1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for C++ lambda expressions. 10 // 11 //===----------------------------------------------------------------------===// 12 #include "clang/Sema/DeclSpec.h" 13 #include "TypeLocBuilder.h" 14 #include "clang/AST/ASTLambda.h" 15 #include "clang/AST/ExprCXX.h" 16 #include "clang/Basic/TargetInfo.h" 17 #include "clang/Sema/Initialization.h" 18 #include "clang/Sema/Lookup.h" 19 #include "clang/Sema/Scope.h" 20 #include "clang/Sema/ScopeInfo.h" 21 #include "clang/Sema/SemaInternal.h" 22 #include "clang/Sema/SemaLambda.h" 23 #include "llvm/ADT/STLExtras.h" 24 using namespace clang; 25 using namespace sema; 26 27 /// Examines the FunctionScopeInfo stack to determine the nearest 28 /// enclosing lambda (to the current lambda) that is 'capture-ready' for 29 /// the variable referenced in the current lambda (i.e. \p VarToCapture). 30 /// If successful, returns the index into Sema's FunctionScopeInfo stack 31 /// of the capture-ready lambda's LambdaScopeInfo. 32 /// 33 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current 34 /// lambda - is on top) to determine the index of the nearest enclosing/outer 35 /// lambda that is ready to capture the \p VarToCapture being referenced in 36 /// the current lambda. 37 /// As we climb down the stack, we want the index of the first such lambda - 38 /// that is the lambda with the highest index that is 'capture-ready'. 39 /// 40 /// A lambda 'L' is capture-ready for 'V' (var or this) if: 41 /// - its enclosing context is non-dependent 42 /// - and if the chain of lambdas between L and the lambda in which 43 /// V is potentially used (i.e. the lambda at the top of the scope info 44 /// stack), can all capture or have already captured V. 45 /// If \p VarToCapture is 'null' then we are trying to capture 'this'. 46 /// 47 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked 48 /// for whether it is 'capture-capable' (see 49 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly 50 /// capture. 51 /// 52 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a 53 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda 54 /// is at the top of the stack and has the highest index. 55 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'. 56 /// 57 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains 58 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda 59 /// which is capture-ready. If the return value evaluates to 'false' then 60 /// no lambda is capture-ready for \p VarToCapture. 61 62 static inline Optional<unsigned> 63 getStackIndexOfNearestEnclosingCaptureReadyLambda( 64 ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes, 65 VarDecl *VarToCapture) { 66 // Label failure to capture. 67 const Optional<unsigned> NoLambdaIsCaptureReady; 68 69 // Ignore all inner captured regions. 70 unsigned CurScopeIndex = FunctionScopes.size() - 1; 71 while (CurScopeIndex > 0 && isa<clang::sema::CapturedRegionScopeInfo>( 72 FunctionScopes[CurScopeIndex])) 73 --CurScopeIndex; 74 assert( 75 isa<clang::sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]) && 76 "The function on the top of sema's function-info stack must be a lambda"); 77 78 // If VarToCapture is null, we are attempting to capture 'this'. 79 const bool IsCapturingThis = !VarToCapture; 80 const bool IsCapturingVariable = !IsCapturingThis; 81 82 // Start with the current lambda at the top of the stack (highest index). 83 DeclContext *EnclosingDC = 84 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator; 85 86 do { 87 const clang::sema::LambdaScopeInfo *LSI = 88 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]); 89 // IF we have climbed down to an intervening enclosing lambda that contains 90 // the variable declaration - it obviously can/must not capture the 91 // variable. 92 // Since its enclosing DC is dependent, all the lambdas between it and the 93 // innermost nested lambda are dependent (otherwise we wouldn't have 94 // arrived here) - so we don't yet have a lambda that can capture the 95 // variable. 96 if (IsCapturingVariable && 97 VarToCapture->getDeclContext()->Equals(EnclosingDC)) 98 return NoLambdaIsCaptureReady; 99 100 // For an enclosing lambda to be capture ready for an entity, all 101 // intervening lambda's have to be able to capture that entity. If even 102 // one of the intervening lambda's is not capable of capturing the entity 103 // then no enclosing lambda can ever capture that entity. 104 // For e.g. 105 // const int x = 10; 106 // [=](auto a) { #1 107 // [](auto b) { #2 <-- an intervening lambda that can never capture 'x' 108 // [=](auto c) { #3 109 // f(x, c); <-- can not lead to x's speculative capture by #1 or #2 110 // }; }; }; 111 // If they do not have a default implicit capture, check to see 112 // if the entity has already been explicitly captured. 113 // If even a single dependent enclosing lambda lacks the capability 114 // to ever capture this variable, there is no further enclosing 115 // non-dependent lambda that can capture this variable. 116 if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) { 117 if (IsCapturingVariable && !LSI->isCaptured(VarToCapture)) 118 return NoLambdaIsCaptureReady; 119 if (IsCapturingThis && !LSI->isCXXThisCaptured()) 120 return NoLambdaIsCaptureReady; 121 } 122 EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC); 123 124 assert(CurScopeIndex); 125 --CurScopeIndex; 126 } while (!EnclosingDC->isTranslationUnit() && 127 EnclosingDC->isDependentContext() && 128 isLambdaCallOperator(EnclosingDC)); 129 130 assert(CurScopeIndex < (FunctionScopes.size() - 1)); 131 // If the enclosingDC is not dependent, then the immediately nested lambda 132 // (one index above) is capture-ready. 133 if (!EnclosingDC->isDependentContext()) 134 return CurScopeIndex + 1; 135 return NoLambdaIsCaptureReady; 136 } 137 138 /// Examines the FunctionScopeInfo stack to determine the nearest 139 /// enclosing lambda (to the current lambda) that is 'capture-capable' for 140 /// the variable referenced in the current lambda (i.e. \p VarToCapture). 141 /// If successful, returns the index into Sema's FunctionScopeInfo stack 142 /// of the capture-capable lambda's LambdaScopeInfo. 143 /// 144 /// Given the current stack of lambdas being processed by Sema and 145 /// the variable of interest, to identify the nearest enclosing lambda (to the 146 /// current lambda at the top of the stack) that can truly capture 147 /// a variable, it has to have the following two properties: 148 /// a) 'capture-ready' - be the innermost lambda that is 'capture-ready': 149 /// - climb down the stack (i.e. starting from the innermost and examining 150 /// each outer lambda step by step) checking if each enclosing 151 /// lambda can either implicitly or explicitly capture the variable. 152 /// Record the first such lambda that is enclosed in a non-dependent 153 /// context. If no such lambda currently exists return failure. 154 /// b) 'capture-capable' - make sure the 'capture-ready' lambda can truly 155 /// capture the variable by checking all its enclosing lambdas: 156 /// - check if all outer lambdas enclosing the 'capture-ready' lambda 157 /// identified above in 'a' can also capture the variable (this is done 158 /// via tryCaptureVariable for variables and CheckCXXThisCapture for 159 /// 'this' by passing in the index of the Lambda identified in step 'a') 160 /// 161 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a 162 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda 163 /// is at the top of the stack. 164 /// 165 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'. 166 /// 167 /// 168 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains 169 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda 170 /// which is capture-capable. If the return value evaluates to 'false' then 171 /// no lambda is capture-capable for \p VarToCapture. 172 173 Optional<unsigned> clang::getStackIndexOfNearestEnclosingCaptureCapableLambda( 174 ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes, 175 VarDecl *VarToCapture, Sema &S) { 176 177 const Optional<unsigned> NoLambdaIsCaptureCapable; 178 179 const Optional<unsigned> OptionalStackIndex = 180 getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes, 181 VarToCapture); 182 if (!OptionalStackIndex) 183 return NoLambdaIsCaptureCapable; 184 185 const unsigned IndexOfCaptureReadyLambda = OptionalStackIndex.getValue(); 186 assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) || 187 S.getCurGenericLambda()) && 188 "The capture ready lambda for a potential capture can only be the " 189 "current lambda if it is a generic lambda"); 190 191 const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI = 192 cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]); 193 194 // If VarToCapture is null, we are attempting to capture 'this' 195 const bool IsCapturingThis = !VarToCapture; 196 const bool IsCapturingVariable = !IsCapturingThis; 197 198 if (IsCapturingVariable) { 199 // Check if the capture-ready lambda can truly capture the variable, by 200 // checking whether all enclosing lambdas of the capture-ready lambda allow 201 // the capture - i.e. make sure it is capture-capable. 202 QualType CaptureType, DeclRefType; 203 const bool CanCaptureVariable = 204 !S.tryCaptureVariable(VarToCapture, 205 /*ExprVarIsUsedInLoc*/ SourceLocation(), 206 clang::Sema::TryCapture_Implicit, 207 /*EllipsisLoc*/ SourceLocation(), 208 /*BuildAndDiagnose*/ false, CaptureType, 209 DeclRefType, &IndexOfCaptureReadyLambda); 210 if (!CanCaptureVariable) 211 return NoLambdaIsCaptureCapable; 212 } else { 213 // Check if the capture-ready lambda can truly capture 'this' by checking 214 // whether all enclosing lambdas of the capture-ready lambda can capture 215 // 'this'. 216 const bool CanCaptureThis = 217 !S.CheckCXXThisCapture( 218 CaptureReadyLambdaLSI->PotentialThisCaptureLocation, 219 /*Explicit*/ false, /*BuildAndDiagnose*/ false, 220 &IndexOfCaptureReadyLambda); 221 if (!CanCaptureThis) 222 return NoLambdaIsCaptureCapable; 223 } 224 return IndexOfCaptureReadyLambda; 225 } 226 227 static inline TemplateParameterList * 228 getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) { 229 if (!LSI->GLTemplateParameterList && !LSI->TemplateParams.empty()) { 230 LSI->GLTemplateParameterList = TemplateParameterList::Create( 231 SemaRef.Context, 232 /*Template kw loc*/ SourceLocation(), 233 /*L angle loc*/ LSI->ExplicitTemplateParamsRange.getBegin(), 234 LSI->TemplateParams, 235 /*R angle loc*/LSI->ExplicitTemplateParamsRange.getEnd(), 236 LSI->RequiresClause.get()); 237 } 238 return LSI->GLTemplateParameterList; 239 } 240 241 CXXRecordDecl *Sema::createLambdaClosureType(SourceRange IntroducerRange, 242 TypeSourceInfo *Info, 243 bool KnownDependent, 244 LambdaCaptureDefault CaptureDefault) { 245 DeclContext *DC = CurContext; 246 while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext())) 247 DC = DC->getParent(); 248 bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(), 249 *this); 250 // Start constructing the lambda class. 251 CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(Context, DC, Info, 252 IntroducerRange.getBegin(), 253 KnownDependent, 254 IsGenericLambda, 255 CaptureDefault); 256 DC->addDecl(Class); 257 258 return Class; 259 } 260 261 /// Determine whether the given context is or is enclosed in an inline 262 /// function. 263 static bool isInInlineFunction(const DeclContext *DC) { 264 while (!DC->isFileContext()) { 265 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC)) 266 if (FD->isInlined()) 267 return true; 268 269 DC = DC->getLexicalParent(); 270 } 271 272 return false; 273 } 274 275 std::tuple<MangleNumberingContext *, Decl *> 276 Sema::getCurrentMangleNumberContext(const DeclContext *DC) { 277 // Compute the context for allocating mangling numbers in the current 278 // expression, if the ABI requires them. 279 Decl *ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl; 280 281 enum ContextKind { 282 Normal, 283 DefaultArgument, 284 DataMember, 285 StaticDataMember, 286 InlineVariable, 287 VariableTemplate 288 } Kind = Normal; 289 290 // Default arguments of member function parameters that appear in a class 291 // definition, as well as the initializers of data members, receive special 292 // treatment. Identify them. 293 if (ManglingContextDecl) { 294 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) { 295 if (const DeclContext *LexicalDC 296 = Param->getDeclContext()->getLexicalParent()) 297 if (LexicalDC->isRecord()) 298 Kind = DefaultArgument; 299 } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) { 300 if (Var->getDeclContext()->isRecord()) 301 Kind = StaticDataMember; 302 else if (Var->getMostRecentDecl()->isInline()) 303 Kind = InlineVariable; 304 else if (Var->getDescribedVarTemplate()) 305 Kind = VariableTemplate; 306 else if (auto *VTS = dyn_cast<VarTemplateSpecializationDecl>(Var)) { 307 if (!VTS->isExplicitSpecialization()) 308 Kind = VariableTemplate; 309 } 310 } else if (isa<FieldDecl>(ManglingContextDecl)) { 311 Kind = DataMember; 312 } 313 } 314 315 // Itanium ABI [5.1.7]: 316 // In the following contexts [...] the one-definition rule requires closure 317 // types in different translation units to "correspond": 318 bool IsInNonspecializedTemplate = 319 inTemplateInstantiation() || CurContext->isDependentContext(); 320 switch (Kind) { 321 case Normal: { 322 // -- the bodies of non-exported nonspecialized template functions 323 // -- the bodies of inline functions 324 if ((IsInNonspecializedTemplate && 325 !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) || 326 isInInlineFunction(CurContext)) { 327 while (auto *CD = dyn_cast<CapturedDecl>(DC)) 328 DC = CD->getParent(); 329 return std::make_tuple(&Context.getManglingNumberContext(DC), nullptr); 330 } 331 332 return std::make_tuple(nullptr, nullptr); 333 } 334 335 case StaticDataMember: 336 // -- the initializers of nonspecialized static members of template classes 337 if (!IsInNonspecializedTemplate) 338 return std::make_tuple(nullptr, ManglingContextDecl); 339 // Fall through to get the current context. 340 LLVM_FALLTHROUGH; 341 342 case DataMember: 343 // -- the in-class initializers of class members 344 case DefaultArgument: 345 // -- default arguments appearing in class definitions 346 case InlineVariable: 347 // -- the initializers of inline variables 348 case VariableTemplate: 349 // -- the initializers of templated variables 350 return std::make_tuple( 351 &Context.getManglingNumberContext(ASTContext::NeedExtraManglingDecl, 352 ManglingContextDecl), 353 ManglingContextDecl); 354 } 355 356 llvm_unreachable("unexpected context"); 357 } 358 359 CXXMethodDecl *Sema::startLambdaDefinition(CXXRecordDecl *Class, 360 SourceRange IntroducerRange, 361 TypeSourceInfo *MethodTypeInfo, 362 SourceLocation EndLoc, 363 ArrayRef<ParmVarDecl *> Params, 364 ConstexprSpecKind ConstexprKind, 365 Expr *TrailingRequiresClause) { 366 QualType MethodType = MethodTypeInfo->getType(); 367 TemplateParameterList *TemplateParams = 368 getGenericLambdaTemplateParameterList(getCurLambda(), *this); 369 // If a lambda appears in a dependent context or is a generic lambda (has 370 // template parameters) and has an 'auto' return type, deduce it to a 371 // dependent type. 372 if (Class->isDependentContext() || TemplateParams) { 373 const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>(); 374 QualType Result = FPT->getReturnType(); 375 if (Result->isUndeducedType()) { 376 Result = SubstAutoType(Result, Context.DependentTy); 377 MethodType = Context.getFunctionType(Result, FPT->getParamTypes(), 378 FPT->getExtProtoInfo()); 379 } 380 } 381 382 // C++11 [expr.prim.lambda]p5: 383 // The closure type for a lambda-expression has a public inline function 384 // call operator (13.5.4) whose parameters and return type are described by 385 // the lambda-expression's parameter-declaration-clause and 386 // trailing-return-type respectively. 387 DeclarationName MethodName 388 = Context.DeclarationNames.getCXXOperatorName(OO_Call); 389 DeclarationNameLoc MethodNameLoc = 390 DeclarationNameLoc::makeCXXOperatorNameLoc(IntroducerRange); 391 CXXMethodDecl *Method = CXXMethodDecl::Create( 392 Context, Class, EndLoc, 393 DeclarationNameInfo(MethodName, IntroducerRange.getBegin(), 394 MethodNameLoc), 395 MethodType, MethodTypeInfo, SC_None, 396 /*isInline=*/true, ConstexprKind, EndLoc, TrailingRequiresClause); 397 Method->setAccess(AS_public); 398 if (!TemplateParams) 399 Class->addDecl(Method); 400 401 // Temporarily set the lexical declaration context to the current 402 // context, so that the Scope stack matches the lexical nesting. 403 Method->setLexicalDeclContext(CurContext); 404 // Create a function template if we have a template parameter list 405 FunctionTemplateDecl *const TemplateMethod = TemplateParams ? 406 FunctionTemplateDecl::Create(Context, Class, 407 Method->getLocation(), MethodName, 408 TemplateParams, 409 Method) : nullptr; 410 if (TemplateMethod) { 411 TemplateMethod->setAccess(AS_public); 412 Method->setDescribedFunctionTemplate(TemplateMethod); 413 Class->addDecl(TemplateMethod); 414 TemplateMethod->setLexicalDeclContext(CurContext); 415 } 416 417 // Add parameters. 418 if (!Params.empty()) { 419 Method->setParams(Params); 420 CheckParmsForFunctionDef(Params, 421 /*CheckParameterNames=*/false); 422 423 for (auto P : Method->parameters()) 424 P->setOwningFunction(Method); 425 } 426 427 return Method; 428 } 429 430 void Sema::handleLambdaNumbering( 431 CXXRecordDecl *Class, CXXMethodDecl *Method, 432 Optional<std::tuple<bool, unsigned, unsigned, Decl *>> Mangling) { 433 if (Mangling) { 434 bool HasKnownInternalLinkage; 435 unsigned ManglingNumber, DeviceManglingNumber; 436 Decl *ManglingContextDecl; 437 std::tie(HasKnownInternalLinkage, ManglingNumber, DeviceManglingNumber, 438 ManglingContextDecl) = Mangling.getValue(); 439 Class->setLambdaMangling(ManglingNumber, ManglingContextDecl, 440 HasKnownInternalLinkage); 441 Class->setDeviceLambdaManglingNumber(DeviceManglingNumber); 442 return; 443 } 444 445 auto getMangleNumberingContext = 446 [this](CXXRecordDecl *Class, 447 Decl *ManglingContextDecl) -> MangleNumberingContext * { 448 // Get mangle numbering context if there's any extra decl context. 449 if (ManglingContextDecl) 450 return &Context.getManglingNumberContext( 451 ASTContext::NeedExtraManglingDecl, ManglingContextDecl); 452 // Otherwise, from that lambda's decl context. 453 auto DC = Class->getDeclContext(); 454 while (auto *CD = dyn_cast<CapturedDecl>(DC)) 455 DC = CD->getParent(); 456 return &Context.getManglingNumberContext(DC); 457 }; 458 459 MangleNumberingContext *MCtx; 460 Decl *ManglingContextDecl; 461 std::tie(MCtx, ManglingContextDecl) = 462 getCurrentMangleNumberContext(Class->getDeclContext()); 463 bool HasKnownInternalLinkage = false; 464 if (!MCtx && (getLangOpts().CUDA || getLangOpts().SYCLIsDevice || 465 getLangOpts().SYCLIsHost)) { 466 // Force lambda numbering in CUDA/HIP as we need to name lambdas following 467 // ODR. Both device- and host-compilation need to have a consistent naming 468 // on kernel functions. As lambdas are potential part of these `__global__` 469 // function names, they needs numbering following ODR. 470 // Also force for SYCL, since we need this for the 471 // __builtin_sycl_unique_stable_name implementation, which depends on lambda 472 // mangling. 473 MCtx = getMangleNumberingContext(Class, ManglingContextDecl); 474 assert(MCtx && "Retrieving mangle numbering context failed!"); 475 HasKnownInternalLinkage = true; 476 } 477 if (MCtx) { 478 unsigned ManglingNumber = MCtx->getManglingNumber(Method); 479 Class->setLambdaMangling(ManglingNumber, ManglingContextDecl, 480 HasKnownInternalLinkage); 481 Class->setDeviceLambdaManglingNumber(MCtx->getDeviceManglingNumber(Method)); 482 } 483 } 484 485 void Sema::buildLambdaScope(LambdaScopeInfo *LSI, 486 CXXMethodDecl *CallOperator, 487 SourceRange IntroducerRange, 488 LambdaCaptureDefault CaptureDefault, 489 SourceLocation CaptureDefaultLoc, 490 bool ExplicitParams, 491 bool ExplicitResultType, 492 bool Mutable) { 493 LSI->CallOperator = CallOperator; 494 CXXRecordDecl *LambdaClass = CallOperator->getParent(); 495 LSI->Lambda = LambdaClass; 496 if (CaptureDefault == LCD_ByCopy) 497 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval; 498 else if (CaptureDefault == LCD_ByRef) 499 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref; 500 LSI->CaptureDefaultLoc = CaptureDefaultLoc; 501 LSI->IntroducerRange = IntroducerRange; 502 LSI->ExplicitParams = ExplicitParams; 503 LSI->Mutable = Mutable; 504 505 if (ExplicitResultType) { 506 LSI->ReturnType = CallOperator->getReturnType(); 507 508 if (!LSI->ReturnType->isDependentType() && 509 !LSI->ReturnType->isVoidType()) { 510 if (RequireCompleteType(CallOperator->getBeginLoc(), LSI->ReturnType, 511 diag::err_lambda_incomplete_result)) { 512 // Do nothing. 513 } 514 } 515 } else { 516 LSI->HasImplicitReturnType = true; 517 } 518 } 519 520 void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) { 521 LSI->finishedExplicitCaptures(); 522 } 523 524 void Sema::ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc, 525 ArrayRef<NamedDecl *> TParams, 526 SourceLocation RAngleLoc, 527 ExprResult RequiresClause) { 528 LambdaScopeInfo *LSI = getCurLambda(); 529 assert(LSI && "Expected a lambda scope"); 530 assert(LSI->NumExplicitTemplateParams == 0 && 531 "Already acted on explicit template parameters"); 532 assert(LSI->TemplateParams.empty() && 533 "Explicit template parameters should come " 534 "before invented (auto) ones"); 535 assert(!TParams.empty() && 536 "No template parameters to act on"); 537 LSI->TemplateParams.append(TParams.begin(), TParams.end()); 538 LSI->NumExplicitTemplateParams = TParams.size(); 539 LSI->ExplicitTemplateParamsRange = {LAngleLoc, RAngleLoc}; 540 LSI->RequiresClause = RequiresClause; 541 } 542 543 void Sema::addLambdaParameters( 544 ArrayRef<LambdaIntroducer::LambdaCapture> Captures, 545 CXXMethodDecl *CallOperator, Scope *CurScope) { 546 // Introduce our parameters into the function scope 547 for (unsigned p = 0, NumParams = CallOperator->getNumParams(); 548 p < NumParams; ++p) { 549 ParmVarDecl *Param = CallOperator->getParamDecl(p); 550 551 // If this has an identifier, add it to the scope stack. 552 if (CurScope && Param->getIdentifier()) { 553 bool Error = false; 554 // Resolution of CWG 2211 in C++17 renders shadowing ill-formed, but we 555 // retroactively apply it. 556 for (const auto &Capture : Captures) { 557 if (Capture.Id == Param->getIdentifier()) { 558 Error = true; 559 Diag(Param->getLocation(), diag::err_parameter_shadow_capture); 560 Diag(Capture.Loc, diag::note_var_explicitly_captured_here) 561 << Capture.Id << true; 562 } 563 } 564 if (!Error) 565 CheckShadow(CurScope, Param); 566 567 PushOnScopeChains(Param, CurScope); 568 } 569 } 570 } 571 572 /// If this expression is an enumerator-like expression of some type 573 /// T, return the type T; otherwise, return null. 574 /// 575 /// Pointer comparisons on the result here should always work because 576 /// it's derived from either the parent of an EnumConstantDecl 577 /// (i.e. the definition) or the declaration returned by 578 /// EnumType::getDecl() (i.e. the definition). 579 static EnumDecl *findEnumForBlockReturn(Expr *E) { 580 // An expression is an enumerator-like expression of type T if, 581 // ignoring parens and parens-like expressions: 582 E = E->IgnoreParens(); 583 584 // - it is an enumerator whose enum type is T or 585 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 586 if (EnumConstantDecl *D 587 = dyn_cast<EnumConstantDecl>(DRE->getDecl())) { 588 return cast<EnumDecl>(D->getDeclContext()); 589 } 590 return nullptr; 591 } 592 593 // - it is a comma expression whose RHS is an enumerator-like 594 // expression of type T or 595 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 596 if (BO->getOpcode() == BO_Comma) 597 return findEnumForBlockReturn(BO->getRHS()); 598 return nullptr; 599 } 600 601 // - it is a statement-expression whose value expression is an 602 // enumerator-like expression of type T or 603 if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) { 604 if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back())) 605 return findEnumForBlockReturn(last); 606 return nullptr; 607 } 608 609 // - it is a ternary conditional operator (not the GNU ?: 610 // extension) whose second and third operands are 611 // enumerator-like expressions of type T or 612 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 613 if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr())) 614 if (ED == findEnumForBlockReturn(CO->getFalseExpr())) 615 return ED; 616 return nullptr; 617 } 618 619 // (implicitly:) 620 // - it is an implicit integral conversion applied to an 621 // enumerator-like expression of type T or 622 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 623 // We can sometimes see integral conversions in valid 624 // enumerator-like expressions. 625 if (ICE->getCastKind() == CK_IntegralCast) 626 return findEnumForBlockReturn(ICE->getSubExpr()); 627 628 // Otherwise, just rely on the type. 629 } 630 631 // - it is an expression of that formal enum type. 632 if (const EnumType *ET = E->getType()->getAs<EnumType>()) { 633 return ET->getDecl(); 634 } 635 636 // Otherwise, nope. 637 return nullptr; 638 } 639 640 /// Attempt to find a type T for which the returned expression of the 641 /// given statement is an enumerator-like expression of that type. 642 static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) { 643 if (Expr *retValue = ret->getRetValue()) 644 return findEnumForBlockReturn(retValue); 645 return nullptr; 646 } 647 648 /// Attempt to find a common type T for which all of the returned 649 /// expressions in a block are enumerator-like expressions of that 650 /// type. 651 static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) { 652 ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end(); 653 654 // Try to find one for the first return. 655 EnumDecl *ED = findEnumForBlockReturn(*i); 656 if (!ED) return nullptr; 657 658 // Check that the rest of the returns have the same enum. 659 for (++i; i != e; ++i) { 660 if (findEnumForBlockReturn(*i) != ED) 661 return nullptr; 662 } 663 664 // Never infer an anonymous enum type. 665 if (!ED->hasNameForLinkage()) return nullptr; 666 667 return ED; 668 } 669 670 /// Adjust the given return statements so that they formally return 671 /// the given type. It should require, at most, an IntegralCast. 672 static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns, 673 QualType returnType) { 674 for (ArrayRef<ReturnStmt*>::iterator 675 i = returns.begin(), e = returns.end(); i != e; ++i) { 676 ReturnStmt *ret = *i; 677 Expr *retValue = ret->getRetValue(); 678 if (S.Context.hasSameType(retValue->getType(), returnType)) 679 continue; 680 681 // Right now we only support integral fixup casts. 682 assert(returnType->isIntegralOrUnscopedEnumerationType()); 683 assert(retValue->getType()->isIntegralOrUnscopedEnumerationType()); 684 685 ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue); 686 687 Expr *E = (cleanups ? cleanups->getSubExpr() : retValue); 688 E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast, E, 689 /*base path*/ nullptr, VK_PRValue, 690 FPOptionsOverride()); 691 if (cleanups) { 692 cleanups->setSubExpr(E); 693 } else { 694 ret->setRetValue(E); 695 } 696 } 697 } 698 699 void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) { 700 assert(CSI.HasImplicitReturnType); 701 // If it was ever a placeholder, it had to been deduced to DependentTy. 702 assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType()); 703 assert((!isa<LambdaScopeInfo>(CSI) || !getLangOpts().CPlusPlus14) && 704 "lambda expressions use auto deduction in C++14 onwards"); 705 706 // C++ core issue 975: 707 // If a lambda-expression does not include a trailing-return-type, 708 // it is as if the trailing-return-type denotes the following type: 709 // - if there are no return statements in the compound-statement, 710 // or all return statements return either an expression of type 711 // void or no expression or braced-init-list, the type void; 712 // - otherwise, if all return statements return an expression 713 // and the types of the returned expressions after 714 // lvalue-to-rvalue conversion (4.1 [conv.lval]), 715 // array-to-pointer conversion (4.2 [conv.array]), and 716 // function-to-pointer conversion (4.3 [conv.func]) are the 717 // same, that common type; 718 // - otherwise, the program is ill-formed. 719 // 720 // C++ core issue 1048 additionally removes top-level cv-qualifiers 721 // from the types of returned expressions to match the C++14 auto 722 // deduction rules. 723 // 724 // In addition, in blocks in non-C++ modes, if all of the return 725 // statements are enumerator-like expressions of some type T, where 726 // T has a name for linkage, then we infer the return type of the 727 // block to be that type. 728 729 // First case: no return statements, implicit void return type. 730 ASTContext &Ctx = getASTContext(); 731 if (CSI.Returns.empty()) { 732 // It's possible there were simply no /valid/ return statements. 733 // In this case, the first one we found may have at least given us a type. 734 if (CSI.ReturnType.isNull()) 735 CSI.ReturnType = Ctx.VoidTy; 736 return; 737 } 738 739 // Second case: at least one return statement has dependent type. 740 // Delay type checking until instantiation. 741 assert(!CSI.ReturnType.isNull() && "We should have a tentative return type."); 742 if (CSI.ReturnType->isDependentType()) 743 return; 744 745 // Try to apply the enum-fuzz rule. 746 if (!getLangOpts().CPlusPlus) { 747 assert(isa<BlockScopeInfo>(CSI)); 748 const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns); 749 if (ED) { 750 CSI.ReturnType = Context.getTypeDeclType(ED); 751 adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType); 752 return; 753 } 754 } 755 756 // Third case: only one return statement. Don't bother doing extra work! 757 if (CSI.Returns.size() == 1) 758 return; 759 760 // General case: many return statements. 761 // Check that they all have compatible return types. 762 763 // We require the return types to strictly match here. 764 // Note that we've already done the required promotions as part of 765 // processing the return statement. 766 for (const ReturnStmt *RS : CSI.Returns) { 767 const Expr *RetE = RS->getRetValue(); 768 769 QualType ReturnType = 770 (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType(); 771 if (Context.getCanonicalFunctionResultType(ReturnType) == 772 Context.getCanonicalFunctionResultType(CSI.ReturnType)) { 773 // Use the return type with the strictest possible nullability annotation. 774 auto RetTyNullability = ReturnType->getNullability(Ctx); 775 auto BlockNullability = CSI.ReturnType->getNullability(Ctx); 776 if (BlockNullability && 777 (!RetTyNullability || 778 hasWeakerNullability(*RetTyNullability, *BlockNullability))) 779 CSI.ReturnType = ReturnType; 780 continue; 781 } 782 783 // FIXME: This is a poor diagnostic for ReturnStmts without expressions. 784 // TODO: It's possible that the *first* return is the divergent one. 785 Diag(RS->getBeginLoc(), 786 diag::err_typecheck_missing_return_type_incompatible) 787 << ReturnType << CSI.ReturnType << isa<LambdaScopeInfo>(CSI); 788 // Continue iterating so that we keep emitting diagnostics. 789 } 790 } 791 792 QualType Sema::buildLambdaInitCaptureInitialization( 793 SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc, 794 Optional<unsigned> NumExpansions, IdentifierInfo *Id, bool IsDirectInit, 795 Expr *&Init) { 796 // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to 797 // deduce against. 798 QualType DeductType = Context.getAutoDeductType(); 799 TypeLocBuilder TLB; 800 AutoTypeLoc TL = TLB.push<AutoTypeLoc>(DeductType); 801 TL.setNameLoc(Loc); 802 if (ByRef) { 803 DeductType = BuildReferenceType(DeductType, true, Loc, Id); 804 assert(!DeductType.isNull() && "can't build reference to auto"); 805 TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc); 806 } 807 if (EllipsisLoc.isValid()) { 808 if (Init->containsUnexpandedParameterPack()) { 809 Diag(EllipsisLoc, getLangOpts().CPlusPlus20 810 ? diag::warn_cxx17_compat_init_capture_pack 811 : diag::ext_init_capture_pack); 812 DeductType = Context.getPackExpansionType(DeductType, NumExpansions, 813 /*ExpectPackInType=*/false); 814 TLB.push<PackExpansionTypeLoc>(DeductType).setEllipsisLoc(EllipsisLoc); 815 } else { 816 // Just ignore the ellipsis for now and form a non-pack variable. We'll 817 // diagnose this later when we try to capture it. 818 } 819 } 820 TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType); 821 822 // Deduce the type of the init capture. 823 QualType DeducedType = deduceVarTypeFromInitializer( 824 /*VarDecl*/nullptr, DeclarationName(Id), DeductType, TSI, 825 SourceRange(Loc, Loc), IsDirectInit, Init); 826 if (DeducedType.isNull()) 827 return QualType(); 828 829 // Are we a non-list direct initialization? 830 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init); 831 832 // Perform initialization analysis and ensure any implicit conversions 833 // (such as lvalue-to-rvalue) are enforced. 834 InitializedEntity Entity = 835 InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc); 836 InitializationKind Kind = 837 IsDirectInit 838 ? (CXXDirectInit ? InitializationKind::CreateDirect( 839 Loc, Init->getBeginLoc(), Init->getEndLoc()) 840 : InitializationKind::CreateDirectList(Loc)) 841 : InitializationKind::CreateCopy(Loc, Init->getBeginLoc()); 842 843 MultiExprArg Args = Init; 844 if (CXXDirectInit) 845 Args = 846 MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs()); 847 QualType DclT; 848 InitializationSequence InitSeq(*this, Entity, Kind, Args); 849 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT); 850 851 if (Result.isInvalid()) 852 return QualType(); 853 854 Init = Result.getAs<Expr>(); 855 return DeducedType; 856 } 857 858 VarDecl *Sema::createLambdaInitCaptureVarDecl(SourceLocation Loc, 859 QualType InitCaptureType, 860 SourceLocation EllipsisLoc, 861 IdentifierInfo *Id, 862 unsigned InitStyle, Expr *Init) { 863 // FIXME: Retain the TypeSourceInfo from buildLambdaInitCaptureInitialization 864 // rather than reconstructing it here. 865 TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType, Loc); 866 if (auto PETL = TSI->getTypeLoc().getAs<PackExpansionTypeLoc>()) 867 PETL.setEllipsisLoc(EllipsisLoc); 868 869 // Create a dummy variable representing the init-capture. This is not actually 870 // used as a variable, and only exists as a way to name and refer to the 871 // init-capture. 872 // FIXME: Pass in separate source locations for '&' and identifier. 873 VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc, 874 Loc, Id, InitCaptureType, TSI, SC_Auto); 875 NewVD->setInitCapture(true); 876 NewVD->setReferenced(true); 877 // FIXME: Pass in a VarDecl::InitializationStyle. 878 NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle)); 879 NewVD->markUsed(Context); 880 NewVD->setInit(Init); 881 if (NewVD->isParameterPack()) 882 getCurLambda()->LocalPacks.push_back(NewVD); 883 return NewVD; 884 } 885 886 void Sema::addInitCapture(LambdaScopeInfo *LSI, VarDecl *Var) { 887 assert(Var->isInitCapture() && "init capture flag should be set"); 888 LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(), 889 /*isNested*/false, Var->getLocation(), SourceLocation(), 890 Var->getType(), /*Invalid*/false); 891 } 892 893 void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro, 894 Declarator &ParamInfo, 895 Scope *CurScope) { 896 LambdaScopeInfo *const LSI = getCurLambda(); 897 assert(LSI && "LambdaScopeInfo should be on stack!"); 898 899 // Determine if we're within a context where we know that the lambda will 900 // be dependent, because there are template parameters in scope. 901 bool KnownDependent; 902 if (LSI->NumExplicitTemplateParams > 0) { 903 auto *TemplateParamScope = CurScope->getTemplateParamParent(); 904 assert(TemplateParamScope && 905 "Lambda with explicit template param list should establish a " 906 "template param scope"); 907 assert(TemplateParamScope->getParent()); 908 KnownDependent = TemplateParamScope->getParent() 909 ->getTemplateParamParent() != nullptr; 910 } else { 911 KnownDependent = CurScope->getTemplateParamParent() != nullptr; 912 } 913 914 // Determine the signature of the call operator. 915 TypeSourceInfo *MethodTyInfo; 916 bool ExplicitParams = true; 917 bool ExplicitResultType = true; 918 bool ContainsUnexpandedParameterPack = false; 919 SourceLocation EndLoc; 920 SmallVector<ParmVarDecl *, 8> Params; 921 if (ParamInfo.getNumTypeObjects() == 0) { 922 // C++11 [expr.prim.lambda]p4: 923 // If a lambda-expression does not include a lambda-declarator, it is as 924 // if the lambda-declarator were (). 925 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention( 926 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 927 EPI.HasTrailingReturn = true; 928 EPI.TypeQuals.addConst(); 929 LangAS AS = getDefaultCXXMethodAddrSpace(); 930 if (AS != LangAS::Default) 931 EPI.TypeQuals.addAddressSpace(AS); 932 933 // C++1y [expr.prim.lambda]: 934 // The lambda return type is 'auto', which is replaced by the 935 // trailing-return type if provided and/or deduced from 'return' 936 // statements 937 // We don't do this before C++1y, because we don't support deduced return 938 // types there. 939 QualType DefaultTypeForNoTrailingReturn = 940 getLangOpts().CPlusPlus14 ? Context.getAutoDeductType() 941 : Context.DependentTy; 942 QualType MethodTy = 943 Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI); 944 MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy); 945 ExplicitParams = false; 946 ExplicitResultType = false; 947 EndLoc = Intro.Range.getEnd(); 948 } else { 949 assert(ParamInfo.isFunctionDeclarator() && 950 "lambda-declarator is a function"); 951 DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo(); 952 953 // C++11 [expr.prim.lambda]p5: 954 // This function call operator is declared const (9.3.1) if and only if 955 // the lambda-expression's parameter-declaration-clause is not followed 956 // by mutable. It is neither virtual nor declared volatile. [...] 957 if (!FTI.hasMutableQualifier()) { 958 FTI.getOrCreateMethodQualifiers().SetTypeQual(DeclSpec::TQ_const, 959 SourceLocation()); 960 } 961 962 MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope); 963 assert(MethodTyInfo && "no type from lambda-declarator"); 964 EndLoc = ParamInfo.getSourceRange().getEnd(); 965 966 ExplicitResultType = FTI.hasTrailingReturnType(); 967 968 if (FTIHasNonVoidParameters(FTI)) { 969 Params.reserve(FTI.NumParams); 970 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) 971 Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param)); 972 } 973 974 // Check for unexpanded parameter packs in the method type. 975 if (MethodTyInfo->getType()->containsUnexpandedParameterPack()) 976 DiagnoseUnexpandedParameterPack(Intro.Range.getBegin(), MethodTyInfo, 977 UPPC_DeclarationType); 978 } 979 980 CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, MethodTyInfo, 981 KnownDependent, Intro.Default); 982 CXXMethodDecl *Method = 983 startLambdaDefinition(Class, Intro.Range, MethodTyInfo, EndLoc, Params, 984 ParamInfo.getDeclSpec().getConstexprSpecifier(), 985 ParamInfo.getTrailingRequiresClause()); 986 if (ExplicitParams) 987 CheckCXXDefaultArguments(Method); 988 989 // This represents the function body for the lambda function, check if we 990 // have to apply optnone due to a pragma. 991 AddRangeBasedOptnone(Method); 992 993 // code_seg attribute on lambda apply to the method. 994 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true)) 995 Method->addAttr(A); 996 997 // Attributes on the lambda apply to the method. 998 ProcessDeclAttributes(CurScope, Method, ParamInfo); 999 1000 // CUDA lambdas get implicit host and device attributes. 1001 if (getLangOpts().CUDA) 1002 CUDASetLambdaAttrs(Method); 1003 1004 // OpenMP lambdas might get assumumption attributes. 1005 if (LangOpts.OpenMP) 1006 ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(Method); 1007 1008 // Number the lambda for linkage purposes if necessary. 1009 handleLambdaNumbering(Class, Method); 1010 1011 // Introduce the function call operator as the current declaration context. 1012 PushDeclContext(CurScope, Method); 1013 1014 // Build the lambda scope. 1015 buildLambdaScope(LSI, Method, Intro.Range, Intro.Default, Intro.DefaultLoc, 1016 ExplicitParams, ExplicitResultType, !Method->isConst()); 1017 1018 // C++11 [expr.prim.lambda]p9: 1019 // A lambda-expression whose smallest enclosing scope is a block scope is a 1020 // local lambda expression; any other lambda expression shall not have a 1021 // capture-default or simple-capture in its lambda-introducer. 1022 // 1023 // For simple-captures, this is covered by the check below that any named 1024 // entity is a variable that can be captured. 1025 // 1026 // For DR1632, we also allow a capture-default in any context where we can 1027 // odr-use 'this' (in particular, in a default initializer for a non-static 1028 // data member). 1029 if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() && 1030 (getCurrentThisType().isNull() || 1031 CheckCXXThisCapture(SourceLocation(), /*Explicit*/true, 1032 /*BuildAndDiagnose*/false))) 1033 Diag(Intro.DefaultLoc, diag::err_capture_default_non_local); 1034 1035 // Distinct capture names, for diagnostics. 1036 llvm::SmallSet<IdentifierInfo*, 8> CaptureNames; 1037 1038 // Handle explicit captures. 1039 SourceLocation PrevCaptureLoc 1040 = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc; 1041 for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E; 1042 PrevCaptureLoc = C->Loc, ++C) { 1043 if (C->Kind == LCK_This || C->Kind == LCK_StarThis) { 1044 if (C->Kind == LCK_StarThis) 1045 Diag(C->Loc, !getLangOpts().CPlusPlus17 1046 ? diag::ext_star_this_lambda_capture_cxx17 1047 : diag::warn_cxx14_compat_star_this_lambda_capture); 1048 1049 // C++11 [expr.prim.lambda]p8: 1050 // An identifier or this shall not appear more than once in a 1051 // lambda-capture. 1052 if (LSI->isCXXThisCaptured()) { 1053 Diag(C->Loc, diag::err_capture_more_than_once) 1054 << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation()) 1055 << FixItHint::CreateRemoval( 1056 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1057 continue; 1058 } 1059 1060 // C++2a [expr.prim.lambda]p8: 1061 // If a lambda-capture includes a capture-default that is =, 1062 // each simple-capture of that lambda-capture shall be of the form 1063 // "&identifier", "this", or "* this". [ Note: The form [&,this] is 1064 // redundant but accepted for compatibility with ISO C++14. --end note ] 1065 if (Intro.Default == LCD_ByCopy && C->Kind != LCK_StarThis) 1066 Diag(C->Loc, !getLangOpts().CPlusPlus20 1067 ? diag::ext_equals_this_lambda_capture_cxx20 1068 : diag::warn_cxx17_compat_equals_this_lambda_capture); 1069 1070 // C++11 [expr.prim.lambda]p12: 1071 // If this is captured by a local lambda expression, its nearest 1072 // enclosing function shall be a non-static member function. 1073 QualType ThisCaptureType = getCurrentThisType(); 1074 if (ThisCaptureType.isNull()) { 1075 Diag(C->Loc, diag::err_this_capture) << true; 1076 continue; 1077 } 1078 1079 CheckCXXThisCapture(C->Loc, /*Explicit=*/true, /*BuildAndDiagnose*/ true, 1080 /*FunctionScopeIndexToStopAtPtr*/ nullptr, 1081 C->Kind == LCK_StarThis); 1082 if (!LSI->Captures.empty()) 1083 LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange; 1084 continue; 1085 } 1086 1087 assert(C->Id && "missing identifier for capture"); 1088 1089 if (C->Init.isInvalid()) 1090 continue; 1091 1092 VarDecl *Var = nullptr; 1093 if (C->Init.isUsable()) { 1094 Diag(C->Loc, getLangOpts().CPlusPlus14 1095 ? diag::warn_cxx11_compat_init_capture 1096 : diag::ext_init_capture); 1097 1098 // If the initializer expression is usable, but the InitCaptureType 1099 // is not, then an error has occurred - so ignore the capture for now. 1100 // for e.g., [n{0}] { }; <-- if no <initializer_list> is included. 1101 // FIXME: we should create the init capture variable and mark it invalid 1102 // in this case. 1103 if (C->InitCaptureType.get().isNull()) 1104 continue; 1105 1106 if (C->Init.get()->containsUnexpandedParameterPack() && 1107 !C->InitCaptureType.get()->getAs<PackExpansionType>()) 1108 DiagnoseUnexpandedParameterPack(C->Init.get(), UPPC_Initializer); 1109 1110 unsigned InitStyle; 1111 switch (C->InitKind) { 1112 case LambdaCaptureInitKind::NoInit: 1113 llvm_unreachable("not an init-capture?"); 1114 case LambdaCaptureInitKind::CopyInit: 1115 InitStyle = VarDecl::CInit; 1116 break; 1117 case LambdaCaptureInitKind::DirectInit: 1118 InitStyle = VarDecl::CallInit; 1119 break; 1120 case LambdaCaptureInitKind::ListInit: 1121 InitStyle = VarDecl::ListInit; 1122 break; 1123 } 1124 Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(), 1125 C->EllipsisLoc, C->Id, InitStyle, 1126 C->Init.get()); 1127 // C++1y [expr.prim.lambda]p11: 1128 // An init-capture behaves as if it declares and explicitly 1129 // captures a variable [...] whose declarative region is the 1130 // lambda-expression's compound-statement 1131 if (Var) 1132 PushOnScopeChains(Var, CurScope, false); 1133 } else { 1134 assert(C->InitKind == LambdaCaptureInitKind::NoInit && 1135 "init capture has valid but null init?"); 1136 1137 // C++11 [expr.prim.lambda]p8: 1138 // If a lambda-capture includes a capture-default that is &, the 1139 // identifiers in the lambda-capture shall not be preceded by &. 1140 // If a lambda-capture includes a capture-default that is =, [...] 1141 // each identifier it contains shall be preceded by &. 1142 if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) { 1143 Diag(C->Loc, diag::err_reference_capture_with_reference_default) 1144 << FixItHint::CreateRemoval( 1145 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1146 continue; 1147 } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) { 1148 Diag(C->Loc, diag::err_copy_capture_with_copy_default) 1149 << FixItHint::CreateRemoval( 1150 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1151 continue; 1152 } 1153 1154 // C++11 [expr.prim.lambda]p10: 1155 // The identifiers in a capture-list are looked up using the usual 1156 // rules for unqualified name lookup (3.4.1) 1157 DeclarationNameInfo Name(C->Id, C->Loc); 1158 LookupResult R(*this, Name, LookupOrdinaryName); 1159 LookupName(R, CurScope); 1160 if (R.isAmbiguous()) 1161 continue; 1162 if (R.empty()) { 1163 // FIXME: Disable corrections that would add qualification? 1164 CXXScopeSpec ScopeSpec; 1165 DeclFilterCCC<VarDecl> Validator{}; 1166 if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R, Validator)) 1167 continue; 1168 } 1169 1170 Var = R.getAsSingle<VarDecl>(); 1171 if (Var && DiagnoseUseOfDecl(Var, C->Loc)) 1172 continue; 1173 } 1174 1175 // C++11 [expr.prim.lambda]p8: 1176 // An identifier or this shall not appear more than once in a 1177 // lambda-capture. 1178 if (!CaptureNames.insert(C->Id).second) { 1179 if (Var && LSI->isCaptured(Var)) { 1180 Diag(C->Loc, diag::err_capture_more_than_once) 1181 << C->Id << SourceRange(LSI->getCapture(Var).getLocation()) 1182 << FixItHint::CreateRemoval( 1183 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1184 } else 1185 // Previous capture captured something different (one or both was 1186 // an init-cpature): no fixit. 1187 Diag(C->Loc, diag::err_capture_more_than_once) << C->Id; 1188 continue; 1189 } 1190 1191 // C++11 [expr.prim.lambda]p10: 1192 // [...] each such lookup shall find a variable with automatic storage 1193 // duration declared in the reaching scope of the local lambda expression. 1194 // Note that the 'reaching scope' check happens in tryCaptureVariable(). 1195 if (!Var) { 1196 Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id; 1197 continue; 1198 } 1199 1200 // Ignore invalid decls; they'll just confuse the code later. 1201 if (Var->isInvalidDecl()) 1202 continue; 1203 1204 if (!Var->hasLocalStorage()) { 1205 Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id; 1206 Diag(Var->getLocation(), diag::note_previous_decl) << C->Id; 1207 continue; 1208 } 1209 1210 // C++11 [expr.prim.lambda]p23: 1211 // A capture followed by an ellipsis is a pack expansion (14.5.3). 1212 SourceLocation EllipsisLoc; 1213 if (C->EllipsisLoc.isValid()) { 1214 if (Var->isParameterPack()) { 1215 EllipsisLoc = C->EllipsisLoc; 1216 } else { 1217 Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 1218 << (C->Init.isUsable() ? C->Init.get()->getSourceRange() 1219 : SourceRange(C->Loc)); 1220 1221 // Just ignore the ellipsis. 1222 } 1223 } else if (Var->isParameterPack()) { 1224 ContainsUnexpandedParameterPack = true; 1225 } 1226 1227 if (C->Init.isUsable()) { 1228 addInitCapture(LSI, Var); 1229 } else { 1230 TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef : 1231 TryCapture_ExplicitByVal; 1232 tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc); 1233 } 1234 if (!LSI->Captures.empty()) 1235 LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange; 1236 } 1237 finishLambdaExplicitCaptures(LSI); 1238 1239 LSI->ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack; 1240 1241 // Add lambda parameters into scope. 1242 addLambdaParameters(Intro.Captures, Method, CurScope); 1243 1244 // Enter a new evaluation context to insulate the lambda from any 1245 // cleanups from the enclosing full-expression. 1246 PushExpressionEvaluationContext( 1247 LSI->CallOperator->isConsteval() 1248 ? ExpressionEvaluationContext::ConstantEvaluated 1249 : ExpressionEvaluationContext::PotentiallyEvaluated); 1250 } 1251 1252 void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope, 1253 bool IsInstantiation) { 1254 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back()); 1255 1256 // Leave the expression-evaluation context. 1257 DiscardCleanupsInEvaluationContext(); 1258 PopExpressionEvaluationContext(); 1259 1260 // Leave the context of the lambda. 1261 if (!IsInstantiation) 1262 PopDeclContext(); 1263 1264 // Finalize the lambda. 1265 CXXRecordDecl *Class = LSI->Lambda; 1266 Class->setInvalidDecl(); 1267 SmallVector<Decl*, 4> Fields(Class->fields()); 1268 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(), 1269 SourceLocation(), ParsedAttributesView()); 1270 CheckCompletedCXXClass(nullptr, Class); 1271 1272 PopFunctionScopeInfo(); 1273 } 1274 1275 template <typename Func> 1276 static void repeatForLambdaConversionFunctionCallingConvs( 1277 Sema &S, const FunctionProtoType &CallOpProto, Func F) { 1278 CallingConv DefaultFree = S.Context.getDefaultCallingConvention( 1279 CallOpProto.isVariadic(), /*IsCXXMethod=*/false); 1280 CallingConv DefaultMember = S.Context.getDefaultCallingConvention( 1281 CallOpProto.isVariadic(), /*IsCXXMethod=*/true); 1282 CallingConv CallOpCC = CallOpProto.getCallConv(); 1283 1284 /// Implement emitting a version of the operator for many of the calling 1285 /// conventions for MSVC, as described here: 1286 /// https://devblogs.microsoft.com/oldnewthing/20150220-00/?p=44623. 1287 /// Experimentally, we determined that cdecl, stdcall, fastcall, and 1288 /// vectorcall are generated by MSVC when it is supported by the target. 1289 /// Additionally, we are ensuring that the default-free/default-member and 1290 /// call-operator calling convention are generated as well. 1291 /// NOTE: We intentionally generate a 'thiscall' on Win32 implicitly from the 1292 /// 'member default', despite MSVC not doing so. We do this in order to ensure 1293 /// that someone who intentionally places 'thiscall' on the lambda call 1294 /// operator will still get that overload, since we don't have the a way of 1295 /// detecting the attribute by the time we get here. 1296 if (S.getLangOpts().MSVCCompat) { 1297 CallingConv Convs[] = { 1298 CC_C, CC_X86StdCall, CC_X86FastCall, CC_X86VectorCall, 1299 DefaultFree, DefaultMember, CallOpCC}; 1300 llvm::sort(Convs); 1301 llvm::iterator_range<CallingConv *> Range( 1302 std::begin(Convs), std::unique(std::begin(Convs), std::end(Convs))); 1303 const TargetInfo &TI = S.getASTContext().getTargetInfo(); 1304 1305 for (CallingConv C : Range) { 1306 if (TI.checkCallingConvention(C) == TargetInfo::CCCR_OK) 1307 F(C); 1308 } 1309 return; 1310 } 1311 1312 if (CallOpCC == DefaultMember && DefaultMember != DefaultFree) { 1313 F(DefaultFree); 1314 F(DefaultMember); 1315 } else { 1316 F(CallOpCC); 1317 } 1318 } 1319 1320 // Returns the 'standard' calling convention to be used for the lambda 1321 // conversion function, that is, the 'free' function calling convention unless 1322 // it is overridden by a non-default calling convention attribute. 1323 static CallingConv 1324 getLambdaConversionFunctionCallConv(Sema &S, 1325 const FunctionProtoType *CallOpProto) { 1326 CallingConv DefaultFree = S.Context.getDefaultCallingConvention( 1327 CallOpProto->isVariadic(), /*IsCXXMethod=*/false); 1328 CallingConv DefaultMember = S.Context.getDefaultCallingConvention( 1329 CallOpProto->isVariadic(), /*IsCXXMethod=*/true); 1330 CallingConv CallOpCC = CallOpProto->getCallConv(); 1331 1332 // If the call-operator hasn't been changed, return both the 'free' and 1333 // 'member' function calling convention. 1334 if (CallOpCC == DefaultMember && DefaultMember != DefaultFree) 1335 return DefaultFree; 1336 return CallOpCC; 1337 } 1338 1339 QualType Sema::getLambdaConversionFunctionResultType( 1340 const FunctionProtoType *CallOpProto, CallingConv CC) { 1341 const FunctionProtoType::ExtProtoInfo CallOpExtInfo = 1342 CallOpProto->getExtProtoInfo(); 1343 FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo; 1344 InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC); 1345 InvokerExtInfo.TypeQuals = Qualifiers(); 1346 assert(InvokerExtInfo.RefQualifier == RQ_None && 1347 "Lambda's call operator should not have a reference qualifier"); 1348 return Context.getFunctionType(CallOpProto->getReturnType(), 1349 CallOpProto->getParamTypes(), InvokerExtInfo); 1350 } 1351 1352 /// Add a lambda's conversion to function pointer, as described in 1353 /// C++11 [expr.prim.lambda]p6. 1354 static void addFunctionPointerConversion(Sema &S, SourceRange IntroducerRange, 1355 CXXRecordDecl *Class, 1356 CXXMethodDecl *CallOperator, 1357 QualType InvokerFunctionTy) { 1358 // This conversion is explicitly disabled if the lambda's function has 1359 // pass_object_size attributes on any of its parameters. 1360 auto HasPassObjectSizeAttr = [](const ParmVarDecl *P) { 1361 return P->hasAttr<PassObjectSizeAttr>(); 1362 }; 1363 if (llvm::any_of(CallOperator->parameters(), HasPassObjectSizeAttr)) 1364 return; 1365 1366 // Add the conversion to function pointer. 1367 QualType PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy); 1368 1369 // Create the type of the conversion function. 1370 FunctionProtoType::ExtProtoInfo ConvExtInfo( 1371 S.Context.getDefaultCallingConvention( 1372 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 1373 // The conversion function is always const and noexcept. 1374 ConvExtInfo.TypeQuals = Qualifiers(); 1375 ConvExtInfo.TypeQuals.addConst(); 1376 ConvExtInfo.ExceptionSpec.Type = EST_BasicNoexcept; 1377 QualType ConvTy = 1378 S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo); 1379 1380 SourceLocation Loc = IntroducerRange.getBegin(); 1381 DeclarationName ConversionName 1382 = S.Context.DeclarationNames.getCXXConversionFunctionName( 1383 S.Context.getCanonicalType(PtrToFunctionTy)); 1384 // Construct a TypeSourceInfo for the conversion function, and wire 1385 // all the parameters appropriately for the FunctionProtoTypeLoc 1386 // so that everything works during transformation/instantiation of 1387 // generic lambdas. 1388 // The main reason for wiring up the parameters of the conversion 1389 // function with that of the call operator is so that constructs 1390 // like the following work: 1391 // auto L = [](auto b) { <-- 1 1392 // return [](auto a) -> decltype(a) { <-- 2 1393 // return a; 1394 // }; 1395 // }; 1396 // int (*fp)(int) = L(5); 1397 // Because the trailing return type can contain DeclRefExprs that refer 1398 // to the original call operator's variables, we hijack the call 1399 // operators ParmVarDecls below. 1400 TypeSourceInfo *ConvNamePtrToFunctionTSI = 1401 S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc); 1402 DeclarationNameLoc ConvNameLoc = 1403 DeclarationNameLoc::makeNamedTypeLoc(ConvNamePtrToFunctionTSI); 1404 1405 // The conversion function is a conversion to a pointer-to-function. 1406 TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc); 1407 FunctionProtoTypeLoc ConvTL = 1408 ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>(); 1409 // Get the result of the conversion function which is a pointer-to-function. 1410 PointerTypeLoc PtrToFunctionTL = 1411 ConvTL.getReturnLoc().getAs<PointerTypeLoc>(); 1412 // Do the same for the TypeSourceInfo that is used to name the conversion 1413 // operator. 1414 PointerTypeLoc ConvNamePtrToFunctionTL = 1415 ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>(); 1416 1417 // Get the underlying function types that the conversion function will 1418 // be converting to (should match the type of the call operator). 1419 FunctionProtoTypeLoc CallOpConvTL = 1420 PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>(); 1421 FunctionProtoTypeLoc CallOpConvNameTL = 1422 ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>(); 1423 1424 // Wire up the FunctionProtoTypeLocs with the call operator's parameters. 1425 // These parameter's are essentially used to transform the name and 1426 // the type of the conversion operator. By using the same parameters 1427 // as the call operator's we don't have to fix any back references that 1428 // the trailing return type of the call operator's uses (such as 1429 // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.) 1430 // - we can simply use the return type of the call operator, and 1431 // everything should work. 1432 SmallVector<ParmVarDecl *, 4> InvokerParams; 1433 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) { 1434 ParmVarDecl *From = CallOperator->getParamDecl(I); 1435 1436 InvokerParams.push_back(ParmVarDecl::Create( 1437 S.Context, 1438 // Temporarily add to the TU. This is set to the invoker below. 1439 S.Context.getTranslationUnitDecl(), From->getBeginLoc(), 1440 From->getLocation(), From->getIdentifier(), From->getType(), 1441 From->getTypeSourceInfo(), From->getStorageClass(), 1442 /*DefArg=*/nullptr)); 1443 CallOpConvTL.setParam(I, From); 1444 CallOpConvNameTL.setParam(I, From); 1445 } 1446 1447 CXXConversionDecl *Conversion = CXXConversionDecl::Create( 1448 S.Context, Class, Loc, 1449 DeclarationNameInfo(ConversionName, Loc, ConvNameLoc), ConvTy, ConvTSI, 1450 /*isInline=*/true, ExplicitSpecifier(), 1451 S.getLangOpts().CPlusPlus17 ? ConstexprSpecKind::Constexpr 1452 : ConstexprSpecKind::Unspecified, 1453 CallOperator->getBody()->getEndLoc()); 1454 Conversion->setAccess(AS_public); 1455 Conversion->setImplicit(true); 1456 1457 if (Class->isGenericLambda()) { 1458 // Create a template version of the conversion operator, using the template 1459 // parameter list of the function call operator. 1460 FunctionTemplateDecl *TemplateCallOperator = 1461 CallOperator->getDescribedFunctionTemplate(); 1462 FunctionTemplateDecl *ConversionTemplate = 1463 FunctionTemplateDecl::Create(S.Context, Class, 1464 Loc, ConversionName, 1465 TemplateCallOperator->getTemplateParameters(), 1466 Conversion); 1467 ConversionTemplate->setAccess(AS_public); 1468 ConversionTemplate->setImplicit(true); 1469 Conversion->setDescribedFunctionTemplate(ConversionTemplate); 1470 Class->addDecl(ConversionTemplate); 1471 } else 1472 Class->addDecl(Conversion); 1473 // Add a non-static member function that will be the result of 1474 // the conversion with a certain unique ID. 1475 DeclarationName InvokerName = &S.Context.Idents.get( 1476 getLambdaStaticInvokerName()); 1477 // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo() 1478 // we should get a prebuilt TrivialTypeSourceInfo from Context 1479 // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc 1480 // then rewire the parameters accordingly, by hoisting up the InvokeParams 1481 // loop below and then use its Params to set Invoke->setParams(...) below. 1482 // This would avoid the 'const' qualifier of the calloperator from 1483 // contaminating the type of the invoker, which is currently adjusted 1484 // in SemaTemplateDeduction.cpp:DeduceTemplateArguments. Fixing the 1485 // trailing return type of the invoker would require a visitor to rebuild 1486 // the trailing return type and adjusting all back DeclRefExpr's to refer 1487 // to the new static invoker parameters - not the call operator's. 1488 CXXMethodDecl *Invoke = CXXMethodDecl::Create( 1489 S.Context, Class, Loc, DeclarationNameInfo(InvokerName, Loc), 1490 InvokerFunctionTy, CallOperator->getTypeSourceInfo(), SC_Static, 1491 /*isInline=*/true, ConstexprSpecKind::Unspecified, 1492 CallOperator->getBody()->getEndLoc()); 1493 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) 1494 InvokerParams[I]->setOwningFunction(Invoke); 1495 Invoke->setParams(InvokerParams); 1496 Invoke->setAccess(AS_private); 1497 Invoke->setImplicit(true); 1498 if (Class->isGenericLambda()) { 1499 FunctionTemplateDecl *TemplateCallOperator = 1500 CallOperator->getDescribedFunctionTemplate(); 1501 FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create( 1502 S.Context, Class, Loc, InvokerName, 1503 TemplateCallOperator->getTemplateParameters(), 1504 Invoke); 1505 StaticInvokerTemplate->setAccess(AS_private); 1506 StaticInvokerTemplate->setImplicit(true); 1507 Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate); 1508 Class->addDecl(StaticInvokerTemplate); 1509 } else 1510 Class->addDecl(Invoke); 1511 } 1512 1513 /// Add a lambda's conversion to function pointers, as described in 1514 /// C++11 [expr.prim.lambda]p6. Note that in most cases, this should emit only a 1515 /// single pointer conversion. In the event that the default calling convention 1516 /// for free and member functions is different, it will emit both conventions. 1517 static void addFunctionPointerConversions(Sema &S, SourceRange IntroducerRange, 1518 CXXRecordDecl *Class, 1519 CXXMethodDecl *CallOperator) { 1520 const FunctionProtoType *CallOpProto = 1521 CallOperator->getType()->castAs<FunctionProtoType>(); 1522 1523 repeatForLambdaConversionFunctionCallingConvs( 1524 S, *CallOpProto, [&](CallingConv CC) { 1525 QualType InvokerFunctionTy = 1526 S.getLambdaConversionFunctionResultType(CallOpProto, CC); 1527 addFunctionPointerConversion(S, IntroducerRange, Class, CallOperator, 1528 InvokerFunctionTy); 1529 }); 1530 } 1531 1532 /// Add a lambda's conversion to block pointer. 1533 static void addBlockPointerConversion(Sema &S, 1534 SourceRange IntroducerRange, 1535 CXXRecordDecl *Class, 1536 CXXMethodDecl *CallOperator) { 1537 const FunctionProtoType *CallOpProto = 1538 CallOperator->getType()->castAs<FunctionProtoType>(); 1539 QualType FunctionTy = S.getLambdaConversionFunctionResultType( 1540 CallOpProto, getLambdaConversionFunctionCallConv(S, CallOpProto)); 1541 QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy); 1542 1543 FunctionProtoType::ExtProtoInfo ConversionEPI( 1544 S.Context.getDefaultCallingConvention( 1545 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 1546 ConversionEPI.TypeQuals = Qualifiers(); 1547 ConversionEPI.TypeQuals.addConst(); 1548 QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ConversionEPI); 1549 1550 SourceLocation Loc = IntroducerRange.getBegin(); 1551 DeclarationName Name 1552 = S.Context.DeclarationNames.getCXXConversionFunctionName( 1553 S.Context.getCanonicalType(BlockPtrTy)); 1554 DeclarationNameLoc NameLoc = DeclarationNameLoc::makeNamedTypeLoc( 1555 S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc)); 1556 CXXConversionDecl *Conversion = CXXConversionDecl::Create( 1557 S.Context, Class, Loc, DeclarationNameInfo(Name, Loc, NameLoc), ConvTy, 1558 S.Context.getTrivialTypeSourceInfo(ConvTy, Loc), 1559 /*isInline=*/true, ExplicitSpecifier(), ConstexprSpecKind::Unspecified, 1560 CallOperator->getBody()->getEndLoc()); 1561 Conversion->setAccess(AS_public); 1562 Conversion->setImplicit(true); 1563 Class->addDecl(Conversion); 1564 } 1565 1566 ExprResult Sema::BuildCaptureInit(const Capture &Cap, 1567 SourceLocation ImplicitCaptureLoc, 1568 bool IsOpenMPMapping) { 1569 // VLA captures don't have a stored initialization expression. 1570 if (Cap.isVLATypeCapture()) 1571 return ExprResult(); 1572 1573 // An init-capture is initialized directly from its stored initializer. 1574 if (Cap.isInitCapture()) 1575 return Cap.getVariable()->getInit(); 1576 1577 // For anything else, build an initialization expression. For an implicit 1578 // capture, the capture notionally happens at the capture-default, so use 1579 // that location here. 1580 SourceLocation Loc = 1581 ImplicitCaptureLoc.isValid() ? ImplicitCaptureLoc : Cap.getLocation(); 1582 1583 // C++11 [expr.prim.lambda]p21: 1584 // When the lambda-expression is evaluated, the entities that 1585 // are captured by copy are used to direct-initialize each 1586 // corresponding non-static data member of the resulting closure 1587 // object. (For array members, the array elements are 1588 // direct-initialized in increasing subscript order.) These 1589 // initializations are performed in the (unspecified) order in 1590 // which the non-static data members are declared. 1591 1592 // C++ [expr.prim.lambda]p12: 1593 // An entity captured by a lambda-expression is odr-used (3.2) in 1594 // the scope containing the lambda-expression. 1595 ExprResult Init; 1596 IdentifierInfo *Name = nullptr; 1597 if (Cap.isThisCapture()) { 1598 QualType ThisTy = getCurrentThisType(); 1599 Expr *This = BuildCXXThisExpr(Loc, ThisTy, ImplicitCaptureLoc.isValid()); 1600 if (Cap.isCopyCapture()) 1601 Init = CreateBuiltinUnaryOp(Loc, UO_Deref, This); 1602 else 1603 Init = This; 1604 } else { 1605 assert(Cap.isVariableCapture() && "unknown kind of capture"); 1606 VarDecl *Var = Cap.getVariable(); 1607 Name = Var->getIdentifier(); 1608 Init = BuildDeclarationNameExpr( 1609 CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var); 1610 } 1611 1612 // In OpenMP, the capture kind doesn't actually describe how to capture: 1613 // variables are "mapped" onto the device in a process that does not formally 1614 // make a copy, even for a "copy capture". 1615 if (IsOpenMPMapping) 1616 return Init; 1617 1618 if (Init.isInvalid()) 1619 return ExprError(); 1620 1621 Expr *InitExpr = Init.get(); 1622 InitializedEntity Entity = InitializedEntity::InitializeLambdaCapture( 1623 Name, Cap.getCaptureType(), Loc); 1624 InitializationKind InitKind = 1625 InitializationKind::CreateDirect(Loc, Loc, Loc); 1626 InitializationSequence InitSeq(*this, Entity, InitKind, InitExpr); 1627 return InitSeq.Perform(*this, Entity, InitKind, InitExpr); 1628 } 1629 1630 ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body, 1631 Scope *CurScope) { 1632 LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back()); 1633 ActOnFinishFunctionBody(LSI.CallOperator, Body); 1634 return BuildLambdaExpr(StartLoc, Body->getEndLoc(), &LSI); 1635 } 1636 1637 static LambdaCaptureDefault 1638 mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS) { 1639 switch (ICS) { 1640 case CapturingScopeInfo::ImpCap_None: 1641 return LCD_None; 1642 case CapturingScopeInfo::ImpCap_LambdaByval: 1643 return LCD_ByCopy; 1644 case CapturingScopeInfo::ImpCap_CapturedRegion: 1645 case CapturingScopeInfo::ImpCap_LambdaByref: 1646 return LCD_ByRef; 1647 case CapturingScopeInfo::ImpCap_Block: 1648 llvm_unreachable("block capture in lambda"); 1649 } 1650 llvm_unreachable("Unknown implicit capture style"); 1651 } 1652 1653 bool Sema::CaptureHasSideEffects(const Capture &From) { 1654 if (From.isInitCapture()) { 1655 Expr *Init = From.getVariable()->getInit(); 1656 if (Init && Init->HasSideEffects(Context)) 1657 return true; 1658 } 1659 1660 if (!From.isCopyCapture()) 1661 return false; 1662 1663 const QualType T = From.isThisCapture() 1664 ? getCurrentThisType()->getPointeeType() 1665 : From.getCaptureType(); 1666 1667 if (T.isVolatileQualified()) 1668 return true; 1669 1670 const Type *BaseT = T->getBaseElementTypeUnsafe(); 1671 if (const CXXRecordDecl *RD = BaseT->getAsCXXRecordDecl()) 1672 return !RD->isCompleteDefinition() || !RD->hasTrivialCopyConstructor() || 1673 !RD->hasTrivialDestructor(); 1674 1675 return false; 1676 } 1677 1678 bool Sema::DiagnoseUnusedLambdaCapture(SourceRange CaptureRange, 1679 const Capture &From) { 1680 if (CaptureHasSideEffects(From)) 1681 return false; 1682 1683 if (From.isVLATypeCapture()) 1684 return false; 1685 1686 auto diag = Diag(From.getLocation(), diag::warn_unused_lambda_capture); 1687 if (From.isThisCapture()) 1688 diag << "'this'"; 1689 else 1690 diag << From.getVariable(); 1691 diag << From.isNonODRUsed(); 1692 diag << FixItHint::CreateRemoval(CaptureRange); 1693 return true; 1694 } 1695 1696 /// Create a field within the lambda class or captured statement record for the 1697 /// given capture. 1698 FieldDecl *Sema::BuildCaptureField(RecordDecl *RD, 1699 const sema::Capture &Capture) { 1700 SourceLocation Loc = Capture.getLocation(); 1701 QualType FieldType = Capture.getCaptureType(); 1702 1703 TypeSourceInfo *TSI = nullptr; 1704 if (Capture.isVariableCapture()) { 1705 auto *Var = Capture.getVariable(); 1706 if (Var->isInitCapture()) 1707 TSI = Capture.getVariable()->getTypeSourceInfo(); 1708 } 1709 1710 // FIXME: Should we really be doing this? A null TypeSourceInfo seems more 1711 // appropriate, at least for an implicit capture. 1712 if (!TSI) 1713 TSI = Context.getTrivialTypeSourceInfo(FieldType, Loc); 1714 1715 // Build the non-static data member. 1716 FieldDecl *Field = 1717 FieldDecl::Create(Context, RD, /*StartLoc=*/Loc, /*IdLoc=*/Loc, 1718 /*Id=*/nullptr, FieldType, TSI, /*BW=*/nullptr, 1719 /*Mutable=*/false, ICIS_NoInit); 1720 // If the variable being captured has an invalid type, mark the class as 1721 // invalid as well. 1722 if (!FieldType->isDependentType()) { 1723 if (RequireCompleteSizedType(Loc, FieldType, 1724 diag::err_field_incomplete_or_sizeless)) { 1725 RD->setInvalidDecl(); 1726 Field->setInvalidDecl(); 1727 } else { 1728 NamedDecl *Def; 1729 FieldType->isIncompleteType(&Def); 1730 if (Def && Def->isInvalidDecl()) { 1731 RD->setInvalidDecl(); 1732 Field->setInvalidDecl(); 1733 } 1734 } 1735 } 1736 Field->setImplicit(true); 1737 Field->setAccess(AS_private); 1738 RD->addDecl(Field); 1739 1740 if (Capture.isVLATypeCapture()) 1741 Field->setCapturedVLAType(Capture.getCapturedVLAType()); 1742 1743 return Field; 1744 } 1745 1746 ExprResult Sema::BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc, 1747 LambdaScopeInfo *LSI) { 1748 // Collect information from the lambda scope. 1749 SmallVector<LambdaCapture, 4> Captures; 1750 SmallVector<Expr *, 4> CaptureInits; 1751 SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc; 1752 LambdaCaptureDefault CaptureDefault = 1753 mapImplicitCaptureStyle(LSI->ImpCaptureStyle); 1754 CXXRecordDecl *Class; 1755 CXXMethodDecl *CallOperator; 1756 SourceRange IntroducerRange; 1757 bool ExplicitParams; 1758 bool ExplicitResultType; 1759 CleanupInfo LambdaCleanup; 1760 bool ContainsUnexpandedParameterPack; 1761 bool IsGenericLambda; 1762 { 1763 CallOperator = LSI->CallOperator; 1764 Class = LSI->Lambda; 1765 IntroducerRange = LSI->IntroducerRange; 1766 ExplicitParams = LSI->ExplicitParams; 1767 ExplicitResultType = !LSI->HasImplicitReturnType; 1768 LambdaCleanup = LSI->Cleanup; 1769 ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack; 1770 IsGenericLambda = Class->isGenericLambda(); 1771 1772 CallOperator->setLexicalDeclContext(Class); 1773 Decl *TemplateOrNonTemplateCallOperatorDecl = 1774 CallOperator->getDescribedFunctionTemplate() 1775 ? CallOperator->getDescribedFunctionTemplate() 1776 : cast<Decl>(CallOperator); 1777 1778 // FIXME: Is this really the best choice? Keeping the lexical decl context 1779 // set as CurContext seems more faithful to the source. 1780 TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class); 1781 1782 PopExpressionEvaluationContext(); 1783 1784 // True if the current capture has a used capture or default before it. 1785 bool CurHasPreviousCapture = CaptureDefault != LCD_None; 1786 SourceLocation PrevCaptureLoc = CurHasPreviousCapture ? 1787 CaptureDefaultLoc : IntroducerRange.getBegin(); 1788 1789 for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) { 1790 const Capture &From = LSI->Captures[I]; 1791 1792 if (From.isInvalid()) 1793 return ExprError(); 1794 1795 assert(!From.isBlockCapture() && "Cannot capture __block variables"); 1796 bool IsImplicit = I >= LSI->NumExplicitCaptures; 1797 SourceLocation ImplicitCaptureLoc = 1798 IsImplicit ? CaptureDefaultLoc : SourceLocation(); 1799 1800 // Use source ranges of explicit captures for fixits where available. 1801 SourceRange CaptureRange = LSI->ExplicitCaptureRanges[I]; 1802 1803 // Warn about unused explicit captures. 1804 bool IsCaptureUsed = true; 1805 if (!CurContext->isDependentContext() && !IsImplicit && 1806 !From.isODRUsed()) { 1807 // Initialized captures that are non-ODR used may not be eliminated. 1808 // FIXME: Where did the IsGenericLambda here come from? 1809 bool NonODRUsedInitCapture = 1810 IsGenericLambda && From.isNonODRUsed() && From.isInitCapture(); 1811 if (!NonODRUsedInitCapture) { 1812 bool IsLast = (I + 1) == LSI->NumExplicitCaptures; 1813 SourceRange FixItRange; 1814 if (CaptureRange.isValid()) { 1815 if (!CurHasPreviousCapture && !IsLast) { 1816 // If there are no captures preceding this capture, remove the 1817 // following comma. 1818 FixItRange = SourceRange(CaptureRange.getBegin(), 1819 getLocForEndOfToken(CaptureRange.getEnd())); 1820 } else { 1821 // Otherwise, remove the comma since the last used capture. 1822 FixItRange = SourceRange(getLocForEndOfToken(PrevCaptureLoc), 1823 CaptureRange.getEnd()); 1824 } 1825 } 1826 1827 IsCaptureUsed = !DiagnoseUnusedLambdaCapture(FixItRange, From); 1828 } 1829 } 1830 1831 if (CaptureRange.isValid()) { 1832 CurHasPreviousCapture |= IsCaptureUsed; 1833 PrevCaptureLoc = CaptureRange.getEnd(); 1834 } 1835 1836 // Map the capture to our AST representation. 1837 LambdaCapture Capture = [&] { 1838 if (From.isThisCapture()) { 1839 // Capturing 'this' implicitly with a default of '[=]' is deprecated, 1840 // because it results in a reference capture. Don't warn prior to 1841 // C++2a; there's nothing that can be done about it before then. 1842 if (getLangOpts().CPlusPlus20 && IsImplicit && 1843 CaptureDefault == LCD_ByCopy) { 1844 Diag(From.getLocation(), diag::warn_deprecated_this_capture); 1845 Diag(CaptureDefaultLoc, diag::note_deprecated_this_capture) 1846 << FixItHint::CreateInsertion( 1847 getLocForEndOfToken(CaptureDefaultLoc), ", this"); 1848 } 1849 return LambdaCapture(From.getLocation(), IsImplicit, 1850 From.isCopyCapture() ? LCK_StarThis : LCK_This); 1851 } else if (From.isVLATypeCapture()) { 1852 return LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType); 1853 } else { 1854 assert(From.isVariableCapture() && "unknown kind of capture"); 1855 VarDecl *Var = From.getVariable(); 1856 LambdaCaptureKind Kind = 1857 From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef; 1858 return LambdaCapture(From.getLocation(), IsImplicit, Kind, Var, 1859 From.getEllipsisLoc()); 1860 } 1861 }(); 1862 1863 // Form the initializer for the capture field. 1864 ExprResult Init = BuildCaptureInit(From, ImplicitCaptureLoc); 1865 1866 // FIXME: Skip this capture if the capture is not used, the initializer 1867 // has no side-effects, the type of the capture is trivial, and the 1868 // lambda is not externally visible. 1869 1870 // Add a FieldDecl for the capture and form its initializer. 1871 BuildCaptureField(Class, From); 1872 Captures.push_back(Capture); 1873 CaptureInits.push_back(Init.get()); 1874 1875 if (LangOpts.CUDA) 1876 CUDACheckLambdaCapture(CallOperator, From); 1877 } 1878 1879 Class->setCaptures(Context, Captures); 1880 1881 // C++11 [expr.prim.lambda]p6: 1882 // The closure type for a lambda-expression with no lambda-capture 1883 // has a public non-virtual non-explicit const conversion function 1884 // to pointer to function having the same parameter and return 1885 // types as the closure type's function call operator. 1886 if (Captures.empty() && CaptureDefault == LCD_None) 1887 addFunctionPointerConversions(*this, IntroducerRange, Class, 1888 CallOperator); 1889 1890 // Objective-C++: 1891 // The closure type for a lambda-expression has a public non-virtual 1892 // non-explicit const conversion function to a block pointer having the 1893 // same parameter and return types as the closure type's function call 1894 // operator. 1895 // FIXME: Fix generic lambda to block conversions. 1896 if (getLangOpts().Blocks && getLangOpts().ObjC && !IsGenericLambda) 1897 addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator); 1898 1899 // Finalize the lambda class. 1900 SmallVector<Decl*, 4> Fields(Class->fields()); 1901 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(), 1902 SourceLocation(), ParsedAttributesView()); 1903 CheckCompletedCXXClass(nullptr, Class); 1904 } 1905 1906 Cleanup.mergeFrom(LambdaCleanup); 1907 1908 LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange, 1909 CaptureDefault, CaptureDefaultLoc, 1910 ExplicitParams, ExplicitResultType, 1911 CaptureInits, EndLoc, 1912 ContainsUnexpandedParameterPack); 1913 // If the lambda expression's call operator is not explicitly marked constexpr 1914 // and we are not in a dependent context, analyze the call operator to infer 1915 // its constexpr-ness, suppressing diagnostics while doing so. 1916 if (getLangOpts().CPlusPlus17 && !CallOperator->isInvalidDecl() && 1917 !CallOperator->isConstexpr() && 1918 !isa<CoroutineBodyStmt>(CallOperator->getBody()) && 1919 !Class->getDeclContext()->isDependentContext()) { 1920 CallOperator->setConstexprKind( 1921 CheckConstexprFunctionDefinition(CallOperator, 1922 CheckConstexprKind::CheckValid) 1923 ? ConstexprSpecKind::Constexpr 1924 : ConstexprSpecKind::Unspecified); 1925 } 1926 1927 // Emit delayed shadowing warnings now that the full capture list is known. 1928 DiagnoseShadowingLambdaDecls(LSI); 1929 1930 if (!CurContext->isDependentContext()) { 1931 switch (ExprEvalContexts.back().Context) { 1932 // C++11 [expr.prim.lambda]p2: 1933 // A lambda-expression shall not appear in an unevaluated operand 1934 // (Clause 5). 1935 case ExpressionEvaluationContext::Unevaluated: 1936 case ExpressionEvaluationContext::UnevaluatedList: 1937 case ExpressionEvaluationContext::UnevaluatedAbstract: 1938 // C++1y [expr.const]p2: 1939 // A conditional-expression e is a core constant expression unless the 1940 // evaluation of e, following the rules of the abstract machine, would 1941 // evaluate [...] a lambda-expression. 1942 // 1943 // This is technically incorrect, there are some constant evaluated contexts 1944 // where this should be allowed. We should probably fix this when DR1607 is 1945 // ratified, it lays out the exact set of conditions where we shouldn't 1946 // allow a lambda-expression. 1947 case ExpressionEvaluationContext::ConstantEvaluated: 1948 // We don't actually diagnose this case immediately, because we 1949 // could be within a context where we might find out later that 1950 // the expression is potentially evaluated (e.g., for typeid). 1951 ExprEvalContexts.back().Lambdas.push_back(Lambda); 1952 break; 1953 1954 case ExpressionEvaluationContext::DiscardedStatement: 1955 case ExpressionEvaluationContext::PotentiallyEvaluated: 1956 case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed: 1957 break; 1958 } 1959 } 1960 1961 return MaybeBindToTemporary(Lambda); 1962 } 1963 1964 ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation, 1965 SourceLocation ConvLocation, 1966 CXXConversionDecl *Conv, 1967 Expr *Src) { 1968 // Make sure that the lambda call operator is marked used. 1969 CXXRecordDecl *Lambda = Conv->getParent(); 1970 CXXMethodDecl *CallOperator 1971 = cast<CXXMethodDecl>( 1972 Lambda->lookup( 1973 Context.DeclarationNames.getCXXOperatorName(OO_Call)).front()); 1974 CallOperator->setReferenced(); 1975 CallOperator->markUsed(Context); 1976 1977 ExprResult Init = PerformCopyInitialization( 1978 InitializedEntity::InitializeLambdaToBlock(ConvLocation, Src->getType()), 1979 CurrentLocation, Src); 1980 if (!Init.isInvalid()) 1981 Init = ActOnFinishFullExpr(Init.get(), /*DiscardedValue*/ false); 1982 1983 if (Init.isInvalid()) 1984 return ExprError(); 1985 1986 // Create the new block to be returned. 1987 BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation); 1988 1989 // Set the type information. 1990 Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo()); 1991 Block->setIsVariadic(CallOperator->isVariadic()); 1992 Block->setBlockMissingReturnType(false); 1993 1994 // Add parameters. 1995 SmallVector<ParmVarDecl *, 4> BlockParams; 1996 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) { 1997 ParmVarDecl *From = CallOperator->getParamDecl(I); 1998 BlockParams.push_back(ParmVarDecl::Create( 1999 Context, Block, From->getBeginLoc(), From->getLocation(), 2000 From->getIdentifier(), From->getType(), From->getTypeSourceInfo(), 2001 From->getStorageClass(), 2002 /*DefArg=*/nullptr)); 2003 } 2004 Block->setParams(BlockParams); 2005 2006 Block->setIsConversionFromLambda(true); 2007 2008 // Add capture. The capture uses a fake variable, which doesn't correspond 2009 // to any actual memory location. However, the initializer copy-initializes 2010 // the lambda object. 2011 TypeSourceInfo *CapVarTSI = 2012 Context.getTrivialTypeSourceInfo(Src->getType()); 2013 VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation, 2014 ConvLocation, nullptr, 2015 Src->getType(), CapVarTSI, 2016 SC_None); 2017 BlockDecl::Capture Capture(/*variable=*/CapVar, /*byRef=*/false, 2018 /*nested=*/false, /*copy=*/Init.get()); 2019 Block->setCaptures(Context, Capture, /*CapturesCXXThis=*/false); 2020 2021 // Add a fake function body to the block. IR generation is responsible 2022 // for filling in the actual body, which cannot be expressed as an AST. 2023 Block->setBody(new (Context) CompoundStmt(ConvLocation)); 2024 2025 // Create the block literal expression. 2026 Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType()); 2027 ExprCleanupObjects.push_back(Block); 2028 Cleanup.setExprNeedsCleanups(true); 2029 2030 return BuildBlock; 2031 } 2032