1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for initializers. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/DeclObjC.h" 15 #include "clang/AST/ExprCXX.h" 16 #include "clang/AST/ExprObjC.h" 17 #include "clang/AST/ExprOpenMP.h" 18 #include "clang/AST/TypeLoc.h" 19 #include "clang/Basic/CharInfo.h" 20 #include "clang/Basic/SourceManager.h" 21 #include "clang/Basic/TargetInfo.h" 22 #include "clang/Sema/Designator.h" 23 #include "clang/Sema/Initialization.h" 24 #include "clang/Sema/Lookup.h" 25 #include "clang/Sema/SemaInternal.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/SmallString.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/raw_ostream.h" 30 31 using namespace clang; 32 33 //===----------------------------------------------------------------------===// 34 // Sema Initialization Checking 35 //===----------------------------------------------------------------------===// 36 37 /// Check whether T is compatible with a wide character type (wchar_t, 38 /// char16_t or char32_t). 39 static bool IsWideCharCompatible(QualType T, ASTContext &Context) { 40 if (Context.typesAreCompatible(Context.getWideCharType(), T)) 41 return true; 42 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) { 43 return Context.typesAreCompatible(Context.Char16Ty, T) || 44 Context.typesAreCompatible(Context.Char32Ty, T); 45 } 46 return false; 47 } 48 49 enum StringInitFailureKind { 50 SIF_None, 51 SIF_NarrowStringIntoWideChar, 52 SIF_WideStringIntoChar, 53 SIF_IncompatWideStringIntoWideChar, 54 SIF_UTF8StringIntoPlainChar, 55 SIF_PlainStringIntoUTF8Char, 56 SIF_Other 57 }; 58 59 /// Check whether the array of type AT can be initialized by the Init 60 /// expression by means of string initialization. Returns SIF_None if so, 61 /// otherwise returns a StringInitFailureKind that describes why the 62 /// initialization would not work. 63 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT, 64 ASTContext &Context) { 65 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT)) 66 return SIF_Other; 67 68 // See if this is a string literal or @encode. 69 Init = Init->IgnoreParens(); 70 71 // Handle @encode, which is a narrow string. 72 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType()) 73 return SIF_None; 74 75 // Otherwise we can only handle string literals. 76 StringLiteral *SL = dyn_cast<StringLiteral>(Init); 77 if (!SL) 78 return SIF_Other; 79 80 const QualType ElemTy = 81 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType(); 82 83 switch (SL->getKind()) { 84 case StringLiteral::UTF8: 85 // char8_t array can be initialized with a UTF-8 string. 86 if (ElemTy->isChar8Type()) 87 return SIF_None; 88 LLVM_FALLTHROUGH; 89 case StringLiteral::Ascii: 90 // char array can be initialized with a narrow string. 91 // Only allow char x[] = "foo"; not char x[] = L"foo"; 92 if (ElemTy->isCharType()) 93 return (SL->getKind() == StringLiteral::UTF8 && 94 Context.getLangOpts().Char8) 95 ? SIF_UTF8StringIntoPlainChar 96 : SIF_None; 97 if (ElemTy->isChar8Type()) 98 return SIF_PlainStringIntoUTF8Char; 99 if (IsWideCharCompatible(ElemTy, Context)) 100 return SIF_NarrowStringIntoWideChar; 101 return SIF_Other; 102 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15: 103 // "An array with element type compatible with a qualified or unqualified 104 // version of wchar_t, char16_t, or char32_t may be initialized by a wide 105 // string literal with the corresponding encoding prefix (L, u, or U, 106 // respectively), optionally enclosed in braces. 107 case StringLiteral::UTF16: 108 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy)) 109 return SIF_None; 110 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 111 return SIF_WideStringIntoChar; 112 if (IsWideCharCompatible(ElemTy, Context)) 113 return SIF_IncompatWideStringIntoWideChar; 114 return SIF_Other; 115 case StringLiteral::UTF32: 116 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy)) 117 return SIF_None; 118 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 119 return SIF_WideStringIntoChar; 120 if (IsWideCharCompatible(ElemTy, Context)) 121 return SIF_IncompatWideStringIntoWideChar; 122 return SIF_Other; 123 case StringLiteral::Wide: 124 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy)) 125 return SIF_None; 126 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 127 return SIF_WideStringIntoChar; 128 if (IsWideCharCompatible(ElemTy, Context)) 129 return SIF_IncompatWideStringIntoWideChar; 130 return SIF_Other; 131 } 132 133 llvm_unreachable("missed a StringLiteral kind?"); 134 } 135 136 static StringInitFailureKind IsStringInit(Expr *init, QualType declType, 137 ASTContext &Context) { 138 const ArrayType *arrayType = Context.getAsArrayType(declType); 139 if (!arrayType) 140 return SIF_Other; 141 return IsStringInit(init, arrayType, Context); 142 } 143 144 /// Update the type of a string literal, including any surrounding parentheses, 145 /// to match the type of the object which it is initializing. 146 static void updateStringLiteralType(Expr *E, QualType Ty) { 147 while (true) { 148 E->setType(Ty); 149 E->setValueKind(VK_RValue); 150 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) { 151 break; 152 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 153 E = PE->getSubExpr(); 154 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 155 assert(UO->getOpcode() == UO_Extension); 156 E = UO->getSubExpr(); 157 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) { 158 E = GSE->getResultExpr(); 159 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) { 160 E = CE->getChosenSubExpr(); 161 } else { 162 llvm_unreachable("unexpected expr in string literal init"); 163 } 164 } 165 } 166 167 /// Fix a compound literal initializing an array so it's correctly marked 168 /// as an rvalue. 169 static void updateGNUCompoundLiteralRValue(Expr *E) { 170 while (true) { 171 E->setValueKind(VK_RValue); 172 if (isa<CompoundLiteralExpr>(E)) { 173 break; 174 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 175 E = PE->getSubExpr(); 176 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 177 assert(UO->getOpcode() == UO_Extension); 178 E = UO->getSubExpr(); 179 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) { 180 E = GSE->getResultExpr(); 181 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) { 182 E = CE->getChosenSubExpr(); 183 } else { 184 llvm_unreachable("unexpected expr in array compound literal init"); 185 } 186 } 187 } 188 189 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT, 190 Sema &S) { 191 // Get the length of the string as parsed. 192 auto *ConstantArrayTy = 193 cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe()); 194 uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue(); 195 196 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { 197 // C99 6.7.8p14. We have an array of character type with unknown size 198 // being initialized to a string literal. 199 llvm::APInt ConstVal(32, StrLength); 200 // Return a new array type (C99 6.7.8p22). 201 DeclT = S.Context.getConstantArrayType(IAT->getElementType(), 202 ConstVal, nullptr, 203 ArrayType::Normal, 0); 204 updateStringLiteralType(Str, DeclT); 205 return; 206 } 207 208 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT); 209 210 // We have an array of character type with known size. However, 211 // the size may be smaller or larger than the string we are initializing. 212 // FIXME: Avoid truncation for 64-bit length strings. 213 if (S.getLangOpts().CPlusPlus) { 214 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) { 215 // For Pascal strings it's OK to strip off the terminating null character, 216 // so the example below is valid: 217 // 218 // unsigned char a[2] = "\pa"; 219 if (SL->isPascal()) 220 StrLength--; 221 } 222 223 // [dcl.init.string]p2 224 if (StrLength > CAT->getSize().getZExtValue()) 225 S.Diag(Str->getBeginLoc(), 226 diag::err_initializer_string_for_char_array_too_long) 227 << Str->getSourceRange(); 228 } else { 229 // C99 6.7.8p14. 230 if (StrLength-1 > CAT->getSize().getZExtValue()) 231 S.Diag(Str->getBeginLoc(), 232 diag::ext_initializer_string_for_char_array_too_long) 233 << Str->getSourceRange(); 234 } 235 236 // Set the type to the actual size that we are initializing. If we have 237 // something like: 238 // char x[1] = "foo"; 239 // then this will set the string literal's type to char[1]. 240 updateStringLiteralType(Str, DeclT); 241 } 242 243 //===----------------------------------------------------------------------===// 244 // Semantic checking for initializer lists. 245 //===----------------------------------------------------------------------===// 246 247 namespace { 248 249 /// Semantic checking for initializer lists. 250 /// 251 /// The InitListChecker class contains a set of routines that each 252 /// handle the initialization of a certain kind of entity, e.g., 253 /// arrays, vectors, struct/union types, scalars, etc. The 254 /// InitListChecker itself performs a recursive walk of the subobject 255 /// structure of the type to be initialized, while stepping through 256 /// the initializer list one element at a time. The IList and Index 257 /// parameters to each of the Check* routines contain the active 258 /// (syntactic) initializer list and the index into that initializer 259 /// list that represents the current initializer. Each routine is 260 /// responsible for moving that Index forward as it consumes elements. 261 /// 262 /// Each Check* routine also has a StructuredList/StructuredIndex 263 /// arguments, which contains the current "structured" (semantic) 264 /// initializer list and the index into that initializer list where we 265 /// are copying initializers as we map them over to the semantic 266 /// list. Once we have completed our recursive walk of the subobject 267 /// structure, we will have constructed a full semantic initializer 268 /// list. 269 /// 270 /// C99 designators cause changes in the initializer list traversal, 271 /// because they make the initialization "jump" into a specific 272 /// subobject and then continue the initialization from that 273 /// point. CheckDesignatedInitializer() recursively steps into the 274 /// designated subobject and manages backing out the recursion to 275 /// initialize the subobjects after the one designated. 276 /// 277 /// If an initializer list contains any designators, we build a placeholder 278 /// structured list even in 'verify only' mode, so that we can track which 279 /// elements need 'empty' initializtion. 280 class InitListChecker { 281 Sema &SemaRef; 282 bool hadError = false; 283 bool VerifyOnly; // No diagnostics. 284 bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode. 285 bool InOverloadResolution; 286 InitListExpr *FullyStructuredList = nullptr; 287 NoInitExpr *DummyExpr = nullptr; 288 289 NoInitExpr *getDummyInit() { 290 if (!DummyExpr) 291 DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy); 292 return DummyExpr; 293 } 294 295 void CheckImplicitInitList(const InitializedEntity &Entity, 296 InitListExpr *ParentIList, QualType T, 297 unsigned &Index, InitListExpr *StructuredList, 298 unsigned &StructuredIndex); 299 void CheckExplicitInitList(const InitializedEntity &Entity, 300 InitListExpr *IList, QualType &T, 301 InitListExpr *StructuredList, 302 bool TopLevelObject = false); 303 void CheckListElementTypes(const InitializedEntity &Entity, 304 InitListExpr *IList, QualType &DeclType, 305 bool SubobjectIsDesignatorContext, 306 unsigned &Index, 307 InitListExpr *StructuredList, 308 unsigned &StructuredIndex, 309 bool TopLevelObject = false); 310 void CheckSubElementType(const InitializedEntity &Entity, 311 InitListExpr *IList, QualType ElemType, 312 unsigned &Index, 313 InitListExpr *StructuredList, 314 unsigned &StructuredIndex); 315 void CheckComplexType(const InitializedEntity &Entity, 316 InitListExpr *IList, QualType DeclType, 317 unsigned &Index, 318 InitListExpr *StructuredList, 319 unsigned &StructuredIndex); 320 void CheckScalarType(const InitializedEntity &Entity, 321 InitListExpr *IList, QualType DeclType, 322 unsigned &Index, 323 InitListExpr *StructuredList, 324 unsigned &StructuredIndex); 325 void CheckReferenceType(const InitializedEntity &Entity, 326 InitListExpr *IList, QualType DeclType, 327 unsigned &Index, 328 InitListExpr *StructuredList, 329 unsigned &StructuredIndex); 330 void CheckVectorType(const InitializedEntity &Entity, 331 InitListExpr *IList, QualType DeclType, unsigned &Index, 332 InitListExpr *StructuredList, 333 unsigned &StructuredIndex); 334 void CheckStructUnionTypes(const InitializedEntity &Entity, 335 InitListExpr *IList, QualType DeclType, 336 CXXRecordDecl::base_class_range Bases, 337 RecordDecl::field_iterator Field, 338 bool SubobjectIsDesignatorContext, unsigned &Index, 339 InitListExpr *StructuredList, 340 unsigned &StructuredIndex, 341 bool TopLevelObject = false); 342 void CheckArrayType(const InitializedEntity &Entity, 343 InitListExpr *IList, QualType &DeclType, 344 llvm::APSInt elementIndex, 345 bool SubobjectIsDesignatorContext, unsigned &Index, 346 InitListExpr *StructuredList, 347 unsigned &StructuredIndex); 348 bool CheckDesignatedInitializer(const InitializedEntity &Entity, 349 InitListExpr *IList, DesignatedInitExpr *DIE, 350 unsigned DesigIdx, 351 QualType &CurrentObjectType, 352 RecordDecl::field_iterator *NextField, 353 llvm::APSInt *NextElementIndex, 354 unsigned &Index, 355 InitListExpr *StructuredList, 356 unsigned &StructuredIndex, 357 bool FinishSubobjectInit, 358 bool TopLevelObject); 359 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 360 QualType CurrentObjectType, 361 InitListExpr *StructuredList, 362 unsigned StructuredIndex, 363 SourceRange InitRange, 364 bool IsFullyOverwritten = false); 365 void UpdateStructuredListElement(InitListExpr *StructuredList, 366 unsigned &StructuredIndex, 367 Expr *expr); 368 InitListExpr *createInitListExpr(QualType CurrentObjectType, 369 SourceRange InitRange, 370 unsigned ExpectedNumInits); 371 int numArrayElements(QualType DeclType); 372 int numStructUnionElements(QualType DeclType); 373 374 ExprResult PerformEmptyInit(SourceLocation Loc, 375 const InitializedEntity &Entity); 376 377 /// Diagnose that OldInit (or part thereof) has been overridden by NewInit. 378 void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange, 379 bool FullyOverwritten = true) { 380 // Overriding an initializer via a designator is valid with C99 designated 381 // initializers, but ill-formed with C++20 designated initializers. 382 unsigned DiagID = SemaRef.getLangOpts().CPlusPlus 383 ? diag::ext_initializer_overrides 384 : diag::warn_initializer_overrides; 385 386 if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) { 387 // In overload resolution, we have to strictly enforce the rules, and so 388 // don't allow any overriding of prior initializers. This matters for a 389 // case such as: 390 // 391 // union U { int a, b; }; 392 // struct S { int a, b; }; 393 // void f(U), f(S); 394 // 395 // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For 396 // consistency, we disallow all overriding of prior initializers in 397 // overload resolution, not only overriding of union members. 398 hadError = true; 399 } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) { 400 // If we'll be keeping around the old initializer but overwriting part of 401 // the object it initialized, and that object is not trivially 402 // destructible, this can leak. Don't allow that, not even as an 403 // extension. 404 // 405 // FIXME: It might be reasonable to allow this in cases where the part of 406 // the initializer that we're overriding has trivial destruction. 407 DiagID = diag::err_initializer_overrides_destructed; 408 } else if (!OldInit->getSourceRange().isValid()) { 409 // We need to check on source range validity because the previous 410 // initializer does not have to be an explicit initializer. e.g., 411 // 412 // struct P { int a, b; }; 413 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 }; 414 // 415 // There is an overwrite taking place because the first braced initializer 416 // list "{ .a = 2 }" already provides value for .p.b (which is zero). 417 // 418 // Such overwrites are harmless, so we don't diagnose them. (Note that in 419 // C++, this cannot be reached unless we've already seen and diagnosed a 420 // different conformance issue, such as a mixture of designated and 421 // non-designated initializers or a multi-level designator.) 422 return; 423 } 424 425 if (!VerifyOnly) { 426 SemaRef.Diag(NewInitRange.getBegin(), DiagID) 427 << NewInitRange << FullyOverwritten << OldInit->getType(); 428 SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer) 429 << (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten) 430 << OldInit->getSourceRange(); 431 } 432 } 433 434 // Explanation on the "FillWithNoInit" mode: 435 // 436 // Assume we have the following definitions (Case#1): 437 // struct P { char x[6][6]; } xp = { .x[1] = "bar" }; 438 // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' }; 439 // 440 // l.lp.x[1][0..1] should not be filled with implicit initializers because the 441 // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf". 442 // 443 // But if we have (Case#2): 444 // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } }; 445 // 446 // l.lp.x[1][0..1] are implicitly initialized and do not use values from the 447 // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0". 448 // 449 // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes" 450 // in the InitListExpr, the "holes" in Case#1 are filled not with empty 451 // initializers but with special "NoInitExpr" place holders, which tells the 452 // CodeGen not to generate any initializers for these parts. 453 void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base, 454 const InitializedEntity &ParentEntity, 455 InitListExpr *ILE, bool &RequiresSecondPass, 456 bool FillWithNoInit); 457 void FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 458 const InitializedEntity &ParentEntity, 459 InitListExpr *ILE, bool &RequiresSecondPass, 460 bool FillWithNoInit = false); 461 void FillInEmptyInitializations(const InitializedEntity &Entity, 462 InitListExpr *ILE, bool &RequiresSecondPass, 463 InitListExpr *OuterILE, unsigned OuterIndex, 464 bool FillWithNoInit = false); 465 bool CheckFlexibleArrayInit(const InitializedEntity &Entity, 466 Expr *InitExpr, FieldDecl *Field, 467 bool TopLevelObject); 468 void CheckEmptyInitializable(const InitializedEntity &Entity, 469 SourceLocation Loc); 470 471 public: 472 InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL, 473 QualType &T, bool VerifyOnly, bool TreatUnavailableAsInvalid, 474 bool InOverloadResolution = false); 475 bool HadError() { return hadError; } 476 477 // Retrieves the fully-structured initializer list used for 478 // semantic analysis and code generation. 479 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; } 480 }; 481 482 } // end anonymous namespace 483 484 ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc, 485 const InitializedEntity &Entity) { 486 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, 487 true); 488 MultiExprArg SubInit; 489 Expr *InitExpr; 490 InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc); 491 492 // C++ [dcl.init.aggr]p7: 493 // If there are fewer initializer-clauses in the list than there are 494 // members in the aggregate, then each member not explicitly initialized 495 // ... 496 bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 && 497 Entity.getType()->getBaseElementTypeUnsafe()->isRecordType(); 498 if (EmptyInitList) { 499 // C++1y / DR1070: 500 // shall be initialized [...] from an empty initializer list. 501 // 502 // We apply the resolution of this DR to C++11 but not C++98, since C++98 503 // does not have useful semantics for initialization from an init list. 504 // We treat this as copy-initialization, because aggregate initialization 505 // always performs copy-initialization on its elements. 506 // 507 // Only do this if we're initializing a class type, to avoid filling in 508 // the initializer list where possible. 509 InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context) 510 InitListExpr(SemaRef.Context, Loc, None, Loc); 511 InitExpr->setType(SemaRef.Context.VoidTy); 512 SubInit = InitExpr; 513 Kind = InitializationKind::CreateCopy(Loc, Loc); 514 } else { 515 // C++03: 516 // shall be value-initialized. 517 } 518 519 InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit); 520 // libstdc++4.6 marks the vector default constructor as explicit in 521 // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case. 522 // stlport does so too. Look for std::__debug for libstdc++, and for 523 // std:: for stlport. This is effectively a compiler-side implementation of 524 // LWG2193. 525 if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() == 526 InitializationSequence::FK_ExplicitConstructor) { 527 OverloadCandidateSet::iterator Best; 528 OverloadingResult O = 529 InitSeq.getFailedCandidateSet() 530 .BestViableFunction(SemaRef, Kind.getLocation(), Best); 531 (void)O; 532 assert(O == OR_Success && "Inconsistent overload resolution"); 533 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 534 CXXRecordDecl *R = CtorDecl->getParent(); 535 536 if (CtorDecl->getMinRequiredArguments() == 0 && 537 CtorDecl->isExplicit() && R->getDeclName() && 538 SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) { 539 bool IsInStd = false; 540 for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext()); 541 ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) { 542 if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND)) 543 IsInStd = true; 544 } 545 546 if (IsInStd && llvm::StringSwitch<bool>(R->getName()) 547 .Cases("basic_string", "deque", "forward_list", true) 548 .Cases("list", "map", "multimap", "multiset", true) 549 .Cases("priority_queue", "queue", "set", "stack", true) 550 .Cases("unordered_map", "unordered_set", "vector", true) 551 .Default(false)) { 552 InitSeq.InitializeFrom( 553 SemaRef, Entity, 554 InitializationKind::CreateValue(Loc, Loc, Loc, true), 555 MultiExprArg(), /*TopLevelOfInitList=*/false, 556 TreatUnavailableAsInvalid); 557 // Emit a warning for this. System header warnings aren't shown 558 // by default, but people working on system headers should see it. 559 if (!VerifyOnly) { 560 SemaRef.Diag(CtorDecl->getLocation(), 561 diag::warn_invalid_initializer_from_system_header); 562 if (Entity.getKind() == InitializedEntity::EK_Member) 563 SemaRef.Diag(Entity.getDecl()->getLocation(), 564 diag::note_used_in_initialization_here); 565 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) 566 SemaRef.Diag(Loc, diag::note_used_in_initialization_here); 567 } 568 } 569 } 570 } 571 if (!InitSeq) { 572 if (!VerifyOnly) { 573 InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit); 574 if (Entity.getKind() == InitializedEntity::EK_Member) 575 SemaRef.Diag(Entity.getDecl()->getLocation(), 576 diag::note_in_omitted_aggregate_initializer) 577 << /*field*/1 << Entity.getDecl(); 578 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) { 579 bool IsTrailingArrayNewMember = 580 Entity.getParent() && 581 Entity.getParent()->isVariableLengthArrayNew(); 582 SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer) 583 << (IsTrailingArrayNewMember ? 2 : /*array element*/0) 584 << Entity.getElementIndex(); 585 } 586 } 587 hadError = true; 588 return ExprError(); 589 } 590 591 return VerifyOnly ? ExprResult() 592 : InitSeq.Perform(SemaRef, Entity, Kind, SubInit); 593 } 594 595 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity, 596 SourceLocation Loc) { 597 // If we're building a fully-structured list, we'll check this at the end 598 // once we know which elements are actually initialized. Otherwise, we know 599 // that there are no designators so we can just check now. 600 if (FullyStructuredList) 601 return; 602 PerformEmptyInit(Loc, Entity); 603 } 604 605 void InitListChecker::FillInEmptyInitForBase( 606 unsigned Init, const CXXBaseSpecifier &Base, 607 const InitializedEntity &ParentEntity, InitListExpr *ILE, 608 bool &RequiresSecondPass, bool FillWithNoInit) { 609 InitializedEntity BaseEntity = InitializedEntity::InitializeBase( 610 SemaRef.Context, &Base, false, &ParentEntity); 611 612 if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) { 613 ExprResult BaseInit = FillWithNoInit 614 ? new (SemaRef.Context) NoInitExpr(Base.getType()) 615 : PerformEmptyInit(ILE->getEndLoc(), BaseEntity); 616 if (BaseInit.isInvalid()) { 617 hadError = true; 618 return; 619 } 620 621 if (!VerifyOnly) { 622 assert(Init < ILE->getNumInits() && "should have been expanded"); 623 ILE->setInit(Init, BaseInit.getAs<Expr>()); 624 } 625 } else if (InitListExpr *InnerILE = 626 dyn_cast<InitListExpr>(ILE->getInit(Init))) { 627 FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass, 628 ILE, Init, FillWithNoInit); 629 } else if (DesignatedInitUpdateExpr *InnerDIUE = 630 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { 631 FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(), 632 RequiresSecondPass, ILE, Init, 633 /*FillWithNoInit =*/true); 634 } 635 } 636 637 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 638 const InitializedEntity &ParentEntity, 639 InitListExpr *ILE, 640 bool &RequiresSecondPass, 641 bool FillWithNoInit) { 642 SourceLocation Loc = ILE->getEndLoc(); 643 unsigned NumInits = ILE->getNumInits(); 644 InitializedEntity MemberEntity 645 = InitializedEntity::InitializeMember(Field, &ParentEntity); 646 647 if (Init >= NumInits || !ILE->getInit(Init)) { 648 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) 649 if (!RType->getDecl()->isUnion()) 650 assert((Init < NumInits || VerifyOnly) && 651 "This ILE should have been expanded"); 652 653 if (FillWithNoInit) { 654 assert(!VerifyOnly && "should not fill with no-init in verify-only mode"); 655 Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType()); 656 if (Init < NumInits) 657 ILE->setInit(Init, Filler); 658 else 659 ILE->updateInit(SemaRef.Context, Init, Filler); 660 return; 661 } 662 // C++1y [dcl.init.aggr]p7: 663 // If there are fewer initializer-clauses in the list than there are 664 // members in the aggregate, then each member not explicitly initialized 665 // shall be initialized from its brace-or-equal-initializer [...] 666 if (Field->hasInClassInitializer()) { 667 if (VerifyOnly) 668 return; 669 670 ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field); 671 if (DIE.isInvalid()) { 672 hadError = true; 673 return; 674 } 675 SemaRef.checkInitializerLifetime(MemberEntity, DIE.get()); 676 if (Init < NumInits) 677 ILE->setInit(Init, DIE.get()); 678 else { 679 ILE->updateInit(SemaRef.Context, Init, DIE.get()); 680 RequiresSecondPass = true; 681 } 682 return; 683 } 684 685 if (Field->getType()->isReferenceType()) { 686 if (!VerifyOnly) { 687 // C++ [dcl.init.aggr]p9: 688 // If an incomplete or empty initializer-list leaves a 689 // member of reference type uninitialized, the program is 690 // ill-formed. 691 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized) 692 << Field->getType() 693 << ILE->getSyntacticForm()->getSourceRange(); 694 SemaRef.Diag(Field->getLocation(), 695 diag::note_uninit_reference_member); 696 } 697 hadError = true; 698 return; 699 } 700 701 ExprResult MemberInit = PerformEmptyInit(Loc, MemberEntity); 702 if (MemberInit.isInvalid()) { 703 hadError = true; 704 return; 705 } 706 707 if (hadError || VerifyOnly) { 708 // Do nothing 709 } else if (Init < NumInits) { 710 ILE->setInit(Init, MemberInit.getAs<Expr>()); 711 } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) { 712 // Empty initialization requires a constructor call, so 713 // extend the initializer list to include the constructor 714 // call and make a note that we'll need to take another pass 715 // through the initializer list. 716 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>()); 717 RequiresSecondPass = true; 718 } 719 } else if (InitListExpr *InnerILE 720 = dyn_cast<InitListExpr>(ILE->getInit(Init))) { 721 FillInEmptyInitializations(MemberEntity, InnerILE, 722 RequiresSecondPass, ILE, Init, FillWithNoInit); 723 } else if (DesignatedInitUpdateExpr *InnerDIUE = 724 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { 725 FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(), 726 RequiresSecondPass, ILE, Init, 727 /*FillWithNoInit =*/true); 728 } 729 } 730 731 /// Recursively replaces NULL values within the given initializer list 732 /// with expressions that perform value-initialization of the 733 /// appropriate type, and finish off the InitListExpr formation. 734 void 735 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity, 736 InitListExpr *ILE, 737 bool &RequiresSecondPass, 738 InitListExpr *OuterILE, 739 unsigned OuterIndex, 740 bool FillWithNoInit) { 741 assert((ILE->getType() != SemaRef.Context.VoidTy) && 742 "Should not have void type"); 743 744 // We don't need to do any checks when just filling NoInitExprs; that can't 745 // fail. 746 if (FillWithNoInit && VerifyOnly) 747 return; 748 749 // If this is a nested initializer list, we might have changed its contents 750 // (and therefore some of its properties, such as instantiation-dependence) 751 // while filling it in. Inform the outer initializer list so that its state 752 // can be updated to match. 753 // FIXME: We should fully build the inner initializers before constructing 754 // the outer InitListExpr instead of mutating AST nodes after they have 755 // been used as subexpressions of other nodes. 756 struct UpdateOuterILEWithUpdatedInit { 757 InitListExpr *Outer; 758 unsigned OuterIndex; 759 ~UpdateOuterILEWithUpdatedInit() { 760 if (Outer) 761 Outer->setInit(OuterIndex, Outer->getInit(OuterIndex)); 762 } 763 } UpdateOuterRAII = {OuterILE, OuterIndex}; 764 765 // A transparent ILE is not performing aggregate initialization and should 766 // not be filled in. 767 if (ILE->isTransparent()) 768 return; 769 770 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 771 const RecordDecl *RDecl = RType->getDecl(); 772 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion()) 773 FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(), 774 Entity, ILE, RequiresSecondPass, FillWithNoInit); 775 else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) && 776 cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) { 777 for (auto *Field : RDecl->fields()) { 778 if (Field->hasInClassInitializer()) { 779 FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass, 780 FillWithNoInit); 781 break; 782 } 783 } 784 } else { 785 // The fields beyond ILE->getNumInits() are default initialized, so in 786 // order to leave them uninitialized, the ILE is expanded and the extra 787 // fields are then filled with NoInitExpr. 788 unsigned NumElems = numStructUnionElements(ILE->getType()); 789 if (RDecl->hasFlexibleArrayMember()) 790 ++NumElems; 791 if (!VerifyOnly && ILE->getNumInits() < NumElems) 792 ILE->resizeInits(SemaRef.Context, NumElems); 793 794 unsigned Init = 0; 795 796 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) { 797 for (auto &Base : CXXRD->bases()) { 798 if (hadError) 799 return; 800 801 FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass, 802 FillWithNoInit); 803 ++Init; 804 } 805 } 806 807 for (auto *Field : RDecl->fields()) { 808 if (Field->isUnnamedBitfield()) 809 continue; 810 811 if (hadError) 812 return; 813 814 FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass, 815 FillWithNoInit); 816 if (hadError) 817 return; 818 819 ++Init; 820 821 // Only look at the first initialization of a union. 822 if (RDecl->isUnion()) 823 break; 824 } 825 } 826 827 return; 828 } 829 830 QualType ElementType; 831 832 InitializedEntity ElementEntity = Entity; 833 unsigned NumInits = ILE->getNumInits(); 834 unsigned NumElements = NumInits; 835 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) { 836 ElementType = AType->getElementType(); 837 if (const auto *CAType = dyn_cast<ConstantArrayType>(AType)) 838 NumElements = CAType->getSize().getZExtValue(); 839 // For an array new with an unknown bound, ask for one additional element 840 // in order to populate the array filler. 841 if (Entity.isVariableLengthArrayNew()) 842 ++NumElements; 843 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 844 0, Entity); 845 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) { 846 ElementType = VType->getElementType(); 847 NumElements = VType->getNumElements(); 848 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 849 0, Entity); 850 } else 851 ElementType = ILE->getType(); 852 853 bool SkipEmptyInitChecks = false; 854 for (unsigned Init = 0; Init != NumElements; ++Init) { 855 if (hadError) 856 return; 857 858 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement || 859 ElementEntity.getKind() == InitializedEntity::EK_VectorElement) 860 ElementEntity.setElementIndex(Init); 861 862 if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks)) 863 return; 864 865 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr); 866 if (!InitExpr && Init < NumInits && ILE->hasArrayFiller()) 867 ILE->setInit(Init, ILE->getArrayFiller()); 868 else if (!InitExpr && !ILE->hasArrayFiller()) { 869 // In VerifyOnly mode, there's no point performing empty initialization 870 // more than once. 871 if (SkipEmptyInitChecks) 872 continue; 873 874 Expr *Filler = nullptr; 875 876 if (FillWithNoInit) 877 Filler = new (SemaRef.Context) NoInitExpr(ElementType); 878 else { 879 ExprResult ElementInit = 880 PerformEmptyInit(ILE->getEndLoc(), ElementEntity); 881 if (ElementInit.isInvalid()) { 882 hadError = true; 883 return; 884 } 885 886 Filler = ElementInit.getAs<Expr>(); 887 } 888 889 if (hadError) { 890 // Do nothing 891 } else if (VerifyOnly) { 892 SkipEmptyInitChecks = true; 893 } else if (Init < NumInits) { 894 // For arrays, just set the expression used for value-initialization 895 // of the "holes" in the array. 896 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) 897 ILE->setArrayFiller(Filler); 898 else 899 ILE->setInit(Init, Filler); 900 } else { 901 // For arrays, just set the expression used for value-initialization 902 // of the rest of elements and exit. 903 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) { 904 ILE->setArrayFiller(Filler); 905 return; 906 } 907 908 if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) { 909 // Empty initialization requires a constructor call, so 910 // extend the initializer list to include the constructor 911 // call and make a note that we'll need to take another pass 912 // through the initializer list. 913 ILE->updateInit(SemaRef.Context, Init, Filler); 914 RequiresSecondPass = true; 915 } 916 } 917 } else if (InitListExpr *InnerILE 918 = dyn_cast_or_null<InitListExpr>(InitExpr)) { 919 FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass, 920 ILE, Init, FillWithNoInit); 921 } else if (DesignatedInitUpdateExpr *InnerDIUE = 922 dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) { 923 FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(), 924 RequiresSecondPass, ILE, Init, 925 /*FillWithNoInit =*/true); 926 } 927 } 928 } 929 930 static bool hasAnyDesignatedInits(const InitListExpr *IL) { 931 for (const Stmt *Init : *IL) 932 if (Init && isa<DesignatedInitExpr>(Init)) 933 return true; 934 return false; 935 } 936 937 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity, 938 InitListExpr *IL, QualType &T, bool VerifyOnly, 939 bool TreatUnavailableAsInvalid, 940 bool InOverloadResolution) 941 : SemaRef(S), VerifyOnly(VerifyOnly), 942 TreatUnavailableAsInvalid(TreatUnavailableAsInvalid), 943 InOverloadResolution(InOverloadResolution) { 944 if (!VerifyOnly || hasAnyDesignatedInits(IL)) { 945 FullyStructuredList = 946 createInitListExpr(T, IL->getSourceRange(), IL->getNumInits()); 947 948 // FIXME: Check that IL isn't already the semantic form of some other 949 // InitListExpr. If it is, we'd create a broken AST. 950 if (!VerifyOnly) 951 FullyStructuredList->setSyntacticForm(IL); 952 } 953 954 CheckExplicitInitList(Entity, IL, T, FullyStructuredList, 955 /*TopLevelObject=*/true); 956 957 if (!hadError && FullyStructuredList) { 958 bool RequiresSecondPass = false; 959 FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass, 960 /*OuterILE=*/nullptr, /*OuterIndex=*/0); 961 if (RequiresSecondPass && !hadError) 962 FillInEmptyInitializations(Entity, FullyStructuredList, 963 RequiresSecondPass, nullptr, 0); 964 } 965 } 966 967 int InitListChecker::numArrayElements(QualType DeclType) { 968 // FIXME: use a proper constant 969 int maxElements = 0x7FFFFFFF; 970 if (const ConstantArrayType *CAT = 971 SemaRef.Context.getAsConstantArrayType(DeclType)) { 972 maxElements = static_cast<int>(CAT->getSize().getZExtValue()); 973 } 974 return maxElements; 975 } 976 977 int InitListChecker::numStructUnionElements(QualType DeclType) { 978 RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl(); 979 int InitializableMembers = 0; 980 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl)) 981 InitializableMembers += CXXRD->getNumBases(); 982 for (const auto *Field : structDecl->fields()) 983 if (!Field->isUnnamedBitfield()) 984 ++InitializableMembers; 985 986 if (structDecl->isUnion()) 987 return std::min(InitializableMembers, 1); 988 return InitializableMembers - structDecl->hasFlexibleArrayMember(); 989 } 990 991 /// Determine whether Entity is an entity for which it is idiomatic to elide 992 /// the braces in aggregate initialization. 993 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) { 994 // Recursive initialization of the one and only field within an aggregate 995 // class is considered idiomatic. This case arises in particular for 996 // initialization of std::array, where the C++ standard suggests the idiom of 997 // 998 // std::array<T, N> arr = {1, 2, 3}; 999 // 1000 // (where std::array is an aggregate struct containing a single array field. 1001 1002 // FIXME: Should aggregate initialization of a struct with a single 1003 // base class and no members also suppress the warning? 1004 if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent()) 1005 return false; 1006 1007 auto *ParentRD = 1008 Entity.getParent()->getType()->castAs<RecordType>()->getDecl(); 1009 if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD)) 1010 if (CXXRD->getNumBases()) 1011 return false; 1012 1013 auto FieldIt = ParentRD->field_begin(); 1014 assert(FieldIt != ParentRD->field_end() && 1015 "no fields but have initializer for member?"); 1016 return ++FieldIt == ParentRD->field_end(); 1017 } 1018 1019 /// Check whether the range of the initializer \p ParentIList from element 1020 /// \p Index onwards can be used to initialize an object of type \p T. Update 1021 /// \p Index to indicate how many elements of the list were consumed. 1022 /// 1023 /// This also fills in \p StructuredList, from element \p StructuredIndex 1024 /// onwards, with the fully-braced, desugared form of the initialization. 1025 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity, 1026 InitListExpr *ParentIList, 1027 QualType T, unsigned &Index, 1028 InitListExpr *StructuredList, 1029 unsigned &StructuredIndex) { 1030 int maxElements = 0; 1031 1032 if (T->isArrayType()) 1033 maxElements = numArrayElements(T); 1034 else if (T->isRecordType()) 1035 maxElements = numStructUnionElements(T); 1036 else if (T->isVectorType()) 1037 maxElements = T->castAs<VectorType>()->getNumElements(); 1038 else 1039 llvm_unreachable("CheckImplicitInitList(): Illegal type"); 1040 1041 if (maxElements == 0) { 1042 if (!VerifyOnly) 1043 SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(), 1044 diag::err_implicit_empty_initializer); 1045 ++Index; 1046 hadError = true; 1047 return; 1048 } 1049 1050 // Build a structured initializer list corresponding to this subobject. 1051 InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit( 1052 ParentIList, Index, T, StructuredList, StructuredIndex, 1053 SourceRange(ParentIList->getInit(Index)->getBeginLoc(), 1054 ParentIList->getSourceRange().getEnd())); 1055 unsigned StructuredSubobjectInitIndex = 0; 1056 1057 // Check the element types and build the structural subobject. 1058 unsigned StartIndex = Index; 1059 CheckListElementTypes(Entity, ParentIList, T, 1060 /*SubobjectIsDesignatorContext=*/false, Index, 1061 StructuredSubobjectInitList, 1062 StructuredSubobjectInitIndex); 1063 1064 if (StructuredSubobjectInitList) { 1065 StructuredSubobjectInitList->setType(T); 1066 1067 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1); 1068 // Update the structured sub-object initializer so that it's ending 1069 // range corresponds with the end of the last initializer it used. 1070 if (EndIndex < ParentIList->getNumInits() && 1071 ParentIList->getInit(EndIndex)) { 1072 SourceLocation EndLoc 1073 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd(); 1074 StructuredSubobjectInitList->setRBraceLoc(EndLoc); 1075 } 1076 1077 // Complain about missing braces. 1078 if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) && 1079 !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) && 1080 !isIdiomaticBraceElisionEntity(Entity)) { 1081 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), 1082 diag::warn_missing_braces) 1083 << StructuredSubobjectInitList->getSourceRange() 1084 << FixItHint::CreateInsertion( 1085 StructuredSubobjectInitList->getBeginLoc(), "{") 1086 << FixItHint::CreateInsertion( 1087 SemaRef.getLocForEndOfToken( 1088 StructuredSubobjectInitList->getEndLoc()), 1089 "}"); 1090 } 1091 1092 // Warn if this type won't be an aggregate in future versions of C++. 1093 auto *CXXRD = T->getAsCXXRecordDecl(); 1094 if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) { 1095 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), 1096 diag::warn_cxx20_compat_aggregate_init_with_ctors) 1097 << StructuredSubobjectInitList->getSourceRange() << T; 1098 } 1099 } 1100 } 1101 1102 /// Warn that \p Entity was of scalar type and was initialized by a 1103 /// single-element braced initializer list. 1104 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity, 1105 SourceRange Braces) { 1106 // Don't warn during template instantiation. If the initialization was 1107 // non-dependent, we warned during the initial parse; otherwise, the 1108 // type might not be scalar in some uses of the template. 1109 if (S.inTemplateInstantiation()) 1110 return; 1111 1112 unsigned DiagID = 0; 1113 1114 switch (Entity.getKind()) { 1115 case InitializedEntity::EK_VectorElement: 1116 case InitializedEntity::EK_ComplexElement: 1117 case InitializedEntity::EK_ArrayElement: 1118 case InitializedEntity::EK_Parameter: 1119 case InitializedEntity::EK_Parameter_CF_Audited: 1120 case InitializedEntity::EK_Result: 1121 // Extra braces here are suspicious. 1122 DiagID = diag::warn_braces_around_init; 1123 break; 1124 1125 case InitializedEntity::EK_Member: 1126 // Warn on aggregate initialization but not on ctor init list or 1127 // default member initializer. 1128 if (Entity.getParent()) 1129 DiagID = diag::warn_braces_around_init; 1130 break; 1131 1132 case InitializedEntity::EK_Variable: 1133 case InitializedEntity::EK_LambdaCapture: 1134 // No warning, might be direct-list-initialization. 1135 // FIXME: Should we warn for copy-list-initialization in these cases? 1136 break; 1137 1138 case InitializedEntity::EK_New: 1139 case InitializedEntity::EK_Temporary: 1140 case InitializedEntity::EK_CompoundLiteralInit: 1141 // No warning, braces are part of the syntax of the underlying construct. 1142 break; 1143 1144 case InitializedEntity::EK_RelatedResult: 1145 // No warning, we already warned when initializing the result. 1146 break; 1147 1148 case InitializedEntity::EK_Exception: 1149 case InitializedEntity::EK_Base: 1150 case InitializedEntity::EK_Delegating: 1151 case InitializedEntity::EK_BlockElement: 1152 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 1153 case InitializedEntity::EK_Binding: 1154 case InitializedEntity::EK_StmtExprResult: 1155 llvm_unreachable("unexpected braced scalar init"); 1156 } 1157 1158 if (DiagID) { 1159 S.Diag(Braces.getBegin(), DiagID) 1160 << Entity.getType()->isSizelessBuiltinType() << Braces 1161 << FixItHint::CreateRemoval(Braces.getBegin()) 1162 << FixItHint::CreateRemoval(Braces.getEnd()); 1163 } 1164 } 1165 1166 /// Check whether the initializer \p IList (that was written with explicit 1167 /// braces) can be used to initialize an object of type \p T. 1168 /// 1169 /// This also fills in \p StructuredList with the fully-braced, desugared 1170 /// form of the initialization. 1171 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity, 1172 InitListExpr *IList, QualType &T, 1173 InitListExpr *StructuredList, 1174 bool TopLevelObject) { 1175 unsigned Index = 0, StructuredIndex = 0; 1176 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true, 1177 Index, StructuredList, StructuredIndex, TopLevelObject); 1178 if (StructuredList) { 1179 QualType ExprTy = T; 1180 if (!ExprTy->isArrayType()) 1181 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context); 1182 if (!VerifyOnly) 1183 IList->setType(ExprTy); 1184 StructuredList->setType(ExprTy); 1185 } 1186 if (hadError) 1187 return; 1188 1189 // Don't complain for incomplete types, since we'll get an error elsewhere. 1190 if (Index < IList->getNumInits() && !T->isIncompleteType()) { 1191 // We have leftover initializers 1192 bool ExtraInitsIsError = SemaRef.getLangOpts().CPlusPlus || 1193 (SemaRef.getLangOpts().OpenCL && T->isVectorType()); 1194 hadError = ExtraInitsIsError; 1195 if (VerifyOnly) { 1196 return; 1197 } else if (StructuredIndex == 1 && 1198 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) == 1199 SIF_None) { 1200 unsigned DK = 1201 ExtraInitsIsError 1202 ? diag::err_excess_initializers_in_char_array_initializer 1203 : diag::ext_excess_initializers_in_char_array_initializer; 1204 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1205 << IList->getInit(Index)->getSourceRange(); 1206 } else if (T->isSizelessBuiltinType()) { 1207 unsigned DK = ExtraInitsIsError 1208 ? diag::err_excess_initializers_for_sizeless_type 1209 : diag::ext_excess_initializers_for_sizeless_type; 1210 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1211 << T << IList->getInit(Index)->getSourceRange(); 1212 } else { 1213 int initKind = T->isArrayType() ? 0 : 1214 T->isVectorType() ? 1 : 1215 T->isScalarType() ? 2 : 1216 T->isUnionType() ? 3 : 1217 4; 1218 1219 unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers 1220 : diag::ext_excess_initializers; 1221 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1222 << initKind << IList->getInit(Index)->getSourceRange(); 1223 } 1224 } 1225 1226 if (!VerifyOnly) { 1227 if (T->isScalarType() && IList->getNumInits() == 1 && 1228 !isa<InitListExpr>(IList->getInit(0))) 1229 warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange()); 1230 1231 // Warn if this is a class type that won't be an aggregate in future 1232 // versions of C++. 1233 auto *CXXRD = T->getAsCXXRecordDecl(); 1234 if (CXXRD && CXXRD->hasUserDeclaredConstructor()) { 1235 // Don't warn if there's an equivalent default constructor that would be 1236 // used instead. 1237 bool HasEquivCtor = false; 1238 if (IList->getNumInits() == 0) { 1239 auto *CD = SemaRef.LookupDefaultConstructor(CXXRD); 1240 HasEquivCtor = CD && !CD->isDeleted(); 1241 } 1242 1243 if (!HasEquivCtor) { 1244 SemaRef.Diag(IList->getBeginLoc(), 1245 diag::warn_cxx20_compat_aggregate_init_with_ctors) 1246 << IList->getSourceRange() << T; 1247 } 1248 } 1249 } 1250 } 1251 1252 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity, 1253 InitListExpr *IList, 1254 QualType &DeclType, 1255 bool SubobjectIsDesignatorContext, 1256 unsigned &Index, 1257 InitListExpr *StructuredList, 1258 unsigned &StructuredIndex, 1259 bool TopLevelObject) { 1260 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) { 1261 // Explicitly braced initializer for complex type can be real+imaginary 1262 // parts. 1263 CheckComplexType(Entity, IList, DeclType, Index, 1264 StructuredList, StructuredIndex); 1265 } else if (DeclType->isScalarType()) { 1266 CheckScalarType(Entity, IList, DeclType, Index, 1267 StructuredList, StructuredIndex); 1268 } else if (DeclType->isVectorType()) { 1269 CheckVectorType(Entity, IList, DeclType, Index, 1270 StructuredList, StructuredIndex); 1271 } else if (DeclType->isRecordType()) { 1272 assert(DeclType->isAggregateType() && 1273 "non-aggregate records should be handed in CheckSubElementType"); 1274 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); 1275 auto Bases = 1276 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), 1277 CXXRecordDecl::base_class_iterator()); 1278 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1279 Bases = CXXRD->bases(); 1280 CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(), 1281 SubobjectIsDesignatorContext, Index, StructuredList, 1282 StructuredIndex, TopLevelObject); 1283 } else if (DeclType->isArrayType()) { 1284 llvm::APSInt Zero( 1285 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()), 1286 false); 1287 CheckArrayType(Entity, IList, DeclType, Zero, 1288 SubobjectIsDesignatorContext, Index, 1289 StructuredList, StructuredIndex); 1290 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) { 1291 // This type is invalid, issue a diagnostic. 1292 ++Index; 1293 if (!VerifyOnly) 1294 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) 1295 << DeclType; 1296 hadError = true; 1297 } else if (DeclType->isReferenceType()) { 1298 CheckReferenceType(Entity, IList, DeclType, Index, 1299 StructuredList, StructuredIndex); 1300 } else if (DeclType->isObjCObjectType()) { 1301 if (!VerifyOnly) 1302 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType; 1303 hadError = true; 1304 } else if (DeclType->isOCLIntelSubgroupAVCType() || 1305 DeclType->isSizelessBuiltinType()) { 1306 // Checks for scalar type are sufficient for these types too. 1307 CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 1308 StructuredIndex); 1309 } else { 1310 if (!VerifyOnly) 1311 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) 1312 << DeclType; 1313 hadError = true; 1314 } 1315 } 1316 1317 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity, 1318 InitListExpr *IList, 1319 QualType ElemType, 1320 unsigned &Index, 1321 InitListExpr *StructuredList, 1322 unsigned &StructuredIndex) { 1323 Expr *expr = IList->getInit(Index); 1324 1325 if (ElemType->isReferenceType()) 1326 return CheckReferenceType(Entity, IList, ElemType, Index, 1327 StructuredList, StructuredIndex); 1328 1329 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) { 1330 if (SubInitList->getNumInits() == 1 && 1331 IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) == 1332 SIF_None) { 1333 // FIXME: It would be more faithful and no less correct to include an 1334 // InitListExpr in the semantic form of the initializer list in this case. 1335 expr = SubInitList->getInit(0); 1336 } 1337 // Nested aggregate initialization and C++ initialization are handled later. 1338 } else if (isa<ImplicitValueInitExpr>(expr)) { 1339 // This happens during template instantiation when we see an InitListExpr 1340 // that we've already checked once. 1341 assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) && 1342 "found implicit initialization for the wrong type"); 1343 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1344 ++Index; 1345 return; 1346 } 1347 1348 if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(expr)) { 1349 // C++ [dcl.init.aggr]p2: 1350 // Each member is copy-initialized from the corresponding 1351 // initializer-clause. 1352 1353 // FIXME: Better EqualLoc? 1354 InitializationKind Kind = 1355 InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation()); 1356 1357 // Vector elements can be initialized from other vectors in which case 1358 // we need initialization entity with a type of a vector (and not a vector 1359 // element!) initializing multiple vector elements. 1360 auto TmpEntity = 1361 (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType()) 1362 ? InitializedEntity::InitializeTemporary(ElemType) 1363 : Entity; 1364 1365 InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr, 1366 /*TopLevelOfInitList*/ true); 1367 1368 // C++14 [dcl.init.aggr]p13: 1369 // If the assignment-expression can initialize a member, the member is 1370 // initialized. Otherwise [...] brace elision is assumed 1371 // 1372 // Brace elision is never performed if the element is not an 1373 // assignment-expression. 1374 if (Seq || isa<InitListExpr>(expr)) { 1375 if (!VerifyOnly) { 1376 ExprResult Result = Seq.Perform(SemaRef, TmpEntity, Kind, expr); 1377 if (Result.isInvalid()) 1378 hadError = true; 1379 1380 UpdateStructuredListElement(StructuredList, StructuredIndex, 1381 Result.getAs<Expr>()); 1382 } else if (!Seq) { 1383 hadError = true; 1384 } else if (StructuredList) { 1385 UpdateStructuredListElement(StructuredList, StructuredIndex, 1386 getDummyInit()); 1387 } 1388 ++Index; 1389 return; 1390 } 1391 1392 // Fall through for subaggregate initialization 1393 } else if (ElemType->isScalarType() || ElemType->isAtomicType()) { 1394 // FIXME: Need to handle atomic aggregate types with implicit init lists. 1395 return CheckScalarType(Entity, IList, ElemType, Index, 1396 StructuredList, StructuredIndex); 1397 } else if (const ArrayType *arrayType = 1398 SemaRef.Context.getAsArrayType(ElemType)) { 1399 // arrayType can be incomplete if we're initializing a flexible 1400 // array member. There's nothing we can do with the completed 1401 // type here, though. 1402 1403 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) { 1404 // FIXME: Should we do this checking in verify-only mode? 1405 if (!VerifyOnly) 1406 CheckStringInit(expr, ElemType, arrayType, SemaRef); 1407 if (StructuredList) 1408 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1409 ++Index; 1410 return; 1411 } 1412 1413 // Fall through for subaggregate initialization. 1414 1415 } else { 1416 assert((ElemType->isRecordType() || ElemType->isVectorType() || 1417 ElemType->isOpenCLSpecificType()) && "Unexpected type"); 1418 1419 // C99 6.7.8p13: 1420 // 1421 // The initializer for a structure or union object that has 1422 // automatic storage duration shall be either an initializer 1423 // list as described below, or a single expression that has 1424 // compatible structure or union type. In the latter case, the 1425 // initial value of the object, including unnamed members, is 1426 // that of the expression. 1427 ExprResult ExprRes = expr; 1428 if (SemaRef.CheckSingleAssignmentConstraints( 1429 ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) { 1430 if (ExprRes.isInvalid()) 1431 hadError = true; 1432 else { 1433 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get()); 1434 if (ExprRes.isInvalid()) 1435 hadError = true; 1436 } 1437 UpdateStructuredListElement(StructuredList, StructuredIndex, 1438 ExprRes.getAs<Expr>()); 1439 ++Index; 1440 return; 1441 } 1442 ExprRes.get(); 1443 // Fall through for subaggregate initialization 1444 } 1445 1446 // C++ [dcl.init.aggr]p12: 1447 // 1448 // [...] Otherwise, if the member is itself a non-empty 1449 // subaggregate, brace elision is assumed and the initializer is 1450 // considered for the initialization of the first member of 1451 // the subaggregate. 1452 // OpenCL vector initializer is handled elsewhere. 1453 if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) || 1454 ElemType->isAggregateType()) { 1455 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList, 1456 StructuredIndex); 1457 ++StructuredIndex; 1458 } else { 1459 if (!VerifyOnly) { 1460 // We cannot initialize this element, so let PerformCopyInitialization 1461 // produce the appropriate diagnostic. We already checked that this 1462 // initialization will fail. 1463 ExprResult Copy = 1464 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr, 1465 /*TopLevelOfInitList=*/true); 1466 (void)Copy; 1467 assert(Copy.isInvalid() && 1468 "expected non-aggregate initialization to fail"); 1469 } 1470 hadError = true; 1471 ++Index; 1472 ++StructuredIndex; 1473 } 1474 } 1475 1476 void InitListChecker::CheckComplexType(const InitializedEntity &Entity, 1477 InitListExpr *IList, QualType DeclType, 1478 unsigned &Index, 1479 InitListExpr *StructuredList, 1480 unsigned &StructuredIndex) { 1481 assert(Index == 0 && "Index in explicit init list must be zero"); 1482 1483 // As an extension, clang supports complex initializers, which initialize 1484 // a complex number component-wise. When an explicit initializer list for 1485 // a complex number contains two two initializers, this extension kicks in: 1486 // it exepcts the initializer list to contain two elements convertible to 1487 // the element type of the complex type. The first element initializes 1488 // the real part, and the second element intitializes the imaginary part. 1489 1490 if (IList->getNumInits() != 2) 1491 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 1492 StructuredIndex); 1493 1494 // This is an extension in C. (The builtin _Complex type does not exist 1495 // in the C++ standard.) 1496 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly) 1497 SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init) 1498 << IList->getSourceRange(); 1499 1500 // Initialize the complex number. 1501 QualType elementType = DeclType->castAs<ComplexType>()->getElementType(); 1502 InitializedEntity ElementEntity = 1503 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1504 1505 for (unsigned i = 0; i < 2; ++i) { 1506 ElementEntity.setElementIndex(Index); 1507 CheckSubElementType(ElementEntity, IList, elementType, Index, 1508 StructuredList, StructuredIndex); 1509 } 1510 } 1511 1512 void InitListChecker::CheckScalarType(const InitializedEntity &Entity, 1513 InitListExpr *IList, QualType DeclType, 1514 unsigned &Index, 1515 InitListExpr *StructuredList, 1516 unsigned &StructuredIndex) { 1517 if (Index >= IList->getNumInits()) { 1518 if (!VerifyOnly) { 1519 if (DeclType->isSizelessBuiltinType()) 1520 SemaRef.Diag(IList->getBeginLoc(), 1521 SemaRef.getLangOpts().CPlusPlus11 1522 ? diag::warn_cxx98_compat_empty_sizeless_initializer 1523 : diag::err_empty_sizeless_initializer) 1524 << DeclType << IList->getSourceRange(); 1525 else 1526 SemaRef.Diag(IList->getBeginLoc(), 1527 SemaRef.getLangOpts().CPlusPlus11 1528 ? diag::warn_cxx98_compat_empty_scalar_initializer 1529 : diag::err_empty_scalar_initializer) 1530 << IList->getSourceRange(); 1531 } 1532 hadError = !SemaRef.getLangOpts().CPlusPlus11; 1533 ++Index; 1534 ++StructuredIndex; 1535 return; 1536 } 1537 1538 Expr *expr = IList->getInit(Index); 1539 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) { 1540 // FIXME: This is invalid, and accepting it causes overload resolution 1541 // to pick the wrong overload in some corner cases. 1542 if (!VerifyOnly) 1543 SemaRef.Diag(SubIList->getBeginLoc(), diag::ext_many_braces_around_init) 1544 << DeclType->isSizelessBuiltinType() << SubIList->getSourceRange(); 1545 1546 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList, 1547 StructuredIndex); 1548 return; 1549 } else if (isa<DesignatedInitExpr>(expr)) { 1550 if (!VerifyOnly) 1551 SemaRef.Diag(expr->getBeginLoc(), 1552 diag::err_designator_for_scalar_or_sizeless_init) 1553 << DeclType->isSizelessBuiltinType() << DeclType 1554 << expr->getSourceRange(); 1555 hadError = true; 1556 ++Index; 1557 ++StructuredIndex; 1558 return; 1559 } 1560 1561 ExprResult Result; 1562 if (VerifyOnly) { 1563 if (SemaRef.CanPerformCopyInitialization(Entity, expr)) 1564 Result = getDummyInit(); 1565 else 1566 Result = ExprError(); 1567 } else { 1568 Result = 1569 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, 1570 /*TopLevelOfInitList=*/true); 1571 } 1572 1573 Expr *ResultExpr = nullptr; 1574 1575 if (Result.isInvalid()) 1576 hadError = true; // types weren't compatible. 1577 else { 1578 ResultExpr = Result.getAs<Expr>(); 1579 1580 if (ResultExpr != expr && !VerifyOnly) { 1581 // The type was promoted, update initializer list. 1582 // FIXME: Why are we updating the syntactic init list? 1583 IList->setInit(Index, ResultExpr); 1584 } 1585 } 1586 if (hadError) 1587 ++StructuredIndex; 1588 else 1589 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); 1590 ++Index; 1591 } 1592 1593 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity, 1594 InitListExpr *IList, QualType DeclType, 1595 unsigned &Index, 1596 InitListExpr *StructuredList, 1597 unsigned &StructuredIndex) { 1598 if (Index >= IList->getNumInits()) { 1599 // FIXME: It would be wonderful if we could point at the actual member. In 1600 // general, it would be useful to pass location information down the stack, 1601 // so that we know the location (or decl) of the "current object" being 1602 // initialized. 1603 if (!VerifyOnly) 1604 SemaRef.Diag(IList->getBeginLoc(), 1605 diag::err_init_reference_member_uninitialized) 1606 << DeclType << IList->getSourceRange(); 1607 hadError = true; 1608 ++Index; 1609 ++StructuredIndex; 1610 return; 1611 } 1612 1613 Expr *expr = IList->getInit(Index); 1614 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) { 1615 if (!VerifyOnly) 1616 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list) 1617 << DeclType << IList->getSourceRange(); 1618 hadError = true; 1619 ++Index; 1620 ++StructuredIndex; 1621 return; 1622 } 1623 1624 ExprResult Result; 1625 if (VerifyOnly) { 1626 if (SemaRef.CanPerformCopyInitialization(Entity,expr)) 1627 Result = getDummyInit(); 1628 else 1629 Result = ExprError(); 1630 } else { 1631 Result = 1632 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, 1633 /*TopLevelOfInitList=*/true); 1634 } 1635 1636 if (Result.isInvalid()) 1637 hadError = true; 1638 1639 expr = Result.getAs<Expr>(); 1640 // FIXME: Why are we updating the syntactic init list? 1641 if (!VerifyOnly && expr) 1642 IList->setInit(Index, expr); 1643 1644 if (hadError) 1645 ++StructuredIndex; 1646 else 1647 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1648 ++Index; 1649 } 1650 1651 void InitListChecker::CheckVectorType(const InitializedEntity &Entity, 1652 InitListExpr *IList, QualType DeclType, 1653 unsigned &Index, 1654 InitListExpr *StructuredList, 1655 unsigned &StructuredIndex) { 1656 const VectorType *VT = DeclType->castAs<VectorType>(); 1657 unsigned maxElements = VT->getNumElements(); 1658 unsigned numEltsInit = 0; 1659 QualType elementType = VT->getElementType(); 1660 1661 if (Index >= IList->getNumInits()) { 1662 // Make sure the element type can be value-initialized. 1663 CheckEmptyInitializable( 1664 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 1665 IList->getEndLoc()); 1666 return; 1667 } 1668 1669 if (!SemaRef.getLangOpts().OpenCL) { 1670 // If the initializing element is a vector, try to copy-initialize 1671 // instead of breaking it apart (which is doomed to failure anyway). 1672 Expr *Init = IList->getInit(Index); 1673 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) { 1674 ExprResult Result; 1675 if (VerifyOnly) { 1676 if (SemaRef.CanPerformCopyInitialization(Entity, Init)) 1677 Result = getDummyInit(); 1678 else 1679 Result = ExprError(); 1680 } else { 1681 Result = 1682 SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init, 1683 /*TopLevelOfInitList=*/true); 1684 } 1685 1686 Expr *ResultExpr = nullptr; 1687 if (Result.isInvalid()) 1688 hadError = true; // types weren't compatible. 1689 else { 1690 ResultExpr = Result.getAs<Expr>(); 1691 1692 if (ResultExpr != Init && !VerifyOnly) { 1693 // The type was promoted, update initializer list. 1694 // FIXME: Why are we updating the syntactic init list? 1695 IList->setInit(Index, ResultExpr); 1696 } 1697 } 1698 if (hadError) 1699 ++StructuredIndex; 1700 else 1701 UpdateStructuredListElement(StructuredList, StructuredIndex, 1702 ResultExpr); 1703 ++Index; 1704 return; 1705 } 1706 1707 InitializedEntity ElementEntity = 1708 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1709 1710 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) { 1711 // Don't attempt to go past the end of the init list 1712 if (Index >= IList->getNumInits()) { 1713 CheckEmptyInitializable(ElementEntity, IList->getEndLoc()); 1714 break; 1715 } 1716 1717 ElementEntity.setElementIndex(Index); 1718 CheckSubElementType(ElementEntity, IList, elementType, Index, 1719 StructuredList, StructuredIndex); 1720 } 1721 1722 if (VerifyOnly) 1723 return; 1724 1725 bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian(); 1726 const VectorType *T = Entity.getType()->castAs<VectorType>(); 1727 if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector || 1728 T->getVectorKind() == VectorType::NeonPolyVector)) { 1729 // The ability to use vector initializer lists is a GNU vector extension 1730 // and is unrelated to the NEON intrinsics in arm_neon.h. On little 1731 // endian machines it works fine, however on big endian machines it 1732 // exhibits surprising behaviour: 1733 // 1734 // uint32x2_t x = {42, 64}; 1735 // return vget_lane_u32(x, 0); // Will return 64. 1736 // 1737 // Because of this, explicitly call out that it is non-portable. 1738 // 1739 SemaRef.Diag(IList->getBeginLoc(), 1740 diag::warn_neon_vector_initializer_non_portable); 1741 1742 const char *typeCode; 1743 unsigned typeSize = SemaRef.Context.getTypeSize(elementType); 1744 1745 if (elementType->isFloatingType()) 1746 typeCode = "f"; 1747 else if (elementType->isSignedIntegerType()) 1748 typeCode = "s"; 1749 else if (elementType->isUnsignedIntegerType()) 1750 typeCode = "u"; 1751 else 1752 llvm_unreachable("Invalid element type!"); 1753 1754 SemaRef.Diag(IList->getBeginLoc(), 1755 SemaRef.Context.getTypeSize(VT) > 64 1756 ? diag::note_neon_vector_initializer_non_portable_q 1757 : diag::note_neon_vector_initializer_non_portable) 1758 << typeCode << typeSize; 1759 } 1760 1761 return; 1762 } 1763 1764 InitializedEntity ElementEntity = 1765 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1766 1767 // OpenCL initializers allows vectors to be constructed from vectors. 1768 for (unsigned i = 0; i < maxElements; ++i) { 1769 // Don't attempt to go past the end of the init list 1770 if (Index >= IList->getNumInits()) 1771 break; 1772 1773 ElementEntity.setElementIndex(Index); 1774 1775 QualType IType = IList->getInit(Index)->getType(); 1776 if (!IType->isVectorType()) { 1777 CheckSubElementType(ElementEntity, IList, elementType, Index, 1778 StructuredList, StructuredIndex); 1779 ++numEltsInit; 1780 } else { 1781 QualType VecType; 1782 const VectorType *IVT = IType->castAs<VectorType>(); 1783 unsigned numIElts = IVT->getNumElements(); 1784 1785 if (IType->isExtVectorType()) 1786 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts); 1787 else 1788 VecType = SemaRef.Context.getVectorType(elementType, numIElts, 1789 IVT->getVectorKind()); 1790 CheckSubElementType(ElementEntity, IList, VecType, Index, 1791 StructuredList, StructuredIndex); 1792 numEltsInit += numIElts; 1793 } 1794 } 1795 1796 // OpenCL requires all elements to be initialized. 1797 if (numEltsInit != maxElements) { 1798 if (!VerifyOnly) 1799 SemaRef.Diag(IList->getBeginLoc(), 1800 diag::err_vector_incorrect_num_initializers) 1801 << (numEltsInit < maxElements) << maxElements << numEltsInit; 1802 hadError = true; 1803 } 1804 } 1805 1806 /// Check if the type of a class element has an accessible destructor, and marks 1807 /// it referenced. Returns true if we shouldn't form a reference to the 1808 /// destructor. 1809 /// 1810 /// Aggregate initialization requires a class element's destructor be 1811 /// accessible per 11.6.1 [dcl.init.aggr]: 1812 /// 1813 /// The destructor for each element of class type is potentially invoked 1814 /// (15.4 [class.dtor]) from the context where the aggregate initialization 1815 /// occurs. 1816 static bool checkDestructorReference(QualType ElementType, SourceLocation Loc, 1817 Sema &SemaRef) { 1818 auto *CXXRD = ElementType->getAsCXXRecordDecl(); 1819 if (!CXXRD) 1820 return false; 1821 1822 CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD); 1823 SemaRef.CheckDestructorAccess(Loc, Destructor, 1824 SemaRef.PDiag(diag::err_access_dtor_temp) 1825 << ElementType); 1826 SemaRef.MarkFunctionReferenced(Loc, Destructor); 1827 return SemaRef.DiagnoseUseOfDecl(Destructor, Loc); 1828 } 1829 1830 void InitListChecker::CheckArrayType(const InitializedEntity &Entity, 1831 InitListExpr *IList, QualType &DeclType, 1832 llvm::APSInt elementIndex, 1833 bool SubobjectIsDesignatorContext, 1834 unsigned &Index, 1835 InitListExpr *StructuredList, 1836 unsigned &StructuredIndex) { 1837 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType); 1838 1839 if (!VerifyOnly) { 1840 if (checkDestructorReference(arrayType->getElementType(), 1841 IList->getEndLoc(), SemaRef)) { 1842 hadError = true; 1843 return; 1844 } 1845 } 1846 1847 // Check for the special-case of initializing an array with a string. 1848 if (Index < IList->getNumInits()) { 1849 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) == 1850 SIF_None) { 1851 // We place the string literal directly into the resulting 1852 // initializer list. This is the only place where the structure 1853 // of the structured initializer list doesn't match exactly, 1854 // because doing so would involve allocating one character 1855 // constant for each string. 1856 // FIXME: Should we do these checks in verify-only mode too? 1857 if (!VerifyOnly) 1858 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef); 1859 if (StructuredList) { 1860 UpdateStructuredListElement(StructuredList, StructuredIndex, 1861 IList->getInit(Index)); 1862 StructuredList->resizeInits(SemaRef.Context, StructuredIndex); 1863 } 1864 ++Index; 1865 return; 1866 } 1867 } 1868 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) { 1869 // Check for VLAs; in standard C it would be possible to check this 1870 // earlier, but I don't know where clang accepts VLAs (gcc accepts 1871 // them in all sorts of strange places). 1872 if (!VerifyOnly) 1873 SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(), 1874 diag::err_variable_object_no_init) 1875 << VAT->getSizeExpr()->getSourceRange(); 1876 hadError = true; 1877 ++Index; 1878 ++StructuredIndex; 1879 return; 1880 } 1881 1882 // We might know the maximum number of elements in advance. 1883 llvm::APSInt maxElements(elementIndex.getBitWidth(), 1884 elementIndex.isUnsigned()); 1885 bool maxElementsKnown = false; 1886 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) { 1887 maxElements = CAT->getSize(); 1888 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth()); 1889 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1890 maxElementsKnown = true; 1891 } 1892 1893 QualType elementType = arrayType->getElementType(); 1894 while (Index < IList->getNumInits()) { 1895 Expr *Init = IList->getInit(Index); 1896 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 1897 // If we're not the subobject that matches up with the '{' for 1898 // the designator, we shouldn't be handling the 1899 // designator. Return immediately. 1900 if (!SubobjectIsDesignatorContext) 1901 return; 1902 1903 // Handle this designated initializer. elementIndex will be 1904 // updated to be the next array element we'll initialize. 1905 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 1906 DeclType, nullptr, &elementIndex, Index, 1907 StructuredList, StructuredIndex, true, 1908 false)) { 1909 hadError = true; 1910 continue; 1911 } 1912 1913 if (elementIndex.getBitWidth() > maxElements.getBitWidth()) 1914 maxElements = maxElements.extend(elementIndex.getBitWidth()); 1915 else if (elementIndex.getBitWidth() < maxElements.getBitWidth()) 1916 elementIndex = elementIndex.extend(maxElements.getBitWidth()); 1917 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1918 1919 // If the array is of incomplete type, keep track of the number of 1920 // elements in the initializer. 1921 if (!maxElementsKnown && elementIndex > maxElements) 1922 maxElements = elementIndex; 1923 1924 continue; 1925 } 1926 1927 // If we know the maximum number of elements, and we've already 1928 // hit it, stop consuming elements in the initializer list. 1929 if (maxElementsKnown && elementIndex == maxElements) 1930 break; 1931 1932 InitializedEntity ElementEntity = 1933 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex, 1934 Entity); 1935 // Check this element. 1936 CheckSubElementType(ElementEntity, IList, elementType, Index, 1937 StructuredList, StructuredIndex); 1938 ++elementIndex; 1939 1940 // If the array is of incomplete type, keep track of the number of 1941 // elements in the initializer. 1942 if (!maxElementsKnown && elementIndex > maxElements) 1943 maxElements = elementIndex; 1944 } 1945 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) { 1946 // If this is an incomplete array type, the actual type needs to 1947 // be calculated here. 1948 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned()); 1949 if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) { 1950 // Sizing an array implicitly to zero is not allowed by ISO C, 1951 // but is supported by GNU. 1952 SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size); 1953 } 1954 1955 DeclType = SemaRef.Context.getConstantArrayType( 1956 elementType, maxElements, nullptr, ArrayType::Normal, 0); 1957 } 1958 if (!hadError) { 1959 // If there are any members of the array that get value-initialized, check 1960 // that is possible. That happens if we know the bound and don't have 1961 // enough elements, or if we're performing an array new with an unknown 1962 // bound. 1963 if ((maxElementsKnown && elementIndex < maxElements) || 1964 Entity.isVariableLengthArrayNew()) 1965 CheckEmptyInitializable( 1966 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 1967 IList->getEndLoc()); 1968 } 1969 } 1970 1971 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity, 1972 Expr *InitExpr, 1973 FieldDecl *Field, 1974 bool TopLevelObject) { 1975 // Handle GNU flexible array initializers. 1976 unsigned FlexArrayDiag; 1977 if (isa<InitListExpr>(InitExpr) && 1978 cast<InitListExpr>(InitExpr)->getNumInits() == 0) { 1979 // Empty flexible array init always allowed as an extension 1980 FlexArrayDiag = diag::ext_flexible_array_init; 1981 } else if (SemaRef.getLangOpts().CPlusPlus) { 1982 // Disallow flexible array init in C++; it is not required for gcc 1983 // compatibility, and it needs work to IRGen correctly in general. 1984 FlexArrayDiag = diag::err_flexible_array_init; 1985 } else if (!TopLevelObject) { 1986 // Disallow flexible array init on non-top-level object 1987 FlexArrayDiag = diag::err_flexible_array_init; 1988 } else if (Entity.getKind() != InitializedEntity::EK_Variable) { 1989 // Disallow flexible array init on anything which is not a variable. 1990 FlexArrayDiag = diag::err_flexible_array_init; 1991 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) { 1992 // Disallow flexible array init on local variables. 1993 FlexArrayDiag = diag::err_flexible_array_init; 1994 } else { 1995 // Allow other cases. 1996 FlexArrayDiag = diag::ext_flexible_array_init; 1997 } 1998 1999 if (!VerifyOnly) { 2000 SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag) 2001 << InitExpr->getBeginLoc(); 2002 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2003 << Field; 2004 } 2005 2006 return FlexArrayDiag != diag::ext_flexible_array_init; 2007 } 2008 2009 void InitListChecker::CheckStructUnionTypes( 2010 const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType, 2011 CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field, 2012 bool SubobjectIsDesignatorContext, unsigned &Index, 2013 InitListExpr *StructuredList, unsigned &StructuredIndex, 2014 bool TopLevelObject) { 2015 RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl(); 2016 2017 // If the record is invalid, some of it's members are invalid. To avoid 2018 // confusion, we forgo checking the intializer for the entire record. 2019 if (structDecl->isInvalidDecl()) { 2020 // Assume it was supposed to consume a single initializer. 2021 ++Index; 2022 hadError = true; 2023 return; 2024 } 2025 2026 if (DeclType->isUnionType() && IList->getNumInits() == 0) { 2027 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); 2028 2029 if (!VerifyOnly) 2030 for (FieldDecl *FD : RD->fields()) { 2031 QualType ET = SemaRef.Context.getBaseElementType(FD->getType()); 2032 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { 2033 hadError = true; 2034 return; 2035 } 2036 } 2037 2038 // If there's a default initializer, use it. 2039 if (isa<CXXRecordDecl>(RD) && 2040 cast<CXXRecordDecl>(RD)->hasInClassInitializer()) { 2041 if (!StructuredList) 2042 return; 2043 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 2044 Field != FieldEnd; ++Field) { 2045 if (Field->hasInClassInitializer()) { 2046 StructuredList->setInitializedFieldInUnion(*Field); 2047 // FIXME: Actually build a CXXDefaultInitExpr? 2048 return; 2049 } 2050 } 2051 } 2052 2053 // Value-initialize the first member of the union that isn't an unnamed 2054 // bitfield. 2055 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 2056 Field != FieldEnd; ++Field) { 2057 if (!Field->isUnnamedBitfield()) { 2058 CheckEmptyInitializable( 2059 InitializedEntity::InitializeMember(*Field, &Entity), 2060 IList->getEndLoc()); 2061 if (StructuredList) 2062 StructuredList->setInitializedFieldInUnion(*Field); 2063 break; 2064 } 2065 } 2066 return; 2067 } 2068 2069 bool InitializedSomething = false; 2070 2071 // If we have any base classes, they are initialized prior to the fields. 2072 for (auto &Base : Bases) { 2073 Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr; 2074 2075 // Designated inits always initialize fields, so if we see one, all 2076 // remaining base classes have no explicit initializer. 2077 if (Init && isa<DesignatedInitExpr>(Init)) 2078 Init = nullptr; 2079 2080 SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc(); 2081 InitializedEntity BaseEntity = InitializedEntity::InitializeBase( 2082 SemaRef.Context, &Base, false, &Entity); 2083 if (Init) { 2084 CheckSubElementType(BaseEntity, IList, Base.getType(), Index, 2085 StructuredList, StructuredIndex); 2086 InitializedSomething = true; 2087 } else { 2088 CheckEmptyInitializable(BaseEntity, InitLoc); 2089 } 2090 2091 if (!VerifyOnly) 2092 if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) { 2093 hadError = true; 2094 return; 2095 } 2096 } 2097 2098 // If structDecl is a forward declaration, this loop won't do 2099 // anything except look at designated initializers; That's okay, 2100 // because an error should get printed out elsewhere. It might be 2101 // worthwhile to skip over the rest of the initializer, though. 2102 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); 2103 RecordDecl::field_iterator FieldEnd = RD->field_end(); 2104 bool CheckForMissingFields = 2105 !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()); 2106 bool HasDesignatedInit = false; 2107 2108 while (Index < IList->getNumInits()) { 2109 Expr *Init = IList->getInit(Index); 2110 SourceLocation InitLoc = Init->getBeginLoc(); 2111 2112 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 2113 // If we're not the subobject that matches up with the '{' for 2114 // the designator, we shouldn't be handling the 2115 // designator. Return immediately. 2116 if (!SubobjectIsDesignatorContext) 2117 return; 2118 2119 HasDesignatedInit = true; 2120 2121 // Handle this designated initializer. Field will be updated to 2122 // the next field that we'll be initializing. 2123 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 2124 DeclType, &Field, nullptr, Index, 2125 StructuredList, StructuredIndex, 2126 true, TopLevelObject)) 2127 hadError = true; 2128 else if (!VerifyOnly) { 2129 // Find the field named by the designated initializer. 2130 RecordDecl::field_iterator F = RD->field_begin(); 2131 while (std::next(F) != Field) 2132 ++F; 2133 QualType ET = SemaRef.Context.getBaseElementType(F->getType()); 2134 if (checkDestructorReference(ET, InitLoc, SemaRef)) { 2135 hadError = true; 2136 return; 2137 } 2138 } 2139 2140 InitializedSomething = true; 2141 2142 // Disable check for missing fields when designators are used. 2143 // This matches gcc behaviour. 2144 CheckForMissingFields = false; 2145 continue; 2146 } 2147 2148 if (Field == FieldEnd) { 2149 // We've run out of fields. We're done. 2150 break; 2151 } 2152 2153 // We've already initialized a member of a union. We're done. 2154 if (InitializedSomething && DeclType->isUnionType()) 2155 break; 2156 2157 // If we've hit the flexible array member at the end, we're done. 2158 if (Field->getType()->isIncompleteArrayType()) 2159 break; 2160 2161 if (Field->isUnnamedBitfield()) { 2162 // Don't initialize unnamed bitfields, e.g. "int : 20;" 2163 ++Field; 2164 continue; 2165 } 2166 2167 // Make sure we can use this declaration. 2168 bool InvalidUse; 2169 if (VerifyOnly) 2170 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); 2171 else 2172 InvalidUse = SemaRef.DiagnoseUseOfDecl( 2173 *Field, IList->getInit(Index)->getBeginLoc()); 2174 if (InvalidUse) { 2175 ++Index; 2176 ++Field; 2177 hadError = true; 2178 continue; 2179 } 2180 2181 if (!VerifyOnly) { 2182 QualType ET = SemaRef.Context.getBaseElementType(Field->getType()); 2183 if (checkDestructorReference(ET, InitLoc, SemaRef)) { 2184 hadError = true; 2185 return; 2186 } 2187 } 2188 2189 InitializedEntity MemberEntity = 2190 InitializedEntity::InitializeMember(*Field, &Entity); 2191 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2192 StructuredList, StructuredIndex); 2193 InitializedSomething = true; 2194 2195 if (DeclType->isUnionType() && StructuredList) { 2196 // Initialize the first field within the union. 2197 StructuredList->setInitializedFieldInUnion(*Field); 2198 } 2199 2200 ++Field; 2201 } 2202 2203 // Emit warnings for missing struct field initializers. 2204 if (!VerifyOnly && InitializedSomething && CheckForMissingFields && 2205 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() && 2206 !DeclType->isUnionType()) { 2207 // It is possible we have one or more unnamed bitfields remaining. 2208 // Find first (if any) named field and emit warning. 2209 for (RecordDecl::field_iterator it = Field, end = RD->field_end(); 2210 it != end; ++it) { 2211 if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) { 2212 SemaRef.Diag(IList->getSourceRange().getEnd(), 2213 diag::warn_missing_field_initializers) << *it; 2214 break; 2215 } 2216 } 2217 } 2218 2219 // Check that any remaining fields can be value-initialized if we're not 2220 // building a structured list. (If we are, we'll check this later.) 2221 if (!StructuredList && Field != FieldEnd && !DeclType->isUnionType() && 2222 !Field->getType()->isIncompleteArrayType()) { 2223 for (; Field != FieldEnd && !hadError; ++Field) { 2224 if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer()) 2225 CheckEmptyInitializable( 2226 InitializedEntity::InitializeMember(*Field, &Entity), 2227 IList->getEndLoc()); 2228 } 2229 } 2230 2231 // Check that the types of the remaining fields have accessible destructors. 2232 if (!VerifyOnly) { 2233 // If the initializer expression has a designated initializer, check the 2234 // elements for which a designated initializer is not provided too. 2235 RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin() 2236 : Field; 2237 for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) { 2238 QualType ET = SemaRef.Context.getBaseElementType(I->getType()); 2239 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { 2240 hadError = true; 2241 return; 2242 } 2243 } 2244 } 2245 2246 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() || 2247 Index >= IList->getNumInits()) 2248 return; 2249 2250 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field, 2251 TopLevelObject)) { 2252 hadError = true; 2253 ++Index; 2254 return; 2255 } 2256 2257 InitializedEntity MemberEntity = 2258 InitializedEntity::InitializeMember(*Field, &Entity); 2259 2260 if (isa<InitListExpr>(IList->getInit(Index))) 2261 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2262 StructuredList, StructuredIndex); 2263 else 2264 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index, 2265 StructuredList, StructuredIndex); 2266 } 2267 2268 /// Expand a field designator that refers to a member of an 2269 /// anonymous struct or union into a series of field designators that 2270 /// refers to the field within the appropriate subobject. 2271 /// 2272 static void ExpandAnonymousFieldDesignator(Sema &SemaRef, 2273 DesignatedInitExpr *DIE, 2274 unsigned DesigIdx, 2275 IndirectFieldDecl *IndirectField) { 2276 typedef DesignatedInitExpr::Designator Designator; 2277 2278 // Build the replacement designators. 2279 SmallVector<Designator, 4> Replacements; 2280 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(), 2281 PE = IndirectField->chain_end(); PI != PE; ++PI) { 2282 if (PI + 1 == PE) 2283 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 2284 DIE->getDesignator(DesigIdx)->getDotLoc(), 2285 DIE->getDesignator(DesigIdx)->getFieldLoc())); 2286 else 2287 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 2288 SourceLocation(), SourceLocation())); 2289 assert(isa<FieldDecl>(*PI)); 2290 Replacements.back().setField(cast<FieldDecl>(*PI)); 2291 } 2292 2293 // Expand the current designator into the set of replacement 2294 // designators, so we have a full subobject path down to where the 2295 // member of the anonymous struct/union is actually stored. 2296 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0], 2297 &Replacements[0] + Replacements.size()); 2298 } 2299 2300 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef, 2301 DesignatedInitExpr *DIE) { 2302 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1; 2303 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs); 2304 for (unsigned I = 0; I < NumIndexExprs; ++I) 2305 IndexExprs[I] = DIE->getSubExpr(I + 1); 2306 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(), 2307 IndexExprs, 2308 DIE->getEqualOrColonLoc(), 2309 DIE->usesGNUSyntax(), DIE->getInit()); 2310 } 2311 2312 namespace { 2313 2314 // Callback to only accept typo corrections that are for field members of 2315 // the given struct or union. 2316 class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback { 2317 public: 2318 explicit FieldInitializerValidatorCCC(RecordDecl *RD) 2319 : Record(RD) {} 2320 2321 bool ValidateCandidate(const TypoCorrection &candidate) override { 2322 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>(); 2323 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record); 2324 } 2325 2326 std::unique_ptr<CorrectionCandidateCallback> clone() override { 2327 return std::make_unique<FieldInitializerValidatorCCC>(*this); 2328 } 2329 2330 private: 2331 RecordDecl *Record; 2332 }; 2333 2334 } // end anonymous namespace 2335 2336 /// Check the well-formedness of a C99 designated initializer. 2337 /// 2338 /// Determines whether the designated initializer @p DIE, which 2339 /// resides at the given @p Index within the initializer list @p 2340 /// IList, is well-formed for a current object of type @p DeclType 2341 /// (C99 6.7.8). The actual subobject that this designator refers to 2342 /// within the current subobject is returned in either 2343 /// @p NextField or @p NextElementIndex (whichever is appropriate). 2344 /// 2345 /// @param IList The initializer list in which this designated 2346 /// initializer occurs. 2347 /// 2348 /// @param DIE The designated initializer expression. 2349 /// 2350 /// @param DesigIdx The index of the current designator. 2351 /// 2352 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17), 2353 /// into which the designation in @p DIE should refer. 2354 /// 2355 /// @param NextField If non-NULL and the first designator in @p DIE is 2356 /// a field, this will be set to the field declaration corresponding 2357 /// to the field named by the designator. On input, this is expected to be 2358 /// the next field that would be initialized in the absence of designation, 2359 /// if the complete object being initialized is a struct. 2360 /// 2361 /// @param NextElementIndex If non-NULL and the first designator in @p 2362 /// DIE is an array designator or GNU array-range designator, this 2363 /// will be set to the last index initialized by this designator. 2364 /// 2365 /// @param Index Index into @p IList where the designated initializer 2366 /// @p DIE occurs. 2367 /// 2368 /// @param StructuredList The initializer list expression that 2369 /// describes all of the subobject initializers in the order they'll 2370 /// actually be initialized. 2371 /// 2372 /// @returns true if there was an error, false otherwise. 2373 bool 2374 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity, 2375 InitListExpr *IList, 2376 DesignatedInitExpr *DIE, 2377 unsigned DesigIdx, 2378 QualType &CurrentObjectType, 2379 RecordDecl::field_iterator *NextField, 2380 llvm::APSInt *NextElementIndex, 2381 unsigned &Index, 2382 InitListExpr *StructuredList, 2383 unsigned &StructuredIndex, 2384 bool FinishSubobjectInit, 2385 bool TopLevelObject) { 2386 if (DesigIdx == DIE->size()) { 2387 // C++20 designated initialization can result in direct-list-initialization 2388 // of the designated subobject. This is the only way that we can end up 2389 // performing direct initialization as part of aggregate initialization, so 2390 // it needs special handling. 2391 if (DIE->isDirectInit()) { 2392 Expr *Init = DIE->getInit(); 2393 assert(isa<InitListExpr>(Init) && 2394 "designator result in direct non-list initialization?"); 2395 InitializationKind Kind = InitializationKind::CreateDirectList( 2396 DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc()); 2397 InitializationSequence Seq(SemaRef, Entity, Kind, Init, 2398 /*TopLevelOfInitList*/ true); 2399 if (StructuredList) { 2400 ExprResult Result = VerifyOnly 2401 ? getDummyInit() 2402 : Seq.Perform(SemaRef, Entity, Kind, Init); 2403 UpdateStructuredListElement(StructuredList, StructuredIndex, 2404 Result.get()); 2405 } 2406 ++Index; 2407 return !Seq; 2408 } 2409 2410 // Check the actual initialization for the designated object type. 2411 bool prevHadError = hadError; 2412 2413 // Temporarily remove the designator expression from the 2414 // initializer list that the child calls see, so that we don't try 2415 // to re-process the designator. 2416 unsigned OldIndex = Index; 2417 IList->setInit(OldIndex, DIE->getInit()); 2418 2419 CheckSubElementType(Entity, IList, CurrentObjectType, Index, 2420 StructuredList, StructuredIndex); 2421 2422 // Restore the designated initializer expression in the syntactic 2423 // form of the initializer list. 2424 if (IList->getInit(OldIndex) != DIE->getInit()) 2425 DIE->setInit(IList->getInit(OldIndex)); 2426 IList->setInit(OldIndex, DIE); 2427 2428 return hadError && !prevHadError; 2429 } 2430 2431 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx); 2432 bool IsFirstDesignator = (DesigIdx == 0); 2433 if (IsFirstDesignator ? FullyStructuredList : StructuredList) { 2434 // Determine the structural initializer list that corresponds to the 2435 // current subobject. 2436 if (IsFirstDesignator) 2437 StructuredList = FullyStructuredList; 2438 else { 2439 Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ? 2440 StructuredList->getInit(StructuredIndex) : nullptr; 2441 if (!ExistingInit && StructuredList->hasArrayFiller()) 2442 ExistingInit = StructuredList->getArrayFiller(); 2443 2444 if (!ExistingInit) 2445 StructuredList = getStructuredSubobjectInit( 2446 IList, Index, CurrentObjectType, StructuredList, StructuredIndex, 2447 SourceRange(D->getBeginLoc(), DIE->getEndLoc())); 2448 else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit)) 2449 StructuredList = Result; 2450 else { 2451 // We are creating an initializer list that initializes the 2452 // subobjects of the current object, but there was already an 2453 // initialization that completely initialized the current 2454 // subobject, e.g., by a compound literal: 2455 // 2456 // struct X { int a, b; }; 2457 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 2458 // 2459 // Here, xs[0].a == 1 and xs[0].b == 3, since the second, 2460 // designated initializer re-initializes only its current object 2461 // subobject [0].b. 2462 diagnoseInitOverride(ExistingInit, 2463 SourceRange(D->getBeginLoc(), DIE->getEndLoc()), 2464 /*FullyOverwritten=*/false); 2465 2466 if (!VerifyOnly) { 2467 if (DesignatedInitUpdateExpr *E = 2468 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit)) 2469 StructuredList = E->getUpdater(); 2470 else { 2471 DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context) 2472 DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(), 2473 ExistingInit, DIE->getEndLoc()); 2474 StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE); 2475 StructuredList = DIUE->getUpdater(); 2476 } 2477 } else { 2478 // We don't need to track the structured representation of a 2479 // designated init update of an already-fully-initialized object in 2480 // verify-only mode. The only reason we would need the structure is 2481 // to determine where the uninitialized "holes" are, and in this 2482 // case, we know there aren't any and we can't introduce any. 2483 StructuredList = nullptr; 2484 } 2485 } 2486 } 2487 } 2488 2489 if (D->isFieldDesignator()) { 2490 // C99 6.7.8p7: 2491 // 2492 // If a designator has the form 2493 // 2494 // . identifier 2495 // 2496 // then the current object (defined below) shall have 2497 // structure or union type and the identifier shall be the 2498 // name of a member of that type. 2499 const RecordType *RT = CurrentObjectType->getAs<RecordType>(); 2500 if (!RT) { 2501 SourceLocation Loc = D->getDotLoc(); 2502 if (Loc.isInvalid()) 2503 Loc = D->getFieldLoc(); 2504 if (!VerifyOnly) 2505 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr) 2506 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType; 2507 ++Index; 2508 return true; 2509 } 2510 2511 FieldDecl *KnownField = D->getField(); 2512 if (!KnownField) { 2513 IdentifierInfo *FieldName = D->getFieldName(); 2514 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName); 2515 for (NamedDecl *ND : Lookup) { 2516 if (auto *FD = dyn_cast<FieldDecl>(ND)) { 2517 KnownField = FD; 2518 break; 2519 } 2520 if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) { 2521 // In verify mode, don't modify the original. 2522 if (VerifyOnly) 2523 DIE = CloneDesignatedInitExpr(SemaRef, DIE); 2524 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD); 2525 D = DIE->getDesignator(DesigIdx); 2526 KnownField = cast<FieldDecl>(*IFD->chain_begin()); 2527 break; 2528 } 2529 } 2530 if (!KnownField) { 2531 if (VerifyOnly) { 2532 ++Index; 2533 return true; // No typo correction when just trying this out. 2534 } 2535 2536 // Name lookup found something, but it wasn't a field. 2537 if (!Lookup.empty()) { 2538 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield) 2539 << FieldName; 2540 SemaRef.Diag(Lookup.front()->getLocation(), 2541 diag::note_field_designator_found); 2542 ++Index; 2543 return true; 2544 } 2545 2546 // Name lookup didn't find anything. 2547 // Determine whether this was a typo for another field name. 2548 FieldInitializerValidatorCCC CCC(RT->getDecl()); 2549 if (TypoCorrection Corrected = SemaRef.CorrectTypo( 2550 DeclarationNameInfo(FieldName, D->getFieldLoc()), 2551 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC, 2552 Sema::CTK_ErrorRecovery, RT->getDecl())) { 2553 SemaRef.diagnoseTypo( 2554 Corrected, 2555 SemaRef.PDiag(diag::err_field_designator_unknown_suggest) 2556 << FieldName << CurrentObjectType); 2557 KnownField = Corrected.getCorrectionDeclAs<FieldDecl>(); 2558 hadError = true; 2559 } else { 2560 // Typo correction didn't find anything. 2561 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown) 2562 << FieldName << CurrentObjectType; 2563 ++Index; 2564 return true; 2565 } 2566 } 2567 } 2568 2569 unsigned NumBases = 0; 2570 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2571 NumBases = CXXRD->getNumBases(); 2572 2573 unsigned FieldIndex = NumBases; 2574 2575 for (auto *FI : RT->getDecl()->fields()) { 2576 if (FI->isUnnamedBitfield()) 2577 continue; 2578 if (declaresSameEntity(KnownField, FI)) { 2579 KnownField = FI; 2580 break; 2581 } 2582 ++FieldIndex; 2583 } 2584 2585 RecordDecl::field_iterator Field = 2586 RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField)); 2587 2588 // All of the fields of a union are located at the same place in 2589 // the initializer list. 2590 if (RT->getDecl()->isUnion()) { 2591 FieldIndex = 0; 2592 if (StructuredList) { 2593 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion(); 2594 if (CurrentField && !declaresSameEntity(CurrentField, *Field)) { 2595 assert(StructuredList->getNumInits() == 1 2596 && "A union should never have more than one initializer!"); 2597 2598 Expr *ExistingInit = StructuredList->getInit(0); 2599 if (ExistingInit) { 2600 // We're about to throw away an initializer, emit warning. 2601 diagnoseInitOverride( 2602 ExistingInit, SourceRange(D->getBeginLoc(), DIE->getEndLoc())); 2603 } 2604 2605 // remove existing initializer 2606 StructuredList->resizeInits(SemaRef.Context, 0); 2607 StructuredList->setInitializedFieldInUnion(nullptr); 2608 } 2609 2610 StructuredList->setInitializedFieldInUnion(*Field); 2611 } 2612 } 2613 2614 // Make sure we can use this declaration. 2615 bool InvalidUse; 2616 if (VerifyOnly) 2617 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); 2618 else 2619 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc()); 2620 if (InvalidUse) { 2621 ++Index; 2622 return true; 2623 } 2624 2625 // C++20 [dcl.init.list]p3: 2626 // The ordered identifiers in the designators of the designated- 2627 // initializer-list shall form a subsequence of the ordered identifiers 2628 // in the direct non-static data members of T. 2629 // 2630 // Note that this is not a condition on forming the aggregate 2631 // initialization, only on actually performing initialization, 2632 // so it is not checked in VerifyOnly mode. 2633 // 2634 // FIXME: This is the only reordering diagnostic we produce, and it only 2635 // catches cases where we have a top-level field designator that jumps 2636 // backwards. This is the only such case that is reachable in an 2637 // otherwise-valid C++20 program, so is the only case that's required for 2638 // conformance, but for consistency, we should diagnose all the other 2639 // cases where a designator takes us backwards too. 2640 if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus && 2641 NextField && 2642 (*NextField == RT->getDecl()->field_end() || 2643 (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) { 2644 // Find the field that we just initialized. 2645 FieldDecl *PrevField = nullptr; 2646 for (auto FI = RT->getDecl()->field_begin(); 2647 FI != RT->getDecl()->field_end(); ++FI) { 2648 if (FI->isUnnamedBitfield()) 2649 continue; 2650 if (*NextField != RT->getDecl()->field_end() && 2651 declaresSameEntity(*FI, **NextField)) 2652 break; 2653 PrevField = *FI; 2654 } 2655 2656 if (PrevField && 2657 PrevField->getFieldIndex() > KnownField->getFieldIndex()) { 2658 SemaRef.Diag(DIE->getBeginLoc(), diag::ext_designated_init_reordered) 2659 << KnownField << PrevField << DIE->getSourceRange(); 2660 2661 unsigned OldIndex = NumBases + PrevField->getFieldIndex(); 2662 if (StructuredList && OldIndex <= StructuredList->getNumInits()) { 2663 if (Expr *PrevInit = StructuredList->getInit(OldIndex)) { 2664 SemaRef.Diag(PrevInit->getBeginLoc(), 2665 diag::note_previous_field_init) 2666 << PrevField << PrevInit->getSourceRange(); 2667 } 2668 } 2669 } 2670 } 2671 2672 2673 // Update the designator with the field declaration. 2674 if (!VerifyOnly) 2675 D->setField(*Field); 2676 2677 // Make sure that our non-designated initializer list has space 2678 // for a subobject corresponding to this field. 2679 if (StructuredList && FieldIndex >= StructuredList->getNumInits()) 2680 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1); 2681 2682 // This designator names a flexible array member. 2683 if (Field->getType()->isIncompleteArrayType()) { 2684 bool Invalid = false; 2685 if ((DesigIdx + 1) != DIE->size()) { 2686 // We can't designate an object within the flexible array 2687 // member (because GCC doesn't allow it). 2688 if (!VerifyOnly) { 2689 DesignatedInitExpr::Designator *NextD 2690 = DIE->getDesignator(DesigIdx + 1); 2691 SemaRef.Diag(NextD->getBeginLoc(), 2692 diag::err_designator_into_flexible_array_member) 2693 << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc()); 2694 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2695 << *Field; 2696 } 2697 Invalid = true; 2698 } 2699 2700 if (!hadError && !isa<InitListExpr>(DIE->getInit()) && 2701 !isa<StringLiteral>(DIE->getInit())) { 2702 // The initializer is not an initializer list. 2703 if (!VerifyOnly) { 2704 SemaRef.Diag(DIE->getInit()->getBeginLoc(), 2705 diag::err_flexible_array_init_needs_braces) 2706 << DIE->getInit()->getSourceRange(); 2707 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2708 << *Field; 2709 } 2710 Invalid = true; 2711 } 2712 2713 // Check GNU flexible array initializer. 2714 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field, 2715 TopLevelObject)) 2716 Invalid = true; 2717 2718 if (Invalid) { 2719 ++Index; 2720 return true; 2721 } 2722 2723 // Initialize the array. 2724 bool prevHadError = hadError; 2725 unsigned newStructuredIndex = FieldIndex; 2726 unsigned OldIndex = Index; 2727 IList->setInit(Index, DIE->getInit()); 2728 2729 InitializedEntity MemberEntity = 2730 InitializedEntity::InitializeMember(*Field, &Entity); 2731 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2732 StructuredList, newStructuredIndex); 2733 2734 IList->setInit(OldIndex, DIE); 2735 if (hadError && !prevHadError) { 2736 ++Field; 2737 ++FieldIndex; 2738 if (NextField) 2739 *NextField = Field; 2740 StructuredIndex = FieldIndex; 2741 return true; 2742 } 2743 } else { 2744 // Recurse to check later designated subobjects. 2745 QualType FieldType = Field->getType(); 2746 unsigned newStructuredIndex = FieldIndex; 2747 2748 InitializedEntity MemberEntity = 2749 InitializedEntity::InitializeMember(*Field, &Entity); 2750 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1, 2751 FieldType, nullptr, nullptr, Index, 2752 StructuredList, newStructuredIndex, 2753 FinishSubobjectInit, false)) 2754 return true; 2755 } 2756 2757 // Find the position of the next field to be initialized in this 2758 // subobject. 2759 ++Field; 2760 ++FieldIndex; 2761 2762 // If this the first designator, our caller will continue checking 2763 // the rest of this struct/class/union subobject. 2764 if (IsFirstDesignator) { 2765 if (NextField) 2766 *NextField = Field; 2767 StructuredIndex = FieldIndex; 2768 return false; 2769 } 2770 2771 if (!FinishSubobjectInit) 2772 return false; 2773 2774 // We've already initialized something in the union; we're done. 2775 if (RT->getDecl()->isUnion()) 2776 return hadError; 2777 2778 // Check the remaining fields within this class/struct/union subobject. 2779 bool prevHadError = hadError; 2780 2781 auto NoBases = 2782 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), 2783 CXXRecordDecl::base_class_iterator()); 2784 CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field, 2785 false, Index, StructuredList, FieldIndex); 2786 return hadError && !prevHadError; 2787 } 2788 2789 // C99 6.7.8p6: 2790 // 2791 // If a designator has the form 2792 // 2793 // [ constant-expression ] 2794 // 2795 // then the current object (defined below) shall have array 2796 // type and the expression shall be an integer constant 2797 // expression. If the array is of unknown size, any 2798 // nonnegative value is valid. 2799 // 2800 // Additionally, cope with the GNU extension that permits 2801 // designators of the form 2802 // 2803 // [ constant-expression ... constant-expression ] 2804 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType); 2805 if (!AT) { 2806 if (!VerifyOnly) 2807 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array) 2808 << CurrentObjectType; 2809 ++Index; 2810 return true; 2811 } 2812 2813 Expr *IndexExpr = nullptr; 2814 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex; 2815 if (D->isArrayDesignator()) { 2816 IndexExpr = DIE->getArrayIndex(*D); 2817 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context); 2818 DesignatedEndIndex = DesignatedStartIndex; 2819 } else { 2820 assert(D->isArrayRangeDesignator() && "Need array-range designator"); 2821 2822 DesignatedStartIndex = 2823 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context); 2824 DesignatedEndIndex = 2825 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context); 2826 IndexExpr = DIE->getArrayRangeEnd(*D); 2827 2828 // Codegen can't handle evaluating array range designators that have side 2829 // effects, because we replicate the AST value for each initialized element. 2830 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple 2831 // elements with something that has a side effect, so codegen can emit an 2832 // "error unsupported" error instead of miscompiling the app. 2833 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&& 2834 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly) 2835 FullyStructuredList->sawArrayRangeDesignator(); 2836 } 2837 2838 if (isa<ConstantArrayType>(AT)) { 2839 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false); 2840 DesignatedStartIndex 2841 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth()); 2842 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned()); 2843 DesignatedEndIndex 2844 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth()); 2845 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned()); 2846 if (DesignatedEndIndex >= MaxElements) { 2847 if (!VerifyOnly) 2848 SemaRef.Diag(IndexExpr->getBeginLoc(), 2849 diag::err_array_designator_too_large) 2850 << DesignatedEndIndex.toString(10) << MaxElements.toString(10) 2851 << IndexExpr->getSourceRange(); 2852 ++Index; 2853 return true; 2854 } 2855 } else { 2856 unsigned DesignatedIndexBitWidth = 2857 ConstantArrayType::getMaxSizeBits(SemaRef.Context); 2858 DesignatedStartIndex = 2859 DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth); 2860 DesignatedEndIndex = 2861 DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth); 2862 DesignatedStartIndex.setIsUnsigned(true); 2863 DesignatedEndIndex.setIsUnsigned(true); 2864 } 2865 2866 bool IsStringLiteralInitUpdate = 2867 StructuredList && StructuredList->isStringLiteralInit(); 2868 if (IsStringLiteralInitUpdate && VerifyOnly) { 2869 // We're just verifying an update to a string literal init. We don't need 2870 // to split the string up into individual characters to do that. 2871 StructuredList = nullptr; 2872 } else if (IsStringLiteralInitUpdate) { 2873 // We're modifying a string literal init; we have to decompose the string 2874 // so we can modify the individual characters. 2875 ASTContext &Context = SemaRef.Context; 2876 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens(); 2877 2878 // Compute the character type 2879 QualType CharTy = AT->getElementType(); 2880 2881 // Compute the type of the integer literals. 2882 QualType PromotedCharTy = CharTy; 2883 if (CharTy->isPromotableIntegerType()) 2884 PromotedCharTy = Context.getPromotedIntegerType(CharTy); 2885 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy); 2886 2887 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) { 2888 // Get the length of the string. 2889 uint64_t StrLen = SL->getLength(); 2890 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2891 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2892 StructuredList->resizeInits(Context, StrLen); 2893 2894 // Build a literal for each character in the string, and put them into 2895 // the init list. 2896 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2897 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i)); 2898 Expr *Init = new (Context) IntegerLiteral( 2899 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2900 if (CharTy != PromotedCharTy) 2901 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2902 Init, nullptr, VK_RValue); 2903 StructuredList->updateInit(Context, i, Init); 2904 } 2905 } else { 2906 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr); 2907 std::string Str; 2908 Context.getObjCEncodingForType(E->getEncodedType(), Str); 2909 2910 // Get the length of the string. 2911 uint64_t StrLen = Str.size(); 2912 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2913 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2914 StructuredList->resizeInits(Context, StrLen); 2915 2916 // Build a literal for each character in the string, and put them into 2917 // the init list. 2918 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2919 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]); 2920 Expr *Init = new (Context) IntegerLiteral( 2921 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2922 if (CharTy != PromotedCharTy) 2923 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2924 Init, nullptr, VK_RValue); 2925 StructuredList->updateInit(Context, i, Init); 2926 } 2927 } 2928 } 2929 2930 // Make sure that our non-designated initializer list has space 2931 // for a subobject corresponding to this array element. 2932 if (StructuredList && 2933 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits()) 2934 StructuredList->resizeInits(SemaRef.Context, 2935 DesignatedEndIndex.getZExtValue() + 1); 2936 2937 // Repeatedly perform subobject initializations in the range 2938 // [DesignatedStartIndex, DesignatedEndIndex]. 2939 2940 // Move to the next designator 2941 unsigned ElementIndex = DesignatedStartIndex.getZExtValue(); 2942 unsigned OldIndex = Index; 2943 2944 InitializedEntity ElementEntity = 2945 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 2946 2947 while (DesignatedStartIndex <= DesignatedEndIndex) { 2948 // Recurse to check later designated subobjects. 2949 QualType ElementType = AT->getElementType(); 2950 Index = OldIndex; 2951 2952 ElementEntity.setElementIndex(ElementIndex); 2953 if (CheckDesignatedInitializer( 2954 ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr, 2955 nullptr, Index, StructuredList, ElementIndex, 2956 FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex), 2957 false)) 2958 return true; 2959 2960 // Move to the next index in the array that we'll be initializing. 2961 ++DesignatedStartIndex; 2962 ElementIndex = DesignatedStartIndex.getZExtValue(); 2963 } 2964 2965 // If this the first designator, our caller will continue checking 2966 // the rest of this array subobject. 2967 if (IsFirstDesignator) { 2968 if (NextElementIndex) 2969 *NextElementIndex = DesignatedStartIndex; 2970 StructuredIndex = ElementIndex; 2971 return false; 2972 } 2973 2974 if (!FinishSubobjectInit) 2975 return false; 2976 2977 // Check the remaining elements within this array subobject. 2978 bool prevHadError = hadError; 2979 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex, 2980 /*SubobjectIsDesignatorContext=*/false, Index, 2981 StructuredList, ElementIndex); 2982 return hadError && !prevHadError; 2983 } 2984 2985 // Get the structured initializer list for a subobject of type 2986 // @p CurrentObjectType. 2987 InitListExpr * 2988 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 2989 QualType CurrentObjectType, 2990 InitListExpr *StructuredList, 2991 unsigned StructuredIndex, 2992 SourceRange InitRange, 2993 bool IsFullyOverwritten) { 2994 if (!StructuredList) 2995 return nullptr; 2996 2997 Expr *ExistingInit = nullptr; 2998 if (StructuredIndex < StructuredList->getNumInits()) 2999 ExistingInit = StructuredList->getInit(StructuredIndex); 3000 3001 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit)) 3002 // There might have already been initializers for subobjects of the current 3003 // object, but a subsequent initializer list will overwrite the entirety 3004 // of the current object. (See DR 253 and C99 6.7.8p21). e.g., 3005 // 3006 // struct P { char x[6]; }; 3007 // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } }; 3008 // 3009 // The first designated initializer is ignored, and l.x is just "f". 3010 if (!IsFullyOverwritten) 3011 return Result; 3012 3013 if (ExistingInit) { 3014 // We are creating an initializer list that initializes the 3015 // subobjects of the current object, but there was already an 3016 // initialization that completely initialized the current 3017 // subobject: 3018 // 3019 // struct X { int a, b; }; 3020 // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 }; 3021 // 3022 // Here, xs[0].a == 1 and xs[0].b == 3, since the second, 3023 // designated initializer overwrites the [0].b initializer 3024 // from the prior initialization. 3025 // 3026 // When the existing initializer is an expression rather than an 3027 // initializer list, we cannot decompose and update it in this way. 3028 // For example: 3029 // 3030 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 3031 // 3032 // This case is handled by CheckDesignatedInitializer. 3033 diagnoseInitOverride(ExistingInit, InitRange); 3034 } 3035 3036 unsigned ExpectedNumInits = 0; 3037 if (Index < IList->getNumInits()) { 3038 if (auto *Init = dyn_cast_or_null<InitListExpr>(IList->getInit(Index))) 3039 ExpectedNumInits = Init->getNumInits(); 3040 else 3041 ExpectedNumInits = IList->getNumInits() - Index; 3042 } 3043 3044 InitListExpr *Result = 3045 createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits); 3046 3047 // Link this new initializer list into the structured initializer 3048 // lists. 3049 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result); 3050 return Result; 3051 } 3052 3053 InitListExpr * 3054 InitListChecker::createInitListExpr(QualType CurrentObjectType, 3055 SourceRange InitRange, 3056 unsigned ExpectedNumInits) { 3057 InitListExpr *Result 3058 = new (SemaRef.Context) InitListExpr(SemaRef.Context, 3059 InitRange.getBegin(), None, 3060 InitRange.getEnd()); 3061 3062 QualType ResultType = CurrentObjectType; 3063 if (!ResultType->isArrayType()) 3064 ResultType = ResultType.getNonLValueExprType(SemaRef.Context); 3065 Result->setType(ResultType); 3066 3067 // Pre-allocate storage for the structured initializer list. 3068 unsigned NumElements = 0; 3069 3070 if (const ArrayType *AType 3071 = SemaRef.Context.getAsArrayType(CurrentObjectType)) { 3072 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) { 3073 NumElements = CAType->getSize().getZExtValue(); 3074 // Simple heuristic so that we don't allocate a very large 3075 // initializer with many empty entries at the end. 3076 if (NumElements > ExpectedNumInits) 3077 NumElements = 0; 3078 } 3079 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) { 3080 NumElements = VType->getNumElements(); 3081 } else if (CurrentObjectType->isRecordType()) { 3082 NumElements = numStructUnionElements(CurrentObjectType); 3083 } 3084 3085 Result->reserveInits(SemaRef.Context, NumElements); 3086 3087 return Result; 3088 } 3089 3090 /// Update the initializer at index @p StructuredIndex within the 3091 /// structured initializer list to the value @p expr. 3092 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList, 3093 unsigned &StructuredIndex, 3094 Expr *expr) { 3095 // No structured initializer list to update 3096 if (!StructuredList) 3097 return; 3098 3099 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context, 3100 StructuredIndex, expr)) { 3101 // This initializer overwrites a previous initializer. Warn. 3102 diagnoseInitOverride(PrevInit, expr->getSourceRange()); 3103 } 3104 3105 ++StructuredIndex; 3106 } 3107 3108 /// Determine whether we can perform aggregate initialization for the purposes 3109 /// of overload resolution. 3110 bool Sema::CanPerformAggregateInitializationForOverloadResolution( 3111 const InitializedEntity &Entity, InitListExpr *From) { 3112 QualType Type = Entity.getType(); 3113 InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true, 3114 /*TreatUnavailableAsInvalid=*/false, 3115 /*InOverloadResolution=*/true); 3116 return !Check.HadError(); 3117 } 3118 3119 /// Check that the given Index expression is a valid array designator 3120 /// value. This is essentially just a wrapper around 3121 /// VerifyIntegerConstantExpression that also checks for negative values 3122 /// and produces a reasonable diagnostic if there is a 3123 /// failure. Returns the index expression, possibly with an implicit cast 3124 /// added, on success. If everything went okay, Value will receive the 3125 /// value of the constant expression. 3126 static ExprResult 3127 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) { 3128 SourceLocation Loc = Index->getBeginLoc(); 3129 3130 // Make sure this is an integer constant expression. 3131 ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value); 3132 if (Result.isInvalid()) 3133 return Result; 3134 3135 if (Value.isSigned() && Value.isNegative()) 3136 return S.Diag(Loc, diag::err_array_designator_negative) 3137 << Value.toString(10) << Index->getSourceRange(); 3138 3139 Value.setIsUnsigned(true); 3140 return Result; 3141 } 3142 3143 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig, 3144 SourceLocation EqualOrColonLoc, 3145 bool GNUSyntax, 3146 ExprResult Init) { 3147 typedef DesignatedInitExpr::Designator ASTDesignator; 3148 3149 bool Invalid = false; 3150 SmallVector<ASTDesignator, 32> Designators; 3151 SmallVector<Expr *, 32> InitExpressions; 3152 3153 // Build designators and check array designator expressions. 3154 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) { 3155 const Designator &D = Desig.getDesignator(Idx); 3156 switch (D.getKind()) { 3157 case Designator::FieldDesignator: 3158 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(), 3159 D.getFieldLoc())); 3160 break; 3161 3162 case Designator::ArrayDesignator: { 3163 Expr *Index = static_cast<Expr *>(D.getArrayIndex()); 3164 llvm::APSInt IndexValue; 3165 if (!Index->isTypeDependent() && !Index->isValueDependent()) 3166 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get(); 3167 if (!Index) 3168 Invalid = true; 3169 else { 3170 Designators.push_back(ASTDesignator(InitExpressions.size(), 3171 D.getLBracketLoc(), 3172 D.getRBracketLoc())); 3173 InitExpressions.push_back(Index); 3174 } 3175 break; 3176 } 3177 3178 case Designator::ArrayRangeDesignator: { 3179 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart()); 3180 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd()); 3181 llvm::APSInt StartValue; 3182 llvm::APSInt EndValue; 3183 bool StartDependent = StartIndex->isTypeDependent() || 3184 StartIndex->isValueDependent(); 3185 bool EndDependent = EndIndex->isTypeDependent() || 3186 EndIndex->isValueDependent(); 3187 if (!StartDependent) 3188 StartIndex = 3189 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get(); 3190 if (!EndDependent) 3191 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get(); 3192 3193 if (!StartIndex || !EndIndex) 3194 Invalid = true; 3195 else { 3196 // Make sure we're comparing values with the same bit width. 3197 if (StartDependent || EndDependent) { 3198 // Nothing to compute. 3199 } else if (StartValue.getBitWidth() > EndValue.getBitWidth()) 3200 EndValue = EndValue.extend(StartValue.getBitWidth()); 3201 else if (StartValue.getBitWidth() < EndValue.getBitWidth()) 3202 StartValue = StartValue.extend(EndValue.getBitWidth()); 3203 3204 if (!StartDependent && !EndDependent && EndValue < StartValue) { 3205 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range) 3206 << StartValue.toString(10) << EndValue.toString(10) 3207 << StartIndex->getSourceRange() << EndIndex->getSourceRange(); 3208 Invalid = true; 3209 } else { 3210 Designators.push_back(ASTDesignator(InitExpressions.size(), 3211 D.getLBracketLoc(), 3212 D.getEllipsisLoc(), 3213 D.getRBracketLoc())); 3214 InitExpressions.push_back(StartIndex); 3215 InitExpressions.push_back(EndIndex); 3216 } 3217 } 3218 break; 3219 } 3220 } 3221 } 3222 3223 if (Invalid || Init.isInvalid()) 3224 return ExprError(); 3225 3226 // Clear out the expressions within the designation. 3227 Desig.ClearExprs(*this); 3228 3229 return DesignatedInitExpr::Create(Context, Designators, InitExpressions, 3230 EqualOrColonLoc, GNUSyntax, 3231 Init.getAs<Expr>()); 3232 } 3233 3234 //===----------------------------------------------------------------------===// 3235 // Initialization entity 3236 //===----------------------------------------------------------------------===// 3237 3238 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index, 3239 const InitializedEntity &Parent) 3240 : Parent(&Parent), Index(Index) 3241 { 3242 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) { 3243 Kind = EK_ArrayElement; 3244 Type = AT->getElementType(); 3245 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) { 3246 Kind = EK_VectorElement; 3247 Type = VT->getElementType(); 3248 } else { 3249 const ComplexType *CT = Parent.getType()->getAs<ComplexType>(); 3250 assert(CT && "Unexpected type"); 3251 Kind = EK_ComplexElement; 3252 Type = CT->getElementType(); 3253 } 3254 } 3255 3256 InitializedEntity 3257 InitializedEntity::InitializeBase(ASTContext &Context, 3258 const CXXBaseSpecifier *Base, 3259 bool IsInheritedVirtualBase, 3260 const InitializedEntity *Parent) { 3261 InitializedEntity Result; 3262 Result.Kind = EK_Base; 3263 Result.Parent = Parent; 3264 Result.Base = reinterpret_cast<uintptr_t>(Base); 3265 if (IsInheritedVirtualBase) 3266 Result.Base |= 0x01; 3267 3268 Result.Type = Base->getType(); 3269 return Result; 3270 } 3271 3272 DeclarationName InitializedEntity::getName() const { 3273 switch (getKind()) { 3274 case EK_Parameter: 3275 case EK_Parameter_CF_Audited: { 3276 ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 3277 return (D ? D->getDeclName() : DeclarationName()); 3278 } 3279 3280 case EK_Variable: 3281 case EK_Member: 3282 case EK_Binding: 3283 return Variable.VariableOrMember->getDeclName(); 3284 3285 case EK_LambdaCapture: 3286 return DeclarationName(Capture.VarID); 3287 3288 case EK_Result: 3289 case EK_StmtExprResult: 3290 case EK_Exception: 3291 case EK_New: 3292 case EK_Temporary: 3293 case EK_Base: 3294 case EK_Delegating: 3295 case EK_ArrayElement: 3296 case EK_VectorElement: 3297 case EK_ComplexElement: 3298 case EK_BlockElement: 3299 case EK_LambdaToBlockConversionBlockElement: 3300 case EK_CompoundLiteralInit: 3301 case EK_RelatedResult: 3302 return DeclarationName(); 3303 } 3304 3305 llvm_unreachable("Invalid EntityKind!"); 3306 } 3307 3308 ValueDecl *InitializedEntity::getDecl() const { 3309 switch (getKind()) { 3310 case EK_Variable: 3311 case EK_Member: 3312 case EK_Binding: 3313 return Variable.VariableOrMember; 3314 3315 case EK_Parameter: 3316 case EK_Parameter_CF_Audited: 3317 return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 3318 3319 case EK_Result: 3320 case EK_StmtExprResult: 3321 case EK_Exception: 3322 case EK_New: 3323 case EK_Temporary: 3324 case EK_Base: 3325 case EK_Delegating: 3326 case EK_ArrayElement: 3327 case EK_VectorElement: 3328 case EK_ComplexElement: 3329 case EK_BlockElement: 3330 case EK_LambdaToBlockConversionBlockElement: 3331 case EK_LambdaCapture: 3332 case EK_CompoundLiteralInit: 3333 case EK_RelatedResult: 3334 return nullptr; 3335 } 3336 3337 llvm_unreachable("Invalid EntityKind!"); 3338 } 3339 3340 bool InitializedEntity::allowsNRVO() const { 3341 switch (getKind()) { 3342 case EK_Result: 3343 case EK_Exception: 3344 return LocAndNRVO.NRVO; 3345 3346 case EK_StmtExprResult: 3347 case EK_Variable: 3348 case EK_Parameter: 3349 case EK_Parameter_CF_Audited: 3350 case EK_Member: 3351 case EK_Binding: 3352 case EK_New: 3353 case EK_Temporary: 3354 case EK_CompoundLiteralInit: 3355 case EK_Base: 3356 case EK_Delegating: 3357 case EK_ArrayElement: 3358 case EK_VectorElement: 3359 case EK_ComplexElement: 3360 case EK_BlockElement: 3361 case EK_LambdaToBlockConversionBlockElement: 3362 case EK_LambdaCapture: 3363 case EK_RelatedResult: 3364 break; 3365 } 3366 3367 return false; 3368 } 3369 3370 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const { 3371 assert(getParent() != this); 3372 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0; 3373 for (unsigned I = 0; I != Depth; ++I) 3374 OS << "`-"; 3375 3376 switch (getKind()) { 3377 case EK_Variable: OS << "Variable"; break; 3378 case EK_Parameter: OS << "Parameter"; break; 3379 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter"; 3380 break; 3381 case EK_Result: OS << "Result"; break; 3382 case EK_StmtExprResult: OS << "StmtExprResult"; break; 3383 case EK_Exception: OS << "Exception"; break; 3384 case EK_Member: OS << "Member"; break; 3385 case EK_Binding: OS << "Binding"; break; 3386 case EK_New: OS << "New"; break; 3387 case EK_Temporary: OS << "Temporary"; break; 3388 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break; 3389 case EK_RelatedResult: OS << "RelatedResult"; break; 3390 case EK_Base: OS << "Base"; break; 3391 case EK_Delegating: OS << "Delegating"; break; 3392 case EK_ArrayElement: OS << "ArrayElement " << Index; break; 3393 case EK_VectorElement: OS << "VectorElement " << Index; break; 3394 case EK_ComplexElement: OS << "ComplexElement " << Index; break; 3395 case EK_BlockElement: OS << "Block"; break; 3396 case EK_LambdaToBlockConversionBlockElement: 3397 OS << "Block (lambda)"; 3398 break; 3399 case EK_LambdaCapture: 3400 OS << "LambdaCapture "; 3401 OS << DeclarationName(Capture.VarID); 3402 break; 3403 } 3404 3405 if (auto *D = getDecl()) { 3406 OS << " "; 3407 D->printQualifiedName(OS); 3408 } 3409 3410 OS << " '" << getType().getAsString() << "'\n"; 3411 3412 return Depth + 1; 3413 } 3414 3415 LLVM_DUMP_METHOD void InitializedEntity::dump() const { 3416 dumpImpl(llvm::errs()); 3417 } 3418 3419 //===----------------------------------------------------------------------===// 3420 // Initialization sequence 3421 //===----------------------------------------------------------------------===// 3422 3423 void InitializationSequence::Step::Destroy() { 3424 switch (Kind) { 3425 case SK_ResolveAddressOfOverloadedFunction: 3426 case SK_CastDerivedToBaseRValue: 3427 case SK_CastDerivedToBaseXValue: 3428 case SK_CastDerivedToBaseLValue: 3429 case SK_BindReference: 3430 case SK_BindReferenceToTemporary: 3431 case SK_FinalCopy: 3432 case SK_ExtraneousCopyToTemporary: 3433 case SK_UserConversion: 3434 case SK_QualificationConversionRValue: 3435 case SK_QualificationConversionXValue: 3436 case SK_QualificationConversionLValue: 3437 case SK_AtomicConversion: 3438 case SK_ListInitialization: 3439 case SK_UnwrapInitList: 3440 case SK_RewrapInitList: 3441 case SK_ConstructorInitialization: 3442 case SK_ConstructorInitializationFromList: 3443 case SK_ZeroInitialization: 3444 case SK_CAssignment: 3445 case SK_StringInit: 3446 case SK_ObjCObjectConversion: 3447 case SK_ArrayLoopIndex: 3448 case SK_ArrayLoopInit: 3449 case SK_ArrayInit: 3450 case SK_GNUArrayInit: 3451 case SK_ParenthesizedArrayInit: 3452 case SK_PassByIndirectCopyRestore: 3453 case SK_PassByIndirectRestore: 3454 case SK_ProduceObjCObject: 3455 case SK_StdInitializerList: 3456 case SK_StdInitializerListConstructorCall: 3457 case SK_OCLSamplerInit: 3458 case SK_OCLZeroOpaqueType: 3459 break; 3460 3461 case SK_ConversionSequence: 3462 case SK_ConversionSequenceNoNarrowing: 3463 delete ICS; 3464 } 3465 } 3466 3467 bool InitializationSequence::isDirectReferenceBinding() const { 3468 // There can be some lvalue adjustments after the SK_BindReference step. 3469 for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) { 3470 if (I->Kind == SK_BindReference) 3471 return true; 3472 if (I->Kind == SK_BindReferenceToTemporary) 3473 return false; 3474 } 3475 return false; 3476 } 3477 3478 bool InitializationSequence::isAmbiguous() const { 3479 if (!Failed()) 3480 return false; 3481 3482 switch (getFailureKind()) { 3483 case FK_TooManyInitsForReference: 3484 case FK_ParenthesizedListInitForReference: 3485 case FK_ArrayNeedsInitList: 3486 case FK_ArrayNeedsInitListOrStringLiteral: 3487 case FK_ArrayNeedsInitListOrWideStringLiteral: 3488 case FK_NarrowStringIntoWideCharArray: 3489 case FK_WideStringIntoCharArray: 3490 case FK_IncompatWideStringIntoWideChar: 3491 case FK_PlainStringIntoUTF8Char: 3492 case FK_UTF8StringIntoPlainChar: 3493 case FK_AddressOfOverloadFailed: // FIXME: Could do better 3494 case FK_NonConstLValueReferenceBindingToTemporary: 3495 case FK_NonConstLValueReferenceBindingToBitfield: 3496 case FK_NonConstLValueReferenceBindingToVectorElement: 3497 case FK_NonConstLValueReferenceBindingToMatrixElement: 3498 case FK_NonConstLValueReferenceBindingToUnrelated: 3499 case FK_RValueReferenceBindingToLValue: 3500 case FK_ReferenceAddrspaceMismatchTemporary: 3501 case FK_ReferenceInitDropsQualifiers: 3502 case FK_ReferenceInitFailed: 3503 case FK_ConversionFailed: 3504 case FK_ConversionFromPropertyFailed: 3505 case FK_TooManyInitsForScalar: 3506 case FK_ParenthesizedListInitForScalar: 3507 case FK_ReferenceBindingToInitList: 3508 case FK_InitListBadDestinationType: 3509 case FK_DefaultInitOfConst: 3510 case FK_Incomplete: 3511 case FK_ArrayTypeMismatch: 3512 case FK_NonConstantArrayInit: 3513 case FK_ListInitializationFailed: 3514 case FK_VariableLengthArrayHasInitializer: 3515 case FK_PlaceholderType: 3516 case FK_ExplicitConstructor: 3517 case FK_AddressOfUnaddressableFunction: 3518 return false; 3519 3520 case FK_ReferenceInitOverloadFailed: 3521 case FK_UserConversionOverloadFailed: 3522 case FK_ConstructorOverloadFailed: 3523 case FK_ListConstructorOverloadFailed: 3524 return FailedOverloadResult == OR_Ambiguous; 3525 } 3526 3527 llvm_unreachable("Invalid EntityKind!"); 3528 } 3529 3530 bool InitializationSequence::isConstructorInitialization() const { 3531 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization; 3532 } 3533 3534 void 3535 InitializationSequence 3536 ::AddAddressOverloadResolutionStep(FunctionDecl *Function, 3537 DeclAccessPair Found, 3538 bool HadMultipleCandidates) { 3539 Step S; 3540 S.Kind = SK_ResolveAddressOfOverloadedFunction; 3541 S.Type = Function->getType(); 3542 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3543 S.Function.Function = Function; 3544 S.Function.FoundDecl = Found; 3545 Steps.push_back(S); 3546 } 3547 3548 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType, 3549 ExprValueKind VK) { 3550 Step S; 3551 switch (VK) { 3552 case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break; 3553 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break; 3554 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break; 3555 } 3556 S.Type = BaseType; 3557 Steps.push_back(S); 3558 } 3559 3560 void InitializationSequence::AddReferenceBindingStep(QualType T, 3561 bool BindingTemporary) { 3562 Step S; 3563 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference; 3564 S.Type = T; 3565 Steps.push_back(S); 3566 } 3567 3568 void InitializationSequence::AddFinalCopy(QualType T) { 3569 Step S; 3570 S.Kind = SK_FinalCopy; 3571 S.Type = T; 3572 Steps.push_back(S); 3573 } 3574 3575 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) { 3576 Step S; 3577 S.Kind = SK_ExtraneousCopyToTemporary; 3578 S.Type = T; 3579 Steps.push_back(S); 3580 } 3581 3582 void 3583 InitializationSequence::AddUserConversionStep(FunctionDecl *Function, 3584 DeclAccessPair FoundDecl, 3585 QualType T, 3586 bool HadMultipleCandidates) { 3587 Step S; 3588 S.Kind = SK_UserConversion; 3589 S.Type = T; 3590 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3591 S.Function.Function = Function; 3592 S.Function.FoundDecl = FoundDecl; 3593 Steps.push_back(S); 3594 } 3595 3596 void InitializationSequence::AddQualificationConversionStep(QualType Ty, 3597 ExprValueKind VK) { 3598 Step S; 3599 S.Kind = SK_QualificationConversionRValue; // work around a gcc warning 3600 switch (VK) { 3601 case VK_RValue: 3602 S.Kind = SK_QualificationConversionRValue; 3603 break; 3604 case VK_XValue: 3605 S.Kind = SK_QualificationConversionXValue; 3606 break; 3607 case VK_LValue: 3608 S.Kind = SK_QualificationConversionLValue; 3609 break; 3610 } 3611 S.Type = Ty; 3612 Steps.push_back(S); 3613 } 3614 3615 void InitializationSequence::AddAtomicConversionStep(QualType Ty) { 3616 Step S; 3617 S.Kind = SK_AtomicConversion; 3618 S.Type = Ty; 3619 Steps.push_back(S); 3620 } 3621 3622 void InitializationSequence::AddConversionSequenceStep( 3623 const ImplicitConversionSequence &ICS, QualType T, 3624 bool TopLevelOfInitList) { 3625 Step S; 3626 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing 3627 : SK_ConversionSequence; 3628 S.Type = T; 3629 S.ICS = new ImplicitConversionSequence(ICS); 3630 Steps.push_back(S); 3631 } 3632 3633 void InitializationSequence::AddListInitializationStep(QualType T) { 3634 Step S; 3635 S.Kind = SK_ListInitialization; 3636 S.Type = T; 3637 Steps.push_back(S); 3638 } 3639 3640 void InitializationSequence::AddConstructorInitializationStep( 3641 DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T, 3642 bool HadMultipleCandidates, bool FromInitList, bool AsInitList) { 3643 Step S; 3644 S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall 3645 : SK_ConstructorInitializationFromList 3646 : SK_ConstructorInitialization; 3647 S.Type = T; 3648 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3649 S.Function.Function = Constructor; 3650 S.Function.FoundDecl = FoundDecl; 3651 Steps.push_back(S); 3652 } 3653 3654 void InitializationSequence::AddZeroInitializationStep(QualType T) { 3655 Step S; 3656 S.Kind = SK_ZeroInitialization; 3657 S.Type = T; 3658 Steps.push_back(S); 3659 } 3660 3661 void InitializationSequence::AddCAssignmentStep(QualType T) { 3662 Step S; 3663 S.Kind = SK_CAssignment; 3664 S.Type = T; 3665 Steps.push_back(S); 3666 } 3667 3668 void InitializationSequence::AddStringInitStep(QualType T) { 3669 Step S; 3670 S.Kind = SK_StringInit; 3671 S.Type = T; 3672 Steps.push_back(S); 3673 } 3674 3675 void InitializationSequence::AddObjCObjectConversionStep(QualType T) { 3676 Step S; 3677 S.Kind = SK_ObjCObjectConversion; 3678 S.Type = T; 3679 Steps.push_back(S); 3680 } 3681 3682 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) { 3683 Step S; 3684 S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit; 3685 S.Type = T; 3686 Steps.push_back(S); 3687 } 3688 3689 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) { 3690 Step S; 3691 S.Kind = SK_ArrayLoopIndex; 3692 S.Type = EltT; 3693 Steps.insert(Steps.begin(), S); 3694 3695 S.Kind = SK_ArrayLoopInit; 3696 S.Type = T; 3697 Steps.push_back(S); 3698 } 3699 3700 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) { 3701 Step S; 3702 S.Kind = SK_ParenthesizedArrayInit; 3703 S.Type = T; 3704 Steps.push_back(S); 3705 } 3706 3707 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type, 3708 bool shouldCopy) { 3709 Step s; 3710 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore 3711 : SK_PassByIndirectRestore); 3712 s.Type = type; 3713 Steps.push_back(s); 3714 } 3715 3716 void InitializationSequence::AddProduceObjCObjectStep(QualType T) { 3717 Step S; 3718 S.Kind = SK_ProduceObjCObject; 3719 S.Type = T; 3720 Steps.push_back(S); 3721 } 3722 3723 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) { 3724 Step S; 3725 S.Kind = SK_StdInitializerList; 3726 S.Type = T; 3727 Steps.push_back(S); 3728 } 3729 3730 void InitializationSequence::AddOCLSamplerInitStep(QualType T) { 3731 Step S; 3732 S.Kind = SK_OCLSamplerInit; 3733 S.Type = T; 3734 Steps.push_back(S); 3735 } 3736 3737 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) { 3738 Step S; 3739 S.Kind = SK_OCLZeroOpaqueType; 3740 S.Type = T; 3741 Steps.push_back(S); 3742 } 3743 3744 void InitializationSequence::RewrapReferenceInitList(QualType T, 3745 InitListExpr *Syntactic) { 3746 assert(Syntactic->getNumInits() == 1 && 3747 "Can only rewrap trivial init lists."); 3748 Step S; 3749 S.Kind = SK_UnwrapInitList; 3750 S.Type = Syntactic->getInit(0)->getType(); 3751 Steps.insert(Steps.begin(), S); 3752 3753 S.Kind = SK_RewrapInitList; 3754 S.Type = T; 3755 S.WrappingSyntacticList = Syntactic; 3756 Steps.push_back(S); 3757 } 3758 3759 void InitializationSequence::SetOverloadFailure(FailureKind Failure, 3760 OverloadingResult Result) { 3761 setSequenceKind(FailedSequence); 3762 this->Failure = Failure; 3763 this->FailedOverloadResult = Result; 3764 } 3765 3766 //===----------------------------------------------------------------------===// 3767 // Attempt initialization 3768 //===----------------------------------------------------------------------===// 3769 3770 /// Tries to add a zero initializer. Returns true if that worked. 3771 static bool 3772 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence, 3773 const InitializedEntity &Entity) { 3774 if (Entity.getKind() != InitializedEntity::EK_Variable) 3775 return false; 3776 3777 VarDecl *VD = cast<VarDecl>(Entity.getDecl()); 3778 if (VD->getInit() || VD->getEndLoc().isMacroID()) 3779 return false; 3780 3781 QualType VariableTy = VD->getType().getCanonicalType(); 3782 SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc()); 3783 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc); 3784 if (!Init.empty()) { 3785 Sequence.AddZeroInitializationStep(Entity.getType()); 3786 Sequence.SetZeroInitializationFixit(Init, Loc); 3787 return true; 3788 } 3789 return false; 3790 } 3791 3792 static void MaybeProduceObjCObject(Sema &S, 3793 InitializationSequence &Sequence, 3794 const InitializedEntity &Entity) { 3795 if (!S.getLangOpts().ObjCAutoRefCount) return; 3796 3797 /// When initializing a parameter, produce the value if it's marked 3798 /// __attribute__((ns_consumed)). 3799 if (Entity.isParameterKind()) { 3800 if (!Entity.isParameterConsumed()) 3801 return; 3802 3803 assert(Entity.getType()->isObjCRetainableType() && 3804 "consuming an object of unretainable type?"); 3805 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3806 3807 /// When initializing a return value, if the return type is a 3808 /// retainable type, then returns need to immediately retain the 3809 /// object. If an autorelease is required, it will be done at the 3810 /// last instant. 3811 } else if (Entity.getKind() == InitializedEntity::EK_Result || 3812 Entity.getKind() == InitializedEntity::EK_StmtExprResult) { 3813 if (!Entity.getType()->isObjCRetainableType()) 3814 return; 3815 3816 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3817 } 3818 } 3819 3820 static void TryListInitialization(Sema &S, 3821 const InitializedEntity &Entity, 3822 const InitializationKind &Kind, 3823 InitListExpr *InitList, 3824 InitializationSequence &Sequence, 3825 bool TreatUnavailableAsInvalid); 3826 3827 /// When initializing from init list via constructor, handle 3828 /// initialization of an object of type std::initializer_list<T>. 3829 /// 3830 /// \return true if we have handled initialization of an object of type 3831 /// std::initializer_list<T>, false otherwise. 3832 static bool TryInitializerListConstruction(Sema &S, 3833 InitListExpr *List, 3834 QualType DestType, 3835 InitializationSequence &Sequence, 3836 bool TreatUnavailableAsInvalid) { 3837 QualType E; 3838 if (!S.isStdInitializerList(DestType, &E)) 3839 return false; 3840 3841 if (!S.isCompleteType(List->getExprLoc(), E)) { 3842 Sequence.setIncompleteTypeFailure(E); 3843 return true; 3844 } 3845 3846 // Try initializing a temporary array from the init list. 3847 QualType ArrayType = S.Context.getConstantArrayType( 3848 E.withConst(), 3849 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 3850 List->getNumInits()), 3851 nullptr, clang::ArrayType::Normal, 0); 3852 InitializedEntity HiddenArray = 3853 InitializedEntity::InitializeTemporary(ArrayType); 3854 InitializationKind Kind = InitializationKind::CreateDirectList( 3855 List->getExprLoc(), List->getBeginLoc(), List->getEndLoc()); 3856 TryListInitialization(S, HiddenArray, Kind, List, Sequence, 3857 TreatUnavailableAsInvalid); 3858 if (Sequence) 3859 Sequence.AddStdInitializerListConstructionStep(DestType); 3860 return true; 3861 } 3862 3863 /// Determine if the constructor has the signature of a copy or move 3864 /// constructor for the type T of the class in which it was found. That is, 3865 /// determine if its first parameter is of type T or reference to (possibly 3866 /// cv-qualified) T. 3867 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx, 3868 const ConstructorInfo &Info) { 3869 if (Info.Constructor->getNumParams() == 0) 3870 return false; 3871 3872 QualType ParmT = 3873 Info.Constructor->getParamDecl(0)->getType().getNonReferenceType(); 3874 QualType ClassT = 3875 Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext())); 3876 3877 return Ctx.hasSameUnqualifiedType(ParmT, ClassT); 3878 } 3879 3880 static OverloadingResult 3881 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc, 3882 MultiExprArg Args, 3883 OverloadCandidateSet &CandidateSet, 3884 QualType DestType, 3885 DeclContext::lookup_result Ctors, 3886 OverloadCandidateSet::iterator &Best, 3887 bool CopyInitializing, bool AllowExplicit, 3888 bool OnlyListConstructors, bool IsListInit, 3889 bool SecondStepOfCopyInit = false) { 3890 CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor); 3891 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); 3892 3893 for (NamedDecl *D : Ctors) { 3894 auto Info = getConstructorInfo(D); 3895 if (!Info.Constructor || Info.Constructor->isInvalidDecl()) 3896 continue; 3897 3898 if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor)) 3899 continue; 3900 3901 // C++11 [over.best.ics]p4: 3902 // ... and the constructor or user-defined conversion function is a 3903 // candidate by 3904 // - 13.3.1.3, when the argument is the temporary in the second step 3905 // of a class copy-initialization, or 3906 // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here] 3907 // - the second phase of 13.3.1.7 when the initializer list has exactly 3908 // one element that is itself an initializer list, and the target is 3909 // the first parameter of a constructor of class X, and the conversion 3910 // is to X or reference to (possibly cv-qualified X), 3911 // user-defined conversion sequences are not considered. 3912 bool SuppressUserConversions = 3913 SecondStepOfCopyInit || 3914 (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) && 3915 hasCopyOrMoveCtorParam(S.Context, Info)); 3916 3917 if (Info.ConstructorTmpl) 3918 S.AddTemplateOverloadCandidate( 3919 Info.ConstructorTmpl, Info.FoundDecl, 3920 /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions, 3921 /*PartialOverloading=*/false, AllowExplicit); 3922 else { 3923 // C++ [over.match.copy]p1: 3924 // - When initializing a temporary to be bound to the first parameter 3925 // of a constructor [for type T] that takes a reference to possibly 3926 // cv-qualified T as its first argument, called with a single 3927 // argument in the context of direct-initialization, explicit 3928 // conversion functions are also considered. 3929 // FIXME: What if a constructor template instantiates to such a signature? 3930 bool AllowExplicitConv = AllowExplicit && !CopyInitializing && 3931 Args.size() == 1 && 3932 hasCopyOrMoveCtorParam(S.Context, Info); 3933 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args, 3934 CandidateSet, SuppressUserConversions, 3935 /*PartialOverloading=*/false, AllowExplicit, 3936 AllowExplicitConv); 3937 } 3938 } 3939 3940 // FIXME: Work around a bug in C++17 guaranteed copy elision. 3941 // 3942 // When initializing an object of class type T by constructor 3943 // ([over.match.ctor]) or by list-initialization ([over.match.list]) 3944 // from a single expression of class type U, conversion functions of 3945 // U that convert to the non-reference type cv T are candidates. 3946 // Explicit conversion functions are only candidates during 3947 // direct-initialization. 3948 // 3949 // Note: SecondStepOfCopyInit is only ever true in this case when 3950 // evaluating whether to produce a C++98 compatibility warning. 3951 if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 && 3952 !SecondStepOfCopyInit) { 3953 Expr *Initializer = Args[0]; 3954 auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl(); 3955 if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) { 3956 const auto &Conversions = SourceRD->getVisibleConversionFunctions(); 3957 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 3958 NamedDecl *D = *I; 3959 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 3960 D = D->getUnderlyingDecl(); 3961 3962 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 3963 CXXConversionDecl *Conv; 3964 if (ConvTemplate) 3965 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 3966 else 3967 Conv = cast<CXXConversionDecl>(D); 3968 3969 if (ConvTemplate) 3970 S.AddTemplateConversionCandidate( 3971 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 3972 CandidateSet, AllowExplicit, AllowExplicit, 3973 /*AllowResultConversion*/ false); 3974 else 3975 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, 3976 DestType, CandidateSet, AllowExplicit, 3977 AllowExplicit, 3978 /*AllowResultConversion*/ false); 3979 } 3980 } 3981 } 3982 3983 // Perform overload resolution and return the result. 3984 return CandidateSet.BestViableFunction(S, DeclLoc, Best); 3985 } 3986 3987 /// Attempt initialization by constructor (C++ [dcl.init]), which 3988 /// enumerates the constructors of the initialized entity and performs overload 3989 /// resolution to select the best. 3990 /// \param DestType The destination class type. 3991 /// \param DestArrayType The destination type, which is either DestType or 3992 /// a (possibly multidimensional) array of DestType. 3993 /// \param IsListInit Is this list-initialization? 3994 /// \param IsInitListCopy Is this non-list-initialization resulting from a 3995 /// list-initialization from {x} where x is the same 3996 /// type as the entity? 3997 static void TryConstructorInitialization(Sema &S, 3998 const InitializedEntity &Entity, 3999 const InitializationKind &Kind, 4000 MultiExprArg Args, QualType DestType, 4001 QualType DestArrayType, 4002 InitializationSequence &Sequence, 4003 bool IsListInit = false, 4004 bool IsInitListCopy = false) { 4005 assert(((!IsListInit && !IsInitListCopy) || 4006 (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && 4007 "IsListInit/IsInitListCopy must come with a single initializer list " 4008 "argument."); 4009 InitListExpr *ILE = 4010 (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr; 4011 MultiExprArg UnwrappedArgs = 4012 ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args; 4013 4014 // The type we're constructing needs to be complete. 4015 if (!S.isCompleteType(Kind.getLocation(), DestType)) { 4016 Sequence.setIncompleteTypeFailure(DestType); 4017 return; 4018 } 4019 4020 // C++17 [dcl.init]p17: 4021 // - If the initializer expression is a prvalue and the cv-unqualified 4022 // version of the source type is the same class as the class of the 4023 // destination, the initializer expression is used to initialize the 4024 // destination object. 4025 // Per DR (no number yet), this does not apply when initializing a base 4026 // class or delegating to another constructor from a mem-initializer. 4027 // ObjC++: Lambda captured by the block in the lambda to block conversion 4028 // should avoid copy elision. 4029 if (S.getLangOpts().CPlusPlus17 && 4030 Entity.getKind() != InitializedEntity::EK_Base && 4031 Entity.getKind() != InitializedEntity::EK_Delegating && 4032 Entity.getKind() != 4033 InitializedEntity::EK_LambdaToBlockConversionBlockElement && 4034 UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() && 4035 S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) { 4036 // Convert qualifications if necessary. 4037 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 4038 if (ILE) 4039 Sequence.RewrapReferenceInitList(DestType, ILE); 4040 return; 4041 } 4042 4043 const RecordType *DestRecordType = DestType->getAs<RecordType>(); 4044 assert(DestRecordType && "Constructor initialization requires record type"); 4045 CXXRecordDecl *DestRecordDecl 4046 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 4047 4048 // Build the candidate set directly in the initialization sequence 4049 // structure, so that it will persist if we fail. 4050 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4051 4052 // Determine whether we are allowed to call explicit constructors or 4053 // explicit conversion operators. 4054 bool AllowExplicit = Kind.AllowExplicit() || IsListInit; 4055 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy; 4056 4057 // - Otherwise, if T is a class type, constructors are considered. The 4058 // applicable constructors are enumerated, and the best one is chosen 4059 // through overload resolution. 4060 DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl); 4061 4062 OverloadingResult Result = OR_No_Viable_Function; 4063 OverloadCandidateSet::iterator Best; 4064 bool AsInitializerList = false; 4065 4066 // C++11 [over.match.list]p1, per DR1467: 4067 // When objects of non-aggregate type T are list-initialized, such that 4068 // 8.5.4 [dcl.init.list] specifies that overload resolution is performed 4069 // according to the rules in this section, overload resolution selects 4070 // the constructor in two phases: 4071 // 4072 // - Initially, the candidate functions are the initializer-list 4073 // constructors of the class T and the argument list consists of the 4074 // initializer list as a single argument. 4075 if (IsListInit) { 4076 AsInitializerList = true; 4077 4078 // If the initializer list has no elements and T has a default constructor, 4079 // the first phase is omitted. 4080 if (!(UnwrappedArgs.empty() && S.LookupDefaultConstructor(DestRecordDecl))) 4081 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, 4082 CandidateSet, DestType, Ctors, Best, 4083 CopyInitialization, AllowExplicit, 4084 /*OnlyListConstructors=*/true, 4085 IsListInit); 4086 } 4087 4088 // C++11 [over.match.list]p1: 4089 // - If no viable initializer-list constructor is found, overload resolution 4090 // is performed again, where the candidate functions are all the 4091 // constructors of the class T and the argument list consists of the 4092 // elements of the initializer list. 4093 if (Result == OR_No_Viable_Function) { 4094 AsInitializerList = false; 4095 Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs, 4096 CandidateSet, DestType, Ctors, Best, 4097 CopyInitialization, AllowExplicit, 4098 /*OnlyListConstructors=*/false, 4099 IsListInit); 4100 } 4101 if (Result) { 4102 Sequence.SetOverloadFailure(IsListInit ? 4103 InitializationSequence::FK_ListConstructorOverloadFailed : 4104 InitializationSequence::FK_ConstructorOverloadFailed, 4105 Result); 4106 return; 4107 } 4108 4109 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4110 4111 // In C++17, ResolveConstructorOverload can select a conversion function 4112 // instead of a constructor. 4113 if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) { 4114 // Add the user-defined conversion step that calls the conversion function. 4115 QualType ConvType = CD->getConversionType(); 4116 assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) && 4117 "should not have selected this conversion function"); 4118 Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType, 4119 HadMultipleCandidates); 4120 if (!S.Context.hasSameType(ConvType, DestType)) 4121 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 4122 if (IsListInit) 4123 Sequence.RewrapReferenceInitList(Entity.getType(), ILE); 4124 return; 4125 } 4126 4127 // C++11 [dcl.init]p6: 4128 // If a program calls for the default initialization of an object 4129 // of a const-qualified type T, T shall be a class type with a 4130 // user-provided default constructor. 4131 // C++ core issue 253 proposal: 4132 // If the implicit default constructor initializes all subobjects, no 4133 // initializer should be required. 4134 // The 253 proposal is for example needed to process libstdc++ headers in 5.x. 4135 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 4136 if (Kind.getKind() == InitializationKind::IK_Default && 4137 Entity.getType().isConstQualified()) { 4138 if (!CtorDecl->getParent()->allowConstDefaultInit()) { 4139 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 4140 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 4141 return; 4142 } 4143 } 4144 4145 // C++11 [over.match.list]p1: 4146 // In copy-list-initialization, if an explicit constructor is chosen, the 4147 // initializer is ill-formed. 4148 if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) { 4149 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor); 4150 return; 4151 } 4152 4153 // Add the constructor initialization step. Any cv-qualification conversion is 4154 // subsumed by the initialization. 4155 Sequence.AddConstructorInitializationStep( 4156 Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates, 4157 IsListInit | IsInitListCopy, AsInitializerList); 4158 } 4159 4160 static bool 4161 ResolveOverloadedFunctionForReferenceBinding(Sema &S, 4162 Expr *Initializer, 4163 QualType &SourceType, 4164 QualType &UnqualifiedSourceType, 4165 QualType UnqualifiedTargetType, 4166 InitializationSequence &Sequence) { 4167 if (S.Context.getCanonicalType(UnqualifiedSourceType) == 4168 S.Context.OverloadTy) { 4169 DeclAccessPair Found; 4170 bool HadMultipleCandidates = false; 4171 if (FunctionDecl *Fn 4172 = S.ResolveAddressOfOverloadedFunction(Initializer, 4173 UnqualifiedTargetType, 4174 false, Found, 4175 &HadMultipleCandidates)) { 4176 Sequence.AddAddressOverloadResolutionStep(Fn, Found, 4177 HadMultipleCandidates); 4178 SourceType = Fn->getType(); 4179 UnqualifiedSourceType = SourceType.getUnqualifiedType(); 4180 } else if (!UnqualifiedTargetType->isRecordType()) { 4181 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4182 return true; 4183 } 4184 } 4185 return false; 4186 } 4187 4188 static void TryReferenceInitializationCore(Sema &S, 4189 const InitializedEntity &Entity, 4190 const InitializationKind &Kind, 4191 Expr *Initializer, 4192 QualType cv1T1, QualType T1, 4193 Qualifiers T1Quals, 4194 QualType cv2T2, QualType T2, 4195 Qualifiers T2Quals, 4196 InitializationSequence &Sequence); 4197 4198 static void TryValueInitialization(Sema &S, 4199 const InitializedEntity &Entity, 4200 const InitializationKind &Kind, 4201 InitializationSequence &Sequence, 4202 InitListExpr *InitList = nullptr); 4203 4204 /// Attempt list initialization of a reference. 4205 static void TryReferenceListInitialization(Sema &S, 4206 const InitializedEntity &Entity, 4207 const InitializationKind &Kind, 4208 InitListExpr *InitList, 4209 InitializationSequence &Sequence, 4210 bool TreatUnavailableAsInvalid) { 4211 // First, catch C++03 where this isn't possible. 4212 if (!S.getLangOpts().CPlusPlus11) { 4213 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 4214 return; 4215 } 4216 // Can't reference initialize a compound literal. 4217 if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) { 4218 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 4219 return; 4220 } 4221 4222 QualType DestType = Entity.getType(); 4223 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); 4224 Qualifiers T1Quals; 4225 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 4226 4227 // Reference initialization via an initializer list works thus: 4228 // If the initializer list consists of a single element that is 4229 // reference-related to the referenced type, bind directly to that element 4230 // (possibly creating temporaries). 4231 // Otherwise, initialize a temporary with the initializer list and 4232 // bind to that. 4233 if (InitList->getNumInits() == 1) { 4234 Expr *Initializer = InitList->getInit(0); 4235 QualType cv2T2 = Initializer->getType(); 4236 Qualifiers T2Quals; 4237 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 4238 4239 // If this fails, creating a temporary wouldn't work either. 4240 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 4241 T1, Sequence)) 4242 return; 4243 4244 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4245 Sema::ReferenceCompareResult RefRelationship 4246 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2); 4247 if (RefRelationship >= Sema::Ref_Related) { 4248 // Try to bind the reference here. 4249 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 4250 T1Quals, cv2T2, T2, T2Quals, Sequence); 4251 if (Sequence) 4252 Sequence.RewrapReferenceInitList(cv1T1, InitList); 4253 return; 4254 } 4255 4256 // Update the initializer if we've resolved an overloaded function. 4257 if (Sequence.step_begin() != Sequence.step_end()) 4258 Sequence.RewrapReferenceInitList(cv1T1, InitList); 4259 } 4260 4261 // Not reference-related. Create a temporary and bind to that. 4262 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1); 4263 4264 TryListInitialization(S, TempEntity, Kind, InitList, Sequence, 4265 TreatUnavailableAsInvalid); 4266 if (Sequence) { 4267 if (DestType->isRValueReferenceType() || 4268 (T1Quals.hasConst() && !T1Quals.hasVolatile())) 4269 Sequence.AddReferenceBindingStep(cv1T1, /*BindingTemporary=*/true); 4270 else 4271 Sequence.SetFailed( 4272 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); 4273 } 4274 } 4275 4276 /// Attempt list initialization (C++0x [dcl.init.list]) 4277 static void TryListInitialization(Sema &S, 4278 const InitializedEntity &Entity, 4279 const InitializationKind &Kind, 4280 InitListExpr *InitList, 4281 InitializationSequence &Sequence, 4282 bool TreatUnavailableAsInvalid) { 4283 QualType DestType = Entity.getType(); 4284 4285 // C++ doesn't allow scalar initialization with more than one argument. 4286 // But C99 complex numbers are scalars and it makes sense there. 4287 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() && 4288 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) { 4289 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar); 4290 return; 4291 } 4292 if (DestType->isReferenceType()) { 4293 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence, 4294 TreatUnavailableAsInvalid); 4295 return; 4296 } 4297 4298 if (DestType->isRecordType() && 4299 !S.isCompleteType(InitList->getBeginLoc(), DestType)) { 4300 Sequence.setIncompleteTypeFailure(DestType); 4301 return; 4302 } 4303 4304 // C++11 [dcl.init.list]p3, per DR1467: 4305 // - If T is a class type and the initializer list has a single element of 4306 // type cv U, where U is T or a class derived from T, the object is 4307 // initialized from that element (by copy-initialization for 4308 // copy-list-initialization, or by direct-initialization for 4309 // direct-list-initialization). 4310 // - Otherwise, if T is a character array and the initializer list has a 4311 // single element that is an appropriately-typed string literal 4312 // (8.5.2 [dcl.init.string]), initialization is performed as described 4313 // in that section. 4314 // - Otherwise, if T is an aggregate, [...] (continue below). 4315 if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) { 4316 if (DestType->isRecordType()) { 4317 QualType InitType = InitList->getInit(0)->getType(); 4318 if (S.Context.hasSameUnqualifiedType(InitType, DestType) || 4319 S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) { 4320 Expr *InitListAsExpr = InitList; 4321 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 4322 DestType, Sequence, 4323 /*InitListSyntax*/false, 4324 /*IsInitListCopy*/true); 4325 return; 4326 } 4327 } 4328 if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) { 4329 Expr *SubInit[1] = {InitList->getInit(0)}; 4330 if (!isa<VariableArrayType>(DestAT) && 4331 IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) { 4332 InitializationKind SubKind = 4333 Kind.getKind() == InitializationKind::IK_DirectList 4334 ? InitializationKind::CreateDirect(Kind.getLocation(), 4335 InitList->getLBraceLoc(), 4336 InitList->getRBraceLoc()) 4337 : Kind; 4338 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 4339 /*TopLevelOfInitList*/ true, 4340 TreatUnavailableAsInvalid); 4341 4342 // TryStringLiteralInitialization() (in InitializeFrom()) will fail if 4343 // the element is not an appropriately-typed string literal, in which 4344 // case we should proceed as in C++11 (below). 4345 if (Sequence) { 4346 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4347 return; 4348 } 4349 } 4350 } 4351 } 4352 4353 // C++11 [dcl.init.list]p3: 4354 // - If T is an aggregate, aggregate initialization is performed. 4355 if ((DestType->isRecordType() && !DestType->isAggregateType()) || 4356 (S.getLangOpts().CPlusPlus11 && 4357 S.isStdInitializerList(DestType, nullptr))) { 4358 if (S.getLangOpts().CPlusPlus11) { 4359 // - Otherwise, if the initializer list has no elements and T is a 4360 // class type with a default constructor, the object is 4361 // value-initialized. 4362 if (InitList->getNumInits() == 0) { 4363 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl(); 4364 if (S.LookupDefaultConstructor(RD)) { 4365 TryValueInitialization(S, Entity, Kind, Sequence, InitList); 4366 return; 4367 } 4368 } 4369 4370 // - Otherwise, if T is a specialization of std::initializer_list<E>, 4371 // an initializer_list object constructed [...] 4372 if (TryInitializerListConstruction(S, InitList, DestType, Sequence, 4373 TreatUnavailableAsInvalid)) 4374 return; 4375 4376 // - Otherwise, if T is a class type, constructors are considered. 4377 Expr *InitListAsExpr = InitList; 4378 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 4379 DestType, Sequence, /*InitListSyntax*/true); 4380 } else 4381 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType); 4382 return; 4383 } 4384 4385 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() && 4386 InitList->getNumInits() == 1) { 4387 Expr *E = InitList->getInit(0); 4388 4389 // - Otherwise, if T is an enumeration with a fixed underlying type, 4390 // the initializer-list has a single element v, and the initialization 4391 // is direct-list-initialization, the object is initialized with the 4392 // value T(v); if a narrowing conversion is required to convert v to 4393 // the underlying type of T, the program is ill-formed. 4394 auto *ET = DestType->getAs<EnumType>(); 4395 if (S.getLangOpts().CPlusPlus17 && 4396 Kind.getKind() == InitializationKind::IK_DirectList && 4397 ET && ET->getDecl()->isFixed() && 4398 !S.Context.hasSameUnqualifiedType(E->getType(), DestType) && 4399 (E->getType()->isIntegralOrEnumerationType() || 4400 E->getType()->isFloatingType())) { 4401 // There are two ways that T(v) can work when T is an enumeration type. 4402 // If there is either an implicit conversion sequence from v to T or 4403 // a conversion function that can convert from v to T, then we use that. 4404 // Otherwise, if v is of integral, enumeration, or floating-point type, 4405 // it is converted to the enumeration type via its underlying type. 4406 // There is no overlap possible between these two cases (except when the 4407 // source value is already of the destination type), and the first 4408 // case is handled by the general case for single-element lists below. 4409 ImplicitConversionSequence ICS; 4410 ICS.setStandard(); 4411 ICS.Standard.setAsIdentityConversion(); 4412 if (!E->isRValue()) 4413 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 4414 // If E is of a floating-point type, then the conversion is ill-formed 4415 // due to narrowing, but go through the motions in order to produce the 4416 // right diagnostic. 4417 ICS.Standard.Second = E->getType()->isFloatingType() 4418 ? ICK_Floating_Integral 4419 : ICK_Integral_Conversion; 4420 ICS.Standard.setFromType(E->getType()); 4421 ICS.Standard.setToType(0, E->getType()); 4422 ICS.Standard.setToType(1, DestType); 4423 ICS.Standard.setToType(2, DestType); 4424 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2), 4425 /*TopLevelOfInitList*/true); 4426 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4427 return; 4428 } 4429 4430 // - Otherwise, if the initializer list has a single element of type E 4431 // [...references are handled above...], the object or reference is 4432 // initialized from that element (by copy-initialization for 4433 // copy-list-initialization, or by direct-initialization for 4434 // direct-list-initialization); if a narrowing conversion is required 4435 // to convert the element to T, the program is ill-formed. 4436 // 4437 // Per core-24034, this is direct-initialization if we were performing 4438 // direct-list-initialization and copy-initialization otherwise. 4439 // We can't use InitListChecker for this, because it always performs 4440 // copy-initialization. This only matters if we might use an 'explicit' 4441 // conversion operator, or for the special case conversion of nullptr_t to 4442 // bool, so we only need to handle those cases. 4443 // 4444 // FIXME: Why not do this in all cases? 4445 Expr *Init = InitList->getInit(0); 4446 if (Init->getType()->isRecordType() || 4447 (Init->getType()->isNullPtrType() && DestType->isBooleanType())) { 4448 InitializationKind SubKind = 4449 Kind.getKind() == InitializationKind::IK_DirectList 4450 ? InitializationKind::CreateDirect(Kind.getLocation(), 4451 InitList->getLBraceLoc(), 4452 InitList->getRBraceLoc()) 4453 : Kind; 4454 Expr *SubInit[1] = { Init }; 4455 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 4456 /*TopLevelOfInitList*/true, 4457 TreatUnavailableAsInvalid); 4458 if (Sequence) 4459 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4460 return; 4461 } 4462 } 4463 4464 InitListChecker CheckInitList(S, Entity, InitList, 4465 DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid); 4466 if (CheckInitList.HadError()) { 4467 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed); 4468 return; 4469 } 4470 4471 // Add the list initialization step with the built init list. 4472 Sequence.AddListInitializationStep(DestType); 4473 } 4474 4475 /// Try a reference initialization that involves calling a conversion 4476 /// function. 4477 static OverloadingResult TryRefInitWithConversionFunction( 4478 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, 4479 Expr *Initializer, bool AllowRValues, bool IsLValueRef, 4480 InitializationSequence &Sequence) { 4481 QualType DestType = Entity.getType(); 4482 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); 4483 QualType T1 = cv1T1.getUnqualifiedType(); 4484 QualType cv2T2 = Initializer->getType(); 4485 QualType T2 = cv2T2.getUnqualifiedType(); 4486 4487 assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) && 4488 "Must have incompatible references when binding via conversion"); 4489 4490 // Build the candidate set directly in the initialization sequence 4491 // structure, so that it will persist if we fail. 4492 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4493 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 4494 4495 // Determine whether we are allowed to call explicit conversion operators. 4496 // Note that none of [over.match.copy], [over.match.conv], nor 4497 // [over.match.ref] permit an explicit constructor to be chosen when 4498 // initializing a reference, not even for direct-initialization. 4499 bool AllowExplicitCtors = false; 4500 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding(); 4501 4502 const RecordType *T1RecordType = nullptr; 4503 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) && 4504 S.isCompleteType(Kind.getLocation(), T1)) { 4505 // The type we're converting to is a class type. Enumerate its constructors 4506 // to see if there is a suitable conversion. 4507 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl()); 4508 4509 for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) { 4510 auto Info = getConstructorInfo(D); 4511 if (!Info.Constructor) 4512 continue; 4513 4514 if (!Info.Constructor->isInvalidDecl() && 4515 Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) { 4516 if (Info.ConstructorTmpl) 4517 S.AddTemplateOverloadCandidate( 4518 Info.ConstructorTmpl, Info.FoundDecl, 4519 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, 4520 /*SuppressUserConversions=*/true, 4521 /*PartialOverloading*/ false, AllowExplicitCtors); 4522 else 4523 S.AddOverloadCandidate( 4524 Info.Constructor, Info.FoundDecl, Initializer, CandidateSet, 4525 /*SuppressUserConversions=*/true, 4526 /*PartialOverloading*/ false, AllowExplicitCtors); 4527 } 4528 } 4529 } 4530 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl()) 4531 return OR_No_Viable_Function; 4532 4533 const RecordType *T2RecordType = nullptr; 4534 if ((T2RecordType = T2->getAs<RecordType>()) && 4535 S.isCompleteType(Kind.getLocation(), T2)) { 4536 // The type we're converting from is a class type, enumerate its conversion 4537 // functions. 4538 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl()); 4539 4540 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); 4541 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 4542 NamedDecl *D = *I; 4543 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 4544 if (isa<UsingShadowDecl>(D)) 4545 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4546 4547 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 4548 CXXConversionDecl *Conv; 4549 if (ConvTemplate) 4550 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 4551 else 4552 Conv = cast<CXXConversionDecl>(D); 4553 4554 // If the conversion function doesn't return a reference type, 4555 // it can't be considered for this conversion unless we're allowed to 4556 // consider rvalues. 4557 // FIXME: Do we need to make sure that we only consider conversion 4558 // candidates with reference-compatible results? That might be needed to 4559 // break recursion. 4560 if ((AllowRValues || 4561 Conv->getConversionType()->isLValueReferenceType())) { 4562 if (ConvTemplate) 4563 S.AddTemplateConversionCandidate( 4564 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 4565 CandidateSet, 4566 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); 4567 else 4568 S.AddConversionCandidate( 4569 Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet, 4570 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); 4571 } 4572 } 4573 } 4574 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl()) 4575 return OR_No_Viable_Function; 4576 4577 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4578 4579 // Perform overload resolution. If it fails, return the failed result. 4580 OverloadCandidateSet::iterator Best; 4581 if (OverloadingResult Result 4582 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) 4583 return Result; 4584 4585 FunctionDecl *Function = Best->Function; 4586 // This is the overload that will be used for this initialization step if we 4587 // use this initialization. Mark it as referenced. 4588 Function->setReferenced(); 4589 4590 // Compute the returned type and value kind of the conversion. 4591 QualType cv3T3; 4592 if (isa<CXXConversionDecl>(Function)) 4593 cv3T3 = Function->getReturnType(); 4594 else 4595 cv3T3 = T1; 4596 4597 ExprValueKind VK = VK_RValue; 4598 if (cv3T3->isLValueReferenceType()) 4599 VK = VK_LValue; 4600 else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>()) 4601 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue; 4602 cv3T3 = cv3T3.getNonLValueExprType(S.Context); 4603 4604 // Add the user-defined conversion step. 4605 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4606 Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3, 4607 HadMultipleCandidates); 4608 4609 // Determine whether we'll need to perform derived-to-base adjustments or 4610 // other conversions. 4611 Sema::ReferenceConversions RefConv; 4612 Sema::ReferenceCompareResult NewRefRelationship = 4613 S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, &RefConv); 4614 4615 // Add the final conversion sequence, if necessary. 4616 if (NewRefRelationship == Sema::Ref_Incompatible) { 4617 assert(!isa<CXXConstructorDecl>(Function) && 4618 "should not have conversion after constructor"); 4619 4620 ImplicitConversionSequence ICS; 4621 ICS.setStandard(); 4622 ICS.Standard = Best->FinalConversion; 4623 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2)); 4624 4625 // Every implicit conversion results in a prvalue, except for a glvalue 4626 // derived-to-base conversion, which we handle below. 4627 cv3T3 = ICS.Standard.getToType(2); 4628 VK = VK_RValue; 4629 } 4630 4631 // If the converted initializer is a prvalue, its type T4 is adjusted to 4632 // type "cv1 T4" and the temporary materialization conversion is applied. 4633 // 4634 // We adjust the cv-qualifications to match the reference regardless of 4635 // whether we have a prvalue so that the AST records the change. In this 4636 // case, T4 is "cv3 T3". 4637 QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers()); 4638 if (cv1T4.getQualifiers() != cv3T3.getQualifiers()) 4639 Sequence.AddQualificationConversionStep(cv1T4, VK); 4640 Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue); 4641 VK = IsLValueRef ? VK_LValue : VK_XValue; 4642 4643 if (RefConv & Sema::ReferenceConversions::DerivedToBase) 4644 Sequence.AddDerivedToBaseCastStep(cv1T1, VK); 4645 else if (RefConv & Sema::ReferenceConversions::ObjC) 4646 Sequence.AddObjCObjectConversionStep(cv1T1); 4647 else if (RefConv & Sema::ReferenceConversions::Function) 4648 Sequence.AddQualificationConversionStep(cv1T1, VK); 4649 else if (RefConv & Sema::ReferenceConversions::Qualification) { 4650 if (!S.Context.hasSameType(cv1T4, cv1T1)) 4651 Sequence.AddQualificationConversionStep(cv1T1, VK); 4652 } 4653 4654 return OR_Success; 4655 } 4656 4657 static void CheckCXX98CompatAccessibleCopy(Sema &S, 4658 const InitializedEntity &Entity, 4659 Expr *CurInitExpr); 4660 4661 /// Attempt reference initialization (C++0x [dcl.init.ref]) 4662 static void TryReferenceInitialization(Sema &S, 4663 const InitializedEntity &Entity, 4664 const InitializationKind &Kind, 4665 Expr *Initializer, 4666 InitializationSequence &Sequence) { 4667 QualType DestType = Entity.getType(); 4668 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); 4669 Qualifiers T1Quals; 4670 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 4671 QualType cv2T2 = Initializer->getType(); 4672 Qualifiers T2Quals; 4673 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 4674 4675 // If the initializer is the address of an overloaded function, try 4676 // to resolve the overloaded function. If all goes well, T2 is the 4677 // type of the resulting function. 4678 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 4679 T1, Sequence)) 4680 return; 4681 4682 // Delegate everything else to a subfunction. 4683 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 4684 T1Quals, cv2T2, T2, T2Quals, Sequence); 4685 } 4686 4687 /// Determine whether an expression is a non-referenceable glvalue (one to 4688 /// which a reference can never bind). Attempting to bind a reference to 4689 /// such a glvalue will always create a temporary. 4690 static bool isNonReferenceableGLValue(Expr *E) { 4691 return E->refersToBitField() || E->refersToVectorElement() || 4692 E->refersToMatrixElement(); 4693 } 4694 4695 /// Reference initialization without resolving overloaded functions. 4696 /// 4697 /// We also can get here in C if we call a builtin which is declared as 4698 /// a function with a parameter of reference type (such as __builtin_va_end()). 4699 static void TryReferenceInitializationCore(Sema &S, 4700 const InitializedEntity &Entity, 4701 const InitializationKind &Kind, 4702 Expr *Initializer, 4703 QualType cv1T1, QualType T1, 4704 Qualifiers T1Quals, 4705 QualType cv2T2, QualType T2, 4706 Qualifiers T2Quals, 4707 InitializationSequence &Sequence) { 4708 QualType DestType = Entity.getType(); 4709 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4710 4711 // Compute some basic properties of the types and the initializer. 4712 bool isLValueRef = DestType->isLValueReferenceType(); 4713 bool isRValueRef = !isLValueRef; 4714 Expr::Classification InitCategory = Initializer->Classify(S.Context); 4715 4716 Sema::ReferenceConversions RefConv; 4717 Sema::ReferenceCompareResult RefRelationship = 4718 S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, &RefConv); 4719 4720 // C++0x [dcl.init.ref]p5: 4721 // A reference to type "cv1 T1" is initialized by an expression of type 4722 // "cv2 T2" as follows: 4723 // 4724 // - If the reference is an lvalue reference and the initializer 4725 // expression 4726 // Note the analogous bullet points for rvalue refs to functions. Because 4727 // there are no function rvalues in C++, rvalue refs to functions are treated 4728 // like lvalue refs. 4729 OverloadingResult ConvOvlResult = OR_Success; 4730 bool T1Function = T1->isFunctionType(); 4731 if (isLValueRef || T1Function) { 4732 if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) && 4733 (RefRelationship == Sema::Ref_Compatible || 4734 (Kind.isCStyleOrFunctionalCast() && 4735 RefRelationship == Sema::Ref_Related))) { 4736 // - is an lvalue (but is not a bit-field), and "cv1 T1" is 4737 // reference-compatible with "cv2 T2," or 4738 if (RefConv & (Sema::ReferenceConversions::DerivedToBase | 4739 Sema::ReferenceConversions::ObjC)) { 4740 // If we're converting the pointee, add any qualifiers first; 4741 // these qualifiers must all be top-level, so just convert to "cv1 T2". 4742 if (RefConv & (Sema::ReferenceConversions::Qualification)) 4743 Sequence.AddQualificationConversionStep( 4744 S.Context.getQualifiedType(T2, T1Quals), 4745 Initializer->getValueKind()); 4746 if (RefConv & Sema::ReferenceConversions::DerivedToBase) 4747 Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue); 4748 else 4749 Sequence.AddObjCObjectConversionStep(cv1T1); 4750 } else if (RefConv & (Sema::ReferenceConversions::Qualification | 4751 Sema::ReferenceConversions::Function)) { 4752 // Perform a (possibly multi-level) qualification conversion. 4753 // FIXME: Should we use a different step kind for function conversions? 4754 Sequence.AddQualificationConversionStep(cv1T1, 4755 Initializer->getValueKind()); 4756 } 4757 4758 // We only create a temporary here when binding a reference to a 4759 // bit-field or vector element. Those cases are't supposed to be 4760 // handled by this bullet, but the outcome is the same either way. 4761 Sequence.AddReferenceBindingStep(cv1T1, false); 4762 return; 4763 } 4764 4765 // - has a class type (i.e., T2 is a class type), where T1 is not 4766 // reference-related to T2, and can be implicitly converted to an 4767 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible 4768 // with "cv3 T3" (this conversion is selected by enumerating the 4769 // applicable conversion functions (13.3.1.6) and choosing the best 4770 // one through overload resolution (13.3)), 4771 // If we have an rvalue ref to function type here, the rhs must be 4772 // an rvalue. DR1287 removed the "implicitly" here. 4773 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() && 4774 (isLValueRef || InitCategory.isRValue())) { 4775 if (S.getLangOpts().CPlusPlus) { 4776 // Try conversion functions only for C++. 4777 ConvOvlResult = TryRefInitWithConversionFunction( 4778 S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef, 4779 /*IsLValueRef*/ isLValueRef, Sequence); 4780 if (ConvOvlResult == OR_Success) 4781 return; 4782 if (ConvOvlResult != OR_No_Viable_Function) 4783 Sequence.SetOverloadFailure( 4784 InitializationSequence::FK_ReferenceInitOverloadFailed, 4785 ConvOvlResult); 4786 } else { 4787 ConvOvlResult = OR_No_Viable_Function; 4788 } 4789 } 4790 } 4791 4792 // - Otherwise, the reference shall be an lvalue reference to a 4793 // non-volatile const type (i.e., cv1 shall be const), or the reference 4794 // shall be an rvalue reference. 4795 // For address spaces, we interpret this to mean that an addr space 4796 // of a reference "cv1 T1" is a superset of addr space of "cv2 T2". 4797 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() && 4798 T1Quals.isAddressSpaceSupersetOf(T2Quals))) { 4799 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 4800 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4801 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 4802 Sequence.SetOverloadFailure( 4803 InitializationSequence::FK_ReferenceInitOverloadFailed, 4804 ConvOvlResult); 4805 else if (!InitCategory.isLValue()) 4806 Sequence.SetFailed( 4807 T1Quals.isAddressSpaceSupersetOf(T2Quals) 4808 ? InitializationSequence:: 4809 FK_NonConstLValueReferenceBindingToTemporary 4810 : InitializationSequence::FK_ReferenceInitDropsQualifiers); 4811 else { 4812 InitializationSequence::FailureKind FK; 4813 switch (RefRelationship) { 4814 case Sema::Ref_Compatible: 4815 if (Initializer->refersToBitField()) 4816 FK = InitializationSequence:: 4817 FK_NonConstLValueReferenceBindingToBitfield; 4818 else if (Initializer->refersToVectorElement()) 4819 FK = InitializationSequence:: 4820 FK_NonConstLValueReferenceBindingToVectorElement; 4821 else if (Initializer->refersToMatrixElement()) 4822 FK = InitializationSequence:: 4823 FK_NonConstLValueReferenceBindingToMatrixElement; 4824 else 4825 llvm_unreachable("unexpected kind of compatible initializer"); 4826 break; 4827 case Sema::Ref_Related: 4828 FK = InitializationSequence::FK_ReferenceInitDropsQualifiers; 4829 break; 4830 case Sema::Ref_Incompatible: 4831 FK = InitializationSequence:: 4832 FK_NonConstLValueReferenceBindingToUnrelated; 4833 break; 4834 } 4835 Sequence.SetFailed(FK); 4836 } 4837 return; 4838 } 4839 4840 // - If the initializer expression 4841 // - is an 4842 // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or 4843 // [1z] rvalue (but not a bit-field) or 4844 // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2" 4845 // 4846 // Note: functions are handled above and below rather than here... 4847 if (!T1Function && 4848 (RefRelationship == Sema::Ref_Compatible || 4849 (Kind.isCStyleOrFunctionalCast() && 4850 RefRelationship == Sema::Ref_Related)) && 4851 ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) || 4852 (InitCategory.isPRValue() && 4853 (S.getLangOpts().CPlusPlus17 || T2->isRecordType() || 4854 T2->isArrayType())))) { 4855 ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue; 4856 if (InitCategory.isPRValue() && T2->isRecordType()) { 4857 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the 4858 // compiler the freedom to perform a copy here or bind to the 4859 // object, while C++0x requires that we bind directly to the 4860 // object. Hence, we always bind to the object without making an 4861 // extra copy. However, in C++03 requires that we check for the 4862 // presence of a suitable copy constructor: 4863 // 4864 // The constructor that would be used to make the copy shall 4865 // be callable whether or not the copy is actually done. 4866 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt) 4867 Sequence.AddExtraneousCopyToTemporary(cv2T2); 4868 else if (S.getLangOpts().CPlusPlus11) 4869 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer); 4870 } 4871 4872 // C++1z [dcl.init.ref]/5.2.1.2: 4873 // If the converted initializer is a prvalue, its type T4 is adjusted 4874 // to type "cv1 T4" and the temporary materialization conversion is 4875 // applied. 4876 // Postpone address space conversions to after the temporary materialization 4877 // conversion to allow creating temporaries in the alloca address space. 4878 auto T1QualsIgnoreAS = T1Quals; 4879 auto T2QualsIgnoreAS = T2Quals; 4880 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { 4881 T1QualsIgnoreAS.removeAddressSpace(); 4882 T2QualsIgnoreAS.removeAddressSpace(); 4883 } 4884 QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS); 4885 if (T1QualsIgnoreAS != T2QualsIgnoreAS) 4886 Sequence.AddQualificationConversionStep(cv1T4, ValueKind); 4887 Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue); 4888 ValueKind = isLValueRef ? VK_LValue : VK_XValue; 4889 // Add addr space conversion if required. 4890 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { 4891 auto T4Quals = cv1T4.getQualifiers(); 4892 T4Quals.addAddressSpace(T1Quals.getAddressSpace()); 4893 QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals); 4894 Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind); 4895 cv1T4 = cv1T4WithAS; 4896 } 4897 4898 // In any case, the reference is bound to the resulting glvalue (or to 4899 // an appropriate base class subobject). 4900 if (RefConv & Sema::ReferenceConversions::DerivedToBase) 4901 Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind); 4902 else if (RefConv & Sema::ReferenceConversions::ObjC) 4903 Sequence.AddObjCObjectConversionStep(cv1T1); 4904 else if (RefConv & Sema::ReferenceConversions::Qualification) { 4905 if (!S.Context.hasSameType(cv1T4, cv1T1)) 4906 Sequence.AddQualificationConversionStep(cv1T1, ValueKind); 4907 } 4908 return; 4909 } 4910 4911 // - has a class type (i.e., T2 is a class type), where T1 is not 4912 // reference-related to T2, and can be implicitly converted to an 4913 // xvalue, class prvalue, or function lvalue of type "cv3 T3", 4914 // where "cv1 T1" is reference-compatible with "cv3 T3", 4915 // 4916 // DR1287 removes the "implicitly" here. 4917 if (T2->isRecordType()) { 4918 if (RefRelationship == Sema::Ref_Incompatible) { 4919 ConvOvlResult = TryRefInitWithConversionFunction( 4920 S, Entity, Kind, Initializer, /*AllowRValues*/ true, 4921 /*IsLValueRef*/ isLValueRef, Sequence); 4922 if (ConvOvlResult) 4923 Sequence.SetOverloadFailure( 4924 InitializationSequence::FK_ReferenceInitOverloadFailed, 4925 ConvOvlResult); 4926 4927 return; 4928 } 4929 4930 if (RefRelationship == Sema::Ref_Compatible && 4931 isRValueRef && InitCategory.isLValue()) { 4932 Sequence.SetFailed( 4933 InitializationSequence::FK_RValueReferenceBindingToLValue); 4934 return; 4935 } 4936 4937 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 4938 return; 4939 } 4940 4941 // - Otherwise, a temporary of type "cv1 T1" is created and initialized 4942 // from the initializer expression using the rules for a non-reference 4943 // copy-initialization (8.5). The reference is then bound to the 4944 // temporary. [...] 4945 4946 // Ignore address space of reference type at this point and perform address 4947 // space conversion after the reference binding step. 4948 QualType cv1T1IgnoreAS = 4949 T1Quals.hasAddressSpace() 4950 ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace()) 4951 : cv1T1; 4952 4953 InitializedEntity TempEntity = 4954 InitializedEntity::InitializeTemporary(cv1T1IgnoreAS); 4955 4956 // FIXME: Why do we use an implicit conversion here rather than trying 4957 // copy-initialization? 4958 ImplicitConversionSequence ICS 4959 = S.TryImplicitConversion(Initializer, TempEntity.getType(), 4960 /*SuppressUserConversions=*/false, 4961 Sema::AllowedExplicit::None, 4962 /*FIXME:InOverloadResolution=*/false, 4963 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 4964 /*AllowObjCWritebackConversion=*/false); 4965 4966 if (ICS.isBad()) { 4967 // FIXME: Use the conversion function set stored in ICS to turn 4968 // this into an overloading ambiguity diagnostic. However, we need 4969 // to keep that set as an OverloadCandidateSet rather than as some 4970 // other kind of set. 4971 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 4972 Sequence.SetOverloadFailure( 4973 InitializationSequence::FK_ReferenceInitOverloadFailed, 4974 ConvOvlResult); 4975 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 4976 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4977 else 4978 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed); 4979 return; 4980 } else { 4981 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType()); 4982 } 4983 4984 // [...] If T1 is reference-related to T2, cv1 must be the 4985 // same cv-qualification as, or greater cv-qualification 4986 // than, cv2; otherwise, the program is ill-formed. 4987 unsigned T1CVRQuals = T1Quals.getCVRQualifiers(); 4988 unsigned T2CVRQuals = T2Quals.getCVRQualifiers(); 4989 if ((RefRelationship == Sema::Ref_Related && 4990 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) || 4991 !T1Quals.isAddressSpaceSupersetOf(T2Quals)) { 4992 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 4993 return; 4994 } 4995 4996 // [...] If T1 is reference-related to T2 and the reference is an rvalue 4997 // reference, the initializer expression shall not be an lvalue. 4998 if (RefRelationship >= Sema::Ref_Related && !isLValueRef && 4999 InitCategory.isLValue()) { 5000 Sequence.SetFailed( 5001 InitializationSequence::FK_RValueReferenceBindingToLValue); 5002 return; 5003 } 5004 5005 Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true); 5006 5007 if (T1Quals.hasAddressSpace()) { 5008 if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(), 5009 LangAS::Default)) { 5010 Sequence.SetFailed( 5011 InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary); 5012 return; 5013 } 5014 Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue 5015 : VK_XValue); 5016 } 5017 } 5018 5019 /// Attempt character array initialization from a string literal 5020 /// (C++ [dcl.init.string], C99 6.7.8). 5021 static void TryStringLiteralInitialization(Sema &S, 5022 const InitializedEntity &Entity, 5023 const InitializationKind &Kind, 5024 Expr *Initializer, 5025 InitializationSequence &Sequence) { 5026 Sequence.AddStringInitStep(Entity.getType()); 5027 } 5028 5029 /// Attempt value initialization (C++ [dcl.init]p7). 5030 static void TryValueInitialization(Sema &S, 5031 const InitializedEntity &Entity, 5032 const InitializationKind &Kind, 5033 InitializationSequence &Sequence, 5034 InitListExpr *InitList) { 5035 assert((!InitList || InitList->getNumInits() == 0) && 5036 "Shouldn't use value-init for non-empty init lists"); 5037 5038 // C++98 [dcl.init]p5, C++11 [dcl.init]p7: 5039 // 5040 // To value-initialize an object of type T means: 5041 QualType T = Entity.getType(); 5042 5043 // -- if T is an array type, then each element is value-initialized; 5044 T = S.Context.getBaseElementType(T); 5045 5046 if (const RecordType *RT = T->getAs<RecordType>()) { 5047 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 5048 bool NeedZeroInitialization = true; 5049 // C++98: 5050 // -- if T is a class type (clause 9) with a user-declared constructor 5051 // (12.1), then the default constructor for T is called (and the 5052 // initialization is ill-formed if T has no accessible default 5053 // constructor); 5054 // C++11: 5055 // -- if T is a class type (clause 9) with either no default constructor 5056 // (12.1 [class.ctor]) or a default constructor that is user-provided 5057 // or deleted, then the object is default-initialized; 5058 // 5059 // Note that the C++11 rule is the same as the C++98 rule if there are no 5060 // defaulted or deleted constructors, so we just use it unconditionally. 5061 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl); 5062 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted()) 5063 NeedZeroInitialization = false; 5064 5065 // -- if T is a (possibly cv-qualified) non-union class type without a 5066 // user-provided or deleted default constructor, then the object is 5067 // zero-initialized and, if T has a non-trivial default constructor, 5068 // default-initialized; 5069 // The 'non-union' here was removed by DR1502. The 'non-trivial default 5070 // constructor' part was removed by DR1507. 5071 if (NeedZeroInitialization) 5072 Sequence.AddZeroInitializationStep(Entity.getType()); 5073 5074 // C++03: 5075 // -- if T is a non-union class type without a user-declared constructor, 5076 // then every non-static data member and base class component of T is 5077 // value-initialized; 5078 // [...] A program that calls for [...] value-initialization of an 5079 // entity of reference type is ill-formed. 5080 // 5081 // C++11 doesn't need this handling, because value-initialization does not 5082 // occur recursively there, and the implicit default constructor is 5083 // defined as deleted in the problematic cases. 5084 if (!S.getLangOpts().CPlusPlus11 && 5085 ClassDecl->hasUninitializedReferenceMember()) { 5086 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference); 5087 return; 5088 } 5089 5090 // If this is list-value-initialization, pass the empty init list on when 5091 // building the constructor call. This affects the semantics of a few 5092 // things (such as whether an explicit default constructor can be called). 5093 Expr *InitListAsExpr = InitList; 5094 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0); 5095 bool InitListSyntax = InitList; 5096 5097 // FIXME: Instead of creating a CXXConstructExpr of array type here, 5098 // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr. 5099 return TryConstructorInitialization( 5100 S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax); 5101 } 5102 } 5103 5104 Sequence.AddZeroInitializationStep(Entity.getType()); 5105 } 5106 5107 /// Attempt default initialization (C++ [dcl.init]p6). 5108 static void TryDefaultInitialization(Sema &S, 5109 const InitializedEntity &Entity, 5110 const InitializationKind &Kind, 5111 InitializationSequence &Sequence) { 5112 assert(Kind.getKind() == InitializationKind::IK_Default); 5113 5114 // C++ [dcl.init]p6: 5115 // To default-initialize an object of type T means: 5116 // - if T is an array type, each element is default-initialized; 5117 QualType DestType = S.Context.getBaseElementType(Entity.getType()); 5118 5119 // - if T is a (possibly cv-qualified) class type (Clause 9), the default 5120 // constructor for T is called (and the initialization is ill-formed if 5121 // T has no accessible default constructor); 5122 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) { 5123 TryConstructorInitialization(S, Entity, Kind, None, DestType, 5124 Entity.getType(), Sequence); 5125 return; 5126 } 5127 5128 // - otherwise, no initialization is performed. 5129 5130 // If a program calls for the default initialization of an object of 5131 // a const-qualified type T, T shall be a class type with a user-provided 5132 // default constructor. 5133 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) { 5134 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 5135 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 5136 return; 5137 } 5138 5139 // If the destination type has a lifetime property, zero-initialize it. 5140 if (DestType.getQualifiers().hasObjCLifetime()) { 5141 Sequence.AddZeroInitializationStep(Entity.getType()); 5142 return; 5143 } 5144 } 5145 5146 /// Attempt a user-defined conversion between two types (C++ [dcl.init]), 5147 /// which enumerates all conversion functions and performs overload resolution 5148 /// to select the best. 5149 static void TryUserDefinedConversion(Sema &S, 5150 QualType DestType, 5151 const InitializationKind &Kind, 5152 Expr *Initializer, 5153 InitializationSequence &Sequence, 5154 bool TopLevelOfInitList) { 5155 assert(!DestType->isReferenceType() && "References are handled elsewhere"); 5156 QualType SourceType = Initializer->getType(); 5157 assert((DestType->isRecordType() || SourceType->isRecordType()) && 5158 "Must have a class type to perform a user-defined conversion"); 5159 5160 // Build the candidate set directly in the initialization sequence 5161 // structure, so that it will persist if we fail. 5162 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 5163 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 5164 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); 5165 5166 // Determine whether we are allowed to call explicit constructors or 5167 // explicit conversion operators. 5168 bool AllowExplicit = Kind.AllowExplicit(); 5169 5170 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) { 5171 // The type we're converting to is a class type. Enumerate its constructors 5172 // to see if there is a suitable conversion. 5173 CXXRecordDecl *DestRecordDecl 5174 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 5175 5176 // Try to complete the type we're converting to. 5177 if (S.isCompleteType(Kind.getLocation(), DestType)) { 5178 for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) { 5179 auto Info = getConstructorInfo(D); 5180 if (!Info.Constructor) 5181 continue; 5182 5183 if (!Info.Constructor->isInvalidDecl() && 5184 Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) { 5185 if (Info.ConstructorTmpl) 5186 S.AddTemplateOverloadCandidate( 5187 Info.ConstructorTmpl, Info.FoundDecl, 5188 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, 5189 /*SuppressUserConversions=*/true, 5190 /*PartialOverloading*/ false, AllowExplicit); 5191 else 5192 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, 5193 Initializer, CandidateSet, 5194 /*SuppressUserConversions=*/true, 5195 /*PartialOverloading*/ false, AllowExplicit); 5196 } 5197 } 5198 } 5199 } 5200 5201 SourceLocation DeclLoc = Initializer->getBeginLoc(); 5202 5203 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) { 5204 // The type we're converting from is a class type, enumerate its conversion 5205 // functions. 5206 5207 // We can only enumerate the conversion functions for a complete type; if 5208 // the type isn't complete, simply skip this step. 5209 if (S.isCompleteType(DeclLoc, SourceType)) { 5210 CXXRecordDecl *SourceRecordDecl 5211 = cast<CXXRecordDecl>(SourceRecordType->getDecl()); 5212 5213 const auto &Conversions = 5214 SourceRecordDecl->getVisibleConversionFunctions(); 5215 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 5216 NamedDecl *D = *I; 5217 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 5218 if (isa<UsingShadowDecl>(D)) 5219 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 5220 5221 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 5222 CXXConversionDecl *Conv; 5223 if (ConvTemplate) 5224 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 5225 else 5226 Conv = cast<CXXConversionDecl>(D); 5227 5228 if (ConvTemplate) 5229 S.AddTemplateConversionCandidate( 5230 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 5231 CandidateSet, AllowExplicit, AllowExplicit); 5232 else 5233 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, 5234 DestType, CandidateSet, AllowExplicit, 5235 AllowExplicit); 5236 } 5237 } 5238 } 5239 5240 // Perform overload resolution. If it fails, return the failed result. 5241 OverloadCandidateSet::iterator Best; 5242 if (OverloadingResult Result 5243 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) { 5244 Sequence.SetOverloadFailure( 5245 InitializationSequence::FK_UserConversionOverloadFailed, 5246 Result); 5247 return; 5248 } 5249 5250 FunctionDecl *Function = Best->Function; 5251 Function->setReferenced(); 5252 bool HadMultipleCandidates = (CandidateSet.size() > 1); 5253 5254 if (isa<CXXConstructorDecl>(Function)) { 5255 // Add the user-defined conversion step. Any cv-qualification conversion is 5256 // subsumed by the initialization. Per DR5, the created temporary is of the 5257 // cv-unqualified type of the destination. 5258 Sequence.AddUserConversionStep(Function, Best->FoundDecl, 5259 DestType.getUnqualifiedType(), 5260 HadMultipleCandidates); 5261 5262 // C++14 and before: 5263 // - if the function is a constructor, the call initializes a temporary 5264 // of the cv-unqualified version of the destination type. The [...] 5265 // temporary [...] is then used to direct-initialize, according to the 5266 // rules above, the object that is the destination of the 5267 // copy-initialization. 5268 // Note that this just performs a simple object copy from the temporary. 5269 // 5270 // C++17: 5271 // - if the function is a constructor, the call is a prvalue of the 5272 // cv-unqualified version of the destination type whose return object 5273 // is initialized by the constructor. The call is used to 5274 // direct-initialize, according to the rules above, the object that 5275 // is the destination of the copy-initialization. 5276 // Therefore we need to do nothing further. 5277 // 5278 // FIXME: Mark this copy as extraneous. 5279 if (!S.getLangOpts().CPlusPlus17) 5280 Sequence.AddFinalCopy(DestType); 5281 else if (DestType.hasQualifiers()) 5282 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 5283 return; 5284 } 5285 5286 // Add the user-defined conversion step that calls the conversion function. 5287 QualType ConvType = Function->getCallResultType(); 5288 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType, 5289 HadMultipleCandidates); 5290 5291 if (ConvType->getAs<RecordType>()) { 5292 // The call is used to direct-initialize [...] the object that is the 5293 // destination of the copy-initialization. 5294 // 5295 // In C++17, this does not call a constructor if we enter /17.6.1: 5296 // - If the initializer expression is a prvalue and the cv-unqualified 5297 // version of the source type is the same as the class of the 5298 // destination [... do not make an extra copy] 5299 // 5300 // FIXME: Mark this copy as extraneous. 5301 if (!S.getLangOpts().CPlusPlus17 || 5302 Function->getReturnType()->isReferenceType() || 5303 !S.Context.hasSameUnqualifiedType(ConvType, DestType)) 5304 Sequence.AddFinalCopy(DestType); 5305 else if (!S.Context.hasSameType(ConvType, DestType)) 5306 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 5307 return; 5308 } 5309 5310 // If the conversion following the call to the conversion function 5311 // is interesting, add it as a separate step. 5312 if (Best->FinalConversion.First || Best->FinalConversion.Second || 5313 Best->FinalConversion.Third) { 5314 ImplicitConversionSequence ICS; 5315 ICS.setStandard(); 5316 ICS.Standard = Best->FinalConversion; 5317 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 5318 } 5319 } 5320 5321 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>, 5322 /// a function with a pointer return type contains a 'return false;' statement. 5323 /// In C++11, 'false' is not a null pointer, so this breaks the build of any 5324 /// code using that header. 5325 /// 5326 /// Work around this by treating 'return false;' as zero-initializing the result 5327 /// if it's used in a pointer-returning function in a system header. 5328 static bool isLibstdcxxPointerReturnFalseHack(Sema &S, 5329 const InitializedEntity &Entity, 5330 const Expr *Init) { 5331 return S.getLangOpts().CPlusPlus11 && 5332 Entity.getKind() == InitializedEntity::EK_Result && 5333 Entity.getType()->isPointerType() && 5334 isa<CXXBoolLiteralExpr>(Init) && 5335 !cast<CXXBoolLiteralExpr>(Init)->getValue() && 5336 S.getSourceManager().isInSystemHeader(Init->getExprLoc()); 5337 } 5338 5339 /// The non-zero enum values here are indexes into diagnostic alternatives. 5340 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar }; 5341 5342 /// Determines whether this expression is an acceptable ICR source. 5343 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e, 5344 bool isAddressOf, bool &isWeakAccess) { 5345 // Skip parens. 5346 e = e->IgnoreParens(); 5347 5348 // Skip address-of nodes. 5349 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 5350 if (op->getOpcode() == UO_AddrOf) 5351 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true, 5352 isWeakAccess); 5353 5354 // Skip certain casts. 5355 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) { 5356 switch (ce->getCastKind()) { 5357 case CK_Dependent: 5358 case CK_BitCast: 5359 case CK_LValueBitCast: 5360 case CK_NoOp: 5361 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess); 5362 5363 case CK_ArrayToPointerDecay: 5364 return IIK_nonscalar; 5365 5366 case CK_NullToPointer: 5367 return IIK_okay; 5368 5369 default: 5370 break; 5371 } 5372 5373 // If we have a declaration reference, it had better be a local variable. 5374 } else if (isa<DeclRefExpr>(e)) { 5375 // set isWeakAccess to true, to mean that there will be an implicit 5376 // load which requires a cleanup. 5377 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 5378 isWeakAccess = true; 5379 5380 if (!isAddressOf) return IIK_nonlocal; 5381 5382 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl()); 5383 if (!var) return IIK_nonlocal; 5384 5385 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal); 5386 5387 // If we have a conditional operator, check both sides. 5388 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) { 5389 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf, 5390 isWeakAccess)) 5391 return iik; 5392 5393 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess); 5394 5395 // These are never scalar. 5396 } else if (isa<ArraySubscriptExpr>(e)) { 5397 return IIK_nonscalar; 5398 5399 // Otherwise, it needs to be a null pointer constant. 5400 } else { 5401 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull) 5402 ? IIK_okay : IIK_nonlocal); 5403 } 5404 5405 return IIK_nonlocal; 5406 } 5407 5408 /// Check whether the given expression is a valid operand for an 5409 /// indirect copy/restore. 5410 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) { 5411 assert(src->isRValue()); 5412 bool isWeakAccess = false; 5413 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess); 5414 // If isWeakAccess to true, there will be an implicit 5415 // load which requires a cleanup. 5416 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess) 5417 S.Cleanup.setExprNeedsCleanups(true); 5418 5419 if (iik == IIK_okay) return; 5420 5421 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback) 5422 << ((unsigned) iik - 1) // shift index into diagnostic explanations 5423 << src->getSourceRange(); 5424 } 5425 5426 /// Determine whether we have compatible array types for the 5427 /// purposes of GNU by-copy array initialization. 5428 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest, 5429 const ArrayType *Source) { 5430 // If the source and destination array types are equivalent, we're 5431 // done. 5432 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0))) 5433 return true; 5434 5435 // Make sure that the element types are the same. 5436 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType())) 5437 return false; 5438 5439 // The only mismatch we allow is when the destination is an 5440 // incomplete array type and the source is a constant array type. 5441 return Source->isConstantArrayType() && Dest->isIncompleteArrayType(); 5442 } 5443 5444 static bool tryObjCWritebackConversion(Sema &S, 5445 InitializationSequence &Sequence, 5446 const InitializedEntity &Entity, 5447 Expr *Initializer) { 5448 bool ArrayDecay = false; 5449 QualType ArgType = Initializer->getType(); 5450 QualType ArgPointee; 5451 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) { 5452 ArrayDecay = true; 5453 ArgPointee = ArgArrayType->getElementType(); 5454 ArgType = S.Context.getPointerType(ArgPointee); 5455 } 5456 5457 // Handle write-back conversion. 5458 QualType ConvertedArgType; 5459 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(), 5460 ConvertedArgType)) 5461 return false; 5462 5463 // We should copy unless we're passing to an argument explicitly 5464 // marked 'out'. 5465 bool ShouldCopy = true; 5466 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 5467 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 5468 5469 // Do we need an lvalue conversion? 5470 if (ArrayDecay || Initializer->isGLValue()) { 5471 ImplicitConversionSequence ICS; 5472 ICS.setStandard(); 5473 ICS.Standard.setAsIdentityConversion(); 5474 5475 QualType ResultType; 5476 if (ArrayDecay) { 5477 ICS.Standard.First = ICK_Array_To_Pointer; 5478 ResultType = S.Context.getPointerType(ArgPointee); 5479 } else { 5480 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 5481 ResultType = Initializer->getType().getNonLValueExprType(S.Context); 5482 } 5483 5484 Sequence.AddConversionSequenceStep(ICS, ResultType); 5485 } 5486 5487 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy); 5488 return true; 5489 } 5490 5491 static bool TryOCLSamplerInitialization(Sema &S, 5492 InitializationSequence &Sequence, 5493 QualType DestType, 5494 Expr *Initializer) { 5495 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() || 5496 (!Initializer->isIntegerConstantExpr(S.Context) && 5497 !Initializer->getType()->isSamplerT())) 5498 return false; 5499 5500 Sequence.AddOCLSamplerInitStep(DestType); 5501 return true; 5502 } 5503 5504 static bool IsZeroInitializer(Expr *Initializer, Sema &S) { 5505 return Initializer->isIntegerConstantExpr(S.getASTContext()) && 5506 (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0); 5507 } 5508 5509 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S, 5510 InitializationSequence &Sequence, 5511 QualType DestType, 5512 Expr *Initializer) { 5513 if (!S.getLangOpts().OpenCL) 5514 return false; 5515 5516 // 5517 // OpenCL 1.2 spec, s6.12.10 5518 // 5519 // The event argument can also be used to associate the 5520 // async_work_group_copy with a previous async copy allowing 5521 // an event to be shared by multiple async copies; otherwise 5522 // event should be zero. 5523 // 5524 if (DestType->isEventT() || DestType->isQueueT()) { 5525 if (!IsZeroInitializer(Initializer, S)) 5526 return false; 5527 5528 Sequence.AddOCLZeroOpaqueTypeStep(DestType); 5529 return true; 5530 } 5531 5532 // We should allow zero initialization for all types defined in the 5533 // cl_intel_device_side_avc_motion_estimation extension, except 5534 // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t. 5535 if (S.getOpenCLOptions().isEnabled( 5536 "cl_intel_device_side_avc_motion_estimation") && 5537 DestType->isOCLIntelSubgroupAVCType()) { 5538 if (DestType->isOCLIntelSubgroupAVCMcePayloadType() || 5539 DestType->isOCLIntelSubgroupAVCMceResultType()) 5540 return false; 5541 if (!IsZeroInitializer(Initializer, S)) 5542 return false; 5543 5544 Sequence.AddOCLZeroOpaqueTypeStep(DestType); 5545 return true; 5546 } 5547 5548 return false; 5549 } 5550 5551 InitializationSequence::InitializationSequence(Sema &S, 5552 const InitializedEntity &Entity, 5553 const InitializationKind &Kind, 5554 MultiExprArg Args, 5555 bool TopLevelOfInitList, 5556 bool TreatUnavailableAsInvalid) 5557 : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) { 5558 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList, 5559 TreatUnavailableAsInvalid); 5560 } 5561 5562 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the 5563 /// address of that function, this returns true. Otherwise, it returns false. 5564 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) { 5565 auto *DRE = dyn_cast<DeclRefExpr>(E); 5566 if (!DRE || !isa<FunctionDecl>(DRE->getDecl())) 5567 return false; 5568 5569 return !S.checkAddressOfFunctionIsAvailable( 5570 cast<FunctionDecl>(DRE->getDecl())); 5571 } 5572 5573 /// Determine whether we can perform an elementwise array copy for this kind 5574 /// of entity. 5575 static bool canPerformArrayCopy(const InitializedEntity &Entity) { 5576 switch (Entity.getKind()) { 5577 case InitializedEntity::EK_LambdaCapture: 5578 // C++ [expr.prim.lambda]p24: 5579 // For array members, the array elements are direct-initialized in 5580 // increasing subscript order. 5581 return true; 5582 5583 case InitializedEntity::EK_Variable: 5584 // C++ [dcl.decomp]p1: 5585 // [...] each element is copy-initialized or direct-initialized from the 5586 // corresponding element of the assignment-expression [...] 5587 return isa<DecompositionDecl>(Entity.getDecl()); 5588 5589 case InitializedEntity::EK_Member: 5590 // C++ [class.copy.ctor]p14: 5591 // - if the member is an array, each element is direct-initialized with 5592 // the corresponding subobject of x 5593 return Entity.isImplicitMemberInitializer(); 5594 5595 case InitializedEntity::EK_ArrayElement: 5596 // All the above cases are intended to apply recursively, even though none 5597 // of them actually say that. 5598 if (auto *E = Entity.getParent()) 5599 return canPerformArrayCopy(*E); 5600 break; 5601 5602 default: 5603 break; 5604 } 5605 5606 return false; 5607 } 5608 5609 void InitializationSequence::InitializeFrom(Sema &S, 5610 const InitializedEntity &Entity, 5611 const InitializationKind &Kind, 5612 MultiExprArg Args, 5613 bool TopLevelOfInitList, 5614 bool TreatUnavailableAsInvalid) { 5615 ASTContext &Context = S.Context; 5616 5617 // Eliminate non-overload placeholder types in the arguments. We 5618 // need to do this before checking whether types are dependent 5619 // because lowering a pseudo-object expression might well give us 5620 // something of dependent type. 5621 for (unsigned I = 0, E = Args.size(); I != E; ++I) 5622 if (Args[I]->getType()->isNonOverloadPlaceholderType()) { 5623 // FIXME: should we be doing this here? 5624 ExprResult result = S.CheckPlaceholderExpr(Args[I]); 5625 if (result.isInvalid()) { 5626 SetFailed(FK_PlaceholderType); 5627 return; 5628 } 5629 Args[I] = result.get(); 5630 } 5631 5632 // C++0x [dcl.init]p16: 5633 // The semantics of initializers are as follows. The destination type is 5634 // the type of the object or reference being initialized and the source 5635 // type is the type of the initializer expression. The source type is not 5636 // defined when the initializer is a braced-init-list or when it is a 5637 // parenthesized list of expressions. 5638 QualType DestType = Entity.getType(); 5639 5640 if (DestType->isDependentType() || 5641 Expr::hasAnyTypeDependentArguments(Args)) { 5642 SequenceKind = DependentSequence; 5643 return; 5644 } 5645 5646 // Almost everything is a normal sequence. 5647 setSequenceKind(NormalSequence); 5648 5649 QualType SourceType; 5650 Expr *Initializer = nullptr; 5651 if (Args.size() == 1) { 5652 Initializer = Args[0]; 5653 if (S.getLangOpts().ObjC) { 5654 if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(), 5655 DestType, Initializer->getType(), 5656 Initializer) || 5657 S.CheckConversionToObjCLiteral(DestType, Initializer)) 5658 Args[0] = Initializer; 5659 } 5660 if (!isa<InitListExpr>(Initializer)) 5661 SourceType = Initializer->getType(); 5662 } 5663 5664 // - If the initializer is a (non-parenthesized) braced-init-list, the 5665 // object is list-initialized (8.5.4). 5666 if (Kind.getKind() != InitializationKind::IK_Direct) { 5667 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) { 5668 TryListInitialization(S, Entity, Kind, InitList, *this, 5669 TreatUnavailableAsInvalid); 5670 return; 5671 } 5672 } 5673 5674 // - If the destination type is a reference type, see 8.5.3. 5675 if (DestType->isReferenceType()) { 5676 // C++0x [dcl.init.ref]p1: 5677 // A variable declared to be a T& or T&&, that is, "reference to type T" 5678 // (8.3.2), shall be initialized by an object, or function, of type T or 5679 // by an object that can be converted into a T. 5680 // (Therefore, multiple arguments are not permitted.) 5681 if (Args.size() != 1) 5682 SetFailed(FK_TooManyInitsForReference); 5683 // C++17 [dcl.init.ref]p5: 5684 // A reference [...] is initialized by an expression [...] as follows: 5685 // If the initializer is not an expression, presumably we should reject, 5686 // but the standard fails to actually say so. 5687 else if (isa<InitListExpr>(Args[0])) 5688 SetFailed(FK_ParenthesizedListInitForReference); 5689 else 5690 TryReferenceInitialization(S, Entity, Kind, Args[0], *this); 5691 return; 5692 } 5693 5694 // - If the initializer is (), the object is value-initialized. 5695 if (Kind.getKind() == InitializationKind::IK_Value || 5696 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) { 5697 TryValueInitialization(S, Entity, Kind, *this); 5698 return; 5699 } 5700 5701 // Handle default initialization. 5702 if (Kind.getKind() == InitializationKind::IK_Default) { 5703 TryDefaultInitialization(S, Entity, Kind, *this); 5704 return; 5705 } 5706 5707 // - If the destination type is an array of characters, an array of 5708 // char16_t, an array of char32_t, or an array of wchar_t, and the 5709 // initializer is a string literal, see 8.5.2. 5710 // - Otherwise, if the destination type is an array, the program is 5711 // ill-formed. 5712 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) { 5713 if (Initializer && isa<VariableArrayType>(DestAT)) { 5714 SetFailed(FK_VariableLengthArrayHasInitializer); 5715 return; 5716 } 5717 5718 if (Initializer) { 5719 switch (IsStringInit(Initializer, DestAT, Context)) { 5720 case SIF_None: 5721 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this); 5722 return; 5723 case SIF_NarrowStringIntoWideChar: 5724 SetFailed(FK_NarrowStringIntoWideCharArray); 5725 return; 5726 case SIF_WideStringIntoChar: 5727 SetFailed(FK_WideStringIntoCharArray); 5728 return; 5729 case SIF_IncompatWideStringIntoWideChar: 5730 SetFailed(FK_IncompatWideStringIntoWideChar); 5731 return; 5732 case SIF_PlainStringIntoUTF8Char: 5733 SetFailed(FK_PlainStringIntoUTF8Char); 5734 return; 5735 case SIF_UTF8StringIntoPlainChar: 5736 SetFailed(FK_UTF8StringIntoPlainChar); 5737 return; 5738 case SIF_Other: 5739 break; 5740 } 5741 } 5742 5743 // Some kinds of initialization permit an array to be initialized from 5744 // another array of the same type, and perform elementwise initialization. 5745 if (Initializer && isa<ConstantArrayType>(DestAT) && 5746 S.Context.hasSameUnqualifiedType(Initializer->getType(), 5747 Entity.getType()) && 5748 canPerformArrayCopy(Entity)) { 5749 // If source is a prvalue, use it directly. 5750 if (Initializer->getValueKind() == VK_RValue) { 5751 AddArrayInitStep(DestType, /*IsGNUExtension*/false); 5752 return; 5753 } 5754 5755 // Emit element-at-a-time copy loop. 5756 InitializedEntity Element = 5757 InitializedEntity::InitializeElement(S.Context, 0, Entity); 5758 QualType InitEltT = 5759 Context.getAsArrayType(Initializer->getType())->getElementType(); 5760 OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT, 5761 Initializer->getValueKind(), 5762 Initializer->getObjectKind()); 5763 Expr *OVEAsExpr = &OVE; 5764 InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList, 5765 TreatUnavailableAsInvalid); 5766 if (!Failed()) 5767 AddArrayInitLoopStep(Entity.getType(), InitEltT); 5768 return; 5769 } 5770 5771 // Note: as an GNU C extension, we allow initialization of an 5772 // array from a compound literal that creates an array of the same 5773 // type, so long as the initializer has no side effects. 5774 if (!S.getLangOpts().CPlusPlus && Initializer && 5775 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) && 5776 Initializer->getType()->isArrayType()) { 5777 const ArrayType *SourceAT 5778 = Context.getAsArrayType(Initializer->getType()); 5779 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT)) 5780 SetFailed(FK_ArrayTypeMismatch); 5781 else if (Initializer->HasSideEffects(S.Context)) 5782 SetFailed(FK_NonConstantArrayInit); 5783 else { 5784 AddArrayInitStep(DestType, /*IsGNUExtension*/true); 5785 } 5786 } 5787 // Note: as a GNU C++ extension, we allow list-initialization of a 5788 // class member of array type from a parenthesized initializer list. 5789 else if (S.getLangOpts().CPlusPlus && 5790 Entity.getKind() == InitializedEntity::EK_Member && 5791 Initializer && isa<InitListExpr>(Initializer)) { 5792 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer), 5793 *this, TreatUnavailableAsInvalid); 5794 AddParenthesizedArrayInitStep(DestType); 5795 } else if (DestAT->getElementType()->isCharType()) 5796 SetFailed(FK_ArrayNeedsInitListOrStringLiteral); 5797 else if (IsWideCharCompatible(DestAT->getElementType(), Context)) 5798 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral); 5799 else 5800 SetFailed(FK_ArrayNeedsInitList); 5801 5802 return; 5803 } 5804 5805 // Determine whether we should consider writeback conversions for 5806 // Objective-C ARC. 5807 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount && 5808 Entity.isParameterKind(); 5809 5810 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer)) 5811 return; 5812 5813 // We're at the end of the line for C: it's either a write-back conversion 5814 // or it's a C assignment. There's no need to check anything else. 5815 if (!S.getLangOpts().CPlusPlus) { 5816 // If allowed, check whether this is an Objective-C writeback conversion. 5817 if (allowObjCWritebackConversion && 5818 tryObjCWritebackConversion(S, *this, Entity, Initializer)) { 5819 return; 5820 } 5821 5822 if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer)) 5823 return; 5824 5825 // Handle initialization in C 5826 AddCAssignmentStep(DestType); 5827 MaybeProduceObjCObject(S, *this, Entity); 5828 return; 5829 } 5830 5831 assert(S.getLangOpts().CPlusPlus); 5832 5833 // - If the destination type is a (possibly cv-qualified) class type: 5834 if (DestType->isRecordType()) { 5835 // - If the initialization is direct-initialization, or if it is 5836 // copy-initialization where the cv-unqualified version of the 5837 // source type is the same class as, or a derived class of, the 5838 // class of the destination, constructors are considered. [...] 5839 if (Kind.getKind() == InitializationKind::IK_Direct || 5840 (Kind.getKind() == InitializationKind::IK_Copy && 5841 (Context.hasSameUnqualifiedType(SourceType, DestType) || 5842 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType)))) 5843 TryConstructorInitialization(S, Entity, Kind, Args, 5844 DestType, DestType, *this); 5845 // - Otherwise (i.e., for the remaining copy-initialization cases), 5846 // user-defined conversion sequences that can convert from the source 5847 // type to the destination type or (when a conversion function is 5848 // used) to a derived class thereof are enumerated as described in 5849 // 13.3.1.4, and the best one is chosen through overload resolution 5850 // (13.3). 5851 else 5852 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 5853 TopLevelOfInitList); 5854 return; 5855 } 5856 5857 assert(Args.size() >= 1 && "Zero-argument case handled above"); 5858 5859 // The remaining cases all need a source type. 5860 if (Args.size() > 1) { 5861 SetFailed(FK_TooManyInitsForScalar); 5862 return; 5863 } else if (isa<InitListExpr>(Args[0])) { 5864 SetFailed(FK_ParenthesizedListInitForScalar); 5865 return; 5866 } 5867 5868 // - Otherwise, if the source type is a (possibly cv-qualified) class 5869 // type, conversion functions are considered. 5870 if (!SourceType.isNull() && SourceType->isRecordType()) { 5871 // For a conversion to _Atomic(T) from either T or a class type derived 5872 // from T, initialize the T object then convert to _Atomic type. 5873 bool NeedAtomicConversion = false; 5874 if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) { 5875 if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) || 5876 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, 5877 Atomic->getValueType())) { 5878 DestType = Atomic->getValueType(); 5879 NeedAtomicConversion = true; 5880 } 5881 } 5882 5883 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 5884 TopLevelOfInitList); 5885 MaybeProduceObjCObject(S, *this, Entity); 5886 if (!Failed() && NeedAtomicConversion) 5887 AddAtomicConversionStep(Entity.getType()); 5888 return; 5889 } 5890 5891 // - Otherwise, if the initialization is direct-initialization, the source 5892 // type is std::nullptr_t, and the destination type is bool, the initial 5893 // value of the object being initialized is false. 5894 if (!SourceType.isNull() && SourceType->isNullPtrType() && 5895 DestType->isBooleanType() && 5896 Kind.getKind() == InitializationKind::IK_Direct) { 5897 AddConversionSequenceStep( 5898 ImplicitConversionSequence::getNullptrToBool(SourceType, DestType, 5899 Initializer->isGLValue()), 5900 DestType); 5901 return; 5902 } 5903 5904 // - Otherwise, the initial value of the object being initialized is the 5905 // (possibly converted) value of the initializer expression. Standard 5906 // conversions (Clause 4) will be used, if necessary, to convert the 5907 // initializer expression to the cv-unqualified version of the 5908 // destination type; no user-defined conversions are considered. 5909 5910 ImplicitConversionSequence ICS 5911 = S.TryImplicitConversion(Initializer, DestType, 5912 /*SuppressUserConversions*/true, 5913 Sema::AllowedExplicit::None, 5914 /*InOverloadResolution*/ false, 5915 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 5916 allowObjCWritebackConversion); 5917 5918 if (ICS.isStandard() && 5919 ICS.Standard.Second == ICK_Writeback_Conversion) { 5920 // Objective-C ARC writeback conversion. 5921 5922 // We should copy unless we're passing to an argument explicitly 5923 // marked 'out'. 5924 bool ShouldCopy = true; 5925 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 5926 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 5927 5928 // If there was an lvalue adjustment, add it as a separate conversion. 5929 if (ICS.Standard.First == ICK_Array_To_Pointer || 5930 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 5931 ImplicitConversionSequence LvalueICS; 5932 LvalueICS.setStandard(); 5933 LvalueICS.Standard.setAsIdentityConversion(); 5934 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0)); 5935 LvalueICS.Standard.First = ICS.Standard.First; 5936 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0)); 5937 } 5938 5939 AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy); 5940 } else if (ICS.isBad()) { 5941 DeclAccessPair dap; 5942 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) { 5943 AddZeroInitializationStep(Entity.getType()); 5944 } else if (Initializer->getType() == Context.OverloadTy && 5945 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType, 5946 false, dap)) 5947 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 5948 else if (Initializer->getType()->isFunctionType() && 5949 isExprAnUnaddressableFunction(S, Initializer)) 5950 SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction); 5951 else 5952 SetFailed(InitializationSequence::FK_ConversionFailed); 5953 } else { 5954 AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 5955 5956 MaybeProduceObjCObject(S, *this, Entity); 5957 } 5958 } 5959 5960 InitializationSequence::~InitializationSequence() { 5961 for (auto &S : Steps) 5962 S.Destroy(); 5963 } 5964 5965 //===----------------------------------------------------------------------===// 5966 // Perform initialization 5967 //===----------------------------------------------------------------------===// 5968 static Sema::AssignmentAction 5969 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) { 5970 switch(Entity.getKind()) { 5971 case InitializedEntity::EK_Variable: 5972 case InitializedEntity::EK_New: 5973 case InitializedEntity::EK_Exception: 5974 case InitializedEntity::EK_Base: 5975 case InitializedEntity::EK_Delegating: 5976 return Sema::AA_Initializing; 5977 5978 case InitializedEntity::EK_Parameter: 5979 if (Entity.getDecl() && 5980 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 5981 return Sema::AA_Sending; 5982 5983 return Sema::AA_Passing; 5984 5985 case InitializedEntity::EK_Parameter_CF_Audited: 5986 if (Entity.getDecl() && 5987 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 5988 return Sema::AA_Sending; 5989 5990 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited; 5991 5992 case InitializedEntity::EK_Result: 5993 case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right. 5994 return Sema::AA_Returning; 5995 5996 case InitializedEntity::EK_Temporary: 5997 case InitializedEntity::EK_RelatedResult: 5998 // FIXME: Can we tell apart casting vs. converting? 5999 return Sema::AA_Casting; 6000 6001 case InitializedEntity::EK_Member: 6002 case InitializedEntity::EK_Binding: 6003 case InitializedEntity::EK_ArrayElement: 6004 case InitializedEntity::EK_VectorElement: 6005 case InitializedEntity::EK_ComplexElement: 6006 case InitializedEntity::EK_BlockElement: 6007 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6008 case InitializedEntity::EK_LambdaCapture: 6009 case InitializedEntity::EK_CompoundLiteralInit: 6010 return Sema::AA_Initializing; 6011 } 6012 6013 llvm_unreachable("Invalid EntityKind!"); 6014 } 6015 6016 /// Whether we should bind a created object as a temporary when 6017 /// initializing the given entity. 6018 static bool shouldBindAsTemporary(const InitializedEntity &Entity) { 6019 switch (Entity.getKind()) { 6020 case InitializedEntity::EK_ArrayElement: 6021 case InitializedEntity::EK_Member: 6022 case InitializedEntity::EK_Result: 6023 case InitializedEntity::EK_StmtExprResult: 6024 case InitializedEntity::EK_New: 6025 case InitializedEntity::EK_Variable: 6026 case InitializedEntity::EK_Base: 6027 case InitializedEntity::EK_Delegating: 6028 case InitializedEntity::EK_VectorElement: 6029 case InitializedEntity::EK_ComplexElement: 6030 case InitializedEntity::EK_Exception: 6031 case InitializedEntity::EK_BlockElement: 6032 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6033 case InitializedEntity::EK_LambdaCapture: 6034 case InitializedEntity::EK_CompoundLiteralInit: 6035 return false; 6036 6037 case InitializedEntity::EK_Parameter: 6038 case InitializedEntity::EK_Parameter_CF_Audited: 6039 case InitializedEntity::EK_Temporary: 6040 case InitializedEntity::EK_RelatedResult: 6041 case InitializedEntity::EK_Binding: 6042 return true; 6043 } 6044 6045 llvm_unreachable("missed an InitializedEntity kind?"); 6046 } 6047 6048 /// Whether the given entity, when initialized with an object 6049 /// created for that initialization, requires destruction. 6050 static bool shouldDestroyEntity(const InitializedEntity &Entity) { 6051 switch (Entity.getKind()) { 6052 case InitializedEntity::EK_Result: 6053 case InitializedEntity::EK_StmtExprResult: 6054 case InitializedEntity::EK_New: 6055 case InitializedEntity::EK_Base: 6056 case InitializedEntity::EK_Delegating: 6057 case InitializedEntity::EK_VectorElement: 6058 case InitializedEntity::EK_ComplexElement: 6059 case InitializedEntity::EK_BlockElement: 6060 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6061 case InitializedEntity::EK_LambdaCapture: 6062 return false; 6063 6064 case InitializedEntity::EK_Member: 6065 case InitializedEntity::EK_Binding: 6066 case InitializedEntity::EK_Variable: 6067 case InitializedEntity::EK_Parameter: 6068 case InitializedEntity::EK_Parameter_CF_Audited: 6069 case InitializedEntity::EK_Temporary: 6070 case InitializedEntity::EK_ArrayElement: 6071 case InitializedEntity::EK_Exception: 6072 case InitializedEntity::EK_CompoundLiteralInit: 6073 case InitializedEntity::EK_RelatedResult: 6074 return true; 6075 } 6076 6077 llvm_unreachable("missed an InitializedEntity kind?"); 6078 } 6079 6080 /// Get the location at which initialization diagnostics should appear. 6081 static SourceLocation getInitializationLoc(const InitializedEntity &Entity, 6082 Expr *Initializer) { 6083 switch (Entity.getKind()) { 6084 case InitializedEntity::EK_Result: 6085 case InitializedEntity::EK_StmtExprResult: 6086 return Entity.getReturnLoc(); 6087 6088 case InitializedEntity::EK_Exception: 6089 return Entity.getThrowLoc(); 6090 6091 case InitializedEntity::EK_Variable: 6092 case InitializedEntity::EK_Binding: 6093 return Entity.getDecl()->getLocation(); 6094 6095 case InitializedEntity::EK_LambdaCapture: 6096 return Entity.getCaptureLoc(); 6097 6098 case InitializedEntity::EK_ArrayElement: 6099 case InitializedEntity::EK_Member: 6100 case InitializedEntity::EK_Parameter: 6101 case InitializedEntity::EK_Parameter_CF_Audited: 6102 case InitializedEntity::EK_Temporary: 6103 case InitializedEntity::EK_New: 6104 case InitializedEntity::EK_Base: 6105 case InitializedEntity::EK_Delegating: 6106 case InitializedEntity::EK_VectorElement: 6107 case InitializedEntity::EK_ComplexElement: 6108 case InitializedEntity::EK_BlockElement: 6109 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6110 case InitializedEntity::EK_CompoundLiteralInit: 6111 case InitializedEntity::EK_RelatedResult: 6112 return Initializer->getBeginLoc(); 6113 } 6114 llvm_unreachable("missed an InitializedEntity kind?"); 6115 } 6116 6117 /// Make a (potentially elidable) temporary copy of the object 6118 /// provided by the given initializer by calling the appropriate copy 6119 /// constructor. 6120 /// 6121 /// \param S The Sema object used for type-checking. 6122 /// 6123 /// \param T The type of the temporary object, which must either be 6124 /// the type of the initializer expression or a superclass thereof. 6125 /// 6126 /// \param Entity The entity being initialized. 6127 /// 6128 /// \param CurInit The initializer expression. 6129 /// 6130 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that 6131 /// is permitted in C++03 (but not C++0x) when binding a reference to 6132 /// an rvalue. 6133 /// 6134 /// \returns An expression that copies the initializer expression into 6135 /// a temporary object, or an error expression if a copy could not be 6136 /// created. 6137 static ExprResult CopyObject(Sema &S, 6138 QualType T, 6139 const InitializedEntity &Entity, 6140 ExprResult CurInit, 6141 bool IsExtraneousCopy) { 6142 if (CurInit.isInvalid()) 6143 return CurInit; 6144 // Determine which class type we're copying to. 6145 Expr *CurInitExpr = (Expr *)CurInit.get(); 6146 CXXRecordDecl *Class = nullptr; 6147 if (const RecordType *Record = T->getAs<RecordType>()) 6148 Class = cast<CXXRecordDecl>(Record->getDecl()); 6149 if (!Class) 6150 return CurInit; 6151 6152 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get()); 6153 6154 // Make sure that the type we are copying is complete. 6155 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete)) 6156 return CurInit; 6157 6158 // Perform overload resolution using the class's constructors. Per 6159 // C++11 [dcl.init]p16, second bullet for class types, this initialization 6160 // is direct-initialization. 6161 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 6162 DeclContext::lookup_result Ctors = S.LookupConstructors(Class); 6163 6164 OverloadCandidateSet::iterator Best; 6165 switch (ResolveConstructorOverload( 6166 S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best, 6167 /*CopyInitializing=*/false, /*AllowExplicit=*/true, 6168 /*OnlyListConstructors=*/false, /*IsListInit=*/false, 6169 /*SecondStepOfCopyInit=*/true)) { 6170 case OR_Success: 6171 break; 6172 6173 case OR_No_Viable_Function: 6174 CandidateSet.NoteCandidates( 6175 PartialDiagnosticAt( 6176 Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext() 6177 ? diag::ext_rvalue_to_reference_temp_copy_no_viable 6178 : diag::err_temp_copy_no_viable) 6179 << (int)Entity.getKind() << CurInitExpr->getType() 6180 << CurInitExpr->getSourceRange()), 6181 S, OCD_AllCandidates, CurInitExpr); 6182 if (!IsExtraneousCopy || S.isSFINAEContext()) 6183 return ExprError(); 6184 return CurInit; 6185 6186 case OR_Ambiguous: 6187 CandidateSet.NoteCandidates( 6188 PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous) 6189 << (int)Entity.getKind() 6190 << CurInitExpr->getType() 6191 << CurInitExpr->getSourceRange()), 6192 S, OCD_AmbiguousCandidates, CurInitExpr); 6193 return ExprError(); 6194 6195 case OR_Deleted: 6196 S.Diag(Loc, diag::err_temp_copy_deleted) 6197 << (int)Entity.getKind() << CurInitExpr->getType() 6198 << CurInitExpr->getSourceRange(); 6199 S.NoteDeletedFunction(Best->Function); 6200 return ExprError(); 6201 } 6202 6203 bool HadMultipleCandidates = CandidateSet.size() > 1; 6204 6205 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); 6206 SmallVector<Expr*, 8> ConstructorArgs; 6207 CurInit.get(); // Ownership transferred into MultiExprArg, below. 6208 6209 S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity, 6210 IsExtraneousCopy); 6211 6212 if (IsExtraneousCopy) { 6213 // If this is a totally extraneous copy for C++03 reference 6214 // binding purposes, just return the original initialization 6215 // expression. We don't generate an (elided) copy operation here 6216 // because doing so would require us to pass down a flag to avoid 6217 // infinite recursion, where each step adds another extraneous, 6218 // elidable copy. 6219 6220 // Instantiate the default arguments of any extra parameters in 6221 // the selected copy constructor, as if we were going to create a 6222 // proper call to the copy constructor. 6223 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) { 6224 ParmVarDecl *Parm = Constructor->getParamDecl(I); 6225 if (S.RequireCompleteType(Loc, Parm->getType(), 6226 diag::err_call_incomplete_argument)) 6227 break; 6228 6229 // Build the default argument expression; we don't actually care 6230 // if this succeeds or not, because this routine will complain 6231 // if there was a problem. 6232 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm); 6233 } 6234 6235 return CurInitExpr; 6236 } 6237 6238 // Determine the arguments required to actually perform the 6239 // constructor call (we might have derived-to-base conversions, or 6240 // the copy constructor may have default arguments). 6241 if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs)) 6242 return ExprError(); 6243 6244 // C++0x [class.copy]p32: 6245 // When certain criteria are met, an implementation is allowed to 6246 // omit the copy/move construction of a class object, even if the 6247 // copy/move constructor and/or destructor for the object have 6248 // side effects. [...] 6249 // - when a temporary class object that has not been bound to a 6250 // reference (12.2) would be copied/moved to a class object 6251 // with the same cv-unqualified type, the copy/move operation 6252 // can be omitted by constructing the temporary object 6253 // directly into the target of the omitted copy/move 6254 // 6255 // Note that the other three bullets are handled elsewhere. Copy 6256 // elision for return statements and throw expressions are handled as part 6257 // of constructor initialization, while copy elision for exception handlers 6258 // is handled by the run-time. 6259 // 6260 // FIXME: If the function parameter is not the same type as the temporary, we 6261 // should still be able to elide the copy, but we don't have a way to 6262 // represent in the AST how much should be elided in this case. 6263 bool Elidable = 6264 CurInitExpr->isTemporaryObject(S.Context, Class) && 6265 S.Context.hasSameUnqualifiedType( 6266 Best->Function->getParamDecl(0)->getType().getNonReferenceType(), 6267 CurInitExpr->getType()); 6268 6269 // Actually perform the constructor call. 6270 CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor, 6271 Elidable, 6272 ConstructorArgs, 6273 HadMultipleCandidates, 6274 /*ListInit*/ false, 6275 /*StdInitListInit*/ false, 6276 /*ZeroInit*/ false, 6277 CXXConstructExpr::CK_Complete, 6278 SourceRange()); 6279 6280 // If we're supposed to bind temporaries, do so. 6281 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity)) 6282 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 6283 return CurInit; 6284 } 6285 6286 /// Check whether elidable copy construction for binding a reference to 6287 /// a temporary would have succeeded if we were building in C++98 mode, for 6288 /// -Wc++98-compat. 6289 static void CheckCXX98CompatAccessibleCopy(Sema &S, 6290 const InitializedEntity &Entity, 6291 Expr *CurInitExpr) { 6292 assert(S.getLangOpts().CPlusPlus11); 6293 6294 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>(); 6295 if (!Record) 6296 return; 6297 6298 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr); 6299 if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc)) 6300 return; 6301 6302 // Find constructors which would have been considered. 6303 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 6304 DeclContext::lookup_result Ctors = 6305 S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl())); 6306 6307 // Perform overload resolution. 6308 OverloadCandidateSet::iterator Best; 6309 OverloadingResult OR = ResolveConstructorOverload( 6310 S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best, 6311 /*CopyInitializing=*/false, /*AllowExplicit=*/true, 6312 /*OnlyListConstructors=*/false, /*IsListInit=*/false, 6313 /*SecondStepOfCopyInit=*/true); 6314 6315 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy) 6316 << OR << (int)Entity.getKind() << CurInitExpr->getType() 6317 << CurInitExpr->getSourceRange(); 6318 6319 switch (OR) { 6320 case OR_Success: 6321 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function), 6322 Best->FoundDecl, Entity, Diag); 6323 // FIXME: Check default arguments as far as that's possible. 6324 break; 6325 6326 case OR_No_Viable_Function: 6327 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, 6328 OCD_AllCandidates, CurInitExpr); 6329 break; 6330 6331 case OR_Ambiguous: 6332 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, 6333 OCD_AmbiguousCandidates, CurInitExpr); 6334 break; 6335 6336 case OR_Deleted: 6337 S.Diag(Loc, Diag); 6338 S.NoteDeletedFunction(Best->Function); 6339 break; 6340 } 6341 } 6342 6343 void InitializationSequence::PrintInitLocationNote(Sema &S, 6344 const InitializedEntity &Entity) { 6345 if (Entity.isParameterKind() && Entity.getDecl()) { 6346 if (Entity.getDecl()->getLocation().isInvalid()) 6347 return; 6348 6349 if (Entity.getDecl()->getDeclName()) 6350 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here) 6351 << Entity.getDecl()->getDeclName(); 6352 else 6353 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here); 6354 } 6355 else if (Entity.getKind() == InitializedEntity::EK_RelatedResult && 6356 Entity.getMethodDecl()) 6357 S.Diag(Entity.getMethodDecl()->getLocation(), 6358 diag::note_method_return_type_change) 6359 << Entity.getMethodDecl()->getDeclName(); 6360 } 6361 6362 /// Returns true if the parameters describe a constructor initialization of 6363 /// an explicit temporary object, e.g. "Point(x, y)". 6364 static bool isExplicitTemporary(const InitializedEntity &Entity, 6365 const InitializationKind &Kind, 6366 unsigned NumArgs) { 6367 switch (Entity.getKind()) { 6368 case InitializedEntity::EK_Temporary: 6369 case InitializedEntity::EK_CompoundLiteralInit: 6370 case InitializedEntity::EK_RelatedResult: 6371 break; 6372 default: 6373 return false; 6374 } 6375 6376 switch (Kind.getKind()) { 6377 case InitializationKind::IK_DirectList: 6378 return true; 6379 // FIXME: Hack to work around cast weirdness. 6380 case InitializationKind::IK_Direct: 6381 case InitializationKind::IK_Value: 6382 return NumArgs != 1; 6383 default: 6384 return false; 6385 } 6386 } 6387 6388 static ExprResult 6389 PerformConstructorInitialization(Sema &S, 6390 const InitializedEntity &Entity, 6391 const InitializationKind &Kind, 6392 MultiExprArg Args, 6393 const InitializationSequence::Step& Step, 6394 bool &ConstructorInitRequiresZeroInit, 6395 bool IsListInitialization, 6396 bool IsStdInitListInitialization, 6397 SourceLocation LBraceLoc, 6398 SourceLocation RBraceLoc) { 6399 unsigned NumArgs = Args.size(); 6400 CXXConstructorDecl *Constructor 6401 = cast<CXXConstructorDecl>(Step.Function.Function); 6402 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates; 6403 6404 // Build a call to the selected constructor. 6405 SmallVector<Expr*, 8> ConstructorArgs; 6406 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid()) 6407 ? Kind.getEqualLoc() 6408 : Kind.getLocation(); 6409 6410 if (Kind.getKind() == InitializationKind::IK_Default) { 6411 // Force even a trivial, implicit default constructor to be 6412 // semantically checked. We do this explicitly because we don't build 6413 // the definition for completely trivial constructors. 6414 assert(Constructor->getParent() && "No parent class for constructor."); 6415 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() && 6416 Constructor->isTrivial() && !Constructor->isUsed(false)) { 6417 S.runWithSufficientStackSpace(Loc, [&] { 6418 S.DefineImplicitDefaultConstructor(Loc, Constructor); 6419 }); 6420 } 6421 } 6422 6423 ExprResult CurInit((Expr *)nullptr); 6424 6425 // C++ [over.match.copy]p1: 6426 // - When initializing a temporary to be bound to the first parameter 6427 // of a constructor that takes a reference to possibly cv-qualified 6428 // T as its first argument, called with a single argument in the 6429 // context of direct-initialization, explicit conversion functions 6430 // are also considered. 6431 bool AllowExplicitConv = 6432 Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 && 6433 hasCopyOrMoveCtorParam(S.Context, 6434 getConstructorInfo(Step.Function.FoundDecl)); 6435 6436 // Determine the arguments required to actually perform the constructor 6437 // call. 6438 if (S.CompleteConstructorCall(Constructor, Args, 6439 Loc, ConstructorArgs, 6440 AllowExplicitConv, 6441 IsListInitialization)) 6442 return ExprError(); 6443 6444 6445 if (isExplicitTemporary(Entity, Kind, NumArgs)) { 6446 // An explicitly-constructed temporary, e.g., X(1, 2). 6447 if (S.DiagnoseUseOfDecl(Constructor, Loc)) 6448 return ExprError(); 6449 6450 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 6451 if (!TSInfo) 6452 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc); 6453 SourceRange ParenOrBraceRange = 6454 (Kind.getKind() == InitializationKind::IK_DirectList) 6455 ? SourceRange(LBraceLoc, RBraceLoc) 6456 : Kind.getParenOrBraceRange(); 6457 6458 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>( 6459 Step.Function.FoundDecl.getDecl())) { 6460 Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow); 6461 if (S.DiagnoseUseOfDecl(Constructor, Loc)) 6462 return ExprError(); 6463 } 6464 S.MarkFunctionReferenced(Loc, Constructor); 6465 6466 CurInit = S.CheckForImmediateInvocation( 6467 CXXTemporaryObjectExpr::Create( 6468 S.Context, Constructor, 6469 Entity.getType().getNonLValueExprType(S.Context), TSInfo, 6470 ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates, 6471 IsListInitialization, IsStdInitListInitialization, 6472 ConstructorInitRequiresZeroInit), 6473 Constructor); 6474 } else { 6475 CXXConstructExpr::ConstructionKind ConstructKind = 6476 CXXConstructExpr::CK_Complete; 6477 6478 if (Entity.getKind() == InitializedEntity::EK_Base) { 6479 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ? 6480 CXXConstructExpr::CK_VirtualBase : 6481 CXXConstructExpr::CK_NonVirtualBase; 6482 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) { 6483 ConstructKind = CXXConstructExpr::CK_Delegating; 6484 } 6485 6486 // Only get the parenthesis or brace range if it is a list initialization or 6487 // direct construction. 6488 SourceRange ParenOrBraceRange; 6489 if (IsListInitialization) 6490 ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc); 6491 else if (Kind.getKind() == InitializationKind::IK_Direct) 6492 ParenOrBraceRange = Kind.getParenOrBraceRange(); 6493 6494 // If the entity allows NRVO, mark the construction as elidable 6495 // unconditionally. 6496 if (Entity.allowsNRVO()) 6497 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, 6498 Step.Function.FoundDecl, 6499 Constructor, /*Elidable=*/true, 6500 ConstructorArgs, 6501 HadMultipleCandidates, 6502 IsListInitialization, 6503 IsStdInitListInitialization, 6504 ConstructorInitRequiresZeroInit, 6505 ConstructKind, 6506 ParenOrBraceRange); 6507 else 6508 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, 6509 Step.Function.FoundDecl, 6510 Constructor, 6511 ConstructorArgs, 6512 HadMultipleCandidates, 6513 IsListInitialization, 6514 IsStdInitListInitialization, 6515 ConstructorInitRequiresZeroInit, 6516 ConstructKind, 6517 ParenOrBraceRange); 6518 } 6519 if (CurInit.isInvalid()) 6520 return ExprError(); 6521 6522 // Only check access if all of that succeeded. 6523 S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity); 6524 if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc)) 6525 return ExprError(); 6526 6527 if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType())) 6528 if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S)) 6529 return ExprError(); 6530 6531 if (shouldBindAsTemporary(Entity)) 6532 CurInit = S.MaybeBindToTemporary(CurInit.get()); 6533 6534 return CurInit; 6535 } 6536 6537 namespace { 6538 enum LifetimeKind { 6539 /// The lifetime of a temporary bound to this entity ends at the end of the 6540 /// full-expression, and that's (probably) fine. 6541 LK_FullExpression, 6542 6543 /// The lifetime of a temporary bound to this entity is extended to the 6544 /// lifeitme of the entity itself. 6545 LK_Extended, 6546 6547 /// The lifetime of a temporary bound to this entity probably ends too soon, 6548 /// because the entity is allocated in a new-expression. 6549 LK_New, 6550 6551 /// The lifetime of a temporary bound to this entity ends too soon, because 6552 /// the entity is a return object. 6553 LK_Return, 6554 6555 /// The lifetime of a temporary bound to this entity ends too soon, because 6556 /// the entity is the result of a statement expression. 6557 LK_StmtExprResult, 6558 6559 /// This is a mem-initializer: if it would extend a temporary (other than via 6560 /// a default member initializer), the program is ill-formed. 6561 LK_MemInitializer, 6562 }; 6563 using LifetimeResult = 6564 llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>; 6565 } 6566 6567 /// Determine the declaration which an initialized entity ultimately refers to, 6568 /// for the purpose of lifetime-extending a temporary bound to a reference in 6569 /// the initialization of \p Entity. 6570 static LifetimeResult getEntityLifetime( 6571 const InitializedEntity *Entity, 6572 const InitializedEntity *InitField = nullptr) { 6573 // C++11 [class.temporary]p5: 6574 switch (Entity->getKind()) { 6575 case InitializedEntity::EK_Variable: 6576 // The temporary [...] persists for the lifetime of the reference 6577 return {Entity, LK_Extended}; 6578 6579 case InitializedEntity::EK_Member: 6580 // For subobjects, we look at the complete object. 6581 if (Entity->getParent()) 6582 return getEntityLifetime(Entity->getParent(), Entity); 6583 6584 // except: 6585 // C++17 [class.base.init]p8: 6586 // A temporary expression bound to a reference member in a 6587 // mem-initializer is ill-formed. 6588 // C++17 [class.base.init]p11: 6589 // A temporary expression bound to a reference member from a 6590 // default member initializer is ill-formed. 6591 // 6592 // The context of p11 and its example suggest that it's only the use of a 6593 // default member initializer from a constructor that makes the program 6594 // ill-formed, not its mere existence, and that it can even be used by 6595 // aggregate initialization. 6596 return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended 6597 : LK_MemInitializer}; 6598 6599 case InitializedEntity::EK_Binding: 6600 // Per [dcl.decomp]p3, the binding is treated as a variable of reference 6601 // type. 6602 return {Entity, LK_Extended}; 6603 6604 case InitializedEntity::EK_Parameter: 6605 case InitializedEntity::EK_Parameter_CF_Audited: 6606 // -- A temporary bound to a reference parameter in a function call 6607 // persists until the completion of the full-expression containing 6608 // the call. 6609 return {nullptr, LK_FullExpression}; 6610 6611 case InitializedEntity::EK_Result: 6612 // -- The lifetime of a temporary bound to the returned value in a 6613 // function return statement is not extended; the temporary is 6614 // destroyed at the end of the full-expression in the return statement. 6615 return {nullptr, LK_Return}; 6616 6617 case InitializedEntity::EK_StmtExprResult: 6618 // FIXME: Should we lifetime-extend through the result of a statement 6619 // expression? 6620 return {nullptr, LK_StmtExprResult}; 6621 6622 case InitializedEntity::EK_New: 6623 // -- A temporary bound to a reference in a new-initializer persists 6624 // until the completion of the full-expression containing the 6625 // new-initializer. 6626 return {nullptr, LK_New}; 6627 6628 case InitializedEntity::EK_Temporary: 6629 case InitializedEntity::EK_CompoundLiteralInit: 6630 case InitializedEntity::EK_RelatedResult: 6631 // We don't yet know the storage duration of the surrounding temporary. 6632 // Assume it's got full-expression duration for now, it will patch up our 6633 // storage duration if that's not correct. 6634 return {nullptr, LK_FullExpression}; 6635 6636 case InitializedEntity::EK_ArrayElement: 6637 // For subobjects, we look at the complete object. 6638 return getEntityLifetime(Entity->getParent(), InitField); 6639 6640 case InitializedEntity::EK_Base: 6641 // For subobjects, we look at the complete object. 6642 if (Entity->getParent()) 6643 return getEntityLifetime(Entity->getParent(), InitField); 6644 return {InitField, LK_MemInitializer}; 6645 6646 case InitializedEntity::EK_Delegating: 6647 // We can reach this case for aggregate initialization in a constructor: 6648 // struct A { int &&r; }; 6649 // struct B : A { B() : A{0} {} }; 6650 // In this case, use the outermost field decl as the context. 6651 return {InitField, LK_MemInitializer}; 6652 6653 case InitializedEntity::EK_BlockElement: 6654 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6655 case InitializedEntity::EK_LambdaCapture: 6656 case InitializedEntity::EK_VectorElement: 6657 case InitializedEntity::EK_ComplexElement: 6658 return {nullptr, LK_FullExpression}; 6659 6660 case InitializedEntity::EK_Exception: 6661 // FIXME: Can we diagnose lifetime problems with exceptions? 6662 return {nullptr, LK_FullExpression}; 6663 } 6664 llvm_unreachable("unknown entity kind"); 6665 } 6666 6667 namespace { 6668 enum ReferenceKind { 6669 /// Lifetime would be extended by a reference binding to a temporary. 6670 RK_ReferenceBinding, 6671 /// Lifetime would be extended by a std::initializer_list object binding to 6672 /// its backing array. 6673 RK_StdInitializerList, 6674 }; 6675 6676 /// A temporary or local variable. This will be one of: 6677 /// * A MaterializeTemporaryExpr. 6678 /// * A DeclRefExpr whose declaration is a local. 6679 /// * An AddrLabelExpr. 6680 /// * A BlockExpr for a block with captures. 6681 using Local = Expr*; 6682 6683 /// Expressions we stepped over when looking for the local state. Any steps 6684 /// that would inhibit lifetime extension or take us out of subexpressions of 6685 /// the initializer are included. 6686 struct IndirectLocalPathEntry { 6687 enum EntryKind { 6688 DefaultInit, 6689 AddressOf, 6690 VarInit, 6691 LValToRVal, 6692 LifetimeBoundCall, 6693 GslReferenceInit, 6694 GslPointerInit 6695 } Kind; 6696 Expr *E; 6697 const Decl *D = nullptr; 6698 IndirectLocalPathEntry() {} 6699 IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {} 6700 IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D) 6701 : Kind(K), E(E), D(D) {} 6702 }; 6703 6704 using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>; 6705 6706 struct RevertToOldSizeRAII { 6707 IndirectLocalPath &Path; 6708 unsigned OldSize = Path.size(); 6709 RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {} 6710 ~RevertToOldSizeRAII() { Path.resize(OldSize); } 6711 }; 6712 6713 using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L, 6714 ReferenceKind RK)>; 6715 } 6716 6717 static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) { 6718 for (auto E : Path) 6719 if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD) 6720 return true; 6721 return false; 6722 } 6723 6724 static bool pathContainsInit(IndirectLocalPath &Path) { 6725 return llvm::any_of(Path, [=](IndirectLocalPathEntry E) { 6726 return E.Kind == IndirectLocalPathEntry::DefaultInit || 6727 E.Kind == IndirectLocalPathEntry::VarInit; 6728 }); 6729 } 6730 6731 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, 6732 Expr *Init, LocalVisitor Visit, 6733 bool RevisitSubinits, 6734 bool EnableLifetimeWarnings); 6735 6736 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, 6737 Expr *Init, ReferenceKind RK, 6738 LocalVisitor Visit, 6739 bool EnableLifetimeWarnings); 6740 6741 template <typename T> static bool isRecordWithAttr(QualType Type) { 6742 if (auto *RD = Type->getAsCXXRecordDecl()) 6743 return RD->hasAttr<T>(); 6744 return false; 6745 } 6746 6747 // Decl::isInStdNamespace will return false for iterators in some STL 6748 // implementations due to them being defined in a namespace outside of the std 6749 // namespace. 6750 static bool isInStlNamespace(const Decl *D) { 6751 const DeclContext *DC = D->getDeclContext(); 6752 if (!DC) 6753 return false; 6754 if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) 6755 if (const IdentifierInfo *II = ND->getIdentifier()) { 6756 StringRef Name = II->getName(); 6757 if (Name.size() >= 2 && Name.front() == '_' && 6758 (Name[1] == '_' || isUppercase(Name[1]))) 6759 return true; 6760 } 6761 6762 return DC->isStdNamespace(); 6763 } 6764 6765 static bool shouldTrackImplicitObjectArg(const CXXMethodDecl *Callee) { 6766 if (auto *Conv = dyn_cast_or_null<CXXConversionDecl>(Callee)) 6767 if (isRecordWithAttr<PointerAttr>(Conv->getConversionType())) 6768 return true; 6769 if (!isInStlNamespace(Callee->getParent())) 6770 return false; 6771 if (!isRecordWithAttr<PointerAttr>(Callee->getThisObjectType()) && 6772 !isRecordWithAttr<OwnerAttr>(Callee->getThisObjectType())) 6773 return false; 6774 if (Callee->getReturnType()->isPointerType() || 6775 isRecordWithAttr<PointerAttr>(Callee->getReturnType())) { 6776 if (!Callee->getIdentifier()) 6777 return false; 6778 return llvm::StringSwitch<bool>(Callee->getName()) 6779 .Cases("begin", "rbegin", "cbegin", "crbegin", true) 6780 .Cases("end", "rend", "cend", "crend", true) 6781 .Cases("c_str", "data", "get", true) 6782 // Map and set types. 6783 .Cases("find", "equal_range", "lower_bound", "upper_bound", true) 6784 .Default(false); 6785 } else if (Callee->getReturnType()->isReferenceType()) { 6786 if (!Callee->getIdentifier()) { 6787 auto OO = Callee->getOverloadedOperator(); 6788 return OO == OverloadedOperatorKind::OO_Subscript || 6789 OO == OverloadedOperatorKind::OO_Star; 6790 } 6791 return llvm::StringSwitch<bool>(Callee->getName()) 6792 .Cases("front", "back", "at", "top", "value", true) 6793 .Default(false); 6794 } 6795 return false; 6796 } 6797 6798 static bool shouldTrackFirstArgument(const FunctionDecl *FD) { 6799 if (!FD->getIdentifier() || FD->getNumParams() != 1) 6800 return false; 6801 const auto *RD = FD->getParamDecl(0)->getType()->getPointeeCXXRecordDecl(); 6802 if (!FD->isInStdNamespace() || !RD || !RD->isInStdNamespace()) 6803 return false; 6804 if (!isRecordWithAttr<PointerAttr>(QualType(RD->getTypeForDecl(), 0)) && 6805 !isRecordWithAttr<OwnerAttr>(QualType(RD->getTypeForDecl(), 0))) 6806 return false; 6807 if (FD->getReturnType()->isPointerType() || 6808 isRecordWithAttr<PointerAttr>(FD->getReturnType())) { 6809 return llvm::StringSwitch<bool>(FD->getName()) 6810 .Cases("begin", "rbegin", "cbegin", "crbegin", true) 6811 .Cases("end", "rend", "cend", "crend", true) 6812 .Case("data", true) 6813 .Default(false); 6814 } else if (FD->getReturnType()->isReferenceType()) { 6815 return llvm::StringSwitch<bool>(FD->getName()) 6816 .Cases("get", "any_cast", true) 6817 .Default(false); 6818 } 6819 return false; 6820 } 6821 6822 static void handleGslAnnotatedTypes(IndirectLocalPath &Path, Expr *Call, 6823 LocalVisitor Visit) { 6824 auto VisitPointerArg = [&](const Decl *D, Expr *Arg, bool Value) { 6825 // We are not interested in the temporary base objects of gsl Pointers: 6826 // Temp().ptr; // Here ptr might not dangle. 6827 if (isa<MemberExpr>(Arg->IgnoreImpCasts())) 6828 return; 6829 // Once we initialized a value with a reference, it can no longer dangle. 6830 if (!Value) { 6831 for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) { 6832 if (It->Kind == IndirectLocalPathEntry::GslReferenceInit) 6833 continue; 6834 if (It->Kind == IndirectLocalPathEntry::GslPointerInit) 6835 return; 6836 break; 6837 } 6838 } 6839 Path.push_back({Value ? IndirectLocalPathEntry::GslPointerInit 6840 : IndirectLocalPathEntry::GslReferenceInit, 6841 Arg, D}); 6842 if (Arg->isGLValue()) 6843 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, 6844 Visit, 6845 /*EnableLifetimeWarnings=*/true); 6846 else 6847 visitLocalsRetainedByInitializer(Path, Arg, Visit, true, 6848 /*EnableLifetimeWarnings=*/true); 6849 Path.pop_back(); 6850 }; 6851 6852 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) { 6853 const auto *MD = cast_or_null<CXXMethodDecl>(MCE->getDirectCallee()); 6854 if (MD && shouldTrackImplicitObjectArg(MD)) 6855 VisitPointerArg(MD, MCE->getImplicitObjectArgument(), 6856 !MD->getReturnType()->isReferenceType()); 6857 return; 6858 } else if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(Call)) { 6859 FunctionDecl *Callee = OCE->getDirectCallee(); 6860 if (Callee && Callee->isCXXInstanceMember() && 6861 shouldTrackImplicitObjectArg(cast<CXXMethodDecl>(Callee))) 6862 VisitPointerArg(Callee, OCE->getArg(0), 6863 !Callee->getReturnType()->isReferenceType()); 6864 return; 6865 } else if (auto *CE = dyn_cast<CallExpr>(Call)) { 6866 FunctionDecl *Callee = CE->getDirectCallee(); 6867 if (Callee && shouldTrackFirstArgument(Callee)) 6868 VisitPointerArg(Callee, CE->getArg(0), 6869 !Callee->getReturnType()->isReferenceType()); 6870 return; 6871 } 6872 6873 if (auto *CCE = dyn_cast<CXXConstructExpr>(Call)) { 6874 const auto *Ctor = CCE->getConstructor(); 6875 const CXXRecordDecl *RD = Ctor->getParent(); 6876 if (CCE->getNumArgs() > 0 && RD->hasAttr<PointerAttr>()) 6877 VisitPointerArg(Ctor->getParamDecl(0), CCE->getArgs()[0], true); 6878 } 6879 } 6880 6881 static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) { 6882 const TypeSourceInfo *TSI = FD->getTypeSourceInfo(); 6883 if (!TSI) 6884 return false; 6885 // Don't declare this variable in the second operand of the for-statement; 6886 // GCC miscompiles that by ending its lifetime before evaluating the 6887 // third operand. See gcc.gnu.org/PR86769. 6888 AttributedTypeLoc ATL; 6889 for (TypeLoc TL = TSI->getTypeLoc(); 6890 (ATL = TL.getAsAdjusted<AttributedTypeLoc>()); 6891 TL = ATL.getModifiedLoc()) { 6892 if (ATL.getAttrAs<LifetimeBoundAttr>()) 6893 return true; 6894 } 6895 return false; 6896 } 6897 6898 static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call, 6899 LocalVisitor Visit) { 6900 const FunctionDecl *Callee; 6901 ArrayRef<Expr*> Args; 6902 6903 if (auto *CE = dyn_cast<CallExpr>(Call)) { 6904 Callee = CE->getDirectCallee(); 6905 Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs()); 6906 } else { 6907 auto *CCE = cast<CXXConstructExpr>(Call); 6908 Callee = CCE->getConstructor(); 6909 Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs()); 6910 } 6911 if (!Callee) 6912 return; 6913 6914 Expr *ObjectArg = nullptr; 6915 if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) { 6916 ObjectArg = Args[0]; 6917 Args = Args.slice(1); 6918 } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) { 6919 ObjectArg = MCE->getImplicitObjectArgument(); 6920 } 6921 6922 auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) { 6923 Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D}); 6924 if (Arg->isGLValue()) 6925 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, 6926 Visit, 6927 /*EnableLifetimeWarnings=*/false); 6928 else 6929 visitLocalsRetainedByInitializer(Path, Arg, Visit, true, 6930 /*EnableLifetimeWarnings=*/false); 6931 Path.pop_back(); 6932 }; 6933 6934 if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee)) 6935 VisitLifetimeBoundArg(Callee, ObjectArg); 6936 6937 for (unsigned I = 0, 6938 N = std::min<unsigned>(Callee->getNumParams(), Args.size()); 6939 I != N; ++I) { 6940 if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>()) 6941 VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]); 6942 } 6943 } 6944 6945 /// Visit the locals that would be reachable through a reference bound to the 6946 /// glvalue expression \c Init. 6947 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, 6948 Expr *Init, ReferenceKind RK, 6949 LocalVisitor Visit, 6950 bool EnableLifetimeWarnings) { 6951 RevertToOldSizeRAII RAII(Path); 6952 6953 // Walk past any constructs which we can lifetime-extend across. 6954 Expr *Old; 6955 do { 6956 Old = Init; 6957 6958 if (auto *FE = dyn_cast<FullExpr>(Init)) 6959 Init = FE->getSubExpr(); 6960 6961 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 6962 // If this is just redundant braces around an initializer, step over it. 6963 if (ILE->isTransparent()) 6964 Init = ILE->getInit(0); 6965 } 6966 6967 // Step over any subobject adjustments; we may have a materialized 6968 // temporary inside them. 6969 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); 6970 6971 // Per current approach for DR1376, look through casts to reference type 6972 // when performing lifetime extension. 6973 if (CastExpr *CE = dyn_cast<CastExpr>(Init)) 6974 if (CE->getSubExpr()->isGLValue()) 6975 Init = CE->getSubExpr(); 6976 6977 // Per the current approach for DR1299, look through array element access 6978 // on array glvalues when performing lifetime extension. 6979 if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) { 6980 Init = ASE->getBase(); 6981 auto *ICE = dyn_cast<ImplicitCastExpr>(Init); 6982 if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay) 6983 Init = ICE->getSubExpr(); 6984 else 6985 // We can't lifetime extend through this but we might still find some 6986 // retained temporaries. 6987 return visitLocalsRetainedByInitializer(Path, Init, Visit, true, 6988 EnableLifetimeWarnings); 6989 } 6990 6991 // Step into CXXDefaultInitExprs so we can diagnose cases where a 6992 // constructor inherits one as an implicit mem-initializer. 6993 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { 6994 Path.push_back( 6995 {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); 6996 Init = DIE->getExpr(); 6997 } 6998 } while (Init != Old); 6999 7000 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) { 7001 if (Visit(Path, Local(MTE), RK)) 7002 visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true, 7003 EnableLifetimeWarnings); 7004 } 7005 7006 if (isa<CallExpr>(Init)) { 7007 if (EnableLifetimeWarnings) 7008 handleGslAnnotatedTypes(Path, Init, Visit); 7009 return visitLifetimeBoundArguments(Path, Init, Visit); 7010 } 7011 7012 switch (Init->getStmtClass()) { 7013 case Stmt::DeclRefExprClass: { 7014 // If we find the name of a local non-reference parameter, we could have a 7015 // lifetime problem. 7016 auto *DRE = cast<DeclRefExpr>(Init); 7017 auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7018 if (VD && VD->hasLocalStorage() && 7019 !DRE->refersToEnclosingVariableOrCapture()) { 7020 if (!VD->getType()->isReferenceType()) { 7021 Visit(Path, Local(DRE), RK); 7022 } else if (isa<ParmVarDecl>(DRE->getDecl())) { 7023 // The lifetime of a reference parameter is unknown; assume it's OK 7024 // for now. 7025 break; 7026 } else if (VD->getInit() && !isVarOnPath(Path, VD)) { 7027 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); 7028 visitLocalsRetainedByReferenceBinding(Path, VD->getInit(), 7029 RK_ReferenceBinding, Visit, 7030 EnableLifetimeWarnings); 7031 } 7032 } 7033 break; 7034 } 7035 7036 case Stmt::UnaryOperatorClass: { 7037 // The only unary operator that make sense to handle here 7038 // is Deref. All others don't resolve to a "name." This includes 7039 // handling all sorts of rvalues passed to a unary operator. 7040 const UnaryOperator *U = cast<UnaryOperator>(Init); 7041 if (U->getOpcode() == UO_Deref) 7042 visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true, 7043 EnableLifetimeWarnings); 7044 break; 7045 } 7046 7047 case Stmt::OMPArraySectionExprClass: { 7048 visitLocalsRetainedByInitializer(Path, 7049 cast<OMPArraySectionExpr>(Init)->getBase(), 7050 Visit, true, EnableLifetimeWarnings); 7051 break; 7052 } 7053 7054 case Stmt::ConditionalOperatorClass: 7055 case Stmt::BinaryConditionalOperatorClass: { 7056 auto *C = cast<AbstractConditionalOperator>(Init); 7057 if (!C->getTrueExpr()->getType()->isVoidType()) 7058 visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit, 7059 EnableLifetimeWarnings); 7060 if (!C->getFalseExpr()->getType()->isVoidType()) 7061 visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit, 7062 EnableLifetimeWarnings); 7063 break; 7064 } 7065 7066 // FIXME: Visit the left-hand side of an -> or ->*. 7067 7068 default: 7069 break; 7070 } 7071 } 7072 7073 /// Visit the locals that would be reachable through an object initialized by 7074 /// the prvalue expression \c Init. 7075 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, 7076 Expr *Init, LocalVisitor Visit, 7077 bool RevisitSubinits, 7078 bool EnableLifetimeWarnings) { 7079 RevertToOldSizeRAII RAII(Path); 7080 7081 Expr *Old; 7082 do { 7083 Old = Init; 7084 7085 // Step into CXXDefaultInitExprs so we can diagnose cases where a 7086 // constructor inherits one as an implicit mem-initializer. 7087 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { 7088 Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); 7089 Init = DIE->getExpr(); 7090 } 7091 7092 if (auto *FE = dyn_cast<FullExpr>(Init)) 7093 Init = FE->getSubExpr(); 7094 7095 // Dig out the expression which constructs the extended temporary. 7096 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); 7097 7098 if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init)) 7099 Init = BTE->getSubExpr(); 7100 7101 Init = Init->IgnoreParens(); 7102 7103 // Step over value-preserving rvalue casts. 7104 if (auto *CE = dyn_cast<CastExpr>(Init)) { 7105 switch (CE->getCastKind()) { 7106 case CK_LValueToRValue: 7107 // If we can match the lvalue to a const object, we can look at its 7108 // initializer. 7109 Path.push_back({IndirectLocalPathEntry::LValToRVal, CE}); 7110 return visitLocalsRetainedByReferenceBinding( 7111 Path, Init, RK_ReferenceBinding, 7112 [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool { 7113 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { 7114 auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7115 if (VD && VD->getType().isConstQualified() && VD->getInit() && 7116 !isVarOnPath(Path, VD)) { 7117 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); 7118 visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true, 7119 EnableLifetimeWarnings); 7120 } 7121 } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) { 7122 if (MTE->getType().isConstQualified()) 7123 visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, 7124 true, EnableLifetimeWarnings); 7125 } 7126 return false; 7127 }, EnableLifetimeWarnings); 7128 7129 // We assume that objects can be retained by pointers cast to integers, 7130 // but not if the integer is cast to floating-point type or to _Complex. 7131 // We assume that casts to 'bool' do not preserve enough information to 7132 // retain a local object. 7133 case CK_NoOp: 7134 case CK_BitCast: 7135 case CK_BaseToDerived: 7136 case CK_DerivedToBase: 7137 case CK_UncheckedDerivedToBase: 7138 case CK_Dynamic: 7139 case CK_ToUnion: 7140 case CK_UserDefinedConversion: 7141 case CK_ConstructorConversion: 7142 case CK_IntegralToPointer: 7143 case CK_PointerToIntegral: 7144 case CK_VectorSplat: 7145 case CK_IntegralCast: 7146 case CK_CPointerToObjCPointerCast: 7147 case CK_BlockPointerToObjCPointerCast: 7148 case CK_AnyPointerToBlockPointerCast: 7149 case CK_AddressSpaceConversion: 7150 break; 7151 7152 case CK_ArrayToPointerDecay: 7153 // Model array-to-pointer decay as taking the address of the array 7154 // lvalue. 7155 Path.push_back({IndirectLocalPathEntry::AddressOf, CE}); 7156 return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(), 7157 RK_ReferenceBinding, Visit, 7158 EnableLifetimeWarnings); 7159 7160 default: 7161 return; 7162 } 7163 7164 Init = CE->getSubExpr(); 7165 } 7166 } while (Old != Init); 7167 7168 // C++17 [dcl.init.list]p6: 7169 // initializing an initializer_list object from the array extends the 7170 // lifetime of the array exactly like binding a reference to a temporary. 7171 if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init)) 7172 return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(), 7173 RK_StdInitializerList, Visit, 7174 EnableLifetimeWarnings); 7175 7176 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 7177 // We already visited the elements of this initializer list while 7178 // performing the initialization. Don't visit them again unless we've 7179 // changed the lifetime of the initialized entity. 7180 if (!RevisitSubinits) 7181 return; 7182 7183 if (ILE->isTransparent()) 7184 return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit, 7185 RevisitSubinits, 7186 EnableLifetimeWarnings); 7187 7188 if (ILE->getType()->isArrayType()) { 7189 for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I) 7190 visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit, 7191 RevisitSubinits, 7192 EnableLifetimeWarnings); 7193 return; 7194 } 7195 7196 if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) { 7197 assert(RD->isAggregate() && "aggregate init on non-aggregate"); 7198 7199 // If we lifetime-extend a braced initializer which is initializing an 7200 // aggregate, and that aggregate contains reference members which are 7201 // bound to temporaries, those temporaries are also lifetime-extended. 7202 if (RD->isUnion() && ILE->getInitializedFieldInUnion() && 7203 ILE->getInitializedFieldInUnion()->getType()->isReferenceType()) 7204 visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0), 7205 RK_ReferenceBinding, Visit, 7206 EnableLifetimeWarnings); 7207 else { 7208 unsigned Index = 0; 7209 for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index) 7210 visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit, 7211 RevisitSubinits, 7212 EnableLifetimeWarnings); 7213 for (const auto *I : RD->fields()) { 7214 if (Index >= ILE->getNumInits()) 7215 break; 7216 if (I->isUnnamedBitfield()) 7217 continue; 7218 Expr *SubInit = ILE->getInit(Index); 7219 if (I->getType()->isReferenceType()) 7220 visitLocalsRetainedByReferenceBinding(Path, SubInit, 7221 RK_ReferenceBinding, Visit, 7222 EnableLifetimeWarnings); 7223 else 7224 // This might be either aggregate-initialization of a member or 7225 // initialization of a std::initializer_list object. Regardless, 7226 // we should recursively lifetime-extend that initializer. 7227 visitLocalsRetainedByInitializer(Path, SubInit, Visit, 7228 RevisitSubinits, 7229 EnableLifetimeWarnings); 7230 ++Index; 7231 } 7232 } 7233 } 7234 return; 7235 } 7236 7237 // The lifetime of an init-capture is that of the closure object constructed 7238 // by a lambda-expression. 7239 if (auto *LE = dyn_cast<LambdaExpr>(Init)) { 7240 for (Expr *E : LE->capture_inits()) { 7241 if (!E) 7242 continue; 7243 if (E->isGLValue()) 7244 visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding, 7245 Visit, EnableLifetimeWarnings); 7246 else 7247 visitLocalsRetainedByInitializer(Path, E, Visit, true, 7248 EnableLifetimeWarnings); 7249 } 7250 } 7251 7252 if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) { 7253 if (EnableLifetimeWarnings) 7254 handleGslAnnotatedTypes(Path, Init, Visit); 7255 return visitLifetimeBoundArguments(Path, Init, Visit); 7256 } 7257 7258 switch (Init->getStmtClass()) { 7259 case Stmt::UnaryOperatorClass: { 7260 auto *UO = cast<UnaryOperator>(Init); 7261 // If the initializer is the address of a local, we could have a lifetime 7262 // problem. 7263 if (UO->getOpcode() == UO_AddrOf) { 7264 // If this is &rvalue, then it's ill-formed and we have already diagnosed 7265 // it. Don't produce a redundant warning about the lifetime of the 7266 // temporary. 7267 if (isa<MaterializeTemporaryExpr>(UO->getSubExpr())) 7268 return; 7269 7270 Path.push_back({IndirectLocalPathEntry::AddressOf, UO}); 7271 visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(), 7272 RK_ReferenceBinding, Visit, 7273 EnableLifetimeWarnings); 7274 } 7275 break; 7276 } 7277 7278 case Stmt::BinaryOperatorClass: { 7279 // Handle pointer arithmetic. 7280 auto *BO = cast<BinaryOperator>(Init); 7281 BinaryOperatorKind BOK = BO->getOpcode(); 7282 if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub)) 7283 break; 7284 7285 if (BO->getLHS()->getType()->isPointerType()) 7286 visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true, 7287 EnableLifetimeWarnings); 7288 else if (BO->getRHS()->getType()->isPointerType()) 7289 visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true, 7290 EnableLifetimeWarnings); 7291 break; 7292 } 7293 7294 case Stmt::ConditionalOperatorClass: 7295 case Stmt::BinaryConditionalOperatorClass: { 7296 auto *C = cast<AbstractConditionalOperator>(Init); 7297 // In C++, we can have a throw-expression operand, which has 'void' type 7298 // and isn't interesting from a lifetime perspective. 7299 if (!C->getTrueExpr()->getType()->isVoidType()) 7300 visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true, 7301 EnableLifetimeWarnings); 7302 if (!C->getFalseExpr()->getType()->isVoidType()) 7303 visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true, 7304 EnableLifetimeWarnings); 7305 break; 7306 } 7307 7308 case Stmt::BlockExprClass: 7309 if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) { 7310 // This is a local block, whose lifetime is that of the function. 7311 Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding); 7312 } 7313 break; 7314 7315 case Stmt::AddrLabelExprClass: 7316 // We want to warn if the address of a label would escape the function. 7317 Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding); 7318 break; 7319 7320 default: 7321 break; 7322 } 7323 } 7324 7325 /// Determine whether this is an indirect path to a temporary that we are 7326 /// supposed to lifetime-extend along (but don't). 7327 static bool shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) { 7328 for (auto Elem : Path) { 7329 if (Elem.Kind != IndirectLocalPathEntry::DefaultInit) 7330 return false; 7331 } 7332 return true; 7333 } 7334 7335 /// Find the range for the first interesting entry in the path at or after I. 7336 static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I, 7337 Expr *E) { 7338 for (unsigned N = Path.size(); I != N; ++I) { 7339 switch (Path[I].Kind) { 7340 case IndirectLocalPathEntry::AddressOf: 7341 case IndirectLocalPathEntry::LValToRVal: 7342 case IndirectLocalPathEntry::LifetimeBoundCall: 7343 case IndirectLocalPathEntry::GslReferenceInit: 7344 case IndirectLocalPathEntry::GslPointerInit: 7345 // These exist primarily to mark the path as not permitting or 7346 // supporting lifetime extension. 7347 break; 7348 7349 case IndirectLocalPathEntry::VarInit: 7350 if (cast<VarDecl>(Path[I].D)->isImplicit()) 7351 return SourceRange(); 7352 LLVM_FALLTHROUGH; 7353 case IndirectLocalPathEntry::DefaultInit: 7354 return Path[I].E->getSourceRange(); 7355 } 7356 } 7357 return E->getSourceRange(); 7358 } 7359 7360 static bool pathOnlyInitializesGslPointer(IndirectLocalPath &Path) { 7361 for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) { 7362 if (It->Kind == IndirectLocalPathEntry::VarInit) 7363 continue; 7364 if (It->Kind == IndirectLocalPathEntry::AddressOf) 7365 continue; 7366 return It->Kind == IndirectLocalPathEntry::GslPointerInit || 7367 It->Kind == IndirectLocalPathEntry::GslReferenceInit; 7368 } 7369 return false; 7370 } 7371 7372 void Sema::checkInitializerLifetime(const InitializedEntity &Entity, 7373 Expr *Init) { 7374 LifetimeResult LR = getEntityLifetime(&Entity); 7375 LifetimeKind LK = LR.getInt(); 7376 const InitializedEntity *ExtendingEntity = LR.getPointer(); 7377 7378 // If this entity doesn't have an interesting lifetime, don't bother looking 7379 // for temporaries within its initializer. 7380 if (LK == LK_FullExpression) 7381 return; 7382 7383 auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L, 7384 ReferenceKind RK) -> bool { 7385 SourceRange DiagRange = nextPathEntryRange(Path, 0, L); 7386 SourceLocation DiagLoc = DiagRange.getBegin(); 7387 7388 auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L); 7389 7390 bool IsGslPtrInitWithGslTempOwner = false; 7391 bool IsLocalGslOwner = false; 7392 if (pathOnlyInitializesGslPointer(Path)) { 7393 if (isa<DeclRefExpr>(L)) { 7394 // We do not want to follow the references when returning a pointer originating 7395 // from a local owner to avoid the following false positive: 7396 // int &p = *localUniquePtr; 7397 // someContainer.add(std::move(localUniquePtr)); 7398 // return p; 7399 IsLocalGslOwner = isRecordWithAttr<OwnerAttr>(L->getType()); 7400 if (pathContainsInit(Path) || !IsLocalGslOwner) 7401 return false; 7402 } else { 7403 IsGslPtrInitWithGslTempOwner = MTE && !MTE->getExtendingDecl() && 7404 isRecordWithAttr<OwnerAttr>(MTE->getType()); 7405 // Skipping a chain of initializing gsl::Pointer annotated objects. 7406 // We are looking only for the final source to find out if it was 7407 // a local or temporary owner or the address of a local variable/param. 7408 if (!IsGslPtrInitWithGslTempOwner) 7409 return true; 7410 } 7411 } 7412 7413 switch (LK) { 7414 case LK_FullExpression: 7415 llvm_unreachable("already handled this"); 7416 7417 case LK_Extended: { 7418 if (!MTE) { 7419 // The initialized entity has lifetime beyond the full-expression, 7420 // and the local entity does too, so don't warn. 7421 // 7422 // FIXME: We should consider warning if a static / thread storage 7423 // duration variable retains an automatic storage duration local. 7424 return false; 7425 } 7426 7427 if (IsGslPtrInitWithGslTempOwner && DiagLoc.isValid()) { 7428 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange; 7429 return false; 7430 } 7431 7432 // Lifetime-extend the temporary. 7433 if (Path.empty()) { 7434 // Update the storage duration of the materialized temporary. 7435 // FIXME: Rebuild the expression instead of mutating it. 7436 MTE->setExtendingDecl(ExtendingEntity->getDecl(), 7437 ExtendingEntity->allocateManglingNumber()); 7438 // Also visit the temporaries lifetime-extended by this initializer. 7439 return true; 7440 } 7441 7442 if (shouldLifetimeExtendThroughPath(Path)) { 7443 // We're supposed to lifetime-extend the temporary along this path (per 7444 // the resolution of DR1815), but we don't support that yet. 7445 // 7446 // FIXME: Properly handle this situation. Perhaps the easiest approach 7447 // would be to clone the initializer expression on each use that would 7448 // lifetime extend its temporaries. 7449 Diag(DiagLoc, diag::warn_unsupported_lifetime_extension) 7450 << RK << DiagRange; 7451 } else { 7452 // If the path goes through the initialization of a variable or field, 7453 // it can't possibly reach a temporary created in this full-expression. 7454 // We will have already diagnosed any problems with the initializer. 7455 if (pathContainsInit(Path)) 7456 return false; 7457 7458 Diag(DiagLoc, diag::warn_dangling_variable) 7459 << RK << !Entity.getParent() 7460 << ExtendingEntity->getDecl()->isImplicit() 7461 << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange; 7462 } 7463 break; 7464 } 7465 7466 case LK_MemInitializer: { 7467 if (isa<MaterializeTemporaryExpr>(L)) { 7468 // Under C++ DR1696, if a mem-initializer (or a default member 7469 // initializer used by the absence of one) would lifetime-extend a 7470 // temporary, the program is ill-formed. 7471 if (auto *ExtendingDecl = 7472 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { 7473 if (IsGslPtrInitWithGslTempOwner) { 7474 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_member) 7475 << ExtendingDecl << DiagRange; 7476 Diag(ExtendingDecl->getLocation(), 7477 diag::note_ref_or_ptr_member_declared_here) 7478 << true; 7479 return false; 7480 } 7481 bool IsSubobjectMember = ExtendingEntity != &Entity; 7482 Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path) 7483 ? diag::err_dangling_member 7484 : diag::warn_dangling_member) 7485 << ExtendingDecl << IsSubobjectMember << RK << DiagRange; 7486 // Don't bother adding a note pointing to the field if we're inside 7487 // its default member initializer; our primary diagnostic points to 7488 // the same place in that case. 7489 if (Path.empty() || 7490 Path.back().Kind != IndirectLocalPathEntry::DefaultInit) { 7491 Diag(ExtendingDecl->getLocation(), 7492 diag::note_lifetime_extending_member_declared_here) 7493 << RK << IsSubobjectMember; 7494 } 7495 } else { 7496 // We have a mem-initializer but no particular field within it; this 7497 // is either a base class or a delegating initializer directly 7498 // initializing the base-class from something that doesn't live long 7499 // enough. 7500 // 7501 // FIXME: Warn on this. 7502 return false; 7503 } 7504 } else { 7505 // Paths via a default initializer can only occur during error recovery 7506 // (there's no other way that a default initializer can refer to a 7507 // local). Don't produce a bogus warning on those cases. 7508 if (pathContainsInit(Path)) 7509 return false; 7510 7511 // Suppress false positives for code like the one below: 7512 // Ctor(unique_ptr<T> up) : member(*up), member2(move(up)) {} 7513 if (IsLocalGslOwner && pathOnlyInitializesGslPointer(Path)) 7514 return false; 7515 7516 auto *DRE = dyn_cast<DeclRefExpr>(L); 7517 auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr; 7518 if (!VD) { 7519 // A member was initialized to a local block. 7520 // FIXME: Warn on this. 7521 return false; 7522 } 7523 7524 if (auto *Member = 7525 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { 7526 bool IsPointer = !Member->getType()->isReferenceType(); 7527 Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr 7528 : diag::warn_bind_ref_member_to_parameter) 7529 << Member << VD << isa<ParmVarDecl>(VD) << DiagRange; 7530 Diag(Member->getLocation(), 7531 diag::note_ref_or_ptr_member_declared_here) 7532 << (unsigned)IsPointer; 7533 } 7534 } 7535 break; 7536 } 7537 7538 case LK_New: 7539 if (isa<MaterializeTemporaryExpr>(L)) { 7540 if (IsGslPtrInitWithGslTempOwner) 7541 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange; 7542 else 7543 Diag(DiagLoc, RK == RK_ReferenceBinding 7544 ? diag::warn_new_dangling_reference 7545 : diag::warn_new_dangling_initializer_list) 7546 << !Entity.getParent() << DiagRange; 7547 } else { 7548 // We can't determine if the allocation outlives the local declaration. 7549 return false; 7550 } 7551 break; 7552 7553 case LK_Return: 7554 case LK_StmtExprResult: 7555 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { 7556 // We can't determine if the local variable outlives the statement 7557 // expression. 7558 if (LK == LK_StmtExprResult) 7559 return false; 7560 Diag(DiagLoc, diag::warn_ret_stack_addr_ref) 7561 << Entity.getType()->isReferenceType() << DRE->getDecl() 7562 << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange; 7563 } else if (isa<BlockExpr>(L)) { 7564 Diag(DiagLoc, diag::err_ret_local_block) << DiagRange; 7565 } else if (isa<AddrLabelExpr>(L)) { 7566 // Don't warn when returning a label from a statement expression. 7567 // Leaving the scope doesn't end its lifetime. 7568 if (LK == LK_StmtExprResult) 7569 return false; 7570 Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange; 7571 } else { 7572 Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref) 7573 << Entity.getType()->isReferenceType() << DiagRange; 7574 } 7575 break; 7576 } 7577 7578 for (unsigned I = 0; I != Path.size(); ++I) { 7579 auto Elem = Path[I]; 7580 7581 switch (Elem.Kind) { 7582 case IndirectLocalPathEntry::AddressOf: 7583 case IndirectLocalPathEntry::LValToRVal: 7584 // These exist primarily to mark the path as not permitting or 7585 // supporting lifetime extension. 7586 break; 7587 7588 case IndirectLocalPathEntry::LifetimeBoundCall: 7589 case IndirectLocalPathEntry::GslPointerInit: 7590 case IndirectLocalPathEntry::GslReferenceInit: 7591 // FIXME: Consider adding a note for these. 7592 break; 7593 7594 case IndirectLocalPathEntry::DefaultInit: { 7595 auto *FD = cast<FieldDecl>(Elem.D); 7596 Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer) 7597 << FD << nextPathEntryRange(Path, I + 1, L); 7598 break; 7599 } 7600 7601 case IndirectLocalPathEntry::VarInit: 7602 const VarDecl *VD = cast<VarDecl>(Elem.D); 7603 Diag(VD->getLocation(), diag::note_local_var_initializer) 7604 << VD->getType()->isReferenceType() 7605 << VD->isImplicit() << VD->getDeclName() 7606 << nextPathEntryRange(Path, I + 1, L); 7607 break; 7608 } 7609 } 7610 7611 // We didn't lifetime-extend, so don't go any further; we don't need more 7612 // warnings or errors on inner temporaries within this one's initializer. 7613 return false; 7614 }; 7615 7616 bool EnableLifetimeWarnings = !getDiagnostics().isIgnored( 7617 diag::warn_dangling_lifetime_pointer, SourceLocation()); 7618 llvm::SmallVector<IndirectLocalPathEntry, 8> Path; 7619 if (Init->isGLValue()) 7620 visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding, 7621 TemporaryVisitor, 7622 EnableLifetimeWarnings); 7623 else 7624 visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false, 7625 EnableLifetimeWarnings); 7626 } 7627 7628 static void DiagnoseNarrowingInInitList(Sema &S, 7629 const ImplicitConversionSequence &ICS, 7630 QualType PreNarrowingType, 7631 QualType EntityType, 7632 const Expr *PostInit); 7633 7634 /// Provide warnings when std::move is used on construction. 7635 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr, 7636 bool IsReturnStmt) { 7637 if (!InitExpr) 7638 return; 7639 7640 if (S.inTemplateInstantiation()) 7641 return; 7642 7643 QualType DestType = InitExpr->getType(); 7644 if (!DestType->isRecordType()) 7645 return; 7646 7647 unsigned DiagID = 0; 7648 if (IsReturnStmt) { 7649 const CXXConstructExpr *CCE = 7650 dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens()); 7651 if (!CCE || CCE->getNumArgs() != 1) 7652 return; 7653 7654 if (!CCE->getConstructor()->isCopyOrMoveConstructor()) 7655 return; 7656 7657 InitExpr = CCE->getArg(0)->IgnoreImpCasts(); 7658 } 7659 7660 // Find the std::move call and get the argument. 7661 const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens()); 7662 if (!CE || !CE->isCallToStdMove()) 7663 return; 7664 7665 const Expr *Arg = CE->getArg(0)->IgnoreImplicit(); 7666 7667 if (IsReturnStmt) { 7668 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts()); 7669 if (!DRE || DRE->refersToEnclosingVariableOrCapture()) 7670 return; 7671 7672 const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7673 if (!VD || !VD->hasLocalStorage()) 7674 return; 7675 7676 // __block variables are not moved implicitly. 7677 if (VD->hasAttr<BlocksAttr>()) 7678 return; 7679 7680 QualType SourceType = VD->getType(); 7681 if (!SourceType->isRecordType()) 7682 return; 7683 7684 if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) { 7685 return; 7686 } 7687 7688 // If we're returning a function parameter, copy elision 7689 // is not possible. 7690 if (isa<ParmVarDecl>(VD)) 7691 DiagID = diag::warn_redundant_move_on_return; 7692 else 7693 DiagID = diag::warn_pessimizing_move_on_return; 7694 } else { 7695 DiagID = diag::warn_pessimizing_move_on_initialization; 7696 const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens(); 7697 if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType()) 7698 return; 7699 } 7700 7701 S.Diag(CE->getBeginLoc(), DiagID); 7702 7703 // Get all the locations for a fix-it. Don't emit the fix-it if any location 7704 // is within a macro. 7705 SourceLocation CallBegin = CE->getCallee()->getBeginLoc(); 7706 if (CallBegin.isMacroID()) 7707 return; 7708 SourceLocation RParen = CE->getRParenLoc(); 7709 if (RParen.isMacroID()) 7710 return; 7711 SourceLocation LParen; 7712 SourceLocation ArgLoc = Arg->getBeginLoc(); 7713 7714 // Special testing for the argument location. Since the fix-it needs the 7715 // location right before the argument, the argument location can be in a 7716 // macro only if it is at the beginning of the macro. 7717 while (ArgLoc.isMacroID() && 7718 S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) { 7719 ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin(); 7720 } 7721 7722 if (LParen.isMacroID()) 7723 return; 7724 7725 LParen = ArgLoc.getLocWithOffset(-1); 7726 7727 S.Diag(CE->getBeginLoc(), diag::note_remove_move) 7728 << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen)) 7729 << FixItHint::CreateRemoval(SourceRange(RParen, RParen)); 7730 } 7731 7732 static void CheckForNullPointerDereference(Sema &S, const Expr *E) { 7733 // Check to see if we are dereferencing a null pointer. If so, this is 7734 // undefined behavior, so warn about it. This only handles the pattern 7735 // "*null", which is a very syntactic check. 7736 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts())) 7737 if (UO->getOpcode() == UO_Deref && 7738 UO->getSubExpr()->IgnoreParenCasts()-> 7739 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) { 7740 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, 7741 S.PDiag(diag::warn_binding_null_to_reference) 7742 << UO->getSubExpr()->getSourceRange()); 7743 } 7744 } 7745 7746 MaterializeTemporaryExpr * 7747 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary, 7748 bool BoundToLvalueReference) { 7749 auto MTE = new (Context) 7750 MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference); 7751 7752 // Order an ExprWithCleanups for lifetime marks. 7753 // 7754 // TODO: It'll be good to have a single place to check the access of the 7755 // destructor and generate ExprWithCleanups for various uses. Currently these 7756 // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary, 7757 // but there may be a chance to merge them. 7758 Cleanup.setExprNeedsCleanups(false); 7759 return MTE; 7760 } 7761 7762 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) { 7763 // In C++98, we don't want to implicitly create an xvalue. 7764 // FIXME: This means that AST consumers need to deal with "prvalues" that 7765 // denote materialized temporaries. Maybe we should add another ValueKind 7766 // for "xvalue pretending to be a prvalue" for C++98 support. 7767 if (!E->isRValue() || !getLangOpts().CPlusPlus11) 7768 return E; 7769 7770 // C++1z [conv.rval]/1: T shall be a complete type. 7771 // FIXME: Does this ever matter (can we form a prvalue of incomplete type)? 7772 // If so, we should check for a non-abstract class type here too. 7773 QualType T = E->getType(); 7774 if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type)) 7775 return ExprError(); 7776 7777 return CreateMaterializeTemporaryExpr(E->getType(), E, false); 7778 } 7779 7780 ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty, 7781 ExprValueKind VK, 7782 CheckedConversionKind CCK) { 7783 7784 CastKind CK = CK_NoOp; 7785 7786 if (VK == VK_RValue) { 7787 auto PointeeTy = Ty->getPointeeType(); 7788 auto ExprPointeeTy = E->getType()->getPointeeType(); 7789 if (!PointeeTy.isNull() && 7790 PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace()) 7791 CK = CK_AddressSpaceConversion; 7792 } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) { 7793 CK = CK_AddressSpaceConversion; 7794 } 7795 7796 return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK); 7797 } 7798 7799 ExprResult InitializationSequence::Perform(Sema &S, 7800 const InitializedEntity &Entity, 7801 const InitializationKind &Kind, 7802 MultiExprArg Args, 7803 QualType *ResultType) { 7804 if (Failed()) { 7805 Diagnose(S, Entity, Kind, Args); 7806 return ExprError(); 7807 } 7808 if (!ZeroInitializationFixit.empty()) { 7809 unsigned DiagID = diag::err_default_init_const; 7810 if (Decl *D = Entity.getDecl()) 7811 if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>()) 7812 DiagID = diag::ext_default_init_const; 7813 7814 // The initialization would have succeeded with this fixit. Since the fixit 7815 // is on the error, we need to build a valid AST in this case, so this isn't 7816 // handled in the Failed() branch above. 7817 QualType DestType = Entity.getType(); 7818 S.Diag(Kind.getLocation(), DiagID) 7819 << DestType << (bool)DestType->getAs<RecordType>() 7820 << FixItHint::CreateInsertion(ZeroInitializationFixitLoc, 7821 ZeroInitializationFixit); 7822 } 7823 7824 if (getKind() == DependentSequence) { 7825 // If the declaration is a non-dependent, incomplete array type 7826 // that has an initializer, then its type will be completed once 7827 // the initializer is instantiated. 7828 if (ResultType && !Entity.getType()->isDependentType() && 7829 Args.size() == 1) { 7830 QualType DeclType = Entity.getType(); 7831 if (const IncompleteArrayType *ArrayT 7832 = S.Context.getAsIncompleteArrayType(DeclType)) { 7833 // FIXME: We don't currently have the ability to accurately 7834 // compute the length of an initializer list without 7835 // performing full type-checking of the initializer list 7836 // (since we have to determine where braces are implicitly 7837 // introduced and such). So, we fall back to making the array 7838 // type a dependently-sized array type with no specified 7839 // bound. 7840 if (isa<InitListExpr>((Expr *)Args[0])) { 7841 SourceRange Brackets; 7842 7843 // Scavange the location of the brackets from the entity, if we can. 7844 if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) { 7845 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) { 7846 TypeLoc TL = TInfo->getTypeLoc(); 7847 if (IncompleteArrayTypeLoc ArrayLoc = 7848 TL.getAs<IncompleteArrayTypeLoc>()) 7849 Brackets = ArrayLoc.getBracketsRange(); 7850 } 7851 } 7852 7853 *ResultType 7854 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(), 7855 /*NumElts=*/nullptr, 7856 ArrayT->getSizeModifier(), 7857 ArrayT->getIndexTypeCVRQualifiers(), 7858 Brackets); 7859 } 7860 7861 } 7862 } 7863 if (Kind.getKind() == InitializationKind::IK_Direct && 7864 !Kind.isExplicitCast()) { 7865 // Rebuild the ParenListExpr. 7866 SourceRange ParenRange = Kind.getParenOrBraceRange(); 7867 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(), 7868 Args); 7869 } 7870 assert(Kind.getKind() == InitializationKind::IK_Copy || 7871 Kind.isExplicitCast() || 7872 Kind.getKind() == InitializationKind::IK_DirectList); 7873 return ExprResult(Args[0]); 7874 } 7875 7876 // No steps means no initialization. 7877 if (Steps.empty()) 7878 return ExprResult((Expr *)nullptr); 7879 7880 if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() && 7881 Args.size() == 1 && isa<InitListExpr>(Args[0]) && 7882 !Entity.isParameterKind()) { 7883 // Produce a C++98 compatibility warning if we are initializing a reference 7884 // from an initializer list. For parameters, we produce a better warning 7885 // elsewhere. 7886 Expr *Init = Args[0]; 7887 S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init) 7888 << Init->getSourceRange(); 7889 } 7890 7891 // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope 7892 QualType ETy = Entity.getType(); 7893 bool HasGlobalAS = ETy.hasAddressSpace() && 7894 ETy.getAddressSpace() == LangAS::opencl_global; 7895 7896 if (S.getLangOpts().OpenCLVersion >= 200 && 7897 ETy->isAtomicType() && !HasGlobalAS && 7898 Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) { 7899 S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init) 7900 << 1 7901 << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc()); 7902 return ExprError(); 7903 } 7904 7905 QualType DestType = Entity.getType().getNonReferenceType(); 7906 // FIXME: Ugly hack around the fact that Entity.getType() is not 7907 // the same as Entity.getDecl()->getType() in cases involving type merging, 7908 // and we want latter when it makes sense. 7909 if (ResultType) 7910 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() : 7911 Entity.getType(); 7912 7913 ExprResult CurInit((Expr *)nullptr); 7914 SmallVector<Expr*, 4> ArrayLoopCommonExprs; 7915 7916 // For initialization steps that start with a single initializer, 7917 // grab the only argument out the Args and place it into the "current" 7918 // initializer. 7919 switch (Steps.front().Kind) { 7920 case SK_ResolveAddressOfOverloadedFunction: 7921 case SK_CastDerivedToBaseRValue: 7922 case SK_CastDerivedToBaseXValue: 7923 case SK_CastDerivedToBaseLValue: 7924 case SK_BindReference: 7925 case SK_BindReferenceToTemporary: 7926 case SK_FinalCopy: 7927 case SK_ExtraneousCopyToTemporary: 7928 case SK_UserConversion: 7929 case SK_QualificationConversionLValue: 7930 case SK_QualificationConversionXValue: 7931 case SK_QualificationConversionRValue: 7932 case SK_AtomicConversion: 7933 case SK_ConversionSequence: 7934 case SK_ConversionSequenceNoNarrowing: 7935 case SK_ListInitialization: 7936 case SK_UnwrapInitList: 7937 case SK_RewrapInitList: 7938 case SK_CAssignment: 7939 case SK_StringInit: 7940 case SK_ObjCObjectConversion: 7941 case SK_ArrayLoopIndex: 7942 case SK_ArrayLoopInit: 7943 case SK_ArrayInit: 7944 case SK_GNUArrayInit: 7945 case SK_ParenthesizedArrayInit: 7946 case SK_PassByIndirectCopyRestore: 7947 case SK_PassByIndirectRestore: 7948 case SK_ProduceObjCObject: 7949 case SK_StdInitializerList: 7950 case SK_OCLSamplerInit: 7951 case SK_OCLZeroOpaqueType: { 7952 assert(Args.size() == 1); 7953 CurInit = Args[0]; 7954 if (!CurInit.get()) return ExprError(); 7955 break; 7956 } 7957 7958 case SK_ConstructorInitialization: 7959 case SK_ConstructorInitializationFromList: 7960 case SK_StdInitializerListConstructorCall: 7961 case SK_ZeroInitialization: 7962 break; 7963 } 7964 7965 // Promote from an unevaluated context to an unevaluated list context in 7966 // C++11 list-initialization; we need to instantiate entities usable in 7967 // constant expressions here in order to perform narrowing checks =( 7968 EnterExpressionEvaluationContext Evaluated( 7969 S, EnterExpressionEvaluationContext::InitList, 7970 CurInit.get() && isa<InitListExpr>(CurInit.get())); 7971 7972 // C++ [class.abstract]p2: 7973 // no objects of an abstract class can be created except as subobjects 7974 // of a class derived from it 7975 auto checkAbstractType = [&](QualType T) -> bool { 7976 if (Entity.getKind() == InitializedEntity::EK_Base || 7977 Entity.getKind() == InitializedEntity::EK_Delegating) 7978 return false; 7979 return S.RequireNonAbstractType(Kind.getLocation(), T, 7980 diag::err_allocation_of_abstract_type); 7981 }; 7982 7983 // Walk through the computed steps for the initialization sequence, 7984 // performing the specified conversions along the way. 7985 bool ConstructorInitRequiresZeroInit = false; 7986 for (step_iterator Step = step_begin(), StepEnd = step_end(); 7987 Step != StepEnd; ++Step) { 7988 if (CurInit.isInvalid()) 7989 return ExprError(); 7990 7991 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType(); 7992 7993 switch (Step->Kind) { 7994 case SK_ResolveAddressOfOverloadedFunction: 7995 // Overload resolution determined which function invoke; update the 7996 // initializer to reflect that choice. 7997 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl); 7998 if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation())) 7999 return ExprError(); 8000 CurInit = S.FixOverloadedFunctionReference(CurInit, 8001 Step->Function.FoundDecl, 8002 Step->Function.Function); 8003 break; 8004 8005 case SK_CastDerivedToBaseRValue: 8006 case SK_CastDerivedToBaseXValue: 8007 case SK_CastDerivedToBaseLValue: { 8008 // We have a derived-to-base cast that produces either an rvalue or an 8009 // lvalue. Perform that cast. 8010 8011 CXXCastPath BasePath; 8012 8013 // Casts to inaccessible base classes are allowed with C-style casts. 8014 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast(); 8015 if (S.CheckDerivedToBaseConversion( 8016 SourceType, Step->Type, CurInit.get()->getBeginLoc(), 8017 CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess)) 8018 return ExprError(); 8019 8020 ExprValueKind VK = 8021 Step->Kind == SK_CastDerivedToBaseLValue ? 8022 VK_LValue : 8023 (Step->Kind == SK_CastDerivedToBaseXValue ? 8024 VK_XValue : 8025 VK_RValue); 8026 CurInit = 8027 ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase, 8028 CurInit.get(), &BasePath, VK); 8029 break; 8030 } 8031 8032 case SK_BindReference: 8033 // Reference binding does not have any corresponding ASTs. 8034 8035 // Check exception specifications 8036 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 8037 return ExprError(); 8038 8039 // We don't check for e.g. function pointers here, since address 8040 // availability checks should only occur when the function first decays 8041 // into a pointer or reference. 8042 if (CurInit.get()->getType()->isFunctionProtoType()) { 8043 if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) { 8044 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 8045 if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 8046 DRE->getBeginLoc())) 8047 return ExprError(); 8048 } 8049 } 8050 } 8051 8052 CheckForNullPointerDereference(S, CurInit.get()); 8053 break; 8054 8055 case SK_BindReferenceToTemporary: { 8056 // Make sure the "temporary" is actually an rvalue. 8057 assert(CurInit.get()->isRValue() && "not a temporary"); 8058 8059 // Check exception specifications 8060 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 8061 return ExprError(); 8062 8063 // Materialize the temporary into memory. 8064 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( 8065 Step->Type, CurInit.get(), Entity.getType()->isLValueReferenceType()); 8066 CurInit = MTE; 8067 8068 // If we're extending this temporary to automatic storage duration -- we 8069 // need to register its cleanup during the full-expression's cleanups. 8070 if (MTE->getStorageDuration() == SD_Automatic && 8071 MTE->getType().isDestructedType()) 8072 S.Cleanup.setExprNeedsCleanups(true); 8073 break; 8074 } 8075 8076 case SK_FinalCopy: 8077 if (checkAbstractType(Step->Type)) 8078 return ExprError(); 8079 8080 // If the overall initialization is initializing a temporary, we already 8081 // bound our argument if it was necessary to do so. If not (if we're 8082 // ultimately initializing a non-temporary), our argument needs to be 8083 // bound since it's initializing a function parameter. 8084 // FIXME: This is a mess. Rationalize temporary destruction. 8085 if (!shouldBindAsTemporary(Entity)) 8086 CurInit = S.MaybeBindToTemporary(CurInit.get()); 8087 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 8088 /*IsExtraneousCopy=*/false); 8089 break; 8090 8091 case SK_ExtraneousCopyToTemporary: 8092 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 8093 /*IsExtraneousCopy=*/true); 8094 break; 8095 8096 case SK_UserConversion: { 8097 // We have a user-defined conversion that invokes either a constructor 8098 // or a conversion function. 8099 CastKind CastKind; 8100 FunctionDecl *Fn = Step->Function.Function; 8101 DeclAccessPair FoundFn = Step->Function.FoundDecl; 8102 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates; 8103 bool CreatedObject = false; 8104 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) { 8105 // Build a call to the selected constructor. 8106 SmallVector<Expr*, 8> ConstructorArgs; 8107 SourceLocation Loc = CurInit.get()->getBeginLoc(); 8108 8109 // Determine the arguments required to actually perform the constructor 8110 // call. 8111 Expr *Arg = CurInit.get(); 8112 if (S.CompleteConstructorCall(Constructor, 8113 MultiExprArg(&Arg, 1), 8114 Loc, ConstructorArgs)) 8115 return ExprError(); 8116 8117 // Build an expression that constructs a temporary. 8118 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, 8119 FoundFn, Constructor, 8120 ConstructorArgs, 8121 HadMultipleCandidates, 8122 /*ListInit*/ false, 8123 /*StdInitListInit*/ false, 8124 /*ZeroInit*/ false, 8125 CXXConstructExpr::CK_Complete, 8126 SourceRange()); 8127 if (CurInit.isInvalid()) 8128 return ExprError(); 8129 8130 S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn, 8131 Entity); 8132 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 8133 return ExprError(); 8134 8135 CastKind = CK_ConstructorConversion; 8136 CreatedObject = true; 8137 } else { 8138 // Build a call to the conversion function. 8139 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn); 8140 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr, 8141 FoundFn); 8142 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 8143 return ExprError(); 8144 8145 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion, 8146 HadMultipleCandidates); 8147 if (CurInit.isInvalid()) 8148 return ExprError(); 8149 8150 CastKind = CK_UserDefinedConversion; 8151 CreatedObject = Conversion->getReturnType()->isRecordType(); 8152 } 8153 8154 if (CreatedObject && checkAbstractType(CurInit.get()->getType())) 8155 return ExprError(); 8156 8157 CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(), 8158 CastKind, CurInit.get(), nullptr, 8159 CurInit.get()->getValueKind()); 8160 8161 if (shouldBindAsTemporary(Entity)) 8162 // The overall entity is temporary, so this expression should be 8163 // destroyed at the end of its full-expression. 8164 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 8165 else if (CreatedObject && shouldDestroyEntity(Entity)) { 8166 // The object outlasts the full-expression, but we need to prepare for 8167 // a destructor being run on it. 8168 // FIXME: It makes no sense to do this here. This should happen 8169 // regardless of how we initialized the entity. 8170 QualType T = CurInit.get()->getType(); 8171 if (const RecordType *Record = T->getAs<RecordType>()) { 8172 CXXDestructorDecl *Destructor 8173 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl())); 8174 S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor, 8175 S.PDiag(diag::err_access_dtor_temp) << T); 8176 S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor); 8177 if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc())) 8178 return ExprError(); 8179 } 8180 } 8181 break; 8182 } 8183 8184 case SK_QualificationConversionLValue: 8185 case SK_QualificationConversionXValue: 8186 case SK_QualificationConversionRValue: { 8187 // Perform a qualification conversion; these can never go wrong. 8188 ExprValueKind VK = 8189 Step->Kind == SK_QualificationConversionLValue 8190 ? VK_LValue 8191 : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue 8192 : VK_RValue); 8193 CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK); 8194 break; 8195 } 8196 8197 case SK_AtomicConversion: { 8198 assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic"); 8199 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8200 CK_NonAtomicToAtomic, VK_RValue); 8201 break; 8202 } 8203 8204 case SK_ConversionSequence: 8205 case SK_ConversionSequenceNoNarrowing: { 8206 if (const auto *FromPtrType = 8207 CurInit.get()->getType()->getAs<PointerType>()) { 8208 if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) { 8209 if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) && 8210 !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) { 8211 // Do not check static casts here because they are checked earlier 8212 // in Sema::ActOnCXXNamedCast() 8213 if (!Kind.isStaticCast()) { 8214 S.Diag(CurInit.get()->getExprLoc(), 8215 diag::warn_noderef_to_dereferenceable_pointer) 8216 << CurInit.get()->getSourceRange(); 8217 } 8218 } 8219 } 8220 } 8221 8222 Sema::CheckedConversionKind CCK 8223 = Kind.isCStyleCast()? Sema::CCK_CStyleCast 8224 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast 8225 : Kind.isExplicitCast()? Sema::CCK_OtherCast 8226 : Sema::CCK_ImplicitConversion; 8227 ExprResult CurInitExprRes = 8228 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS, 8229 getAssignmentAction(Entity), CCK); 8230 if (CurInitExprRes.isInvalid()) 8231 return ExprError(); 8232 8233 S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get()); 8234 8235 CurInit = CurInitExprRes; 8236 8237 if (Step->Kind == SK_ConversionSequenceNoNarrowing && 8238 S.getLangOpts().CPlusPlus) 8239 DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(), 8240 CurInit.get()); 8241 8242 break; 8243 } 8244 8245 case SK_ListInitialization: { 8246 if (checkAbstractType(Step->Type)) 8247 return ExprError(); 8248 8249 InitListExpr *InitList = cast<InitListExpr>(CurInit.get()); 8250 // If we're not initializing the top-level entity, we need to create an 8251 // InitializeTemporary entity for our target type. 8252 QualType Ty = Step->Type; 8253 bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty); 8254 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty); 8255 InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity; 8256 InitListChecker PerformInitList(S, InitEntity, 8257 InitList, Ty, /*VerifyOnly=*/false, 8258 /*TreatUnavailableAsInvalid=*/false); 8259 if (PerformInitList.HadError()) 8260 return ExprError(); 8261 8262 // Hack: We must update *ResultType if available in order to set the 8263 // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'. 8264 // Worst case: 'const int (&arref)[] = {1, 2, 3};'. 8265 if (ResultType && 8266 ResultType->getNonReferenceType()->isIncompleteArrayType()) { 8267 if ((*ResultType)->isRValueReferenceType()) 8268 Ty = S.Context.getRValueReferenceType(Ty); 8269 else if ((*ResultType)->isLValueReferenceType()) 8270 Ty = S.Context.getLValueReferenceType(Ty, 8271 (*ResultType)->castAs<LValueReferenceType>()->isSpelledAsLValue()); 8272 *ResultType = Ty; 8273 } 8274 8275 InitListExpr *StructuredInitList = 8276 PerformInitList.getFullyStructuredList(); 8277 CurInit.get(); 8278 CurInit = shouldBindAsTemporary(InitEntity) 8279 ? S.MaybeBindToTemporary(StructuredInitList) 8280 : StructuredInitList; 8281 break; 8282 } 8283 8284 case SK_ConstructorInitializationFromList: { 8285 if (checkAbstractType(Step->Type)) 8286 return ExprError(); 8287 8288 // When an initializer list is passed for a parameter of type "reference 8289 // to object", we don't get an EK_Temporary entity, but instead an 8290 // EK_Parameter entity with reference type. 8291 // FIXME: This is a hack. What we really should do is create a user 8292 // conversion step for this case, but this makes it considerably more 8293 // complicated. For now, this will do. 8294 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 8295 Entity.getType().getNonReferenceType()); 8296 bool UseTemporary = Entity.getType()->isReferenceType(); 8297 assert(Args.size() == 1 && "expected a single argument for list init"); 8298 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 8299 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init) 8300 << InitList->getSourceRange(); 8301 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits()); 8302 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity : 8303 Entity, 8304 Kind, Arg, *Step, 8305 ConstructorInitRequiresZeroInit, 8306 /*IsListInitialization*/true, 8307 /*IsStdInitListInit*/false, 8308 InitList->getLBraceLoc(), 8309 InitList->getRBraceLoc()); 8310 break; 8311 } 8312 8313 case SK_UnwrapInitList: 8314 CurInit = cast<InitListExpr>(CurInit.get())->getInit(0); 8315 break; 8316 8317 case SK_RewrapInitList: { 8318 Expr *E = CurInit.get(); 8319 InitListExpr *Syntactic = Step->WrappingSyntacticList; 8320 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context, 8321 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc()); 8322 ILE->setSyntacticForm(Syntactic); 8323 ILE->setType(E->getType()); 8324 ILE->setValueKind(E->getValueKind()); 8325 CurInit = ILE; 8326 break; 8327 } 8328 8329 case SK_ConstructorInitialization: 8330 case SK_StdInitializerListConstructorCall: { 8331 if (checkAbstractType(Step->Type)) 8332 return ExprError(); 8333 8334 // When an initializer list is passed for a parameter of type "reference 8335 // to object", we don't get an EK_Temporary entity, but instead an 8336 // EK_Parameter entity with reference type. 8337 // FIXME: This is a hack. What we really should do is create a user 8338 // conversion step for this case, but this makes it considerably more 8339 // complicated. For now, this will do. 8340 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 8341 Entity.getType().getNonReferenceType()); 8342 bool UseTemporary = Entity.getType()->isReferenceType(); 8343 bool IsStdInitListInit = 8344 Step->Kind == SK_StdInitializerListConstructorCall; 8345 Expr *Source = CurInit.get(); 8346 SourceRange Range = Kind.hasParenOrBraceRange() 8347 ? Kind.getParenOrBraceRange() 8348 : SourceRange(); 8349 CurInit = PerformConstructorInitialization( 8350 S, UseTemporary ? TempEntity : Entity, Kind, 8351 Source ? MultiExprArg(Source) : Args, *Step, 8352 ConstructorInitRequiresZeroInit, 8353 /*IsListInitialization*/ IsStdInitListInit, 8354 /*IsStdInitListInitialization*/ IsStdInitListInit, 8355 /*LBraceLoc*/ Range.getBegin(), 8356 /*RBraceLoc*/ Range.getEnd()); 8357 break; 8358 } 8359 8360 case SK_ZeroInitialization: { 8361 step_iterator NextStep = Step; 8362 ++NextStep; 8363 if (NextStep != StepEnd && 8364 (NextStep->Kind == SK_ConstructorInitialization || 8365 NextStep->Kind == SK_ConstructorInitializationFromList)) { 8366 // The need for zero-initialization is recorded directly into 8367 // the call to the object's constructor within the next step. 8368 ConstructorInitRequiresZeroInit = true; 8369 } else if (Kind.getKind() == InitializationKind::IK_Value && 8370 S.getLangOpts().CPlusPlus && 8371 !Kind.isImplicitValueInit()) { 8372 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 8373 if (!TSInfo) 8374 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type, 8375 Kind.getRange().getBegin()); 8376 8377 CurInit = new (S.Context) CXXScalarValueInitExpr( 8378 Entity.getType().getNonLValueExprType(S.Context), TSInfo, 8379 Kind.getRange().getEnd()); 8380 } else { 8381 CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type); 8382 } 8383 break; 8384 } 8385 8386 case SK_CAssignment: { 8387 QualType SourceType = CurInit.get()->getType(); 8388 8389 // Save off the initial CurInit in case we need to emit a diagnostic 8390 ExprResult InitialCurInit = CurInit; 8391 ExprResult Result = CurInit; 8392 Sema::AssignConvertType ConvTy = 8393 S.CheckSingleAssignmentConstraints(Step->Type, Result, true, 8394 Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited); 8395 if (Result.isInvalid()) 8396 return ExprError(); 8397 CurInit = Result; 8398 8399 // If this is a call, allow conversion to a transparent union. 8400 ExprResult CurInitExprRes = CurInit; 8401 if (ConvTy != Sema::Compatible && 8402 Entity.isParameterKind() && 8403 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes) 8404 == Sema::Compatible) 8405 ConvTy = Sema::Compatible; 8406 if (CurInitExprRes.isInvalid()) 8407 return ExprError(); 8408 CurInit = CurInitExprRes; 8409 8410 bool Complained; 8411 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(), 8412 Step->Type, SourceType, 8413 InitialCurInit.get(), 8414 getAssignmentAction(Entity, true), 8415 &Complained)) { 8416 PrintInitLocationNote(S, Entity); 8417 return ExprError(); 8418 } else if (Complained) 8419 PrintInitLocationNote(S, Entity); 8420 break; 8421 } 8422 8423 case SK_StringInit: { 8424 QualType Ty = Step->Type; 8425 CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty, 8426 S.Context.getAsArrayType(Ty), S); 8427 break; 8428 } 8429 8430 case SK_ObjCObjectConversion: 8431 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8432 CK_ObjCObjectLValueCast, 8433 CurInit.get()->getValueKind()); 8434 break; 8435 8436 case SK_ArrayLoopIndex: { 8437 Expr *Cur = CurInit.get(); 8438 Expr *BaseExpr = new (S.Context) 8439 OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(), 8440 Cur->getValueKind(), Cur->getObjectKind(), Cur); 8441 Expr *IndexExpr = 8442 new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType()); 8443 CurInit = S.CreateBuiltinArraySubscriptExpr( 8444 BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation()); 8445 ArrayLoopCommonExprs.push_back(BaseExpr); 8446 break; 8447 } 8448 8449 case SK_ArrayLoopInit: { 8450 assert(!ArrayLoopCommonExprs.empty() && 8451 "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit"); 8452 Expr *Common = ArrayLoopCommonExprs.pop_back_val(); 8453 CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common, 8454 CurInit.get()); 8455 break; 8456 } 8457 8458 case SK_GNUArrayInit: 8459 // Okay: we checked everything before creating this step. Note that 8460 // this is a GNU extension. 8461 S.Diag(Kind.getLocation(), diag::ext_array_init_copy) 8462 << Step->Type << CurInit.get()->getType() 8463 << CurInit.get()->getSourceRange(); 8464 updateGNUCompoundLiteralRValue(CurInit.get()); 8465 LLVM_FALLTHROUGH; 8466 case SK_ArrayInit: 8467 // If the destination type is an incomplete array type, update the 8468 // type accordingly. 8469 if (ResultType) { 8470 if (const IncompleteArrayType *IncompleteDest 8471 = S.Context.getAsIncompleteArrayType(Step->Type)) { 8472 if (const ConstantArrayType *ConstantSource 8473 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) { 8474 *ResultType = S.Context.getConstantArrayType( 8475 IncompleteDest->getElementType(), 8476 ConstantSource->getSize(), 8477 ConstantSource->getSizeExpr(), 8478 ArrayType::Normal, 0); 8479 } 8480 } 8481 } 8482 break; 8483 8484 case SK_ParenthesizedArrayInit: 8485 // Okay: we checked everything before creating this step. Note that 8486 // this is a GNU extension. 8487 S.Diag(Kind.getLocation(), diag::ext_array_init_parens) 8488 << CurInit.get()->getSourceRange(); 8489 break; 8490 8491 case SK_PassByIndirectCopyRestore: 8492 case SK_PassByIndirectRestore: 8493 checkIndirectCopyRestoreSource(S, CurInit.get()); 8494 CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr( 8495 CurInit.get(), Step->Type, 8496 Step->Kind == SK_PassByIndirectCopyRestore); 8497 break; 8498 8499 case SK_ProduceObjCObject: 8500 CurInit = 8501 ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject, 8502 CurInit.get(), nullptr, VK_RValue); 8503 break; 8504 8505 case SK_StdInitializerList: { 8506 S.Diag(CurInit.get()->getExprLoc(), 8507 diag::warn_cxx98_compat_initializer_list_init) 8508 << CurInit.get()->getSourceRange(); 8509 8510 // Materialize the temporary into memory. 8511 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( 8512 CurInit.get()->getType(), CurInit.get(), 8513 /*BoundToLvalueReference=*/false); 8514 8515 // Wrap it in a construction of a std::initializer_list<T>. 8516 CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE); 8517 8518 // Bind the result, in case the library has given initializer_list a 8519 // non-trivial destructor. 8520 if (shouldBindAsTemporary(Entity)) 8521 CurInit = S.MaybeBindToTemporary(CurInit.get()); 8522 break; 8523 } 8524 8525 case SK_OCLSamplerInit: { 8526 // Sampler initialization have 5 cases: 8527 // 1. function argument passing 8528 // 1a. argument is a file-scope variable 8529 // 1b. argument is a function-scope variable 8530 // 1c. argument is one of caller function's parameters 8531 // 2. variable initialization 8532 // 2a. initializing a file-scope variable 8533 // 2b. initializing a function-scope variable 8534 // 8535 // For file-scope variables, since they cannot be initialized by function 8536 // call of __translate_sampler_initializer in LLVM IR, their references 8537 // need to be replaced by a cast from their literal initializers to 8538 // sampler type. Since sampler variables can only be used in function 8539 // calls as arguments, we only need to replace them when handling the 8540 // argument passing. 8541 assert(Step->Type->isSamplerT() && 8542 "Sampler initialization on non-sampler type."); 8543 Expr *Init = CurInit.get()->IgnoreParens(); 8544 QualType SourceType = Init->getType(); 8545 // Case 1 8546 if (Entity.isParameterKind()) { 8547 if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) { 8548 S.Diag(Kind.getLocation(), diag::err_sampler_argument_required) 8549 << SourceType; 8550 break; 8551 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) { 8552 auto Var = cast<VarDecl>(DRE->getDecl()); 8553 // Case 1b and 1c 8554 // No cast from integer to sampler is needed. 8555 if (!Var->hasGlobalStorage()) { 8556 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type, 8557 CK_LValueToRValue, Init, 8558 /*BasePath=*/nullptr, VK_RValue); 8559 break; 8560 } 8561 // Case 1a 8562 // For function call with a file-scope sampler variable as argument, 8563 // get the integer literal. 8564 // Do not diagnose if the file-scope variable does not have initializer 8565 // since this has already been diagnosed when parsing the variable 8566 // declaration. 8567 if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit())) 8568 break; 8569 Init = cast<ImplicitCastExpr>(const_cast<Expr*>( 8570 Var->getInit()))->getSubExpr(); 8571 SourceType = Init->getType(); 8572 } 8573 } else { 8574 // Case 2 8575 // Check initializer is 32 bit integer constant. 8576 // If the initializer is taken from global variable, do not diagnose since 8577 // this has already been done when parsing the variable declaration. 8578 if (!Init->isConstantInitializer(S.Context, false)) 8579 break; 8580 8581 if (!SourceType->isIntegerType() || 8582 32 != S.Context.getIntWidth(SourceType)) { 8583 S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer) 8584 << SourceType; 8585 break; 8586 } 8587 8588 Expr::EvalResult EVResult; 8589 Init->EvaluateAsInt(EVResult, S.Context); 8590 llvm::APSInt Result = EVResult.Val.getInt(); 8591 const uint64_t SamplerValue = Result.getLimitedValue(); 8592 // 32-bit value of sampler's initializer is interpreted as 8593 // bit-field with the following structure: 8594 // |unspecified|Filter|Addressing Mode| Normalized Coords| 8595 // |31 6|5 4|3 1| 0| 8596 // This structure corresponds to enum values of sampler properties 8597 // defined in SPIR spec v1.2 and also opencl-c.h 8598 unsigned AddressingMode = (0x0E & SamplerValue) >> 1; 8599 unsigned FilterMode = (0x30 & SamplerValue) >> 4; 8600 if (FilterMode != 1 && FilterMode != 2 && 8601 !S.getOpenCLOptions().isEnabled( 8602 "cl_intel_device_side_avc_motion_estimation")) 8603 S.Diag(Kind.getLocation(), 8604 diag::warn_sampler_initializer_invalid_bits) 8605 << "Filter Mode"; 8606 if (AddressingMode > 4) 8607 S.Diag(Kind.getLocation(), 8608 diag::warn_sampler_initializer_invalid_bits) 8609 << "Addressing Mode"; 8610 } 8611 8612 // Cases 1a, 2a and 2b 8613 // Insert cast from integer to sampler. 8614 CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy, 8615 CK_IntToOCLSampler); 8616 break; 8617 } 8618 case SK_OCLZeroOpaqueType: { 8619 assert((Step->Type->isEventT() || Step->Type->isQueueT() || 8620 Step->Type->isOCLIntelSubgroupAVCType()) && 8621 "Wrong type for initialization of OpenCL opaque type."); 8622 8623 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8624 CK_ZeroToOCLOpaqueType, 8625 CurInit.get()->getValueKind()); 8626 break; 8627 } 8628 } 8629 } 8630 8631 // Check whether the initializer has a shorter lifetime than the initialized 8632 // entity, and if not, either lifetime-extend or warn as appropriate. 8633 if (auto *Init = CurInit.get()) 8634 S.checkInitializerLifetime(Entity, Init); 8635 8636 // Diagnose non-fatal problems with the completed initialization. 8637 if (Entity.getKind() == InitializedEntity::EK_Member && 8638 cast<FieldDecl>(Entity.getDecl())->isBitField()) 8639 S.CheckBitFieldInitialization(Kind.getLocation(), 8640 cast<FieldDecl>(Entity.getDecl()), 8641 CurInit.get()); 8642 8643 // Check for std::move on construction. 8644 if (const Expr *E = CurInit.get()) { 8645 CheckMoveOnConstruction(S, E, 8646 Entity.getKind() == InitializedEntity::EK_Result); 8647 } 8648 8649 return CurInit; 8650 } 8651 8652 /// Somewhere within T there is an uninitialized reference subobject. 8653 /// Dig it out and diagnose it. 8654 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc, 8655 QualType T) { 8656 if (T->isReferenceType()) { 8657 S.Diag(Loc, diag::err_reference_without_init) 8658 << T.getNonReferenceType(); 8659 return true; 8660 } 8661 8662 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 8663 if (!RD || !RD->hasUninitializedReferenceMember()) 8664 return false; 8665 8666 for (const auto *FI : RD->fields()) { 8667 if (FI->isUnnamedBitfield()) 8668 continue; 8669 8670 if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) { 8671 S.Diag(Loc, diag::note_value_initialization_here) << RD; 8672 return true; 8673 } 8674 } 8675 8676 for (const auto &BI : RD->bases()) { 8677 if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) { 8678 S.Diag(Loc, diag::note_value_initialization_here) << RD; 8679 return true; 8680 } 8681 } 8682 8683 return false; 8684 } 8685 8686 8687 //===----------------------------------------------------------------------===// 8688 // Diagnose initialization failures 8689 //===----------------------------------------------------------------------===// 8690 8691 /// Emit notes associated with an initialization that failed due to a 8692 /// "simple" conversion failure. 8693 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity, 8694 Expr *op) { 8695 QualType destType = entity.getType(); 8696 if (destType.getNonReferenceType()->isObjCObjectPointerType() && 8697 op->getType()->isObjCObjectPointerType()) { 8698 8699 // Emit a possible note about the conversion failing because the 8700 // operand is a message send with a related result type. 8701 S.EmitRelatedResultTypeNote(op); 8702 8703 // Emit a possible note about a return failing because we're 8704 // expecting a related result type. 8705 if (entity.getKind() == InitializedEntity::EK_Result) 8706 S.EmitRelatedResultTypeNoteForReturn(destType); 8707 } 8708 } 8709 8710 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity, 8711 InitListExpr *InitList) { 8712 QualType DestType = Entity.getType(); 8713 8714 QualType E; 8715 if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) { 8716 QualType ArrayType = S.Context.getConstantArrayType( 8717 E.withConst(), 8718 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 8719 InitList->getNumInits()), 8720 nullptr, clang::ArrayType::Normal, 0); 8721 InitializedEntity HiddenArray = 8722 InitializedEntity::InitializeTemporary(ArrayType); 8723 return diagnoseListInit(S, HiddenArray, InitList); 8724 } 8725 8726 if (DestType->isReferenceType()) { 8727 // A list-initialization failure for a reference means that we tried to 8728 // create a temporary of the inner type (per [dcl.init.list]p3.6) and the 8729 // inner initialization failed. 8730 QualType T = DestType->castAs<ReferenceType>()->getPointeeType(); 8731 diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList); 8732 SourceLocation Loc = InitList->getBeginLoc(); 8733 if (auto *D = Entity.getDecl()) 8734 Loc = D->getLocation(); 8735 S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T; 8736 return; 8737 } 8738 8739 InitListChecker DiagnoseInitList(S, Entity, InitList, DestType, 8740 /*VerifyOnly=*/false, 8741 /*TreatUnavailableAsInvalid=*/false); 8742 assert(DiagnoseInitList.HadError() && 8743 "Inconsistent init list check result."); 8744 } 8745 8746 bool InitializationSequence::Diagnose(Sema &S, 8747 const InitializedEntity &Entity, 8748 const InitializationKind &Kind, 8749 ArrayRef<Expr *> Args) { 8750 if (!Failed()) 8751 return false; 8752 8753 // When we want to diagnose only one element of a braced-init-list, 8754 // we need to factor it out. 8755 Expr *OnlyArg; 8756 if (Args.size() == 1) { 8757 auto *List = dyn_cast<InitListExpr>(Args[0]); 8758 if (List && List->getNumInits() == 1) 8759 OnlyArg = List->getInit(0); 8760 else 8761 OnlyArg = Args[0]; 8762 } 8763 else 8764 OnlyArg = nullptr; 8765 8766 QualType DestType = Entity.getType(); 8767 switch (Failure) { 8768 case FK_TooManyInitsForReference: 8769 // FIXME: Customize for the initialized entity? 8770 if (Args.empty()) { 8771 // Dig out the reference subobject which is uninitialized and diagnose it. 8772 // If this is value-initialization, this could be nested some way within 8773 // the target type. 8774 assert(Kind.getKind() == InitializationKind::IK_Value || 8775 DestType->isReferenceType()); 8776 bool Diagnosed = 8777 DiagnoseUninitializedReference(S, Kind.getLocation(), DestType); 8778 assert(Diagnosed && "couldn't find uninitialized reference to diagnose"); 8779 (void)Diagnosed; 8780 } else // FIXME: diagnostic below could be better! 8781 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits) 8782 << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); 8783 break; 8784 case FK_ParenthesizedListInitForReference: 8785 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) 8786 << 1 << Entity.getType() << Args[0]->getSourceRange(); 8787 break; 8788 8789 case FK_ArrayNeedsInitList: 8790 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0; 8791 break; 8792 case FK_ArrayNeedsInitListOrStringLiteral: 8793 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1; 8794 break; 8795 case FK_ArrayNeedsInitListOrWideStringLiteral: 8796 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2; 8797 break; 8798 case FK_NarrowStringIntoWideCharArray: 8799 S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar); 8800 break; 8801 case FK_WideStringIntoCharArray: 8802 S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char); 8803 break; 8804 case FK_IncompatWideStringIntoWideChar: 8805 S.Diag(Kind.getLocation(), 8806 diag::err_array_init_incompat_wide_string_into_wchar); 8807 break; 8808 case FK_PlainStringIntoUTF8Char: 8809 S.Diag(Kind.getLocation(), 8810 diag::err_array_init_plain_string_into_char8_t); 8811 S.Diag(Args.front()->getBeginLoc(), 8812 diag::note_array_init_plain_string_into_char8_t) 8813 << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8"); 8814 break; 8815 case FK_UTF8StringIntoPlainChar: 8816 S.Diag(Kind.getLocation(), 8817 diag::err_array_init_utf8_string_into_char) 8818 << S.getLangOpts().CPlusPlus20; 8819 break; 8820 case FK_ArrayTypeMismatch: 8821 case FK_NonConstantArrayInit: 8822 S.Diag(Kind.getLocation(), 8823 (Failure == FK_ArrayTypeMismatch 8824 ? diag::err_array_init_different_type 8825 : diag::err_array_init_non_constant_array)) 8826 << DestType.getNonReferenceType() 8827 << OnlyArg->getType() 8828 << Args[0]->getSourceRange(); 8829 break; 8830 8831 case FK_VariableLengthArrayHasInitializer: 8832 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init) 8833 << Args[0]->getSourceRange(); 8834 break; 8835 8836 case FK_AddressOfOverloadFailed: { 8837 DeclAccessPair Found; 8838 S.ResolveAddressOfOverloadedFunction(OnlyArg, 8839 DestType.getNonReferenceType(), 8840 true, 8841 Found); 8842 break; 8843 } 8844 8845 case FK_AddressOfUnaddressableFunction: { 8846 auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl()); 8847 S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 8848 OnlyArg->getBeginLoc()); 8849 break; 8850 } 8851 8852 case FK_ReferenceInitOverloadFailed: 8853 case FK_UserConversionOverloadFailed: 8854 switch (FailedOverloadResult) { 8855 case OR_Ambiguous: 8856 8857 FailedCandidateSet.NoteCandidates( 8858 PartialDiagnosticAt( 8859 Kind.getLocation(), 8860 Failure == FK_UserConversionOverloadFailed 8861 ? (S.PDiag(diag::err_typecheck_ambiguous_condition) 8862 << OnlyArg->getType() << DestType 8863 << Args[0]->getSourceRange()) 8864 : (S.PDiag(diag::err_ref_init_ambiguous) 8865 << DestType << OnlyArg->getType() 8866 << Args[0]->getSourceRange())), 8867 S, OCD_AmbiguousCandidates, Args); 8868 break; 8869 8870 case OR_No_Viable_Function: { 8871 auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args); 8872 if (!S.RequireCompleteType(Kind.getLocation(), 8873 DestType.getNonReferenceType(), 8874 diag::err_typecheck_nonviable_condition_incomplete, 8875 OnlyArg->getType(), Args[0]->getSourceRange())) 8876 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition) 8877 << (Entity.getKind() == InitializedEntity::EK_Result) 8878 << OnlyArg->getType() << Args[0]->getSourceRange() 8879 << DestType.getNonReferenceType(); 8880 8881 FailedCandidateSet.NoteCandidates(S, Args, Cands); 8882 break; 8883 } 8884 case OR_Deleted: { 8885 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function) 8886 << OnlyArg->getType() << DestType.getNonReferenceType() 8887 << Args[0]->getSourceRange(); 8888 OverloadCandidateSet::iterator Best; 8889 OverloadingResult Ovl 8890 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 8891 if (Ovl == OR_Deleted) { 8892 S.NoteDeletedFunction(Best->Function); 8893 } else { 8894 llvm_unreachable("Inconsistent overload resolution?"); 8895 } 8896 break; 8897 } 8898 8899 case OR_Success: 8900 llvm_unreachable("Conversion did not fail!"); 8901 } 8902 break; 8903 8904 case FK_NonConstLValueReferenceBindingToTemporary: 8905 if (isa<InitListExpr>(Args[0])) { 8906 S.Diag(Kind.getLocation(), 8907 diag::err_lvalue_reference_bind_to_initlist) 8908 << DestType.getNonReferenceType().isVolatileQualified() 8909 << DestType.getNonReferenceType() 8910 << Args[0]->getSourceRange(); 8911 break; 8912 } 8913 LLVM_FALLTHROUGH; 8914 8915 case FK_NonConstLValueReferenceBindingToUnrelated: 8916 S.Diag(Kind.getLocation(), 8917 Failure == FK_NonConstLValueReferenceBindingToTemporary 8918 ? diag::err_lvalue_reference_bind_to_temporary 8919 : diag::err_lvalue_reference_bind_to_unrelated) 8920 << DestType.getNonReferenceType().isVolatileQualified() 8921 << DestType.getNonReferenceType() 8922 << OnlyArg->getType() 8923 << Args[0]->getSourceRange(); 8924 break; 8925 8926 case FK_NonConstLValueReferenceBindingToBitfield: { 8927 // We don't necessarily have an unambiguous source bit-field. 8928 FieldDecl *BitField = Args[0]->getSourceBitField(); 8929 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield) 8930 << DestType.isVolatileQualified() 8931 << (BitField ? BitField->getDeclName() : DeclarationName()) 8932 << (BitField != nullptr) 8933 << Args[0]->getSourceRange(); 8934 if (BitField) 8935 S.Diag(BitField->getLocation(), diag::note_bitfield_decl); 8936 break; 8937 } 8938 8939 case FK_NonConstLValueReferenceBindingToVectorElement: 8940 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element) 8941 << DestType.isVolatileQualified() 8942 << Args[0]->getSourceRange(); 8943 break; 8944 8945 case FK_NonConstLValueReferenceBindingToMatrixElement: 8946 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_matrix_element) 8947 << DestType.isVolatileQualified() << Args[0]->getSourceRange(); 8948 break; 8949 8950 case FK_RValueReferenceBindingToLValue: 8951 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref) 8952 << DestType.getNonReferenceType() << OnlyArg->getType() 8953 << Args[0]->getSourceRange(); 8954 break; 8955 8956 case FK_ReferenceAddrspaceMismatchTemporary: 8957 S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace) 8958 << DestType << Args[0]->getSourceRange(); 8959 break; 8960 8961 case FK_ReferenceInitDropsQualifiers: { 8962 QualType SourceType = OnlyArg->getType(); 8963 QualType NonRefType = DestType.getNonReferenceType(); 8964 Qualifiers DroppedQualifiers = 8965 SourceType.getQualifiers() - NonRefType.getQualifiers(); 8966 8967 if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf( 8968 SourceType.getQualifiers())) 8969 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 8970 << NonRefType << SourceType << 1 /*addr space*/ 8971 << Args[0]->getSourceRange(); 8972 else if (DroppedQualifiers.hasQualifiers()) 8973 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 8974 << NonRefType << SourceType << 0 /*cv quals*/ 8975 << Qualifiers::fromCVRMask(DroppedQualifiers.getCVRQualifiers()) 8976 << DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange(); 8977 else 8978 // FIXME: Consider decomposing the type and explaining which qualifiers 8979 // were dropped where, or on which level a 'const' is missing, etc. 8980 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 8981 << NonRefType << SourceType << 2 /*incompatible quals*/ 8982 << Args[0]->getSourceRange(); 8983 break; 8984 } 8985 8986 case FK_ReferenceInitFailed: 8987 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed) 8988 << DestType.getNonReferenceType() 8989 << DestType.getNonReferenceType()->isIncompleteType() 8990 << OnlyArg->isLValue() 8991 << OnlyArg->getType() 8992 << Args[0]->getSourceRange(); 8993 emitBadConversionNotes(S, Entity, Args[0]); 8994 break; 8995 8996 case FK_ConversionFailed: { 8997 QualType FromType = OnlyArg->getType(); 8998 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed) 8999 << (int)Entity.getKind() 9000 << DestType 9001 << OnlyArg->isLValue() 9002 << FromType 9003 << Args[0]->getSourceRange(); 9004 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType); 9005 S.Diag(Kind.getLocation(), PDiag); 9006 emitBadConversionNotes(S, Entity, Args[0]); 9007 break; 9008 } 9009 9010 case FK_ConversionFromPropertyFailed: 9011 // No-op. This error has already been reported. 9012 break; 9013 9014 case FK_TooManyInitsForScalar: { 9015 SourceRange R; 9016 9017 auto *InitList = dyn_cast<InitListExpr>(Args[0]); 9018 if (InitList && InitList->getNumInits() >= 1) { 9019 R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc()); 9020 } else { 9021 assert(Args.size() > 1 && "Expected multiple initializers!"); 9022 R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc()); 9023 } 9024 9025 R.setBegin(S.getLocForEndOfToken(R.getBegin())); 9026 if (Kind.isCStyleOrFunctionalCast()) 9027 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg) 9028 << R; 9029 else 9030 S.Diag(Kind.getLocation(), diag::err_excess_initializers) 9031 << /*scalar=*/2 << R; 9032 break; 9033 } 9034 9035 case FK_ParenthesizedListInitForScalar: 9036 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) 9037 << 0 << Entity.getType() << Args[0]->getSourceRange(); 9038 break; 9039 9040 case FK_ReferenceBindingToInitList: 9041 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list) 9042 << DestType.getNonReferenceType() << Args[0]->getSourceRange(); 9043 break; 9044 9045 case FK_InitListBadDestinationType: 9046 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type) 9047 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange(); 9048 break; 9049 9050 case FK_ListConstructorOverloadFailed: 9051 case FK_ConstructorOverloadFailed: { 9052 SourceRange ArgsRange; 9053 if (Args.size()) 9054 ArgsRange = 9055 SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); 9056 9057 if (Failure == FK_ListConstructorOverloadFailed) { 9058 assert(Args.size() == 1 && 9059 "List construction from other than 1 argument."); 9060 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 9061 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); 9062 } 9063 9064 // FIXME: Using "DestType" for the entity we're printing is probably 9065 // bad. 9066 switch (FailedOverloadResult) { 9067 case OR_Ambiguous: 9068 FailedCandidateSet.NoteCandidates( 9069 PartialDiagnosticAt(Kind.getLocation(), 9070 S.PDiag(diag::err_ovl_ambiguous_init) 9071 << DestType << ArgsRange), 9072 S, OCD_AmbiguousCandidates, Args); 9073 break; 9074 9075 case OR_No_Viable_Function: 9076 if (Kind.getKind() == InitializationKind::IK_Default && 9077 (Entity.getKind() == InitializedEntity::EK_Base || 9078 Entity.getKind() == InitializedEntity::EK_Member) && 9079 isa<CXXConstructorDecl>(S.CurContext)) { 9080 // This is implicit default initialization of a member or 9081 // base within a constructor. If no viable function was 9082 // found, notify the user that they need to explicitly 9083 // initialize this base/member. 9084 CXXConstructorDecl *Constructor 9085 = cast<CXXConstructorDecl>(S.CurContext); 9086 const CXXRecordDecl *InheritedFrom = nullptr; 9087 if (auto Inherited = Constructor->getInheritedConstructor()) 9088 InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass(); 9089 if (Entity.getKind() == InitializedEntity::EK_Base) { 9090 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 9091 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) 9092 << S.Context.getTypeDeclType(Constructor->getParent()) 9093 << /*base=*/0 9094 << Entity.getType() 9095 << InheritedFrom; 9096 9097 RecordDecl *BaseDecl 9098 = Entity.getBaseSpecifier()->getType()->castAs<RecordType>() 9099 ->getDecl(); 9100 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl) 9101 << S.Context.getTagDeclType(BaseDecl); 9102 } else { 9103 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 9104 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) 9105 << S.Context.getTypeDeclType(Constructor->getParent()) 9106 << /*member=*/1 9107 << Entity.getName() 9108 << InheritedFrom; 9109 S.Diag(Entity.getDecl()->getLocation(), 9110 diag::note_member_declared_at); 9111 9112 if (const RecordType *Record 9113 = Entity.getType()->getAs<RecordType>()) 9114 S.Diag(Record->getDecl()->getLocation(), 9115 diag::note_previous_decl) 9116 << S.Context.getTagDeclType(Record->getDecl()); 9117 } 9118 break; 9119 } 9120 9121 FailedCandidateSet.NoteCandidates( 9122 PartialDiagnosticAt( 9123 Kind.getLocation(), 9124 S.PDiag(diag::err_ovl_no_viable_function_in_init) 9125 << DestType << ArgsRange), 9126 S, OCD_AllCandidates, Args); 9127 break; 9128 9129 case OR_Deleted: { 9130 OverloadCandidateSet::iterator Best; 9131 OverloadingResult Ovl 9132 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 9133 if (Ovl != OR_Deleted) { 9134 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 9135 << DestType << ArgsRange; 9136 llvm_unreachable("Inconsistent overload resolution?"); 9137 break; 9138 } 9139 9140 // If this is a defaulted or implicitly-declared function, then 9141 // it was implicitly deleted. Make it clear that the deletion was 9142 // implicit. 9143 if (S.isImplicitlyDeleted(Best->Function)) 9144 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init) 9145 << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function)) 9146 << DestType << ArgsRange; 9147 else 9148 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 9149 << DestType << ArgsRange; 9150 9151 S.NoteDeletedFunction(Best->Function); 9152 break; 9153 } 9154 9155 case OR_Success: 9156 llvm_unreachable("Conversion did not fail!"); 9157 } 9158 } 9159 break; 9160 9161 case FK_DefaultInitOfConst: 9162 if (Entity.getKind() == InitializedEntity::EK_Member && 9163 isa<CXXConstructorDecl>(S.CurContext)) { 9164 // This is implicit default-initialization of a const member in 9165 // a constructor. Complain that it needs to be explicitly 9166 // initialized. 9167 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext); 9168 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor) 9169 << (Constructor->getInheritedConstructor() ? 2 : 9170 Constructor->isImplicit() ? 1 : 0) 9171 << S.Context.getTypeDeclType(Constructor->getParent()) 9172 << /*const=*/1 9173 << Entity.getName(); 9174 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl) 9175 << Entity.getName(); 9176 } else { 9177 S.Diag(Kind.getLocation(), diag::err_default_init_const) 9178 << DestType << (bool)DestType->getAs<RecordType>(); 9179 } 9180 break; 9181 9182 case FK_Incomplete: 9183 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType, 9184 diag::err_init_incomplete_type); 9185 break; 9186 9187 case FK_ListInitializationFailed: { 9188 // Run the init list checker again to emit diagnostics. 9189 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 9190 diagnoseListInit(S, Entity, InitList); 9191 break; 9192 } 9193 9194 case FK_PlaceholderType: { 9195 // FIXME: Already diagnosed! 9196 break; 9197 } 9198 9199 case FK_ExplicitConstructor: { 9200 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor) 9201 << Args[0]->getSourceRange(); 9202 OverloadCandidateSet::iterator Best; 9203 OverloadingResult Ovl 9204 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 9205 (void)Ovl; 9206 assert(Ovl == OR_Success && "Inconsistent overload resolution"); 9207 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 9208 S.Diag(CtorDecl->getLocation(), 9209 diag::note_explicit_ctor_deduction_guide_here) << false; 9210 break; 9211 } 9212 } 9213 9214 PrintInitLocationNote(S, Entity); 9215 return true; 9216 } 9217 9218 void InitializationSequence::dump(raw_ostream &OS) const { 9219 switch (SequenceKind) { 9220 case FailedSequence: { 9221 OS << "Failed sequence: "; 9222 switch (Failure) { 9223 case FK_TooManyInitsForReference: 9224 OS << "too many initializers for reference"; 9225 break; 9226 9227 case FK_ParenthesizedListInitForReference: 9228 OS << "parenthesized list init for reference"; 9229 break; 9230 9231 case FK_ArrayNeedsInitList: 9232 OS << "array requires initializer list"; 9233 break; 9234 9235 case FK_AddressOfUnaddressableFunction: 9236 OS << "address of unaddressable function was taken"; 9237 break; 9238 9239 case FK_ArrayNeedsInitListOrStringLiteral: 9240 OS << "array requires initializer list or string literal"; 9241 break; 9242 9243 case FK_ArrayNeedsInitListOrWideStringLiteral: 9244 OS << "array requires initializer list or wide string literal"; 9245 break; 9246 9247 case FK_NarrowStringIntoWideCharArray: 9248 OS << "narrow string into wide char array"; 9249 break; 9250 9251 case FK_WideStringIntoCharArray: 9252 OS << "wide string into char array"; 9253 break; 9254 9255 case FK_IncompatWideStringIntoWideChar: 9256 OS << "incompatible wide string into wide char array"; 9257 break; 9258 9259 case FK_PlainStringIntoUTF8Char: 9260 OS << "plain string literal into char8_t array"; 9261 break; 9262 9263 case FK_UTF8StringIntoPlainChar: 9264 OS << "u8 string literal into char array"; 9265 break; 9266 9267 case FK_ArrayTypeMismatch: 9268 OS << "array type mismatch"; 9269 break; 9270 9271 case FK_NonConstantArrayInit: 9272 OS << "non-constant array initializer"; 9273 break; 9274 9275 case FK_AddressOfOverloadFailed: 9276 OS << "address of overloaded function failed"; 9277 break; 9278 9279 case FK_ReferenceInitOverloadFailed: 9280 OS << "overload resolution for reference initialization failed"; 9281 break; 9282 9283 case FK_NonConstLValueReferenceBindingToTemporary: 9284 OS << "non-const lvalue reference bound to temporary"; 9285 break; 9286 9287 case FK_NonConstLValueReferenceBindingToBitfield: 9288 OS << "non-const lvalue reference bound to bit-field"; 9289 break; 9290 9291 case FK_NonConstLValueReferenceBindingToVectorElement: 9292 OS << "non-const lvalue reference bound to vector element"; 9293 break; 9294 9295 case FK_NonConstLValueReferenceBindingToMatrixElement: 9296 OS << "non-const lvalue reference bound to matrix element"; 9297 break; 9298 9299 case FK_NonConstLValueReferenceBindingToUnrelated: 9300 OS << "non-const lvalue reference bound to unrelated type"; 9301 break; 9302 9303 case FK_RValueReferenceBindingToLValue: 9304 OS << "rvalue reference bound to an lvalue"; 9305 break; 9306 9307 case FK_ReferenceInitDropsQualifiers: 9308 OS << "reference initialization drops qualifiers"; 9309 break; 9310 9311 case FK_ReferenceAddrspaceMismatchTemporary: 9312 OS << "reference with mismatching address space bound to temporary"; 9313 break; 9314 9315 case FK_ReferenceInitFailed: 9316 OS << "reference initialization failed"; 9317 break; 9318 9319 case FK_ConversionFailed: 9320 OS << "conversion failed"; 9321 break; 9322 9323 case FK_ConversionFromPropertyFailed: 9324 OS << "conversion from property failed"; 9325 break; 9326 9327 case FK_TooManyInitsForScalar: 9328 OS << "too many initializers for scalar"; 9329 break; 9330 9331 case FK_ParenthesizedListInitForScalar: 9332 OS << "parenthesized list init for reference"; 9333 break; 9334 9335 case FK_ReferenceBindingToInitList: 9336 OS << "referencing binding to initializer list"; 9337 break; 9338 9339 case FK_InitListBadDestinationType: 9340 OS << "initializer list for non-aggregate, non-scalar type"; 9341 break; 9342 9343 case FK_UserConversionOverloadFailed: 9344 OS << "overloading failed for user-defined conversion"; 9345 break; 9346 9347 case FK_ConstructorOverloadFailed: 9348 OS << "constructor overloading failed"; 9349 break; 9350 9351 case FK_DefaultInitOfConst: 9352 OS << "default initialization of a const variable"; 9353 break; 9354 9355 case FK_Incomplete: 9356 OS << "initialization of incomplete type"; 9357 break; 9358 9359 case FK_ListInitializationFailed: 9360 OS << "list initialization checker failure"; 9361 break; 9362 9363 case FK_VariableLengthArrayHasInitializer: 9364 OS << "variable length array has an initializer"; 9365 break; 9366 9367 case FK_PlaceholderType: 9368 OS << "initializer expression isn't contextually valid"; 9369 break; 9370 9371 case FK_ListConstructorOverloadFailed: 9372 OS << "list constructor overloading failed"; 9373 break; 9374 9375 case FK_ExplicitConstructor: 9376 OS << "list copy initialization chose explicit constructor"; 9377 break; 9378 } 9379 OS << '\n'; 9380 return; 9381 } 9382 9383 case DependentSequence: 9384 OS << "Dependent sequence\n"; 9385 return; 9386 9387 case NormalSequence: 9388 OS << "Normal sequence: "; 9389 break; 9390 } 9391 9392 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) { 9393 if (S != step_begin()) { 9394 OS << " -> "; 9395 } 9396 9397 switch (S->Kind) { 9398 case SK_ResolveAddressOfOverloadedFunction: 9399 OS << "resolve address of overloaded function"; 9400 break; 9401 9402 case SK_CastDerivedToBaseRValue: 9403 OS << "derived-to-base (rvalue)"; 9404 break; 9405 9406 case SK_CastDerivedToBaseXValue: 9407 OS << "derived-to-base (xvalue)"; 9408 break; 9409 9410 case SK_CastDerivedToBaseLValue: 9411 OS << "derived-to-base (lvalue)"; 9412 break; 9413 9414 case SK_BindReference: 9415 OS << "bind reference to lvalue"; 9416 break; 9417 9418 case SK_BindReferenceToTemporary: 9419 OS << "bind reference to a temporary"; 9420 break; 9421 9422 case SK_FinalCopy: 9423 OS << "final copy in class direct-initialization"; 9424 break; 9425 9426 case SK_ExtraneousCopyToTemporary: 9427 OS << "extraneous C++03 copy to temporary"; 9428 break; 9429 9430 case SK_UserConversion: 9431 OS << "user-defined conversion via " << *S->Function.Function; 9432 break; 9433 9434 case SK_QualificationConversionRValue: 9435 OS << "qualification conversion (rvalue)"; 9436 break; 9437 9438 case SK_QualificationConversionXValue: 9439 OS << "qualification conversion (xvalue)"; 9440 break; 9441 9442 case SK_QualificationConversionLValue: 9443 OS << "qualification conversion (lvalue)"; 9444 break; 9445 9446 case SK_AtomicConversion: 9447 OS << "non-atomic-to-atomic conversion"; 9448 break; 9449 9450 case SK_ConversionSequence: 9451 OS << "implicit conversion sequence ("; 9452 S->ICS->dump(); // FIXME: use OS 9453 OS << ")"; 9454 break; 9455 9456 case SK_ConversionSequenceNoNarrowing: 9457 OS << "implicit conversion sequence with narrowing prohibited ("; 9458 S->ICS->dump(); // FIXME: use OS 9459 OS << ")"; 9460 break; 9461 9462 case SK_ListInitialization: 9463 OS << "list aggregate initialization"; 9464 break; 9465 9466 case SK_UnwrapInitList: 9467 OS << "unwrap reference initializer list"; 9468 break; 9469 9470 case SK_RewrapInitList: 9471 OS << "rewrap reference initializer list"; 9472 break; 9473 9474 case SK_ConstructorInitialization: 9475 OS << "constructor initialization"; 9476 break; 9477 9478 case SK_ConstructorInitializationFromList: 9479 OS << "list initialization via constructor"; 9480 break; 9481 9482 case SK_ZeroInitialization: 9483 OS << "zero initialization"; 9484 break; 9485 9486 case SK_CAssignment: 9487 OS << "C assignment"; 9488 break; 9489 9490 case SK_StringInit: 9491 OS << "string initialization"; 9492 break; 9493 9494 case SK_ObjCObjectConversion: 9495 OS << "Objective-C object conversion"; 9496 break; 9497 9498 case SK_ArrayLoopIndex: 9499 OS << "indexing for array initialization loop"; 9500 break; 9501 9502 case SK_ArrayLoopInit: 9503 OS << "array initialization loop"; 9504 break; 9505 9506 case SK_ArrayInit: 9507 OS << "array initialization"; 9508 break; 9509 9510 case SK_GNUArrayInit: 9511 OS << "array initialization (GNU extension)"; 9512 break; 9513 9514 case SK_ParenthesizedArrayInit: 9515 OS << "parenthesized array initialization"; 9516 break; 9517 9518 case SK_PassByIndirectCopyRestore: 9519 OS << "pass by indirect copy and restore"; 9520 break; 9521 9522 case SK_PassByIndirectRestore: 9523 OS << "pass by indirect restore"; 9524 break; 9525 9526 case SK_ProduceObjCObject: 9527 OS << "Objective-C object retension"; 9528 break; 9529 9530 case SK_StdInitializerList: 9531 OS << "std::initializer_list from initializer list"; 9532 break; 9533 9534 case SK_StdInitializerListConstructorCall: 9535 OS << "list initialization from std::initializer_list"; 9536 break; 9537 9538 case SK_OCLSamplerInit: 9539 OS << "OpenCL sampler_t from integer constant"; 9540 break; 9541 9542 case SK_OCLZeroOpaqueType: 9543 OS << "OpenCL opaque type from zero"; 9544 break; 9545 } 9546 9547 OS << " [" << S->Type.getAsString() << ']'; 9548 } 9549 9550 OS << '\n'; 9551 } 9552 9553 void InitializationSequence::dump() const { 9554 dump(llvm::errs()); 9555 } 9556 9557 static bool NarrowingErrs(const LangOptions &L) { 9558 return L.CPlusPlus11 && 9559 (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015)); 9560 } 9561 9562 static void DiagnoseNarrowingInInitList(Sema &S, 9563 const ImplicitConversionSequence &ICS, 9564 QualType PreNarrowingType, 9565 QualType EntityType, 9566 const Expr *PostInit) { 9567 const StandardConversionSequence *SCS = nullptr; 9568 switch (ICS.getKind()) { 9569 case ImplicitConversionSequence::StandardConversion: 9570 SCS = &ICS.Standard; 9571 break; 9572 case ImplicitConversionSequence::UserDefinedConversion: 9573 SCS = &ICS.UserDefined.After; 9574 break; 9575 case ImplicitConversionSequence::AmbiguousConversion: 9576 case ImplicitConversionSequence::EllipsisConversion: 9577 case ImplicitConversionSequence::BadConversion: 9578 return; 9579 } 9580 9581 // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion. 9582 APValue ConstantValue; 9583 QualType ConstantType; 9584 switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue, 9585 ConstantType)) { 9586 case NK_Not_Narrowing: 9587 case NK_Dependent_Narrowing: 9588 // No narrowing occurred. 9589 return; 9590 9591 case NK_Type_Narrowing: 9592 // This was a floating-to-integer conversion, which is always considered a 9593 // narrowing conversion even if the value is a constant and can be 9594 // represented exactly as an integer. 9595 S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts()) 9596 ? diag::ext_init_list_type_narrowing 9597 : diag::warn_init_list_type_narrowing) 9598 << PostInit->getSourceRange() 9599 << PreNarrowingType.getLocalUnqualifiedType() 9600 << EntityType.getLocalUnqualifiedType(); 9601 break; 9602 9603 case NK_Constant_Narrowing: 9604 // A constant value was narrowed. 9605 S.Diag(PostInit->getBeginLoc(), 9606 NarrowingErrs(S.getLangOpts()) 9607 ? diag::ext_init_list_constant_narrowing 9608 : diag::warn_init_list_constant_narrowing) 9609 << PostInit->getSourceRange() 9610 << ConstantValue.getAsString(S.getASTContext(), ConstantType) 9611 << EntityType.getLocalUnqualifiedType(); 9612 break; 9613 9614 case NK_Variable_Narrowing: 9615 // A variable's value may have been narrowed. 9616 S.Diag(PostInit->getBeginLoc(), 9617 NarrowingErrs(S.getLangOpts()) 9618 ? diag::ext_init_list_variable_narrowing 9619 : diag::warn_init_list_variable_narrowing) 9620 << PostInit->getSourceRange() 9621 << PreNarrowingType.getLocalUnqualifiedType() 9622 << EntityType.getLocalUnqualifiedType(); 9623 break; 9624 } 9625 9626 SmallString<128> StaticCast; 9627 llvm::raw_svector_ostream OS(StaticCast); 9628 OS << "static_cast<"; 9629 if (const TypedefType *TT = EntityType->getAs<TypedefType>()) { 9630 // It's important to use the typedef's name if there is one so that the 9631 // fixit doesn't break code using types like int64_t. 9632 // 9633 // FIXME: This will break if the typedef requires qualification. But 9634 // getQualifiedNameAsString() includes non-machine-parsable components. 9635 OS << *TT->getDecl(); 9636 } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>()) 9637 OS << BT->getName(S.getLangOpts()); 9638 else { 9639 // Oops, we didn't find the actual type of the variable. Don't emit a fixit 9640 // with a broken cast. 9641 return; 9642 } 9643 OS << ">("; 9644 S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence) 9645 << PostInit->getSourceRange() 9646 << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str()) 9647 << FixItHint::CreateInsertion( 9648 S.getLocForEndOfToken(PostInit->getEndLoc()), ")"); 9649 } 9650 9651 //===----------------------------------------------------------------------===// 9652 // Initialization helper functions 9653 //===----------------------------------------------------------------------===// 9654 bool 9655 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity, 9656 ExprResult Init) { 9657 if (Init.isInvalid()) 9658 return false; 9659 9660 Expr *InitE = Init.get(); 9661 assert(InitE && "No initialization expression"); 9662 9663 InitializationKind Kind = 9664 InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation()); 9665 InitializationSequence Seq(*this, Entity, Kind, InitE); 9666 return !Seq.Failed(); 9667 } 9668 9669 ExprResult 9670 Sema::PerformCopyInitialization(const InitializedEntity &Entity, 9671 SourceLocation EqualLoc, 9672 ExprResult Init, 9673 bool TopLevelOfInitList, 9674 bool AllowExplicit) { 9675 if (Init.isInvalid()) 9676 return ExprError(); 9677 9678 Expr *InitE = Init.get(); 9679 assert(InitE && "No initialization expression?"); 9680 9681 if (EqualLoc.isInvalid()) 9682 EqualLoc = InitE->getBeginLoc(); 9683 9684 InitializationKind Kind = InitializationKind::CreateCopy( 9685 InitE->getBeginLoc(), EqualLoc, AllowExplicit); 9686 InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList); 9687 9688 // Prevent infinite recursion when performing parameter copy-initialization. 9689 const bool ShouldTrackCopy = 9690 Entity.isParameterKind() && Seq.isConstructorInitialization(); 9691 if (ShouldTrackCopy) { 9692 if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) != 9693 CurrentParameterCopyTypes.end()) { 9694 Seq.SetOverloadFailure( 9695 InitializationSequence::FK_ConstructorOverloadFailed, 9696 OR_No_Viable_Function); 9697 9698 // Try to give a meaningful diagnostic note for the problematic 9699 // constructor. 9700 const auto LastStep = Seq.step_end() - 1; 9701 assert(LastStep->Kind == 9702 InitializationSequence::SK_ConstructorInitialization); 9703 const FunctionDecl *Function = LastStep->Function.Function; 9704 auto Candidate = 9705 llvm::find_if(Seq.getFailedCandidateSet(), 9706 [Function](const OverloadCandidate &Candidate) -> bool { 9707 return Candidate.Viable && 9708 Candidate.Function == Function && 9709 Candidate.Conversions.size() > 0; 9710 }); 9711 if (Candidate != Seq.getFailedCandidateSet().end() && 9712 Function->getNumParams() > 0) { 9713 Candidate->Viable = false; 9714 Candidate->FailureKind = ovl_fail_bad_conversion; 9715 Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion, 9716 InitE, 9717 Function->getParamDecl(0)->getType()); 9718 } 9719 } 9720 CurrentParameterCopyTypes.push_back(Entity.getType()); 9721 } 9722 9723 ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE); 9724 9725 if (ShouldTrackCopy) 9726 CurrentParameterCopyTypes.pop_back(); 9727 9728 return Result; 9729 } 9730 9731 /// Determine whether RD is, or is derived from, a specialization of CTD. 9732 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD, 9733 ClassTemplateDecl *CTD) { 9734 auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) { 9735 auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate); 9736 return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD); 9737 }; 9738 return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization)); 9739 } 9740 9741 QualType Sema::DeduceTemplateSpecializationFromInitializer( 9742 TypeSourceInfo *TSInfo, const InitializedEntity &Entity, 9743 const InitializationKind &Kind, MultiExprArg Inits) { 9744 auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>( 9745 TSInfo->getType()->getContainedDeducedType()); 9746 assert(DeducedTST && "not a deduced template specialization type"); 9747 9748 auto TemplateName = DeducedTST->getTemplateName(); 9749 if (TemplateName.isDependent()) 9750 return Context.DependentTy; 9751 9752 // We can only perform deduction for class templates. 9753 auto *Template = 9754 dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl()); 9755 if (!Template) { 9756 Diag(Kind.getLocation(), 9757 diag::err_deduced_non_class_template_specialization_type) 9758 << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName; 9759 if (auto *TD = TemplateName.getAsTemplateDecl()) 9760 Diag(TD->getLocation(), diag::note_template_decl_here); 9761 return QualType(); 9762 } 9763 9764 // Can't deduce from dependent arguments. 9765 if (Expr::hasAnyTypeDependentArguments(Inits)) { 9766 Diag(TSInfo->getTypeLoc().getBeginLoc(), 9767 diag::warn_cxx14_compat_class_template_argument_deduction) 9768 << TSInfo->getTypeLoc().getSourceRange() << 0; 9769 return Context.DependentTy; 9770 } 9771 9772 // FIXME: Perform "exact type" matching first, per CWG discussion? 9773 // Or implement this via an implied 'T(T) -> T' deduction guide? 9774 9775 // FIXME: Do we need/want a std::initializer_list<T> special case? 9776 9777 // Look up deduction guides, including those synthesized from constructors. 9778 // 9779 // C++1z [over.match.class.deduct]p1: 9780 // A set of functions and function templates is formed comprising: 9781 // - For each constructor of the class template designated by the 9782 // template-name, a function template [...] 9783 // - For each deduction-guide, a function or function template [...] 9784 DeclarationNameInfo NameInfo( 9785 Context.DeclarationNames.getCXXDeductionGuideName(Template), 9786 TSInfo->getTypeLoc().getEndLoc()); 9787 LookupResult Guides(*this, NameInfo, LookupOrdinaryName); 9788 LookupQualifiedName(Guides, Template->getDeclContext()); 9789 9790 // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't 9791 // clear on this, but they're not found by name so access does not apply. 9792 Guides.suppressDiagnostics(); 9793 9794 // Figure out if this is list-initialization. 9795 InitListExpr *ListInit = 9796 (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct) 9797 ? dyn_cast<InitListExpr>(Inits[0]) 9798 : nullptr; 9799 9800 // C++1z [over.match.class.deduct]p1: 9801 // Initialization and overload resolution are performed as described in 9802 // [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list] 9803 // (as appropriate for the type of initialization performed) for an object 9804 // of a hypothetical class type, where the selected functions and function 9805 // templates are considered to be the constructors of that class type 9806 // 9807 // Since we know we're initializing a class type of a type unrelated to that 9808 // of the initializer, this reduces to something fairly reasonable. 9809 OverloadCandidateSet Candidates(Kind.getLocation(), 9810 OverloadCandidateSet::CSK_Normal); 9811 OverloadCandidateSet::iterator Best; 9812 9813 bool HasAnyDeductionGuide = false; 9814 bool AllowExplicit = !Kind.isCopyInit() || ListInit; 9815 9816 auto tryToResolveOverload = 9817 [&](bool OnlyListConstructors) -> OverloadingResult { 9818 Candidates.clear(OverloadCandidateSet::CSK_Normal); 9819 HasAnyDeductionGuide = false; 9820 9821 for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) { 9822 NamedDecl *D = (*I)->getUnderlyingDecl(); 9823 if (D->isInvalidDecl()) 9824 continue; 9825 9826 auto *TD = dyn_cast<FunctionTemplateDecl>(D); 9827 auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>( 9828 TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D)); 9829 if (!GD) 9830 continue; 9831 9832 if (!GD->isImplicit()) 9833 HasAnyDeductionGuide = true; 9834 9835 // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class) 9836 // For copy-initialization, the candidate functions are all the 9837 // converting constructors (12.3.1) of that class. 9838 // C++ [over.match.copy]p1: (non-list copy-initialization from class) 9839 // The converting constructors of T are candidate functions. 9840 if (!AllowExplicit) { 9841 // Overload resolution checks whether the deduction guide is declared 9842 // explicit for us. 9843 9844 // When looking for a converting constructor, deduction guides that 9845 // could never be called with one argument are not interesting to 9846 // check or note. 9847 if (GD->getMinRequiredArguments() > 1 || 9848 (GD->getNumParams() == 0 && !GD->isVariadic())) 9849 continue; 9850 } 9851 9852 // C++ [over.match.list]p1.1: (first phase list initialization) 9853 // Initially, the candidate functions are the initializer-list 9854 // constructors of the class T 9855 if (OnlyListConstructors && !isInitListConstructor(GD)) 9856 continue; 9857 9858 // C++ [over.match.list]p1.2: (second phase list initialization) 9859 // the candidate functions are all the constructors of the class T 9860 // C++ [over.match.ctor]p1: (all other cases) 9861 // the candidate functions are all the constructors of the class of 9862 // the object being initialized 9863 9864 // C++ [over.best.ics]p4: 9865 // When [...] the constructor [...] is a candidate by 9866 // - [over.match.copy] (in all cases) 9867 // FIXME: The "second phase of [over.match.list] case can also 9868 // theoretically happen here, but it's not clear whether we can 9869 // ever have a parameter of the right type. 9870 bool SuppressUserConversions = Kind.isCopyInit(); 9871 9872 if (TD) 9873 AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr, 9874 Inits, Candidates, SuppressUserConversions, 9875 /*PartialOverloading*/ false, 9876 AllowExplicit); 9877 else 9878 AddOverloadCandidate(GD, I.getPair(), Inits, Candidates, 9879 SuppressUserConversions, 9880 /*PartialOverloading*/ false, AllowExplicit); 9881 } 9882 return Candidates.BestViableFunction(*this, Kind.getLocation(), Best); 9883 }; 9884 9885 OverloadingResult Result = OR_No_Viable_Function; 9886 9887 // C++11 [over.match.list]p1, per DR1467: for list-initialization, first 9888 // try initializer-list constructors. 9889 if (ListInit) { 9890 bool TryListConstructors = true; 9891 9892 // Try list constructors unless the list is empty and the class has one or 9893 // more default constructors, in which case those constructors win. 9894 if (!ListInit->getNumInits()) { 9895 for (NamedDecl *D : Guides) { 9896 auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl()); 9897 if (FD && FD->getMinRequiredArguments() == 0) { 9898 TryListConstructors = false; 9899 break; 9900 } 9901 } 9902 } else if (ListInit->getNumInits() == 1) { 9903 // C++ [over.match.class.deduct]: 9904 // As an exception, the first phase in [over.match.list] (considering 9905 // initializer-list constructors) is omitted if the initializer list 9906 // consists of a single expression of type cv U, where U is a 9907 // specialization of C or a class derived from a specialization of C. 9908 Expr *E = ListInit->getInit(0); 9909 auto *RD = E->getType()->getAsCXXRecordDecl(); 9910 if (!isa<InitListExpr>(E) && RD && 9911 isCompleteType(Kind.getLocation(), E->getType()) && 9912 isOrIsDerivedFromSpecializationOf(RD, Template)) 9913 TryListConstructors = false; 9914 } 9915 9916 if (TryListConstructors) 9917 Result = tryToResolveOverload(/*OnlyListConstructor*/true); 9918 // Then unwrap the initializer list and try again considering all 9919 // constructors. 9920 Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits()); 9921 } 9922 9923 // If list-initialization fails, or if we're doing any other kind of 9924 // initialization, we (eventually) consider constructors. 9925 if (Result == OR_No_Viable_Function) 9926 Result = tryToResolveOverload(/*OnlyListConstructor*/false); 9927 9928 switch (Result) { 9929 case OR_Ambiguous: 9930 // FIXME: For list-initialization candidates, it'd usually be better to 9931 // list why they were not viable when given the initializer list itself as 9932 // an argument. 9933 Candidates.NoteCandidates( 9934 PartialDiagnosticAt( 9935 Kind.getLocation(), 9936 PDiag(diag::err_deduced_class_template_ctor_ambiguous) 9937 << TemplateName), 9938 *this, OCD_AmbiguousCandidates, Inits); 9939 return QualType(); 9940 9941 case OR_No_Viable_Function: { 9942 CXXRecordDecl *Primary = 9943 cast<ClassTemplateDecl>(Template)->getTemplatedDecl(); 9944 bool Complete = 9945 isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary)); 9946 Candidates.NoteCandidates( 9947 PartialDiagnosticAt( 9948 Kind.getLocation(), 9949 PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable 9950 : diag::err_deduced_class_template_incomplete) 9951 << TemplateName << !Guides.empty()), 9952 *this, OCD_AllCandidates, Inits); 9953 return QualType(); 9954 } 9955 9956 case OR_Deleted: { 9957 Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted) 9958 << TemplateName; 9959 NoteDeletedFunction(Best->Function); 9960 return QualType(); 9961 } 9962 9963 case OR_Success: 9964 // C++ [over.match.list]p1: 9965 // In copy-list-initialization, if an explicit constructor is chosen, the 9966 // initialization is ill-formed. 9967 if (Kind.isCopyInit() && ListInit && 9968 cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) { 9969 bool IsDeductionGuide = !Best->Function->isImplicit(); 9970 Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit) 9971 << TemplateName << IsDeductionGuide; 9972 Diag(Best->Function->getLocation(), 9973 diag::note_explicit_ctor_deduction_guide_here) 9974 << IsDeductionGuide; 9975 return QualType(); 9976 } 9977 9978 // Make sure we didn't select an unusable deduction guide, and mark it 9979 // as referenced. 9980 DiagnoseUseOfDecl(Best->Function, Kind.getLocation()); 9981 MarkFunctionReferenced(Kind.getLocation(), Best->Function); 9982 break; 9983 } 9984 9985 // C++ [dcl.type.class.deduct]p1: 9986 // The placeholder is replaced by the return type of the function selected 9987 // by overload resolution for class template deduction. 9988 QualType DeducedType = 9989 SubstAutoType(TSInfo->getType(), Best->Function->getReturnType()); 9990 Diag(TSInfo->getTypeLoc().getBeginLoc(), 9991 diag::warn_cxx14_compat_class_template_argument_deduction) 9992 << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType; 9993 9994 // Warn if CTAD was used on a type that does not have any user-defined 9995 // deduction guides. 9996 if (!HasAnyDeductionGuide) { 9997 Diag(TSInfo->getTypeLoc().getBeginLoc(), 9998 diag::warn_ctad_maybe_unsupported) 9999 << TemplateName; 10000 Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported); 10001 } 10002 10003 return DeducedType; 10004 } 10005