Sema::AcceptableKind::Visible);
2039 }
2040 
2041 bool Sema::hasReachableDeclarationSlow(
2042     const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
2043   assert(!isReachable(D) && "not in slow case");
2044   return hasAcceptableDeclarationImpl(
2045       *this, D, Modules, [](const NamedDecl *) { return true; },
2046       Sema::AcceptableKind::Reachable);
2047 }
2048 
2049 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
2050   if (auto *ND = dyn_cast<NamespaceDecl>(D)) {
2051     // Namespaces are a bit of a special case: we expect there to be a lot of
2052     // redeclarations of some namespaces, all declarations of a namespace are
2053     // essentially interchangeable, all declarations are found by name lookup
2054     // if any is, and namespaces are never looked up during template
2055     // instantiation. So we benefit from caching the check in this case, and
2056     // it is correct to do so.
2057     auto *Key = ND->getCanonicalDecl();
2058     if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key))
2059       return Acceptable;
2060     auto *Acceptable = isVisible(getSema(), Key)
2061                            ? Key
2062                            : findAcceptableDecl(getSema(), Key, IDNS);
2063     if (Acceptable)
2064       getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable));
2065     return Acceptable;
2066   }
2067 
2068   return findAcceptableDecl(getSema(), D, IDNS);
2069 }
2070 
2071 bool LookupResult::isVisible(Sema &SemaRef, NamedDecl *D) {
2072   // If this declaration is already visible, return it directly.
2073   if (D->isUnconditionallyVisible())
2074     return true;
2075 
2076   // During template instantiation, we can refer to hidden declarations, if
2077   // they were visible in any module along the path of instantiation.
2078   return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Visible);
2079 }
2080 
2081 bool LookupResult::isReachable(Sema &SemaRef, NamedDecl *D) {
2082   if (D->isUnconditionallyVisible())
2083     return true;
2084 
2085   return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Reachable);
2086 }
2087 
2088 bool LookupResult::isAvailableForLookup(Sema &SemaRef, NamedDecl *ND) {
2089   // We should check the visibility at the callsite already.
2090   if (isVisible(SemaRef, ND))
2091     return true;
2092 
2093   // Deduction guide lives in namespace scope generally, but it is just a
2094   // hint to the compilers. What we actually lookup for is the generated member
2095   // of the corresponding template. So it is sufficient to check the
2096   // reachability of the template decl.
2097   if (auto *DeductionGuide = ND->getDeclName().getCXXDeductionGuideTemplate())
2098     return SemaRef.hasReachableDefinition(DeductionGuide);
2099 
2100   // FIXME: The lookup for allocation function is a standalone process.
2101   // (We can find the logics in Sema::FindAllocationFunctions)
2102   //
2103   // Such structure makes it a problem when we instantiate a template
2104   // declaration using placement allocation function if the placement
2105   // allocation function is invisible.
2106   // (See https://github.com/llvm/llvm-project/issues/59601)
2107   //
2108   // Here we workaround it by making the placement allocation functions
2109   // always acceptable. The downside is that we can't diagnose the direct
2110   // use of the invisible placement allocation functions. (Although such uses
2111   // should be rare).
2112   if (auto *FD = dyn_cast<FunctionDecl>(ND);
2113       FD && FD->isReservedGlobalPlacementOperator())
2114     return true;
2115 
2116   auto *DC = ND->getDeclContext();
2117   // If ND is not visible and it is at namespace scope, it shouldn't be found
2118   // by name lookup.
2119   if (DC->isFileContext())
2120     return false;
2121 
2122   // [module.interface]p7
2123   // Class and enumeration member names can be found by name lookup in any
2124   // context in which a definition of the type is reachable.
2125   //
2126   // FIXME: The current implementation didn't consider about scope. For example,
2127   // ```
2128   // // m.cppm
2129   // export module m;
2130   // enum E1 { e1 };
2131   // // Use.cpp
2132   // import m;
2133   // void test() {
2134   //   auto a = E1::e1; // Error as expected.
2135   //   auto b = e1; // Should be error. namespace-scope name e1 is not visible
2136   // }
2137   // ```
2138   // For the above example, the current implementation would emit error for `a`
2139   // correctly. However, the implementation wouldn't diagnose about `b` now.
2140   // Since we only check the reachability for the parent only.
2141   // See clang/test/CXX/module/module.interface/p7.cpp for example.
2142   if (auto *TD = dyn_cast<TagDecl>(DC))
2143     return SemaRef.hasReachableDefinition(TD);
2144 
2145   return false;
2146 }
2147 
2148 /// Perform unqualified name lookup starting from a given
2149 /// scope.
2150 ///
2151 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
2152 /// used to find names within the current scope. For example, 'x' in
2153 /// @code
2154 /// int x;
2155 /// int f() {
2156 ///   return x; // unqualified name look finds 'x' in the global scope
2157 /// }
2158 /// @endcode
2159 ///
2160 /// Different lookup criteria can find different names. For example, a
2161 /// particular scope can have both a struct and a function of the same
2162 /// name, and each can be found by certain lookup criteria. For more
2163 /// information about lookup criteria, see the documentation for the
2164 /// class LookupCriteria.
2165 ///
2166 /// @param S        The scope from which unqualified name lookup will
2167 /// begin. If the lookup criteria permits, name lookup may also search
2168 /// in the parent scopes.
2169 ///
2170 /// @param [in,out] R Specifies the lookup to perform (e.g., the name to
2171 /// look up and the lookup kind), and is updated with the results of lookup
2172 /// including zero or more declarations and possibly additional information
2173 /// used to diagnose ambiguities.
2174 ///
2175 /// @returns \c true if lookup succeeded and false otherwise.
2176 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation,
2177                       bool ForceNoCPlusPlus) {
2178   DeclarationName Name = R.getLookupName();
2179   if (!Name) return false;
2180 
2181   LookupNameKind NameKind = R.getLookupKind();
2182 
2183   if (!getLangOpts().CPlusPlus || ForceNoCPlusPlus) {
2184     // Unqualified name lookup in C/Objective-C is purely lexical, so
2185     // search in the declarations attached to the name.
2186     if (NameKind == Sema::LookupRedeclarationWithLinkage) {
2187       // Find the nearest non-transparent declaration scope.
2188       while (!(S->getFlags() & Scope::DeclScope) ||
2189              (S->getEntity() && S->getEntity()->isTransparentContext()))
2190         S = S->getParent();
2191     }
2192 
2193     // When performing a scope lookup, we want to find local extern decls.
2194     FindLocalExternScope FindLocals(R);
2195 
2196     // Scan up the scope chain looking for a decl that matches this
2197     // identifier that is in the appropriate namespace.  This search
2198     // should not take long, as shadowing of names is uncommon, and
2199     // deep shadowing is extremely uncommon.
2200     bool LeftStartingScope = false;
2201 
2202     for (IdentifierResolver::iterator I = IdResolver.begin(Name),
2203                                    IEnd = IdResolver.end();
2204          I != IEnd; ++I)
2205       if (NamedDecl *D = R.getAcceptableDecl(*I)) {
2206         if (NameKind == LookupRedeclarationWithLinkage) {
2207           // Determine whether this (or a previous) declaration is
2208           // out-of-scope.
2209           if (!LeftStartingScope && !S->isDeclScope(*I))
2210             LeftStartingScope = true;
2211 
2212           // If we found something outside of our starting scope that
2213           // does not have linkage, skip it.
2214           if (LeftStartingScope && !((*I)->hasLinkage())) {
2215             R.setShadowed();
2216             continue;
2217           }
2218         }
2219         else if (NameKind == LookupObjCImplicitSelfParam &&
2220                  !isa<ImplicitParamDecl>(*I))
2221           continue;
2222 
2223         R.addDecl(D);
2224 
2225         // Check whether there are any other declarations with the same name
2226         // and in the same scope.
2227         if (I != IEnd) {
2228           // Find the scope in which this declaration was declared (if it
2229           // actually exists in a Scope).
2230           while (S && !S->isDeclScope(D))
2231             S = S->getParent();
2232 
2233           // If the scope containing the declaration is the translation unit,
2234           // then we'll need to perform our checks based on the matching
2235           // DeclContexts rather than matching scopes.
2236           if (S && isNamespaceOrTranslationUnitScope(S))
2237             S = nullptr;
2238 
2239           // Compute the DeclContext, if we need it.
2240           DeclContext *DC = nullptr;
2241           if (!S)
2242             DC = (*I)->getDeclContext()->getRedeclContext();
2243 
2244           IdentifierResolver::iterator LastI = I;
2245           for (++LastI; LastI != IEnd; ++LastI) {
2246             if (S) {
2247               // Match based on scope.
2248               if (!S->isDeclScope(*LastI))
2249                 break;
2250             } else {
2251               // Match based on DeclContext.
2252               DeclContext *LastDC
2253                 = (*LastI)->getDeclContext()->getRedeclContext();
2254               if (!LastDC->Equals(DC))
2255                 break;
2256             }
2257 
2258             // If the declaration is in the right namespace and visible, add it.
2259             if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
2260               R.addDecl(LastD);
2261           }
2262 
2263           R.resolveKind();
2264         }
2265 
2266         return true;
2267       }
2268   } else {
2269     // Perform C++ unqualified name lookup.
2270     if (CppLookupName(R, S))
2271       return true;
2272   }
2273 
2274   // If we didn't find a use of this identifier, and if the identifier
2275   // corresponds to a compiler builtin, create the decl object for the builtin
2276   // now, injecting it into translation unit scope, and return it.
2277   if (AllowBuiltinCreation && LookupBuiltin(R))
2278     return true;
2279 
2280   // If we didn't find a use of this identifier, the ExternalSource
2281   // may be able to handle the situation.
2282   // Note: some lookup failures are expected!
2283   // See e.g. R.isForRedeclaration().
2284   return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
2285 }
2286 
2287 /// Perform qualified name lookup in the namespaces nominated by
2288 /// using directives by the given context.
2289 ///
2290 /// C++98 [namespace.qual]p2:
2291 ///   Given X::m (where X is a user-declared namespace), or given \::m
2292 ///   (where X is the global namespace), let S be the set of all
2293 ///   declarations of m in X and in the transitive closure of all
2294 ///   namespaces nominated by using-directives in X and its used
2295 ///   namespaces, except that using-directives are ignored in any
2296 ///   namespace, including X, directly containing one or more
2297 ///   declarations of m. No namespace is searched more than once in
2298 ///   the lookup of a name. If S is the empty set, the program is
2299 ///   ill-formed. Otherwise, if S has exactly one member, or if the
2300 ///   context of the reference is a using-declaration
2301 ///   (namespace.udecl), S is the required set of declarations of
2302 ///   m. Otherwise if the use of m is not one that allows a unique
2303 ///   declaration to be chosen from S, the program is ill-formed.
2304 ///
2305 /// C++98 [namespace.qual]p5:
2306 ///   During the lookup of a qualified namespace member name, if the
2307 ///   lookup finds more than one declaration of the member, and if one
2308 ///   declaration introduces a class name or enumeration name and the
2309 ///   other declarations either introduce the same object, the same
2310 ///   enumerator or a set of functions, the non-type name hides the
2311 ///   class or enumeration name if and only if the declarations are
2312 ///   from the same namespace; otherwise (the declarations are from
2313 ///   different namespaces), the program is ill-formed.
2314 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
2315                                                  DeclContext *StartDC) {
2316   assert(StartDC->isFileContext() && "start context is not a file context");
2317 
2318   // We have not yet looked into these namespaces, much less added
2319   // their "using-children" to the queue.
2320   SmallVector<NamespaceDecl*, 8> Queue;
2321 
2322   // We have at least added all these contexts to the queue.
2323   llvm::SmallPtrSet<DeclContext*, 8> Visited;
2324   Visited.insert(StartDC);
2325 
2326   // We have already looked into the initial namespace; seed the queue
2327   // with its using-children.
2328   for (auto *I : StartDC->using_directives()) {
2329     NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
2330     if (S.isVisible(I) && Visited.insert(ND).second)
2331       Queue.push_back(ND);
2332   }
2333 
2334   // The easiest way to implement the restriction in [namespace.qual]p5
2335   // is to check whether any of the individual results found a tag
2336   // and, if so, to declare an ambiguity if the final result is not
2337   // a tag.
2338   bool FoundTag = false;
2339   bool FoundNonTag = false;
2340 
2341   LookupResult LocalR(LookupResult::Temporary, R);
2342 
2343   bool Found = false;
2344   while (!Queue.empty()) {
2345     NamespaceDecl *ND = Queue.pop_back_val();
2346 
2347     // We go through some convolutions here to avoid copying results
2348     // between LookupResults.
2349     bool UseLocal = !R.empty();
2350     LookupResult &DirectR = UseLocal ? LocalR : R;
2351     bool FoundDirect = LookupDirect(S, DirectR, ND);
2352 
2353     if (FoundDirect) {
2354       // First do any local hiding.
2355       DirectR.resolveKind();
2356 
2357       // If the local result is a tag, remember that.
2358       if (DirectR.isSingleTagDecl())
2359         FoundTag = true;
2360       else
2361         FoundNonTag = true;
2362 
2363       // Append the local results to the total results if necessary.
2364       if (UseLocal) {
2365         R.addAllDecls(LocalR);
2366         LocalR.clear();
2367       }
2368     }
2369 
2370     // If we find names in this namespace, ignore its using directives.
2371     if (FoundDirect) {
2372       Found = true;
2373       continue;
2374     }
2375 
2376     for (auto *I : ND->using_directives()) {
2377       NamespaceDecl *Nom = I->getNominatedNamespace();
2378       if (S.isVisible(I) && Visited.insert(Nom).second)
2379         Queue.push_back(Nom);
2380     }
2381   }
2382 
2383   if (Found) {
2384     if (FoundTag && FoundNonTag)
2385       R.setAmbiguousQualifiedTagHiding();
2386     else
2387       R.resolveKind();
2388   }
2389 
2390   return Found;
2391 }
2392 
2393 /// Perform qualified name lookup into a given context.
2394 ///
2395 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
2396 /// names when the context of those names is explicit specified, e.g.,
2397 /// "std::vector" or "x->member", or as part of unqualified name lookup.
2398 ///
2399 /// Different lookup criteria can find different names. For example, a
2400 /// particular scope can have both a struct and a function of the same
2401 /// name, and each can be found by certain lookup criteria. For more
2402 /// information about lookup criteria, see the documentation for the
2403 /// class LookupCriteria.
2404 ///
2405 /// \param R captures both the lookup criteria and any lookup results found.
2406 ///
2407 /// \param LookupCtx The context in which qualified name lookup will
2408 /// search. If the lookup criteria permits, name lookup may also search
2409 /// in the parent contexts or (for C++ classes) base classes.
2410 ///
2411 /// \param InUnqualifiedLookup true if this is qualified name lookup that
2412 /// occurs as part of unqualified name lookup.
2413 ///
2414 /// \returns true if lookup succeeded, false if it failed.
2415 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2416                                bool InUnqualifiedLookup) {
2417   assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
2418 
2419   if (!R.getLookupName())
2420     return false;
2421 
2422   // Make sure that the declaration context is complete.
2423   assert((!isa<TagDecl>(LookupCtx) ||
2424           LookupCtx->isDependentContext() ||
2425           cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
2426           cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
2427          "Declaration context must already be complete!");
2428 
2429   struct QualifiedLookupInScope {
2430     bool oldVal;
2431     DeclContext *Context;
2432     // Set flag in DeclContext informing debugger that we're looking for qualified name
2433     QualifiedLookupInScope(DeclContext *ctx)
2434         : oldVal(ctx->shouldUseQualifiedLookup()), Context(ctx) {
2435       ctx->setUseQualifiedLookup();
2436     }
2437     ~QualifiedLookupInScope() {
2438       Context->setUseQualifiedLookup(oldVal);
2439     }
2440   } QL(LookupCtx);
2441 
2442   if (LookupDirect(*this, R, LookupCtx)) {
2443     R.resolveKind();
2444     if (isa<CXXRecordDecl>(LookupCtx))
2445       R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
2446     return true;
2447   }
2448 
2449   // Don't descend into implied contexts for redeclarations.
2450   // C++98 [namespace.qual]p6:
2451   //   In a declaration for a namespace member in which the
2452   //   declarator-id is a qualified-id, given that the qualified-id
2453   //   for the namespace member has the form
2454   //     nested-name-specifier unqualified-id
2455   //   the unqualified-id shall name a member of the namespace
2456   //   designated by the nested-name-specifier.
2457   // See also [class.mfct]p5 and [class.static.data]p2.
2458   if (R.isForRedeclaration())
2459     return false;
2460 
2461   // If this is a namespace, look it up in the implied namespaces.
2462   if (LookupCtx->isFileContext())
2463     return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
2464 
2465   // If this isn't a C++ class, we aren't allowed to look into base
2466   // classes, we're done.
2467   CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
2468   if (!LookupRec || !LookupRec->getDefinition())
2469     return false;
2470 
2471   // We're done for lookups that can never succeed for C++ classes.
2472   if (R.getLookupKind() == LookupOperatorName ||
2473       R.getLookupKind() == LookupNamespaceName ||
2474       R.getLookupKind() == LookupObjCProtocolName ||
2475       R.getLookupKind() == LookupLabel)
2476     return false;
2477 
2478   // If we're performing qualified name lookup into a dependent class,
2479   // then we are actually looking into a current instantiation. If we have any
2480   // dependent base classes, then we either have to delay lookup until
2481   // template instantiation time (at which point all bases will be available)
2482   // or we have to fail.
2483   if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
2484       LookupRec->hasAnyDependentBases()) {
2485     R.setNotFoundInCurrentInstantiation();
2486     return false;
2487   }
2488 
2489   // Perform lookup into our base classes.
2490 
2491   DeclarationName Name = R.getLookupName();
2492   unsigned IDNS = R.getIdentifierNamespace();
2493 
2494   // Look for this member in our base classes.
2495   auto BaseCallback = [Name, IDNS](const CXXBaseSpecifier *Specifier,
2496                                    CXXBasePath &Path) -> bool {
2497     CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl();
2498     // Drop leading non-matching lookup results from the declaration list so
2499     // we don't need to consider them again below.
2500     for (Path.Decls = BaseRecord->lookup(Name).begin();
2501          Path.Decls != Path.Decls.end(); ++Path.Decls) {
2502       if ((*Path.Decls)->isInIdentifierNamespace(IDNS))
2503         return true;
2504     }
2505     return false;
2506   };
2507 
2508   CXXBasePaths Paths;
2509   Paths.setOrigin(LookupRec);
2510   if (!LookupRec->lookupInBases(BaseCallback, Paths))
2511     return false;
2512 
2513   R.setNamingClass(LookupRec);
2514 
2515   // C++ [class.member.lookup]p2:
2516   //   [...] If the resulting set of declarations are not all from
2517   //   sub-objects of the same type, or the set has a nonstatic member
2518   //   and includes members from distinct sub-objects, there is an
2519   //   ambiguity and the program is ill-formed. Otherwise that set is
2520   //   the result of the lookup.
2521   QualType SubobjectType;
2522   int SubobjectNumber = 0;
2523   AccessSpecifier SubobjectAccess = AS_none;
2524 
2525   // Check whether the given lookup result contains only static members.
2526   auto HasOnlyStaticMembers = [&](DeclContext::lookup_iterator Result) {
2527     for (DeclContext::lookup_iterator I = Result, E = I.end(); I != E; ++I)
2528       if ((*I)->isInIdentifierNamespace(IDNS) && (*I)->isCXXInstanceMember())
2529         return false;
2530     return true;
2531   };
2532 
2533   bool TemplateNameLookup = R.isTemplateNameLookup();
2534 
2535   // Determine whether two sets of members contain the same members, as
2536   // required by C++ [class.member.lookup]p6.
2537   auto HasSameDeclarations = [&](DeclContext::lookup_iterator A,
2538                                  DeclContext::lookup_iterator B) {
2539     using Iterator = DeclContextLookupResult::iterator;
2540     using Result = const void *;
2541 
2542     auto Next = [&](Iterator &It, Iterator End) -> Result {
2543       while (It != End) {
2544         NamedDecl *ND = *It++;
2545         if (!ND->isInIdentifierNamespace(IDNS))
2546           continue;
2547 
2548         // C++ [temp.local]p3:
2549         //   A lookup that finds an injected-class-name (10.2) can result in
2550         //   an ambiguity in certain cases (for example, if it is found in
2551         //   more than one base class). If all of the injected-class-names
2552         //   that are found refer to specializations of the same class
2553         //   template, and if the name is used as a template-name, the
2554         //   reference refers to the class template itself and not a
2555         //   specialization thereof, and is not ambiguous.
2556         if (TemplateNameLookup)
2557           if (auto *TD = getAsTemplateNameDecl(ND))
2558             ND = TD;
2559 
2560         // C++ [class.member.lookup]p3:
2561         //   type declarations (including injected-class-names) are replaced by
2562         //   the types they designate
2563         if (const TypeDecl *TD = dyn_cast<TypeDecl>(ND->getUnderlyingDecl())) {
2564           QualType T = Context.getTypeDeclType(TD);
2565           return T.getCanonicalType().getAsOpaquePtr();
2566         }
2567 
2568         return ND->getUnderlyingDecl()->getCanonicalDecl();
2569       }
2570       return nullptr;
2571     };
2572 
2573     // We'll often find the declarations are in the same order. Handle this
2574     // case (and the special case of only one declaration) efficiently.
2575     Iterator AIt = A, BIt = B, AEnd, BEnd;
2576     while (true) {
2577       Result AResult = Next(AIt, AEnd);
2578       Result BResult = Next(BIt, BEnd);
2579       if (!AResult && !BResult)
2580         return true;
2581       if (!AResult || !BResult)
2582         return false;
2583       if (AResult != BResult) {
2584         // Found a mismatch; carefully check both lists, accounting for the
2585         // possibility of declarations appearing more than once.
2586         llvm::SmallDenseMap<Result, bool, 32> AResults;
2587         for (; AResult; AResult = Next(AIt, AEnd))
2588           AResults.insert({AResult, /*FoundInB*/false});
2589         unsigned Found = 0;
2590         for (; BResult; BResult = Next(BIt, BEnd)) {
2591           auto It = AResults.find(BResult);
2592           if (It == AResults.end())
2593             return false;
2594           if (!It->second) {
2595             It->second = true;
2596             ++Found;
2597           }
2598         }
2599         return AResults.size() == Found;
2600       }
2601     }
2602   };
2603 
2604   for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
2605        Path != PathEnd; ++Path) {
2606     const CXXBasePathElement &PathElement = Path->back();
2607 
2608     // Pick the best (i.e. most permissive i.e. numerically lowest) access
2609     // across all paths.
2610     SubobjectAccess = std::min(SubobjectAccess, Path->Access);
2611 
2612     // Determine whether we're looking at a distinct sub-object or not.
2613     if (SubobjectType.isNull()) {
2614       // This is the first subobject we've looked at. Record its type.
2615       SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
2616       SubobjectNumber = PathElement.SubobjectNumber;
2617       continue;
2618     }
2619 
2620     if (SubobjectType !=
2621         Context.getCanonicalType(PathElement.Base->getType())) {
2622       // We found members of the given name in two subobjects of
2623       // different types. If the declaration sets aren't the same, this
2624       // lookup is ambiguous.
2625       //
2626       // FIXME: The language rule says that this applies irrespective of
2627       // whether the sets contain only static members.
2628       if (HasOnlyStaticMembers(Path->Decls) &&
2629           HasSameDeclarations(Paths.begin()->Decls, Path->Decls))
2630         continue;
2631 
2632       R.setAmbiguousBaseSubobjectTypes(Paths);
2633       return true;
2634     }
2635 
2636     // FIXME: This language rule no longer exists. Checking for ambiguous base
2637     // subobjects should be done as part of formation of a class member access
2638     // expression (when converting the object parameter to the member's type).
2639     if (SubobjectNumber != PathElement.SubobjectNumber) {
2640       // We have a different subobject of the same type.
2641 
2642       // C++ [class.member.lookup]p5:
2643       //   A static member, a nested type or an enumerator defined in
2644       //   a base class T can unambiguously be found even if an object
2645       //   has more than one base class subobject of type T.
2646       if (HasOnlyStaticMembers(Path->Decls))
2647         continue;
2648 
2649       // We have found a nonstatic member name in multiple, distinct
2650       // subobjects. Name lookup is ambiguous.
2651       R.setAmbiguousBaseSubobjects(Paths);
2652       return true;
2653     }
2654   }
2655 
2656   // Lookup in a base class succeeded; return these results.
2657 
2658   for (DeclContext::lookup_iterator I = Paths.front().Decls, E = I.end();
2659        I != E; ++I) {
2660     AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
2661                                                     (*I)->getAccess());
2662     if (NamedDecl *ND = R.getAcceptableDecl(*I))
2663       R.addDecl(ND, AS);
2664   }
2665   R.resolveKind();
2666   return true;
2667 }
2668 
2669 /// Performs qualified name lookup or special type of lookup for
2670 /// "__super::" scope specifier.
2671 ///
2672 /// This routine is a convenience overload meant to be called from contexts
2673 /// that need to perform a qualified name lookup with an optional C++ scope
2674 /// specifier that might require special kind of lookup.
2675 ///
2676 /// \param R captures both the lookup criteria and any lookup results found.
2677 ///
2678 /// \param LookupCtx The context in which qualified name lookup will
2679 /// search.
2680 ///
2681 /// \param SS An optional C++ scope-specifier.
2682 ///
2683 /// \returns true if lookup succeeded, false if it failed.
2684 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2685                                CXXScopeSpec &SS) {
2686   auto *NNS = SS.getScopeRep();
2687   if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
2688     return LookupInSuper(R, NNS->getAsRecordDecl());
2689   else
2690 
2691     return LookupQualifiedName(R, LookupCtx);
2692 }
2693 
2694 /// Performs name lookup for a name that was parsed in the
2695 /// source code, and may contain a C++ scope specifier.
2696 ///
2697 /// This routine is a convenience routine meant to be called from
2698 /// contexts that receive a name and an optional C++ scope specifier
2699 /// (e.g., "N::M::x"). It will then perform either qualified or
2700 /// unqualified name lookup (with LookupQualifiedName or LookupName,
2701 /// respectively) on the given name and return those results. It will
2702 /// perform a special type of lookup for "__super::" scope specifier.
2703 ///
2704 /// @param S        The scope from which unqualified name lookup will
2705 /// begin.
2706 ///
2707 /// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
2708 ///
2709 /// @param EnteringContext Indicates whether we are going to enter the
2710 /// context of the scope-specifier SS (if present).
2711 ///
2712 /// @returns True if any decls were found (but possibly ambiguous)
2713 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
2714                             bool AllowBuiltinCreation, bool EnteringContext) {
2715   if (SS && SS->isInvalid()) {
2716     // When the scope specifier is invalid, don't even look for
2717     // anything.
2718     return false;
2719   }
2720 
2721   if (SS && SS->isSet()) {
2722     NestedNameSpecifier *NNS = SS->getScopeRep();
2723     if (NNS->getKind() == NestedNameSpecifier::Super)
2724       return LookupInSuper(R, NNS->getAsRecordDecl());
2725 
2726     if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
2727       // We have resolved the scope specifier to a particular declaration
2728       // contex, and will perform name lookup in that context.
2729       if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
2730         return false;
2731 
2732       R.setContextRange(SS->getRange());
2733       return LookupQualifiedName(R, DC);
2734     }
2735 
2736     // We could not resolve the scope specified to a specific declaration
2737     // context, which means that SS refers to an unknown specialization.
2738     // Name lookup can't find anything in this case.
2739     R.setNotFoundInCurrentInstantiation();
2740     R.setContextRange(SS->getRange());
2741     return false;
2742   }
2743 
2744   // Perform unqualified name lookup starting in the given scope.
2745   return LookupName(R, S, AllowBuiltinCreation);
2746 }
2747 
2748 /// Perform qualified name lookup into all base classes of the given
2749 /// class.
2750 ///
2751 /// \param R captures both the lookup criteria and any lookup results found.
2752 ///
2753 /// \param Class The context in which qualified name lookup will
2754 /// search. Name lookup will search in all base classes merging the results.
2755 ///
2756 /// @returns True if any decls were found (but possibly ambiguous)
2757 bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
2758   // The access-control rules we use here are essentially the rules for
2759   // doing a lookup in Class that just magically skipped the direct
2760   // members of Class itself.  That is, the naming class is Class, and the
2761   // access includes the access of the base.
2762   for (const auto &BaseSpec : Class->bases()) {
2763     CXXRecordDecl *RD = cast<CXXRecordDecl>(
2764         BaseSpec.getType()->castAs<RecordType>()->getDecl());
2765     LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
2766     Result.setBaseObjectType(Context.getRecordType(Class));
2767     LookupQualifiedName(Result, RD);
2768 
2769     // Copy the lookup results into the target, merging the base's access into
2770     // the path access.
2771     for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
2772       R.addDecl(I.getDecl(),
2773                 CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
2774                                            I.getAccess()));
2775     }
2776 
2777     Result.suppressDiagnostics();
2778   }
2779 
2780   R.resolveKind();
2781   R.setNamingClass(Class);
2782 
2783   return !R.empty();
2784 }
2785 
2786 /// Produce a diagnostic describing the ambiguity that resulted
2787 /// from name lookup.
2788 ///
2789 /// \param Result The result of the ambiguous lookup to be diagnosed.
2790 void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
2791   assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
2792 
2793   DeclarationName Name = Result.getLookupName();
2794   SourceLocation NameLoc = Result.getNameLoc();
2795   SourceRange LookupRange = Result.getContextRange();
2796 
2797   switch (Result.getAmbiguityKind()) {
2798   case LookupResult::AmbiguousBaseSubobjects: {
2799     CXXBasePaths *Paths = Result.getBasePaths();
2800     QualType SubobjectType = Paths->front().back().Base->getType();
2801     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
2802       << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
2803       << LookupRange;
2804 
2805     DeclContext::lookup_iterator Found = Paths->front().Decls;
2806     while (isa<CXXMethodDecl>(*Found) &&
2807            cast<CXXMethodDecl>(*Found)->isStatic())
2808       ++Found;
2809 
2810     Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
2811     break;
2812   }
2813 
2814   case LookupResult::AmbiguousBaseSubobjectTypes: {
2815     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
2816       << Name << LookupRange;
2817 
2818     CXXBasePaths *Paths = Result.getBasePaths();
2819     std::set<const NamedDecl *> DeclsPrinted;
2820     for (CXXBasePaths::paths_iterator Path = Paths->begin(),
2821                                       PathEnd = Paths->end();
2822          Path != PathEnd; ++Path) {
2823       const NamedDecl *D = *Path->Decls;
2824       if (!D->isInIdentifierNamespace(Result.getIdentifierNamespace()))
2825         continue;
2826       if (DeclsPrinted.insert(D).second) {
2827         if (const auto *TD = dyn_cast<TypedefNameDecl>(D->getUnderlyingDecl()))
2828           Diag(D->getLocation(), diag::note_ambiguous_member_type_found)
2829               << TD->getUnderlyingType();
2830         else if (const auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
2831           Diag(D->getLocation(), diag::note_ambiguous_member_type_found)
2832               << Context.getTypeDeclType(TD);
2833         else
2834           Diag(D->getLocation(), diag::note_ambiguous_member_found);
2835       }
2836     }
2837     break;
2838   }
2839 
2840   case LookupResult::AmbiguousTagHiding: {
2841     Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
2842 
2843     llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
2844 
2845     for (auto *D : Result)
2846       if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
2847         TagDecls.insert(TD);
2848         Diag(TD->getLocation(), diag::note_hidden_tag);
2849       }
2850 
2851     for (auto *D : Result)
2852       if (!isa<TagDecl>(D))
2853         Diag(D->getLocation(), diag::note_hiding_object);
2854 
2855     // For recovery purposes, go ahead and implement the hiding.
2856     LookupResult::Filter F = Result.makeFilter();
2857     while (F.hasNext()) {
2858       if (TagDecls.count(F.next()))
2859         F.erase();
2860     }
2861     F.done();
2862     break;
2863   }
2864 
2865   case LookupResult::AmbiguousReference: {
2866     Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
2867 
2868     for (auto *D : Result)
2869       Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
2870     break;
2871   }
2872   }
2873 }
2874 
2875 namespace {
2876   struct AssociatedLookup {
2877     AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
2878                      Sema::AssociatedNamespaceSet &Namespaces,
2879                      Sema::AssociatedClassSet &Classes)
2880       : S(S), Namespaces(Namespaces), Classes(Classes),
2881         InstantiationLoc(InstantiationLoc) {
2882     }
2883 
2884     bool addClassTransitive(CXXRecordDecl *RD) {
2885       Classes.insert(RD);
2886       return ClassesTransitive.insert(RD);
2887     }
2888 
2889     Sema &S;
2890     Sema::AssociatedNamespaceSet &Namespaces;
2891     Sema::AssociatedClassSet &Classes;
2892     SourceLocation InstantiationLoc;
2893 
2894   private:
2895     Sema::AssociatedClassSet ClassesTransitive;
2896   };
2897 } // end anonymous namespace
2898 
2899 static void
2900 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
2901 
2902 // Given the declaration context \param Ctx of a class, class template or
2903 // enumeration, add the associated namespaces to \param Namespaces as described
2904 // in [basic.lookup.argdep]p2.
2905 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
2906                                       DeclContext *Ctx) {
2907   // The exact wording has been changed in C++14 as a result of
2908   // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally
2909   // to all language versions since it is possible to return a local type
2910   // from a lambda in C++11.
2911   //
2912   // C++14 [basic.lookup.argdep]p2:
2913   //   If T is a class type [...]. Its associated namespaces are the innermost
2914   //   enclosing namespaces of its associated classes. [...]
2915   //
2916   //   If T is an enumeration type, its associated namespace is the innermost
2917   //   enclosing namespace of its declaration. [...]
2918 
2919   // We additionally skip inline namespaces. The innermost non-inline namespace
2920   // contains all names of all its nested inline namespaces anyway, so we can
2921   // replace the entire inline namespace tree with its root.
2922   while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
2923     Ctx = Ctx->getParent();
2924 
2925   Namespaces.insert(Ctx->getPrimaryContext());
2926 }
2927 
2928 // Add the associated classes and namespaces for argument-dependent
2929 // lookup that involves a template argument (C++ [basic.lookup.argdep]p2).
2930 static void
2931 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2932                                   const TemplateArgument &Arg) {
2933   // C++ [basic.lookup.argdep]p2, last bullet:
2934   //   -- [...] ;
2935   switch (Arg.getKind()) {
2936     case TemplateArgument::Null:
2937       break;
2938 
2939     case TemplateArgument::Type:
2940       // [...] the namespaces and classes associated with the types of the
2941       // template arguments provided for template type parameters (excluding
2942       // template template parameters)
2943       addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
2944       break;
2945 
2946     case TemplateArgument::Template:
2947     case TemplateArgument::TemplateExpansion: {
2948       // [...] the namespaces in which any template template arguments are
2949       // defined; and the classes in which any member templates used as
2950       // template template arguments are defined.
2951       TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
2952       if (ClassTemplateDecl *ClassTemplate
2953                  = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
2954         DeclContext *Ctx = ClassTemplate->getDeclContext();
2955         if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2956           Result.Classes.insert(EnclosingClass);
2957         // Add the associated namespace for this class.
2958         CollectEnclosingNamespace(Result.Namespaces, Ctx);
2959       }
2960       break;
2961     }
2962 
2963     case TemplateArgument::Declaration:
2964     case TemplateArgument::Integral:
2965     case TemplateArgument::Expression:
2966     case TemplateArgument::NullPtr:
2967       // [Note: non-type template arguments do not contribute to the set of
2968       //  associated namespaces. ]
2969       break;
2970 
2971     case TemplateArgument::Pack:
2972       for (const auto &P : Arg.pack_elements())
2973         addAssociatedClassesAndNamespaces(Result, P);
2974       break;
2975   }
2976 }
2977 
2978 // Add the associated classes and namespaces for argument-dependent lookup
2979 // with an argument of class type (C++ [basic.lookup.argdep]p2).
2980 static void
2981 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2982                                   CXXRecordDecl *Class) {
2983 
2984   // Just silently ignore anything whose name is __va_list_tag.
2985   if (Class->getDeclName() == Result.S.VAListTagName)
2986     return;
2987 
2988   // C++ [basic.lookup.argdep]p2:
2989   //   [...]
2990   //     -- If T is a class type (including unions), its associated
2991   //        classes are: the class itself; the class of which it is a
2992   //        member, if any; and its direct and indirect base classes.
2993   //        Its associated namespaces are the innermost enclosing
2994   //        namespaces of its associated classes.
2995 
2996   // Add the class of which it is a member, if any.
2997   DeclContext *Ctx = Class->getDeclContext();
2998   if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2999     Result.Classes.insert(EnclosingClass);
3000 
3001   // Add the associated namespace for this class.
3002   CollectEnclosingNamespace(Result.Namespaces, Ctx);
3003 
3004   // -- If T is a template-id, its associated namespaces and classes are
3005   //    the namespace in which the template is defined; for member
3006   //    templates, the member template's class; the namespaces and classes
3007   //    associated with the types of the template arguments provided for
3008   //    template type parameters (excluding template template parameters); the
3009   //    namespaces in which any template template arguments are defined; and
3010   //    the classes in which any member templates used as template template
3011   //    arguments are defined. [Note: non-type template arguments do not
3012   //    contribute to the set of associated namespaces. ]
3013   if (ClassTemplateSpecializationDecl *Spec
3014         = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
3015     DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
3016     if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
3017       Result.Classes.insert(EnclosingClass);
3018     // Add the associated namespace for this class.
3019     CollectEnclosingNamespace(Result.Namespaces, Ctx);
3020 
3021     const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
3022     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
3023       addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
3024   }
3025 
3026   // Add the class itself. If we've already transitively visited this class,
3027   // we don't need to visit base classes.
3028   if (!Result.addClassTransitive(Class))
3029     return;
3030 
3031   // Only recurse into base classes for complete types.
3032   if (!Result.S.isCompleteType(Result.InstantiationLoc,
3033                                Result.S.Context.getRecordType(Class)))
3034     return;
3035 
3036   // Add direct and indirect base classes along with their associated
3037   // namespaces.
3038   SmallVector<CXXRecordDecl *, 32> Bases;
3039   Bases.push_back(Class);
3040   while (!Bases.empty()) {
3041     // Pop this class off the stack.
3042     Class = Bases.pop_back_val();
3043 
3044     // Visit the base classes.
3045     for (const auto &Base : Class->bases()) {
3046       const RecordType *BaseType = Base.getType()->getAs<RecordType>();
3047       // In dependent contexts, we do ADL twice, and the first time around,
3048       // the base type might be a dependent TemplateSpecializationType, or a
3049       // TemplateTypeParmType. If that happens, simply ignore it.
3050       // FIXME: If we want to support export, we probably need to add the
3051       // namespace of the template in a TemplateSpecializationType, or even
3052       // the classes and namespaces of known non-dependent arguments.
3053       if (!BaseType)
3054         continue;
3055       CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
3056       if (Result.addClassTransitive(BaseDecl)) {
3057         // Find the associated namespace for this base class.
3058         DeclContext *BaseCtx = BaseDecl->getDeclContext();
3059         CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
3060 
3061         // Make sure we visit the bases of this base class.
3062         if (BaseDecl->bases_begin() != BaseDecl->bases_end())
3063           Bases.push_back(BaseDecl);
3064       }
3065     }
3066   }
3067 }
3068 
3069 // Add the associated classes and namespaces for
3070 // argument-dependent lookup with an argument of type T
3071 // (C++ [basic.lookup.koenig]p2).
3072 static void
3073 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
3074   // C++ [basic.lookup.koenig]p2:
3075   //
3076   //   For each argument type T in the function call, there is a set
3077   //   of zero or more associated namespaces and a set of zero or more
3078   //   associated classes to be considered. The sets of namespaces and
3079   //   classes is determined entirely by the types of the function
3080   //   arguments (and the namespace of any template template
3081   //   argument). Typedef names and using-declarations used to specify
3082   //   the types do not contribute to this set. The sets of namespaces
3083   //   and classes are determined in the following way:
3084 
3085   SmallVector<const Type *, 16> Queue;
3086   const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
3087 
3088   while (true) {
3089     switch (T->getTypeClass()) {
3090 
3091 #define TYPE(Class, Base)
3092 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
3093 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3094 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
3095 #define ABSTRACT_TYPE(Class, Base)
3096 #include "clang/AST/TypeNodes.inc"
3097       // T is canonical.  We can also ignore dependent types because
3098       // we don't need to do ADL at the definition point, but if we
3099       // wanted to implement template export (or if we find some other
3100       // use for associated classes and namespaces...) this would be
3101       // wrong.
3102       break;
3103 
3104     //    -- If T is a pointer to U or an array of U, its associated
3105     //       namespaces and classes are those associated with U.
3106     case Type::Pointer:
3107       T = cast<PointerType>(T)->getPointeeType().getTypePtr();
3108       continue;
3109     case Type::ConstantArray:
3110     case Type::IncompleteArray:
3111     case Type::VariableArray:
3112       T = cast<ArrayType>(T)->getElementType().getTypePtr();
3113       continue;
3114 
3115     //     -- If T is a fundamental type, its associated sets of
3116     //        namespaces and classes are both empty.
3117     case Type::Builtin:
3118       break;
3119 
3120     //     -- If T is a class type (including unions), its associated
3121     //        classes are: the class itself; the class of which it is
3122     //        a member, if any; and its direct and indirect base classes.
3123     //        Its associated namespaces are the innermost enclosing
3124     //        namespaces of its associated classes.
3125     case Type::Record: {
3126       CXXRecordDecl *Class =
3127           cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
3128       addAssociatedClassesAndNamespaces(Result, Class);
3129       break;
3130     }
3131 
3132     //     -- If T is an enumeration type, its associated namespace
3133     //        is the innermost enclosing namespace of its declaration.
3134     //        If it is a class member, its associated class is the
3135     //        member’s class; else it has no associated class.
3136     case Type::Enum: {
3137       EnumDecl *Enum = cast<EnumType>(T)->getDecl();
3138 
3139       DeclContext *Ctx = Enum->getDeclContext();
3140       if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
3141         Result.Classes.insert(EnclosingClass);
3142 
3143       // Add the associated namespace for this enumeration.
3144       CollectEnclosingNamespace(Result.Namespaces, Ctx);
3145 
3146       break;
3147     }
3148 
3149     //     -- If T is a function type, its associated namespaces and
3150     //        classes are those associated with the function parameter
3151     //        types and those associated with the return type.
3152     case Type::FunctionProto: {
3153       const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
3154       for (const auto &Arg : Proto->param_types())
3155         Queue.push_back(Arg.getTypePtr());
3156       // fallthrough
3157       [[fallthrough]];
3158     }
3159     case Type::FunctionNoProto: {
3160       const FunctionType *FnType = cast<FunctionType>(T);
3161       T = FnType->getReturnType().getTypePtr();
3162       continue;
3163     }
3164 
3165     //     -- If T is a pointer to a member function of a class X, its
3166     //        associated namespaces and classes are those associated
3167     //        with the function parameter types and return type,
3168     //        together with those associated with X.
3169     //
3170     //     -- If T is a pointer to a data member of class X, its
3171     //        associated namespaces and classes are those associated
3172     //        with the member type together with those associated with
3173     //        X.
3174     case Type::MemberPointer: {
3175       const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
3176 
3177       // Queue up the class type into which this points.
3178       Queue.push_back(MemberPtr->getClass());
3179 
3180       // And directly continue with the pointee type.
3181       T = MemberPtr->getPointeeType().getTypePtr();
3182       continue;
3183     }
3184 
3185     // As an extension, treat this like a normal pointer.
3186     case Type::BlockPointer:
3187       T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
3188       continue;
3189 
3190     // References aren't covered by the standard, but that's such an
3191     // obvious defect that we cover them anyway.
3192     case Type::LValueReference:
3193     case Type::RValueReference:
3194       T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
3195       continue;
3196 
3197     // These are fundamental types.
3198     case Type::Vector:
3199     case Type::ExtVector:
3200     case Type::ConstantMatrix:
3201     case Type::Complex:
3202     case Type::BitInt:
3203       break;
3204 
3205     // Non-deduced auto types only get here for error cases.
3206     case Type::Auto:
3207     case Type::DeducedTemplateSpecialization:
3208       break;
3209 
3210     // If T is an Objective-C object or interface type, or a pointer to an
3211     // object or interface type, the associated namespace is the global
3212     // namespace.
3213     case Type::ObjCObject:
3214     case Type::ObjCInterface:
3215     case Type::ObjCObjectPointer:
3216       Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
3217       break;
3218 
3219     // Atomic types are just wrappers; use the associations of the
3220     // contained type.
3221     case Type::Atomic:
3222       T = cast<AtomicType>(T)->getValueType().getTypePtr();
3223       continue;
3224     case Type::Pipe:
3225       T = cast<PipeType>(T)->getElementType().getTypePtr();
3226       continue;
3227     }
3228 
3229     if (Queue.empty())
3230       break;
3231     T = Queue.pop_back_val();
3232   }
3233 }
3234 
3235 /// Find the associated classes and namespaces for
3236 /// argument-dependent lookup for a call with the given set of
3237 /// arguments.
3238 ///
3239 /// This routine computes the sets of associated classes and associated
3240 /// namespaces searched by argument-dependent lookup
3241 /// (C++ [basic.lookup.argdep]) for a given set of arguments.
3242 void Sema::FindAssociatedClassesAndNamespaces(
3243     SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
3244     AssociatedNamespaceSet &AssociatedNamespaces,
3245     AssociatedClassSet &AssociatedClasses) {
3246   AssociatedNamespaces.clear();
3247   AssociatedClasses.clear();
3248 
3249   AssociatedLookup Result(*this, InstantiationLoc,
3250                           AssociatedNamespaces, AssociatedClasses);
3251 
3252   // C++ [basic.lookup.koenig]p2:
3253   //   For each argument type T in the function call, there is a set
3254   //   of zero or more associated namespaces and a set of zero or more
3255   //   associated classes to be considered. The sets of namespaces and
3256   //   classes is determined entirely by the types of the function
3257   //   arguments (and the namespace of any template template
3258   //   argument).
3259   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
3260     Expr *Arg = Args[ArgIdx];
3261 
3262     if (Arg->getType() != Context.OverloadTy) {
3263       addAssociatedClassesAndNamespaces(Result, Arg->getType());
3264       continue;
3265     }
3266 
3267     // [...] In addition, if the argument is the name or address of a
3268     // set of overloaded functions and/or function templates, its
3269     // associated classes and namespaces are the union of those
3270     // associated with each of the members of the set: the namespace
3271     // in which the function or function template is defined and the
3272     // classes and namespaces associated with its (non-dependent)
3273     // parameter types and return type.
3274     OverloadExpr *OE = OverloadExpr::find(Arg).Expression;
3275 
3276     for (const NamedDecl *D : OE->decls()) {
3277       // Look through any using declarations to find the underlying function.
3278       const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
3279 
3280       // Add the classes and namespaces associated with the parameter
3281       // types and return type of this function.
3282       addAssociatedClassesAndNamespaces(Result, FDecl->getType());
3283     }
3284   }
3285 }
3286 
3287 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
3288                                   SourceLocation Loc,
3289                                   LookupNameKind NameKind,
3290                                   RedeclarationKind Redecl) {
3291   LookupResult R(*this, Name, Loc, NameKind, Redecl);
3292   LookupName(R, S);
3293   return R.getAsSingle<NamedDecl>();
3294 }
3295 
3296 /// Find the protocol with the given name, if any.
3297 ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
3298                                        SourceLocation IdLoc,
3299                                        RedeclarationKind Redecl) {
3300   Decl *D = LookupSingleName(TUScope, II, IdLoc,
3301                              LookupObjCProtocolName, Redecl);
3302   return cast_or_null<ObjCProtocolDecl>(D);
3303 }
3304 
3305 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
3306                                         UnresolvedSetImpl &Functions) {
3307   // C++ [over.match.oper]p3:
3308   //     -- The set of non-member candidates is the result of the
3309   //        unqualified lookup of operator@ in the context of the
3310   //        expression according to the usual rules for name lookup in
3311   //        unqualified function calls (3.4.2) except that all member
3312   //        functions are ignored.
3313   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3314   LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
3315   LookupName(Operators, S);
3316 
3317   assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
3318   Functions.append(Operators.begin(), Operators.end());
3319 }
3320 
3321 Sema::SpecialMemberOverloadResult Sema::LookupSpecialMember(CXXRecordDecl *RD,
3322                                                            CXXSpecialMember SM,
3323                                                            bool ConstArg,
3324                                                            bool VolatileArg,
3325                                                            bool RValueThis,
3326                                                            bool ConstThis,
3327                                                            bool VolatileThis) {
3328   assert(CanDeclareSpecialMemberFunction(RD) &&
3329          "doing special member lookup into record that isn't fully complete");
3330   RD = RD->getDefinition();
3331   if (RValueThis || ConstThis || VolatileThis)
3332     assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
3333            "constructors and destructors always have unqualified lvalue this");
3334   if (ConstArg || VolatileArg)
3335     assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
3336            "parameter-less special members can't have qualified arguments");
3337 
3338   // FIXME: Get the caller to pass in a location for the lookup.
3339   SourceLocation LookupLoc = RD->getLocation();
3340 
3341   llvm::FoldingSetNodeID ID;
3342   ID.AddPointer(RD);
3343   ID.AddInteger(SM);
3344   ID.AddInteger(ConstArg);
3345   ID.AddInteger(VolatileArg);
3346   ID.AddInteger(RValueThis);
3347   ID.AddInteger(ConstThis);
3348   ID.AddInteger(VolatileThis);
3349 
3350   void *InsertPoint;
3351   SpecialMemberOverloadResultEntry *Result =
3352     SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
3353 
3354   // This was already cached
3355   if (Result)
3356     return *Result;
3357 
3358   Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>();
3359   Result = new (Result) SpecialMemberOverloadResultEntry(ID);
3360   SpecialMemberCache.InsertNode(Result, InsertPoint);
3361 
3362   if (SM == CXXDestructor) {
3363     if (RD->needsImplicitDestructor()) {
3364       runWithSufficientStackSpace(RD->getLocation(), [&] {
3365         DeclareImplicitDestructor(RD);
3366       });
3367     }
3368     CXXDestructorDecl *DD = RD->getDestructor();
3369     Result->setMethod(DD);
3370     Result->setKind(DD && !DD->isDeleted()
3371                         ? SpecialMemberOverloadResult::Success
3372                         : SpecialMemberOverloadResult::NoMemberOrDeleted);
3373     return *Result;
3374   }
3375 
3376   // Prepare for overload resolution. Here we construct a synthetic argument
3377   // if necessary and make sure that implicit functions are declared.
3378   CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
3379   DeclarationName Name;
3380   Expr *Arg = nullptr;
3381   unsigned NumArgs;
3382 
3383   QualType ArgType = CanTy;
3384   ExprValueKind VK = VK_LValue;
3385 
3386   if (SM == CXXDefaultConstructor) {
3387     Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3388     NumArgs = 0;
3389     if (RD->needsImplicitDefaultConstructor()) {
3390       runWithSufficientStackSpace(RD->getLocation(), [&] {
3391         DeclareImplicitDefaultConstructor(RD);
3392       });
3393     }
3394   } else {
3395     if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
3396       Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3397       if (RD->needsImplicitCopyConstructor()) {
3398         runWithSufficientStackSpace(RD->getLocation(), [&] {
3399           DeclareImplicitCopyConstructor(RD);
3400         });
3401       }
3402       if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) {
3403         runWithSufficientStackSpace(RD->getLocation(), [&] {
3404           DeclareImplicitMoveConstructor(RD);
3405         });
3406       }
3407     } else {
3408       Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
3409       if (RD->needsImplicitCopyAssignment()) {
3410         runWithSufficientStackSpace(RD->getLocation(), [&] {
3411           DeclareImplicitCopyAssignment(RD);
3412         });
3413       }
3414       if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) {
3415         runWithSufficientStackSpace(RD->getLocation(), [&] {
3416           DeclareImplicitMoveAssignment(RD);
3417         });
3418       }
3419     }
3420 
3421     if (ConstArg)
3422       ArgType.addConst();
3423     if (VolatileArg)
3424       ArgType.addVolatile();
3425 
3426     // This isn't /really/ specified by the standard, but it's implied
3427     // we should be working from a PRValue in the case of move to ensure
3428     // that we prefer to bind to rvalue references, and an LValue in the
3429     // case of copy to ensure we don't bind to rvalue references.
3430     // Possibly an XValue is actually correct in the case of move, but
3431     // there is no semantic difference for class types in this restricted
3432     // case.
3433     if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
3434       VK = VK_LValue;
3435     else
3436       VK = VK_PRValue;
3437   }
3438 
3439   OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK);
3440 
3441   if (SM != CXXDefaultConstructor) {
3442     NumArgs = 1;
3443     Arg = &FakeArg;
3444   }
3445 
3446   // Create the object argument
3447   QualType ThisTy = CanTy;
3448   if (ConstThis)
3449     ThisTy.addConst();
3450   if (VolatileThis)
3451     ThisTy.addVolatile();
3452   Expr::Classification Classification =
3453       OpaqueValueExpr(LookupLoc, ThisTy, RValueThis ? VK_PRValue : VK_LValue)
3454           .Classify(Context);
3455 
3456   // Now we perform lookup on the name we computed earlier and do overload
3457   // resolution. Lookup is only performed directly into the class since there
3458   // will always be a (possibly implicit) declaration to shadow any others.
3459   OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal);
3460   DeclContext::lookup_result R = RD->lookup(Name);
3461 
3462   if (R.empty()) {
3463     // We might have no default constructor because we have a lambda's closure
3464     // type, rather than because there's some other declared constructor.
3465     // Every class has a copy/move constructor, copy/move assignment, and
3466     // destructor.
3467     assert(SM == CXXDefaultConstructor &&
3468            "lookup for a constructor or assignment operator was empty");
3469     Result->setMethod(nullptr);
3470     Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3471     return *Result;
3472   }
3473 
3474   // Copy the candidates as our processing of them may load new declarations
3475   // from an external source and invalidate lookup_result.
3476   SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
3477 
3478   for (NamedDecl *CandDecl : Candidates) {
3479     if (CandDecl->isInvalidDecl())
3480       continue;
3481 
3482     DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public);
3483     auto CtorInfo = getConstructorInfo(Cand);
3484     if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
3485       if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3486         AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
3487                            llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3488       else if (CtorInfo)
3489         AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
3490                              llvm::ArrayRef(&Arg, NumArgs), OCS,
3491                              /*SuppressUserConversions*/ true);
3492       else
3493         AddOverloadCandidate(M, Cand, llvm::ArrayRef(&Arg, NumArgs), OCS,
3494                              /*SuppressUserConversions*/ true);
3495     } else if (FunctionTemplateDecl *Tmpl =
3496                  dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) {
3497       if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3498         AddMethodTemplateCandidate(Tmpl, Cand, RD, nullptr, ThisTy,
3499                                    Classification,
3500                                    llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3501       else if (CtorInfo)
3502         AddTemplateOverloadCandidate(CtorInfo.ConstructorTmpl,
3503                                      CtorInfo.FoundDecl, nullptr,
3504                                      llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3505       else
3506         AddTemplateOverloadCandidate(Tmpl, Cand, nullptr,
3507                                      llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3508     } else {
3509       assert(isa<UsingDecl>(Cand.getDecl()) &&
3510              "illegal Kind of operator = Decl");
3511     }
3512   }
3513 
3514   OverloadCandidateSet::iterator Best;
3515   switch (OCS.BestViableFunction(*this, LookupLoc, Best)) {
3516     case OR_Success:
3517       Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3518       Result->setKind(SpecialMemberOverloadResult::Success);
3519       break;
3520 
3521     case OR_Deleted:
3522       Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3523       Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3524       break;
3525 
3526     case OR_Ambiguous:
3527       Result->setMethod(nullptr);
3528       Result->setKind(SpecialMemberOverloadResult::Ambiguous);
3529       break;
3530 
3531     case OR_No_Viable_Function:
3532       Result->setMethod(nullptr);
3533       Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3534       break;
3535   }
3536 
3537   return *Result;
3538 }
3539 
3540 /// Look up the default constructor for the given class.
3541 CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
3542   SpecialMemberOverloadResult Result =
3543     LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
3544                         false, false);
3545 
3546   return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3547 }
3548 
3549 /// Look up the copying constructor for the given class.
3550 CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
3551                                                    unsigned Quals) {
3552   assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3553          "non-const, non-volatile qualifiers for copy ctor arg");
3554   SpecialMemberOverloadResult Result =
3555     LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
3556                         Quals & Qualifiers::Volatile, false, false, false);
3557 
3558   return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3559 }
3560 
3561 /// Look up the moving constructor for the given class.
3562 CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
3563                                                   unsigned Quals) {
3564   SpecialMemberOverloadResult Result =
3565     LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
3566                         Quals & Qualifiers::Volatile, false, false, false);
3567 
3568   return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3569 }
3570 
3571 /// Look up the constructors for the given class.
3572 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
3573   // If the implicit constructors have not yet been declared, do so now.
3574   if (CanDeclareSpecialMemberFunction(Class)) {
3575     runWithSufficientStackSpace(Class->getLocation(), [&] {
3576       if (Class->needsImplicitDefaultConstructor())
3577         DeclareImplicitDefaultConstructor(Class);
3578       if (Class->needsImplicitCopyConstructor())
3579         DeclareImplicitCopyConstructor(Class);
3580       if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
3581         DeclareImplicitMoveConstructor(Class);
3582     });
3583   }
3584 
3585   CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
3586   DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
3587   return Class->lookup(Name);
3588 }
3589 
3590 /// Look up the copying assignment operator for the given class.
3591 CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
3592                                              unsigned Quals, bool RValueThis,
3593                                              unsigned ThisQuals) {
3594   assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3595          "non-const, non-volatile qualifiers for copy assignment arg");
3596   assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3597          "non-const, non-volatile qualifiers for copy assignment this");
3598   SpecialMemberOverloadResult Result =
3599     LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
3600                         Quals & Qualifiers::Volatile, RValueThis,
3601                         ThisQuals & Qualifiers::Const,
3602                         ThisQuals & Qualifiers::Volatile);
3603 
3604   return Result.getMethod();
3605 }
3606 
3607 /// Look up the moving assignment operator for the given class.
3608 CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
3609                                             unsigned Quals,
3610                                             bool RValueThis,
3611                                             unsigned ThisQuals) {
3612   assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3613          "non-const, non-volatile qualifiers for copy assignment this");
3614   SpecialMemberOverloadResult Result =
3615     LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
3616                         Quals & Qualifiers::Volatile, RValueThis,
3617                         ThisQuals & Qualifiers::Const,
3618                         ThisQuals & Qualifiers::Volatile);
3619 
3620   return Result.getMethod();
3621 }
3622 
3623 /// Look for the destructor of the given class.
3624 ///
3625 /// During semantic analysis, this routine should be used in lieu of
3626 /// CXXRecordDecl::getDestructor().
3627 ///
3628 /// \returns The destructor for this class.
3629 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
3630   return cast_or_null<CXXDestructorDecl>(
3631       LookupSpecialMember(Class, CXXDestructor, false, false, false, false,
3632                           false)
3633           .getMethod());
3634 }
3635 
3636 /// LookupLiteralOperator - Determine which literal operator should be used for
3637 /// a user-defined literal, per C++11 [lex.ext].
3638 ///
3639 /// Normal overload resolution is not used to select which literal operator to
3640 /// call for a user-defined literal. Look up the provided literal operator name,
3641 /// and filter the results to the appropriate set for the given argument types.
3642 Sema::LiteralOperatorLookupResult
3643 Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
3644                             ArrayRef<QualType> ArgTys, bool AllowRaw,
3645                             bool AllowTemplate, bool AllowStringTemplatePack,
3646                             bool DiagnoseMissing, StringLiteral *StringLit) {
3647   LookupName(R, S);
3648   assert(R.getResultKind() != LookupResult::Ambiguous &&
3649          "literal operator lookup can't be ambiguous");
3650 
3651   // Filter the lookup results appropriately.
3652   LookupResult::Filter F = R.makeFilter();
3653 
3654   bool AllowCooked = true;
3655   bool FoundRaw = false;
3656   bool FoundTemplate = false;
3657   bool FoundStringTemplatePack = false;
3658   bool FoundCooked = false;
3659 
3660   while (F.hasNext()) {
3661     Decl *D = F.next();
3662     if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
3663       D = USD->getTargetDecl();
3664 
3665     // If the declaration we found is invalid, skip it.
3666     if (D->isInvalidDecl()) {
3667       F.erase();
3668       continue;
3669     }
3670 
3671     bool IsRaw = false;
3672     bool IsTemplate = false;
3673     bool IsStringTemplatePack = false;
3674     bool IsCooked = false;
3675 
3676     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3677       if (FD->getNumParams() == 1 &&
3678           FD->getParamDecl(0)->getType()->getAs<PointerType>())
3679         IsRaw = true;
3680       else if (FD->getNumParams() == ArgTys.size()) {
3681         IsCooked = true;
3682         for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
3683           QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
3684           if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
3685             IsCooked = false;
3686             break;
3687           }
3688         }
3689       }
3690     }
3691     if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
3692       TemplateParameterList *Params = FD->getTemplateParameters();
3693       if (Params->size() == 1) {
3694         IsTemplate = true;
3695         if (!Params->getParam(0)->isTemplateParameterPack() && !StringLit) {
3696           // Implied but not stated: user-defined integer and floating literals
3697           // only ever use numeric literal operator templates, not templates
3698           // taking a parameter of class type.
3699           F.erase();
3700           continue;
3701         }
3702 
3703         // A string literal template is only considered if the string literal
3704         // is a well-formed template argument for the template parameter.
3705         if (StringLit) {
3706           SFINAETrap Trap(*this);
3707           SmallVector<TemplateArgument, 1> SugaredChecked, CanonicalChecked;
3708           TemplateArgumentLoc Arg(TemplateArgument(StringLit), StringLit);
3709           if (CheckTemplateArgument(
3710                   Params->getParam(0), Arg, FD, R.getNameLoc(), R.getNameLoc(),
3711                   0, SugaredChecked, CanonicalChecked, CTAK_Specified) ||
3712               Trap.hasErrorOccurred())
3713             IsTemplate = false;
3714         }
3715       } else {
3716         IsStringTemplatePack = true;
3717       }
3718     }
3719 
3720     if (AllowTemplate && StringLit && IsTemplate) {
3721       FoundTemplate = true;
3722       AllowRaw = false;
3723       AllowCooked = false;
3724       AllowStringTemplatePack = false;
3725       if (FoundRaw || FoundCooked || FoundStringTemplatePack) {
3726         F.restart();
3727         FoundRaw = FoundCooked = FoundStringTemplatePack = false;
3728       }
3729     } else if (AllowCooked && IsCooked) {
3730       FoundCooked = true;
3731       AllowRaw = false;
3732       AllowTemplate = StringLit;
3733       AllowStringTemplatePack = false;
3734       if (FoundRaw || FoundTemplate || FoundStringTemplatePack) {
3735         // Go through again and remove the raw and template decls we've
3736         // already found.
3737         F.restart();
3738         FoundRaw = FoundTemplate = FoundStringTemplatePack = false;
3739       }
3740     } else if (AllowRaw && IsRaw) {
3741       FoundRaw = true;
3742     } else if (AllowTemplate && IsTemplate) {
3743       FoundTemplate = true;
3744     } else if (AllowStringTemplatePack && IsStringTemplatePack) {
3745       FoundStringTemplatePack = true;
3746     } else {
3747       F.erase();
3748     }
3749   }
3750 
3751   F.done();
3752 
3753   // Per C++20 [lex.ext]p5, we prefer the template form over the non-template
3754   // form for string literal operator templates.
3755   if (StringLit && FoundTemplate)
3756     return LOLR_Template;
3757 
3758   // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
3759   // parameter type, that is used in preference to a raw literal operator
3760   // or literal operator template.
3761   if (FoundCooked)
3762     return LOLR_Cooked;
3763 
3764   // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
3765   // operator template, but not both.
3766   if (FoundRaw && FoundTemplate) {
3767     Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
3768     for (const NamedDecl *D : R)
3769       NoteOverloadCandidate(D, D->getUnderlyingDecl()->getAsFunction());
3770     return LOLR_Error;
3771   }
3772 
3773   if (FoundRaw)
3774     return LOLR_Raw;
3775 
3776   if (FoundTemplate)
3777     return LOLR_Template;
3778 
3779   if (FoundStringTemplatePack)
3780     return LOLR_StringTemplatePack;
3781 
3782   // Didn't find anything we could use.
3783   if (DiagnoseMissing) {
3784     Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
3785         << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
3786         << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
3787         << (AllowTemplate || AllowStringTemplatePack);
3788     return LOLR_Error;
3789   }
3790 
3791   return LOLR_ErrorNoDiagnostic;
3792 }
3793 
3794 void ADLResult::insert(NamedDecl *New) {
3795   NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
3796 
3797   // If we haven't yet seen a decl for this key, or the last decl
3798   // was exactly this one, we're done.
3799   if (Old == nullptr || Old == New) {
3800     Old = New;
3801     return;
3802   }
3803 
3804   // Otherwise, decide which is a more recent redeclaration.
3805   FunctionDecl *OldFD = Old->getAsFunction();
3806   FunctionDecl *NewFD = New->getAsFunction();
3807 
3808   FunctionDecl *Cursor = NewFD;
3809   while (true) {
3810     Cursor = Cursor->getPreviousDecl();
3811 
3812     // If we got to the end without finding OldFD, OldFD is the newer
3813     // declaration;  leave things as they are.
3814     if (!Cursor) return;
3815 
3816     // If we do find OldFD, then NewFD is newer.
3817     if (Cursor == OldFD) break;
3818 
3819     // Otherwise, keep looking.
3820   }
3821 
3822   Old = New;
3823 }
3824 
3825 void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
3826                                    ArrayRef<Expr *> Args, ADLResult &Result) {
3827   // Find all of the associated namespaces and classes based on the
3828   // arguments we have.
3829   AssociatedNamespaceSet AssociatedNamespaces;
3830   AssociatedClassSet AssociatedClasses;
3831   FindAssociatedClassesAndNamespaces(Loc, Args,
3832                                      AssociatedNamespaces,
3833                                      AssociatedClasses);
3834 
3835   // C++ [basic.lookup.argdep]p3:
3836   //   Let X be the lookup set produced by unqualified lookup (3.4.1)
3837   //   and let Y be the lookup set produced by argument dependent
3838   //   lookup (defined as follows). If X contains [...] then Y is
3839   //   empty. Otherwise Y is the set of declarations found in the
3840   //   namespaces associated with the argument types as described
3841   //   below. The set of declarations found by the lookup of the name
3842   //   is the union of X and Y.
3843   //
3844   // Here, we compute Y and add its members to the overloaded
3845   // candidate set.
3846   for (auto *NS : AssociatedNamespaces) {
3847     //   When considering an associated namespace, the lookup is the
3848     //   same as the lookup performed when the associated namespace is
3849     //   used as a qualifier (3.4.3.2) except that:
3850     //
3851     //     -- Any using-directives in the associated namespace are
3852     //        ignored.
3853     //
3854     //     -- Any namespace-scope friend functions declared in
3855     //        associated classes are visible within their respective
3856     //        namespaces even if they are not visible during an ordinary
3857     //        lookup (11.4).
3858     //
3859     // C++20 [basic.lookup.argdep] p4.3
3860     //     -- are exported, are attached to a named module M, do not appear
3861     //        in the translation unit containing the point of the lookup, and
3862     //        have the same innermost enclosing non-inline namespace scope as
3863     //        a declaration of an associated entity attached to M.
3864     DeclContext::lookup_result R = NS->lookup(Name);
3865     for (auto *D : R) {
3866       auto *Underlying = D;
3867       if (auto *USD = dyn_cast<UsingShadowDecl>(D))
3868         Underlying = USD->getTargetDecl();
3869 
3870       if (!isa<FunctionDecl>(Underlying) &&
3871           !isa<FunctionTemplateDecl>(Underlying))
3872         continue;
3873 
3874       // The declaration is visible to argument-dependent lookup if either
3875       // it's ordinarily visible or declared as a friend in an associated
3876       // class.
3877       bool Visible = false;
3878       for (D = D->getMostRecentDecl(); D;
3879            D = cast_or_null<NamedDecl>(D->getPreviousDecl())) {
3880         if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) {
3881           if (isVisible(D)) {
3882             Visible = true;
3883             break;
3884           }
3885 
3886           if (!getLangOpts().CPlusPlusModules)
3887             continue;
3888 
3889           if (D->isInExportDeclContext()) {
3890             Module *FM = D->getOwningModule();
3891             // C++20 [basic.lookup.argdep] p4.3 .. are exported ...
3892             // exports are only valid in module purview and outside of any
3893             // PMF (although a PMF should not even be present in a module
3894             // with an import).
3895             assert(FM && FM->isModulePurview() && !FM->isPrivateModule() &&
3896                    "bad export context");
3897             // .. are attached to a named module M, do not appear in the
3898             // translation unit containing the point of the lookup..
3899             if (D->isInAnotherModuleUnit() &&
3900                 llvm::any_of(AssociatedClasses, [&](auto *E) {
3901                   // ... and have the same innermost enclosing non-inline
3902                   // namespace scope as a declaration of an associated entity
3903                   // attached to M
3904                   if (E->getOwningModule() != FM)
3905                     return false;
3906                   // TODO: maybe this could be cached when generating the
3907                   // associated namespaces / entities.
3908                   DeclContext *Ctx = E->getDeclContext();
3909                   while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
3910                     Ctx = Ctx->getParent();
3911                   return Ctx == NS;
3912                 })) {
3913               Visible = true;
3914               break;
3915             }
3916           }
3917         } else if (D->getFriendObjectKind()) {
3918           auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext());
3919           // [basic.lookup.argdep]p4:
3920           //   Argument-dependent lookup finds all declarations of functions and
3921           //   function templates that
3922           //  - ...
3923           //  - are declared as a friend ([class.friend]) of any class with a
3924           //  reachable definition in the set of associated entities,
3925           //
3926           // FIXME: If there's a merged definition of D that is reachable, then
3927           // the friend declaration should be considered.
3928           if (AssociatedClasses.count(RD) && isReachable(D)) {
3929             Visible = true;
3930             break;
3931           }
3932         }
3933       }
3934 
3935       // FIXME: Preserve D as the FoundDecl.
3936       if (Visible)
3937         Result.insert(Underlying);
3938     }
3939   }
3940 }
3941 
3942 //----------------------------------------------------------------------------
3943 // Search for all visible declarations.
3944 //----------------------------------------------------------------------------
3945 VisibleDeclConsumer::~VisibleDeclConsumer() { }
3946 
3947 bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
3948 
3949 namespace {
3950 
3951 class ShadowContextRAII;
3952 
3953 class VisibleDeclsRecord {
3954 public:
3955   /// An entry in the shadow map, which is optimized to store a
3956   /// single declaration (the common case) but can also store a list
3957   /// of declarations.
3958   typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
3959 
3960 private:
3961   /// A mapping from declaration names to the declarations that have
3962   /// this name within a particular scope.
3963   typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
3964 
3965   /// A list of shadow maps, which is used to model name hiding.
3966   std::list<ShadowMap> ShadowMaps;
3967 
3968   /// The declaration contexts we have already visited.
3969   llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
3970 
3971   friend class ShadowContextRAII;
3972 
3973 public:
3974   /// Determine whether we have already visited this context
3975   /// (and, if not, note that we are going to visit that context now).
3976   bool visitedContext(DeclContext *Ctx) {
3977     return !VisitedContexts.insert(Ctx).second;
3978   }
3979 
3980   bool alreadyVisitedContext(DeclContext *Ctx) {
3981     return VisitedContexts.count(Ctx);
3982   }
3983 
3984   /// Determine whether the given declaration is hidden in the
3985   /// current scope.
3986   ///
3987   /// \returns the declaration that hides the given declaration, or
3988   /// NULL if no such declaration exists.
3989   NamedDecl *checkHidden(NamedDecl *ND);
3990 
3991   /// Add a declaration to the current shadow map.
3992   void add(NamedDecl *ND) {
3993     ShadowMaps.back()[ND->getDeclName()].push_back(ND);
3994   }
3995 };
3996 
3997 /// RAII object that records when we've entered a shadow context.
3998 class ShadowContextRAII {
3999   VisibleDeclsRecord &Visible;
4000 
4001   typedef VisibleDeclsRecord::ShadowMap ShadowMap;
4002 
4003 public:
4004   ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
4005     Visible.ShadowMaps.emplace_back();
4006   }
4007 
4008   ~ShadowContextRAII() {
4009     Visible.ShadowMaps.pop_back();
4010   }
4011 };
4012 
4013 } // end anonymous namespace
4014 
4015 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
4016   unsigned IDNS = ND->getIdentifierNamespace();
4017   std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
4018   for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
4019        SM != SMEnd; ++SM) {
4020     ShadowMap::iterator Pos = SM->find(ND->getDeclName());
4021     if (Pos == SM->end())
4022       continue;
4023 
4024     for (auto *D : Pos->second) {
4025       // A tag declaration does not hide a non-tag declaration.
4026       if (D->hasTagIdentifierNamespace() &&
4027           (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
4028                    Decl::IDNS_ObjCProtocol)))
4029         continue;
4030 
4031       // Protocols are in distinct namespaces from everything else.
4032       if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
4033            || (IDNS & Decl::IDNS_ObjCProtocol)) &&
4034           D->getIdentifierNamespace() != IDNS)
4035         continue;
4036 
4037       // Functions and function templates in the same scope overload
4038       // rather than hide.  FIXME: Look for hiding based on function
4039       // signatures!
4040       if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
4041           ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
4042           SM == ShadowMaps.rbegin())
4043         continue;
4044 
4045       // A shadow declaration that's created by a resolved using declaration
4046       // is not hidden by the same using declaration.
4047       if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) &&
4048           cast<UsingShadowDecl>(ND)->getIntroducer() == D)
4049         continue;
4050 
4051       // We've found a declaration that hides this one.
4052       return D;
4053     }
4054   }
4055 
4056   return nullptr;
4057 }
4058 
4059 namespace {
4060 class LookupVisibleHelper {
4061 public:
4062   LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases,
4063                       bool LoadExternal)
4064       : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases),
4065         LoadExternal(LoadExternal) {}
4066 
4067   void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind,
4068                           bool IncludeGlobalScope) {
4069     // Determine the set of using directives available during
4070     // unqualified name lookup.
4071     Scope *Initial = S;
4072     UnqualUsingDirectiveSet UDirs(SemaRef);
4073     if (SemaRef.getLangOpts().CPlusPlus) {
4074       // Find the first namespace or translation-unit scope.
4075       while (S && !isNamespaceOrTranslationUnitScope(S))
4076         S = S->getParent();
4077 
4078       UDirs.visitScopeChain(Initial, S);
4079     }
4080     UDirs.done();
4081 
4082     // Look for visible declarations.
4083     LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
4084     Result.setAllowHidden(Consumer.includeHiddenDecls());
4085     if (!IncludeGlobalScope)
4086       Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
4087     ShadowContextRAII Shadow(Visited);
4088     lookupInScope(Initial, Result, UDirs);
4089   }
4090 
4091   void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx,
4092                           Sema::LookupNameKind Kind, bool IncludeGlobalScope) {
4093     LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
4094     Result.setAllowHidden(Consumer.includeHiddenDecls());
4095     if (!IncludeGlobalScope)
4096       Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
4097 
4098     ShadowContextRAII Shadow(Visited);
4099     lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true,
4100                         /*InBaseClass=*/false);
4101   }
4102 
4103 private:
4104   void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result,
4105                            bool QualifiedNameLookup, bool InBaseClass) {
4106     if (!Ctx)
4107       return;
4108 
4109     // Make sure we don't visit the same context twice.
4110     if (Visited.visitedContext(Ctx->getPrimaryContext()))
4111       return;
4112 
4113     Consumer.EnteredContext(Ctx);
4114 
4115     // Outside C++, lookup results for the TU live on identifiers.
4116     if (isa<TranslationUnitDecl>(Ctx) &&
4117         !Result.getSema().getLangOpts().CPlusPlus) {
4118       auto &S = Result.getSema();
4119       auto &Idents = S.Context.Idents;
4120 
4121       // Ensure all external identifiers are in the identifier table.
4122       if (LoadExternal)
4123         if (IdentifierInfoLookup *External =
4124                 Idents.getExternalIdentifierLookup()) {
4125           std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4126           for (StringRef Name = Iter->Next(); !Name.empty();
4127                Name = Iter->Next())
4128             Idents.get(Name);
4129         }
4130 
4131       // Walk all lookup results in the TU for each identifier.
4132       for (const auto &Ident : Idents) {
4133         for (auto I = S.IdResolver.begin(Ident.getValue()),
4134                   E = S.IdResolver.end();
4135              I != E; ++I) {
4136           if (S.IdResolver.isDeclInScope(*I, Ctx)) {
4137             if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
4138               Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
4139               Visited.add(ND);
4140             }
4141           }
4142         }
4143       }
4144 
4145       return;
4146     }
4147 
4148     if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
4149       Result.getSema().ForceDeclarationOfImplicitMembers(Class);
4150 
4151     llvm::SmallVector<NamedDecl *, 4> DeclsToVisit;
4152     // We sometimes skip loading namespace-level results (they tend to be huge).
4153     bool Load = LoadExternal ||
4154                 !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx));
4155     // Enumerate all of the results in this context.
4156     for (DeclContextLookupResult R :
4157          Load ? Ctx->lookups()
4158               : Ctx->noload_lookups(/*PreserveInternalState=*/false))
4159       for (auto *D : R)
4160         // Rather than visit immediately, we put ND into a vector and visit
4161         // all decls, in order, outside of this loop. The reason is that
4162         // Consumer.FoundDecl() and LookupResult::getAcceptableDecl(D)
4163         // may invalidate the iterators used in the two
4164         // loops above.
4165         DeclsToVisit.push_back(D);
4166 
4167     for (auto *D : DeclsToVisit)
4168       if (auto *ND = Result.getAcceptableDecl(D)) {
4169         Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
4170         Visited.add(ND);
4171       }
4172 
4173     DeclsToVisit.clear();
4174 
4175     // Traverse using directives for qualified name lookup.
4176     if (QualifiedNameLookup) {
4177       ShadowContextRAII Shadow(Visited);
4178       for (auto *I : Ctx->using_directives()) {
4179         if (!Result.getSema().isVisible(I))
4180           continue;
4181         lookupInDeclContext(I->getNominatedNamespace(), Result,
4182                             QualifiedNameLookup, InBaseClass);
4183       }
4184     }
4185 
4186     // Traverse the contexts of inherited C++ classes.
4187     if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
4188       if (!Record->hasDefinition())
4189         return;
4190 
4191       for (const auto &B : Record->bases()) {
4192         QualType BaseType = B.getType();
4193 
4194         RecordDecl *RD;
4195         if (BaseType->isDependentType()) {
4196           if (!IncludeDependentBases) {
4197             // Don't look into dependent bases, because name lookup can't look
4198             // there anyway.
4199             continue;
4200           }
4201           const auto *TST = BaseType->getAs<TemplateSpecializationType>();
4202           if (!TST)
4203             continue;
4204           TemplateName TN = TST->getTemplateName();
4205           const auto *TD =
4206               dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
4207           if (!TD)
4208             continue;
4209           RD = TD->getTemplatedDecl();
4210         } else {
4211           const auto *Record = BaseType->getAs<RecordType>();
4212           if (!Record)
4213             continue;
4214           RD = Record->getDecl();
4215         }
4216 
4217         // FIXME: It would be nice to be able to determine whether referencing
4218         // a particular member would be ambiguous. For example, given
4219         //
4220         //   struct A { int member; };
4221         //   struct B { int member; };
4222         //   struct C : A, B { };
4223         //
4224         //   void f(C *c) { c->### }
4225         //
4226         // accessing 'member' would result in an ambiguity. However, we
4227         // could be smart enough to qualify the member with the base
4228         // class, e.g.,
4229         //
4230         //   c->B::member
4231         //
4232         // or
4233         //
4234         //   c->A::member
4235 
4236         // Find results in this base class (and its bases).
4237         ShadowContextRAII Shadow(Visited);
4238         lookupInDeclContext(RD, Result, QualifiedNameLookup,
4239                             /*InBaseClass=*/true);
4240       }
4241     }
4242 
4243     // Traverse the contexts of Objective-C classes.
4244     if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
4245       // Traverse categories.
4246       for (auto *Cat : IFace->visible_categories()) {
4247         ShadowContextRAII Shadow(Visited);
4248         lookupInDeclContext(Cat, Result, QualifiedNameLookup,
4249                             /*InBaseClass=*/false);
4250       }
4251 
4252       // Traverse protocols.
4253       for (auto *I : IFace->all_referenced_protocols()) {
4254         ShadowContextRAII Shadow(Visited);
4255         lookupInDeclContext(I, Result, QualifiedNameLookup,
4256                             /*InBaseClass=*/false);
4257       }
4258 
4259       // Traverse the superclass.
4260       if (IFace->getSuperClass()) {
4261         ShadowContextRAII Shadow(Visited);
4262         lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup,
4263                             /*InBaseClass=*/true);
4264       }
4265 
4266       // If there is an implementation, traverse it. We do this to find
4267       // synthesized ivars.
4268       if (IFace->getImplementation()) {
4269         ShadowContextRAII Shadow(Visited);
4270         lookupInDeclContext(IFace->getImplementation(), Result,
4271                             QualifiedNameLookup, InBaseClass);
4272       }
4273     } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
4274       for (auto *I : Protocol->protocols()) {
4275         ShadowContextRAII Shadow(Visited);
4276         lookupInDeclContext(I, Result, QualifiedNameLookup,
4277                             /*InBaseClass=*/false);
4278       }
4279     } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
4280       for (auto *I : Category->protocols()) {
4281         ShadowContextRAII Shadow(Visited);
4282         lookupInDeclContext(I, Result, QualifiedNameLookup,
4283                             /*InBaseClass=*/false);
4284       }
4285 
4286       // If there is an implementation, traverse it.
4287       if (Category->getImplementation()) {
4288         ShadowContextRAII Shadow(Visited);
4289         lookupInDeclContext(Category->getImplementation(), Result,
4290                             QualifiedNameLookup, /*InBaseClass=*/true);
4291       }
4292     }
4293   }
4294 
4295   void lookupInScope(Scope *S, LookupResult &Result,
4296                      UnqualUsingDirectiveSet &UDirs) {
4297     // No clients run in this mode and it's not supported. Please add tests and
4298     // remove the assertion if you start relying on it.
4299     assert(!IncludeDependentBases && "Unsupported flag for lookupInScope");
4300 
4301     if (!S)
4302       return;
4303 
4304     if (!S->getEntity() ||
4305         (!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) ||
4306         (S->getEntity())->isFunctionOrMethod()) {
4307       FindLocalExternScope FindLocals(Result);
4308       // Walk through the declarations in this Scope. The consumer might add new
4309       // decls to the scope as part of deserialization, so make a copy first.
4310       SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end());
4311       for (Decl *D : ScopeDecls) {
4312         if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
4313           if ((ND = Result.getAcceptableDecl(ND))) {
4314             Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
4315             Visited.add(ND);
4316           }
4317       }
4318     }
4319 
4320     DeclContext *Entity = S->getLookupEntity();
4321     if (Entity) {
4322       // Look into this scope's declaration context, along with any of its
4323       // parent lookup contexts (e.g., enclosing classes), up to the point
4324       // where we hit the context stored in the next outer scope.
4325       DeclContext *OuterCtx = findOuterContext(S);
4326 
4327       for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
4328            Ctx = Ctx->getLookupParent()) {
4329         if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
4330           if (Method->isInstanceMethod()) {
4331             // For instance methods, look for ivars in the method's interface.
4332             LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
4333                                     Result.getNameLoc(),
4334                                     Sema::LookupMemberName);
4335             if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
4336               lookupInDeclContext(IFace, IvarResult,
4337                                   /*QualifiedNameLookup=*/false,
4338                                   /*InBaseClass=*/false);
4339             }
4340           }
4341 
4342           // We've already performed all of the name lookup that we need
4343           // to for Objective-C methods; the next context will be the
4344           // outer scope.
4345           break;
4346         }
4347 
4348         if (Ctx->isFunctionOrMethod())
4349           continue;
4350 
4351         lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false,
4352                             /*InBaseClass=*/false);
4353       }
4354     } else if (!S->getParent()) {
4355       // Look into the translation unit scope. We walk through the translation
4356       // unit's declaration context, because the Scope itself won't have all of
4357       // the declarations if we loaded a precompiled header.
4358       // FIXME: We would like the translation unit's Scope object to point to
4359       // the translation unit, so we don't need this special "if" branch.
4360       // However, doing so would force the normal C++ name-lookup code to look
4361       // into the translation unit decl when the IdentifierInfo chains would
4362       // suffice. Once we fix that problem (which is part of a more general
4363       // "don't look in DeclContexts unless we have to" optimization), we can
4364       // eliminate this.
4365       Entity = Result.getSema().Context.getTranslationUnitDecl();
4366       lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false,
4367                           /*InBaseClass=*/false);
4368     }
4369 
4370     if (Entity) {
4371       // Lookup visible declarations in any namespaces found by using
4372       // directives.
4373       for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
4374         lookupInDeclContext(
4375             const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result,
4376             /*QualifiedNameLookup=*/false,
4377             /*InBaseClass=*/false);
4378     }
4379 
4380     // Lookup names in the parent scope.
4381     ShadowContextRAII Shadow(Visited);
4382     lookupInScope(S->getParent(), Result, UDirs);
4383   }
4384 
4385 private:
4386   VisibleDeclsRecord Visited;
4387   VisibleDeclConsumer &Consumer;
4388   bool IncludeDependentBases;
4389   bool LoadExternal;
4390 };
4391 } // namespace
4392 
4393 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
4394                               VisibleDeclConsumer &Consumer,
4395                               bool IncludeGlobalScope, bool LoadExternal) {
4396   LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false,
4397                         LoadExternal);
4398   H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope);
4399 }
4400 
4401 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
4402                               VisibleDeclConsumer &Consumer,
4403                               bool IncludeGlobalScope,
4404                               bool IncludeDependentBases, bool LoadExternal) {
4405   LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal);
4406   H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope);
4407 }
4408 
4409 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
4410 /// If GnuLabelLoc is a valid source location, then this is a definition
4411 /// of an __label__ label name, otherwise it is a normal label definition
4412 /// or use.
4413 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
4414                                      SourceLocation GnuLabelLoc) {
4415   // Do a lookup to see if we have a label with this name already.
4416   NamedDecl *Res = nullptr;
4417 
4418   if (GnuLabelLoc.isValid()) {
4419     // Local label definitions always shadow existing labels.
4420     Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
4421     Scope *S = CurScope;
4422     PushOnScopeChains(Res, S, true);
4423     return cast<LabelDecl>(Res);
4424   }
4425 
4426   // Not a GNU local label.
4427   Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
4428   // If we found a label, check to see if it is in the same context as us.
4429   // When in a Block, we don't want to reuse a label in an enclosing function.
4430   if (Res && Res->getDeclContext() != CurContext)
4431     Res = nullptr;
4432   if (!Res) {
4433     // If not forward referenced or defined already, create the backing decl.
4434     Res = LabelDecl::Create(Context, CurContext, Loc, II);
4435     Scope *S = CurScope->getFnParent();
4436     assert(S && "Not in a function?");
4437     PushOnScopeChains(Res, S, true);
4438   }
4439   return cast<LabelDecl>(Res);
4440 }
4441 
4442 //===----------------------------------------------------------------------===//
4443 // Typo correction
4444 //===----------------------------------------------------------------------===//
4445 
4446 static bool isCandidateViable(CorrectionCandidateCallback &CCC,
4447                               TypoCorrection &Candidate) {
4448   Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
4449   return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
4450 }
4451 
4452 static void LookupPotentialTypoResult(Sema &SemaRef,
4453                                       LookupResult &Res,
4454                                       IdentifierInfo *Name,
4455                                       Scope *S, CXXScopeSpec *SS,
4456                                       DeclContext *MemberContext,
4457                                       bool EnteringContext,
4458                                       bool isObjCIvarLookup,
4459                                       bool FindHidden);
4460 
4461 /// Check whether the declarations found for a typo correction are
4462 /// visible. Set the correction's RequiresImport flag to true if none of the
4463 /// declarations are visible, false otherwise.
4464 static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
4465   TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
4466 
4467   for (/**/; DI != DE; ++DI)
4468     if (!LookupResult::isVisible(SemaRef, *DI))
4469       break;
4470   // No filtering needed if all decls are visible.
4471   if (DI == DE) {
4472     TC.setRequiresImport(false);
4473     return;
4474   }
4475 
4476   llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
4477   bool AnyVisibleDecls = !NewDecls.empty();
4478 
4479   for (/**/; DI != DE; ++DI) {
4480     if (LookupResult::isVisible(SemaRef, *DI)) {
4481       if (!AnyVisibleDecls) {
4482         // Found a visible decl, discard all hidden ones.
4483         AnyVisibleDecls = true;
4484         NewDecls.clear();
4485       }
4486       NewDecls.push_back(*DI);
4487     } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
4488       NewDecls.push_back(*DI);
4489   }
4490 
4491   if (NewDecls.empty())
4492     TC = TypoCorrection();
4493   else {
4494     TC.setCorrectionDecls(NewDecls);
4495     TC.setRequiresImport(!AnyVisibleDecls);
4496   }
4497 }
4498 
4499 // Fill the supplied vector with the IdentifierInfo pointers for each piece of
4500 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
4501 // fill the vector with the IdentifierInfo pointers for "foo" and "bar").
4502 static void getNestedNameSpecifierIdentifiers(
4503     NestedNameSpecifier *NNS,
4504     SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
4505   if (NestedNameSpecifier *Prefix = NNS->getPrefix())
4506     getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
4507   else
4508     Identifiers.clear();
4509 
4510   const IdentifierInfo *II = nullptr;
4511 
4512   switch (NNS->getKind()) {
4513   case NestedNameSpecifier::Identifier:
4514     II = NNS->getAsIdentifier();
4515     break;
4516 
4517   case NestedNameSpecifier::Namespace:
4518     if (NNS->getAsNamespace()->isAnonymousNamespace())
4519       return;
4520     II = NNS->getAsNamespace()->getIdentifier();
4521     break;
4522 
4523   case NestedNameSpecifier::NamespaceAlias:
4524     II = NNS->getAsNamespaceAlias()->getIdentifier();
4525     break;
4526 
4527   case NestedNameSpecifier::TypeSpecWithTemplate:
4528   case NestedNameSpecifier::TypeSpec:
4529     II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
4530     break;
4531 
4532   case NestedNameSpecifier::Global:
4533   case NestedNameSpecifier::Super:
4534     return;
4535   }
4536 
4537   if (II)
4538     Identifiers.push_back(II);
4539 }
4540 
4541 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
4542                                        DeclContext *Ctx, bool InBaseClass) {
4543   // Don't consider hidden names for typo correction.
4544   if (Hiding)
4545     return;
4546 
4547   // Only consider entities with identifiers for names, ignoring
4548   // special names (constructors, overloaded operators, selectors,
4549   // etc.).
4550   IdentifierInfo *Name = ND->getIdentifier();
4551   if (!Name)
4552     return;
4553 
4554   // Only consider visible declarations and declarations from modules with
4555   // names that exactly match.
4556   if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo)
4557     return;
4558 
4559   FoundName(Name->getName());
4560 }
4561 
4562 void TypoCorrectionConsumer::FoundName(StringRef Name) {
4563   // Compute the edit distance between the typo and the name of this
4564   // entity, and add the identifier to the list of results.
4565   addName(Name, nullptr);
4566 }
4567 
4568 void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
4569   // Compute the edit distance between the typo and this keyword,
4570   // and add the keyword to the list of results.
4571   addName(Keyword, nullptr, nullptr, true);
4572 }
4573 
4574 void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
4575                                      NestedNameSpecifier *NNS, bool isKeyword) {
4576   // Use a simple length-based heuristic to determine the minimum possible
4577   // edit distance. If the minimum isn't good enough, bail out early.
4578   StringRef TypoStr = Typo->getName();
4579   unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
4580   if (MinED && TypoStr.size() / MinED < 3)
4581     return;
4582 
4583   // Compute an upper bound on the allowable edit distance, so that the
4584   // edit-distance algorithm can short-circuit.
4585   unsigned UpperBound = (TypoStr.size() + 2) / 3;
4586   unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
4587   if (ED > UpperBound) return;
4588 
4589   TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
4590   if (isKeyword) TC.makeKeyword();
4591   TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
4592   addCorrection(TC);
4593 }
4594 
4595 static const unsigned MaxTypoDistanceResultSets = 5;
4596 
4597 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
4598   StringRef TypoStr = Typo->getName();
4599   StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
4600 
4601   // For very short typos, ignore potential corrections that have a different
4602   // base identifier from the typo or which have a normalized edit distance
4603   // longer than the typo itself.
4604   if (TypoStr.size() < 3 &&
4605       (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
4606     return;
4607 
4608   // If the correction is resolved but is not viable, ignore it.
4609   if (Correction.isResolved()) {
4610     checkCorrectionVisibility(SemaRef, Correction);
4611     if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
4612       return;
4613   }
4614 
4615   TypoResultList &CList =
4616       CorrectionResults[Correction.getEditDistance(false)][Name];
4617 
4618   if (!CList.empty() && !CList.back().isResolved())
4619     CList.pop_back();
4620   if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
4621     auto RI = llvm::find_if(CList, [NewND](const TypoCorrection &TypoCorr) {
4622       return TypoCorr.getCorrectionDecl() == NewND;
4623     });
4624     if (RI != CList.end()) {
4625       // The Correction refers to a decl already in the list. No insertion is
4626       // necessary and all further cases will return.
4627 
4628       auto IsDeprecated = [](Decl *D) {
4629         while (D) {
4630           if (D->isDeprecated())
4631             return true;
4632           D = llvm::dyn_cast_or_null<NamespaceDecl>(D->getDeclContext());
4633         }
4634         return false;
4635       };
4636 
4637       // Prefer non deprecated Corrections over deprecated and only then
4638       // sort using an alphabetical order.
4639       std::pair<bool, std::string> NewKey = {
4640           IsDeprecated(Correction.getFoundDecl()),
4641           Correction.getAsString(SemaRef.getLangOpts())};
4642 
4643       std::pair<bool, std::string> PrevKey = {
4644           IsDeprecated(RI->getFoundDecl()),
4645           RI->getAsString(SemaRef.getLangOpts())};
4646 
4647       if (NewKey < PrevKey)
4648         *RI = Correction;
4649       return;
4650     }
4651   }
4652   if (CList.empty() || Correction.isResolved())
4653     CList.push_back(Correction);
4654 
4655   while (CorrectionResults.size() > MaxTypoDistanceResultSets)
4656     CorrectionResults.erase(std::prev(CorrectionResults.end()));
4657 }
4658 
4659 void TypoCorrectionConsumer::addNamespaces(
4660     const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
4661   SearchNamespaces = true;
4662 
4663   for (auto KNPair : KnownNamespaces)
4664     Namespaces.addNameSpecifier(KNPair.first);
4665 
4666   bool SSIsTemplate = false;
4667   if (NestedNameSpecifier *NNS =
4668           (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
4669     if (const Type *T = NNS->getAsType())
4670       SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
4671   }
4672   // Do not transform this into an iterator-based loop. The loop body can
4673   // trigger the creation of further types (through lazy deserialization) and
4674   // invalid iterators into this list.
4675   auto &Types = SemaRef.getASTContext().getTypes();
4676   for (unsigned I = 0; I != Types.size(); ++I) {
4677     const auto *TI = Types[I];
4678     if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
4679       CD = CD->getCanonicalDecl();
4680       if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
4681           !CD->isUnion() && CD->getIdentifier() &&
4682           (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
4683           (CD->isBeingDefined() || CD->isCompleteDefinition()))
4684         Namespaces.addNameSpecifier(CD);
4685     }
4686   }
4687 }
4688 
4689 const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
4690   if (++CurrentTCIndex < ValidatedCorrections.size())
4691     return ValidatedCorrections[CurrentTCIndex];
4692 
4693   CurrentTCIndex = ValidatedCorrections.size();
4694   while (!CorrectionResults.empty()) {
4695     auto DI = CorrectionResults.begin();
4696     if (DI->second.empty()) {
4697       CorrectionResults.erase(DI);
4698       continue;
4699     }
4700 
4701     auto RI = DI->second.begin();
4702     if (RI->second.empty()) {
4703       DI->second.erase(RI);
4704       performQualifiedLookups();
4705       continue;
4706     }
4707 
4708     TypoCorrection TC = RI->second.pop_back_val();
4709     if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
4710       ValidatedCorrections.push_back(TC);
4711       return ValidatedCorrections[CurrentTCIndex];
4712     }
4713   }
4714   return ValidatedCorrections[0];  // The empty correction.
4715 }
4716 
4717 bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
4718   IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
4719   DeclContext *TempMemberContext = MemberContext;
4720   CXXScopeSpec *TempSS = SS.get();
4721 retry_lookup:
4722   LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
4723                             EnteringContext,
4724                             CorrectionValidator->IsObjCIvarLookup,
4725                             Name == Typo && !Candidate.WillReplaceSpecifier());
4726   switch (Result.getResultKind()) {
4727   case LookupResult::NotFound:
4728   case LookupResult::NotFoundInCurrentInstantiation:
4729   case LookupResult::FoundUnresolvedValue:
4730     if (TempSS) {
4731       // Immediately retry the lookup without the given CXXScopeSpec
4732       TempSS = nullptr;
4733       Candidate.WillReplaceSpecifier(true);
4734       goto retry_lookup;
4735     }
4736     if (TempMemberContext) {
4737       if (SS && !TempSS)
4738         TempSS = SS.get();
4739       TempMemberContext = nullptr;
4740       goto retry_lookup;
4741     }
4742     if (SearchNamespaces)
4743       QualifiedResults.push_back(Candidate);
4744     break;
4745 
4746   case LookupResult::Ambiguous:
4747     // We don't deal with ambiguities.
4748     break;
4749 
4750   case LookupResult::Found:
4751   case LookupResult::FoundOverloaded:
4752     // Store all of the Decls for overloaded symbols
4753     for (auto *TRD : Result)
4754       Candidate.addCorrectionDecl(TRD);
4755     checkCorrectionVisibility(SemaRef, Candidate);
4756     if (!isCandidateViable(*CorrectionValidator, Candidate)) {
4757       if (SearchNamespaces)
4758         QualifiedResults.push_back(Candidate);
4759       break;
4760     }
4761     Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4762     return true;
4763   }
4764   return false;
4765 }
4766 
4767 void TypoCorrectionConsumer::performQualifiedLookups() {
4768   unsigned TypoLen = Typo->getName().size();
4769   for (const TypoCorrection &QR : QualifiedResults) {
4770     for (const auto &NSI : Namespaces) {
4771       DeclContext *Ctx = NSI.DeclCtx;
4772       const Type *NSType = NSI.NameSpecifier->getAsType();
4773 
4774       // If the current NestedNameSpecifier refers to a class and the
4775       // current correction candidate is the name of that class, then skip
4776       // it as it is unlikely a qualified version of the class' constructor
4777       // is an appropriate correction.
4778       if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
4779                                            nullptr) {
4780         if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
4781           continue;
4782       }
4783 
4784       TypoCorrection TC(QR);
4785       TC.ClearCorrectionDecls();
4786       TC.setCorrectionSpecifier(NSI.NameSpecifier);
4787       TC.setQualifierDistance(NSI.EditDistance);
4788       TC.setCallbackDistance(0); // Reset the callback distance
4789 
4790       // If the current correction candidate and namespace combination are
4791       // too far away from the original typo based on the normalized edit
4792       // distance, then skip performing a qualified name lookup.
4793       unsigned TmpED = TC.getEditDistance(true);
4794       if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
4795           TypoLen / TmpED < 3)
4796         continue;
4797 
4798       Result.clear();
4799       Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
4800       if (!SemaRef.LookupQualifiedName(Result, Ctx))
4801         continue;
4802 
4803       // Any corrections added below will be validated in subsequent
4804       // iterations of the main while() loop over the Consumer's contents.
4805       switch (Result.getResultKind()) {
4806       case LookupResult::Found:
4807       case LookupResult::FoundOverloaded: {
4808         if (SS && SS->isValid()) {
4809           std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
4810           std::string OldQualified;
4811           llvm::raw_string_ostream OldOStream(OldQualified);
4812           SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
4813           OldOStream << Typo->getName();
4814           // If correction candidate would be an identical written qualified
4815           // identifier, then the existing CXXScopeSpec probably included a
4816           // typedef that didn't get accounted for properly.
4817           if (OldOStream.str() == NewQualified)
4818             break;
4819         }
4820         for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
4821              TRD != TRDEnd; ++TRD) {
4822           if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
4823                                         NSType ? NSType->getAsCXXRecordDecl()
4824                                                : nullptr,
4825                                         TRD.getPair()) == Sema::AR_accessible)
4826             TC.addCorrectionDecl(*TRD);
4827         }
4828         if (TC.isResolved()) {
4829           TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4830           addCorrection(TC);
4831         }
4832         break;
4833       }
4834       case LookupResult::NotFound:
4835       case LookupResult::NotFoundInCurrentInstantiation:
4836       case LookupResult::Ambiguous:
4837       case LookupResult::FoundUnresolvedValue:
4838         break;
4839       }
4840     }
4841   }
4842   QualifiedResults.clear();
4843 }
4844 
4845 TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
4846     ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
4847     : Context(Context), CurContextChain(buildContextChain(CurContext)) {
4848   if (NestedNameSpecifier *NNS =
4849           CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
4850     llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
4851     NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4852 
4853     getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
4854   }
4855   // Build the list of identifiers that would be used for an absolute
4856   // (from the global context) NestedNameSpecifier referring to the current
4857   // context.
4858   for (DeclContext *C : llvm::reverse(CurContextChain)) {
4859     if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C))
4860       CurContextIdentifiers.push_back(ND->getIdentifier());
4861   }
4862 
4863   // Add the global context as a NestedNameSpecifier
4864   SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
4865                       NestedNameSpecifier::GlobalSpecifier(Context), 1};
4866   DistanceMap[1].push_back(SI);
4867 }
4868 
4869 auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
4870     DeclContext *Start) -> DeclContextList {
4871   assert(Start && "Building a context chain from a null context");
4872   DeclContextList Chain;
4873   for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
4874        DC = DC->getLookupParent()) {
4875     NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
4876     if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
4877         !(ND && ND->isAnonymousNamespace()))
4878       Chain.push_back(DC->getPrimaryContext());
4879   }
4880   return Chain;
4881 }
4882 
4883 unsigned
4884 TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
4885     DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
4886   unsigned NumSpecifiers = 0;
4887   for (DeclContext *C : llvm::reverse(DeclChain)) {
4888     if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) {
4889       NNS = NestedNameSpecifier::Create(Context, NNS, ND);
4890       ++NumSpecifiers;
4891     } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) {
4892       NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
4893                                         RD->getTypeForDecl());
4894       ++NumSpecifiers;
4895     }
4896   }
4897   return NumSpecifiers;
4898 }
4899 
4900 void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
4901     DeclContext *Ctx) {
4902   NestedNameSpecifier *NNS = nullptr;
4903   unsigned NumSpecifiers = 0;
4904   DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
4905   DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
4906 
4907   // Eliminate common elements from the two DeclContext chains.
4908   for (DeclContext *C : llvm::reverse(CurContextChain)) {
4909     if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C)
4910       break;
4911     NamespaceDeclChain.pop_back();
4912   }
4913 
4914   // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
4915   NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
4916 
4917   // Add an explicit leading '::' specifier if needed.
4918   if (NamespaceDeclChain.empty()) {
4919     // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4920     NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4921     NumSpecifiers =
4922         buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4923   } else if (NamedDecl *ND =
4924                  dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
4925     IdentifierInfo *Name = ND->getIdentifier();
4926     bool SameNameSpecifier = false;
4927     if (llvm::is_contained(CurNameSpecifierIdentifiers, Name)) {
4928       std::string NewNameSpecifier;
4929       llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
4930       SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
4931       getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4932       NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4933       SpecifierOStream.flush();
4934       SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
4935     }
4936     if (SameNameSpecifier || llvm::is_contained(CurContextIdentifiers, Name)) {
4937       // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4938       NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4939       NumSpecifiers =
4940           buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4941     }
4942   }
4943 
4944   // If the built NestedNameSpecifier would be replacing an existing
4945   // NestedNameSpecifier, use the number of component identifiers that
4946   // would need to be changed as the edit distance instead of the number
4947   // of components in the built NestedNameSpecifier.
4948   if (NNS && !CurNameSpecifierIdentifiers.empty()) {
4949     SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
4950     getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4951     NumSpecifiers =
4952         llvm::ComputeEditDistance(llvm::ArrayRef(CurNameSpecifierIdentifiers),
4953                                   llvm::ArrayRef(NewNameSpecifierIdentifiers));
4954   }
4955 
4956   SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
4957   DistanceMap[NumSpecifiers].push_back(SI);
4958 }
4959 
4960 /// Perform name lookup for a possible result for typo correction.
4961 static void LookupPotentialTypoResult(Sema &SemaRef,
4962                                       LookupResult &Res,
4963                                       IdentifierInfo *Name,
4964                                       Scope *S, CXXScopeSpec *SS,
4965                                       DeclContext *MemberContext,
4966                                       bool EnteringContext,
4967                                       bool isObjCIvarLookup,
4968                                       bool FindHidden) {
4969   Res.suppressDiagnostics();
4970   Res.clear();
4971   Res.setLookupName(Name);
4972   Res.setAllowHidden(FindHidden);
4973   if (MemberContext) {
4974     if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
4975       if (isObjCIvarLookup) {
4976         if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
4977           Res.addDecl(Ivar);
4978           Res.resolveKind();
4979           return;
4980         }
4981       }
4982 
4983       if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(
4984               Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
4985         Res.addDecl(Prop);
4986         Res.resolveKind();
4987         return;
4988       }
4989     }
4990 
4991     SemaRef.LookupQualifiedName(Res, MemberContext);
4992     return;
4993   }
4994 
4995   SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
4996                            EnteringContext);
4997 
4998   // Fake ivar lookup; this should really be part of
4999   // LookupParsedName.
5000   if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
5001     if (Method->isInstanceMethod() && Method->getClassInterface() &&
5002         (Res.empty() ||
5003          (Res.isSingleResult() &&
5004           Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
5005        if (ObjCIvarDecl *IV
5006              = Method->getClassInterface()->lookupInstanceVariable(Name)) {
5007          Res.addDecl(IV);
5008          Res.resolveKind();
5009        }
5010      }
5011   }
5012 }
5013 
5014 /// Add keywords to the consumer as possible typo corrections.
5015 static void AddKeywordsToConsumer(Sema &SemaRef,
5016                                   TypoCorrectionConsumer &Consumer,
5017                                   Scope *S, CorrectionCandidateCallback &CCC,
5018                                   bool AfterNestedNameSpecifier) {
5019   if (AfterNestedNameSpecifier) {
5020     // For 'X::', we know exactly which keywords can appear next.
5021     Consumer.addKeywordResult("template");
5022     if (CCC.WantExpressionKeywords)
5023       Consumer.addKeywordResult("operator");
5024     return;
5025   }
5026 
5027   if (CCC.WantObjCSuper)
5028     Consumer.addKeywordResult("super");
5029 
5030   if (CCC.WantTypeSpecifiers) {
5031     // Add type-specifier keywords to the set of results.
5032     static const char *const CTypeSpecs[] = {
5033       "char", "const", "double", "enum", "float", "int", "long", "short",
5034       "signed", "struct", "union", "unsigned", "void", "volatile",
5035       "_Complex", "_Imaginary",
5036       // storage-specifiers as well
5037       "extern", "inline", "static", "typedef"
5038     };
5039 
5040     for (const auto *CTS : CTypeSpecs)
5041       Consumer.addKeywordResult(CTS);
5042 
5043     if (SemaRef.getLangOpts().C99)
5044       Consumer.addKeywordResult("restrict");
5045     if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
5046       Consumer.addKeywordResult("bool");
5047     else if (SemaRef.getLangOpts().C99)
5048       Consumer.addKeywordResult("_Bool");
5049 
5050     if (SemaRef.getLangOpts().CPlusPlus) {
5051       Consumer.addKeywordResult("class");
5052       Consumer.addKeywordResult("typename");
5053       Consumer.addKeywordResult("wchar_t");
5054 
5055       if (SemaRef.getLangOpts().CPlusPlus11) {
5056         Consumer.addKeywordResult("char16_t");
5057         Consumer.addKeywordResult("char32_t");
5058         Consumer.addKeywordResult("constexpr");
5059         Consumer.addKeywordResult("decltype");
5060         Consumer.addKeywordResult("thread_local");
5061       }
5062     }
5063 
5064     if (SemaRef.getLangOpts().GNUKeywords)
5065       Consumer.addKeywordResult("typeof");
5066   } else if (CCC.WantFunctionLikeCasts) {
5067     static const char *const CastableTypeSpecs[] = {
5068       "char", "double", "float", "int", "long", "short",
5069       "signed", "unsigned", "void"
5070     };
5071     for (auto *kw : CastableTypeSpecs)
5072       Consumer.addKeywordResult(kw);
5073   }
5074 
5075   if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
5076     Consumer.addKeywordResult("const_cast");
5077     Consumer.addKeywordResult("dynamic_cast");
5078     Consumer.addKeywordResult("reinterpret_cast");
5079     Consumer.addKeywordResult("static_cast");
5080   }
5081 
5082   if (CCC.WantExpressionKeywords) {
5083     Consumer.addKeywordResult("sizeof");
5084     if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
5085       Consumer.addKeywordResult("false");
5086       Consumer.addKeywordResult("true");
5087     }
5088 
5089     if (SemaRef.getLangOpts().CPlusPlus) {
5090       static const char *const CXXExprs[] = {
5091         "delete", "new", "operator", "throw", "typeid"
5092       };
5093       for (const auto *CE : CXXExprs)
5094         Consumer.addKeywordResult(CE);
5095 
5096       if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
5097           cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
5098         Consumer.addKeywordResult("this");
5099 
5100       if (SemaRef.getLangOpts().CPlusPlus11) {
5101         Consumer.addKeywordResult("alignof");
5102         Consumer.addKeywordResult("nullptr");
5103       }
5104     }
5105 
5106     if (SemaRef.getLangOpts().C11) {
5107       // FIXME: We should not suggest _Alignof if the alignof macro
5108       // is present.
5109       Consumer.addKeywordResult("_Alignof");
5110     }
5111   }
5112 
5113   if (CCC.WantRemainingKeywords) {
5114     if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
5115       // Statements.
5116       static const char *const CStmts[] = {
5117         "do", "else", "for", "goto", "if", "return", "switch", "while" };
5118       for (const auto *CS : CStmts)
5119         Consumer.addKeywordResult(CS);
5120 
5121       if (SemaRef.getLangOpts().CPlusPlus) {
5122         Consumer.addKeywordResult("catch");
5123         Consumer.addKeywordResult("try");
5124       }
5125 
5126       if (S && S->getBreakParent())
5127         Consumer.addKeywordResult("break");
5128 
5129       if (S && S->getContinueParent())
5130         Consumer.addKeywordResult("continue");
5131 
5132       if (SemaRef.getCurFunction() &&
5133           !SemaRef.getCurFunction()->SwitchStack.empty()) {
5134         Consumer.addKeywordResult("case");
5135         Consumer.addKeywordResult("default");
5136       }
5137     } else {
5138       if (SemaRef.getLangOpts().CPlusPlus) {
5139         Consumer.addKeywordResult("namespace");
5140         Consumer.addKeywordResult("template");
5141       }
5142 
5143       if (S && S->isClassScope()) {
5144         Consumer.addKeywordResult("explicit");
5145         Consumer.addKeywordResult("friend");
5146         Consumer.addKeywordResult("mutable");
5147         Consumer.addKeywordResult("private");
5148         Consumer.addKeywordResult("protected");
5149         Consumer.addKeywordResult("public");
5150         Consumer.addKeywordResult("virtual");
5151       }
5152     }
5153 
5154     if (SemaRef.getLangOpts().CPlusPlus) {
5155       Consumer.addKeywordResult("using");
5156 
5157       if (SemaRef.getLangOpts().CPlusPlus11)
5158         Consumer.addKeywordResult("static_assert");
5159     }
5160   }
5161 }
5162 
5163 std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
5164     const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
5165     Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
5166     DeclContext *MemberContext, bool EnteringContext,
5167     const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
5168 
5169   if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
5170       DisableTypoCorrection)
5171     return nullptr;
5172 
5173   // In Microsoft mode, don't perform typo correction in a template member
5174   // function dependent context because it interferes with the "lookup into
5175   // dependent bases of class templates" feature.
5176   if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
5177       isa<CXXMethodDecl>(CurContext))
5178     return nullptr;
5179 
5180   // We only attempt to correct typos for identifiers.
5181   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5182   if (!Typo)
5183     return nullptr;
5184 
5185   // If the scope specifier itself was invalid, don't try to correct
5186   // typos.
5187   if (SS && SS->isInvalid())
5188     return nullptr;
5189 
5190   // Never try to correct typos during any kind of code synthesis.
5191   if (!CodeSynthesisContexts.empty())
5192     return nullptr;
5193 
5194   // Don't try to correct 'super'.
5195   if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
5196     return nullptr;
5197 
5198   // Abort if typo correction already failed for this specific typo.
5199   IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
5200   if (locs != TypoCorrectionFailures.end() &&
5201       locs->second.count(TypoName.getLoc()))
5202     return nullptr;
5203 
5204   // Don't try to correct the identifier "vector" when in AltiVec mode.
5205   // TODO: Figure out why typo correction misbehaves in this case, fix it, and
5206   // remove this workaround.
5207   if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
5208     return nullptr;
5209 
5210   // Provide a stop gap for files that are just seriously broken.  Trying
5211   // to correct all typos can turn into a HUGE performance penalty, causing
5212   // some files to take minutes to get rejected by the parser.
5213   unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
5214   if (Limit && TyposCorrected >= Limit)
5215     return nullptr;
5216   ++TyposCorrected;
5217 
5218   // If we're handling a missing symbol error, using modules, and the
5219   // special search all modules option is used, look for a missing import.
5220   if (ErrorRecovery && getLangOpts().Modules &&
5221       getLangOpts().ModulesSearchAll) {
5222     // The following has the side effect of loading the missing module.
5223     getModuleLoader().lookupMissingImports(Typo->getName(),
5224                                            TypoName.getBeginLoc());
5225   }
5226 
5227   // Extend the lifetime of the callback. We delayed this until here
5228   // to avoid allocations in the hot path (which is where no typo correction
5229   // occurs). Note that CorrectionCandidateCallback is polymorphic and
5230   // initially stack-allocated.
5231   std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone();
5232   auto Consumer = std::make_unique<TypoCorrectionConsumer>(
5233       *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext,
5234       EnteringContext);
5235 
5236   // Perform name lookup to find visible, similarly-named entities.
5237   bool IsUnqualifiedLookup = false;
5238   DeclContext *QualifiedDC = MemberContext;
5239   if (MemberContext) {
5240     LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
5241 
5242     // Look in qualified interfaces.
5243     if (OPT) {
5244       for (auto *I : OPT->quals())
5245         LookupVisibleDecls(I, LookupKind, *Consumer);
5246     }
5247   } else if (SS && SS->isSet()) {
5248     QualifiedDC = computeDeclContext(*SS, EnteringContext);
5249     if (!QualifiedDC)
5250       return nullptr;
5251 
5252     LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
5253   } else {
5254     IsUnqualifiedLookup = true;
5255   }
5256 
5257   // Determine whether we are going to search in the various namespaces for
5258   // corrections.
5259   bool SearchNamespaces
5260     = getLangOpts().CPlusPlus &&
5261       (IsUnqualifiedLookup || (SS && SS->isSet()));
5262 
5263   if (IsUnqualifiedLookup || SearchNamespaces) {
5264     // For unqualified lookup, look through all of the names that we have
5265     // seen in this translation unit.
5266     // FIXME: Re-add the ability to skip very unlikely potential corrections.
5267     for (const auto &I : Context.Idents)
5268       Consumer->FoundName(I.getKey());
5269 
5270     // Walk through identifiers in external identifier sources.
5271     // FIXME: Re-add the ability to skip very unlikely potential corrections.
5272     if (IdentifierInfoLookup *External
5273                             = Context.Idents.getExternalIdentifierLookup()) {
5274       std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
5275       do {
5276         StringRef Name = Iter->Next();
5277         if (Name.empty())
5278           break;
5279 
5280         Consumer->FoundName(Name);
5281       } while (true);
5282     }
5283   }
5284 
5285   AddKeywordsToConsumer(*this, *Consumer, S,
5286                         *Consumer->getCorrectionValidator(),
5287                         SS && SS->isNotEmpty());
5288 
5289   // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
5290   // to search those namespaces.
5291   if (SearchNamespaces) {
5292     // Load any externally-known namespaces.
5293     if (ExternalSource && !LoadedExternalKnownNamespaces) {
5294       SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
5295       LoadedExternalKnownNamespaces = true;
5296       ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
5297       for (auto *N : ExternalKnownNamespaces)
5298         KnownNamespaces[N] = true;
5299     }
5300 
5301     Consumer->addNamespaces(KnownNamespaces);
5302   }
5303 
5304   return Consumer;
5305 }
5306 
5307 /// Try to "correct" a typo in the source code by finding
5308 /// visible declarations whose names are similar to the name that was
5309 /// present in the source code.
5310 ///
5311 /// \param TypoName the \c DeclarationNameInfo structure that contains
5312 /// the name that was present in the source code along with its location.
5313 ///
5314 /// \param LookupKind the name-lookup criteria used to search for the name.
5315 ///
5316 /// \param S the scope in which name lookup occurs.
5317 ///
5318 /// \param SS the nested-name-specifier that precedes the name we're
5319 /// looking for, if present.
5320 ///
5321 /// \param CCC A CorrectionCandidateCallback object that provides further
5322 /// validation of typo correction candidates. It also provides flags for
5323 /// determining the set of keywords permitted.
5324 ///
5325 /// \param MemberContext if non-NULL, the context in which to look for
5326 /// a member access expression.
5327 ///
5328 /// \param EnteringContext whether we're entering the context described by
5329 /// the nested-name-specifier SS.
5330 ///
5331 /// \param OPT when non-NULL, the search for visible declarations will
5332 /// also walk the protocols in the qualified interfaces of \p OPT.
5333 ///
5334 /// \returns a \c TypoCorrection containing the corrected name if the typo
5335 /// along with information such as the \c NamedDecl where the corrected name
5336 /// was declared, and any additional \c NestedNameSpecifier needed to access
5337 /// it (C++ only). The \c TypoCorrection is empty if there is no correction.
5338 TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
5339                                  Sema::LookupNameKind LookupKind,
5340                                  Scope *S, CXXScopeSpec *SS,
5341                                  CorrectionCandidateCallback &CCC,
5342                                  CorrectTypoKind Mode,
5343                                  DeclContext *MemberContext,
5344                                  bool EnteringContext,
5345                                  const ObjCObjectPointerType *OPT,
5346                                  bool RecordFailure) {
5347   // Always let the ExternalSource have the first chance at correction, even
5348   // if we would otherwise have given up.
5349   if (ExternalSource) {
5350     if (TypoCorrection Correction =
5351             ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC,
5352                                         MemberContext, EnteringContext, OPT))
5353       return Correction;
5354   }
5355 
5356   // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
5357   // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
5358   // some instances of CTC_Unknown, while WantRemainingKeywords is true
5359   // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
5360   bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords;
5361 
5362   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5363   auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5364                                              MemberContext, EnteringContext,
5365                                              OPT, Mode == CTK_ErrorRecovery);
5366 
5367   if (!Consumer)
5368     return TypoCorrection();
5369 
5370   // If we haven't found anything, we're done.
5371   if (Consumer->empty())
5372     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5373 
5374   // Make sure the best edit distance (prior to adding any namespace qualifiers)
5375   // is not more that about a third of the length of the typo's identifier.
5376   unsigned ED = Consumer->getBestEditDistance(true);
5377   unsigned TypoLen = Typo->getName().size();
5378   if (ED > 0 && TypoLen / ED < 3)
5379     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5380 
5381   TypoCorrection BestTC = Consumer->getNextCorrection();
5382   TypoCorrection SecondBestTC = Consumer->getNextCorrection();
5383   if (!BestTC)
5384     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5385 
5386   ED = BestTC.getEditDistance();
5387 
5388   if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
5389     // If this was an unqualified lookup and we believe the callback
5390     // object wouldn't have filtered out possible corrections, note
5391     // that no correction was found.
5392     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5393   }
5394 
5395   // If only a single name remains, return that result.
5396   if (!SecondBestTC ||
5397       SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
5398     const TypoCorrection &Result = BestTC;
5399 
5400     // Don't correct to a keyword that's the same as the typo; the keyword
5401     // wasn't actually in scope.
5402     if (ED == 0 && Result.isKeyword())
5403       return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5404 
5405     TypoCorrection TC = Result;
5406     TC.setCorrectionRange(SS, TypoName);
5407     checkCorrectionVisibility(*this, TC);
5408     return TC;
5409   } else if (SecondBestTC && ObjCMessageReceiver) {
5410     // Prefer 'super' when we're completing in a message-receiver
5411     // context.
5412 
5413     if (BestTC.getCorrection().getAsString() != "super") {
5414       if (SecondBestTC.getCorrection().getAsString() == "super")
5415         BestTC = SecondBestTC;
5416       else if ((*Consumer)["super"].front().isKeyword())
5417         BestTC = (*Consumer)["super"].front();
5418     }
5419     // Don't correct to a keyword that's the same as the typo; the keyword
5420     // wasn't actually in scope.
5421     if (BestTC.getEditDistance() == 0 ||
5422         BestTC.getCorrection().getAsString() != "super")
5423       return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5424 
5425     BestTC.setCorrectionRange(SS, TypoName);
5426     return BestTC;
5427   }
5428 
5429   // Record the failure's location if needed and return an empty correction. If
5430   // this was an unqualified lookup and we believe the callback object did not
5431   // filter out possible corrections, also cache the failure for the typo.
5432   return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
5433 }
5434 
5435 /// Try to "correct" a typo in the source code by finding
5436 /// visible declarations whose names are similar to the name that was
5437 /// present in the source code.
5438 ///
5439 /// \param TypoName the \c DeclarationNameInfo structure that contains
5440 /// the name that was present in the source code along with its location.
5441 ///
5442 /// \param LookupKind the name-lookup criteria used to search for the name.
5443 ///
5444 /// \param S the scope in which name lookup occurs.
5445 ///
5446 /// \param SS the nested-name-specifier that precedes the name we're
5447 /// looking for, if present.
5448 ///
5449 /// \param CCC A CorrectionCandidateCallback object that provides further
5450 /// validation of typo correction candidates. It also provides flags for
5451 /// determining the set of keywords permitted.
5452 ///
5453 /// \param TDG A TypoDiagnosticGenerator functor that will be used to print
5454 /// diagnostics when the actual typo correction is attempted.
5455 ///
5456 /// \param TRC A TypoRecoveryCallback functor that will be used to build an
5457 /// Expr from a typo correction candidate.
5458 ///
5459 /// \param MemberContext if non-NULL, the context in which to look for
5460 /// a member access expression.
5461 ///
5462 /// \param EnteringContext whether we're entering the context described by
5463 /// the nested-name-specifier SS.
5464 ///
5465 /// \param OPT when non-NULL, the search for visible declarations will
5466 /// also walk the protocols in the qualified interfaces of \p OPT.
5467 ///
5468 /// \returns a new \c TypoExpr that will later be replaced in the AST with an
5469 /// Expr representing the result of performing typo correction, or nullptr if
5470 /// typo correction is not possible. If nullptr is returned, no diagnostics will
5471 /// be emitted and it is the responsibility of the caller to emit any that are
5472 /// needed.
5473 TypoExpr *Sema::CorrectTypoDelayed(
5474     const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
5475     Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
5476     TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
5477     DeclContext *MemberContext, bool EnteringContext,
5478     const ObjCObjectPointerType *OPT) {
5479   auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5480                                              MemberContext, EnteringContext,
5481                                              OPT, Mode == CTK_ErrorRecovery);
5482 
5483   // Give the external sema source a chance to correct the typo.
5484   TypoCorrection ExternalTypo;
5485   if (ExternalSource && Consumer) {
5486     ExternalTypo = ExternalSource->CorrectTypo(
5487         TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(),
5488         MemberContext, EnteringContext, OPT);
5489     if (ExternalTypo)
5490       Consumer->addCorrection(ExternalTypo);
5491   }
5492 
5493   if (!Consumer || Consumer->empty())
5494     return nullptr;
5495 
5496   // Make sure the best edit distance (prior to adding any namespace qualifiers)
5497   // is not more that about a third of the length of the typo's identifier.
5498   unsigned ED = Consumer->getBestEditDistance(true);
5499   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5500   if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3)
5501     return nullptr;
5502   ExprEvalContexts.back().NumTypos++;
5503   return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC),
5504                            TypoName.getLoc());
5505 }
5506 
5507 void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
5508   if (!CDecl) return;
5509 
5510   if (isKeyword())
5511     CorrectionDecls.clear();
5512 
5513   CorrectionDecls.push_back(CDecl);
5514 
5515   if (!CorrectionName)
5516     CorrectionName = CDecl->getDeclName();
5517 }
5518 
5519 std::string TypoCorrection::getAsString(const LangOptions &LO) const {
5520   if (CorrectionNameSpec) {
5521     std::string tmpBuffer;
5522     llvm::raw_string_ostream PrefixOStream(tmpBuffer);
5523     CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
5524     PrefixOStream << CorrectionName;
5525     return PrefixOStream.str();
5526   }
5527 
5528   return CorrectionName.getAsString();
5529 }
5530 
5531 bool CorrectionCandidateCallback::ValidateCandidate(
5532     const TypoCorrection &candidate) {
5533   if (!candidate.isResolved())
5534     return true;
5535 
5536   if (candidate.isKeyword())
5537     return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
5538            WantRemainingKeywords || WantObjCSuper;
5539 
5540   bool HasNonType = false;
5541   bool HasStaticMethod = false;
5542   bool HasNonStaticMethod = false;
5543   for (Decl *D : candidate) {
5544     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
5545       D = FTD->getTemplatedDecl();
5546     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5547       if (Method->isStatic())
5548         HasStaticMethod = true;
5549       else
5550         HasNonStaticMethod = true;
5551     }
5552     if (!isa<TypeDecl>(D))
5553       HasNonType = true;
5554   }
5555 
5556   if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
5557       !candidate.getCorrectionSpecifier())
5558     return false;
5559 
5560   return WantTypeSpecifiers || HasNonType;
5561 }
5562 
5563 FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
5564                                              bool HasExplicitTemplateArgs,
5565                                              MemberExpr *ME)
5566     : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
5567       CurContext(SemaRef.CurContext), MemberFn(ME) {
5568   WantTypeSpecifiers = false;
5569   WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus &&
5570                           !HasExplicitTemplateArgs && NumArgs == 1;
5571   WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1;
5572   WantRemainingKeywords = false;
5573 }
5574 
5575 bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
5576   if (!candidate.getCorrectionDecl())
5577     return candidate.isKeyword();
5578 
5579   for (auto *C : candidate) {
5580     FunctionDecl *FD = nullptr;
5581     NamedDecl *ND = C->getUnderlyingDecl();
5582     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
5583       FD = FTD->getTemplatedDecl();
5584     if (!HasExplicitTemplateArgs && !FD) {
5585       if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
5586         // If the Decl is neither a function nor a template function,
5587         // determine if it is a pointer or reference to a function. If so,
5588         // check against the number of arguments expected for the pointee.
5589         QualType ValType = cast<ValueDecl>(ND)->getType();
5590         if (ValType.isNull())
5591           continue;
5592         if (ValType->isAnyPointerType() || ValType->isReferenceType())
5593           ValType = ValType->getPointeeType();
5594         if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
5595           if (FPT->getNumParams() == NumArgs)
5596             return true;
5597       }
5598     }
5599 
5600     // A typo for a function-style cast can look like a function call in C++.
5601     if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr
5602                                  : isa<TypeDecl>(ND)) &&
5603         CurContext->getParentASTContext().getLangOpts().CPlusPlus)
5604       // Only a class or class template can take two or more arguments.
5605       return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND);
5606 
5607     // Skip the current candidate if it is not a FunctionDecl or does not accept
5608     // the current number of arguments.
5609     if (!FD || !(FD->getNumParams() >= NumArgs &&
5610                  FD->getMinRequiredArguments() <= NumArgs))
5611       continue;
5612 
5613     // If the current candidate is a non-static C++ method, skip the candidate
5614     // unless the method being corrected--or the current DeclContext, if the
5615     // function being corrected is not a method--is a method in the same class
5616     // or a descendent class of the candidate's parent class.
5617     if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
5618       if (MemberFn || !MD->isStatic()) {
5619         const auto *CurMD =
5620             MemberFn
5621                 ? dyn_cast_if_present<CXXMethodDecl>(MemberFn->getMemberDecl())
5622                 : dyn_cast_if_present<CXXMethodDecl>(CurContext);
5623         const CXXRecordDecl *CurRD =
5624             CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
5625         const CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
5626         if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
5627           continue;
5628       }
5629     }
5630     return true;
5631   }
5632   return false;
5633 }
5634 
5635 void Sema::diagnoseTypo(const TypoCorrection &Correction,
5636                         const PartialDiagnostic &TypoDiag,
5637                         bool ErrorRecovery) {
5638   diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
5639                ErrorRecovery);
5640 }
5641 
5642 /// Find which declaration we should import to provide the definition of
5643 /// the given declaration.
5644 static const NamedDecl *getDefinitionToImport(const NamedDecl *D) {
5645   if (const auto *VD = dyn_cast<VarDecl>(D))
5646     return VD->getDefinition();
5647   if (const auto *FD = dyn_cast<FunctionDecl>(D))
5648     return FD->getDefinition();
5649   if (const auto *TD = dyn_cast<TagDecl>(D))
5650     return TD->getDefinition();
5651   if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(D))
5652     return ID->getDefinition();
5653   if (const auto *PD = dyn_cast<ObjCProtocolDecl>(D))
5654     return PD->getDefinition();
5655   if (const auto *TD = dyn_cast<TemplateDecl>(D))
5656     if (const NamedDecl *TTD = TD->getTemplatedDecl())
5657       return getDefinitionToImport(TTD);
5658   return nullptr;
5659 }
5660 
5661 void Sema::diagnoseMissingImport(SourceLocation Loc, const NamedDecl *Decl,
5662                                  MissingImportKind MIK, bool Recover) {
5663   // Suggest importing a module providing the definition of this entity, if
5664   // possible.
5665   const NamedDecl *Def = getDefinitionToImport(Decl);
5666   if (!Def)
5667     Def = Decl;
5668 
5669   Module *Owner = getOwningModule(Def);
5670   assert(Owner && "definition of hidden declaration is not in a module");
5671 
5672   llvm::SmallVector<Module*, 8> OwningModules;
5673   OwningModules.push_back(Owner);
5674   auto Merged = Context.getModulesWithMergedDefinition(Def);
5675   OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
5676 
5677   diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK,
5678                         Recover);
5679 }
5680 
5681 /// Get a "quoted.h" or <angled.h> include path to use in a diagnostic
5682 /// suggesting the addition of a #include of the specified file.
5683 static std::string getHeaderNameForHeader(Preprocessor &PP, const FileEntry *E,
5684                                           llvm::StringRef IncludingFile) {
5685   bool IsSystem = false;
5686   auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics(
5687       E, IncludingFile, &IsSystem);
5688   return (IsSystem ? '<' : '"') + Path + (IsSystem ? '>' : '"');
5689 }
5690 
5691 void Sema::diagnoseMissingImport(SourceLocation UseLoc, const NamedDecl *Decl,
5692                                  SourceLocation DeclLoc,
5693                                  ArrayRef<Module *> Modules,
5694                                  MissingImportKind MIK, bool Recover) {
5695   assert(!Modules.empty());
5696 
5697   auto NotePrevious = [&] {
5698     // FIXME: Suppress the note backtrace even under
5699     // -fdiagnostics-show-note-include-stack. We don't care how this
5700     // declaration was previously reached.
5701     Diag(DeclLoc, diag::note_unreachable_entity) << (int)MIK;
5702   };
5703 
5704   // Weed out duplicates from module list.
5705   llvm::SmallVector<Module*, 8> UniqueModules;
5706   llvm::SmallDenseSet<Module*, 8> UniqueModuleSet;
5707   for (auto *M : Modules) {
5708     if (M->isGlobalModule() || M->isPrivateModule())
5709       continue;
5710     if (UniqueModuleSet.insert(M).second)
5711       UniqueModules.push_back(M);
5712   }
5713 
5714   // Try to find a suitable header-name to #include.
5715   std::string HeaderName;
5716   if (const FileEntry *Header =
5717           PP.getHeaderToIncludeForDiagnostics(UseLoc, DeclLoc)) {
5718     if (const FileEntry *FE =
5719             SourceMgr.getFileEntryForID(SourceMgr.getFileID(UseLoc)))
5720       HeaderName = getHeaderNameForHeader(PP, Header, FE->tryGetRealPathName());
5721   }
5722 
5723   // If we have a #include we should suggest, or if all definition locations
5724   // were in global module fragments, don't suggest an import.
5725   if (!HeaderName.empty() || UniqueModules.empty()) {
5726     // FIXME: Find a smart place to suggest inserting a #include, and add
5727     // a FixItHint there.
5728     Diag(UseLoc, diag::err_module_unimported_use_header)
5729         << (int)MIK << Decl << !HeaderName.empty() << HeaderName;
5730     // Produce a note showing where the entity was declared.
5731     NotePrevious();
5732     if (Recover)
5733       createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5734     return;
5735   }
5736 
5737   Modules = UniqueModules;
5738 
5739   if (Modules.size() > 1) {
5740     std::string ModuleList;
5741     unsigned N = 0;
5742     for (const auto *M : Modules) {
5743       ModuleList += "\n        ";
5744       if (++N == 5 && N != Modules.size()) {
5745         ModuleList += "[...]";
5746         break;
5747       }
5748       ModuleList += M->getFullModuleName();
5749     }
5750 
5751     Diag(UseLoc, diag::err_module_unimported_use_multiple)
5752       << (int)MIK << Decl << ModuleList;
5753   } else {
5754     // FIXME: Add a FixItHint that imports the corresponding module.
5755     Diag(UseLoc, diag::err_module_unimported_use)
5756       << (int)MIK << Decl << Modules[0]->getFullModuleName();
5757   }
5758 
5759   NotePrevious();
5760 
5761   // Try to recover by implicitly importing this module.
5762   if (Recover)
5763     createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5764 }
5765 
5766 /// Diagnose a successfully-corrected typo. Separated from the correction
5767 /// itself to allow external validation of the result, etc.
5768 ///
5769 /// \param Correction The result of performing typo correction.
5770 /// \param TypoDiag The diagnostic to produce. This will have the corrected
5771 ///        string added to it (and usually also a fixit).
5772 /// \param PrevNote A note to use when indicating the location of the entity to
5773 ///        which we are correcting. Will have the correction string added to it.
5774 /// \param ErrorRecovery If \c true (the default), the caller is going to
5775 ///        recover from the typo as if the corrected string had been typed.
5776 ///        In this case, \c PDiag must be an error, and we will attach a fixit
5777 ///        to it.
5778 void Sema::diagnoseTypo(const TypoCorrection &Correction,
5779                         const PartialDiagnostic &TypoDiag,
5780                         const PartialDiagnostic &PrevNote,
5781                         bool ErrorRecovery) {
5782   std::string CorrectedStr = Correction.getAsString(getLangOpts());
5783   std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
5784   FixItHint FixTypo = FixItHint::CreateReplacement(
5785       Correction.getCorrectionRange(), CorrectedStr);
5786 
5787   // Maybe we're just missing a module import.
5788   if (Correction.requiresImport()) {
5789     NamedDecl *Decl = Correction.getFoundDecl();
5790     assert(Decl && "import required but no declaration to import");
5791 
5792     diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
5793                           MissingImportKind::Declaration, ErrorRecovery);
5794     return;
5795   }
5796 
5797   Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
5798     << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
5799 
5800   NamedDecl *ChosenDecl =
5801       Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
5802   if (PrevNote.getDiagID() && ChosenDecl)
5803     Diag(ChosenDecl->getLocation(), PrevNote)
5804       << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
5805 
5806   // Add any extra diagnostics.
5807   for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics())
5808     Diag(Correction.getCorrectionRange().getBegin(), PD);
5809 }
5810 
5811 TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
5812                                   TypoDiagnosticGenerator TDG,
5813                                   TypoRecoveryCallback TRC,
5814                                   SourceLocation TypoLoc) {
5815   assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer");
5816   auto TE = new (Context) TypoExpr(Context.DependentTy, TypoLoc);
5817   auto &State = DelayedTypos[TE];
5818   State.Consumer = std::move(TCC);
5819   State.DiagHandler = std::move(TDG);
5820   State.RecoveryHandler = std::move(TRC);
5821   if (TE)
5822     TypoExprs.push_back(TE);
5823   return TE;
5824 }
5825 
5826 const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
5827   auto Entry = DelayedTypos.find(TE);
5828   assert(Entry != DelayedTypos.end() &&
5829          "Failed to get the state for a TypoExpr!");
5830   return Entry->second;
5831 }
5832 
5833 void Sema::clearDelayedTypo(TypoExpr *TE) {
5834   DelayedTypos.erase(TE);
5835 }
5836 
5837 void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) {
5838   DeclarationNameInfo Name(II, IILoc);
5839   LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration);
5840   R.suppressDiagnostics();
5841   R.setHideTags(false);
5842   LookupName(R, S);
5843   R.dump();
5844 }
5845 
5846 void Sema::ActOnPragmaDump(Expr *E) {
5847   E->dump();
5848 }
5849