xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaLambda.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for C++ lambda expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 #include "clang/Sema/DeclSpec.h"
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTLambda.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/Basic/TargetInfo.h"
17 #include "clang/Sema/Initialization.h"
18 #include "clang/Sema/Lookup.h"
19 #include "clang/Sema/Scope.h"
20 #include "clang/Sema/ScopeInfo.h"
21 #include "clang/Sema/SemaInternal.h"
22 #include "clang/Sema/SemaLambda.h"
23 #include "llvm/ADT/STLExtras.h"
24 using namespace clang;
25 using namespace sema;
26 
27 /// Examines the FunctionScopeInfo stack to determine the nearest
28 /// enclosing lambda (to the current lambda) that is 'capture-ready' for
29 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
30 /// If successful, returns the index into Sema's FunctionScopeInfo stack
31 /// of the capture-ready lambda's LambdaScopeInfo.
32 ///
33 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current
34 /// lambda - is on top) to determine the index of the nearest enclosing/outer
35 /// lambda that is ready to capture the \p VarToCapture being referenced in
36 /// the current lambda.
37 /// As we climb down the stack, we want the index of the first such lambda -
38 /// that is the lambda with the highest index that is 'capture-ready'.
39 ///
40 /// A lambda 'L' is capture-ready for 'V' (var or this) if:
41 ///  - its enclosing context is non-dependent
42 ///  - and if the chain of lambdas between L and the lambda in which
43 ///    V is potentially used (i.e. the lambda at the top of the scope info
44 ///    stack), can all capture or have already captured V.
45 /// If \p VarToCapture is 'null' then we are trying to capture 'this'.
46 ///
47 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked
48 /// for whether it is 'capture-capable' (see
49 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly
50 /// capture.
51 ///
52 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
53 ///  LambdaScopeInfo inherits from).  The current/deepest/innermost lambda
54 ///  is at the top of the stack and has the highest index.
55 /// \param VarToCapture - the variable to capture.  If NULL, capture 'this'.
56 ///
57 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
58 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
59 /// which is capture-ready.  If the return value evaluates to 'false' then
60 /// no lambda is capture-ready for \p VarToCapture.
61 
62 static inline Optional<unsigned>
63 getStackIndexOfNearestEnclosingCaptureReadyLambda(
64     ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes,
65     VarDecl *VarToCapture) {
66   // Label failure to capture.
67   const Optional<unsigned> NoLambdaIsCaptureReady;
68 
69   // Ignore all inner captured regions.
70   unsigned CurScopeIndex = FunctionScopes.size() - 1;
71   while (CurScopeIndex > 0 && isa<clang::sema::CapturedRegionScopeInfo>(
72                                   FunctionScopes[CurScopeIndex]))
73     --CurScopeIndex;
74   assert(
75       isa<clang::sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]) &&
76       "The function on the top of sema's function-info stack must be a lambda");
77 
78   // If VarToCapture is null, we are attempting to capture 'this'.
79   const bool IsCapturingThis = !VarToCapture;
80   const bool IsCapturingVariable = !IsCapturingThis;
81 
82   // Start with the current lambda at the top of the stack (highest index).
83   DeclContext *EnclosingDC =
84       cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator;
85 
86   do {
87     const clang::sema::LambdaScopeInfo *LSI =
88         cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]);
89     // IF we have climbed down to an intervening enclosing lambda that contains
90     // the variable declaration - it obviously can/must not capture the
91     // variable.
92     // Since its enclosing DC is dependent, all the lambdas between it and the
93     // innermost nested lambda are dependent (otherwise we wouldn't have
94     // arrived here) - so we don't yet have a lambda that can capture the
95     // variable.
96     if (IsCapturingVariable &&
97         VarToCapture->getDeclContext()->Equals(EnclosingDC))
98       return NoLambdaIsCaptureReady;
99 
100     // For an enclosing lambda to be capture ready for an entity, all
101     // intervening lambda's have to be able to capture that entity. If even
102     // one of the intervening lambda's is not capable of capturing the entity
103     // then no enclosing lambda can ever capture that entity.
104     // For e.g.
105     // const int x = 10;
106     // [=](auto a) {    #1
107     //   [](auto b) {   #2 <-- an intervening lambda that can never capture 'x'
108     //    [=](auto c) { #3
109     //       f(x, c);  <-- can not lead to x's speculative capture by #1 or #2
110     //    }; }; };
111     // If they do not have a default implicit capture, check to see
112     // if the entity has already been explicitly captured.
113     // If even a single dependent enclosing lambda lacks the capability
114     // to ever capture this variable, there is no further enclosing
115     // non-dependent lambda that can capture this variable.
116     if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) {
117       if (IsCapturingVariable && !LSI->isCaptured(VarToCapture))
118         return NoLambdaIsCaptureReady;
119       if (IsCapturingThis && !LSI->isCXXThisCaptured())
120         return NoLambdaIsCaptureReady;
121     }
122     EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC);
123 
124     assert(CurScopeIndex);
125     --CurScopeIndex;
126   } while (!EnclosingDC->isTranslationUnit() &&
127            EnclosingDC->isDependentContext() &&
128            isLambdaCallOperator(EnclosingDC));
129 
130   assert(CurScopeIndex < (FunctionScopes.size() - 1));
131   // If the enclosingDC is not dependent, then the immediately nested lambda
132   // (one index above) is capture-ready.
133   if (!EnclosingDC->isDependentContext())
134     return CurScopeIndex + 1;
135   return NoLambdaIsCaptureReady;
136 }
137 
138 /// Examines the FunctionScopeInfo stack to determine the nearest
139 /// enclosing lambda (to the current lambda) that is 'capture-capable' for
140 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
141 /// If successful, returns the index into Sema's FunctionScopeInfo stack
142 /// of the capture-capable lambda's LambdaScopeInfo.
143 ///
144 /// Given the current stack of lambdas being processed by Sema and
145 /// the variable of interest, to identify the nearest enclosing lambda (to the
146 /// current lambda at the top of the stack) that can truly capture
147 /// a variable, it has to have the following two properties:
148 ///  a) 'capture-ready' - be the innermost lambda that is 'capture-ready':
149 ///     - climb down the stack (i.e. starting from the innermost and examining
150 ///       each outer lambda step by step) checking if each enclosing
151 ///       lambda can either implicitly or explicitly capture the variable.
152 ///       Record the first such lambda that is enclosed in a non-dependent
153 ///       context. If no such lambda currently exists return failure.
154 ///  b) 'capture-capable' - make sure the 'capture-ready' lambda can truly
155 ///  capture the variable by checking all its enclosing lambdas:
156 ///     - check if all outer lambdas enclosing the 'capture-ready' lambda
157 ///       identified above in 'a' can also capture the variable (this is done
158 ///       via tryCaptureVariable for variables and CheckCXXThisCapture for
159 ///       'this' by passing in the index of the Lambda identified in step 'a')
160 ///
161 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
162 /// LambdaScopeInfo inherits from).  The current/deepest/innermost lambda
163 /// is at the top of the stack.
164 ///
165 /// \param VarToCapture - the variable to capture.  If NULL, capture 'this'.
166 ///
167 ///
168 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
169 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
170 /// which is capture-capable.  If the return value evaluates to 'false' then
171 /// no lambda is capture-capable for \p VarToCapture.
172 
173 Optional<unsigned> clang::getStackIndexOfNearestEnclosingCaptureCapableLambda(
174     ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes,
175     VarDecl *VarToCapture, Sema &S) {
176 
177   const Optional<unsigned> NoLambdaIsCaptureCapable;
178 
179   const Optional<unsigned> OptionalStackIndex =
180       getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes,
181                                                         VarToCapture);
182   if (!OptionalStackIndex)
183     return NoLambdaIsCaptureCapable;
184 
185   const unsigned IndexOfCaptureReadyLambda = OptionalStackIndex.getValue();
186   assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) ||
187           S.getCurGenericLambda()) &&
188          "The capture ready lambda for a potential capture can only be the "
189          "current lambda if it is a generic lambda");
190 
191   const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI =
192       cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]);
193 
194   // If VarToCapture is null, we are attempting to capture 'this'
195   const bool IsCapturingThis = !VarToCapture;
196   const bool IsCapturingVariable = !IsCapturingThis;
197 
198   if (IsCapturingVariable) {
199     // Check if the capture-ready lambda can truly capture the variable, by
200     // checking whether all enclosing lambdas of the capture-ready lambda allow
201     // the capture - i.e. make sure it is capture-capable.
202     QualType CaptureType, DeclRefType;
203     const bool CanCaptureVariable =
204         !S.tryCaptureVariable(VarToCapture,
205                               /*ExprVarIsUsedInLoc*/ SourceLocation(),
206                               clang::Sema::TryCapture_Implicit,
207                               /*EllipsisLoc*/ SourceLocation(),
208                               /*BuildAndDiagnose*/ false, CaptureType,
209                               DeclRefType, &IndexOfCaptureReadyLambda);
210     if (!CanCaptureVariable)
211       return NoLambdaIsCaptureCapable;
212   } else {
213     // Check if the capture-ready lambda can truly capture 'this' by checking
214     // whether all enclosing lambdas of the capture-ready lambda can capture
215     // 'this'.
216     const bool CanCaptureThis =
217         !S.CheckCXXThisCapture(
218              CaptureReadyLambdaLSI->PotentialThisCaptureLocation,
219              /*Explicit*/ false, /*BuildAndDiagnose*/ false,
220              &IndexOfCaptureReadyLambda);
221     if (!CanCaptureThis)
222       return NoLambdaIsCaptureCapable;
223   }
224   return IndexOfCaptureReadyLambda;
225 }
226 
227 static inline TemplateParameterList *
228 getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) {
229   if (!LSI->GLTemplateParameterList && !LSI->TemplateParams.empty()) {
230     LSI->GLTemplateParameterList = TemplateParameterList::Create(
231         SemaRef.Context,
232         /*Template kw loc*/ SourceLocation(),
233         /*L angle loc*/ LSI->ExplicitTemplateParamsRange.getBegin(),
234         LSI->TemplateParams,
235         /*R angle loc*/LSI->ExplicitTemplateParamsRange.getEnd(),
236         nullptr);
237   }
238   return LSI->GLTemplateParameterList;
239 }
240 
241 CXXRecordDecl *Sema::createLambdaClosureType(SourceRange IntroducerRange,
242                                              TypeSourceInfo *Info,
243                                              bool KnownDependent,
244                                              LambdaCaptureDefault CaptureDefault) {
245   DeclContext *DC = CurContext;
246   while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
247     DC = DC->getParent();
248   bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(),
249                                                                *this);
250   // Start constructing the lambda class.
251   CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(Context, DC, Info,
252                                                      IntroducerRange.getBegin(),
253                                                      KnownDependent,
254                                                      IsGenericLambda,
255                                                      CaptureDefault);
256   DC->addDecl(Class);
257 
258   return Class;
259 }
260 
261 /// Determine whether the given context is or is enclosed in an inline
262 /// function.
263 static bool isInInlineFunction(const DeclContext *DC) {
264   while (!DC->isFileContext()) {
265     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
266       if (FD->isInlined())
267         return true;
268 
269     DC = DC->getLexicalParent();
270   }
271 
272   return false;
273 }
274 
275 std::tuple<MangleNumberingContext *, Decl *>
276 Sema::getCurrentMangleNumberContext(const DeclContext *DC) {
277   // Compute the context for allocating mangling numbers in the current
278   // expression, if the ABI requires them.
279   Decl *ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl;
280 
281   enum ContextKind {
282     Normal,
283     DefaultArgument,
284     DataMember,
285     StaticDataMember,
286     InlineVariable,
287     VariableTemplate
288   } Kind = Normal;
289 
290   // Default arguments of member function parameters that appear in a class
291   // definition, as well as the initializers of data members, receive special
292   // treatment. Identify them.
293   if (ManglingContextDecl) {
294     if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) {
295       if (const DeclContext *LexicalDC
296           = Param->getDeclContext()->getLexicalParent())
297         if (LexicalDC->isRecord())
298           Kind = DefaultArgument;
299     } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) {
300       if (Var->getDeclContext()->isRecord())
301         Kind = StaticDataMember;
302       else if (Var->getMostRecentDecl()->isInline())
303         Kind = InlineVariable;
304       else if (Var->getDescribedVarTemplate())
305         Kind = VariableTemplate;
306       else if (auto *VTS = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
307         if (!VTS->isExplicitSpecialization())
308           Kind = VariableTemplate;
309       }
310     } else if (isa<FieldDecl>(ManglingContextDecl)) {
311       Kind = DataMember;
312     }
313   }
314 
315   // Itanium ABI [5.1.7]:
316   //   In the following contexts [...] the one-definition rule requires closure
317   //   types in different translation units to "correspond":
318   bool IsInNonspecializedTemplate =
319       inTemplateInstantiation() || CurContext->isDependentContext();
320   switch (Kind) {
321   case Normal: {
322     //  -- the bodies of non-exported nonspecialized template functions
323     //  -- the bodies of inline functions
324     if ((IsInNonspecializedTemplate &&
325          !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) ||
326         isInInlineFunction(CurContext)) {
327       while (auto *CD = dyn_cast<CapturedDecl>(DC))
328         DC = CD->getParent();
329       return std::make_tuple(&Context.getManglingNumberContext(DC), nullptr);
330     }
331 
332     return std::make_tuple(nullptr, nullptr);
333   }
334 
335   case StaticDataMember:
336     //  -- the initializers of nonspecialized static members of template classes
337     if (!IsInNonspecializedTemplate)
338       return std::make_tuple(nullptr, ManglingContextDecl);
339     // Fall through to get the current context.
340     LLVM_FALLTHROUGH;
341 
342   case DataMember:
343     //  -- the in-class initializers of class members
344   case DefaultArgument:
345     //  -- default arguments appearing in class definitions
346   case InlineVariable:
347     //  -- the initializers of inline variables
348   case VariableTemplate:
349     //  -- the initializers of templated variables
350     return std::make_tuple(
351         &Context.getManglingNumberContext(ASTContext::NeedExtraManglingDecl,
352                                           ManglingContextDecl),
353         ManglingContextDecl);
354   }
355 
356   llvm_unreachable("unexpected context");
357 }
358 
359 CXXMethodDecl *Sema::startLambdaDefinition(CXXRecordDecl *Class,
360                                            SourceRange IntroducerRange,
361                                            TypeSourceInfo *MethodTypeInfo,
362                                            SourceLocation EndLoc,
363                                            ArrayRef<ParmVarDecl *> Params,
364                                            ConstexprSpecKind ConstexprKind) {
365   QualType MethodType = MethodTypeInfo->getType();
366   TemplateParameterList *TemplateParams =
367       getGenericLambdaTemplateParameterList(getCurLambda(), *this);
368   // If a lambda appears in a dependent context or is a generic lambda (has
369   // template parameters) and has an 'auto' return type, deduce it to a
370   // dependent type.
371   if (Class->isDependentContext() || TemplateParams) {
372     const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>();
373     QualType Result = FPT->getReturnType();
374     if (Result->isUndeducedType()) {
375       Result = SubstAutoType(Result, Context.DependentTy);
376       MethodType = Context.getFunctionType(Result, FPT->getParamTypes(),
377                                            FPT->getExtProtoInfo());
378     }
379   }
380 
381   // C++11 [expr.prim.lambda]p5:
382   //   The closure type for a lambda-expression has a public inline function
383   //   call operator (13.5.4) whose parameters and return type are described by
384   //   the lambda-expression's parameter-declaration-clause and
385   //   trailing-return-type respectively.
386   DeclarationName MethodName
387     = Context.DeclarationNames.getCXXOperatorName(OO_Call);
388   DeclarationNameLoc MethodNameLoc;
389   MethodNameLoc.CXXOperatorName.BeginOpNameLoc
390     = IntroducerRange.getBegin().getRawEncoding();
391   MethodNameLoc.CXXOperatorName.EndOpNameLoc
392     = IntroducerRange.getEnd().getRawEncoding();
393   CXXMethodDecl *Method = CXXMethodDecl::Create(
394       Context, Class, EndLoc,
395       DeclarationNameInfo(MethodName, IntroducerRange.getBegin(),
396                           MethodNameLoc),
397       MethodType, MethodTypeInfo, SC_None,
398       /*isInline=*/true, ConstexprKind, EndLoc);
399   Method->setAccess(AS_public);
400   if (!TemplateParams)
401     Class->addDecl(Method);
402 
403   // Temporarily set the lexical declaration context to the current
404   // context, so that the Scope stack matches the lexical nesting.
405   Method->setLexicalDeclContext(CurContext);
406   // Create a function template if we have a template parameter list
407   FunctionTemplateDecl *const TemplateMethod = TemplateParams ?
408             FunctionTemplateDecl::Create(Context, Class,
409                                          Method->getLocation(), MethodName,
410                                          TemplateParams,
411                                          Method) : nullptr;
412   if (TemplateMethod) {
413     TemplateMethod->setAccess(AS_public);
414     Method->setDescribedFunctionTemplate(TemplateMethod);
415     Class->addDecl(TemplateMethod);
416     TemplateMethod->setLexicalDeclContext(CurContext);
417   }
418 
419   // Add parameters.
420   if (!Params.empty()) {
421     Method->setParams(Params);
422     CheckParmsForFunctionDef(Params,
423                              /*CheckParameterNames=*/false);
424 
425     for (auto P : Method->parameters())
426       P->setOwningFunction(Method);
427   }
428 
429   return Method;
430 }
431 
432 void Sema::handleLambdaNumbering(
433     CXXRecordDecl *Class, CXXMethodDecl *Method,
434     Optional<std::tuple<unsigned, bool, Decl *>> Mangling) {
435   if (Mangling) {
436     unsigned ManglingNumber;
437     bool HasKnownInternalLinkage;
438     Decl *ManglingContextDecl;
439     std::tie(ManglingNumber, HasKnownInternalLinkage, ManglingContextDecl) =
440         Mangling.getValue();
441     Class->setLambdaMangling(ManglingNumber, ManglingContextDecl,
442                              HasKnownInternalLinkage);
443     return;
444   }
445 
446   auto getMangleNumberingContext =
447       [this](CXXRecordDecl *Class,
448              Decl *ManglingContextDecl) -> MangleNumberingContext * {
449     // Get mangle numbering context if there's any extra decl context.
450     if (ManglingContextDecl)
451       return &Context.getManglingNumberContext(
452           ASTContext::NeedExtraManglingDecl, ManglingContextDecl);
453     // Otherwise, from that lambda's decl context.
454     auto DC = Class->getDeclContext();
455     while (auto *CD = dyn_cast<CapturedDecl>(DC))
456       DC = CD->getParent();
457     return &Context.getManglingNumberContext(DC);
458   };
459 
460   MangleNumberingContext *MCtx;
461   Decl *ManglingContextDecl;
462   std::tie(MCtx, ManglingContextDecl) =
463       getCurrentMangleNumberContext(Class->getDeclContext());
464   bool HasKnownInternalLinkage = false;
465   if (!MCtx && getLangOpts().CUDA) {
466     // Force lambda numbering in CUDA/HIP as we need to name lambdas following
467     // ODR. Both device- and host-compilation need to have a consistent naming
468     // on kernel functions. As lambdas are potential part of these `__global__`
469     // function names, they needs numbering following ODR.
470     MCtx = getMangleNumberingContext(Class, ManglingContextDecl);
471     assert(MCtx && "Retrieving mangle numbering context failed!");
472     HasKnownInternalLinkage = true;
473   }
474   if (MCtx) {
475     unsigned ManglingNumber = MCtx->getManglingNumber(Method);
476     Class->setLambdaMangling(ManglingNumber, ManglingContextDecl,
477                              HasKnownInternalLinkage);
478   }
479 }
480 
481 void Sema::buildLambdaScope(LambdaScopeInfo *LSI,
482                                         CXXMethodDecl *CallOperator,
483                                         SourceRange IntroducerRange,
484                                         LambdaCaptureDefault CaptureDefault,
485                                         SourceLocation CaptureDefaultLoc,
486                                         bool ExplicitParams,
487                                         bool ExplicitResultType,
488                                         bool Mutable) {
489   LSI->CallOperator = CallOperator;
490   CXXRecordDecl *LambdaClass = CallOperator->getParent();
491   LSI->Lambda = LambdaClass;
492   if (CaptureDefault == LCD_ByCopy)
493     LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval;
494   else if (CaptureDefault == LCD_ByRef)
495     LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref;
496   LSI->CaptureDefaultLoc = CaptureDefaultLoc;
497   LSI->IntroducerRange = IntroducerRange;
498   LSI->ExplicitParams = ExplicitParams;
499   LSI->Mutable = Mutable;
500 
501   if (ExplicitResultType) {
502     LSI->ReturnType = CallOperator->getReturnType();
503 
504     if (!LSI->ReturnType->isDependentType() &&
505         !LSI->ReturnType->isVoidType()) {
506       if (RequireCompleteType(CallOperator->getBeginLoc(), LSI->ReturnType,
507                               diag::err_lambda_incomplete_result)) {
508         // Do nothing.
509       }
510     }
511   } else {
512     LSI->HasImplicitReturnType = true;
513   }
514 }
515 
516 void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) {
517   LSI->finishedExplicitCaptures();
518 }
519 
520 void Sema::ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc,
521                                                     ArrayRef<NamedDecl *> TParams,
522                                                     SourceLocation RAngleLoc) {
523   LambdaScopeInfo *LSI = getCurLambda();
524   assert(LSI && "Expected a lambda scope");
525   assert(LSI->NumExplicitTemplateParams == 0 &&
526          "Already acted on explicit template parameters");
527   assert(LSI->TemplateParams.empty() &&
528          "Explicit template parameters should come "
529          "before invented (auto) ones");
530   assert(!TParams.empty() &&
531          "No template parameters to act on");
532   LSI->TemplateParams.append(TParams.begin(), TParams.end());
533   LSI->NumExplicitTemplateParams = TParams.size();
534   LSI->ExplicitTemplateParamsRange = {LAngleLoc, RAngleLoc};
535 }
536 
537 void Sema::addLambdaParameters(
538     ArrayRef<LambdaIntroducer::LambdaCapture> Captures,
539     CXXMethodDecl *CallOperator, Scope *CurScope) {
540   // Introduce our parameters into the function scope
541   for (unsigned p = 0, NumParams = CallOperator->getNumParams();
542        p < NumParams; ++p) {
543     ParmVarDecl *Param = CallOperator->getParamDecl(p);
544 
545     // If this has an identifier, add it to the scope stack.
546     if (CurScope && Param->getIdentifier()) {
547       bool Error = false;
548       // Resolution of CWG 2211 in C++17 renders shadowing ill-formed, but we
549       // retroactively apply it.
550       for (const auto &Capture : Captures) {
551         if (Capture.Id == Param->getIdentifier()) {
552           Error = true;
553           Diag(Param->getLocation(), diag::err_parameter_shadow_capture);
554           Diag(Capture.Loc, diag::note_var_explicitly_captured_here)
555               << Capture.Id << true;
556         }
557       }
558       if (!Error)
559         CheckShadow(CurScope, Param);
560 
561       PushOnScopeChains(Param, CurScope);
562     }
563   }
564 }
565 
566 /// If this expression is an enumerator-like expression of some type
567 /// T, return the type T; otherwise, return null.
568 ///
569 /// Pointer comparisons on the result here should always work because
570 /// it's derived from either the parent of an EnumConstantDecl
571 /// (i.e. the definition) or the declaration returned by
572 /// EnumType::getDecl() (i.e. the definition).
573 static EnumDecl *findEnumForBlockReturn(Expr *E) {
574   // An expression is an enumerator-like expression of type T if,
575   // ignoring parens and parens-like expressions:
576   E = E->IgnoreParens();
577 
578   //  - it is an enumerator whose enum type is T or
579   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
580     if (EnumConstantDecl *D
581           = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
582       return cast<EnumDecl>(D->getDeclContext());
583     }
584     return nullptr;
585   }
586 
587   //  - it is a comma expression whose RHS is an enumerator-like
588   //    expression of type T or
589   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
590     if (BO->getOpcode() == BO_Comma)
591       return findEnumForBlockReturn(BO->getRHS());
592     return nullptr;
593   }
594 
595   //  - it is a statement-expression whose value expression is an
596   //    enumerator-like expression of type T or
597   if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
598     if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back()))
599       return findEnumForBlockReturn(last);
600     return nullptr;
601   }
602 
603   //   - it is a ternary conditional operator (not the GNU ?:
604   //     extension) whose second and third operands are
605   //     enumerator-like expressions of type T or
606   if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
607     if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr()))
608       if (ED == findEnumForBlockReturn(CO->getFalseExpr()))
609         return ED;
610     return nullptr;
611   }
612 
613   // (implicitly:)
614   //   - it is an implicit integral conversion applied to an
615   //     enumerator-like expression of type T or
616   if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
617     // We can sometimes see integral conversions in valid
618     // enumerator-like expressions.
619     if (ICE->getCastKind() == CK_IntegralCast)
620       return findEnumForBlockReturn(ICE->getSubExpr());
621 
622     // Otherwise, just rely on the type.
623   }
624 
625   //   - it is an expression of that formal enum type.
626   if (const EnumType *ET = E->getType()->getAs<EnumType>()) {
627     return ET->getDecl();
628   }
629 
630   // Otherwise, nope.
631   return nullptr;
632 }
633 
634 /// Attempt to find a type T for which the returned expression of the
635 /// given statement is an enumerator-like expression of that type.
636 static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) {
637   if (Expr *retValue = ret->getRetValue())
638     return findEnumForBlockReturn(retValue);
639   return nullptr;
640 }
641 
642 /// Attempt to find a common type T for which all of the returned
643 /// expressions in a block are enumerator-like expressions of that
644 /// type.
645 static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) {
646   ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end();
647 
648   // Try to find one for the first return.
649   EnumDecl *ED = findEnumForBlockReturn(*i);
650   if (!ED) return nullptr;
651 
652   // Check that the rest of the returns have the same enum.
653   for (++i; i != e; ++i) {
654     if (findEnumForBlockReturn(*i) != ED)
655       return nullptr;
656   }
657 
658   // Never infer an anonymous enum type.
659   if (!ED->hasNameForLinkage()) return nullptr;
660 
661   return ED;
662 }
663 
664 /// Adjust the given return statements so that they formally return
665 /// the given type.  It should require, at most, an IntegralCast.
666 static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns,
667                                      QualType returnType) {
668   for (ArrayRef<ReturnStmt*>::iterator
669          i = returns.begin(), e = returns.end(); i != e; ++i) {
670     ReturnStmt *ret = *i;
671     Expr *retValue = ret->getRetValue();
672     if (S.Context.hasSameType(retValue->getType(), returnType))
673       continue;
674 
675     // Right now we only support integral fixup casts.
676     assert(returnType->isIntegralOrUnscopedEnumerationType());
677     assert(retValue->getType()->isIntegralOrUnscopedEnumerationType());
678 
679     ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue);
680 
681     Expr *E = (cleanups ? cleanups->getSubExpr() : retValue);
682     E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast,
683                                  E, /*base path*/ nullptr, VK_RValue);
684     if (cleanups) {
685       cleanups->setSubExpr(E);
686     } else {
687       ret->setRetValue(E);
688     }
689   }
690 }
691 
692 void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) {
693   assert(CSI.HasImplicitReturnType);
694   // If it was ever a placeholder, it had to been deduced to DependentTy.
695   assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType());
696   assert((!isa<LambdaScopeInfo>(CSI) || !getLangOpts().CPlusPlus14) &&
697          "lambda expressions use auto deduction in C++14 onwards");
698 
699   // C++ core issue 975:
700   //   If a lambda-expression does not include a trailing-return-type,
701   //   it is as if the trailing-return-type denotes the following type:
702   //     - if there are no return statements in the compound-statement,
703   //       or all return statements return either an expression of type
704   //       void or no expression or braced-init-list, the type void;
705   //     - otherwise, if all return statements return an expression
706   //       and the types of the returned expressions after
707   //       lvalue-to-rvalue conversion (4.1 [conv.lval]),
708   //       array-to-pointer conversion (4.2 [conv.array]), and
709   //       function-to-pointer conversion (4.3 [conv.func]) are the
710   //       same, that common type;
711   //     - otherwise, the program is ill-formed.
712   //
713   // C++ core issue 1048 additionally removes top-level cv-qualifiers
714   // from the types of returned expressions to match the C++14 auto
715   // deduction rules.
716   //
717   // In addition, in blocks in non-C++ modes, if all of the return
718   // statements are enumerator-like expressions of some type T, where
719   // T has a name for linkage, then we infer the return type of the
720   // block to be that type.
721 
722   // First case: no return statements, implicit void return type.
723   ASTContext &Ctx = getASTContext();
724   if (CSI.Returns.empty()) {
725     // It's possible there were simply no /valid/ return statements.
726     // In this case, the first one we found may have at least given us a type.
727     if (CSI.ReturnType.isNull())
728       CSI.ReturnType = Ctx.VoidTy;
729     return;
730   }
731 
732   // Second case: at least one return statement has dependent type.
733   // Delay type checking until instantiation.
734   assert(!CSI.ReturnType.isNull() && "We should have a tentative return type.");
735   if (CSI.ReturnType->isDependentType())
736     return;
737 
738   // Try to apply the enum-fuzz rule.
739   if (!getLangOpts().CPlusPlus) {
740     assert(isa<BlockScopeInfo>(CSI));
741     const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns);
742     if (ED) {
743       CSI.ReturnType = Context.getTypeDeclType(ED);
744       adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType);
745       return;
746     }
747   }
748 
749   // Third case: only one return statement. Don't bother doing extra work!
750   if (CSI.Returns.size() == 1)
751     return;
752 
753   // General case: many return statements.
754   // Check that they all have compatible return types.
755 
756   // We require the return types to strictly match here.
757   // Note that we've already done the required promotions as part of
758   // processing the return statement.
759   for (const ReturnStmt *RS : CSI.Returns) {
760     const Expr *RetE = RS->getRetValue();
761 
762     QualType ReturnType =
763         (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType();
764     if (Context.getCanonicalFunctionResultType(ReturnType) ==
765           Context.getCanonicalFunctionResultType(CSI.ReturnType)) {
766       // Use the return type with the strictest possible nullability annotation.
767       auto RetTyNullability = ReturnType->getNullability(Ctx);
768       auto BlockNullability = CSI.ReturnType->getNullability(Ctx);
769       if (BlockNullability &&
770           (!RetTyNullability ||
771            hasWeakerNullability(*RetTyNullability, *BlockNullability)))
772         CSI.ReturnType = ReturnType;
773       continue;
774     }
775 
776     // FIXME: This is a poor diagnostic for ReturnStmts without expressions.
777     // TODO: It's possible that the *first* return is the divergent one.
778     Diag(RS->getBeginLoc(),
779          diag::err_typecheck_missing_return_type_incompatible)
780         << ReturnType << CSI.ReturnType << isa<LambdaScopeInfo>(CSI);
781     // Continue iterating so that we keep emitting diagnostics.
782   }
783 }
784 
785 QualType Sema::buildLambdaInitCaptureInitialization(
786     SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
787     Optional<unsigned> NumExpansions, IdentifierInfo *Id, bool IsDirectInit,
788     Expr *&Init) {
789   // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to
790   // deduce against.
791   QualType DeductType = Context.getAutoDeductType();
792   TypeLocBuilder TLB;
793   TLB.pushTypeSpec(DeductType).setNameLoc(Loc);
794   if (ByRef) {
795     DeductType = BuildReferenceType(DeductType, true, Loc, Id);
796     assert(!DeductType.isNull() && "can't build reference to auto");
797     TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc);
798   }
799   if (EllipsisLoc.isValid()) {
800     if (Init->containsUnexpandedParameterPack()) {
801       Diag(EllipsisLoc, getLangOpts().CPlusPlus2a
802                             ? diag::warn_cxx17_compat_init_capture_pack
803                             : diag::ext_init_capture_pack);
804       DeductType = Context.getPackExpansionType(DeductType, NumExpansions);
805       TLB.push<PackExpansionTypeLoc>(DeductType).setEllipsisLoc(EllipsisLoc);
806     } else {
807       // Just ignore the ellipsis for now and form a non-pack variable. We'll
808       // diagnose this later when we try to capture it.
809     }
810   }
811   TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType);
812 
813   // Deduce the type of the init capture.
814   QualType DeducedType = deduceVarTypeFromInitializer(
815       /*VarDecl*/nullptr, DeclarationName(Id), DeductType, TSI,
816       SourceRange(Loc, Loc), IsDirectInit, Init);
817   if (DeducedType.isNull())
818     return QualType();
819 
820   // Are we a non-list direct initialization?
821   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
822 
823   // Perform initialization analysis and ensure any implicit conversions
824   // (such as lvalue-to-rvalue) are enforced.
825   InitializedEntity Entity =
826       InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc);
827   InitializationKind Kind =
828       IsDirectInit
829           ? (CXXDirectInit ? InitializationKind::CreateDirect(
830                                  Loc, Init->getBeginLoc(), Init->getEndLoc())
831                            : InitializationKind::CreateDirectList(Loc))
832           : InitializationKind::CreateCopy(Loc, Init->getBeginLoc());
833 
834   MultiExprArg Args = Init;
835   if (CXXDirectInit)
836     Args =
837         MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs());
838   QualType DclT;
839   InitializationSequence InitSeq(*this, Entity, Kind, Args);
840   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
841 
842   if (Result.isInvalid())
843     return QualType();
844 
845   Init = Result.getAs<Expr>();
846   return DeducedType;
847 }
848 
849 VarDecl *Sema::createLambdaInitCaptureVarDecl(SourceLocation Loc,
850                                               QualType InitCaptureType,
851                                               SourceLocation EllipsisLoc,
852                                               IdentifierInfo *Id,
853                                               unsigned InitStyle, Expr *Init) {
854   // FIXME: Retain the TypeSourceInfo from buildLambdaInitCaptureInitialization
855   // rather than reconstructing it here.
856   TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType, Loc);
857   if (auto PETL = TSI->getTypeLoc().getAs<PackExpansionTypeLoc>())
858     PETL.setEllipsisLoc(EllipsisLoc);
859 
860   // Create a dummy variable representing the init-capture. This is not actually
861   // used as a variable, and only exists as a way to name and refer to the
862   // init-capture.
863   // FIXME: Pass in separate source locations for '&' and identifier.
864   VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc,
865                                    Loc, Id, InitCaptureType, TSI, SC_Auto);
866   NewVD->setInitCapture(true);
867   NewVD->setReferenced(true);
868   // FIXME: Pass in a VarDecl::InitializationStyle.
869   NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle));
870   NewVD->markUsed(Context);
871   NewVD->setInit(Init);
872   if (NewVD->isParameterPack())
873     getCurLambda()->LocalPacks.push_back(NewVD);
874   return NewVD;
875 }
876 
877 void Sema::addInitCapture(LambdaScopeInfo *LSI, VarDecl *Var) {
878   assert(Var->isInitCapture() && "init capture flag should be set");
879   LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(),
880                   /*isNested*/false, Var->getLocation(), SourceLocation(),
881                   Var->getType(), /*Invalid*/false);
882 }
883 
884 void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
885                                         Declarator &ParamInfo,
886                                         Scope *CurScope) {
887   LambdaScopeInfo *const LSI = getCurLambda();
888   assert(LSI && "LambdaScopeInfo should be on stack!");
889 
890   // Determine if we're within a context where we know that the lambda will
891   // be dependent, because there are template parameters in scope.
892   bool KnownDependent;
893   if (LSI->NumExplicitTemplateParams > 0) {
894     auto *TemplateParamScope = CurScope->getTemplateParamParent();
895     assert(TemplateParamScope &&
896            "Lambda with explicit template param list should establish a "
897            "template param scope");
898     assert(TemplateParamScope->getParent());
899     KnownDependent = TemplateParamScope->getParent()
900                                        ->getTemplateParamParent() != nullptr;
901   } else {
902     KnownDependent = CurScope->getTemplateParamParent() != nullptr;
903   }
904 
905   // Determine the signature of the call operator.
906   TypeSourceInfo *MethodTyInfo;
907   bool ExplicitParams = true;
908   bool ExplicitResultType = true;
909   bool ContainsUnexpandedParameterPack = false;
910   SourceLocation EndLoc;
911   SmallVector<ParmVarDecl *, 8> Params;
912   if (ParamInfo.getNumTypeObjects() == 0) {
913     // C++11 [expr.prim.lambda]p4:
914     //   If a lambda-expression does not include a lambda-declarator, it is as
915     //   if the lambda-declarator were ().
916     FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
917         /*IsVariadic=*/false, /*IsCXXMethod=*/true));
918     EPI.HasTrailingReturn = true;
919     EPI.TypeQuals.addConst();
920     // C++1y [expr.prim.lambda]:
921     //   The lambda return type is 'auto', which is replaced by the
922     //   trailing-return type if provided and/or deduced from 'return'
923     //   statements
924     // We don't do this before C++1y, because we don't support deduced return
925     // types there.
926     QualType DefaultTypeForNoTrailingReturn =
927         getLangOpts().CPlusPlus14 ? Context.getAutoDeductType()
928                                   : Context.DependentTy;
929     QualType MethodTy =
930         Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI);
931     MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy);
932     ExplicitParams = false;
933     ExplicitResultType = false;
934     EndLoc = Intro.Range.getEnd();
935   } else {
936     assert(ParamInfo.isFunctionDeclarator() &&
937            "lambda-declarator is a function");
938     DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo();
939 
940     // C++11 [expr.prim.lambda]p5:
941     //   This function call operator is declared const (9.3.1) if and only if
942     //   the lambda-expression's parameter-declaration-clause is not followed
943     //   by mutable. It is neither virtual nor declared volatile. [...]
944     if (!FTI.hasMutableQualifier()) {
945       FTI.getOrCreateMethodQualifiers().SetTypeQual(DeclSpec::TQ_const,
946                                                     SourceLocation());
947     }
948 
949     MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope);
950     assert(MethodTyInfo && "no type from lambda-declarator");
951     EndLoc = ParamInfo.getSourceRange().getEnd();
952 
953     ExplicitResultType = FTI.hasTrailingReturnType();
954 
955     if (FTIHasNonVoidParameters(FTI)) {
956       Params.reserve(FTI.NumParams);
957       for (unsigned i = 0, e = FTI.NumParams; i != e; ++i)
958         Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param));
959     }
960 
961     // Check for unexpanded parameter packs in the method type.
962     if (MethodTyInfo->getType()->containsUnexpandedParameterPack())
963       DiagnoseUnexpandedParameterPack(Intro.Range.getBegin(), MethodTyInfo,
964                                       UPPC_DeclarationType);
965   }
966 
967   CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, MethodTyInfo,
968                                                  KnownDependent, Intro.Default);
969   CXXMethodDecl *Method =
970       startLambdaDefinition(Class, Intro.Range, MethodTyInfo, EndLoc, Params,
971                             ParamInfo.getDeclSpec().getConstexprSpecifier());
972   if (ExplicitParams)
973     CheckCXXDefaultArguments(Method);
974 
975   // This represents the function body for the lambda function, check if we
976   // have to apply optnone due to a pragma.
977   AddRangeBasedOptnone(Method);
978 
979   // code_seg attribute on lambda apply to the method.
980   if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true))
981     Method->addAttr(A);
982 
983   // Attributes on the lambda apply to the method.
984   ProcessDeclAttributes(CurScope, Method, ParamInfo);
985 
986   // CUDA lambdas get implicit attributes based on the scope in which they're
987   // declared.
988   if (getLangOpts().CUDA)
989     CUDASetLambdaAttrs(Method);
990 
991   // Number the lambda for linkage purposes if necessary.
992   handleLambdaNumbering(Class, Method);
993 
994   // Introduce the function call operator as the current declaration context.
995   PushDeclContext(CurScope, Method);
996 
997   // Build the lambda scope.
998   buildLambdaScope(LSI, Method, Intro.Range, Intro.Default, Intro.DefaultLoc,
999                    ExplicitParams, ExplicitResultType, !Method->isConst());
1000 
1001   // C++11 [expr.prim.lambda]p9:
1002   //   A lambda-expression whose smallest enclosing scope is a block scope is a
1003   //   local lambda expression; any other lambda expression shall not have a
1004   //   capture-default or simple-capture in its lambda-introducer.
1005   //
1006   // For simple-captures, this is covered by the check below that any named
1007   // entity is a variable that can be captured.
1008   //
1009   // For DR1632, we also allow a capture-default in any context where we can
1010   // odr-use 'this' (in particular, in a default initializer for a non-static
1011   // data member).
1012   if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() &&
1013       (getCurrentThisType().isNull() ||
1014        CheckCXXThisCapture(SourceLocation(), /*Explicit*/true,
1015                            /*BuildAndDiagnose*/false)))
1016     Diag(Intro.DefaultLoc, diag::err_capture_default_non_local);
1017 
1018   // Distinct capture names, for diagnostics.
1019   llvm::SmallSet<IdentifierInfo*, 8> CaptureNames;
1020 
1021   // Handle explicit captures.
1022   SourceLocation PrevCaptureLoc
1023     = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc;
1024   for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E;
1025        PrevCaptureLoc = C->Loc, ++C) {
1026     if (C->Kind == LCK_This || C->Kind == LCK_StarThis) {
1027       if (C->Kind == LCK_StarThis)
1028         Diag(C->Loc, !getLangOpts().CPlusPlus17
1029                              ? diag::ext_star_this_lambda_capture_cxx17
1030                              : diag::warn_cxx14_compat_star_this_lambda_capture);
1031 
1032       // C++11 [expr.prim.lambda]p8:
1033       //   An identifier or this shall not appear more than once in a
1034       //   lambda-capture.
1035       if (LSI->isCXXThisCaptured()) {
1036         Diag(C->Loc, diag::err_capture_more_than_once)
1037             << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation())
1038             << FixItHint::CreateRemoval(
1039                    SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1040         continue;
1041       }
1042 
1043       // C++2a [expr.prim.lambda]p8:
1044       //  If a lambda-capture includes a capture-default that is =,
1045       //  each simple-capture of that lambda-capture shall be of the form
1046       //  "&identifier", "this", or "* this". [ Note: The form [&,this] is
1047       //  redundant but accepted for compatibility with ISO C++14. --end note ]
1048       if (Intro.Default == LCD_ByCopy && C->Kind != LCK_StarThis)
1049         Diag(C->Loc, !getLangOpts().CPlusPlus2a
1050                          ? diag::ext_equals_this_lambda_capture_cxx2a
1051                          : diag::warn_cxx17_compat_equals_this_lambda_capture);
1052 
1053       // C++11 [expr.prim.lambda]p12:
1054       //   If this is captured by a local lambda expression, its nearest
1055       //   enclosing function shall be a non-static member function.
1056       QualType ThisCaptureType = getCurrentThisType();
1057       if (ThisCaptureType.isNull()) {
1058         Diag(C->Loc, diag::err_this_capture) << true;
1059         continue;
1060       }
1061 
1062       CheckCXXThisCapture(C->Loc, /*Explicit=*/true, /*BuildAndDiagnose*/ true,
1063                           /*FunctionScopeIndexToStopAtPtr*/ nullptr,
1064                           C->Kind == LCK_StarThis);
1065       if (!LSI->Captures.empty())
1066         LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange;
1067       continue;
1068     }
1069 
1070     assert(C->Id && "missing identifier for capture");
1071 
1072     if (C->Init.isInvalid())
1073       continue;
1074 
1075     VarDecl *Var = nullptr;
1076     if (C->Init.isUsable()) {
1077       Diag(C->Loc, getLangOpts().CPlusPlus14
1078                        ? diag::warn_cxx11_compat_init_capture
1079                        : diag::ext_init_capture);
1080 
1081       // If the initializer expression is usable, but the InitCaptureType
1082       // is not, then an error has occurred - so ignore the capture for now.
1083       // for e.g., [n{0}] { }; <-- if no <initializer_list> is included.
1084       // FIXME: we should create the init capture variable and mark it invalid
1085       // in this case.
1086       if (C->InitCaptureType.get().isNull())
1087         continue;
1088 
1089       if (C->Init.get()->containsUnexpandedParameterPack() &&
1090           !C->InitCaptureType.get()->getAs<PackExpansionType>())
1091         DiagnoseUnexpandedParameterPack(C->Init.get(), UPPC_Initializer);
1092 
1093       unsigned InitStyle;
1094       switch (C->InitKind) {
1095       case LambdaCaptureInitKind::NoInit:
1096         llvm_unreachable("not an init-capture?");
1097       case LambdaCaptureInitKind::CopyInit:
1098         InitStyle = VarDecl::CInit;
1099         break;
1100       case LambdaCaptureInitKind::DirectInit:
1101         InitStyle = VarDecl::CallInit;
1102         break;
1103       case LambdaCaptureInitKind::ListInit:
1104         InitStyle = VarDecl::ListInit;
1105         break;
1106       }
1107       Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(),
1108                                            C->EllipsisLoc, C->Id, InitStyle,
1109                                            C->Init.get());
1110       // C++1y [expr.prim.lambda]p11:
1111       //   An init-capture behaves as if it declares and explicitly
1112       //   captures a variable [...] whose declarative region is the
1113       //   lambda-expression's compound-statement
1114       if (Var)
1115         PushOnScopeChains(Var, CurScope, false);
1116     } else {
1117       assert(C->InitKind == LambdaCaptureInitKind::NoInit &&
1118              "init capture has valid but null init?");
1119 
1120       // C++11 [expr.prim.lambda]p8:
1121       //   If a lambda-capture includes a capture-default that is &, the
1122       //   identifiers in the lambda-capture shall not be preceded by &.
1123       //   If a lambda-capture includes a capture-default that is =, [...]
1124       //   each identifier it contains shall be preceded by &.
1125       if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) {
1126         Diag(C->Loc, diag::err_reference_capture_with_reference_default)
1127             << FixItHint::CreateRemoval(
1128                 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1129         continue;
1130       } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) {
1131         Diag(C->Loc, diag::err_copy_capture_with_copy_default)
1132             << FixItHint::CreateRemoval(
1133                 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1134         continue;
1135       }
1136 
1137       // C++11 [expr.prim.lambda]p10:
1138       //   The identifiers in a capture-list are looked up using the usual
1139       //   rules for unqualified name lookup (3.4.1)
1140       DeclarationNameInfo Name(C->Id, C->Loc);
1141       LookupResult R(*this, Name, LookupOrdinaryName);
1142       LookupName(R, CurScope);
1143       if (R.isAmbiguous())
1144         continue;
1145       if (R.empty()) {
1146         // FIXME: Disable corrections that would add qualification?
1147         CXXScopeSpec ScopeSpec;
1148         DeclFilterCCC<VarDecl> Validator{};
1149         if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R, Validator))
1150           continue;
1151       }
1152 
1153       Var = R.getAsSingle<VarDecl>();
1154       if (Var && DiagnoseUseOfDecl(Var, C->Loc))
1155         continue;
1156     }
1157 
1158     // C++11 [expr.prim.lambda]p8:
1159     //   An identifier or this shall not appear more than once in a
1160     //   lambda-capture.
1161     if (!CaptureNames.insert(C->Id).second) {
1162       if (Var && LSI->isCaptured(Var)) {
1163         Diag(C->Loc, diag::err_capture_more_than_once)
1164             << C->Id << SourceRange(LSI->getCapture(Var).getLocation())
1165             << FixItHint::CreateRemoval(
1166                    SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1167       } else
1168         // Previous capture captured something different (one or both was
1169         // an init-cpature): no fixit.
1170         Diag(C->Loc, diag::err_capture_more_than_once) << C->Id;
1171       continue;
1172     }
1173 
1174     // C++11 [expr.prim.lambda]p10:
1175     //   [...] each such lookup shall find a variable with automatic storage
1176     //   duration declared in the reaching scope of the local lambda expression.
1177     // Note that the 'reaching scope' check happens in tryCaptureVariable().
1178     if (!Var) {
1179       Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id;
1180       continue;
1181     }
1182 
1183     // Ignore invalid decls; they'll just confuse the code later.
1184     if (Var->isInvalidDecl())
1185       continue;
1186 
1187     if (!Var->hasLocalStorage()) {
1188       Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id;
1189       Diag(Var->getLocation(), diag::note_previous_decl) << C->Id;
1190       continue;
1191     }
1192 
1193     // C++11 [expr.prim.lambda]p23:
1194     //   A capture followed by an ellipsis is a pack expansion (14.5.3).
1195     SourceLocation EllipsisLoc;
1196     if (C->EllipsisLoc.isValid()) {
1197       if (Var->isParameterPack()) {
1198         EllipsisLoc = C->EllipsisLoc;
1199       } else {
1200         Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1201             << (C->Init.isUsable() ? C->Init.get()->getSourceRange()
1202                                    : SourceRange(C->Loc));
1203 
1204         // Just ignore the ellipsis.
1205       }
1206     } else if (Var->isParameterPack()) {
1207       ContainsUnexpandedParameterPack = true;
1208     }
1209 
1210     if (C->Init.isUsable()) {
1211       addInitCapture(LSI, Var);
1212     } else {
1213       TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef :
1214                                                    TryCapture_ExplicitByVal;
1215       tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc);
1216     }
1217     if (!LSI->Captures.empty())
1218       LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange;
1219   }
1220   finishLambdaExplicitCaptures(LSI);
1221 
1222   LSI->ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
1223 
1224   // Add lambda parameters into scope.
1225   addLambdaParameters(Intro.Captures, Method, CurScope);
1226 
1227   // Enter a new evaluation context to insulate the lambda from any
1228   // cleanups from the enclosing full-expression.
1229   PushExpressionEvaluationContext(
1230       ExpressionEvaluationContext::PotentiallyEvaluated);
1231 }
1232 
1233 void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
1234                             bool IsInstantiation) {
1235   LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back());
1236 
1237   // Leave the expression-evaluation context.
1238   DiscardCleanupsInEvaluationContext();
1239   PopExpressionEvaluationContext();
1240 
1241   // Leave the context of the lambda.
1242   if (!IsInstantiation)
1243     PopDeclContext();
1244 
1245   // Finalize the lambda.
1246   CXXRecordDecl *Class = LSI->Lambda;
1247   Class->setInvalidDecl();
1248   SmallVector<Decl*, 4> Fields(Class->fields());
1249   ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1250               SourceLocation(), ParsedAttributesView());
1251   CheckCompletedCXXClass(Class);
1252 
1253   PopFunctionScopeInfo();
1254 }
1255 
1256 QualType Sema::getLambdaConversionFunctionResultType(
1257     const FunctionProtoType *CallOpProto) {
1258   // The function type inside the pointer type is the same as the call
1259   // operator with some tweaks. The calling convention is the default free
1260   // function convention, and the type qualifications are lost.
1261   const FunctionProtoType::ExtProtoInfo CallOpExtInfo =
1262       CallOpProto->getExtProtoInfo();
1263   FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo;
1264   CallingConv CC = Context.getDefaultCallingConvention(
1265       CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
1266   InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC);
1267   InvokerExtInfo.TypeQuals = Qualifiers();
1268   assert(InvokerExtInfo.RefQualifier == RQ_None &&
1269       "Lambda's call operator should not have a reference qualifier");
1270   return Context.getFunctionType(CallOpProto->getReturnType(),
1271                                  CallOpProto->getParamTypes(), InvokerExtInfo);
1272 }
1273 
1274 /// Add a lambda's conversion to function pointer, as described in
1275 /// C++11 [expr.prim.lambda]p6.
1276 static void addFunctionPointerConversion(Sema &S,
1277                                          SourceRange IntroducerRange,
1278                                          CXXRecordDecl *Class,
1279                                          CXXMethodDecl *CallOperator) {
1280   // This conversion is explicitly disabled if the lambda's function has
1281   // pass_object_size attributes on any of its parameters.
1282   auto HasPassObjectSizeAttr = [](const ParmVarDecl *P) {
1283     return P->hasAttr<PassObjectSizeAttr>();
1284   };
1285   if (llvm::any_of(CallOperator->parameters(), HasPassObjectSizeAttr))
1286     return;
1287 
1288   // Add the conversion to function pointer.
1289   QualType InvokerFunctionTy = S.getLambdaConversionFunctionResultType(
1290       CallOperator->getType()->castAs<FunctionProtoType>());
1291   QualType PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy);
1292 
1293   // Create the type of the conversion function.
1294   FunctionProtoType::ExtProtoInfo ConvExtInfo(
1295       S.Context.getDefaultCallingConvention(
1296       /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1297   // The conversion function is always const and noexcept.
1298   ConvExtInfo.TypeQuals = Qualifiers();
1299   ConvExtInfo.TypeQuals.addConst();
1300   ConvExtInfo.ExceptionSpec.Type = EST_BasicNoexcept;
1301   QualType ConvTy =
1302       S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo);
1303 
1304   SourceLocation Loc = IntroducerRange.getBegin();
1305   DeclarationName ConversionName
1306     = S.Context.DeclarationNames.getCXXConversionFunctionName(
1307         S.Context.getCanonicalType(PtrToFunctionTy));
1308   DeclarationNameLoc ConvNameLoc;
1309   // Construct a TypeSourceInfo for the conversion function, and wire
1310   // all the parameters appropriately for the FunctionProtoTypeLoc
1311   // so that everything works during transformation/instantiation of
1312   // generic lambdas.
1313   // The main reason for wiring up the parameters of the conversion
1314   // function with that of the call operator is so that constructs
1315   // like the following work:
1316   // auto L = [](auto b) {                <-- 1
1317   //   return [](auto a) -> decltype(a) { <-- 2
1318   //      return a;
1319   //   };
1320   // };
1321   // int (*fp)(int) = L(5);
1322   // Because the trailing return type can contain DeclRefExprs that refer
1323   // to the original call operator's variables, we hijack the call
1324   // operators ParmVarDecls below.
1325   TypeSourceInfo *ConvNamePtrToFunctionTSI =
1326       S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc);
1327   ConvNameLoc.NamedType.TInfo = ConvNamePtrToFunctionTSI;
1328 
1329   // The conversion function is a conversion to a pointer-to-function.
1330   TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc);
1331   FunctionProtoTypeLoc ConvTL =
1332       ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
1333   // Get the result of the conversion function which is a pointer-to-function.
1334   PointerTypeLoc PtrToFunctionTL =
1335       ConvTL.getReturnLoc().getAs<PointerTypeLoc>();
1336   // Do the same for the TypeSourceInfo that is used to name the conversion
1337   // operator.
1338   PointerTypeLoc ConvNamePtrToFunctionTL =
1339       ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>();
1340 
1341   // Get the underlying function types that the conversion function will
1342   // be converting to (should match the type of the call operator).
1343   FunctionProtoTypeLoc CallOpConvTL =
1344       PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1345   FunctionProtoTypeLoc CallOpConvNameTL =
1346     ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1347 
1348   // Wire up the FunctionProtoTypeLocs with the call operator's parameters.
1349   // These parameter's are essentially used to transform the name and
1350   // the type of the conversion operator.  By using the same parameters
1351   // as the call operator's we don't have to fix any back references that
1352   // the trailing return type of the call operator's uses (such as
1353   // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.)
1354   // - we can simply use the return type of the call operator, and
1355   // everything should work.
1356   SmallVector<ParmVarDecl *, 4> InvokerParams;
1357   for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1358     ParmVarDecl *From = CallOperator->getParamDecl(I);
1359 
1360     InvokerParams.push_back(ParmVarDecl::Create(
1361         S.Context,
1362         // Temporarily add to the TU. This is set to the invoker below.
1363         S.Context.getTranslationUnitDecl(), From->getBeginLoc(),
1364         From->getLocation(), From->getIdentifier(), From->getType(),
1365         From->getTypeSourceInfo(), From->getStorageClass(),
1366         /*DefArg=*/nullptr));
1367     CallOpConvTL.setParam(I, From);
1368     CallOpConvNameTL.setParam(I, From);
1369   }
1370 
1371   CXXConversionDecl *Conversion = CXXConversionDecl::Create(
1372       S.Context, Class, Loc,
1373       DeclarationNameInfo(ConversionName, Loc, ConvNameLoc), ConvTy, ConvTSI,
1374       /*isInline=*/true, ExplicitSpecifier(),
1375       S.getLangOpts().CPlusPlus17 ? CSK_constexpr : CSK_unspecified,
1376       CallOperator->getBody()->getEndLoc());
1377   Conversion->setAccess(AS_public);
1378   Conversion->setImplicit(true);
1379 
1380   if (Class->isGenericLambda()) {
1381     // Create a template version of the conversion operator, using the template
1382     // parameter list of the function call operator.
1383     FunctionTemplateDecl *TemplateCallOperator =
1384             CallOperator->getDescribedFunctionTemplate();
1385     FunctionTemplateDecl *ConversionTemplate =
1386                   FunctionTemplateDecl::Create(S.Context, Class,
1387                                       Loc, ConversionName,
1388                                       TemplateCallOperator->getTemplateParameters(),
1389                                       Conversion);
1390     ConversionTemplate->setAccess(AS_public);
1391     ConversionTemplate->setImplicit(true);
1392     Conversion->setDescribedFunctionTemplate(ConversionTemplate);
1393     Class->addDecl(ConversionTemplate);
1394   } else
1395     Class->addDecl(Conversion);
1396   // Add a non-static member function that will be the result of
1397   // the conversion with a certain unique ID.
1398   DeclarationName InvokerName = &S.Context.Idents.get(
1399                                                  getLambdaStaticInvokerName());
1400   // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo()
1401   // we should get a prebuilt TrivialTypeSourceInfo from Context
1402   // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc
1403   // then rewire the parameters accordingly, by hoisting up the InvokeParams
1404   // loop below and then use its Params to set Invoke->setParams(...) below.
1405   // This would avoid the 'const' qualifier of the calloperator from
1406   // contaminating the type of the invoker, which is currently adjusted
1407   // in SemaTemplateDeduction.cpp:DeduceTemplateArguments.  Fixing the
1408   // trailing return type of the invoker would require a visitor to rebuild
1409   // the trailing return type and adjusting all back DeclRefExpr's to refer
1410   // to the new static invoker parameters - not the call operator's.
1411   CXXMethodDecl *Invoke = CXXMethodDecl::Create(
1412       S.Context, Class, Loc, DeclarationNameInfo(InvokerName, Loc),
1413       InvokerFunctionTy, CallOperator->getTypeSourceInfo(), SC_Static,
1414       /*isInline=*/true, CSK_unspecified, CallOperator->getBody()->getEndLoc());
1415   for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I)
1416     InvokerParams[I]->setOwningFunction(Invoke);
1417   Invoke->setParams(InvokerParams);
1418   Invoke->setAccess(AS_private);
1419   Invoke->setImplicit(true);
1420   if (Class->isGenericLambda()) {
1421     FunctionTemplateDecl *TemplateCallOperator =
1422             CallOperator->getDescribedFunctionTemplate();
1423     FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create(
1424                           S.Context, Class, Loc, InvokerName,
1425                           TemplateCallOperator->getTemplateParameters(),
1426                           Invoke);
1427     StaticInvokerTemplate->setAccess(AS_private);
1428     StaticInvokerTemplate->setImplicit(true);
1429     Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate);
1430     Class->addDecl(StaticInvokerTemplate);
1431   } else
1432     Class->addDecl(Invoke);
1433 }
1434 
1435 /// Add a lambda's conversion to block pointer.
1436 static void addBlockPointerConversion(Sema &S,
1437                                       SourceRange IntroducerRange,
1438                                       CXXRecordDecl *Class,
1439                                       CXXMethodDecl *CallOperator) {
1440   QualType FunctionTy = S.getLambdaConversionFunctionResultType(
1441       CallOperator->getType()->castAs<FunctionProtoType>());
1442   QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy);
1443 
1444   FunctionProtoType::ExtProtoInfo ConversionEPI(
1445       S.Context.getDefaultCallingConvention(
1446           /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1447   ConversionEPI.TypeQuals = Qualifiers();
1448   ConversionEPI.TypeQuals.addConst();
1449   QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ConversionEPI);
1450 
1451   SourceLocation Loc = IntroducerRange.getBegin();
1452   DeclarationName Name
1453     = S.Context.DeclarationNames.getCXXConversionFunctionName(
1454         S.Context.getCanonicalType(BlockPtrTy));
1455   DeclarationNameLoc NameLoc;
1456   NameLoc.NamedType.TInfo = S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc);
1457   CXXConversionDecl *Conversion = CXXConversionDecl::Create(
1458       S.Context, Class, Loc, DeclarationNameInfo(Name, Loc, NameLoc), ConvTy,
1459       S.Context.getTrivialTypeSourceInfo(ConvTy, Loc),
1460       /*isInline=*/true, ExplicitSpecifier(), CSK_unspecified,
1461       CallOperator->getBody()->getEndLoc());
1462   Conversion->setAccess(AS_public);
1463   Conversion->setImplicit(true);
1464   Class->addDecl(Conversion);
1465 }
1466 
1467 ExprResult Sema::BuildCaptureInit(const Capture &Cap,
1468                                   SourceLocation ImplicitCaptureLoc,
1469                                   bool IsOpenMPMapping) {
1470   // VLA captures don't have a stored initialization expression.
1471   if (Cap.isVLATypeCapture())
1472     return ExprResult();
1473 
1474   // An init-capture is initialized directly from its stored initializer.
1475   if (Cap.isInitCapture())
1476     return Cap.getVariable()->getInit();
1477 
1478   // For anything else, build an initialization expression. For an implicit
1479   // capture, the capture notionally happens at the capture-default, so use
1480   // that location here.
1481   SourceLocation Loc =
1482       ImplicitCaptureLoc.isValid() ? ImplicitCaptureLoc : Cap.getLocation();
1483 
1484   // C++11 [expr.prim.lambda]p21:
1485   //   When the lambda-expression is evaluated, the entities that
1486   //   are captured by copy are used to direct-initialize each
1487   //   corresponding non-static data member of the resulting closure
1488   //   object. (For array members, the array elements are
1489   //   direct-initialized in increasing subscript order.) These
1490   //   initializations are performed in the (unspecified) order in
1491   //   which the non-static data members are declared.
1492 
1493   // C++ [expr.prim.lambda]p12:
1494   //   An entity captured by a lambda-expression is odr-used (3.2) in
1495   //   the scope containing the lambda-expression.
1496   ExprResult Init;
1497   IdentifierInfo *Name = nullptr;
1498   if (Cap.isThisCapture()) {
1499     QualType ThisTy = getCurrentThisType();
1500     Expr *This = BuildCXXThisExpr(Loc, ThisTy, ImplicitCaptureLoc.isValid());
1501     if (Cap.isCopyCapture())
1502       Init = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
1503     else
1504       Init = This;
1505   } else {
1506     assert(Cap.isVariableCapture() && "unknown kind of capture");
1507     VarDecl *Var = Cap.getVariable();
1508     Name = Var->getIdentifier();
1509     Init = BuildDeclarationNameExpr(
1510       CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
1511   }
1512 
1513   // In OpenMP, the capture kind doesn't actually describe how to capture:
1514   // variables are "mapped" onto the device in a process that does not formally
1515   // make a copy, even for a "copy capture".
1516   if (IsOpenMPMapping)
1517     return Init;
1518 
1519   if (Init.isInvalid())
1520     return ExprError();
1521 
1522   Expr *InitExpr = Init.get();
1523   InitializedEntity Entity = InitializedEntity::InitializeLambdaCapture(
1524       Name, Cap.getCaptureType(), Loc);
1525   InitializationKind InitKind =
1526       InitializationKind::CreateDirect(Loc, Loc, Loc);
1527   InitializationSequence InitSeq(*this, Entity, InitKind, InitExpr);
1528   return InitSeq.Perform(*this, Entity, InitKind, InitExpr);
1529 }
1530 
1531 ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
1532                                  Scope *CurScope) {
1533   LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back());
1534   ActOnFinishFunctionBody(LSI.CallOperator, Body);
1535   return BuildLambdaExpr(StartLoc, Body->getEndLoc(), &LSI);
1536 }
1537 
1538 static LambdaCaptureDefault
1539 mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS) {
1540   switch (ICS) {
1541   case CapturingScopeInfo::ImpCap_None:
1542     return LCD_None;
1543   case CapturingScopeInfo::ImpCap_LambdaByval:
1544     return LCD_ByCopy;
1545   case CapturingScopeInfo::ImpCap_CapturedRegion:
1546   case CapturingScopeInfo::ImpCap_LambdaByref:
1547     return LCD_ByRef;
1548   case CapturingScopeInfo::ImpCap_Block:
1549     llvm_unreachable("block capture in lambda");
1550   }
1551   llvm_unreachable("Unknown implicit capture style");
1552 }
1553 
1554 bool Sema::CaptureHasSideEffects(const Capture &From) {
1555   if (From.isInitCapture()) {
1556     Expr *Init = From.getVariable()->getInit();
1557     if (Init && Init->HasSideEffects(Context))
1558       return true;
1559   }
1560 
1561   if (!From.isCopyCapture())
1562     return false;
1563 
1564   const QualType T = From.isThisCapture()
1565                          ? getCurrentThisType()->getPointeeType()
1566                          : From.getCaptureType();
1567 
1568   if (T.isVolatileQualified())
1569     return true;
1570 
1571   const Type *BaseT = T->getBaseElementTypeUnsafe();
1572   if (const CXXRecordDecl *RD = BaseT->getAsCXXRecordDecl())
1573     return !RD->isCompleteDefinition() || !RD->hasTrivialCopyConstructor() ||
1574            !RD->hasTrivialDestructor();
1575 
1576   return false;
1577 }
1578 
1579 bool Sema::DiagnoseUnusedLambdaCapture(SourceRange CaptureRange,
1580                                        const Capture &From) {
1581   if (CaptureHasSideEffects(From))
1582     return false;
1583 
1584   if (From.isVLATypeCapture())
1585     return false;
1586 
1587   auto diag = Diag(From.getLocation(), diag::warn_unused_lambda_capture);
1588   if (From.isThisCapture())
1589     diag << "'this'";
1590   else
1591     diag << From.getVariable();
1592   diag << From.isNonODRUsed();
1593   diag << FixItHint::CreateRemoval(CaptureRange);
1594   return true;
1595 }
1596 
1597 /// Create a field within the lambda class or captured statement record for the
1598 /// given capture.
1599 FieldDecl *Sema::BuildCaptureField(RecordDecl *RD,
1600                                    const sema::Capture &Capture) {
1601   SourceLocation Loc = Capture.getLocation();
1602   QualType FieldType = Capture.getCaptureType();
1603 
1604   TypeSourceInfo *TSI = nullptr;
1605   if (Capture.isVariableCapture()) {
1606     auto *Var = Capture.getVariable();
1607     if (Var->isInitCapture())
1608       TSI = Capture.getVariable()->getTypeSourceInfo();
1609   }
1610 
1611   // FIXME: Should we really be doing this? A null TypeSourceInfo seems more
1612   // appropriate, at least for an implicit capture.
1613   if (!TSI)
1614     TSI = Context.getTrivialTypeSourceInfo(FieldType, Loc);
1615 
1616   // Build the non-static data member.
1617   FieldDecl *Field =
1618       FieldDecl::Create(Context, RD, Loc, Loc, nullptr, FieldType, TSI, nullptr,
1619                         false, ICIS_NoInit);
1620   // If the variable being captured has an invalid type, mark the class as
1621   // invalid as well.
1622   if (!FieldType->isDependentType()) {
1623     if (RequireCompleteType(Loc, FieldType, diag::err_field_incomplete)) {
1624       RD->setInvalidDecl();
1625       Field->setInvalidDecl();
1626     } else {
1627       NamedDecl *Def;
1628       FieldType->isIncompleteType(&Def);
1629       if (Def && Def->isInvalidDecl()) {
1630         RD->setInvalidDecl();
1631         Field->setInvalidDecl();
1632       }
1633     }
1634   }
1635   Field->setImplicit(true);
1636   Field->setAccess(AS_private);
1637   RD->addDecl(Field);
1638 
1639   if (Capture.isVLATypeCapture())
1640     Field->setCapturedVLAType(Capture.getCapturedVLAType());
1641 
1642   return Field;
1643 }
1644 
1645 ExprResult Sema::BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc,
1646                                  LambdaScopeInfo *LSI) {
1647   // Collect information from the lambda scope.
1648   SmallVector<LambdaCapture, 4> Captures;
1649   SmallVector<Expr *, 4> CaptureInits;
1650   SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc;
1651   LambdaCaptureDefault CaptureDefault =
1652       mapImplicitCaptureStyle(LSI->ImpCaptureStyle);
1653   CXXRecordDecl *Class;
1654   CXXMethodDecl *CallOperator;
1655   SourceRange IntroducerRange;
1656   bool ExplicitParams;
1657   bool ExplicitResultType;
1658   CleanupInfo LambdaCleanup;
1659   bool ContainsUnexpandedParameterPack;
1660   bool IsGenericLambda;
1661   {
1662     CallOperator = LSI->CallOperator;
1663     Class = LSI->Lambda;
1664     IntroducerRange = LSI->IntroducerRange;
1665     ExplicitParams = LSI->ExplicitParams;
1666     ExplicitResultType = !LSI->HasImplicitReturnType;
1667     LambdaCleanup = LSI->Cleanup;
1668     ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack;
1669     IsGenericLambda = Class->isGenericLambda();
1670 
1671     CallOperator->setLexicalDeclContext(Class);
1672     Decl *TemplateOrNonTemplateCallOperatorDecl =
1673         CallOperator->getDescribedFunctionTemplate()
1674         ? CallOperator->getDescribedFunctionTemplate()
1675         : cast<Decl>(CallOperator);
1676 
1677     // FIXME: Is this really the best choice? Keeping the lexical decl context
1678     // set as CurContext seems more faithful to the source.
1679     TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class);
1680 
1681     PopExpressionEvaluationContext();
1682 
1683     // True if the current capture has a used capture or default before it.
1684     bool CurHasPreviousCapture = CaptureDefault != LCD_None;
1685     SourceLocation PrevCaptureLoc = CurHasPreviousCapture ?
1686         CaptureDefaultLoc : IntroducerRange.getBegin();
1687 
1688     for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) {
1689       const Capture &From = LSI->Captures[I];
1690 
1691       if (From.isInvalid())
1692         return ExprError();
1693 
1694       assert(!From.isBlockCapture() && "Cannot capture __block variables");
1695       bool IsImplicit = I >= LSI->NumExplicitCaptures;
1696       SourceLocation ImplicitCaptureLoc =
1697           IsImplicit ? CaptureDefaultLoc : SourceLocation();
1698 
1699       // Use source ranges of explicit captures for fixits where available.
1700       SourceRange CaptureRange = LSI->ExplicitCaptureRanges[I];
1701 
1702       // Warn about unused explicit captures.
1703       bool IsCaptureUsed = true;
1704       if (!CurContext->isDependentContext() && !IsImplicit &&
1705           !From.isODRUsed()) {
1706         // Initialized captures that are non-ODR used may not be eliminated.
1707         // FIXME: Where did the IsGenericLambda here come from?
1708         bool NonODRUsedInitCapture =
1709             IsGenericLambda && From.isNonODRUsed() && From.isInitCapture();
1710         if (!NonODRUsedInitCapture) {
1711           bool IsLast = (I + 1) == LSI->NumExplicitCaptures;
1712           SourceRange FixItRange;
1713           if (CaptureRange.isValid()) {
1714             if (!CurHasPreviousCapture && !IsLast) {
1715               // If there are no captures preceding this capture, remove the
1716               // following comma.
1717               FixItRange = SourceRange(CaptureRange.getBegin(),
1718                                        getLocForEndOfToken(CaptureRange.getEnd()));
1719             } else {
1720               // Otherwise, remove the comma since the last used capture.
1721               FixItRange = SourceRange(getLocForEndOfToken(PrevCaptureLoc),
1722                                        CaptureRange.getEnd());
1723             }
1724           }
1725 
1726           IsCaptureUsed = !DiagnoseUnusedLambdaCapture(FixItRange, From);
1727         }
1728       }
1729 
1730       if (CaptureRange.isValid()) {
1731         CurHasPreviousCapture |= IsCaptureUsed;
1732         PrevCaptureLoc = CaptureRange.getEnd();
1733       }
1734 
1735       // Map the capture to our AST representation.
1736       LambdaCapture Capture = [&] {
1737         if (From.isThisCapture()) {
1738           // Capturing 'this' implicitly with a default of '[=]' is deprecated,
1739           // because it results in a reference capture. Don't warn prior to
1740           // C++2a; there's nothing that can be done about it before then.
1741           if (getLangOpts().CPlusPlus2a && IsImplicit &&
1742               CaptureDefault == LCD_ByCopy) {
1743             Diag(From.getLocation(), diag::warn_deprecated_this_capture);
1744             Diag(CaptureDefaultLoc, diag::note_deprecated_this_capture)
1745                 << FixItHint::CreateInsertion(
1746                        getLocForEndOfToken(CaptureDefaultLoc), ", this");
1747           }
1748           return LambdaCapture(From.getLocation(), IsImplicit,
1749                                From.isCopyCapture() ? LCK_StarThis : LCK_This);
1750         } else if (From.isVLATypeCapture()) {
1751           return LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType);
1752         } else {
1753           assert(From.isVariableCapture() && "unknown kind of capture");
1754           VarDecl *Var = From.getVariable();
1755           LambdaCaptureKind Kind =
1756               From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef;
1757           return LambdaCapture(From.getLocation(), IsImplicit, Kind, Var,
1758                                From.getEllipsisLoc());
1759         }
1760       }();
1761 
1762       // Form the initializer for the capture field.
1763       ExprResult Init = BuildCaptureInit(From, ImplicitCaptureLoc);
1764 
1765       // FIXME: Skip this capture if the capture is not used, the initializer
1766       // has no side-effects, the type of the capture is trivial, and the
1767       // lambda is not externally visible.
1768 
1769       // Add a FieldDecl for the capture and form its initializer.
1770       BuildCaptureField(Class, From);
1771       Captures.push_back(Capture);
1772       CaptureInits.push_back(Init.get());
1773     }
1774 
1775     // C++11 [expr.prim.lambda]p6:
1776     //   The closure type for a lambda-expression with no lambda-capture
1777     //   has a public non-virtual non-explicit const conversion function
1778     //   to pointer to function having the same parameter and return
1779     //   types as the closure type's function call operator.
1780     if (Captures.empty() && CaptureDefault == LCD_None)
1781       addFunctionPointerConversion(*this, IntroducerRange, Class,
1782                                    CallOperator);
1783 
1784     // Objective-C++:
1785     //   The closure type for a lambda-expression has a public non-virtual
1786     //   non-explicit const conversion function to a block pointer having the
1787     //   same parameter and return types as the closure type's function call
1788     //   operator.
1789     // FIXME: Fix generic lambda to block conversions.
1790     if (getLangOpts().Blocks && getLangOpts().ObjC && !IsGenericLambda)
1791       addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator);
1792 
1793     // Finalize the lambda class.
1794     SmallVector<Decl*, 4> Fields(Class->fields());
1795     ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1796                 SourceLocation(), ParsedAttributesView());
1797     CheckCompletedCXXClass(Class);
1798   }
1799 
1800   Cleanup.mergeFrom(LambdaCleanup);
1801 
1802   LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange,
1803                                           CaptureDefault, CaptureDefaultLoc,
1804                                           Captures,
1805                                           ExplicitParams, ExplicitResultType,
1806                                           CaptureInits, EndLoc,
1807                                           ContainsUnexpandedParameterPack);
1808   // If the lambda expression's call operator is not explicitly marked constexpr
1809   // and we are not in a dependent context, analyze the call operator to infer
1810   // its constexpr-ness, suppressing diagnostics while doing so.
1811   if (getLangOpts().CPlusPlus17 && !CallOperator->isInvalidDecl() &&
1812       !CallOperator->isConstexpr() &&
1813       !isa<CoroutineBodyStmt>(CallOperator->getBody()) &&
1814       !Class->getDeclContext()->isDependentContext()) {
1815     CallOperator->setConstexprKind(
1816         CheckConstexprFunctionDefinition(CallOperator,
1817                                          CheckConstexprKind::CheckValid)
1818             ? CSK_constexpr
1819             : CSK_unspecified);
1820   }
1821 
1822   // Emit delayed shadowing warnings now that the full capture list is known.
1823   DiagnoseShadowingLambdaDecls(LSI);
1824 
1825   if (!CurContext->isDependentContext()) {
1826     switch (ExprEvalContexts.back().Context) {
1827     // C++11 [expr.prim.lambda]p2:
1828     //   A lambda-expression shall not appear in an unevaluated operand
1829     //   (Clause 5).
1830     case ExpressionEvaluationContext::Unevaluated:
1831     case ExpressionEvaluationContext::UnevaluatedList:
1832     case ExpressionEvaluationContext::UnevaluatedAbstract:
1833     // C++1y [expr.const]p2:
1834     //   A conditional-expression e is a core constant expression unless the
1835     //   evaluation of e, following the rules of the abstract machine, would
1836     //   evaluate [...] a lambda-expression.
1837     //
1838     // This is technically incorrect, there are some constant evaluated contexts
1839     // where this should be allowed.  We should probably fix this when DR1607 is
1840     // ratified, it lays out the exact set of conditions where we shouldn't
1841     // allow a lambda-expression.
1842     case ExpressionEvaluationContext::ConstantEvaluated:
1843       // We don't actually diagnose this case immediately, because we
1844       // could be within a context where we might find out later that
1845       // the expression is potentially evaluated (e.g., for typeid).
1846       ExprEvalContexts.back().Lambdas.push_back(Lambda);
1847       break;
1848 
1849     case ExpressionEvaluationContext::DiscardedStatement:
1850     case ExpressionEvaluationContext::PotentiallyEvaluated:
1851     case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
1852       break;
1853     }
1854   }
1855 
1856   return MaybeBindToTemporary(Lambda);
1857 }
1858 
1859 ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
1860                                                SourceLocation ConvLocation,
1861                                                CXXConversionDecl *Conv,
1862                                                Expr *Src) {
1863   // Make sure that the lambda call operator is marked used.
1864   CXXRecordDecl *Lambda = Conv->getParent();
1865   CXXMethodDecl *CallOperator
1866     = cast<CXXMethodDecl>(
1867         Lambda->lookup(
1868           Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
1869   CallOperator->setReferenced();
1870   CallOperator->markUsed(Context);
1871 
1872   ExprResult Init = PerformCopyInitialization(
1873       InitializedEntity::InitializeLambdaToBlock(ConvLocation, Src->getType(),
1874                                                  /*NRVO=*/false),
1875       CurrentLocation, Src);
1876   if (!Init.isInvalid())
1877     Init = ActOnFinishFullExpr(Init.get(), /*DiscardedValue*/ false);
1878 
1879   if (Init.isInvalid())
1880     return ExprError();
1881 
1882   // Create the new block to be returned.
1883   BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation);
1884 
1885   // Set the type information.
1886   Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
1887   Block->setIsVariadic(CallOperator->isVariadic());
1888   Block->setBlockMissingReturnType(false);
1889 
1890   // Add parameters.
1891   SmallVector<ParmVarDecl *, 4> BlockParams;
1892   for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1893     ParmVarDecl *From = CallOperator->getParamDecl(I);
1894     BlockParams.push_back(ParmVarDecl::Create(
1895         Context, Block, From->getBeginLoc(), From->getLocation(),
1896         From->getIdentifier(), From->getType(), From->getTypeSourceInfo(),
1897         From->getStorageClass(),
1898         /*DefArg=*/nullptr));
1899   }
1900   Block->setParams(BlockParams);
1901 
1902   Block->setIsConversionFromLambda(true);
1903 
1904   // Add capture. The capture uses a fake variable, which doesn't correspond
1905   // to any actual memory location. However, the initializer copy-initializes
1906   // the lambda object.
1907   TypeSourceInfo *CapVarTSI =
1908       Context.getTrivialTypeSourceInfo(Src->getType());
1909   VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation,
1910                                     ConvLocation, nullptr,
1911                                     Src->getType(), CapVarTSI,
1912                                     SC_None);
1913   BlockDecl::Capture Capture(/*variable=*/CapVar, /*byRef=*/false,
1914                              /*nested=*/false, /*copy=*/Init.get());
1915   Block->setCaptures(Context, Capture, /*CapturesCXXThis=*/false);
1916 
1917   // Add a fake function body to the block. IR generation is responsible
1918   // for filling in the actual body, which cannot be expressed as an AST.
1919   Block->setBody(new (Context) CompoundStmt(ConvLocation));
1920 
1921   // Create the block literal expression.
1922   Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
1923   ExprCleanupObjects.push_back(Block);
1924   Cleanup.setExprNeedsCleanups(true);
1925 
1926   return BuildBlock;
1927 }
1928