xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaLambda.cpp (revision 69c5fa5cd1ec9b09ed88a086607a8a0993818db9)
1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for C++ lambda expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 #include "clang/Sema/DeclSpec.h"
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTLambda.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/Basic/TargetInfo.h"
17 #include "clang/Sema/Initialization.h"
18 #include "clang/Sema/Lookup.h"
19 #include "clang/Sema/Scope.h"
20 #include "clang/Sema/ScopeInfo.h"
21 #include "clang/Sema/SemaInternal.h"
22 #include "clang/Sema/SemaLambda.h"
23 #include "llvm/ADT/STLExtras.h"
24 using namespace clang;
25 using namespace sema;
26 
27 /// Examines the FunctionScopeInfo stack to determine the nearest
28 /// enclosing lambda (to the current lambda) that is 'capture-ready' for
29 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
30 /// If successful, returns the index into Sema's FunctionScopeInfo stack
31 /// of the capture-ready lambda's LambdaScopeInfo.
32 ///
33 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current
34 /// lambda - is on top) to determine the index of the nearest enclosing/outer
35 /// lambda that is ready to capture the \p VarToCapture being referenced in
36 /// the current lambda.
37 /// As we climb down the stack, we want the index of the first such lambda -
38 /// that is the lambda with the highest index that is 'capture-ready'.
39 ///
40 /// A lambda 'L' is capture-ready for 'V' (var or this) if:
41 ///  - its enclosing context is non-dependent
42 ///  - and if the chain of lambdas between L and the lambda in which
43 ///    V is potentially used (i.e. the lambda at the top of the scope info
44 ///    stack), can all capture or have already captured V.
45 /// If \p VarToCapture is 'null' then we are trying to capture 'this'.
46 ///
47 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked
48 /// for whether it is 'capture-capable' (see
49 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly
50 /// capture.
51 ///
52 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
53 ///  LambdaScopeInfo inherits from).  The current/deepest/innermost lambda
54 ///  is at the top of the stack and has the highest index.
55 /// \param VarToCapture - the variable to capture.  If NULL, capture 'this'.
56 ///
57 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
58 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
59 /// which is capture-ready.  If the return value evaluates to 'false' then
60 /// no lambda is capture-ready for \p VarToCapture.
61 
62 static inline Optional<unsigned>
63 getStackIndexOfNearestEnclosingCaptureReadyLambda(
64     ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes,
65     VarDecl *VarToCapture) {
66   // Label failure to capture.
67   const Optional<unsigned> NoLambdaIsCaptureReady;
68 
69   // Ignore all inner captured regions.
70   unsigned CurScopeIndex = FunctionScopes.size() - 1;
71   while (CurScopeIndex > 0 && isa<clang::sema::CapturedRegionScopeInfo>(
72                                   FunctionScopes[CurScopeIndex]))
73     --CurScopeIndex;
74   assert(
75       isa<clang::sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]) &&
76       "The function on the top of sema's function-info stack must be a lambda");
77 
78   // If VarToCapture is null, we are attempting to capture 'this'.
79   const bool IsCapturingThis = !VarToCapture;
80   const bool IsCapturingVariable = !IsCapturingThis;
81 
82   // Start with the current lambda at the top of the stack (highest index).
83   DeclContext *EnclosingDC =
84       cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator;
85 
86   do {
87     const clang::sema::LambdaScopeInfo *LSI =
88         cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]);
89     // IF we have climbed down to an intervening enclosing lambda that contains
90     // the variable declaration - it obviously can/must not capture the
91     // variable.
92     // Since its enclosing DC is dependent, all the lambdas between it and the
93     // innermost nested lambda are dependent (otherwise we wouldn't have
94     // arrived here) - so we don't yet have a lambda that can capture the
95     // variable.
96     if (IsCapturingVariable &&
97         VarToCapture->getDeclContext()->Equals(EnclosingDC))
98       return NoLambdaIsCaptureReady;
99 
100     // For an enclosing lambda to be capture ready for an entity, all
101     // intervening lambda's have to be able to capture that entity. If even
102     // one of the intervening lambda's is not capable of capturing the entity
103     // then no enclosing lambda can ever capture that entity.
104     // For e.g.
105     // const int x = 10;
106     // [=](auto a) {    #1
107     //   [](auto b) {   #2 <-- an intervening lambda that can never capture 'x'
108     //    [=](auto c) { #3
109     //       f(x, c);  <-- can not lead to x's speculative capture by #1 or #2
110     //    }; }; };
111     // If they do not have a default implicit capture, check to see
112     // if the entity has already been explicitly captured.
113     // If even a single dependent enclosing lambda lacks the capability
114     // to ever capture this variable, there is no further enclosing
115     // non-dependent lambda that can capture this variable.
116     if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) {
117       if (IsCapturingVariable && !LSI->isCaptured(VarToCapture))
118         return NoLambdaIsCaptureReady;
119       if (IsCapturingThis && !LSI->isCXXThisCaptured())
120         return NoLambdaIsCaptureReady;
121     }
122     EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC);
123 
124     assert(CurScopeIndex);
125     --CurScopeIndex;
126   } while (!EnclosingDC->isTranslationUnit() &&
127            EnclosingDC->isDependentContext() &&
128            isLambdaCallOperator(EnclosingDC));
129 
130   assert(CurScopeIndex < (FunctionScopes.size() - 1));
131   // If the enclosingDC is not dependent, then the immediately nested lambda
132   // (one index above) is capture-ready.
133   if (!EnclosingDC->isDependentContext())
134     return CurScopeIndex + 1;
135   return NoLambdaIsCaptureReady;
136 }
137 
138 /// Examines the FunctionScopeInfo stack to determine the nearest
139 /// enclosing lambda (to the current lambda) that is 'capture-capable' for
140 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
141 /// If successful, returns the index into Sema's FunctionScopeInfo stack
142 /// of the capture-capable lambda's LambdaScopeInfo.
143 ///
144 /// Given the current stack of lambdas being processed by Sema and
145 /// the variable of interest, to identify the nearest enclosing lambda (to the
146 /// current lambda at the top of the stack) that can truly capture
147 /// a variable, it has to have the following two properties:
148 ///  a) 'capture-ready' - be the innermost lambda that is 'capture-ready':
149 ///     - climb down the stack (i.e. starting from the innermost and examining
150 ///       each outer lambda step by step) checking if each enclosing
151 ///       lambda can either implicitly or explicitly capture the variable.
152 ///       Record the first such lambda that is enclosed in a non-dependent
153 ///       context. If no such lambda currently exists return failure.
154 ///  b) 'capture-capable' - make sure the 'capture-ready' lambda can truly
155 ///  capture the variable by checking all its enclosing lambdas:
156 ///     - check if all outer lambdas enclosing the 'capture-ready' lambda
157 ///       identified above in 'a' can also capture the variable (this is done
158 ///       via tryCaptureVariable for variables and CheckCXXThisCapture for
159 ///       'this' by passing in the index of the Lambda identified in step 'a')
160 ///
161 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
162 /// LambdaScopeInfo inherits from).  The current/deepest/innermost lambda
163 /// is at the top of the stack.
164 ///
165 /// \param VarToCapture - the variable to capture.  If NULL, capture 'this'.
166 ///
167 ///
168 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
169 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
170 /// which is capture-capable.  If the return value evaluates to 'false' then
171 /// no lambda is capture-capable for \p VarToCapture.
172 
173 Optional<unsigned> clang::getStackIndexOfNearestEnclosingCaptureCapableLambda(
174     ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes,
175     VarDecl *VarToCapture, Sema &S) {
176 
177   const Optional<unsigned> NoLambdaIsCaptureCapable;
178 
179   const Optional<unsigned> OptionalStackIndex =
180       getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes,
181                                                         VarToCapture);
182   if (!OptionalStackIndex)
183     return NoLambdaIsCaptureCapable;
184 
185   const unsigned IndexOfCaptureReadyLambda = OptionalStackIndex.getValue();
186   assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) ||
187           S.getCurGenericLambda()) &&
188          "The capture ready lambda for a potential capture can only be the "
189          "current lambda if it is a generic lambda");
190 
191   const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI =
192       cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]);
193 
194   // If VarToCapture is null, we are attempting to capture 'this'
195   const bool IsCapturingThis = !VarToCapture;
196   const bool IsCapturingVariable = !IsCapturingThis;
197 
198   if (IsCapturingVariable) {
199     // Check if the capture-ready lambda can truly capture the variable, by
200     // checking whether all enclosing lambdas of the capture-ready lambda allow
201     // the capture - i.e. make sure it is capture-capable.
202     QualType CaptureType, DeclRefType;
203     const bool CanCaptureVariable =
204         !S.tryCaptureVariable(VarToCapture,
205                               /*ExprVarIsUsedInLoc*/ SourceLocation(),
206                               clang::Sema::TryCapture_Implicit,
207                               /*EllipsisLoc*/ SourceLocation(),
208                               /*BuildAndDiagnose*/ false, CaptureType,
209                               DeclRefType, &IndexOfCaptureReadyLambda);
210     if (!CanCaptureVariable)
211       return NoLambdaIsCaptureCapable;
212   } else {
213     // Check if the capture-ready lambda can truly capture 'this' by checking
214     // whether all enclosing lambdas of the capture-ready lambda can capture
215     // 'this'.
216     const bool CanCaptureThis =
217         !S.CheckCXXThisCapture(
218              CaptureReadyLambdaLSI->PotentialThisCaptureLocation,
219              /*Explicit*/ false, /*BuildAndDiagnose*/ false,
220              &IndexOfCaptureReadyLambda);
221     if (!CanCaptureThis)
222       return NoLambdaIsCaptureCapable;
223   }
224   return IndexOfCaptureReadyLambda;
225 }
226 
227 static inline TemplateParameterList *
228 getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) {
229   if (!LSI->GLTemplateParameterList && !LSI->TemplateParams.empty()) {
230     LSI->GLTemplateParameterList = TemplateParameterList::Create(
231         SemaRef.Context,
232         /*Template kw loc*/ SourceLocation(),
233         /*L angle loc*/ LSI->ExplicitTemplateParamsRange.getBegin(),
234         LSI->TemplateParams,
235         /*R angle loc*/LSI->ExplicitTemplateParamsRange.getEnd(),
236         nullptr);
237   }
238   return LSI->GLTemplateParameterList;
239 }
240 
241 CXXRecordDecl *Sema::createLambdaClosureType(SourceRange IntroducerRange,
242                                              TypeSourceInfo *Info,
243                                              bool KnownDependent,
244                                              LambdaCaptureDefault CaptureDefault) {
245   DeclContext *DC = CurContext;
246   while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
247     DC = DC->getParent();
248   bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(),
249                                                                *this);
250   // Start constructing the lambda class.
251   CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(Context, DC, Info,
252                                                      IntroducerRange.getBegin(),
253                                                      KnownDependent,
254                                                      IsGenericLambda,
255                                                      CaptureDefault);
256   DC->addDecl(Class);
257 
258   return Class;
259 }
260 
261 /// Determine whether the given context is or is enclosed in an inline
262 /// function.
263 static bool isInInlineFunction(const DeclContext *DC) {
264   while (!DC->isFileContext()) {
265     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
266       if (FD->isInlined())
267         return true;
268 
269     DC = DC->getLexicalParent();
270   }
271 
272   return false;
273 }
274 
275 std::tuple<MangleNumberingContext *, Decl *>
276 Sema::getCurrentMangleNumberContext(const DeclContext *DC) {
277   // Compute the context for allocating mangling numbers in the current
278   // expression, if the ABI requires them.
279   Decl *ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl;
280 
281   enum ContextKind {
282     Normal,
283     DefaultArgument,
284     DataMember,
285     StaticDataMember,
286     InlineVariable,
287     VariableTemplate
288   } Kind = Normal;
289 
290   // Default arguments of member function parameters that appear in a class
291   // definition, as well as the initializers of data members, receive special
292   // treatment. Identify them.
293   if (ManglingContextDecl) {
294     if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) {
295       if (const DeclContext *LexicalDC
296           = Param->getDeclContext()->getLexicalParent())
297         if (LexicalDC->isRecord())
298           Kind = DefaultArgument;
299     } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) {
300       if (Var->getDeclContext()->isRecord())
301         Kind = StaticDataMember;
302       else if (Var->getMostRecentDecl()->isInline())
303         Kind = InlineVariable;
304       else if (Var->getDescribedVarTemplate())
305         Kind = VariableTemplate;
306       else if (auto *VTS = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
307         if (!VTS->isExplicitSpecialization())
308           Kind = VariableTemplate;
309       }
310     } else if (isa<FieldDecl>(ManglingContextDecl)) {
311       Kind = DataMember;
312     }
313   }
314 
315   // Itanium ABI [5.1.7]:
316   //   In the following contexts [...] the one-definition rule requires closure
317   //   types in different translation units to "correspond":
318   bool IsInNonspecializedTemplate =
319       inTemplateInstantiation() || CurContext->isDependentContext();
320   switch (Kind) {
321   case Normal: {
322     //  -- the bodies of non-exported nonspecialized template functions
323     //  -- the bodies of inline functions
324     if ((IsInNonspecializedTemplate &&
325          !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) ||
326         isInInlineFunction(CurContext)) {
327       while (auto *CD = dyn_cast<CapturedDecl>(DC))
328         DC = CD->getParent();
329       return std::make_tuple(&Context.getManglingNumberContext(DC), nullptr);
330     }
331 
332     return std::make_tuple(nullptr, nullptr);
333   }
334 
335   case StaticDataMember:
336     //  -- the initializers of nonspecialized static members of template classes
337     if (!IsInNonspecializedTemplate)
338       return std::make_tuple(nullptr, ManglingContextDecl);
339     // Fall through to get the current context.
340     LLVM_FALLTHROUGH;
341 
342   case DataMember:
343     //  -- the in-class initializers of class members
344   case DefaultArgument:
345     //  -- default arguments appearing in class definitions
346   case InlineVariable:
347     //  -- the initializers of inline variables
348   case VariableTemplate:
349     //  -- the initializers of templated variables
350     return std::make_tuple(
351         &Context.getManglingNumberContext(ASTContext::NeedExtraManglingDecl,
352                                           ManglingContextDecl),
353         ManglingContextDecl);
354   }
355 
356   llvm_unreachable("unexpected context");
357 }
358 
359 CXXMethodDecl *Sema::startLambdaDefinition(CXXRecordDecl *Class,
360                                            SourceRange IntroducerRange,
361                                            TypeSourceInfo *MethodTypeInfo,
362                                            SourceLocation EndLoc,
363                                            ArrayRef<ParmVarDecl *> Params,
364                                            ConstexprSpecKind ConstexprKind,
365                                            Expr *TrailingRequiresClause) {
366   QualType MethodType = MethodTypeInfo->getType();
367   TemplateParameterList *TemplateParams =
368       getGenericLambdaTemplateParameterList(getCurLambda(), *this);
369   // If a lambda appears in a dependent context or is a generic lambda (has
370   // template parameters) and has an 'auto' return type, deduce it to a
371   // dependent type.
372   if (Class->isDependentContext() || TemplateParams) {
373     const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>();
374     QualType Result = FPT->getReturnType();
375     if (Result->isUndeducedType()) {
376       Result = SubstAutoType(Result, Context.DependentTy);
377       MethodType = Context.getFunctionType(Result, FPT->getParamTypes(),
378                                            FPT->getExtProtoInfo());
379     }
380   }
381 
382   // C++11 [expr.prim.lambda]p5:
383   //   The closure type for a lambda-expression has a public inline function
384   //   call operator (13.5.4) whose parameters and return type are described by
385   //   the lambda-expression's parameter-declaration-clause and
386   //   trailing-return-type respectively.
387   DeclarationName MethodName
388     = Context.DeclarationNames.getCXXOperatorName(OO_Call);
389   DeclarationNameLoc MethodNameLoc;
390   MethodNameLoc.CXXOperatorName.BeginOpNameLoc
391     = IntroducerRange.getBegin().getRawEncoding();
392   MethodNameLoc.CXXOperatorName.EndOpNameLoc
393     = IntroducerRange.getEnd().getRawEncoding();
394   CXXMethodDecl *Method = CXXMethodDecl::Create(
395       Context, Class, EndLoc,
396       DeclarationNameInfo(MethodName, IntroducerRange.getBegin(),
397                           MethodNameLoc),
398       MethodType, MethodTypeInfo, SC_None,
399       /*isInline=*/true, ConstexprKind, EndLoc, TrailingRequiresClause);
400   Method->setAccess(AS_public);
401   if (!TemplateParams)
402     Class->addDecl(Method);
403 
404   // Temporarily set the lexical declaration context to the current
405   // context, so that the Scope stack matches the lexical nesting.
406   Method->setLexicalDeclContext(CurContext);
407   // Create a function template if we have a template parameter list
408   FunctionTemplateDecl *const TemplateMethod = TemplateParams ?
409             FunctionTemplateDecl::Create(Context, Class,
410                                          Method->getLocation(), MethodName,
411                                          TemplateParams,
412                                          Method) : nullptr;
413   if (TemplateMethod) {
414     TemplateMethod->setAccess(AS_public);
415     Method->setDescribedFunctionTemplate(TemplateMethod);
416     Class->addDecl(TemplateMethod);
417     TemplateMethod->setLexicalDeclContext(CurContext);
418   }
419 
420   // Add parameters.
421   if (!Params.empty()) {
422     Method->setParams(Params);
423     CheckParmsForFunctionDef(Params,
424                              /*CheckParameterNames=*/false);
425 
426     for (auto P : Method->parameters())
427       P->setOwningFunction(Method);
428   }
429 
430   return Method;
431 }
432 
433 void Sema::handleLambdaNumbering(
434     CXXRecordDecl *Class, CXXMethodDecl *Method,
435     Optional<std::tuple<unsigned, bool, Decl *>> Mangling) {
436   if (Mangling) {
437     unsigned ManglingNumber;
438     bool HasKnownInternalLinkage;
439     Decl *ManglingContextDecl;
440     std::tie(ManglingNumber, HasKnownInternalLinkage, ManglingContextDecl) =
441         Mangling.getValue();
442     Class->setLambdaMangling(ManglingNumber, ManglingContextDecl,
443                              HasKnownInternalLinkage);
444     return;
445   }
446 
447   auto getMangleNumberingContext =
448       [this](CXXRecordDecl *Class,
449              Decl *ManglingContextDecl) -> MangleNumberingContext * {
450     // Get mangle numbering context if there's any extra decl context.
451     if (ManglingContextDecl)
452       return &Context.getManglingNumberContext(
453           ASTContext::NeedExtraManglingDecl, ManglingContextDecl);
454     // Otherwise, from that lambda's decl context.
455     auto DC = Class->getDeclContext();
456     while (auto *CD = dyn_cast<CapturedDecl>(DC))
457       DC = CD->getParent();
458     return &Context.getManglingNumberContext(DC);
459   };
460 
461   MangleNumberingContext *MCtx;
462   Decl *ManglingContextDecl;
463   std::tie(MCtx, ManglingContextDecl) =
464       getCurrentMangleNumberContext(Class->getDeclContext());
465   bool HasKnownInternalLinkage = false;
466   if (!MCtx && getLangOpts().CUDA) {
467     // Force lambda numbering in CUDA/HIP as we need to name lambdas following
468     // ODR. Both device- and host-compilation need to have a consistent naming
469     // on kernel functions. As lambdas are potential part of these `__global__`
470     // function names, they needs numbering following ODR.
471     MCtx = getMangleNumberingContext(Class, ManglingContextDecl);
472     assert(MCtx && "Retrieving mangle numbering context failed!");
473     HasKnownInternalLinkage = true;
474   }
475   if (MCtx) {
476     unsigned ManglingNumber = MCtx->getManglingNumber(Method);
477     Class->setLambdaMangling(ManglingNumber, ManglingContextDecl,
478                              HasKnownInternalLinkage);
479   }
480 }
481 
482 void Sema::buildLambdaScope(LambdaScopeInfo *LSI,
483                                         CXXMethodDecl *CallOperator,
484                                         SourceRange IntroducerRange,
485                                         LambdaCaptureDefault CaptureDefault,
486                                         SourceLocation CaptureDefaultLoc,
487                                         bool ExplicitParams,
488                                         bool ExplicitResultType,
489                                         bool Mutable) {
490   LSI->CallOperator = CallOperator;
491   CXXRecordDecl *LambdaClass = CallOperator->getParent();
492   LSI->Lambda = LambdaClass;
493   if (CaptureDefault == LCD_ByCopy)
494     LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval;
495   else if (CaptureDefault == LCD_ByRef)
496     LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref;
497   LSI->CaptureDefaultLoc = CaptureDefaultLoc;
498   LSI->IntroducerRange = IntroducerRange;
499   LSI->ExplicitParams = ExplicitParams;
500   LSI->Mutable = Mutable;
501 
502   if (ExplicitResultType) {
503     LSI->ReturnType = CallOperator->getReturnType();
504 
505     if (!LSI->ReturnType->isDependentType() &&
506         !LSI->ReturnType->isVoidType()) {
507       if (RequireCompleteType(CallOperator->getBeginLoc(), LSI->ReturnType,
508                               diag::err_lambda_incomplete_result)) {
509         // Do nothing.
510       }
511     }
512   } else {
513     LSI->HasImplicitReturnType = true;
514   }
515 }
516 
517 void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) {
518   LSI->finishedExplicitCaptures();
519 }
520 
521 void Sema::ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc,
522                                                     ArrayRef<NamedDecl *> TParams,
523                                                     SourceLocation RAngleLoc) {
524   LambdaScopeInfo *LSI = getCurLambda();
525   assert(LSI && "Expected a lambda scope");
526   assert(LSI->NumExplicitTemplateParams == 0 &&
527          "Already acted on explicit template parameters");
528   assert(LSI->TemplateParams.empty() &&
529          "Explicit template parameters should come "
530          "before invented (auto) ones");
531   assert(!TParams.empty() &&
532          "No template parameters to act on");
533   LSI->TemplateParams.append(TParams.begin(), TParams.end());
534   LSI->NumExplicitTemplateParams = TParams.size();
535   LSI->ExplicitTemplateParamsRange = {LAngleLoc, RAngleLoc};
536 }
537 
538 void Sema::addLambdaParameters(
539     ArrayRef<LambdaIntroducer::LambdaCapture> Captures,
540     CXXMethodDecl *CallOperator, Scope *CurScope) {
541   // Introduce our parameters into the function scope
542   for (unsigned p = 0, NumParams = CallOperator->getNumParams();
543        p < NumParams; ++p) {
544     ParmVarDecl *Param = CallOperator->getParamDecl(p);
545 
546     // If this has an identifier, add it to the scope stack.
547     if (CurScope && Param->getIdentifier()) {
548       bool Error = false;
549       // Resolution of CWG 2211 in C++17 renders shadowing ill-formed, but we
550       // retroactively apply it.
551       for (const auto &Capture : Captures) {
552         if (Capture.Id == Param->getIdentifier()) {
553           Error = true;
554           Diag(Param->getLocation(), diag::err_parameter_shadow_capture);
555           Diag(Capture.Loc, diag::note_var_explicitly_captured_here)
556               << Capture.Id << true;
557         }
558       }
559       if (!Error)
560         CheckShadow(CurScope, Param);
561 
562       PushOnScopeChains(Param, CurScope);
563     }
564   }
565 }
566 
567 /// If this expression is an enumerator-like expression of some type
568 /// T, return the type T; otherwise, return null.
569 ///
570 /// Pointer comparisons on the result here should always work because
571 /// it's derived from either the parent of an EnumConstantDecl
572 /// (i.e. the definition) or the declaration returned by
573 /// EnumType::getDecl() (i.e. the definition).
574 static EnumDecl *findEnumForBlockReturn(Expr *E) {
575   // An expression is an enumerator-like expression of type T if,
576   // ignoring parens and parens-like expressions:
577   E = E->IgnoreParens();
578 
579   //  - it is an enumerator whose enum type is T or
580   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
581     if (EnumConstantDecl *D
582           = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
583       return cast<EnumDecl>(D->getDeclContext());
584     }
585     return nullptr;
586   }
587 
588   //  - it is a comma expression whose RHS is an enumerator-like
589   //    expression of type T or
590   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
591     if (BO->getOpcode() == BO_Comma)
592       return findEnumForBlockReturn(BO->getRHS());
593     return nullptr;
594   }
595 
596   //  - it is a statement-expression whose value expression is an
597   //    enumerator-like expression of type T or
598   if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
599     if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back()))
600       return findEnumForBlockReturn(last);
601     return nullptr;
602   }
603 
604   //   - it is a ternary conditional operator (not the GNU ?:
605   //     extension) whose second and third operands are
606   //     enumerator-like expressions of type T or
607   if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
608     if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr()))
609       if (ED == findEnumForBlockReturn(CO->getFalseExpr()))
610         return ED;
611     return nullptr;
612   }
613 
614   // (implicitly:)
615   //   - it is an implicit integral conversion applied to an
616   //     enumerator-like expression of type T or
617   if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
618     // We can sometimes see integral conversions in valid
619     // enumerator-like expressions.
620     if (ICE->getCastKind() == CK_IntegralCast)
621       return findEnumForBlockReturn(ICE->getSubExpr());
622 
623     // Otherwise, just rely on the type.
624   }
625 
626   //   - it is an expression of that formal enum type.
627   if (const EnumType *ET = E->getType()->getAs<EnumType>()) {
628     return ET->getDecl();
629   }
630 
631   // Otherwise, nope.
632   return nullptr;
633 }
634 
635 /// Attempt to find a type T for which the returned expression of the
636 /// given statement is an enumerator-like expression of that type.
637 static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) {
638   if (Expr *retValue = ret->getRetValue())
639     return findEnumForBlockReturn(retValue);
640   return nullptr;
641 }
642 
643 /// Attempt to find a common type T for which all of the returned
644 /// expressions in a block are enumerator-like expressions of that
645 /// type.
646 static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) {
647   ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end();
648 
649   // Try to find one for the first return.
650   EnumDecl *ED = findEnumForBlockReturn(*i);
651   if (!ED) return nullptr;
652 
653   // Check that the rest of the returns have the same enum.
654   for (++i; i != e; ++i) {
655     if (findEnumForBlockReturn(*i) != ED)
656       return nullptr;
657   }
658 
659   // Never infer an anonymous enum type.
660   if (!ED->hasNameForLinkage()) return nullptr;
661 
662   return ED;
663 }
664 
665 /// Adjust the given return statements so that they formally return
666 /// the given type.  It should require, at most, an IntegralCast.
667 static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns,
668                                      QualType returnType) {
669   for (ArrayRef<ReturnStmt*>::iterator
670          i = returns.begin(), e = returns.end(); i != e; ++i) {
671     ReturnStmt *ret = *i;
672     Expr *retValue = ret->getRetValue();
673     if (S.Context.hasSameType(retValue->getType(), returnType))
674       continue;
675 
676     // Right now we only support integral fixup casts.
677     assert(returnType->isIntegralOrUnscopedEnumerationType());
678     assert(retValue->getType()->isIntegralOrUnscopedEnumerationType());
679 
680     ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue);
681 
682     Expr *E = (cleanups ? cleanups->getSubExpr() : retValue);
683     E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast,
684                                  E, /*base path*/ nullptr, VK_RValue);
685     if (cleanups) {
686       cleanups->setSubExpr(E);
687     } else {
688       ret->setRetValue(E);
689     }
690   }
691 }
692 
693 void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) {
694   assert(CSI.HasImplicitReturnType);
695   // If it was ever a placeholder, it had to been deduced to DependentTy.
696   assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType());
697   assert((!isa<LambdaScopeInfo>(CSI) || !getLangOpts().CPlusPlus14) &&
698          "lambda expressions use auto deduction in C++14 onwards");
699 
700   // C++ core issue 975:
701   //   If a lambda-expression does not include a trailing-return-type,
702   //   it is as if the trailing-return-type denotes the following type:
703   //     - if there are no return statements in the compound-statement,
704   //       or all return statements return either an expression of type
705   //       void or no expression or braced-init-list, the type void;
706   //     - otherwise, if all return statements return an expression
707   //       and the types of the returned expressions after
708   //       lvalue-to-rvalue conversion (4.1 [conv.lval]),
709   //       array-to-pointer conversion (4.2 [conv.array]), and
710   //       function-to-pointer conversion (4.3 [conv.func]) are the
711   //       same, that common type;
712   //     - otherwise, the program is ill-formed.
713   //
714   // C++ core issue 1048 additionally removes top-level cv-qualifiers
715   // from the types of returned expressions to match the C++14 auto
716   // deduction rules.
717   //
718   // In addition, in blocks in non-C++ modes, if all of the return
719   // statements are enumerator-like expressions of some type T, where
720   // T has a name for linkage, then we infer the return type of the
721   // block to be that type.
722 
723   // First case: no return statements, implicit void return type.
724   ASTContext &Ctx = getASTContext();
725   if (CSI.Returns.empty()) {
726     // It's possible there were simply no /valid/ return statements.
727     // In this case, the first one we found may have at least given us a type.
728     if (CSI.ReturnType.isNull())
729       CSI.ReturnType = Ctx.VoidTy;
730     return;
731   }
732 
733   // Second case: at least one return statement has dependent type.
734   // Delay type checking until instantiation.
735   assert(!CSI.ReturnType.isNull() && "We should have a tentative return type.");
736   if (CSI.ReturnType->isDependentType())
737     return;
738 
739   // Try to apply the enum-fuzz rule.
740   if (!getLangOpts().CPlusPlus) {
741     assert(isa<BlockScopeInfo>(CSI));
742     const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns);
743     if (ED) {
744       CSI.ReturnType = Context.getTypeDeclType(ED);
745       adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType);
746       return;
747     }
748   }
749 
750   // Third case: only one return statement. Don't bother doing extra work!
751   if (CSI.Returns.size() == 1)
752     return;
753 
754   // General case: many return statements.
755   // Check that they all have compatible return types.
756 
757   // We require the return types to strictly match here.
758   // Note that we've already done the required promotions as part of
759   // processing the return statement.
760   for (const ReturnStmt *RS : CSI.Returns) {
761     const Expr *RetE = RS->getRetValue();
762 
763     QualType ReturnType =
764         (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType();
765     if (Context.getCanonicalFunctionResultType(ReturnType) ==
766           Context.getCanonicalFunctionResultType(CSI.ReturnType)) {
767       // Use the return type with the strictest possible nullability annotation.
768       auto RetTyNullability = ReturnType->getNullability(Ctx);
769       auto BlockNullability = CSI.ReturnType->getNullability(Ctx);
770       if (BlockNullability &&
771           (!RetTyNullability ||
772            hasWeakerNullability(*RetTyNullability, *BlockNullability)))
773         CSI.ReturnType = ReturnType;
774       continue;
775     }
776 
777     // FIXME: This is a poor diagnostic for ReturnStmts without expressions.
778     // TODO: It's possible that the *first* return is the divergent one.
779     Diag(RS->getBeginLoc(),
780          diag::err_typecheck_missing_return_type_incompatible)
781         << ReturnType << CSI.ReturnType << isa<LambdaScopeInfo>(CSI);
782     // Continue iterating so that we keep emitting diagnostics.
783   }
784 }
785 
786 QualType Sema::buildLambdaInitCaptureInitialization(
787     SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
788     Optional<unsigned> NumExpansions, IdentifierInfo *Id, bool IsDirectInit,
789     Expr *&Init) {
790   // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to
791   // deduce against.
792   QualType DeductType = Context.getAutoDeductType();
793   TypeLocBuilder TLB;
794   AutoTypeLoc TL = TLB.push<AutoTypeLoc>(DeductType);
795   TL.setNameLoc(Loc);
796   if (ByRef) {
797     DeductType = BuildReferenceType(DeductType, true, Loc, Id);
798     assert(!DeductType.isNull() && "can't build reference to auto");
799     TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc);
800   }
801   if (EllipsisLoc.isValid()) {
802     if (Init->containsUnexpandedParameterPack()) {
803       Diag(EllipsisLoc, getLangOpts().CPlusPlus20
804                             ? diag::warn_cxx17_compat_init_capture_pack
805                             : diag::ext_init_capture_pack);
806       DeductType = Context.getPackExpansionType(DeductType, NumExpansions,
807                                                 /*ExpectPackInType=*/false);
808       TLB.push<PackExpansionTypeLoc>(DeductType).setEllipsisLoc(EllipsisLoc);
809     } else {
810       // Just ignore the ellipsis for now and form a non-pack variable. We'll
811       // diagnose this later when we try to capture it.
812     }
813   }
814   TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType);
815 
816   // Deduce the type of the init capture.
817   QualType DeducedType = deduceVarTypeFromInitializer(
818       /*VarDecl*/nullptr, DeclarationName(Id), DeductType, TSI,
819       SourceRange(Loc, Loc), IsDirectInit, Init);
820   if (DeducedType.isNull())
821     return QualType();
822 
823   // Are we a non-list direct initialization?
824   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
825 
826   // Perform initialization analysis and ensure any implicit conversions
827   // (such as lvalue-to-rvalue) are enforced.
828   InitializedEntity Entity =
829       InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc);
830   InitializationKind Kind =
831       IsDirectInit
832           ? (CXXDirectInit ? InitializationKind::CreateDirect(
833                                  Loc, Init->getBeginLoc(), Init->getEndLoc())
834                            : InitializationKind::CreateDirectList(Loc))
835           : InitializationKind::CreateCopy(Loc, Init->getBeginLoc());
836 
837   MultiExprArg Args = Init;
838   if (CXXDirectInit)
839     Args =
840         MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs());
841   QualType DclT;
842   InitializationSequence InitSeq(*this, Entity, Kind, Args);
843   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
844 
845   if (Result.isInvalid())
846     return QualType();
847 
848   Init = Result.getAs<Expr>();
849   return DeducedType;
850 }
851 
852 VarDecl *Sema::createLambdaInitCaptureVarDecl(SourceLocation Loc,
853                                               QualType InitCaptureType,
854                                               SourceLocation EllipsisLoc,
855                                               IdentifierInfo *Id,
856                                               unsigned InitStyle, Expr *Init) {
857   // FIXME: Retain the TypeSourceInfo from buildLambdaInitCaptureInitialization
858   // rather than reconstructing it here.
859   TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType, Loc);
860   if (auto PETL = TSI->getTypeLoc().getAs<PackExpansionTypeLoc>())
861     PETL.setEllipsisLoc(EllipsisLoc);
862 
863   // Create a dummy variable representing the init-capture. This is not actually
864   // used as a variable, and only exists as a way to name and refer to the
865   // init-capture.
866   // FIXME: Pass in separate source locations for '&' and identifier.
867   VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc,
868                                    Loc, Id, InitCaptureType, TSI, SC_Auto);
869   NewVD->setInitCapture(true);
870   NewVD->setReferenced(true);
871   // FIXME: Pass in a VarDecl::InitializationStyle.
872   NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle));
873   NewVD->markUsed(Context);
874   NewVD->setInit(Init);
875   if (NewVD->isParameterPack())
876     getCurLambda()->LocalPacks.push_back(NewVD);
877   return NewVD;
878 }
879 
880 void Sema::addInitCapture(LambdaScopeInfo *LSI, VarDecl *Var) {
881   assert(Var->isInitCapture() && "init capture flag should be set");
882   LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(),
883                   /*isNested*/false, Var->getLocation(), SourceLocation(),
884                   Var->getType(), /*Invalid*/false);
885 }
886 
887 void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
888                                         Declarator &ParamInfo,
889                                         Scope *CurScope) {
890   LambdaScopeInfo *const LSI = getCurLambda();
891   assert(LSI && "LambdaScopeInfo should be on stack!");
892 
893   // Determine if we're within a context where we know that the lambda will
894   // be dependent, because there are template parameters in scope.
895   bool KnownDependent;
896   if (LSI->NumExplicitTemplateParams > 0) {
897     auto *TemplateParamScope = CurScope->getTemplateParamParent();
898     assert(TemplateParamScope &&
899            "Lambda with explicit template param list should establish a "
900            "template param scope");
901     assert(TemplateParamScope->getParent());
902     KnownDependent = TemplateParamScope->getParent()
903                                        ->getTemplateParamParent() != nullptr;
904   } else {
905     KnownDependent = CurScope->getTemplateParamParent() != nullptr;
906   }
907 
908   // Determine the signature of the call operator.
909   TypeSourceInfo *MethodTyInfo;
910   bool ExplicitParams = true;
911   bool ExplicitResultType = true;
912   bool ContainsUnexpandedParameterPack = false;
913   SourceLocation EndLoc;
914   SmallVector<ParmVarDecl *, 8> Params;
915   if (ParamInfo.getNumTypeObjects() == 0) {
916     // C++11 [expr.prim.lambda]p4:
917     //   If a lambda-expression does not include a lambda-declarator, it is as
918     //   if the lambda-declarator were ().
919     FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
920         /*IsVariadic=*/false, /*IsCXXMethod=*/true));
921     EPI.HasTrailingReturn = true;
922     EPI.TypeQuals.addConst();
923     LangAS AS = getDefaultCXXMethodAddrSpace();
924     if (AS != LangAS::Default)
925       EPI.TypeQuals.addAddressSpace(AS);
926 
927     // C++1y [expr.prim.lambda]:
928     //   The lambda return type is 'auto', which is replaced by the
929     //   trailing-return type if provided and/or deduced from 'return'
930     //   statements
931     // We don't do this before C++1y, because we don't support deduced return
932     // types there.
933     QualType DefaultTypeForNoTrailingReturn =
934         getLangOpts().CPlusPlus14 ? Context.getAutoDeductType()
935                                   : Context.DependentTy;
936     QualType MethodTy =
937         Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI);
938     MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy);
939     ExplicitParams = false;
940     ExplicitResultType = false;
941     EndLoc = Intro.Range.getEnd();
942   } else {
943     assert(ParamInfo.isFunctionDeclarator() &&
944            "lambda-declarator is a function");
945     DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo();
946 
947     // C++11 [expr.prim.lambda]p5:
948     //   This function call operator is declared const (9.3.1) if and only if
949     //   the lambda-expression's parameter-declaration-clause is not followed
950     //   by mutable. It is neither virtual nor declared volatile. [...]
951     if (!FTI.hasMutableQualifier()) {
952       FTI.getOrCreateMethodQualifiers().SetTypeQual(DeclSpec::TQ_const,
953                                                     SourceLocation());
954     }
955 
956     MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope);
957     assert(MethodTyInfo && "no type from lambda-declarator");
958     EndLoc = ParamInfo.getSourceRange().getEnd();
959 
960     ExplicitResultType = FTI.hasTrailingReturnType();
961 
962     if (FTIHasNonVoidParameters(FTI)) {
963       Params.reserve(FTI.NumParams);
964       for (unsigned i = 0, e = FTI.NumParams; i != e; ++i)
965         Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param));
966     }
967 
968     // Check for unexpanded parameter packs in the method type.
969     if (MethodTyInfo->getType()->containsUnexpandedParameterPack())
970       DiagnoseUnexpandedParameterPack(Intro.Range.getBegin(), MethodTyInfo,
971                                       UPPC_DeclarationType);
972   }
973 
974   CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, MethodTyInfo,
975                                                  KnownDependent, Intro.Default);
976   CXXMethodDecl *Method =
977       startLambdaDefinition(Class, Intro.Range, MethodTyInfo, EndLoc, Params,
978                             ParamInfo.getDeclSpec().getConstexprSpecifier(),
979                             ParamInfo.getTrailingRequiresClause());
980   if (ExplicitParams)
981     CheckCXXDefaultArguments(Method);
982 
983   // This represents the function body for the lambda function, check if we
984   // have to apply optnone due to a pragma.
985   AddRangeBasedOptnone(Method);
986 
987   // code_seg attribute on lambda apply to the method.
988   if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true))
989     Method->addAttr(A);
990 
991   // Attributes on the lambda apply to the method.
992   ProcessDeclAttributes(CurScope, Method, ParamInfo);
993 
994   // CUDA lambdas get implicit host and device attributes.
995   if (getLangOpts().CUDA)
996     CUDASetLambdaAttrs(Method);
997 
998   // Number the lambda for linkage purposes if necessary.
999   handleLambdaNumbering(Class, Method);
1000 
1001   // Introduce the function call operator as the current declaration context.
1002   PushDeclContext(CurScope, Method);
1003 
1004   // Build the lambda scope.
1005   buildLambdaScope(LSI, Method, Intro.Range, Intro.Default, Intro.DefaultLoc,
1006                    ExplicitParams, ExplicitResultType, !Method->isConst());
1007 
1008   // C++11 [expr.prim.lambda]p9:
1009   //   A lambda-expression whose smallest enclosing scope is a block scope is a
1010   //   local lambda expression; any other lambda expression shall not have a
1011   //   capture-default or simple-capture in its lambda-introducer.
1012   //
1013   // For simple-captures, this is covered by the check below that any named
1014   // entity is a variable that can be captured.
1015   //
1016   // For DR1632, we also allow a capture-default in any context where we can
1017   // odr-use 'this' (in particular, in a default initializer for a non-static
1018   // data member).
1019   if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() &&
1020       (getCurrentThisType().isNull() ||
1021        CheckCXXThisCapture(SourceLocation(), /*Explicit*/true,
1022                            /*BuildAndDiagnose*/false)))
1023     Diag(Intro.DefaultLoc, diag::err_capture_default_non_local);
1024 
1025   // Distinct capture names, for diagnostics.
1026   llvm::SmallSet<IdentifierInfo*, 8> CaptureNames;
1027 
1028   // Handle explicit captures.
1029   SourceLocation PrevCaptureLoc
1030     = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc;
1031   for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E;
1032        PrevCaptureLoc = C->Loc, ++C) {
1033     if (C->Kind == LCK_This || C->Kind == LCK_StarThis) {
1034       if (C->Kind == LCK_StarThis)
1035         Diag(C->Loc, !getLangOpts().CPlusPlus17
1036                              ? diag::ext_star_this_lambda_capture_cxx17
1037                              : diag::warn_cxx14_compat_star_this_lambda_capture);
1038 
1039       // C++11 [expr.prim.lambda]p8:
1040       //   An identifier or this shall not appear more than once in a
1041       //   lambda-capture.
1042       if (LSI->isCXXThisCaptured()) {
1043         Diag(C->Loc, diag::err_capture_more_than_once)
1044             << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation())
1045             << FixItHint::CreateRemoval(
1046                    SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1047         continue;
1048       }
1049 
1050       // C++2a [expr.prim.lambda]p8:
1051       //  If a lambda-capture includes a capture-default that is =,
1052       //  each simple-capture of that lambda-capture shall be of the form
1053       //  "&identifier", "this", or "* this". [ Note: The form [&,this] is
1054       //  redundant but accepted for compatibility with ISO C++14. --end note ]
1055       if (Intro.Default == LCD_ByCopy && C->Kind != LCK_StarThis)
1056         Diag(C->Loc, !getLangOpts().CPlusPlus20
1057                          ? diag::ext_equals_this_lambda_capture_cxx20
1058                          : diag::warn_cxx17_compat_equals_this_lambda_capture);
1059 
1060       // C++11 [expr.prim.lambda]p12:
1061       //   If this is captured by a local lambda expression, its nearest
1062       //   enclosing function shall be a non-static member function.
1063       QualType ThisCaptureType = getCurrentThisType();
1064       if (ThisCaptureType.isNull()) {
1065         Diag(C->Loc, diag::err_this_capture) << true;
1066         continue;
1067       }
1068 
1069       CheckCXXThisCapture(C->Loc, /*Explicit=*/true, /*BuildAndDiagnose*/ true,
1070                           /*FunctionScopeIndexToStopAtPtr*/ nullptr,
1071                           C->Kind == LCK_StarThis);
1072       if (!LSI->Captures.empty())
1073         LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange;
1074       continue;
1075     }
1076 
1077     assert(C->Id && "missing identifier for capture");
1078 
1079     if (C->Init.isInvalid())
1080       continue;
1081 
1082     VarDecl *Var = nullptr;
1083     if (C->Init.isUsable()) {
1084       Diag(C->Loc, getLangOpts().CPlusPlus14
1085                        ? diag::warn_cxx11_compat_init_capture
1086                        : diag::ext_init_capture);
1087 
1088       // If the initializer expression is usable, but the InitCaptureType
1089       // is not, then an error has occurred - so ignore the capture for now.
1090       // for e.g., [n{0}] { }; <-- if no <initializer_list> is included.
1091       // FIXME: we should create the init capture variable and mark it invalid
1092       // in this case.
1093       if (C->InitCaptureType.get().isNull())
1094         continue;
1095 
1096       if (C->Init.get()->containsUnexpandedParameterPack() &&
1097           !C->InitCaptureType.get()->getAs<PackExpansionType>())
1098         DiagnoseUnexpandedParameterPack(C->Init.get(), UPPC_Initializer);
1099 
1100       unsigned InitStyle;
1101       switch (C->InitKind) {
1102       case LambdaCaptureInitKind::NoInit:
1103         llvm_unreachable("not an init-capture?");
1104       case LambdaCaptureInitKind::CopyInit:
1105         InitStyle = VarDecl::CInit;
1106         break;
1107       case LambdaCaptureInitKind::DirectInit:
1108         InitStyle = VarDecl::CallInit;
1109         break;
1110       case LambdaCaptureInitKind::ListInit:
1111         InitStyle = VarDecl::ListInit;
1112         break;
1113       }
1114       Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(),
1115                                            C->EllipsisLoc, C->Id, InitStyle,
1116                                            C->Init.get());
1117       // C++1y [expr.prim.lambda]p11:
1118       //   An init-capture behaves as if it declares and explicitly
1119       //   captures a variable [...] whose declarative region is the
1120       //   lambda-expression's compound-statement
1121       if (Var)
1122         PushOnScopeChains(Var, CurScope, false);
1123     } else {
1124       assert(C->InitKind == LambdaCaptureInitKind::NoInit &&
1125              "init capture has valid but null init?");
1126 
1127       // C++11 [expr.prim.lambda]p8:
1128       //   If a lambda-capture includes a capture-default that is &, the
1129       //   identifiers in the lambda-capture shall not be preceded by &.
1130       //   If a lambda-capture includes a capture-default that is =, [...]
1131       //   each identifier it contains shall be preceded by &.
1132       if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) {
1133         Diag(C->Loc, diag::err_reference_capture_with_reference_default)
1134             << FixItHint::CreateRemoval(
1135                 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1136         continue;
1137       } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) {
1138         Diag(C->Loc, diag::err_copy_capture_with_copy_default)
1139             << FixItHint::CreateRemoval(
1140                 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1141         continue;
1142       }
1143 
1144       // C++11 [expr.prim.lambda]p10:
1145       //   The identifiers in a capture-list are looked up using the usual
1146       //   rules for unqualified name lookup (3.4.1)
1147       DeclarationNameInfo Name(C->Id, C->Loc);
1148       LookupResult R(*this, Name, LookupOrdinaryName);
1149       LookupName(R, CurScope);
1150       if (R.isAmbiguous())
1151         continue;
1152       if (R.empty()) {
1153         // FIXME: Disable corrections that would add qualification?
1154         CXXScopeSpec ScopeSpec;
1155         DeclFilterCCC<VarDecl> Validator{};
1156         if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R, Validator))
1157           continue;
1158       }
1159 
1160       Var = R.getAsSingle<VarDecl>();
1161       if (Var && DiagnoseUseOfDecl(Var, C->Loc))
1162         continue;
1163     }
1164 
1165     // C++11 [expr.prim.lambda]p8:
1166     //   An identifier or this shall not appear more than once in a
1167     //   lambda-capture.
1168     if (!CaptureNames.insert(C->Id).second) {
1169       if (Var && LSI->isCaptured(Var)) {
1170         Diag(C->Loc, diag::err_capture_more_than_once)
1171             << C->Id << SourceRange(LSI->getCapture(Var).getLocation())
1172             << FixItHint::CreateRemoval(
1173                    SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1174       } else
1175         // Previous capture captured something different (one or both was
1176         // an init-cpature): no fixit.
1177         Diag(C->Loc, diag::err_capture_more_than_once) << C->Id;
1178       continue;
1179     }
1180 
1181     // C++11 [expr.prim.lambda]p10:
1182     //   [...] each such lookup shall find a variable with automatic storage
1183     //   duration declared in the reaching scope of the local lambda expression.
1184     // Note that the 'reaching scope' check happens in tryCaptureVariable().
1185     if (!Var) {
1186       Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id;
1187       continue;
1188     }
1189 
1190     // Ignore invalid decls; they'll just confuse the code later.
1191     if (Var->isInvalidDecl())
1192       continue;
1193 
1194     if (!Var->hasLocalStorage()) {
1195       Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id;
1196       Diag(Var->getLocation(), diag::note_previous_decl) << C->Id;
1197       continue;
1198     }
1199 
1200     // C++11 [expr.prim.lambda]p23:
1201     //   A capture followed by an ellipsis is a pack expansion (14.5.3).
1202     SourceLocation EllipsisLoc;
1203     if (C->EllipsisLoc.isValid()) {
1204       if (Var->isParameterPack()) {
1205         EllipsisLoc = C->EllipsisLoc;
1206       } else {
1207         Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1208             << (C->Init.isUsable() ? C->Init.get()->getSourceRange()
1209                                    : SourceRange(C->Loc));
1210 
1211         // Just ignore the ellipsis.
1212       }
1213     } else if (Var->isParameterPack()) {
1214       ContainsUnexpandedParameterPack = true;
1215     }
1216 
1217     if (C->Init.isUsable()) {
1218       addInitCapture(LSI, Var);
1219     } else {
1220       TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef :
1221                                                    TryCapture_ExplicitByVal;
1222       tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc);
1223     }
1224     if (!LSI->Captures.empty())
1225       LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange;
1226   }
1227   finishLambdaExplicitCaptures(LSI);
1228 
1229   LSI->ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
1230 
1231   // Add lambda parameters into scope.
1232   addLambdaParameters(Intro.Captures, Method, CurScope);
1233 
1234   // Enter a new evaluation context to insulate the lambda from any
1235   // cleanups from the enclosing full-expression.
1236   PushExpressionEvaluationContext(
1237       LSI->CallOperator->isConsteval()
1238           ? ExpressionEvaluationContext::ConstantEvaluated
1239           : ExpressionEvaluationContext::PotentiallyEvaluated);
1240 }
1241 
1242 void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
1243                             bool IsInstantiation) {
1244   LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back());
1245 
1246   // Leave the expression-evaluation context.
1247   DiscardCleanupsInEvaluationContext();
1248   PopExpressionEvaluationContext();
1249 
1250   // Leave the context of the lambda.
1251   if (!IsInstantiation)
1252     PopDeclContext();
1253 
1254   // Finalize the lambda.
1255   CXXRecordDecl *Class = LSI->Lambda;
1256   Class->setInvalidDecl();
1257   SmallVector<Decl*, 4> Fields(Class->fields());
1258   ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1259               SourceLocation(), ParsedAttributesView());
1260   CheckCompletedCXXClass(nullptr, Class);
1261 
1262   PopFunctionScopeInfo();
1263 }
1264 
1265 QualType Sema::getLambdaConversionFunctionResultType(
1266     const FunctionProtoType *CallOpProto) {
1267   // The function type inside the pointer type is the same as the call
1268   // operator with some tweaks. The calling convention is the default free
1269   // function convention, and the type qualifications are lost.
1270   const FunctionProtoType::ExtProtoInfo CallOpExtInfo =
1271       CallOpProto->getExtProtoInfo();
1272   FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo;
1273   CallingConv CC = Context.getDefaultCallingConvention(
1274       CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
1275   InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC);
1276   InvokerExtInfo.TypeQuals = Qualifiers();
1277   assert(InvokerExtInfo.RefQualifier == RQ_None &&
1278       "Lambda's call operator should not have a reference qualifier");
1279   return Context.getFunctionType(CallOpProto->getReturnType(),
1280                                  CallOpProto->getParamTypes(), InvokerExtInfo);
1281 }
1282 
1283 /// Add a lambda's conversion to function pointer, as described in
1284 /// C++11 [expr.prim.lambda]p6.
1285 static void addFunctionPointerConversion(Sema &S,
1286                                          SourceRange IntroducerRange,
1287                                          CXXRecordDecl *Class,
1288                                          CXXMethodDecl *CallOperator) {
1289   // This conversion is explicitly disabled if the lambda's function has
1290   // pass_object_size attributes on any of its parameters.
1291   auto HasPassObjectSizeAttr = [](const ParmVarDecl *P) {
1292     return P->hasAttr<PassObjectSizeAttr>();
1293   };
1294   if (llvm::any_of(CallOperator->parameters(), HasPassObjectSizeAttr))
1295     return;
1296 
1297   // Add the conversion to function pointer.
1298   QualType InvokerFunctionTy = S.getLambdaConversionFunctionResultType(
1299       CallOperator->getType()->castAs<FunctionProtoType>());
1300   QualType PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy);
1301 
1302   // Create the type of the conversion function.
1303   FunctionProtoType::ExtProtoInfo ConvExtInfo(
1304       S.Context.getDefaultCallingConvention(
1305       /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1306   // The conversion function is always const and noexcept.
1307   ConvExtInfo.TypeQuals = Qualifiers();
1308   ConvExtInfo.TypeQuals.addConst();
1309   ConvExtInfo.ExceptionSpec.Type = EST_BasicNoexcept;
1310   QualType ConvTy =
1311       S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo);
1312 
1313   SourceLocation Loc = IntroducerRange.getBegin();
1314   DeclarationName ConversionName
1315     = S.Context.DeclarationNames.getCXXConversionFunctionName(
1316         S.Context.getCanonicalType(PtrToFunctionTy));
1317   DeclarationNameLoc ConvNameLoc;
1318   // Construct a TypeSourceInfo for the conversion function, and wire
1319   // all the parameters appropriately for the FunctionProtoTypeLoc
1320   // so that everything works during transformation/instantiation of
1321   // generic lambdas.
1322   // The main reason for wiring up the parameters of the conversion
1323   // function with that of the call operator is so that constructs
1324   // like the following work:
1325   // auto L = [](auto b) {                <-- 1
1326   //   return [](auto a) -> decltype(a) { <-- 2
1327   //      return a;
1328   //   };
1329   // };
1330   // int (*fp)(int) = L(5);
1331   // Because the trailing return type can contain DeclRefExprs that refer
1332   // to the original call operator's variables, we hijack the call
1333   // operators ParmVarDecls below.
1334   TypeSourceInfo *ConvNamePtrToFunctionTSI =
1335       S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc);
1336   ConvNameLoc.NamedType.TInfo = ConvNamePtrToFunctionTSI;
1337 
1338   // The conversion function is a conversion to a pointer-to-function.
1339   TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc);
1340   FunctionProtoTypeLoc ConvTL =
1341       ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
1342   // Get the result of the conversion function which is a pointer-to-function.
1343   PointerTypeLoc PtrToFunctionTL =
1344       ConvTL.getReturnLoc().getAs<PointerTypeLoc>();
1345   // Do the same for the TypeSourceInfo that is used to name the conversion
1346   // operator.
1347   PointerTypeLoc ConvNamePtrToFunctionTL =
1348       ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>();
1349 
1350   // Get the underlying function types that the conversion function will
1351   // be converting to (should match the type of the call operator).
1352   FunctionProtoTypeLoc CallOpConvTL =
1353       PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1354   FunctionProtoTypeLoc CallOpConvNameTL =
1355     ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1356 
1357   // Wire up the FunctionProtoTypeLocs with the call operator's parameters.
1358   // These parameter's are essentially used to transform the name and
1359   // the type of the conversion operator.  By using the same parameters
1360   // as the call operator's we don't have to fix any back references that
1361   // the trailing return type of the call operator's uses (such as
1362   // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.)
1363   // - we can simply use the return type of the call operator, and
1364   // everything should work.
1365   SmallVector<ParmVarDecl *, 4> InvokerParams;
1366   for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1367     ParmVarDecl *From = CallOperator->getParamDecl(I);
1368 
1369     InvokerParams.push_back(ParmVarDecl::Create(
1370         S.Context,
1371         // Temporarily add to the TU. This is set to the invoker below.
1372         S.Context.getTranslationUnitDecl(), From->getBeginLoc(),
1373         From->getLocation(), From->getIdentifier(), From->getType(),
1374         From->getTypeSourceInfo(), From->getStorageClass(),
1375         /*DefArg=*/nullptr));
1376     CallOpConvTL.setParam(I, From);
1377     CallOpConvNameTL.setParam(I, From);
1378   }
1379 
1380   CXXConversionDecl *Conversion = CXXConversionDecl::Create(
1381       S.Context, Class, Loc,
1382       DeclarationNameInfo(ConversionName, Loc, ConvNameLoc), ConvTy, ConvTSI,
1383       /*isInline=*/true, ExplicitSpecifier(),
1384       S.getLangOpts().CPlusPlus17 ? CSK_constexpr : CSK_unspecified,
1385       CallOperator->getBody()->getEndLoc());
1386   Conversion->setAccess(AS_public);
1387   Conversion->setImplicit(true);
1388 
1389   if (Class->isGenericLambda()) {
1390     // Create a template version of the conversion operator, using the template
1391     // parameter list of the function call operator.
1392     FunctionTemplateDecl *TemplateCallOperator =
1393             CallOperator->getDescribedFunctionTemplate();
1394     FunctionTemplateDecl *ConversionTemplate =
1395                   FunctionTemplateDecl::Create(S.Context, Class,
1396                                       Loc, ConversionName,
1397                                       TemplateCallOperator->getTemplateParameters(),
1398                                       Conversion);
1399     ConversionTemplate->setAccess(AS_public);
1400     ConversionTemplate->setImplicit(true);
1401     Conversion->setDescribedFunctionTemplate(ConversionTemplate);
1402     Class->addDecl(ConversionTemplate);
1403   } else
1404     Class->addDecl(Conversion);
1405   // Add a non-static member function that will be the result of
1406   // the conversion with a certain unique ID.
1407   DeclarationName InvokerName = &S.Context.Idents.get(
1408                                                  getLambdaStaticInvokerName());
1409   // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo()
1410   // we should get a prebuilt TrivialTypeSourceInfo from Context
1411   // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc
1412   // then rewire the parameters accordingly, by hoisting up the InvokeParams
1413   // loop below and then use its Params to set Invoke->setParams(...) below.
1414   // This would avoid the 'const' qualifier of the calloperator from
1415   // contaminating the type of the invoker, which is currently adjusted
1416   // in SemaTemplateDeduction.cpp:DeduceTemplateArguments.  Fixing the
1417   // trailing return type of the invoker would require a visitor to rebuild
1418   // the trailing return type and adjusting all back DeclRefExpr's to refer
1419   // to the new static invoker parameters - not the call operator's.
1420   CXXMethodDecl *Invoke = CXXMethodDecl::Create(
1421       S.Context, Class, Loc, DeclarationNameInfo(InvokerName, Loc),
1422       InvokerFunctionTy, CallOperator->getTypeSourceInfo(), SC_Static,
1423       /*isInline=*/true, CSK_unspecified, CallOperator->getBody()->getEndLoc());
1424   for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I)
1425     InvokerParams[I]->setOwningFunction(Invoke);
1426   Invoke->setParams(InvokerParams);
1427   Invoke->setAccess(AS_private);
1428   Invoke->setImplicit(true);
1429   if (Class->isGenericLambda()) {
1430     FunctionTemplateDecl *TemplateCallOperator =
1431             CallOperator->getDescribedFunctionTemplate();
1432     FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create(
1433                           S.Context, Class, Loc, InvokerName,
1434                           TemplateCallOperator->getTemplateParameters(),
1435                           Invoke);
1436     StaticInvokerTemplate->setAccess(AS_private);
1437     StaticInvokerTemplate->setImplicit(true);
1438     Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate);
1439     Class->addDecl(StaticInvokerTemplate);
1440   } else
1441     Class->addDecl(Invoke);
1442 }
1443 
1444 /// Add a lambda's conversion to block pointer.
1445 static void addBlockPointerConversion(Sema &S,
1446                                       SourceRange IntroducerRange,
1447                                       CXXRecordDecl *Class,
1448                                       CXXMethodDecl *CallOperator) {
1449   QualType FunctionTy = S.getLambdaConversionFunctionResultType(
1450       CallOperator->getType()->castAs<FunctionProtoType>());
1451   QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy);
1452 
1453   FunctionProtoType::ExtProtoInfo ConversionEPI(
1454       S.Context.getDefaultCallingConvention(
1455           /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1456   ConversionEPI.TypeQuals = Qualifiers();
1457   ConversionEPI.TypeQuals.addConst();
1458   QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ConversionEPI);
1459 
1460   SourceLocation Loc = IntroducerRange.getBegin();
1461   DeclarationName Name
1462     = S.Context.DeclarationNames.getCXXConversionFunctionName(
1463         S.Context.getCanonicalType(BlockPtrTy));
1464   DeclarationNameLoc NameLoc;
1465   NameLoc.NamedType.TInfo = S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc);
1466   CXXConversionDecl *Conversion = CXXConversionDecl::Create(
1467       S.Context, Class, Loc, DeclarationNameInfo(Name, Loc, NameLoc), ConvTy,
1468       S.Context.getTrivialTypeSourceInfo(ConvTy, Loc),
1469       /*isInline=*/true, ExplicitSpecifier(), CSK_unspecified,
1470       CallOperator->getBody()->getEndLoc());
1471   Conversion->setAccess(AS_public);
1472   Conversion->setImplicit(true);
1473   Class->addDecl(Conversion);
1474 }
1475 
1476 ExprResult Sema::BuildCaptureInit(const Capture &Cap,
1477                                   SourceLocation ImplicitCaptureLoc,
1478                                   bool IsOpenMPMapping) {
1479   // VLA captures don't have a stored initialization expression.
1480   if (Cap.isVLATypeCapture())
1481     return ExprResult();
1482 
1483   // An init-capture is initialized directly from its stored initializer.
1484   if (Cap.isInitCapture())
1485     return Cap.getVariable()->getInit();
1486 
1487   // For anything else, build an initialization expression. For an implicit
1488   // capture, the capture notionally happens at the capture-default, so use
1489   // that location here.
1490   SourceLocation Loc =
1491       ImplicitCaptureLoc.isValid() ? ImplicitCaptureLoc : Cap.getLocation();
1492 
1493   // C++11 [expr.prim.lambda]p21:
1494   //   When the lambda-expression is evaluated, the entities that
1495   //   are captured by copy are used to direct-initialize each
1496   //   corresponding non-static data member of the resulting closure
1497   //   object. (For array members, the array elements are
1498   //   direct-initialized in increasing subscript order.) These
1499   //   initializations are performed in the (unspecified) order in
1500   //   which the non-static data members are declared.
1501 
1502   // C++ [expr.prim.lambda]p12:
1503   //   An entity captured by a lambda-expression is odr-used (3.2) in
1504   //   the scope containing the lambda-expression.
1505   ExprResult Init;
1506   IdentifierInfo *Name = nullptr;
1507   if (Cap.isThisCapture()) {
1508     QualType ThisTy = getCurrentThisType();
1509     Expr *This = BuildCXXThisExpr(Loc, ThisTy, ImplicitCaptureLoc.isValid());
1510     if (Cap.isCopyCapture())
1511       Init = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
1512     else
1513       Init = This;
1514   } else {
1515     assert(Cap.isVariableCapture() && "unknown kind of capture");
1516     VarDecl *Var = Cap.getVariable();
1517     Name = Var->getIdentifier();
1518     Init = BuildDeclarationNameExpr(
1519       CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
1520   }
1521 
1522   // In OpenMP, the capture kind doesn't actually describe how to capture:
1523   // variables are "mapped" onto the device in a process that does not formally
1524   // make a copy, even for a "copy capture".
1525   if (IsOpenMPMapping)
1526     return Init;
1527 
1528   if (Init.isInvalid())
1529     return ExprError();
1530 
1531   Expr *InitExpr = Init.get();
1532   InitializedEntity Entity = InitializedEntity::InitializeLambdaCapture(
1533       Name, Cap.getCaptureType(), Loc);
1534   InitializationKind InitKind =
1535       InitializationKind::CreateDirect(Loc, Loc, Loc);
1536   InitializationSequence InitSeq(*this, Entity, InitKind, InitExpr);
1537   return InitSeq.Perform(*this, Entity, InitKind, InitExpr);
1538 }
1539 
1540 ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
1541                                  Scope *CurScope) {
1542   LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back());
1543   ActOnFinishFunctionBody(LSI.CallOperator, Body);
1544   return BuildLambdaExpr(StartLoc, Body->getEndLoc(), &LSI);
1545 }
1546 
1547 static LambdaCaptureDefault
1548 mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS) {
1549   switch (ICS) {
1550   case CapturingScopeInfo::ImpCap_None:
1551     return LCD_None;
1552   case CapturingScopeInfo::ImpCap_LambdaByval:
1553     return LCD_ByCopy;
1554   case CapturingScopeInfo::ImpCap_CapturedRegion:
1555   case CapturingScopeInfo::ImpCap_LambdaByref:
1556     return LCD_ByRef;
1557   case CapturingScopeInfo::ImpCap_Block:
1558     llvm_unreachable("block capture in lambda");
1559   }
1560   llvm_unreachable("Unknown implicit capture style");
1561 }
1562 
1563 bool Sema::CaptureHasSideEffects(const Capture &From) {
1564   if (From.isInitCapture()) {
1565     Expr *Init = From.getVariable()->getInit();
1566     if (Init && Init->HasSideEffects(Context))
1567       return true;
1568   }
1569 
1570   if (!From.isCopyCapture())
1571     return false;
1572 
1573   const QualType T = From.isThisCapture()
1574                          ? getCurrentThisType()->getPointeeType()
1575                          : From.getCaptureType();
1576 
1577   if (T.isVolatileQualified())
1578     return true;
1579 
1580   const Type *BaseT = T->getBaseElementTypeUnsafe();
1581   if (const CXXRecordDecl *RD = BaseT->getAsCXXRecordDecl())
1582     return !RD->isCompleteDefinition() || !RD->hasTrivialCopyConstructor() ||
1583            !RD->hasTrivialDestructor();
1584 
1585   return false;
1586 }
1587 
1588 bool Sema::DiagnoseUnusedLambdaCapture(SourceRange CaptureRange,
1589                                        const Capture &From) {
1590   if (CaptureHasSideEffects(From))
1591     return false;
1592 
1593   if (From.isVLATypeCapture())
1594     return false;
1595 
1596   auto diag = Diag(From.getLocation(), diag::warn_unused_lambda_capture);
1597   if (From.isThisCapture())
1598     diag << "'this'";
1599   else
1600     diag << From.getVariable();
1601   diag << From.isNonODRUsed();
1602   diag << FixItHint::CreateRemoval(CaptureRange);
1603   return true;
1604 }
1605 
1606 /// Create a field within the lambda class or captured statement record for the
1607 /// given capture.
1608 FieldDecl *Sema::BuildCaptureField(RecordDecl *RD,
1609                                    const sema::Capture &Capture) {
1610   SourceLocation Loc = Capture.getLocation();
1611   QualType FieldType = Capture.getCaptureType();
1612 
1613   TypeSourceInfo *TSI = nullptr;
1614   if (Capture.isVariableCapture()) {
1615     auto *Var = Capture.getVariable();
1616     if (Var->isInitCapture())
1617       TSI = Capture.getVariable()->getTypeSourceInfo();
1618   }
1619 
1620   // FIXME: Should we really be doing this? A null TypeSourceInfo seems more
1621   // appropriate, at least for an implicit capture.
1622   if (!TSI)
1623     TSI = Context.getTrivialTypeSourceInfo(FieldType, Loc);
1624 
1625   // Build the non-static data member.
1626   FieldDecl *Field =
1627       FieldDecl::Create(Context, RD, Loc, Loc, nullptr, FieldType, TSI, nullptr,
1628                         false, ICIS_NoInit);
1629   // If the variable being captured has an invalid type, mark the class as
1630   // invalid as well.
1631   if (!FieldType->isDependentType()) {
1632     if (RequireCompleteSizedType(Loc, FieldType,
1633                                  diag::err_field_incomplete_or_sizeless)) {
1634       RD->setInvalidDecl();
1635       Field->setInvalidDecl();
1636     } else {
1637       NamedDecl *Def;
1638       FieldType->isIncompleteType(&Def);
1639       if (Def && Def->isInvalidDecl()) {
1640         RD->setInvalidDecl();
1641         Field->setInvalidDecl();
1642       }
1643     }
1644   }
1645   Field->setImplicit(true);
1646   Field->setAccess(AS_private);
1647   RD->addDecl(Field);
1648 
1649   if (Capture.isVLATypeCapture())
1650     Field->setCapturedVLAType(Capture.getCapturedVLAType());
1651 
1652   return Field;
1653 }
1654 
1655 ExprResult Sema::BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc,
1656                                  LambdaScopeInfo *LSI) {
1657   // Collect information from the lambda scope.
1658   SmallVector<LambdaCapture, 4> Captures;
1659   SmallVector<Expr *, 4> CaptureInits;
1660   SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc;
1661   LambdaCaptureDefault CaptureDefault =
1662       mapImplicitCaptureStyle(LSI->ImpCaptureStyle);
1663   CXXRecordDecl *Class;
1664   CXXMethodDecl *CallOperator;
1665   SourceRange IntroducerRange;
1666   bool ExplicitParams;
1667   bool ExplicitResultType;
1668   CleanupInfo LambdaCleanup;
1669   bool ContainsUnexpandedParameterPack;
1670   bool IsGenericLambda;
1671   {
1672     CallOperator = LSI->CallOperator;
1673     Class = LSI->Lambda;
1674     IntroducerRange = LSI->IntroducerRange;
1675     ExplicitParams = LSI->ExplicitParams;
1676     ExplicitResultType = !LSI->HasImplicitReturnType;
1677     LambdaCleanup = LSI->Cleanup;
1678     ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack;
1679     IsGenericLambda = Class->isGenericLambda();
1680 
1681     CallOperator->setLexicalDeclContext(Class);
1682     Decl *TemplateOrNonTemplateCallOperatorDecl =
1683         CallOperator->getDescribedFunctionTemplate()
1684         ? CallOperator->getDescribedFunctionTemplate()
1685         : cast<Decl>(CallOperator);
1686 
1687     // FIXME: Is this really the best choice? Keeping the lexical decl context
1688     // set as CurContext seems more faithful to the source.
1689     TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class);
1690 
1691     PopExpressionEvaluationContext();
1692 
1693     // True if the current capture has a used capture or default before it.
1694     bool CurHasPreviousCapture = CaptureDefault != LCD_None;
1695     SourceLocation PrevCaptureLoc = CurHasPreviousCapture ?
1696         CaptureDefaultLoc : IntroducerRange.getBegin();
1697 
1698     for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) {
1699       const Capture &From = LSI->Captures[I];
1700 
1701       if (From.isInvalid())
1702         return ExprError();
1703 
1704       assert(!From.isBlockCapture() && "Cannot capture __block variables");
1705       bool IsImplicit = I >= LSI->NumExplicitCaptures;
1706       SourceLocation ImplicitCaptureLoc =
1707           IsImplicit ? CaptureDefaultLoc : SourceLocation();
1708 
1709       // Use source ranges of explicit captures for fixits where available.
1710       SourceRange CaptureRange = LSI->ExplicitCaptureRanges[I];
1711 
1712       // Warn about unused explicit captures.
1713       bool IsCaptureUsed = true;
1714       if (!CurContext->isDependentContext() && !IsImplicit &&
1715           !From.isODRUsed()) {
1716         // Initialized captures that are non-ODR used may not be eliminated.
1717         // FIXME: Where did the IsGenericLambda here come from?
1718         bool NonODRUsedInitCapture =
1719             IsGenericLambda && From.isNonODRUsed() && From.isInitCapture();
1720         if (!NonODRUsedInitCapture) {
1721           bool IsLast = (I + 1) == LSI->NumExplicitCaptures;
1722           SourceRange FixItRange;
1723           if (CaptureRange.isValid()) {
1724             if (!CurHasPreviousCapture && !IsLast) {
1725               // If there are no captures preceding this capture, remove the
1726               // following comma.
1727               FixItRange = SourceRange(CaptureRange.getBegin(),
1728                                        getLocForEndOfToken(CaptureRange.getEnd()));
1729             } else {
1730               // Otherwise, remove the comma since the last used capture.
1731               FixItRange = SourceRange(getLocForEndOfToken(PrevCaptureLoc),
1732                                        CaptureRange.getEnd());
1733             }
1734           }
1735 
1736           IsCaptureUsed = !DiagnoseUnusedLambdaCapture(FixItRange, From);
1737         }
1738       }
1739 
1740       if (CaptureRange.isValid()) {
1741         CurHasPreviousCapture |= IsCaptureUsed;
1742         PrevCaptureLoc = CaptureRange.getEnd();
1743       }
1744 
1745       // Map the capture to our AST representation.
1746       LambdaCapture Capture = [&] {
1747         if (From.isThisCapture()) {
1748           // Capturing 'this' implicitly with a default of '[=]' is deprecated,
1749           // because it results in a reference capture. Don't warn prior to
1750           // C++2a; there's nothing that can be done about it before then.
1751           if (getLangOpts().CPlusPlus20 && IsImplicit &&
1752               CaptureDefault == LCD_ByCopy) {
1753             Diag(From.getLocation(), diag::warn_deprecated_this_capture);
1754             Diag(CaptureDefaultLoc, diag::note_deprecated_this_capture)
1755                 << FixItHint::CreateInsertion(
1756                        getLocForEndOfToken(CaptureDefaultLoc), ", this");
1757           }
1758           return LambdaCapture(From.getLocation(), IsImplicit,
1759                                From.isCopyCapture() ? LCK_StarThis : LCK_This);
1760         } else if (From.isVLATypeCapture()) {
1761           return LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType);
1762         } else {
1763           assert(From.isVariableCapture() && "unknown kind of capture");
1764           VarDecl *Var = From.getVariable();
1765           LambdaCaptureKind Kind =
1766               From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef;
1767           return LambdaCapture(From.getLocation(), IsImplicit, Kind, Var,
1768                                From.getEllipsisLoc());
1769         }
1770       }();
1771 
1772       // Form the initializer for the capture field.
1773       ExprResult Init = BuildCaptureInit(From, ImplicitCaptureLoc);
1774 
1775       // FIXME: Skip this capture if the capture is not used, the initializer
1776       // has no side-effects, the type of the capture is trivial, and the
1777       // lambda is not externally visible.
1778 
1779       // Add a FieldDecl for the capture and form its initializer.
1780       BuildCaptureField(Class, From);
1781       Captures.push_back(Capture);
1782       CaptureInits.push_back(Init.get());
1783 
1784       if (LangOpts.CUDA)
1785         CUDACheckLambdaCapture(CallOperator, From);
1786     }
1787 
1788     Class->setCaptures(Captures);
1789 
1790     // C++11 [expr.prim.lambda]p6:
1791     //   The closure type for a lambda-expression with no lambda-capture
1792     //   has a public non-virtual non-explicit const conversion function
1793     //   to pointer to function having the same parameter and return
1794     //   types as the closure type's function call operator.
1795     if (Captures.empty() && CaptureDefault == LCD_None)
1796       addFunctionPointerConversion(*this, IntroducerRange, Class,
1797                                    CallOperator);
1798 
1799     // Objective-C++:
1800     //   The closure type for a lambda-expression has a public non-virtual
1801     //   non-explicit const conversion function to a block pointer having the
1802     //   same parameter and return types as the closure type's function call
1803     //   operator.
1804     // FIXME: Fix generic lambda to block conversions.
1805     if (getLangOpts().Blocks && getLangOpts().ObjC && !IsGenericLambda)
1806       addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator);
1807 
1808     // Finalize the lambda class.
1809     SmallVector<Decl*, 4> Fields(Class->fields());
1810     ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1811                 SourceLocation(), ParsedAttributesView());
1812     CheckCompletedCXXClass(nullptr, Class);
1813   }
1814 
1815   Cleanup.mergeFrom(LambdaCleanup);
1816 
1817   LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange,
1818                                           CaptureDefault, CaptureDefaultLoc,
1819                                           ExplicitParams, ExplicitResultType,
1820                                           CaptureInits, EndLoc,
1821                                           ContainsUnexpandedParameterPack);
1822   // If the lambda expression's call operator is not explicitly marked constexpr
1823   // and we are not in a dependent context, analyze the call operator to infer
1824   // its constexpr-ness, suppressing diagnostics while doing so.
1825   if (getLangOpts().CPlusPlus17 && !CallOperator->isInvalidDecl() &&
1826       !CallOperator->isConstexpr() &&
1827       !isa<CoroutineBodyStmt>(CallOperator->getBody()) &&
1828       !Class->getDeclContext()->isDependentContext()) {
1829     CallOperator->setConstexprKind(
1830         CheckConstexprFunctionDefinition(CallOperator,
1831                                          CheckConstexprKind::CheckValid)
1832             ? CSK_constexpr
1833             : CSK_unspecified);
1834   }
1835 
1836   // Emit delayed shadowing warnings now that the full capture list is known.
1837   DiagnoseShadowingLambdaDecls(LSI);
1838 
1839   if (!CurContext->isDependentContext()) {
1840     switch (ExprEvalContexts.back().Context) {
1841     // C++11 [expr.prim.lambda]p2:
1842     //   A lambda-expression shall not appear in an unevaluated operand
1843     //   (Clause 5).
1844     case ExpressionEvaluationContext::Unevaluated:
1845     case ExpressionEvaluationContext::UnevaluatedList:
1846     case ExpressionEvaluationContext::UnevaluatedAbstract:
1847     // C++1y [expr.const]p2:
1848     //   A conditional-expression e is a core constant expression unless the
1849     //   evaluation of e, following the rules of the abstract machine, would
1850     //   evaluate [...] a lambda-expression.
1851     //
1852     // This is technically incorrect, there are some constant evaluated contexts
1853     // where this should be allowed.  We should probably fix this when DR1607 is
1854     // ratified, it lays out the exact set of conditions where we shouldn't
1855     // allow a lambda-expression.
1856     case ExpressionEvaluationContext::ConstantEvaluated:
1857       // We don't actually diagnose this case immediately, because we
1858       // could be within a context where we might find out later that
1859       // the expression is potentially evaluated (e.g., for typeid).
1860       ExprEvalContexts.back().Lambdas.push_back(Lambda);
1861       break;
1862 
1863     case ExpressionEvaluationContext::DiscardedStatement:
1864     case ExpressionEvaluationContext::PotentiallyEvaluated:
1865     case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
1866       break;
1867     }
1868   }
1869 
1870   return MaybeBindToTemporary(Lambda);
1871 }
1872 
1873 ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
1874                                                SourceLocation ConvLocation,
1875                                                CXXConversionDecl *Conv,
1876                                                Expr *Src) {
1877   // Make sure that the lambda call operator is marked used.
1878   CXXRecordDecl *Lambda = Conv->getParent();
1879   CXXMethodDecl *CallOperator
1880     = cast<CXXMethodDecl>(
1881         Lambda->lookup(
1882           Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
1883   CallOperator->setReferenced();
1884   CallOperator->markUsed(Context);
1885 
1886   ExprResult Init = PerformCopyInitialization(
1887       InitializedEntity::InitializeLambdaToBlock(ConvLocation, Src->getType(),
1888                                                  /*NRVO=*/false),
1889       CurrentLocation, Src);
1890   if (!Init.isInvalid())
1891     Init = ActOnFinishFullExpr(Init.get(), /*DiscardedValue*/ false);
1892 
1893   if (Init.isInvalid())
1894     return ExprError();
1895 
1896   // Create the new block to be returned.
1897   BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation);
1898 
1899   // Set the type information.
1900   Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
1901   Block->setIsVariadic(CallOperator->isVariadic());
1902   Block->setBlockMissingReturnType(false);
1903 
1904   // Add parameters.
1905   SmallVector<ParmVarDecl *, 4> BlockParams;
1906   for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1907     ParmVarDecl *From = CallOperator->getParamDecl(I);
1908     BlockParams.push_back(ParmVarDecl::Create(
1909         Context, Block, From->getBeginLoc(), From->getLocation(),
1910         From->getIdentifier(), From->getType(), From->getTypeSourceInfo(),
1911         From->getStorageClass(),
1912         /*DefArg=*/nullptr));
1913   }
1914   Block->setParams(BlockParams);
1915 
1916   Block->setIsConversionFromLambda(true);
1917 
1918   // Add capture. The capture uses a fake variable, which doesn't correspond
1919   // to any actual memory location. However, the initializer copy-initializes
1920   // the lambda object.
1921   TypeSourceInfo *CapVarTSI =
1922       Context.getTrivialTypeSourceInfo(Src->getType());
1923   VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation,
1924                                     ConvLocation, nullptr,
1925                                     Src->getType(), CapVarTSI,
1926                                     SC_None);
1927   BlockDecl::Capture Capture(/*variable=*/CapVar, /*byRef=*/false,
1928                              /*nested=*/false, /*copy=*/Init.get());
1929   Block->setCaptures(Context, Capture, /*CapturesCXXThis=*/false);
1930 
1931   // Add a fake function body to the block. IR generation is responsible
1932   // for filling in the actual body, which cannot be expressed as an AST.
1933   Block->setBody(new (Context) CompoundStmt(ConvLocation));
1934 
1935   // Create the block literal expression.
1936   Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
1937   ExprCleanupObjects.push_back(Block);
1938   Cleanup.setExprNeedsCleanups(true);
1939 
1940   return BuildBlock;
1941 }
1942