1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for initializers. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/DeclObjC.h" 15 #include "clang/AST/ExprCXX.h" 16 #include "clang/AST/ExprObjC.h" 17 #include "clang/AST/ExprOpenMP.h" 18 #include "clang/AST/TypeLoc.h" 19 #include "clang/Basic/CharInfo.h" 20 #include "clang/Basic/SourceManager.h" 21 #include "clang/Basic/TargetInfo.h" 22 #include "clang/Sema/Designator.h" 23 #include "clang/Sema/Initialization.h" 24 #include "clang/Sema/Lookup.h" 25 #include "clang/Sema/SemaInternal.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/PointerIntPair.h" 28 #include "llvm/ADT/SmallString.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/raw_ostream.h" 31 32 using namespace clang; 33 34 //===----------------------------------------------------------------------===// 35 // Sema Initialization Checking 36 //===----------------------------------------------------------------------===// 37 38 /// Check whether T is compatible with a wide character type (wchar_t, 39 /// char16_t or char32_t). 40 static bool IsWideCharCompatible(QualType T, ASTContext &Context) { 41 if (Context.typesAreCompatible(Context.getWideCharType(), T)) 42 return true; 43 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) { 44 return Context.typesAreCompatible(Context.Char16Ty, T) || 45 Context.typesAreCompatible(Context.Char32Ty, T); 46 } 47 return false; 48 } 49 50 enum StringInitFailureKind { 51 SIF_None, 52 SIF_NarrowStringIntoWideChar, 53 SIF_WideStringIntoChar, 54 SIF_IncompatWideStringIntoWideChar, 55 SIF_UTF8StringIntoPlainChar, 56 SIF_PlainStringIntoUTF8Char, 57 SIF_Other 58 }; 59 60 /// Check whether the array of type AT can be initialized by the Init 61 /// expression by means of string initialization. Returns SIF_None if so, 62 /// otherwise returns a StringInitFailureKind that describes why the 63 /// initialization would not work. 64 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT, 65 ASTContext &Context) { 66 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT)) 67 return SIF_Other; 68 69 // See if this is a string literal or @encode. 70 Init = Init->IgnoreParens(); 71 72 // Handle @encode, which is a narrow string. 73 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType()) 74 return SIF_None; 75 76 // Otherwise we can only handle string literals. 77 StringLiteral *SL = dyn_cast<StringLiteral>(Init); 78 if (!SL) 79 return SIF_Other; 80 81 const QualType ElemTy = 82 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType(); 83 84 switch (SL->getKind()) { 85 case StringLiteral::UTF8: 86 // char8_t array can be initialized with a UTF-8 string. 87 if (ElemTy->isChar8Type()) 88 return SIF_None; 89 LLVM_FALLTHROUGH; 90 case StringLiteral::Ordinary: 91 // char array can be initialized with a narrow string. 92 // Only allow char x[] = "foo"; not char x[] = L"foo"; 93 if (ElemTy->isCharType()) 94 return (SL->getKind() == StringLiteral::UTF8 && 95 Context.getLangOpts().Char8) 96 ? SIF_UTF8StringIntoPlainChar 97 : SIF_None; 98 if (ElemTy->isChar8Type()) 99 return SIF_PlainStringIntoUTF8Char; 100 if (IsWideCharCompatible(ElemTy, Context)) 101 return SIF_NarrowStringIntoWideChar; 102 return SIF_Other; 103 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15: 104 // "An array with element type compatible with a qualified or unqualified 105 // version of wchar_t, char16_t, or char32_t may be initialized by a wide 106 // string literal with the corresponding encoding prefix (L, u, or U, 107 // respectively), optionally enclosed in braces. 108 case StringLiteral::UTF16: 109 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy)) 110 return SIF_None; 111 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 112 return SIF_WideStringIntoChar; 113 if (IsWideCharCompatible(ElemTy, Context)) 114 return SIF_IncompatWideStringIntoWideChar; 115 return SIF_Other; 116 case StringLiteral::UTF32: 117 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy)) 118 return SIF_None; 119 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 120 return SIF_WideStringIntoChar; 121 if (IsWideCharCompatible(ElemTy, Context)) 122 return SIF_IncompatWideStringIntoWideChar; 123 return SIF_Other; 124 case StringLiteral::Wide: 125 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy)) 126 return SIF_None; 127 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 128 return SIF_WideStringIntoChar; 129 if (IsWideCharCompatible(ElemTy, Context)) 130 return SIF_IncompatWideStringIntoWideChar; 131 return SIF_Other; 132 } 133 134 llvm_unreachable("missed a StringLiteral kind?"); 135 } 136 137 static StringInitFailureKind IsStringInit(Expr *init, QualType declType, 138 ASTContext &Context) { 139 const ArrayType *arrayType = Context.getAsArrayType(declType); 140 if (!arrayType) 141 return SIF_Other; 142 return IsStringInit(init, arrayType, Context); 143 } 144 145 bool Sema::IsStringInit(Expr *Init, const ArrayType *AT) { 146 return ::IsStringInit(Init, AT, Context) == SIF_None; 147 } 148 149 /// Update the type of a string literal, including any surrounding parentheses, 150 /// to match the type of the object which it is initializing. 151 static void updateStringLiteralType(Expr *E, QualType Ty) { 152 while (true) { 153 E->setType(Ty); 154 E->setValueKind(VK_PRValue); 155 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) { 156 break; 157 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 158 E = PE->getSubExpr(); 159 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 160 assert(UO->getOpcode() == UO_Extension); 161 E = UO->getSubExpr(); 162 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) { 163 E = GSE->getResultExpr(); 164 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) { 165 E = CE->getChosenSubExpr(); 166 } else { 167 llvm_unreachable("unexpected expr in string literal init"); 168 } 169 } 170 } 171 172 /// Fix a compound literal initializing an array so it's correctly marked 173 /// as an rvalue. 174 static void updateGNUCompoundLiteralRValue(Expr *E) { 175 while (true) { 176 E->setValueKind(VK_PRValue); 177 if (isa<CompoundLiteralExpr>(E)) { 178 break; 179 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 180 E = PE->getSubExpr(); 181 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 182 assert(UO->getOpcode() == UO_Extension); 183 E = UO->getSubExpr(); 184 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) { 185 E = GSE->getResultExpr(); 186 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) { 187 E = CE->getChosenSubExpr(); 188 } else { 189 llvm_unreachable("unexpected expr in array compound literal init"); 190 } 191 } 192 } 193 194 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT, 195 Sema &S) { 196 // Get the length of the string as parsed. 197 auto *ConstantArrayTy = 198 cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe()); 199 uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue(); 200 201 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { 202 // C99 6.7.8p14. We have an array of character type with unknown size 203 // being initialized to a string literal. 204 llvm::APInt ConstVal(32, StrLength); 205 // Return a new array type (C99 6.7.8p22). 206 DeclT = S.Context.getConstantArrayType(IAT->getElementType(), 207 ConstVal, nullptr, 208 ArrayType::Normal, 0); 209 updateStringLiteralType(Str, DeclT); 210 return; 211 } 212 213 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT); 214 215 // We have an array of character type with known size. However, 216 // the size may be smaller or larger than the string we are initializing. 217 // FIXME: Avoid truncation for 64-bit length strings. 218 if (S.getLangOpts().CPlusPlus) { 219 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) { 220 // For Pascal strings it's OK to strip off the terminating null character, 221 // so the example below is valid: 222 // 223 // unsigned char a[2] = "\pa"; 224 if (SL->isPascal()) 225 StrLength--; 226 } 227 228 // [dcl.init.string]p2 229 if (StrLength > CAT->getSize().getZExtValue()) 230 S.Diag(Str->getBeginLoc(), 231 diag::err_initializer_string_for_char_array_too_long) 232 << Str->getSourceRange(); 233 } else { 234 // C99 6.7.8p14. 235 if (StrLength-1 > CAT->getSize().getZExtValue()) 236 S.Diag(Str->getBeginLoc(), 237 diag::ext_initializer_string_for_char_array_too_long) 238 << Str->getSourceRange(); 239 } 240 241 // Set the type to the actual size that we are initializing. If we have 242 // something like: 243 // char x[1] = "foo"; 244 // then this will set the string literal's type to char[1]. 245 updateStringLiteralType(Str, DeclT); 246 } 247 248 //===----------------------------------------------------------------------===// 249 // Semantic checking for initializer lists. 250 //===----------------------------------------------------------------------===// 251 252 namespace { 253 254 /// Semantic checking for initializer lists. 255 /// 256 /// The InitListChecker class contains a set of routines that each 257 /// handle the initialization of a certain kind of entity, e.g., 258 /// arrays, vectors, struct/union types, scalars, etc. The 259 /// InitListChecker itself performs a recursive walk of the subobject 260 /// structure of the type to be initialized, while stepping through 261 /// the initializer list one element at a time. The IList and Index 262 /// parameters to each of the Check* routines contain the active 263 /// (syntactic) initializer list and the index into that initializer 264 /// list that represents the current initializer. Each routine is 265 /// responsible for moving that Index forward as it consumes elements. 266 /// 267 /// Each Check* routine also has a StructuredList/StructuredIndex 268 /// arguments, which contains the current "structured" (semantic) 269 /// initializer list and the index into that initializer list where we 270 /// are copying initializers as we map them over to the semantic 271 /// list. Once we have completed our recursive walk of the subobject 272 /// structure, we will have constructed a full semantic initializer 273 /// list. 274 /// 275 /// C99 designators cause changes in the initializer list traversal, 276 /// because they make the initialization "jump" into a specific 277 /// subobject and then continue the initialization from that 278 /// point. CheckDesignatedInitializer() recursively steps into the 279 /// designated subobject and manages backing out the recursion to 280 /// initialize the subobjects after the one designated. 281 /// 282 /// If an initializer list contains any designators, we build a placeholder 283 /// structured list even in 'verify only' mode, so that we can track which 284 /// elements need 'empty' initializtion. 285 class InitListChecker { 286 Sema &SemaRef; 287 bool hadError = false; 288 bool VerifyOnly; // No diagnostics. 289 bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode. 290 bool InOverloadResolution; 291 InitListExpr *FullyStructuredList = nullptr; 292 NoInitExpr *DummyExpr = nullptr; 293 294 NoInitExpr *getDummyInit() { 295 if (!DummyExpr) 296 DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy); 297 return DummyExpr; 298 } 299 300 void CheckImplicitInitList(const InitializedEntity &Entity, 301 InitListExpr *ParentIList, QualType T, 302 unsigned &Index, InitListExpr *StructuredList, 303 unsigned &StructuredIndex); 304 void CheckExplicitInitList(const InitializedEntity &Entity, 305 InitListExpr *IList, QualType &T, 306 InitListExpr *StructuredList, 307 bool TopLevelObject = false); 308 void CheckListElementTypes(const InitializedEntity &Entity, 309 InitListExpr *IList, QualType &DeclType, 310 bool SubobjectIsDesignatorContext, 311 unsigned &Index, 312 InitListExpr *StructuredList, 313 unsigned &StructuredIndex, 314 bool TopLevelObject = false); 315 void CheckSubElementType(const InitializedEntity &Entity, 316 InitListExpr *IList, QualType ElemType, 317 unsigned &Index, 318 InitListExpr *StructuredList, 319 unsigned &StructuredIndex, 320 bool DirectlyDesignated = false); 321 void CheckComplexType(const InitializedEntity &Entity, 322 InitListExpr *IList, QualType DeclType, 323 unsigned &Index, 324 InitListExpr *StructuredList, 325 unsigned &StructuredIndex); 326 void CheckScalarType(const InitializedEntity &Entity, 327 InitListExpr *IList, QualType DeclType, 328 unsigned &Index, 329 InitListExpr *StructuredList, 330 unsigned &StructuredIndex); 331 void CheckReferenceType(const InitializedEntity &Entity, 332 InitListExpr *IList, QualType DeclType, 333 unsigned &Index, 334 InitListExpr *StructuredList, 335 unsigned &StructuredIndex); 336 void CheckVectorType(const InitializedEntity &Entity, 337 InitListExpr *IList, QualType DeclType, unsigned &Index, 338 InitListExpr *StructuredList, 339 unsigned &StructuredIndex); 340 void CheckStructUnionTypes(const InitializedEntity &Entity, 341 InitListExpr *IList, QualType DeclType, 342 CXXRecordDecl::base_class_range Bases, 343 RecordDecl::field_iterator Field, 344 bool SubobjectIsDesignatorContext, unsigned &Index, 345 InitListExpr *StructuredList, 346 unsigned &StructuredIndex, 347 bool TopLevelObject = false); 348 void CheckArrayType(const InitializedEntity &Entity, 349 InitListExpr *IList, QualType &DeclType, 350 llvm::APSInt elementIndex, 351 bool SubobjectIsDesignatorContext, unsigned &Index, 352 InitListExpr *StructuredList, 353 unsigned &StructuredIndex); 354 bool CheckDesignatedInitializer(const InitializedEntity &Entity, 355 InitListExpr *IList, DesignatedInitExpr *DIE, 356 unsigned DesigIdx, 357 QualType &CurrentObjectType, 358 RecordDecl::field_iterator *NextField, 359 llvm::APSInt *NextElementIndex, 360 unsigned &Index, 361 InitListExpr *StructuredList, 362 unsigned &StructuredIndex, 363 bool FinishSubobjectInit, 364 bool TopLevelObject); 365 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 366 QualType CurrentObjectType, 367 InitListExpr *StructuredList, 368 unsigned StructuredIndex, 369 SourceRange InitRange, 370 bool IsFullyOverwritten = false); 371 void UpdateStructuredListElement(InitListExpr *StructuredList, 372 unsigned &StructuredIndex, 373 Expr *expr); 374 InitListExpr *createInitListExpr(QualType CurrentObjectType, 375 SourceRange InitRange, 376 unsigned ExpectedNumInits); 377 int numArrayElements(QualType DeclType); 378 int numStructUnionElements(QualType DeclType); 379 380 ExprResult PerformEmptyInit(SourceLocation Loc, 381 const InitializedEntity &Entity); 382 383 /// Diagnose that OldInit (or part thereof) has been overridden by NewInit. 384 void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange, 385 bool FullyOverwritten = true) { 386 // Overriding an initializer via a designator is valid with C99 designated 387 // initializers, but ill-formed with C++20 designated initializers. 388 unsigned DiagID = SemaRef.getLangOpts().CPlusPlus 389 ? diag::ext_initializer_overrides 390 : diag::warn_initializer_overrides; 391 392 if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) { 393 // In overload resolution, we have to strictly enforce the rules, and so 394 // don't allow any overriding of prior initializers. This matters for a 395 // case such as: 396 // 397 // union U { int a, b; }; 398 // struct S { int a, b; }; 399 // void f(U), f(S); 400 // 401 // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For 402 // consistency, we disallow all overriding of prior initializers in 403 // overload resolution, not only overriding of union members. 404 hadError = true; 405 } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) { 406 // If we'll be keeping around the old initializer but overwriting part of 407 // the object it initialized, and that object is not trivially 408 // destructible, this can leak. Don't allow that, not even as an 409 // extension. 410 // 411 // FIXME: It might be reasonable to allow this in cases where the part of 412 // the initializer that we're overriding has trivial destruction. 413 DiagID = diag::err_initializer_overrides_destructed; 414 } else if (!OldInit->getSourceRange().isValid()) { 415 // We need to check on source range validity because the previous 416 // initializer does not have to be an explicit initializer. e.g., 417 // 418 // struct P { int a, b; }; 419 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 }; 420 // 421 // There is an overwrite taking place because the first braced initializer 422 // list "{ .a = 2 }" already provides value for .p.b (which is zero). 423 // 424 // Such overwrites are harmless, so we don't diagnose them. (Note that in 425 // C++, this cannot be reached unless we've already seen and diagnosed a 426 // different conformance issue, such as a mixture of designated and 427 // non-designated initializers or a multi-level designator.) 428 return; 429 } 430 431 if (!VerifyOnly) { 432 SemaRef.Diag(NewInitRange.getBegin(), DiagID) 433 << NewInitRange << FullyOverwritten << OldInit->getType(); 434 SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer) 435 << (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten) 436 << OldInit->getSourceRange(); 437 } 438 } 439 440 // Explanation on the "FillWithNoInit" mode: 441 // 442 // Assume we have the following definitions (Case#1): 443 // struct P { char x[6][6]; } xp = { .x[1] = "bar" }; 444 // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' }; 445 // 446 // l.lp.x[1][0..1] should not be filled with implicit initializers because the 447 // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf". 448 // 449 // But if we have (Case#2): 450 // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } }; 451 // 452 // l.lp.x[1][0..1] are implicitly initialized and do not use values from the 453 // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0". 454 // 455 // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes" 456 // in the InitListExpr, the "holes" in Case#1 are filled not with empty 457 // initializers but with special "NoInitExpr" place holders, which tells the 458 // CodeGen not to generate any initializers for these parts. 459 void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base, 460 const InitializedEntity &ParentEntity, 461 InitListExpr *ILE, bool &RequiresSecondPass, 462 bool FillWithNoInit); 463 void FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 464 const InitializedEntity &ParentEntity, 465 InitListExpr *ILE, bool &RequiresSecondPass, 466 bool FillWithNoInit = false); 467 void FillInEmptyInitializations(const InitializedEntity &Entity, 468 InitListExpr *ILE, bool &RequiresSecondPass, 469 InitListExpr *OuterILE, unsigned OuterIndex, 470 bool FillWithNoInit = false); 471 bool CheckFlexibleArrayInit(const InitializedEntity &Entity, 472 Expr *InitExpr, FieldDecl *Field, 473 bool TopLevelObject); 474 void CheckEmptyInitializable(const InitializedEntity &Entity, 475 SourceLocation Loc); 476 477 public: 478 InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL, 479 QualType &T, bool VerifyOnly, bool TreatUnavailableAsInvalid, 480 bool InOverloadResolution = false); 481 bool HadError() { return hadError; } 482 483 // Retrieves the fully-structured initializer list used for 484 // semantic analysis and code generation. 485 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; } 486 }; 487 488 } // end anonymous namespace 489 490 ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc, 491 const InitializedEntity &Entity) { 492 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, 493 true); 494 MultiExprArg SubInit; 495 Expr *InitExpr; 496 InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc); 497 498 // C++ [dcl.init.aggr]p7: 499 // If there are fewer initializer-clauses in the list than there are 500 // members in the aggregate, then each member not explicitly initialized 501 // ... 502 bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 && 503 Entity.getType()->getBaseElementTypeUnsafe()->isRecordType(); 504 if (EmptyInitList) { 505 // C++1y / DR1070: 506 // shall be initialized [...] from an empty initializer list. 507 // 508 // We apply the resolution of this DR to C++11 but not C++98, since C++98 509 // does not have useful semantics for initialization from an init list. 510 // We treat this as copy-initialization, because aggregate initialization 511 // always performs copy-initialization on its elements. 512 // 513 // Only do this if we're initializing a class type, to avoid filling in 514 // the initializer list where possible. 515 InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context) 516 InitListExpr(SemaRef.Context, Loc, None, Loc); 517 InitExpr->setType(SemaRef.Context.VoidTy); 518 SubInit = InitExpr; 519 Kind = InitializationKind::CreateCopy(Loc, Loc); 520 } else { 521 // C++03: 522 // shall be value-initialized. 523 } 524 525 InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit); 526 // libstdc++4.6 marks the vector default constructor as explicit in 527 // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case. 528 // stlport does so too. Look for std::__debug for libstdc++, and for 529 // std:: for stlport. This is effectively a compiler-side implementation of 530 // LWG2193. 531 if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() == 532 InitializationSequence::FK_ExplicitConstructor) { 533 OverloadCandidateSet::iterator Best; 534 OverloadingResult O = 535 InitSeq.getFailedCandidateSet() 536 .BestViableFunction(SemaRef, Kind.getLocation(), Best); 537 (void)O; 538 assert(O == OR_Success && "Inconsistent overload resolution"); 539 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 540 CXXRecordDecl *R = CtorDecl->getParent(); 541 542 if (CtorDecl->getMinRequiredArguments() == 0 && 543 CtorDecl->isExplicit() && R->getDeclName() && 544 SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) { 545 bool IsInStd = false; 546 for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext()); 547 ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) { 548 if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND)) 549 IsInStd = true; 550 } 551 552 if (IsInStd && llvm::StringSwitch<bool>(R->getName()) 553 .Cases("basic_string", "deque", "forward_list", true) 554 .Cases("list", "map", "multimap", "multiset", true) 555 .Cases("priority_queue", "queue", "set", "stack", true) 556 .Cases("unordered_map", "unordered_set", "vector", true) 557 .Default(false)) { 558 InitSeq.InitializeFrom( 559 SemaRef, Entity, 560 InitializationKind::CreateValue(Loc, Loc, Loc, true), 561 MultiExprArg(), /*TopLevelOfInitList=*/false, 562 TreatUnavailableAsInvalid); 563 // Emit a warning for this. System header warnings aren't shown 564 // by default, but people working on system headers should see it. 565 if (!VerifyOnly) { 566 SemaRef.Diag(CtorDecl->getLocation(), 567 diag::warn_invalid_initializer_from_system_header); 568 if (Entity.getKind() == InitializedEntity::EK_Member) 569 SemaRef.Diag(Entity.getDecl()->getLocation(), 570 diag::note_used_in_initialization_here); 571 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) 572 SemaRef.Diag(Loc, diag::note_used_in_initialization_here); 573 } 574 } 575 } 576 } 577 if (!InitSeq) { 578 if (!VerifyOnly) { 579 InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit); 580 if (Entity.getKind() == InitializedEntity::EK_Member) 581 SemaRef.Diag(Entity.getDecl()->getLocation(), 582 diag::note_in_omitted_aggregate_initializer) 583 << /*field*/1 << Entity.getDecl(); 584 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) { 585 bool IsTrailingArrayNewMember = 586 Entity.getParent() && 587 Entity.getParent()->isVariableLengthArrayNew(); 588 SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer) 589 << (IsTrailingArrayNewMember ? 2 : /*array element*/0) 590 << Entity.getElementIndex(); 591 } 592 } 593 hadError = true; 594 return ExprError(); 595 } 596 597 return VerifyOnly ? ExprResult() 598 : InitSeq.Perform(SemaRef, Entity, Kind, SubInit); 599 } 600 601 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity, 602 SourceLocation Loc) { 603 // If we're building a fully-structured list, we'll check this at the end 604 // once we know which elements are actually initialized. Otherwise, we know 605 // that there are no designators so we can just check now. 606 if (FullyStructuredList) 607 return; 608 PerformEmptyInit(Loc, Entity); 609 } 610 611 void InitListChecker::FillInEmptyInitForBase( 612 unsigned Init, const CXXBaseSpecifier &Base, 613 const InitializedEntity &ParentEntity, InitListExpr *ILE, 614 bool &RequiresSecondPass, bool FillWithNoInit) { 615 InitializedEntity BaseEntity = InitializedEntity::InitializeBase( 616 SemaRef.Context, &Base, false, &ParentEntity); 617 618 if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) { 619 ExprResult BaseInit = FillWithNoInit 620 ? new (SemaRef.Context) NoInitExpr(Base.getType()) 621 : PerformEmptyInit(ILE->getEndLoc(), BaseEntity); 622 if (BaseInit.isInvalid()) { 623 hadError = true; 624 return; 625 } 626 627 if (!VerifyOnly) { 628 assert(Init < ILE->getNumInits() && "should have been expanded"); 629 ILE->setInit(Init, BaseInit.getAs<Expr>()); 630 } 631 } else if (InitListExpr *InnerILE = 632 dyn_cast<InitListExpr>(ILE->getInit(Init))) { 633 FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass, 634 ILE, Init, FillWithNoInit); 635 } else if (DesignatedInitUpdateExpr *InnerDIUE = 636 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { 637 FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(), 638 RequiresSecondPass, ILE, Init, 639 /*FillWithNoInit =*/true); 640 } 641 } 642 643 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 644 const InitializedEntity &ParentEntity, 645 InitListExpr *ILE, 646 bool &RequiresSecondPass, 647 bool FillWithNoInit) { 648 SourceLocation Loc = ILE->getEndLoc(); 649 unsigned NumInits = ILE->getNumInits(); 650 InitializedEntity MemberEntity 651 = InitializedEntity::InitializeMember(Field, &ParentEntity); 652 653 if (Init >= NumInits || !ILE->getInit(Init)) { 654 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) 655 if (!RType->getDecl()->isUnion()) 656 assert((Init < NumInits || VerifyOnly) && 657 "This ILE should have been expanded"); 658 659 if (FillWithNoInit) { 660 assert(!VerifyOnly && "should not fill with no-init in verify-only mode"); 661 Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType()); 662 if (Init < NumInits) 663 ILE->setInit(Init, Filler); 664 else 665 ILE->updateInit(SemaRef.Context, Init, Filler); 666 return; 667 } 668 // C++1y [dcl.init.aggr]p7: 669 // If there are fewer initializer-clauses in the list than there are 670 // members in the aggregate, then each member not explicitly initialized 671 // shall be initialized from its brace-or-equal-initializer [...] 672 if (Field->hasInClassInitializer()) { 673 if (VerifyOnly) 674 return; 675 676 ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field); 677 if (DIE.isInvalid()) { 678 hadError = true; 679 return; 680 } 681 SemaRef.checkInitializerLifetime(MemberEntity, DIE.get()); 682 if (Init < NumInits) 683 ILE->setInit(Init, DIE.get()); 684 else { 685 ILE->updateInit(SemaRef.Context, Init, DIE.get()); 686 RequiresSecondPass = true; 687 } 688 return; 689 } 690 691 if (Field->getType()->isReferenceType()) { 692 if (!VerifyOnly) { 693 // C++ [dcl.init.aggr]p9: 694 // If an incomplete or empty initializer-list leaves a 695 // member of reference type uninitialized, the program is 696 // ill-formed. 697 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized) 698 << Field->getType() 699 << (ILE->isSyntacticForm() ? ILE : ILE->getSyntacticForm()) 700 ->getSourceRange(); 701 SemaRef.Diag(Field->getLocation(), diag::note_uninit_reference_member); 702 } 703 hadError = true; 704 return; 705 } 706 707 ExprResult MemberInit = PerformEmptyInit(Loc, MemberEntity); 708 if (MemberInit.isInvalid()) { 709 hadError = true; 710 return; 711 } 712 713 if (hadError || VerifyOnly) { 714 // Do nothing 715 } else if (Init < NumInits) { 716 ILE->setInit(Init, MemberInit.getAs<Expr>()); 717 } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) { 718 // Empty initialization requires a constructor call, so 719 // extend the initializer list to include the constructor 720 // call and make a note that we'll need to take another pass 721 // through the initializer list. 722 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>()); 723 RequiresSecondPass = true; 724 } 725 } else if (InitListExpr *InnerILE 726 = dyn_cast<InitListExpr>(ILE->getInit(Init))) { 727 FillInEmptyInitializations(MemberEntity, InnerILE, 728 RequiresSecondPass, ILE, Init, FillWithNoInit); 729 } else if (DesignatedInitUpdateExpr *InnerDIUE = 730 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { 731 FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(), 732 RequiresSecondPass, ILE, Init, 733 /*FillWithNoInit =*/true); 734 } 735 } 736 737 /// Recursively replaces NULL values within the given initializer list 738 /// with expressions that perform value-initialization of the 739 /// appropriate type, and finish off the InitListExpr formation. 740 void 741 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity, 742 InitListExpr *ILE, 743 bool &RequiresSecondPass, 744 InitListExpr *OuterILE, 745 unsigned OuterIndex, 746 bool FillWithNoInit) { 747 assert((ILE->getType() != SemaRef.Context.VoidTy) && 748 "Should not have void type"); 749 750 // We don't need to do any checks when just filling NoInitExprs; that can't 751 // fail. 752 if (FillWithNoInit && VerifyOnly) 753 return; 754 755 // If this is a nested initializer list, we might have changed its contents 756 // (and therefore some of its properties, such as instantiation-dependence) 757 // while filling it in. Inform the outer initializer list so that its state 758 // can be updated to match. 759 // FIXME: We should fully build the inner initializers before constructing 760 // the outer InitListExpr instead of mutating AST nodes after they have 761 // been used as subexpressions of other nodes. 762 struct UpdateOuterILEWithUpdatedInit { 763 InitListExpr *Outer; 764 unsigned OuterIndex; 765 ~UpdateOuterILEWithUpdatedInit() { 766 if (Outer) 767 Outer->setInit(OuterIndex, Outer->getInit(OuterIndex)); 768 } 769 } UpdateOuterRAII = {OuterILE, OuterIndex}; 770 771 // A transparent ILE is not performing aggregate initialization and should 772 // not be filled in. 773 if (ILE->isTransparent()) 774 return; 775 776 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 777 const RecordDecl *RDecl = RType->getDecl(); 778 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion()) 779 FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(), 780 Entity, ILE, RequiresSecondPass, FillWithNoInit); 781 else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) && 782 cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) { 783 for (auto *Field : RDecl->fields()) { 784 if (Field->hasInClassInitializer()) { 785 FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass, 786 FillWithNoInit); 787 break; 788 } 789 } 790 } else { 791 // The fields beyond ILE->getNumInits() are default initialized, so in 792 // order to leave them uninitialized, the ILE is expanded and the extra 793 // fields are then filled with NoInitExpr. 794 unsigned NumElems = numStructUnionElements(ILE->getType()); 795 if (RDecl->hasFlexibleArrayMember()) 796 ++NumElems; 797 if (!VerifyOnly && ILE->getNumInits() < NumElems) 798 ILE->resizeInits(SemaRef.Context, NumElems); 799 800 unsigned Init = 0; 801 802 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) { 803 for (auto &Base : CXXRD->bases()) { 804 if (hadError) 805 return; 806 807 FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass, 808 FillWithNoInit); 809 ++Init; 810 } 811 } 812 813 for (auto *Field : RDecl->fields()) { 814 if (Field->isUnnamedBitfield()) 815 continue; 816 817 if (hadError) 818 return; 819 820 FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass, 821 FillWithNoInit); 822 if (hadError) 823 return; 824 825 ++Init; 826 827 // Only look at the first initialization of a union. 828 if (RDecl->isUnion()) 829 break; 830 } 831 } 832 833 return; 834 } 835 836 QualType ElementType; 837 838 InitializedEntity ElementEntity = Entity; 839 unsigned NumInits = ILE->getNumInits(); 840 unsigned NumElements = NumInits; 841 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) { 842 ElementType = AType->getElementType(); 843 if (const auto *CAType = dyn_cast<ConstantArrayType>(AType)) 844 NumElements = CAType->getSize().getZExtValue(); 845 // For an array new with an unknown bound, ask for one additional element 846 // in order to populate the array filler. 847 if (Entity.isVariableLengthArrayNew()) 848 ++NumElements; 849 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 850 0, Entity); 851 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) { 852 ElementType = VType->getElementType(); 853 NumElements = VType->getNumElements(); 854 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 855 0, Entity); 856 } else 857 ElementType = ILE->getType(); 858 859 bool SkipEmptyInitChecks = false; 860 for (unsigned Init = 0; Init != NumElements; ++Init) { 861 if (hadError) 862 return; 863 864 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement || 865 ElementEntity.getKind() == InitializedEntity::EK_VectorElement) 866 ElementEntity.setElementIndex(Init); 867 868 if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks)) 869 return; 870 871 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr); 872 if (!InitExpr && Init < NumInits && ILE->hasArrayFiller()) 873 ILE->setInit(Init, ILE->getArrayFiller()); 874 else if (!InitExpr && !ILE->hasArrayFiller()) { 875 // In VerifyOnly mode, there's no point performing empty initialization 876 // more than once. 877 if (SkipEmptyInitChecks) 878 continue; 879 880 Expr *Filler = nullptr; 881 882 if (FillWithNoInit) 883 Filler = new (SemaRef.Context) NoInitExpr(ElementType); 884 else { 885 ExprResult ElementInit = 886 PerformEmptyInit(ILE->getEndLoc(), ElementEntity); 887 if (ElementInit.isInvalid()) { 888 hadError = true; 889 return; 890 } 891 892 Filler = ElementInit.getAs<Expr>(); 893 } 894 895 if (hadError) { 896 // Do nothing 897 } else if (VerifyOnly) { 898 SkipEmptyInitChecks = true; 899 } else if (Init < NumInits) { 900 // For arrays, just set the expression used for value-initialization 901 // of the "holes" in the array. 902 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) 903 ILE->setArrayFiller(Filler); 904 else 905 ILE->setInit(Init, Filler); 906 } else { 907 // For arrays, just set the expression used for value-initialization 908 // of the rest of elements and exit. 909 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) { 910 ILE->setArrayFiller(Filler); 911 return; 912 } 913 914 if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) { 915 // Empty initialization requires a constructor call, so 916 // extend the initializer list to include the constructor 917 // call and make a note that we'll need to take another pass 918 // through the initializer list. 919 ILE->updateInit(SemaRef.Context, Init, Filler); 920 RequiresSecondPass = true; 921 } 922 } 923 } else if (InitListExpr *InnerILE 924 = dyn_cast_or_null<InitListExpr>(InitExpr)) { 925 FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass, 926 ILE, Init, FillWithNoInit); 927 } else if (DesignatedInitUpdateExpr *InnerDIUE = 928 dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) { 929 FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(), 930 RequiresSecondPass, ILE, Init, 931 /*FillWithNoInit =*/true); 932 } 933 } 934 } 935 936 static bool hasAnyDesignatedInits(const InitListExpr *IL) { 937 for (const Stmt *Init : *IL) 938 if (Init && isa<DesignatedInitExpr>(Init)) 939 return true; 940 return false; 941 } 942 943 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity, 944 InitListExpr *IL, QualType &T, bool VerifyOnly, 945 bool TreatUnavailableAsInvalid, 946 bool InOverloadResolution) 947 : SemaRef(S), VerifyOnly(VerifyOnly), 948 TreatUnavailableAsInvalid(TreatUnavailableAsInvalid), 949 InOverloadResolution(InOverloadResolution) { 950 if (!VerifyOnly || hasAnyDesignatedInits(IL)) { 951 FullyStructuredList = 952 createInitListExpr(T, IL->getSourceRange(), IL->getNumInits()); 953 954 // FIXME: Check that IL isn't already the semantic form of some other 955 // InitListExpr. If it is, we'd create a broken AST. 956 if (!VerifyOnly) 957 FullyStructuredList->setSyntacticForm(IL); 958 } 959 960 CheckExplicitInitList(Entity, IL, T, FullyStructuredList, 961 /*TopLevelObject=*/true); 962 963 if (!hadError && FullyStructuredList) { 964 bool RequiresSecondPass = false; 965 FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass, 966 /*OuterILE=*/nullptr, /*OuterIndex=*/0); 967 if (RequiresSecondPass && !hadError) 968 FillInEmptyInitializations(Entity, FullyStructuredList, 969 RequiresSecondPass, nullptr, 0); 970 } 971 if (hadError && FullyStructuredList) 972 FullyStructuredList->markError(); 973 } 974 975 int InitListChecker::numArrayElements(QualType DeclType) { 976 // FIXME: use a proper constant 977 int maxElements = 0x7FFFFFFF; 978 if (const ConstantArrayType *CAT = 979 SemaRef.Context.getAsConstantArrayType(DeclType)) { 980 maxElements = static_cast<int>(CAT->getSize().getZExtValue()); 981 } 982 return maxElements; 983 } 984 985 int InitListChecker::numStructUnionElements(QualType DeclType) { 986 RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl(); 987 int InitializableMembers = 0; 988 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl)) 989 InitializableMembers += CXXRD->getNumBases(); 990 for (const auto *Field : structDecl->fields()) 991 if (!Field->isUnnamedBitfield()) 992 ++InitializableMembers; 993 994 if (structDecl->isUnion()) 995 return std::min(InitializableMembers, 1); 996 return InitializableMembers - structDecl->hasFlexibleArrayMember(); 997 } 998 999 /// Determine whether Entity is an entity for which it is idiomatic to elide 1000 /// the braces in aggregate initialization. 1001 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) { 1002 // Recursive initialization of the one and only field within an aggregate 1003 // class is considered idiomatic. This case arises in particular for 1004 // initialization of std::array, where the C++ standard suggests the idiom of 1005 // 1006 // std::array<T, N> arr = {1, 2, 3}; 1007 // 1008 // (where std::array is an aggregate struct containing a single array field. 1009 1010 if (!Entity.getParent()) 1011 return false; 1012 1013 // Allows elide brace initialization for aggregates with empty base. 1014 if (Entity.getKind() == InitializedEntity::EK_Base) { 1015 auto *ParentRD = 1016 Entity.getParent()->getType()->castAs<RecordType>()->getDecl(); 1017 CXXRecordDecl *CXXRD = cast<CXXRecordDecl>(ParentRD); 1018 return CXXRD->getNumBases() == 1 && CXXRD->field_empty(); 1019 } 1020 1021 // Allow brace elision if the only subobject is a field. 1022 if (Entity.getKind() == InitializedEntity::EK_Member) { 1023 auto *ParentRD = 1024 Entity.getParent()->getType()->castAs<RecordType>()->getDecl(); 1025 if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD)) { 1026 if (CXXRD->getNumBases()) { 1027 return false; 1028 } 1029 } 1030 auto FieldIt = ParentRD->field_begin(); 1031 assert(FieldIt != ParentRD->field_end() && 1032 "no fields but have initializer for member?"); 1033 return ++FieldIt == ParentRD->field_end(); 1034 } 1035 1036 return false; 1037 } 1038 1039 /// Check whether the range of the initializer \p ParentIList from element 1040 /// \p Index onwards can be used to initialize an object of type \p T. Update 1041 /// \p Index to indicate how many elements of the list were consumed. 1042 /// 1043 /// This also fills in \p StructuredList, from element \p StructuredIndex 1044 /// onwards, with the fully-braced, desugared form of the initialization. 1045 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity, 1046 InitListExpr *ParentIList, 1047 QualType T, unsigned &Index, 1048 InitListExpr *StructuredList, 1049 unsigned &StructuredIndex) { 1050 int maxElements = 0; 1051 1052 if (T->isArrayType()) 1053 maxElements = numArrayElements(T); 1054 else if (T->isRecordType()) 1055 maxElements = numStructUnionElements(T); 1056 else if (T->isVectorType()) 1057 maxElements = T->castAs<VectorType>()->getNumElements(); 1058 else 1059 llvm_unreachable("CheckImplicitInitList(): Illegal type"); 1060 1061 if (maxElements == 0) { 1062 if (!VerifyOnly) 1063 SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(), 1064 diag::err_implicit_empty_initializer); 1065 ++Index; 1066 hadError = true; 1067 return; 1068 } 1069 1070 // Build a structured initializer list corresponding to this subobject. 1071 InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit( 1072 ParentIList, Index, T, StructuredList, StructuredIndex, 1073 SourceRange(ParentIList->getInit(Index)->getBeginLoc(), 1074 ParentIList->getSourceRange().getEnd())); 1075 unsigned StructuredSubobjectInitIndex = 0; 1076 1077 // Check the element types and build the structural subobject. 1078 unsigned StartIndex = Index; 1079 CheckListElementTypes(Entity, ParentIList, T, 1080 /*SubobjectIsDesignatorContext=*/false, Index, 1081 StructuredSubobjectInitList, 1082 StructuredSubobjectInitIndex); 1083 1084 if (StructuredSubobjectInitList) { 1085 StructuredSubobjectInitList->setType(T); 1086 1087 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1); 1088 // Update the structured sub-object initializer so that it's ending 1089 // range corresponds with the end of the last initializer it used. 1090 if (EndIndex < ParentIList->getNumInits() && 1091 ParentIList->getInit(EndIndex)) { 1092 SourceLocation EndLoc 1093 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd(); 1094 StructuredSubobjectInitList->setRBraceLoc(EndLoc); 1095 } 1096 1097 // Complain about missing braces. 1098 if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) && 1099 !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) && 1100 !isIdiomaticBraceElisionEntity(Entity)) { 1101 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), 1102 diag::warn_missing_braces) 1103 << StructuredSubobjectInitList->getSourceRange() 1104 << FixItHint::CreateInsertion( 1105 StructuredSubobjectInitList->getBeginLoc(), "{") 1106 << FixItHint::CreateInsertion( 1107 SemaRef.getLocForEndOfToken( 1108 StructuredSubobjectInitList->getEndLoc()), 1109 "}"); 1110 } 1111 1112 // Warn if this type won't be an aggregate in future versions of C++. 1113 auto *CXXRD = T->getAsCXXRecordDecl(); 1114 if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) { 1115 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), 1116 diag::warn_cxx20_compat_aggregate_init_with_ctors) 1117 << StructuredSubobjectInitList->getSourceRange() << T; 1118 } 1119 } 1120 } 1121 1122 /// Warn that \p Entity was of scalar type and was initialized by a 1123 /// single-element braced initializer list. 1124 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity, 1125 SourceRange Braces) { 1126 // Don't warn during template instantiation. If the initialization was 1127 // non-dependent, we warned during the initial parse; otherwise, the 1128 // type might not be scalar in some uses of the template. 1129 if (S.inTemplateInstantiation()) 1130 return; 1131 1132 unsigned DiagID = 0; 1133 1134 switch (Entity.getKind()) { 1135 case InitializedEntity::EK_VectorElement: 1136 case InitializedEntity::EK_ComplexElement: 1137 case InitializedEntity::EK_ArrayElement: 1138 case InitializedEntity::EK_Parameter: 1139 case InitializedEntity::EK_Parameter_CF_Audited: 1140 case InitializedEntity::EK_TemplateParameter: 1141 case InitializedEntity::EK_Result: 1142 // Extra braces here are suspicious. 1143 DiagID = diag::warn_braces_around_init; 1144 break; 1145 1146 case InitializedEntity::EK_Member: 1147 // Warn on aggregate initialization but not on ctor init list or 1148 // default member initializer. 1149 if (Entity.getParent()) 1150 DiagID = diag::warn_braces_around_init; 1151 break; 1152 1153 case InitializedEntity::EK_Variable: 1154 case InitializedEntity::EK_LambdaCapture: 1155 // No warning, might be direct-list-initialization. 1156 // FIXME: Should we warn for copy-list-initialization in these cases? 1157 break; 1158 1159 case InitializedEntity::EK_New: 1160 case InitializedEntity::EK_Temporary: 1161 case InitializedEntity::EK_CompoundLiteralInit: 1162 // No warning, braces are part of the syntax of the underlying construct. 1163 break; 1164 1165 case InitializedEntity::EK_RelatedResult: 1166 // No warning, we already warned when initializing the result. 1167 break; 1168 1169 case InitializedEntity::EK_Exception: 1170 case InitializedEntity::EK_Base: 1171 case InitializedEntity::EK_Delegating: 1172 case InitializedEntity::EK_BlockElement: 1173 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 1174 case InitializedEntity::EK_Binding: 1175 case InitializedEntity::EK_StmtExprResult: 1176 llvm_unreachable("unexpected braced scalar init"); 1177 } 1178 1179 if (DiagID) { 1180 S.Diag(Braces.getBegin(), DiagID) 1181 << Entity.getType()->isSizelessBuiltinType() << Braces 1182 << FixItHint::CreateRemoval(Braces.getBegin()) 1183 << FixItHint::CreateRemoval(Braces.getEnd()); 1184 } 1185 } 1186 1187 /// Check whether the initializer \p IList (that was written with explicit 1188 /// braces) can be used to initialize an object of type \p T. 1189 /// 1190 /// This also fills in \p StructuredList with the fully-braced, desugared 1191 /// form of the initialization. 1192 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity, 1193 InitListExpr *IList, QualType &T, 1194 InitListExpr *StructuredList, 1195 bool TopLevelObject) { 1196 unsigned Index = 0, StructuredIndex = 0; 1197 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true, 1198 Index, StructuredList, StructuredIndex, TopLevelObject); 1199 if (StructuredList) { 1200 QualType ExprTy = T; 1201 if (!ExprTy->isArrayType()) 1202 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context); 1203 if (!VerifyOnly) 1204 IList->setType(ExprTy); 1205 StructuredList->setType(ExprTy); 1206 } 1207 if (hadError) 1208 return; 1209 1210 // Don't complain for incomplete types, since we'll get an error elsewhere. 1211 if (Index < IList->getNumInits() && !T->isIncompleteType()) { 1212 // We have leftover initializers 1213 bool ExtraInitsIsError = SemaRef.getLangOpts().CPlusPlus || 1214 (SemaRef.getLangOpts().OpenCL && T->isVectorType()); 1215 hadError = ExtraInitsIsError; 1216 if (VerifyOnly) { 1217 return; 1218 } else if (StructuredIndex == 1 && 1219 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) == 1220 SIF_None) { 1221 unsigned DK = 1222 ExtraInitsIsError 1223 ? diag::err_excess_initializers_in_char_array_initializer 1224 : diag::ext_excess_initializers_in_char_array_initializer; 1225 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1226 << IList->getInit(Index)->getSourceRange(); 1227 } else if (T->isSizelessBuiltinType()) { 1228 unsigned DK = ExtraInitsIsError 1229 ? diag::err_excess_initializers_for_sizeless_type 1230 : diag::ext_excess_initializers_for_sizeless_type; 1231 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1232 << T << IList->getInit(Index)->getSourceRange(); 1233 } else { 1234 int initKind = T->isArrayType() ? 0 : 1235 T->isVectorType() ? 1 : 1236 T->isScalarType() ? 2 : 1237 T->isUnionType() ? 3 : 1238 4; 1239 1240 unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers 1241 : diag::ext_excess_initializers; 1242 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1243 << initKind << IList->getInit(Index)->getSourceRange(); 1244 } 1245 } 1246 1247 if (!VerifyOnly) { 1248 if (T->isScalarType() && IList->getNumInits() == 1 && 1249 !isa<InitListExpr>(IList->getInit(0))) 1250 warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange()); 1251 1252 // Warn if this is a class type that won't be an aggregate in future 1253 // versions of C++. 1254 auto *CXXRD = T->getAsCXXRecordDecl(); 1255 if (CXXRD && CXXRD->hasUserDeclaredConstructor()) { 1256 // Don't warn if there's an equivalent default constructor that would be 1257 // used instead. 1258 bool HasEquivCtor = false; 1259 if (IList->getNumInits() == 0) { 1260 auto *CD = SemaRef.LookupDefaultConstructor(CXXRD); 1261 HasEquivCtor = CD && !CD->isDeleted(); 1262 } 1263 1264 if (!HasEquivCtor) { 1265 SemaRef.Diag(IList->getBeginLoc(), 1266 diag::warn_cxx20_compat_aggregate_init_with_ctors) 1267 << IList->getSourceRange() << T; 1268 } 1269 } 1270 } 1271 } 1272 1273 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity, 1274 InitListExpr *IList, 1275 QualType &DeclType, 1276 bool SubobjectIsDesignatorContext, 1277 unsigned &Index, 1278 InitListExpr *StructuredList, 1279 unsigned &StructuredIndex, 1280 bool TopLevelObject) { 1281 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) { 1282 // Explicitly braced initializer for complex type can be real+imaginary 1283 // parts. 1284 CheckComplexType(Entity, IList, DeclType, Index, 1285 StructuredList, StructuredIndex); 1286 } else if (DeclType->isScalarType()) { 1287 CheckScalarType(Entity, IList, DeclType, Index, 1288 StructuredList, StructuredIndex); 1289 } else if (DeclType->isVectorType()) { 1290 CheckVectorType(Entity, IList, DeclType, Index, 1291 StructuredList, StructuredIndex); 1292 } else if (DeclType->isRecordType()) { 1293 assert(DeclType->isAggregateType() && 1294 "non-aggregate records should be handed in CheckSubElementType"); 1295 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); 1296 auto Bases = 1297 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), 1298 CXXRecordDecl::base_class_iterator()); 1299 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1300 Bases = CXXRD->bases(); 1301 CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(), 1302 SubobjectIsDesignatorContext, Index, StructuredList, 1303 StructuredIndex, TopLevelObject); 1304 } else if (DeclType->isArrayType()) { 1305 llvm::APSInt Zero( 1306 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()), 1307 false); 1308 CheckArrayType(Entity, IList, DeclType, Zero, 1309 SubobjectIsDesignatorContext, Index, 1310 StructuredList, StructuredIndex); 1311 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) { 1312 // This type is invalid, issue a diagnostic. 1313 ++Index; 1314 if (!VerifyOnly) 1315 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) 1316 << DeclType; 1317 hadError = true; 1318 } else if (DeclType->isReferenceType()) { 1319 CheckReferenceType(Entity, IList, DeclType, Index, 1320 StructuredList, StructuredIndex); 1321 } else if (DeclType->isObjCObjectType()) { 1322 if (!VerifyOnly) 1323 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType; 1324 hadError = true; 1325 } else if (DeclType->isOCLIntelSubgroupAVCType() || 1326 DeclType->isSizelessBuiltinType()) { 1327 // Checks for scalar type are sufficient for these types too. 1328 CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 1329 StructuredIndex); 1330 } else { 1331 if (!VerifyOnly) 1332 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) 1333 << DeclType; 1334 hadError = true; 1335 } 1336 } 1337 1338 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity, 1339 InitListExpr *IList, 1340 QualType ElemType, 1341 unsigned &Index, 1342 InitListExpr *StructuredList, 1343 unsigned &StructuredIndex, 1344 bool DirectlyDesignated) { 1345 Expr *expr = IList->getInit(Index); 1346 1347 if (ElemType->isReferenceType()) 1348 return CheckReferenceType(Entity, IList, ElemType, Index, 1349 StructuredList, StructuredIndex); 1350 1351 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) { 1352 if (SubInitList->getNumInits() == 1 && 1353 IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) == 1354 SIF_None) { 1355 // FIXME: It would be more faithful and no less correct to include an 1356 // InitListExpr in the semantic form of the initializer list in this case. 1357 expr = SubInitList->getInit(0); 1358 } 1359 // Nested aggregate initialization and C++ initialization are handled later. 1360 } else if (isa<ImplicitValueInitExpr>(expr)) { 1361 // This happens during template instantiation when we see an InitListExpr 1362 // that we've already checked once. 1363 assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) && 1364 "found implicit initialization for the wrong type"); 1365 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1366 ++Index; 1367 return; 1368 } 1369 1370 if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(expr)) { 1371 // C++ [dcl.init.aggr]p2: 1372 // Each member is copy-initialized from the corresponding 1373 // initializer-clause. 1374 1375 // FIXME: Better EqualLoc? 1376 InitializationKind Kind = 1377 InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation()); 1378 1379 // Vector elements can be initialized from other vectors in which case 1380 // we need initialization entity with a type of a vector (and not a vector 1381 // element!) initializing multiple vector elements. 1382 auto TmpEntity = 1383 (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType()) 1384 ? InitializedEntity::InitializeTemporary(ElemType) 1385 : Entity; 1386 1387 InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr, 1388 /*TopLevelOfInitList*/ true); 1389 1390 // C++14 [dcl.init.aggr]p13: 1391 // If the assignment-expression can initialize a member, the member is 1392 // initialized. Otherwise [...] brace elision is assumed 1393 // 1394 // Brace elision is never performed if the element is not an 1395 // assignment-expression. 1396 if (Seq || isa<InitListExpr>(expr)) { 1397 if (!VerifyOnly) { 1398 ExprResult Result = Seq.Perform(SemaRef, TmpEntity, Kind, expr); 1399 if (Result.isInvalid()) 1400 hadError = true; 1401 1402 UpdateStructuredListElement(StructuredList, StructuredIndex, 1403 Result.getAs<Expr>()); 1404 } else if (!Seq) { 1405 hadError = true; 1406 } else if (StructuredList) { 1407 UpdateStructuredListElement(StructuredList, StructuredIndex, 1408 getDummyInit()); 1409 } 1410 ++Index; 1411 return; 1412 } 1413 1414 // Fall through for subaggregate initialization 1415 } else if (ElemType->isScalarType() || ElemType->isAtomicType()) { 1416 // FIXME: Need to handle atomic aggregate types with implicit init lists. 1417 return CheckScalarType(Entity, IList, ElemType, Index, 1418 StructuredList, StructuredIndex); 1419 } else if (const ArrayType *arrayType = 1420 SemaRef.Context.getAsArrayType(ElemType)) { 1421 // arrayType can be incomplete if we're initializing a flexible 1422 // array member. There's nothing we can do with the completed 1423 // type here, though. 1424 1425 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) { 1426 // FIXME: Should we do this checking in verify-only mode? 1427 if (!VerifyOnly) 1428 CheckStringInit(expr, ElemType, arrayType, SemaRef); 1429 if (StructuredList) 1430 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1431 ++Index; 1432 return; 1433 } 1434 1435 // Fall through for subaggregate initialization. 1436 1437 } else { 1438 assert((ElemType->isRecordType() || ElemType->isVectorType() || 1439 ElemType->isOpenCLSpecificType()) && "Unexpected type"); 1440 1441 // C99 6.7.8p13: 1442 // 1443 // The initializer for a structure or union object that has 1444 // automatic storage duration shall be either an initializer 1445 // list as described below, or a single expression that has 1446 // compatible structure or union type. In the latter case, the 1447 // initial value of the object, including unnamed members, is 1448 // that of the expression. 1449 ExprResult ExprRes = expr; 1450 if (SemaRef.CheckSingleAssignmentConstraints( 1451 ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) { 1452 if (ExprRes.isInvalid()) 1453 hadError = true; 1454 else { 1455 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get()); 1456 if (ExprRes.isInvalid()) 1457 hadError = true; 1458 } 1459 UpdateStructuredListElement(StructuredList, StructuredIndex, 1460 ExprRes.getAs<Expr>()); 1461 ++Index; 1462 return; 1463 } 1464 ExprRes.get(); 1465 // Fall through for subaggregate initialization 1466 } 1467 1468 // C++ [dcl.init.aggr]p12: 1469 // 1470 // [...] Otherwise, if the member is itself a non-empty 1471 // subaggregate, brace elision is assumed and the initializer is 1472 // considered for the initialization of the first member of 1473 // the subaggregate. 1474 // OpenCL vector initializer is handled elsewhere. 1475 if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) || 1476 ElemType->isAggregateType()) { 1477 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList, 1478 StructuredIndex); 1479 ++StructuredIndex; 1480 1481 // In C++20, brace elision is not permitted for a designated initializer. 1482 if (DirectlyDesignated && SemaRef.getLangOpts().CPlusPlus && !hadError) { 1483 if (InOverloadResolution) 1484 hadError = true; 1485 if (!VerifyOnly) { 1486 SemaRef.Diag(expr->getBeginLoc(), 1487 diag::ext_designated_init_brace_elision) 1488 << expr->getSourceRange() 1489 << FixItHint::CreateInsertion(expr->getBeginLoc(), "{") 1490 << FixItHint::CreateInsertion( 1491 SemaRef.getLocForEndOfToken(expr->getEndLoc()), "}"); 1492 } 1493 } 1494 } else { 1495 if (!VerifyOnly) { 1496 // We cannot initialize this element, so let PerformCopyInitialization 1497 // produce the appropriate diagnostic. We already checked that this 1498 // initialization will fail. 1499 ExprResult Copy = 1500 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr, 1501 /*TopLevelOfInitList=*/true); 1502 (void)Copy; 1503 assert(Copy.isInvalid() && 1504 "expected non-aggregate initialization to fail"); 1505 } 1506 hadError = true; 1507 ++Index; 1508 ++StructuredIndex; 1509 } 1510 } 1511 1512 void InitListChecker::CheckComplexType(const InitializedEntity &Entity, 1513 InitListExpr *IList, QualType DeclType, 1514 unsigned &Index, 1515 InitListExpr *StructuredList, 1516 unsigned &StructuredIndex) { 1517 assert(Index == 0 && "Index in explicit init list must be zero"); 1518 1519 // As an extension, clang supports complex initializers, which initialize 1520 // a complex number component-wise. When an explicit initializer list for 1521 // a complex number contains two two initializers, this extension kicks in: 1522 // it exepcts the initializer list to contain two elements convertible to 1523 // the element type of the complex type. The first element initializes 1524 // the real part, and the second element intitializes the imaginary part. 1525 1526 if (IList->getNumInits() != 2) 1527 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 1528 StructuredIndex); 1529 1530 // This is an extension in C. (The builtin _Complex type does not exist 1531 // in the C++ standard.) 1532 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly) 1533 SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init) 1534 << IList->getSourceRange(); 1535 1536 // Initialize the complex number. 1537 QualType elementType = DeclType->castAs<ComplexType>()->getElementType(); 1538 InitializedEntity ElementEntity = 1539 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1540 1541 for (unsigned i = 0; i < 2; ++i) { 1542 ElementEntity.setElementIndex(Index); 1543 CheckSubElementType(ElementEntity, IList, elementType, Index, 1544 StructuredList, StructuredIndex); 1545 } 1546 } 1547 1548 void InitListChecker::CheckScalarType(const InitializedEntity &Entity, 1549 InitListExpr *IList, QualType DeclType, 1550 unsigned &Index, 1551 InitListExpr *StructuredList, 1552 unsigned &StructuredIndex) { 1553 if (Index >= IList->getNumInits()) { 1554 if (!VerifyOnly) { 1555 if (DeclType->isSizelessBuiltinType()) 1556 SemaRef.Diag(IList->getBeginLoc(), 1557 SemaRef.getLangOpts().CPlusPlus11 1558 ? diag::warn_cxx98_compat_empty_sizeless_initializer 1559 : diag::err_empty_sizeless_initializer) 1560 << DeclType << IList->getSourceRange(); 1561 else 1562 SemaRef.Diag(IList->getBeginLoc(), 1563 SemaRef.getLangOpts().CPlusPlus11 1564 ? diag::warn_cxx98_compat_empty_scalar_initializer 1565 : diag::err_empty_scalar_initializer) 1566 << IList->getSourceRange(); 1567 } 1568 hadError = !SemaRef.getLangOpts().CPlusPlus11; 1569 ++Index; 1570 ++StructuredIndex; 1571 return; 1572 } 1573 1574 Expr *expr = IList->getInit(Index); 1575 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) { 1576 // FIXME: This is invalid, and accepting it causes overload resolution 1577 // to pick the wrong overload in some corner cases. 1578 if (!VerifyOnly) 1579 SemaRef.Diag(SubIList->getBeginLoc(), diag::ext_many_braces_around_init) 1580 << DeclType->isSizelessBuiltinType() << SubIList->getSourceRange(); 1581 1582 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList, 1583 StructuredIndex); 1584 return; 1585 } else if (isa<DesignatedInitExpr>(expr)) { 1586 if (!VerifyOnly) 1587 SemaRef.Diag(expr->getBeginLoc(), 1588 diag::err_designator_for_scalar_or_sizeless_init) 1589 << DeclType->isSizelessBuiltinType() << DeclType 1590 << expr->getSourceRange(); 1591 hadError = true; 1592 ++Index; 1593 ++StructuredIndex; 1594 return; 1595 } 1596 1597 ExprResult Result; 1598 if (VerifyOnly) { 1599 if (SemaRef.CanPerformCopyInitialization(Entity, expr)) 1600 Result = getDummyInit(); 1601 else 1602 Result = ExprError(); 1603 } else { 1604 Result = 1605 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, 1606 /*TopLevelOfInitList=*/true); 1607 } 1608 1609 Expr *ResultExpr = nullptr; 1610 1611 if (Result.isInvalid()) 1612 hadError = true; // types weren't compatible. 1613 else { 1614 ResultExpr = Result.getAs<Expr>(); 1615 1616 if (ResultExpr != expr && !VerifyOnly) { 1617 // The type was promoted, update initializer list. 1618 // FIXME: Why are we updating the syntactic init list? 1619 IList->setInit(Index, ResultExpr); 1620 } 1621 } 1622 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); 1623 ++Index; 1624 } 1625 1626 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity, 1627 InitListExpr *IList, QualType DeclType, 1628 unsigned &Index, 1629 InitListExpr *StructuredList, 1630 unsigned &StructuredIndex) { 1631 if (Index >= IList->getNumInits()) { 1632 // FIXME: It would be wonderful if we could point at the actual member. In 1633 // general, it would be useful to pass location information down the stack, 1634 // so that we know the location (or decl) of the "current object" being 1635 // initialized. 1636 if (!VerifyOnly) 1637 SemaRef.Diag(IList->getBeginLoc(), 1638 diag::err_init_reference_member_uninitialized) 1639 << DeclType << IList->getSourceRange(); 1640 hadError = true; 1641 ++Index; 1642 ++StructuredIndex; 1643 return; 1644 } 1645 1646 Expr *expr = IList->getInit(Index); 1647 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) { 1648 if (!VerifyOnly) 1649 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list) 1650 << DeclType << IList->getSourceRange(); 1651 hadError = true; 1652 ++Index; 1653 ++StructuredIndex; 1654 return; 1655 } 1656 1657 ExprResult Result; 1658 if (VerifyOnly) { 1659 if (SemaRef.CanPerformCopyInitialization(Entity,expr)) 1660 Result = getDummyInit(); 1661 else 1662 Result = ExprError(); 1663 } else { 1664 Result = 1665 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, 1666 /*TopLevelOfInitList=*/true); 1667 } 1668 1669 if (Result.isInvalid()) 1670 hadError = true; 1671 1672 expr = Result.getAs<Expr>(); 1673 // FIXME: Why are we updating the syntactic init list? 1674 if (!VerifyOnly && expr) 1675 IList->setInit(Index, expr); 1676 1677 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1678 ++Index; 1679 } 1680 1681 void InitListChecker::CheckVectorType(const InitializedEntity &Entity, 1682 InitListExpr *IList, QualType DeclType, 1683 unsigned &Index, 1684 InitListExpr *StructuredList, 1685 unsigned &StructuredIndex) { 1686 const VectorType *VT = DeclType->castAs<VectorType>(); 1687 unsigned maxElements = VT->getNumElements(); 1688 unsigned numEltsInit = 0; 1689 QualType elementType = VT->getElementType(); 1690 1691 if (Index >= IList->getNumInits()) { 1692 // Make sure the element type can be value-initialized. 1693 CheckEmptyInitializable( 1694 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 1695 IList->getEndLoc()); 1696 return; 1697 } 1698 1699 if (!SemaRef.getLangOpts().OpenCL && !SemaRef.getLangOpts().HLSL ) { 1700 // If the initializing element is a vector, try to copy-initialize 1701 // instead of breaking it apart (which is doomed to failure anyway). 1702 Expr *Init = IList->getInit(Index); 1703 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) { 1704 ExprResult Result; 1705 if (VerifyOnly) { 1706 if (SemaRef.CanPerformCopyInitialization(Entity, Init)) 1707 Result = getDummyInit(); 1708 else 1709 Result = ExprError(); 1710 } else { 1711 Result = 1712 SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init, 1713 /*TopLevelOfInitList=*/true); 1714 } 1715 1716 Expr *ResultExpr = nullptr; 1717 if (Result.isInvalid()) 1718 hadError = true; // types weren't compatible. 1719 else { 1720 ResultExpr = Result.getAs<Expr>(); 1721 1722 if (ResultExpr != Init && !VerifyOnly) { 1723 // The type was promoted, update initializer list. 1724 // FIXME: Why are we updating the syntactic init list? 1725 IList->setInit(Index, ResultExpr); 1726 } 1727 } 1728 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); 1729 ++Index; 1730 return; 1731 } 1732 1733 InitializedEntity ElementEntity = 1734 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1735 1736 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) { 1737 // Don't attempt to go past the end of the init list 1738 if (Index >= IList->getNumInits()) { 1739 CheckEmptyInitializable(ElementEntity, IList->getEndLoc()); 1740 break; 1741 } 1742 1743 ElementEntity.setElementIndex(Index); 1744 CheckSubElementType(ElementEntity, IList, elementType, Index, 1745 StructuredList, StructuredIndex); 1746 } 1747 1748 if (VerifyOnly) 1749 return; 1750 1751 bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian(); 1752 const VectorType *T = Entity.getType()->castAs<VectorType>(); 1753 if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector || 1754 T->getVectorKind() == VectorType::NeonPolyVector)) { 1755 // The ability to use vector initializer lists is a GNU vector extension 1756 // and is unrelated to the NEON intrinsics in arm_neon.h. On little 1757 // endian machines it works fine, however on big endian machines it 1758 // exhibits surprising behaviour: 1759 // 1760 // uint32x2_t x = {42, 64}; 1761 // return vget_lane_u32(x, 0); // Will return 64. 1762 // 1763 // Because of this, explicitly call out that it is non-portable. 1764 // 1765 SemaRef.Diag(IList->getBeginLoc(), 1766 diag::warn_neon_vector_initializer_non_portable); 1767 1768 const char *typeCode; 1769 unsigned typeSize = SemaRef.Context.getTypeSize(elementType); 1770 1771 if (elementType->isFloatingType()) 1772 typeCode = "f"; 1773 else if (elementType->isSignedIntegerType()) 1774 typeCode = "s"; 1775 else if (elementType->isUnsignedIntegerType()) 1776 typeCode = "u"; 1777 else 1778 llvm_unreachable("Invalid element type!"); 1779 1780 SemaRef.Diag(IList->getBeginLoc(), 1781 SemaRef.Context.getTypeSize(VT) > 64 1782 ? diag::note_neon_vector_initializer_non_portable_q 1783 : diag::note_neon_vector_initializer_non_portable) 1784 << typeCode << typeSize; 1785 } 1786 1787 return; 1788 } 1789 1790 InitializedEntity ElementEntity = 1791 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1792 1793 // OpenCL and HLSL initializers allow vectors to be constructed from vectors. 1794 for (unsigned i = 0; i < maxElements; ++i) { 1795 // Don't attempt to go past the end of the init list 1796 if (Index >= IList->getNumInits()) 1797 break; 1798 1799 ElementEntity.setElementIndex(Index); 1800 1801 QualType IType = IList->getInit(Index)->getType(); 1802 if (!IType->isVectorType()) { 1803 CheckSubElementType(ElementEntity, IList, elementType, Index, 1804 StructuredList, StructuredIndex); 1805 ++numEltsInit; 1806 } else { 1807 QualType VecType; 1808 const VectorType *IVT = IType->castAs<VectorType>(); 1809 unsigned numIElts = IVT->getNumElements(); 1810 1811 if (IType->isExtVectorType()) 1812 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts); 1813 else 1814 VecType = SemaRef.Context.getVectorType(elementType, numIElts, 1815 IVT->getVectorKind()); 1816 CheckSubElementType(ElementEntity, IList, VecType, Index, 1817 StructuredList, StructuredIndex); 1818 numEltsInit += numIElts; 1819 } 1820 } 1821 1822 // OpenCL and HLSL require all elements to be initialized. 1823 if (numEltsInit != maxElements) { 1824 if (!VerifyOnly) 1825 SemaRef.Diag(IList->getBeginLoc(), 1826 diag::err_vector_incorrect_num_initializers) 1827 << (numEltsInit < maxElements) << maxElements << numEltsInit; 1828 hadError = true; 1829 } 1830 } 1831 1832 /// Check if the type of a class element has an accessible destructor, and marks 1833 /// it referenced. Returns true if we shouldn't form a reference to the 1834 /// destructor. 1835 /// 1836 /// Aggregate initialization requires a class element's destructor be 1837 /// accessible per 11.6.1 [dcl.init.aggr]: 1838 /// 1839 /// The destructor for each element of class type is potentially invoked 1840 /// (15.4 [class.dtor]) from the context where the aggregate initialization 1841 /// occurs. 1842 static bool checkDestructorReference(QualType ElementType, SourceLocation Loc, 1843 Sema &SemaRef) { 1844 auto *CXXRD = ElementType->getAsCXXRecordDecl(); 1845 if (!CXXRD) 1846 return false; 1847 1848 CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD); 1849 SemaRef.CheckDestructorAccess(Loc, Destructor, 1850 SemaRef.PDiag(diag::err_access_dtor_temp) 1851 << ElementType); 1852 SemaRef.MarkFunctionReferenced(Loc, Destructor); 1853 return SemaRef.DiagnoseUseOfDecl(Destructor, Loc); 1854 } 1855 1856 void InitListChecker::CheckArrayType(const InitializedEntity &Entity, 1857 InitListExpr *IList, QualType &DeclType, 1858 llvm::APSInt elementIndex, 1859 bool SubobjectIsDesignatorContext, 1860 unsigned &Index, 1861 InitListExpr *StructuredList, 1862 unsigned &StructuredIndex) { 1863 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType); 1864 1865 if (!VerifyOnly) { 1866 if (checkDestructorReference(arrayType->getElementType(), 1867 IList->getEndLoc(), SemaRef)) { 1868 hadError = true; 1869 return; 1870 } 1871 } 1872 1873 // Check for the special-case of initializing an array with a string. 1874 if (Index < IList->getNumInits()) { 1875 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) == 1876 SIF_None) { 1877 // We place the string literal directly into the resulting 1878 // initializer list. This is the only place where the structure 1879 // of the structured initializer list doesn't match exactly, 1880 // because doing so would involve allocating one character 1881 // constant for each string. 1882 // FIXME: Should we do these checks in verify-only mode too? 1883 if (!VerifyOnly) 1884 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef); 1885 if (StructuredList) { 1886 UpdateStructuredListElement(StructuredList, StructuredIndex, 1887 IList->getInit(Index)); 1888 StructuredList->resizeInits(SemaRef.Context, StructuredIndex); 1889 } 1890 ++Index; 1891 return; 1892 } 1893 } 1894 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) { 1895 // Check for VLAs; in standard C it would be possible to check this 1896 // earlier, but I don't know where clang accepts VLAs (gcc accepts 1897 // them in all sorts of strange places). 1898 if (!VerifyOnly) 1899 SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(), 1900 diag::err_variable_object_no_init) 1901 << VAT->getSizeExpr()->getSourceRange(); 1902 hadError = true; 1903 ++Index; 1904 ++StructuredIndex; 1905 return; 1906 } 1907 1908 // We might know the maximum number of elements in advance. 1909 llvm::APSInt maxElements(elementIndex.getBitWidth(), 1910 elementIndex.isUnsigned()); 1911 bool maxElementsKnown = false; 1912 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) { 1913 maxElements = CAT->getSize(); 1914 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth()); 1915 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1916 maxElementsKnown = true; 1917 } 1918 1919 QualType elementType = arrayType->getElementType(); 1920 while (Index < IList->getNumInits()) { 1921 Expr *Init = IList->getInit(Index); 1922 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 1923 // If we're not the subobject that matches up with the '{' for 1924 // the designator, we shouldn't be handling the 1925 // designator. Return immediately. 1926 if (!SubobjectIsDesignatorContext) 1927 return; 1928 1929 // Handle this designated initializer. elementIndex will be 1930 // updated to be the next array element we'll initialize. 1931 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 1932 DeclType, nullptr, &elementIndex, Index, 1933 StructuredList, StructuredIndex, true, 1934 false)) { 1935 hadError = true; 1936 continue; 1937 } 1938 1939 if (elementIndex.getBitWidth() > maxElements.getBitWidth()) 1940 maxElements = maxElements.extend(elementIndex.getBitWidth()); 1941 else if (elementIndex.getBitWidth() < maxElements.getBitWidth()) 1942 elementIndex = elementIndex.extend(maxElements.getBitWidth()); 1943 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1944 1945 // If the array is of incomplete type, keep track of the number of 1946 // elements in the initializer. 1947 if (!maxElementsKnown && elementIndex > maxElements) 1948 maxElements = elementIndex; 1949 1950 continue; 1951 } 1952 1953 // If we know the maximum number of elements, and we've already 1954 // hit it, stop consuming elements in the initializer list. 1955 if (maxElementsKnown && elementIndex == maxElements) 1956 break; 1957 1958 InitializedEntity ElementEntity = 1959 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex, 1960 Entity); 1961 // Check this element. 1962 CheckSubElementType(ElementEntity, IList, elementType, Index, 1963 StructuredList, StructuredIndex); 1964 ++elementIndex; 1965 1966 // If the array is of incomplete type, keep track of the number of 1967 // elements in the initializer. 1968 if (!maxElementsKnown && elementIndex > maxElements) 1969 maxElements = elementIndex; 1970 } 1971 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) { 1972 // If this is an incomplete array type, the actual type needs to 1973 // be calculated here. 1974 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned()); 1975 if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) { 1976 // Sizing an array implicitly to zero is not allowed by ISO C, 1977 // but is supported by GNU. 1978 SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size); 1979 } 1980 1981 DeclType = SemaRef.Context.getConstantArrayType( 1982 elementType, maxElements, nullptr, ArrayType::Normal, 0); 1983 } 1984 if (!hadError) { 1985 // If there are any members of the array that get value-initialized, check 1986 // that is possible. That happens if we know the bound and don't have 1987 // enough elements, or if we're performing an array new with an unknown 1988 // bound. 1989 if ((maxElementsKnown && elementIndex < maxElements) || 1990 Entity.isVariableLengthArrayNew()) 1991 CheckEmptyInitializable( 1992 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 1993 IList->getEndLoc()); 1994 } 1995 } 1996 1997 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity, 1998 Expr *InitExpr, 1999 FieldDecl *Field, 2000 bool TopLevelObject) { 2001 // Handle GNU flexible array initializers. 2002 unsigned FlexArrayDiag; 2003 if (isa<InitListExpr>(InitExpr) && 2004 cast<InitListExpr>(InitExpr)->getNumInits() == 0) { 2005 // Empty flexible array init always allowed as an extension 2006 FlexArrayDiag = diag::ext_flexible_array_init; 2007 } else if (!TopLevelObject) { 2008 // Disallow flexible array init on non-top-level object 2009 FlexArrayDiag = diag::err_flexible_array_init; 2010 } else if (Entity.getKind() != InitializedEntity::EK_Variable) { 2011 // Disallow flexible array init on anything which is not a variable. 2012 FlexArrayDiag = diag::err_flexible_array_init; 2013 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) { 2014 // Disallow flexible array init on local variables. 2015 FlexArrayDiag = diag::err_flexible_array_init; 2016 } else { 2017 // Allow other cases. 2018 FlexArrayDiag = diag::ext_flexible_array_init; 2019 } 2020 2021 if (!VerifyOnly) { 2022 SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag) 2023 << InitExpr->getBeginLoc(); 2024 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2025 << Field; 2026 } 2027 2028 return FlexArrayDiag != diag::ext_flexible_array_init; 2029 } 2030 2031 void InitListChecker::CheckStructUnionTypes( 2032 const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType, 2033 CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field, 2034 bool SubobjectIsDesignatorContext, unsigned &Index, 2035 InitListExpr *StructuredList, unsigned &StructuredIndex, 2036 bool TopLevelObject) { 2037 RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl(); 2038 2039 // If the record is invalid, some of it's members are invalid. To avoid 2040 // confusion, we forgo checking the initializer for the entire record. 2041 if (structDecl->isInvalidDecl()) { 2042 // Assume it was supposed to consume a single initializer. 2043 ++Index; 2044 hadError = true; 2045 return; 2046 } 2047 2048 if (DeclType->isUnionType() && IList->getNumInits() == 0) { 2049 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); 2050 2051 if (!VerifyOnly) 2052 for (FieldDecl *FD : RD->fields()) { 2053 QualType ET = SemaRef.Context.getBaseElementType(FD->getType()); 2054 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { 2055 hadError = true; 2056 return; 2057 } 2058 } 2059 2060 // If there's a default initializer, use it. 2061 if (isa<CXXRecordDecl>(RD) && 2062 cast<CXXRecordDecl>(RD)->hasInClassInitializer()) { 2063 if (!StructuredList) 2064 return; 2065 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 2066 Field != FieldEnd; ++Field) { 2067 if (Field->hasInClassInitializer()) { 2068 StructuredList->setInitializedFieldInUnion(*Field); 2069 // FIXME: Actually build a CXXDefaultInitExpr? 2070 return; 2071 } 2072 } 2073 } 2074 2075 // Value-initialize the first member of the union that isn't an unnamed 2076 // bitfield. 2077 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 2078 Field != FieldEnd; ++Field) { 2079 if (!Field->isUnnamedBitfield()) { 2080 CheckEmptyInitializable( 2081 InitializedEntity::InitializeMember(*Field, &Entity), 2082 IList->getEndLoc()); 2083 if (StructuredList) 2084 StructuredList->setInitializedFieldInUnion(*Field); 2085 break; 2086 } 2087 } 2088 return; 2089 } 2090 2091 bool InitializedSomething = false; 2092 2093 // If we have any base classes, they are initialized prior to the fields. 2094 for (auto &Base : Bases) { 2095 Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr; 2096 2097 // Designated inits always initialize fields, so if we see one, all 2098 // remaining base classes have no explicit initializer. 2099 if (Init && isa<DesignatedInitExpr>(Init)) 2100 Init = nullptr; 2101 2102 SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc(); 2103 InitializedEntity BaseEntity = InitializedEntity::InitializeBase( 2104 SemaRef.Context, &Base, false, &Entity); 2105 if (Init) { 2106 CheckSubElementType(BaseEntity, IList, Base.getType(), Index, 2107 StructuredList, StructuredIndex); 2108 InitializedSomething = true; 2109 } else { 2110 CheckEmptyInitializable(BaseEntity, InitLoc); 2111 } 2112 2113 if (!VerifyOnly) 2114 if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) { 2115 hadError = true; 2116 return; 2117 } 2118 } 2119 2120 // If structDecl is a forward declaration, this loop won't do 2121 // anything except look at designated initializers; That's okay, 2122 // because an error should get printed out elsewhere. It might be 2123 // worthwhile to skip over the rest of the initializer, though. 2124 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); 2125 RecordDecl::field_iterator FieldEnd = RD->field_end(); 2126 size_t NumRecordDecls = llvm::count_if(RD->decls(), [&](const Decl *D) { 2127 return isa<FieldDecl>(D) || isa<RecordDecl>(D); 2128 }); 2129 bool CheckForMissingFields = 2130 !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()); 2131 bool HasDesignatedInit = false; 2132 2133 while (Index < IList->getNumInits()) { 2134 Expr *Init = IList->getInit(Index); 2135 SourceLocation InitLoc = Init->getBeginLoc(); 2136 2137 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 2138 // If we're not the subobject that matches up with the '{' for 2139 // the designator, we shouldn't be handling the 2140 // designator. Return immediately. 2141 if (!SubobjectIsDesignatorContext) 2142 return; 2143 2144 HasDesignatedInit = true; 2145 2146 // Handle this designated initializer. Field will be updated to 2147 // the next field that we'll be initializing. 2148 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 2149 DeclType, &Field, nullptr, Index, 2150 StructuredList, StructuredIndex, 2151 true, TopLevelObject)) 2152 hadError = true; 2153 else if (!VerifyOnly) { 2154 // Find the field named by the designated initializer. 2155 RecordDecl::field_iterator F = RD->field_begin(); 2156 while (std::next(F) != Field) 2157 ++F; 2158 QualType ET = SemaRef.Context.getBaseElementType(F->getType()); 2159 if (checkDestructorReference(ET, InitLoc, SemaRef)) { 2160 hadError = true; 2161 return; 2162 } 2163 } 2164 2165 InitializedSomething = true; 2166 2167 // Disable check for missing fields when designators are used. 2168 // This matches gcc behaviour. 2169 CheckForMissingFields = false; 2170 continue; 2171 } 2172 2173 // Check if this is an initializer of forms: 2174 // 2175 // struct foo f = {}; 2176 // struct foo g = {0}; 2177 // 2178 // These are okay for randomized structures. [C99 6.7.8p19] 2179 // 2180 // Also, if there is only one element in the structure, we allow something 2181 // like this, because it's really not randomized in the tranditional sense. 2182 // 2183 // struct foo h = {bar}; 2184 auto IsZeroInitializer = [&](const Expr *I) { 2185 if (IList->getNumInits() == 1) { 2186 if (NumRecordDecls == 1) 2187 return true; 2188 if (const auto *IL = dyn_cast<IntegerLiteral>(I)) 2189 return IL->getValue().isZero(); 2190 } 2191 return false; 2192 }; 2193 2194 // Don't allow non-designated initializers on randomized structures. 2195 if (RD->isRandomized() && !IsZeroInitializer(Init)) { 2196 if (!VerifyOnly) 2197 SemaRef.Diag(InitLoc, diag::err_non_designated_init_used); 2198 hadError = true; 2199 break; 2200 } 2201 2202 if (Field == FieldEnd) { 2203 // We've run out of fields. We're done. 2204 break; 2205 } 2206 2207 // We've already initialized a member of a union. We're done. 2208 if (InitializedSomething && DeclType->isUnionType()) 2209 break; 2210 2211 // If we've hit the flexible array member at the end, we're done. 2212 if (Field->getType()->isIncompleteArrayType()) 2213 break; 2214 2215 if (Field->isUnnamedBitfield()) { 2216 // Don't initialize unnamed bitfields, e.g. "int : 20;" 2217 ++Field; 2218 continue; 2219 } 2220 2221 // Make sure we can use this declaration. 2222 bool InvalidUse; 2223 if (VerifyOnly) 2224 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); 2225 else 2226 InvalidUse = SemaRef.DiagnoseUseOfDecl( 2227 *Field, IList->getInit(Index)->getBeginLoc()); 2228 if (InvalidUse) { 2229 ++Index; 2230 ++Field; 2231 hadError = true; 2232 continue; 2233 } 2234 2235 if (!VerifyOnly) { 2236 QualType ET = SemaRef.Context.getBaseElementType(Field->getType()); 2237 if (checkDestructorReference(ET, InitLoc, SemaRef)) { 2238 hadError = true; 2239 return; 2240 } 2241 } 2242 2243 InitializedEntity MemberEntity = 2244 InitializedEntity::InitializeMember(*Field, &Entity); 2245 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2246 StructuredList, StructuredIndex); 2247 InitializedSomething = true; 2248 2249 if (DeclType->isUnionType() && StructuredList) { 2250 // Initialize the first field within the union. 2251 StructuredList->setInitializedFieldInUnion(*Field); 2252 } 2253 2254 ++Field; 2255 } 2256 2257 // Emit warnings for missing struct field initializers. 2258 if (!VerifyOnly && InitializedSomething && CheckForMissingFields && 2259 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() && 2260 !DeclType->isUnionType()) { 2261 // It is possible we have one or more unnamed bitfields remaining. 2262 // Find first (if any) named field and emit warning. 2263 for (RecordDecl::field_iterator it = Field, end = RD->field_end(); 2264 it != end; ++it) { 2265 if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) { 2266 SemaRef.Diag(IList->getSourceRange().getEnd(), 2267 diag::warn_missing_field_initializers) << *it; 2268 break; 2269 } 2270 } 2271 } 2272 2273 // Check that any remaining fields can be value-initialized if we're not 2274 // building a structured list. (If we are, we'll check this later.) 2275 if (!StructuredList && Field != FieldEnd && !DeclType->isUnionType() && 2276 !Field->getType()->isIncompleteArrayType()) { 2277 for (; Field != FieldEnd && !hadError; ++Field) { 2278 if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer()) 2279 CheckEmptyInitializable( 2280 InitializedEntity::InitializeMember(*Field, &Entity), 2281 IList->getEndLoc()); 2282 } 2283 } 2284 2285 // Check that the types of the remaining fields have accessible destructors. 2286 if (!VerifyOnly) { 2287 // If the initializer expression has a designated initializer, check the 2288 // elements for which a designated initializer is not provided too. 2289 RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin() 2290 : Field; 2291 for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) { 2292 QualType ET = SemaRef.Context.getBaseElementType(I->getType()); 2293 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { 2294 hadError = true; 2295 return; 2296 } 2297 } 2298 } 2299 2300 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() || 2301 Index >= IList->getNumInits()) 2302 return; 2303 2304 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field, 2305 TopLevelObject)) { 2306 hadError = true; 2307 ++Index; 2308 return; 2309 } 2310 2311 InitializedEntity MemberEntity = 2312 InitializedEntity::InitializeMember(*Field, &Entity); 2313 2314 if (isa<InitListExpr>(IList->getInit(Index))) 2315 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2316 StructuredList, StructuredIndex); 2317 else 2318 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index, 2319 StructuredList, StructuredIndex); 2320 } 2321 2322 /// Expand a field designator that refers to a member of an 2323 /// anonymous struct or union into a series of field designators that 2324 /// refers to the field within the appropriate subobject. 2325 /// 2326 static void ExpandAnonymousFieldDesignator(Sema &SemaRef, 2327 DesignatedInitExpr *DIE, 2328 unsigned DesigIdx, 2329 IndirectFieldDecl *IndirectField) { 2330 typedef DesignatedInitExpr::Designator Designator; 2331 2332 // Build the replacement designators. 2333 SmallVector<Designator, 4> Replacements; 2334 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(), 2335 PE = IndirectField->chain_end(); PI != PE; ++PI) { 2336 if (PI + 1 == PE) 2337 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 2338 DIE->getDesignator(DesigIdx)->getDotLoc(), 2339 DIE->getDesignator(DesigIdx)->getFieldLoc())); 2340 else 2341 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 2342 SourceLocation(), SourceLocation())); 2343 assert(isa<FieldDecl>(*PI)); 2344 Replacements.back().setField(cast<FieldDecl>(*PI)); 2345 } 2346 2347 // Expand the current designator into the set of replacement 2348 // designators, so we have a full subobject path down to where the 2349 // member of the anonymous struct/union is actually stored. 2350 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0], 2351 &Replacements[0] + Replacements.size()); 2352 } 2353 2354 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef, 2355 DesignatedInitExpr *DIE) { 2356 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1; 2357 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs); 2358 for (unsigned I = 0; I < NumIndexExprs; ++I) 2359 IndexExprs[I] = DIE->getSubExpr(I + 1); 2360 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(), 2361 IndexExprs, 2362 DIE->getEqualOrColonLoc(), 2363 DIE->usesGNUSyntax(), DIE->getInit()); 2364 } 2365 2366 namespace { 2367 2368 // Callback to only accept typo corrections that are for field members of 2369 // the given struct or union. 2370 class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback { 2371 public: 2372 explicit FieldInitializerValidatorCCC(RecordDecl *RD) 2373 : Record(RD) {} 2374 2375 bool ValidateCandidate(const TypoCorrection &candidate) override { 2376 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>(); 2377 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record); 2378 } 2379 2380 std::unique_ptr<CorrectionCandidateCallback> clone() override { 2381 return std::make_unique<FieldInitializerValidatorCCC>(*this); 2382 } 2383 2384 private: 2385 RecordDecl *Record; 2386 }; 2387 2388 } // end anonymous namespace 2389 2390 /// Check the well-formedness of a C99 designated initializer. 2391 /// 2392 /// Determines whether the designated initializer @p DIE, which 2393 /// resides at the given @p Index within the initializer list @p 2394 /// IList, is well-formed for a current object of type @p DeclType 2395 /// (C99 6.7.8). The actual subobject that this designator refers to 2396 /// within the current subobject is returned in either 2397 /// @p NextField or @p NextElementIndex (whichever is appropriate). 2398 /// 2399 /// @param IList The initializer list in which this designated 2400 /// initializer occurs. 2401 /// 2402 /// @param DIE The designated initializer expression. 2403 /// 2404 /// @param DesigIdx The index of the current designator. 2405 /// 2406 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17), 2407 /// into which the designation in @p DIE should refer. 2408 /// 2409 /// @param NextField If non-NULL and the first designator in @p DIE is 2410 /// a field, this will be set to the field declaration corresponding 2411 /// to the field named by the designator. On input, this is expected to be 2412 /// the next field that would be initialized in the absence of designation, 2413 /// if the complete object being initialized is a struct. 2414 /// 2415 /// @param NextElementIndex If non-NULL and the first designator in @p 2416 /// DIE is an array designator or GNU array-range designator, this 2417 /// will be set to the last index initialized by this designator. 2418 /// 2419 /// @param Index Index into @p IList where the designated initializer 2420 /// @p DIE occurs. 2421 /// 2422 /// @param StructuredList The initializer list expression that 2423 /// describes all of the subobject initializers in the order they'll 2424 /// actually be initialized. 2425 /// 2426 /// @returns true if there was an error, false otherwise. 2427 bool 2428 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity, 2429 InitListExpr *IList, 2430 DesignatedInitExpr *DIE, 2431 unsigned DesigIdx, 2432 QualType &CurrentObjectType, 2433 RecordDecl::field_iterator *NextField, 2434 llvm::APSInt *NextElementIndex, 2435 unsigned &Index, 2436 InitListExpr *StructuredList, 2437 unsigned &StructuredIndex, 2438 bool FinishSubobjectInit, 2439 bool TopLevelObject) { 2440 if (DesigIdx == DIE->size()) { 2441 // C++20 designated initialization can result in direct-list-initialization 2442 // of the designated subobject. This is the only way that we can end up 2443 // performing direct initialization as part of aggregate initialization, so 2444 // it needs special handling. 2445 if (DIE->isDirectInit()) { 2446 Expr *Init = DIE->getInit(); 2447 assert(isa<InitListExpr>(Init) && 2448 "designator result in direct non-list initialization?"); 2449 InitializationKind Kind = InitializationKind::CreateDirectList( 2450 DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc()); 2451 InitializationSequence Seq(SemaRef, Entity, Kind, Init, 2452 /*TopLevelOfInitList*/ true); 2453 if (StructuredList) { 2454 ExprResult Result = VerifyOnly 2455 ? getDummyInit() 2456 : Seq.Perform(SemaRef, Entity, Kind, Init); 2457 UpdateStructuredListElement(StructuredList, StructuredIndex, 2458 Result.get()); 2459 } 2460 ++Index; 2461 return !Seq; 2462 } 2463 2464 // Check the actual initialization for the designated object type. 2465 bool prevHadError = hadError; 2466 2467 // Temporarily remove the designator expression from the 2468 // initializer list that the child calls see, so that we don't try 2469 // to re-process the designator. 2470 unsigned OldIndex = Index; 2471 IList->setInit(OldIndex, DIE->getInit()); 2472 2473 CheckSubElementType(Entity, IList, CurrentObjectType, Index, StructuredList, 2474 StructuredIndex, /*DirectlyDesignated=*/true); 2475 2476 // Restore the designated initializer expression in the syntactic 2477 // form of the initializer list. 2478 if (IList->getInit(OldIndex) != DIE->getInit()) 2479 DIE->setInit(IList->getInit(OldIndex)); 2480 IList->setInit(OldIndex, DIE); 2481 2482 return hadError && !prevHadError; 2483 } 2484 2485 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx); 2486 bool IsFirstDesignator = (DesigIdx == 0); 2487 if (IsFirstDesignator ? FullyStructuredList : StructuredList) { 2488 // Determine the structural initializer list that corresponds to the 2489 // current subobject. 2490 if (IsFirstDesignator) 2491 StructuredList = FullyStructuredList; 2492 else { 2493 Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ? 2494 StructuredList->getInit(StructuredIndex) : nullptr; 2495 if (!ExistingInit && StructuredList->hasArrayFiller()) 2496 ExistingInit = StructuredList->getArrayFiller(); 2497 2498 if (!ExistingInit) 2499 StructuredList = getStructuredSubobjectInit( 2500 IList, Index, CurrentObjectType, StructuredList, StructuredIndex, 2501 SourceRange(D->getBeginLoc(), DIE->getEndLoc())); 2502 else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit)) 2503 StructuredList = Result; 2504 else { 2505 // We are creating an initializer list that initializes the 2506 // subobjects of the current object, but there was already an 2507 // initialization that completely initialized the current 2508 // subobject, e.g., by a compound literal: 2509 // 2510 // struct X { int a, b; }; 2511 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 2512 // 2513 // Here, xs[0].a == 1 and xs[0].b == 3, since the second, 2514 // designated initializer re-initializes only its current object 2515 // subobject [0].b. 2516 diagnoseInitOverride(ExistingInit, 2517 SourceRange(D->getBeginLoc(), DIE->getEndLoc()), 2518 /*FullyOverwritten=*/false); 2519 2520 if (!VerifyOnly) { 2521 if (DesignatedInitUpdateExpr *E = 2522 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit)) 2523 StructuredList = E->getUpdater(); 2524 else { 2525 DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context) 2526 DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(), 2527 ExistingInit, DIE->getEndLoc()); 2528 StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE); 2529 StructuredList = DIUE->getUpdater(); 2530 } 2531 } else { 2532 // We don't need to track the structured representation of a 2533 // designated init update of an already-fully-initialized object in 2534 // verify-only mode. The only reason we would need the structure is 2535 // to determine where the uninitialized "holes" are, and in this 2536 // case, we know there aren't any and we can't introduce any. 2537 StructuredList = nullptr; 2538 } 2539 } 2540 } 2541 } 2542 2543 if (D->isFieldDesignator()) { 2544 // C99 6.7.8p7: 2545 // 2546 // If a designator has the form 2547 // 2548 // . identifier 2549 // 2550 // then the current object (defined below) shall have 2551 // structure or union type and the identifier shall be the 2552 // name of a member of that type. 2553 const RecordType *RT = CurrentObjectType->getAs<RecordType>(); 2554 if (!RT) { 2555 SourceLocation Loc = D->getDotLoc(); 2556 if (Loc.isInvalid()) 2557 Loc = D->getFieldLoc(); 2558 if (!VerifyOnly) 2559 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr) 2560 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType; 2561 ++Index; 2562 return true; 2563 } 2564 2565 FieldDecl *KnownField = D->getField(); 2566 if (!KnownField) { 2567 IdentifierInfo *FieldName = D->getFieldName(); 2568 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName); 2569 for (NamedDecl *ND : Lookup) { 2570 if (auto *FD = dyn_cast<FieldDecl>(ND)) { 2571 KnownField = FD; 2572 break; 2573 } 2574 if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) { 2575 // In verify mode, don't modify the original. 2576 if (VerifyOnly) 2577 DIE = CloneDesignatedInitExpr(SemaRef, DIE); 2578 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD); 2579 D = DIE->getDesignator(DesigIdx); 2580 KnownField = cast<FieldDecl>(*IFD->chain_begin()); 2581 break; 2582 } 2583 } 2584 if (!KnownField) { 2585 if (VerifyOnly) { 2586 ++Index; 2587 return true; // No typo correction when just trying this out. 2588 } 2589 2590 // Name lookup found something, but it wasn't a field. 2591 if (!Lookup.empty()) { 2592 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield) 2593 << FieldName; 2594 SemaRef.Diag(Lookup.front()->getLocation(), 2595 diag::note_field_designator_found); 2596 ++Index; 2597 return true; 2598 } 2599 2600 // Name lookup didn't find anything. 2601 // Determine whether this was a typo for another field name. 2602 FieldInitializerValidatorCCC CCC(RT->getDecl()); 2603 if (TypoCorrection Corrected = SemaRef.CorrectTypo( 2604 DeclarationNameInfo(FieldName, D->getFieldLoc()), 2605 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC, 2606 Sema::CTK_ErrorRecovery, RT->getDecl())) { 2607 SemaRef.diagnoseTypo( 2608 Corrected, 2609 SemaRef.PDiag(diag::err_field_designator_unknown_suggest) 2610 << FieldName << CurrentObjectType); 2611 KnownField = Corrected.getCorrectionDeclAs<FieldDecl>(); 2612 hadError = true; 2613 } else { 2614 // Typo correction didn't find anything. 2615 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown) 2616 << FieldName << CurrentObjectType; 2617 ++Index; 2618 return true; 2619 } 2620 } 2621 } 2622 2623 unsigned NumBases = 0; 2624 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2625 NumBases = CXXRD->getNumBases(); 2626 2627 unsigned FieldIndex = NumBases; 2628 2629 for (auto *FI : RT->getDecl()->fields()) { 2630 if (FI->isUnnamedBitfield()) 2631 continue; 2632 if (declaresSameEntity(KnownField, FI)) { 2633 KnownField = FI; 2634 break; 2635 } 2636 ++FieldIndex; 2637 } 2638 2639 RecordDecl::field_iterator Field = 2640 RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField)); 2641 2642 // All of the fields of a union are located at the same place in 2643 // the initializer list. 2644 if (RT->getDecl()->isUnion()) { 2645 FieldIndex = 0; 2646 if (StructuredList) { 2647 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion(); 2648 if (CurrentField && !declaresSameEntity(CurrentField, *Field)) { 2649 assert(StructuredList->getNumInits() == 1 2650 && "A union should never have more than one initializer!"); 2651 2652 Expr *ExistingInit = StructuredList->getInit(0); 2653 if (ExistingInit) { 2654 // We're about to throw away an initializer, emit warning. 2655 diagnoseInitOverride( 2656 ExistingInit, SourceRange(D->getBeginLoc(), DIE->getEndLoc())); 2657 } 2658 2659 // remove existing initializer 2660 StructuredList->resizeInits(SemaRef.Context, 0); 2661 StructuredList->setInitializedFieldInUnion(nullptr); 2662 } 2663 2664 StructuredList->setInitializedFieldInUnion(*Field); 2665 } 2666 } 2667 2668 // Make sure we can use this declaration. 2669 bool InvalidUse; 2670 if (VerifyOnly) 2671 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); 2672 else 2673 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc()); 2674 if (InvalidUse) { 2675 ++Index; 2676 return true; 2677 } 2678 2679 // C++20 [dcl.init.list]p3: 2680 // The ordered identifiers in the designators of the designated- 2681 // initializer-list shall form a subsequence of the ordered identifiers 2682 // in the direct non-static data members of T. 2683 // 2684 // Note that this is not a condition on forming the aggregate 2685 // initialization, only on actually performing initialization, 2686 // so it is not checked in VerifyOnly mode. 2687 // 2688 // FIXME: This is the only reordering diagnostic we produce, and it only 2689 // catches cases where we have a top-level field designator that jumps 2690 // backwards. This is the only such case that is reachable in an 2691 // otherwise-valid C++20 program, so is the only case that's required for 2692 // conformance, but for consistency, we should diagnose all the other 2693 // cases where a designator takes us backwards too. 2694 if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus && 2695 NextField && 2696 (*NextField == RT->getDecl()->field_end() || 2697 (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) { 2698 // Find the field that we just initialized. 2699 FieldDecl *PrevField = nullptr; 2700 for (auto FI = RT->getDecl()->field_begin(); 2701 FI != RT->getDecl()->field_end(); ++FI) { 2702 if (FI->isUnnamedBitfield()) 2703 continue; 2704 if (*NextField != RT->getDecl()->field_end() && 2705 declaresSameEntity(*FI, **NextField)) 2706 break; 2707 PrevField = *FI; 2708 } 2709 2710 if (PrevField && 2711 PrevField->getFieldIndex() > KnownField->getFieldIndex()) { 2712 SemaRef.Diag(DIE->getBeginLoc(), diag::ext_designated_init_reordered) 2713 << KnownField << PrevField << DIE->getSourceRange(); 2714 2715 unsigned OldIndex = NumBases + PrevField->getFieldIndex(); 2716 if (StructuredList && OldIndex <= StructuredList->getNumInits()) { 2717 if (Expr *PrevInit = StructuredList->getInit(OldIndex)) { 2718 SemaRef.Diag(PrevInit->getBeginLoc(), 2719 diag::note_previous_field_init) 2720 << PrevField << PrevInit->getSourceRange(); 2721 } 2722 } 2723 } 2724 } 2725 2726 2727 // Update the designator with the field declaration. 2728 if (!VerifyOnly) 2729 D->setField(*Field); 2730 2731 // Make sure that our non-designated initializer list has space 2732 // for a subobject corresponding to this field. 2733 if (StructuredList && FieldIndex >= StructuredList->getNumInits()) 2734 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1); 2735 2736 // This designator names a flexible array member. 2737 if (Field->getType()->isIncompleteArrayType()) { 2738 bool Invalid = false; 2739 if ((DesigIdx + 1) != DIE->size()) { 2740 // We can't designate an object within the flexible array 2741 // member (because GCC doesn't allow it). 2742 if (!VerifyOnly) { 2743 DesignatedInitExpr::Designator *NextD 2744 = DIE->getDesignator(DesigIdx + 1); 2745 SemaRef.Diag(NextD->getBeginLoc(), 2746 diag::err_designator_into_flexible_array_member) 2747 << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc()); 2748 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2749 << *Field; 2750 } 2751 Invalid = true; 2752 } 2753 2754 if (!hadError && !isa<InitListExpr>(DIE->getInit()) && 2755 !isa<StringLiteral>(DIE->getInit())) { 2756 // The initializer is not an initializer list. 2757 if (!VerifyOnly) { 2758 SemaRef.Diag(DIE->getInit()->getBeginLoc(), 2759 diag::err_flexible_array_init_needs_braces) 2760 << DIE->getInit()->getSourceRange(); 2761 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2762 << *Field; 2763 } 2764 Invalid = true; 2765 } 2766 2767 // Check GNU flexible array initializer. 2768 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field, 2769 TopLevelObject)) 2770 Invalid = true; 2771 2772 if (Invalid) { 2773 ++Index; 2774 return true; 2775 } 2776 2777 // Initialize the array. 2778 bool prevHadError = hadError; 2779 unsigned newStructuredIndex = FieldIndex; 2780 unsigned OldIndex = Index; 2781 IList->setInit(Index, DIE->getInit()); 2782 2783 InitializedEntity MemberEntity = 2784 InitializedEntity::InitializeMember(*Field, &Entity); 2785 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2786 StructuredList, newStructuredIndex); 2787 2788 IList->setInit(OldIndex, DIE); 2789 if (hadError && !prevHadError) { 2790 ++Field; 2791 ++FieldIndex; 2792 if (NextField) 2793 *NextField = Field; 2794 StructuredIndex = FieldIndex; 2795 return true; 2796 } 2797 } else { 2798 // Recurse to check later designated subobjects. 2799 QualType FieldType = Field->getType(); 2800 unsigned newStructuredIndex = FieldIndex; 2801 2802 InitializedEntity MemberEntity = 2803 InitializedEntity::InitializeMember(*Field, &Entity); 2804 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1, 2805 FieldType, nullptr, nullptr, Index, 2806 StructuredList, newStructuredIndex, 2807 FinishSubobjectInit, false)) 2808 return true; 2809 } 2810 2811 // Find the position of the next field to be initialized in this 2812 // subobject. 2813 ++Field; 2814 ++FieldIndex; 2815 2816 // If this the first designator, our caller will continue checking 2817 // the rest of this struct/class/union subobject. 2818 if (IsFirstDesignator) { 2819 if (NextField) 2820 *NextField = Field; 2821 StructuredIndex = FieldIndex; 2822 return false; 2823 } 2824 2825 if (!FinishSubobjectInit) 2826 return false; 2827 2828 // We've already initialized something in the union; we're done. 2829 if (RT->getDecl()->isUnion()) 2830 return hadError; 2831 2832 // Check the remaining fields within this class/struct/union subobject. 2833 bool prevHadError = hadError; 2834 2835 auto NoBases = 2836 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), 2837 CXXRecordDecl::base_class_iterator()); 2838 CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field, 2839 false, Index, StructuredList, FieldIndex); 2840 return hadError && !prevHadError; 2841 } 2842 2843 // C99 6.7.8p6: 2844 // 2845 // If a designator has the form 2846 // 2847 // [ constant-expression ] 2848 // 2849 // then the current object (defined below) shall have array 2850 // type and the expression shall be an integer constant 2851 // expression. If the array is of unknown size, any 2852 // nonnegative value is valid. 2853 // 2854 // Additionally, cope with the GNU extension that permits 2855 // designators of the form 2856 // 2857 // [ constant-expression ... constant-expression ] 2858 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType); 2859 if (!AT) { 2860 if (!VerifyOnly) 2861 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array) 2862 << CurrentObjectType; 2863 ++Index; 2864 return true; 2865 } 2866 2867 Expr *IndexExpr = nullptr; 2868 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex; 2869 if (D->isArrayDesignator()) { 2870 IndexExpr = DIE->getArrayIndex(*D); 2871 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context); 2872 DesignatedEndIndex = DesignatedStartIndex; 2873 } else { 2874 assert(D->isArrayRangeDesignator() && "Need array-range designator"); 2875 2876 DesignatedStartIndex = 2877 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context); 2878 DesignatedEndIndex = 2879 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context); 2880 IndexExpr = DIE->getArrayRangeEnd(*D); 2881 2882 // Codegen can't handle evaluating array range designators that have side 2883 // effects, because we replicate the AST value for each initialized element. 2884 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple 2885 // elements with something that has a side effect, so codegen can emit an 2886 // "error unsupported" error instead of miscompiling the app. 2887 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&& 2888 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly) 2889 FullyStructuredList->sawArrayRangeDesignator(); 2890 } 2891 2892 if (isa<ConstantArrayType>(AT)) { 2893 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false); 2894 DesignatedStartIndex 2895 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth()); 2896 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned()); 2897 DesignatedEndIndex 2898 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth()); 2899 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned()); 2900 if (DesignatedEndIndex >= MaxElements) { 2901 if (!VerifyOnly) 2902 SemaRef.Diag(IndexExpr->getBeginLoc(), 2903 diag::err_array_designator_too_large) 2904 << toString(DesignatedEndIndex, 10) << toString(MaxElements, 10) 2905 << IndexExpr->getSourceRange(); 2906 ++Index; 2907 return true; 2908 } 2909 } else { 2910 unsigned DesignatedIndexBitWidth = 2911 ConstantArrayType::getMaxSizeBits(SemaRef.Context); 2912 DesignatedStartIndex = 2913 DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth); 2914 DesignatedEndIndex = 2915 DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth); 2916 DesignatedStartIndex.setIsUnsigned(true); 2917 DesignatedEndIndex.setIsUnsigned(true); 2918 } 2919 2920 bool IsStringLiteralInitUpdate = 2921 StructuredList && StructuredList->isStringLiteralInit(); 2922 if (IsStringLiteralInitUpdate && VerifyOnly) { 2923 // We're just verifying an update to a string literal init. We don't need 2924 // to split the string up into individual characters to do that. 2925 StructuredList = nullptr; 2926 } else if (IsStringLiteralInitUpdate) { 2927 // We're modifying a string literal init; we have to decompose the string 2928 // so we can modify the individual characters. 2929 ASTContext &Context = SemaRef.Context; 2930 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParenImpCasts(); 2931 2932 // Compute the character type 2933 QualType CharTy = AT->getElementType(); 2934 2935 // Compute the type of the integer literals. 2936 QualType PromotedCharTy = CharTy; 2937 if (CharTy->isPromotableIntegerType()) 2938 PromotedCharTy = Context.getPromotedIntegerType(CharTy); 2939 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy); 2940 2941 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) { 2942 // Get the length of the string. 2943 uint64_t StrLen = SL->getLength(); 2944 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2945 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2946 StructuredList->resizeInits(Context, StrLen); 2947 2948 // Build a literal for each character in the string, and put them into 2949 // the init list. 2950 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2951 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i)); 2952 Expr *Init = new (Context) IntegerLiteral( 2953 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2954 if (CharTy != PromotedCharTy) 2955 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2956 Init, nullptr, VK_PRValue, 2957 FPOptionsOverride()); 2958 StructuredList->updateInit(Context, i, Init); 2959 } 2960 } else { 2961 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr); 2962 std::string Str; 2963 Context.getObjCEncodingForType(E->getEncodedType(), Str); 2964 2965 // Get the length of the string. 2966 uint64_t StrLen = Str.size(); 2967 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2968 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2969 StructuredList->resizeInits(Context, StrLen); 2970 2971 // Build a literal for each character in the string, and put them into 2972 // the init list. 2973 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2974 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]); 2975 Expr *Init = new (Context) IntegerLiteral( 2976 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2977 if (CharTy != PromotedCharTy) 2978 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2979 Init, nullptr, VK_PRValue, 2980 FPOptionsOverride()); 2981 StructuredList->updateInit(Context, i, Init); 2982 } 2983 } 2984 } 2985 2986 // Make sure that our non-designated initializer list has space 2987 // for a subobject corresponding to this array element. 2988 if (StructuredList && 2989 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits()) 2990 StructuredList->resizeInits(SemaRef.Context, 2991 DesignatedEndIndex.getZExtValue() + 1); 2992 2993 // Repeatedly perform subobject initializations in the range 2994 // [DesignatedStartIndex, DesignatedEndIndex]. 2995 2996 // Move to the next designator 2997 unsigned ElementIndex = DesignatedStartIndex.getZExtValue(); 2998 unsigned OldIndex = Index; 2999 3000 InitializedEntity ElementEntity = 3001 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 3002 3003 while (DesignatedStartIndex <= DesignatedEndIndex) { 3004 // Recurse to check later designated subobjects. 3005 QualType ElementType = AT->getElementType(); 3006 Index = OldIndex; 3007 3008 ElementEntity.setElementIndex(ElementIndex); 3009 if (CheckDesignatedInitializer( 3010 ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr, 3011 nullptr, Index, StructuredList, ElementIndex, 3012 FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex), 3013 false)) 3014 return true; 3015 3016 // Move to the next index in the array that we'll be initializing. 3017 ++DesignatedStartIndex; 3018 ElementIndex = DesignatedStartIndex.getZExtValue(); 3019 } 3020 3021 // If this the first designator, our caller will continue checking 3022 // the rest of this array subobject. 3023 if (IsFirstDesignator) { 3024 if (NextElementIndex) 3025 *NextElementIndex = DesignatedStartIndex; 3026 StructuredIndex = ElementIndex; 3027 return false; 3028 } 3029 3030 if (!FinishSubobjectInit) 3031 return false; 3032 3033 // Check the remaining elements within this array subobject. 3034 bool prevHadError = hadError; 3035 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex, 3036 /*SubobjectIsDesignatorContext=*/false, Index, 3037 StructuredList, ElementIndex); 3038 return hadError && !prevHadError; 3039 } 3040 3041 // Get the structured initializer list for a subobject of type 3042 // @p CurrentObjectType. 3043 InitListExpr * 3044 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 3045 QualType CurrentObjectType, 3046 InitListExpr *StructuredList, 3047 unsigned StructuredIndex, 3048 SourceRange InitRange, 3049 bool IsFullyOverwritten) { 3050 if (!StructuredList) 3051 return nullptr; 3052 3053 Expr *ExistingInit = nullptr; 3054 if (StructuredIndex < StructuredList->getNumInits()) 3055 ExistingInit = StructuredList->getInit(StructuredIndex); 3056 3057 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit)) 3058 // There might have already been initializers for subobjects of the current 3059 // object, but a subsequent initializer list will overwrite the entirety 3060 // of the current object. (See DR 253 and C99 6.7.8p21). e.g., 3061 // 3062 // struct P { char x[6]; }; 3063 // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } }; 3064 // 3065 // The first designated initializer is ignored, and l.x is just "f". 3066 if (!IsFullyOverwritten) 3067 return Result; 3068 3069 if (ExistingInit) { 3070 // We are creating an initializer list that initializes the 3071 // subobjects of the current object, but there was already an 3072 // initialization that completely initialized the current 3073 // subobject: 3074 // 3075 // struct X { int a, b; }; 3076 // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 }; 3077 // 3078 // Here, xs[0].a == 1 and xs[0].b == 3, since the second, 3079 // designated initializer overwrites the [0].b initializer 3080 // from the prior initialization. 3081 // 3082 // When the existing initializer is an expression rather than an 3083 // initializer list, we cannot decompose and update it in this way. 3084 // For example: 3085 // 3086 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 3087 // 3088 // This case is handled by CheckDesignatedInitializer. 3089 diagnoseInitOverride(ExistingInit, InitRange); 3090 } 3091 3092 unsigned ExpectedNumInits = 0; 3093 if (Index < IList->getNumInits()) { 3094 if (auto *Init = dyn_cast_or_null<InitListExpr>(IList->getInit(Index))) 3095 ExpectedNumInits = Init->getNumInits(); 3096 else 3097 ExpectedNumInits = IList->getNumInits() - Index; 3098 } 3099 3100 InitListExpr *Result = 3101 createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits); 3102 3103 // Link this new initializer list into the structured initializer 3104 // lists. 3105 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result); 3106 return Result; 3107 } 3108 3109 InitListExpr * 3110 InitListChecker::createInitListExpr(QualType CurrentObjectType, 3111 SourceRange InitRange, 3112 unsigned ExpectedNumInits) { 3113 InitListExpr *Result 3114 = new (SemaRef.Context) InitListExpr(SemaRef.Context, 3115 InitRange.getBegin(), None, 3116 InitRange.getEnd()); 3117 3118 QualType ResultType = CurrentObjectType; 3119 if (!ResultType->isArrayType()) 3120 ResultType = ResultType.getNonLValueExprType(SemaRef.Context); 3121 Result->setType(ResultType); 3122 3123 // Pre-allocate storage for the structured initializer list. 3124 unsigned NumElements = 0; 3125 3126 if (const ArrayType *AType 3127 = SemaRef.Context.getAsArrayType(CurrentObjectType)) { 3128 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) { 3129 NumElements = CAType->getSize().getZExtValue(); 3130 // Simple heuristic so that we don't allocate a very large 3131 // initializer with many empty entries at the end. 3132 if (NumElements > ExpectedNumInits) 3133 NumElements = 0; 3134 } 3135 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) { 3136 NumElements = VType->getNumElements(); 3137 } else if (CurrentObjectType->isRecordType()) { 3138 NumElements = numStructUnionElements(CurrentObjectType); 3139 } 3140 3141 Result->reserveInits(SemaRef.Context, NumElements); 3142 3143 return Result; 3144 } 3145 3146 /// Update the initializer at index @p StructuredIndex within the 3147 /// structured initializer list to the value @p expr. 3148 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList, 3149 unsigned &StructuredIndex, 3150 Expr *expr) { 3151 // No structured initializer list to update 3152 if (!StructuredList) 3153 return; 3154 3155 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context, 3156 StructuredIndex, expr)) { 3157 // This initializer overwrites a previous initializer. 3158 // No need to diagnose when `expr` is nullptr because a more relevant 3159 // diagnostic has already been issued and this diagnostic is potentially 3160 // noise. 3161 if (expr) 3162 diagnoseInitOverride(PrevInit, expr->getSourceRange()); 3163 } 3164 3165 ++StructuredIndex; 3166 } 3167 3168 /// Determine whether we can perform aggregate initialization for the purposes 3169 /// of overload resolution. 3170 bool Sema::CanPerformAggregateInitializationForOverloadResolution( 3171 const InitializedEntity &Entity, InitListExpr *From) { 3172 QualType Type = Entity.getType(); 3173 InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true, 3174 /*TreatUnavailableAsInvalid=*/false, 3175 /*InOverloadResolution=*/true); 3176 return !Check.HadError(); 3177 } 3178 3179 /// Check that the given Index expression is a valid array designator 3180 /// value. This is essentially just a wrapper around 3181 /// VerifyIntegerConstantExpression that also checks for negative values 3182 /// and produces a reasonable diagnostic if there is a 3183 /// failure. Returns the index expression, possibly with an implicit cast 3184 /// added, on success. If everything went okay, Value will receive the 3185 /// value of the constant expression. 3186 static ExprResult 3187 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) { 3188 SourceLocation Loc = Index->getBeginLoc(); 3189 3190 // Make sure this is an integer constant expression. 3191 ExprResult Result = 3192 S.VerifyIntegerConstantExpression(Index, &Value, Sema::AllowFold); 3193 if (Result.isInvalid()) 3194 return Result; 3195 3196 if (Value.isSigned() && Value.isNegative()) 3197 return S.Diag(Loc, diag::err_array_designator_negative) 3198 << toString(Value, 10) << Index->getSourceRange(); 3199 3200 Value.setIsUnsigned(true); 3201 return Result; 3202 } 3203 3204 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig, 3205 SourceLocation EqualOrColonLoc, 3206 bool GNUSyntax, 3207 ExprResult Init) { 3208 typedef DesignatedInitExpr::Designator ASTDesignator; 3209 3210 bool Invalid = false; 3211 SmallVector<ASTDesignator, 32> Designators; 3212 SmallVector<Expr *, 32> InitExpressions; 3213 3214 // Build designators and check array designator expressions. 3215 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) { 3216 const Designator &D = Desig.getDesignator(Idx); 3217 switch (D.getKind()) { 3218 case Designator::FieldDesignator: 3219 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(), 3220 D.getFieldLoc())); 3221 break; 3222 3223 case Designator::ArrayDesignator: { 3224 Expr *Index = static_cast<Expr *>(D.getArrayIndex()); 3225 llvm::APSInt IndexValue; 3226 if (!Index->isTypeDependent() && !Index->isValueDependent()) 3227 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get(); 3228 if (!Index) 3229 Invalid = true; 3230 else { 3231 Designators.push_back(ASTDesignator(InitExpressions.size(), 3232 D.getLBracketLoc(), 3233 D.getRBracketLoc())); 3234 InitExpressions.push_back(Index); 3235 } 3236 break; 3237 } 3238 3239 case Designator::ArrayRangeDesignator: { 3240 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart()); 3241 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd()); 3242 llvm::APSInt StartValue; 3243 llvm::APSInt EndValue; 3244 bool StartDependent = StartIndex->isTypeDependent() || 3245 StartIndex->isValueDependent(); 3246 bool EndDependent = EndIndex->isTypeDependent() || 3247 EndIndex->isValueDependent(); 3248 if (!StartDependent) 3249 StartIndex = 3250 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get(); 3251 if (!EndDependent) 3252 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get(); 3253 3254 if (!StartIndex || !EndIndex) 3255 Invalid = true; 3256 else { 3257 // Make sure we're comparing values with the same bit width. 3258 if (StartDependent || EndDependent) { 3259 // Nothing to compute. 3260 } else if (StartValue.getBitWidth() > EndValue.getBitWidth()) 3261 EndValue = EndValue.extend(StartValue.getBitWidth()); 3262 else if (StartValue.getBitWidth() < EndValue.getBitWidth()) 3263 StartValue = StartValue.extend(EndValue.getBitWidth()); 3264 3265 if (!StartDependent && !EndDependent && EndValue < StartValue) { 3266 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range) 3267 << toString(StartValue, 10) << toString(EndValue, 10) 3268 << StartIndex->getSourceRange() << EndIndex->getSourceRange(); 3269 Invalid = true; 3270 } else { 3271 Designators.push_back(ASTDesignator(InitExpressions.size(), 3272 D.getLBracketLoc(), 3273 D.getEllipsisLoc(), 3274 D.getRBracketLoc())); 3275 InitExpressions.push_back(StartIndex); 3276 InitExpressions.push_back(EndIndex); 3277 } 3278 } 3279 break; 3280 } 3281 } 3282 } 3283 3284 if (Invalid || Init.isInvalid()) 3285 return ExprError(); 3286 3287 // Clear out the expressions within the designation. 3288 Desig.ClearExprs(*this); 3289 3290 return DesignatedInitExpr::Create(Context, Designators, InitExpressions, 3291 EqualOrColonLoc, GNUSyntax, 3292 Init.getAs<Expr>()); 3293 } 3294 3295 //===----------------------------------------------------------------------===// 3296 // Initialization entity 3297 //===----------------------------------------------------------------------===// 3298 3299 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index, 3300 const InitializedEntity &Parent) 3301 : Parent(&Parent), Index(Index) 3302 { 3303 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) { 3304 Kind = EK_ArrayElement; 3305 Type = AT->getElementType(); 3306 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) { 3307 Kind = EK_VectorElement; 3308 Type = VT->getElementType(); 3309 } else { 3310 const ComplexType *CT = Parent.getType()->getAs<ComplexType>(); 3311 assert(CT && "Unexpected type"); 3312 Kind = EK_ComplexElement; 3313 Type = CT->getElementType(); 3314 } 3315 } 3316 3317 InitializedEntity 3318 InitializedEntity::InitializeBase(ASTContext &Context, 3319 const CXXBaseSpecifier *Base, 3320 bool IsInheritedVirtualBase, 3321 const InitializedEntity *Parent) { 3322 InitializedEntity Result; 3323 Result.Kind = EK_Base; 3324 Result.Parent = Parent; 3325 Result.Base = {Base, IsInheritedVirtualBase}; 3326 Result.Type = Base->getType(); 3327 return Result; 3328 } 3329 3330 DeclarationName InitializedEntity::getName() const { 3331 switch (getKind()) { 3332 case EK_Parameter: 3333 case EK_Parameter_CF_Audited: { 3334 ParmVarDecl *D = Parameter.getPointer(); 3335 return (D ? D->getDeclName() : DeclarationName()); 3336 } 3337 3338 case EK_Variable: 3339 case EK_Member: 3340 case EK_Binding: 3341 case EK_TemplateParameter: 3342 return Variable.VariableOrMember->getDeclName(); 3343 3344 case EK_LambdaCapture: 3345 return DeclarationName(Capture.VarID); 3346 3347 case EK_Result: 3348 case EK_StmtExprResult: 3349 case EK_Exception: 3350 case EK_New: 3351 case EK_Temporary: 3352 case EK_Base: 3353 case EK_Delegating: 3354 case EK_ArrayElement: 3355 case EK_VectorElement: 3356 case EK_ComplexElement: 3357 case EK_BlockElement: 3358 case EK_LambdaToBlockConversionBlockElement: 3359 case EK_CompoundLiteralInit: 3360 case EK_RelatedResult: 3361 return DeclarationName(); 3362 } 3363 3364 llvm_unreachable("Invalid EntityKind!"); 3365 } 3366 3367 ValueDecl *InitializedEntity::getDecl() const { 3368 switch (getKind()) { 3369 case EK_Variable: 3370 case EK_Member: 3371 case EK_Binding: 3372 case EK_TemplateParameter: 3373 return Variable.VariableOrMember; 3374 3375 case EK_Parameter: 3376 case EK_Parameter_CF_Audited: 3377 return Parameter.getPointer(); 3378 3379 case EK_Result: 3380 case EK_StmtExprResult: 3381 case EK_Exception: 3382 case EK_New: 3383 case EK_Temporary: 3384 case EK_Base: 3385 case EK_Delegating: 3386 case EK_ArrayElement: 3387 case EK_VectorElement: 3388 case EK_ComplexElement: 3389 case EK_BlockElement: 3390 case EK_LambdaToBlockConversionBlockElement: 3391 case EK_LambdaCapture: 3392 case EK_CompoundLiteralInit: 3393 case EK_RelatedResult: 3394 return nullptr; 3395 } 3396 3397 llvm_unreachable("Invalid EntityKind!"); 3398 } 3399 3400 bool InitializedEntity::allowsNRVO() const { 3401 switch (getKind()) { 3402 case EK_Result: 3403 case EK_Exception: 3404 return LocAndNRVO.NRVO; 3405 3406 case EK_StmtExprResult: 3407 case EK_Variable: 3408 case EK_Parameter: 3409 case EK_Parameter_CF_Audited: 3410 case EK_TemplateParameter: 3411 case EK_Member: 3412 case EK_Binding: 3413 case EK_New: 3414 case EK_Temporary: 3415 case EK_CompoundLiteralInit: 3416 case EK_Base: 3417 case EK_Delegating: 3418 case EK_ArrayElement: 3419 case EK_VectorElement: 3420 case EK_ComplexElement: 3421 case EK_BlockElement: 3422 case EK_LambdaToBlockConversionBlockElement: 3423 case EK_LambdaCapture: 3424 case EK_RelatedResult: 3425 break; 3426 } 3427 3428 return false; 3429 } 3430 3431 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const { 3432 assert(getParent() != this); 3433 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0; 3434 for (unsigned I = 0; I != Depth; ++I) 3435 OS << "`-"; 3436 3437 switch (getKind()) { 3438 case EK_Variable: OS << "Variable"; break; 3439 case EK_Parameter: OS << "Parameter"; break; 3440 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter"; 3441 break; 3442 case EK_TemplateParameter: OS << "TemplateParameter"; break; 3443 case EK_Result: OS << "Result"; break; 3444 case EK_StmtExprResult: OS << "StmtExprResult"; break; 3445 case EK_Exception: OS << "Exception"; break; 3446 case EK_Member: OS << "Member"; break; 3447 case EK_Binding: OS << "Binding"; break; 3448 case EK_New: OS << "New"; break; 3449 case EK_Temporary: OS << "Temporary"; break; 3450 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break; 3451 case EK_RelatedResult: OS << "RelatedResult"; break; 3452 case EK_Base: OS << "Base"; break; 3453 case EK_Delegating: OS << "Delegating"; break; 3454 case EK_ArrayElement: OS << "ArrayElement " << Index; break; 3455 case EK_VectorElement: OS << "VectorElement " << Index; break; 3456 case EK_ComplexElement: OS << "ComplexElement " << Index; break; 3457 case EK_BlockElement: OS << "Block"; break; 3458 case EK_LambdaToBlockConversionBlockElement: 3459 OS << "Block (lambda)"; 3460 break; 3461 case EK_LambdaCapture: 3462 OS << "LambdaCapture "; 3463 OS << DeclarationName(Capture.VarID); 3464 break; 3465 } 3466 3467 if (auto *D = getDecl()) { 3468 OS << " "; 3469 D->printQualifiedName(OS); 3470 } 3471 3472 OS << " '" << getType() << "'\n"; 3473 3474 return Depth + 1; 3475 } 3476 3477 LLVM_DUMP_METHOD void InitializedEntity::dump() const { 3478 dumpImpl(llvm::errs()); 3479 } 3480 3481 //===----------------------------------------------------------------------===// 3482 // Initialization sequence 3483 //===----------------------------------------------------------------------===// 3484 3485 void InitializationSequence::Step::Destroy() { 3486 switch (Kind) { 3487 case SK_ResolveAddressOfOverloadedFunction: 3488 case SK_CastDerivedToBasePRValue: 3489 case SK_CastDerivedToBaseXValue: 3490 case SK_CastDerivedToBaseLValue: 3491 case SK_BindReference: 3492 case SK_BindReferenceToTemporary: 3493 case SK_FinalCopy: 3494 case SK_ExtraneousCopyToTemporary: 3495 case SK_UserConversion: 3496 case SK_QualificationConversionPRValue: 3497 case SK_QualificationConversionXValue: 3498 case SK_QualificationConversionLValue: 3499 case SK_FunctionReferenceConversion: 3500 case SK_AtomicConversion: 3501 case SK_ListInitialization: 3502 case SK_UnwrapInitList: 3503 case SK_RewrapInitList: 3504 case SK_ConstructorInitialization: 3505 case SK_ConstructorInitializationFromList: 3506 case SK_ZeroInitialization: 3507 case SK_CAssignment: 3508 case SK_StringInit: 3509 case SK_ObjCObjectConversion: 3510 case SK_ArrayLoopIndex: 3511 case SK_ArrayLoopInit: 3512 case SK_ArrayInit: 3513 case SK_GNUArrayInit: 3514 case SK_ParenthesizedArrayInit: 3515 case SK_PassByIndirectCopyRestore: 3516 case SK_PassByIndirectRestore: 3517 case SK_ProduceObjCObject: 3518 case SK_StdInitializerList: 3519 case SK_StdInitializerListConstructorCall: 3520 case SK_OCLSamplerInit: 3521 case SK_OCLZeroOpaqueType: 3522 break; 3523 3524 case SK_ConversionSequence: 3525 case SK_ConversionSequenceNoNarrowing: 3526 delete ICS; 3527 } 3528 } 3529 3530 bool InitializationSequence::isDirectReferenceBinding() const { 3531 // There can be some lvalue adjustments after the SK_BindReference step. 3532 for (const Step &S : llvm::reverse(Steps)) { 3533 if (S.Kind == SK_BindReference) 3534 return true; 3535 if (S.Kind == SK_BindReferenceToTemporary) 3536 return false; 3537 } 3538 return false; 3539 } 3540 3541 bool InitializationSequence::isAmbiguous() const { 3542 if (!Failed()) 3543 return false; 3544 3545 switch (getFailureKind()) { 3546 case FK_TooManyInitsForReference: 3547 case FK_ParenthesizedListInitForReference: 3548 case FK_ArrayNeedsInitList: 3549 case FK_ArrayNeedsInitListOrStringLiteral: 3550 case FK_ArrayNeedsInitListOrWideStringLiteral: 3551 case FK_NarrowStringIntoWideCharArray: 3552 case FK_WideStringIntoCharArray: 3553 case FK_IncompatWideStringIntoWideChar: 3554 case FK_PlainStringIntoUTF8Char: 3555 case FK_UTF8StringIntoPlainChar: 3556 case FK_AddressOfOverloadFailed: // FIXME: Could do better 3557 case FK_NonConstLValueReferenceBindingToTemporary: 3558 case FK_NonConstLValueReferenceBindingToBitfield: 3559 case FK_NonConstLValueReferenceBindingToVectorElement: 3560 case FK_NonConstLValueReferenceBindingToMatrixElement: 3561 case FK_NonConstLValueReferenceBindingToUnrelated: 3562 case FK_RValueReferenceBindingToLValue: 3563 case FK_ReferenceAddrspaceMismatchTemporary: 3564 case FK_ReferenceInitDropsQualifiers: 3565 case FK_ReferenceInitFailed: 3566 case FK_ConversionFailed: 3567 case FK_ConversionFromPropertyFailed: 3568 case FK_TooManyInitsForScalar: 3569 case FK_ParenthesizedListInitForScalar: 3570 case FK_ReferenceBindingToInitList: 3571 case FK_InitListBadDestinationType: 3572 case FK_DefaultInitOfConst: 3573 case FK_Incomplete: 3574 case FK_ArrayTypeMismatch: 3575 case FK_NonConstantArrayInit: 3576 case FK_ListInitializationFailed: 3577 case FK_VariableLengthArrayHasInitializer: 3578 case FK_PlaceholderType: 3579 case FK_ExplicitConstructor: 3580 case FK_AddressOfUnaddressableFunction: 3581 return false; 3582 3583 case FK_ReferenceInitOverloadFailed: 3584 case FK_UserConversionOverloadFailed: 3585 case FK_ConstructorOverloadFailed: 3586 case FK_ListConstructorOverloadFailed: 3587 return FailedOverloadResult == OR_Ambiguous; 3588 } 3589 3590 llvm_unreachable("Invalid EntityKind!"); 3591 } 3592 3593 bool InitializationSequence::isConstructorInitialization() const { 3594 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization; 3595 } 3596 3597 void 3598 InitializationSequence 3599 ::AddAddressOverloadResolutionStep(FunctionDecl *Function, 3600 DeclAccessPair Found, 3601 bool HadMultipleCandidates) { 3602 Step S; 3603 S.Kind = SK_ResolveAddressOfOverloadedFunction; 3604 S.Type = Function->getType(); 3605 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3606 S.Function.Function = Function; 3607 S.Function.FoundDecl = Found; 3608 Steps.push_back(S); 3609 } 3610 3611 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType, 3612 ExprValueKind VK) { 3613 Step S; 3614 switch (VK) { 3615 case VK_PRValue: 3616 S.Kind = SK_CastDerivedToBasePRValue; 3617 break; 3618 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break; 3619 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break; 3620 } 3621 S.Type = BaseType; 3622 Steps.push_back(S); 3623 } 3624 3625 void InitializationSequence::AddReferenceBindingStep(QualType T, 3626 bool BindingTemporary) { 3627 Step S; 3628 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference; 3629 S.Type = T; 3630 Steps.push_back(S); 3631 } 3632 3633 void InitializationSequence::AddFinalCopy(QualType T) { 3634 Step S; 3635 S.Kind = SK_FinalCopy; 3636 S.Type = T; 3637 Steps.push_back(S); 3638 } 3639 3640 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) { 3641 Step S; 3642 S.Kind = SK_ExtraneousCopyToTemporary; 3643 S.Type = T; 3644 Steps.push_back(S); 3645 } 3646 3647 void 3648 InitializationSequence::AddUserConversionStep(FunctionDecl *Function, 3649 DeclAccessPair FoundDecl, 3650 QualType T, 3651 bool HadMultipleCandidates) { 3652 Step S; 3653 S.Kind = SK_UserConversion; 3654 S.Type = T; 3655 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3656 S.Function.Function = Function; 3657 S.Function.FoundDecl = FoundDecl; 3658 Steps.push_back(S); 3659 } 3660 3661 void InitializationSequence::AddQualificationConversionStep(QualType Ty, 3662 ExprValueKind VK) { 3663 Step S; 3664 S.Kind = SK_QualificationConversionPRValue; // work around a gcc warning 3665 switch (VK) { 3666 case VK_PRValue: 3667 S.Kind = SK_QualificationConversionPRValue; 3668 break; 3669 case VK_XValue: 3670 S.Kind = SK_QualificationConversionXValue; 3671 break; 3672 case VK_LValue: 3673 S.Kind = SK_QualificationConversionLValue; 3674 break; 3675 } 3676 S.Type = Ty; 3677 Steps.push_back(S); 3678 } 3679 3680 void InitializationSequence::AddFunctionReferenceConversionStep(QualType Ty) { 3681 Step S; 3682 S.Kind = SK_FunctionReferenceConversion; 3683 S.Type = Ty; 3684 Steps.push_back(S); 3685 } 3686 3687 void InitializationSequence::AddAtomicConversionStep(QualType Ty) { 3688 Step S; 3689 S.Kind = SK_AtomicConversion; 3690 S.Type = Ty; 3691 Steps.push_back(S); 3692 } 3693 3694 void InitializationSequence::AddConversionSequenceStep( 3695 const ImplicitConversionSequence &ICS, QualType T, 3696 bool TopLevelOfInitList) { 3697 Step S; 3698 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing 3699 : SK_ConversionSequence; 3700 S.Type = T; 3701 S.ICS = new ImplicitConversionSequence(ICS); 3702 Steps.push_back(S); 3703 } 3704 3705 void InitializationSequence::AddListInitializationStep(QualType T) { 3706 Step S; 3707 S.Kind = SK_ListInitialization; 3708 S.Type = T; 3709 Steps.push_back(S); 3710 } 3711 3712 void InitializationSequence::AddConstructorInitializationStep( 3713 DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T, 3714 bool HadMultipleCandidates, bool FromInitList, bool AsInitList) { 3715 Step S; 3716 S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall 3717 : SK_ConstructorInitializationFromList 3718 : SK_ConstructorInitialization; 3719 S.Type = T; 3720 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3721 S.Function.Function = Constructor; 3722 S.Function.FoundDecl = FoundDecl; 3723 Steps.push_back(S); 3724 } 3725 3726 void InitializationSequence::AddZeroInitializationStep(QualType T) { 3727 Step S; 3728 S.Kind = SK_ZeroInitialization; 3729 S.Type = T; 3730 Steps.push_back(S); 3731 } 3732 3733 void InitializationSequence::AddCAssignmentStep(QualType T) { 3734 Step S; 3735 S.Kind = SK_CAssignment; 3736 S.Type = T; 3737 Steps.push_back(S); 3738 } 3739 3740 void InitializationSequence::AddStringInitStep(QualType T) { 3741 Step S; 3742 S.Kind = SK_StringInit; 3743 S.Type = T; 3744 Steps.push_back(S); 3745 } 3746 3747 void InitializationSequence::AddObjCObjectConversionStep(QualType T) { 3748 Step S; 3749 S.Kind = SK_ObjCObjectConversion; 3750 S.Type = T; 3751 Steps.push_back(S); 3752 } 3753 3754 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) { 3755 Step S; 3756 S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit; 3757 S.Type = T; 3758 Steps.push_back(S); 3759 } 3760 3761 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) { 3762 Step S; 3763 S.Kind = SK_ArrayLoopIndex; 3764 S.Type = EltT; 3765 Steps.insert(Steps.begin(), S); 3766 3767 S.Kind = SK_ArrayLoopInit; 3768 S.Type = T; 3769 Steps.push_back(S); 3770 } 3771 3772 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) { 3773 Step S; 3774 S.Kind = SK_ParenthesizedArrayInit; 3775 S.Type = T; 3776 Steps.push_back(S); 3777 } 3778 3779 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type, 3780 bool shouldCopy) { 3781 Step s; 3782 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore 3783 : SK_PassByIndirectRestore); 3784 s.Type = type; 3785 Steps.push_back(s); 3786 } 3787 3788 void InitializationSequence::AddProduceObjCObjectStep(QualType T) { 3789 Step S; 3790 S.Kind = SK_ProduceObjCObject; 3791 S.Type = T; 3792 Steps.push_back(S); 3793 } 3794 3795 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) { 3796 Step S; 3797 S.Kind = SK_StdInitializerList; 3798 S.Type = T; 3799 Steps.push_back(S); 3800 } 3801 3802 void InitializationSequence::AddOCLSamplerInitStep(QualType T) { 3803 Step S; 3804 S.Kind = SK_OCLSamplerInit; 3805 S.Type = T; 3806 Steps.push_back(S); 3807 } 3808 3809 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) { 3810 Step S; 3811 S.Kind = SK_OCLZeroOpaqueType; 3812 S.Type = T; 3813 Steps.push_back(S); 3814 } 3815 3816 void InitializationSequence::RewrapReferenceInitList(QualType T, 3817 InitListExpr *Syntactic) { 3818 assert(Syntactic->getNumInits() == 1 && 3819 "Can only rewrap trivial init lists."); 3820 Step S; 3821 S.Kind = SK_UnwrapInitList; 3822 S.Type = Syntactic->getInit(0)->getType(); 3823 Steps.insert(Steps.begin(), S); 3824 3825 S.Kind = SK_RewrapInitList; 3826 S.Type = T; 3827 S.WrappingSyntacticList = Syntactic; 3828 Steps.push_back(S); 3829 } 3830 3831 void InitializationSequence::SetOverloadFailure(FailureKind Failure, 3832 OverloadingResult Result) { 3833 setSequenceKind(FailedSequence); 3834 this->Failure = Failure; 3835 this->FailedOverloadResult = Result; 3836 } 3837 3838 //===----------------------------------------------------------------------===// 3839 // Attempt initialization 3840 //===----------------------------------------------------------------------===// 3841 3842 /// Tries to add a zero initializer. Returns true if that worked. 3843 static bool 3844 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence, 3845 const InitializedEntity &Entity) { 3846 if (Entity.getKind() != InitializedEntity::EK_Variable) 3847 return false; 3848 3849 VarDecl *VD = cast<VarDecl>(Entity.getDecl()); 3850 if (VD->getInit() || VD->getEndLoc().isMacroID()) 3851 return false; 3852 3853 QualType VariableTy = VD->getType().getCanonicalType(); 3854 SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc()); 3855 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc); 3856 if (!Init.empty()) { 3857 Sequence.AddZeroInitializationStep(Entity.getType()); 3858 Sequence.SetZeroInitializationFixit(Init, Loc); 3859 return true; 3860 } 3861 return false; 3862 } 3863 3864 static void MaybeProduceObjCObject(Sema &S, 3865 InitializationSequence &Sequence, 3866 const InitializedEntity &Entity) { 3867 if (!S.getLangOpts().ObjCAutoRefCount) return; 3868 3869 /// When initializing a parameter, produce the value if it's marked 3870 /// __attribute__((ns_consumed)). 3871 if (Entity.isParameterKind()) { 3872 if (!Entity.isParameterConsumed()) 3873 return; 3874 3875 assert(Entity.getType()->isObjCRetainableType() && 3876 "consuming an object of unretainable type?"); 3877 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3878 3879 /// When initializing a return value, if the return type is a 3880 /// retainable type, then returns need to immediately retain the 3881 /// object. If an autorelease is required, it will be done at the 3882 /// last instant. 3883 } else if (Entity.getKind() == InitializedEntity::EK_Result || 3884 Entity.getKind() == InitializedEntity::EK_StmtExprResult) { 3885 if (!Entity.getType()->isObjCRetainableType()) 3886 return; 3887 3888 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3889 } 3890 } 3891 3892 static void TryListInitialization(Sema &S, 3893 const InitializedEntity &Entity, 3894 const InitializationKind &Kind, 3895 InitListExpr *InitList, 3896 InitializationSequence &Sequence, 3897 bool TreatUnavailableAsInvalid); 3898 3899 /// When initializing from init list via constructor, handle 3900 /// initialization of an object of type std::initializer_list<T>. 3901 /// 3902 /// \return true if we have handled initialization of an object of type 3903 /// std::initializer_list<T>, false otherwise. 3904 static bool TryInitializerListConstruction(Sema &S, 3905 InitListExpr *List, 3906 QualType DestType, 3907 InitializationSequence &Sequence, 3908 bool TreatUnavailableAsInvalid) { 3909 QualType E; 3910 if (!S.isStdInitializerList(DestType, &E)) 3911 return false; 3912 3913 if (!S.isCompleteType(List->getExprLoc(), E)) { 3914 Sequence.setIncompleteTypeFailure(E); 3915 return true; 3916 } 3917 3918 // Try initializing a temporary array from the init list. 3919 QualType ArrayType = S.Context.getConstantArrayType( 3920 E.withConst(), 3921 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 3922 List->getNumInits()), 3923 nullptr, clang::ArrayType::Normal, 0); 3924 InitializedEntity HiddenArray = 3925 InitializedEntity::InitializeTemporary(ArrayType); 3926 InitializationKind Kind = InitializationKind::CreateDirectList( 3927 List->getExprLoc(), List->getBeginLoc(), List->getEndLoc()); 3928 TryListInitialization(S, HiddenArray, Kind, List, Sequence, 3929 TreatUnavailableAsInvalid); 3930 if (Sequence) 3931 Sequence.AddStdInitializerListConstructionStep(DestType); 3932 return true; 3933 } 3934 3935 /// Determine if the constructor has the signature of a copy or move 3936 /// constructor for the type T of the class in which it was found. That is, 3937 /// determine if its first parameter is of type T or reference to (possibly 3938 /// cv-qualified) T. 3939 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx, 3940 const ConstructorInfo &Info) { 3941 if (Info.Constructor->getNumParams() == 0) 3942 return false; 3943 3944 QualType ParmT = 3945 Info.Constructor->getParamDecl(0)->getType().getNonReferenceType(); 3946 QualType ClassT = 3947 Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext())); 3948 3949 return Ctx.hasSameUnqualifiedType(ParmT, ClassT); 3950 } 3951 3952 static OverloadingResult 3953 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc, 3954 MultiExprArg Args, 3955 OverloadCandidateSet &CandidateSet, 3956 QualType DestType, 3957 DeclContext::lookup_result Ctors, 3958 OverloadCandidateSet::iterator &Best, 3959 bool CopyInitializing, bool AllowExplicit, 3960 bool OnlyListConstructors, bool IsListInit, 3961 bool SecondStepOfCopyInit = false) { 3962 CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor); 3963 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); 3964 3965 for (NamedDecl *D : Ctors) { 3966 auto Info = getConstructorInfo(D); 3967 if (!Info.Constructor || Info.Constructor->isInvalidDecl()) 3968 continue; 3969 3970 if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor)) 3971 continue; 3972 3973 // C++11 [over.best.ics]p4: 3974 // ... and the constructor or user-defined conversion function is a 3975 // candidate by 3976 // - 13.3.1.3, when the argument is the temporary in the second step 3977 // of a class copy-initialization, or 3978 // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here] 3979 // - the second phase of 13.3.1.7 when the initializer list has exactly 3980 // one element that is itself an initializer list, and the target is 3981 // the first parameter of a constructor of class X, and the conversion 3982 // is to X or reference to (possibly cv-qualified X), 3983 // user-defined conversion sequences are not considered. 3984 bool SuppressUserConversions = 3985 SecondStepOfCopyInit || 3986 (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) && 3987 hasCopyOrMoveCtorParam(S.Context, Info)); 3988 3989 if (Info.ConstructorTmpl) 3990 S.AddTemplateOverloadCandidate( 3991 Info.ConstructorTmpl, Info.FoundDecl, 3992 /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions, 3993 /*PartialOverloading=*/false, AllowExplicit); 3994 else { 3995 // C++ [over.match.copy]p1: 3996 // - When initializing a temporary to be bound to the first parameter 3997 // of a constructor [for type T] that takes a reference to possibly 3998 // cv-qualified T as its first argument, called with a single 3999 // argument in the context of direct-initialization, explicit 4000 // conversion functions are also considered. 4001 // FIXME: What if a constructor template instantiates to such a signature? 4002 bool AllowExplicitConv = AllowExplicit && !CopyInitializing && 4003 Args.size() == 1 && 4004 hasCopyOrMoveCtorParam(S.Context, Info); 4005 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args, 4006 CandidateSet, SuppressUserConversions, 4007 /*PartialOverloading=*/false, AllowExplicit, 4008 AllowExplicitConv); 4009 } 4010 } 4011 4012 // FIXME: Work around a bug in C++17 guaranteed copy elision. 4013 // 4014 // When initializing an object of class type T by constructor 4015 // ([over.match.ctor]) or by list-initialization ([over.match.list]) 4016 // from a single expression of class type U, conversion functions of 4017 // U that convert to the non-reference type cv T are candidates. 4018 // Explicit conversion functions are only candidates during 4019 // direct-initialization. 4020 // 4021 // Note: SecondStepOfCopyInit is only ever true in this case when 4022 // evaluating whether to produce a C++98 compatibility warning. 4023 if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 && 4024 !SecondStepOfCopyInit) { 4025 Expr *Initializer = Args[0]; 4026 auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl(); 4027 if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) { 4028 const auto &Conversions = SourceRD->getVisibleConversionFunctions(); 4029 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 4030 NamedDecl *D = *I; 4031 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 4032 D = D->getUnderlyingDecl(); 4033 4034 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 4035 CXXConversionDecl *Conv; 4036 if (ConvTemplate) 4037 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 4038 else 4039 Conv = cast<CXXConversionDecl>(D); 4040 4041 if (ConvTemplate) 4042 S.AddTemplateConversionCandidate( 4043 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 4044 CandidateSet, AllowExplicit, AllowExplicit, 4045 /*AllowResultConversion*/ false); 4046 else 4047 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, 4048 DestType, CandidateSet, AllowExplicit, 4049 AllowExplicit, 4050 /*AllowResultConversion*/ false); 4051 } 4052 } 4053 } 4054 4055 // Perform overload resolution and return the result. 4056 return CandidateSet.BestViableFunction(S, DeclLoc, Best); 4057 } 4058 4059 /// Attempt initialization by constructor (C++ [dcl.init]), which 4060 /// enumerates the constructors of the initialized entity and performs overload 4061 /// resolution to select the best. 4062 /// \param DestType The destination class type. 4063 /// \param DestArrayType The destination type, which is either DestType or 4064 /// a (possibly multidimensional) array of DestType. 4065 /// \param IsListInit Is this list-initialization? 4066 /// \param IsInitListCopy Is this non-list-initialization resulting from a 4067 /// list-initialization from {x} where x is the same 4068 /// type as the entity? 4069 static void TryConstructorInitialization(Sema &S, 4070 const InitializedEntity &Entity, 4071 const InitializationKind &Kind, 4072 MultiExprArg Args, QualType DestType, 4073 QualType DestArrayType, 4074 InitializationSequence &Sequence, 4075 bool IsListInit = false, 4076 bool IsInitListCopy = false) { 4077 assert(((!IsListInit && !IsInitListCopy) || 4078 (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && 4079 "IsListInit/IsInitListCopy must come with a single initializer list " 4080 "argument."); 4081 InitListExpr *ILE = 4082 (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr; 4083 MultiExprArg UnwrappedArgs = 4084 ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args; 4085 4086 // The type we're constructing needs to be complete. 4087 if (!S.isCompleteType(Kind.getLocation(), DestType)) { 4088 Sequence.setIncompleteTypeFailure(DestType); 4089 return; 4090 } 4091 4092 // C++17 [dcl.init]p17: 4093 // - If the initializer expression is a prvalue and the cv-unqualified 4094 // version of the source type is the same class as the class of the 4095 // destination, the initializer expression is used to initialize the 4096 // destination object. 4097 // Per DR (no number yet), this does not apply when initializing a base 4098 // class or delegating to another constructor from a mem-initializer. 4099 // ObjC++: Lambda captured by the block in the lambda to block conversion 4100 // should avoid copy elision. 4101 if (S.getLangOpts().CPlusPlus17 && 4102 Entity.getKind() != InitializedEntity::EK_Base && 4103 Entity.getKind() != InitializedEntity::EK_Delegating && 4104 Entity.getKind() != 4105 InitializedEntity::EK_LambdaToBlockConversionBlockElement && 4106 UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isPRValue() && 4107 S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) { 4108 // Convert qualifications if necessary. 4109 Sequence.AddQualificationConversionStep(DestType, VK_PRValue); 4110 if (ILE) 4111 Sequence.RewrapReferenceInitList(DestType, ILE); 4112 return; 4113 } 4114 4115 const RecordType *DestRecordType = DestType->getAs<RecordType>(); 4116 assert(DestRecordType && "Constructor initialization requires record type"); 4117 CXXRecordDecl *DestRecordDecl 4118 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 4119 4120 // Build the candidate set directly in the initialization sequence 4121 // structure, so that it will persist if we fail. 4122 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4123 4124 // Determine whether we are allowed to call explicit constructors or 4125 // explicit conversion operators. 4126 bool AllowExplicit = Kind.AllowExplicit() || IsListInit; 4127 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy; 4128 4129 // - Otherwise, if T is a class type, constructors are considered. The 4130 // applicable constructors are enumerated, and the best one is chosen 4131 // through overload resolution. 4132 DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl); 4133 4134 OverloadingResult Result = OR_No_Viable_Function; 4135 OverloadCandidateSet::iterator Best; 4136 bool AsInitializerList = false; 4137 4138 // C++11 [over.match.list]p1, per DR1467: 4139 // When objects of non-aggregate type T are list-initialized, such that 4140 // 8.5.4 [dcl.init.list] specifies that overload resolution is performed 4141 // according to the rules in this section, overload resolution selects 4142 // the constructor in two phases: 4143 // 4144 // - Initially, the candidate functions are the initializer-list 4145 // constructors of the class T and the argument list consists of the 4146 // initializer list as a single argument. 4147 if (IsListInit) { 4148 AsInitializerList = true; 4149 4150 // If the initializer list has no elements and T has a default constructor, 4151 // the first phase is omitted. 4152 if (!(UnwrappedArgs.empty() && S.LookupDefaultConstructor(DestRecordDecl))) 4153 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, 4154 CandidateSet, DestType, Ctors, Best, 4155 CopyInitialization, AllowExplicit, 4156 /*OnlyListConstructors=*/true, 4157 IsListInit); 4158 } 4159 4160 // C++11 [over.match.list]p1: 4161 // - If no viable initializer-list constructor is found, overload resolution 4162 // is performed again, where the candidate functions are all the 4163 // constructors of the class T and the argument list consists of the 4164 // elements of the initializer list. 4165 if (Result == OR_No_Viable_Function) { 4166 AsInitializerList = false; 4167 Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs, 4168 CandidateSet, DestType, Ctors, Best, 4169 CopyInitialization, AllowExplicit, 4170 /*OnlyListConstructors=*/false, 4171 IsListInit); 4172 } 4173 if (Result) { 4174 Sequence.SetOverloadFailure( 4175 IsListInit ? InitializationSequence::FK_ListConstructorOverloadFailed 4176 : InitializationSequence::FK_ConstructorOverloadFailed, 4177 Result); 4178 4179 if (Result != OR_Deleted) 4180 return; 4181 } 4182 4183 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4184 4185 // In C++17, ResolveConstructorOverload can select a conversion function 4186 // instead of a constructor. 4187 if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) { 4188 // Add the user-defined conversion step that calls the conversion function. 4189 QualType ConvType = CD->getConversionType(); 4190 assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) && 4191 "should not have selected this conversion function"); 4192 Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType, 4193 HadMultipleCandidates); 4194 if (!S.Context.hasSameType(ConvType, DestType)) 4195 Sequence.AddQualificationConversionStep(DestType, VK_PRValue); 4196 if (IsListInit) 4197 Sequence.RewrapReferenceInitList(Entity.getType(), ILE); 4198 return; 4199 } 4200 4201 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 4202 if (Result != OR_Deleted) { 4203 // C++11 [dcl.init]p6: 4204 // If a program calls for the default initialization of an object 4205 // of a const-qualified type T, T shall be a class type with a 4206 // user-provided default constructor. 4207 // C++ core issue 253 proposal: 4208 // If the implicit default constructor initializes all subobjects, no 4209 // initializer should be required. 4210 // The 253 proposal is for example needed to process libstdc++ headers 4211 // in 5.x. 4212 if (Kind.getKind() == InitializationKind::IK_Default && 4213 Entity.getType().isConstQualified()) { 4214 if (!CtorDecl->getParent()->allowConstDefaultInit()) { 4215 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 4216 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 4217 return; 4218 } 4219 } 4220 4221 // C++11 [over.match.list]p1: 4222 // In copy-list-initialization, if an explicit constructor is chosen, the 4223 // initializer is ill-formed. 4224 if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) { 4225 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor); 4226 return; 4227 } 4228 } 4229 4230 // [class.copy.elision]p3: 4231 // In some copy-initialization contexts, a two-stage overload resolution 4232 // is performed. 4233 // If the first overload resolution selects a deleted function, we also 4234 // need the initialization sequence to decide whether to perform the second 4235 // overload resolution. 4236 // For deleted functions in other contexts, there is no need to get the 4237 // initialization sequence. 4238 if (Result == OR_Deleted && Kind.getKind() != InitializationKind::IK_Copy) 4239 return; 4240 4241 // Add the constructor initialization step. Any cv-qualification conversion is 4242 // subsumed by the initialization. 4243 Sequence.AddConstructorInitializationStep( 4244 Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates, 4245 IsListInit | IsInitListCopy, AsInitializerList); 4246 } 4247 4248 static bool 4249 ResolveOverloadedFunctionForReferenceBinding(Sema &S, 4250 Expr *Initializer, 4251 QualType &SourceType, 4252 QualType &UnqualifiedSourceType, 4253 QualType UnqualifiedTargetType, 4254 InitializationSequence &Sequence) { 4255 if (S.Context.getCanonicalType(UnqualifiedSourceType) == 4256 S.Context.OverloadTy) { 4257 DeclAccessPair Found; 4258 bool HadMultipleCandidates = false; 4259 if (FunctionDecl *Fn 4260 = S.ResolveAddressOfOverloadedFunction(Initializer, 4261 UnqualifiedTargetType, 4262 false, Found, 4263 &HadMultipleCandidates)) { 4264 Sequence.AddAddressOverloadResolutionStep(Fn, Found, 4265 HadMultipleCandidates); 4266 SourceType = Fn->getType(); 4267 UnqualifiedSourceType = SourceType.getUnqualifiedType(); 4268 } else if (!UnqualifiedTargetType->isRecordType()) { 4269 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4270 return true; 4271 } 4272 } 4273 return false; 4274 } 4275 4276 static void TryReferenceInitializationCore(Sema &S, 4277 const InitializedEntity &Entity, 4278 const InitializationKind &Kind, 4279 Expr *Initializer, 4280 QualType cv1T1, QualType T1, 4281 Qualifiers T1Quals, 4282 QualType cv2T2, QualType T2, 4283 Qualifiers T2Quals, 4284 InitializationSequence &Sequence); 4285 4286 static void TryValueInitialization(Sema &S, 4287 const InitializedEntity &Entity, 4288 const InitializationKind &Kind, 4289 InitializationSequence &Sequence, 4290 InitListExpr *InitList = nullptr); 4291 4292 /// Attempt list initialization of a reference. 4293 static void TryReferenceListInitialization(Sema &S, 4294 const InitializedEntity &Entity, 4295 const InitializationKind &Kind, 4296 InitListExpr *InitList, 4297 InitializationSequence &Sequence, 4298 bool TreatUnavailableAsInvalid) { 4299 // First, catch C++03 where this isn't possible. 4300 if (!S.getLangOpts().CPlusPlus11) { 4301 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 4302 return; 4303 } 4304 // Can't reference initialize a compound literal. 4305 if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) { 4306 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 4307 return; 4308 } 4309 4310 QualType DestType = Entity.getType(); 4311 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); 4312 Qualifiers T1Quals; 4313 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 4314 4315 // Reference initialization via an initializer list works thus: 4316 // If the initializer list consists of a single element that is 4317 // reference-related to the referenced type, bind directly to that element 4318 // (possibly creating temporaries). 4319 // Otherwise, initialize a temporary with the initializer list and 4320 // bind to that. 4321 if (InitList->getNumInits() == 1) { 4322 Expr *Initializer = InitList->getInit(0); 4323 QualType cv2T2 = S.getCompletedType(Initializer); 4324 Qualifiers T2Quals; 4325 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 4326 4327 // If this fails, creating a temporary wouldn't work either. 4328 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 4329 T1, Sequence)) 4330 return; 4331 4332 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4333 Sema::ReferenceCompareResult RefRelationship 4334 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2); 4335 if (RefRelationship >= Sema::Ref_Related) { 4336 // Try to bind the reference here. 4337 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 4338 T1Quals, cv2T2, T2, T2Quals, Sequence); 4339 if (Sequence) 4340 Sequence.RewrapReferenceInitList(cv1T1, InitList); 4341 return; 4342 } 4343 4344 // Update the initializer if we've resolved an overloaded function. 4345 if (Sequence.step_begin() != Sequence.step_end()) 4346 Sequence.RewrapReferenceInitList(cv1T1, InitList); 4347 } 4348 // Perform address space compatibility check. 4349 QualType cv1T1IgnoreAS = cv1T1; 4350 if (T1Quals.hasAddressSpace()) { 4351 Qualifiers T2Quals; 4352 (void)S.Context.getUnqualifiedArrayType(InitList->getType(), T2Quals); 4353 if (!T1Quals.isAddressSpaceSupersetOf(T2Quals)) { 4354 Sequence.SetFailed( 4355 InitializationSequence::FK_ReferenceInitDropsQualifiers); 4356 return; 4357 } 4358 // Ignore address space of reference type at this point and perform address 4359 // space conversion after the reference binding step. 4360 cv1T1IgnoreAS = 4361 S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace()); 4362 } 4363 // Not reference-related. Create a temporary and bind to that. 4364 InitializedEntity TempEntity = 4365 InitializedEntity::InitializeTemporary(cv1T1IgnoreAS); 4366 4367 TryListInitialization(S, TempEntity, Kind, InitList, Sequence, 4368 TreatUnavailableAsInvalid); 4369 if (Sequence) { 4370 if (DestType->isRValueReferenceType() || 4371 (T1Quals.hasConst() && !T1Quals.hasVolatile())) { 4372 Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, 4373 /*BindingTemporary=*/true); 4374 if (T1Quals.hasAddressSpace()) 4375 Sequence.AddQualificationConversionStep( 4376 cv1T1, DestType->isRValueReferenceType() ? VK_XValue : VK_LValue); 4377 } else 4378 Sequence.SetFailed( 4379 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); 4380 } 4381 } 4382 4383 /// Attempt list initialization (C++0x [dcl.init.list]) 4384 static void TryListInitialization(Sema &S, 4385 const InitializedEntity &Entity, 4386 const InitializationKind &Kind, 4387 InitListExpr *InitList, 4388 InitializationSequence &Sequence, 4389 bool TreatUnavailableAsInvalid) { 4390 QualType DestType = Entity.getType(); 4391 4392 // C++ doesn't allow scalar initialization with more than one argument. 4393 // But C99 complex numbers are scalars and it makes sense there. 4394 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() && 4395 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) { 4396 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar); 4397 return; 4398 } 4399 if (DestType->isReferenceType()) { 4400 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence, 4401 TreatUnavailableAsInvalid); 4402 return; 4403 } 4404 4405 if (DestType->isRecordType() && 4406 !S.isCompleteType(InitList->getBeginLoc(), DestType)) { 4407 Sequence.setIncompleteTypeFailure(DestType); 4408 return; 4409 } 4410 4411 // C++11 [dcl.init.list]p3, per DR1467: 4412 // - If T is a class type and the initializer list has a single element of 4413 // type cv U, where U is T or a class derived from T, the object is 4414 // initialized from that element (by copy-initialization for 4415 // copy-list-initialization, or by direct-initialization for 4416 // direct-list-initialization). 4417 // - Otherwise, if T is a character array and the initializer list has a 4418 // single element that is an appropriately-typed string literal 4419 // (8.5.2 [dcl.init.string]), initialization is performed as described 4420 // in that section. 4421 // - Otherwise, if T is an aggregate, [...] (continue below). 4422 if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) { 4423 if (DestType->isRecordType()) { 4424 QualType InitType = InitList->getInit(0)->getType(); 4425 if (S.Context.hasSameUnqualifiedType(InitType, DestType) || 4426 S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) { 4427 Expr *InitListAsExpr = InitList; 4428 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 4429 DestType, Sequence, 4430 /*InitListSyntax*/false, 4431 /*IsInitListCopy*/true); 4432 return; 4433 } 4434 } 4435 if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) { 4436 Expr *SubInit[1] = {InitList->getInit(0)}; 4437 if (!isa<VariableArrayType>(DestAT) && 4438 IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) { 4439 InitializationKind SubKind = 4440 Kind.getKind() == InitializationKind::IK_DirectList 4441 ? InitializationKind::CreateDirect(Kind.getLocation(), 4442 InitList->getLBraceLoc(), 4443 InitList->getRBraceLoc()) 4444 : Kind; 4445 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 4446 /*TopLevelOfInitList*/ true, 4447 TreatUnavailableAsInvalid); 4448 4449 // TryStringLiteralInitialization() (in InitializeFrom()) will fail if 4450 // the element is not an appropriately-typed string literal, in which 4451 // case we should proceed as in C++11 (below). 4452 if (Sequence) { 4453 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4454 return; 4455 } 4456 } 4457 } 4458 } 4459 4460 // C++11 [dcl.init.list]p3: 4461 // - If T is an aggregate, aggregate initialization is performed. 4462 if ((DestType->isRecordType() && !DestType->isAggregateType()) || 4463 (S.getLangOpts().CPlusPlus11 && 4464 S.isStdInitializerList(DestType, nullptr))) { 4465 if (S.getLangOpts().CPlusPlus11) { 4466 // - Otherwise, if the initializer list has no elements and T is a 4467 // class type with a default constructor, the object is 4468 // value-initialized. 4469 if (InitList->getNumInits() == 0) { 4470 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl(); 4471 if (S.LookupDefaultConstructor(RD)) { 4472 TryValueInitialization(S, Entity, Kind, Sequence, InitList); 4473 return; 4474 } 4475 } 4476 4477 // - Otherwise, if T is a specialization of std::initializer_list<E>, 4478 // an initializer_list object constructed [...] 4479 if (TryInitializerListConstruction(S, InitList, DestType, Sequence, 4480 TreatUnavailableAsInvalid)) 4481 return; 4482 4483 // - Otherwise, if T is a class type, constructors are considered. 4484 Expr *InitListAsExpr = InitList; 4485 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 4486 DestType, Sequence, /*InitListSyntax*/true); 4487 } else 4488 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType); 4489 return; 4490 } 4491 4492 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() && 4493 InitList->getNumInits() == 1) { 4494 Expr *E = InitList->getInit(0); 4495 4496 // - Otherwise, if T is an enumeration with a fixed underlying type, 4497 // the initializer-list has a single element v, and the initialization 4498 // is direct-list-initialization, the object is initialized with the 4499 // value T(v); if a narrowing conversion is required to convert v to 4500 // the underlying type of T, the program is ill-formed. 4501 auto *ET = DestType->getAs<EnumType>(); 4502 if (S.getLangOpts().CPlusPlus17 && 4503 Kind.getKind() == InitializationKind::IK_DirectList && 4504 ET && ET->getDecl()->isFixed() && 4505 !S.Context.hasSameUnqualifiedType(E->getType(), DestType) && 4506 (E->getType()->isIntegralOrUnscopedEnumerationType() || 4507 E->getType()->isFloatingType())) { 4508 // There are two ways that T(v) can work when T is an enumeration type. 4509 // If there is either an implicit conversion sequence from v to T or 4510 // a conversion function that can convert from v to T, then we use that. 4511 // Otherwise, if v is of integral, unscoped enumeration, or floating-point 4512 // type, it is converted to the enumeration type via its underlying type. 4513 // There is no overlap possible between these two cases (except when the 4514 // source value is already of the destination type), and the first 4515 // case is handled by the general case for single-element lists below. 4516 ImplicitConversionSequence ICS; 4517 ICS.setStandard(); 4518 ICS.Standard.setAsIdentityConversion(); 4519 if (!E->isPRValue()) 4520 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 4521 // If E is of a floating-point type, then the conversion is ill-formed 4522 // due to narrowing, but go through the motions in order to produce the 4523 // right diagnostic. 4524 ICS.Standard.Second = E->getType()->isFloatingType() 4525 ? ICK_Floating_Integral 4526 : ICK_Integral_Conversion; 4527 ICS.Standard.setFromType(E->getType()); 4528 ICS.Standard.setToType(0, E->getType()); 4529 ICS.Standard.setToType(1, DestType); 4530 ICS.Standard.setToType(2, DestType); 4531 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2), 4532 /*TopLevelOfInitList*/true); 4533 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4534 return; 4535 } 4536 4537 // - Otherwise, if the initializer list has a single element of type E 4538 // [...references are handled above...], the object or reference is 4539 // initialized from that element (by copy-initialization for 4540 // copy-list-initialization, or by direct-initialization for 4541 // direct-list-initialization); if a narrowing conversion is required 4542 // to convert the element to T, the program is ill-formed. 4543 // 4544 // Per core-24034, this is direct-initialization if we were performing 4545 // direct-list-initialization and copy-initialization otherwise. 4546 // We can't use InitListChecker for this, because it always performs 4547 // copy-initialization. This only matters if we might use an 'explicit' 4548 // conversion operator, or for the special case conversion of nullptr_t to 4549 // bool, so we only need to handle those cases. 4550 // 4551 // FIXME: Why not do this in all cases? 4552 Expr *Init = InitList->getInit(0); 4553 if (Init->getType()->isRecordType() || 4554 (Init->getType()->isNullPtrType() && DestType->isBooleanType())) { 4555 InitializationKind SubKind = 4556 Kind.getKind() == InitializationKind::IK_DirectList 4557 ? InitializationKind::CreateDirect(Kind.getLocation(), 4558 InitList->getLBraceLoc(), 4559 InitList->getRBraceLoc()) 4560 : Kind; 4561 Expr *SubInit[1] = { Init }; 4562 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 4563 /*TopLevelOfInitList*/true, 4564 TreatUnavailableAsInvalid); 4565 if (Sequence) 4566 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4567 return; 4568 } 4569 } 4570 4571 InitListChecker CheckInitList(S, Entity, InitList, 4572 DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid); 4573 if (CheckInitList.HadError()) { 4574 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed); 4575 return; 4576 } 4577 4578 // Add the list initialization step with the built init list. 4579 Sequence.AddListInitializationStep(DestType); 4580 } 4581 4582 /// Try a reference initialization that involves calling a conversion 4583 /// function. 4584 static OverloadingResult TryRefInitWithConversionFunction( 4585 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, 4586 Expr *Initializer, bool AllowRValues, bool IsLValueRef, 4587 InitializationSequence &Sequence) { 4588 QualType DestType = Entity.getType(); 4589 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); 4590 QualType T1 = cv1T1.getUnqualifiedType(); 4591 QualType cv2T2 = Initializer->getType(); 4592 QualType T2 = cv2T2.getUnqualifiedType(); 4593 4594 assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) && 4595 "Must have incompatible references when binding via conversion"); 4596 4597 // Build the candidate set directly in the initialization sequence 4598 // structure, so that it will persist if we fail. 4599 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4600 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 4601 4602 // Determine whether we are allowed to call explicit conversion operators. 4603 // Note that none of [over.match.copy], [over.match.conv], nor 4604 // [over.match.ref] permit an explicit constructor to be chosen when 4605 // initializing a reference, not even for direct-initialization. 4606 bool AllowExplicitCtors = false; 4607 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding(); 4608 4609 const RecordType *T1RecordType = nullptr; 4610 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) && 4611 S.isCompleteType(Kind.getLocation(), T1)) { 4612 // The type we're converting to is a class type. Enumerate its constructors 4613 // to see if there is a suitable conversion. 4614 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl()); 4615 4616 for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) { 4617 auto Info = getConstructorInfo(D); 4618 if (!Info.Constructor) 4619 continue; 4620 4621 if (!Info.Constructor->isInvalidDecl() && 4622 Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) { 4623 if (Info.ConstructorTmpl) 4624 S.AddTemplateOverloadCandidate( 4625 Info.ConstructorTmpl, Info.FoundDecl, 4626 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, 4627 /*SuppressUserConversions=*/true, 4628 /*PartialOverloading*/ false, AllowExplicitCtors); 4629 else 4630 S.AddOverloadCandidate( 4631 Info.Constructor, Info.FoundDecl, Initializer, CandidateSet, 4632 /*SuppressUserConversions=*/true, 4633 /*PartialOverloading*/ false, AllowExplicitCtors); 4634 } 4635 } 4636 } 4637 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl()) 4638 return OR_No_Viable_Function; 4639 4640 const RecordType *T2RecordType = nullptr; 4641 if ((T2RecordType = T2->getAs<RecordType>()) && 4642 S.isCompleteType(Kind.getLocation(), T2)) { 4643 // The type we're converting from is a class type, enumerate its conversion 4644 // functions. 4645 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl()); 4646 4647 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); 4648 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 4649 NamedDecl *D = *I; 4650 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 4651 if (isa<UsingShadowDecl>(D)) 4652 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4653 4654 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 4655 CXXConversionDecl *Conv; 4656 if (ConvTemplate) 4657 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 4658 else 4659 Conv = cast<CXXConversionDecl>(D); 4660 4661 // If the conversion function doesn't return a reference type, 4662 // it can't be considered for this conversion unless we're allowed to 4663 // consider rvalues. 4664 // FIXME: Do we need to make sure that we only consider conversion 4665 // candidates with reference-compatible results? That might be needed to 4666 // break recursion. 4667 if ((AllowRValues || 4668 Conv->getConversionType()->isLValueReferenceType())) { 4669 if (ConvTemplate) 4670 S.AddTemplateConversionCandidate( 4671 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 4672 CandidateSet, 4673 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); 4674 else 4675 S.AddConversionCandidate( 4676 Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet, 4677 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); 4678 } 4679 } 4680 } 4681 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl()) 4682 return OR_No_Viable_Function; 4683 4684 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4685 4686 // Perform overload resolution. If it fails, return the failed result. 4687 OverloadCandidateSet::iterator Best; 4688 if (OverloadingResult Result 4689 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) 4690 return Result; 4691 4692 FunctionDecl *Function = Best->Function; 4693 // This is the overload that will be used for this initialization step if we 4694 // use this initialization. Mark it as referenced. 4695 Function->setReferenced(); 4696 4697 // Compute the returned type and value kind of the conversion. 4698 QualType cv3T3; 4699 if (isa<CXXConversionDecl>(Function)) 4700 cv3T3 = Function->getReturnType(); 4701 else 4702 cv3T3 = T1; 4703 4704 ExprValueKind VK = VK_PRValue; 4705 if (cv3T3->isLValueReferenceType()) 4706 VK = VK_LValue; 4707 else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>()) 4708 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue; 4709 cv3T3 = cv3T3.getNonLValueExprType(S.Context); 4710 4711 // Add the user-defined conversion step. 4712 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4713 Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3, 4714 HadMultipleCandidates); 4715 4716 // Determine whether we'll need to perform derived-to-base adjustments or 4717 // other conversions. 4718 Sema::ReferenceConversions RefConv; 4719 Sema::ReferenceCompareResult NewRefRelationship = 4720 S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, &RefConv); 4721 4722 // Add the final conversion sequence, if necessary. 4723 if (NewRefRelationship == Sema::Ref_Incompatible) { 4724 assert(!isa<CXXConstructorDecl>(Function) && 4725 "should not have conversion after constructor"); 4726 4727 ImplicitConversionSequence ICS; 4728 ICS.setStandard(); 4729 ICS.Standard = Best->FinalConversion; 4730 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2)); 4731 4732 // Every implicit conversion results in a prvalue, except for a glvalue 4733 // derived-to-base conversion, which we handle below. 4734 cv3T3 = ICS.Standard.getToType(2); 4735 VK = VK_PRValue; 4736 } 4737 4738 // If the converted initializer is a prvalue, its type T4 is adjusted to 4739 // type "cv1 T4" and the temporary materialization conversion is applied. 4740 // 4741 // We adjust the cv-qualifications to match the reference regardless of 4742 // whether we have a prvalue so that the AST records the change. In this 4743 // case, T4 is "cv3 T3". 4744 QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers()); 4745 if (cv1T4.getQualifiers() != cv3T3.getQualifiers()) 4746 Sequence.AddQualificationConversionStep(cv1T4, VK); 4747 Sequence.AddReferenceBindingStep(cv1T4, VK == VK_PRValue); 4748 VK = IsLValueRef ? VK_LValue : VK_XValue; 4749 4750 if (RefConv & Sema::ReferenceConversions::DerivedToBase) 4751 Sequence.AddDerivedToBaseCastStep(cv1T1, VK); 4752 else if (RefConv & Sema::ReferenceConversions::ObjC) 4753 Sequence.AddObjCObjectConversionStep(cv1T1); 4754 else if (RefConv & Sema::ReferenceConversions::Function) 4755 Sequence.AddFunctionReferenceConversionStep(cv1T1); 4756 else if (RefConv & Sema::ReferenceConversions::Qualification) { 4757 if (!S.Context.hasSameType(cv1T4, cv1T1)) 4758 Sequence.AddQualificationConversionStep(cv1T1, VK); 4759 } 4760 4761 return OR_Success; 4762 } 4763 4764 static void CheckCXX98CompatAccessibleCopy(Sema &S, 4765 const InitializedEntity &Entity, 4766 Expr *CurInitExpr); 4767 4768 /// Attempt reference initialization (C++0x [dcl.init.ref]) 4769 static void TryReferenceInitialization(Sema &S, 4770 const InitializedEntity &Entity, 4771 const InitializationKind &Kind, 4772 Expr *Initializer, 4773 InitializationSequence &Sequence) { 4774 QualType DestType = Entity.getType(); 4775 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); 4776 Qualifiers T1Quals; 4777 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 4778 QualType cv2T2 = S.getCompletedType(Initializer); 4779 Qualifiers T2Quals; 4780 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 4781 4782 // If the initializer is the address of an overloaded function, try 4783 // to resolve the overloaded function. If all goes well, T2 is the 4784 // type of the resulting function. 4785 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 4786 T1, Sequence)) 4787 return; 4788 4789 // Delegate everything else to a subfunction. 4790 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 4791 T1Quals, cv2T2, T2, T2Quals, Sequence); 4792 } 4793 4794 /// Determine whether an expression is a non-referenceable glvalue (one to 4795 /// which a reference can never bind). Attempting to bind a reference to 4796 /// such a glvalue will always create a temporary. 4797 static bool isNonReferenceableGLValue(Expr *E) { 4798 return E->refersToBitField() || E->refersToVectorElement() || 4799 E->refersToMatrixElement(); 4800 } 4801 4802 /// Reference initialization without resolving overloaded functions. 4803 /// 4804 /// We also can get here in C if we call a builtin which is declared as 4805 /// a function with a parameter of reference type (such as __builtin_va_end()). 4806 static void TryReferenceInitializationCore(Sema &S, 4807 const InitializedEntity &Entity, 4808 const InitializationKind &Kind, 4809 Expr *Initializer, 4810 QualType cv1T1, QualType T1, 4811 Qualifiers T1Quals, 4812 QualType cv2T2, QualType T2, 4813 Qualifiers T2Quals, 4814 InitializationSequence &Sequence) { 4815 QualType DestType = Entity.getType(); 4816 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4817 4818 // Compute some basic properties of the types and the initializer. 4819 bool isLValueRef = DestType->isLValueReferenceType(); 4820 bool isRValueRef = !isLValueRef; 4821 Expr::Classification InitCategory = Initializer->Classify(S.Context); 4822 4823 Sema::ReferenceConversions RefConv; 4824 Sema::ReferenceCompareResult RefRelationship = 4825 S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, &RefConv); 4826 4827 // C++0x [dcl.init.ref]p5: 4828 // A reference to type "cv1 T1" is initialized by an expression of type 4829 // "cv2 T2" as follows: 4830 // 4831 // - If the reference is an lvalue reference and the initializer 4832 // expression 4833 // Note the analogous bullet points for rvalue refs to functions. Because 4834 // there are no function rvalues in C++, rvalue refs to functions are treated 4835 // like lvalue refs. 4836 OverloadingResult ConvOvlResult = OR_Success; 4837 bool T1Function = T1->isFunctionType(); 4838 if (isLValueRef || T1Function) { 4839 if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) && 4840 (RefRelationship == Sema::Ref_Compatible || 4841 (Kind.isCStyleOrFunctionalCast() && 4842 RefRelationship == Sema::Ref_Related))) { 4843 // - is an lvalue (but is not a bit-field), and "cv1 T1" is 4844 // reference-compatible with "cv2 T2," or 4845 if (RefConv & (Sema::ReferenceConversions::DerivedToBase | 4846 Sema::ReferenceConversions::ObjC)) { 4847 // If we're converting the pointee, add any qualifiers first; 4848 // these qualifiers must all be top-level, so just convert to "cv1 T2". 4849 if (RefConv & (Sema::ReferenceConversions::Qualification)) 4850 Sequence.AddQualificationConversionStep( 4851 S.Context.getQualifiedType(T2, T1Quals), 4852 Initializer->getValueKind()); 4853 if (RefConv & Sema::ReferenceConversions::DerivedToBase) 4854 Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue); 4855 else 4856 Sequence.AddObjCObjectConversionStep(cv1T1); 4857 } else if (RefConv & Sema::ReferenceConversions::Qualification) { 4858 // Perform a (possibly multi-level) qualification conversion. 4859 Sequence.AddQualificationConversionStep(cv1T1, 4860 Initializer->getValueKind()); 4861 } else if (RefConv & Sema::ReferenceConversions::Function) { 4862 Sequence.AddFunctionReferenceConversionStep(cv1T1); 4863 } 4864 4865 // We only create a temporary here when binding a reference to a 4866 // bit-field or vector element. Those cases are't supposed to be 4867 // handled by this bullet, but the outcome is the same either way. 4868 Sequence.AddReferenceBindingStep(cv1T1, false); 4869 return; 4870 } 4871 4872 // - has a class type (i.e., T2 is a class type), where T1 is not 4873 // reference-related to T2, and can be implicitly converted to an 4874 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible 4875 // with "cv3 T3" (this conversion is selected by enumerating the 4876 // applicable conversion functions (13.3.1.6) and choosing the best 4877 // one through overload resolution (13.3)), 4878 // If we have an rvalue ref to function type here, the rhs must be 4879 // an rvalue. DR1287 removed the "implicitly" here. 4880 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() && 4881 (isLValueRef || InitCategory.isRValue())) { 4882 if (S.getLangOpts().CPlusPlus) { 4883 // Try conversion functions only for C++. 4884 ConvOvlResult = TryRefInitWithConversionFunction( 4885 S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef, 4886 /*IsLValueRef*/ isLValueRef, Sequence); 4887 if (ConvOvlResult == OR_Success) 4888 return; 4889 if (ConvOvlResult != OR_No_Viable_Function) 4890 Sequence.SetOverloadFailure( 4891 InitializationSequence::FK_ReferenceInitOverloadFailed, 4892 ConvOvlResult); 4893 } else { 4894 ConvOvlResult = OR_No_Viable_Function; 4895 } 4896 } 4897 } 4898 4899 // - Otherwise, the reference shall be an lvalue reference to a 4900 // non-volatile const type (i.e., cv1 shall be const), or the reference 4901 // shall be an rvalue reference. 4902 // For address spaces, we interpret this to mean that an addr space 4903 // of a reference "cv1 T1" is a superset of addr space of "cv2 T2". 4904 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() && 4905 T1Quals.isAddressSpaceSupersetOf(T2Quals))) { 4906 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 4907 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4908 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 4909 Sequence.SetOverloadFailure( 4910 InitializationSequence::FK_ReferenceInitOverloadFailed, 4911 ConvOvlResult); 4912 else if (!InitCategory.isLValue()) 4913 Sequence.SetFailed( 4914 T1Quals.isAddressSpaceSupersetOf(T2Quals) 4915 ? InitializationSequence:: 4916 FK_NonConstLValueReferenceBindingToTemporary 4917 : InitializationSequence::FK_ReferenceInitDropsQualifiers); 4918 else { 4919 InitializationSequence::FailureKind FK; 4920 switch (RefRelationship) { 4921 case Sema::Ref_Compatible: 4922 if (Initializer->refersToBitField()) 4923 FK = InitializationSequence:: 4924 FK_NonConstLValueReferenceBindingToBitfield; 4925 else if (Initializer->refersToVectorElement()) 4926 FK = InitializationSequence:: 4927 FK_NonConstLValueReferenceBindingToVectorElement; 4928 else if (Initializer->refersToMatrixElement()) 4929 FK = InitializationSequence:: 4930 FK_NonConstLValueReferenceBindingToMatrixElement; 4931 else 4932 llvm_unreachable("unexpected kind of compatible initializer"); 4933 break; 4934 case Sema::Ref_Related: 4935 FK = InitializationSequence::FK_ReferenceInitDropsQualifiers; 4936 break; 4937 case Sema::Ref_Incompatible: 4938 FK = InitializationSequence:: 4939 FK_NonConstLValueReferenceBindingToUnrelated; 4940 break; 4941 } 4942 Sequence.SetFailed(FK); 4943 } 4944 return; 4945 } 4946 4947 // - If the initializer expression 4948 // - is an 4949 // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or 4950 // [1z] rvalue (but not a bit-field) or 4951 // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2" 4952 // 4953 // Note: functions are handled above and below rather than here... 4954 if (!T1Function && 4955 (RefRelationship == Sema::Ref_Compatible || 4956 (Kind.isCStyleOrFunctionalCast() && 4957 RefRelationship == Sema::Ref_Related)) && 4958 ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) || 4959 (InitCategory.isPRValue() && 4960 (S.getLangOpts().CPlusPlus17 || T2->isRecordType() || 4961 T2->isArrayType())))) { 4962 ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_PRValue; 4963 if (InitCategory.isPRValue() && T2->isRecordType()) { 4964 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the 4965 // compiler the freedom to perform a copy here or bind to the 4966 // object, while C++0x requires that we bind directly to the 4967 // object. Hence, we always bind to the object without making an 4968 // extra copy. However, in C++03 requires that we check for the 4969 // presence of a suitable copy constructor: 4970 // 4971 // The constructor that would be used to make the copy shall 4972 // be callable whether or not the copy is actually done. 4973 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt) 4974 Sequence.AddExtraneousCopyToTemporary(cv2T2); 4975 else if (S.getLangOpts().CPlusPlus11) 4976 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer); 4977 } 4978 4979 // C++1z [dcl.init.ref]/5.2.1.2: 4980 // If the converted initializer is a prvalue, its type T4 is adjusted 4981 // to type "cv1 T4" and the temporary materialization conversion is 4982 // applied. 4983 // Postpone address space conversions to after the temporary materialization 4984 // conversion to allow creating temporaries in the alloca address space. 4985 auto T1QualsIgnoreAS = T1Quals; 4986 auto T2QualsIgnoreAS = T2Quals; 4987 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { 4988 T1QualsIgnoreAS.removeAddressSpace(); 4989 T2QualsIgnoreAS.removeAddressSpace(); 4990 } 4991 QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS); 4992 if (T1QualsIgnoreAS != T2QualsIgnoreAS) 4993 Sequence.AddQualificationConversionStep(cv1T4, ValueKind); 4994 Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_PRValue); 4995 ValueKind = isLValueRef ? VK_LValue : VK_XValue; 4996 // Add addr space conversion if required. 4997 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { 4998 auto T4Quals = cv1T4.getQualifiers(); 4999 T4Quals.addAddressSpace(T1Quals.getAddressSpace()); 5000 QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals); 5001 Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind); 5002 cv1T4 = cv1T4WithAS; 5003 } 5004 5005 // In any case, the reference is bound to the resulting glvalue (or to 5006 // an appropriate base class subobject). 5007 if (RefConv & Sema::ReferenceConversions::DerivedToBase) 5008 Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind); 5009 else if (RefConv & Sema::ReferenceConversions::ObjC) 5010 Sequence.AddObjCObjectConversionStep(cv1T1); 5011 else if (RefConv & Sema::ReferenceConversions::Qualification) { 5012 if (!S.Context.hasSameType(cv1T4, cv1T1)) 5013 Sequence.AddQualificationConversionStep(cv1T1, ValueKind); 5014 } 5015 return; 5016 } 5017 5018 // - has a class type (i.e., T2 is a class type), where T1 is not 5019 // reference-related to T2, and can be implicitly converted to an 5020 // xvalue, class prvalue, or function lvalue of type "cv3 T3", 5021 // where "cv1 T1" is reference-compatible with "cv3 T3", 5022 // 5023 // DR1287 removes the "implicitly" here. 5024 if (T2->isRecordType()) { 5025 if (RefRelationship == Sema::Ref_Incompatible) { 5026 ConvOvlResult = TryRefInitWithConversionFunction( 5027 S, Entity, Kind, Initializer, /*AllowRValues*/ true, 5028 /*IsLValueRef*/ isLValueRef, Sequence); 5029 if (ConvOvlResult) 5030 Sequence.SetOverloadFailure( 5031 InitializationSequence::FK_ReferenceInitOverloadFailed, 5032 ConvOvlResult); 5033 5034 return; 5035 } 5036 5037 if (RefRelationship == Sema::Ref_Compatible && 5038 isRValueRef && InitCategory.isLValue()) { 5039 Sequence.SetFailed( 5040 InitializationSequence::FK_RValueReferenceBindingToLValue); 5041 return; 5042 } 5043 5044 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 5045 return; 5046 } 5047 5048 // - Otherwise, a temporary of type "cv1 T1" is created and initialized 5049 // from the initializer expression using the rules for a non-reference 5050 // copy-initialization (8.5). The reference is then bound to the 5051 // temporary. [...] 5052 5053 // Ignore address space of reference type at this point and perform address 5054 // space conversion after the reference binding step. 5055 QualType cv1T1IgnoreAS = 5056 T1Quals.hasAddressSpace() 5057 ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace()) 5058 : cv1T1; 5059 5060 InitializedEntity TempEntity = 5061 InitializedEntity::InitializeTemporary(cv1T1IgnoreAS); 5062 5063 // FIXME: Why do we use an implicit conversion here rather than trying 5064 // copy-initialization? 5065 ImplicitConversionSequence ICS 5066 = S.TryImplicitConversion(Initializer, TempEntity.getType(), 5067 /*SuppressUserConversions=*/false, 5068 Sema::AllowedExplicit::None, 5069 /*FIXME:InOverloadResolution=*/false, 5070 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 5071 /*AllowObjCWritebackConversion=*/false); 5072 5073 if (ICS.isBad()) { 5074 // FIXME: Use the conversion function set stored in ICS to turn 5075 // this into an overloading ambiguity diagnostic. However, we need 5076 // to keep that set as an OverloadCandidateSet rather than as some 5077 // other kind of set. 5078 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 5079 Sequence.SetOverloadFailure( 5080 InitializationSequence::FK_ReferenceInitOverloadFailed, 5081 ConvOvlResult); 5082 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 5083 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 5084 else 5085 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed); 5086 return; 5087 } else { 5088 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType()); 5089 } 5090 5091 // [...] If T1 is reference-related to T2, cv1 must be the 5092 // same cv-qualification as, or greater cv-qualification 5093 // than, cv2; otherwise, the program is ill-formed. 5094 unsigned T1CVRQuals = T1Quals.getCVRQualifiers(); 5095 unsigned T2CVRQuals = T2Quals.getCVRQualifiers(); 5096 if (RefRelationship == Sema::Ref_Related && 5097 ((T1CVRQuals | T2CVRQuals) != T1CVRQuals || 5098 !T1Quals.isAddressSpaceSupersetOf(T2Quals))) { 5099 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 5100 return; 5101 } 5102 5103 // [...] If T1 is reference-related to T2 and the reference is an rvalue 5104 // reference, the initializer expression shall not be an lvalue. 5105 if (RefRelationship >= Sema::Ref_Related && !isLValueRef && 5106 InitCategory.isLValue()) { 5107 Sequence.SetFailed( 5108 InitializationSequence::FK_RValueReferenceBindingToLValue); 5109 return; 5110 } 5111 5112 Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true); 5113 5114 if (T1Quals.hasAddressSpace()) { 5115 if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(), 5116 LangAS::Default)) { 5117 Sequence.SetFailed( 5118 InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary); 5119 return; 5120 } 5121 Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue 5122 : VK_XValue); 5123 } 5124 } 5125 5126 /// Attempt character array initialization from a string literal 5127 /// (C++ [dcl.init.string], C99 6.7.8). 5128 static void TryStringLiteralInitialization(Sema &S, 5129 const InitializedEntity &Entity, 5130 const InitializationKind &Kind, 5131 Expr *Initializer, 5132 InitializationSequence &Sequence) { 5133 Sequence.AddStringInitStep(Entity.getType()); 5134 } 5135 5136 /// Attempt value initialization (C++ [dcl.init]p7). 5137 static void TryValueInitialization(Sema &S, 5138 const InitializedEntity &Entity, 5139 const InitializationKind &Kind, 5140 InitializationSequence &Sequence, 5141 InitListExpr *InitList) { 5142 assert((!InitList || InitList->getNumInits() == 0) && 5143 "Shouldn't use value-init for non-empty init lists"); 5144 5145 // C++98 [dcl.init]p5, C++11 [dcl.init]p7: 5146 // 5147 // To value-initialize an object of type T means: 5148 QualType T = Entity.getType(); 5149 5150 // -- if T is an array type, then each element is value-initialized; 5151 T = S.Context.getBaseElementType(T); 5152 5153 if (const RecordType *RT = T->getAs<RecordType>()) { 5154 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 5155 bool NeedZeroInitialization = true; 5156 // C++98: 5157 // -- if T is a class type (clause 9) with a user-declared constructor 5158 // (12.1), then the default constructor for T is called (and the 5159 // initialization is ill-formed if T has no accessible default 5160 // constructor); 5161 // C++11: 5162 // -- if T is a class type (clause 9) with either no default constructor 5163 // (12.1 [class.ctor]) or a default constructor that is user-provided 5164 // or deleted, then the object is default-initialized; 5165 // 5166 // Note that the C++11 rule is the same as the C++98 rule if there are no 5167 // defaulted or deleted constructors, so we just use it unconditionally. 5168 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl); 5169 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted()) 5170 NeedZeroInitialization = false; 5171 5172 // -- if T is a (possibly cv-qualified) non-union class type without a 5173 // user-provided or deleted default constructor, then the object is 5174 // zero-initialized and, if T has a non-trivial default constructor, 5175 // default-initialized; 5176 // The 'non-union' here was removed by DR1502. The 'non-trivial default 5177 // constructor' part was removed by DR1507. 5178 if (NeedZeroInitialization) 5179 Sequence.AddZeroInitializationStep(Entity.getType()); 5180 5181 // C++03: 5182 // -- if T is a non-union class type without a user-declared constructor, 5183 // then every non-static data member and base class component of T is 5184 // value-initialized; 5185 // [...] A program that calls for [...] value-initialization of an 5186 // entity of reference type is ill-formed. 5187 // 5188 // C++11 doesn't need this handling, because value-initialization does not 5189 // occur recursively there, and the implicit default constructor is 5190 // defined as deleted in the problematic cases. 5191 if (!S.getLangOpts().CPlusPlus11 && 5192 ClassDecl->hasUninitializedReferenceMember()) { 5193 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference); 5194 return; 5195 } 5196 5197 // If this is list-value-initialization, pass the empty init list on when 5198 // building the constructor call. This affects the semantics of a few 5199 // things (such as whether an explicit default constructor can be called). 5200 Expr *InitListAsExpr = InitList; 5201 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0); 5202 bool InitListSyntax = InitList; 5203 5204 // FIXME: Instead of creating a CXXConstructExpr of array type here, 5205 // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr. 5206 return TryConstructorInitialization( 5207 S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax); 5208 } 5209 } 5210 5211 Sequence.AddZeroInitializationStep(Entity.getType()); 5212 } 5213 5214 /// Attempt default initialization (C++ [dcl.init]p6). 5215 static void TryDefaultInitialization(Sema &S, 5216 const InitializedEntity &Entity, 5217 const InitializationKind &Kind, 5218 InitializationSequence &Sequence) { 5219 assert(Kind.getKind() == InitializationKind::IK_Default); 5220 5221 // C++ [dcl.init]p6: 5222 // To default-initialize an object of type T means: 5223 // - if T is an array type, each element is default-initialized; 5224 QualType DestType = S.Context.getBaseElementType(Entity.getType()); 5225 5226 // - if T is a (possibly cv-qualified) class type (Clause 9), the default 5227 // constructor for T is called (and the initialization is ill-formed if 5228 // T has no accessible default constructor); 5229 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) { 5230 TryConstructorInitialization(S, Entity, Kind, None, DestType, 5231 Entity.getType(), Sequence); 5232 return; 5233 } 5234 5235 // - otherwise, no initialization is performed. 5236 5237 // If a program calls for the default initialization of an object of 5238 // a const-qualified type T, T shall be a class type with a user-provided 5239 // default constructor. 5240 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) { 5241 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 5242 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 5243 return; 5244 } 5245 5246 // If the destination type has a lifetime property, zero-initialize it. 5247 if (DestType.getQualifiers().hasObjCLifetime()) { 5248 Sequence.AddZeroInitializationStep(Entity.getType()); 5249 return; 5250 } 5251 } 5252 5253 /// Attempt a user-defined conversion between two types (C++ [dcl.init]), 5254 /// which enumerates all conversion functions and performs overload resolution 5255 /// to select the best. 5256 static void TryUserDefinedConversion(Sema &S, 5257 QualType DestType, 5258 const InitializationKind &Kind, 5259 Expr *Initializer, 5260 InitializationSequence &Sequence, 5261 bool TopLevelOfInitList) { 5262 assert(!DestType->isReferenceType() && "References are handled elsewhere"); 5263 QualType SourceType = Initializer->getType(); 5264 assert((DestType->isRecordType() || SourceType->isRecordType()) && 5265 "Must have a class type to perform a user-defined conversion"); 5266 5267 // Build the candidate set directly in the initialization sequence 5268 // structure, so that it will persist if we fail. 5269 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 5270 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 5271 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); 5272 5273 // Determine whether we are allowed to call explicit constructors or 5274 // explicit conversion operators. 5275 bool AllowExplicit = Kind.AllowExplicit(); 5276 5277 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) { 5278 // The type we're converting to is a class type. Enumerate its constructors 5279 // to see if there is a suitable conversion. 5280 CXXRecordDecl *DestRecordDecl 5281 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 5282 5283 // Try to complete the type we're converting to. 5284 if (S.isCompleteType(Kind.getLocation(), DestType)) { 5285 for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) { 5286 auto Info = getConstructorInfo(D); 5287 if (!Info.Constructor) 5288 continue; 5289 5290 if (!Info.Constructor->isInvalidDecl() && 5291 Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) { 5292 if (Info.ConstructorTmpl) 5293 S.AddTemplateOverloadCandidate( 5294 Info.ConstructorTmpl, Info.FoundDecl, 5295 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, 5296 /*SuppressUserConversions=*/true, 5297 /*PartialOverloading*/ false, AllowExplicit); 5298 else 5299 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, 5300 Initializer, CandidateSet, 5301 /*SuppressUserConversions=*/true, 5302 /*PartialOverloading*/ false, AllowExplicit); 5303 } 5304 } 5305 } 5306 } 5307 5308 SourceLocation DeclLoc = Initializer->getBeginLoc(); 5309 5310 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) { 5311 // The type we're converting from is a class type, enumerate its conversion 5312 // functions. 5313 5314 // We can only enumerate the conversion functions for a complete type; if 5315 // the type isn't complete, simply skip this step. 5316 if (S.isCompleteType(DeclLoc, SourceType)) { 5317 CXXRecordDecl *SourceRecordDecl 5318 = cast<CXXRecordDecl>(SourceRecordType->getDecl()); 5319 5320 const auto &Conversions = 5321 SourceRecordDecl->getVisibleConversionFunctions(); 5322 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 5323 NamedDecl *D = *I; 5324 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 5325 if (isa<UsingShadowDecl>(D)) 5326 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 5327 5328 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 5329 CXXConversionDecl *Conv; 5330 if (ConvTemplate) 5331 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 5332 else 5333 Conv = cast<CXXConversionDecl>(D); 5334 5335 if (ConvTemplate) 5336 S.AddTemplateConversionCandidate( 5337 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 5338 CandidateSet, AllowExplicit, AllowExplicit); 5339 else 5340 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, 5341 DestType, CandidateSet, AllowExplicit, 5342 AllowExplicit); 5343 } 5344 } 5345 } 5346 5347 // Perform overload resolution. If it fails, return the failed result. 5348 OverloadCandidateSet::iterator Best; 5349 if (OverloadingResult Result 5350 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) { 5351 Sequence.SetOverloadFailure( 5352 InitializationSequence::FK_UserConversionOverloadFailed, Result); 5353 5354 // [class.copy.elision]p3: 5355 // In some copy-initialization contexts, a two-stage overload resolution 5356 // is performed. 5357 // If the first overload resolution selects a deleted function, we also 5358 // need the initialization sequence to decide whether to perform the second 5359 // overload resolution. 5360 if (!(Result == OR_Deleted && 5361 Kind.getKind() == InitializationKind::IK_Copy)) 5362 return; 5363 } 5364 5365 FunctionDecl *Function = Best->Function; 5366 Function->setReferenced(); 5367 bool HadMultipleCandidates = (CandidateSet.size() > 1); 5368 5369 if (isa<CXXConstructorDecl>(Function)) { 5370 // Add the user-defined conversion step. Any cv-qualification conversion is 5371 // subsumed by the initialization. Per DR5, the created temporary is of the 5372 // cv-unqualified type of the destination. 5373 Sequence.AddUserConversionStep(Function, Best->FoundDecl, 5374 DestType.getUnqualifiedType(), 5375 HadMultipleCandidates); 5376 5377 // C++14 and before: 5378 // - if the function is a constructor, the call initializes a temporary 5379 // of the cv-unqualified version of the destination type. The [...] 5380 // temporary [...] is then used to direct-initialize, according to the 5381 // rules above, the object that is the destination of the 5382 // copy-initialization. 5383 // Note that this just performs a simple object copy from the temporary. 5384 // 5385 // C++17: 5386 // - if the function is a constructor, the call is a prvalue of the 5387 // cv-unqualified version of the destination type whose return object 5388 // is initialized by the constructor. The call is used to 5389 // direct-initialize, according to the rules above, the object that 5390 // is the destination of the copy-initialization. 5391 // Therefore we need to do nothing further. 5392 // 5393 // FIXME: Mark this copy as extraneous. 5394 if (!S.getLangOpts().CPlusPlus17) 5395 Sequence.AddFinalCopy(DestType); 5396 else if (DestType.hasQualifiers()) 5397 Sequence.AddQualificationConversionStep(DestType, VK_PRValue); 5398 return; 5399 } 5400 5401 // Add the user-defined conversion step that calls the conversion function. 5402 QualType ConvType = Function->getCallResultType(); 5403 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType, 5404 HadMultipleCandidates); 5405 5406 if (ConvType->getAs<RecordType>()) { 5407 // The call is used to direct-initialize [...] the object that is the 5408 // destination of the copy-initialization. 5409 // 5410 // In C++17, this does not call a constructor if we enter /17.6.1: 5411 // - If the initializer expression is a prvalue and the cv-unqualified 5412 // version of the source type is the same as the class of the 5413 // destination [... do not make an extra copy] 5414 // 5415 // FIXME: Mark this copy as extraneous. 5416 if (!S.getLangOpts().CPlusPlus17 || 5417 Function->getReturnType()->isReferenceType() || 5418 !S.Context.hasSameUnqualifiedType(ConvType, DestType)) 5419 Sequence.AddFinalCopy(DestType); 5420 else if (!S.Context.hasSameType(ConvType, DestType)) 5421 Sequence.AddQualificationConversionStep(DestType, VK_PRValue); 5422 return; 5423 } 5424 5425 // If the conversion following the call to the conversion function 5426 // is interesting, add it as a separate step. 5427 if (Best->FinalConversion.First || Best->FinalConversion.Second || 5428 Best->FinalConversion.Third) { 5429 ImplicitConversionSequence ICS; 5430 ICS.setStandard(); 5431 ICS.Standard = Best->FinalConversion; 5432 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 5433 } 5434 } 5435 5436 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>, 5437 /// a function with a pointer return type contains a 'return false;' statement. 5438 /// In C++11, 'false' is not a null pointer, so this breaks the build of any 5439 /// code using that header. 5440 /// 5441 /// Work around this by treating 'return false;' as zero-initializing the result 5442 /// if it's used in a pointer-returning function in a system header. 5443 static bool isLibstdcxxPointerReturnFalseHack(Sema &S, 5444 const InitializedEntity &Entity, 5445 const Expr *Init) { 5446 return S.getLangOpts().CPlusPlus11 && 5447 Entity.getKind() == InitializedEntity::EK_Result && 5448 Entity.getType()->isPointerType() && 5449 isa<CXXBoolLiteralExpr>(Init) && 5450 !cast<CXXBoolLiteralExpr>(Init)->getValue() && 5451 S.getSourceManager().isInSystemHeader(Init->getExprLoc()); 5452 } 5453 5454 /// The non-zero enum values here are indexes into diagnostic alternatives. 5455 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar }; 5456 5457 /// Determines whether this expression is an acceptable ICR source. 5458 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e, 5459 bool isAddressOf, bool &isWeakAccess) { 5460 // Skip parens. 5461 e = e->IgnoreParens(); 5462 5463 // Skip address-of nodes. 5464 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 5465 if (op->getOpcode() == UO_AddrOf) 5466 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true, 5467 isWeakAccess); 5468 5469 // Skip certain casts. 5470 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) { 5471 switch (ce->getCastKind()) { 5472 case CK_Dependent: 5473 case CK_BitCast: 5474 case CK_LValueBitCast: 5475 case CK_NoOp: 5476 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess); 5477 5478 case CK_ArrayToPointerDecay: 5479 return IIK_nonscalar; 5480 5481 case CK_NullToPointer: 5482 return IIK_okay; 5483 5484 default: 5485 break; 5486 } 5487 5488 // If we have a declaration reference, it had better be a local variable. 5489 } else if (isa<DeclRefExpr>(e)) { 5490 // set isWeakAccess to true, to mean that there will be an implicit 5491 // load which requires a cleanup. 5492 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 5493 isWeakAccess = true; 5494 5495 if (!isAddressOf) return IIK_nonlocal; 5496 5497 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl()); 5498 if (!var) return IIK_nonlocal; 5499 5500 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal); 5501 5502 // If we have a conditional operator, check both sides. 5503 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) { 5504 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf, 5505 isWeakAccess)) 5506 return iik; 5507 5508 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess); 5509 5510 // These are never scalar. 5511 } else if (isa<ArraySubscriptExpr>(e)) { 5512 return IIK_nonscalar; 5513 5514 // Otherwise, it needs to be a null pointer constant. 5515 } else { 5516 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull) 5517 ? IIK_okay : IIK_nonlocal); 5518 } 5519 5520 return IIK_nonlocal; 5521 } 5522 5523 /// Check whether the given expression is a valid operand for an 5524 /// indirect copy/restore. 5525 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) { 5526 assert(src->isPRValue()); 5527 bool isWeakAccess = false; 5528 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess); 5529 // If isWeakAccess to true, there will be an implicit 5530 // load which requires a cleanup. 5531 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess) 5532 S.Cleanup.setExprNeedsCleanups(true); 5533 5534 if (iik == IIK_okay) return; 5535 5536 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback) 5537 << ((unsigned) iik - 1) // shift index into diagnostic explanations 5538 << src->getSourceRange(); 5539 } 5540 5541 /// Determine whether we have compatible array types for the 5542 /// purposes of GNU by-copy array initialization. 5543 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest, 5544 const ArrayType *Source) { 5545 // If the source and destination array types are equivalent, we're 5546 // done. 5547 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0))) 5548 return true; 5549 5550 // Make sure that the element types are the same. 5551 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType())) 5552 return false; 5553 5554 // The only mismatch we allow is when the destination is an 5555 // incomplete array type and the source is a constant array type. 5556 return Source->isConstantArrayType() && Dest->isIncompleteArrayType(); 5557 } 5558 5559 static bool tryObjCWritebackConversion(Sema &S, 5560 InitializationSequence &Sequence, 5561 const InitializedEntity &Entity, 5562 Expr *Initializer) { 5563 bool ArrayDecay = false; 5564 QualType ArgType = Initializer->getType(); 5565 QualType ArgPointee; 5566 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) { 5567 ArrayDecay = true; 5568 ArgPointee = ArgArrayType->getElementType(); 5569 ArgType = S.Context.getPointerType(ArgPointee); 5570 } 5571 5572 // Handle write-back conversion. 5573 QualType ConvertedArgType; 5574 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(), 5575 ConvertedArgType)) 5576 return false; 5577 5578 // We should copy unless we're passing to an argument explicitly 5579 // marked 'out'. 5580 bool ShouldCopy = true; 5581 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 5582 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 5583 5584 // Do we need an lvalue conversion? 5585 if (ArrayDecay || Initializer->isGLValue()) { 5586 ImplicitConversionSequence ICS; 5587 ICS.setStandard(); 5588 ICS.Standard.setAsIdentityConversion(); 5589 5590 QualType ResultType; 5591 if (ArrayDecay) { 5592 ICS.Standard.First = ICK_Array_To_Pointer; 5593 ResultType = S.Context.getPointerType(ArgPointee); 5594 } else { 5595 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 5596 ResultType = Initializer->getType().getNonLValueExprType(S.Context); 5597 } 5598 5599 Sequence.AddConversionSequenceStep(ICS, ResultType); 5600 } 5601 5602 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy); 5603 return true; 5604 } 5605 5606 static bool TryOCLSamplerInitialization(Sema &S, 5607 InitializationSequence &Sequence, 5608 QualType DestType, 5609 Expr *Initializer) { 5610 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() || 5611 (!Initializer->isIntegerConstantExpr(S.Context) && 5612 !Initializer->getType()->isSamplerT())) 5613 return false; 5614 5615 Sequence.AddOCLSamplerInitStep(DestType); 5616 return true; 5617 } 5618 5619 static bool IsZeroInitializer(Expr *Initializer, Sema &S) { 5620 return Initializer->isIntegerConstantExpr(S.getASTContext()) && 5621 (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0); 5622 } 5623 5624 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S, 5625 InitializationSequence &Sequence, 5626 QualType DestType, 5627 Expr *Initializer) { 5628 if (!S.getLangOpts().OpenCL) 5629 return false; 5630 5631 // 5632 // OpenCL 1.2 spec, s6.12.10 5633 // 5634 // The event argument can also be used to associate the 5635 // async_work_group_copy with a previous async copy allowing 5636 // an event to be shared by multiple async copies; otherwise 5637 // event should be zero. 5638 // 5639 if (DestType->isEventT() || DestType->isQueueT()) { 5640 if (!IsZeroInitializer(Initializer, S)) 5641 return false; 5642 5643 Sequence.AddOCLZeroOpaqueTypeStep(DestType); 5644 return true; 5645 } 5646 5647 // We should allow zero initialization for all types defined in the 5648 // cl_intel_device_side_avc_motion_estimation extension, except 5649 // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t. 5650 if (S.getOpenCLOptions().isAvailableOption( 5651 "cl_intel_device_side_avc_motion_estimation", S.getLangOpts()) && 5652 DestType->isOCLIntelSubgroupAVCType()) { 5653 if (DestType->isOCLIntelSubgroupAVCMcePayloadType() || 5654 DestType->isOCLIntelSubgroupAVCMceResultType()) 5655 return false; 5656 if (!IsZeroInitializer(Initializer, S)) 5657 return false; 5658 5659 Sequence.AddOCLZeroOpaqueTypeStep(DestType); 5660 return true; 5661 } 5662 5663 return false; 5664 } 5665 5666 InitializationSequence::InitializationSequence( 5667 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, 5668 MultiExprArg Args, bool TopLevelOfInitList, bool TreatUnavailableAsInvalid) 5669 : FailedOverloadResult(OR_Success), 5670 FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) { 5671 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList, 5672 TreatUnavailableAsInvalid); 5673 } 5674 5675 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the 5676 /// address of that function, this returns true. Otherwise, it returns false. 5677 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) { 5678 auto *DRE = dyn_cast<DeclRefExpr>(E); 5679 if (!DRE || !isa<FunctionDecl>(DRE->getDecl())) 5680 return false; 5681 5682 return !S.checkAddressOfFunctionIsAvailable( 5683 cast<FunctionDecl>(DRE->getDecl())); 5684 } 5685 5686 /// Determine whether we can perform an elementwise array copy for this kind 5687 /// of entity. 5688 static bool canPerformArrayCopy(const InitializedEntity &Entity) { 5689 switch (Entity.getKind()) { 5690 case InitializedEntity::EK_LambdaCapture: 5691 // C++ [expr.prim.lambda]p24: 5692 // For array members, the array elements are direct-initialized in 5693 // increasing subscript order. 5694 return true; 5695 5696 case InitializedEntity::EK_Variable: 5697 // C++ [dcl.decomp]p1: 5698 // [...] each element is copy-initialized or direct-initialized from the 5699 // corresponding element of the assignment-expression [...] 5700 return isa<DecompositionDecl>(Entity.getDecl()); 5701 5702 case InitializedEntity::EK_Member: 5703 // C++ [class.copy.ctor]p14: 5704 // - if the member is an array, each element is direct-initialized with 5705 // the corresponding subobject of x 5706 return Entity.isImplicitMemberInitializer(); 5707 5708 case InitializedEntity::EK_ArrayElement: 5709 // All the above cases are intended to apply recursively, even though none 5710 // of them actually say that. 5711 if (auto *E = Entity.getParent()) 5712 return canPerformArrayCopy(*E); 5713 break; 5714 5715 default: 5716 break; 5717 } 5718 5719 return false; 5720 } 5721 5722 void InitializationSequence::InitializeFrom(Sema &S, 5723 const InitializedEntity &Entity, 5724 const InitializationKind &Kind, 5725 MultiExprArg Args, 5726 bool TopLevelOfInitList, 5727 bool TreatUnavailableAsInvalid) { 5728 ASTContext &Context = S.Context; 5729 5730 // Eliminate non-overload placeholder types in the arguments. We 5731 // need to do this before checking whether types are dependent 5732 // because lowering a pseudo-object expression might well give us 5733 // something of dependent type. 5734 for (unsigned I = 0, E = Args.size(); I != E; ++I) 5735 if (Args[I]->getType()->isNonOverloadPlaceholderType()) { 5736 // FIXME: should we be doing this here? 5737 ExprResult result = S.CheckPlaceholderExpr(Args[I]); 5738 if (result.isInvalid()) { 5739 SetFailed(FK_PlaceholderType); 5740 return; 5741 } 5742 Args[I] = result.get(); 5743 } 5744 5745 // C++0x [dcl.init]p16: 5746 // The semantics of initializers are as follows. The destination type is 5747 // the type of the object or reference being initialized and the source 5748 // type is the type of the initializer expression. The source type is not 5749 // defined when the initializer is a braced-init-list or when it is a 5750 // parenthesized list of expressions. 5751 QualType DestType = Entity.getType(); 5752 5753 if (DestType->isDependentType() || 5754 Expr::hasAnyTypeDependentArguments(Args)) { 5755 SequenceKind = DependentSequence; 5756 return; 5757 } 5758 5759 // Almost everything is a normal sequence. 5760 setSequenceKind(NormalSequence); 5761 5762 QualType SourceType; 5763 Expr *Initializer = nullptr; 5764 if (Args.size() == 1) { 5765 Initializer = Args[0]; 5766 if (S.getLangOpts().ObjC) { 5767 if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(), 5768 DestType, Initializer->getType(), 5769 Initializer) || 5770 S.CheckConversionToObjCLiteral(DestType, Initializer)) 5771 Args[0] = Initializer; 5772 } 5773 if (!isa<InitListExpr>(Initializer)) 5774 SourceType = Initializer->getType(); 5775 } 5776 5777 // - If the initializer is a (non-parenthesized) braced-init-list, the 5778 // object is list-initialized (8.5.4). 5779 if (Kind.getKind() != InitializationKind::IK_Direct) { 5780 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) { 5781 TryListInitialization(S, Entity, Kind, InitList, *this, 5782 TreatUnavailableAsInvalid); 5783 return; 5784 } 5785 } 5786 5787 // - If the destination type is a reference type, see 8.5.3. 5788 if (DestType->isReferenceType()) { 5789 // C++0x [dcl.init.ref]p1: 5790 // A variable declared to be a T& or T&&, that is, "reference to type T" 5791 // (8.3.2), shall be initialized by an object, or function, of type T or 5792 // by an object that can be converted into a T. 5793 // (Therefore, multiple arguments are not permitted.) 5794 if (Args.size() != 1) 5795 SetFailed(FK_TooManyInitsForReference); 5796 // C++17 [dcl.init.ref]p5: 5797 // A reference [...] is initialized by an expression [...] as follows: 5798 // If the initializer is not an expression, presumably we should reject, 5799 // but the standard fails to actually say so. 5800 else if (isa<InitListExpr>(Args[0])) 5801 SetFailed(FK_ParenthesizedListInitForReference); 5802 else 5803 TryReferenceInitialization(S, Entity, Kind, Args[0], *this); 5804 return; 5805 } 5806 5807 // - If the initializer is (), the object is value-initialized. 5808 if (Kind.getKind() == InitializationKind::IK_Value || 5809 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) { 5810 TryValueInitialization(S, Entity, Kind, *this); 5811 return; 5812 } 5813 5814 // Handle default initialization. 5815 if (Kind.getKind() == InitializationKind::IK_Default) { 5816 TryDefaultInitialization(S, Entity, Kind, *this); 5817 return; 5818 } 5819 5820 // - If the destination type is an array of characters, an array of 5821 // char16_t, an array of char32_t, or an array of wchar_t, and the 5822 // initializer is a string literal, see 8.5.2. 5823 // - Otherwise, if the destination type is an array, the program is 5824 // ill-formed. 5825 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) { 5826 if (Initializer && isa<VariableArrayType>(DestAT)) { 5827 SetFailed(FK_VariableLengthArrayHasInitializer); 5828 return; 5829 } 5830 5831 if (Initializer) { 5832 switch (IsStringInit(Initializer, DestAT, Context)) { 5833 case SIF_None: 5834 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this); 5835 return; 5836 case SIF_NarrowStringIntoWideChar: 5837 SetFailed(FK_NarrowStringIntoWideCharArray); 5838 return; 5839 case SIF_WideStringIntoChar: 5840 SetFailed(FK_WideStringIntoCharArray); 5841 return; 5842 case SIF_IncompatWideStringIntoWideChar: 5843 SetFailed(FK_IncompatWideStringIntoWideChar); 5844 return; 5845 case SIF_PlainStringIntoUTF8Char: 5846 SetFailed(FK_PlainStringIntoUTF8Char); 5847 return; 5848 case SIF_UTF8StringIntoPlainChar: 5849 SetFailed(FK_UTF8StringIntoPlainChar); 5850 return; 5851 case SIF_Other: 5852 break; 5853 } 5854 } 5855 5856 // Some kinds of initialization permit an array to be initialized from 5857 // another array of the same type, and perform elementwise initialization. 5858 if (Initializer && isa<ConstantArrayType>(DestAT) && 5859 S.Context.hasSameUnqualifiedType(Initializer->getType(), 5860 Entity.getType()) && 5861 canPerformArrayCopy(Entity)) { 5862 // If source is a prvalue, use it directly. 5863 if (Initializer->isPRValue()) { 5864 AddArrayInitStep(DestType, /*IsGNUExtension*/false); 5865 return; 5866 } 5867 5868 // Emit element-at-a-time copy loop. 5869 InitializedEntity Element = 5870 InitializedEntity::InitializeElement(S.Context, 0, Entity); 5871 QualType InitEltT = 5872 Context.getAsArrayType(Initializer->getType())->getElementType(); 5873 OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT, 5874 Initializer->getValueKind(), 5875 Initializer->getObjectKind()); 5876 Expr *OVEAsExpr = &OVE; 5877 InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList, 5878 TreatUnavailableAsInvalid); 5879 if (!Failed()) 5880 AddArrayInitLoopStep(Entity.getType(), InitEltT); 5881 return; 5882 } 5883 5884 // Note: as an GNU C extension, we allow initialization of an 5885 // array from a compound literal that creates an array of the same 5886 // type, so long as the initializer has no side effects. 5887 if (!S.getLangOpts().CPlusPlus && Initializer && 5888 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) && 5889 Initializer->getType()->isArrayType()) { 5890 const ArrayType *SourceAT 5891 = Context.getAsArrayType(Initializer->getType()); 5892 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT)) 5893 SetFailed(FK_ArrayTypeMismatch); 5894 else if (Initializer->HasSideEffects(S.Context)) 5895 SetFailed(FK_NonConstantArrayInit); 5896 else { 5897 AddArrayInitStep(DestType, /*IsGNUExtension*/true); 5898 } 5899 } 5900 // Note: as a GNU C++ extension, we allow list-initialization of a 5901 // class member of array type from a parenthesized initializer list. 5902 else if (S.getLangOpts().CPlusPlus && 5903 Entity.getKind() == InitializedEntity::EK_Member && 5904 Initializer && isa<InitListExpr>(Initializer)) { 5905 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer), 5906 *this, TreatUnavailableAsInvalid); 5907 AddParenthesizedArrayInitStep(DestType); 5908 } else if (DestAT->getElementType()->isCharType()) 5909 SetFailed(FK_ArrayNeedsInitListOrStringLiteral); 5910 else if (IsWideCharCompatible(DestAT->getElementType(), Context)) 5911 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral); 5912 else 5913 SetFailed(FK_ArrayNeedsInitList); 5914 5915 return; 5916 } 5917 5918 // Determine whether we should consider writeback conversions for 5919 // Objective-C ARC. 5920 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount && 5921 Entity.isParameterKind(); 5922 5923 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer)) 5924 return; 5925 5926 // We're at the end of the line for C: it's either a write-back conversion 5927 // or it's a C assignment. There's no need to check anything else. 5928 if (!S.getLangOpts().CPlusPlus) { 5929 // If allowed, check whether this is an Objective-C writeback conversion. 5930 if (allowObjCWritebackConversion && 5931 tryObjCWritebackConversion(S, *this, Entity, Initializer)) { 5932 return; 5933 } 5934 5935 if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer)) 5936 return; 5937 5938 // Handle initialization in C 5939 AddCAssignmentStep(DestType); 5940 MaybeProduceObjCObject(S, *this, Entity); 5941 return; 5942 } 5943 5944 assert(S.getLangOpts().CPlusPlus); 5945 5946 // - If the destination type is a (possibly cv-qualified) class type: 5947 if (DestType->isRecordType()) { 5948 // - If the initialization is direct-initialization, or if it is 5949 // copy-initialization where the cv-unqualified version of the 5950 // source type is the same class as, or a derived class of, the 5951 // class of the destination, constructors are considered. [...] 5952 if (Kind.getKind() == InitializationKind::IK_Direct || 5953 (Kind.getKind() == InitializationKind::IK_Copy && 5954 (Context.hasSameUnqualifiedType(SourceType, DestType) || 5955 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType)))) 5956 TryConstructorInitialization(S, Entity, Kind, Args, 5957 DestType, DestType, *this); 5958 // - Otherwise (i.e., for the remaining copy-initialization cases), 5959 // user-defined conversion sequences that can convert from the source 5960 // type to the destination type or (when a conversion function is 5961 // used) to a derived class thereof are enumerated as described in 5962 // 13.3.1.4, and the best one is chosen through overload resolution 5963 // (13.3). 5964 else 5965 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 5966 TopLevelOfInitList); 5967 return; 5968 } 5969 5970 assert(Args.size() >= 1 && "Zero-argument case handled above"); 5971 5972 // For HLSL ext vector types we allow list initialization behavior for C++ 5973 // constructor syntax. This is accomplished by converting initialization 5974 // arguments an InitListExpr late. 5975 if (S.getLangOpts().HLSL && DestType->isExtVectorType() && 5976 (SourceType.isNull() || 5977 !Context.hasSameUnqualifiedType(SourceType, DestType))) { 5978 5979 llvm::SmallVector<Expr *> InitArgs; 5980 for (auto Arg : Args) { 5981 if (Arg->getType()->isExtVectorType()) { 5982 const auto *VTy = Arg->getType()->castAs<ExtVectorType>(); 5983 unsigned Elm = VTy->getNumElements(); 5984 for (unsigned Idx = 0; Idx < Elm; ++Idx) { 5985 InitArgs.emplace_back(new (Context) ArraySubscriptExpr( 5986 Arg, 5987 IntegerLiteral::Create( 5988 Context, llvm::APInt(Context.getIntWidth(Context.IntTy), Idx), 5989 Context.IntTy, SourceLocation()), 5990 VTy->getElementType(), Arg->getValueKind(), Arg->getObjectKind(), 5991 SourceLocation())); 5992 } 5993 } else 5994 InitArgs.emplace_back(Arg); 5995 } 5996 InitListExpr *ILE = new (Context) InitListExpr( 5997 S.getASTContext(), SourceLocation(), InitArgs, SourceLocation()); 5998 Args[0] = ILE; 5999 AddListInitializationStep(DestType); 6000 return; 6001 } 6002 6003 // The remaining cases all need a source type. 6004 if (Args.size() > 1) { 6005 SetFailed(FK_TooManyInitsForScalar); 6006 return; 6007 } else if (isa<InitListExpr>(Args[0])) { 6008 SetFailed(FK_ParenthesizedListInitForScalar); 6009 return; 6010 } 6011 6012 // - Otherwise, if the source type is a (possibly cv-qualified) class 6013 // type, conversion functions are considered. 6014 if (!SourceType.isNull() && SourceType->isRecordType()) { 6015 // For a conversion to _Atomic(T) from either T or a class type derived 6016 // from T, initialize the T object then convert to _Atomic type. 6017 bool NeedAtomicConversion = false; 6018 if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) { 6019 if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) || 6020 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, 6021 Atomic->getValueType())) { 6022 DestType = Atomic->getValueType(); 6023 NeedAtomicConversion = true; 6024 } 6025 } 6026 6027 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 6028 TopLevelOfInitList); 6029 MaybeProduceObjCObject(S, *this, Entity); 6030 if (!Failed() && NeedAtomicConversion) 6031 AddAtomicConversionStep(Entity.getType()); 6032 return; 6033 } 6034 6035 // - Otherwise, if the initialization is direct-initialization, the source 6036 // type is std::nullptr_t, and the destination type is bool, the initial 6037 // value of the object being initialized is false. 6038 if (!SourceType.isNull() && SourceType->isNullPtrType() && 6039 DestType->isBooleanType() && 6040 Kind.getKind() == InitializationKind::IK_Direct) { 6041 AddConversionSequenceStep( 6042 ImplicitConversionSequence::getNullptrToBool(SourceType, DestType, 6043 Initializer->isGLValue()), 6044 DestType); 6045 return; 6046 } 6047 6048 // - Otherwise, the initial value of the object being initialized is the 6049 // (possibly converted) value of the initializer expression. Standard 6050 // conversions (Clause 4) will be used, if necessary, to convert the 6051 // initializer expression to the cv-unqualified version of the 6052 // destination type; no user-defined conversions are considered. 6053 6054 ImplicitConversionSequence ICS 6055 = S.TryImplicitConversion(Initializer, DestType, 6056 /*SuppressUserConversions*/true, 6057 Sema::AllowedExplicit::None, 6058 /*InOverloadResolution*/ false, 6059 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 6060 allowObjCWritebackConversion); 6061 6062 if (ICS.isStandard() && 6063 ICS.Standard.Second == ICK_Writeback_Conversion) { 6064 // Objective-C ARC writeback conversion. 6065 6066 // We should copy unless we're passing to an argument explicitly 6067 // marked 'out'. 6068 bool ShouldCopy = true; 6069 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 6070 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 6071 6072 // If there was an lvalue adjustment, add it as a separate conversion. 6073 if (ICS.Standard.First == ICK_Array_To_Pointer || 6074 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 6075 ImplicitConversionSequence LvalueICS; 6076 LvalueICS.setStandard(); 6077 LvalueICS.Standard.setAsIdentityConversion(); 6078 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0)); 6079 LvalueICS.Standard.First = ICS.Standard.First; 6080 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0)); 6081 } 6082 6083 AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy); 6084 } else if (ICS.isBad()) { 6085 DeclAccessPair dap; 6086 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) { 6087 AddZeroInitializationStep(Entity.getType()); 6088 } else if (Initializer->getType() == Context.OverloadTy && 6089 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType, 6090 false, dap)) 6091 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 6092 else if (Initializer->getType()->isFunctionType() && 6093 isExprAnUnaddressableFunction(S, Initializer)) 6094 SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction); 6095 else 6096 SetFailed(InitializationSequence::FK_ConversionFailed); 6097 } else { 6098 AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 6099 6100 MaybeProduceObjCObject(S, *this, Entity); 6101 } 6102 } 6103 6104 InitializationSequence::~InitializationSequence() { 6105 for (auto &S : Steps) 6106 S.Destroy(); 6107 } 6108 6109 //===----------------------------------------------------------------------===// 6110 // Perform initialization 6111 //===----------------------------------------------------------------------===// 6112 static Sema::AssignmentAction 6113 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) { 6114 switch(Entity.getKind()) { 6115 case InitializedEntity::EK_Variable: 6116 case InitializedEntity::EK_New: 6117 case InitializedEntity::EK_Exception: 6118 case InitializedEntity::EK_Base: 6119 case InitializedEntity::EK_Delegating: 6120 return Sema::AA_Initializing; 6121 6122 case InitializedEntity::EK_Parameter: 6123 if (Entity.getDecl() && 6124 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 6125 return Sema::AA_Sending; 6126 6127 return Sema::AA_Passing; 6128 6129 case InitializedEntity::EK_Parameter_CF_Audited: 6130 if (Entity.getDecl() && 6131 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 6132 return Sema::AA_Sending; 6133 6134 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited; 6135 6136 case InitializedEntity::EK_Result: 6137 case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right. 6138 return Sema::AA_Returning; 6139 6140 case InitializedEntity::EK_Temporary: 6141 case InitializedEntity::EK_RelatedResult: 6142 // FIXME: Can we tell apart casting vs. converting? 6143 return Sema::AA_Casting; 6144 6145 case InitializedEntity::EK_TemplateParameter: 6146 // This is really initialization, but refer to it as conversion for 6147 // consistency with CheckConvertedConstantExpression. 6148 return Sema::AA_Converting; 6149 6150 case InitializedEntity::EK_Member: 6151 case InitializedEntity::EK_Binding: 6152 case InitializedEntity::EK_ArrayElement: 6153 case InitializedEntity::EK_VectorElement: 6154 case InitializedEntity::EK_ComplexElement: 6155 case InitializedEntity::EK_BlockElement: 6156 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6157 case InitializedEntity::EK_LambdaCapture: 6158 case InitializedEntity::EK_CompoundLiteralInit: 6159 return Sema::AA_Initializing; 6160 } 6161 6162 llvm_unreachable("Invalid EntityKind!"); 6163 } 6164 6165 /// Whether we should bind a created object as a temporary when 6166 /// initializing the given entity. 6167 static bool shouldBindAsTemporary(const InitializedEntity &Entity) { 6168 switch (Entity.getKind()) { 6169 case InitializedEntity::EK_ArrayElement: 6170 case InitializedEntity::EK_Member: 6171 case InitializedEntity::EK_Result: 6172 case InitializedEntity::EK_StmtExprResult: 6173 case InitializedEntity::EK_New: 6174 case InitializedEntity::EK_Variable: 6175 case InitializedEntity::EK_Base: 6176 case InitializedEntity::EK_Delegating: 6177 case InitializedEntity::EK_VectorElement: 6178 case InitializedEntity::EK_ComplexElement: 6179 case InitializedEntity::EK_Exception: 6180 case InitializedEntity::EK_BlockElement: 6181 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6182 case InitializedEntity::EK_LambdaCapture: 6183 case InitializedEntity::EK_CompoundLiteralInit: 6184 case InitializedEntity::EK_TemplateParameter: 6185 return false; 6186 6187 case InitializedEntity::EK_Parameter: 6188 case InitializedEntity::EK_Parameter_CF_Audited: 6189 case InitializedEntity::EK_Temporary: 6190 case InitializedEntity::EK_RelatedResult: 6191 case InitializedEntity::EK_Binding: 6192 return true; 6193 } 6194 6195 llvm_unreachable("missed an InitializedEntity kind?"); 6196 } 6197 6198 /// Whether the given entity, when initialized with an object 6199 /// created for that initialization, requires destruction. 6200 static bool shouldDestroyEntity(const InitializedEntity &Entity) { 6201 switch (Entity.getKind()) { 6202 case InitializedEntity::EK_Result: 6203 case InitializedEntity::EK_StmtExprResult: 6204 case InitializedEntity::EK_New: 6205 case InitializedEntity::EK_Base: 6206 case InitializedEntity::EK_Delegating: 6207 case InitializedEntity::EK_VectorElement: 6208 case InitializedEntity::EK_ComplexElement: 6209 case InitializedEntity::EK_BlockElement: 6210 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6211 case InitializedEntity::EK_LambdaCapture: 6212 return false; 6213 6214 case InitializedEntity::EK_Member: 6215 case InitializedEntity::EK_Binding: 6216 case InitializedEntity::EK_Variable: 6217 case InitializedEntity::EK_Parameter: 6218 case InitializedEntity::EK_Parameter_CF_Audited: 6219 case InitializedEntity::EK_TemplateParameter: 6220 case InitializedEntity::EK_Temporary: 6221 case InitializedEntity::EK_ArrayElement: 6222 case InitializedEntity::EK_Exception: 6223 case InitializedEntity::EK_CompoundLiteralInit: 6224 case InitializedEntity::EK_RelatedResult: 6225 return true; 6226 } 6227 6228 llvm_unreachable("missed an InitializedEntity kind?"); 6229 } 6230 6231 /// Get the location at which initialization diagnostics should appear. 6232 static SourceLocation getInitializationLoc(const InitializedEntity &Entity, 6233 Expr *Initializer) { 6234 switch (Entity.getKind()) { 6235 case InitializedEntity::EK_Result: 6236 case InitializedEntity::EK_StmtExprResult: 6237 return Entity.getReturnLoc(); 6238 6239 case InitializedEntity::EK_Exception: 6240 return Entity.getThrowLoc(); 6241 6242 case InitializedEntity::EK_Variable: 6243 case InitializedEntity::EK_Binding: 6244 return Entity.getDecl()->getLocation(); 6245 6246 case InitializedEntity::EK_LambdaCapture: 6247 return Entity.getCaptureLoc(); 6248 6249 case InitializedEntity::EK_ArrayElement: 6250 case InitializedEntity::EK_Member: 6251 case InitializedEntity::EK_Parameter: 6252 case InitializedEntity::EK_Parameter_CF_Audited: 6253 case InitializedEntity::EK_TemplateParameter: 6254 case InitializedEntity::EK_Temporary: 6255 case InitializedEntity::EK_New: 6256 case InitializedEntity::EK_Base: 6257 case InitializedEntity::EK_Delegating: 6258 case InitializedEntity::EK_VectorElement: 6259 case InitializedEntity::EK_ComplexElement: 6260 case InitializedEntity::EK_BlockElement: 6261 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6262 case InitializedEntity::EK_CompoundLiteralInit: 6263 case InitializedEntity::EK_RelatedResult: 6264 return Initializer->getBeginLoc(); 6265 } 6266 llvm_unreachable("missed an InitializedEntity kind?"); 6267 } 6268 6269 /// Make a (potentially elidable) temporary copy of the object 6270 /// provided by the given initializer by calling the appropriate copy 6271 /// constructor. 6272 /// 6273 /// \param S The Sema object used for type-checking. 6274 /// 6275 /// \param T The type of the temporary object, which must either be 6276 /// the type of the initializer expression or a superclass thereof. 6277 /// 6278 /// \param Entity The entity being initialized. 6279 /// 6280 /// \param CurInit The initializer expression. 6281 /// 6282 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that 6283 /// is permitted in C++03 (but not C++0x) when binding a reference to 6284 /// an rvalue. 6285 /// 6286 /// \returns An expression that copies the initializer expression into 6287 /// a temporary object, or an error expression if a copy could not be 6288 /// created. 6289 static ExprResult CopyObject(Sema &S, 6290 QualType T, 6291 const InitializedEntity &Entity, 6292 ExprResult CurInit, 6293 bool IsExtraneousCopy) { 6294 if (CurInit.isInvalid()) 6295 return CurInit; 6296 // Determine which class type we're copying to. 6297 Expr *CurInitExpr = (Expr *)CurInit.get(); 6298 CXXRecordDecl *Class = nullptr; 6299 if (const RecordType *Record = T->getAs<RecordType>()) 6300 Class = cast<CXXRecordDecl>(Record->getDecl()); 6301 if (!Class) 6302 return CurInit; 6303 6304 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get()); 6305 6306 // Make sure that the type we are copying is complete. 6307 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete)) 6308 return CurInit; 6309 6310 // Perform overload resolution using the class's constructors. Per 6311 // C++11 [dcl.init]p16, second bullet for class types, this initialization 6312 // is direct-initialization. 6313 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 6314 DeclContext::lookup_result Ctors = S.LookupConstructors(Class); 6315 6316 OverloadCandidateSet::iterator Best; 6317 switch (ResolveConstructorOverload( 6318 S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best, 6319 /*CopyInitializing=*/false, /*AllowExplicit=*/true, 6320 /*OnlyListConstructors=*/false, /*IsListInit=*/false, 6321 /*SecondStepOfCopyInit=*/true)) { 6322 case OR_Success: 6323 break; 6324 6325 case OR_No_Viable_Function: 6326 CandidateSet.NoteCandidates( 6327 PartialDiagnosticAt( 6328 Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext() 6329 ? diag::ext_rvalue_to_reference_temp_copy_no_viable 6330 : diag::err_temp_copy_no_viable) 6331 << (int)Entity.getKind() << CurInitExpr->getType() 6332 << CurInitExpr->getSourceRange()), 6333 S, OCD_AllCandidates, CurInitExpr); 6334 if (!IsExtraneousCopy || S.isSFINAEContext()) 6335 return ExprError(); 6336 return CurInit; 6337 6338 case OR_Ambiguous: 6339 CandidateSet.NoteCandidates( 6340 PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous) 6341 << (int)Entity.getKind() 6342 << CurInitExpr->getType() 6343 << CurInitExpr->getSourceRange()), 6344 S, OCD_AmbiguousCandidates, CurInitExpr); 6345 return ExprError(); 6346 6347 case OR_Deleted: 6348 S.Diag(Loc, diag::err_temp_copy_deleted) 6349 << (int)Entity.getKind() << CurInitExpr->getType() 6350 << CurInitExpr->getSourceRange(); 6351 S.NoteDeletedFunction(Best->Function); 6352 return ExprError(); 6353 } 6354 6355 bool HadMultipleCandidates = CandidateSet.size() > 1; 6356 6357 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); 6358 SmallVector<Expr*, 8> ConstructorArgs; 6359 CurInit.get(); // Ownership transferred into MultiExprArg, below. 6360 6361 S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity, 6362 IsExtraneousCopy); 6363 6364 if (IsExtraneousCopy) { 6365 // If this is a totally extraneous copy for C++03 reference 6366 // binding purposes, just return the original initialization 6367 // expression. We don't generate an (elided) copy operation here 6368 // because doing so would require us to pass down a flag to avoid 6369 // infinite recursion, where each step adds another extraneous, 6370 // elidable copy. 6371 6372 // Instantiate the default arguments of any extra parameters in 6373 // the selected copy constructor, as if we were going to create a 6374 // proper call to the copy constructor. 6375 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) { 6376 ParmVarDecl *Parm = Constructor->getParamDecl(I); 6377 if (S.RequireCompleteType(Loc, Parm->getType(), 6378 diag::err_call_incomplete_argument)) 6379 break; 6380 6381 // Build the default argument expression; we don't actually care 6382 // if this succeeds or not, because this routine will complain 6383 // if there was a problem. 6384 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm); 6385 } 6386 6387 return CurInitExpr; 6388 } 6389 6390 // Determine the arguments required to actually perform the 6391 // constructor call (we might have derived-to-base conversions, or 6392 // the copy constructor may have default arguments). 6393 if (S.CompleteConstructorCall(Constructor, T, CurInitExpr, Loc, 6394 ConstructorArgs)) 6395 return ExprError(); 6396 6397 // C++0x [class.copy]p32: 6398 // When certain criteria are met, an implementation is allowed to 6399 // omit the copy/move construction of a class object, even if the 6400 // copy/move constructor and/or destructor for the object have 6401 // side effects. [...] 6402 // - when a temporary class object that has not been bound to a 6403 // reference (12.2) would be copied/moved to a class object 6404 // with the same cv-unqualified type, the copy/move operation 6405 // can be omitted by constructing the temporary object 6406 // directly into the target of the omitted copy/move 6407 // 6408 // Note that the other three bullets are handled elsewhere. Copy 6409 // elision for return statements and throw expressions are handled as part 6410 // of constructor initialization, while copy elision for exception handlers 6411 // is handled by the run-time. 6412 // 6413 // FIXME: If the function parameter is not the same type as the temporary, we 6414 // should still be able to elide the copy, but we don't have a way to 6415 // represent in the AST how much should be elided in this case. 6416 bool Elidable = 6417 CurInitExpr->isTemporaryObject(S.Context, Class) && 6418 S.Context.hasSameUnqualifiedType( 6419 Best->Function->getParamDecl(0)->getType().getNonReferenceType(), 6420 CurInitExpr->getType()); 6421 6422 // Actually perform the constructor call. 6423 CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor, 6424 Elidable, 6425 ConstructorArgs, 6426 HadMultipleCandidates, 6427 /*ListInit*/ false, 6428 /*StdInitListInit*/ false, 6429 /*ZeroInit*/ false, 6430 CXXConstructExpr::CK_Complete, 6431 SourceRange()); 6432 6433 // If we're supposed to bind temporaries, do so. 6434 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity)) 6435 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 6436 return CurInit; 6437 } 6438 6439 /// Check whether elidable copy construction for binding a reference to 6440 /// a temporary would have succeeded if we were building in C++98 mode, for 6441 /// -Wc++98-compat. 6442 static void CheckCXX98CompatAccessibleCopy(Sema &S, 6443 const InitializedEntity &Entity, 6444 Expr *CurInitExpr) { 6445 assert(S.getLangOpts().CPlusPlus11); 6446 6447 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>(); 6448 if (!Record) 6449 return; 6450 6451 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr); 6452 if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc)) 6453 return; 6454 6455 // Find constructors which would have been considered. 6456 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 6457 DeclContext::lookup_result Ctors = 6458 S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl())); 6459 6460 // Perform overload resolution. 6461 OverloadCandidateSet::iterator Best; 6462 OverloadingResult OR = ResolveConstructorOverload( 6463 S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best, 6464 /*CopyInitializing=*/false, /*AllowExplicit=*/true, 6465 /*OnlyListConstructors=*/false, /*IsListInit=*/false, 6466 /*SecondStepOfCopyInit=*/true); 6467 6468 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy) 6469 << OR << (int)Entity.getKind() << CurInitExpr->getType() 6470 << CurInitExpr->getSourceRange(); 6471 6472 switch (OR) { 6473 case OR_Success: 6474 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function), 6475 Best->FoundDecl, Entity, Diag); 6476 // FIXME: Check default arguments as far as that's possible. 6477 break; 6478 6479 case OR_No_Viable_Function: 6480 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, 6481 OCD_AllCandidates, CurInitExpr); 6482 break; 6483 6484 case OR_Ambiguous: 6485 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, 6486 OCD_AmbiguousCandidates, CurInitExpr); 6487 break; 6488 6489 case OR_Deleted: 6490 S.Diag(Loc, Diag); 6491 S.NoteDeletedFunction(Best->Function); 6492 break; 6493 } 6494 } 6495 6496 void InitializationSequence::PrintInitLocationNote(Sema &S, 6497 const InitializedEntity &Entity) { 6498 if (Entity.isParamOrTemplateParamKind() && Entity.getDecl()) { 6499 if (Entity.getDecl()->getLocation().isInvalid()) 6500 return; 6501 6502 if (Entity.getDecl()->getDeclName()) 6503 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here) 6504 << Entity.getDecl()->getDeclName(); 6505 else 6506 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here); 6507 } 6508 else if (Entity.getKind() == InitializedEntity::EK_RelatedResult && 6509 Entity.getMethodDecl()) 6510 S.Diag(Entity.getMethodDecl()->getLocation(), 6511 diag::note_method_return_type_change) 6512 << Entity.getMethodDecl()->getDeclName(); 6513 } 6514 6515 /// Returns true if the parameters describe a constructor initialization of 6516 /// an explicit temporary object, e.g. "Point(x, y)". 6517 static bool isExplicitTemporary(const InitializedEntity &Entity, 6518 const InitializationKind &Kind, 6519 unsigned NumArgs) { 6520 switch (Entity.getKind()) { 6521 case InitializedEntity::EK_Temporary: 6522 case InitializedEntity::EK_CompoundLiteralInit: 6523 case InitializedEntity::EK_RelatedResult: 6524 break; 6525 default: 6526 return false; 6527 } 6528 6529 switch (Kind.getKind()) { 6530 case InitializationKind::IK_DirectList: 6531 return true; 6532 // FIXME: Hack to work around cast weirdness. 6533 case InitializationKind::IK_Direct: 6534 case InitializationKind::IK_Value: 6535 return NumArgs != 1; 6536 default: 6537 return false; 6538 } 6539 } 6540 6541 static ExprResult 6542 PerformConstructorInitialization(Sema &S, 6543 const InitializedEntity &Entity, 6544 const InitializationKind &Kind, 6545 MultiExprArg Args, 6546 const InitializationSequence::Step& Step, 6547 bool &ConstructorInitRequiresZeroInit, 6548 bool IsListInitialization, 6549 bool IsStdInitListInitialization, 6550 SourceLocation LBraceLoc, 6551 SourceLocation RBraceLoc) { 6552 unsigned NumArgs = Args.size(); 6553 CXXConstructorDecl *Constructor 6554 = cast<CXXConstructorDecl>(Step.Function.Function); 6555 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates; 6556 6557 // Build a call to the selected constructor. 6558 SmallVector<Expr*, 8> ConstructorArgs; 6559 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid()) 6560 ? Kind.getEqualLoc() 6561 : Kind.getLocation(); 6562 6563 if (Kind.getKind() == InitializationKind::IK_Default) { 6564 // Force even a trivial, implicit default constructor to be 6565 // semantically checked. We do this explicitly because we don't build 6566 // the definition for completely trivial constructors. 6567 assert(Constructor->getParent() && "No parent class for constructor."); 6568 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() && 6569 Constructor->isTrivial() && !Constructor->isUsed(false)) { 6570 S.runWithSufficientStackSpace(Loc, [&] { 6571 S.DefineImplicitDefaultConstructor(Loc, Constructor); 6572 }); 6573 } 6574 } 6575 6576 ExprResult CurInit((Expr *)nullptr); 6577 6578 // C++ [over.match.copy]p1: 6579 // - When initializing a temporary to be bound to the first parameter 6580 // of a constructor that takes a reference to possibly cv-qualified 6581 // T as its first argument, called with a single argument in the 6582 // context of direct-initialization, explicit conversion functions 6583 // are also considered. 6584 bool AllowExplicitConv = 6585 Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 && 6586 hasCopyOrMoveCtorParam(S.Context, 6587 getConstructorInfo(Step.Function.FoundDecl)); 6588 6589 // Determine the arguments required to actually perform the constructor 6590 // call. 6591 if (S.CompleteConstructorCall(Constructor, Step.Type, Args, Loc, 6592 ConstructorArgs, AllowExplicitConv, 6593 IsListInitialization)) 6594 return ExprError(); 6595 6596 if (isExplicitTemporary(Entity, Kind, NumArgs)) { 6597 // An explicitly-constructed temporary, e.g., X(1, 2). 6598 if (S.DiagnoseUseOfDecl(Constructor, Loc)) 6599 return ExprError(); 6600 6601 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 6602 if (!TSInfo) 6603 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc); 6604 SourceRange ParenOrBraceRange = 6605 (Kind.getKind() == InitializationKind::IK_DirectList) 6606 ? SourceRange(LBraceLoc, RBraceLoc) 6607 : Kind.getParenOrBraceRange(); 6608 6609 CXXConstructorDecl *CalleeDecl = Constructor; 6610 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>( 6611 Step.Function.FoundDecl.getDecl())) { 6612 CalleeDecl = S.findInheritingConstructor(Loc, Constructor, Shadow); 6613 if (S.DiagnoseUseOfDecl(CalleeDecl, Loc)) 6614 return ExprError(); 6615 } 6616 S.MarkFunctionReferenced(Loc, CalleeDecl); 6617 6618 CurInit = S.CheckForImmediateInvocation( 6619 CXXTemporaryObjectExpr::Create( 6620 S.Context, CalleeDecl, 6621 Entity.getType().getNonLValueExprType(S.Context), TSInfo, 6622 ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates, 6623 IsListInitialization, IsStdInitListInitialization, 6624 ConstructorInitRequiresZeroInit), 6625 CalleeDecl); 6626 } else { 6627 CXXConstructExpr::ConstructionKind ConstructKind = 6628 CXXConstructExpr::CK_Complete; 6629 6630 if (Entity.getKind() == InitializedEntity::EK_Base) { 6631 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ? 6632 CXXConstructExpr::CK_VirtualBase : 6633 CXXConstructExpr::CK_NonVirtualBase; 6634 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) { 6635 ConstructKind = CXXConstructExpr::CK_Delegating; 6636 } 6637 6638 // Only get the parenthesis or brace range if it is a list initialization or 6639 // direct construction. 6640 SourceRange ParenOrBraceRange; 6641 if (IsListInitialization) 6642 ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc); 6643 else if (Kind.getKind() == InitializationKind::IK_Direct) 6644 ParenOrBraceRange = Kind.getParenOrBraceRange(); 6645 6646 // If the entity allows NRVO, mark the construction as elidable 6647 // unconditionally. 6648 if (Entity.allowsNRVO()) 6649 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, 6650 Step.Function.FoundDecl, 6651 Constructor, /*Elidable=*/true, 6652 ConstructorArgs, 6653 HadMultipleCandidates, 6654 IsListInitialization, 6655 IsStdInitListInitialization, 6656 ConstructorInitRequiresZeroInit, 6657 ConstructKind, 6658 ParenOrBraceRange); 6659 else 6660 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, 6661 Step.Function.FoundDecl, 6662 Constructor, 6663 ConstructorArgs, 6664 HadMultipleCandidates, 6665 IsListInitialization, 6666 IsStdInitListInitialization, 6667 ConstructorInitRequiresZeroInit, 6668 ConstructKind, 6669 ParenOrBraceRange); 6670 } 6671 if (CurInit.isInvalid()) 6672 return ExprError(); 6673 6674 // Only check access if all of that succeeded. 6675 S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity); 6676 if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc)) 6677 return ExprError(); 6678 6679 if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType())) 6680 if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S)) 6681 return ExprError(); 6682 6683 if (shouldBindAsTemporary(Entity)) 6684 CurInit = S.MaybeBindToTemporary(CurInit.get()); 6685 6686 return CurInit; 6687 } 6688 6689 namespace { 6690 enum LifetimeKind { 6691 /// The lifetime of a temporary bound to this entity ends at the end of the 6692 /// full-expression, and that's (probably) fine. 6693 LK_FullExpression, 6694 6695 /// The lifetime of a temporary bound to this entity is extended to the 6696 /// lifeitme of the entity itself. 6697 LK_Extended, 6698 6699 /// The lifetime of a temporary bound to this entity probably ends too soon, 6700 /// because the entity is allocated in a new-expression. 6701 LK_New, 6702 6703 /// The lifetime of a temporary bound to this entity ends too soon, because 6704 /// the entity is a return object. 6705 LK_Return, 6706 6707 /// The lifetime of a temporary bound to this entity ends too soon, because 6708 /// the entity is the result of a statement expression. 6709 LK_StmtExprResult, 6710 6711 /// This is a mem-initializer: if it would extend a temporary (other than via 6712 /// a default member initializer), the program is ill-formed. 6713 LK_MemInitializer, 6714 }; 6715 using LifetimeResult = 6716 llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>; 6717 } 6718 6719 /// Determine the declaration which an initialized entity ultimately refers to, 6720 /// for the purpose of lifetime-extending a temporary bound to a reference in 6721 /// the initialization of \p Entity. 6722 static LifetimeResult getEntityLifetime( 6723 const InitializedEntity *Entity, 6724 const InitializedEntity *InitField = nullptr) { 6725 // C++11 [class.temporary]p5: 6726 switch (Entity->getKind()) { 6727 case InitializedEntity::EK_Variable: 6728 // The temporary [...] persists for the lifetime of the reference 6729 return {Entity, LK_Extended}; 6730 6731 case InitializedEntity::EK_Member: 6732 // For subobjects, we look at the complete object. 6733 if (Entity->getParent()) 6734 return getEntityLifetime(Entity->getParent(), Entity); 6735 6736 // except: 6737 // C++17 [class.base.init]p8: 6738 // A temporary expression bound to a reference member in a 6739 // mem-initializer is ill-formed. 6740 // C++17 [class.base.init]p11: 6741 // A temporary expression bound to a reference member from a 6742 // default member initializer is ill-formed. 6743 // 6744 // The context of p11 and its example suggest that it's only the use of a 6745 // default member initializer from a constructor that makes the program 6746 // ill-formed, not its mere existence, and that it can even be used by 6747 // aggregate initialization. 6748 return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended 6749 : LK_MemInitializer}; 6750 6751 case InitializedEntity::EK_Binding: 6752 // Per [dcl.decomp]p3, the binding is treated as a variable of reference 6753 // type. 6754 return {Entity, LK_Extended}; 6755 6756 case InitializedEntity::EK_Parameter: 6757 case InitializedEntity::EK_Parameter_CF_Audited: 6758 // -- A temporary bound to a reference parameter in a function call 6759 // persists until the completion of the full-expression containing 6760 // the call. 6761 return {nullptr, LK_FullExpression}; 6762 6763 case InitializedEntity::EK_TemplateParameter: 6764 // FIXME: This will always be ill-formed; should we eagerly diagnose it here? 6765 return {nullptr, LK_FullExpression}; 6766 6767 case InitializedEntity::EK_Result: 6768 // -- The lifetime of a temporary bound to the returned value in a 6769 // function return statement is not extended; the temporary is 6770 // destroyed at the end of the full-expression in the return statement. 6771 return {nullptr, LK_Return}; 6772 6773 case InitializedEntity::EK_StmtExprResult: 6774 // FIXME: Should we lifetime-extend through the result of a statement 6775 // expression? 6776 return {nullptr, LK_StmtExprResult}; 6777 6778 case InitializedEntity::EK_New: 6779 // -- A temporary bound to a reference in a new-initializer persists 6780 // until the completion of the full-expression containing the 6781 // new-initializer. 6782 return {nullptr, LK_New}; 6783 6784 case InitializedEntity::EK_Temporary: 6785 case InitializedEntity::EK_CompoundLiteralInit: 6786 case InitializedEntity::EK_RelatedResult: 6787 // We don't yet know the storage duration of the surrounding temporary. 6788 // Assume it's got full-expression duration for now, it will patch up our 6789 // storage duration if that's not correct. 6790 return {nullptr, LK_FullExpression}; 6791 6792 case InitializedEntity::EK_ArrayElement: 6793 // For subobjects, we look at the complete object. 6794 return getEntityLifetime(Entity->getParent(), InitField); 6795 6796 case InitializedEntity::EK_Base: 6797 // For subobjects, we look at the complete object. 6798 if (Entity->getParent()) 6799 return getEntityLifetime(Entity->getParent(), InitField); 6800 return {InitField, LK_MemInitializer}; 6801 6802 case InitializedEntity::EK_Delegating: 6803 // We can reach this case for aggregate initialization in a constructor: 6804 // struct A { int &&r; }; 6805 // struct B : A { B() : A{0} {} }; 6806 // In this case, use the outermost field decl as the context. 6807 return {InitField, LK_MemInitializer}; 6808 6809 case InitializedEntity::EK_BlockElement: 6810 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6811 case InitializedEntity::EK_LambdaCapture: 6812 case InitializedEntity::EK_VectorElement: 6813 case InitializedEntity::EK_ComplexElement: 6814 return {nullptr, LK_FullExpression}; 6815 6816 case InitializedEntity::EK_Exception: 6817 // FIXME: Can we diagnose lifetime problems with exceptions? 6818 return {nullptr, LK_FullExpression}; 6819 } 6820 llvm_unreachable("unknown entity kind"); 6821 } 6822 6823 namespace { 6824 enum ReferenceKind { 6825 /// Lifetime would be extended by a reference binding to a temporary. 6826 RK_ReferenceBinding, 6827 /// Lifetime would be extended by a std::initializer_list object binding to 6828 /// its backing array. 6829 RK_StdInitializerList, 6830 }; 6831 6832 /// A temporary or local variable. This will be one of: 6833 /// * A MaterializeTemporaryExpr. 6834 /// * A DeclRefExpr whose declaration is a local. 6835 /// * An AddrLabelExpr. 6836 /// * A BlockExpr for a block with captures. 6837 using Local = Expr*; 6838 6839 /// Expressions we stepped over when looking for the local state. Any steps 6840 /// that would inhibit lifetime extension or take us out of subexpressions of 6841 /// the initializer are included. 6842 struct IndirectLocalPathEntry { 6843 enum EntryKind { 6844 DefaultInit, 6845 AddressOf, 6846 VarInit, 6847 LValToRVal, 6848 LifetimeBoundCall, 6849 TemporaryCopy, 6850 LambdaCaptureInit, 6851 GslReferenceInit, 6852 GslPointerInit 6853 } Kind; 6854 Expr *E; 6855 union { 6856 const Decl *D = nullptr; 6857 const LambdaCapture *Capture; 6858 }; 6859 IndirectLocalPathEntry() {} 6860 IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {} 6861 IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D) 6862 : Kind(K), E(E), D(D) {} 6863 IndirectLocalPathEntry(EntryKind K, Expr *E, const LambdaCapture *Capture) 6864 : Kind(K), E(E), Capture(Capture) {} 6865 }; 6866 6867 using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>; 6868 6869 struct RevertToOldSizeRAII { 6870 IndirectLocalPath &Path; 6871 unsigned OldSize = Path.size(); 6872 RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {} 6873 ~RevertToOldSizeRAII() { Path.resize(OldSize); } 6874 }; 6875 6876 using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L, 6877 ReferenceKind RK)>; 6878 } 6879 6880 static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) { 6881 for (auto E : Path) 6882 if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD) 6883 return true; 6884 return false; 6885 } 6886 6887 static bool pathContainsInit(IndirectLocalPath &Path) { 6888 return llvm::any_of(Path, [=](IndirectLocalPathEntry E) { 6889 return E.Kind == IndirectLocalPathEntry::DefaultInit || 6890 E.Kind == IndirectLocalPathEntry::VarInit; 6891 }); 6892 } 6893 6894 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, 6895 Expr *Init, LocalVisitor Visit, 6896 bool RevisitSubinits, 6897 bool EnableLifetimeWarnings); 6898 6899 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, 6900 Expr *Init, ReferenceKind RK, 6901 LocalVisitor Visit, 6902 bool EnableLifetimeWarnings); 6903 6904 template <typename T> static bool isRecordWithAttr(QualType Type) { 6905 if (auto *RD = Type->getAsCXXRecordDecl()) 6906 return RD->hasAttr<T>(); 6907 return false; 6908 } 6909 6910 // Decl::isInStdNamespace will return false for iterators in some STL 6911 // implementations due to them being defined in a namespace outside of the std 6912 // namespace. 6913 static bool isInStlNamespace(const Decl *D) { 6914 const DeclContext *DC = D->getDeclContext(); 6915 if (!DC) 6916 return false; 6917 if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) 6918 if (const IdentifierInfo *II = ND->getIdentifier()) { 6919 StringRef Name = II->getName(); 6920 if (Name.size() >= 2 && Name.front() == '_' && 6921 (Name[1] == '_' || isUppercase(Name[1]))) 6922 return true; 6923 } 6924 6925 return DC->isStdNamespace(); 6926 } 6927 6928 static bool shouldTrackImplicitObjectArg(const CXXMethodDecl *Callee) { 6929 if (auto *Conv = dyn_cast_or_null<CXXConversionDecl>(Callee)) 6930 if (isRecordWithAttr<PointerAttr>(Conv->getConversionType())) 6931 return true; 6932 if (!isInStlNamespace(Callee->getParent())) 6933 return false; 6934 if (!isRecordWithAttr<PointerAttr>(Callee->getThisObjectType()) && 6935 !isRecordWithAttr<OwnerAttr>(Callee->getThisObjectType())) 6936 return false; 6937 if (Callee->getReturnType()->isPointerType() || 6938 isRecordWithAttr<PointerAttr>(Callee->getReturnType())) { 6939 if (!Callee->getIdentifier()) 6940 return false; 6941 return llvm::StringSwitch<bool>(Callee->getName()) 6942 .Cases("begin", "rbegin", "cbegin", "crbegin", true) 6943 .Cases("end", "rend", "cend", "crend", true) 6944 .Cases("c_str", "data", "get", true) 6945 // Map and set types. 6946 .Cases("find", "equal_range", "lower_bound", "upper_bound", true) 6947 .Default(false); 6948 } else if (Callee->getReturnType()->isReferenceType()) { 6949 if (!Callee->getIdentifier()) { 6950 auto OO = Callee->getOverloadedOperator(); 6951 return OO == OverloadedOperatorKind::OO_Subscript || 6952 OO == OverloadedOperatorKind::OO_Star; 6953 } 6954 return llvm::StringSwitch<bool>(Callee->getName()) 6955 .Cases("front", "back", "at", "top", "value", true) 6956 .Default(false); 6957 } 6958 return false; 6959 } 6960 6961 static bool shouldTrackFirstArgument(const FunctionDecl *FD) { 6962 if (!FD->getIdentifier() || FD->getNumParams() != 1) 6963 return false; 6964 const auto *RD = FD->getParamDecl(0)->getType()->getPointeeCXXRecordDecl(); 6965 if (!FD->isInStdNamespace() || !RD || !RD->isInStdNamespace()) 6966 return false; 6967 if (!isRecordWithAttr<PointerAttr>(QualType(RD->getTypeForDecl(), 0)) && 6968 !isRecordWithAttr<OwnerAttr>(QualType(RD->getTypeForDecl(), 0))) 6969 return false; 6970 if (FD->getReturnType()->isPointerType() || 6971 isRecordWithAttr<PointerAttr>(FD->getReturnType())) { 6972 return llvm::StringSwitch<bool>(FD->getName()) 6973 .Cases("begin", "rbegin", "cbegin", "crbegin", true) 6974 .Cases("end", "rend", "cend", "crend", true) 6975 .Case("data", true) 6976 .Default(false); 6977 } else if (FD->getReturnType()->isReferenceType()) { 6978 return llvm::StringSwitch<bool>(FD->getName()) 6979 .Cases("get", "any_cast", true) 6980 .Default(false); 6981 } 6982 return false; 6983 } 6984 6985 static void handleGslAnnotatedTypes(IndirectLocalPath &Path, Expr *Call, 6986 LocalVisitor Visit) { 6987 auto VisitPointerArg = [&](const Decl *D, Expr *Arg, bool Value) { 6988 // We are not interested in the temporary base objects of gsl Pointers: 6989 // Temp().ptr; // Here ptr might not dangle. 6990 if (isa<MemberExpr>(Arg->IgnoreImpCasts())) 6991 return; 6992 // Once we initialized a value with a reference, it can no longer dangle. 6993 if (!Value) { 6994 for (const IndirectLocalPathEntry &PE : llvm::reverse(Path)) { 6995 if (PE.Kind == IndirectLocalPathEntry::GslReferenceInit) 6996 continue; 6997 if (PE.Kind == IndirectLocalPathEntry::GslPointerInit) 6998 return; 6999 break; 7000 } 7001 } 7002 Path.push_back({Value ? IndirectLocalPathEntry::GslPointerInit 7003 : IndirectLocalPathEntry::GslReferenceInit, 7004 Arg, D}); 7005 if (Arg->isGLValue()) 7006 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, 7007 Visit, 7008 /*EnableLifetimeWarnings=*/true); 7009 else 7010 visitLocalsRetainedByInitializer(Path, Arg, Visit, true, 7011 /*EnableLifetimeWarnings=*/true); 7012 Path.pop_back(); 7013 }; 7014 7015 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) { 7016 const auto *MD = cast_or_null<CXXMethodDecl>(MCE->getDirectCallee()); 7017 if (MD && shouldTrackImplicitObjectArg(MD)) 7018 VisitPointerArg(MD, MCE->getImplicitObjectArgument(), 7019 !MD->getReturnType()->isReferenceType()); 7020 return; 7021 } else if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(Call)) { 7022 FunctionDecl *Callee = OCE->getDirectCallee(); 7023 if (Callee && Callee->isCXXInstanceMember() && 7024 shouldTrackImplicitObjectArg(cast<CXXMethodDecl>(Callee))) 7025 VisitPointerArg(Callee, OCE->getArg(0), 7026 !Callee->getReturnType()->isReferenceType()); 7027 return; 7028 } else if (auto *CE = dyn_cast<CallExpr>(Call)) { 7029 FunctionDecl *Callee = CE->getDirectCallee(); 7030 if (Callee && shouldTrackFirstArgument(Callee)) 7031 VisitPointerArg(Callee, CE->getArg(0), 7032 !Callee->getReturnType()->isReferenceType()); 7033 return; 7034 } 7035 7036 if (auto *CCE = dyn_cast<CXXConstructExpr>(Call)) { 7037 const auto *Ctor = CCE->getConstructor(); 7038 const CXXRecordDecl *RD = Ctor->getParent(); 7039 if (CCE->getNumArgs() > 0 && RD->hasAttr<PointerAttr>()) 7040 VisitPointerArg(Ctor->getParamDecl(0), CCE->getArgs()[0], true); 7041 } 7042 } 7043 7044 static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) { 7045 const TypeSourceInfo *TSI = FD->getTypeSourceInfo(); 7046 if (!TSI) 7047 return false; 7048 // Don't declare this variable in the second operand of the for-statement; 7049 // GCC miscompiles that by ending its lifetime before evaluating the 7050 // third operand. See gcc.gnu.org/PR86769. 7051 AttributedTypeLoc ATL; 7052 for (TypeLoc TL = TSI->getTypeLoc(); 7053 (ATL = TL.getAsAdjusted<AttributedTypeLoc>()); 7054 TL = ATL.getModifiedLoc()) { 7055 if (ATL.getAttrAs<LifetimeBoundAttr>()) 7056 return true; 7057 } 7058 7059 // Assume that all assignment operators with a "normal" return type return 7060 // *this, that is, an lvalue reference that is the same type as the implicit 7061 // object parameter (or the LHS for a non-member operator$=). 7062 OverloadedOperatorKind OO = FD->getDeclName().getCXXOverloadedOperator(); 7063 if (OO == OO_Equal || isCompoundAssignmentOperator(OO)) { 7064 QualType RetT = FD->getReturnType(); 7065 if (RetT->isLValueReferenceType()) { 7066 ASTContext &Ctx = FD->getASTContext(); 7067 QualType LHST; 7068 auto *MD = dyn_cast<CXXMethodDecl>(FD); 7069 if (MD && MD->isCXXInstanceMember()) 7070 LHST = Ctx.getLValueReferenceType(MD->getThisObjectType()); 7071 else 7072 LHST = MD->getParamDecl(0)->getType(); 7073 if (Ctx.hasSameType(RetT, LHST)) 7074 return true; 7075 } 7076 } 7077 7078 return false; 7079 } 7080 7081 static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call, 7082 LocalVisitor Visit) { 7083 const FunctionDecl *Callee; 7084 ArrayRef<Expr*> Args; 7085 7086 if (auto *CE = dyn_cast<CallExpr>(Call)) { 7087 Callee = CE->getDirectCallee(); 7088 Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs()); 7089 } else { 7090 auto *CCE = cast<CXXConstructExpr>(Call); 7091 Callee = CCE->getConstructor(); 7092 Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs()); 7093 } 7094 if (!Callee) 7095 return; 7096 7097 Expr *ObjectArg = nullptr; 7098 if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) { 7099 ObjectArg = Args[0]; 7100 Args = Args.slice(1); 7101 } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) { 7102 ObjectArg = MCE->getImplicitObjectArgument(); 7103 } 7104 7105 auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) { 7106 Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D}); 7107 if (Arg->isGLValue()) 7108 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, 7109 Visit, 7110 /*EnableLifetimeWarnings=*/false); 7111 else 7112 visitLocalsRetainedByInitializer(Path, Arg, Visit, true, 7113 /*EnableLifetimeWarnings=*/false); 7114 Path.pop_back(); 7115 }; 7116 7117 if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee)) 7118 VisitLifetimeBoundArg(Callee, ObjectArg); 7119 7120 for (unsigned I = 0, 7121 N = std::min<unsigned>(Callee->getNumParams(), Args.size()); 7122 I != N; ++I) { 7123 if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>()) 7124 VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]); 7125 } 7126 } 7127 7128 /// Visit the locals that would be reachable through a reference bound to the 7129 /// glvalue expression \c Init. 7130 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, 7131 Expr *Init, ReferenceKind RK, 7132 LocalVisitor Visit, 7133 bool EnableLifetimeWarnings) { 7134 RevertToOldSizeRAII RAII(Path); 7135 7136 // Walk past any constructs which we can lifetime-extend across. 7137 Expr *Old; 7138 do { 7139 Old = Init; 7140 7141 if (auto *FE = dyn_cast<FullExpr>(Init)) 7142 Init = FE->getSubExpr(); 7143 7144 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 7145 // If this is just redundant braces around an initializer, step over it. 7146 if (ILE->isTransparent()) 7147 Init = ILE->getInit(0); 7148 } 7149 7150 // Step over any subobject adjustments; we may have a materialized 7151 // temporary inside them. 7152 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); 7153 7154 // Per current approach for DR1376, look through casts to reference type 7155 // when performing lifetime extension. 7156 if (CastExpr *CE = dyn_cast<CastExpr>(Init)) 7157 if (CE->getSubExpr()->isGLValue()) 7158 Init = CE->getSubExpr(); 7159 7160 // Per the current approach for DR1299, look through array element access 7161 // on array glvalues when performing lifetime extension. 7162 if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) { 7163 Init = ASE->getBase(); 7164 auto *ICE = dyn_cast<ImplicitCastExpr>(Init); 7165 if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay) 7166 Init = ICE->getSubExpr(); 7167 else 7168 // We can't lifetime extend through this but we might still find some 7169 // retained temporaries. 7170 return visitLocalsRetainedByInitializer(Path, Init, Visit, true, 7171 EnableLifetimeWarnings); 7172 } 7173 7174 // Step into CXXDefaultInitExprs so we can diagnose cases where a 7175 // constructor inherits one as an implicit mem-initializer. 7176 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { 7177 Path.push_back( 7178 {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); 7179 Init = DIE->getExpr(); 7180 } 7181 } while (Init != Old); 7182 7183 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) { 7184 if (Visit(Path, Local(MTE), RK)) 7185 visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true, 7186 EnableLifetimeWarnings); 7187 } 7188 7189 if (isa<CallExpr>(Init)) { 7190 if (EnableLifetimeWarnings) 7191 handleGslAnnotatedTypes(Path, Init, Visit); 7192 return visitLifetimeBoundArguments(Path, Init, Visit); 7193 } 7194 7195 switch (Init->getStmtClass()) { 7196 case Stmt::DeclRefExprClass: { 7197 // If we find the name of a local non-reference parameter, we could have a 7198 // lifetime problem. 7199 auto *DRE = cast<DeclRefExpr>(Init); 7200 auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7201 if (VD && VD->hasLocalStorage() && 7202 !DRE->refersToEnclosingVariableOrCapture()) { 7203 if (!VD->getType()->isReferenceType()) { 7204 Visit(Path, Local(DRE), RK); 7205 } else if (isa<ParmVarDecl>(DRE->getDecl())) { 7206 // The lifetime of a reference parameter is unknown; assume it's OK 7207 // for now. 7208 break; 7209 } else if (VD->getInit() && !isVarOnPath(Path, VD)) { 7210 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); 7211 visitLocalsRetainedByReferenceBinding(Path, VD->getInit(), 7212 RK_ReferenceBinding, Visit, 7213 EnableLifetimeWarnings); 7214 } 7215 } 7216 break; 7217 } 7218 7219 case Stmt::UnaryOperatorClass: { 7220 // The only unary operator that make sense to handle here 7221 // is Deref. All others don't resolve to a "name." This includes 7222 // handling all sorts of rvalues passed to a unary operator. 7223 const UnaryOperator *U = cast<UnaryOperator>(Init); 7224 if (U->getOpcode() == UO_Deref) 7225 visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true, 7226 EnableLifetimeWarnings); 7227 break; 7228 } 7229 7230 case Stmt::OMPArraySectionExprClass: { 7231 visitLocalsRetainedByInitializer(Path, 7232 cast<OMPArraySectionExpr>(Init)->getBase(), 7233 Visit, true, EnableLifetimeWarnings); 7234 break; 7235 } 7236 7237 case Stmt::ConditionalOperatorClass: 7238 case Stmt::BinaryConditionalOperatorClass: { 7239 auto *C = cast<AbstractConditionalOperator>(Init); 7240 if (!C->getTrueExpr()->getType()->isVoidType()) 7241 visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit, 7242 EnableLifetimeWarnings); 7243 if (!C->getFalseExpr()->getType()->isVoidType()) 7244 visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit, 7245 EnableLifetimeWarnings); 7246 break; 7247 } 7248 7249 // FIXME: Visit the left-hand side of an -> or ->*. 7250 7251 default: 7252 break; 7253 } 7254 } 7255 7256 /// Visit the locals that would be reachable through an object initialized by 7257 /// the prvalue expression \c Init. 7258 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, 7259 Expr *Init, LocalVisitor Visit, 7260 bool RevisitSubinits, 7261 bool EnableLifetimeWarnings) { 7262 RevertToOldSizeRAII RAII(Path); 7263 7264 Expr *Old; 7265 do { 7266 Old = Init; 7267 7268 // Step into CXXDefaultInitExprs so we can diagnose cases where a 7269 // constructor inherits one as an implicit mem-initializer. 7270 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { 7271 Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); 7272 Init = DIE->getExpr(); 7273 } 7274 7275 if (auto *FE = dyn_cast<FullExpr>(Init)) 7276 Init = FE->getSubExpr(); 7277 7278 // Dig out the expression which constructs the extended temporary. 7279 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); 7280 7281 if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init)) 7282 Init = BTE->getSubExpr(); 7283 7284 Init = Init->IgnoreParens(); 7285 7286 // Step over value-preserving rvalue casts. 7287 if (auto *CE = dyn_cast<CastExpr>(Init)) { 7288 switch (CE->getCastKind()) { 7289 case CK_LValueToRValue: 7290 // If we can match the lvalue to a const object, we can look at its 7291 // initializer. 7292 Path.push_back({IndirectLocalPathEntry::LValToRVal, CE}); 7293 return visitLocalsRetainedByReferenceBinding( 7294 Path, Init, RK_ReferenceBinding, 7295 [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool { 7296 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { 7297 auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7298 if (VD && VD->getType().isConstQualified() && VD->getInit() && 7299 !isVarOnPath(Path, VD)) { 7300 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); 7301 visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true, 7302 EnableLifetimeWarnings); 7303 } 7304 } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) { 7305 if (MTE->getType().isConstQualified()) 7306 visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, 7307 true, EnableLifetimeWarnings); 7308 } 7309 return false; 7310 }, EnableLifetimeWarnings); 7311 7312 // We assume that objects can be retained by pointers cast to integers, 7313 // but not if the integer is cast to floating-point type or to _Complex. 7314 // We assume that casts to 'bool' do not preserve enough information to 7315 // retain a local object. 7316 case CK_NoOp: 7317 case CK_BitCast: 7318 case CK_BaseToDerived: 7319 case CK_DerivedToBase: 7320 case CK_UncheckedDerivedToBase: 7321 case CK_Dynamic: 7322 case CK_ToUnion: 7323 case CK_UserDefinedConversion: 7324 case CK_ConstructorConversion: 7325 case CK_IntegralToPointer: 7326 case CK_PointerToIntegral: 7327 case CK_VectorSplat: 7328 case CK_IntegralCast: 7329 case CK_CPointerToObjCPointerCast: 7330 case CK_BlockPointerToObjCPointerCast: 7331 case CK_AnyPointerToBlockPointerCast: 7332 case CK_AddressSpaceConversion: 7333 break; 7334 7335 case CK_ArrayToPointerDecay: 7336 // Model array-to-pointer decay as taking the address of the array 7337 // lvalue. 7338 Path.push_back({IndirectLocalPathEntry::AddressOf, CE}); 7339 return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(), 7340 RK_ReferenceBinding, Visit, 7341 EnableLifetimeWarnings); 7342 7343 default: 7344 return; 7345 } 7346 7347 Init = CE->getSubExpr(); 7348 } 7349 } while (Old != Init); 7350 7351 // C++17 [dcl.init.list]p6: 7352 // initializing an initializer_list object from the array extends the 7353 // lifetime of the array exactly like binding a reference to a temporary. 7354 if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init)) 7355 return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(), 7356 RK_StdInitializerList, Visit, 7357 EnableLifetimeWarnings); 7358 7359 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 7360 // We already visited the elements of this initializer list while 7361 // performing the initialization. Don't visit them again unless we've 7362 // changed the lifetime of the initialized entity. 7363 if (!RevisitSubinits) 7364 return; 7365 7366 if (ILE->isTransparent()) 7367 return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit, 7368 RevisitSubinits, 7369 EnableLifetimeWarnings); 7370 7371 if (ILE->getType()->isArrayType()) { 7372 for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I) 7373 visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit, 7374 RevisitSubinits, 7375 EnableLifetimeWarnings); 7376 return; 7377 } 7378 7379 if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) { 7380 assert(RD->isAggregate() && "aggregate init on non-aggregate"); 7381 7382 // If we lifetime-extend a braced initializer which is initializing an 7383 // aggregate, and that aggregate contains reference members which are 7384 // bound to temporaries, those temporaries are also lifetime-extended. 7385 if (RD->isUnion() && ILE->getInitializedFieldInUnion() && 7386 ILE->getInitializedFieldInUnion()->getType()->isReferenceType()) 7387 visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0), 7388 RK_ReferenceBinding, Visit, 7389 EnableLifetimeWarnings); 7390 else { 7391 unsigned Index = 0; 7392 for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index) 7393 visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit, 7394 RevisitSubinits, 7395 EnableLifetimeWarnings); 7396 for (const auto *I : RD->fields()) { 7397 if (Index >= ILE->getNumInits()) 7398 break; 7399 if (I->isUnnamedBitfield()) 7400 continue; 7401 Expr *SubInit = ILE->getInit(Index); 7402 if (I->getType()->isReferenceType()) 7403 visitLocalsRetainedByReferenceBinding(Path, SubInit, 7404 RK_ReferenceBinding, Visit, 7405 EnableLifetimeWarnings); 7406 else 7407 // This might be either aggregate-initialization of a member or 7408 // initialization of a std::initializer_list object. Regardless, 7409 // we should recursively lifetime-extend that initializer. 7410 visitLocalsRetainedByInitializer(Path, SubInit, Visit, 7411 RevisitSubinits, 7412 EnableLifetimeWarnings); 7413 ++Index; 7414 } 7415 } 7416 } 7417 return; 7418 } 7419 7420 // The lifetime of an init-capture is that of the closure object constructed 7421 // by a lambda-expression. 7422 if (auto *LE = dyn_cast<LambdaExpr>(Init)) { 7423 LambdaExpr::capture_iterator CapI = LE->capture_begin(); 7424 for (Expr *E : LE->capture_inits()) { 7425 assert(CapI != LE->capture_end()); 7426 const LambdaCapture &Cap = *CapI++; 7427 if (!E) 7428 continue; 7429 if (Cap.capturesVariable()) 7430 Path.push_back({IndirectLocalPathEntry::LambdaCaptureInit, E, &Cap}); 7431 if (E->isGLValue()) 7432 visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding, 7433 Visit, EnableLifetimeWarnings); 7434 else 7435 visitLocalsRetainedByInitializer(Path, E, Visit, true, 7436 EnableLifetimeWarnings); 7437 if (Cap.capturesVariable()) 7438 Path.pop_back(); 7439 } 7440 } 7441 7442 // Assume that a copy or move from a temporary references the same objects 7443 // that the temporary does. 7444 if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) { 7445 if (CCE->getConstructor()->isCopyOrMoveConstructor()) { 7446 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(CCE->getArg(0))) { 7447 Expr *Arg = MTE->getSubExpr(); 7448 Path.push_back({IndirectLocalPathEntry::TemporaryCopy, Arg, 7449 CCE->getConstructor()}); 7450 visitLocalsRetainedByInitializer(Path, Arg, Visit, true, 7451 /*EnableLifetimeWarnings*/false); 7452 Path.pop_back(); 7453 } 7454 } 7455 } 7456 7457 if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) { 7458 if (EnableLifetimeWarnings) 7459 handleGslAnnotatedTypes(Path, Init, Visit); 7460 return visitLifetimeBoundArguments(Path, Init, Visit); 7461 } 7462 7463 switch (Init->getStmtClass()) { 7464 case Stmt::UnaryOperatorClass: { 7465 auto *UO = cast<UnaryOperator>(Init); 7466 // If the initializer is the address of a local, we could have a lifetime 7467 // problem. 7468 if (UO->getOpcode() == UO_AddrOf) { 7469 // If this is &rvalue, then it's ill-formed and we have already diagnosed 7470 // it. Don't produce a redundant warning about the lifetime of the 7471 // temporary. 7472 if (isa<MaterializeTemporaryExpr>(UO->getSubExpr())) 7473 return; 7474 7475 Path.push_back({IndirectLocalPathEntry::AddressOf, UO}); 7476 visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(), 7477 RK_ReferenceBinding, Visit, 7478 EnableLifetimeWarnings); 7479 } 7480 break; 7481 } 7482 7483 case Stmt::BinaryOperatorClass: { 7484 // Handle pointer arithmetic. 7485 auto *BO = cast<BinaryOperator>(Init); 7486 BinaryOperatorKind BOK = BO->getOpcode(); 7487 if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub)) 7488 break; 7489 7490 if (BO->getLHS()->getType()->isPointerType()) 7491 visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true, 7492 EnableLifetimeWarnings); 7493 else if (BO->getRHS()->getType()->isPointerType()) 7494 visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true, 7495 EnableLifetimeWarnings); 7496 break; 7497 } 7498 7499 case Stmt::ConditionalOperatorClass: 7500 case Stmt::BinaryConditionalOperatorClass: { 7501 auto *C = cast<AbstractConditionalOperator>(Init); 7502 // In C++, we can have a throw-expression operand, which has 'void' type 7503 // and isn't interesting from a lifetime perspective. 7504 if (!C->getTrueExpr()->getType()->isVoidType()) 7505 visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true, 7506 EnableLifetimeWarnings); 7507 if (!C->getFalseExpr()->getType()->isVoidType()) 7508 visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true, 7509 EnableLifetimeWarnings); 7510 break; 7511 } 7512 7513 case Stmt::BlockExprClass: 7514 if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) { 7515 // This is a local block, whose lifetime is that of the function. 7516 Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding); 7517 } 7518 break; 7519 7520 case Stmt::AddrLabelExprClass: 7521 // We want to warn if the address of a label would escape the function. 7522 Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding); 7523 break; 7524 7525 default: 7526 break; 7527 } 7528 } 7529 7530 /// Whether a path to an object supports lifetime extension. 7531 enum PathLifetimeKind { 7532 /// Lifetime-extend along this path. 7533 Extend, 7534 /// We should lifetime-extend, but we don't because (due to technical 7535 /// limitations) we can't. This happens for default member initializers, 7536 /// which we don't clone for every use, so we don't have a unique 7537 /// MaterializeTemporaryExpr to update. 7538 ShouldExtend, 7539 /// Do not lifetime extend along this path. 7540 NoExtend 7541 }; 7542 7543 /// Determine whether this is an indirect path to a temporary that we are 7544 /// supposed to lifetime-extend along. 7545 static PathLifetimeKind 7546 shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) { 7547 PathLifetimeKind Kind = PathLifetimeKind::Extend; 7548 for (auto Elem : Path) { 7549 if (Elem.Kind == IndirectLocalPathEntry::DefaultInit) 7550 Kind = PathLifetimeKind::ShouldExtend; 7551 else if (Elem.Kind != IndirectLocalPathEntry::LambdaCaptureInit) 7552 return PathLifetimeKind::NoExtend; 7553 } 7554 return Kind; 7555 } 7556 7557 /// Find the range for the first interesting entry in the path at or after I. 7558 static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I, 7559 Expr *E) { 7560 for (unsigned N = Path.size(); I != N; ++I) { 7561 switch (Path[I].Kind) { 7562 case IndirectLocalPathEntry::AddressOf: 7563 case IndirectLocalPathEntry::LValToRVal: 7564 case IndirectLocalPathEntry::LifetimeBoundCall: 7565 case IndirectLocalPathEntry::TemporaryCopy: 7566 case IndirectLocalPathEntry::GslReferenceInit: 7567 case IndirectLocalPathEntry::GslPointerInit: 7568 // These exist primarily to mark the path as not permitting or 7569 // supporting lifetime extension. 7570 break; 7571 7572 case IndirectLocalPathEntry::VarInit: 7573 if (cast<VarDecl>(Path[I].D)->isImplicit()) 7574 return SourceRange(); 7575 LLVM_FALLTHROUGH; 7576 case IndirectLocalPathEntry::DefaultInit: 7577 return Path[I].E->getSourceRange(); 7578 7579 case IndirectLocalPathEntry::LambdaCaptureInit: 7580 if (!Path[I].Capture->capturesVariable()) 7581 continue; 7582 return Path[I].E->getSourceRange(); 7583 } 7584 } 7585 return E->getSourceRange(); 7586 } 7587 7588 static bool pathOnlyInitializesGslPointer(IndirectLocalPath &Path) { 7589 for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) { 7590 if (It->Kind == IndirectLocalPathEntry::VarInit) 7591 continue; 7592 if (It->Kind == IndirectLocalPathEntry::AddressOf) 7593 continue; 7594 if (It->Kind == IndirectLocalPathEntry::LifetimeBoundCall) 7595 continue; 7596 return It->Kind == IndirectLocalPathEntry::GslPointerInit || 7597 It->Kind == IndirectLocalPathEntry::GslReferenceInit; 7598 } 7599 return false; 7600 } 7601 7602 void Sema::checkInitializerLifetime(const InitializedEntity &Entity, 7603 Expr *Init) { 7604 LifetimeResult LR = getEntityLifetime(&Entity); 7605 LifetimeKind LK = LR.getInt(); 7606 const InitializedEntity *ExtendingEntity = LR.getPointer(); 7607 7608 // If this entity doesn't have an interesting lifetime, don't bother looking 7609 // for temporaries within its initializer. 7610 if (LK == LK_FullExpression) 7611 return; 7612 7613 auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L, 7614 ReferenceKind RK) -> bool { 7615 SourceRange DiagRange = nextPathEntryRange(Path, 0, L); 7616 SourceLocation DiagLoc = DiagRange.getBegin(); 7617 7618 auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L); 7619 7620 bool IsGslPtrInitWithGslTempOwner = false; 7621 bool IsLocalGslOwner = false; 7622 if (pathOnlyInitializesGslPointer(Path)) { 7623 if (isa<DeclRefExpr>(L)) { 7624 // We do not want to follow the references when returning a pointer originating 7625 // from a local owner to avoid the following false positive: 7626 // int &p = *localUniquePtr; 7627 // someContainer.add(std::move(localUniquePtr)); 7628 // return p; 7629 IsLocalGslOwner = isRecordWithAttr<OwnerAttr>(L->getType()); 7630 if (pathContainsInit(Path) || !IsLocalGslOwner) 7631 return false; 7632 } else { 7633 IsGslPtrInitWithGslTempOwner = MTE && !MTE->getExtendingDecl() && 7634 isRecordWithAttr<OwnerAttr>(MTE->getType()); 7635 // Skipping a chain of initializing gsl::Pointer annotated objects. 7636 // We are looking only for the final source to find out if it was 7637 // a local or temporary owner or the address of a local variable/param. 7638 if (!IsGslPtrInitWithGslTempOwner) 7639 return true; 7640 } 7641 } 7642 7643 switch (LK) { 7644 case LK_FullExpression: 7645 llvm_unreachable("already handled this"); 7646 7647 case LK_Extended: { 7648 if (!MTE) { 7649 // The initialized entity has lifetime beyond the full-expression, 7650 // and the local entity does too, so don't warn. 7651 // 7652 // FIXME: We should consider warning if a static / thread storage 7653 // duration variable retains an automatic storage duration local. 7654 return false; 7655 } 7656 7657 if (IsGslPtrInitWithGslTempOwner && DiagLoc.isValid()) { 7658 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange; 7659 return false; 7660 } 7661 7662 switch (shouldLifetimeExtendThroughPath(Path)) { 7663 case PathLifetimeKind::Extend: 7664 // Update the storage duration of the materialized temporary. 7665 // FIXME: Rebuild the expression instead of mutating it. 7666 MTE->setExtendingDecl(ExtendingEntity->getDecl(), 7667 ExtendingEntity->allocateManglingNumber()); 7668 // Also visit the temporaries lifetime-extended by this initializer. 7669 return true; 7670 7671 case PathLifetimeKind::ShouldExtend: 7672 // We're supposed to lifetime-extend the temporary along this path (per 7673 // the resolution of DR1815), but we don't support that yet. 7674 // 7675 // FIXME: Properly handle this situation. Perhaps the easiest approach 7676 // would be to clone the initializer expression on each use that would 7677 // lifetime extend its temporaries. 7678 Diag(DiagLoc, diag::warn_unsupported_lifetime_extension) 7679 << RK << DiagRange; 7680 break; 7681 7682 case PathLifetimeKind::NoExtend: 7683 // If the path goes through the initialization of a variable or field, 7684 // it can't possibly reach a temporary created in this full-expression. 7685 // We will have already diagnosed any problems with the initializer. 7686 if (pathContainsInit(Path)) 7687 return false; 7688 7689 Diag(DiagLoc, diag::warn_dangling_variable) 7690 << RK << !Entity.getParent() 7691 << ExtendingEntity->getDecl()->isImplicit() 7692 << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange; 7693 break; 7694 } 7695 break; 7696 } 7697 7698 case LK_MemInitializer: { 7699 if (isa<MaterializeTemporaryExpr>(L)) { 7700 // Under C++ DR1696, if a mem-initializer (or a default member 7701 // initializer used by the absence of one) would lifetime-extend a 7702 // temporary, the program is ill-formed. 7703 if (auto *ExtendingDecl = 7704 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { 7705 if (IsGslPtrInitWithGslTempOwner) { 7706 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_member) 7707 << ExtendingDecl << DiagRange; 7708 Diag(ExtendingDecl->getLocation(), 7709 diag::note_ref_or_ptr_member_declared_here) 7710 << true; 7711 return false; 7712 } 7713 bool IsSubobjectMember = ExtendingEntity != &Entity; 7714 Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path) != 7715 PathLifetimeKind::NoExtend 7716 ? diag::err_dangling_member 7717 : diag::warn_dangling_member) 7718 << ExtendingDecl << IsSubobjectMember << RK << DiagRange; 7719 // Don't bother adding a note pointing to the field if we're inside 7720 // its default member initializer; our primary diagnostic points to 7721 // the same place in that case. 7722 if (Path.empty() || 7723 Path.back().Kind != IndirectLocalPathEntry::DefaultInit) { 7724 Diag(ExtendingDecl->getLocation(), 7725 diag::note_lifetime_extending_member_declared_here) 7726 << RK << IsSubobjectMember; 7727 } 7728 } else { 7729 // We have a mem-initializer but no particular field within it; this 7730 // is either a base class or a delegating initializer directly 7731 // initializing the base-class from something that doesn't live long 7732 // enough. 7733 // 7734 // FIXME: Warn on this. 7735 return false; 7736 } 7737 } else { 7738 // Paths via a default initializer can only occur during error recovery 7739 // (there's no other way that a default initializer can refer to a 7740 // local). Don't produce a bogus warning on those cases. 7741 if (pathContainsInit(Path)) 7742 return false; 7743 7744 // Suppress false positives for code like the one below: 7745 // Ctor(unique_ptr<T> up) : member(*up), member2(move(up)) {} 7746 if (IsLocalGslOwner && pathOnlyInitializesGslPointer(Path)) 7747 return false; 7748 7749 auto *DRE = dyn_cast<DeclRefExpr>(L); 7750 auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr; 7751 if (!VD) { 7752 // A member was initialized to a local block. 7753 // FIXME: Warn on this. 7754 return false; 7755 } 7756 7757 if (auto *Member = 7758 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { 7759 bool IsPointer = !Member->getType()->isReferenceType(); 7760 Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr 7761 : diag::warn_bind_ref_member_to_parameter) 7762 << Member << VD << isa<ParmVarDecl>(VD) << DiagRange; 7763 Diag(Member->getLocation(), 7764 diag::note_ref_or_ptr_member_declared_here) 7765 << (unsigned)IsPointer; 7766 } 7767 } 7768 break; 7769 } 7770 7771 case LK_New: 7772 if (isa<MaterializeTemporaryExpr>(L)) { 7773 if (IsGslPtrInitWithGslTempOwner) 7774 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange; 7775 else 7776 Diag(DiagLoc, RK == RK_ReferenceBinding 7777 ? diag::warn_new_dangling_reference 7778 : diag::warn_new_dangling_initializer_list) 7779 << !Entity.getParent() << DiagRange; 7780 } else { 7781 // We can't determine if the allocation outlives the local declaration. 7782 return false; 7783 } 7784 break; 7785 7786 case LK_Return: 7787 case LK_StmtExprResult: 7788 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { 7789 // We can't determine if the local variable outlives the statement 7790 // expression. 7791 if (LK == LK_StmtExprResult) 7792 return false; 7793 Diag(DiagLoc, diag::warn_ret_stack_addr_ref) 7794 << Entity.getType()->isReferenceType() << DRE->getDecl() 7795 << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange; 7796 } else if (isa<BlockExpr>(L)) { 7797 Diag(DiagLoc, diag::err_ret_local_block) << DiagRange; 7798 } else if (isa<AddrLabelExpr>(L)) { 7799 // Don't warn when returning a label from a statement expression. 7800 // Leaving the scope doesn't end its lifetime. 7801 if (LK == LK_StmtExprResult) 7802 return false; 7803 Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange; 7804 } else { 7805 Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref) 7806 << Entity.getType()->isReferenceType() << DiagRange; 7807 } 7808 break; 7809 } 7810 7811 for (unsigned I = 0; I != Path.size(); ++I) { 7812 auto Elem = Path[I]; 7813 7814 switch (Elem.Kind) { 7815 case IndirectLocalPathEntry::AddressOf: 7816 case IndirectLocalPathEntry::LValToRVal: 7817 // These exist primarily to mark the path as not permitting or 7818 // supporting lifetime extension. 7819 break; 7820 7821 case IndirectLocalPathEntry::LifetimeBoundCall: 7822 case IndirectLocalPathEntry::TemporaryCopy: 7823 case IndirectLocalPathEntry::GslPointerInit: 7824 case IndirectLocalPathEntry::GslReferenceInit: 7825 // FIXME: Consider adding a note for these. 7826 break; 7827 7828 case IndirectLocalPathEntry::DefaultInit: { 7829 auto *FD = cast<FieldDecl>(Elem.D); 7830 Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer) 7831 << FD << nextPathEntryRange(Path, I + 1, L); 7832 break; 7833 } 7834 7835 case IndirectLocalPathEntry::VarInit: { 7836 const VarDecl *VD = cast<VarDecl>(Elem.D); 7837 Diag(VD->getLocation(), diag::note_local_var_initializer) 7838 << VD->getType()->isReferenceType() 7839 << VD->isImplicit() << VD->getDeclName() 7840 << nextPathEntryRange(Path, I + 1, L); 7841 break; 7842 } 7843 7844 case IndirectLocalPathEntry::LambdaCaptureInit: 7845 if (!Elem.Capture->capturesVariable()) 7846 break; 7847 // FIXME: We can't easily tell apart an init-capture from a nested 7848 // capture of an init-capture. 7849 const VarDecl *VD = Elem.Capture->getCapturedVar(); 7850 Diag(Elem.Capture->getLocation(), diag::note_lambda_capture_initializer) 7851 << VD << VD->isInitCapture() << Elem.Capture->isExplicit() 7852 << (Elem.Capture->getCaptureKind() == LCK_ByRef) << VD 7853 << nextPathEntryRange(Path, I + 1, L); 7854 break; 7855 } 7856 } 7857 7858 // We didn't lifetime-extend, so don't go any further; we don't need more 7859 // warnings or errors on inner temporaries within this one's initializer. 7860 return false; 7861 }; 7862 7863 bool EnableLifetimeWarnings = !getDiagnostics().isIgnored( 7864 diag::warn_dangling_lifetime_pointer, SourceLocation()); 7865 llvm::SmallVector<IndirectLocalPathEntry, 8> Path; 7866 if (Init->isGLValue()) 7867 visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding, 7868 TemporaryVisitor, 7869 EnableLifetimeWarnings); 7870 else 7871 visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false, 7872 EnableLifetimeWarnings); 7873 } 7874 7875 static void DiagnoseNarrowingInInitList(Sema &S, 7876 const ImplicitConversionSequence &ICS, 7877 QualType PreNarrowingType, 7878 QualType EntityType, 7879 const Expr *PostInit); 7880 7881 /// Provide warnings when std::move is used on construction. 7882 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr, 7883 bool IsReturnStmt) { 7884 if (!InitExpr) 7885 return; 7886 7887 if (S.inTemplateInstantiation()) 7888 return; 7889 7890 QualType DestType = InitExpr->getType(); 7891 if (!DestType->isRecordType()) 7892 return; 7893 7894 unsigned DiagID = 0; 7895 if (IsReturnStmt) { 7896 const CXXConstructExpr *CCE = 7897 dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens()); 7898 if (!CCE || CCE->getNumArgs() != 1) 7899 return; 7900 7901 if (!CCE->getConstructor()->isCopyOrMoveConstructor()) 7902 return; 7903 7904 InitExpr = CCE->getArg(0)->IgnoreImpCasts(); 7905 } 7906 7907 // Find the std::move call and get the argument. 7908 const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens()); 7909 if (!CE || !CE->isCallToStdMove()) 7910 return; 7911 7912 const Expr *Arg = CE->getArg(0)->IgnoreImplicit(); 7913 7914 if (IsReturnStmt) { 7915 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts()); 7916 if (!DRE || DRE->refersToEnclosingVariableOrCapture()) 7917 return; 7918 7919 const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7920 if (!VD || !VD->hasLocalStorage()) 7921 return; 7922 7923 // __block variables are not moved implicitly. 7924 if (VD->hasAttr<BlocksAttr>()) 7925 return; 7926 7927 QualType SourceType = VD->getType(); 7928 if (!SourceType->isRecordType()) 7929 return; 7930 7931 if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) { 7932 return; 7933 } 7934 7935 // If we're returning a function parameter, copy elision 7936 // is not possible. 7937 if (isa<ParmVarDecl>(VD)) 7938 DiagID = diag::warn_redundant_move_on_return; 7939 else 7940 DiagID = diag::warn_pessimizing_move_on_return; 7941 } else { 7942 DiagID = diag::warn_pessimizing_move_on_initialization; 7943 const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens(); 7944 if (!ArgStripped->isPRValue() || !ArgStripped->getType()->isRecordType()) 7945 return; 7946 } 7947 7948 S.Diag(CE->getBeginLoc(), DiagID); 7949 7950 // Get all the locations for a fix-it. Don't emit the fix-it if any location 7951 // is within a macro. 7952 SourceLocation CallBegin = CE->getCallee()->getBeginLoc(); 7953 if (CallBegin.isMacroID()) 7954 return; 7955 SourceLocation RParen = CE->getRParenLoc(); 7956 if (RParen.isMacroID()) 7957 return; 7958 SourceLocation LParen; 7959 SourceLocation ArgLoc = Arg->getBeginLoc(); 7960 7961 // Special testing for the argument location. Since the fix-it needs the 7962 // location right before the argument, the argument location can be in a 7963 // macro only if it is at the beginning of the macro. 7964 while (ArgLoc.isMacroID() && 7965 S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) { 7966 ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin(); 7967 } 7968 7969 if (LParen.isMacroID()) 7970 return; 7971 7972 LParen = ArgLoc.getLocWithOffset(-1); 7973 7974 S.Diag(CE->getBeginLoc(), diag::note_remove_move) 7975 << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen)) 7976 << FixItHint::CreateRemoval(SourceRange(RParen, RParen)); 7977 } 7978 7979 static void CheckForNullPointerDereference(Sema &S, const Expr *E) { 7980 // Check to see if we are dereferencing a null pointer. If so, this is 7981 // undefined behavior, so warn about it. This only handles the pattern 7982 // "*null", which is a very syntactic check. 7983 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts())) 7984 if (UO->getOpcode() == UO_Deref && 7985 UO->getSubExpr()->IgnoreParenCasts()-> 7986 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) { 7987 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, 7988 S.PDiag(diag::warn_binding_null_to_reference) 7989 << UO->getSubExpr()->getSourceRange()); 7990 } 7991 } 7992 7993 MaterializeTemporaryExpr * 7994 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary, 7995 bool BoundToLvalueReference) { 7996 auto MTE = new (Context) 7997 MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference); 7998 7999 // Order an ExprWithCleanups for lifetime marks. 8000 // 8001 // TODO: It'll be good to have a single place to check the access of the 8002 // destructor and generate ExprWithCleanups for various uses. Currently these 8003 // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary, 8004 // but there may be a chance to merge them. 8005 Cleanup.setExprNeedsCleanups(false); 8006 return MTE; 8007 } 8008 8009 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) { 8010 // In C++98, we don't want to implicitly create an xvalue. 8011 // FIXME: This means that AST consumers need to deal with "prvalues" that 8012 // denote materialized temporaries. Maybe we should add another ValueKind 8013 // for "xvalue pretending to be a prvalue" for C++98 support. 8014 if (!E->isPRValue() || !getLangOpts().CPlusPlus11) 8015 return E; 8016 8017 // C++1z [conv.rval]/1: T shall be a complete type. 8018 // FIXME: Does this ever matter (can we form a prvalue of incomplete type)? 8019 // If so, we should check for a non-abstract class type here too. 8020 QualType T = E->getType(); 8021 if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type)) 8022 return ExprError(); 8023 8024 return CreateMaterializeTemporaryExpr(E->getType(), E, false); 8025 } 8026 8027 ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty, 8028 ExprValueKind VK, 8029 CheckedConversionKind CCK) { 8030 8031 CastKind CK = CK_NoOp; 8032 8033 if (VK == VK_PRValue) { 8034 auto PointeeTy = Ty->getPointeeType(); 8035 auto ExprPointeeTy = E->getType()->getPointeeType(); 8036 if (!PointeeTy.isNull() && 8037 PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace()) 8038 CK = CK_AddressSpaceConversion; 8039 } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) { 8040 CK = CK_AddressSpaceConversion; 8041 } 8042 8043 return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK); 8044 } 8045 8046 ExprResult InitializationSequence::Perform(Sema &S, 8047 const InitializedEntity &Entity, 8048 const InitializationKind &Kind, 8049 MultiExprArg Args, 8050 QualType *ResultType) { 8051 if (Failed()) { 8052 Diagnose(S, Entity, Kind, Args); 8053 return ExprError(); 8054 } 8055 if (!ZeroInitializationFixit.empty()) { 8056 unsigned DiagID = diag::err_default_init_const; 8057 if (Decl *D = Entity.getDecl()) 8058 if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>()) 8059 DiagID = diag::ext_default_init_const; 8060 8061 // The initialization would have succeeded with this fixit. Since the fixit 8062 // is on the error, we need to build a valid AST in this case, so this isn't 8063 // handled in the Failed() branch above. 8064 QualType DestType = Entity.getType(); 8065 S.Diag(Kind.getLocation(), DiagID) 8066 << DestType << (bool)DestType->getAs<RecordType>() 8067 << FixItHint::CreateInsertion(ZeroInitializationFixitLoc, 8068 ZeroInitializationFixit); 8069 } 8070 8071 if (getKind() == DependentSequence) { 8072 // If the declaration is a non-dependent, incomplete array type 8073 // that has an initializer, then its type will be completed once 8074 // the initializer is instantiated. 8075 if (ResultType && !Entity.getType()->isDependentType() && 8076 Args.size() == 1) { 8077 QualType DeclType = Entity.getType(); 8078 if (const IncompleteArrayType *ArrayT 8079 = S.Context.getAsIncompleteArrayType(DeclType)) { 8080 // FIXME: We don't currently have the ability to accurately 8081 // compute the length of an initializer list without 8082 // performing full type-checking of the initializer list 8083 // (since we have to determine where braces are implicitly 8084 // introduced and such). So, we fall back to making the array 8085 // type a dependently-sized array type with no specified 8086 // bound. 8087 if (isa<InitListExpr>((Expr *)Args[0])) { 8088 SourceRange Brackets; 8089 8090 // Scavange the location of the brackets from the entity, if we can. 8091 if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) { 8092 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) { 8093 TypeLoc TL = TInfo->getTypeLoc(); 8094 if (IncompleteArrayTypeLoc ArrayLoc = 8095 TL.getAs<IncompleteArrayTypeLoc>()) 8096 Brackets = ArrayLoc.getBracketsRange(); 8097 } 8098 } 8099 8100 *ResultType 8101 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(), 8102 /*NumElts=*/nullptr, 8103 ArrayT->getSizeModifier(), 8104 ArrayT->getIndexTypeCVRQualifiers(), 8105 Brackets); 8106 } 8107 8108 } 8109 } 8110 if (Kind.getKind() == InitializationKind::IK_Direct && 8111 !Kind.isExplicitCast()) { 8112 // Rebuild the ParenListExpr. 8113 SourceRange ParenRange = Kind.getParenOrBraceRange(); 8114 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(), 8115 Args); 8116 } 8117 assert(Kind.getKind() == InitializationKind::IK_Copy || 8118 Kind.isExplicitCast() || 8119 Kind.getKind() == InitializationKind::IK_DirectList); 8120 return ExprResult(Args[0]); 8121 } 8122 8123 // No steps means no initialization. 8124 if (Steps.empty()) 8125 return ExprResult((Expr *)nullptr); 8126 8127 if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() && 8128 Args.size() == 1 && isa<InitListExpr>(Args[0]) && 8129 !Entity.isParamOrTemplateParamKind()) { 8130 // Produce a C++98 compatibility warning if we are initializing a reference 8131 // from an initializer list. For parameters, we produce a better warning 8132 // elsewhere. 8133 Expr *Init = Args[0]; 8134 S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init) 8135 << Init->getSourceRange(); 8136 } 8137 8138 // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope 8139 QualType ETy = Entity.getType(); 8140 bool HasGlobalAS = ETy.hasAddressSpace() && 8141 ETy.getAddressSpace() == LangAS::opencl_global; 8142 8143 if (S.getLangOpts().OpenCLVersion >= 200 && 8144 ETy->isAtomicType() && !HasGlobalAS && 8145 Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) { 8146 S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init) 8147 << 1 8148 << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc()); 8149 return ExprError(); 8150 } 8151 8152 QualType DestType = Entity.getType().getNonReferenceType(); 8153 // FIXME: Ugly hack around the fact that Entity.getType() is not 8154 // the same as Entity.getDecl()->getType() in cases involving type merging, 8155 // and we want latter when it makes sense. 8156 if (ResultType) 8157 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() : 8158 Entity.getType(); 8159 8160 ExprResult CurInit((Expr *)nullptr); 8161 SmallVector<Expr*, 4> ArrayLoopCommonExprs; 8162 8163 // HLSL allows vector initialization to function like list initialization, but 8164 // use the syntax of a C++-like constructor. 8165 bool IsHLSLVectorInit = S.getLangOpts().HLSL && DestType->isExtVectorType() && 8166 isa<InitListExpr>(Args[0]); 8167 (void)IsHLSLVectorInit; 8168 8169 // For initialization steps that start with a single initializer, 8170 // grab the only argument out the Args and place it into the "current" 8171 // initializer. 8172 switch (Steps.front().Kind) { 8173 case SK_ResolveAddressOfOverloadedFunction: 8174 case SK_CastDerivedToBasePRValue: 8175 case SK_CastDerivedToBaseXValue: 8176 case SK_CastDerivedToBaseLValue: 8177 case SK_BindReference: 8178 case SK_BindReferenceToTemporary: 8179 case SK_FinalCopy: 8180 case SK_ExtraneousCopyToTemporary: 8181 case SK_UserConversion: 8182 case SK_QualificationConversionLValue: 8183 case SK_QualificationConversionXValue: 8184 case SK_QualificationConversionPRValue: 8185 case SK_FunctionReferenceConversion: 8186 case SK_AtomicConversion: 8187 case SK_ConversionSequence: 8188 case SK_ConversionSequenceNoNarrowing: 8189 case SK_ListInitialization: 8190 case SK_UnwrapInitList: 8191 case SK_RewrapInitList: 8192 case SK_CAssignment: 8193 case SK_StringInit: 8194 case SK_ObjCObjectConversion: 8195 case SK_ArrayLoopIndex: 8196 case SK_ArrayLoopInit: 8197 case SK_ArrayInit: 8198 case SK_GNUArrayInit: 8199 case SK_ParenthesizedArrayInit: 8200 case SK_PassByIndirectCopyRestore: 8201 case SK_PassByIndirectRestore: 8202 case SK_ProduceObjCObject: 8203 case SK_StdInitializerList: 8204 case SK_OCLSamplerInit: 8205 case SK_OCLZeroOpaqueType: { 8206 assert(Args.size() == 1 || IsHLSLVectorInit); 8207 CurInit = Args[0]; 8208 if (!CurInit.get()) return ExprError(); 8209 break; 8210 } 8211 8212 case SK_ConstructorInitialization: 8213 case SK_ConstructorInitializationFromList: 8214 case SK_StdInitializerListConstructorCall: 8215 case SK_ZeroInitialization: 8216 break; 8217 } 8218 8219 // Promote from an unevaluated context to an unevaluated list context in 8220 // C++11 list-initialization; we need to instantiate entities usable in 8221 // constant expressions here in order to perform narrowing checks =( 8222 EnterExpressionEvaluationContext Evaluated( 8223 S, EnterExpressionEvaluationContext::InitList, 8224 CurInit.get() && isa<InitListExpr>(CurInit.get())); 8225 8226 // C++ [class.abstract]p2: 8227 // no objects of an abstract class can be created except as subobjects 8228 // of a class derived from it 8229 auto checkAbstractType = [&](QualType T) -> bool { 8230 if (Entity.getKind() == InitializedEntity::EK_Base || 8231 Entity.getKind() == InitializedEntity::EK_Delegating) 8232 return false; 8233 return S.RequireNonAbstractType(Kind.getLocation(), T, 8234 diag::err_allocation_of_abstract_type); 8235 }; 8236 8237 // Walk through the computed steps for the initialization sequence, 8238 // performing the specified conversions along the way. 8239 bool ConstructorInitRequiresZeroInit = false; 8240 for (step_iterator Step = step_begin(), StepEnd = step_end(); 8241 Step != StepEnd; ++Step) { 8242 if (CurInit.isInvalid()) 8243 return ExprError(); 8244 8245 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType(); 8246 8247 switch (Step->Kind) { 8248 case SK_ResolveAddressOfOverloadedFunction: 8249 // Overload resolution determined which function invoke; update the 8250 // initializer to reflect that choice. 8251 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl); 8252 if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation())) 8253 return ExprError(); 8254 CurInit = S.FixOverloadedFunctionReference(CurInit, 8255 Step->Function.FoundDecl, 8256 Step->Function.Function); 8257 // We might get back another placeholder expression if we resolved to a 8258 // builtin. 8259 if (!CurInit.isInvalid()) 8260 CurInit = S.CheckPlaceholderExpr(CurInit.get()); 8261 break; 8262 8263 case SK_CastDerivedToBasePRValue: 8264 case SK_CastDerivedToBaseXValue: 8265 case SK_CastDerivedToBaseLValue: { 8266 // We have a derived-to-base cast that produces either an rvalue or an 8267 // lvalue. Perform that cast. 8268 8269 CXXCastPath BasePath; 8270 8271 // Casts to inaccessible base classes are allowed with C-style casts. 8272 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast(); 8273 if (S.CheckDerivedToBaseConversion( 8274 SourceType, Step->Type, CurInit.get()->getBeginLoc(), 8275 CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess)) 8276 return ExprError(); 8277 8278 ExprValueKind VK = 8279 Step->Kind == SK_CastDerivedToBaseLValue 8280 ? VK_LValue 8281 : (Step->Kind == SK_CastDerivedToBaseXValue ? VK_XValue 8282 : VK_PRValue); 8283 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type, 8284 CK_DerivedToBase, CurInit.get(), 8285 &BasePath, VK, FPOptionsOverride()); 8286 break; 8287 } 8288 8289 case SK_BindReference: 8290 // Reference binding does not have any corresponding ASTs. 8291 8292 // Check exception specifications 8293 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 8294 return ExprError(); 8295 8296 // We don't check for e.g. function pointers here, since address 8297 // availability checks should only occur when the function first decays 8298 // into a pointer or reference. 8299 if (CurInit.get()->getType()->isFunctionProtoType()) { 8300 if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) { 8301 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 8302 if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 8303 DRE->getBeginLoc())) 8304 return ExprError(); 8305 } 8306 } 8307 } 8308 8309 CheckForNullPointerDereference(S, CurInit.get()); 8310 break; 8311 8312 case SK_BindReferenceToTemporary: { 8313 // Make sure the "temporary" is actually an rvalue. 8314 assert(CurInit.get()->isPRValue() && "not a temporary"); 8315 8316 // Check exception specifications 8317 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 8318 return ExprError(); 8319 8320 QualType MTETy = Step->Type; 8321 8322 // When this is an incomplete array type (such as when this is 8323 // initializing an array of unknown bounds from an init list), use THAT 8324 // type instead so that we propagate the array bounds. 8325 if (MTETy->isIncompleteArrayType() && 8326 !CurInit.get()->getType()->isIncompleteArrayType() && 8327 S.Context.hasSameType( 8328 MTETy->getPointeeOrArrayElementType(), 8329 CurInit.get()->getType()->getPointeeOrArrayElementType())) 8330 MTETy = CurInit.get()->getType(); 8331 8332 // Materialize the temporary into memory. 8333 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( 8334 MTETy, CurInit.get(), Entity.getType()->isLValueReferenceType()); 8335 CurInit = MTE; 8336 8337 // If we're extending this temporary to automatic storage duration -- we 8338 // need to register its cleanup during the full-expression's cleanups. 8339 if (MTE->getStorageDuration() == SD_Automatic && 8340 MTE->getType().isDestructedType()) 8341 S.Cleanup.setExprNeedsCleanups(true); 8342 break; 8343 } 8344 8345 case SK_FinalCopy: 8346 if (checkAbstractType(Step->Type)) 8347 return ExprError(); 8348 8349 // If the overall initialization is initializing a temporary, we already 8350 // bound our argument if it was necessary to do so. If not (if we're 8351 // ultimately initializing a non-temporary), our argument needs to be 8352 // bound since it's initializing a function parameter. 8353 // FIXME: This is a mess. Rationalize temporary destruction. 8354 if (!shouldBindAsTemporary(Entity)) 8355 CurInit = S.MaybeBindToTemporary(CurInit.get()); 8356 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 8357 /*IsExtraneousCopy=*/false); 8358 break; 8359 8360 case SK_ExtraneousCopyToTemporary: 8361 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 8362 /*IsExtraneousCopy=*/true); 8363 break; 8364 8365 case SK_UserConversion: { 8366 // We have a user-defined conversion that invokes either a constructor 8367 // or a conversion function. 8368 CastKind CastKind; 8369 FunctionDecl *Fn = Step->Function.Function; 8370 DeclAccessPair FoundFn = Step->Function.FoundDecl; 8371 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates; 8372 bool CreatedObject = false; 8373 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) { 8374 // Build a call to the selected constructor. 8375 SmallVector<Expr*, 8> ConstructorArgs; 8376 SourceLocation Loc = CurInit.get()->getBeginLoc(); 8377 8378 // Determine the arguments required to actually perform the constructor 8379 // call. 8380 Expr *Arg = CurInit.get(); 8381 if (S.CompleteConstructorCall(Constructor, Step->Type, 8382 MultiExprArg(&Arg, 1), Loc, 8383 ConstructorArgs)) 8384 return ExprError(); 8385 8386 // Build an expression that constructs a temporary. 8387 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, 8388 FoundFn, Constructor, 8389 ConstructorArgs, 8390 HadMultipleCandidates, 8391 /*ListInit*/ false, 8392 /*StdInitListInit*/ false, 8393 /*ZeroInit*/ false, 8394 CXXConstructExpr::CK_Complete, 8395 SourceRange()); 8396 if (CurInit.isInvalid()) 8397 return ExprError(); 8398 8399 S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn, 8400 Entity); 8401 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 8402 return ExprError(); 8403 8404 CastKind = CK_ConstructorConversion; 8405 CreatedObject = true; 8406 } else { 8407 // Build a call to the conversion function. 8408 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn); 8409 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr, 8410 FoundFn); 8411 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 8412 return ExprError(); 8413 8414 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion, 8415 HadMultipleCandidates); 8416 if (CurInit.isInvalid()) 8417 return ExprError(); 8418 8419 CastKind = CK_UserDefinedConversion; 8420 CreatedObject = Conversion->getReturnType()->isRecordType(); 8421 } 8422 8423 if (CreatedObject && checkAbstractType(CurInit.get()->getType())) 8424 return ExprError(); 8425 8426 CurInit = ImplicitCastExpr::Create( 8427 S.Context, CurInit.get()->getType(), CastKind, CurInit.get(), nullptr, 8428 CurInit.get()->getValueKind(), S.CurFPFeatureOverrides()); 8429 8430 if (shouldBindAsTemporary(Entity)) 8431 // The overall entity is temporary, so this expression should be 8432 // destroyed at the end of its full-expression. 8433 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 8434 else if (CreatedObject && shouldDestroyEntity(Entity)) { 8435 // The object outlasts the full-expression, but we need to prepare for 8436 // a destructor being run on it. 8437 // FIXME: It makes no sense to do this here. This should happen 8438 // regardless of how we initialized the entity. 8439 QualType T = CurInit.get()->getType(); 8440 if (const RecordType *Record = T->getAs<RecordType>()) { 8441 CXXDestructorDecl *Destructor 8442 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl())); 8443 S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor, 8444 S.PDiag(diag::err_access_dtor_temp) << T); 8445 S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor); 8446 if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc())) 8447 return ExprError(); 8448 } 8449 } 8450 break; 8451 } 8452 8453 case SK_QualificationConversionLValue: 8454 case SK_QualificationConversionXValue: 8455 case SK_QualificationConversionPRValue: { 8456 // Perform a qualification conversion; these can never go wrong. 8457 ExprValueKind VK = 8458 Step->Kind == SK_QualificationConversionLValue 8459 ? VK_LValue 8460 : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue 8461 : VK_PRValue); 8462 CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK); 8463 break; 8464 } 8465 8466 case SK_FunctionReferenceConversion: 8467 assert(CurInit.get()->isLValue() && 8468 "function reference should be lvalue"); 8469 CurInit = 8470 S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK_LValue); 8471 break; 8472 8473 case SK_AtomicConversion: { 8474 assert(CurInit.get()->isPRValue() && "cannot convert glvalue to atomic"); 8475 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8476 CK_NonAtomicToAtomic, VK_PRValue); 8477 break; 8478 } 8479 8480 case SK_ConversionSequence: 8481 case SK_ConversionSequenceNoNarrowing: { 8482 if (const auto *FromPtrType = 8483 CurInit.get()->getType()->getAs<PointerType>()) { 8484 if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) { 8485 if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) && 8486 !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) { 8487 // Do not check static casts here because they are checked earlier 8488 // in Sema::ActOnCXXNamedCast() 8489 if (!Kind.isStaticCast()) { 8490 S.Diag(CurInit.get()->getExprLoc(), 8491 diag::warn_noderef_to_dereferenceable_pointer) 8492 << CurInit.get()->getSourceRange(); 8493 } 8494 } 8495 } 8496 } 8497 8498 Sema::CheckedConversionKind CCK 8499 = Kind.isCStyleCast()? Sema::CCK_CStyleCast 8500 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast 8501 : Kind.isExplicitCast()? Sema::CCK_OtherCast 8502 : Sema::CCK_ImplicitConversion; 8503 ExprResult CurInitExprRes = 8504 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS, 8505 getAssignmentAction(Entity), CCK); 8506 if (CurInitExprRes.isInvalid()) 8507 return ExprError(); 8508 8509 S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get()); 8510 8511 CurInit = CurInitExprRes; 8512 8513 if (Step->Kind == SK_ConversionSequenceNoNarrowing && 8514 S.getLangOpts().CPlusPlus) 8515 DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(), 8516 CurInit.get()); 8517 8518 break; 8519 } 8520 8521 case SK_ListInitialization: { 8522 if (checkAbstractType(Step->Type)) 8523 return ExprError(); 8524 8525 InitListExpr *InitList = cast<InitListExpr>(CurInit.get()); 8526 // If we're not initializing the top-level entity, we need to create an 8527 // InitializeTemporary entity for our target type. 8528 QualType Ty = Step->Type; 8529 bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty); 8530 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty); 8531 InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity; 8532 InitListChecker PerformInitList(S, InitEntity, 8533 InitList, Ty, /*VerifyOnly=*/false, 8534 /*TreatUnavailableAsInvalid=*/false); 8535 if (PerformInitList.HadError()) 8536 return ExprError(); 8537 8538 // Hack: We must update *ResultType if available in order to set the 8539 // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'. 8540 // Worst case: 'const int (&arref)[] = {1, 2, 3};'. 8541 if (ResultType && 8542 ResultType->getNonReferenceType()->isIncompleteArrayType()) { 8543 if ((*ResultType)->isRValueReferenceType()) 8544 Ty = S.Context.getRValueReferenceType(Ty); 8545 else if ((*ResultType)->isLValueReferenceType()) 8546 Ty = S.Context.getLValueReferenceType(Ty, 8547 (*ResultType)->castAs<LValueReferenceType>()->isSpelledAsLValue()); 8548 *ResultType = Ty; 8549 } 8550 8551 InitListExpr *StructuredInitList = 8552 PerformInitList.getFullyStructuredList(); 8553 CurInit.get(); 8554 CurInit = shouldBindAsTemporary(InitEntity) 8555 ? S.MaybeBindToTemporary(StructuredInitList) 8556 : StructuredInitList; 8557 break; 8558 } 8559 8560 case SK_ConstructorInitializationFromList: { 8561 if (checkAbstractType(Step->Type)) 8562 return ExprError(); 8563 8564 // When an initializer list is passed for a parameter of type "reference 8565 // to object", we don't get an EK_Temporary entity, but instead an 8566 // EK_Parameter entity with reference type. 8567 // FIXME: This is a hack. What we really should do is create a user 8568 // conversion step for this case, but this makes it considerably more 8569 // complicated. For now, this will do. 8570 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 8571 Entity.getType().getNonReferenceType()); 8572 bool UseTemporary = Entity.getType()->isReferenceType(); 8573 assert(Args.size() == 1 && "expected a single argument for list init"); 8574 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 8575 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init) 8576 << InitList->getSourceRange(); 8577 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits()); 8578 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity : 8579 Entity, 8580 Kind, Arg, *Step, 8581 ConstructorInitRequiresZeroInit, 8582 /*IsListInitialization*/true, 8583 /*IsStdInitListInit*/false, 8584 InitList->getLBraceLoc(), 8585 InitList->getRBraceLoc()); 8586 break; 8587 } 8588 8589 case SK_UnwrapInitList: 8590 CurInit = cast<InitListExpr>(CurInit.get())->getInit(0); 8591 break; 8592 8593 case SK_RewrapInitList: { 8594 Expr *E = CurInit.get(); 8595 InitListExpr *Syntactic = Step->WrappingSyntacticList; 8596 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context, 8597 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc()); 8598 ILE->setSyntacticForm(Syntactic); 8599 ILE->setType(E->getType()); 8600 ILE->setValueKind(E->getValueKind()); 8601 CurInit = ILE; 8602 break; 8603 } 8604 8605 case SK_ConstructorInitialization: 8606 case SK_StdInitializerListConstructorCall: { 8607 if (checkAbstractType(Step->Type)) 8608 return ExprError(); 8609 8610 // When an initializer list is passed for a parameter of type "reference 8611 // to object", we don't get an EK_Temporary entity, but instead an 8612 // EK_Parameter entity with reference type. 8613 // FIXME: This is a hack. What we really should do is create a user 8614 // conversion step for this case, but this makes it considerably more 8615 // complicated. For now, this will do. 8616 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 8617 Entity.getType().getNonReferenceType()); 8618 bool UseTemporary = Entity.getType()->isReferenceType(); 8619 bool IsStdInitListInit = 8620 Step->Kind == SK_StdInitializerListConstructorCall; 8621 Expr *Source = CurInit.get(); 8622 SourceRange Range = Kind.hasParenOrBraceRange() 8623 ? Kind.getParenOrBraceRange() 8624 : SourceRange(); 8625 CurInit = PerformConstructorInitialization( 8626 S, UseTemporary ? TempEntity : Entity, Kind, 8627 Source ? MultiExprArg(Source) : Args, *Step, 8628 ConstructorInitRequiresZeroInit, 8629 /*IsListInitialization*/ IsStdInitListInit, 8630 /*IsStdInitListInitialization*/ IsStdInitListInit, 8631 /*LBraceLoc*/ Range.getBegin(), 8632 /*RBraceLoc*/ Range.getEnd()); 8633 break; 8634 } 8635 8636 case SK_ZeroInitialization: { 8637 step_iterator NextStep = Step; 8638 ++NextStep; 8639 if (NextStep != StepEnd && 8640 (NextStep->Kind == SK_ConstructorInitialization || 8641 NextStep->Kind == SK_ConstructorInitializationFromList)) { 8642 // The need for zero-initialization is recorded directly into 8643 // the call to the object's constructor within the next step. 8644 ConstructorInitRequiresZeroInit = true; 8645 } else if (Kind.getKind() == InitializationKind::IK_Value && 8646 S.getLangOpts().CPlusPlus && 8647 !Kind.isImplicitValueInit()) { 8648 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 8649 if (!TSInfo) 8650 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type, 8651 Kind.getRange().getBegin()); 8652 8653 CurInit = new (S.Context) CXXScalarValueInitExpr( 8654 Entity.getType().getNonLValueExprType(S.Context), TSInfo, 8655 Kind.getRange().getEnd()); 8656 } else { 8657 CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type); 8658 } 8659 break; 8660 } 8661 8662 case SK_CAssignment: { 8663 QualType SourceType = CurInit.get()->getType(); 8664 8665 // Save off the initial CurInit in case we need to emit a diagnostic 8666 ExprResult InitialCurInit = CurInit; 8667 ExprResult Result = CurInit; 8668 Sema::AssignConvertType ConvTy = 8669 S.CheckSingleAssignmentConstraints(Step->Type, Result, true, 8670 Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited); 8671 if (Result.isInvalid()) 8672 return ExprError(); 8673 CurInit = Result; 8674 8675 // If this is a call, allow conversion to a transparent union. 8676 ExprResult CurInitExprRes = CurInit; 8677 if (ConvTy != Sema::Compatible && 8678 Entity.isParameterKind() && 8679 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes) 8680 == Sema::Compatible) 8681 ConvTy = Sema::Compatible; 8682 if (CurInitExprRes.isInvalid()) 8683 return ExprError(); 8684 CurInit = CurInitExprRes; 8685 8686 bool Complained; 8687 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(), 8688 Step->Type, SourceType, 8689 InitialCurInit.get(), 8690 getAssignmentAction(Entity, true), 8691 &Complained)) { 8692 PrintInitLocationNote(S, Entity); 8693 return ExprError(); 8694 } else if (Complained) 8695 PrintInitLocationNote(S, Entity); 8696 break; 8697 } 8698 8699 case SK_StringInit: { 8700 QualType Ty = Step->Type; 8701 bool UpdateType = ResultType && Entity.getType()->isIncompleteArrayType(); 8702 CheckStringInit(CurInit.get(), UpdateType ? *ResultType : Ty, 8703 S.Context.getAsArrayType(Ty), S); 8704 break; 8705 } 8706 8707 case SK_ObjCObjectConversion: 8708 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8709 CK_ObjCObjectLValueCast, 8710 CurInit.get()->getValueKind()); 8711 break; 8712 8713 case SK_ArrayLoopIndex: { 8714 Expr *Cur = CurInit.get(); 8715 Expr *BaseExpr = new (S.Context) 8716 OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(), 8717 Cur->getValueKind(), Cur->getObjectKind(), Cur); 8718 Expr *IndexExpr = 8719 new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType()); 8720 CurInit = S.CreateBuiltinArraySubscriptExpr( 8721 BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation()); 8722 ArrayLoopCommonExprs.push_back(BaseExpr); 8723 break; 8724 } 8725 8726 case SK_ArrayLoopInit: { 8727 assert(!ArrayLoopCommonExprs.empty() && 8728 "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit"); 8729 Expr *Common = ArrayLoopCommonExprs.pop_back_val(); 8730 CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common, 8731 CurInit.get()); 8732 break; 8733 } 8734 8735 case SK_GNUArrayInit: 8736 // Okay: we checked everything before creating this step. Note that 8737 // this is a GNU extension. 8738 S.Diag(Kind.getLocation(), diag::ext_array_init_copy) 8739 << Step->Type << CurInit.get()->getType() 8740 << CurInit.get()->getSourceRange(); 8741 updateGNUCompoundLiteralRValue(CurInit.get()); 8742 LLVM_FALLTHROUGH; 8743 case SK_ArrayInit: 8744 // If the destination type is an incomplete array type, update the 8745 // type accordingly. 8746 if (ResultType) { 8747 if (const IncompleteArrayType *IncompleteDest 8748 = S.Context.getAsIncompleteArrayType(Step->Type)) { 8749 if (const ConstantArrayType *ConstantSource 8750 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) { 8751 *ResultType = S.Context.getConstantArrayType( 8752 IncompleteDest->getElementType(), 8753 ConstantSource->getSize(), 8754 ConstantSource->getSizeExpr(), 8755 ArrayType::Normal, 0); 8756 } 8757 } 8758 } 8759 break; 8760 8761 case SK_ParenthesizedArrayInit: 8762 // Okay: we checked everything before creating this step. Note that 8763 // this is a GNU extension. 8764 S.Diag(Kind.getLocation(), diag::ext_array_init_parens) 8765 << CurInit.get()->getSourceRange(); 8766 break; 8767 8768 case SK_PassByIndirectCopyRestore: 8769 case SK_PassByIndirectRestore: 8770 checkIndirectCopyRestoreSource(S, CurInit.get()); 8771 CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr( 8772 CurInit.get(), Step->Type, 8773 Step->Kind == SK_PassByIndirectCopyRestore); 8774 break; 8775 8776 case SK_ProduceObjCObject: 8777 CurInit = ImplicitCastExpr::Create( 8778 S.Context, Step->Type, CK_ARCProduceObject, CurInit.get(), nullptr, 8779 VK_PRValue, FPOptionsOverride()); 8780 break; 8781 8782 case SK_StdInitializerList: { 8783 S.Diag(CurInit.get()->getExprLoc(), 8784 diag::warn_cxx98_compat_initializer_list_init) 8785 << CurInit.get()->getSourceRange(); 8786 8787 // Materialize the temporary into memory. 8788 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( 8789 CurInit.get()->getType(), CurInit.get(), 8790 /*BoundToLvalueReference=*/false); 8791 8792 // Wrap it in a construction of a std::initializer_list<T>. 8793 CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE); 8794 8795 // Bind the result, in case the library has given initializer_list a 8796 // non-trivial destructor. 8797 if (shouldBindAsTemporary(Entity)) 8798 CurInit = S.MaybeBindToTemporary(CurInit.get()); 8799 break; 8800 } 8801 8802 case SK_OCLSamplerInit: { 8803 // Sampler initialization have 5 cases: 8804 // 1. function argument passing 8805 // 1a. argument is a file-scope variable 8806 // 1b. argument is a function-scope variable 8807 // 1c. argument is one of caller function's parameters 8808 // 2. variable initialization 8809 // 2a. initializing a file-scope variable 8810 // 2b. initializing a function-scope variable 8811 // 8812 // For file-scope variables, since they cannot be initialized by function 8813 // call of __translate_sampler_initializer in LLVM IR, their references 8814 // need to be replaced by a cast from their literal initializers to 8815 // sampler type. Since sampler variables can only be used in function 8816 // calls as arguments, we only need to replace them when handling the 8817 // argument passing. 8818 assert(Step->Type->isSamplerT() && 8819 "Sampler initialization on non-sampler type."); 8820 Expr *Init = CurInit.get()->IgnoreParens(); 8821 QualType SourceType = Init->getType(); 8822 // Case 1 8823 if (Entity.isParameterKind()) { 8824 if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) { 8825 S.Diag(Kind.getLocation(), diag::err_sampler_argument_required) 8826 << SourceType; 8827 break; 8828 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) { 8829 auto Var = cast<VarDecl>(DRE->getDecl()); 8830 // Case 1b and 1c 8831 // No cast from integer to sampler is needed. 8832 if (!Var->hasGlobalStorage()) { 8833 CurInit = ImplicitCastExpr::Create( 8834 S.Context, Step->Type, CK_LValueToRValue, Init, 8835 /*BasePath=*/nullptr, VK_PRValue, FPOptionsOverride()); 8836 break; 8837 } 8838 // Case 1a 8839 // For function call with a file-scope sampler variable as argument, 8840 // get the integer literal. 8841 // Do not diagnose if the file-scope variable does not have initializer 8842 // since this has already been diagnosed when parsing the variable 8843 // declaration. 8844 if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit())) 8845 break; 8846 Init = cast<ImplicitCastExpr>(const_cast<Expr*>( 8847 Var->getInit()))->getSubExpr(); 8848 SourceType = Init->getType(); 8849 } 8850 } else { 8851 // Case 2 8852 // Check initializer is 32 bit integer constant. 8853 // If the initializer is taken from global variable, do not diagnose since 8854 // this has already been done when parsing the variable declaration. 8855 if (!Init->isConstantInitializer(S.Context, false)) 8856 break; 8857 8858 if (!SourceType->isIntegerType() || 8859 32 != S.Context.getIntWidth(SourceType)) { 8860 S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer) 8861 << SourceType; 8862 break; 8863 } 8864 8865 Expr::EvalResult EVResult; 8866 Init->EvaluateAsInt(EVResult, S.Context); 8867 llvm::APSInt Result = EVResult.Val.getInt(); 8868 const uint64_t SamplerValue = Result.getLimitedValue(); 8869 // 32-bit value of sampler's initializer is interpreted as 8870 // bit-field with the following structure: 8871 // |unspecified|Filter|Addressing Mode| Normalized Coords| 8872 // |31 6|5 4|3 1| 0| 8873 // This structure corresponds to enum values of sampler properties 8874 // defined in SPIR spec v1.2 and also opencl-c.h 8875 unsigned AddressingMode = (0x0E & SamplerValue) >> 1; 8876 unsigned FilterMode = (0x30 & SamplerValue) >> 4; 8877 if (FilterMode != 1 && FilterMode != 2 && 8878 !S.getOpenCLOptions().isAvailableOption( 8879 "cl_intel_device_side_avc_motion_estimation", S.getLangOpts())) 8880 S.Diag(Kind.getLocation(), 8881 diag::warn_sampler_initializer_invalid_bits) 8882 << "Filter Mode"; 8883 if (AddressingMode > 4) 8884 S.Diag(Kind.getLocation(), 8885 diag::warn_sampler_initializer_invalid_bits) 8886 << "Addressing Mode"; 8887 } 8888 8889 // Cases 1a, 2a and 2b 8890 // Insert cast from integer to sampler. 8891 CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy, 8892 CK_IntToOCLSampler); 8893 break; 8894 } 8895 case SK_OCLZeroOpaqueType: { 8896 assert((Step->Type->isEventT() || Step->Type->isQueueT() || 8897 Step->Type->isOCLIntelSubgroupAVCType()) && 8898 "Wrong type for initialization of OpenCL opaque type."); 8899 8900 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8901 CK_ZeroToOCLOpaqueType, 8902 CurInit.get()->getValueKind()); 8903 break; 8904 } 8905 } 8906 } 8907 8908 // Check whether the initializer has a shorter lifetime than the initialized 8909 // entity, and if not, either lifetime-extend or warn as appropriate. 8910 if (auto *Init = CurInit.get()) 8911 S.checkInitializerLifetime(Entity, Init); 8912 8913 // Diagnose non-fatal problems with the completed initialization. 8914 if (Entity.getKind() == InitializedEntity::EK_Member && 8915 cast<FieldDecl>(Entity.getDecl())->isBitField()) 8916 S.CheckBitFieldInitialization(Kind.getLocation(), 8917 cast<FieldDecl>(Entity.getDecl()), 8918 CurInit.get()); 8919 8920 // Check for std::move on construction. 8921 if (const Expr *E = CurInit.get()) { 8922 CheckMoveOnConstruction(S, E, 8923 Entity.getKind() == InitializedEntity::EK_Result); 8924 } 8925 8926 return CurInit; 8927 } 8928 8929 /// Somewhere within T there is an uninitialized reference subobject. 8930 /// Dig it out and diagnose it. 8931 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc, 8932 QualType T) { 8933 if (T->isReferenceType()) { 8934 S.Diag(Loc, diag::err_reference_without_init) 8935 << T.getNonReferenceType(); 8936 return true; 8937 } 8938 8939 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 8940 if (!RD || !RD->hasUninitializedReferenceMember()) 8941 return false; 8942 8943 for (const auto *FI : RD->fields()) { 8944 if (FI->isUnnamedBitfield()) 8945 continue; 8946 8947 if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) { 8948 S.Diag(Loc, diag::note_value_initialization_here) << RD; 8949 return true; 8950 } 8951 } 8952 8953 for (const auto &BI : RD->bases()) { 8954 if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) { 8955 S.Diag(Loc, diag::note_value_initialization_here) << RD; 8956 return true; 8957 } 8958 } 8959 8960 return false; 8961 } 8962 8963 8964 //===----------------------------------------------------------------------===// 8965 // Diagnose initialization failures 8966 //===----------------------------------------------------------------------===// 8967 8968 /// Emit notes associated with an initialization that failed due to a 8969 /// "simple" conversion failure. 8970 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity, 8971 Expr *op) { 8972 QualType destType = entity.getType(); 8973 if (destType.getNonReferenceType()->isObjCObjectPointerType() && 8974 op->getType()->isObjCObjectPointerType()) { 8975 8976 // Emit a possible note about the conversion failing because the 8977 // operand is a message send with a related result type. 8978 S.EmitRelatedResultTypeNote(op); 8979 8980 // Emit a possible note about a return failing because we're 8981 // expecting a related result type. 8982 if (entity.getKind() == InitializedEntity::EK_Result) 8983 S.EmitRelatedResultTypeNoteForReturn(destType); 8984 } 8985 QualType fromType = op->getType(); 8986 QualType fromPointeeType = fromType.getCanonicalType()->getPointeeType(); 8987 QualType destPointeeType = destType.getCanonicalType()->getPointeeType(); 8988 auto *fromDecl = fromType->getPointeeCXXRecordDecl(); 8989 auto *destDecl = destType->getPointeeCXXRecordDecl(); 8990 if (fromDecl && destDecl && fromDecl->getDeclKind() == Decl::CXXRecord && 8991 destDecl->getDeclKind() == Decl::CXXRecord && 8992 !fromDecl->isInvalidDecl() && !destDecl->isInvalidDecl() && 8993 !fromDecl->hasDefinition() && 8994 destPointeeType.getQualifiers().compatiblyIncludes( 8995 fromPointeeType.getQualifiers())) 8996 S.Diag(fromDecl->getLocation(), diag::note_forward_class_conversion) 8997 << S.getASTContext().getTagDeclType(fromDecl) 8998 << S.getASTContext().getTagDeclType(destDecl); 8999 } 9000 9001 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity, 9002 InitListExpr *InitList) { 9003 QualType DestType = Entity.getType(); 9004 9005 QualType E; 9006 if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) { 9007 QualType ArrayType = S.Context.getConstantArrayType( 9008 E.withConst(), 9009 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 9010 InitList->getNumInits()), 9011 nullptr, clang::ArrayType::Normal, 0); 9012 InitializedEntity HiddenArray = 9013 InitializedEntity::InitializeTemporary(ArrayType); 9014 return diagnoseListInit(S, HiddenArray, InitList); 9015 } 9016 9017 if (DestType->isReferenceType()) { 9018 // A list-initialization failure for a reference means that we tried to 9019 // create a temporary of the inner type (per [dcl.init.list]p3.6) and the 9020 // inner initialization failed. 9021 QualType T = DestType->castAs<ReferenceType>()->getPointeeType(); 9022 diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList); 9023 SourceLocation Loc = InitList->getBeginLoc(); 9024 if (auto *D = Entity.getDecl()) 9025 Loc = D->getLocation(); 9026 S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T; 9027 return; 9028 } 9029 9030 InitListChecker DiagnoseInitList(S, Entity, InitList, DestType, 9031 /*VerifyOnly=*/false, 9032 /*TreatUnavailableAsInvalid=*/false); 9033 assert(DiagnoseInitList.HadError() && 9034 "Inconsistent init list check result."); 9035 } 9036 9037 bool InitializationSequence::Diagnose(Sema &S, 9038 const InitializedEntity &Entity, 9039 const InitializationKind &Kind, 9040 ArrayRef<Expr *> Args) { 9041 if (!Failed()) 9042 return false; 9043 9044 // When we want to diagnose only one element of a braced-init-list, 9045 // we need to factor it out. 9046 Expr *OnlyArg; 9047 if (Args.size() == 1) { 9048 auto *List = dyn_cast<InitListExpr>(Args[0]); 9049 if (List && List->getNumInits() == 1) 9050 OnlyArg = List->getInit(0); 9051 else 9052 OnlyArg = Args[0]; 9053 } 9054 else 9055 OnlyArg = nullptr; 9056 9057 QualType DestType = Entity.getType(); 9058 switch (Failure) { 9059 case FK_TooManyInitsForReference: 9060 // FIXME: Customize for the initialized entity? 9061 if (Args.empty()) { 9062 // Dig out the reference subobject which is uninitialized and diagnose it. 9063 // If this is value-initialization, this could be nested some way within 9064 // the target type. 9065 assert(Kind.getKind() == InitializationKind::IK_Value || 9066 DestType->isReferenceType()); 9067 bool Diagnosed = 9068 DiagnoseUninitializedReference(S, Kind.getLocation(), DestType); 9069 assert(Diagnosed && "couldn't find uninitialized reference to diagnose"); 9070 (void)Diagnosed; 9071 } else // FIXME: diagnostic below could be better! 9072 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits) 9073 << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); 9074 break; 9075 case FK_ParenthesizedListInitForReference: 9076 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) 9077 << 1 << Entity.getType() << Args[0]->getSourceRange(); 9078 break; 9079 9080 case FK_ArrayNeedsInitList: 9081 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0; 9082 break; 9083 case FK_ArrayNeedsInitListOrStringLiteral: 9084 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1; 9085 break; 9086 case FK_ArrayNeedsInitListOrWideStringLiteral: 9087 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2; 9088 break; 9089 case FK_NarrowStringIntoWideCharArray: 9090 S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar); 9091 break; 9092 case FK_WideStringIntoCharArray: 9093 S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char); 9094 break; 9095 case FK_IncompatWideStringIntoWideChar: 9096 S.Diag(Kind.getLocation(), 9097 diag::err_array_init_incompat_wide_string_into_wchar); 9098 break; 9099 case FK_PlainStringIntoUTF8Char: 9100 S.Diag(Kind.getLocation(), 9101 diag::err_array_init_plain_string_into_char8_t); 9102 S.Diag(Args.front()->getBeginLoc(), 9103 diag::note_array_init_plain_string_into_char8_t) 9104 << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8"); 9105 break; 9106 case FK_UTF8StringIntoPlainChar: 9107 S.Diag(Kind.getLocation(), 9108 diag::err_array_init_utf8_string_into_char) 9109 << S.getLangOpts().CPlusPlus20; 9110 break; 9111 case FK_ArrayTypeMismatch: 9112 case FK_NonConstantArrayInit: 9113 S.Diag(Kind.getLocation(), 9114 (Failure == FK_ArrayTypeMismatch 9115 ? diag::err_array_init_different_type 9116 : diag::err_array_init_non_constant_array)) 9117 << DestType.getNonReferenceType() 9118 << OnlyArg->getType() 9119 << Args[0]->getSourceRange(); 9120 break; 9121 9122 case FK_VariableLengthArrayHasInitializer: 9123 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init) 9124 << Args[0]->getSourceRange(); 9125 break; 9126 9127 case FK_AddressOfOverloadFailed: { 9128 DeclAccessPair Found; 9129 S.ResolveAddressOfOverloadedFunction(OnlyArg, 9130 DestType.getNonReferenceType(), 9131 true, 9132 Found); 9133 break; 9134 } 9135 9136 case FK_AddressOfUnaddressableFunction: { 9137 auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl()); 9138 S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 9139 OnlyArg->getBeginLoc()); 9140 break; 9141 } 9142 9143 case FK_ReferenceInitOverloadFailed: 9144 case FK_UserConversionOverloadFailed: 9145 switch (FailedOverloadResult) { 9146 case OR_Ambiguous: 9147 9148 FailedCandidateSet.NoteCandidates( 9149 PartialDiagnosticAt( 9150 Kind.getLocation(), 9151 Failure == FK_UserConversionOverloadFailed 9152 ? (S.PDiag(diag::err_typecheck_ambiguous_condition) 9153 << OnlyArg->getType() << DestType 9154 << Args[0]->getSourceRange()) 9155 : (S.PDiag(diag::err_ref_init_ambiguous) 9156 << DestType << OnlyArg->getType() 9157 << Args[0]->getSourceRange())), 9158 S, OCD_AmbiguousCandidates, Args); 9159 break; 9160 9161 case OR_No_Viable_Function: { 9162 auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args); 9163 if (!S.RequireCompleteType(Kind.getLocation(), 9164 DestType.getNonReferenceType(), 9165 diag::err_typecheck_nonviable_condition_incomplete, 9166 OnlyArg->getType(), Args[0]->getSourceRange())) 9167 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition) 9168 << (Entity.getKind() == InitializedEntity::EK_Result) 9169 << OnlyArg->getType() << Args[0]->getSourceRange() 9170 << DestType.getNonReferenceType(); 9171 9172 FailedCandidateSet.NoteCandidates(S, Args, Cands); 9173 break; 9174 } 9175 case OR_Deleted: { 9176 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function) 9177 << OnlyArg->getType() << DestType.getNonReferenceType() 9178 << Args[0]->getSourceRange(); 9179 OverloadCandidateSet::iterator Best; 9180 OverloadingResult Ovl 9181 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 9182 if (Ovl == OR_Deleted) { 9183 S.NoteDeletedFunction(Best->Function); 9184 } else { 9185 llvm_unreachable("Inconsistent overload resolution?"); 9186 } 9187 break; 9188 } 9189 9190 case OR_Success: 9191 llvm_unreachable("Conversion did not fail!"); 9192 } 9193 break; 9194 9195 case FK_NonConstLValueReferenceBindingToTemporary: 9196 if (isa<InitListExpr>(Args[0])) { 9197 S.Diag(Kind.getLocation(), 9198 diag::err_lvalue_reference_bind_to_initlist) 9199 << DestType.getNonReferenceType().isVolatileQualified() 9200 << DestType.getNonReferenceType() 9201 << Args[0]->getSourceRange(); 9202 break; 9203 } 9204 LLVM_FALLTHROUGH; 9205 9206 case FK_NonConstLValueReferenceBindingToUnrelated: 9207 S.Diag(Kind.getLocation(), 9208 Failure == FK_NonConstLValueReferenceBindingToTemporary 9209 ? diag::err_lvalue_reference_bind_to_temporary 9210 : diag::err_lvalue_reference_bind_to_unrelated) 9211 << DestType.getNonReferenceType().isVolatileQualified() 9212 << DestType.getNonReferenceType() 9213 << OnlyArg->getType() 9214 << Args[0]->getSourceRange(); 9215 break; 9216 9217 case FK_NonConstLValueReferenceBindingToBitfield: { 9218 // We don't necessarily have an unambiguous source bit-field. 9219 FieldDecl *BitField = Args[0]->getSourceBitField(); 9220 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield) 9221 << DestType.isVolatileQualified() 9222 << (BitField ? BitField->getDeclName() : DeclarationName()) 9223 << (BitField != nullptr) 9224 << Args[0]->getSourceRange(); 9225 if (BitField) 9226 S.Diag(BitField->getLocation(), diag::note_bitfield_decl); 9227 break; 9228 } 9229 9230 case FK_NonConstLValueReferenceBindingToVectorElement: 9231 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element) 9232 << DestType.isVolatileQualified() 9233 << Args[0]->getSourceRange(); 9234 break; 9235 9236 case FK_NonConstLValueReferenceBindingToMatrixElement: 9237 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_matrix_element) 9238 << DestType.isVolatileQualified() << Args[0]->getSourceRange(); 9239 break; 9240 9241 case FK_RValueReferenceBindingToLValue: 9242 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref) 9243 << DestType.getNonReferenceType() << OnlyArg->getType() 9244 << Args[0]->getSourceRange(); 9245 break; 9246 9247 case FK_ReferenceAddrspaceMismatchTemporary: 9248 S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace) 9249 << DestType << Args[0]->getSourceRange(); 9250 break; 9251 9252 case FK_ReferenceInitDropsQualifiers: { 9253 QualType SourceType = OnlyArg->getType(); 9254 QualType NonRefType = DestType.getNonReferenceType(); 9255 Qualifiers DroppedQualifiers = 9256 SourceType.getQualifiers() - NonRefType.getQualifiers(); 9257 9258 if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf( 9259 SourceType.getQualifiers())) 9260 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 9261 << NonRefType << SourceType << 1 /*addr space*/ 9262 << Args[0]->getSourceRange(); 9263 else if (DroppedQualifiers.hasQualifiers()) 9264 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 9265 << NonRefType << SourceType << 0 /*cv quals*/ 9266 << Qualifiers::fromCVRMask(DroppedQualifiers.getCVRQualifiers()) 9267 << DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange(); 9268 else 9269 // FIXME: Consider decomposing the type and explaining which qualifiers 9270 // were dropped where, or on which level a 'const' is missing, etc. 9271 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 9272 << NonRefType << SourceType << 2 /*incompatible quals*/ 9273 << Args[0]->getSourceRange(); 9274 break; 9275 } 9276 9277 case FK_ReferenceInitFailed: 9278 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed) 9279 << DestType.getNonReferenceType() 9280 << DestType.getNonReferenceType()->isIncompleteType() 9281 << OnlyArg->isLValue() 9282 << OnlyArg->getType() 9283 << Args[0]->getSourceRange(); 9284 emitBadConversionNotes(S, Entity, Args[0]); 9285 break; 9286 9287 case FK_ConversionFailed: { 9288 QualType FromType = OnlyArg->getType(); 9289 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed) 9290 << (int)Entity.getKind() 9291 << DestType 9292 << OnlyArg->isLValue() 9293 << FromType 9294 << Args[0]->getSourceRange(); 9295 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType); 9296 S.Diag(Kind.getLocation(), PDiag); 9297 emitBadConversionNotes(S, Entity, Args[0]); 9298 break; 9299 } 9300 9301 case FK_ConversionFromPropertyFailed: 9302 // No-op. This error has already been reported. 9303 break; 9304 9305 case FK_TooManyInitsForScalar: { 9306 SourceRange R; 9307 9308 auto *InitList = dyn_cast<InitListExpr>(Args[0]); 9309 if (InitList && InitList->getNumInits() >= 1) { 9310 R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc()); 9311 } else { 9312 assert(Args.size() > 1 && "Expected multiple initializers!"); 9313 R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc()); 9314 } 9315 9316 R.setBegin(S.getLocForEndOfToken(R.getBegin())); 9317 if (Kind.isCStyleOrFunctionalCast()) 9318 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg) 9319 << R; 9320 else 9321 S.Diag(Kind.getLocation(), diag::err_excess_initializers) 9322 << /*scalar=*/2 << R; 9323 break; 9324 } 9325 9326 case FK_ParenthesizedListInitForScalar: 9327 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) 9328 << 0 << Entity.getType() << Args[0]->getSourceRange(); 9329 break; 9330 9331 case FK_ReferenceBindingToInitList: 9332 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list) 9333 << DestType.getNonReferenceType() << Args[0]->getSourceRange(); 9334 break; 9335 9336 case FK_InitListBadDestinationType: 9337 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type) 9338 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange(); 9339 break; 9340 9341 case FK_ListConstructorOverloadFailed: 9342 case FK_ConstructorOverloadFailed: { 9343 SourceRange ArgsRange; 9344 if (Args.size()) 9345 ArgsRange = 9346 SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); 9347 9348 if (Failure == FK_ListConstructorOverloadFailed) { 9349 assert(Args.size() == 1 && 9350 "List construction from other than 1 argument."); 9351 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 9352 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); 9353 } 9354 9355 // FIXME: Using "DestType" for the entity we're printing is probably 9356 // bad. 9357 switch (FailedOverloadResult) { 9358 case OR_Ambiguous: 9359 FailedCandidateSet.NoteCandidates( 9360 PartialDiagnosticAt(Kind.getLocation(), 9361 S.PDiag(diag::err_ovl_ambiguous_init) 9362 << DestType << ArgsRange), 9363 S, OCD_AmbiguousCandidates, Args); 9364 break; 9365 9366 case OR_No_Viable_Function: 9367 if (Kind.getKind() == InitializationKind::IK_Default && 9368 (Entity.getKind() == InitializedEntity::EK_Base || 9369 Entity.getKind() == InitializedEntity::EK_Member) && 9370 isa<CXXConstructorDecl>(S.CurContext)) { 9371 // This is implicit default initialization of a member or 9372 // base within a constructor. If no viable function was 9373 // found, notify the user that they need to explicitly 9374 // initialize this base/member. 9375 CXXConstructorDecl *Constructor 9376 = cast<CXXConstructorDecl>(S.CurContext); 9377 const CXXRecordDecl *InheritedFrom = nullptr; 9378 if (auto Inherited = Constructor->getInheritedConstructor()) 9379 InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass(); 9380 if (Entity.getKind() == InitializedEntity::EK_Base) { 9381 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 9382 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) 9383 << S.Context.getTypeDeclType(Constructor->getParent()) 9384 << /*base=*/0 9385 << Entity.getType() 9386 << InheritedFrom; 9387 9388 RecordDecl *BaseDecl 9389 = Entity.getBaseSpecifier()->getType()->castAs<RecordType>() 9390 ->getDecl(); 9391 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl) 9392 << S.Context.getTagDeclType(BaseDecl); 9393 } else { 9394 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 9395 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) 9396 << S.Context.getTypeDeclType(Constructor->getParent()) 9397 << /*member=*/1 9398 << Entity.getName() 9399 << InheritedFrom; 9400 S.Diag(Entity.getDecl()->getLocation(), 9401 diag::note_member_declared_at); 9402 9403 if (const RecordType *Record 9404 = Entity.getType()->getAs<RecordType>()) 9405 S.Diag(Record->getDecl()->getLocation(), 9406 diag::note_previous_decl) 9407 << S.Context.getTagDeclType(Record->getDecl()); 9408 } 9409 break; 9410 } 9411 9412 FailedCandidateSet.NoteCandidates( 9413 PartialDiagnosticAt( 9414 Kind.getLocation(), 9415 S.PDiag(diag::err_ovl_no_viable_function_in_init) 9416 << DestType << ArgsRange), 9417 S, OCD_AllCandidates, Args); 9418 break; 9419 9420 case OR_Deleted: { 9421 OverloadCandidateSet::iterator Best; 9422 OverloadingResult Ovl 9423 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 9424 if (Ovl != OR_Deleted) { 9425 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 9426 << DestType << ArgsRange; 9427 llvm_unreachable("Inconsistent overload resolution?"); 9428 break; 9429 } 9430 9431 // If this is a defaulted or implicitly-declared function, then 9432 // it was implicitly deleted. Make it clear that the deletion was 9433 // implicit. 9434 if (S.isImplicitlyDeleted(Best->Function)) 9435 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init) 9436 << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function)) 9437 << DestType << ArgsRange; 9438 else 9439 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 9440 << DestType << ArgsRange; 9441 9442 S.NoteDeletedFunction(Best->Function); 9443 break; 9444 } 9445 9446 case OR_Success: 9447 llvm_unreachable("Conversion did not fail!"); 9448 } 9449 } 9450 break; 9451 9452 case FK_DefaultInitOfConst: 9453 if (Entity.getKind() == InitializedEntity::EK_Member && 9454 isa<CXXConstructorDecl>(S.CurContext)) { 9455 // This is implicit default-initialization of a const member in 9456 // a constructor. Complain that it needs to be explicitly 9457 // initialized. 9458 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext); 9459 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor) 9460 << (Constructor->getInheritedConstructor() ? 2 : 9461 Constructor->isImplicit() ? 1 : 0) 9462 << S.Context.getTypeDeclType(Constructor->getParent()) 9463 << /*const=*/1 9464 << Entity.getName(); 9465 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl) 9466 << Entity.getName(); 9467 } else { 9468 S.Diag(Kind.getLocation(), diag::err_default_init_const) 9469 << DestType << (bool)DestType->getAs<RecordType>(); 9470 } 9471 break; 9472 9473 case FK_Incomplete: 9474 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType, 9475 diag::err_init_incomplete_type); 9476 break; 9477 9478 case FK_ListInitializationFailed: { 9479 // Run the init list checker again to emit diagnostics. 9480 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 9481 diagnoseListInit(S, Entity, InitList); 9482 break; 9483 } 9484 9485 case FK_PlaceholderType: { 9486 // FIXME: Already diagnosed! 9487 break; 9488 } 9489 9490 case FK_ExplicitConstructor: { 9491 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor) 9492 << Args[0]->getSourceRange(); 9493 OverloadCandidateSet::iterator Best; 9494 OverloadingResult Ovl 9495 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 9496 (void)Ovl; 9497 assert(Ovl == OR_Success && "Inconsistent overload resolution"); 9498 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 9499 S.Diag(CtorDecl->getLocation(), 9500 diag::note_explicit_ctor_deduction_guide_here) << false; 9501 break; 9502 } 9503 } 9504 9505 PrintInitLocationNote(S, Entity); 9506 return true; 9507 } 9508 9509 void InitializationSequence::dump(raw_ostream &OS) const { 9510 switch (SequenceKind) { 9511 case FailedSequence: { 9512 OS << "Failed sequence: "; 9513 switch (Failure) { 9514 case FK_TooManyInitsForReference: 9515 OS << "too many initializers for reference"; 9516 break; 9517 9518 case FK_ParenthesizedListInitForReference: 9519 OS << "parenthesized list init for reference"; 9520 break; 9521 9522 case FK_ArrayNeedsInitList: 9523 OS << "array requires initializer list"; 9524 break; 9525 9526 case FK_AddressOfUnaddressableFunction: 9527 OS << "address of unaddressable function was taken"; 9528 break; 9529 9530 case FK_ArrayNeedsInitListOrStringLiteral: 9531 OS << "array requires initializer list or string literal"; 9532 break; 9533 9534 case FK_ArrayNeedsInitListOrWideStringLiteral: 9535 OS << "array requires initializer list or wide string literal"; 9536 break; 9537 9538 case FK_NarrowStringIntoWideCharArray: 9539 OS << "narrow string into wide char array"; 9540 break; 9541 9542 case FK_WideStringIntoCharArray: 9543 OS << "wide string into char array"; 9544 break; 9545 9546 case FK_IncompatWideStringIntoWideChar: 9547 OS << "incompatible wide string into wide char array"; 9548 break; 9549 9550 case FK_PlainStringIntoUTF8Char: 9551 OS << "plain string literal into char8_t array"; 9552 break; 9553 9554 case FK_UTF8StringIntoPlainChar: 9555 OS << "u8 string literal into char array"; 9556 break; 9557 9558 case FK_ArrayTypeMismatch: 9559 OS << "array type mismatch"; 9560 break; 9561 9562 case FK_NonConstantArrayInit: 9563 OS << "non-constant array initializer"; 9564 break; 9565 9566 case FK_AddressOfOverloadFailed: 9567 OS << "address of overloaded function failed"; 9568 break; 9569 9570 case FK_ReferenceInitOverloadFailed: 9571 OS << "overload resolution for reference initialization failed"; 9572 break; 9573 9574 case FK_NonConstLValueReferenceBindingToTemporary: 9575 OS << "non-const lvalue reference bound to temporary"; 9576 break; 9577 9578 case FK_NonConstLValueReferenceBindingToBitfield: 9579 OS << "non-const lvalue reference bound to bit-field"; 9580 break; 9581 9582 case FK_NonConstLValueReferenceBindingToVectorElement: 9583 OS << "non-const lvalue reference bound to vector element"; 9584 break; 9585 9586 case FK_NonConstLValueReferenceBindingToMatrixElement: 9587 OS << "non-const lvalue reference bound to matrix element"; 9588 break; 9589 9590 case FK_NonConstLValueReferenceBindingToUnrelated: 9591 OS << "non-const lvalue reference bound to unrelated type"; 9592 break; 9593 9594 case FK_RValueReferenceBindingToLValue: 9595 OS << "rvalue reference bound to an lvalue"; 9596 break; 9597 9598 case FK_ReferenceInitDropsQualifiers: 9599 OS << "reference initialization drops qualifiers"; 9600 break; 9601 9602 case FK_ReferenceAddrspaceMismatchTemporary: 9603 OS << "reference with mismatching address space bound to temporary"; 9604 break; 9605 9606 case FK_ReferenceInitFailed: 9607 OS << "reference initialization failed"; 9608 break; 9609 9610 case FK_ConversionFailed: 9611 OS << "conversion failed"; 9612 break; 9613 9614 case FK_ConversionFromPropertyFailed: 9615 OS << "conversion from property failed"; 9616 break; 9617 9618 case FK_TooManyInitsForScalar: 9619 OS << "too many initializers for scalar"; 9620 break; 9621 9622 case FK_ParenthesizedListInitForScalar: 9623 OS << "parenthesized list init for reference"; 9624 break; 9625 9626 case FK_ReferenceBindingToInitList: 9627 OS << "referencing binding to initializer list"; 9628 break; 9629 9630 case FK_InitListBadDestinationType: 9631 OS << "initializer list for non-aggregate, non-scalar type"; 9632 break; 9633 9634 case FK_UserConversionOverloadFailed: 9635 OS << "overloading failed for user-defined conversion"; 9636 break; 9637 9638 case FK_ConstructorOverloadFailed: 9639 OS << "constructor overloading failed"; 9640 break; 9641 9642 case FK_DefaultInitOfConst: 9643 OS << "default initialization of a const variable"; 9644 break; 9645 9646 case FK_Incomplete: 9647 OS << "initialization of incomplete type"; 9648 break; 9649 9650 case FK_ListInitializationFailed: 9651 OS << "list initialization checker failure"; 9652 break; 9653 9654 case FK_VariableLengthArrayHasInitializer: 9655 OS << "variable length array has an initializer"; 9656 break; 9657 9658 case FK_PlaceholderType: 9659 OS << "initializer expression isn't contextually valid"; 9660 break; 9661 9662 case FK_ListConstructorOverloadFailed: 9663 OS << "list constructor overloading failed"; 9664 break; 9665 9666 case FK_ExplicitConstructor: 9667 OS << "list copy initialization chose explicit constructor"; 9668 break; 9669 } 9670 OS << '\n'; 9671 return; 9672 } 9673 9674 case DependentSequence: 9675 OS << "Dependent sequence\n"; 9676 return; 9677 9678 case NormalSequence: 9679 OS << "Normal sequence: "; 9680 break; 9681 } 9682 9683 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) { 9684 if (S != step_begin()) { 9685 OS << " -> "; 9686 } 9687 9688 switch (S->Kind) { 9689 case SK_ResolveAddressOfOverloadedFunction: 9690 OS << "resolve address of overloaded function"; 9691 break; 9692 9693 case SK_CastDerivedToBasePRValue: 9694 OS << "derived-to-base (prvalue)"; 9695 break; 9696 9697 case SK_CastDerivedToBaseXValue: 9698 OS << "derived-to-base (xvalue)"; 9699 break; 9700 9701 case SK_CastDerivedToBaseLValue: 9702 OS << "derived-to-base (lvalue)"; 9703 break; 9704 9705 case SK_BindReference: 9706 OS << "bind reference to lvalue"; 9707 break; 9708 9709 case SK_BindReferenceToTemporary: 9710 OS << "bind reference to a temporary"; 9711 break; 9712 9713 case SK_FinalCopy: 9714 OS << "final copy in class direct-initialization"; 9715 break; 9716 9717 case SK_ExtraneousCopyToTemporary: 9718 OS << "extraneous C++03 copy to temporary"; 9719 break; 9720 9721 case SK_UserConversion: 9722 OS << "user-defined conversion via " << *S->Function.Function; 9723 break; 9724 9725 case SK_QualificationConversionPRValue: 9726 OS << "qualification conversion (prvalue)"; 9727 break; 9728 9729 case SK_QualificationConversionXValue: 9730 OS << "qualification conversion (xvalue)"; 9731 break; 9732 9733 case SK_QualificationConversionLValue: 9734 OS << "qualification conversion (lvalue)"; 9735 break; 9736 9737 case SK_FunctionReferenceConversion: 9738 OS << "function reference conversion"; 9739 break; 9740 9741 case SK_AtomicConversion: 9742 OS << "non-atomic-to-atomic conversion"; 9743 break; 9744 9745 case SK_ConversionSequence: 9746 OS << "implicit conversion sequence ("; 9747 S->ICS->dump(); // FIXME: use OS 9748 OS << ")"; 9749 break; 9750 9751 case SK_ConversionSequenceNoNarrowing: 9752 OS << "implicit conversion sequence with narrowing prohibited ("; 9753 S->ICS->dump(); // FIXME: use OS 9754 OS << ")"; 9755 break; 9756 9757 case SK_ListInitialization: 9758 OS << "list aggregate initialization"; 9759 break; 9760 9761 case SK_UnwrapInitList: 9762 OS << "unwrap reference initializer list"; 9763 break; 9764 9765 case SK_RewrapInitList: 9766 OS << "rewrap reference initializer list"; 9767 break; 9768 9769 case SK_ConstructorInitialization: 9770 OS << "constructor initialization"; 9771 break; 9772 9773 case SK_ConstructorInitializationFromList: 9774 OS << "list initialization via constructor"; 9775 break; 9776 9777 case SK_ZeroInitialization: 9778 OS << "zero initialization"; 9779 break; 9780 9781 case SK_CAssignment: 9782 OS << "C assignment"; 9783 break; 9784 9785 case SK_StringInit: 9786 OS << "string initialization"; 9787 break; 9788 9789 case SK_ObjCObjectConversion: 9790 OS << "Objective-C object conversion"; 9791 break; 9792 9793 case SK_ArrayLoopIndex: 9794 OS << "indexing for array initialization loop"; 9795 break; 9796 9797 case SK_ArrayLoopInit: 9798 OS << "array initialization loop"; 9799 break; 9800 9801 case SK_ArrayInit: 9802 OS << "array initialization"; 9803 break; 9804 9805 case SK_GNUArrayInit: 9806 OS << "array initialization (GNU extension)"; 9807 break; 9808 9809 case SK_ParenthesizedArrayInit: 9810 OS << "parenthesized array initialization"; 9811 break; 9812 9813 case SK_PassByIndirectCopyRestore: 9814 OS << "pass by indirect copy and restore"; 9815 break; 9816 9817 case SK_PassByIndirectRestore: 9818 OS << "pass by indirect restore"; 9819 break; 9820 9821 case SK_ProduceObjCObject: 9822 OS << "Objective-C object retension"; 9823 break; 9824 9825 case SK_StdInitializerList: 9826 OS << "std::initializer_list from initializer list"; 9827 break; 9828 9829 case SK_StdInitializerListConstructorCall: 9830 OS << "list initialization from std::initializer_list"; 9831 break; 9832 9833 case SK_OCLSamplerInit: 9834 OS << "OpenCL sampler_t from integer constant"; 9835 break; 9836 9837 case SK_OCLZeroOpaqueType: 9838 OS << "OpenCL opaque type from zero"; 9839 break; 9840 } 9841 9842 OS << " [" << S->Type << ']'; 9843 } 9844 9845 OS << '\n'; 9846 } 9847 9848 void InitializationSequence::dump() const { 9849 dump(llvm::errs()); 9850 } 9851 9852 static bool NarrowingErrs(const LangOptions &L) { 9853 return L.CPlusPlus11 && 9854 (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015)); 9855 } 9856 9857 static void DiagnoseNarrowingInInitList(Sema &S, 9858 const ImplicitConversionSequence &ICS, 9859 QualType PreNarrowingType, 9860 QualType EntityType, 9861 const Expr *PostInit) { 9862 const StandardConversionSequence *SCS = nullptr; 9863 switch (ICS.getKind()) { 9864 case ImplicitConversionSequence::StandardConversion: 9865 SCS = &ICS.Standard; 9866 break; 9867 case ImplicitConversionSequence::UserDefinedConversion: 9868 SCS = &ICS.UserDefined.After; 9869 break; 9870 case ImplicitConversionSequence::AmbiguousConversion: 9871 case ImplicitConversionSequence::EllipsisConversion: 9872 case ImplicitConversionSequence::BadConversion: 9873 return; 9874 } 9875 9876 // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion. 9877 APValue ConstantValue; 9878 QualType ConstantType; 9879 switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue, 9880 ConstantType)) { 9881 case NK_Not_Narrowing: 9882 case NK_Dependent_Narrowing: 9883 // No narrowing occurred. 9884 return; 9885 9886 case NK_Type_Narrowing: 9887 // This was a floating-to-integer conversion, which is always considered a 9888 // narrowing conversion even if the value is a constant and can be 9889 // represented exactly as an integer. 9890 S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts()) 9891 ? diag::ext_init_list_type_narrowing 9892 : diag::warn_init_list_type_narrowing) 9893 << PostInit->getSourceRange() 9894 << PreNarrowingType.getLocalUnqualifiedType() 9895 << EntityType.getLocalUnqualifiedType(); 9896 break; 9897 9898 case NK_Constant_Narrowing: 9899 // A constant value was narrowed. 9900 S.Diag(PostInit->getBeginLoc(), 9901 NarrowingErrs(S.getLangOpts()) 9902 ? diag::ext_init_list_constant_narrowing 9903 : diag::warn_init_list_constant_narrowing) 9904 << PostInit->getSourceRange() 9905 << ConstantValue.getAsString(S.getASTContext(), ConstantType) 9906 << EntityType.getLocalUnqualifiedType(); 9907 break; 9908 9909 case NK_Variable_Narrowing: 9910 // A variable's value may have been narrowed. 9911 S.Diag(PostInit->getBeginLoc(), 9912 NarrowingErrs(S.getLangOpts()) 9913 ? diag::ext_init_list_variable_narrowing 9914 : diag::warn_init_list_variable_narrowing) 9915 << PostInit->getSourceRange() 9916 << PreNarrowingType.getLocalUnqualifiedType() 9917 << EntityType.getLocalUnqualifiedType(); 9918 break; 9919 } 9920 9921 SmallString<128> StaticCast; 9922 llvm::raw_svector_ostream OS(StaticCast); 9923 OS << "static_cast<"; 9924 if (const TypedefType *TT = EntityType->getAs<TypedefType>()) { 9925 // It's important to use the typedef's name if there is one so that the 9926 // fixit doesn't break code using types like int64_t. 9927 // 9928 // FIXME: This will break if the typedef requires qualification. But 9929 // getQualifiedNameAsString() includes non-machine-parsable components. 9930 OS << *TT->getDecl(); 9931 } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>()) 9932 OS << BT->getName(S.getLangOpts()); 9933 else { 9934 // Oops, we didn't find the actual type of the variable. Don't emit a fixit 9935 // with a broken cast. 9936 return; 9937 } 9938 OS << ">("; 9939 S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence) 9940 << PostInit->getSourceRange() 9941 << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str()) 9942 << FixItHint::CreateInsertion( 9943 S.getLocForEndOfToken(PostInit->getEndLoc()), ")"); 9944 } 9945 9946 //===----------------------------------------------------------------------===// 9947 // Initialization helper functions 9948 //===----------------------------------------------------------------------===// 9949 bool 9950 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity, 9951 ExprResult Init) { 9952 if (Init.isInvalid()) 9953 return false; 9954 9955 Expr *InitE = Init.get(); 9956 assert(InitE && "No initialization expression"); 9957 9958 InitializationKind Kind = 9959 InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation()); 9960 InitializationSequence Seq(*this, Entity, Kind, InitE); 9961 return !Seq.Failed(); 9962 } 9963 9964 ExprResult 9965 Sema::PerformCopyInitialization(const InitializedEntity &Entity, 9966 SourceLocation EqualLoc, 9967 ExprResult Init, 9968 bool TopLevelOfInitList, 9969 bool AllowExplicit) { 9970 if (Init.isInvalid()) 9971 return ExprError(); 9972 9973 Expr *InitE = Init.get(); 9974 assert(InitE && "No initialization expression?"); 9975 9976 if (EqualLoc.isInvalid()) 9977 EqualLoc = InitE->getBeginLoc(); 9978 9979 InitializationKind Kind = InitializationKind::CreateCopy( 9980 InitE->getBeginLoc(), EqualLoc, AllowExplicit); 9981 InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList); 9982 9983 // Prevent infinite recursion when performing parameter copy-initialization. 9984 const bool ShouldTrackCopy = 9985 Entity.isParameterKind() && Seq.isConstructorInitialization(); 9986 if (ShouldTrackCopy) { 9987 if (llvm::is_contained(CurrentParameterCopyTypes, Entity.getType())) { 9988 Seq.SetOverloadFailure( 9989 InitializationSequence::FK_ConstructorOverloadFailed, 9990 OR_No_Viable_Function); 9991 9992 // Try to give a meaningful diagnostic note for the problematic 9993 // constructor. 9994 const auto LastStep = Seq.step_end() - 1; 9995 assert(LastStep->Kind == 9996 InitializationSequence::SK_ConstructorInitialization); 9997 const FunctionDecl *Function = LastStep->Function.Function; 9998 auto Candidate = 9999 llvm::find_if(Seq.getFailedCandidateSet(), 10000 [Function](const OverloadCandidate &Candidate) -> bool { 10001 return Candidate.Viable && 10002 Candidate.Function == Function && 10003 Candidate.Conversions.size() > 0; 10004 }); 10005 if (Candidate != Seq.getFailedCandidateSet().end() && 10006 Function->getNumParams() > 0) { 10007 Candidate->Viable = false; 10008 Candidate->FailureKind = ovl_fail_bad_conversion; 10009 Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion, 10010 InitE, 10011 Function->getParamDecl(0)->getType()); 10012 } 10013 } 10014 CurrentParameterCopyTypes.push_back(Entity.getType()); 10015 } 10016 10017 ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE); 10018 10019 if (ShouldTrackCopy) 10020 CurrentParameterCopyTypes.pop_back(); 10021 10022 return Result; 10023 } 10024 10025 /// Determine whether RD is, or is derived from, a specialization of CTD. 10026 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD, 10027 ClassTemplateDecl *CTD) { 10028 auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) { 10029 auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate); 10030 return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD); 10031 }; 10032 return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization)); 10033 } 10034 10035 QualType Sema::DeduceTemplateSpecializationFromInitializer( 10036 TypeSourceInfo *TSInfo, const InitializedEntity &Entity, 10037 const InitializationKind &Kind, MultiExprArg Inits) { 10038 auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>( 10039 TSInfo->getType()->getContainedDeducedType()); 10040 assert(DeducedTST && "not a deduced template specialization type"); 10041 10042 auto TemplateName = DeducedTST->getTemplateName(); 10043 if (TemplateName.isDependent()) 10044 return SubstAutoTypeDependent(TSInfo->getType()); 10045 10046 // We can only perform deduction for class templates. 10047 auto *Template = 10048 dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl()); 10049 if (!Template) { 10050 Diag(Kind.getLocation(), 10051 diag::err_deduced_non_class_template_specialization_type) 10052 << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName; 10053 if (auto *TD = TemplateName.getAsTemplateDecl()) 10054 Diag(TD->getLocation(), diag::note_template_decl_here); 10055 return QualType(); 10056 } 10057 10058 // Can't deduce from dependent arguments. 10059 if (Expr::hasAnyTypeDependentArguments(Inits)) { 10060 Diag(TSInfo->getTypeLoc().getBeginLoc(), 10061 diag::warn_cxx14_compat_class_template_argument_deduction) 10062 << TSInfo->getTypeLoc().getSourceRange() << 0; 10063 return SubstAutoTypeDependent(TSInfo->getType()); 10064 } 10065 10066 // FIXME: Perform "exact type" matching first, per CWG discussion? 10067 // Or implement this via an implied 'T(T) -> T' deduction guide? 10068 10069 // FIXME: Do we need/want a std::initializer_list<T> special case? 10070 10071 // Look up deduction guides, including those synthesized from constructors. 10072 // 10073 // C++1z [over.match.class.deduct]p1: 10074 // A set of functions and function templates is formed comprising: 10075 // - For each constructor of the class template designated by the 10076 // template-name, a function template [...] 10077 // - For each deduction-guide, a function or function template [...] 10078 DeclarationNameInfo NameInfo( 10079 Context.DeclarationNames.getCXXDeductionGuideName(Template), 10080 TSInfo->getTypeLoc().getEndLoc()); 10081 LookupResult Guides(*this, NameInfo, LookupOrdinaryName); 10082 LookupQualifiedName(Guides, Template->getDeclContext()); 10083 10084 // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't 10085 // clear on this, but they're not found by name so access does not apply. 10086 Guides.suppressDiagnostics(); 10087 10088 // Figure out if this is list-initialization. 10089 InitListExpr *ListInit = 10090 (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct) 10091 ? dyn_cast<InitListExpr>(Inits[0]) 10092 : nullptr; 10093 10094 // C++1z [over.match.class.deduct]p1: 10095 // Initialization and overload resolution are performed as described in 10096 // [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list] 10097 // (as appropriate for the type of initialization performed) for an object 10098 // of a hypothetical class type, where the selected functions and function 10099 // templates are considered to be the constructors of that class type 10100 // 10101 // Since we know we're initializing a class type of a type unrelated to that 10102 // of the initializer, this reduces to something fairly reasonable. 10103 OverloadCandidateSet Candidates(Kind.getLocation(), 10104 OverloadCandidateSet::CSK_Normal); 10105 OverloadCandidateSet::iterator Best; 10106 10107 bool HasAnyDeductionGuide = false; 10108 bool AllowExplicit = !Kind.isCopyInit() || ListInit; 10109 10110 auto tryToResolveOverload = 10111 [&](bool OnlyListConstructors) -> OverloadingResult { 10112 Candidates.clear(OverloadCandidateSet::CSK_Normal); 10113 HasAnyDeductionGuide = false; 10114 10115 for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) { 10116 NamedDecl *D = (*I)->getUnderlyingDecl(); 10117 if (D->isInvalidDecl()) 10118 continue; 10119 10120 auto *TD = dyn_cast<FunctionTemplateDecl>(D); 10121 auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>( 10122 TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D)); 10123 if (!GD) 10124 continue; 10125 10126 if (!GD->isImplicit()) 10127 HasAnyDeductionGuide = true; 10128 10129 // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class) 10130 // For copy-initialization, the candidate functions are all the 10131 // converting constructors (12.3.1) of that class. 10132 // C++ [over.match.copy]p1: (non-list copy-initialization from class) 10133 // The converting constructors of T are candidate functions. 10134 if (!AllowExplicit) { 10135 // Overload resolution checks whether the deduction guide is declared 10136 // explicit for us. 10137 10138 // When looking for a converting constructor, deduction guides that 10139 // could never be called with one argument are not interesting to 10140 // check or note. 10141 if (GD->getMinRequiredArguments() > 1 || 10142 (GD->getNumParams() == 0 && !GD->isVariadic())) 10143 continue; 10144 } 10145 10146 // C++ [over.match.list]p1.1: (first phase list initialization) 10147 // Initially, the candidate functions are the initializer-list 10148 // constructors of the class T 10149 if (OnlyListConstructors && !isInitListConstructor(GD)) 10150 continue; 10151 10152 // C++ [over.match.list]p1.2: (second phase list initialization) 10153 // the candidate functions are all the constructors of the class T 10154 // C++ [over.match.ctor]p1: (all other cases) 10155 // the candidate functions are all the constructors of the class of 10156 // the object being initialized 10157 10158 // C++ [over.best.ics]p4: 10159 // When [...] the constructor [...] is a candidate by 10160 // - [over.match.copy] (in all cases) 10161 // FIXME: The "second phase of [over.match.list] case can also 10162 // theoretically happen here, but it's not clear whether we can 10163 // ever have a parameter of the right type. 10164 bool SuppressUserConversions = Kind.isCopyInit(); 10165 10166 if (TD) 10167 AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr, 10168 Inits, Candidates, SuppressUserConversions, 10169 /*PartialOverloading*/ false, 10170 AllowExplicit); 10171 else 10172 AddOverloadCandidate(GD, I.getPair(), Inits, Candidates, 10173 SuppressUserConversions, 10174 /*PartialOverloading*/ false, AllowExplicit); 10175 } 10176 return Candidates.BestViableFunction(*this, Kind.getLocation(), Best); 10177 }; 10178 10179 OverloadingResult Result = OR_No_Viable_Function; 10180 10181 // C++11 [over.match.list]p1, per DR1467: for list-initialization, first 10182 // try initializer-list constructors. 10183 if (ListInit) { 10184 bool TryListConstructors = true; 10185 10186 // Try list constructors unless the list is empty and the class has one or 10187 // more default constructors, in which case those constructors win. 10188 if (!ListInit->getNumInits()) { 10189 for (NamedDecl *D : Guides) { 10190 auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl()); 10191 if (FD && FD->getMinRequiredArguments() == 0) { 10192 TryListConstructors = false; 10193 break; 10194 } 10195 } 10196 } else if (ListInit->getNumInits() == 1) { 10197 // C++ [over.match.class.deduct]: 10198 // As an exception, the first phase in [over.match.list] (considering 10199 // initializer-list constructors) is omitted if the initializer list 10200 // consists of a single expression of type cv U, where U is a 10201 // specialization of C or a class derived from a specialization of C. 10202 Expr *E = ListInit->getInit(0); 10203 auto *RD = E->getType()->getAsCXXRecordDecl(); 10204 if (!isa<InitListExpr>(E) && RD && 10205 isCompleteType(Kind.getLocation(), E->getType()) && 10206 isOrIsDerivedFromSpecializationOf(RD, Template)) 10207 TryListConstructors = false; 10208 } 10209 10210 if (TryListConstructors) 10211 Result = tryToResolveOverload(/*OnlyListConstructor*/true); 10212 // Then unwrap the initializer list and try again considering all 10213 // constructors. 10214 Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits()); 10215 } 10216 10217 // If list-initialization fails, or if we're doing any other kind of 10218 // initialization, we (eventually) consider constructors. 10219 if (Result == OR_No_Viable_Function) 10220 Result = tryToResolveOverload(/*OnlyListConstructor*/false); 10221 10222 switch (Result) { 10223 case OR_Ambiguous: 10224 // FIXME: For list-initialization candidates, it'd usually be better to 10225 // list why they were not viable when given the initializer list itself as 10226 // an argument. 10227 Candidates.NoteCandidates( 10228 PartialDiagnosticAt( 10229 Kind.getLocation(), 10230 PDiag(diag::err_deduced_class_template_ctor_ambiguous) 10231 << TemplateName), 10232 *this, OCD_AmbiguousCandidates, Inits); 10233 return QualType(); 10234 10235 case OR_No_Viable_Function: { 10236 CXXRecordDecl *Primary = 10237 cast<ClassTemplateDecl>(Template)->getTemplatedDecl(); 10238 bool Complete = 10239 isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary)); 10240 Candidates.NoteCandidates( 10241 PartialDiagnosticAt( 10242 Kind.getLocation(), 10243 PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable 10244 : diag::err_deduced_class_template_incomplete) 10245 << TemplateName << !Guides.empty()), 10246 *this, OCD_AllCandidates, Inits); 10247 return QualType(); 10248 } 10249 10250 case OR_Deleted: { 10251 Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted) 10252 << TemplateName; 10253 NoteDeletedFunction(Best->Function); 10254 return QualType(); 10255 } 10256 10257 case OR_Success: 10258 // C++ [over.match.list]p1: 10259 // In copy-list-initialization, if an explicit constructor is chosen, the 10260 // initialization is ill-formed. 10261 if (Kind.isCopyInit() && ListInit && 10262 cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) { 10263 bool IsDeductionGuide = !Best->Function->isImplicit(); 10264 Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit) 10265 << TemplateName << IsDeductionGuide; 10266 Diag(Best->Function->getLocation(), 10267 diag::note_explicit_ctor_deduction_guide_here) 10268 << IsDeductionGuide; 10269 return QualType(); 10270 } 10271 10272 // Make sure we didn't select an unusable deduction guide, and mark it 10273 // as referenced. 10274 DiagnoseUseOfDecl(Best->Function, Kind.getLocation()); 10275 MarkFunctionReferenced(Kind.getLocation(), Best->Function); 10276 break; 10277 } 10278 10279 // C++ [dcl.type.class.deduct]p1: 10280 // The placeholder is replaced by the return type of the function selected 10281 // by overload resolution for class template deduction. 10282 QualType DeducedType = 10283 SubstAutoType(TSInfo->getType(), Best->Function->getReturnType()); 10284 Diag(TSInfo->getTypeLoc().getBeginLoc(), 10285 diag::warn_cxx14_compat_class_template_argument_deduction) 10286 << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType; 10287 10288 // Warn if CTAD was used on a type that does not have any user-defined 10289 // deduction guides. 10290 if (!HasAnyDeductionGuide) { 10291 Diag(TSInfo->getTypeLoc().getBeginLoc(), 10292 diag::warn_ctad_maybe_unsupported) 10293 << TemplateName; 10294 Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported); 10295 } 10296 10297 return DeducedType; 10298 } 10299