1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for C++ lambda expressions. 10 // 11 //===----------------------------------------------------------------------===// 12 #include "clang/Sema/DeclSpec.h" 13 #include "TypeLocBuilder.h" 14 #include "clang/AST/ASTLambda.h" 15 #include "clang/AST/ExprCXX.h" 16 #include "clang/Basic/TargetInfo.h" 17 #include "clang/Sema/Initialization.h" 18 #include "clang/Sema/Lookup.h" 19 #include "clang/Sema/Scope.h" 20 #include "clang/Sema/ScopeInfo.h" 21 #include "clang/Sema/SemaInternal.h" 22 #include "clang/Sema/SemaLambda.h" 23 #include "llvm/ADT/STLExtras.h" 24 using namespace clang; 25 using namespace sema; 26 27 /// Examines the FunctionScopeInfo stack to determine the nearest 28 /// enclosing lambda (to the current lambda) that is 'capture-ready' for 29 /// the variable referenced in the current lambda (i.e. \p VarToCapture). 30 /// If successful, returns the index into Sema's FunctionScopeInfo stack 31 /// of the capture-ready lambda's LambdaScopeInfo. 32 /// 33 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current 34 /// lambda - is on top) to determine the index of the nearest enclosing/outer 35 /// lambda that is ready to capture the \p VarToCapture being referenced in 36 /// the current lambda. 37 /// As we climb down the stack, we want the index of the first such lambda - 38 /// that is the lambda with the highest index that is 'capture-ready'. 39 /// 40 /// A lambda 'L' is capture-ready for 'V' (var or this) if: 41 /// - its enclosing context is non-dependent 42 /// - and if the chain of lambdas between L and the lambda in which 43 /// V is potentially used (i.e. the lambda at the top of the scope info 44 /// stack), can all capture or have already captured V. 45 /// If \p VarToCapture is 'null' then we are trying to capture 'this'. 46 /// 47 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked 48 /// for whether it is 'capture-capable' (see 49 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly 50 /// capture. 51 /// 52 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a 53 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda 54 /// is at the top of the stack and has the highest index. 55 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'. 56 /// 57 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains 58 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda 59 /// which is capture-ready. If the return value evaluates to 'false' then 60 /// no lambda is capture-ready for \p VarToCapture. 61 62 static inline Optional<unsigned> 63 getStackIndexOfNearestEnclosingCaptureReadyLambda( 64 ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes, 65 VarDecl *VarToCapture) { 66 // Label failure to capture. 67 const Optional<unsigned> NoLambdaIsCaptureReady; 68 69 // Ignore all inner captured regions. 70 unsigned CurScopeIndex = FunctionScopes.size() - 1; 71 while (CurScopeIndex > 0 && isa<clang::sema::CapturedRegionScopeInfo>( 72 FunctionScopes[CurScopeIndex])) 73 --CurScopeIndex; 74 assert( 75 isa<clang::sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]) && 76 "The function on the top of sema's function-info stack must be a lambda"); 77 78 // If VarToCapture is null, we are attempting to capture 'this'. 79 const bool IsCapturingThis = !VarToCapture; 80 const bool IsCapturingVariable = !IsCapturingThis; 81 82 // Start with the current lambda at the top of the stack (highest index). 83 DeclContext *EnclosingDC = 84 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator; 85 86 do { 87 const clang::sema::LambdaScopeInfo *LSI = 88 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]); 89 // IF we have climbed down to an intervening enclosing lambda that contains 90 // the variable declaration - it obviously can/must not capture the 91 // variable. 92 // Since its enclosing DC is dependent, all the lambdas between it and the 93 // innermost nested lambda are dependent (otherwise we wouldn't have 94 // arrived here) - so we don't yet have a lambda that can capture the 95 // variable. 96 if (IsCapturingVariable && 97 VarToCapture->getDeclContext()->Equals(EnclosingDC)) 98 return NoLambdaIsCaptureReady; 99 100 // For an enclosing lambda to be capture ready for an entity, all 101 // intervening lambda's have to be able to capture that entity. If even 102 // one of the intervening lambda's is not capable of capturing the entity 103 // then no enclosing lambda can ever capture that entity. 104 // For e.g. 105 // const int x = 10; 106 // [=](auto a) { #1 107 // [](auto b) { #2 <-- an intervening lambda that can never capture 'x' 108 // [=](auto c) { #3 109 // f(x, c); <-- can not lead to x's speculative capture by #1 or #2 110 // }; }; }; 111 // If they do not have a default implicit capture, check to see 112 // if the entity has already been explicitly captured. 113 // If even a single dependent enclosing lambda lacks the capability 114 // to ever capture this variable, there is no further enclosing 115 // non-dependent lambda that can capture this variable. 116 if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) { 117 if (IsCapturingVariable && !LSI->isCaptured(VarToCapture)) 118 return NoLambdaIsCaptureReady; 119 if (IsCapturingThis && !LSI->isCXXThisCaptured()) 120 return NoLambdaIsCaptureReady; 121 } 122 EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC); 123 124 assert(CurScopeIndex); 125 --CurScopeIndex; 126 } while (!EnclosingDC->isTranslationUnit() && 127 EnclosingDC->isDependentContext() && 128 isLambdaCallOperator(EnclosingDC)); 129 130 assert(CurScopeIndex < (FunctionScopes.size() - 1)); 131 // If the enclosingDC is not dependent, then the immediately nested lambda 132 // (one index above) is capture-ready. 133 if (!EnclosingDC->isDependentContext()) 134 return CurScopeIndex + 1; 135 return NoLambdaIsCaptureReady; 136 } 137 138 /// Examines the FunctionScopeInfo stack to determine the nearest 139 /// enclosing lambda (to the current lambda) that is 'capture-capable' for 140 /// the variable referenced in the current lambda (i.e. \p VarToCapture). 141 /// If successful, returns the index into Sema's FunctionScopeInfo stack 142 /// of the capture-capable lambda's LambdaScopeInfo. 143 /// 144 /// Given the current stack of lambdas being processed by Sema and 145 /// the variable of interest, to identify the nearest enclosing lambda (to the 146 /// current lambda at the top of the stack) that can truly capture 147 /// a variable, it has to have the following two properties: 148 /// a) 'capture-ready' - be the innermost lambda that is 'capture-ready': 149 /// - climb down the stack (i.e. starting from the innermost and examining 150 /// each outer lambda step by step) checking if each enclosing 151 /// lambda can either implicitly or explicitly capture the variable. 152 /// Record the first such lambda that is enclosed in a non-dependent 153 /// context. If no such lambda currently exists return failure. 154 /// b) 'capture-capable' - make sure the 'capture-ready' lambda can truly 155 /// capture the variable by checking all its enclosing lambdas: 156 /// - check if all outer lambdas enclosing the 'capture-ready' lambda 157 /// identified above in 'a' can also capture the variable (this is done 158 /// via tryCaptureVariable for variables and CheckCXXThisCapture for 159 /// 'this' by passing in the index of the Lambda identified in step 'a') 160 /// 161 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a 162 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda 163 /// is at the top of the stack. 164 /// 165 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'. 166 /// 167 /// 168 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains 169 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda 170 /// which is capture-capable. If the return value evaluates to 'false' then 171 /// no lambda is capture-capable for \p VarToCapture. 172 173 Optional<unsigned> clang::getStackIndexOfNearestEnclosingCaptureCapableLambda( 174 ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes, 175 VarDecl *VarToCapture, Sema &S) { 176 177 const Optional<unsigned> NoLambdaIsCaptureCapable; 178 179 const Optional<unsigned> OptionalStackIndex = 180 getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes, 181 VarToCapture); 182 if (!OptionalStackIndex) 183 return NoLambdaIsCaptureCapable; 184 185 const unsigned IndexOfCaptureReadyLambda = OptionalStackIndex.getValue(); 186 assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) || 187 S.getCurGenericLambda()) && 188 "The capture ready lambda for a potential capture can only be the " 189 "current lambda if it is a generic lambda"); 190 191 const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI = 192 cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]); 193 194 // If VarToCapture is null, we are attempting to capture 'this' 195 const bool IsCapturingThis = !VarToCapture; 196 const bool IsCapturingVariable = !IsCapturingThis; 197 198 if (IsCapturingVariable) { 199 // Check if the capture-ready lambda can truly capture the variable, by 200 // checking whether all enclosing lambdas of the capture-ready lambda allow 201 // the capture - i.e. make sure it is capture-capable. 202 QualType CaptureType, DeclRefType; 203 const bool CanCaptureVariable = 204 !S.tryCaptureVariable(VarToCapture, 205 /*ExprVarIsUsedInLoc*/ SourceLocation(), 206 clang::Sema::TryCapture_Implicit, 207 /*EllipsisLoc*/ SourceLocation(), 208 /*BuildAndDiagnose*/ false, CaptureType, 209 DeclRefType, &IndexOfCaptureReadyLambda); 210 if (!CanCaptureVariable) 211 return NoLambdaIsCaptureCapable; 212 } else { 213 // Check if the capture-ready lambda can truly capture 'this' by checking 214 // whether all enclosing lambdas of the capture-ready lambda can capture 215 // 'this'. 216 const bool CanCaptureThis = 217 !S.CheckCXXThisCapture( 218 CaptureReadyLambdaLSI->PotentialThisCaptureLocation, 219 /*Explicit*/ false, /*BuildAndDiagnose*/ false, 220 &IndexOfCaptureReadyLambda); 221 if (!CanCaptureThis) 222 return NoLambdaIsCaptureCapable; 223 } 224 return IndexOfCaptureReadyLambda; 225 } 226 227 static inline TemplateParameterList * 228 getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) { 229 if (!LSI->GLTemplateParameterList && !LSI->TemplateParams.empty()) { 230 LSI->GLTemplateParameterList = TemplateParameterList::Create( 231 SemaRef.Context, 232 /*Template kw loc*/ SourceLocation(), 233 /*L angle loc*/ LSI->ExplicitTemplateParamsRange.getBegin(), 234 LSI->TemplateParams, 235 /*R angle loc*/LSI->ExplicitTemplateParamsRange.getEnd(), 236 nullptr); 237 } 238 return LSI->GLTemplateParameterList; 239 } 240 241 CXXRecordDecl *Sema::createLambdaClosureType(SourceRange IntroducerRange, 242 TypeSourceInfo *Info, 243 bool KnownDependent, 244 LambdaCaptureDefault CaptureDefault) { 245 DeclContext *DC = CurContext; 246 while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext())) 247 DC = DC->getParent(); 248 bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(), 249 *this); 250 // Start constructing the lambda class. 251 CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(Context, DC, Info, 252 IntroducerRange.getBegin(), 253 KnownDependent, 254 IsGenericLambda, 255 CaptureDefault); 256 DC->addDecl(Class); 257 258 return Class; 259 } 260 261 /// Determine whether the given context is or is enclosed in an inline 262 /// function. 263 static bool isInInlineFunction(const DeclContext *DC) { 264 while (!DC->isFileContext()) { 265 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC)) 266 if (FD->isInlined()) 267 return true; 268 269 DC = DC->getLexicalParent(); 270 } 271 272 return false; 273 } 274 275 std::tuple<MangleNumberingContext *, Decl *> 276 Sema::getCurrentMangleNumberContext(const DeclContext *DC) { 277 // Compute the context for allocating mangling numbers in the current 278 // expression, if the ABI requires them. 279 Decl *ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl; 280 281 enum ContextKind { 282 Normal, 283 DefaultArgument, 284 DataMember, 285 StaticDataMember, 286 InlineVariable, 287 VariableTemplate 288 } Kind = Normal; 289 290 // Default arguments of member function parameters that appear in a class 291 // definition, as well as the initializers of data members, receive special 292 // treatment. Identify them. 293 if (ManglingContextDecl) { 294 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) { 295 if (const DeclContext *LexicalDC 296 = Param->getDeclContext()->getLexicalParent()) 297 if (LexicalDC->isRecord()) 298 Kind = DefaultArgument; 299 } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) { 300 if (Var->getDeclContext()->isRecord()) 301 Kind = StaticDataMember; 302 else if (Var->getMostRecentDecl()->isInline()) 303 Kind = InlineVariable; 304 else if (Var->getDescribedVarTemplate()) 305 Kind = VariableTemplate; 306 else if (auto *VTS = dyn_cast<VarTemplateSpecializationDecl>(Var)) { 307 if (!VTS->isExplicitSpecialization()) 308 Kind = VariableTemplate; 309 } 310 } else if (isa<FieldDecl>(ManglingContextDecl)) { 311 Kind = DataMember; 312 } 313 } 314 315 // Itanium ABI [5.1.7]: 316 // In the following contexts [...] the one-definition rule requires closure 317 // types in different translation units to "correspond": 318 bool IsInNonspecializedTemplate = 319 inTemplateInstantiation() || CurContext->isDependentContext(); 320 switch (Kind) { 321 case Normal: { 322 // -- the bodies of non-exported nonspecialized template functions 323 // -- the bodies of inline functions 324 if ((IsInNonspecializedTemplate && 325 !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) || 326 isInInlineFunction(CurContext)) { 327 while (auto *CD = dyn_cast<CapturedDecl>(DC)) 328 DC = CD->getParent(); 329 return std::make_tuple(&Context.getManglingNumberContext(DC), nullptr); 330 } 331 332 return std::make_tuple(nullptr, nullptr); 333 } 334 335 case StaticDataMember: 336 // -- the initializers of nonspecialized static members of template classes 337 if (!IsInNonspecializedTemplate) 338 return std::make_tuple(nullptr, ManglingContextDecl); 339 // Fall through to get the current context. 340 LLVM_FALLTHROUGH; 341 342 case DataMember: 343 // -- the in-class initializers of class members 344 case DefaultArgument: 345 // -- default arguments appearing in class definitions 346 case InlineVariable: 347 // -- the initializers of inline variables 348 case VariableTemplate: 349 // -- the initializers of templated variables 350 return std::make_tuple( 351 &Context.getManglingNumberContext(ASTContext::NeedExtraManglingDecl, 352 ManglingContextDecl), 353 ManglingContextDecl); 354 } 355 356 llvm_unreachable("unexpected context"); 357 } 358 359 CXXMethodDecl *Sema::startLambdaDefinition(CXXRecordDecl *Class, 360 SourceRange IntroducerRange, 361 TypeSourceInfo *MethodTypeInfo, 362 SourceLocation EndLoc, 363 ArrayRef<ParmVarDecl *> Params, 364 ConstexprSpecKind ConstexprKind, 365 Expr *TrailingRequiresClause) { 366 QualType MethodType = MethodTypeInfo->getType(); 367 TemplateParameterList *TemplateParams = 368 getGenericLambdaTemplateParameterList(getCurLambda(), *this); 369 // If a lambda appears in a dependent context or is a generic lambda (has 370 // template parameters) and has an 'auto' return type, deduce it to a 371 // dependent type. 372 if (Class->isDependentContext() || TemplateParams) { 373 const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>(); 374 QualType Result = FPT->getReturnType(); 375 if (Result->isUndeducedType()) { 376 Result = SubstAutoType(Result, Context.DependentTy); 377 MethodType = Context.getFunctionType(Result, FPT->getParamTypes(), 378 FPT->getExtProtoInfo()); 379 } 380 } 381 382 // C++11 [expr.prim.lambda]p5: 383 // The closure type for a lambda-expression has a public inline function 384 // call operator (13.5.4) whose parameters and return type are described by 385 // the lambda-expression's parameter-declaration-clause and 386 // trailing-return-type respectively. 387 DeclarationName MethodName 388 = Context.DeclarationNames.getCXXOperatorName(OO_Call); 389 DeclarationNameLoc MethodNameLoc; 390 MethodNameLoc.CXXOperatorName.BeginOpNameLoc 391 = IntroducerRange.getBegin().getRawEncoding(); 392 MethodNameLoc.CXXOperatorName.EndOpNameLoc 393 = IntroducerRange.getEnd().getRawEncoding(); 394 CXXMethodDecl *Method = CXXMethodDecl::Create( 395 Context, Class, EndLoc, 396 DeclarationNameInfo(MethodName, IntroducerRange.getBegin(), 397 MethodNameLoc), 398 MethodType, MethodTypeInfo, SC_None, 399 /*isInline=*/true, ConstexprKind, EndLoc, TrailingRequiresClause); 400 Method->setAccess(AS_public); 401 if (!TemplateParams) 402 Class->addDecl(Method); 403 404 // Temporarily set the lexical declaration context to the current 405 // context, so that the Scope stack matches the lexical nesting. 406 Method->setLexicalDeclContext(CurContext); 407 // Create a function template if we have a template parameter list 408 FunctionTemplateDecl *const TemplateMethod = TemplateParams ? 409 FunctionTemplateDecl::Create(Context, Class, 410 Method->getLocation(), MethodName, 411 TemplateParams, 412 Method) : nullptr; 413 if (TemplateMethod) { 414 TemplateMethod->setAccess(AS_public); 415 Method->setDescribedFunctionTemplate(TemplateMethod); 416 Class->addDecl(TemplateMethod); 417 TemplateMethod->setLexicalDeclContext(CurContext); 418 } 419 420 // Add parameters. 421 if (!Params.empty()) { 422 Method->setParams(Params); 423 CheckParmsForFunctionDef(Params, 424 /*CheckParameterNames=*/false); 425 426 for (auto P : Method->parameters()) 427 P->setOwningFunction(Method); 428 } 429 430 return Method; 431 } 432 433 void Sema::handleLambdaNumbering( 434 CXXRecordDecl *Class, CXXMethodDecl *Method, 435 Optional<std::tuple<unsigned, bool, Decl *>> Mangling) { 436 if (Mangling) { 437 unsigned ManglingNumber; 438 bool HasKnownInternalLinkage; 439 Decl *ManglingContextDecl; 440 std::tie(ManglingNumber, HasKnownInternalLinkage, ManglingContextDecl) = 441 Mangling.getValue(); 442 Class->setLambdaMangling(ManglingNumber, ManglingContextDecl, 443 HasKnownInternalLinkage); 444 return; 445 } 446 447 auto getMangleNumberingContext = 448 [this](CXXRecordDecl *Class, 449 Decl *ManglingContextDecl) -> MangleNumberingContext * { 450 // Get mangle numbering context if there's any extra decl context. 451 if (ManglingContextDecl) 452 return &Context.getManglingNumberContext( 453 ASTContext::NeedExtraManglingDecl, ManglingContextDecl); 454 // Otherwise, from that lambda's decl context. 455 auto DC = Class->getDeclContext(); 456 while (auto *CD = dyn_cast<CapturedDecl>(DC)) 457 DC = CD->getParent(); 458 return &Context.getManglingNumberContext(DC); 459 }; 460 461 MangleNumberingContext *MCtx; 462 Decl *ManglingContextDecl; 463 std::tie(MCtx, ManglingContextDecl) = 464 getCurrentMangleNumberContext(Class->getDeclContext()); 465 bool HasKnownInternalLinkage = false; 466 if (!MCtx && getLangOpts().CUDA) { 467 // Force lambda numbering in CUDA/HIP as we need to name lambdas following 468 // ODR. Both device- and host-compilation need to have a consistent naming 469 // on kernel functions. As lambdas are potential part of these `__global__` 470 // function names, they needs numbering following ODR. 471 MCtx = getMangleNumberingContext(Class, ManglingContextDecl); 472 assert(MCtx && "Retrieving mangle numbering context failed!"); 473 HasKnownInternalLinkage = true; 474 } 475 if (MCtx) { 476 unsigned ManglingNumber = MCtx->getManglingNumber(Method); 477 Class->setLambdaMangling(ManglingNumber, ManglingContextDecl, 478 HasKnownInternalLinkage); 479 } 480 } 481 482 void Sema::buildLambdaScope(LambdaScopeInfo *LSI, 483 CXXMethodDecl *CallOperator, 484 SourceRange IntroducerRange, 485 LambdaCaptureDefault CaptureDefault, 486 SourceLocation CaptureDefaultLoc, 487 bool ExplicitParams, 488 bool ExplicitResultType, 489 bool Mutable) { 490 LSI->CallOperator = CallOperator; 491 CXXRecordDecl *LambdaClass = CallOperator->getParent(); 492 LSI->Lambda = LambdaClass; 493 if (CaptureDefault == LCD_ByCopy) 494 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval; 495 else if (CaptureDefault == LCD_ByRef) 496 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref; 497 LSI->CaptureDefaultLoc = CaptureDefaultLoc; 498 LSI->IntroducerRange = IntroducerRange; 499 LSI->ExplicitParams = ExplicitParams; 500 LSI->Mutable = Mutable; 501 502 if (ExplicitResultType) { 503 LSI->ReturnType = CallOperator->getReturnType(); 504 505 if (!LSI->ReturnType->isDependentType() && 506 !LSI->ReturnType->isVoidType()) { 507 if (RequireCompleteType(CallOperator->getBeginLoc(), LSI->ReturnType, 508 diag::err_lambda_incomplete_result)) { 509 // Do nothing. 510 } 511 } 512 } else { 513 LSI->HasImplicitReturnType = true; 514 } 515 } 516 517 void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) { 518 LSI->finishedExplicitCaptures(); 519 } 520 521 void Sema::ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc, 522 ArrayRef<NamedDecl *> TParams, 523 SourceLocation RAngleLoc) { 524 LambdaScopeInfo *LSI = getCurLambda(); 525 assert(LSI && "Expected a lambda scope"); 526 assert(LSI->NumExplicitTemplateParams == 0 && 527 "Already acted on explicit template parameters"); 528 assert(LSI->TemplateParams.empty() && 529 "Explicit template parameters should come " 530 "before invented (auto) ones"); 531 assert(!TParams.empty() && 532 "No template parameters to act on"); 533 LSI->TemplateParams.append(TParams.begin(), TParams.end()); 534 LSI->NumExplicitTemplateParams = TParams.size(); 535 LSI->ExplicitTemplateParamsRange = {LAngleLoc, RAngleLoc}; 536 } 537 538 void Sema::addLambdaParameters( 539 ArrayRef<LambdaIntroducer::LambdaCapture> Captures, 540 CXXMethodDecl *CallOperator, Scope *CurScope) { 541 // Introduce our parameters into the function scope 542 for (unsigned p = 0, NumParams = CallOperator->getNumParams(); 543 p < NumParams; ++p) { 544 ParmVarDecl *Param = CallOperator->getParamDecl(p); 545 546 // If this has an identifier, add it to the scope stack. 547 if (CurScope && Param->getIdentifier()) { 548 bool Error = false; 549 // Resolution of CWG 2211 in C++17 renders shadowing ill-formed, but we 550 // retroactively apply it. 551 for (const auto &Capture : Captures) { 552 if (Capture.Id == Param->getIdentifier()) { 553 Error = true; 554 Diag(Param->getLocation(), diag::err_parameter_shadow_capture); 555 Diag(Capture.Loc, diag::note_var_explicitly_captured_here) 556 << Capture.Id << true; 557 } 558 } 559 if (!Error) 560 CheckShadow(CurScope, Param); 561 562 PushOnScopeChains(Param, CurScope); 563 } 564 } 565 } 566 567 /// If this expression is an enumerator-like expression of some type 568 /// T, return the type T; otherwise, return null. 569 /// 570 /// Pointer comparisons on the result here should always work because 571 /// it's derived from either the parent of an EnumConstantDecl 572 /// (i.e. the definition) or the declaration returned by 573 /// EnumType::getDecl() (i.e. the definition). 574 static EnumDecl *findEnumForBlockReturn(Expr *E) { 575 // An expression is an enumerator-like expression of type T if, 576 // ignoring parens and parens-like expressions: 577 E = E->IgnoreParens(); 578 579 // - it is an enumerator whose enum type is T or 580 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 581 if (EnumConstantDecl *D 582 = dyn_cast<EnumConstantDecl>(DRE->getDecl())) { 583 return cast<EnumDecl>(D->getDeclContext()); 584 } 585 return nullptr; 586 } 587 588 // - it is a comma expression whose RHS is an enumerator-like 589 // expression of type T or 590 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 591 if (BO->getOpcode() == BO_Comma) 592 return findEnumForBlockReturn(BO->getRHS()); 593 return nullptr; 594 } 595 596 // - it is a statement-expression whose value expression is an 597 // enumerator-like expression of type T or 598 if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) { 599 if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back())) 600 return findEnumForBlockReturn(last); 601 return nullptr; 602 } 603 604 // - it is a ternary conditional operator (not the GNU ?: 605 // extension) whose second and third operands are 606 // enumerator-like expressions of type T or 607 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 608 if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr())) 609 if (ED == findEnumForBlockReturn(CO->getFalseExpr())) 610 return ED; 611 return nullptr; 612 } 613 614 // (implicitly:) 615 // - it is an implicit integral conversion applied to an 616 // enumerator-like expression of type T or 617 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 618 // We can sometimes see integral conversions in valid 619 // enumerator-like expressions. 620 if (ICE->getCastKind() == CK_IntegralCast) 621 return findEnumForBlockReturn(ICE->getSubExpr()); 622 623 // Otherwise, just rely on the type. 624 } 625 626 // - it is an expression of that formal enum type. 627 if (const EnumType *ET = E->getType()->getAs<EnumType>()) { 628 return ET->getDecl(); 629 } 630 631 // Otherwise, nope. 632 return nullptr; 633 } 634 635 /// Attempt to find a type T for which the returned expression of the 636 /// given statement is an enumerator-like expression of that type. 637 static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) { 638 if (Expr *retValue = ret->getRetValue()) 639 return findEnumForBlockReturn(retValue); 640 return nullptr; 641 } 642 643 /// Attempt to find a common type T for which all of the returned 644 /// expressions in a block are enumerator-like expressions of that 645 /// type. 646 static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) { 647 ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end(); 648 649 // Try to find one for the first return. 650 EnumDecl *ED = findEnumForBlockReturn(*i); 651 if (!ED) return nullptr; 652 653 // Check that the rest of the returns have the same enum. 654 for (++i; i != e; ++i) { 655 if (findEnumForBlockReturn(*i) != ED) 656 return nullptr; 657 } 658 659 // Never infer an anonymous enum type. 660 if (!ED->hasNameForLinkage()) return nullptr; 661 662 return ED; 663 } 664 665 /// Adjust the given return statements so that they formally return 666 /// the given type. It should require, at most, an IntegralCast. 667 static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns, 668 QualType returnType) { 669 for (ArrayRef<ReturnStmt*>::iterator 670 i = returns.begin(), e = returns.end(); i != e; ++i) { 671 ReturnStmt *ret = *i; 672 Expr *retValue = ret->getRetValue(); 673 if (S.Context.hasSameType(retValue->getType(), returnType)) 674 continue; 675 676 // Right now we only support integral fixup casts. 677 assert(returnType->isIntegralOrUnscopedEnumerationType()); 678 assert(retValue->getType()->isIntegralOrUnscopedEnumerationType()); 679 680 ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue); 681 682 Expr *E = (cleanups ? cleanups->getSubExpr() : retValue); 683 E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast, 684 E, /*base path*/ nullptr, VK_RValue); 685 if (cleanups) { 686 cleanups->setSubExpr(E); 687 } else { 688 ret->setRetValue(E); 689 } 690 } 691 } 692 693 void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) { 694 assert(CSI.HasImplicitReturnType); 695 // If it was ever a placeholder, it had to been deduced to DependentTy. 696 assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType()); 697 assert((!isa<LambdaScopeInfo>(CSI) || !getLangOpts().CPlusPlus14) && 698 "lambda expressions use auto deduction in C++14 onwards"); 699 700 // C++ core issue 975: 701 // If a lambda-expression does not include a trailing-return-type, 702 // it is as if the trailing-return-type denotes the following type: 703 // - if there are no return statements in the compound-statement, 704 // or all return statements return either an expression of type 705 // void or no expression or braced-init-list, the type void; 706 // - otherwise, if all return statements return an expression 707 // and the types of the returned expressions after 708 // lvalue-to-rvalue conversion (4.1 [conv.lval]), 709 // array-to-pointer conversion (4.2 [conv.array]), and 710 // function-to-pointer conversion (4.3 [conv.func]) are the 711 // same, that common type; 712 // - otherwise, the program is ill-formed. 713 // 714 // C++ core issue 1048 additionally removes top-level cv-qualifiers 715 // from the types of returned expressions to match the C++14 auto 716 // deduction rules. 717 // 718 // In addition, in blocks in non-C++ modes, if all of the return 719 // statements are enumerator-like expressions of some type T, where 720 // T has a name for linkage, then we infer the return type of the 721 // block to be that type. 722 723 // First case: no return statements, implicit void return type. 724 ASTContext &Ctx = getASTContext(); 725 if (CSI.Returns.empty()) { 726 // It's possible there were simply no /valid/ return statements. 727 // In this case, the first one we found may have at least given us a type. 728 if (CSI.ReturnType.isNull()) 729 CSI.ReturnType = Ctx.VoidTy; 730 return; 731 } 732 733 // Second case: at least one return statement has dependent type. 734 // Delay type checking until instantiation. 735 assert(!CSI.ReturnType.isNull() && "We should have a tentative return type."); 736 if (CSI.ReturnType->isDependentType()) 737 return; 738 739 // Try to apply the enum-fuzz rule. 740 if (!getLangOpts().CPlusPlus) { 741 assert(isa<BlockScopeInfo>(CSI)); 742 const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns); 743 if (ED) { 744 CSI.ReturnType = Context.getTypeDeclType(ED); 745 adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType); 746 return; 747 } 748 } 749 750 // Third case: only one return statement. Don't bother doing extra work! 751 if (CSI.Returns.size() == 1) 752 return; 753 754 // General case: many return statements. 755 // Check that they all have compatible return types. 756 757 // We require the return types to strictly match here. 758 // Note that we've already done the required promotions as part of 759 // processing the return statement. 760 for (const ReturnStmt *RS : CSI.Returns) { 761 const Expr *RetE = RS->getRetValue(); 762 763 QualType ReturnType = 764 (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType(); 765 if (Context.getCanonicalFunctionResultType(ReturnType) == 766 Context.getCanonicalFunctionResultType(CSI.ReturnType)) { 767 // Use the return type with the strictest possible nullability annotation. 768 auto RetTyNullability = ReturnType->getNullability(Ctx); 769 auto BlockNullability = CSI.ReturnType->getNullability(Ctx); 770 if (BlockNullability && 771 (!RetTyNullability || 772 hasWeakerNullability(*RetTyNullability, *BlockNullability))) 773 CSI.ReturnType = ReturnType; 774 continue; 775 } 776 777 // FIXME: This is a poor diagnostic for ReturnStmts without expressions. 778 // TODO: It's possible that the *first* return is the divergent one. 779 Diag(RS->getBeginLoc(), 780 diag::err_typecheck_missing_return_type_incompatible) 781 << ReturnType << CSI.ReturnType << isa<LambdaScopeInfo>(CSI); 782 // Continue iterating so that we keep emitting diagnostics. 783 } 784 } 785 786 QualType Sema::buildLambdaInitCaptureInitialization( 787 SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc, 788 Optional<unsigned> NumExpansions, IdentifierInfo *Id, bool IsDirectInit, 789 Expr *&Init) { 790 // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to 791 // deduce against. 792 QualType DeductType = Context.getAutoDeductType(); 793 TypeLocBuilder TLB; 794 AutoTypeLoc TL = TLB.push<AutoTypeLoc>(DeductType); 795 TL.setNameLoc(Loc); 796 if (ByRef) { 797 DeductType = BuildReferenceType(DeductType, true, Loc, Id); 798 assert(!DeductType.isNull() && "can't build reference to auto"); 799 TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc); 800 } 801 if (EllipsisLoc.isValid()) { 802 if (Init->containsUnexpandedParameterPack()) { 803 Diag(EllipsisLoc, getLangOpts().CPlusPlus20 804 ? diag::warn_cxx17_compat_init_capture_pack 805 : diag::ext_init_capture_pack); 806 DeductType = Context.getPackExpansionType(DeductType, NumExpansions, 807 /*ExpectPackInType=*/false); 808 TLB.push<PackExpansionTypeLoc>(DeductType).setEllipsisLoc(EllipsisLoc); 809 } else { 810 // Just ignore the ellipsis for now and form a non-pack variable. We'll 811 // diagnose this later when we try to capture it. 812 } 813 } 814 TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType); 815 816 // Deduce the type of the init capture. 817 QualType DeducedType = deduceVarTypeFromInitializer( 818 /*VarDecl*/nullptr, DeclarationName(Id), DeductType, TSI, 819 SourceRange(Loc, Loc), IsDirectInit, Init); 820 if (DeducedType.isNull()) 821 return QualType(); 822 823 // Are we a non-list direct initialization? 824 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init); 825 826 // Perform initialization analysis and ensure any implicit conversions 827 // (such as lvalue-to-rvalue) are enforced. 828 InitializedEntity Entity = 829 InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc); 830 InitializationKind Kind = 831 IsDirectInit 832 ? (CXXDirectInit ? InitializationKind::CreateDirect( 833 Loc, Init->getBeginLoc(), Init->getEndLoc()) 834 : InitializationKind::CreateDirectList(Loc)) 835 : InitializationKind::CreateCopy(Loc, Init->getBeginLoc()); 836 837 MultiExprArg Args = Init; 838 if (CXXDirectInit) 839 Args = 840 MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs()); 841 QualType DclT; 842 InitializationSequence InitSeq(*this, Entity, Kind, Args); 843 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT); 844 845 if (Result.isInvalid()) 846 return QualType(); 847 848 Init = Result.getAs<Expr>(); 849 return DeducedType; 850 } 851 852 VarDecl *Sema::createLambdaInitCaptureVarDecl(SourceLocation Loc, 853 QualType InitCaptureType, 854 SourceLocation EllipsisLoc, 855 IdentifierInfo *Id, 856 unsigned InitStyle, Expr *Init) { 857 // FIXME: Retain the TypeSourceInfo from buildLambdaInitCaptureInitialization 858 // rather than reconstructing it here. 859 TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType, Loc); 860 if (auto PETL = TSI->getTypeLoc().getAs<PackExpansionTypeLoc>()) 861 PETL.setEllipsisLoc(EllipsisLoc); 862 863 // Create a dummy variable representing the init-capture. This is not actually 864 // used as a variable, and only exists as a way to name and refer to the 865 // init-capture. 866 // FIXME: Pass in separate source locations for '&' and identifier. 867 VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc, 868 Loc, Id, InitCaptureType, TSI, SC_Auto); 869 NewVD->setInitCapture(true); 870 NewVD->setReferenced(true); 871 // FIXME: Pass in a VarDecl::InitializationStyle. 872 NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle)); 873 NewVD->markUsed(Context); 874 NewVD->setInit(Init); 875 if (NewVD->isParameterPack()) 876 getCurLambda()->LocalPacks.push_back(NewVD); 877 return NewVD; 878 } 879 880 void Sema::addInitCapture(LambdaScopeInfo *LSI, VarDecl *Var) { 881 assert(Var->isInitCapture() && "init capture flag should be set"); 882 LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(), 883 /*isNested*/false, Var->getLocation(), SourceLocation(), 884 Var->getType(), /*Invalid*/false); 885 } 886 887 void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro, 888 Declarator &ParamInfo, 889 Scope *CurScope) { 890 LambdaScopeInfo *const LSI = getCurLambda(); 891 assert(LSI && "LambdaScopeInfo should be on stack!"); 892 893 // Determine if we're within a context where we know that the lambda will 894 // be dependent, because there are template parameters in scope. 895 bool KnownDependent; 896 if (LSI->NumExplicitTemplateParams > 0) { 897 auto *TemplateParamScope = CurScope->getTemplateParamParent(); 898 assert(TemplateParamScope && 899 "Lambda with explicit template param list should establish a " 900 "template param scope"); 901 assert(TemplateParamScope->getParent()); 902 KnownDependent = TemplateParamScope->getParent() 903 ->getTemplateParamParent() != nullptr; 904 } else { 905 KnownDependent = CurScope->getTemplateParamParent() != nullptr; 906 } 907 908 // Determine the signature of the call operator. 909 TypeSourceInfo *MethodTyInfo; 910 bool ExplicitParams = true; 911 bool ExplicitResultType = true; 912 bool ContainsUnexpandedParameterPack = false; 913 SourceLocation EndLoc; 914 SmallVector<ParmVarDecl *, 8> Params; 915 if (ParamInfo.getNumTypeObjects() == 0) { 916 // C++11 [expr.prim.lambda]p4: 917 // If a lambda-expression does not include a lambda-declarator, it is as 918 // if the lambda-declarator were (). 919 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention( 920 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 921 EPI.HasTrailingReturn = true; 922 EPI.TypeQuals.addConst(); 923 LangAS AS = getDefaultCXXMethodAddrSpace(); 924 if (AS != LangAS::Default) 925 EPI.TypeQuals.addAddressSpace(AS); 926 927 // C++1y [expr.prim.lambda]: 928 // The lambda return type is 'auto', which is replaced by the 929 // trailing-return type if provided and/or deduced from 'return' 930 // statements 931 // We don't do this before C++1y, because we don't support deduced return 932 // types there. 933 QualType DefaultTypeForNoTrailingReturn = 934 getLangOpts().CPlusPlus14 ? Context.getAutoDeductType() 935 : Context.DependentTy; 936 QualType MethodTy = 937 Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI); 938 MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy); 939 ExplicitParams = false; 940 ExplicitResultType = false; 941 EndLoc = Intro.Range.getEnd(); 942 } else { 943 assert(ParamInfo.isFunctionDeclarator() && 944 "lambda-declarator is a function"); 945 DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo(); 946 947 // C++11 [expr.prim.lambda]p5: 948 // This function call operator is declared const (9.3.1) if and only if 949 // the lambda-expression's parameter-declaration-clause is not followed 950 // by mutable. It is neither virtual nor declared volatile. [...] 951 if (!FTI.hasMutableQualifier()) { 952 FTI.getOrCreateMethodQualifiers().SetTypeQual(DeclSpec::TQ_const, 953 SourceLocation()); 954 } 955 956 MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope); 957 assert(MethodTyInfo && "no type from lambda-declarator"); 958 EndLoc = ParamInfo.getSourceRange().getEnd(); 959 960 ExplicitResultType = FTI.hasTrailingReturnType(); 961 962 if (FTIHasNonVoidParameters(FTI)) { 963 Params.reserve(FTI.NumParams); 964 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) 965 Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param)); 966 } 967 968 // Check for unexpanded parameter packs in the method type. 969 if (MethodTyInfo->getType()->containsUnexpandedParameterPack()) 970 DiagnoseUnexpandedParameterPack(Intro.Range.getBegin(), MethodTyInfo, 971 UPPC_DeclarationType); 972 } 973 974 CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, MethodTyInfo, 975 KnownDependent, Intro.Default); 976 CXXMethodDecl *Method = 977 startLambdaDefinition(Class, Intro.Range, MethodTyInfo, EndLoc, Params, 978 ParamInfo.getDeclSpec().getConstexprSpecifier(), 979 ParamInfo.getTrailingRequiresClause()); 980 if (ExplicitParams) 981 CheckCXXDefaultArguments(Method); 982 983 // This represents the function body for the lambda function, check if we 984 // have to apply optnone due to a pragma. 985 AddRangeBasedOptnone(Method); 986 987 // code_seg attribute on lambda apply to the method. 988 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true)) 989 Method->addAttr(A); 990 991 // Attributes on the lambda apply to the method. 992 ProcessDeclAttributes(CurScope, Method, ParamInfo); 993 994 // CUDA lambdas get implicit host and device attributes. 995 if (getLangOpts().CUDA) 996 CUDASetLambdaAttrs(Method); 997 998 // Number the lambda for linkage purposes if necessary. 999 handleLambdaNumbering(Class, Method); 1000 1001 // Introduce the function call operator as the current declaration context. 1002 PushDeclContext(CurScope, Method); 1003 1004 // Build the lambda scope. 1005 buildLambdaScope(LSI, Method, Intro.Range, Intro.Default, Intro.DefaultLoc, 1006 ExplicitParams, ExplicitResultType, !Method->isConst()); 1007 1008 // C++11 [expr.prim.lambda]p9: 1009 // A lambda-expression whose smallest enclosing scope is a block scope is a 1010 // local lambda expression; any other lambda expression shall not have a 1011 // capture-default or simple-capture in its lambda-introducer. 1012 // 1013 // For simple-captures, this is covered by the check below that any named 1014 // entity is a variable that can be captured. 1015 // 1016 // For DR1632, we also allow a capture-default in any context where we can 1017 // odr-use 'this' (in particular, in a default initializer for a non-static 1018 // data member). 1019 if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() && 1020 (getCurrentThisType().isNull() || 1021 CheckCXXThisCapture(SourceLocation(), /*Explicit*/true, 1022 /*BuildAndDiagnose*/false))) 1023 Diag(Intro.DefaultLoc, diag::err_capture_default_non_local); 1024 1025 // Distinct capture names, for diagnostics. 1026 llvm::SmallSet<IdentifierInfo*, 8> CaptureNames; 1027 1028 // Handle explicit captures. 1029 SourceLocation PrevCaptureLoc 1030 = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc; 1031 for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E; 1032 PrevCaptureLoc = C->Loc, ++C) { 1033 if (C->Kind == LCK_This || C->Kind == LCK_StarThis) { 1034 if (C->Kind == LCK_StarThis) 1035 Diag(C->Loc, !getLangOpts().CPlusPlus17 1036 ? diag::ext_star_this_lambda_capture_cxx17 1037 : diag::warn_cxx14_compat_star_this_lambda_capture); 1038 1039 // C++11 [expr.prim.lambda]p8: 1040 // An identifier or this shall not appear more than once in a 1041 // lambda-capture. 1042 if (LSI->isCXXThisCaptured()) { 1043 Diag(C->Loc, diag::err_capture_more_than_once) 1044 << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation()) 1045 << FixItHint::CreateRemoval( 1046 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1047 continue; 1048 } 1049 1050 // C++2a [expr.prim.lambda]p8: 1051 // If a lambda-capture includes a capture-default that is =, 1052 // each simple-capture of that lambda-capture shall be of the form 1053 // "&identifier", "this", or "* this". [ Note: The form [&,this] is 1054 // redundant but accepted for compatibility with ISO C++14. --end note ] 1055 if (Intro.Default == LCD_ByCopy && C->Kind != LCK_StarThis) 1056 Diag(C->Loc, !getLangOpts().CPlusPlus20 1057 ? diag::ext_equals_this_lambda_capture_cxx20 1058 : diag::warn_cxx17_compat_equals_this_lambda_capture); 1059 1060 // C++11 [expr.prim.lambda]p12: 1061 // If this is captured by a local lambda expression, its nearest 1062 // enclosing function shall be a non-static member function. 1063 QualType ThisCaptureType = getCurrentThisType(); 1064 if (ThisCaptureType.isNull()) { 1065 Diag(C->Loc, diag::err_this_capture) << true; 1066 continue; 1067 } 1068 1069 CheckCXXThisCapture(C->Loc, /*Explicit=*/true, /*BuildAndDiagnose*/ true, 1070 /*FunctionScopeIndexToStopAtPtr*/ nullptr, 1071 C->Kind == LCK_StarThis); 1072 if (!LSI->Captures.empty()) 1073 LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange; 1074 continue; 1075 } 1076 1077 assert(C->Id && "missing identifier for capture"); 1078 1079 if (C->Init.isInvalid()) 1080 continue; 1081 1082 VarDecl *Var = nullptr; 1083 if (C->Init.isUsable()) { 1084 Diag(C->Loc, getLangOpts().CPlusPlus14 1085 ? diag::warn_cxx11_compat_init_capture 1086 : diag::ext_init_capture); 1087 1088 // If the initializer expression is usable, but the InitCaptureType 1089 // is not, then an error has occurred - so ignore the capture for now. 1090 // for e.g., [n{0}] { }; <-- if no <initializer_list> is included. 1091 // FIXME: we should create the init capture variable and mark it invalid 1092 // in this case. 1093 if (C->InitCaptureType.get().isNull()) 1094 continue; 1095 1096 if (C->Init.get()->containsUnexpandedParameterPack() && 1097 !C->InitCaptureType.get()->getAs<PackExpansionType>()) 1098 DiagnoseUnexpandedParameterPack(C->Init.get(), UPPC_Initializer); 1099 1100 unsigned InitStyle; 1101 switch (C->InitKind) { 1102 case LambdaCaptureInitKind::NoInit: 1103 llvm_unreachable("not an init-capture?"); 1104 case LambdaCaptureInitKind::CopyInit: 1105 InitStyle = VarDecl::CInit; 1106 break; 1107 case LambdaCaptureInitKind::DirectInit: 1108 InitStyle = VarDecl::CallInit; 1109 break; 1110 case LambdaCaptureInitKind::ListInit: 1111 InitStyle = VarDecl::ListInit; 1112 break; 1113 } 1114 Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(), 1115 C->EllipsisLoc, C->Id, InitStyle, 1116 C->Init.get()); 1117 // C++1y [expr.prim.lambda]p11: 1118 // An init-capture behaves as if it declares and explicitly 1119 // captures a variable [...] whose declarative region is the 1120 // lambda-expression's compound-statement 1121 if (Var) 1122 PushOnScopeChains(Var, CurScope, false); 1123 } else { 1124 assert(C->InitKind == LambdaCaptureInitKind::NoInit && 1125 "init capture has valid but null init?"); 1126 1127 // C++11 [expr.prim.lambda]p8: 1128 // If a lambda-capture includes a capture-default that is &, the 1129 // identifiers in the lambda-capture shall not be preceded by &. 1130 // If a lambda-capture includes a capture-default that is =, [...] 1131 // each identifier it contains shall be preceded by &. 1132 if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) { 1133 Diag(C->Loc, diag::err_reference_capture_with_reference_default) 1134 << FixItHint::CreateRemoval( 1135 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1136 continue; 1137 } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) { 1138 Diag(C->Loc, diag::err_copy_capture_with_copy_default) 1139 << FixItHint::CreateRemoval( 1140 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1141 continue; 1142 } 1143 1144 // C++11 [expr.prim.lambda]p10: 1145 // The identifiers in a capture-list are looked up using the usual 1146 // rules for unqualified name lookup (3.4.1) 1147 DeclarationNameInfo Name(C->Id, C->Loc); 1148 LookupResult R(*this, Name, LookupOrdinaryName); 1149 LookupName(R, CurScope); 1150 if (R.isAmbiguous()) 1151 continue; 1152 if (R.empty()) { 1153 // FIXME: Disable corrections that would add qualification? 1154 CXXScopeSpec ScopeSpec; 1155 DeclFilterCCC<VarDecl> Validator{}; 1156 if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R, Validator)) 1157 continue; 1158 } 1159 1160 Var = R.getAsSingle<VarDecl>(); 1161 if (Var && DiagnoseUseOfDecl(Var, C->Loc)) 1162 continue; 1163 } 1164 1165 // C++11 [expr.prim.lambda]p8: 1166 // An identifier or this shall not appear more than once in a 1167 // lambda-capture. 1168 if (!CaptureNames.insert(C->Id).second) { 1169 if (Var && LSI->isCaptured(Var)) { 1170 Diag(C->Loc, diag::err_capture_more_than_once) 1171 << C->Id << SourceRange(LSI->getCapture(Var).getLocation()) 1172 << FixItHint::CreateRemoval( 1173 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1174 } else 1175 // Previous capture captured something different (one or both was 1176 // an init-cpature): no fixit. 1177 Diag(C->Loc, diag::err_capture_more_than_once) << C->Id; 1178 continue; 1179 } 1180 1181 // C++11 [expr.prim.lambda]p10: 1182 // [...] each such lookup shall find a variable with automatic storage 1183 // duration declared in the reaching scope of the local lambda expression. 1184 // Note that the 'reaching scope' check happens in tryCaptureVariable(). 1185 if (!Var) { 1186 Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id; 1187 continue; 1188 } 1189 1190 // Ignore invalid decls; they'll just confuse the code later. 1191 if (Var->isInvalidDecl()) 1192 continue; 1193 1194 if (!Var->hasLocalStorage()) { 1195 Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id; 1196 Diag(Var->getLocation(), diag::note_previous_decl) << C->Id; 1197 continue; 1198 } 1199 1200 // C++11 [expr.prim.lambda]p23: 1201 // A capture followed by an ellipsis is a pack expansion (14.5.3). 1202 SourceLocation EllipsisLoc; 1203 if (C->EllipsisLoc.isValid()) { 1204 if (Var->isParameterPack()) { 1205 EllipsisLoc = C->EllipsisLoc; 1206 } else { 1207 Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 1208 << (C->Init.isUsable() ? C->Init.get()->getSourceRange() 1209 : SourceRange(C->Loc)); 1210 1211 // Just ignore the ellipsis. 1212 } 1213 } else if (Var->isParameterPack()) { 1214 ContainsUnexpandedParameterPack = true; 1215 } 1216 1217 if (C->Init.isUsable()) { 1218 addInitCapture(LSI, Var); 1219 } else { 1220 TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef : 1221 TryCapture_ExplicitByVal; 1222 tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc); 1223 } 1224 if (!LSI->Captures.empty()) 1225 LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange; 1226 } 1227 finishLambdaExplicitCaptures(LSI); 1228 1229 LSI->ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack; 1230 1231 // Add lambda parameters into scope. 1232 addLambdaParameters(Intro.Captures, Method, CurScope); 1233 1234 // Enter a new evaluation context to insulate the lambda from any 1235 // cleanups from the enclosing full-expression. 1236 PushExpressionEvaluationContext( 1237 LSI->CallOperator->isConsteval() 1238 ? ExpressionEvaluationContext::ConstantEvaluated 1239 : ExpressionEvaluationContext::PotentiallyEvaluated); 1240 } 1241 1242 void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope, 1243 bool IsInstantiation) { 1244 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back()); 1245 1246 // Leave the expression-evaluation context. 1247 DiscardCleanupsInEvaluationContext(); 1248 PopExpressionEvaluationContext(); 1249 1250 // Leave the context of the lambda. 1251 if (!IsInstantiation) 1252 PopDeclContext(); 1253 1254 // Finalize the lambda. 1255 CXXRecordDecl *Class = LSI->Lambda; 1256 Class->setInvalidDecl(); 1257 SmallVector<Decl*, 4> Fields(Class->fields()); 1258 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(), 1259 SourceLocation(), ParsedAttributesView()); 1260 CheckCompletedCXXClass(nullptr, Class); 1261 1262 PopFunctionScopeInfo(); 1263 } 1264 1265 QualType Sema::getLambdaConversionFunctionResultType( 1266 const FunctionProtoType *CallOpProto) { 1267 // The function type inside the pointer type is the same as the call 1268 // operator with some tweaks. The calling convention is the default free 1269 // function convention, and the type qualifications are lost. 1270 const FunctionProtoType::ExtProtoInfo CallOpExtInfo = 1271 CallOpProto->getExtProtoInfo(); 1272 FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo; 1273 CallingConv CC = Context.getDefaultCallingConvention( 1274 CallOpProto->isVariadic(), /*IsCXXMethod=*/false); 1275 InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC); 1276 InvokerExtInfo.TypeQuals = Qualifiers(); 1277 assert(InvokerExtInfo.RefQualifier == RQ_None && 1278 "Lambda's call operator should not have a reference qualifier"); 1279 return Context.getFunctionType(CallOpProto->getReturnType(), 1280 CallOpProto->getParamTypes(), InvokerExtInfo); 1281 } 1282 1283 /// Add a lambda's conversion to function pointer, as described in 1284 /// C++11 [expr.prim.lambda]p6. 1285 static void addFunctionPointerConversion(Sema &S, 1286 SourceRange IntroducerRange, 1287 CXXRecordDecl *Class, 1288 CXXMethodDecl *CallOperator) { 1289 // This conversion is explicitly disabled if the lambda's function has 1290 // pass_object_size attributes on any of its parameters. 1291 auto HasPassObjectSizeAttr = [](const ParmVarDecl *P) { 1292 return P->hasAttr<PassObjectSizeAttr>(); 1293 }; 1294 if (llvm::any_of(CallOperator->parameters(), HasPassObjectSizeAttr)) 1295 return; 1296 1297 // Add the conversion to function pointer. 1298 QualType InvokerFunctionTy = S.getLambdaConversionFunctionResultType( 1299 CallOperator->getType()->castAs<FunctionProtoType>()); 1300 QualType PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy); 1301 1302 // Create the type of the conversion function. 1303 FunctionProtoType::ExtProtoInfo ConvExtInfo( 1304 S.Context.getDefaultCallingConvention( 1305 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 1306 // The conversion function is always const and noexcept. 1307 ConvExtInfo.TypeQuals = Qualifiers(); 1308 ConvExtInfo.TypeQuals.addConst(); 1309 ConvExtInfo.ExceptionSpec.Type = EST_BasicNoexcept; 1310 QualType ConvTy = 1311 S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo); 1312 1313 SourceLocation Loc = IntroducerRange.getBegin(); 1314 DeclarationName ConversionName 1315 = S.Context.DeclarationNames.getCXXConversionFunctionName( 1316 S.Context.getCanonicalType(PtrToFunctionTy)); 1317 DeclarationNameLoc ConvNameLoc; 1318 // Construct a TypeSourceInfo for the conversion function, and wire 1319 // all the parameters appropriately for the FunctionProtoTypeLoc 1320 // so that everything works during transformation/instantiation of 1321 // generic lambdas. 1322 // The main reason for wiring up the parameters of the conversion 1323 // function with that of the call operator is so that constructs 1324 // like the following work: 1325 // auto L = [](auto b) { <-- 1 1326 // return [](auto a) -> decltype(a) { <-- 2 1327 // return a; 1328 // }; 1329 // }; 1330 // int (*fp)(int) = L(5); 1331 // Because the trailing return type can contain DeclRefExprs that refer 1332 // to the original call operator's variables, we hijack the call 1333 // operators ParmVarDecls below. 1334 TypeSourceInfo *ConvNamePtrToFunctionTSI = 1335 S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc); 1336 ConvNameLoc.NamedType.TInfo = ConvNamePtrToFunctionTSI; 1337 1338 // The conversion function is a conversion to a pointer-to-function. 1339 TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc); 1340 FunctionProtoTypeLoc ConvTL = 1341 ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>(); 1342 // Get the result of the conversion function which is a pointer-to-function. 1343 PointerTypeLoc PtrToFunctionTL = 1344 ConvTL.getReturnLoc().getAs<PointerTypeLoc>(); 1345 // Do the same for the TypeSourceInfo that is used to name the conversion 1346 // operator. 1347 PointerTypeLoc ConvNamePtrToFunctionTL = 1348 ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>(); 1349 1350 // Get the underlying function types that the conversion function will 1351 // be converting to (should match the type of the call operator). 1352 FunctionProtoTypeLoc CallOpConvTL = 1353 PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>(); 1354 FunctionProtoTypeLoc CallOpConvNameTL = 1355 ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>(); 1356 1357 // Wire up the FunctionProtoTypeLocs with the call operator's parameters. 1358 // These parameter's are essentially used to transform the name and 1359 // the type of the conversion operator. By using the same parameters 1360 // as the call operator's we don't have to fix any back references that 1361 // the trailing return type of the call operator's uses (such as 1362 // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.) 1363 // - we can simply use the return type of the call operator, and 1364 // everything should work. 1365 SmallVector<ParmVarDecl *, 4> InvokerParams; 1366 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) { 1367 ParmVarDecl *From = CallOperator->getParamDecl(I); 1368 1369 InvokerParams.push_back(ParmVarDecl::Create( 1370 S.Context, 1371 // Temporarily add to the TU. This is set to the invoker below. 1372 S.Context.getTranslationUnitDecl(), From->getBeginLoc(), 1373 From->getLocation(), From->getIdentifier(), From->getType(), 1374 From->getTypeSourceInfo(), From->getStorageClass(), 1375 /*DefArg=*/nullptr)); 1376 CallOpConvTL.setParam(I, From); 1377 CallOpConvNameTL.setParam(I, From); 1378 } 1379 1380 CXXConversionDecl *Conversion = CXXConversionDecl::Create( 1381 S.Context, Class, Loc, 1382 DeclarationNameInfo(ConversionName, Loc, ConvNameLoc), ConvTy, ConvTSI, 1383 /*isInline=*/true, ExplicitSpecifier(), 1384 S.getLangOpts().CPlusPlus17 ? CSK_constexpr : CSK_unspecified, 1385 CallOperator->getBody()->getEndLoc()); 1386 Conversion->setAccess(AS_public); 1387 Conversion->setImplicit(true); 1388 1389 if (Class->isGenericLambda()) { 1390 // Create a template version of the conversion operator, using the template 1391 // parameter list of the function call operator. 1392 FunctionTemplateDecl *TemplateCallOperator = 1393 CallOperator->getDescribedFunctionTemplate(); 1394 FunctionTemplateDecl *ConversionTemplate = 1395 FunctionTemplateDecl::Create(S.Context, Class, 1396 Loc, ConversionName, 1397 TemplateCallOperator->getTemplateParameters(), 1398 Conversion); 1399 ConversionTemplate->setAccess(AS_public); 1400 ConversionTemplate->setImplicit(true); 1401 Conversion->setDescribedFunctionTemplate(ConversionTemplate); 1402 Class->addDecl(ConversionTemplate); 1403 } else 1404 Class->addDecl(Conversion); 1405 // Add a non-static member function that will be the result of 1406 // the conversion with a certain unique ID. 1407 DeclarationName InvokerName = &S.Context.Idents.get( 1408 getLambdaStaticInvokerName()); 1409 // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo() 1410 // we should get a prebuilt TrivialTypeSourceInfo from Context 1411 // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc 1412 // then rewire the parameters accordingly, by hoisting up the InvokeParams 1413 // loop below and then use its Params to set Invoke->setParams(...) below. 1414 // This would avoid the 'const' qualifier of the calloperator from 1415 // contaminating the type of the invoker, which is currently adjusted 1416 // in SemaTemplateDeduction.cpp:DeduceTemplateArguments. Fixing the 1417 // trailing return type of the invoker would require a visitor to rebuild 1418 // the trailing return type and adjusting all back DeclRefExpr's to refer 1419 // to the new static invoker parameters - not the call operator's. 1420 CXXMethodDecl *Invoke = CXXMethodDecl::Create( 1421 S.Context, Class, Loc, DeclarationNameInfo(InvokerName, Loc), 1422 InvokerFunctionTy, CallOperator->getTypeSourceInfo(), SC_Static, 1423 /*isInline=*/true, CSK_unspecified, CallOperator->getBody()->getEndLoc()); 1424 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) 1425 InvokerParams[I]->setOwningFunction(Invoke); 1426 Invoke->setParams(InvokerParams); 1427 Invoke->setAccess(AS_private); 1428 Invoke->setImplicit(true); 1429 if (Class->isGenericLambda()) { 1430 FunctionTemplateDecl *TemplateCallOperator = 1431 CallOperator->getDescribedFunctionTemplate(); 1432 FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create( 1433 S.Context, Class, Loc, InvokerName, 1434 TemplateCallOperator->getTemplateParameters(), 1435 Invoke); 1436 StaticInvokerTemplate->setAccess(AS_private); 1437 StaticInvokerTemplate->setImplicit(true); 1438 Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate); 1439 Class->addDecl(StaticInvokerTemplate); 1440 } else 1441 Class->addDecl(Invoke); 1442 } 1443 1444 /// Add a lambda's conversion to block pointer. 1445 static void addBlockPointerConversion(Sema &S, 1446 SourceRange IntroducerRange, 1447 CXXRecordDecl *Class, 1448 CXXMethodDecl *CallOperator) { 1449 QualType FunctionTy = S.getLambdaConversionFunctionResultType( 1450 CallOperator->getType()->castAs<FunctionProtoType>()); 1451 QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy); 1452 1453 FunctionProtoType::ExtProtoInfo ConversionEPI( 1454 S.Context.getDefaultCallingConvention( 1455 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 1456 ConversionEPI.TypeQuals = Qualifiers(); 1457 ConversionEPI.TypeQuals.addConst(); 1458 QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ConversionEPI); 1459 1460 SourceLocation Loc = IntroducerRange.getBegin(); 1461 DeclarationName Name 1462 = S.Context.DeclarationNames.getCXXConversionFunctionName( 1463 S.Context.getCanonicalType(BlockPtrTy)); 1464 DeclarationNameLoc NameLoc; 1465 NameLoc.NamedType.TInfo = S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc); 1466 CXXConversionDecl *Conversion = CXXConversionDecl::Create( 1467 S.Context, Class, Loc, DeclarationNameInfo(Name, Loc, NameLoc), ConvTy, 1468 S.Context.getTrivialTypeSourceInfo(ConvTy, Loc), 1469 /*isInline=*/true, ExplicitSpecifier(), CSK_unspecified, 1470 CallOperator->getBody()->getEndLoc()); 1471 Conversion->setAccess(AS_public); 1472 Conversion->setImplicit(true); 1473 Class->addDecl(Conversion); 1474 } 1475 1476 ExprResult Sema::BuildCaptureInit(const Capture &Cap, 1477 SourceLocation ImplicitCaptureLoc, 1478 bool IsOpenMPMapping) { 1479 // VLA captures don't have a stored initialization expression. 1480 if (Cap.isVLATypeCapture()) 1481 return ExprResult(); 1482 1483 // An init-capture is initialized directly from its stored initializer. 1484 if (Cap.isInitCapture()) 1485 return Cap.getVariable()->getInit(); 1486 1487 // For anything else, build an initialization expression. For an implicit 1488 // capture, the capture notionally happens at the capture-default, so use 1489 // that location here. 1490 SourceLocation Loc = 1491 ImplicitCaptureLoc.isValid() ? ImplicitCaptureLoc : Cap.getLocation(); 1492 1493 // C++11 [expr.prim.lambda]p21: 1494 // When the lambda-expression is evaluated, the entities that 1495 // are captured by copy are used to direct-initialize each 1496 // corresponding non-static data member of the resulting closure 1497 // object. (For array members, the array elements are 1498 // direct-initialized in increasing subscript order.) These 1499 // initializations are performed in the (unspecified) order in 1500 // which the non-static data members are declared. 1501 1502 // C++ [expr.prim.lambda]p12: 1503 // An entity captured by a lambda-expression is odr-used (3.2) in 1504 // the scope containing the lambda-expression. 1505 ExprResult Init; 1506 IdentifierInfo *Name = nullptr; 1507 if (Cap.isThisCapture()) { 1508 QualType ThisTy = getCurrentThisType(); 1509 Expr *This = BuildCXXThisExpr(Loc, ThisTy, ImplicitCaptureLoc.isValid()); 1510 if (Cap.isCopyCapture()) 1511 Init = CreateBuiltinUnaryOp(Loc, UO_Deref, This); 1512 else 1513 Init = This; 1514 } else { 1515 assert(Cap.isVariableCapture() && "unknown kind of capture"); 1516 VarDecl *Var = Cap.getVariable(); 1517 Name = Var->getIdentifier(); 1518 Init = BuildDeclarationNameExpr( 1519 CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var); 1520 } 1521 1522 // In OpenMP, the capture kind doesn't actually describe how to capture: 1523 // variables are "mapped" onto the device in a process that does not formally 1524 // make a copy, even for a "copy capture". 1525 if (IsOpenMPMapping) 1526 return Init; 1527 1528 if (Init.isInvalid()) 1529 return ExprError(); 1530 1531 Expr *InitExpr = Init.get(); 1532 InitializedEntity Entity = InitializedEntity::InitializeLambdaCapture( 1533 Name, Cap.getCaptureType(), Loc); 1534 InitializationKind InitKind = 1535 InitializationKind::CreateDirect(Loc, Loc, Loc); 1536 InitializationSequence InitSeq(*this, Entity, InitKind, InitExpr); 1537 return InitSeq.Perform(*this, Entity, InitKind, InitExpr); 1538 } 1539 1540 ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body, 1541 Scope *CurScope) { 1542 LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back()); 1543 ActOnFinishFunctionBody(LSI.CallOperator, Body); 1544 return BuildLambdaExpr(StartLoc, Body->getEndLoc(), &LSI); 1545 } 1546 1547 static LambdaCaptureDefault 1548 mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS) { 1549 switch (ICS) { 1550 case CapturingScopeInfo::ImpCap_None: 1551 return LCD_None; 1552 case CapturingScopeInfo::ImpCap_LambdaByval: 1553 return LCD_ByCopy; 1554 case CapturingScopeInfo::ImpCap_CapturedRegion: 1555 case CapturingScopeInfo::ImpCap_LambdaByref: 1556 return LCD_ByRef; 1557 case CapturingScopeInfo::ImpCap_Block: 1558 llvm_unreachable("block capture in lambda"); 1559 } 1560 llvm_unreachable("Unknown implicit capture style"); 1561 } 1562 1563 bool Sema::CaptureHasSideEffects(const Capture &From) { 1564 if (From.isInitCapture()) { 1565 Expr *Init = From.getVariable()->getInit(); 1566 if (Init && Init->HasSideEffects(Context)) 1567 return true; 1568 } 1569 1570 if (!From.isCopyCapture()) 1571 return false; 1572 1573 const QualType T = From.isThisCapture() 1574 ? getCurrentThisType()->getPointeeType() 1575 : From.getCaptureType(); 1576 1577 if (T.isVolatileQualified()) 1578 return true; 1579 1580 const Type *BaseT = T->getBaseElementTypeUnsafe(); 1581 if (const CXXRecordDecl *RD = BaseT->getAsCXXRecordDecl()) 1582 return !RD->isCompleteDefinition() || !RD->hasTrivialCopyConstructor() || 1583 !RD->hasTrivialDestructor(); 1584 1585 return false; 1586 } 1587 1588 bool Sema::DiagnoseUnusedLambdaCapture(SourceRange CaptureRange, 1589 const Capture &From) { 1590 if (CaptureHasSideEffects(From)) 1591 return false; 1592 1593 if (From.isVLATypeCapture()) 1594 return false; 1595 1596 auto diag = Diag(From.getLocation(), diag::warn_unused_lambda_capture); 1597 if (From.isThisCapture()) 1598 diag << "'this'"; 1599 else 1600 diag << From.getVariable(); 1601 diag << From.isNonODRUsed(); 1602 diag << FixItHint::CreateRemoval(CaptureRange); 1603 return true; 1604 } 1605 1606 /// Create a field within the lambda class or captured statement record for the 1607 /// given capture. 1608 FieldDecl *Sema::BuildCaptureField(RecordDecl *RD, 1609 const sema::Capture &Capture) { 1610 SourceLocation Loc = Capture.getLocation(); 1611 QualType FieldType = Capture.getCaptureType(); 1612 1613 TypeSourceInfo *TSI = nullptr; 1614 if (Capture.isVariableCapture()) { 1615 auto *Var = Capture.getVariable(); 1616 if (Var->isInitCapture()) 1617 TSI = Capture.getVariable()->getTypeSourceInfo(); 1618 } 1619 1620 // FIXME: Should we really be doing this? A null TypeSourceInfo seems more 1621 // appropriate, at least for an implicit capture. 1622 if (!TSI) 1623 TSI = Context.getTrivialTypeSourceInfo(FieldType, Loc); 1624 1625 // Build the non-static data member. 1626 FieldDecl *Field = 1627 FieldDecl::Create(Context, RD, Loc, Loc, nullptr, FieldType, TSI, nullptr, 1628 false, ICIS_NoInit); 1629 // If the variable being captured has an invalid type, mark the class as 1630 // invalid as well. 1631 if (!FieldType->isDependentType()) { 1632 if (RequireCompleteSizedType(Loc, FieldType, 1633 diag::err_field_incomplete_or_sizeless)) { 1634 RD->setInvalidDecl(); 1635 Field->setInvalidDecl(); 1636 } else { 1637 NamedDecl *Def; 1638 FieldType->isIncompleteType(&Def); 1639 if (Def && Def->isInvalidDecl()) { 1640 RD->setInvalidDecl(); 1641 Field->setInvalidDecl(); 1642 } 1643 } 1644 } 1645 Field->setImplicit(true); 1646 Field->setAccess(AS_private); 1647 RD->addDecl(Field); 1648 1649 if (Capture.isVLATypeCapture()) 1650 Field->setCapturedVLAType(Capture.getCapturedVLAType()); 1651 1652 return Field; 1653 } 1654 1655 ExprResult Sema::BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc, 1656 LambdaScopeInfo *LSI) { 1657 // Collect information from the lambda scope. 1658 SmallVector<LambdaCapture, 4> Captures; 1659 SmallVector<Expr *, 4> CaptureInits; 1660 SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc; 1661 LambdaCaptureDefault CaptureDefault = 1662 mapImplicitCaptureStyle(LSI->ImpCaptureStyle); 1663 CXXRecordDecl *Class; 1664 CXXMethodDecl *CallOperator; 1665 SourceRange IntroducerRange; 1666 bool ExplicitParams; 1667 bool ExplicitResultType; 1668 CleanupInfo LambdaCleanup; 1669 bool ContainsUnexpandedParameterPack; 1670 bool IsGenericLambda; 1671 { 1672 CallOperator = LSI->CallOperator; 1673 Class = LSI->Lambda; 1674 IntroducerRange = LSI->IntroducerRange; 1675 ExplicitParams = LSI->ExplicitParams; 1676 ExplicitResultType = !LSI->HasImplicitReturnType; 1677 LambdaCleanup = LSI->Cleanup; 1678 ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack; 1679 IsGenericLambda = Class->isGenericLambda(); 1680 1681 CallOperator->setLexicalDeclContext(Class); 1682 Decl *TemplateOrNonTemplateCallOperatorDecl = 1683 CallOperator->getDescribedFunctionTemplate() 1684 ? CallOperator->getDescribedFunctionTemplate() 1685 : cast<Decl>(CallOperator); 1686 1687 // FIXME: Is this really the best choice? Keeping the lexical decl context 1688 // set as CurContext seems more faithful to the source. 1689 TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class); 1690 1691 PopExpressionEvaluationContext(); 1692 1693 // True if the current capture has a used capture or default before it. 1694 bool CurHasPreviousCapture = CaptureDefault != LCD_None; 1695 SourceLocation PrevCaptureLoc = CurHasPreviousCapture ? 1696 CaptureDefaultLoc : IntroducerRange.getBegin(); 1697 1698 for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) { 1699 const Capture &From = LSI->Captures[I]; 1700 1701 if (From.isInvalid()) 1702 return ExprError(); 1703 1704 assert(!From.isBlockCapture() && "Cannot capture __block variables"); 1705 bool IsImplicit = I >= LSI->NumExplicitCaptures; 1706 SourceLocation ImplicitCaptureLoc = 1707 IsImplicit ? CaptureDefaultLoc : SourceLocation(); 1708 1709 // Use source ranges of explicit captures for fixits where available. 1710 SourceRange CaptureRange = LSI->ExplicitCaptureRanges[I]; 1711 1712 // Warn about unused explicit captures. 1713 bool IsCaptureUsed = true; 1714 if (!CurContext->isDependentContext() && !IsImplicit && 1715 !From.isODRUsed()) { 1716 // Initialized captures that are non-ODR used may not be eliminated. 1717 // FIXME: Where did the IsGenericLambda here come from? 1718 bool NonODRUsedInitCapture = 1719 IsGenericLambda && From.isNonODRUsed() && From.isInitCapture(); 1720 if (!NonODRUsedInitCapture) { 1721 bool IsLast = (I + 1) == LSI->NumExplicitCaptures; 1722 SourceRange FixItRange; 1723 if (CaptureRange.isValid()) { 1724 if (!CurHasPreviousCapture && !IsLast) { 1725 // If there are no captures preceding this capture, remove the 1726 // following comma. 1727 FixItRange = SourceRange(CaptureRange.getBegin(), 1728 getLocForEndOfToken(CaptureRange.getEnd())); 1729 } else { 1730 // Otherwise, remove the comma since the last used capture. 1731 FixItRange = SourceRange(getLocForEndOfToken(PrevCaptureLoc), 1732 CaptureRange.getEnd()); 1733 } 1734 } 1735 1736 IsCaptureUsed = !DiagnoseUnusedLambdaCapture(FixItRange, From); 1737 } 1738 } 1739 1740 if (CaptureRange.isValid()) { 1741 CurHasPreviousCapture |= IsCaptureUsed; 1742 PrevCaptureLoc = CaptureRange.getEnd(); 1743 } 1744 1745 // Map the capture to our AST representation. 1746 LambdaCapture Capture = [&] { 1747 if (From.isThisCapture()) { 1748 // Capturing 'this' implicitly with a default of '[=]' is deprecated, 1749 // because it results in a reference capture. Don't warn prior to 1750 // C++2a; there's nothing that can be done about it before then. 1751 if (getLangOpts().CPlusPlus20 && IsImplicit && 1752 CaptureDefault == LCD_ByCopy) { 1753 Diag(From.getLocation(), diag::warn_deprecated_this_capture); 1754 Diag(CaptureDefaultLoc, diag::note_deprecated_this_capture) 1755 << FixItHint::CreateInsertion( 1756 getLocForEndOfToken(CaptureDefaultLoc), ", this"); 1757 } 1758 return LambdaCapture(From.getLocation(), IsImplicit, 1759 From.isCopyCapture() ? LCK_StarThis : LCK_This); 1760 } else if (From.isVLATypeCapture()) { 1761 return LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType); 1762 } else { 1763 assert(From.isVariableCapture() && "unknown kind of capture"); 1764 VarDecl *Var = From.getVariable(); 1765 LambdaCaptureKind Kind = 1766 From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef; 1767 return LambdaCapture(From.getLocation(), IsImplicit, Kind, Var, 1768 From.getEllipsisLoc()); 1769 } 1770 }(); 1771 1772 // Form the initializer for the capture field. 1773 ExprResult Init = BuildCaptureInit(From, ImplicitCaptureLoc); 1774 1775 // FIXME: Skip this capture if the capture is not used, the initializer 1776 // has no side-effects, the type of the capture is trivial, and the 1777 // lambda is not externally visible. 1778 1779 // Add a FieldDecl for the capture and form its initializer. 1780 BuildCaptureField(Class, From); 1781 Captures.push_back(Capture); 1782 CaptureInits.push_back(Init.get()); 1783 1784 if (LangOpts.CUDA) 1785 CUDACheckLambdaCapture(CallOperator, From); 1786 } 1787 1788 Class->setCaptures(Captures); 1789 1790 // C++11 [expr.prim.lambda]p6: 1791 // The closure type for a lambda-expression with no lambda-capture 1792 // has a public non-virtual non-explicit const conversion function 1793 // to pointer to function having the same parameter and return 1794 // types as the closure type's function call operator. 1795 if (Captures.empty() && CaptureDefault == LCD_None) 1796 addFunctionPointerConversion(*this, IntroducerRange, Class, 1797 CallOperator); 1798 1799 // Objective-C++: 1800 // The closure type for a lambda-expression has a public non-virtual 1801 // non-explicit const conversion function to a block pointer having the 1802 // same parameter and return types as the closure type's function call 1803 // operator. 1804 // FIXME: Fix generic lambda to block conversions. 1805 if (getLangOpts().Blocks && getLangOpts().ObjC && !IsGenericLambda) 1806 addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator); 1807 1808 // Finalize the lambda class. 1809 SmallVector<Decl*, 4> Fields(Class->fields()); 1810 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(), 1811 SourceLocation(), ParsedAttributesView()); 1812 CheckCompletedCXXClass(nullptr, Class); 1813 } 1814 1815 Cleanup.mergeFrom(LambdaCleanup); 1816 1817 LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange, 1818 CaptureDefault, CaptureDefaultLoc, 1819 ExplicitParams, ExplicitResultType, 1820 CaptureInits, EndLoc, 1821 ContainsUnexpandedParameterPack); 1822 // If the lambda expression's call operator is not explicitly marked constexpr 1823 // and we are not in a dependent context, analyze the call operator to infer 1824 // its constexpr-ness, suppressing diagnostics while doing so. 1825 if (getLangOpts().CPlusPlus17 && !CallOperator->isInvalidDecl() && 1826 !CallOperator->isConstexpr() && 1827 !isa<CoroutineBodyStmt>(CallOperator->getBody()) && 1828 !Class->getDeclContext()->isDependentContext()) { 1829 CallOperator->setConstexprKind( 1830 CheckConstexprFunctionDefinition(CallOperator, 1831 CheckConstexprKind::CheckValid) 1832 ? CSK_constexpr 1833 : CSK_unspecified); 1834 } 1835 1836 // Emit delayed shadowing warnings now that the full capture list is known. 1837 DiagnoseShadowingLambdaDecls(LSI); 1838 1839 if (!CurContext->isDependentContext()) { 1840 switch (ExprEvalContexts.back().Context) { 1841 // C++11 [expr.prim.lambda]p2: 1842 // A lambda-expression shall not appear in an unevaluated operand 1843 // (Clause 5). 1844 case ExpressionEvaluationContext::Unevaluated: 1845 case ExpressionEvaluationContext::UnevaluatedList: 1846 case ExpressionEvaluationContext::UnevaluatedAbstract: 1847 // C++1y [expr.const]p2: 1848 // A conditional-expression e is a core constant expression unless the 1849 // evaluation of e, following the rules of the abstract machine, would 1850 // evaluate [...] a lambda-expression. 1851 // 1852 // This is technically incorrect, there are some constant evaluated contexts 1853 // where this should be allowed. We should probably fix this when DR1607 is 1854 // ratified, it lays out the exact set of conditions where we shouldn't 1855 // allow a lambda-expression. 1856 case ExpressionEvaluationContext::ConstantEvaluated: 1857 // We don't actually diagnose this case immediately, because we 1858 // could be within a context where we might find out later that 1859 // the expression is potentially evaluated (e.g., for typeid). 1860 ExprEvalContexts.back().Lambdas.push_back(Lambda); 1861 break; 1862 1863 case ExpressionEvaluationContext::DiscardedStatement: 1864 case ExpressionEvaluationContext::PotentiallyEvaluated: 1865 case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed: 1866 break; 1867 } 1868 } 1869 1870 return MaybeBindToTemporary(Lambda); 1871 } 1872 1873 ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation, 1874 SourceLocation ConvLocation, 1875 CXXConversionDecl *Conv, 1876 Expr *Src) { 1877 // Make sure that the lambda call operator is marked used. 1878 CXXRecordDecl *Lambda = Conv->getParent(); 1879 CXXMethodDecl *CallOperator 1880 = cast<CXXMethodDecl>( 1881 Lambda->lookup( 1882 Context.DeclarationNames.getCXXOperatorName(OO_Call)).front()); 1883 CallOperator->setReferenced(); 1884 CallOperator->markUsed(Context); 1885 1886 ExprResult Init = PerformCopyInitialization( 1887 InitializedEntity::InitializeLambdaToBlock(ConvLocation, Src->getType(), 1888 /*NRVO=*/false), 1889 CurrentLocation, Src); 1890 if (!Init.isInvalid()) 1891 Init = ActOnFinishFullExpr(Init.get(), /*DiscardedValue*/ false); 1892 1893 if (Init.isInvalid()) 1894 return ExprError(); 1895 1896 // Create the new block to be returned. 1897 BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation); 1898 1899 // Set the type information. 1900 Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo()); 1901 Block->setIsVariadic(CallOperator->isVariadic()); 1902 Block->setBlockMissingReturnType(false); 1903 1904 // Add parameters. 1905 SmallVector<ParmVarDecl *, 4> BlockParams; 1906 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) { 1907 ParmVarDecl *From = CallOperator->getParamDecl(I); 1908 BlockParams.push_back(ParmVarDecl::Create( 1909 Context, Block, From->getBeginLoc(), From->getLocation(), 1910 From->getIdentifier(), From->getType(), From->getTypeSourceInfo(), 1911 From->getStorageClass(), 1912 /*DefArg=*/nullptr)); 1913 } 1914 Block->setParams(BlockParams); 1915 1916 Block->setIsConversionFromLambda(true); 1917 1918 // Add capture. The capture uses a fake variable, which doesn't correspond 1919 // to any actual memory location. However, the initializer copy-initializes 1920 // the lambda object. 1921 TypeSourceInfo *CapVarTSI = 1922 Context.getTrivialTypeSourceInfo(Src->getType()); 1923 VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation, 1924 ConvLocation, nullptr, 1925 Src->getType(), CapVarTSI, 1926 SC_None); 1927 BlockDecl::Capture Capture(/*variable=*/CapVar, /*byRef=*/false, 1928 /*nested=*/false, /*copy=*/Init.get()); 1929 Block->setCaptures(Context, Capture, /*CapturesCXXThis=*/false); 1930 1931 // Add a fake function body to the block. IR generation is responsible 1932 // for filling in the actual body, which cannot be expressed as an AST. 1933 Block->setBody(new (Context) CompoundStmt(ConvLocation)); 1934 1935 // Create the block literal expression. 1936 Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType()); 1937 ExprCleanupObjects.push_back(Block); 1938 Cleanup.setExprNeedsCleanups(true); 1939 1940 return BuildBlock; 1941 } 1942