1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for C++ lambda expressions. 10 // 11 //===----------------------------------------------------------------------===// 12 #include "clang/Sema/DeclSpec.h" 13 #include "TypeLocBuilder.h" 14 #include "clang/AST/ASTLambda.h" 15 #include "clang/AST/ExprCXX.h" 16 #include "clang/Basic/TargetInfo.h" 17 #include "clang/Sema/Initialization.h" 18 #include "clang/Sema/Lookup.h" 19 #include "clang/Sema/Scope.h" 20 #include "clang/Sema/ScopeInfo.h" 21 #include "clang/Sema/SemaInternal.h" 22 #include "clang/Sema/SemaLambda.h" 23 #include "clang/Sema/Template.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include <optional> 26 using namespace clang; 27 using namespace sema; 28 29 /// Examines the FunctionScopeInfo stack to determine the nearest 30 /// enclosing lambda (to the current lambda) that is 'capture-ready' for 31 /// the variable referenced in the current lambda (i.e. \p VarToCapture). 32 /// If successful, returns the index into Sema's FunctionScopeInfo stack 33 /// of the capture-ready lambda's LambdaScopeInfo. 34 /// 35 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current 36 /// lambda - is on top) to determine the index of the nearest enclosing/outer 37 /// lambda that is ready to capture the \p VarToCapture being referenced in 38 /// the current lambda. 39 /// As we climb down the stack, we want the index of the first such lambda - 40 /// that is the lambda with the highest index that is 'capture-ready'. 41 /// 42 /// A lambda 'L' is capture-ready for 'V' (var or this) if: 43 /// - its enclosing context is non-dependent 44 /// - and if the chain of lambdas between L and the lambda in which 45 /// V is potentially used (i.e. the lambda at the top of the scope info 46 /// stack), can all capture or have already captured V. 47 /// If \p VarToCapture is 'null' then we are trying to capture 'this'. 48 /// 49 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked 50 /// for whether it is 'capture-capable' (see 51 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly 52 /// capture. 53 /// 54 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a 55 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda 56 /// is at the top of the stack and has the highest index. 57 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'. 58 /// 59 /// \returns An std::optional<unsigned> Index that if evaluates to 'true' 60 /// contains the index (into Sema's FunctionScopeInfo stack) of the innermost 61 /// lambda which is capture-ready. If the return value evaluates to 'false' 62 /// then no lambda is capture-ready for \p VarToCapture. 63 64 static inline std::optional<unsigned> 65 getStackIndexOfNearestEnclosingCaptureReadyLambda( 66 ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes, 67 ValueDecl *VarToCapture) { 68 // Label failure to capture. 69 const std::optional<unsigned> NoLambdaIsCaptureReady; 70 71 // Ignore all inner captured regions. 72 unsigned CurScopeIndex = FunctionScopes.size() - 1; 73 while (CurScopeIndex > 0 && isa<clang::sema::CapturedRegionScopeInfo>( 74 FunctionScopes[CurScopeIndex])) 75 --CurScopeIndex; 76 assert( 77 isa<clang::sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]) && 78 "The function on the top of sema's function-info stack must be a lambda"); 79 80 // If VarToCapture is null, we are attempting to capture 'this'. 81 const bool IsCapturingThis = !VarToCapture; 82 const bool IsCapturingVariable = !IsCapturingThis; 83 84 // Start with the current lambda at the top of the stack (highest index). 85 DeclContext *EnclosingDC = 86 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator; 87 88 do { 89 const clang::sema::LambdaScopeInfo *LSI = 90 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]); 91 // IF we have climbed down to an intervening enclosing lambda that contains 92 // the variable declaration - it obviously can/must not capture the 93 // variable. 94 // Since its enclosing DC is dependent, all the lambdas between it and the 95 // innermost nested lambda are dependent (otherwise we wouldn't have 96 // arrived here) - so we don't yet have a lambda that can capture the 97 // variable. 98 if (IsCapturingVariable && 99 VarToCapture->getDeclContext()->Equals(EnclosingDC)) 100 return NoLambdaIsCaptureReady; 101 102 // For an enclosing lambda to be capture ready for an entity, all 103 // intervening lambda's have to be able to capture that entity. If even 104 // one of the intervening lambda's is not capable of capturing the entity 105 // then no enclosing lambda can ever capture that entity. 106 // For e.g. 107 // const int x = 10; 108 // [=](auto a) { #1 109 // [](auto b) { #2 <-- an intervening lambda that can never capture 'x' 110 // [=](auto c) { #3 111 // f(x, c); <-- can not lead to x's speculative capture by #1 or #2 112 // }; }; }; 113 // If they do not have a default implicit capture, check to see 114 // if the entity has already been explicitly captured. 115 // If even a single dependent enclosing lambda lacks the capability 116 // to ever capture this variable, there is no further enclosing 117 // non-dependent lambda that can capture this variable. 118 if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) { 119 if (IsCapturingVariable && !LSI->isCaptured(VarToCapture)) 120 return NoLambdaIsCaptureReady; 121 if (IsCapturingThis && !LSI->isCXXThisCaptured()) 122 return NoLambdaIsCaptureReady; 123 } 124 EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC); 125 126 assert(CurScopeIndex); 127 --CurScopeIndex; 128 } while (!EnclosingDC->isTranslationUnit() && 129 EnclosingDC->isDependentContext() && 130 isLambdaCallOperator(EnclosingDC)); 131 132 assert(CurScopeIndex < (FunctionScopes.size() - 1)); 133 // If the enclosingDC is not dependent, then the immediately nested lambda 134 // (one index above) is capture-ready. 135 if (!EnclosingDC->isDependentContext()) 136 return CurScopeIndex + 1; 137 return NoLambdaIsCaptureReady; 138 } 139 140 /// Examines the FunctionScopeInfo stack to determine the nearest 141 /// enclosing lambda (to the current lambda) that is 'capture-capable' for 142 /// the variable referenced in the current lambda (i.e. \p VarToCapture). 143 /// If successful, returns the index into Sema's FunctionScopeInfo stack 144 /// of the capture-capable lambda's LambdaScopeInfo. 145 /// 146 /// Given the current stack of lambdas being processed by Sema and 147 /// the variable of interest, to identify the nearest enclosing lambda (to the 148 /// current lambda at the top of the stack) that can truly capture 149 /// a variable, it has to have the following two properties: 150 /// a) 'capture-ready' - be the innermost lambda that is 'capture-ready': 151 /// - climb down the stack (i.e. starting from the innermost and examining 152 /// each outer lambda step by step) checking if each enclosing 153 /// lambda can either implicitly or explicitly capture the variable. 154 /// Record the first such lambda that is enclosed in a non-dependent 155 /// context. If no such lambda currently exists return failure. 156 /// b) 'capture-capable' - make sure the 'capture-ready' lambda can truly 157 /// capture the variable by checking all its enclosing lambdas: 158 /// - check if all outer lambdas enclosing the 'capture-ready' lambda 159 /// identified above in 'a' can also capture the variable (this is done 160 /// via tryCaptureVariable for variables and CheckCXXThisCapture for 161 /// 'this' by passing in the index of the Lambda identified in step 'a') 162 /// 163 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a 164 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda 165 /// is at the top of the stack. 166 /// 167 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'. 168 /// 169 /// 170 /// \returns An std::optional<unsigned> Index that if evaluates to 'true' 171 /// contains the index (into Sema's FunctionScopeInfo stack) of the innermost 172 /// lambda which is capture-capable. If the return value evaluates to 'false' 173 /// then no lambda is capture-capable for \p VarToCapture. 174 175 std::optional<unsigned> 176 clang::getStackIndexOfNearestEnclosingCaptureCapableLambda( 177 ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes, 178 ValueDecl *VarToCapture, Sema &S) { 179 180 const std::optional<unsigned> NoLambdaIsCaptureCapable; 181 182 const std::optional<unsigned> OptionalStackIndex = 183 getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes, 184 VarToCapture); 185 if (!OptionalStackIndex) 186 return NoLambdaIsCaptureCapable; 187 188 const unsigned IndexOfCaptureReadyLambda = *OptionalStackIndex; 189 assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) || 190 S.getCurGenericLambda()) && 191 "The capture ready lambda for a potential capture can only be the " 192 "current lambda if it is a generic lambda"); 193 194 const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI = 195 cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]); 196 197 // If VarToCapture is null, we are attempting to capture 'this' 198 const bool IsCapturingThis = !VarToCapture; 199 const bool IsCapturingVariable = !IsCapturingThis; 200 201 if (IsCapturingVariable) { 202 // Check if the capture-ready lambda can truly capture the variable, by 203 // checking whether all enclosing lambdas of the capture-ready lambda allow 204 // the capture - i.e. make sure it is capture-capable. 205 QualType CaptureType, DeclRefType; 206 const bool CanCaptureVariable = 207 !S.tryCaptureVariable(VarToCapture, 208 /*ExprVarIsUsedInLoc*/ SourceLocation(), 209 clang::Sema::TryCapture_Implicit, 210 /*EllipsisLoc*/ SourceLocation(), 211 /*BuildAndDiagnose*/ false, CaptureType, 212 DeclRefType, &IndexOfCaptureReadyLambda); 213 if (!CanCaptureVariable) 214 return NoLambdaIsCaptureCapable; 215 } else { 216 // Check if the capture-ready lambda can truly capture 'this' by checking 217 // whether all enclosing lambdas of the capture-ready lambda can capture 218 // 'this'. 219 const bool CanCaptureThis = 220 !S.CheckCXXThisCapture( 221 CaptureReadyLambdaLSI->PotentialThisCaptureLocation, 222 /*Explicit*/ false, /*BuildAndDiagnose*/ false, 223 &IndexOfCaptureReadyLambda); 224 if (!CanCaptureThis) 225 return NoLambdaIsCaptureCapable; 226 } 227 return IndexOfCaptureReadyLambda; 228 } 229 230 static inline TemplateParameterList * 231 getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) { 232 if (!LSI->GLTemplateParameterList && !LSI->TemplateParams.empty()) { 233 LSI->GLTemplateParameterList = TemplateParameterList::Create( 234 SemaRef.Context, 235 /*Template kw loc*/ SourceLocation(), 236 /*L angle loc*/ LSI->ExplicitTemplateParamsRange.getBegin(), 237 LSI->TemplateParams, 238 /*R angle loc*/LSI->ExplicitTemplateParamsRange.getEnd(), 239 LSI->RequiresClause.get()); 240 } 241 return LSI->GLTemplateParameterList; 242 } 243 244 CXXRecordDecl * 245 Sema::createLambdaClosureType(SourceRange IntroducerRange, TypeSourceInfo *Info, 246 unsigned LambdaDependencyKind, 247 LambdaCaptureDefault CaptureDefault) { 248 DeclContext *DC = CurContext; 249 while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext())) 250 DC = DC->getParent(); 251 252 bool IsGenericLambda = 253 Info && getGenericLambdaTemplateParameterList(getCurLambda(), *this); 254 // Start constructing the lambda class. 255 CXXRecordDecl *Class = CXXRecordDecl::CreateLambda( 256 Context, DC, Info, IntroducerRange.getBegin(), LambdaDependencyKind, 257 IsGenericLambda, CaptureDefault); 258 DC->addDecl(Class); 259 260 return Class; 261 } 262 263 /// Determine whether the given context is or is enclosed in an inline 264 /// function. 265 static bool isInInlineFunction(const DeclContext *DC) { 266 while (!DC->isFileContext()) { 267 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC)) 268 if (FD->isInlined()) 269 return true; 270 271 DC = DC->getLexicalParent(); 272 } 273 274 return false; 275 } 276 277 std::tuple<MangleNumberingContext *, Decl *> 278 Sema::getCurrentMangleNumberContext(const DeclContext *DC) { 279 // Compute the context for allocating mangling numbers in the current 280 // expression, if the ABI requires them. 281 Decl *ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl; 282 283 enum ContextKind { 284 Normal, 285 DefaultArgument, 286 DataMember, 287 InlineVariable, 288 TemplatedVariable, 289 Concept 290 } Kind = Normal; 291 292 bool IsInNonspecializedTemplate = 293 inTemplateInstantiation() || CurContext->isDependentContext(); 294 295 // Default arguments of member function parameters that appear in a class 296 // definition, as well as the initializers of data members, receive special 297 // treatment. Identify them. 298 if (ManglingContextDecl) { 299 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) { 300 if (const DeclContext *LexicalDC 301 = Param->getDeclContext()->getLexicalParent()) 302 if (LexicalDC->isRecord()) 303 Kind = DefaultArgument; 304 } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) { 305 if (Var->getMostRecentDecl()->isInline()) 306 Kind = InlineVariable; 307 else if (Var->getDeclContext()->isRecord() && IsInNonspecializedTemplate) 308 Kind = TemplatedVariable; 309 else if (Var->getDescribedVarTemplate()) 310 Kind = TemplatedVariable; 311 else if (auto *VTS = dyn_cast<VarTemplateSpecializationDecl>(Var)) { 312 if (!VTS->isExplicitSpecialization()) 313 Kind = TemplatedVariable; 314 } 315 } else if (isa<FieldDecl>(ManglingContextDecl)) { 316 Kind = DataMember; 317 } else if (isa<ImplicitConceptSpecializationDecl>(ManglingContextDecl)) { 318 Kind = Concept; 319 } 320 } 321 322 // Itanium ABI [5.1.7]: 323 // In the following contexts [...] the one-definition rule requires closure 324 // types in different translation units to "correspond": 325 switch (Kind) { 326 case Normal: { 327 // -- the bodies of inline or templated functions 328 if ((IsInNonspecializedTemplate && 329 !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) || 330 isInInlineFunction(CurContext)) { 331 while (auto *CD = dyn_cast<CapturedDecl>(DC)) 332 DC = CD->getParent(); 333 return std::make_tuple(&Context.getManglingNumberContext(DC), nullptr); 334 } 335 336 return std::make_tuple(nullptr, nullptr); 337 } 338 339 case Concept: 340 // Concept definitions aren't code generated and thus aren't mangled, 341 // however the ManglingContextDecl is important for the purposes of 342 // re-forming the template argument list of the lambda for constraint 343 // evaluation. 344 case DataMember: 345 // -- default member initializers 346 case DefaultArgument: 347 // -- default arguments appearing in class definitions 348 case InlineVariable: 349 case TemplatedVariable: 350 // -- the initializers of inline or templated variables 351 return std::make_tuple( 352 &Context.getManglingNumberContext(ASTContext::NeedExtraManglingDecl, 353 ManglingContextDecl), 354 ManglingContextDecl); 355 } 356 357 llvm_unreachable("unexpected context"); 358 } 359 360 static QualType 361 buildTypeForLambdaCallOperator(Sema &S, clang::CXXRecordDecl *Class, 362 TemplateParameterList *TemplateParams, 363 TypeSourceInfo *MethodTypeInfo) { 364 assert(MethodTypeInfo && "expected a non null type"); 365 366 QualType MethodType = MethodTypeInfo->getType(); 367 // If a lambda appears in a dependent context or is a generic lambda (has 368 // template parameters) and has an 'auto' return type, deduce it to a 369 // dependent type. 370 if (Class->isDependentContext() || TemplateParams) { 371 const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>(); 372 QualType Result = FPT->getReturnType(); 373 if (Result->isUndeducedType()) { 374 Result = S.SubstAutoTypeDependent(Result); 375 MethodType = S.Context.getFunctionType(Result, FPT->getParamTypes(), 376 FPT->getExtProtoInfo()); 377 } 378 } 379 return MethodType; 380 } 381 382 void Sema::handleLambdaNumbering( 383 CXXRecordDecl *Class, CXXMethodDecl *Method, 384 std::optional<CXXRecordDecl::LambdaNumbering> NumberingOverride) { 385 if (NumberingOverride) { 386 Class->setLambdaNumbering(*NumberingOverride); 387 return; 388 } 389 390 ContextRAII ManglingContext(*this, Class->getDeclContext()); 391 392 auto getMangleNumberingContext = 393 [this](CXXRecordDecl *Class, 394 Decl *ManglingContextDecl) -> MangleNumberingContext * { 395 // Get mangle numbering context if there's any extra decl context. 396 if (ManglingContextDecl) 397 return &Context.getManglingNumberContext( 398 ASTContext::NeedExtraManglingDecl, ManglingContextDecl); 399 // Otherwise, from that lambda's decl context. 400 auto DC = Class->getDeclContext(); 401 while (auto *CD = dyn_cast<CapturedDecl>(DC)) 402 DC = CD->getParent(); 403 return &Context.getManglingNumberContext(DC); 404 }; 405 406 CXXRecordDecl::LambdaNumbering Numbering; 407 MangleNumberingContext *MCtx; 408 std::tie(MCtx, Numbering.ContextDecl) = 409 getCurrentMangleNumberContext(Class->getDeclContext()); 410 if (!MCtx && (getLangOpts().CUDA || getLangOpts().SYCLIsDevice || 411 getLangOpts().SYCLIsHost)) { 412 // Force lambda numbering in CUDA/HIP as we need to name lambdas following 413 // ODR. Both device- and host-compilation need to have a consistent naming 414 // on kernel functions. As lambdas are potential part of these `__global__` 415 // function names, they needs numbering following ODR. 416 // Also force for SYCL, since we need this for the 417 // __builtin_sycl_unique_stable_name implementation, which depends on lambda 418 // mangling. 419 MCtx = getMangleNumberingContext(Class, Numbering.ContextDecl); 420 assert(MCtx && "Retrieving mangle numbering context failed!"); 421 Numbering.HasKnownInternalLinkage = true; 422 } 423 if (MCtx) { 424 Numbering.IndexInContext = MCtx->getNextLambdaIndex(); 425 Numbering.ManglingNumber = MCtx->getManglingNumber(Method); 426 Numbering.DeviceManglingNumber = MCtx->getDeviceManglingNumber(Method); 427 Class->setLambdaNumbering(Numbering); 428 429 if (auto *Source = 430 dyn_cast_or_null<ExternalSemaSource>(Context.getExternalSource())) 431 Source->AssignedLambdaNumbering(Class); 432 } 433 } 434 435 static void buildLambdaScopeReturnType(Sema &S, LambdaScopeInfo *LSI, 436 CXXMethodDecl *CallOperator, 437 bool ExplicitResultType) { 438 if (ExplicitResultType) { 439 LSI->HasImplicitReturnType = false; 440 LSI->ReturnType = CallOperator->getReturnType(); 441 if (!LSI->ReturnType->isDependentType() && !LSI->ReturnType->isVoidType()) 442 S.RequireCompleteType(CallOperator->getBeginLoc(), LSI->ReturnType, 443 diag::err_lambda_incomplete_result); 444 } else { 445 LSI->HasImplicitReturnType = true; 446 } 447 } 448 449 void Sema::buildLambdaScope(LambdaScopeInfo *LSI, CXXMethodDecl *CallOperator, 450 SourceRange IntroducerRange, 451 LambdaCaptureDefault CaptureDefault, 452 SourceLocation CaptureDefaultLoc, 453 bool ExplicitParams, bool Mutable) { 454 LSI->CallOperator = CallOperator; 455 CXXRecordDecl *LambdaClass = CallOperator->getParent(); 456 LSI->Lambda = LambdaClass; 457 if (CaptureDefault == LCD_ByCopy) 458 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval; 459 else if (CaptureDefault == LCD_ByRef) 460 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref; 461 LSI->CaptureDefaultLoc = CaptureDefaultLoc; 462 LSI->IntroducerRange = IntroducerRange; 463 LSI->ExplicitParams = ExplicitParams; 464 LSI->Mutable = Mutable; 465 } 466 467 void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) { 468 LSI->finishedExplicitCaptures(); 469 } 470 471 void Sema::ActOnLambdaExplicitTemplateParameterList( 472 LambdaIntroducer &Intro, SourceLocation LAngleLoc, 473 ArrayRef<NamedDecl *> TParams, SourceLocation RAngleLoc, 474 ExprResult RequiresClause) { 475 LambdaScopeInfo *LSI = getCurLambda(); 476 assert(LSI && "Expected a lambda scope"); 477 assert(LSI->NumExplicitTemplateParams == 0 && 478 "Already acted on explicit template parameters"); 479 assert(LSI->TemplateParams.empty() && 480 "Explicit template parameters should come " 481 "before invented (auto) ones"); 482 assert(!TParams.empty() && 483 "No template parameters to act on"); 484 LSI->TemplateParams.append(TParams.begin(), TParams.end()); 485 LSI->NumExplicitTemplateParams = TParams.size(); 486 LSI->ExplicitTemplateParamsRange = {LAngleLoc, RAngleLoc}; 487 LSI->RequiresClause = RequiresClause; 488 } 489 490 /// If this expression is an enumerator-like expression of some type 491 /// T, return the type T; otherwise, return null. 492 /// 493 /// Pointer comparisons on the result here should always work because 494 /// it's derived from either the parent of an EnumConstantDecl 495 /// (i.e. the definition) or the declaration returned by 496 /// EnumType::getDecl() (i.e. the definition). 497 static EnumDecl *findEnumForBlockReturn(Expr *E) { 498 // An expression is an enumerator-like expression of type T if, 499 // ignoring parens and parens-like expressions: 500 E = E->IgnoreParens(); 501 502 // - it is an enumerator whose enum type is T or 503 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 504 if (EnumConstantDecl *D 505 = dyn_cast<EnumConstantDecl>(DRE->getDecl())) { 506 return cast<EnumDecl>(D->getDeclContext()); 507 } 508 return nullptr; 509 } 510 511 // - it is a comma expression whose RHS is an enumerator-like 512 // expression of type T or 513 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 514 if (BO->getOpcode() == BO_Comma) 515 return findEnumForBlockReturn(BO->getRHS()); 516 return nullptr; 517 } 518 519 // - it is a statement-expression whose value expression is an 520 // enumerator-like expression of type T or 521 if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) { 522 if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back())) 523 return findEnumForBlockReturn(last); 524 return nullptr; 525 } 526 527 // - it is a ternary conditional operator (not the GNU ?: 528 // extension) whose second and third operands are 529 // enumerator-like expressions of type T or 530 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 531 if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr())) 532 if (ED == findEnumForBlockReturn(CO->getFalseExpr())) 533 return ED; 534 return nullptr; 535 } 536 537 // (implicitly:) 538 // - it is an implicit integral conversion applied to an 539 // enumerator-like expression of type T or 540 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 541 // We can sometimes see integral conversions in valid 542 // enumerator-like expressions. 543 if (ICE->getCastKind() == CK_IntegralCast) 544 return findEnumForBlockReturn(ICE->getSubExpr()); 545 546 // Otherwise, just rely on the type. 547 } 548 549 // - it is an expression of that formal enum type. 550 if (const EnumType *ET = E->getType()->getAs<EnumType>()) { 551 return ET->getDecl(); 552 } 553 554 // Otherwise, nope. 555 return nullptr; 556 } 557 558 /// Attempt to find a type T for which the returned expression of the 559 /// given statement is an enumerator-like expression of that type. 560 static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) { 561 if (Expr *retValue = ret->getRetValue()) 562 return findEnumForBlockReturn(retValue); 563 return nullptr; 564 } 565 566 /// Attempt to find a common type T for which all of the returned 567 /// expressions in a block are enumerator-like expressions of that 568 /// type. 569 static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) { 570 ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end(); 571 572 // Try to find one for the first return. 573 EnumDecl *ED = findEnumForBlockReturn(*i); 574 if (!ED) return nullptr; 575 576 // Check that the rest of the returns have the same enum. 577 for (++i; i != e; ++i) { 578 if (findEnumForBlockReturn(*i) != ED) 579 return nullptr; 580 } 581 582 // Never infer an anonymous enum type. 583 if (!ED->hasNameForLinkage()) return nullptr; 584 585 return ED; 586 } 587 588 /// Adjust the given return statements so that they formally return 589 /// the given type. It should require, at most, an IntegralCast. 590 static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns, 591 QualType returnType) { 592 for (ArrayRef<ReturnStmt*>::iterator 593 i = returns.begin(), e = returns.end(); i != e; ++i) { 594 ReturnStmt *ret = *i; 595 Expr *retValue = ret->getRetValue(); 596 if (S.Context.hasSameType(retValue->getType(), returnType)) 597 continue; 598 599 // Right now we only support integral fixup casts. 600 assert(returnType->isIntegralOrUnscopedEnumerationType()); 601 assert(retValue->getType()->isIntegralOrUnscopedEnumerationType()); 602 603 ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue); 604 605 Expr *E = (cleanups ? cleanups->getSubExpr() : retValue); 606 E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast, E, 607 /*base path*/ nullptr, VK_PRValue, 608 FPOptionsOverride()); 609 if (cleanups) { 610 cleanups->setSubExpr(E); 611 } else { 612 ret->setRetValue(E); 613 } 614 } 615 } 616 617 void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) { 618 assert(CSI.HasImplicitReturnType); 619 // If it was ever a placeholder, it had to been deduced to DependentTy. 620 assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType()); 621 assert((!isa<LambdaScopeInfo>(CSI) || !getLangOpts().CPlusPlus14) && 622 "lambda expressions use auto deduction in C++14 onwards"); 623 624 // C++ core issue 975: 625 // If a lambda-expression does not include a trailing-return-type, 626 // it is as if the trailing-return-type denotes the following type: 627 // - if there are no return statements in the compound-statement, 628 // or all return statements return either an expression of type 629 // void or no expression or braced-init-list, the type void; 630 // - otherwise, if all return statements return an expression 631 // and the types of the returned expressions after 632 // lvalue-to-rvalue conversion (4.1 [conv.lval]), 633 // array-to-pointer conversion (4.2 [conv.array]), and 634 // function-to-pointer conversion (4.3 [conv.func]) are the 635 // same, that common type; 636 // - otherwise, the program is ill-formed. 637 // 638 // C++ core issue 1048 additionally removes top-level cv-qualifiers 639 // from the types of returned expressions to match the C++14 auto 640 // deduction rules. 641 // 642 // In addition, in blocks in non-C++ modes, if all of the return 643 // statements are enumerator-like expressions of some type T, where 644 // T has a name for linkage, then we infer the return type of the 645 // block to be that type. 646 647 // First case: no return statements, implicit void return type. 648 ASTContext &Ctx = getASTContext(); 649 if (CSI.Returns.empty()) { 650 // It's possible there were simply no /valid/ return statements. 651 // In this case, the first one we found may have at least given us a type. 652 if (CSI.ReturnType.isNull()) 653 CSI.ReturnType = Ctx.VoidTy; 654 return; 655 } 656 657 // Second case: at least one return statement has dependent type. 658 // Delay type checking until instantiation. 659 assert(!CSI.ReturnType.isNull() && "We should have a tentative return type."); 660 if (CSI.ReturnType->isDependentType()) 661 return; 662 663 // Try to apply the enum-fuzz rule. 664 if (!getLangOpts().CPlusPlus) { 665 assert(isa<BlockScopeInfo>(CSI)); 666 const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns); 667 if (ED) { 668 CSI.ReturnType = Context.getTypeDeclType(ED); 669 adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType); 670 return; 671 } 672 } 673 674 // Third case: only one return statement. Don't bother doing extra work! 675 if (CSI.Returns.size() == 1) 676 return; 677 678 // General case: many return statements. 679 // Check that they all have compatible return types. 680 681 // We require the return types to strictly match here. 682 // Note that we've already done the required promotions as part of 683 // processing the return statement. 684 for (const ReturnStmt *RS : CSI.Returns) { 685 const Expr *RetE = RS->getRetValue(); 686 687 QualType ReturnType = 688 (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType(); 689 if (Context.getCanonicalFunctionResultType(ReturnType) == 690 Context.getCanonicalFunctionResultType(CSI.ReturnType)) { 691 // Use the return type with the strictest possible nullability annotation. 692 auto RetTyNullability = ReturnType->getNullability(); 693 auto BlockNullability = CSI.ReturnType->getNullability(); 694 if (BlockNullability && 695 (!RetTyNullability || 696 hasWeakerNullability(*RetTyNullability, *BlockNullability))) 697 CSI.ReturnType = ReturnType; 698 continue; 699 } 700 701 // FIXME: This is a poor diagnostic for ReturnStmts without expressions. 702 // TODO: It's possible that the *first* return is the divergent one. 703 Diag(RS->getBeginLoc(), 704 diag::err_typecheck_missing_return_type_incompatible) 705 << ReturnType << CSI.ReturnType << isa<LambdaScopeInfo>(CSI); 706 // Continue iterating so that we keep emitting diagnostics. 707 } 708 } 709 710 QualType Sema::buildLambdaInitCaptureInitialization( 711 SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc, 712 std::optional<unsigned> NumExpansions, IdentifierInfo *Id, 713 bool IsDirectInit, Expr *&Init) { 714 // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to 715 // deduce against. 716 QualType DeductType = Context.getAutoDeductType(); 717 TypeLocBuilder TLB; 718 AutoTypeLoc TL = TLB.push<AutoTypeLoc>(DeductType); 719 TL.setNameLoc(Loc); 720 if (ByRef) { 721 DeductType = BuildReferenceType(DeductType, true, Loc, Id); 722 assert(!DeductType.isNull() && "can't build reference to auto"); 723 TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc); 724 } 725 if (EllipsisLoc.isValid()) { 726 if (Init->containsUnexpandedParameterPack()) { 727 Diag(EllipsisLoc, getLangOpts().CPlusPlus20 728 ? diag::warn_cxx17_compat_init_capture_pack 729 : diag::ext_init_capture_pack); 730 DeductType = Context.getPackExpansionType(DeductType, NumExpansions, 731 /*ExpectPackInType=*/false); 732 TLB.push<PackExpansionTypeLoc>(DeductType).setEllipsisLoc(EllipsisLoc); 733 } else { 734 // Just ignore the ellipsis for now and form a non-pack variable. We'll 735 // diagnose this later when we try to capture it. 736 } 737 } 738 TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType); 739 740 // Deduce the type of the init capture. 741 QualType DeducedType = deduceVarTypeFromInitializer( 742 /*VarDecl*/nullptr, DeclarationName(Id), DeductType, TSI, 743 SourceRange(Loc, Loc), IsDirectInit, Init); 744 if (DeducedType.isNull()) 745 return QualType(); 746 747 // Are we a non-list direct initialization? 748 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init); 749 750 // Perform initialization analysis and ensure any implicit conversions 751 // (such as lvalue-to-rvalue) are enforced. 752 InitializedEntity Entity = 753 InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc); 754 InitializationKind Kind = 755 IsDirectInit 756 ? (CXXDirectInit ? InitializationKind::CreateDirect( 757 Loc, Init->getBeginLoc(), Init->getEndLoc()) 758 : InitializationKind::CreateDirectList(Loc)) 759 : InitializationKind::CreateCopy(Loc, Init->getBeginLoc()); 760 761 MultiExprArg Args = Init; 762 if (CXXDirectInit) 763 Args = 764 MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs()); 765 QualType DclT; 766 InitializationSequence InitSeq(*this, Entity, Kind, Args); 767 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT); 768 769 if (Result.isInvalid()) 770 return QualType(); 771 772 Init = Result.getAs<Expr>(); 773 return DeducedType; 774 } 775 776 VarDecl *Sema::createLambdaInitCaptureVarDecl( 777 SourceLocation Loc, QualType InitCaptureType, SourceLocation EllipsisLoc, 778 IdentifierInfo *Id, unsigned InitStyle, Expr *Init, DeclContext *DeclCtx) { 779 // FIXME: Retain the TypeSourceInfo from buildLambdaInitCaptureInitialization 780 // rather than reconstructing it here. 781 TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType, Loc); 782 if (auto PETL = TSI->getTypeLoc().getAs<PackExpansionTypeLoc>()) 783 PETL.setEllipsisLoc(EllipsisLoc); 784 785 // Create a dummy variable representing the init-capture. This is not actually 786 // used as a variable, and only exists as a way to name and refer to the 787 // init-capture. 788 // FIXME: Pass in separate source locations for '&' and identifier. 789 VarDecl *NewVD = VarDecl::Create(Context, DeclCtx, Loc, Loc, Id, 790 InitCaptureType, TSI, SC_Auto); 791 NewVD->setInitCapture(true); 792 NewVD->setReferenced(true); 793 // FIXME: Pass in a VarDecl::InitializationStyle. 794 NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle)); 795 NewVD->markUsed(Context); 796 NewVD->setInit(Init); 797 if (NewVD->isParameterPack()) 798 getCurLambda()->LocalPacks.push_back(NewVD); 799 return NewVD; 800 } 801 802 void Sema::addInitCapture(LambdaScopeInfo *LSI, VarDecl *Var, bool ByRef) { 803 assert(Var->isInitCapture() && "init capture flag should be set"); 804 LSI->addCapture(Var, /*isBlock=*/false, ByRef, 805 /*isNested=*/false, Var->getLocation(), SourceLocation(), 806 Var->getType(), /*Invalid=*/false); 807 } 808 809 // Unlike getCurLambda, getCurrentLambdaScopeUnsafe doesn't 810 // check that the current lambda is in a consistent or fully constructed state. 811 static LambdaScopeInfo *getCurrentLambdaScopeUnsafe(Sema &S) { 812 assert(!S.FunctionScopes.empty()); 813 return cast<LambdaScopeInfo>(S.FunctionScopes[S.FunctionScopes.size() - 1]); 814 } 815 816 static TypeSourceInfo * 817 getDummyLambdaType(Sema &S, SourceLocation Loc = SourceLocation()) { 818 // C++11 [expr.prim.lambda]p4: 819 // If a lambda-expression does not include a lambda-declarator, it is as 820 // if the lambda-declarator were (). 821 FunctionProtoType::ExtProtoInfo EPI(S.Context.getDefaultCallingConvention( 822 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 823 EPI.HasTrailingReturn = true; 824 EPI.TypeQuals.addConst(); 825 LangAS AS = S.getDefaultCXXMethodAddrSpace(); 826 if (AS != LangAS::Default) 827 EPI.TypeQuals.addAddressSpace(AS); 828 829 // C++1y [expr.prim.lambda]: 830 // The lambda return type is 'auto', which is replaced by the 831 // trailing-return type if provided and/or deduced from 'return' 832 // statements 833 // We don't do this before C++1y, because we don't support deduced return 834 // types there. 835 QualType DefaultTypeForNoTrailingReturn = S.getLangOpts().CPlusPlus14 836 ? S.Context.getAutoDeductType() 837 : S.Context.DependentTy; 838 QualType MethodTy = S.Context.getFunctionType(DefaultTypeForNoTrailingReturn, 839 std::nullopt, EPI); 840 return S.Context.getTrivialTypeSourceInfo(MethodTy, Loc); 841 } 842 843 static TypeSourceInfo *getLambdaType(Sema &S, LambdaIntroducer &Intro, 844 Declarator &ParamInfo, Scope *CurScope, 845 SourceLocation Loc, 846 bool &ExplicitResultType) { 847 848 ExplicitResultType = false; 849 850 assert( 851 (ParamInfo.getDeclSpec().getStorageClassSpec() == 852 DeclSpec::SCS_unspecified || 853 ParamInfo.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static) && 854 "Unexpected storage specifier"); 855 bool IsLambdaStatic = 856 ParamInfo.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static; 857 858 TypeSourceInfo *MethodTyInfo; 859 860 if (ParamInfo.getNumTypeObjects() == 0) { 861 MethodTyInfo = getDummyLambdaType(S, Loc); 862 } else { 863 DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo(); 864 ExplicitResultType = FTI.hasTrailingReturnType(); 865 if (!FTI.hasMutableQualifier() && !IsLambdaStatic) 866 FTI.getOrCreateMethodQualifiers().SetTypeQual(DeclSpec::TQ_const, Loc); 867 868 if (ExplicitResultType && S.getLangOpts().HLSL) { 869 QualType RetTy = FTI.getTrailingReturnType().get(); 870 if (!RetTy.isNull()) { 871 // HLSL does not support specifying an address space on a lambda return 872 // type. 873 LangAS AddressSpace = RetTy.getAddressSpace(); 874 if (AddressSpace != LangAS::Default) 875 S.Diag(FTI.getTrailingReturnTypeLoc(), 876 diag::err_return_value_with_address_space); 877 } 878 } 879 880 MethodTyInfo = S.GetTypeForDeclarator(ParamInfo, CurScope); 881 assert(MethodTyInfo && "no type from lambda-declarator"); 882 883 // Check for unexpanded parameter packs in the method type. 884 if (MethodTyInfo->getType()->containsUnexpandedParameterPack()) 885 S.DiagnoseUnexpandedParameterPack(Intro.Range.getBegin(), MethodTyInfo, 886 S.UPPC_DeclarationType); 887 } 888 return MethodTyInfo; 889 } 890 891 CXXMethodDecl *Sema::CreateLambdaCallOperator(SourceRange IntroducerRange, 892 CXXRecordDecl *Class) { 893 894 // C++20 [expr.prim.lambda.closure]p3: 895 // The closure type for a lambda-expression has a public inline function 896 // call operator (for a non-generic lambda) or function call operator 897 // template (for a generic lambda) whose parameters and return type are 898 // described by the lambda-expression's parameter-declaration-clause 899 // and trailing-return-type respectively. 900 DeclarationName MethodName = 901 Context.DeclarationNames.getCXXOperatorName(OO_Call); 902 DeclarationNameLoc MethodNameLoc = 903 DeclarationNameLoc::makeCXXOperatorNameLoc(IntroducerRange.getBegin()); 904 CXXMethodDecl *Method = CXXMethodDecl::Create( 905 Context, Class, SourceLocation(), 906 DeclarationNameInfo(MethodName, IntroducerRange.getBegin(), 907 MethodNameLoc), 908 QualType(), /*Tinfo=*/nullptr, SC_None, 909 getCurFPFeatures().isFPConstrained(), 910 /*isInline=*/true, ConstexprSpecKind::Unspecified, SourceLocation(), 911 /*TrailingRequiresClause=*/nullptr); 912 Method->setAccess(AS_public); 913 return Method; 914 } 915 916 void Sema::CompleteLambdaCallOperator( 917 CXXMethodDecl *Method, SourceLocation LambdaLoc, 918 SourceLocation CallOperatorLoc, Expr *TrailingRequiresClause, 919 TypeSourceInfo *MethodTyInfo, ConstexprSpecKind ConstexprKind, 920 StorageClass SC, ArrayRef<ParmVarDecl *> Params, 921 bool HasExplicitResultType) { 922 923 LambdaScopeInfo *LSI = getCurrentLambdaScopeUnsafe(*this); 924 925 if (TrailingRequiresClause) 926 Method->setTrailingRequiresClause(TrailingRequiresClause); 927 928 TemplateParameterList *TemplateParams = 929 getGenericLambdaTemplateParameterList(LSI, *this); 930 931 DeclContext *DC = Method->getLexicalDeclContext(); 932 Method->setLexicalDeclContext(LSI->Lambda); 933 if (TemplateParams) { 934 FunctionTemplateDecl *TemplateMethod = FunctionTemplateDecl::Create( 935 Context, LSI->Lambda, Method->getLocation(), Method->getDeclName(), 936 TemplateParams, Method); 937 TemplateMethod->setAccess(AS_public); 938 Method->setDescribedFunctionTemplate(TemplateMethod); 939 LSI->Lambda->addDecl(TemplateMethod); 940 TemplateMethod->setLexicalDeclContext(DC); 941 } else { 942 LSI->Lambda->addDecl(Method); 943 } 944 LSI->Lambda->setLambdaIsGeneric(TemplateParams); 945 LSI->Lambda->setLambdaTypeInfo(MethodTyInfo); 946 947 Method->setLexicalDeclContext(DC); 948 Method->setLocation(LambdaLoc); 949 Method->setInnerLocStart(CallOperatorLoc); 950 Method->setTypeSourceInfo(MethodTyInfo); 951 Method->setType(buildTypeForLambdaCallOperator(*this, LSI->Lambda, 952 TemplateParams, MethodTyInfo)); 953 Method->setConstexprKind(ConstexprKind); 954 Method->setStorageClass(SC); 955 if (!Params.empty()) { 956 CheckParmsForFunctionDef(Params, /*CheckParameterNames=*/false); 957 Method->setParams(Params); 958 for (auto P : Method->parameters()) { 959 assert(P && "null in a parameter list"); 960 P->setOwningFunction(Method); 961 } 962 } 963 964 buildLambdaScopeReturnType(*this, LSI, Method, HasExplicitResultType); 965 } 966 967 void Sema::ActOnLambdaExpressionAfterIntroducer(LambdaIntroducer &Intro, 968 Scope *CurrentScope) { 969 970 LambdaScopeInfo *LSI = getCurLambda(); 971 assert(LSI && "LambdaScopeInfo should be on stack!"); 972 973 if (Intro.Default == LCD_ByCopy) 974 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval; 975 else if (Intro.Default == LCD_ByRef) 976 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref; 977 LSI->CaptureDefaultLoc = Intro.DefaultLoc; 978 LSI->IntroducerRange = Intro.Range; 979 LSI->AfterParameterList = false; 980 981 assert(LSI->NumExplicitTemplateParams == 0); 982 983 // Determine if we're within a context where we know that the lambda will 984 // be dependent, because there are template parameters in scope. 985 CXXRecordDecl::LambdaDependencyKind LambdaDependencyKind = 986 CXXRecordDecl::LDK_Unknown; 987 if (LSI->NumExplicitTemplateParams > 0) { 988 Scope *TemplateParamScope = CurScope->getTemplateParamParent(); 989 assert(TemplateParamScope && 990 "Lambda with explicit template param list should establish a " 991 "template param scope"); 992 assert(TemplateParamScope->getParent()); 993 if (TemplateParamScope->getParent()->getTemplateParamParent() != nullptr) 994 LambdaDependencyKind = CXXRecordDecl::LDK_AlwaysDependent; 995 } else if (CurScope->getTemplateParamParent() != nullptr) { 996 LambdaDependencyKind = CXXRecordDecl::LDK_AlwaysDependent; 997 } 998 999 CXXRecordDecl *Class = createLambdaClosureType( 1000 Intro.Range, /*Info=*/nullptr, LambdaDependencyKind, Intro.Default); 1001 LSI->Lambda = Class; 1002 1003 CXXMethodDecl *Method = CreateLambdaCallOperator(Intro.Range, Class); 1004 LSI->CallOperator = Method; 1005 Method->setLexicalDeclContext(CurContext); 1006 1007 PushDeclContext(CurScope, Method); 1008 1009 bool ContainsUnexpandedParameterPack = false; 1010 1011 // Distinct capture names, for diagnostics. 1012 llvm::DenseMap<IdentifierInfo *, ValueDecl *> CaptureNames; 1013 1014 // Handle explicit captures. 1015 SourceLocation PrevCaptureLoc = 1016 Intro.Default == LCD_None ? Intro.Range.getBegin() : Intro.DefaultLoc; 1017 for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E; 1018 PrevCaptureLoc = C->Loc, ++C) { 1019 if (C->Kind == LCK_This || C->Kind == LCK_StarThis) { 1020 if (C->Kind == LCK_StarThis) 1021 Diag(C->Loc, !getLangOpts().CPlusPlus17 1022 ? diag::ext_star_this_lambda_capture_cxx17 1023 : diag::warn_cxx14_compat_star_this_lambda_capture); 1024 1025 // C++11 [expr.prim.lambda]p8: 1026 // An identifier or this shall not appear more than once in a 1027 // lambda-capture. 1028 if (LSI->isCXXThisCaptured()) { 1029 Diag(C->Loc, diag::err_capture_more_than_once) 1030 << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation()) 1031 << FixItHint::CreateRemoval( 1032 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1033 continue; 1034 } 1035 1036 // C++20 [expr.prim.lambda]p8: 1037 // If a lambda-capture includes a capture-default that is =, 1038 // each simple-capture of that lambda-capture shall be of the form 1039 // "&identifier", "this", or "* this". [ Note: The form [&,this] is 1040 // redundant but accepted for compatibility with ISO C++14. --end note ] 1041 if (Intro.Default == LCD_ByCopy && C->Kind != LCK_StarThis) 1042 Diag(C->Loc, !getLangOpts().CPlusPlus20 1043 ? diag::ext_equals_this_lambda_capture_cxx20 1044 : diag::warn_cxx17_compat_equals_this_lambda_capture); 1045 1046 // C++11 [expr.prim.lambda]p12: 1047 // If this is captured by a local lambda expression, its nearest 1048 // enclosing function shall be a non-static member function. 1049 QualType ThisCaptureType = getCurrentThisType(); 1050 if (ThisCaptureType.isNull()) { 1051 Diag(C->Loc, diag::err_this_capture) << true; 1052 continue; 1053 } 1054 1055 CheckCXXThisCapture(C->Loc, /*Explicit=*/true, /*BuildAndDiagnose*/ true, 1056 /*FunctionScopeIndexToStopAtPtr*/ nullptr, 1057 C->Kind == LCK_StarThis); 1058 if (!LSI->Captures.empty()) 1059 LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange; 1060 continue; 1061 } 1062 1063 assert(C->Id && "missing identifier for capture"); 1064 1065 if (C->Init.isInvalid()) 1066 continue; 1067 1068 ValueDecl *Var = nullptr; 1069 if (C->Init.isUsable()) { 1070 Diag(C->Loc, getLangOpts().CPlusPlus14 1071 ? diag::warn_cxx11_compat_init_capture 1072 : diag::ext_init_capture); 1073 1074 // If the initializer expression is usable, but the InitCaptureType 1075 // is not, then an error has occurred - so ignore the capture for now. 1076 // for e.g., [n{0}] { }; <-- if no <initializer_list> is included. 1077 // FIXME: we should create the init capture variable and mark it invalid 1078 // in this case. 1079 if (C->InitCaptureType.get().isNull()) 1080 continue; 1081 1082 if (C->Init.get()->containsUnexpandedParameterPack() && 1083 !C->InitCaptureType.get()->getAs<PackExpansionType>()) 1084 DiagnoseUnexpandedParameterPack(C->Init.get(), UPPC_Initializer); 1085 1086 unsigned InitStyle; 1087 switch (C->InitKind) { 1088 case LambdaCaptureInitKind::NoInit: 1089 llvm_unreachable("not an init-capture?"); 1090 case LambdaCaptureInitKind::CopyInit: 1091 InitStyle = VarDecl::CInit; 1092 break; 1093 case LambdaCaptureInitKind::DirectInit: 1094 InitStyle = VarDecl::CallInit; 1095 break; 1096 case LambdaCaptureInitKind::ListInit: 1097 InitStyle = VarDecl::ListInit; 1098 break; 1099 } 1100 Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(), 1101 C->EllipsisLoc, C->Id, InitStyle, 1102 C->Init.get(), Method); 1103 assert(Var && "createLambdaInitCaptureVarDecl returned a null VarDecl?"); 1104 if (auto *V = dyn_cast<VarDecl>(Var)) 1105 CheckShadow(CurrentScope, V); 1106 PushOnScopeChains(Var, CurrentScope, false); 1107 } else { 1108 assert(C->InitKind == LambdaCaptureInitKind::NoInit && 1109 "init capture has valid but null init?"); 1110 1111 // C++11 [expr.prim.lambda]p8: 1112 // If a lambda-capture includes a capture-default that is &, the 1113 // identifiers in the lambda-capture shall not be preceded by &. 1114 // If a lambda-capture includes a capture-default that is =, [...] 1115 // each identifier it contains shall be preceded by &. 1116 if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) { 1117 Diag(C->Loc, diag::err_reference_capture_with_reference_default) 1118 << FixItHint::CreateRemoval( 1119 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1120 continue; 1121 } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) { 1122 Diag(C->Loc, diag::err_copy_capture_with_copy_default) 1123 << FixItHint::CreateRemoval( 1124 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1125 continue; 1126 } 1127 1128 // C++11 [expr.prim.lambda]p10: 1129 // The identifiers in a capture-list are looked up using the usual 1130 // rules for unqualified name lookup (3.4.1) 1131 DeclarationNameInfo Name(C->Id, C->Loc); 1132 LookupResult R(*this, Name, LookupOrdinaryName); 1133 LookupName(R, CurScope); 1134 if (R.isAmbiguous()) 1135 continue; 1136 if (R.empty()) { 1137 // FIXME: Disable corrections that would add qualification? 1138 CXXScopeSpec ScopeSpec; 1139 DeclFilterCCC<VarDecl> Validator{}; 1140 if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R, Validator)) 1141 continue; 1142 } 1143 1144 if (auto *BD = R.getAsSingle<BindingDecl>()) 1145 Var = BD; 1146 else 1147 Var = R.getAsSingle<VarDecl>(); 1148 if (Var && DiagnoseUseOfDecl(Var, C->Loc)) 1149 continue; 1150 } 1151 1152 // C++11 [expr.prim.lambda]p10: 1153 // [...] each such lookup shall find a variable with automatic storage 1154 // duration declared in the reaching scope of the local lambda expression. 1155 // Note that the 'reaching scope' check happens in tryCaptureVariable(). 1156 if (!Var) { 1157 Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id; 1158 continue; 1159 } 1160 1161 // C++11 [expr.prim.lambda]p8: 1162 // An identifier or this shall not appear more than once in a 1163 // lambda-capture. 1164 if (auto [It, Inserted] = CaptureNames.insert(std::pair{C->Id, Var}); 1165 !Inserted) { 1166 if (C->InitKind == LambdaCaptureInitKind::NoInit && 1167 !Var->isInitCapture()) { 1168 Diag(C->Loc, diag::err_capture_more_than_once) 1169 << C->Id << It->second->getBeginLoc() 1170 << FixItHint::CreateRemoval( 1171 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1172 } else 1173 // Previous capture captured something different (one or both was 1174 // an init-capture): no fixit. 1175 Diag(C->Loc, diag::err_capture_more_than_once) << C->Id; 1176 continue; 1177 } 1178 1179 // Ignore invalid decls; they'll just confuse the code later. 1180 if (Var->isInvalidDecl()) 1181 continue; 1182 1183 VarDecl *Underlying = Var->getPotentiallyDecomposedVarDecl(); 1184 1185 if (!Underlying->hasLocalStorage()) { 1186 Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id; 1187 Diag(Var->getLocation(), diag::note_previous_decl) << C->Id; 1188 continue; 1189 } 1190 1191 // C++11 [expr.prim.lambda]p23: 1192 // A capture followed by an ellipsis is a pack expansion (14.5.3). 1193 SourceLocation EllipsisLoc; 1194 if (C->EllipsisLoc.isValid()) { 1195 if (Var->isParameterPack()) { 1196 EllipsisLoc = C->EllipsisLoc; 1197 } else { 1198 Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 1199 << (C->Init.isUsable() ? C->Init.get()->getSourceRange() 1200 : SourceRange(C->Loc)); 1201 1202 // Just ignore the ellipsis. 1203 } 1204 } else if (Var->isParameterPack()) { 1205 ContainsUnexpandedParameterPack = true; 1206 } 1207 1208 if (C->Init.isUsable()) { 1209 addInitCapture(LSI, cast<VarDecl>(Var), C->Kind == LCK_ByRef); 1210 PushOnScopeChains(Var, CurScope, false); 1211 } else { 1212 TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef 1213 : TryCapture_ExplicitByVal; 1214 tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc); 1215 } 1216 if (!LSI->Captures.empty()) 1217 LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange; 1218 } 1219 finishLambdaExplicitCaptures(LSI); 1220 LSI->ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack; 1221 PopDeclContext(); 1222 } 1223 1224 void Sema::ActOnLambdaClosureQualifiers(LambdaIntroducer &Intro, 1225 SourceLocation MutableLoc) { 1226 1227 LambdaScopeInfo *LSI = getCurrentLambdaScopeUnsafe(*this); 1228 LSI->Mutable = MutableLoc.isValid(); 1229 ContextRAII Context(*this, LSI->CallOperator, /*NewThisContext*/ false); 1230 1231 // C++11 [expr.prim.lambda]p9: 1232 // A lambda-expression whose smallest enclosing scope is a block scope is a 1233 // local lambda expression; any other lambda expression shall not have a 1234 // capture-default or simple-capture in its lambda-introducer. 1235 // 1236 // For simple-captures, this is covered by the check below that any named 1237 // entity is a variable that can be captured. 1238 // 1239 // For DR1632, we also allow a capture-default in any context where we can 1240 // odr-use 'this' (in particular, in a default initializer for a non-static 1241 // data member). 1242 if (Intro.Default != LCD_None && 1243 !LSI->Lambda->getParent()->isFunctionOrMethod() && 1244 (getCurrentThisType().isNull() || 1245 CheckCXXThisCapture(SourceLocation(), /*Explicit=*/true, 1246 /*BuildAndDiagnose=*/false))) 1247 Diag(Intro.DefaultLoc, diag::err_capture_default_non_local); 1248 } 1249 1250 void Sema::ActOnLambdaClosureParameters( 1251 Scope *LambdaScope, MutableArrayRef<DeclaratorChunk::ParamInfo> Params) { 1252 LambdaScopeInfo *LSI = getCurrentLambdaScopeUnsafe(*this); 1253 PushDeclContext(LambdaScope, LSI->CallOperator); 1254 1255 for (const DeclaratorChunk::ParamInfo &P : Params) { 1256 auto *Param = cast<ParmVarDecl>(P.Param); 1257 Param->setOwningFunction(LSI->CallOperator); 1258 if (Param->getIdentifier()) 1259 PushOnScopeChains(Param, LambdaScope, false); 1260 } 1261 1262 LSI->AfterParameterList = true; 1263 } 1264 1265 void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro, 1266 Declarator &ParamInfo, 1267 const DeclSpec &DS) { 1268 1269 LambdaScopeInfo *LSI = getCurrentLambdaScopeUnsafe(*this); 1270 LSI->CallOperator->setConstexprKind(DS.getConstexprSpecifier()); 1271 1272 SmallVector<ParmVarDecl *, 8> Params; 1273 bool ExplicitResultType; 1274 1275 SourceLocation TypeLoc, CallOperatorLoc; 1276 if (ParamInfo.getNumTypeObjects() == 0) { 1277 CallOperatorLoc = TypeLoc = Intro.Range.getEnd(); 1278 } else { 1279 unsigned Index; 1280 ParamInfo.isFunctionDeclarator(Index); 1281 const auto &Object = ParamInfo.getTypeObject(Index); 1282 TypeLoc = 1283 Object.Loc.isValid() ? Object.Loc : ParamInfo.getSourceRange().getEnd(); 1284 CallOperatorLoc = ParamInfo.getSourceRange().getEnd(); 1285 } 1286 1287 CXXRecordDecl *Class = LSI->Lambda; 1288 CXXMethodDecl *Method = LSI->CallOperator; 1289 1290 TypeSourceInfo *MethodTyInfo = getLambdaType( 1291 *this, Intro, ParamInfo, getCurScope(), TypeLoc, ExplicitResultType); 1292 1293 LSI->ExplicitParams = ParamInfo.getNumTypeObjects() != 0; 1294 1295 if (ParamInfo.isFunctionDeclarator() != 0 && 1296 !FTIHasSingleVoidParameter(ParamInfo.getFunctionTypeInfo())) { 1297 const auto &FTI = ParamInfo.getFunctionTypeInfo(); 1298 Params.reserve(Params.size()); 1299 for (unsigned I = 0; I < FTI.NumParams; ++I) { 1300 auto *Param = cast<ParmVarDecl>(FTI.Params[I].Param); 1301 Param->setScopeInfo(0, Params.size()); 1302 Params.push_back(Param); 1303 } 1304 } 1305 1306 bool IsLambdaStatic = 1307 ParamInfo.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static; 1308 1309 CompleteLambdaCallOperator( 1310 Method, Intro.Range.getBegin(), CallOperatorLoc, 1311 ParamInfo.getTrailingRequiresClause(), MethodTyInfo, 1312 ParamInfo.getDeclSpec().getConstexprSpecifier(), 1313 IsLambdaStatic ? SC_Static : SC_None, Params, ExplicitResultType); 1314 1315 CheckCXXDefaultArguments(Method); 1316 1317 // This represents the function body for the lambda function, check if we 1318 // have to apply optnone due to a pragma. 1319 AddRangeBasedOptnone(Method); 1320 1321 // code_seg attribute on lambda apply to the method. 1322 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction( 1323 Method, /*IsDefinition=*/true)) 1324 Method->addAttr(A); 1325 1326 // Attributes on the lambda apply to the method. 1327 ProcessDeclAttributes(CurScope, Method, ParamInfo); 1328 1329 // CUDA lambdas get implicit host and device attributes. 1330 if (getLangOpts().CUDA) 1331 CUDASetLambdaAttrs(Method); 1332 1333 // OpenMP lambdas might get assumumption attributes. 1334 if (LangOpts.OpenMP) 1335 ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(Method); 1336 1337 handleLambdaNumbering(Class, Method); 1338 1339 for (auto &&C : LSI->Captures) { 1340 if (!C.isVariableCapture()) 1341 continue; 1342 ValueDecl *Var = C.getVariable(); 1343 if (Var && Var->isInitCapture()) { 1344 PushOnScopeChains(Var, CurScope, false); 1345 } 1346 } 1347 1348 auto CheckRedefinition = [&](ParmVarDecl *Param) { 1349 for (const auto &Capture : Intro.Captures) { 1350 if (Capture.Id == Param->getIdentifier()) { 1351 Diag(Param->getLocation(), diag::err_parameter_shadow_capture); 1352 Diag(Capture.Loc, diag::note_var_explicitly_captured_here) 1353 << Capture.Id << true; 1354 return false; 1355 } 1356 } 1357 return true; 1358 }; 1359 1360 for (ParmVarDecl *P : Params) { 1361 if (!P->getIdentifier()) 1362 continue; 1363 if (CheckRedefinition(P)) 1364 CheckShadow(CurScope, P); 1365 PushOnScopeChains(P, CurScope); 1366 } 1367 1368 // C++23 [expr.prim.lambda.capture]p5: 1369 // If an identifier in a capture appears as the declarator-id of a parameter 1370 // of the lambda-declarator's parameter-declaration-clause or as the name of a 1371 // template parameter of the lambda-expression's template-parameter-list, the 1372 // program is ill-formed. 1373 TemplateParameterList *TemplateParams = 1374 getGenericLambdaTemplateParameterList(LSI, *this); 1375 if (TemplateParams) { 1376 for (const auto *TP : TemplateParams->asArray()) { 1377 if (!TP->getIdentifier()) 1378 continue; 1379 for (const auto &Capture : Intro.Captures) { 1380 if (Capture.Id == TP->getIdentifier()) { 1381 Diag(Capture.Loc, diag::err_template_param_shadow) << Capture.Id; 1382 Diag(TP->getLocation(), diag::note_template_param_here); 1383 } 1384 } 1385 } 1386 } 1387 1388 // C++20: dcl.decl.general p4: 1389 // The optional requires-clause ([temp.pre]) in an init-declarator or 1390 // member-declarator shall be present only if the declarator declares a 1391 // templated function ([dcl.fct]). 1392 if (Expr *TRC = Method->getTrailingRequiresClause()) { 1393 // [temp.pre]/8: 1394 // An entity is templated if it is 1395 // - a template, 1396 // - an entity defined ([basic.def]) or created ([class.temporary]) in a 1397 // templated entity, 1398 // - a member of a templated entity, 1399 // - an enumerator for an enumeration that is a templated entity, or 1400 // - the closure type of a lambda-expression ([expr.prim.lambda.closure]) 1401 // appearing in the declaration of a templated entity. [Note 6: A local 1402 // class, a local or block variable, or a friend function defined in a 1403 // templated entity is a templated entity. — end note] 1404 // 1405 // A templated function is a function template or a function that is 1406 // templated. A templated class is a class template or a class that is 1407 // templated. A templated variable is a variable template or a variable 1408 // that is templated. 1409 1410 // Note: we only have to check if this is defined in a template entity, OR 1411 // if we are a template, since the rest don't apply. The requires clause 1412 // applies to the call operator, which we already know is a member function, 1413 // AND defined. 1414 if (!Method->getDescribedFunctionTemplate() && !Method->isTemplated()) { 1415 Diag(TRC->getBeginLoc(), diag::err_constrained_non_templated_function); 1416 } 1417 } 1418 1419 // Enter a new evaluation context to insulate the lambda from any 1420 // cleanups from the enclosing full-expression. 1421 PushExpressionEvaluationContext( 1422 LSI->CallOperator->isConsteval() 1423 ? ExpressionEvaluationContext::ImmediateFunctionContext 1424 : ExpressionEvaluationContext::PotentiallyEvaluated); 1425 ExprEvalContexts.back().InImmediateFunctionContext = 1426 LSI->CallOperator->isConsteval(); 1427 ExprEvalContexts.back().InImmediateEscalatingFunctionContext = 1428 getLangOpts().CPlusPlus20 && LSI->CallOperator->isImmediateEscalating(); 1429 } 1430 1431 void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope, 1432 bool IsInstantiation) { 1433 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back()); 1434 1435 // Leave the expression-evaluation context. 1436 DiscardCleanupsInEvaluationContext(); 1437 PopExpressionEvaluationContext(); 1438 1439 // Leave the context of the lambda. 1440 if (!IsInstantiation) 1441 PopDeclContext(); 1442 1443 // Finalize the lambda. 1444 CXXRecordDecl *Class = LSI->Lambda; 1445 Class->setInvalidDecl(); 1446 SmallVector<Decl*, 4> Fields(Class->fields()); 1447 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(), 1448 SourceLocation(), ParsedAttributesView()); 1449 CheckCompletedCXXClass(nullptr, Class); 1450 1451 PopFunctionScopeInfo(); 1452 } 1453 1454 template <typename Func> 1455 static void repeatForLambdaConversionFunctionCallingConvs( 1456 Sema &S, const FunctionProtoType &CallOpProto, Func F) { 1457 CallingConv DefaultFree = S.Context.getDefaultCallingConvention( 1458 CallOpProto.isVariadic(), /*IsCXXMethod=*/false); 1459 CallingConv DefaultMember = S.Context.getDefaultCallingConvention( 1460 CallOpProto.isVariadic(), /*IsCXXMethod=*/true); 1461 CallingConv CallOpCC = CallOpProto.getCallConv(); 1462 1463 /// Implement emitting a version of the operator for many of the calling 1464 /// conventions for MSVC, as described here: 1465 /// https://devblogs.microsoft.com/oldnewthing/20150220-00/?p=44623. 1466 /// Experimentally, we determined that cdecl, stdcall, fastcall, and 1467 /// vectorcall are generated by MSVC when it is supported by the target. 1468 /// Additionally, we are ensuring that the default-free/default-member and 1469 /// call-operator calling convention are generated as well. 1470 /// NOTE: We intentionally generate a 'thiscall' on Win32 implicitly from the 1471 /// 'member default', despite MSVC not doing so. We do this in order to ensure 1472 /// that someone who intentionally places 'thiscall' on the lambda call 1473 /// operator will still get that overload, since we don't have the a way of 1474 /// detecting the attribute by the time we get here. 1475 if (S.getLangOpts().MSVCCompat) { 1476 CallingConv Convs[] = { 1477 CC_C, CC_X86StdCall, CC_X86FastCall, CC_X86VectorCall, 1478 DefaultFree, DefaultMember, CallOpCC}; 1479 llvm::sort(Convs); 1480 llvm::iterator_range<CallingConv *> Range( 1481 std::begin(Convs), std::unique(std::begin(Convs), std::end(Convs))); 1482 const TargetInfo &TI = S.getASTContext().getTargetInfo(); 1483 1484 for (CallingConv C : Range) { 1485 if (TI.checkCallingConvention(C) == TargetInfo::CCCR_OK) 1486 F(C); 1487 } 1488 return; 1489 } 1490 1491 if (CallOpCC == DefaultMember && DefaultMember != DefaultFree) { 1492 F(DefaultFree); 1493 F(DefaultMember); 1494 } else { 1495 F(CallOpCC); 1496 } 1497 } 1498 1499 // Returns the 'standard' calling convention to be used for the lambda 1500 // conversion function, that is, the 'free' function calling convention unless 1501 // it is overridden by a non-default calling convention attribute. 1502 static CallingConv 1503 getLambdaConversionFunctionCallConv(Sema &S, 1504 const FunctionProtoType *CallOpProto) { 1505 CallingConv DefaultFree = S.Context.getDefaultCallingConvention( 1506 CallOpProto->isVariadic(), /*IsCXXMethod=*/false); 1507 CallingConv DefaultMember = S.Context.getDefaultCallingConvention( 1508 CallOpProto->isVariadic(), /*IsCXXMethod=*/true); 1509 CallingConv CallOpCC = CallOpProto->getCallConv(); 1510 1511 // If the call-operator hasn't been changed, return both the 'free' and 1512 // 'member' function calling convention. 1513 if (CallOpCC == DefaultMember && DefaultMember != DefaultFree) 1514 return DefaultFree; 1515 return CallOpCC; 1516 } 1517 1518 QualType Sema::getLambdaConversionFunctionResultType( 1519 const FunctionProtoType *CallOpProto, CallingConv CC) { 1520 const FunctionProtoType::ExtProtoInfo CallOpExtInfo = 1521 CallOpProto->getExtProtoInfo(); 1522 FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo; 1523 InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC); 1524 InvokerExtInfo.TypeQuals = Qualifiers(); 1525 assert(InvokerExtInfo.RefQualifier == RQ_None && 1526 "Lambda's call operator should not have a reference qualifier"); 1527 return Context.getFunctionType(CallOpProto->getReturnType(), 1528 CallOpProto->getParamTypes(), InvokerExtInfo); 1529 } 1530 1531 /// Add a lambda's conversion to function pointer, as described in 1532 /// C++11 [expr.prim.lambda]p6. 1533 static void addFunctionPointerConversion(Sema &S, SourceRange IntroducerRange, 1534 CXXRecordDecl *Class, 1535 CXXMethodDecl *CallOperator, 1536 QualType InvokerFunctionTy) { 1537 // This conversion is explicitly disabled if the lambda's function has 1538 // pass_object_size attributes on any of its parameters. 1539 auto HasPassObjectSizeAttr = [](const ParmVarDecl *P) { 1540 return P->hasAttr<PassObjectSizeAttr>(); 1541 }; 1542 if (llvm::any_of(CallOperator->parameters(), HasPassObjectSizeAttr)) 1543 return; 1544 1545 // Add the conversion to function pointer. 1546 QualType PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy); 1547 1548 // Create the type of the conversion function. 1549 FunctionProtoType::ExtProtoInfo ConvExtInfo( 1550 S.Context.getDefaultCallingConvention( 1551 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 1552 // The conversion function is always const and noexcept. 1553 ConvExtInfo.TypeQuals = Qualifiers(); 1554 ConvExtInfo.TypeQuals.addConst(); 1555 ConvExtInfo.ExceptionSpec.Type = EST_BasicNoexcept; 1556 QualType ConvTy = 1557 S.Context.getFunctionType(PtrToFunctionTy, std::nullopt, ConvExtInfo); 1558 1559 SourceLocation Loc = IntroducerRange.getBegin(); 1560 DeclarationName ConversionName 1561 = S.Context.DeclarationNames.getCXXConversionFunctionName( 1562 S.Context.getCanonicalType(PtrToFunctionTy)); 1563 // Construct a TypeSourceInfo for the conversion function, and wire 1564 // all the parameters appropriately for the FunctionProtoTypeLoc 1565 // so that everything works during transformation/instantiation of 1566 // generic lambdas. 1567 // The main reason for wiring up the parameters of the conversion 1568 // function with that of the call operator is so that constructs 1569 // like the following work: 1570 // auto L = [](auto b) { <-- 1 1571 // return [](auto a) -> decltype(a) { <-- 2 1572 // return a; 1573 // }; 1574 // }; 1575 // int (*fp)(int) = L(5); 1576 // Because the trailing return type can contain DeclRefExprs that refer 1577 // to the original call operator's variables, we hijack the call 1578 // operators ParmVarDecls below. 1579 TypeSourceInfo *ConvNamePtrToFunctionTSI = 1580 S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc); 1581 DeclarationNameLoc ConvNameLoc = 1582 DeclarationNameLoc::makeNamedTypeLoc(ConvNamePtrToFunctionTSI); 1583 1584 // The conversion function is a conversion to a pointer-to-function. 1585 TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc); 1586 FunctionProtoTypeLoc ConvTL = 1587 ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>(); 1588 // Get the result of the conversion function which is a pointer-to-function. 1589 PointerTypeLoc PtrToFunctionTL = 1590 ConvTL.getReturnLoc().getAs<PointerTypeLoc>(); 1591 // Do the same for the TypeSourceInfo that is used to name the conversion 1592 // operator. 1593 PointerTypeLoc ConvNamePtrToFunctionTL = 1594 ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>(); 1595 1596 // Get the underlying function types that the conversion function will 1597 // be converting to (should match the type of the call operator). 1598 FunctionProtoTypeLoc CallOpConvTL = 1599 PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>(); 1600 FunctionProtoTypeLoc CallOpConvNameTL = 1601 ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>(); 1602 1603 // Wire up the FunctionProtoTypeLocs with the call operator's parameters. 1604 // These parameter's are essentially used to transform the name and 1605 // the type of the conversion operator. By using the same parameters 1606 // as the call operator's we don't have to fix any back references that 1607 // the trailing return type of the call operator's uses (such as 1608 // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.) 1609 // - we can simply use the return type of the call operator, and 1610 // everything should work. 1611 SmallVector<ParmVarDecl *, 4> InvokerParams; 1612 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) { 1613 ParmVarDecl *From = CallOperator->getParamDecl(I); 1614 1615 InvokerParams.push_back(ParmVarDecl::Create( 1616 S.Context, 1617 // Temporarily add to the TU. This is set to the invoker below. 1618 S.Context.getTranslationUnitDecl(), From->getBeginLoc(), 1619 From->getLocation(), From->getIdentifier(), From->getType(), 1620 From->getTypeSourceInfo(), From->getStorageClass(), 1621 /*DefArg=*/nullptr)); 1622 CallOpConvTL.setParam(I, From); 1623 CallOpConvNameTL.setParam(I, From); 1624 } 1625 1626 CXXConversionDecl *Conversion = CXXConversionDecl::Create( 1627 S.Context, Class, Loc, 1628 DeclarationNameInfo(ConversionName, Loc, ConvNameLoc), ConvTy, ConvTSI, 1629 S.getCurFPFeatures().isFPConstrained(), 1630 /*isInline=*/true, ExplicitSpecifier(), 1631 S.getLangOpts().CPlusPlus17 ? ConstexprSpecKind::Constexpr 1632 : ConstexprSpecKind::Unspecified, 1633 CallOperator->getBody()->getEndLoc()); 1634 Conversion->setAccess(AS_public); 1635 Conversion->setImplicit(true); 1636 1637 // A non-generic lambda may still be a templated entity. We need to preserve 1638 // constraints when converting the lambda to a function pointer. See GH63181. 1639 if (Expr *Requires = CallOperator->getTrailingRequiresClause()) 1640 Conversion->setTrailingRequiresClause(Requires); 1641 1642 if (Class->isGenericLambda()) { 1643 // Create a template version of the conversion operator, using the template 1644 // parameter list of the function call operator. 1645 FunctionTemplateDecl *TemplateCallOperator = 1646 CallOperator->getDescribedFunctionTemplate(); 1647 FunctionTemplateDecl *ConversionTemplate = 1648 FunctionTemplateDecl::Create(S.Context, Class, 1649 Loc, ConversionName, 1650 TemplateCallOperator->getTemplateParameters(), 1651 Conversion); 1652 ConversionTemplate->setAccess(AS_public); 1653 ConversionTemplate->setImplicit(true); 1654 Conversion->setDescribedFunctionTemplate(ConversionTemplate); 1655 Class->addDecl(ConversionTemplate); 1656 } else 1657 Class->addDecl(Conversion); 1658 1659 // If the lambda is not static, we need to add a static member 1660 // function that will be the result of the conversion with a 1661 // certain unique ID. 1662 // When it is static we just return the static call operator instead. 1663 if (CallOperator->isInstance()) { 1664 DeclarationName InvokerName = 1665 &S.Context.Idents.get(getLambdaStaticInvokerName()); 1666 // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo() 1667 // we should get a prebuilt TrivialTypeSourceInfo from Context 1668 // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc 1669 // then rewire the parameters accordingly, by hoisting up the InvokeParams 1670 // loop below and then use its Params to set Invoke->setParams(...) below. 1671 // This would avoid the 'const' qualifier of the calloperator from 1672 // contaminating the type of the invoker, which is currently adjusted 1673 // in SemaTemplateDeduction.cpp:DeduceTemplateArguments. Fixing the 1674 // trailing return type of the invoker would require a visitor to rebuild 1675 // the trailing return type and adjusting all back DeclRefExpr's to refer 1676 // to the new static invoker parameters - not the call operator's. 1677 CXXMethodDecl *Invoke = CXXMethodDecl::Create( 1678 S.Context, Class, Loc, DeclarationNameInfo(InvokerName, Loc), 1679 InvokerFunctionTy, CallOperator->getTypeSourceInfo(), SC_Static, 1680 S.getCurFPFeatures().isFPConstrained(), 1681 /*isInline=*/true, CallOperator->getConstexprKind(), 1682 CallOperator->getBody()->getEndLoc()); 1683 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) 1684 InvokerParams[I]->setOwningFunction(Invoke); 1685 Invoke->setParams(InvokerParams); 1686 Invoke->setAccess(AS_private); 1687 Invoke->setImplicit(true); 1688 if (Class->isGenericLambda()) { 1689 FunctionTemplateDecl *TemplateCallOperator = 1690 CallOperator->getDescribedFunctionTemplate(); 1691 FunctionTemplateDecl *StaticInvokerTemplate = 1692 FunctionTemplateDecl::Create( 1693 S.Context, Class, Loc, InvokerName, 1694 TemplateCallOperator->getTemplateParameters(), Invoke); 1695 StaticInvokerTemplate->setAccess(AS_private); 1696 StaticInvokerTemplate->setImplicit(true); 1697 Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate); 1698 Class->addDecl(StaticInvokerTemplate); 1699 } else 1700 Class->addDecl(Invoke); 1701 } 1702 } 1703 1704 /// Add a lambda's conversion to function pointers, as described in 1705 /// C++11 [expr.prim.lambda]p6. Note that in most cases, this should emit only a 1706 /// single pointer conversion. In the event that the default calling convention 1707 /// for free and member functions is different, it will emit both conventions. 1708 static void addFunctionPointerConversions(Sema &S, SourceRange IntroducerRange, 1709 CXXRecordDecl *Class, 1710 CXXMethodDecl *CallOperator) { 1711 const FunctionProtoType *CallOpProto = 1712 CallOperator->getType()->castAs<FunctionProtoType>(); 1713 1714 repeatForLambdaConversionFunctionCallingConvs( 1715 S, *CallOpProto, [&](CallingConv CC) { 1716 QualType InvokerFunctionTy = 1717 S.getLambdaConversionFunctionResultType(CallOpProto, CC); 1718 addFunctionPointerConversion(S, IntroducerRange, Class, CallOperator, 1719 InvokerFunctionTy); 1720 }); 1721 } 1722 1723 /// Add a lambda's conversion to block pointer. 1724 static void addBlockPointerConversion(Sema &S, 1725 SourceRange IntroducerRange, 1726 CXXRecordDecl *Class, 1727 CXXMethodDecl *CallOperator) { 1728 const FunctionProtoType *CallOpProto = 1729 CallOperator->getType()->castAs<FunctionProtoType>(); 1730 QualType FunctionTy = S.getLambdaConversionFunctionResultType( 1731 CallOpProto, getLambdaConversionFunctionCallConv(S, CallOpProto)); 1732 QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy); 1733 1734 FunctionProtoType::ExtProtoInfo ConversionEPI( 1735 S.Context.getDefaultCallingConvention( 1736 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 1737 ConversionEPI.TypeQuals = Qualifiers(); 1738 ConversionEPI.TypeQuals.addConst(); 1739 QualType ConvTy = 1740 S.Context.getFunctionType(BlockPtrTy, std::nullopt, ConversionEPI); 1741 1742 SourceLocation Loc = IntroducerRange.getBegin(); 1743 DeclarationName Name 1744 = S.Context.DeclarationNames.getCXXConversionFunctionName( 1745 S.Context.getCanonicalType(BlockPtrTy)); 1746 DeclarationNameLoc NameLoc = DeclarationNameLoc::makeNamedTypeLoc( 1747 S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc)); 1748 CXXConversionDecl *Conversion = CXXConversionDecl::Create( 1749 S.Context, Class, Loc, DeclarationNameInfo(Name, Loc, NameLoc), ConvTy, 1750 S.Context.getTrivialTypeSourceInfo(ConvTy, Loc), 1751 S.getCurFPFeatures().isFPConstrained(), 1752 /*isInline=*/true, ExplicitSpecifier(), ConstexprSpecKind::Unspecified, 1753 CallOperator->getBody()->getEndLoc()); 1754 Conversion->setAccess(AS_public); 1755 Conversion->setImplicit(true); 1756 Class->addDecl(Conversion); 1757 } 1758 1759 ExprResult Sema::BuildCaptureInit(const Capture &Cap, 1760 SourceLocation ImplicitCaptureLoc, 1761 bool IsOpenMPMapping) { 1762 // VLA captures don't have a stored initialization expression. 1763 if (Cap.isVLATypeCapture()) 1764 return ExprResult(); 1765 1766 // An init-capture is initialized directly from its stored initializer. 1767 if (Cap.isInitCapture()) 1768 return cast<VarDecl>(Cap.getVariable())->getInit(); 1769 1770 // For anything else, build an initialization expression. For an implicit 1771 // capture, the capture notionally happens at the capture-default, so use 1772 // that location here. 1773 SourceLocation Loc = 1774 ImplicitCaptureLoc.isValid() ? ImplicitCaptureLoc : Cap.getLocation(); 1775 1776 // C++11 [expr.prim.lambda]p21: 1777 // When the lambda-expression is evaluated, the entities that 1778 // are captured by copy are used to direct-initialize each 1779 // corresponding non-static data member of the resulting closure 1780 // object. (For array members, the array elements are 1781 // direct-initialized in increasing subscript order.) These 1782 // initializations are performed in the (unspecified) order in 1783 // which the non-static data members are declared. 1784 1785 // C++ [expr.prim.lambda]p12: 1786 // An entity captured by a lambda-expression is odr-used (3.2) in 1787 // the scope containing the lambda-expression. 1788 ExprResult Init; 1789 IdentifierInfo *Name = nullptr; 1790 if (Cap.isThisCapture()) { 1791 QualType ThisTy = getCurrentThisType(); 1792 Expr *This = BuildCXXThisExpr(Loc, ThisTy, ImplicitCaptureLoc.isValid()); 1793 if (Cap.isCopyCapture()) 1794 Init = CreateBuiltinUnaryOp(Loc, UO_Deref, This); 1795 else 1796 Init = This; 1797 } else { 1798 assert(Cap.isVariableCapture() && "unknown kind of capture"); 1799 ValueDecl *Var = Cap.getVariable(); 1800 Name = Var->getIdentifier(); 1801 Init = BuildDeclarationNameExpr( 1802 CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var); 1803 } 1804 1805 // In OpenMP, the capture kind doesn't actually describe how to capture: 1806 // variables are "mapped" onto the device in a process that does not formally 1807 // make a copy, even for a "copy capture". 1808 if (IsOpenMPMapping) 1809 return Init; 1810 1811 if (Init.isInvalid()) 1812 return ExprError(); 1813 1814 Expr *InitExpr = Init.get(); 1815 InitializedEntity Entity = InitializedEntity::InitializeLambdaCapture( 1816 Name, Cap.getCaptureType(), Loc); 1817 InitializationKind InitKind = 1818 InitializationKind::CreateDirect(Loc, Loc, Loc); 1819 InitializationSequence InitSeq(*this, Entity, InitKind, InitExpr); 1820 return InitSeq.Perform(*this, Entity, InitKind, InitExpr); 1821 } 1822 1823 ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body, 1824 Scope *CurScope) { 1825 LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back()); 1826 ActOnFinishFunctionBody(LSI.CallOperator, Body); 1827 return BuildLambdaExpr(StartLoc, Body->getEndLoc(), &LSI); 1828 } 1829 1830 static LambdaCaptureDefault 1831 mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS) { 1832 switch (ICS) { 1833 case CapturingScopeInfo::ImpCap_None: 1834 return LCD_None; 1835 case CapturingScopeInfo::ImpCap_LambdaByval: 1836 return LCD_ByCopy; 1837 case CapturingScopeInfo::ImpCap_CapturedRegion: 1838 case CapturingScopeInfo::ImpCap_LambdaByref: 1839 return LCD_ByRef; 1840 case CapturingScopeInfo::ImpCap_Block: 1841 llvm_unreachable("block capture in lambda"); 1842 } 1843 llvm_unreachable("Unknown implicit capture style"); 1844 } 1845 1846 bool Sema::CaptureHasSideEffects(const Capture &From) { 1847 if (From.isInitCapture()) { 1848 Expr *Init = cast<VarDecl>(From.getVariable())->getInit(); 1849 if (Init && Init->HasSideEffects(Context)) 1850 return true; 1851 } 1852 1853 if (!From.isCopyCapture()) 1854 return false; 1855 1856 const QualType T = From.isThisCapture() 1857 ? getCurrentThisType()->getPointeeType() 1858 : From.getCaptureType(); 1859 1860 if (T.isVolatileQualified()) 1861 return true; 1862 1863 const Type *BaseT = T->getBaseElementTypeUnsafe(); 1864 if (const CXXRecordDecl *RD = BaseT->getAsCXXRecordDecl()) 1865 return !RD->isCompleteDefinition() || !RD->hasTrivialCopyConstructor() || 1866 !RD->hasTrivialDestructor(); 1867 1868 return false; 1869 } 1870 1871 bool Sema::DiagnoseUnusedLambdaCapture(SourceRange CaptureRange, 1872 const Capture &From) { 1873 if (CaptureHasSideEffects(From)) 1874 return false; 1875 1876 if (From.isVLATypeCapture()) 1877 return false; 1878 1879 auto diag = Diag(From.getLocation(), diag::warn_unused_lambda_capture); 1880 if (From.isThisCapture()) 1881 diag << "'this'"; 1882 else 1883 diag << From.getVariable(); 1884 diag << From.isNonODRUsed(); 1885 diag << FixItHint::CreateRemoval(CaptureRange); 1886 return true; 1887 } 1888 1889 /// Create a field within the lambda class or captured statement record for the 1890 /// given capture. 1891 FieldDecl *Sema::BuildCaptureField(RecordDecl *RD, 1892 const sema::Capture &Capture) { 1893 SourceLocation Loc = Capture.getLocation(); 1894 QualType FieldType = Capture.getCaptureType(); 1895 1896 TypeSourceInfo *TSI = nullptr; 1897 if (Capture.isVariableCapture()) { 1898 const auto *Var = dyn_cast_or_null<VarDecl>(Capture.getVariable()); 1899 if (Var && Var->isInitCapture()) 1900 TSI = Var->getTypeSourceInfo(); 1901 } 1902 1903 // FIXME: Should we really be doing this? A null TypeSourceInfo seems more 1904 // appropriate, at least for an implicit capture. 1905 if (!TSI) 1906 TSI = Context.getTrivialTypeSourceInfo(FieldType, Loc); 1907 1908 // Build the non-static data member. 1909 FieldDecl *Field = 1910 FieldDecl::Create(Context, RD, /*StartLoc=*/Loc, /*IdLoc=*/Loc, 1911 /*Id=*/nullptr, FieldType, TSI, /*BW=*/nullptr, 1912 /*Mutable=*/false, ICIS_NoInit); 1913 // If the variable being captured has an invalid type, mark the class as 1914 // invalid as well. 1915 if (!FieldType->isDependentType()) { 1916 if (RequireCompleteSizedType(Loc, FieldType, 1917 diag::err_field_incomplete_or_sizeless)) { 1918 RD->setInvalidDecl(); 1919 Field->setInvalidDecl(); 1920 } else { 1921 NamedDecl *Def; 1922 FieldType->isIncompleteType(&Def); 1923 if (Def && Def->isInvalidDecl()) { 1924 RD->setInvalidDecl(); 1925 Field->setInvalidDecl(); 1926 } 1927 } 1928 } 1929 Field->setImplicit(true); 1930 Field->setAccess(AS_private); 1931 RD->addDecl(Field); 1932 1933 if (Capture.isVLATypeCapture()) 1934 Field->setCapturedVLAType(Capture.getCapturedVLAType()); 1935 1936 return Field; 1937 } 1938 1939 ExprResult Sema::BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc, 1940 LambdaScopeInfo *LSI) { 1941 // Collect information from the lambda scope. 1942 SmallVector<LambdaCapture, 4> Captures; 1943 SmallVector<Expr *, 4> CaptureInits; 1944 SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc; 1945 LambdaCaptureDefault CaptureDefault = 1946 mapImplicitCaptureStyle(LSI->ImpCaptureStyle); 1947 CXXRecordDecl *Class; 1948 CXXMethodDecl *CallOperator; 1949 SourceRange IntroducerRange; 1950 bool ExplicitParams; 1951 bool ExplicitResultType; 1952 CleanupInfo LambdaCleanup; 1953 bool ContainsUnexpandedParameterPack; 1954 bool IsGenericLambda; 1955 { 1956 CallOperator = LSI->CallOperator; 1957 Class = LSI->Lambda; 1958 IntroducerRange = LSI->IntroducerRange; 1959 ExplicitParams = LSI->ExplicitParams; 1960 ExplicitResultType = !LSI->HasImplicitReturnType; 1961 LambdaCleanup = LSI->Cleanup; 1962 ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack; 1963 IsGenericLambda = Class->isGenericLambda(); 1964 1965 CallOperator->setLexicalDeclContext(Class); 1966 Decl *TemplateOrNonTemplateCallOperatorDecl = 1967 CallOperator->getDescribedFunctionTemplate() 1968 ? CallOperator->getDescribedFunctionTemplate() 1969 : cast<Decl>(CallOperator); 1970 1971 // FIXME: Is this really the best choice? Keeping the lexical decl context 1972 // set as CurContext seems more faithful to the source. 1973 TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class); 1974 1975 PopExpressionEvaluationContext(); 1976 1977 // True if the current capture has a used capture or default before it. 1978 bool CurHasPreviousCapture = CaptureDefault != LCD_None; 1979 SourceLocation PrevCaptureLoc = CurHasPreviousCapture ? 1980 CaptureDefaultLoc : IntroducerRange.getBegin(); 1981 1982 for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) { 1983 const Capture &From = LSI->Captures[I]; 1984 1985 if (From.isInvalid()) 1986 return ExprError(); 1987 1988 assert(!From.isBlockCapture() && "Cannot capture __block variables"); 1989 bool IsImplicit = I >= LSI->NumExplicitCaptures; 1990 SourceLocation ImplicitCaptureLoc = 1991 IsImplicit ? CaptureDefaultLoc : SourceLocation(); 1992 1993 // Use source ranges of explicit captures for fixits where available. 1994 SourceRange CaptureRange = LSI->ExplicitCaptureRanges[I]; 1995 1996 // Warn about unused explicit captures. 1997 bool IsCaptureUsed = true; 1998 if (!CurContext->isDependentContext() && !IsImplicit && 1999 !From.isODRUsed()) { 2000 // Initialized captures that are non-ODR used may not be eliminated. 2001 // FIXME: Where did the IsGenericLambda here come from? 2002 bool NonODRUsedInitCapture = 2003 IsGenericLambda && From.isNonODRUsed() && From.isInitCapture(); 2004 if (!NonODRUsedInitCapture) { 2005 bool IsLast = (I + 1) == LSI->NumExplicitCaptures; 2006 SourceRange FixItRange; 2007 if (CaptureRange.isValid()) { 2008 if (!CurHasPreviousCapture && !IsLast) { 2009 // If there are no captures preceding this capture, remove the 2010 // following comma. 2011 FixItRange = SourceRange(CaptureRange.getBegin(), 2012 getLocForEndOfToken(CaptureRange.getEnd())); 2013 } else { 2014 // Otherwise, remove the comma since the last used capture. 2015 FixItRange = SourceRange(getLocForEndOfToken(PrevCaptureLoc), 2016 CaptureRange.getEnd()); 2017 } 2018 } 2019 2020 IsCaptureUsed = !DiagnoseUnusedLambdaCapture(FixItRange, From); 2021 } 2022 } 2023 2024 if (CaptureRange.isValid()) { 2025 CurHasPreviousCapture |= IsCaptureUsed; 2026 PrevCaptureLoc = CaptureRange.getEnd(); 2027 } 2028 2029 // Map the capture to our AST representation. 2030 LambdaCapture Capture = [&] { 2031 if (From.isThisCapture()) { 2032 // Capturing 'this' implicitly with a default of '[=]' is deprecated, 2033 // because it results in a reference capture. Don't warn prior to 2034 // C++2a; there's nothing that can be done about it before then. 2035 if (getLangOpts().CPlusPlus20 && IsImplicit && 2036 CaptureDefault == LCD_ByCopy) { 2037 Diag(From.getLocation(), diag::warn_deprecated_this_capture); 2038 Diag(CaptureDefaultLoc, diag::note_deprecated_this_capture) 2039 << FixItHint::CreateInsertion( 2040 getLocForEndOfToken(CaptureDefaultLoc), ", this"); 2041 } 2042 return LambdaCapture(From.getLocation(), IsImplicit, 2043 From.isCopyCapture() ? LCK_StarThis : LCK_This); 2044 } else if (From.isVLATypeCapture()) { 2045 return LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType); 2046 } else { 2047 assert(From.isVariableCapture() && "unknown kind of capture"); 2048 ValueDecl *Var = From.getVariable(); 2049 LambdaCaptureKind Kind = 2050 From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef; 2051 return LambdaCapture(From.getLocation(), IsImplicit, Kind, Var, 2052 From.getEllipsisLoc()); 2053 } 2054 }(); 2055 2056 // Form the initializer for the capture field. 2057 ExprResult Init = BuildCaptureInit(From, ImplicitCaptureLoc); 2058 2059 // FIXME: Skip this capture if the capture is not used, the initializer 2060 // has no side-effects, the type of the capture is trivial, and the 2061 // lambda is not externally visible. 2062 2063 // Add a FieldDecl for the capture and form its initializer. 2064 BuildCaptureField(Class, From); 2065 Captures.push_back(Capture); 2066 CaptureInits.push_back(Init.get()); 2067 2068 if (LangOpts.CUDA) 2069 CUDACheckLambdaCapture(CallOperator, From); 2070 } 2071 2072 Class->setCaptures(Context, Captures); 2073 2074 // C++11 [expr.prim.lambda]p6: 2075 // The closure type for a lambda-expression with no lambda-capture 2076 // has a public non-virtual non-explicit const conversion function 2077 // to pointer to function having the same parameter and return 2078 // types as the closure type's function call operator. 2079 if (Captures.empty() && CaptureDefault == LCD_None) 2080 addFunctionPointerConversions(*this, IntroducerRange, Class, 2081 CallOperator); 2082 2083 // Objective-C++: 2084 // The closure type for a lambda-expression has a public non-virtual 2085 // non-explicit const conversion function to a block pointer having the 2086 // same parameter and return types as the closure type's function call 2087 // operator. 2088 // FIXME: Fix generic lambda to block conversions. 2089 if (getLangOpts().Blocks && getLangOpts().ObjC && !IsGenericLambda) 2090 addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator); 2091 2092 // Finalize the lambda class. 2093 SmallVector<Decl*, 4> Fields(Class->fields()); 2094 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(), 2095 SourceLocation(), ParsedAttributesView()); 2096 CheckCompletedCXXClass(nullptr, Class); 2097 } 2098 2099 Cleanup.mergeFrom(LambdaCleanup); 2100 2101 LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange, 2102 CaptureDefault, CaptureDefaultLoc, 2103 ExplicitParams, ExplicitResultType, 2104 CaptureInits, EndLoc, 2105 ContainsUnexpandedParameterPack); 2106 // If the lambda expression's call operator is not explicitly marked constexpr 2107 // and we are not in a dependent context, analyze the call operator to infer 2108 // its constexpr-ness, suppressing diagnostics while doing so. 2109 if (getLangOpts().CPlusPlus17 && !CallOperator->isInvalidDecl() && 2110 !CallOperator->isConstexpr() && 2111 !isa<CoroutineBodyStmt>(CallOperator->getBody()) && 2112 !Class->getDeclContext()->isDependentContext()) { 2113 CallOperator->setConstexprKind( 2114 CheckConstexprFunctionDefinition(CallOperator, 2115 CheckConstexprKind::CheckValid) 2116 ? ConstexprSpecKind::Constexpr 2117 : ConstexprSpecKind::Unspecified); 2118 } 2119 2120 // Emit delayed shadowing warnings now that the full capture list is known. 2121 DiagnoseShadowingLambdaDecls(LSI); 2122 2123 if (!CurContext->isDependentContext()) { 2124 switch (ExprEvalContexts.back().Context) { 2125 // C++11 [expr.prim.lambda]p2: 2126 // A lambda-expression shall not appear in an unevaluated operand 2127 // (Clause 5). 2128 case ExpressionEvaluationContext::Unevaluated: 2129 case ExpressionEvaluationContext::UnevaluatedList: 2130 case ExpressionEvaluationContext::UnevaluatedAbstract: 2131 // C++1y [expr.const]p2: 2132 // A conditional-expression e is a core constant expression unless the 2133 // evaluation of e, following the rules of the abstract machine, would 2134 // evaluate [...] a lambda-expression. 2135 // 2136 // This is technically incorrect, there are some constant evaluated contexts 2137 // where this should be allowed. We should probably fix this when DR1607 is 2138 // ratified, it lays out the exact set of conditions where we shouldn't 2139 // allow a lambda-expression. 2140 case ExpressionEvaluationContext::ConstantEvaluated: 2141 case ExpressionEvaluationContext::ImmediateFunctionContext: 2142 // We don't actually diagnose this case immediately, because we 2143 // could be within a context where we might find out later that 2144 // the expression is potentially evaluated (e.g., for typeid). 2145 ExprEvalContexts.back().Lambdas.push_back(Lambda); 2146 break; 2147 2148 case ExpressionEvaluationContext::DiscardedStatement: 2149 case ExpressionEvaluationContext::PotentiallyEvaluated: 2150 case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed: 2151 break; 2152 } 2153 } 2154 2155 return MaybeBindToTemporary(Lambda); 2156 } 2157 2158 ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation, 2159 SourceLocation ConvLocation, 2160 CXXConversionDecl *Conv, 2161 Expr *Src) { 2162 // Make sure that the lambda call operator is marked used. 2163 CXXRecordDecl *Lambda = Conv->getParent(); 2164 CXXMethodDecl *CallOperator 2165 = cast<CXXMethodDecl>( 2166 Lambda->lookup( 2167 Context.DeclarationNames.getCXXOperatorName(OO_Call)).front()); 2168 CallOperator->setReferenced(); 2169 CallOperator->markUsed(Context); 2170 2171 ExprResult Init = PerformCopyInitialization( 2172 InitializedEntity::InitializeLambdaToBlock(ConvLocation, Src->getType()), 2173 CurrentLocation, Src); 2174 if (!Init.isInvalid()) 2175 Init = ActOnFinishFullExpr(Init.get(), /*DiscardedValue*/ false); 2176 2177 if (Init.isInvalid()) 2178 return ExprError(); 2179 2180 // Create the new block to be returned. 2181 BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation); 2182 2183 // Set the type information. 2184 Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo()); 2185 Block->setIsVariadic(CallOperator->isVariadic()); 2186 Block->setBlockMissingReturnType(false); 2187 2188 // Add parameters. 2189 SmallVector<ParmVarDecl *, 4> BlockParams; 2190 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) { 2191 ParmVarDecl *From = CallOperator->getParamDecl(I); 2192 BlockParams.push_back(ParmVarDecl::Create( 2193 Context, Block, From->getBeginLoc(), From->getLocation(), 2194 From->getIdentifier(), From->getType(), From->getTypeSourceInfo(), 2195 From->getStorageClass(), 2196 /*DefArg=*/nullptr)); 2197 } 2198 Block->setParams(BlockParams); 2199 2200 Block->setIsConversionFromLambda(true); 2201 2202 // Add capture. The capture uses a fake variable, which doesn't correspond 2203 // to any actual memory location. However, the initializer copy-initializes 2204 // the lambda object. 2205 TypeSourceInfo *CapVarTSI = 2206 Context.getTrivialTypeSourceInfo(Src->getType()); 2207 VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation, 2208 ConvLocation, nullptr, 2209 Src->getType(), CapVarTSI, 2210 SC_None); 2211 BlockDecl::Capture Capture(/*variable=*/CapVar, /*byRef=*/false, 2212 /*nested=*/false, /*copy=*/Init.get()); 2213 Block->setCaptures(Context, Capture, /*CapturesCXXThis=*/false); 2214 2215 // Add a fake function body to the block. IR generation is responsible 2216 // for filling in the actual body, which cannot be expressed as an AST. 2217 Block->setBody(new (Context) CompoundStmt(ConvLocation)); 2218 2219 // Create the block literal expression. 2220 Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType()); 2221 ExprCleanupObjects.push_back(Block); 2222 Cleanup.setExprNeedsCleanups(true); 2223 2224 return BuildBlock; 2225 } 2226 2227 Sema::LambdaScopeForCallOperatorInstantiationRAII:: 2228 LambdaScopeForCallOperatorInstantiationRAII( 2229 Sema &SemasRef, FunctionDecl *FD, MultiLevelTemplateArgumentList MLTAL, 2230 LocalInstantiationScope &Scope) 2231 : FunctionScopeRAII(SemasRef) { 2232 if (!isLambdaCallOperator(FD)) { 2233 FunctionScopeRAII::disable(); 2234 return; 2235 } 2236 2237 if (FD->isTemplateInstantiation() && FD->getPrimaryTemplate()) { 2238 FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate(); 2239 if (const auto *FromMemTempl = 2240 PrimaryTemplate->getInstantiatedFromMemberTemplate()) { 2241 SemasRef.addInstantiatedCapturesToScope( 2242 FD, FromMemTempl->getTemplatedDecl(), Scope, MLTAL); 2243 } 2244 } 2245 2246 else if (FD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization || 2247 FD->getTemplatedKind() == FunctionDecl::TK_DependentNonTemplate) { 2248 FunctionDecl *InstantiatedFrom = 2249 FD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization 2250 ? FD->getInstantiatedFromMemberFunction() 2251 : FD->getInstantiatedFromDecl(); 2252 SemasRef.addInstantiatedCapturesToScope(FD, InstantiatedFrom, Scope, MLTAL); 2253 } 2254 2255 SemasRef.RebuildLambdaScopeInfo(cast<CXXMethodDecl>(FD)); 2256 } 2257