1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for C++ lambda expressions. 10 // 11 //===----------------------------------------------------------------------===// 12 #include "clang/Sema/DeclSpec.h" 13 #include "TypeLocBuilder.h" 14 #include "clang/AST/ASTLambda.h" 15 #include "clang/AST/ExprCXX.h" 16 #include "clang/Basic/TargetInfo.h" 17 #include "clang/Sema/Initialization.h" 18 #include "clang/Sema/Lookup.h" 19 #include "clang/Sema/Scope.h" 20 #include "clang/Sema/ScopeInfo.h" 21 #include "clang/Sema/SemaInternal.h" 22 #include "clang/Sema/SemaLambda.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include <optional> 25 using namespace clang; 26 using namespace sema; 27 28 /// Examines the FunctionScopeInfo stack to determine the nearest 29 /// enclosing lambda (to the current lambda) that is 'capture-ready' for 30 /// the variable referenced in the current lambda (i.e. \p VarToCapture). 31 /// If successful, returns the index into Sema's FunctionScopeInfo stack 32 /// of the capture-ready lambda's LambdaScopeInfo. 33 /// 34 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current 35 /// lambda - is on top) to determine the index of the nearest enclosing/outer 36 /// lambda that is ready to capture the \p VarToCapture being referenced in 37 /// the current lambda. 38 /// As we climb down the stack, we want the index of the first such lambda - 39 /// that is the lambda with the highest index that is 'capture-ready'. 40 /// 41 /// A lambda 'L' is capture-ready for 'V' (var or this) if: 42 /// - its enclosing context is non-dependent 43 /// - and if the chain of lambdas between L and the lambda in which 44 /// V is potentially used (i.e. the lambda at the top of the scope info 45 /// stack), can all capture or have already captured V. 46 /// If \p VarToCapture is 'null' then we are trying to capture 'this'. 47 /// 48 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked 49 /// for whether it is 'capture-capable' (see 50 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly 51 /// capture. 52 /// 53 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a 54 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda 55 /// is at the top of the stack and has the highest index. 56 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'. 57 /// 58 /// \returns An std::optional<unsigned> Index that if evaluates to 'true' 59 /// contains the index (into Sema's FunctionScopeInfo stack) of the innermost 60 /// lambda which is capture-ready. If the return value evaluates to 'false' 61 /// then no lambda is capture-ready for \p VarToCapture. 62 63 static inline std::optional<unsigned> 64 getStackIndexOfNearestEnclosingCaptureReadyLambda( 65 ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes, 66 ValueDecl *VarToCapture) { 67 // Label failure to capture. 68 const std::optional<unsigned> NoLambdaIsCaptureReady; 69 70 // Ignore all inner captured regions. 71 unsigned CurScopeIndex = FunctionScopes.size() - 1; 72 while (CurScopeIndex > 0 && isa<clang::sema::CapturedRegionScopeInfo>( 73 FunctionScopes[CurScopeIndex])) 74 --CurScopeIndex; 75 assert( 76 isa<clang::sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]) && 77 "The function on the top of sema's function-info stack must be a lambda"); 78 79 // If VarToCapture is null, we are attempting to capture 'this'. 80 const bool IsCapturingThis = !VarToCapture; 81 const bool IsCapturingVariable = !IsCapturingThis; 82 83 // Start with the current lambda at the top of the stack (highest index). 84 DeclContext *EnclosingDC = 85 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator; 86 87 do { 88 const clang::sema::LambdaScopeInfo *LSI = 89 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]); 90 // IF we have climbed down to an intervening enclosing lambda that contains 91 // the variable declaration - it obviously can/must not capture the 92 // variable. 93 // Since its enclosing DC is dependent, all the lambdas between it and the 94 // innermost nested lambda are dependent (otherwise we wouldn't have 95 // arrived here) - so we don't yet have a lambda that can capture the 96 // variable. 97 if (IsCapturingVariable && 98 VarToCapture->getDeclContext()->Equals(EnclosingDC)) 99 return NoLambdaIsCaptureReady; 100 101 // For an enclosing lambda to be capture ready for an entity, all 102 // intervening lambda's have to be able to capture that entity. If even 103 // one of the intervening lambda's is not capable of capturing the entity 104 // then no enclosing lambda can ever capture that entity. 105 // For e.g. 106 // const int x = 10; 107 // [=](auto a) { #1 108 // [](auto b) { #2 <-- an intervening lambda that can never capture 'x' 109 // [=](auto c) { #3 110 // f(x, c); <-- can not lead to x's speculative capture by #1 or #2 111 // }; }; }; 112 // If they do not have a default implicit capture, check to see 113 // if the entity has already been explicitly captured. 114 // If even a single dependent enclosing lambda lacks the capability 115 // to ever capture this variable, there is no further enclosing 116 // non-dependent lambda that can capture this variable. 117 if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) { 118 if (IsCapturingVariable && !LSI->isCaptured(VarToCapture)) 119 return NoLambdaIsCaptureReady; 120 if (IsCapturingThis && !LSI->isCXXThisCaptured()) 121 return NoLambdaIsCaptureReady; 122 } 123 EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC); 124 125 assert(CurScopeIndex); 126 --CurScopeIndex; 127 } while (!EnclosingDC->isTranslationUnit() && 128 EnclosingDC->isDependentContext() && 129 isLambdaCallOperator(EnclosingDC)); 130 131 assert(CurScopeIndex < (FunctionScopes.size() - 1)); 132 // If the enclosingDC is not dependent, then the immediately nested lambda 133 // (one index above) is capture-ready. 134 if (!EnclosingDC->isDependentContext()) 135 return CurScopeIndex + 1; 136 return NoLambdaIsCaptureReady; 137 } 138 139 /// Examines the FunctionScopeInfo stack to determine the nearest 140 /// enclosing lambda (to the current lambda) that is 'capture-capable' for 141 /// the variable referenced in the current lambda (i.e. \p VarToCapture). 142 /// If successful, returns the index into Sema's FunctionScopeInfo stack 143 /// of the capture-capable lambda's LambdaScopeInfo. 144 /// 145 /// Given the current stack of lambdas being processed by Sema and 146 /// the variable of interest, to identify the nearest enclosing lambda (to the 147 /// current lambda at the top of the stack) that can truly capture 148 /// a variable, it has to have the following two properties: 149 /// a) 'capture-ready' - be the innermost lambda that is 'capture-ready': 150 /// - climb down the stack (i.e. starting from the innermost and examining 151 /// each outer lambda step by step) checking if each enclosing 152 /// lambda can either implicitly or explicitly capture the variable. 153 /// Record the first such lambda that is enclosed in a non-dependent 154 /// context. If no such lambda currently exists return failure. 155 /// b) 'capture-capable' - make sure the 'capture-ready' lambda can truly 156 /// capture the variable by checking all its enclosing lambdas: 157 /// - check if all outer lambdas enclosing the 'capture-ready' lambda 158 /// identified above in 'a' can also capture the variable (this is done 159 /// via tryCaptureVariable for variables and CheckCXXThisCapture for 160 /// 'this' by passing in the index of the Lambda identified in step 'a') 161 /// 162 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a 163 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda 164 /// is at the top of the stack. 165 /// 166 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'. 167 /// 168 /// 169 /// \returns An std::optional<unsigned> Index that if evaluates to 'true' 170 /// contains the index (into Sema's FunctionScopeInfo stack) of the innermost 171 /// lambda which is capture-capable. If the return value evaluates to 'false' 172 /// then no lambda is capture-capable for \p VarToCapture. 173 174 std::optional<unsigned> 175 clang::getStackIndexOfNearestEnclosingCaptureCapableLambda( 176 ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes, 177 ValueDecl *VarToCapture, Sema &S) { 178 179 const std::optional<unsigned> NoLambdaIsCaptureCapable; 180 181 const std::optional<unsigned> OptionalStackIndex = 182 getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes, 183 VarToCapture); 184 if (!OptionalStackIndex) 185 return NoLambdaIsCaptureCapable; 186 187 const unsigned IndexOfCaptureReadyLambda = *OptionalStackIndex; 188 assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) || 189 S.getCurGenericLambda()) && 190 "The capture ready lambda for a potential capture can only be the " 191 "current lambda if it is a generic lambda"); 192 193 const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI = 194 cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]); 195 196 // If VarToCapture is null, we are attempting to capture 'this' 197 const bool IsCapturingThis = !VarToCapture; 198 const bool IsCapturingVariable = !IsCapturingThis; 199 200 if (IsCapturingVariable) { 201 // Check if the capture-ready lambda can truly capture the variable, by 202 // checking whether all enclosing lambdas of the capture-ready lambda allow 203 // the capture - i.e. make sure it is capture-capable. 204 QualType CaptureType, DeclRefType; 205 const bool CanCaptureVariable = 206 !S.tryCaptureVariable(VarToCapture, 207 /*ExprVarIsUsedInLoc*/ SourceLocation(), 208 clang::Sema::TryCapture_Implicit, 209 /*EllipsisLoc*/ SourceLocation(), 210 /*BuildAndDiagnose*/ false, CaptureType, 211 DeclRefType, &IndexOfCaptureReadyLambda); 212 if (!CanCaptureVariable) 213 return NoLambdaIsCaptureCapable; 214 } else { 215 // Check if the capture-ready lambda can truly capture 'this' by checking 216 // whether all enclosing lambdas of the capture-ready lambda can capture 217 // 'this'. 218 const bool CanCaptureThis = 219 !S.CheckCXXThisCapture( 220 CaptureReadyLambdaLSI->PotentialThisCaptureLocation, 221 /*Explicit*/ false, /*BuildAndDiagnose*/ false, 222 &IndexOfCaptureReadyLambda); 223 if (!CanCaptureThis) 224 return NoLambdaIsCaptureCapable; 225 } 226 return IndexOfCaptureReadyLambda; 227 } 228 229 static inline TemplateParameterList * 230 getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) { 231 if (!LSI->GLTemplateParameterList && !LSI->TemplateParams.empty()) { 232 LSI->GLTemplateParameterList = TemplateParameterList::Create( 233 SemaRef.Context, 234 /*Template kw loc*/ SourceLocation(), 235 /*L angle loc*/ LSI->ExplicitTemplateParamsRange.getBegin(), 236 LSI->TemplateParams, 237 /*R angle loc*/LSI->ExplicitTemplateParamsRange.getEnd(), 238 LSI->RequiresClause.get()); 239 } 240 return LSI->GLTemplateParameterList; 241 } 242 243 CXXRecordDecl * 244 Sema::createLambdaClosureType(SourceRange IntroducerRange, TypeSourceInfo *Info, 245 unsigned LambdaDependencyKind, 246 LambdaCaptureDefault CaptureDefault) { 247 DeclContext *DC = CurContext; 248 while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext())) 249 DC = DC->getParent(); 250 bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(), 251 *this); 252 // Start constructing the lambda class. 253 CXXRecordDecl *Class = CXXRecordDecl::CreateLambda( 254 Context, DC, Info, IntroducerRange.getBegin(), LambdaDependencyKind, 255 IsGenericLambda, CaptureDefault); 256 DC->addDecl(Class); 257 258 return Class; 259 } 260 261 /// Determine whether the given context is or is enclosed in an inline 262 /// function. 263 static bool isInInlineFunction(const DeclContext *DC) { 264 while (!DC->isFileContext()) { 265 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC)) 266 if (FD->isInlined()) 267 return true; 268 269 DC = DC->getLexicalParent(); 270 } 271 272 return false; 273 } 274 275 std::tuple<MangleNumberingContext *, Decl *> 276 Sema::getCurrentMangleNumberContext(const DeclContext *DC) { 277 // Compute the context for allocating mangling numbers in the current 278 // expression, if the ABI requires them. 279 Decl *ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl; 280 281 enum ContextKind { 282 Normal, 283 DefaultArgument, 284 DataMember, 285 StaticDataMember, 286 InlineVariable, 287 VariableTemplate, 288 Concept 289 } Kind = Normal; 290 291 // Default arguments of member function parameters that appear in a class 292 // definition, as well as the initializers of data members, receive special 293 // treatment. Identify them. 294 if (ManglingContextDecl) { 295 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) { 296 if (const DeclContext *LexicalDC 297 = Param->getDeclContext()->getLexicalParent()) 298 if (LexicalDC->isRecord()) 299 Kind = DefaultArgument; 300 } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) { 301 if (Var->getDeclContext()->isRecord()) 302 Kind = StaticDataMember; 303 else if (Var->getMostRecentDecl()->isInline()) 304 Kind = InlineVariable; 305 else if (Var->getDescribedVarTemplate()) 306 Kind = VariableTemplate; 307 else if (auto *VTS = dyn_cast<VarTemplateSpecializationDecl>(Var)) { 308 if (!VTS->isExplicitSpecialization()) 309 Kind = VariableTemplate; 310 } 311 } else if (isa<FieldDecl>(ManglingContextDecl)) { 312 Kind = DataMember; 313 } else if (isa<ImplicitConceptSpecializationDecl>(ManglingContextDecl)) { 314 Kind = Concept; 315 } 316 } 317 318 // Itanium ABI [5.1.7]: 319 // In the following contexts [...] the one-definition rule requires closure 320 // types in different translation units to "correspond": 321 bool IsInNonspecializedTemplate = 322 inTemplateInstantiation() || CurContext->isDependentContext(); 323 switch (Kind) { 324 case Normal: { 325 // -- the bodies of non-exported nonspecialized template functions 326 // -- the bodies of inline functions 327 if ((IsInNonspecializedTemplate && 328 !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) || 329 isInInlineFunction(CurContext)) { 330 while (auto *CD = dyn_cast<CapturedDecl>(DC)) 331 DC = CD->getParent(); 332 return std::make_tuple(&Context.getManglingNumberContext(DC), nullptr); 333 } 334 335 return std::make_tuple(nullptr, nullptr); 336 } 337 338 case Concept: 339 // Concept definitions aren't code generated and thus aren't mangled, 340 // however the ManglingContextDecl is important for the purposes of 341 // re-forming the template argument list of the lambda for constraint 342 // evaluation. 343 case StaticDataMember: 344 // -- the initializers of nonspecialized static members of template classes 345 if (!IsInNonspecializedTemplate) 346 return std::make_tuple(nullptr, ManglingContextDecl); 347 // Fall through to get the current context. 348 [[fallthrough]]; 349 350 case DataMember: 351 // -- the in-class initializers of class members 352 case DefaultArgument: 353 // -- default arguments appearing in class definitions 354 case InlineVariable: 355 // -- the initializers of inline variables 356 case VariableTemplate: 357 // -- the initializers of templated variables 358 return std::make_tuple( 359 &Context.getManglingNumberContext(ASTContext::NeedExtraManglingDecl, 360 ManglingContextDecl), 361 ManglingContextDecl); 362 } 363 364 llvm_unreachable("unexpected context"); 365 } 366 367 CXXMethodDecl *Sema::startLambdaDefinition( 368 CXXRecordDecl *Class, SourceRange IntroducerRange, 369 TypeSourceInfo *MethodTypeInfo, SourceLocation EndLoc, 370 ArrayRef<ParmVarDecl *> Params, ConstexprSpecKind ConstexprKind, 371 StorageClass SC, Expr *TrailingRequiresClause) { 372 QualType MethodType = MethodTypeInfo->getType(); 373 TemplateParameterList *TemplateParams = 374 getGenericLambdaTemplateParameterList(getCurLambda(), *this); 375 // If a lambda appears in a dependent context or is a generic lambda (has 376 // template parameters) and has an 'auto' return type, deduce it to a 377 // dependent type. 378 if (Class->isDependentContext() || TemplateParams) { 379 const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>(); 380 QualType Result = FPT->getReturnType(); 381 if (Result->isUndeducedType()) { 382 Result = SubstAutoTypeDependent(Result); 383 MethodType = Context.getFunctionType(Result, FPT->getParamTypes(), 384 FPT->getExtProtoInfo()); 385 } 386 } 387 388 // C++11 [expr.prim.lambda]p5: 389 // The closure type for a lambda-expression has a public inline function 390 // call operator (13.5.4) whose parameters and return type are described by 391 // the lambda-expression's parameter-declaration-clause and 392 // trailing-return-type respectively. 393 DeclarationName MethodName 394 = Context.DeclarationNames.getCXXOperatorName(OO_Call); 395 DeclarationNameLoc MethodNameLoc = 396 DeclarationNameLoc::makeCXXOperatorNameLoc(IntroducerRange); 397 CXXMethodDecl *Method = CXXMethodDecl::Create( 398 Context, Class, EndLoc, 399 DeclarationNameInfo(MethodName, IntroducerRange.getBegin(), 400 MethodNameLoc), 401 MethodType, MethodTypeInfo, SC, getCurFPFeatures().isFPConstrained(), 402 /*isInline=*/true, ConstexprKind, EndLoc, TrailingRequiresClause); 403 Method->setAccess(AS_public); 404 if (!TemplateParams) 405 Class->addDecl(Method); 406 407 // Temporarily set the lexical declaration context to the current 408 // context, so that the Scope stack matches the lexical nesting. 409 Method->setLexicalDeclContext(CurContext); 410 // Create a function template if we have a template parameter list 411 FunctionTemplateDecl *const TemplateMethod = TemplateParams ? 412 FunctionTemplateDecl::Create(Context, Class, 413 Method->getLocation(), MethodName, 414 TemplateParams, 415 Method) : nullptr; 416 if (TemplateMethod) { 417 TemplateMethod->setAccess(AS_public); 418 Method->setDescribedFunctionTemplate(TemplateMethod); 419 Class->addDecl(TemplateMethod); 420 TemplateMethod->setLexicalDeclContext(CurContext); 421 } 422 423 // Add parameters. 424 if (!Params.empty()) { 425 Method->setParams(Params); 426 CheckParmsForFunctionDef(Params, 427 /*CheckParameterNames=*/false); 428 429 for (auto *P : Method->parameters()) 430 P->setOwningFunction(Method); 431 } 432 433 return Method; 434 } 435 436 void Sema::handleLambdaNumbering( 437 CXXRecordDecl *Class, CXXMethodDecl *Method, 438 std::optional<std::tuple<bool, unsigned, unsigned, Decl *>> Mangling) { 439 if (Mangling) { 440 bool HasKnownInternalLinkage; 441 unsigned ManglingNumber, DeviceManglingNumber; 442 Decl *ManglingContextDecl; 443 std::tie(HasKnownInternalLinkage, ManglingNumber, DeviceManglingNumber, 444 ManglingContextDecl) = *Mangling; 445 Class->setLambdaMangling(ManglingNumber, ManglingContextDecl, 446 HasKnownInternalLinkage); 447 Class->setDeviceLambdaManglingNumber(DeviceManglingNumber); 448 return; 449 } 450 451 auto getMangleNumberingContext = 452 [this](CXXRecordDecl *Class, 453 Decl *ManglingContextDecl) -> MangleNumberingContext * { 454 // Get mangle numbering context if there's any extra decl context. 455 if (ManglingContextDecl) 456 return &Context.getManglingNumberContext( 457 ASTContext::NeedExtraManglingDecl, ManglingContextDecl); 458 // Otherwise, from that lambda's decl context. 459 auto DC = Class->getDeclContext(); 460 while (auto *CD = dyn_cast<CapturedDecl>(DC)) 461 DC = CD->getParent(); 462 return &Context.getManglingNumberContext(DC); 463 }; 464 465 MangleNumberingContext *MCtx; 466 Decl *ManglingContextDecl; 467 std::tie(MCtx, ManglingContextDecl) = 468 getCurrentMangleNumberContext(Class->getDeclContext()); 469 bool HasKnownInternalLinkage = false; 470 if (!MCtx && (getLangOpts().CUDA || getLangOpts().SYCLIsDevice || 471 getLangOpts().SYCLIsHost)) { 472 // Force lambda numbering in CUDA/HIP as we need to name lambdas following 473 // ODR. Both device- and host-compilation need to have a consistent naming 474 // on kernel functions. As lambdas are potential part of these `__global__` 475 // function names, they needs numbering following ODR. 476 // Also force for SYCL, since we need this for the 477 // __builtin_sycl_unique_stable_name implementation, which depends on lambda 478 // mangling. 479 MCtx = getMangleNumberingContext(Class, ManglingContextDecl); 480 assert(MCtx && "Retrieving mangle numbering context failed!"); 481 HasKnownInternalLinkage = true; 482 } 483 if (MCtx) { 484 unsigned ManglingNumber = MCtx->getManglingNumber(Method); 485 Class->setLambdaMangling(ManglingNumber, ManglingContextDecl, 486 HasKnownInternalLinkage); 487 Class->setDeviceLambdaManglingNumber(MCtx->getDeviceManglingNumber(Method)); 488 } 489 } 490 491 void Sema::buildLambdaScope(LambdaScopeInfo *LSI, 492 CXXMethodDecl *CallOperator, 493 SourceRange IntroducerRange, 494 LambdaCaptureDefault CaptureDefault, 495 SourceLocation CaptureDefaultLoc, 496 bool ExplicitParams, 497 bool ExplicitResultType, 498 bool Mutable) { 499 LSI->CallOperator = CallOperator; 500 CXXRecordDecl *LambdaClass = CallOperator->getParent(); 501 LSI->Lambda = LambdaClass; 502 if (CaptureDefault == LCD_ByCopy) 503 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval; 504 else if (CaptureDefault == LCD_ByRef) 505 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref; 506 LSI->CaptureDefaultLoc = CaptureDefaultLoc; 507 LSI->IntroducerRange = IntroducerRange; 508 LSI->ExplicitParams = ExplicitParams; 509 LSI->Mutable = Mutable; 510 511 if (ExplicitResultType) { 512 LSI->ReturnType = CallOperator->getReturnType(); 513 514 if (!LSI->ReturnType->isDependentType() && 515 !LSI->ReturnType->isVoidType()) { 516 if (RequireCompleteType(CallOperator->getBeginLoc(), LSI->ReturnType, 517 diag::err_lambda_incomplete_result)) { 518 // Do nothing. 519 } 520 } 521 } else { 522 LSI->HasImplicitReturnType = true; 523 } 524 } 525 526 void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) { 527 LSI->finishedExplicitCaptures(); 528 } 529 530 void Sema::ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc, 531 ArrayRef<NamedDecl *> TParams, 532 SourceLocation RAngleLoc, 533 ExprResult RequiresClause) { 534 LambdaScopeInfo *LSI = getCurLambda(); 535 assert(LSI && "Expected a lambda scope"); 536 assert(LSI->NumExplicitTemplateParams == 0 && 537 "Already acted on explicit template parameters"); 538 assert(LSI->TemplateParams.empty() && 539 "Explicit template parameters should come " 540 "before invented (auto) ones"); 541 assert(!TParams.empty() && 542 "No template parameters to act on"); 543 LSI->TemplateParams.append(TParams.begin(), TParams.end()); 544 LSI->NumExplicitTemplateParams = TParams.size(); 545 LSI->ExplicitTemplateParamsRange = {LAngleLoc, RAngleLoc}; 546 LSI->RequiresClause = RequiresClause; 547 } 548 549 void Sema::addLambdaParameters( 550 ArrayRef<LambdaIntroducer::LambdaCapture> Captures, 551 CXXMethodDecl *CallOperator, Scope *CurScope) { 552 // Introduce our parameters into the function scope 553 for (unsigned p = 0, NumParams = CallOperator->getNumParams(); 554 p < NumParams; ++p) { 555 ParmVarDecl *Param = CallOperator->getParamDecl(p); 556 557 // If this has an identifier, add it to the scope stack. 558 if (CurScope && Param->getIdentifier()) { 559 bool Error = false; 560 // Resolution of CWG 2211 in C++17 renders shadowing ill-formed, but we 561 // retroactively apply it. 562 for (const auto &Capture : Captures) { 563 if (Capture.Id == Param->getIdentifier()) { 564 Error = true; 565 Diag(Param->getLocation(), diag::err_parameter_shadow_capture); 566 Diag(Capture.Loc, diag::note_var_explicitly_captured_here) 567 << Capture.Id << true; 568 } 569 } 570 if (!Error) 571 CheckShadow(CurScope, Param); 572 573 PushOnScopeChains(Param, CurScope); 574 } 575 } 576 } 577 578 /// If this expression is an enumerator-like expression of some type 579 /// T, return the type T; otherwise, return null. 580 /// 581 /// Pointer comparisons on the result here should always work because 582 /// it's derived from either the parent of an EnumConstantDecl 583 /// (i.e. the definition) or the declaration returned by 584 /// EnumType::getDecl() (i.e. the definition). 585 static EnumDecl *findEnumForBlockReturn(Expr *E) { 586 // An expression is an enumerator-like expression of type T if, 587 // ignoring parens and parens-like expressions: 588 E = E->IgnoreParens(); 589 590 // - it is an enumerator whose enum type is T or 591 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 592 if (EnumConstantDecl *D 593 = dyn_cast<EnumConstantDecl>(DRE->getDecl())) { 594 return cast<EnumDecl>(D->getDeclContext()); 595 } 596 return nullptr; 597 } 598 599 // - it is a comma expression whose RHS is an enumerator-like 600 // expression of type T or 601 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 602 if (BO->getOpcode() == BO_Comma) 603 return findEnumForBlockReturn(BO->getRHS()); 604 return nullptr; 605 } 606 607 // - it is a statement-expression whose value expression is an 608 // enumerator-like expression of type T or 609 if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) { 610 if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back())) 611 return findEnumForBlockReturn(last); 612 return nullptr; 613 } 614 615 // - it is a ternary conditional operator (not the GNU ?: 616 // extension) whose second and third operands are 617 // enumerator-like expressions of type T or 618 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 619 if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr())) 620 if (ED == findEnumForBlockReturn(CO->getFalseExpr())) 621 return ED; 622 return nullptr; 623 } 624 625 // (implicitly:) 626 // - it is an implicit integral conversion applied to an 627 // enumerator-like expression of type T or 628 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 629 // We can sometimes see integral conversions in valid 630 // enumerator-like expressions. 631 if (ICE->getCastKind() == CK_IntegralCast) 632 return findEnumForBlockReturn(ICE->getSubExpr()); 633 634 // Otherwise, just rely on the type. 635 } 636 637 // - it is an expression of that formal enum type. 638 if (const EnumType *ET = E->getType()->getAs<EnumType>()) { 639 return ET->getDecl(); 640 } 641 642 // Otherwise, nope. 643 return nullptr; 644 } 645 646 /// Attempt to find a type T for which the returned expression of the 647 /// given statement is an enumerator-like expression of that type. 648 static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) { 649 if (Expr *retValue = ret->getRetValue()) 650 return findEnumForBlockReturn(retValue); 651 return nullptr; 652 } 653 654 /// Attempt to find a common type T for which all of the returned 655 /// expressions in a block are enumerator-like expressions of that 656 /// type. 657 static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) { 658 ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end(); 659 660 // Try to find one for the first return. 661 EnumDecl *ED = findEnumForBlockReturn(*i); 662 if (!ED) return nullptr; 663 664 // Check that the rest of the returns have the same enum. 665 for (++i; i != e; ++i) { 666 if (findEnumForBlockReturn(*i) != ED) 667 return nullptr; 668 } 669 670 // Never infer an anonymous enum type. 671 if (!ED->hasNameForLinkage()) return nullptr; 672 673 return ED; 674 } 675 676 /// Adjust the given return statements so that they formally return 677 /// the given type. It should require, at most, an IntegralCast. 678 static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns, 679 QualType returnType) { 680 for (ArrayRef<ReturnStmt*>::iterator 681 i = returns.begin(), e = returns.end(); i != e; ++i) { 682 ReturnStmt *ret = *i; 683 Expr *retValue = ret->getRetValue(); 684 if (S.Context.hasSameType(retValue->getType(), returnType)) 685 continue; 686 687 // Right now we only support integral fixup casts. 688 assert(returnType->isIntegralOrUnscopedEnumerationType()); 689 assert(retValue->getType()->isIntegralOrUnscopedEnumerationType()); 690 691 ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue); 692 693 Expr *E = (cleanups ? cleanups->getSubExpr() : retValue); 694 E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast, E, 695 /*base path*/ nullptr, VK_PRValue, 696 FPOptionsOverride()); 697 if (cleanups) { 698 cleanups->setSubExpr(E); 699 } else { 700 ret->setRetValue(E); 701 } 702 } 703 } 704 705 void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) { 706 assert(CSI.HasImplicitReturnType); 707 // If it was ever a placeholder, it had to been deduced to DependentTy. 708 assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType()); 709 assert((!isa<LambdaScopeInfo>(CSI) || !getLangOpts().CPlusPlus14) && 710 "lambda expressions use auto deduction in C++14 onwards"); 711 712 // C++ core issue 975: 713 // If a lambda-expression does not include a trailing-return-type, 714 // it is as if the trailing-return-type denotes the following type: 715 // - if there are no return statements in the compound-statement, 716 // or all return statements return either an expression of type 717 // void or no expression or braced-init-list, the type void; 718 // - otherwise, if all return statements return an expression 719 // and the types of the returned expressions after 720 // lvalue-to-rvalue conversion (4.1 [conv.lval]), 721 // array-to-pointer conversion (4.2 [conv.array]), and 722 // function-to-pointer conversion (4.3 [conv.func]) are the 723 // same, that common type; 724 // - otherwise, the program is ill-formed. 725 // 726 // C++ core issue 1048 additionally removes top-level cv-qualifiers 727 // from the types of returned expressions to match the C++14 auto 728 // deduction rules. 729 // 730 // In addition, in blocks in non-C++ modes, if all of the return 731 // statements are enumerator-like expressions of some type T, where 732 // T has a name for linkage, then we infer the return type of the 733 // block to be that type. 734 735 // First case: no return statements, implicit void return type. 736 ASTContext &Ctx = getASTContext(); 737 if (CSI.Returns.empty()) { 738 // It's possible there were simply no /valid/ return statements. 739 // In this case, the first one we found may have at least given us a type. 740 if (CSI.ReturnType.isNull()) 741 CSI.ReturnType = Ctx.VoidTy; 742 return; 743 } 744 745 // Second case: at least one return statement has dependent type. 746 // Delay type checking until instantiation. 747 assert(!CSI.ReturnType.isNull() && "We should have a tentative return type."); 748 if (CSI.ReturnType->isDependentType()) 749 return; 750 751 // Try to apply the enum-fuzz rule. 752 if (!getLangOpts().CPlusPlus) { 753 assert(isa<BlockScopeInfo>(CSI)); 754 const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns); 755 if (ED) { 756 CSI.ReturnType = Context.getTypeDeclType(ED); 757 adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType); 758 return; 759 } 760 } 761 762 // Third case: only one return statement. Don't bother doing extra work! 763 if (CSI.Returns.size() == 1) 764 return; 765 766 // General case: many return statements. 767 // Check that they all have compatible return types. 768 769 // We require the return types to strictly match here. 770 // Note that we've already done the required promotions as part of 771 // processing the return statement. 772 for (const ReturnStmt *RS : CSI.Returns) { 773 const Expr *RetE = RS->getRetValue(); 774 775 QualType ReturnType = 776 (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType(); 777 if (Context.getCanonicalFunctionResultType(ReturnType) == 778 Context.getCanonicalFunctionResultType(CSI.ReturnType)) { 779 // Use the return type with the strictest possible nullability annotation. 780 auto RetTyNullability = ReturnType->getNullability(); 781 auto BlockNullability = CSI.ReturnType->getNullability(); 782 if (BlockNullability && 783 (!RetTyNullability || 784 hasWeakerNullability(*RetTyNullability, *BlockNullability))) 785 CSI.ReturnType = ReturnType; 786 continue; 787 } 788 789 // FIXME: This is a poor diagnostic for ReturnStmts without expressions. 790 // TODO: It's possible that the *first* return is the divergent one. 791 Diag(RS->getBeginLoc(), 792 diag::err_typecheck_missing_return_type_incompatible) 793 << ReturnType << CSI.ReturnType << isa<LambdaScopeInfo>(CSI); 794 // Continue iterating so that we keep emitting diagnostics. 795 } 796 } 797 798 QualType Sema::buildLambdaInitCaptureInitialization( 799 SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc, 800 std::optional<unsigned> NumExpansions, IdentifierInfo *Id, 801 bool IsDirectInit, Expr *&Init) { 802 // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to 803 // deduce against. 804 QualType DeductType = Context.getAutoDeductType(); 805 TypeLocBuilder TLB; 806 AutoTypeLoc TL = TLB.push<AutoTypeLoc>(DeductType); 807 TL.setNameLoc(Loc); 808 if (ByRef) { 809 DeductType = BuildReferenceType(DeductType, true, Loc, Id); 810 assert(!DeductType.isNull() && "can't build reference to auto"); 811 TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc); 812 } 813 if (EllipsisLoc.isValid()) { 814 if (Init->containsUnexpandedParameterPack()) { 815 Diag(EllipsisLoc, getLangOpts().CPlusPlus20 816 ? diag::warn_cxx17_compat_init_capture_pack 817 : diag::ext_init_capture_pack); 818 DeductType = Context.getPackExpansionType(DeductType, NumExpansions, 819 /*ExpectPackInType=*/false); 820 TLB.push<PackExpansionTypeLoc>(DeductType).setEllipsisLoc(EllipsisLoc); 821 } else { 822 // Just ignore the ellipsis for now and form a non-pack variable. We'll 823 // diagnose this later when we try to capture it. 824 } 825 } 826 TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType); 827 828 // Deduce the type of the init capture. 829 QualType DeducedType = deduceVarTypeFromInitializer( 830 /*VarDecl*/nullptr, DeclarationName(Id), DeductType, TSI, 831 SourceRange(Loc, Loc), IsDirectInit, Init); 832 if (DeducedType.isNull()) 833 return QualType(); 834 835 // Are we a non-list direct initialization? 836 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init); 837 838 // Perform initialization analysis and ensure any implicit conversions 839 // (such as lvalue-to-rvalue) are enforced. 840 InitializedEntity Entity = 841 InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc); 842 InitializationKind Kind = 843 IsDirectInit 844 ? (CXXDirectInit ? InitializationKind::CreateDirect( 845 Loc, Init->getBeginLoc(), Init->getEndLoc()) 846 : InitializationKind::CreateDirectList(Loc)) 847 : InitializationKind::CreateCopy(Loc, Init->getBeginLoc()); 848 849 MultiExprArg Args = Init; 850 if (CXXDirectInit) 851 Args = 852 MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs()); 853 QualType DclT; 854 InitializationSequence InitSeq(*this, Entity, Kind, Args); 855 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT); 856 857 if (Result.isInvalid()) 858 return QualType(); 859 860 Init = Result.getAs<Expr>(); 861 return DeducedType; 862 } 863 864 VarDecl *Sema::createLambdaInitCaptureVarDecl(SourceLocation Loc, 865 QualType InitCaptureType, 866 SourceLocation EllipsisLoc, 867 IdentifierInfo *Id, 868 unsigned InitStyle, Expr *Init) { 869 // FIXME: Retain the TypeSourceInfo from buildLambdaInitCaptureInitialization 870 // rather than reconstructing it here. 871 TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType, Loc); 872 if (auto PETL = TSI->getTypeLoc().getAs<PackExpansionTypeLoc>()) 873 PETL.setEllipsisLoc(EllipsisLoc); 874 875 // Create a dummy variable representing the init-capture. This is not actually 876 // used as a variable, and only exists as a way to name and refer to the 877 // init-capture. 878 // FIXME: Pass in separate source locations for '&' and identifier. 879 VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc, 880 Loc, Id, InitCaptureType, TSI, SC_Auto); 881 NewVD->setInitCapture(true); 882 NewVD->setReferenced(true); 883 // FIXME: Pass in a VarDecl::InitializationStyle. 884 NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle)); 885 NewVD->markUsed(Context); 886 NewVD->setInit(Init); 887 if (NewVD->isParameterPack()) 888 getCurLambda()->LocalPacks.push_back(NewVD); 889 return NewVD; 890 } 891 892 void Sema::addInitCapture(LambdaScopeInfo *LSI, VarDecl *Var, 893 bool isReferenceType) { 894 assert(Var->isInitCapture() && "init capture flag should be set"); 895 LSI->addCapture(Var, /*isBlock*/ false, isReferenceType, 896 /*isNested*/ false, Var->getLocation(), SourceLocation(), 897 Var->getType(), /*Invalid*/ false); 898 } 899 900 void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro, 901 Declarator &ParamInfo, 902 Scope *CurScope) { 903 LambdaScopeInfo *const LSI = getCurLambda(); 904 assert(LSI && "LambdaScopeInfo should be on stack!"); 905 906 // Determine if we're within a context where we know that the lambda will 907 // be dependent, because there are template parameters in scope. 908 CXXRecordDecl::LambdaDependencyKind LambdaDependencyKind = 909 CXXRecordDecl::LDK_Unknown; 910 if (LSI->NumExplicitTemplateParams > 0) { 911 auto *TemplateParamScope = CurScope->getTemplateParamParent(); 912 assert(TemplateParamScope && 913 "Lambda with explicit template param list should establish a " 914 "template param scope"); 915 assert(TemplateParamScope->getParent()); 916 if (TemplateParamScope->getParent()->getTemplateParamParent() != nullptr) 917 LambdaDependencyKind = CXXRecordDecl::LDK_AlwaysDependent; 918 } else if (CurScope->getTemplateParamParent() != nullptr) { 919 LambdaDependencyKind = CXXRecordDecl::LDK_AlwaysDependent; 920 } 921 922 // Determine the signature of the call operator. 923 TypeSourceInfo *MethodTyInfo; 924 bool ExplicitParams = true; 925 bool ExplicitResultType = true; 926 bool ContainsUnexpandedParameterPack = false; 927 SourceLocation EndLoc; 928 SmallVector<ParmVarDecl *, 8> Params; 929 930 assert( 931 (ParamInfo.getDeclSpec().getStorageClassSpec() == 932 DeclSpec::SCS_unspecified || 933 ParamInfo.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static) && 934 "Unexpected storage specifier"); 935 bool IsLambdaStatic = 936 ParamInfo.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static; 937 938 if (ParamInfo.getNumTypeObjects() == 0) { 939 // C++11 [expr.prim.lambda]p4: 940 // If a lambda-expression does not include a lambda-declarator, it is as 941 // if the lambda-declarator were (). 942 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention( 943 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 944 EPI.HasTrailingReturn = true; 945 EPI.TypeQuals.addConst(); 946 LangAS AS = getDefaultCXXMethodAddrSpace(); 947 if (AS != LangAS::Default) 948 EPI.TypeQuals.addAddressSpace(AS); 949 950 // C++1y [expr.prim.lambda]: 951 // The lambda return type is 'auto', which is replaced by the 952 // trailing-return type if provided and/or deduced from 'return' 953 // statements 954 // We don't do this before C++1y, because we don't support deduced return 955 // types there. 956 QualType DefaultTypeForNoTrailingReturn = 957 getLangOpts().CPlusPlus14 ? Context.getAutoDeductType() 958 : Context.DependentTy; 959 QualType MethodTy = Context.getFunctionType(DefaultTypeForNoTrailingReturn, 960 std::nullopt, EPI); 961 MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy); 962 ExplicitParams = false; 963 ExplicitResultType = false; 964 EndLoc = Intro.Range.getEnd(); 965 } else { 966 assert(ParamInfo.isFunctionDeclarator() && 967 "lambda-declarator is a function"); 968 DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo(); 969 970 // C++11 [expr.prim.lambda]p5: 971 // This function call operator is declared const (9.3.1) if and only if 972 // the lambda-expression's parameter-declaration-clause is not followed 973 // by mutable. It is neither virtual nor declared volatile. [...] 974 if (!FTI.hasMutableQualifier() && !IsLambdaStatic) { 975 FTI.getOrCreateMethodQualifiers().SetTypeQual(DeclSpec::TQ_const, 976 SourceLocation()); 977 } 978 979 MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope); 980 assert(MethodTyInfo && "no type from lambda-declarator"); 981 EndLoc = ParamInfo.getSourceRange().getEnd(); 982 983 ExplicitResultType = FTI.hasTrailingReturnType(); 984 985 if (ExplicitResultType && getLangOpts().HLSL) { 986 QualType RetTy = FTI.getTrailingReturnType().get(); 987 if (!RetTy.isNull()) { 988 // HLSL does not support specifying an address space on a lambda return 989 // type. 990 LangAS AddressSpace = RetTy.getAddressSpace(); 991 if (AddressSpace != LangAS::Default) 992 Diag(FTI.getTrailingReturnTypeLoc(), 993 diag::err_return_value_with_address_space); 994 } 995 } 996 997 if (FTIHasNonVoidParameters(FTI)) { 998 Params.reserve(FTI.NumParams); 999 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) 1000 Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param)); 1001 } 1002 1003 // Check for unexpanded parameter packs in the method type. 1004 if (MethodTyInfo->getType()->containsUnexpandedParameterPack()) 1005 DiagnoseUnexpandedParameterPack(Intro.Range.getBegin(), MethodTyInfo, 1006 UPPC_DeclarationType); 1007 } 1008 1009 CXXRecordDecl *Class = createLambdaClosureType( 1010 Intro.Range, MethodTyInfo, LambdaDependencyKind, Intro.Default); 1011 CXXMethodDecl *Method = 1012 startLambdaDefinition(Class, Intro.Range, MethodTyInfo, EndLoc, Params, 1013 ParamInfo.getDeclSpec().getConstexprSpecifier(), 1014 IsLambdaStatic ? SC_Static : SC_None, 1015 ParamInfo.getTrailingRequiresClause()); 1016 if (ExplicitParams) 1017 CheckCXXDefaultArguments(Method); 1018 1019 // This represents the function body for the lambda function, check if we 1020 // have to apply optnone due to a pragma. 1021 AddRangeBasedOptnone(Method); 1022 1023 // code_seg attribute on lambda apply to the method. 1024 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true)) 1025 Method->addAttr(A); 1026 1027 // Attributes on the lambda apply to the method. 1028 ProcessDeclAttributes(CurScope, Method, ParamInfo); 1029 1030 // CUDA lambdas get implicit host and device attributes. 1031 if (getLangOpts().CUDA) 1032 CUDASetLambdaAttrs(Method); 1033 1034 // OpenMP lambdas might get assumumption attributes. 1035 if (LangOpts.OpenMP) 1036 ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(Method); 1037 1038 // Number the lambda for linkage purposes if necessary. 1039 handleLambdaNumbering(Class, Method); 1040 1041 // Introduce the function call operator as the current declaration context. 1042 PushDeclContext(CurScope, Method); 1043 1044 // Build the lambda scope. 1045 buildLambdaScope(LSI, Method, Intro.Range, Intro.Default, Intro.DefaultLoc, 1046 ExplicitParams, ExplicitResultType, !Method->isConst()); 1047 1048 // C++11 [expr.prim.lambda]p9: 1049 // A lambda-expression whose smallest enclosing scope is a block scope is a 1050 // local lambda expression; any other lambda expression shall not have a 1051 // capture-default or simple-capture in its lambda-introducer. 1052 // 1053 // For simple-captures, this is covered by the check below that any named 1054 // entity is a variable that can be captured. 1055 // 1056 // For DR1632, we also allow a capture-default in any context where we can 1057 // odr-use 'this' (in particular, in a default initializer for a non-static 1058 // data member). 1059 if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() && 1060 (getCurrentThisType().isNull() || 1061 CheckCXXThisCapture(SourceLocation(), /*Explicit*/true, 1062 /*BuildAndDiagnose*/false))) 1063 Diag(Intro.DefaultLoc, diag::err_capture_default_non_local); 1064 1065 // Distinct capture names, for diagnostics. 1066 llvm::SmallSet<IdentifierInfo*, 8> CaptureNames; 1067 1068 // Handle explicit captures. 1069 SourceLocation PrevCaptureLoc 1070 = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc; 1071 for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E; 1072 PrevCaptureLoc = C->Loc, ++C) { 1073 if (C->Kind == LCK_This || C->Kind == LCK_StarThis) { 1074 if (C->Kind == LCK_StarThis) 1075 Diag(C->Loc, !getLangOpts().CPlusPlus17 1076 ? diag::ext_star_this_lambda_capture_cxx17 1077 : diag::warn_cxx14_compat_star_this_lambda_capture); 1078 1079 // C++11 [expr.prim.lambda]p8: 1080 // An identifier or this shall not appear more than once in a 1081 // lambda-capture. 1082 if (LSI->isCXXThisCaptured()) { 1083 Diag(C->Loc, diag::err_capture_more_than_once) 1084 << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation()) 1085 << FixItHint::CreateRemoval( 1086 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1087 continue; 1088 } 1089 1090 // C++2a [expr.prim.lambda]p8: 1091 // If a lambda-capture includes a capture-default that is =, 1092 // each simple-capture of that lambda-capture shall be of the form 1093 // "&identifier", "this", or "* this". [ Note: The form [&,this] is 1094 // redundant but accepted for compatibility with ISO C++14. --end note ] 1095 if (Intro.Default == LCD_ByCopy && C->Kind != LCK_StarThis) 1096 Diag(C->Loc, !getLangOpts().CPlusPlus20 1097 ? diag::ext_equals_this_lambda_capture_cxx20 1098 : diag::warn_cxx17_compat_equals_this_lambda_capture); 1099 1100 // C++11 [expr.prim.lambda]p12: 1101 // If this is captured by a local lambda expression, its nearest 1102 // enclosing function shall be a non-static member function. 1103 QualType ThisCaptureType = getCurrentThisType(); 1104 if (ThisCaptureType.isNull()) { 1105 Diag(C->Loc, diag::err_this_capture) << true; 1106 continue; 1107 } 1108 1109 CheckCXXThisCapture(C->Loc, /*Explicit=*/true, /*BuildAndDiagnose*/ true, 1110 /*FunctionScopeIndexToStopAtPtr*/ nullptr, 1111 C->Kind == LCK_StarThis); 1112 if (!LSI->Captures.empty()) 1113 LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange; 1114 continue; 1115 } 1116 1117 assert(C->Id && "missing identifier for capture"); 1118 1119 if (C->Init.isInvalid()) 1120 continue; 1121 1122 ValueDecl *Var = nullptr; 1123 if (C->Init.isUsable()) { 1124 Diag(C->Loc, getLangOpts().CPlusPlus14 1125 ? diag::warn_cxx11_compat_init_capture 1126 : diag::ext_init_capture); 1127 1128 // If the initializer expression is usable, but the InitCaptureType 1129 // is not, then an error has occurred - so ignore the capture for now. 1130 // for e.g., [n{0}] { }; <-- if no <initializer_list> is included. 1131 // FIXME: we should create the init capture variable and mark it invalid 1132 // in this case. 1133 if (C->InitCaptureType.get().isNull()) 1134 continue; 1135 1136 if (C->Init.get()->containsUnexpandedParameterPack() && 1137 !C->InitCaptureType.get()->getAs<PackExpansionType>()) 1138 DiagnoseUnexpandedParameterPack(C->Init.get(), UPPC_Initializer); 1139 1140 unsigned InitStyle; 1141 switch (C->InitKind) { 1142 case LambdaCaptureInitKind::NoInit: 1143 llvm_unreachable("not an init-capture?"); 1144 case LambdaCaptureInitKind::CopyInit: 1145 InitStyle = VarDecl::CInit; 1146 break; 1147 case LambdaCaptureInitKind::DirectInit: 1148 InitStyle = VarDecl::CallInit; 1149 break; 1150 case LambdaCaptureInitKind::ListInit: 1151 InitStyle = VarDecl::ListInit; 1152 break; 1153 } 1154 Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(), 1155 C->EllipsisLoc, C->Id, InitStyle, 1156 C->Init.get()); 1157 // C++1y [expr.prim.lambda]p11: 1158 // An init-capture behaves as if it declares and explicitly 1159 // captures a variable [...] whose declarative region is the 1160 // lambda-expression's compound-statement 1161 if (Var) 1162 PushOnScopeChains(Var, CurScope, false); 1163 } else { 1164 assert(C->InitKind == LambdaCaptureInitKind::NoInit && 1165 "init capture has valid but null init?"); 1166 1167 // C++11 [expr.prim.lambda]p8: 1168 // If a lambda-capture includes a capture-default that is &, the 1169 // identifiers in the lambda-capture shall not be preceded by &. 1170 // If a lambda-capture includes a capture-default that is =, [...] 1171 // each identifier it contains shall be preceded by &. 1172 if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) { 1173 Diag(C->Loc, diag::err_reference_capture_with_reference_default) 1174 << FixItHint::CreateRemoval( 1175 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1176 continue; 1177 } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) { 1178 Diag(C->Loc, diag::err_copy_capture_with_copy_default) 1179 << FixItHint::CreateRemoval( 1180 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1181 continue; 1182 } 1183 1184 // C++11 [expr.prim.lambda]p10: 1185 // The identifiers in a capture-list are looked up using the usual 1186 // rules for unqualified name lookup (3.4.1) 1187 DeclarationNameInfo Name(C->Id, C->Loc); 1188 LookupResult R(*this, Name, LookupOrdinaryName); 1189 LookupName(R, CurScope); 1190 if (R.isAmbiguous()) 1191 continue; 1192 if (R.empty()) { 1193 // FIXME: Disable corrections that would add qualification? 1194 CXXScopeSpec ScopeSpec; 1195 DeclFilterCCC<VarDecl> Validator{}; 1196 if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R, Validator)) 1197 continue; 1198 } 1199 1200 if (auto *BD = R.getAsSingle<BindingDecl>()) 1201 Var = BD; 1202 else 1203 Var = R.getAsSingle<VarDecl>(); 1204 if (Var && DiagnoseUseOfDecl(Var, C->Loc)) 1205 continue; 1206 } 1207 1208 // C++11 [expr.prim.lambda]p8: 1209 // An identifier or this shall not appear more than once in a 1210 // lambda-capture. 1211 if (!CaptureNames.insert(C->Id).second) { 1212 if (Var && LSI->isCaptured(Var)) { 1213 Diag(C->Loc, diag::err_capture_more_than_once) 1214 << C->Id << SourceRange(LSI->getCapture(Var).getLocation()) 1215 << FixItHint::CreateRemoval( 1216 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1217 } else 1218 // Previous capture captured something different (one or both was 1219 // an init-cpature): no fixit. 1220 Diag(C->Loc, diag::err_capture_more_than_once) << C->Id; 1221 continue; 1222 } 1223 1224 // C++11 [expr.prim.lambda]p10: 1225 // [...] each such lookup shall find a variable with automatic storage 1226 // duration declared in the reaching scope of the local lambda expression. 1227 // Note that the 'reaching scope' check happens in tryCaptureVariable(). 1228 if (!Var) { 1229 Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id; 1230 continue; 1231 } 1232 1233 // Ignore invalid decls; they'll just confuse the code later. 1234 if (Var->isInvalidDecl()) 1235 continue; 1236 1237 VarDecl *Underlying = Var->getPotentiallyDecomposedVarDecl(); 1238 1239 if (!Underlying->hasLocalStorage()) { 1240 Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id; 1241 Diag(Var->getLocation(), diag::note_previous_decl) << C->Id; 1242 continue; 1243 } 1244 1245 // C++11 [expr.prim.lambda]p23: 1246 // A capture followed by an ellipsis is a pack expansion (14.5.3). 1247 SourceLocation EllipsisLoc; 1248 if (C->EllipsisLoc.isValid()) { 1249 if (Var->isParameterPack()) { 1250 EllipsisLoc = C->EllipsisLoc; 1251 } else { 1252 Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 1253 << (C->Init.isUsable() ? C->Init.get()->getSourceRange() 1254 : SourceRange(C->Loc)); 1255 1256 // Just ignore the ellipsis. 1257 } 1258 } else if (Var->isParameterPack()) { 1259 ContainsUnexpandedParameterPack = true; 1260 } 1261 1262 if (C->Init.isUsable()) { 1263 addInitCapture(LSI, cast<VarDecl>(Var), C->Kind == LCK_ByRef); 1264 } else { 1265 TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef : 1266 TryCapture_ExplicitByVal; 1267 tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc); 1268 } 1269 if (!LSI->Captures.empty()) 1270 LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange; 1271 } 1272 finishLambdaExplicitCaptures(LSI); 1273 1274 LSI->ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack; 1275 1276 // Add lambda parameters into scope. 1277 addLambdaParameters(Intro.Captures, Method, CurScope); 1278 1279 // Enter a new evaluation context to insulate the lambda from any 1280 // cleanups from the enclosing full-expression. 1281 PushExpressionEvaluationContext( 1282 LSI->CallOperator->isConsteval() 1283 ? ExpressionEvaluationContext::ImmediateFunctionContext 1284 : ExpressionEvaluationContext::PotentiallyEvaluated); 1285 } 1286 1287 void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope, 1288 bool IsInstantiation) { 1289 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back()); 1290 1291 // Leave the expression-evaluation context. 1292 DiscardCleanupsInEvaluationContext(); 1293 PopExpressionEvaluationContext(); 1294 1295 // Leave the context of the lambda. 1296 if (!IsInstantiation) 1297 PopDeclContext(); 1298 1299 // Finalize the lambda. 1300 CXXRecordDecl *Class = LSI->Lambda; 1301 Class->setInvalidDecl(); 1302 SmallVector<Decl*, 4> Fields(Class->fields()); 1303 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(), 1304 SourceLocation(), ParsedAttributesView()); 1305 CheckCompletedCXXClass(nullptr, Class); 1306 1307 PopFunctionScopeInfo(); 1308 } 1309 1310 template <typename Func> 1311 static void repeatForLambdaConversionFunctionCallingConvs( 1312 Sema &S, const FunctionProtoType &CallOpProto, Func F) { 1313 CallingConv DefaultFree = S.Context.getDefaultCallingConvention( 1314 CallOpProto.isVariadic(), /*IsCXXMethod=*/false); 1315 CallingConv DefaultMember = S.Context.getDefaultCallingConvention( 1316 CallOpProto.isVariadic(), /*IsCXXMethod=*/true); 1317 CallingConv CallOpCC = CallOpProto.getCallConv(); 1318 1319 /// Implement emitting a version of the operator for many of the calling 1320 /// conventions for MSVC, as described here: 1321 /// https://devblogs.microsoft.com/oldnewthing/20150220-00/?p=44623. 1322 /// Experimentally, we determined that cdecl, stdcall, fastcall, and 1323 /// vectorcall are generated by MSVC when it is supported by the target. 1324 /// Additionally, we are ensuring that the default-free/default-member and 1325 /// call-operator calling convention are generated as well. 1326 /// NOTE: We intentionally generate a 'thiscall' on Win32 implicitly from the 1327 /// 'member default', despite MSVC not doing so. We do this in order to ensure 1328 /// that someone who intentionally places 'thiscall' on the lambda call 1329 /// operator will still get that overload, since we don't have the a way of 1330 /// detecting the attribute by the time we get here. 1331 if (S.getLangOpts().MSVCCompat) { 1332 CallingConv Convs[] = { 1333 CC_C, CC_X86StdCall, CC_X86FastCall, CC_X86VectorCall, 1334 DefaultFree, DefaultMember, CallOpCC}; 1335 llvm::sort(Convs); 1336 llvm::iterator_range<CallingConv *> Range( 1337 std::begin(Convs), std::unique(std::begin(Convs), std::end(Convs))); 1338 const TargetInfo &TI = S.getASTContext().getTargetInfo(); 1339 1340 for (CallingConv C : Range) { 1341 if (TI.checkCallingConvention(C) == TargetInfo::CCCR_OK) 1342 F(C); 1343 } 1344 return; 1345 } 1346 1347 if (CallOpCC == DefaultMember && DefaultMember != DefaultFree) { 1348 F(DefaultFree); 1349 F(DefaultMember); 1350 } else { 1351 F(CallOpCC); 1352 } 1353 } 1354 1355 // Returns the 'standard' calling convention to be used for the lambda 1356 // conversion function, that is, the 'free' function calling convention unless 1357 // it is overridden by a non-default calling convention attribute. 1358 static CallingConv 1359 getLambdaConversionFunctionCallConv(Sema &S, 1360 const FunctionProtoType *CallOpProto) { 1361 CallingConv DefaultFree = S.Context.getDefaultCallingConvention( 1362 CallOpProto->isVariadic(), /*IsCXXMethod=*/false); 1363 CallingConv DefaultMember = S.Context.getDefaultCallingConvention( 1364 CallOpProto->isVariadic(), /*IsCXXMethod=*/true); 1365 CallingConv CallOpCC = CallOpProto->getCallConv(); 1366 1367 // If the call-operator hasn't been changed, return both the 'free' and 1368 // 'member' function calling convention. 1369 if (CallOpCC == DefaultMember && DefaultMember != DefaultFree) 1370 return DefaultFree; 1371 return CallOpCC; 1372 } 1373 1374 QualType Sema::getLambdaConversionFunctionResultType( 1375 const FunctionProtoType *CallOpProto, CallingConv CC) { 1376 const FunctionProtoType::ExtProtoInfo CallOpExtInfo = 1377 CallOpProto->getExtProtoInfo(); 1378 FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo; 1379 InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC); 1380 InvokerExtInfo.TypeQuals = Qualifiers(); 1381 assert(InvokerExtInfo.RefQualifier == RQ_None && 1382 "Lambda's call operator should not have a reference qualifier"); 1383 return Context.getFunctionType(CallOpProto->getReturnType(), 1384 CallOpProto->getParamTypes(), InvokerExtInfo); 1385 } 1386 1387 /// Add a lambda's conversion to function pointer, as described in 1388 /// C++11 [expr.prim.lambda]p6. 1389 static void addFunctionPointerConversion(Sema &S, SourceRange IntroducerRange, 1390 CXXRecordDecl *Class, 1391 CXXMethodDecl *CallOperator, 1392 QualType InvokerFunctionTy) { 1393 // This conversion is explicitly disabled if the lambda's function has 1394 // pass_object_size attributes on any of its parameters. 1395 auto HasPassObjectSizeAttr = [](const ParmVarDecl *P) { 1396 return P->hasAttr<PassObjectSizeAttr>(); 1397 }; 1398 if (llvm::any_of(CallOperator->parameters(), HasPassObjectSizeAttr)) 1399 return; 1400 1401 // Add the conversion to function pointer. 1402 QualType PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy); 1403 1404 // Create the type of the conversion function. 1405 FunctionProtoType::ExtProtoInfo ConvExtInfo( 1406 S.Context.getDefaultCallingConvention( 1407 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 1408 // The conversion function is always const and noexcept. 1409 ConvExtInfo.TypeQuals = Qualifiers(); 1410 ConvExtInfo.TypeQuals.addConst(); 1411 ConvExtInfo.ExceptionSpec.Type = EST_BasicNoexcept; 1412 QualType ConvTy = 1413 S.Context.getFunctionType(PtrToFunctionTy, std::nullopt, ConvExtInfo); 1414 1415 SourceLocation Loc = IntroducerRange.getBegin(); 1416 DeclarationName ConversionName 1417 = S.Context.DeclarationNames.getCXXConversionFunctionName( 1418 S.Context.getCanonicalType(PtrToFunctionTy)); 1419 // Construct a TypeSourceInfo for the conversion function, and wire 1420 // all the parameters appropriately for the FunctionProtoTypeLoc 1421 // so that everything works during transformation/instantiation of 1422 // generic lambdas. 1423 // The main reason for wiring up the parameters of the conversion 1424 // function with that of the call operator is so that constructs 1425 // like the following work: 1426 // auto L = [](auto b) { <-- 1 1427 // return [](auto a) -> decltype(a) { <-- 2 1428 // return a; 1429 // }; 1430 // }; 1431 // int (*fp)(int) = L(5); 1432 // Because the trailing return type can contain DeclRefExprs that refer 1433 // to the original call operator's variables, we hijack the call 1434 // operators ParmVarDecls below. 1435 TypeSourceInfo *ConvNamePtrToFunctionTSI = 1436 S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc); 1437 DeclarationNameLoc ConvNameLoc = 1438 DeclarationNameLoc::makeNamedTypeLoc(ConvNamePtrToFunctionTSI); 1439 1440 // The conversion function is a conversion to a pointer-to-function. 1441 TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc); 1442 FunctionProtoTypeLoc ConvTL = 1443 ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>(); 1444 // Get the result of the conversion function which is a pointer-to-function. 1445 PointerTypeLoc PtrToFunctionTL = 1446 ConvTL.getReturnLoc().getAs<PointerTypeLoc>(); 1447 // Do the same for the TypeSourceInfo that is used to name the conversion 1448 // operator. 1449 PointerTypeLoc ConvNamePtrToFunctionTL = 1450 ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>(); 1451 1452 // Get the underlying function types that the conversion function will 1453 // be converting to (should match the type of the call operator). 1454 FunctionProtoTypeLoc CallOpConvTL = 1455 PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>(); 1456 FunctionProtoTypeLoc CallOpConvNameTL = 1457 ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>(); 1458 1459 // Wire up the FunctionProtoTypeLocs with the call operator's parameters. 1460 // These parameter's are essentially used to transform the name and 1461 // the type of the conversion operator. By using the same parameters 1462 // as the call operator's we don't have to fix any back references that 1463 // the trailing return type of the call operator's uses (such as 1464 // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.) 1465 // - we can simply use the return type of the call operator, and 1466 // everything should work. 1467 SmallVector<ParmVarDecl *, 4> InvokerParams; 1468 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) { 1469 ParmVarDecl *From = CallOperator->getParamDecl(I); 1470 1471 InvokerParams.push_back(ParmVarDecl::Create( 1472 S.Context, 1473 // Temporarily add to the TU. This is set to the invoker below. 1474 S.Context.getTranslationUnitDecl(), From->getBeginLoc(), 1475 From->getLocation(), From->getIdentifier(), From->getType(), 1476 From->getTypeSourceInfo(), From->getStorageClass(), 1477 /*DefArg=*/nullptr)); 1478 CallOpConvTL.setParam(I, From); 1479 CallOpConvNameTL.setParam(I, From); 1480 } 1481 1482 CXXConversionDecl *Conversion = CXXConversionDecl::Create( 1483 S.Context, Class, Loc, 1484 DeclarationNameInfo(ConversionName, Loc, ConvNameLoc), ConvTy, ConvTSI, 1485 S.getCurFPFeatures().isFPConstrained(), 1486 /*isInline=*/true, ExplicitSpecifier(), 1487 S.getLangOpts().CPlusPlus17 ? ConstexprSpecKind::Constexpr 1488 : ConstexprSpecKind::Unspecified, 1489 CallOperator->getBody()->getEndLoc()); 1490 Conversion->setAccess(AS_public); 1491 Conversion->setImplicit(true); 1492 1493 if (Class->isGenericLambda()) { 1494 // Create a template version of the conversion operator, using the template 1495 // parameter list of the function call operator. 1496 FunctionTemplateDecl *TemplateCallOperator = 1497 CallOperator->getDescribedFunctionTemplate(); 1498 FunctionTemplateDecl *ConversionTemplate = 1499 FunctionTemplateDecl::Create(S.Context, Class, 1500 Loc, ConversionName, 1501 TemplateCallOperator->getTemplateParameters(), 1502 Conversion); 1503 ConversionTemplate->setAccess(AS_public); 1504 ConversionTemplate->setImplicit(true); 1505 Conversion->setDescribedFunctionTemplate(ConversionTemplate); 1506 Class->addDecl(ConversionTemplate); 1507 } else 1508 Class->addDecl(Conversion); 1509 1510 // If the lambda is not static, we need to add a static member 1511 // function that will be the result of the conversion with a 1512 // certain unique ID. 1513 // When it is static we just return the static call operator instead. 1514 if (CallOperator->isInstance()) { 1515 DeclarationName InvokerName = 1516 &S.Context.Idents.get(getLambdaStaticInvokerName()); 1517 // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo() 1518 // we should get a prebuilt TrivialTypeSourceInfo from Context 1519 // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc 1520 // then rewire the parameters accordingly, by hoisting up the InvokeParams 1521 // loop below and then use its Params to set Invoke->setParams(...) below. 1522 // This would avoid the 'const' qualifier of the calloperator from 1523 // contaminating the type of the invoker, which is currently adjusted 1524 // in SemaTemplateDeduction.cpp:DeduceTemplateArguments. Fixing the 1525 // trailing return type of the invoker would require a visitor to rebuild 1526 // the trailing return type and adjusting all back DeclRefExpr's to refer 1527 // to the new static invoker parameters - not the call operator's. 1528 CXXMethodDecl *Invoke = CXXMethodDecl::Create( 1529 S.Context, Class, Loc, DeclarationNameInfo(InvokerName, Loc), 1530 InvokerFunctionTy, CallOperator->getTypeSourceInfo(), SC_Static, 1531 S.getCurFPFeatures().isFPConstrained(), 1532 /*isInline=*/true, ConstexprSpecKind::Unspecified, 1533 CallOperator->getBody()->getEndLoc()); 1534 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) 1535 InvokerParams[I]->setOwningFunction(Invoke); 1536 Invoke->setParams(InvokerParams); 1537 Invoke->setAccess(AS_private); 1538 Invoke->setImplicit(true); 1539 if (Class->isGenericLambda()) { 1540 FunctionTemplateDecl *TemplateCallOperator = 1541 CallOperator->getDescribedFunctionTemplate(); 1542 FunctionTemplateDecl *StaticInvokerTemplate = 1543 FunctionTemplateDecl::Create( 1544 S.Context, Class, Loc, InvokerName, 1545 TemplateCallOperator->getTemplateParameters(), Invoke); 1546 StaticInvokerTemplate->setAccess(AS_private); 1547 StaticInvokerTemplate->setImplicit(true); 1548 Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate); 1549 Class->addDecl(StaticInvokerTemplate); 1550 } else 1551 Class->addDecl(Invoke); 1552 } 1553 } 1554 1555 /// Add a lambda's conversion to function pointers, as described in 1556 /// C++11 [expr.prim.lambda]p6. Note that in most cases, this should emit only a 1557 /// single pointer conversion. In the event that the default calling convention 1558 /// for free and member functions is different, it will emit both conventions. 1559 static void addFunctionPointerConversions(Sema &S, SourceRange IntroducerRange, 1560 CXXRecordDecl *Class, 1561 CXXMethodDecl *CallOperator) { 1562 const FunctionProtoType *CallOpProto = 1563 CallOperator->getType()->castAs<FunctionProtoType>(); 1564 1565 repeatForLambdaConversionFunctionCallingConvs( 1566 S, *CallOpProto, [&](CallingConv CC) { 1567 QualType InvokerFunctionTy = 1568 S.getLambdaConversionFunctionResultType(CallOpProto, CC); 1569 addFunctionPointerConversion(S, IntroducerRange, Class, CallOperator, 1570 InvokerFunctionTy); 1571 }); 1572 } 1573 1574 /// Add a lambda's conversion to block pointer. 1575 static void addBlockPointerConversion(Sema &S, 1576 SourceRange IntroducerRange, 1577 CXXRecordDecl *Class, 1578 CXXMethodDecl *CallOperator) { 1579 const FunctionProtoType *CallOpProto = 1580 CallOperator->getType()->castAs<FunctionProtoType>(); 1581 QualType FunctionTy = S.getLambdaConversionFunctionResultType( 1582 CallOpProto, getLambdaConversionFunctionCallConv(S, CallOpProto)); 1583 QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy); 1584 1585 FunctionProtoType::ExtProtoInfo ConversionEPI( 1586 S.Context.getDefaultCallingConvention( 1587 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 1588 ConversionEPI.TypeQuals = Qualifiers(); 1589 ConversionEPI.TypeQuals.addConst(); 1590 QualType ConvTy = 1591 S.Context.getFunctionType(BlockPtrTy, std::nullopt, ConversionEPI); 1592 1593 SourceLocation Loc = IntroducerRange.getBegin(); 1594 DeclarationName Name 1595 = S.Context.DeclarationNames.getCXXConversionFunctionName( 1596 S.Context.getCanonicalType(BlockPtrTy)); 1597 DeclarationNameLoc NameLoc = DeclarationNameLoc::makeNamedTypeLoc( 1598 S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc)); 1599 CXXConversionDecl *Conversion = CXXConversionDecl::Create( 1600 S.Context, Class, Loc, DeclarationNameInfo(Name, Loc, NameLoc), ConvTy, 1601 S.Context.getTrivialTypeSourceInfo(ConvTy, Loc), 1602 S.getCurFPFeatures().isFPConstrained(), 1603 /*isInline=*/true, ExplicitSpecifier(), ConstexprSpecKind::Unspecified, 1604 CallOperator->getBody()->getEndLoc()); 1605 Conversion->setAccess(AS_public); 1606 Conversion->setImplicit(true); 1607 Class->addDecl(Conversion); 1608 } 1609 1610 ExprResult Sema::BuildCaptureInit(const Capture &Cap, 1611 SourceLocation ImplicitCaptureLoc, 1612 bool IsOpenMPMapping) { 1613 // VLA captures don't have a stored initialization expression. 1614 if (Cap.isVLATypeCapture()) 1615 return ExprResult(); 1616 1617 // An init-capture is initialized directly from its stored initializer. 1618 if (Cap.isInitCapture()) 1619 return cast<VarDecl>(Cap.getVariable())->getInit(); 1620 1621 // For anything else, build an initialization expression. For an implicit 1622 // capture, the capture notionally happens at the capture-default, so use 1623 // that location here. 1624 SourceLocation Loc = 1625 ImplicitCaptureLoc.isValid() ? ImplicitCaptureLoc : Cap.getLocation(); 1626 1627 // C++11 [expr.prim.lambda]p21: 1628 // When the lambda-expression is evaluated, the entities that 1629 // are captured by copy are used to direct-initialize each 1630 // corresponding non-static data member of the resulting closure 1631 // object. (For array members, the array elements are 1632 // direct-initialized in increasing subscript order.) These 1633 // initializations are performed in the (unspecified) order in 1634 // which the non-static data members are declared. 1635 1636 // C++ [expr.prim.lambda]p12: 1637 // An entity captured by a lambda-expression is odr-used (3.2) in 1638 // the scope containing the lambda-expression. 1639 ExprResult Init; 1640 IdentifierInfo *Name = nullptr; 1641 if (Cap.isThisCapture()) { 1642 QualType ThisTy = getCurrentThisType(); 1643 Expr *This = BuildCXXThisExpr(Loc, ThisTy, ImplicitCaptureLoc.isValid()); 1644 if (Cap.isCopyCapture()) 1645 Init = CreateBuiltinUnaryOp(Loc, UO_Deref, This); 1646 else 1647 Init = This; 1648 } else { 1649 assert(Cap.isVariableCapture() && "unknown kind of capture"); 1650 ValueDecl *Var = Cap.getVariable(); 1651 Name = Var->getIdentifier(); 1652 Init = BuildDeclarationNameExpr( 1653 CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var); 1654 } 1655 1656 // In OpenMP, the capture kind doesn't actually describe how to capture: 1657 // variables are "mapped" onto the device in a process that does not formally 1658 // make a copy, even for a "copy capture". 1659 if (IsOpenMPMapping) 1660 return Init; 1661 1662 if (Init.isInvalid()) 1663 return ExprError(); 1664 1665 Expr *InitExpr = Init.get(); 1666 InitializedEntity Entity = InitializedEntity::InitializeLambdaCapture( 1667 Name, Cap.getCaptureType(), Loc); 1668 InitializationKind InitKind = 1669 InitializationKind::CreateDirect(Loc, Loc, Loc); 1670 InitializationSequence InitSeq(*this, Entity, InitKind, InitExpr); 1671 return InitSeq.Perform(*this, Entity, InitKind, InitExpr); 1672 } 1673 1674 ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body, 1675 Scope *CurScope) { 1676 LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back()); 1677 ActOnFinishFunctionBody(LSI.CallOperator, Body); 1678 return BuildLambdaExpr(StartLoc, Body->getEndLoc(), &LSI); 1679 } 1680 1681 static LambdaCaptureDefault 1682 mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS) { 1683 switch (ICS) { 1684 case CapturingScopeInfo::ImpCap_None: 1685 return LCD_None; 1686 case CapturingScopeInfo::ImpCap_LambdaByval: 1687 return LCD_ByCopy; 1688 case CapturingScopeInfo::ImpCap_CapturedRegion: 1689 case CapturingScopeInfo::ImpCap_LambdaByref: 1690 return LCD_ByRef; 1691 case CapturingScopeInfo::ImpCap_Block: 1692 llvm_unreachable("block capture in lambda"); 1693 } 1694 llvm_unreachable("Unknown implicit capture style"); 1695 } 1696 1697 bool Sema::CaptureHasSideEffects(const Capture &From) { 1698 if (From.isInitCapture()) { 1699 Expr *Init = cast<VarDecl>(From.getVariable())->getInit(); 1700 if (Init && Init->HasSideEffects(Context)) 1701 return true; 1702 } 1703 1704 if (!From.isCopyCapture()) 1705 return false; 1706 1707 const QualType T = From.isThisCapture() 1708 ? getCurrentThisType()->getPointeeType() 1709 : From.getCaptureType(); 1710 1711 if (T.isVolatileQualified()) 1712 return true; 1713 1714 const Type *BaseT = T->getBaseElementTypeUnsafe(); 1715 if (const CXXRecordDecl *RD = BaseT->getAsCXXRecordDecl()) 1716 return !RD->isCompleteDefinition() || !RD->hasTrivialCopyConstructor() || 1717 !RD->hasTrivialDestructor(); 1718 1719 return false; 1720 } 1721 1722 bool Sema::DiagnoseUnusedLambdaCapture(SourceRange CaptureRange, 1723 const Capture &From) { 1724 if (CaptureHasSideEffects(From)) 1725 return false; 1726 1727 if (From.isVLATypeCapture()) 1728 return false; 1729 1730 auto diag = Diag(From.getLocation(), diag::warn_unused_lambda_capture); 1731 if (From.isThisCapture()) 1732 diag << "'this'"; 1733 else 1734 diag << From.getVariable(); 1735 diag << From.isNonODRUsed(); 1736 diag << FixItHint::CreateRemoval(CaptureRange); 1737 return true; 1738 } 1739 1740 /// Create a field within the lambda class or captured statement record for the 1741 /// given capture. 1742 FieldDecl *Sema::BuildCaptureField(RecordDecl *RD, 1743 const sema::Capture &Capture) { 1744 SourceLocation Loc = Capture.getLocation(); 1745 QualType FieldType = Capture.getCaptureType(); 1746 1747 TypeSourceInfo *TSI = nullptr; 1748 if (Capture.isVariableCapture()) { 1749 const auto *Var = dyn_cast_or_null<VarDecl>(Capture.getVariable()); 1750 if (Var && Var->isInitCapture()) 1751 TSI = Var->getTypeSourceInfo(); 1752 } 1753 1754 // FIXME: Should we really be doing this? A null TypeSourceInfo seems more 1755 // appropriate, at least for an implicit capture. 1756 if (!TSI) 1757 TSI = Context.getTrivialTypeSourceInfo(FieldType, Loc); 1758 1759 // Build the non-static data member. 1760 FieldDecl *Field = 1761 FieldDecl::Create(Context, RD, /*StartLoc=*/Loc, /*IdLoc=*/Loc, 1762 /*Id=*/nullptr, FieldType, TSI, /*BW=*/nullptr, 1763 /*Mutable=*/false, ICIS_NoInit); 1764 // If the variable being captured has an invalid type, mark the class as 1765 // invalid as well. 1766 if (!FieldType->isDependentType()) { 1767 if (RequireCompleteSizedType(Loc, FieldType, 1768 diag::err_field_incomplete_or_sizeless)) { 1769 RD->setInvalidDecl(); 1770 Field->setInvalidDecl(); 1771 } else { 1772 NamedDecl *Def; 1773 FieldType->isIncompleteType(&Def); 1774 if (Def && Def->isInvalidDecl()) { 1775 RD->setInvalidDecl(); 1776 Field->setInvalidDecl(); 1777 } 1778 } 1779 } 1780 Field->setImplicit(true); 1781 Field->setAccess(AS_private); 1782 RD->addDecl(Field); 1783 1784 if (Capture.isVLATypeCapture()) 1785 Field->setCapturedVLAType(Capture.getCapturedVLAType()); 1786 1787 return Field; 1788 } 1789 1790 ExprResult Sema::BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc, 1791 LambdaScopeInfo *LSI) { 1792 // Collect information from the lambda scope. 1793 SmallVector<LambdaCapture, 4> Captures; 1794 SmallVector<Expr *, 4> CaptureInits; 1795 SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc; 1796 LambdaCaptureDefault CaptureDefault = 1797 mapImplicitCaptureStyle(LSI->ImpCaptureStyle); 1798 CXXRecordDecl *Class; 1799 CXXMethodDecl *CallOperator; 1800 SourceRange IntroducerRange; 1801 bool ExplicitParams; 1802 bool ExplicitResultType; 1803 CleanupInfo LambdaCleanup; 1804 bool ContainsUnexpandedParameterPack; 1805 bool IsGenericLambda; 1806 { 1807 CallOperator = LSI->CallOperator; 1808 Class = LSI->Lambda; 1809 IntroducerRange = LSI->IntroducerRange; 1810 ExplicitParams = LSI->ExplicitParams; 1811 ExplicitResultType = !LSI->HasImplicitReturnType; 1812 LambdaCleanup = LSI->Cleanup; 1813 ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack; 1814 IsGenericLambda = Class->isGenericLambda(); 1815 1816 CallOperator->setLexicalDeclContext(Class); 1817 Decl *TemplateOrNonTemplateCallOperatorDecl = 1818 CallOperator->getDescribedFunctionTemplate() 1819 ? CallOperator->getDescribedFunctionTemplate() 1820 : cast<Decl>(CallOperator); 1821 1822 // FIXME: Is this really the best choice? Keeping the lexical decl context 1823 // set as CurContext seems more faithful to the source. 1824 TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class); 1825 1826 PopExpressionEvaluationContext(); 1827 1828 // True if the current capture has a used capture or default before it. 1829 bool CurHasPreviousCapture = CaptureDefault != LCD_None; 1830 SourceLocation PrevCaptureLoc = CurHasPreviousCapture ? 1831 CaptureDefaultLoc : IntroducerRange.getBegin(); 1832 1833 for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) { 1834 const Capture &From = LSI->Captures[I]; 1835 1836 if (From.isInvalid()) 1837 return ExprError(); 1838 1839 assert(!From.isBlockCapture() && "Cannot capture __block variables"); 1840 bool IsImplicit = I >= LSI->NumExplicitCaptures; 1841 SourceLocation ImplicitCaptureLoc = 1842 IsImplicit ? CaptureDefaultLoc : SourceLocation(); 1843 1844 // Use source ranges of explicit captures for fixits where available. 1845 SourceRange CaptureRange = LSI->ExplicitCaptureRanges[I]; 1846 1847 // Warn about unused explicit captures. 1848 bool IsCaptureUsed = true; 1849 if (!CurContext->isDependentContext() && !IsImplicit && 1850 !From.isODRUsed()) { 1851 // Initialized captures that are non-ODR used may not be eliminated. 1852 // FIXME: Where did the IsGenericLambda here come from? 1853 bool NonODRUsedInitCapture = 1854 IsGenericLambda && From.isNonODRUsed() && From.isInitCapture(); 1855 if (!NonODRUsedInitCapture) { 1856 bool IsLast = (I + 1) == LSI->NumExplicitCaptures; 1857 SourceRange FixItRange; 1858 if (CaptureRange.isValid()) { 1859 if (!CurHasPreviousCapture && !IsLast) { 1860 // If there are no captures preceding this capture, remove the 1861 // following comma. 1862 FixItRange = SourceRange(CaptureRange.getBegin(), 1863 getLocForEndOfToken(CaptureRange.getEnd())); 1864 } else { 1865 // Otherwise, remove the comma since the last used capture. 1866 FixItRange = SourceRange(getLocForEndOfToken(PrevCaptureLoc), 1867 CaptureRange.getEnd()); 1868 } 1869 } 1870 1871 IsCaptureUsed = !DiagnoseUnusedLambdaCapture(FixItRange, From); 1872 } 1873 } 1874 1875 if (CaptureRange.isValid()) { 1876 CurHasPreviousCapture |= IsCaptureUsed; 1877 PrevCaptureLoc = CaptureRange.getEnd(); 1878 } 1879 1880 // Map the capture to our AST representation. 1881 LambdaCapture Capture = [&] { 1882 if (From.isThisCapture()) { 1883 // Capturing 'this' implicitly with a default of '[=]' is deprecated, 1884 // because it results in a reference capture. Don't warn prior to 1885 // C++2a; there's nothing that can be done about it before then. 1886 if (getLangOpts().CPlusPlus20 && IsImplicit && 1887 CaptureDefault == LCD_ByCopy) { 1888 Diag(From.getLocation(), diag::warn_deprecated_this_capture); 1889 Diag(CaptureDefaultLoc, diag::note_deprecated_this_capture) 1890 << FixItHint::CreateInsertion( 1891 getLocForEndOfToken(CaptureDefaultLoc), ", this"); 1892 } 1893 return LambdaCapture(From.getLocation(), IsImplicit, 1894 From.isCopyCapture() ? LCK_StarThis : LCK_This); 1895 } else if (From.isVLATypeCapture()) { 1896 return LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType); 1897 } else { 1898 assert(From.isVariableCapture() && "unknown kind of capture"); 1899 ValueDecl *Var = From.getVariable(); 1900 LambdaCaptureKind Kind = 1901 From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef; 1902 return LambdaCapture(From.getLocation(), IsImplicit, Kind, Var, 1903 From.getEllipsisLoc()); 1904 } 1905 }(); 1906 1907 // Form the initializer for the capture field. 1908 ExprResult Init = BuildCaptureInit(From, ImplicitCaptureLoc); 1909 1910 // FIXME: Skip this capture if the capture is not used, the initializer 1911 // has no side-effects, the type of the capture is trivial, and the 1912 // lambda is not externally visible. 1913 1914 // Add a FieldDecl for the capture and form its initializer. 1915 BuildCaptureField(Class, From); 1916 Captures.push_back(Capture); 1917 CaptureInits.push_back(Init.get()); 1918 1919 if (LangOpts.CUDA) 1920 CUDACheckLambdaCapture(CallOperator, From); 1921 } 1922 1923 Class->setCaptures(Context, Captures); 1924 1925 // C++11 [expr.prim.lambda]p6: 1926 // The closure type for a lambda-expression with no lambda-capture 1927 // has a public non-virtual non-explicit const conversion function 1928 // to pointer to function having the same parameter and return 1929 // types as the closure type's function call operator. 1930 if (Captures.empty() && CaptureDefault == LCD_None) 1931 addFunctionPointerConversions(*this, IntroducerRange, Class, 1932 CallOperator); 1933 1934 // Objective-C++: 1935 // The closure type for a lambda-expression has a public non-virtual 1936 // non-explicit const conversion function to a block pointer having the 1937 // same parameter and return types as the closure type's function call 1938 // operator. 1939 // FIXME: Fix generic lambda to block conversions. 1940 if (getLangOpts().Blocks && getLangOpts().ObjC && !IsGenericLambda) 1941 addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator); 1942 1943 // Finalize the lambda class. 1944 SmallVector<Decl*, 4> Fields(Class->fields()); 1945 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(), 1946 SourceLocation(), ParsedAttributesView()); 1947 CheckCompletedCXXClass(nullptr, Class); 1948 } 1949 1950 Cleanup.mergeFrom(LambdaCleanup); 1951 1952 LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange, 1953 CaptureDefault, CaptureDefaultLoc, 1954 ExplicitParams, ExplicitResultType, 1955 CaptureInits, EndLoc, 1956 ContainsUnexpandedParameterPack); 1957 // If the lambda expression's call operator is not explicitly marked constexpr 1958 // and we are not in a dependent context, analyze the call operator to infer 1959 // its constexpr-ness, suppressing diagnostics while doing so. 1960 if (getLangOpts().CPlusPlus17 && !CallOperator->isInvalidDecl() && 1961 !CallOperator->isConstexpr() && 1962 !isa<CoroutineBodyStmt>(CallOperator->getBody()) && 1963 !Class->getDeclContext()->isDependentContext()) { 1964 CallOperator->setConstexprKind( 1965 CheckConstexprFunctionDefinition(CallOperator, 1966 CheckConstexprKind::CheckValid) 1967 ? ConstexprSpecKind::Constexpr 1968 : ConstexprSpecKind::Unspecified); 1969 } 1970 1971 // Emit delayed shadowing warnings now that the full capture list is known. 1972 DiagnoseShadowingLambdaDecls(LSI); 1973 1974 if (!CurContext->isDependentContext()) { 1975 switch (ExprEvalContexts.back().Context) { 1976 // C++11 [expr.prim.lambda]p2: 1977 // A lambda-expression shall not appear in an unevaluated operand 1978 // (Clause 5). 1979 case ExpressionEvaluationContext::Unevaluated: 1980 case ExpressionEvaluationContext::UnevaluatedList: 1981 case ExpressionEvaluationContext::UnevaluatedAbstract: 1982 // C++1y [expr.const]p2: 1983 // A conditional-expression e is a core constant expression unless the 1984 // evaluation of e, following the rules of the abstract machine, would 1985 // evaluate [...] a lambda-expression. 1986 // 1987 // This is technically incorrect, there are some constant evaluated contexts 1988 // where this should be allowed. We should probably fix this when DR1607 is 1989 // ratified, it lays out the exact set of conditions where we shouldn't 1990 // allow a lambda-expression. 1991 case ExpressionEvaluationContext::ConstantEvaluated: 1992 case ExpressionEvaluationContext::ImmediateFunctionContext: 1993 // We don't actually diagnose this case immediately, because we 1994 // could be within a context where we might find out later that 1995 // the expression is potentially evaluated (e.g., for typeid). 1996 ExprEvalContexts.back().Lambdas.push_back(Lambda); 1997 break; 1998 1999 case ExpressionEvaluationContext::DiscardedStatement: 2000 case ExpressionEvaluationContext::PotentiallyEvaluated: 2001 case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed: 2002 break; 2003 } 2004 } 2005 2006 return MaybeBindToTemporary(Lambda); 2007 } 2008 2009 ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation, 2010 SourceLocation ConvLocation, 2011 CXXConversionDecl *Conv, 2012 Expr *Src) { 2013 // Make sure that the lambda call operator is marked used. 2014 CXXRecordDecl *Lambda = Conv->getParent(); 2015 CXXMethodDecl *CallOperator 2016 = cast<CXXMethodDecl>( 2017 Lambda->lookup( 2018 Context.DeclarationNames.getCXXOperatorName(OO_Call)).front()); 2019 CallOperator->setReferenced(); 2020 CallOperator->markUsed(Context); 2021 2022 ExprResult Init = PerformCopyInitialization( 2023 InitializedEntity::InitializeLambdaToBlock(ConvLocation, Src->getType()), 2024 CurrentLocation, Src); 2025 if (!Init.isInvalid()) 2026 Init = ActOnFinishFullExpr(Init.get(), /*DiscardedValue*/ false); 2027 2028 if (Init.isInvalid()) 2029 return ExprError(); 2030 2031 // Create the new block to be returned. 2032 BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation); 2033 2034 // Set the type information. 2035 Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo()); 2036 Block->setIsVariadic(CallOperator->isVariadic()); 2037 Block->setBlockMissingReturnType(false); 2038 2039 // Add parameters. 2040 SmallVector<ParmVarDecl *, 4> BlockParams; 2041 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) { 2042 ParmVarDecl *From = CallOperator->getParamDecl(I); 2043 BlockParams.push_back(ParmVarDecl::Create( 2044 Context, Block, From->getBeginLoc(), From->getLocation(), 2045 From->getIdentifier(), From->getType(), From->getTypeSourceInfo(), 2046 From->getStorageClass(), 2047 /*DefArg=*/nullptr)); 2048 } 2049 Block->setParams(BlockParams); 2050 2051 Block->setIsConversionFromLambda(true); 2052 2053 // Add capture. The capture uses a fake variable, which doesn't correspond 2054 // to any actual memory location. However, the initializer copy-initializes 2055 // the lambda object. 2056 TypeSourceInfo *CapVarTSI = 2057 Context.getTrivialTypeSourceInfo(Src->getType()); 2058 VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation, 2059 ConvLocation, nullptr, 2060 Src->getType(), CapVarTSI, 2061 SC_None); 2062 BlockDecl::Capture Capture(/*variable=*/CapVar, /*byRef=*/false, 2063 /*nested=*/false, /*copy=*/Init.get()); 2064 Block->setCaptures(Context, Capture, /*CapturesCXXThis=*/false); 2065 2066 // Add a fake function body to the block. IR generation is responsible 2067 // for filling in the actual body, which cannot be expressed as an AST. 2068 Block->setBody(new (Context) CompoundStmt(ConvLocation)); 2069 2070 // Create the block literal expression. 2071 Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType()); 2072 ExprCleanupObjects.push_back(Block); 2073 Cleanup.setExprNeedsCleanups(true); 2074 2075 return BuildBlock; 2076 } 2077