xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaInit.cpp (revision d30a1689f5b37e78ea189232a8b94a7011dc0dc8)
1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for initializers.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/DeclObjC.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/AST/ExprObjC.h"
17 #include "clang/AST/ExprOpenMP.h"
18 #include "clang/AST/TypeLoc.h"
19 #include "clang/Basic/CharInfo.h"
20 #include "clang/Basic/SourceManager.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/Sema/Designator.h"
23 #include "clang/Sema/Initialization.h"
24 #include "clang/Sema/Lookup.h"
25 #include "clang/Sema/SemaInternal.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/PointerIntPair.h"
28 #include "llvm/ADT/SmallString.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/raw_ostream.h"
31 
32 using namespace clang;
33 
34 //===----------------------------------------------------------------------===//
35 // Sema Initialization Checking
36 //===----------------------------------------------------------------------===//
37 
38 /// Check whether T is compatible with a wide character type (wchar_t,
39 /// char16_t or char32_t).
40 static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
41   if (Context.typesAreCompatible(Context.getWideCharType(), T))
42     return true;
43   if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
44     return Context.typesAreCompatible(Context.Char16Ty, T) ||
45            Context.typesAreCompatible(Context.Char32Ty, T);
46   }
47   return false;
48 }
49 
50 enum StringInitFailureKind {
51   SIF_None,
52   SIF_NarrowStringIntoWideChar,
53   SIF_WideStringIntoChar,
54   SIF_IncompatWideStringIntoWideChar,
55   SIF_UTF8StringIntoPlainChar,
56   SIF_PlainStringIntoUTF8Char,
57   SIF_Other
58 };
59 
60 /// Check whether the array of type AT can be initialized by the Init
61 /// expression by means of string initialization. Returns SIF_None if so,
62 /// otherwise returns a StringInitFailureKind that describes why the
63 /// initialization would not work.
64 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
65                                           ASTContext &Context) {
66   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
67     return SIF_Other;
68 
69   // See if this is a string literal or @encode.
70   Init = Init->IgnoreParens();
71 
72   // Handle @encode, which is a narrow string.
73   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
74     return SIF_None;
75 
76   // Otherwise we can only handle string literals.
77   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
78   if (!SL)
79     return SIF_Other;
80 
81   const QualType ElemTy =
82       Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
83 
84   switch (SL->getKind()) {
85   case StringLiteral::UTF8:
86     // char8_t array can be initialized with a UTF-8 string.
87     if (ElemTy->isChar8Type())
88       return SIF_None;
89     LLVM_FALLTHROUGH;
90   case StringLiteral::Ascii:
91     // char array can be initialized with a narrow string.
92     // Only allow char x[] = "foo";  not char x[] = L"foo";
93     if (ElemTy->isCharType())
94       return (SL->getKind() == StringLiteral::UTF8 &&
95               Context.getLangOpts().Char8)
96                  ? SIF_UTF8StringIntoPlainChar
97                  : SIF_None;
98     if (ElemTy->isChar8Type())
99       return SIF_PlainStringIntoUTF8Char;
100     if (IsWideCharCompatible(ElemTy, Context))
101       return SIF_NarrowStringIntoWideChar;
102     return SIF_Other;
103   // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
104   // "An array with element type compatible with a qualified or unqualified
105   // version of wchar_t, char16_t, or char32_t may be initialized by a wide
106   // string literal with the corresponding encoding prefix (L, u, or U,
107   // respectively), optionally enclosed in braces.
108   case StringLiteral::UTF16:
109     if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
110       return SIF_None;
111     if (ElemTy->isCharType() || ElemTy->isChar8Type())
112       return SIF_WideStringIntoChar;
113     if (IsWideCharCompatible(ElemTy, Context))
114       return SIF_IncompatWideStringIntoWideChar;
115     return SIF_Other;
116   case StringLiteral::UTF32:
117     if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
118       return SIF_None;
119     if (ElemTy->isCharType() || ElemTy->isChar8Type())
120       return SIF_WideStringIntoChar;
121     if (IsWideCharCompatible(ElemTy, Context))
122       return SIF_IncompatWideStringIntoWideChar;
123     return SIF_Other;
124   case StringLiteral::Wide:
125     if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
126       return SIF_None;
127     if (ElemTy->isCharType() || ElemTy->isChar8Type())
128       return SIF_WideStringIntoChar;
129     if (IsWideCharCompatible(ElemTy, Context))
130       return SIF_IncompatWideStringIntoWideChar;
131     return SIF_Other;
132   }
133 
134   llvm_unreachable("missed a StringLiteral kind?");
135 }
136 
137 static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
138                                           ASTContext &Context) {
139   const ArrayType *arrayType = Context.getAsArrayType(declType);
140   if (!arrayType)
141     return SIF_Other;
142   return IsStringInit(init, arrayType, Context);
143 }
144 
145 bool Sema::IsStringInit(Expr *Init, const ArrayType *AT) {
146   return ::IsStringInit(Init, AT, Context) == SIF_None;
147 }
148 
149 /// Update the type of a string literal, including any surrounding parentheses,
150 /// to match the type of the object which it is initializing.
151 static void updateStringLiteralType(Expr *E, QualType Ty) {
152   while (true) {
153     E->setType(Ty);
154     E->setValueKind(VK_PRValue);
155     if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) {
156       break;
157     } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
158       E = PE->getSubExpr();
159     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
160       assert(UO->getOpcode() == UO_Extension);
161       E = UO->getSubExpr();
162     } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
163       E = GSE->getResultExpr();
164     } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
165       E = CE->getChosenSubExpr();
166     } else {
167       llvm_unreachable("unexpected expr in string literal init");
168     }
169   }
170 }
171 
172 /// Fix a compound literal initializing an array so it's correctly marked
173 /// as an rvalue.
174 static void updateGNUCompoundLiteralRValue(Expr *E) {
175   while (true) {
176     E->setValueKind(VK_PRValue);
177     if (isa<CompoundLiteralExpr>(E)) {
178       break;
179     } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
180       E = PE->getSubExpr();
181     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
182       assert(UO->getOpcode() == UO_Extension);
183       E = UO->getSubExpr();
184     } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
185       E = GSE->getResultExpr();
186     } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
187       E = CE->getChosenSubExpr();
188     } else {
189       llvm_unreachable("unexpected expr in array compound literal init");
190     }
191   }
192 }
193 
194 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
195                             Sema &S) {
196   // Get the length of the string as parsed.
197   auto *ConstantArrayTy =
198       cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
199   uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
200 
201   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
202     // C99 6.7.8p14. We have an array of character type with unknown size
203     // being initialized to a string literal.
204     llvm::APInt ConstVal(32, StrLength);
205     // Return a new array type (C99 6.7.8p22).
206     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
207                                            ConstVal, nullptr,
208                                            ArrayType::Normal, 0);
209     updateStringLiteralType(Str, DeclT);
210     return;
211   }
212 
213   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
214 
215   // We have an array of character type with known size.  However,
216   // the size may be smaller or larger than the string we are initializing.
217   // FIXME: Avoid truncation for 64-bit length strings.
218   if (S.getLangOpts().CPlusPlus) {
219     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
220       // For Pascal strings it's OK to strip off the terminating null character,
221       // so the example below is valid:
222       //
223       // unsigned char a[2] = "\pa";
224       if (SL->isPascal())
225         StrLength--;
226     }
227 
228     // [dcl.init.string]p2
229     if (StrLength > CAT->getSize().getZExtValue())
230       S.Diag(Str->getBeginLoc(),
231              diag::err_initializer_string_for_char_array_too_long)
232           << Str->getSourceRange();
233   } else {
234     // C99 6.7.8p14.
235     if (StrLength-1 > CAT->getSize().getZExtValue())
236       S.Diag(Str->getBeginLoc(),
237              diag::ext_initializer_string_for_char_array_too_long)
238           << Str->getSourceRange();
239   }
240 
241   // Set the type to the actual size that we are initializing.  If we have
242   // something like:
243   //   char x[1] = "foo";
244   // then this will set the string literal's type to char[1].
245   updateStringLiteralType(Str, DeclT);
246 }
247 
248 //===----------------------------------------------------------------------===//
249 // Semantic checking for initializer lists.
250 //===----------------------------------------------------------------------===//
251 
252 namespace {
253 
254 /// Semantic checking for initializer lists.
255 ///
256 /// The InitListChecker class contains a set of routines that each
257 /// handle the initialization of a certain kind of entity, e.g.,
258 /// arrays, vectors, struct/union types, scalars, etc. The
259 /// InitListChecker itself performs a recursive walk of the subobject
260 /// structure of the type to be initialized, while stepping through
261 /// the initializer list one element at a time. The IList and Index
262 /// parameters to each of the Check* routines contain the active
263 /// (syntactic) initializer list and the index into that initializer
264 /// list that represents the current initializer. Each routine is
265 /// responsible for moving that Index forward as it consumes elements.
266 ///
267 /// Each Check* routine also has a StructuredList/StructuredIndex
268 /// arguments, which contains the current "structured" (semantic)
269 /// initializer list and the index into that initializer list where we
270 /// are copying initializers as we map them over to the semantic
271 /// list. Once we have completed our recursive walk of the subobject
272 /// structure, we will have constructed a full semantic initializer
273 /// list.
274 ///
275 /// C99 designators cause changes in the initializer list traversal,
276 /// because they make the initialization "jump" into a specific
277 /// subobject and then continue the initialization from that
278 /// point. CheckDesignatedInitializer() recursively steps into the
279 /// designated subobject and manages backing out the recursion to
280 /// initialize the subobjects after the one designated.
281 ///
282 /// If an initializer list contains any designators, we build a placeholder
283 /// structured list even in 'verify only' mode, so that we can track which
284 /// elements need 'empty' initializtion.
285 class InitListChecker {
286   Sema &SemaRef;
287   bool hadError = false;
288   bool VerifyOnly; // No diagnostics.
289   bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
290   bool InOverloadResolution;
291   InitListExpr *FullyStructuredList = nullptr;
292   NoInitExpr *DummyExpr = nullptr;
293 
294   NoInitExpr *getDummyInit() {
295     if (!DummyExpr)
296       DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy);
297     return DummyExpr;
298   }
299 
300   void CheckImplicitInitList(const InitializedEntity &Entity,
301                              InitListExpr *ParentIList, QualType T,
302                              unsigned &Index, InitListExpr *StructuredList,
303                              unsigned &StructuredIndex);
304   void CheckExplicitInitList(const InitializedEntity &Entity,
305                              InitListExpr *IList, QualType &T,
306                              InitListExpr *StructuredList,
307                              bool TopLevelObject = false);
308   void CheckListElementTypes(const InitializedEntity &Entity,
309                              InitListExpr *IList, QualType &DeclType,
310                              bool SubobjectIsDesignatorContext,
311                              unsigned &Index,
312                              InitListExpr *StructuredList,
313                              unsigned &StructuredIndex,
314                              bool TopLevelObject = false);
315   void CheckSubElementType(const InitializedEntity &Entity,
316                            InitListExpr *IList, QualType ElemType,
317                            unsigned &Index,
318                            InitListExpr *StructuredList,
319                            unsigned &StructuredIndex,
320                            bool DirectlyDesignated = false);
321   void CheckComplexType(const InitializedEntity &Entity,
322                         InitListExpr *IList, QualType DeclType,
323                         unsigned &Index,
324                         InitListExpr *StructuredList,
325                         unsigned &StructuredIndex);
326   void CheckScalarType(const InitializedEntity &Entity,
327                        InitListExpr *IList, QualType DeclType,
328                        unsigned &Index,
329                        InitListExpr *StructuredList,
330                        unsigned &StructuredIndex);
331   void CheckReferenceType(const InitializedEntity &Entity,
332                           InitListExpr *IList, QualType DeclType,
333                           unsigned &Index,
334                           InitListExpr *StructuredList,
335                           unsigned &StructuredIndex);
336   void CheckVectorType(const InitializedEntity &Entity,
337                        InitListExpr *IList, QualType DeclType, unsigned &Index,
338                        InitListExpr *StructuredList,
339                        unsigned &StructuredIndex);
340   void CheckStructUnionTypes(const InitializedEntity &Entity,
341                              InitListExpr *IList, QualType DeclType,
342                              CXXRecordDecl::base_class_range Bases,
343                              RecordDecl::field_iterator Field,
344                              bool SubobjectIsDesignatorContext, unsigned &Index,
345                              InitListExpr *StructuredList,
346                              unsigned &StructuredIndex,
347                              bool TopLevelObject = false);
348   void CheckArrayType(const InitializedEntity &Entity,
349                       InitListExpr *IList, QualType &DeclType,
350                       llvm::APSInt elementIndex,
351                       bool SubobjectIsDesignatorContext, unsigned &Index,
352                       InitListExpr *StructuredList,
353                       unsigned &StructuredIndex);
354   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
355                                   InitListExpr *IList, DesignatedInitExpr *DIE,
356                                   unsigned DesigIdx,
357                                   QualType &CurrentObjectType,
358                                   RecordDecl::field_iterator *NextField,
359                                   llvm::APSInt *NextElementIndex,
360                                   unsigned &Index,
361                                   InitListExpr *StructuredList,
362                                   unsigned &StructuredIndex,
363                                   bool FinishSubobjectInit,
364                                   bool TopLevelObject);
365   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
366                                            QualType CurrentObjectType,
367                                            InitListExpr *StructuredList,
368                                            unsigned StructuredIndex,
369                                            SourceRange InitRange,
370                                            bool IsFullyOverwritten = false);
371   void UpdateStructuredListElement(InitListExpr *StructuredList,
372                                    unsigned &StructuredIndex,
373                                    Expr *expr);
374   InitListExpr *createInitListExpr(QualType CurrentObjectType,
375                                    SourceRange InitRange,
376                                    unsigned ExpectedNumInits);
377   int numArrayElements(QualType DeclType);
378   int numStructUnionElements(QualType DeclType);
379 
380   ExprResult PerformEmptyInit(SourceLocation Loc,
381                               const InitializedEntity &Entity);
382 
383   /// Diagnose that OldInit (or part thereof) has been overridden by NewInit.
384   void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange,
385                             bool FullyOverwritten = true) {
386     // Overriding an initializer via a designator is valid with C99 designated
387     // initializers, but ill-formed with C++20 designated initializers.
388     unsigned DiagID = SemaRef.getLangOpts().CPlusPlus
389                           ? diag::ext_initializer_overrides
390                           : diag::warn_initializer_overrides;
391 
392     if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) {
393       // In overload resolution, we have to strictly enforce the rules, and so
394       // don't allow any overriding of prior initializers. This matters for a
395       // case such as:
396       //
397       //   union U { int a, b; };
398       //   struct S { int a, b; };
399       //   void f(U), f(S);
400       //
401       // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For
402       // consistency, we disallow all overriding of prior initializers in
403       // overload resolution, not only overriding of union members.
404       hadError = true;
405     } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) {
406       // If we'll be keeping around the old initializer but overwriting part of
407       // the object it initialized, and that object is not trivially
408       // destructible, this can leak. Don't allow that, not even as an
409       // extension.
410       //
411       // FIXME: It might be reasonable to allow this in cases where the part of
412       // the initializer that we're overriding has trivial destruction.
413       DiagID = diag::err_initializer_overrides_destructed;
414     } else if (!OldInit->getSourceRange().isValid()) {
415       // We need to check on source range validity because the previous
416       // initializer does not have to be an explicit initializer. e.g.,
417       //
418       // struct P { int a, b; };
419       // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
420       //
421       // There is an overwrite taking place because the first braced initializer
422       // list "{ .a = 2 }" already provides value for .p.b (which is zero).
423       //
424       // Such overwrites are harmless, so we don't diagnose them. (Note that in
425       // C++, this cannot be reached unless we've already seen and diagnosed a
426       // different conformance issue, such as a mixture of designated and
427       // non-designated initializers or a multi-level designator.)
428       return;
429     }
430 
431     if (!VerifyOnly) {
432       SemaRef.Diag(NewInitRange.getBegin(), DiagID)
433           << NewInitRange << FullyOverwritten << OldInit->getType();
434       SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer)
435           << (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten)
436           << OldInit->getSourceRange();
437     }
438   }
439 
440   // Explanation on the "FillWithNoInit" mode:
441   //
442   // Assume we have the following definitions (Case#1):
443   // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
444   // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
445   //
446   // l.lp.x[1][0..1] should not be filled with implicit initializers because the
447   // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
448   //
449   // But if we have (Case#2):
450   // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
451   //
452   // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
453   // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
454   //
455   // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
456   // in the InitListExpr, the "holes" in Case#1 are filled not with empty
457   // initializers but with special "NoInitExpr" place holders, which tells the
458   // CodeGen not to generate any initializers for these parts.
459   void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
460                               const InitializedEntity &ParentEntity,
461                               InitListExpr *ILE, bool &RequiresSecondPass,
462                               bool FillWithNoInit);
463   void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
464                                const InitializedEntity &ParentEntity,
465                                InitListExpr *ILE, bool &RequiresSecondPass,
466                                bool FillWithNoInit = false);
467   void FillInEmptyInitializations(const InitializedEntity &Entity,
468                                   InitListExpr *ILE, bool &RequiresSecondPass,
469                                   InitListExpr *OuterILE, unsigned OuterIndex,
470                                   bool FillWithNoInit = false);
471   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
472                               Expr *InitExpr, FieldDecl *Field,
473                               bool TopLevelObject);
474   void CheckEmptyInitializable(const InitializedEntity &Entity,
475                                SourceLocation Loc);
476 
477 public:
478   InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL,
479                   QualType &T, bool VerifyOnly, bool TreatUnavailableAsInvalid,
480                   bool InOverloadResolution = false);
481   bool HadError() { return hadError; }
482 
483   // Retrieves the fully-structured initializer list used for
484   // semantic analysis and code generation.
485   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
486 };
487 
488 } // end anonymous namespace
489 
490 ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc,
491                                              const InitializedEntity &Entity) {
492   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
493                                                             true);
494   MultiExprArg SubInit;
495   Expr *InitExpr;
496   InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
497 
498   // C++ [dcl.init.aggr]p7:
499   //   If there are fewer initializer-clauses in the list than there are
500   //   members in the aggregate, then each member not explicitly initialized
501   //   ...
502   bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
503       Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
504   if (EmptyInitList) {
505     // C++1y / DR1070:
506     //   shall be initialized [...] from an empty initializer list.
507     //
508     // We apply the resolution of this DR to C++11 but not C++98, since C++98
509     // does not have useful semantics for initialization from an init list.
510     // We treat this as copy-initialization, because aggregate initialization
511     // always performs copy-initialization on its elements.
512     //
513     // Only do this if we're initializing a class type, to avoid filling in
514     // the initializer list where possible.
515     InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
516                    InitListExpr(SemaRef.Context, Loc, None, Loc);
517     InitExpr->setType(SemaRef.Context.VoidTy);
518     SubInit = InitExpr;
519     Kind = InitializationKind::CreateCopy(Loc, Loc);
520   } else {
521     // C++03:
522     //   shall be value-initialized.
523   }
524 
525   InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
526   // libstdc++4.6 marks the vector default constructor as explicit in
527   // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
528   // stlport does so too. Look for std::__debug for libstdc++, and for
529   // std:: for stlport.  This is effectively a compiler-side implementation of
530   // LWG2193.
531   if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
532           InitializationSequence::FK_ExplicitConstructor) {
533     OverloadCandidateSet::iterator Best;
534     OverloadingResult O =
535         InitSeq.getFailedCandidateSet()
536             .BestViableFunction(SemaRef, Kind.getLocation(), Best);
537     (void)O;
538     assert(O == OR_Success && "Inconsistent overload resolution");
539     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
540     CXXRecordDecl *R = CtorDecl->getParent();
541 
542     if (CtorDecl->getMinRequiredArguments() == 0 &&
543         CtorDecl->isExplicit() && R->getDeclName() &&
544         SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
545       bool IsInStd = false;
546       for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
547            ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
548         if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
549           IsInStd = true;
550       }
551 
552       if (IsInStd && llvm::StringSwitch<bool>(R->getName())
553               .Cases("basic_string", "deque", "forward_list", true)
554               .Cases("list", "map", "multimap", "multiset", true)
555               .Cases("priority_queue", "queue", "set", "stack", true)
556               .Cases("unordered_map", "unordered_set", "vector", true)
557               .Default(false)) {
558         InitSeq.InitializeFrom(
559             SemaRef, Entity,
560             InitializationKind::CreateValue(Loc, Loc, Loc, true),
561             MultiExprArg(), /*TopLevelOfInitList=*/false,
562             TreatUnavailableAsInvalid);
563         // Emit a warning for this.  System header warnings aren't shown
564         // by default, but people working on system headers should see it.
565         if (!VerifyOnly) {
566           SemaRef.Diag(CtorDecl->getLocation(),
567                        diag::warn_invalid_initializer_from_system_header);
568           if (Entity.getKind() == InitializedEntity::EK_Member)
569             SemaRef.Diag(Entity.getDecl()->getLocation(),
570                          diag::note_used_in_initialization_here);
571           else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
572             SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
573         }
574       }
575     }
576   }
577   if (!InitSeq) {
578     if (!VerifyOnly) {
579       InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
580       if (Entity.getKind() == InitializedEntity::EK_Member)
581         SemaRef.Diag(Entity.getDecl()->getLocation(),
582                      diag::note_in_omitted_aggregate_initializer)
583           << /*field*/1 << Entity.getDecl();
584       else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
585         bool IsTrailingArrayNewMember =
586             Entity.getParent() &&
587             Entity.getParent()->isVariableLengthArrayNew();
588         SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
589           << (IsTrailingArrayNewMember ? 2 : /*array element*/0)
590           << Entity.getElementIndex();
591       }
592     }
593     hadError = true;
594     return ExprError();
595   }
596 
597   return VerifyOnly ? ExprResult()
598                     : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
599 }
600 
601 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
602                                               SourceLocation Loc) {
603   // If we're building a fully-structured list, we'll check this at the end
604   // once we know which elements are actually initialized. Otherwise, we know
605   // that there are no designators so we can just check now.
606   if (FullyStructuredList)
607     return;
608   PerformEmptyInit(Loc, Entity);
609 }
610 
611 void InitListChecker::FillInEmptyInitForBase(
612     unsigned Init, const CXXBaseSpecifier &Base,
613     const InitializedEntity &ParentEntity, InitListExpr *ILE,
614     bool &RequiresSecondPass, bool FillWithNoInit) {
615   InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
616       SemaRef.Context, &Base, false, &ParentEntity);
617 
618   if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) {
619     ExprResult BaseInit = FillWithNoInit
620                               ? new (SemaRef.Context) NoInitExpr(Base.getType())
621                               : PerformEmptyInit(ILE->getEndLoc(), BaseEntity);
622     if (BaseInit.isInvalid()) {
623       hadError = true;
624       return;
625     }
626 
627     if (!VerifyOnly) {
628       assert(Init < ILE->getNumInits() && "should have been expanded");
629       ILE->setInit(Init, BaseInit.getAs<Expr>());
630     }
631   } else if (InitListExpr *InnerILE =
632                  dyn_cast<InitListExpr>(ILE->getInit(Init))) {
633     FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass,
634                                ILE, Init, FillWithNoInit);
635   } else if (DesignatedInitUpdateExpr *InnerDIUE =
636                dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
637     FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
638                                RequiresSecondPass, ILE, Init,
639                                /*FillWithNoInit =*/true);
640   }
641 }
642 
643 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
644                                         const InitializedEntity &ParentEntity,
645                                               InitListExpr *ILE,
646                                               bool &RequiresSecondPass,
647                                               bool FillWithNoInit) {
648   SourceLocation Loc = ILE->getEndLoc();
649   unsigned NumInits = ILE->getNumInits();
650   InitializedEntity MemberEntity
651     = InitializedEntity::InitializeMember(Field, &ParentEntity);
652 
653   if (Init >= NumInits || !ILE->getInit(Init)) {
654     if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
655       if (!RType->getDecl()->isUnion())
656         assert((Init < NumInits || VerifyOnly) &&
657                "This ILE should have been expanded");
658 
659     if (FillWithNoInit) {
660       assert(!VerifyOnly && "should not fill with no-init in verify-only mode");
661       Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
662       if (Init < NumInits)
663         ILE->setInit(Init, Filler);
664       else
665         ILE->updateInit(SemaRef.Context, Init, Filler);
666       return;
667     }
668     // C++1y [dcl.init.aggr]p7:
669     //   If there are fewer initializer-clauses in the list than there are
670     //   members in the aggregate, then each member not explicitly initialized
671     //   shall be initialized from its brace-or-equal-initializer [...]
672     if (Field->hasInClassInitializer()) {
673       if (VerifyOnly)
674         return;
675 
676       ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
677       if (DIE.isInvalid()) {
678         hadError = true;
679         return;
680       }
681       SemaRef.checkInitializerLifetime(MemberEntity, DIE.get());
682       if (Init < NumInits)
683         ILE->setInit(Init, DIE.get());
684       else {
685         ILE->updateInit(SemaRef.Context, Init, DIE.get());
686         RequiresSecondPass = true;
687       }
688       return;
689     }
690 
691     if (Field->getType()->isReferenceType()) {
692       if (!VerifyOnly) {
693         // C++ [dcl.init.aggr]p9:
694         //   If an incomplete or empty initializer-list leaves a
695         //   member of reference type uninitialized, the program is
696         //   ill-formed.
697         SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
698           << Field->getType()
699           << ILE->getSyntacticForm()->getSourceRange();
700         SemaRef.Diag(Field->getLocation(),
701                      diag::note_uninit_reference_member);
702       }
703       hadError = true;
704       return;
705     }
706 
707     ExprResult MemberInit = PerformEmptyInit(Loc, MemberEntity);
708     if (MemberInit.isInvalid()) {
709       hadError = true;
710       return;
711     }
712 
713     if (hadError || VerifyOnly) {
714       // Do nothing
715     } else if (Init < NumInits) {
716       ILE->setInit(Init, MemberInit.getAs<Expr>());
717     } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
718       // Empty initialization requires a constructor call, so
719       // extend the initializer list to include the constructor
720       // call and make a note that we'll need to take another pass
721       // through the initializer list.
722       ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
723       RequiresSecondPass = true;
724     }
725   } else if (InitListExpr *InnerILE
726                = dyn_cast<InitListExpr>(ILE->getInit(Init))) {
727     FillInEmptyInitializations(MemberEntity, InnerILE,
728                                RequiresSecondPass, ILE, Init, FillWithNoInit);
729   } else if (DesignatedInitUpdateExpr *InnerDIUE =
730                  dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
731     FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
732                                RequiresSecondPass, ILE, Init,
733                                /*FillWithNoInit =*/true);
734   }
735 }
736 
737 /// Recursively replaces NULL values within the given initializer list
738 /// with expressions that perform value-initialization of the
739 /// appropriate type, and finish off the InitListExpr formation.
740 void
741 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
742                                             InitListExpr *ILE,
743                                             bool &RequiresSecondPass,
744                                             InitListExpr *OuterILE,
745                                             unsigned OuterIndex,
746                                             bool FillWithNoInit) {
747   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
748          "Should not have void type");
749 
750   // We don't need to do any checks when just filling NoInitExprs; that can't
751   // fail.
752   if (FillWithNoInit && VerifyOnly)
753     return;
754 
755   // If this is a nested initializer list, we might have changed its contents
756   // (and therefore some of its properties, such as instantiation-dependence)
757   // while filling it in. Inform the outer initializer list so that its state
758   // can be updated to match.
759   // FIXME: We should fully build the inner initializers before constructing
760   // the outer InitListExpr instead of mutating AST nodes after they have
761   // been used as subexpressions of other nodes.
762   struct UpdateOuterILEWithUpdatedInit {
763     InitListExpr *Outer;
764     unsigned OuterIndex;
765     ~UpdateOuterILEWithUpdatedInit() {
766       if (Outer)
767         Outer->setInit(OuterIndex, Outer->getInit(OuterIndex));
768     }
769   } UpdateOuterRAII = {OuterILE, OuterIndex};
770 
771   // A transparent ILE is not performing aggregate initialization and should
772   // not be filled in.
773   if (ILE->isTransparent())
774     return;
775 
776   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
777     const RecordDecl *RDecl = RType->getDecl();
778     if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
779       FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
780                               Entity, ILE, RequiresSecondPass, FillWithNoInit);
781     else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
782              cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
783       for (auto *Field : RDecl->fields()) {
784         if (Field->hasInClassInitializer()) {
785           FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
786                                   FillWithNoInit);
787           break;
788         }
789       }
790     } else {
791       // The fields beyond ILE->getNumInits() are default initialized, so in
792       // order to leave them uninitialized, the ILE is expanded and the extra
793       // fields are then filled with NoInitExpr.
794       unsigned NumElems = numStructUnionElements(ILE->getType());
795       if (RDecl->hasFlexibleArrayMember())
796         ++NumElems;
797       if (!VerifyOnly && ILE->getNumInits() < NumElems)
798         ILE->resizeInits(SemaRef.Context, NumElems);
799 
800       unsigned Init = 0;
801 
802       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
803         for (auto &Base : CXXRD->bases()) {
804           if (hadError)
805             return;
806 
807           FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
808                                  FillWithNoInit);
809           ++Init;
810         }
811       }
812 
813       for (auto *Field : RDecl->fields()) {
814         if (Field->isUnnamedBitfield())
815           continue;
816 
817         if (hadError)
818           return;
819 
820         FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
821                                 FillWithNoInit);
822         if (hadError)
823           return;
824 
825         ++Init;
826 
827         // Only look at the first initialization of a union.
828         if (RDecl->isUnion())
829           break;
830       }
831     }
832 
833     return;
834   }
835 
836   QualType ElementType;
837 
838   InitializedEntity ElementEntity = Entity;
839   unsigned NumInits = ILE->getNumInits();
840   unsigned NumElements = NumInits;
841   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
842     ElementType = AType->getElementType();
843     if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
844       NumElements = CAType->getSize().getZExtValue();
845     // For an array new with an unknown bound, ask for one additional element
846     // in order to populate the array filler.
847     if (Entity.isVariableLengthArrayNew())
848       ++NumElements;
849     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
850                                                          0, Entity);
851   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
852     ElementType = VType->getElementType();
853     NumElements = VType->getNumElements();
854     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
855                                                          0, Entity);
856   } else
857     ElementType = ILE->getType();
858 
859   bool SkipEmptyInitChecks = false;
860   for (unsigned Init = 0; Init != NumElements; ++Init) {
861     if (hadError)
862       return;
863 
864     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
865         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
866       ElementEntity.setElementIndex(Init);
867 
868     if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks))
869       return;
870 
871     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
872     if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
873       ILE->setInit(Init, ILE->getArrayFiller());
874     else if (!InitExpr && !ILE->hasArrayFiller()) {
875       // In VerifyOnly mode, there's no point performing empty initialization
876       // more than once.
877       if (SkipEmptyInitChecks)
878         continue;
879 
880       Expr *Filler = nullptr;
881 
882       if (FillWithNoInit)
883         Filler = new (SemaRef.Context) NoInitExpr(ElementType);
884       else {
885         ExprResult ElementInit =
886             PerformEmptyInit(ILE->getEndLoc(), ElementEntity);
887         if (ElementInit.isInvalid()) {
888           hadError = true;
889           return;
890         }
891 
892         Filler = ElementInit.getAs<Expr>();
893       }
894 
895       if (hadError) {
896         // Do nothing
897       } else if (VerifyOnly) {
898         SkipEmptyInitChecks = true;
899       } else if (Init < NumInits) {
900         // For arrays, just set the expression used for value-initialization
901         // of the "holes" in the array.
902         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
903           ILE->setArrayFiller(Filler);
904         else
905           ILE->setInit(Init, Filler);
906       } else {
907         // For arrays, just set the expression used for value-initialization
908         // of the rest of elements and exit.
909         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
910           ILE->setArrayFiller(Filler);
911           return;
912         }
913 
914         if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
915           // Empty initialization requires a constructor call, so
916           // extend the initializer list to include the constructor
917           // call and make a note that we'll need to take another pass
918           // through the initializer list.
919           ILE->updateInit(SemaRef.Context, Init, Filler);
920           RequiresSecondPass = true;
921         }
922       }
923     } else if (InitListExpr *InnerILE
924                  = dyn_cast_or_null<InitListExpr>(InitExpr)) {
925       FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
926                                  ILE, Init, FillWithNoInit);
927     } else if (DesignatedInitUpdateExpr *InnerDIUE =
928                    dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) {
929       FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
930                                  RequiresSecondPass, ILE, Init,
931                                  /*FillWithNoInit =*/true);
932     }
933   }
934 }
935 
936 static bool hasAnyDesignatedInits(const InitListExpr *IL) {
937   for (const Stmt *Init : *IL)
938     if (Init && isa<DesignatedInitExpr>(Init))
939       return true;
940   return false;
941 }
942 
943 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
944                                  InitListExpr *IL, QualType &T, bool VerifyOnly,
945                                  bool TreatUnavailableAsInvalid,
946                                  bool InOverloadResolution)
947     : SemaRef(S), VerifyOnly(VerifyOnly),
948       TreatUnavailableAsInvalid(TreatUnavailableAsInvalid),
949       InOverloadResolution(InOverloadResolution) {
950   if (!VerifyOnly || hasAnyDesignatedInits(IL)) {
951     FullyStructuredList =
952         createInitListExpr(T, IL->getSourceRange(), IL->getNumInits());
953 
954     // FIXME: Check that IL isn't already the semantic form of some other
955     // InitListExpr. If it is, we'd create a broken AST.
956     if (!VerifyOnly)
957       FullyStructuredList->setSyntacticForm(IL);
958   }
959 
960   CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
961                         /*TopLevelObject=*/true);
962 
963   if (!hadError && FullyStructuredList) {
964     bool RequiresSecondPass = false;
965     FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass,
966                                /*OuterILE=*/nullptr, /*OuterIndex=*/0);
967     if (RequiresSecondPass && !hadError)
968       FillInEmptyInitializations(Entity, FullyStructuredList,
969                                  RequiresSecondPass, nullptr, 0);
970   }
971   if (hadError && FullyStructuredList)
972     FullyStructuredList->markError();
973 }
974 
975 int InitListChecker::numArrayElements(QualType DeclType) {
976   // FIXME: use a proper constant
977   int maxElements = 0x7FFFFFFF;
978   if (const ConstantArrayType *CAT =
979         SemaRef.Context.getAsConstantArrayType(DeclType)) {
980     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
981   }
982   return maxElements;
983 }
984 
985 int InitListChecker::numStructUnionElements(QualType DeclType) {
986   RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl();
987   int InitializableMembers = 0;
988   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
989     InitializableMembers += CXXRD->getNumBases();
990   for (const auto *Field : structDecl->fields())
991     if (!Field->isUnnamedBitfield())
992       ++InitializableMembers;
993 
994   if (structDecl->isUnion())
995     return std::min(InitializableMembers, 1);
996   return InitializableMembers - structDecl->hasFlexibleArrayMember();
997 }
998 
999 /// Determine whether Entity is an entity for which it is idiomatic to elide
1000 /// the braces in aggregate initialization.
1001 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) {
1002   // Recursive initialization of the one and only field within an aggregate
1003   // class is considered idiomatic. This case arises in particular for
1004   // initialization of std::array, where the C++ standard suggests the idiom of
1005   //
1006   //   std::array<T, N> arr = {1, 2, 3};
1007   //
1008   // (where std::array is an aggregate struct containing a single array field.
1009 
1010   if (!Entity.getParent())
1011     return false;
1012 
1013   // Allows elide brace initialization for aggregates with empty base.
1014   if (Entity.getKind() == InitializedEntity::EK_Base) {
1015     auto *ParentRD =
1016         Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
1017     CXXRecordDecl *CXXRD = cast<CXXRecordDecl>(ParentRD);
1018     return CXXRD->getNumBases() == 1 && CXXRD->field_empty();
1019   }
1020 
1021   // Allow brace elision if the only subobject is a field.
1022   if (Entity.getKind() == InitializedEntity::EK_Member) {
1023     auto *ParentRD =
1024         Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
1025     if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD)) {
1026       if (CXXRD->getNumBases()) {
1027         return false;
1028       }
1029     }
1030     auto FieldIt = ParentRD->field_begin();
1031     assert(FieldIt != ParentRD->field_end() &&
1032            "no fields but have initializer for member?");
1033     return ++FieldIt == ParentRD->field_end();
1034   }
1035 
1036   return false;
1037 }
1038 
1039 /// Check whether the range of the initializer \p ParentIList from element
1040 /// \p Index onwards can be used to initialize an object of type \p T. Update
1041 /// \p Index to indicate how many elements of the list were consumed.
1042 ///
1043 /// This also fills in \p StructuredList, from element \p StructuredIndex
1044 /// onwards, with the fully-braced, desugared form of the initialization.
1045 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
1046                                             InitListExpr *ParentIList,
1047                                             QualType T, unsigned &Index,
1048                                             InitListExpr *StructuredList,
1049                                             unsigned &StructuredIndex) {
1050   int maxElements = 0;
1051 
1052   if (T->isArrayType())
1053     maxElements = numArrayElements(T);
1054   else if (T->isRecordType())
1055     maxElements = numStructUnionElements(T);
1056   else if (T->isVectorType())
1057     maxElements = T->castAs<VectorType>()->getNumElements();
1058   else
1059     llvm_unreachable("CheckImplicitInitList(): Illegal type");
1060 
1061   if (maxElements == 0) {
1062     if (!VerifyOnly)
1063       SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(),
1064                    diag::err_implicit_empty_initializer);
1065     ++Index;
1066     hadError = true;
1067     return;
1068   }
1069 
1070   // Build a structured initializer list corresponding to this subobject.
1071   InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit(
1072       ParentIList, Index, T, StructuredList, StructuredIndex,
1073       SourceRange(ParentIList->getInit(Index)->getBeginLoc(),
1074                   ParentIList->getSourceRange().getEnd()));
1075   unsigned StructuredSubobjectInitIndex = 0;
1076 
1077   // Check the element types and build the structural subobject.
1078   unsigned StartIndex = Index;
1079   CheckListElementTypes(Entity, ParentIList, T,
1080                         /*SubobjectIsDesignatorContext=*/false, Index,
1081                         StructuredSubobjectInitList,
1082                         StructuredSubobjectInitIndex);
1083 
1084   if (StructuredSubobjectInitList) {
1085     StructuredSubobjectInitList->setType(T);
1086 
1087     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
1088     // Update the structured sub-object initializer so that it's ending
1089     // range corresponds with the end of the last initializer it used.
1090     if (EndIndex < ParentIList->getNumInits() &&
1091         ParentIList->getInit(EndIndex)) {
1092       SourceLocation EndLoc
1093         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
1094       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
1095     }
1096 
1097     // Complain about missing braces.
1098     if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) &&
1099         !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) &&
1100         !isIdiomaticBraceElisionEntity(Entity)) {
1101       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
1102                    diag::warn_missing_braces)
1103           << StructuredSubobjectInitList->getSourceRange()
1104           << FixItHint::CreateInsertion(
1105                  StructuredSubobjectInitList->getBeginLoc(), "{")
1106           << FixItHint::CreateInsertion(
1107                  SemaRef.getLocForEndOfToken(
1108                      StructuredSubobjectInitList->getEndLoc()),
1109                  "}");
1110     }
1111 
1112     // Warn if this type won't be an aggregate in future versions of C++.
1113     auto *CXXRD = T->getAsCXXRecordDecl();
1114     if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1115       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
1116                    diag::warn_cxx20_compat_aggregate_init_with_ctors)
1117           << StructuredSubobjectInitList->getSourceRange() << T;
1118     }
1119   }
1120 }
1121 
1122 /// Warn that \p Entity was of scalar type and was initialized by a
1123 /// single-element braced initializer list.
1124 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
1125                                  SourceRange Braces) {
1126   // Don't warn during template instantiation. If the initialization was
1127   // non-dependent, we warned during the initial parse; otherwise, the
1128   // type might not be scalar in some uses of the template.
1129   if (S.inTemplateInstantiation())
1130     return;
1131 
1132   unsigned DiagID = 0;
1133 
1134   switch (Entity.getKind()) {
1135   case InitializedEntity::EK_VectorElement:
1136   case InitializedEntity::EK_ComplexElement:
1137   case InitializedEntity::EK_ArrayElement:
1138   case InitializedEntity::EK_Parameter:
1139   case InitializedEntity::EK_Parameter_CF_Audited:
1140   case InitializedEntity::EK_TemplateParameter:
1141   case InitializedEntity::EK_Result:
1142     // Extra braces here are suspicious.
1143     DiagID = diag::warn_braces_around_init;
1144     break;
1145 
1146   case InitializedEntity::EK_Member:
1147     // Warn on aggregate initialization but not on ctor init list or
1148     // default member initializer.
1149     if (Entity.getParent())
1150       DiagID = diag::warn_braces_around_init;
1151     break;
1152 
1153   case InitializedEntity::EK_Variable:
1154   case InitializedEntity::EK_LambdaCapture:
1155     // No warning, might be direct-list-initialization.
1156     // FIXME: Should we warn for copy-list-initialization in these cases?
1157     break;
1158 
1159   case InitializedEntity::EK_New:
1160   case InitializedEntity::EK_Temporary:
1161   case InitializedEntity::EK_CompoundLiteralInit:
1162     // No warning, braces are part of the syntax of the underlying construct.
1163     break;
1164 
1165   case InitializedEntity::EK_RelatedResult:
1166     // No warning, we already warned when initializing the result.
1167     break;
1168 
1169   case InitializedEntity::EK_Exception:
1170   case InitializedEntity::EK_Base:
1171   case InitializedEntity::EK_Delegating:
1172   case InitializedEntity::EK_BlockElement:
1173   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
1174   case InitializedEntity::EK_Binding:
1175   case InitializedEntity::EK_StmtExprResult:
1176     llvm_unreachable("unexpected braced scalar init");
1177   }
1178 
1179   if (DiagID) {
1180     S.Diag(Braces.getBegin(), DiagID)
1181         << Entity.getType()->isSizelessBuiltinType() << Braces
1182         << FixItHint::CreateRemoval(Braces.getBegin())
1183         << FixItHint::CreateRemoval(Braces.getEnd());
1184   }
1185 }
1186 
1187 /// Check whether the initializer \p IList (that was written with explicit
1188 /// braces) can be used to initialize an object of type \p T.
1189 ///
1190 /// This also fills in \p StructuredList with the fully-braced, desugared
1191 /// form of the initialization.
1192 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
1193                                             InitListExpr *IList, QualType &T,
1194                                             InitListExpr *StructuredList,
1195                                             bool TopLevelObject) {
1196   unsigned Index = 0, StructuredIndex = 0;
1197   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
1198                         Index, StructuredList, StructuredIndex, TopLevelObject);
1199   if (StructuredList) {
1200     QualType ExprTy = T;
1201     if (!ExprTy->isArrayType())
1202       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
1203     if (!VerifyOnly)
1204       IList->setType(ExprTy);
1205     StructuredList->setType(ExprTy);
1206   }
1207   if (hadError)
1208     return;
1209 
1210   // Don't complain for incomplete types, since we'll get an error elsewhere.
1211   if (Index < IList->getNumInits() && !T->isIncompleteType()) {
1212     // We have leftover initializers
1213     bool ExtraInitsIsError = SemaRef.getLangOpts().CPlusPlus ||
1214           (SemaRef.getLangOpts().OpenCL && T->isVectorType());
1215     hadError = ExtraInitsIsError;
1216     if (VerifyOnly) {
1217       return;
1218     } else if (StructuredIndex == 1 &&
1219                IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
1220                    SIF_None) {
1221       unsigned DK =
1222           ExtraInitsIsError
1223               ? diag::err_excess_initializers_in_char_array_initializer
1224               : diag::ext_excess_initializers_in_char_array_initializer;
1225       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1226           << IList->getInit(Index)->getSourceRange();
1227     } else if (T->isSizelessBuiltinType()) {
1228       unsigned DK = ExtraInitsIsError
1229                         ? diag::err_excess_initializers_for_sizeless_type
1230                         : diag::ext_excess_initializers_for_sizeless_type;
1231       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1232           << T << IList->getInit(Index)->getSourceRange();
1233     } else {
1234       int initKind = T->isArrayType() ? 0 :
1235                      T->isVectorType() ? 1 :
1236                      T->isScalarType() ? 2 :
1237                      T->isUnionType() ? 3 :
1238                      4;
1239 
1240       unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers
1241                                       : diag::ext_excess_initializers;
1242       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1243           << initKind << IList->getInit(Index)->getSourceRange();
1244     }
1245   }
1246 
1247   if (!VerifyOnly) {
1248     if (T->isScalarType() && IList->getNumInits() == 1 &&
1249         !isa<InitListExpr>(IList->getInit(0)))
1250       warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
1251 
1252     // Warn if this is a class type that won't be an aggregate in future
1253     // versions of C++.
1254     auto *CXXRD = T->getAsCXXRecordDecl();
1255     if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1256       // Don't warn if there's an equivalent default constructor that would be
1257       // used instead.
1258       bool HasEquivCtor = false;
1259       if (IList->getNumInits() == 0) {
1260         auto *CD = SemaRef.LookupDefaultConstructor(CXXRD);
1261         HasEquivCtor = CD && !CD->isDeleted();
1262       }
1263 
1264       if (!HasEquivCtor) {
1265         SemaRef.Diag(IList->getBeginLoc(),
1266                      diag::warn_cxx20_compat_aggregate_init_with_ctors)
1267             << IList->getSourceRange() << T;
1268       }
1269     }
1270   }
1271 }
1272 
1273 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
1274                                             InitListExpr *IList,
1275                                             QualType &DeclType,
1276                                             bool SubobjectIsDesignatorContext,
1277                                             unsigned &Index,
1278                                             InitListExpr *StructuredList,
1279                                             unsigned &StructuredIndex,
1280                                             bool TopLevelObject) {
1281   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
1282     // Explicitly braced initializer for complex type can be real+imaginary
1283     // parts.
1284     CheckComplexType(Entity, IList, DeclType, Index,
1285                      StructuredList, StructuredIndex);
1286   } else if (DeclType->isScalarType()) {
1287     CheckScalarType(Entity, IList, DeclType, Index,
1288                     StructuredList, StructuredIndex);
1289   } else if (DeclType->isVectorType()) {
1290     CheckVectorType(Entity, IList, DeclType, Index,
1291                     StructuredList, StructuredIndex);
1292   } else if (DeclType->isRecordType()) {
1293     assert(DeclType->isAggregateType() &&
1294            "non-aggregate records should be handed in CheckSubElementType");
1295     RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
1296     auto Bases =
1297         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
1298                                         CXXRecordDecl::base_class_iterator());
1299     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1300       Bases = CXXRD->bases();
1301     CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
1302                           SubobjectIsDesignatorContext, Index, StructuredList,
1303                           StructuredIndex, TopLevelObject);
1304   } else if (DeclType->isArrayType()) {
1305     llvm::APSInt Zero(
1306                     SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1307                     false);
1308     CheckArrayType(Entity, IList, DeclType, Zero,
1309                    SubobjectIsDesignatorContext, Index,
1310                    StructuredList, StructuredIndex);
1311   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1312     // This type is invalid, issue a diagnostic.
1313     ++Index;
1314     if (!VerifyOnly)
1315       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1316           << DeclType;
1317     hadError = true;
1318   } else if (DeclType->isReferenceType()) {
1319     CheckReferenceType(Entity, IList, DeclType, Index,
1320                        StructuredList, StructuredIndex);
1321   } else if (DeclType->isObjCObjectType()) {
1322     if (!VerifyOnly)
1323       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType;
1324     hadError = true;
1325   } else if (DeclType->isOCLIntelSubgroupAVCType() ||
1326              DeclType->isSizelessBuiltinType()) {
1327     // Checks for scalar type are sufficient for these types too.
1328     CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1329                     StructuredIndex);
1330   } else {
1331     if (!VerifyOnly)
1332       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1333           << DeclType;
1334     hadError = true;
1335   }
1336 }
1337 
1338 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1339                                           InitListExpr *IList,
1340                                           QualType ElemType,
1341                                           unsigned &Index,
1342                                           InitListExpr *StructuredList,
1343                                           unsigned &StructuredIndex,
1344                                           bool DirectlyDesignated) {
1345   Expr *expr = IList->getInit(Index);
1346 
1347   if (ElemType->isReferenceType())
1348     return CheckReferenceType(Entity, IList, ElemType, Index,
1349                               StructuredList, StructuredIndex);
1350 
1351   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1352     if (SubInitList->getNumInits() == 1 &&
1353         IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1354         SIF_None) {
1355       // FIXME: It would be more faithful and no less correct to include an
1356       // InitListExpr in the semantic form of the initializer list in this case.
1357       expr = SubInitList->getInit(0);
1358     }
1359     // Nested aggregate initialization and C++ initialization are handled later.
1360   } else if (isa<ImplicitValueInitExpr>(expr)) {
1361     // This happens during template instantiation when we see an InitListExpr
1362     // that we've already checked once.
1363     assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
1364            "found implicit initialization for the wrong type");
1365     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1366     ++Index;
1367     return;
1368   }
1369 
1370   if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(expr)) {
1371     // C++ [dcl.init.aggr]p2:
1372     //   Each member is copy-initialized from the corresponding
1373     //   initializer-clause.
1374 
1375     // FIXME: Better EqualLoc?
1376     InitializationKind Kind =
1377         InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation());
1378 
1379     // Vector elements can be initialized from other vectors in which case
1380     // we need initialization entity with a type of a vector (and not a vector
1381     // element!) initializing multiple vector elements.
1382     auto TmpEntity =
1383         (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType())
1384             ? InitializedEntity::InitializeTemporary(ElemType)
1385             : Entity;
1386 
1387     InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr,
1388                                /*TopLevelOfInitList*/ true);
1389 
1390     // C++14 [dcl.init.aggr]p13:
1391     //   If the assignment-expression can initialize a member, the member is
1392     //   initialized. Otherwise [...] brace elision is assumed
1393     //
1394     // Brace elision is never performed if the element is not an
1395     // assignment-expression.
1396     if (Seq || isa<InitListExpr>(expr)) {
1397       if (!VerifyOnly) {
1398         ExprResult Result = Seq.Perform(SemaRef, TmpEntity, Kind, expr);
1399         if (Result.isInvalid())
1400           hadError = true;
1401 
1402         UpdateStructuredListElement(StructuredList, StructuredIndex,
1403                                     Result.getAs<Expr>());
1404       } else if (!Seq) {
1405         hadError = true;
1406       } else if (StructuredList) {
1407         UpdateStructuredListElement(StructuredList, StructuredIndex,
1408                                     getDummyInit());
1409       }
1410       ++Index;
1411       return;
1412     }
1413 
1414     // Fall through for subaggregate initialization
1415   } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1416     // FIXME: Need to handle atomic aggregate types with implicit init lists.
1417     return CheckScalarType(Entity, IList, ElemType, Index,
1418                            StructuredList, StructuredIndex);
1419   } else if (const ArrayType *arrayType =
1420                  SemaRef.Context.getAsArrayType(ElemType)) {
1421     // arrayType can be incomplete if we're initializing a flexible
1422     // array member.  There's nothing we can do with the completed
1423     // type here, though.
1424 
1425     if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1426       // FIXME: Should we do this checking in verify-only mode?
1427       if (!VerifyOnly)
1428         CheckStringInit(expr, ElemType, arrayType, SemaRef);
1429       if (StructuredList)
1430         UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1431       ++Index;
1432       return;
1433     }
1434 
1435     // Fall through for subaggregate initialization.
1436 
1437   } else {
1438     assert((ElemType->isRecordType() || ElemType->isVectorType() ||
1439             ElemType->isOpenCLSpecificType()) && "Unexpected type");
1440 
1441     // C99 6.7.8p13:
1442     //
1443     //   The initializer for a structure or union object that has
1444     //   automatic storage duration shall be either an initializer
1445     //   list as described below, or a single expression that has
1446     //   compatible structure or union type. In the latter case, the
1447     //   initial value of the object, including unnamed members, is
1448     //   that of the expression.
1449     ExprResult ExprRes = expr;
1450     if (SemaRef.CheckSingleAssignmentConstraints(
1451             ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1452       if (ExprRes.isInvalid())
1453         hadError = true;
1454       else {
1455         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1456         if (ExprRes.isInvalid())
1457           hadError = true;
1458       }
1459       UpdateStructuredListElement(StructuredList, StructuredIndex,
1460                                   ExprRes.getAs<Expr>());
1461       ++Index;
1462       return;
1463     }
1464     ExprRes.get();
1465     // Fall through for subaggregate initialization
1466   }
1467 
1468   // C++ [dcl.init.aggr]p12:
1469   //
1470   //   [...] Otherwise, if the member is itself a non-empty
1471   //   subaggregate, brace elision is assumed and the initializer is
1472   //   considered for the initialization of the first member of
1473   //   the subaggregate.
1474   // OpenCL vector initializer is handled elsewhere.
1475   if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
1476       ElemType->isAggregateType()) {
1477     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1478                           StructuredIndex);
1479     ++StructuredIndex;
1480 
1481     // In C++20, brace elision is not permitted for a designated initializer.
1482     if (DirectlyDesignated && SemaRef.getLangOpts().CPlusPlus && !hadError) {
1483       if (InOverloadResolution)
1484         hadError = true;
1485       if (!VerifyOnly) {
1486         SemaRef.Diag(expr->getBeginLoc(),
1487                      diag::ext_designated_init_brace_elision)
1488             << expr->getSourceRange()
1489             << FixItHint::CreateInsertion(expr->getBeginLoc(), "{")
1490             << FixItHint::CreateInsertion(
1491                    SemaRef.getLocForEndOfToken(expr->getEndLoc()), "}");
1492       }
1493     }
1494   } else {
1495     if (!VerifyOnly) {
1496       // We cannot initialize this element, so let PerformCopyInitialization
1497       // produce the appropriate diagnostic. We already checked that this
1498       // initialization will fail.
1499       ExprResult Copy =
1500           SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1501                                             /*TopLevelOfInitList=*/true);
1502       (void)Copy;
1503       assert(Copy.isInvalid() &&
1504              "expected non-aggregate initialization to fail");
1505     }
1506     hadError = true;
1507     ++Index;
1508     ++StructuredIndex;
1509   }
1510 }
1511 
1512 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1513                                        InitListExpr *IList, QualType DeclType,
1514                                        unsigned &Index,
1515                                        InitListExpr *StructuredList,
1516                                        unsigned &StructuredIndex) {
1517   assert(Index == 0 && "Index in explicit init list must be zero");
1518 
1519   // As an extension, clang supports complex initializers, which initialize
1520   // a complex number component-wise.  When an explicit initializer list for
1521   // a complex number contains two two initializers, this extension kicks in:
1522   // it exepcts the initializer list to contain two elements convertible to
1523   // the element type of the complex type. The first element initializes
1524   // the real part, and the second element intitializes the imaginary part.
1525 
1526   if (IList->getNumInits() != 2)
1527     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1528                            StructuredIndex);
1529 
1530   // This is an extension in C.  (The builtin _Complex type does not exist
1531   // in the C++ standard.)
1532   if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1533     SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init)
1534         << IList->getSourceRange();
1535 
1536   // Initialize the complex number.
1537   QualType elementType = DeclType->castAs<ComplexType>()->getElementType();
1538   InitializedEntity ElementEntity =
1539     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1540 
1541   for (unsigned i = 0; i < 2; ++i) {
1542     ElementEntity.setElementIndex(Index);
1543     CheckSubElementType(ElementEntity, IList, elementType, Index,
1544                         StructuredList, StructuredIndex);
1545   }
1546 }
1547 
1548 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1549                                       InitListExpr *IList, QualType DeclType,
1550                                       unsigned &Index,
1551                                       InitListExpr *StructuredList,
1552                                       unsigned &StructuredIndex) {
1553   if (Index >= IList->getNumInits()) {
1554     if (!VerifyOnly) {
1555       if (DeclType->isSizelessBuiltinType())
1556         SemaRef.Diag(IList->getBeginLoc(),
1557                      SemaRef.getLangOpts().CPlusPlus11
1558                          ? diag::warn_cxx98_compat_empty_sizeless_initializer
1559                          : diag::err_empty_sizeless_initializer)
1560             << DeclType << IList->getSourceRange();
1561       else
1562         SemaRef.Diag(IList->getBeginLoc(),
1563                      SemaRef.getLangOpts().CPlusPlus11
1564                          ? diag::warn_cxx98_compat_empty_scalar_initializer
1565                          : diag::err_empty_scalar_initializer)
1566             << IList->getSourceRange();
1567     }
1568     hadError = !SemaRef.getLangOpts().CPlusPlus11;
1569     ++Index;
1570     ++StructuredIndex;
1571     return;
1572   }
1573 
1574   Expr *expr = IList->getInit(Index);
1575   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1576     // FIXME: This is invalid, and accepting it causes overload resolution
1577     // to pick the wrong overload in some corner cases.
1578     if (!VerifyOnly)
1579       SemaRef.Diag(SubIList->getBeginLoc(), diag::ext_many_braces_around_init)
1580           << DeclType->isSizelessBuiltinType() << SubIList->getSourceRange();
1581 
1582     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1583                     StructuredIndex);
1584     return;
1585   } else if (isa<DesignatedInitExpr>(expr)) {
1586     if (!VerifyOnly)
1587       SemaRef.Diag(expr->getBeginLoc(),
1588                    diag::err_designator_for_scalar_or_sizeless_init)
1589           << DeclType->isSizelessBuiltinType() << DeclType
1590           << expr->getSourceRange();
1591     hadError = true;
1592     ++Index;
1593     ++StructuredIndex;
1594     return;
1595   }
1596 
1597   ExprResult Result;
1598   if (VerifyOnly) {
1599     if (SemaRef.CanPerformCopyInitialization(Entity, expr))
1600       Result = getDummyInit();
1601     else
1602       Result = ExprError();
1603   } else {
1604     Result =
1605         SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1606                                           /*TopLevelOfInitList=*/true);
1607   }
1608 
1609   Expr *ResultExpr = nullptr;
1610 
1611   if (Result.isInvalid())
1612     hadError = true; // types weren't compatible.
1613   else {
1614     ResultExpr = Result.getAs<Expr>();
1615 
1616     if (ResultExpr != expr && !VerifyOnly) {
1617       // The type was promoted, update initializer list.
1618       // FIXME: Why are we updating the syntactic init list?
1619       IList->setInit(Index, ResultExpr);
1620     }
1621   }
1622   UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1623   ++Index;
1624 }
1625 
1626 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1627                                          InitListExpr *IList, QualType DeclType,
1628                                          unsigned &Index,
1629                                          InitListExpr *StructuredList,
1630                                          unsigned &StructuredIndex) {
1631   if (Index >= IList->getNumInits()) {
1632     // FIXME: It would be wonderful if we could point at the actual member. In
1633     // general, it would be useful to pass location information down the stack,
1634     // so that we know the location (or decl) of the "current object" being
1635     // initialized.
1636     if (!VerifyOnly)
1637       SemaRef.Diag(IList->getBeginLoc(),
1638                    diag::err_init_reference_member_uninitialized)
1639           << DeclType << IList->getSourceRange();
1640     hadError = true;
1641     ++Index;
1642     ++StructuredIndex;
1643     return;
1644   }
1645 
1646   Expr *expr = IList->getInit(Index);
1647   if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1648     if (!VerifyOnly)
1649       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list)
1650           << DeclType << IList->getSourceRange();
1651     hadError = true;
1652     ++Index;
1653     ++StructuredIndex;
1654     return;
1655   }
1656 
1657   ExprResult Result;
1658   if (VerifyOnly) {
1659     if (SemaRef.CanPerformCopyInitialization(Entity,expr))
1660       Result = getDummyInit();
1661     else
1662       Result = ExprError();
1663   } else {
1664     Result =
1665         SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1666                                           /*TopLevelOfInitList=*/true);
1667   }
1668 
1669   if (Result.isInvalid())
1670     hadError = true;
1671 
1672   expr = Result.getAs<Expr>();
1673   // FIXME: Why are we updating the syntactic init list?
1674   if (!VerifyOnly && expr)
1675     IList->setInit(Index, expr);
1676 
1677   UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1678   ++Index;
1679 }
1680 
1681 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1682                                       InitListExpr *IList, QualType DeclType,
1683                                       unsigned &Index,
1684                                       InitListExpr *StructuredList,
1685                                       unsigned &StructuredIndex) {
1686   const VectorType *VT = DeclType->castAs<VectorType>();
1687   unsigned maxElements = VT->getNumElements();
1688   unsigned numEltsInit = 0;
1689   QualType elementType = VT->getElementType();
1690 
1691   if (Index >= IList->getNumInits()) {
1692     // Make sure the element type can be value-initialized.
1693     CheckEmptyInitializable(
1694         InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1695         IList->getEndLoc());
1696     return;
1697   }
1698 
1699   if (!SemaRef.getLangOpts().OpenCL) {
1700     // If the initializing element is a vector, try to copy-initialize
1701     // instead of breaking it apart (which is doomed to failure anyway).
1702     Expr *Init = IList->getInit(Index);
1703     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1704       ExprResult Result;
1705       if (VerifyOnly) {
1706         if (SemaRef.CanPerformCopyInitialization(Entity, Init))
1707           Result = getDummyInit();
1708         else
1709           Result = ExprError();
1710       } else {
1711         Result =
1712             SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init,
1713                                               /*TopLevelOfInitList=*/true);
1714       }
1715 
1716       Expr *ResultExpr = nullptr;
1717       if (Result.isInvalid())
1718         hadError = true; // types weren't compatible.
1719       else {
1720         ResultExpr = Result.getAs<Expr>();
1721 
1722         if (ResultExpr != Init && !VerifyOnly) {
1723           // The type was promoted, update initializer list.
1724           // FIXME: Why are we updating the syntactic init list?
1725           IList->setInit(Index, ResultExpr);
1726         }
1727       }
1728       UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1729       ++Index;
1730       return;
1731     }
1732 
1733     InitializedEntity ElementEntity =
1734       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1735 
1736     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1737       // Don't attempt to go past the end of the init list
1738       if (Index >= IList->getNumInits()) {
1739         CheckEmptyInitializable(ElementEntity, IList->getEndLoc());
1740         break;
1741       }
1742 
1743       ElementEntity.setElementIndex(Index);
1744       CheckSubElementType(ElementEntity, IList, elementType, Index,
1745                           StructuredList, StructuredIndex);
1746     }
1747 
1748     if (VerifyOnly)
1749       return;
1750 
1751     bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1752     const VectorType *T = Entity.getType()->castAs<VectorType>();
1753     if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1754                         T->getVectorKind() == VectorType::NeonPolyVector)) {
1755       // The ability to use vector initializer lists is a GNU vector extension
1756       // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1757       // endian machines it works fine, however on big endian machines it
1758       // exhibits surprising behaviour:
1759       //
1760       //   uint32x2_t x = {42, 64};
1761       //   return vget_lane_u32(x, 0); // Will return 64.
1762       //
1763       // Because of this, explicitly call out that it is non-portable.
1764       //
1765       SemaRef.Diag(IList->getBeginLoc(),
1766                    diag::warn_neon_vector_initializer_non_portable);
1767 
1768       const char *typeCode;
1769       unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1770 
1771       if (elementType->isFloatingType())
1772         typeCode = "f";
1773       else if (elementType->isSignedIntegerType())
1774         typeCode = "s";
1775       else if (elementType->isUnsignedIntegerType())
1776         typeCode = "u";
1777       else
1778         llvm_unreachable("Invalid element type!");
1779 
1780       SemaRef.Diag(IList->getBeginLoc(),
1781                    SemaRef.Context.getTypeSize(VT) > 64
1782                        ? diag::note_neon_vector_initializer_non_portable_q
1783                        : diag::note_neon_vector_initializer_non_portable)
1784           << typeCode << typeSize;
1785     }
1786 
1787     return;
1788   }
1789 
1790   InitializedEntity ElementEntity =
1791     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1792 
1793   // OpenCL initializers allows vectors to be constructed from vectors.
1794   for (unsigned i = 0; i < maxElements; ++i) {
1795     // Don't attempt to go past the end of the init list
1796     if (Index >= IList->getNumInits())
1797       break;
1798 
1799     ElementEntity.setElementIndex(Index);
1800 
1801     QualType IType = IList->getInit(Index)->getType();
1802     if (!IType->isVectorType()) {
1803       CheckSubElementType(ElementEntity, IList, elementType, Index,
1804                           StructuredList, StructuredIndex);
1805       ++numEltsInit;
1806     } else {
1807       QualType VecType;
1808       const VectorType *IVT = IType->castAs<VectorType>();
1809       unsigned numIElts = IVT->getNumElements();
1810 
1811       if (IType->isExtVectorType())
1812         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1813       else
1814         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1815                                                 IVT->getVectorKind());
1816       CheckSubElementType(ElementEntity, IList, VecType, Index,
1817                           StructuredList, StructuredIndex);
1818       numEltsInit += numIElts;
1819     }
1820   }
1821 
1822   // OpenCL requires all elements to be initialized.
1823   if (numEltsInit != maxElements) {
1824     if (!VerifyOnly)
1825       SemaRef.Diag(IList->getBeginLoc(),
1826                    diag::err_vector_incorrect_num_initializers)
1827           << (numEltsInit < maxElements) << maxElements << numEltsInit;
1828     hadError = true;
1829   }
1830 }
1831 
1832 /// Check if the type of a class element has an accessible destructor, and marks
1833 /// it referenced. Returns true if we shouldn't form a reference to the
1834 /// destructor.
1835 ///
1836 /// Aggregate initialization requires a class element's destructor be
1837 /// accessible per 11.6.1 [dcl.init.aggr]:
1838 ///
1839 /// The destructor for each element of class type is potentially invoked
1840 /// (15.4 [class.dtor]) from the context where the aggregate initialization
1841 /// occurs.
1842 static bool checkDestructorReference(QualType ElementType, SourceLocation Loc,
1843                                      Sema &SemaRef) {
1844   auto *CXXRD = ElementType->getAsCXXRecordDecl();
1845   if (!CXXRD)
1846     return false;
1847 
1848   CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD);
1849   SemaRef.CheckDestructorAccess(Loc, Destructor,
1850                                 SemaRef.PDiag(diag::err_access_dtor_temp)
1851                                 << ElementType);
1852   SemaRef.MarkFunctionReferenced(Loc, Destructor);
1853   return SemaRef.DiagnoseUseOfDecl(Destructor, Loc);
1854 }
1855 
1856 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1857                                      InitListExpr *IList, QualType &DeclType,
1858                                      llvm::APSInt elementIndex,
1859                                      bool SubobjectIsDesignatorContext,
1860                                      unsigned &Index,
1861                                      InitListExpr *StructuredList,
1862                                      unsigned &StructuredIndex) {
1863   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1864 
1865   if (!VerifyOnly) {
1866     if (checkDestructorReference(arrayType->getElementType(),
1867                                  IList->getEndLoc(), SemaRef)) {
1868       hadError = true;
1869       return;
1870     }
1871   }
1872 
1873   // Check for the special-case of initializing an array with a string.
1874   if (Index < IList->getNumInits()) {
1875     if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1876         SIF_None) {
1877       // We place the string literal directly into the resulting
1878       // initializer list. This is the only place where the structure
1879       // of the structured initializer list doesn't match exactly,
1880       // because doing so would involve allocating one character
1881       // constant for each string.
1882       // FIXME: Should we do these checks in verify-only mode too?
1883       if (!VerifyOnly)
1884         CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1885       if (StructuredList) {
1886         UpdateStructuredListElement(StructuredList, StructuredIndex,
1887                                     IList->getInit(Index));
1888         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1889       }
1890       ++Index;
1891       return;
1892     }
1893   }
1894   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1895     // Check for VLAs; in standard C it would be possible to check this
1896     // earlier, but I don't know where clang accepts VLAs (gcc accepts
1897     // them in all sorts of strange places).
1898     if (!VerifyOnly)
1899       SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(),
1900                    diag::err_variable_object_no_init)
1901           << VAT->getSizeExpr()->getSourceRange();
1902     hadError = true;
1903     ++Index;
1904     ++StructuredIndex;
1905     return;
1906   }
1907 
1908   // We might know the maximum number of elements in advance.
1909   llvm::APSInt maxElements(elementIndex.getBitWidth(),
1910                            elementIndex.isUnsigned());
1911   bool maxElementsKnown = false;
1912   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1913     maxElements = CAT->getSize();
1914     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1915     elementIndex.setIsUnsigned(maxElements.isUnsigned());
1916     maxElementsKnown = true;
1917   }
1918 
1919   QualType elementType = arrayType->getElementType();
1920   while (Index < IList->getNumInits()) {
1921     Expr *Init = IList->getInit(Index);
1922     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1923       // If we're not the subobject that matches up with the '{' for
1924       // the designator, we shouldn't be handling the
1925       // designator. Return immediately.
1926       if (!SubobjectIsDesignatorContext)
1927         return;
1928 
1929       // Handle this designated initializer. elementIndex will be
1930       // updated to be the next array element we'll initialize.
1931       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1932                                      DeclType, nullptr, &elementIndex, Index,
1933                                      StructuredList, StructuredIndex, true,
1934                                      false)) {
1935         hadError = true;
1936         continue;
1937       }
1938 
1939       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1940         maxElements = maxElements.extend(elementIndex.getBitWidth());
1941       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1942         elementIndex = elementIndex.extend(maxElements.getBitWidth());
1943       elementIndex.setIsUnsigned(maxElements.isUnsigned());
1944 
1945       // If the array is of incomplete type, keep track of the number of
1946       // elements in the initializer.
1947       if (!maxElementsKnown && elementIndex > maxElements)
1948         maxElements = elementIndex;
1949 
1950       continue;
1951     }
1952 
1953     // If we know the maximum number of elements, and we've already
1954     // hit it, stop consuming elements in the initializer list.
1955     if (maxElementsKnown && elementIndex == maxElements)
1956       break;
1957 
1958     InitializedEntity ElementEntity =
1959       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1960                                            Entity);
1961     // Check this element.
1962     CheckSubElementType(ElementEntity, IList, elementType, Index,
1963                         StructuredList, StructuredIndex);
1964     ++elementIndex;
1965 
1966     // If the array is of incomplete type, keep track of the number of
1967     // elements in the initializer.
1968     if (!maxElementsKnown && elementIndex > maxElements)
1969       maxElements = elementIndex;
1970   }
1971   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1972     // If this is an incomplete array type, the actual type needs to
1973     // be calculated here.
1974     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1975     if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) {
1976       // Sizing an array implicitly to zero is not allowed by ISO C,
1977       // but is supported by GNU.
1978       SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size);
1979     }
1980 
1981     DeclType = SemaRef.Context.getConstantArrayType(
1982         elementType, maxElements, nullptr, ArrayType::Normal, 0);
1983   }
1984   if (!hadError) {
1985     // If there are any members of the array that get value-initialized, check
1986     // that is possible. That happens if we know the bound and don't have
1987     // enough elements, or if we're performing an array new with an unknown
1988     // bound.
1989     if ((maxElementsKnown && elementIndex < maxElements) ||
1990         Entity.isVariableLengthArrayNew())
1991       CheckEmptyInitializable(
1992           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1993           IList->getEndLoc());
1994   }
1995 }
1996 
1997 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1998                                              Expr *InitExpr,
1999                                              FieldDecl *Field,
2000                                              bool TopLevelObject) {
2001   // Handle GNU flexible array initializers.
2002   unsigned FlexArrayDiag;
2003   if (isa<InitListExpr>(InitExpr) &&
2004       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
2005     // Empty flexible array init always allowed as an extension
2006     FlexArrayDiag = diag::ext_flexible_array_init;
2007   } else if (SemaRef.getLangOpts().CPlusPlus) {
2008     // Disallow flexible array init in C++; it is not required for gcc
2009     // compatibility, and it needs work to IRGen correctly in general.
2010     FlexArrayDiag = diag::err_flexible_array_init;
2011   } else if (!TopLevelObject) {
2012     // Disallow flexible array init on non-top-level object
2013     FlexArrayDiag = diag::err_flexible_array_init;
2014   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
2015     // Disallow flexible array init on anything which is not a variable.
2016     FlexArrayDiag = diag::err_flexible_array_init;
2017   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
2018     // Disallow flexible array init on local variables.
2019     FlexArrayDiag = diag::err_flexible_array_init;
2020   } else {
2021     // Allow other cases.
2022     FlexArrayDiag = diag::ext_flexible_array_init;
2023   }
2024 
2025   if (!VerifyOnly) {
2026     SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag)
2027         << InitExpr->getBeginLoc();
2028     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2029       << Field;
2030   }
2031 
2032   return FlexArrayDiag != diag::ext_flexible_array_init;
2033 }
2034 
2035 void InitListChecker::CheckStructUnionTypes(
2036     const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
2037     CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field,
2038     bool SubobjectIsDesignatorContext, unsigned &Index,
2039     InitListExpr *StructuredList, unsigned &StructuredIndex,
2040     bool TopLevelObject) {
2041   RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl();
2042 
2043   // If the record is invalid, some of it's members are invalid. To avoid
2044   // confusion, we forgo checking the initializer for the entire record.
2045   if (structDecl->isInvalidDecl()) {
2046     // Assume it was supposed to consume a single initializer.
2047     ++Index;
2048     hadError = true;
2049     return;
2050   }
2051 
2052   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
2053     RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
2054 
2055     if (!VerifyOnly)
2056       for (FieldDecl *FD : RD->fields()) {
2057         QualType ET = SemaRef.Context.getBaseElementType(FD->getType());
2058         if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
2059           hadError = true;
2060           return;
2061         }
2062       }
2063 
2064     // If there's a default initializer, use it.
2065     if (isa<CXXRecordDecl>(RD) &&
2066         cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
2067       if (!StructuredList)
2068         return;
2069       for (RecordDecl::field_iterator FieldEnd = RD->field_end();
2070            Field != FieldEnd; ++Field) {
2071         if (Field->hasInClassInitializer()) {
2072           StructuredList->setInitializedFieldInUnion(*Field);
2073           // FIXME: Actually build a CXXDefaultInitExpr?
2074           return;
2075         }
2076       }
2077     }
2078 
2079     // Value-initialize the first member of the union that isn't an unnamed
2080     // bitfield.
2081     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
2082          Field != FieldEnd; ++Field) {
2083       if (!Field->isUnnamedBitfield()) {
2084         CheckEmptyInitializable(
2085             InitializedEntity::InitializeMember(*Field, &Entity),
2086             IList->getEndLoc());
2087         if (StructuredList)
2088           StructuredList->setInitializedFieldInUnion(*Field);
2089         break;
2090       }
2091     }
2092     return;
2093   }
2094 
2095   bool InitializedSomething = false;
2096 
2097   // If we have any base classes, they are initialized prior to the fields.
2098   for (auto &Base : Bases) {
2099     Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
2100 
2101     // Designated inits always initialize fields, so if we see one, all
2102     // remaining base classes have no explicit initializer.
2103     if (Init && isa<DesignatedInitExpr>(Init))
2104       Init = nullptr;
2105 
2106     SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc();
2107     InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
2108         SemaRef.Context, &Base, false, &Entity);
2109     if (Init) {
2110       CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
2111                           StructuredList, StructuredIndex);
2112       InitializedSomething = true;
2113     } else {
2114       CheckEmptyInitializable(BaseEntity, InitLoc);
2115     }
2116 
2117     if (!VerifyOnly)
2118       if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) {
2119         hadError = true;
2120         return;
2121       }
2122   }
2123 
2124   // If structDecl is a forward declaration, this loop won't do
2125   // anything except look at designated initializers; That's okay,
2126   // because an error should get printed out elsewhere. It might be
2127   // worthwhile to skip over the rest of the initializer, though.
2128   RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
2129   RecordDecl::field_iterator FieldEnd = RD->field_end();
2130   bool CheckForMissingFields =
2131     !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts());
2132   bool HasDesignatedInit = false;
2133 
2134   while (Index < IList->getNumInits()) {
2135     Expr *Init = IList->getInit(Index);
2136     SourceLocation InitLoc = Init->getBeginLoc();
2137 
2138     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
2139       // If we're not the subobject that matches up with the '{' for
2140       // the designator, we shouldn't be handling the
2141       // designator. Return immediately.
2142       if (!SubobjectIsDesignatorContext)
2143         return;
2144 
2145       HasDesignatedInit = true;
2146 
2147       // Handle this designated initializer. Field will be updated to
2148       // the next field that we'll be initializing.
2149       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
2150                                      DeclType, &Field, nullptr, Index,
2151                                      StructuredList, StructuredIndex,
2152                                      true, TopLevelObject))
2153         hadError = true;
2154       else if (!VerifyOnly) {
2155         // Find the field named by the designated initializer.
2156         RecordDecl::field_iterator F = RD->field_begin();
2157         while (std::next(F) != Field)
2158           ++F;
2159         QualType ET = SemaRef.Context.getBaseElementType(F->getType());
2160         if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2161           hadError = true;
2162           return;
2163         }
2164       }
2165 
2166       InitializedSomething = true;
2167 
2168       // Disable check for missing fields when designators are used.
2169       // This matches gcc behaviour.
2170       CheckForMissingFields = false;
2171       continue;
2172     }
2173 
2174     if (Field == FieldEnd) {
2175       // We've run out of fields. We're done.
2176       break;
2177     }
2178 
2179     // We've already initialized a member of a union. We're done.
2180     if (InitializedSomething && DeclType->isUnionType())
2181       break;
2182 
2183     // If we've hit the flexible array member at the end, we're done.
2184     if (Field->getType()->isIncompleteArrayType())
2185       break;
2186 
2187     if (Field->isUnnamedBitfield()) {
2188       // Don't initialize unnamed bitfields, e.g. "int : 20;"
2189       ++Field;
2190       continue;
2191     }
2192 
2193     // Make sure we can use this declaration.
2194     bool InvalidUse;
2195     if (VerifyOnly)
2196       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2197     else
2198       InvalidUse = SemaRef.DiagnoseUseOfDecl(
2199           *Field, IList->getInit(Index)->getBeginLoc());
2200     if (InvalidUse) {
2201       ++Index;
2202       ++Field;
2203       hadError = true;
2204       continue;
2205     }
2206 
2207     if (!VerifyOnly) {
2208       QualType ET = SemaRef.Context.getBaseElementType(Field->getType());
2209       if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2210         hadError = true;
2211         return;
2212       }
2213     }
2214 
2215     InitializedEntity MemberEntity =
2216       InitializedEntity::InitializeMember(*Field, &Entity);
2217     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2218                         StructuredList, StructuredIndex);
2219     InitializedSomething = true;
2220 
2221     if (DeclType->isUnionType() && StructuredList) {
2222       // Initialize the first field within the union.
2223       StructuredList->setInitializedFieldInUnion(*Field);
2224     }
2225 
2226     ++Field;
2227   }
2228 
2229   // Emit warnings for missing struct field initializers.
2230   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
2231       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
2232       !DeclType->isUnionType()) {
2233     // It is possible we have one or more unnamed bitfields remaining.
2234     // Find first (if any) named field and emit warning.
2235     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
2236          it != end; ++it) {
2237       if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
2238         SemaRef.Diag(IList->getSourceRange().getEnd(),
2239                      diag::warn_missing_field_initializers) << *it;
2240         break;
2241       }
2242     }
2243   }
2244 
2245   // Check that any remaining fields can be value-initialized if we're not
2246   // building a structured list. (If we are, we'll check this later.)
2247   if (!StructuredList && Field != FieldEnd && !DeclType->isUnionType() &&
2248       !Field->getType()->isIncompleteArrayType()) {
2249     for (; Field != FieldEnd && !hadError; ++Field) {
2250       if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
2251         CheckEmptyInitializable(
2252             InitializedEntity::InitializeMember(*Field, &Entity),
2253             IList->getEndLoc());
2254     }
2255   }
2256 
2257   // Check that the types of the remaining fields have accessible destructors.
2258   if (!VerifyOnly) {
2259     // If the initializer expression has a designated initializer, check the
2260     // elements for which a designated initializer is not provided too.
2261     RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin()
2262                                                      : Field;
2263     for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) {
2264       QualType ET = SemaRef.Context.getBaseElementType(I->getType());
2265       if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
2266         hadError = true;
2267         return;
2268       }
2269     }
2270   }
2271 
2272   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
2273       Index >= IList->getNumInits())
2274     return;
2275 
2276   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
2277                              TopLevelObject)) {
2278     hadError = true;
2279     ++Index;
2280     return;
2281   }
2282 
2283   InitializedEntity MemberEntity =
2284     InitializedEntity::InitializeMember(*Field, &Entity);
2285 
2286   if (isa<InitListExpr>(IList->getInit(Index)))
2287     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2288                         StructuredList, StructuredIndex);
2289   else
2290     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
2291                           StructuredList, StructuredIndex);
2292 }
2293 
2294 /// Expand a field designator that refers to a member of an
2295 /// anonymous struct or union into a series of field designators that
2296 /// refers to the field within the appropriate subobject.
2297 ///
2298 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
2299                                            DesignatedInitExpr *DIE,
2300                                            unsigned DesigIdx,
2301                                            IndirectFieldDecl *IndirectField) {
2302   typedef DesignatedInitExpr::Designator Designator;
2303 
2304   // Build the replacement designators.
2305   SmallVector<Designator, 4> Replacements;
2306   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
2307        PE = IndirectField->chain_end(); PI != PE; ++PI) {
2308     if (PI + 1 == PE)
2309       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2310                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
2311                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
2312     else
2313       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2314                                         SourceLocation(), SourceLocation()));
2315     assert(isa<FieldDecl>(*PI));
2316     Replacements.back().setField(cast<FieldDecl>(*PI));
2317   }
2318 
2319   // Expand the current designator into the set of replacement
2320   // designators, so we have a full subobject path down to where the
2321   // member of the anonymous struct/union is actually stored.
2322   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
2323                         &Replacements[0] + Replacements.size());
2324 }
2325 
2326 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
2327                                                    DesignatedInitExpr *DIE) {
2328   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
2329   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
2330   for (unsigned I = 0; I < NumIndexExprs; ++I)
2331     IndexExprs[I] = DIE->getSubExpr(I + 1);
2332   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
2333                                     IndexExprs,
2334                                     DIE->getEqualOrColonLoc(),
2335                                     DIE->usesGNUSyntax(), DIE->getInit());
2336 }
2337 
2338 namespace {
2339 
2340 // Callback to only accept typo corrections that are for field members of
2341 // the given struct or union.
2342 class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback {
2343  public:
2344   explicit FieldInitializerValidatorCCC(RecordDecl *RD)
2345       : Record(RD) {}
2346 
2347   bool ValidateCandidate(const TypoCorrection &candidate) override {
2348     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
2349     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
2350   }
2351 
2352   std::unique_ptr<CorrectionCandidateCallback> clone() override {
2353     return std::make_unique<FieldInitializerValidatorCCC>(*this);
2354   }
2355 
2356  private:
2357   RecordDecl *Record;
2358 };
2359 
2360 } // end anonymous namespace
2361 
2362 /// Check the well-formedness of a C99 designated initializer.
2363 ///
2364 /// Determines whether the designated initializer @p DIE, which
2365 /// resides at the given @p Index within the initializer list @p
2366 /// IList, is well-formed for a current object of type @p DeclType
2367 /// (C99 6.7.8). The actual subobject that this designator refers to
2368 /// within the current subobject is returned in either
2369 /// @p NextField or @p NextElementIndex (whichever is appropriate).
2370 ///
2371 /// @param IList  The initializer list in which this designated
2372 /// initializer occurs.
2373 ///
2374 /// @param DIE The designated initializer expression.
2375 ///
2376 /// @param DesigIdx  The index of the current designator.
2377 ///
2378 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
2379 /// into which the designation in @p DIE should refer.
2380 ///
2381 /// @param NextField  If non-NULL and the first designator in @p DIE is
2382 /// a field, this will be set to the field declaration corresponding
2383 /// to the field named by the designator. On input, this is expected to be
2384 /// the next field that would be initialized in the absence of designation,
2385 /// if the complete object being initialized is a struct.
2386 ///
2387 /// @param NextElementIndex  If non-NULL and the first designator in @p
2388 /// DIE is an array designator or GNU array-range designator, this
2389 /// will be set to the last index initialized by this designator.
2390 ///
2391 /// @param Index  Index into @p IList where the designated initializer
2392 /// @p DIE occurs.
2393 ///
2394 /// @param StructuredList  The initializer list expression that
2395 /// describes all of the subobject initializers in the order they'll
2396 /// actually be initialized.
2397 ///
2398 /// @returns true if there was an error, false otherwise.
2399 bool
2400 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
2401                                             InitListExpr *IList,
2402                                             DesignatedInitExpr *DIE,
2403                                             unsigned DesigIdx,
2404                                             QualType &CurrentObjectType,
2405                                           RecordDecl::field_iterator *NextField,
2406                                             llvm::APSInt *NextElementIndex,
2407                                             unsigned &Index,
2408                                             InitListExpr *StructuredList,
2409                                             unsigned &StructuredIndex,
2410                                             bool FinishSubobjectInit,
2411                                             bool TopLevelObject) {
2412   if (DesigIdx == DIE->size()) {
2413     // C++20 designated initialization can result in direct-list-initialization
2414     // of the designated subobject. This is the only way that we can end up
2415     // performing direct initialization as part of aggregate initialization, so
2416     // it needs special handling.
2417     if (DIE->isDirectInit()) {
2418       Expr *Init = DIE->getInit();
2419       assert(isa<InitListExpr>(Init) &&
2420              "designator result in direct non-list initialization?");
2421       InitializationKind Kind = InitializationKind::CreateDirectList(
2422           DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc());
2423       InitializationSequence Seq(SemaRef, Entity, Kind, Init,
2424                                  /*TopLevelOfInitList*/ true);
2425       if (StructuredList) {
2426         ExprResult Result = VerifyOnly
2427                                 ? getDummyInit()
2428                                 : Seq.Perform(SemaRef, Entity, Kind, Init);
2429         UpdateStructuredListElement(StructuredList, StructuredIndex,
2430                                     Result.get());
2431       }
2432       ++Index;
2433       return !Seq;
2434     }
2435 
2436     // Check the actual initialization for the designated object type.
2437     bool prevHadError = hadError;
2438 
2439     // Temporarily remove the designator expression from the
2440     // initializer list that the child calls see, so that we don't try
2441     // to re-process the designator.
2442     unsigned OldIndex = Index;
2443     IList->setInit(OldIndex, DIE->getInit());
2444 
2445     CheckSubElementType(Entity, IList, CurrentObjectType, Index, StructuredList,
2446                         StructuredIndex, /*DirectlyDesignated=*/true);
2447 
2448     // Restore the designated initializer expression in the syntactic
2449     // form of the initializer list.
2450     if (IList->getInit(OldIndex) != DIE->getInit())
2451       DIE->setInit(IList->getInit(OldIndex));
2452     IList->setInit(OldIndex, DIE);
2453 
2454     return hadError && !prevHadError;
2455   }
2456 
2457   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
2458   bool IsFirstDesignator = (DesigIdx == 0);
2459   if (IsFirstDesignator ? FullyStructuredList : StructuredList) {
2460     // Determine the structural initializer list that corresponds to the
2461     // current subobject.
2462     if (IsFirstDesignator)
2463       StructuredList = FullyStructuredList;
2464     else {
2465       Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2466           StructuredList->getInit(StructuredIndex) : nullptr;
2467       if (!ExistingInit && StructuredList->hasArrayFiller())
2468         ExistingInit = StructuredList->getArrayFiller();
2469 
2470       if (!ExistingInit)
2471         StructuredList = getStructuredSubobjectInit(
2472             IList, Index, CurrentObjectType, StructuredList, StructuredIndex,
2473             SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2474       else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2475         StructuredList = Result;
2476       else {
2477         // We are creating an initializer list that initializes the
2478         // subobjects of the current object, but there was already an
2479         // initialization that completely initialized the current
2480         // subobject, e.g., by a compound literal:
2481         //
2482         // struct X { int a, b; };
2483         // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2484         //
2485         // Here, xs[0].a == 1 and xs[0].b == 3, since the second,
2486         // designated initializer re-initializes only its current object
2487         // subobject [0].b.
2488         diagnoseInitOverride(ExistingInit,
2489                              SourceRange(D->getBeginLoc(), DIE->getEndLoc()),
2490                              /*FullyOverwritten=*/false);
2491 
2492         if (!VerifyOnly) {
2493           if (DesignatedInitUpdateExpr *E =
2494                   dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2495             StructuredList = E->getUpdater();
2496           else {
2497             DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context)
2498                 DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(),
2499                                          ExistingInit, DIE->getEndLoc());
2500             StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2501             StructuredList = DIUE->getUpdater();
2502           }
2503         } else {
2504           // We don't need to track the structured representation of a
2505           // designated init update of an already-fully-initialized object in
2506           // verify-only mode. The only reason we would need the structure is
2507           // to determine where the uninitialized "holes" are, and in this
2508           // case, we know there aren't any and we can't introduce any.
2509           StructuredList = nullptr;
2510         }
2511       }
2512     }
2513   }
2514 
2515   if (D->isFieldDesignator()) {
2516     // C99 6.7.8p7:
2517     //
2518     //   If a designator has the form
2519     //
2520     //      . identifier
2521     //
2522     //   then the current object (defined below) shall have
2523     //   structure or union type and the identifier shall be the
2524     //   name of a member of that type.
2525     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2526     if (!RT) {
2527       SourceLocation Loc = D->getDotLoc();
2528       if (Loc.isInvalid())
2529         Loc = D->getFieldLoc();
2530       if (!VerifyOnly)
2531         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2532           << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2533       ++Index;
2534       return true;
2535     }
2536 
2537     FieldDecl *KnownField = D->getField();
2538     if (!KnownField) {
2539       IdentifierInfo *FieldName = D->getFieldName();
2540       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2541       for (NamedDecl *ND : Lookup) {
2542         if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2543           KnownField = FD;
2544           break;
2545         }
2546         if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2547           // In verify mode, don't modify the original.
2548           if (VerifyOnly)
2549             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2550           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2551           D = DIE->getDesignator(DesigIdx);
2552           KnownField = cast<FieldDecl>(*IFD->chain_begin());
2553           break;
2554         }
2555       }
2556       if (!KnownField) {
2557         if (VerifyOnly) {
2558           ++Index;
2559           return true;  // No typo correction when just trying this out.
2560         }
2561 
2562         // Name lookup found something, but it wasn't a field.
2563         if (!Lookup.empty()) {
2564           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2565             << FieldName;
2566           SemaRef.Diag(Lookup.front()->getLocation(),
2567                        diag::note_field_designator_found);
2568           ++Index;
2569           return true;
2570         }
2571 
2572         // Name lookup didn't find anything.
2573         // Determine whether this was a typo for another field name.
2574         FieldInitializerValidatorCCC CCC(RT->getDecl());
2575         if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2576                 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2577                 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC,
2578                 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2579           SemaRef.diagnoseTypo(
2580               Corrected,
2581               SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2582                 << FieldName << CurrentObjectType);
2583           KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2584           hadError = true;
2585         } else {
2586           // Typo correction didn't find anything.
2587           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2588             << FieldName << CurrentObjectType;
2589           ++Index;
2590           return true;
2591         }
2592       }
2593     }
2594 
2595     unsigned NumBases = 0;
2596     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2597       NumBases = CXXRD->getNumBases();
2598 
2599     unsigned FieldIndex = NumBases;
2600 
2601     for (auto *FI : RT->getDecl()->fields()) {
2602       if (FI->isUnnamedBitfield())
2603         continue;
2604       if (declaresSameEntity(KnownField, FI)) {
2605         KnownField = FI;
2606         break;
2607       }
2608       ++FieldIndex;
2609     }
2610 
2611     RecordDecl::field_iterator Field =
2612         RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2613 
2614     // All of the fields of a union are located at the same place in
2615     // the initializer list.
2616     if (RT->getDecl()->isUnion()) {
2617       FieldIndex = 0;
2618       if (StructuredList) {
2619         FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2620         if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
2621           assert(StructuredList->getNumInits() == 1
2622                  && "A union should never have more than one initializer!");
2623 
2624           Expr *ExistingInit = StructuredList->getInit(0);
2625           if (ExistingInit) {
2626             // We're about to throw away an initializer, emit warning.
2627             diagnoseInitOverride(
2628                 ExistingInit, SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2629           }
2630 
2631           // remove existing initializer
2632           StructuredList->resizeInits(SemaRef.Context, 0);
2633           StructuredList->setInitializedFieldInUnion(nullptr);
2634         }
2635 
2636         StructuredList->setInitializedFieldInUnion(*Field);
2637       }
2638     }
2639 
2640     // Make sure we can use this declaration.
2641     bool InvalidUse;
2642     if (VerifyOnly)
2643       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2644     else
2645       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2646     if (InvalidUse) {
2647       ++Index;
2648       return true;
2649     }
2650 
2651     // C++20 [dcl.init.list]p3:
2652     //   The ordered identifiers in the designators of the designated-
2653     //   initializer-list shall form a subsequence of the ordered identifiers
2654     //   in the direct non-static data members of T.
2655     //
2656     // Note that this is not a condition on forming the aggregate
2657     // initialization, only on actually performing initialization,
2658     // so it is not checked in VerifyOnly mode.
2659     //
2660     // FIXME: This is the only reordering diagnostic we produce, and it only
2661     // catches cases where we have a top-level field designator that jumps
2662     // backwards. This is the only such case that is reachable in an
2663     // otherwise-valid C++20 program, so is the only case that's required for
2664     // conformance, but for consistency, we should diagnose all the other
2665     // cases where a designator takes us backwards too.
2666     if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus &&
2667         NextField &&
2668         (*NextField == RT->getDecl()->field_end() ||
2669          (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) {
2670       // Find the field that we just initialized.
2671       FieldDecl *PrevField = nullptr;
2672       for (auto FI = RT->getDecl()->field_begin();
2673            FI != RT->getDecl()->field_end(); ++FI) {
2674         if (FI->isUnnamedBitfield())
2675           continue;
2676         if (*NextField != RT->getDecl()->field_end() &&
2677             declaresSameEntity(*FI, **NextField))
2678           break;
2679         PrevField = *FI;
2680       }
2681 
2682       if (PrevField &&
2683           PrevField->getFieldIndex() > KnownField->getFieldIndex()) {
2684         SemaRef.Diag(DIE->getBeginLoc(), diag::ext_designated_init_reordered)
2685             << KnownField << PrevField << DIE->getSourceRange();
2686 
2687         unsigned OldIndex = NumBases + PrevField->getFieldIndex();
2688         if (StructuredList && OldIndex <= StructuredList->getNumInits()) {
2689           if (Expr *PrevInit = StructuredList->getInit(OldIndex)) {
2690             SemaRef.Diag(PrevInit->getBeginLoc(),
2691                          diag::note_previous_field_init)
2692                 << PrevField << PrevInit->getSourceRange();
2693           }
2694         }
2695       }
2696     }
2697 
2698 
2699     // Update the designator with the field declaration.
2700     if (!VerifyOnly)
2701       D->setField(*Field);
2702 
2703     // Make sure that our non-designated initializer list has space
2704     // for a subobject corresponding to this field.
2705     if (StructuredList && FieldIndex >= StructuredList->getNumInits())
2706       StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2707 
2708     // This designator names a flexible array member.
2709     if (Field->getType()->isIncompleteArrayType()) {
2710       bool Invalid = false;
2711       if ((DesigIdx + 1) != DIE->size()) {
2712         // We can't designate an object within the flexible array
2713         // member (because GCC doesn't allow it).
2714         if (!VerifyOnly) {
2715           DesignatedInitExpr::Designator *NextD
2716             = DIE->getDesignator(DesigIdx + 1);
2717           SemaRef.Diag(NextD->getBeginLoc(),
2718                        diag::err_designator_into_flexible_array_member)
2719               << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc());
2720           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2721             << *Field;
2722         }
2723         Invalid = true;
2724       }
2725 
2726       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2727           !isa<StringLiteral>(DIE->getInit())) {
2728         // The initializer is not an initializer list.
2729         if (!VerifyOnly) {
2730           SemaRef.Diag(DIE->getInit()->getBeginLoc(),
2731                        diag::err_flexible_array_init_needs_braces)
2732               << DIE->getInit()->getSourceRange();
2733           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2734             << *Field;
2735         }
2736         Invalid = true;
2737       }
2738 
2739       // Check GNU flexible array initializer.
2740       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2741                                              TopLevelObject))
2742         Invalid = true;
2743 
2744       if (Invalid) {
2745         ++Index;
2746         return true;
2747       }
2748 
2749       // Initialize the array.
2750       bool prevHadError = hadError;
2751       unsigned newStructuredIndex = FieldIndex;
2752       unsigned OldIndex = Index;
2753       IList->setInit(Index, DIE->getInit());
2754 
2755       InitializedEntity MemberEntity =
2756         InitializedEntity::InitializeMember(*Field, &Entity);
2757       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2758                           StructuredList, newStructuredIndex);
2759 
2760       IList->setInit(OldIndex, DIE);
2761       if (hadError && !prevHadError) {
2762         ++Field;
2763         ++FieldIndex;
2764         if (NextField)
2765           *NextField = Field;
2766         StructuredIndex = FieldIndex;
2767         return true;
2768       }
2769     } else {
2770       // Recurse to check later designated subobjects.
2771       QualType FieldType = Field->getType();
2772       unsigned newStructuredIndex = FieldIndex;
2773 
2774       InitializedEntity MemberEntity =
2775         InitializedEntity::InitializeMember(*Field, &Entity);
2776       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2777                                      FieldType, nullptr, nullptr, Index,
2778                                      StructuredList, newStructuredIndex,
2779                                      FinishSubobjectInit, false))
2780         return true;
2781     }
2782 
2783     // Find the position of the next field to be initialized in this
2784     // subobject.
2785     ++Field;
2786     ++FieldIndex;
2787 
2788     // If this the first designator, our caller will continue checking
2789     // the rest of this struct/class/union subobject.
2790     if (IsFirstDesignator) {
2791       if (NextField)
2792         *NextField = Field;
2793       StructuredIndex = FieldIndex;
2794       return false;
2795     }
2796 
2797     if (!FinishSubobjectInit)
2798       return false;
2799 
2800     // We've already initialized something in the union; we're done.
2801     if (RT->getDecl()->isUnion())
2802       return hadError;
2803 
2804     // Check the remaining fields within this class/struct/union subobject.
2805     bool prevHadError = hadError;
2806 
2807     auto NoBases =
2808         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
2809                                         CXXRecordDecl::base_class_iterator());
2810     CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
2811                           false, Index, StructuredList, FieldIndex);
2812     return hadError && !prevHadError;
2813   }
2814 
2815   // C99 6.7.8p6:
2816   //
2817   //   If a designator has the form
2818   //
2819   //      [ constant-expression ]
2820   //
2821   //   then the current object (defined below) shall have array
2822   //   type and the expression shall be an integer constant
2823   //   expression. If the array is of unknown size, any
2824   //   nonnegative value is valid.
2825   //
2826   // Additionally, cope with the GNU extension that permits
2827   // designators of the form
2828   //
2829   //      [ constant-expression ... constant-expression ]
2830   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2831   if (!AT) {
2832     if (!VerifyOnly)
2833       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2834         << CurrentObjectType;
2835     ++Index;
2836     return true;
2837   }
2838 
2839   Expr *IndexExpr = nullptr;
2840   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2841   if (D->isArrayDesignator()) {
2842     IndexExpr = DIE->getArrayIndex(*D);
2843     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2844     DesignatedEndIndex = DesignatedStartIndex;
2845   } else {
2846     assert(D->isArrayRangeDesignator() && "Need array-range designator");
2847 
2848     DesignatedStartIndex =
2849       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2850     DesignatedEndIndex =
2851       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2852     IndexExpr = DIE->getArrayRangeEnd(*D);
2853 
2854     // Codegen can't handle evaluating array range designators that have side
2855     // effects, because we replicate the AST value for each initialized element.
2856     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2857     // elements with something that has a side effect, so codegen can emit an
2858     // "error unsupported" error instead of miscompiling the app.
2859     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2860         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2861       FullyStructuredList->sawArrayRangeDesignator();
2862   }
2863 
2864   if (isa<ConstantArrayType>(AT)) {
2865     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2866     DesignatedStartIndex
2867       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2868     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2869     DesignatedEndIndex
2870       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2871     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2872     if (DesignatedEndIndex >= MaxElements) {
2873       if (!VerifyOnly)
2874         SemaRef.Diag(IndexExpr->getBeginLoc(),
2875                      diag::err_array_designator_too_large)
2876             << toString(DesignatedEndIndex, 10) << toString(MaxElements, 10)
2877             << IndexExpr->getSourceRange();
2878       ++Index;
2879       return true;
2880     }
2881   } else {
2882     unsigned DesignatedIndexBitWidth =
2883       ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2884     DesignatedStartIndex =
2885       DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2886     DesignatedEndIndex =
2887       DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2888     DesignatedStartIndex.setIsUnsigned(true);
2889     DesignatedEndIndex.setIsUnsigned(true);
2890   }
2891 
2892   bool IsStringLiteralInitUpdate =
2893       StructuredList && StructuredList->isStringLiteralInit();
2894   if (IsStringLiteralInitUpdate && VerifyOnly) {
2895     // We're just verifying an update to a string literal init. We don't need
2896     // to split the string up into individual characters to do that.
2897     StructuredList = nullptr;
2898   } else if (IsStringLiteralInitUpdate) {
2899     // We're modifying a string literal init; we have to decompose the string
2900     // so we can modify the individual characters.
2901     ASTContext &Context = SemaRef.Context;
2902     Expr *SubExpr = StructuredList->getInit(0)->IgnoreParenImpCasts();
2903 
2904     // Compute the character type
2905     QualType CharTy = AT->getElementType();
2906 
2907     // Compute the type of the integer literals.
2908     QualType PromotedCharTy = CharTy;
2909     if (CharTy->isPromotableIntegerType())
2910       PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2911     unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2912 
2913     if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2914       // Get the length of the string.
2915       uint64_t StrLen = SL->getLength();
2916       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2917         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2918       StructuredList->resizeInits(Context, StrLen);
2919 
2920       // Build a literal for each character in the string, and put them into
2921       // the init list.
2922       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2923         llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2924         Expr *Init = new (Context) IntegerLiteral(
2925             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2926         if (CharTy != PromotedCharTy)
2927           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2928                                           Init, nullptr, VK_PRValue,
2929                                           FPOptionsOverride());
2930         StructuredList->updateInit(Context, i, Init);
2931       }
2932     } else {
2933       ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2934       std::string Str;
2935       Context.getObjCEncodingForType(E->getEncodedType(), Str);
2936 
2937       // Get the length of the string.
2938       uint64_t StrLen = Str.size();
2939       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2940         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2941       StructuredList->resizeInits(Context, StrLen);
2942 
2943       // Build a literal for each character in the string, and put them into
2944       // the init list.
2945       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2946         llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2947         Expr *Init = new (Context) IntegerLiteral(
2948             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2949         if (CharTy != PromotedCharTy)
2950           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2951                                           Init, nullptr, VK_PRValue,
2952                                           FPOptionsOverride());
2953         StructuredList->updateInit(Context, i, Init);
2954       }
2955     }
2956   }
2957 
2958   // Make sure that our non-designated initializer list has space
2959   // for a subobject corresponding to this array element.
2960   if (StructuredList &&
2961       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2962     StructuredList->resizeInits(SemaRef.Context,
2963                                 DesignatedEndIndex.getZExtValue() + 1);
2964 
2965   // Repeatedly perform subobject initializations in the range
2966   // [DesignatedStartIndex, DesignatedEndIndex].
2967 
2968   // Move to the next designator
2969   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2970   unsigned OldIndex = Index;
2971 
2972   InitializedEntity ElementEntity =
2973     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2974 
2975   while (DesignatedStartIndex <= DesignatedEndIndex) {
2976     // Recurse to check later designated subobjects.
2977     QualType ElementType = AT->getElementType();
2978     Index = OldIndex;
2979 
2980     ElementEntity.setElementIndex(ElementIndex);
2981     if (CheckDesignatedInitializer(
2982             ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
2983             nullptr, Index, StructuredList, ElementIndex,
2984             FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
2985             false))
2986       return true;
2987 
2988     // Move to the next index in the array that we'll be initializing.
2989     ++DesignatedStartIndex;
2990     ElementIndex = DesignatedStartIndex.getZExtValue();
2991   }
2992 
2993   // If this the first designator, our caller will continue checking
2994   // the rest of this array subobject.
2995   if (IsFirstDesignator) {
2996     if (NextElementIndex)
2997       *NextElementIndex = DesignatedStartIndex;
2998     StructuredIndex = ElementIndex;
2999     return false;
3000   }
3001 
3002   if (!FinishSubobjectInit)
3003     return false;
3004 
3005   // Check the remaining elements within this array subobject.
3006   bool prevHadError = hadError;
3007   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
3008                  /*SubobjectIsDesignatorContext=*/false, Index,
3009                  StructuredList, ElementIndex);
3010   return hadError && !prevHadError;
3011 }
3012 
3013 // Get the structured initializer list for a subobject of type
3014 // @p CurrentObjectType.
3015 InitListExpr *
3016 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
3017                                             QualType CurrentObjectType,
3018                                             InitListExpr *StructuredList,
3019                                             unsigned StructuredIndex,
3020                                             SourceRange InitRange,
3021                                             bool IsFullyOverwritten) {
3022   if (!StructuredList)
3023     return nullptr;
3024 
3025   Expr *ExistingInit = nullptr;
3026   if (StructuredIndex < StructuredList->getNumInits())
3027     ExistingInit = StructuredList->getInit(StructuredIndex);
3028 
3029   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
3030     // There might have already been initializers for subobjects of the current
3031     // object, but a subsequent initializer list will overwrite the entirety
3032     // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
3033     //
3034     // struct P { char x[6]; };
3035     // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
3036     //
3037     // The first designated initializer is ignored, and l.x is just "f".
3038     if (!IsFullyOverwritten)
3039       return Result;
3040 
3041   if (ExistingInit) {
3042     // We are creating an initializer list that initializes the
3043     // subobjects of the current object, but there was already an
3044     // initialization that completely initialized the current
3045     // subobject:
3046     //
3047     // struct X { int a, b; };
3048     // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 };
3049     //
3050     // Here, xs[0].a == 1 and xs[0].b == 3, since the second,
3051     // designated initializer overwrites the [0].b initializer
3052     // from the prior initialization.
3053     //
3054     // When the existing initializer is an expression rather than an
3055     // initializer list, we cannot decompose and update it in this way.
3056     // For example:
3057     //
3058     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
3059     //
3060     // This case is handled by CheckDesignatedInitializer.
3061     diagnoseInitOverride(ExistingInit, InitRange);
3062   }
3063 
3064   unsigned ExpectedNumInits = 0;
3065   if (Index < IList->getNumInits()) {
3066     if (auto *Init = dyn_cast_or_null<InitListExpr>(IList->getInit(Index)))
3067       ExpectedNumInits = Init->getNumInits();
3068     else
3069       ExpectedNumInits = IList->getNumInits() - Index;
3070   }
3071 
3072   InitListExpr *Result =
3073       createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits);
3074 
3075   // Link this new initializer list into the structured initializer
3076   // lists.
3077   StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
3078   return Result;
3079 }
3080 
3081 InitListExpr *
3082 InitListChecker::createInitListExpr(QualType CurrentObjectType,
3083                                     SourceRange InitRange,
3084                                     unsigned ExpectedNumInits) {
3085   InitListExpr *Result
3086     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
3087                                          InitRange.getBegin(), None,
3088                                          InitRange.getEnd());
3089 
3090   QualType ResultType = CurrentObjectType;
3091   if (!ResultType->isArrayType())
3092     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
3093   Result->setType(ResultType);
3094 
3095   // Pre-allocate storage for the structured initializer list.
3096   unsigned NumElements = 0;
3097 
3098   if (const ArrayType *AType
3099       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
3100     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
3101       NumElements = CAType->getSize().getZExtValue();
3102       // Simple heuristic so that we don't allocate a very large
3103       // initializer with many empty entries at the end.
3104       if (NumElements > ExpectedNumInits)
3105         NumElements = 0;
3106     }
3107   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) {
3108     NumElements = VType->getNumElements();
3109   } else if (CurrentObjectType->isRecordType()) {
3110     NumElements = numStructUnionElements(CurrentObjectType);
3111   }
3112 
3113   Result->reserveInits(SemaRef.Context, NumElements);
3114 
3115   return Result;
3116 }
3117 
3118 /// Update the initializer at index @p StructuredIndex within the
3119 /// structured initializer list to the value @p expr.
3120 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
3121                                                   unsigned &StructuredIndex,
3122                                                   Expr *expr) {
3123   // No structured initializer list to update
3124   if (!StructuredList)
3125     return;
3126 
3127   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
3128                                                   StructuredIndex, expr)) {
3129     // This initializer overwrites a previous initializer.
3130     // No need to diagnose when `expr` is nullptr because a more relevant
3131     // diagnostic has already been issued and this diagnostic is potentially
3132     // noise.
3133     if (expr)
3134       diagnoseInitOverride(PrevInit, expr->getSourceRange());
3135   }
3136 
3137   ++StructuredIndex;
3138 }
3139 
3140 /// Determine whether we can perform aggregate initialization for the purposes
3141 /// of overload resolution.
3142 bool Sema::CanPerformAggregateInitializationForOverloadResolution(
3143     const InitializedEntity &Entity, InitListExpr *From) {
3144   QualType Type = Entity.getType();
3145   InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true,
3146                         /*TreatUnavailableAsInvalid=*/false,
3147                         /*InOverloadResolution=*/true);
3148   return !Check.HadError();
3149 }
3150 
3151 /// Check that the given Index expression is a valid array designator
3152 /// value. This is essentially just a wrapper around
3153 /// VerifyIntegerConstantExpression that also checks for negative values
3154 /// and produces a reasonable diagnostic if there is a
3155 /// failure. Returns the index expression, possibly with an implicit cast
3156 /// added, on success.  If everything went okay, Value will receive the
3157 /// value of the constant expression.
3158 static ExprResult
3159 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
3160   SourceLocation Loc = Index->getBeginLoc();
3161 
3162   // Make sure this is an integer constant expression.
3163   ExprResult Result =
3164       S.VerifyIntegerConstantExpression(Index, &Value, Sema::AllowFold);
3165   if (Result.isInvalid())
3166     return Result;
3167 
3168   if (Value.isSigned() && Value.isNegative())
3169     return S.Diag(Loc, diag::err_array_designator_negative)
3170            << toString(Value, 10) << Index->getSourceRange();
3171 
3172   Value.setIsUnsigned(true);
3173   return Result;
3174 }
3175 
3176 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
3177                                             SourceLocation EqualOrColonLoc,
3178                                             bool GNUSyntax,
3179                                             ExprResult Init) {
3180   typedef DesignatedInitExpr::Designator ASTDesignator;
3181 
3182   bool Invalid = false;
3183   SmallVector<ASTDesignator, 32> Designators;
3184   SmallVector<Expr *, 32> InitExpressions;
3185 
3186   // Build designators and check array designator expressions.
3187   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
3188     const Designator &D = Desig.getDesignator(Idx);
3189     switch (D.getKind()) {
3190     case Designator::FieldDesignator:
3191       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
3192                                           D.getFieldLoc()));
3193       break;
3194 
3195     case Designator::ArrayDesignator: {
3196       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
3197       llvm::APSInt IndexValue;
3198       if (!Index->isTypeDependent() && !Index->isValueDependent())
3199         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
3200       if (!Index)
3201         Invalid = true;
3202       else {
3203         Designators.push_back(ASTDesignator(InitExpressions.size(),
3204                                             D.getLBracketLoc(),
3205                                             D.getRBracketLoc()));
3206         InitExpressions.push_back(Index);
3207       }
3208       break;
3209     }
3210 
3211     case Designator::ArrayRangeDesignator: {
3212       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
3213       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
3214       llvm::APSInt StartValue;
3215       llvm::APSInt EndValue;
3216       bool StartDependent = StartIndex->isTypeDependent() ||
3217                             StartIndex->isValueDependent();
3218       bool EndDependent = EndIndex->isTypeDependent() ||
3219                           EndIndex->isValueDependent();
3220       if (!StartDependent)
3221         StartIndex =
3222             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
3223       if (!EndDependent)
3224         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
3225 
3226       if (!StartIndex || !EndIndex)
3227         Invalid = true;
3228       else {
3229         // Make sure we're comparing values with the same bit width.
3230         if (StartDependent || EndDependent) {
3231           // Nothing to compute.
3232         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
3233           EndValue = EndValue.extend(StartValue.getBitWidth());
3234         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
3235           StartValue = StartValue.extend(EndValue.getBitWidth());
3236 
3237         if (!StartDependent && !EndDependent && EndValue < StartValue) {
3238           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
3239             << toString(StartValue, 10) << toString(EndValue, 10)
3240             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
3241           Invalid = true;
3242         } else {
3243           Designators.push_back(ASTDesignator(InitExpressions.size(),
3244                                               D.getLBracketLoc(),
3245                                               D.getEllipsisLoc(),
3246                                               D.getRBracketLoc()));
3247           InitExpressions.push_back(StartIndex);
3248           InitExpressions.push_back(EndIndex);
3249         }
3250       }
3251       break;
3252     }
3253     }
3254   }
3255 
3256   if (Invalid || Init.isInvalid())
3257     return ExprError();
3258 
3259   // Clear out the expressions within the designation.
3260   Desig.ClearExprs(*this);
3261 
3262   return DesignatedInitExpr::Create(Context, Designators, InitExpressions,
3263                                     EqualOrColonLoc, GNUSyntax,
3264                                     Init.getAs<Expr>());
3265 }
3266 
3267 //===----------------------------------------------------------------------===//
3268 // Initialization entity
3269 //===----------------------------------------------------------------------===//
3270 
3271 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
3272                                      const InitializedEntity &Parent)
3273   : Parent(&Parent), Index(Index)
3274 {
3275   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
3276     Kind = EK_ArrayElement;
3277     Type = AT->getElementType();
3278   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
3279     Kind = EK_VectorElement;
3280     Type = VT->getElementType();
3281   } else {
3282     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
3283     assert(CT && "Unexpected type");
3284     Kind = EK_ComplexElement;
3285     Type = CT->getElementType();
3286   }
3287 }
3288 
3289 InitializedEntity
3290 InitializedEntity::InitializeBase(ASTContext &Context,
3291                                   const CXXBaseSpecifier *Base,
3292                                   bool IsInheritedVirtualBase,
3293                                   const InitializedEntity *Parent) {
3294   InitializedEntity Result;
3295   Result.Kind = EK_Base;
3296   Result.Parent = Parent;
3297   Result.Base = {Base, IsInheritedVirtualBase};
3298   Result.Type = Base->getType();
3299   return Result;
3300 }
3301 
3302 DeclarationName InitializedEntity::getName() const {
3303   switch (getKind()) {
3304   case EK_Parameter:
3305   case EK_Parameter_CF_Audited: {
3306     ParmVarDecl *D = Parameter.getPointer();
3307     return (D ? D->getDeclName() : DeclarationName());
3308   }
3309 
3310   case EK_Variable:
3311   case EK_Member:
3312   case EK_Binding:
3313   case EK_TemplateParameter:
3314     return Variable.VariableOrMember->getDeclName();
3315 
3316   case EK_LambdaCapture:
3317     return DeclarationName(Capture.VarID);
3318 
3319   case EK_Result:
3320   case EK_StmtExprResult:
3321   case EK_Exception:
3322   case EK_New:
3323   case EK_Temporary:
3324   case EK_Base:
3325   case EK_Delegating:
3326   case EK_ArrayElement:
3327   case EK_VectorElement:
3328   case EK_ComplexElement:
3329   case EK_BlockElement:
3330   case EK_LambdaToBlockConversionBlockElement:
3331   case EK_CompoundLiteralInit:
3332   case EK_RelatedResult:
3333     return DeclarationName();
3334   }
3335 
3336   llvm_unreachable("Invalid EntityKind!");
3337 }
3338 
3339 ValueDecl *InitializedEntity::getDecl() const {
3340   switch (getKind()) {
3341   case EK_Variable:
3342   case EK_Member:
3343   case EK_Binding:
3344   case EK_TemplateParameter:
3345     return Variable.VariableOrMember;
3346 
3347   case EK_Parameter:
3348   case EK_Parameter_CF_Audited:
3349     return Parameter.getPointer();
3350 
3351   case EK_Result:
3352   case EK_StmtExprResult:
3353   case EK_Exception:
3354   case EK_New:
3355   case EK_Temporary:
3356   case EK_Base:
3357   case EK_Delegating:
3358   case EK_ArrayElement:
3359   case EK_VectorElement:
3360   case EK_ComplexElement:
3361   case EK_BlockElement:
3362   case EK_LambdaToBlockConversionBlockElement:
3363   case EK_LambdaCapture:
3364   case EK_CompoundLiteralInit:
3365   case EK_RelatedResult:
3366     return nullptr;
3367   }
3368 
3369   llvm_unreachable("Invalid EntityKind!");
3370 }
3371 
3372 bool InitializedEntity::allowsNRVO() const {
3373   switch (getKind()) {
3374   case EK_Result:
3375   case EK_Exception:
3376     return LocAndNRVO.NRVO;
3377 
3378   case EK_StmtExprResult:
3379   case EK_Variable:
3380   case EK_Parameter:
3381   case EK_Parameter_CF_Audited:
3382   case EK_TemplateParameter:
3383   case EK_Member:
3384   case EK_Binding:
3385   case EK_New:
3386   case EK_Temporary:
3387   case EK_CompoundLiteralInit:
3388   case EK_Base:
3389   case EK_Delegating:
3390   case EK_ArrayElement:
3391   case EK_VectorElement:
3392   case EK_ComplexElement:
3393   case EK_BlockElement:
3394   case EK_LambdaToBlockConversionBlockElement:
3395   case EK_LambdaCapture:
3396   case EK_RelatedResult:
3397     break;
3398   }
3399 
3400   return false;
3401 }
3402 
3403 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
3404   assert(getParent() != this);
3405   unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
3406   for (unsigned I = 0; I != Depth; ++I)
3407     OS << "`-";
3408 
3409   switch (getKind()) {
3410   case EK_Variable: OS << "Variable"; break;
3411   case EK_Parameter: OS << "Parameter"; break;
3412   case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
3413     break;
3414   case EK_TemplateParameter: OS << "TemplateParameter"; break;
3415   case EK_Result: OS << "Result"; break;
3416   case EK_StmtExprResult: OS << "StmtExprResult"; break;
3417   case EK_Exception: OS << "Exception"; break;
3418   case EK_Member: OS << "Member"; break;
3419   case EK_Binding: OS << "Binding"; break;
3420   case EK_New: OS << "New"; break;
3421   case EK_Temporary: OS << "Temporary"; break;
3422   case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
3423   case EK_RelatedResult: OS << "RelatedResult"; break;
3424   case EK_Base: OS << "Base"; break;
3425   case EK_Delegating: OS << "Delegating"; break;
3426   case EK_ArrayElement: OS << "ArrayElement " << Index; break;
3427   case EK_VectorElement: OS << "VectorElement " << Index; break;
3428   case EK_ComplexElement: OS << "ComplexElement " << Index; break;
3429   case EK_BlockElement: OS << "Block"; break;
3430   case EK_LambdaToBlockConversionBlockElement:
3431     OS << "Block (lambda)";
3432     break;
3433   case EK_LambdaCapture:
3434     OS << "LambdaCapture ";
3435     OS << DeclarationName(Capture.VarID);
3436     break;
3437   }
3438 
3439   if (auto *D = getDecl()) {
3440     OS << " ";
3441     D->printQualifiedName(OS);
3442   }
3443 
3444   OS << " '" << getType().getAsString() << "'\n";
3445 
3446   return Depth + 1;
3447 }
3448 
3449 LLVM_DUMP_METHOD void InitializedEntity::dump() const {
3450   dumpImpl(llvm::errs());
3451 }
3452 
3453 //===----------------------------------------------------------------------===//
3454 // Initialization sequence
3455 //===----------------------------------------------------------------------===//
3456 
3457 void InitializationSequence::Step::Destroy() {
3458   switch (Kind) {
3459   case SK_ResolveAddressOfOverloadedFunction:
3460   case SK_CastDerivedToBasePRValue:
3461   case SK_CastDerivedToBaseXValue:
3462   case SK_CastDerivedToBaseLValue:
3463   case SK_BindReference:
3464   case SK_BindReferenceToTemporary:
3465   case SK_FinalCopy:
3466   case SK_ExtraneousCopyToTemporary:
3467   case SK_UserConversion:
3468   case SK_QualificationConversionPRValue:
3469   case SK_QualificationConversionXValue:
3470   case SK_QualificationConversionLValue:
3471   case SK_FunctionReferenceConversion:
3472   case SK_AtomicConversion:
3473   case SK_ListInitialization:
3474   case SK_UnwrapInitList:
3475   case SK_RewrapInitList:
3476   case SK_ConstructorInitialization:
3477   case SK_ConstructorInitializationFromList:
3478   case SK_ZeroInitialization:
3479   case SK_CAssignment:
3480   case SK_StringInit:
3481   case SK_ObjCObjectConversion:
3482   case SK_ArrayLoopIndex:
3483   case SK_ArrayLoopInit:
3484   case SK_ArrayInit:
3485   case SK_GNUArrayInit:
3486   case SK_ParenthesizedArrayInit:
3487   case SK_PassByIndirectCopyRestore:
3488   case SK_PassByIndirectRestore:
3489   case SK_ProduceObjCObject:
3490   case SK_StdInitializerList:
3491   case SK_StdInitializerListConstructorCall:
3492   case SK_OCLSamplerInit:
3493   case SK_OCLZeroOpaqueType:
3494     break;
3495 
3496   case SK_ConversionSequence:
3497   case SK_ConversionSequenceNoNarrowing:
3498     delete ICS;
3499   }
3500 }
3501 
3502 bool InitializationSequence::isDirectReferenceBinding() const {
3503   // There can be some lvalue adjustments after the SK_BindReference step.
3504   for (const Step &S : llvm::reverse(Steps)) {
3505     if (S.Kind == SK_BindReference)
3506       return true;
3507     if (S.Kind == SK_BindReferenceToTemporary)
3508       return false;
3509   }
3510   return false;
3511 }
3512 
3513 bool InitializationSequence::isAmbiguous() const {
3514   if (!Failed())
3515     return false;
3516 
3517   switch (getFailureKind()) {
3518   case FK_TooManyInitsForReference:
3519   case FK_ParenthesizedListInitForReference:
3520   case FK_ArrayNeedsInitList:
3521   case FK_ArrayNeedsInitListOrStringLiteral:
3522   case FK_ArrayNeedsInitListOrWideStringLiteral:
3523   case FK_NarrowStringIntoWideCharArray:
3524   case FK_WideStringIntoCharArray:
3525   case FK_IncompatWideStringIntoWideChar:
3526   case FK_PlainStringIntoUTF8Char:
3527   case FK_UTF8StringIntoPlainChar:
3528   case FK_AddressOfOverloadFailed: // FIXME: Could do better
3529   case FK_NonConstLValueReferenceBindingToTemporary:
3530   case FK_NonConstLValueReferenceBindingToBitfield:
3531   case FK_NonConstLValueReferenceBindingToVectorElement:
3532   case FK_NonConstLValueReferenceBindingToMatrixElement:
3533   case FK_NonConstLValueReferenceBindingToUnrelated:
3534   case FK_RValueReferenceBindingToLValue:
3535   case FK_ReferenceAddrspaceMismatchTemporary:
3536   case FK_ReferenceInitDropsQualifiers:
3537   case FK_ReferenceInitFailed:
3538   case FK_ConversionFailed:
3539   case FK_ConversionFromPropertyFailed:
3540   case FK_TooManyInitsForScalar:
3541   case FK_ParenthesizedListInitForScalar:
3542   case FK_ReferenceBindingToInitList:
3543   case FK_InitListBadDestinationType:
3544   case FK_DefaultInitOfConst:
3545   case FK_Incomplete:
3546   case FK_ArrayTypeMismatch:
3547   case FK_NonConstantArrayInit:
3548   case FK_ListInitializationFailed:
3549   case FK_VariableLengthArrayHasInitializer:
3550   case FK_PlaceholderType:
3551   case FK_ExplicitConstructor:
3552   case FK_AddressOfUnaddressableFunction:
3553     return false;
3554 
3555   case FK_ReferenceInitOverloadFailed:
3556   case FK_UserConversionOverloadFailed:
3557   case FK_ConstructorOverloadFailed:
3558   case FK_ListConstructorOverloadFailed:
3559     return FailedOverloadResult == OR_Ambiguous;
3560   }
3561 
3562   llvm_unreachable("Invalid EntityKind!");
3563 }
3564 
3565 bool InitializationSequence::isConstructorInitialization() const {
3566   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3567 }
3568 
3569 void
3570 InitializationSequence
3571 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3572                                    DeclAccessPair Found,
3573                                    bool HadMultipleCandidates) {
3574   Step S;
3575   S.Kind = SK_ResolveAddressOfOverloadedFunction;
3576   S.Type = Function->getType();
3577   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3578   S.Function.Function = Function;
3579   S.Function.FoundDecl = Found;
3580   Steps.push_back(S);
3581 }
3582 
3583 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3584                                                       ExprValueKind VK) {
3585   Step S;
3586   switch (VK) {
3587   case VK_PRValue:
3588     S.Kind = SK_CastDerivedToBasePRValue;
3589     break;
3590   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3591   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3592   }
3593   S.Type = BaseType;
3594   Steps.push_back(S);
3595 }
3596 
3597 void InitializationSequence::AddReferenceBindingStep(QualType T,
3598                                                      bool BindingTemporary) {
3599   Step S;
3600   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3601   S.Type = T;
3602   Steps.push_back(S);
3603 }
3604 
3605 void InitializationSequence::AddFinalCopy(QualType T) {
3606   Step S;
3607   S.Kind = SK_FinalCopy;
3608   S.Type = T;
3609   Steps.push_back(S);
3610 }
3611 
3612 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3613   Step S;
3614   S.Kind = SK_ExtraneousCopyToTemporary;
3615   S.Type = T;
3616   Steps.push_back(S);
3617 }
3618 
3619 void
3620 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3621                                               DeclAccessPair FoundDecl,
3622                                               QualType T,
3623                                               bool HadMultipleCandidates) {
3624   Step S;
3625   S.Kind = SK_UserConversion;
3626   S.Type = T;
3627   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3628   S.Function.Function = Function;
3629   S.Function.FoundDecl = FoundDecl;
3630   Steps.push_back(S);
3631 }
3632 
3633 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3634                                                             ExprValueKind VK) {
3635   Step S;
3636   S.Kind = SK_QualificationConversionPRValue; // work around a gcc warning
3637   switch (VK) {
3638   case VK_PRValue:
3639     S.Kind = SK_QualificationConversionPRValue;
3640     break;
3641   case VK_XValue:
3642     S.Kind = SK_QualificationConversionXValue;
3643     break;
3644   case VK_LValue:
3645     S.Kind = SK_QualificationConversionLValue;
3646     break;
3647   }
3648   S.Type = Ty;
3649   Steps.push_back(S);
3650 }
3651 
3652 void InitializationSequence::AddFunctionReferenceConversionStep(QualType Ty) {
3653   Step S;
3654   S.Kind = SK_FunctionReferenceConversion;
3655   S.Type = Ty;
3656   Steps.push_back(S);
3657 }
3658 
3659 void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3660   Step S;
3661   S.Kind = SK_AtomicConversion;
3662   S.Type = Ty;
3663   Steps.push_back(S);
3664 }
3665 
3666 void InitializationSequence::AddConversionSequenceStep(
3667     const ImplicitConversionSequence &ICS, QualType T,
3668     bool TopLevelOfInitList) {
3669   Step S;
3670   S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3671                               : SK_ConversionSequence;
3672   S.Type = T;
3673   S.ICS = new ImplicitConversionSequence(ICS);
3674   Steps.push_back(S);
3675 }
3676 
3677 void InitializationSequence::AddListInitializationStep(QualType T) {
3678   Step S;
3679   S.Kind = SK_ListInitialization;
3680   S.Type = T;
3681   Steps.push_back(S);
3682 }
3683 
3684 void InitializationSequence::AddConstructorInitializationStep(
3685     DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
3686     bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
3687   Step S;
3688   S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3689                                      : SK_ConstructorInitializationFromList
3690                         : SK_ConstructorInitialization;
3691   S.Type = T;
3692   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3693   S.Function.Function = Constructor;
3694   S.Function.FoundDecl = FoundDecl;
3695   Steps.push_back(S);
3696 }
3697 
3698 void InitializationSequence::AddZeroInitializationStep(QualType T) {
3699   Step S;
3700   S.Kind = SK_ZeroInitialization;
3701   S.Type = T;
3702   Steps.push_back(S);
3703 }
3704 
3705 void InitializationSequence::AddCAssignmentStep(QualType T) {
3706   Step S;
3707   S.Kind = SK_CAssignment;
3708   S.Type = T;
3709   Steps.push_back(S);
3710 }
3711 
3712 void InitializationSequence::AddStringInitStep(QualType T) {
3713   Step S;
3714   S.Kind = SK_StringInit;
3715   S.Type = T;
3716   Steps.push_back(S);
3717 }
3718 
3719 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3720   Step S;
3721   S.Kind = SK_ObjCObjectConversion;
3722   S.Type = T;
3723   Steps.push_back(S);
3724 }
3725 
3726 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
3727   Step S;
3728   S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
3729   S.Type = T;
3730   Steps.push_back(S);
3731 }
3732 
3733 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
3734   Step S;
3735   S.Kind = SK_ArrayLoopIndex;
3736   S.Type = EltT;
3737   Steps.insert(Steps.begin(), S);
3738 
3739   S.Kind = SK_ArrayLoopInit;
3740   S.Type = T;
3741   Steps.push_back(S);
3742 }
3743 
3744 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3745   Step S;
3746   S.Kind = SK_ParenthesizedArrayInit;
3747   S.Type = T;
3748   Steps.push_back(S);
3749 }
3750 
3751 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3752                                                               bool shouldCopy) {
3753   Step s;
3754   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3755                        : SK_PassByIndirectRestore);
3756   s.Type = type;
3757   Steps.push_back(s);
3758 }
3759 
3760 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3761   Step S;
3762   S.Kind = SK_ProduceObjCObject;
3763   S.Type = T;
3764   Steps.push_back(S);
3765 }
3766 
3767 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3768   Step S;
3769   S.Kind = SK_StdInitializerList;
3770   S.Type = T;
3771   Steps.push_back(S);
3772 }
3773 
3774 void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3775   Step S;
3776   S.Kind = SK_OCLSamplerInit;
3777   S.Type = T;
3778   Steps.push_back(S);
3779 }
3780 
3781 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) {
3782   Step S;
3783   S.Kind = SK_OCLZeroOpaqueType;
3784   S.Type = T;
3785   Steps.push_back(S);
3786 }
3787 
3788 void InitializationSequence::RewrapReferenceInitList(QualType T,
3789                                                      InitListExpr *Syntactic) {
3790   assert(Syntactic->getNumInits() == 1 &&
3791          "Can only rewrap trivial init lists.");
3792   Step S;
3793   S.Kind = SK_UnwrapInitList;
3794   S.Type = Syntactic->getInit(0)->getType();
3795   Steps.insert(Steps.begin(), S);
3796 
3797   S.Kind = SK_RewrapInitList;
3798   S.Type = T;
3799   S.WrappingSyntacticList = Syntactic;
3800   Steps.push_back(S);
3801 }
3802 
3803 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3804                                                 OverloadingResult Result) {
3805   setSequenceKind(FailedSequence);
3806   this->Failure = Failure;
3807   this->FailedOverloadResult = Result;
3808 }
3809 
3810 //===----------------------------------------------------------------------===//
3811 // Attempt initialization
3812 //===----------------------------------------------------------------------===//
3813 
3814 /// Tries to add a zero initializer. Returns true if that worked.
3815 static bool
3816 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3817                                    const InitializedEntity &Entity) {
3818   if (Entity.getKind() != InitializedEntity::EK_Variable)
3819     return false;
3820 
3821   VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3822   if (VD->getInit() || VD->getEndLoc().isMacroID())
3823     return false;
3824 
3825   QualType VariableTy = VD->getType().getCanonicalType();
3826   SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
3827   std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3828   if (!Init.empty()) {
3829     Sequence.AddZeroInitializationStep(Entity.getType());
3830     Sequence.SetZeroInitializationFixit(Init, Loc);
3831     return true;
3832   }
3833   return false;
3834 }
3835 
3836 static void MaybeProduceObjCObject(Sema &S,
3837                                    InitializationSequence &Sequence,
3838                                    const InitializedEntity &Entity) {
3839   if (!S.getLangOpts().ObjCAutoRefCount) return;
3840 
3841   /// When initializing a parameter, produce the value if it's marked
3842   /// __attribute__((ns_consumed)).
3843   if (Entity.isParameterKind()) {
3844     if (!Entity.isParameterConsumed())
3845       return;
3846 
3847     assert(Entity.getType()->isObjCRetainableType() &&
3848            "consuming an object of unretainable type?");
3849     Sequence.AddProduceObjCObjectStep(Entity.getType());
3850 
3851   /// When initializing a return value, if the return type is a
3852   /// retainable type, then returns need to immediately retain the
3853   /// object.  If an autorelease is required, it will be done at the
3854   /// last instant.
3855   } else if (Entity.getKind() == InitializedEntity::EK_Result ||
3856              Entity.getKind() == InitializedEntity::EK_StmtExprResult) {
3857     if (!Entity.getType()->isObjCRetainableType())
3858       return;
3859 
3860     Sequence.AddProduceObjCObjectStep(Entity.getType());
3861   }
3862 }
3863 
3864 static void TryListInitialization(Sema &S,
3865                                   const InitializedEntity &Entity,
3866                                   const InitializationKind &Kind,
3867                                   InitListExpr *InitList,
3868                                   InitializationSequence &Sequence,
3869                                   bool TreatUnavailableAsInvalid);
3870 
3871 /// When initializing from init list via constructor, handle
3872 /// initialization of an object of type std::initializer_list<T>.
3873 ///
3874 /// \return true if we have handled initialization of an object of type
3875 /// std::initializer_list<T>, false otherwise.
3876 static bool TryInitializerListConstruction(Sema &S,
3877                                            InitListExpr *List,
3878                                            QualType DestType,
3879                                            InitializationSequence &Sequence,
3880                                            bool TreatUnavailableAsInvalid) {
3881   QualType E;
3882   if (!S.isStdInitializerList(DestType, &E))
3883     return false;
3884 
3885   if (!S.isCompleteType(List->getExprLoc(), E)) {
3886     Sequence.setIncompleteTypeFailure(E);
3887     return true;
3888   }
3889 
3890   // Try initializing a temporary array from the init list.
3891   QualType ArrayType = S.Context.getConstantArrayType(
3892       E.withConst(),
3893       llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3894                   List->getNumInits()),
3895       nullptr, clang::ArrayType::Normal, 0);
3896   InitializedEntity HiddenArray =
3897       InitializedEntity::InitializeTemporary(ArrayType);
3898   InitializationKind Kind = InitializationKind::CreateDirectList(
3899       List->getExprLoc(), List->getBeginLoc(), List->getEndLoc());
3900   TryListInitialization(S, HiddenArray, Kind, List, Sequence,
3901                         TreatUnavailableAsInvalid);
3902   if (Sequence)
3903     Sequence.AddStdInitializerListConstructionStep(DestType);
3904   return true;
3905 }
3906 
3907 /// Determine if the constructor has the signature of a copy or move
3908 /// constructor for the type T of the class in which it was found. That is,
3909 /// determine if its first parameter is of type T or reference to (possibly
3910 /// cv-qualified) T.
3911 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
3912                                    const ConstructorInfo &Info) {
3913   if (Info.Constructor->getNumParams() == 0)
3914     return false;
3915 
3916   QualType ParmT =
3917       Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
3918   QualType ClassT =
3919       Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
3920 
3921   return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
3922 }
3923 
3924 static OverloadingResult
3925 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3926                            MultiExprArg Args,
3927                            OverloadCandidateSet &CandidateSet,
3928                            QualType DestType,
3929                            DeclContext::lookup_result Ctors,
3930                            OverloadCandidateSet::iterator &Best,
3931                            bool CopyInitializing, bool AllowExplicit,
3932                            bool OnlyListConstructors, bool IsListInit,
3933                            bool SecondStepOfCopyInit = false) {
3934   CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor);
3935   CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
3936 
3937   for (NamedDecl *D : Ctors) {
3938     auto Info = getConstructorInfo(D);
3939     if (!Info.Constructor || Info.Constructor->isInvalidDecl())
3940       continue;
3941 
3942     if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
3943       continue;
3944 
3945     // C++11 [over.best.ics]p4:
3946     //   ... and the constructor or user-defined conversion function is a
3947     //   candidate by
3948     //   - 13.3.1.3, when the argument is the temporary in the second step
3949     //     of a class copy-initialization, or
3950     //   - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
3951     //   - the second phase of 13.3.1.7 when the initializer list has exactly
3952     //     one element that is itself an initializer list, and the target is
3953     //     the first parameter of a constructor of class X, and the conversion
3954     //     is to X or reference to (possibly cv-qualified X),
3955     //   user-defined conversion sequences are not considered.
3956     bool SuppressUserConversions =
3957         SecondStepOfCopyInit ||
3958         (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
3959          hasCopyOrMoveCtorParam(S.Context, Info));
3960 
3961     if (Info.ConstructorTmpl)
3962       S.AddTemplateOverloadCandidate(
3963           Info.ConstructorTmpl, Info.FoundDecl,
3964           /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions,
3965           /*PartialOverloading=*/false, AllowExplicit);
3966     else {
3967       // C++ [over.match.copy]p1:
3968       //   - When initializing a temporary to be bound to the first parameter
3969       //     of a constructor [for type T] that takes a reference to possibly
3970       //     cv-qualified T as its first argument, called with a single
3971       //     argument in the context of direct-initialization, explicit
3972       //     conversion functions are also considered.
3973       // FIXME: What if a constructor template instantiates to such a signature?
3974       bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3975                                Args.size() == 1 &&
3976                                hasCopyOrMoveCtorParam(S.Context, Info);
3977       S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
3978                              CandidateSet, SuppressUserConversions,
3979                              /*PartialOverloading=*/false, AllowExplicit,
3980                              AllowExplicitConv);
3981     }
3982   }
3983 
3984   // FIXME: Work around a bug in C++17 guaranteed copy elision.
3985   //
3986   // When initializing an object of class type T by constructor
3987   // ([over.match.ctor]) or by list-initialization ([over.match.list])
3988   // from a single expression of class type U, conversion functions of
3989   // U that convert to the non-reference type cv T are candidates.
3990   // Explicit conversion functions are only candidates during
3991   // direct-initialization.
3992   //
3993   // Note: SecondStepOfCopyInit is only ever true in this case when
3994   // evaluating whether to produce a C++98 compatibility warning.
3995   if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 &&
3996       !SecondStepOfCopyInit) {
3997     Expr *Initializer = Args[0];
3998     auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl();
3999     if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) {
4000       const auto &Conversions = SourceRD->getVisibleConversionFunctions();
4001       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4002         NamedDecl *D = *I;
4003         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4004         D = D->getUnderlyingDecl();
4005 
4006         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4007         CXXConversionDecl *Conv;
4008         if (ConvTemplate)
4009           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4010         else
4011           Conv = cast<CXXConversionDecl>(D);
4012 
4013         if (ConvTemplate)
4014           S.AddTemplateConversionCandidate(
4015               ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
4016               CandidateSet, AllowExplicit, AllowExplicit,
4017               /*AllowResultConversion*/ false);
4018         else
4019           S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
4020                                    DestType, CandidateSet, AllowExplicit,
4021                                    AllowExplicit,
4022                                    /*AllowResultConversion*/ false);
4023       }
4024     }
4025   }
4026 
4027   // Perform overload resolution and return the result.
4028   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
4029 }
4030 
4031 /// Attempt initialization by constructor (C++ [dcl.init]), which
4032 /// enumerates the constructors of the initialized entity and performs overload
4033 /// resolution to select the best.
4034 /// \param DestType       The destination class type.
4035 /// \param DestArrayType  The destination type, which is either DestType or
4036 ///                       a (possibly multidimensional) array of DestType.
4037 /// \param IsListInit     Is this list-initialization?
4038 /// \param IsInitListCopy Is this non-list-initialization resulting from a
4039 ///                       list-initialization from {x} where x is the same
4040 ///                       type as the entity?
4041 static void TryConstructorInitialization(Sema &S,
4042                                          const InitializedEntity &Entity,
4043                                          const InitializationKind &Kind,
4044                                          MultiExprArg Args, QualType DestType,
4045                                          QualType DestArrayType,
4046                                          InitializationSequence &Sequence,
4047                                          bool IsListInit = false,
4048                                          bool IsInitListCopy = false) {
4049   assert(((!IsListInit && !IsInitListCopy) ||
4050           (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
4051          "IsListInit/IsInitListCopy must come with a single initializer list "
4052          "argument.");
4053   InitListExpr *ILE =
4054       (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr;
4055   MultiExprArg UnwrappedArgs =
4056       ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
4057 
4058   // The type we're constructing needs to be complete.
4059   if (!S.isCompleteType(Kind.getLocation(), DestType)) {
4060     Sequence.setIncompleteTypeFailure(DestType);
4061     return;
4062   }
4063 
4064   // C++17 [dcl.init]p17:
4065   //     - If the initializer expression is a prvalue and the cv-unqualified
4066   //       version of the source type is the same class as the class of the
4067   //       destination, the initializer expression is used to initialize the
4068   //       destination object.
4069   // Per DR (no number yet), this does not apply when initializing a base
4070   // class or delegating to another constructor from a mem-initializer.
4071   // ObjC++: Lambda captured by the block in the lambda to block conversion
4072   // should avoid copy elision.
4073   if (S.getLangOpts().CPlusPlus17 &&
4074       Entity.getKind() != InitializedEntity::EK_Base &&
4075       Entity.getKind() != InitializedEntity::EK_Delegating &&
4076       Entity.getKind() !=
4077           InitializedEntity::EK_LambdaToBlockConversionBlockElement &&
4078       UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isPRValue() &&
4079       S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
4080     // Convert qualifications if necessary.
4081     Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
4082     if (ILE)
4083       Sequence.RewrapReferenceInitList(DestType, ILE);
4084     return;
4085   }
4086 
4087   const RecordType *DestRecordType = DestType->getAs<RecordType>();
4088   assert(DestRecordType && "Constructor initialization requires record type");
4089   CXXRecordDecl *DestRecordDecl
4090     = cast<CXXRecordDecl>(DestRecordType->getDecl());
4091 
4092   // Build the candidate set directly in the initialization sequence
4093   // structure, so that it will persist if we fail.
4094   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4095 
4096   // Determine whether we are allowed to call explicit constructors or
4097   // explicit conversion operators.
4098   bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
4099   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
4100 
4101   //   - Otherwise, if T is a class type, constructors are considered. The
4102   //     applicable constructors are enumerated, and the best one is chosen
4103   //     through overload resolution.
4104   DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
4105 
4106   OverloadingResult Result = OR_No_Viable_Function;
4107   OverloadCandidateSet::iterator Best;
4108   bool AsInitializerList = false;
4109 
4110   // C++11 [over.match.list]p1, per DR1467:
4111   //   When objects of non-aggregate type T are list-initialized, such that
4112   //   8.5.4 [dcl.init.list] specifies that overload resolution is performed
4113   //   according to the rules in this section, overload resolution selects
4114   //   the constructor in two phases:
4115   //
4116   //   - Initially, the candidate functions are the initializer-list
4117   //     constructors of the class T and the argument list consists of the
4118   //     initializer list as a single argument.
4119   if (IsListInit) {
4120     AsInitializerList = true;
4121 
4122     // If the initializer list has no elements and T has a default constructor,
4123     // the first phase is omitted.
4124     if (!(UnwrappedArgs.empty() && S.LookupDefaultConstructor(DestRecordDecl)))
4125       Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
4126                                           CandidateSet, DestType, Ctors, Best,
4127                                           CopyInitialization, AllowExplicit,
4128                                           /*OnlyListConstructors=*/true,
4129                                           IsListInit);
4130   }
4131 
4132   // C++11 [over.match.list]p1:
4133   //   - If no viable initializer-list constructor is found, overload resolution
4134   //     is performed again, where the candidate functions are all the
4135   //     constructors of the class T and the argument list consists of the
4136   //     elements of the initializer list.
4137   if (Result == OR_No_Viable_Function) {
4138     AsInitializerList = false;
4139     Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
4140                                         CandidateSet, DestType, Ctors, Best,
4141                                         CopyInitialization, AllowExplicit,
4142                                         /*OnlyListConstructors=*/false,
4143                                         IsListInit);
4144   }
4145   if (Result) {
4146     Sequence.SetOverloadFailure(
4147         IsListInit ? InitializationSequence::FK_ListConstructorOverloadFailed
4148                    : InitializationSequence::FK_ConstructorOverloadFailed,
4149         Result);
4150 
4151     if (Result != OR_Deleted)
4152       return;
4153   }
4154 
4155   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4156 
4157   // In C++17, ResolveConstructorOverload can select a conversion function
4158   // instead of a constructor.
4159   if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) {
4160     // Add the user-defined conversion step that calls the conversion function.
4161     QualType ConvType = CD->getConversionType();
4162     assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) &&
4163            "should not have selected this conversion function");
4164     Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType,
4165                                    HadMultipleCandidates);
4166     if (!S.Context.hasSameType(ConvType, DestType))
4167       Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
4168     if (IsListInit)
4169       Sequence.RewrapReferenceInitList(Entity.getType(), ILE);
4170     return;
4171   }
4172 
4173   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
4174   if (Result != OR_Deleted) {
4175     // C++11 [dcl.init]p6:
4176     //   If a program calls for the default initialization of an object
4177     //   of a const-qualified type T, T shall be a class type with a
4178     //   user-provided default constructor.
4179     // C++ core issue 253 proposal:
4180     //   If the implicit default constructor initializes all subobjects, no
4181     //   initializer should be required.
4182     // The 253 proposal is for example needed to process libstdc++ headers
4183     // in 5.x.
4184     if (Kind.getKind() == InitializationKind::IK_Default &&
4185         Entity.getType().isConstQualified()) {
4186       if (!CtorDecl->getParent()->allowConstDefaultInit()) {
4187         if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4188           Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4189         return;
4190       }
4191     }
4192 
4193     // C++11 [over.match.list]p1:
4194     //   In copy-list-initialization, if an explicit constructor is chosen, the
4195     //   initializer is ill-formed.
4196     if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
4197       Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
4198       return;
4199     }
4200   }
4201 
4202   // [class.copy.elision]p3:
4203   // In some copy-initialization contexts, a two-stage overload resolution
4204   // is performed.
4205   // If the first overload resolution selects a deleted function, we also
4206   // need the initialization sequence to decide whether to perform the second
4207   // overload resolution.
4208   // For deleted functions in other contexts, there is no need to get the
4209   // initialization sequence.
4210   if (Result == OR_Deleted && Kind.getKind() != InitializationKind::IK_Copy)
4211     return;
4212 
4213   // Add the constructor initialization step. Any cv-qualification conversion is
4214   // subsumed by the initialization.
4215   Sequence.AddConstructorInitializationStep(
4216       Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
4217       IsListInit | IsInitListCopy, AsInitializerList);
4218 }
4219 
4220 static bool
4221 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
4222                                              Expr *Initializer,
4223                                              QualType &SourceType,
4224                                              QualType &UnqualifiedSourceType,
4225                                              QualType UnqualifiedTargetType,
4226                                              InitializationSequence &Sequence) {
4227   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
4228         S.Context.OverloadTy) {
4229     DeclAccessPair Found;
4230     bool HadMultipleCandidates = false;
4231     if (FunctionDecl *Fn
4232         = S.ResolveAddressOfOverloadedFunction(Initializer,
4233                                                UnqualifiedTargetType,
4234                                                false, Found,
4235                                                &HadMultipleCandidates)) {
4236       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
4237                                                 HadMultipleCandidates);
4238       SourceType = Fn->getType();
4239       UnqualifiedSourceType = SourceType.getUnqualifiedType();
4240     } else if (!UnqualifiedTargetType->isRecordType()) {
4241       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4242       return true;
4243     }
4244   }
4245   return false;
4246 }
4247 
4248 static void TryReferenceInitializationCore(Sema &S,
4249                                            const InitializedEntity &Entity,
4250                                            const InitializationKind &Kind,
4251                                            Expr *Initializer,
4252                                            QualType cv1T1, QualType T1,
4253                                            Qualifiers T1Quals,
4254                                            QualType cv2T2, QualType T2,
4255                                            Qualifiers T2Quals,
4256                                            InitializationSequence &Sequence);
4257 
4258 static void TryValueInitialization(Sema &S,
4259                                    const InitializedEntity &Entity,
4260                                    const InitializationKind &Kind,
4261                                    InitializationSequence &Sequence,
4262                                    InitListExpr *InitList = nullptr);
4263 
4264 /// Attempt list initialization of a reference.
4265 static void TryReferenceListInitialization(Sema &S,
4266                                            const InitializedEntity &Entity,
4267                                            const InitializationKind &Kind,
4268                                            InitListExpr *InitList,
4269                                            InitializationSequence &Sequence,
4270                                            bool TreatUnavailableAsInvalid) {
4271   // First, catch C++03 where this isn't possible.
4272   if (!S.getLangOpts().CPlusPlus11) {
4273     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4274     return;
4275   }
4276   // Can't reference initialize a compound literal.
4277   if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
4278     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4279     return;
4280   }
4281 
4282   QualType DestType = Entity.getType();
4283   QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4284   Qualifiers T1Quals;
4285   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4286 
4287   // Reference initialization via an initializer list works thus:
4288   // If the initializer list consists of a single element that is
4289   // reference-related to the referenced type, bind directly to that element
4290   // (possibly creating temporaries).
4291   // Otherwise, initialize a temporary with the initializer list and
4292   // bind to that.
4293   if (InitList->getNumInits() == 1) {
4294     Expr *Initializer = InitList->getInit(0);
4295     QualType cv2T2 = S.getCompletedType(Initializer);
4296     Qualifiers T2Quals;
4297     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4298 
4299     // If this fails, creating a temporary wouldn't work either.
4300     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4301                                                      T1, Sequence))
4302       return;
4303 
4304     SourceLocation DeclLoc = Initializer->getBeginLoc();
4305     Sema::ReferenceCompareResult RefRelationship
4306       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2);
4307     if (RefRelationship >= Sema::Ref_Related) {
4308       // Try to bind the reference here.
4309       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4310                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
4311       if (Sequence)
4312         Sequence.RewrapReferenceInitList(cv1T1, InitList);
4313       return;
4314     }
4315 
4316     // Update the initializer if we've resolved an overloaded function.
4317     if (Sequence.step_begin() != Sequence.step_end())
4318       Sequence.RewrapReferenceInitList(cv1T1, InitList);
4319   }
4320   // Perform address space compatibility check.
4321   QualType cv1T1IgnoreAS = cv1T1;
4322   if (T1Quals.hasAddressSpace()) {
4323     Qualifiers T2Quals;
4324     (void)S.Context.getUnqualifiedArrayType(InitList->getType(), T2Quals);
4325     if (!T1Quals.isAddressSpaceSupersetOf(T2Quals)) {
4326       Sequence.SetFailed(
4327           InitializationSequence::FK_ReferenceInitDropsQualifiers);
4328       return;
4329     }
4330     // Ignore address space of reference type at this point and perform address
4331     // space conversion after the reference binding step.
4332     cv1T1IgnoreAS =
4333         S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace());
4334   }
4335   // Not reference-related. Create a temporary and bind to that.
4336   InitializedEntity TempEntity =
4337       InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
4338 
4339   TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
4340                         TreatUnavailableAsInvalid);
4341   if (Sequence) {
4342     if (DestType->isRValueReferenceType() ||
4343         (T1Quals.hasConst() && !T1Quals.hasVolatile())) {
4344       Sequence.AddReferenceBindingStep(cv1T1IgnoreAS,
4345                                        /*BindingTemporary=*/true);
4346       if (T1Quals.hasAddressSpace())
4347         Sequence.AddQualificationConversionStep(
4348             cv1T1, DestType->isRValueReferenceType() ? VK_XValue : VK_LValue);
4349     } else
4350       Sequence.SetFailed(
4351           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4352   }
4353 }
4354 
4355 /// Attempt list initialization (C++0x [dcl.init.list])
4356 static void TryListInitialization(Sema &S,
4357                                   const InitializedEntity &Entity,
4358                                   const InitializationKind &Kind,
4359                                   InitListExpr *InitList,
4360                                   InitializationSequence &Sequence,
4361                                   bool TreatUnavailableAsInvalid) {
4362   QualType DestType = Entity.getType();
4363 
4364   // C++ doesn't allow scalar initialization with more than one argument.
4365   // But C99 complex numbers are scalars and it makes sense there.
4366   if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
4367       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
4368     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
4369     return;
4370   }
4371   if (DestType->isReferenceType()) {
4372     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
4373                                    TreatUnavailableAsInvalid);
4374     return;
4375   }
4376 
4377   if (DestType->isRecordType() &&
4378       !S.isCompleteType(InitList->getBeginLoc(), DestType)) {
4379     Sequence.setIncompleteTypeFailure(DestType);
4380     return;
4381   }
4382 
4383   // C++11 [dcl.init.list]p3, per DR1467:
4384   // - If T is a class type and the initializer list has a single element of
4385   //   type cv U, where U is T or a class derived from T, the object is
4386   //   initialized from that element (by copy-initialization for
4387   //   copy-list-initialization, or by direct-initialization for
4388   //   direct-list-initialization).
4389   // - Otherwise, if T is a character array and the initializer list has a
4390   //   single element that is an appropriately-typed string literal
4391   //   (8.5.2 [dcl.init.string]), initialization is performed as described
4392   //   in that section.
4393   // - Otherwise, if T is an aggregate, [...] (continue below).
4394   if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
4395     if (DestType->isRecordType()) {
4396       QualType InitType = InitList->getInit(0)->getType();
4397       if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
4398           S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) {
4399         Expr *InitListAsExpr = InitList;
4400         TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4401                                      DestType, Sequence,
4402                                      /*InitListSyntax*/false,
4403                                      /*IsInitListCopy*/true);
4404         return;
4405       }
4406     }
4407     if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
4408       Expr *SubInit[1] = {InitList->getInit(0)};
4409       if (!isa<VariableArrayType>(DestAT) &&
4410           IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
4411         InitializationKind SubKind =
4412             Kind.getKind() == InitializationKind::IK_DirectList
4413                 ? InitializationKind::CreateDirect(Kind.getLocation(),
4414                                                    InitList->getLBraceLoc(),
4415                                                    InitList->getRBraceLoc())
4416                 : Kind;
4417         Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4418                                 /*TopLevelOfInitList*/ true,
4419                                 TreatUnavailableAsInvalid);
4420 
4421         // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
4422         // the element is not an appropriately-typed string literal, in which
4423         // case we should proceed as in C++11 (below).
4424         if (Sequence) {
4425           Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4426           return;
4427         }
4428       }
4429     }
4430   }
4431 
4432   // C++11 [dcl.init.list]p3:
4433   //   - If T is an aggregate, aggregate initialization is performed.
4434   if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
4435       (S.getLangOpts().CPlusPlus11 &&
4436        S.isStdInitializerList(DestType, nullptr))) {
4437     if (S.getLangOpts().CPlusPlus11) {
4438       //   - Otherwise, if the initializer list has no elements and T is a
4439       //     class type with a default constructor, the object is
4440       //     value-initialized.
4441       if (InitList->getNumInits() == 0) {
4442         CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
4443         if (S.LookupDefaultConstructor(RD)) {
4444           TryValueInitialization(S, Entity, Kind, Sequence, InitList);
4445           return;
4446         }
4447       }
4448 
4449       //   - Otherwise, if T is a specialization of std::initializer_list<E>,
4450       //     an initializer_list object constructed [...]
4451       if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
4452                                          TreatUnavailableAsInvalid))
4453         return;
4454 
4455       //   - Otherwise, if T is a class type, constructors are considered.
4456       Expr *InitListAsExpr = InitList;
4457       TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4458                                    DestType, Sequence, /*InitListSyntax*/true);
4459     } else
4460       Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
4461     return;
4462   }
4463 
4464   if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
4465       InitList->getNumInits() == 1) {
4466     Expr *E = InitList->getInit(0);
4467 
4468     //   - Otherwise, if T is an enumeration with a fixed underlying type,
4469     //     the initializer-list has a single element v, and the initialization
4470     //     is direct-list-initialization, the object is initialized with the
4471     //     value T(v); if a narrowing conversion is required to convert v to
4472     //     the underlying type of T, the program is ill-formed.
4473     auto *ET = DestType->getAs<EnumType>();
4474     if (S.getLangOpts().CPlusPlus17 &&
4475         Kind.getKind() == InitializationKind::IK_DirectList &&
4476         ET && ET->getDecl()->isFixed() &&
4477         !S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
4478         (E->getType()->isIntegralOrEnumerationType() ||
4479          E->getType()->isFloatingType())) {
4480       // There are two ways that T(v) can work when T is an enumeration type.
4481       // If there is either an implicit conversion sequence from v to T or
4482       // a conversion function that can convert from v to T, then we use that.
4483       // Otherwise, if v is of integral, enumeration, or floating-point type,
4484       // it is converted to the enumeration type via its underlying type.
4485       // There is no overlap possible between these two cases (except when the
4486       // source value is already of the destination type), and the first
4487       // case is handled by the general case for single-element lists below.
4488       ImplicitConversionSequence ICS;
4489       ICS.setStandard();
4490       ICS.Standard.setAsIdentityConversion();
4491       if (!E->isPRValue())
4492         ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4493       // If E is of a floating-point type, then the conversion is ill-formed
4494       // due to narrowing, but go through the motions in order to produce the
4495       // right diagnostic.
4496       ICS.Standard.Second = E->getType()->isFloatingType()
4497                                 ? ICK_Floating_Integral
4498                                 : ICK_Integral_Conversion;
4499       ICS.Standard.setFromType(E->getType());
4500       ICS.Standard.setToType(0, E->getType());
4501       ICS.Standard.setToType(1, DestType);
4502       ICS.Standard.setToType(2, DestType);
4503       Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
4504                                          /*TopLevelOfInitList*/true);
4505       Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4506       return;
4507     }
4508 
4509     //   - Otherwise, if the initializer list has a single element of type E
4510     //     [...references are handled above...], the object or reference is
4511     //     initialized from that element (by copy-initialization for
4512     //     copy-list-initialization, or by direct-initialization for
4513     //     direct-list-initialization); if a narrowing conversion is required
4514     //     to convert the element to T, the program is ill-formed.
4515     //
4516     // Per core-24034, this is direct-initialization if we were performing
4517     // direct-list-initialization and copy-initialization otherwise.
4518     // We can't use InitListChecker for this, because it always performs
4519     // copy-initialization. This only matters if we might use an 'explicit'
4520     // conversion operator, or for the special case conversion of nullptr_t to
4521     // bool, so we only need to handle those cases.
4522     //
4523     // FIXME: Why not do this in all cases?
4524     Expr *Init = InitList->getInit(0);
4525     if (Init->getType()->isRecordType() ||
4526         (Init->getType()->isNullPtrType() && DestType->isBooleanType())) {
4527       InitializationKind SubKind =
4528           Kind.getKind() == InitializationKind::IK_DirectList
4529               ? InitializationKind::CreateDirect(Kind.getLocation(),
4530                                                  InitList->getLBraceLoc(),
4531                                                  InitList->getRBraceLoc())
4532               : Kind;
4533       Expr *SubInit[1] = { Init };
4534       Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4535                               /*TopLevelOfInitList*/true,
4536                               TreatUnavailableAsInvalid);
4537       if (Sequence)
4538         Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4539       return;
4540     }
4541   }
4542 
4543   InitListChecker CheckInitList(S, Entity, InitList,
4544           DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
4545   if (CheckInitList.HadError()) {
4546     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
4547     return;
4548   }
4549 
4550   // Add the list initialization step with the built init list.
4551   Sequence.AddListInitializationStep(DestType);
4552 }
4553 
4554 /// Try a reference initialization that involves calling a conversion
4555 /// function.
4556 static OverloadingResult TryRefInitWithConversionFunction(
4557     Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
4558     Expr *Initializer, bool AllowRValues, bool IsLValueRef,
4559     InitializationSequence &Sequence) {
4560   QualType DestType = Entity.getType();
4561   QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4562   QualType T1 = cv1T1.getUnqualifiedType();
4563   QualType cv2T2 = Initializer->getType();
4564   QualType T2 = cv2T2.getUnqualifiedType();
4565 
4566   assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) &&
4567          "Must have incompatible references when binding via conversion");
4568 
4569   // Build the candidate set directly in the initialization sequence
4570   // structure, so that it will persist if we fail.
4571   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4572   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4573 
4574   // Determine whether we are allowed to call explicit conversion operators.
4575   // Note that none of [over.match.copy], [over.match.conv], nor
4576   // [over.match.ref] permit an explicit constructor to be chosen when
4577   // initializing a reference, not even for direct-initialization.
4578   bool AllowExplicitCtors = false;
4579   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
4580 
4581   const RecordType *T1RecordType = nullptr;
4582   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
4583       S.isCompleteType(Kind.getLocation(), T1)) {
4584     // The type we're converting to is a class type. Enumerate its constructors
4585     // to see if there is a suitable conversion.
4586     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
4587 
4588     for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
4589       auto Info = getConstructorInfo(D);
4590       if (!Info.Constructor)
4591         continue;
4592 
4593       if (!Info.Constructor->isInvalidDecl() &&
4594           Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
4595         if (Info.ConstructorTmpl)
4596           S.AddTemplateOverloadCandidate(
4597               Info.ConstructorTmpl, Info.FoundDecl,
4598               /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
4599               /*SuppressUserConversions=*/true,
4600               /*PartialOverloading*/ false, AllowExplicitCtors);
4601         else
4602           S.AddOverloadCandidate(
4603               Info.Constructor, Info.FoundDecl, Initializer, CandidateSet,
4604               /*SuppressUserConversions=*/true,
4605               /*PartialOverloading*/ false, AllowExplicitCtors);
4606       }
4607     }
4608   }
4609   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
4610     return OR_No_Viable_Function;
4611 
4612   const RecordType *T2RecordType = nullptr;
4613   if ((T2RecordType = T2->getAs<RecordType>()) &&
4614       S.isCompleteType(Kind.getLocation(), T2)) {
4615     // The type we're converting from is a class type, enumerate its conversion
4616     // functions.
4617     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
4618 
4619     const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4620     for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4621       NamedDecl *D = *I;
4622       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4623       if (isa<UsingShadowDecl>(D))
4624         D = cast<UsingShadowDecl>(D)->getTargetDecl();
4625 
4626       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4627       CXXConversionDecl *Conv;
4628       if (ConvTemplate)
4629         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4630       else
4631         Conv = cast<CXXConversionDecl>(D);
4632 
4633       // If the conversion function doesn't return a reference type,
4634       // it can't be considered for this conversion unless we're allowed to
4635       // consider rvalues.
4636       // FIXME: Do we need to make sure that we only consider conversion
4637       // candidates with reference-compatible results? That might be needed to
4638       // break recursion.
4639       if ((AllowRValues ||
4640            Conv->getConversionType()->isLValueReferenceType())) {
4641         if (ConvTemplate)
4642           S.AddTemplateConversionCandidate(
4643               ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
4644               CandidateSet,
4645               /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4646         else
4647           S.AddConversionCandidate(
4648               Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet,
4649               /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4650       }
4651     }
4652   }
4653   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
4654     return OR_No_Viable_Function;
4655 
4656   SourceLocation DeclLoc = Initializer->getBeginLoc();
4657 
4658   // Perform overload resolution. If it fails, return the failed result.
4659   OverloadCandidateSet::iterator Best;
4660   if (OverloadingResult Result
4661         = CandidateSet.BestViableFunction(S, DeclLoc, Best))
4662     return Result;
4663 
4664   FunctionDecl *Function = Best->Function;
4665   // This is the overload that will be used for this initialization step if we
4666   // use this initialization. Mark it as referenced.
4667   Function->setReferenced();
4668 
4669   // Compute the returned type and value kind of the conversion.
4670   QualType cv3T3;
4671   if (isa<CXXConversionDecl>(Function))
4672     cv3T3 = Function->getReturnType();
4673   else
4674     cv3T3 = T1;
4675 
4676   ExprValueKind VK = VK_PRValue;
4677   if (cv3T3->isLValueReferenceType())
4678     VK = VK_LValue;
4679   else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
4680     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
4681   cv3T3 = cv3T3.getNonLValueExprType(S.Context);
4682 
4683   // Add the user-defined conversion step.
4684   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4685   Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
4686                                  HadMultipleCandidates);
4687 
4688   // Determine whether we'll need to perform derived-to-base adjustments or
4689   // other conversions.
4690   Sema::ReferenceConversions RefConv;
4691   Sema::ReferenceCompareResult NewRefRelationship =
4692       S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, &RefConv);
4693 
4694   // Add the final conversion sequence, if necessary.
4695   if (NewRefRelationship == Sema::Ref_Incompatible) {
4696     assert(!isa<CXXConstructorDecl>(Function) &&
4697            "should not have conversion after constructor");
4698 
4699     ImplicitConversionSequence ICS;
4700     ICS.setStandard();
4701     ICS.Standard = Best->FinalConversion;
4702     Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
4703 
4704     // Every implicit conversion results in a prvalue, except for a glvalue
4705     // derived-to-base conversion, which we handle below.
4706     cv3T3 = ICS.Standard.getToType(2);
4707     VK = VK_PRValue;
4708   }
4709 
4710   //   If the converted initializer is a prvalue, its type T4 is adjusted to
4711   //   type "cv1 T4" and the temporary materialization conversion is applied.
4712   //
4713   // We adjust the cv-qualifications to match the reference regardless of
4714   // whether we have a prvalue so that the AST records the change. In this
4715   // case, T4 is "cv3 T3".
4716   QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
4717   if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
4718     Sequence.AddQualificationConversionStep(cv1T4, VK);
4719   Sequence.AddReferenceBindingStep(cv1T4, VK == VK_PRValue);
4720   VK = IsLValueRef ? VK_LValue : VK_XValue;
4721 
4722   if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4723     Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
4724   else if (RefConv & Sema::ReferenceConversions::ObjC)
4725     Sequence.AddObjCObjectConversionStep(cv1T1);
4726   else if (RefConv & Sema::ReferenceConversions::Function)
4727     Sequence.AddFunctionReferenceConversionStep(cv1T1);
4728   else if (RefConv & Sema::ReferenceConversions::Qualification) {
4729     if (!S.Context.hasSameType(cv1T4, cv1T1))
4730       Sequence.AddQualificationConversionStep(cv1T1, VK);
4731   }
4732 
4733   return OR_Success;
4734 }
4735 
4736 static void CheckCXX98CompatAccessibleCopy(Sema &S,
4737                                            const InitializedEntity &Entity,
4738                                            Expr *CurInitExpr);
4739 
4740 /// Attempt reference initialization (C++0x [dcl.init.ref])
4741 static void TryReferenceInitialization(Sema &S,
4742                                        const InitializedEntity &Entity,
4743                                        const InitializationKind &Kind,
4744                                        Expr *Initializer,
4745                                        InitializationSequence &Sequence) {
4746   QualType DestType = Entity.getType();
4747   QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4748   Qualifiers T1Quals;
4749   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4750   QualType cv2T2 = S.getCompletedType(Initializer);
4751   Qualifiers T2Quals;
4752   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4753 
4754   // If the initializer is the address of an overloaded function, try
4755   // to resolve the overloaded function. If all goes well, T2 is the
4756   // type of the resulting function.
4757   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4758                                                    T1, Sequence))
4759     return;
4760 
4761   // Delegate everything else to a subfunction.
4762   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4763                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
4764 }
4765 
4766 /// Determine whether an expression is a non-referenceable glvalue (one to
4767 /// which a reference can never bind). Attempting to bind a reference to
4768 /// such a glvalue will always create a temporary.
4769 static bool isNonReferenceableGLValue(Expr *E) {
4770   return E->refersToBitField() || E->refersToVectorElement() ||
4771          E->refersToMatrixElement();
4772 }
4773 
4774 /// Reference initialization without resolving overloaded functions.
4775 ///
4776 /// We also can get here in C if we call a builtin which is declared as
4777 /// a function with a parameter of reference type (such as __builtin_va_end()).
4778 static void TryReferenceInitializationCore(Sema &S,
4779                                            const InitializedEntity &Entity,
4780                                            const InitializationKind &Kind,
4781                                            Expr *Initializer,
4782                                            QualType cv1T1, QualType T1,
4783                                            Qualifiers T1Quals,
4784                                            QualType cv2T2, QualType T2,
4785                                            Qualifiers T2Quals,
4786                                            InitializationSequence &Sequence) {
4787   QualType DestType = Entity.getType();
4788   SourceLocation DeclLoc = Initializer->getBeginLoc();
4789 
4790   // Compute some basic properties of the types and the initializer.
4791   bool isLValueRef = DestType->isLValueReferenceType();
4792   bool isRValueRef = !isLValueRef;
4793   Expr::Classification InitCategory = Initializer->Classify(S.Context);
4794 
4795   Sema::ReferenceConversions RefConv;
4796   Sema::ReferenceCompareResult RefRelationship =
4797       S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, &RefConv);
4798 
4799   // C++0x [dcl.init.ref]p5:
4800   //   A reference to type "cv1 T1" is initialized by an expression of type
4801   //   "cv2 T2" as follows:
4802   //
4803   //     - If the reference is an lvalue reference and the initializer
4804   //       expression
4805   // Note the analogous bullet points for rvalue refs to functions. Because
4806   // there are no function rvalues in C++, rvalue refs to functions are treated
4807   // like lvalue refs.
4808   OverloadingResult ConvOvlResult = OR_Success;
4809   bool T1Function = T1->isFunctionType();
4810   if (isLValueRef || T1Function) {
4811     if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
4812         (RefRelationship == Sema::Ref_Compatible ||
4813          (Kind.isCStyleOrFunctionalCast() &&
4814           RefRelationship == Sema::Ref_Related))) {
4815       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
4816       //     reference-compatible with "cv2 T2," or
4817       if (RefConv & (Sema::ReferenceConversions::DerivedToBase |
4818                      Sema::ReferenceConversions::ObjC)) {
4819         // If we're converting the pointee, add any qualifiers first;
4820         // these qualifiers must all be top-level, so just convert to "cv1 T2".
4821         if (RefConv & (Sema::ReferenceConversions::Qualification))
4822           Sequence.AddQualificationConversionStep(
4823               S.Context.getQualifiedType(T2, T1Quals),
4824               Initializer->getValueKind());
4825         if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4826           Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
4827         else
4828           Sequence.AddObjCObjectConversionStep(cv1T1);
4829       } else if (RefConv & Sema::ReferenceConversions::Qualification) {
4830         // Perform a (possibly multi-level) qualification conversion.
4831         Sequence.AddQualificationConversionStep(cv1T1,
4832                                                 Initializer->getValueKind());
4833       } else if (RefConv & Sema::ReferenceConversions::Function) {
4834         Sequence.AddFunctionReferenceConversionStep(cv1T1);
4835       }
4836 
4837       // We only create a temporary here when binding a reference to a
4838       // bit-field or vector element. Those cases are't supposed to be
4839       // handled by this bullet, but the outcome is the same either way.
4840       Sequence.AddReferenceBindingStep(cv1T1, false);
4841       return;
4842     }
4843 
4844     //     - has a class type (i.e., T2 is a class type), where T1 is not
4845     //       reference-related to T2, and can be implicitly converted to an
4846     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4847     //       with "cv3 T3" (this conversion is selected by enumerating the
4848     //       applicable conversion functions (13.3.1.6) and choosing the best
4849     //       one through overload resolution (13.3)),
4850     // If we have an rvalue ref to function type here, the rhs must be
4851     // an rvalue. DR1287 removed the "implicitly" here.
4852     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4853         (isLValueRef || InitCategory.isRValue())) {
4854       if (S.getLangOpts().CPlusPlus) {
4855         // Try conversion functions only for C++.
4856         ConvOvlResult = TryRefInitWithConversionFunction(
4857             S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
4858             /*IsLValueRef*/ isLValueRef, Sequence);
4859         if (ConvOvlResult == OR_Success)
4860           return;
4861         if (ConvOvlResult != OR_No_Viable_Function)
4862           Sequence.SetOverloadFailure(
4863               InitializationSequence::FK_ReferenceInitOverloadFailed,
4864               ConvOvlResult);
4865       } else {
4866         ConvOvlResult = OR_No_Viable_Function;
4867       }
4868     }
4869   }
4870 
4871   //     - Otherwise, the reference shall be an lvalue reference to a
4872   //       non-volatile const type (i.e., cv1 shall be const), or the reference
4873   //       shall be an rvalue reference.
4874   //       For address spaces, we interpret this to mean that an addr space
4875   //       of a reference "cv1 T1" is a superset of addr space of "cv2 T2".
4876   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() &&
4877                        T1Quals.isAddressSpaceSupersetOf(T2Quals))) {
4878     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4879       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4880     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4881       Sequence.SetOverloadFailure(
4882                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4883                                   ConvOvlResult);
4884     else if (!InitCategory.isLValue())
4885       Sequence.SetFailed(
4886           T1Quals.isAddressSpaceSupersetOf(T2Quals)
4887               ? InitializationSequence::
4888                     FK_NonConstLValueReferenceBindingToTemporary
4889               : InitializationSequence::FK_ReferenceInitDropsQualifiers);
4890     else {
4891       InitializationSequence::FailureKind FK;
4892       switch (RefRelationship) {
4893       case Sema::Ref_Compatible:
4894         if (Initializer->refersToBitField())
4895           FK = InitializationSequence::
4896               FK_NonConstLValueReferenceBindingToBitfield;
4897         else if (Initializer->refersToVectorElement())
4898           FK = InitializationSequence::
4899               FK_NonConstLValueReferenceBindingToVectorElement;
4900         else if (Initializer->refersToMatrixElement())
4901           FK = InitializationSequence::
4902               FK_NonConstLValueReferenceBindingToMatrixElement;
4903         else
4904           llvm_unreachable("unexpected kind of compatible initializer");
4905         break;
4906       case Sema::Ref_Related:
4907         FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
4908         break;
4909       case Sema::Ref_Incompatible:
4910         FK = InitializationSequence::
4911             FK_NonConstLValueReferenceBindingToUnrelated;
4912         break;
4913       }
4914       Sequence.SetFailed(FK);
4915     }
4916     return;
4917   }
4918 
4919   //    - If the initializer expression
4920   //      - is an
4921   // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
4922   // [1z]   rvalue (but not a bit-field) or
4923   //        function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
4924   //
4925   // Note: functions are handled above and below rather than here...
4926   if (!T1Function &&
4927       (RefRelationship == Sema::Ref_Compatible ||
4928        (Kind.isCStyleOrFunctionalCast() &&
4929         RefRelationship == Sema::Ref_Related)) &&
4930       ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
4931        (InitCategory.isPRValue() &&
4932         (S.getLangOpts().CPlusPlus17 || T2->isRecordType() ||
4933          T2->isArrayType())))) {
4934     ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_PRValue;
4935     if (InitCategory.isPRValue() && T2->isRecordType()) {
4936       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4937       // compiler the freedom to perform a copy here or bind to the
4938       // object, while C++0x requires that we bind directly to the
4939       // object. Hence, we always bind to the object without making an
4940       // extra copy. However, in C++03 requires that we check for the
4941       // presence of a suitable copy constructor:
4942       //
4943       //   The constructor that would be used to make the copy shall
4944       //   be callable whether or not the copy is actually done.
4945       if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4946         Sequence.AddExtraneousCopyToTemporary(cv2T2);
4947       else if (S.getLangOpts().CPlusPlus11)
4948         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
4949     }
4950 
4951     // C++1z [dcl.init.ref]/5.2.1.2:
4952     //   If the converted initializer is a prvalue, its type T4 is adjusted
4953     //   to type "cv1 T4" and the temporary materialization conversion is
4954     //   applied.
4955     // Postpone address space conversions to after the temporary materialization
4956     // conversion to allow creating temporaries in the alloca address space.
4957     auto T1QualsIgnoreAS = T1Quals;
4958     auto T2QualsIgnoreAS = T2Quals;
4959     if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4960       T1QualsIgnoreAS.removeAddressSpace();
4961       T2QualsIgnoreAS.removeAddressSpace();
4962     }
4963     QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS);
4964     if (T1QualsIgnoreAS != T2QualsIgnoreAS)
4965       Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
4966     Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_PRValue);
4967     ValueKind = isLValueRef ? VK_LValue : VK_XValue;
4968     // Add addr space conversion if required.
4969     if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4970       auto T4Quals = cv1T4.getQualifiers();
4971       T4Quals.addAddressSpace(T1Quals.getAddressSpace());
4972       QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals);
4973       Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind);
4974       cv1T4 = cv1T4WithAS;
4975     }
4976 
4977     //   In any case, the reference is bound to the resulting glvalue (or to
4978     //   an appropriate base class subobject).
4979     if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4980       Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
4981     else if (RefConv & Sema::ReferenceConversions::ObjC)
4982       Sequence.AddObjCObjectConversionStep(cv1T1);
4983     else if (RefConv & Sema::ReferenceConversions::Qualification) {
4984       if (!S.Context.hasSameType(cv1T4, cv1T1))
4985         Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
4986     }
4987     return;
4988   }
4989 
4990   //       - has a class type (i.e., T2 is a class type), where T1 is not
4991   //         reference-related to T2, and can be implicitly converted to an
4992   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
4993   //         where "cv1 T1" is reference-compatible with "cv3 T3",
4994   //
4995   // DR1287 removes the "implicitly" here.
4996   if (T2->isRecordType()) {
4997     if (RefRelationship == Sema::Ref_Incompatible) {
4998       ConvOvlResult = TryRefInitWithConversionFunction(
4999           S, Entity, Kind, Initializer, /*AllowRValues*/ true,
5000           /*IsLValueRef*/ isLValueRef, Sequence);
5001       if (ConvOvlResult)
5002         Sequence.SetOverloadFailure(
5003             InitializationSequence::FK_ReferenceInitOverloadFailed,
5004             ConvOvlResult);
5005 
5006       return;
5007     }
5008 
5009     if (RefRelationship == Sema::Ref_Compatible &&
5010         isRValueRef && InitCategory.isLValue()) {
5011       Sequence.SetFailed(
5012         InitializationSequence::FK_RValueReferenceBindingToLValue);
5013       return;
5014     }
5015 
5016     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
5017     return;
5018   }
5019 
5020   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
5021   //        from the initializer expression using the rules for a non-reference
5022   //        copy-initialization (8.5). The reference is then bound to the
5023   //        temporary. [...]
5024 
5025   // Ignore address space of reference type at this point and perform address
5026   // space conversion after the reference binding step.
5027   QualType cv1T1IgnoreAS =
5028       T1Quals.hasAddressSpace()
5029           ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace())
5030           : cv1T1;
5031 
5032   InitializedEntity TempEntity =
5033       InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
5034 
5035   // FIXME: Why do we use an implicit conversion here rather than trying
5036   // copy-initialization?
5037   ImplicitConversionSequence ICS
5038     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
5039                               /*SuppressUserConversions=*/false,
5040                               Sema::AllowedExplicit::None,
5041                               /*FIXME:InOverloadResolution=*/false,
5042                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5043                               /*AllowObjCWritebackConversion=*/false);
5044 
5045   if (ICS.isBad()) {
5046     // FIXME: Use the conversion function set stored in ICS to turn
5047     // this into an overloading ambiguity diagnostic. However, we need
5048     // to keep that set as an OverloadCandidateSet rather than as some
5049     // other kind of set.
5050     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
5051       Sequence.SetOverloadFailure(
5052                         InitializationSequence::FK_ReferenceInitOverloadFailed,
5053                                   ConvOvlResult);
5054     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
5055       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5056     else
5057       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
5058     return;
5059   } else {
5060     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
5061   }
5062 
5063   //        [...] If T1 is reference-related to T2, cv1 must be the
5064   //        same cv-qualification as, or greater cv-qualification
5065   //        than, cv2; otherwise, the program is ill-formed.
5066   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
5067   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
5068   if (RefRelationship == Sema::Ref_Related &&
5069       ((T1CVRQuals | T2CVRQuals) != T1CVRQuals ||
5070        !T1Quals.isAddressSpaceSupersetOf(T2Quals))) {
5071     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
5072     return;
5073   }
5074 
5075   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
5076   //   reference, the initializer expression shall not be an lvalue.
5077   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
5078       InitCategory.isLValue()) {
5079     Sequence.SetFailed(
5080                     InitializationSequence::FK_RValueReferenceBindingToLValue);
5081     return;
5082   }
5083 
5084   Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true);
5085 
5086   if (T1Quals.hasAddressSpace()) {
5087     if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(),
5088                                               LangAS::Default)) {
5089       Sequence.SetFailed(
5090           InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary);
5091       return;
5092     }
5093     Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue
5094                                                                : VK_XValue);
5095   }
5096 }
5097 
5098 /// Attempt character array initialization from a string literal
5099 /// (C++ [dcl.init.string], C99 6.7.8).
5100 static void TryStringLiteralInitialization(Sema &S,
5101                                            const InitializedEntity &Entity,
5102                                            const InitializationKind &Kind,
5103                                            Expr *Initializer,
5104                                        InitializationSequence &Sequence) {
5105   Sequence.AddStringInitStep(Entity.getType());
5106 }
5107 
5108 /// Attempt value initialization (C++ [dcl.init]p7).
5109 static void TryValueInitialization(Sema &S,
5110                                    const InitializedEntity &Entity,
5111                                    const InitializationKind &Kind,
5112                                    InitializationSequence &Sequence,
5113                                    InitListExpr *InitList) {
5114   assert((!InitList || InitList->getNumInits() == 0) &&
5115          "Shouldn't use value-init for non-empty init lists");
5116 
5117   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
5118   //
5119   //   To value-initialize an object of type T means:
5120   QualType T = Entity.getType();
5121 
5122   //     -- if T is an array type, then each element is value-initialized;
5123   T = S.Context.getBaseElementType(T);
5124 
5125   if (const RecordType *RT = T->getAs<RecordType>()) {
5126     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
5127       bool NeedZeroInitialization = true;
5128       // C++98:
5129       // -- if T is a class type (clause 9) with a user-declared constructor
5130       //    (12.1), then the default constructor for T is called (and the
5131       //    initialization is ill-formed if T has no accessible default
5132       //    constructor);
5133       // C++11:
5134       // -- if T is a class type (clause 9) with either no default constructor
5135       //    (12.1 [class.ctor]) or a default constructor that is user-provided
5136       //    or deleted, then the object is default-initialized;
5137       //
5138       // Note that the C++11 rule is the same as the C++98 rule if there are no
5139       // defaulted or deleted constructors, so we just use it unconditionally.
5140       CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
5141       if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
5142         NeedZeroInitialization = false;
5143 
5144       // -- if T is a (possibly cv-qualified) non-union class type without a
5145       //    user-provided or deleted default constructor, then the object is
5146       //    zero-initialized and, if T has a non-trivial default constructor,
5147       //    default-initialized;
5148       // The 'non-union' here was removed by DR1502. The 'non-trivial default
5149       // constructor' part was removed by DR1507.
5150       if (NeedZeroInitialization)
5151         Sequence.AddZeroInitializationStep(Entity.getType());
5152 
5153       // C++03:
5154       // -- if T is a non-union class type without a user-declared constructor,
5155       //    then every non-static data member and base class component of T is
5156       //    value-initialized;
5157       // [...] A program that calls for [...] value-initialization of an
5158       // entity of reference type is ill-formed.
5159       //
5160       // C++11 doesn't need this handling, because value-initialization does not
5161       // occur recursively there, and the implicit default constructor is
5162       // defined as deleted in the problematic cases.
5163       if (!S.getLangOpts().CPlusPlus11 &&
5164           ClassDecl->hasUninitializedReferenceMember()) {
5165         Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
5166         return;
5167       }
5168 
5169       // If this is list-value-initialization, pass the empty init list on when
5170       // building the constructor call. This affects the semantics of a few
5171       // things (such as whether an explicit default constructor can be called).
5172       Expr *InitListAsExpr = InitList;
5173       MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
5174       bool InitListSyntax = InitList;
5175 
5176       // FIXME: Instead of creating a CXXConstructExpr of array type here,
5177       // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
5178       return TryConstructorInitialization(
5179           S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
5180     }
5181   }
5182 
5183   Sequence.AddZeroInitializationStep(Entity.getType());
5184 }
5185 
5186 /// Attempt default initialization (C++ [dcl.init]p6).
5187 static void TryDefaultInitialization(Sema &S,
5188                                      const InitializedEntity &Entity,
5189                                      const InitializationKind &Kind,
5190                                      InitializationSequence &Sequence) {
5191   assert(Kind.getKind() == InitializationKind::IK_Default);
5192 
5193   // C++ [dcl.init]p6:
5194   //   To default-initialize an object of type T means:
5195   //     - if T is an array type, each element is default-initialized;
5196   QualType DestType = S.Context.getBaseElementType(Entity.getType());
5197 
5198   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
5199   //       constructor for T is called (and the initialization is ill-formed if
5200   //       T has no accessible default constructor);
5201   if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
5202     TryConstructorInitialization(S, Entity, Kind, None, DestType,
5203                                  Entity.getType(), Sequence);
5204     return;
5205   }
5206 
5207   //     - otherwise, no initialization is performed.
5208 
5209   //   If a program calls for the default initialization of an object of
5210   //   a const-qualified type T, T shall be a class type with a user-provided
5211   //   default constructor.
5212   if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
5213     if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
5214       Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
5215     return;
5216   }
5217 
5218   // If the destination type has a lifetime property, zero-initialize it.
5219   if (DestType.getQualifiers().hasObjCLifetime()) {
5220     Sequence.AddZeroInitializationStep(Entity.getType());
5221     return;
5222   }
5223 }
5224 
5225 /// Attempt a user-defined conversion between two types (C++ [dcl.init]),
5226 /// which enumerates all conversion functions and performs overload resolution
5227 /// to select the best.
5228 static void TryUserDefinedConversion(Sema &S,
5229                                      QualType DestType,
5230                                      const InitializationKind &Kind,
5231                                      Expr *Initializer,
5232                                      InitializationSequence &Sequence,
5233                                      bool TopLevelOfInitList) {
5234   assert(!DestType->isReferenceType() && "References are handled elsewhere");
5235   QualType SourceType = Initializer->getType();
5236   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
5237          "Must have a class type to perform a user-defined conversion");
5238 
5239   // Build the candidate set directly in the initialization sequence
5240   // structure, so that it will persist if we fail.
5241   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
5242   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
5243   CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
5244 
5245   // Determine whether we are allowed to call explicit constructors or
5246   // explicit conversion operators.
5247   bool AllowExplicit = Kind.AllowExplicit();
5248 
5249   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
5250     // The type we're converting to is a class type. Enumerate its constructors
5251     // to see if there is a suitable conversion.
5252     CXXRecordDecl *DestRecordDecl
5253       = cast<CXXRecordDecl>(DestRecordType->getDecl());
5254 
5255     // Try to complete the type we're converting to.
5256     if (S.isCompleteType(Kind.getLocation(), DestType)) {
5257       for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) {
5258         auto Info = getConstructorInfo(D);
5259         if (!Info.Constructor)
5260           continue;
5261 
5262         if (!Info.Constructor->isInvalidDecl() &&
5263             Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
5264           if (Info.ConstructorTmpl)
5265             S.AddTemplateOverloadCandidate(
5266                 Info.ConstructorTmpl, Info.FoundDecl,
5267                 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
5268                 /*SuppressUserConversions=*/true,
5269                 /*PartialOverloading*/ false, AllowExplicit);
5270           else
5271             S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
5272                                    Initializer, CandidateSet,
5273                                    /*SuppressUserConversions=*/true,
5274                                    /*PartialOverloading*/ false, AllowExplicit);
5275         }
5276       }
5277     }
5278   }
5279 
5280   SourceLocation DeclLoc = Initializer->getBeginLoc();
5281 
5282   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
5283     // The type we're converting from is a class type, enumerate its conversion
5284     // functions.
5285 
5286     // We can only enumerate the conversion functions for a complete type; if
5287     // the type isn't complete, simply skip this step.
5288     if (S.isCompleteType(DeclLoc, SourceType)) {
5289       CXXRecordDecl *SourceRecordDecl
5290         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
5291 
5292       const auto &Conversions =
5293           SourceRecordDecl->getVisibleConversionFunctions();
5294       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
5295         NamedDecl *D = *I;
5296         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
5297         if (isa<UsingShadowDecl>(D))
5298           D = cast<UsingShadowDecl>(D)->getTargetDecl();
5299 
5300         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5301         CXXConversionDecl *Conv;
5302         if (ConvTemplate)
5303           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5304         else
5305           Conv = cast<CXXConversionDecl>(D);
5306 
5307         if (ConvTemplate)
5308           S.AddTemplateConversionCandidate(
5309               ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
5310               CandidateSet, AllowExplicit, AllowExplicit);
5311         else
5312           S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
5313                                    DestType, CandidateSet, AllowExplicit,
5314                                    AllowExplicit);
5315       }
5316     }
5317   }
5318 
5319   // Perform overload resolution. If it fails, return the failed result.
5320   OverloadCandidateSet::iterator Best;
5321   if (OverloadingResult Result
5322         = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
5323     Sequence.SetOverloadFailure(
5324         InitializationSequence::FK_UserConversionOverloadFailed, Result);
5325 
5326     // [class.copy.elision]p3:
5327     // In some copy-initialization contexts, a two-stage overload resolution
5328     // is performed.
5329     // If the first overload resolution selects a deleted function, we also
5330     // need the initialization sequence to decide whether to perform the second
5331     // overload resolution.
5332     if (!(Result == OR_Deleted &&
5333           Kind.getKind() == InitializationKind::IK_Copy))
5334       return;
5335   }
5336 
5337   FunctionDecl *Function = Best->Function;
5338   Function->setReferenced();
5339   bool HadMultipleCandidates = (CandidateSet.size() > 1);
5340 
5341   if (isa<CXXConstructorDecl>(Function)) {
5342     // Add the user-defined conversion step. Any cv-qualification conversion is
5343     // subsumed by the initialization. Per DR5, the created temporary is of the
5344     // cv-unqualified type of the destination.
5345     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
5346                                    DestType.getUnqualifiedType(),
5347                                    HadMultipleCandidates);
5348 
5349     // C++14 and before:
5350     //   - if the function is a constructor, the call initializes a temporary
5351     //     of the cv-unqualified version of the destination type. The [...]
5352     //     temporary [...] is then used to direct-initialize, according to the
5353     //     rules above, the object that is the destination of the
5354     //     copy-initialization.
5355     // Note that this just performs a simple object copy from the temporary.
5356     //
5357     // C++17:
5358     //   - if the function is a constructor, the call is a prvalue of the
5359     //     cv-unqualified version of the destination type whose return object
5360     //     is initialized by the constructor. The call is used to
5361     //     direct-initialize, according to the rules above, the object that
5362     //     is the destination of the copy-initialization.
5363     // Therefore we need to do nothing further.
5364     //
5365     // FIXME: Mark this copy as extraneous.
5366     if (!S.getLangOpts().CPlusPlus17)
5367       Sequence.AddFinalCopy(DestType);
5368     else if (DestType.hasQualifiers())
5369       Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
5370     return;
5371   }
5372 
5373   // Add the user-defined conversion step that calls the conversion function.
5374   QualType ConvType = Function->getCallResultType();
5375   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
5376                                  HadMultipleCandidates);
5377 
5378   if (ConvType->getAs<RecordType>()) {
5379     //   The call is used to direct-initialize [...] the object that is the
5380     //   destination of the copy-initialization.
5381     //
5382     // In C++17, this does not call a constructor if we enter /17.6.1:
5383     //   - If the initializer expression is a prvalue and the cv-unqualified
5384     //     version of the source type is the same as the class of the
5385     //     destination [... do not make an extra copy]
5386     //
5387     // FIXME: Mark this copy as extraneous.
5388     if (!S.getLangOpts().CPlusPlus17 ||
5389         Function->getReturnType()->isReferenceType() ||
5390         !S.Context.hasSameUnqualifiedType(ConvType, DestType))
5391       Sequence.AddFinalCopy(DestType);
5392     else if (!S.Context.hasSameType(ConvType, DestType))
5393       Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
5394     return;
5395   }
5396 
5397   // If the conversion following the call to the conversion function
5398   // is interesting, add it as a separate step.
5399   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
5400       Best->FinalConversion.Third) {
5401     ImplicitConversionSequence ICS;
5402     ICS.setStandard();
5403     ICS.Standard = Best->FinalConversion;
5404     Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5405   }
5406 }
5407 
5408 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
5409 /// a function with a pointer return type contains a 'return false;' statement.
5410 /// In C++11, 'false' is not a null pointer, so this breaks the build of any
5411 /// code using that header.
5412 ///
5413 /// Work around this by treating 'return false;' as zero-initializing the result
5414 /// if it's used in a pointer-returning function in a system header.
5415 static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
5416                                               const InitializedEntity &Entity,
5417                                               const Expr *Init) {
5418   return S.getLangOpts().CPlusPlus11 &&
5419          Entity.getKind() == InitializedEntity::EK_Result &&
5420          Entity.getType()->isPointerType() &&
5421          isa<CXXBoolLiteralExpr>(Init) &&
5422          !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
5423          S.getSourceManager().isInSystemHeader(Init->getExprLoc());
5424 }
5425 
5426 /// The non-zero enum values here are indexes into diagnostic alternatives.
5427 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
5428 
5429 /// Determines whether this expression is an acceptable ICR source.
5430 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
5431                                          bool isAddressOf, bool &isWeakAccess) {
5432   // Skip parens.
5433   e = e->IgnoreParens();
5434 
5435   // Skip address-of nodes.
5436   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
5437     if (op->getOpcode() == UO_AddrOf)
5438       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
5439                                 isWeakAccess);
5440 
5441   // Skip certain casts.
5442   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
5443     switch (ce->getCastKind()) {
5444     case CK_Dependent:
5445     case CK_BitCast:
5446     case CK_LValueBitCast:
5447     case CK_NoOp:
5448       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
5449 
5450     case CK_ArrayToPointerDecay:
5451       return IIK_nonscalar;
5452 
5453     case CK_NullToPointer:
5454       return IIK_okay;
5455 
5456     default:
5457       break;
5458     }
5459 
5460   // If we have a declaration reference, it had better be a local variable.
5461   } else if (isa<DeclRefExpr>(e)) {
5462     // set isWeakAccess to true, to mean that there will be an implicit
5463     // load which requires a cleanup.
5464     if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
5465       isWeakAccess = true;
5466 
5467     if (!isAddressOf) return IIK_nonlocal;
5468 
5469     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
5470     if (!var) return IIK_nonlocal;
5471 
5472     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
5473 
5474   // If we have a conditional operator, check both sides.
5475   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
5476     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
5477                                                 isWeakAccess))
5478       return iik;
5479 
5480     return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
5481 
5482   // These are never scalar.
5483   } else if (isa<ArraySubscriptExpr>(e)) {
5484     return IIK_nonscalar;
5485 
5486   // Otherwise, it needs to be a null pointer constant.
5487   } else {
5488     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
5489             ? IIK_okay : IIK_nonlocal);
5490   }
5491 
5492   return IIK_nonlocal;
5493 }
5494 
5495 /// Check whether the given expression is a valid operand for an
5496 /// indirect copy/restore.
5497 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
5498   assert(src->isPRValue());
5499   bool isWeakAccess = false;
5500   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
5501   // If isWeakAccess to true, there will be an implicit
5502   // load which requires a cleanup.
5503   if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
5504     S.Cleanup.setExprNeedsCleanups(true);
5505 
5506   if (iik == IIK_okay) return;
5507 
5508   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
5509     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
5510     << src->getSourceRange();
5511 }
5512 
5513 /// Determine whether we have compatible array types for the
5514 /// purposes of GNU by-copy array initialization.
5515 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
5516                                     const ArrayType *Source) {
5517   // If the source and destination array types are equivalent, we're
5518   // done.
5519   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
5520     return true;
5521 
5522   // Make sure that the element types are the same.
5523   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
5524     return false;
5525 
5526   // The only mismatch we allow is when the destination is an
5527   // incomplete array type and the source is a constant array type.
5528   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
5529 }
5530 
5531 static bool tryObjCWritebackConversion(Sema &S,
5532                                        InitializationSequence &Sequence,
5533                                        const InitializedEntity &Entity,
5534                                        Expr *Initializer) {
5535   bool ArrayDecay = false;
5536   QualType ArgType = Initializer->getType();
5537   QualType ArgPointee;
5538   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
5539     ArrayDecay = true;
5540     ArgPointee = ArgArrayType->getElementType();
5541     ArgType = S.Context.getPointerType(ArgPointee);
5542   }
5543 
5544   // Handle write-back conversion.
5545   QualType ConvertedArgType;
5546   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
5547                                    ConvertedArgType))
5548     return false;
5549 
5550   // We should copy unless we're passing to an argument explicitly
5551   // marked 'out'.
5552   bool ShouldCopy = true;
5553   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5554     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5555 
5556   // Do we need an lvalue conversion?
5557   if (ArrayDecay || Initializer->isGLValue()) {
5558     ImplicitConversionSequence ICS;
5559     ICS.setStandard();
5560     ICS.Standard.setAsIdentityConversion();
5561 
5562     QualType ResultType;
5563     if (ArrayDecay) {
5564       ICS.Standard.First = ICK_Array_To_Pointer;
5565       ResultType = S.Context.getPointerType(ArgPointee);
5566     } else {
5567       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
5568       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
5569     }
5570 
5571     Sequence.AddConversionSequenceStep(ICS, ResultType);
5572   }
5573 
5574   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
5575   return true;
5576 }
5577 
5578 static bool TryOCLSamplerInitialization(Sema &S,
5579                                         InitializationSequence &Sequence,
5580                                         QualType DestType,
5581                                         Expr *Initializer) {
5582   if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
5583       (!Initializer->isIntegerConstantExpr(S.Context) &&
5584       !Initializer->getType()->isSamplerT()))
5585     return false;
5586 
5587   Sequence.AddOCLSamplerInitStep(DestType);
5588   return true;
5589 }
5590 
5591 static bool IsZeroInitializer(Expr *Initializer, Sema &S) {
5592   return Initializer->isIntegerConstantExpr(S.getASTContext()) &&
5593     (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0);
5594 }
5595 
5596 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S,
5597                                                InitializationSequence &Sequence,
5598                                                QualType DestType,
5599                                                Expr *Initializer) {
5600   if (!S.getLangOpts().OpenCL)
5601     return false;
5602 
5603   //
5604   // OpenCL 1.2 spec, s6.12.10
5605   //
5606   // The event argument can also be used to associate the
5607   // async_work_group_copy with a previous async copy allowing
5608   // an event to be shared by multiple async copies; otherwise
5609   // event should be zero.
5610   //
5611   if (DestType->isEventT() || DestType->isQueueT()) {
5612     if (!IsZeroInitializer(Initializer, S))
5613       return false;
5614 
5615     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5616     return true;
5617   }
5618 
5619   // We should allow zero initialization for all types defined in the
5620   // cl_intel_device_side_avc_motion_estimation extension, except
5621   // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t.
5622   if (S.getOpenCLOptions().isAvailableOption(
5623           "cl_intel_device_side_avc_motion_estimation", S.getLangOpts()) &&
5624       DestType->isOCLIntelSubgroupAVCType()) {
5625     if (DestType->isOCLIntelSubgroupAVCMcePayloadType() ||
5626         DestType->isOCLIntelSubgroupAVCMceResultType())
5627       return false;
5628     if (!IsZeroInitializer(Initializer, S))
5629       return false;
5630 
5631     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5632     return true;
5633   }
5634 
5635   return false;
5636 }
5637 
5638 InitializationSequence::InitializationSequence(
5639     Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
5640     MultiExprArg Args, bool TopLevelOfInitList, bool TreatUnavailableAsInvalid)
5641     : FailedOverloadResult(OR_Success),
5642       FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
5643   InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
5644                  TreatUnavailableAsInvalid);
5645 }
5646 
5647 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
5648 /// address of that function, this returns true. Otherwise, it returns false.
5649 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
5650   auto *DRE = dyn_cast<DeclRefExpr>(E);
5651   if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
5652     return false;
5653 
5654   return !S.checkAddressOfFunctionIsAvailable(
5655       cast<FunctionDecl>(DRE->getDecl()));
5656 }
5657 
5658 /// Determine whether we can perform an elementwise array copy for this kind
5659 /// of entity.
5660 static bool canPerformArrayCopy(const InitializedEntity &Entity) {
5661   switch (Entity.getKind()) {
5662   case InitializedEntity::EK_LambdaCapture:
5663     // C++ [expr.prim.lambda]p24:
5664     //   For array members, the array elements are direct-initialized in
5665     //   increasing subscript order.
5666     return true;
5667 
5668   case InitializedEntity::EK_Variable:
5669     // C++ [dcl.decomp]p1:
5670     //   [...] each element is copy-initialized or direct-initialized from the
5671     //   corresponding element of the assignment-expression [...]
5672     return isa<DecompositionDecl>(Entity.getDecl());
5673 
5674   case InitializedEntity::EK_Member:
5675     // C++ [class.copy.ctor]p14:
5676     //   - if the member is an array, each element is direct-initialized with
5677     //     the corresponding subobject of x
5678     return Entity.isImplicitMemberInitializer();
5679 
5680   case InitializedEntity::EK_ArrayElement:
5681     // All the above cases are intended to apply recursively, even though none
5682     // of them actually say that.
5683     if (auto *E = Entity.getParent())
5684       return canPerformArrayCopy(*E);
5685     break;
5686 
5687   default:
5688     break;
5689   }
5690 
5691   return false;
5692 }
5693 
5694 void InitializationSequence::InitializeFrom(Sema &S,
5695                                             const InitializedEntity &Entity,
5696                                             const InitializationKind &Kind,
5697                                             MultiExprArg Args,
5698                                             bool TopLevelOfInitList,
5699                                             bool TreatUnavailableAsInvalid) {
5700   ASTContext &Context = S.Context;
5701 
5702   // Eliminate non-overload placeholder types in the arguments.  We
5703   // need to do this before checking whether types are dependent
5704   // because lowering a pseudo-object expression might well give us
5705   // something of dependent type.
5706   for (unsigned I = 0, E = Args.size(); I != E; ++I)
5707     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
5708       // FIXME: should we be doing this here?
5709       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
5710       if (result.isInvalid()) {
5711         SetFailed(FK_PlaceholderType);
5712         return;
5713       }
5714       Args[I] = result.get();
5715     }
5716 
5717   // C++0x [dcl.init]p16:
5718   //   The semantics of initializers are as follows. The destination type is
5719   //   the type of the object or reference being initialized and the source
5720   //   type is the type of the initializer expression. The source type is not
5721   //   defined when the initializer is a braced-init-list or when it is a
5722   //   parenthesized list of expressions.
5723   QualType DestType = Entity.getType();
5724 
5725   if (DestType->isDependentType() ||
5726       Expr::hasAnyTypeDependentArguments(Args)) {
5727     SequenceKind = DependentSequence;
5728     return;
5729   }
5730 
5731   // Almost everything is a normal sequence.
5732   setSequenceKind(NormalSequence);
5733 
5734   QualType SourceType;
5735   Expr *Initializer = nullptr;
5736   if (Args.size() == 1) {
5737     Initializer = Args[0];
5738     if (S.getLangOpts().ObjC) {
5739       if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(),
5740                                               DestType, Initializer->getType(),
5741                                               Initializer) ||
5742           S.CheckConversionToObjCLiteral(DestType, Initializer))
5743         Args[0] = Initializer;
5744     }
5745     if (!isa<InitListExpr>(Initializer))
5746       SourceType = Initializer->getType();
5747   }
5748 
5749   //     - If the initializer is a (non-parenthesized) braced-init-list, the
5750   //       object is list-initialized (8.5.4).
5751   if (Kind.getKind() != InitializationKind::IK_Direct) {
5752     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
5753       TryListInitialization(S, Entity, Kind, InitList, *this,
5754                             TreatUnavailableAsInvalid);
5755       return;
5756     }
5757   }
5758 
5759   //     - If the destination type is a reference type, see 8.5.3.
5760   if (DestType->isReferenceType()) {
5761     // C++0x [dcl.init.ref]p1:
5762     //   A variable declared to be a T& or T&&, that is, "reference to type T"
5763     //   (8.3.2), shall be initialized by an object, or function, of type T or
5764     //   by an object that can be converted into a T.
5765     // (Therefore, multiple arguments are not permitted.)
5766     if (Args.size() != 1)
5767       SetFailed(FK_TooManyInitsForReference);
5768     // C++17 [dcl.init.ref]p5:
5769     //   A reference [...] is initialized by an expression [...] as follows:
5770     // If the initializer is not an expression, presumably we should reject,
5771     // but the standard fails to actually say so.
5772     else if (isa<InitListExpr>(Args[0]))
5773       SetFailed(FK_ParenthesizedListInitForReference);
5774     else
5775       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
5776     return;
5777   }
5778 
5779   //     - If the initializer is (), the object is value-initialized.
5780   if (Kind.getKind() == InitializationKind::IK_Value ||
5781       (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
5782     TryValueInitialization(S, Entity, Kind, *this);
5783     return;
5784   }
5785 
5786   // Handle default initialization.
5787   if (Kind.getKind() == InitializationKind::IK_Default) {
5788     TryDefaultInitialization(S, Entity, Kind, *this);
5789     return;
5790   }
5791 
5792   //     - If the destination type is an array of characters, an array of
5793   //       char16_t, an array of char32_t, or an array of wchar_t, and the
5794   //       initializer is a string literal, see 8.5.2.
5795   //     - Otherwise, if the destination type is an array, the program is
5796   //       ill-formed.
5797   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
5798     if (Initializer && isa<VariableArrayType>(DestAT)) {
5799       SetFailed(FK_VariableLengthArrayHasInitializer);
5800       return;
5801     }
5802 
5803     if (Initializer) {
5804       switch (IsStringInit(Initializer, DestAT, Context)) {
5805       case SIF_None:
5806         TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
5807         return;
5808       case SIF_NarrowStringIntoWideChar:
5809         SetFailed(FK_NarrowStringIntoWideCharArray);
5810         return;
5811       case SIF_WideStringIntoChar:
5812         SetFailed(FK_WideStringIntoCharArray);
5813         return;
5814       case SIF_IncompatWideStringIntoWideChar:
5815         SetFailed(FK_IncompatWideStringIntoWideChar);
5816         return;
5817       case SIF_PlainStringIntoUTF8Char:
5818         SetFailed(FK_PlainStringIntoUTF8Char);
5819         return;
5820       case SIF_UTF8StringIntoPlainChar:
5821         SetFailed(FK_UTF8StringIntoPlainChar);
5822         return;
5823       case SIF_Other:
5824         break;
5825       }
5826     }
5827 
5828     // Some kinds of initialization permit an array to be initialized from
5829     // another array of the same type, and perform elementwise initialization.
5830     if (Initializer && isa<ConstantArrayType>(DestAT) &&
5831         S.Context.hasSameUnqualifiedType(Initializer->getType(),
5832                                          Entity.getType()) &&
5833         canPerformArrayCopy(Entity)) {
5834       // If source is a prvalue, use it directly.
5835       if (Initializer->isPRValue()) {
5836         AddArrayInitStep(DestType, /*IsGNUExtension*/false);
5837         return;
5838       }
5839 
5840       // Emit element-at-a-time copy loop.
5841       InitializedEntity Element =
5842           InitializedEntity::InitializeElement(S.Context, 0, Entity);
5843       QualType InitEltT =
5844           Context.getAsArrayType(Initializer->getType())->getElementType();
5845       OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
5846                           Initializer->getValueKind(),
5847                           Initializer->getObjectKind());
5848       Expr *OVEAsExpr = &OVE;
5849       InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
5850                      TreatUnavailableAsInvalid);
5851       if (!Failed())
5852         AddArrayInitLoopStep(Entity.getType(), InitEltT);
5853       return;
5854     }
5855 
5856     // Note: as an GNU C extension, we allow initialization of an
5857     // array from a compound literal that creates an array of the same
5858     // type, so long as the initializer has no side effects.
5859     if (!S.getLangOpts().CPlusPlus && Initializer &&
5860         isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
5861         Initializer->getType()->isArrayType()) {
5862       const ArrayType *SourceAT
5863         = Context.getAsArrayType(Initializer->getType());
5864       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
5865         SetFailed(FK_ArrayTypeMismatch);
5866       else if (Initializer->HasSideEffects(S.Context))
5867         SetFailed(FK_NonConstantArrayInit);
5868       else {
5869         AddArrayInitStep(DestType, /*IsGNUExtension*/true);
5870       }
5871     }
5872     // Note: as a GNU C++ extension, we allow list-initialization of a
5873     // class member of array type from a parenthesized initializer list.
5874     else if (S.getLangOpts().CPlusPlus &&
5875              Entity.getKind() == InitializedEntity::EK_Member &&
5876              Initializer && isa<InitListExpr>(Initializer)) {
5877       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
5878                             *this, TreatUnavailableAsInvalid);
5879       AddParenthesizedArrayInitStep(DestType);
5880     } else if (DestAT->getElementType()->isCharType())
5881       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
5882     else if (IsWideCharCompatible(DestAT->getElementType(), Context))
5883       SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
5884     else
5885       SetFailed(FK_ArrayNeedsInitList);
5886 
5887     return;
5888   }
5889 
5890   // Determine whether we should consider writeback conversions for
5891   // Objective-C ARC.
5892   bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
5893          Entity.isParameterKind();
5894 
5895   if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
5896     return;
5897 
5898   // We're at the end of the line for C: it's either a write-back conversion
5899   // or it's a C assignment. There's no need to check anything else.
5900   if (!S.getLangOpts().CPlusPlus) {
5901     // If allowed, check whether this is an Objective-C writeback conversion.
5902     if (allowObjCWritebackConversion &&
5903         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
5904       return;
5905     }
5906 
5907     if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer))
5908       return;
5909 
5910     // Handle initialization in C
5911     AddCAssignmentStep(DestType);
5912     MaybeProduceObjCObject(S, *this, Entity);
5913     return;
5914   }
5915 
5916   assert(S.getLangOpts().CPlusPlus);
5917 
5918   //     - If the destination type is a (possibly cv-qualified) class type:
5919   if (DestType->isRecordType()) {
5920     //     - If the initialization is direct-initialization, or if it is
5921     //       copy-initialization where the cv-unqualified version of the
5922     //       source type is the same class as, or a derived class of, the
5923     //       class of the destination, constructors are considered. [...]
5924     if (Kind.getKind() == InitializationKind::IK_Direct ||
5925         (Kind.getKind() == InitializationKind::IK_Copy &&
5926          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
5927           S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType))))
5928       TryConstructorInitialization(S, Entity, Kind, Args,
5929                                    DestType, DestType, *this);
5930     //     - Otherwise (i.e., for the remaining copy-initialization cases),
5931     //       user-defined conversion sequences that can convert from the source
5932     //       type to the destination type or (when a conversion function is
5933     //       used) to a derived class thereof are enumerated as described in
5934     //       13.3.1.4, and the best one is chosen through overload resolution
5935     //       (13.3).
5936     else
5937       TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5938                                TopLevelOfInitList);
5939     return;
5940   }
5941 
5942   assert(Args.size() >= 1 && "Zero-argument case handled above");
5943 
5944   // The remaining cases all need a source type.
5945   if (Args.size() > 1) {
5946     SetFailed(FK_TooManyInitsForScalar);
5947     return;
5948   } else if (isa<InitListExpr>(Args[0])) {
5949     SetFailed(FK_ParenthesizedListInitForScalar);
5950     return;
5951   }
5952 
5953   //    - Otherwise, if the source type is a (possibly cv-qualified) class
5954   //      type, conversion functions are considered.
5955   if (!SourceType.isNull() && SourceType->isRecordType()) {
5956     // For a conversion to _Atomic(T) from either T or a class type derived
5957     // from T, initialize the T object then convert to _Atomic type.
5958     bool NeedAtomicConversion = false;
5959     if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
5960       if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
5961           S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType,
5962                           Atomic->getValueType())) {
5963         DestType = Atomic->getValueType();
5964         NeedAtomicConversion = true;
5965       }
5966     }
5967 
5968     TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5969                              TopLevelOfInitList);
5970     MaybeProduceObjCObject(S, *this, Entity);
5971     if (!Failed() && NeedAtomicConversion)
5972       AddAtomicConversionStep(Entity.getType());
5973     return;
5974   }
5975 
5976   //    - Otherwise, if the initialization is direct-initialization, the source
5977   //    type is std::nullptr_t, and the destination type is bool, the initial
5978   //    value of the object being initialized is false.
5979   if (!SourceType.isNull() && SourceType->isNullPtrType() &&
5980       DestType->isBooleanType() &&
5981       Kind.getKind() == InitializationKind::IK_Direct) {
5982     AddConversionSequenceStep(
5983         ImplicitConversionSequence::getNullptrToBool(SourceType, DestType,
5984                                                      Initializer->isGLValue()),
5985         DestType);
5986     return;
5987   }
5988 
5989   //    - Otherwise, the initial value of the object being initialized is the
5990   //      (possibly converted) value of the initializer expression. Standard
5991   //      conversions (Clause 4) will be used, if necessary, to convert the
5992   //      initializer expression to the cv-unqualified version of the
5993   //      destination type; no user-defined conversions are considered.
5994 
5995   ImplicitConversionSequence ICS
5996     = S.TryImplicitConversion(Initializer, DestType,
5997                               /*SuppressUserConversions*/true,
5998                               Sema::AllowedExplicit::None,
5999                               /*InOverloadResolution*/ false,
6000                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
6001                               allowObjCWritebackConversion);
6002 
6003   if (ICS.isStandard() &&
6004       ICS.Standard.Second == ICK_Writeback_Conversion) {
6005     // Objective-C ARC writeback conversion.
6006 
6007     // We should copy unless we're passing to an argument explicitly
6008     // marked 'out'.
6009     bool ShouldCopy = true;
6010     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
6011       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
6012 
6013     // If there was an lvalue adjustment, add it as a separate conversion.
6014     if (ICS.Standard.First == ICK_Array_To_Pointer ||
6015         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
6016       ImplicitConversionSequence LvalueICS;
6017       LvalueICS.setStandard();
6018       LvalueICS.Standard.setAsIdentityConversion();
6019       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
6020       LvalueICS.Standard.First = ICS.Standard.First;
6021       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
6022     }
6023 
6024     AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
6025   } else if (ICS.isBad()) {
6026     DeclAccessPair dap;
6027     if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
6028       AddZeroInitializationStep(Entity.getType());
6029     } else if (Initializer->getType() == Context.OverloadTy &&
6030                !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
6031                                                      false, dap))
6032       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
6033     else if (Initializer->getType()->isFunctionType() &&
6034              isExprAnUnaddressableFunction(S, Initializer))
6035       SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
6036     else
6037       SetFailed(InitializationSequence::FK_ConversionFailed);
6038   } else {
6039     AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
6040 
6041     MaybeProduceObjCObject(S, *this, Entity);
6042   }
6043 }
6044 
6045 InitializationSequence::~InitializationSequence() {
6046   for (auto &S : Steps)
6047     S.Destroy();
6048 }
6049 
6050 //===----------------------------------------------------------------------===//
6051 // Perform initialization
6052 //===----------------------------------------------------------------------===//
6053 static Sema::AssignmentAction
6054 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
6055   switch(Entity.getKind()) {
6056   case InitializedEntity::EK_Variable:
6057   case InitializedEntity::EK_New:
6058   case InitializedEntity::EK_Exception:
6059   case InitializedEntity::EK_Base:
6060   case InitializedEntity::EK_Delegating:
6061     return Sema::AA_Initializing;
6062 
6063   case InitializedEntity::EK_Parameter:
6064     if (Entity.getDecl() &&
6065         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
6066       return Sema::AA_Sending;
6067 
6068     return Sema::AA_Passing;
6069 
6070   case InitializedEntity::EK_Parameter_CF_Audited:
6071     if (Entity.getDecl() &&
6072       isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
6073       return Sema::AA_Sending;
6074 
6075     return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
6076 
6077   case InitializedEntity::EK_Result:
6078   case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right.
6079     return Sema::AA_Returning;
6080 
6081   case InitializedEntity::EK_Temporary:
6082   case InitializedEntity::EK_RelatedResult:
6083     // FIXME: Can we tell apart casting vs. converting?
6084     return Sema::AA_Casting;
6085 
6086   case InitializedEntity::EK_TemplateParameter:
6087     // This is really initialization, but refer to it as conversion for
6088     // consistency with CheckConvertedConstantExpression.
6089     return Sema::AA_Converting;
6090 
6091   case InitializedEntity::EK_Member:
6092   case InitializedEntity::EK_Binding:
6093   case InitializedEntity::EK_ArrayElement:
6094   case InitializedEntity::EK_VectorElement:
6095   case InitializedEntity::EK_ComplexElement:
6096   case InitializedEntity::EK_BlockElement:
6097   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6098   case InitializedEntity::EK_LambdaCapture:
6099   case InitializedEntity::EK_CompoundLiteralInit:
6100     return Sema::AA_Initializing;
6101   }
6102 
6103   llvm_unreachable("Invalid EntityKind!");
6104 }
6105 
6106 /// Whether we should bind a created object as a temporary when
6107 /// initializing the given entity.
6108 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
6109   switch (Entity.getKind()) {
6110   case InitializedEntity::EK_ArrayElement:
6111   case InitializedEntity::EK_Member:
6112   case InitializedEntity::EK_Result:
6113   case InitializedEntity::EK_StmtExprResult:
6114   case InitializedEntity::EK_New:
6115   case InitializedEntity::EK_Variable:
6116   case InitializedEntity::EK_Base:
6117   case InitializedEntity::EK_Delegating:
6118   case InitializedEntity::EK_VectorElement:
6119   case InitializedEntity::EK_ComplexElement:
6120   case InitializedEntity::EK_Exception:
6121   case InitializedEntity::EK_BlockElement:
6122   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6123   case InitializedEntity::EK_LambdaCapture:
6124   case InitializedEntity::EK_CompoundLiteralInit:
6125   case InitializedEntity::EK_TemplateParameter:
6126     return false;
6127 
6128   case InitializedEntity::EK_Parameter:
6129   case InitializedEntity::EK_Parameter_CF_Audited:
6130   case InitializedEntity::EK_Temporary:
6131   case InitializedEntity::EK_RelatedResult:
6132   case InitializedEntity::EK_Binding:
6133     return true;
6134   }
6135 
6136   llvm_unreachable("missed an InitializedEntity kind?");
6137 }
6138 
6139 /// Whether the given entity, when initialized with an object
6140 /// created for that initialization, requires destruction.
6141 static bool shouldDestroyEntity(const InitializedEntity &Entity) {
6142   switch (Entity.getKind()) {
6143     case InitializedEntity::EK_Result:
6144     case InitializedEntity::EK_StmtExprResult:
6145     case InitializedEntity::EK_New:
6146     case InitializedEntity::EK_Base:
6147     case InitializedEntity::EK_Delegating:
6148     case InitializedEntity::EK_VectorElement:
6149     case InitializedEntity::EK_ComplexElement:
6150     case InitializedEntity::EK_BlockElement:
6151     case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6152     case InitializedEntity::EK_LambdaCapture:
6153       return false;
6154 
6155     case InitializedEntity::EK_Member:
6156     case InitializedEntity::EK_Binding:
6157     case InitializedEntity::EK_Variable:
6158     case InitializedEntity::EK_Parameter:
6159     case InitializedEntity::EK_Parameter_CF_Audited:
6160     case InitializedEntity::EK_TemplateParameter:
6161     case InitializedEntity::EK_Temporary:
6162     case InitializedEntity::EK_ArrayElement:
6163     case InitializedEntity::EK_Exception:
6164     case InitializedEntity::EK_CompoundLiteralInit:
6165     case InitializedEntity::EK_RelatedResult:
6166       return true;
6167   }
6168 
6169   llvm_unreachable("missed an InitializedEntity kind?");
6170 }
6171 
6172 /// Get the location at which initialization diagnostics should appear.
6173 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
6174                                            Expr *Initializer) {
6175   switch (Entity.getKind()) {
6176   case InitializedEntity::EK_Result:
6177   case InitializedEntity::EK_StmtExprResult:
6178     return Entity.getReturnLoc();
6179 
6180   case InitializedEntity::EK_Exception:
6181     return Entity.getThrowLoc();
6182 
6183   case InitializedEntity::EK_Variable:
6184   case InitializedEntity::EK_Binding:
6185     return Entity.getDecl()->getLocation();
6186 
6187   case InitializedEntity::EK_LambdaCapture:
6188     return Entity.getCaptureLoc();
6189 
6190   case InitializedEntity::EK_ArrayElement:
6191   case InitializedEntity::EK_Member:
6192   case InitializedEntity::EK_Parameter:
6193   case InitializedEntity::EK_Parameter_CF_Audited:
6194   case InitializedEntity::EK_TemplateParameter:
6195   case InitializedEntity::EK_Temporary:
6196   case InitializedEntity::EK_New:
6197   case InitializedEntity::EK_Base:
6198   case InitializedEntity::EK_Delegating:
6199   case InitializedEntity::EK_VectorElement:
6200   case InitializedEntity::EK_ComplexElement:
6201   case InitializedEntity::EK_BlockElement:
6202   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6203   case InitializedEntity::EK_CompoundLiteralInit:
6204   case InitializedEntity::EK_RelatedResult:
6205     return Initializer->getBeginLoc();
6206   }
6207   llvm_unreachable("missed an InitializedEntity kind?");
6208 }
6209 
6210 /// Make a (potentially elidable) temporary copy of the object
6211 /// provided by the given initializer by calling the appropriate copy
6212 /// constructor.
6213 ///
6214 /// \param S The Sema object used for type-checking.
6215 ///
6216 /// \param T The type of the temporary object, which must either be
6217 /// the type of the initializer expression or a superclass thereof.
6218 ///
6219 /// \param Entity The entity being initialized.
6220 ///
6221 /// \param CurInit The initializer expression.
6222 ///
6223 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
6224 /// is permitted in C++03 (but not C++0x) when binding a reference to
6225 /// an rvalue.
6226 ///
6227 /// \returns An expression that copies the initializer expression into
6228 /// a temporary object, or an error expression if a copy could not be
6229 /// created.
6230 static ExprResult CopyObject(Sema &S,
6231                              QualType T,
6232                              const InitializedEntity &Entity,
6233                              ExprResult CurInit,
6234                              bool IsExtraneousCopy) {
6235   if (CurInit.isInvalid())
6236     return CurInit;
6237   // Determine which class type we're copying to.
6238   Expr *CurInitExpr = (Expr *)CurInit.get();
6239   CXXRecordDecl *Class = nullptr;
6240   if (const RecordType *Record = T->getAs<RecordType>())
6241     Class = cast<CXXRecordDecl>(Record->getDecl());
6242   if (!Class)
6243     return CurInit;
6244 
6245   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
6246 
6247   // Make sure that the type we are copying is complete.
6248   if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
6249     return CurInit;
6250 
6251   // Perform overload resolution using the class's constructors. Per
6252   // C++11 [dcl.init]p16, second bullet for class types, this initialization
6253   // is direct-initialization.
6254   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6255   DeclContext::lookup_result Ctors = S.LookupConstructors(Class);
6256 
6257   OverloadCandidateSet::iterator Best;
6258   switch (ResolveConstructorOverload(
6259       S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best,
6260       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6261       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6262       /*SecondStepOfCopyInit=*/true)) {
6263   case OR_Success:
6264     break;
6265 
6266   case OR_No_Viable_Function:
6267     CandidateSet.NoteCandidates(
6268         PartialDiagnosticAt(
6269             Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext()
6270                              ? diag::ext_rvalue_to_reference_temp_copy_no_viable
6271                              : diag::err_temp_copy_no_viable)
6272                      << (int)Entity.getKind() << CurInitExpr->getType()
6273                      << CurInitExpr->getSourceRange()),
6274         S, OCD_AllCandidates, CurInitExpr);
6275     if (!IsExtraneousCopy || S.isSFINAEContext())
6276       return ExprError();
6277     return CurInit;
6278 
6279   case OR_Ambiguous:
6280     CandidateSet.NoteCandidates(
6281         PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous)
6282                                      << (int)Entity.getKind()
6283                                      << CurInitExpr->getType()
6284                                      << CurInitExpr->getSourceRange()),
6285         S, OCD_AmbiguousCandidates, CurInitExpr);
6286     return ExprError();
6287 
6288   case OR_Deleted:
6289     S.Diag(Loc, diag::err_temp_copy_deleted)
6290       << (int)Entity.getKind() << CurInitExpr->getType()
6291       << CurInitExpr->getSourceRange();
6292     S.NoteDeletedFunction(Best->Function);
6293     return ExprError();
6294   }
6295 
6296   bool HadMultipleCandidates = CandidateSet.size() > 1;
6297 
6298   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
6299   SmallVector<Expr*, 8> ConstructorArgs;
6300   CurInit.get(); // Ownership transferred into MultiExprArg, below.
6301 
6302   S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity,
6303                            IsExtraneousCopy);
6304 
6305   if (IsExtraneousCopy) {
6306     // If this is a totally extraneous copy for C++03 reference
6307     // binding purposes, just return the original initialization
6308     // expression. We don't generate an (elided) copy operation here
6309     // because doing so would require us to pass down a flag to avoid
6310     // infinite recursion, where each step adds another extraneous,
6311     // elidable copy.
6312 
6313     // Instantiate the default arguments of any extra parameters in
6314     // the selected copy constructor, as if we were going to create a
6315     // proper call to the copy constructor.
6316     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
6317       ParmVarDecl *Parm = Constructor->getParamDecl(I);
6318       if (S.RequireCompleteType(Loc, Parm->getType(),
6319                                 diag::err_call_incomplete_argument))
6320         break;
6321 
6322       // Build the default argument expression; we don't actually care
6323       // if this succeeds or not, because this routine will complain
6324       // if there was a problem.
6325       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
6326     }
6327 
6328     return CurInitExpr;
6329   }
6330 
6331   // Determine the arguments required to actually perform the
6332   // constructor call (we might have derived-to-base conversions, or
6333   // the copy constructor may have default arguments).
6334   if (S.CompleteConstructorCall(Constructor, T, CurInitExpr, Loc,
6335                                 ConstructorArgs))
6336     return ExprError();
6337 
6338   // C++0x [class.copy]p32:
6339   //   When certain criteria are met, an implementation is allowed to
6340   //   omit the copy/move construction of a class object, even if the
6341   //   copy/move constructor and/or destructor for the object have
6342   //   side effects. [...]
6343   //     - when a temporary class object that has not been bound to a
6344   //       reference (12.2) would be copied/moved to a class object
6345   //       with the same cv-unqualified type, the copy/move operation
6346   //       can be omitted by constructing the temporary object
6347   //       directly into the target of the omitted copy/move
6348   //
6349   // Note that the other three bullets are handled elsewhere. Copy
6350   // elision for return statements and throw expressions are handled as part
6351   // of constructor initialization, while copy elision for exception handlers
6352   // is handled by the run-time.
6353   //
6354   // FIXME: If the function parameter is not the same type as the temporary, we
6355   // should still be able to elide the copy, but we don't have a way to
6356   // represent in the AST how much should be elided in this case.
6357   bool Elidable =
6358       CurInitExpr->isTemporaryObject(S.Context, Class) &&
6359       S.Context.hasSameUnqualifiedType(
6360           Best->Function->getParamDecl(0)->getType().getNonReferenceType(),
6361           CurInitExpr->getType());
6362 
6363   // Actually perform the constructor call.
6364   CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor,
6365                                     Elidable,
6366                                     ConstructorArgs,
6367                                     HadMultipleCandidates,
6368                                     /*ListInit*/ false,
6369                                     /*StdInitListInit*/ false,
6370                                     /*ZeroInit*/ false,
6371                                     CXXConstructExpr::CK_Complete,
6372                                     SourceRange());
6373 
6374   // If we're supposed to bind temporaries, do so.
6375   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
6376     CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6377   return CurInit;
6378 }
6379 
6380 /// Check whether elidable copy construction for binding a reference to
6381 /// a temporary would have succeeded if we were building in C++98 mode, for
6382 /// -Wc++98-compat.
6383 static void CheckCXX98CompatAccessibleCopy(Sema &S,
6384                                            const InitializedEntity &Entity,
6385                                            Expr *CurInitExpr) {
6386   assert(S.getLangOpts().CPlusPlus11);
6387 
6388   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
6389   if (!Record)
6390     return;
6391 
6392   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
6393   if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
6394     return;
6395 
6396   // Find constructors which would have been considered.
6397   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6398   DeclContext::lookup_result Ctors =
6399       S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl()));
6400 
6401   // Perform overload resolution.
6402   OverloadCandidateSet::iterator Best;
6403   OverloadingResult OR = ResolveConstructorOverload(
6404       S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best,
6405       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6406       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6407       /*SecondStepOfCopyInit=*/true);
6408 
6409   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
6410     << OR << (int)Entity.getKind() << CurInitExpr->getType()
6411     << CurInitExpr->getSourceRange();
6412 
6413   switch (OR) {
6414   case OR_Success:
6415     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
6416                              Best->FoundDecl, Entity, Diag);
6417     // FIXME: Check default arguments as far as that's possible.
6418     break;
6419 
6420   case OR_No_Viable_Function:
6421     CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6422                                 OCD_AllCandidates, CurInitExpr);
6423     break;
6424 
6425   case OR_Ambiguous:
6426     CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6427                                 OCD_AmbiguousCandidates, CurInitExpr);
6428     break;
6429 
6430   case OR_Deleted:
6431     S.Diag(Loc, Diag);
6432     S.NoteDeletedFunction(Best->Function);
6433     break;
6434   }
6435 }
6436 
6437 void InitializationSequence::PrintInitLocationNote(Sema &S,
6438                                               const InitializedEntity &Entity) {
6439   if (Entity.isParamOrTemplateParamKind() && Entity.getDecl()) {
6440     if (Entity.getDecl()->getLocation().isInvalid())
6441       return;
6442 
6443     if (Entity.getDecl()->getDeclName())
6444       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
6445         << Entity.getDecl()->getDeclName();
6446     else
6447       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
6448   }
6449   else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
6450            Entity.getMethodDecl())
6451     S.Diag(Entity.getMethodDecl()->getLocation(),
6452            diag::note_method_return_type_change)
6453       << Entity.getMethodDecl()->getDeclName();
6454 }
6455 
6456 /// Returns true if the parameters describe a constructor initialization of
6457 /// an explicit temporary object, e.g. "Point(x, y)".
6458 static bool isExplicitTemporary(const InitializedEntity &Entity,
6459                                 const InitializationKind &Kind,
6460                                 unsigned NumArgs) {
6461   switch (Entity.getKind()) {
6462   case InitializedEntity::EK_Temporary:
6463   case InitializedEntity::EK_CompoundLiteralInit:
6464   case InitializedEntity::EK_RelatedResult:
6465     break;
6466   default:
6467     return false;
6468   }
6469 
6470   switch (Kind.getKind()) {
6471   case InitializationKind::IK_DirectList:
6472     return true;
6473   // FIXME: Hack to work around cast weirdness.
6474   case InitializationKind::IK_Direct:
6475   case InitializationKind::IK_Value:
6476     return NumArgs != 1;
6477   default:
6478     return false;
6479   }
6480 }
6481 
6482 static ExprResult
6483 PerformConstructorInitialization(Sema &S,
6484                                  const InitializedEntity &Entity,
6485                                  const InitializationKind &Kind,
6486                                  MultiExprArg Args,
6487                                  const InitializationSequence::Step& Step,
6488                                  bool &ConstructorInitRequiresZeroInit,
6489                                  bool IsListInitialization,
6490                                  bool IsStdInitListInitialization,
6491                                  SourceLocation LBraceLoc,
6492                                  SourceLocation RBraceLoc) {
6493   unsigned NumArgs = Args.size();
6494   CXXConstructorDecl *Constructor
6495     = cast<CXXConstructorDecl>(Step.Function.Function);
6496   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
6497 
6498   // Build a call to the selected constructor.
6499   SmallVector<Expr*, 8> ConstructorArgs;
6500   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
6501                          ? Kind.getEqualLoc()
6502                          : Kind.getLocation();
6503 
6504   if (Kind.getKind() == InitializationKind::IK_Default) {
6505     // Force even a trivial, implicit default constructor to be
6506     // semantically checked. We do this explicitly because we don't build
6507     // the definition for completely trivial constructors.
6508     assert(Constructor->getParent() && "No parent class for constructor.");
6509     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6510         Constructor->isTrivial() && !Constructor->isUsed(false)) {
6511       S.runWithSufficientStackSpace(Loc, [&] {
6512         S.DefineImplicitDefaultConstructor(Loc, Constructor);
6513       });
6514     }
6515   }
6516 
6517   ExprResult CurInit((Expr *)nullptr);
6518 
6519   // C++ [over.match.copy]p1:
6520   //   - When initializing a temporary to be bound to the first parameter
6521   //     of a constructor that takes a reference to possibly cv-qualified
6522   //     T as its first argument, called with a single argument in the
6523   //     context of direct-initialization, explicit conversion functions
6524   //     are also considered.
6525   bool AllowExplicitConv =
6526       Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 &&
6527       hasCopyOrMoveCtorParam(S.Context,
6528                              getConstructorInfo(Step.Function.FoundDecl));
6529 
6530   // Determine the arguments required to actually perform the constructor
6531   // call.
6532   if (S.CompleteConstructorCall(Constructor, Step.Type, Args, Loc,
6533                                 ConstructorArgs, AllowExplicitConv,
6534                                 IsListInitialization))
6535     return ExprError();
6536 
6537   if (isExplicitTemporary(Entity, Kind, NumArgs)) {
6538     // An explicitly-constructed temporary, e.g., X(1, 2).
6539     if (S.DiagnoseUseOfDecl(Constructor, Loc))
6540       return ExprError();
6541 
6542     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6543     if (!TSInfo)
6544       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
6545     SourceRange ParenOrBraceRange =
6546         (Kind.getKind() == InitializationKind::IK_DirectList)
6547         ? SourceRange(LBraceLoc, RBraceLoc)
6548         : Kind.getParenOrBraceRange();
6549 
6550     CXXConstructorDecl *CalleeDecl = Constructor;
6551     if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(
6552             Step.Function.FoundDecl.getDecl())) {
6553       CalleeDecl = S.findInheritingConstructor(Loc, Constructor, Shadow);
6554       if (S.DiagnoseUseOfDecl(CalleeDecl, Loc))
6555         return ExprError();
6556     }
6557     S.MarkFunctionReferenced(Loc, CalleeDecl);
6558 
6559     CurInit = S.CheckForImmediateInvocation(
6560         CXXTemporaryObjectExpr::Create(
6561             S.Context, CalleeDecl,
6562             Entity.getType().getNonLValueExprType(S.Context), TSInfo,
6563             ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates,
6564             IsListInitialization, IsStdInitListInitialization,
6565             ConstructorInitRequiresZeroInit),
6566         CalleeDecl);
6567   } else {
6568     CXXConstructExpr::ConstructionKind ConstructKind =
6569       CXXConstructExpr::CK_Complete;
6570 
6571     if (Entity.getKind() == InitializedEntity::EK_Base) {
6572       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
6573         CXXConstructExpr::CK_VirtualBase :
6574         CXXConstructExpr::CK_NonVirtualBase;
6575     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
6576       ConstructKind = CXXConstructExpr::CK_Delegating;
6577     }
6578 
6579     // Only get the parenthesis or brace range if it is a list initialization or
6580     // direct construction.
6581     SourceRange ParenOrBraceRange;
6582     if (IsListInitialization)
6583       ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
6584     else if (Kind.getKind() == InitializationKind::IK_Direct)
6585       ParenOrBraceRange = Kind.getParenOrBraceRange();
6586 
6587     // If the entity allows NRVO, mark the construction as elidable
6588     // unconditionally.
6589     if (Entity.allowsNRVO())
6590       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6591                                         Step.Function.FoundDecl,
6592                                         Constructor, /*Elidable=*/true,
6593                                         ConstructorArgs,
6594                                         HadMultipleCandidates,
6595                                         IsListInitialization,
6596                                         IsStdInitListInitialization,
6597                                         ConstructorInitRequiresZeroInit,
6598                                         ConstructKind,
6599                                         ParenOrBraceRange);
6600     else
6601       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6602                                         Step.Function.FoundDecl,
6603                                         Constructor,
6604                                         ConstructorArgs,
6605                                         HadMultipleCandidates,
6606                                         IsListInitialization,
6607                                         IsStdInitListInitialization,
6608                                         ConstructorInitRequiresZeroInit,
6609                                         ConstructKind,
6610                                         ParenOrBraceRange);
6611   }
6612   if (CurInit.isInvalid())
6613     return ExprError();
6614 
6615   // Only check access if all of that succeeded.
6616   S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity);
6617   if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
6618     return ExprError();
6619 
6620   if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType()))
6621     if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S))
6622       return ExprError();
6623 
6624   if (shouldBindAsTemporary(Entity))
6625     CurInit = S.MaybeBindToTemporary(CurInit.get());
6626 
6627   return CurInit;
6628 }
6629 
6630 namespace {
6631 enum LifetimeKind {
6632   /// The lifetime of a temporary bound to this entity ends at the end of the
6633   /// full-expression, and that's (probably) fine.
6634   LK_FullExpression,
6635 
6636   /// The lifetime of a temporary bound to this entity is extended to the
6637   /// lifeitme of the entity itself.
6638   LK_Extended,
6639 
6640   /// The lifetime of a temporary bound to this entity probably ends too soon,
6641   /// because the entity is allocated in a new-expression.
6642   LK_New,
6643 
6644   /// The lifetime of a temporary bound to this entity ends too soon, because
6645   /// the entity is a return object.
6646   LK_Return,
6647 
6648   /// The lifetime of a temporary bound to this entity ends too soon, because
6649   /// the entity is the result of a statement expression.
6650   LK_StmtExprResult,
6651 
6652   /// This is a mem-initializer: if it would extend a temporary (other than via
6653   /// a default member initializer), the program is ill-formed.
6654   LK_MemInitializer,
6655 };
6656 using LifetimeResult =
6657     llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>;
6658 }
6659 
6660 /// Determine the declaration which an initialized entity ultimately refers to,
6661 /// for the purpose of lifetime-extending a temporary bound to a reference in
6662 /// the initialization of \p Entity.
6663 static LifetimeResult getEntityLifetime(
6664     const InitializedEntity *Entity,
6665     const InitializedEntity *InitField = nullptr) {
6666   // C++11 [class.temporary]p5:
6667   switch (Entity->getKind()) {
6668   case InitializedEntity::EK_Variable:
6669     //   The temporary [...] persists for the lifetime of the reference
6670     return {Entity, LK_Extended};
6671 
6672   case InitializedEntity::EK_Member:
6673     // For subobjects, we look at the complete object.
6674     if (Entity->getParent())
6675       return getEntityLifetime(Entity->getParent(), Entity);
6676 
6677     //   except:
6678     // C++17 [class.base.init]p8:
6679     //   A temporary expression bound to a reference member in a
6680     //   mem-initializer is ill-formed.
6681     // C++17 [class.base.init]p11:
6682     //   A temporary expression bound to a reference member from a
6683     //   default member initializer is ill-formed.
6684     //
6685     // The context of p11 and its example suggest that it's only the use of a
6686     // default member initializer from a constructor that makes the program
6687     // ill-formed, not its mere existence, and that it can even be used by
6688     // aggregate initialization.
6689     return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended
6690                                                          : LK_MemInitializer};
6691 
6692   case InitializedEntity::EK_Binding:
6693     // Per [dcl.decomp]p3, the binding is treated as a variable of reference
6694     // type.
6695     return {Entity, LK_Extended};
6696 
6697   case InitializedEntity::EK_Parameter:
6698   case InitializedEntity::EK_Parameter_CF_Audited:
6699     //   -- A temporary bound to a reference parameter in a function call
6700     //      persists until the completion of the full-expression containing
6701     //      the call.
6702     return {nullptr, LK_FullExpression};
6703 
6704   case InitializedEntity::EK_TemplateParameter:
6705     // FIXME: This will always be ill-formed; should we eagerly diagnose it here?
6706     return {nullptr, LK_FullExpression};
6707 
6708   case InitializedEntity::EK_Result:
6709     //   -- The lifetime of a temporary bound to the returned value in a
6710     //      function return statement is not extended; the temporary is
6711     //      destroyed at the end of the full-expression in the return statement.
6712     return {nullptr, LK_Return};
6713 
6714   case InitializedEntity::EK_StmtExprResult:
6715     // FIXME: Should we lifetime-extend through the result of a statement
6716     // expression?
6717     return {nullptr, LK_StmtExprResult};
6718 
6719   case InitializedEntity::EK_New:
6720     //   -- A temporary bound to a reference in a new-initializer persists
6721     //      until the completion of the full-expression containing the
6722     //      new-initializer.
6723     return {nullptr, LK_New};
6724 
6725   case InitializedEntity::EK_Temporary:
6726   case InitializedEntity::EK_CompoundLiteralInit:
6727   case InitializedEntity::EK_RelatedResult:
6728     // We don't yet know the storage duration of the surrounding temporary.
6729     // Assume it's got full-expression duration for now, it will patch up our
6730     // storage duration if that's not correct.
6731     return {nullptr, LK_FullExpression};
6732 
6733   case InitializedEntity::EK_ArrayElement:
6734     // For subobjects, we look at the complete object.
6735     return getEntityLifetime(Entity->getParent(), InitField);
6736 
6737   case InitializedEntity::EK_Base:
6738     // For subobjects, we look at the complete object.
6739     if (Entity->getParent())
6740       return getEntityLifetime(Entity->getParent(), InitField);
6741     return {InitField, LK_MemInitializer};
6742 
6743   case InitializedEntity::EK_Delegating:
6744     // We can reach this case for aggregate initialization in a constructor:
6745     //   struct A { int &&r; };
6746     //   struct B : A { B() : A{0} {} };
6747     // In this case, use the outermost field decl as the context.
6748     return {InitField, LK_MemInitializer};
6749 
6750   case InitializedEntity::EK_BlockElement:
6751   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6752   case InitializedEntity::EK_LambdaCapture:
6753   case InitializedEntity::EK_VectorElement:
6754   case InitializedEntity::EK_ComplexElement:
6755     return {nullptr, LK_FullExpression};
6756 
6757   case InitializedEntity::EK_Exception:
6758     // FIXME: Can we diagnose lifetime problems with exceptions?
6759     return {nullptr, LK_FullExpression};
6760   }
6761   llvm_unreachable("unknown entity kind");
6762 }
6763 
6764 namespace {
6765 enum ReferenceKind {
6766   /// Lifetime would be extended by a reference binding to a temporary.
6767   RK_ReferenceBinding,
6768   /// Lifetime would be extended by a std::initializer_list object binding to
6769   /// its backing array.
6770   RK_StdInitializerList,
6771 };
6772 
6773 /// A temporary or local variable. This will be one of:
6774 ///  * A MaterializeTemporaryExpr.
6775 ///  * A DeclRefExpr whose declaration is a local.
6776 ///  * An AddrLabelExpr.
6777 ///  * A BlockExpr for a block with captures.
6778 using Local = Expr*;
6779 
6780 /// Expressions we stepped over when looking for the local state. Any steps
6781 /// that would inhibit lifetime extension or take us out of subexpressions of
6782 /// the initializer are included.
6783 struct IndirectLocalPathEntry {
6784   enum EntryKind {
6785     DefaultInit,
6786     AddressOf,
6787     VarInit,
6788     LValToRVal,
6789     LifetimeBoundCall,
6790     TemporaryCopy,
6791     LambdaCaptureInit,
6792     GslReferenceInit,
6793     GslPointerInit
6794   } Kind;
6795   Expr *E;
6796   union {
6797     const Decl *D = nullptr;
6798     const LambdaCapture *Capture;
6799   };
6800   IndirectLocalPathEntry() {}
6801   IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {}
6802   IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D)
6803       : Kind(K), E(E), D(D) {}
6804   IndirectLocalPathEntry(EntryKind K, Expr *E, const LambdaCapture *Capture)
6805       : Kind(K), E(E), Capture(Capture) {}
6806 };
6807 
6808 using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>;
6809 
6810 struct RevertToOldSizeRAII {
6811   IndirectLocalPath &Path;
6812   unsigned OldSize = Path.size();
6813   RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {}
6814   ~RevertToOldSizeRAII() { Path.resize(OldSize); }
6815 };
6816 
6817 using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L,
6818                                              ReferenceKind RK)>;
6819 }
6820 
6821 static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) {
6822   for (auto E : Path)
6823     if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD)
6824       return true;
6825   return false;
6826 }
6827 
6828 static bool pathContainsInit(IndirectLocalPath &Path) {
6829   return llvm::any_of(Path, [=](IndirectLocalPathEntry E) {
6830     return E.Kind == IndirectLocalPathEntry::DefaultInit ||
6831            E.Kind == IndirectLocalPathEntry::VarInit;
6832   });
6833 }
6834 
6835 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
6836                                              Expr *Init, LocalVisitor Visit,
6837                                              bool RevisitSubinits,
6838                                              bool EnableLifetimeWarnings);
6839 
6840 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6841                                                   Expr *Init, ReferenceKind RK,
6842                                                   LocalVisitor Visit,
6843                                                   bool EnableLifetimeWarnings);
6844 
6845 template <typename T> static bool isRecordWithAttr(QualType Type) {
6846   if (auto *RD = Type->getAsCXXRecordDecl())
6847     return RD->hasAttr<T>();
6848   return false;
6849 }
6850 
6851 // Decl::isInStdNamespace will return false for iterators in some STL
6852 // implementations due to them being defined in a namespace outside of the std
6853 // namespace.
6854 static bool isInStlNamespace(const Decl *D) {
6855   const DeclContext *DC = D->getDeclContext();
6856   if (!DC)
6857     return false;
6858   if (const auto *ND = dyn_cast<NamespaceDecl>(DC))
6859     if (const IdentifierInfo *II = ND->getIdentifier()) {
6860       StringRef Name = II->getName();
6861       if (Name.size() >= 2 && Name.front() == '_' &&
6862           (Name[1] == '_' || isUppercase(Name[1])))
6863         return true;
6864     }
6865 
6866   return DC->isStdNamespace();
6867 }
6868 
6869 static bool shouldTrackImplicitObjectArg(const CXXMethodDecl *Callee) {
6870   if (auto *Conv = dyn_cast_or_null<CXXConversionDecl>(Callee))
6871     if (isRecordWithAttr<PointerAttr>(Conv->getConversionType()))
6872       return true;
6873   if (!isInStlNamespace(Callee->getParent()))
6874     return false;
6875   if (!isRecordWithAttr<PointerAttr>(Callee->getThisObjectType()) &&
6876       !isRecordWithAttr<OwnerAttr>(Callee->getThisObjectType()))
6877     return false;
6878   if (Callee->getReturnType()->isPointerType() ||
6879       isRecordWithAttr<PointerAttr>(Callee->getReturnType())) {
6880     if (!Callee->getIdentifier())
6881       return false;
6882     return llvm::StringSwitch<bool>(Callee->getName())
6883         .Cases("begin", "rbegin", "cbegin", "crbegin", true)
6884         .Cases("end", "rend", "cend", "crend", true)
6885         .Cases("c_str", "data", "get", true)
6886         // Map and set types.
6887         .Cases("find", "equal_range", "lower_bound", "upper_bound", true)
6888         .Default(false);
6889   } else if (Callee->getReturnType()->isReferenceType()) {
6890     if (!Callee->getIdentifier()) {
6891       auto OO = Callee->getOverloadedOperator();
6892       return OO == OverloadedOperatorKind::OO_Subscript ||
6893              OO == OverloadedOperatorKind::OO_Star;
6894     }
6895     return llvm::StringSwitch<bool>(Callee->getName())
6896         .Cases("front", "back", "at", "top", "value", true)
6897         .Default(false);
6898   }
6899   return false;
6900 }
6901 
6902 static bool shouldTrackFirstArgument(const FunctionDecl *FD) {
6903   if (!FD->getIdentifier() || FD->getNumParams() != 1)
6904     return false;
6905   const auto *RD = FD->getParamDecl(0)->getType()->getPointeeCXXRecordDecl();
6906   if (!FD->isInStdNamespace() || !RD || !RD->isInStdNamespace())
6907     return false;
6908   if (!isRecordWithAttr<PointerAttr>(QualType(RD->getTypeForDecl(), 0)) &&
6909       !isRecordWithAttr<OwnerAttr>(QualType(RD->getTypeForDecl(), 0)))
6910     return false;
6911   if (FD->getReturnType()->isPointerType() ||
6912       isRecordWithAttr<PointerAttr>(FD->getReturnType())) {
6913     return llvm::StringSwitch<bool>(FD->getName())
6914         .Cases("begin", "rbegin", "cbegin", "crbegin", true)
6915         .Cases("end", "rend", "cend", "crend", true)
6916         .Case("data", true)
6917         .Default(false);
6918   } else if (FD->getReturnType()->isReferenceType()) {
6919     return llvm::StringSwitch<bool>(FD->getName())
6920         .Cases("get", "any_cast", true)
6921         .Default(false);
6922   }
6923   return false;
6924 }
6925 
6926 static void handleGslAnnotatedTypes(IndirectLocalPath &Path, Expr *Call,
6927                                     LocalVisitor Visit) {
6928   auto VisitPointerArg = [&](const Decl *D, Expr *Arg, bool Value) {
6929     // We are not interested in the temporary base objects of gsl Pointers:
6930     //   Temp().ptr; // Here ptr might not dangle.
6931     if (isa<MemberExpr>(Arg->IgnoreImpCasts()))
6932       return;
6933     // Once we initialized a value with a reference, it can no longer dangle.
6934     if (!Value) {
6935       for (const IndirectLocalPathEntry &PE : llvm::reverse(Path)) {
6936         if (PE.Kind == IndirectLocalPathEntry::GslReferenceInit)
6937           continue;
6938         if (PE.Kind == IndirectLocalPathEntry::GslPointerInit)
6939           return;
6940         break;
6941       }
6942     }
6943     Path.push_back({Value ? IndirectLocalPathEntry::GslPointerInit
6944                           : IndirectLocalPathEntry::GslReferenceInit,
6945                     Arg, D});
6946     if (Arg->isGLValue())
6947       visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
6948                                             Visit,
6949                                             /*EnableLifetimeWarnings=*/true);
6950     else
6951       visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
6952                                        /*EnableLifetimeWarnings=*/true);
6953     Path.pop_back();
6954   };
6955 
6956   if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
6957     const auto *MD = cast_or_null<CXXMethodDecl>(MCE->getDirectCallee());
6958     if (MD && shouldTrackImplicitObjectArg(MD))
6959       VisitPointerArg(MD, MCE->getImplicitObjectArgument(),
6960                       !MD->getReturnType()->isReferenceType());
6961     return;
6962   } else if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(Call)) {
6963     FunctionDecl *Callee = OCE->getDirectCallee();
6964     if (Callee && Callee->isCXXInstanceMember() &&
6965         shouldTrackImplicitObjectArg(cast<CXXMethodDecl>(Callee)))
6966       VisitPointerArg(Callee, OCE->getArg(0),
6967                       !Callee->getReturnType()->isReferenceType());
6968     return;
6969   } else if (auto *CE = dyn_cast<CallExpr>(Call)) {
6970     FunctionDecl *Callee = CE->getDirectCallee();
6971     if (Callee && shouldTrackFirstArgument(Callee))
6972       VisitPointerArg(Callee, CE->getArg(0),
6973                       !Callee->getReturnType()->isReferenceType());
6974     return;
6975   }
6976 
6977   if (auto *CCE = dyn_cast<CXXConstructExpr>(Call)) {
6978     const auto *Ctor = CCE->getConstructor();
6979     const CXXRecordDecl *RD = Ctor->getParent();
6980     if (CCE->getNumArgs() > 0 && RD->hasAttr<PointerAttr>())
6981       VisitPointerArg(Ctor->getParamDecl(0), CCE->getArgs()[0], true);
6982   }
6983 }
6984 
6985 static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) {
6986   const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
6987   if (!TSI)
6988     return false;
6989   // Don't declare this variable in the second operand of the for-statement;
6990   // GCC miscompiles that by ending its lifetime before evaluating the
6991   // third operand. See gcc.gnu.org/PR86769.
6992   AttributedTypeLoc ATL;
6993   for (TypeLoc TL = TSI->getTypeLoc();
6994        (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6995        TL = ATL.getModifiedLoc()) {
6996     if (ATL.getAttrAs<LifetimeBoundAttr>())
6997       return true;
6998   }
6999 
7000   // Assume that all assignment operators with a "normal" return type return
7001   // *this, that is, an lvalue reference that is the same type as the implicit
7002   // object parameter (or the LHS for a non-member operator$=).
7003   OverloadedOperatorKind OO = FD->getDeclName().getCXXOverloadedOperator();
7004   if (OO == OO_Equal || isCompoundAssignmentOperator(OO)) {
7005     QualType RetT = FD->getReturnType();
7006     if (RetT->isLValueReferenceType()) {
7007       ASTContext &Ctx = FD->getASTContext();
7008       QualType LHST;
7009       auto *MD = dyn_cast<CXXMethodDecl>(FD);
7010       if (MD && MD->isCXXInstanceMember())
7011         LHST = Ctx.getLValueReferenceType(MD->getThisObjectType());
7012       else
7013         LHST = MD->getParamDecl(0)->getType();
7014       if (Ctx.hasSameType(RetT, LHST))
7015         return true;
7016     }
7017   }
7018 
7019   return false;
7020 }
7021 
7022 static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call,
7023                                         LocalVisitor Visit) {
7024   const FunctionDecl *Callee;
7025   ArrayRef<Expr*> Args;
7026 
7027   if (auto *CE = dyn_cast<CallExpr>(Call)) {
7028     Callee = CE->getDirectCallee();
7029     Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs());
7030   } else {
7031     auto *CCE = cast<CXXConstructExpr>(Call);
7032     Callee = CCE->getConstructor();
7033     Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs());
7034   }
7035   if (!Callee)
7036     return;
7037 
7038   Expr *ObjectArg = nullptr;
7039   if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) {
7040     ObjectArg = Args[0];
7041     Args = Args.slice(1);
7042   } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
7043     ObjectArg = MCE->getImplicitObjectArgument();
7044   }
7045 
7046   auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) {
7047     Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D});
7048     if (Arg->isGLValue())
7049       visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
7050                                             Visit,
7051                                             /*EnableLifetimeWarnings=*/false);
7052     else
7053       visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
7054                                        /*EnableLifetimeWarnings=*/false);
7055     Path.pop_back();
7056   };
7057 
7058   if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee))
7059     VisitLifetimeBoundArg(Callee, ObjectArg);
7060 
7061   for (unsigned I = 0,
7062                 N = std::min<unsigned>(Callee->getNumParams(), Args.size());
7063        I != N; ++I) {
7064     if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>())
7065       VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]);
7066   }
7067 }
7068 
7069 /// Visit the locals that would be reachable through a reference bound to the
7070 /// glvalue expression \c Init.
7071 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
7072                                                   Expr *Init, ReferenceKind RK,
7073                                                   LocalVisitor Visit,
7074                                                   bool EnableLifetimeWarnings) {
7075   RevertToOldSizeRAII RAII(Path);
7076 
7077   // Walk past any constructs which we can lifetime-extend across.
7078   Expr *Old;
7079   do {
7080     Old = Init;
7081 
7082     if (auto *FE = dyn_cast<FullExpr>(Init))
7083       Init = FE->getSubExpr();
7084 
7085     if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
7086       // If this is just redundant braces around an initializer, step over it.
7087       if (ILE->isTransparent())
7088         Init = ILE->getInit(0);
7089     }
7090 
7091     // Step over any subobject adjustments; we may have a materialized
7092     // temporary inside them.
7093     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
7094 
7095     // Per current approach for DR1376, look through casts to reference type
7096     // when performing lifetime extension.
7097     if (CastExpr *CE = dyn_cast<CastExpr>(Init))
7098       if (CE->getSubExpr()->isGLValue())
7099         Init = CE->getSubExpr();
7100 
7101     // Per the current approach for DR1299, look through array element access
7102     // on array glvalues when performing lifetime extension.
7103     if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) {
7104       Init = ASE->getBase();
7105       auto *ICE = dyn_cast<ImplicitCastExpr>(Init);
7106       if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay)
7107         Init = ICE->getSubExpr();
7108       else
7109         // We can't lifetime extend through this but we might still find some
7110         // retained temporaries.
7111         return visitLocalsRetainedByInitializer(Path, Init, Visit, true,
7112                                                 EnableLifetimeWarnings);
7113     }
7114 
7115     // Step into CXXDefaultInitExprs so we can diagnose cases where a
7116     // constructor inherits one as an implicit mem-initializer.
7117     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
7118       Path.push_back(
7119           {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
7120       Init = DIE->getExpr();
7121     }
7122   } while (Init != Old);
7123 
7124   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) {
7125     if (Visit(Path, Local(MTE), RK))
7126       visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true,
7127                                        EnableLifetimeWarnings);
7128   }
7129 
7130   if (isa<CallExpr>(Init)) {
7131     if (EnableLifetimeWarnings)
7132       handleGslAnnotatedTypes(Path, Init, Visit);
7133     return visitLifetimeBoundArguments(Path, Init, Visit);
7134   }
7135 
7136   switch (Init->getStmtClass()) {
7137   case Stmt::DeclRefExprClass: {
7138     // If we find the name of a local non-reference parameter, we could have a
7139     // lifetime problem.
7140     auto *DRE = cast<DeclRefExpr>(Init);
7141     auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
7142     if (VD && VD->hasLocalStorage() &&
7143         !DRE->refersToEnclosingVariableOrCapture()) {
7144       if (!VD->getType()->isReferenceType()) {
7145         Visit(Path, Local(DRE), RK);
7146       } else if (isa<ParmVarDecl>(DRE->getDecl())) {
7147         // The lifetime of a reference parameter is unknown; assume it's OK
7148         // for now.
7149         break;
7150       } else if (VD->getInit() && !isVarOnPath(Path, VD)) {
7151         Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
7152         visitLocalsRetainedByReferenceBinding(Path, VD->getInit(),
7153                                               RK_ReferenceBinding, Visit,
7154                                               EnableLifetimeWarnings);
7155       }
7156     }
7157     break;
7158   }
7159 
7160   case Stmt::UnaryOperatorClass: {
7161     // The only unary operator that make sense to handle here
7162     // is Deref.  All others don't resolve to a "name."  This includes
7163     // handling all sorts of rvalues passed to a unary operator.
7164     const UnaryOperator *U = cast<UnaryOperator>(Init);
7165     if (U->getOpcode() == UO_Deref)
7166       visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true,
7167                                        EnableLifetimeWarnings);
7168     break;
7169   }
7170 
7171   case Stmt::OMPArraySectionExprClass: {
7172     visitLocalsRetainedByInitializer(Path,
7173                                      cast<OMPArraySectionExpr>(Init)->getBase(),
7174                                      Visit, true, EnableLifetimeWarnings);
7175     break;
7176   }
7177 
7178   case Stmt::ConditionalOperatorClass:
7179   case Stmt::BinaryConditionalOperatorClass: {
7180     auto *C = cast<AbstractConditionalOperator>(Init);
7181     if (!C->getTrueExpr()->getType()->isVoidType())
7182       visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit,
7183                                             EnableLifetimeWarnings);
7184     if (!C->getFalseExpr()->getType()->isVoidType())
7185       visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit,
7186                                             EnableLifetimeWarnings);
7187     break;
7188   }
7189 
7190   // FIXME: Visit the left-hand side of an -> or ->*.
7191 
7192   default:
7193     break;
7194   }
7195 }
7196 
7197 /// Visit the locals that would be reachable through an object initialized by
7198 /// the prvalue expression \c Init.
7199 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
7200                                              Expr *Init, LocalVisitor Visit,
7201                                              bool RevisitSubinits,
7202                                              bool EnableLifetimeWarnings) {
7203   RevertToOldSizeRAII RAII(Path);
7204 
7205   Expr *Old;
7206   do {
7207     Old = Init;
7208 
7209     // Step into CXXDefaultInitExprs so we can diagnose cases where a
7210     // constructor inherits one as an implicit mem-initializer.
7211     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
7212       Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
7213       Init = DIE->getExpr();
7214     }
7215 
7216     if (auto *FE = dyn_cast<FullExpr>(Init))
7217       Init = FE->getSubExpr();
7218 
7219     // Dig out the expression which constructs the extended temporary.
7220     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
7221 
7222     if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
7223       Init = BTE->getSubExpr();
7224 
7225     Init = Init->IgnoreParens();
7226 
7227     // Step over value-preserving rvalue casts.
7228     if (auto *CE = dyn_cast<CastExpr>(Init)) {
7229       switch (CE->getCastKind()) {
7230       case CK_LValueToRValue:
7231         // If we can match the lvalue to a const object, we can look at its
7232         // initializer.
7233         Path.push_back({IndirectLocalPathEntry::LValToRVal, CE});
7234         return visitLocalsRetainedByReferenceBinding(
7235             Path, Init, RK_ReferenceBinding,
7236             [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool {
7237           if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7238             auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
7239             if (VD && VD->getType().isConstQualified() && VD->getInit() &&
7240                 !isVarOnPath(Path, VD)) {
7241               Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
7242               visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true,
7243                                                EnableLifetimeWarnings);
7244             }
7245           } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) {
7246             if (MTE->getType().isConstQualified())
7247               visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit,
7248                                                true, EnableLifetimeWarnings);
7249           }
7250           return false;
7251         }, EnableLifetimeWarnings);
7252 
7253         // We assume that objects can be retained by pointers cast to integers,
7254         // but not if the integer is cast to floating-point type or to _Complex.
7255         // We assume that casts to 'bool' do not preserve enough information to
7256         // retain a local object.
7257       case CK_NoOp:
7258       case CK_BitCast:
7259       case CK_BaseToDerived:
7260       case CK_DerivedToBase:
7261       case CK_UncheckedDerivedToBase:
7262       case CK_Dynamic:
7263       case CK_ToUnion:
7264       case CK_UserDefinedConversion:
7265       case CK_ConstructorConversion:
7266       case CK_IntegralToPointer:
7267       case CK_PointerToIntegral:
7268       case CK_VectorSplat:
7269       case CK_IntegralCast:
7270       case CK_CPointerToObjCPointerCast:
7271       case CK_BlockPointerToObjCPointerCast:
7272       case CK_AnyPointerToBlockPointerCast:
7273       case CK_AddressSpaceConversion:
7274         break;
7275 
7276       case CK_ArrayToPointerDecay:
7277         // Model array-to-pointer decay as taking the address of the array
7278         // lvalue.
7279         Path.push_back({IndirectLocalPathEntry::AddressOf, CE});
7280         return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(),
7281                                                      RK_ReferenceBinding, Visit,
7282                                                      EnableLifetimeWarnings);
7283 
7284       default:
7285         return;
7286       }
7287 
7288       Init = CE->getSubExpr();
7289     }
7290   } while (Old != Init);
7291 
7292   // C++17 [dcl.init.list]p6:
7293   //   initializing an initializer_list object from the array extends the
7294   //   lifetime of the array exactly like binding a reference to a temporary.
7295   if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init))
7296     return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(),
7297                                                  RK_StdInitializerList, Visit,
7298                                                  EnableLifetimeWarnings);
7299 
7300   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
7301     // We already visited the elements of this initializer list while
7302     // performing the initialization. Don't visit them again unless we've
7303     // changed the lifetime of the initialized entity.
7304     if (!RevisitSubinits)
7305       return;
7306 
7307     if (ILE->isTransparent())
7308       return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit,
7309                                               RevisitSubinits,
7310                                               EnableLifetimeWarnings);
7311 
7312     if (ILE->getType()->isArrayType()) {
7313       for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
7314         visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit,
7315                                          RevisitSubinits,
7316                                          EnableLifetimeWarnings);
7317       return;
7318     }
7319 
7320     if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
7321       assert(RD->isAggregate() && "aggregate init on non-aggregate");
7322 
7323       // If we lifetime-extend a braced initializer which is initializing an
7324       // aggregate, and that aggregate contains reference members which are
7325       // bound to temporaries, those temporaries are also lifetime-extended.
7326       if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
7327           ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
7328         visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0),
7329                                               RK_ReferenceBinding, Visit,
7330                                               EnableLifetimeWarnings);
7331       else {
7332         unsigned Index = 0;
7333         for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index)
7334           visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit,
7335                                            RevisitSubinits,
7336                                            EnableLifetimeWarnings);
7337         for (const auto *I : RD->fields()) {
7338           if (Index >= ILE->getNumInits())
7339             break;
7340           if (I->isUnnamedBitfield())
7341             continue;
7342           Expr *SubInit = ILE->getInit(Index);
7343           if (I->getType()->isReferenceType())
7344             visitLocalsRetainedByReferenceBinding(Path, SubInit,
7345                                                   RK_ReferenceBinding, Visit,
7346                                                   EnableLifetimeWarnings);
7347           else
7348             // This might be either aggregate-initialization of a member or
7349             // initialization of a std::initializer_list object. Regardless,
7350             // we should recursively lifetime-extend that initializer.
7351             visitLocalsRetainedByInitializer(Path, SubInit, Visit,
7352                                              RevisitSubinits,
7353                                              EnableLifetimeWarnings);
7354           ++Index;
7355         }
7356       }
7357     }
7358     return;
7359   }
7360 
7361   // The lifetime of an init-capture is that of the closure object constructed
7362   // by a lambda-expression.
7363   if (auto *LE = dyn_cast<LambdaExpr>(Init)) {
7364     LambdaExpr::capture_iterator CapI = LE->capture_begin();
7365     for (Expr *E : LE->capture_inits()) {
7366       assert(CapI != LE->capture_end());
7367       const LambdaCapture &Cap = *CapI++;
7368       if (!E)
7369         continue;
7370       if (Cap.capturesVariable())
7371         Path.push_back({IndirectLocalPathEntry::LambdaCaptureInit, E, &Cap});
7372       if (E->isGLValue())
7373         visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding,
7374                                               Visit, EnableLifetimeWarnings);
7375       else
7376         visitLocalsRetainedByInitializer(Path, E, Visit, true,
7377                                          EnableLifetimeWarnings);
7378       if (Cap.capturesVariable())
7379         Path.pop_back();
7380     }
7381   }
7382 
7383   // Assume that a copy or move from a temporary references the same objects
7384   // that the temporary does.
7385   if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) {
7386     if (CCE->getConstructor()->isCopyOrMoveConstructor()) {
7387       if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(CCE->getArg(0))) {
7388         Expr *Arg = MTE->getSubExpr();
7389         Path.push_back({IndirectLocalPathEntry::TemporaryCopy, Arg,
7390                         CCE->getConstructor()});
7391         visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
7392                                          /*EnableLifetimeWarnings*/false);
7393         Path.pop_back();
7394       }
7395     }
7396   }
7397 
7398   if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) {
7399     if (EnableLifetimeWarnings)
7400       handleGslAnnotatedTypes(Path, Init, Visit);
7401     return visitLifetimeBoundArguments(Path, Init, Visit);
7402   }
7403 
7404   switch (Init->getStmtClass()) {
7405   case Stmt::UnaryOperatorClass: {
7406     auto *UO = cast<UnaryOperator>(Init);
7407     // If the initializer is the address of a local, we could have a lifetime
7408     // problem.
7409     if (UO->getOpcode() == UO_AddrOf) {
7410       // If this is &rvalue, then it's ill-formed and we have already diagnosed
7411       // it. Don't produce a redundant warning about the lifetime of the
7412       // temporary.
7413       if (isa<MaterializeTemporaryExpr>(UO->getSubExpr()))
7414         return;
7415 
7416       Path.push_back({IndirectLocalPathEntry::AddressOf, UO});
7417       visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(),
7418                                             RK_ReferenceBinding, Visit,
7419                                             EnableLifetimeWarnings);
7420     }
7421     break;
7422   }
7423 
7424   case Stmt::BinaryOperatorClass: {
7425     // Handle pointer arithmetic.
7426     auto *BO = cast<BinaryOperator>(Init);
7427     BinaryOperatorKind BOK = BO->getOpcode();
7428     if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub))
7429       break;
7430 
7431     if (BO->getLHS()->getType()->isPointerType())
7432       visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true,
7433                                        EnableLifetimeWarnings);
7434     else if (BO->getRHS()->getType()->isPointerType())
7435       visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true,
7436                                        EnableLifetimeWarnings);
7437     break;
7438   }
7439 
7440   case Stmt::ConditionalOperatorClass:
7441   case Stmt::BinaryConditionalOperatorClass: {
7442     auto *C = cast<AbstractConditionalOperator>(Init);
7443     // In C++, we can have a throw-expression operand, which has 'void' type
7444     // and isn't interesting from a lifetime perspective.
7445     if (!C->getTrueExpr()->getType()->isVoidType())
7446       visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true,
7447                                        EnableLifetimeWarnings);
7448     if (!C->getFalseExpr()->getType()->isVoidType())
7449       visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true,
7450                                        EnableLifetimeWarnings);
7451     break;
7452   }
7453 
7454   case Stmt::BlockExprClass:
7455     if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) {
7456       // This is a local block, whose lifetime is that of the function.
7457       Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding);
7458     }
7459     break;
7460 
7461   case Stmt::AddrLabelExprClass:
7462     // We want to warn if the address of a label would escape the function.
7463     Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding);
7464     break;
7465 
7466   default:
7467     break;
7468   }
7469 }
7470 
7471 /// Whether a path to an object supports lifetime extension.
7472 enum PathLifetimeKind {
7473   /// Lifetime-extend along this path.
7474   Extend,
7475   /// We should lifetime-extend, but we don't because (due to technical
7476   /// limitations) we can't. This happens for default member initializers,
7477   /// which we don't clone for every use, so we don't have a unique
7478   /// MaterializeTemporaryExpr to update.
7479   ShouldExtend,
7480   /// Do not lifetime extend along this path.
7481   NoExtend
7482 };
7483 
7484 /// Determine whether this is an indirect path to a temporary that we are
7485 /// supposed to lifetime-extend along.
7486 static PathLifetimeKind
7487 shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) {
7488   PathLifetimeKind Kind = PathLifetimeKind::Extend;
7489   for (auto Elem : Path) {
7490     if (Elem.Kind == IndirectLocalPathEntry::DefaultInit)
7491       Kind = PathLifetimeKind::ShouldExtend;
7492     else if (Elem.Kind != IndirectLocalPathEntry::LambdaCaptureInit)
7493       return PathLifetimeKind::NoExtend;
7494   }
7495   return Kind;
7496 }
7497 
7498 /// Find the range for the first interesting entry in the path at or after I.
7499 static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I,
7500                                       Expr *E) {
7501   for (unsigned N = Path.size(); I != N; ++I) {
7502     switch (Path[I].Kind) {
7503     case IndirectLocalPathEntry::AddressOf:
7504     case IndirectLocalPathEntry::LValToRVal:
7505     case IndirectLocalPathEntry::LifetimeBoundCall:
7506     case IndirectLocalPathEntry::TemporaryCopy:
7507     case IndirectLocalPathEntry::GslReferenceInit:
7508     case IndirectLocalPathEntry::GslPointerInit:
7509       // These exist primarily to mark the path as not permitting or
7510       // supporting lifetime extension.
7511       break;
7512 
7513     case IndirectLocalPathEntry::VarInit:
7514       if (cast<VarDecl>(Path[I].D)->isImplicit())
7515         return SourceRange();
7516       LLVM_FALLTHROUGH;
7517     case IndirectLocalPathEntry::DefaultInit:
7518       return Path[I].E->getSourceRange();
7519 
7520     case IndirectLocalPathEntry::LambdaCaptureInit:
7521       if (!Path[I].Capture->capturesVariable())
7522         continue;
7523       return Path[I].E->getSourceRange();
7524     }
7525   }
7526   return E->getSourceRange();
7527 }
7528 
7529 static bool pathOnlyInitializesGslPointer(IndirectLocalPath &Path) {
7530   for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) {
7531     if (It->Kind == IndirectLocalPathEntry::VarInit)
7532       continue;
7533     if (It->Kind == IndirectLocalPathEntry::AddressOf)
7534       continue;
7535     if (It->Kind == IndirectLocalPathEntry::LifetimeBoundCall)
7536       continue;
7537     return It->Kind == IndirectLocalPathEntry::GslPointerInit ||
7538            It->Kind == IndirectLocalPathEntry::GslReferenceInit;
7539   }
7540   return false;
7541 }
7542 
7543 void Sema::checkInitializerLifetime(const InitializedEntity &Entity,
7544                                     Expr *Init) {
7545   LifetimeResult LR = getEntityLifetime(&Entity);
7546   LifetimeKind LK = LR.getInt();
7547   const InitializedEntity *ExtendingEntity = LR.getPointer();
7548 
7549   // If this entity doesn't have an interesting lifetime, don't bother looking
7550   // for temporaries within its initializer.
7551   if (LK == LK_FullExpression)
7552     return;
7553 
7554   auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L,
7555                               ReferenceKind RK) -> bool {
7556     SourceRange DiagRange = nextPathEntryRange(Path, 0, L);
7557     SourceLocation DiagLoc = DiagRange.getBegin();
7558 
7559     auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L);
7560 
7561     bool IsGslPtrInitWithGslTempOwner = false;
7562     bool IsLocalGslOwner = false;
7563     if (pathOnlyInitializesGslPointer(Path)) {
7564       if (isa<DeclRefExpr>(L)) {
7565         // We do not want to follow the references when returning a pointer originating
7566         // from a local owner to avoid the following false positive:
7567         //   int &p = *localUniquePtr;
7568         //   someContainer.add(std::move(localUniquePtr));
7569         //   return p;
7570         IsLocalGslOwner = isRecordWithAttr<OwnerAttr>(L->getType());
7571         if (pathContainsInit(Path) || !IsLocalGslOwner)
7572           return false;
7573       } else {
7574         IsGslPtrInitWithGslTempOwner = MTE && !MTE->getExtendingDecl() &&
7575                             isRecordWithAttr<OwnerAttr>(MTE->getType());
7576         // Skipping a chain of initializing gsl::Pointer annotated objects.
7577         // We are looking only for the final source to find out if it was
7578         // a local or temporary owner or the address of a local variable/param.
7579         if (!IsGslPtrInitWithGslTempOwner)
7580           return true;
7581       }
7582     }
7583 
7584     switch (LK) {
7585     case LK_FullExpression:
7586       llvm_unreachable("already handled this");
7587 
7588     case LK_Extended: {
7589       if (!MTE) {
7590         // The initialized entity has lifetime beyond the full-expression,
7591         // and the local entity does too, so don't warn.
7592         //
7593         // FIXME: We should consider warning if a static / thread storage
7594         // duration variable retains an automatic storage duration local.
7595         return false;
7596       }
7597 
7598       if (IsGslPtrInitWithGslTempOwner && DiagLoc.isValid()) {
7599         Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
7600         return false;
7601       }
7602 
7603       switch (shouldLifetimeExtendThroughPath(Path)) {
7604       case PathLifetimeKind::Extend:
7605         // Update the storage duration of the materialized temporary.
7606         // FIXME: Rebuild the expression instead of mutating it.
7607         MTE->setExtendingDecl(ExtendingEntity->getDecl(),
7608                               ExtendingEntity->allocateManglingNumber());
7609         // Also visit the temporaries lifetime-extended by this initializer.
7610         return true;
7611 
7612       case PathLifetimeKind::ShouldExtend:
7613         // We're supposed to lifetime-extend the temporary along this path (per
7614         // the resolution of DR1815), but we don't support that yet.
7615         //
7616         // FIXME: Properly handle this situation. Perhaps the easiest approach
7617         // would be to clone the initializer expression on each use that would
7618         // lifetime extend its temporaries.
7619         Diag(DiagLoc, diag::warn_unsupported_lifetime_extension)
7620             << RK << DiagRange;
7621         break;
7622 
7623       case PathLifetimeKind::NoExtend:
7624         // If the path goes through the initialization of a variable or field,
7625         // it can't possibly reach a temporary created in this full-expression.
7626         // We will have already diagnosed any problems with the initializer.
7627         if (pathContainsInit(Path))
7628           return false;
7629 
7630         Diag(DiagLoc, diag::warn_dangling_variable)
7631             << RK << !Entity.getParent()
7632             << ExtendingEntity->getDecl()->isImplicit()
7633             << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange;
7634         break;
7635       }
7636       break;
7637     }
7638 
7639     case LK_MemInitializer: {
7640       if (isa<MaterializeTemporaryExpr>(L)) {
7641         // Under C++ DR1696, if a mem-initializer (or a default member
7642         // initializer used by the absence of one) would lifetime-extend a
7643         // temporary, the program is ill-formed.
7644         if (auto *ExtendingDecl =
7645                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7646           if (IsGslPtrInitWithGslTempOwner) {
7647             Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_member)
7648                 << ExtendingDecl << DiagRange;
7649             Diag(ExtendingDecl->getLocation(),
7650                  diag::note_ref_or_ptr_member_declared_here)
7651                 << true;
7652             return false;
7653           }
7654           bool IsSubobjectMember = ExtendingEntity != &Entity;
7655           Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path) !=
7656                                 PathLifetimeKind::NoExtend
7657                             ? diag::err_dangling_member
7658                             : diag::warn_dangling_member)
7659               << ExtendingDecl << IsSubobjectMember << RK << DiagRange;
7660           // Don't bother adding a note pointing to the field if we're inside
7661           // its default member initializer; our primary diagnostic points to
7662           // the same place in that case.
7663           if (Path.empty() ||
7664               Path.back().Kind != IndirectLocalPathEntry::DefaultInit) {
7665             Diag(ExtendingDecl->getLocation(),
7666                  diag::note_lifetime_extending_member_declared_here)
7667                 << RK << IsSubobjectMember;
7668           }
7669         } else {
7670           // We have a mem-initializer but no particular field within it; this
7671           // is either a base class or a delegating initializer directly
7672           // initializing the base-class from something that doesn't live long
7673           // enough.
7674           //
7675           // FIXME: Warn on this.
7676           return false;
7677         }
7678       } else {
7679         // Paths via a default initializer can only occur during error recovery
7680         // (there's no other way that a default initializer can refer to a
7681         // local). Don't produce a bogus warning on those cases.
7682         if (pathContainsInit(Path))
7683           return false;
7684 
7685         // Suppress false positives for code like the one below:
7686         //   Ctor(unique_ptr<T> up) : member(*up), member2(move(up)) {}
7687         if (IsLocalGslOwner && pathOnlyInitializesGslPointer(Path))
7688           return false;
7689 
7690         auto *DRE = dyn_cast<DeclRefExpr>(L);
7691         auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr;
7692         if (!VD) {
7693           // A member was initialized to a local block.
7694           // FIXME: Warn on this.
7695           return false;
7696         }
7697 
7698         if (auto *Member =
7699                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7700           bool IsPointer = !Member->getType()->isReferenceType();
7701           Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
7702                                   : diag::warn_bind_ref_member_to_parameter)
7703               << Member << VD << isa<ParmVarDecl>(VD) << DiagRange;
7704           Diag(Member->getLocation(),
7705                diag::note_ref_or_ptr_member_declared_here)
7706               << (unsigned)IsPointer;
7707         }
7708       }
7709       break;
7710     }
7711 
7712     case LK_New:
7713       if (isa<MaterializeTemporaryExpr>(L)) {
7714         if (IsGslPtrInitWithGslTempOwner)
7715           Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
7716         else
7717           Diag(DiagLoc, RK == RK_ReferenceBinding
7718                             ? diag::warn_new_dangling_reference
7719                             : diag::warn_new_dangling_initializer_list)
7720               << !Entity.getParent() << DiagRange;
7721       } else {
7722         // We can't determine if the allocation outlives the local declaration.
7723         return false;
7724       }
7725       break;
7726 
7727     case LK_Return:
7728     case LK_StmtExprResult:
7729       if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7730         // We can't determine if the local variable outlives the statement
7731         // expression.
7732         if (LK == LK_StmtExprResult)
7733           return false;
7734         Diag(DiagLoc, diag::warn_ret_stack_addr_ref)
7735             << Entity.getType()->isReferenceType() << DRE->getDecl()
7736             << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange;
7737       } else if (isa<BlockExpr>(L)) {
7738         Diag(DiagLoc, diag::err_ret_local_block) << DiagRange;
7739       } else if (isa<AddrLabelExpr>(L)) {
7740         // Don't warn when returning a label from a statement expression.
7741         // Leaving the scope doesn't end its lifetime.
7742         if (LK == LK_StmtExprResult)
7743           return false;
7744         Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange;
7745       } else {
7746         Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref)
7747          << Entity.getType()->isReferenceType() << DiagRange;
7748       }
7749       break;
7750     }
7751 
7752     for (unsigned I = 0; I != Path.size(); ++I) {
7753       auto Elem = Path[I];
7754 
7755       switch (Elem.Kind) {
7756       case IndirectLocalPathEntry::AddressOf:
7757       case IndirectLocalPathEntry::LValToRVal:
7758         // These exist primarily to mark the path as not permitting or
7759         // supporting lifetime extension.
7760         break;
7761 
7762       case IndirectLocalPathEntry::LifetimeBoundCall:
7763       case IndirectLocalPathEntry::TemporaryCopy:
7764       case IndirectLocalPathEntry::GslPointerInit:
7765       case IndirectLocalPathEntry::GslReferenceInit:
7766         // FIXME: Consider adding a note for these.
7767         break;
7768 
7769       case IndirectLocalPathEntry::DefaultInit: {
7770         auto *FD = cast<FieldDecl>(Elem.D);
7771         Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer)
7772             << FD << nextPathEntryRange(Path, I + 1, L);
7773         break;
7774       }
7775 
7776       case IndirectLocalPathEntry::VarInit: {
7777         const VarDecl *VD = cast<VarDecl>(Elem.D);
7778         Diag(VD->getLocation(), diag::note_local_var_initializer)
7779             << VD->getType()->isReferenceType()
7780             << VD->isImplicit() << VD->getDeclName()
7781             << nextPathEntryRange(Path, I + 1, L);
7782         break;
7783       }
7784 
7785       case IndirectLocalPathEntry::LambdaCaptureInit:
7786         if (!Elem.Capture->capturesVariable())
7787           break;
7788         // FIXME: We can't easily tell apart an init-capture from a nested
7789         // capture of an init-capture.
7790         const VarDecl *VD = Elem.Capture->getCapturedVar();
7791         Diag(Elem.Capture->getLocation(), diag::note_lambda_capture_initializer)
7792             << VD << VD->isInitCapture() << Elem.Capture->isExplicit()
7793             << (Elem.Capture->getCaptureKind() == LCK_ByRef) << VD
7794             << nextPathEntryRange(Path, I + 1, L);
7795         break;
7796       }
7797     }
7798 
7799     // We didn't lifetime-extend, so don't go any further; we don't need more
7800     // warnings or errors on inner temporaries within this one's initializer.
7801     return false;
7802   };
7803 
7804   bool EnableLifetimeWarnings = !getDiagnostics().isIgnored(
7805       diag::warn_dangling_lifetime_pointer, SourceLocation());
7806   llvm::SmallVector<IndirectLocalPathEntry, 8> Path;
7807   if (Init->isGLValue())
7808     visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding,
7809                                           TemporaryVisitor,
7810                                           EnableLifetimeWarnings);
7811   else
7812     visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false,
7813                                      EnableLifetimeWarnings);
7814 }
7815 
7816 static void DiagnoseNarrowingInInitList(Sema &S,
7817                                         const ImplicitConversionSequence &ICS,
7818                                         QualType PreNarrowingType,
7819                                         QualType EntityType,
7820                                         const Expr *PostInit);
7821 
7822 /// Provide warnings when std::move is used on construction.
7823 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
7824                                     bool IsReturnStmt) {
7825   if (!InitExpr)
7826     return;
7827 
7828   if (S.inTemplateInstantiation())
7829     return;
7830 
7831   QualType DestType = InitExpr->getType();
7832   if (!DestType->isRecordType())
7833     return;
7834 
7835   unsigned DiagID = 0;
7836   if (IsReturnStmt) {
7837     const CXXConstructExpr *CCE =
7838         dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
7839     if (!CCE || CCE->getNumArgs() != 1)
7840       return;
7841 
7842     if (!CCE->getConstructor()->isCopyOrMoveConstructor())
7843       return;
7844 
7845     InitExpr = CCE->getArg(0)->IgnoreImpCasts();
7846   }
7847 
7848   // Find the std::move call and get the argument.
7849   const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
7850   if (!CE || !CE->isCallToStdMove())
7851     return;
7852 
7853   const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
7854 
7855   if (IsReturnStmt) {
7856     const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
7857     if (!DRE || DRE->refersToEnclosingVariableOrCapture())
7858       return;
7859 
7860     const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
7861     if (!VD || !VD->hasLocalStorage())
7862       return;
7863 
7864     // __block variables are not moved implicitly.
7865     if (VD->hasAttr<BlocksAttr>())
7866       return;
7867 
7868     QualType SourceType = VD->getType();
7869     if (!SourceType->isRecordType())
7870       return;
7871 
7872     if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
7873       return;
7874     }
7875 
7876     // If we're returning a function parameter, copy elision
7877     // is not possible.
7878     if (isa<ParmVarDecl>(VD))
7879       DiagID = diag::warn_redundant_move_on_return;
7880     else
7881       DiagID = diag::warn_pessimizing_move_on_return;
7882   } else {
7883     DiagID = diag::warn_pessimizing_move_on_initialization;
7884     const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
7885     if (!ArgStripped->isPRValue() || !ArgStripped->getType()->isRecordType())
7886       return;
7887   }
7888 
7889   S.Diag(CE->getBeginLoc(), DiagID);
7890 
7891   // Get all the locations for a fix-it.  Don't emit the fix-it if any location
7892   // is within a macro.
7893   SourceLocation CallBegin = CE->getCallee()->getBeginLoc();
7894   if (CallBegin.isMacroID())
7895     return;
7896   SourceLocation RParen = CE->getRParenLoc();
7897   if (RParen.isMacroID())
7898     return;
7899   SourceLocation LParen;
7900   SourceLocation ArgLoc = Arg->getBeginLoc();
7901 
7902   // Special testing for the argument location.  Since the fix-it needs the
7903   // location right before the argument, the argument location can be in a
7904   // macro only if it is at the beginning of the macro.
7905   while (ArgLoc.isMacroID() &&
7906          S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
7907     ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin();
7908   }
7909 
7910   if (LParen.isMacroID())
7911     return;
7912 
7913   LParen = ArgLoc.getLocWithOffset(-1);
7914 
7915   S.Diag(CE->getBeginLoc(), diag::note_remove_move)
7916       << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
7917       << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
7918 }
7919 
7920 static void CheckForNullPointerDereference(Sema &S, const Expr *E) {
7921   // Check to see if we are dereferencing a null pointer.  If so, this is
7922   // undefined behavior, so warn about it.  This only handles the pattern
7923   // "*null", which is a very syntactic check.
7924   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
7925     if (UO->getOpcode() == UO_Deref &&
7926         UO->getSubExpr()->IgnoreParenCasts()->
7927         isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) {
7928     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
7929                           S.PDiag(diag::warn_binding_null_to_reference)
7930                             << UO->getSubExpr()->getSourceRange());
7931   }
7932 }
7933 
7934 MaterializeTemporaryExpr *
7935 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
7936                                      bool BoundToLvalueReference) {
7937   auto MTE = new (Context)
7938       MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference);
7939 
7940   // Order an ExprWithCleanups for lifetime marks.
7941   //
7942   // TODO: It'll be good to have a single place to check the access of the
7943   // destructor and generate ExprWithCleanups for various uses. Currently these
7944   // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary,
7945   // but there may be a chance to merge them.
7946   Cleanup.setExprNeedsCleanups(false);
7947   return MTE;
7948 }
7949 
7950 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) {
7951   // In C++98, we don't want to implicitly create an xvalue.
7952   // FIXME: This means that AST consumers need to deal with "prvalues" that
7953   // denote materialized temporaries. Maybe we should add another ValueKind
7954   // for "xvalue pretending to be a prvalue" for C++98 support.
7955   if (!E->isPRValue() || !getLangOpts().CPlusPlus11)
7956     return E;
7957 
7958   // C++1z [conv.rval]/1: T shall be a complete type.
7959   // FIXME: Does this ever matter (can we form a prvalue of incomplete type)?
7960   // If so, we should check for a non-abstract class type here too.
7961   QualType T = E->getType();
7962   if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type))
7963     return ExprError();
7964 
7965   return CreateMaterializeTemporaryExpr(E->getType(), E, false);
7966 }
7967 
7968 ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty,
7969                                                 ExprValueKind VK,
7970                                                 CheckedConversionKind CCK) {
7971 
7972   CastKind CK = CK_NoOp;
7973 
7974   if (VK == VK_PRValue) {
7975     auto PointeeTy = Ty->getPointeeType();
7976     auto ExprPointeeTy = E->getType()->getPointeeType();
7977     if (!PointeeTy.isNull() &&
7978         PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace())
7979       CK = CK_AddressSpaceConversion;
7980   } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) {
7981     CK = CK_AddressSpaceConversion;
7982   }
7983 
7984   return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK);
7985 }
7986 
7987 ExprResult InitializationSequence::Perform(Sema &S,
7988                                            const InitializedEntity &Entity,
7989                                            const InitializationKind &Kind,
7990                                            MultiExprArg Args,
7991                                            QualType *ResultType) {
7992   if (Failed()) {
7993     Diagnose(S, Entity, Kind, Args);
7994     return ExprError();
7995   }
7996   if (!ZeroInitializationFixit.empty()) {
7997     unsigned DiagID = diag::err_default_init_const;
7998     if (Decl *D = Entity.getDecl())
7999       if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
8000         DiagID = diag::ext_default_init_const;
8001 
8002     // The initialization would have succeeded with this fixit. Since the fixit
8003     // is on the error, we need to build a valid AST in this case, so this isn't
8004     // handled in the Failed() branch above.
8005     QualType DestType = Entity.getType();
8006     S.Diag(Kind.getLocation(), DiagID)
8007         << DestType << (bool)DestType->getAs<RecordType>()
8008         << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
8009                                       ZeroInitializationFixit);
8010   }
8011 
8012   if (getKind() == DependentSequence) {
8013     // If the declaration is a non-dependent, incomplete array type
8014     // that has an initializer, then its type will be completed once
8015     // the initializer is instantiated.
8016     if (ResultType && !Entity.getType()->isDependentType() &&
8017         Args.size() == 1) {
8018       QualType DeclType = Entity.getType();
8019       if (const IncompleteArrayType *ArrayT
8020                            = S.Context.getAsIncompleteArrayType(DeclType)) {
8021         // FIXME: We don't currently have the ability to accurately
8022         // compute the length of an initializer list without
8023         // performing full type-checking of the initializer list
8024         // (since we have to determine where braces are implicitly
8025         // introduced and such).  So, we fall back to making the array
8026         // type a dependently-sized array type with no specified
8027         // bound.
8028         if (isa<InitListExpr>((Expr *)Args[0])) {
8029           SourceRange Brackets;
8030 
8031           // Scavange the location of the brackets from the entity, if we can.
8032           if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) {
8033             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
8034               TypeLoc TL = TInfo->getTypeLoc();
8035               if (IncompleteArrayTypeLoc ArrayLoc =
8036                       TL.getAs<IncompleteArrayTypeLoc>())
8037                 Brackets = ArrayLoc.getBracketsRange();
8038             }
8039           }
8040 
8041           *ResultType
8042             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
8043                                                    /*NumElts=*/nullptr,
8044                                                    ArrayT->getSizeModifier(),
8045                                        ArrayT->getIndexTypeCVRQualifiers(),
8046                                                    Brackets);
8047         }
8048 
8049       }
8050     }
8051     if (Kind.getKind() == InitializationKind::IK_Direct &&
8052         !Kind.isExplicitCast()) {
8053       // Rebuild the ParenListExpr.
8054       SourceRange ParenRange = Kind.getParenOrBraceRange();
8055       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
8056                                   Args);
8057     }
8058     assert(Kind.getKind() == InitializationKind::IK_Copy ||
8059            Kind.isExplicitCast() ||
8060            Kind.getKind() == InitializationKind::IK_DirectList);
8061     return ExprResult(Args[0]);
8062   }
8063 
8064   // No steps means no initialization.
8065   if (Steps.empty())
8066     return ExprResult((Expr *)nullptr);
8067 
8068   if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
8069       Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
8070       !Entity.isParamOrTemplateParamKind()) {
8071     // Produce a C++98 compatibility warning if we are initializing a reference
8072     // from an initializer list. For parameters, we produce a better warning
8073     // elsewhere.
8074     Expr *Init = Args[0];
8075     S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init)
8076         << Init->getSourceRange();
8077   }
8078 
8079   // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope
8080   QualType ETy = Entity.getType();
8081   bool HasGlobalAS = ETy.hasAddressSpace() &&
8082                      ETy.getAddressSpace() == LangAS::opencl_global;
8083 
8084   if (S.getLangOpts().OpenCLVersion >= 200 &&
8085       ETy->isAtomicType() && !HasGlobalAS &&
8086       Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) {
8087     S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init)
8088         << 1
8089         << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc());
8090     return ExprError();
8091   }
8092 
8093   QualType DestType = Entity.getType().getNonReferenceType();
8094   // FIXME: Ugly hack around the fact that Entity.getType() is not
8095   // the same as Entity.getDecl()->getType() in cases involving type merging,
8096   //  and we want latter when it makes sense.
8097   if (ResultType)
8098     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
8099                                      Entity.getType();
8100 
8101   ExprResult CurInit((Expr *)nullptr);
8102   SmallVector<Expr*, 4> ArrayLoopCommonExprs;
8103 
8104   // For initialization steps that start with a single initializer,
8105   // grab the only argument out the Args and place it into the "current"
8106   // initializer.
8107   switch (Steps.front().Kind) {
8108   case SK_ResolveAddressOfOverloadedFunction:
8109   case SK_CastDerivedToBasePRValue:
8110   case SK_CastDerivedToBaseXValue:
8111   case SK_CastDerivedToBaseLValue:
8112   case SK_BindReference:
8113   case SK_BindReferenceToTemporary:
8114   case SK_FinalCopy:
8115   case SK_ExtraneousCopyToTemporary:
8116   case SK_UserConversion:
8117   case SK_QualificationConversionLValue:
8118   case SK_QualificationConversionXValue:
8119   case SK_QualificationConversionPRValue:
8120   case SK_FunctionReferenceConversion:
8121   case SK_AtomicConversion:
8122   case SK_ConversionSequence:
8123   case SK_ConversionSequenceNoNarrowing:
8124   case SK_ListInitialization:
8125   case SK_UnwrapInitList:
8126   case SK_RewrapInitList:
8127   case SK_CAssignment:
8128   case SK_StringInit:
8129   case SK_ObjCObjectConversion:
8130   case SK_ArrayLoopIndex:
8131   case SK_ArrayLoopInit:
8132   case SK_ArrayInit:
8133   case SK_GNUArrayInit:
8134   case SK_ParenthesizedArrayInit:
8135   case SK_PassByIndirectCopyRestore:
8136   case SK_PassByIndirectRestore:
8137   case SK_ProduceObjCObject:
8138   case SK_StdInitializerList:
8139   case SK_OCLSamplerInit:
8140   case SK_OCLZeroOpaqueType: {
8141     assert(Args.size() == 1);
8142     CurInit = Args[0];
8143     if (!CurInit.get()) return ExprError();
8144     break;
8145   }
8146 
8147   case SK_ConstructorInitialization:
8148   case SK_ConstructorInitializationFromList:
8149   case SK_StdInitializerListConstructorCall:
8150   case SK_ZeroInitialization:
8151     break;
8152   }
8153 
8154   // Promote from an unevaluated context to an unevaluated list context in
8155   // C++11 list-initialization; we need to instantiate entities usable in
8156   // constant expressions here in order to perform narrowing checks =(
8157   EnterExpressionEvaluationContext Evaluated(
8158       S, EnterExpressionEvaluationContext::InitList,
8159       CurInit.get() && isa<InitListExpr>(CurInit.get()));
8160 
8161   // C++ [class.abstract]p2:
8162   //   no objects of an abstract class can be created except as subobjects
8163   //   of a class derived from it
8164   auto checkAbstractType = [&](QualType T) -> bool {
8165     if (Entity.getKind() == InitializedEntity::EK_Base ||
8166         Entity.getKind() == InitializedEntity::EK_Delegating)
8167       return false;
8168     return S.RequireNonAbstractType(Kind.getLocation(), T,
8169                                     diag::err_allocation_of_abstract_type);
8170   };
8171 
8172   // Walk through the computed steps for the initialization sequence,
8173   // performing the specified conversions along the way.
8174   bool ConstructorInitRequiresZeroInit = false;
8175   for (step_iterator Step = step_begin(), StepEnd = step_end();
8176        Step != StepEnd; ++Step) {
8177     if (CurInit.isInvalid())
8178       return ExprError();
8179 
8180     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
8181 
8182     switch (Step->Kind) {
8183     case SK_ResolveAddressOfOverloadedFunction:
8184       // Overload resolution determined which function invoke; update the
8185       // initializer to reflect that choice.
8186       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
8187       if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
8188         return ExprError();
8189       CurInit = S.FixOverloadedFunctionReference(CurInit,
8190                                                  Step->Function.FoundDecl,
8191                                                  Step->Function.Function);
8192       break;
8193 
8194     case SK_CastDerivedToBasePRValue:
8195     case SK_CastDerivedToBaseXValue:
8196     case SK_CastDerivedToBaseLValue: {
8197       // We have a derived-to-base cast that produces either an rvalue or an
8198       // lvalue. Perform that cast.
8199 
8200       CXXCastPath BasePath;
8201 
8202       // Casts to inaccessible base classes are allowed with C-style casts.
8203       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
8204       if (S.CheckDerivedToBaseConversion(
8205               SourceType, Step->Type, CurInit.get()->getBeginLoc(),
8206               CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess))
8207         return ExprError();
8208 
8209       ExprValueKind VK =
8210           Step->Kind == SK_CastDerivedToBaseLValue
8211               ? VK_LValue
8212               : (Step->Kind == SK_CastDerivedToBaseXValue ? VK_XValue
8213                                                           : VK_PRValue);
8214       CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
8215                                          CK_DerivedToBase, CurInit.get(),
8216                                          &BasePath, VK, FPOptionsOverride());
8217       break;
8218     }
8219 
8220     case SK_BindReference:
8221       // Reference binding does not have any corresponding ASTs.
8222 
8223       // Check exception specifications
8224       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
8225         return ExprError();
8226 
8227       // We don't check for e.g. function pointers here, since address
8228       // availability checks should only occur when the function first decays
8229       // into a pointer or reference.
8230       if (CurInit.get()->getType()->isFunctionProtoType()) {
8231         if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) {
8232           if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
8233             if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
8234                                                      DRE->getBeginLoc()))
8235               return ExprError();
8236           }
8237         }
8238       }
8239 
8240       CheckForNullPointerDereference(S, CurInit.get());
8241       break;
8242 
8243     case SK_BindReferenceToTemporary: {
8244       // Make sure the "temporary" is actually an rvalue.
8245       assert(CurInit.get()->isPRValue() && "not a temporary");
8246 
8247       // Check exception specifications
8248       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
8249         return ExprError();
8250 
8251       QualType MTETy = Step->Type;
8252 
8253       // When this is an incomplete array type (such as when this is
8254       // initializing an array of unknown bounds from an init list), use THAT
8255       // type instead so that we propagate the array bounds.
8256       if (MTETy->isIncompleteArrayType() &&
8257           !CurInit.get()->getType()->isIncompleteArrayType() &&
8258           S.Context.hasSameType(
8259               MTETy->getPointeeOrArrayElementType(),
8260               CurInit.get()->getType()->getPointeeOrArrayElementType()))
8261         MTETy = CurInit.get()->getType();
8262 
8263       // Materialize the temporary into memory.
8264       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8265           MTETy, CurInit.get(), Entity.getType()->isLValueReferenceType());
8266       CurInit = MTE;
8267 
8268       // If we're extending this temporary to automatic storage duration -- we
8269       // need to register its cleanup during the full-expression's cleanups.
8270       if (MTE->getStorageDuration() == SD_Automatic &&
8271           MTE->getType().isDestructedType())
8272         S.Cleanup.setExprNeedsCleanups(true);
8273       break;
8274     }
8275 
8276     case SK_FinalCopy:
8277       if (checkAbstractType(Step->Type))
8278         return ExprError();
8279 
8280       // If the overall initialization is initializing a temporary, we already
8281       // bound our argument if it was necessary to do so. If not (if we're
8282       // ultimately initializing a non-temporary), our argument needs to be
8283       // bound since it's initializing a function parameter.
8284       // FIXME: This is a mess. Rationalize temporary destruction.
8285       if (!shouldBindAsTemporary(Entity))
8286         CurInit = S.MaybeBindToTemporary(CurInit.get());
8287       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
8288                            /*IsExtraneousCopy=*/false);
8289       break;
8290 
8291     case SK_ExtraneousCopyToTemporary:
8292       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
8293                            /*IsExtraneousCopy=*/true);
8294       break;
8295 
8296     case SK_UserConversion: {
8297       // We have a user-defined conversion that invokes either a constructor
8298       // or a conversion function.
8299       CastKind CastKind;
8300       FunctionDecl *Fn = Step->Function.Function;
8301       DeclAccessPair FoundFn = Step->Function.FoundDecl;
8302       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
8303       bool CreatedObject = false;
8304       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
8305         // Build a call to the selected constructor.
8306         SmallVector<Expr*, 8> ConstructorArgs;
8307         SourceLocation Loc = CurInit.get()->getBeginLoc();
8308 
8309         // Determine the arguments required to actually perform the constructor
8310         // call.
8311         Expr *Arg = CurInit.get();
8312         if (S.CompleteConstructorCall(Constructor, Step->Type,
8313                                       MultiExprArg(&Arg, 1), Loc,
8314                                       ConstructorArgs))
8315           return ExprError();
8316 
8317         // Build an expression that constructs a temporary.
8318         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type,
8319                                           FoundFn, Constructor,
8320                                           ConstructorArgs,
8321                                           HadMultipleCandidates,
8322                                           /*ListInit*/ false,
8323                                           /*StdInitListInit*/ false,
8324                                           /*ZeroInit*/ false,
8325                                           CXXConstructExpr::CK_Complete,
8326                                           SourceRange());
8327         if (CurInit.isInvalid())
8328           return ExprError();
8329 
8330         S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn,
8331                                  Entity);
8332         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
8333           return ExprError();
8334 
8335         CastKind = CK_ConstructorConversion;
8336         CreatedObject = true;
8337       } else {
8338         // Build a call to the conversion function.
8339         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
8340         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
8341                                     FoundFn);
8342         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
8343           return ExprError();
8344 
8345         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
8346                                            HadMultipleCandidates);
8347         if (CurInit.isInvalid())
8348           return ExprError();
8349 
8350         CastKind = CK_UserDefinedConversion;
8351         CreatedObject = Conversion->getReturnType()->isRecordType();
8352       }
8353 
8354       if (CreatedObject && checkAbstractType(CurInit.get()->getType()))
8355         return ExprError();
8356 
8357       CurInit = ImplicitCastExpr::Create(
8358           S.Context, CurInit.get()->getType(), CastKind, CurInit.get(), nullptr,
8359           CurInit.get()->getValueKind(), S.CurFPFeatureOverrides());
8360 
8361       if (shouldBindAsTemporary(Entity))
8362         // The overall entity is temporary, so this expression should be
8363         // destroyed at the end of its full-expression.
8364         CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
8365       else if (CreatedObject && shouldDestroyEntity(Entity)) {
8366         // The object outlasts the full-expression, but we need to prepare for
8367         // a destructor being run on it.
8368         // FIXME: It makes no sense to do this here. This should happen
8369         // regardless of how we initialized the entity.
8370         QualType T = CurInit.get()->getType();
8371         if (const RecordType *Record = T->getAs<RecordType>()) {
8372           CXXDestructorDecl *Destructor
8373             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
8374           S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor,
8375                                   S.PDiag(diag::err_access_dtor_temp) << T);
8376           S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor);
8377           if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc()))
8378             return ExprError();
8379         }
8380       }
8381       break;
8382     }
8383 
8384     case SK_QualificationConversionLValue:
8385     case SK_QualificationConversionXValue:
8386     case SK_QualificationConversionPRValue: {
8387       // Perform a qualification conversion; these can never go wrong.
8388       ExprValueKind VK =
8389           Step->Kind == SK_QualificationConversionLValue
8390               ? VK_LValue
8391               : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue
8392                                                                 : VK_PRValue);
8393       CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK);
8394       break;
8395     }
8396 
8397     case SK_FunctionReferenceConversion:
8398       assert(CurInit.get()->isLValue() &&
8399              "function reference should be lvalue");
8400       CurInit =
8401           S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK_LValue);
8402       break;
8403 
8404     case SK_AtomicConversion: {
8405       assert(CurInit.get()->isPRValue() && "cannot convert glvalue to atomic");
8406       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8407                                     CK_NonAtomicToAtomic, VK_PRValue);
8408       break;
8409     }
8410 
8411     case SK_ConversionSequence:
8412     case SK_ConversionSequenceNoNarrowing: {
8413       if (const auto *FromPtrType =
8414               CurInit.get()->getType()->getAs<PointerType>()) {
8415         if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) {
8416           if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
8417               !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
8418             // Do not check static casts here because they are checked earlier
8419             // in Sema::ActOnCXXNamedCast()
8420             if (!Kind.isStaticCast()) {
8421               S.Diag(CurInit.get()->getExprLoc(),
8422                      diag::warn_noderef_to_dereferenceable_pointer)
8423                   << CurInit.get()->getSourceRange();
8424             }
8425           }
8426         }
8427       }
8428 
8429       Sema::CheckedConversionKind CCK
8430         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
8431         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
8432         : Kind.isExplicitCast()? Sema::CCK_OtherCast
8433         : Sema::CCK_ImplicitConversion;
8434       ExprResult CurInitExprRes =
8435         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
8436                                     getAssignmentAction(Entity), CCK);
8437       if (CurInitExprRes.isInvalid())
8438         return ExprError();
8439 
8440       S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get());
8441 
8442       CurInit = CurInitExprRes;
8443 
8444       if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
8445           S.getLangOpts().CPlusPlus)
8446         DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
8447                                     CurInit.get());
8448 
8449       break;
8450     }
8451 
8452     case SK_ListInitialization: {
8453       if (checkAbstractType(Step->Type))
8454         return ExprError();
8455 
8456       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
8457       // If we're not initializing the top-level entity, we need to create an
8458       // InitializeTemporary entity for our target type.
8459       QualType Ty = Step->Type;
8460       bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
8461       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
8462       InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
8463       InitListChecker PerformInitList(S, InitEntity,
8464           InitList, Ty, /*VerifyOnly=*/false,
8465           /*TreatUnavailableAsInvalid=*/false);
8466       if (PerformInitList.HadError())
8467         return ExprError();
8468 
8469       // Hack: We must update *ResultType if available in order to set the
8470       // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
8471       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
8472       if (ResultType &&
8473           ResultType->getNonReferenceType()->isIncompleteArrayType()) {
8474         if ((*ResultType)->isRValueReferenceType())
8475           Ty = S.Context.getRValueReferenceType(Ty);
8476         else if ((*ResultType)->isLValueReferenceType())
8477           Ty = S.Context.getLValueReferenceType(Ty,
8478             (*ResultType)->castAs<LValueReferenceType>()->isSpelledAsLValue());
8479         *ResultType = Ty;
8480       }
8481 
8482       InitListExpr *StructuredInitList =
8483           PerformInitList.getFullyStructuredList();
8484       CurInit.get();
8485       CurInit = shouldBindAsTemporary(InitEntity)
8486           ? S.MaybeBindToTemporary(StructuredInitList)
8487           : StructuredInitList;
8488       break;
8489     }
8490 
8491     case SK_ConstructorInitializationFromList: {
8492       if (checkAbstractType(Step->Type))
8493         return ExprError();
8494 
8495       // When an initializer list is passed for a parameter of type "reference
8496       // to object", we don't get an EK_Temporary entity, but instead an
8497       // EK_Parameter entity with reference type.
8498       // FIXME: This is a hack. What we really should do is create a user
8499       // conversion step for this case, but this makes it considerably more
8500       // complicated. For now, this will do.
8501       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
8502                                         Entity.getType().getNonReferenceType());
8503       bool UseTemporary = Entity.getType()->isReferenceType();
8504       assert(Args.size() == 1 && "expected a single argument for list init");
8505       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8506       S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
8507         << InitList->getSourceRange();
8508       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
8509       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
8510                                                                    Entity,
8511                                                  Kind, Arg, *Step,
8512                                                ConstructorInitRequiresZeroInit,
8513                                                /*IsListInitialization*/true,
8514                                                /*IsStdInitListInit*/false,
8515                                                InitList->getLBraceLoc(),
8516                                                InitList->getRBraceLoc());
8517       break;
8518     }
8519 
8520     case SK_UnwrapInitList:
8521       CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
8522       break;
8523 
8524     case SK_RewrapInitList: {
8525       Expr *E = CurInit.get();
8526       InitListExpr *Syntactic = Step->WrappingSyntacticList;
8527       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
8528           Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
8529       ILE->setSyntacticForm(Syntactic);
8530       ILE->setType(E->getType());
8531       ILE->setValueKind(E->getValueKind());
8532       CurInit = ILE;
8533       break;
8534     }
8535 
8536     case SK_ConstructorInitialization:
8537     case SK_StdInitializerListConstructorCall: {
8538       if (checkAbstractType(Step->Type))
8539         return ExprError();
8540 
8541       // When an initializer list is passed for a parameter of type "reference
8542       // to object", we don't get an EK_Temporary entity, but instead an
8543       // EK_Parameter entity with reference type.
8544       // FIXME: This is a hack. What we really should do is create a user
8545       // conversion step for this case, but this makes it considerably more
8546       // complicated. For now, this will do.
8547       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
8548                                         Entity.getType().getNonReferenceType());
8549       bool UseTemporary = Entity.getType()->isReferenceType();
8550       bool IsStdInitListInit =
8551           Step->Kind == SK_StdInitializerListConstructorCall;
8552       Expr *Source = CurInit.get();
8553       SourceRange Range = Kind.hasParenOrBraceRange()
8554                               ? Kind.getParenOrBraceRange()
8555                               : SourceRange();
8556       CurInit = PerformConstructorInitialization(
8557           S, UseTemporary ? TempEntity : Entity, Kind,
8558           Source ? MultiExprArg(Source) : Args, *Step,
8559           ConstructorInitRequiresZeroInit,
8560           /*IsListInitialization*/ IsStdInitListInit,
8561           /*IsStdInitListInitialization*/ IsStdInitListInit,
8562           /*LBraceLoc*/ Range.getBegin(),
8563           /*RBraceLoc*/ Range.getEnd());
8564       break;
8565     }
8566 
8567     case SK_ZeroInitialization: {
8568       step_iterator NextStep = Step;
8569       ++NextStep;
8570       if (NextStep != StepEnd &&
8571           (NextStep->Kind == SK_ConstructorInitialization ||
8572            NextStep->Kind == SK_ConstructorInitializationFromList)) {
8573         // The need for zero-initialization is recorded directly into
8574         // the call to the object's constructor within the next step.
8575         ConstructorInitRequiresZeroInit = true;
8576       } else if (Kind.getKind() == InitializationKind::IK_Value &&
8577                  S.getLangOpts().CPlusPlus &&
8578                  !Kind.isImplicitValueInit()) {
8579         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
8580         if (!TSInfo)
8581           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
8582                                                     Kind.getRange().getBegin());
8583 
8584         CurInit = new (S.Context) CXXScalarValueInitExpr(
8585             Entity.getType().getNonLValueExprType(S.Context), TSInfo,
8586             Kind.getRange().getEnd());
8587       } else {
8588         CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
8589       }
8590       break;
8591     }
8592 
8593     case SK_CAssignment: {
8594       QualType SourceType = CurInit.get()->getType();
8595 
8596       // Save off the initial CurInit in case we need to emit a diagnostic
8597       ExprResult InitialCurInit = CurInit;
8598       ExprResult Result = CurInit;
8599       Sema::AssignConvertType ConvTy =
8600         S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
8601             Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
8602       if (Result.isInvalid())
8603         return ExprError();
8604       CurInit = Result;
8605 
8606       // If this is a call, allow conversion to a transparent union.
8607       ExprResult CurInitExprRes = CurInit;
8608       if (ConvTy != Sema::Compatible &&
8609           Entity.isParameterKind() &&
8610           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
8611             == Sema::Compatible)
8612         ConvTy = Sema::Compatible;
8613       if (CurInitExprRes.isInvalid())
8614         return ExprError();
8615       CurInit = CurInitExprRes;
8616 
8617       bool Complained;
8618       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
8619                                      Step->Type, SourceType,
8620                                      InitialCurInit.get(),
8621                                      getAssignmentAction(Entity, true),
8622                                      &Complained)) {
8623         PrintInitLocationNote(S, Entity);
8624         return ExprError();
8625       } else if (Complained)
8626         PrintInitLocationNote(S, Entity);
8627       break;
8628     }
8629 
8630     case SK_StringInit: {
8631       QualType Ty = Step->Type;
8632       bool UpdateType = ResultType && Entity.getType()->isIncompleteArrayType();
8633       CheckStringInit(CurInit.get(), UpdateType ? *ResultType : Ty,
8634                       S.Context.getAsArrayType(Ty), S);
8635       break;
8636     }
8637 
8638     case SK_ObjCObjectConversion:
8639       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8640                           CK_ObjCObjectLValueCast,
8641                           CurInit.get()->getValueKind());
8642       break;
8643 
8644     case SK_ArrayLoopIndex: {
8645       Expr *Cur = CurInit.get();
8646       Expr *BaseExpr = new (S.Context)
8647           OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(),
8648                           Cur->getValueKind(), Cur->getObjectKind(), Cur);
8649       Expr *IndexExpr =
8650           new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType());
8651       CurInit = S.CreateBuiltinArraySubscriptExpr(
8652           BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation());
8653       ArrayLoopCommonExprs.push_back(BaseExpr);
8654       break;
8655     }
8656 
8657     case SK_ArrayLoopInit: {
8658       assert(!ArrayLoopCommonExprs.empty() &&
8659              "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit");
8660       Expr *Common = ArrayLoopCommonExprs.pop_back_val();
8661       CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common,
8662                                                   CurInit.get());
8663       break;
8664     }
8665 
8666     case SK_GNUArrayInit:
8667       // Okay: we checked everything before creating this step. Note that
8668       // this is a GNU extension.
8669       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
8670         << Step->Type << CurInit.get()->getType()
8671         << CurInit.get()->getSourceRange();
8672       updateGNUCompoundLiteralRValue(CurInit.get());
8673       LLVM_FALLTHROUGH;
8674     case SK_ArrayInit:
8675       // If the destination type is an incomplete array type, update the
8676       // type accordingly.
8677       if (ResultType) {
8678         if (const IncompleteArrayType *IncompleteDest
8679                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
8680           if (const ConstantArrayType *ConstantSource
8681                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
8682             *ResultType = S.Context.getConstantArrayType(
8683                                              IncompleteDest->getElementType(),
8684                                              ConstantSource->getSize(),
8685                                              ConstantSource->getSizeExpr(),
8686                                              ArrayType::Normal, 0);
8687           }
8688         }
8689       }
8690       break;
8691 
8692     case SK_ParenthesizedArrayInit:
8693       // Okay: we checked everything before creating this step. Note that
8694       // this is a GNU extension.
8695       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
8696         << CurInit.get()->getSourceRange();
8697       break;
8698 
8699     case SK_PassByIndirectCopyRestore:
8700     case SK_PassByIndirectRestore:
8701       checkIndirectCopyRestoreSource(S, CurInit.get());
8702       CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
8703           CurInit.get(), Step->Type,
8704           Step->Kind == SK_PassByIndirectCopyRestore);
8705       break;
8706 
8707     case SK_ProduceObjCObject:
8708       CurInit = ImplicitCastExpr::Create(
8709           S.Context, Step->Type, CK_ARCProduceObject, CurInit.get(), nullptr,
8710           VK_PRValue, FPOptionsOverride());
8711       break;
8712 
8713     case SK_StdInitializerList: {
8714       S.Diag(CurInit.get()->getExprLoc(),
8715              diag::warn_cxx98_compat_initializer_list_init)
8716         << CurInit.get()->getSourceRange();
8717 
8718       // Materialize the temporary into memory.
8719       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8720           CurInit.get()->getType(), CurInit.get(),
8721           /*BoundToLvalueReference=*/false);
8722 
8723       // Wrap it in a construction of a std::initializer_list<T>.
8724       CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
8725 
8726       // Bind the result, in case the library has given initializer_list a
8727       // non-trivial destructor.
8728       if (shouldBindAsTemporary(Entity))
8729         CurInit = S.MaybeBindToTemporary(CurInit.get());
8730       break;
8731     }
8732 
8733     case SK_OCLSamplerInit: {
8734       // Sampler initialization have 5 cases:
8735       //   1. function argument passing
8736       //      1a. argument is a file-scope variable
8737       //      1b. argument is a function-scope variable
8738       //      1c. argument is one of caller function's parameters
8739       //   2. variable initialization
8740       //      2a. initializing a file-scope variable
8741       //      2b. initializing a function-scope variable
8742       //
8743       // For file-scope variables, since they cannot be initialized by function
8744       // call of __translate_sampler_initializer in LLVM IR, their references
8745       // need to be replaced by a cast from their literal initializers to
8746       // sampler type. Since sampler variables can only be used in function
8747       // calls as arguments, we only need to replace them when handling the
8748       // argument passing.
8749       assert(Step->Type->isSamplerT() &&
8750              "Sampler initialization on non-sampler type.");
8751       Expr *Init = CurInit.get()->IgnoreParens();
8752       QualType SourceType = Init->getType();
8753       // Case 1
8754       if (Entity.isParameterKind()) {
8755         if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) {
8756           S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
8757             << SourceType;
8758           break;
8759         } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) {
8760           auto Var = cast<VarDecl>(DRE->getDecl());
8761           // Case 1b and 1c
8762           // No cast from integer to sampler is needed.
8763           if (!Var->hasGlobalStorage()) {
8764             CurInit = ImplicitCastExpr::Create(
8765                 S.Context, Step->Type, CK_LValueToRValue, Init,
8766                 /*BasePath=*/nullptr, VK_PRValue, FPOptionsOverride());
8767             break;
8768           }
8769           // Case 1a
8770           // For function call with a file-scope sampler variable as argument,
8771           // get the integer literal.
8772           // Do not diagnose if the file-scope variable does not have initializer
8773           // since this has already been diagnosed when parsing the variable
8774           // declaration.
8775           if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit()))
8776             break;
8777           Init = cast<ImplicitCastExpr>(const_cast<Expr*>(
8778             Var->getInit()))->getSubExpr();
8779           SourceType = Init->getType();
8780         }
8781       } else {
8782         // Case 2
8783         // Check initializer is 32 bit integer constant.
8784         // If the initializer is taken from global variable, do not diagnose since
8785         // this has already been done when parsing the variable declaration.
8786         if (!Init->isConstantInitializer(S.Context, false))
8787           break;
8788 
8789         if (!SourceType->isIntegerType() ||
8790             32 != S.Context.getIntWidth(SourceType)) {
8791           S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer)
8792             << SourceType;
8793           break;
8794         }
8795 
8796         Expr::EvalResult EVResult;
8797         Init->EvaluateAsInt(EVResult, S.Context);
8798         llvm::APSInt Result = EVResult.Val.getInt();
8799         const uint64_t SamplerValue = Result.getLimitedValue();
8800         // 32-bit value of sampler's initializer is interpreted as
8801         // bit-field with the following structure:
8802         // |unspecified|Filter|Addressing Mode| Normalized Coords|
8803         // |31        6|5    4|3             1|                 0|
8804         // This structure corresponds to enum values of sampler properties
8805         // defined in SPIR spec v1.2 and also opencl-c.h
8806         unsigned AddressingMode  = (0x0E & SamplerValue) >> 1;
8807         unsigned FilterMode      = (0x30 & SamplerValue) >> 4;
8808         if (FilterMode != 1 && FilterMode != 2 &&
8809             !S.getOpenCLOptions().isAvailableOption(
8810                 "cl_intel_device_side_avc_motion_estimation", S.getLangOpts()))
8811           S.Diag(Kind.getLocation(),
8812                  diag::warn_sampler_initializer_invalid_bits)
8813                  << "Filter Mode";
8814         if (AddressingMode > 4)
8815           S.Diag(Kind.getLocation(),
8816                  diag::warn_sampler_initializer_invalid_bits)
8817                  << "Addressing Mode";
8818       }
8819 
8820       // Cases 1a, 2a and 2b
8821       // Insert cast from integer to sampler.
8822       CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy,
8823                                       CK_IntToOCLSampler);
8824       break;
8825     }
8826     case SK_OCLZeroOpaqueType: {
8827       assert((Step->Type->isEventT() || Step->Type->isQueueT() ||
8828               Step->Type->isOCLIntelSubgroupAVCType()) &&
8829              "Wrong type for initialization of OpenCL opaque type.");
8830 
8831       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8832                                     CK_ZeroToOCLOpaqueType,
8833                                     CurInit.get()->getValueKind());
8834       break;
8835     }
8836     }
8837   }
8838 
8839   // Check whether the initializer has a shorter lifetime than the initialized
8840   // entity, and if not, either lifetime-extend or warn as appropriate.
8841   if (auto *Init = CurInit.get())
8842     S.checkInitializerLifetime(Entity, Init);
8843 
8844   // Diagnose non-fatal problems with the completed initialization.
8845   if (Entity.getKind() == InitializedEntity::EK_Member &&
8846       cast<FieldDecl>(Entity.getDecl())->isBitField())
8847     S.CheckBitFieldInitialization(Kind.getLocation(),
8848                                   cast<FieldDecl>(Entity.getDecl()),
8849                                   CurInit.get());
8850 
8851   // Check for std::move on construction.
8852   if (const Expr *E = CurInit.get()) {
8853     CheckMoveOnConstruction(S, E,
8854                             Entity.getKind() == InitializedEntity::EK_Result);
8855   }
8856 
8857   return CurInit;
8858 }
8859 
8860 /// Somewhere within T there is an uninitialized reference subobject.
8861 /// Dig it out and diagnose it.
8862 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
8863                                            QualType T) {
8864   if (T->isReferenceType()) {
8865     S.Diag(Loc, diag::err_reference_without_init)
8866       << T.getNonReferenceType();
8867     return true;
8868   }
8869 
8870   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
8871   if (!RD || !RD->hasUninitializedReferenceMember())
8872     return false;
8873 
8874   for (const auto *FI : RD->fields()) {
8875     if (FI->isUnnamedBitfield())
8876       continue;
8877 
8878     if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
8879       S.Diag(Loc, diag::note_value_initialization_here) << RD;
8880       return true;
8881     }
8882   }
8883 
8884   for (const auto &BI : RD->bases()) {
8885     if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) {
8886       S.Diag(Loc, diag::note_value_initialization_here) << RD;
8887       return true;
8888     }
8889   }
8890 
8891   return false;
8892 }
8893 
8894 
8895 //===----------------------------------------------------------------------===//
8896 // Diagnose initialization failures
8897 //===----------------------------------------------------------------------===//
8898 
8899 /// Emit notes associated with an initialization that failed due to a
8900 /// "simple" conversion failure.
8901 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
8902                                    Expr *op) {
8903   QualType destType = entity.getType();
8904   if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
8905       op->getType()->isObjCObjectPointerType()) {
8906 
8907     // Emit a possible note about the conversion failing because the
8908     // operand is a message send with a related result type.
8909     S.EmitRelatedResultTypeNote(op);
8910 
8911     // Emit a possible note about a return failing because we're
8912     // expecting a related result type.
8913     if (entity.getKind() == InitializedEntity::EK_Result)
8914       S.EmitRelatedResultTypeNoteForReturn(destType);
8915   }
8916   QualType fromType = op->getType();
8917   QualType fromPointeeType = fromType.getCanonicalType()->getPointeeType();
8918   QualType destPointeeType = destType.getCanonicalType()->getPointeeType();
8919   auto *fromDecl = fromType->getPointeeCXXRecordDecl();
8920   auto *destDecl = destType->getPointeeCXXRecordDecl();
8921   if (fromDecl && destDecl && fromDecl->getDeclKind() == Decl::CXXRecord &&
8922       destDecl->getDeclKind() == Decl::CXXRecord &&
8923       !fromDecl->isInvalidDecl() && !destDecl->isInvalidDecl() &&
8924       !fromDecl->hasDefinition() &&
8925       destPointeeType.getQualifiers().compatiblyIncludes(
8926           fromPointeeType.getQualifiers()))
8927     S.Diag(fromDecl->getLocation(), diag::note_forward_class_conversion)
8928         << S.getASTContext().getTagDeclType(fromDecl)
8929         << S.getASTContext().getTagDeclType(destDecl);
8930 }
8931 
8932 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
8933                              InitListExpr *InitList) {
8934   QualType DestType = Entity.getType();
8935 
8936   QualType E;
8937   if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
8938     QualType ArrayType = S.Context.getConstantArrayType(
8939         E.withConst(),
8940         llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
8941                     InitList->getNumInits()),
8942         nullptr, clang::ArrayType::Normal, 0);
8943     InitializedEntity HiddenArray =
8944         InitializedEntity::InitializeTemporary(ArrayType);
8945     return diagnoseListInit(S, HiddenArray, InitList);
8946   }
8947 
8948   if (DestType->isReferenceType()) {
8949     // A list-initialization failure for a reference means that we tried to
8950     // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
8951     // inner initialization failed.
8952     QualType T = DestType->castAs<ReferenceType>()->getPointeeType();
8953     diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
8954     SourceLocation Loc = InitList->getBeginLoc();
8955     if (auto *D = Entity.getDecl())
8956       Loc = D->getLocation();
8957     S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
8958     return;
8959   }
8960 
8961   InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
8962                                    /*VerifyOnly=*/false,
8963                                    /*TreatUnavailableAsInvalid=*/false);
8964   assert(DiagnoseInitList.HadError() &&
8965          "Inconsistent init list check result.");
8966 }
8967 
8968 bool InitializationSequence::Diagnose(Sema &S,
8969                                       const InitializedEntity &Entity,
8970                                       const InitializationKind &Kind,
8971                                       ArrayRef<Expr *> Args) {
8972   if (!Failed())
8973     return false;
8974 
8975   // When we want to diagnose only one element of a braced-init-list,
8976   // we need to factor it out.
8977   Expr *OnlyArg;
8978   if (Args.size() == 1) {
8979     auto *List = dyn_cast<InitListExpr>(Args[0]);
8980     if (List && List->getNumInits() == 1)
8981       OnlyArg = List->getInit(0);
8982     else
8983       OnlyArg = Args[0];
8984   }
8985   else
8986     OnlyArg = nullptr;
8987 
8988   QualType DestType = Entity.getType();
8989   switch (Failure) {
8990   case FK_TooManyInitsForReference:
8991     // FIXME: Customize for the initialized entity?
8992     if (Args.empty()) {
8993       // Dig out the reference subobject which is uninitialized and diagnose it.
8994       // If this is value-initialization, this could be nested some way within
8995       // the target type.
8996       assert(Kind.getKind() == InitializationKind::IK_Value ||
8997              DestType->isReferenceType());
8998       bool Diagnosed =
8999         DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
9000       assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
9001       (void)Diagnosed;
9002     } else  // FIXME: diagnostic below could be better!
9003       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
9004           << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
9005     break;
9006   case FK_ParenthesizedListInitForReference:
9007     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
9008       << 1 << Entity.getType() << Args[0]->getSourceRange();
9009     break;
9010 
9011   case FK_ArrayNeedsInitList:
9012     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
9013     break;
9014   case FK_ArrayNeedsInitListOrStringLiteral:
9015     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
9016     break;
9017   case FK_ArrayNeedsInitListOrWideStringLiteral:
9018     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
9019     break;
9020   case FK_NarrowStringIntoWideCharArray:
9021     S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
9022     break;
9023   case FK_WideStringIntoCharArray:
9024     S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
9025     break;
9026   case FK_IncompatWideStringIntoWideChar:
9027     S.Diag(Kind.getLocation(),
9028            diag::err_array_init_incompat_wide_string_into_wchar);
9029     break;
9030   case FK_PlainStringIntoUTF8Char:
9031     S.Diag(Kind.getLocation(),
9032            diag::err_array_init_plain_string_into_char8_t);
9033     S.Diag(Args.front()->getBeginLoc(),
9034            diag::note_array_init_plain_string_into_char8_t)
9035         << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8");
9036     break;
9037   case FK_UTF8StringIntoPlainChar:
9038     S.Diag(Kind.getLocation(),
9039            diag::err_array_init_utf8_string_into_char)
9040       << S.getLangOpts().CPlusPlus20;
9041     break;
9042   case FK_ArrayTypeMismatch:
9043   case FK_NonConstantArrayInit:
9044     S.Diag(Kind.getLocation(),
9045            (Failure == FK_ArrayTypeMismatch
9046               ? diag::err_array_init_different_type
9047               : diag::err_array_init_non_constant_array))
9048       << DestType.getNonReferenceType()
9049       << OnlyArg->getType()
9050       << Args[0]->getSourceRange();
9051     break;
9052 
9053   case FK_VariableLengthArrayHasInitializer:
9054     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
9055       << Args[0]->getSourceRange();
9056     break;
9057 
9058   case FK_AddressOfOverloadFailed: {
9059     DeclAccessPair Found;
9060     S.ResolveAddressOfOverloadedFunction(OnlyArg,
9061                                          DestType.getNonReferenceType(),
9062                                          true,
9063                                          Found);
9064     break;
9065   }
9066 
9067   case FK_AddressOfUnaddressableFunction: {
9068     auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl());
9069     S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
9070                                         OnlyArg->getBeginLoc());
9071     break;
9072   }
9073 
9074   case FK_ReferenceInitOverloadFailed:
9075   case FK_UserConversionOverloadFailed:
9076     switch (FailedOverloadResult) {
9077     case OR_Ambiguous:
9078 
9079       FailedCandidateSet.NoteCandidates(
9080           PartialDiagnosticAt(
9081               Kind.getLocation(),
9082               Failure == FK_UserConversionOverloadFailed
9083                   ? (S.PDiag(diag::err_typecheck_ambiguous_condition)
9084                      << OnlyArg->getType() << DestType
9085                      << Args[0]->getSourceRange())
9086                   : (S.PDiag(diag::err_ref_init_ambiguous)
9087                      << DestType << OnlyArg->getType()
9088                      << Args[0]->getSourceRange())),
9089           S, OCD_AmbiguousCandidates, Args);
9090       break;
9091 
9092     case OR_No_Viable_Function: {
9093       auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args);
9094       if (!S.RequireCompleteType(Kind.getLocation(),
9095                                  DestType.getNonReferenceType(),
9096                           diag::err_typecheck_nonviable_condition_incomplete,
9097                                OnlyArg->getType(), Args[0]->getSourceRange()))
9098         S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
9099           << (Entity.getKind() == InitializedEntity::EK_Result)
9100           << OnlyArg->getType() << Args[0]->getSourceRange()
9101           << DestType.getNonReferenceType();
9102 
9103       FailedCandidateSet.NoteCandidates(S, Args, Cands);
9104       break;
9105     }
9106     case OR_Deleted: {
9107       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
9108         << OnlyArg->getType() << DestType.getNonReferenceType()
9109         << Args[0]->getSourceRange();
9110       OverloadCandidateSet::iterator Best;
9111       OverloadingResult Ovl
9112         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9113       if (Ovl == OR_Deleted) {
9114         S.NoteDeletedFunction(Best->Function);
9115       } else {
9116         llvm_unreachable("Inconsistent overload resolution?");
9117       }
9118       break;
9119     }
9120 
9121     case OR_Success:
9122       llvm_unreachable("Conversion did not fail!");
9123     }
9124     break;
9125 
9126   case FK_NonConstLValueReferenceBindingToTemporary:
9127     if (isa<InitListExpr>(Args[0])) {
9128       S.Diag(Kind.getLocation(),
9129              diag::err_lvalue_reference_bind_to_initlist)
9130       << DestType.getNonReferenceType().isVolatileQualified()
9131       << DestType.getNonReferenceType()
9132       << Args[0]->getSourceRange();
9133       break;
9134     }
9135     LLVM_FALLTHROUGH;
9136 
9137   case FK_NonConstLValueReferenceBindingToUnrelated:
9138     S.Diag(Kind.getLocation(),
9139            Failure == FK_NonConstLValueReferenceBindingToTemporary
9140              ? diag::err_lvalue_reference_bind_to_temporary
9141              : diag::err_lvalue_reference_bind_to_unrelated)
9142       << DestType.getNonReferenceType().isVolatileQualified()
9143       << DestType.getNonReferenceType()
9144       << OnlyArg->getType()
9145       << Args[0]->getSourceRange();
9146     break;
9147 
9148   case FK_NonConstLValueReferenceBindingToBitfield: {
9149     // We don't necessarily have an unambiguous source bit-field.
9150     FieldDecl *BitField = Args[0]->getSourceBitField();
9151     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
9152       << DestType.isVolatileQualified()
9153       << (BitField ? BitField->getDeclName() : DeclarationName())
9154       << (BitField != nullptr)
9155       << Args[0]->getSourceRange();
9156     if (BitField)
9157       S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
9158     break;
9159   }
9160 
9161   case FK_NonConstLValueReferenceBindingToVectorElement:
9162     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
9163       << DestType.isVolatileQualified()
9164       << Args[0]->getSourceRange();
9165     break;
9166 
9167   case FK_NonConstLValueReferenceBindingToMatrixElement:
9168     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_matrix_element)
9169         << DestType.isVolatileQualified() << Args[0]->getSourceRange();
9170     break;
9171 
9172   case FK_RValueReferenceBindingToLValue:
9173     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
9174       << DestType.getNonReferenceType() << OnlyArg->getType()
9175       << Args[0]->getSourceRange();
9176     break;
9177 
9178   case FK_ReferenceAddrspaceMismatchTemporary:
9179     S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace)
9180         << DestType << Args[0]->getSourceRange();
9181     break;
9182 
9183   case FK_ReferenceInitDropsQualifiers: {
9184     QualType SourceType = OnlyArg->getType();
9185     QualType NonRefType = DestType.getNonReferenceType();
9186     Qualifiers DroppedQualifiers =
9187         SourceType.getQualifiers() - NonRefType.getQualifiers();
9188 
9189     if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf(
9190             SourceType.getQualifiers()))
9191       S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
9192           << NonRefType << SourceType << 1 /*addr space*/
9193           << Args[0]->getSourceRange();
9194     else if (DroppedQualifiers.hasQualifiers())
9195       S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
9196           << NonRefType << SourceType << 0 /*cv quals*/
9197           << Qualifiers::fromCVRMask(DroppedQualifiers.getCVRQualifiers())
9198           << DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange();
9199     else
9200       // FIXME: Consider decomposing the type and explaining which qualifiers
9201       // were dropped where, or on which level a 'const' is missing, etc.
9202       S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
9203           << NonRefType << SourceType << 2 /*incompatible quals*/
9204           << Args[0]->getSourceRange();
9205     break;
9206   }
9207 
9208   case FK_ReferenceInitFailed:
9209     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
9210       << DestType.getNonReferenceType()
9211       << DestType.getNonReferenceType()->isIncompleteType()
9212       << OnlyArg->isLValue()
9213       << OnlyArg->getType()
9214       << Args[0]->getSourceRange();
9215     emitBadConversionNotes(S, Entity, Args[0]);
9216     break;
9217 
9218   case FK_ConversionFailed: {
9219     QualType FromType = OnlyArg->getType();
9220     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
9221       << (int)Entity.getKind()
9222       << DestType
9223       << OnlyArg->isLValue()
9224       << FromType
9225       << Args[0]->getSourceRange();
9226     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
9227     S.Diag(Kind.getLocation(), PDiag);
9228     emitBadConversionNotes(S, Entity, Args[0]);
9229     break;
9230   }
9231 
9232   case FK_ConversionFromPropertyFailed:
9233     // No-op. This error has already been reported.
9234     break;
9235 
9236   case FK_TooManyInitsForScalar: {
9237     SourceRange R;
9238 
9239     auto *InitList = dyn_cast<InitListExpr>(Args[0]);
9240     if (InitList && InitList->getNumInits() >= 1) {
9241       R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc());
9242     } else {
9243       assert(Args.size() > 1 && "Expected multiple initializers!");
9244       R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc());
9245     }
9246 
9247     R.setBegin(S.getLocForEndOfToken(R.getBegin()));
9248     if (Kind.isCStyleOrFunctionalCast())
9249       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
9250         << R;
9251     else
9252       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
9253         << /*scalar=*/2 << R;
9254     break;
9255   }
9256 
9257   case FK_ParenthesizedListInitForScalar:
9258     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
9259       << 0 << Entity.getType() << Args[0]->getSourceRange();
9260     break;
9261 
9262   case FK_ReferenceBindingToInitList:
9263     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
9264       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
9265     break;
9266 
9267   case FK_InitListBadDestinationType:
9268     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
9269       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
9270     break;
9271 
9272   case FK_ListConstructorOverloadFailed:
9273   case FK_ConstructorOverloadFailed: {
9274     SourceRange ArgsRange;
9275     if (Args.size())
9276       ArgsRange =
9277           SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
9278 
9279     if (Failure == FK_ListConstructorOverloadFailed) {
9280       assert(Args.size() == 1 &&
9281              "List construction from other than 1 argument.");
9282       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
9283       Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
9284     }
9285 
9286     // FIXME: Using "DestType" for the entity we're printing is probably
9287     // bad.
9288     switch (FailedOverloadResult) {
9289       case OR_Ambiguous:
9290         FailedCandidateSet.NoteCandidates(
9291             PartialDiagnosticAt(Kind.getLocation(),
9292                                 S.PDiag(diag::err_ovl_ambiguous_init)
9293                                     << DestType << ArgsRange),
9294             S, OCD_AmbiguousCandidates, Args);
9295         break;
9296 
9297       case OR_No_Viable_Function:
9298         if (Kind.getKind() == InitializationKind::IK_Default &&
9299             (Entity.getKind() == InitializedEntity::EK_Base ||
9300              Entity.getKind() == InitializedEntity::EK_Member) &&
9301             isa<CXXConstructorDecl>(S.CurContext)) {
9302           // This is implicit default initialization of a member or
9303           // base within a constructor. If no viable function was
9304           // found, notify the user that they need to explicitly
9305           // initialize this base/member.
9306           CXXConstructorDecl *Constructor
9307             = cast<CXXConstructorDecl>(S.CurContext);
9308           const CXXRecordDecl *InheritedFrom = nullptr;
9309           if (auto Inherited = Constructor->getInheritedConstructor())
9310             InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass();
9311           if (Entity.getKind() == InitializedEntity::EK_Base) {
9312             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
9313               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
9314               << S.Context.getTypeDeclType(Constructor->getParent())
9315               << /*base=*/0
9316               << Entity.getType()
9317               << InheritedFrom;
9318 
9319             RecordDecl *BaseDecl
9320               = Entity.getBaseSpecifier()->getType()->castAs<RecordType>()
9321                                                                   ->getDecl();
9322             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
9323               << S.Context.getTagDeclType(BaseDecl);
9324           } else {
9325             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
9326               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
9327               << S.Context.getTypeDeclType(Constructor->getParent())
9328               << /*member=*/1
9329               << Entity.getName()
9330               << InheritedFrom;
9331             S.Diag(Entity.getDecl()->getLocation(),
9332                    diag::note_member_declared_at);
9333 
9334             if (const RecordType *Record
9335                                  = Entity.getType()->getAs<RecordType>())
9336               S.Diag(Record->getDecl()->getLocation(),
9337                      diag::note_previous_decl)
9338                 << S.Context.getTagDeclType(Record->getDecl());
9339           }
9340           break;
9341         }
9342 
9343         FailedCandidateSet.NoteCandidates(
9344             PartialDiagnosticAt(
9345                 Kind.getLocation(),
9346                 S.PDiag(diag::err_ovl_no_viable_function_in_init)
9347                     << DestType << ArgsRange),
9348             S, OCD_AllCandidates, Args);
9349         break;
9350 
9351       case OR_Deleted: {
9352         OverloadCandidateSet::iterator Best;
9353         OverloadingResult Ovl
9354           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9355         if (Ovl != OR_Deleted) {
9356           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
9357               << DestType << ArgsRange;
9358           llvm_unreachable("Inconsistent overload resolution?");
9359           break;
9360         }
9361 
9362         // If this is a defaulted or implicitly-declared function, then
9363         // it was implicitly deleted. Make it clear that the deletion was
9364         // implicit.
9365         if (S.isImplicitlyDeleted(Best->Function))
9366           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
9367             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
9368             << DestType << ArgsRange;
9369         else
9370           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
9371               << DestType << ArgsRange;
9372 
9373         S.NoteDeletedFunction(Best->Function);
9374         break;
9375       }
9376 
9377       case OR_Success:
9378         llvm_unreachable("Conversion did not fail!");
9379     }
9380   }
9381   break;
9382 
9383   case FK_DefaultInitOfConst:
9384     if (Entity.getKind() == InitializedEntity::EK_Member &&
9385         isa<CXXConstructorDecl>(S.CurContext)) {
9386       // This is implicit default-initialization of a const member in
9387       // a constructor. Complain that it needs to be explicitly
9388       // initialized.
9389       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
9390       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
9391         << (Constructor->getInheritedConstructor() ? 2 :
9392             Constructor->isImplicit() ? 1 : 0)
9393         << S.Context.getTypeDeclType(Constructor->getParent())
9394         << /*const=*/1
9395         << Entity.getName();
9396       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
9397         << Entity.getName();
9398     } else {
9399       S.Diag(Kind.getLocation(), diag::err_default_init_const)
9400           << DestType << (bool)DestType->getAs<RecordType>();
9401     }
9402     break;
9403 
9404   case FK_Incomplete:
9405     S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
9406                           diag::err_init_incomplete_type);
9407     break;
9408 
9409   case FK_ListInitializationFailed: {
9410     // Run the init list checker again to emit diagnostics.
9411     InitListExpr *InitList = cast<InitListExpr>(Args[0]);
9412     diagnoseListInit(S, Entity, InitList);
9413     break;
9414   }
9415 
9416   case FK_PlaceholderType: {
9417     // FIXME: Already diagnosed!
9418     break;
9419   }
9420 
9421   case FK_ExplicitConstructor: {
9422     S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
9423       << Args[0]->getSourceRange();
9424     OverloadCandidateSet::iterator Best;
9425     OverloadingResult Ovl
9426       = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9427     (void)Ovl;
9428     assert(Ovl == OR_Success && "Inconsistent overload resolution");
9429     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
9430     S.Diag(CtorDecl->getLocation(),
9431            diag::note_explicit_ctor_deduction_guide_here) << false;
9432     break;
9433   }
9434   }
9435 
9436   PrintInitLocationNote(S, Entity);
9437   return true;
9438 }
9439 
9440 void InitializationSequence::dump(raw_ostream &OS) const {
9441   switch (SequenceKind) {
9442   case FailedSequence: {
9443     OS << "Failed sequence: ";
9444     switch (Failure) {
9445     case FK_TooManyInitsForReference:
9446       OS << "too many initializers for reference";
9447       break;
9448 
9449     case FK_ParenthesizedListInitForReference:
9450       OS << "parenthesized list init for reference";
9451       break;
9452 
9453     case FK_ArrayNeedsInitList:
9454       OS << "array requires initializer list";
9455       break;
9456 
9457     case FK_AddressOfUnaddressableFunction:
9458       OS << "address of unaddressable function was taken";
9459       break;
9460 
9461     case FK_ArrayNeedsInitListOrStringLiteral:
9462       OS << "array requires initializer list or string literal";
9463       break;
9464 
9465     case FK_ArrayNeedsInitListOrWideStringLiteral:
9466       OS << "array requires initializer list or wide string literal";
9467       break;
9468 
9469     case FK_NarrowStringIntoWideCharArray:
9470       OS << "narrow string into wide char array";
9471       break;
9472 
9473     case FK_WideStringIntoCharArray:
9474       OS << "wide string into char array";
9475       break;
9476 
9477     case FK_IncompatWideStringIntoWideChar:
9478       OS << "incompatible wide string into wide char array";
9479       break;
9480 
9481     case FK_PlainStringIntoUTF8Char:
9482       OS << "plain string literal into char8_t array";
9483       break;
9484 
9485     case FK_UTF8StringIntoPlainChar:
9486       OS << "u8 string literal into char array";
9487       break;
9488 
9489     case FK_ArrayTypeMismatch:
9490       OS << "array type mismatch";
9491       break;
9492 
9493     case FK_NonConstantArrayInit:
9494       OS << "non-constant array initializer";
9495       break;
9496 
9497     case FK_AddressOfOverloadFailed:
9498       OS << "address of overloaded function failed";
9499       break;
9500 
9501     case FK_ReferenceInitOverloadFailed:
9502       OS << "overload resolution for reference initialization failed";
9503       break;
9504 
9505     case FK_NonConstLValueReferenceBindingToTemporary:
9506       OS << "non-const lvalue reference bound to temporary";
9507       break;
9508 
9509     case FK_NonConstLValueReferenceBindingToBitfield:
9510       OS << "non-const lvalue reference bound to bit-field";
9511       break;
9512 
9513     case FK_NonConstLValueReferenceBindingToVectorElement:
9514       OS << "non-const lvalue reference bound to vector element";
9515       break;
9516 
9517     case FK_NonConstLValueReferenceBindingToMatrixElement:
9518       OS << "non-const lvalue reference bound to matrix element";
9519       break;
9520 
9521     case FK_NonConstLValueReferenceBindingToUnrelated:
9522       OS << "non-const lvalue reference bound to unrelated type";
9523       break;
9524 
9525     case FK_RValueReferenceBindingToLValue:
9526       OS << "rvalue reference bound to an lvalue";
9527       break;
9528 
9529     case FK_ReferenceInitDropsQualifiers:
9530       OS << "reference initialization drops qualifiers";
9531       break;
9532 
9533     case FK_ReferenceAddrspaceMismatchTemporary:
9534       OS << "reference with mismatching address space bound to temporary";
9535       break;
9536 
9537     case FK_ReferenceInitFailed:
9538       OS << "reference initialization failed";
9539       break;
9540 
9541     case FK_ConversionFailed:
9542       OS << "conversion failed";
9543       break;
9544 
9545     case FK_ConversionFromPropertyFailed:
9546       OS << "conversion from property failed";
9547       break;
9548 
9549     case FK_TooManyInitsForScalar:
9550       OS << "too many initializers for scalar";
9551       break;
9552 
9553     case FK_ParenthesizedListInitForScalar:
9554       OS << "parenthesized list init for reference";
9555       break;
9556 
9557     case FK_ReferenceBindingToInitList:
9558       OS << "referencing binding to initializer list";
9559       break;
9560 
9561     case FK_InitListBadDestinationType:
9562       OS << "initializer list for non-aggregate, non-scalar type";
9563       break;
9564 
9565     case FK_UserConversionOverloadFailed:
9566       OS << "overloading failed for user-defined conversion";
9567       break;
9568 
9569     case FK_ConstructorOverloadFailed:
9570       OS << "constructor overloading failed";
9571       break;
9572 
9573     case FK_DefaultInitOfConst:
9574       OS << "default initialization of a const variable";
9575       break;
9576 
9577     case FK_Incomplete:
9578       OS << "initialization of incomplete type";
9579       break;
9580 
9581     case FK_ListInitializationFailed:
9582       OS << "list initialization checker failure";
9583       break;
9584 
9585     case FK_VariableLengthArrayHasInitializer:
9586       OS << "variable length array has an initializer";
9587       break;
9588 
9589     case FK_PlaceholderType:
9590       OS << "initializer expression isn't contextually valid";
9591       break;
9592 
9593     case FK_ListConstructorOverloadFailed:
9594       OS << "list constructor overloading failed";
9595       break;
9596 
9597     case FK_ExplicitConstructor:
9598       OS << "list copy initialization chose explicit constructor";
9599       break;
9600     }
9601     OS << '\n';
9602     return;
9603   }
9604 
9605   case DependentSequence:
9606     OS << "Dependent sequence\n";
9607     return;
9608 
9609   case NormalSequence:
9610     OS << "Normal sequence: ";
9611     break;
9612   }
9613 
9614   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
9615     if (S != step_begin()) {
9616       OS << " -> ";
9617     }
9618 
9619     switch (S->Kind) {
9620     case SK_ResolveAddressOfOverloadedFunction:
9621       OS << "resolve address of overloaded function";
9622       break;
9623 
9624     case SK_CastDerivedToBasePRValue:
9625       OS << "derived-to-base (prvalue)";
9626       break;
9627 
9628     case SK_CastDerivedToBaseXValue:
9629       OS << "derived-to-base (xvalue)";
9630       break;
9631 
9632     case SK_CastDerivedToBaseLValue:
9633       OS << "derived-to-base (lvalue)";
9634       break;
9635 
9636     case SK_BindReference:
9637       OS << "bind reference to lvalue";
9638       break;
9639 
9640     case SK_BindReferenceToTemporary:
9641       OS << "bind reference to a temporary";
9642       break;
9643 
9644     case SK_FinalCopy:
9645       OS << "final copy in class direct-initialization";
9646       break;
9647 
9648     case SK_ExtraneousCopyToTemporary:
9649       OS << "extraneous C++03 copy to temporary";
9650       break;
9651 
9652     case SK_UserConversion:
9653       OS << "user-defined conversion via " << *S->Function.Function;
9654       break;
9655 
9656     case SK_QualificationConversionPRValue:
9657       OS << "qualification conversion (prvalue)";
9658       break;
9659 
9660     case SK_QualificationConversionXValue:
9661       OS << "qualification conversion (xvalue)";
9662       break;
9663 
9664     case SK_QualificationConversionLValue:
9665       OS << "qualification conversion (lvalue)";
9666       break;
9667 
9668     case SK_FunctionReferenceConversion:
9669       OS << "function reference conversion";
9670       break;
9671 
9672     case SK_AtomicConversion:
9673       OS << "non-atomic-to-atomic conversion";
9674       break;
9675 
9676     case SK_ConversionSequence:
9677       OS << "implicit conversion sequence (";
9678       S->ICS->dump(); // FIXME: use OS
9679       OS << ")";
9680       break;
9681 
9682     case SK_ConversionSequenceNoNarrowing:
9683       OS << "implicit conversion sequence with narrowing prohibited (";
9684       S->ICS->dump(); // FIXME: use OS
9685       OS << ")";
9686       break;
9687 
9688     case SK_ListInitialization:
9689       OS << "list aggregate initialization";
9690       break;
9691 
9692     case SK_UnwrapInitList:
9693       OS << "unwrap reference initializer list";
9694       break;
9695 
9696     case SK_RewrapInitList:
9697       OS << "rewrap reference initializer list";
9698       break;
9699 
9700     case SK_ConstructorInitialization:
9701       OS << "constructor initialization";
9702       break;
9703 
9704     case SK_ConstructorInitializationFromList:
9705       OS << "list initialization via constructor";
9706       break;
9707 
9708     case SK_ZeroInitialization:
9709       OS << "zero initialization";
9710       break;
9711 
9712     case SK_CAssignment:
9713       OS << "C assignment";
9714       break;
9715 
9716     case SK_StringInit:
9717       OS << "string initialization";
9718       break;
9719 
9720     case SK_ObjCObjectConversion:
9721       OS << "Objective-C object conversion";
9722       break;
9723 
9724     case SK_ArrayLoopIndex:
9725       OS << "indexing for array initialization loop";
9726       break;
9727 
9728     case SK_ArrayLoopInit:
9729       OS << "array initialization loop";
9730       break;
9731 
9732     case SK_ArrayInit:
9733       OS << "array initialization";
9734       break;
9735 
9736     case SK_GNUArrayInit:
9737       OS << "array initialization (GNU extension)";
9738       break;
9739 
9740     case SK_ParenthesizedArrayInit:
9741       OS << "parenthesized array initialization";
9742       break;
9743 
9744     case SK_PassByIndirectCopyRestore:
9745       OS << "pass by indirect copy and restore";
9746       break;
9747 
9748     case SK_PassByIndirectRestore:
9749       OS << "pass by indirect restore";
9750       break;
9751 
9752     case SK_ProduceObjCObject:
9753       OS << "Objective-C object retension";
9754       break;
9755 
9756     case SK_StdInitializerList:
9757       OS << "std::initializer_list from initializer list";
9758       break;
9759 
9760     case SK_StdInitializerListConstructorCall:
9761       OS << "list initialization from std::initializer_list";
9762       break;
9763 
9764     case SK_OCLSamplerInit:
9765       OS << "OpenCL sampler_t from integer constant";
9766       break;
9767 
9768     case SK_OCLZeroOpaqueType:
9769       OS << "OpenCL opaque type from zero";
9770       break;
9771     }
9772 
9773     OS << " [" << S->Type.getAsString() << ']';
9774   }
9775 
9776   OS << '\n';
9777 }
9778 
9779 void InitializationSequence::dump() const {
9780   dump(llvm::errs());
9781 }
9782 
9783 static bool NarrowingErrs(const LangOptions &L) {
9784   return L.CPlusPlus11 &&
9785          (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015));
9786 }
9787 
9788 static void DiagnoseNarrowingInInitList(Sema &S,
9789                                         const ImplicitConversionSequence &ICS,
9790                                         QualType PreNarrowingType,
9791                                         QualType EntityType,
9792                                         const Expr *PostInit) {
9793   const StandardConversionSequence *SCS = nullptr;
9794   switch (ICS.getKind()) {
9795   case ImplicitConversionSequence::StandardConversion:
9796     SCS = &ICS.Standard;
9797     break;
9798   case ImplicitConversionSequence::UserDefinedConversion:
9799     SCS = &ICS.UserDefined.After;
9800     break;
9801   case ImplicitConversionSequence::AmbiguousConversion:
9802   case ImplicitConversionSequence::EllipsisConversion:
9803   case ImplicitConversionSequence::BadConversion:
9804     return;
9805   }
9806 
9807   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
9808   APValue ConstantValue;
9809   QualType ConstantType;
9810   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
9811                                 ConstantType)) {
9812   case NK_Not_Narrowing:
9813   case NK_Dependent_Narrowing:
9814     // No narrowing occurred.
9815     return;
9816 
9817   case NK_Type_Narrowing:
9818     // This was a floating-to-integer conversion, which is always considered a
9819     // narrowing conversion even if the value is a constant and can be
9820     // represented exactly as an integer.
9821     S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts())
9822                                         ? diag::ext_init_list_type_narrowing
9823                                         : diag::warn_init_list_type_narrowing)
9824         << PostInit->getSourceRange()
9825         << PreNarrowingType.getLocalUnqualifiedType()
9826         << EntityType.getLocalUnqualifiedType();
9827     break;
9828 
9829   case NK_Constant_Narrowing:
9830     // A constant value was narrowed.
9831     S.Diag(PostInit->getBeginLoc(),
9832            NarrowingErrs(S.getLangOpts())
9833                ? diag::ext_init_list_constant_narrowing
9834                : diag::warn_init_list_constant_narrowing)
9835         << PostInit->getSourceRange()
9836         << ConstantValue.getAsString(S.getASTContext(), ConstantType)
9837         << EntityType.getLocalUnqualifiedType();
9838     break;
9839 
9840   case NK_Variable_Narrowing:
9841     // A variable's value may have been narrowed.
9842     S.Diag(PostInit->getBeginLoc(),
9843            NarrowingErrs(S.getLangOpts())
9844                ? diag::ext_init_list_variable_narrowing
9845                : diag::warn_init_list_variable_narrowing)
9846         << PostInit->getSourceRange()
9847         << PreNarrowingType.getLocalUnqualifiedType()
9848         << EntityType.getLocalUnqualifiedType();
9849     break;
9850   }
9851 
9852   SmallString<128> StaticCast;
9853   llvm::raw_svector_ostream OS(StaticCast);
9854   OS << "static_cast<";
9855   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
9856     // It's important to use the typedef's name if there is one so that the
9857     // fixit doesn't break code using types like int64_t.
9858     //
9859     // FIXME: This will break if the typedef requires qualification.  But
9860     // getQualifiedNameAsString() includes non-machine-parsable components.
9861     OS << *TT->getDecl();
9862   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
9863     OS << BT->getName(S.getLangOpts());
9864   else {
9865     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
9866     // with a broken cast.
9867     return;
9868   }
9869   OS << ">(";
9870   S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence)
9871       << PostInit->getSourceRange()
9872       << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str())
9873       << FixItHint::CreateInsertion(
9874              S.getLocForEndOfToken(PostInit->getEndLoc()), ")");
9875 }
9876 
9877 //===----------------------------------------------------------------------===//
9878 // Initialization helper functions
9879 //===----------------------------------------------------------------------===//
9880 bool
9881 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
9882                                    ExprResult Init) {
9883   if (Init.isInvalid())
9884     return false;
9885 
9886   Expr *InitE = Init.get();
9887   assert(InitE && "No initialization expression");
9888 
9889   InitializationKind Kind =
9890       InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation());
9891   InitializationSequence Seq(*this, Entity, Kind, InitE);
9892   return !Seq.Failed();
9893 }
9894 
9895 ExprResult
9896 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
9897                                 SourceLocation EqualLoc,
9898                                 ExprResult Init,
9899                                 bool TopLevelOfInitList,
9900                                 bool AllowExplicit) {
9901   if (Init.isInvalid())
9902     return ExprError();
9903 
9904   Expr *InitE = Init.get();
9905   assert(InitE && "No initialization expression?");
9906 
9907   if (EqualLoc.isInvalid())
9908     EqualLoc = InitE->getBeginLoc();
9909 
9910   InitializationKind Kind = InitializationKind::CreateCopy(
9911       InitE->getBeginLoc(), EqualLoc, AllowExplicit);
9912   InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
9913 
9914   // Prevent infinite recursion when performing parameter copy-initialization.
9915   const bool ShouldTrackCopy =
9916       Entity.isParameterKind() && Seq.isConstructorInitialization();
9917   if (ShouldTrackCopy) {
9918     if (llvm::is_contained(CurrentParameterCopyTypes, Entity.getType())) {
9919       Seq.SetOverloadFailure(
9920           InitializationSequence::FK_ConstructorOverloadFailed,
9921           OR_No_Viable_Function);
9922 
9923       // Try to give a meaningful diagnostic note for the problematic
9924       // constructor.
9925       const auto LastStep = Seq.step_end() - 1;
9926       assert(LastStep->Kind ==
9927              InitializationSequence::SK_ConstructorInitialization);
9928       const FunctionDecl *Function = LastStep->Function.Function;
9929       auto Candidate =
9930           llvm::find_if(Seq.getFailedCandidateSet(),
9931                         [Function](const OverloadCandidate &Candidate) -> bool {
9932                           return Candidate.Viable &&
9933                                  Candidate.Function == Function &&
9934                                  Candidate.Conversions.size() > 0;
9935                         });
9936       if (Candidate != Seq.getFailedCandidateSet().end() &&
9937           Function->getNumParams() > 0) {
9938         Candidate->Viable = false;
9939         Candidate->FailureKind = ovl_fail_bad_conversion;
9940         Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion,
9941                                          InitE,
9942                                          Function->getParamDecl(0)->getType());
9943       }
9944     }
9945     CurrentParameterCopyTypes.push_back(Entity.getType());
9946   }
9947 
9948   ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
9949 
9950   if (ShouldTrackCopy)
9951     CurrentParameterCopyTypes.pop_back();
9952 
9953   return Result;
9954 }
9955 
9956 /// Determine whether RD is, or is derived from, a specialization of CTD.
9957 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD,
9958                                               ClassTemplateDecl *CTD) {
9959   auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) {
9960     auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate);
9961     return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD);
9962   };
9963   return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization));
9964 }
9965 
9966 QualType Sema::DeduceTemplateSpecializationFromInitializer(
9967     TypeSourceInfo *TSInfo, const InitializedEntity &Entity,
9968     const InitializationKind &Kind, MultiExprArg Inits) {
9969   auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>(
9970       TSInfo->getType()->getContainedDeducedType());
9971   assert(DeducedTST && "not a deduced template specialization type");
9972 
9973   auto TemplateName = DeducedTST->getTemplateName();
9974   if (TemplateName.isDependent())
9975     return SubstAutoTypeDependent(TSInfo->getType());
9976 
9977   // We can only perform deduction for class templates.
9978   auto *Template =
9979       dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl());
9980   if (!Template) {
9981     Diag(Kind.getLocation(),
9982          diag::err_deduced_non_class_template_specialization_type)
9983       << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName;
9984     if (auto *TD = TemplateName.getAsTemplateDecl())
9985       Diag(TD->getLocation(), diag::note_template_decl_here);
9986     return QualType();
9987   }
9988 
9989   // Can't deduce from dependent arguments.
9990   if (Expr::hasAnyTypeDependentArguments(Inits)) {
9991     Diag(TSInfo->getTypeLoc().getBeginLoc(),
9992          diag::warn_cxx14_compat_class_template_argument_deduction)
9993         << TSInfo->getTypeLoc().getSourceRange() << 0;
9994     return SubstAutoTypeDependent(TSInfo->getType());
9995   }
9996 
9997   // FIXME: Perform "exact type" matching first, per CWG discussion?
9998   //        Or implement this via an implied 'T(T) -> T' deduction guide?
9999 
10000   // FIXME: Do we need/want a std::initializer_list<T> special case?
10001 
10002   // Look up deduction guides, including those synthesized from constructors.
10003   //
10004   // C++1z [over.match.class.deduct]p1:
10005   //   A set of functions and function templates is formed comprising:
10006   //   - For each constructor of the class template designated by the
10007   //     template-name, a function template [...]
10008   //  - For each deduction-guide, a function or function template [...]
10009   DeclarationNameInfo NameInfo(
10010       Context.DeclarationNames.getCXXDeductionGuideName(Template),
10011       TSInfo->getTypeLoc().getEndLoc());
10012   LookupResult Guides(*this, NameInfo, LookupOrdinaryName);
10013   LookupQualifiedName(Guides, Template->getDeclContext());
10014 
10015   // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't
10016   // clear on this, but they're not found by name so access does not apply.
10017   Guides.suppressDiagnostics();
10018 
10019   // Figure out if this is list-initialization.
10020   InitListExpr *ListInit =
10021       (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct)
10022           ? dyn_cast<InitListExpr>(Inits[0])
10023           : nullptr;
10024 
10025   // C++1z [over.match.class.deduct]p1:
10026   //   Initialization and overload resolution are performed as described in
10027   //   [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list]
10028   //   (as appropriate for the type of initialization performed) for an object
10029   //   of a hypothetical class type, where the selected functions and function
10030   //   templates are considered to be the constructors of that class type
10031   //
10032   // Since we know we're initializing a class type of a type unrelated to that
10033   // of the initializer, this reduces to something fairly reasonable.
10034   OverloadCandidateSet Candidates(Kind.getLocation(),
10035                                   OverloadCandidateSet::CSK_Normal);
10036   OverloadCandidateSet::iterator Best;
10037 
10038   bool HasAnyDeductionGuide = false;
10039   bool AllowExplicit = !Kind.isCopyInit() || ListInit;
10040 
10041   auto tryToResolveOverload =
10042       [&](bool OnlyListConstructors) -> OverloadingResult {
10043     Candidates.clear(OverloadCandidateSet::CSK_Normal);
10044     HasAnyDeductionGuide = false;
10045 
10046     for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) {
10047       NamedDecl *D = (*I)->getUnderlyingDecl();
10048       if (D->isInvalidDecl())
10049         continue;
10050 
10051       auto *TD = dyn_cast<FunctionTemplateDecl>(D);
10052       auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>(
10053           TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D));
10054       if (!GD)
10055         continue;
10056 
10057       if (!GD->isImplicit())
10058         HasAnyDeductionGuide = true;
10059 
10060       // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class)
10061       //   For copy-initialization, the candidate functions are all the
10062       //   converting constructors (12.3.1) of that class.
10063       // C++ [over.match.copy]p1: (non-list copy-initialization from class)
10064       //   The converting constructors of T are candidate functions.
10065       if (!AllowExplicit) {
10066         // Overload resolution checks whether the deduction guide is declared
10067         // explicit for us.
10068 
10069         // When looking for a converting constructor, deduction guides that
10070         // could never be called with one argument are not interesting to
10071         // check or note.
10072         if (GD->getMinRequiredArguments() > 1 ||
10073             (GD->getNumParams() == 0 && !GD->isVariadic()))
10074           continue;
10075       }
10076 
10077       // C++ [over.match.list]p1.1: (first phase list initialization)
10078       //   Initially, the candidate functions are the initializer-list
10079       //   constructors of the class T
10080       if (OnlyListConstructors && !isInitListConstructor(GD))
10081         continue;
10082 
10083       // C++ [over.match.list]p1.2: (second phase list initialization)
10084       //   the candidate functions are all the constructors of the class T
10085       // C++ [over.match.ctor]p1: (all other cases)
10086       //   the candidate functions are all the constructors of the class of
10087       //   the object being initialized
10088 
10089       // C++ [over.best.ics]p4:
10090       //   When [...] the constructor [...] is a candidate by
10091       //    - [over.match.copy] (in all cases)
10092       // FIXME: The "second phase of [over.match.list] case can also
10093       // theoretically happen here, but it's not clear whether we can
10094       // ever have a parameter of the right type.
10095       bool SuppressUserConversions = Kind.isCopyInit();
10096 
10097       if (TD)
10098         AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr,
10099                                      Inits, Candidates, SuppressUserConversions,
10100                                      /*PartialOverloading*/ false,
10101                                      AllowExplicit);
10102       else
10103         AddOverloadCandidate(GD, I.getPair(), Inits, Candidates,
10104                              SuppressUserConversions,
10105                              /*PartialOverloading*/ false, AllowExplicit);
10106     }
10107     return Candidates.BestViableFunction(*this, Kind.getLocation(), Best);
10108   };
10109 
10110   OverloadingResult Result = OR_No_Viable_Function;
10111 
10112   // C++11 [over.match.list]p1, per DR1467: for list-initialization, first
10113   // try initializer-list constructors.
10114   if (ListInit) {
10115     bool TryListConstructors = true;
10116 
10117     // Try list constructors unless the list is empty and the class has one or
10118     // more default constructors, in which case those constructors win.
10119     if (!ListInit->getNumInits()) {
10120       for (NamedDecl *D : Guides) {
10121         auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl());
10122         if (FD && FD->getMinRequiredArguments() == 0) {
10123           TryListConstructors = false;
10124           break;
10125         }
10126       }
10127     } else if (ListInit->getNumInits() == 1) {
10128       // C++ [over.match.class.deduct]:
10129       //   As an exception, the first phase in [over.match.list] (considering
10130       //   initializer-list constructors) is omitted if the initializer list
10131       //   consists of a single expression of type cv U, where U is a
10132       //   specialization of C or a class derived from a specialization of C.
10133       Expr *E = ListInit->getInit(0);
10134       auto *RD = E->getType()->getAsCXXRecordDecl();
10135       if (!isa<InitListExpr>(E) && RD &&
10136           isCompleteType(Kind.getLocation(), E->getType()) &&
10137           isOrIsDerivedFromSpecializationOf(RD, Template))
10138         TryListConstructors = false;
10139     }
10140 
10141     if (TryListConstructors)
10142       Result = tryToResolveOverload(/*OnlyListConstructor*/true);
10143     // Then unwrap the initializer list and try again considering all
10144     // constructors.
10145     Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits());
10146   }
10147 
10148   // If list-initialization fails, or if we're doing any other kind of
10149   // initialization, we (eventually) consider constructors.
10150   if (Result == OR_No_Viable_Function)
10151     Result = tryToResolveOverload(/*OnlyListConstructor*/false);
10152 
10153   switch (Result) {
10154   case OR_Ambiguous:
10155     // FIXME: For list-initialization candidates, it'd usually be better to
10156     // list why they were not viable when given the initializer list itself as
10157     // an argument.
10158     Candidates.NoteCandidates(
10159         PartialDiagnosticAt(
10160             Kind.getLocation(),
10161             PDiag(diag::err_deduced_class_template_ctor_ambiguous)
10162                 << TemplateName),
10163         *this, OCD_AmbiguousCandidates, Inits);
10164     return QualType();
10165 
10166   case OR_No_Viable_Function: {
10167     CXXRecordDecl *Primary =
10168         cast<ClassTemplateDecl>(Template)->getTemplatedDecl();
10169     bool Complete =
10170         isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary));
10171     Candidates.NoteCandidates(
10172         PartialDiagnosticAt(
10173             Kind.getLocation(),
10174             PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable
10175                            : diag::err_deduced_class_template_incomplete)
10176                 << TemplateName << !Guides.empty()),
10177         *this, OCD_AllCandidates, Inits);
10178     return QualType();
10179   }
10180 
10181   case OR_Deleted: {
10182     Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted)
10183       << TemplateName;
10184     NoteDeletedFunction(Best->Function);
10185     return QualType();
10186   }
10187 
10188   case OR_Success:
10189     // C++ [over.match.list]p1:
10190     //   In copy-list-initialization, if an explicit constructor is chosen, the
10191     //   initialization is ill-formed.
10192     if (Kind.isCopyInit() && ListInit &&
10193         cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) {
10194       bool IsDeductionGuide = !Best->Function->isImplicit();
10195       Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit)
10196           << TemplateName << IsDeductionGuide;
10197       Diag(Best->Function->getLocation(),
10198            diag::note_explicit_ctor_deduction_guide_here)
10199           << IsDeductionGuide;
10200       return QualType();
10201     }
10202 
10203     // Make sure we didn't select an unusable deduction guide, and mark it
10204     // as referenced.
10205     DiagnoseUseOfDecl(Best->Function, Kind.getLocation());
10206     MarkFunctionReferenced(Kind.getLocation(), Best->Function);
10207     break;
10208   }
10209 
10210   // C++ [dcl.type.class.deduct]p1:
10211   //  The placeholder is replaced by the return type of the function selected
10212   //  by overload resolution for class template deduction.
10213   QualType DeducedType =
10214       SubstAutoType(TSInfo->getType(), Best->Function->getReturnType());
10215   Diag(TSInfo->getTypeLoc().getBeginLoc(),
10216        diag::warn_cxx14_compat_class_template_argument_deduction)
10217       << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType;
10218 
10219   // Warn if CTAD was used on a type that does not have any user-defined
10220   // deduction guides.
10221   if (!HasAnyDeductionGuide) {
10222     Diag(TSInfo->getTypeLoc().getBeginLoc(),
10223          diag::warn_ctad_maybe_unsupported)
10224         << TemplateName;
10225     Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported);
10226   }
10227 
10228   return DeducedType;
10229 }
10230