xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaLambda.cpp (revision 3dd5524264095ed8612c28908e13f80668eff2f9)
1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for C++ lambda expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 #include "clang/Sema/DeclSpec.h"
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTLambda.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/Basic/TargetInfo.h"
17 #include "clang/Sema/Initialization.h"
18 #include "clang/Sema/Lookup.h"
19 #include "clang/Sema/Scope.h"
20 #include "clang/Sema/ScopeInfo.h"
21 #include "clang/Sema/SemaInternal.h"
22 #include "clang/Sema/SemaLambda.h"
23 #include "llvm/ADT/STLExtras.h"
24 using namespace clang;
25 using namespace sema;
26 
27 /// Examines the FunctionScopeInfo stack to determine the nearest
28 /// enclosing lambda (to the current lambda) that is 'capture-ready' for
29 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
30 /// If successful, returns the index into Sema's FunctionScopeInfo stack
31 /// of the capture-ready lambda's LambdaScopeInfo.
32 ///
33 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current
34 /// lambda - is on top) to determine the index of the nearest enclosing/outer
35 /// lambda that is ready to capture the \p VarToCapture being referenced in
36 /// the current lambda.
37 /// As we climb down the stack, we want the index of the first such lambda -
38 /// that is the lambda with the highest index that is 'capture-ready'.
39 ///
40 /// A lambda 'L' is capture-ready for 'V' (var or this) if:
41 ///  - its enclosing context is non-dependent
42 ///  - and if the chain of lambdas between L and the lambda in which
43 ///    V is potentially used (i.e. the lambda at the top of the scope info
44 ///    stack), can all capture or have already captured V.
45 /// If \p VarToCapture is 'null' then we are trying to capture 'this'.
46 ///
47 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked
48 /// for whether it is 'capture-capable' (see
49 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly
50 /// capture.
51 ///
52 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
53 ///  LambdaScopeInfo inherits from).  The current/deepest/innermost lambda
54 ///  is at the top of the stack and has the highest index.
55 /// \param VarToCapture - the variable to capture.  If NULL, capture 'this'.
56 ///
57 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
58 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
59 /// which is capture-ready.  If the return value evaluates to 'false' then
60 /// no lambda is capture-ready for \p VarToCapture.
61 
62 static inline Optional<unsigned>
63 getStackIndexOfNearestEnclosingCaptureReadyLambda(
64     ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes,
65     VarDecl *VarToCapture) {
66   // Label failure to capture.
67   const Optional<unsigned> NoLambdaIsCaptureReady;
68 
69   // Ignore all inner captured regions.
70   unsigned CurScopeIndex = FunctionScopes.size() - 1;
71   while (CurScopeIndex > 0 && isa<clang::sema::CapturedRegionScopeInfo>(
72                                   FunctionScopes[CurScopeIndex]))
73     --CurScopeIndex;
74   assert(
75       isa<clang::sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]) &&
76       "The function on the top of sema's function-info stack must be a lambda");
77 
78   // If VarToCapture is null, we are attempting to capture 'this'.
79   const bool IsCapturingThis = !VarToCapture;
80   const bool IsCapturingVariable = !IsCapturingThis;
81 
82   // Start with the current lambda at the top of the stack (highest index).
83   DeclContext *EnclosingDC =
84       cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator;
85 
86   do {
87     const clang::sema::LambdaScopeInfo *LSI =
88         cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]);
89     // IF we have climbed down to an intervening enclosing lambda that contains
90     // the variable declaration - it obviously can/must not capture the
91     // variable.
92     // Since its enclosing DC is dependent, all the lambdas between it and the
93     // innermost nested lambda are dependent (otherwise we wouldn't have
94     // arrived here) - so we don't yet have a lambda that can capture the
95     // variable.
96     if (IsCapturingVariable &&
97         VarToCapture->getDeclContext()->Equals(EnclosingDC))
98       return NoLambdaIsCaptureReady;
99 
100     // For an enclosing lambda to be capture ready for an entity, all
101     // intervening lambda's have to be able to capture that entity. If even
102     // one of the intervening lambda's is not capable of capturing the entity
103     // then no enclosing lambda can ever capture that entity.
104     // For e.g.
105     // const int x = 10;
106     // [=](auto a) {    #1
107     //   [](auto b) {   #2 <-- an intervening lambda that can never capture 'x'
108     //    [=](auto c) { #3
109     //       f(x, c);  <-- can not lead to x's speculative capture by #1 or #2
110     //    }; }; };
111     // If they do not have a default implicit capture, check to see
112     // if the entity has already been explicitly captured.
113     // If even a single dependent enclosing lambda lacks the capability
114     // to ever capture this variable, there is no further enclosing
115     // non-dependent lambda that can capture this variable.
116     if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) {
117       if (IsCapturingVariable && !LSI->isCaptured(VarToCapture))
118         return NoLambdaIsCaptureReady;
119       if (IsCapturingThis && !LSI->isCXXThisCaptured())
120         return NoLambdaIsCaptureReady;
121     }
122     EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC);
123 
124     assert(CurScopeIndex);
125     --CurScopeIndex;
126   } while (!EnclosingDC->isTranslationUnit() &&
127            EnclosingDC->isDependentContext() &&
128            isLambdaCallOperator(EnclosingDC));
129 
130   assert(CurScopeIndex < (FunctionScopes.size() - 1));
131   // If the enclosingDC is not dependent, then the immediately nested lambda
132   // (one index above) is capture-ready.
133   if (!EnclosingDC->isDependentContext())
134     return CurScopeIndex + 1;
135   return NoLambdaIsCaptureReady;
136 }
137 
138 /// Examines the FunctionScopeInfo stack to determine the nearest
139 /// enclosing lambda (to the current lambda) that is 'capture-capable' for
140 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
141 /// If successful, returns the index into Sema's FunctionScopeInfo stack
142 /// of the capture-capable lambda's LambdaScopeInfo.
143 ///
144 /// Given the current stack of lambdas being processed by Sema and
145 /// the variable of interest, to identify the nearest enclosing lambda (to the
146 /// current lambda at the top of the stack) that can truly capture
147 /// a variable, it has to have the following two properties:
148 ///  a) 'capture-ready' - be the innermost lambda that is 'capture-ready':
149 ///     - climb down the stack (i.e. starting from the innermost and examining
150 ///       each outer lambda step by step) checking if each enclosing
151 ///       lambda can either implicitly or explicitly capture the variable.
152 ///       Record the first such lambda that is enclosed in a non-dependent
153 ///       context. If no such lambda currently exists return failure.
154 ///  b) 'capture-capable' - make sure the 'capture-ready' lambda can truly
155 ///  capture the variable by checking all its enclosing lambdas:
156 ///     - check if all outer lambdas enclosing the 'capture-ready' lambda
157 ///       identified above in 'a' can also capture the variable (this is done
158 ///       via tryCaptureVariable for variables and CheckCXXThisCapture for
159 ///       'this' by passing in the index of the Lambda identified in step 'a')
160 ///
161 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
162 /// LambdaScopeInfo inherits from).  The current/deepest/innermost lambda
163 /// is at the top of the stack.
164 ///
165 /// \param VarToCapture - the variable to capture.  If NULL, capture 'this'.
166 ///
167 ///
168 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
169 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
170 /// which is capture-capable.  If the return value evaluates to 'false' then
171 /// no lambda is capture-capable for \p VarToCapture.
172 
173 Optional<unsigned> clang::getStackIndexOfNearestEnclosingCaptureCapableLambda(
174     ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes,
175     VarDecl *VarToCapture, Sema &S) {
176 
177   const Optional<unsigned> NoLambdaIsCaptureCapable;
178 
179   const Optional<unsigned> OptionalStackIndex =
180       getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes,
181                                                         VarToCapture);
182   if (!OptionalStackIndex)
183     return NoLambdaIsCaptureCapable;
184 
185   const unsigned IndexOfCaptureReadyLambda = *OptionalStackIndex;
186   assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) ||
187           S.getCurGenericLambda()) &&
188          "The capture ready lambda for a potential capture can only be the "
189          "current lambda if it is a generic lambda");
190 
191   const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI =
192       cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]);
193 
194   // If VarToCapture is null, we are attempting to capture 'this'
195   const bool IsCapturingThis = !VarToCapture;
196   const bool IsCapturingVariable = !IsCapturingThis;
197 
198   if (IsCapturingVariable) {
199     // Check if the capture-ready lambda can truly capture the variable, by
200     // checking whether all enclosing lambdas of the capture-ready lambda allow
201     // the capture - i.e. make sure it is capture-capable.
202     QualType CaptureType, DeclRefType;
203     const bool CanCaptureVariable =
204         !S.tryCaptureVariable(VarToCapture,
205                               /*ExprVarIsUsedInLoc*/ SourceLocation(),
206                               clang::Sema::TryCapture_Implicit,
207                               /*EllipsisLoc*/ SourceLocation(),
208                               /*BuildAndDiagnose*/ false, CaptureType,
209                               DeclRefType, &IndexOfCaptureReadyLambda);
210     if (!CanCaptureVariable)
211       return NoLambdaIsCaptureCapable;
212   } else {
213     // Check if the capture-ready lambda can truly capture 'this' by checking
214     // whether all enclosing lambdas of the capture-ready lambda can capture
215     // 'this'.
216     const bool CanCaptureThis =
217         !S.CheckCXXThisCapture(
218              CaptureReadyLambdaLSI->PotentialThisCaptureLocation,
219              /*Explicit*/ false, /*BuildAndDiagnose*/ false,
220              &IndexOfCaptureReadyLambda);
221     if (!CanCaptureThis)
222       return NoLambdaIsCaptureCapable;
223   }
224   return IndexOfCaptureReadyLambda;
225 }
226 
227 static inline TemplateParameterList *
228 getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) {
229   if (!LSI->GLTemplateParameterList && !LSI->TemplateParams.empty()) {
230     LSI->GLTemplateParameterList = TemplateParameterList::Create(
231         SemaRef.Context,
232         /*Template kw loc*/ SourceLocation(),
233         /*L angle loc*/ LSI->ExplicitTemplateParamsRange.getBegin(),
234         LSI->TemplateParams,
235         /*R angle loc*/LSI->ExplicitTemplateParamsRange.getEnd(),
236         LSI->RequiresClause.get());
237   }
238   return LSI->GLTemplateParameterList;
239 }
240 
241 CXXRecordDecl *
242 Sema::createLambdaClosureType(SourceRange IntroducerRange, TypeSourceInfo *Info,
243                               unsigned LambdaDependencyKind,
244                               LambdaCaptureDefault CaptureDefault) {
245   DeclContext *DC = CurContext;
246   while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
247     DC = DC->getParent();
248   bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(),
249                                                                *this);
250   // Start constructing the lambda class.
251   CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(
252       Context, DC, Info, IntroducerRange.getBegin(), LambdaDependencyKind,
253       IsGenericLambda, CaptureDefault);
254   DC->addDecl(Class);
255 
256   return Class;
257 }
258 
259 /// Determine whether the given context is or is enclosed in an inline
260 /// function.
261 static bool isInInlineFunction(const DeclContext *DC) {
262   while (!DC->isFileContext()) {
263     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
264       if (FD->isInlined())
265         return true;
266 
267     DC = DC->getLexicalParent();
268   }
269 
270   return false;
271 }
272 
273 std::tuple<MangleNumberingContext *, Decl *>
274 Sema::getCurrentMangleNumberContext(const DeclContext *DC) {
275   // Compute the context for allocating mangling numbers in the current
276   // expression, if the ABI requires them.
277   Decl *ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl;
278 
279   enum ContextKind {
280     Normal,
281     DefaultArgument,
282     DataMember,
283     StaticDataMember,
284     InlineVariable,
285     VariableTemplate
286   } Kind = Normal;
287 
288   // Default arguments of member function parameters that appear in a class
289   // definition, as well as the initializers of data members, receive special
290   // treatment. Identify them.
291   if (ManglingContextDecl) {
292     if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) {
293       if (const DeclContext *LexicalDC
294           = Param->getDeclContext()->getLexicalParent())
295         if (LexicalDC->isRecord())
296           Kind = DefaultArgument;
297     } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) {
298       if (Var->getDeclContext()->isRecord())
299         Kind = StaticDataMember;
300       else if (Var->getMostRecentDecl()->isInline())
301         Kind = InlineVariable;
302       else if (Var->getDescribedVarTemplate())
303         Kind = VariableTemplate;
304       else if (auto *VTS = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
305         if (!VTS->isExplicitSpecialization())
306           Kind = VariableTemplate;
307       }
308     } else if (isa<FieldDecl>(ManglingContextDecl)) {
309       Kind = DataMember;
310     }
311   }
312 
313   // Itanium ABI [5.1.7]:
314   //   In the following contexts [...] the one-definition rule requires closure
315   //   types in different translation units to "correspond":
316   bool IsInNonspecializedTemplate =
317       inTemplateInstantiation() || CurContext->isDependentContext();
318   switch (Kind) {
319   case Normal: {
320     //  -- the bodies of non-exported nonspecialized template functions
321     //  -- the bodies of inline functions
322     if ((IsInNonspecializedTemplate &&
323          !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) ||
324         isInInlineFunction(CurContext)) {
325       while (auto *CD = dyn_cast<CapturedDecl>(DC))
326         DC = CD->getParent();
327       return std::make_tuple(&Context.getManglingNumberContext(DC), nullptr);
328     }
329 
330     return std::make_tuple(nullptr, nullptr);
331   }
332 
333   case StaticDataMember:
334     //  -- the initializers of nonspecialized static members of template classes
335     if (!IsInNonspecializedTemplate)
336       return std::make_tuple(nullptr, ManglingContextDecl);
337     // Fall through to get the current context.
338     LLVM_FALLTHROUGH;
339 
340   case DataMember:
341     //  -- the in-class initializers of class members
342   case DefaultArgument:
343     //  -- default arguments appearing in class definitions
344   case InlineVariable:
345     //  -- the initializers of inline variables
346   case VariableTemplate:
347     //  -- the initializers of templated variables
348     return std::make_tuple(
349         &Context.getManglingNumberContext(ASTContext::NeedExtraManglingDecl,
350                                           ManglingContextDecl),
351         ManglingContextDecl);
352   }
353 
354   llvm_unreachable("unexpected context");
355 }
356 
357 CXXMethodDecl *Sema::startLambdaDefinition(CXXRecordDecl *Class,
358                                            SourceRange IntroducerRange,
359                                            TypeSourceInfo *MethodTypeInfo,
360                                            SourceLocation EndLoc,
361                                            ArrayRef<ParmVarDecl *> Params,
362                                            ConstexprSpecKind ConstexprKind,
363                                            Expr *TrailingRequiresClause) {
364   QualType MethodType = MethodTypeInfo->getType();
365   TemplateParameterList *TemplateParams =
366       getGenericLambdaTemplateParameterList(getCurLambda(), *this);
367   // If a lambda appears in a dependent context or is a generic lambda (has
368   // template parameters) and has an 'auto' return type, deduce it to a
369   // dependent type.
370   if (Class->isDependentContext() || TemplateParams) {
371     const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>();
372     QualType Result = FPT->getReturnType();
373     if (Result->isUndeducedType()) {
374       Result = SubstAutoTypeDependent(Result);
375       MethodType = Context.getFunctionType(Result, FPT->getParamTypes(),
376                                            FPT->getExtProtoInfo());
377     }
378   }
379 
380   // C++11 [expr.prim.lambda]p5:
381   //   The closure type for a lambda-expression has a public inline function
382   //   call operator (13.5.4) whose parameters and return type are described by
383   //   the lambda-expression's parameter-declaration-clause and
384   //   trailing-return-type respectively.
385   DeclarationName MethodName
386     = Context.DeclarationNames.getCXXOperatorName(OO_Call);
387   DeclarationNameLoc MethodNameLoc =
388       DeclarationNameLoc::makeCXXOperatorNameLoc(IntroducerRange);
389   CXXMethodDecl *Method = CXXMethodDecl::Create(
390       Context, Class, EndLoc,
391       DeclarationNameInfo(MethodName, IntroducerRange.getBegin(),
392                           MethodNameLoc),
393       MethodType, MethodTypeInfo, SC_None, getCurFPFeatures().isFPConstrained(),
394       /*isInline=*/true, ConstexprKind, EndLoc, TrailingRequiresClause);
395   Method->setAccess(AS_public);
396   if (!TemplateParams)
397     Class->addDecl(Method);
398 
399   // Temporarily set the lexical declaration context to the current
400   // context, so that the Scope stack matches the lexical nesting.
401   Method->setLexicalDeclContext(CurContext);
402   // Create a function template if we have a template parameter list
403   FunctionTemplateDecl *const TemplateMethod = TemplateParams ?
404             FunctionTemplateDecl::Create(Context, Class,
405                                          Method->getLocation(), MethodName,
406                                          TemplateParams,
407                                          Method) : nullptr;
408   if (TemplateMethod) {
409     TemplateMethod->setAccess(AS_public);
410     Method->setDescribedFunctionTemplate(TemplateMethod);
411     Class->addDecl(TemplateMethod);
412     TemplateMethod->setLexicalDeclContext(CurContext);
413   }
414 
415   // Add parameters.
416   if (!Params.empty()) {
417     Method->setParams(Params);
418     CheckParmsForFunctionDef(Params,
419                              /*CheckParameterNames=*/false);
420 
421     for (auto P : Method->parameters())
422       P->setOwningFunction(Method);
423   }
424 
425   return Method;
426 }
427 
428 void Sema::handleLambdaNumbering(
429     CXXRecordDecl *Class, CXXMethodDecl *Method,
430     Optional<std::tuple<bool, unsigned, unsigned, Decl *>> Mangling) {
431   if (Mangling) {
432     bool HasKnownInternalLinkage;
433     unsigned ManglingNumber, DeviceManglingNumber;
434     Decl *ManglingContextDecl;
435     std::tie(HasKnownInternalLinkage, ManglingNumber, DeviceManglingNumber,
436              ManglingContextDecl) = *Mangling;
437     Class->setLambdaMangling(ManglingNumber, ManglingContextDecl,
438                              HasKnownInternalLinkage);
439     Class->setDeviceLambdaManglingNumber(DeviceManglingNumber);
440     return;
441   }
442 
443   auto getMangleNumberingContext =
444       [this](CXXRecordDecl *Class,
445              Decl *ManglingContextDecl) -> MangleNumberingContext * {
446     // Get mangle numbering context if there's any extra decl context.
447     if (ManglingContextDecl)
448       return &Context.getManglingNumberContext(
449           ASTContext::NeedExtraManglingDecl, ManglingContextDecl);
450     // Otherwise, from that lambda's decl context.
451     auto DC = Class->getDeclContext();
452     while (auto *CD = dyn_cast<CapturedDecl>(DC))
453       DC = CD->getParent();
454     return &Context.getManglingNumberContext(DC);
455   };
456 
457   MangleNumberingContext *MCtx;
458   Decl *ManglingContextDecl;
459   std::tie(MCtx, ManglingContextDecl) =
460       getCurrentMangleNumberContext(Class->getDeclContext());
461   bool HasKnownInternalLinkage = false;
462   if (!MCtx && (getLangOpts().CUDA || getLangOpts().SYCLIsDevice ||
463                 getLangOpts().SYCLIsHost)) {
464     // Force lambda numbering in CUDA/HIP as we need to name lambdas following
465     // ODR. Both device- and host-compilation need to have a consistent naming
466     // on kernel functions. As lambdas are potential part of these `__global__`
467     // function names, they needs numbering following ODR.
468     // Also force for SYCL, since we need this for the
469     // __builtin_sycl_unique_stable_name implementation, which depends on lambda
470     // mangling.
471     MCtx = getMangleNumberingContext(Class, ManglingContextDecl);
472     assert(MCtx && "Retrieving mangle numbering context failed!");
473     HasKnownInternalLinkage = true;
474   }
475   if (MCtx) {
476     unsigned ManglingNumber = MCtx->getManglingNumber(Method);
477     Class->setLambdaMangling(ManglingNumber, ManglingContextDecl,
478                              HasKnownInternalLinkage);
479     Class->setDeviceLambdaManglingNumber(MCtx->getDeviceManglingNumber(Method));
480   }
481 }
482 
483 void Sema::buildLambdaScope(LambdaScopeInfo *LSI,
484                                         CXXMethodDecl *CallOperator,
485                                         SourceRange IntroducerRange,
486                                         LambdaCaptureDefault CaptureDefault,
487                                         SourceLocation CaptureDefaultLoc,
488                                         bool ExplicitParams,
489                                         bool ExplicitResultType,
490                                         bool Mutable) {
491   LSI->CallOperator = CallOperator;
492   CXXRecordDecl *LambdaClass = CallOperator->getParent();
493   LSI->Lambda = LambdaClass;
494   if (CaptureDefault == LCD_ByCopy)
495     LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval;
496   else if (CaptureDefault == LCD_ByRef)
497     LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref;
498   LSI->CaptureDefaultLoc = CaptureDefaultLoc;
499   LSI->IntroducerRange = IntroducerRange;
500   LSI->ExplicitParams = ExplicitParams;
501   LSI->Mutable = Mutable;
502 
503   if (ExplicitResultType) {
504     LSI->ReturnType = CallOperator->getReturnType();
505 
506     if (!LSI->ReturnType->isDependentType() &&
507         !LSI->ReturnType->isVoidType()) {
508       if (RequireCompleteType(CallOperator->getBeginLoc(), LSI->ReturnType,
509                               diag::err_lambda_incomplete_result)) {
510         // Do nothing.
511       }
512     }
513   } else {
514     LSI->HasImplicitReturnType = true;
515   }
516 }
517 
518 void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) {
519   LSI->finishedExplicitCaptures();
520 }
521 
522 void Sema::ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc,
523                                                     ArrayRef<NamedDecl *> TParams,
524                                                     SourceLocation RAngleLoc,
525                                                     ExprResult RequiresClause) {
526   LambdaScopeInfo *LSI = getCurLambda();
527   assert(LSI && "Expected a lambda scope");
528   assert(LSI->NumExplicitTemplateParams == 0 &&
529          "Already acted on explicit template parameters");
530   assert(LSI->TemplateParams.empty() &&
531          "Explicit template parameters should come "
532          "before invented (auto) ones");
533   assert(!TParams.empty() &&
534          "No template parameters to act on");
535   LSI->TemplateParams.append(TParams.begin(), TParams.end());
536   LSI->NumExplicitTemplateParams = TParams.size();
537   LSI->ExplicitTemplateParamsRange = {LAngleLoc, RAngleLoc};
538   LSI->RequiresClause = RequiresClause;
539 }
540 
541 void Sema::addLambdaParameters(
542     ArrayRef<LambdaIntroducer::LambdaCapture> Captures,
543     CXXMethodDecl *CallOperator, Scope *CurScope) {
544   // Introduce our parameters into the function scope
545   for (unsigned p = 0, NumParams = CallOperator->getNumParams();
546        p < NumParams; ++p) {
547     ParmVarDecl *Param = CallOperator->getParamDecl(p);
548 
549     // If this has an identifier, add it to the scope stack.
550     if (CurScope && Param->getIdentifier()) {
551       bool Error = false;
552       // Resolution of CWG 2211 in C++17 renders shadowing ill-formed, but we
553       // retroactively apply it.
554       for (const auto &Capture : Captures) {
555         if (Capture.Id == Param->getIdentifier()) {
556           Error = true;
557           Diag(Param->getLocation(), diag::err_parameter_shadow_capture);
558           Diag(Capture.Loc, diag::note_var_explicitly_captured_here)
559               << Capture.Id << true;
560         }
561       }
562       if (!Error)
563         CheckShadow(CurScope, Param);
564 
565       PushOnScopeChains(Param, CurScope);
566     }
567   }
568 }
569 
570 /// If this expression is an enumerator-like expression of some type
571 /// T, return the type T; otherwise, return null.
572 ///
573 /// Pointer comparisons on the result here should always work because
574 /// it's derived from either the parent of an EnumConstantDecl
575 /// (i.e. the definition) or the declaration returned by
576 /// EnumType::getDecl() (i.e. the definition).
577 static EnumDecl *findEnumForBlockReturn(Expr *E) {
578   // An expression is an enumerator-like expression of type T if,
579   // ignoring parens and parens-like expressions:
580   E = E->IgnoreParens();
581 
582   //  - it is an enumerator whose enum type is T or
583   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
584     if (EnumConstantDecl *D
585           = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
586       return cast<EnumDecl>(D->getDeclContext());
587     }
588     return nullptr;
589   }
590 
591   //  - it is a comma expression whose RHS is an enumerator-like
592   //    expression of type T or
593   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
594     if (BO->getOpcode() == BO_Comma)
595       return findEnumForBlockReturn(BO->getRHS());
596     return nullptr;
597   }
598 
599   //  - it is a statement-expression whose value expression is an
600   //    enumerator-like expression of type T or
601   if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
602     if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back()))
603       return findEnumForBlockReturn(last);
604     return nullptr;
605   }
606 
607   //   - it is a ternary conditional operator (not the GNU ?:
608   //     extension) whose second and third operands are
609   //     enumerator-like expressions of type T or
610   if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
611     if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr()))
612       if (ED == findEnumForBlockReturn(CO->getFalseExpr()))
613         return ED;
614     return nullptr;
615   }
616 
617   // (implicitly:)
618   //   - it is an implicit integral conversion applied to an
619   //     enumerator-like expression of type T or
620   if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
621     // We can sometimes see integral conversions in valid
622     // enumerator-like expressions.
623     if (ICE->getCastKind() == CK_IntegralCast)
624       return findEnumForBlockReturn(ICE->getSubExpr());
625 
626     // Otherwise, just rely on the type.
627   }
628 
629   //   - it is an expression of that formal enum type.
630   if (const EnumType *ET = E->getType()->getAs<EnumType>()) {
631     return ET->getDecl();
632   }
633 
634   // Otherwise, nope.
635   return nullptr;
636 }
637 
638 /// Attempt to find a type T for which the returned expression of the
639 /// given statement is an enumerator-like expression of that type.
640 static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) {
641   if (Expr *retValue = ret->getRetValue())
642     return findEnumForBlockReturn(retValue);
643   return nullptr;
644 }
645 
646 /// Attempt to find a common type T for which all of the returned
647 /// expressions in a block are enumerator-like expressions of that
648 /// type.
649 static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) {
650   ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end();
651 
652   // Try to find one for the first return.
653   EnumDecl *ED = findEnumForBlockReturn(*i);
654   if (!ED) return nullptr;
655 
656   // Check that the rest of the returns have the same enum.
657   for (++i; i != e; ++i) {
658     if (findEnumForBlockReturn(*i) != ED)
659       return nullptr;
660   }
661 
662   // Never infer an anonymous enum type.
663   if (!ED->hasNameForLinkage()) return nullptr;
664 
665   return ED;
666 }
667 
668 /// Adjust the given return statements so that they formally return
669 /// the given type.  It should require, at most, an IntegralCast.
670 static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns,
671                                      QualType returnType) {
672   for (ArrayRef<ReturnStmt*>::iterator
673          i = returns.begin(), e = returns.end(); i != e; ++i) {
674     ReturnStmt *ret = *i;
675     Expr *retValue = ret->getRetValue();
676     if (S.Context.hasSameType(retValue->getType(), returnType))
677       continue;
678 
679     // Right now we only support integral fixup casts.
680     assert(returnType->isIntegralOrUnscopedEnumerationType());
681     assert(retValue->getType()->isIntegralOrUnscopedEnumerationType());
682 
683     ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue);
684 
685     Expr *E = (cleanups ? cleanups->getSubExpr() : retValue);
686     E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast, E,
687                                  /*base path*/ nullptr, VK_PRValue,
688                                  FPOptionsOverride());
689     if (cleanups) {
690       cleanups->setSubExpr(E);
691     } else {
692       ret->setRetValue(E);
693     }
694   }
695 }
696 
697 void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) {
698   assert(CSI.HasImplicitReturnType);
699   // If it was ever a placeholder, it had to been deduced to DependentTy.
700   assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType());
701   assert((!isa<LambdaScopeInfo>(CSI) || !getLangOpts().CPlusPlus14) &&
702          "lambda expressions use auto deduction in C++14 onwards");
703 
704   // C++ core issue 975:
705   //   If a lambda-expression does not include a trailing-return-type,
706   //   it is as if the trailing-return-type denotes the following type:
707   //     - if there are no return statements in the compound-statement,
708   //       or all return statements return either an expression of type
709   //       void or no expression or braced-init-list, the type void;
710   //     - otherwise, if all return statements return an expression
711   //       and the types of the returned expressions after
712   //       lvalue-to-rvalue conversion (4.1 [conv.lval]),
713   //       array-to-pointer conversion (4.2 [conv.array]), and
714   //       function-to-pointer conversion (4.3 [conv.func]) are the
715   //       same, that common type;
716   //     - otherwise, the program is ill-formed.
717   //
718   // C++ core issue 1048 additionally removes top-level cv-qualifiers
719   // from the types of returned expressions to match the C++14 auto
720   // deduction rules.
721   //
722   // In addition, in blocks in non-C++ modes, if all of the return
723   // statements are enumerator-like expressions of some type T, where
724   // T has a name for linkage, then we infer the return type of the
725   // block to be that type.
726 
727   // First case: no return statements, implicit void return type.
728   ASTContext &Ctx = getASTContext();
729   if (CSI.Returns.empty()) {
730     // It's possible there were simply no /valid/ return statements.
731     // In this case, the first one we found may have at least given us a type.
732     if (CSI.ReturnType.isNull())
733       CSI.ReturnType = Ctx.VoidTy;
734     return;
735   }
736 
737   // Second case: at least one return statement has dependent type.
738   // Delay type checking until instantiation.
739   assert(!CSI.ReturnType.isNull() && "We should have a tentative return type.");
740   if (CSI.ReturnType->isDependentType())
741     return;
742 
743   // Try to apply the enum-fuzz rule.
744   if (!getLangOpts().CPlusPlus) {
745     assert(isa<BlockScopeInfo>(CSI));
746     const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns);
747     if (ED) {
748       CSI.ReturnType = Context.getTypeDeclType(ED);
749       adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType);
750       return;
751     }
752   }
753 
754   // Third case: only one return statement. Don't bother doing extra work!
755   if (CSI.Returns.size() == 1)
756     return;
757 
758   // General case: many return statements.
759   // Check that they all have compatible return types.
760 
761   // We require the return types to strictly match here.
762   // Note that we've already done the required promotions as part of
763   // processing the return statement.
764   for (const ReturnStmt *RS : CSI.Returns) {
765     const Expr *RetE = RS->getRetValue();
766 
767     QualType ReturnType =
768         (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType();
769     if (Context.getCanonicalFunctionResultType(ReturnType) ==
770           Context.getCanonicalFunctionResultType(CSI.ReturnType)) {
771       // Use the return type with the strictest possible nullability annotation.
772       auto RetTyNullability = ReturnType->getNullability(Ctx);
773       auto BlockNullability = CSI.ReturnType->getNullability(Ctx);
774       if (BlockNullability &&
775           (!RetTyNullability ||
776            hasWeakerNullability(*RetTyNullability, *BlockNullability)))
777         CSI.ReturnType = ReturnType;
778       continue;
779     }
780 
781     // FIXME: This is a poor diagnostic for ReturnStmts without expressions.
782     // TODO: It's possible that the *first* return is the divergent one.
783     Diag(RS->getBeginLoc(),
784          diag::err_typecheck_missing_return_type_incompatible)
785         << ReturnType << CSI.ReturnType << isa<LambdaScopeInfo>(CSI);
786     // Continue iterating so that we keep emitting diagnostics.
787   }
788 }
789 
790 QualType Sema::buildLambdaInitCaptureInitialization(
791     SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
792     Optional<unsigned> NumExpansions, IdentifierInfo *Id, bool IsDirectInit,
793     Expr *&Init) {
794   // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to
795   // deduce against.
796   QualType DeductType = Context.getAutoDeductType();
797   TypeLocBuilder TLB;
798   AutoTypeLoc TL = TLB.push<AutoTypeLoc>(DeductType);
799   TL.setNameLoc(Loc);
800   if (ByRef) {
801     DeductType = BuildReferenceType(DeductType, true, Loc, Id);
802     assert(!DeductType.isNull() && "can't build reference to auto");
803     TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc);
804   }
805   if (EllipsisLoc.isValid()) {
806     if (Init->containsUnexpandedParameterPack()) {
807       Diag(EllipsisLoc, getLangOpts().CPlusPlus20
808                             ? diag::warn_cxx17_compat_init_capture_pack
809                             : diag::ext_init_capture_pack);
810       DeductType = Context.getPackExpansionType(DeductType, NumExpansions,
811                                                 /*ExpectPackInType=*/false);
812       TLB.push<PackExpansionTypeLoc>(DeductType).setEllipsisLoc(EllipsisLoc);
813     } else {
814       // Just ignore the ellipsis for now and form a non-pack variable. We'll
815       // diagnose this later when we try to capture it.
816     }
817   }
818   TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType);
819 
820   // Deduce the type of the init capture.
821   QualType DeducedType = deduceVarTypeFromInitializer(
822       /*VarDecl*/nullptr, DeclarationName(Id), DeductType, TSI,
823       SourceRange(Loc, Loc), IsDirectInit, Init);
824   if (DeducedType.isNull())
825     return QualType();
826 
827   // Are we a non-list direct initialization?
828   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
829 
830   // Perform initialization analysis and ensure any implicit conversions
831   // (such as lvalue-to-rvalue) are enforced.
832   InitializedEntity Entity =
833       InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc);
834   InitializationKind Kind =
835       IsDirectInit
836           ? (CXXDirectInit ? InitializationKind::CreateDirect(
837                                  Loc, Init->getBeginLoc(), Init->getEndLoc())
838                            : InitializationKind::CreateDirectList(Loc))
839           : InitializationKind::CreateCopy(Loc, Init->getBeginLoc());
840 
841   MultiExprArg Args = Init;
842   if (CXXDirectInit)
843     Args =
844         MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs());
845   QualType DclT;
846   InitializationSequence InitSeq(*this, Entity, Kind, Args);
847   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
848 
849   if (Result.isInvalid())
850     return QualType();
851 
852   Init = Result.getAs<Expr>();
853   return DeducedType;
854 }
855 
856 VarDecl *Sema::createLambdaInitCaptureVarDecl(SourceLocation Loc,
857                                               QualType InitCaptureType,
858                                               SourceLocation EllipsisLoc,
859                                               IdentifierInfo *Id,
860                                               unsigned InitStyle, Expr *Init) {
861   // FIXME: Retain the TypeSourceInfo from buildLambdaInitCaptureInitialization
862   // rather than reconstructing it here.
863   TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType, Loc);
864   if (auto PETL = TSI->getTypeLoc().getAs<PackExpansionTypeLoc>())
865     PETL.setEllipsisLoc(EllipsisLoc);
866 
867   // Create a dummy variable representing the init-capture. This is not actually
868   // used as a variable, and only exists as a way to name and refer to the
869   // init-capture.
870   // FIXME: Pass in separate source locations for '&' and identifier.
871   VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc,
872                                    Loc, Id, InitCaptureType, TSI, SC_Auto);
873   NewVD->setInitCapture(true);
874   NewVD->setReferenced(true);
875   // FIXME: Pass in a VarDecl::InitializationStyle.
876   NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle));
877   NewVD->markUsed(Context);
878   NewVD->setInit(Init);
879   if (NewVD->isParameterPack())
880     getCurLambda()->LocalPacks.push_back(NewVD);
881   return NewVD;
882 }
883 
884 void Sema::addInitCapture(LambdaScopeInfo *LSI, VarDecl *Var) {
885   assert(Var->isInitCapture() && "init capture flag should be set");
886   LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(),
887                   /*isNested*/false, Var->getLocation(), SourceLocation(),
888                   Var->getType(), /*Invalid*/false);
889 }
890 
891 void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
892                                         Declarator &ParamInfo,
893                                         Scope *CurScope) {
894   LambdaScopeInfo *const LSI = getCurLambda();
895   assert(LSI && "LambdaScopeInfo should be on stack!");
896 
897   // Determine if we're within a context where we know that the lambda will
898   // be dependent, because there are template parameters in scope.
899   CXXRecordDecl::LambdaDependencyKind LambdaDependencyKind =
900       CXXRecordDecl::LDK_Unknown;
901   if (LSI->NumExplicitTemplateParams > 0) {
902     auto *TemplateParamScope = CurScope->getTemplateParamParent();
903     assert(TemplateParamScope &&
904            "Lambda with explicit template param list should establish a "
905            "template param scope");
906     assert(TemplateParamScope->getParent());
907     if (TemplateParamScope->getParent()->getTemplateParamParent() != nullptr)
908       LambdaDependencyKind = CXXRecordDecl::LDK_AlwaysDependent;
909   } else if (CurScope->getTemplateParamParent() != nullptr) {
910     LambdaDependencyKind = CXXRecordDecl::LDK_AlwaysDependent;
911   }
912 
913   // Determine the signature of the call operator.
914   TypeSourceInfo *MethodTyInfo;
915   bool ExplicitParams = true;
916   bool ExplicitResultType = true;
917   bool ContainsUnexpandedParameterPack = false;
918   SourceLocation EndLoc;
919   SmallVector<ParmVarDecl *, 8> Params;
920   if (ParamInfo.getNumTypeObjects() == 0) {
921     // C++11 [expr.prim.lambda]p4:
922     //   If a lambda-expression does not include a lambda-declarator, it is as
923     //   if the lambda-declarator were ().
924     FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
925         /*IsVariadic=*/false, /*IsCXXMethod=*/true));
926     EPI.HasTrailingReturn = true;
927     EPI.TypeQuals.addConst();
928     LangAS AS = getDefaultCXXMethodAddrSpace();
929     if (AS != LangAS::Default)
930       EPI.TypeQuals.addAddressSpace(AS);
931 
932     // C++1y [expr.prim.lambda]:
933     //   The lambda return type is 'auto', which is replaced by the
934     //   trailing-return type if provided and/or deduced from 'return'
935     //   statements
936     // We don't do this before C++1y, because we don't support deduced return
937     // types there.
938     QualType DefaultTypeForNoTrailingReturn =
939         getLangOpts().CPlusPlus14 ? Context.getAutoDeductType()
940                                   : Context.DependentTy;
941     QualType MethodTy =
942         Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI);
943     MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy);
944     ExplicitParams = false;
945     ExplicitResultType = false;
946     EndLoc = Intro.Range.getEnd();
947   } else {
948     assert(ParamInfo.isFunctionDeclarator() &&
949            "lambda-declarator is a function");
950     DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo();
951 
952     // C++11 [expr.prim.lambda]p5:
953     //   This function call operator is declared const (9.3.1) if and only if
954     //   the lambda-expression's parameter-declaration-clause is not followed
955     //   by mutable. It is neither virtual nor declared volatile. [...]
956     if (!FTI.hasMutableQualifier()) {
957       FTI.getOrCreateMethodQualifiers().SetTypeQual(DeclSpec::TQ_const,
958                                                     SourceLocation());
959     }
960 
961     MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope);
962     assert(MethodTyInfo && "no type from lambda-declarator");
963     EndLoc = ParamInfo.getSourceRange().getEnd();
964 
965     ExplicitResultType = FTI.hasTrailingReturnType();
966 
967     if (FTIHasNonVoidParameters(FTI)) {
968       Params.reserve(FTI.NumParams);
969       for (unsigned i = 0, e = FTI.NumParams; i != e; ++i)
970         Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param));
971     }
972 
973     // Check for unexpanded parameter packs in the method type.
974     if (MethodTyInfo->getType()->containsUnexpandedParameterPack())
975       DiagnoseUnexpandedParameterPack(Intro.Range.getBegin(), MethodTyInfo,
976                                       UPPC_DeclarationType);
977   }
978 
979   CXXRecordDecl *Class = createLambdaClosureType(
980       Intro.Range, MethodTyInfo, LambdaDependencyKind, Intro.Default);
981   CXXMethodDecl *Method =
982       startLambdaDefinition(Class, Intro.Range, MethodTyInfo, EndLoc, Params,
983                             ParamInfo.getDeclSpec().getConstexprSpecifier(),
984                             ParamInfo.getTrailingRequiresClause());
985   if (ExplicitParams)
986     CheckCXXDefaultArguments(Method);
987 
988   // This represents the function body for the lambda function, check if we
989   // have to apply optnone due to a pragma.
990   AddRangeBasedOptnone(Method);
991 
992   // code_seg attribute on lambda apply to the method.
993   if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true))
994     Method->addAttr(A);
995 
996   // Attributes on the lambda apply to the method.
997   ProcessDeclAttributes(CurScope, Method, ParamInfo);
998 
999   // CUDA lambdas get implicit host and device attributes.
1000   if (getLangOpts().CUDA)
1001     CUDASetLambdaAttrs(Method);
1002 
1003   // OpenMP lambdas might get assumumption attributes.
1004   if (LangOpts.OpenMP)
1005     ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(Method);
1006 
1007   // Number the lambda for linkage purposes if necessary.
1008   handleLambdaNumbering(Class, Method);
1009 
1010   // Introduce the function call operator as the current declaration context.
1011   PushDeclContext(CurScope, Method);
1012 
1013   // Build the lambda scope.
1014   buildLambdaScope(LSI, Method, Intro.Range, Intro.Default, Intro.DefaultLoc,
1015                    ExplicitParams, ExplicitResultType, !Method->isConst());
1016 
1017   // C++11 [expr.prim.lambda]p9:
1018   //   A lambda-expression whose smallest enclosing scope is a block scope is a
1019   //   local lambda expression; any other lambda expression shall not have a
1020   //   capture-default or simple-capture in its lambda-introducer.
1021   //
1022   // For simple-captures, this is covered by the check below that any named
1023   // entity is a variable that can be captured.
1024   //
1025   // For DR1632, we also allow a capture-default in any context where we can
1026   // odr-use 'this' (in particular, in a default initializer for a non-static
1027   // data member).
1028   if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() &&
1029       (getCurrentThisType().isNull() ||
1030        CheckCXXThisCapture(SourceLocation(), /*Explicit*/true,
1031                            /*BuildAndDiagnose*/false)))
1032     Diag(Intro.DefaultLoc, diag::err_capture_default_non_local);
1033 
1034   // Distinct capture names, for diagnostics.
1035   llvm::SmallSet<IdentifierInfo*, 8> CaptureNames;
1036 
1037   // Handle explicit captures.
1038   SourceLocation PrevCaptureLoc
1039     = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc;
1040   for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E;
1041        PrevCaptureLoc = C->Loc, ++C) {
1042     if (C->Kind == LCK_This || C->Kind == LCK_StarThis) {
1043       if (C->Kind == LCK_StarThis)
1044         Diag(C->Loc, !getLangOpts().CPlusPlus17
1045                              ? diag::ext_star_this_lambda_capture_cxx17
1046                              : diag::warn_cxx14_compat_star_this_lambda_capture);
1047 
1048       // C++11 [expr.prim.lambda]p8:
1049       //   An identifier or this shall not appear more than once in a
1050       //   lambda-capture.
1051       if (LSI->isCXXThisCaptured()) {
1052         Diag(C->Loc, diag::err_capture_more_than_once)
1053             << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation())
1054             << FixItHint::CreateRemoval(
1055                    SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1056         continue;
1057       }
1058 
1059       // C++2a [expr.prim.lambda]p8:
1060       //  If a lambda-capture includes a capture-default that is =,
1061       //  each simple-capture of that lambda-capture shall be of the form
1062       //  "&identifier", "this", or "* this". [ Note: The form [&,this] is
1063       //  redundant but accepted for compatibility with ISO C++14. --end note ]
1064       if (Intro.Default == LCD_ByCopy && C->Kind != LCK_StarThis)
1065         Diag(C->Loc, !getLangOpts().CPlusPlus20
1066                          ? diag::ext_equals_this_lambda_capture_cxx20
1067                          : diag::warn_cxx17_compat_equals_this_lambda_capture);
1068 
1069       // C++11 [expr.prim.lambda]p12:
1070       //   If this is captured by a local lambda expression, its nearest
1071       //   enclosing function shall be a non-static member function.
1072       QualType ThisCaptureType = getCurrentThisType();
1073       if (ThisCaptureType.isNull()) {
1074         Diag(C->Loc, diag::err_this_capture) << true;
1075         continue;
1076       }
1077 
1078       CheckCXXThisCapture(C->Loc, /*Explicit=*/true, /*BuildAndDiagnose*/ true,
1079                           /*FunctionScopeIndexToStopAtPtr*/ nullptr,
1080                           C->Kind == LCK_StarThis);
1081       if (!LSI->Captures.empty())
1082         LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange;
1083       continue;
1084     }
1085 
1086     assert(C->Id && "missing identifier for capture");
1087 
1088     if (C->Init.isInvalid())
1089       continue;
1090 
1091     VarDecl *Var = nullptr;
1092     if (C->Init.isUsable()) {
1093       Diag(C->Loc, getLangOpts().CPlusPlus14
1094                        ? diag::warn_cxx11_compat_init_capture
1095                        : diag::ext_init_capture);
1096 
1097       // If the initializer expression is usable, but the InitCaptureType
1098       // is not, then an error has occurred - so ignore the capture for now.
1099       // for e.g., [n{0}] { }; <-- if no <initializer_list> is included.
1100       // FIXME: we should create the init capture variable and mark it invalid
1101       // in this case.
1102       if (C->InitCaptureType.get().isNull())
1103         continue;
1104 
1105       if (C->Init.get()->containsUnexpandedParameterPack() &&
1106           !C->InitCaptureType.get()->getAs<PackExpansionType>())
1107         DiagnoseUnexpandedParameterPack(C->Init.get(), UPPC_Initializer);
1108 
1109       unsigned InitStyle;
1110       switch (C->InitKind) {
1111       case LambdaCaptureInitKind::NoInit:
1112         llvm_unreachable("not an init-capture?");
1113       case LambdaCaptureInitKind::CopyInit:
1114         InitStyle = VarDecl::CInit;
1115         break;
1116       case LambdaCaptureInitKind::DirectInit:
1117         InitStyle = VarDecl::CallInit;
1118         break;
1119       case LambdaCaptureInitKind::ListInit:
1120         InitStyle = VarDecl::ListInit;
1121         break;
1122       }
1123       Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(),
1124                                            C->EllipsisLoc, C->Id, InitStyle,
1125                                            C->Init.get());
1126       // C++1y [expr.prim.lambda]p11:
1127       //   An init-capture behaves as if it declares and explicitly
1128       //   captures a variable [...] whose declarative region is the
1129       //   lambda-expression's compound-statement
1130       if (Var)
1131         PushOnScopeChains(Var, CurScope, false);
1132     } else {
1133       assert(C->InitKind == LambdaCaptureInitKind::NoInit &&
1134              "init capture has valid but null init?");
1135 
1136       // C++11 [expr.prim.lambda]p8:
1137       //   If a lambda-capture includes a capture-default that is &, the
1138       //   identifiers in the lambda-capture shall not be preceded by &.
1139       //   If a lambda-capture includes a capture-default that is =, [...]
1140       //   each identifier it contains shall be preceded by &.
1141       if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) {
1142         Diag(C->Loc, diag::err_reference_capture_with_reference_default)
1143             << FixItHint::CreateRemoval(
1144                 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1145         continue;
1146       } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) {
1147         Diag(C->Loc, diag::err_copy_capture_with_copy_default)
1148             << FixItHint::CreateRemoval(
1149                 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1150         continue;
1151       }
1152 
1153       // C++11 [expr.prim.lambda]p10:
1154       //   The identifiers in a capture-list are looked up using the usual
1155       //   rules for unqualified name lookup (3.4.1)
1156       DeclarationNameInfo Name(C->Id, C->Loc);
1157       LookupResult R(*this, Name, LookupOrdinaryName);
1158       LookupName(R, CurScope);
1159       if (R.isAmbiguous())
1160         continue;
1161       if (R.empty()) {
1162         // FIXME: Disable corrections that would add qualification?
1163         CXXScopeSpec ScopeSpec;
1164         DeclFilterCCC<VarDecl> Validator{};
1165         if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R, Validator))
1166           continue;
1167       }
1168 
1169       Var = R.getAsSingle<VarDecl>();
1170       if (Var && DiagnoseUseOfDecl(Var, C->Loc))
1171         continue;
1172     }
1173 
1174     // C++11 [expr.prim.lambda]p8:
1175     //   An identifier or this shall not appear more than once in a
1176     //   lambda-capture.
1177     if (!CaptureNames.insert(C->Id).second) {
1178       if (Var && LSI->isCaptured(Var)) {
1179         Diag(C->Loc, diag::err_capture_more_than_once)
1180             << C->Id << SourceRange(LSI->getCapture(Var).getLocation())
1181             << FixItHint::CreateRemoval(
1182                    SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1183       } else
1184         // Previous capture captured something different (one or both was
1185         // an init-cpature): no fixit.
1186         Diag(C->Loc, diag::err_capture_more_than_once) << C->Id;
1187       continue;
1188     }
1189 
1190     // C++11 [expr.prim.lambda]p10:
1191     //   [...] each such lookup shall find a variable with automatic storage
1192     //   duration declared in the reaching scope of the local lambda expression.
1193     // Note that the 'reaching scope' check happens in tryCaptureVariable().
1194     if (!Var) {
1195       Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id;
1196       continue;
1197     }
1198 
1199     // Ignore invalid decls; they'll just confuse the code later.
1200     if (Var->isInvalidDecl())
1201       continue;
1202 
1203     if (!Var->hasLocalStorage()) {
1204       Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id;
1205       Diag(Var->getLocation(), diag::note_previous_decl) << C->Id;
1206       continue;
1207     }
1208 
1209     // C++11 [expr.prim.lambda]p23:
1210     //   A capture followed by an ellipsis is a pack expansion (14.5.3).
1211     SourceLocation EllipsisLoc;
1212     if (C->EllipsisLoc.isValid()) {
1213       if (Var->isParameterPack()) {
1214         EllipsisLoc = C->EllipsisLoc;
1215       } else {
1216         Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1217             << (C->Init.isUsable() ? C->Init.get()->getSourceRange()
1218                                    : SourceRange(C->Loc));
1219 
1220         // Just ignore the ellipsis.
1221       }
1222     } else if (Var->isParameterPack()) {
1223       ContainsUnexpandedParameterPack = true;
1224     }
1225 
1226     if (C->Init.isUsable()) {
1227       addInitCapture(LSI, Var);
1228     } else {
1229       TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef :
1230                                                    TryCapture_ExplicitByVal;
1231       tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc);
1232     }
1233     if (!LSI->Captures.empty())
1234       LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange;
1235   }
1236   finishLambdaExplicitCaptures(LSI);
1237 
1238   LSI->ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
1239 
1240   // Add lambda parameters into scope.
1241   addLambdaParameters(Intro.Captures, Method, CurScope);
1242 
1243   // Enter a new evaluation context to insulate the lambda from any
1244   // cleanups from the enclosing full-expression.
1245   PushExpressionEvaluationContext(
1246       LSI->CallOperator->isConsteval()
1247           ? ExpressionEvaluationContext::ImmediateFunctionContext
1248           : ExpressionEvaluationContext::PotentiallyEvaluated);
1249 }
1250 
1251 void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
1252                             bool IsInstantiation) {
1253   LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back());
1254 
1255   // Leave the expression-evaluation context.
1256   DiscardCleanupsInEvaluationContext();
1257   PopExpressionEvaluationContext();
1258 
1259   // Leave the context of the lambda.
1260   if (!IsInstantiation)
1261     PopDeclContext();
1262 
1263   // Finalize the lambda.
1264   CXXRecordDecl *Class = LSI->Lambda;
1265   Class->setInvalidDecl();
1266   SmallVector<Decl*, 4> Fields(Class->fields());
1267   ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1268               SourceLocation(), ParsedAttributesView());
1269   CheckCompletedCXXClass(nullptr, Class);
1270 
1271   PopFunctionScopeInfo();
1272 }
1273 
1274 template <typename Func>
1275 static void repeatForLambdaConversionFunctionCallingConvs(
1276     Sema &S, const FunctionProtoType &CallOpProto, Func F) {
1277   CallingConv DefaultFree = S.Context.getDefaultCallingConvention(
1278       CallOpProto.isVariadic(), /*IsCXXMethod=*/false);
1279   CallingConv DefaultMember = S.Context.getDefaultCallingConvention(
1280       CallOpProto.isVariadic(), /*IsCXXMethod=*/true);
1281   CallingConv CallOpCC = CallOpProto.getCallConv();
1282 
1283   /// Implement emitting a version of the operator for many of the calling
1284   /// conventions for MSVC, as described here:
1285   /// https://devblogs.microsoft.com/oldnewthing/20150220-00/?p=44623.
1286   /// Experimentally, we determined that cdecl, stdcall, fastcall, and
1287   /// vectorcall are generated by MSVC when it is supported by the target.
1288   /// Additionally, we are ensuring that the default-free/default-member and
1289   /// call-operator calling convention are generated as well.
1290   /// NOTE: We intentionally generate a 'thiscall' on Win32 implicitly from the
1291   /// 'member default', despite MSVC not doing so. We do this in order to ensure
1292   /// that someone who intentionally places 'thiscall' on the lambda call
1293   /// operator will still get that overload, since we don't have the a way of
1294   /// detecting the attribute by the time we get here.
1295   if (S.getLangOpts().MSVCCompat) {
1296     CallingConv Convs[] = {
1297         CC_C,        CC_X86StdCall, CC_X86FastCall, CC_X86VectorCall,
1298         DefaultFree, DefaultMember, CallOpCC};
1299     llvm::sort(Convs);
1300     llvm::iterator_range<CallingConv *> Range(
1301         std::begin(Convs), std::unique(std::begin(Convs), std::end(Convs)));
1302     const TargetInfo &TI = S.getASTContext().getTargetInfo();
1303 
1304     for (CallingConv C : Range) {
1305       if (TI.checkCallingConvention(C) == TargetInfo::CCCR_OK)
1306         F(C);
1307     }
1308     return;
1309   }
1310 
1311   if (CallOpCC == DefaultMember && DefaultMember != DefaultFree) {
1312     F(DefaultFree);
1313     F(DefaultMember);
1314   } else {
1315     F(CallOpCC);
1316   }
1317 }
1318 
1319 // Returns the 'standard' calling convention to be used for the lambda
1320 // conversion function, that is, the 'free' function calling convention unless
1321 // it is overridden by a non-default calling convention attribute.
1322 static CallingConv
1323 getLambdaConversionFunctionCallConv(Sema &S,
1324                                     const FunctionProtoType *CallOpProto) {
1325   CallingConv DefaultFree = S.Context.getDefaultCallingConvention(
1326       CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
1327   CallingConv DefaultMember = S.Context.getDefaultCallingConvention(
1328       CallOpProto->isVariadic(), /*IsCXXMethod=*/true);
1329   CallingConv CallOpCC = CallOpProto->getCallConv();
1330 
1331   // If the call-operator hasn't been changed, return both the 'free' and
1332   // 'member' function calling convention.
1333   if (CallOpCC == DefaultMember && DefaultMember != DefaultFree)
1334     return DefaultFree;
1335   return CallOpCC;
1336 }
1337 
1338 QualType Sema::getLambdaConversionFunctionResultType(
1339     const FunctionProtoType *CallOpProto, CallingConv CC) {
1340   const FunctionProtoType::ExtProtoInfo CallOpExtInfo =
1341       CallOpProto->getExtProtoInfo();
1342   FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo;
1343   InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC);
1344   InvokerExtInfo.TypeQuals = Qualifiers();
1345   assert(InvokerExtInfo.RefQualifier == RQ_None &&
1346          "Lambda's call operator should not have a reference qualifier");
1347   return Context.getFunctionType(CallOpProto->getReturnType(),
1348                                  CallOpProto->getParamTypes(), InvokerExtInfo);
1349 }
1350 
1351 /// Add a lambda's conversion to function pointer, as described in
1352 /// C++11 [expr.prim.lambda]p6.
1353 static void addFunctionPointerConversion(Sema &S, SourceRange IntroducerRange,
1354                                          CXXRecordDecl *Class,
1355                                          CXXMethodDecl *CallOperator,
1356                                          QualType InvokerFunctionTy) {
1357   // This conversion is explicitly disabled if the lambda's function has
1358   // pass_object_size attributes on any of its parameters.
1359   auto HasPassObjectSizeAttr = [](const ParmVarDecl *P) {
1360     return P->hasAttr<PassObjectSizeAttr>();
1361   };
1362   if (llvm::any_of(CallOperator->parameters(), HasPassObjectSizeAttr))
1363     return;
1364 
1365   // Add the conversion to function pointer.
1366   QualType PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy);
1367 
1368   // Create the type of the conversion function.
1369   FunctionProtoType::ExtProtoInfo ConvExtInfo(
1370       S.Context.getDefaultCallingConvention(
1371       /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1372   // The conversion function is always const and noexcept.
1373   ConvExtInfo.TypeQuals = Qualifiers();
1374   ConvExtInfo.TypeQuals.addConst();
1375   ConvExtInfo.ExceptionSpec.Type = EST_BasicNoexcept;
1376   QualType ConvTy =
1377       S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo);
1378 
1379   SourceLocation Loc = IntroducerRange.getBegin();
1380   DeclarationName ConversionName
1381     = S.Context.DeclarationNames.getCXXConversionFunctionName(
1382         S.Context.getCanonicalType(PtrToFunctionTy));
1383   // Construct a TypeSourceInfo for the conversion function, and wire
1384   // all the parameters appropriately for the FunctionProtoTypeLoc
1385   // so that everything works during transformation/instantiation of
1386   // generic lambdas.
1387   // The main reason for wiring up the parameters of the conversion
1388   // function with that of the call operator is so that constructs
1389   // like the following work:
1390   // auto L = [](auto b) {                <-- 1
1391   //   return [](auto a) -> decltype(a) { <-- 2
1392   //      return a;
1393   //   };
1394   // };
1395   // int (*fp)(int) = L(5);
1396   // Because the trailing return type can contain DeclRefExprs that refer
1397   // to the original call operator's variables, we hijack the call
1398   // operators ParmVarDecls below.
1399   TypeSourceInfo *ConvNamePtrToFunctionTSI =
1400       S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc);
1401   DeclarationNameLoc ConvNameLoc =
1402       DeclarationNameLoc::makeNamedTypeLoc(ConvNamePtrToFunctionTSI);
1403 
1404   // The conversion function is a conversion to a pointer-to-function.
1405   TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc);
1406   FunctionProtoTypeLoc ConvTL =
1407       ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
1408   // Get the result of the conversion function which is a pointer-to-function.
1409   PointerTypeLoc PtrToFunctionTL =
1410       ConvTL.getReturnLoc().getAs<PointerTypeLoc>();
1411   // Do the same for the TypeSourceInfo that is used to name the conversion
1412   // operator.
1413   PointerTypeLoc ConvNamePtrToFunctionTL =
1414       ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>();
1415 
1416   // Get the underlying function types that the conversion function will
1417   // be converting to (should match the type of the call operator).
1418   FunctionProtoTypeLoc CallOpConvTL =
1419       PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1420   FunctionProtoTypeLoc CallOpConvNameTL =
1421     ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1422 
1423   // Wire up the FunctionProtoTypeLocs with the call operator's parameters.
1424   // These parameter's are essentially used to transform the name and
1425   // the type of the conversion operator.  By using the same parameters
1426   // as the call operator's we don't have to fix any back references that
1427   // the trailing return type of the call operator's uses (such as
1428   // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.)
1429   // - we can simply use the return type of the call operator, and
1430   // everything should work.
1431   SmallVector<ParmVarDecl *, 4> InvokerParams;
1432   for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1433     ParmVarDecl *From = CallOperator->getParamDecl(I);
1434 
1435     InvokerParams.push_back(ParmVarDecl::Create(
1436         S.Context,
1437         // Temporarily add to the TU. This is set to the invoker below.
1438         S.Context.getTranslationUnitDecl(), From->getBeginLoc(),
1439         From->getLocation(), From->getIdentifier(), From->getType(),
1440         From->getTypeSourceInfo(), From->getStorageClass(),
1441         /*DefArg=*/nullptr));
1442     CallOpConvTL.setParam(I, From);
1443     CallOpConvNameTL.setParam(I, From);
1444   }
1445 
1446   CXXConversionDecl *Conversion = CXXConversionDecl::Create(
1447       S.Context, Class, Loc,
1448       DeclarationNameInfo(ConversionName, Loc, ConvNameLoc), ConvTy, ConvTSI,
1449       S.getCurFPFeatures().isFPConstrained(),
1450       /*isInline=*/true, ExplicitSpecifier(),
1451       S.getLangOpts().CPlusPlus17 ? ConstexprSpecKind::Constexpr
1452                                   : ConstexprSpecKind::Unspecified,
1453       CallOperator->getBody()->getEndLoc());
1454   Conversion->setAccess(AS_public);
1455   Conversion->setImplicit(true);
1456 
1457   if (Class->isGenericLambda()) {
1458     // Create a template version of the conversion operator, using the template
1459     // parameter list of the function call operator.
1460     FunctionTemplateDecl *TemplateCallOperator =
1461             CallOperator->getDescribedFunctionTemplate();
1462     FunctionTemplateDecl *ConversionTemplate =
1463                   FunctionTemplateDecl::Create(S.Context, Class,
1464                                       Loc, ConversionName,
1465                                       TemplateCallOperator->getTemplateParameters(),
1466                                       Conversion);
1467     ConversionTemplate->setAccess(AS_public);
1468     ConversionTemplate->setImplicit(true);
1469     Conversion->setDescribedFunctionTemplate(ConversionTemplate);
1470     Class->addDecl(ConversionTemplate);
1471   } else
1472     Class->addDecl(Conversion);
1473   // Add a non-static member function that will be the result of
1474   // the conversion with a certain unique ID.
1475   DeclarationName InvokerName = &S.Context.Idents.get(
1476                                                  getLambdaStaticInvokerName());
1477   // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo()
1478   // we should get a prebuilt TrivialTypeSourceInfo from Context
1479   // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc
1480   // then rewire the parameters accordingly, by hoisting up the InvokeParams
1481   // loop below and then use its Params to set Invoke->setParams(...) below.
1482   // This would avoid the 'const' qualifier of the calloperator from
1483   // contaminating the type of the invoker, which is currently adjusted
1484   // in SemaTemplateDeduction.cpp:DeduceTemplateArguments.  Fixing the
1485   // trailing return type of the invoker would require a visitor to rebuild
1486   // the trailing return type and adjusting all back DeclRefExpr's to refer
1487   // to the new static invoker parameters - not the call operator's.
1488   CXXMethodDecl *Invoke = CXXMethodDecl::Create(
1489       S.Context, Class, Loc, DeclarationNameInfo(InvokerName, Loc),
1490       InvokerFunctionTy, CallOperator->getTypeSourceInfo(), SC_Static,
1491       S.getCurFPFeatures().isFPConstrained(),
1492       /*isInline=*/true, ConstexprSpecKind::Unspecified,
1493       CallOperator->getBody()->getEndLoc());
1494   for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I)
1495     InvokerParams[I]->setOwningFunction(Invoke);
1496   Invoke->setParams(InvokerParams);
1497   Invoke->setAccess(AS_private);
1498   Invoke->setImplicit(true);
1499   if (Class->isGenericLambda()) {
1500     FunctionTemplateDecl *TemplateCallOperator =
1501             CallOperator->getDescribedFunctionTemplate();
1502     FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create(
1503                           S.Context, Class, Loc, InvokerName,
1504                           TemplateCallOperator->getTemplateParameters(),
1505                           Invoke);
1506     StaticInvokerTemplate->setAccess(AS_private);
1507     StaticInvokerTemplate->setImplicit(true);
1508     Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate);
1509     Class->addDecl(StaticInvokerTemplate);
1510   } else
1511     Class->addDecl(Invoke);
1512 }
1513 
1514 /// Add a lambda's conversion to function pointers, as described in
1515 /// C++11 [expr.prim.lambda]p6. Note that in most cases, this should emit only a
1516 /// single pointer conversion. In the event that the default calling convention
1517 /// for free and member functions is different, it will emit both conventions.
1518 static void addFunctionPointerConversions(Sema &S, SourceRange IntroducerRange,
1519                                           CXXRecordDecl *Class,
1520                                           CXXMethodDecl *CallOperator) {
1521   const FunctionProtoType *CallOpProto =
1522       CallOperator->getType()->castAs<FunctionProtoType>();
1523 
1524   repeatForLambdaConversionFunctionCallingConvs(
1525       S, *CallOpProto, [&](CallingConv CC) {
1526         QualType InvokerFunctionTy =
1527             S.getLambdaConversionFunctionResultType(CallOpProto, CC);
1528         addFunctionPointerConversion(S, IntroducerRange, Class, CallOperator,
1529                                      InvokerFunctionTy);
1530       });
1531 }
1532 
1533 /// Add a lambda's conversion to block pointer.
1534 static void addBlockPointerConversion(Sema &S,
1535                                       SourceRange IntroducerRange,
1536                                       CXXRecordDecl *Class,
1537                                       CXXMethodDecl *CallOperator) {
1538   const FunctionProtoType *CallOpProto =
1539       CallOperator->getType()->castAs<FunctionProtoType>();
1540   QualType FunctionTy = S.getLambdaConversionFunctionResultType(
1541       CallOpProto, getLambdaConversionFunctionCallConv(S, CallOpProto));
1542   QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy);
1543 
1544   FunctionProtoType::ExtProtoInfo ConversionEPI(
1545       S.Context.getDefaultCallingConvention(
1546           /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1547   ConversionEPI.TypeQuals = Qualifiers();
1548   ConversionEPI.TypeQuals.addConst();
1549   QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ConversionEPI);
1550 
1551   SourceLocation Loc = IntroducerRange.getBegin();
1552   DeclarationName Name
1553     = S.Context.DeclarationNames.getCXXConversionFunctionName(
1554         S.Context.getCanonicalType(BlockPtrTy));
1555   DeclarationNameLoc NameLoc = DeclarationNameLoc::makeNamedTypeLoc(
1556       S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc));
1557   CXXConversionDecl *Conversion = CXXConversionDecl::Create(
1558       S.Context, Class, Loc, DeclarationNameInfo(Name, Loc, NameLoc), ConvTy,
1559       S.Context.getTrivialTypeSourceInfo(ConvTy, Loc),
1560       S.getCurFPFeatures().isFPConstrained(),
1561       /*isInline=*/true, ExplicitSpecifier(), ConstexprSpecKind::Unspecified,
1562       CallOperator->getBody()->getEndLoc());
1563   Conversion->setAccess(AS_public);
1564   Conversion->setImplicit(true);
1565   Class->addDecl(Conversion);
1566 }
1567 
1568 ExprResult Sema::BuildCaptureInit(const Capture &Cap,
1569                                   SourceLocation ImplicitCaptureLoc,
1570                                   bool IsOpenMPMapping) {
1571   // VLA captures don't have a stored initialization expression.
1572   if (Cap.isVLATypeCapture())
1573     return ExprResult();
1574 
1575   // An init-capture is initialized directly from its stored initializer.
1576   if (Cap.isInitCapture())
1577     return Cap.getVariable()->getInit();
1578 
1579   // For anything else, build an initialization expression. For an implicit
1580   // capture, the capture notionally happens at the capture-default, so use
1581   // that location here.
1582   SourceLocation Loc =
1583       ImplicitCaptureLoc.isValid() ? ImplicitCaptureLoc : Cap.getLocation();
1584 
1585   // C++11 [expr.prim.lambda]p21:
1586   //   When the lambda-expression is evaluated, the entities that
1587   //   are captured by copy are used to direct-initialize each
1588   //   corresponding non-static data member of the resulting closure
1589   //   object. (For array members, the array elements are
1590   //   direct-initialized in increasing subscript order.) These
1591   //   initializations are performed in the (unspecified) order in
1592   //   which the non-static data members are declared.
1593 
1594   // C++ [expr.prim.lambda]p12:
1595   //   An entity captured by a lambda-expression is odr-used (3.2) in
1596   //   the scope containing the lambda-expression.
1597   ExprResult Init;
1598   IdentifierInfo *Name = nullptr;
1599   if (Cap.isThisCapture()) {
1600     QualType ThisTy = getCurrentThisType();
1601     Expr *This = BuildCXXThisExpr(Loc, ThisTy, ImplicitCaptureLoc.isValid());
1602     if (Cap.isCopyCapture())
1603       Init = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
1604     else
1605       Init = This;
1606   } else {
1607     assert(Cap.isVariableCapture() && "unknown kind of capture");
1608     VarDecl *Var = Cap.getVariable();
1609     Name = Var->getIdentifier();
1610     Init = BuildDeclarationNameExpr(
1611       CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
1612   }
1613 
1614   // In OpenMP, the capture kind doesn't actually describe how to capture:
1615   // variables are "mapped" onto the device in a process that does not formally
1616   // make a copy, even for a "copy capture".
1617   if (IsOpenMPMapping)
1618     return Init;
1619 
1620   if (Init.isInvalid())
1621     return ExprError();
1622 
1623   Expr *InitExpr = Init.get();
1624   InitializedEntity Entity = InitializedEntity::InitializeLambdaCapture(
1625       Name, Cap.getCaptureType(), Loc);
1626   InitializationKind InitKind =
1627       InitializationKind::CreateDirect(Loc, Loc, Loc);
1628   InitializationSequence InitSeq(*this, Entity, InitKind, InitExpr);
1629   return InitSeq.Perform(*this, Entity, InitKind, InitExpr);
1630 }
1631 
1632 ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
1633                                  Scope *CurScope) {
1634   LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back());
1635   ActOnFinishFunctionBody(LSI.CallOperator, Body);
1636   return BuildLambdaExpr(StartLoc, Body->getEndLoc(), &LSI);
1637 }
1638 
1639 static LambdaCaptureDefault
1640 mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS) {
1641   switch (ICS) {
1642   case CapturingScopeInfo::ImpCap_None:
1643     return LCD_None;
1644   case CapturingScopeInfo::ImpCap_LambdaByval:
1645     return LCD_ByCopy;
1646   case CapturingScopeInfo::ImpCap_CapturedRegion:
1647   case CapturingScopeInfo::ImpCap_LambdaByref:
1648     return LCD_ByRef;
1649   case CapturingScopeInfo::ImpCap_Block:
1650     llvm_unreachable("block capture in lambda");
1651   }
1652   llvm_unreachable("Unknown implicit capture style");
1653 }
1654 
1655 bool Sema::CaptureHasSideEffects(const Capture &From) {
1656   if (From.isInitCapture()) {
1657     Expr *Init = From.getVariable()->getInit();
1658     if (Init && Init->HasSideEffects(Context))
1659       return true;
1660   }
1661 
1662   if (!From.isCopyCapture())
1663     return false;
1664 
1665   const QualType T = From.isThisCapture()
1666                          ? getCurrentThisType()->getPointeeType()
1667                          : From.getCaptureType();
1668 
1669   if (T.isVolatileQualified())
1670     return true;
1671 
1672   const Type *BaseT = T->getBaseElementTypeUnsafe();
1673   if (const CXXRecordDecl *RD = BaseT->getAsCXXRecordDecl())
1674     return !RD->isCompleteDefinition() || !RD->hasTrivialCopyConstructor() ||
1675            !RD->hasTrivialDestructor();
1676 
1677   return false;
1678 }
1679 
1680 bool Sema::DiagnoseUnusedLambdaCapture(SourceRange CaptureRange,
1681                                        const Capture &From) {
1682   if (CaptureHasSideEffects(From))
1683     return false;
1684 
1685   if (From.isVLATypeCapture())
1686     return false;
1687 
1688   auto diag = Diag(From.getLocation(), diag::warn_unused_lambda_capture);
1689   if (From.isThisCapture())
1690     diag << "'this'";
1691   else
1692     diag << From.getVariable();
1693   diag << From.isNonODRUsed();
1694   diag << FixItHint::CreateRemoval(CaptureRange);
1695   return true;
1696 }
1697 
1698 /// Create a field within the lambda class or captured statement record for the
1699 /// given capture.
1700 FieldDecl *Sema::BuildCaptureField(RecordDecl *RD,
1701                                    const sema::Capture &Capture) {
1702   SourceLocation Loc = Capture.getLocation();
1703   QualType FieldType = Capture.getCaptureType();
1704 
1705   TypeSourceInfo *TSI = nullptr;
1706   if (Capture.isVariableCapture()) {
1707     auto *Var = Capture.getVariable();
1708     if (Var->isInitCapture())
1709       TSI = Capture.getVariable()->getTypeSourceInfo();
1710   }
1711 
1712   // FIXME: Should we really be doing this? A null TypeSourceInfo seems more
1713   // appropriate, at least for an implicit capture.
1714   if (!TSI)
1715     TSI = Context.getTrivialTypeSourceInfo(FieldType, Loc);
1716 
1717   // Build the non-static data member.
1718   FieldDecl *Field =
1719       FieldDecl::Create(Context, RD, /*StartLoc=*/Loc, /*IdLoc=*/Loc,
1720                         /*Id=*/nullptr, FieldType, TSI, /*BW=*/nullptr,
1721                         /*Mutable=*/false, ICIS_NoInit);
1722   // If the variable being captured has an invalid type, mark the class as
1723   // invalid as well.
1724   if (!FieldType->isDependentType()) {
1725     if (RequireCompleteSizedType(Loc, FieldType,
1726                                  diag::err_field_incomplete_or_sizeless)) {
1727       RD->setInvalidDecl();
1728       Field->setInvalidDecl();
1729     } else {
1730       NamedDecl *Def;
1731       FieldType->isIncompleteType(&Def);
1732       if (Def && Def->isInvalidDecl()) {
1733         RD->setInvalidDecl();
1734         Field->setInvalidDecl();
1735       }
1736     }
1737   }
1738   Field->setImplicit(true);
1739   Field->setAccess(AS_private);
1740   RD->addDecl(Field);
1741 
1742   if (Capture.isVLATypeCapture())
1743     Field->setCapturedVLAType(Capture.getCapturedVLAType());
1744 
1745   return Field;
1746 }
1747 
1748 ExprResult Sema::BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc,
1749                                  LambdaScopeInfo *LSI) {
1750   // Collect information from the lambda scope.
1751   SmallVector<LambdaCapture, 4> Captures;
1752   SmallVector<Expr *, 4> CaptureInits;
1753   SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc;
1754   LambdaCaptureDefault CaptureDefault =
1755       mapImplicitCaptureStyle(LSI->ImpCaptureStyle);
1756   CXXRecordDecl *Class;
1757   CXXMethodDecl *CallOperator;
1758   SourceRange IntroducerRange;
1759   bool ExplicitParams;
1760   bool ExplicitResultType;
1761   CleanupInfo LambdaCleanup;
1762   bool ContainsUnexpandedParameterPack;
1763   bool IsGenericLambda;
1764   {
1765     CallOperator = LSI->CallOperator;
1766     Class = LSI->Lambda;
1767     IntroducerRange = LSI->IntroducerRange;
1768     ExplicitParams = LSI->ExplicitParams;
1769     ExplicitResultType = !LSI->HasImplicitReturnType;
1770     LambdaCleanup = LSI->Cleanup;
1771     ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack;
1772     IsGenericLambda = Class->isGenericLambda();
1773 
1774     CallOperator->setLexicalDeclContext(Class);
1775     Decl *TemplateOrNonTemplateCallOperatorDecl =
1776         CallOperator->getDescribedFunctionTemplate()
1777         ? CallOperator->getDescribedFunctionTemplate()
1778         : cast<Decl>(CallOperator);
1779 
1780     // FIXME: Is this really the best choice? Keeping the lexical decl context
1781     // set as CurContext seems more faithful to the source.
1782     TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class);
1783 
1784     PopExpressionEvaluationContext();
1785 
1786     // True if the current capture has a used capture or default before it.
1787     bool CurHasPreviousCapture = CaptureDefault != LCD_None;
1788     SourceLocation PrevCaptureLoc = CurHasPreviousCapture ?
1789         CaptureDefaultLoc : IntroducerRange.getBegin();
1790 
1791     for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) {
1792       const Capture &From = LSI->Captures[I];
1793 
1794       if (From.isInvalid())
1795         return ExprError();
1796 
1797       assert(!From.isBlockCapture() && "Cannot capture __block variables");
1798       bool IsImplicit = I >= LSI->NumExplicitCaptures;
1799       SourceLocation ImplicitCaptureLoc =
1800           IsImplicit ? CaptureDefaultLoc : SourceLocation();
1801 
1802       // Use source ranges of explicit captures for fixits where available.
1803       SourceRange CaptureRange = LSI->ExplicitCaptureRanges[I];
1804 
1805       // Warn about unused explicit captures.
1806       bool IsCaptureUsed = true;
1807       if (!CurContext->isDependentContext() && !IsImplicit &&
1808           !From.isODRUsed()) {
1809         // Initialized captures that are non-ODR used may not be eliminated.
1810         // FIXME: Where did the IsGenericLambda here come from?
1811         bool NonODRUsedInitCapture =
1812             IsGenericLambda && From.isNonODRUsed() && From.isInitCapture();
1813         if (!NonODRUsedInitCapture) {
1814           bool IsLast = (I + 1) == LSI->NumExplicitCaptures;
1815           SourceRange FixItRange;
1816           if (CaptureRange.isValid()) {
1817             if (!CurHasPreviousCapture && !IsLast) {
1818               // If there are no captures preceding this capture, remove the
1819               // following comma.
1820               FixItRange = SourceRange(CaptureRange.getBegin(),
1821                                        getLocForEndOfToken(CaptureRange.getEnd()));
1822             } else {
1823               // Otherwise, remove the comma since the last used capture.
1824               FixItRange = SourceRange(getLocForEndOfToken(PrevCaptureLoc),
1825                                        CaptureRange.getEnd());
1826             }
1827           }
1828 
1829           IsCaptureUsed = !DiagnoseUnusedLambdaCapture(FixItRange, From);
1830         }
1831       }
1832 
1833       if (CaptureRange.isValid()) {
1834         CurHasPreviousCapture |= IsCaptureUsed;
1835         PrevCaptureLoc = CaptureRange.getEnd();
1836       }
1837 
1838       // Map the capture to our AST representation.
1839       LambdaCapture Capture = [&] {
1840         if (From.isThisCapture()) {
1841           // Capturing 'this' implicitly with a default of '[=]' is deprecated,
1842           // because it results in a reference capture. Don't warn prior to
1843           // C++2a; there's nothing that can be done about it before then.
1844           if (getLangOpts().CPlusPlus20 && IsImplicit &&
1845               CaptureDefault == LCD_ByCopy) {
1846             Diag(From.getLocation(), diag::warn_deprecated_this_capture);
1847             Diag(CaptureDefaultLoc, diag::note_deprecated_this_capture)
1848                 << FixItHint::CreateInsertion(
1849                        getLocForEndOfToken(CaptureDefaultLoc), ", this");
1850           }
1851           return LambdaCapture(From.getLocation(), IsImplicit,
1852                                From.isCopyCapture() ? LCK_StarThis : LCK_This);
1853         } else if (From.isVLATypeCapture()) {
1854           return LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType);
1855         } else {
1856           assert(From.isVariableCapture() && "unknown kind of capture");
1857           VarDecl *Var = From.getVariable();
1858           LambdaCaptureKind Kind =
1859               From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef;
1860           return LambdaCapture(From.getLocation(), IsImplicit, Kind, Var,
1861                                From.getEllipsisLoc());
1862         }
1863       }();
1864 
1865       // Form the initializer for the capture field.
1866       ExprResult Init = BuildCaptureInit(From, ImplicitCaptureLoc);
1867 
1868       // FIXME: Skip this capture if the capture is not used, the initializer
1869       // has no side-effects, the type of the capture is trivial, and the
1870       // lambda is not externally visible.
1871 
1872       // Add a FieldDecl for the capture and form its initializer.
1873       BuildCaptureField(Class, From);
1874       Captures.push_back(Capture);
1875       CaptureInits.push_back(Init.get());
1876 
1877       if (LangOpts.CUDA)
1878         CUDACheckLambdaCapture(CallOperator, From);
1879     }
1880 
1881     Class->setCaptures(Context, Captures);
1882 
1883     // C++11 [expr.prim.lambda]p6:
1884     //   The closure type for a lambda-expression with no lambda-capture
1885     //   has a public non-virtual non-explicit const conversion function
1886     //   to pointer to function having the same parameter and return
1887     //   types as the closure type's function call operator.
1888     if (Captures.empty() && CaptureDefault == LCD_None)
1889       addFunctionPointerConversions(*this, IntroducerRange, Class,
1890                                     CallOperator);
1891 
1892     // Objective-C++:
1893     //   The closure type for a lambda-expression has a public non-virtual
1894     //   non-explicit const conversion function to a block pointer having the
1895     //   same parameter and return types as the closure type's function call
1896     //   operator.
1897     // FIXME: Fix generic lambda to block conversions.
1898     if (getLangOpts().Blocks && getLangOpts().ObjC && !IsGenericLambda)
1899       addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator);
1900 
1901     // Finalize the lambda class.
1902     SmallVector<Decl*, 4> Fields(Class->fields());
1903     ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1904                 SourceLocation(), ParsedAttributesView());
1905     CheckCompletedCXXClass(nullptr, Class);
1906   }
1907 
1908   Cleanup.mergeFrom(LambdaCleanup);
1909 
1910   LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange,
1911                                           CaptureDefault, CaptureDefaultLoc,
1912                                           ExplicitParams, ExplicitResultType,
1913                                           CaptureInits, EndLoc,
1914                                           ContainsUnexpandedParameterPack);
1915   // If the lambda expression's call operator is not explicitly marked constexpr
1916   // and we are not in a dependent context, analyze the call operator to infer
1917   // its constexpr-ness, suppressing diagnostics while doing so.
1918   if (getLangOpts().CPlusPlus17 && !CallOperator->isInvalidDecl() &&
1919       !CallOperator->isConstexpr() &&
1920       !isa<CoroutineBodyStmt>(CallOperator->getBody()) &&
1921       !Class->getDeclContext()->isDependentContext()) {
1922     CallOperator->setConstexprKind(
1923         CheckConstexprFunctionDefinition(CallOperator,
1924                                          CheckConstexprKind::CheckValid)
1925             ? ConstexprSpecKind::Constexpr
1926             : ConstexprSpecKind::Unspecified);
1927   }
1928 
1929   // Emit delayed shadowing warnings now that the full capture list is known.
1930   DiagnoseShadowingLambdaDecls(LSI);
1931 
1932   if (!CurContext->isDependentContext()) {
1933     switch (ExprEvalContexts.back().Context) {
1934     // C++11 [expr.prim.lambda]p2:
1935     //   A lambda-expression shall not appear in an unevaluated operand
1936     //   (Clause 5).
1937     case ExpressionEvaluationContext::Unevaluated:
1938     case ExpressionEvaluationContext::UnevaluatedList:
1939     case ExpressionEvaluationContext::UnevaluatedAbstract:
1940     // C++1y [expr.const]p2:
1941     //   A conditional-expression e is a core constant expression unless the
1942     //   evaluation of e, following the rules of the abstract machine, would
1943     //   evaluate [...] a lambda-expression.
1944     //
1945     // This is technically incorrect, there are some constant evaluated contexts
1946     // where this should be allowed.  We should probably fix this when DR1607 is
1947     // ratified, it lays out the exact set of conditions where we shouldn't
1948     // allow a lambda-expression.
1949     case ExpressionEvaluationContext::ConstantEvaluated:
1950     case ExpressionEvaluationContext::ImmediateFunctionContext:
1951       // We don't actually diagnose this case immediately, because we
1952       // could be within a context where we might find out later that
1953       // the expression is potentially evaluated (e.g., for typeid).
1954       ExprEvalContexts.back().Lambdas.push_back(Lambda);
1955       break;
1956 
1957     case ExpressionEvaluationContext::DiscardedStatement:
1958     case ExpressionEvaluationContext::PotentiallyEvaluated:
1959     case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
1960       break;
1961     }
1962   }
1963 
1964   return MaybeBindToTemporary(Lambda);
1965 }
1966 
1967 ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
1968                                                SourceLocation ConvLocation,
1969                                                CXXConversionDecl *Conv,
1970                                                Expr *Src) {
1971   // Make sure that the lambda call operator is marked used.
1972   CXXRecordDecl *Lambda = Conv->getParent();
1973   CXXMethodDecl *CallOperator
1974     = cast<CXXMethodDecl>(
1975         Lambda->lookup(
1976           Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
1977   CallOperator->setReferenced();
1978   CallOperator->markUsed(Context);
1979 
1980   ExprResult Init = PerformCopyInitialization(
1981       InitializedEntity::InitializeLambdaToBlock(ConvLocation, Src->getType()),
1982       CurrentLocation, Src);
1983   if (!Init.isInvalid())
1984     Init = ActOnFinishFullExpr(Init.get(), /*DiscardedValue*/ false);
1985 
1986   if (Init.isInvalid())
1987     return ExprError();
1988 
1989   // Create the new block to be returned.
1990   BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation);
1991 
1992   // Set the type information.
1993   Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
1994   Block->setIsVariadic(CallOperator->isVariadic());
1995   Block->setBlockMissingReturnType(false);
1996 
1997   // Add parameters.
1998   SmallVector<ParmVarDecl *, 4> BlockParams;
1999   for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
2000     ParmVarDecl *From = CallOperator->getParamDecl(I);
2001     BlockParams.push_back(ParmVarDecl::Create(
2002         Context, Block, From->getBeginLoc(), From->getLocation(),
2003         From->getIdentifier(), From->getType(), From->getTypeSourceInfo(),
2004         From->getStorageClass(),
2005         /*DefArg=*/nullptr));
2006   }
2007   Block->setParams(BlockParams);
2008 
2009   Block->setIsConversionFromLambda(true);
2010 
2011   // Add capture. The capture uses a fake variable, which doesn't correspond
2012   // to any actual memory location. However, the initializer copy-initializes
2013   // the lambda object.
2014   TypeSourceInfo *CapVarTSI =
2015       Context.getTrivialTypeSourceInfo(Src->getType());
2016   VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation,
2017                                     ConvLocation, nullptr,
2018                                     Src->getType(), CapVarTSI,
2019                                     SC_None);
2020   BlockDecl::Capture Capture(/*variable=*/CapVar, /*byRef=*/false,
2021                              /*nested=*/false, /*copy=*/Init.get());
2022   Block->setCaptures(Context, Capture, /*CapturesCXXThis=*/false);
2023 
2024   // Add a fake function body to the block. IR generation is responsible
2025   // for filling in the actual body, which cannot be expressed as an AST.
2026   Block->setBody(new (Context) CompoundStmt(ConvLocation));
2027 
2028   // Create the block literal expression.
2029   Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
2030   ExprCleanupObjects.push_back(Block);
2031   Cleanup.setExprNeedsCleanups(true);
2032 
2033   return BuildBlock;
2034 }
2035