1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for C++ lambda expressions. 10 // 11 //===----------------------------------------------------------------------===// 12 #include "clang/Sema/DeclSpec.h" 13 #include "TypeLocBuilder.h" 14 #include "clang/AST/ASTLambda.h" 15 #include "clang/AST/ExprCXX.h" 16 #include "clang/Basic/TargetInfo.h" 17 #include "clang/Sema/Initialization.h" 18 #include "clang/Sema/Lookup.h" 19 #include "clang/Sema/Scope.h" 20 #include "clang/Sema/ScopeInfo.h" 21 #include "clang/Sema/SemaInternal.h" 22 #include "clang/Sema/SemaLambda.h" 23 #include "llvm/ADT/STLExtras.h" 24 using namespace clang; 25 using namespace sema; 26 27 /// Examines the FunctionScopeInfo stack to determine the nearest 28 /// enclosing lambda (to the current lambda) that is 'capture-ready' for 29 /// the variable referenced in the current lambda (i.e. \p VarToCapture). 30 /// If successful, returns the index into Sema's FunctionScopeInfo stack 31 /// of the capture-ready lambda's LambdaScopeInfo. 32 /// 33 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current 34 /// lambda - is on top) to determine the index of the nearest enclosing/outer 35 /// lambda that is ready to capture the \p VarToCapture being referenced in 36 /// the current lambda. 37 /// As we climb down the stack, we want the index of the first such lambda - 38 /// that is the lambda with the highest index that is 'capture-ready'. 39 /// 40 /// A lambda 'L' is capture-ready for 'V' (var or this) if: 41 /// - its enclosing context is non-dependent 42 /// - and if the chain of lambdas between L and the lambda in which 43 /// V is potentially used (i.e. the lambda at the top of the scope info 44 /// stack), can all capture or have already captured V. 45 /// If \p VarToCapture is 'null' then we are trying to capture 'this'. 46 /// 47 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked 48 /// for whether it is 'capture-capable' (see 49 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly 50 /// capture. 51 /// 52 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a 53 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda 54 /// is at the top of the stack and has the highest index. 55 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'. 56 /// 57 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains 58 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda 59 /// which is capture-ready. If the return value evaluates to 'false' then 60 /// no lambda is capture-ready for \p VarToCapture. 61 62 static inline Optional<unsigned> 63 getStackIndexOfNearestEnclosingCaptureReadyLambda( 64 ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes, 65 VarDecl *VarToCapture) { 66 // Label failure to capture. 67 const Optional<unsigned> NoLambdaIsCaptureReady; 68 69 // Ignore all inner captured regions. 70 unsigned CurScopeIndex = FunctionScopes.size() - 1; 71 while (CurScopeIndex > 0 && isa<clang::sema::CapturedRegionScopeInfo>( 72 FunctionScopes[CurScopeIndex])) 73 --CurScopeIndex; 74 assert( 75 isa<clang::sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]) && 76 "The function on the top of sema's function-info stack must be a lambda"); 77 78 // If VarToCapture is null, we are attempting to capture 'this'. 79 const bool IsCapturingThis = !VarToCapture; 80 const bool IsCapturingVariable = !IsCapturingThis; 81 82 // Start with the current lambda at the top of the stack (highest index). 83 DeclContext *EnclosingDC = 84 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator; 85 86 do { 87 const clang::sema::LambdaScopeInfo *LSI = 88 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]); 89 // IF we have climbed down to an intervening enclosing lambda that contains 90 // the variable declaration - it obviously can/must not capture the 91 // variable. 92 // Since its enclosing DC is dependent, all the lambdas between it and the 93 // innermost nested lambda are dependent (otherwise we wouldn't have 94 // arrived here) - so we don't yet have a lambda that can capture the 95 // variable. 96 if (IsCapturingVariable && 97 VarToCapture->getDeclContext()->Equals(EnclosingDC)) 98 return NoLambdaIsCaptureReady; 99 100 // For an enclosing lambda to be capture ready for an entity, all 101 // intervening lambda's have to be able to capture that entity. If even 102 // one of the intervening lambda's is not capable of capturing the entity 103 // then no enclosing lambda can ever capture that entity. 104 // For e.g. 105 // const int x = 10; 106 // [=](auto a) { #1 107 // [](auto b) { #2 <-- an intervening lambda that can never capture 'x' 108 // [=](auto c) { #3 109 // f(x, c); <-- can not lead to x's speculative capture by #1 or #2 110 // }; }; }; 111 // If they do not have a default implicit capture, check to see 112 // if the entity has already been explicitly captured. 113 // If even a single dependent enclosing lambda lacks the capability 114 // to ever capture this variable, there is no further enclosing 115 // non-dependent lambda that can capture this variable. 116 if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) { 117 if (IsCapturingVariable && !LSI->isCaptured(VarToCapture)) 118 return NoLambdaIsCaptureReady; 119 if (IsCapturingThis && !LSI->isCXXThisCaptured()) 120 return NoLambdaIsCaptureReady; 121 } 122 EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC); 123 124 assert(CurScopeIndex); 125 --CurScopeIndex; 126 } while (!EnclosingDC->isTranslationUnit() && 127 EnclosingDC->isDependentContext() && 128 isLambdaCallOperator(EnclosingDC)); 129 130 assert(CurScopeIndex < (FunctionScopes.size() - 1)); 131 // If the enclosingDC is not dependent, then the immediately nested lambda 132 // (one index above) is capture-ready. 133 if (!EnclosingDC->isDependentContext()) 134 return CurScopeIndex + 1; 135 return NoLambdaIsCaptureReady; 136 } 137 138 /// Examines the FunctionScopeInfo stack to determine the nearest 139 /// enclosing lambda (to the current lambda) that is 'capture-capable' for 140 /// the variable referenced in the current lambda (i.e. \p VarToCapture). 141 /// If successful, returns the index into Sema's FunctionScopeInfo stack 142 /// of the capture-capable lambda's LambdaScopeInfo. 143 /// 144 /// Given the current stack of lambdas being processed by Sema and 145 /// the variable of interest, to identify the nearest enclosing lambda (to the 146 /// current lambda at the top of the stack) that can truly capture 147 /// a variable, it has to have the following two properties: 148 /// a) 'capture-ready' - be the innermost lambda that is 'capture-ready': 149 /// - climb down the stack (i.e. starting from the innermost and examining 150 /// each outer lambda step by step) checking if each enclosing 151 /// lambda can either implicitly or explicitly capture the variable. 152 /// Record the first such lambda that is enclosed in a non-dependent 153 /// context. If no such lambda currently exists return failure. 154 /// b) 'capture-capable' - make sure the 'capture-ready' lambda can truly 155 /// capture the variable by checking all its enclosing lambdas: 156 /// - check if all outer lambdas enclosing the 'capture-ready' lambda 157 /// identified above in 'a' can also capture the variable (this is done 158 /// via tryCaptureVariable for variables and CheckCXXThisCapture for 159 /// 'this' by passing in the index of the Lambda identified in step 'a') 160 /// 161 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a 162 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda 163 /// is at the top of the stack. 164 /// 165 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'. 166 /// 167 /// 168 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains 169 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda 170 /// which is capture-capable. If the return value evaluates to 'false' then 171 /// no lambda is capture-capable for \p VarToCapture. 172 173 Optional<unsigned> clang::getStackIndexOfNearestEnclosingCaptureCapableLambda( 174 ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes, 175 VarDecl *VarToCapture, Sema &S) { 176 177 const Optional<unsigned> NoLambdaIsCaptureCapable; 178 179 const Optional<unsigned> OptionalStackIndex = 180 getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes, 181 VarToCapture); 182 if (!OptionalStackIndex) 183 return NoLambdaIsCaptureCapable; 184 185 const unsigned IndexOfCaptureReadyLambda = *OptionalStackIndex; 186 assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) || 187 S.getCurGenericLambda()) && 188 "The capture ready lambda for a potential capture can only be the " 189 "current lambda if it is a generic lambda"); 190 191 const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI = 192 cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]); 193 194 // If VarToCapture is null, we are attempting to capture 'this' 195 const bool IsCapturingThis = !VarToCapture; 196 const bool IsCapturingVariable = !IsCapturingThis; 197 198 if (IsCapturingVariable) { 199 // Check if the capture-ready lambda can truly capture the variable, by 200 // checking whether all enclosing lambdas of the capture-ready lambda allow 201 // the capture - i.e. make sure it is capture-capable. 202 QualType CaptureType, DeclRefType; 203 const bool CanCaptureVariable = 204 !S.tryCaptureVariable(VarToCapture, 205 /*ExprVarIsUsedInLoc*/ SourceLocation(), 206 clang::Sema::TryCapture_Implicit, 207 /*EllipsisLoc*/ SourceLocation(), 208 /*BuildAndDiagnose*/ false, CaptureType, 209 DeclRefType, &IndexOfCaptureReadyLambda); 210 if (!CanCaptureVariable) 211 return NoLambdaIsCaptureCapable; 212 } else { 213 // Check if the capture-ready lambda can truly capture 'this' by checking 214 // whether all enclosing lambdas of the capture-ready lambda can capture 215 // 'this'. 216 const bool CanCaptureThis = 217 !S.CheckCXXThisCapture( 218 CaptureReadyLambdaLSI->PotentialThisCaptureLocation, 219 /*Explicit*/ false, /*BuildAndDiagnose*/ false, 220 &IndexOfCaptureReadyLambda); 221 if (!CanCaptureThis) 222 return NoLambdaIsCaptureCapable; 223 } 224 return IndexOfCaptureReadyLambda; 225 } 226 227 static inline TemplateParameterList * 228 getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) { 229 if (!LSI->GLTemplateParameterList && !LSI->TemplateParams.empty()) { 230 LSI->GLTemplateParameterList = TemplateParameterList::Create( 231 SemaRef.Context, 232 /*Template kw loc*/ SourceLocation(), 233 /*L angle loc*/ LSI->ExplicitTemplateParamsRange.getBegin(), 234 LSI->TemplateParams, 235 /*R angle loc*/LSI->ExplicitTemplateParamsRange.getEnd(), 236 LSI->RequiresClause.get()); 237 } 238 return LSI->GLTemplateParameterList; 239 } 240 241 CXXRecordDecl * 242 Sema::createLambdaClosureType(SourceRange IntroducerRange, TypeSourceInfo *Info, 243 unsigned LambdaDependencyKind, 244 LambdaCaptureDefault CaptureDefault) { 245 DeclContext *DC = CurContext; 246 while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext())) 247 DC = DC->getParent(); 248 bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(), 249 *this); 250 // Start constructing the lambda class. 251 CXXRecordDecl *Class = CXXRecordDecl::CreateLambda( 252 Context, DC, Info, IntroducerRange.getBegin(), LambdaDependencyKind, 253 IsGenericLambda, CaptureDefault); 254 DC->addDecl(Class); 255 256 return Class; 257 } 258 259 /// Determine whether the given context is or is enclosed in an inline 260 /// function. 261 static bool isInInlineFunction(const DeclContext *DC) { 262 while (!DC->isFileContext()) { 263 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC)) 264 if (FD->isInlined()) 265 return true; 266 267 DC = DC->getLexicalParent(); 268 } 269 270 return false; 271 } 272 273 std::tuple<MangleNumberingContext *, Decl *> 274 Sema::getCurrentMangleNumberContext(const DeclContext *DC) { 275 // Compute the context for allocating mangling numbers in the current 276 // expression, if the ABI requires them. 277 Decl *ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl; 278 279 enum ContextKind { 280 Normal, 281 DefaultArgument, 282 DataMember, 283 StaticDataMember, 284 InlineVariable, 285 VariableTemplate 286 } Kind = Normal; 287 288 // Default arguments of member function parameters that appear in a class 289 // definition, as well as the initializers of data members, receive special 290 // treatment. Identify them. 291 if (ManglingContextDecl) { 292 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) { 293 if (const DeclContext *LexicalDC 294 = Param->getDeclContext()->getLexicalParent()) 295 if (LexicalDC->isRecord()) 296 Kind = DefaultArgument; 297 } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) { 298 if (Var->getDeclContext()->isRecord()) 299 Kind = StaticDataMember; 300 else if (Var->getMostRecentDecl()->isInline()) 301 Kind = InlineVariable; 302 else if (Var->getDescribedVarTemplate()) 303 Kind = VariableTemplate; 304 else if (auto *VTS = dyn_cast<VarTemplateSpecializationDecl>(Var)) { 305 if (!VTS->isExplicitSpecialization()) 306 Kind = VariableTemplate; 307 } 308 } else if (isa<FieldDecl>(ManglingContextDecl)) { 309 Kind = DataMember; 310 } 311 } 312 313 // Itanium ABI [5.1.7]: 314 // In the following contexts [...] the one-definition rule requires closure 315 // types in different translation units to "correspond": 316 bool IsInNonspecializedTemplate = 317 inTemplateInstantiation() || CurContext->isDependentContext(); 318 switch (Kind) { 319 case Normal: { 320 // -- the bodies of non-exported nonspecialized template functions 321 // -- the bodies of inline functions 322 if ((IsInNonspecializedTemplate && 323 !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) || 324 isInInlineFunction(CurContext)) { 325 while (auto *CD = dyn_cast<CapturedDecl>(DC)) 326 DC = CD->getParent(); 327 return std::make_tuple(&Context.getManglingNumberContext(DC), nullptr); 328 } 329 330 return std::make_tuple(nullptr, nullptr); 331 } 332 333 case StaticDataMember: 334 // -- the initializers of nonspecialized static members of template classes 335 if (!IsInNonspecializedTemplate) 336 return std::make_tuple(nullptr, ManglingContextDecl); 337 // Fall through to get the current context. 338 LLVM_FALLTHROUGH; 339 340 case DataMember: 341 // -- the in-class initializers of class members 342 case DefaultArgument: 343 // -- default arguments appearing in class definitions 344 case InlineVariable: 345 // -- the initializers of inline variables 346 case VariableTemplate: 347 // -- the initializers of templated variables 348 return std::make_tuple( 349 &Context.getManglingNumberContext(ASTContext::NeedExtraManglingDecl, 350 ManglingContextDecl), 351 ManglingContextDecl); 352 } 353 354 llvm_unreachable("unexpected context"); 355 } 356 357 CXXMethodDecl *Sema::startLambdaDefinition(CXXRecordDecl *Class, 358 SourceRange IntroducerRange, 359 TypeSourceInfo *MethodTypeInfo, 360 SourceLocation EndLoc, 361 ArrayRef<ParmVarDecl *> Params, 362 ConstexprSpecKind ConstexprKind, 363 Expr *TrailingRequiresClause) { 364 QualType MethodType = MethodTypeInfo->getType(); 365 TemplateParameterList *TemplateParams = 366 getGenericLambdaTemplateParameterList(getCurLambda(), *this); 367 // If a lambda appears in a dependent context or is a generic lambda (has 368 // template parameters) and has an 'auto' return type, deduce it to a 369 // dependent type. 370 if (Class->isDependentContext() || TemplateParams) { 371 const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>(); 372 QualType Result = FPT->getReturnType(); 373 if (Result->isUndeducedType()) { 374 Result = SubstAutoTypeDependent(Result); 375 MethodType = Context.getFunctionType(Result, FPT->getParamTypes(), 376 FPT->getExtProtoInfo()); 377 } 378 } 379 380 // C++11 [expr.prim.lambda]p5: 381 // The closure type for a lambda-expression has a public inline function 382 // call operator (13.5.4) whose parameters and return type are described by 383 // the lambda-expression's parameter-declaration-clause and 384 // trailing-return-type respectively. 385 DeclarationName MethodName 386 = Context.DeclarationNames.getCXXOperatorName(OO_Call); 387 DeclarationNameLoc MethodNameLoc = 388 DeclarationNameLoc::makeCXXOperatorNameLoc(IntroducerRange); 389 CXXMethodDecl *Method = CXXMethodDecl::Create( 390 Context, Class, EndLoc, 391 DeclarationNameInfo(MethodName, IntroducerRange.getBegin(), 392 MethodNameLoc), 393 MethodType, MethodTypeInfo, SC_None, getCurFPFeatures().isFPConstrained(), 394 /*isInline=*/true, ConstexprKind, EndLoc, TrailingRequiresClause); 395 Method->setAccess(AS_public); 396 if (!TemplateParams) 397 Class->addDecl(Method); 398 399 // Temporarily set the lexical declaration context to the current 400 // context, so that the Scope stack matches the lexical nesting. 401 Method->setLexicalDeclContext(CurContext); 402 // Create a function template if we have a template parameter list 403 FunctionTemplateDecl *const TemplateMethod = TemplateParams ? 404 FunctionTemplateDecl::Create(Context, Class, 405 Method->getLocation(), MethodName, 406 TemplateParams, 407 Method) : nullptr; 408 if (TemplateMethod) { 409 TemplateMethod->setAccess(AS_public); 410 Method->setDescribedFunctionTemplate(TemplateMethod); 411 Class->addDecl(TemplateMethod); 412 TemplateMethod->setLexicalDeclContext(CurContext); 413 } 414 415 // Add parameters. 416 if (!Params.empty()) { 417 Method->setParams(Params); 418 CheckParmsForFunctionDef(Params, 419 /*CheckParameterNames=*/false); 420 421 for (auto P : Method->parameters()) 422 P->setOwningFunction(Method); 423 } 424 425 return Method; 426 } 427 428 void Sema::handleLambdaNumbering( 429 CXXRecordDecl *Class, CXXMethodDecl *Method, 430 Optional<std::tuple<bool, unsigned, unsigned, Decl *>> Mangling) { 431 if (Mangling) { 432 bool HasKnownInternalLinkage; 433 unsigned ManglingNumber, DeviceManglingNumber; 434 Decl *ManglingContextDecl; 435 std::tie(HasKnownInternalLinkage, ManglingNumber, DeviceManglingNumber, 436 ManglingContextDecl) = *Mangling; 437 Class->setLambdaMangling(ManglingNumber, ManglingContextDecl, 438 HasKnownInternalLinkage); 439 Class->setDeviceLambdaManglingNumber(DeviceManglingNumber); 440 return; 441 } 442 443 auto getMangleNumberingContext = 444 [this](CXXRecordDecl *Class, 445 Decl *ManglingContextDecl) -> MangleNumberingContext * { 446 // Get mangle numbering context if there's any extra decl context. 447 if (ManglingContextDecl) 448 return &Context.getManglingNumberContext( 449 ASTContext::NeedExtraManglingDecl, ManglingContextDecl); 450 // Otherwise, from that lambda's decl context. 451 auto DC = Class->getDeclContext(); 452 while (auto *CD = dyn_cast<CapturedDecl>(DC)) 453 DC = CD->getParent(); 454 return &Context.getManglingNumberContext(DC); 455 }; 456 457 MangleNumberingContext *MCtx; 458 Decl *ManglingContextDecl; 459 std::tie(MCtx, ManglingContextDecl) = 460 getCurrentMangleNumberContext(Class->getDeclContext()); 461 bool HasKnownInternalLinkage = false; 462 if (!MCtx && (getLangOpts().CUDA || getLangOpts().SYCLIsDevice || 463 getLangOpts().SYCLIsHost)) { 464 // Force lambda numbering in CUDA/HIP as we need to name lambdas following 465 // ODR. Both device- and host-compilation need to have a consistent naming 466 // on kernel functions. As lambdas are potential part of these `__global__` 467 // function names, they needs numbering following ODR. 468 // Also force for SYCL, since we need this for the 469 // __builtin_sycl_unique_stable_name implementation, which depends on lambda 470 // mangling. 471 MCtx = getMangleNumberingContext(Class, ManglingContextDecl); 472 assert(MCtx && "Retrieving mangle numbering context failed!"); 473 HasKnownInternalLinkage = true; 474 } 475 if (MCtx) { 476 unsigned ManglingNumber = MCtx->getManglingNumber(Method); 477 Class->setLambdaMangling(ManglingNumber, ManglingContextDecl, 478 HasKnownInternalLinkage); 479 Class->setDeviceLambdaManglingNumber(MCtx->getDeviceManglingNumber(Method)); 480 } 481 } 482 483 void Sema::buildLambdaScope(LambdaScopeInfo *LSI, 484 CXXMethodDecl *CallOperator, 485 SourceRange IntroducerRange, 486 LambdaCaptureDefault CaptureDefault, 487 SourceLocation CaptureDefaultLoc, 488 bool ExplicitParams, 489 bool ExplicitResultType, 490 bool Mutable) { 491 LSI->CallOperator = CallOperator; 492 CXXRecordDecl *LambdaClass = CallOperator->getParent(); 493 LSI->Lambda = LambdaClass; 494 if (CaptureDefault == LCD_ByCopy) 495 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval; 496 else if (CaptureDefault == LCD_ByRef) 497 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref; 498 LSI->CaptureDefaultLoc = CaptureDefaultLoc; 499 LSI->IntroducerRange = IntroducerRange; 500 LSI->ExplicitParams = ExplicitParams; 501 LSI->Mutable = Mutable; 502 503 if (ExplicitResultType) { 504 LSI->ReturnType = CallOperator->getReturnType(); 505 506 if (!LSI->ReturnType->isDependentType() && 507 !LSI->ReturnType->isVoidType()) { 508 if (RequireCompleteType(CallOperator->getBeginLoc(), LSI->ReturnType, 509 diag::err_lambda_incomplete_result)) { 510 // Do nothing. 511 } 512 } 513 } else { 514 LSI->HasImplicitReturnType = true; 515 } 516 } 517 518 void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) { 519 LSI->finishedExplicitCaptures(); 520 } 521 522 void Sema::ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc, 523 ArrayRef<NamedDecl *> TParams, 524 SourceLocation RAngleLoc, 525 ExprResult RequiresClause) { 526 LambdaScopeInfo *LSI = getCurLambda(); 527 assert(LSI && "Expected a lambda scope"); 528 assert(LSI->NumExplicitTemplateParams == 0 && 529 "Already acted on explicit template parameters"); 530 assert(LSI->TemplateParams.empty() && 531 "Explicit template parameters should come " 532 "before invented (auto) ones"); 533 assert(!TParams.empty() && 534 "No template parameters to act on"); 535 LSI->TemplateParams.append(TParams.begin(), TParams.end()); 536 LSI->NumExplicitTemplateParams = TParams.size(); 537 LSI->ExplicitTemplateParamsRange = {LAngleLoc, RAngleLoc}; 538 LSI->RequiresClause = RequiresClause; 539 } 540 541 void Sema::addLambdaParameters( 542 ArrayRef<LambdaIntroducer::LambdaCapture> Captures, 543 CXXMethodDecl *CallOperator, Scope *CurScope) { 544 // Introduce our parameters into the function scope 545 for (unsigned p = 0, NumParams = CallOperator->getNumParams(); 546 p < NumParams; ++p) { 547 ParmVarDecl *Param = CallOperator->getParamDecl(p); 548 549 // If this has an identifier, add it to the scope stack. 550 if (CurScope && Param->getIdentifier()) { 551 bool Error = false; 552 // Resolution of CWG 2211 in C++17 renders shadowing ill-formed, but we 553 // retroactively apply it. 554 for (const auto &Capture : Captures) { 555 if (Capture.Id == Param->getIdentifier()) { 556 Error = true; 557 Diag(Param->getLocation(), diag::err_parameter_shadow_capture); 558 Diag(Capture.Loc, diag::note_var_explicitly_captured_here) 559 << Capture.Id << true; 560 } 561 } 562 if (!Error) 563 CheckShadow(CurScope, Param); 564 565 PushOnScopeChains(Param, CurScope); 566 } 567 } 568 } 569 570 /// If this expression is an enumerator-like expression of some type 571 /// T, return the type T; otherwise, return null. 572 /// 573 /// Pointer comparisons on the result here should always work because 574 /// it's derived from either the parent of an EnumConstantDecl 575 /// (i.e. the definition) or the declaration returned by 576 /// EnumType::getDecl() (i.e. the definition). 577 static EnumDecl *findEnumForBlockReturn(Expr *E) { 578 // An expression is an enumerator-like expression of type T if, 579 // ignoring parens and parens-like expressions: 580 E = E->IgnoreParens(); 581 582 // - it is an enumerator whose enum type is T or 583 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 584 if (EnumConstantDecl *D 585 = dyn_cast<EnumConstantDecl>(DRE->getDecl())) { 586 return cast<EnumDecl>(D->getDeclContext()); 587 } 588 return nullptr; 589 } 590 591 // - it is a comma expression whose RHS is an enumerator-like 592 // expression of type T or 593 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 594 if (BO->getOpcode() == BO_Comma) 595 return findEnumForBlockReturn(BO->getRHS()); 596 return nullptr; 597 } 598 599 // - it is a statement-expression whose value expression is an 600 // enumerator-like expression of type T or 601 if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) { 602 if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back())) 603 return findEnumForBlockReturn(last); 604 return nullptr; 605 } 606 607 // - it is a ternary conditional operator (not the GNU ?: 608 // extension) whose second and third operands are 609 // enumerator-like expressions of type T or 610 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 611 if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr())) 612 if (ED == findEnumForBlockReturn(CO->getFalseExpr())) 613 return ED; 614 return nullptr; 615 } 616 617 // (implicitly:) 618 // - it is an implicit integral conversion applied to an 619 // enumerator-like expression of type T or 620 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 621 // We can sometimes see integral conversions in valid 622 // enumerator-like expressions. 623 if (ICE->getCastKind() == CK_IntegralCast) 624 return findEnumForBlockReturn(ICE->getSubExpr()); 625 626 // Otherwise, just rely on the type. 627 } 628 629 // - it is an expression of that formal enum type. 630 if (const EnumType *ET = E->getType()->getAs<EnumType>()) { 631 return ET->getDecl(); 632 } 633 634 // Otherwise, nope. 635 return nullptr; 636 } 637 638 /// Attempt to find a type T for which the returned expression of the 639 /// given statement is an enumerator-like expression of that type. 640 static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) { 641 if (Expr *retValue = ret->getRetValue()) 642 return findEnumForBlockReturn(retValue); 643 return nullptr; 644 } 645 646 /// Attempt to find a common type T for which all of the returned 647 /// expressions in a block are enumerator-like expressions of that 648 /// type. 649 static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) { 650 ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end(); 651 652 // Try to find one for the first return. 653 EnumDecl *ED = findEnumForBlockReturn(*i); 654 if (!ED) return nullptr; 655 656 // Check that the rest of the returns have the same enum. 657 for (++i; i != e; ++i) { 658 if (findEnumForBlockReturn(*i) != ED) 659 return nullptr; 660 } 661 662 // Never infer an anonymous enum type. 663 if (!ED->hasNameForLinkage()) return nullptr; 664 665 return ED; 666 } 667 668 /// Adjust the given return statements so that they formally return 669 /// the given type. It should require, at most, an IntegralCast. 670 static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns, 671 QualType returnType) { 672 for (ArrayRef<ReturnStmt*>::iterator 673 i = returns.begin(), e = returns.end(); i != e; ++i) { 674 ReturnStmt *ret = *i; 675 Expr *retValue = ret->getRetValue(); 676 if (S.Context.hasSameType(retValue->getType(), returnType)) 677 continue; 678 679 // Right now we only support integral fixup casts. 680 assert(returnType->isIntegralOrUnscopedEnumerationType()); 681 assert(retValue->getType()->isIntegralOrUnscopedEnumerationType()); 682 683 ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue); 684 685 Expr *E = (cleanups ? cleanups->getSubExpr() : retValue); 686 E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast, E, 687 /*base path*/ nullptr, VK_PRValue, 688 FPOptionsOverride()); 689 if (cleanups) { 690 cleanups->setSubExpr(E); 691 } else { 692 ret->setRetValue(E); 693 } 694 } 695 } 696 697 void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) { 698 assert(CSI.HasImplicitReturnType); 699 // If it was ever a placeholder, it had to been deduced to DependentTy. 700 assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType()); 701 assert((!isa<LambdaScopeInfo>(CSI) || !getLangOpts().CPlusPlus14) && 702 "lambda expressions use auto deduction in C++14 onwards"); 703 704 // C++ core issue 975: 705 // If a lambda-expression does not include a trailing-return-type, 706 // it is as if the trailing-return-type denotes the following type: 707 // - if there are no return statements in the compound-statement, 708 // or all return statements return either an expression of type 709 // void or no expression or braced-init-list, the type void; 710 // - otherwise, if all return statements return an expression 711 // and the types of the returned expressions after 712 // lvalue-to-rvalue conversion (4.1 [conv.lval]), 713 // array-to-pointer conversion (4.2 [conv.array]), and 714 // function-to-pointer conversion (4.3 [conv.func]) are the 715 // same, that common type; 716 // - otherwise, the program is ill-formed. 717 // 718 // C++ core issue 1048 additionally removes top-level cv-qualifiers 719 // from the types of returned expressions to match the C++14 auto 720 // deduction rules. 721 // 722 // In addition, in blocks in non-C++ modes, if all of the return 723 // statements are enumerator-like expressions of some type T, where 724 // T has a name for linkage, then we infer the return type of the 725 // block to be that type. 726 727 // First case: no return statements, implicit void return type. 728 ASTContext &Ctx = getASTContext(); 729 if (CSI.Returns.empty()) { 730 // It's possible there were simply no /valid/ return statements. 731 // In this case, the first one we found may have at least given us a type. 732 if (CSI.ReturnType.isNull()) 733 CSI.ReturnType = Ctx.VoidTy; 734 return; 735 } 736 737 // Second case: at least one return statement has dependent type. 738 // Delay type checking until instantiation. 739 assert(!CSI.ReturnType.isNull() && "We should have a tentative return type."); 740 if (CSI.ReturnType->isDependentType()) 741 return; 742 743 // Try to apply the enum-fuzz rule. 744 if (!getLangOpts().CPlusPlus) { 745 assert(isa<BlockScopeInfo>(CSI)); 746 const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns); 747 if (ED) { 748 CSI.ReturnType = Context.getTypeDeclType(ED); 749 adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType); 750 return; 751 } 752 } 753 754 // Third case: only one return statement. Don't bother doing extra work! 755 if (CSI.Returns.size() == 1) 756 return; 757 758 // General case: many return statements. 759 // Check that they all have compatible return types. 760 761 // We require the return types to strictly match here. 762 // Note that we've already done the required promotions as part of 763 // processing the return statement. 764 for (const ReturnStmt *RS : CSI.Returns) { 765 const Expr *RetE = RS->getRetValue(); 766 767 QualType ReturnType = 768 (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType(); 769 if (Context.getCanonicalFunctionResultType(ReturnType) == 770 Context.getCanonicalFunctionResultType(CSI.ReturnType)) { 771 // Use the return type with the strictest possible nullability annotation. 772 auto RetTyNullability = ReturnType->getNullability(Ctx); 773 auto BlockNullability = CSI.ReturnType->getNullability(Ctx); 774 if (BlockNullability && 775 (!RetTyNullability || 776 hasWeakerNullability(*RetTyNullability, *BlockNullability))) 777 CSI.ReturnType = ReturnType; 778 continue; 779 } 780 781 // FIXME: This is a poor diagnostic for ReturnStmts without expressions. 782 // TODO: It's possible that the *first* return is the divergent one. 783 Diag(RS->getBeginLoc(), 784 diag::err_typecheck_missing_return_type_incompatible) 785 << ReturnType << CSI.ReturnType << isa<LambdaScopeInfo>(CSI); 786 // Continue iterating so that we keep emitting diagnostics. 787 } 788 } 789 790 QualType Sema::buildLambdaInitCaptureInitialization( 791 SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc, 792 Optional<unsigned> NumExpansions, IdentifierInfo *Id, bool IsDirectInit, 793 Expr *&Init) { 794 // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to 795 // deduce against. 796 QualType DeductType = Context.getAutoDeductType(); 797 TypeLocBuilder TLB; 798 AutoTypeLoc TL = TLB.push<AutoTypeLoc>(DeductType); 799 TL.setNameLoc(Loc); 800 if (ByRef) { 801 DeductType = BuildReferenceType(DeductType, true, Loc, Id); 802 assert(!DeductType.isNull() && "can't build reference to auto"); 803 TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc); 804 } 805 if (EllipsisLoc.isValid()) { 806 if (Init->containsUnexpandedParameterPack()) { 807 Diag(EllipsisLoc, getLangOpts().CPlusPlus20 808 ? diag::warn_cxx17_compat_init_capture_pack 809 : diag::ext_init_capture_pack); 810 DeductType = Context.getPackExpansionType(DeductType, NumExpansions, 811 /*ExpectPackInType=*/false); 812 TLB.push<PackExpansionTypeLoc>(DeductType).setEllipsisLoc(EllipsisLoc); 813 } else { 814 // Just ignore the ellipsis for now and form a non-pack variable. We'll 815 // diagnose this later when we try to capture it. 816 } 817 } 818 TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType); 819 820 // Deduce the type of the init capture. 821 QualType DeducedType = deduceVarTypeFromInitializer( 822 /*VarDecl*/nullptr, DeclarationName(Id), DeductType, TSI, 823 SourceRange(Loc, Loc), IsDirectInit, Init); 824 if (DeducedType.isNull()) 825 return QualType(); 826 827 // Are we a non-list direct initialization? 828 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init); 829 830 // Perform initialization analysis and ensure any implicit conversions 831 // (such as lvalue-to-rvalue) are enforced. 832 InitializedEntity Entity = 833 InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc); 834 InitializationKind Kind = 835 IsDirectInit 836 ? (CXXDirectInit ? InitializationKind::CreateDirect( 837 Loc, Init->getBeginLoc(), Init->getEndLoc()) 838 : InitializationKind::CreateDirectList(Loc)) 839 : InitializationKind::CreateCopy(Loc, Init->getBeginLoc()); 840 841 MultiExprArg Args = Init; 842 if (CXXDirectInit) 843 Args = 844 MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs()); 845 QualType DclT; 846 InitializationSequence InitSeq(*this, Entity, Kind, Args); 847 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT); 848 849 if (Result.isInvalid()) 850 return QualType(); 851 852 Init = Result.getAs<Expr>(); 853 return DeducedType; 854 } 855 856 VarDecl *Sema::createLambdaInitCaptureVarDecl(SourceLocation Loc, 857 QualType InitCaptureType, 858 SourceLocation EllipsisLoc, 859 IdentifierInfo *Id, 860 unsigned InitStyle, Expr *Init) { 861 // FIXME: Retain the TypeSourceInfo from buildLambdaInitCaptureInitialization 862 // rather than reconstructing it here. 863 TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType, Loc); 864 if (auto PETL = TSI->getTypeLoc().getAs<PackExpansionTypeLoc>()) 865 PETL.setEllipsisLoc(EllipsisLoc); 866 867 // Create a dummy variable representing the init-capture. This is not actually 868 // used as a variable, and only exists as a way to name and refer to the 869 // init-capture. 870 // FIXME: Pass in separate source locations for '&' and identifier. 871 VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc, 872 Loc, Id, InitCaptureType, TSI, SC_Auto); 873 NewVD->setInitCapture(true); 874 NewVD->setReferenced(true); 875 // FIXME: Pass in a VarDecl::InitializationStyle. 876 NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle)); 877 NewVD->markUsed(Context); 878 NewVD->setInit(Init); 879 if (NewVD->isParameterPack()) 880 getCurLambda()->LocalPacks.push_back(NewVD); 881 return NewVD; 882 } 883 884 void Sema::addInitCapture(LambdaScopeInfo *LSI, VarDecl *Var) { 885 assert(Var->isInitCapture() && "init capture flag should be set"); 886 LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(), 887 /*isNested*/false, Var->getLocation(), SourceLocation(), 888 Var->getType(), /*Invalid*/false); 889 } 890 891 void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro, 892 Declarator &ParamInfo, 893 Scope *CurScope) { 894 LambdaScopeInfo *const LSI = getCurLambda(); 895 assert(LSI && "LambdaScopeInfo should be on stack!"); 896 897 // Determine if we're within a context where we know that the lambda will 898 // be dependent, because there are template parameters in scope. 899 CXXRecordDecl::LambdaDependencyKind LambdaDependencyKind = 900 CXXRecordDecl::LDK_Unknown; 901 if (LSI->NumExplicitTemplateParams > 0) { 902 auto *TemplateParamScope = CurScope->getTemplateParamParent(); 903 assert(TemplateParamScope && 904 "Lambda with explicit template param list should establish a " 905 "template param scope"); 906 assert(TemplateParamScope->getParent()); 907 if (TemplateParamScope->getParent()->getTemplateParamParent() != nullptr) 908 LambdaDependencyKind = CXXRecordDecl::LDK_AlwaysDependent; 909 } else if (CurScope->getTemplateParamParent() != nullptr) { 910 LambdaDependencyKind = CXXRecordDecl::LDK_AlwaysDependent; 911 } 912 913 // Determine the signature of the call operator. 914 TypeSourceInfo *MethodTyInfo; 915 bool ExplicitParams = true; 916 bool ExplicitResultType = true; 917 bool ContainsUnexpandedParameterPack = false; 918 SourceLocation EndLoc; 919 SmallVector<ParmVarDecl *, 8> Params; 920 if (ParamInfo.getNumTypeObjects() == 0) { 921 // C++11 [expr.prim.lambda]p4: 922 // If a lambda-expression does not include a lambda-declarator, it is as 923 // if the lambda-declarator were (). 924 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention( 925 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 926 EPI.HasTrailingReturn = true; 927 EPI.TypeQuals.addConst(); 928 LangAS AS = getDefaultCXXMethodAddrSpace(); 929 if (AS != LangAS::Default) 930 EPI.TypeQuals.addAddressSpace(AS); 931 932 // C++1y [expr.prim.lambda]: 933 // The lambda return type is 'auto', which is replaced by the 934 // trailing-return type if provided and/or deduced from 'return' 935 // statements 936 // We don't do this before C++1y, because we don't support deduced return 937 // types there. 938 QualType DefaultTypeForNoTrailingReturn = 939 getLangOpts().CPlusPlus14 ? Context.getAutoDeductType() 940 : Context.DependentTy; 941 QualType MethodTy = 942 Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI); 943 MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy); 944 ExplicitParams = false; 945 ExplicitResultType = false; 946 EndLoc = Intro.Range.getEnd(); 947 } else { 948 assert(ParamInfo.isFunctionDeclarator() && 949 "lambda-declarator is a function"); 950 DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo(); 951 952 // C++11 [expr.prim.lambda]p5: 953 // This function call operator is declared const (9.3.1) if and only if 954 // the lambda-expression's parameter-declaration-clause is not followed 955 // by mutable. It is neither virtual nor declared volatile. [...] 956 if (!FTI.hasMutableQualifier()) { 957 FTI.getOrCreateMethodQualifiers().SetTypeQual(DeclSpec::TQ_const, 958 SourceLocation()); 959 } 960 961 MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope); 962 assert(MethodTyInfo && "no type from lambda-declarator"); 963 EndLoc = ParamInfo.getSourceRange().getEnd(); 964 965 ExplicitResultType = FTI.hasTrailingReturnType(); 966 967 if (FTIHasNonVoidParameters(FTI)) { 968 Params.reserve(FTI.NumParams); 969 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) 970 Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param)); 971 } 972 973 // Check for unexpanded parameter packs in the method type. 974 if (MethodTyInfo->getType()->containsUnexpandedParameterPack()) 975 DiagnoseUnexpandedParameterPack(Intro.Range.getBegin(), MethodTyInfo, 976 UPPC_DeclarationType); 977 } 978 979 CXXRecordDecl *Class = createLambdaClosureType( 980 Intro.Range, MethodTyInfo, LambdaDependencyKind, Intro.Default); 981 CXXMethodDecl *Method = 982 startLambdaDefinition(Class, Intro.Range, MethodTyInfo, EndLoc, Params, 983 ParamInfo.getDeclSpec().getConstexprSpecifier(), 984 ParamInfo.getTrailingRequiresClause()); 985 if (ExplicitParams) 986 CheckCXXDefaultArguments(Method); 987 988 // This represents the function body for the lambda function, check if we 989 // have to apply optnone due to a pragma. 990 AddRangeBasedOptnone(Method); 991 992 // code_seg attribute on lambda apply to the method. 993 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true)) 994 Method->addAttr(A); 995 996 // Attributes on the lambda apply to the method. 997 ProcessDeclAttributes(CurScope, Method, ParamInfo); 998 999 // CUDA lambdas get implicit host and device attributes. 1000 if (getLangOpts().CUDA) 1001 CUDASetLambdaAttrs(Method); 1002 1003 // OpenMP lambdas might get assumumption attributes. 1004 if (LangOpts.OpenMP) 1005 ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(Method); 1006 1007 // Number the lambda for linkage purposes if necessary. 1008 handleLambdaNumbering(Class, Method); 1009 1010 // Introduce the function call operator as the current declaration context. 1011 PushDeclContext(CurScope, Method); 1012 1013 // Build the lambda scope. 1014 buildLambdaScope(LSI, Method, Intro.Range, Intro.Default, Intro.DefaultLoc, 1015 ExplicitParams, ExplicitResultType, !Method->isConst()); 1016 1017 // C++11 [expr.prim.lambda]p9: 1018 // A lambda-expression whose smallest enclosing scope is a block scope is a 1019 // local lambda expression; any other lambda expression shall not have a 1020 // capture-default or simple-capture in its lambda-introducer. 1021 // 1022 // For simple-captures, this is covered by the check below that any named 1023 // entity is a variable that can be captured. 1024 // 1025 // For DR1632, we also allow a capture-default in any context where we can 1026 // odr-use 'this' (in particular, in a default initializer for a non-static 1027 // data member). 1028 if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() && 1029 (getCurrentThisType().isNull() || 1030 CheckCXXThisCapture(SourceLocation(), /*Explicit*/true, 1031 /*BuildAndDiagnose*/false))) 1032 Diag(Intro.DefaultLoc, diag::err_capture_default_non_local); 1033 1034 // Distinct capture names, for diagnostics. 1035 llvm::SmallSet<IdentifierInfo*, 8> CaptureNames; 1036 1037 // Handle explicit captures. 1038 SourceLocation PrevCaptureLoc 1039 = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc; 1040 for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E; 1041 PrevCaptureLoc = C->Loc, ++C) { 1042 if (C->Kind == LCK_This || C->Kind == LCK_StarThis) { 1043 if (C->Kind == LCK_StarThis) 1044 Diag(C->Loc, !getLangOpts().CPlusPlus17 1045 ? diag::ext_star_this_lambda_capture_cxx17 1046 : diag::warn_cxx14_compat_star_this_lambda_capture); 1047 1048 // C++11 [expr.prim.lambda]p8: 1049 // An identifier or this shall not appear more than once in a 1050 // lambda-capture. 1051 if (LSI->isCXXThisCaptured()) { 1052 Diag(C->Loc, diag::err_capture_more_than_once) 1053 << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation()) 1054 << FixItHint::CreateRemoval( 1055 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1056 continue; 1057 } 1058 1059 // C++2a [expr.prim.lambda]p8: 1060 // If a lambda-capture includes a capture-default that is =, 1061 // each simple-capture of that lambda-capture shall be of the form 1062 // "&identifier", "this", or "* this". [ Note: The form [&,this] is 1063 // redundant but accepted for compatibility with ISO C++14. --end note ] 1064 if (Intro.Default == LCD_ByCopy && C->Kind != LCK_StarThis) 1065 Diag(C->Loc, !getLangOpts().CPlusPlus20 1066 ? diag::ext_equals_this_lambda_capture_cxx20 1067 : diag::warn_cxx17_compat_equals_this_lambda_capture); 1068 1069 // C++11 [expr.prim.lambda]p12: 1070 // If this is captured by a local lambda expression, its nearest 1071 // enclosing function shall be a non-static member function. 1072 QualType ThisCaptureType = getCurrentThisType(); 1073 if (ThisCaptureType.isNull()) { 1074 Diag(C->Loc, diag::err_this_capture) << true; 1075 continue; 1076 } 1077 1078 CheckCXXThisCapture(C->Loc, /*Explicit=*/true, /*BuildAndDiagnose*/ true, 1079 /*FunctionScopeIndexToStopAtPtr*/ nullptr, 1080 C->Kind == LCK_StarThis); 1081 if (!LSI->Captures.empty()) 1082 LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange; 1083 continue; 1084 } 1085 1086 assert(C->Id && "missing identifier for capture"); 1087 1088 if (C->Init.isInvalid()) 1089 continue; 1090 1091 VarDecl *Var = nullptr; 1092 if (C->Init.isUsable()) { 1093 Diag(C->Loc, getLangOpts().CPlusPlus14 1094 ? diag::warn_cxx11_compat_init_capture 1095 : diag::ext_init_capture); 1096 1097 // If the initializer expression is usable, but the InitCaptureType 1098 // is not, then an error has occurred - so ignore the capture for now. 1099 // for e.g., [n{0}] { }; <-- if no <initializer_list> is included. 1100 // FIXME: we should create the init capture variable and mark it invalid 1101 // in this case. 1102 if (C->InitCaptureType.get().isNull()) 1103 continue; 1104 1105 if (C->Init.get()->containsUnexpandedParameterPack() && 1106 !C->InitCaptureType.get()->getAs<PackExpansionType>()) 1107 DiagnoseUnexpandedParameterPack(C->Init.get(), UPPC_Initializer); 1108 1109 unsigned InitStyle; 1110 switch (C->InitKind) { 1111 case LambdaCaptureInitKind::NoInit: 1112 llvm_unreachable("not an init-capture?"); 1113 case LambdaCaptureInitKind::CopyInit: 1114 InitStyle = VarDecl::CInit; 1115 break; 1116 case LambdaCaptureInitKind::DirectInit: 1117 InitStyle = VarDecl::CallInit; 1118 break; 1119 case LambdaCaptureInitKind::ListInit: 1120 InitStyle = VarDecl::ListInit; 1121 break; 1122 } 1123 Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(), 1124 C->EllipsisLoc, C->Id, InitStyle, 1125 C->Init.get()); 1126 // C++1y [expr.prim.lambda]p11: 1127 // An init-capture behaves as if it declares and explicitly 1128 // captures a variable [...] whose declarative region is the 1129 // lambda-expression's compound-statement 1130 if (Var) 1131 PushOnScopeChains(Var, CurScope, false); 1132 } else { 1133 assert(C->InitKind == LambdaCaptureInitKind::NoInit && 1134 "init capture has valid but null init?"); 1135 1136 // C++11 [expr.prim.lambda]p8: 1137 // If a lambda-capture includes a capture-default that is &, the 1138 // identifiers in the lambda-capture shall not be preceded by &. 1139 // If a lambda-capture includes a capture-default that is =, [...] 1140 // each identifier it contains shall be preceded by &. 1141 if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) { 1142 Diag(C->Loc, diag::err_reference_capture_with_reference_default) 1143 << FixItHint::CreateRemoval( 1144 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1145 continue; 1146 } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) { 1147 Diag(C->Loc, diag::err_copy_capture_with_copy_default) 1148 << FixItHint::CreateRemoval( 1149 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1150 continue; 1151 } 1152 1153 // C++11 [expr.prim.lambda]p10: 1154 // The identifiers in a capture-list are looked up using the usual 1155 // rules for unqualified name lookup (3.4.1) 1156 DeclarationNameInfo Name(C->Id, C->Loc); 1157 LookupResult R(*this, Name, LookupOrdinaryName); 1158 LookupName(R, CurScope); 1159 if (R.isAmbiguous()) 1160 continue; 1161 if (R.empty()) { 1162 // FIXME: Disable corrections that would add qualification? 1163 CXXScopeSpec ScopeSpec; 1164 DeclFilterCCC<VarDecl> Validator{}; 1165 if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R, Validator)) 1166 continue; 1167 } 1168 1169 Var = R.getAsSingle<VarDecl>(); 1170 if (Var && DiagnoseUseOfDecl(Var, C->Loc)) 1171 continue; 1172 } 1173 1174 // C++11 [expr.prim.lambda]p8: 1175 // An identifier or this shall not appear more than once in a 1176 // lambda-capture. 1177 if (!CaptureNames.insert(C->Id).second) { 1178 if (Var && LSI->isCaptured(Var)) { 1179 Diag(C->Loc, diag::err_capture_more_than_once) 1180 << C->Id << SourceRange(LSI->getCapture(Var).getLocation()) 1181 << FixItHint::CreateRemoval( 1182 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1183 } else 1184 // Previous capture captured something different (one or both was 1185 // an init-cpature): no fixit. 1186 Diag(C->Loc, diag::err_capture_more_than_once) << C->Id; 1187 continue; 1188 } 1189 1190 // C++11 [expr.prim.lambda]p10: 1191 // [...] each such lookup shall find a variable with automatic storage 1192 // duration declared in the reaching scope of the local lambda expression. 1193 // Note that the 'reaching scope' check happens in tryCaptureVariable(). 1194 if (!Var) { 1195 Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id; 1196 continue; 1197 } 1198 1199 // Ignore invalid decls; they'll just confuse the code later. 1200 if (Var->isInvalidDecl()) 1201 continue; 1202 1203 if (!Var->hasLocalStorage()) { 1204 Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id; 1205 Diag(Var->getLocation(), diag::note_previous_decl) << C->Id; 1206 continue; 1207 } 1208 1209 // C++11 [expr.prim.lambda]p23: 1210 // A capture followed by an ellipsis is a pack expansion (14.5.3). 1211 SourceLocation EllipsisLoc; 1212 if (C->EllipsisLoc.isValid()) { 1213 if (Var->isParameterPack()) { 1214 EllipsisLoc = C->EllipsisLoc; 1215 } else { 1216 Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 1217 << (C->Init.isUsable() ? C->Init.get()->getSourceRange() 1218 : SourceRange(C->Loc)); 1219 1220 // Just ignore the ellipsis. 1221 } 1222 } else if (Var->isParameterPack()) { 1223 ContainsUnexpandedParameterPack = true; 1224 } 1225 1226 if (C->Init.isUsable()) { 1227 addInitCapture(LSI, Var); 1228 } else { 1229 TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef : 1230 TryCapture_ExplicitByVal; 1231 tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc); 1232 } 1233 if (!LSI->Captures.empty()) 1234 LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange; 1235 } 1236 finishLambdaExplicitCaptures(LSI); 1237 1238 LSI->ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack; 1239 1240 // Add lambda parameters into scope. 1241 addLambdaParameters(Intro.Captures, Method, CurScope); 1242 1243 // Enter a new evaluation context to insulate the lambda from any 1244 // cleanups from the enclosing full-expression. 1245 PushExpressionEvaluationContext( 1246 LSI->CallOperator->isConsteval() 1247 ? ExpressionEvaluationContext::ImmediateFunctionContext 1248 : ExpressionEvaluationContext::PotentiallyEvaluated); 1249 } 1250 1251 void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope, 1252 bool IsInstantiation) { 1253 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back()); 1254 1255 // Leave the expression-evaluation context. 1256 DiscardCleanupsInEvaluationContext(); 1257 PopExpressionEvaluationContext(); 1258 1259 // Leave the context of the lambda. 1260 if (!IsInstantiation) 1261 PopDeclContext(); 1262 1263 // Finalize the lambda. 1264 CXXRecordDecl *Class = LSI->Lambda; 1265 Class->setInvalidDecl(); 1266 SmallVector<Decl*, 4> Fields(Class->fields()); 1267 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(), 1268 SourceLocation(), ParsedAttributesView()); 1269 CheckCompletedCXXClass(nullptr, Class); 1270 1271 PopFunctionScopeInfo(); 1272 } 1273 1274 template <typename Func> 1275 static void repeatForLambdaConversionFunctionCallingConvs( 1276 Sema &S, const FunctionProtoType &CallOpProto, Func F) { 1277 CallingConv DefaultFree = S.Context.getDefaultCallingConvention( 1278 CallOpProto.isVariadic(), /*IsCXXMethod=*/false); 1279 CallingConv DefaultMember = S.Context.getDefaultCallingConvention( 1280 CallOpProto.isVariadic(), /*IsCXXMethod=*/true); 1281 CallingConv CallOpCC = CallOpProto.getCallConv(); 1282 1283 /// Implement emitting a version of the operator for many of the calling 1284 /// conventions for MSVC, as described here: 1285 /// https://devblogs.microsoft.com/oldnewthing/20150220-00/?p=44623. 1286 /// Experimentally, we determined that cdecl, stdcall, fastcall, and 1287 /// vectorcall are generated by MSVC when it is supported by the target. 1288 /// Additionally, we are ensuring that the default-free/default-member and 1289 /// call-operator calling convention are generated as well. 1290 /// NOTE: We intentionally generate a 'thiscall' on Win32 implicitly from the 1291 /// 'member default', despite MSVC not doing so. We do this in order to ensure 1292 /// that someone who intentionally places 'thiscall' on the lambda call 1293 /// operator will still get that overload, since we don't have the a way of 1294 /// detecting the attribute by the time we get here. 1295 if (S.getLangOpts().MSVCCompat) { 1296 CallingConv Convs[] = { 1297 CC_C, CC_X86StdCall, CC_X86FastCall, CC_X86VectorCall, 1298 DefaultFree, DefaultMember, CallOpCC}; 1299 llvm::sort(Convs); 1300 llvm::iterator_range<CallingConv *> Range( 1301 std::begin(Convs), std::unique(std::begin(Convs), std::end(Convs))); 1302 const TargetInfo &TI = S.getASTContext().getTargetInfo(); 1303 1304 for (CallingConv C : Range) { 1305 if (TI.checkCallingConvention(C) == TargetInfo::CCCR_OK) 1306 F(C); 1307 } 1308 return; 1309 } 1310 1311 if (CallOpCC == DefaultMember && DefaultMember != DefaultFree) { 1312 F(DefaultFree); 1313 F(DefaultMember); 1314 } else { 1315 F(CallOpCC); 1316 } 1317 } 1318 1319 // Returns the 'standard' calling convention to be used for the lambda 1320 // conversion function, that is, the 'free' function calling convention unless 1321 // it is overridden by a non-default calling convention attribute. 1322 static CallingConv 1323 getLambdaConversionFunctionCallConv(Sema &S, 1324 const FunctionProtoType *CallOpProto) { 1325 CallingConv DefaultFree = S.Context.getDefaultCallingConvention( 1326 CallOpProto->isVariadic(), /*IsCXXMethod=*/false); 1327 CallingConv DefaultMember = S.Context.getDefaultCallingConvention( 1328 CallOpProto->isVariadic(), /*IsCXXMethod=*/true); 1329 CallingConv CallOpCC = CallOpProto->getCallConv(); 1330 1331 // If the call-operator hasn't been changed, return both the 'free' and 1332 // 'member' function calling convention. 1333 if (CallOpCC == DefaultMember && DefaultMember != DefaultFree) 1334 return DefaultFree; 1335 return CallOpCC; 1336 } 1337 1338 QualType Sema::getLambdaConversionFunctionResultType( 1339 const FunctionProtoType *CallOpProto, CallingConv CC) { 1340 const FunctionProtoType::ExtProtoInfo CallOpExtInfo = 1341 CallOpProto->getExtProtoInfo(); 1342 FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo; 1343 InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC); 1344 InvokerExtInfo.TypeQuals = Qualifiers(); 1345 assert(InvokerExtInfo.RefQualifier == RQ_None && 1346 "Lambda's call operator should not have a reference qualifier"); 1347 return Context.getFunctionType(CallOpProto->getReturnType(), 1348 CallOpProto->getParamTypes(), InvokerExtInfo); 1349 } 1350 1351 /// Add a lambda's conversion to function pointer, as described in 1352 /// C++11 [expr.prim.lambda]p6. 1353 static void addFunctionPointerConversion(Sema &S, SourceRange IntroducerRange, 1354 CXXRecordDecl *Class, 1355 CXXMethodDecl *CallOperator, 1356 QualType InvokerFunctionTy) { 1357 // This conversion is explicitly disabled if the lambda's function has 1358 // pass_object_size attributes on any of its parameters. 1359 auto HasPassObjectSizeAttr = [](const ParmVarDecl *P) { 1360 return P->hasAttr<PassObjectSizeAttr>(); 1361 }; 1362 if (llvm::any_of(CallOperator->parameters(), HasPassObjectSizeAttr)) 1363 return; 1364 1365 // Add the conversion to function pointer. 1366 QualType PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy); 1367 1368 // Create the type of the conversion function. 1369 FunctionProtoType::ExtProtoInfo ConvExtInfo( 1370 S.Context.getDefaultCallingConvention( 1371 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 1372 // The conversion function is always const and noexcept. 1373 ConvExtInfo.TypeQuals = Qualifiers(); 1374 ConvExtInfo.TypeQuals.addConst(); 1375 ConvExtInfo.ExceptionSpec.Type = EST_BasicNoexcept; 1376 QualType ConvTy = 1377 S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo); 1378 1379 SourceLocation Loc = IntroducerRange.getBegin(); 1380 DeclarationName ConversionName 1381 = S.Context.DeclarationNames.getCXXConversionFunctionName( 1382 S.Context.getCanonicalType(PtrToFunctionTy)); 1383 // Construct a TypeSourceInfo for the conversion function, and wire 1384 // all the parameters appropriately for the FunctionProtoTypeLoc 1385 // so that everything works during transformation/instantiation of 1386 // generic lambdas. 1387 // The main reason for wiring up the parameters of the conversion 1388 // function with that of the call operator is so that constructs 1389 // like the following work: 1390 // auto L = [](auto b) { <-- 1 1391 // return [](auto a) -> decltype(a) { <-- 2 1392 // return a; 1393 // }; 1394 // }; 1395 // int (*fp)(int) = L(5); 1396 // Because the trailing return type can contain DeclRefExprs that refer 1397 // to the original call operator's variables, we hijack the call 1398 // operators ParmVarDecls below. 1399 TypeSourceInfo *ConvNamePtrToFunctionTSI = 1400 S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc); 1401 DeclarationNameLoc ConvNameLoc = 1402 DeclarationNameLoc::makeNamedTypeLoc(ConvNamePtrToFunctionTSI); 1403 1404 // The conversion function is a conversion to a pointer-to-function. 1405 TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc); 1406 FunctionProtoTypeLoc ConvTL = 1407 ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>(); 1408 // Get the result of the conversion function which is a pointer-to-function. 1409 PointerTypeLoc PtrToFunctionTL = 1410 ConvTL.getReturnLoc().getAs<PointerTypeLoc>(); 1411 // Do the same for the TypeSourceInfo that is used to name the conversion 1412 // operator. 1413 PointerTypeLoc ConvNamePtrToFunctionTL = 1414 ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>(); 1415 1416 // Get the underlying function types that the conversion function will 1417 // be converting to (should match the type of the call operator). 1418 FunctionProtoTypeLoc CallOpConvTL = 1419 PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>(); 1420 FunctionProtoTypeLoc CallOpConvNameTL = 1421 ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>(); 1422 1423 // Wire up the FunctionProtoTypeLocs with the call operator's parameters. 1424 // These parameter's are essentially used to transform the name and 1425 // the type of the conversion operator. By using the same parameters 1426 // as the call operator's we don't have to fix any back references that 1427 // the trailing return type of the call operator's uses (such as 1428 // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.) 1429 // - we can simply use the return type of the call operator, and 1430 // everything should work. 1431 SmallVector<ParmVarDecl *, 4> InvokerParams; 1432 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) { 1433 ParmVarDecl *From = CallOperator->getParamDecl(I); 1434 1435 InvokerParams.push_back(ParmVarDecl::Create( 1436 S.Context, 1437 // Temporarily add to the TU. This is set to the invoker below. 1438 S.Context.getTranslationUnitDecl(), From->getBeginLoc(), 1439 From->getLocation(), From->getIdentifier(), From->getType(), 1440 From->getTypeSourceInfo(), From->getStorageClass(), 1441 /*DefArg=*/nullptr)); 1442 CallOpConvTL.setParam(I, From); 1443 CallOpConvNameTL.setParam(I, From); 1444 } 1445 1446 CXXConversionDecl *Conversion = CXXConversionDecl::Create( 1447 S.Context, Class, Loc, 1448 DeclarationNameInfo(ConversionName, Loc, ConvNameLoc), ConvTy, ConvTSI, 1449 S.getCurFPFeatures().isFPConstrained(), 1450 /*isInline=*/true, ExplicitSpecifier(), 1451 S.getLangOpts().CPlusPlus17 ? ConstexprSpecKind::Constexpr 1452 : ConstexprSpecKind::Unspecified, 1453 CallOperator->getBody()->getEndLoc()); 1454 Conversion->setAccess(AS_public); 1455 Conversion->setImplicit(true); 1456 1457 if (Class->isGenericLambda()) { 1458 // Create a template version of the conversion operator, using the template 1459 // parameter list of the function call operator. 1460 FunctionTemplateDecl *TemplateCallOperator = 1461 CallOperator->getDescribedFunctionTemplate(); 1462 FunctionTemplateDecl *ConversionTemplate = 1463 FunctionTemplateDecl::Create(S.Context, Class, 1464 Loc, ConversionName, 1465 TemplateCallOperator->getTemplateParameters(), 1466 Conversion); 1467 ConversionTemplate->setAccess(AS_public); 1468 ConversionTemplate->setImplicit(true); 1469 Conversion->setDescribedFunctionTemplate(ConversionTemplate); 1470 Class->addDecl(ConversionTemplate); 1471 } else 1472 Class->addDecl(Conversion); 1473 // Add a non-static member function that will be the result of 1474 // the conversion with a certain unique ID. 1475 DeclarationName InvokerName = &S.Context.Idents.get( 1476 getLambdaStaticInvokerName()); 1477 // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo() 1478 // we should get a prebuilt TrivialTypeSourceInfo from Context 1479 // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc 1480 // then rewire the parameters accordingly, by hoisting up the InvokeParams 1481 // loop below and then use its Params to set Invoke->setParams(...) below. 1482 // This would avoid the 'const' qualifier of the calloperator from 1483 // contaminating the type of the invoker, which is currently adjusted 1484 // in SemaTemplateDeduction.cpp:DeduceTemplateArguments. Fixing the 1485 // trailing return type of the invoker would require a visitor to rebuild 1486 // the trailing return type and adjusting all back DeclRefExpr's to refer 1487 // to the new static invoker parameters - not the call operator's. 1488 CXXMethodDecl *Invoke = CXXMethodDecl::Create( 1489 S.Context, Class, Loc, DeclarationNameInfo(InvokerName, Loc), 1490 InvokerFunctionTy, CallOperator->getTypeSourceInfo(), SC_Static, 1491 S.getCurFPFeatures().isFPConstrained(), 1492 /*isInline=*/true, ConstexprSpecKind::Unspecified, 1493 CallOperator->getBody()->getEndLoc()); 1494 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) 1495 InvokerParams[I]->setOwningFunction(Invoke); 1496 Invoke->setParams(InvokerParams); 1497 Invoke->setAccess(AS_private); 1498 Invoke->setImplicit(true); 1499 if (Class->isGenericLambda()) { 1500 FunctionTemplateDecl *TemplateCallOperator = 1501 CallOperator->getDescribedFunctionTemplate(); 1502 FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create( 1503 S.Context, Class, Loc, InvokerName, 1504 TemplateCallOperator->getTemplateParameters(), 1505 Invoke); 1506 StaticInvokerTemplate->setAccess(AS_private); 1507 StaticInvokerTemplate->setImplicit(true); 1508 Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate); 1509 Class->addDecl(StaticInvokerTemplate); 1510 } else 1511 Class->addDecl(Invoke); 1512 } 1513 1514 /// Add a lambda's conversion to function pointers, as described in 1515 /// C++11 [expr.prim.lambda]p6. Note that in most cases, this should emit only a 1516 /// single pointer conversion. In the event that the default calling convention 1517 /// for free and member functions is different, it will emit both conventions. 1518 static void addFunctionPointerConversions(Sema &S, SourceRange IntroducerRange, 1519 CXXRecordDecl *Class, 1520 CXXMethodDecl *CallOperator) { 1521 const FunctionProtoType *CallOpProto = 1522 CallOperator->getType()->castAs<FunctionProtoType>(); 1523 1524 repeatForLambdaConversionFunctionCallingConvs( 1525 S, *CallOpProto, [&](CallingConv CC) { 1526 QualType InvokerFunctionTy = 1527 S.getLambdaConversionFunctionResultType(CallOpProto, CC); 1528 addFunctionPointerConversion(S, IntroducerRange, Class, CallOperator, 1529 InvokerFunctionTy); 1530 }); 1531 } 1532 1533 /// Add a lambda's conversion to block pointer. 1534 static void addBlockPointerConversion(Sema &S, 1535 SourceRange IntroducerRange, 1536 CXXRecordDecl *Class, 1537 CXXMethodDecl *CallOperator) { 1538 const FunctionProtoType *CallOpProto = 1539 CallOperator->getType()->castAs<FunctionProtoType>(); 1540 QualType FunctionTy = S.getLambdaConversionFunctionResultType( 1541 CallOpProto, getLambdaConversionFunctionCallConv(S, CallOpProto)); 1542 QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy); 1543 1544 FunctionProtoType::ExtProtoInfo ConversionEPI( 1545 S.Context.getDefaultCallingConvention( 1546 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 1547 ConversionEPI.TypeQuals = Qualifiers(); 1548 ConversionEPI.TypeQuals.addConst(); 1549 QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ConversionEPI); 1550 1551 SourceLocation Loc = IntroducerRange.getBegin(); 1552 DeclarationName Name 1553 = S.Context.DeclarationNames.getCXXConversionFunctionName( 1554 S.Context.getCanonicalType(BlockPtrTy)); 1555 DeclarationNameLoc NameLoc = DeclarationNameLoc::makeNamedTypeLoc( 1556 S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc)); 1557 CXXConversionDecl *Conversion = CXXConversionDecl::Create( 1558 S.Context, Class, Loc, DeclarationNameInfo(Name, Loc, NameLoc), ConvTy, 1559 S.Context.getTrivialTypeSourceInfo(ConvTy, Loc), 1560 S.getCurFPFeatures().isFPConstrained(), 1561 /*isInline=*/true, ExplicitSpecifier(), ConstexprSpecKind::Unspecified, 1562 CallOperator->getBody()->getEndLoc()); 1563 Conversion->setAccess(AS_public); 1564 Conversion->setImplicit(true); 1565 Class->addDecl(Conversion); 1566 } 1567 1568 ExprResult Sema::BuildCaptureInit(const Capture &Cap, 1569 SourceLocation ImplicitCaptureLoc, 1570 bool IsOpenMPMapping) { 1571 // VLA captures don't have a stored initialization expression. 1572 if (Cap.isVLATypeCapture()) 1573 return ExprResult(); 1574 1575 // An init-capture is initialized directly from its stored initializer. 1576 if (Cap.isInitCapture()) 1577 return Cap.getVariable()->getInit(); 1578 1579 // For anything else, build an initialization expression. For an implicit 1580 // capture, the capture notionally happens at the capture-default, so use 1581 // that location here. 1582 SourceLocation Loc = 1583 ImplicitCaptureLoc.isValid() ? ImplicitCaptureLoc : Cap.getLocation(); 1584 1585 // C++11 [expr.prim.lambda]p21: 1586 // When the lambda-expression is evaluated, the entities that 1587 // are captured by copy are used to direct-initialize each 1588 // corresponding non-static data member of the resulting closure 1589 // object. (For array members, the array elements are 1590 // direct-initialized in increasing subscript order.) These 1591 // initializations are performed in the (unspecified) order in 1592 // which the non-static data members are declared. 1593 1594 // C++ [expr.prim.lambda]p12: 1595 // An entity captured by a lambda-expression is odr-used (3.2) in 1596 // the scope containing the lambda-expression. 1597 ExprResult Init; 1598 IdentifierInfo *Name = nullptr; 1599 if (Cap.isThisCapture()) { 1600 QualType ThisTy = getCurrentThisType(); 1601 Expr *This = BuildCXXThisExpr(Loc, ThisTy, ImplicitCaptureLoc.isValid()); 1602 if (Cap.isCopyCapture()) 1603 Init = CreateBuiltinUnaryOp(Loc, UO_Deref, This); 1604 else 1605 Init = This; 1606 } else { 1607 assert(Cap.isVariableCapture() && "unknown kind of capture"); 1608 VarDecl *Var = Cap.getVariable(); 1609 Name = Var->getIdentifier(); 1610 Init = BuildDeclarationNameExpr( 1611 CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var); 1612 } 1613 1614 // In OpenMP, the capture kind doesn't actually describe how to capture: 1615 // variables are "mapped" onto the device in a process that does not formally 1616 // make a copy, even for a "copy capture". 1617 if (IsOpenMPMapping) 1618 return Init; 1619 1620 if (Init.isInvalid()) 1621 return ExprError(); 1622 1623 Expr *InitExpr = Init.get(); 1624 InitializedEntity Entity = InitializedEntity::InitializeLambdaCapture( 1625 Name, Cap.getCaptureType(), Loc); 1626 InitializationKind InitKind = 1627 InitializationKind::CreateDirect(Loc, Loc, Loc); 1628 InitializationSequence InitSeq(*this, Entity, InitKind, InitExpr); 1629 return InitSeq.Perform(*this, Entity, InitKind, InitExpr); 1630 } 1631 1632 ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body, 1633 Scope *CurScope) { 1634 LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back()); 1635 ActOnFinishFunctionBody(LSI.CallOperator, Body); 1636 return BuildLambdaExpr(StartLoc, Body->getEndLoc(), &LSI); 1637 } 1638 1639 static LambdaCaptureDefault 1640 mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS) { 1641 switch (ICS) { 1642 case CapturingScopeInfo::ImpCap_None: 1643 return LCD_None; 1644 case CapturingScopeInfo::ImpCap_LambdaByval: 1645 return LCD_ByCopy; 1646 case CapturingScopeInfo::ImpCap_CapturedRegion: 1647 case CapturingScopeInfo::ImpCap_LambdaByref: 1648 return LCD_ByRef; 1649 case CapturingScopeInfo::ImpCap_Block: 1650 llvm_unreachable("block capture in lambda"); 1651 } 1652 llvm_unreachable("Unknown implicit capture style"); 1653 } 1654 1655 bool Sema::CaptureHasSideEffects(const Capture &From) { 1656 if (From.isInitCapture()) { 1657 Expr *Init = From.getVariable()->getInit(); 1658 if (Init && Init->HasSideEffects(Context)) 1659 return true; 1660 } 1661 1662 if (!From.isCopyCapture()) 1663 return false; 1664 1665 const QualType T = From.isThisCapture() 1666 ? getCurrentThisType()->getPointeeType() 1667 : From.getCaptureType(); 1668 1669 if (T.isVolatileQualified()) 1670 return true; 1671 1672 const Type *BaseT = T->getBaseElementTypeUnsafe(); 1673 if (const CXXRecordDecl *RD = BaseT->getAsCXXRecordDecl()) 1674 return !RD->isCompleteDefinition() || !RD->hasTrivialCopyConstructor() || 1675 !RD->hasTrivialDestructor(); 1676 1677 return false; 1678 } 1679 1680 bool Sema::DiagnoseUnusedLambdaCapture(SourceRange CaptureRange, 1681 const Capture &From) { 1682 if (CaptureHasSideEffects(From)) 1683 return false; 1684 1685 if (From.isVLATypeCapture()) 1686 return false; 1687 1688 auto diag = Diag(From.getLocation(), diag::warn_unused_lambda_capture); 1689 if (From.isThisCapture()) 1690 diag << "'this'"; 1691 else 1692 diag << From.getVariable(); 1693 diag << From.isNonODRUsed(); 1694 diag << FixItHint::CreateRemoval(CaptureRange); 1695 return true; 1696 } 1697 1698 /// Create a field within the lambda class or captured statement record for the 1699 /// given capture. 1700 FieldDecl *Sema::BuildCaptureField(RecordDecl *RD, 1701 const sema::Capture &Capture) { 1702 SourceLocation Loc = Capture.getLocation(); 1703 QualType FieldType = Capture.getCaptureType(); 1704 1705 TypeSourceInfo *TSI = nullptr; 1706 if (Capture.isVariableCapture()) { 1707 auto *Var = Capture.getVariable(); 1708 if (Var->isInitCapture()) 1709 TSI = Capture.getVariable()->getTypeSourceInfo(); 1710 } 1711 1712 // FIXME: Should we really be doing this? A null TypeSourceInfo seems more 1713 // appropriate, at least for an implicit capture. 1714 if (!TSI) 1715 TSI = Context.getTrivialTypeSourceInfo(FieldType, Loc); 1716 1717 // Build the non-static data member. 1718 FieldDecl *Field = 1719 FieldDecl::Create(Context, RD, /*StartLoc=*/Loc, /*IdLoc=*/Loc, 1720 /*Id=*/nullptr, FieldType, TSI, /*BW=*/nullptr, 1721 /*Mutable=*/false, ICIS_NoInit); 1722 // If the variable being captured has an invalid type, mark the class as 1723 // invalid as well. 1724 if (!FieldType->isDependentType()) { 1725 if (RequireCompleteSizedType(Loc, FieldType, 1726 diag::err_field_incomplete_or_sizeless)) { 1727 RD->setInvalidDecl(); 1728 Field->setInvalidDecl(); 1729 } else { 1730 NamedDecl *Def; 1731 FieldType->isIncompleteType(&Def); 1732 if (Def && Def->isInvalidDecl()) { 1733 RD->setInvalidDecl(); 1734 Field->setInvalidDecl(); 1735 } 1736 } 1737 } 1738 Field->setImplicit(true); 1739 Field->setAccess(AS_private); 1740 RD->addDecl(Field); 1741 1742 if (Capture.isVLATypeCapture()) 1743 Field->setCapturedVLAType(Capture.getCapturedVLAType()); 1744 1745 return Field; 1746 } 1747 1748 ExprResult Sema::BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc, 1749 LambdaScopeInfo *LSI) { 1750 // Collect information from the lambda scope. 1751 SmallVector<LambdaCapture, 4> Captures; 1752 SmallVector<Expr *, 4> CaptureInits; 1753 SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc; 1754 LambdaCaptureDefault CaptureDefault = 1755 mapImplicitCaptureStyle(LSI->ImpCaptureStyle); 1756 CXXRecordDecl *Class; 1757 CXXMethodDecl *CallOperator; 1758 SourceRange IntroducerRange; 1759 bool ExplicitParams; 1760 bool ExplicitResultType; 1761 CleanupInfo LambdaCleanup; 1762 bool ContainsUnexpandedParameterPack; 1763 bool IsGenericLambda; 1764 { 1765 CallOperator = LSI->CallOperator; 1766 Class = LSI->Lambda; 1767 IntroducerRange = LSI->IntroducerRange; 1768 ExplicitParams = LSI->ExplicitParams; 1769 ExplicitResultType = !LSI->HasImplicitReturnType; 1770 LambdaCleanup = LSI->Cleanup; 1771 ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack; 1772 IsGenericLambda = Class->isGenericLambda(); 1773 1774 CallOperator->setLexicalDeclContext(Class); 1775 Decl *TemplateOrNonTemplateCallOperatorDecl = 1776 CallOperator->getDescribedFunctionTemplate() 1777 ? CallOperator->getDescribedFunctionTemplate() 1778 : cast<Decl>(CallOperator); 1779 1780 // FIXME: Is this really the best choice? Keeping the lexical decl context 1781 // set as CurContext seems more faithful to the source. 1782 TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class); 1783 1784 PopExpressionEvaluationContext(); 1785 1786 // True if the current capture has a used capture or default before it. 1787 bool CurHasPreviousCapture = CaptureDefault != LCD_None; 1788 SourceLocation PrevCaptureLoc = CurHasPreviousCapture ? 1789 CaptureDefaultLoc : IntroducerRange.getBegin(); 1790 1791 for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) { 1792 const Capture &From = LSI->Captures[I]; 1793 1794 if (From.isInvalid()) 1795 return ExprError(); 1796 1797 assert(!From.isBlockCapture() && "Cannot capture __block variables"); 1798 bool IsImplicit = I >= LSI->NumExplicitCaptures; 1799 SourceLocation ImplicitCaptureLoc = 1800 IsImplicit ? CaptureDefaultLoc : SourceLocation(); 1801 1802 // Use source ranges of explicit captures for fixits where available. 1803 SourceRange CaptureRange = LSI->ExplicitCaptureRanges[I]; 1804 1805 // Warn about unused explicit captures. 1806 bool IsCaptureUsed = true; 1807 if (!CurContext->isDependentContext() && !IsImplicit && 1808 !From.isODRUsed()) { 1809 // Initialized captures that are non-ODR used may not be eliminated. 1810 // FIXME: Where did the IsGenericLambda here come from? 1811 bool NonODRUsedInitCapture = 1812 IsGenericLambda && From.isNonODRUsed() && From.isInitCapture(); 1813 if (!NonODRUsedInitCapture) { 1814 bool IsLast = (I + 1) == LSI->NumExplicitCaptures; 1815 SourceRange FixItRange; 1816 if (CaptureRange.isValid()) { 1817 if (!CurHasPreviousCapture && !IsLast) { 1818 // If there are no captures preceding this capture, remove the 1819 // following comma. 1820 FixItRange = SourceRange(CaptureRange.getBegin(), 1821 getLocForEndOfToken(CaptureRange.getEnd())); 1822 } else { 1823 // Otherwise, remove the comma since the last used capture. 1824 FixItRange = SourceRange(getLocForEndOfToken(PrevCaptureLoc), 1825 CaptureRange.getEnd()); 1826 } 1827 } 1828 1829 IsCaptureUsed = !DiagnoseUnusedLambdaCapture(FixItRange, From); 1830 } 1831 } 1832 1833 if (CaptureRange.isValid()) { 1834 CurHasPreviousCapture |= IsCaptureUsed; 1835 PrevCaptureLoc = CaptureRange.getEnd(); 1836 } 1837 1838 // Map the capture to our AST representation. 1839 LambdaCapture Capture = [&] { 1840 if (From.isThisCapture()) { 1841 // Capturing 'this' implicitly with a default of '[=]' is deprecated, 1842 // because it results in a reference capture. Don't warn prior to 1843 // C++2a; there's nothing that can be done about it before then. 1844 if (getLangOpts().CPlusPlus20 && IsImplicit && 1845 CaptureDefault == LCD_ByCopy) { 1846 Diag(From.getLocation(), diag::warn_deprecated_this_capture); 1847 Diag(CaptureDefaultLoc, diag::note_deprecated_this_capture) 1848 << FixItHint::CreateInsertion( 1849 getLocForEndOfToken(CaptureDefaultLoc), ", this"); 1850 } 1851 return LambdaCapture(From.getLocation(), IsImplicit, 1852 From.isCopyCapture() ? LCK_StarThis : LCK_This); 1853 } else if (From.isVLATypeCapture()) { 1854 return LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType); 1855 } else { 1856 assert(From.isVariableCapture() && "unknown kind of capture"); 1857 VarDecl *Var = From.getVariable(); 1858 LambdaCaptureKind Kind = 1859 From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef; 1860 return LambdaCapture(From.getLocation(), IsImplicit, Kind, Var, 1861 From.getEllipsisLoc()); 1862 } 1863 }(); 1864 1865 // Form the initializer for the capture field. 1866 ExprResult Init = BuildCaptureInit(From, ImplicitCaptureLoc); 1867 1868 // FIXME: Skip this capture if the capture is not used, the initializer 1869 // has no side-effects, the type of the capture is trivial, and the 1870 // lambda is not externally visible. 1871 1872 // Add a FieldDecl for the capture and form its initializer. 1873 BuildCaptureField(Class, From); 1874 Captures.push_back(Capture); 1875 CaptureInits.push_back(Init.get()); 1876 1877 if (LangOpts.CUDA) 1878 CUDACheckLambdaCapture(CallOperator, From); 1879 } 1880 1881 Class->setCaptures(Context, Captures); 1882 1883 // C++11 [expr.prim.lambda]p6: 1884 // The closure type for a lambda-expression with no lambda-capture 1885 // has a public non-virtual non-explicit const conversion function 1886 // to pointer to function having the same parameter and return 1887 // types as the closure type's function call operator. 1888 if (Captures.empty() && CaptureDefault == LCD_None) 1889 addFunctionPointerConversions(*this, IntroducerRange, Class, 1890 CallOperator); 1891 1892 // Objective-C++: 1893 // The closure type for a lambda-expression has a public non-virtual 1894 // non-explicit const conversion function to a block pointer having the 1895 // same parameter and return types as the closure type's function call 1896 // operator. 1897 // FIXME: Fix generic lambda to block conversions. 1898 if (getLangOpts().Blocks && getLangOpts().ObjC && !IsGenericLambda) 1899 addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator); 1900 1901 // Finalize the lambda class. 1902 SmallVector<Decl*, 4> Fields(Class->fields()); 1903 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(), 1904 SourceLocation(), ParsedAttributesView()); 1905 CheckCompletedCXXClass(nullptr, Class); 1906 } 1907 1908 Cleanup.mergeFrom(LambdaCleanup); 1909 1910 LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange, 1911 CaptureDefault, CaptureDefaultLoc, 1912 ExplicitParams, ExplicitResultType, 1913 CaptureInits, EndLoc, 1914 ContainsUnexpandedParameterPack); 1915 // If the lambda expression's call operator is not explicitly marked constexpr 1916 // and we are not in a dependent context, analyze the call operator to infer 1917 // its constexpr-ness, suppressing diagnostics while doing so. 1918 if (getLangOpts().CPlusPlus17 && !CallOperator->isInvalidDecl() && 1919 !CallOperator->isConstexpr() && 1920 !isa<CoroutineBodyStmt>(CallOperator->getBody()) && 1921 !Class->getDeclContext()->isDependentContext()) { 1922 CallOperator->setConstexprKind( 1923 CheckConstexprFunctionDefinition(CallOperator, 1924 CheckConstexprKind::CheckValid) 1925 ? ConstexprSpecKind::Constexpr 1926 : ConstexprSpecKind::Unspecified); 1927 } 1928 1929 // Emit delayed shadowing warnings now that the full capture list is known. 1930 DiagnoseShadowingLambdaDecls(LSI); 1931 1932 if (!CurContext->isDependentContext()) { 1933 switch (ExprEvalContexts.back().Context) { 1934 // C++11 [expr.prim.lambda]p2: 1935 // A lambda-expression shall not appear in an unevaluated operand 1936 // (Clause 5). 1937 case ExpressionEvaluationContext::Unevaluated: 1938 case ExpressionEvaluationContext::UnevaluatedList: 1939 case ExpressionEvaluationContext::UnevaluatedAbstract: 1940 // C++1y [expr.const]p2: 1941 // A conditional-expression e is a core constant expression unless the 1942 // evaluation of e, following the rules of the abstract machine, would 1943 // evaluate [...] a lambda-expression. 1944 // 1945 // This is technically incorrect, there are some constant evaluated contexts 1946 // where this should be allowed. We should probably fix this when DR1607 is 1947 // ratified, it lays out the exact set of conditions where we shouldn't 1948 // allow a lambda-expression. 1949 case ExpressionEvaluationContext::ConstantEvaluated: 1950 case ExpressionEvaluationContext::ImmediateFunctionContext: 1951 // We don't actually diagnose this case immediately, because we 1952 // could be within a context where we might find out later that 1953 // the expression is potentially evaluated (e.g., for typeid). 1954 ExprEvalContexts.back().Lambdas.push_back(Lambda); 1955 break; 1956 1957 case ExpressionEvaluationContext::DiscardedStatement: 1958 case ExpressionEvaluationContext::PotentiallyEvaluated: 1959 case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed: 1960 break; 1961 } 1962 } 1963 1964 return MaybeBindToTemporary(Lambda); 1965 } 1966 1967 ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation, 1968 SourceLocation ConvLocation, 1969 CXXConversionDecl *Conv, 1970 Expr *Src) { 1971 // Make sure that the lambda call operator is marked used. 1972 CXXRecordDecl *Lambda = Conv->getParent(); 1973 CXXMethodDecl *CallOperator 1974 = cast<CXXMethodDecl>( 1975 Lambda->lookup( 1976 Context.DeclarationNames.getCXXOperatorName(OO_Call)).front()); 1977 CallOperator->setReferenced(); 1978 CallOperator->markUsed(Context); 1979 1980 ExprResult Init = PerformCopyInitialization( 1981 InitializedEntity::InitializeLambdaToBlock(ConvLocation, Src->getType()), 1982 CurrentLocation, Src); 1983 if (!Init.isInvalid()) 1984 Init = ActOnFinishFullExpr(Init.get(), /*DiscardedValue*/ false); 1985 1986 if (Init.isInvalid()) 1987 return ExprError(); 1988 1989 // Create the new block to be returned. 1990 BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation); 1991 1992 // Set the type information. 1993 Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo()); 1994 Block->setIsVariadic(CallOperator->isVariadic()); 1995 Block->setBlockMissingReturnType(false); 1996 1997 // Add parameters. 1998 SmallVector<ParmVarDecl *, 4> BlockParams; 1999 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) { 2000 ParmVarDecl *From = CallOperator->getParamDecl(I); 2001 BlockParams.push_back(ParmVarDecl::Create( 2002 Context, Block, From->getBeginLoc(), From->getLocation(), 2003 From->getIdentifier(), From->getType(), From->getTypeSourceInfo(), 2004 From->getStorageClass(), 2005 /*DefArg=*/nullptr)); 2006 } 2007 Block->setParams(BlockParams); 2008 2009 Block->setIsConversionFromLambda(true); 2010 2011 // Add capture. The capture uses a fake variable, which doesn't correspond 2012 // to any actual memory location. However, the initializer copy-initializes 2013 // the lambda object. 2014 TypeSourceInfo *CapVarTSI = 2015 Context.getTrivialTypeSourceInfo(Src->getType()); 2016 VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation, 2017 ConvLocation, nullptr, 2018 Src->getType(), CapVarTSI, 2019 SC_None); 2020 BlockDecl::Capture Capture(/*variable=*/CapVar, /*byRef=*/false, 2021 /*nested=*/false, /*copy=*/Init.get()); 2022 Block->setCaptures(Context, Capture, /*CapturesCXXThis=*/false); 2023 2024 // Add a fake function body to the block. IR generation is responsible 2025 // for filling in the actual body, which cannot be expressed as an AST. 2026 Block->setBody(new (Context) CompoundStmt(ConvLocation)); 2027 2028 // Create the block literal expression. 2029 Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType()); 2030 ExprCleanupObjects.push_back(Block); 2031 Cleanup.setExprNeedsCleanups(true); 2032 2033 return BuildBlock; 2034 } 2035