1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for C++ lambda expressions. 10 // 11 //===----------------------------------------------------------------------===// 12 #include "clang/Sema/DeclSpec.h" 13 #include "TypeLocBuilder.h" 14 #include "clang/AST/ASTLambda.h" 15 #include "clang/AST/ExprCXX.h" 16 #include "clang/Basic/TargetInfo.h" 17 #include "clang/Sema/Initialization.h" 18 #include "clang/Sema/Lookup.h" 19 #include "clang/Sema/Scope.h" 20 #include "clang/Sema/ScopeInfo.h" 21 #include "clang/Sema/SemaInternal.h" 22 #include "clang/Sema/SemaLambda.h" 23 #include "llvm/ADT/STLExtras.h" 24 using namespace clang; 25 using namespace sema; 26 27 /// Examines the FunctionScopeInfo stack to determine the nearest 28 /// enclosing lambda (to the current lambda) that is 'capture-ready' for 29 /// the variable referenced in the current lambda (i.e. \p VarToCapture). 30 /// If successful, returns the index into Sema's FunctionScopeInfo stack 31 /// of the capture-ready lambda's LambdaScopeInfo. 32 /// 33 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current 34 /// lambda - is on top) to determine the index of the nearest enclosing/outer 35 /// lambda that is ready to capture the \p VarToCapture being referenced in 36 /// the current lambda. 37 /// As we climb down the stack, we want the index of the first such lambda - 38 /// that is the lambda with the highest index that is 'capture-ready'. 39 /// 40 /// A lambda 'L' is capture-ready for 'V' (var or this) if: 41 /// - its enclosing context is non-dependent 42 /// - and if the chain of lambdas between L and the lambda in which 43 /// V is potentially used (i.e. the lambda at the top of the scope info 44 /// stack), can all capture or have already captured V. 45 /// If \p VarToCapture is 'null' then we are trying to capture 'this'. 46 /// 47 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked 48 /// for whether it is 'capture-capable' (see 49 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly 50 /// capture. 51 /// 52 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a 53 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda 54 /// is at the top of the stack and has the highest index. 55 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'. 56 /// 57 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains 58 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda 59 /// which is capture-ready. If the return value evaluates to 'false' then 60 /// no lambda is capture-ready for \p VarToCapture. 61 62 static inline Optional<unsigned> 63 getStackIndexOfNearestEnclosingCaptureReadyLambda( 64 ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes, 65 VarDecl *VarToCapture) { 66 // Label failure to capture. 67 const Optional<unsigned> NoLambdaIsCaptureReady; 68 69 // Ignore all inner captured regions. 70 unsigned CurScopeIndex = FunctionScopes.size() - 1; 71 while (CurScopeIndex > 0 && isa<clang::sema::CapturedRegionScopeInfo>( 72 FunctionScopes[CurScopeIndex])) 73 --CurScopeIndex; 74 assert( 75 isa<clang::sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]) && 76 "The function on the top of sema's function-info stack must be a lambda"); 77 78 // If VarToCapture is null, we are attempting to capture 'this'. 79 const bool IsCapturingThis = !VarToCapture; 80 const bool IsCapturingVariable = !IsCapturingThis; 81 82 // Start with the current lambda at the top of the stack (highest index). 83 DeclContext *EnclosingDC = 84 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator; 85 86 do { 87 const clang::sema::LambdaScopeInfo *LSI = 88 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]); 89 // IF we have climbed down to an intervening enclosing lambda that contains 90 // the variable declaration - it obviously can/must not capture the 91 // variable. 92 // Since its enclosing DC is dependent, all the lambdas between it and the 93 // innermost nested lambda are dependent (otherwise we wouldn't have 94 // arrived here) - so we don't yet have a lambda that can capture the 95 // variable. 96 if (IsCapturingVariable && 97 VarToCapture->getDeclContext()->Equals(EnclosingDC)) 98 return NoLambdaIsCaptureReady; 99 100 // For an enclosing lambda to be capture ready for an entity, all 101 // intervening lambda's have to be able to capture that entity. If even 102 // one of the intervening lambda's is not capable of capturing the entity 103 // then no enclosing lambda can ever capture that entity. 104 // For e.g. 105 // const int x = 10; 106 // [=](auto a) { #1 107 // [](auto b) { #2 <-- an intervening lambda that can never capture 'x' 108 // [=](auto c) { #3 109 // f(x, c); <-- can not lead to x's speculative capture by #1 or #2 110 // }; }; }; 111 // If they do not have a default implicit capture, check to see 112 // if the entity has already been explicitly captured. 113 // If even a single dependent enclosing lambda lacks the capability 114 // to ever capture this variable, there is no further enclosing 115 // non-dependent lambda that can capture this variable. 116 if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) { 117 if (IsCapturingVariable && !LSI->isCaptured(VarToCapture)) 118 return NoLambdaIsCaptureReady; 119 if (IsCapturingThis && !LSI->isCXXThisCaptured()) 120 return NoLambdaIsCaptureReady; 121 } 122 EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC); 123 124 assert(CurScopeIndex); 125 --CurScopeIndex; 126 } while (!EnclosingDC->isTranslationUnit() && 127 EnclosingDC->isDependentContext() && 128 isLambdaCallOperator(EnclosingDC)); 129 130 assert(CurScopeIndex < (FunctionScopes.size() - 1)); 131 // If the enclosingDC is not dependent, then the immediately nested lambda 132 // (one index above) is capture-ready. 133 if (!EnclosingDC->isDependentContext()) 134 return CurScopeIndex + 1; 135 return NoLambdaIsCaptureReady; 136 } 137 138 /// Examines the FunctionScopeInfo stack to determine the nearest 139 /// enclosing lambda (to the current lambda) that is 'capture-capable' for 140 /// the variable referenced in the current lambda (i.e. \p VarToCapture). 141 /// If successful, returns the index into Sema's FunctionScopeInfo stack 142 /// of the capture-capable lambda's LambdaScopeInfo. 143 /// 144 /// Given the current stack of lambdas being processed by Sema and 145 /// the variable of interest, to identify the nearest enclosing lambda (to the 146 /// current lambda at the top of the stack) that can truly capture 147 /// a variable, it has to have the following two properties: 148 /// a) 'capture-ready' - be the innermost lambda that is 'capture-ready': 149 /// - climb down the stack (i.e. starting from the innermost and examining 150 /// each outer lambda step by step) checking if each enclosing 151 /// lambda can either implicitly or explicitly capture the variable. 152 /// Record the first such lambda that is enclosed in a non-dependent 153 /// context. If no such lambda currently exists return failure. 154 /// b) 'capture-capable' - make sure the 'capture-ready' lambda can truly 155 /// capture the variable by checking all its enclosing lambdas: 156 /// - check if all outer lambdas enclosing the 'capture-ready' lambda 157 /// identified above in 'a' can also capture the variable (this is done 158 /// via tryCaptureVariable for variables and CheckCXXThisCapture for 159 /// 'this' by passing in the index of the Lambda identified in step 'a') 160 /// 161 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a 162 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda 163 /// is at the top of the stack. 164 /// 165 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'. 166 /// 167 /// 168 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains 169 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda 170 /// which is capture-capable. If the return value evaluates to 'false' then 171 /// no lambda is capture-capable for \p VarToCapture. 172 173 Optional<unsigned> clang::getStackIndexOfNearestEnclosingCaptureCapableLambda( 174 ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes, 175 VarDecl *VarToCapture, Sema &S) { 176 177 const Optional<unsigned> NoLambdaIsCaptureCapable; 178 179 const Optional<unsigned> OptionalStackIndex = 180 getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes, 181 VarToCapture); 182 if (!OptionalStackIndex) 183 return NoLambdaIsCaptureCapable; 184 185 const unsigned IndexOfCaptureReadyLambda = OptionalStackIndex.getValue(); 186 assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) || 187 S.getCurGenericLambda()) && 188 "The capture ready lambda for a potential capture can only be the " 189 "current lambda if it is a generic lambda"); 190 191 const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI = 192 cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]); 193 194 // If VarToCapture is null, we are attempting to capture 'this' 195 const bool IsCapturingThis = !VarToCapture; 196 const bool IsCapturingVariable = !IsCapturingThis; 197 198 if (IsCapturingVariable) { 199 // Check if the capture-ready lambda can truly capture the variable, by 200 // checking whether all enclosing lambdas of the capture-ready lambda allow 201 // the capture - i.e. make sure it is capture-capable. 202 QualType CaptureType, DeclRefType; 203 const bool CanCaptureVariable = 204 !S.tryCaptureVariable(VarToCapture, 205 /*ExprVarIsUsedInLoc*/ SourceLocation(), 206 clang::Sema::TryCapture_Implicit, 207 /*EllipsisLoc*/ SourceLocation(), 208 /*BuildAndDiagnose*/ false, CaptureType, 209 DeclRefType, &IndexOfCaptureReadyLambda); 210 if (!CanCaptureVariable) 211 return NoLambdaIsCaptureCapable; 212 } else { 213 // Check if the capture-ready lambda can truly capture 'this' by checking 214 // whether all enclosing lambdas of the capture-ready lambda can capture 215 // 'this'. 216 const bool CanCaptureThis = 217 !S.CheckCXXThisCapture( 218 CaptureReadyLambdaLSI->PotentialThisCaptureLocation, 219 /*Explicit*/ false, /*BuildAndDiagnose*/ false, 220 &IndexOfCaptureReadyLambda); 221 if (!CanCaptureThis) 222 return NoLambdaIsCaptureCapable; 223 } 224 return IndexOfCaptureReadyLambda; 225 } 226 227 static inline TemplateParameterList * 228 getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) { 229 if (!LSI->GLTemplateParameterList && !LSI->TemplateParams.empty()) { 230 LSI->GLTemplateParameterList = TemplateParameterList::Create( 231 SemaRef.Context, 232 /*Template kw loc*/ SourceLocation(), 233 /*L angle loc*/ LSI->ExplicitTemplateParamsRange.getBegin(), 234 LSI->TemplateParams, 235 /*R angle loc*/LSI->ExplicitTemplateParamsRange.getEnd(), 236 nullptr); 237 } 238 return LSI->GLTemplateParameterList; 239 } 240 241 CXXRecordDecl *Sema::createLambdaClosureType(SourceRange IntroducerRange, 242 TypeSourceInfo *Info, 243 bool KnownDependent, 244 LambdaCaptureDefault CaptureDefault) { 245 DeclContext *DC = CurContext; 246 while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext())) 247 DC = DC->getParent(); 248 bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(), 249 *this); 250 // Start constructing the lambda class. 251 CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(Context, DC, Info, 252 IntroducerRange.getBegin(), 253 KnownDependent, 254 IsGenericLambda, 255 CaptureDefault); 256 DC->addDecl(Class); 257 258 return Class; 259 } 260 261 /// Determine whether the given context is or is enclosed in an inline 262 /// function. 263 static bool isInInlineFunction(const DeclContext *DC) { 264 while (!DC->isFileContext()) { 265 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC)) 266 if (FD->isInlined()) 267 return true; 268 269 DC = DC->getLexicalParent(); 270 } 271 272 return false; 273 } 274 275 std::tuple<MangleNumberingContext *, Decl *> 276 Sema::getCurrentMangleNumberContext(const DeclContext *DC) { 277 // Compute the context for allocating mangling numbers in the current 278 // expression, if the ABI requires them. 279 Decl *ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl; 280 281 enum ContextKind { 282 Normal, 283 DefaultArgument, 284 DataMember, 285 StaticDataMember, 286 InlineVariable, 287 VariableTemplate 288 } Kind = Normal; 289 290 // Default arguments of member function parameters that appear in a class 291 // definition, as well as the initializers of data members, receive special 292 // treatment. Identify them. 293 if (ManglingContextDecl) { 294 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) { 295 if (const DeclContext *LexicalDC 296 = Param->getDeclContext()->getLexicalParent()) 297 if (LexicalDC->isRecord()) 298 Kind = DefaultArgument; 299 } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) { 300 if (Var->getDeclContext()->isRecord()) 301 Kind = StaticDataMember; 302 else if (Var->getMostRecentDecl()->isInline()) 303 Kind = InlineVariable; 304 else if (Var->getDescribedVarTemplate()) 305 Kind = VariableTemplate; 306 else if (auto *VTS = dyn_cast<VarTemplateSpecializationDecl>(Var)) { 307 if (!VTS->isExplicitSpecialization()) 308 Kind = VariableTemplate; 309 } 310 } else if (isa<FieldDecl>(ManglingContextDecl)) { 311 Kind = DataMember; 312 } 313 } 314 315 // Itanium ABI [5.1.7]: 316 // In the following contexts [...] the one-definition rule requires closure 317 // types in different translation units to "correspond": 318 bool IsInNonspecializedTemplate = 319 inTemplateInstantiation() || CurContext->isDependentContext(); 320 switch (Kind) { 321 case Normal: { 322 // -- the bodies of non-exported nonspecialized template functions 323 // -- the bodies of inline functions 324 if ((IsInNonspecializedTemplate && 325 !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) || 326 isInInlineFunction(CurContext)) { 327 while (auto *CD = dyn_cast<CapturedDecl>(DC)) 328 DC = CD->getParent(); 329 return std::make_tuple(&Context.getManglingNumberContext(DC), nullptr); 330 } 331 332 return std::make_tuple(nullptr, nullptr); 333 } 334 335 case StaticDataMember: 336 // -- the initializers of nonspecialized static members of template classes 337 if (!IsInNonspecializedTemplate) 338 return std::make_tuple(nullptr, ManglingContextDecl); 339 // Fall through to get the current context. 340 LLVM_FALLTHROUGH; 341 342 case DataMember: 343 // -- the in-class initializers of class members 344 case DefaultArgument: 345 // -- default arguments appearing in class definitions 346 case InlineVariable: 347 // -- the initializers of inline variables 348 case VariableTemplate: 349 // -- the initializers of templated variables 350 return std::make_tuple( 351 &Context.getManglingNumberContext(ASTContext::NeedExtraManglingDecl, 352 ManglingContextDecl), 353 ManglingContextDecl); 354 } 355 356 llvm_unreachable("unexpected context"); 357 } 358 359 CXXMethodDecl *Sema::startLambdaDefinition(CXXRecordDecl *Class, 360 SourceRange IntroducerRange, 361 TypeSourceInfo *MethodTypeInfo, 362 SourceLocation EndLoc, 363 ArrayRef<ParmVarDecl *> Params, 364 ConstexprSpecKind ConstexprKind) { 365 QualType MethodType = MethodTypeInfo->getType(); 366 TemplateParameterList *TemplateParams = 367 getGenericLambdaTemplateParameterList(getCurLambda(), *this); 368 // If a lambda appears in a dependent context or is a generic lambda (has 369 // template parameters) and has an 'auto' return type, deduce it to a 370 // dependent type. 371 if (Class->isDependentContext() || TemplateParams) { 372 const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>(); 373 QualType Result = FPT->getReturnType(); 374 if (Result->isUndeducedType()) { 375 Result = SubstAutoType(Result, Context.DependentTy); 376 MethodType = Context.getFunctionType(Result, FPT->getParamTypes(), 377 FPT->getExtProtoInfo()); 378 } 379 } 380 381 // C++11 [expr.prim.lambda]p5: 382 // The closure type for a lambda-expression has a public inline function 383 // call operator (13.5.4) whose parameters and return type are described by 384 // the lambda-expression's parameter-declaration-clause and 385 // trailing-return-type respectively. 386 DeclarationName MethodName 387 = Context.DeclarationNames.getCXXOperatorName(OO_Call); 388 DeclarationNameLoc MethodNameLoc; 389 MethodNameLoc.CXXOperatorName.BeginOpNameLoc 390 = IntroducerRange.getBegin().getRawEncoding(); 391 MethodNameLoc.CXXOperatorName.EndOpNameLoc 392 = IntroducerRange.getEnd().getRawEncoding(); 393 CXXMethodDecl *Method = CXXMethodDecl::Create( 394 Context, Class, EndLoc, 395 DeclarationNameInfo(MethodName, IntroducerRange.getBegin(), 396 MethodNameLoc), 397 MethodType, MethodTypeInfo, SC_None, 398 /*isInline=*/true, ConstexprKind, EndLoc); 399 Method->setAccess(AS_public); 400 if (!TemplateParams) 401 Class->addDecl(Method); 402 403 // Temporarily set the lexical declaration context to the current 404 // context, so that the Scope stack matches the lexical nesting. 405 Method->setLexicalDeclContext(CurContext); 406 // Create a function template if we have a template parameter list 407 FunctionTemplateDecl *const TemplateMethod = TemplateParams ? 408 FunctionTemplateDecl::Create(Context, Class, 409 Method->getLocation(), MethodName, 410 TemplateParams, 411 Method) : nullptr; 412 if (TemplateMethod) { 413 TemplateMethod->setAccess(AS_public); 414 Method->setDescribedFunctionTemplate(TemplateMethod); 415 Class->addDecl(TemplateMethod); 416 TemplateMethod->setLexicalDeclContext(CurContext); 417 } 418 419 // Add parameters. 420 if (!Params.empty()) { 421 Method->setParams(Params); 422 CheckParmsForFunctionDef(Params, 423 /*CheckParameterNames=*/false); 424 425 for (auto P : Method->parameters()) 426 P->setOwningFunction(Method); 427 } 428 429 return Method; 430 } 431 432 void Sema::handleLambdaNumbering( 433 CXXRecordDecl *Class, CXXMethodDecl *Method, 434 Optional<std::tuple<unsigned, bool, Decl *>> Mangling) { 435 if (Mangling) { 436 unsigned ManglingNumber; 437 bool HasKnownInternalLinkage; 438 Decl *ManglingContextDecl; 439 std::tie(ManglingNumber, HasKnownInternalLinkage, ManglingContextDecl) = 440 Mangling.getValue(); 441 Class->setLambdaMangling(ManglingNumber, ManglingContextDecl, 442 HasKnownInternalLinkage); 443 return; 444 } 445 446 auto getMangleNumberingContext = 447 [this](CXXRecordDecl *Class, 448 Decl *ManglingContextDecl) -> MangleNumberingContext * { 449 // Get mangle numbering context if there's any extra decl context. 450 if (ManglingContextDecl) 451 return &Context.getManglingNumberContext( 452 ASTContext::NeedExtraManglingDecl, ManglingContextDecl); 453 // Otherwise, from that lambda's decl context. 454 auto DC = Class->getDeclContext(); 455 while (auto *CD = dyn_cast<CapturedDecl>(DC)) 456 DC = CD->getParent(); 457 return &Context.getManglingNumberContext(DC); 458 }; 459 460 MangleNumberingContext *MCtx; 461 Decl *ManglingContextDecl; 462 std::tie(MCtx, ManglingContextDecl) = 463 getCurrentMangleNumberContext(Class->getDeclContext()); 464 bool HasKnownInternalLinkage = false; 465 if (!MCtx && getLangOpts().CUDA) { 466 // Force lambda numbering in CUDA/HIP as we need to name lambdas following 467 // ODR. Both device- and host-compilation need to have a consistent naming 468 // on kernel functions. As lambdas are potential part of these `__global__` 469 // function names, they needs numbering following ODR. 470 MCtx = getMangleNumberingContext(Class, ManglingContextDecl); 471 assert(MCtx && "Retrieving mangle numbering context failed!"); 472 HasKnownInternalLinkage = true; 473 } 474 if (MCtx) { 475 unsigned ManglingNumber = MCtx->getManglingNumber(Method); 476 Class->setLambdaMangling(ManglingNumber, ManglingContextDecl, 477 HasKnownInternalLinkage); 478 } 479 } 480 481 void Sema::buildLambdaScope(LambdaScopeInfo *LSI, 482 CXXMethodDecl *CallOperator, 483 SourceRange IntroducerRange, 484 LambdaCaptureDefault CaptureDefault, 485 SourceLocation CaptureDefaultLoc, 486 bool ExplicitParams, 487 bool ExplicitResultType, 488 bool Mutable) { 489 LSI->CallOperator = CallOperator; 490 CXXRecordDecl *LambdaClass = CallOperator->getParent(); 491 LSI->Lambda = LambdaClass; 492 if (CaptureDefault == LCD_ByCopy) 493 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval; 494 else if (CaptureDefault == LCD_ByRef) 495 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref; 496 LSI->CaptureDefaultLoc = CaptureDefaultLoc; 497 LSI->IntroducerRange = IntroducerRange; 498 LSI->ExplicitParams = ExplicitParams; 499 LSI->Mutable = Mutable; 500 501 if (ExplicitResultType) { 502 LSI->ReturnType = CallOperator->getReturnType(); 503 504 if (!LSI->ReturnType->isDependentType() && 505 !LSI->ReturnType->isVoidType()) { 506 if (RequireCompleteType(CallOperator->getBeginLoc(), LSI->ReturnType, 507 diag::err_lambda_incomplete_result)) { 508 // Do nothing. 509 } 510 } 511 } else { 512 LSI->HasImplicitReturnType = true; 513 } 514 } 515 516 void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) { 517 LSI->finishedExplicitCaptures(); 518 } 519 520 void Sema::ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc, 521 ArrayRef<NamedDecl *> TParams, 522 SourceLocation RAngleLoc) { 523 LambdaScopeInfo *LSI = getCurLambda(); 524 assert(LSI && "Expected a lambda scope"); 525 assert(LSI->NumExplicitTemplateParams == 0 && 526 "Already acted on explicit template parameters"); 527 assert(LSI->TemplateParams.empty() && 528 "Explicit template parameters should come " 529 "before invented (auto) ones"); 530 assert(!TParams.empty() && 531 "No template parameters to act on"); 532 LSI->TemplateParams.append(TParams.begin(), TParams.end()); 533 LSI->NumExplicitTemplateParams = TParams.size(); 534 LSI->ExplicitTemplateParamsRange = {LAngleLoc, RAngleLoc}; 535 } 536 537 void Sema::addLambdaParameters( 538 ArrayRef<LambdaIntroducer::LambdaCapture> Captures, 539 CXXMethodDecl *CallOperator, Scope *CurScope) { 540 // Introduce our parameters into the function scope 541 for (unsigned p = 0, NumParams = CallOperator->getNumParams(); 542 p < NumParams; ++p) { 543 ParmVarDecl *Param = CallOperator->getParamDecl(p); 544 545 // If this has an identifier, add it to the scope stack. 546 if (CurScope && Param->getIdentifier()) { 547 bool Error = false; 548 // Resolution of CWG 2211 in C++17 renders shadowing ill-formed, but we 549 // retroactively apply it. 550 for (const auto &Capture : Captures) { 551 if (Capture.Id == Param->getIdentifier()) { 552 Error = true; 553 Diag(Param->getLocation(), diag::err_parameter_shadow_capture); 554 Diag(Capture.Loc, diag::note_var_explicitly_captured_here) 555 << Capture.Id << true; 556 } 557 } 558 if (!Error) 559 CheckShadow(CurScope, Param); 560 561 PushOnScopeChains(Param, CurScope); 562 } 563 } 564 } 565 566 /// If this expression is an enumerator-like expression of some type 567 /// T, return the type T; otherwise, return null. 568 /// 569 /// Pointer comparisons on the result here should always work because 570 /// it's derived from either the parent of an EnumConstantDecl 571 /// (i.e. the definition) or the declaration returned by 572 /// EnumType::getDecl() (i.e. the definition). 573 static EnumDecl *findEnumForBlockReturn(Expr *E) { 574 // An expression is an enumerator-like expression of type T if, 575 // ignoring parens and parens-like expressions: 576 E = E->IgnoreParens(); 577 578 // - it is an enumerator whose enum type is T or 579 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 580 if (EnumConstantDecl *D 581 = dyn_cast<EnumConstantDecl>(DRE->getDecl())) { 582 return cast<EnumDecl>(D->getDeclContext()); 583 } 584 return nullptr; 585 } 586 587 // - it is a comma expression whose RHS is an enumerator-like 588 // expression of type T or 589 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 590 if (BO->getOpcode() == BO_Comma) 591 return findEnumForBlockReturn(BO->getRHS()); 592 return nullptr; 593 } 594 595 // - it is a statement-expression whose value expression is an 596 // enumerator-like expression of type T or 597 if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) { 598 if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back())) 599 return findEnumForBlockReturn(last); 600 return nullptr; 601 } 602 603 // - it is a ternary conditional operator (not the GNU ?: 604 // extension) whose second and third operands are 605 // enumerator-like expressions of type T or 606 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 607 if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr())) 608 if (ED == findEnumForBlockReturn(CO->getFalseExpr())) 609 return ED; 610 return nullptr; 611 } 612 613 // (implicitly:) 614 // - it is an implicit integral conversion applied to an 615 // enumerator-like expression of type T or 616 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 617 // We can sometimes see integral conversions in valid 618 // enumerator-like expressions. 619 if (ICE->getCastKind() == CK_IntegralCast) 620 return findEnumForBlockReturn(ICE->getSubExpr()); 621 622 // Otherwise, just rely on the type. 623 } 624 625 // - it is an expression of that formal enum type. 626 if (const EnumType *ET = E->getType()->getAs<EnumType>()) { 627 return ET->getDecl(); 628 } 629 630 // Otherwise, nope. 631 return nullptr; 632 } 633 634 /// Attempt to find a type T for which the returned expression of the 635 /// given statement is an enumerator-like expression of that type. 636 static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) { 637 if (Expr *retValue = ret->getRetValue()) 638 return findEnumForBlockReturn(retValue); 639 return nullptr; 640 } 641 642 /// Attempt to find a common type T for which all of the returned 643 /// expressions in a block are enumerator-like expressions of that 644 /// type. 645 static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) { 646 ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end(); 647 648 // Try to find one for the first return. 649 EnumDecl *ED = findEnumForBlockReturn(*i); 650 if (!ED) return nullptr; 651 652 // Check that the rest of the returns have the same enum. 653 for (++i; i != e; ++i) { 654 if (findEnumForBlockReturn(*i) != ED) 655 return nullptr; 656 } 657 658 // Never infer an anonymous enum type. 659 if (!ED->hasNameForLinkage()) return nullptr; 660 661 return ED; 662 } 663 664 /// Adjust the given return statements so that they formally return 665 /// the given type. It should require, at most, an IntegralCast. 666 static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns, 667 QualType returnType) { 668 for (ArrayRef<ReturnStmt*>::iterator 669 i = returns.begin(), e = returns.end(); i != e; ++i) { 670 ReturnStmt *ret = *i; 671 Expr *retValue = ret->getRetValue(); 672 if (S.Context.hasSameType(retValue->getType(), returnType)) 673 continue; 674 675 // Right now we only support integral fixup casts. 676 assert(returnType->isIntegralOrUnscopedEnumerationType()); 677 assert(retValue->getType()->isIntegralOrUnscopedEnumerationType()); 678 679 ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue); 680 681 Expr *E = (cleanups ? cleanups->getSubExpr() : retValue); 682 E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast, 683 E, /*base path*/ nullptr, VK_RValue); 684 if (cleanups) { 685 cleanups->setSubExpr(E); 686 } else { 687 ret->setRetValue(E); 688 } 689 } 690 } 691 692 void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) { 693 assert(CSI.HasImplicitReturnType); 694 // If it was ever a placeholder, it had to been deduced to DependentTy. 695 assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType()); 696 assert((!isa<LambdaScopeInfo>(CSI) || !getLangOpts().CPlusPlus14) && 697 "lambda expressions use auto deduction in C++14 onwards"); 698 699 // C++ core issue 975: 700 // If a lambda-expression does not include a trailing-return-type, 701 // it is as if the trailing-return-type denotes the following type: 702 // - if there are no return statements in the compound-statement, 703 // or all return statements return either an expression of type 704 // void or no expression or braced-init-list, the type void; 705 // - otherwise, if all return statements return an expression 706 // and the types of the returned expressions after 707 // lvalue-to-rvalue conversion (4.1 [conv.lval]), 708 // array-to-pointer conversion (4.2 [conv.array]), and 709 // function-to-pointer conversion (4.3 [conv.func]) are the 710 // same, that common type; 711 // - otherwise, the program is ill-formed. 712 // 713 // C++ core issue 1048 additionally removes top-level cv-qualifiers 714 // from the types of returned expressions to match the C++14 auto 715 // deduction rules. 716 // 717 // In addition, in blocks in non-C++ modes, if all of the return 718 // statements are enumerator-like expressions of some type T, where 719 // T has a name for linkage, then we infer the return type of the 720 // block to be that type. 721 722 // First case: no return statements, implicit void return type. 723 ASTContext &Ctx = getASTContext(); 724 if (CSI.Returns.empty()) { 725 // It's possible there were simply no /valid/ return statements. 726 // In this case, the first one we found may have at least given us a type. 727 if (CSI.ReturnType.isNull()) 728 CSI.ReturnType = Ctx.VoidTy; 729 return; 730 } 731 732 // Second case: at least one return statement has dependent type. 733 // Delay type checking until instantiation. 734 assert(!CSI.ReturnType.isNull() && "We should have a tentative return type."); 735 if (CSI.ReturnType->isDependentType()) 736 return; 737 738 // Try to apply the enum-fuzz rule. 739 if (!getLangOpts().CPlusPlus) { 740 assert(isa<BlockScopeInfo>(CSI)); 741 const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns); 742 if (ED) { 743 CSI.ReturnType = Context.getTypeDeclType(ED); 744 adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType); 745 return; 746 } 747 } 748 749 // Third case: only one return statement. Don't bother doing extra work! 750 if (CSI.Returns.size() == 1) 751 return; 752 753 // General case: many return statements. 754 // Check that they all have compatible return types. 755 756 // We require the return types to strictly match here. 757 // Note that we've already done the required promotions as part of 758 // processing the return statement. 759 for (const ReturnStmt *RS : CSI.Returns) { 760 const Expr *RetE = RS->getRetValue(); 761 762 QualType ReturnType = 763 (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType(); 764 if (Context.getCanonicalFunctionResultType(ReturnType) == 765 Context.getCanonicalFunctionResultType(CSI.ReturnType)) { 766 // Use the return type with the strictest possible nullability annotation. 767 auto RetTyNullability = ReturnType->getNullability(Ctx); 768 auto BlockNullability = CSI.ReturnType->getNullability(Ctx); 769 if (BlockNullability && 770 (!RetTyNullability || 771 hasWeakerNullability(*RetTyNullability, *BlockNullability))) 772 CSI.ReturnType = ReturnType; 773 continue; 774 } 775 776 // FIXME: This is a poor diagnostic for ReturnStmts without expressions. 777 // TODO: It's possible that the *first* return is the divergent one. 778 Diag(RS->getBeginLoc(), 779 diag::err_typecheck_missing_return_type_incompatible) 780 << ReturnType << CSI.ReturnType << isa<LambdaScopeInfo>(CSI); 781 // Continue iterating so that we keep emitting diagnostics. 782 } 783 } 784 785 QualType Sema::buildLambdaInitCaptureInitialization( 786 SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc, 787 Optional<unsigned> NumExpansions, IdentifierInfo *Id, bool IsDirectInit, 788 Expr *&Init) { 789 // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to 790 // deduce against. 791 QualType DeductType = Context.getAutoDeductType(); 792 TypeLocBuilder TLB; 793 TLB.pushTypeSpec(DeductType).setNameLoc(Loc); 794 if (ByRef) { 795 DeductType = BuildReferenceType(DeductType, true, Loc, Id); 796 assert(!DeductType.isNull() && "can't build reference to auto"); 797 TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc); 798 } 799 if (EllipsisLoc.isValid()) { 800 if (Init->containsUnexpandedParameterPack()) { 801 Diag(EllipsisLoc, getLangOpts().CPlusPlus2a 802 ? diag::warn_cxx17_compat_init_capture_pack 803 : diag::ext_init_capture_pack); 804 DeductType = Context.getPackExpansionType(DeductType, NumExpansions); 805 TLB.push<PackExpansionTypeLoc>(DeductType).setEllipsisLoc(EllipsisLoc); 806 } else { 807 // Just ignore the ellipsis for now and form a non-pack variable. We'll 808 // diagnose this later when we try to capture it. 809 } 810 } 811 TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType); 812 813 // Deduce the type of the init capture. 814 QualType DeducedType = deduceVarTypeFromInitializer( 815 /*VarDecl*/nullptr, DeclarationName(Id), DeductType, TSI, 816 SourceRange(Loc, Loc), IsDirectInit, Init); 817 if (DeducedType.isNull()) 818 return QualType(); 819 820 // Are we a non-list direct initialization? 821 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init); 822 823 // Perform initialization analysis and ensure any implicit conversions 824 // (such as lvalue-to-rvalue) are enforced. 825 InitializedEntity Entity = 826 InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc); 827 InitializationKind Kind = 828 IsDirectInit 829 ? (CXXDirectInit ? InitializationKind::CreateDirect( 830 Loc, Init->getBeginLoc(), Init->getEndLoc()) 831 : InitializationKind::CreateDirectList(Loc)) 832 : InitializationKind::CreateCopy(Loc, Init->getBeginLoc()); 833 834 MultiExprArg Args = Init; 835 if (CXXDirectInit) 836 Args = 837 MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs()); 838 QualType DclT; 839 InitializationSequence InitSeq(*this, Entity, Kind, Args); 840 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT); 841 842 if (Result.isInvalid()) 843 return QualType(); 844 845 Init = Result.getAs<Expr>(); 846 return DeducedType; 847 } 848 849 VarDecl *Sema::createLambdaInitCaptureVarDecl(SourceLocation Loc, 850 QualType InitCaptureType, 851 SourceLocation EllipsisLoc, 852 IdentifierInfo *Id, 853 unsigned InitStyle, Expr *Init) { 854 // FIXME: Retain the TypeSourceInfo from buildLambdaInitCaptureInitialization 855 // rather than reconstructing it here. 856 TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType, Loc); 857 if (auto PETL = TSI->getTypeLoc().getAs<PackExpansionTypeLoc>()) 858 PETL.setEllipsisLoc(EllipsisLoc); 859 860 // Create a dummy variable representing the init-capture. This is not actually 861 // used as a variable, and only exists as a way to name and refer to the 862 // init-capture. 863 // FIXME: Pass in separate source locations for '&' and identifier. 864 VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc, 865 Loc, Id, InitCaptureType, TSI, SC_Auto); 866 NewVD->setInitCapture(true); 867 NewVD->setReferenced(true); 868 // FIXME: Pass in a VarDecl::InitializationStyle. 869 NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle)); 870 NewVD->markUsed(Context); 871 NewVD->setInit(Init); 872 if (NewVD->isParameterPack()) 873 getCurLambda()->LocalPacks.push_back(NewVD); 874 return NewVD; 875 } 876 877 void Sema::addInitCapture(LambdaScopeInfo *LSI, VarDecl *Var) { 878 assert(Var->isInitCapture() && "init capture flag should be set"); 879 LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(), 880 /*isNested*/false, Var->getLocation(), SourceLocation(), 881 Var->getType(), /*Invalid*/false); 882 } 883 884 void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro, 885 Declarator &ParamInfo, 886 Scope *CurScope) { 887 LambdaScopeInfo *const LSI = getCurLambda(); 888 assert(LSI && "LambdaScopeInfo should be on stack!"); 889 890 // Determine if we're within a context where we know that the lambda will 891 // be dependent, because there are template parameters in scope. 892 bool KnownDependent; 893 if (LSI->NumExplicitTemplateParams > 0) { 894 auto *TemplateParamScope = CurScope->getTemplateParamParent(); 895 assert(TemplateParamScope && 896 "Lambda with explicit template param list should establish a " 897 "template param scope"); 898 assert(TemplateParamScope->getParent()); 899 KnownDependent = TemplateParamScope->getParent() 900 ->getTemplateParamParent() != nullptr; 901 } else { 902 KnownDependent = CurScope->getTemplateParamParent() != nullptr; 903 } 904 905 // Determine the signature of the call operator. 906 TypeSourceInfo *MethodTyInfo; 907 bool ExplicitParams = true; 908 bool ExplicitResultType = true; 909 bool ContainsUnexpandedParameterPack = false; 910 SourceLocation EndLoc; 911 SmallVector<ParmVarDecl *, 8> Params; 912 if (ParamInfo.getNumTypeObjects() == 0) { 913 // C++11 [expr.prim.lambda]p4: 914 // If a lambda-expression does not include a lambda-declarator, it is as 915 // if the lambda-declarator were (). 916 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention( 917 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 918 EPI.HasTrailingReturn = true; 919 EPI.TypeQuals.addConst(); 920 // C++1y [expr.prim.lambda]: 921 // The lambda return type is 'auto', which is replaced by the 922 // trailing-return type if provided and/or deduced from 'return' 923 // statements 924 // We don't do this before C++1y, because we don't support deduced return 925 // types there. 926 QualType DefaultTypeForNoTrailingReturn = 927 getLangOpts().CPlusPlus14 ? Context.getAutoDeductType() 928 : Context.DependentTy; 929 QualType MethodTy = 930 Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI); 931 MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy); 932 ExplicitParams = false; 933 ExplicitResultType = false; 934 EndLoc = Intro.Range.getEnd(); 935 } else { 936 assert(ParamInfo.isFunctionDeclarator() && 937 "lambda-declarator is a function"); 938 DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo(); 939 940 // C++11 [expr.prim.lambda]p5: 941 // This function call operator is declared const (9.3.1) if and only if 942 // the lambda-expression's parameter-declaration-clause is not followed 943 // by mutable. It is neither virtual nor declared volatile. [...] 944 if (!FTI.hasMutableQualifier()) { 945 FTI.getOrCreateMethodQualifiers().SetTypeQual(DeclSpec::TQ_const, 946 SourceLocation()); 947 } 948 949 MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope); 950 assert(MethodTyInfo && "no type from lambda-declarator"); 951 EndLoc = ParamInfo.getSourceRange().getEnd(); 952 953 ExplicitResultType = FTI.hasTrailingReturnType(); 954 955 if (FTIHasNonVoidParameters(FTI)) { 956 Params.reserve(FTI.NumParams); 957 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) 958 Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param)); 959 } 960 961 // Check for unexpanded parameter packs in the method type. 962 if (MethodTyInfo->getType()->containsUnexpandedParameterPack()) 963 DiagnoseUnexpandedParameterPack(Intro.Range.getBegin(), MethodTyInfo, 964 UPPC_DeclarationType); 965 } 966 967 CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, MethodTyInfo, 968 KnownDependent, Intro.Default); 969 CXXMethodDecl *Method = 970 startLambdaDefinition(Class, Intro.Range, MethodTyInfo, EndLoc, Params, 971 ParamInfo.getDeclSpec().getConstexprSpecifier()); 972 if (ExplicitParams) 973 CheckCXXDefaultArguments(Method); 974 975 // This represents the function body for the lambda function, check if we 976 // have to apply optnone due to a pragma. 977 AddRangeBasedOptnone(Method); 978 979 // code_seg attribute on lambda apply to the method. 980 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true)) 981 Method->addAttr(A); 982 983 // Attributes on the lambda apply to the method. 984 ProcessDeclAttributes(CurScope, Method, ParamInfo); 985 986 // CUDA lambdas get implicit attributes based on the scope in which they're 987 // declared. 988 if (getLangOpts().CUDA) 989 CUDASetLambdaAttrs(Method); 990 991 // Number the lambda for linkage purposes if necessary. 992 handleLambdaNumbering(Class, Method); 993 994 // Introduce the function call operator as the current declaration context. 995 PushDeclContext(CurScope, Method); 996 997 // Build the lambda scope. 998 buildLambdaScope(LSI, Method, Intro.Range, Intro.Default, Intro.DefaultLoc, 999 ExplicitParams, ExplicitResultType, !Method->isConst()); 1000 1001 // C++11 [expr.prim.lambda]p9: 1002 // A lambda-expression whose smallest enclosing scope is a block scope is a 1003 // local lambda expression; any other lambda expression shall not have a 1004 // capture-default or simple-capture in its lambda-introducer. 1005 // 1006 // For simple-captures, this is covered by the check below that any named 1007 // entity is a variable that can be captured. 1008 // 1009 // For DR1632, we also allow a capture-default in any context where we can 1010 // odr-use 'this' (in particular, in a default initializer for a non-static 1011 // data member). 1012 if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() && 1013 (getCurrentThisType().isNull() || 1014 CheckCXXThisCapture(SourceLocation(), /*Explicit*/true, 1015 /*BuildAndDiagnose*/false))) 1016 Diag(Intro.DefaultLoc, diag::err_capture_default_non_local); 1017 1018 // Distinct capture names, for diagnostics. 1019 llvm::SmallSet<IdentifierInfo*, 8> CaptureNames; 1020 1021 // Handle explicit captures. 1022 SourceLocation PrevCaptureLoc 1023 = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc; 1024 for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E; 1025 PrevCaptureLoc = C->Loc, ++C) { 1026 if (C->Kind == LCK_This || C->Kind == LCK_StarThis) { 1027 if (C->Kind == LCK_StarThis) 1028 Diag(C->Loc, !getLangOpts().CPlusPlus17 1029 ? diag::ext_star_this_lambda_capture_cxx17 1030 : diag::warn_cxx14_compat_star_this_lambda_capture); 1031 1032 // C++11 [expr.prim.lambda]p8: 1033 // An identifier or this shall not appear more than once in a 1034 // lambda-capture. 1035 if (LSI->isCXXThisCaptured()) { 1036 Diag(C->Loc, diag::err_capture_more_than_once) 1037 << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation()) 1038 << FixItHint::CreateRemoval( 1039 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1040 continue; 1041 } 1042 1043 // C++2a [expr.prim.lambda]p8: 1044 // If a lambda-capture includes a capture-default that is =, 1045 // each simple-capture of that lambda-capture shall be of the form 1046 // "&identifier", "this", or "* this". [ Note: The form [&,this] is 1047 // redundant but accepted for compatibility with ISO C++14. --end note ] 1048 if (Intro.Default == LCD_ByCopy && C->Kind != LCK_StarThis) 1049 Diag(C->Loc, !getLangOpts().CPlusPlus2a 1050 ? diag::ext_equals_this_lambda_capture_cxx2a 1051 : diag::warn_cxx17_compat_equals_this_lambda_capture); 1052 1053 // C++11 [expr.prim.lambda]p12: 1054 // If this is captured by a local lambda expression, its nearest 1055 // enclosing function shall be a non-static member function. 1056 QualType ThisCaptureType = getCurrentThisType(); 1057 if (ThisCaptureType.isNull()) { 1058 Diag(C->Loc, diag::err_this_capture) << true; 1059 continue; 1060 } 1061 1062 CheckCXXThisCapture(C->Loc, /*Explicit=*/true, /*BuildAndDiagnose*/ true, 1063 /*FunctionScopeIndexToStopAtPtr*/ nullptr, 1064 C->Kind == LCK_StarThis); 1065 if (!LSI->Captures.empty()) 1066 LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange; 1067 continue; 1068 } 1069 1070 assert(C->Id && "missing identifier for capture"); 1071 1072 if (C->Init.isInvalid()) 1073 continue; 1074 1075 VarDecl *Var = nullptr; 1076 if (C->Init.isUsable()) { 1077 Diag(C->Loc, getLangOpts().CPlusPlus14 1078 ? diag::warn_cxx11_compat_init_capture 1079 : diag::ext_init_capture); 1080 1081 // If the initializer expression is usable, but the InitCaptureType 1082 // is not, then an error has occurred - so ignore the capture for now. 1083 // for e.g., [n{0}] { }; <-- if no <initializer_list> is included. 1084 // FIXME: we should create the init capture variable and mark it invalid 1085 // in this case. 1086 if (C->InitCaptureType.get().isNull()) 1087 continue; 1088 1089 if (C->Init.get()->containsUnexpandedParameterPack() && 1090 !C->InitCaptureType.get()->getAs<PackExpansionType>()) 1091 DiagnoseUnexpandedParameterPack(C->Init.get(), UPPC_Initializer); 1092 1093 unsigned InitStyle; 1094 switch (C->InitKind) { 1095 case LambdaCaptureInitKind::NoInit: 1096 llvm_unreachable("not an init-capture?"); 1097 case LambdaCaptureInitKind::CopyInit: 1098 InitStyle = VarDecl::CInit; 1099 break; 1100 case LambdaCaptureInitKind::DirectInit: 1101 InitStyle = VarDecl::CallInit; 1102 break; 1103 case LambdaCaptureInitKind::ListInit: 1104 InitStyle = VarDecl::ListInit; 1105 break; 1106 } 1107 Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(), 1108 C->EllipsisLoc, C->Id, InitStyle, 1109 C->Init.get()); 1110 // C++1y [expr.prim.lambda]p11: 1111 // An init-capture behaves as if it declares and explicitly 1112 // captures a variable [...] whose declarative region is the 1113 // lambda-expression's compound-statement 1114 if (Var) 1115 PushOnScopeChains(Var, CurScope, false); 1116 } else { 1117 assert(C->InitKind == LambdaCaptureInitKind::NoInit && 1118 "init capture has valid but null init?"); 1119 1120 // C++11 [expr.prim.lambda]p8: 1121 // If a lambda-capture includes a capture-default that is &, the 1122 // identifiers in the lambda-capture shall not be preceded by &. 1123 // If a lambda-capture includes a capture-default that is =, [...] 1124 // each identifier it contains shall be preceded by &. 1125 if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) { 1126 Diag(C->Loc, diag::err_reference_capture_with_reference_default) 1127 << FixItHint::CreateRemoval( 1128 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1129 continue; 1130 } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) { 1131 Diag(C->Loc, diag::err_copy_capture_with_copy_default) 1132 << FixItHint::CreateRemoval( 1133 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1134 continue; 1135 } 1136 1137 // C++11 [expr.prim.lambda]p10: 1138 // The identifiers in a capture-list are looked up using the usual 1139 // rules for unqualified name lookup (3.4.1) 1140 DeclarationNameInfo Name(C->Id, C->Loc); 1141 LookupResult R(*this, Name, LookupOrdinaryName); 1142 LookupName(R, CurScope); 1143 if (R.isAmbiguous()) 1144 continue; 1145 if (R.empty()) { 1146 // FIXME: Disable corrections that would add qualification? 1147 CXXScopeSpec ScopeSpec; 1148 DeclFilterCCC<VarDecl> Validator{}; 1149 if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R, Validator)) 1150 continue; 1151 } 1152 1153 Var = R.getAsSingle<VarDecl>(); 1154 if (Var && DiagnoseUseOfDecl(Var, C->Loc)) 1155 continue; 1156 } 1157 1158 // C++11 [expr.prim.lambda]p8: 1159 // An identifier or this shall not appear more than once in a 1160 // lambda-capture. 1161 if (!CaptureNames.insert(C->Id).second) { 1162 if (Var && LSI->isCaptured(Var)) { 1163 Diag(C->Loc, diag::err_capture_more_than_once) 1164 << C->Id << SourceRange(LSI->getCapture(Var).getLocation()) 1165 << FixItHint::CreateRemoval( 1166 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1167 } else 1168 // Previous capture captured something different (one or both was 1169 // an init-cpature): no fixit. 1170 Diag(C->Loc, diag::err_capture_more_than_once) << C->Id; 1171 continue; 1172 } 1173 1174 // C++11 [expr.prim.lambda]p10: 1175 // [...] each such lookup shall find a variable with automatic storage 1176 // duration declared in the reaching scope of the local lambda expression. 1177 // Note that the 'reaching scope' check happens in tryCaptureVariable(). 1178 if (!Var) { 1179 Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id; 1180 continue; 1181 } 1182 1183 // Ignore invalid decls; they'll just confuse the code later. 1184 if (Var->isInvalidDecl()) 1185 continue; 1186 1187 if (!Var->hasLocalStorage()) { 1188 Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id; 1189 Diag(Var->getLocation(), diag::note_previous_decl) << C->Id; 1190 continue; 1191 } 1192 1193 // C++11 [expr.prim.lambda]p23: 1194 // A capture followed by an ellipsis is a pack expansion (14.5.3). 1195 SourceLocation EllipsisLoc; 1196 if (C->EllipsisLoc.isValid()) { 1197 if (Var->isParameterPack()) { 1198 EllipsisLoc = C->EllipsisLoc; 1199 } else { 1200 Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 1201 << (C->Init.isUsable() ? C->Init.get()->getSourceRange() 1202 : SourceRange(C->Loc)); 1203 1204 // Just ignore the ellipsis. 1205 } 1206 } else if (Var->isParameterPack()) { 1207 ContainsUnexpandedParameterPack = true; 1208 } 1209 1210 if (C->Init.isUsable()) { 1211 addInitCapture(LSI, Var); 1212 } else { 1213 TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef : 1214 TryCapture_ExplicitByVal; 1215 tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc); 1216 } 1217 if (!LSI->Captures.empty()) 1218 LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange; 1219 } 1220 finishLambdaExplicitCaptures(LSI); 1221 1222 LSI->ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack; 1223 1224 // Add lambda parameters into scope. 1225 addLambdaParameters(Intro.Captures, Method, CurScope); 1226 1227 // Enter a new evaluation context to insulate the lambda from any 1228 // cleanups from the enclosing full-expression. 1229 PushExpressionEvaluationContext( 1230 ExpressionEvaluationContext::PotentiallyEvaluated); 1231 } 1232 1233 void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope, 1234 bool IsInstantiation) { 1235 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back()); 1236 1237 // Leave the expression-evaluation context. 1238 DiscardCleanupsInEvaluationContext(); 1239 PopExpressionEvaluationContext(); 1240 1241 // Leave the context of the lambda. 1242 if (!IsInstantiation) 1243 PopDeclContext(); 1244 1245 // Finalize the lambda. 1246 CXXRecordDecl *Class = LSI->Lambda; 1247 Class->setInvalidDecl(); 1248 SmallVector<Decl*, 4> Fields(Class->fields()); 1249 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(), 1250 SourceLocation(), ParsedAttributesView()); 1251 CheckCompletedCXXClass(Class); 1252 1253 PopFunctionScopeInfo(); 1254 } 1255 1256 QualType Sema::getLambdaConversionFunctionResultType( 1257 const FunctionProtoType *CallOpProto) { 1258 // The function type inside the pointer type is the same as the call 1259 // operator with some tweaks. The calling convention is the default free 1260 // function convention, and the type qualifications are lost. 1261 const FunctionProtoType::ExtProtoInfo CallOpExtInfo = 1262 CallOpProto->getExtProtoInfo(); 1263 FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo; 1264 CallingConv CC = Context.getDefaultCallingConvention( 1265 CallOpProto->isVariadic(), /*IsCXXMethod=*/false); 1266 InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC); 1267 InvokerExtInfo.TypeQuals = Qualifiers(); 1268 assert(InvokerExtInfo.RefQualifier == RQ_None && 1269 "Lambda's call operator should not have a reference qualifier"); 1270 return Context.getFunctionType(CallOpProto->getReturnType(), 1271 CallOpProto->getParamTypes(), InvokerExtInfo); 1272 } 1273 1274 /// Add a lambda's conversion to function pointer, as described in 1275 /// C++11 [expr.prim.lambda]p6. 1276 static void addFunctionPointerConversion(Sema &S, 1277 SourceRange IntroducerRange, 1278 CXXRecordDecl *Class, 1279 CXXMethodDecl *CallOperator) { 1280 // This conversion is explicitly disabled if the lambda's function has 1281 // pass_object_size attributes on any of its parameters. 1282 auto HasPassObjectSizeAttr = [](const ParmVarDecl *P) { 1283 return P->hasAttr<PassObjectSizeAttr>(); 1284 }; 1285 if (llvm::any_of(CallOperator->parameters(), HasPassObjectSizeAttr)) 1286 return; 1287 1288 // Add the conversion to function pointer. 1289 QualType InvokerFunctionTy = S.getLambdaConversionFunctionResultType( 1290 CallOperator->getType()->castAs<FunctionProtoType>()); 1291 QualType PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy); 1292 1293 // Create the type of the conversion function. 1294 FunctionProtoType::ExtProtoInfo ConvExtInfo( 1295 S.Context.getDefaultCallingConvention( 1296 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 1297 // The conversion function is always const and noexcept. 1298 ConvExtInfo.TypeQuals = Qualifiers(); 1299 ConvExtInfo.TypeQuals.addConst(); 1300 ConvExtInfo.ExceptionSpec.Type = EST_BasicNoexcept; 1301 QualType ConvTy = 1302 S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo); 1303 1304 SourceLocation Loc = IntroducerRange.getBegin(); 1305 DeclarationName ConversionName 1306 = S.Context.DeclarationNames.getCXXConversionFunctionName( 1307 S.Context.getCanonicalType(PtrToFunctionTy)); 1308 DeclarationNameLoc ConvNameLoc; 1309 // Construct a TypeSourceInfo for the conversion function, and wire 1310 // all the parameters appropriately for the FunctionProtoTypeLoc 1311 // so that everything works during transformation/instantiation of 1312 // generic lambdas. 1313 // The main reason for wiring up the parameters of the conversion 1314 // function with that of the call operator is so that constructs 1315 // like the following work: 1316 // auto L = [](auto b) { <-- 1 1317 // return [](auto a) -> decltype(a) { <-- 2 1318 // return a; 1319 // }; 1320 // }; 1321 // int (*fp)(int) = L(5); 1322 // Because the trailing return type can contain DeclRefExprs that refer 1323 // to the original call operator's variables, we hijack the call 1324 // operators ParmVarDecls below. 1325 TypeSourceInfo *ConvNamePtrToFunctionTSI = 1326 S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc); 1327 ConvNameLoc.NamedType.TInfo = ConvNamePtrToFunctionTSI; 1328 1329 // The conversion function is a conversion to a pointer-to-function. 1330 TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc); 1331 FunctionProtoTypeLoc ConvTL = 1332 ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>(); 1333 // Get the result of the conversion function which is a pointer-to-function. 1334 PointerTypeLoc PtrToFunctionTL = 1335 ConvTL.getReturnLoc().getAs<PointerTypeLoc>(); 1336 // Do the same for the TypeSourceInfo that is used to name the conversion 1337 // operator. 1338 PointerTypeLoc ConvNamePtrToFunctionTL = 1339 ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>(); 1340 1341 // Get the underlying function types that the conversion function will 1342 // be converting to (should match the type of the call operator). 1343 FunctionProtoTypeLoc CallOpConvTL = 1344 PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>(); 1345 FunctionProtoTypeLoc CallOpConvNameTL = 1346 ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>(); 1347 1348 // Wire up the FunctionProtoTypeLocs with the call operator's parameters. 1349 // These parameter's are essentially used to transform the name and 1350 // the type of the conversion operator. By using the same parameters 1351 // as the call operator's we don't have to fix any back references that 1352 // the trailing return type of the call operator's uses (such as 1353 // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.) 1354 // - we can simply use the return type of the call operator, and 1355 // everything should work. 1356 SmallVector<ParmVarDecl *, 4> InvokerParams; 1357 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) { 1358 ParmVarDecl *From = CallOperator->getParamDecl(I); 1359 1360 InvokerParams.push_back(ParmVarDecl::Create( 1361 S.Context, 1362 // Temporarily add to the TU. This is set to the invoker below. 1363 S.Context.getTranslationUnitDecl(), From->getBeginLoc(), 1364 From->getLocation(), From->getIdentifier(), From->getType(), 1365 From->getTypeSourceInfo(), From->getStorageClass(), 1366 /*DefArg=*/nullptr)); 1367 CallOpConvTL.setParam(I, From); 1368 CallOpConvNameTL.setParam(I, From); 1369 } 1370 1371 CXXConversionDecl *Conversion = CXXConversionDecl::Create( 1372 S.Context, Class, Loc, 1373 DeclarationNameInfo(ConversionName, Loc, ConvNameLoc), ConvTy, ConvTSI, 1374 /*isInline=*/true, ExplicitSpecifier(), 1375 S.getLangOpts().CPlusPlus17 ? CSK_constexpr : CSK_unspecified, 1376 CallOperator->getBody()->getEndLoc()); 1377 Conversion->setAccess(AS_public); 1378 Conversion->setImplicit(true); 1379 1380 if (Class->isGenericLambda()) { 1381 // Create a template version of the conversion operator, using the template 1382 // parameter list of the function call operator. 1383 FunctionTemplateDecl *TemplateCallOperator = 1384 CallOperator->getDescribedFunctionTemplate(); 1385 FunctionTemplateDecl *ConversionTemplate = 1386 FunctionTemplateDecl::Create(S.Context, Class, 1387 Loc, ConversionName, 1388 TemplateCallOperator->getTemplateParameters(), 1389 Conversion); 1390 ConversionTemplate->setAccess(AS_public); 1391 ConversionTemplate->setImplicit(true); 1392 Conversion->setDescribedFunctionTemplate(ConversionTemplate); 1393 Class->addDecl(ConversionTemplate); 1394 } else 1395 Class->addDecl(Conversion); 1396 // Add a non-static member function that will be the result of 1397 // the conversion with a certain unique ID. 1398 DeclarationName InvokerName = &S.Context.Idents.get( 1399 getLambdaStaticInvokerName()); 1400 // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo() 1401 // we should get a prebuilt TrivialTypeSourceInfo from Context 1402 // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc 1403 // then rewire the parameters accordingly, by hoisting up the InvokeParams 1404 // loop below and then use its Params to set Invoke->setParams(...) below. 1405 // This would avoid the 'const' qualifier of the calloperator from 1406 // contaminating the type of the invoker, which is currently adjusted 1407 // in SemaTemplateDeduction.cpp:DeduceTemplateArguments. Fixing the 1408 // trailing return type of the invoker would require a visitor to rebuild 1409 // the trailing return type and adjusting all back DeclRefExpr's to refer 1410 // to the new static invoker parameters - not the call operator's. 1411 CXXMethodDecl *Invoke = CXXMethodDecl::Create( 1412 S.Context, Class, Loc, DeclarationNameInfo(InvokerName, Loc), 1413 InvokerFunctionTy, CallOperator->getTypeSourceInfo(), SC_Static, 1414 /*isInline=*/true, CSK_unspecified, CallOperator->getBody()->getEndLoc()); 1415 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) 1416 InvokerParams[I]->setOwningFunction(Invoke); 1417 Invoke->setParams(InvokerParams); 1418 Invoke->setAccess(AS_private); 1419 Invoke->setImplicit(true); 1420 if (Class->isGenericLambda()) { 1421 FunctionTemplateDecl *TemplateCallOperator = 1422 CallOperator->getDescribedFunctionTemplate(); 1423 FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create( 1424 S.Context, Class, Loc, InvokerName, 1425 TemplateCallOperator->getTemplateParameters(), 1426 Invoke); 1427 StaticInvokerTemplate->setAccess(AS_private); 1428 StaticInvokerTemplate->setImplicit(true); 1429 Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate); 1430 Class->addDecl(StaticInvokerTemplate); 1431 } else 1432 Class->addDecl(Invoke); 1433 } 1434 1435 /// Add a lambda's conversion to block pointer. 1436 static void addBlockPointerConversion(Sema &S, 1437 SourceRange IntroducerRange, 1438 CXXRecordDecl *Class, 1439 CXXMethodDecl *CallOperator) { 1440 QualType FunctionTy = S.getLambdaConversionFunctionResultType( 1441 CallOperator->getType()->castAs<FunctionProtoType>()); 1442 QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy); 1443 1444 FunctionProtoType::ExtProtoInfo ConversionEPI( 1445 S.Context.getDefaultCallingConvention( 1446 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 1447 ConversionEPI.TypeQuals = Qualifiers(); 1448 ConversionEPI.TypeQuals.addConst(); 1449 QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ConversionEPI); 1450 1451 SourceLocation Loc = IntroducerRange.getBegin(); 1452 DeclarationName Name 1453 = S.Context.DeclarationNames.getCXXConversionFunctionName( 1454 S.Context.getCanonicalType(BlockPtrTy)); 1455 DeclarationNameLoc NameLoc; 1456 NameLoc.NamedType.TInfo = S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc); 1457 CXXConversionDecl *Conversion = CXXConversionDecl::Create( 1458 S.Context, Class, Loc, DeclarationNameInfo(Name, Loc, NameLoc), ConvTy, 1459 S.Context.getTrivialTypeSourceInfo(ConvTy, Loc), 1460 /*isInline=*/true, ExplicitSpecifier(), CSK_unspecified, 1461 CallOperator->getBody()->getEndLoc()); 1462 Conversion->setAccess(AS_public); 1463 Conversion->setImplicit(true); 1464 Class->addDecl(Conversion); 1465 } 1466 1467 ExprResult Sema::BuildCaptureInit(const Capture &Cap, 1468 SourceLocation ImplicitCaptureLoc, 1469 bool IsOpenMPMapping) { 1470 // VLA captures don't have a stored initialization expression. 1471 if (Cap.isVLATypeCapture()) 1472 return ExprResult(); 1473 1474 // An init-capture is initialized directly from its stored initializer. 1475 if (Cap.isInitCapture()) 1476 return Cap.getVariable()->getInit(); 1477 1478 // For anything else, build an initialization expression. For an implicit 1479 // capture, the capture notionally happens at the capture-default, so use 1480 // that location here. 1481 SourceLocation Loc = 1482 ImplicitCaptureLoc.isValid() ? ImplicitCaptureLoc : Cap.getLocation(); 1483 1484 // C++11 [expr.prim.lambda]p21: 1485 // When the lambda-expression is evaluated, the entities that 1486 // are captured by copy are used to direct-initialize each 1487 // corresponding non-static data member of the resulting closure 1488 // object. (For array members, the array elements are 1489 // direct-initialized in increasing subscript order.) These 1490 // initializations are performed in the (unspecified) order in 1491 // which the non-static data members are declared. 1492 1493 // C++ [expr.prim.lambda]p12: 1494 // An entity captured by a lambda-expression is odr-used (3.2) in 1495 // the scope containing the lambda-expression. 1496 ExprResult Init; 1497 IdentifierInfo *Name = nullptr; 1498 if (Cap.isThisCapture()) { 1499 QualType ThisTy = getCurrentThisType(); 1500 Expr *This = BuildCXXThisExpr(Loc, ThisTy, ImplicitCaptureLoc.isValid()); 1501 if (Cap.isCopyCapture()) 1502 Init = CreateBuiltinUnaryOp(Loc, UO_Deref, This); 1503 else 1504 Init = This; 1505 } else { 1506 assert(Cap.isVariableCapture() && "unknown kind of capture"); 1507 VarDecl *Var = Cap.getVariable(); 1508 Name = Var->getIdentifier(); 1509 Init = BuildDeclarationNameExpr( 1510 CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var); 1511 } 1512 1513 // In OpenMP, the capture kind doesn't actually describe how to capture: 1514 // variables are "mapped" onto the device in a process that does not formally 1515 // make a copy, even for a "copy capture". 1516 if (IsOpenMPMapping) 1517 return Init; 1518 1519 if (Init.isInvalid()) 1520 return ExprError(); 1521 1522 Expr *InitExpr = Init.get(); 1523 InitializedEntity Entity = InitializedEntity::InitializeLambdaCapture( 1524 Name, Cap.getCaptureType(), Loc); 1525 InitializationKind InitKind = 1526 InitializationKind::CreateDirect(Loc, Loc, Loc); 1527 InitializationSequence InitSeq(*this, Entity, InitKind, InitExpr); 1528 return InitSeq.Perform(*this, Entity, InitKind, InitExpr); 1529 } 1530 1531 ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body, 1532 Scope *CurScope) { 1533 LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back()); 1534 ActOnFinishFunctionBody(LSI.CallOperator, Body); 1535 return BuildLambdaExpr(StartLoc, Body->getEndLoc(), &LSI); 1536 } 1537 1538 static LambdaCaptureDefault 1539 mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS) { 1540 switch (ICS) { 1541 case CapturingScopeInfo::ImpCap_None: 1542 return LCD_None; 1543 case CapturingScopeInfo::ImpCap_LambdaByval: 1544 return LCD_ByCopy; 1545 case CapturingScopeInfo::ImpCap_CapturedRegion: 1546 case CapturingScopeInfo::ImpCap_LambdaByref: 1547 return LCD_ByRef; 1548 case CapturingScopeInfo::ImpCap_Block: 1549 llvm_unreachable("block capture in lambda"); 1550 } 1551 llvm_unreachable("Unknown implicit capture style"); 1552 } 1553 1554 bool Sema::CaptureHasSideEffects(const Capture &From) { 1555 if (From.isInitCapture()) { 1556 Expr *Init = From.getVariable()->getInit(); 1557 if (Init && Init->HasSideEffects(Context)) 1558 return true; 1559 } 1560 1561 if (!From.isCopyCapture()) 1562 return false; 1563 1564 const QualType T = From.isThisCapture() 1565 ? getCurrentThisType()->getPointeeType() 1566 : From.getCaptureType(); 1567 1568 if (T.isVolatileQualified()) 1569 return true; 1570 1571 const Type *BaseT = T->getBaseElementTypeUnsafe(); 1572 if (const CXXRecordDecl *RD = BaseT->getAsCXXRecordDecl()) 1573 return !RD->isCompleteDefinition() || !RD->hasTrivialCopyConstructor() || 1574 !RD->hasTrivialDestructor(); 1575 1576 return false; 1577 } 1578 1579 bool Sema::DiagnoseUnusedLambdaCapture(SourceRange CaptureRange, 1580 const Capture &From) { 1581 if (CaptureHasSideEffects(From)) 1582 return false; 1583 1584 if (From.isVLATypeCapture()) 1585 return false; 1586 1587 auto diag = Diag(From.getLocation(), diag::warn_unused_lambda_capture); 1588 if (From.isThisCapture()) 1589 diag << "'this'"; 1590 else 1591 diag << From.getVariable(); 1592 diag << From.isNonODRUsed(); 1593 diag << FixItHint::CreateRemoval(CaptureRange); 1594 return true; 1595 } 1596 1597 /// Create a field within the lambda class or captured statement record for the 1598 /// given capture. 1599 FieldDecl *Sema::BuildCaptureField(RecordDecl *RD, 1600 const sema::Capture &Capture) { 1601 SourceLocation Loc = Capture.getLocation(); 1602 QualType FieldType = Capture.getCaptureType(); 1603 1604 TypeSourceInfo *TSI = nullptr; 1605 if (Capture.isVariableCapture()) { 1606 auto *Var = Capture.getVariable(); 1607 if (Var->isInitCapture()) 1608 TSI = Capture.getVariable()->getTypeSourceInfo(); 1609 } 1610 1611 // FIXME: Should we really be doing this? A null TypeSourceInfo seems more 1612 // appropriate, at least for an implicit capture. 1613 if (!TSI) 1614 TSI = Context.getTrivialTypeSourceInfo(FieldType, Loc); 1615 1616 // Build the non-static data member. 1617 FieldDecl *Field = 1618 FieldDecl::Create(Context, RD, Loc, Loc, nullptr, FieldType, TSI, nullptr, 1619 false, ICIS_NoInit); 1620 // If the variable being captured has an invalid type, mark the class as 1621 // invalid as well. 1622 if (!FieldType->isDependentType()) { 1623 if (RequireCompleteType(Loc, FieldType, diag::err_field_incomplete)) { 1624 RD->setInvalidDecl(); 1625 Field->setInvalidDecl(); 1626 } else { 1627 NamedDecl *Def; 1628 FieldType->isIncompleteType(&Def); 1629 if (Def && Def->isInvalidDecl()) { 1630 RD->setInvalidDecl(); 1631 Field->setInvalidDecl(); 1632 } 1633 } 1634 } 1635 Field->setImplicit(true); 1636 Field->setAccess(AS_private); 1637 RD->addDecl(Field); 1638 1639 if (Capture.isVLATypeCapture()) 1640 Field->setCapturedVLAType(Capture.getCapturedVLAType()); 1641 1642 return Field; 1643 } 1644 1645 ExprResult Sema::BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc, 1646 LambdaScopeInfo *LSI) { 1647 // Collect information from the lambda scope. 1648 SmallVector<LambdaCapture, 4> Captures; 1649 SmallVector<Expr *, 4> CaptureInits; 1650 SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc; 1651 LambdaCaptureDefault CaptureDefault = 1652 mapImplicitCaptureStyle(LSI->ImpCaptureStyle); 1653 CXXRecordDecl *Class; 1654 CXXMethodDecl *CallOperator; 1655 SourceRange IntroducerRange; 1656 bool ExplicitParams; 1657 bool ExplicitResultType; 1658 CleanupInfo LambdaCleanup; 1659 bool ContainsUnexpandedParameterPack; 1660 bool IsGenericLambda; 1661 { 1662 CallOperator = LSI->CallOperator; 1663 Class = LSI->Lambda; 1664 IntroducerRange = LSI->IntroducerRange; 1665 ExplicitParams = LSI->ExplicitParams; 1666 ExplicitResultType = !LSI->HasImplicitReturnType; 1667 LambdaCleanup = LSI->Cleanup; 1668 ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack; 1669 IsGenericLambda = Class->isGenericLambda(); 1670 1671 CallOperator->setLexicalDeclContext(Class); 1672 Decl *TemplateOrNonTemplateCallOperatorDecl = 1673 CallOperator->getDescribedFunctionTemplate() 1674 ? CallOperator->getDescribedFunctionTemplate() 1675 : cast<Decl>(CallOperator); 1676 1677 // FIXME: Is this really the best choice? Keeping the lexical decl context 1678 // set as CurContext seems more faithful to the source. 1679 TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class); 1680 1681 PopExpressionEvaluationContext(); 1682 1683 // True if the current capture has a used capture or default before it. 1684 bool CurHasPreviousCapture = CaptureDefault != LCD_None; 1685 SourceLocation PrevCaptureLoc = CurHasPreviousCapture ? 1686 CaptureDefaultLoc : IntroducerRange.getBegin(); 1687 1688 for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) { 1689 const Capture &From = LSI->Captures[I]; 1690 1691 if (From.isInvalid()) 1692 return ExprError(); 1693 1694 assert(!From.isBlockCapture() && "Cannot capture __block variables"); 1695 bool IsImplicit = I >= LSI->NumExplicitCaptures; 1696 SourceLocation ImplicitCaptureLoc = 1697 IsImplicit ? CaptureDefaultLoc : SourceLocation(); 1698 1699 // Use source ranges of explicit captures for fixits where available. 1700 SourceRange CaptureRange = LSI->ExplicitCaptureRanges[I]; 1701 1702 // Warn about unused explicit captures. 1703 bool IsCaptureUsed = true; 1704 if (!CurContext->isDependentContext() && !IsImplicit && 1705 !From.isODRUsed()) { 1706 // Initialized captures that are non-ODR used may not be eliminated. 1707 // FIXME: Where did the IsGenericLambda here come from? 1708 bool NonODRUsedInitCapture = 1709 IsGenericLambda && From.isNonODRUsed() && From.isInitCapture(); 1710 if (!NonODRUsedInitCapture) { 1711 bool IsLast = (I + 1) == LSI->NumExplicitCaptures; 1712 SourceRange FixItRange; 1713 if (CaptureRange.isValid()) { 1714 if (!CurHasPreviousCapture && !IsLast) { 1715 // If there are no captures preceding this capture, remove the 1716 // following comma. 1717 FixItRange = SourceRange(CaptureRange.getBegin(), 1718 getLocForEndOfToken(CaptureRange.getEnd())); 1719 } else { 1720 // Otherwise, remove the comma since the last used capture. 1721 FixItRange = SourceRange(getLocForEndOfToken(PrevCaptureLoc), 1722 CaptureRange.getEnd()); 1723 } 1724 } 1725 1726 IsCaptureUsed = !DiagnoseUnusedLambdaCapture(FixItRange, From); 1727 } 1728 } 1729 1730 if (CaptureRange.isValid()) { 1731 CurHasPreviousCapture |= IsCaptureUsed; 1732 PrevCaptureLoc = CaptureRange.getEnd(); 1733 } 1734 1735 // Map the capture to our AST representation. 1736 LambdaCapture Capture = [&] { 1737 if (From.isThisCapture()) { 1738 // Capturing 'this' implicitly with a default of '[=]' is deprecated, 1739 // because it results in a reference capture. Don't warn prior to 1740 // C++2a; there's nothing that can be done about it before then. 1741 if (getLangOpts().CPlusPlus2a && IsImplicit && 1742 CaptureDefault == LCD_ByCopy) { 1743 Diag(From.getLocation(), diag::warn_deprecated_this_capture); 1744 Diag(CaptureDefaultLoc, diag::note_deprecated_this_capture) 1745 << FixItHint::CreateInsertion( 1746 getLocForEndOfToken(CaptureDefaultLoc), ", this"); 1747 } 1748 return LambdaCapture(From.getLocation(), IsImplicit, 1749 From.isCopyCapture() ? LCK_StarThis : LCK_This); 1750 } else if (From.isVLATypeCapture()) { 1751 return LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType); 1752 } else { 1753 assert(From.isVariableCapture() && "unknown kind of capture"); 1754 VarDecl *Var = From.getVariable(); 1755 LambdaCaptureKind Kind = 1756 From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef; 1757 return LambdaCapture(From.getLocation(), IsImplicit, Kind, Var, 1758 From.getEllipsisLoc()); 1759 } 1760 }(); 1761 1762 // Form the initializer for the capture field. 1763 ExprResult Init = BuildCaptureInit(From, ImplicitCaptureLoc); 1764 1765 // FIXME: Skip this capture if the capture is not used, the initializer 1766 // has no side-effects, the type of the capture is trivial, and the 1767 // lambda is not externally visible. 1768 1769 // Add a FieldDecl for the capture and form its initializer. 1770 BuildCaptureField(Class, From); 1771 Captures.push_back(Capture); 1772 CaptureInits.push_back(Init.get()); 1773 } 1774 1775 // C++11 [expr.prim.lambda]p6: 1776 // The closure type for a lambda-expression with no lambda-capture 1777 // has a public non-virtual non-explicit const conversion function 1778 // to pointer to function having the same parameter and return 1779 // types as the closure type's function call operator. 1780 if (Captures.empty() && CaptureDefault == LCD_None) 1781 addFunctionPointerConversion(*this, IntroducerRange, Class, 1782 CallOperator); 1783 1784 // Objective-C++: 1785 // The closure type for a lambda-expression has a public non-virtual 1786 // non-explicit const conversion function to a block pointer having the 1787 // same parameter and return types as the closure type's function call 1788 // operator. 1789 // FIXME: Fix generic lambda to block conversions. 1790 if (getLangOpts().Blocks && getLangOpts().ObjC && !IsGenericLambda) 1791 addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator); 1792 1793 // Finalize the lambda class. 1794 SmallVector<Decl*, 4> Fields(Class->fields()); 1795 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(), 1796 SourceLocation(), ParsedAttributesView()); 1797 CheckCompletedCXXClass(Class); 1798 } 1799 1800 Cleanup.mergeFrom(LambdaCleanup); 1801 1802 LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange, 1803 CaptureDefault, CaptureDefaultLoc, 1804 Captures, 1805 ExplicitParams, ExplicitResultType, 1806 CaptureInits, EndLoc, 1807 ContainsUnexpandedParameterPack); 1808 // If the lambda expression's call operator is not explicitly marked constexpr 1809 // and we are not in a dependent context, analyze the call operator to infer 1810 // its constexpr-ness, suppressing diagnostics while doing so. 1811 if (getLangOpts().CPlusPlus17 && !CallOperator->isInvalidDecl() && 1812 !CallOperator->isConstexpr() && 1813 !isa<CoroutineBodyStmt>(CallOperator->getBody()) && 1814 !Class->getDeclContext()->isDependentContext()) { 1815 CallOperator->setConstexprKind( 1816 CheckConstexprFunctionDefinition(CallOperator, 1817 CheckConstexprKind::CheckValid) 1818 ? CSK_constexpr 1819 : CSK_unspecified); 1820 } 1821 1822 // Emit delayed shadowing warnings now that the full capture list is known. 1823 DiagnoseShadowingLambdaDecls(LSI); 1824 1825 if (!CurContext->isDependentContext()) { 1826 switch (ExprEvalContexts.back().Context) { 1827 // C++11 [expr.prim.lambda]p2: 1828 // A lambda-expression shall not appear in an unevaluated operand 1829 // (Clause 5). 1830 case ExpressionEvaluationContext::Unevaluated: 1831 case ExpressionEvaluationContext::UnevaluatedList: 1832 case ExpressionEvaluationContext::UnevaluatedAbstract: 1833 // C++1y [expr.const]p2: 1834 // A conditional-expression e is a core constant expression unless the 1835 // evaluation of e, following the rules of the abstract machine, would 1836 // evaluate [...] a lambda-expression. 1837 // 1838 // This is technically incorrect, there are some constant evaluated contexts 1839 // where this should be allowed. We should probably fix this when DR1607 is 1840 // ratified, it lays out the exact set of conditions where we shouldn't 1841 // allow a lambda-expression. 1842 case ExpressionEvaluationContext::ConstantEvaluated: 1843 // We don't actually diagnose this case immediately, because we 1844 // could be within a context where we might find out later that 1845 // the expression is potentially evaluated (e.g., for typeid). 1846 ExprEvalContexts.back().Lambdas.push_back(Lambda); 1847 break; 1848 1849 case ExpressionEvaluationContext::DiscardedStatement: 1850 case ExpressionEvaluationContext::PotentiallyEvaluated: 1851 case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed: 1852 break; 1853 } 1854 } 1855 1856 return MaybeBindToTemporary(Lambda); 1857 } 1858 1859 ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation, 1860 SourceLocation ConvLocation, 1861 CXXConversionDecl *Conv, 1862 Expr *Src) { 1863 // Make sure that the lambda call operator is marked used. 1864 CXXRecordDecl *Lambda = Conv->getParent(); 1865 CXXMethodDecl *CallOperator 1866 = cast<CXXMethodDecl>( 1867 Lambda->lookup( 1868 Context.DeclarationNames.getCXXOperatorName(OO_Call)).front()); 1869 CallOperator->setReferenced(); 1870 CallOperator->markUsed(Context); 1871 1872 ExprResult Init = PerformCopyInitialization( 1873 InitializedEntity::InitializeLambdaToBlock(ConvLocation, Src->getType(), 1874 /*NRVO=*/false), 1875 CurrentLocation, Src); 1876 if (!Init.isInvalid()) 1877 Init = ActOnFinishFullExpr(Init.get(), /*DiscardedValue*/ false); 1878 1879 if (Init.isInvalid()) 1880 return ExprError(); 1881 1882 // Create the new block to be returned. 1883 BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation); 1884 1885 // Set the type information. 1886 Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo()); 1887 Block->setIsVariadic(CallOperator->isVariadic()); 1888 Block->setBlockMissingReturnType(false); 1889 1890 // Add parameters. 1891 SmallVector<ParmVarDecl *, 4> BlockParams; 1892 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) { 1893 ParmVarDecl *From = CallOperator->getParamDecl(I); 1894 BlockParams.push_back(ParmVarDecl::Create( 1895 Context, Block, From->getBeginLoc(), From->getLocation(), 1896 From->getIdentifier(), From->getType(), From->getTypeSourceInfo(), 1897 From->getStorageClass(), 1898 /*DefArg=*/nullptr)); 1899 } 1900 Block->setParams(BlockParams); 1901 1902 Block->setIsConversionFromLambda(true); 1903 1904 // Add capture. The capture uses a fake variable, which doesn't correspond 1905 // to any actual memory location. However, the initializer copy-initializes 1906 // the lambda object. 1907 TypeSourceInfo *CapVarTSI = 1908 Context.getTrivialTypeSourceInfo(Src->getType()); 1909 VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation, 1910 ConvLocation, nullptr, 1911 Src->getType(), CapVarTSI, 1912 SC_None); 1913 BlockDecl::Capture Capture(/*variable=*/CapVar, /*byRef=*/false, 1914 /*nested=*/false, /*copy=*/Init.get()); 1915 Block->setCaptures(Context, Capture, /*CapturesCXXThis=*/false); 1916 1917 // Add a fake function body to the block. IR generation is responsible 1918 // for filling in the actual body, which cannot be expressed as an AST. 1919 Block->setBody(new (Context) CompoundStmt(ConvLocation)); 1920 1921 // Create the block literal expression. 1922 Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType()); 1923 ExprCleanupObjects.push_back(Block); 1924 Cleanup.setExprNeedsCleanups(true); 1925 1926 return BuildBlock; 1927 } 1928