xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaLambda.cpp (revision 0d8fe2373503aeac48492f28073049a8bfa4feb5)
1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for C++ lambda expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 #include "clang/Sema/DeclSpec.h"
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTLambda.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/Basic/TargetInfo.h"
17 #include "clang/Sema/Initialization.h"
18 #include "clang/Sema/Lookup.h"
19 #include "clang/Sema/Scope.h"
20 #include "clang/Sema/ScopeInfo.h"
21 #include "clang/Sema/SemaInternal.h"
22 #include "clang/Sema/SemaLambda.h"
23 #include "llvm/ADT/STLExtras.h"
24 using namespace clang;
25 using namespace sema;
26 
27 /// Examines the FunctionScopeInfo stack to determine the nearest
28 /// enclosing lambda (to the current lambda) that is 'capture-ready' for
29 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
30 /// If successful, returns the index into Sema's FunctionScopeInfo stack
31 /// of the capture-ready lambda's LambdaScopeInfo.
32 ///
33 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current
34 /// lambda - is on top) to determine the index of the nearest enclosing/outer
35 /// lambda that is ready to capture the \p VarToCapture being referenced in
36 /// the current lambda.
37 /// As we climb down the stack, we want the index of the first such lambda -
38 /// that is the lambda with the highest index that is 'capture-ready'.
39 ///
40 /// A lambda 'L' is capture-ready for 'V' (var or this) if:
41 ///  - its enclosing context is non-dependent
42 ///  - and if the chain of lambdas between L and the lambda in which
43 ///    V is potentially used (i.e. the lambda at the top of the scope info
44 ///    stack), can all capture or have already captured V.
45 /// If \p VarToCapture is 'null' then we are trying to capture 'this'.
46 ///
47 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked
48 /// for whether it is 'capture-capable' (see
49 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly
50 /// capture.
51 ///
52 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
53 ///  LambdaScopeInfo inherits from).  The current/deepest/innermost lambda
54 ///  is at the top of the stack and has the highest index.
55 /// \param VarToCapture - the variable to capture.  If NULL, capture 'this'.
56 ///
57 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
58 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
59 /// which is capture-ready.  If the return value evaluates to 'false' then
60 /// no lambda is capture-ready for \p VarToCapture.
61 
62 static inline Optional<unsigned>
63 getStackIndexOfNearestEnclosingCaptureReadyLambda(
64     ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes,
65     VarDecl *VarToCapture) {
66   // Label failure to capture.
67   const Optional<unsigned> NoLambdaIsCaptureReady;
68 
69   // Ignore all inner captured regions.
70   unsigned CurScopeIndex = FunctionScopes.size() - 1;
71   while (CurScopeIndex > 0 && isa<clang::sema::CapturedRegionScopeInfo>(
72                                   FunctionScopes[CurScopeIndex]))
73     --CurScopeIndex;
74   assert(
75       isa<clang::sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]) &&
76       "The function on the top of sema's function-info stack must be a lambda");
77 
78   // If VarToCapture is null, we are attempting to capture 'this'.
79   const bool IsCapturingThis = !VarToCapture;
80   const bool IsCapturingVariable = !IsCapturingThis;
81 
82   // Start with the current lambda at the top of the stack (highest index).
83   DeclContext *EnclosingDC =
84       cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator;
85 
86   do {
87     const clang::sema::LambdaScopeInfo *LSI =
88         cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]);
89     // IF we have climbed down to an intervening enclosing lambda that contains
90     // the variable declaration - it obviously can/must not capture the
91     // variable.
92     // Since its enclosing DC is dependent, all the lambdas between it and the
93     // innermost nested lambda are dependent (otherwise we wouldn't have
94     // arrived here) - so we don't yet have a lambda that can capture the
95     // variable.
96     if (IsCapturingVariable &&
97         VarToCapture->getDeclContext()->Equals(EnclosingDC))
98       return NoLambdaIsCaptureReady;
99 
100     // For an enclosing lambda to be capture ready for an entity, all
101     // intervening lambda's have to be able to capture that entity. If even
102     // one of the intervening lambda's is not capable of capturing the entity
103     // then no enclosing lambda can ever capture that entity.
104     // For e.g.
105     // const int x = 10;
106     // [=](auto a) {    #1
107     //   [](auto b) {   #2 <-- an intervening lambda that can never capture 'x'
108     //    [=](auto c) { #3
109     //       f(x, c);  <-- can not lead to x's speculative capture by #1 or #2
110     //    }; }; };
111     // If they do not have a default implicit capture, check to see
112     // if the entity has already been explicitly captured.
113     // If even a single dependent enclosing lambda lacks the capability
114     // to ever capture this variable, there is no further enclosing
115     // non-dependent lambda that can capture this variable.
116     if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) {
117       if (IsCapturingVariable && !LSI->isCaptured(VarToCapture))
118         return NoLambdaIsCaptureReady;
119       if (IsCapturingThis && !LSI->isCXXThisCaptured())
120         return NoLambdaIsCaptureReady;
121     }
122     EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC);
123 
124     assert(CurScopeIndex);
125     --CurScopeIndex;
126   } while (!EnclosingDC->isTranslationUnit() &&
127            EnclosingDC->isDependentContext() &&
128            isLambdaCallOperator(EnclosingDC));
129 
130   assert(CurScopeIndex < (FunctionScopes.size() - 1));
131   // If the enclosingDC is not dependent, then the immediately nested lambda
132   // (one index above) is capture-ready.
133   if (!EnclosingDC->isDependentContext())
134     return CurScopeIndex + 1;
135   return NoLambdaIsCaptureReady;
136 }
137 
138 /// Examines the FunctionScopeInfo stack to determine the nearest
139 /// enclosing lambda (to the current lambda) that is 'capture-capable' for
140 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
141 /// If successful, returns the index into Sema's FunctionScopeInfo stack
142 /// of the capture-capable lambda's LambdaScopeInfo.
143 ///
144 /// Given the current stack of lambdas being processed by Sema and
145 /// the variable of interest, to identify the nearest enclosing lambda (to the
146 /// current lambda at the top of the stack) that can truly capture
147 /// a variable, it has to have the following two properties:
148 ///  a) 'capture-ready' - be the innermost lambda that is 'capture-ready':
149 ///     - climb down the stack (i.e. starting from the innermost and examining
150 ///       each outer lambda step by step) checking if each enclosing
151 ///       lambda can either implicitly or explicitly capture the variable.
152 ///       Record the first such lambda that is enclosed in a non-dependent
153 ///       context. If no such lambda currently exists return failure.
154 ///  b) 'capture-capable' - make sure the 'capture-ready' lambda can truly
155 ///  capture the variable by checking all its enclosing lambdas:
156 ///     - check if all outer lambdas enclosing the 'capture-ready' lambda
157 ///       identified above in 'a' can also capture the variable (this is done
158 ///       via tryCaptureVariable for variables and CheckCXXThisCapture for
159 ///       'this' by passing in the index of the Lambda identified in step 'a')
160 ///
161 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
162 /// LambdaScopeInfo inherits from).  The current/deepest/innermost lambda
163 /// is at the top of the stack.
164 ///
165 /// \param VarToCapture - the variable to capture.  If NULL, capture 'this'.
166 ///
167 ///
168 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
169 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
170 /// which is capture-capable.  If the return value evaluates to 'false' then
171 /// no lambda is capture-capable for \p VarToCapture.
172 
173 Optional<unsigned> clang::getStackIndexOfNearestEnclosingCaptureCapableLambda(
174     ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes,
175     VarDecl *VarToCapture, Sema &S) {
176 
177   const Optional<unsigned> NoLambdaIsCaptureCapable;
178 
179   const Optional<unsigned> OptionalStackIndex =
180       getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes,
181                                                         VarToCapture);
182   if (!OptionalStackIndex)
183     return NoLambdaIsCaptureCapable;
184 
185   const unsigned IndexOfCaptureReadyLambda = OptionalStackIndex.getValue();
186   assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) ||
187           S.getCurGenericLambda()) &&
188          "The capture ready lambda for a potential capture can only be the "
189          "current lambda if it is a generic lambda");
190 
191   const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI =
192       cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]);
193 
194   // If VarToCapture is null, we are attempting to capture 'this'
195   const bool IsCapturingThis = !VarToCapture;
196   const bool IsCapturingVariable = !IsCapturingThis;
197 
198   if (IsCapturingVariable) {
199     // Check if the capture-ready lambda can truly capture the variable, by
200     // checking whether all enclosing lambdas of the capture-ready lambda allow
201     // the capture - i.e. make sure it is capture-capable.
202     QualType CaptureType, DeclRefType;
203     const bool CanCaptureVariable =
204         !S.tryCaptureVariable(VarToCapture,
205                               /*ExprVarIsUsedInLoc*/ SourceLocation(),
206                               clang::Sema::TryCapture_Implicit,
207                               /*EllipsisLoc*/ SourceLocation(),
208                               /*BuildAndDiagnose*/ false, CaptureType,
209                               DeclRefType, &IndexOfCaptureReadyLambda);
210     if (!CanCaptureVariable)
211       return NoLambdaIsCaptureCapable;
212   } else {
213     // Check if the capture-ready lambda can truly capture 'this' by checking
214     // whether all enclosing lambdas of the capture-ready lambda can capture
215     // 'this'.
216     const bool CanCaptureThis =
217         !S.CheckCXXThisCapture(
218              CaptureReadyLambdaLSI->PotentialThisCaptureLocation,
219              /*Explicit*/ false, /*BuildAndDiagnose*/ false,
220              &IndexOfCaptureReadyLambda);
221     if (!CanCaptureThis)
222       return NoLambdaIsCaptureCapable;
223   }
224   return IndexOfCaptureReadyLambda;
225 }
226 
227 static inline TemplateParameterList *
228 getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) {
229   if (!LSI->GLTemplateParameterList && !LSI->TemplateParams.empty()) {
230     LSI->GLTemplateParameterList = TemplateParameterList::Create(
231         SemaRef.Context,
232         /*Template kw loc*/ SourceLocation(),
233         /*L angle loc*/ LSI->ExplicitTemplateParamsRange.getBegin(),
234         LSI->TemplateParams,
235         /*R angle loc*/LSI->ExplicitTemplateParamsRange.getEnd(),
236         LSI->RequiresClause.get());
237   }
238   return LSI->GLTemplateParameterList;
239 }
240 
241 CXXRecordDecl *Sema::createLambdaClosureType(SourceRange IntroducerRange,
242                                              TypeSourceInfo *Info,
243                                              bool KnownDependent,
244                                              LambdaCaptureDefault CaptureDefault) {
245   DeclContext *DC = CurContext;
246   while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
247     DC = DC->getParent();
248   bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(),
249                                                                *this);
250   // Start constructing the lambda class.
251   CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(Context, DC, Info,
252                                                      IntroducerRange.getBegin(),
253                                                      KnownDependent,
254                                                      IsGenericLambda,
255                                                      CaptureDefault);
256   DC->addDecl(Class);
257 
258   return Class;
259 }
260 
261 /// Determine whether the given context is or is enclosed in an inline
262 /// function.
263 static bool isInInlineFunction(const DeclContext *DC) {
264   while (!DC->isFileContext()) {
265     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
266       if (FD->isInlined())
267         return true;
268 
269     DC = DC->getLexicalParent();
270   }
271 
272   return false;
273 }
274 
275 std::tuple<MangleNumberingContext *, Decl *>
276 Sema::getCurrentMangleNumberContext(const DeclContext *DC) {
277   // Compute the context for allocating mangling numbers in the current
278   // expression, if the ABI requires them.
279   Decl *ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl;
280 
281   enum ContextKind {
282     Normal,
283     DefaultArgument,
284     DataMember,
285     StaticDataMember,
286     InlineVariable,
287     VariableTemplate
288   } Kind = Normal;
289 
290   // Default arguments of member function parameters that appear in a class
291   // definition, as well as the initializers of data members, receive special
292   // treatment. Identify them.
293   if (ManglingContextDecl) {
294     if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) {
295       if (const DeclContext *LexicalDC
296           = Param->getDeclContext()->getLexicalParent())
297         if (LexicalDC->isRecord())
298           Kind = DefaultArgument;
299     } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) {
300       if (Var->getDeclContext()->isRecord())
301         Kind = StaticDataMember;
302       else if (Var->getMostRecentDecl()->isInline())
303         Kind = InlineVariable;
304       else if (Var->getDescribedVarTemplate())
305         Kind = VariableTemplate;
306       else if (auto *VTS = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
307         if (!VTS->isExplicitSpecialization())
308           Kind = VariableTemplate;
309       }
310     } else if (isa<FieldDecl>(ManglingContextDecl)) {
311       Kind = DataMember;
312     }
313   }
314 
315   // Itanium ABI [5.1.7]:
316   //   In the following contexts [...] the one-definition rule requires closure
317   //   types in different translation units to "correspond":
318   bool IsInNonspecializedTemplate =
319       inTemplateInstantiation() || CurContext->isDependentContext();
320   switch (Kind) {
321   case Normal: {
322     //  -- the bodies of non-exported nonspecialized template functions
323     //  -- the bodies of inline functions
324     if ((IsInNonspecializedTemplate &&
325          !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) ||
326         isInInlineFunction(CurContext)) {
327       while (auto *CD = dyn_cast<CapturedDecl>(DC))
328         DC = CD->getParent();
329       return std::make_tuple(&Context.getManglingNumberContext(DC), nullptr);
330     }
331 
332     return std::make_tuple(nullptr, nullptr);
333   }
334 
335   case StaticDataMember:
336     //  -- the initializers of nonspecialized static members of template classes
337     if (!IsInNonspecializedTemplate)
338       return std::make_tuple(nullptr, ManglingContextDecl);
339     // Fall through to get the current context.
340     LLVM_FALLTHROUGH;
341 
342   case DataMember:
343     //  -- the in-class initializers of class members
344   case DefaultArgument:
345     //  -- default arguments appearing in class definitions
346   case InlineVariable:
347     //  -- the initializers of inline variables
348   case VariableTemplate:
349     //  -- the initializers of templated variables
350     return std::make_tuple(
351         &Context.getManglingNumberContext(ASTContext::NeedExtraManglingDecl,
352                                           ManglingContextDecl),
353         ManglingContextDecl);
354   }
355 
356   llvm_unreachable("unexpected context");
357 }
358 
359 CXXMethodDecl *Sema::startLambdaDefinition(CXXRecordDecl *Class,
360                                            SourceRange IntroducerRange,
361                                            TypeSourceInfo *MethodTypeInfo,
362                                            SourceLocation EndLoc,
363                                            ArrayRef<ParmVarDecl *> Params,
364                                            ConstexprSpecKind ConstexprKind,
365                                            Expr *TrailingRequiresClause) {
366   QualType MethodType = MethodTypeInfo->getType();
367   TemplateParameterList *TemplateParams =
368       getGenericLambdaTemplateParameterList(getCurLambda(), *this);
369   // If a lambda appears in a dependent context or is a generic lambda (has
370   // template parameters) and has an 'auto' return type, deduce it to a
371   // dependent type.
372   if (Class->isDependentContext() || TemplateParams) {
373     const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>();
374     QualType Result = FPT->getReturnType();
375     if (Result->isUndeducedType()) {
376       Result = SubstAutoType(Result, Context.DependentTy);
377       MethodType = Context.getFunctionType(Result, FPT->getParamTypes(),
378                                            FPT->getExtProtoInfo());
379     }
380   }
381 
382   // C++11 [expr.prim.lambda]p5:
383   //   The closure type for a lambda-expression has a public inline function
384   //   call operator (13.5.4) whose parameters and return type are described by
385   //   the lambda-expression's parameter-declaration-clause and
386   //   trailing-return-type respectively.
387   DeclarationName MethodName
388     = Context.DeclarationNames.getCXXOperatorName(OO_Call);
389   DeclarationNameLoc MethodNameLoc;
390   MethodNameLoc.CXXOperatorName.BeginOpNameLoc
391     = IntroducerRange.getBegin().getRawEncoding();
392   MethodNameLoc.CXXOperatorName.EndOpNameLoc
393     = IntroducerRange.getEnd().getRawEncoding();
394   CXXMethodDecl *Method = CXXMethodDecl::Create(
395       Context, Class, EndLoc,
396       DeclarationNameInfo(MethodName, IntroducerRange.getBegin(),
397                           MethodNameLoc),
398       MethodType, MethodTypeInfo, SC_None,
399       /*isInline=*/true, ConstexprKind, EndLoc, TrailingRequiresClause);
400   Method->setAccess(AS_public);
401   if (!TemplateParams)
402     Class->addDecl(Method);
403 
404   // Temporarily set the lexical declaration context to the current
405   // context, so that the Scope stack matches the lexical nesting.
406   Method->setLexicalDeclContext(CurContext);
407   // Create a function template if we have a template parameter list
408   FunctionTemplateDecl *const TemplateMethod = TemplateParams ?
409             FunctionTemplateDecl::Create(Context, Class,
410                                          Method->getLocation(), MethodName,
411                                          TemplateParams,
412                                          Method) : nullptr;
413   if (TemplateMethod) {
414     TemplateMethod->setAccess(AS_public);
415     Method->setDescribedFunctionTemplate(TemplateMethod);
416     Class->addDecl(TemplateMethod);
417     TemplateMethod->setLexicalDeclContext(CurContext);
418   }
419 
420   // Add parameters.
421   if (!Params.empty()) {
422     Method->setParams(Params);
423     CheckParmsForFunctionDef(Params,
424                              /*CheckParameterNames=*/false);
425 
426     for (auto P : Method->parameters())
427       P->setOwningFunction(Method);
428   }
429 
430   return Method;
431 }
432 
433 void Sema::handleLambdaNumbering(
434     CXXRecordDecl *Class, CXXMethodDecl *Method,
435     Optional<std::tuple<bool, unsigned, unsigned, Decl *>> Mangling) {
436   if (Mangling) {
437     bool HasKnownInternalLinkage;
438     unsigned ManglingNumber, DeviceManglingNumber;
439     Decl *ManglingContextDecl;
440     std::tie(HasKnownInternalLinkage, ManglingNumber, DeviceManglingNumber,
441              ManglingContextDecl) = Mangling.getValue();
442     Class->setLambdaMangling(ManglingNumber, ManglingContextDecl,
443                              HasKnownInternalLinkage);
444     Class->setDeviceLambdaManglingNumber(DeviceManglingNumber);
445     return;
446   }
447 
448   auto getMangleNumberingContext =
449       [this](CXXRecordDecl *Class,
450              Decl *ManglingContextDecl) -> MangleNumberingContext * {
451     // Get mangle numbering context if there's any extra decl context.
452     if (ManglingContextDecl)
453       return &Context.getManglingNumberContext(
454           ASTContext::NeedExtraManglingDecl, ManglingContextDecl);
455     // Otherwise, from that lambda's decl context.
456     auto DC = Class->getDeclContext();
457     while (auto *CD = dyn_cast<CapturedDecl>(DC))
458       DC = CD->getParent();
459     return &Context.getManglingNumberContext(DC);
460   };
461 
462   MangleNumberingContext *MCtx;
463   Decl *ManglingContextDecl;
464   std::tie(MCtx, ManglingContextDecl) =
465       getCurrentMangleNumberContext(Class->getDeclContext());
466   bool HasKnownInternalLinkage = false;
467   if (!MCtx && getLangOpts().CUDA) {
468     // Force lambda numbering in CUDA/HIP as we need to name lambdas following
469     // ODR. Both device- and host-compilation need to have a consistent naming
470     // on kernel functions. As lambdas are potential part of these `__global__`
471     // function names, they needs numbering following ODR.
472     MCtx = getMangleNumberingContext(Class, ManglingContextDecl);
473     assert(MCtx && "Retrieving mangle numbering context failed!");
474     HasKnownInternalLinkage = true;
475   }
476   if (MCtx) {
477     unsigned ManglingNumber = MCtx->getManglingNumber(Method);
478     Class->setLambdaMangling(ManglingNumber, ManglingContextDecl,
479                              HasKnownInternalLinkage);
480     Class->setDeviceLambdaManglingNumber(MCtx->getDeviceManglingNumber(Method));
481   }
482 }
483 
484 void Sema::buildLambdaScope(LambdaScopeInfo *LSI,
485                                         CXXMethodDecl *CallOperator,
486                                         SourceRange IntroducerRange,
487                                         LambdaCaptureDefault CaptureDefault,
488                                         SourceLocation CaptureDefaultLoc,
489                                         bool ExplicitParams,
490                                         bool ExplicitResultType,
491                                         bool Mutable) {
492   LSI->CallOperator = CallOperator;
493   CXXRecordDecl *LambdaClass = CallOperator->getParent();
494   LSI->Lambda = LambdaClass;
495   if (CaptureDefault == LCD_ByCopy)
496     LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval;
497   else if (CaptureDefault == LCD_ByRef)
498     LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref;
499   LSI->CaptureDefaultLoc = CaptureDefaultLoc;
500   LSI->IntroducerRange = IntroducerRange;
501   LSI->ExplicitParams = ExplicitParams;
502   LSI->Mutable = Mutable;
503 
504   if (ExplicitResultType) {
505     LSI->ReturnType = CallOperator->getReturnType();
506 
507     if (!LSI->ReturnType->isDependentType() &&
508         !LSI->ReturnType->isVoidType()) {
509       if (RequireCompleteType(CallOperator->getBeginLoc(), LSI->ReturnType,
510                               diag::err_lambda_incomplete_result)) {
511         // Do nothing.
512       }
513     }
514   } else {
515     LSI->HasImplicitReturnType = true;
516   }
517 }
518 
519 void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) {
520   LSI->finishedExplicitCaptures();
521 }
522 
523 void Sema::ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc,
524                                                     ArrayRef<NamedDecl *> TParams,
525                                                     SourceLocation RAngleLoc,
526                                                     ExprResult RequiresClause) {
527   LambdaScopeInfo *LSI = getCurLambda();
528   assert(LSI && "Expected a lambda scope");
529   assert(LSI->NumExplicitTemplateParams == 0 &&
530          "Already acted on explicit template parameters");
531   assert(LSI->TemplateParams.empty() &&
532          "Explicit template parameters should come "
533          "before invented (auto) ones");
534   assert(!TParams.empty() &&
535          "No template parameters to act on");
536   LSI->TemplateParams.append(TParams.begin(), TParams.end());
537   LSI->NumExplicitTemplateParams = TParams.size();
538   LSI->ExplicitTemplateParamsRange = {LAngleLoc, RAngleLoc};
539   LSI->RequiresClause = RequiresClause;
540 }
541 
542 void Sema::addLambdaParameters(
543     ArrayRef<LambdaIntroducer::LambdaCapture> Captures,
544     CXXMethodDecl *CallOperator, Scope *CurScope) {
545   // Introduce our parameters into the function scope
546   for (unsigned p = 0, NumParams = CallOperator->getNumParams();
547        p < NumParams; ++p) {
548     ParmVarDecl *Param = CallOperator->getParamDecl(p);
549 
550     // If this has an identifier, add it to the scope stack.
551     if (CurScope && Param->getIdentifier()) {
552       bool Error = false;
553       // Resolution of CWG 2211 in C++17 renders shadowing ill-formed, but we
554       // retroactively apply it.
555       for (const auto &Capture : Captures) {
556         if (Capture.Id == Param->getIdentifier()) {
557           Error = true;
558           Diag(Param->getLocation(), diag::err_parameter_shadow_capture);
559           Diag(Capture.Loc, diag::note_var_explicitly_captured_here)
560               << Capture.Id << true;
561         }
562       }
563       if (!Error)
564         CheckShadow(CurScope, Param);
565 
566       PushOnScopeChains(Param, CurScope);
567     }
568   }
569 }
570 
571 /// If this expression is an enumerator-like expression of some type
572 /// T, return the type T; otherwise, return null.
573 ///
574 /// Pointer comparisons on the result here should always work because
575 /// it's derived from either the parent of an EnumConstantDecl
576 /// (i.e. the definition) or the declaration returned by
577 /// EnumType::getDecl() (i.e. the definition).
578 static EnumDecl *findEnumForBlockReturn(Expr *E) {
579   // An expression is an enumerator-like expression of type T if,
580   // ignoring parens and parens-like expressions:
581   E = E->IgnoreParens();
582 
583   //  - it is an enumerator whose enum type is T or
584   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
585     if (EnumConstantDecl *D
586           = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
587       return cast<EnumDecl>(D->getDeclContext());
588     }
589     return nullptr;
590   }
591 
592   //  - it is a comma expression whose RHS is an enumerator-like
593   //    expression of type T or
594   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
595     if (BO->getOpcode() == BO_Comma)
596       return findEnumForBlockReturn(BO->getRHS());
597     return nullptr;
598   }
599 
600   //  - it is a statement-expression whose value expression is an
601   //    enumerator-like expression of type T or
602   if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
603     if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back()))
604       return findEnumForBlockReturn(last);
605     return nullptr;
606   }
607 
608   //   - it is a ternary conditional operator (not the GNU ?:
609   //     extension) whose second and third operands are
610   //     enumerator-like expressions of type T or
611   if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
612     if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr()))
613       if (ED == findEnumForBlockReturn(CO->getFalseExpr()))
614         return ED;
615     return nullptr;
616   }
617 
618   // (implicitly:)
619   //   - it is an implicit integral conversion applied to an
620   //     enumerator-like expression of type T or
621   if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
622     // We can sometimes see integral conversions in valid
623     // enumerator-like expressions.
624     if (ICE->getCastKind() == CK_IntegralCast)
625       return findEnumForBlockReturn(ICE->getSubExpr());
626 
627     // Otherwise, just rely on the type.
628   }
629 
630   //   - it is an expression of that formal enum type.
631   if (const EnumType *ET = E->getType()->getAs<EnumType>()) {
632     return ET->getDecl();
633   }
634 
635   // Otherwise, nope.
636   return nullptr;
637 }
638 
639 /// Attempt to find a type T for which the returned expression of the
640 /// given statement is an enumerator-like expression of that type.
641 static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) {
642   if (Expr *retValue = ret->getRetValue())
643     return findEnumForBlockReturn(retValue);
644   return nullptr;
645 }
646 
647 /// Attempt to find a common type T for which all of the returned
648 /// expressions in a block are enumerator-like expressions of that
649 /// type.
650 static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) {
651   ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end();
652 
653   // Try to find one for the first return.
654   EnumDecl *ED = findEnumForBlockReturn(*i);
655   if (!ED) return nullptr;
656 
657   // Check that the rest of the returns have the same enum.
658   for (++i; i != e; ++i) {
659     if (findEnumForBlockReturn(*i) != ED)
660       return nullptr;
661   }
662 
663   // Never infer an anonymous enum type.
664   if (!ED->hasNameForLinkage()) return nullptr;
665 
666   return ED;
667 }
668 
669 /// Adjust the given return statements so that they formally return
670 /// the given type.  It should require, at most, an IntegralCast.
671 static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns,
672                                      QualType returnType) {
673   for (ArrayRef<ReturnStmt*>::iterator
674          i = returns.begin(), e = returns.end(); i != e; ++i) {
675     ReturnStmt *ret = *i;
676     Expr *retValue = ret->getRetValue();
677     if (S.Context.hasSameType(retValue->getType(), returnType))
678       continue;
679 
680     // Right now we only support integral fixup casts.
681     assert(returnType->isIntegralOrUnscopedEnumerationType());
682     assert(retValue->getType()->isIntegralOrUnscopedEnumerationType());
683 
684     ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue);
685 
686     Expr *E = (cleanups ? cleanups->getSubExpr() : retValue);
687     E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast, E,
688                                  /*base path*/ nullptr, VK_RValue,
689                                  FPOptionsOverride());
690     if (cleanups) {
691       cleanups->setSubExpr(E);
692     } else {
693       ret->setRetValue(E);
694     }
695   }
696 }
697 
698 void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) {
699   assert(CSI.HasImplicitReturnType);
700   // If it was ever a placeholder, it had to been deduced to DependentTy.
701   assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType());
702   assert((!isa<LambdaScopeInfo>(CSI) || !getLangOpts().CPlusPlus14) &&
703          "lambda expressions use auto deduction in C++14 onwards");
704 
705   // C++ core issue 975:
706   //   If a lambda-expression does not include a trailing-return-type,
707   //   it is as if the trailing-return-type denotes the following type:
708   //     - if there are no return statements in the compound-statement,
709   //       or all return statements return either an expression of type
710   //       void or no expression or braced-init-list, the type void;
711   //     - otherwise, if all return statements return an expression
712   //       and the types of the returned expressions after
713   //       lvalue-to-rvalue conversion (4.1 [conv.lval]),
714   //       array-to-pointer conversion (4.2 [conv.array]), and
715   //       function-to-pointer conversion (4.3 [conv.func]) are the
716   //       same, that common type;
717   //     - otherwise, the program is ill-formed.
718   //
719   // C++ core issue 1048 additionally removes top-level cv-qualifiers
720   // from the types of returned expressions to match the C++14 auto
721   // deduction rules.
722   //
723   // In addition, in blocks in non-C++ modes, if all of the return
724   // statements are enumerator-like expressions of some type T, where
725   // T has a name for linkage, then we infer the return type of the
726   // block to be that type.
727 
728   // First case: no return statements, implicit void return type.
729   ASTContext &Ctx = getASTContext();
730   if (CSI.Returns.empty()) {
731     // It's possible there were simply no /valid/ return statements.
732     // In this case, the first one we found may have at least given us a type.
733     if (CSI.ReturnType.isNull())
734       CSI.ReturnType = Ctx.VoidTy;
735     return;
736   }
737 
738   // Second case: at least one return statement has dependent type.
739   // Delay type checking until instantiation.
740   assert(!CSI.ReturnType.isNull() && "We should have a tentative return type.");
741   if (CSI.ReturnType->isDependentType())
742     return;
743 
744   // Try to apply the enum-fuzz rule.
745   if (!getLangOpts().CPlusPlus) {
746     assert(isa<BlockScopeInfo>(CSI));
747     const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns);
748     if (ED) {
749       CSI.ReturnType = Context.getTypeDeclType(ED);
750       adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType);
751       return;
752     }
753   }
754 
755   // Third case: only one return statement. Don't bother doing extra work!
756   if (CSI.Returns.size() == 1)
757     return;
758 
759   // General case: many return statements.
760   // Check that they all have compatible return types.
761 
762   // We require the return types to strictly match here.
763   // Note that we've already done the required promotions as part of
764   // processing the return statement.
765   for (const ReturnStmt *RS : CSI.Returns) {
766     const Expr *RetE = RS->getRetValue();
767 
768     QualType ReturnType =
769         (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType();
770     if (Context.getCanonicalFunctionResultType(ReturnType) ==
771           Context.getCanonicalFunctionResultType(CSI.ReturnType)) {
772       // Use the return type with the strictest possible nullability annotation.
773       auto RetTyNullability = ReturnType->getNullability(Ctx);
774       auto BlockNullability = CSI.ReturnType->getNullability(Ctx);
775       if (BlockNullability &&
776           (!RetTyNullability ||
777            hasWeakerNullability(*RetTyNullability, *BlockNullability)))
778         CSI.ReturnType = ReturnType;
779       continue;
780     }
781 
782     // FIXME: This is a poor diagnostic for ReturnStmts without expressions.
783     // TODO: It's possible that the *first* return is the divergent one.
784     Diag(RS->getBeginLoc(),
785          diag::err_typecheck_missing_return_type_incompatible)
786         << ReturnType << CSI.ReturnType << isa<LambdaScopeInfo>(CSI);
787     // Continue iterating so that we keep emitting diagnostics.
788   }
789 }
790 
791 QualType Sema::buildLambdaInitCaptureInitialization(
792     SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
793     Optional<unsigned> NumExpansions, IdentifierInfo *Id, bool IsDirectInit,
794     Expr *&Init) {
795   // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to
796   // deduce against.
797   QualType DeductType = Context.getAutoDeductType();
798   TypeLocBuilder TLB;
799   AutoTypeLoc TL = TLB.push<AutoTypeLoc>(DeductType);
800   TL.setNameLoc(Loc);
801   if (ByRef) {
802     DeductType = BuildReferenceType(DeductType, true, Loc, Id);
803     assert(!DeductType.isNull() && "can't build reference to auto");
804     TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc);
805   }
806   if (EllipsisLoc.isValid()) {
807     if (Init->containsUnexpandedParameterPack()) {
808       Diag(EllipsisLoc, getLangOpts().CPlusPlus20
809                             ? diag::warn_cxx17_compat_init_capture_pack
810                             : diag::ext_init_capture_pack);
811       DeductType = Context.getPackExpansionType(DeductType, NumExpansions,
812                                                 /*ExpectPackInType=*/false);
813       TLB.push<PackExpansionTypeLoc>(DeductType).setEllipsisLoc(EllipsisLoc);
814     } else {
815       // Just ignore the ellipsis for now and form a non-pack variable. We'll
816       // diagnose this later when we try to capture it.
817     }
818   }
819   TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType);
820 
821   // Deduce the type of the init capture.
822   QualType DeducedType = deduceVarTypeFromInitializer(
823       /*VarDecl*/nullptr, DeclarationName(Id), DeductType, TSI,
824       SourceRange(Loc, Loc), IsDirectInit, Init);
825   if (DeducedType.isNull())
826     return QualType();
827 
828   // Are we a non-list direct initialization?
829   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
830 
831   // Perform initialization analysis and ensure any implicit conversions
832   // (such as lvalue-to-rvalue) are enforced.
833   InitializedEntity Entity =
834       InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc);
835   InitializationKind Kind =
836       IsDirectInit
837           ? (CXXDirectInit ? InitializationKind::CreateDirect(
838                                  Loc, Init->getBeginLoc(), Init->getEndLoc())
839                            : InitializationKind::CreateDirectList(Loc))
840           : InitializationKind::CreateCopy(Loc, Init->getBeginLoc());
841 
842   MultiExprArg Args = Init;
843   if (CXXDirectInit)
844     Args =
845         MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs());
846   QualType DclT;
847   InitializationSequence InitSeq(*this, Entity, Kind, Args);
848   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
849 
850   if (Result.isInvalid())
851     return QualType();
852 
853   Init = Result.getAs<Expr>();
854   return DeducedType;
855 }
856 
857 VarDecl *Sema::createLambdaInitCaptureVarDecl(SourceLocation Loc,
858                                               QualType InitCaptureType,
859                                               SourceLocation EllipsisLoc,
860                                               IdentifierInfo *Id,
861                                               unsigned InitStyle, Expr *Init) {
862   // FIXME: Retain the TypeSourceInfo from buildLambdaInitCaptureInitialization
863   // rather than reconstructing it here.
864   TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType, Loc);
865   if (auto PETL = TSI->getTypeLoc().getAs<PackExpansionTypeLoc>())
866     PETL.setEllipsisLoc(EllipsisLoc);
867 
868   // Create a dummy variable representing the init-capture. This is not actually
869   // used as a variable, and only exists as a way to name and refer to the
870   // init-capture.
871   // FIXME: Pass in separate source locations for '&' and identifier.
872   VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc,
873                                    Loc, Id, InitCaptureType, TSI, SC_Auto);
874   NewVD->setInitCapture(true);
875   NewVD->setReferenced(true);
876   // FIXME: Pass in a VarDecl::InitializationStyle.
877   NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle));
878   NewVD->markUsed(Context);
879   NewVD->setInit(Init);
880   if (NewVD->isParameterPack())
881     getCurLambda()->LocalPacks.push_back(NewVD);
882   return NewVD;
883 }
884 
885 void Sema::addInitCapture(LambdaScopeInfo *LSI, VarDecl *Var) {
886   assert(Var->isInitCapture() && "init capture flag should be set");
887   LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(),
888                   /*isNested*/false, Var->getLocation(), SourceLocation(),
889                   Var->getType(), /*Invalid*/false);
890 }
891 
892 void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
893                                         Declarator &ParamInfo,
894                                         Scope *CurScope) {
895   LambdaScopeInfo *const LSI = getCurLambda();
896   assert(LSI && "LambdaScopeInfo should be on stack!");
897 
898   // Determine if we're within a context where we know that the lambda will
899   // be dependent, because there are template parameters in scope.
900   bool KnownDependent;
901   if (LSI->NumExplicitTemplateParams > 0) {
902     auto *TemplateParamScope = CurScope->getTemplateParamParent();
903     assert(TemplateParamScope &&
904            "Lambda with explicit template param list should establish a "
905            "template param scope");
906     assert(TemplateParamScope->getParent());
907     KnownDependent = TemplateParamScope->getParent()
908                                        ->getTemplateParamParent() != nullptr;
909   } else {
910     KnownDependent = CurScope->getTemplateParamParent() != nullptr;
911   }
912 
913   // Determine the signature of the call operator.
914   TypeSourceInfo *MethodTyInfo;
915   bool ExplicitParams = true;
916   bool ExplicitResultType = true;
917   bool ContainsUnexpandedParameterPack = false;
918   SourceLocation EndLoc;
919   SmallVector<ParmVarDecl *, 8> Params;
920   if (ParamInfo.getNumTypeObjects() == 0) {
921     // C++11 [expr.prim.lambda]p4:
922     //   If a lambda-expression does not include a lambda-declarator, it is as
923     //   if the lambda-declarator were ().
924     FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
925         /*IsVariadic=*/false, /*IsCXXMethod=*/true));
926     EPI.HasTrailingReturn = true;
927     EPI.TypeQuals.addConst();
928     LangAS AS = getDefaultCXXMethodAddrSpace();
929     if (AS != LangAS::Default)
930       EPI.TypeQuals.addAddressSpace(AS);
931 
932     // C++1y [expr.prim.lambda]:
933     //   The lambda return type is 'auto', which is replaced by the
934     //   trailing-return type if provided and/or deduced from 'return'
935     //   statements
936     // We don't do this before C++1y, because we don't support deduced return
937     // types there.
938     QualType DefaultTypeForNoTrailingReturn =
939         getLangOpts().CPlusPlus14 ? Context.getAutoDeductType()
940                                   : Context.DependentTy;
941     QualType MethodTy =
942         Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI);
943     MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy);
944     ExplicitParams = false;
945     ExplicitResultType = false;
946     EndLoc = Intro.Range.getEnd();
947   } else {
948     assert(ParamInfo.isFunctionDeclarator() &&
949            "lambda-declarator is a function");
950     DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo();
951 
952     // C++11 [expr.prim.lambda]p5:
953     //   This function call operator is declared const (9.3.1) if and only if
954     //   the lambda-expression's parameter-declaration-clause is not followed
955     //   by mutable. It is neither virtual nor declared volatile. [...]
956     if (!FTI.hasMutableQualifier()) {
957       FTI.getOrCreateMethodQualifiers().SetTypeQual(DeclSpec::TQ_const,
958                                                     SourceLocation());
959     }
960 
961     MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope);
962     assert(MethodTyInfo && "no type from lambda-declarator");
963     EndLoc = ParamInfo.getSourceRange().getEnd();
964 
965     ExplicitResultType = FTI.hasTrailingReturnType();
966 
967     if (FTIHasNonVoidParameters(FTI)) {
968       Params.reserve(FTI.NumParams);
969       for (unsigned i = 0, e = FTI.NumParams; i != e; ++i)
970         Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param));
971     }
972 
973     // Check for unexpanded parameter packs in the method type.
974     if (MethodTyInfo->getType()->containsUnexpandedParameterPack())
975       DiagnoseUnexpandedParameterPack(Intro.Range.getBegin(), MethodTyInfo,
976                                       UPPC_DeclarationType);
977   }
978 
979   CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, MethodTyInfo,
980                                                  KnownDependent, Intro.Default);
981   CXXMethodDecl *Method =
982       startLambdaDefinition(Class, Intro.Range, MethodTyInfo, EndLoc, Params,
983                             ParamInfo.getDeclSpec().getConstexprSpecifier(),
984                             ParamInfo.getTrailingRequiresClause());
985   if (ExplicitParams)
986     CheckCXXDefaultArguments(Method);
987 
988   // This represents the function body for the lambda function, check if we
989   // have to apply optnone due to a pragma.
990   AddRangeBasedOptnone(Method);
991 
992   // code_seg attribute on lambda apply to the method.
993   if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true))
994     Method->addAttr(A);
995 
996   // Attributes on the lambda apply to the method.
997   ProcessDeclAttributes(CurScope, Method, ParamInfo);
998 
999   // CUDA lambdas get implicit host and device attributes.
1000   if (getLangOpts().CUDA)
1001     CUDASetLambdaAttrs(Method);
1002 
1003   // OpenMP lambdas might get assumumption attributes.
1004   if (LangOpts.OpenMP)
1005     ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(Method);
1006 
1007   // Number the lambda for linkage purposes if necessary.
1008   handleLambdaNumbering(Class, Method);
1009 
1010   // Introduce the function call operator as the current declaration context.
1011   PushDeclContext(CurScope, Method);
1012 
1013   // Build the lambda scope.
1014   buildLambdaScope(LSI, Method, Intro.Range, Intro.Default, Intro.DefaultLoc,
1015                    ExplicitParams, ExplicitResultType, !Method->isConst());
1016 
1017   // C++11 [expr.prim.lambda]p9:
1018   //   A lambda-expression whose smallest enclosing scope is a block scope is a
1019   //   local lambda expression; any other lambda expression shall not have a
1020   //   capture-default or simple-capture in its lambda-introducer.
1021   //
1022   // For simple-captures, this is covered by the check below that any named
1023   // entity is a variable that can be captured.
1024   //
1025   // For DR1632, we also allow a capture-default in any context where we can
1026   // odr-use 'this' (in particular, in a default initializer for a non-static
1027   // data member).
1028   if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() &&
1029       (getCurrentThisType().isNull() ||
1030        CheckCXXThisCapture(SourceLocation(), /*Explicit*/true,
1031                            /*BuildAndDiagnose*/false)))
1032     Diag(Intro.DefaultLoc, diag::err_capture_default_non_local);
1033 
1034   // Distinct capture names, for diagnostics.
1035   llvm::SmallSet<IdentifierInfo*, 8> CaptureNames;
1036 
1037   // Handle explicit captures.
1038   SourceLocation PrevCaptureLoc
1039     = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc;
1040   for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E;
1041        PrevCaptureLoc = C->Loc, ++C) {
1042     if (C->Kind == LCK_This || C->Kind == LCK_StarThis) {
1043       if (C->Kind == LCK_StarThis)
1044         Diag(C->Loc, !getLangOpts().CPlusPlus17
1045                              ? diag::ext_star_this_lambda_capture_cxx17
1046                              : diag::warn_cxx14_compat_star_this_lambda_capture);
1047 
1048       // C++11 [expr.prim.lambda]p8:
1049       //   An identifier or this shall not appear more than once in a
1050       //   lambda-capture.
1051       if (LSI->isCXXThisCaptured()) {
1052         Diag(C->Loc, diag::err_capture_more_than_once)
1053             << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation())
1054             << FixItHint::CreateRemoval(
1055                    SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1056         continue;
1057       }
1058 
1059       // C++2a [expr.prim.lambda]p8:
1060       //  If a lambda-capture includes a capture-default that is =,
1061       //  each simple-capture of that lambda-capture shall be of the form
1062       //  "&identifier", "this", or "* this". [ Note: The form [&,this] is
1063       //  redundant but accepted for compatibility with ISO C++14. --end note ]
1064       if (Intro.Default == LCD_ByCopy && C->Kind != LCK_StarThis)
1065         Diag(C->Loc, !getLangOpts().CPlusPlus20
1066                          ? diag::ext_equals_this_lambda_capture_cxx20
1067                          : diag::warn_cxx17_compat_equals_this_lambda_capture);
1068 
1069       // C++11 [expr.prim.lambda]p12:
1070       //   If this is captured by a local lambda expression, its nearest
1071       //   enclosing function shall be a non-static member function.
1072       QualType ThisCaptureType = getCurrentThisType();
1073       if (ThisCaptureType.isNull()) {
1074         Diag(C->Loc, diag::err_this_capture) << true;
1075         continue;
1076       }
1077 
1078       CheckCXXThisCapture(C->Loc, /*Explicit=*/true, /*BuildAndDiagnose*/ true,
1079                           /*FunctionScopeIndexToStopAtPtr*/ nullptr,
1080                           C->Kind == LCK_StarThis);
1081       if (!LSI->Captures.empty())
1082         LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange;
1083       continue;
1084     }
1085 
1086     assert(C->Id && "missing identifier for capture");
1087 
1088     if (C->Init.isInvalid())
1089       continue;
1090 
1091     VarDecl *Var = nullptr;
1092     if (C->Init.isUsable()) {
1093       Diag(C->Loc, getLangOpts().CPlusPlus14
1094                        ? diag::warn_cxx11_compat_init_capture
1095                        : diag::ext_init_capture);
1096 
1097       // If the initializer expression is usable, but the InitCaptureType
1098       // is not, then an error has occurred - so ignore the capture for now.
1099       // for e.g., [n{0}] { }; <-- if no <initializer_list> is included.
1100       // FIXME: we should create the init capture variable and mark it invalid
1101       // in this case.
1102       if (C->InitCaptureType.get().isNull())
1103         continue;
1104 
1105       if (C->Init.get()->containsUnexpandedParameterPack() &&
1106           !C->InitCaptureType.get()->getAs<PackExpansionType>())
1107         DiagnoseUnexpandedParameterPack(C->Init.get(), UPPC_Initializer);
1108 
1109       unsigned InitStyle;
1110       switch (C->InitKind) {
1111       case LambdaCaptureInitKind::NoInit:
1112         llvm_unreachable("not an init-capture?");
1113       case LambdaCaptureInitKind::CopyInit:
1114         InitStyle = VarDecl::CInit;
1115         break;
1116       case LambdaCaptureInitKind::DirectInit:
1117         InitStyle = VarDecl::CallInit;
1118         break;
1119       case LambdaCaptureInitKind::ListInit:
1120         InitStyle = VarDecl::ListInit;
1121         break;
1122       }
1123       Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(),
1124                                            C->EllipsisLoc, C->Id, InitStyle,
1125                                            C->Init.get());
1126       // C++1y [expr.prim.lambda]p11:
1127       //   An init-capture behaves as if it declares and explicitly
1128       //   captures a variable [...] whose declarative region is the
1129       //   lambda-expression's compound-statement
1130       if (Var)
1131         PushOnScopeChains(Var, CurScope, false);
1132     } else {
1133       assert(C->InitKind == LambdaCaptureInitKind::NoInit &&
1134              "init capture has valid but null init?");
1135 
1136       // C++11 [expr.prim.lambda]p8:
1137       //   If a lambda-capture includes a capture-default that is &, the
1138       //   identifiers in the lambda-capture shall not be preceded by &.
1139       //   If a lambda-capture includes a capture-default that is =, [...]
1140       //   each identifier it contains shall be preceded by &.
1141       if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) {
1142         Diag(C->Loc, diag::err_reference_capture_with_reference_default)
1143             << FixItHint::CreateRemoval(
1144                 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1145         continue;
1146       } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) {
1147         Diag(C->Loc, diag::err_copy_capture_with_copy_default)
1148             << FixItHint::CreateRemoval(
1149                 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1150         continue;
1151       }
1152 
1153       // C++11 [expr.prim.lambda]p10:
1154       //   The identifiers in a capture-list are looked up using the usual
1155       //   rules for unqualified name lookup (3.4.1)
1156       DeclarationNameInfo Name(C->Id, C->Loc);
1157       LookupResult R(*this, Name, LookupOrdinaryName);
1158       LookupName(R, CurScope);
1159       if (R.isAmbiguous())
1160         continue;
1161       if (R.empty()) {
1162         // FIXME: Disable corrections that would add qualification?
1163         CXXScopeSpec ScopeSpec;
1164         DeclFilterCCC<VarDecl> Validator{};
1165         if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R, Validator))
1166           continue;
1167       }
1168 
1169       Var = R.getAsSingle<VarDecl>();
1170       if (Var && DiagnoseUseOfDecl(Var, C->Loc))
1171         continue;
1172     }
1173 
1174     // C++11 [expr.prim.lambda]p8:
1175     //   An identifier or this shall not appear more than once in a
1176     //   lambda-capture.
1177     if (!CaptureNames.insert(C->Id).second) {
1178       if (Var && LSI->isCaptured(Var)) {
1179         Diag(C->Loc, diag::err_capture_more_than_once)
1180             << C->Id << SourceRange(LSI->getCapture(Var).getLocation())
1181             << FixItHint::CreateRemoval(
1182                    SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1183       } else
1184         // Previous capture captured something different (one or both was
1185         // an init-cpature): no fixit.
1186         Diag(C->Loc, diag::err_capture_more_than_once) << C->Id;
1187       continue;
1188     }
1189 
1190     // C++11 [expr.prim.lambda]p10:
1191     //   [...] each such lookup shall find a variable with automatic storage
1192     //   duration declared in the reaching scope of the local lambda expression.
1193     // Note that the 'reaching scope' check happens in tryCaptureVariable().
1194     if (!Var) {
1195       Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id;
1196       continue;
1197     }
1198 
1199     // Ignore invalid decls; they'll just confuse the code later.
1200     if (Var->isInvalidDecl())
1201       continue;
1202 
1203     if (!Var->hasLocalStorage()) {
1204       Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id;
1205       Diag(Var->getLocation(), diag::note_previous_decl) << C->Id;
1206       continue;
1207     }
1208 
1209     // C++11 [expr.prim.lambda]p23:
1210     //   A capture followed by an ellipsis is a pack expansion (14.5.3).
1211     SourceLocation EllipsisLoc;
1212     if (C->EllipsisLoc.isValid()) {
1213       if (Var->isParameterPack()) {
1214         EllipsisLoc = C->EllipsisLoc;
1215       } else {
1216         Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1217             << (C->Init.isUsable() ? C->Init.get()->getSourceRange()
1218                                    : SourceRange(C->Loc));
1219 
1220         // Just ignore the ellipsis.
1221       }
1222     } else if (Var->isParameterPack()) {
1223       ContainsUnexpandedParameterPack = true;
1224     }
1225 
1226     if (C->Init.isUsable()) {
1227       addInitCapture(LSI, Var);
1228     } else {
1229       TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef :
1230                                                    TryCapture_ExplicitByVal;
1231       tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc);
1232     }
1233     if (!LSI->Captures.empty())
1234       LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange;
1235   }
1236   finishLambdaExplicitCaptures(LSI);
1237 
1238   LSI->ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
1239 
1240   // Add lambda parameters into scope.
1241   addLambdaParameters(Intro.Captures, Method, CurScope);
1242 
1243   // Enter a new evaluation context to insulate the lambda from any
1244   // cleanups from the enclosing full-expression.
1245   PushExpressionEvaluationContext(
1246       LSI->CallOperator->isConsteval()
1247           ? ExpressionEvaluationContext::ConstantEvaluated
1248           : ExpressionEvaluationContext::PotentiallyEvaluated);
1249 }
1250 
1251 void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
1252                             bool IsInstantiation) {
1253   LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back());
1254 
1255   // Leave the expression-evaluation context.
1256   DiscardCleanupsInEvaluationContext();
1257   PopExpressionEvaluationContext();
1258 
1259   // Leave the context of the lambda.
1260   if (!IsInstantiation)
1261     PopDeclContext();
1262 
1263   // Finalize the lambda.
1264   CXXRecordDecl *Class = LSI->Lambda;
1265   Class->setInvalidDecl();
1266   SmallVector<Decl*, 4> Fields(Class->fields());
1267   ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1268               SourceLocation(), ParsedAttributesView());
1269   CheckCompletedCXXClass(nullptr, Class);
1270 
1271   PopFunctionScopeInfo();
1272 }
1273 
1274 template <typename Func>
1275 static void repeatForLambdaConversionFunctionCallingConvs(
1276     Sema &S, const FunctionProtoType &CallOpProto, Func F) {
1277   CallingConv DefaultFree = S.Context.getDefaultCallingConvention(
1278       CallOpProto.isVariadic(), /*IsCXXMethod=*/false);
1279   CallingConv DefaultMember = S.Context.getDefaultCallingConvention(
1280       CallOpProto.isVariadic(), /*IsCXXMethod=*/true);
1281   CallingConv CallOpCC = CallOpProto.getCallConv();
1282 
1283   /// Implement emitting a version of the operator for many of the calling
1284   /// conventions for MSVC, as described here:
1285   /// https://devblogs.microsoft.com/oldnewthing/20150220-00/?p=44623.
1286   /// Experimentally, we determined that cdecl, stdcall, fastcall, and
1287   /// vectorcall are generated by MSVC when it is supported by the target.
1288   /// Additionally, we are ensuring that the default-free/default-member and
1289   /// call-operator calling convention are generated as well.
1290   /// NOTE: We intentionally generate a 'thiscall' on Win32 implicitly from the
1291   /// 'member default', despite MSVC not doing so. We do this in order to ensure
1292   /// that someone who intentionally places 'thiscall' on the lambda call
1293   /// operator will still get that overload, since we don't have the a way of
1294   /// detecting the attribute by the time we get here.
1295   if (S.getLangOpts().MSVCCompat) {
1296     CallingConv Convs[] = {
1297         CC_C,        CC_X86StdCall, CC_X86FastCall, CC_X86VectorCall,
1298         DefaultFree, DefaultMember, CallOpCC};
1299     llvm::sort(Convs);
1300     llvm::iterator_range<CallingConv *> Range(
1301         std::begin(Convs), std::unique(std::begin(Convs), std::end(Convs)));
1302     const TargetInfo &TI = S.getASTContext().getTargetInfo();
1303 
1304     for (CallingConv C : Range) {
1305       if (TI.checkCallingConvention(C) == TargetInfo::CCCR_OK)
1306         F(C);
1307     }
1308     return;
1309   }
1310 
1311   if (CallOpCC == DefaultMember && DefaultMember != DefaultFree) {
1312     F(DefaultFree);
1313     F(DefaultMember);
1314   } else {
1315     F(CallOpCC);
1316   }
1317 }
1318 
1319 // Returns the 'standard' calling convention to be used for the lambda
1320 // conversion function, that is, the 'free' function calling convention unless
1321 // it is overridden by a non-default calling convention attribute.
1322 static CallingConv
1323 getLambdaConversionFunctionCallConv(Sema &S,
1324                                     const FunctionProtoType *CallOpProto) {
1325   CallingConv DefaultFree = S.Context.getDefaultCallingConvention(
1326       CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
1327   CallingConv DefaultMember = S.Context.getDefaultCallingConvention(
1328       CallOpProto->isVariadic(), /*IsCXXMethod=*/true);
1329   CallingConv CallOpCC = CallOpProto->getCallConv();
1330 
1331   // If the call-operator hasn't been changed, return both the 'free' and
1332   // 'member' function calling convention.
1333   if (CallOpCC == DefaultMember && DefaultMember != DefaultFree)
1334     return DefaultFree;
1335   return CallOpCC;
1336 }
1337 
1338 QualType Sema::getLambdaConversionFunctionResultType(
1339     const FunctionProtoType *CallOpProto, CallingConv CC) {
1340   const FunctionProtoType::ExtProtoInfo CallOpExtInfo =
1341       CallOpProto->getExtProtoInfo();
1342   FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo;
1343   InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC);
1344   InvokerExtInfo.TypeQuals = Qualifiers();
1345   assert(InvokerExtInfo.RefQualifier == RQ_None &&
1346          "Lambda's call operator should not have a reference qualifier");
1347   return Context.getFunctionType(CallOpProto->getReturnType(),
1348                                  CallOpProto->getParamTypes(), InvokerExtInfo);
1349 }
1350 
1351 /// Add a lambda's conversion to function pointer, as described in
1352 /// C++11 [expr.prim.lambda]p6.
1353 static void addFunctionPointerConversion(Sema &S, SourceRange IntroducerRange,
1354                                          CXXRecordDecl *Class,
1355                                          CXXMethodDecl *CallOperator,
1356                                          QualType InvokerFunctionTy) {
1357   // This conversion is explicitly disabled if the lambda's function has
1358   // pass_object_size attributes on any of its parameters.
1359   auto HasPassObjectSizeAttr = [](const ParmVarDecl *P) {
1360     return P->hasAttr<PassObjectSizeAttr>();
1361   };
1362   if (llvm::any_of(CallOperator->parameters(), HasPassObjectSizeAttr))
1363     return;
1364 
1365   // Add the conversion to function pointer.
1366   QualType PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy);
1367 
1368   // Create the type of the conversion function.
1369   FunctionProtoType::ExtProtoInfo ConvExtInfo(
1370       S.Context.getDefaultCallingConvention(
1371       /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1372   // The conversion function is always const and noexcept.
1373   ConvExtInfo.TypeQuals = Qualifiers();
1374   ConvExtInfo.TypeQuals.addConst();
1375   ConvExtInfo.ExceptionSpec.Type = EST_BasicNoexcept;
1376   QualType ConvTy =
1377       S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo);
1378 
1379   SourceLocation Loc = IntroducerRange.getBegin();
1380   DeclarationName ConversionName
1381     = S.Context.DeclarationNames.getCXXConversionFunctionName(
1382         S.Context.getCanonicalType(PtrToFunctionTy));
1383   DeclarationNameLoc ConvNameLoc;
1384   // Construct a TypeSourceInfo for the conversion function, and wire
1385   // all the parameters appropriately for the FunctionProtoTypeLoc
1386   // so that everything works during transformation/instantiation of
1387   // generic lambdas.
1388   // The main reason for wiring up the parameters of the conversion
1389   // function with that of the call operator is so that constructs
1390   // like the following work:
1391   // auto L = [](auto b) {                <-- 1
1392   //   return [](auto a) -> decltype(a) { <-- 2
1393   //      return a;
1394   //   };
1395   // };
1396   // int (*fp)(int) = L(5);
1397   // Because the trailing return type can contain DeclRefExprs that refer
1398   // to the original call operator's variables, we hijack the call
1399   // operators ParmVarDecls below.
1400   TypeSourceInfo *ConvNamePtrToFunctionTSI =
1401       S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc);
1402   ConvNameLoc.NamedType.TInfo = ConvNamePtrToFunctionTSI;
1403 
1404   // The conversion function is a conversion to a pointer-to-function.
1405   TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc);
1406   FunctionProtoTypeLoc ConvTL =
1407       ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
1408   // Get the result of the conversion function which is a pointer-to-function.
1409   PointerTypeLoc PtrToFunctionTL =
1410       ConvTL.getReturnLoc().getAs<PointerTypeLoc>();
1411   // Do the same for the TypeSourceInfo that is used to name the conversion
1412   // operator.
1413   PointerTypeLoc ConvNamePtrToFunctionTL =
1414       ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>();
1415 
1416   // Get the underlying function types that the conversion function will
1417   // be converting to (should match the type of the call operator).
1418   FunctionProtoTypeLoc CallOpConvTL =
1419       PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1420   FunctionProtoTypeLoc CallOpConvNameTL =
1421     ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1422 
1423   // Wire up the FunctionProtoTypeLocs with the call operator's parameters.
1424   // These parameter's are essentially used to transform the name and
1425   // the type of the conversion operator.  By using the same parameters
1426   // as the call operator's we don't have to fix any back references that
1427   // the trailing return type of the call operator's uses (such as
1428   // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.)
1429   // - we can simply use the return type of the call operator, and
1430   // everything should work.
1431   SmallVector<ParmVarDecl *, 4> InvokerParams;
1432   for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1433     ParmVarDecl *From = CallOperator->getParamDecl(I);
1434 
1435     InvokerParams.push_back(ParmVarDecl::Create(
1436         S.Context,
1437         // Temporarily add to the TU. This is set to the invoker below.
1438         S.Context.getTranslationUnitDecl(), From->getBeginLoc(),
1439         From->getLocation(), From->getIdentifier(), From->getType(),
1440         From->getTypeSourceInfo(), From->getStorageClass(),
1441         /*DefArg=*/nullptr));
1442     CallOpConvTL.setParam(I, From);
1443     CallOpConvNameTL.setParam(I, From);
1444   }
1445 
1446   CXXConversionDecl *Conversion = CXXConversionDecl::Create(
1447       S.Context, Class, Loc,
1448       DeclarationNameInfo(ConversionName, Loc, ConvNameLoc), ConvTy, ConvTSI,
1449       /*isInline=*/true, ExplicitSpecifier(),
1450       S.getLangOpts().CPlusPlus17 ? ConstexprSpecKind::Constexpr
1451                                   : ConstexprSpecKind::Unspecified,
1452       CallOperator->getBody()->getEndLoc());
1453   Conversion->setAccess(AS_public);
1454   Conversion->setImplicit(true);
1455 
1456   if (Class->isGenericLambda()) {
1457     // Create a template version of the conversion operator, using the template
1458     // parameter list of the function call operator.
1459     FunctionTemplateDecl *TemplateCallOperator =
1460             CallOperator->getDescribedFunctionTemplate();
1461     FunctionTemplateDecl *ConversionTemplate =
1462                   FunctionTemplateDecl::Create(S.Context, Class,
1463                                       Loc, ConversionName,
1464                                       TemplateCallOperator->getTemplateParameters(),
1465                                       Conversion);
1466     ConversionTemplate->setAccess(AS_public);
1467     ConversionTemplate->setImplicit(true);
1468     Conversion->setDescribedFunctionTemplate(ConversionTemplate);
1469     Class->addDecl(ConversionTemplate);
1470   } else
1471     Class->addDecl(Conversion);
1472   // Add a non-static member function that will be the result of
1473   // the conversion with a certain unique ID.
1474   DeclarationName InvokerName = &S.Context.Idents.get(
1475                                                  getLambdaStaticInvokerName());
1476   // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo()
1477   // we should get a prebuilt TrivialTypeSourceInfo from Context
1478   // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc
1479   // then rewire the parameters accordingly, by hoisting up the InvokeParams
1480   // loop below and then use its Params to set Invoke->setParams(...) below.
1481   // This would avoid the 'const' qualifier of the calloperator from
1482   // contaminating the type of the invoker, which is currently adjusted
1483   // in SemaTemplateDeduction.cpp:DeduceTemplateArguments.  Fixing the
1484   // trailing return type of the invoker would require a visitor to rebuild
1485   // the trailing return type and adjusting all back DeclRefExpr's to refer
1486   // to the new static invoker parameters - not the call operator's.
1487   CXXMethodDecl *Invoke = CXXMethodDecl::Create(
1488       S.Context, Class, Loc, DeclarationNameInfo(InvokerName, Loc),
1489       InvokerFunctionTy, CallOperator->getTypeSourceInfo(), SC_Static,
1490       /*isInline=*/true, ConstexprSpecKind::Unspecified,
1491       CallOperator->getBody()->getEndLoc());
1492   for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I)
1493     InvokerParams[I]->setOwningFunction(Invoke);
1494   Invoke->setParams(InvokerParams);
1495   Invoke->setAccess(AS_private);
1496   Invoke->setImplicit(true);
1497   if (Class->isGenericLambda()) {
1498     FunctionTemplateDecl *TemplateCallOperator =
1499             CallOperator->getDescribedFunctionTemplate();
1500     FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create(
1501                           S.Context, Class, Loc, InvokerName,
1502                           TemplateCallOperator->getTemplateParameters(),
1503                           Invoke);
1504     StaticInvokerTemplate->setAccess(AS_private);
1505     StaticInvokerTemplate->setImplicit(true);
1506     Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate);
1507     Class->addDecl(StaticInvokerTemplate);
1508   } else
1509     Class->addDecl(Invoke);
1510 }
1511 
1512 /// Add a lambda's conversion to function pointers, as described in
1513 /// C++11 [expr.prim.lambda]p6. Note that in most cases, this should emit only a
1514 /// single pointer conversion. In the event that the default calling convention
1515 /// for free and member functions is different, it will emit both conventions.
1516 static void addFunctionPointerConversions(Sema &S, SourceRange IntroducerRange,
1517                                           CXXRecordDecl *Class,
1518                                           CXXMethodDecl *CallOperator) {
1519   const FunctionProtoType *CallOpProto =
1520       CallOperator->getType()->castAs<FunctionProtoType>();
1521 
1522   repeatForLambdaConversionFunctionCallingConvs(
1523       S, *CallOpProto, [&](CallingConv CC) {
1524         QualType InvokerFunctionTy =
1525             S.getLambdaConversionFunctionResultType(CallOpProto, CC);
1526         addFunctionPointerConversion(S, IntroducerRange, Class, CallOperator,
1527                                      InvokerFunctionTy);
1528       });
1529 }
1530 
1531 /// Add a lambda's conversion to block pointer.
1532 static void addBlockPointerConversion(Sema &S,
1533                                       SourceRange IntroducerRange,
1534                                       CXXRecordDecl *Class,
1535                                       CXXMethodDecl *CallOperator) {
1536   const FunctionProtoType *CallOpProto =
1537       CallOperator->getType()->castAs<FunctionProtoType>();
1538   QualType FunctionTy = S.getLambdaConversionFunctionResultType(
1539       CallOpProto, getLambdaConversionFunctionCallConv(S, CallOpProto));
1540   QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy);
1541 
1542   FunctionProtoType::ExtProtoInfo ConversionEPI(
1543       S.Context.getDefaultCallingConvention(
1544           /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1545   ConversionEPI.TypeQuals = Qualifiers();
1546   ConversionEPI.TypeQuals.addConst();
1547   QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ConversionEPI);
1548 
1549   SourceLocation Loc = IntroducerRange.getBegin();
1550   DeclarationName Name
1551     = S.Context.DeclarationNames.getCXXConversionFunctionName(
1552         S.Context.getCanonicalType(BlockPtrTy));
1553   DeclarationNameLoc NameLoc;
1554   NameLoc.NamedType.TInfo = S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc);
1555   CXXConversionDecl *Conversion = CXXConversionDecl::Create(
1556       S.Context, Class, Loc, DeclarationNameInfo(Name, Loc, NameLoc), ConvTy,
1557       S.Context.getTrivialTypeSourceInfo(ConvTy, Loc),
1558       /*isInline=*/true, ExplicitSpecifier(), ConstexprSpecKind::Unspecified,
1559       CallOperator->getBody()->getEndLoc());
1560   Conversion->setAccess(AS_public);
1561   Conversion->setImplicit(true);
1562   Class->addDecl(Conversion);
1563 }
1564 
1565 ExprResult Sema::BuildCaptureInit(const Capture &Cap,
1566                                   SourceLocation ImplicitCaptureLoc,
1567                                   bool IsOpenMPMapping) {
1568   // VLA captures don't have a stored initialization expression.
1569   if (Cap.isVLATypeCapture())
1570     return ExprResult();
1571 
1572   // An init-capture is initialized directly from its stored initializer.
1573   if (Cap.isInitCapture())
1574     return Cap.getVariable()->getInit();
1575 
1576   // For anything else, build an initialization expression. For an implicit
1577   // capture, the capture notionally happens at the capture-default, so use
1578   // that location here.
1579   SourceLocation Loc =
1580       ImplicitCaptureLoc.isValid() ? ImplicitCaptureLoc : Cap.getLocation();
1581 
1582   // C++11 [expr.prim.lambda]p21:
1583   //   When the lambda-expression is evaluated, the entities that
1584   //   are captured by copy are used to direct-initialize each
1585   //   corresponding non-static data member of the resulting closure
1586   //   object. (For array members, the array elements are
1587   //   direct-initialized in increasing subscript order.) These
1588   //   initializations are performed in the (unspecified) order in
1589   //   which the non-static data members are declared.
1590 
1591   // C++ [expr.prim.lambda]p12:
1592   //   An entity captured by a lambda-expression is odr-used (3.2) in
1593   //   the scope containing the lambda-expression.
1594   ExprResult Init;
1595   IdentifierInfo *Name = nullptr;
1596   if (Cap.isThisCapture()) {
1597     QualType ThisTy = getCurrentThisType();
1598     Expr *This = BuildCXXThisExpr(Loc, ThisTy, ImplicitCaptureLoc.isValid());
1599     if (Cap.isCopyCapture())
1600       Init = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
1601     else
1602       Init = This;
1603   } else {
1604     assert(Cap.isVariableCapture() && "unknown kind of capture");
1605     VarDecl *Var = Cap.getVariable();
1606     Name = Var->getIdentifier();
1607     Init = BuildDeclarationNameExpr(
1608       CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
1609   }
1610 
1611   // In OpenMP, the capture kind doesn't actually describe how to capture:
1612   // variables are "mapped" onto the device in a process that does not formally
1613   // make a copy, even for a "copy capture".
1614   if (IsOpenMPMapping)
1615     return Init;
1616 
1617   if (Init.isInvalid())
1618     return ExprError();
1619 
1620   Expr *InitExpr = Init.get();
1621   InitializedEntity Entity = InitializedEntity::InitializeLambdaCapture(
1622       Name, Cap.getCaptureType(), Loc);
1623   InitializationKind InitKind =
1624       InitializationKind::CreateDirect(Loc, Loc, Loc);
1625   InitializationSequence InitSeq(*this, Entity, InitKind, InitExpr);
1626   return InitSeq.Perform(*this, Entity, InitKind, InitExpr);
1627 }
1628 
1629 ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
1630                                  Scope *CurScope) {
1631   LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back());
1632   ActOnFinishFunctionBody(LSI.CallOperator, Body);
1633   return BuildLambdaExpr(StartLoc, Body->getEndLoc(), &LSI);
1634 }
1635 
1636 static LambdaCaptureDefault
1637 mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS) {
1638   switch (ICS) {
1639   case CapturingScopeInfo::ImpCap_None:
1640     return LCD_None;
1641   case CapturingScopeInfo::ImpCap_LambdaByval:
1642     return LCD_ByCopy;
1643   case CapturingScopeInfo::ImpCap_CapturedRegion:
1644   case CapturingScopeInfo::ImpCap_LambdaByref:
1645     return LCD_ByRef;
1646   case CapturingScopeInfo::ImpCap_Block:
1647     llvm_unreachable("block capture in lambda");
1648   }
1649   llvm_unreachable("Unknown implicit capture style");
1650 }
1651 
1652 bool Sema::CaptureHasSideEffects(const Capture &From) {
1653   if (From.isInitCapture()) {
1654     Expr *Init = From.getVariable()->getInit();
1655     if (Init && Init->HasSideEffects(Context))
1656       return true;
1657   }
1658 
1659   if (!From.isCopyCapture())
1660     return false;
1661 
1662   const QualType T = From.isThisCapture()
1663                          ? getCurrentThisType()->getPointeeType()
1664                          : From.getCaptureType();
1665 
1666   if (T.isVolatileQualified())
1667     return true;
1668 
1669   const Type *BaseT = T->getBaseElementTypeUnsafe();
1670   if (const CXXRecordDecl *RD = BaseT->getAsCXXRecordDecl())
1671     return !RD->isCompleteDefinition() || !RD->hasTrivialCopyConstructor() ||
1672            !RD->hasTrivialDestructor();
1673 
1674   return false;
1675 }
1676 
1677 bool Sema::DiagnoseUnusedLambdaCapture(SourceRange CaptureRange,
1678                                        const Capture &From) {
1679   if (CaptureHasSideEffects(From))
1680     return false;
1681 
1682   if (From.isVLATypeCapture())
1683     return false;
1684 
1685   auto diag = Diag(From.getLocation(), diag::warn_unused_lambda_capture);
1686   if (From.isThisCapture())
1687     diag << "'this'";
1688   else
1689     diag << From.getVariable();
1690   diag << From.isNonODRUsed();
1691   diag << FixItHint::CreateRemoval(CaptureRange);
1692   return true;
1693 }
1694 
1695 /// Create a field within the lambda class or captured statement record for the
1696 /// given capture.
1697 FieldDecl *Sema::BuildCaptureField(RecordDecl *RD,
1698                                    const sema::Capture &Capture) {
1699   SourceLocation Loc = Capture.getLocation();
1700   QualType FieldType = Capture.getCaptureType();
1701 
1702   TypeSourceInfo *TSI = nullptr;
1703   if (Capture.isVariableCapture()) {
1704     auto *Var = Capture.getVariable();
1705     if (Var->isInitCapture())
1706       TSI = Capture.getVariable()->getTypeSourceInfo();
1707   }
1708 
1709   // FIXME: Should we really be doing this? A null TypeSourceInfo seems more
1710   // appropriate, at least for an implicit capture.
1711   if (!TSI)
1712     TSI = Context.getTrivialTypeSourceInfo(FieldType, Loc);
1713 
1714   // Build the non-static data member.
1715   FieldDecl *Field =
1716       FieldDecl::Create(Context, RD, /*StartLoc=*/Loc, /*IdLoc=*/Loc,
1717                         /*Id=*/nullptr, FieldType, TSI, /*BW=*/nullptr,
1718                         /*Mutable=*/false, ICIS_NoInit);
1719   // If the variable being captured has an invalid type, mark the class as
1720   // invalid as well.
1721   if (!FieldType->isDependentType()) {
1722     if (RequireCompleteSizedType(Loc, FieldType,
1723                                  diag::err_field_incomplete_or_sizeless)) {
1724       RD->setInvalidDecl();
1725       Field->setInvalidDecl();
1726     } else {
1727       NamedDecl *Def;
1728       FieldType->isIncompleteType(&Def);
1729       if (Def && Def->isInvalidDecl()) {
1730         RD->setInvalidDecl();
1731         Field->setInvalidDecl();
1732       }
1733     }
1734   }
1735   Field->setImplicit(true);
1736   Field->setAccess(AS_private);
1737   RD->addDecl(Field);
1738 
1739   if (Capture.isVLATypeCapture())
1740     Field->setCapturedVLAType(Capture.getCapturedVLAType());
1741 
1742   return Field;
1743 }
1744 
1745 ExprResult Sema::BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc,
1746                                  LambdaScopeInfo *LSI) {
1747   // Collect information from the lambda scope.
1748   SmallVector<LambdaCapture, 4> Captures;
1749   SmallVector<Expr *, 4> CaptureInits;
1750   SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc;
1751   LambdaCaptureDefault CaptureDefault =
1752       mapImplicitCaptureStyle(LSI->ImpCaptureStyle);
1753   CXXRecordDecl *Class;
1754   CXXMethodDecl *CallOperator;
1755   SourceRange IntroducerRange;
1756   bool ExplicitParams;
1757   bool ExplicitResultType;
1758   CleanupInfo LambdaCleanup;
1759   bool ContainsUnexpandedParameterPack;
1760   bool IsGenericLambda;
1761   {
1762     CallOperator = LSI->CallOperator;
1763     Class = LSI->Lambda;
1764     IntroducerRange = LSI->IntroducerRange;
1765     ExplicitParams = LSI->ExplicitParams;
1766     ExplicitResultType = !LSI->HasImplicitReturnType;
1767     LambdaCleanup = LSI->Cleanup;
1768     ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack;
1769     IsGenericLambda = Class->isGenericLambda();
1770 
1771     CallOperator->setLexicalDeclContext(Class);
1772     Decl *TemplateOrNonTemplateCallOperatorDecl =
1773         CallOperator->getDescribedFunctionTemplate()
1774         ? CallOperator->getDescribedFunctionTemplate()
1775         : cast<Decl>(CallOperator);
1776 
1777     // FIXME: Is this really the best choice? Keeping the lexical decl context
1778     // set as CurContext seems more faithful to the source.
1779     TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class);
1780 
1781     PopExpressionEvaluationContext();
1782 
1783     // True if the current capture has a used capture or default before it.
1784     bool CurHasPreviousCapture = CaptureDefault != LCD_None;
1785     SourceLocation PrevCaptureLoc = CurHasPreviousCapture ?
1786         CaptureDefaultLoc : IntroducerRange.getBegin();
1787 
1788     for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) {
1789       const Capture &From = LSI->Captures[I];
1790 
1791       if (From.isInvalid())
1792         return ExprError();
1793 
1794       assert(!From.isBlockCapture() && "Cannot capture __block variables");
1795       bool IsImplicit = I >= LSI->NumExplicitCaptures;
1796       SourceLocation ImplicitCaptureLoc =
1797           IsImplicit ? CaptureDefaultLoc : SourceLocation();
1798 
1799       // Use source ranges of explicit captures for fixits where available.
1800       SourceRange CaptureRange = LSI->ExplicitCaptureRanges[I];
1801 
1802       // Warn about unused explicit captures.
1803       bool IsCaptureUsed = true;
1804       if (!CurContext->isDependentContext() && !IsImplicit &&
1805           !From.isODRUsed()) {
1806         // Initialized captures that are non-ODR used may not be eliminated.
1807         // FIXME: Where did the IsGenericLambda here come from?
1808         bool NonODRUsedInitCapture =
1809             IsGenericLambda && From.isNonODRUsed() && From.isInitCapture();
1810         if (!NonODRUsedInitCapture) {
1811           bool IsLast = (I + 1) == LSI->NumExplicitCaptures;
1812           SourceRange FixItRange;
1813           if (CaptureRange.isValid()) {
1814             if (!CurHasPreviousCapture && !IsLast) {
1815               // If there are no captures preceding this capture, remove the
1816               // following comma.
1817               FixItRange = SourceRange(CaptureRange.getBegin(),
1818                                        getLocForEndOfToken(CaptureRange.getEnd()));
1819             } else {
1820               // Otherwise, remove the comma since the last used capture.
1821               FixItRange = SourceRange(getLocForEndOfToken(PrevCaptureLoc),
1822                                        CaptureRange.getEnd());
1823             }
1824           }
1825 
1826           IsCaptureUsed = !DiagnoseUnusedLambdaCapture(FixItRange, From);
1827         }
1828       }
1829 
1830       if (CaptureRange.isValid()) {
1831         CurHasPreviousCapture |= IsCaptureUsed;
1832         PrevCaptureLoc = CaptureRange.getEnd();
1833       }
1834 
1835       // Map the capture to our AST representation.
1836       LambdaCapture Capture = [&] {
1837         if (From.isThisCapture()) {
1838           // Capturing 'this' implicitly with a default of '[=]' is deprecated,
1839           // because it results in a reference capture. Don't warn prior to
1840           // C++2a; there's nothing that can be done about it before then.
1841           if (getLangOpts().CPlusPlus20 && IsImplicit &&
1842               CaptureDefault == LCD_ByCopy) {
1843             Diag(From.getLocation(), diag::warn_deprecated_this_capture);
1844             Diag(CaptureDefaultLoc, diag::note_deprecated_this_capture)
1845                 << FixItHint::CreateInsertion(
1846                        getLocForEndOfToken(CaptureDefaultLoc), ", this");
1847           }
1848           return LambdaCapture(From.getLocation(), IsImplicit,
1849                                From.isCopyCapture() ? LCK_StarThis : LCK_This);
1850         } else if (From.isVLATypeCapture()) {
1851           return LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType);
1852         } else {
1853           assert(From.isVariableCapture() && "unknown kind of capture");
1854           VarDecl *Var = From.getVariable();
1855           LambdaCaptureKind Kind =
1856               From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef;
1857           return LambdaCapture(From.getLocation(), IsImplicit, Kind, Var,
1858                                From.getEllipsisLoc());
1859         }
1860       }();
1861 
1862       // Form the initializer for the capture field.
1863       ExprResult Init = BuildCaptureInit(From, ImplicitCaptureLoc);
1864 
1865       // FIXME: Skip this capture if the capture is not used, the initializer
1866       // has no side-effects, the type of the capture is trivial, and the
1867       // lambda is not externally visible.
1868 
1869       // Add a FieldDecl for the capture and form its initializer.
1870       BuildCaptureField(Class, From);
1871       Captures.push_back(Capture);
1872       CaptureInits.push_back(Init.get());
1873 
1874       if (LangOpts.CUDA)
1875         CUDACheckLambdaCapture(CallOperator, From);
1876     }
1877 
1878     Class->setCaptures(Context, Captures);
1879 
1880     // C++11 [expr.prim.lambda]p6:
1881     //   The closure type for a lambda-expression with no lambda-capture
1882     //   has a public non-virtual non-explicit const conversion function
1883     //   to pointer to function having the same parameter and return
1884     //   types as the closure type's function call operator.
1885     if (Captures.empty() && CaptureDefault == LCD_None)
1886       addFunctionPointerConversions(*this, IntroducerRange, Class,
1887                                     CallOperator);
1888 
1889     // Objective-C++:
1890     //   The closure type for a lambda-expression has a public non-virtual
1891     //   non-explicit const conversion function to a block pointer having the
1892     //   same parameter and return types as the closure type's function call
1893     //   operator.
1894     // FIXME: Fix generic lambda to block conversions.
1895     if (getLangOpts().Blocks && getLangOpts().ObjC && !IsGenericLambda)
1896       addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator);
1897 
1898     // Finalize the lambda class.
1899     SmallVector<Decl*, 4> Fields(Class->fields());
1900     ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1901                 SourceLocation(), ParsedAttributesView());
1902     CheckCompletedCXXClass(nullptr, Class);
1903   }
1904 
1905   Cleanup.mergeFrom(LambdaCleanup);
1906 
1907   LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange,
1908                                           CaptureDefault, CaptureDefaultLoc,
1909                                           ExplicitParams, ExplicitResultType,
1910                                           CaptureInits, EndLoc,
1911                                           ContainsUnexpandedParameterPack);
1912   // If the lambda expression's call operator is not explicitly marked constexpr
1913   // and we are not in a dependent context, analyze the call operator to infer
1914   // its constexpr-ness, suppressing diagnostics while doing so.
1915   if (getLangOpts().CPlusPlus17 && !CallOperator->isInvalidDecl() &&
1916       !CallOperator->isConstexpr() &&
1917       !isa<CoroutineBodyStmt>(CallOperator->getBody()) &&
1918       !Class->getDeclContext()->isDependentContext()) {
1919     CallOperator->setConstexprKind(
1920         CheckConstexprFunctionDefinition(CallOperator,
1921                                          CheckConstexprKind::CheckValid)
1922             ? ConstexprSpecKind::Constexpr
1923             : ConstexprSpecKind::Unspecified);
1924   }
1925 
1926   // Emit delayed shadowing warnings now that the full capture list is known.
1927   DiagnoseShadowingLambdaDecls(LSI);
1928 
1929   if (!CurContext->isDependentContext()) {
1930     switch (ExprEvalContexts.back().Context) {
1931     // C++11 [expr.prim.lambda]p2:
1932     //   A lambda-expression shall not appear in an unevaluated operand
1933     //   (Clause 5).
1934     case ExpressionEvaluationContext::Unevaluated:
1935     case ExpressionEvaluationContext::UnevaluatedList:
1936     case ExpressionEvaluationContext::UnevaluatedAbstract:
1937     // C++1y [expr.const]p2:
1938     //   A conditional-expression e is a core constant expression unless the
1939     //   evaluation of e, following the rules of the abstract machine, would
1940     //   evaluate [...] a lambda-expression.
1941     //
1942     // This is technically incorrect, there are some constant evaluated contexts
1943     // where this should be allowed.  We should probably fix this when DR1607 is
1944     // ratified, it lays out the exact set of conditions where we shouldn't
1945     // allow a lambda-expression.
1946     case ExpressionEvaluationContext::ConstantEvaluated:
1947       // We don't actually diagnose this case immediately, because we
1948       // could be within a context where we might find out later that
1949       // the expression is potentially evaluated (e.g., for typeid).
1950       ExprEvalContexts.back().Lambdas.push_back(Lambda);
1951       break;
1952 
1953     case ExpressionEvaluationContext::DiscardedStatement:
1954     case ExpressionEvaluationContext::PotentiallyEvaluated:
1955     case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
1956       break;
1957     }
1958   }
1959 
1960   return MaybeBindToTemporary(Lambda);
1961 }
1962 
1963 ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
1964                                                SourceLocation ConvLocation,
1965                                                CXXConversionDecl *Conv,
1966                                                Expr *Src) {
1967   // Make sure that the lambda call operator is marked used.
1968   CXXRecordDecl *Lambda = Conv->getParent();
1969   CXXMethodDecl *CallOperator
1970     = cast<CXXMethodDecl>(
1971         Lambda->lookup(
1972           Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
1973   CallOperator->setReferenced();
1974   CallOperator->markUsed(Context);
1975 
1976   ExprResult Init = PerformCopyInitialization(
1977       InitializedEntity::InitializeLambdaToBlock(ConvLocation, Src->getType(),
1978                                                  /*NRVO=*/false),
1979       CurrentLocation, Src);
1980   if (!Init.isInvalid())
1981     Init = ActOnFinishFullExpr(Init.get(), /*DiscardedValue*/ false);
1982 
1983   if (Init.isInvalid())
1984     return ExprError();
1985 
1986   // Create the new block to be returned.
1987   BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation);
1988 
1989   // Set the type information.
1990   Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
1991   Block->setIsVariadic(CallOperator->isVariadic());
1992   Block->setBlockMissingReturnType(false);
1993 
1994   // Add parameters.
1995   SmallVector<ParmVarDecl *, 4> BlockParams;
1996   for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1997     ParmVarDecl *From = CallOperator->getParamDecl(I);
1998     BlockParams.push_back(ParmVarDecl::Create(
1999         Context, Block, From->getBeginLoc(), From->getLocation(),
2000         From->getIdentifier(), From->getType(), From->getTypeSourceInfo(),
2001         From->getStorageClass(),
2002         /*DefArg=*/nullptr));
2003   }
2004   Block->setParams(BlockParams);
2005 
2006   Block->setIsConversionFromLambda(true);
2007 
2008   // Add capture. The capture uses a fake variable, which doesn't correspond
2009   // to any actual memory location. However, the initializer copy-initializes
2010   // the lambda object.
2011   TypeSourceInfo *CapVarTSI =
2012       Context.getTrivialTypeSourceInfo(Src->getType());
2013   VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation,
2014                                     ConvLocation, nullptr,
2015                                     Src->getType(), CapVarTSI,
2016                                     SC_None);
2017   BlockDecl::Capture Capture(/*variable=*/CapVar, /*byRef=*/false,
2018                              /*nested=*/false, /*copy=*/Init.get());
2019   Block->setCaptures(Context, Capture, /*CapturesCXXThis=*/false);
2020 
2021   // Add a fake function body to the block. IR generation is responsible
2022   // for filling in the actual body, which cannot be expressed as an AST.
2023   Block->setBody(new (Context) CompoundStmt(ConvLocation));
2024 
2025   // Create the block literal expression.
2026   Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
2027   ExprCleanupObjects.push_back(Block);
2028   Cleanup.setExprNeedsCleanups(true);
2029 
2030   return BuildBlock;
2031 }
2032