1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for C++ lambda expressions. 10 // 11 //===----------------------------------------------------------------------===// 12 #include "clang/Sema/DeclSpec.h" 13 #include "TypeLocBuilder.h" 14 #include "clang/AST/ASTLambda.h" 15 #include "clang/AST/ExprCXX.h" 16 #include "clang/Basic/TargetInfo.h" 17 #include "clang/Sema/Initialization.h" 18 #include "clang/Sema/Lookup.h" 19 #include "clang/Sema/Scope.h" 20 #include "clang/Sema/ScopeInfo.h" 21 #include "clang/Sema/SemaInternal.h" 22 #include "clang/Sema/SemaLambda.h" 23 #include "clang/Sema/Template.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include <optional> 26 using namespace clang; 27 using namespace sema; 28 29 /// Examines the FunctionScopeInfo stack to determine the nearest 30 /// enclosing lambda (to the current lambda) that is 'capture-ready' for 31 /// the variable referenced in the current lambda (i.e. \p VarToCapture). 32 /// If successful, returns the index into Sema's FunctionScopeInfo stack 33 /// of the capture-ready lambda's LambdaScopeInfo. 34 /// 35 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current 36 /// lambda - is on top) to determine the index of the nearest enclosing/outer 37 /// lambda that is ready to capture the \p VarToCapture being referenced in 38 /// the current lambda. 39 /// As we climb down the stack, we want the index of the first such lambda - 40 /// that is the lambda with the highest index that is 'capture-ready'. 41 /// 42 /// A lambda 'L' is capture-ready for 'V' (var or this) if: 43 /// - its enclosing context is non-dependent 44 /// - and if the chain of lambdas between L and the lambda in which 45 /// V is potentially used (i.e. the lambda at the top of the scope info 46 /// stack), can all capture or have already captured V. 47 /// If \p VarToCapture is 'null' then we are trying to capture 'this'. 48 /// 49 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked 50 /// for whether it is 'capture-capable' (see 51 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly 52 /// capture. 53 /// 54 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a 55 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda 56 /// is at the top of the stack and has the highest index. 57 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'. 58 /// 59 /// \returns An std::optional<unsigned> Index that if evaluates to 'true' 60 /// contains the index (into Sema's FunctionScopeInfo stack) of the innermost 61 /// lambda which is capture-ready. If the return value evaluates to 'false' 62 /// then no lambda is capture-ready for \p VarToCapture. 63 64 static inline std::optional<unsigned> 65 getStackIndexOfNearestEnclosingCaptureReadyLambda( 66 ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes, 67 ValueDecl *VarToCapture) { 68 // Label failure to capture. 69 const std::optional<unsigned> NoLambdaIsCaptureReady; 70 71 // Ignore all inner captured regions. 72 unsigned CurScopeIndex = FunctionScopes.size() - 1; 73 while (CurScopeIndex > 0 && isa<clang::sema::CapturedRegionScopeInfo>( 74 FunctionScopes[CurScopeIndex])) 75 --CurScopeIndex; 76 assert( 77 isa<clang::sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]) && 78 "The function on the top of sema's function-info stack must be a lambda"); 79 80 // If VarToCapture is null, we are attempting to capture 'this'. 81 const bool IsCapturingThis = !VarToCapture; 82 const bool IsCapturingVariable = !IsCapturingThis; 83 84 // Start with the current lambda at the top of the stack (highest index). 85 DeclContext *EnclosingDC = 86 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator; 87 88 do { 89 const clang::sema::LambdaScopeInfo *LSI = 90 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]); 91 // IF we have climbed down to an intervening enclosing lambda that contains 92 // the variable declaration - it obviously can/must not capture the 93 // variable. 94 // Since its enclosing DC is dependent, all the lambdas between it and the 95 // innermost nested lambda are dependent (otherwise we wouldn't have 96 // arrived here) - so we don't yet have a lambda that can capture the 97 // variable. 98 if (IsCapturingVariable && 99 VarToCapture->getDeclContext()->Equals(EnclosingDC)) 100 return NoLambdaIsCaptureReady; 101 102 // For an enclosing lambda to be capture ready for an entity, all 103 // intervening lambda's have to be able to capture that entity. If even 104 // one of the intervening lambda's is not capable of capturing the entity 105 // then no enclosing lambda can ever capture that entity. 106 // For e.g. 107 // const int x = 10; 108 // [=](auto a) { #1 109 // [](auto b) { #2 <-- an intervening lambda that can never capture 'x' 110 // [=](auto c) { #3 111 // f(x, c); <-- can not lead to x's speculative capture by #1 or #2 112 // }; }; }; 113 // If they do not have a default implicit capture, check to see 114 // if the entity has already been explicitly captured. 115 // If even a single dependent enclosing lambda lacks the capability 116 // to ever capture this variable, there is no further enclosing 117 // non-dependent lambda that can capture this variable. 118 if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) { 119 if (IsCapturingVariable && !LSI->isCaptured(VarToCapture)) 120 return NoLambdaIsCaptureReady; 121 if (IsCapturingThis && !LSI->isCXXThisCaptured()) 122 return NoLambdaIsCaptureReady; 123 } 124 EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC); 125 126 assert(CurScopeIndex); 127 --CurScopeIndex; 128 } while (!EnclosingDC->isTranslationUnit() && 129 EnclosingDC->isDependentContext() && 130 isLambdaCallOperator(EnclosingDC)); 131 132 assert(CurScopeIndex < (FunctionScopes.size() - 1)); 133 // If the enclosingDC is not dependent, then the immediately nested lambda 134 // (one index above) is capture-ready. 135 if (!EnclosingDC->isDependentContext()) 136 return CurScopeIndex + 1; 137 return NoLambdaIsCaptureReady; 138 } 139 140 /// Examines the FunctionScopeInfo stack to determine the nearest 141 /// enclosing lambda (to the current lambda) that is 'capture-capable' for 142 /// the variable referenced in the current lambda (i.e. \p VarToCapture). 143 /// If successful, returns the index into Sema's FunctionScopeInfo stack 144 /// of the capture-capable lambda's LambdaScopeInfo. 145 /// 146 /// Given the current stack of lambdas being processed by Sema and 147 /// the variable of interest, to identify the nearest enclosing lambda (to the 148 /// current lambda at the top of the stack) that can truly capture 149 /// a variable, it has to have the following two properties: 150 /// a) 'capture-ready' - be the innermost lambda that is 'capture-ready': 151 /// - climb down the stack (i.e. starting from the innermost and examining 152 /// each outer lambda step by step) checking if each enclosing 153 /// lambda can either implicitly or explicitly capture the variable. 154 /// Record the first such lambda that is enclosed in a non-dependent 155 /// context. If no such lambda currently exists return failure. 156 /// b) 'capture-capable' - make sure the 'capture-ready' lambda can truly 157 /// capture the variable by checking all its enclosing lambdas: 158 /// - check if all outer lambdas enclosing the 'capture-ready' lambda 159 /// identified above in 'a' can also capture the variable (this is done 160 /// via tryCaptureVariable for variables and CheckCXXThisCapture for 161 /// 'this' by passing in the index of the Lambda identified in step 'a') 162 /// 163 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a 164 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda 165 /// is at the top of the stack. 166 /// 167 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'. 168 /// 169 /// 170 /// \returns An std::optional<unsigned> Index that if evaluates to 'true' 171 /// contains the index (into Sema's FunctionScopeInfo stack) of the innermost 172 /// lambda which is capture-capable. If the return value evaluates to 'false' 173 /// then no lambda is capture-capable for \p VarToCapture. 174 175 std::optional<unsigned> 176 clang::getStackIndexOfNearestEnclosingCaptureCapableLambda( 177 ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes, 178 ValueDecl *VarToCapture, Sema &S) { 179 180 const std::optional<unsigned> NoLambdaIsCaptureCapable; 181 182 const std::optional<unsigned> OptionalStackIndex = 183 getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes, 184 VarToCapture); 185 if (!OptionalStackIndex) 186 return NoLambdaIsCaptureCapable; 187 188 const unsigned IndexOfCaptureReadyLambda = *OptionalStackIndex; 189 assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) || 190 S.getCurGenericLambda()) && 191 "The capture ready lambda for a potential capture can only be the " 192 "current lambda if it is a generic lambda"); 193 194 const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI = 195 cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]); 196 197 // If VarToCapture is null, we are attempting to capture 'this' 198 const bool IsCapturingThis = !VarToCapture; 199 const bool IsCapturingVariable = !IsCapturingThis; 200 201 if (IsCapturingVariable) { 202 // Check if the capture-ready lambda can truly capture the variable, by 203 // checking whether all enclosing lambdas of the capture-ready lambda allow 204 // the capture - i.e. make sure it is capture-capable. 205 QualType CaptureType, DeclRefType; 206 const bool CanCaptureVariable = 207 !S.tryCaptureVariable(VarToCapture, 208 /*ExprVarIsUsedInLoc*/ SourceLocation(), 209 clang::Sema::TryCapture_Implicit, 210 /*EllipsisLoc*/ SourceLocation(), 211 /*BuildAndDiagnose*/ false, CaptureType, 212 DeclRefType, &IndexOfCaptureReadyLambda); 213 if (!CanCaptureVariable) 214 return NoLambdaIsCaptureCapable; 215 } else { 216 // Check if the capture-ready lambda can truly capture 'this' by checking 217 // whether all enclosing lambdas of the capture-ready lambda can capture 218 // 'this'. 219 const bool CanCaptureThis = 220 !S.CheckCXXThisCapture( 221 CaptureReadyLambdaLSI->PotentialThisCaptureLocation, 222 /*Explicit*/ false, /*BuildAndDiagnose*/ false, 223 &IndexOfCaptureReadyLambda); 224 if (!CanCaptureThis) 225 return NoLambdaIsCaptureCapable; 226 } 227 return IndexOfCaptureReadyLambda; 228 } 229 230 static inline TemplateParameterList * 231 getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) { 232 if (!LSI->GLTemplateParameterList && !LSI->TemplateParams.empty()) { 233 LSI->GLTemplateParameterList = TemplateParameterList::Create( 234 SemaRef.Context, 235 /*Template kw loc*/ SourceLocation(), 236 /*L angle loc*/ LSI->ExplicitTemplateParamsRange.getBegin(), 237 LSI->TemplateParams, 238 /*R angle loc*/LSI->ExplicitTemplateParamsRange.getEnd(), 239 LSI->RequiresClause.get()); 240 } 241 return LSI->GLTemplateParameterList; 242 } 243 244 CXXRecordDecl * 245 Sema::createLambdaClosureType(SourceRange IntroducerRange, TypeSourceInfo *Info, 246 unsigned LambdaDependencyKind, 247 LambdaCaptureDefault CaptureDefault) { 248 DeclContext *DC = CurContext; 249 while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext())) 250 DC = DC->getParent(); 251 252 bool IsGenericLambda = 253 Info && getGenericLambdaTemplateParameterList(getCurLambda(), *this); 254 // Start constructing the lambda class. 255 CXXRecordDecl *Class = CXXRecordDecl::CreateLambda( 256 Context, DC, Info, IntroducerRange.getBegin(), LambdaDependencyKind, 257 IsGenericLambda, CaptureDefault); 258 DC->addDecl(Class); 259 260 return Class; 261 } 262 263 /// Determine whether the given context is or is enclosed in an inline 264 /// function. 265 static bool isInInlineFunction(const DeclContext *DC) { 266 while (!DC->isFileContext()) { 267 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC)) 268 if (FD->isInlined()) 269 return true; 270 271 DC = DC->getLexicalParent(); 272 } 273 274 return false; 275 } 276 277 std::tuple<MangleNumberingContext *, Decl *> 278 Sema::getCurrentMangleNumberContext(const DeclContext *DC) { 279 // Compute the context for allocating mangling numbers in the current 280 // expression, if the ABI requires them. 281 Decl *ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl; 282 283 enum ContextKind { 284 Normal, 285 DefaultArgument, 286 DataMember, 287 InlineVariable, 288 TemplatedVariable, 289 Concept 290 } Kind = Normal; 291 292 bool IsInNonspecializedTemplate = 293 inTemplateInstantiation() || CurContext->isDependentContext(); 294 295 // Default arguments of member function parameters that appear in a class 296 // definition, as well as the initializers of data members, receive special 297 // treatment. Identify them. 298 if (ManglingContextDecl) { 299 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) { 300 if (const DeclContext *LexicalDC 301 = Param->getDeclContext()->getLexicalParent()) 302 if (LexicalDC->isRecord()) 303 Kind = DefaultArgument; 304 } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) { 305 if (Var->getMostRecentDecl()->isInline()) 306 Kind = InlineVariable; 307 else if (Var->getDeclContext()->isRecord() && IsInNonspecializedTemplate) 308 Kind = TemplatedVariable; 309 else if (Var->getDescribedVarTemplate()) 310 Kind = TemplatedVariable; 311 else if (auto *VTS = dyn_cast<VarTemplateSpecializationDecl>(Var)) { 312 if (!VTS->isExplicitSpecialization()) 313 Kind = TemplatedVariable; 314 } 315 } else if (isa<FieldDecl>(ManglingContextDecl)) { 316 Kind = DataMember; 317 } else if (isa<ImplicitConceptSpecializationDecl>(ManglingContextDecl)) { 318 Kind = Concept; 319 } 320 } 321 322 // Itanium ABI [5.1.7]: 323 // In the following contexts [...] the one-definition rule requires closure 324 // types in different translation units to "correspond": 325 switch (Kind) { 326 case Normal: { 327 // -- the bodies of inline or templated functions 328 if ((IsInNonspecializedTemplate && 329 !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) || 330 isInInlineFunction(CurContext)) { 331 while (auto *CD = dyn_cast<CapturedDecl>(DC)) 332 DC = CD->getParent(); 333 return std::make_tuple(&Context.getManglingNumberContext(DC), nullptr); 334 } 335 336 return std::make_tuple(nullptr, nullptr); 337 } 338 339 case Concept: 340 // Concept definitions aren't code generated and thus aren't mangled, 341 // however the ManglingContextDecl is important for the purposes of 342 // re-forming the template argument list of the lambda for constraint 343 // evaluation. 344 case DataMember: 345 // -- default member initializers 346 case DefaultArgument: 347 // -- default arguments appearing in class definitions 348 case InlineVariable: 349 case TemplatedVariable: 350 // -- the initializers of inline or templated variables 351 return std::make_tuple( 352 &Context.getManglingNumberContext(ASTContext::NeedExtraManglingDecl, 353 ManglingContextDecl), 354 ManglingContextDecl); 355 } 356 357 llvm_unreachable("unexpected context"); 358 } 359 360 static QualType 361 buildTypeForLambdaCallOperator(Sema &S, clang::CXXRecordDecl *Class, 362 TemplateParameterList *TemplateParams, 363 TypeSourceInfo *MethodTypeInfo) { 364 assert(MethodTypeInfo && "expected a non null type"); 365 366 QualType MethodType = MethodTypeInfo->getType(); 367 // If a lambda appears in a dependent context or is a generic lambda (has 368 // template parameters) and has an 'auto' return type, deduce it to a 369 // dependent type. 370 if (Class->isDependentContext() || TemplateParams) { 371 const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>(); 372 QualType Result = FPT->getReturnType(); 373 if (Result->isUndeducedType()) { 374 Result = S.SubstAutoTypeDependent(Result); 375 MethodType = S.Context.getFunctionType(Result, FPT->getParamTypes(), 376 FPT->getExtProtoInfo()); 377 } 378 } 379 return MethodType; 380 } 381 382 // [C++2b] [expr.prim.lambda.closure] p4 383 // Given a lambda with a lambda-capture, the type of the explicit object 384 // parameter, if any, of the lambda's function call operator (possibly 385 // instantiated from a function call operator template) shall be either: 386 // - the closure type, 387 // - class type derived from the closure type, or 388 // - a reference to a possibly cv-qualified such type. 389 void Sema::DiagnoseInvalidExplicitObjectParameterInLambda( 390 CXXMethodDecl *Method) { 391 if (!isLambdaCallWithExplicitObjectParameter(Method)) 392 return; 393 CXXRecordDecl *RD = Method->getParent(); 394 if (Method->getType()->isDependentType()) 395 return; 396 if (RD->isCapturelessLambda()) 397 return; 398 QualType ExplicitObjectParameterType = Method->getParamDecl(0) 399 ->getType() 400 .getNonReferenceType() 401 .getUnqualifiedType() 402 .getDesugaredType(getASTContext()); 403 QualType LambdaType = getASTContext().getRecordType(RD); 404 if (LambdaType == ExplicitObjectParameterType) 405 return; 406 if (IsDerivedFrom(RD->getLocation(), ExplicitObjectParameterType, LambdaType)) 407 return; 408 Diag(Method->getParamDecl(0)->getLocation(), 409 diag::err_invalid_explicit_object_type_in_lambda) 410 << ExplicitObjectParameterType; 411 } 412 413 void Sema::handleLambdaNumbering( 414 CXXRecordDecl *Class, CXXMethodDecl *Method, 415 std::optional<CXXRecordDecl::LambdaNumbering> NumberingOverride) { 416 if (NumberingOverride) { 417 Class->setLambdaNumbering(*NumberingOverride); 418 return; 419 } 420 421 ContextRAII ManglingContext(*this, Class->getDeclContext()); 422 423 auto getMangleNumberingContext = 424 [this](CXXRecordDecl *Class, 425 Decl *ManglingContextDecl) -> MangleNumberingContext * { 426 // Get mangle numbering context if there's any extra decl context. 427 if (ManglingContextDecl) 428 return &Context.getManglingNumberContext( 429 ASTContext::NeedExtraManglingDecl, ManglingContextDecl); 430 // Otherwise, from that lambda's decl context. 431 auto DC = Class->getDeclContext(); 432 while (auto *CD = dyn_cast<CapturedDecl>(DC)) 433 DC = CD->getParent(); 434 return &Context.getManglingNumberContext(DC); 435 }; 436 437 CXXRecordDecl::LambdaNumbering Numbering; 438 MangleNumberingContext *MCtx; 439 std::tie(MCtx, Numbering.ContextDecl) = 440 getCurrentMangleNumberContext(Class->getDeclContext()); 441 if (!MCtx && (getLangOpts().CUDA || getLangOpts().SYCLIsDevice || 442 getLangOpts().SYCLIsHost)) { 443 // Force lambda numbering in CUDA/HIP as we need to name lambdas following 444 // ODR. Both device- and host-compilation need to have a consistent naming 445 // on kernel functions. As lambdas are potential part of these `__global__` 446 // function names, they needs numbering following ODR. 447 // Also force for SYCL, since we need this for the 448 // __builtin_sycl_unique_stable_name implementation, which depends on lambda 449 // mangling. 450 MCtx = getMangleNumberingContext(Class, Numbering.ContextDecl); 451 assert(MCtx && "Retrieving mangle numbering context failed!"); 452 Numbering.HasKnownInternalLinkage = true; 453 } 454 if (MCtx) { 455 Numbering.IndexInContext = MCtx->getNextLambdaIndex(); 456 Numbering.ManglingNumber = MCtx->getManglingNumber(Method); 457 Numbering.DeviceManglingNumber = MCtx->getDeviceManglingNumber(Method); 458 Class->setLambdaNumbering(Numbering); 459 460 if (auto *Source = 461 dyn_cast_or_null<ExternalSemaSource>(Context.getExternalSource())) 462 Source->AssignedLambdaNumbering(Class); 463 } 464 } 465 466 static void buildLambdaScopeReturnType(Sema &S, LambdaScopeInfo *LSI, 467 CXXMethodDecl *CallOperator, 468 bool ExplicitResultType) { 469 if (ExplicitResultType) { 470 LSI->HasImplicitReturnType = false; 471 LSI->ReturnType = CallOperator->getReturnType(); 472 if (!LSI->ReturnType->isDependentType() && !LSI->ReturnType->isVoidType()) 473 S.RequireCompleteType(CallOperator->getBeginLoc(), LSI->ReturnType, 474 diag::err_lambda_incomplete_result); 475 } else { 476 LSI->HasImplicitReturnType = true; 477 } 478 } 479 480 void Sema::buildLambdaScope(LambdaScopeInfo *LSI, CXXMethodDecl *CallOperator, 481 SourceRange IntroducerRange, 482 LambdaCaptureDefault CaptureDefault, 483 SourceLocation CaptureDefaultLoc, 484 bool ExplicitParams, bool Mutable) { 485 LSI->CallOperator = CallOperator; 486 CXXRecordDecl *LambdaClass = CallOperator->getParent(); 487 LSI->Lambda = LambdaClass; 488 if (CaptureDefault == LCD_ByCopy) 489 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval; 490 else if (CaptureDefault == LCD_ByRef) 491 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref; 492 LSI->CaptureDefaultLoc = CaptureDefaultLoc; 493 LSI->IntroducerRange = IntroducerRange; 494 LSI->ExplicitParams = ExplicitParams; 495 LSI->Mutable = Mutable; 496 } 497 498 void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) { 499 LSI->finishedExplicitCaptures(); 500 } 501 502 void Sema::ActOnLambdaExplicitTemplateParameterList( 503 LambdaIntroducer &Intro, SourceLocation LAngleLoc, 504 ArrayRef<NamedDecl *> TParams, SourceLocation RAngleLoc, 505 ExprResult RequiresClause) { 506 LambdaScopeInfo *LSI = getCurLambda(); 507 assert(LSI && "Expected a lambda scope"); 508 assert(LSI->NumExplicitTemplateParams == 0 && 509 "Already acted on explicit template parameters"); 510 assert(LSI->TemplateParams.empty() && 511 "Explicit template parameters should come " 512 "before invented (auto) ones"); 513 assert(!TParams.empty() && 514 "No template parameters to act on"); 515 LSI->TemplateParams.append(TParams.begin(), TParams.end()); 516 LSI->NumExplicitTemplateParams = TParams.size(); 517 LSI->ExplicitTemplateParamsRange = {LAngleLoc, RAngleLoc}; 518 LSI->RequiresClause = RequiresClause; 519 } 520 521 /// If this expression is an enumerator-like expression of some type 522 /// T, return the type T; otherwise, return null. 523 /// 524 /// Pointer comparisons on the result here should always work because 525 /// it's derived from either the parent of an EnumConstantDecl 526 /// (i.e. the definition) or the declaration returned by 527 /// EnumType::getDecl() (i.e. the definition). 528 static EnumDecl *findEnumForBlockReturn(Expr *E) { 529 // An expression is an enumerator-like expression of type T if, 530 // ignoring parens and parens-like expressions: 531 E = E->IgnoreParens(); 532 533 // - it is an enumerator whose enum type is T or 534 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 535 if (EnumConstantDecl *D 536 = dyn_cast<EnumConstantDecl>(DRE->getDecl())) { 537 return cast<EnumDecl>(D->getDeclContext()); 538 } 539 return nullptr; 540 } 541 542 // - it is a comma expression whose RHS is an enumerator-like 543 // expression of type T or 544 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 545 if (BO->getOpcode() == BO_Comma) 546 return findEnumForBlockReturn(BO->getRHS()); 547 return nullptr; 548 } 549 550 // - it is a statement-expression whose value expression is an 551 // enumerator-like expression of type T or 552 if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) { 553 if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back())) 554 return findEnumForBlockReturn(last); 555 return nullptr; 556 } 557 558 // - it is a ternary conditional operator (not the GNU ?: 559 // extension) whose second and third operands are 560 // enumerator-like expressions of type T or 561 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 562 if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr())) 563 if (ED == findEnumForBlockReturn(CO->getFalseExpr())) 564 return ED; 565 return nullptr; 566 } 567 568 // (implicitly:) 569 // - it is an implicit integral conversion applied to an 570 // enumerator-like expression of type T or 571 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 572 // We can sometimes see integral conversions in valid 573 // enumerator-like expressions. 574 if (ICE->getCastKind() == CK_IntegralCast) 575 return findEnumForBlockReturn(ICE->getSubExpr()); 576 577 // Otherwise, just rely on the type. 578 } 579 580 // - it is an expression of that formal enum type. 581 if (const EnumType *ET = E->getType()->getAs<EnumType>()) { 582 return ET->getDecl(); 583 } 584 585 // Otherwise, nope. 586 return nullptr; 587 } 588 589 /// Attempt to find a type T for which the returned expression of the 590 /// given statement is an enumerator-like expression of that type. 591 static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) { 592 if (Expr *retValue = ret->getRetValue()) 593 return findEnumForBlockReturn(retValue); 594 return nullptr; 595 } 596 597 /// Attempt to find a common type T for which all of the returned 598 /// expressions in a block are enumerator-like expressions of that 599 /// type. 600 static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) { 601 ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end(); 602 603 // Try to find one for the first return. 604 EnumDecl *ED = findEnumForBlockReturn(*i); 605 if (!ED) return nullptr; 606 607 // Check that the rest of the returns have the same enum. 608 for (++i; i != e; ++i) { 609 if (findEnumForBlockReturn(*i) != ED) 610 return nullptr; 611 } 612 613 // Never infer an anonymous enum type. 614 if (!ED->hasNameForLinkage()) return nullptr; 615 616 return ED; 617 } 618 619 /// Adjust the given return statements so that they formally return 620 /// the given type. It should require, at most, an IntegralCast. 621 static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns, 622 QualType returnType) { 623 for (ArrayRef<ReturnStmt*>::iterator 624 i = returns.begin(), e = returns.end(); i != e; ++i) { 625 ReturnStmt *ret = *i; 626 Expr *retValue = ret->getRetValue(); 627 if (S.Context.hasSameType(retValue->getType(), returnType)) 628 continue; 629 630 // Right now we only support integral fixup casts. 631 assert(returnType->isIntegralOrUnscopedEnumerationType()); 632 assert(retValue->getType()->isIntegralOrUnscopedEnumerationType()); 633 634 ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue); 635 636 Expr *E = (cleanups ? cleanups->getSubExpr() : retValue); 637 E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast, E, 638 /*base path*/ nullptr, VK_PRValue, 639 FPOptionsOverride()); 640 if (cleanups) { 641 cleanups->setSubExpr(E); 642 } else { 643 ret->setRetValue(E); 644 } 645 } 646 } 647 648 void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) { 649 assert(CSI.HasImplicitReturnType); 650 // If it was ever a placeholder, it had to been deduced to DependentTy. 651 assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType()); 652 assert((!isa<LambdaScopeInfo>(CSI) || !getLangOpts().CPlusPlus14) && 653 "lambda expressions use auto deduction in C++14 onwards"); 654 655 // C++ core issue 975: 656 // If a lambda-expression does not include a trailing-return-type, 657 // it is as if the trailing-return-type denotes the following type: 658 // - if there are no return statements in the compound-statement, 659 // or all return statements return either an expression of type 660 // void or no expression or braced-init-list, the type void; 661 // - otherwise, if all return statements return an expression 662 // and the types of the returned expressions after 663 // lvalue-to-rvalue conversion (4.1 [conv.lval]), 664 // array-to-pointer conversion (4.2 [conv.array]), and 665 // function-to-pointer conversion (4.3 [conv.func]) are the 666 // same, that common type; 667 // - otherwise, the program is ill-formed. 668 // 669 // C++ core issue 1048 additionally removes top-level cv-qualifiers 670 // from the types of returned expressions to match the C++14 auto 671 // deduction rules. 672 // 673 // In addition, in blocks in non-C++ modes, if all of the return 674 // statements are enumerator-like expressions of some type T, where 675 // T has a name for linkage, then we infer the return type of the 676 // block to be that type. 677 678 // First case: no return statements, implicit void return type. 679 ASTContext &Ctx = getASTContext(); 680 if (CSI.Returns.empty()) { 681 // It's possible there were simply no /valid/ return statements. 682 // In this case, the first one we found may have at least given us a type. 683 if (CSI.ReturnType.isNull()) 684 CSI.ReturnType = Ctx.VoidTy; 685 return; 686 } 687 688 // Second case: at least one return statement has dependent type. 689 // Delay type checking until instantiation. 690 assert(!CSI.ReturnType.isNull() && "We should have a tentative return type."); 691 if (CSI.ReturnType->isDependentType()) 692 return; 693 694 // Try to apply the enum-fuzz rule. 695 if (!getLangOpts().CPlusPlus) { 696 assert(isa<BlockScopeInfo>(CSI)); 697 const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns); 698 if (ED) { 699 CSI.ReturnType = Context.getTypeDeclType(ED); 700 adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType); 701 return; 702 } 703 } 704 705 // Third case: only one return statement. Don't bother doing extra work! 706 if (CSI.Returns.size() == 1) 707 return; 708 709 // General case: many return statements. 710 // Check that they all have compatible return types. 711 712 // We require the return types to strictly match here. 713 // Note that we've already done the required promotions as part of 714 // processing the return statement. 715 for (const ReturnStmt *RS : CSI.Returns) { 716 const Expr *RetE = RS->getRetValue(); 717 718 QualType ReturnType = 719 (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType(); 720 if (Context.getCanonicalFunctionResultType(ReturnType) == 721 Context.getCanonicalFunctionResultType(CSI.ReturnType)) { 722 // Use the return type with the strictest possible nullability annotation. 723 auto RetTyNullability = ReturnType->getNullability(); 724 auto BlockNullability = CSI.ReturnType->getNullability(); 725 if (BlockNullability && 726 (!RetTyNullability || 727 hasWeakerNullability(*RetTyNullability, *BlockNullability))) 728 CSI.ReturnType = ReturnType; 729 continue; 730 } 731 732 // FIXME: This is a poor diagnostic for ReturnStmts without expressions. 733 // TODO: It's possible that the *first* return is the divergent one. 734 Diag(RS->getBeginLoc(), 735 diag::err_typecheck_missing_return_type_incompatible) 736 << ReturnType << CSI.ReturnType << isa<LambdaScopeInfo>(CSI); 737 // Continue iterating so that we keep emitting diagnostics. 738 } 739 } 740 741 QualType Sema::buildLambdaInitCaptureInitialization( 742 SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc, 743 std::optional<unsigned> NumExpansions, IdentifierInfo *Id, 744 bool IsDirectInit, Expr *&Init) { 745 // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to 746 // deduce against. 747 QualType DeductType = Context.getAutoDeductType(); 748 TypeLocBuilder TLB; 749 AutoTypeLoc TL = TLB.push<AutoTypeLoc>(DeductType); 750 TL.setNameLoc(Loc); 751 if (ByRef) { 752 DeductType = BuildReferenceType(DeductType, true, Loc, Id); 753 assert(!DeductType.isNull() && "can't build reference to auto"); 754 TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc); 755 } 756 if (EllipsisLoc.isValid()) { 757 if (Init->containsUnexpandedParameterPack()) { 758 Diag(EllipsisLoc, getLangOpts().CPlusPlus20 759 ? diag::warn_cxx17_compat_init_capture_pack 760 : diag::ext_init_capture_pack); 761 DeductType = Context.getPackExpansionType(DeductType, NumExpansions, 762 /*ExpectPackInType=*/false); 763 TLB.push<PackExpansionTypeLoc>(DeductType).setEllipsisLoc(EllipsisLoc); 764 } else { 765 // Just ignore the ellipsis for now and form a non-pack variable. We'll 766 // diagnose this later when we try to capture it. 767 } 768 } 769 TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType); 770 771 // Deduce the type of the init capture. 772 QualType DeducedType = deduceVarTypeFromInitializer( 773 /*VarDecl*/nullptr, DeclarationName(Id), DeductType, TSI, 774 SourceRange(Loc, Loc), IsDirectInit, Init); 775 if (DeducedType.isNull()) 776 return QualType(); 777 778 // Are we a non-list direct initialization? 779 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init); 780 781 // Perform initialization analysis and ensure any implicit conversions 782 // (such as lvalue-to-rvalue) are enforced. 783 InitializedEntity Entity = 784 InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc); 785 InitializationKind Kind = 786 IsDirectInit 787 ? (CXXDirectInit ? InitializationKind::CreateDirect( 788 Loc, Init->getBeginLoc(), Init->getEndLoc()) 789 : InitializationKind::CreateDirectList(Loc)) 790 : InitializationKind::CreateCopy(Loc, Init->getBeginLoc()); 791 792 MultiExprArg Args = Init; 793 if (CXXDirectInit) 794 Args = 795 MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs()); 796 QualType DclT; 797 InitializationSequence InitSeq(*this, Entity, Kind, Args); 798 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT); 799 800 if (Result.isInvalid()) 801 return QualType(); 802 803 Init = Result.getAs<Expr>(); 804 return DeducedType; 805 } 806 807 VarDecl *Sema::createLambdaInitCaptureVarDecl( 808 SourceLocation Loc, QualType InitCaptureType, SourceLocation EllipsisLoc, 809 IdentifierInfo *Id, unsigned InitStyle, Expr *Init, DeclContext *DeclCtx) { 810 // FIXME: Retain the TypeSourceInfo from buildLambdaInitCaptureInitialization 811 // rather than reconstructing it here. 812 TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType, Loc); 813 if (auto PETL = TSI->getTypeLoc().getAs<PackExpansionTypeLoc>()) 814 PETL.setEllipsisLoc(EllipsisLoc); 815 816 // Create a dummy variable representing the init-capture. This is not actually 817 // used as a variable, and only exists as a way to name and refer to the 818 // init-capture. 819 // FIXME: Pass in separate source locations for '&' and identifier. 820 VarDecl *NewVD = VarDecl::Create(Context, DeclCtx, Loc, Loc, Id, 821 InitCaptureType, TSI, SC_Auto); 822 NewVD->setInitCapture(true); 823 NewVD->setReferenced(true); 824 // FIXME: Pass in a VarDecl::InitializationStyle. 825 NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle)); 826 NewVD->markUsed(Context); 827 NewVD->setInit(Init); 828 if (NewVD->isParameterPack()) 829 getCurLambda()->LocalPacks.push_back(NewVD); 830 return NewVD; 831 } 832 833 void Sema::addInitCapture(LambdaScopeInfo *LSI, VarDecl *Var, bool ByRef) { 834 assert(Var->isInitCapture() && "init capture flag should be set"); 835 LSI->addCapture(Var, /*isBlock=*/false, ByRef, 836 /*isNested=*/false, Var->getLocation(), SourceLocation(), 837 Var->getType(), /*Invalid=*/false); 838 } 839 840 // Unlike getCurLambda, getCurrentLambdaScopeUnsafe doesn't 841 // check that the current lambda is in a consistent or fully constructed state. 842 static LambdaScopeInfo *getCurrentLambdaScopeUnsafe(Sema &S) { 843 assert(!S.FunctionScopes.empty()); 844 return cast<LambdaScopeInfo>(S.FunctionScopes[S.FunctionScopes.size() - 1]); 845 } 846 847 static TypeSourceInfo * 848 getDummyLambdaType(Sema &S, SourceLocation Loc = SourceLocation()) { 849 // C++11 [expr.prim.lambda]p4: 850 // If a lambda-expression does not include a lambda-declarator, it is as 851 // if the lambda-declarator were (). 852 FunctionProtoType::ExtProtoInfo EPI(S.Context.getDefaultCallingConvention( 853 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 854 EPI.HasTrailingReturn = true; 855 EPI.TypeQuals.addConst(); 856 LangAS AS = S.getDefaultCXXMethodAddrSpace(); 857 if (AS != LangAS::Default) 858 EPI.TypeQuals.addAddressSpace(AS); 859 860 // C++1y [expr.prim.lambda]: 861 // The lambda return type is 'auto', which is replaced by the 862 // trailing-return type if provided and/or deduced from 'return' 863 // statements 864 // We don't do this before C++1y, because we don't support deduced return 865 // types there. 866 QualType DefaultTypeForNoTrailingReturn = S.getLangOpts().CPlusPlus14 867 ? S.Context.getAutoDeductType() 868 : S.Context.DependentTy; 869 QualType MethodTy = S.Context.getFunctionType(DefaultTypeForNoTrailingReturn, 870 std::nullopt, EPI); 871 return S.Context.getTrivialTypeSourceInfo(MethodTy, Loc); 872 } 873 874 static TypeSourceInfo *getLambdaType(Sema &S, LambdaIntroducer &Intro, 875 Declarator &ParamInfo, Scope *CurScope, 876 SourceLocation Loc, 877 bool &ExplicitResultType) { 878 879 ExplicitResultType = false; 880 881 assert( 882 (ParamInfo.getDeclSpec().getStorageClassSpec() == 883 DeclSpec::SCS_unspecified || 884 ParamInfo.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static) && 885 "Unexpected storage specifier"); 886 bool IsLambdaStatic = 887 ParamInfo.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static; 888 889 TypeSourceInfo *MethodTyInfo; 890 891 if (ParamInfo.getNumTypeObjects() == 0) { 892 MethodTyInfo = getDummyLambdaType(S, Loc); 893 } else { 894 // Check explicit parameters 895 S.CheckExplicitObjectLambda(ParamInfo); 896 897 DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo(); 898 899 bool HasExplicitObjectParameter = 900 ParamInfo.isExplicitObjectMemberFunction(); 901 902 ExplicitResultType = FTI.hasTrailingReturnType(); 903 if (!FTI.hasMutableQualifier() && !IsLambdaStatic && 904 !HasExplicitObjectParameter) 905 FTI.getOrCreateMethodQualifiers().SetTypeQual(DeclSpec::TQ_const, Loc); 906 907 if (ExplicitResultType && S.getLangOpts().HLSL) { 908 QualType RetTy = FTI.getTrailingReturnType().get(); 909 if (!RetTy.isNull()) { 910 // HLSL does not support specifying an address space on a lambda return 911 // type. 912 LangAS AddressSpace = RetTy.getAddressSpace(); 913 if (AddressSpace != LangAS::Default) 914 S.Diag(FTI.getTrailingReturnTypeLoc(), 915 diag::err_return_value_with_address_space); 916 } 917 } 918 919 MethodTyInfo = S.GetTypeForDeclarator(ParamInfo); 920 assert(MethodTyInfo && "no type from lambda-declarator"); 921 922 // Check for unexpanded parameter packs in the method type. 923 if (MethodTyInfo->getType()->containsUnexpandedParameterPack()) 924 S.DiagnoseUnexpandedParameterPack(Intro.Range.getBegin(), MethodTyInfo, 925 S.UPPC_DeclarationType); 926 } 927 return MethodTyInfo; 928 } 929 930 CXXMethodDecl *Sema::CreateLambdaCallOperator(SourceRange IntroducerRange, 931 CXXRecordDecl *Class) { 932 933 // C++20 [expr.prim.lambda.closure]p3: 934 // The closure type for a lambda-expression has a public inline function 935 // call operator (for a non-generic lambda) or function call operator 936 // template (for a generic lambda) whose parameters and return type are 937 // described by the lambda-expression's parameter-declaration-clause 938 // and trailing-return-type respectively. 939 DeclarationName MethodName = 940 Context.DeclarationNames.getCXXOperatorName(OO_Call); 941 DeclarationNameLoc MethodNameLoc = 942 DeclarationNameLoc::makeCXXOperatorNameLoc(IntroducerRange.getBegin()); 943 CXXMethodDecl *Method = CXXMethodDecl::Create( 944 Context, Class, SourceLocation(), 945 DeclarationNameInfo(MethodName, IntroducerRange.getBegin(), 946 MethodNameLoc), 947 QualType(), /*Tinfo=*/nullptr, SC_None, 948 getCurFPFeatures().isFPConstrained(), 949 /*isInline=*/true, ConstexprSpecKind::Unspecified, SourceLocation(), 950 /*TrailingRequiresClause=*/nullptr); 951 Method->setAccess(AS_public); 952 return Method; 953 } 954 955 void Sema::AddTemplateParametersToLambdaCallOperator( 956 CXXMethodDecl *CallOperator, CXXRecordDecl *Class, 957 TemplateParameterList *TemplateParams) { 958 assert(TemplateParams && "no template parameters"); 959 FunctionTemplateDecl *TemplateMethod = FunctionTemplateDecl::Create( 960 Context, Class, CallOperator->getLocation(), CallOperator->getDeclName(), 961 TemplateParams, CallOperator); 962 TemplateMethod->setAccess(AS_public); 963 CallOperator->setDescribedFunctionTemplate(TemplateMethod); 964 } 965 966 void Sema::CompleteLambdaCallOperator( 967 CXXMethodDecl *Method, SourceLocation LambdaLoc, 968 SourceLocation CallOperatorLoc, Expr *TrailingRequiresClause, 969 TypeSourceInfo *MethodTyInfo, ConstexprSpecKind ConstexprKind, 970 StorageClass SC, ArrayRef<ParmVarDecl *> Params, 971 bool HasExplicitResultType) { 972 973 LambdaScopeInfo *LSI = getCurrentLambdaScopeUnsafe(*this); 974 975 if (TrailingRequiresClause) 976 Method->setTrailingRequiresClause(TrailingRequiresClause); 977 978 TemplateParameterList *TemplateParams = 979 getGenericLambdaTemplateParameterList(LSI, *this); 980 981 DeclContext *DC = Method->getLexicalDeclContext(); 982 Method->setLexicalDeclContext(LSI->Lambda); 983 if (TemplateParams) { 984 FunctionTemplateDecl *TemplateMethod = 985 Method->getDescribedFunctionTemplate(); 986 assert(TemplateMethod && 987 "AddTemplateParametersToLambdaCallOperator should have been called"); 988 989 LSI->Lambda->addDecl(TemplateMethod); 990 TemplateMethod->setLexicalDeclContext(DC); 991 } else { 992 LSI->Lambda->addDecl(Method); 993 } 994 LSI->Lambda->setLambdaIsGeneric(TemplateParams); 995 LSI->Lambda->setLambdaTypeInfo(MethodTyInfo); 996 997 Method->setLexicalDeclContext(DC); 998 Method->setLocation(LambdaLoc); 999 Method->setInnerLocStart(CallOperatorLoc); 1000 Method->setTypeSourceInfo(MethodTyInfo); 1001 Method->setType(buildTypeForLambdaCallOperator(*this, LSI->Lambda, 1002 TemplateParams, MethodTyInfo)); 1003 Method->setConstexprKind(ConstexprKind); 1004 Method->setStorageClass(SC); 1005 if (!Params.empty()) { 1006 CheckParmsForFunctionDef(Params, /*CheckParameterNames=*/false); 1007 Method->setParams(Params); 1008 for (auto P : Method->parameters()) { 1009 assert(P && "null in a parameter list"); 1010 P->setOwningFunction(Method); 1011 } 1012 } 1013 1014 buildLambdaScopeReturnType(*this, LSI, Method, HasExplicitResultType); 1015 } 1016 1017 void Sema::ActOnLambdaExpressionAfterIntroducer(LambdaIntroducer &Intro, 1018 Scope *CurrentScope) { 1019 1020 LambdaScopeInfo *LSI = getCurLambda(); 1021 assert(LSI && "LambdaScopeInfo should be on stack!"); 1022 1023 if (Intro.Default == LCD_ByCopy) 1024 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval; 1025 else if (Intro.Default == LCD_ByRef) 1026 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref; 1027 LSI->CaptureDefaultLoc = Intro.DefaultLoc; 1028 LSI->IntroducerRange = Intro.Range; 1029 LSI->AfterParameterList = false; 1030 1031 assert(LSI->NumExplicitTemplateParams == 0); 1032 1033 // Determine if we're within a context where we know that the lambda will 1034 // be dependent, because there are template parameters in scope. 1035 CXXRecordDecl::LambdaDependencyKind LambdaDependencyKind = 1036 CXXRecordDecl::LDK_Unknown; 1037 if (LSI->NumExplicitTemplateParams > 0) { 1038 Scope *TemplateParamScope = CurScope->getTemplateParamParent(); 1039 assert(TemplateParamScope && 1040 "Lambda with explicit template param list should establish a " 1041 "template param scope"); 1042 assert(TemplateParamScope->getParent()); 1043 if (TemplateParamScope->getParent()->getTemplateParamParent() != nullptr) 1044 LambdaDependencyKind = CXXRecordDecl::LDK_AlwaysDependent; 1045 } else if (CurScope->getTemplateParamParent() != nullptr) { 1046 LambdaDependencyKind = CXXRecordDecl::LDK_AlwaysDependent; 1047 } 1048 1049 CXXRecordDecl *Class = createLambdaClosureType( 1050 Intro.Range, /*Info=*/nullptr, LambdaDependencyKind, Intro.Default); 1051 LSI->Lambda = Class; 1052 1053 CXXMethodDecl *Method = CreateLambdaCallOperator(Intro.Range, Class); 1054 LSI->CallOperator = Method; 1055 Method->setLexicalDeclContext(CurContext); 1056 1057 PushDeclContext(CurScope, Method); 1058 1059 bool ContainsUnexpandedParameterPack = false; 1060 1061 // Distinct capture names, for diagnostics. 1062 llvm::DenseMap<IdentifierInfo *, ValueDecl *> CaptureNames; 1063 1064 // Handle explicit captures. 1065 SourceLocation PrevCaptureLoc = 1066 Intro.Default == LCD_None ? Intro.Range.getBegin() : Intro.DefaultLoc; 1067 for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E; 1068 PrevCaptureLoc = C->Loc, ++C) { 1069 if (C->Kind == LCK_This || C->Kind == LCK_StarThis) { 1070 if (C->Kind == LCK_StarThis) 1071 Diag(C->Loc, !getLangOpts().CPlusPlus17 1072 ? diag::ext_star_this_lambda_capture_cxx17 1073 : diag::warn_cxx14_compat_star_this_lambda_capture); 1074 1075 // C++11 [expr.prim.lambda]p8: 1076 // An identifier or this shall not appear more than once in a 1077 // lambda-capture. 1078 if (LSI->isCXXThisCaptured()) { 1079 Diag(C->Loc, diag::err_capture_more_than_once) 1080 << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation()) 1081 << FixItHint::CreateRemoval( 1082 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1083 continue; 1084 } 1085 1086 // C++20 [expr.prim.lambda]p8: 1087 // If a lambda-capture includes a capture-default that is =, 1088 // each simple-capture of that lambda-capture shall be of the form 1089 // "&identifier", "this", or "* this". [ Note: The form [&,this] is 1090 // redundant but accepted for compatibility with ISO C++14. --end note ] 1091 if (Intro.Default == LCD_ByCopy && C->Kind != LCK_StarThis) 1092 Diag(C->Loc, !getLangOpts().CPlusPlus20 1093 ? diag::ext_equals_this_lambda_capture_cxx20 1094 : diag::warn_cxx17_compat_equals_this_lambda_capture); 1095 1096 // C++11 [expr.prim.lambda]p12: 1097 // If this is captured by a local lambda expression, its nearest 1098 // enclosing function shall be a non-static member function. 1099 QualType ThisCaptureType = getCurrentThisType(); 1100 if (ThisCaptureType.isNull()) { 1101 Diag(C->Loc, diag::err_this_capture) << true; 1102 continue; 1103 } 1104 1105 CheckCXXThisCapture(C->Loc, /*Explicit=*/true, /*BuildAndDiagnose*/ true, 1106 /*FunctionScopeIndexToStopAtPtr*/ nullptr, 1107 C->Kind == LCK_StarThis); 1108 if (!LSI->Captures.empty()) 1109 LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange; 1110 continue; 1111 } 1112 1113 assert(C->Id && "missing identifier for capture"); 1114 1115 if (C->Init.isInvalid()) 1116 continue; 1117 1118 ValueDecl *Var = nullptr; 1119 if (C->Init.isUsable()) { 1120 Diag(C->Loc, getLangOpts().CPlusPlus14 1121 ? diag::warn_cxx11_compat_init_capture 1122 : diag::ext_init_capture); 1123 1124 // If the initializer expression is usable, but the InitCaptureType 1125 // is not, then an error has occurred - so ignore the capture for now. 1126 // for e.g., [n{0}] { }; <-- if no <initializer_list> is included. 1127 // FIXME: we should create the init capture variable and mark it invalid 1128 // in this case. 1129 if (C->InitCaptureType.get().isNull()) 1130 continue; 1131 1132 if (C->Init.get()->containsUnexpandedParameterPack() && 1133 !C->InitCaptureType.get()->getAs<PackExpansionType>()) 1134 DiagnoseUnexpandedParameterPack(C->Init.get(), UPPC_Initializer); 1135 1136 unsigned InitStyle; 1137 switch (C->InitKind) { 1138 case LambdaCaptureInitKind::NoInit: 1139 llvm_unreachable("not an init-capture?"); 1140 case LambdaCaptureInitKind::CopyInit: 1141 InitStyle = VarDecl::CInit; 1142 break; 1143 case LambdaCaptureInitKind::DirectInit: 1144 InitStyle = VarDecl::CallInit; 1145 break; 1146 case LambdaCaptureInitKind::ListInit: 1147 InitStyle = VarDecl::ListInit; 1148 break; 1149 } 1150 Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(), 1151 C->EllipsisLoc, C->Id, InitStyle, 1152 C->Init.get(), Method); 1153 assert(Var && "createLambdaInitCaptureVarDecl returned a null VarDecl?"); 1154 if (auto *V = dyn_cast<VarDecl>(Var)) 1155 CheckShadow(CurrentScope, V); 1156 PushOnScopeChains(Var, CurrentScope, false); 1157 } else { 1158 assert(C->InitKind == LambdaCaptureInitKind::NoInit && 1159 "init capture has valid but null init?"); 1160 1161 // C++11 [expr.prim.lambda]p8: 1162 // If a lambda-capture includes a capture-default that is &, the 1163 // identifiers in the lambda-capture shall not be preceded by &. 1164 // If a lambda-capture includes a capture-default that is =, [...] 1165 // each identifier it contains shall be preceded by &. 1166 if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) { 1167 Diag(C->Loc, diag::err_reference_capture_with_reference_default) 1168 << FixItHint::CreateRemoval( 1169 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1170 continue; 1171 } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) { 1172 Diag(C->Loc, diag::err_copy_capture_with_copy_default) 1173 << FixItHint::CreateRemoval( 1174 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1175 continue; 1176 } 1177 1178 // C++11 [expr.prim.lambda]p10: 1179 // The identifiers in a capture-list are looked up using the usual 1180 // rules for unqualified name lookup (3.4.1) 1181 DeclarationNameInfo Name(C->Id, C->Loc); 1182 LookupResult R(*this, Name, LookupOrdinaryName); 1183 LookupName(R, CurScope); 1184 if (R.isAmbiguous()) 1185 continue; 1186 if (R.empty()) { 1187 // FIXME: Disable corrections that would add qualification? 1188 CXXScopeSpec ScopeSpec; 1189 DeclFilterCCC<VarDecl> Validator{}; 1190 if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R, Validator)) 1191 continue; 1192 } 1193 1194 if (auto *BD = R.getAsSingle<BindingDecl>()) 1195 Var = BD; 1196 else 1197 Var = R.getAsSingle<VarDecl>(); 1198 if (Var && DiagnoseUseOfDecl(Var, C->Loc)) 1199 continue; 1200 } 1201 1202 // C++11 [expr.prim.lambda]p10: 1203 // [...] each such lookup shall find a variable with automatic storage 1204 // duration declared in the reaching scope of the local lambda expression. 1205 // Note that the 'reaching scope' check happens in tryCaptureVariable(). 1206 if (!Var) { 1207 Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id; 1208 continue; 1209 } 1210 1211 // C++11 [expr.prim.lambda]p8: 1212 // An identifier or this shall not appear more than once in a 1213 // lambda-capture. 1214 if (auto [It, Inserted] = CaptureNames.insert(std::pair{C->Id, Var}); 1215 !Inserted) { 1216 if (C->InitKind == LambdaCaptureInitKind::NoInit && 1217 !Var->isInitCapture()) { 1218 Diag(C->Loc, diag::err_capture_more_than_once) 1219 << C->Id << It->second->getBeginLoc() 1220 << FixItHint::CreateRemoval( 1221 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1222 Var->setInvalidDecl(); 1223 } else if (Var && Var->isPlaceholderVar(getLangOpts())) { 1224 DiagPlaceholderVariableDefinition(C->Loc); 1225 } else { 1226 // Previous capture captured something different (one or both was 1227 // an init-capture): no fixit. 1228 Diag(C->Loc, diag::err_capture_more_than_once) << C->Id; 1229 continue; 1230 } 1231 } 1232 1233 // Ignore invalid decls; they'll just confuse the code later. 1234 if (Var->isInvalidDecl()) 1235 continue; 1236 1237 VarDecl *Underlying = Var->getPotentiallyDecomposedVarDecl(); 1238 1239 if (!Underlying->hasLocalStorage()) { 1240 Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id; 1241 Diag(Var->getLocation(), diag::note_previous_decl) << C->Id; 1242 continue; 1243 } 1244 1245 // C++11 [expr.prim.lambda]p23: 1246 // A capture followed by an ellipsis is a pack expansion (14.5.3). 1247 SourceLocation EllipsisLoc; 1248 if (C->EllipsisLoc.isValid()) { 1249 if (Var->isParameterPack()) { 1250 EllipsisLoc = C->EllipsisLoc; 1251 } else { 1252 Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 1253 << (C->Init.isUsable() ? C->Init.get()->getSourceRange() 1254 : SourceRange(C->Loc)); 1255 1256 // Just ignore the ellipsis. 1257 } 1258 } else if (Var->isParameterPack()) { 1259 ContainsUnexpandedParameterPack = true; 1260 } 1261 1262 if (C->Init.isUsable()) { 1263 addInitCapture(LSI, cast<VarDecl>(Var), C->Kind == LCK_ByRef); 1264 PushOnScopeChains(Var, CurScope, false); 1265 } else { 1266 TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef 1267 : TryCapture_ExplicitByVal; 1268 tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc); 1269 } 1270 if (!LSI->Captures.empty()) 1271 LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange; 1272 } 1273 finishLambdaExplicitCaptures(LSI); 1274 LSI->ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack; 1275 PopDeclContext(); 1276 } 1277 1278 void Sema::ActOnLambdaClosureQualifiers(LambdaIntroducer &Intro, 1279 SourceLocation MutableLoc) { 1280 1281 LambdaScopeInfo *LSI = getCurrentLambdaScopeUnsafe(*this); 1282 LSI->Mutable = MutableLoc.isValid(); 1283 ContextRAII Context(*this, LSI->CallOperator, /*NewThisContext*/ false); 1284 1285 // C++11 [expr.prim.lambda]p9: 1286 // A lambda-expression whose smallest enclosing scope is a block scope is a 1287 // local lambda expression; any other lambda expression shall not have a 1288 // capture-default or simple-capture in its lambda-introducer. 1289 // 1290 // For simple-captures, this is covered by the check below that any named 1291 // entity is a variable that can be captured. 1292 // 1293 // For DR1632, we also allow a capture-default in any context where we can 1294 // odr-use 'this' (in particular, in a default initializer for a non-static 1295 // data member). 1296 if (Intro.Default != LCD_None && 1297 !LSI->Lambda->getParent()->isFunctionOrMethod() && 1298 (getCurrentThisType().isNull() || 1299 CheckCXXThisCapture(SourceLocation(), /*Explicit=*/true, 1300 /*BuildAndDiagnose=*/false))) 1301 Diag(Intro.DefaultLoc, diag::err_capture_default_non_local); 1302 } 1303 1304 void Sema::ActOnLambdaClosureParameters( 1305 Scope *LambdaScope, MutableArrayRef<DeclaratorChunk::ParamInfo> Params) { 1306 LambdaScopeInfo *LSI = getCurrentLambdaScopeUnsafe(*this); 1307 PushDeclContext(LambdaScope, LSI->CallOperator); 1308 1309 for (const DeclaratorChunk::ParamInfo &P : Params) { 1310 auto *Param = cast<ParmVarDecl>(P.Param); 1311 Param->setOwningFunction(LSI->CallOperator); 1312 if (Param->getIdentifier()) 1313 PushOnScopeChains(Param, LambdaScope, false); 1314 } 1315 1316 // After the parameter list, we may parse a noexcept/requires/trailing return 1317 // type which need to know whether the call operator constiture a dependent 1318 // context, so we need to setup the FunctionTemplateDecl of generic lambdas 1319 // now. 1320 TemplateParameterList *TemplateParams = 1321 getGenericLambdaTemplateParameterList(LSI, *this); 1322 if (TemplateParams) { 1323 AddTemplateParametersToLambdaCallOperator(LSI->CallOperator, LSI->Lambda, 1324 TemplateParams); 1325 LSI->Lambda->setLambdaIsGeneric(true); 1326 } 1327 LSI->AfterParameterList = true; 1328 } 1329 1330 void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro, 1331 Declarator &ParamInfo, 1332 const DeclSpec &DS) { 1333 1334 LambdaScopeInfo *LSI = getCurrentLambdaScopeUnsafe(*this); 1335 LSI->CallOperator->setConstexprKind(DS.getConstexprSpecifier()); 1336 1337 SmallVector<ParmVarDecl *, 8> Params; 1338 bool ExplicitResultType; 1339 1340 SourceLocation TypeLoc, CallOperatorLoc; 1341 if (ParamInfo.getNumTypeObjects() == 0) { 1342 CallOperatorLoc = TypeLoc = Intro.Range.getEnd(); 1343 } else { 1344 unsigned Index; 1345 ParamInfo.isFunctionDeclarator(Index); 1346 const auto &Object = ParamInfo.getTypeObject(Index); 1347 TypeLoc = 1348 Object.Loc.isValid() ? Object.Loc : ParamInfo.getSourceRange().getEnd(); 1349 CallOperatorLoc = ParamInfo.getSourceRange().getEnd(); 1350 } 1351 1352 CXXRecordDecl *Class = LSI->Lambda; 1353 CXXMethodDecl *Method = LSI->CallOperator; 1354 1355 TypeSourceInfo *MethodTyInfo = getLambdaType( 1356 *this, Intro, ParamInfo, getCurScope(), TypeLoc, ExplicitResultType); 1357 1358 LSI->ExplicitParams = ParamInfo.getNumTypeObjects() != 0; 1359 1360 if (ParamInfo.isFunctionDeclarator() != 0 && 1361 !FTIHasSingleVoidParameter(ParamInfo.getFunctionTypeInfo())) { 1362 const auto &FTI = ParamInfo.getFunctionTypeInfo(); 1363 Params.reserve(Params.size()); 1364 for (unsigned I = 0; I < FTI.NumParams; ++I) { 1365 auto *Param = cast<ParmVarDecl>(FTI.Params[I].Param); 1366 Param->setScopeInfo(0, Params.size()); 1367 Params.push_back(Param); 1368 } 1369 } 1370 1371 bool IsLambdaStatic = 1372 ParamInfo.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static; 1373 1374 CompleteLambdaCallOperator( 1375 Method, Intro.Range.getBegin(), CallOperatorLoc, 1376 ParamInfo.getTrailingRequiresClause(), MethodTyInfo, 1377 ParamInfo.getDeclSpec().getConstexprSpecifier(), 1378 IsLambdaStatic ? SC_Static : SC_None, Params, ExplicitResultType); 1379 1380 CheckCXXDefaultArguments(Method); 1381 1382 // This represents the function body for the lambda function, check if we 1383 // have to apply optnone due to a pragma. 1384 AddRangeBasedOptnone(Method); 1385 1386 // code_seg attribute on lambda apply to the method. 1387 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction( 1388 Method, /*IsDefinition=*/true)) 1389 Method->addAttr(A); 1390 1391 // Attributes on the lambda apply to the method. 1392 ProcessDeclAttributes(CurScope, Method, ParamInfo); 1393 1394 // CUDA lambdas get implicit host and device attributes. 1395 if (getLangOpts().CUDA) 1396 CUDASetLambdaAttrs(Method); 1397 1398 // OpenMP lambdas might get assumumption attributes. 1399 if (LangOpts.OpenMP) 1400 ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(Method); 1401 1402 handleLambdaNumbering(Class, Method); 1403 1404 for (auto &&C : LSI->Captures) { 1405 if (!C.isVariableCapture()) 1406 continue; 1407 ValueDecl *Var = C.getVariable(); 1408 if (Var && Var->isInitCapture()) { 1409 PushOnScopeChains(Var, CurScope, false); 1410 } 1411 } 1412 1413 auto CheckRedefinition = [&](ParmVarDecl *Param) { 1414 for (const auto &Capture : Intro.Captures) { 1415 if (Capture.Id == Param->getIdentifier()) { 1416 Diag(Param->getLocation(), diag::err_parameter_shadow_capture); 1417 Diag(Capture.Loc, diag::note_var_explicitly_captured_here) 1418 << Capture.Id << true; 1419 return false; 1420 } 1421 } 1422 return true; 1423 }; 1424 1425 for (ParmVarDecl *P : Params) { 1426 if (!P->getIdentifier()) 1427 continue; 1428 if (CheckRedefinition(P)) 1429 CheckShadow(CurScope, P); 1430 PushOnScopeChains(P, CurScope); 1431 } 1432 1433 // C++23 [expr.prim.lambda.capture]p5: 1434 // If an identifier in a capture appears as the declarator-id of a parameter 1435 // of the lambda-declarator's parameter-declaration-clause or as the name of a 1436 // template parameter of the lambda-expression's template-parameter-list, the 1437 // program is ill-formed. 1438 TemplateParameterList *TemplateParams = 1439 getGenericLambdaTemplateParameterList(LSI, *this); 1440 if (TemplateParams) { 1441 for (const auto *TP : TemplateParams->asArray()) { 1442 if (!TP->getIdentifier()) 1443 continue; 1444 for (const auto &Capture : Intro.Captures) { 1445 if (Capture.Id == TP->getIdentifier()) { 1446 Diag(Capture.Loc, diag::err_template_param_shadow) << Capture.Id; 1447 NoteTemplateParameterLocation(*TP); 1448 } 1449 } 1450 } 1451 } 1452 1453 // C++20: dcl.decl.general p4: 1454 // The optional requires-clause ([temp.pre]) in an init-declarator or 1455 // member-declarator shall be present only if the declarator declares a 1456 // templated function ([dcl.fct]). 1457 if (Expr *TRC = Method->getTrailingRequiresClause()) { 1458 // [temp.pre]/8: 1459 // An entity is templated if it is 1460 // - a template, 1461 // - an entity defined ([basic.def]) or created ([class.temporary]) in a 1462 // templated entity, 1463 // - a member of a templated entity, 1464 // - an enumerator for an enumeration that is a templated entity, or 1465 // - the closure type of a lambda-expression ([expr.prim.lambda.closure]) 1466 // appearing in the declaration of a templated entity. [Note 6: A local 1467 // class, a local or block variable, or a friend function defined in a 1468 // templated entity is a templated entity. — end note] 1469 // 1470 // A templated function is a function template or a function that is 1471 // templated. A templated class is a class template or a class that is 1472 // templated. A templated variable is a variable template or a variable 1473 // that is templated. 1474 1475 // Note: we only have to check if this is defined in a template entity, OR 1476 // if we are a template, since the rest don't apply. The requires clause 1477 // applies to the call operator, which we already know is a member function, 1478 // AND defined. 1479 if (!Method->getDescribedFunctionTemplate() && !Method->isTemplated()) { 1480 Diag(TRC->getBeginLoc(), diag::err_constrained_non_templated_function); 1481 } 1482 } 1483 1484 // Enter a new evaluation context to insulate the lambda from any 1485 // cleanups from the enclosing full-expression. 1486 PushExpressionEvaluationContext( 1487 LSI->CallOperator->isConsteval() 1488 ? ExpressionEvaluationContext::ImmediateFunctionContext 1489 : ExpressionEvaluationContext::PotentiallyEvaluated); 1490 ExprEvalContexts.back().InImmediateFunctionContext = 1491 LSI->CallOperator->isConsteval(); 1492 ExprEvalContexts.back().InImmediateEscalatingFunctionContext = 1493 getLangOpts().CPlusPlus20 && LSI->CallOperator->isImmediateEscalating(); 1494 } 1495 1496 void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope, 1497 bool IsInstantiation) { 1498 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back()); 1499 1500 // Leave the expression-evaluation context. 1501 DiscardCleanupsInEvaluationContext(); 1502 PopExpressionEvaluationContext(); 1503 1504 // Leave the context of the lambda. 1505 if (!IsInstantiation) 1506 PopDeclContext(); 1507 1508 // Finalize the lambda. 1509 CXXRecordDecl *Class = LSI->Lambda; 1510 Class->setInvalidDecl(); 1511 SmallVector<Decl*, 4> Fields(Class->fields()); 1512 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(), 1513 SourceLocation(), ParsedAttributesView()); 1514 CheckCompletedCXXClass(nullptr, Class); 1515 1516 PopFunctionScopeInfo(); 1517 } 1518 1519 template <typename Func> 1520 static void repeatForLambdaConversionFunctionCallingConvs( 1521 Sema &S, const FunctionProtoType &CallOpProto, Func F) { 1522 CallingConv DefaultFree = S.Context.getDefaultCallingConvention( 1523 CallOpProto.isVariadic(), /*IsCXXMethod=*/false); 1524 CallingConv DefaultMember = S.Context.getDefaultCallingConvention( 1525 CallOpProto.isVariadic(), /*IsCXXMethod=*/true); 1526 CallingConv CallOpCC = CallOpProto.getCallConv(); 1527 1528 /// Implement emitting a version of the operator for many of the calling 1529 /// conventions for MSVC, as described here: 1530 /// https://devblogs.microsoft.com/oldnewthing/20150220-00/?p=44623. 1531 /// Experimentally, we determined that cdecl, stdcall, fastcall, and 1532 /// vectorcall are generated by MSVC when it is supported by the target. 1533 /// Additionally, we are ensuring that the default-free/default-member and 1534 /// call-operator calling convention are generated as well. 1535 /// NOTE: We intentionally generate a 'thiscall' on Win32 implicitly from the 1536 /// 'member default', despite MSVC not doing so. We do this in order to ensure 1537 /// that someone who intentionally places 'thiscall' on the lambda call 1538 /// operator will still get that overload, since we don't have the a way of 1539 /// detecting the attribute by the time we get here. 1540 if (S.getLangOpts().MSVCCompat) { 1541 CallingConv Convs[] = { 1542 CC_C, CC_X86StdCall, CC_X86FastCall, CC_X86VectorCall, 1543 DefaultFree, DefaultMember, CallOpCC}; 1544 llvm::sort(Convs); 1545 llvm::iterator_range<CallingConv *> Range( 1546 std::begin(Convs), std::unique(std::begin(Convs), std::end(Convs))); 1547 const TargetInfo &TI = S.getASTContext().getTargetInfo(); 1548 1549 for (CallingConv C : Range) { 1550 if (TI.checkCallingConvention(C) == TargetInfo::CCCR_OK) 1551 F(C); 1552 } 1553 return; 1554 } 1555 1556 if (CallOpCC == DefaultMember && DefaultMember != DefaultFree) { 1557 F(DefaultFree); 1558 F(DefaultMember); 1559 } else { 1560 F(CallOpCC); 1561 } 1562 } 1563 1564 // Returns the 'standard' calling convention to be used for the lambda 1565 // conversion function, that is, the 'free' function calling convention unless 1566 // it is overridden by a non-default calling convention attribute. 1567 static CallingConv 1568 getLambdaConversionFunctionCallConv(Sema &S, 1569 const FunctionProtoType *CallOpProto) { 1570 CallingConv DefaultFree = S.Context.getDefaultCallingConvention( 1571 CallOpProto->isVariadic(), /*IsCXXMethod=*/false); 1572 CallingConv DefaultMember = S.Context.getDefaultCallingConvention( 1573 CallOpProto->isVariadic(), /*IsCXXMethod=*/true); 1574 CallingConv CallOpCC = CallOpProto->getCallConv(); 1575 1576 // If the call-operator hasn't been changed, return both the 'free' and 1577 // 'member' function calling convention. 1578 if (CallOpCC == DefaultMember && DefaultMember != DefaultFree) 1579 return DefaultFree; 1580 return CallOpCC; 1581 } 1582 1583 QualType Sema::getLambdaConversionFunctionResultType( 1584 const FunctionProtoType *CallOpProto, CallingConv CC) { 1585 const FunctionProtoType::ExtProtoInfo CallOpExtInfo = 1586 CallOpProto->getExtProtoInfo(); 1587 FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo; 1588 InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC); 1589 InvokerExtInfo.TypeQuals = Qualifiers(); 1590 assert(InvokerExtInfo.RefQualifier == RQ_None && 1591 "Lambda's call operator should not have a reference qualifier"); 1592 return Context.getFunctionType(CallOpProto->getReturnType(), 1593 CallOpProto->getParamTypes(), InvokerExtInfo); 1594 } 1595 1596 /// Add a lambda's conversion to function pointer, as described in 1597 /// C++11 [expr.prim.lambda]p6. 1598 static void addFunctionPointerConversion(Sema &S, SourceRange IntroducerRange, 1599 CXXRecordDecl *Class, 1600 CXXMethodDecl *CallOperator, 1601 QualType InvokerFunctionTy) { 1602 // This conversion is explicitly disabled if the lambda's function has 1603 // pass_object_size attributes on any of its parameters. 1604 auto HasPassObjectSizeAttr = [](const ParmVarDecl *P) { 1605 return P->hasAttr<PassObjectSizeAttr>(); 1606 }; 1607 if (llvm::any_of(CallOperator->parameters(), HasPassObjectSizeAttr)) 1608 return; 1609 1610 // Add the conversion to function pointer. 1611 QualType PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy); 1612 1613 // Create the type of the conversion function. 1614 FunctionProtoType::ExtProtoInfo ConvExtInfo( 1615 S.Context.getDefaultCallingConvention( 1616 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 1617 // The conversion function is always const and noexcept. 1618 ConvExtInfo.TypeQuals = Qualifiers(); 1619 ConvExtInfo.TypeQuals.addConst(); 1620 ConvExtInfo.ExceptionSpec.Type = EST_BasicNoexcept; 1621 QualType ConvTy = 1622 S.Context.getFunctionType(PtrToFunctionTy, std::nullopt, ConvExtInfo); 1623 1624 SourceLocation Loc = IntroducerRange.getBegin(); 1625 DeclarationName ConversionName 1626 = S.Context.DeclarationNames.getCXXConversionFunctionName( 1627 S.Context.getCanonicalType(PtrToFunctionTy)); 1628 // Construct a TypeSourceInfo for the conversion function, and wire 1629 // all the parameters appropriately for the FunctionProtoTypeLoc 1630 // so that everything works during transformation/instantiation of 1631 // generic lambdas. 1632 // The main reason for wiring up the parameters of the conversion 1633 // function with that of the call operator is so that constructs 1634 // like the following work: 1635 // auto L = [](auto b) { <-- 1 1636 // return [](auto a) -> decltype(a) { <-- 2 1637 // return a; 1638 // }; 1639 // }; 1640 // int (*fp)(int) = L(5); 1641 // Because the trailing return type can contain DeclRefExprs that refer 1642 // to the original call operator's variables, we hijack the call 1643 // operators ParmVarDecls below. 1644 TypeSourceInfo *ConvNamePtrToFunctionTSI = 1645 S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc); 1646 DeclarationNameLoc ConvNameLoc = 1647 DeclarationNameLoc::makeNamedTypeLoc(ConvNamePtrToFunctionTSI); 1648 1649 // The conversion function is a conversion to a pointer-to-function. 1650 TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc); 1651 FunctionProtoTypeLoc ConvTL = 1652 ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>(); 1653 // Get the result of the conversion function which is a pointer-to-function. 1654 PointerTypeLoc PtrToFunctionTL = 1655 ConvTL.getReturnLoc().getAs<PointerTypeLoc>(); 1656 // Do the same for the TypeSourceInfo that is used to name the conversion 1657 // operator. 1658 PointerTypeLoc ConvNamePtrToFunctionTL = 1659 ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>(); 1660 1661 // Get the underlying function types that the conversion function will 1662 // be converting to (should match the type of the call operator). 1663 FunctionProtoTypeLoc CallOpConvTL = 1664 PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>(); 1665 FunctionProtoTypeLoc CallOpConvNameTL = 1666 ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>(); 1667 1668 // Wire up the FunctionProtoTypeLocs with the call operator's parameters. 1669 // These parameter's are essentially used to transform the name and 1670 // the type of the conversion operator. By using the same parameters 1671 // as the call operator's we don't have to fix any back references that 1672 // the trailing return type of the call operator's uses (such as 1673 // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.) 1674 // - we can simply use the return type of the call operator, and 1675 // everything should work. 1676 SmallVector<ParmVarDecl *, 4> InvokerParams; 1677 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) { 1678 ParmVarDecl *From = CallOperator->getParamDecl(I); 1679 1680 InvokerParams.push_back(ParmVarDecl::Create( 1681 S.Context, 1682 // Temporarily add to the TU. This is set to the invoker below. 1683 S.Context.getTranslationUnitDecl(), From->getBeginLoc(), 1684 From->getLocation(), From->getIdentifier(), From->getType(), 1685 From->getTypeSourceInfo(), From->getStorageClass(), 1686 /*DefArg=*/nullptr)); 1687 CallOpConvTL.setParam(I, From); 1688 CallOpConvNameTL.setParam(I, From); 1689 } 1690 1691 CXXConversionDecl *Conversion = CXXConversionDecl::Create( 1692 S.Context, Class, Loc, 1693 DeclarationNameInfo(ConversionName, Loc, ConvNameLoc), ConvTy, ConvTSI, 1694 S.getCurFPFeatures().isFPConstrained(), 1695 /*isInline=*/true, ExplicitSpecifier(), 1696 S.getLangOpts().CPlusPlus17 ? ConstexprSpecKind::Constexpr 1697 : ConstexprSpecKind::Unspecified, 1698 CallOperator->getBody()->getEndLoc()); 1699 Conversion->setAccess(AS_public); 1700 Conversion->setImplicit(true); 1701 1702 // A non-generic lambda may still be a templated entity. We need to preserve 1703 // constraints when converting the lambda to a function pointer. See GH63181. 1704 if (Expr *Requires = CallOperator->getTrailingRequiresClause()) 1705 Conversion->setTrailingRequiresClause(Requires); 1706 1707 if (Class->isGenericLambda()) { 1708 // Create a template version of the conversion operator, using the template 1709 // parameter list of the function call operator. 1710 FunctionTemplateDecl *TemplateCallOperator = 1711 CallOperator->getDescribedFunctionTemplate(); 1712 FunctionTemplateDecl *ConversionTemplate = 1713 FunctionTemplateDecl::Create(S.Context, Class, 1714 Loc, ConversionName, 1715 TemplateCallOperator->getTemplateParameters(), 1716 Conversion); 1717 ConversionTemplate->setAccess(AS_public); 1718 ConversionTemplate->setImplicit(true); 1719 Conversion->setDescribedFunctionTemplate(ConversionTemplate); 1720 Class->addDecl(ConversionTemplate); 1721 } else 1722 Class->addDecl(Conversion); 1723 1724 // If the lambda is not static, we need to add a static member 1725 // function that will be the result of the conversion with a 1726 // certain unique ID. 1727 // When it is static we just return the static call operator instead. 1728 if (CallOperator->isImplicitObjectMemberFunction()) { 1729 DeclarationName InvokerName = 1730 &S.Context.Idents.get(getLambdaStaticInvokerName()); 1731 // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo() 1732 // we should get a prebuilt TrivialTypeSourceInfo from Context 1733 // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc 1734 // then rewire the parameters accordingly, by hoisting up the InvokeParams 1735 // loop below and then use its Params to set Invoke->setParams(...) below. 1736 // This would avoid the 'const' qualifier of the calloperator from 1737 // contaminating the type of the invoker, which is currently adjusted 1738 // in SemaTemplateDeduction.cpp:DeduceTemplateArguments. Fixing the 1739 // trailing return type of the invoker would require a visitor to rebuild 1740 // the trailing return type and adjusting all back DeclRefExpr's to refer 1741 // to the new static invoker parameters - not the call operator's. 1742 CXXMethodDecl *Invoke = CXXMethodDecl::Create( 1743 S.Context, Class, Loc, DeclarationNameInfo(InvokerName, Loc), 1744 InvokerFunctionTy, CallOperator->getTypeSourceInfo(), SC_Static, 1745 S.getCurFPFeatures().isFPConstrained(), 1746 /*isInline=*/true, CallOperator->getConstexprKind(), 1747 CallOperator->getBody()->getEndLoc()); 1748 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) 1749 InvokerParams[I]->setOwningFunction(Invoke); 1750 Invoke->setParams(InvokerParams); 1751 Invoke->setAccess(AS_private); 1752 Invoke->setImplicit(true); 1753 if (Class->isGenericLambda()) { 1754 FunctionTemplateDecl *TemplateCallOperator = 1755 CallOperator->getDescribedFunctionTemplate(); 1756 FunctionTemplateDecl *StaticInvokerTemplate = 1757 FunctionTemplateDecl::Create( 1758 S.Context, Class, Loc, InvokerName, 1759 TemplateCallOperator->getTemplateParameters(), Invoke); 1760 StaticInvokerTemplate->setAccess(AS_private); 1761 StaticInvokerTemplate->setImplicit(true); 1762 Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate); 1763 Class->addDecl(StaticInvokerTemplate); 1764 } else 1765 Class->addDecl(Invoke); 1766 } 1767 } 1768 1769 /// Add a lambda's conversion to function pointers, as described in 1770 /// C++11 [expr.prim.lambda]p6. Note that in most cases, this should emit only a 1771 /// single pointer conversion. In the event that the default calling convention 1772 /// for free and member functions is different, it will emit both conventions. 1773 static void addFunctionPointerConversions(Sema &S, SourceRange IntroducerRange, 1774 CXXRecordDecl *Class, 1775 CXXMethodDecl *CallOperator) { 1776 const FunctionProtoType *CallOpProto = 1777 CallOperator->getType()->castAs<FunctionProtoType>(); 1778 1779 repeatForLambdaConversionFunctionCallingConvs( 1780 S, *CallOpProto, [&](CallingConv CC) { 1781 QualType InvokerFunctionTy = 1782 S.getLambdaConversionFunctionResultType(CallOpProto, CC); 1783 addFunctionPointerConversion(S, IntroducerRange, Class, CallOperator, 1784 InvokerFunctionTy); 1785 }); 1786 } 1787 1788 /// Add a lambda's conversion to block pointer. 1789 static void addBlockPointerConversion(Sema &S, 1790 SourceRange IntroducerRange, 1791 CXXRecordDecl *Class, 1792 CXXMethodDecl *CallOperator) { 1793 const FunctionProtoType *CallOpProto = 1794 CallOperator->getType()->castAs<FunctionProtoType>(); 1795 QualType FunctionTy = S.getLambdaConversionFunctionResultType( 1796 CallOpProto, getLambdaConversionFunctionCallConv(S, CallOpProto)); 1797 QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy); 1798 1799 FunctionProtoType::ExtProtoInfo ConversionEPI( 1800 S.Context.getDefaultCallingConvention( 1801 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 1802 ConversionEPI.TypeQuals = Qualifiers(); 1803 ConversionEPI.TypeQuals.addConst(); 1804 QualType ConvTy = 1805 S.Context.getFunctionType(BlockPtrTy, std::nullopt, ConversionEPI); 1806 1807 SourceLocation Loc = IntroducerRange.getBegin(); 1808 DeclarationName Name 1809 = S.Context.DeclarationNames.getCXXConversionFunctionName( 1810 S.Context.getCanonicalType(BlockPtrTy)); 1811 DeclarationNameLoc NameLoc = DeclarationNameLoc::makeNamedTypeLoc( 1812 S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc)); 1813 CXXConversionDecl *Conversion = CXXConversionDecl::Create( 1814 S.Context, Class, Loc, DeclarationNameInfo(Name, Loc, NameLoc), ConvTy, 1815 S.Context.getTrivialTypeSourceInfo(ConvTy, Loc), 1816 S.getCurFPFeatures().isFPConstrained(), 1817 /*isInline=*/true, ExplicitSpecifier(), ConstexprSpecKind::Unspecified, 1818 CallOperator->getBody()->getEndLoc()); 1819 Conversion->setAccess(AS_public); 1820 Conversion->setImplicit(true); 1821 Class->addDecl(Conversion); 1822 } 1823 1824 ExprResult Sema::BuildCaptureInit(const Capture &Cap, 1825 SourceLocation ImplicitCaptureLoc, 1826 bool IsOpenMPMapping) { 1827 // VLA captures don't have a stored initialization expression. 1828 if (Cap.isVLATypeCapture()) 1829 return ExprResult(); 1830 1831 // An init-capture is initialized directly from its stored initializer. 1832 if (Cap.isInitCapture()) 1833 return cast<VarDecl>(Cap.getVariable())->getInit(); 1834 1835 // For anything else, build an initialization expression. For an implicit 1836 // capture, the capture notionally happens at the capture-default, so use 1837 // that location here. 1838 SourceLocation Loc = 1839 ImplicitCaptureLoc.isValid() ? ImplicitCaptureLoc : Cap.getLocation(); 1840 1841 // C++11 [expr.prim.lambda]p21: 1842 // When the lambda-expression is evaluated, the entities that 1843 // are captured by copy are used to direct-initialize each 1844 // corresponding non-static data member of the resulting closure 1845 // object. (For array members, the array elements are 1846 // direct-initialized in increasing subscript order.) These 1847 // initializations are performed in the (unspecified) order in 1848 // which the non-static data members are declared. 1849 1850 // C++ [expr.prim.lambda]p12: 1851 // An entity captured by a lambda-expression is odr-used (3.2) in 1852 // the scope containing the lambda-expression. 1853 ExprResult Init; 1854 IdentifierInfo *Name = nullptr; 1855 if (Cap.isThisCapture()) { 1856 QualType ThisTy = getCurrentThisType(); 1857 Expr *This = BuildCXXThisExpr(Loc, ThisTy, ImplicitCaptureLoc.isValid()); 1858 if (Cap.isCopyCapture()) 1859 Init = CreateBuiltinUnaryOp(Loc, UO_Deref, This); 1860 else 1861 Init = This; 1862 } else { 1863 assert(Cap.isVariableCapture() && "unknown kind of capture"); 1864 ValueDecl *Var = Cap.getVariable(); 1865 Name = Var->getIdentifier(); 1866 Init = BuildDeclarationNameExpr( 1867 CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var); 1868 } 1869 1870 // In OpenMP, the capture kind doesn't actually describe how to capture: 1871 // variables are "mapped" onto the device in a process that does not formally 1872 // make a copy, even for a "copy capture". 1873 if (IsOpenMPMapping) 1874 return Init; 1875 1876 if (Init.isInvalid()) 1877 return ExprError(); 1878 1879 Expr *InitExpr = Init.get(); 1880 InitializedEntity Entity = InitializedEntity::InitializeLambdaCapture( 1881 Name, Cap.getCaptureType(), Loc); 1882 InitializationKind InitKind = 1883 InitializationKind::CreateDirect(Loc, Loc, Loc); 1884 InitializationSequence InitSeq(*this, Entity, InitKind, InitExpr); 1885 return InitSeq.Perform(*this, Entity, InitKind, InitExpr); 1886 } 1887 1888 ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body) { 1889 LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back()); 1890 ActOnFinishFunctionBody(LSI.CallOperator, Body); 1891 return BuildLambdaExpr(StartLoc, Body->getEndLoc(), &LSI); 1892 } 1893 1894 static LambdaCaptureDefault 1895 mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS) { 1896 switch (ICS) { 1897 case CapturingScopeInfo::ImpCap_None: 1898 return LCD_None; 1899 case CapturingScopeInfo::ImpCap_LambdaByval: 1900 return LCD_ByCopy; 1901 case CapturingScopeInfo::ImpCap_CapturedRegion: 1902 case CapturingScopeInfo::ImpCap_LambdaByref: 1903 return LCD_ByRef; 1904 case CapturingScopeInfo::ImpCap_Block: 1905 llvm_unreachable("block capture in lambda"); 1906 } 1907 llvm_unreachable("Unknown implicit capture style"); 1908 } 1909 1910 bool Sema::CaptureHasSideEffects(const Capture &From) { 1911 if (From.isInitCapture()) { 1912 Expr *Init = cast<VarDecl>(From.getVariable())->getInit(); 1913 if (Init && Init->HasSideEffects(Context)) 1914 return true; 1915 } 1916 1917 if (!From.isCopyCapture()) 1918 return false; 1919 1920 const QualType T = From.isThisCapture() 1921 ? getCurrentThisType()->getPointeeType() 1922 : From.getCaptureType(); 1923 1924 if (T.isVolatileQualified()) 1925 return true; 1926 1927 const Type *BaseT = T->getBaseElementTypeUnsafe(); 1928 if (const CXXRecordDecl *RD = BaseT->getAsCXXRecordDecl()) 1929 return !RD->isCompleteDefinition() || !RD->hasTrivialCopyConstructor() || 1930 !RD->hasTrivialDestructor(); 1931 1932 return false; 1933 } 1934 1935 bool Sema::DiagnoseUnusedLambdaCapture(SourceRange CaptureRange, 1936 const Capture &From) { 1937 if (CaptureHasSideEffects(From)) 1938 return false; 1939 1940 if (From.isVLATypeCapture()) 1941 return false; 1942 1943 // FIXME: maybe we should warn on these if we can find a sensible diagnostic 1944 // message 1945 if (From.isInitCapture() && 1946 From.getVariable()->isPlaceholderVar(getLangOpts())) 1947 return false; 1948 1949 auto diag = Diag(From.getLocation(), diag::warn_unused_lambda_capture); 1950 if (From.isThisCapture()) 1951 diag << "'this'"; 1952 else 1953 diag << From.getVariable(); 1954 diag << From.isNonODRUsed(); 1955 diag << FixItHint::CreateRemoval(CaptureRange); 1956 return true; 1957 } 1958 1959 /// Create a field within the lambda class or captured statement record for the 1960 /// given capture. 1961 FieldDecl *Sema::BuildCaptureField(RecordDecl *RD, 1962 const sema::Capture &Capture) { 1963 SourceLocation Loc = Capture.getLocation(); 1964 QualType FieldType = Capture.getCaptureType(); 1965 1966 TypeSourceInfo *TSI = nullptr; 1967 if (Capture.isVariableCapture()) { 1968 const auto *Var = dyn_cast_or_null<VarDecl>(Capture.getVariable()); 1969 if (Var && Var->isInitCapture()) 1970 TSI = Var->getTypeSourceInfo(); 1971 } 1972 1973 // FIXME: Should we really be doing this? A null TypeSourceInfo seems more 1974 // appropriate, at least for an implicit capture. 1975 if (!TSI) 1976 TSI = Context.getTrivialTypeSourceInfo(FieldType, Loc); 1977 1978 // Build the non-static data member. 1979 FieldDecl *Field = 1980 FieldDecl::Create(Context, RD, /*StartLoc=*/Loc, /*IdLoc=*/Loc, 1981 /*Id=*/nullptr, FieldType, TSI, /*BW=*/nullptr, 1982 /*Mutable=*/false, ICIS_NoInit); 1983 // If the variable being captured has an invalid type, mark the class as 1984 // invalid as well. 1985 if (!FieldType->isDependentType()) { 1986 if (RequireCompleteSizedType(Loc, FieldType, 1987 diag::err_field_incomplete_or_sizeless)) { 1988 RD->setInvalidDecl(); 1989 Field->setInvalidDecl(); 1990 } else { 1991 NamedDecl *Def; 1992 FieldType->isIncompleteType(&Def); 1993 if (Def && Def->isInvalidDecl()) { 1994 RD->setInvalidDecl(); 1995 Field->setInvalidDecl(); 1996 } 1997 } 1998 } 1999 Field->setImplicit(true); 2000 Field->setAccess(AS_private); 2001 RD->addDecl(Field); 2002 2003 if (Capture.isVLATypeCapture()) 2004 Field->setCapturedVLAType(Capture.getCapturedVLAType()); 2005 2006 return Field; 2007 } 2008 2009 ExprResult Sema::BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc, 2010 LambdaScopeInfo *LSI) { 2011 // Collect information from the lambda scope. 2012 SmallVector<LambdaCapture, 4> Captures; 2013 SmallVector<Expr *, 4> CaptureInits; 2014 SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc; 2015 LambdaCaptureDefault CaptureDefault = 2016 mapImplicitCaptureStyle(LSI->ImpCaptureStyle); 2017 CXXRecordDecl *Class; 2018 CXXMethodDecl *CallOperator; 2019 SourceRange IntroducerRange; 2020 bool ExplicitParams; 2021 bool ExplicitResultType; 2022 CleanupInfo LambdaCleanup; 2023 bool ContainsUnexpandedParameterPack; 2024 bool IsGenericLambda; 2025 { 2026 CallOperator = LSI->CallOperator; 2027 Class = LSI->Lambda; 2028 IntroducerRange = LSI->IntroducerRange; 2029 ExplicitParams = LSI->ExplicitParams; 2030 ExplicitResultType = !LSI->HasImplicitReturnType; 2031 LambdaCleanup = LSI->Cleanup; 2032 ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack; 2033 IsGenericLambda = Class->isGenericLambda(); 2034 2035 CallOperator->setLexicalDeclContext(Class); 2036 Decl *TemplateOrNonTemplateCallOperatorDecl = 2037 CallOperator->getDescribedFunctionTemplate() 2038 ? CallOperator->getDescribedFunctionTemplate() 2039 : cast<Decl>(CallOperator); 2040 2041 // FIXME: Is this really the best choice? Keeping the lexical decl context 2042 // set as CurContext seems more faithful to the source. 2043 TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class); 2044 2045 PopExpressionEvaluationContext(); 2046 2047 // True if the current capture has a used capture or default before it. 2048 bool CurHasPreviousCapture = CaptureDefault != LCD_None; 2049 SourceLocation PrevCaptureLoc = CurHasPreviousCapture ? 2050 CaptureDefaultLoc : IntroducerRange.getBegin(); 2051 2052 for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) { 2053 const Capture &From = LSI->Captures[I]; 2054 2055 if (From.isInvalid()) 2056 return ExprError(); 2057 2058 assert(!From.isBlockCapture() && "Cannot capture __block variables"); 2059 bool IsImplicit = I >= LSI->NumExplicitCaptures; 2060 SourceLocation ImplicitCaptureLoc = 2061 IsImplicit ? CaptureDefaultLoc : SourceLocation(); 2062 2063 // Use source ranges of explicit captures for fixits where available. 2064 SourceRange CaptureRange = LSI->ExplicitCaptureRanges[I]; 2065 2066 // Warn about unused explicit captures. 2067 bool IsCaptureUsed = true; 2068 if (!CurContext->isDependentContext() && !IsImplicit && 2069 !From.isODRUsed()) { 2070 // Initialized captures that are non-ODR used may not be eliminated. 2071 // FIXME: Where did the IsGenericLambda here come from? 2072 bool NonODRUsedInitCapture = 2073 IsGenericLambda && From.isNonODRUsed() && From.isInitCapture(); 2074 if (!NonODRUsedInitCapture) { 2075 bool IsLast = (I + 1) == LSI->NumExplicitCaptures; 2076 SourceRange FixItRange; 2077 if (CaptureRange.isValid()) { 2078 if (!CurHasPreviousCapture && !IsLast) { 2079 // If there are no captures preceding this capture, remove the 2080 // following comma. 2081 FixItRange = SourceRange(CaptureRange.getBegin(), 2082 getLocForEndOfToken(CaptureRange.getEnd())); 2083 } else { 2084 // Otherwise, remove the comma since the last used capture. 2085 FixItRange = SourceRange(getLocForEndOfToken(PrevCaptureLoc), 2086 CaptureRange.getEnd()); 2087 } 2088 } 2089 2090 IsCaptureUsed = !DiagnoseUnusedLambdaCapture(FixItRange, From); 2091 } 2092 } 2093 2094 if (CaptureRange.isValid()) { 2095 CurHasPreviousCapture |= IsCaptureUsed; 2096 PrevCaptureLoc = CaptureRange.getEnd(); 2097 } 2098 2099 // Map the capture to our AST representation. 2100 LambdaCapture Capture = [&] { 2101 if (From.isThisCapture()) { 2102 // Capturing 'this' implicitly with a default of '[=]' is deprecated, 2103 // because it results in a reference capture. Don't warn prior to 2104 // C++2a; there's nothing that can be done about it before then. 2105 if (getLangOpts().CPlusPlus20 && IsImplicit && 2106 CaptureDefault == LCD_ByCopy) { 2107 Diag(From.getLocation(), diag::warn_deprecated_this_capture); 2108 Diag(CaptureDefaultLoc, diag::note_deprecated_this_capture) 2109 << FixItHint::CreateInsertion( 2110 getLocForEndOfToken(CaptureDefaultLoc), ", this"); 2111 } 2112 return LambdaCapture(From.getLocation(), IsImplicit, 2113 From.isCopyCapture() ? LCK_StarThis : LCK_This); 2114 } else if (From.isVLATypeCapture()) { 2115 return LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType); 2116 } else { 2117 assert(From.isVariableCapture() && "unknown kind of capture"); 2118 ValueDecl *Var = From.getVariable(); 2119 LambdaCaptureKind Kind = 2120 From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef; 2121 return LambdaCapture(From.getLocation(), IsImplicit, Kind, Var, 2122 From.getEllipsisLoc()); 2123 } 2124 }(); 2125 2126 // Form the initializer for the capture field. 2127 ExprResult Init = BuildCaptureInit(From, ImplicitCaptureLoc); 2128 2129 // FIXME: Skip this capture if the capture is not used, the initializer 2130 // has no side-effects, the type of the capture is trivial, and the 2131 // lambda is not externally visible. 2132 2133 // Add a FieldDecl for the capture and form its initializer. 2134 BuildCaptureField(Class, From); 2135 Captures.push_back(Capture); 2136 CaptureInits.push_back(Init.get()); 2137 2138 if (LangOpts.CUDA) 2139 CUDACheckLambdaCapture(CallOperator, From); 2140 } 2141 2142 Class->setCaptures(Context, Captures); 2143 2144 // C++11 [expr.prim.lambda]p6: 2145 // The closure type for a lambda-expression with no lambda-capture 2146 // has a public non-virtual non-explicit const conversion function 2147 // to pointer to function having the same parameter and return 2148 // types as the closure type's function call operator. 2149 if (Captures.empty() && CaptureDefault == LCD_None) 2150 addFunctionPointerConversions(*this, IntroducerRange, Class, 2151 CallOperator); 2152 2153 // Objective-C++: 2154 // The closure type for a lambda-expression has a public non-virtual 2155 // non-explicit const conversion function to a block pointer having the 2156 // same parameter and return types as the closure type's function call 2157 // operator. 2158 // FIXME: Fix generic lambda to block conversions. 2159 if (getLangOpts().Blocks && getLangOpts().ObjC && !IsGenericLambda) 2160 addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator); 2161 2162 // Finalize the lambda class. 2163 SmallVector<Decl*, 4> Fields(Class->fields()); 2164 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(), 2165 SourceLocation(), ParsedAttributesView()); 2166 CheckCompletedCXXClass(nullptr, Class); 2167 } 2168 2169 Cleanup.mergeFrom(LambdaCleanup); 2170 2171 LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange, 2172 CaptureDefault, CaptureDefaultLoc, 2173 ExplicitParams, ExplicitResultType, 2174 CaptureInits, EndLoc, 2175 ContainsUnexpandedParameterPack); 2176 // If the lambda expression's call operator is not explicitly marked constexpr 2177 // and we are not in a dependent context, analyze the call operator to infer 2178 // its constexpr-ness, suppressing diagnostics while doing so. 2179 if (getLangOpts().CPlusPlus17 && !CallOperator->isInvalidDecl() && 2180 !CallOperator->isConstexpr() && 2181 !isa<CoroutineBodyStmt>(CallOperator->getBody()) && 2182 !Class->getDeclContext()->isDependentContext()) { 2183 CallOperator->setConstexprKind( 2184 CheckConstexprFunctionDefinition(CallOperator, 2185 CheckConstexprKind::CheckValid) 2186 ? ConstexprSpecKind::Constexpr 2187 : ConstexprSpecKind::Unspecified); 2188 } 2189 2190 // Emit delayed shadowing warnings now that the full capture list is known. 2191 DiagnoseShadowingLambdaDecls(LSI); 2192 2193 if (!CurContext->isDependentContext()) { 2194 switch (ExprEvalContexts.back().Context) { 2195 // C++11 [expr.prim.lambda]p2: 2196 // A lambda-expression shall not appear in an unevaluated operand 2197 // (Clause 5). 2198 case ExpressionEvaluationContext::Unevaluated: 2199 case ExpressionEvaluationContext::UnevaluatedList: 2200 case ExpressionEvaluationContext::UnevaluatedAbstract: 2201 // C++1y [expr.const]p2: 2202 // A conditional-expression e is a core constant expression unless the 2203 // evaluation of e, following the rules of the abstract machine, would 2204 // evaluate [...] a lambda-expression. 2205 // 2206 // This is technically incorrect, there are some constant evaluated contexts 2207 // where this should be allowed. We should probably fix this when DR1607 is 2208 // ratified, it lays out the exact set of conditions where we shouldn't 2209 // allow a lambda-expression. 2210 case ExpressionEvaluationContext::ConstantEvaluated: 2211 case ExpressionEvaluationContext::ImmediateFunctionContext: 2212 // We don't actually diagnose this case immediately, because we 2213 // could be within a context where we might find out later that 2214 // the expression is potentially evaluated (e.g., for typeid). 2215 ExprEvalContexts.back().Lambdas.push_back(Lambda); 2216 break; 2217 2218 case ExpressionEvaluationContext::DiscardedStatement: 2219 case ExpressionEvaluationContext::PotentiallyEvaluated: 2220 case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed: 2221 break; 2222 } 2223 } 2224 2225 return MaybeBindToTemporary(Lambda); 2226 } 2227 2228 ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation, 2229 SourceLocation ConvLocation, 2230 CXXConversionDecl *Conv, 2231 Expr *Src) { 2232 // Make sure that the lambda call operator is marked used. 2233 CXXRecordDecl *Lambda = Conv->getParent(); 2234 CXXMethodDecl *CallOperator 2235 = cast<CXXMethodDecl>( 2236 Lambda->lookup( 2237 Context.DeclarationNames.getCXXOperatorName(OO_Call)).front()); 2238 CallOperator->setReferenced(); 2239 CallOperator->markUsed(Context); 2240 2241 ExprResult Init = PerformCopyInitialization( 2242 InitializedEntity::InitializeLambdaToBlock(ConvLocation, Src->getType()), 2243 CurrentLocation, Src); 2244 if (!Init.isInvalid()) 2245 Init = ActOnFinishFullExpr(Init.get(), /*DiscardedValue*/ false); 2246 2247 if (Init.isInvalid()) 2248 return ExprError(); 2249 2250 // Create the new block to be returned. 2251 BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation); 2252 2253 // Set the type information. 2254 Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo()); 2255 Block->setIsVariadic(CallOperator->isVariadic()); 2256 Block->setBlockMissingReturnType(false); 2257 2258 // Add parameters. 2259 SmallVector<ParmVarDecl *, 4> BlockParams; 2260 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) { 2261 ParmVarDecl *From = CallOperator->getParamDecl(I); 2262 BlockParams.push_back(ParmVarDecl::Create( 2263 Context, Block, From->getBeginLoc(), From->getLocation(), 2264 From->getIdentifier(), From->getType(), From->getTypeSourceInfo(), 2265 From->getStorageClass(), 2266 /*DefArg=*/nullptr)); 2267 } 2268 Block->setParams(BlockParams); 2269 2270 Block->setIsConversionFromLambda(true); 2271 2272 // Add capture. The capture uses a fake variable, which doesn't correspond 2273 // to any actual memory location. However, the initializer copy-initializes 2274 // the lambda object. 2275 TypeSourceInfo *CapVarTSI = 2276 Context.getTrivialTypeSourceInfo(Src->getType()); 2277 VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation, 2278 ConvLocation, nullptr, 2279 Src->getType(), CapVarTSI, 2280 SC_None); 2281 BlockDecl::Capture Capture(/*variable=*/CapVar, /*byRef=*/false, 2282 /*nested=*/false, /*copy=*/Init.get()); 2283 Block->setCaptures(Context, Capture, /*CapturesCXXThis=*/false); 2284 2285 // Add a fake function body to the block. IR generation is responsible 2286 // for filling in the actual body, which cannot be expressed as an AST. 2287 Block->setBody(new (Context) CompoundStmt(ConvLocation)); 2288 2289 // Create the block literal expression. 2290 Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType()); 2291 ExprCleanupObjects.push_back(Block); 2292 Cleanup.setExprNeedsCleanups(true); 2293 2294 return BuildBlock; 2295 } 2296 2297 static FunctionDecl *getPatternFunctionDecl(FunctionDecl *FD) { 2298 if (FD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization) { 2299 while (FD->getInstantiatedFromMemberFunction()) 2300 FD = FD->getInstantiatedFromMemberFunction(); 2301 return FD; 2302 } 2303 2304 if (FD->getTemplatedKind() == FunctionDecl::TK_DependentNonTemplate) 2305 return FD->getInstantiatedFromDecl(); 2306 2307 FunctionTemplateDecl *FTD = FD->getPrimaryTemplate(); 2308 if (!FTD) 2309 return nullptr; 2310 2311 while (FTD->getInstantiatedFromMemberTemplate()) 2312 FTD = FTD->getInstantiatedFromMemberTemplate(); 2313 2314 return FTD->getTemplatedDecl(); 2315 } 2316 2317 Sema::LambdaScopeForCallOperatorInstantiationRAII:: 2318 LambdaScopeForCallOperatorInstantiationRAII( 2319 Sema &SemaRef, FunctionDecl *FD, MultiLevelTemplateArgumentList MLTAL, 2320 LocalInstantiationScope &Scope, bool ShouldAddDeclsFromParentScope) 2321 : FunctionScopeRAII(SemaRef) { 2322 if (!isLambdaCallOperator(FD)) { 2323 FunctionScopeRAII::disable(); 2324 return; 2325 } 2326 2327 SemaRef.RebuildLambdaScopeInfo(cast<CXXMethodDecl>(FD)); 2328 2329 FunctionDecl *Pattern = getPatternFunctionDecl(FD); 2330 if (Pattern) { 2331 SemaRef.addInstantiatedCapturesToScope(FD, Pattern, Scope, MLTAL); 2332 2333 FunctionDecl *ParentFD = FD; 2334 while (ShouldAddDeclsFromParentScope) { 2335 2336 ParentFD = 2337 dyn_cast<FunctionDecl>(getLambdaAwareParentOfDeclContext(ParentFD)); 2338 Pattern = 2339 dyn_cast<FunctionDecl>(getLambdaAwareParentOfDeclContext(Pattern)); 2340 2341 if (!FD || !Pattern) 2342 break; 2343 2344 SemaRef.addInstantiatedParametersToScope(ParentFD, Pattern, Scope, MLTAL); 2345 SemaRef.addInstantiatedLocalVarsToScope(ParentFD, Pattern, Scope); 2346 } 2347 } 2348 } 2349