xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaInit.cpp (revision d9a42747950146bf03cda7f6e25d219253f8a57a)
1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for initializers.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/DeclObjC.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/AST/ExprObjC.h"
17 #include "clang/AST/ExprOpenMP.h"
18 #include "clang/AST/TypeLoc.h"
19 #include "clang/Basic/CharInfo.h"
20 #include "clang/Basic/SourceManager.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/Sema/Designator.h"
23 #include "clang/Sema/Initialization.h"
24 #include "clang/Sema/Lookup.h"
25 #include "clang/Sema/SemaInternal.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/PointerIntPair.h"
28 #include "llvm/ADT/SmallString.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/raw_ostream.h"
31 
32 using namespace clang;
33 
34 //===----------------------------------------------------------------------===//
35 // Sema Initialization Checking
36 //===----------------------------------------------------------------------===//
37 
38 /// Check whether T is compatible with a wide character type (wchar_t,
39 /// char16_t or char32_t).
40 static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
41   if (Context.typesAreCompatible(Context.getWideCharType(), T))
42     return true;
43   if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
44     return Context.typesAreCompatible(Context.Char16Ty, T) ||
45            Context.typesAreCompatible(Context.Char32Ty, T);
46   }
47   return false;
48 }
49 
50 enum StringInitFailureKind {
51   SIF_None,
52   SIF_NarrowStringIntoWideChar,
53   SIF_WideStringIntoChar,
54   SIF_IncompatWideStringIntoWideChar,
55   SIF_UTF8StringIntoPlainChar,
56   SIF_PlainStringIntoUTF8Char,
57   SIF_Other
58 };
59 
60 /// Check whether the array of type AT can be initialized by the Init
61 /// expression by means of string initialization. Returns SIF_None if so,
62 /// otherwise returns a StringInitFailureKind that describes why the
63 /// initialization would not work.
64 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
65                                           ASTContext &Context) {
66   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
67     return SIF_Other;
68 
69   // See if this is a string literal or @encode.
70   Init = Init->IgnoreParens();
71 
72   // Handle @encode, which is a narrow string.
73   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
74     return SIF_None;
75 
76   // Otherwise we can only handle string literals.
77   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
78   if (!SL)
79     return SIF_Other;
80 
81   const QualType ElemTy =
82       Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
83 
84   switch (SL->getKind()) {
85   case StringLiteral::UTF8:
86     // char8_t array can be initialized with a UTF-8 string.
87     if (ElemTy->isChar8Type())
88       return SIF_None;
89     LLVM_FALLTHROUGH;
90   case StringLiteral::Ordinary:
91     // char array can be initialized with a narrow string.
92     // Only allow char x[] = "foo";  not char x[] = L"foo";
93     if (ElemTy->isCharType())
94       return (SL->getKind() == StringLiteral::UTF8 &&
95               Context.getLangOpts().Char8)
96                  ? SIF_UTF8StringIntoPlainChar
97                  : SIF_None;
98     if (ElemTy->isChar8Type())
99       return SIF_PlainStringIntoUTF8Char;
100     if (IsWideCharCompatible(ElemTy, Context))
101       return SIF_NarrowStringIntoWideChar;
102     return SIF_Other;
103   // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
104   // "An array with element type compatible with a qualified or unqualified
105   // version of wchar_t, char16_t, or char32_t may be initialized by a wide
106   // string literal with the corresponding encoding prefix (L, u, or U,
107   // respectively), optionally enclosed in braces.
108   case StringLiteral::UTF16:
109     if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
110       return SIF_None;
111     if (ElemTy->isCharType() || ElemTy->isChar8Type())
112       return SIF_WideStringIntoChar;
113     if (IsWideCharCompatible(ElemTy, Context))
114       return SIF_IncompatWideStringIntoWideChar;
115     return SIF_Other;
116   case StringLiteral::UTF32:
117     if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
118       return SIF_None;
119     if (ElemTy->isCharType() || ElemTy->isChar8Type())
120       return SIF_WideStringIntoChar;
121     if (IsWideCharCompatible(ElemTy, Context))
122       return SIF_IncompatWideStringIntoWideChar;
123     return SIF_Other;
124   case StringLiteral::Wide:
125     if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
126       return SIF_None;
127     if (ElemTy->isCharType() || ElemTy->isChar8Type())
128       return SIF_WideStringIntoChar;
129     if (IsWideCharCompatible(ElemTy, Context))
130       return SIF_IncompatWideStringIntoWideChar;
131     return SIF_Other;
132   }
133 
134   llvm_unreachable("missed a StringLiteral kind?");
135 }
136 
137 static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
138                                           ASTContext &Context) {
139   const ArrayType *arrayType = Context.getAsArrayType(declType);
140   if (!arrayType)
141     return SIF_Other;
142   return IsStringInit(init, arrayType, Context);
143 }
144 
145 bool Sema::IsStringInit(Expr *Init, const ArrayType *AT) {
146   return ::IsStringInit(Init, AT, Context) == SIF_None;
147 }
148 
149 /// Update the type of a string literal, including any surrounding parentheses,
150 /// to match the type of the object which it is initializing.
151 static void updateStringLiteralType(Expr *E, QualType Ty) {
152   while (true) {
153     E->setType(Ty);
154     E->setValueKind(VK_PRValue);
155     if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) {
156       break;
157     } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
158       E = PE->getSubExpr();
159     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
160       assert(UO->getOpcode() == UO_Extension);
161       E = UO->getSubExpr();
162     } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
163       E = GSE->getResultExpr();
164     } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
165       E = CE->getChosenSubExpr();
166     } else {
167       llvm_unreachable("unexpected expr in string literal init");
168     }
169   }
170 }
171 
172 /// Fix a compound literal initializing an array so it's correctly marked
173 /// as an rvalue.
174 static void updateGNUCompoundLiteralRValue(Expr *E) {
175   while (true) {
176     E->setValueKind(VK_PRValue);
177     if (isa<CompoundLiteralExpr>(E)) {
178       break;
179     } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
180       E = PE->getSubExpr();
181     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
182       assert(UO->getOpcode() == UO_Extension);
183       E = UO->getSubExpr();
184     } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
185       E = GSE->getResultExpr();
186     } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
187       E = CE->getChosenSubExpr();
188     } else {
189       llvm_unreachable("unexpected expr in array compound literal init");
190     }
191   }
192 }
193 
194 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
195                             Sema &S) {
196   // Get the length of the string as parsed.
197   auto *ConstantArrayTy =
198       cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
199   uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
200 
201   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
202     // C99 6.7.8p14. We have an array of character type with unknown size
203     // being initialized to a string literal.
204     llvm::APInt ConstVal(32, StrLength);
205     // Return a new array type (C99 6.7.8p22).
206     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
207                                            ConstVal, nullptr,
208                                            ArrayType::Normal, 0);
209     updateStringLiteralType(Str, DeclT);
210     return;
211   }
212 
213   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
214 
215   // We have an array of character type with known size.  However,
216   // the size may be smaller or larger than the string we are initializing.
217   // FIXME: Avoid truncation for 64-bit length strings.
218   if (S.getLangOpts().CPlusPlus) {
219     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
220       // For Pascal strings it's OK to strip off the terminating null character,
221       // so the example below is valid:
222       //
223       // unsigned char a[2] = "\pa";
224       if (SL->isPascal())
225         StrLength--;
226     }
227 
228     // [dcl.init.string]p2
229     if (StrLength > CAT->getSize().getZExtValue())
230       S.Diag(Str->getBeginLoc(),
231              diag::err_initializer_string_for_char_array_too_long)
232           << Str->getSourceRange();
233   } else {
234     // C99 6.7.8p14.
235     if (StrLength-1 > CAT->getSize().getZExtValue())
236       S.Diag(Str->getBeginLoc(),
237              diag::ext_initializer_string_for_char_array_too_long)
238           << Str->getSourceRange();
239   }
240 
241   // Set the type to the actual size that we are initializing.  If we have
242   // something like:
243   //   char x[1] = "foo";
244   // then this will set the string literal's type to char[1].
245   updateStringLiteralType(Str, DeclT);
246 }
247 
248 //===----------------------------------------------------------------------===//
249 // Semantic checking for initializer lists.
250 //===----------------------------------------------------------------------===//
251 
252 namespace {
253 
254 /// Semantic checking for initializer lists.
255 ///
256 /// The InitListChecker class contains a set of routines that each
257 /// handle the initialization of a certain kind of entity, e.g.,
258 /// arrays, vectors, struct/union types, scalars, etc. The
259 /// InitListChecker itself performs a recursive walk of the subobject
260 /// structure of the type to be initialized, while stepping through
261 /// the initializer list one element at a time. The IList and Index
262 /// parameters to each of the Check* routines contain the active
263 /// (syntactic) initializer list and the index into that initializer
264 /// list that represents the current initializer. Each routine is
265 /// responsible for moving that Index forward as it consumes elements.
266 ///
267 /// Each Check* routine also has a StructuredList/StructuredIndex
268 /// arguments, which contains the current "structured" (semantic)
269 /// initializer list and the index into that initializer list where we
270 /// are copying initializers as we map them over to the semantic
271 /// list. Once we have completed our recursive walk of the subobject
272 /// structure, we will have constructed a full semantic initializer
273 /// list.
274 ///
275 /// C99 designators cause changes in the initializer list traversal,
276 /// because they make the initialization "jump" into a specific
277 /// subobject and then continue the initialization from that
278 /// point. CheckDesignatedInitializer() recursively steps into the
279 /// designated subobject and manages backing out the recursion to
280 /// initialize the subobjects after the one designated.
281 ///
282 /// If an initializer list contains any designators, we build a placeholder
283 /// structured list even in 'verify only' mode, so that we can track which
284 /// elements need 'empty' initializtion.
285 class InitListChecker {
286   Sema &SemaRef;
287   bool hadError = false;
288   bool VerifyOnly; // No diagnostics.
289   bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
290   bool InOverloadResolution;
291   InitListExpr *FullyStructuredList = nullptr;
292   NoInitExpr *DummyExpr = nullptr;
293 
294   NoInitExpr *getDummyInit() {
295     if (!DummyExpr)
296       DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy);
297     return DummyExpr;
298   }
299 
300   void CheckImplicitInitList(const InitializedEntity &Entity,
301                              InitListExpr *ParentIList, QualType T,
302                              unsigned &Index, InitListExpr *StructuredList,
303                              unsigned &StructuredIndex);
304   void CheckExplicitInitList(const InitializedEntity &Entity,
305                              InitListExpr *IList, QualType &T,
306                              InitListExpr *StructuredList,
307                              bool TopLevelObject = false);
308   void CheckListElementTypes(const InitializedEntity &Entity,
309                              InitListExpr *IList, QualType &DeclType,
310                              bool SubobjectIsDesignatorContext,
311                              unsigned &Index,
312                              InitListExpr *StructuredList,
313                              unsigned &StructuredIndex,
314                              bool TopLevelObject = false);
315   void CheckSubElementType(const InitializedEntity &Entity,
316                            InitListExpr *IList, QualType ElemType,
317                            unsigned &Index,
318                            InitListExpr *StructuredList,
319                            unsigned &StructuredIndex,
320                            bool DirectlyDesignated = false);
321   void CheckComplexType(const InitializedEntity &Entity,
322                         InitListExpr *IList, QualType DeclType,
323                         unsigned &Index,
324                         InitListExpr *StructuredList,
325                         unsigned &StructuredIndex);
326   void CheckScalarType(const InitializedEntity &Entity,
327                        InitListExpr *IList, QualType DeclType,
328                        unsigned &Index,
329                        InitListExpr *StructuredList,
330                        unsigned &StructuredIndex);
331   void CheckReferenceType(const InitializedEntity &Entity,
332                           InitListExpr *IList, QualType DeclType,
333                           unsigned &Index,
334                           InitListExpr *StructuredList,
335                           unsigned &StructuredIndex);
336   void CheckVectorType(const InitializedEntity &Entity,
337                        InitListExpr *IList, QualType DeclType, unsigned &Index,
338                        InitListExpr *StructuredList,
339                        unsigned &StructuredIndex);
340   void CheckStructUnionTypes(const InitializedEntity &Entity,
341                              InitListExpr *IList, QualType DeclType,
342                              CXXRecordDecl::base_class_range Bases,
343                              RecordDecl::field_iterator Field,
344                              bool SubobjectIsDesignatorContext, unsigned &Index,
345                              InitListExpr *StructuredList,
346                              unsigned &StructuredIndex,
347                              bool TopLevelObject = false);
348   void CheckArrayType(const InitializedEntity &Entity,
349                       InitListExpr *IList, QualType &DeclType,
350                       llvm::APSInt elementIndex,
351                       bool SubobjectIsDesignatorContext, unsigned &Index,
352                       InitListExpr *StructuredList,
353                       unsigned &StructuredIndex);
354   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
355                                   InitListExpr *IList, DesignatedInitExpr *DIE,
356                                   unsigned DesigIdx,
357                                   QualType &CurrentObjectType,
358                                   RecordDecl::field_iterator *NextField,
359                                   llvm::APSInt *NextElementIndex,
360                                   unsigned &Index,
361                                   InitListExpr *StructuredList,
362                                   unsigned &StructuredIndex,
363                                   bool FinishSubobjectInit,
364                                   bool TopLevelObject);
365   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
366                                            QualType CurrentObjectType,
367                                            InitListExpr *StructuredList,
368                                            unsigned StructuredIndex,
369                                            SourceRange InitRange,
370                                            bool IsFullyOverwritten = false);
371   void UpdateStructuredListElement(InitListExpr *StructuredList,
372                                    unsigned &StructuredIndex,
373                                    Expr *expr);
374   InitListExpr *createInitListExpr(QualType CurrentObjectType,
375                                    SourceRange InitRange,
376                                    unsigned ExpectedNumInits);
377   int numArrayElements(QualType DeclType);
378   int numStructUnionElements(QualType DeclType);
379 
380   ExprResult PerformEmptyInit(SourceLocation Loc,
381                               const InitializedEntity &Entity);
382 
383   /// Diagnose that OldInit (or part thereof) has been overridden by NewInit.
384   void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange,
385                             bool FullyOverwritten = true) {
386     // Overriding an initializer via a designator is valid with C99 designated
387     // initializers, but ill-formed with C++20 designated initializers.
388     unsigned DiagID = SemaRef.getLangOpts().CPlusPlus
389                           ? diag::ext_initializer_overrides
390                           : diag::warn_initializer_overrides;
391 
392     if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) {
393       // In overload resolution, we have to strictly enforce the rules, and so
394       // don't allow any overriding of prior initializers. This matters for a
395       // case such as:
396       //
397       //   union U { int a, b; };
398       //   struct S { int a, b; };
399       //   void f(U), f(S);
400       //
401       // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For
402       // consistency, we disallow all overriding of prior initializers in
403       // overload resolution, not only overriding of union members.
404       hadError = true;
405     } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) {
406       // If we'll be keeping around the old initializer but overwriting part of
407       // the object it initialized, and that object is not trivially
408       // destructible, this can leak. Don't allow that, not even as an
409       // extension.
410       //
411       // FIXME: It might be reasonable to allow this in cases where the part of
412       // the initializer that we're overriding has trivial destruction.
413       DiagID = diag::err_initializer_overrides_destructed;
414     } else if (!OldInit->getSourceRange().isValid()) {
415       // We need to check on source range validity because the previous
416       // initializer does not have to be an explicit initializer. e.g.,
417       //
418       // struct P { int a, b; };
419       // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
420       //
421       // There is an overwrite taking place because the first braced initializer
422       // list "{ .a = 2 }" already provides value for .p.b (which is zero).
423       //
424       // Such overwrites are harmless, so we don't diagnose them. (Note that in
425       // C++, this cannot be reached unless we've already seen and diagnosed a
426       // different conformance issue, such as a mixture of designated and
427       // non-designated initializers or a multi-level designator.)
428       return;
429     }
430 
431     if (!VerifyOnly) {
432       SemaRef.Diag(NewInitRange.getBegin(), DiagID)
433           << NewInitRange << FullyOverwritten << OldInit->getType();
434       SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer)
435           << (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten)
436           << OldInit->getSourceRange();
437     }
438   }
439 
440   // Explanation on the "FillWithNoInit" mode:
441   //
442   // Assume we have the following definitions (Case#1):
443   // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
444   // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
445   //
446   // l.lp.x[1][0..1] should not be filled with implicit initializers because the
447   // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
448   //
449   // But if we have (Case#2):
450   // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
451   //
452   // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
453   // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
454   //
455   // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
456   // in the InitListExpr, the "holes" in Case#1 are filled not with empty
457   // initializers but with special "NoInitExpr" place holders, which tells the
458   // CodeGen not to generate any initializers for these parts.
459   void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
460                               const InitializedEntity &ParentEntity,
461                               InitListExpr *ILE, bool &RequiresSecondPass,
462                               bool FillWithNoInit);
463   void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
464                                const InitializedEntity &ParentEntity,
465                                InitListExpr *ILE, bool &RequiresSecondPass,
466                                bool FillWithNoInit = false);
467   void FillInEmptyInitializations(const InitializedEntity &Entity,
468                                   InitListExpr *ILE, bool &RequiresSecondPass,
469                                   InitListExpr *OuterILE, unsigned OuterIndex,
470                                   bool FillWithNoInit = false);
471   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
472                               Expr *InitExpr, FieldDecl *Field,
473                               bool TopLevelObject);
474   void CheckEmptyInitializable(const InitializedEntity &Entity,
475                                SourceLocation Loc);
476 
477 public:
478   InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL,
479                   QualType &T, bool VerifyOnly, bool TreatUnavailableAsInvalid,
480                   bool InOverloadResolution = false);
481   bool HadError() { return hadError; }
482 
483   // Retrieves the fully-structured initializer list used for
484   // semantic analysis and code generation.
485   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
486 };
487 
488 } // end anonymous namespace
489 
490 ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc,
491                                              const InitializedEntity &Entity) {
492   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
493                                                             true);
494   MultiExprArg SubInit;
495   Expr *InitExpr;
496   InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
497 
498   // C++ [dcl.init.aggr]p7:
499   //   If there are fewer initializer-clauses in the list than there are
500   //   members in the aggregate, then each member not explicitly initialized
501   //   ...
502   bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
503       Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
504   if (EmptyInitList) {
505     // C++1y / DR1070:
506     //   shall be initialized [...] from an empty initializer list.
507     //
508     // We apply the resolution of this DR to C++11 but not C++98, since C++98
509     // does not have useful semantics for initialization from an init list.
510     // We treat this as copy-initialization, because aggregate initialization
511     // always performs copy-initialization on its elements.
512     //
513     // Only do this if we're initializing a class type, to avoid filling in
514     // the initializer list where possible.
515     InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
516                    InitListExpr(SemaRef.Context, Loc, None, Loc);
517     InitExpr->setType(SemaRef.Context.VoidTy);
518     SubInit = InitExpr;
519     Kind = InitializationKind::CreateCopy(Loc, Loc);
520   } else {
521     // C++03:
522     //   shall be value-initialized.
523   }
524 
525   InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
526   // libstdc++4.6 marks the vector default constructor as explicit in
527   // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
528   // stlport does so too. Look for std::__debug for libstdc++, and for
529   // std:: for stlport.  This is effectively a compiler-side implementation of
530   // LWG2193.
531   if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
532           InitializationSequence::FK_ExplicitConstructor) {
533     OverloadCandidateSet::iterator Best;
534     OverloadingResult O =
535         InitSeq.getFailedCandidateSet()
536             .BestViableFunction(SemaRef, Kind.getLocation(), Best);
537     (void)O;
538     assert(O == OR_Success && "Inconsistent overload resolution");
539     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
540     CXXRecordDecl *R = CtorDecl->getParent();
541 
542     if (CtorDecl->getMinRequiredArguments() == 0 &&
543         CtorDecl->isExplicit() && R->getDeclName() &&
544         SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
545       bool IsInStd = false;
546       for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
547            ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
548         if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
549           IsInStd = true;
550       }
551 
552       if (IsInStd && llvm::StringSwitch<bool>(R->getName())
553               .Cases("basic_string", "deque", "forward_list", true)
554               .Cases("list", "map", "multimap", "multiset", true)
555               .Cases("priority_queue", "queue", "set", "stack", true)
556               .Cases("unordered_map", "unordered_set", "vector", true)
557               .Default(false)) {
558         InitSeq.InitializeFrom(
559             SemaRef, Entity,
560             InitializationKind::CreateValue(Loc, Loc, Loc, true),
561             MultiExprArg(), /*TopLevelOfInitList=*/false,
562             TreatUnavailableAsInvalid);
563         // Emit a warning for this.  System header warnings aren't shown
564         // by default, but people working on system headers should see it.
565         if (!VerifyOnly) {
566           SemaRef.Diag(CtorDecl->getLocation(),
567                        diag::warn_invalid_initializer_from_system_header);
568           if (Entity.getKind() == InitializedEntity::EK_Member)
569             SemaRef.Diag(Entity.getDecl()->getLocation(),
570                          diag::note_used_in_initialization_here);
571           else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
572             SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
573         }
574       }
575     }
576   }
577   if (!InitSeq) {
578     if (!VerifyOnly) {
579       InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
580       if (Entity.getKind() == InitializedEntity::EK_Member)
581         SemaRef.Diag(Entity.getDecl()->getLocation(),
582                      diag::note_in_omitted_aggregate_initializer)
583           << /*field*/1 << Entity.getDecl();
584       else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
585         bool IsTrailingArrayNewMember =
586             Entity.getParent() &&
587             Entity.getParent()->isVariableLengthArrayNew();
588         SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
589           << (IsTrailingArrayNewMember ? 2 : /*array element*/0)
590           << Entity.getElementIndex();
591       }
592     }
593     hadError = true;
594     return ExprError();
595   }
596 
597   return VerifyOnly ? ExprResult()
598                     : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
599 }
600 
601 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
602                                               SourceLocation Loc) {
603   // If we're building a fully-structured list, we'll check this at the end
604   // once we know which elements are actually initialized. Otherwise, we know
605   // that there are no designators so we can just check now.
606   if (FullyStructuredList)
607     return;
608   PerformEmptyInit(Loc, Entity);
609 }
610 
611 void InitListChecker::FillInEmptyInitForBase(
612     unsigned Init, const CXXBaseSpecifier &Base,
613     const InitializedEntity &ParentEntity, InitListExpr *ILE,
614     bool &RequiresSecondPass, bool FillWithNoInit) {
615   InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
616       SemaRef.Context, &Base, false, &ParentEntity);
617 
618   if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) {
619     ExprResult BaseInit = FillWithNoInit
620                               ? new (SemaRef.Context) NoInitExpr(Base.getType())
621                               : PerformEmptyInit(ILE->getEndLoc(), BaseEntity);
622     if (BaseInit.isInvalid()) {
623       hadError = true;
624       return;
625     }
626 
627     if (!VerifyOnly) {
628       assert(Init < ILE->getNumInits() && "should have been expanded");
629       ILE->setInit(Init, BaseInit.getAs<Expr>());
630     }
631   } else if (InitListExpr *InnerILE =
632                  dyn_cast<InitListExpr>(ILE->getInit(Init))) {
633     FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass,
634                                ILE, Init, FillWithNoInit);
635   } else if (DesignatedInitUpdateExpr *InnerDIUE =
636                dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
637     FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
638                                RequiresSecondPass, ILE, Init,
639                                /*FillWithNoInit =*/true);
640   }
641 }
642 
643 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
644                                         const InitializedEntity &ParentEntity,
645                                               InitListExpr *ILE,
646                                               bool &RequiresSecondPass,
647                                               bool FillWithNoInit) {
648   SourceLocation Loc = ILE->getEndLoc();
649   unsigned NumInits = ILE->getNumInits();
650   InitializedEntity MemberEntity
651     = InitializedEntity::InitializeMember(Field, &ParentEntity);
652 
653   if (Init >= NumInits || !ILE->getInit(Init)) {
654     if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
655       if (!RType->getDecl()->isUnion())
656         assert((Init < NumInits || VerifyOnly) &&
657                "This ILE should have been expanded");
658 
659     if (FillWithNoInit) {
660       assert(!VerifyOnly && "should not fill with no-init in verify-only mode");
661       Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
662       if (Init < NumInits)
663         ILE->setInit(Init, Filler);
664       else
665         ILE->updateInit(SemaRef.Context, Init, Filler);
666       return;
667     }
668     // C++1y [dcl.init.aggr]p7:
669     //   If there are fewer initializer-clauses in the list than there are
670     //   members in the aggregate, then each member not explicitly initialized
671     //   shall be initialized from its brace-or-equal-initializer [...]
672     if (Field->hasInClassInitializer()) {
673       if (VerifyOnly)
674         return;
675 
676       ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
677       if (DIE.isInvalid()) {
678         hadError = true;
679         return;
680       }
681       SemaRef.checkInitializerLifetime(MemberEntity, DIE.get());
682       if (Init < NumInits)
683         ILE->setInit(Init, DIE.get());
684       else {
685         ILE->updateInit(SemaRef.Context, Init, DIE.get());
686         RequiresSecondPass = true;
687       }
688       return;
689     }
690 
691     if (Field->getType()->isReferenceType()) {
692       if (!VerifyOnly) {
693         // C++ [dcl.init.aggr]p9:
694         //   If an incomplete or empty initializer-list leaves a
695         //   member of reference type uninitialized, the program is
696         //   ill-formed.
697         SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
698             << Field->getType()
699             << (ILE->isSyntacticForm() ? ILE : ILE->getSyntacticForm())
700                    ->getSourceRange();
701         SemaRef.Diag(Field->getLocation(), diag::note_uninit_reference_member);
702       }
703       hadError = true;
704       return;
705     }
706 
707     ExprResult MemberInit = PerformEmptyInit(Loc, MemberEntity);
708     if (MemberInit.isInvalid()) {
709       hadError = true;
710       return;
711     }
712 
713     if (hadError || VerifyOnly) {
714       // Do nothing
715     } else if (Init < NumInits) {
716       ILE->setInit(Init, MemberInit.getAs<Expr>());
717     } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
718       // Empty initialization requires a constructor call, so
719       // extend the initializer list to include the constructor
720       // call and make a note that we'll need to take another pass
721       // through the initializer list.
722       ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
723       RequiresSecondPass = true;
724     }
725   } else if (InitListExpr *InnerILE
726                = dyn_cast<InitListExpr>(ILE->getInit(Init))) {
727     FillInEmptyInitializations(MemberEntity, InnerILE,
728                                RequiresSecondPass, ILE, Init, FillWithNoInit);
729   } else if (DesignatedInitUpdateExpr *InnerDIUE =
730                  dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
731     FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
732                                RequiresSecondPass, ILE, Init,
733                                /*FillWithNoInit =*/true);
734   }
735 }
736 
737 /// Recursively replaces NULL values within the given initializer list
738 /// with expressions that perform value-initialization of the
739 /// appropriate type, and finish off the InitListExpr formation.
740 void
741 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
742                                             InitListExpr *ILE,
743                                             bool &RequiresSecondPass,
744                                             InitListExpr *OuterILE,
745                                             unsigned OuterIndex,
746                                             bool FillWithNoInit) {
747   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
748          "Should not have void type");
749 
750   // We don't need to do any checks when just filling NoInitExprs; that can't
751   // fail.
752   if (FillWithNoInit && VerifyOnly)
753     return;
754 
755   // If this is a nested initializer list, we might have changed its contents
756   // (and therefore some of its properties, such as instantiation-dependence)
757   // while filling it in. Inform the outer initializer list so that its state
758   // can be updated to match.
759   // FIXME: We should fully build the inner initializers before constructing
760   // the outer InitListExpr instead of mutating AST nodes after they have
761   // been used as subexpressions of other nodes.
762   struct UpdateOuterILEWithUpdatedInit {
763     InitListExpr *Outer;
764     unsigned OuterIndex;
765     ~UpdateOuterILEWithUpdatedInit() {
766       if (Outer)
767         Outer->setInit(OuterIndex, Outer->getInit(OuterIndex));
768     }
769   } UpdateOuterRAII = {OuterILE, OuterIndex};
770 
771   // A transparent ILE is not performing aggregate initialization and should
772   // not be filled in.
773   if (ILE->isTransparent())
774     return;
775 
776   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
777     const RecordDecl *RDecl = RType->getDecl();
778     if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
779       FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
780                               Entity, ILE, RequiresSecondPass, FillWithNoInit);
781     else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
782              cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
783       for (auto *Field : RDecl->fields()) {
784         if (Field->hasInClassInitializer()) {
785           FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
786                                   FillWithNoInit);
787           break;
788         }
789       }
790     } else {
791       // The fields beyond ILE->getNumInits() are default initialized, so in
792       // order to leave them uninitialized, the ILE is expanded and the extra
793       // fields are then filled with NoInitExpr.
794       unsigned NumElems = numStructUnionElements(ILE->getType());
795       if (RDecl->hasFlexibleArrayMember())
796         ++NumElems;
797       if (!VerifyOnly && ILE->getNumInits() < NumElems)
798         ILE->resizeInits(SemaRef.Context, NumElems);
799 
800       unsigned Init = 0;
801 
802       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
803         for (auto &Base : CXXRD->bases()) {
804           if (hadError)
805             return;
806 
807           FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
808                                  FillWithNoInit);
809           ++Init;
810         }
811       }
812 
813       for (auto *Field : RDecl->fields()) {
814         if (Field->isUnnamedBitfield())
815           continue;
816 
817         if (hadError)
818           return;
819 
820         FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
821                                 FillWithNoInit);
822         if (hadError)
823           return;
824 
825         ++Init;
826 
827         // Only look at the first initialization of a union.
828         if (RDecl->isUnion())
829           break;
830       }
831     }
832 
833     return;
834   }
835 
836   QualType ElementType;
837 
838   InitializedEntity ElementEntity = Entity;
839   unsigned NumInits = ILE->getNumInits();
840   unsigned NumElements = NumInits;
841   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
842     ElementType = AType->getElementType();
843     if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
844       NumElements = CAType->getSize().getZExtValue();
845     // For an array new with an unknown bound, ask for one additional element
846     // in order to populate the array filler.
847     if (Entity.isVariableLengthArrayNew())
848       ++NumElements;
849     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
850                                                          0, Entity);
851   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
852     ElementType = VType->getElementType();
853     NumElements = VType->getNumElements();
854     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
855                                                          0, Entity);
856   } else
857     ElementType = ILE->getType();
858 
859   bool SkipEmptyInitChecks = false;
860   for (unsigned Init = 0; Init != NumElements; ++Init) {
861     if (hadError)
862       return;
863 
864     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
865         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
866       ElementEntity.setElementIndex(Init);
867 
868     if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks))
869       return;
870 
871     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
872     if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
873       ILE->setInit(Init, ILE->getArrayFiller());
874     else if (!InitExpr && !ILE->hasArrayFiller()) {
875       // In VerifyOnly mode, there's no point performing empty initialization
876       // more than once.
877       if (SkipEmptyInitChecks)
878         continue;
879 
880       Expr *Filler = nullptr;
881 
882       if (FillWithNoInit)
883         Filler = new (SemaRef.Context) NoInitExpr(ElementType);
884       else {
885         ExprResult ElementInit =
886             PerformEmptyInit(ILE->getEndLoc(), ElementEntity);
887         if (ElementInit.isInvalid()) {
888           hadError = true;
889           return;
890         }
891 
892         Filler = ElementInit.getAs<Expr>();
893       }
894 
895       if (hadError) {
896         // Do nothing
897       } else if (VerifyOnly) {
898         SkipEmptyInitChecks = true;
899       } else if (Init < NumInits) {
900         // For arrays, just set the expression used for value-initialization
901         // of the "holes" in the array.
902         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
903           ILE->setArrayFiller(Filler);
904         else
905           ILE->setInit(Init, Filler);
906       } else {
907         // For arrays, just set the expression used for value-initialization
908         // of the rest of elements and exit.
909         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
910           ILE->setArrayFiller(Filler);
911           return;
912         }
913 
914         if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
915           // Empty initialization requires a constructor call, so
916           // extend the initializer list to include the constructor
917           // call and make a note that we'll need to take another pass
918           // through the initializer list.
919           ILE->updateInit(SemaRef.Context, Init, Filler);
920           RequiresSecondPass = true;
921         }
922       }
923     } else if (InitListExpr *InnerILE
924                  = dyn_cast_or_null<InitListExpr>(InitExpr)) {
925       FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
926                                  ILE, Init, FillWithNoInit);
927     } else if (DesignatedInitUpdateExpr *InnerDIUE =
928                    dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) {
929       FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
930                                  RequiresSecondPass, ILE, Init,
931                                  /*FillWithNoInit =*/true);
932     }
933   }
934 }
935 
936 static bool hasAnyDesignatedInits(const InitListExpr *IL) {
937   for (const Stmt *Init : *IL)
938     if (Init && isa<DesignatedInitExpr>(Init))
939       return true;
940   return false;
941 }
942 
943 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
944                                  InitListExpr *IL, QualType &T, bool VerifyOnly,
945                                  bool TreatUnavailableAsInvalid,
946                                  bool InOverloadResolution)
947     : SemaRef(S), VerifyOnly(VerifyOnly),
948       TreatUnavailableAsInvalid(TreatUnavailableAsInvalid),
949       InOverloadResolution(InOverloadResolution) {
950   if (!VerifyOnly || hasAnyDesignatedInits(IL)) {
951     FullyStructuredList =
952         createInitListExpr(T, IL->getSourceRange(), IL->getNumInits());
953 
954     // FIXME: Check that IL isn't already the semantic form of some other
955     // InitListExpr. If it is, we'd create a broken AST.
956     if (!VerifyOnly)
957       FullyStructuredList->setSyntacticForm(IL);
958   }
959 
960   CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
961                         /*TopLevelObject=*/true);
962 
963   if (!hadError && FullyStructuredList) {
964     bool RequiresSecondPass = false;
965     FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass,
966                                /*OuterILE=*/nullptr, /*OuterIndex=*/0);
967     if (RequiresSecondPass && !hadError)
968       FillInEmptyInitializations(Entity, FullyStructuredList,
969                                  RequiresSecondPass, nullptr, 0);
970   }
971   if (hadError && FullyStructuredList)
972     FullyStructuredList->markError();
973 }
974 
975 int InitListChecker::numArrayElements(QualType DeclType) {
976   // FIXME: use a proper constant
977   int maxElements = 0x7FFFFFFF;
978   if (const ConstantArrayType *CAT =
979         SemaRef.Context.getAsConstantArrayType(DeclType)) {
980     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
981   }
982   return maxElements;
983 }
984 
985 int InitListChecker::numStructUnionElements(QualType DeclType) {
986   RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl();
987   int InitializableMembers = 0;
988   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
989     InitializableMembers += CXXRD->getNumBases();
990   for (const auto *Field : structDecl->fields())
991     if (!Field->isUnnamedBitfield())
992       ++InitializableMembers;
993 
994   if (structDecl->isUnion())
995     return std::min(InitializableMembers, 1);
996   return InitializableMembers - structDecl->hasFlexibleArrayMember();
997 }
998 
999 /// Determine whether Entity is an entity for which it is idiomatic to elide
1000 /// the braces in aggregate initialization.
1001 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) {
1002   // Recursive initialization of the one and only field within an aggregate
1003   // class is considered idiomatic. This case arises in particular for
1004   // initialization of std::array, where the C++ standard suggests the idiom of
1005   //
1006   //   std::array<T, N> arr = {1, 2, 3};
1007   //
1008   // (where std::array is an aggregate struct containing a single array field.
1009 
1010   if (!Entity.getParent())
1011     return false;
1012 
1013   // Allows elide brace initialization for aggregates with empty base.
1014   if (Entity.getKind() == InitializedEntity::EK_Base) {
1015     auto *ParentRD =
1016         Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
1017     CXXRecordDecl *CXXRD = cast<CXXRecordDecl>(ParentRD);
1018     return CXXRD->getNumBases() == 1 && CXXRD->field_empty();
1019   }
1020 
1021   // Allow brace elision if the only subobject is a field.
1022   if (Entity.getKind() == InitializedEntity::EK_Member) {
1023     auto *ParentRD =
1024         Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
1025     if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD)) {
1026       if (CXXRD->getNumBases()) {
1027         return false;
1028       }
1029     }
1030     auto FieldIt = ParentRD->field_begin();
1031     assert(FieldIt != ParentRD->field_end() &&
1032            "no fields but have initializer for member?");
1033     return ++FieldIt == ParentRD->field_end();
1034   }
1035 
1036   return false;
1037 }
1038 
1039 /// Check whether the range of the initializer \p ParentIList from element
1040 /// \p Index onwards can be used to initialize an object of type \p T. Update
1041 /// \p Index to indicate how many elements of the list were consumed.
1042 ///
1043 /// This also fills in \p StructuredList, from element \p StructuredIndex
1044 /// onwards, with the fully-braced, desugared form of the initialization.
1045 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
1046                                             InitListExpr *ParentIList,
1047                                             QualType T, unsigned &Index,
1048                                             InitListExpr *StructuredList,
1049                                             unsigned &StructuredIndex) {
1050   int maxElements = 0;
1051 
1052   if (T->isArrayType())
1053     maxElements = numArrayElements(T);
1054   else if (T->isRecordType())
1055     maxElements = numStructUnionElements(T);
1056   else if (T->isVectorType())
1057     maxElements = T->castAs<VectorType>()->getNumElements();
1058   else
1059     llvm_unreachable("CheckImplicitInitList(): Illegal type");
1060 
1061   if (maxElements == 0) {
1062     if (!VerifyOnly)
1063       SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(),
1064                    diag::err_implicit_empty_initializer);
1065     ++Index;
1066     hadError = true;
1067     return;
1068   }
1069 
1070   // Build a structured initializer list corresponding to this subobject.
1071   InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit(
1072       ParentIList, Index, T, StructuredList, StructuredIndex,
1073       SourceRange(ParentIList->getInit(Index)->getBeginLoc(),
1074                   ParentIList->getSourceRange().getEnd()));
1075   unsigned StructuredSubobjectInitIndex = 0;
1076 
1077   // Check the element types and build the structural subobject.
1078   unsigned StartIndex = Index;
1079   CheckListElementTypes(Entity, ParentIList, T,
1080                         /*SubobjectIsDesignatorContext=*/false, Index,
1081                         StructuredSubobjectInitList,
1082                         StructuredSubobjectInitIndex);
1083 
1084   if (StructuredSubobjectInitList) {
1085     StructuredSubobjectInitList->setType(T);
1086 
1087     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
1088     // Update the structured sub-object initializer so that it's ending
1089     // range corresponds with the end of the last initializer it used.
1090     if (EndIndex < ParentIList->getNumInits() &&
1091         ParentIList->getInit(EndIndex)) {
1092       SourceLocation EndLoc
1093         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
1094       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
1095     }
1096 
1097     // Complain about missing braces.
1098     if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) &&
1099         !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) &&
1100         !isIdiomaticBraceElisionEntity(Entity)) {
1101       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
1102                    diag::warn_missing_braces)
1103           << StructuredSubobjectInitList->getSourceRange()
1104           << FixItHint::CreateInsertion(
1105                  StructuredSubobjectInitList->getBeginLoc(), "{")
1106           << FixItHint::CreateInsertion(
1107                  SemaRef.getLocForEndOfToken(
1108                      StructuredSubobjectInitList->getEndLoc()),
1109                  "}");
1110     }
1111 
1112     // Warn if this type won't be an aggregate in future versions of C++.
1113     auto *CXXRD = T->getAsCXXRecordDecl();
1114     if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1115       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
1116                    diag::warn_cxx20_compat_aggregate_init_with_ctors)
1117           << StructuredSubobjectInitList->getSourceRange() << T;
1118     }
1119   }
1120 }
1121 
1122 /// Warn that \p Entity was of scalar type and was initialized by a
1123 /// single-element braced initializer list.
1124 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
1125                                  SourceRange Braces) {
1126   // Don't warn during template instantiation. If the initialization was
1127   // non-dependent, we warned during the initial parse; otherwise, the
1128   // type might not be scalar in some uses of the template.
1129   if (S.inTemplateInstantiation())
1130     return;
1131 
1132   unsigned DiagID = 0;
1133 
1134   switch (Entity.getKind()) {
1135   case InitializedEntity::EK_VectorElement:
1136   case InitializedEntity::EK_ComplexElement:
1137   case InitializedEntity::EK_ArrayElement:
1138   case InitializedEntity::EK_Parameter:
1139   case InitializedEntity::EK_Parameter_CF_Audited:
1140   case InitializedEntity::EK_TemplateParameter:
1141   case InitializedEntity::EK_Result:
1142     // Extra braces here are suspicious.
1143     DiagID = diag::warn_braces_around_init;
1144     break;
1145 
1146   case InitializedEntity::EK_Member:
1147     // Warn on aggregate initialization but not on ctor init list or
1148     // default member initializer.
1149     if (Entity.getParent())
1150       DiagID = diag::warn_braces_around_init;
1151     break;
1152 
1153   case InitializedEntity::EK_Variable:
1154   case InitializedEntity::EK_LambdaCapture:
1155     // No warning, might be direct-list-initialization.
1156     // FIXME: Should we warn for copy-list-initialization in these cases?
1157     break;
1158 
1159   case InitializedEntity::EK_New:
1160   case InitializedEntity::EK_Temporary:
1161   case InitializedEntity::EK_CompoundLiteralInit:
1162     // No warning, braces are part of the syntax of the underlying construct.
1163     break;
1164 
1165   case InitializedEntity::EK_RelatedResult:
1166     // No warning, we already warned when initializing the result.
1167     break;
1168 
1169   case InitializedEntity::EK_Exception:
1170   case InitializedEntity::EK_Base:
1171   case InitializedEntity::EK_Delegating:
1172   case InitializedEntity::EK_BlockElement:
1173   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
1174   case InitializedEntity::EK_Binding:
1175   case InitializedEntity::EK_StmtExprResult:
1176     llvm_unreachable("unexpected braced scalar init");
1177   }
1178 
1179   if (DiagID) {
1180     S.Diag(Braces.getBegin(), DiagID)
1181         << Entity.getType()->isSizelessBuiltinType() << Braces
1182         << FixItHint::CreateRemoval(Braces.getBegin())
1183         << FixItHint::CreateRemoval(Braces.getEnd());
1184   }
1185 }
1186 
1187 /// Check whether the initializer \p IList (that was written with explicit
1188 /// braces) can be used to initialize an object of type \p T.
1189 ///
1190 /// This also fills in \p StructuredList with the fully-braced, desugared
1191 /// form of the initialization.
1192 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
1193                                             InitListExpr *IList, QualType &T,
1194                                             InitListExpr *StructuredList,
1195                                             bool TopLevelObject) {
1196   unsigned Index = 0, StructuredIndex = 0;
1197   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
1198                         Index, StructuredList, StructuredIndex, TopLevelObject);
1199   if (StructuredList) {
1200     QualType ExprTy = T;
1201     if (!ExprTy->isArrayType())
1202       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
1203     if (!VerifyOnly)
1204       IList->setType(ExprTy);
1205     StructuredList->setType(ExprTy);
1206   }
1207   if (hadError)
1208     return;
1209 
1210   // Don't complain for incomplete types, since we'll get an error elsewhere.
1211   if (Index < IList->getNumInits() && !T->isIncompleteType()) {
1212     // We have leftover initializers
1213     bool ExtraInitsIsError = SemaRef.getLangOpts().CPlusPlus ||
1214           (SemaRef.getLangOpts().OpenCL && T->isVectorType());
1215     hadError = ExtraInitsIsError;
1216     if (VerifyOnly) {
1217       return;
1218     } else if (StructuredIndex == 1 &&
1219                IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
1220                    SIF_None) {
1221       unsigned DK =
1222           ExtraInitsIsError
1223               ? diag::err_excess_initializers_in_char_array_initializer
1224               : diag::ext_excess_initializers_in_char_array_initializer;
1225       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1226           << IList->getInit(Index)->getSourceRange();
1227     } else if (T->isSizelessBuiltinType()) {
1228       unsigned DK = ExtraInitsIsError
1229                         ? diag::err_excess_initializers_for_sizeless_type
1230                         : diag::ext_excess_initializers_for_sizeless_type;
1231       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1232           << T << IList->getInit(Index)->getSourceRange();
1233     } else {
1234       int initKind = T->isArrayType() ? 0 :
1235                      T->isVectorType() ? 1 :
1236                      T->isScalarType() ? 2 :
1237                      T->isUnionType() ? 3 :
1238                      4;
1239 
1240       unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers
1241                                       : diag::ext_excess_initializers;
1242       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1243           << initKind << IList->getInit(Index)->getSourceRange();
1244     }
1245   }
1246 
1247   if (!VerifyOnly) {
1248     if (T->isScalarType() && IList->getNumInits() == 1 &&
1249         !isa<InitListExpr>(IList->getInit(0)))
1250       warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
1251 
1252     // Warn if this is a class type that won't be an aggregate in future
1253     // versions of C++.
1254     auto *CXXRD = T->getAsCXXRecordDecl();
1255     if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1256       // Don't warn if there's an equivalent default constructor that would be
1257       // used instead.
1258       bool HasEquivCtor = false;
1259       if (IList->getNumInits() == 0) {
1260         auto *CD = SemaRef.LookupDefaultConstructor(CXXRD);
1261         HasEquivCtor = CD && !CD->isDeleted();
1262       }
1263 
1264       if (!HasEquivCtor) {
1265         SemaRef.Diag(IList->getBeginLoc(),
1266                      diag::warn_cxx20_compat_aggregate_init_with_ctors)
1267             << IList->getSourceRange() << T;
1268       }
1269     }
1270   }
1271 }
1272 
1273 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
1274                                             InitListExpr *IList,
1275                                             QualType &DeclType,
1276                                             bool SubobjectIsDesignatorContext,
1277                                             unsigned &Index,
1278                                             InitListExpr *StructuredList,
1279                                             unsigned &StructuredIndex,
1280                                             bool TopLevelObject) {
1281   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
1282     // Explicitly braced initializer for complex type can be real+imaginary
1283     // parts.
1284     CheckComplexType(Entity, IList, DeclType, Index,
1285                      StructuredList, StructuredIndex);
1286   } else if (DeclType->isScalarType()) {
1287     CheckScalarType(Entity, IList, DeclType, Index,
1288                     StructuredList, StructuredIndex);
1289   } else if (DeclType->isVectorType()) {
1290     CheckVectorType(Entity, IList, DeclType, Index,
1291                     StructuredList, StructuredIndex);
1292   } else if (DeclType->isRecordType()) {
1293     assert(DeclType->isAggregateType() &&
1294            "non-aggregate records should be handed in CheckSubElementType");
1295     RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
1296     auto Bases =
1297         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
1298                                         CXXRecordDecl::base_class_iterator());
1299     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1300       Bases = CXXRD->bases();
1301     CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
1302                           SubobjectIsDesignatorContext, Index, StructuredList,
1303                           StructuredIndex, TopLevelObject);
1304   } else if (DeclType->isArrayType()) {
1305     llvm::APSInt Zero(
1306                     SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1307                     false);
1308     CheckArrayType(Entity, IList, DeclType, Zero,
1309                    SubobjectIsDesignatorContext, Index,
1310                    StructuredList, StructuredIndex);
1311   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1312     // This type is invalid, issue a diagnostic.
1313     ++Index;
1314     if (!VerifyOnly)
1315       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1316           << DeclType;
1317     hadError = true;
1318   } else if (DeclType->isReferenceType()) {
1319     CheckReferenceType(Entity, IList, DeclType, Index,
1320                        StructuredList, StructuredIndex);
1321   } else if (DeclType->isObjCObjectType()) {
1322     if (!VerifyOnly)
1323       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType;
1324     hadError = true;
1325   } else if (DeclType->isOCLIntelSubgroupAVCType() ||
1326              DeclType->isSizelessBuiltinType()) {
1327     // Checks for scalar type are sufficient for these types too.
1328     CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1329                     StructuredIndex);
1330   } else {
1331     if (!VerifyOnly)
1332       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1333           << DeclType;
1334     hadError = true;
1335   }
1336 }
1337 
1338 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1339                                           InitListExpr *IList,
1340                                           QualType ElemType,
1341                                           unsigned &Index,
1342                                           InitListExpr *StructuredList,
1343                                           unsigned &StructuredIndex,
1344                                           bool DirectlyDesignated) {
1345   Expr *expr = IList->getInit(Index);
1346 
1347   if (ElemType->isReferenceType())
1348     return CheckReferenceType(Entity, IList, ElemType, Index,
1349                               StructuredList, StructuredIndex);
1350 
1351   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1352     if (SubInitList->getNumInits() == 1 &&
1353         IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1354         SIF_None) {
1355       // FIXME: It would be more faithful and no less correct to include an
1356       // InitListExpr in the semantic form of the initializer list in this case.
1357       expr = SubInitList->getInit(0);
1358     }
1359     // Nested aggregate initialization and C++ initialization are handled later.
1360   } else if (isa<ImplicitValueInitExpr>(expr)) {
1361     // This happens during template instantiation when we see an InitListExpr
1362     // that we've already checked once.
1363     assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
1364            "found implicit initialization for the wrong type");
1365     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1366     ++Index;
1367     return;
1368   }
1369 
1370   if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(expr)) {
1371     // C++ [dcl.init.aggr]p2:
1372     //   Each member is copy-initialized from the corresponding
1373     //   initializer-clause.
1374 
1375     // FIXME: Better EqualLoc?
1376     InitializationKind Kind =
1377         InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation());
1378 
1379     // Vector elements can be initialized from other vectors in which case
1380     // we need initialization entity with a type of a vector (and not a vector
1381     // element!) initializing multiple vector elements.
1382     auto TmpEntity =
1383         (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType())
1384             ? InitializedEntity::InitializeTemporary(ElemType)
1385             : Entity;
1386 
1387     InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr,
1388                                /*TopLevelOfInitList*/ true);
1389 
1390     // C++14 [dcl.init.aggr]p13:
1391     //   If the assignment-expression can initialize a member, the member is
1392     //   initialized. Otherwise [...] brace elision is assumed
1393     //
1394     // Brace elision is never performed if the element is not an
1395     // assignment-expression.
1396     if (Seq || isa<InitListExpr>(expr)) {
1397       if (!VerifyOnly) {
1398         ExprResult Result = Seq.Perform(SemaRef, TmpEntity, Kind, expr);
1399         if (Result.isInvalid())
1400           hadError = true;
1401 
1402         UpdateStructuredListElement(StructuredList, StructuredIndex,
1403                                     Result.getAs<Expr>());
1404       } else if (!Seq) {
1405         hadError = true;
1406       } else if (StructuredList) {
1407         UpdateStructuredListElement(StructuredList, StructuredIndex,
1408                                     getDummyInit());
1409       }
1410       ++Index;
1411       return;
1412     }
1413 
1414     // Fall through for subaggregate initialization
1415   } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1416     // FIXME: Need to handle atomic aggregate types with implicit init lists.
1417     return CheckScalarType(Entity, IList, ElemType, Index,
1418                            StructuredList, StructuredIndex);
1419   } else if (const ArrayType *arrayType =
1420                  SemaRef.Context.getAsArrayType(ElemType)) {
1421     // arrayType can be incomplete if we're initializing a flexible
1422     // array member.  There's nothing we can do with the completed
1423     // type here, though.
1424 
1425     if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1426       // FIXME: Should we do this checking in verify-only mode?
1427       if (!VerifyOnly)
1428         CheckStringInit(expr, ElemType, arrayType, SemaRef);
1429       if (StructuredList)
1430         UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1431       ++Index;
1432       return;
1433     }
1434 
1435     // Fall through for subaggregate initialization.
1436 
1437   } else {
1438     assert((ElemType->isRecordType() || ElemType->isVectorType() ||
1439             ElemType->isOpenCLSpecificType()) && "Unexpected type");
1440 
1441     // C99 6.7.8p13:
1442     //
1443     //   The initializer for a structure or union object that has
1444     //   automatic storage duration shall be either an initializer
1445     //   list as described below, or a single expression that has
1446     //   compatible structure or union type. In the latter case, the
1447     //   initial value of the object, including unnamed members, is
1448     //   that of the expression.
1449     ExprResult ExprRes = expr;
1450     if (SemaRef.CheckSingleAssignmentConstraints(
1451             ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1452       if (ExprRes.isInvalid())
1453         hadError = true;
1454       else {
1455         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1456         if (ExprRes.isInvalid())
1457           hadError = true;
1458       }
1459       UpdateStructuredListElement(StructuredList, StructuredIndex,
1460                                   ExprRes.getAs<Expr>());
1461       ++Index;
1462       return;
1463     }
1464     ExprRes.get();
1465     // Fall through for subaggregate initialization
1466   }
1467 
1468   // C++ [dcl.init.aggr]p12:
1469   //
1470   //   [...] Otherwise, if the member is itself a non-empty
1471   //   subaggregate, brace elision is assumed and the initializer is
1472   //   considered for the initialization of the first member of
1473   //   the subaggregate.
1474   // OpenCL vector initializer is handled elsewhere.
1475   if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
1476       ElemType->isAggregateType()) {
1477     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1478                           StructuredIndex);
1479     ++StructuredIndex;
1480 
1481     // In C++20, brace elision is not permitted for a designated initializer.
1482     if (DirectlyDesignated && SemaRef.getLangOpts().CPlusPlus && !hadError) {
1483       if (InOverloadResolution)
1484         hadError = true;
1485       if (!VerifyOnly) {
1486         SemaRef.Diag(expr->getBeginLoc(),
1487                      diag::ext_designated_init_brace_elision)
1488             << expr->getSourceRange()
1489             << FixItHint::CreateInsertion(expr->getBeginLoc(), "{")
1490             << FixItHint::CreateInsertion(
1491                    SemaRef.getLocForEndOfToken(expr->getEndLoc()), "}");
1492       }
1493     }
1494   } else {
1495     if (!VerifyOnly) {
1496       // We cannot initialize this element, so let PerformCopyInitialization
1497       // produce the appropriate diagnostic. We already checked that this
1498       // initialization will fail.
1499       ExprResult Copy =
1500           SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1501                                             /*TopLevelOfInitList=*/true);
1502       (void)Copy;
1503       assert(Copy.isInvalid() &&
1504              "expected non-aggregate initialization to fail");
1505     }
1506     hadError = true;
1507     ++Index;
1508     ++StructuredIndex;
1509   }
1510 }
1511 
1512 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1513                                        InitListExpr *IList, QualType DeclType,
1514                                        unsigned &Index,
1515                                        InitListExpr *StructuredList,
1516                                        unsigned &StructuredIndex) {
1517   assert(Index == 0 && "Index in explicit init list must be zero");
1518 
1519   // As an extension, clang supports complex initializers, which initialize
1520   // a complex number component-wise.  When an explicit initializer list for
1521   // a complex number contains two two initializers, this extension kicks in:
1522   // it exepcts the initializer list to contain two elements convertible to
1523   // the element type of the complex type. The first element initializes
1524   // the real part, and the second element intitializes the imaginary part.
1525 
1526   if (IList->getNumInits() != 2)
1527     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1528                            StructuredIndex);
1529 
1530   // This is an extension in C.  (The builtin _Complex type does not exist
1531   // in the C++ standard.)
1532   if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1533     SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init)
1534         << IList->getSourceRange();
1535 
1536   // Initialize the complex number.
1537   QualType elementType = DeclType->castAs<ComplexType>()->getElementType();
1538   InitializedEntity ElementEntity =
1539     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1540 
1541   for (unsigned i = 0; i < 2; ++i) {
1542     ElementEntity.setElementIndex(Index);
1543     CheckSubElementType(ElementEntity, IList, elementType, Index,
1544                         StructuredList, StructuredIndex);
1545   }
1546 }
1547 
1548 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1549                                       InitListExpr *IList, QualType DeclType,
1550                                       unsigned &Index,
1551                                       InitListExpr *StructuredList,
1552                                       unsigned &StructuredIndex) {
1553   if (Index >= IList->getNumInits()) {
1554     if (!VerifyOnly) {
1555       if (DeclType->isSizelessBuiltinType())
1556         SemaRef.Diag(IList->getBeginLoc(),
1557                      SemaRef.getLangOpts().CPlusPlus11
1558                          ? diag::warn_cxx98_compat_empty_sizeless_initializer
1559                          : diag::err_empty_sizeless_initializer)
1560             << DeclType << IList->getSourceRange();
1561       else
1562         SemaRef.Diag(IList->getBeginLoc(),
1563                      SemaRef.getLangOpts().CPlusPlus11
1564                          ? diag::warn_cxx98_compat_empty_scalar_initializer
1565                          : diag::err_empty_scalar_initializer)
1566             << IList->getSourceRange();
1567     }
1568     hadError = !SemaRef.getLangOpts().CPlusPlus11;
1569     ++Index;
1570     ++StructuredIndex;
1571     return;
1572   }
1573 
1574   Expr *expr = IList->getInit(Index);
1575   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1576     // FIXME: This is invalid, and accepting it causes overload resolution
1577     // to pick the wrong overload in some corner cases.
1578     if (!VerifyOnly)
1579       SemaRef.Diag(SubIList->getBeginLoc(), diag::ext_many_braces_around_init)
1580           << DeclType->isSizelessBuiltinType() << SubIList->getSourceRange();
1581 
1582     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1583                     StructuredIndex);
1584     return;
1585   } else if (isa<DesignatedInitExpr>(expr)) {
1586     if (!VerifyOnly)
1587       SemaRef.Diag(expr->getBeginLoc(),
1588                    diag::err_designator_for_scalar_or_sizeless_init)
1589           << DeclType->isSizelessBuiltinType() << DeclType
1590           << expr->getSourceRange();
1591     hadError = true;
1592     ++Index;
1593     ++StructuredIndex;
1594     return;
1595   }
1596 
1597   ExprResult Result;
1598   if (VerifyOnly) {
1599     if (SemaRef.CanPerformCopyInitialization(Entity, expr))
1600       Result = getDummyInit();
1601     else
1602       Result = ExprError();
1603   } else {
1604     Result =
1605         SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1606                                           /*TopLevelOfInitList=*/true);
1607   }
1608 
1609   Expr *ResultExpr = nullptr;
1610 
1611   if (Result.isInvalid())
1612     hadError = true; // types weren't compatible.
1613   else {
1614     ResultExpr = Result.getAs<Expr>();
1615 
1616     if (ResultExpr != expr && !VerifyOnly) {
1617       // The type was promoted, update initializer list.
1618       // FIXME: Why are we updating the syntactic init list?
1619       IList->setInit(Index, ResultExpr);
1620     }
1621   }
1622   UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1623   ++Index;
1624 }
1625 
1626 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1627                                          InitListExpr *IList, QualType DeclType,
1628                                          unsigned &Index,
1629                                          InitListExpr *StructuredList,
1630                                          unsigned &StructuredIndex) {
1631   if (Index >= IList->getNumInits()) {
1632     // FIXME: It would be wonderful if we could point at the actual member. In
1633     // general, it would be useful to pass location information down the stack,
1634     // so that we know the location (or decl) of the "current object" being
1635     // initialized.
1636     if (!VerifyOnly)
1637       SemaRef.Diag(IList->getBeginLoc(),
1638                    diag::err_init_reference_member_uninitialized)
1639           << DeclType << IList->getSourceRange();
1640     hadError = true;
1641     ++Index;
1642     ++StructuredIndex;
1643     return;
1644   }
1645 
1646   Expr *expr = IList->getInit(Index);
1647   if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1648     if (!VerifyOnly)
1649       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list)
1650           << DeclType << IList->getSourceRange();
1651     hadError = true;
1652     ++Index;
1653     ++StructuredIndex;
1654     return;
1655   }
1656 
1657   ExprResult Result;
1658   if (VerifyOnly) {
1659     if (SemaRef.CanPerformCopyInitialization(Entity,expr))
1660       Result = getDummyInit();
1661     else
1662       Result = ExprError();
1663   } else {
1664     Result =
1665         SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1666                                           /*TopLevelOfInitList=*/true);
1667   }
1668 
1669   if (Result.isInvalid())
1670     hadError = true;
1671 
1672   expr = Result.getAs<Expr>();
1673   // FIXME: Why are we updating the syntactic init list?
1674   if (!VerifyOnly && expr)
1675     IList->setInit(Index, expr);
1676 
1677   UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1678   ++Index;
1679 }
1680 
1681 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1682                                       InitListExpr *IList, QualType DeclType,
1683                                       unsigned &Index,
1684                                       InitListExpr *StructuredList,
1685                                       unsigned &StructuredIndex) {
1686   const VectorType *VT = DeclType->castAs<VectorType>();
1687   unsigned maxElements = VT->getNumElements();
1688   unsigned numEltsInit = 0;
1689   QualType elementType = VT->getElementType();
1690 
1691   if (Index >= IList->getNumInits()) {
1692     // Make sure the element type can be value-initialized.
1693     CheckEmptyInitializable(
1694         InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1695         IList->getEndLoc());
1696     return;
1697   }
1698 
1699   if (!SemaRef.getLangOpts().OpenCL && !SemaRef.getLangOpts().HLSL ) {
1700     // If the initializing element is a vector, try to copy-initialize
1701     // instead of breaking it apart (which is doomed to failure anyway).
1702     Expr *Init = IList->getInit(Index);
1703     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1704       ExprResult Result;
1705       if (VerifyOnly) {
1706         if (SemaRef.CanPerformCopyInitialization(Entity, Init))
1707           Result = getDummyInit();
1708         else
1709           Result = ExprError();
1710       } else {
1711         Result =
1712             SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init,
1713                                               /*TopLevelOfInitList=*/true);
1714       }
1715 
1716       Expr *ResultExpr = nullptr;
1717       if (Result.isInvalid())
1718         hadError = true; // types weren't compatible.
1719       else {
1720         ResultExpr = Result.getAs<Expr>();
1721 
1722         if (ResultExpr != Init && !VerifyOnly) {
1723           // The type was promoted, update initializer list.
1724           // FIXME: Why are we updating the syntactic init list?
1725           IList->setInit(Index, ResultExpr);
1726         }
1727       }
1728       UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1729       ++Index;
1730       return;
1731     }
1732 
1733     InitializedEntity ElementEntity =
1734       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1735 
1736     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1737       // Don't attempt to go past the end of the init list
1738       if (Index >= IList->getNumInits()) {
1739         CheckEmptyInitializable(ElementEntity, IList->getEndLoc());
1740         break;
1741       }
1742 
1743       ElementEntity.setElementIndex(Index);
1744       CheckSubElementType(ElementEntity, IList, elementType, Index,
1745                           StructuredList, StructuredIndex);
1746     }
1747 
1748     if (VerifyOnly)
1749       return;
1750 
1751     bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1752     const VectorType *T = Entity.getType()->castAs<VectorType>();
1753     if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1754                         T->getVectorKind() == VectorType::NeonPolyVector)) {
1755       // The ability to use vector initializer lists is a GNU vector extension
1756       // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1757       // endian machines it works fine, however on big endian machines it
1758       // exhibits surprising behaviour:
1759       //
1760       //   uint32x2_t x = {42, 64};
1761       //   return vget_lane_u32(x, 0); // Will return 64.
1762       //
1763       // Because of this, explicitly call out that it is non-portable.
1764       //
1765       SemaRef.Diag(IList->getBeginLoc(),
1766                    diag::warn_neon_vector_initializer_non_portable);
1767 
1768       const char *typeCode;
1769       unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1770 
1771       if (elementType->isFloatingType())
1772         typeCode = "f";
1773       else if (elementType->isSignedIntegerType())
1774         typeCode = "s";
1775       else if (elementType->isUnsignedIntegerType())
1776         typeCode = "u";
1777       else
1778         llvm_unreachable("Invalid element type!");
1779 
1780       SemaRef.Diag(IList->getBeginLoc(),
1781                    SemaRef.Context.getTypeSize(VT) > 64
1782                        ? diag::note_neon_vector_initializer_non_portable_q
1783                        : diag::note_neon_vector_initializer_non_portable)
1784           << typeCode << typeSize;
1785     }
1786 
1787     return;
1788   }
1789 
1790   InitializedEntity ElementEntity =
1791     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1792 
1793   // OpenCL and HLSL initializers allow vectors to be constructed from vectors.
1794   for (unsigned i = 0; i < maxElements; ++i) {
1795     // Don't attempt to go past the end of the init list
1796     if (Index >= IList->getNumInits())
1797       break;
1798 
1799     ElementEntity.setElementIndex(Index);
1800 
1801     QualType IType = IList->getInit(Index)->getType();
1802     if (!IType->isVectorType()) {
1803       CheckSubElementType(ElementEntity, IList, elementType, Index,
1804                           StructuredList, StructuredIndex);
1805       ++numEltsInit;
1806     } else {
1807       QualType VecType;
1808       const VectorType *IVT = IType->castAs<VectorType>();
1809       unsigned numIElts = IVT->getNumElements();
1810 
1811       if (IType->isExtVectorType())
1812         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1813       else
1814         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1815                                                 IVT->getVectorKind());
1816       CheckSubElementType(ElementEntity, IList, VecType, Index,
1817                           StructuredList, StructuredIndex);
1818       numEltsInit += numIElts;
1819     }
1820   }
1821 
1822   // OpenCL and HLSL require all elements to be initialized.
1823   if (numEltsInit != maxElements) {
1824     if (!VerifyOnly)
1825       SemaRef.Diag(IList->getBeginLoc(),
1826                    diag::err_vector_incorrect_num_initializers)
1827           << (numEltsInit < maxElements) << maxElements << numEltsInit;
1828     hadError = true;
1829   }
1830 }
1831 
1832 /// Check if the type of a class element has an accessible destructor, and marks
1833 /// it referenced. Returns true if we shouldn't form a reference to the
1834 /// destructor.
1835 ///
1836 /// Aggregate initialization requires a class element's destructor be
1837 /// accessible per 11.6.1 [dcl.init.aggr]:
1838 ///
1839 /// The destructor for each element of class type is potentially invoked
1840 /// (15.4 [class.dtor]) from the context where the aggregate initialization
1841 /// occurs.
1842 static bool checkDestructorReference(QualType ElementType, SourceLocation Loc,
1843                                      Sema &SemaRef) {
1844   auto *CXXRD = ElementType->getAsCXXRecordDecl();
1845   if (!CXXRD)
1846     return false;
1847 
1848   CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD);
1849   SemaRef.CheckDestructorAccess(Loc, Destructor,
1850                                 SemaRef.PDiag(diag::err_access_dtor_temp)
1851                                 << ElementType);
1852   SemaRef.MarkFunctionReferenced(Loc, Destructor);
1853   return SemaRef.DiagnoseUseOfDecl(Destructor, Loc);
1854 }
1855 
1856 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1857                                      InitListExpr *IList, QualType &DeclType,
1858                                      llvm::APSInt elementIndex,
1859                                      bool SubobjectIsDesignatorContext,
1860                                      unsigned &Index,
1861                                      InitListExpr *StructuredList,
1862                                      unsigned &StructuredIndex) {
1863   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1864 
1865   if (!VerifyOnly) {
1866     if (checkDestructorReference(arrayType->getElementType(),
1867                                  IList->getEndLoc(), SemaRef)) {
1868       hadError = true;
1869       return;
1870     }
1871   }
1872 
1873   // Check for the special-case of initializing an array with a string.
1874   if (Index < IList->getNumInits()) {
1875     if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1876         SIF_None) {
1877       // We place the string literal directly into the resulting
1878       // initializer list. This is the only place where the structure
1879       // of the structured initializer list doesn't match exactly,
1880       // because doing so would involve allocating one character
1881       // constant for each string.
1882       // FIXME: Should we do these checks in verify-only mode too?
1883       if (!VerifyOnly)
1884         CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1885       if (StructuredList) {
1886         UpdateStructuredListElement(StructuredList, StructuredIndex,
1887                                     IList->getInit(Index));
1888         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1889       }
1890       ++Index;
1891       return;
1892     }
1893   }
1894   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1895     // Check for VLAs; in standard C it would be possible to check this
1896     // earlier, but I don't know where clang accepts VLAs (gcc accepts
1897     // them in all sorts of strange places).
1898     if (!VerifyOnly)
1899       SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(),
1900                    diag::err_variable_object_no_init)
1901           << VAT->getSizeExpr()->getSourceRange();
1902     hadError = true;
1903     ++Index;
1904     ++StructuredIndex;
1905     return;
1906   }
1907 
1908   // We might know the maximum number of elements in advance.
1909   llvm::APSInt maxElements(elementIndex.getBitWidth(),
1910                            elementIndex.isUnsigned());
1911   bool maxElementsKnown = false;
1912   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1913     maxElements = CAT->getSize();
1914     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1915     elementIndex.setIsUnsigned(maxElements.isUnsigned());
1916     maxElementsKnown = true;
1917   }
1918 
1919   QualType elementType = arrayType->getElementType();
1920   while (Index < IList->getNumInits()) {
1921     Expr *Init = IList->getInit(Index);
1922     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1923       // If we're not the subobject that matches up with the '{' for
1924       // the designator, we shouldn't be handling the
1925       // designator. Return immediately.
1926       if (!SubobjectIsDesignatorContext)
1927         return;
1928 
1929       // Handle this designated initializer. elementIndex will be
1930       // updated to be the next array element we'll initialize.
1931       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1932                                      DeclType, nullptr, &elementIndex, Index,
1933                                      StructuredList, StructuredIndex, true,
1934                                      false)) {
1935         hadError = true;
1936         continue;
1937       }
1938 
1939       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1940         maxElements = maxElements.extend(elementIndex.getBitWidth());
1941       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1942         elementIndex = elementIndex.extend(maxElements.getBitWidth());
1943       elementIndex.setIsUnsigned(maxElements.isUnsigned());
1944 
1945       // If the array is of incomplete type, keep track of the number of
1946       // elements in the initializer.
1947       if (!maxElementsKnown && elementIndex > maxElements)
1948         maxElements = elementIndex;
1949 
1950       continue;
1951     }
1952 
1953     // If we know the maximum number of elements, and we've already
1954     // hit it, stop consuming elements in the initializer list.
1955     if (maxElementsKnown && elementIndex == maxElements)
1956       break;
1957 
1958     InitializedEntity ElementEntity =
1959       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1960                                            Entity);
1961     // Check this element.
1962     CheckSubElementType(ElementEntity, IList, elementType, Index,
1963                         StructuredList, StructuredIndex);
1964     ++elementIndex;
1965 
1966     // If the array is of incomplete type, keep track of the number of
1967     // elements in the initializer.
1968     if (!maxElementsKnown && elementIndex > maxElements)
1969       maxElements = elementIndex;
1970   }
1971   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1972     // If this is an incomplete array type, the actual type needs to
1973     // be calculated here.
1974     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1975     if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) {
1976       // Sizing an array implicitly to zero is not allowed by ISO C,
1977       // but is supported by GNU.
1978       SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size);
1979     }
1980 
1981     DeclType = SemaRef.Context.getConstantArrayType(
1982         elementType, maxElements, nullptr, ArrayType::Normal, 0);
1983   }
1984   if (!hadError) {
1985     // If there are any members of the array that get value-initialized, check
1986     // that is possible. That happens if we know the bound and don't have
1987     // enough elements, or if we're performing an array new with an unknown
1988     // bound.
1989     if ((maxElementsKnown && elementIndex < maxElements) ||
1990         Entity.isVariableLengthArrayNew())
1991       CheckEmptyInitializable(
1992           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1993           IList->getEndLoc());
1994   }
1995 }
1996 
1997 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1998                                              Expr *InitExpr,
1999                                              FieldDecl *Field,
2000                                              bool TopLevelObject) {
2001   // Handle GNU flexible array initializers.
2002   unsigned FlexArrayDiag;
2003   if (isa<InitListExpr>(InitExpr) &&
2004       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
2005     // Empty flexible array init always allowed as an extension
2006     FlexArrayDiag = diag::ext_flexible_array_init;
2007   } else if (!TopLevelObject) {
2008     // Disallow flexible array init on non-top-level object
2009     FlexArrayDiag = diag::err_flexible_array_init;
2010   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
2011     // Disallow flexible array init on anything which is not a variable.
2012     FlexArrayDiag = diag::err_flexible_array_init;
2013   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
2014     // Disallow flexible array init on local variables.
2015     FlexArrayDiag = diag::err_flexible_array_init;
2016   } else {
2017     // Allow other cases.
2018     FlexArrayDiag = diag::ext_flexible_array_init;
2019   }
2020 
2021   if (!VerifyOnly) {
2022     SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag)
2023         << InitExpr->getBeginLoc();
2024     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2025       << Field;
2026   }
2027 
2028   return FlexArrayDiag != diag::ext_flexible_array_init;
2029 }
2030 
2031 void InitListChecker::CheckStructUnionTypes(
2032     const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
2033     CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field,
2034     bool SubobjectIsDesignatorContext, unsigned &Index,
2035     InitListExpr *StructuredList, unsigned &StructuredIndex,
2036     bool TopLevelObject) {
2037   RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl();
2038 
2039   // If the record is invalid, some of it's members are invalid. To avoid
2040   // confusion, we forgo checking the initializer for the entire record.
2041   if (structDecl->isInvalidDecl()) {
2042     // Assume it was supposed to consume a single initializer.
2043     ++Index;
2044     hadError = true;
2045     return;
2046   }
2047 
2048   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
2049     RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
2050 
2051     if (!VerifyOnly)
2052       for (FieldDecl *FD : RD->fields()) {
2053         QualType ET = SemaRef.Context.getBaseElementType(FD->getType());
2054         if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
2055           hadError = true;
2056           return;
2057         }
2058       }
2059 
2060     // If there's a default initializer, use it.
2061     if (isa<CXXRecordDecl>(RD) &&
2062         cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
2063       if (!StructuredList)
2064         return;
2065       for (RecordDecl::field_iterator FieldEnd = RD->field_end();
2066            Field != FieldEnd; ++Field) {
2067         if (Field->hasInClassInitializer()) {
2068           StructuredList->setInitializedFieldInUnion(*Field);
2069           // FIXME: Actually build a CXXDefaultInitExpr?
2070           return;
2071         }
2072       }
2073     }
2074 
2075     // Value-initialize the first member of the union that isn't an unnamed
2076     // bitfield.
2077     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
2078          Field != FieldEnd; ++Field) {
2079       if (!Field->isUnnamedBitfield()) {
2080         CheckEmptyInitializable(
2081             InitializedEntity::InitializeMember(*Field, &Entity),
2082             IList->getEndLoc());
2083         if (StructuredList)
2084           StructuredList->setInitializedFieldInUnion(*Field);
2085         break;
2086       }
2087     }
2088     return;
2089   }
2090 
2091   bool InitializedSomething = false;
2092 
2093   // If we have any base classes, they are initialized prior to the fields.
2094   for (auto &Base : Bases) {
2095     Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
2096 
2097     // Designated inits always initialize fields, so if we see one, all
2098     // remaining base classes have no explicit initializer.
2099     if (Init && isa<DesignatedInitExpr>(Init))
2100       Init = nullptr;
2101 
2102     SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc();
2103     InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
2104         SemaRef.Context, &Base, false, &Entity);
2105     if (Init) {
2106       CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
2107                           StructuredList, StructuredIndex);
2108       InitializedSomething = true;
2109     } else {
2110       CheckEmptyInitializable(BaseEntity, InitLoc);
2111     }
2112 
2113     if (!VerifyOnly)
2114       if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) {
2115         hadError = true;
2116         return;
2117       }
2118   }
2119 
2120   // If structDecl is a forward declaration, this loop won't do
2121   // anything except look at designated initializers; That's okay,
2122   // because an error should get printed out elsewhere. It might be
2123   // worthwhile to skip over the rest of the initializer, though.
2124   RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
2125   RecordDecl::field_iterator FieldEnd = RD->field_end();
2126   size_t NumRecordDecls = llvm::count_if(RD->decls(), [&](const Decl *D) {
2127     return isa<FieldDecl>(D) || isa<RecordDecl>(D);
2128   });
2129   bool CheckForMissingFields =
2130     !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts());
2131   bool HasDesignatedInit = false;
2132 
2133   while (Index < IList->getNumInits()) {
2134     Expr *Init = IList->getInit(Index);
2135     SourceLocation InitLoc = Init->getBeginLoc();
2136 
2137     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
2138       // If we're not the subobject that matches up with the '{' for
2139       // the designator, we shouldn't be handling the
2140       // designator. Return immediately.
2141       if (!SubobjectIsDesignatorContext)
2142         return;
2143 
2144       HasDesignatedInit = true;
2145 
2146       // Handle this designated initializer. Field will be updated to
2147       // the next field that we'll be initializing.
2148       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
2149                                      DeclType, &Field, nullptr, Index,
2150                                      StructuredList, StructuredIndex,
2151                                      true, TopLevelObject))
2152         hadError = true;
2153       else if (!VerifyOnly) {
2154         // Find the field named by the designated initializer.
2155         RecordDecl::field_iterator F = RD->field_begin();
2156         while (std::next(F) != Field)
2157           ++F;
2158         QualType ET = SemaRef.Context.getBaseElementType(F->getType());
2159         if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2160           hadError = true;
2161           return;
2162         }
2163       }
2164 
2165       InitializedSomething = true;
2166 
2167       // Disable check for missing fields when designators are used.
2168       // This matches gcc behaviour.
2169       CheckForMissingFields = false;
2170       continue;
2171     }
2172 
2173     // Check if this is an initializer of forms:
2174     //
2175     //   struct foo f = {};
2176     //   struct foo g = {0};
2177     //
2178     // These are okay for randomized structures. [C99 6.7.8p19]
2179     //
2180     // Also, if there is only one element in the structure, we allow something
2181     // like this, because it's really not randomized in the tranditional sense.
2182     //
2183     //   struct foo h = {bar};
2184     auto IsZeroInitializer = [&](const Expr *I) {
2185       if (IList->getNumInits() == 1) {
2186         if (NumRecordDecls == 1)
2187           return true;
2188         if (const auto *IL = dyn_cast<IntegerLiteral>(I))
2189           return IL->getValue().isZero();
2190       }
2191       return false;
2192     };
2193 
2194     // Don't allow non-designated initializers on randomized structures.
2195     if (RD->isRandomized() && !IsZeroInitializer(Init)) {
2196       if (!VerifyOnly)
2197         SemaRef.Diag(InitLoc, diag::err_non_designated_init_used);
2198       hadError = true;
2199       break;
2200     }
2201 
2202     if (Field == FieldEnd) {
2203       // We've run out of fields. We're done.
2204       break;
2205     }
2206 
2207     // We've already initialized a member of a union. We're done.
2208     if (InitializedSomething && DeclType->isUnionType())
2209       break;
2210 
2211     // If we've hit the flexible array member at the end, we're done.
2212     if (Field->getType()->isIncompleteArrayType())
2213       break;
2214 
2215     if (Field->isUnnamedBitfield()) {
2216       // Don't initialize unnamed bitfields, e.g. "int : 20;"
2217       ++Field;
2218       continue;
2219     }
2220 
2221     // Make sure we can use this declaration.
2222     bool InvalidUse;
2223     if (VerifyOnly)
2224       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2225     else
2226       InvalidUse = SemaRef.DiagnoseUseOfDecl(
2227           *Field, IList->getInit(Index)->getBeginLoc());
2228     if (InvalidUse) {
2229       ++Index;
2230       ++Field;
2231       hadError = true;
2232       continue;
2233     }
2234 
2235     if (!VerifyOnly) {
2236       QualType ET = SemaRef.Context.getBaseElementType(Field->getType());
2237       if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2238         hadError = true;
2239         return;
2240       }
2241     }
2242 
2243     InitializedEntity MemberEntity =
2244       InitializedEntity::InitializeMember(*Field, &Entity);
2245     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2246                         StructuredList, StructuredIndex);
2247     InitializedSomething = true;
2248 
2249     if (DeclType->isUnionType() && StructuredList) {
2250       // Initialize the first field within the union.
2251       StructuredList->setInitializedFieldInUnion(*Field);
2252     }
2253 
2254     ++Field;
2255   }
2256 
2257   // Emit warnings for missing struct field initializers.
2258   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
2259       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
2260       !DeclType->isUnionType()) {
2261     // It is possible we have one or more unnamed bitfields remaining.
2262     // Find first (if any) named field and emit warning.
2263     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
2264          it != end; ++it) {
2265       if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
2266         SemaRef.Diag(IList->getSourceRange().getEnd(),
2267                      diag::warn_missing_field_initializers) << *it;
2268         break;
2269       }
2270     }
2271   }
2272 
2273   // Check that any remaining fields can be value-initialized if we're not
2274   // building a structured list. (If we are, we'll check this later.)
2275   if (!StructuredList && Field != FieldEnd && !DeclType->isUnionType() &&
2276       !Field->getType()->isIncompleteArrayType()) {
2277     for (; Field != FieldEnd && !hadError; ++Field) {
2278       if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
2279         CheckEmptyInitializable(
2280             InitializedEntity::InitializeMember(*Field, &Entity),
2281             IList->getEndLoc());
2282     }
2283   }
2284 
2285   // Check that the types of the remaining fields have accessible destructors.
2286   if (!VerifyOnly) {
2287     // If the initializer expression has a designated initializer, check the
2288     // elements for which a designated initializer is not provided too.
2289     RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin()
2290                                                      : Field;
2291     for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) {
2292       QualType ET = SemaRef.Context.getBaseElementType(I->getType());
2293       if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
2294         hadError = true;
2295         return;
2296       }
2297     }
2298   }
2299 
2300   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
2301       Index >= IList->getNumInits())
2302     return;
2303 
2304   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
2305                              TopLevelObject)) {
2306     hadError = true;
2307     ++Index;
2308     return;
2309   }
2310 
2311   InitializedEntity MemberEntity =
2312     InitializedEntity::InitializeMember(*Field, &Entity);
2313 
2314   if (isa<InitListExpr>(IList->getInit(Index)))
2315     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2316                         StructuredList, StructuredIndex);
2317   else
2318     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
2319                           StructuredList, StructuredIndex);
2320 }
2321 
2322 /// Expand a field designator that refers to a member of an
2323 /// anonymous struct or union into a series of field designators that
2324 /// refers to the field within the appropriate subobject.
2325 ///
2326 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
2327                                            DesignatedInitExpr *DIE,
2328                                            unsigned DesigIdx,
2329                                            IndirectFieldDecl *IndirectField) {
2330   typedef DesignatedInitExpr::Designator Designator;
2331 
2332   // Build the replacement designators.
2333   SmallVector<Designator, 4> Replacements;
2334   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
2335        PE = IndirectField->chain_end(); PI != PE; ++PI) {
2336     if (PI + 1 == PE)
2337       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2338                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
2339                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
2340     else
2341       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2342                                         SourceLocation(), SourceLocation()));
2343     assert(isa<FieldDecl>(*PI));
2344     Replacements.back().setField(cast<FieldDecl>(*PI));
2345   }
2346 
2347   // Expand the current designator into the set of replacement
2348   // designators, so we have a full subobject path down to where the
2349   // member of the anonymous struct/union is actually stored.
2350   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
2351                         &Replacements[0] + Replacements.size());
2352 }
2353 
2354 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
2355                                                    DesignatedInitExpr *DIE) {
2356   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
2357   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
2358   for (unsigned I = 0; I < NumIndexExprs; ++I)
2359     IndexExprs[I] = DIE->getSubExpr(I + 1);
2360   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
2361                                     IndexExprs,
2362                                     DIE->getEqualOrColonLoc(),
2363                                     DIE->usesGNUSyntax(), DIE->getInit());
2364 }
2365 
2366 namespace {
2367 
2368 // Callback to only accept typo corrections that are for field members of
2369 // the given struct or union.
2370 class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback {
2371  public:
2372   explicit FieldInitializerValidatorCCC(RecordDecl *RD)
2373       : Record(RD) {}
2374 
2375   bool ValidateCandidate(const TypoCorrection &candidate) override {
2376     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
2377     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
2378   }
2379 
2380   std::unique_ptr<CorrectionCandidateCallback> clone() override {
2381     return std::make_unique<FieldInitializerValidatorCCC>(*this);
2382   }
2383 
2384  private:
2385   RecordDecl *Record;
2386 };
2387 
2388 } // end anonymous namespace
2389 
2390 /// Check the well-formedness of a C99 designated initializer.
2391 ///
2392 /// Determines whether the designated initializer @p DIE, which
2393 /// resides at the given @p Index within the initializer list @p
2394 /// IList, is well-formed for a current object of type @p DeclType
2395 /// (C99 6.7.8). The actual subobject that this designator refers to
2396 /// within the current subobject is returned in either
2397 /// @p NextField or @p NextElementIndex (whichever is appropriate).
2398 ///
2399 /// @param IList  The initializer list in which this designated
2400 /// initializer occurs.
2401 ///
2402 /// @param DIE The designated initializer expression.
2403 ///
2404 /// @param DesigIdx  The index of the current designator.
2405 ///
2406 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
2407 /// into which the designation in @p DIE should refer.
2408 ///
2409 /// @param NextField  If non-NULL and the first designator in @p DIE is
2410 /// a field, this will be set to the field declaration corresponding
2411 /// to the field named by the designator. On input, this is expected to be
2412 /// the next field that would be initialized in the absence of designation,
2413 /// if the complete object being initialized is a struct.
2414 ///
2415 /// @param NextElementIndex  If non-NULL and the first designator in @p
2416 /// DIE is an array designator or GNU array-range designator, this
2417 /// will be set to the last index initialized by this designator.
2418 ///
2419 /// @param Index  Index into @p IList where the designated initializer
2420 /// @p DIE occurs.
2421 ///
2422 /// @param StructuredList  The initializer list expression that
2423 /// describes all of the subobject initializers in the order they'll
2424 /// actually be initialized.
2425 ///
2426 /// @returns true if there was an error, false otherwise.
2427 bool
2428 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
2429                                             InitListExpr *IList,
2430                                             DesignatedInitExpr *DIE,
2431                                             unsigned DesigIdx,
2432                                             QualType &CurrentObjectType,
2433                                           RecordDecl::field_iterator *NextField,
2434                                             llvm::APSInt *NextElementIndex,
2435                                             unsigned &Index,
2436                                             InitListExpr *StructuredList,
2437                                             unsigned &StructuredIndex,
2438                                             bool FinishSubobjectInit,
2439                                             bool TopLevelObject) {
2440   if (DesigIdx == DIE->size()) {
2441     // C++20 designated initialization can result in direct-list-initialization
2442     // of the designated subobject. This is the only way that we can end up
2443     // performing direct initialization as part of aggregate initialization, so
2444     // it needs special handling.
2445     if (DIE->isDirectInit()) {
2446       Expr *Init = DIE->getInit();
2447       assert(isa<InitListExpr>(Init) &&
2448              "designator result in direct non-list initialization?");
2449       InitializationKind Kind = InitializationKind::CreateDirectList(
2450           DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc());
2451       InitializationSequence Seq(SemaRef, Entity, Kind, Init,
2452                                  /*TopLevelOfInitList*/ true);
2453       if (StructuredList) {
2454         ExprResult Result = VerifyOnly
2455                                 ? getDummyInit()
2456                                 : Seq.Perform(SemaRef, Entity, Kind, Init);
2457         UpdateStructuredListElement(StructuredList, StructuredIndex,
2458                                     Result.get());
2459       }
2460       ++Index;
2461       return !Seq;
2462     }
2463 
2464     // Check the actual initialization for the designated object type.
2465     bool prevHadError = hadError;
2466 
2467     // Temporarily remove the designator expression from the
2468     // initializer list that the child calls see, so that we don't try
2469     // to re-process the designator.
2470     unsigned OldIndex = Index;
2471     IList->setInit(OldIndex, DIE->getInit());
2472 
2473     CheckSubElementType(Entity, IList, CurrentObjectType, Index, StructuredList,
2474                         StructuredIndex, /*DirectlyDesignated=*/true);
2475 
2476     // Restore the designated initializer expression in the syntactic
2477     // form of the initializer list.
2478     if (IList->getInit(OldIndex) != DIE->getInit())
2479       DIE->setInit(IList->getInit(OldIndex));
2480     IList->setInit(OldIndex, DIE);
2481 
2482     return hadError && !prevHadError;
2483   }
2484 
2485   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
2486   bool IsFirstDesignator = (DesigIdx == 0);
2487   if (IsFirstDesignator ? FullyStructuredList : StructuredList) {
2488     // Determine the structural initializer list that corresponds to the
2489     // current subobject.
2490     if (IsFirstDesignator)
2491       StructuredList = FullyStructuredList;
2492     else {
2493       Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2494           StructuredList->getInit(StructuredIndex) : nullptr;
2495       if (!ExistingInit && StructuredList->hasArrayFiller())
2496         ExistingInit = StructuredList->getArrayFiller();
2497 
2498       if (!ExistingInit)
2499         StructuredList = getStructuredSubobjectInit(
2500             IList, Index, CurrentObjectType, StructuredList, StructuredIndex,
2501             SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2502       else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2503         StructuredList = Result;
2504       else {
2505         // We are creating an initializer list that initializes the
2506         // subobjects of the current object, but there was already an
2507         // initialization that completely initialized the current
2508         // subobject, e.g., by a compound literal:
2509         //
2510         // struct X { int a, b; };
2511         // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2512         //
2513         // Here, xs[0].a == 1 and xs[0].b == 3, since the second,
2514         // designated initializer re-initializes only its current object
2515         // subobject [0].b.
2516         diagnoseInitOverride(ExistingInit,
2517                              SourceRange(D->getBeginLoc(), DIE->getEndLoc()),
2518                              /*FullyOverwritten=*/false);
2519 
2520         if (!VerifyOnly) {
2521           if (DesignatedInitUpdateExpr *E =
2522                   dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2523             StructuredList = E->getUpdater();
2524           else {
2525             DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context)
2526                 DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(),
2527                                          ExistingInit, DIE->getEndLoc());
2528             StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2529             StructuredList = DIUE->getUpdater();
2530           }
2531         } else {
2532           // We don't need to track the structured representation of a
2533           // designated init update of an already-fully-initialized object in
2534           // verify-only mode. The only reason we would need the structure is
2535           // to determine where the uninitialized "holes" are, and in this
2536           // case, we know there aren't any and we can't introduce any.
2537           StructuredList = nullptr;
2538         }
2539       }
2540     }
2541   }
2542 
2543   if (D->isFieldDesignator()) {
2544     // C99 6.7.8p7:
2545     //
2546     //   If a designator has the form
2547     //
2548     //      . identifier
2549     //
2550     //   then the current object (defined below) shall have
2551     //   structure or union type and the identifier shall be the
2552     //   name of a member of that type.
2553     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2554     if (!RT) {
2555       SourceLocation Loc = D->getDotLoc();
2556       if (Loc.isInvalid())
2557         Loc = D->getFieldLoc();
2558       if (!VerifyOnly)
2559         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2560           << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2561       ++Index;
2562       return true;
2563     }
2564 
2565     FieldDecl *KnownField = D->getField();
2566     if (!KnownField) {
2567       IdentifierInfo *FieldName = D->getFieldName();
2568       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2569       for (NamedDecl *ND : Lookup) {
2570         if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2571           KnownField = FD;
2572           break;
2573         }
2574         if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2575           // In verify mode, don't modify the original.
2576           if (VerifyOnly)
2577             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2578           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2579           D = DIE->getDesignator(DesigIdx);
2580           KnownField = cast<FieldDecl>(*IFD->chain_begin());
2581           break;
2582         }
2583       }
2584       if (!KnownField) {
2585         if (VerifyOnly) {
2586           ++Index;
2587           return true;  // No typo correction when just trying this out.
2588         }
2589 
2590         // Name lookup found something, but it wasn't a field.
2591         if (!Lookup.empty()) {
2592           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2593             << FieldName;
2594           SemaRef.Diag(Lookup.front()->getLocation(),
2595                        diag::note_field_designator_found);
2596           ++Index;
2597           return true;
2598         }
2599 
2600         // Name lookup didn't find anything.
2601         // Determine whether this was a typo for another field name.
2602         FieldInitializerValidatorCCC CCC(RT->getDecl());
2603         if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2604                 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2605                 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC,
2606                 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2607           SemaRef.diagnoseTypo(
2608               Corrected,
2609               SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2610                 << FieldName << CurrentObjectType);
2611           KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2612           hadError = true;
2613         } else {
2614           // Typo correction didn't find anything.
2615           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2616             << FieldName << CurrentObjectType;
2617           ++Index;
2618           return true;
2619         }
2620       }
2621     }
2622 
2623     unsigned NumBases = 0;
2624     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2625       NumBases = CXXRD->getNumBases();
2626 
2627     unsigned FieldIndex = NumBases;
2628 
2629     for (auto *FI : RT->getDecl()->fields()) {
2630       if (FI->isUnnamedBitfield())
2631         continue;
2632       if (declaresSameEntity(KnownField, FI)) {
2633         KnownField = FI;
2634         break;
2635       }
2636       ++FieldIndex;
2637     }
2638 
2639     RecordDecl::field_iterator Field =
2640         RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2641 
2642     // All of the fields of a union are located at the same place in
2643     // the initializer list.
2644     if (RT->getDecl()->isUnion()) {
2645       FieldIndex = 0;
2646       if (StructuredList) {
2647         FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2648         if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
2649           assert(StructuredList->getNumInits() == 1
2650                  && "A union should never have more than one initializer!");
2651 
2652           Expr *ExistingInit = StructuredList->getInit(0);
2653           if (ExistingInit) {
2654             // We're about to throw away an initializer, emit warning.
2655             diagnoseInitOverride(
2656                 ExistingInit, SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2657           }
2658 
2659           // remove existing initializer
2660           StructuredList->resizeInits(SemaRef.Context, 0);
2661           StructuredList->setInitializedFieldInUnion(nullptr);
2662         }
2663 
2664         StructuredList->setInitializedFieldInUnion(*Field);
2665       }
2666     }
2667 
2668     // Make sure we can use this declaration.
2669     bool InvalidUse;
2670     if (VerifyOnly)
2671       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2672     else
2673       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2674     if (InvalidUse) {
2675       ++Index;
2676       return true;
2677     }
2678 
2679     // C++20 [dcl.init.list]p3:
2680     //   The ordered identifiers in the designators of the designated-
2681     //   initializer-list shall form a subsequence of the ordered identifiers
2682     //   in the direct non-static data members of T.
2683     //
2684     // Note that this is not a condition on forming the aggregate
2685     // initialization, only on actually performing initialization,
2686     // so it is not checked in VerifyOnly mode.
2687     //
2688     // FIXME: This is the only reordering diagnostic we produce, and it only
2689     // catches cases where we have a top-level field designator that jumps
2690     // backwards. This is the only such case that is reachable in an
2691     // otherwise-valid C++20 program, so is the only case that's required for
2692     // conformance, but for consistency, we should diagnose all the other
2693     // cases where a designator takes us backwards too.
2694     if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus &&
2695         NextField &&
2696         (*NextField == RT->getDecl()->field_end() ||
2697          (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) {
2698       // Find the field that we just initialized.
2699       FieldDecl *PrevField = nullptr;
2700       for (auto FI = RT->getDecl()->field_begin();
2701            FI != RT->getDecl()->field_end(); ++FI) {
2702         if (FI->isUnnamedBitfield())
2703           continue;
2704         if (*NextField != RT->getDecl()->field_end() &&
2705             declaresSameEntity(*FI, **NextField))
2706           break;
2707         PrevField = *FI;
2708       }
2709 
2710       if (PrevField &&
2711           PrevField->getFieldIndex() > KnownField->getFieldIndex()) {
2712         SemaRef.Diag(DIE->getBeginLoc(), diag::ext_designated_init_reordered)
2713             << KnownField << PrevField << DIE->getSourceRange();
2714 
2715         unsigned OldIndex = NumBases + PrevField->getFieldIndex();
2716         if (StructuredList && OldIndex <= StructuredList->getNumInits()) {
2717           if (Expr *PrevInit = StructuredList->getInit(OldIndex)) {
2718             SemaRef.Diag(PrevInit->getBeginLoc(),
2719                          diag::note_previous_field_init)
2720                 << PrevField << PrevInit->getSourceRange();
2721           }
2722         }
2723       }
2724     }
2725 
2726 
2727     // Update the designator with the field declaration.
2728     if (!VerifyOnly)
2729       D->setField(*Field);
2730 
2731     // Make sure that our non-designated initializer list has space
2732     // for a subobject corresponding to this field.
2733     if (StructuredList && FieldIndex >= StructuredList->getNumInits())
2734       StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2735 
2736     // This designator names a flexible array member.
2737     if (Field->getType()->isIncompleteArrayType()) {
2738       bool Invalid = false;
2739       if ((DesigIdx + 1) != DIE->size()) {
2740         // We can't designate an object within the flexible array
2741         // member (because GCC doesn't allow it).
2742         if (!VerifyOnly) {
2743           DesignatedInitExpr::Designator *NextD
2744             = DIE->getDesignator(DesigIdx + 1);
2745           SemaRef.Diag(NextD->getBeginLoc(),
2746                        diag::err_designator_into_flexible_array_member)
2747               << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc());
2748           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2749             << *Field;
2750         }
2751         Invalid = true;
2752       }
2753 
2754       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2755           !isa<StringLiteral>(DIE->getInit())) {
2756         // The initializer is not an initializer list.
2757         if (!VerifyOnly) {
2758           SemaRef.Diag(DIE->getInit()->getBeginLoc(),
2759                        diag::err_flexible_array_init_needs_braces)
2760               << DIE->getInit()->getSourceRange();
2761           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2762             << *Field;
2763         }
2764         Invalid = true;
2765       }
2766 
2767       // Check GNU flexible array initializer.
2768       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2769                                              TopLevelObject))
2770         Invalid = true;
2771 
2772       if (Invalid) {
2773         ++Index;
2774         return true;
2775       }
2776 
2777       // Initialize the array.
2778       bool prevHadError = hadError;
2779       unsigned newStructuredIndex = FieldIndex;
2780       unsigned OldIndex = Index;
2781       IList->setInit(Index, DIE->getInit());
2782 
2783       InitializedEntity MemberEntity =
2784         InitializedEntity::InitializeMember(*Field, &Entity);
2785       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2786                           StructuredList, newStructuredIndex);
2787 
2788       IList->setInit(OldIndex, DIE);
2789       if (hadError && !prevHadError) {
2790         ++Field;
2791         ++FieldIndex;
2792         if (NextField)
2793           *NextField = Field;
2794         StructuredIndex = FieldIndex;
2795         return true;
2796       }
2797     } else {
2798       // Recurse to check later designated subobjects.
2799       QualType FieldType = Field->getType();
2800       unsigned newStructuredIndex = FieldIndex;
2801 
2802       InitializedEntity MemberEntity =
2803         InitializedEntity::InitializeMember(*Field, &Entity);
2804       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2805                                      FieldType, nullptr, nullptr, Index,
2806                                      StructuredList, newStructuredIndex,
2807                                      FinishSubobjectInit, false))
2808         return true;
2809     }
2810 
2811     // Find the position of the next field to be initialized in this
2812     // subobject.
2813     ++Field;
2814     ++FieldIndex;
2815 
2816     // If this the first designator, our caller will continue checking
2817     // the rest of this struct/class/union subobject.
2818     if (IsFirstDesignator) {
2819       if (NextField)
2820         *NextField = Field;
2821       StructuredIndex = FieldIndex;
2822       return false;
2823     }
2824 
2825     if (!FinishSubobjectInit)
2826       return false;
2827 
2828     // We've already initialized something in the union; we're done.
2829     if (RT->getDecl()->isUnion())
2830       return hadError;
2831 
2832     // Check the remaining fields within this class/struct/union subobject.
2833     bool prevHadError = hadError;
2834 
2835     auto NoBases =
2836         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
2837                                         CXXRecordDecl::base_class_iterator());
2838     CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
2839                           false, Index, StructuredList, FieldIndex);
2840     return hadError && !prevHadError;
2841   }
2842 
2843   // C99 6.7.8p6:
2844   //
2845   //   If a designator has the form
2846   //
2847   //      [ constant-expression ]
2848   //
2849   //   then the current object (defined below) shall have array
2850   //   type and the expression shall be an integer constant
2851   //   expression. If the array is of unknown size, any
2852   //   nonnegative value is valid.
2853   //
2854   // Additionally, cope with the GNU extension that permits
2855   // designators of the form
2856   //
2857   //      [ constant-expression ... constant-expression ]
2858   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2859   if (!AT) {
2860     if (!VerifyOnly)
2861       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2862         << CurrentObjectType;
2863     ++Index;
2864     return true;
2865   }
2866 
2867   Expr *IndexExpr = nullptr;
2868   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2869   if (D->isArrayDesignator()) {
2870     IndexExpr = DIE->getArrayIndex(*D);
2871     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2872     DesignatedEndIndex = DesignatedStartIndex;
2873   } else {
2874     assert(D->isArrayRangeDesignator() && "Need array-range designator");
2875 
2876     DesignatedStartIndex =
2877       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2878     DesignatedEndIndex =
2879       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2880     IndexExpr = DIE->getArrayRangeEnd(*D);
2881 
2882     // Codegen can't handle evaluating array range designators that have side
2883     // effects, because we replicate the AST value for each initialized element.
2884     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2885     // elements with something that has a side effect, so codegen can emit an
2886     // "error unsupported" error instead of miscompiling the app.
2887     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2888         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2889       FullyStructuredList->sawArrayRangeDesignator();
2890   }
2891 
2892   if (isa<ConstantArrayType>(AT)) {
2893     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2894     DesignatedStartIndex
2895       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2896     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2897     DesignatedEndIndex
2898       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2899     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2900     if (DesignatedEndIndex >= MaxElements) {
2901       if (!VerifyOnly)
2902         SemaRef.Diag(IndexExpr->getBeginLoc(),
2903                      diag::err_array_designator_too_large)
2904             << toString(DesignatedEndIndex, 10) << toString(MaxElements, 10)
2905             << IndexExpr->getSourceRange();
2906       ++Index;
2907       return true;
2908     }
2909   } else {
2910     unsigned DesignatedIndexBitWidth =
2911       ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2912     DesignatedStartIndex =
2913       DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2914     DesignatedEndIndex =
2915       DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2916     DesignatedStartIndex.setIsUnsigned(true);
2917     DesignatedEndIndex.setIsUnsigned(true);
2918   }
2919 
2920   bool IsStringLiteralInitUpdate =
2921       StructuredList && StructuredList->isStringLiteralInit();
2922   if (IsStringLiteralInitUpdate && VerifyOnly) {
2923     // We're just verifying an update to a string literal init. We don't need
2924     // to split the string up into individual characters to do that.
2925     StructuredList = nullptr;
2926   } else if (IsStringLiteralInitUpdate) {
2927     // We're modifying a string literal init; we have to decompose the string
2928     // so we can modify the individual characters.
2929     ASTContext &Context = SemaRef.Context;
2930     Expr *SubExpr = StructuredList->getInit(0)->IgnoreParenImpCasts();
2931 
2932     // Compute the character type
2933     QualType CharTy = AT->getElementType();
2934 
2935     // Compute the type of the integer literals.
2936     QualType PromotedCharTy = CharTy;
2937     if (CharTy->isPromotableIntegerType())
2938       PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2939     unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2940 
2941     if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2942       // Get the length of the string.
2943       uint64_t StrLen = SL->getLength();
2944       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2945         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2946       StructuredList->resizeInits(Context, StrLen);
2947 
2948       // Build a literal for each character in the string, and put them into
2949       // the init list.
2950       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2951         llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2952         Expr *Init = new (Context) IntegerLiteral(
2953             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2954         if (CharTy != PromotedCharTy)
2955           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2956                                           Init, nullptr, VK_PRValue,
2957                                           FPOptionsOverride());
2958         StructuredList->updateInit(Context, i, Init);
2959       }
2960     } else {
2961       ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2962       std::string Str;
2963       Context.getObjCEncodingForType(E->getEncodedType(), Str);
2964 
2965       // Get the length of the string.
2966       uint64_t StrLen = Str.size();
2967       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2968         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2969       StructuredList->resizeInits(Context, StrLen);
2970 
2971       // Build a literal for each character in the string, and put them into
2972       // the init list.
2973       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2974         llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2975         Expr *Init = new (Context) IntegerLiteral(
2976             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2977         if (CharTy != PromotedCharTy)
2978           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2979                                           Init, nullptr, VK_PRValue,
2980                                           FPOptionsOverride());
2981         StructuredList->updateInit(Context, i, Init);
2982       }
2983     }
2984   }
2985 
2986   // Make sure that our non-designated initializer list has space
2987   // for a subobject corresponding to this array element.
2988   if (StructuredList &&
2989       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2990     StructuredList->resizeInits(SemaRef.Context,
2991                                 DesignatedEndIndex.getZExtValue() + 1);
2992 
2993   // Repeatedly perform subobject initializations in the range
2994   // [DesignatedStartIndex, DesignatedEndIndex].
2995 
2996   // Move to the next designator
2997   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2998   unsigned OldIndex = Index;
2999 
3000   InitializedEntity ElementEntity =
3001     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
3002 
3003   while (DesignatedStartIndex <= DesignatedEndIndex) {
3004     // Recurse to check later designated subobjects.
3005     QualType ElementType = AT->getElementType();
3006     Index = OldIndex;
3007 
3008     ElementEntity.setElementIndex(ElementIndex);
3009     if (CheckDesignatedInitializer(
3010             ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
3011             nullptr, Index, StructuredList, ElementIndex,
3012             FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
3013             false))
3014       return true;
3015 
3016     // Move to the next index in the array that we'll be initializing.
3017     ++DesignatedStartIndex;
3018     ElementIndex = DesignatedStartIndex.getZExtValue();
3019   }
3020 
3021   // If this the first designator, our caller will continue checking
3022   // the rest of this array subobject.
3023   if (IsFirstDesignator) {
3024     if (NextElementIndex)
3025       *NextElementIndex = DesignatedStartIndex;
3026     StructuredIndex = ElementIndex;
3027     return false;
3028   }
3029 
3030   if (!FinishSubobjectInit)
3031     return false;
3032 
3033   // Check the remaining elements within this array subobject.
3034   bool prevHadError = hadError;
3035   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
3036                  /*SubobjectIsDesignatorContext=*/false, Index,
3037                  StructuredList, ElementIndex);
3038   return hadError && !prevHadError;
3039 }
3040 
3041 // Get the structured initializer list for a subobject of type
3042 // @p CurrentObjectType.
3043 InitListExpr *
3044 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
3045                                             QualType CurrentObjectType,
3046                                             InitListExpr *StructuredList,
3047                                             unsigned StructuredIndex,
3048                                             SourceRange InitRange,
3049                                             bool IsFullyOverwritten) {
3050   if (!StructuredList)
3051     return nullptr;
3052 
3053   Expr *ExistingInit = nullptr;
3054   if (StructuredIndex < StructuredList->getNumInits())
3055     ExistingInit = StructuredList->getInit(StructuredIndex);
3056 
3057   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
3058     // There might have already been initializers for subobjects of the current
3059     // object, but a subsequent initializer list will overwrite the entirety
3060     // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
3061     //
3062     // struct P { char x[6]; };
3063     // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
3064     //
3065     // The first designated initializer is ignored, and l.x is just "f".
3066     if (!IsFullyOverwritten)
3067       return Result;
3068 
3069   if (ExistingInit) {
3070     // We are creating an initializer list that initializes the
3071     // subobjects of the current object, but there was already an
3072     // initialization that completely initialized the current
3073     // subobject:
3074     //
3075     // struct X { int a, b; };
3076     // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 };
3077     //
3078     // Here, xs[0].a == 1 and xs[0].b == 3, since the second,
3079     // designated initializer overwrites the [0].b initializer
3080     // from the prior initialization.
3081     //
3082     // When the existing initializer is an expression rather than an
3083     // initializer list, we cannot decompose and update it in this way.
3084     // For example:
3085     //
3086     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
3087     //
3088     // This case is handled by CheckDesignatedInitializer.
3089     diagnoseInitOverride(ExistingInit, InitRange);
3090   }
3091 
3092   unsigned ExpectedNumInits = 0;
3093   if (Index < IList->getNumInits()) {
3094     if (auto *Init = dyn_cast_or_null<InitListExpr>(IList->getInit(Index)))
3095       ExpectedNumInits = Init->getNumInits();
3096     else
3097       ExpectedNumInits = IList->getNumInits() - Index;
3098   }
3099 
3100   InitListExpr *Result =
3101       createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits);
3102 
3103   // Link this new initializer list into the structured initializer
3104   // lists.
3105   StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
3106   return Result;
3107 }
3108 
3109 InitListExpr *
3110 InitListChecker::createInitListExpr(QualType CurrentObjectType,
3111                                     SourceRange InitRange,
3112                                     unsigned ExpectedNumInits) {
3113   InitListExpr *Result
3114     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
3115                                          InitRange.getBegin(), None,
3116                                          InitRange.getEnd());
3117 
3118   QualType ResultType = CurrentObjectType;
3119   if (!ResultType->isArrayType())
3120     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
3121   Result->setType(ResultType);
3122 
3123   // Pre-allocate storage for the structured initializer list.
3124   unsigned NumElements = 0;
3125 
3126   if (const ArrayType *AType
3127       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
3128     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
3129       NumElements = CAType->getSize().getZExtValue();
3130       // Simple heuristic so that we don't allocate a very large
3131       // initializer with many empty entries at the end.
3132       if (NumElements > ExpectedNumInits)
3133         NumElements = 0;
3134     }
3135   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) {
3136     NumElements = VType->getNumElements();
3137   } else if (CurrentObjectType->isRecordType()) {
3138     NumElements = numStructUnionElements(CurrentObjectType);
3139   }
3140 
3141   Result->reserveInits(SemaRef.Context, NumElements);
3142 
3143   return Result;
3144 }
3145 
3146 /// Update the initializer at index @p StructuredIndex within the
3147 /// structured initializer list to the value @p expr.
3148 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
3149                                                   unsigned &StructuredIndex,
3150                                                   Expr *expr) {
3151   // No structured initializer list to update
3152   if (!StructuredList)
3153     return;
3154 
3155   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
3156                                                   StructuredIndex, expr)) {
3157     // This initializer overwrites a previous initializer.
3158     // No need to diagnose when `expr` is nullptr because a more relevant
3159     // diagnostic has already been issued and this diagnostic is potentially
3160     // noise.
3161     if (expr)
3162       diagnoseInitOverride(PrevInit, expr->getSourceRange());
3163   }
3164 
3165   ++StructuredIndex;
3166 }
3167 
3168 /// Determine whether we can perform aggregate initialization for the purposes
3169 /// of overload resolution.
3170 bool Sema::CanPerformAggregateInitializationForOverloadResolution(
3171     const InitializedEntity &Entity, InitListExpr *From) {
3172   QualType Type = Entity.getType();
3173   InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true,
3174                         /*TreatUnavailableAsInvalid=*/false,
3175                         /*InOverloadResolution=*/true);
3176   return !Check.HadError();
3177 }
3178 
3179 /// Check that the given Index expression is a valid array designator
3180 /// value. This is essentially just a wrapper around
3181 /// VerifyIntegerConstantExpression that also checks for negative values
3182 /// and produces a reasonable diagnostic if there is a
3183 /// failure. Returns the index expression, possibly with an implicit cast
3184 /// added, on success.  If everything went okay, Value will receive the
3185 /// value of the constant expression.
3186 static ExprResult
3187 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
3188   SourceLocation Loc = Index->getBeginLoc();
3189 
3190   // Make sure this is an integer constant expression.
3191   ExprResult Result =
3192       S.VerifyIntegerConstantExpression(Index, &Value, Sema::AllowFold);
3193   if (Result.isInvalid())
3194     return Result;
3195 
3196   if (Value.isSigned() && Value.isNegative())
3197     return S.Diag(Loc, diag::err_array_designator_negative)
3198            << toString(Value, 10) << Index->getSourceRange();
3199 
3200   Value.setIsUnsigned(true);
3201   return Result;
3202 }
3203 
3204 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
3205                                             SourceLocation EqualOrColonLoc,
3206                                             bool GNUSyntax,
3207                                             ExprResult Init) {
3208   typedef DesignatedInitExpr::Designator ASTDesignator;
3209 
3210   bool Invalid = false;
3211   SmallVector<ASTDesignator, 32> Designators;
3212   SmallVector<Expr *, 32> InitExpressions;
3213 
3214   // Build designators and check array designator expressions.
3215   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
3216     const Designator &D = Desig.getDesignator(Idx);
3217     switch (D.getKind()) {
3218     case Designator::FieldDesignator:
3219       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
3220                                           D.getFieldLoc()));
3221       break;
3222 
3223     case Designator::ArrayDesignator: {
3224       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
3225       llvm::APSInt IndexValue;
3226       if (!Index->isTypeDependent() && !Index->isValueDependent())
3227         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
3228       if (!Index)
3229         Invalid = true;
3230       else {
3231         Designators.push_back(ASTDesignator(InitExpressions.size(),
3232                                             D.getLBracketLoc(),
3233                                             D.getRBracketLoc()));
3234         InitExpressions.push_back(Index);
3235       }
3236       break;
3237     }
3238 
3239     case Designator::ArrayRangeDesignator: {
3240       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
3241       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
3242       llvm::APSInt StartValue;
3243       llvm::APSInt EndValue;
3244       bool StartDependent = StartIndex->isTypeDependent() ||
3245                             StartIndex->isValueDependent();
3246       bool EndDependent = EndIndex->isTypeDependent() ||
3247                           EndIndex->isValueDependent();
3248       if (!StartDependent)
3249         StartIndex =
3250             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
3251       if (!EndDependent)
3252         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
3253 
3254       if (!StartIndex || !EndIndex)
3255         Invalid = true;
3256       else {
3257         // Make sure we're comparing values with the same bit width.
3258         if (StartDependent || EndDependent) {
3259           // Nothing to compute.
3260         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
3261           EndValue = EndValue.extend(StartValue.getBitWidth());
3262         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
3263           StartValue = StartValue.extend(EndValue.getBitWidth());
3264 
3265         if (!StartDependent && !EndDependent && EndValue < StartValue) {
3266           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
3267             << toString(StartValue, 10) << toString(EndValue, 10)
3268             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
3269           Invalid = true;
3270         } else {
3271           Designators.push_back(ASTDesignator(InitExpressions.size(),
3272                                               D.getLBracketLoc(),
3273                                               D.getEllipsisLoc(),
3274                                               D.getRBracketLoc()));
3275           InitExpressions.push_back(StartIndex);
3276           InitExpressions.push_back(EndIndex);
3277         }
3278       }
3279       break;
3280     }
3281     }
3282   }
3283 
3284   if (Invalid || Init.isInvalid())
3285     return ExprError();
3286 
3287   // Clear out the expressions within the designation.
3288   Desig.ClearExprs(*this);
3289 
3290   return DesignatedInitExpr::Create(Context, Designators, InitExpressions,
3291                                     EqualOrColonLoc, GNUSyntax,
3292                                     Init.getAs<Expr>());
3293 }
3294 
3295 //===----------------------------------------------------------------------===//
3296 // Initialization entity
3297 //===----------------------------------------------------------------------===//
3298 
3299 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
3300                                      const InitializedEntity &Parent)
3301   : Parent(&Parent), Index(Index)
3302 {
3303   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
3304     Kind = EK_ArrayElement;
3305     Type = AT->getElementType();
3306   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
3307     Kind = EK_VectorElement;
3308     Type = VT->getElementType();
3309   } else {
3310     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
3311     assert(CT && "Unexpected type");
3312     Kind = EK_ComplexElement;
3313     Type = CT->getElementType();
3314   }
3315 }
3316 
3317 InitializedEntity
3318 InitializedEntity::InitializeBase(ASTContext &Context,
3319                                   const CXXBaseSpecifier *Base,
3320                                   bool IsInheritedVirtualBase,
3321                                   const InitializedEntity *Parent) {
3322   InitializedEntity Result;
3323   Result.Kind = EK_Base;
3324   Result.Parent = Parent;
3325   Result.Base = {Base, IsInheritedVirtualBase};
3326   Result.Type = Base->getType();
3327   return Result;
3328 }
3329 
3330 DeclarationName InitializedEntity::getName() const {
3331   switch (getKind()) {
3332   case EK_Parameter:
3333   case EK_Parameter_CF_Audited: {
3334     ParmVarDecl *D = Parameter.getPointer();
3335     return (D ? D->getDeclName() : DeclarationName());
3336   }
3337 
3338   case EK_Variable:
3339   case EK_Member:
3340   case EK_Binding:
3341   case EK_TemplateParameter:
3342     return Variable.VariableOrMember->getDeclName();
3343 
3344   case EK_LambdaCapture:
3345     return DeclarationName(Capture.VarID);
3346 
3347   case EK_Result:
3348   case EK_StmtExprResult:
3349   case EK_Exception:
3350   case EK_New:
3351   case EK_Temporary:
3352   case EK_Base:
3353   case EK_Delegating:
3354   case EK_ArrayElement:
3355   case EK_VectorElement:
3356   case EK_ComplexElement:
3357   case EK_BlockElement:
3358   case EK_LambdaToBlockConversionBlockElement:
3359   case EK_CompoundLiteralInit:
3360   case EK_RelatedResult:
3361     return DeclarationName();
3362   }
3363 
3364   llvm_unreachable("Invalid EntityKind!");
3365 }
3366 
3367 ValueDecl *InitializedEntity::getDecl() const {
3368   switch (getKind()) {
3369   case EK_Variable:
3370   case EK_Member:
3371   case EK_Binding:
3372   case EK_TemplateParameter:
3373     return Variable.VariableOrMember;
3374 
3375   case EK_Parameter:
3376   case EK_Parameter_CF_Audited:
3377     return Parameter.getPointer();
3378 
3379   case EK_Result:
3380   case EK_StmtExprResult:
3381   case EK_Exception:
3382   case EK_New:
3383   case EK_Temporary:
3384   case EK_Base:
3385   case EK_Delegating:
3386   case EK_ArrayElement:
3387   case EK_VectorElement:
3388   case EK_ComplexElement:
3389   case EK_BlockElement:
3390   case EK_LambdaToBlockConversionBlockElement:
3391   case EK_LambdaCapture:
3392   case EK_CompoundLiteralInit:
3393   case EK_RelatedResult:
3394     return nullptr;
3395   }
3396 
3397   llvm_unreachable("Invalid EntityKind!");
3398 }
3399 
3400 bool InitializedEntity::allowsNRVO() const {
3401   switch (getKind()) {
3402   case EK_Result:
3403   case EK_Exception:
3404     return LocAndNRVO.NRVO;
3405 
3406   case EK_StmtExprResult:
3407   case EK_Variable:
3408   case EK_Parameter:
3409   case EK_Parameter_CF_Audited:
3410   case EK_TemplateParameter:
3411   case EK_Member:
3412   case EK_Binding:
3413   case EK_New:
3414   case EK_Temporary:
3415   case EK_CompoundLiteralInit:
3416   case EK_Base:
3417   case EK_Delegating:
3418   case EK_ArrayElement:
3419   case EK_VectorElement:
3420   case EK_ComplexElement:
3421   case EK_BlockElement:
3422   case EK_LambdaToBlockConversionBlockElement:
3423   case EK_LambdaCapture:
3424   case EK_RelatedResult:
3425     break;
3426   }
3427 
3428   return false;
3429 }
3430 
3431 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
3432   assert(getParent() != this);
3433   unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
3434   for (unsigned I = 0; I != Depth; ++I)
3435     OS << "`-";
3436 
3437   switch (getKind()) {
3438   case EK_Variable: OS << "Variable"; break;
3439   case EK_Parameter: OS << "Parameter"; break;
3440   case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
3441     break;
3442   case EK_TemplateParameter: OS << "TemplateParameter"; break;
3443   case EK_Result: OS << "Result"; break;
3444   case EK_StmtExprResult: OS << "StmtExprResult"; break;
3445   case EK_Exception: OS << "Exception"; break;
3446   case EK_Member: OS << "Member"; break;
3447   case EK_Binding: OS << "Binding"; break;
3448   case EK_New: OS << "New"; break;
3449   case EK_Temporary: OS << "Temporary"; break;
3450   case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
3451   case EK_RelatedResult: OS << "RelatedResult"; break;
3452   case EK_Base: OS << "Base"; break;
3453   case EK_Delegating: OS << "Delegating"; break;
3454   case EK_ArrayElement: OS << "ArrayElement " << Index; break;
3455   case EK_VectorElement: OS << "VectorElement " << Index; break;
3456   case EK_ComplexElement: OS << "ComplexElement " << Index; break;
3457   case EK_BlockElement: OS << "Block"; break;
3458   case EK_LambdaToBlockConversionBlockElement:
3459     OS << "Block (lambda)";
3460     break;
3461   case EK_LambdaCapture:
3462     OS << "LambdaCapture ";
3463     OS << DeclarationName(Capture.VarID);
3464     break;
3465   }
3466 
3467   if (auto *D = getDecl()) {
3468     OS << " ";
3469     D->printQualifiedName(OS);
3470   }
3471 
3472   OS << " '" << getType() << "'\n";
3473 
3474   return Depth + 1;
3475 }
3476 
3477 LLVM_DUMP_METHOD void InitializedEntity::dump() const {
3478   dumpImpl(llvm::errs());
3479 }
3480 
3481 //===----------------------------------------------------------------------===//
3482 // Initialization sequence
3483 //===----------------------------------------------------------------------===//
3484 
3485 void InitializationSequence::Step::Destroy() {
3486   switch (Kind) {
3487   case SK_ResolveAddressOfOverloadedFunction:
3488   case SK_CastDerivedToBasePRValue:
3489   case SK_CastDerivedToBaseXValue:
3490   case SK_CastDerivedToBaseLValue:
3491   case SK_BindReference:
3492   case SK_BindReferenceToTemporary:
3493   case SK_FinalCopy:
3494   case SK_ExtraneousCopyToTemporary:
3495   case SK_UserConversion:
3496   case SK_QualificationConversionPRValue:
3497   case SK_QualificationConversionXValue:
3498   case SK_QualificationConversionLValue:
3499   case SK_FunctionReferenceConversion:
3500   case SK_AtomicConversion:
3501   case SK_ListInitialization:
3502   case SK_UnwrapInitList:
3503   case SK_RewrapInitList:
3504   case SK_ConstructorInitialization:
3505   case SK_ConstructorInitializationFromList:
3506   case SK_ZeroInitialization:
3507   case SK_CAssignment:
3508   case SK_StringInit:
3509   case SK_ObjCObjectConversion:
3510   case SK_ArrayLoopIndex:
3511   case SK_ArrayLoopInit:
3512   case SK_ArrayInit:
3513   case SK_GNUArrayInit:
3514   case SK_ParenthesizedArrayInit:
3515   case SK_PassByIndirectCopyRestore:
3516   case SK_PassByIndirectRestore:
3517   case SK_ProduceObjCObject:
3518   case SK_StdInitializerList:
3519   case SK_StdInitializerListConstructorCall:
3520   case SK_OCLSamplerInit:
3521   case SK_OCLZeroOpaqueType:
3522     break;
3523 
3524   case SK_ConversionSequence:
3525   case SK_ConversionSequenceNoNarrowing:
3526     delete ICS;
3527   }
3528 }
3529 
3530 bool InitializationSequence::isDirectReferenceBinding() const {
3531   // There can be some lvalue adjustments after the SK_BindReference step.
3532   for (const Step &S : llvm::reverse(Steps)) {
3533     if (S.Kind == SK_BindReference)
3534       return true;
3535     if (S.Kind == SK_BindReferenceToTemporary)
3536       return false;
3537   }
3538   return false;
3539 }
3540 
3541 bool InitializationSequence::isAmbiguous() const {
3542   if (!Failed())
3543     return false;
3544 
3545   switch (getFailureKind()) {
3546   case FK_TooManyInitsForReference:
3547   case FK_ParenthesizedListInitForReference:
3548   case FK_ArrayNeedsInitList:
3549   case FK_ArrayNeedsInitListOrStringLiteral:
3550   case FK_ArrayNeedsInitListOrWideStringLiteral:
3551   case FK_NarrowStringIntoWideCharArray:
3552   case FK_WideStringIntoCharArray:
3553   case FK_IncompatWideStringIntoWideChar:
3554   case FK_PlainStringIntoUTF8Char:
3555   case FK_UTF8StringIntoPlainChar:
3556   case FK_AddressOfOverloadFailed: // FIXME: Could do better
3557   case FK_NonConstLValueReferenceBindingToTemporary:
3558   case FK_NonConstLValueReferenceBindingToBitfield:
3559   case FK_NonConstLValueReferenceBindingToVectorElement:
3560   case FK_NonConstLValueReferenceBindingToMatrixElement:
3561   case FK_NonConstLValueReferenceBindingToUnrelated:
3562   case FK_RValueReferenceBindingToLValue:
3563   case FK_ReferenceAddrspaceMismatchTemporary:
3564   case FK_ReferenceInitDropsQualifiers:
3565   case FK_ReferenceInitFailed:
3566   case FK_ConversionFailed:
3567   case FK_ConversionFromPropertyFailed:
3568   case FK_TooManyInitsForScalar:
3569   case FK_ParenthesizedListInitForScalar:
3570   case FK_ReferenceBindingToInitList:
3571   case FK_InitListBadDestinationType:
3572   case FK_DefaultInitOfConst:
3573   case FK_Incomplete:
3574   case FK_ArrayTypeMismatch:
3575   case FK_NonConstantArrayInit:
3576   case FK_ListInitializationFailed:
3577   case FK_VariableLengthArrayHasInitializer:
3578   case FK_PlaceholderType:
3579   case FK_ExplicitConstructor:
3580   case FK_AddressOfUnaddressableFunction:
3581     return false;
3582 
3583   case FK_ReferenceInitOverloadFailed:
3584   case FK_UserConversionOverloadFailed:
3585   case FK_ConstructorOverloadFailed:
3586   case FK_ListConstructorOverloadFailed:
3587     return FailedOverloadResult == OR_Ambiguous;
3588   }
3589 
3590   llvm_unreachable("Invalid EntityKind!");
3591 }
3592 
3593 bool InitializationSequence::isConstructorInitialization() const {
3594   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3595 }
3596 
3597 void
3598 InitializationSequence
3599 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3600                                    DeclAccessPair Found,
3601                                    bool HadMultipleCandidates) {
3602   Step S;
3603   S.Kind = SK_ResolveAddressOfOverloadedFunction;
3604   S.Type = Function->getType();
3605   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3606   S.Function.Function = Function;
3607   S.Function.FoundDecl = Found;
3608   Steps.push_back(S);
3609 }
3610 
3611 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3612                                                       ExprValueKind VK) {
3613   Step S;
3614   switch (VK) {
3615   case VK_PRValue:
3616     S.Kind = SK_CastDerivedToBasePRValue;
3617     break;
3618   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3619   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3620   }
3621   S.Type = BaseType;
3622   Steps.push_back(S);
3623 }
3624 
3625 void InitializationSequence::AddReferenceBindingStep(QualType T,
3626                                                      bool BindingTemporary) {
3627   Step S;
3628   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3629   S.Type = T;
3630   Steps.push_back(S);
3631 }
3632 
3633 void InitializationSequence::AddFinalCopy(QualType T) {
3634   Step S;
3635   S.Kind = SK_FinalCopy;
3636   S.Type = T;
3637   Steps.push_back(S);
3638 }
3639 
3640 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3641   Step S;
3642   S.Kind = SK_ExtraneousCopyToTemporary;
3643   S.Type = T;
3644   Steps.push_back(S);
3645 }
3646 
3647 void
3648 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3649                                               DeclAccessPair FoundDecl,
3650                                               QualType T,
3651                                               bool HadMultipleCandidates) {
3652   Step S;
3653   S.Kind = SK_UserConversion;
3654   S.Type = T;
3655   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3656   S.Function.Function = Function;
3657   S.Function.FoundDecl = FoundDecl;
3658   Steps.push_back(S);
3659 }
3660 
3661 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3662                                                             ExprValueKind VK) {
3663   Step S;
3664   S.Kind = SK_QualificationConversionPRValue; // work around a gcc warning
3665   switch (VK) {
3666   case VK_PRValue:
3667     S.Kind = SK_QualificationConversionPRValue;
3668     break;
3669   case VK_XValue:
3670     S.Kind = SK_QualificationConversionXValue;
3671     break;
3672   case VK_LValue:
3673     S.Kind = SK_QualificationConversionLValue;
3674     break;
3675   }
3676   S.Type = Ty;
3677   Steps.push_back(S);
3678 }
3679 
3680 void InitializationSequence::AddFunctionReferenceConversionStep(QualType Ty) {
3681   Step S;
3682   S.Kind = SK_FunctionReferenceConversion;
3683   S.Type = Ty;
3684   Steps.push_back(S);
3685 }
3686 
3687 void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3688   Step S;
3689   S.Kind = SK_AtomicConversion;
3690   S.Type = Ty;
3691   Steps.push_back(S);
3692 }
3693 
3694 void InitializationSequence::AddConversionSequenceStep(
3695     const ImplicitConversionSequence &ICS, QualType T,
3696     bool TopLevelOfInitList) {
3697   Step S;
3698   S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3699                               : SK_ConversionSequence;
3700   S.Type = T;
3701   S.ICS = new ImplicitConversionSequence(ICS);
3702   Steps.push_back(S);
3703 }
3704 
3705 void InitializationSequence::AddListInitializationStep(QualType T) {
3706   Step S;
3707   S.Kind = SK_ListInitialization;
3708   S.Type = T;
3709   Steps.push_back(S);
3710 }
3711 
3712 void InitializationSequence::AddConstructorInitializationStep(
3713     DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
3714     bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
3715   Step S;
3716   S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3717                                      : SK_ConstructorInitializationFromList
3718                         : SK_ConstructorInitialization;
3719   S.Type = T;
3720   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3721   S.Function.Function = Constructor;
3722   S.Function.FoundDecl = FoundDecl;
3723   Steps.push_back(S);
3724 }
3725 
3726 void InitializationSequence::AddZeroInitializationStep(QualType T) {
3727   Step S;
3728   S.Kind = SK_ZeroInitialization;
3729   S.Type = T;
3730   Steps.push_back(S);
3731 }
3732 
3733 void InitializationSequence::AddCAssignmentStep(QualType T) {
3734   Step S;
3735   S.Kind = SK_CAssignment;
3736   S.Type = T;
3737   Steps.push_back(S);
3738 }
3739 
3740 void InitializationSequence::AddStringInitStep(QualType T) {
3741   Step S;
3742   S.Kind = SK_StringInit;
3743   S.Type = T;
3744   Steps.push_back(S);
3745 }
3746 
3747 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3748   Step S;
3749   S.Kind = SK_ObjCObjectConversion;
3750   S.Type = T;
3751   Steps.push_back(S);
3752 }
3753 
3754 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
3755   Step S;
3756   S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
3757   S.Type = T;
3758   Steps.push_back(S);
3759 }
3760 
3761 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
3762   Step S;
3763   S.Kind = SK_ArrayLoopIndex;
3764   S.Type = EltT;
3765   Steps.insert(Steps.begin(), S);
3766 
3767   S.Kind = SK_ArrayLoopInit;
3768   S.Type = T;
3769   Steps.push_back(S);
3770 }
3771 
3772 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3773   Step S;
3774   S.Kind = SK_ParenthesizedArrayInit;
3775   S.Type = T;
3776   Steps.push_back(S);
3777 }
3778 
3779 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3780                                                               bool shouldCopy) {
3781   Step s;
3782   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3783                        : SK_PassByIndirectRestore);
3784   s.Type = type;
3785   Steps.push_back(s);
3786 }
3787 
3788 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3789   Step S;
3790   S.Kind = SK_ProduceObjCObject;
3791   S.Type = T;
3792   Steps.push_back(S);
3793 }
3794 
3795 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3796   Step S;
3797   S.Kind = SK_StdInitializerList;
3798   S.Type = T;
3799   Steps.push_back(S);
3800 }
3801 
3802 void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3803   Step S;
3804   S.Kind = SK_OCLSamplerInit;
3805   S.Type = T;
3806   Steps.push_back(S);
3807 }
3808 
3809 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) {
3810   Step S;
3811   S.Kind = SK_OCLZeroOpaqueType;
3812   S.Type = T;
3813   Steps.push_back(S);
3814 }
3815 
3816 void InitializationSequence::RewrapReferenceInitList(QualType T,
3817                                                      InitListExpr *Syntactic) {
3818   assert(Syntactic->getNumInits() == 1 &&
3819          "Can only rewrap trivial init lists.");
3820   Step S;
3821   S.Kind = SK_UnwrapInitList;
3822   S.Type = Syntactic->getInit(0)->getType();
3823   Steps.insert(Steps.begin(), S);
3824 
3825   S.Kind = SK_RewrapInitList;
3826   S.Type = T;
3827   S.WrappingSyntacticList = Syntactic;
3828   Steps.push_back(S);
3829 }
3830 
3831 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3832                                                 OverloadingResult Result) {
3833   setSequenceKind(FailedSequence);
3834   this->Failure = Failure;
3835   this->FailedOverloadResult = Result;
3836 }
3837 
3838 //===----------------------------------------------------------------------===//
3839 // Attempt initialization
3840 //===----------------------------------------------------------------------===//
3841 
3842 /// Tries to add a zero initializer. Returns true if that worked.
3843 static bool
3844 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3845                                    const InitializedEntity &Entity) {
3846   if (Entity.getKind() != InitializedEntity::EK_Variable)
3847     return false;
3848 
3849   VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3850   if (VD->getInit() || VD->getEndLoc().isMacroID())
3851     return false;
3852 
3853   QualType VariableTy = VD->getType().getCanonicalType();
3854   SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
3855   std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3856   if (!Init.empty()) {
3857     Sequence.AddZeroInitializationStep(Entity.getType());
3858     Sequence.SetZeroInitializationFixit(Init, Loc);
3859     return true;
3860   }
3861   return false;
3862 }
3863 
3864 static void MaybeProduceObjCObject(Sema &S,
3865                                    InitializationSequence &Sequence,
3866                                    const InitializedEntity &Entity) {
3867   if (!S.getLangOpts().ObjCAutoRefCount) return;
3868 
3869   /// When initializing a parameter, produce the value if it's marked
3870   /// __attribute__((ns_consumed)).
3871   if (Entity.isParameterKind()) {
3872     if (!Entity.isParameterConsumed())
3873       return;
3874 
3875     assert(Entity.getType()->isObjCRetainableType() &&
3876            "consuming an object of unretainable type?");
3877     Sequence.AddProduceObjCObjectStep(Entity.getType());
3878 
3879   /// When initializing a return value, if the return type is a
3880   /// retainable type, then returns need to immediately retain the
3881   /// object.  If an autorelease is required, it will be done at the
3882   /// last instant.
3883   } else if (Entity.getKind() == InitializedEntity::EK_Result ||
3884              Entity.getKind() == InitializedEntity::EK_StmtExprResult) {
3885     if (!Entity.getType()->isObjCRetainableType())
3886       return;
3887 
3888     Sequence.AddProduceObjCObjectStep(Entity.getType());
3889   }
3890 }
3891 
3892 static void TryListInitialization(Sema &S,
3893                                   const InitializedEntity &Entity,
3894                                   const InitializationKind &Kind,
3895                                   InitListExpr *InitList,
3896                                   InitializationSequence &Sequence,
3897                                   bool TreatUnavailableAsInvalid);
3898 
3899 /// When initializing from init list via constructor, handle
3900 /// initialization of an object of type std::initializer_list<T>.
3901 ///
3902 /// \return true if we have handled initialization of an object of type
3903 /// std::initializer_list<T>, false otherwise.
3904 static bool TryInitializerListConstruction(Sema &S,
3905                                            InitListExpr *List,
3906                                            QualType DestType,
3907                                            InitializationSequence &Sequence,
3908                                            bool TreatUnavailableAsInvalid) {
3909   QualType E;
3910   if (!S.isStdInitializerList(DestType, &E))
3911     return false;
3912 
3913   if (!S.isCompleteType(List->getExprLoc(), E)) {
3914     Sequence.setIncompleteTypeFailure(E);
3915     return true;
3916   }
3917 
3918   // Try initializing a temporary array from the init list.
3919   QualType ArrayType = S.Context.getConstantArrayType(
3920       E.withConst(),
3921       llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3922                   List->getNumInits()),
3923       nullptr, clang::ArrayType::Normal, 0);
3924   InitializedEntity HiddenArray =
3925       InitializedEntity::InitializeTemporary(ArrayType);
3926   InitializationKind Kind = InitializationKind::CreateDirectList(
3927       List->getExprLoc(), List->getBeginLoc(), List->getEndLoc());
3928   TryListInitialization(S, HiddenArray, Kind, List, Sequence,
3929                         TreatUnavailableAsInvalid);
3930   if (Sequence)
3931     Sequence.AddStdInitializerListConstructionStep(DestType);
3932   return true;
3933 }
3934 
3935 /// Determine if the constructor has the signature of a copy or move
3936 /// constructor for the type T of the class in which it was found. That is,
3937 /// determine if its first parameter is of type T or reference to (possibly
3938 /// cv-qualified) T.
3939 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
3940                                    const ConstructorInfo &Info) {
3941   if (Info.Constructor->getNumParams() == 0)
3942     return false;
3943 
3944   QualType ParmT =
3945       Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
3946   QualType ClassT =
3947       Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
3948 
3949   return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
3950 }
3951 
3952 static OverloadingResult
3953 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3954                            MultiExprArg Args,
3955                            OverloadCandidateSet &CandidateSet,
3956                            QualType DestType,
3957                            DeclContext::lookup_result Ctors,
3958                            OverloadCandidateSet::iterator &Best,
3959                            bool CopyInitializing, bool AllowExplicit,
3960                            bool OnlyListConstructors, bool IsListInit,
3961                            bool SecondStepOfCopyInit = false) {
3962   CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor);
3963   CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
3964 
3965   for (NamedDecl *D : Ctors) {
3966     auto Info = getConstructorInfo(D);
3967     if (!Info.Constructor || Info.Constructor->isInvalidDecl())
3968       continue;
3969 
3970     if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
3971       continue;
3972 
3973     // C++11 [over.best.ics]p4:
3974     //   ... and the constructor or user-defined conversion function is a
3975     //   candidate by
3976     //   - 13.3.1.3, when the argument is the temporary in the second step
3977     //     of a class copy-initialization, or
3978     //   - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
3979     //   - the second phase of 13.3.1.7 when the initializer list has exactly
3980     //     one element that is itself an initializer list, and the target is
3981     //     the first parameter of a constructor of class X, and the conversion
3982     //     is to X or reference to (possibly cv-qualified X),
3983     //   user-defined conversion sequences are not considered.
3984     bool SuppressUserConversions =
3985         SecondStepOfCopyInit ||
3986         (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
3987          hasCopyOrMoveCtorParam(S.Context, Info));
3988 
3989     if (Info.ConstructorTmpl)
3990       S.AddTemplateOverloadCandidate(
3991           Info.ConstructorTmpl, Info.FoundDecl,
3992           /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions,
3993           /*PartialOverloading=*/false, AllowExplicit);
3994     else {
3995       // C++ [over.match.copy]p1:
3996       //   - When initializing a temporary to be bound to the first parameter
3997       //     of a constructor [for type T] that takes a reference to possibly
3998       //     cv-qualified T as its first argument, called with a single
3999       //     argument in the context of direct-initialization, explicit
4000       //     conversion functions are also considered.
4001       // FIXME: What if a constructor template instantiates to such a signature?
4002       bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
4003                                Args.size() == 1 &&
4004                                hasCopyOrMoveCtorParam(S.Context, Info);
4005       S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
4006                              CandidateSet, SuppressUserConversions,
4007                              /*PartialOverloading=*/false, AllowExplicit,
4008                              AllowExplicitConv);
4009     }
4010   }
4011 
4012   // FIXME: Work around a bug in C++17 guaranteed copy elision.
4013   //
4014   // When initializing an object of class type T by constructor
4015   // ([over.match.ctor]) or by list-initialization ([over.match.list])
4016   // from a single expression of class type U, conversion functions of
4017   // U that convert to the non-reference type cv T are candidates.
4018   // Explicit conversion functions are only candidates during
4019   // direct-initialization.
4020   //
4021   // Note: SecondStepOfCopyInit is only ever true in this case when
4022   // evaluating whether to produce a C++98 compatibility warning.
4023   if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 &&
4024       !SecondStepOfCopyInit) {
4025     Expr *Initializer = Args[0];
4026     auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl();
4027     if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) {
4028       const auto &Conversions = SourceRD->getVisibleConversionFunctions();
4029       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4030         NamedDecl *D = *I;
4031         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4032         D = D->getUnderlyingDecl();
4033 
4034         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4035         CXXConversionDecl *Conv;
4036         if (ConvTemplate)
4037           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4038         else
4039           Conv = cast<CXXConversionDecl>(D);
4040 
4041         if (ConvTemplate)
4042           S.AddTemplateConversionCandidate(
4043               ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
4044               CandidateSet, AllowExplicit, AllowExplicit,
4045               /*AllowResultConversion*/ false);
4046         else
4047           S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
4048                                    DestType, CandidateSet, AllowExplicit,
4049                                    AllowExplicit,
4050                                    /*AllowResultConversion*/ false);
4051       }
4052     }
4053   }
4054 
4055   // Perform overload resolution and return the result.
4056   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
4057 }
4058 
4059 /// Attempt initialization by constructor (C++ [dcl.init]), which
4060 /// enumerates the constructors of the initialized entity and performs overload
4061 /// resolution to select the best.
4062 /// \param DestType       The destination class type.
4063 /// \param DestArrayType  The destination type, which is either DestType or
4064 ///                       a (possibly multidimensional) array of DestType.
4065 /// \param IsListInit     Is this list-initialization?
4066 /// \param IsInitListCopy Is this non-list-initialization resulting from a
4067 ///                       list-initialization from {x} where x is the same
4068 ///                       type as the entity?
4069 static void TryConstructorInitialization(Sema &S,
4070                                          const InitializedEntity &Entity,
4071                                          const InitializationKind &Kind,
4072                                          MultiExprArg Args, QualType DestType,
4073                                          QualType DestArrayType,
4074                                          InitializationSequence &Sequence,
4075                                          bool IsListInit = false,
4076                                          bool IsInitListCopy = false) {
4077   assert(((!IsListInit && !IsInitListCopy) ||
4078           (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
4079          "IsListInit/IsInitListCopy must come with a single initializer list "
4080          "argument.");
4081   InitListExpr *ILE =
4082       (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr;
4083   MultiExprArg UnwrappedArgs =
4084       ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
4085 
4086   // The type we're constructing needs to be complete.
4087   if (!S.isCompleteType(Kind.getLocation(), DestType)) {
4088     Sequence.setIncompleteTypeFailure(DestType);
4089     return;
4090   }
4091 
4092   // C++17 [dcl.init]p17:
4093   //     - If the initializer expression is a prvalue and the cv-unqualified
4094   //       version of the source type is the same class as the class of the
4095   //       destination, the initializer expression is used to initialize the
4096   //       destination object.
4097   // Per DR (no number yet), this does not apply when initializing a base
4098   // class or delegating to another constructor from a mem-initializer.
4099   // ObjC++: Lambda captured by the block in the lambda to block conversion
4100   // should avoid copy elision.
4101   if (S.getLangOpts().CPlusPlus17 &&
4102       Entity.getKind() != InitializedEntity::EK_Base &&
4103       Entity.getKind() != InitializedEntity::EK_Delegating &&
4104       Entity.getKind() !=
4105           InitializedEntity::EK_LambdaToBlockConversionBlockElement &&
4106       UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isPRValue() &&
4107       S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
4108     // Convert qualifications if necessary.
4109     Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
4110     if (ILE)
4111       Sequence.RewrapReferenceInitList(DestType, ILE);
4112     return;
4113   }
4114 
4115   const RecordType *DestRecordType = DestType->getAs<RecordType>();
4116   assert(DestRecordType && "Constructor initialization requires record type");
4117   CXXRecordDecl *DestRecordDecl
4118     = cast<CXXRecordDecl>(DestRecordType->getDecl());
4119 
4120   // Build the candidate set directly in the initialization sequence
4121   // structure, so that it will persist if we fail.
4122   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4123 
4124   // Determine whether we are allowed to call explicit constructors or
4125   // explicit conversion operators.
4126   bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
4127   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
4128 
4129   //   - Otherwise, if T is a class type, constructors are considered. The
4130   //     applicable constructors are enumerated, and the best one is chosen
4131   //     through overload resolution.
4132   DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
4133 
4134   OverloadingResult Result = OR_No_Viable_Function;
4135   OverloadCandidateSet::iterator Best;
4136   bool AsInitializerList = false;
4137 
4138   // C++11 [over.match.list]p1, per DR1467:
4139   //   When objects of non-aggregate type T are list-initialized, such that
4140   //   8.5.4 [dcl.init.list] specifies that overload resolution is performed
4141   //   according to the rules in this section, overload resolution selects
4142   //   the constructor in two phases:
4143   //
4144   //   - Initially, the candidate functions are the initializer-list
4145   //     constructors of the class T and the argument list consists of the
4146   //     initializer list as a single argument.
4147   if (IsListInit) {
4148     AsInitializerList = true;
4149 
4150     // If the initializer list has no elements and T has a default constructor,
4151     // the first phase is omitted.
4152     if (!(UnwrappedArgs.empty() && S.LookupDefaultConstructor(DestRecordDecl)))
4153       Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
4154                                           CandidateSet, DestType, Ctors, Best,
4155                                           CopyInitialization, AllowExplicit,
4156                                           /*OnlyListConstructors=*/true,
4157                                           IsListInit);
4158   }
4159 
4160   // C++11 [over.match.list]p1:
4161   //   - If no viable initializer-list constructor is found, overload resolution
4162   //     is performed again, where the candidate functions are all the
4163   //     constructors of the class T and the argument list consists of the
4164   //     elements of the initializer list.
4165   if (Result == OR_No_Viable_Function) {
4166     AsInitializerList = false;
4167     Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
4168                                         CandidateSet, DestType, Ctors, Best,
4169                                         CopyInitialization, AllowExplicit,
4170                                         /*OnlyListConstructors=*/false,
4171                                         IsListInit);
4172   }
4173   if (Result) {
4174     Sequence.SetOverloadFailure(
4175         IsListInit ? InitializationSequence::FK_ListConstructorOverloadFailed
4176                    : InitializationSequence::FK_ConstructorOverloadFailed,
4177         Result);
4178 
4179     if (Result != OR_Deleted)
4180       return;
4181   }
4182 
4183   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4184 
4185   // In C++17, ResolveConstructorOverload can select a conversion function
4186   // instead of a constructor.
4187   if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) {
4188     // Add the user-defined conversion step that calls the conversion function.
4189     QualType ConvType = CD->getConversionType();
4190     assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) &&
4191            "should not have selected this conversion function");
4192     Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType,
4193                                    HadMultipleCandidates);
4194     if (!S.Context.hasSameType(ConvType, DestType))
4195       Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
4196     if (IsListInit)
4197       Sequence.RewrapReferenceInitList(Entity.getType(), ILE);
4198     return;
4199   }
4200 
4201   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
4202   if (Result != OR_Deleted) {
4203     // C++11 [dcl.init]p6:
4204     //   If a program calls for the default initialization of an object
4205     //   of a const-qualified type T, T shall be a class type with a
4206     //   user-provided default constructor.
4207     // C++ core issue 253 proposal:
4208     //   If the implicit default constructor initializes all subobjects, no
4209     //   initializer should be required.
4210     // The 253 proposal is for example needed to process libstdc++ headers
4211     // in 5.x.
4212     if (Kind.getKind() == InitializationKind::IK_Default &&
4213         Entity.getType().isConstQualified()) {
4214       if (!CtorDecl->getParent()->allowConstDefaultInit()) {
4215         if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4216           Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4217         return;
4218       }
4219     }
4220 
4221     // C++11 [over.match.list]p1:
4222     //   In copy-list-initialization, if an explicit constructor is chosen, the
4223     //   initializer is ill-formed.
4224     if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
4225       Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
4226       return;
4227     }
4228   }
4229 
4230   // [class.copy.elision]p3:
4231   // In some copy-initialization contexts, a two-stage overload resolution
4232   // is performed.
4233   // If the first overload resolution selects a deleted function, we also
4234   // need the initialization sequence to decide whether to perform the second
4235   // overload resolution.
4236   // For deleted functions in other contexts, there is no need to get the
4237   // initialization sequence.
4238   if (Result == OR_Deleted && Kind.getKind() != InitializationKind::IK_Copy)
4239     return;
4240 
4241   // Add the constructor initialization step. Any cv-qualification conversion is
4242   // subsumed by the initialization.
4243   Sequence.AddConstructorInitializationStep(
4244       Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
4245       IsListInit | IsInitListCopy, AsInitializerList);
4246 }
4247 
4248 static bool
4249 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
4250                                              Expr *Initializer,
4251                                              QualType &SourceType,
4252                                              QualType &UnqualifiedSourceType,
4253                                              QualType UnqualifiedTargetType,
4254                                              InitializationSequence &Sequence) {
4255   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
4256         S.Context.OverloadTy) {
4257     DeclAccessPair Found;
4258     bool HadMultipleCandidates = false;
4259     if (FunctionDecl *Fn
4260         = S.ResolveAddressOfOverloadedFunction(Initializer,
4261                                                UnqualifiedTargetType,
4262                                                false, Found,
4263                                                &HadMultipleCandidates)) {
4264       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
4265                                                 HadMultipleCandidates);
4266       SourceType = Fn->getType();
4267       UnqualifiedSourceType = SourceType.getUnqualifiedType();
4268     } else if (!UnqualifiedTargetType->isRecordType()) {
4269       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4270       return true;
4271     }
4272   }
4273   return false;
4274 }
4275 
4276 static void TryReferenceInitializationCore(Sema &S,
4277                                            const InitializedEntity &Entity,
4278                                            const InitializationKind &Kind,
4279                                            Expr *Initializer,
4280                                            QualType cv1T1, QualType T1,
4281                                            Qualifiers T1Quals,
4282                                            QualType cv2T2, QualType T2,
4283                                            Qualifiers T2Quals,
4284                                            InitializationSequence &Sequence);
4285 
4286 static void TryValueInitialization(Sema &S,
4287                                    const InitializedEntity &Entity,
4288                                    const InitializationKind &Kind,
4289                                    InitializationSequence &Sequence,
4290                                    InitListExpr *InitList = nullptr);
4291 
4292 /// Attempt list initialization of a reference.
4293 static void TryReferenceListInitialization(Sema &S,
4294                                            const InitializedEntity &Entity,
4295                                            const InitializationKind &Kind,
4296                                            InitListExpr *InitList,
4297                                            InitializationSequence &Sequence,
4298                                            bool TreatUnavailableAsInvalid) {
4299   // First, catch C++03 where this isn't possible.
4300   if (!S.getLangOpts().CPlusPlus11) {
4301     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4302     return;
4303   }
4304   // Can't reference initialize a compound literal.
4305   if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
4306     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4307     return;
4308   }
4309 
4310   QualType DestType = Entity.getType();
4311   QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4312   Qualifiers T1Quals;
4313   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4314 
4315   // Reference initialization via an initializer list works thus:
4316   // If the initializer list consists of a single element that is
4317   // reference-related to the referenced type, bind directly to that element
4318   // (possibly creating temporaries).
4319   // Otherwise, initialize a temporary with the initializer list and
4320   // bind to that.
4321   if (InitList->getNumInits() == 1) {
4322     Expr *Initializer = InitList->getInit(0);
4323     QualType cv2T2 = S.getCompletedType(Initializer);
4324     Qualifiers T2Quals;
4325     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4326 
4327     // If this fails, creating a temporary wouldn't work either.
4328     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4329                                                      T1, Sequence))
4330       return;
4331 
4332     SourceLocation DeclLoc = Initializer->getBeginLoc();
4333     Sema::ReferenceCompareResult RefRelationship
4334       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2);
4335     if (RefRelationship >= Sema::Ref_Related) {
4336       // Try to bind the reference here.
4337       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4338                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
4339       if (Sequence)
4340         Sequence.RewrapReferenceInitList(cv1T1, InitList);
4341       return;
4342     }
4343 
4344     // Update the initializer if we've resolved an overloaded function.
4345     if (Sequence.step_begin() != Sequence.step_end())
4346       Sequence.RewrapReferenceInitList(cv1T1, InitList);
4347   }
4348   // Perform address space compatibility check.
4349   QualType cv1T1IgnoreAS = cv1T1;
4350   if (T1Quals.hasAddressSpace()) {
4351     Qualifiers T2Quals;
4352     (void)S.Context.getUnqualifiedArrayType(InitList->getType(), T2Quals);
4353     if (!T1Quals.isAddressSpaceSupersetOf(T2Quals)) {
4354       Sequence.SetFailed(
4355           InitializationSequence::FK_ReferenceInitDropsQualifiers);
4356       return;
4357     }
4358     // Ignore address space of reference type at this point and perform address
4359     // space conversion after the reference binding step.
4360     cv1T1IgnoreAS =
4361         S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace());
4362   }
4363   // Not reference-related. Create a temporary and bind to that.
4364   InitializedEntity TempEntity =
4365       InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
4366 
4367   TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
4368                         TreatUnavailableAsInvalid);
4369   if (Sequence) {
4370     if (DestType->isRValueReferenceType() ||
4371         (T1Quals.hasConst() && !T1Quals.hasVolatile())) {
4372       Sequence.AddReferenceBindingStep(cv1T1IgnoreAS,
4373                                        /*BindingTemporary=*/true);
4374       if (T1Quals.hasAddressSpace())
4375         Sequence.AddQualificationConversionStep(
4376             cv1T1, DestType->isRValueReferenceType() ? VK_XValue : VK_LValue);
4377     } else
4378       Sequence.SetFailed(
4379           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4380   }
4381 }
4382 
4383 /// Attempt list initialization (C++0x [dcl.init.list])
4384 static void TryListInitialization(Sema &S,
4385                                   const InitializedEntity &Entity,
4386                                   const InitializationKind &Kind,
4387                                   InitListExpr *InitList,
4388                                   InitializationSequence &Sequence,
4389                                   bool TreatUnavailableAsInvalid) {
4390   QualType DestType = Entity.getType();
4391 
4392   // C++ doesn't allow scalar initialization with more than one argument.
4393   // But C99 complex numbers are scalars and it makes sense there.
4394   if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
4395       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
4396     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
4397     return;
4398   }
4399   if (DestType->isReferenceType()) {
4400     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
4401                                    TreatUnavailableAsInvalid);
4402     return;
4403   }
4404 
4405   if (DestType->isRecordType() &&
4406       !S.isCompleteType(InitList->getBeginLoc(), DestType)) {
4407     Sequence.setIncompleteTypeFailure(DestType);
4408     return;
4409   }
4410 
4411   // C++11 [dcl.init.list]p3, per DR1467:
4412   // - If T is a class type and the initializer list has a single element of
4413   //   type cv U, where U is T or a class derived from T, the object is
4414   //   initialized from that element (by copy-initialization for
4415   //   copy-list-initialization, or by direct-initialization for
4416   //   direct-list-initialization).
4417   // - Otherwise, if T is a character array and the initializer list has a
4418   //   single element that is an appropriately-typed string literal
4419   //   (8.5.2 [dcl.init.string]), initialization is performed as described
4420   //   in that section.
4421   // - Otherwise, if T is an aggregate, [...] (continue below).
4422   if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
4423     if (DestType->isRecordType()) {
4424       QualType InitType = InitList->getInit(0)->getType();
4425       if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
4426           S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) {
4427         Expr *InitListAsExpr = InitList;
4428         TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4429                                      DestType, Sequence,
4430                                      /*InitListSyntax*/false,
4431                                      /*IsInitListCopy*/true);
4432         return;
4433       }
4434     }
4435     if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
4436       Expr *SubInit[1] = {InitList->getInit(0)};
4437       if (!isa<VariableArrayType>(DestAT) &&
4438           IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
4439         InitializationKind SubKind =
4440             Kind.getKind() == InitializationKind::IK_DirectList
4441                 ? InitializationKind::CreateDirect(Kind.getLocation(),
4442                                                    InitList->getLBraceLoc(),
4443                                                    InitList->getRBraceLoc())
4444                 : Kind;
4445         Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4446                                 /*TopLevelOfInitList*/ true,
4447                                 TreatUnavailableAsInvalid);
4448 
4449         // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
4450         // the element is not an appropriately-typed string literal, in which
4451         // case we should proceed as in C++11 (below).
4452         if (Sequence) {
4453           Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4454           return;
4455         }
4456       }
4457     }
4458   }
4459 
4460   // C++11 [dcl.init.list]p3:
4461   //   - If T is an aggregate, aggregate initialization is performed.
4462   if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
4463       (S.getLangOpts().CPlusPlus11 &&
4464        S.isStdInitializerList(DestType, nullptr))) {
4465     if (S.getLangOpts().CPlusPlus11) {
4466       //   - Otherwise, if the initializer list has no elements and T is a
4467       //     class type with a default constructor, the object is
4468       //     value-initialized.
4469       if (InitList->getNumInits() == 0) {
4470         CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
4471         if (S.LookupDefaultConstructor(RD)) {
4472           TryValueInitialization(S, Entity, Kind, Sequence, InitList);
4473           return;
4474         }
4475       }
4476 
4477       //   - Otherwise, if T is a specialization of std::initializer_list<E>,
4478       //     an initializer_list object constructed [...]
4479       if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
4480                                          TreatUnavailableAsInvalid))
4481         return;
4482 
4483       //   - Otherwise, if T is a class type, constructors are considered.
4484       Expr *InitListAsExpr = InitList;
4485       TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4486                                    DestType, Sequence, /*InitListSyntax*/true);
4487     } else
4488       Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
4489     return;
4490   }
4491 
4492   if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
4493       InitList->getNumInits() == 1) {
4494     Expr *E = InitList->getInit(0);
4495 
4496     //   - Otherwise, if T is an enumeration with a fixed underlying type,
4497     //     the initializer-list has a single element v, and the initialization
4498     //     is direct-list-initialization, the object is initialized with the
4499     //     value T(v); if a narrowing conversion is required to convert v to
4500     //     the underlying type of T, the program is ill-formed.
4501     auto *ET = DestType->getAs<EnumType>();
4502     if (S.getLangOpts().CPlusPlus17 &&
4503         Kind.getKind() == InitializationKind::IK_DirectList &&
4504         ET && ET->getDecl()->isFixed() &&
4505         !S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
4506         (E->getType()->isIntegralOrUnscopedEnumerationType() ||
4507          E->getType()->isFloatingType())) {
4508       // There are two ways that T(v) can work when T is an enumeration type.
4509       // If there is either an implicit conversion sequence from v to T or
4510       // a conversion function that can convert from v to T, then we use that.
4511       // Otherwise, if v is of integral, unscoped enumeration, or floating-point
4512       // type, it is converted to the enumeration type via its underlying type.
4513       // There is no overlap possible between these two cases (except when the
4514       // source value is already of the destination type), and the first
4515       // case is handled by the general case for single-element lists below.
4516       ImplicitConversionSequence ICS;
4517       ICS.setStandard();
4518       ICS.Standard.setAsIdentityConversion();
4519       if (!E->isPRValue())
4520         ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4521       // If E is of a floating-point type, then the conversion is ill-formed
4522       // due to narrowing, but go through the motions in order to produce the
4523       // right diagnostic.
4524       ICS.Standard.Second = E->getType()->isFloatingType()
4525                                 ? ICK_Floating_Integral
4526                                 : ICK_Integral_Conversion;
4527       ICS.Standard.setFromType(E->getType());
4528       ICS.Standard.setToType(0, E->getType());
4529       ICS.Standard.setToType(1, DestType);
4530       ICS.Standard.setToType(2, DestType);
4531       Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
4532                                          /*TopLevelOfInitList*/true);
4533       Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4534       return;
4535     }
4536 
4537     //   - Otherwise, if the initializer list has a single element of type E
4538     //     [...references are handled above...], the object or reference is
4539     //     initialized from that element (by copy-initialization for
4540     //     copy-list-initialization, or by direct-initialization for
4541     //     direct-list-initialization); if a narrowing conversion is required
4542     //     to convert the element to T, the program is ill-formed.
4543     //
4544     // Per core-24034, this is direct-initialization if we were performing
4545     // direct-list-initialization and copy-initialization otherwise.
4546     // We can't use InitListChecker for this, because it always performs
4547     // copy-initialization. This only matters if we might use an 'explicit'
4548     // conversion operator, or for the special case conversion of nullptr_t to
4549     // bool, so we only need to handle those cases.
4550     //
4551     // FIXME: Why not do this in all cases?
4552     Expr *Init = InitList->getInit(0);
4553     if (Init->getType()->isRecordType() ||
4554         (Init->getType()->isNullPtrType() && DestType->isBooleanType())) {
4555       InitializationKind SubKind =
4556           Kind.getKind() == InitializationKind::IK_DirectList
4557               ? InitializationKind::CreateDirect(Kind.getLocation(),
4558                                                  InitList->getLBraceLoc(),
4559                                                  InitList->getRBraceLoc())
4560               : Kind;
4561       Expr *SubInit[1] = { Init };
4562       Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4563                               /*TopLevelOfInitList*/true,
4564                               TreatUnavailableAsInvalid);
4565       if (Sequence)
4566         Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4567       return;
4568     }
4569   }
4570 
4571   InitListChecker CheckInitList(S, Entity, InitList,
4572           DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
4573   if (CheckInitList.HadError()) {
4574     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
4575     return;
4576   }
4577 
4578   // Add the list initialization step with the built init list.
4579   Sequence.AddListInitializationStep(DestType);
4580 }
4581 
4582 /// Try a reference initialization that involves calling a conversion
4583 /// function.
4584 static OverloadingResult TryRefInitWithConversionFunction(
4585     Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
4586     Expr *Initializer, bool AllowRValues, bool IsLValueRef,
4587     InitializationSequence &Sequence) {
4588   QualType DestType = Entity.getType();
4589   QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4590   QualType T1 = cv1T1.getUnqualifiedType();
4591   QualType cv2T2 = Initializer->getType();
4592   QualType T2 = cv2T2.getUnqualifiedType();
4593 
4594   assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) &&
4595          "Must have incompatible references when binding via conversion");
4596 
4597   // Build the candidate set directly in the initialization sequence
4598   // structure, so that it will persist if we fail.
4599   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4600   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4601 
4602   // Determine whether we are allowed to call explicit conversion operators.
4603   // Note that none of [over.match.copy], [over.match.conv], nor
4604   // [over.match.ref] permit an explicit constructor to be chosen when
4605   // initializing a reference, not even for direct-initialization.
4606   bool AllowExplicitCtors = false;
4607   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
4608 
4609   const RecordType *T1RecordType = nullptr;
4610   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
4611       S.isCompleteType(Kind.getLocation(), T1)) {
4612     // The type we're converting to is a class type. Enumerate its constructors
4613     // to see if there is a suitable conversion.
4614     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
4615 
4616     for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
4617       auto Info = getConstructorInfo(D);
4618       if (!Info.Constructor)
4619         continue;
4620 
4621       if (!Info.Constructor->isInvalidDecl() &&
4622           Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
4623         if (Info.ConstructorTmpl)
4624           S.AddTemplateOverloadCandidate(
4625               Info.ConstructorTmpl, Info.FoundDecl,
4626               /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
4627               /*SuppressUserConversions=*/true,
4628               /*PartialOverloading*/ false, AllowExplicitCtors);
4629         else
4630           S.AddOverloadCandidate(
4631               Info.Constructor, Info.FoundDecl, Initializer, CandidateSet,
4632               /*SuppressUserConversions=*/true,
4633               /*PartialOverloading*/ false, AllowExplicitCtors);
4634       }
4635     }
4636   }
4637   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
4638     return OR_No_Viable_Function;
4639 
4640   const RecordType *T2RecordType = nullptr;
4641   if ((T2RecordType = T2->getAs<RecordType>()) &&
4642       S.isCompleteType(Kind.getLocation(), T2)) {
4643     // The type we're converting from is a class type, enumerate its conversion
4644     // functions.
4645     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
4646 
4647     const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4648     for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4649       NamedDecl *D = *I;
4650       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4651       if (isa<UsingShadowDecl>(D))
4652         D = cast<UsingShadowDecl>(D)->getTargetDecl();
4653 
4654       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4655       CXXConversionDecl *Conv;
4656       if (ConvTemplate)
4657         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4658       else
4659         Conv = cast<CXXConversionDecl>(D);
4660 
4661       // If the conversion function doesn't return a reference type,
4662       // it can't be considered for this conversion unless we're allowed to
4663       // consider rvalues.
4664       // FIXME: Do we need to make sure that we only consider conversion
4665       // candidates with reference-compatible results? That might be needed to
4666       // break recursion.
4667       if ((AllowRValues ||
4668            Conv->getConversionType()->isLValueReferenceType())) {
4669         if (ConvTemplate)
4670           S.AddTemplateConversionCandidate(
4671               ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
4672               CandidateSet,
4673               /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4674         else
4675           S.AddConversionCandidate(
4676               Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet,
4677               /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4678       }
4679     }
4680   }
4681   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
4682     return OR_No_Viable_Function;
4683 
4684   SourceLocation DeclLoc = Initializer->getBeginLoc();
4685 
4686   // Perform overload resolution. If it fails, return the failed result.
4687   OverloadCandidateSet::iterator Best;
4688   if (OverloadingResult Result
4689         = CandidateSet.BestViableFunction(S, DeclLoc, Best))
4690     return Result;
4691 
4692   FunctionDecl *Function = Best->Function;
4693   // This is the overload that will be used for this initialization step if we
4694   // use this initialization. Mark it as referenced.
4695   Function->setReferenced();
4696 
4697   // Compute the returned type and value kind of the conversion.
4698   QualType cv3T3;
4699   if (isa<CXXConversionDecl>(Function))
4700     cv3T3 = Function->getReturnType();
4701   else
4702     cv3T3 = T1;
4703 
4704   ExprValueKind VK = VK_PRValue;
4705   if (cv3T3->isLValueReferenceType())
4706     VK = VK_LValue;
4707   else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
4708     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
4709   cv3T3 = cv3T3.getNonLValueExprType(S.Context);
4710 
4711   // Add the user-defined conversion step.
4712   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4713   Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
4714                                  HadMultipleCandidates);
4715 
4716   // Determine whether we'll need to perform derived-to-base adjustments or
4717   // other conversions.
4718   Sema::ReferenceConversions RefConv;
4719   Sema::ReferenceCompareResult NewRefRelationship =
4720       S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, &RefConv);
4721 
4722   // Add the final conversion sequence, if necessary.
4723   if (NewRefRelationship == Sema::Ref_Incompatible) {
4724     assert(!isa<CXXConstructorDecl>(Function) &&
4725            "should not have conversion after constructor");
4726 
4727     ImplicitConversionSequence ICS;
4728     ICS.setStandard();
4729     ICS.Standard = Best->FinalConversion;
4730     Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
4731 
4732     // Every implicit conversion results in a prvalue, except for a glvalue
4733     // derived-to-base conversion, which we handle below.
4734     cv3T3 = ICS.Standard.getToType(2);
4735     VK = VK_PRValue;
4736   }
4737 
4738   //   If the converted initializer is a prvalue, its type T4 is adjusted to
4739   //   type "cv1 T4" and the temporary materialization conversion is applied.
4740   //
4741   // We adjust the cv-qualifications to match the reference regardless of
4742   // whether we have a prvalue so that the AST records the change. In this
4743   // case, T4 is "cv3 T3".
4744   QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
4745   if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
4746     Sequence.AddQualificationConversionStep(cv1T4, VK);
4747   Sequence.AddReferenceBindingStep(cv1T4, VK == VK_PRValue);
4748   VK = IsLValueRef ? VK_LValue : VK_XValue;
4749 
4750   if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4751     Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
4752   else if (RefConv & Sema::ReferenceConversions::ObjC)
4753     Sequence.AddObjCObjectConversionStep(cv1T1);
4754   else if (RefConv & Sema::ReferenceConversions::Function)
4755     Sequence.AddFunctionReferenceConversionStep(cv1T1);
4756   else if (RefConv & Sema::ReferenceConversions::Qualification) {
4757     if (!S.Context.hasSameType(cv1T4, cv1T1))
4758       Sequence.AddQualificationConversionStep(cv1T1, VK);
4759   }
4760 
4761   return OR_Success;
4762 }
4763 
4764 static void CheckCXX98CompatAccessibleCopy(Sema &S,
4765                                            const InitializedEntity &Entity,
4766                                            Expr *CurInitExpr);
4767 
4768 /// Attempt reference initialization (C++0x [dcl.init.ref])
4769 static void TryReferenceInitialization(Sema &S,
4770                                        const InitializedEntity &Entity,
4771                                        const InitializationKind &Kind,
4772                                        Expr *Initializer,
4773                                        InitializationSequence &Sequence) {
4774   QualType DestType = Entity.getType();
4775   QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4776   Qualifiers T1Quals;
4777   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4778   QualType cv2T2 = S.getCompletedType(Initializer);
4779   Qualifiers T2Quals;
4780   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4781 
4782   // If the initializer is the address of an overloaded function, try
4783   // to resolve the overloaded function. If all goes well, T2 is the
4784   // type of the resulting function.
4785   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4786                                                    T1, Sequence))
4787     return;
4788 
4789   // Delegate everything else to a subfunction.
4790   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4791                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
4792 }
4793 
4794 /// Determine whether an expression is a non-referenceable glvalue (one to
4795 /// which a reference can never bind). Attempting to bind a reference to
4796 /// such a glvalue will always create a temporary.
4797 static bool isNonReferenceableGLValue(Expr *E) {
4798   return E->refersToBitField() || E->refersToVectorElement() ||
4799          E->refersToMatrixElement();
4800 }
4801 
4802 /// Reference initialization without resolving overloaded functions.
4803 ///
4804 /// We also can get here in C if we call a builtin which is declared as
4805 /// a function with a parameter of reference type (such as __builtin_va_end()).
4806 static void TryReferenceInitializationCore(Sema &S,
4807                                            const InitializedEntity &Entity,
4808                                            const InitializationKind &Kind,
4809                                            Expr *Initializer,
4810                                            QualType cv1T1, QualType T1,
4811                                            Qualifiers T1Quals,
4812                                            QualType cv2T2, QualType T2,
4813                                            Qualifiers T2Quals,
4814                                            InitializationSequence &Sequence) {
4815   QualType DestType = Entity.getType();
4816   SourceLocation DeclLoc = Initializer->getBeginLoc();
4817 
4818   // Compute some basic properties of the types and the initializer.
4819   bool isLValueRef = DestType->isLValueReferenceType();
4820   bool isRValueRef = !isLValueRef;
4821   Expr::Classification InitCategory = Initializer->Classify(S.Context);
4822 
4823   Sema::ReferenceConversions RefConv;
4824   Sema::ReferenceCompareResult RefRelationship =
4825       S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, &RefConv);
4826 
4827   // C++0x [dcl.init.ref]p5:
4828   //   A reference to type "cv1 T1" is initialized by an expression of type
4829   //   "cv2 T2" as follows:
4830   //
4831   //     - If the reference is an lvalue reference and the initializer
4832   //       expression
4833   // Note the analogous bullet points for rvalue refs to functions. Because
4834   // there are no function rvalues in C++, rvalue refs to functions are treated
4835   // like lvalue refs.
4836   OverloadingResult ConvOvlResult = OR_Success;
4837   bool T1Function = T1->isFunctionType();
4838   if (isLValueRef || T1Function) {
4839     if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
4840         (RefRelationship == Sema::Ref_Compatible ||
4841          (Kind.isCStyleOrFunctionalCast() &&
4842           RefRelationship == Sema::Ref_Related))) {
4843       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
4844       //     reference-compatible with "cv2 T2," or
4845       if (RefConv & (Sema::ReferenceConversions::DerivedToBase |
4846                      Sema::ReferenceConversions::ObjC)) {
4847         // If we're converting the pointee, add any qualifiers first;
4848         // these qualifiers must all be top-level, so just convert to "cv1 T2".
4849         if (RefConv & (Sema::ReferenceConversions::Qualification))
4850           Sequence.AddQualificationConversionStep(
4851               S.Context.getQualifiedType(T2, T1Quals),
4852               Initializer->getValueKind());
4853         if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4854           Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
4855         else
4856           Sequence.AddObjCObjectConversionStep(cv1T1);
4857       } else if (RefConv & Sema::ReferenceConversions::Qualification) {
4858         // Perform a (possibly multi-level) qualification conversion.
4859         Sequence.AddQualificationConversionStep(cv1T1,
4860                                                 Initializer->getValueKind());
4861       } else if (RefConv & Sema::ReferenceConversions::Function) {
4862         Sequence.AddFunctionReferenceConversionStep(cv1T1);
4863       }
4864 
4865       // We only create a temporary here when binding a reference to a
4866       // bit-field or vector element. Those cases are't supposed to be
4867       // handled by this bullet, but the outcome is the same either way.
4868       Sequence.AddReferenceBindingStep(cv1T1, false);
4869       return;
4870     }
4871 
4872     //     - has a class type (i.e., T2 is a class type), where T1 is not
4873     //       reference-related to T2, and can be implicitly converted to an
4874     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4875     //       with "cv3 T3" (this conversion is selected by enumerating the
4876     //       applicable conversion functions (13.3.1.6) and choosing the best
4877     //       one through overload resolution (13.3)),
4878     // If we have an rvalue ref to function type here, the rhs must be
4879     // an rvalue. DR1287 removed the "implicitly" here.
4880     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4881         (isLValueRef || InitCategory.isRValue())) {
4882       if (S.getLangOpts().CPlusPlus) {
4883         // Try conversion functions only for C++.
4884         ConvOvlResult = TryRefInitWithConversionFunction(
4885             S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
4886             /*IsLValueRef*/ isLValueRef, Sequence);
4887         if (ConvOvlResult == OR_Success)
4888           return;
4889         if (ConvOvlResult != OR_No_Viable_Function)
4890           Sequence.SetOverloadFailure(
4891               InitializationSequence::FK_ReferenceInitOverloadFailed,
4892               ConvOvlResult);
4893       } else {
4894         ConvOvlResult = OR_No_Viable_Function;
4895       }
4896     }
4897   }
4898 
4899   //     - Otherwise, the reference shall be an lvalue reference to a
4900   //       non-volatile const type (i.e., cv1 shall be const), or the reference
4901   //       shall be an rvalue reference.
4902   //       For address spaces, we interpret this to mean that an addr space
4903   //       of a reference "cv1 T1" is a superset of addr space of "cv2 T2".
4904   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() &&
4905                        T1Quals.isAddressSpaceSupersetOf(T2Quals))) {
4906     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4907       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4908     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4909       Sequence.SetOverloadFailure(
4910                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4911                                   ConvOvlResult);
4912     else if (!InitCategory.isLValue())
4913       Sequence.SetFailed(
4914           T1Quals.isAddressSpaceSupersetOf(T2Quals)
4915               ? InitializationSequence::
4916                     FK_NonConstLValueReferenceBindingToTemporary
4917               : InitializationSequence::FK_ReferenceInitDropsQualifiers);
4918     else {
4919       InitializationSequence::FailureKind FK;
4920       switch (RefRelationship) {
4921       case Sema::Ref_Compatible:
4922         if (Initializer->refersToBitField())
4923           FK = InitializationSequence::
4924               FK_NonConstLValueReferenceBindingToBitfield;
4925         else if (Initializer->refersToVectorElement())
4926           FK = InitializationSequence::
4927               FK_NonConstLValueReferenceBindingToVectorElement;
4928         else if (Initializer->refersToMatrixElement())
4929           FK = InitializationSequence::
4930               FK_NonConstLValueReferenceBindingToMatrixElement;
4931         else
4932           llvm_unreachable("unexpected kind of compatible initializer");
4933         break;
4934       case Sema::Ref_Related:
4935         FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
4936         break;
4937       case Sema::Ref_Incompatible:
4938         FK = InitializationSequence::
4939             FK_NonConstLValueReferenceBindingToUnrelated;
4940         break;
4941       }
4942       Sequence.SetFailed(FK);
4943     }
4944     return;
4945   }
4946 
4947   //    - If the initializer expression
4948   //      - is an
4949   // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
4950   // [1z]   rvalue (but not a bit-field) or
4951   //        function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
4952   //
4953   // Note: functions are handled above and below rather than here...
4954   if (!T1Function &&
4955       (RefRelationship == Sema::Ref_Compatible ||
4956        (Kind.isCStyleOrFunctionalCast() &&
4957         RefRelationship == Sema::Ref_Related)) &&
4958       ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
4959        (InitCategory.isPRValue() &&
4960         (S.getLangOpts().CPlusPlus17 || T2->isRecordType() ||
4961          T2->isArrayType())))) {
4962     ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_PRValue;
4963     if (InitCategory.isPRValue() && T2->isRecordType()) {
4964       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4965       // compiler the freedom to perform a copy here or bind to the
4966       // object, while C++0x requires that we bind directly to the
4967       // object. Hence, we always bind to the object without making an
4968       // extra copy. However, in C++03 requires that we check for the
4969       // presence of a suitable copy constructor:
4970       //
4971       //   The constructor that would be used to make the copy shall
4972       //   be callable whether or not the copy is actually done.
4973       if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4974         Sequence.AddExtraneousCopyToTemporary(cv2T2);
4975       else if (S.getLangOpts().CPlusPlus11)
4976         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
4977     }
4978 
4979     // C++1z [dcl.init.ref]/5.2.1.2:
4980     //   If the converted initializer is a prvalue, its type T4 is adjusted
4981     //   to type "cv1 T4" and the temporary materialization conversion is
4982     //   applied.
4983     // Postpone address space conversions to after the temporary materialization
4984     // conversion to allow creating temporaries in the alloca address space.
4985     auto T1QualsIgnoreAS = T1Quals;
4986     auto T2QualsIgnoreAS = T2Quals;
4987     if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4988       T1QualsIgnoreAS.removeAddressSpace();
4989       T2QualsIgnoreAS.removeAddressSpace();
4990     }
4991     QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS);
4992     if (T1QualsIgnoreAS != T2QualsIgnoreAS)
4993       Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
4994     Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_PRValue);
4995     ValueKind = isLValueRef ? VK_LValue : VK_XValue;
4996     // Add addr space conversion if required.
4997     if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4998       auto T4Quals = cv1T4.getQualifiers();
4999       T4Quals.addAddressSpace(T1Quals.getAddressSpace());
5000       QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals);
5001       Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind);
5002       cv1T4 = cv1T4WithAS;
5003     }
5004 
5005     //   In any case, the reference is bound to the resulting glvalue (or to
5006     //   an appropriate base class subobject).
5007     if (RefConv & Sema::ReferenceConversions::DerivedToBase)
5008       Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
5009     else if (RefConv & Sema::ReferenceConversions::ObjC)
5010       Sequence.AddObjCObjectConversionStep(cv1T1);
5011     else if (RefConv & Sema::ReferenceConversions::Qualification) {
5012       if (!S.Context.hasSameType(cv1T4, cv1T1))
5013         Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
5014     }
5015     return;
5016   }
5017 
5018   //       - has a class type (i.e., T2 is a class type), where T1 is not
5019   //         reference-related to T2, and can be implicitly converted to an
5020   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
5021   //         where "cv1 T1" is reference-compatible with "cv3 T3",
5022   //
5023   // DR1287 removes the "implicitly" here.
5024   if (T2->isRecordType()) {
5025     if (RefRelationship == Sema::Ref_Incompatible) {
5026       ConvOvlResult = TryRefInitWithConversionFunction(
5027           S, Entity, Kind, Initializer, /*AllowRValues*/ true,
5028           /*IsLValueRef*/ isLValueRef, Sequence);
5029       if (ConvOvlResult)
5030         Sequence.SetOverloadFailure(
5031             InitializationSequence::FK_ReferenceInitOverloadFailed,
5032             ConvOvlResult);
5033 
5034       return;
5035     }
5036 
5037     if (RefRelationship == Sema::Ref_Compatible &&
5038         isRValueRef && InitCategory.isLValue()) {
5039       Sequence.SetFailed(
5040         InitializationSequence::FK_RValueReferenceBindingToLValue);
5041       return;
5042     }
5043 
5044     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
5045     return;
5046   }
5047 
5048   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
5049   //        from the initializer expression using the rules for a non-reference
5050   //        copy-initialization (8.5). The reference is then bound to the
5051   //        temporary. [...]
5052 
5053   // Ignore address space of reference type at this point and perform address
5054   // space conversion after the reference binding step.
5055   QualType cv1T1IgnoreAS =
5056       T1Quals.hasAddressSpace()
5057           ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace())
5058           : cv1T1;
5059 
5060   InitializedEntity TempEntity =
5061       InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
5062 
5063   // FIXME: Why do we use an implicit conversion here rather than trying
5064   // copy-initialization?
5065   ImplicitConversionSequence ICS
5066     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
5067                               /*SuppressUserConversions=*/false,
5068                               Sema::AllowedExplicit::None,
5069                               /*FIXME:InOverloadResolution=*/false,
5070                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5071                               /*AllowObjCWritebackConversion=*/false);
5072 
5073   if (ICS.isBad()) {
5074     // FIXME: Use the conversion function set stored in ICS to turn
5075     // this into an overloading ambiguity diagnostic. However, we need
5076     // to keep that set as an OverloadCandidateSet rather than as some
5077     // other kind of set.
5078     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
5079       Sequence.SetOverloadFailure(
5080                         InitializationSequence::FK_ReferenceInitOverloadFailed,
5081                                   ConvOvlResult);
5082     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
5083       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5084     else
5085       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
5086     return;
5087   } else {
5088     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
5089   }
5090 
5091   //        [...] If T1 is reference-related to T2, cv1 must be the
5092   //        same cv-qualification as, or greater cv-qualification
5093   //        than, cv2; otherwise, the program is ill-formed.
5094   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
5095   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
5096   if (RefRelationship == Sema::Ref_Related &&
5097       ((T1CVRQuals | T2CVRQuals) != T1CVRQuals ||
5098        !T1Quals.isAddressSpaceSupersetOf(T2Quals))) {
5099     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
5100     return;
5101   }
5102 
5103   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
5104   //   reference, the initializer expression shall not be an lvalue.
5105   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
5106       InitCategory.isLValue()) {
5107     Sequence.SetFailed(
5108                     InitializationSequence::FK_RValueReferenceBindingToLValue);
5109     return;
5110   }
5111 
5112   Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true);
5113 
5114   if (T1Quals.hasAddressSpace()) {
5115     if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(),
5116                                               LangAS::Default)) {
5117       Sequence.SetFailed(
5118           InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary);
5119       return;
5120     }
5121     Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue
5122                                                                : VK_XValue);
5123   }
5124 }
5125 
5126 /// Attempt character array initialization from a string literal
5127 /// (C++ [dcl.init.string], C99 6.7.8).
5128 static void TryStringLiteralInitialization(Sema &S,
5129                                            const InitializedEntity &Entity,
5130                                            const InitializationKind &Kind,
5131                                            Expr *Initializer,
5132                                        InitializationSequence &Sequence) {
5133   Sequence.AddStringInitStep(Entity.getType());
5134 }
5135 
5136 /// Attempt value initialization (C++ [dcl.init]p7).
5137 static void TryValueInitialization(Sema &S,
5138                                    const InitializedEntity &Entity,
5139                                    const InitializationKind &Kind,
5140                                    InitializationSequence &Sequence,
5141                                    InitListExpr *InitList) {
5142   assert((!InitList || InitList->getNumInits() == 0) &&
5143          "Shouldn't use value-init for non-empty init lists");
5144 
5145   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
5146   //
5147   //   To value-initialize an object of type T means:
5148   QualType T = Entity.getType();
5149 
5150   //     -- if T is an array type, then each element is value-initialized;
5151   T = S.Context.getBaseElementType(T);
5152 
5153   if (const RecordType *RT = T->getAs<RecordType>()) {
5154     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
5155       bool NeedZeroInitialization = true;
5156       // C++98:
5157       // -- if T is a class type (clause 9) with a user-declared constructor
5158       //    (12.1), then the default constructor for T is called (and the
5159       //    initialization is ill-formed if T has no accessible default
5160       //    constructor);
5161       // C++11:
5162       // -- if T is a class type (clause 9) with either no default constructor
5163       //    (12.1 [class.ctor]) or a default constructor that is user-provided
5164       //    or deleted, then the object is default-initialized;
5165       //
5166       // Note that the C++11 rule is the same as the C++98 rule if there are no
5167       // defaulted or deleted constructors, so we just use it unconditionally.
5168       CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
5169       if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
5170         NeedZeroInitialization = false;
5171 
5172       // -- if T is a (possibly cv-qualified) non-union class type without a
5173       //    user-provided or deleted default constructor, then the object is
5174       //    zero-initialized and, if T has a non-trivial default constructor,
5175       //    default-initialized;
5176       // The 'non-union' here was removed by DR1502. The 'non-trivial default
5177       // constructor' part was removed by DR1507.
5178       if (NeedZeroInitialization)
5179         Sequence.AddZeroInitializationStep(Entity.getType());
5180 
5181       // C++03:
5182       // -- if T is a non-union class type without a user-declared constructor,
5183       //    then every non-static data member and base class component of T is
5184       //    value-initialized;
5185       // [...] A program that calls for [...] value-initialization of an
5186       // entity of reference type is ill-formed.
5187       //
5188       // C++11 doesn't need this handling, because value-initialization does not
5189       // occur recursively there, and the implicit default constructor is
5190       // defined as deleted in the problematic cases.
5191       if (!S.getLangOpts().CPlusPlus11 &&
5192           ClassDecl->hasUninitializedReferenceMember()) {
5193         Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
5194         return;
5195       }
5196 
5197       // If this is list-value-initialization, pass the empty init list on when
5198       // building the constructor call. This affects the semantics of a few
5199       // things (such as whether an explicit default constructor can be called).
5200       Expr *InitListAsExpr = InitList;
5201       MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
5202       bool InitListSyntax = InitList;
5203 
5204       // FIXME: Instead of creating a CXXConstructExpr of array type here,
5205       // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
5206       return TryConstructorInitialization(
5207           S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
5208     }
5209   }
5210 
5211   Sequence.AddZeroInitializationStep(Entity.getType());
5212 }
5213 
5214 /// Attempt default initialization (C++ [dcl.init]p6).
5215 static void TryDefaultInitialization(Sema &S,
5216                                      const InitializedEntity &Entity,
5217                                      const InitializationKind &Kind,
5218                                      InitializationSequence &Sequence) {
5219   assert(Kind.getKind() == InitializationKind::IK_Default);
5220 
5221   // C++ [dcl.init]p6:
5222   //   To default-initialize an object of type T means:
5223   //     - if T is an array type, each element is default-initialized;
5224   QualType DestType = S.Context.getBaseElementType(Entity.getType());
5225 
5226   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
5227   //       constructor for T is called (and the initialization is ill-formed if
5228   //       T has no accessible default constructor);
5229   if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
5230     TryConstructorInitialization(S, Entity, Kind, None, DestType,
5231                                  Entity.getType(), Sequence);
5232     return;
5233   }
5234 
5235   //     - otherwise, no initialization is performed.
5236 
5237   //   If a program calls for the default initialization of an object of
5238   //   a const-qualified type T, T shall be a class type with a user-provided
5239   //   default constructor.
5240   if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
5241     if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
5242       Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
5243     return;
5244   }
5245 
5246   // If the destination type has a lifetime property, zero-initialize it.
5247   if (DestType.getQualifiers().hasObjCLifetime()) {
5248     Sequence.AddZeroInitializationStep(Entity.getType());
5249     return;
5250   }
5251 }
5252 
5253 /// Attempt a user-defined conversion between two types (C++ [dcl.init]),
5254 /// which enumerates all conversion functions and performs overload resolution
5255 /// to select the best.
5256 static void TryUserDefinedConversion(Sema &S,
5257                                      QualType DestType,
5258                                      const InitializationKind &Kind,
5259                                      Expr *Initializer,
5260                                      InitializationSequence &Sequence,
5261                                      bool TopLevelOfInitList) {
5262   assert(!DestType->isReferenceType() && "References are handled elsewhere");
5263   QualType SourceType = Initializer->getType();
5264   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
5265          "Must have a class type to perform a user-defined conversion");
5266 
5267   // Build the candidate set directly in the initialization sequence
5268   // structure, so that it will persist if we fail.
5269   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
5270   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
5271   CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
5272 
5273   // Determine whether we are allowed to call explicit constructors or
5274   // explicit conversion operators.
5275   bool AllowExplicit = Kind.AllowExplicit();
5276 
5277   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
5278     // The type we're converting to is a class type. Enumerate its constructors
5279     // to see if there is a suitable conversion.
5280     CXXRecordDecl *DestRecordDecl
5281       = cast<CXXRecordDecl>(DestRecordType->getDecl());
5282 
5283     // Try to complete the type we're converting to.
5284     if (S.isCompleteType(Kind.getLocation(), DestType)) {
5285       for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) {
5286         auto Info = getConstructorInfo(D);
5287         if (!Info.Constructor)
5288           continue;
5289 
5290         if (!Info.Constructor->isInvalidDecl() &&
5291             Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
5292           if (Info.ConstructorTmpl)
5293             S.AddTemplateOverloadCandidate(
5294                 Info.ConstructorTmpl, Info.FoundDecl,
5295                 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
5296                 /*SuppressUserConversions=*/true,
5297                 /*PartialOverloading*/ false, AllowExplicit);
5298           else
5299             S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
5300                                    Initializer, CandidateSet,
5301                                    /*SuppressUserConversions=*/true,
5302                                    /*PartialOverloading*/ false, AllowExplicit);
5303         }
5304       }
5305     }
5306   }
5307 
5308   SourceLocation DeclLoc = Initializer->getBeginLoc();
5309 
5310   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
5311     // The type we're converting from is a class type, enumerate its conversion
5312     // functions.
5313 
5314     // We can only enumerate the conversion functions for a complete type; if
5315     // the type isn't complete, simply skip this step.
5316     if (S.isCompleteType(DeclLoc, SourceType)) {
5317       CXXRecordDecl *SourceRecordDecl
5318         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
5319 
5320       const auto &Conversions =
5321           SourceRecordDecl->getVisibleConversionFunctions();
5322       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
5323         NamedDecl *D = *I;
5324         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
5325         if (isa<UsingShadowDecl>(D))
5326           D = cast<UsingShadowDecl>(D)->getTargetDecl();
5327 
5328         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5329         CXXConversionDecl *Conv;
5330         if (ConvTemplate)
5331           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5332         else
5333           Conv = cast<CXXConversionDecl>(D);
5334 
5335         if (ConvTemplate)
5336           S.AddTemplateConversionCandidate(
5337               ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
5338               CandidateSet, AllowExplicit, AllowExplicit);
5339         else
5340           S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
5341                                    DestType, CandidateSet, AllowExplicit,
5342                                    AllowExplicit);
5343       }
5344     }
5345   }
5346 
5347   // Perform overload resolution. If it fails, return the failed result.
5348   OverloadCandidateSet::iterator Best;
5349   if (OverloadingResult Result
5350         = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
5351     Sequence.SetOverloadFailure(
5352         InitializationSequence::FK_UserConversionOverloadFailed, Result);
5353 
5354     // [class.copy.elision]p3:
5355     // In some copy-initialization contexts, a two-stage overload resolution
5356     // is performed.
5357     // If the first overload resolution selects a deleted function, we also
5358     // need the initialization sequence to decide whether to perform the second
5359     // overload resolution.
5360     if (!(Result == OR_Deleted &&
5361           Kind.getKind() == InitializationKind::IK_Copy))
5362       return;
5363   }
5364 
5365   FunctionDecl *Function = Best->Function;
5366   Function->setReferenced();
5367   bool HadMultipleCandidates = (CandidateSet.size() > 1);
5368 
5369   if (isa<CXXConstructorDecl>(Function)) {
5370     // Add the user-defined conversion step. Any cv-qualification conversion is
5371     // subsumed by the initialization. Per DR5, the created temporary is of the
5372     // cv-unqualified type of the destination.
5373     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
5374                                    DestType.getUnqualifiedType(),
5375                                    HadMultipleCandidates);
5376 
5377     // C++14 and before:
5378     //   - if the function is a constructor, the call initializes a temporary
5379     //     of the cv-unqualified version of the destination type. The [...]
5380     //     temporary [...] is then used to direct-initialize, according to the
5381     //     rules above, the object that is the destination of the
5382     //     copy-initialization.
5383     // Note that this just performs a simple object copy from the temporary.
5384     //
5385     // C++17:
5386     //   - if the function is a constructor, the call is a prvalue of the
5387     //     cv-unqualified version of the destination type whose return object
5388     //     is initialized by the constructor. The call is used to
5389     //     direct-initialize, according to the rules above, the object that
5390     //     is the destination of the copy-initialization.
5391     // Therefore we need to do nothing further.
5392     //
5393     // FIXME: Mark this copy as extraneous.
5394     if (!S.getLangOpts().CPlusPlus17)
5395       Sequence.AddFinalCopy(DestType);
5396     else if (DestType.hasQualifiers())
5397       Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
5398     return;
5399   }
5400 
5401   // Add the user-defined conversion step that calls the conversion function.
5402   QualType ConvType = Function->getCallResultType();
5403   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
5404                                  HadMultipleCandidates);
5405 
5406   if (ConvType->getAs<RecordType>()) {
5407     //   The call is used to direct-initialize [...] the object that is the
5408     //   destination of the copy-initialization.
5409     //
5410     // In C++17, this does not call a constructor if we enter /17.6.1:
5411     //   - If the initializer expression is a prvalue and the cv-unqualified
5412     //     version of the source type is the same as the class of the
5413     //     destination [... do not make an extra copy]
5414     //
5415     // FIXME: Mark this copy as extraneous.
5416     if (!S.getLangOpts().CPlusPlus17 ||
5417         Function->getReturnType()->isReferenceType() ||
5418         !S.Context.hasSameUnqualifiedType(ConvType, DestType))
5419       Sequence.AddFinalCopy(DestType);
5420     else if (!S.Context.hasSameType(ConvType, DestType))
5421       Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
5422     return;
5423   }
5424 
5425   // If the conversion following the call to the conversion function
5426   // is interesting, add it as a separate step.
5427   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
5428       Best->FinalConversion.Third) {
5429     ImplicitConversionSequence ICS;
5430     ICS.setStandard();
5431     ICS.Standard = Best->FinalConversion;
5432     Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5433   }
5434 }
5435 
5436 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
5437 /// a function with a pointer return type contains a 'return false;' statement.
5438 /// In C++11, 'false' is not a null pointer, so this breaks the build of any
5439 /// code using that header.
5440 ///
5441 /// Work around this by treating 'return false;' as zero-initializing the result
5442 /// if it's used in a pointer-returning function in a system header.
5443 static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
5444                                               const InitializedEntity &Entity,
5445                                               const Expr *Init) {
5446   return S.getLangOpts().CPlusPlus11 &&
5447          Entity.getKind() == InitializedEntity::EK_Result &&
5448          Entity.getType()->isPointerType() &&
5449          isa<CXXBoolLiteralExpr>(Init) &&
5450          !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
5451          S.getSourceManager().isInSystemHeader(Init->getExprLoc());
5452 }
5453 
5454 /// The non-zero enum values here are indexes into diagnostic alternatives.
5455 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
5456 
5457 /// Determines whether this expression is an acceptable ICR source.
5458 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
5459                                          bool isAddressOf, bool &isWeakAccess) {
5460   // Skip parens.
5461   e = e->IgnoreParens();
5462 
5463   // Skip address-of nodes.
5464   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
5465     if (op->getOpcode() == UO_AddrOf)
5466       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
5467                                 isWeakAccess);
5468 
5469   // Skip certain casts.
5470   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
5471     switch (ce->getCastKind()) {
5472     case CK_Dependent:
5473     case CK_BitCast:
5474     case CK_LValueBitCast:
5475     case CK_NoOp:
5476       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
5477 
5478     case CK_ArrayToPointerDecay:
5479       return IIK_nonscalar;
5480 
5481     case CK_NullToPointer:
5482       return IIK_okay;
5483 
5484     default:
5485       break;
5486     }
5487 
5488   // If we have a declaration reference, it had better be a local variable.
5489   } else if (isa<DeclRefExpr>(e)) {
5490     // set isWeakAccess to true, to mean that there will be an implicit
5491     // load which requires a cleanup.
5492     if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
5493       isWeakAccess = true;
5494 
5495     if (!isAddressOf) return IIK_nonlocal;
5496 
5497     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
5498     if (!var) return IIK_nonlocal;
5499 
5500     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
5501 
5502   // If we have a conditional operator, check both sides.
5503   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
5504     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
5505                                                 isWeakAccess))
5506       return iik;
5507 
5508     return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
5509 
5510   // These are never scalar.
5511   } else if (isa<ArraySubscriptExpr>(e)) {
5512     return IIK_nonscalar;
5513 
5514   // Otherwise, it needs to be a null pointer constant.
5515   } else {
5516     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
5517             ? IIK_okay : IIK_nonlocal);
5518   }
5519 
5520   return IIK_nonlocal;
5521 }
5522 
5523 /// Check whether the given expression is a valid operand for an
5524 /// indirect copy/restore.
5525 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
5526   assert(src->isPRValue());
5527   bool isWeakAccess = false;
5528   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
5529   // If isWeakAccess to true, there will be an implicit
5530   // load which requires a cleanup.
5531   if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
5532     S.Cleanup.setExprNeedsCleanups(true);
5533 
5534   if (iik == IIK_okay) return;
5535 
5536   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
5537     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
5538     << src->getSourceRange();
5539 }
5540 
5541 /// Determine whether we have compatible array types for the
5542 /// purposes of GNU by-copy array initialization.
5543 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
5544                                     const ArrayType *Source) {
5545   // If the source and destination array types are equivalent, we're
5546   // done.
5547   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
5548     return true;
5549 
5550   // Make sure that the element types are the same.
5551   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
5552     return false;
5553 
5554   // The only mismatch we allow is when the destination is an
5555   // incomplete array type and the source is a constant array type.
5556   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
5557 }
5558 
5559 static bool tryObjCWritebackConversion(Sema &S,
5560                                        InitializationSequence &Sequence,
5561                                        const InitializedEntity &Entity,
5562                                        Expr *Initializer) {
5563   bool ArrayDecay = false;
5564   QualType ArgType = Initializer->getType();
5565   QualType ArgPointee;
5566   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
5567     ArrayDecay = true;
5568     ArgPointee = ArgArrayType->getElementType();
5569     ArgType = S.Context.getPointerType(ArgPointee);
5570   }
5571 
5572   // Handle write-back conversion.
5573   QualType ConvertedArgType;
5574   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
5575                                    ConvertedArgType))
5576     return false;
5577 
5578   // We should copy unless we're passing to an argument explicitly
5579   // marked 'out'.
5580   bool ShouldCopy = true;
5581   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5582     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5583 
5584   // Do we need an lvalue conversion?
5585   if (ArrayDecay || Initializer->isGLValue()) {
5586     ImplicitConversionSequence ICS;
5587     ICS.setStandard();
5588     ICS.Standard.setAsIdentityConversion();
5589 
5590     QualType ResultType;
5591     if (ArrayDecay) {
5592       ICS.Standard.First = ICK_Array_To_Pointer;
5593       ResultType = S.Context.getPointerType(ArgPointee);
5594     } else {
5595       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
5596       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
5597     }
5598 
5599     Sequence.AddConversionSequenceStep(ICS, ResultType);
5600   }
5601 
5602   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
5603   return true;
5604 }
5605 
5606 static bool TryOCLSamplerInitialization(Sema &S,
5607                                         InitializationSequence &Sequence,
5608                                         QualType DestType,
5609                                         Expr *Initializer) {
5610   if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
5611       (!Initializer->isIntegerConstantExpr(S.Context) &&
5612       !Initializer->getType()->isSamplerT()))
5613     return false;
5614 
5615   Sequence.AddOCLSamplerInitStep(DestType);
5616   return true;
5617 }
5618 
5619 static bool IsZeroInitializer(Expr *Initializer, Sema &S) {
5620   return Initializer->isIntegerConstantExpr(S.getASTContext()) &&
5621     (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0);
5622 }
5623 
5624 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S,
5625                                                InitializationSequence &Sequence,
5626                                                QualType DestType,
5627                                                Expr *Initializer) {
5628   if (!S.getLangOpts().OpenCL)
5629     return false;
5630 
5631   //
5632   // OpenCL 1.2 spec, s6.12.10
5633   //
5634   // The event argument can also be used to associate the
5635   // async_work_group_copy with a previous async copy allowing
5636   // an event to be shared by multiple async copies; otherwise
5637   // event should be zero.
5638   //
5639   if (DestType->isEventT() || DestType->isQueueT()) {
5640     if (!IsZeroInitializer(Initializer, S))
5641       return false;
5642 
5643     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5644     return true;
5645   }
5646 
5647   // We should allow zero initialization for all types defined in the
5648   // cl_intel_device_side_avc_motion_estimation extension, except
5649   // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t.
5650   if (S.getOpenCLOptions().isAvailableOption(
5651           "cl_intel_device_side_avc_motion_estimation", S.getLangOpts()) &&
5652       DestType->isOCLIntelSubgroupAVCType()) {
5653     if (DestType->isOCLIntelSubgroupAVCMcePayloadType() ||
5654         DestType->isOCLIntelSubgroupAVCMceResultType())
5655       return false;
5656     if (!IsZeroInitializer(Initializer, S))
5657       return false;
5658 
5659     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5660     return true;
5661   }
5662 
5663   return false;
5664 }
5665 
5666 InitializationSequence::InitializationSequence(
5667     Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
5668     MultiExprArg Args, bool TopLevelOfInitList, bool TreatUnavailableAsInvalid)
5669     : FailedOverloadResult(OR_Success),
5670       FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
5671   InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
5672                  TreatUnavailableAsInvalid);
5673 }
5674 
5675 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
5676 /// address of that function, this returns true. Otherwise, it returns false.
5677 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
5678   auto *DRE = dyn_cast<DeclRefExpr>(E);
5679   if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
5680     return false;
5681 
5682   return !S.checkAddressOfFunctionIsAvailable(
5683       cast<FunctionDecl>(DRE->getDecl()));
5684 }
5685 
5686 /// Determine whether we can perform an elementwise array copy for this kind
5687 /// of entity.
5688 static bool canPerformArrayCopy(const InitializedEntity &Entity) {
5689   switch (Entity.getKind()) {
5690   case InitializedEntity::EK_LambdaCapture:
5691     // C++ [expr.prim.lambda]p24:
5692     //   For array members, the array elements are direct-initialized in
5693     //   increasing subscript order.
5694     return true;
5695 
5696   case InitializedEntity::EK_Variable:
5697     // C++ [dcl.decomp]p1:
5698     //   [...] each element is copy-initialized or direct-initialized from the
5699     //   corresponding element of the assignment-expression [...]
5700     return isa<DecompositionDecl>(Entity.getDecl());
5701 
5702   case InitializedEntity::EK_Member:
5703     // C++ [class.copy.ctor]p14:
5704     //   - if the member is an array, each element is direct-initialized with
5705     //     the corresponding subobject of x
5706     return Entity.isImplicitMemberInitializer();
5707 
5708   case InitializedEntity::EK_ArrayElement:
5709     // All the above cases are intended to apply recursively, even though none
5710     // of them actually say that.
5711     if (auto *E = Entity.getParent())
5712       return canPerformArrayCopy(*E);
5713     break;
5714 
5715   default:
5716     break;
5717   }
5718 
5719   return false;
5720 }
5721 
5722 void InitializationSequence::InitializeFrom(Sema &S,
5723                                             const InitializedEntity &Entity,
5724                                             const InitializationKind &Kind,
5725                                             MultiExprArg Args,
5726                                             bool TopLevelOfInitList,
5727                                             bool TreatUnavailableAsInvalid) {
5728   ASTContext &Context = S.Context;
5729 
5730   // Eliminate non-overload placeholder types in the arguments.  We
5731   // need to do this before checking whether types are dependent
5732   // because lowering a pseudo-object expression might well give us
5733   // something of dependent type.
5734   for (unsigned I = 0, E = Args.size(); I != E; ++I)
5735     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
5736       // FIXME: should we be doing this here?
5737       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
5738       if (result.isInvalid()) {
5739         SetFailed(FK_PlaceholderType);
5740         return;
5741       }
5742       Args[I] = result.get();
5743     }
5744 
5745   // C++0x [dcl.init]p16:
5746   //   The semantics of initializers are as follows. The destination type is
5747   //   the type of the object or reference being initialized and the source
5748   //   type is the type of the initializer expression. The source type is not
5749   //   defined when the initializer is a braced-init-list or when it is a
5750   //   parenthesized list of expressions.
5751   QualType DestType = Entity.getType();
5752 
5753   if (DestType->isDependentType() ||
5754       Expr::hasAnyTypeDependentArguments(Args)) {
5755     SequenceKind = DependentSequence;
5756     return;
5757   }
5758 
5759   // Almost everything is a normal sequence.
5760   setSequenceKind(NormalSequence);
5761 
5762   QualType SourceType;
5763   Expr *Initializer = nullptr;
5764   if (Args.size() == 1) {
5765     Initializer = Args[0];
5766     if (S.getLangOpts().ObjC) {
5767       if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(),
5768                                               DestType, Initializer->getType(),
5769                                               Initializer) ||
5770           S.CheckConversionToObjCLiteral(DestType, Initializer))
5771         Args[0] = Initializer;
5772     }
5773     if (!isa<InitListExpr>(Initializer))
5774       SourceType = Initializer->getType();
5775   }
5776 
5777   //     - If the initializer is a (non-parenthesized) braced-init-list, the
5778   //       object is list-initialized (8.5.4).
5779   if (Kind.getKind() != InitializationKind::IK_Direct) {
5780     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
5781       TryListInitialization(S, Entity, Kind, InitList, *this,
5782                             TreatUnavailableAsInvalid);
5783       return;
5784     }
5785   }
5786 
5787   //     - If the destination type is a reference type, see 8.5.3.
5788   if (DestType->isReferenceType()) {
5789     // C++0x [dcl.init.ref]p1:
5790     //   A variable declared to be a T& or T&&, that is, "reference to type T"
5791     //   (8.3.2), shall be initialized by an object, or function, of type T or
5792     //   by an object that can be converted into a T.
5793     // (Therefore, multiple arguments are not permitted.)
5794     if (Args.size() != 1)
5795       SetFailed(FK_TooManyInitsForReference);
5796     // C++17 [dcl.init.ref]p5:
5797     //   A reference [...] is initialized by an expression [...] as follows:
5798     // If the initializer is not an expression, presumably we should reject,
5799     // but the standard fails to actually say so.
5800     else if (isa<InitListExpr>(Args[0]))
5801       SetFailed(FK_ParenthesizedListInitForReference);
5802     else
5803       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
5804     return;
5805   }
5806 
5807   //     - If the initializer is (), the object is value-initialized.
5808   if (Kind.getKind() == InitializationKind::IK_Value ||
5809       (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
5810     TryValueInitialization(S, Entity, Kind, *this);
5811     return;
5812   }
5813 
5814   // Handle default initialization.
5815   if (Kind.getKind() == InitializationKind::IK_Default) {
5816     TryDefaultInitialization(S, Entity, Kind, *this);
5817     return;
5818   }
5819 
5820   //     - If the destination type is an array of characters, an array of
5821   //       char16_t, an array of char32_t, or an array of wchar_t, and the
5822   //       initializer is a string literal, see 8.5.2.
5823   //     - Otherwise, if the destination type is an array, the program is
5824   //       ill-formed.
5825   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
5826     if (Initializer && isa<VariableArrayType>(DestAT)) {
5827       SetFailed(FK_VariableLengthArrayHasInitializer);
5828       return;
5829     }
5830 
5831     if (Initializer) {
5832       switch (IsStringInit(Initializer, DestAT, Context)) {
5833       case SIF_None:
5834         TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
5835         return;
5836       case SIF_NarrowStringIntoWideChar:
5837         SetFailed(FK_NarrowStringIntoWideCharArray);
5838         return;
5839       case SIF_WideStringIntoChar:
5840         SetFailed(FK_WideStringIntoCharArray);
5841         return;
5842       case SIF_IncompatWideStringIntoWideChar:
5843         SetFailed(FK_IncompatWideStringIntoWideChar);
5844         return;
5845       case SIF_PlainStringIntoUTF8Char:
5846         SetFailed(FK_PlainStringIntoUTF8Char);
5847         return;
5848       case SIF_UTF8StringIntoPlainChar:
5849         SetFailed(FK_UTF8StringIntoPlainChar);
5850         return;
5851       case SIF_Other:
5852         break;
5853       }
5854     }
5855 
5856     // Some kinds of initialization permit an array to be initialized from
5857     // another array of the same type, and perform elementwise initialization.
5858     if (Initializer && isa<ConstantArrayType>(DestAT) &&
5859         S.Context.hasSameUnqualifiedType(Initializer->getType(),
5860                                          Entity.getType()) &&
5861         canPerformArrayCopy(Entity)) {
5862       // If source is a prvalue, use it directly.
5863       if (Initializer->isPRValue()) {
5864         AddArrayInitStep(DestType, /*IsGNUExtension*/false);
5865         return;
5866       }
5867 
5868       // Emit element-at-a-time copy loop.
5869       InitializedEntity Element =
5870           InitializedEntity::InitializeElement(S.Context, 0, Entity);
5871       QualType InitEltT =
5872           Context.getAsArrayType(Initializer->getType())->getElementType();
5873       OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
5874                           Initializer->getValueKind(),
5875                           Initializer->getObjectKind());
5876       Expr *OVEAsExpr = &OVE;
5877       InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
5878                      TreatUnavailableAsInvalid);
5879       if (!Failed())
5880         AddArrayInitLoopStep(Entity.getType(), InitEltT);
5881       return;
5882     }
5883 
5884     // Note: as an GNU C extension, we allow initialization of an
5885     // array from a compound literal that creates an array of the same
5886     // type, so long as the initializer has no side effects.
5887     if (!S.getLangOpts().CPlusPlus && Initializer &&
5888         isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
5889         Initializer->getType()->isArrayType()) {
5890       const ArrayType *SourceAT
5891         = Context.getAsArrayType(Initializer->getType());
5892       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
5893         SetFailed(FK_ArrayTypeMismatch);
5894       else if (Initializer->HasSideEffects(S.Context))
5895         SetFailed(FK_NonConstantArrayInit);
5896       else {
5897         AddArrayInitStep(DestType, /*IsGNUExtension*/true);
5898       }
5899     }
5900     // Note: as a GNU C++ extension, we allow list-initialization of a
5901     // class member of array type from a parenthesized initializer list.
5902     else if (S.getLangOpts().CPlusPlus &&
5903              Entity.getKind() == InitializedEntity::EK_Member &&
5904              Initializer && isa<InitListExpr>(Initializer)) {
5905       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
5906                             *this, TreatUnavailableAsInvalid);
5907       AddParenthesizedArrayInitStep(DestType);
5908     } else if (DestAT->getElementType()->isCharType())
5909       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
5910     else if (IsWideCharCompatible(DestAT->getElementType(), Context))
5911       SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
5912     else
5913       SetFailed(FK_ArrayNeedsInitList);
5914 
5915     return;
5916   }
5917 
5918   // Determine whether we should consider writeback conversions for
5919   // Objective-C ARC.
5920   bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
5921          Entity.isParameterKind();
5922 
5923   if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
5924     return;
5925 
5926   // We're at the end of the line for C: it's either a write-back conversion
5927   // or it's a C assignment. There's no need to check anything else.
5928   if (!S.getLangOpts().CPlusPlus) {
5929     // If allowed, check whether this is an Objective-C writeback conversion.
5930     if (allowObjCWritebackConversion &&
5931         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
5932       return;
5933     }
5934 
5935     if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer))
5936       return;
5937 
5938     // Handle initialization in C
5939     AddCAssignmentStep(DestType);
5940     MaybeProduceObjCObject(S, *this, Entity);
5941     return;
5942   }
5943 
5944   assert(S.getLangOpts().CPlusPlus);
5945 
5946   //     - If the destination type is a (possibly cv-qualified) class type:
5947   if (DestType->isRecordType()) {
5948     //     - If the initialization is direct-initialization, or if it is
5949     //       copy-initialization where the cv-unqualified version of the
5950     //       source type is the same class as, or a derived class of, the
5951     //       class of the destination, constructors are considered. [...]
5952     if (Kind.getKind() == InitializationKind::IK_Direct ||
5953         (Kind.getKind() == InitializationKind::IK_Copy &&
5954          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
5955           S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType))))
5956       TryConstructorInitialization(S, Entity, Kind, Args,
5957                                    DestType, DestType, *this);
5958     //     - Otherwise (i.e., for the remaining copy-initialization cases),
5959     //       user-defined conversion sequences that can convert from the source
5960     //       type to the destination type or (when a conversion function is
5961     //       used) to a derived class thereof are enumerated as described in
5962     //       13.3.1.4, and the best one is chosen through overload resolution
5963     //       (13.3).
5964     else
5965       TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5966                                TopLevelOfInitList);
5967     return;
5968   }
5969 
5970   assert(Args.size() >= 1 && "Zero-argument case handled above");
5971 
5972   // For HLSL ext vector types we allow list initialization behavior for C++
5973   // constructor syntax. This is accomplished by converting initialization
5974   // arguments an InitListExpr late.
5975   if (S.getLangOpts().HLSL && DestType->isExtVectorType() &&
5976       (SourceType.isNull() ||
5977        !Context.hasSameUnqualifiedType(SourceType, DestType))) {
5978 
5979     llvm::SmallVector<Expr *> InitArgs;
5980     for (auto Arg : Args) {
5981       if (Arg->getType()->isExtVectorType()) {
5982         const auto *VTy = Arg->getType()->castAs<ExtVectorType>();
5983         unsigned Elm = VTy->getNumElements();
5984         for (unsigned Idx = 0; Idx < Elm; ++Idx) {
5985           InitArgs.emplace_back(new (Context) ArraySubscriptExpr(
5986               Arg,
5987               IntegerLiteral::Create(
5988                   Context, llvm::APInt(Context.getIntWidth(Context.IntTy), Idx),
5989                   Context.IntTy, SourceLocation()),
5990               VTy->getElementType(), Arg->getValueKind(), Arg->getObjectKind(),
5991               SourceLocation()));
5992         }
5993       } else
5994         InitArgs.emplace_back(Arg);
5995     }
5996     InitListExpr *ILE = new (Context) InitListExpr(
5997         S.getASTContext(), SourceLocation(), InitArgs, SourceLocation());
5998     Args[0] = ILE;
5999     AddListInitializationStep(DestType);
6000     return;
6001   }
6002 
6003   // The remaining cases all need a source type.
6004   if (Args.size() > 1) {
6005     SetFailed(FK_TooManyInitsForScalar);
6006     return;
6007   } else if (isa<InitListExpr>(Args[0])) {
6008     SetFailed(FK_ParenthesizedListInitForScalar);
6009     return;
6010   }
6011 
6012   //    - Otherwise, if the source type is a (possibly cv-qualified) class
6013   //      type, conversion functions are considered.
6014   if (!SourceType.isNull() && SourceType->isRecordType()) {
6015     // For a conversion to _Atomic(T) from either T or a class type derived
6016     // from T, initialize the T object then convert to _Atomic type.
6017     bool NeedAtomicConversion = false;
6018     if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
6019       if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
6020           S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType,
6021                           Atomic->getValueType())) {
6022         DestType = Atomic->getValueType();
6023         NeedAtomicConversion = true;
6024       }
6025     }
6026 
6027     TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
6028                              TopLevelOfInitList);
6029     MaybeProduceObjCObject(S, *this, Entity);
6030     if (!Failed() && NeedAtomicConversion)
6031       AddAtomicConversionStep(Entity.getType());
6032     return;
6033   }
6034 
6035   //    - Otherwise, if the initialization is direct-initialization, the source
6036   //    type is std::nullptr_t, and the destination type is bool, the initial
6037   //    value of the object being initialized is false.
6038   if (!SourceType.isNull() && SourceType->isNullPtrType() &&
6039       DestType->isBooleanType() &&
6040       Kind.getKind() == InitializationKind::IK_Direct) {
6041     AddConversionSequenceStep(
6042         ImplicitConversionSequence::getNullptrToBool(SourceType, DestType,
6043                                                      Initializer->isGLValue()),
6044         DestType);
6045     return;
6046   }
6047 
6048   //    - Otherwise, the initial value of the object being initialized is the
6049   //      (possibly converted) value of the initializer expression. Standard
6050   //      conversions (Clause 4) will be used, if necessary, to convert the
6051   //      initializer expression to the cv-unqualified version of the
6052   //      destination type; no user-defined conversions are considered.
6053 
6054   ImplicitConversionSequence ICS
6055     = S.TryImplicitConversion(Initializer, DestType,
6056                               /*SuppressUserConversions*/true,
6057                               Sema::AllowedExplicit::None,
6058                               /*InOverloadResolution*/ false,
6059                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
6060                               allowObjCWritebackConversion);
6061 
6062   if (ICS.isStandard() &&
6063       ICS.Standard.Second == ICK_Writeback_Conversion) {
6064     // Objective-C ARC writeback conversion.
6065 
6066     // We should copy unless we're passing to an argument explicitly
6067     // marked 'out'.
6068     bool ShouldCopy = true;
6069     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
6070       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
6071 
6072     // If there was an lvalue adjustment, add it as a separate conversion.
6073     if (ICS.Standard.First == ICK_Array_To_Pointer ||
6074         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
6075       ImplicitConversionSequence LvalueICS;
6076       LvalueICS.setStandard();
6077       LvalueICS.Standard.setAsIdentityConversion();
6078       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
6079       LvalueICS.Standard.First = ICS.Standard.First;
6080       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
6081     }
6082 
6083     AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
6084   } else if (ICS.isBad()) {
6085     DeclAccessPair dap;
6086     if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
6087       AddZeroInitializationStep(Entity.getType());
6088     } else if (Initializer->getType() == Context.OverloadTy &&
6089                !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
6090                                                      false, dap))
6091       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
6092     else if (Initializer->getType()->isFunctionType() &&
6093              isExprAnUnaddressableFunction(S, Initializer))
6094       SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
6095     else
6096       SetFailed(InitializationSequence::FK_ConversionFailed);
6097   } else {
6098     AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
6099 
6100     MaybeProduceObjCObject(S, *this, Entity);
6101   }
6102 }
6103 
6104 InitializationSequence::~InitializationSequence() {
6105   for (auto &S : Steps)
6106     S.Destroy();
6107 }
6108 
6109 //===----------------------------------------------------------------------===//
6110 // Perform initialization
6111 //===----------------------------------------------------------------------===//
6112 static Sema::AssignmentAction
6113 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
6114   switch(Entity.getKind()) {
6115   case InitializedEntity::EK_Variable:
6116   case InitializedEntity::EK_New:
6117   case InitializedEntity::EK_Exception:
6118   case InitializedEntity::EK_Base:
6119   case InitializedEntity::EK_Delegating:
6120     return Sema::AA_Initializing;
6121 
6122   case InitializedEntity::EK_Parameter:
6123     if (Entity.getDecl() &&
6124         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
6125       return Sema::AA_Sending;
6126 
6127     return Sema::AA_Passing;
6128 
6129   case InitializedEntity::EK_Parameter_CF_Audited:
6130     if (Entity.getDecl() &&
6131       isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
6132       return Sema::AA_Sending;
6133 
6134     return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
6135 
6136   case InitializedEntity::EK_Result:
6137   case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right.
6138     return Sema::AA_Returning;
6139 
6140   case InitializedEntity::EK_Temporary:
6141   case InitializedEntity::EK_RelatedResult:
6142     // FIXME: Can we tell apart casting vs. converting?
6143     return Sema::AA_Casting;
6144 
6145   case InitializedEntity::EK_TemplateParameter:
6146     // This is really initialization, but refer to it as conversion for
6147     // consistency with CheckConvertedConstantExpression.
6148     return Sema::AA_Converting;
6149 
6150   case InitializedEntity::EK_Member:
6151   case InitializedEntity::EK_Binding:
6152   case InitializedEntity::EK_ArrayElement:
6153   case InitializedEntity::EK_VectorElement:
6154   case InitializedEntity::EK_ComplexElement:
6155   case InitializedEntity::EK_BlockElement:
6156   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6157   case InitializedEntity::EK_LambdaCapture:
6158   case InitializedEntity::EK_CompoundLiteralInit:
6159     return Sema::AA_Initializing;
6160   }
6161 
6162   llvm_unreachable("Invalid EntityKind!");
6163 }
6164 
6165 /// Whether we should bind a created object as a temporary when
6166 /// initializing the given entity.
6167 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
6168   switch (Entity.getKind()) {
6169   case InitializedEntity::EK_ArrayElement:
6170   case InitializedEntity::EK_Member:
6171   case InitializedEntity::EK_Result:
6172   case InitializedEntity::EK_StmtExprResult:
6173   case InitializedEntity::EK_New:
6174   case InitializedEntity::EK_Variable:
6175   case InitializedEntity::EK_Base:
6176   case InitializedEntity::EK_Delegating:
6177   case InitializedEntity::EK_VectorElement:
6178   case InitializedEntity::EK_ComplexElement:
6179   case InitializedEntity::EK_Exception:
6180   case InitializedEntity::EK_BlockElement:
6181   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6182   case InitializedEntity::EK_LambdaCapture:
6183   case InitializedEntity::EK_CompoundLiteralInit:
6184   case InitializedEntity::EK_TemplateParameter:
6185     return false;
6186 
6187   case InitializedEntity::EK_Parameter:
6188   case InitializedEntity::EK_Parameter_CF_Audited:
6189   case InitializedEntity::EK_Temporary:
6190   case InitializedEntity::EK_RelatedResult:
6191   case InitializedEntity::EK_Binding:
6192     return true;
6193   }
6194 
6195   llvm_unreachable("missed an InitializedEntity kind?");
6196 }
6197 
6198 /// Whether the given entity, when initialized with an object
6199 /// created for that initialization, requires destruction.
6200 static bool shouldDestroyEntity(const InitializedEntity &Entity) {
6201   switch (Entity.getKind()) {
6202     case InitializedEntity::EK_Result:
6203     case InitializedEntity::EK_StmtExprResult:
6204     case InitializedEntity::EK_New:
6205     case InitializedEntity::EK_Base:
6206     case InitializedEntity::EK_Delegating:
6207     case InitializedEntity::EK_VectorElement:
6208     case InitializedEntity::EK_ComplexElement:
6209     case InitializedEntity::EK_BlockElement:
6210     case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6211     case InitializedEntity::EK_LambdaCapture:
6212       return false;
6213 
6214     case InitializedEntity::EK_Member:
6215     case InitializedEntity::EK_Binding:
6216     case InitializedEntity::EK_Variable:
6217     case InitializedEntity::EK_Parameter:
6218     case InitializedEntity::EK_Parameter_CF_Audited:
6219     case InitializedEntity::EK_TemplateParameter:
6220     case InitializedEntity::EK_Temporary:
6221     case InitializedEntity::EK_ArrayElement:
6222     case InitializedEntity::EK_Exception:
6223     case InitializedEntity::EK_CompoundLiteralInit:
6224     case InitializedEntity::EK_RelatedResult:
6225       return true;
6226   }
6227 
6228   llvm_unreachable("missed an InitializedEntity kind?");
6229 }
6230 
6231 /// Get the location at which initialization diagnostics should appear.
6232 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
6233                                            Expr *Initializer) {
6234   switch (Entity.getKind()) {
6235   case InitializedEntity::EK_Result:
6236   case InitializedEntity::EK_StmtExprResult:
6237     return Entity.getReturnLoc();
6238 
6239   case InitializedEntity::EK_Exception:
6240     return Entity.getThrowLoc();
6241 
6242   case InitializedEntity::EK_Variable:
6243   case InitializedEntity::EK_Binding:
6244     return Entity.getDecl()->getLocation();
6245 
6246   case InitializedEntity::EK_LambdaCapture:
6247     return Entity.getCaptureLoc();
6248 
6249   case InitializedEntity::EK_ArrayElement:
6250   case InitializedEntity::EK_Member:
6251   case InitializedEntity::EK_Parameter:
6252   case InitializedEntity::EK_Parameter_CF_Audited:
6253   case InitializedEntity::EK_TemplateParameter:
6254   case InitializedEntity::EK_Temporary:
6255   case InitializedEntity::EK_New:
6256   case InitializedEntity::EK_Base:
6257   case InitializedEntity::EK_Delegating:
6258   case InitializedEntity::EK_VectorElement:
6259   case InitializedEntity::EK_ComplexElement:
6260   case InitializedEntity::EK_BlockElement:
6261   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6262   case InitializedEntity::EK_CompoundLiteralInit:
6263   case InitializedEntity::EK_RelatedResult:
6264     return Initializer->getBeginLoc();
6265   }
6266   llvm_unreachable("missed an InitializedEntity kind?");
6267 }
6268 
6269 /// Make a (potentially elidable) temporary copy of the object
6270 /// provided by the given initializer by calling the appropriate copy
6271 /// constructor.
6272 ///
6273 /// \param S The Sema object used for type-checking.
6274 ///
6275 /// \param T The type of the temporary object, which must either be
6276 /// the type of the initializer expression or a superclass thereof.
6277 ///
6278 /// \param Entity The entity being initialized.
6279 ///
6280 /// \param CurInit The initializer expression.
6281 ///
6282 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
6283 /// is permitted in C++03 (but not C++0x) when binding a reference to
6284 /// an rvalue.
6285 ///
6286 /// \returns An expression that copies the initializer expression into
6287 /// a temporary object, or an error expression if a copy could not be
6288 /// created.
6289 static ExprResult CopyObject(Sema &S,
6290                              QualType T,
6291                              const InitializedEntity &Entity,
6292                              ExprResult CurInit,
6293                              bool IsExtraneousCopy) {
6294   if (CurInit.isInvalid())
6295     return CurInit;
6296   // Determine which class type we're copying to.
6297   Expr *CurInitExpr = (Expr *)CurInit.get();
6298   CXXRecordDecl *Class = nullptr;
6299   if (const RecordType *Record = T->getAs<RecordType>())
6300     Class = cast<CXXRecordDecl>(Record->getDecl());
6301   if (!Class)
6302     return CurInit;
6303 
6304   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
6305 
6306   // Make sure that the type we are copying is complete.
6307   if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
6308     return CurInit;
6309 
6310   // Perform overload resolution using the class's constructors. Per
6311   // C++11 [dcl.init]p16, second bullet for class types, this initialization
6312   // is direct-initialization.
6313   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6314   DeclContext::lookup_result Ctors = S.LookupConstructors(Class);
6315 
6316   OverloadCandidateSet::iterator Best;
6317   switch (ResolveConstructorOverload(
6318       S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best,
6319       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6320       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6321       /*SecondStepOfCopyInit=*/true)) {
6322   case OR_Success:
6323     break;
6324 
6325   case OR_No_Viable_Function:
6326     CandidateSet.NoteCandidates(
6327         PartialDiagnosticAt(
6328             Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext()
6329                              ? diag::ext_rvalue_to_reference_temp_copy_no_viable
6330                              : diag::err_temp_copy_no_viable)
6331                      << (int)Entity.getKind() << CurInitExpr->getType()
6332                      << CurInitExpr->getSourceRange()),
6333         S, OCD_AllCandidates, CurInitExpr);
6334     if (!IsExtraneousCopy || S.isSFINAEContext())
6335       return ExprError();
6336     return CurInit;
6337 
6338   case OR_Ambiguous:
6339     CandidateSet.NoteCandidates(
6340         PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous)
6341                                      << (int)Entity.getKind()
6342                                      << CurInitExpr->getType()
6343                                      << CurInitExpr->getSourceRange()),
6344         S, OCD_AmbiguousCandidates, CurInitExpr);
6345     return ExprError();
6346 
6347   case OR_Deleted:
6348     S.Diag(Loc, diag::err_temp_copy_deleted)
6349       << (int)Entity.getKind() << CurInitExpr->getType()
6350       << CurInitExpr->getSourceRange();
6351     S.NoteDeletedFunction(Best->Function);
6352     return ExprError();
6353   }
6354 
6355   bool HadMultipleCandidates = CandidateSet.size() > 1;
6356 
6357   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
6358   SmallVector<Expr*, 8> ConstructorArgs;
6359   CurInit.get(); // Ownership transferred into MultiExprArg, below.
6360 
6361   S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity,
6362                            IsExtraneousCopy);
6363 
6364   if (IsExtraneousCopy) {
6365     // If this is a totally extraneous copy for C++03 reference
6366     // binding purposes, just return the original initialization
6367     // expression. We don't generate an (elided) copy operation here
6368     // because doing so would require us to pass down a flag to avoid
6369     // infinite recursion, where each step adds another extraneous,
6370     // elidable copy.
6371 
6372     // Instantiate the default arguments of any extra parameters in
6373     // the selected copy constructor, as if we were going to create a
6374     // proper call to the copy constructor.
6375     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
6376       ParmVarDecl *Parm = Constructor->getParamDecl(I);
6377       if (S.RequireCompleteType(Loc, Parm->getType(),
6378                                 diag::err_call_incomplete_argument))
6379         break;
6380 
6381       // Build the default argument expression; we don't actually care
6382       // if this succeeds or not, because this routine will complain
6383       // if there was a problem.
6384       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
6385     }
6386 
6387     return CurInitExpr;
6388   }
6389 
6390   // Determine the arguments required to actually perform the
6391   // constructor call (we might have derived-to-base conversions, or
6392   // the copy constructor may have default arguments).
6393   if (S.CompleteConstructorCall(Constructor, T, CurInitExpr, Loc,
6394                                 ConstructorArgs))
6395     return ExprError();
6396 
6397   // C++0x [class.copy]p32:
6398   //   When certain criteria are met, an implementation is allowed to
6399   //   omit the copy/move construction of a class object, even if the
6400   //   copy/move constructor and/or destructor for the object have
6401   //   side effects. [...]
6402   //     - when a temporary class object that has not been bound to a
6403   //       reference (12.2) would be copied/moved to a class object
6404   //       with the same cv-unqualified type, the copy/move operation
6405   //       can be omitted by constructing the temporary object
6406   //       directly into the target of the omitted copy/move
6407   //
6408   // Note that the other three bullets are handled elsewhere. Copy
6409   // elision for return statements and throw expressions are handled as part
6410   // of constructor initialization, while copy elision for exception handlers
6411   // is handled by the run-time.
6412   //
6413   // FIXME: If the function parameter is not the same type as the temporary, we
6414   // should still be able to elide the copy, but we don't have a way to
6415   // represent in the AST how much should be elided in this case.
6416   bool Elidable =
6417       CurInitExpr->isTemporaryObject(S.Context, Class) &&
6418       S.Context.hasSameUnqualifiedType(
6419           Best->Function->getParamDecl(0)->getType().getNonReferenceType(),
6420           CurInitExpr->getType());
6421 
6422   // Actually perform the constructor call.
6423   CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor,
6424                                     Elidable,
6425                                     ConstructorArgs,
6426                                     HadMultipleCandidates,
6427                                     /*ListInit*/ false,
6428                                     /*StdInitListInit*/ false,
6429                                     /*ZeroInit*/ false,
6430                                     CXXConstructExpr::CK_Complete,
6431                                     SourceRange());
6432 
6433   // If we're supposed to bind temporaries, do so.
6434   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
6435     CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6436   return CurInit;
6437 }
6438 
6439 /// Check whether elidable copy construction for binding a reference to
6440 /// a temporary would have succeeded if we were building in C++98 mode, for
6441 /// -Wc++98-compat.
6442 static void CheckCXX98CompatAccessibleCopy(Sema &S,
6443                                            const InitializedEntity &Entity,
6444                                            Expr *CurInitExpr) {
6445   assert(S.getLangOpts().CPlusPlus11);
6446 
6447   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
6448   if (!Record)
6449     return;
6450 
6451   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
6452   if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
6453     return;
6454 
6455   // Find constructors which would have been considered.
6456   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6457   DeclContext::lookup_result Ctors =
6458       S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl()));
6459 
6460   // Perform overload resolution.
6461   OverloadCandidateSet::iterator Best;
6462   OverloadingResult OR = ResolveConstructorOverload(
6463       S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best,
6464       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6465       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6466       /*SecondStepOfCopyInit=*/true);
6467 
6468   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
6469     << OR << (int)Entity.getKind() << CurInitExpr->getType()
6470     << CurInitExpr->getSourceRange();
6471 
6472   switch (OR) {
6473   case OR_Success:
6474     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
6475                              Best->FoundDecl, Entity, Diag);
6476     // FIXME: Check default arguments as far as that's possible.
6477     break;
6478 
6479   case OR_No_Viable_Function:
6480     CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6481                                 OCD_AllCandidates, CurInitExpr);
6482     break;
6483 
6484   case OR_Ambiguous:
6485     CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6486                                 OCD_AmbiguousCandidates, CurInitExpr);
6487     break;
6488 
6489   case OR_Deleted:
6490     S.Diag(Loc, Diag);
6491     S.NoteDeletedFunction(Best->Function);
6492     break;
6493   }
6494 }
6495 
6496 void InitializationSequence::PrintInitLocationNote(Sema &S,
6497                                               const InitializedEntity &Entity) {
6498   if (Entity.isParamOrTemplateParamKind() && Entity.getDecl()) {
6499     if (Entity.getDecl()->getLocation().isInvalid())
6500       return;
6501 
6502     if (Entity.getDecl()->getDeclName())
6503       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
6504         << Entity.getDecl()->getDeclName();
6505     else
6506       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
6507   }
6508   else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
6509            Entity.getMethodDecl())
6510     S.Diag(Entity.getMethodDecl()->getLocation(),
6511            diag::note_method_return_type_change)
6512       << Entity.getMethodDecl()->getDeclName();
6513 }
6514 
6515 /// Returns true if the parameters describe a constructor initialization of
6516 /// an explicit temporary object, e.g. "Point(x, y)".
6517 static bool isExplicitTemporary(const InitializedEntity &Entity,
6518                                 const InitializationKind &Kind,
6519                                 unsigned NumArgs) {
6520   switch (Entity.getKind()) {
6521   case InitializedEntity::EK_Temporary:
6522   case InitializedEntity::EK_CompoundLiteralInit:
6523   case InitializedEntity::EK_RelatedResult:
6524     break;
6525   default:
6526     return false;
6527   }
6528 
6529   switch (Kind.getKind()) {
6530   case InitializationKind::IK_DirectList:
6531     return true;
6532   // FIXME: Hack to work around cast weirdness.
6533   case InitializationKind::IK_Direct:
6534   case InitializationKind::IK_Value:
6535     return NumArgs != 1;
6536   default:
6537     return false;
6538   }
6539 }
6540 
6541 static ExprResult
6542 PerformConstructorInitialization(Sema &S,
6543                                  const InitializedEntity &Entity,
6544                                  const InitializationKind &Kind,
6545                                  MultiExprArg Args,
6546                                  const InitializationSequence::Step& Step,
6547                                  bool &ConstructorInitRequiresZeroInit,
6548                                  bool IsListInitialization,
6549                                  bool IsStdInitListInitialization,
6550                                  SourceLocation LBraceLoc,
6551                                  SourceLocation RBraceLoc) {
6552   unsigned NumArgs = Args.size();
6553   CXXConstructorDecl *Constructor
6554     = cast<CXXConstructorDecl>(Step.Function.Function);
6555   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
6556 
6557   // Build a call to the selected constructor.
6558   SmallVector<Expr*, 8> ConstructorArgs;
6559   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
6560                          ? Kind.getEqualLoc()
6561                          : Kind.getLocation();
6562 
6563   if (Kind.getKind() == InitializationKind::IK_Default) {
6564     // Force even a trivial, implicit default constructor to be
6565     // semantically checked. We do this explicitly because we don't build
6566     // the definition for completely trivial constructors.
6567     assert(Constructor->getParent() && "No parent class for constructor.");
6568     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6569         Constructor->isTrivial() && !Constructor->isUsed(false)) {
6570       S.runWithSufficientStackSpace(Loc, [&] {
6571         S.DefineImplicitDefaultConstructor(Loc, Constructor);
6572       });
6573     }
6574   }
6575 
6576   ExprResult CurInit((Expr *)nullptr);
6577 
6578   // C++ [over.match.copy]p1:
6579   //   - When initializing a temporary to be bound to the first parameter
6580   //     of a constructor that takes a reference to possibly cv-qualified
6581   //     T as its first argument, called with a single argument in the
6582   //     context of direct-initialization, explicit conversion functions
6583   //     are also considered.
6584   bool AllowExplicitConv =
6585       Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 &&
6586       hasCopyOrMoveCtorParam(S.Context,
6587                              getConstructorInfo(Step.Function.FoundDecl));
6588 
6589   // Determine the arguments required to actually perform the constructor
6590   // call.
6591   if (S.CompleteConstructorCall(Constructor, Step.Type, Args, Loc,
6592                                 ConstructorArgs, AllowExplicitConv,
6593                                 IsListInitialization))
6594     return ExprError();
6595 
6596   if (isExplicitTemporary(Entity, Kind, NumArgs)) {
6597     // An explicitly-constructed temporary, e.g., X(1, 2).
6598     if (S.DiagnoseUseOfDecl(Constructor, Loc))
6599       return ExprError();
6600 
6601     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6602     if (!TSInfo)
6603       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
6604     SourceRange ParenOrBraceRange =
6605         (Kind.getKind() == InitializationKind::IK_DirectList)
6606         ? SourceRange(LBraceLoc, RBraceLoc)
6607         : Kind.getParenOrBraceRange();
6608 
6609     CXXConstructorDecl *CalleeDecl = Constructor;
6610     if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(
6611             Step.Function.FoundDecl.getDecl())) {
6612       CalleeDecl = S.findInheritingConstructor(Loc, Constructor, Shadow);
6613       if (S.DiagnoseUseOfDecl(CalleeDecl, Loc))
6614         return ExprError();
6615     }
6616     S.MarkFunctionReferenced(Loc, CalleeDecl);
6617 
6618     CurInit = S.CheckForImmediateInvocation(
6619         CXXTemporaryObjectExpr::Create(
6620             S.Context, CalleeDecl,
6621             Entity.getType().getNonLValueExprType(S.Context), TSInfo,
6622             ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates,
6623             IsListInitialization, IsStdInitListInitialization,
6624             ConstructorInitRequiresZeroInit),
6625         CalleeDecl);
6626   } else {
6627     CXXConstructExpr::ConstructionKind ConstructKind =
6628       CXXConstructExpr::CK_Complete;
6629 
6630     if (Entity.getKind() == InitializedEntity::EK_Base) {
6631       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
6632         CXXConstructExpr::CK_VirtualBase :
6633         CXXConstructExpr::CK_NonVirtualBase;
6634     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
6635       ConstructKind = CXXConstructExpr::CK_Delegating;
6636     }
6637 
6638     // Only get the parenthesis or brace range if it is a list initialization or
6639     // direct construction.
6640     SourceRange ParenOrBraceRange;
6641     if (IsListInitialization)
6642       ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
6643     else if (Kind.getKind() == InitializationKind::IK_Direct)
6644       ParenOrBraceRange = Kind.getParenOrBraceRange();
6645 
6646     // If the entity allows NRVO, mark the construction as elidable
6647     // unconditionally.
6648     if (Entity.allowsNRVO())
6649       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6650                                         Step.Function.FoundDecl,
6651                                         Constructor, /*Elidable=*/true,
6652                                         ConstructorArgs,
6653                                         HadMultipleCandidates,
6654                                         IsListInitialization,
6655                                         IsStdInitListInitialization,
6656                                         ConstructorInitRequiresZeroInit,
6657                                         ConstructKind,
6658                                         ParenOrBraceRange);
6659     else
6660       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6661                                         Step.Function.FoundDecl,
6662                                         Constructor,
6663                                         ConstructorArgs,
6664                                         HadMultipleCandidates,
6665                                         IsListInitialization,
6666                                         IsStdInitListInitialization,
6667                                         ConstructorInitRequiresZeroInit,
6668                                         ConstructKind,
6669                                         ParenOrBraceRange);
6670   }
6671   if (CurInit.isInvalid())
6672     return ExprError();
6673 
6674   // Only check access if all of that succeeded.
6675   S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity);
6676   if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
6677     return ExprError();
6678 
6679   if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType()))
6680     if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S))
6681       return ExprError();
6682 
6683   if (shouldBindAsTemporary(Entity))
6684     CurInit = S.MaybeBindToTemporary(CurInit.get());
6685 
6686   return CurInit;
6687 }
6688 
6689 namespace {
6690 enum LifetimeKind {
6691   /// The lifetime of a temporary bound to this entity ends at the end of the
6692   /// full-expression, and that's (probably) fine.
6693   LK_FullExpression,
6694 
6695   /// The lifetime of a temporary bound to this entity is extended to the
6696   /// lifeitme of the entity itself.
6697   LK_Extended,
6698 
6699   /// The lifetime of a temporary bound to this entity probably ends too soon,
6700   /// because the entity is allocated in a new-expression.
6701   LK_New,
6702 
6703   /// The lifetime of a temporary bound to this entity ends too soon, because
6704   /// the entity is a return object.
6705   LK_Return,
6706 
6707   /// The lifetime of a temporary bound to this entity ends too soon, because
6708   /// the entity is the result of a statement expression.
6709   LK_StmtExprResult,
6710 
6711   /// This is a mem-initializer: if it would extend a temporary (other than via
6712   /// a default member initializer), the program is ill-formed.
6713   LK_MemInitializer,
6714 };
6715 using LifetimeResult =
6716     llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>;
6717 }
6718 
6719 /// Determine the declaration which an initialized entity ultimately refers to,
6720 /// for the purpose of lifetime-extending a temporary bound to a reference in
6721 /// the initialization of \p Entity.
6722 static LifetimeResult getEntityLifetime(
6723     const InitializedEntity *Entity,
6724     const InitializedEntity *InitField = nullptr) {
6725   // C++11 [class.temporary]p5:
6726   switch (Entity->getKind()) {
6727   case InitializedEntity::EK_Variable:
6728     //   The temporary [...] persists for the lifetime of the reference
6729     return {Entity, LK_Extended};
6730 
6731   case InitializedEntity::EK_Member:
6732     // For subobjects, we look at the complete object.
6733     if (Entity->getParent())
6734       return getEntityLifetime(Entity->getParent(), Entity);
6735 
6736     //   except:
6737     // C++17 [class.base.init]p8:
6738     //   A temporary expression bound to a reference member in a
6739     //   mem-initializer is ill-formed.
6740     // C++17 [class.base.init]p11:
6741     //   A temporary expression bound to a reference member from a
6742     //   default member initializer is ill-formed.
6743     //
6744     // The context of p11 and its example suggest that it's only the use of a
6745     // default member initializer from a constructor that makes the program
6746     // ill-formed, not its mere existence, and that it can even be used by
6747     // aggregate initialization.
6748     return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended
6749                                                          : LK_MemInitializer};
6750 
6751   case InitializedEntity::EK_Binding:
6752     // Per [dcl.decomp]p3, the binding is treated as a variable of reference
6753     // type.
6754     return {Entity, LK_Extended};
6755 
6756   case InitializedEntity::EK_Parameter:
6757   case InitializedEntity::EK_Parameter_CF_Audited:
6758     //   -- A temporary bound to a reference parameter in a function call
6759     //      persists until the completion of the full-expression containing
6760     //      the call.
6761     return {nullptr, LK_FullExpression};
6762 
6763   case InitializedEntity::EK_TemplateParameter:
6764     // FIXME: This will always be ill-formed; should we eagerly diagnose it here?
6765     return {nullptr, LK_FullExpression};
6766 
6767   case InitializedEntity::EK_Result:
6768     //   -- The lifetime of a temporary bound to the returned value in a
6769     //      function return statement is not extended; the temporary is
6770     //      destroyed at the end of the full-expression in the return statement.
6771     return {nullptr, LK_Return};
6772 
6773   case InitializedEntity::EK_StmtExprResult:
6774     // FIXME: Should we lifetime-extend through the result of a statement
6775     // expression?
6776     return {nullptr, LK_StmtExprResult};
6777 
6778   case InitializedEntity::EK_New:
6779     //   -- A temporary bound to a reference in a new-initializer persists
6780     //      until the completion of the full-expression containing the
6781     //      new-initializer.
6782     return {nullptr, LK_New};
6783 
6784   case InitializedEntity::EK_Temporary:
6785   case InitializedEntity::EK_CompoundLiteralInit:
6786   case InitializedEntity::EK_RelatedResult:
6787     // We don't yet know the storage duration of the surrounding temporary.
6788     // Assume it's got full-expression duration for now, it will patch up our
6789     // storage duration if that's not correct.
6790     return {nullptr, LK_FullExpression};
6791 
6792   case InitializedEntity::EK_ArrayElement:
6793     // For subobjects, we look at the complete object.
6794     return getEntityLifetime(Entity->getParent(), InitField);
6795 
6796   case InitializedEntity::EK_Base:
6797     // For subobjects, we look at the complete object.
6798     if (Entity->getParent())
6799       return getEntityLifetime(Entity->getParent(), InitField);
6800     return {InitField, LK_MemInitializer};
6801 
6802   case InitializedEntity::EK_Delegating:
6803     // We can reach this case for aggregate initialization in a constructor:
6804     //   struct A { int &&r; };
6805     //   struct B : A { B() : A{0} {} };
6806     // In this case, use the outermost field decl as the context.
6807     return {InitField, LK_MemInitializer};
6808 
6809   case InitializedEntity::EK_BlockElement:
6810   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6811   case InitializedEntity::EK_LambdaCapture:
6812   case InitializedEntity::EK_VectorElement:
6813   case InitializedEntity::EK_ComplexElement:
6814     return {nullptr, LK_FullExpression};
6815 
6816   case InitializedEntity::EK_Exception:
6817     // FIXME: Can we diagnose lifetime problems with exceptions?
6818     return {nullptr, LK_FullExpression};
6819   }
6820   llvm_unreachable("unknown entity kind");
6821 }
6822 
6823 namespace {
6824 enum ReferenceKind {
6825   /// Lifetime would be extended by a reference binding to a temporary.
6826   RK_ReferenceBinding,
6827   /// Lifetime would be extended by a std::initializer_list object binding to
6828   /// its backing array.
6829   RK_StdInitializerList,
6830 };
6831 
6832 /// A temporary or local variable. This will be one of:
6833 ///  * A MaterializeTemporaryExpr.
6834 ///  * A DeclRefExpr whose declaration is a local.
6835 ///  * An AddrLabelExpr.
6836 ///  * A BlockExpr for a block with captures.
6837 using Local = Expr*;
6838 
6839 /// Expressions we stepped over when looking for the local state. Any steps
6840 /// that would inhibit lifetime extension or take us out of subexpressions of
6841 /// the initializer are included.
6842 struct IndirectLocalPathEntry {
6843   enum EntryKind {
6844     DefaultInit,
6845     AddressOf,
6846     VarInit,
6847     LValToRVal,
6848     LifetimeBoundCall,
6849     TemporaryCopy,
6850     LambdaCaptureInit,
6851     GslReferenceInit,
6852     GslPointerInit
6853   } Kind;
6854   Expr *E;
6855   union {
6856     const Decl *D = nullptr;
6857     const LambdaCapture *Capture;
6858   };
6859   IndirectLocalPathEntry() {}
6860   IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {}
6861   IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D)
6862       : Kind(K), E(E), D(D) {}
6863   IndirectLocalPathEntry(EntryKind K, Expr *E, const LambdaCapture *Capture)
6864       : Kind(K), E(E), Capture(Capture) {}
6865 };
6866 
6867 using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>;
6868 
6869 struct RevertToOldSizeRAII {
6870   IndirectLocalPath &Path;
6871   unsigned OldSize = Path.size();
6872   RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {}
6873   ~RevertToOldSizeRAII() { Path.resize(OldSize); }
6874 };
6875 
6876 using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L,
6877                                              ReferenceKind RK)>;
6878 }
6879 
6880 static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) {
6881   for (auto E : Path)
6882     if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD)
6883       return true;
6884   return false;
6885 }
6886 
6887 static bool pathContainsInit(IndirectLocalPath &Path) {
6888   return llvm::any_of(Path, [=](IndirectLocalPathEntry E) {
6889     return E.Kind == IndirectLocalPathEntry::DefaultInit ||
6890            E.Kind == IndirectLocalPathEntry::VarInit;
6891   });
6892 }
6893 
6894 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
6895                                              Expr *Init, LocalVisitor Visit,
6896                                              bool RevisitSubinits,
6897                                              bool EnableLifetimeWarnings);
6898 
6899 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6900                                                   Expr *Init, ReferenceKind RK,
6901                                                   LocalVisitor Visit,
6902                                                   bool EnableLifetimeWarnings);
6903 
6904 template <typename T> static bool isRecordWithAttr(QualType Type) {
6905   if (auto *RD = Type->getAsCXXRecordDecl())
6906     return RD->hasAttr<T>();
6907   return false;
6908 }
6909 
6910 // Decl::isInStdNamespace will return false for iterators in some STL
6911 // implementations due to them being defined in a namespace outside of the std
6912 // namespace.
6913 static bool isInStlNamespace(const Decl *D) {
6914   const DeclContext *DC = D->getDeclContext();
6915   if (!DC)
6916     return false;
6917   if (const auto *ND = dyn_cast<NamespaceDecl>(DC))
6918     if (const IdentifierInfo *II = ND->getIdentifier()) {
6919       StringRef Name = II->getName();
6920       if (Name.size() >= 2 && Name.front() == '_' &&
6921           (Name[1] == '_' || isUppercase(Name[1])))
6922         return true;
6923     }
6924 
6925   return DC->isStdNamespace();
6926 }
6927 
6928 static bool shouldTrackImplicitObjectArg(const CXXMethodDecl *Callee) {
6929   if (auto *Conv = dyn_cast_or_null<CXXConversionDecl>(Callee))
6930     if (isRecordWithAttr<PointerAttr>(Conv->getConversionType()))
6931       return true;
6932   if (!isInStlNamespace(Callee->getParent()))
6933     return false;
6934   if (!isRecordWithAttr<PointerAttr>(Callee->getThisObjectType()) &&
6935       !isRecordWithAttr<OwnerAttr>(Callee->getThisObjectType()))
6936     return false;
6937   if (Callee->getReturnType()->isPointerType() ||
6938       isRecordWithAttr<PointerAttr>(Callee->getReturnType())) {
6939     if (!Callee->getIdentifier())
6940       return false;
6941     return llvm::StringSwitch<bool>(Callee->getName())
6942         .Cases("begin", "rbegin", "cbegin", "crbegin", true)
6943         .Cases("end", "rend", "cend", "crend", true)
6944         .Cases("c_str", "data", "get", true)
6945         // Map and set types.
6946         .Cases("find", "equal_range", "lower_bound", "upper_bound", true)
6947         .Default(false);
6948   } else if (Callee->getReturnType()->isReferenceType()) {
6949     if (!Callee->getIdentifier()) {
6950       auto OO = Callee->getOverloadedOperator();
6951       return OO == OverloadedOperatorKind::OO_Subscript ||
6952              OO == OverloadedOperatorKind::OO_Star;
6953     }
6954     return llvm::StringSwitch<bool>(Callee->getName())
6955         .Cases("front", "back", "at", "top", "value", true)
6956         .Default(false);
6957   }
6958   return false;
6959 }
6960 
6961 static bool shouldTrackFirstArgument(const FunctionDecl *FD) {
6962   if (!FD->getIdentifier() || FD->getNumParams() != 1)
6963     return false;
6964   const auto *RD = FD->getParamDecl(0)->getType()->getPointeeCXXRecordDecl();
6965   if (!FD->isInStdNamespace() || !RD || !RD->isInStdNamespace())
6966     return false;
6967   if (!isRecordWithAttr<PointerAttr>(QualType(RD->getTypeForDecl(), 0)) &&
6968       !isRecordWithAttr<OwnerAttr>(QualType(RD->getTypeForDecl(), 0)))
6969     return false;
6970   if (FD->getReturnType()->isPointerType() ||
6971       isRecordWithAttr<PointerAttr>(FD->getReturnType())) {
6972     return llvm::StringSwitch<bool>(FD->getName())
6973         .Cases("begin", "rbegin", "cbegin", "crbegin", true)
6974         .Cases("end", "rend", "cend", "crend", true)
6975         .Case("data", true)
6976         .Default(false);
6977   } else if (FD->getReturnType()->isReferenceType()) {
6978     return llvm::StringSwitch<bool>(FD->getName())
6979         .Cases("get", "any_cast", true)
6980         .Default(false);
6981   }
6982   return false;
6983 }
6984 
6985 static void handleGslAnnotatedTypes(IndirectLocalPath &Path, Expr *Call,
6986                                     LocalVisitor Visit) {
6987   auto VisitPointerArg = [&](const Decl *D, Expr *Arg, bool Value) {
6988     // We are not interested in the temporary base objects of gsl Pointers:
6989     //   Temp().ptr; // Here ptr might not dangle.
6990     if (isa<MemberExpr>(Arg->IgnoreImpCasts()))
6991       return;
6992     // Once we initialized a value with a reference, it can no longer dangle.
6993     if (!Value) {
6994       for (const IndirectLocalPathEntry &PE : llvm::reverse(Path)) {
6995         if (PE.Kind == IndirectLocalPathEntry::GslReferenceInit)
6996           continue;
6997         if (PE.Kind == IndirectLocalPathEntry::GslPointerInit)
6998           return;
6999         break;
7000       }
7001     }
7002     Path.push_back({Value ? IndirectLocalPathEntry::GslPointerInit
7003                           : IndirectLocalPathEntry::GslReferenceInit,
7004                     Arg, D});
7005     if (Arg->isGLValue())
7006       visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
7007                                             Visit,
7008                                             /*EnableLifetimeWarnings=*/true);
7009     else
7010       visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
7011                                        /*EnableLifetimeWarnings=*/true);
7012     Path.pop_back();
7013   };
7014 
7015   if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
7016     const auto *MD = cast_or_null<CXXMethodDecl>(MCE->getDirectCallee());
7017     if (MD && shouldTrackImplicitObjectArg(MD))
7018       VisitPointerArg(MD, MCE->getImplicitObjectArgument(),
7019                       !MD->getReturnType()->isReferenceType());
7020     return;
7021   } else if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(Call)) {
7022     FunctionDecl *Callee = OCE->getDirectCallee();
7023     if (Callee && Callee->isCXXInstanceMember() &&
7024         shouldTrackImplicitObjectArg(cast<CXXMethodDecl>(Callee)))
7025       VisitPointerArg(Callee, OCE->getArg(0),
7026                       !Callee->getReturnType()->isReferenceType());
7027     return;
7028   } else if (auto *CE = dyn_cast<CallExpr>(Call)) {
7029     FunctionDecl *Callee = CE->getDirectCallee();
7030     if (Callee && shouldTrackFirstArgument(Callee))
7031       VisitPointerArg(Callee, CE->getArg(0),
7032                       !Callee->getReturnType()->isReferenceType());
7033     return;
7034   }
7035 
7036   if (auto *CCE = dyn_cast<CXXConstructExpr>(Call)) {
7037     const auto *Ctor = CCE->getConstructor();
7038     const CXXRecordDecl *RD = Ctor->getParent();
7039     if (CCE->getNumArgs() > 0 && RD->hasAttr<PointerAttr>())
7040       VisitPointerArg(Ctor->getParamDecl(0), CCE->getArgs()[0], true);
7041   }
7042 }
7043 
7044 static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) {
7045   const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
7046   if (!TSI)
7047     return false;
7048   // Don't declare this variable in the second operand of the for-statement;
7049   // GCC miscompiles that by ending its lifetime before evaluating the
7050   // third operand. See gcc.gnu.org/PR86769.
7051   AttributedTypeLoc ATL;
7052   for (TypeLoc TL = TSI->getTypeLoc();
7053        (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
7054        TL = ATL.getModifiedLoc()) {
7055     if (ATL.getAttrAs<LifetimeBoundAttr>())
7056       return true;
7057   }
7058 
7059   // Assume that all assignment operators with a "normal" return type return
7060   // *this, that is, an lvalue reference that is the same type as the implicit
7061   // object parameter (or the LHS for a non-member operator$=).
7062   OverloadedOperatorKind OO = FD->getDeclName().getCXXOverloadedOperator();
7063   if (OO == OO_Equal || isCompoundAssignmentOperator(OO)) {
7064     QualType RetT = FD->getReturnType();
7065     if (RetT->isLValueReferenceType()) {
7066       ASTContext &Ctx = FD->getASTContext();
7067       QualType LHST;
7068       auto *MD = dyn_cast<CXXMethodDecl>(FD);
7069       if (MD && MD->isCXXInstanceMember())
7070         LHST = Ctx.getLValueReferenceType(MD->getThisObjectType());
7071       else
7072         LHST = MD->getParamDecl(0)->getType();
7073       if (Ctx.hasSameType(RetT, LHST))
7074         return true;
7075     }
7076   }
7077 
7078   return false;
7079 }
7080 
7081 static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call,
7082                                         LocalVisitor Visit) {
7083   const FunctionDecl *Callee;
7084   ArrayRef<Expr*> Args;
7085 
7086   if (auto *CE = dyn_cast<CallExpr>(Call)) {
7087     Callee = CE->getDirectCallee();
7088     Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs());
7089   } else {
7090     auto *CCE = cast<CXXConstructExpr>(Call);
7091     Callee = CCE->getConstructor();
7092     Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs());
7093   }
7094   if (!Callee)
7095     return;
7096 
7097   Expr *ObjectArg = nullptr;
7098   if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) {
7099     ObjectArg = Args[0];
7100     Args = Args.slice(1);
7101   } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
7102     ObjectArg = MCE->getImplicitObjectArgument();
7103   }
7104 
7105   auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) {
7106     Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D});
7107     if (Arg->isGLValue())
7108       visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
7109                                             Visit,
7110                                             /*EnableLifetimeWarnings=*/false);
7111     else
7112       visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
7113                                        /*EnableLifetimeWarnings=*/false);
7114     Path.pop_back();
7115   };
7116 
7117   if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee))
7118     VisitLifetimeBoundArg(Callee, ObjectArg);
7119 
7120   for (unsigned I = 0,
7121                 N = std::min<unsigned>(Callee->getNumParams(), Args.size());
7122        I != N; ++I) {
7123     if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>())
7124       VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]);
7125   }
7126 }
7127 
7128 /// Visit the locals that would be reachable through a reference bound to the
7129 /// glvalue expression \c Init.
7130 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
7131                                                   Expr *Init, ReferenceKind RK,
7132                                                   LocalVisitor Visit,
7133                                                   bool EnableLifetimeWarnings) {
7134   RevertToOldSizeRAII RAII(Path);
7135 
7136   // Walk past any constructs which we can lifetime-extend across.
7137   Expr *Old;
7138   do {
7139     Old = Init;
7140 
7141     if (auto *FE = dyn_cast<FullExpr>(Init))
7142       Init = FE->getSubExpr();
7143 
7144     if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
7145       // If this is just redundant braces around an initializer, step over it.
7146       if (ILE->isTransparent())
7147         Init = ILE->getInit(0);
7148     }
7149 
7150     // Step over any subobject adjustments; we may have a materialized
7151     // temporary inside them.
7152     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
7153 
7154     // Per current approach for DR1376, look through casts to reference type
7155     // when performing lifetime extension.
7156     if (CastExpr *CE = dyn_cast<CastExpr>(Init))
7157       if (CE->getSubExpr()->isGLValue())
7158         Init = CE->getSubExpr();
7159 
7160     // Per the current approach for DR1299, look through array element access
7161     // on array glvalues when performing lifetime extension.
7162     if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) {
7163       Init = ASE->getBase();
7164       auto *ICE = dyn_cast<ImplicitCastExpr>(Init);
7165       if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay)
7166         Init = ICE->getSubExpr();
7167       else
7168         // We can't lifetime extend through this but we might still find some
7169         // retained temporaries.
7170         return visitLocalsRetainedByInitializer(Path, Init, Visit, true,
7171                                                 EnableLifetimeWarnings);
7172     }
7173 
7174     // Step into CXXDefaultInitExprs so we can diagnose cases where a
7175     // constructor inherits one as an implicit mem-initializer.
7176     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
7177       Path.push_back(
7178           {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
7179       Init = DIE->getExpr();
7180     }
7181   } while (Init != Old);
7182 
7183   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) {
7184     if (Visit(Path, Local(MTE), RK))
7185       visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true,
7186                                        EnableLifetimeWarnings);
7187   }
7188 
7189   if (isa<CallExpr>(Init)) {
7190     if (EnableLifetimeWarnings)
7191       handleGslAnnotatedTypes(Path, Init, Visit);
7192     return visitLifetimeBoundArguments(Path, Init, Visit);
7193   }
7194 
7195   switch (Init->getStmtClass()) {
7196   case Stmt::DeclRefExprClass: {
7197     // If we find the name of a local non-reference parameter, we could have a
7198     // lifetime problem.
7199     auto *DRE = cast<DeclRefExpr>(Init);
7200     auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
7201     if (VD && VD->hasLocalStorage() &&
7202         !DRE->refersToEnclosingVariableOrCapture()) {
7203       if (!VD->getType()->isReferenceType()) {
7204         Visit(Path, Local(DRE), RK);
7205       } else if (isa<ParmVarDecl>(DRE->getDecl())) {
7206         // The lifetime of a reference parameter is unknown; assume it's OK
7207         // for now.
7208         break;
7209       } else if (VD->getInit() && !isVarOnPath(Path, VD)) {
7210         Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
7211         visitLocalsRetainedByReferenceBinding(Path, VD->getInit(),
7212                                               RK_ReferenceBinding, Visit,
7213                                               EnableLifetimeWarnings);
7214       }
7215     }
7216     break;
7217   }
7218 
7219   case Stmt::UnaryOperatorClass: {
7220     // The only unary operator that make sense to handle here
7221     // is Deref.  All others don't resolve to a "name."  This includes
7222     // handling all sorts of rvalues passed to a unary operator.
7223     const UnaryOperator *U = cast<UnaryOperator>(Init);
7224     if (U->getOpcode() == UO_Deref)
7225       visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true,
7226                                        EnableLifetimeWarnings);
7227     break;
7228   }
7229 
7230   case Stmt::OMPArraySectionExprClass: {
7231     visitLocalsRetainedByInitializer(Path,
7232                                      cast<OMPArraySectionExpr>(Init)->getBase(),
7233                                      Visit, true, EnableLifetimeWarnings);
7234     break;
7235   }
7236 
7237   case Stmt::ConditionalOperatorClass:
7238   case Stmt::BinaryConditionalOperatorClass: {
7239     auto *C = cast<AbstractConditionalOperator>(Init);
7240     if (!C->getTrueExpr()->getType()->isVoidType())
7241       visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit,
7242                                             EnableLifetimeWarnings);
7243     if (!C->getFalseExpr()->getType()->isVoidType())
7244       visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit,
7245                                             EnableLifetimeWarnings);
7246     break;
7247   }
7248 
7249   // FIXME: Visit the left-hand side of an -> or ->*.
7250 
7251   default:
7252     break;
7253   }
7254 }
7255 
7256 /// Visit the locals that would be reachable through an object initialized by
7257 /// the prvalue expression \c Init.
7258 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
7259                                              Expr *Init, LocalVisitor Visit,
7260                                              bool RevisitSubinits,
7261                                              bool EnableLifetimeWarnings) {
7262   RevertToOldSizeRAII RAII(Path);
7263 
7264   Expr *Old;
7265   do {
7266     Old = Init;
7267 
7268     // Step into CXXDefaultInitExprs so we can diagnose cases where a
7269     // constructor inherits one as an implicit mem-initializer.
7270     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
7271       Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
7272       Init = DIE->getExpr();
7273     }
7274 
7275     if (auto *FE = dyn_cast<FullExpr>(Init))
7276       Init = FE->getSubExpr();
7277 
7278     // Dig out the expression which constructs the extended temporary.
7279     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
7280 
7281     if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
7282       Init = BTE->getSubExpr();
7283 
7284     Init = Init->IgnoreParens();
7285 
7286     // Step over value-preserving rvalue casts.
7287     if (auto *CE = dyn_cast<CastExpr>(Init)) {
7288       switch (CE->getCastKind()) {
7289       case CK_LValueToRValue:
7290         // If we can match the lvalue to a const object, we can look at its
7291         // initializer.
7292         Path.push_back({IndirectLocalPathEntry::LValToRVal, CE});
7293         return visitLocalsRetainedByReferenceBinding(
7294             Path, Init, RK_ReferenceBinding,
7295             [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool {
7296           if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7297             auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
7298             if (VD && VD->getType().isConstQualified() && VD->getInit() &&
7299                 !isVarOnPath(Path, VD)) {
7300               Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
7301               visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true,
7302                                                EnableLifetimeWarnings);
7303             }
7304           } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) {
7305             if (MTE->getType().isConstQualified())
7306               visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit,
7307                                                true, EnableLifetimeWarnings);
7308           }
7309           return false;
7310         }, EnableLifetimeWarnings);
7311 
7312         // We assume that objects can be retained by pointers cast to integers,
7313         // but not if the integer is cast to floating-point type or to _Complex.
7314         // We assume that casts to 'bool' do not preserve enough information to
7315         // retain a local object.
7316       case CK_NoOp:
7317       case CK_BitCast:
7318       case CK_BaseToDerived:
7319       case CK_DerivedToBase:
7320       case CK_UncheckedDerivedToBase:
7321       case CK_Dynamic:
7322       case CK_ToUnion:
7323       case CK_UserDefinedConversion:
7324       case CK_ConstructorConversion:
7325       case CK_IntegralToPointer:
7326       case CK_PointerToIntegral:
7327       case CK_VectorSplat:
7328       case CK_IntegralCast:
7329       case CK_CPointerToObjCPointerCast:
7330       case CK_BlockPointerToObjCPointerCast:
7331       case CK_AnyPointerToBlockPointerCast:
7332       case CK_AddressSpaceConversion:
7333         break;
7334 
7335       case CK_ArrayToPointerDecay:
7336         // Model array-to-pointer decay as taking the address of the array
7337         // lvalue.
7338         Path.push_back({IndirectLocalPathEntry::AddressOf, CE});
7339         return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(),
7340                                                      RK_ReferenceBinding, Visit,
7341                                                      EnableLifetimeWarnings);
7342 
7343       default:
7344         return;
7345       }
7346 
7347       Init = CE->getSubExpr();
7348     }
7349   } while (Old != Init);
7350 
7351   // C++17 [dcl.init.list]p6:
7352   //   initializing an initializer_list object from the array extends the
7353   //   lifetime of the array exactly like binding a reference to a temporary.
7354   if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init))
7355     return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(),
7356                                                  RK_StdInitializerList, Visit,
7357                                                  EnableLifetimeWarnings);
7358 
7359   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
7360     // We already visited the elements of this initializer list while
7361     // performing the initialization. Don't visit them again unless we've
7362     // changed the lifetime of the initialized entity.
7363     if (!RevisitSubinits)
7364       return;
7365 
7366     if (ILE->isTransparent())
7367       return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit,
7368                                               RevisitSubinits,
7369                                               EnableLifetimeWarnings);
7370 
7371     if (ILE->getType()->isArrayType()) {
7372       for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
7373         visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit,
7374                                          RevisitSubinits,
7375                                          EnableLifetimeWarnings);
7376       return;
7377     }
7378 
7379     if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
7380       assert(RD->isAggregate() && "aggregate init on non-aggregate");
7381 
7382       // If we lifetime-extend a braced initializer which is initializing an
7383       // aggregate, and that aggregate contains reference members which are
7384       // bound to temporaries, those temporaries are also lifetime-extended.
7385       if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
7386           ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
7387         visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0),
7388                                               RK_ReferenceBinding, Visit,
7389                                               EnableLifetimeWarnings);
7390       else {
7391         unsigned Index = 0;
7392         for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index)
7393           visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit,
7394                                            RevisitSubinits,
7395                                            EnableLifetimeWarnings);
7396         for (const auto *I : RD->fields()) {
7397           if (Index >= ILE->getNumInits())
7398             break;
7399           if (I->isUnnamedBitfield())
7400             continue;
7401           Expr *SubInit = ILE->getInit(Index);
7402           if (I->getType()->isReferenceType())
7403             visitLocalsRetainedByReferenceBinding(Path, SubInit,
7404                                                   RK_ReferenceBinding, Visit,
7405                                                   EnableLifetimeWarnings);
7406           else
7407             // This might be either aggregate-initialization of a member or
7408             // initialization of a std::initializer_list object. Regardless,
7409             // we should recursively lifetime-extend that initializer.
7410             visitLocalsRetainedByInitializer(Path, SubInit, Visit,
7411                                              RevisitSubinits,
7412                                              EnableLifetimeWarnings);
7413           ++Index;
7414         }
7415       }
7416     }
7417     return;
7418   }
7419 
7420   // The lifetime of an init-capture is that of the closure object constructed
7421   // by a lambda-expression.
7422   if (auto *LE = dyn_cast<LambdaExpr>(Init)) {
7423     LambdaExpr::capture_iterator CapI = LE->capture_begin();
7424     for (Expr *E : LE->capture_inits()) {
7425       assert(CapI != LE->capture_end());
7426       const LambdaCapture &Cap = *CapI++;
7427       if (!E)
7428         continue;
7429       if (Cap.capturesVariable())
7430         Path.push_back({IndirectLocalPathEntry::LambdaCaptureInit, E, &Cap});
7431       if (E->isGLValue())
7432         visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding,
7433                                               Visit, EnableLifetimeWarnings);
7434       else
7435         visitLocalsRetainedByInitializer(Path, E, Visit, true,
7436                                          EnableLifetimeWarnings);
7437       if (Cap.capturesVariable())
7438         Path.pop_back();
7439     }
7440   }
7441 
7442   // Assume that a copy or move from a temporary references the same objects
7443   // that the temporary does.
7444   if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) {
7445     if (CCE->getConstructor()->isCopyOrMoveConstructor()) {
7446       if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(CCE->getArg(0))) {
7447         Expr *Arg = MTE->getSubExpr();
7448         Path.push_back({IndirectLocalPathEntry::TemporaryCopy, Arg,
7449                         CCE->getConstructor()});
7450         visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
7451                                          /*EnableLifetimeWarnings*/false);
7452         Path.pop_back();
7453       }
7454     }
7455   }
7456 
7457   if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) {
7458     if (EnableLifetimeWarnings)
7459       handleGslAnnotatedTypes(Path, Init, Visit);
7460     return visitLifetimeBoundArguments(Path, Init, Visit);
7461   }
7462 
7463   switch (Init->getStmtClass()) {
7464   case Stmt::UnaryOperatorClass: {
7465     auto *UO = cast<UnaryOperator>(Init);
7466     // If the initializer is the address of a local, we could have a lifetime
7467     // problem.
7468     if (UO->getOpcode() == UO_AddrOf) {
7469       // If this is &rvalue, then it's ill-formed and we have already diagnosed
7470       // it. Don't produce a redundant warning about the lifetime of the
7471       // temporary.
7472       if (isa<MaterializeTemporaryExpr>(UO->getSubExpr()))
7473         return;
7474 
7475       Path.push_back({IndirectLocalPathEntry::AddressOf, UO});
7476       visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(),
7477                                             RK_ReferenceBinding, Visit,
7478                                             EnableLifetimeWarnings);
7479     }
7480     break;
7481   }
7482 
7483   case Stmt::BinaryOperatorClass: {
7484     // Handle pointer arithmetic.
7485     auto *BO = cast<BinaryOperator>(Init);
7486     BinaryOperatorKind BOK = BO->getOpcode();
7487     if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub))
7488       break;
7489 
7490     if (BO->getLHS()->getType()->isPointerType())
7491       visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true,
7492                                        EnableLifetimeWarnings);
7493     else if (BO->getRHS()->getType()->isPointerType())
7494       visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true,
7495                                        EnableLifetimeWarnings);
7496     break;
7497   }
7498 
7499   case Stmt::ConditionalOperatorClass:
7500   case Stmt::BinaryConditionalOperatorClass: {
7501     auto *C = cast<AbstractConditionalOperator>(Init);
7502     // In C++, we can have a throw-expression operand, which has 'void' type
7503     // and isn't interesting from a lifetime perspective.
7504     if (!C->getTrueExpr()->getType()->isVoidType())
7505       visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true,
7506                                        EnableLifetimeWarnings);
7507     if (!C->getFalseExpr()->getType()->isVoidType())
7508       visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true,
7509                                        EnableLifetimeWarnings);
7510     break;
7511   }
7512 
7513   case Stmt::BlockExprClass:
7514     if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) {
7515       // This is a local block, whose lifetime is that of the function.
7516       Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding);
7517     }
7518     break;
7519 
7520   case Stmt::AddrLabelExprClass:
7521     // We want to warn if the address of a label would escape the function.
7522     Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding);
7523     break;
7524 
7525   default:
7526     break;
7527   }
7528 }
7529 
7530 /// Whether a path to an object supports lifetime extension.
7531 enum PathLifetimeKind {
7532   /// Lifetime-extend along this path.
7533   Extend,
7534   /// We should lifetime-extend, but we don't because (due to technical
7535   /// limitations) we can't. This happens for default member initializers,
7536   /// which we don't clone for every use, so we don't have a unique
7537   /// MaterializeTemporaryExpr to update.
7538   ShouldExtend,
7539   /// Do not lifetime extend along this path.
7540   NoExtend
7541 };
7542 
7543 /// Determine whether this is an indirect path to a temporary that we are
7544 /// supposed to lifetime-extend along.
7545 static PathLifetimeKind
7546 shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) {
7547   PathLifetimeKind Kind = PathLifetimeKind::Extend;
7548   for (auto Elem : Path) {
7549     if (Elem.Kind == IndirectLocalPathEntry::DefaultInit)
7550       Kind = PathLifetimeKind::ShouldExtend;
7551     else if (Elem.Kind != IndirectLocalPathEntry::LambdaCaptureInit)
7552       return PathLifetimeKind::NoExtend;
7553   }
7554   return Kind;
7555 }
7556 
7557 /// Find the range for the first interesting entry in the path at or after I.
7558 static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I,
7559                                       Expr *E) {
7560   for (unsigned N = Path.size(); I != N; ++I) {
7561     switch (Path[I].Kind) {
7562     case IndirectLocalPathEntry::AddressOf:
7563     case IndirectLocalPathEntry::LValToRVal:
7564     case IndirectLocalPathEntry::LifetimeBoundCall:
7565     case IndirectLocalPathEntry::TemporaryCopy:
7566     case IndirectLocalPathEntry::GslReferenceInit:
7567     case IndirectLocalPathEntry::GslPointerInit:
7568       // These exist primarily to mark the path as not permitting or
7569       // supporting lifetime extension.
7570       break;
7571 
7572     case IndirectLocalPathEntry::VarInit:
7573       if (cast<VarDecl>(Path[I].D)->isImplicit())
7574         return SourceRange();
7575       LLVM_FALLTHROUGH;
7576     case IndirectLocalPathEntry::DefaultInit:
7577       return Path[I].E->getSourceRange();
7578 
7579     case IndirectLocalPathEntry::LambdaCaptureInit:
7580       if (!Path[I].Capture->capturesVariable())
7581         continue;
7582       return Path[I].E->getSourceRange();
7583     }
7584   }
7585   return E->getSourceRange();
7586 }
7587 
7588 static bool pathOnlyInitializesGslPointer(IndirectLocalPath &Path) {
7589   for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) {
7590     if (It->Kind == IndirectLocalPathEntry::VarInit)
7591       continue;
7592     if (It->Kind == IndirectLocalPathEntry::AddressOf)
7593       continue;
7594     if (It->Kind == IndirectLocalPathEntry::LifetimeBoundCall)
7595       continue;
7596     return It->Kind == IndirectLocalPathEntry::GslPointerInit ||
7597            It->Kind == IndirectLocalPathEntry::GslReferenceInit;
7598   }
7599   return false;
7600 }
7601 
7602 void Sema::checkInitializerLifetime(const InitializedEntity &Entity,
7603                                     Expr *Init) {
7604   LifetimeResult LR = getEntityLifetime(&Entity);
7605   LifetimeKind LK = LR.getInt();
7606   const InitializedEntity *ExtendingEntity = LR.getPointer();
7607 
7608   // If this entity doesn't have an interesting lifetime, don't bother looking
7609   // for temporaries within its initializer.
7610   if (LK == LK_FullExpression)
7611     return;
7612 
7613   auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L,
7614                               ReferenceKind RK) -> bool {
7615     SourceRange DiagRange = nextPathEntryRange(Path, 0, L);
7616     SourceLocation DiagLoc = DiagRange.getBegin();
7617 
7618     auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L);
7619 
7620     bool IsGslPtrInitWithGslTempOwner = false;
7621     bool IsLocalGslOwner = false;
7622     if (pathOnlyInitializesGslPointer(Path)) {
7623       if (isa<DeclRefExpr>(L)) {
7624         // We do not want to follow the references when returning a pointer originating
7625         // from a local owner to avoid the following false positive:
7626         //   int &p = *localUniquePtr;
7627         //   someContainer.add(std::move(localUniquePtr));
7628         //   return p;
7629         IsLocalGslOwner = isRecordWithAttr<OwnerAttr>(L->getType());
7630         if (pathContainsInit(Path) || !IsLocalGslOwner)
7631           return false;
7632       } else {
7633         IsGslPtrInitWithGslTempOwner = MTE && !MTE->getExtendingDecl() &&
7634                             isRecordWithAttr<OwnerAttr>(MTE->getType());
7635         // Skipping a chain of initializing gsl::Pointer annotated objects.
7636         // We are looking only for the final source to find out if it was
7637         // a local or temporary owner or the address of a local variable/param.
7638         if (!IsGslPtrInitWithGslTempOwner)
7639           return true;
7640       }
7641     }
7642 
7643     switch (LK) {
7644     case LK_FullExpression:
7645       llvm_unreachable("already handled this");
7646 
7647     case LK_Extended: {
7648       if (!MTE) {
7649         // The initialized entity has lifetime beyond the full-expression,
7650         // and the local entity does too, so don't warn.
7651         //
7652         // FIXME: We should consider warning if a static / thread storage
7653         // duration variable retains an automatic storage duration local.
7654         return false;
7655       }
7656 
7657       if (IsGslPtrInitWithGslTempOwner && DiagLoc.isValid()) {
7658         Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
7659         return false;
7660       }
7661 
7662       switch (shouldLifetimeExtendThroughPath(Path)) {
7663       case PathLifetimeKind::Extend:
7664         // Update the storage duration of the materialized temporary.
7665         // FIXME: Rebuild the expression instead of mutating it.
7666         MTE->setExtendingDecl(ExtendingEntity->getDecl(),
7667                               ExtendingEntity->allocateManglingNumber());
7668         // Also visit the temporaries lifetime-extended by this initializer.
7669         return true;
7670 
7671       case PathLifetimeKind::ShouldExtend:
7672         // We're supposed to lifetime-extend the temporary along this path (per
7673         // the resolution of DR1815), but we don't support that yet.
7674         //
7675         // FIXME: Properly handle this situation. Perhaps the easiest approach
7676         // would be to clone the initializer expression on each use that would
7677         // lifetime extend its temporaries.
7678         Diag(DiagLoc, diag::warn_unsupported_lifetime_extension)
7679             << RK << DiagRange;
7680         break;
7681 
7682       case PathLifetimeKind::NoExtend:
7683         // If the path goes through the initialization of a variable or field,
7684         // it can't possibly reach a temporary created in this full-expression.
7685         // We will have already diagnosed any problems with the initializer.
7686         if (pathContainsInit(Path))
7687           return false;
7688 
7689         Diag(DiagLoc, diag::warn_dangling_variable)
7690             << RK << !Entity.getParent()
7691             << ExtendingEntity->getDecl()->isImplicit()
7692             << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange;
7693         break;
7694       }
7695       break;
7696     }
7697 
7698     case LK_MemInitializer: {
7699       if (isa<MaterializeTemporaryExpr>(L)) {
7700         // Under C++ DR1696, if a mem-initializer (or a default member
7701         // initializer used by the absence of one) would lifetime-extend a
7702         // temporary, the program is ill-formed.
7703         if (auto *ExtendingDecl =
7704                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7705           if (IsGslPtrInitWithGslTempOwner) {
7706             Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_member)
7707                 << ExtendingDecl << DiagRange;
7708             Diag(ExtendingDecl->getLocation(),
7709                  diag::note_ref_or_ptr_member_declared_here)
7710                 << true;
7711             return false;
7712           }
7713           bool IsSubobjectMember = ExtendingEntity != &Entity;
7714           Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path) !=
7715                                 PathLifetimeKind::NoExtend
7716                             ? diag::err_dangling_member
7717                             : diag::warn_dangling_member)
7718               << ExtendingDecl << IsSubobjectMember << RK << DiagRange;
7719           // Don't bother adding a note pointing to the field if we're inside
7720           // its default member initializer; our primary diagnostic points to
7721           // the same place in that case.
7722           if (Path.empty() ||
7723               Path.back().Kind != IndirectLocalPathEntry::DefaultInit) {
7724             Diag(ExtendingDecl->getLocation(),
7725                  diag::note_lifetime_extending_member_declared_here)
7726                 << RK << IsSubobjectMember;
7727           }
7728         } else {
7729           // We have a mem-initializer but no particular field within it; this
7730           // is either a base class or a delegating initializer directly
7731           // initializing the base-class from something that doesn't live long
7732           // enough.
7733           //
7734           // FIXME: Warn on this.
7735           return false;
7736         }
7737       } else {
7738         // Paths via a default initializer can only occur during error recovery
7739         // (there's no other way that a default initializer can refer to a
7740         // local). Don't produce a bogus warning on those cases.
7741         if (pathContainsInit(Path))
7742           return false;
7743 
7744         // Suppress false positives for code like the one below:
7745         //   Ctor(unique_ptr<T> up) : member(*up), member2(move(up)) {}
7746         if (IsLocalGslOwner && pathOnlyInitializesGslPointer(Path))
7747           return false;
7748 
7749         auto *DRE = dyn_cast<DeclRefExpr>(L);
7750         auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr;
7751         if (!VD) {
7752           // A member was initialized to a local block.
7753           // FIXME: Warn on this.
7754           return false;
7755         }
7756 
7757         if (auto *Member =
7758                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7759           bool IsPointer = !Member->getType()->isReferenceType();
7760           Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
7761                                   : diag::warn_bind_ref_member_to_parameter)
7762               << Member << VD << isa<ParmVarDecl>(VD) << DiagRange;
7763           Diag(Member->getLocation(),
7764                diag::note_ref_or_ptr_member_declared_here)
7765               << (unsigned)IsPointer;
7766         }
7767       }
7768       break;
7769     }
7770 
7771     case LK_New:
7772       if (isa<MaterializeTemporaryExpr>(L)) {
7773         if (IsGslPtrInitWithGslTempOwner)
7774           Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
7775         else
7776           Diag(DiagLoc, RK == RK_ReferenceBinding
7777                             ? diag::warn_new_dangling_reference
7778                             : diag::warn_new_dangling_initializer_list)
7779               << !Entity.getParent() << DiagRange;
7780       } else {
7781         // We can't determine if the allocation outlives the local declaration.
7782         return false;
7783       }
7784       break;
7785 
7786     case LK_Return:
7787     case LK_StmtExprResult:
7788       if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7789         // We can't determine if the local variable outlives the statement
7790         // expression.
7791         if (LK == LK_StmtExprResult)
7792           return false;
7793         Diag(DiagLoc, diag::warn_ret_stack_addr_ref)
7794             << Entity.getType()->isReferenceType() << DRE->getDecl()
7795             << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange;
7796       } else if (isa<BlockExpr>(L)) {
7797         Diag(DiagLoc, diag::err_ret_local_block) << DiagRange;
7798       } else if (isa<AddrLabelExpr>(L)) {
7799         // Don't warn when returning a label from a statement expression.
7800         // Leaving the scope doesn't end its lifetime.
7801         if (LK == LK_StmtExprResult)
7802           return false;
7803         Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange;
7804       } else {
7805         Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref)
7806          << Entity.getType()->isReferenceType() << DiagRange;
7807       }
7808       break;
7809     }
7810 
7811     for (unsigned I = 0; I != Path.size(); ++I) {
7812       auto Elem = Path[I];
7813 
7814       switch (Elem.Kind) {
7815       case IndirectLocalPathEntry::AddressOf:
7816       case IndirectLocalPathEntry::LValToRVal:
7817         // These exist primarily to mark the path as not permitting or
7818         // supporting lifetime extension.
7819         break;
7820 
7821       case IndirectLocalPathEntry::LifetimeBoundCall:
7822       case IndirectLocalPathEntry::TemporaryCopy:
7823       case IndirectLocalPathEntry::GslPointerInit:
7824       case IndirectLocalPathEntry::GslReferenceInit:
7825         // FIXME: Consider adding a note for these.
7826         break;
7827 
7828       case IndirectLocalPathEntry::DefaultInit: {
7829         auto *FD = cast<FieldDecl>(Elem.D);
7830         Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer)
7831             << FD << nextPathEntryRange(Path, I + 1, L);
7832         break;
7833       }
7834 
7835       case IndirectLocalPathEntry::VarInit: {
7836         const VarDecl *VD = cast<VarDecl>(Elem.D);
7837         Diag(VD->getLocation(), diag::note_local_var_initializer)
7838             << VD->getType()->isReferenceType()
7839             << VD->isImplicit() << VD->getDeclName()
7840             << nextPathEntryRange(Path, I + 1, L);
7841         break;
7842       }
7843 
7844       case IndirectLocalPathEntry::LambdaCaptureInit:
7845         if (!Elem.Capture->capturesVariable())
7846           break;
7847         // FIXME: We can't easily tell apart an init-capture from a nested
7848         // capture of an init-capture.
7849         const VarDecl *VD = Elem.Capture->getCapturedVar();
7850         Diag(Elem.Capture->getLocation(), diag::note_lambda_capture_initializer)
7851             << VD << VD->isInitCapture() << Elem.Capture->isExplicit()
7852             << (Elem.Capture->getCaptureKind() == LCK_ByRef) << VD
7853             << nextPathEntryRange(Path, I + 1, L);
7854         break;
7855       }
7856     }
7857 
7858     // We didn't lifetime-extend, so don't go any further; we don't need more
7859     // warnings or errors on inner temporaries within this one's initializer.
7860     return false;
7861   };
7862 
7863   bool EnableLifetimeWarnings = !getDiagnostics().isIgnored(
7864       diag::warn_dangling_lifetime_pointer, SourceLocation());
7865   llvm::SmallVector<IndirectLocalPathEntry, 8> Path;
7866   if (Init->isGLValue())
7867     visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding,
7868                                           TemporaryVisitor,
7869                                           EnableLifetimeWarnings);
7870   else
7871     visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false,
7872                                      EnableLifetimeWarnings);
7873 }
7874 
7875 static void DiagnoseNarrowingInInitList(Sema &S,
7876                                         const ImplicitConversionSequence &ICS,
7877                                         QualType PreNarrowingType,
7878                                         QualType EntityType,
7879                                         const Expr *PostInit);
7880 
7881 /// Provide warnings when std::move is used on construction.
7882 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
7883                                     bool IsReturnStmt) {
7884   if (!InitExpr)
7885     return;
7886 
7887   if (S.inTemplateInstantiation())
7888     return;
7889 
7890   QualType DestType = InitExpr->getType();
7891   if (!DestType->isRecordType())
7892     return;
7893 
7894   unsigned DiagID = 0;
7895   if (IsReturnStmt) {
7896     const CXXConstructExpr *CCE =
7897         dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
7898     if (!CCE || CCE->getNumArgs() != 1)
7899       return;
7900 
7901     if (!CCE->getConstructor()->isCopyOrMoveConstructor())
7902       return;
7903 
7904     InitExpr = CCE->getArg(0)->IgnoreImpCasts();
7905   }
7906 
7907   // Find the std::move call and get the argument.
7908   const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
7909   if (!CE || !CE->isCallToStdMove())
7910     return;
7911 
7912   const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
7913 
7914   if (IsReturnStmt) {
7915     const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
7916     if (!DRE || DRE->refersToEnclosingVariableOrCapture())
7917       return;
7918 
7919     const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
7920     if (!VD || !VD->hasLocalStorage())
7921       return;
7922 
7923     // __block variables are not moved implicitly.
7924     if (VD->hasAttr<BlocksAttr>())
7925       return;
7926 
7927     QualType SourceType = VD->getType();
7928     if (!SourceType->isRecordType())
7929       return;
7930 
7931     if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
7932       return;
7933     }
7934 
7935     // If we're returning a function parameter, copy elision
7936     // is not possible.
7937     if (isa<ParmVarDecl>(VD))
7938       DiagID = diag::warn_redundant_move_on_return;
7939     else
7940       DiagID = diag::warn_pessimizing_move_on_return;
7941   } else {
7942     DiagID = diag::warn_pessimizing_move_on_initialization;
7943     const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
7944     if (!ArgStripped->isPRValue() || !ArgStripped->getType()->isRecordType())
7945       return;
7946   }
7947 
7948   S.Diag(CE->getBeginLoc(), DiagID);
7949 
7950   // Get all the locations for a fix-it.  Don't emit the fix-it if any location
7951   // is within a macro.
7952   SourceLocation CallBegin = CE->getCallee()->getBeginLoc();
7953   if (CallBegin.isMacroID())
7954     return;
7955   SourceLocation RParen = CE->getRParenLoc();
7956   if (RParen.isMacroID())
7957     return;
7958   SourceLocation LParen;
7959   SourceLocation ArgLoc = Arg->getBeginLoc();
7960 
7961   // Special testing for the argument location.  Since the fix-it needs the
7962   // location right before the argument, the argument location can be in a
7963   // macro only if it is at the beginning of the macro.
7964   while (ArgLoc.isMacroID() &&
7965          S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
7966     ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin();
7967   }
7968 
7969   if (LParen.isMacroID())
7970     return;
7971 
7972   LParen = ArgLoc.getLocWithOffset(-1);
7973 
7974   S.Diag(CE->getBeginLoc(), diag::note_remove_move)
7975       << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
7976       << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
7977 }
7978 
7979 static void CheckForNullPointerDereference(Sema &S, const Expr *E) {
7980   // Check to see if we are dereferencing a null pointer.  If so, this is
7981   // undefined behavior, so warn about it.  This only handles the pattern
7982   // "*null", which is a very syntactic check.
7983   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
7984     if (UO->getOpcode() == UO_Deref &&
7985         UO->getSubExpr()->IgnoreParenCasts()->
7986         isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) {
7987     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
7988                           S.PDiag(diag::warn_binding_null_to_reference)
7989                             << UO->getSubExpr()->getSourceRange());
7990   }
7991 }
7992 
7993 MaterializeTemporaryExpr *
7994 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
7995                                      bool BoundToLvalueReference) {
7996   auto MTE = new (Context)
7997       MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference);
7998 
7999   // Order an ExprWithCleanups for lifetime marks.
8000   //
8001   // TODO: It'll be good to have a single place to check the access of the
8002   // destructor and generate ExprWithCleanups for various uses. Currently these
8003   // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary,
8004   // but there may be a chance to merge them.
8005   Cleanup.setExprNeedsCleanups(false);
8006   return MTE;
8007 }
8008 
8009 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) {
8010   // In C++98, we don't want to implicitly create an xvalue.
8011   // FIXME: This means that AST consumers need to deal with "prvalues" that
8012   // denote materialized temporaries. Maybe we should add another ValueKind
8013   // for "xvalue pretending to be a prvalue" for C++98 support.
8014   if (!E->isPRValue() || !getLangOpts().CPlusPlus11)
8015     return E;
8016 
8017   // C++1z [conv.rval]/1: T shall be a complete type.
8018   // FIXME: Does this ever matter (can we form a prvalue of incomplete type)?
8019   // If so, we should check for a non-abstract class type here too.
8020   QualType T = E->getType();
8021   if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type))
8022     return ExprError();
8023 
8024   return CreateMaterializeTemporaryExpr(E->getType(), E, false);
8025 }
8026 
8027 ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty,
8028                                                 ExprValueKind VK,
8029                                                 CheckedConversionKind CCK) {
8030 
8031   CastKind CK = CK_NoOp;
8032 
8033   if (VK == VK_PRValue) {
8034     auto PointeeTy = Ty->getPointeeType();
8035     auto ExprPointeeTy = E->getType()->getPointeeType();
8036     if (!PointeeTy.isNull() &&
8037         PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace())
8038       CK = CK_AddressSpaceConversion;
8039   } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) {
8040     CK = CK_AddressSpaceConversion;
8041   }
8042 
8043   return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK);
8044 }
8045 
8046 ExprResult InitializationSequence::Perform(Sema &S,
8047                                            const InitializedEntity &Entity,
8048                                            const InitializationKind &Kind,
8049                                            MultiExprArg Args,
8050                                            QualType *ResultType) {
8051   if (Failed()) {
8052     Diagnose(S, Entity, Kind, Args);
8053     return ExprError();
8054   }
8055   if (!ZeroInitializationFixit.empty()) {
8056     unsigned DiagID = diag::err_default_init_const;
8057     if (Decl *D = Entity.getDecl())
8058       if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
8059         DiagID = diag::ext_default_init_const;
8060 
8061     // The initialization would have succeeded with this fixit. Since the fixit
8062     // is on the error, we need to build a valid AST in this case, so this isn't
8063     // handled in the Failed() branch above.
8064     QualType DestType = Entity.getType();
8065     S.Diag(Kind.getLocation(), DiagID)
8066         << DestType << (bool)DestType->getAs<RecordType>()
8067         << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
8068                                       ZeroInitializationFixit);
8069   }
8070 
8071   if (getKind() == DependentSequence) {
8072     // If the declaration is a non-dependent, incomplete array type
8073     // that has an initializer, then its type will be completed once
8074     // the initializer is instantiated.
8075     if (ResultType && !Entity.getType()->isDependentType() &&
8076         Args.size() == 1) {
8077       QualType DeclType = Entity.getType();
8078       if (const IncompleteArrayType *ArrayT
8079                            = S.Context.getAsIncompleteArrayType(DeclType)) {
8080         // FIXME: We don't currently have the ability to accurately
8081         // compute the length of an initializer list without
8082         // performing full type-checking of the initializer list
8083         // (since we have to determine where braces are implicitly
8084         // introduced and such).  So, we fall back to making the array
8085         // type a dependently-sized array type with no specified
8086         // bound.
8087         if (isa<InitListExpr>((Expr *)Args[0])) {
8088           SourceRange Brackets;
8089 
8090           // Scavange the location of the brackets from the entity, if we can.
8091           if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) {
8092             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
8093               TypeLoc TL = TInfo->getTypeLoc();
8094               if (IncompleteArrayTypeLoc ArrayLoc =
8095                       TL.getAs<IncompleteArrayTypeLoc>())
8096                 Brackets = ArrayLoc.getBracketsRange();
8097             }
8098           }
8099 
8100           *ResultType
8101             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
8102                                                    /*NumElts=*/nullptr,
8103                                                    ArrayT->getSizeModifier(),
8104                                        ArrayT->getIndexTypeCVRQualifiers(),
8105                                                    Brackets);
8106         }
8107 
8108       }
8109     }
8110     if (Kind.getKind() == InitializationKind::IK_Direct &&
8111         !Kind.isExplicitCast()) {
8112       // Rebuild the ParenListExpr.
8113       SourceRange ParenRange = Kind.getParenOrBraceRange();
8114       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
8115                                   Args);
8116     }
8117     assert(Kind.getKind() == InitializationKind::IK_Copy ||
8118            Kind.isExplicitCast() ||
8119            Kind.getKind() == InitializationKind::IK_DirectList);
8120     return ExprResult(Args[0]);
8121   }
8122 
8123   // No steps means no initialization.
8124   if (Steps.empty())
8125     return ExprResult((Expr *)nullptr);
8126 
8127   if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
8128       Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
8129       !Entity.isParamOrTemplateParamKind()) {
8130     // Produce a C++98 compatibility warning if we are initializing a reference
8131     // from an initializer list. For parameters, we produce a better warning
8132     // elsewhere.
8133     Expr *Init = Args[0];
8134     S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init)
8135         << Init->getSourceRange();
8136   }
8137 
8138   // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope
8139   QualType ETy = Entity.getType();
8140   bool HasGlobalAS = ETy.hasAddressSpace() &&
8141                      ETy.getAddressSpace() == LangAS::opencl_global;
8142 
8143   if (S.getLangOpts().OpenCLVersion >= 200 &&
8144       ETy->isAtomicType() && !HasGlobalAS &&
8145       Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) {
8146     S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init)
8147         << 1
8148         << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc());
8149     return ExprError();
8150   }
8151 
8152   QualType DestType = Entity.getType().getNonReferenceType();
8153   // FIXME: Ugly hack around the fact that Entity.getType() is not
8154   // the same as Entity.getDecl()->getType() in cases involving type merging,
8155   //  and we want latter when it makes sense.
8156   if (ResultType)
8157     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
8158                                      Entity.getType();
8159 
8160   ExprResult CurInit((Expr *)nullptr);
8161   SmallVector<Expr*, 4> ArrayLoopCommonExprs;
8162 
8163   // HLSL allows vector initialization to function like list initialization, but
8164   // use the syntax of a C++-like constructor.
8165   bool IsHLSLVectorInit = S.getLangOpts().HLSL && DestType->isExtVectorType() &&
8166                           isa<InitListExpr>(Args[0]);
8167   (void)IsHLSLVectorInit;
8168 
8169   // For initialization steps that start with a single initializer,
8170   // grab the only argument out the Args and place it into the "current"
8171   // initializer.
8172   switch (Steps.front().Kind) {
8173   case SK_ResolveAddressOfOverloadedFunction:
8174   case SK_CastDerivedToBasePRValue:
8175   case SK_CastDerivedToBaseXValue:
8176   case SK_CastDerivedToBaseLValue:
8177   case SK_BindReference:
8178   case SK_BindReferenceToTemporary:
8179   case SK_FinalCopy:
8180   case SK_ExtraneousCopyToTemporary:
8181   case SK_UserConversion:
8182   case SK_QualificationConversionLValue:
8183   case SK_QualificationConversionXValue:
8184   case SK_QualificationConversionPRValue:
8185   case SK_FunctionReferenceConversion:
8186   case SK_AtomicConversion:
8187   case SK_ConversionSequence:
8188   case SK_ConversionSequenceNoNarrowing:
8189   case SK_ListInitialization:
8190   case SK_UnwrapInitList:
8191   case SK_RewrapInitList:
8192   case SK_CAssignment:
8193   case SK_StringInit:
8194   case SK_ObjCObjectConversion:
8195   case SK_ArrayLoopIndex:
8196   case SK_ArrayLoopInit:
8197   case SK_ArrayInit:
8198   case SK_GNUArrayInit:
8199   case SK_ParenthesizedArrayInit:
8200   case SK_PassByIndirectCopyRestore:
8201   case SK_PassByIndirectRestore:
8202   case SK_ProduceObjCObject:
8203   case SK_StdInitializerList:
8204   case SK_OCLSamplerInit:
8205   case SK_OCLZeroOpaqueType: {
8206     assert(Args.size() == 1 || IsHLSLVectorInit);
8207     CurInit = Args[0];
8208     if (!CurInit.get()) return ExprError();
8209     break;
8210   }
8211 
8212   case SK_ConstructorInitialization:
8213   case SK_ConstructorInitializationFromList:
8214   case SK_StdInitializerListConstructorCall:
8215   case SK_ZeroInitialization:
8216     break;
8217   }
8218 
8219   // Promote from an unevaluated context to an unevaluated list context in
8220   // C++11 list-initialization; we need to instantiate entities usable in
8221   // constant expressions here in order to perform narrowing checks =(
8222   EnterExpressionEvaluationContext Evaluated(
8223       S, EnterExpressionEvaluationContext::InitList,
8224       CurInit.get() && isa<InitListExpr>(CurInit.get()));
8225 
8226   // C++ [class.abstract]p2:
8227   //   no objects of an abstract class can be created except as subobjects
8228   //   of a class derived from it
8229   auto checkAbstractType = [&](QualType T) -> bool {
8230     if (Entity.getKind() == InitializedEntity::EK_Base ||
8231         Entity.getKind() == InitializedEntity::EK_Delegating)
8232       return false;
8233     return S.RequireNonAbstractType(Kind.getLocation(), T,
8234                                     diag::err_allocation_of_abstract_type);
8235   };
8236 
8237   // Walk through the computed steps for the initialization sequence,
8238   // performing the specified conversions along the way.
8239   bool ConstructorInitRequiresZeroInit = false;
8240   for (step_iterator Step = step_begin(), StepEnd = step_end();
8241        Step != StepEnd; ++Step) {
8242     if (CurInit.isInvalid())
8243       return ExprError();
8244 
8245     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
8246 
8247     switch (Step->Kind) {
8248     case SK_ResolveAddressOfOverloadedFunction:
8249       // Overload resolution determined which function invoke; update the
8250       // initializer to reflect that choice.
8251       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
8252       if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
8253         return ExprError();
8254       CurInit = S.FixOverloadedFunctionReference(CurInit,
8255                                                  Step->Function.FoundDecl,
8256                                                  Step->Function.Function);
8257       // We might get back another placeholder expression if we resolved to a
8258       // builtin.
8259       if (!CurInit.isInvalid())
8260         CurInit = S.CheckPlaceholderExpr(CurInit.get());
8261       break;
8262 
8263     case SK_CastDerivedToBasePRValue:
8264     case SK_CastDerivedToBaseXValue:
8265     case SK_CastDerivedToBaseLValue: {
8266       // We have a derived-to-base cast that produces either an rvalue or an
8267       // lvalue. Perform that cast.
8268 
8269       CXXCastPath BasePath;
8270 
8271       // Casts to inaccessible base classes are allowed with C-style casts.
8272       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
8273       if (S.CheckDerivedToBaseConversion(
8274               SourceType, Step->Type, CurInit.get()->getBeginLoc(),
8275               CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess))
8276         return ExprError();
8277 
8278       ExprValueKind VK =
8279           Step->Kind == SK_CastDerivedToBaseLValue
8280               ? VK_LValue
8281               : (Step->Kind == SK_CastDerivedToBaseXValue ? VK_XValue
8282                                                           : VK_PRValue);
8283       CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
8284                                          CK_DerivedToBase, CurInit.get(),
8285                                          &BasePath, VK, FPOptionsOverride());
8286       break;
8287     }
8288 
8289     case SK_BindReference:
8290       // Reference binding does not have any corresponding ASTs.
8291 
8292       // Check exception specifications
8293       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
8294         return ExprError();
8295 
8296       // We don't check for e.g. function pointers here, since address
8297       // availability checks should only occur when the function first decays
8298       // into a pointer or reference.
8299       if (CurInit.get()->getType()->isFunctionProtoType()) {
8300         if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) {
8301           if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
8302             if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
8303                                                      DRE->getBeginLoc()))
8304               return ExprError();
8305           }
8306         }
8307       }
8308 
8309       CheckForNullPointerDereference(S, CurInit.get());
8310       break;
8311 
8312     case SK_BindReferenceToTemporary: {
8313       // Make sure the "temporary" is actually an rvalue.
8314       assert(CurInit.get()->isPRValue() && "not a temporary");
8315 
8316       // Check exception specifications
8317       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
8318         return ExprError();
8319 
8320       QualType MTETy = Step->Type;
8321 
8322       // When this is an incomplete array type (such as when this is
8323       // initializing an array of unknown bounds from an init list), use THAT
8324       // type instead so that we propagate the array bounds.
8325       if (MTETy->isIncompleteArrayType() &&
8326           !CurInit.get()->getType()->isIncompleteArrayType() &&
8327           S.Context.hasSameType(
8328               MTETy->getPointeeOrArrayElementType(),
8329               CurInit.get()->getType()->getPointeeOrArrayElementType()))
8330         MTETy = CurInit.get()->getType();
8331 
8332       // Materialize the temporary into memory.
8333       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8334           MTETy, CurInit.get(), Entity.getType()->isLValueReferenceType());
8335       CurInit = MTE;
8336 
8337       // If we're extending this temporary to automatic storage duration -- we
8338       // need to register its cleanup during the full-expression's cleanups.
8339       if (MTE->getStorageDuration() == SD_Automatic &&
8340           MTE->getType().isDestructedType())
8341         S.Cleanup.setExprNeedsCleanups(true);
8342       break;
8343     }
8344 
8345     case SK_FinalCopy:
8346       if (checkAbstractType(Step->Type))
8347         return ExprError();
8348 
8349       // If the overall initialization is initializing a temporary, we already
8350       // bound our argument if it was necessary to do so. If not (if we're
8351       // ultimately initializing a non-temporary), our argument needs to be
8352       // bound since it's initializing a function parameter.
8353       // FIXME: This is a mess. Rationalize temporary destruction.
8354       if (!shouldBindAsTemporary(Entity))
8355         CurInit = S.MaybeBindToTemporary(CurInit.get());
8356       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
8357                            /*IsExtraneousCopy=*/false);
8358       break;
8359 
8360     case SK_ExtraneousCopyToTemporary:
8361       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
8362                            /*IsExtraneousCopy=*/true);
8363       break;
8364 
8365     case SK_UserConversion: {
8366       // We have a user-defined conversion that invokes either a constructor
8367       // or a conversion function.
8368       CastKind CastKind;
8369       FunctionDecl *Fn = Step->Function.Function;
8370       DeclAccessPair FoundFn = Step->Function.FoundDecl;
8371       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
8372       bool CreatedObject = false;
8373       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
8374         // Build a call to the selected constructor.
8375         SmallVector<Expr*, 8> ConstructorArgs;
8376         SourceLocation Loc = CurInit.get()->getBeginLoc();
8377 
8378         // Determine the arguments required to actually perform the constructor
8379         // call.
8380         Expr *Arg = CurInit.get();
8381         if (S.CompleteConstructorCall(Constructor, Step->Type,
8382                                       MultiExprArg(&Arg, 1), Loc,
8383                                       ConstructorArgs))
8384           return ExprError();
8385 
8386         // Build an expression that constructs a temporary.
8387         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type,
8388                                           FoundFn, Constructor,
8389                                           ConstructorArgs,
8390                                           HadMultipleCandidates,
8391                                           /*ListInit*/ false,
8392                                           /*StdInitListInit*/ false,
8393                                           /*ZeroInit*/ false,
8394                                           CXXConstructExpr::CK_Complete,
8395                                           SourceRange());
8396         if (CurInit.isInvalid())
8397           return ExprError();
8398 
8399         S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn,
8400                                  Entity);
8401         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
8402           return ExprError();
8403 
8404         CastKind = CK_ConstructorConversion;
8405         CreatedObject = true;
8406       } else {
8407         // Build a call to the conversion function.
8408         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
8409         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
8410                                     FoundFn);
8411         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
8412           return ExprError();
8413 
8414         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
8415                                            HadMultipleCandidates);
8416         if (CurInit.isInvalid())
8417           return ExprError();
8418 
8419         CastKind = CK_UserDefinedConversion;
8420         CreatedObject = Conversion->getReturnType()->isRecordType();
8421       }
8422 
8423       if (CreatedObject && checkAbstractType(CurInit.get()->getType()))
8424         return ExprError();
8425 
8426       CurInit = ImplicitCastExpr::Create(
8427           S.Context, CurInit.get()->getType(), CastKind, CurInit.get(), nullptr,
8428           CurInit.get()->getValueKind(), S.CurFPFeatureOverrides());
8429 
8430       if (shouldBindAsTemporary(Entity))
8431         // The overall entity is temporary, so this expression should be
8432         // destroyed at the end of its full-expression.
8433         CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
8434       else if (CreatedObject && shouldDestroyEntity(Entity)) {
8435         // The object outlasts the full-expression, but we need to prepare for
8436         // a destructor being run on it.
8437         // FIXME: It makes no sense to do this here. This should happen
8438         // regardless of how we initialized the entity.
8439         QualType T = CurInit.get()->getType();
8440         if (const RecordType *Record = T->getAs<RecordType>()) {
8441           CXXDestructorDecl *Destructor
8442             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
8443           S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor,
8444                                   S.PDiag(diag::err_access_dtor_temp) << T);
8445           S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor);
8446           if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc()))
8447             return ExprError();
8448         }
8449       }
8450       break;
8451     }
8452 
8453     case SK_QualificationConversionLValue:
8454     case SK_QualificationConversionXValue:
8455     case SK_QualificationConversionPRValue: {
8456       // Perform a qualification conversion; these can never go wrong.
8457       ExprValueKind VK =
8458           Step->Kind == SK_QualificationConversionLValue
8459               ? VK_LValue
8460               : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue
8461                                                                 : VK_PRValue);
8462       CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK);
8463       break;
8464     }
8465 
8466     case SK_FunctionReferenceConversion:
8467       assert(CurInit.get()->isLValue() &&
8468              "function reference should be lvalue");
8469       CurInit =
8470           S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK_LValue);
8471       break;
8472 
8473     case SK_AtomicConversion: {
8474       assert(CurInit.get()->isPRValue() && "cannot convert glvalue to atomic");
8475       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8476                                     CK_NonAtomicToAtomic, VK_PRValue);
8477       break;
8478     }
8479 
8480     case SK_ConversionSequence:
8481     case SK_ConversionSequenceNoNarrowing: {
8482       if (const auto *FromPtrType =
8483               CurInit.get()->getType()->getAs<PointerType>()) {
8484         if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) {
8485           if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
8486               !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
8487             // Do not check static casts here because they are checked earlier
8488             // in Sema::ActOnCXXNamedCast()
8489             if (!Kind.isStaticCast()) {
8490               S.Diag(CurInit.get()->getExprLoc(),
8491                      diag::warn_noderef_to_dereferenceable_pointer)
8492                   << CurInit.get()->getSourceRange();
8493             }
8494           }
8495         }
8496       }
8497 
8498       Sema::CheckedConversionKind CCK
8499         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
8500         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
8501         : Kind.isExplicitCast()? Sema::CCK_OtherCast
8502         : Sema::CCK_ImplicitConversion;
8503       ExprResult CurInitExprRes =
8504         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
8505                                     getAssignmentAction(Entity), CCK);
8506       if (CurInitExprRes.isInvalid())
8507         return ExprError();
8508 
8509       S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get());
8510 
8511       CurInit = CurInitExprRes;
8512 
8513       if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
8514           S.getLangOpts().CPlusPlus)
8515         DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
8516                                     CurInit.get());
8517 
8518       break;
8519     }
8520 
8521     case SK_ListInitialization: {
8522       if (checkAbstractType(Step->Type))
8523         return ExprError();
8524 
8525       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
8526       // If we're not initializing the top-level entity, we need to create an
8527       // InitializeTemporary entity for our target type.
8528       QualType Ty = Step->Type;
8529       bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
8530       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
8531       InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
8532       InitListChecker PerformInitList(S, InitEntity,
8533           InitList, Ty, /*VerifyOnly=*/false,
8534           /*TreatUnavailableAsInvalid=*/false);
8535       if (PerformInitList.HadError())
8536         return ExprError();
8537 
8538       // Hack: We must update *ResultType if available in order to set the
8539       // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
8540       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
8541       if (ResultType &&
8542           ResultType->getNonReferenceType()->isIncompleteArrayType()) {
8543         if ((*ResultType)->isRValueReferenceType())
8544           Ty = S.Context.getRValueReferenceType(Ty);
8545         else if ((*ResultType)->isLValueReferenceType())
8546           Ty = S.Context.getLValueReferenceType(Ty,
8547             (*ResultType)->castAs<LValueReferenceType>()->isSpelledAsLValue());
8548         *ResultType = Ty;
8549       }
8550 
8551       InitListExpr *StructuredInitList =
8552           PerformInitList.getFullyStructuredList();
8553       CurInit.get();
8554       CurInit = shouldBindAsTemporary(InitEntity)
8555           ? S.MaybeBindToTemporary(StructuredInitList)
8556           : StructuredInitList;
8557       break;
8558     }
8559 
8560     case SK_ConstructorInitializationFromList: {
8561       if (checkAbstractType(Step->Type))
8562         return ExprError();
8563 
8564       // When an initializer list is passed for a parameter of type "reference
8565       // to object", we don't get an EK_Temporary entity, but instead an
8566       // EK_Parameter entity with reference type.
8567       // FIXME: This is a hack. What we really should do is create a user
8568       // conversion step for this case, but this makes it considerably more
8569       // complicated. For now, this will do.
8570       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
8571                                         Entity.getType().getNonReferenceType());
8572       bool UseTemporary = Entity.getType()->isReferenceType();
8573       assert(Args.size() == 1 && "expected a single argument for list init");
8574       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8575       S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
8576         << InitList->getSourceRange();
8577       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
8578       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
8579                                                                    Entity,
8580                                                  Kind, Arg, *Step,
8581                                                ConstructorInitRequiresZeroInit,
8582                                                /*IsListInitialization*/true,
8583                                                /*IsStdInitListInit*/false,
8584                                                InitList->getLBraceLoc(),
8585                                                InitList->getRBraceLoc());
8586       break;
8587     }
8588 
8589     case SK_UnwrapInitList:
8590       CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
8591       break;
8592 
8593     case SK_RewrapInitList: {
8594       Expr *E = CurInit.get();
8595       InitListExpr *Syntactic = Step->WrappingSyntacticList;
8596       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
8597           Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
8598       ILE->setSyntacticForm(Syntactic);
8599       ILE->setType(E->getType());
8600       ILE->setValueKind(E->getValueKind());
8601       CurInit = ILE;
8602       break;
8603     }
8604 
8605     case SK_ConstructorInitialization:
8606     case SK_StdInitializerListConstructorCall: {
8607       if (checkAbstractType(Step->Type))
8608         return ExprError();
8609 
8610       // When an initializer list is passed for a parameter of type "reference
8611       // to object", we don't get an EK_Temporary entity, but instead an
8612       // EK_Parameter entity with reference type.
8613       // FIXME: This is a hack. What we really should do is create a user
8614       // conversion step for this case, but this makes it considerably more
8615       // complicated. For now, this will do.
8616       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
8617                                         Entity.getType().getNonReferenceType());
8618       bool UseTemporary = Entity.getType()->isReferenceType();
8619       bool IsStdInitListInit =
8620           Step->Kind == SK_StdInitializerListConstructorCall;
8621       Expr *Source = CurInit.get();
8622       SourceRange Range = Kind.hasParenOrBraceRange()
8623                               ? Kind.getParenOrBraceRange()
8624                               : SourceRange();
8625       CurInit = PerformConstructorInitialization(
8626           S, UseTemporary ? TempEntity : Entity, Kind,
8627           Source ? MultiExprArg(Source) : Args, *Step,
8628           ConstructorInitRequiresZeroInit,
8629           /*IsListInitialization*/ IsStdInitListInit,
8630           /*IsStdInitListInitialization*/ IsStdInitListInit,
8631           /*LBraceLoc*/ Range.getBegin(),
8632           /*RBraceLoc*/ Range.getEnd());
8633       break;
8634     }
8635 
8636     case SK_ZeroInitialization: {
8637       step_iterator NextStep = Step;
8638       ++NextStep;
8639       if (NextStep != StepEnd &&
8640           (NextStep->Kind == SK_ConstructorInitialization ||
8641            NextStep->Kind == SK_ConstructorInitializationFromList)) {
8642         // The need for zero-initialization is recorded directly into
8643         // the call to the object's constructor within the next step.
8644         ConstructorInitRequiresZeroInit = true;
8645       } else if (Kind.getKind() == InitializationKind::IK_Value &&
8646                  S.getLangOpts().CPlusPlus &&
8647                  !Kind.isImplicitValueInit()) {
8648         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
8649         if (!TSInfo)
8650           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
8651                                                     Kind.getRange().getBegin());
8652 
8653         CurInit = new (S.Context) CXXScalarValueInitExpr(
8654             Entity.getType().getNonLValueExprType(S.Context), TSInfo,
8655             Kind.getRange().getEnd());
8656       } else {
8657         CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
8658       }
8659       break;
8660     }
8661 
8662     case SK_CAssignment: {
8663       QualType SourceType = CurInit.get()->getType();
8664 
8665       // Save off the initial CurInit in case we need to emit a diagnostic
8666       ExprResult InitialCurInit = CurInit;
8667       ExprResult Result = CurInit;
8668       Sema::AssignConvertType ConvTy =
8669         S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
8670             Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
8671       if (Result.isInvalid())
8672         return ExprError();
8673       CurInit = Result;
8674 
8675       // If this is a call, allow conversion to a transparent union.
8676       ExprResult CurInitExprRes = CurInit;
8677       if (ConvTy != Sema::Compatible &&
8678           Entity.isParameterKind() &&
8679           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
8680             == Sema::Compatible)
8681         ConvTy = Sema::Compatible;
8682       if (CurInitExprRes.isInvalid())
8683         return ExprError();
8684       CurInit = CurInitExprRes;
8685 
8686       bool Complained;
8687       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
8688                                      Step->Type, SourceType,
8689                                      InitialCurInit.get(),
8690                                      getAssignmentAction(Entity, true),
8691                                      &Complained)) {
8692         PrintInitLocationNote(S, Entity);
8693         return ExprError();
8694       } else if (Complained)
8695         PrintInitLocationNote(S, Entity);
8696       break;
8697     }
8698 
8699     case SK_StringInit: {
8700       QualType Ty = Step->Type;
8701       bool UpdateType = ResultType && Entity.getType()->isIncompleteArrayType();
8702       CheckStringInit(CurInit.get(), UpdateType ? *ResultType : Ty,
8703                       S.Context.getAsArrayType(Ty), S);
8704       break;
8705     }
8706 
8707     case SK_ObjCObjectConversion:
8708       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8709                           CK_ObjCObjectLValueCast,
8710                           CurInit.get()->getValueKind());
8711       break;
8712 
8713     case SK_ArrayLoopIndex: {
8714       Expr *Cur = CurInit.get();
8715       Expr *BaseExpr = new (S.Context)
8716           OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(),
8717                           Cur->getValueKind(), Cur->getObjectKind(), Cur);
8718       Expr *IndexExpr =
8719           new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType());
8720       CurInit = S.CreateBuiltinArraySubscriptExpr(
8721           BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation());
8722       ArrayLoopCommonExprs.push_back(BaseExpr);
8723       break;
8724     }
8725 
8726     case SK_ArrayLoopInit: {
8727       assert(!ArrayLoopCommonExprs.empty() &&
8728              "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit");
8729       Expr *Common = ArrayLoopCommonExprs.pop_back_val();
8730       CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common,
8731                                                   CurInit.get());
8732       break;
8733     }
8734 
8735     case SK_GNUArrayInit:
8736       // Okay: we checked everything before creating this step. Note that
8737       // this is a GNU extension.
8738       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
8739         << Step->Type << CurInit.get()->getType()
8740         << CurInit.get()->getSourceRange();
8741       updateGNUCompoundLiteralRValue(CurInit.get());
8742       LLVM_FALLTHROUGH;
8743     case SK_ArrayInit:
8744       // If the destination type is an incomplete array type, update the
8745       // type accordingly.
8746       if (ResultType) {
8747         if (const IncompleteArrayType *IncompleteDest
8748                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
8749           if (const ConstantArrayType *ConstantSource
8750                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
8751             *ResultType = S.Context.getConstantArrayType(
8752                                              IncompleteDest->getElementType(),
8753                                              ConstantSource->getSize(),
8754                                              ConstantSource->getSizeExpr(),
8755                                              ArrayType::Normal, 0);
8756           }
8757         }
8758       }
8759       break;
8760 
8761     case SK_ParenthesizedArrayInit:
8762       // Okay: we checked everything before creating this step. Note that
8763       // this is a GNU extension.
8764       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
8765         << CurInit.get()->getSourceRange();
8766       break;
8767 
8768     case SK_PassByIndirectCopyRestore:
8769     case SK_PassByIndirectRestore:
8770       checkIndirectCopyRestoreSource(S, CurInit.get());
8771       CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
8772           CurInit.get(), Step->Type,
8773           Step->Kind == SK_PassByIndirectCopyRestore);
8774       break;
8775 
8776     case SK_ProduceObjCObject:
8777       CurInit = ImplicitCastExpr::Create(
8778           S.Context, Step->Type, CK_ARCProduceObject, CurInit.get(), nullptr,
8779           VK_PRValue, FPOptionsOverride());
8780       break;
8781 
8782     case SK_StdInitializerList: {
8783       S.Diag(CurInit.get()->getExprLoc(),
8784              diag::warn_cxx98_compat_initializer_list_init)
8785         << CurInit.get()->getSourceRange();
8786 
8787       // Materialize the temporary into memory.
8788       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8789           CurInit.get()->getType(), CurInit.get(),
8790           /*BoundToLvalueReference=*/false);
8791 
8792       // Wrap it in a construction of a std::initializer_list<T>.
8793       CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
8794 
8795       // Bind the result, in case the library has given initializer_list a
8796       // non-trivial destructor.
8797       if (shouldBindAsTemporary(Entity))
8798         CurInit = S.MaybeBindToTemporary(CurInit.get());
8799       break;
8800     }
8801 
8802     case SK_OCLSamplerInit: {
8803       // Sampler initialization have 5 cases:
8804       //   1. function argument passing
8805       //      1a. argument is a file-scope variable
8806       //      1b. argument is a function-scope variable
8807       //      1c. argument is one of caller function's parameters
8808       //   2. variable initialization
8809       //      2a. initializing a file-scope variable
8810       //      2b. initializing a function-scope variable
8811       //
8812       // For file-scope variables, since they cannot be initialized by function
8813       // call of __translate_sampler_initializer in LLVM IR, their references
8814       // need to be replaced by a cast from their literal initializers to
8815       // sampler type. Since sampler variables can only be used in function
8816       // calls as arguments, we only need to replace them when handling the
8817       // argument passing.
8818       assert(Step->Type->isSamplerT() &&
8819              "Sampler initialization on non-sampler type.");
8820       Expr *Init = CurInit.get()->IgnoreParens();
8821       QualType SourceType = Init->getType();
8822       // Case 1
8823       if (Entity.isParameterKind()) {
8824         if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) {
8825           S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
8826             << SourceType;
8827           break;
8828         } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) {
8829           auto Var = cast<VarDecl>(DRE->getDecl());
8830           // Case 1b and 1c
8831           // No cast from integer to sampler is needed.
8832           if (!Var->hasGlobalStorage()) {
8833             CurInit = ImplicitCastExpr::Create(
8834                 S.Context, Step->Type, CK_LValueToRValue, Init,
8835                 /*BasePath=*/nullptr, VK_PRValue, FPOptionsOverride());
8836             break;
8837           }
8838           // Case 1a
8839           // For function call with a file-scope sampler variable as argument,
8840           // get the integer literal.
8841           // Do not diagnose if the file-scope variable does not have initializer
8842           // since this has already been diagnosed when parsing the variable
8843           // declaration.
8844           if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit()))
8845             break;
8846           Init = cast<ImplicitCastExpr>(const_cast<Expr*>(
8847             Var->getInit()))->getSubExpr();
8848           SourceType = Init->getType();
8849         }
8850       } else {
8851         // Case 2
8852         // Check initializer is 32 bit integer constant.
8853         // If the initializer is taken from global variable, do not diagnose since
8854         // this has already been done when parsing the variable declaration.
8855         if (!Init->isConstantInitializer(S.Context, false))
8856           break;
8857 
8858         if (!SourceType->isIntegerType() ||
8859             32 != S.Context.getIntWidth(SourceType)) {
8860           S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer)
8861             << SourceType;
8862           break;
8863         }
8864 
8865         Expr::EvalResult EVResult;
8866         Init->EvaluateAsInt(EVResult, S.Context);
8867         llvm::APSInt Result = EVResult.Val.getInt();
8868         const uint64_t SamplerValue = Result.getLimitedValue();
8869         // 32-bit value of sampler's initializer is interpreted as
8870         // bit-field with the following structure:
8871         // |unspecified|Filter|Addressing Mode| Normalized Coords|
8872         // |31        6|5    4|3             1|                 0|
8873         // This structure corresponds to enum values of sampler properties
8874         // defined in SPIR spec v1.2 and also opencl-c.h
8875         unsigned AddressingMode  = (0x0E & SamplerValue) >> 1;
8876         unsigned FilterMode      = (0x30 & SamplerValue) >> 4;
8877         if (FilterMode != 1 && FilterMode != 2 &&
8878             !S.getOpenCLOptions().isAvailableOption(
8879                 "cl_intel_device_side_avc_motion_estimation", S.getLangOpts()))
8880           S.Diag(Kind.getLocation(),
8881                  diag::warn_sampler_initializer_invalid_bits)
8882                  << "Filter Mode";
8883         if (AddressingMode > 4)
8884           S.Diag(Kind.getLocation(),
8885                  diag::warn_sampler_initializer_invalid_bits)
8886                  << "Addressing Mode";
8887       }
8888 
8889       // Cases 1a, 2a and 2b
8890       // Insert cast from integer to sampler.
8891       CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy,
8892                                       CK_IntToOCLSampler);
8893       break;
8894     }
8895     case SK_OCLZeroOpaqueType: {
8896       assert((Step->Type->isEventT() || Step->Type->isQueueT() ||
8897               Step->Type->isOCLIntelSubgroupAVCType()) &&
8898              "Wrong type for initialization of OpenCL opaque type.");
8899 
8900       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8901                                     CK_ZeroToOCLOpaqueType,
8902                                     CurInit.get()->getValueKind());
8903       break;
8904     }
8905     }
8906   }
8907 
8908   // Check whether the initializer has a shorter lifetime than the initialized
8909   // entity, and if not, either lifetime-extend or warn as appropriate.
8910   if (auto *Init = CurInit.get())
8911     S.checkInitializerLifetime(Entity, Init);
8912 
8913   // Diagnose non-fatal problems with the completed initialization.
8914   if (Entity.getKind() == InitializedEntity::EK_Member &&
8915       cast<FieldDecl>(Entity.getDecl())->isBitField())
8916     S.CheckBitFieldInitialization(Kind.getLocation(),
8917                                   cast<FieldDecl>(Entity.getDecl()),
8918                                   CurInit.get());
8919 
8920   // Check for std::move on construction.
8921   if (const Expr *E = CurInit.get()) {
8922     CheckMoveOnConstruction(S, E,
8923                             Entity.getKind() == InitializedEntity::EK_Result);
8924   }
8925 
8926   return CurInit;
8927 }
8928 
8929 /// Somewhere within T there is an uninitialized reference subobject.
8930 /// Dig it out and diagnose it.
8931 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
8932                                            QualType T) {
8933   if (T->isReferenceType()) {
8934     S.Diag(Loc, diag::err_reference_without_init)
8935       << T.getNonReferenceType();
8936     return true;
8937   }
8938 
8939   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
8940   if (!RD || !RD->hasUninitializedReferenceMember())
8941     return false;
8942 
8943   for (const auto *FI : RD->fields()) {
8944     if (FI->isUnnamedBitfield())
8945       continue;
8946 
8947     if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
8948       S.Diag(Loc, diag::note_value_initialization_here) << RD;
8949       return true;
8950     }
8951   }
8952 
8953   for (const auto &BI : RD->bases()) {
8954     if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) {
8955       S.Diag(Loc, diag::note_value_initialization_here) << RD;
8956       return true;
8957     }
8958   }
8959 
8960   return false;
8961 }
8962 
8963 
8964 //===----------------------------------------------------------------------===//
8965 // Diagnose initialization failures
8966 //===----------------------------------------------------------------------===//
8967 
8968 /// Emit notes associated with an initialization that failed due to a
8969 /// "simple" conversion failure.
8970 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
8971                                    Expr *op) {
8972   QualType destType = entity.getType();
8973   if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
8974       op->getType()->isObjCObjectPointerType()) {
8975 
8976     // Emit a possible note about the conversion failing because the
8977     // operand is a message send with a related result type.
8978     S.EmitRelatedResultTypeNote(op);
8979 
8980     // Emit a possible note about a return failing because we're
8981     // expecting a related result type.
8982     if (entity.getKind() == InitializedEntity::EK_Result)
8983       S.EmitRelatedResultTypeNoteForReturn(destType);
8984   }
8985   QualType fromType = op->getType();
8986   QualType fromPointeeType = fromType.getCanonicalType()->getPointeeType();
8987   QualType destPointeeType = destType.getCanonicalType()->getPointeeType();
8988   auto *fromDecl = fromType->getPointeeCXXRecordDecl();
8989   auto *destDecl = destType->getPointeeCXXRecordDecl();
8990   if (fromDecl && destDecl && fromDecl->getDeclKind() == Decl::CXXRecord &&
8991       destDecl->getDeclKind() == Decl::CXXRecord &&
8992       !fromDecl->isInvalidDecl() && !destDecl->isInvalidDecl() &&
8993       !fromDecl->hasDefinition() &&
8994       destPointeeType.getQualifiers().compatiblyIncludes(
8995           fromPointeeType.getQualifiers()))
8996     S.Diag(fromDecl->getLocation(), diag::note_forward_class_conversion)
8997         << S.getASTContext().getTagDeclType(fromDecl)
8998         << S.getASTContext().getTagDeclType(destDecl);
8999 }
9000 
9001 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
9002                              InitListExpr *InitList) {
9003   QualType DestType = Entity.getType();
9004 
9005   QualType E;
9006   if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
9007     QualType ArrayType = S.Context.getConstantArrayType(
9008         E.withConst(),
9009         llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
9010                     InitList->getNumInits()),
9011         nullptr, clang::ArrayType::Normal, 0);
9012     InitializedEntity HiddenArray =
9013         InitializedEntity::InitializeTemporary(ArrayType);
9014     return diagnoseListInit(S, HiddenArray, InitList);
9015   }
9016 
9017   if (DestType->isReferenceType()) {
9018     // A list-initialization failure for a reference means that we tried to
9019     // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
9020     // inner initialization failed.
9021     QualType T = DestType->castAs<ReferenceType>()->getPointeeType();
9022     diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
9023     SourceLocation Loc = InitList->getBeginLoc();
9024     if (auto *D = Entity.getDecl())
9025       Loc = D->getLocation();
9026     S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
9027     return;
9028   }
9029 
9030   InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
9031                                    /*VerifyOnly=*/false,
9032                                    /*TreatUnavailableAsInvalid=*/false);
9033   assert(DiagnoseInitList.HadError() &&
9034          "Inconsistent init list check result.");
9035 }
9036 
9037 bool InitializationSequence::Diagnose(Sema &S,
9038                                       const InitializedEntity &Entity,
9039                                       const InitializationKind &Kind,
9040                                       ArrayRef<Expr *> Args) {
9041   if (!Failed())
9042     return false;
9043 
9044   // When we want to diagnose only one element of a braced-init-list,
9045   // we need to factor it out.
9046   Expr *OnlyArg;
9047   if (Args.size() == 1) {
9048     auto *List = dyn_cast<InitListExpr>(Args[0]);
9049     if (List && List->getNumInits() == 1)
9050       OnlyArg = List->getInit(0);
9051     else
9052       OnlyArg = Args[0];
9053   }
9054   else
9055     OnlyArg = nullptr;
9056 
9057   QualType DestType = Entity.getType();
9058   switch (Failure) {
9059   case FK_TooManyInitsForReference:
9060     // FIXME: Customize for the initialized entity?
9061     if (Args.empty()) {
9062       // Dig out the reference subobject which is uninitialized and diagnose it.
9063       // If this is value-initialization, this could be nested some way within
9064       // the target type.
9065       assert(Kind.getKind() == InitializationKind::IK_Value ||
9066              DestType->isReferenceType());
9067       bool Diagnosed =
9068         DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
9069       assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
9070       (void)Diagnosed;
9071     } else  // FIXME: diagnostic below could be better!
9072       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
9073           << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
9074     break;
9075   case FK_ParenthesizedListInitForReference:
9076     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
9077       << 1 << Entity.getType() << Args[0]->getSourceRange();
9078     break;
9079 
9080   case FK_ArrayNeedsInitList:
9081     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
9082     break;
9083   case FK_ArrayNeedsInitListOrStringLiteral:
9084     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
9085     break;
9086   case FK_ArrayNeedsInitListOrWideStringLiteral:
9087     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
9088     break;
9089   case FK_NarrowStringIntoWideCharArray:
9090     S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
9091     break;
9092   case FK_WideStringIntoCharArray:
9093     S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
9094     break;
9095   case FK_IncompatWideStringIntoWideChar:
9096     S.Diag(Kind.getLocation(),
9097            diag::err_array_init_incompat_wide_string_into_wchar);
9098     break;
9099   case FK_PlainStringIntoUTF8Char:
9100     S.Diag(Kind.getLocation(),
9101            diag::err_array_init_plain_string_into_char8_t);
9102     S.Diag(Args.front()->getBeginLoc(),
9103            diag::note_array_init_plain_string_into_char8_t)
9104         << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8");
9105     break;
9106   case FK_UTF8StringIntoPlainChar:
9107     S.Diag(Kind.getLocation(),
9108            diag::err_array_init_utf8_string_into_char)
9109       << S.getLangOpts().CPlusPlus20;
9110     break;
9111   case FK_ArrayTypeMismatch:
9112   case FK_NonConstantArrayInit:
9113     S.Diag(Kind.getLocation(),
9114            (Failure == FK_ArrayTypeMismatch
9115               ? diag::err_array_init_different_type
9116               : diag::err_array_init_non_constant_array))
9117       << DestType.getNonReferenceType()
9118       << OnlyArg->getType()
9119       << Args[0]->getSourceRange();
9120     break;
9121 
9122   case FK_VariableLengthArrayHasInitializer:
9123     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
9124       << Args[0]->getSourceRange();
9125     break;
9126 
9127   case FK_AddressOfOverloadFailed: {
9128     DeclAccessPair Found;
9129     S.ResolveAddressOfOverloadedFunction(OnlyArg,
9130                                          DestType.getNonReferenceType(),
9131                                          true,
9132                                          Found);
9133     break;
9134   }
9135 
9136   case FK_AddressOfUnaddressableFunction: {
9137     auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl());
9138     S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
9139                                         OnlyArg->getBeginLoc());
9140     break;
9141   }
9142 
9143   case FK_ReferenceInitOverloadFailed:
9144   case FK_UserConversionOverloadFailed:
9145     switch (FailedOverloadResult) {
9146     case OR_Ambiguous:
9147 
9148       FailedCandidateSet.NoteCandidates(
9149           PartialDiagnosticAt(
9150               Kind.getLocation(),
9151               Failure == FK_UserConversionOverloadFailed
9152                   ? (S.PDiag(diag::err_typecheck_ambiguous_condition)
9153                      << OnlyArg->getType() << DestType
9154                      << Args[0]->getSourceRange())
9155                   : (S.PDiag(diag::err_ref_init_ambiguous)
9156                      << DestType << OnlyArg->getType()
9157                      << Args[0]->getSourceRange())),
9158           S, OCD_AmbiguousCandidates, Args);
9159       break;
9160 
9161     case OR_No_Viable_Function: {
9162       auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args);
9163       if (!S.RequireCompleteType(Kind.getLocation(),
9164                                  DestType.getNonReferenceType(),
9165                           diag::err_typecheck_nonviable_condition_incomplete,
9166                                OnlyArg->getType(), Args[0]->getSourceRange()))
9167         S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
9168           << (Entity.getKind() == InitializedEntity::EK_Result)
9169           << OnlyArg->getType() << Args[0]->getSourceRange()
9170           << DestType.getNonReferenceType();
9171 
9172       FailedCandidateSet.NoteCandidates(S, Args, Cands);
9173       break;
9174     }
9175     case OR_Deleted: {
9176       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
9177         << OnlyArg->getType() << DestType.getNonReferenceType()
9178         << Args[0]->getSourceRange();
9179       OverloadCandidateSet::iterator Best;
9180       OverloadingResult Ovl
9181         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9182       if (Ovl == OR_Deleted) {
9183         S.NoteDeletedFunction(Best->Function);
9184       } else {
9185         llvm_unreachable("Inconsistent overload resolution?");
9186       }
9187       break;
9188     }
9189 
9190     case OR_Success:
9191       llvm_unreachable("Conversion did not fail!");
9192     }
9193     break;
9194 
9195   case FK_NonConstLValueReferenceBindingToTemporary:
9196     if (isa<InitListExpr>(Args[0])) {
9197       S.Diag(Kind.getLocation(),
9198              diag::err_lvalue_reference_bind_to_initlist)
9199       << DestType.getNonReferenceType().isVolatileQualified()
9200       << DestType.getNonReferenceType()
9201       << Args[0]->getSourceRange();
9202       break;
9203     }
9204     LLVM_FALLTHROUGH;
9205 
9206   case FK_NonConstLValueReferenceBindingToUnrelated:
9207     S.Diag(Kind.getLocation(),
9208            Failure == FK_NonConstLValueReferenceBindingToTemporary
9209              ? diag::err_lvalue_reference_bind_to_temporary
9210              : diag::err_lvalue_reference_bind_to_unrelated)
9211       << DestType.getNonReferenceType().isVolatileQualified()
9212       << DestType.getNonReferenceType()
9213       << OnlyArg->getType()
9214       << Args[0]->getSourceRange();
9215     break;
9216 
9217   case FK_NonConstLValueReferenceBindingToBitfield: {
9218     // We don't necessarily have an unambiguous source bit-field.
9219     FieldDecl *BitField = Args[0]->getSourceBitField();
9220     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
9221       << DestType.isVolatileQualified()
9222       << (BitField ? BitField->getDeclName() : DeclarationName())
9223       << (BitField != nullptr)
9224       << Args[0]->getSourceRange();
9225     if (BitField)
9226       S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
9227     break;
9228   }
9229 
9230   case FK_NonConstLValueReferenceBindingToVectorElement:
9231     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
9232       << DestType.isVolatileQualified()
9233       << Args[0]->getSourceRange();
9234     break;
9235 
9236   case FK_NonConstLValueReferenceBindingToMatrixElement:
9237     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_matrix_element)
9238         << DestType.isVolatileQualified() << Args[0]->getSourceRange();
9239     break;
9240 
9241   case FK_RValueReferenceBindingToLValue:
9242     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
9243       << DestType.getNonReferenceType() << OnlyArg->getType()
9244       << Args[0]->getSourceRange();
9245     break;
9246 
9247   case FK_ReferenceAddrspaceMismatchTemporary:
9248     S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace)
9249         << DestType << Args[0]->getSourceRange();
9250     break;
9251 
9252   case FK_ReferenceInitDropsQualifiers: {
9253     QualType SourceType = OnlyArg->getType();
9254     QualType NonRefType = DestType.getNonReferenceType();
9255     Qualifiers DroppedQualifiers =
9256         SourceType.getQualifiers() - NonRefType.getQualifiers();
9257 
9258     if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf(
9259             SourceType.getQualifiers()))
9260       S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
9261           << NonRefType << SourceType << 1 /*addr space*/
9262           << Args[0]->getSourceRange();
9263     else if (DroppedQualifiers.hasQualifiers())
9264       S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
9265           << NonRefType << SourceType << 0 /*cv quals*/
9266           << Qualifiers::fromCVRMask(DroppedQualifiers.getCVRQualifiers())
9267           << DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange();
9268     else
9269       // FIXME: Consider decomposing the type and explaining which qualifiers
9270       // were dropped where, or on which level a 'const' is missing, etc.
9271       S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
9272           << NonRefType << SourceType << 2 /*incompatible quals*/
9273           << Args[0]->getSourceRange();
9274     break;
9275   }
9276 
9277   case FK_ReferenceInitFailed:
9278     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
9279       << DestType.getNonReferenceType()
9280       << DestType.getNonReferenceType()->isIncompleteType()
9281       << OnlyArg->isLValue()
9282       << OnlyArg->getType()
9283       << Args[0]->getSourceRange();
9284     emitBadConversionNotes(S, Entity, Args[0]);
9285     break;
9286 
9287   case FK_ConversionFailed: {
9288     QualType FromType = OnlyArg->getType();
9289     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
9290       << (int)Entity.getKind()
9291       << DestType
9292       << OnlyArg->isLValue()
9293       << FromType
9294       << Args[0]->getSourceRange();
9295     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
9296     S.Diag(Kind.getLocation(), PDiag);
9297     emitBadConversionNotes(S, Entity, Args[0]);
9298     break;
9299   }
9300 
9301   case FK_ConversionFromPropertyFailed:
9302     // No-op. This error has already been reported.
9303     break;
9304 
9305   case FK_TooManyInitsForScalar: {
9306     SourceRange R;
9307 
9308     auto *InitList = dyn_cast<InitListExpr>(Args[0]);
9309     if (InitList && InitList->getNumInits() >= 1) {
9310       R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc());
9311     } else {
9312       assert(Args.size() > 1 && "Expected multiple initializers!");
9313       R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc());
9314     }
9315 
9316     R.setBegin(S.getLocForEndOfToken(R.getBegin()));
9317     if (Kind.isCStyleOrFunctionalCast())
9318       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
9319         << R;
9320     else
9321       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
9322         << /*scalar=*/2 << R;
9323     break;
9324   }
9325 
9326   case FK_ParenthesizedListInitForScalar:
9327     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
9328       << 0 << Entity.getType() << Args[0]->getSourceRange();
9329     break;
9330 
9331   case FK_ReferenceBindingToInitList:
9332     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
9333       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
9334     break;
9335 
9336   case FK_InitListBadDestinationType:
9337     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
9338       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
9339     break;
9340 
9341   case FK_ListConstructorOverloadFailed:
9342   case FK_ConstructorOverloadFailed: {
9343     SourceRange ArgsRange;
9344     if (Args.size())
9345       ArgsRange =
9346           SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
9347 
9348     if (Failure == FK_ListConstructorOverloadFailed) {
9349       assert(Args.size() == 1 &&
9350              "List construction from other than 1 argument.");
9351       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
9352       Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
9353     }
9354 
9355     // FIXME: Using "DestType" for the entity we're printing is probably
9356     // bad.
9357     switch (FailedOverloadResult) {
9358       case OR_Ambiguous:
9359         FailedCandidateSet.NoteCandidates(
9360             PartialDiagnosticAt(Kind.getLocation(),
9361                                 S.PDiag(diag::err_ovl_ambiguous_init)
9362                                     << DestType << ArgsRange),
9363             S, OCD_AmbiguousCandidates, Args);
9364         break;
9365 
9366       case OR_No_Viable_Function:
9367         if (Kind.getKind() == InitializationKind::IK_Default &&
9368             (Entity.getKind() == InitializedEntity::EK_Base ||
9369              Entity.getKind() == InitializedEntity::EK_Member) &&
9370             isa<CXXConstructorDecl>(S.CurContext)) {
9371           // This is implicit default initialization of a member or
9372           // base within a constructor. If no viable function was
9373           // found, notify the user that they need to explicitly
9374           // initialize this base/member.
9375           CXXConstructorDecl *Constructor
9376             = cast<CXXConstructorDecl>(S.CurContext);
9377           const CXXRecordDecl *InheritedFrom = nullptr;
9378           if (auto Inherited = Constructor->getInheritedConstructor())
9379             InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass();
9380           if (Entity.getKind() == InitializedEntity::EK_Base) {
9381             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
9382               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
9383               << S.Context.getTypeDeclType(Constructor->getParent())
9384               << /*base=*/0
9385               << Entity.getType()
9386               << InheritedFrom;
9387 
9388             RecordDecl *BaseDecl
9389               = Entity.getBaseSpecifier()->getType()->castAs<RecordType>()
9390                                                                   ->getDecl();
9391             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
9392               << S.Context.getTagDeclType(BaseDecl);
9393           } else {
9394             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
9395               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
9396               << S.Context.getTypeDeclType(Constructor->getParent())
9397               << /*member=*/1
9398               << Entity.getName()
9399               << InheritedFrom;
9400             S.Diag(Entity.getDecl()->getLocation(),
9401                    diag::note_member_declared_at);
9402 
9403             if (const RecordType *Record
9404                                  = Entity.getType()->getAs<RecordType>())
9405               S.Diag(Record->getDecl()->getLocation(),
9406                      diag::note_previous_decl)
9407                 << S.Context.getTagDeclType(Record->getDecl());
9408           }
9409           break;
9410         }
9411 
9412         FailedCandidateSet.NoteCandidates(
9413             PartialDiagnosticAt(
9414                 Kind.getLocation(),
9415                 S.PDiag(diag::err_ovl_no_viable_function_in_init)
9416                     << DestType << ArgsRange),
9417             S, OCD_AllCandidates, Args);
9418         break;
9419 
9420       case OR_Deleted: {
9421         OverloadCandidateSet::iterator Best;
9422         OverloadingResult Ovl
9423           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9424         if (Ovl != OR_Deleted) {
9425           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
9426               << DestType << ArgsRange;
9427           llvm_unreachable("Inconsistent overload resolution?");
9428           break;
9429         }
9430 
9431         // If this is a defaulted or implicitly-declared function, then
9432         // it was implicitly deleted. Make it clear that the deletion was
9433         // implicit.
9434         if (S.isImplicitlyDeleted(Best->Function))
9435           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
9436             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
9437             << DestType << ArgsRange;
9438         else
9439           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
9440               << DestType << ArgsRange;
9441 
9442         S.NoteDeletedFunction(Best->Function);
9443         break;
9444       }
9445 
9446       case OR_Success:
9447         llvm_unreachable("Conversion did not fail!");
9448     }
9449   }
9450   break;
9451 
9452   case FK_DefaultInitOfConst:
9453     if (Entity.getKind() == InitializedEntity::EK_Member &&
9454         isa<CXXConstructorDecl>(S.CurContext)) {
9455       // This is implicit default-initialization of a const member in
9456       // a constructor. Complain that it needs to be explicitly
9457       // initialized.
9458       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
9459       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
9460         << (Constructor->getInheritedConstructor() ? 2 :
9461             Constructor->isImplicit() ? 1 : 0)
9462         << S.Context.getTypeDeclType(Constructor->getParent())
9463         << /*const=*/1
9464         << Entity.getName();
9465       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
9466         << Entity.getName();
9467     } else {
9468       S.Diag(Kind.getLocation(), diag::err_default_init_const)
9469           << DestType << (bool)DestType->getAs<RecordType>();
9470     }
9471     break;
9472 
9473   case FK_Incomplete:
9474     S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
9475                           diag::err_init_incomplete_type);
9476     break;
9477 
9478   case FK_ListInitializationFailed: {
9479     // Run the init list checker again to emit diagnostics.
9480     InitListExpr *InitList = cast<InitListExpr>(Args[0]);
9481     diagnoseListInit(S, Entity, InitList);
9482     break;
9483   }
9484 
9485   case FK_PlaceholderType: {
9486     // FIXME: Already diagnosed!
9487     break;
9488   }
9489 
9490   case FK_ExplicitConstructor: {
9491     S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
9492       << Args[0]->getSourceRange();
9493     OverloadCandidateSet::iterator Best;
9494     OverloadingResult Ovl
9495       = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9496     (void)Ovl;
9497     assert(Ovl == OR_Success && "Inconsistent overload resolution");
9498     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
9499     S.Diag(CtorDecl->getLocation(),
9500            diag::note_explicit_ctor_deduction_guide_here) << false;
9501     break;
9502   }
9503   }
9504 
9505   PrintInitLocationNote(S, Entity);
9506   return true;
9507 }
9508 
9509 void InitializationSequence::dump(raw_ostream &OS) const {
9510   switch (SequenceKind) {
9511   case FailedSequence: {
9512     OS << "Failed sequence: ";
9513     switch (Failure) {
9514     case FK_TooManyInitsForReference:
9515       OS << "too many initializers for reference";
9516       break;
9517 
9518     case FK_ParenthesizedListInitForReference:
9519       OS << "parenthesized list init for reference";
9520       break;
9521 
9522     case FK_ArrayNeedsInitList:
9523       OS << "array requires initializer list";
9524       break;
9525 
9526     case FK_AddressOfUnaddressableFunction:
9527       OS << "address of unaddressable function was taken";
9528       break;
9529 
9530     case FK_ArrayNeedsInitListOrStringLiteral:
9531       OS << "array requires initializer list or string literal";
9532       break;
9533 
9534     case FK_ArrayNeedsInitListOrWideStringLiteral:
9535       OS << "array requires initializer list or wide string literal";
9536       break;
9537 
9538     case FK_NarrowStringIntoWideCharArray:
9539       OS << "narrow string into wide char array";
9540       break;
9541 
9542     case FK_WideStringIntoCharArray:
9543       OS << "wide string into char array";
9544       break;
9545 
9546     case FK_IncompatWideStringIntoWideChar:
9547       OS << "incompatible wide string into wide char array";
9548       break;
9549 
9550     case FK_PlainStringIntoUTF8Char:
9551       OS << "plain string literal into char8_t array";
9552       break;
9553 
9554     case FK_UTF8StringIntoPlainChar:
9555       OS << "u8 string literal into char array";
9556       break;
9557 
9558     case FK_ArrayTypeMismatch:
9559       OS << "array type mismatch";
9560       break;
9561 
9562     case FK_NonConstantArrayInit:
9563       OS << "non-constant array initializer";
9564       break;
9565 
9566     case FK_AddressOfOverloadFailed:
9567       OS << "address of overloaded function failed";
9568       break;
9569 
9570     case FK_ReferenceInitOverloadFailed:
9571       OS << "overload resolution for reference initialization failed";
9572       break;
9573 
9574     case FK_NonConstLValueReferenceBindingToTemporary:
9575       OS << "non-const lvalue reference bound to temporary";
9576       break;
9577 
9578     case FK_NonConstLValueReferenceBindingToBitfield:
9579       OS << "non-const lvalue reference bound to bit-field";
9580       break;
9581 
9582     case FK_NonConstLValueReferenceBindingToVectorElement:
9583       OS << "non-const lvalue reference bound to vector element";
9584       break;
9585 
9586     case FK_NonConstLValueReferenceBindingToMatrixElement:
9587       OS << "non-const lvalue reference bound to matrix element";
9588       break;
9589 
9590     case FK_NonConstLValueReferenceBindingToUnrelated:
9591       OS << "non-const lvalue reference bound to unrelated type";
9592       break;
9593 
9594     case FK_RValueReferenceBindingToLValue:
9595       OS << "rvalue reference bound to an lvalue";
9596       break;
9597 
9598     case FK_ReferenceInitDropsQualifiers:
9599       OS << "reference initialization drops qualifiers";
9600       break;
9601 
9602     case FK_ReferenceAddrspaceMismatchTemporary:
9603       OS << "reference with mismatching address space bound to temporary";
9604       break;
9605 
9606     case FK_ReferenceInitFailed:
9607       OS << "reference initialization failed";
9608       break;
9609 
9610     case FK_ConversionFailed:
9611       OS << "conversion failed";
9612       break;
9613 
9614     case FK_ConversionFromPropertyFailed:
9615       OS << "conversion from property failed";
9616       break;
9617 
9618     case FK_TooManyInitsForScalar:
9619       OS << "too many initializers for scalar";
9620       break;
9621 
9622     case FK_ParenthesizedListInitForScalar:
9623       OS << "parenthesized list init for reference";
9624       break;
9625 
9626     case FK_ReferenceBindingToInitList:
9627       OS << "referencing binding to initializer list";
9628       break;
9629 
9630     case FK_InitListBadDestinationType:
9631       OS << "initializer list for non-aggregate, non-scalar type";
9632       break;
9633 
9634     case FK_UserConversionOverloadFailed:
9635       OS << "overloading failed for user-defined conversion";
9636       break;
9637 
9638     case FK_ConstructorOverloadFailed:
9639       OS << "constructor overloading failed";
9640       break;
9641 
9642     case FK_DefaultInitOfConst:
9643       OS << "default initialization of a const variable";
9644       break;
9645 
9646     case FK_Incomplete:
9647       OS << "initialization of incomplete type";
9648       break;
9649 
9650     case FK_ListInitializationFailed:
9651       OS << "list initialization checker failure";
9652       break;
9653 
9654     case FK_VariableLengthArrayHasInitializer:
9655       OS << "variable length array has an initializer";
9656       break;
9657 
9658     case FK_PlaceholderType:
9659       OS << "initializer expression isn't contextually valid";
9660       break;
9661 
9662     case FK_ListConstructorOverloadFailed:
9663       OS << "list constructor overloading failed";
9664       break;
9665 
9666     case FK_ExplicitConstructor:
9667       OS << "list copy initialization chose explicit constructor";
9668       break;
9669     }
9670     OS << '\n';
9671     return;
9672   }
9673 
9674   case DependentSequence:
9675     OS << "Dependent sequence\n";
9676     return;
9677 
9678   case NormalSequence:
9679     OS << "Normal sequence: ";
9680     break;
9681   }
9682 
9683   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
9684     if (S != step_begin()) {
9685       OS << " -> ";
9686     }
9687 
9688     switch (S->Kind) {
9689     case SK_ResolveAddressOfOverloadedFunction:
9690       OS << "resolve address of overloaded function";
9691       break;
9692 
9693     case SK_CastDerivedToBasePRValue:
9694       OS << "derived-to-base (prvalue)";
9695       break;
9696 
9697     case SK_CastDerivedToBaseXValue:
9698       OS << "derived-to-base (xvalue)";
9699       break;
9700 
9701     case SK_CastDerivedToBaseLValue:
9702       OS << "derived-to-base (lvalue)";
9703       break;
9704 
9705     case SK_BindReference:
9706       OS << "bind reference to lvalue";
9707       break;
9708 
9709     case SK_BindReferenceToTemporary:
9710       OS << "bind reference to a temporary";
9711       break;
9712 
9713     case SK_FinalCopy:
9714       OS << "final copy in class direct-initialization";
9715       break;
9716 
9717     case SK_ExtraneousCopyToTemporary:
9718       OS << "extraneous C++03 copy to temporary";
9719       break;
9720 
9721     case SK_UserConversion:
9722       OS << "user-defined conversion via " << *S->Function.Function;
9723       break;
9724 
9725     case SK_QualificationConversionPRValue:
9726       OS << "qualification conversion (prvalue)";
9727       break;
9728 
9729     case SK_QualificationConversionXValue:
9730       OS << "qualification conversion (xvalue)";
9731       break;
9732 
9733     case SK_QualificationConversionLValue:
9734       OS << "qualification conversion (lvalue)";
9735       break;
9736 
9737     case SK_FunctionReferenceConversion:
9738       OS << "function reference conversion";
9739       break;
9740 
9741     case SK_AtomicConversion:
9742       OS << "non-atomic-to-atomic conversion";
9743       break;
9744 
9745     case SK_ConversionSequence:
9746       OS << "implicit conversion sequence (";
9747       S->ICS->dump(); // FIXME: use OS
9748       OS << ")";
9749       break;
9750 
9751     case SK_ConversionSequenceNoNarrowing:
9752       OS << "implicit conversion sequence with narrowing prohibited (";
9753       S->ICS->dump(); // FIXME: use OS
9754       OS << ")";
9755       break;
9756 
9757     case SK_ListInitialization:
9758       OS << "list aggregate initialization";
9759       break;
9760 
9761     case SK_UnwrapInitList:
9762       OS << "unwrap reference initializer list";
9763       break;
9764 
9765     case SK_RewrapInitList:
9766       OS << "rewrap reference initializer list";
9767       break;
9768 
9769     case SK_ConstructorInitialization:
9770       OS << "constructor initialization";
9771       break;
9772 
9773     case SK_ConstructorInitializationFromList:
9774       OS << "list initialization via constructor";
9775       break;
9776 
9777     case SK_ZeroInitialization:
9778       OS << "zero initialization";
9779       break;
9780 
9781     case SK_CAssignment:
9782       OS << "C assignment";
9783       break;
9784 
9785     case SK_StringInit:
9786       OS << "string initialization";
9787       break;
9788 
9789     case SK_ObjCObjectConversion:
9790       OS << "Objective-C object conversion";
9791       break;
9792 
9793     case SK_ArrayLoopIndex:
9794       OS << "indexing for array initialization loop";
9795       break;
9796 
9797     case SK_ArrayLoopInit:
9798       OS << "array initialization loop";
9799       break;
9800 
9801     case SK_ArrayInit:
9802       OS << "array initialization";
9803       break;
9804 
9805     case SK_GNUArrayInit:
9806       OS << "array initialization (GNU extension)";
9807       break;
9808 
9809     case SK_ParenthesizedArrayInit:
9810       OS << "parenthesized array initialization";
9811       break;
9812 
9813     case SK_PassByIndirectCopyRestore:
9814       OS << "pass by indirect copy and restore";
9815       break;
9816 
9817     case SK_PassByIndirectRestore:
9818       OS << "pass by indirect restore";
9819       break;
9820 
9821     case SK_ProduceObjCObject:
9822       OS << "Objective-C object retension";
9823       break;
9824 
9825     case SK_StdInitializerList:
9826       OS << "std::initializer_list from initializer list";
9827       break;
9828 
9829     case SK_StdInitializerListConstructorCall:
9830       OS << "list initialization from std::initializer_list";
9831       break;
9832 
9833     case SK_OCLSamplerInit:
9834       OS << "OpenCL sampler_t from integer constant";
9835       break;
9836 
9837     case SK_OCLZeroOpaqueType:
9838       OS << "OpenCL opaque type from zero";
9839       break;
9840     }
9841 
9842     OS << " [" << S->Type << ']';
9843   }
9844 
9845   OS << '\n';
9846 }
9847 
9848 void InitializationSequence::dump() const {
9849   dump(llvm::errs());
9850 }
9851 
9852 static bool NarrowingErrs(const LangOptions &L) {
9853   return L.CPlusPlus11 &&
9854          (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015));
9855 }
9856 
9857 static void DiagnoseNarrowingInInitList(Sema &S,
9858                                         const ImplicitConversionSequence &ICS,
9859                                         QualType PreNarrowingType,
9860                                         QualType EntityType,
9861                                         const Expr *PostInit) {
9862   const StandardConversionSequence *SCS = nullptr;
9863   switch (ICS.getKind()) {
9864   case ImplicitConversionSequence::StandardConversion:
9865     SCS = &ICS.Standard;
9866     break;
9867   case ImplicitConversionSequence::UserDefinedConversion:
9868     SCS = &ICS.UserDefined.After;
9869     break;
9870   case ImplicitConversionSequence::AmbiguousConversion:
9871   case ImplicitConversionSequence::EllipsisConversion:
9872   case ImplicitConversionSequence::BadConversion:
9873     return;
9874   }
9875 
9876   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
9877   APValue ConstantValue;
9878   QualType ConstantType;
9879   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
9880                                 ConstantType)) {
9881   case NK_Not_Narrowing:
9882   case NK_Dependent_Narrowing:
9883     // No narrowing occurred.
9884     return;
9885 
9886   case NK_Type_Narrowing:
9887     // This was a floating-to-integer conversion, which is always considered a
9888     // narrowing conversion even if the value is a constant and can be
9889     // represented exactly as an integer.
9890     S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts())
9891                                         ? diag::ext_init_list_type_narrowing
9892                                         : diag::warn_init_list_type_narrowing)
9893         << PostInit->getSourceRange()
9894         << PreNarrowingType.getLocalUnqualifiedType()
9895         << EntityType.getLocalUnqualifiedType();
9896     break;
9897 
9898   case NK_Constant_Narrowing:
9899     // A constant value was narrowed.
9900     S.Diag(PostInit->getBeginLoc(),
9901            NarrowingErrs(S.getLangOpts())
9902                ? diag::ext_init_list_constant_narrowing
9903                : diag::warn_init_list_constant_narrowing)
9904         << PostInit->getSourceRange()
9905         << ConstantValue.getAsString(S.getASTContext(), ConstantType)
9906         << EntityType.getLocalUnqualifiedType();
9907     break;
9908 
9909   case NK_Variable_Narrowing:
9910     // A variable's value may have been narrowed.
9911     S.Diag(PostInit->getBeginLoc(),
9912            NarrowingErrs(S.getLangOpts())
9913                ? diag::ext_init_list_variable_narrowing
9914                : diag::warn_init_list_variable_narrowing)
9915         << PostInit->getSourceRange()
9916         << PreNarrowingType.getLocalUnqualifiedType()
9917         << EntityType.getLocalUnqualifiedType();
9918     break;
9919   }
9920 
9921   SmallString<128> StaticCast;
9922   llvm::raw_svector_ostream OS(StaticCast);
9923   OS << "static_cast<";
9924   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
9925     // It's important to use the typedef's name if there is one so that the
9926     // fixit doesn't break code using types like int64_t.
9927     //
9928     // FIXME: This will break if the typedef requires qualification.  But
9929     // getQualifiedNameAsString() includes non-machine-parsable components.
9930     OS << *TT->getDecl();
9931   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
9932     OS << BT->getName(S.getLangOpts());
9933   else {
9934     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
9935     // with a broken cast.
9936     return;
9937   }
9938   OS << ">(";
9939   S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence)
9940       << PostInit->getSourceRange()
9941       << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str())
9942       << FixItHint::CreateInsertion(
9943              S.getLocForEndOfToken(PostInit->getEndLoc()), ")");
9944 }
9945 
9946 //===----------------------------------------------------------------------===//
9947 // Initialization helper functions
9948 //===----------------------------------------------------------------------===//
9949 bool
9950 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
9951                                    ExprResult Init) {
9952   if (Init.isInvalid())
9953     return false;
9954 
9955   Expr *InitE = Init.get();
9956   assert(InitE && "No initialization expression");
9957 
9958   InitializationKind Kind =
9959       InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation());
9960   InitializationSequence Seq(*this, Entity, Kind, InitE);
9961   return !Seq.Failed();
9962 }
9963 
9964 ExprResult
9965 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
9966                                 SourceLocation EqualLoc,
9967                                 ExprResult Init,
9968                                 bool TopLevelOfInitList,
9969                                 bool AllowExplicit) {
9970   if (Init.isInvalid())
9971     return ExprError();
9972 
9973   Expr *InitE = Init.get();
9974   assert(InitE && "No initialization expression?");
9975 
9976   if (EqualLoc.isInvalid())
9977     EqualLoc = InitE->getBeginLoc();
9978 
9979   InitializationKind Kind = InitializationKind::CreateCopy(
9980       InitE->getBeginLoc(), EqualLoc, AllowExplicit);
9981   InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
9982 
9983   // Prevent infinite recursion when performing parameter copy-initialization.
9984   const bool ShouldTrackCopy =
9985       Entity.isParameterKind() && Seq.isConstructorInitialization();
9986   if (ShouldTrackCopy) {
9987     if (llvm::is_contained(CurrentParameterCopyTypes, Entity.getType())) {
9988       Seq.SetOverloadFailure(
9989           InitializationSequence::FK_ConstructorOverloadFailed,
9990           OR_No_Viable_Function);
9991 
9992       // Try to give a meaningful diagnostic note for the problematic
9993       // constructor.
9994       const auto LastStep = Seq.step_end() - 1;
9995       assert(LastStep->Kind ==
9996              InitializationSequence::SK_ConstructorInitialization);
9997       const FunctionDecl *Function = LastStep->Function.Function;
9998       auto Candidate =
9999           llvm::find_if(Seq.getFailedCandidateSet(),
10000                         [Function](const OverloadCandidate &Candidate) -> bool {
10001                           return Candidate.Viable &&
10002                                  Candidate.Function == Function &&
10003                                  Candidate.Conversions.size() > 0;
10004                         });
10005       if (Candidate != Seq.getFailedCandidateSet().end() &&
10006           Function->getNumParams() > 0) {
10007         Candidate->Viable = false;
10008         Candidate->FailureKind = ovl_fail_bad_conversion;
10009         Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion,
10010                                          InitE,
10011                                          Function->getParamDecl(0)->getType());
10012       }
10013     }
10014     CurrentParameterCopyTypes.push_back(Entity.getType());
10015   }
10016 
10017   ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
10018 
10019   if (ShouldTrackCopy)
10020     CurrentParameterCopyTypes.pop_back();
10021 
10022   return Result;
10023 }
10024 
10025 /// Determine whether RD is, or is derived from, a specialization of CTD.
10026 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD,
10027                                               ClassTemplateDecl *CTD) {
10028   auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) {
10029     auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate);
10030     return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD);
10031   };
10032   return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization));
10033 }
10034 
10035 QualType Sema::DeduceTemplateSpecializationFromInitializer(
10036     TypeSourceInfo *TSInfo, const InitializedEntity &Entity,
10037     const InitializationKind &Kind, MultiExprArg Inits) {
10038   auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>(
10039       TSInfo->getType()->getContainedDeducedType());
10040   assert(DeducedTST && "not a deduced template specialization type");
10041 
10042   auto TemplateName = DeducedTST->getTemplateName();
10043   if (TemplateName.isDependent())
10044     return SubstAutoTypeDependent(TSInfo->getType());
10045 
10046   // We can only perform deduction for class templates.
10047   auto *Template =
10048       dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl());
10049   if (!Template) {
10050     Diag(Kind.getLocation(),
10051          diag::err_deduced_non_class_template_specialization_type)
10052       << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName;
10053     if (auto *TD = TemplateName.getAsTemplateDecl())
10054       Diag(TD->getLocation(), diag::note_template_decl_here);
10055     return QualType();
10056   }
10057 
10058   // Can't deduce from dependent arguments.
10059   if (Expr::hasAnyTypeDependentArguments(Inits)) {
10060     Diag(TSInfo->getTypeLoc().getBeginLoc(),
10061          diag::warn_cxx14_compat_class_template_argument_deduction)
10062         << TSInfo->getTypeLoc().getSourceRange() << 0;
10063     return SubstAutoTypeDependent(TSInfo->getType());
10064   }
10065 
10066   // FIXME: Perform "exact type" matching first, per CWG discussion?
10067   //        Or implement this via an implied 'T(T) -> T' deduction guide?
10068 
10069   // FIXME: Do we need/want a std::initializer_list<T> special case?
10070 
10071   // Look up deduction guides, including those synthesized from constructors.
10072   //
10073   // C++1z [over.match.class.deduct]p1:
10074   //   A set of functions and function templates is formed comprising:
10075   //   - For each constructor of the class template designated by the
10076   //     template-name, a function template [...]
10077   //  - For each deduction-guide, a function or function template [...]
10078   DeclarationNameInfo NameInfo(
10079       Context.DeclarationNames.getCXXDeductionGuideName(Template),
10080       TSInfo->getTypeLoc().getEndLoc());
10081   LookupResult Guides(*this, NameInfo, LookupOrdinaryName);
10082   LookupQualifiedName(Guides, Template->getDeclContext());
10083 
10084   // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't
10085   // clear on this, but they're not found by name so access does not apply.
10086   Guides.suppressDiagnostics();
10087 
10088   // Figure out if this is list-initialization.
10089   InitListExpr *ListInit =
10090       (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct)
10091           ? dyn_cast<InitListExpr>(Inits[0])
10092           : nullptr;
10093 
10094   // C++1z [over.match.class.deduct]p1:
10095   //   Initialization and overload resolution are performed as described in
10096   //   [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list]
10097   //   (as appropriate for the type of initialization performed) for an object
10098   //   of a hypothetical class type, where the selected functions and function
10099   //   templates are considered to be the constructors of that class type
10100   //
10101   // Since we know we're initializing a class type of a type unrelated to that
10102   // of the initializer, this reduces to something fairly reasonable.
10103   OverloadCandidateSet Candidates(Kind.getLocation(),
10104                                   OverloadCandidateSet::CSK_Normal);
10105   OverloadCandidateSet::iterator Best;
10106 
10107   bool HasAnyDeductionGuide = false;
10108   bool AllowExplicit = !Kind.isCopyInit() || ListInit;
10109 
10110   auto tryToResolveOverload =
10111       [&](bool OnlyListConstructors) -> OverloadingResult {
10112     Candidates.clear(OverloadCandidateSet::CSK_Normal);
10113     HasAnyDeductionGuide = false;
10114 
10115     for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) {
10116       NamedDecl *D = (*I)->getUnderlyingDecl();
10117       if (D->isInvalidDecl())
10118         continue;
10119 
10120       auto *TD = dyn_cast<FunctionTemplateDecl>(D);
10121       auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>(
10122           TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D));
10123       if (!GD)
10124         continue;
10125 
10126       if (!GD->isImplicit())
10127         HasAnyDeductionGuide = true;
10128 
10129       // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class)
10130       //   For copy-initialization, the candidate functions are all the
10131       //   converting constructors (12.3.1) of that class.
10132       // C++ [over.match.copy]p1: (non-list copy-initialization from class)
10133       //   The converting constructors of T are candidate functions.
10134       if (!AllowExplicit) {
10135         // Overload resolution checks whether the deduction guide is declared
10136         // explicit for us.
10137 
10138         // When looking for a converting constructor, deduction guides that
10139         // could never be called with one argument are not interesting to
10140         // check or note.
10141         if (GD->getMinRequiredArguments() > 1 ||
10142             (GD->getNumParams() == 0 && !GD->isVariadic()))
10143           continue;
10144       }
10145 
10146       // C++ [over.match.list]p1.1: (first phase list initialization)
10147       //   Initially, the candidate functions are the initializer-list
10148       //   constructors of the class T
10149       if (OnlyListConstructors && !isInitListConstructor(GD))
10150         continue;
10151 
10152       // C++ [over.match.list]p1.2: (second phase list initialization)
10153       //   the candidate functions are all the constructors of the class T
10154       // C++ [over.match.ctor]p1: (all other cases)
10155       //   the candidate functions are all the constructors of the class of
10156       //   the object being initialized
10157 
10158       // C++ [over.best.ics]p4:
10159       //   When [...] the constructor [...] is a candidate by
10160       //    - [over.match.copy] (in all cases)
10161       // FIXME: The "second phase of [over.match.list] case can also
10162       // theoretically happen here, but it's not clear whether we can
10163       // ever have a parameter of the right type.
10164       bool SuppressUserConversions = Kind.isCopyInit();
10165 
10166       if (TD)
10167         AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr,
10168                                      Inits, Candidates, SuppressUserConversions,
10169                                      /*PartialOverloading*/ false,
10170                                      AllowExplicit);
10171       else
10172         AddOverloadCandidate(GD, I.getPair(), Inits, Candidates,
10173                              SuppressUserConversions,
10174                              /*PartialOverloading*/ false, AllowExplicit);
10175     }
10176     return Candidates.BestViableFunction(*this, Kind.getLocation(), Best);
10177   };
10178 
10179   OverloadingResult Result = OR_No_Viable_Function;
10180 
10181   // C++11 [over.match.list]p1, per DR1467: for list-initialization, first
10182   // try initializer-list constructors.
10183   if (ListInit) {
10184     bool TryListConstructors = true;
10185 
10186     // Try list constructors unless the list is empty and the class has one or
10187     // more default constructors, in which case those constructors win.
10188     if (!ListInit->getNumInits()) {
10189       for (NamedDecl *D : Guides) {
10190         auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl());
10191         if (FD && FD->getMinRequiredArguments() == 0) {
10192           TryListConstructors = false;
10193           break;
10194         }
10195       }
10196     } else if (ListInit->getNumInits() == 1) {
10197       // C++ [over.match.class.deduct]:
10198       //   As an exception, the first phase in [over.match.list] (considering
10199       //   initializer-list constructors) is omitted if the initializer list
10200       //   consists of a single expression of type cv U, where U is a
10201       //   specialization of C or a class derived from a specialization of C.
10202       Expr *E = ListInit->getInit(0);
10203       auto *RD = E->getType()->getAsCXXRecordDecl();
10204       if (!isa<InitListExpr>(E) && RD &&
10205           isCompleteType(Kind.getLocation(), E->getType()) &&
10206           isOrIsDerivedFromSpecializationOf(RD, Template))
10207         TryListConstructors = false;
10208     }
10209 
10210     if (TryListConstructors)
10211       Result = tryToResolveOverload(/*OnlyListConstructor*/true);
10212     // Then unwrap the initializer list and try again considering all
10213     // constructors.
10214     Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits());
10215   }
10216 
10217   // If list-initialization fails, or if we're doing any other kind of
10218   // initialization, we (eventually) consider constructors.
10219   if (Result == OR_No_Viable_Function)
10220     Result = tryToResolveOverload(/*OnlyListConstructor*/false);
10221 
10222   switch (Result) {
10223   case OR_Ambiguous:
10224     // FIXME: For list-initialization candidates, it'd usually be better to
10225     // list why they were not viable when given the initializer list itself as
10226     // an argument.
10227     Candidates.NoteCandidates(
10228         PartialDiagnosticAt(
10229             Kind.getLocation(),
10230             PDiag(diag::err_deduced_class_template_ctor_ambiguous)
10231                 << TemplateName),
10232         *this, OCD_AmbiguousCandidates, Inits);
10233     return QualType();
10234 
10235   case OR_No_Viable_Function: {
10236     CXXRecordDecl *Primary =
10237         cast<ClassTemplateDecl>(Template)->getTemplatedDecl();
10238     bool Complete =
10239         isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary));
10240     Candidates.NoteCandidates(
10241         PartialDiagnosticAt(
10242             Kind.getLocation(),
10243             PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable
10244                            : diag::err_deduced_class_template_incomplete)
10245                 << TemplateName << !Guides.empty()),
10246         *this, OCD_AllCandidates, Inits);
10247     return QualType();
10248   }
10249 
10250   case OR_Deleted: {
10251     Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted)
10252       << TemplateName;
10253     NoteDeletedFunction(Best->Function);
10254     return QualType();
10255   }
10256 
10257   case OR_Success:
10258     // C++ [over.match.list]p1:
10259     //   In copy-list-initialization, if an explicit constructor is chosen, the
10260     //   initialization is ill-formed.
10261     if (Kind.isCopyInit() && ListInit &&
10262         cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) {
10263       bool IsDeductionGuide = !Best->Function->isImplicit();
10264       Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit)
10265           << TemplateName << IsDeductionGuide;
10266       Diag(Best->Function->getLocation(),
10267            diag::note_explicit_ctor_deduction_guide_here)
10268           << IsDeductionGuide;
10269       return QualType();
10270     }
10271 
10272     // Make sure we didn't select an unusable deduction guide, and mark it
10273     // as referenced.
10274     DiagnoseUseOfDecl(Best->Function, Kind.getLocation());
10275     MarkFunctionReferenced(Kind.getLocation(), Best->Function);
10276     break;
10277   }
10278 
10279   // C++ [dcl.type.class.deduct]p1:
10280   //  The placeholder is replaced by the return type of the function selected
10281   //  by overload resolution for class template deduction.
10282   QualType DeducedType =
10283       SubstAutoType(TSInfo->getType(), Best->Function->getReturnType());
10284   Diag(TSInfo->getTypeLoc().getBeginLoc(),
10285        diag::warn_cxx14_compat_class_template_argument_deduction)
10286       << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType;
10287 
10288   // Warn if CTAD was used on a type that does not have any user-defined
10289   // deduction guides.
10290   if (!HasAnyDeductionGuide) {
10291     Diag(TSInfo->getTypeLoc().getBeginLoc(),
10292          diag::warn_ctad_maybe_unsupported)
10293         << TemplateName;
10294     Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported);
10295   }
10296 
10297   return DeducedType;
10298 }
10299