1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for initializers. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CheckExprLifetime.h" 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/DeclObjC.h" 16 #include "clang/AST/Expr.h" 17 #include "clang/AST/ExprCXX.h" 18 #include "clang/AST/ExprObjC.h" 19 #include "clang/AST/ExprOpenMP.h" 20 #include "clang/AST/IgnoreExpr.h" 21 #include "clang/AST/TypeLoc.h" 22 #include "clang/Basic/CharInfo.h" 23 #include "clang/Basic/SourceManager.h" 24 #include "clang/Basic/Specifiers.h" 25 #include "clang/Basic/TargetInfo.h" 26 #include "clang/Sema/Designator.h" 27 #include "clang/Sema/EnterExpressionEvaluationContext.h" 28 #include "clang/Sema/Initialization.h" 29 #include "clang/Sema/Lookup.h" 30 #include "clang/Sema/Ownership.h" 31 #include "clang/Sema/SemaInternal.h" 32 #include "clang/Sema/SemaObjC.h" 33 #include "llvm/ADT/APInt.h" 34 #include "llvm/ADT/FoldingSet.h" 35 #include "llvm/ADT/PointerIntPair.h" 36 #include "llvm/ADT/STLForwardCompat.h" 37 #include "llvm/ADT/SmallString.h" 38 #include "llvm/ADT/SmallVector.h" 39 #include "llvm/ADT/StringExtras.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/raw_ostream.h" 42 43 using namespace clang; 44 45 //===----------------------------------------------------------------------===// 46 // Sema Initialization Checking 47 //===----------------------------------------------------------------------===// 48 49 /// Check whether T is compatible with a wide character type (wchar_t, 50 /// char16_t or char32_t). 51 static bool IsWideCharCompatible(QualType T, ASTContext &Context) { 52 if (Context.typesAreCompatible(Context.getWideCharType(), T)) 53 return true; 54 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) { 55 return Context.typesAreCompatible(Context.Char16Ty, T) || 56 Context.typesAreCompatible(Context.Char32Ty, T); 57 } 58 return false; 59 } 60 61 enum StringInitFailureKind { 62 SIF_None, 63 SIF_NarrowStringIntoWideChar, 64 SIF_WideStringIntoChar, 65 SIF_IncompatWideStringIntoWideChar, 66 SIF_UTF8StringIntoPlainChar, 67 SIF_PlainStringIntoUTF8Char, 68 SIF_Other 69 }; 70 71 /// Check whether the array of type AT can be initialized by the Init 72 /// expression by means of string initialization. Returns SIF_None if so, 73 /// otherwise returns a StringInitFailureKind that describes why the 74 /// initialization would not work. 75 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT, 76 ASTContext &Context) { 77 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT)) 78 return SIF_Other; 79 80 // See if this is a string literal or @encode. 81 Init = Init->IgnoreParens(); 82 83 // Handle @encode, which is a narrow string. 84 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType()) 85 return SIF_None; 86 87 // Otherwise we can only handle string literals. 88 StringLiteral *SL = dyn_cast<StringLiteral>(Init); 89 if (!SL) 90 return SIF_Other; 91 92 const QualType ElemTy = 93 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType(); 94 95 auto IsCharOrUnsignedChar = [](const QualType &T) { 96 const BuiltinType *BT = dyn_cast<BuiltinType>(T.getTypePtr()); 97 return BT && BT->isCharType() && BT->getKind() != BuiltinType::SChar; 98 }; 99 100 switch (SL->getKind()) { 101 case StringLiteralKind::UTF8: 102 // char8_t array can be initialized with a UTF-8 string. 103 // - C++20 [dcl.init.string] (DR) 104 // Additionally, an array of char or unsigned char may be initialized 105 // by a UTF-8 string literal. 106 if (ElemTy->isChar8Type() || 107 (Context.getLangOpts().Char8 && 108 IsCharOrUnsignedChar(ElemTy.getCanonicalType()))) 109 return SIF_None; 110 [[fallthrough]]; 111 case StringLiteralKind::Ordinary: 112 // char array can be initialized with a narrow string. 113 // Only allow char x[] = "foo"; not char x[] = L"foo"; 114 if (ElemTy->isCharType()) 115 return (SL->getKind() == StringLiteralKind::UTF8 && 116 Context.getLangOpts().Char8) 117 ? SIF_UTF8StringIntoPlainChar 118 : SIF_None; 119 if (ElemTy->isChar8Type()) 120 return SIF_PlainStringIntoUTF8Char; 121 if (IsWideCharCompatible(ElemTy, Context)) 122 return SIF_NarrowStringIntoWideChar; 123 return SIF_Other; 124 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15: 125 // "An array with element type compatible with a qualified or unqualified 126 // version of wchar_t, char16_t, or char32_t may be initialized by a wide 127 // string literal with the corresponding encoding prefix (L, u, or U, 128 // respectively), optionally enclosed in braces. 129 case StringLiteralKind::UTF16: 130 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy)) 131 return SIF_None; 132 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 133 return SIF_WideStringIntoChar; 134 if (IsWideCharCompatible(ElemTy, Context)) 135 return SIF_IncompatWideStringIntoWideChar; 136 return SIF_Other; 137 case StringLiteralKind::UTF32: 138 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy)) 139 return SIF_None; 140 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 141 return SIF_WideStringIntoChar; 142 if (IsWideCharCompatible(ElemTy, Context)) 143 return SIF_IncompatWideStringIntoWideChar; 144 return SIF_Other; 145 case StringLiteralKind::Wide: 146 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy)) 147 return SIF_None; 148 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 149 return SIF_WideStringIntoChar; 150 if (IsWideCharCompatible(ElemTy, Context)) 151 return SIF_IncompatWideStringIntoWideChar; 152 return SIF_Other; 153 case StringLiteralKind::Unevaluated: 154 assert(false && "Unevaluated string literal in initialization"); 155 break; 156 } 157 158 llvm_unreachable("missed a StringLiteral kind?"); 159 } 160 161 static StringInitFailureKind IsStringInit(Expr *init, QualType declType, 162 ASTContext &Context) { 163 const ArrayType *arrayType = Context.getAsArrayType(declType); 164 if (!arrayType) 165 return SIF_Other; 166 return IsStringInit(init, arrayType, Context); 167 } 168 169 bool Sema::IsStringInit(Expr *Init, const ArrayType *AT) { 170 return ::IsStringInit(Init, AT, Context) == SIF_None; 171 } 172 173 /// Update the type of a string literal, including any surrounding parentheses, 174 /// to match the type of the object which it is initializing. 175 static void updateStringLiteralType(Expr *E, QualType Ty) { 176 while (true) { 177 E->setType(Ty); 178 E->setValueKind(VK_PRValue); 179 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) 180 break; 181 E = IgnoreParensSingleStep(E); 182 } 183 } 184 185 /// Fix a compound literal initializing an array so it's correctly marked 186 /// as an rvalue. 187 static void updateGNUCompoundLiteralRValue(Expr *E) { 188 while (true) { 189 E->setValueKind(VK_PRValue); 190 if (isa<CompoundLiteralExpr>(E)) 191 break; 192 E = IgnoreParensSingleStep(E); 193 } 194 } 195 196 static bool initializingConstexprVariable(const InitializedEntity &Entity) { 197 Decl *D = Entity.getDecl(); 198 const InitializedEntity *Parent = &Entity; 199 200 while (Parent) { 201 D = Parent->getDecl(); 202 Parent = Parent->getParent(); 203 } 204 205 if (const auto *VD = dyn_cast_if_present<VarDecl>(D); VD && VD->isConstexpr()) 206 return true; 207 208 return false; 209 } 210 211 static void CheckC23ConstexprInitStringLiteral(const StringLiteral *SE, 212 Sema &SemaRef, QualType &TT); 213 214 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT, 215 Sema &S, bool CheckC23ConstexprInit = false) { 216 // Get the length of the string as parsed. 217 auto *ConstantArrayTy = 218 cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe()); 219 uint64_t StrLength = ConstantArrayTy->getZExtSize(); 220 221 if (CheckC23ConstexprInit) 222 if (const StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) 223 CheckC23ConstexprInitStringLiteral(SL, S, DeclT); 224 225 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { 226 // C99 6.7.8p14. We have an array of character type with unknown size 227 // being initialized to a string literal. 228 llvm::APInt ConstVal(32, StrLength); 229 // Return a new array type (C99 6.7.8p22). 230 DeclT = S.Context.getConstantArrayType( 231 IAT->getElementType(), ConstVal, nullptr, ArraySizeModifier::Normal, 0); 232 updateStringLiteralType(Str, DeclT); 233 return; 234 } 235 236 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT); 237 238 // We have an array of character type with known size. However, 239 // the size may be smaller or larger than the string we are initializing. 240 // FIXME: Avoid truncation for 64-bit length strings. 241 if (S.getLangOpts().CPlusPlus) { 242 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) { 243 // For Pascal strings it's OK to strip off the terminating null character, 244 // so the example below is valid: 245 // 246 // unsigned char a[2] = "\pa"; 247 if (SL->isPascal()) 248 StrLength--; 249 } 250 251 // [dcl.init.string]p2 252 if (StrLength > CAT->getZExtSize()) 253 S.Diag(Str->getBeginLoc(), 254 diag::err_initializer_string_for_char_array_too_long) 255 << CAT->getZExtSize() << StrLength << Str->getSourceRange(); 256 } else { 257 // C99 6.7.8p14. 258 if (StrLength - 1 > CAT->getZExtSize()) 259 S.Diag(Str->getBeginLoc(), 260 diag::ext_initializer_string_for_char_array_too_long) 261 << Str->getSourceRange(); 262 } 263 264 // Set the type to the actual size that we are initializing. If we have 265 // something like: 266 // char x[1] = "foo"; 267 // then this will set the string literal's type to char[1]. 268 updateStringLiteralType(Str, DeclT); 269 } 270 271 //===----------------------------------------------------------------------===// 272 // Semantic checking for initializer lists. 273 //===----------------------------------------------------------------------===// 274 275 namespace { 276 277 /// Semantic checking for initializer lists. 278 /// 279 /// The InitListChecker class contains a set of routines that each 280 /// handle the initialization of a certain kind of entity, e.g., 281 /// arrays, vectors, struct/union types, scalars, etc. The 282 /// InitListChecker itself performs a recursive walk of the subobject 283 /// structure of the type to be initialized, while stepping through 284 /// the initializer list one element at a time. The IList and Index 285 /// parameters to each of the Check* routines contain the active 286 /// (syntactic) initializer list and the index into that initializer 287 /// list that represents the current initializer. Each routine is 288 /// responsible for moving that Index forward as it consumes elements. 289 /// 290 /// Each Check* routine also has a StructuredList/StructuredIndex 291 /// arguments, which contains the current "structured" (semantic) 292 /// initializer list and the index into that initializer list where we 293 /// are copying initializers as we map them over to the semantic 294 /// list. Once we have completed our recursive walk of the subobject 295 /// structure, we will have constructed a full semantic initializer 296 /// list. 297 /// 298 /// C99 designators cause changes in the initializer list traversal, 299 /// because they make the initialization "jump" into a specific 300 /// subobject and then continue the initialization from that 301 /// point. CheckDesignatedInitializer() recursively steps into the 302 /// designated subobject and manages backing out the recursion to 303 /// initialize the subobjects after the one designated. 304 /// 305 /// If an initializer list contains any designators, we build a placeholder 306 /// structured list even in 'verify only' mode, so that we can track which 307 /// elements need 'empty' initializtion. 308 class InitListChecker { 309 Sema &SemaRef; 310 bool hadError = false; 311 bool VerifyOnly; // No diagnostics. 312 bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode. 313 bool InOverloadResolution; 314 InitListExpr *FullyStructuredList = nullptr; 315 NoInitExpr *DummyExpr = nullptr; 316 SmallVectorImpl<QualType> *AggrDeductionCandidateParamTypes = nullptr; 317 EmbedExpr *CurEmbed = nullptr; // Save current embed we're processing. 318 unsigned CurEmbedIndex = 0; 319 320 NoInitExpr *getDummyInit() { 321 if (!DummyExpr) 322 DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy); 323 return DummyExpr; 324 } 325 326 void CheckImplicitInitList(const InitializedEntity &Entity, 327 InitListExpr *ParentIList, QualType T, 328 unsigned &Index, InitListExpr *StructuredList, 329 unsigned &StructuredIndex); 330 void CheckExplicitInitList(const InitializedEntity &Entity, 331 InitListExpr *IList, QualType &T, 332 InitListExpr *StructuredList, 333 bool TopLevelObject = false); 334 void CheckListElementTypes(const InitializedEntity &Entity, 335 InitListExpr *IList, QualType &DeclType, 336 bool SubobjectIsDesignatorContext, 337 unsigned &Index, 338 InitListExpr *StructuredList, 339 unsigned &StructuredIndex, 340 bool TopLevelObject = false); 341 void CheckSubElementType(const InitializedEntity &Entity, 342 InitListExpr *IList, QualType ElemType, 343 unsigned &Index, 344 InitListExpr *StructuredList, 345 unsigned &StructuredIndex, 346 bool DirectlyDesignated = false); 347 void CheckComplexType(const InitializedEntity &Entity, 348 InitListExpr *IList, QualType DeclType, 349 unsigned &Index, 350 InitListExpr *StructuredList, 351 unsigned &StructuredIndex); 352 void CheckScalarType(const InitializedEntity &Entity, 353 InitListExpr *IList, QualType DeclType, 354 unsigned &Index, 355 InitListExpr *StructuredList, 356 unsigned &StructuredIndex); 357 void CheckReferenceType(const InitializedEntity &Entity, 358 InitListExpr *IList, QualType DeclType, 359 unsigned &Index, 360 InitListExpr *StructuredList, 361 unsigned &StructuredIndex); 362 void CheckVectorType(const InitializedEntity &Entity, 363 InitListExpr *IList, QualType DeclType, unsigned &Index, 364 InitListExpr *StructuredList, 365 unsigned &StructuredIndex); 366 void CheckStructUnionTypes(const InitializedEntity &Entity, 367 InitListExpr *IList, QualType DeclType, 368 CXXRecordDecl::base_class_const_range Bases, 369 RecordDecl::field_iterator Field, 370 bool SubobjectIsDesignatorContext, unsigned &Index, 371 InitListExpr *StructuredList, 372 unsigned &StructuredIndex, 373 bool TopLevelObject = false); 374 void CheckArrayType(const InitializedEntity &Entity, 375 InitListExpr *IList, QualType &DeclType, 376 llvm::APSInt elementIndex, 377 bool SubobjectIsDesignatorContext, unsigned &Index, 378 InitListExpr *StructuredList, 379 unsigned &StructuredIndex); 380 bool CheckDesignatedInitializer(const InitializedEntity &Entity, 381 InitListExpr *IList, DesignatedInitExpr *DIE, 382 unsigned DesigIdx, 383 QualType &CurrentObjectType, 384 RecordDecl::field_iterator *NextField, 385 llvm::APSInt *NextElementIndex, 386 unsigned &Index, 387 InitListExpr *StructuredList, 388 unsigned &StructuredIndex, 389 bool FinishSubobjectInit, 390 bool TopLevelObject); 391 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 392 QualType CurrentObjectType, 393 InitListExpr *StructuredList, 394 unsigned StructuredIndex, 395 SourceRange InitRange, 396 bool IsFullyOverwritten = false); 397 void UpdateStructuredListElement(InitListExpr *StructuredList, 398 unsigned &StructuredIndex, 399 Expr *expr); 400 InitListExpr *createInitListExpr(QualType CurrentObjectType, 401 SourceRange InitRange, 402 unsigned ExpectedNumInits); 403 int numArrayElements(QualType DeclType); 404 int numStructUnionElements(QualType DeclType); 405 static RecordDecl *getRecordDecl(QualType DeclType); 406 407 ExprResult PerformEmptyInit(SourceLocation Loc, 408 const InitializedEntity &Entity); 409 410 /// Diagnose that OldInit (or part thereof) has been overridden by NewInit. 411 void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange, 412 bool UnionOverride = false, 413 bool FullyOverwritten = true) { 414 // Overriding an initializer via a designator is valid with C99 designated 415 // initializers, but ill-formed with C++20 designated initializers. 416 unsigned DiagID = 417 SemaRef.getLangOpts().CPlusPlus 418 ? (UnionOverride ? diag::ext_initializer_union_overrides 419 : diag::ext_initializer_overrides) 420 : diag::warn_initializer_overrides; 421 422 if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) { 423 // In overload resolution, we have to strictly enforce the rules, and so 424 // don't allow any overriding of prior initializers. This matters for a 425 // case such as: 426 // 427 // union U { int a, b; }; 428 // struct S { int a, b; }; 429 // void f(U), f(S); 430 // 431 // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For 432 // consistency, we disallow all overriding of prior initializers in 433 // overload resolution, not only overriding of union members. 434 hadError = true; 435 } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) { 436 // If we'll be keeping around the old initializer but overwriting part of 437 // the object it initialized, and that object is not trivially 438 // destructible, this can leak. Don't allow that, not even as an 439 // extension. 440 // 441 // FIXME: It might be reasonable to allow this in cases where the part of 442 // the initializer that we're overriding has trivial destruction. 443 DiagID = diag::err_initializer_overrides_destructed; 444 } else if (!OldInit->getSourceRange().isValid()) { 445 // We need to check on source range validity because the previous 446 // initializer does not have to be an explicit initializer. e.g., 447 // 448 // struct P { int a, b; }; 449 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 }; 450 // 451 // There is an overwrite taking place because the first braced initializer 452 // list "{ .a = 2 }" already provides value for .p.b (which is zero). 453 // 454 // Such overwrites are harmless, so we don't diagnose them. (Note that in 455 // C++, this cannot be reached unless we've already seen and diagnosed a 456 // different conformance issue, such as a mixture of designated and 457 // non-designated initializers or a multi-level designator.) 458 return; 459 } 460 461 if (!VerifyOnly) { 462 SemaRef.Diag(NewInitRange.getBegin(), DiagID) 463 << NewInitRange << FullyOverwritten << OldInit->getType(); 464 SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer) 465 << (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten) 466 << OldInit->getSourceRange(); 467 } 468 } 469 470 // Explanation on the "FillWithNoInit" mode: 471 // 472 // Assume we have the following definitions (Case#1): 473 // struct P { char x[6][6]; } xp = { .x[1] = "bar" }; 474 // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' }; 475 // 476 // l.lp.x[1][0..1] should not be filled with implicit initializers because the 477 // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf". 478 // 479 // But if we have (Case#2): 480 // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } }; 481 // 482 // l.lp.x[1][0..1] are implicitly initialized and do not use values from the 483 // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0". 484 // 485 // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes" 486 // in the InitListExpr, the "holes" in Case#1 are filled not with empty 487 // initializers but with special "NoInitExpr" place holders, which tells the 488 // CodeGen not to generate any initializers for these parts. 489 void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base, 490 const InitializedEntity &ParentEntity, 491 InitListExpr *ILE, bool &RequiresSecondPass, 492 bool FillWithNoInit); 493 void FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 494 const InitializedEntity &ParentEntity, 495 InitListExpr *ILE, bool &RequiresSecondPass, 496 bool FillWithNoInit = false); 497 void FillInEmptyInitializations(const InitializedEntity &Entity, 498 InitListExpr *ILE, bool &RequiresSecondPass, 499 InitListExpr *OuterILE, unsigned OuterIndex, 500 bool FillWithNoInit = false); 501 bool CheckFlexibleArrayInit(const InitializedEntity &Entity, 502 Expr *InitExpr, FieldDecl *Field, 503 bool TopLevelObject); 504 void CheckEmptyInitializable(const InitializedEntity &Entity, 505 SourceLocation Loc); 506 507 Expr *HandleEmbed(EmbedExpr *Embed, const InitializedEntity &Entity) { 508 Expr *Result = nullptr; 509 // Undrestand which part of embed we'd like to reference. 510 if (!CurEmbed) { 511 CurEmbed = Embed; 512 CurEmbedIndex = 0; 513 } 514 // Reference just one if we're initializing a single scalar. 515 uint64_t ElsCount = 1; 516 // Otherwise try to fill whole array with embed data. 517 if (Entity.getKind() == InitializedEntity::EK_ArrayElement) { 518 auto *AType = 519 SemaRef.Context.getAsArrayType(Entity.getParent()->getType()); 520 assert(AType && "expected array type when initializing array"); 521 ElsCount = Embed->getDataElementCount(); 522 if (const auto *CAType = dyn_cast<ConstantArrayType>(AType)) 523 ElsCount = std::min(CAType->getSize().getZExtValue(), 524 ElsCount - CurEmbedIndex); 525 if (ElsCount == Embed->getDataElementCount()) { 526 CurEmbed = nullptr; 527 CurEmbedIndex = 0; 528 return Embed; 529 } 530 } 531 532 Result = new (SemaRef.Context) 533 EmbedExpr(SemaRef.Context, Embed->getLocation(), Embed->getData(), 534 CurEmbedIndex, ElsCount); 535 CurEmbedIndex += ElsCount; 536 if (CurEmbedIndex >= Embed->getDataElementCount()) { 537 CurEmbed = nullptr; 538 CurEmbedIndex = 0; 539 } 540 return Result; 541 } 542 543 public: 544 InitListChecker( 545 Sema &S, const InitializedEntity &Entity, InitListExpr *IL, QualType &T, 546 bool VerifyOnly, bool TreatUnavailableAsInvalid, 547 bool InOverloadResolution = false, 548 SmallVectorImpl<QualType> *AggrDeductionCandidateParamTypes = nullptr); 549 InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL, 550 QualType &T, 551 SmallVectorImpl<QualType> &AggrDeductionCandidateParamTypes) 552 : InitListChecker(S, Entity, IL, T, /*VerifyOnly=*/true, 553 /*TreatUnavailableAsInvalid=*/false, 554 /*InOverloadResolution=*/false, 555 &AggrDeductionCandidateParamTypes) {} 556 557 bool HadError() { return hadError; } 558 559 // Retrieves the fully-structured initializer list used for 560 // semantic analysis and code generation. 561 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; } 562 }; 563 564 } // end anonymous namespace 565 566 ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc, 567 const InitializedEntity &Entity) { 568 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, 569 true); 570 MultiExprArg SubInit; 571 Expr *InitExpr; 572 InitListExpr DummyInitList(SemaRef.Context, Loc, std::nullopt, Loc); 573 574 // C++ [dcl.init.aggr]p7: 575 // If there are fewer initializer-clauses in the list than there are 576 // members in the aggregate, then each member not explicitly initialized 577 // ... 578 bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 && 579 Entity.getType()->getBaseElementTypeUnsafe()->isRecordType(); 580 if (EmptyInitList) { 581 // C++1y / DR1070: 582 // shall be initialized [...] from an empty initializer list. 583 // 584 // We apply the resolution of this DR to C++11 but not C++98, since C++98 585 // does not have useful semantics for initialization from an init list. 586 // We treat this as copy-initialization, because aggregate initialization 587 // always performs copy-initialization on its elements. 588 // 589 // Only do this if we're initializing a class type, to avoid filling in 590 // the initializer list where possible. 591 InitExpr = VerifyOnly 592 ? &DummyInitList 593 : new (SemaRef.Context) 594 InitListExpr(SemaRef.Context, Loc, std::nullopt, Loc); 595 InitExpr->setType(SemaRef.Context.VoidTy); 596 SubInit = InitExpr; 597 Kind = InitializationKind::CreateCopy(Loc, Loc); 598 } else { 599 // C++03: 600 // shall be value-initialized. 601 } 602 603 InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit); 604 // libstdc++4.6 marks the vector default constructor as explicit in 605 // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case. 606 // stlport does so too. Look for std::__debug for libstdc++, and for 607 // std:: for stlport. This is effectively a compiler-side implementation of 608 // LWG2193. 609 if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() == 610 InitializationSequence::FK_ExplicitConstructor) { 611 OverloadCandidateSet::iterator Best; 612 OverloadingResult O = 613 InitSeq.getFailedCandidateSet() 614 .BestViableFunction(SemaRef, Kind.getLocation(), Best); 615 (void)O; 616 assert(O == OR_Success && "Inconsistent overload resolution"); 617 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 618 CXXRecordDecl *R = CtorDecl->getParent(); 619 620 if (CtorDecl->getMinRequiredArguments() == 0 && 621 CtorDecl->isExplicit() && R->getDeclName() && 622 SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) { 623 bool IsInStd = false; 624 for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext()); 625 ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) { 626 if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND)) 627 IsInStd = true; 628 } 629 630 if (IsInStd && llvm::StringSwitch<bool>(R->getName()) 631 .Cases("basic_string", "deque", "forward_list", true) 632 .Cases("list", "map", "multimap", "multiset", true) 633 .Cases("priority_queue", "queue", "set", "stack", true) 634 .Cases("unordered_map", "unordered_set", "vector", true) 635 .Default(false)) { 636 InitSeq.InitializeFrom( 637 SemaRef, Entity, 638 InitializationKind::CreateValue(Loc, Loc, Loc, true), 639 MultiExprArg(), /*TopLevelOfInitList=*/false, 640 TreatUnavailableAsInvalid); 641 // Emit a warning for this. System header warnings aren't shown 642 // by default, but people working on system headers should see it. 643 if (!VerifyOnly) { 644 SemaRef.Diag(CtorDecl->getLocation(), 645 diag::warn_invalid_initializer_from_system_header); 646 if (Entity.getKind() == InitializedEntity::EK_Member) 647 SemaRef.Diag(Entity.getDecl()->getLocation(), 648 diag::note_used_in_initialization_here); 649 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) 650 SemaRef.Diag(Loc, diag::note_used_in_initialization_here); 651 } 652 } 653 } 654 } 655 if (!InitSeq) { 656 if (!VerifyOnly) { 657 InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit); 658 if (Entity.getKind() == InitializedEntity::EK_Member) 659 SemaRef.Diag(Entity.getDecl()->getLocation(), 660 diag::note_in_omitted_aggregate_initializer) 661 << /*field*/1 << Entity.getDecl(); 662 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) { 663 bool IsTrailingArrayNewMember = 664 Entity.getParent() && 665 Entity.getParent()->isVariableLengthArrayNew(); 666 SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer) 667 << (IsTrailingArrayNewMember ? 2 : /*array element*/0) 668 << Entity.getElementIndex(); 669 } 670 } 671 hadError = true; 672 return ExprError(); 673 } 674 675 return VerifyOnly ? ExprResult() 676 : InitSeq.Perform(SemaRef, Entity, Kind, SubInit); 677 } 678 679 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity, 680 SourceLocation Loc) { 681 // If we're building a fully-structured list, we'll check this at the end 682 // once we know which elements are actually initialized. Otherwise, we know 683 // that there are no designators so we can just check now. 684 if (FullyStructuredList) 685 return; 686 PerformEmptyInit(Loc, Entity); 687 } 688 689 void InitListChecker::FillInEmptyInitForBase( 690 unsigned Init, const CXXBaseSpecifier &Base, 691 const InitializedEntity &ParentEntity, InitListExpr *ILE, 692 bool &RequiresSecondPass, bool FillWithNoInit) { 693 InitializedEntity BaseEntity = InitializedEntity::InitializeBase( 694 SemaRef.Context, &Base, false, &ParentEntity); 695 696 if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) { 697 ExprResult BaseInit = FillWithNoInit 698 ? new (SemaRef.Context) NoInitExpr(Base.getType()) 699 : PerformEmptyInit(ILE->getEndLoc(), BaseEntity); 700 if (BaseInit.isInvalid()) { 701 hadError = true; 702 return; 703 } 704 705 if (!VerifyOnly) { 706 assert(Init < ILE->getNumInits() && "should have been expanded"); 707 ILE->setInit(Init, BaseInit.getAs<Expr>()); 708 } 709 } else if (InitListExpr *InnerILE = 710 dyn_cast<InitListExpr>(ILE->getInit(Init))) { 711 FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass, 712 ILE, Init, FillWithNoInit); 713 } else if (DesignatedInitUpdateExpr *InnerDIUE = 714 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { 715 FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(), 716 RequiresSecondPass, ILE, Init, 717 /*FillWithNoInit =*/true); 718 } 719 } 720 721 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 722 const InitializedEntity &ParentEntity, 723 InitListExpr *ILE, 724 bool &RequiresSecondPass, 725 bool FillWithNoInit) { 726 SourceLocation Loc = ILE->getEndLoc(); 727 unsigned NumInits = ILE->getNumInits(); 728 InitializedEntity MemberEntity 729 = InitializedEntity::InitializeMember(Field, &ParentEntity); 730 731 if (Init >= NumInits || !ILE->getInit(Init)) { 732 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) 733 if (!RType->getDecl()->isUnion()) 734 assert((Init < NumInits || VerifyOnly) && 735 "This ILE should have been expanded"); 736 737 if (FillWithNoInit) { 738 assert(!VerifyOnly && "should not fill with no-init in verify-only mode"); 739 Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType()); 740 if (Init < NumInits) 741 ILE->setInit(Init, Filler); 742 else 743 ILE->updateInit(SemaRef.Context, Init, Filler); 744 return; 745 } 746 // C++1y [dcl.init.aggr]p7: 747 // If there are fewer initializer-clauses in the list than there are 748 // members in the aggregate, then each member not explicitly initialized 749 // shall be initialized from its brace-or-equal-initializer [...] 750 if (Field->hasInClassInitializer()) { 751 if (VerifyOnly) 752 return; 753 754 ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field); 755 if (DIE.isInvalid()) { 756 hadError = true; 757 return; 758 } 759 SemaRef.checkInitializerLifetime(MemberEntity, DIE.get()); 760 if (Init < NumInits) 761 ILE->setInit(Init, DIE.get()); 762 else { 763 ILE->updateInit(SemaRef.Context, Init, DIE.get()); 764 RequiresSecondPass = true; 765 } 766 return; 767 } 768 769 if (Field->getType()->isReferenceType()) { 770 if (!VerifyOnly) { 771 // C++ [dcl.init.aggr]p9: 772 // If an incomplete or empty initializer-list leaves a 773 // member of reference type uninitialized, the program is 774 // ill-formed. 775 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized) 776 << Field->getType() 777 << (ILE->isSyntacticForm() ? ILE : ILE->getSyntacticForm()) 778 ->getSourceRange(); 779 SemaRef.Diag(Field->getLocation(), diag::note_uninit_reference_member); 780 } 781 hadError = true; 782 return; 783 } 784 785 ExprResult MemberInit = PerformEmptyInit(Loc, MemberEntity); 786 if (MemberInit.isInvalid()) { 787 hadError = true; 788 return; 789 } 790 791 if (hadError || VerifyOnly) { 792 // Do nothing 793 } else if (Init < NumInits) { 794 ILE->setInit(Init, MemberInit.getAs<Expr>()); 795 } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) { 796 // Empty initialization requires a constructor call, so 797 // extend the initializer list to include the constructor 798 // call and make a note that we'll need to take another pass 799 // through the initializer list. 800 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>()); 801 RequiresSecondPass = true; 802 } 803 } else if (InitListExpr *InnerILE 804 = dyn_cast<InitListExpr>(ILE->getInit(Init))) { 805 FillInEmptyInitializations(MemberEntity, InnerILE, 806 RequiresSecondPass, ILE, Init, FillWithNoInit); 807 } else if (DesignatedInitUpdateExpr *InnerDIUE = 808 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { 809 FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(), 810 RequiresSecondPass, ILE, Init, 811 /*FillWithNoInit =*/true); 812 } 813 } 814 815 /// Recursively replaces NULL values within the given initializer list 816 /// with expressions that perform value-initialization of the 817 /// appropriate type, and finish off the InitListExpr formation. 818 void 819 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity, 820 InitListExpr *ILE, 821 bool &RequiresSecondPass, 822 InitListExpr *OuterILE, 823 unsigned OuterIndex, 824 bool FillWithNoInit) { 825 assert((ILE->getType() != SemaRef.Context.VoidTy) && 826 "Should not have void type"); 827 828 // We don't need to do any checks when just filling NoInitExprs; that can't 829 // fail. 830 if (FillWithNoInit && VerifyOnly) 831 return; 832 833 // If this is a nested initializer list, we might have changed its contents 834 // (and therefore some of its properties, such as instantiation-dependence) 835 // while filling it in. Inform the outer initializer list so that its state 836 // can be updated to match. 837 // FIXME: We should fully build the inner initializers before constructing 838 // the outer InitListExpr instead of mutating AST nodes after they have 839 // been used as subexpressions of other nodes. 840 struct UpdateOuterILEWithUpdatedInit { 841 InitListExpr *Outer; 842 unsigned OuterIndex; 843 ~UpdateOuterILEWithUpdatedInit() { 844 if (Outer) 845 Outer->setInit(OuterIndex, Outer->getInit(OuterIndex)); 846 } 847 } UpdateOuterRAII = {OuterILE, OuterIndex}; 848 849 // A transparent ILE is not performing aggregate initialization and should 850 // not be filled in. 851 if (ILE->isTransparent()) 852 return; 853 854 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 855 const RecordDecl *RDecl = RType->getDecl(); 856 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion()) { 857 FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(), Entity, ILE, 858 RequiresSecondPass, FillWithNoInit); 859 } else { 860 assert((!RDecl->isUnion() || !isa<CXXRecordDecl>(RDecl) || 861 !cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) && 862 "We should have computed initialized fields already"); 863 // The fields beyond ILE->getNumInits() are default initialized, so in 864 // order to leave them uninitialized, the ILE is expanded and the extra 865 // fields are then filled with NoInitExpr. 866 unsigned NumElems = numStructUnionElements(ILE->getType()); 867 if (!RDecl->isUnion() && RDecl->hasFlexibleArrayMember()) 868 ++NumElems; 869 if (!VerifyOnly && ILE->getNumInits() < NumElems) 870 ILE->resizeInits(SemaRef.Context, NumElems); 871 872 unsigned Init = 0; 873 874 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) { 875 for (auto &Base : CXXRD->bases()) { 876 if (hadError) 877 return; 878 879 FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass, 880 FillWithNoInit); 881 ++Init; 882 } 883 } 884 885 for (auto *Field : RDecl->fields()) { 886 if (Field->isUnnamedBitField()) 887 continue; 888 889 if (hadError) 890 return; 891 892 FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass, 893 FillWithNoInit); 894 if (hadError) 895 return; 896 897 ++Init; 898 899 // Only look at the first initialization of a union. 900 if (RDecl->isUnion()) 901 break; 902 } 903 } 904 905 return; 906 } 907 908 QualType ElementType; 909 910 InitializedEntity ElementEntity = Entity; 911 unsigned NumInits = ILE->getNumInits(); 912 uint64_t NumElements = NumInits; 913 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) { 914 ElementType = AType->getElementType(); 915 if (const auto *CAType = dyn_cast<ConstantArrayType>(AType)) 916 NumElements = CAType->getZExtSize(); 917 // For an array new with an unknown bound, ask for one additional element 918 // in order to populate the array filler. 919 if (Entity.isVariableLengthArrayNew()) 920 ++NumElements; 921 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 922 0, Entity); 923 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) { 924 ElementType = VType->getElementType(); 925 NumElements = VType->getNumElements(); 926 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 927 0, Entity); 928 } else 929 ElementType = ILE->getType(); 930 931 bool SkipEmptyInitChecks = false; 932 for (uint64_t Init = 0; Init != NumElements; ++Init) { 933 if (hadError) 934 return; 935 936 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement || 937 ElementEntity.getKind() == InitializedEntity::EK_VectorElement) 938 ElementEntity.setElementIndex(Init); 939 940 if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks)) 941 return; 942 943 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr); 944 if (!InitExpr && Init < NumInits && ILE->hasArrayFiller()) 945 ILE->setInit(Init, ILE->getArrayFiller()); 946 else if (!InitExpr && !ILE->hasArrayFiller()) { 947 // In VerifyOnly mode, there's no point performing empty initialization 948 // more than once. 949 if (SkipEmptyInitChecks) 950 continue; 951 952 Expr *Filler = nullptr; 953 954 if (FillWithNoInit) 955 Filler = new (SemaRef.Context) NoInitExpr(ElementType); 956 else { 957 ExprResult ElementInit = 958 PerformEmptyInit(ILE->getEndLoc(), ElementEntity); 959 if (ElementInit.isInvalid()) { 960 hadError = true; 961 return; 962 } 963 964 Filler = ElementInit.getAs<Expr>(); 965 } 966 967 if (hadError) { 968 // Do nothing 969 } else if (VerifyOnly) { 970 SkipEmptyInitChecks = true; 971 } else if (Init < NumInits) { 972 // For arrays, just set the expression used for value-initialization 973 // of the "holes" in the array. 974 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) 975 ILE->setArrayFiller(Filler); 976 else 977 ILE->setInit(Init, Filler); 978 } else { 979 // For arrays, just set the expression used for value-initialization 980 // of the rest of elements and exit. 981 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) { 982 ILE->setArrayFiller(Filler); 983 return; 984 } 985 986 if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) { 987 // Empty initialization requires a constructor call, so 988 // extend the initializer list to include the constructor 989 // call and make a note that we'll need to take another pass 990 // through the initializer list. 991 ILE->updateInit(SemaRef.Context, Init, Filler); 992 RequiresSecondPass = true; 993 } 994 } 995 } else if (InitListExpr *InnerILE 996 = dyn_cast_or_null<InitListExpr>(InitExpr)) { 997 FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass, 998 ILE, Init, FillWithNoInit); 999 } else if (DesignatedInitUpdateExpr *InnerDIUE = 1000 dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) { 1001 FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(), 1002 RequiresSecondPass, ILE, Init, 1003 /*FillWithNoInit =*/true); 1004 } 1005 } 1006 } 1007 1008 static bool hasAnyDesignatedInits(const InitListExpr *IL) { 1009 for (const Stmt *Init : *IL) 1010 if (isa_and_nonnull<DesignatedInitExpr>(Init)) 1011 return true; 1012 return false; 1013 } 1014 1015 InitListChecker::InitListChecker( 1016 Sema &S, const InitializedEntity &Entity, InitListExpr *IL, QualType &T, 1017 bool VerifyOnly, bool TreatUnavailableAsInvalid, bool InOverloadResolution, 1018 SmallVectorImpl<QualType> *AggrDeductionCandidateParamTypes) 1019 : SemaRef(S), VerifyOnly(VerifyOnly), 1020 TreatUnavailableAsInvalid(TreatUnavailableAsInvalid), 1021 InOverloadResolution(InOverloadResolution), 1022 AggrDeductionCandidateParamTypes(AggrDeductionCandidateParamTypes) { 1023 if (!VerifyOnly || hasAnyDesignatedInits(IL)) { 1024 FullyStructuredList = 1025 createInitListExpr(T, IL->getSourceRange(), IL->getNumInits()); 1026 1027 // FIXME: Check that IL isn't already the semantic form of some other 1028 // InitListExpr. If it is, we'd create a broken AST. 1029 if (!VerifyOnly) 1030 FullyStructuredList->setSyntacticForm(IL); 1031 } 1032 1033 CheckExplicitInitList(Entity, IL, T, FullyStructuredList, 1034 /*TopLevelObject=*/true); 1035 1036 if (!hadError && !AggrDeductionCandidateParamTypes && FullyStructuredList) { 1037 bool RequiresSecondPass = false; 1038 FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass, 1039 /*OuterILE=*/nullptr, /*OuterIndex=*/0); 1040 if (RequiresSecondPass && !hadError) 1041 FillInEmptyInitializations(Entity, FullyStructuredList, 1042 RequiresSecondPass, nullptr, 0); 1043 } 1044 if (hadError && FullyStructuredList) 1045 FullyStructuredList->markError(); 1046 } 1047 1048 int InitListChecker::numArrayElements(QualType DeclType) { 1049 // FIXME: use a proper constant 1050 int maxElements = 0x7FFFFFFF; 1051 if (const ConstantArrayType *CAT = 1052 SemaRef.Context.getAsConstantArrayType(DeclType)) { 1053 maxElements = static_cast<int>(CAT->getZExtSize()); 1054 } 1055 return maxElements; 1056 } 1057 1058 int InitListChecker::numStructUnionElements(QualType DeclType) { 1059 RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl(); 1060 int InitializableMembers = 0; 1061 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl)) 1062 InitializableMembers += CXXRD->getNumBases(); 1063 for (const auto *Field : structDecl->fields()) 1064 if (!Field->isUnnamedBitField()) 1065 ++InitializableMembers; 1066 1067 if (structDecl->isUnion()) 1068 return std::min(InitializableMembers, 1); 1069 return InitializableMembers - structDecl->hasFlexibleArrayMember(); 1070 } 1071 1072 RecordDecl *InitListChecker::getRecordDecl(QualType DeclType) { 1073 if (const auto *RT = DeclType->getAs<RecordType>()) 1074 return RT->getDecl(); 1075 if (const auto *Inject = DeclType->getAs<InjectedClassNameType>()) 1076 return Inject->getDecl(); 1077 return nullptr; 1078 } 1079 1080 /// Determine whether Entity is an entity for which it is idiomatic to elide 1081 /// the braces in aggregate initialization. 1082 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) { 1083 // Recursive initialization of the one and only field within an aggregate 1084 // class is considered idiomatic. This case arises in particular for 1085 // initialization of std::array, where the C++ standard suggests the idiom of 1086 // 1087 // std::array<T, N> arr = {1, 2, 3}; 1088 // 1089 // (where std::array is an aggregate struct containing a single array field. 1090 1091 if (!Entity.getParent()) 1092 return false; 1093 1094 // Allows elide brace initialization for aggregates with empty base. 1095 if (Entity.getKind() == InitializedEntity::EK_Base) { 1096 auto *ParentRD = 1097 Entity.getParent()->getType()->castAs<RecordType>()->getDecl(); 1098 CXXRecordDecl *CXXRD = cast<CXXRecordDecl>(ParentRD); 1099 return CXXRD->getNumBases() == 1 && CXXRD->field_empty(); 1100 } 1101 1102 // Allow brace elision if the only subobject is a field. 1103 if (Entity.getKind() == InitializedEntity::EK_Member) { 1104 auto *ParentRD = 1105 Entity.getParent()->getType()->castAs<RecordType>()->getDecl(); 1106 if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD)) { 1107 if (CXXRD->getNumBases()) { 1108 return false; 1109 } 1110 } 1111 auto FieldIt = ParentRD->field_begin(); 1112 assert(FieldIt != ParentRD->field_end() && 1113 "no fields but have initializer for member?"); 1114 return ++FieldIt == ParentRD->field_end(); 1115 } 1116 1117 return false; 1118 } 1119 1120 /// Check whether the range of the initializer \p ParentIList from element 1121 /// \p Index onwards can be used to initialize an object of type \p T. Update 1122 /// \p Index to indicate how many elements of the list were consumed. 1123 /// 1124 /// This also fills in \p StructuredList, from element \p StructuredIndex 1125 /// onwards, with the fully-braced, desugared form of the initialization. 1126 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity, 1127 InitListExpr *ParentIList, 1128 QualType T, unsigned &Index, 1129 InitListExpr *StructuredList, 1130 unsigned &StructuredIndex) { 1131 int maxElements = 0; 1132 1133 if (T->isArrayType()) 1134 maxElements = numArrayElements(T); 1135 else if (T->isRecordType()) 1136 maxElements = numStructUnionElements(T); 1137 else if (T->isVectorType()) 1138 maxElements = T->castAs<VectorType>()->getNumElements(); 1139 else 1140 llvm_unreachable("CheckImplicitInitList(): Illegal type"); 1141 1142 if (maxElements == 0) { 1143 if (!VerifyOnly) 1144 SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(), 1145 diag::err_implicit_empty_initializer); 1146 ++Index; 1147 hadError = true; 1148 return; 1149 } 1150 1151 // Build a structured initializer list corresponding to this subobject. 1152 InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit( 1153 ParentIList, Index, T, StructuredList, StructuredIndex, 1154 SourceRange(ParentIList->getInit(Index)->getBeginLoc(), 1155 ParentIList->getSourceRange().getEnd())); 1156 unsigned StructuredSubobjectInitIndex = 0; 1157 1158 // Check the element types and build the structural subobject. 1159 unsigned StartIndex = Index; 1160 CheckListElementTypes(Entity, ParentIList, T, 1161 /*SubobjectIsDesignatorContext=*/false, Index, 1162 StructuredSubobjectInitList, 1163 StructuredSubobjectInitIndex); 1164 1165 if (StructuredSubobjectInitList) { 1166 StructuredSubobjectInitList->setType(T); 1167 1168 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1); 1169 // Update the structured sub-object initializer so that it's ending 1170 // range corresponds with the end of the last initializer it used. 1171 if (EndIndex < ParentIList->getNumInits() && 1172 ParentIList->getInit(EndIndex)) { 1173 SourceLocation EndLoc 1174 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd(); 1175 StructuredSubobjectInitList->setRBraceLoc(EndLoc); 1176 } 1177 1178 // Complain about missing braces. 1179 if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) && 1180 !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) && 1181 !isIdiomaticBraceElisionEntity(Entity)) { 1182 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), 1183 diag::warn_missing_braces) 1184 << StructuredSubobjectInitList->getSourceRange() 1185 << FixItHint::CreateInsertion( 1186 StructuredSubobjectInitList->getBeginLoc(), "{") 1187 << FixItHint::CreateInsertion( 1188 SemaRef.getLocForEndOfToken( 1189 StructuredSubobjectInitList->getEndLoc()), 1190 "}"); 1191 } 1192 1193 // Warn if this type won't be an aggregate in future versions of C++. 1194 auto *CXXRD = T->getAsCXXRecordDecl(); 1195 if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) { 1196 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), 1197 diag::warn_cxx20_compat_aggregate_init_with_ctors) 1198 << StructuredSubobjectInitList->getSourceRange() << T; 1199 } 1200 } 1201 } 1202 1203 /// Warn that \p Entity was of scalar type and was initialized by a 1204 /// single-element braced initializer list. 1205 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity, 1206 SourceRange Braces) { 1207 // Don't warn during template instantiation. If the initialization was 1208 // non-dependent, we warned during the initial parse; otherwise, the 1209 // type might not be scalar in some uses of the template. 1210 if (S.inTemplateInstantiation()) 1211 return; 1212 1213 unsigned DiagID = 0; 1214 1215 switch (Entity.getKind()) { 1216 case InitializedEntity::EK_VectorElement: 1217 case InitializedEntity::EK_ComplexElement: 1218 case InitializedEntity::EK_ArrayElement: 1219 case InitializedEntity::EK_Parameter: 1220 case InitializedEntity::EK_Parameter_CF_Audited: 1221 case InitializedEntity::EK_TemplateParameter: 1222 case InitializedEntity::EK_Result: 1223 case InitializedEntity::EK_ParenAggInitMember: 1224 // Extra braces here are suspicious. 1225 DiagID = diag::warn_braces_around_init; 1226 break; 1227 1228 case InitializedEntity::EK_Member: 1229 // Warn on aggregate initialization but not on ctor init list or 1230 // default member initializer. 1231 if (Entity.getParent()) 1232 DiagID = diag::warn_braces_around_init; 1233 break; 1234 1235 case InitializedEntity::EK_Variable: 1236 case InitializedEntity::EK_LambdaCapture: 1237 // No warning, might be direct-list-initialization. 1238 // FIXME: Should we warn for copy-list-initialization in these cases? 1239 break; 1240 1241 case InitializedEntity::EK_New: 1242 case InitializedEntity::EK_Temporary: 1243 case InitializedEntity::EK_CompoundLiteralInit: 1244 // No warning, braces are part of the syntax of the underlying construct. 1245 break; 1246 1247 case InitializedEntity::EK_RelatedResult: 1248 // No warning, we already warned when initializing the result. 1249 break; 1250 1251 case InitializedEntity::EK_Exception: 1252 case InitializedEntity::EK_Base: 1253 case InitializedEntity::EK_Delegating: 1254 case InitializedEntity::EK_BlockElement: 1255 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 1256 case InitializedEntity::EK_Binding: 1257 case InitializedEntity::EK_StmtExprResult: 1258 llvm_unreachable("unexpected braced scalar init"); 1259 } 1260 1261 if (DiagID) { 1262 S.Diag(Braces.getBegin(), DiagID) 1263 << Entity.getType()->isSizelessBuiltinType() << Braces 1264 << FixItHint::CreateRemoval(Braces.getBegin()) 1265 << FixItHint::CreateRemoval(Braces.getEnd()); 1266 } 1267 } 1268 1269 /// Check whether the initializer \p IList (that was written with explicit 1270 /// braces) can be used to initialize an object of type \p T. 1271 /// 1272 /// This also fills in \p StructuredList with the fully-braced, desugared 1273 /// form of the initialization. 1274 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity, 1275 InitListExpr *IList, QualType &T, 1276 InitListExpr *StructuredList, 1277 bool TopLevelObject) { 1278 unsigned Index = 0, StructuredIndex = 0; 1279 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true, 1280 Index, StructuredList, StructuredIndex, TopLevelObject); 1281 if (StructuredList) { 1282 QualType ExprTy = T; 1283 if (!ExprTy->isArrayType()) 1284 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context); 1285 if (!VerifyOnly) 1286 IList->setType(ExprTy); 1287 StructuredList->setType(ExprTy); 1288 } 1289 if (hadError) 1290 return; 1291 1292 // Don't complain for incomplete types, since we'll get an error elsewhere. 1293 if (Index < IList->getNumInits() && !T->isIncompleteType()) { 1294 // We have leftover initializers 1295 bool ExtraInitsIsError = SemaRef.getLangOpts().CPlusPlus || 1296 (SemaRef.getLangOpts().OpenCL && T->isVectorType()); 1297 hadError = ExtraInitsIsError; 1298 if (VerifyOnly) { 1299 return; 1300 } else if (StructuredIndex == 1 && 1301 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) == 1302 SIF_None) { 1303 unsigned DK = 1304 ExtraInitsIsError 1305 ? diag::err_excess_initializers_in_char_array_initializer 1306 : diag::ext_excess_initializers_in_char_array_initializer; 1307 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1308 << IList->getInit(Index)->getSourceRange(); 1309 } else if (T->isSizelessBuiltinType()) { 1310 unsigned DK = ExtraInitsIsError 1311 ? diag::err_excess_initializers_for_sizeless_type 1312 : diag::ext_excess_initializers_for_sizeless_type; 1313 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1314 << T << IList->getInit(Index)->getSourceRange(); 1315 } else { 1316 int initKind = T->isArrayType() ? 0 : 1317 T->isVectorType() ? 1 : 1318 T->isScalarType() ? 2 : 1319 T->isUnionType() ? 3 : 1320 4; 1321 1322 unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers 1323 : diag::ext_excess_initializers; 1324 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1325 << initKind << IList->getInit(Index)->getSourceRange(); 1326 } 1327 } 1328 1329 if (!VerifyOnly) { 1330 if (T->isScalarType() && IList->getNumInits() == 1 && 1331 !isa<InitListExpr>(IList->getInit(0))) 1332 warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange()); 1333 1334 // Warn if this is a class type that won't be an aggregate in future 1335 // versions of C++. 1336 auto *CXXRD = T->getAsCXXRecordDecl(); 1337 if (CXXRD && CXXRD->hasUserDeclaredConstructor()) { 1338 // Don't warn if there's an equivalent default constructor that would be 1339 // used instead. 1340 bool HasEquivCtor = false; 1341 if (IList->getNumInits() == 0) { 1342 auto *CD = SemaRef.LookupDefaultConstructor(CXXRD); 1343 HasEquivCtor = CD && !CD->isDeleted(); 1344 } 1345 1346 if (!HasEquivCtor) { 1347 SemaRef.Diag(IList->getBeginLoc(), 1348 diag::warn_cxx20_compat_aggregate_init_with_ctors) 1349 << IList->getSourceRange() << T; 1350 } 1351 } 1352 } 1353 } 1354 1355 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity, 1356 InitListExpr *IList, 1357 QualType &DeclType, 1358 bool SubobjectIsDesignatorContext, 1359 unsigned &Index, 1360 InitListExpr *StructuredList, 1361 unsigned &StructuredIndex, 1362 bool TopLevelObject) { 1363 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) { 1364 // Explicitly braced initializer for complex type can be real+imaginary 1365 // parts. 1366 CheckComplexType(Entity, IList, DeclType, Index, 1367 StructuredList, StructuredIndex); 1368 } else if (DeclType->isScalarType()) { 1369 CheckScalarType(Entity, IList, DeclType, Index, 1370 StructuredList, StructuredIndex); 1371 } else if (DeclType->isVectorType()) { 1372 CheckVectorType(Entity, IList, DeclType, Index, 1373 StructuredList, StructuredIndex); 1374 } else if (const RecordDecl *RD = getRecordDecl(DeclType)) { 1375 auto Bases = 1376 CXXRecordDecl::base_class_const_range(CXXRecordDecl::base_class_const_iterator(), 1377 CXXRecordDecl::base_class_const_iterator()); 1378 if (DeclType->isRecordType()) { 1379 assert(DeclType->isAggregateType() && 1380 "non-aggregate records should be handed in CheckSubElementType"); 1381 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1382 Bases = CXXRD->bases(); 1383 } else { 1384 Bases = cast<CXXRecordDecl>(RD)->bases(); 1385 } 1386 CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(), 1387 SubobjectIsDesignatorContext, Index, StructuredList, 1388 StructuredIndex, TopLevelObject); 1389 } else if (DeclType->isArrayType()) { 1390 llvm::APSInt Zero( 1391 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()), 1392 false); 1393 CheckArrayType(Entity, IList, DeclType, Zero, 1394 SubobjectIsDesignatorContext, Index, 1395 StructuredList, StructuredIndex); 1396 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) { 1397 // This type is invalid, issue a diagnostic. 1398 ++Index; 1399 if (!VerifyOnly) 1400 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) 1401 << DeclType; 1402 hadError = true; 1403 } else if (DeclType->isReferenceType()) { 1404 CheckReferenceType(Entity, IList, DeclType, Index, 1405 StructuredList, StructuredIndex); 1406 } else if (DeclType->isObjCObjectType()) { 1407 if (!VerifyOnly) 1408 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType; 1409 hadError = true; 1410 } else if (DeclType->isOCLIntelSubgroupAVCType() || 1411 DeclType->isSizelessBuiltinType()) { 1412 // Checks for scalar type are sufficient for these types too. 1413 CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 1414 StructuredIndex); 1415 } else if (DeclType->isDependentType()) { 1416 // C++ [over.match.class.deduct]p1.5: 1417 // brace elision is not considered for any aggregate element that has a 1418 // dependent non-array type or an array type with a value-dependent bound 1419 ++Index; 1420 assert(AggrDeductionCandidateParamTypes); 1421 AggrDeductionCandidateParamTypes->push_back(DeclType); 1422 } else { 1423 if (!VerifyOnly) 1424 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) 1425 << DeclType; 1426 hadError = true; 1427 } 1428 } 1429 1430 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity, 1431 InitListExpr *IList, 1432 QualType ElemType, 1433 unsigned &Index, 1434 InitListExpr *StructuredList, 1435 unsigned &StructuredIndex, 1436 bool DirectlyDesignated) { 1437 Expr *expr = IList->getInit(Index); 1438 1439 if (ElemType->isReferenceType()) 1440 return CheckReferenceType(Entity, IList, ElemType, Index, 1441 StructuredList, StructuredIndex); 1442 1443 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) { 1444 if (SubInitList->getNumInits() == 1 && 1445 IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) == 1446 SIF_None) { 1447 // FIXME: It would be more faithful and no less correct to include an 1448 // InitListExpr in the semantic form of the initializer list in this case. 1449 expr = SubInitList->getInit(0); 1450 } 1451 // Nested aggregate initialization and C++ initialization are handled later. 1452 } else if (isa<ImplicitValueInitExpr>(expr)) { 1453 // This happens during template instantiation when we see an InitListExpr 1454 // that we've already checked once. 1455 assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) && 1456 "found implicit initialization for the wrong type"); 1457 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1458 ++Index; 1459 return; 1460 } 1461 1462 if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(expr)) { 1463 // C++ [dcl.init.aggr]p2: 1464 // Each member is copy-initialized from the corresponding 1465 // initializer-clause. 1466 1467 // FIXME: Better EqualLoc? 1468 InitializationKind Kind = 1469 InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation()); 1470 1471 // Vector elements can be initialized from other vectors in which case 1472 // we need initialization entity with a type of a vector (and not a vector 1473 // element!) initializing multiple vector elements. 1474 auto TmpEntity = 1475 (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType()) 1476 ? InitializedEntity::InitializeTemporary(ElemType) 1477 : Entity; 1478 1479 if (TmpEntity.getType()->isDependentType()) { 1480 // C++ [over.match.class.deduct]p1.5: 1481 // brace elision is not considered for any aggregate element that has a 1482 // dependent non-array type or an array type with a value-dependent 1483 // bound 1484 assert(AggrDeductionCandidateParamTypes); 1485 1486 // In the presence of a braced-init-list within the initializer, we should 1487 // not perform brace-elision, even if brace elision would otherwise be 1488 // applicable. For example, given: 1489 // 1490 // template <class T> struct Foo { 1491 // T t[2]; 1492 // }; 1493 // 1494 // Foo t = {{1, 2}}; 1495 // 1496 // we don't want the (T, T) but rather (T [2]) in terms of the initializer 1497 // {{1, 2}}. 1498 if (isa<InitListExpr, DesignatedInitExpr>(expr) || 1499 !isa_and_present<ConstantArrayType>( 1500 SemaRef.Context.getAsArrayType(ElemType))) { 1501 ++Index; 1502 AggrDeductionCandidateParamTypes->push_back(ElemType); 1503 return; 1504 } 1505 } else { 1506 InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr, 1507 /*TopLevelOfInitList*/ true); 1508 // C++14 [dcl.init.aggr]p13: 1509 // If the assignment-expression can initialize a member, the member is 1510 // initialized. Otherwise [...] brace elision is assumed 1511 // 1512 // Brace elision is never performed if the element is not an 1513 // assignment-expression. 1514 if (Seq || isa<InitListExpr>(expr)) { 1515 if (auto *Embed = dyn_cast<EmbedExpr>(expr)) { 1516 expr = HandleEmbed(Embed, Entity); 1517 } 1518 if (!VerifyOnly) { 1519 ExprResult Result = Seq.Perform(SemaRef, TmpEntity, Kind, expr); 1520 if (Result.isInvalid()) 1521 hadError = true; 1522 1523 UpdateStructuredListElement(StructuredList, StructuredIndex, 1524 Result.getAs<Expr>()); 1525 } else if (!Seq) { 1526 hadError = true; 1527 } else if (StructuredList) { 1528 UpdateStructuredListElement(StructuredList, StructuredIndex, 1529 getDummyInit()); 1530 } 1531 if (!CurEmbed) 1532 ++Index; 1533 if (AggrDeductionCandidateParamTypes) 1534 AggrDeductionCandidateParamTypes->push_back(ElemType); 1535 return; 1536 } 1537 } 1538 1539 // Fall through for subaggregate initialization 1540 } else if (ElemType->isScalarType() || ElemType->isAtomicType()) { 1541 // FIXME: Need to handle atomic aggregate types with implicit init lists. 1542 return CheckScalarType(Entity, IList, ElemType, Index, 1543 StructuredList, StructuredIndex); 1544 } else if (const ArrayType *arrayType = 1545 SemaRef.Context.getAsArrayType(ElemType)) { 1546 // arrayType can be incomplete if we're initializing a flexible 1547 // array member. There's nothing we can do with the completed 1548 // type here, though. 1549 1550 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) { 1551 // FIXME: Should we do this checking in verify-only mode? 1552 if (!VerifyOnly) 1553 CheckStringInit(expr, ElemType, arrayType, SemaRef, 1554 SemaRef.getLangOpts().C23 && 1555 initializingConstexprVariable(Entity)); 1556 if (StructuredList) 1557 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1558 ++Index; 1559 return; 1560 } 1561 1562 // Fall through for subaggregate initialization. 1563 1564 } else { 1565 assert((ElemType->isRecordType() || ElemType->isVectorType() || 1566 ElemType->isOpenCLSpecificType()) && "Unexpected type"); 1567 1568 // C99 6.7.8p13: 1569 // 1570 // The initializer for a structure or union object that has 1571 // automatic storage duration shall be either an initializer 1572 // list as described below, or a single expression that has 1573 // compatible structure or union type. In the latter case, the 1574 // initial value of the object, including unnamed members, is 1575 // that of the expression. 1576 ExprResult ExprRes = expr; 1577 if (SemaRef.CheckSingleAssignmentConstraints( 1578 ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) { 1579 if (ExprRes.isInvalid()) 1580 hadError = true; 1581 else { 1582 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get()); 1583 if (ExprRes.isInvalid()) 1584 hadError = true; 1585 } 1586 UpdateStructuredListElement(StructuredList, StructuredIndex, 1587 ExprRes.getAs<Expr>()); 1588 ++Index; 1589 return; 1590 } 1591 ExprRes.get(); 1592 // Fall through for subaggregate initialization 1593 } 1594 1595 // C++ [dcl.init.aggr]p12: 1596 // 1597 // [...] Otherwise, if the member is itself a non-empty 1598 // subaggregate, brace elision is assumed and the initializer is 1599 // considered for the initialization of the first member of 1600 // the subaggregate. 1601 // OpenCL vector initializer is handled elsewhere. 1602 if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) || 1603 ElemType->isAggregateType()) { 1604 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList, 1605 StructuredIndex); 1606 ++StructuredIndex; 1607 1608 // In C++20, brace elision is not permitted for a designated initializer. 1609 if (DirectlyDesignated && SemaRef.getLangOpts().CPlusPlus && !hadError) { 1610 if (InOverloadResolution) 1611 hadError = true; 1612 if (!VerifyOnly) { 1613 SemaRef.Diag(expr->getBeginLoc(), 1614 diag::ext_designated_init_brace_elision) 1615 << expr->getSourceRange() 1616 << FixItHint::CreateInsertion(expr->getBeginLoc(), "{") 1617 << FixItHint::CreateInsertion( 1618 SemaRef.getLocForEndOfToken(expr->getEndLoc()), "}"); 1619 } 1620 } 1621 } else { 1622 if (!VerifyOnly) { 1623 // We cannot initialize this element, so let PerformCopyInitialization 1624 // produce the appropriate diagnostic. We already checked that this 1625 // initialization will fail. 1626 ExprResult Copy = 1627 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr, 1628 /*TopLevelOfInitList=*/true); 1629 (void)Copy; 1630 assert(Copy.isInvalid() && 1631 "expected non-aggregate initialization to fail"); 1632 } 1633 hadError = true; 1634 ++Index; 1635 ++StructuredIndex; 1636 } 1637 } 1638 1639 void InitListChecker::CheckComplexType(const InitializedEntity &Entity, 1640 InitListExpr *IList, QualType DeclType, 1641 unsigned &Index, 1642 InitListExpr *StructuredList, 1643 unsigned &StructuredIndex) { 1644 assert(Index == 0 && "Index in explicit init list must be zero"); 1645 1646 // As an extension, clang supports complex initializers, which initialize 1647 // a complex number component-wise. When an explicit initializer list for 1648 // a complex number contains two initializers, this extension kicks in: 1649 // it expects the initializer list to contain two elements convertible to 1650 // the element type of the complex type. The first element initializes 1651 // the real part, and the second element intitializes the imaginary part. 1652 1653 if (IList->getNumInits() < 2) 1654 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 1655 StructuredIndex); 1656 1657 // This is an extension in C. (The builtin _Complex type does not exist 1658 // in the C++ standard.) 1659 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly) 1660 SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init) 1661 << IList->getSourceRange(); 1662 1663 // Initialize the complex number. 1664 QualType elementType = DeclType->castAs<ComplexType>()->getElementType(); 1665 InitializedEntity ElementEntity = 1666 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1667 1668 for (unsigned i = 0; i < 2; ++i) { 1669 ElementEntity.setElementIndex(Index); 1670 CheckSubElementType(ElementEntity, IList, elementType, Index, 1671 StructuredList, StructuredIndex); 1672 } 1673 } 1674 1675 void InitListChecker::CheckScalarType(const InitializedEntity &Entity, 1676 InitListExpr *IList, QualType DeclType, 1677 unsigned &Index, 1678 InitListExpr *StructuredList, 1679 unsigned &StructuredIndex) { 1680 if (Index >= IList->getNumInits()) { 1681 if (!VerifyOnly) { 1682 if (SemaRef.getLangOpts().CPlusPlus) { 1683 if (DeclType->isSizelessBuiltinType()) 1684 SemaRef.Diag(IList->getBeginLoc(), 1685 SemaRef.getLangOpts().CPlusPlus11 1686 ? diag::warn_cxx98_compat_empty_sizeless_initializer 1687 : diag::err_empty_sizeless_initializer) 1688 << DeclType << IList->getSourceRange(); 1689 else 1690 SemaRef.Diag(IList->getBeginLoc(), 1691 SemaRef.getLangOpts().CPlusPlus11 1692 ? diag::warn_cxx98_compat_empty_scalar_initializer 1693 : diag::err_empty_scalar_initializer) 1694 << IList->getSourceRange(); 1695 } 1696 } 1697 hadError = 1698 SemaRef.getLangOpts().CPlusPlus && !SemaRef.getLangOpts().CPlusPlus11; 1699 ++Index; 1700 ++StructuredIndex; 1701 return; 1702 } 1703 1704 Expr *expr = IList->getInit(Index); 1705 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) { 1706 // FIXME: This is invalid, and accepting it causes overload resolution 1707 // to pick the wrong overload in some corner cases. 1708 if (!VerifyOnly) 1709 SemaRef.Diag(SubIList->getBeginLoc(), diag::ext_many_braces_around_init) 1710 << DeclType->isSizelessBuiltinType() << SubIList->getSourceRange(); 1711 1712 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList, 1713 StructuredIndex); 1714 return; 1715 } else if (isa<DesignatedInitExpr>(expr)) { 1716 if (!VerifyOnly) 1717 SemaRef.Diag(expr->getBeginLoc(), 1718 diag::err_designator_for_scalar_or_sizeless_init) 1719 << DeclType->isSizelessBuiltinType() << DeclType 1720 << expr->getSourceRange(); 1721 hadError = true; 1722 ++Index; 1723 ++StructuredIndex; 1724 return; 1725 } else if (auto *Embed = dyn_cast<EmbedExpr>(expr)) { 1726 expr = HandleEmbed(Embed, Entity); 1727 } 1728 1729 ExprResult Result; 1730 if (VerifyOnly) { 1731 if (SemaRef.CanPerformCopyInitialization(Entity, expr)) 1732 Result = getDummyInit(); 1733 else 1734 Result = ExprError(); 1735 } else { 1736 Result = 1737 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, 1738 /*TopLevelOfInitList=*/true); 1739 } 1740 1741 Expr *ResultExpr = nullptr; 1742 1743 if (Result.isInvalid()) 1744 hadError = true; // types weren't compatible. 1745 else { 1746 ResultExpr = Result.getAs<Expr>(); 1747 1748 if (ResultExpr != expr && !VerifyOnly && !CurEmbed) { 1749 // The type was promoted, update initializer list. 1750 // FIXME: Why are we updating the syntactic init list? 1751 IList->setInit(Index, ResultExpr); 1752 } 1753 } 1754 1755 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); 1756 if (!CurEmbed) 1757 ++Index; 1758 if (AggrDeductionCandidateParamTypes) 1759 AggrDeductionCandidateParamTypes->push_back(DeclType); 1760 } 1761 1762 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity, 1763 InitListExpr *IList, QualType DeclType, 1764 unsigned &Index, 1765 InitListExpr *StructuredList, 1766 unsigned &StructuredIndex) { 1767 if (Index >= IList->getNumInits()) { 1768 // FIXME: It would be wonderful if we could point at the actual member. In 1769 // general, it would be useful to pass location information down the stack, 1770 // so that we know the location (or decl) of the "current object" being 1771 // initialized. 1772 if (!VerifyOnly) 1773 SemaRef.Diag(IList->getBeginLoc(), 1774 diag::err_init_reference_member_uninitialized) 1775 << DeclType << IList->getSourceRange(); 1776 hadError = true; 1777 ++Index; 1778 ++StructuredIndex; 1779 return; 1780 } 1781 1782 Expr *expr = IList->getInit(Index); 1783 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) { 1784 if (!VerifyOnly) 1785 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list) 1786 << DeclType << IList->getSourceRange(); 1787 hadError = true; 1788 ++Index; 1789 ++StructuredIndex; 1790 return; 1791 } 1792 1793 ExprResult Result; 1794 if (VerifyOnly) { 1795 if (SemaRef.CanPerformCopyInitialization(Entity,expr)) 1796 Result = getDummyInit(); 1797 else 1798 Result = ExprError(); 1799 } else { 1800 Result = 1801 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, 1802 /*TopLevelOfInitList=*/true); 1803 } 1804 1805 if (Result.isInvalid()) 1806 hadError = true; 1807 1808 expr = Result.getAs<Expr>(); 1809 // FIXME: Why are we updating the syntactic init list? 1810 if (!VerifyOnly && expr) 1811 IList->setInit(Index, expr); 1812 1813 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1814 ++Index; 1815 if (AggrDeductionCandidateParamTypes) 1816 AggrDeductionCandidateParamTypes->push_back(DeclType); 1817 } 1818 1819 void InitListChecker::CheckVectorType(const InitializedEntity &Entity, 1820 InitListExpr *IList, QualType DeclType, 1821 unsigned &Index, 1822 InitListExpr *StructuredList, 1823 unsigned &StructuredIndex) { 1824 const VectorType *VT = DeclType->castAs<VectorType>(); 1825 unsigned maxElements = VT->getNumElements(); 1826 unsigned numEltsInit = 0; 1827 QualType elementType = VT->getElementType(); 1828 1829 if (Index >= IList->getNumInits()) { 1830 // Make sure the element type can be value-initialized. 1831 CheckEmptyInitializable( 1832 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 1833 IList->getEndLoc()); 1834 return; 1835 } 1836 1837 if (!SemaRef.getLangOpts().OpenCL && !SemaRef.getLangOpts().HLSL ) { 1838 // If the initializing element is a vector, try to copy-initialize 1839 // instead of breaking it apart (which is doomed to failure anyway). 1840 Expr *Init = IList->getInit(Index); 1841 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) { 1842 ExprResult Result; 1843 if (VerifyOnly) { 1844 if (SemaRef.CanPerformCopyInitialization(Entity, Init)) 1845 Result = getDummyInit(); 1846 else 1847 Result = ExprError(); 1848 } else { 1849 Result = 1850 SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init, 1851 /*TopLevelOfInitList=*/true); 1852 } 1853 1854 Expr *ResultExpr = nullptr; 1855 if (Result.isInvalid()) 1856 hadError = true; // types weren't compatible. 1857 else { 1858 ResultExpr = Result.getAs<Expr>(); 1859 1860 if (ResultExpr != Init && !VerifyOnly) { 1861 // The type was promoted, update initializer list. 1862 // FIXME: Why are we updating the syntactic init list? 1863 IList->setInit(Index, ResultExpr); 1864 } 1865 } 1866 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); 1867 ++Index; 1868 if (AggrDeductionCandidateParamTypes) 1869 AggrDeductionCandidateParamTypes->push_back(elementType); 1870 return; 1871 } 1872 1873 InitializedEntity ElementEntity = 1874 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1875 1876 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) { 1877 // Don't attempt to go past the end of the init list 1878 if (Index >= IList->getNumInits()) { 1879 CheckEmptyInitializable(ElementEntity, IList->getEndLoc()); 1880 break; 1881 } 1882 1883 ElementEntity.setElementIndex(Index); 1884 CheckSubElementType(ElementEntity, IList, elementType, Index, 1885 StructuredList, StructuredIndex); 1886 } 1887 1888 if (VerifyOnly) 1889 return; 1890 1891 bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian(); 1892 const VectorType *T = Entity.getType()->castAs<VectorType>(); 1893 if (isBigEndian && (T->getVectorKind() == VectorKind::Neon || 1894 T->getVectorKind() == VectorKind::NeonPoly)) { 1895 // The ability to use vector initializer lists is a GNU vector extension 1896 // and is unrelated to the NEON intrinsics in arm_neon.h. On little 1897 // endian machines it works fine, however on big endian machines it 1898 // exhibits surprising behaviour: 1899 // 1900 // uint32x2_t x = {42, 64}; 1901 // return vget_lane_u32(x, 0); // Will return 64. 1902 // 1903 // Because of this, explicitly call out that it is non-portable. 1904 // 1905 SemaRef.Diag(IList->getBeginLoc(), 1906 diag::warn_neon_vector_initializer_non_portable); 1907 1908 const char *typeCode; 1909 unsigned typeSize = SemaRef.Context.getTypeSize(elementType); 1910 1911 if (elementType->isFloatingType()) 1912 typeCode = "f"; 1913 else if (elementType->isSignedIntegerType()) 1914 typeCode = "s"; 1915 else if (elementType->isUnsignedIntegerType()) 1916 typeCode = "u"; 1917 else 1918 llvm_unreachable("Invalid element type!"); 1919 1920 SemaRef.Diag(IList->getBeginLoc(), 1921 SemaRef.Context.getTypeSize(VT) > 64 1922 ? diag::note_neon_vector_initializer_non_portable_q 1923 : diag::note_neon_vector_initializer_non_portable) 1924 << typeCode << typeSize; 1925 } 1926 1927 return; 1928 } 1929 1930 InitializedEntity ElementEntity = 1931 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1932 1933 // OpenCL and HLSL initializers allow vectors to be constructed from vectors. 1934 for (unsigned i = 0; i < maxElements; ++i) { 1935 // Don't attempt to go past the end of the init list 1936 if (Index >= IList->getNumInits()) 1937 break; 1938 1939 ElementEntity.setElementIndex(Index); 1940 1941 QualType IType = IList->getInit(Index)->getType(); 1942 if (!IType->isVectorType()) { 1943 CheckSubElementType(ElementEntity, IList, elementType, Index, 1944 StructuredList, StructuredIndex); 1945 ++numEltsInit; 1946 } else { 1947 QualType VecType; 1948 const VectorType *IVT = IType->castAs<VectorType>(); 1949 unsigned numIElts = IVT->getNumElements(); 1950 1951 if (IType->isExtVectorType()) 1952 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts); 1953 else 1954 VecType = SemaRef.Context.getVectorType(elementType, numIElts, 1955 IVT->getVectorKind()); 1956 CheckSubElementType(ElementEntity, IList, VecType, Index, 1957 StructuredList, StructuredIndex); 1958 numEltsInit += numIElts; 1959 } 1960 } 1961 1962 // OpenCL and HLSL require all elements to be initialized. 1963 if (numEltsInit != maxElements) { 1964 if (!VerifyOnly) 1965 SemaRef.Diag(IList->getBeginLoc(), 1966 diag::err_vector_incorrect_num_initializers) 1967 << (numEltsInit < maxElements) << maxElements << numEltsInit; 1968 hadError = true; 1969 } 1970 } 1971 1972 /// Check if the type of a class element has an accessible destructor, and marks 1973 /// it referenced. Returns true if we shouldn't form a reference to the 1974 /// destructor. 1975 /// 1976 /// Aggregate initialization requires a class element's destructor be 1977 /// accessible per 11.6.1 [dcl.init.aggr]: 1978 /// 1979 /// The destructor for each element of class type is potentially invoked 1980 /// (15.4 [class.dtor]) from the context where the aggregate initialization 1981 /// occurs. 1982 static bool checkDestructorReference(QualType ElementType, SourceLocation Loc, 1983 Sema &SemaRef) { 1984 auto *CXXRD = ElementType->getAsCXXRecordDecl(); 1985 if (!CXXRD) 1986 return false; 1987 1988 CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD); 1989 SemaRef.CheckDestructorAccess(Loc, Destructor, 1990 SemaRef.PDiag(diag::err_access_dtor_temp) 1991 << ElementType); 1992 SemaRef.MarkFunctionReferenced(Loc, Destructor); 1993 return SemaRef.DiagnoseUseOfDecl(Destructor, Loc); 1994 } 1995 1996 static bool 1997 canInitializeArrayWithEmbedDataString(ArrayRef<Expr *> ExprList, 1998 const InitializedEntity &Entity, 1999 ASTContext &Context) { 2000 QualType InitType = Entity.getType(); 2001 const InitializedEntity *Parent = &Entity; 2002 2003 while (Parent) { 2004 InitType = Parent->getType(); 2005 Parent = Parent->getParent(); 2006 } 2007 2008 // Only one initializer, it's an embed and the types match; 2009 EmbedExpr *EE = 2010 ExprList.size() == 1 2011 ? dyn_cast_if_present<EmbedExpr>(ExprList[0]->IgnoreParens()) 2012 : nullptr; 2013 if (!EE) 2014 return false; 2015 2016 if (InitType->isArrayType()) { 2017 const ArrayType *InitArrayType = InitType->getAsArrayTypeUnsafe(); 2018 QualType InitElementTy = InitArrayType->getElementType(); 2019 QualType EmbedExprElementTy = EE->getDataStringLiteral()->getType(); 2020 const bool TypesMatch = 2021 Context.typesAreCompatible(InitElementTy, EmbedExprElementTy) || 2022 (InitElementTy->isCharType() && EmbedExprElementTy->isCharType()); 2023 if (TypesMatch) 2024 return true; 2025 } 2026 return false; 2027 } 2028 2029 void InitListChecker::CheckArrayType(const InitializedEntity &Entity, 2030 InitListExpr *IList, QualType &DeclType, 2031 llvm::APSInt elementIndex, 2032 bool SubobjectIsDesignatorContext, 2033 unsigned &Index, 2034 InitListExpr *StructuredList, 2035 unsigned &StructuredIndex) { 2036 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType); 2037 2038 if (!VerifyOnly) { 2039 if (checkDestructorReference(arrayType->getElementType(), 2040 IList->getEndLoc(), SemaRef)) { 2041 hadError = true; 2042 return; 2043 } 2044 } 2045 2046 if (canInitializeArrayWithEmbedDataString(IList->inits(), Entity, 2047 SemaRef.Context)) { 2048 EmbedExpr *Embed = cast<EmbedExpr>(IList->inits()[0]); 2049 IList->setInit(0, Embed->getDataStringLiteral()); 2050 } 2051 2052 // Check for the special-case of initializing an array with a string. 2053 if (Index < IList->getNumInits()) { 2054 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) == 2055 SIF_None) { 2056 // We place the string literal directly into the resulting 2057 // initializer list. This is the only place where the structure 2058 // of the structured initializer list doesn't match exactly, 2059 // because doing so would involve allocating one character 2060 // constant for each string. 2061 // FIXME: Should we do these checks in verify-only mode too? 2062 if (!VerifyOnly) 2063 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef, 2064 SemaRef.getLangOpts().C23 && 2065 initializingConstexprVariable(Entity)); 2066 if (StructuredList) { 2067 UpdateStructuredListElement(StructuredList, StructuredIndex, 2068 IList->getInit(Index)); 2069 StructuredList->resizeInits(SemaRef.Context, StructuredIndex); 2070 } 2071 ++Index; 2072 if (AggrDeductionCandidateParamTypes) 2073 AggrDeductionCandidateParamTypes->push_back(DeclType); 2074 return; 2075 } 2076 } 2077 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) { 2078 // Check for VLAs; in standard C it would be possible to check this 2079 // earlier, but I don't know where clang accepts VLAs (gcc accepts 2080 // them in all sorts of strange places). 2081 bool HasErr = IList->getNumInits() != 0 || SemaRef.getLangOpts().CPlusPlus; 2082 if (!VerifyOnly) { 2083 // C23 6.7.10p4: An entity of variable length array type shall not be 2084 // initialized except by an empty initializer. 2085 // 2086 // The C extension warnings are issued from ParseBraceInitializer() and 2087 // do not need to be issued here. However, we continue to issue an error 2088 // in the case there are initializers or we are compiling C++. We allow 2089 // use of VLAs in C++, but it's not clear we want to allow {} to zero 2090 // init a VLA in C++ in all cases (such as with non-trivial constructors). 2091 // FIXME: should we allow this construct in C++ when it makes sense to do 2092 // so? 2093 if (HasErr) 2094 SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(), 2095 diag::err_variable_object_no_init) 2096 << VAT->getSizeExpr()->getSourceRange(); 2097 } 2098 hadError = HasErr; 2099 ++Index; 2100 ++StructuredIndex; 2101 return; 2102 } 2103 2104 // We might know the maximum number of elements in advance. 2105 llvm::APSInt maxElements(elementIndex.getBitWidth(), 2106 elementIndex.isUnsigned()); 2107 bool maxElementsKnown = false; 2108 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) { 2109 maxElements = CAT->getSize(); 2110 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth()); 2111 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 2112 maxElementsKnown = true; 2113 } 2114 2115 QualType elementType = arrayType->getElementType(); 2116 while (Index < IList->getNumInits()) { 2117 Expr *Init = IList->getInit(Index); 2118 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 2119 // If we're not the subobject that matches up with the '{' for 2120 // the designator, we shouldn't be handling the 2121 // designator. Return immediately. 2122 if (!SubobjectIsDesignatorContext) 2123 return; 2124 2125 // Handle this designated initializer. elementIndex will be 2126 // updated to be the next array element we'll initialize. 2127 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 2128 DeclType, nullptr, &elementIndex, Index, 2129 StructuredList, StructuredIndex, true, 2130 false)) { 2131 hadError = true; 2132 continue; 2133 } 2134 2135 if (elementIndex.getBitWidth() > maxElements.getBitWidth()) 2136 maxElements = maxElements.extend(elementIndex.getBitWidth()); 2137 else if (elementIndex.getBitWidth() < maxElements.getBitWidth()) 2138 elementIndex = elementIndex.extend(maxElements.getBitWidth()); 2139 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 2140 2141 // If the array is of incomplete type, keep track of the number of 2142 // elements in the initializer. 2143 if (!maxElementsKnown && elementIndex > maxElements) 2144 maxElements = elementIndex; 2145 2146 continue; 2147 } 2148 2149 // If we know the maximum number of elements, and we've already 2150 // hit it, stop consuming elements in the initializer list. 2151 if (maxElementsKnown && elementIndex == maxElements) 2152 break; 2153 2154 InitializedEntity ElementEntity = InitializedEntity::InitializeElement( 2155 SemaRef.Context, StructuredIndex, Entity); 2156 2157 unsigned EmbedElementIndexBeforeInit = CurEmbedIndex; 2158 // Check this element. 2159 CheckSubElementType(ElementEntity, IList, elementType, Index, 2160 StructuredList, StructuredIndex); 2161 ++elementIndex; 2162 if ((CurEmbed || isa<EmbedExpr>(Init)) && elementType->isScalarType()) { 2163 if (CurEmbed) { 2164 elementIndex = 2165 elementIndex + CurEmbedIndex - EmbedElementIndexBeforeInit - 1; 2166 } else { 2167 auto Embed = cast<EmbedExpr>(Init); 2168 elementIndex = elementIndex + Embed->getDataElementCount() - 2169 EmbedElementIndexBeforeInit - 1; 2170 } 2171 } 2172 2173 // If the array is of incomplete type, keep track of the number of 2174 // elements in the initializer. 2175 if (!maxElementsKnown && elementIndex > maxElements) 2176 maxElements = elementIndex; 2177 } 2178 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) { 2179 // If this is an incomplete array type, the actual type needs to 2180 // be calculated here. 2181 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned()); 2182 if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) { 2183 // Sizing an array implicitly to zero is not allowed by ISO C, 2184 // but is supported by GNU. 2185 SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size); 2186 } 2187 2188 DeclType = SemaRef.Context.getConstantArrayType( 2189 elementType, maxElements, nullptr, ArraySizeModifier::Normal, 0); 2190 } 2191 if (!hadError) { 2192 // If there are any members of the array that get value-initialized, check 2193 // that is possible. That happens if we know the bound and don't have 2194 // enough elements, or if we're performing an array new with an unknown 2195 // bound. 2196 if ((maxElementsKnown && elementIndex < maxElements) || 2197 Entity.isVariableLengthArrayNew()) 2198 CheckEmptyInitializable( 2199 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 2200 IList->getEndLoc()); 2201 } 2202 } 2203 2204 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity, 2205 Expr *InitExpr, 2206 FieldDecl *Field, 2207 bool TopLevelObject) { 2208 // Handle GNU flexible array initializers. 2209 unsigned FlexArrayDiag; 2210 if (isa<InitListExpr>(InitExpr) && 2211 cast<InitListExpr>(InitExpr)->getNumInits() == 0) { 2212 // Empty flexible array init always allowed as an extension 2213 FlexArrayDiag = diag::ext_flexible_array_init; 2214 } else if (!TopLevelObject) { 2215 // Disallow flexible array init on non-top-level object 2216 FlexArrayDiag = diag::err_flexible_array_init; 2217 } else if (Entity.getKind() != InitializedEntity::EK_Variable) { 2218 // Disallow flexible array init on anything which is not a variable. 2219 FlexArrayDiag = diag::err_flexible_array_init; 2220 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) { 2221 // Disallow flexible array init on local variables. 2222 FlexArrayDiag = diag::err_flexible_array_init; 2223 } else { 2224 // Allow other cases. 2225 FlexArrayDiag = diag::ext_flexible_array_init; 2226 } 2227 2228 if (!VerifyOnly) { 2229 SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag) 2230 << InitExpr->getBeginLoc(); 2231 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2232 << Field; 2233 } 2234 2235 return FlexArrayDiag != diag::ext_flexible_array_init; 2236 } 2237 2238 void InitListChecker::CheckStructUnionTypes( 2239 const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType, 2240 CXXRecordDecl::base_class_const_range Bases, RecordDecl::field_iterator Field, 2241 bool SubobjectIsDesignatorContext, unsigned &Index, 2242 InitListExpr *StructuredList, unsigned &StructuredIndex, 2243 bool TopLevelObject) { 2244 const RecordDecl *RD = getRecordDecl(DeclType); 2245 2246 // If the record is invalid, some of it's members are invalid. To avoid 2247 // confusion, we forgo checking the initializer for the entire record. 2248 if (RD->isInvalidDecl()) { 2249 // Assume it was supposed to consume a single initializer. 2250 ++Index; 2251 hadError = true; 2252 return; 2253 } 2254 2255 if (RD->isUnion() && IList->getNumInits() == 0) { 2256 if (!VerifyOnly) 2257 for (FieldDecl *FD : RD->fields()) { 2258 QualType ET = SemaRef.Context.getBaseElementType(FD->getType()); 2259 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { 2260 hadError = true; 2261 return; 2262 } 2263 } 2264 2265 // If there's a default initializer, use it. 2266 if (isa<CXXRecordDecl>(RD) && 2267 cast<CXXRecordDecl>(RD)->hasInClassInitializer()) { 2268 if (!StructuredList) 2269 return; 2270 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 2271 Field != FieldEnd; ++Field) { 2272 if (Field->hasInClassInitializer() || 2273 (Field->isAnonymousStructOrUnion() && 2274 Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) { 2275 StructuredList->setInitializedFieldInUnion(*Field); 2276 // FIXME: Actually build a CXXDefaultInitExpr? 2277 return; 2278 } 2279 } 2280 llvm_unreachable("Couldn't find in-class initializer"); 2281 } 2282 2283 // Value-initialize the first member of the union that isn't an unnamed 2284 // bitfield. 2285 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 2286 Field != FieldEnd; ++Field) { 2287 if (!Field->isUnnamedBitField()) { 2288 CheckEmptyInitializable( 2289 InitializedEntity::InitializeMember(*Field, &Entity), 2290 IList->getEndLoc()); 2291 if (StructuredList) 2292 StructuredList->setInitializedFieldInUnion(*Field); 2293 break; 2294 } 2295 } 2296 return; 2297 } 2298 2299 bool InitializedSomething = false; 2300 2301 // If we have any base classes, they are initialized prior to the fields. 2302 for (auto I = Bases.begin(), E = Bases.end(); I != E; ++I) { 2303 auto &Base = *I; 2304 Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr; 2305 2306 // Designated inits always initialize fields, so if we see one, all 2307 // remaining base classes have no explicit initializer. 2308 if (isa_and_nonnull<DesignatedInitExpr>(Init)) 2309 Init = nullptr; 2310 2311 // C++ [over.match.class.deduct]p1.6: 2312 // each non-trailing aggregate element that is a pack expansion is assumed 2313 // to correspond to no elements of the initializer list, and (1.7) a 2314 // trailing aggregate element that is a pack expansion is assumed to 2315 // correspond to all remaining elements of the initializer list (if any). 2316 2317 // C++ [over.match.class.deduct]p1.9: 2318 // ... except that additional parameter packs of the form P_j... are 2319 // inserted into the parameter list in their original aggregate element 2320 // position corresponding to each non-trailing aggregate element of 2321 // type P_j that was skipped because it was a parameter pack, and the 2322 // trailing sequence of parameters corresponding to a trailing 2323 // aggregate element that is a pack expansion (if any) is replaced 2324 // by a single parameter of the form T_n.... 2325 if (AggrDeductionCandidateParamTypes && Base.isPackExpansion()) { 2326 AggrDeductionCandidateParamTypes->push_back( 2327 SemaRef.Context.getPackExpansionType(Base.getType(), std::nullopt)); 2328 2329 // Trailing pack expansion 2330 if (I + 1 == E && RD->field_empty()) { 2331 if (Index < IList->getNumInits()) 2332 Index = IList->getNumInits(); 2333 return; 2334 } 2335 2336 continue; 2337 } 2338 2339 SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc(); 2340 InitializedEntity BaseEntity = InitializedEntity::InitializeBase( 2341 SemaRef.Context, &Base, false, &Entity); 2342 if (Init) { 2343 CheckSubElementType(BaseEntity, IList, Base.getType(), Index, 2344 StructuredList, StructuredIndex); 2345 InitializedSomething = true; 2346 } else { 2347 CheckEmptyInitializable(BaseEntity, InitLoc); 2348 } 2349 2350 if (!VerifyOnly) 2351 if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) { 2352 hadError = true; 2353 return; 2354 } 2355 } 2356 2357 // If structDecl is a forward declaration, this loop won't do 2358 // anything except look at designated initializers; That's okay, 2359 // because an error should get printed out elsewhere. It might be 2360 // worthwhile to skip over the rest of the initializer, though. 2361 RecordDecl::field_iterator FieldEnd = RD->field_end(); 2362 size_t NumRecordDecls = llvm::count_if(RD->decls(), [&](const Decl *D) { 2363 return isa<FieldDecl>(D) || isa<RecordDecl>(D); 2364 }); 2365 bool HasDesignatedInit = false; 2366 2367 llvm::SmallPtrSet<FieldDecl *, 4> InitializedFields; 2368 2369 while (Index < IList->getNumInits()) { 2370 Expr *Init = IList->getInit(Index); 2371 SourceLocation InitLoc = Init->getBeginLoc(); 2372 2373 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 2374 // If we're not the subobject that matches up with the '{' for 2375 // the designator, we shouldn't be handling the 2376 // designator. Return immediately. 2377 if (!SubobjectIsDesignatorContext) 2378 return; 2379 2380 HasDesignatedInit = true; 2381 2382 // Handle this designated initializer. Field will be updated to 2383 // the next field that we'll be initializing. 2384 bool DesignatedInitFailed = CheckDesignatedInitializer( 2385 Entity, IList, DIE, 0, DeclType, &Field, nullptr, Index, 2386 StructuredList, StructuredIndex, true, TopLevelObject); 2387 if (DesignatedInitFailed) 2388 hadError = true; 2389 2390 // Find the field named by the designated initializer. 2391 DesignatedInitExpr::Designator *D = DIE->getDesignator(0); 2392 if (!VerifyOnly && D->isFieldDesignator()) { 2393 FieldDecl *F = D->getFieldDecl(); 2394 InitializedFields.insert(F); 2395 if (!DesignatedInitFailed) { 2396 QualType ET = SemaRef.Context.getBaseElementType(F->getType()); 2397 if (checkDestructorReference(ET, InitLoc, SemaRef)) { 2398 hadError = true; 2399 return; 2400 } 2401 } 2402 } 2403 2404 InitializedSomething = true; 2405 continue; 2406 } 2407 2408 // Check if this is an initializer of forms: 2409 // 2410 // struct foo f = {}; 2411 // struct foo g = {0}; 2412 // 2413 // These are okay for randomized structures. [C99 6.7.8p19] 2414 // 2415 // Also, if there is only one element in the structure, we allow something 2416 // like this, because it's really not randomized in the traditional sense. 2417 // 2418 // struct foo h = {bar}; 2419 auto IsZeroInitializer = [&](const Expr *I) { 2420 if (IList->getNumInits() == 1) { 2421 if (NumRecordDecls == 1) 2422 return true; 2423 if (const auto *IL = dyn_cast<IntegerLiteral>(I)) 2424 return IL->getValue().isZero(); 2425 } 2426 return false; 2427 }; 2428 2429 // Don't allow non-designated initializers on randomized structures. 2430 if (RD->isRandomized() && !IsZeroInitializer(Init)) { 2431 if (!VerifyOnly) 2432 SemaRef.Diag(InitLoc, diag::err_non_designated_init_used); 2433 hadError = true; 2434 break; 2435 } 2436 2437 if (Field == FieldEnd) { 2438 // We've run out of fields. We're done. 2439 break; 2440 } 2441 2442 // We've already initialized a member of a union. We can stop entirely. 2443 if (InitializedSomething && RD->isUnion()) 2444 return; 2445 2446 // Stop if we've hit a flexible array member. 2447 if (Field->getType()->isIncompleteArrayType()) 2448 break; 2449 2450 if (Field->isUnnamedBitField()) { 2451 // Don't initialize unnamed bitfields, e.g. "int : 20;" 2452 ++Field; 2453 continue; 2454 } 2455 2456 // Make sure we can use this declaration. 2457 bool InvalidUse; 2458 if (VerifyOnly) 2459 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); 2460 else 2461 InvalidUse = SemaRef.DiagnoseUseOfDecl( 2462 *Field, IList->getInit(Index)->getBeginLoc()); 2463 if (InvalidUse) { 2464 ++Index; 2465 ++Field; 2466 hadError = true; 2467 continue; 2468 } 2469 2470 if (!VerifyOnly) { 2471 QualType ET = SemaRef.Context.getBaseElementType(Field->getType()); 2472 if (checkDestructorReference(ET, InitLoc, SemaRef)) { 2473 hadError = true; 2474 return; 2475 } 2476 } 2477 2478 InitializedEntity MemberEntity = 2479 InitializedEntity::InitializeMember(*Field, &Entity); 2480 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2481 StructuredList, StructuredIndex); 2482 InitializedSomething = true; 2483 InitializedFields.insert(*Field); 2484 2485 if (RD->isUnion() && StructuredList) { 2486 // Initialize the first field within the union. 2487 StructuredList->setInitializedFieldInUnion(*Field); 2488 } 2489 2490 ++Field; 2491 } 2492 2493 // Emit warnings for missing struct field initializers. 2494 // This check is disabled for designated initializers in C. 2495 // This matches gcc behaviour. 2496 bool IsCDesignatedInitializer = 2497 HasDesignatedInit && !SemaRef.getLangOpts().CPlusPlus; 2498 if (!VerifyOnly && InitializedSomething && !RD->isUnion() && 2499 !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) && 2500 !IsCDesignatedInitializer) { 2501 // It is possible we have one or more unnamed bitfields remaining. 2502 // Find first (if any) named field and emit warning. 2503 for (RecordDecl::field_iterator it = HasDesignatedInit ? RD->field_begin() 2504 : Field, 2505 end = RD->field_end(); 2506 it != end; ++it) { 2507 if (HasDesignatedInit && InitializedFields.count(*it)) 2508 continue; 2509 2510 if (!it->isUnnamedBitField() && !it->hasInClassInitializer() && 2511 !it->getType()->isIncompleteArrayType()) { 2512 auto Diag = HasDesignatedInit 2513 ? diag::warn_missing_designated_field_initializers 2514 : diag::warn_missing_field_initializers; 2515 SemaRef.Diag(IList->getSourceRange().getEnd(), Diag) << *it; 2516 break; 2517 } 2518 } 2519 } 2520 2521 // Check that any remaining fields can be value-initialized if we're not 2522 // building a structured list. (If we are, we'll check this later.) 2523 if (!StructuredList && Field != FieldEnd && !RD->isUnion() && 2524 !Field->getType()->isIncompleteArrayType()) { 2525 for (; Field != FieldEnd && !hadError; ++Field) { 2526 if (!Field->isUnnamedBitField() && !Field->hasInClassInitializer()) 2527 CheckEmptyInitializable( 2528 InitializedEntity::InitializeMember(*Field, &Entity), 2529 IList->getEndLoc()); 2530 } 2531 } 2532 2533 // Check that the types of the remaining fields have accessible destructors. 2534 if (!VerifyOnly) { 2535 // If the initializer expression has a designated initializer, check the 2536 // elements for which a designated initializer is not provided too. 2537 RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin() 2538 : Field; 2539 for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) { 2540 QualType ET = SemaRef.Context.getBaseElementType(I->getType()); 2541 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { 2542 hadError = true; 2543 return; 2544 } 2545 } 2546 } 2547 2548 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() || 2549 Index >= IList->getNumInits()) 2550 return; 2551 2552 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field, 2553 TopLevelObject)) { 2554 hadError = true; 2555 ++Index; 2556 return; 2557 } 2558 2559 InitializedEntity MemberEntity = 2560 InitializedEntity::InitializeMember(*Field, &Entity); 2561 2562 if (isa<InitListExpr>(IList->getInit(Index)) || 2563 AggrDeductionCandidateParamTypes) 2564 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2565 StructuredList, StructuredIndex); 2566 else 2567 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index, 2568 StructuredList, StructuredIndex); 2569 2570 if (RD->isUnion() && StructuredList) { 2571 // Initialize the first field within the union. 2572 StructuredList->setInitializedFieldInUnion(*Field); 2573 } 2574 } 2575 2576 /// Expand a field designator that refers to a member of an 2577 /// anonymous struct or union into a series of field designators that 2578 /// refers to the field within the appropriate subobject. 2579 /// 2580 static void ExpandAnonymousFieldDesignator(Sema &SemaRef, 2581 DesignatedInitExpr *DIE, 2582 unsigned DesigIdx, 2583 IndirectFieldDecl *IndirectField) { 2584 typedef DesignatedInitExpr::Designator Designator; 2585 2586 // Build the replacement designators. 2587 SmallVector<Designator, 4> Replacements; 2588 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(), 2589 PE = IndirectField->chain_end(); PI != PE; ++PI) { 2590 if (PI + 1 == PE) 2591 Replacements.push_back(Designator::CreateFieldDesignator( 2592 (IdentifierInfo *)nullptr, DIE->getDesignator(DesigIdx)->getDotLoc(), 2593 DIE->getDesignator(DesigIdx)->getFieldLoc())); 2594 else 2595 Replacements.push_back(Designator::CreateFieldDesignator( 2596 (IdentifierInfo *)nullptr, SourceLocation(), SourceLocation())); 2597 assert(isa<FieldDecl>(*PI)); 2598 Replacements.back().setFieldDecl(cast<FieldDecl>(*PI)); 2599 } 2600 2601 // Expand the current designator into the set of replacement 2602 // designators, so we have a full subobject path down to where the 2603 // member of the anonymous struct/union is actually stored. 2604 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0], 2605 &Replacements[0] + Replacements.size()); 2606 } 2607 2608 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef, 2609 DesignatedInitExpr *DIE) { 2610 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1; 2611 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs); 2612 for (unsigned I = 0; I < NumIndexExprs; ++I) 2613 IndexExprs[I] = DIE->getSubExpr(I + 1); 2614 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(), 2615 IndexExprs, 2616 DIE->getEqualOrColonLoc(), 2617 DIE->usesGNUSyntax(), DIE->getInit()); 2618 } 2619 2620 namespace { 2621 2622 // Callback to only accept typo corrections that are for field members of 2623 // the given struct or union. 2624 class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback { 2625 public: 2626 explicit FieldInitializerValidatorCCC(const RecordDecl *RD) 2627 : Record(RD) {} 2628 2629 bool ValidateCandidate(const TypoCorrection &candidate) override { 2630 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>(); 2631 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record); 2632 } 2633 2634 std::unique_ptr<CorrectionCandidateCallback> clone() override { 2635 return std::make_unique<FieldInitializerValidatorCCC>(*this); 2636 } 2637 2638 private: 2639 const RecordDecl *Record; 2640 }; 2641 2642 } // end anonymous namespace 2643 2644 /// Check the well-formedness of a C99 designated initializer. 2645 /// 2646 /// Determines whether the designated initializer @p DIE, which 2647 /// resides at the given @p Index within the initializer list @p 2648 /// IList, is well-formed for a current object of type @p DeclType 2649 /// (C99 6.7.8). The actual subobject that this designator refers to 2650 /// within the current subobject is returned in either 2651 /// @p NextField or @p NextElementIndex (whichever is appropriate). 2652 /// 2653 /// @param IList The initializer list in which this designated 2654 /// initializer occurs. 2655 /// 2656 /// @param DIE The designated initializer expression. 2657 /// 2658 /// @param DesigIdx The index of the current designator. 2659 /// 2660 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17), 2661 /// into which the designation in @p DIE should refer. 2662 /// 2663 /// @param NextField If non-NULL and the first designator in @p DIE is 2664 /// a field, this will be set to the field declaration corresponding 2665 /// to the field named by the designator. On input, this is expected to be 2666 /// the next field that would be initialized in the absence of designation, 2667 /// if the complete object being initialized is a struct. 2668 /// 2669 /// @param NextElementIndex If non-NULL and the first designator in @p 2670 /// DIE is an array designator or GNU array-range designator, this 2671 /// will be set to the last index initialized by this designator. 2672 /// 2673 /// @param Index Index into @p IList where the designated initializer 2674 /// @p DIE occurs. 2675 /// 2676 /// @param StructuredList The initializer list expression that 2677 /// describes all of the subobject initializers in the order they'll 2678 /// actually be initialized. 2679 /// 2680 /// @returns true if there was an error, false otherwise. 2681 bool 2682 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity, 2683 InitListExpr *IList, 2684 DesignatedInitExpr *DIE, 2685 unsigned DesigIdx, 2686 QualType &CurrentObjectType, 2687 RecordDecl::field_iterator *NextField, 2688 llvm::APSInt *NextElementIndex, 2689 unsigned &Index, 2690 InitListExpr *StructuredList, 2691 unsigned &StructuredIndex, 2692 bool FinishSubobjectInit, 2693 bool TopLevelObject) { 2694 if (DesigIdx == DIE->size()) { 2695 // C++20 designated initialization can result in direct-list-initialization 2696 // of the designated subobject. This is the only way that we can end up 2697 // performing direct initialization as part of aggregate initialization, so 2698 // it needs special handling. 2699 if (DIE->isDirectInit()) { 2700 Expr *Init = DIE->getInit(); 2701 assert(isa<InitListExpr>(Init) && 2702 "designator result in direct non-list initialization?"); 2703 InitializationKind Kind = InitializationKind::CreateDirectList( 2704 DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc()); 2705 InitializationSequence Seq(SemaRef, Entity, Kind, Init, 2706 /*TopLevelOfInitList*/ true); 2707 if (StructuredList) { 2708 ExprResult Result = VerifyOnly 2709 ? getDummyInit() 2710 : Seq.Perform(SemaRef, Entity, Kind, Init); 2711 UpdateStructuredListElement(StructuredList, StructuredIndex, 2712 Result.get()); 2713 } 2714 ++Index; 2715 if (AggrDeductionCandidateParamTypes) 2716 AggrDeductionCandidateParamTypes->push_back(CurrentObjectType); 2717 return !Seq; 2718 } 2719 2720 // Check the actual initialization for the designated object type. 2721 bool prevHadError = hadError; 2722 2723 // Temporarily remove the designator expression from the 2724 // initializer list that the child calls see, so that we don't try 2725 // to re-process the designator. 2726 unsigned OldIndex = Index; 2727 IList->setInit(OldIndex, DIE->getInit()); 2728 2729 CheckSubElementType(Entity, IList, CurrentObjectType, Index, StructuredList, 2730 StructuredIndex, /*DirectlyDesignated=*/true); 2731 2732 // Restore the designated initializer expression in the syntactic 2733 // form of the initializer list. 2734 if (IList->getInit(OldIndex) != DIE->getInit()) 2735 DIE->setInit(IList->getInit(OldIndex)); 2736 IList->setInit(OldIndex, DIE); 2737 2738 return hadError && !prevHadError; 2739 } 2740 2741 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx); 2742 bool IsFirstDesignator = (DesigIdx == 0); 2743 if (IsFirstDesignator ? FullyStructuredList : StructuredList) { 2744 // Determine the structural initializer list that corresponds to the 2745 // current subobject. 2746 if (IsFirstDesignator) 2747 StructuredList = FullyStructuredList; 2748 else { 2749 Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ? 2750 StructuredList->getInit(StructuredIndex) : nullptr; 2751 if (!ExistingInit && StructuredList->hasArrayFiller()) 2752 ExistingInit = StructuredList->getArrayFiller(); 2753 2754 if (!ExistingInit) 2755 StructuredList = getStructuredSubobjectInit( 2756 IList, Index, CurrentObjectType, StructuredList, StructuredIndex, 2757 SourceRange(D->getBeginLoc(), DIE->getEndLoc())); 2758 else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit)) 2759 StructuredList = Result; 2760 else { 2761 // We are creating an initializer list that initializes the 2762 // subobjects of the current object, but there was already an 2763 // initialization that completely initialized the current 2764 // subobject, e.g., by a compound literal: 2765 // 2766 // struct X { int a, b; }; 2767 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 2768 // 2769 // Here, xs[0].a == 1 and xs[0].b == 3, since the second, 2770 // designated initializer re-initializes only its current object 2771 // subobject [0].b. 2772 diagnoseInitOverride(ExistingInit, 2773 SourceRange(D->getBeginLoc(), DIE->getEndLoc()), 2774 /*UnionOverride=*/false, 2775 /*FullyOverwritten=*/false); 2776 2777 if (!VerifyOnly) { 2778 if (DesignatedInitUpdateExpr *E = 2779 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit)) 2780 StructuredList = E->getUpdater(); 2781 else { 2782 DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context) 2783 DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(), 2784 ExistingInit, DIE->getEndLoc()); 2785 StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE); 2786 StructuredList = DIUE->getUpdater(); 2787 } 2788 } else { 2789 // We don't need to track the structured representation of a 2790 // designated init update of an already-fully-initialized object in 2791 // verify-only mode. The only reason we would need the structure is 2792 // to determine where the uninitialized "holes" are, and in this 2793 // case, we know there aren't any and we can't introduce any. 2794 StructuredList = nullptr; 2795 } 2796 } 2797 } 2798 } 2799 2800 if (D->isFieldDesignator()) { 2801 // C99 6.7.8p7: 2802 // 2803 // If a designator has the form 2804 // 2805 // . identifier 2806 // 2807 // then the current object (defined below) shall have 2808 // structure or union type and the identifier shall be the 2809 // name of a member of that type. 2810 RecordDecl *RD = getRecordDecl(CurrentObjectType); 2811 if (!RD) { 2812 SourceLocation Loc = D->getDotLoc(); 2813 if (Loc.isInvalid()) 2814 Loc = D->getFieldLoc(); 2815 if (!VerifyOnly) 2816 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr) 2817 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType; 2818 ++Index; 2819 return true; 2820 } 2821 2822 FieldDecl *KnownField = D->getFieldDecl(); 2823 if (!KnownField) { 2824 const IdentifierInfo *FieldName = D->getFieldName(); 2825 ValueDecl *VD = SemaRef.tryLookupUnambiguousFieldDecl(RD, FieldName); 2826 if (auto *FD = dyn_cast_if_present<FieldDecl>(VD)) { 2827 KnownField = FD; 2828 } else if (auto *IFD = dyn_cast_if_present<IndirectFieldDecl>(VD)) { 2829 // In verify mode, don't modify the original. 2830 if (VerifyOnly) 2831 DIE = CloneDesignatedInitExpr(SemaRef, DIE); 2832 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD); 2833 D = DIE->getDesignator(DesigIdx); 2834 KnownField = cast<FieldDecl>(*IFD->chain_begin()); 2835 } 2836 if (!KnownField) { 2837 if (VerifyOnly) { 2838 ++Index; 2839 return true; // No typo correction when just trying this out. 2840 } 2841 2842 // We found a placeholder variable 2843 if (SemaRef.DiagRedefinedPlaceholderFieldDecl(DIE->getBeginLoc(), RD, 2844 FieldName)) { 2845 ++Index; 2846 return true; 2847 } 2848 // Name lookup found something, but it wasn't a field. 2849 if (DeclContextLookupResult Lookup = RD->lookup(FieldName); 2850 !Lookup.empty()) { 2851 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield) 2852 << FieldName; 2853 SemaRef.Diag(Lookup.front()->getLocation(), 2854 diag::note_field_designator_found); 2855 ++Index; 2856 return true; 2857 } 2858 2859 // Name lookup didn't find anything. 2860 // Determine whether this was a typo for another field name. 2861 FieldInitializerValidatorCCC CCC(RD); 2862 if (TypoCorrection Corrected = SemaRef.CorrectTypo( 2863 DeclarationNameInfo(FieldName, D->getFieldLoc()), 2864 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC, 2865 Sema::CTK_ErrorRecovery, RD)) { 2866 SemaRef.diagnoseTypo( 2867 Corrected, 2868 SemaRef.PDiag(diag::err_field_designator_unknown_suggest) 2869 << FieldName << CurrentObjectType); 2870 KnownField = Corrected.getCorrectionDeclAs<FieldDecl>(); 2871 hadError = true; 2872 } else { 2873 // Typo correction didn't find anything. 2874 SourceLocation Loc = D->getFieldLoc(); 2875 2876 // The loc can be invalid with a "null" designator (i.e. an anonymous 2877 // union/struct). Do our best to approximate the location. 2878 if (Loc.isInvalid()) 2879 Loc = IList->getBeginLoc(); 2880 2881 SemaRef.Diag(Loc, diag::err_field_designator_unknown) 2882 << FieldName << CurrentObjectType << DIE->getSourceRange(); 2883 ++Index; 2884 return true; 2885 } 2886 } 2887 } 2888 2889 unsigned NumBases = 0; 2890 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 2891 NumBases = CXXRD->getNumBases(); 2892 2893 unsigned FieldIndex = NumBases; 2894 2895 for (auto *FI : RD->fields()) { 2896 if (FI->isUnnamedBitField()) 2897 continue; 2898 if (declaresSameEntity(KnownField, FI)) { 2899 KnownField = FI; 2900 break; 2901 } 2902 ++FieldIndex; 2903 } 2904 2905 RecordDecl::field_iterator Field = 2906 RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField)); 2907 2908 // All of the fields of a union are located at the same place in 2909 // the initializer list. 2910 if (RD->isUnion()) { 2911 FieldIndex = 0; 2912 if (StructuredList) { 2913 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion(); 2914 if (CurrentField && !declaresSameEntity(CurrentField, *Field)) { 2915 assert(StructuredList->getNumInits() == 1 2916 && "A union should never have more than one initializer!"); 2917 2918 Expr *ExistingInit = StructuredList->getInit(0); 2919 if (ExistingInit) { 2920 // We're about to throw away an initializer, emit warning. 2921 diagnoseInitOverride( 2922 ExistingInit, SourceRange(D->getBeginLoc(), DIE->getEndLoc()), 2923 /*UnionOverride=*/true, 2924 /*FullyOverwritten=*/SemaRef.getLangOpts().CPlusPlus ? false 2925 : true); 2926 } 2927 2928 // remove existing initializer 2929 StructuredList->resizeInits(SemaRef.Context, 0); 2930 StructuredList->setInitializedFieldInUnion(nullptr); 2931 } 2932 2933 StructuredList->setInitializedFieldInUnion(*Field); 2934 } 2935 } 2936 2937 // Make sure we can use this declaration. 2938 bool InvalidUse; 2939 if (VerifyOnly) 2940 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); 2941 else 2942 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc()); 2943 if (InvalidUse) { 2944 ++Index; 2945 return true; 2946 } 2947 2948 // C++20 [dcl.init.list]p3: 2949 // The ordered identifiers in the designators of the designated- 2950 // initializer-list shall form a subsequence of the ordered identifiers 2951 // in the direct non-static data members of T. 2952 // 2953 // Note that this is not a condition on forming the aggregate 2954 // initialization, only on actually performing initialization, 2955 // so it is not checked in VerifyOnly mode. 2956 // 2957 // FIXME: This is the only reordering diagnostic we produce, and it only 2958 // catches cases where we have a top-level field designator that jumps 2959 // backwards. This is the only such case that is reachable in an 2960 // otherwise-valid C++20 program, so is the only case that's required for 2961 // conformance, but for consistency, we should diagnose all the other 2962 // cases where a designator takes us backwards too. 2963 if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus && 2964 NextField && 2965 (*NextField == RD->field_end() || 2966 (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) { 2967 // Find the field that we just initialized. 2968 FieldDecl *PrevField = nullptr; 2969 for (auto FI = RD->field_begin(); FI != RD->field_end(); ++FI) { 2970 if (FI->isUnnamedBitField()) 2971 continue; 2972 if (*NextField != RD->field_end() && 2973 declaresSameEntity(*FI, **NextField)) 2974 break; 2975 PrevField = *FI; 2976 } 2977 2978 if (PrevField && 2979 PrevField->getFieldIndex() > KnownField->getFieldIndex()) { 2980 SemaRef.Diag(DIE->getInit()->getBeginLoc(), 2981 diag::ext_designated_init_reordered) 2982 << KnownField << PrevField << DIE->getSourceRange(); 2983 2984 unsigned OldIndex = StructuredIndex - 1; 2985 if (StructuredList && OldIndex <= StructuredList->getNumInits()) { 2986 if (Expr *PrevInit = StructuredList->getInit(OldIndex)) { 2987 SemaRef.Diag(PrevInit->getBeginLoc(), 2988 diag::note_previous_field_init) 2989 << PrevField << PrevInit->getSourceRange(); 2990 } 2991 } 2992 } 2993 } 2994 2995 2996 // Update the designator with the field declaration. 2997 if (!VerifyOnly) 2998 D->setFieldDecl(*Field); 2999 3000 // Make sure that our non-designated initializer list has space 3001 // for a subobject corresponding to this field. 3002 if (StructuredList && FieldIndex >= StructuredList->getNumInits()) 3003 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1); 3004 3005 // This designator names a flexible array member. 3006 if (Field->getType()->isIncompleteArrayType()) { 3007 bool Invalid = false; 3008 if ((DesigIdx + 1) != DIE->size()) { 3009 // We can't designate an object within the flexible array 3010 // member (because GCC doesn't allow it). 3011 if (!VerifyOnly) { 3012 DesignatedInitExpr::Designator *NextD 3013 = DIE->getDesignator(DesigIdx + 1); 3014 SemaRef.Diag(NextD->getBeginLoc(), 3015 diag::err_designator_into_flexible_array_member) 3016 << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc()); 3017 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 3018 << *Field; 3019 } 3020 Invalid = true; 3021 } 3022 3023 if (!hadError && !isa<InitListExpr>(DIE->getInit()) && 3024 !isa<StringLiteral>(DIE->getInit())) { 3025 // The initializer is not an initializer list. 3026 if (!VerifyOnly) { 3027 SemaRef.Diag(DIE->getInit()->getBeginLoc(), 3028 diag::err_flexible_array_init_needs_braces) 3029 << DIE->getInit()->getSourceRange(); 3030 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 3031 << *Field; 3032 } 3033 Invalid = true; 3034 } 3035 3036 // Check GNU flexible array initializer. 3037 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field, 3038 TopLevelObject)) 3039 Invalid = true; 3040 3041 if (Invalid) { 3042 ++Index; 3043 return true; 3044 } 3045 3046 // Initialize the array. 3047 bool prevHadError = hadError; 3048 unsigned newStructuredIndex = FieldIndex; 3049 unsigned OldIndex = Index; 3050 IList->setInit(Index, DIE->getInit()); 3051 3052 InitializedEntity MemberEntity = 3053 InitializedEntity::InitializeMember(*Field, &Entity); 3054 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 3055 StructuredList, newStructuredIndex); 3056 3057 IList->setInit(OldIndex, DIE); 3058 if (hadError && !prevHadError) { 3059 ++Field; 3060 ++FieldIndex; 3061 if (NextField) 3062 *NextField = Field; 3063 StructuredIndex = FieldIndex; 3064 return true; 3065 } 3066 } else { 3067 // Recurse to check later designated subobjects. 3068 QualType FieldType = Field->getType(); 3069 unsigned newStructuredIndex = FieldIndex; 3070 3071 InitializedEntity MemberEntity = 3072 InitializedEntity::InitializeMember(*Field, &Entity); 3073 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1, 3074 FieldType, nullptr, nullptr, Index, 3075 StructuredList, newStructuredIndex, 3076 FinishSubobjectInit, false)) 3077 return true; 3078 } 3079 3080 // Find the position of the next field to be initialized in this 3081 // subobject. 3082 ++Field; 3083 ++FieldIndex; 3084 3085 // If this the first designator, our caller will continue checking 3086 // the rest of this struct/class/union subobject. 3087 if (IsFirstDesignator) { 3088 if (Field != RD->field_end() && Field->isUnnamedBitField()) 3089 ++Field; 3090 3091 if (NextField) 3092 *NextField = Field; 3093 3094 StructuredIndex = FieldIndex; 3095 return false; 3096 } 3097 3098 if (!FinishSubobjectInit) 3099 return false; 3100 3101 // We've already initialized something in the union; we're done. 3102 if (RD->isUnion()) 3103 return hadError; 3104 3105 // Check the remaining fields within this class/struct/union subobject. 3106 bool prevHadError = hadError; 3107 3108 auto NoBases = 3109 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), 3110 CXXRecordDecl::base_class_iterator()); 3111 CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field, 3112 false, Index, StructuredList, FieldIndex); 3113 return hadError && !prevHadError; 3114 } 3115 3116 // C99 6.7.8p6: 3117 // 3118 // If a designator has the form 3119 // 3120 // [ constant-expression ] 3121 // 3122 // then the current object (defined below) shall have array 3123 // type and the expression shall be an integer constant 3124 // expression. If the array is of unknown size, any 3125 // nonnegative value is valid. 3126 // 3127 // Additionally, cope with the GNU extension that permits 3128 // designators of the form 3129 // 3130 // [ constant-expression ... constant-expression ] 3131 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType); 3132 if (!AT) { 3133 if (!VerifyOnly) 3134 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array) 3135 << CurrentObjectType; 3136 ++Index; 3137 return true; 3138 } 3139 3140 Expr *IndexExpr = nullptr; 3141 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex; 3142 if (D->isArrayDesignator()) { 3143 IndexExpr = DIE->getArrayIndex(*D); 3144 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context); 3145 DesignatedEndIndex = DesignatedStartIndex; 3146 } else { 3147 assert(D->isArrayRangeDesignator() && "Need array-range designator"); 3148 3149 DesignatedStartIndex = 3150 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context); 3151 DesignatedEndIndex = 3152 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context); 3153 IndexExpr = DIE->getArrayRangeEnd(*D); 3154 3155 // Codegen can't handle evaluating array range designators that have side 3156 // effects, because we replicate the AST value for each initialized element. 3157 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple 3158 // elements with something that has a side effect, so codegen can emit an 3159 // "error unsupported" error instead of miscompiling the app. 3160 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&& 3161 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly) 3162 FullyStructuredList->sawArrayRangeDesignator(); 3163 } 3164 3165 if (isa<ConstantArrayType>(AT)) { 3166 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false); 3167 DesignatedStartIndex 3168 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth()); 3169 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned()); 3170 DesignatedEndIndex 3171 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth()); 3172 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned()); 3173 if (DesignatedEndIndex >= MaxElements) { 3174 if (!VerifyOnly) 3175 SemaRef.Diag(IndexExpr->getBeginLoc(), 3176 diag::err_array_designator_too_large) 3177 << toString(DesignatedEndIndex, 10) << toString(MaxElements, 10) 3178 << IndexExpr->getSourceRange(); 3179 ++Index; 3180 return true; 3181 } 3182 } else { 3183 unsigned DesignatedIndexBitWidth = 3184 ConstantArrayType::getMaxSizeBits(SemaRef.Context); 3185 DesignatedStartIndex = 3186 DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth); 3187 DesignatedEndIndex = 3188 DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth); 3189 DesignatedStartIndex.setIsUnsigned(true); 3190 DesignatedEndIndex.setIsUnsigned(true); 3191 } 3192 3193 bool IsStringLiteralInitUpdate = 3194 StructuredList && StructuredList->isStringLiteralInit(); 3195 if (IsStringLiteralInitUpdate && VerifyOnly) { 3196 // We're just verifying an update to a string literal init. We don't need 3197 // to split the string up into individual characters to do that. 3198 StructuredList = nullptr; 3199 } else if (IsStringLiteralInitUpdate) { 3200 // We're modifying a string literal init; we have to decompose the string 3201 // so we can modify the individual characters. 3202 ASTContext &Context = SemaRef.Context; 3203 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParenImpCasts(); 3204 3205 // Compute the character type 3206 QualType CharTy = AT->getElementType(); 3207 3208 // Compute the type of the integer literals. 3209 QualType PromotedCharTy = CharTy; 3210 if (Context.isPromotableIntegerType(CharTy)) 3211 PromotedCharTy = Context.getPromotedIntegerType(CharTy); 3212 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy); 3213 3214 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) { 3215 // Get the length of the string. 3216 uint64_t StrLen = SL->getLength(); 3217 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 3218 StrLen = cast<ConstantArrayType>(AT)->getZExtSize(); 3219 StructuredList->resizeInits(Context, StrLen); 3220 3221 // Build a literal for each character in the string, and put them into 3222 // the init list. 3223 for (unsigned i = 0, e = StrLen; i != e; ++i) { 3224 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i)); 3225 Expr *Init = new (Context) IntegerLiteral( 3226 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 3227 if (CharTy != PromotedCharTy) 3228 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 3229 Init, nullptr, VK_PRValue, 3230 FPOptionsOverride()); 3231 StructuredList->updateInit(Context, i, Init); 3232 } 3233 } else { 3234 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr); 3235 std::string Str; 3236 Context.getObjCEncodingForType(E->getEncodedType(), Str); 3237 3238 // Get the length of the string. 3239 uint64_t StrLen = Str.size(); 3240 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 3241 StrLen = cast<ConstantArrayType>(AT)->getZExtSize(); 3242 StructuredList->resizeInits(Context, StrLen); 3243 3244 // Build a literal for each character in the string, and put them into 3245 // the init list. 3246 for (unsigned i = 0, e = StrLen; i != e; ++i) { 3247 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]); 3248 Expr *Init = new (Context) IntegerLiteral( 3249 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 3250 if (CharTy != PromotedCharTy) 3251 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 3252 Init, nullptr, VK_PRValue, 3253 FPOptionsOverride()); 3254 StructuredList->updateInit(Context, i, Init); 3255 } 3256 } 3257 } 3258 3259 // Make sure that our non-designated initializer list has space 3260 // for a subobject corresponding to this array element. 3261 if (StructuredList && 3262 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits()) 3263 StructuredList->resizeInits(SemaRef.Context, 3264 DesignatedEndIndex.getZExtValue() + 1); 3265 3266 // Repeatedly perform subobject initializations in the range 3267 // [DesignatedStartIndex, DesignatedEndIndex]. 3268 3269 // Move to the next designator 3270 unsigned ElementIndex = DesignatedStartIndex.getZExtValue(); 3271 unsigned OldIndex = Index; 3272 3273 InitializedEntity ElementEntity = 3274 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 3275 3276 while (DesignatedStartIndex <= DesignatedEndIndex) { 3277 // Recurse to check later designated subobjects. 3278 QualType ElementType = AT->getElementType(); 3279 Index = OldIndex; 3280 3281 ElementEntity.setElementIndex(ElementIndex); 3282 if (CheckDesignatedInitializer( 3283 ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr, 3284 nullptr, Index, StructuredList, ElementIndex, 3285 FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex), 3286 false)) 3287 return true; 3288 3289 // Move to the next index in the array that we'll be initializing. 3290 ++DesignatedStartIndex; 3291 ElementIndex = DesignatedStartIndex.getZExtValue(); 3292 } 3293 3294 // If this the first designator, our caller will continue checking 3295 // the rest of this array subobject. 3296 if (IsFirstDesignator) { 3297 if (NextElementIndex) 3298 *NextElementIndex = DesignatedStartIndex; 3299 StructuredIndex = ElementIndex; 3300 return false; 3301 } 3302 3303 if (!FinishSubobjectInit) 3304 return false; 3305 3306 // Check the remaining elements within this array subobject. 3307 bool prevHadError = hadError; 3308 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex, 3309 /*SubobjectIsDesignatorContext=*/false, Index, 3310 StructuredList, ElementIndex); 3311 return hadError && !prevHadError; 3312 } 3313 3314 // Get the structured initializer list for a subobject of type 3315 // @p CurrentObjectType. 3316 InitListExpr * 3317 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 3318 QualType CurrentObjectType, 3319 InitListExpr *StructuredList, 3320 unsigned StructuredIndex, 3321 SourceRange InitRange, 3322 bool IsFullyOverwritten) { 3323 if (!StructuredList) 3324 return nullptr; 3325 3326 Expr *ExistingInit = nullptr; 3327 if (StructuredIndex < StructuredList->getNumInits()) 3328 ExistingInit = StructuredList->getInit(StructuredIndex); 3329 3330 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit)) 3331 // There might have already been initializers for subobjects of the current 3332 // object, but a subsequent initializer list will overwrite the entirety 3333 // of the current object. (See DR 253 and C99 6.7.8p21). e.g., 3334 // 3335 // struct P { char x[6]; }; 3336 // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } }; 3337 // 3338 // The first designated initializer is ignored, and l.x is just "f". 3339 if (!IsFullyOverwritten) 3340 return Result; 3341 3342 if (ExistingInit) { 3343 // We are creating an initializer list that initializes the 3344 // subobjects of the current object, but there was already an 3345 // initialization that completely initialized the current 3346 // subobject: 3347 // 3348 // struct X { int a, b; }; 3349 // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 }; 3350 // 3351 // Here, xs[0].a == 1 and xs[0].b == 3, since the second, 3352 // designated initializer overwrites the [0].b initializer 3353 // from the prior initialization. 3354 // 3355 // When the existing initializer is an expression rather than an 3356 // initializer list, we cannot decompose and update it in this way. 3357 // For example: 3358 // 3359 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 3360 // 3361 // This case is handled by CheckDesignatedInitializer. 3362 diagnoseInitOverride(ExistingInit, InitRange); 3363 } 3364 3365 unsigned ExpectedNumInits = 0; 3366 if (Index < IList->getNumInits()) { 3367 if (auto *Init = dyn_cast_or_null<InitListExpr>(IList->getInit(Index))) 3368 ExpectedNumInits = Init->getNumInits(); 3369 else 3370 ExpectedNumInits = IList->getNumInits() - Index; 3371 } 3372 3373 InitListExpr *Result = 3374 createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits); 3375 3376 // Link this new initializer list into the structured initializer 3377 // lists. 3378 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result); 3379 return Result; 3380 } 3381 3382 InitListExpr * 3383 InitListChecker::createInitListExpr(QualType CurrentObjectType, 3384 SourceRange InitRange, 3385 unsigned ExpectedNumInits) { 3386 InitListExpr *Result = new (SemaRef.Context) InitListExpr( 3387 SemaRef.Context, InitRange.getBegin(), std::nullopt, InitRange.getEnd()); 3388 3389 QualType ResultType = CurrentObjectType; 3390 if (!ResultType->isArrayType()) 3391 ResultType = ResultType.getNonLValueExprType(SemaRef.Context); 3392 Result->setType(ResultType); 3393 3394 // Pre-allocate storage for the structured initializer list. 3395 unsigned NumElements = 0; 3396 3397 if (const ArrayType *AType 3398 = SemaRef.Context.getAsArrayType(CurrentObjectType)) { 3399 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) { 3400 NumElements = CAType->getZExtSize(); 3401 // Simple heuristic so that we don't allocate a very large 3402 // initializer with many empty entries at the end. 3403 if (NumElements > ExpectedNumInits) 3404 NumElements = 0; 3405 } 3406 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) { 3407 NumElements = VType->getNumElements(); 3408 } else if (CurrentObjectType->isRecordType()) { 3409 NumElements = numStructUnionElements(CurrentObjectType); 3410 } else if (CurrentObjectType->isDependentType()) { 3411 NumElements = 1; 3412 } 3413 3414 Result->reserveInits(SemaRef.Context, NumElements); 3415 3416 return Result; 3417 } 3418 3419 /// Update the initializer at index @p StructuredIndex within the 3420 /// structured initializer list to the value @p expr. 3421 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList, 3422 unsigned &StructuredIndex, 3423 Expr *expr) { 3424 // No structured initializer list to update 3425 if (!StructuredList) 3426 return; 3427 3428 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context, 3429 StructuredIndex, expr)) { 3430 // This initializer overwrites a previous initializer. 3431 // No need to diagnose when `expr` is nullptr because a more relevant 3432 // diagnostic has already been issued and this diagnostic is potentially 3433 // noise. 3434 if (expr) 3435 diagnoseInitOverride(PrevInit, expr->getSourceRange()); 3436 } 3437 3438 ++StructuredIndex; 3439 } 3440 3441 bool Sema::CanPerformAggregateInitializationForOverloadResolution( 3442 const InitializedEntity &Entity, InitListExpr *From) { 3443 QualType Type = Entity.getType(); 3444 InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true, 3445 /*TreatUnavailableAsInvalid=*/false, 3446 /*InOverloadResolution=*/true); 3447 return !Check.HadError(); 3448 } 3449 3450 /// Check that the given Index expression is a valid array designator 3451 /// value. This is essentially just a wrapper around 3452 /// VerifyIntegerConstantExpression that also checks for negative values 3453 /// and produces a reasonable diagnostic if there is a 3454 /// failure. Returns the index expression, possibly with an implicit cast 3455 /// added, on success. If everything went okay, Value will receive the 3456 /// value of the constant expression. 3457 static ExprResult 3458 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) { 3459 SourceLocation Loc = Index->getBeginLoc(); 3460 3461 // Make sure this is an integer constant expression. 3462 ExprResult Result = 3463 S.VerifyIntegerConstantExpression(Index, &Value, Sema::AllowFold); 3464 if (Result.isInvalid()) 3465 return Result; 3466 3467 if (Value.isSigned() && Value.isNegative()) 3468 return S.Diag(Loc, diag::err_array_designator_negative) 3469 << toString(Value, 10) << Index->getSourceRange(); 3470 3471 Value.setIsUnsigned(true); 3472 return Result; 3473 } 3474 3475 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig, 3476 SourceLocation EqualOrColonLoc, 3477 bool GNUSyntax, 3478 ExprResult Init) { 3479 typedef DesignatedInitExpr::Designator ASTDesignator; 3480 3481 bool Invalid = false; 3482 SmallVector<ASTDesignator, 32> Designators; 3483 SmallVector<Expr *, 32> InitExpressions; 3484 3485 // Build designators and check array designator expressions. 3486 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) { 3487 const Designator &D = Desig.getDesignator(Idx); 3488 3489 if (D.isFieldDesignator()) { 3490 Designators.push_back(ASTDesignator::CreateFieldDesignator( 3491 D.getFieldDecl(), D.getDotLoc(), D.getFieldLoc())); 3492 } else if (D.isArrayDesignator()) { 3493 Expr *Index = static_cast<Expr *>(D.getArrayIndex()); 3494 llvm::APSInt IndexValue; 3495 if (!Index->isTypeDependent() && !Index->isValueDependent()) 3496 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get(); 3497 if (!Index) 3498 Invalid = true; 3499 else { 3500 Designators.push_back(ASTDesignator::CreateArrayDesignator( 3501 InitExpressions.size(), D.getLBracketLoc(), D.getRBracketLoc())); 3502 InitExpressions.push_back(Index); 3503 } 3504 } else if (D.isArrayRangeDesignator()) { 3505 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart()); 3506 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd()); 3507 llvm::APSInt StartValue; 3508 llvm::APSInt EndValue; 3509 bool StartDependent = StartIndex->isTypeDependent() || 3510 StartIndex->isValueDependent(); 3511 bool EndDependent = EndIndex->isTypeDependent() || 3512 EndIndex->isValueDependent(); 3513 if (!StartDependent) 3514 StartIndex = 3515 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get(); 3516 if (!EndDependent) 3517 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get(); 3518 3519 if (!StartIndex || !EndIndex) 3520 Invalid = true; 3521 else { 3522 // Make sure we're comparing values with the same bit width. 3523 if (StartDependent || EndDependent) { 3524 // Nothing to compute. 3525 } else if (StartValue.getBitWidth() > EndValue.getBitWidth()) 3526 EndValue = EndValue.extend(StartValue.getBitWidth()); 3527 else if (StartValue.getBitWidth() < EndValue.getBitWidth()) 3528 StartValue = StartValue.extend(EndValue.getBitWidth()); 3529 3530 if (!StartDependent && !EndDependent && EndValue < StartValue) { 3531 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range) 3532 << toString(StartValue, 10) << toString(EndValue, 10) 3533 << StartIndex->getSourceRange() << EndIndex->getSourceRange(); 3534 Invalid = true; 3535 } else { 3536 Designators.push_back(ASTDesignator::CreateArrayRangeDesignator( 3537 InitExpressions.size(), D.getLBracketLoc(), D.getEllipsisLoc(), 3538 D.getRBracketLoc())); 3539 InitExpressions.push_back(StartIndex); 3540 InitExpressions.push_back(EndIndex); 3541 } 3542 } 3543 } 3544 } 3545 3546 if (Invalid || Init.isInvalid()) 3547 return ExprError(); 3548 3549 return DesignatedInitExpr::Create(Context, Designators, InitExpressions, 3550 EqualOrColonLoc, GNUSyntax, 3551 Init.getAs<Expr>()); 3552 } 3553 3554 //===----------------------------------------------------------------------===// 3555 // Initialization entity 3556 //===----------------------------------------------------------------------===// 3557 3558 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index, 3559 const InitializedEntity &Parent) 3560 : Parent(&Parent), Index(Index) 3561 { 3562 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) { 3563 Kind = EK_ArrayElement; 3564 Type = AT->getElementType(); 3565 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) { 3566 Kind = EK_VectorElement; 3567 Type = VT->getElementType(); 3568 } else { 3569 const ComplexType *CT = Parent.getType()->getAs<ComplexType>(); 3570 assert(CT && "Unexpected type"); 3571 Kind = EK_ComplexElement; 3572 Type = CT->getElementType(); 3573 } 3574 } 3575 3576 InitializedEntity 3577 InitializedEntity::InitializeBase(ASTContext &Context, 3578 const CXXBaseSpecifier *Base, 3579 bool IsInheritedVirtualBase, 3580 const InitializedEntity *Parent) { 3581 InitializedEntity Result; 3582 Result.Kind = EK_Base; 3583 Result.Parent = Parent; 3584 Result.Base = {Base, IsInheritedVirtualBase}; 3585 Result.Type = Base->getType(); 3586 return Result; 3587 } 3588 3589 DeclarationName InitializedEntity::getName() const { 3590 switch (getKind()) { 3591 case EK_Parameter: 3592 case EK_Parameter_CF_Audited: { 3593 ParmVarDecl *D = Parameter.getPointer(); 3594 return (D ? D->getDeclName() : DeclarationName()); 3595 } 3596 3597 case EK_Variable: 3598 case EK_Member: 3599 case EK_ParenAggInitMember: 3600 case EK_Binding: 3601 case EK_TemplateParameter: 3602 return Variable.VariableOrMember->getDeclName(); 3603 3604 case EK_LambdaCapture: 3605 return DeclarationName(Capture.VarID); 3606 3607 case EK_Result: 3608 case EK_StmtExprResult: 3609 case EK_Exception: 3610 case EK_New: 3611 case EK_Temporary: 3612 case EK_Base: 3613 case EK_Delegating: 3614 case EK_ArrayElement: 3615 case EK_VectorElement: 3616 case EK_ComplexElement: 3617 case EK_BlockElement: 3618 case EK_LambdaToBlockConversionBlockElement: 3619 case EK_CompoundLiteralInit: 3620 case EK_RelatedResult: 3621 return DeclarationName(); 3622 } 3623 3624 llvm_unreachable("Invalid EntityKind!"); 3625 } 3626 3627 ValueDecl *InitializedEntity::getDecl() const { 3628 switch (getKind()) { 3629 case EK_Variable: 3630 case EK_Member: 3631 case EK_ParenAggInitMember: 3632 case EK_Binding: 3633 case EK_TemplateParameter: 3634 return Variable.VariableOrMember; 3635 3636 case EK_Parameter: 3637 case EK_Parameter_CF_Audited: 3638 return Parameter.getPointer(); 3639 3640 case EK_Result: 3641 case EK_StmtExprResult: 3642 case EK_Exception: 3643 case EK_New: 3644 case EK_Temporary: 3645 case EK_Base: 3646 case EK_Delegating: 3647 case EK_ArrayElement: 3648 case EK_VectorElement: 3649 case EK_ComplexElement: 3650 case EK_BlockElement: 3651 case EK_LambdaToBlockConversionBlockElement: 3652 case EK_LambdaCapture: 3653 case EK_CompoundLiteralInit: 3654 case EK_RelatedResult: 3655 return nullptr; 3656 } 3657 3658 llvm_unreachable("Invalid EntityKind!"); 3659 } 3660 3661 bool InitializedEntity::allowsNRVO() const { 3662 switch (getKind()) { 3663 case EK_Result: 3664 case EK_Exception: 3665 return LocAndNRVO.NRVO; 3666 3667 case EK_StmtExprResult: 3668 case EK_Variable: 3669 case EK_Parameter: 3670 case EK_Parameter_CF_Audited: 3671 case EK_TemplateParameter: 3672 case EK_Member: 3673 case EK_ParenAggInitMember: 3674 case EK_Binding: 3675 case EK_New: 3676 case EK_Temporary: 3677 case EK_CompoundLiteralInit: 3678 case EK_Base: 3679 case EK_Delegating: 3680 case EK_ArrayElement: 3681 case EK_VectorElement: 3682 case EK_ComplexElement: 3683 case EK_BlockElement: 3684 case EK_LambdaToBlockConversionBlockElement: 3685 case EK_LambdaCapture: 3686 case EK_RelatedResult: 3687 break; 3688 } 3689 3690 return false; 3691 } 3692 3693 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const { 3694 assert(getParent() != this); 3695 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0; 3696 for (unsigned I = 0; I != Depth; ++I) 3697 OS << "`-"; 3698 3699 switch (getKind()) { 3700 case EK_Variable: OS << "Variable"; break; 3701 case EK_Parameter: OS << "Parameter"; break; 3702 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter"; 3703 break; 3704 case EK_TemplateParameter: OS << "TemplateParameter"; break; 3705 case EK_Result: OS << "Result"; break; 3706 case EK_StmtExprResult: OS << "StmtExprResult"; break; 3707 case EK_Exception: OS << "Exception"; break; 3708 case EK_Member: 3709 case EK_ParenAggInitMember: 3710 OS << "Member"; 3711 break; 3712 case EK_Binding: OS << "Binding"; break; 3713 case EK_New: OS << "New"; break; 3714 case EK_Temporary: OS << "Temporary"; break; 3715 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break; 3716 case EK_RelatedResult: OS << "RelatedResult"; break; 3717 case EK_Base: OS << "Base"; break; 3718 case EK_Delegating: OS << "Delegating"; break; 3719 case EK_ArrayElement: OS << "ArrayElement " << Index; break; 3720 case EK_VectorElement: OS << "VectorElement " << Index; break; 3721 case EK_ComplexElement: OS << "ComplexElement " << Index; break; 3722 case EK_BlockElement: OS << "Block"; break; 3723 case EK_LambdaToBlockConversionBlockElement: 3724 OS << "Block (lambda)"; 3725 break; 3726 case EK_LambdaCapture: 3727 OS << "LambdaCapture "; 3728 OS << DeclarationName(Capture.VarID); 3729 break; 3730 } 3731 3732 if (auto *D = getDecl()) { 3733 OS << " "; 3734 D->printQualifiedName(OS); 3735 } 3736 3737 OS << " '" << getType() << "'\n"; 3738 3739 return Depth + 1; 3740 } 3741 3742 LLVM_DUMP_METHOD void InitializedEntity::dump() const { 3743 dumpImpl(llvm::errs()); 3744 } 3745 3746 //===----------------------------------------------------------------------===// 3747 // Initialization sequence 3748 //===----------------------------------------------------------------------===// 3749 3750 void InitializationSequence::Step::Destroy() { 3751 switch (Kind) { 3752 case SK_ResolveAddressOfOverloadedFunction: 3753 case SK_CastDerivedToBasePRValue: 3754 case SK_CastDerivedToBaseXValue: 3755 case SK_CastDerivedToBaseLValue: 3756 case SK_BindReference: 3757 case SK_BindReferenceToTemporary: 3758 case SK_FinalCopy: 3759 case SK_ExtraneousCopyToTemporary: 3760 case SK_UserConversion: 3761 case SK_QualificationConversionPRValue: 3762 case SK_QualificationConversionXValue: 3763 case SK_QualificationConversionLValue: 3764 case SK_FunctionReferenceConversion: 3765 case SK_AtomicConversion: 3766 case SK_ListInitialization: 3767 case SK_UnwrapInitList: 3768 case SK_RewrapInitList: 3769 case SK_ConstructorInitialization: 3770 case SK_ConstructorInitializationFromList: 3771 case SK_ZeroInitialization: 3772 case SK_CAssignment: 3773 case SK_StringInit: 3774 case SK_ObjCObjectConversion: 3775 case SK_ArrayLoopIndex: 3776 case SK_ArrayLoopInit: 3777 case SK_ArrayInit: 3778 case SK_GNUArrayInit: 3779 case SK_ParenthesizedArrayInit: 3780 case SK_PassByIndirectCopyRestore: 3781 case SK_PassByIndirectRestore: 3782 case SK_ProduceObjCObject: 3783 case SK_StdInitializerList: 3784 case SK_StdInitializerListConstructorCall: 3785 case SK_OCLSamplerInit: 3786 case SK_OCLZeroOpaqueType: 3787 case SK_ParenthesizedListInit: 3788 break; 3789 3790 case SK_ConversionSequence: 3791 case SK_ConversionSequenceNoNarrowing: 3792 delete ICS; 3793 } 3794 } 3795 3796 bool InitializationSequence::isDirectReferenceBinding() const { 3797 // There can be some lvalue adjustments after the SK_BindReference step. 3798 for (const Step &S : llvm::reverse(Steps)) { 3799 if (S.Kind == SK_BindReference) 3800 return true; 3801 if (S.Kind == SK_BindReferenceToTemporary) 3802 return false; 3803 } 3804 return false; 3805 } 3806 3807 bool InitializationSequence::isAmbiguous() const { 3808 if (!Failed()) 3809 return false; 3810 3811 switch (getFailureKind()) { 3812 case FK_TooManyInitsForReference: 3813 case FK_ParenthesizedListInitForReference: 3814 case FK_ArrayNeedsInitList: 3815 case FK_ArrayNeedsInitListOrStringLiteral: 3816 case FK_ArrayNeedsInitListOrWideStringLiteral: 3817 case FK_NarrowStringIntoWideCharArray: 3818 case FK_WideStringIntoCharArray: 3819 case FK_IncompatWideStringIntoWideChar: 3820 case FK_PlainStringIntoUTF8Char: 3821 case FK_UTF8StringIntoPlainChar: 3822 case FK_AddressOfOverloadFailed: // FIXME: Could do better 3823 case FK_NonConstLValueReferenceBindingToTemporary: 3824 case FK_NonConstLValueReferenceBindingToBitfield: 3825 case FK_NonConstLValueReferenceBindingToVectorElement: 3826 case FK_NonConstLValueReferenceBindingToMatrixElement: 3827 case FK_NonConstLValueReferenceBindingToUnrelated: 3828 case FK_RValueReferenceBindingToLValue: 3829 case FK_ReferenceAddrspaceMismatchTemporary: 3830 case FK_ReferenceInitDropsQualifiers: 3831 case FK_ReferenceInitFailed: 3832 case FK_ConversionFailed: 3833 case FK_ConversionFromPropertyFailed: 3834 case FK_TooManyInitsForScalar: 3835 case FK_ParenthesizedListInitForScalar: 3836 case FK_ReferenceBindingToInitList: 3837 case FK_InitListBadDestinationType: 3838 case FK_DefaultInitOfConst: 3839 case FK_Incomplete: 3840 case FK_ArrayTypeMismatch: 3841 case FK_NonConstantArrayInit: 3842 case FK_ListInitializationFailed: 3843 case FK_VariableLengthArrayHasInitializer: 3844 case FK_PlaceholderType: 3845 case FK_ExplicitConstructor: 3846 case FK_AddressOfUnaddressableFunction: 3847 case FK_ParenthesizedListInitFailed: 3848 case FK_DesignatedInitForNonAggregate: 3849 return false; 3850 3851 case FK_ReferenceInitOverloadFailed: 3852 case FK_UserConversionOverloadFailed: 3853 case FK_ConstructorOverloadFailed: 3854 case FK_ListConstructorOverloadFailed: 3855 return FailedOverloadResult == OR_Ambiguous; 3856 } 3857 3858 llvm_unreachable("Invalid EntityKind!"); 3859 } 3860 3861 bool InitializationSequence::isConstructorInitialization() const { 3862 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization; 3863 } 3864 3865 void 3866 InitializationSequence 3867 ::AddAddressOverloadResolutionStep(FunctionDecl *Function, 3868 DeclAccessPair Found, 3869 bool HadMultipleCandidates) { 3870 Step S; 3871 S.Kind = SK_ResolveAddressOfOverloadedFunction; 3872 S.Type = Function->getType(); 3873 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3874 S.Function.Function = Function; 3875 S.Function.FoundDecl = Found; 3876 Steps.push_back(S); 3877 } 3878 3879 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType, 3880 ExprValueKind VK) { 3881 Step S; 3882 switch (VK) { 3883 case VK_PRValue: 3884 S.Kind = SK_CastDerivedToBasePRValue; 3885 break; 3886 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break; 3887 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break; 3888 } 3889 S.Type = BaseType; 3890 Steps.push_back(S); 3891 } 3892 3893 void InitializationSequence::AddReferenceBindingStep(QualType T, 3894 bool BindingTemporary) { 3895 Step S; 3896 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference; 3897 S.Type = T; 3898 Steps.push_back(S); 3899 } 3900 3901 void InitializationSequence::AddFinalCopy(QualType T) { 3902 Step S; 3903 S.Kind = SK_FinalCopy; 3904 S.Type = T; 3905 Steps.push_back(S); 3906 } 3907 3908 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) { 3909 Step S; 3910 S.Kind = SK_ExtraneousCopyToTemporary; 3911 S.Type = T; 3912 Steps.push_back(S); 3913 } 3914 3915 void 3916 InitializationSequence::AddUserConversionStep(FunctionDecl *Function, 3917 DeclAccessPair FoundDecl, 3918 QualType T, 3919 bool HadMultipleCandidates) { 3920 Step S; 3921 S.Kind = SK_UserConversion; 3922 S.Type = T; 3923 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3924 S.Function.Function = Function; 3925 S.Function.FoundDecl = FoundDecl; 3926 Steps.push_back(S); 3927 } 3928 3929 void InitializationSequence::AddQualificationConversionStep(QualType Ty, 3930 ExprValueKind VK) { 3931 Step S; 3932 S.Kind = SK_QualificationConversionPRValue; // work around a gcc warning 3933 switch (VK) { 3934 case VK_PRValue: 3935 S.Kind = SK_QualificationConversionPRValue; 3936 break; 3937 case VK_XValue: 3938 S.Kind = SK_QualificationConversionXValue; 3939 break; 3940 case VK_LValue: 3941 S.Kind = SK_QualificationConversionLValue; 3942 break; 3943 } 3944 S.Type = Ty; 3945 Steps.push_back(S); 3946 } 3947 3948 void InitializationSequence::AddFunctionReferenceConversionStep(QualType Ty) { 3949 Step S; 3950 S.Kind = SK_FunctionReferenceConversion; 3951 S.Type = Ty; 3952 Steps.push_back(S); 3953 } 3954 3955 void InitializationSequence::AddAtomicConversionStep(QualType Ty) { 3956 Step S; 3957 S.Kind = SK_AtomicConversion; 3958 S.Type = Ty; 3959 Steps.push_back(S); 3960 } 3961 3962 void InitializationSequence::AddConversionSequenceStep( 3963 const ImplicitConversionSequence &ICS, QualType T, 3964 bool TopLevelOfInitList) { 3965 Step S; 3966 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing 3967 : SK_ConversionSequence; 3968 S.Type = T; 3969 S.ICS = new ImplicitConversionSequence(ICS); 3970 Steps.push_back(S); 3971 } 3972 3973 void InitializationSequence::AddListInitializationStep(QualType T) { 3974 Step S; 3975 S.Kind = SK_ListInitialization; 3976 S.Type = T; 3977 Steps.push_back(S); 3978 } 3979 3980 void InitializationSequence::AddConstructorInitializationStep( 3981 DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T, 3982 bool HadMultipleCandidates, bool FromInitList, bool AsInitList) { 3983 Step S; 3984 S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall 3985 : SK_ConstructorInitializationFromList 3986 : SK_ConstructorInitialization; 3987 S.Type = T; 3988 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3989 S.Function.Function = Constructor; 3990 S.Function.FoundDecl = FoundDecl; 3991 Steps.push_back(S); 3992 } 3993 3994 void InitializationSequence::AddZeroInitializationStep(QualType T) { 3995 Step S; 3996 S.Kind = SK_ZeroInitialization; 3997 S.Type = T; 3998 Steps.push_back(S); 3999 } 4000 4001 void InitializationSequence::AddCAssignmentStep(QualType T) { 4002 Step S; 4003 S.Kind = SK_CAssignment; 4004 S.Type = T; 4005 Steps.push_back(S); 4006 } 4007 4008 void InitializationSequence::AddStringInitStep(QualType T) { 4009 Step S; 4010 S.Kind = SK_StringInit; 4011 S.Type = T; 4012 Steps.push_back(S); 4013 } 4014 4015 void InitializationSequence::AddObjCObjectConversionStep(QualType T) { 4016 Step S; 4017 S.Kind = SK_ObjCObjectConversion; 4018 S.Type = T; 4019 Steps.push_back(S); 4020 } 4021 4022 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) { 4023 Step S; 4024 S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit; 4025 S.Type = T; 4026 Steps.push_back(S); 4027 } 4028 4029 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) { 4030 Step S; 4031 S.Kind = SK_ArrayLoopIndex; 4032 S.Type = EltT; 4033 Steps.insert(Steps.begin(), S); 4034 4035 S.Kind = SK_ArrayLoopInit; 4036 S.Type = T; 4037 Steps.push_back(S); 4038 } 4039 4040 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) { 4041 Step S; 4042 S.Kind = SK_ParenthesizedArrayInit; 4043 S.Type = T; 4044 Steps.push_back(S); 4045 } 4046 4047 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type, 4048 bool shouldCopy) { 4049 Step s; 4050 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore 4051 : SK_PassByIndirectRestore); 4052 s.Type = type; 4053 Steps.push_back(s); 4054 } 4055 4056 void InitializationSequence::AddProduceObjCObjectStep(QualType T) { 4057 Step S; 4058 S.Kind = SK_ProduceObjCObject; 4059 S.Type = T; 4060 Steps.push_back(S); 4061 } 4062 4063 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) { 4064 Step S; 4065 S.Kind = SK_StdInitializerList; 4066 S.Type = T; 4067 Steps.push_back(S); 4068 } 4069 4070 void InitializationSequence::AddOCLSamplerInitStep(QualType T) { 4071 Step S; 4072 S.Kind = SK_OCLSamplerInit; 4073 S.Type = T; 4074 Steps.push_back(S); 4075 } 4076 4077 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) { 4078 Step S; 4079 S.Kind = SK_OCLZeroOpaqueType; 4080 S.Type = T; 4081 Steps.push_back(S); 4082 } 4083 4084 void InitializationSequence::AddParenthesizedListInitStep(QualType T) { 4085 Step S; 4086 S.Kind = SK_ParenthesizedListInit; 4087 S.Type = T; 4088 Steps.push_back(S); 4089 } 4090 4091 void InitializationSequence::RewrapReferenceInitList(QualType T, 4092 InitListExpr *Syntactic) { 4093 assert(Syntactic->getNumInits() == 1 && 4094 "Can only rewrap trivial init lists."); 4095 Step S; 4096 S.Kind = SK_UnwrapInitList; 4097 S.Type = Syntactic->getInit(0)->getType(); 4098 Steps.insert(Steps.begin(), S); 4099 4100 S.Kind = SK_RewrapInitList; 4101 S.Type = T; 4102 S.WrappingSyntacticList = Syntactic; 4103 Steps.push_back(S); 4104 } 4105 4106 void InitializationSequence::SetOverloadFailure(FailureKind Failure, 4107 OverloadingResult Result) { 4108 setSequenceKind(FailedSequence); 4109 this->Failure = Failure; 4110 this->FailedOverloadResult = Result; 4111 } 4112 4113 //===----------------------------------------------------------------------===// 4114 // Attempt initialization 4115 //===----------------------------------------------------------------------===// 4116 4117 /// Tries to add a zero initializer. Returns true if that worked. 4118 static bool 4119 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence, 4120 const InitializedEntity &Entity) { 4121 if (Entity.getKind() != InitializedEntity::EK_Variable) 4122 return false; 4123 4124 VarDecl *VD = cast<VarDecl>(Entity.getDecl()); 4125 if (VD->getInit() || VD->getEndLoc().isMacroID()) 4126 return false; 4127 4128 QualType VariableTy = VD->getType().getCanonicalType(); 4129 SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc()); 4130 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc); 4131 if (!Init.empty()) { 4132 Sequence.AddZeroInitializationStep(Entity.getType()); 4133 Sequence.SetZeroInitializationFixit(Init, Loc); 4134 return true; 4135 } 4136 return false; 4137 } 4138 4139 static void MaybeProduceObjCObject(Sema &S, 4140 InitializationSequence &Sequence, 4141 const InitializedEntity &Entity) { 4142 if (!S.getLangOpts().ObjCAutoRefCount) return; 4143 4144 /// When initializing a parameter, produce the value if it's marked 4145 /// __attribute__((ns_consumed)). 4146 if (Entity.isParameterKind()) { 4147 if (!Entity.isParameterConsumed()) 4148 return; 4149 4150 assert(Entity.getType()->isObjCRetainableType() && 4151 "consuming an object of unretainable type?"); 4152 Sequence.AddProduceObjCObjectStep(Entity.getType()); 4153 4154 /// When initializing a return value, if the return type is a 4155 /// retainable type, then returns need to immediately retain the 4156 /// object. If an autorelease is required, it will be done at the 4157 /// last instant. 4158 } else if (Entity.getKind() == InitializedEntity::EK_Result || 4159 Entity.getKind() == InitializedEntity::EK_StmtExprResult) { 4160 if (!Entity.getType()->isObjCRetainableType()) 4161 return; 4162 4163 Sequence.AddProduceObjCObjectStep(Entity.getType()); 4164 } 4165 } 4166 4167 static void TryListInitialization(Sema &S, 4168 const InitializedEntity &Entity, 4169 const InitializationKind &Kind, 4170 InitListExpr *InitList, 4171 InitializationSequence &Sequence, 4172 bool TreatUnavailableAsInvalid); 4173 4174 /// When initializing from init list via constructor, handle 4175 /// initialization of an object of type std::initializer_list<T>. 4176 /// 4177 /// \return true if we have handled initialization of an object of type 4178 /// std::initializer_list<T>, false otherwise. 4179 static bool TryInitializerListConstruction(Sema &S, 4180 InitListExpr *List, 4181 QualType DestType, 4182 InitializationSequence &Sequence, 4183 bool TreatUnavailableAsInvalid) { 4184 QualType E; 4185 if (!S.isStdInitializerList(DestType, &E)) 4186 return false; 4187 4188 if (!S.isCompleteType(List->getExprLoc(), E)) { 4189 Sequence.setIncompleteTypeFailure(E); 4190 return true; 4191 } 4192 4193 // Try initializing a temporary array from the init list. 4194 QualType ArrayType = S.Context.getConstantArrayType( 4195 E.withConst(), 4196 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 4197 List->getNumInits()), 4198 nullptr, clang::ArraySizeModifier::Normal, 0); 4199 InitializedEntity HiddenArray = 4200 InitializedEntity::InitializeTemporary(ArrayType); 4201 InitializationKind Kind = InitializationKind::CreateDirectList( 4202 List->getExprLoc(), List->getBeginLoc(), List->getEndLoc()); 4203 TryListInitialization(S, HiddenArray, Kind, List, Sequence, 4204 TreatUnavailableAsInvalid); 4205 if (Sequence) 4206 Sequence.AddStdInitializerListConstructionStep(DestType); 4207 return true; 4208 } 4209 4210 /// Determine if the constructor has the signature of a copy or move 4211 /// constructor for the type T of the class in which it was found. That is, 4212 /// determine if its first parameter is of type T or reference to (possibly 4213 /// cv-qualified) T. 4214 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx, 4215 const ConstructorInfo &Info) { 4216 if (Info.Constructor->getNumParams() == 0) 4217 return false; 4218 4219 QualType ParmT = 4220 Info.Constructor->getParamDecl(0)->getType().getNonReferenceType(); 4221 QualType ClassT = 4222 Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext())); 4223 4224 return Ctx.hasSameUnqualifiedType(ParmT, ClassT); 4225 } 4226 4227 static OverloadingResult ResolveConstructorOverload( 4228 Sema &S, SourceLocation DeclLoc, MultiExprArg Args, 4229 OverloadCandidateSet &CandidateSet, QualType DestType, 4230 DeclContext::lookup_result Ctors, OverloadCandidateSet::iterator &Best, 4231 bool CopyInitializing, bool AllowExplicit, bool OnlyListConstructors, 4232 bool IsListInit, bool RequireActualConstructor, 4233 bool SecondStepOfCopyInit = false) { 4234 CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor); 4235 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); 4236 4237 for (NamedDecl *D : Ctors) { 4238 auto Info = getConstructorInfo(D); 4239 if (!Info.Constructor || Info.Constructor->isInvalidDecl()) 4240 continue; 4241 4242 if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor)) 4243 continue; 4244 4245 // C++11 [over.best.ics]p4: 4246 // ... and the constructor or user-defined conversion function is a 4247 // candidate by 4248 // - 13.3.1.3, when the argument is the temporary in the second step 4249 // of a class copy-initialization, or 4250 // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here] 4251 // - the second phase of 13.3.1.7 when the initializer list has exactly 4252 // one element that is itself an initializer list, and the target is 4253 // the first parameter of a constructor of class X, and the conversion 4254 // is to X or reference to (possibly cv-qualified X), 4255 // user-defined conversion sequences are not considered. 4256 bool SuppressUserConversions = 4257 SecondStepOfCopyInit || 4258 (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) && 4259 hasCopyOrMoveCtorParam(S.Context, Info)); 4260 4261 if (Info.ConstructorTmpl) 4262 S.AddTemplateOverloadCandidate( 4263 Info.ConstructorTmpl, Info.FoundDecl, 4264 /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions, 4265 /*PartialOverloading=*/false, AllowExplicit); 4266 else { 4267 // C++ [over.match.copy]p1: 4268 // - When initializing a temporary to be bound to the first parameter 4269 // of a constructor [for type T] that takes a reference to possibly 4270 // cv-qualified T as its first argument, called with a single 4271 // argument in the context of direct-initialization, explicit 4272 // conversion functions are also considered. 4273 // FIXME: What if a constructor template instantiates to such a signature? 4274 bool AllowExplicitConv = AllowExplicit && !CopyInitializing && 4275 Args.size() == 1 && 4276 hasCopyOrMoveCtorParam(S.Context, Info); 4277 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args, 4278 CandidateSet, SuppressUserConversions, 4279 /*PartialOverloading=*/false, AllowExplicit, 4280 AllowExplicitConv); 4281 } 4282 } 4283 4284 // FIXME: Work around a bug in C++17 guaranteed copy elision. 4285 // 4286 // When initializing an object of class type T by constructor 4287 // ([over.match.ctor]) or by list-initialization ([over.match.list]) 4288 // from a single expression of class type U, conversion functions of 4289 // U that convert to the non-reference type cv T are candidates. 4290 // Explicit conversion functions are only candidates during 4291 // direct-initialization. 4292 // 4293 // Note: SecondStepOfCopyInit is only ever true in this case when 4294 // evaluating whether to produce a C++98 compatibility warning. 4295 if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 && 4296 !RequireActualConstructor && !SecondStepOfCopyInit) { 4297 Expr *Initializer = Args[0]; 4298 auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl(); 4299 if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) { 4300 const auto &Conversions = SourceRD->getVisibleConversionFunctions(); 4301 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 4302 NamedDecl *D = *I; 4303 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 4304 D = D->getUnderlyingDecl(); 4305 4306 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 4307 CXXConversionDecl *Conv; 4308 if (ConvTemplate) 4309 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 4310 else 4311 Conv = cast<CXXConversionDecl>(D); 4312 4313 if (ConvTemplate) 4314 S.AddTemplateConversionCandidate( 4315 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 4316 CandidateSet, AllowExplicit, AllowExplicit, 4317 /*AllowResultConversion*/ false); 4318 else 4319 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, 4320 DestType, CandidateSet, AllowExplicit, 4321 AllowExplicit, 4322 /*AllowResultConversion*/ false); 4323 } 4324 } 4325 } 4326 4327 // Perform overload resolution and return the result. 4328 return CandidateSet.BestViableFunction(S, DeclLoc, Best); 4329 } 4330 4331 /// Attempt initialization by constructor (C++ [dcl.init]), which 4332 /// enumerates the constructors of the initialized entity and performs overload 4333 /// resolution to select the best. 4334 /// \param DestType The destination class type. 4335 /// \param DestArrayType The destination type, which is either DestType or 4336 /// a (possibly multidimensional) array of DestType. 4337 /// \param IsListInit Is this list-initialization? 4338 /// \param IsInitListCopy Is this non-list-initialization resulting from a 4339 /// list-initialization from {x} where x is the same 4340 /// type as the entity? 4341 static void TryConstructorInitialization(Sema &S, 4342 const InitializedEntity &Entity, 4343 const InitializationKind &Kind, 4344 MultiExprArg Args, QualType DestType, 4345 QualType DestArrayType, 4346 InitializationSequence &Sequence, 4347 bool IsListInit = false, 4348 bool IsInitListCopy = false) { 4349 assert(((!IsListInit && !IsInitListCopy) || 4350 (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && 4351 "IsListInit/IsInitListCopy must come with a single initializer list " 4352 "argument."); 4353 InitListExpr *ILE = 4354 (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr; 4355 MultiExprArg UnwrappedArgs = 4356 ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args; 4357 4358 // The type we're constructing needs to be complete. 4359 if (!S.isCompleteType(Kind.getLocation(), DestType)) { 4360 Sequence.setIncompleteTypeFailure(DestType); 4361 return; 4362 } 4363 4364 bool RequireActualConstructor = 4365 !(Entity.getKind() != InitializedEntity::EK_Base && 4366 Entity.getKind() != InitializedEntity::EK_Delegating && 4367 Entity.getKind() != 4368 InitializedEntity::EK_LambdaToBlockConversionBlockElement); 4369 4370 // C++17 [dcl.init]p17: 4371 // - If the initializer expression is a prvalue and the cv-unqualified 4372 // version of the source type is the same class as the class of the 4373 // destination, the initializer expression is used to initialize the 4374 // destination object. 4375 // Per DR (no number yet), this does not apply when initializing a base 4376 // class or delegating to another constructor from a mem-initializer. 4377 // ObjC++: Lambda captured by the block in the lambda to block conversion 4378 // should avoid copy elision. 4379 if (S.getLangOpts().CPlusPlus17 && !RequireActualConstructor && 4380 UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isPRValue() && 4381 S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) { 4382 // Convert qualifications if necessary. 4383 Sequence.AddQualificationConversionStep(DestType, VK_PRValue); 4384 if (ILE) 4385 Sequence.RewrapReferenceInitList(DestType, ILE); 4386 return; 4387 } 4388 4389 const RecordType *DestRecordType = DestType->getAs<RecordType>(); 4390 assert(DestRecordType && "Constructor initialization requires record type"); 4391 CXXRecordDecl *DestRecordDecl 4392 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 4393 4394 // Build the candidate set directly in the initialization sequence 4395 // structure, so that it will persist if we fail. 4396 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4397 4398 // Determine whether we are allowed to call explicit constructors or 4399 // explicit conversion operators. 4400 bool AllowExplicit = Kind.AllowExplicit() || IsListInit; 4401 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy; 4402 4403 // - Otherwise, if T is a class type, constructors are considered. The 4404 // applicable constructors are enumerated, and the best one is chosen 4405 // through overload resolution. 4406 DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl); 4407 4408 OverloadingResult Result = OR_No_Viable_Function; 4409 OverloadCandidateSet::iterator Best; 4410 bool AsInitializerList = false; 4411 4412 // C++11 [over.match.list]p1, per DR1467: 4413 // When objects of non-aggregate type T are list-initialized, such that 4414 // 8.5.4 [dcl.init.list] specifies that overload resolution is performed 4415 // according to the rules in this section, overload resolution selects 4416 // the constructor in two phases: 4417 // 4418 // - Initially, the candidate functions are the initializer-list 4419 // constructors of the class T and the argument list consists of the 4420 // initializer list as a single argument. 4421 if (IsListInit) { 4422 AsInitializerList = true; 4423 4424 // If the initializer list has no elements and T has a default constructor, 4425 // the first phase is omitted. 4426 if (!(UnwrappedArgs.empty() && S.LookupDefaultConstructor(DestRecordDecl))) 4427 Result = ResolveConstructorOverload( 4428 S, Kind.getLocation(), Args, CandidateSet, DestType, Ctors, Best, 4429 CopyInitialization, AllowExplicit, 4430 /*OnlyListConstructors=*/true, IsListInit, RequireActualConstructor); 4431 } 4432 4433 // C++11 [over.match.list]p1: 4434 // - If no viable initializer-list constructor is found, overload resolution 4435 // is performed again, where the candidate functions are all the 4436 // constructors of the class T and the argument list consists of the 4437 // elements of the initializer list. 4438 if (Result == OR_No_Viable_Function) { 4439 AsInitializerList = false; 4440 Result = ResolveConstructorOverload( 4441 S, Kind.getLocation(), UnwrappedArgs, CandidateSet, DestType, Ctors, 4442 Best, CopyInitialization, AllowExplicit, 4443 /*OnlyListConstructors=*/false, IsListInit, RequireActualConstructor); 4444 } 4445 if (Result) { 4446 Sequence.SetOverloadFailure( 4447 IsListInit ? InitializationSequence::FK_ListConstructorOverloadFailed 4448 : InitializationSequence::FK_ConstructorOverloadFailed, 4449 Result); 4450 4451 if (Result != OR_Deleted) 4452 return; 4453 } 4454 4455 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4456 4457 // In C++17, ResolveConstructorOverload can select a conversion function 4458 // instead of a constructor. 4459 if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) { 4460 // Add the user-defined conversion step that calls the conversion function. 4461 QualType ConvType = CD->getConversionType(); 4462 assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) && 4463 "should not have selected this conversion function"); 4464 Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType, 4465 HadMultipleCandidates); 4466 if (!S.Context.hasSameType(ConvType, DestType)) 4467 Sequence.AddQualificationConversionStep(DestType, VK_PRValue); 4468 if (IsListInit) 4469 Sequence.RewrapReferenceInitList(Entity.getType(), ILE); 4470 return; 4471 } 4472 4473 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 4474 if (Result != OR_Deleted) { 4475 // C++11 [dcl.init]p6: 4476 // If a program calls for the default initialization of an object 4477 // of a const-qualified type T, T shall be a class type with a 4478 // user-provided default constructor. 4479 // C++ core issue 253 proposal: 4480 // If the implicit default constructor initializes all subobjects, no 4481 // initializer should be required. 4482 // The 253 proposal is for example needed to process libstdc++ headers 4483 // in 5.x. 4484 if (Kind.getKind() == InitializationKind::IK_Default && 4485 Entity.getType().isConstQualified()) { 4486 if (!CtorDecl->getParent()->allowConstDefaultInit()) { 4487 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 4488 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 4489 return; 4490 } 4491 } 4492 4493 // C++11 [over.match.list]p1: 4494 // In copy-list-initialization, if an explicit constructor is chosen, the 4495 // initializer is ill-formed. 4496 if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) { 4497 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor); 4498 return; 4499 } 4500 } 4501 4502 // [class.copy.elision]p3: 4503 // In some copy-initialization contexts, a two-stage overload resolution 4504 // is performed. 4505 // If the first overload resolution selects a deleted function, we also 4506 // need the initialization sequence to decide whether to perform the second 4507 // overload resolution. 4508 // For deleted functions in other contexts, there is no need to get the 4509 // initialization sequence. 4510 if (Result == OR_Deleted && Kind.getKind() != InitializationKind::IK_Copy) 4511 return; 4512 4513 // Add the constructor initialization step. Any cv-qualification conversion is 4514 // subsumed by the initialization. 4515 Sequence.AddConstructorInitializationStep( 4516 Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates, 4517 IsListInit | IsInitListCopy, AsInitializerList); 4518 } 4519 4520 static bool 4521 ResolveOverloadedFunctionForReferenceBinding(Sema &S, 4522 Expr *Initializer, 4523 QualType &SourceType, 4524 QualType &UnqualifiedSourceType, 4525 QualType UnqualifiedTargetType, 4526 InitializationSequence &Sequence) { 4527 if (S.Context.getCanonicalType(UnqualifiedSourceType) == 4528 S.Context.OverloadTy) { 4529 DeclAccessPair Found; 4530 bool HadMultipleCandidates = false; 4531 if (FunctionDecl *Fn 4532 = S.ResolveAddressOfOverloadedFunction(Initializer, 4533 UnqualifiedTargetType, 4534 false, Found, 4535 &HadMultipleCandidates)) { 4536 Sequence.AddAddressOverloadResolutionStep(Fn, Found, 4537 HadMultipleCandidates); 4538 SourceType = Fn->getType(); 4539 UnqualifiedSourceType = SourceType.getUnqualifiedType(); 4540 } else if (!UnqualifiedTargetType->isRecordType()) { 4541 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4542 return true; 4543 } 4544 } 4545 return false; 4546 } 4547 4548 static void TryReferenceInitializationCore(Sema &S, 4549 const InitializedEntity &Entity, 4550 const InitializationKind &Kind, 4551 Expr *Initializer, 4552 QualType cv1T1, QualType T1, 4553 Qualifiers T1Quals, 4554 QualType cv2T2, QualType T2, 4555 Qualifiers T2Quals, 4556 InitializationSequence &Sequence, 4557 bool TopLevelOfInitList); 4558 4559 static void TryValueInitialization(Sema &S, 4560 const InitializedEntity &Entity, 4561 const InitializationKind &Kind, 4562 InitializationSequence &Sequence, 4563 InitListExpr *InitList = nullptr); 4564 4565 /// Attempt list initialization of a reference. 4566 static void TryReferenceListInitialization(Sema &S, 4567 const InitializedEntity &Entity, 4568 const InitializationKind &Kind, 4569 InitListExpr *InitList, 4570 InitializationSequence &Sequence, 4571 bool TreatUnavailableAsInvalid) { 4572 // First, catch C++03 where this isn't possible. 4573 if (!S.getLangOpts().CPlusPlus11) { 4574 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 4575 return; 4576 } 4577 // Can't reference initialize a compound literal. 4578 if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) { 4579 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 4580 return; 4581 } 4582 4583 QualType DestType = Entity.getType(); 4584 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); 4585 Qualifiers T1Quals; 4586 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 4587 4588 // Reference initialization via an initializer list works thus: 4589 // If the initializer list consists of a single element that is 4590 // reference-related to the referenced type, bind directly to that element 4591 // (possibly creating temporaries). 4592 // Otherwise, initialize a temporary with the initializer list and 4593 // bind to that. 4594 if (InitList->getNumInits() == 1) { 4595 Expr *Initializer = InitList->getInit(0); 4596 QualType cv2T2 = S.getCompletedType(Initializer); 4597 Qualifiers T2Quals; 4598 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 4599 4600 // If this fails, creating a temporary wouldn't work either. 4601 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 4602 T1, Sequence)) 4603 return; 4604 4605 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4606 Sema::ReferenceCompareResult RefRelationship 4607 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2); 4608 if (RefRelationship >= Sema::Ref_Related) { 4609 // Try to bind the reference here. 4610 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 4611 T1Quals, cv2T2, T2, T2Quals, Sequence, 4612 /*TopLevelOfInitList=*/true); 4613 if (Sequence) 4614 Sequence.RewrapReferenceInitList(cv1T1, InitList); 4615 return; 4616 } 4617 4618 // Update the initializer if we've resolved an overloaded function. 4619 if (Sequence.step_begin() != Sequence.step_end()) 4620 Sequence.RewrapReferenceInitList(cv1T1, InitList); 4621 } 4622 // Perform address space compatibility check. 4623 QualType cv1T1IgnoreAS = cv1T1; 4624 if (T1Quals.hasAddressSpace()) { 4625 Qualifiers T2Quals; 4626 (void)S.Context.getUnqualifiedArrayType(InitList->getType(), T2Quals); 4627 if (!T1Quals.isAddressSpaceSupersetOf(T2Quals)) { 4628 Sequence.SetFailed( 4629 InitializationSequence::FK_ReferenceInitDropsQualifiers); 4630 return; 4631 } 4632 // Ignore address space of reference type at this point and perform address 4633 // space conversion after the reference binding step. 4634 cv1T1IgnoreAS = 4635 S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace()); 4636 } 4637 // Not reference-related. Create a temporary and bind to that. 4638 InitializedEntity TempEntity = 4639 InitializedEntity::InitializeTemporary(cv1T1IgnoreAS); 4640 4641 TryListInitialization(S, TempEntity, Kind, InitList, Sequence, 4642 TreatUnavailableAsInvalid); 4643 if (Sequence) { 4644 if (DestType->isRValueReferenceType() || 4645 (T1Quals.hasConst() && !T1Quals.hasVolatile())) { 4646 if (S.getLangOpts().CPlusPlus20 && 4647 isa<IncompleteArrayType>(T1->getUnqualifiedDesugaredType()) && 4648 DestType->isRValueReferenceType()) { 4649 // C++20 [dcl.init.list]p3.10: 4650 // List-initialization of an object or reference of type T is defined as 4651 // follows: 4652 // ..., unless T is “reference to array of unknown bound of U”, in which 4653 // case the type of the prvalue is the type of x in the declaration U 4654 // x[] H, where H is the initializer list. 4655 Sequence.AddQualificationConversionStep(cv1T1, clang::VK_PRValue); 4656 } 4657 Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, 4658 /*BindingTemporary=*/true); 4659 if (T1Quals.hasAddressSpace()) 4660 Sequence.AddQualificationConversionStep( 4661 cv1T1, DestType->isRValueReferenceType() ? VK_XValue : VK_LValue); 4662 } else 4663 Sequence.SetFailed( 4664 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); 4665 } 4666 } 4667 4668 /// Attempt list initialization (C++0x [dcl.init.list]) 4669 static void TryListInitialization(Sema &S, 4670 const InitializedEntity &Entity, 4671 const InitializationKind &Kind, 4672 InitListExpr *InitList, 4673 InitializationSequence &Sequence, 4674 bool TreatUnavailableAsInvalid) { 4675 QualType DestType = Entity.getType(); 4676 4677 // C++ doesn't allow scalar initialization with more than one argument. 4678 // But C99 complex numbers are scalars and it makes sense there. 4679 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() && 4680 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) { 4681 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar); 4682 return; 4683 } 4684 if (DestType->isReferenceType()) { 4685 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence, 4686 TreatUnavailableAsInvalid); 4687 return; 4688 } 4689 4690 if (DestType->isRecordType() && 4691 !S.isCompleteType(InitList->getBeginLoc(), DestType)) { 4692 Sequence.setIncompleteTypeFailure(DestType); 4693 return; 4694 } 4695 4696 // C++20 [dcl.init.list]p3: 4697 // - If the braced-init-list contains a designated-initializer-list, T shall 4698 // be an aggregate class. [...] Aggregate initialization is performed. 4699 // 4700 // We allow arrays here too in order to support array designators. 4701 // 4702 // FIXME: This check should precede the handling of reference initialization. 4703 // We follow other compilers in allowing things like 'Aggr &&a = {.x = 1};' 4704 // as a tentative DR resolution. 4705 bool IsDesignatedInit = InitList->hasDesignatedInit(); 4706 if (!DestType->isAggregateType() && IsDesignatedInit) { 4707 Sequence.SetFailed( 4708 InitializationSequence::FK_DesignatedInitForNonAggregate); 4709 return; 4710 } 4711 4712 // C++11 [dcl.init.list]p3, per DR1467: 4713 // - If T is a class type and the initializer list has a single element of 4714 // type cv U, where U is T or a class derived from T, the object is 4715 // initialized from that element (by copy-initialization for 4716 // copy-list-initialization, or by direct-initialization for 4717 // direct-list-initialization). 4718 // - Otherwise, if T is a character array and the initializer list has a 4719 // single element that is an appropriately-typed string literal 4720 // (8.5.2 [dcl.init.string]), initialization is performed as described 4721 // in that section. 4722 // - Otherwise, if T is an aggregate, [...] (continue below). 4723 if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1 && 4724 !IsDesignatedInit) { 4725 if (DestType->isRecordType()) { 4726 QualType InitType = InitList->getInit(0)->getType(); 4727 if (S.Context.hasSameUnqualifiedType(InitType, DestType) || 4728 S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) { 4729 Expr *InitListAsExpr = InitList; 4730 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 4731 DestType, Sequence, 4732 /*InitListSyntax*/false, 4733 /*IsInitListCopy*/true); 4734 return; 4735 } 4736 } 4737 if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) { 4738 Expr *SubInit[1] = {InitList->getInit(0)}; 4739 if (!isa<VariableArrayType>(DestAT) && 4740 IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) { 4741 InitializationKind SubKind = 4742 Kind.getKind() == InitializationKind::IK_DirectList 4743 ? InitializationKind::CreateDirect(Kind.getLocation(), 4744 InitList->getLBraceLoc(), 4745 InitList->getRBraceLoc()) 4746 : Kind; 4747 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 4748 /*TopLevelOfInitList*/ true, 4749 TreatUnavailableAsInvalid); 4750 4751 // TryStringLiteralInitialization() (in InitializeFrom()) will fail if 4752 // the element is not an appropriately-typed string literal, in which 4753 // case we should proceed as in C++11 (below). 4754 if (Sequence) { 4755 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4756 return; 4757 } 4758 } 4759 } 4760 } 4761 4762 // C++11 [dcl.init.list]p3: 4763 // - If T is an aggregate, aggregate initialization is performed. 4764 if ((DestType->isRecordType() && !DestType->isAggregateType()) || 4765 (S.getLangOpts().CPlusPlus11 && 4766 S.isStdInitializerList(DestType, nullptr) && !IsDesignatedInit)) { 4767 if (S.getLangOpts().CPlusPlus11) { 4768 // - Otherwise, if the initializer list has no elements and T is a 4769 // class type with a default constructor, the object is 4770 // value-initialized. 4771 if (InitList->getNumInits() == 0) { 4772 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl(); 4773 if (S.LookupDefaultConstructor(RD)) { 4774 TryValueInitialization(S, Entity, Kind, Sequence, InitList); 4775 return; 4776 } 4777 } 4778 4779 // - Otherwise, if T is a specialization of std::initializer_list<E>, 4780 // an initializer_list object constructed [...] 4781 if (TryInitializerListConstruction(S, InitList, DestType, Sequence, 4782 TreatUnavailableAsInvalid)) 4783 return; 4784 4785 // - Otherwise, if T is a class type, constructors are considered. 4786 Expr *InitListAsExpr = InitList; 4787 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 4788 DestType, Sequence, /*InitListSyntax*/true); 4789 } else 4790 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType); 4791 return; 4792 } 4793 4794 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() && 4795 InitList->getNumInits() == 1) { 4796 Expr *E = InitList->getInit(0); 4797 4798 // - Otherwise, if T is an enumeration with a fixed underlying type, 4799 // the initializer-list has a single element v, and the initialization 4800 // is direct-list-initialization, the object is initialized with the 4801 // value T(v); if a narrowing conversion is required to convert v to 4802 // the underlying type of T, the program is ill-formed. 4803 auto *ET = DestType->getAs<EnumType>(); 4804 if (S.getLangOpts().CPlusPlus17 && 4805 Kind.getKind() == InitializationKind::IK_DirectList && 4806 ET && ET->getDecl()->isFixed() && 4807 !S.Context.hasSameUnqualifiedType(E->getType(), DestType) && 4808 (E->getType()->isIntegralOrUnscopedEnumerationType() || 4809 E->getType()->isFloatingType())) { 4810 // There are two ways that T(v) can work when T is an enumeration type. 4811 // If there is either an implicit conversion sequence from v to T or 4812 // a conversion function that can convert from v to T, then we use that. 4813 // Otherwise, if v is of integral, unscoped enumeration, or floating-point 4814 // type, it is converted to the enumeration type via its underlying type. 4815 // There is no overlap possible between these two cases (except when the 4816 // source value is already of the destination type), and the first 4817 // case is handled by the general case for single-element lists below. 4818 ImplicitConversionSequence ICS; 4819 ICS.setStandard(); 4820 ICS.Standard.setAsIdentityConversion(); 4821 if (!E->isPRValue()) 4822 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 4823 // If E is of a floating-point type, then the conversion is ill-formed 4824 // due to narrowing, but go through the motions in order to produce the 4825 // right diagnostic. 4826 ICS.Standard.Second = E->getType()->isFloatingType() 4827 ? ICK_Floating_Integral 4828 : ICK_Integral_Conversion; 4829 ICS.Standard.setFromType(E->getType()); 4830 ICS.Standard.setToType(0, E->getType()); 4831 ICS.Standard.setToType(1, DestType); 4832 ICS.Standard.setToType(2, DestType); 4833 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2), 4834 /*TopLevelOfInitList*/true); 4835 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4836 return; 4837 } 4838 4839 // - Otherwise, if the initializer list has a single element of type E 4840 // [...references are handled above...], the object or reference is 4841 // initialized from that element (by copy-initialization for 4842 // copy-list-initialization, or by direct-initialization for 4843 // direct-list-initialization); if a narrowing conversion is required 4844 // to convert the element to T, the program is ill-formed. 4845 // 4846 // Per core-24034, this is direct-initialization if we were performing 4847 // direct-list-initialization and copy-initialization otherwise. 4848 // We can't use InitListChecker for this, because it always performs 4849 // copy-initialization. This only matters if we might use an 'explicit' 4850 // conversion operator, or for the special case conversion of nullptr_t to 4851 // bool, so we only need to handle those cases. 4852 // 4853 // FIXME: Why not do this in all cases? 4854 Expr *Init = InitList->getInit(0); 4855 if (Init->getType()->isRecordType() || 4856 (Init->getType()->isNullPtrType() && DestType->isBooleanType())) { 4857 InitializationKind SubKind = 4858 Kind.getKind() == InitializationKind::IK_DirectList 4859 ? InitializationKind::CreateDirect(Kind.getLocation(), 4860 InitList->getLBraceLoc(), 4861 InitList->getRBraceLoc()) 4862 : Kind; 4863 Expr *SubInit[1] = { Init }; 4864 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 4865 /*TopLevelOfInitList*/true, 4866 TreatUnavailableAsInvalid); 4867 if (Sequence) 4868 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4869 return; 4870 } 4871 } 4872 4873 InitListChecker CheckInitList(S, Entity, InitList, 4874 DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid); 4875 if (CheckInitList.HadError()) { 4876 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed); 4877 return; 4878 } 4879 4880 // Add the list initialization step with the built init list. 4881 Sequence.AddListInitializationStep(DestType); 4882 } 4883 4884 /// Try a reference initialization that involves calling a conversion 4885 /// function. 4886 static OverloadingResult TryRefInitWithConversionFunction( 4887 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, 4888 Expr *Initializer, bool AllowRValues, bool IsLValueRef, 4889 InitializationSequence &Sequence) { 4890 QualType DestType = Entity.getType(); 4891 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); 4892 QualType T1 = cv1T1.getUnqualifiedType(); 4893 QualType cv2T2 = Initializer->getType(); 4894 QualType T2 = cv2T2.getUnqualifiedType(); 4895 4896 assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) && 4897 "Must have incompatible references when binding via conversion"); 4898 4899 // Build the candidate set directly in the initialization sequence 4900 // structure, so that it will persist if we fail. 4901 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4902 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 4903 4904 // Determine whether we are allowed to call explicit conversion operators. 4905 // Note that none of [over.match.copy], [over.match.conv], nor 4906 // [over.match.ref] permit an explicit constructor to be chosen when 4907 // initializing a reference, not even for direct-initialization. 4908 bool AllowExplicitCtors = false; 4909 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding(); 4910 4911 const RecordType *T1RecordType = nullptr; 4912 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) && 4913 S.isCompleteType(Kind.getLocation(), T1)) { 4914 // The type we're converting to is a class type. Enumerate its constructors 4915 // to see if there is a suitable conversion. 4916 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl()); 4917 4918 for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) { 4919 auto Info = getConstructorInfo(D); 4920 if (!Info.Constructor) 4921 continue; 4922 4923 if (!Info.Constructor->isInvalidDecl() && 4924 Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) { 4925 if (Info.ConstructorTmpl) 4926 S.AddTemplateOverloadCandidate( 4927 Info.ConstructorTmpl, Info.FoundDecl, 4928 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, 4929 /*SuppressUserConversions=*/true, 4930 /*PartialOverloading*/ false, AllowExplicitCtors); 4931 else 4932 S.AddOverloadCandidate( 4933 Info.Constructor, Info.FoundDecl, Initializer, CandidateSet, 4934 /*SuppressUserConversions=*/true, 4935 /*PartialOverloading*/ false, AllowExplicitCtors); 4936 } 4937 } 4938 } 4939 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl()) 4940 return OR_No_Viable_Function; 4941 4942 const RecordType *T2RecordType = nullptr; 4943 if ((T2RecordType = T2->getAs<RecordType>()) && 4944 S.isCompleteType(Kind.getLocation(), T2)) { 4945 // The type we're converting from is a class type, enumerate its conversion 4946 // functions. 4947 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl()); 4948 4949 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); 4950 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 4951 NamedDecl *D = *I; 4952 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 4953 if (isa<UsingShadowDecl>(D)) 4954 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4955 4956 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 4957 CXXConversionDecl *Conv; 4958 if (ConvTemplate) 4959 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 4960 else 4961 Conv = cast<CXXConversionDecl>(D); 4962 4963 // If the conversion function doesn't return a reference type, 4964 // it can't be considered for this conversion unless we're allowed to 4965 // consider rvalues. 4966 // FIXME: Do we need to make sure that we only consider conversion 4967 // candidates with reference-compatible results? That might be needed to 4968 // break recursion. 4969 if ((AllowRValues || 4970 Conv->getConversionType()->isLValueReferenceType())) { 4971 if (ConvTemplate) 4972 S.AddTemplateConversionCandidate( 4973 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 4974 CandidateSet, 4975 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); 4976 else 4977 S.AddConversionCandidate( 4978 Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet, 4979 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); 4980 } 4981 } 4982 } 4983 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl()) 4984 return OR_No_Viable_Function; 4985 4986 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4987 4988 // Perform overload resolution. If it fails, return the failed result. 4989 OverloadCandidateSet::iterator Best; 4990 if (OverloadingResult Result 4991 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) 4992 return Result; 4993 4994 FunctionDecl *Function = Best->Function; 4995 // This is the overload that will be used for this initialization step if we 4996 // use this initialization. Mark it as referenced. 4997 Function->setReferenced(); 4998 4999 // Compute the returned type and value kind of the conversion. 5000 QualType cv3T3; 5001 if (isa<CXXConversionDecl>(Function)) 5002 cv3T3 = Function->getReturnType(); 5003 else 5004 cv3T3 = T1; 5005 5006 ExprValueKind VK = VK_PRValue; 5007 if (cv3T3->isLValueReferenceType()) 5008 VK = VK_LValue; 5009 else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>()) 5010 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue; 5011 cv3T3 = cv3T3.getNonLValueExprType(S.Context); 5012 5013 // Add the user-defined conversion step. 5014 bool HadMultipleCandidates = (CandidateSet.size() > 1); 5015 Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3, 5016 HadMultipleCandidates); 5017 5018 // Determine whether we'll need to perform derived-to-base adjustments or 5019 // other conversions. 5020 Sema::ReferenceConversions RefConv; 5021 Sema::ReferenceCompareResult NewRefRelationship = 5022 S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, &RefConv); 5023 5024 // Add the final conversion sequence, if necessary. 5025 if (NewRefRelationship == Sema::Ref_Incompatible) { 5026 assert(!isa<CXXConstructorDecl>(Function) && 5027 "should not have conversion after constructor"); 5028 5029 ImplicitConversionSequence ICS; 5030 ICS.setStandard(); 5031 ICS.Standard = Best->FinalConversion; 5032 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2)); 5033 5034 // Every implicit conversion results in a prvalue, except for a glvalue 5035 // derived-to-base conversion, which we handle below. 5036 cv3T3 = ICS.Standard.getToType(2); 5037 VK = VK_PRValue; 5038 } 5039 5040 // If the converted initializer is a prvalue, its type T4 is adjusted to 5041 // type "cv1 T4" and the temporary materialization conversion is applied. 5042 // 5043 // We adjust the cv-qualifications to match the reference regardless of 5044 // whether we have a prvalue so that the AST records the change. In this 5045 // case, T4 is "cv3 T3". 5046 QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers()); 5047 if (cv1T4.getQualifiers() != cv3T3.getQualifiers()) 5048 Sequence.AddQualificationConversionStep(cv1T4, VK); 5049 Sequence.AddReferenceBindingStep(cv1T4, VK == VK_PRValue); 5050 VK = IsLValueRef ? VK_LValue : VK_XValue; 5051 5052 if (RefConv & Sema::ReferenceConversions::DerivedToBase) 5053 Sequence.AddDerivedToBaseCastStep(cv1T1, VK); 5054 else if (RefConv & Sema::ReferenceConversions::ObjC) 5055 Sequence.AddObjCObjectConversionStep(cv1T1); 5056 else if (RefConv & Sema::ReferenceConversions::Function) 5057 Sequence.AddFunctionReferenceConversionStep(cv1T1); 5058 else if (RefConv & Sema::ReferenceConversions::Qualification) { 5059 if (!S.Context.hasSameType(cv1T4, cv1T1)) 5060 Sequence.AddQualificationConversionStep(cv1T1, VK); 5061 } 5062 5063 return OR_Success; 5064 } 5065 5066 static void CheckCXX98CompatAccessibleCopy(Sema &S, 5067 const InitializedEntity &Entity, 5068 Expr *CurInitExpr); 5069 5070 /// Attempt reference initialization (C++0x [dcl.init.ref]) 5071 static void TryReferenceInitialization(Sema &S, const InitializedEntity &Entity, 5072 const InitializationKind &Kind, 5073 Expr *Initializer, 5074 InitializationSequence &Sequence, 5075 bool TopLevelOfInitList) { 5076 QualType DestType = Entity.getType(); 5077 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); 5078 Qualifiers T1Quals; 5079 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 5080 QualType cv2T2 = S.getCompletedType(Initializer); 5081 Qualifiers T2Quals; 5082 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 5083 5084 // If the initializer is the address of an overloaded function, try 5085 // to resolve the overloaded function. If all goes well, T2 is the 5086 // type of the resulting function. 5087 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 5088 T1, Sequence)) 5089 return; 5090 5091 // Delegate everything else to a subfunction. 5092 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 5093 T1Quals, cv2T2, T2, T2Quals, Sequence, 5094 TopLevelOfInitList); 5095 } 5096 5097 /// Determine whether an expression is a non-referenceable glvalue (one to 5098 /// which a reference can never bind). Attempting to bind a reference to 5099 /// such a glvalue will always create a temporary. 5100 static bool isNonReferenceableGLValue(Expr *E) { 5101 return E->refersToBitField() || E->refersToVectorElement() || 5102 E->refersToMatrixElement(); 5103 } 5104 5105 /// Reference initialization without resolving overloaded functions. 5106 /// 5107 /// We also can get here in C if we call a builtin which is declared as 5108 /// a function with a parameter of reference type (such as __builtin_va_end()). 5109 static void TryReferenceInitializationCore(Sema &S, 5110 const InitializedEntity &Entity, 5111 const InitializationKind &Kind, 5112 Expr *Initializer, 5113 QualType cv1T1, QualType T1, 5114 Qualifiers T1Quals, 5115 QualType cv2T2, QualType T2, 5116 Qualifiers T2Quals, 5117 InitializationSequence &Sequence, 5118 bool TopLevelOfInitList) { 5119 QualType DestType = Entity.getType(); 5120 SourceLocation DeclLoc = Initializer->getBeginLoc(); 5121 5122 // Compute some basic properties of the types and the initializer. 5123 bool isLValueRef = DestType->isLValueReferenceType(); 5124 bool isRValueRef = !isLValueRef; 5125 Expr::Classification InitCategory = Initializer->Classify(S.Context); 5126 5127 Sema::ReferenceConversions RefConv; 5128 Sema::ReferenceCompareResult RefRelationship = 5129 S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, &RefConv); 5130 5131 // C++0x [dcl.init.ref]p5: 5132 // A reference to type "cv1 T1" is initialized by an expression of type 5133 // "cv2 T2" as follows: 5134 // 5135 // - If the reference is an lvalue reference and the initializer 5136 // expression 5137 // Note the analogous bullet points for rvalue refs to functions. Because 5138 // there are no function rvalues in C++, rvalue refs to functions are treated 5139 // like lvalue refs. 5140 OverloadingResult ConvOvlResult = OR_Success; 5141 bool T1Function = T1->isFunctionType(); 5142 if (isLValueRef || T1Function) { 5143 if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) && 5144 (RefRelationship == Sema::Ref_Compatible || 5145 (Kind.isCStyleOrFunctionalCast() && 5146 RefRelationship == Sema::Ref_Related))) { 5147 // - is an lvalue (but is not a bit-field), and "cv1 T1" is 5148 // reference-compatible with "cv2 T2," or 5149 if (RefConv & (Sema::ReferenceConversions::DerivedToBase | 5150 Sema::ReferenceConversions::ObjC)) { 5151 // If we're converting the pointee, add any qualifiers first; 5152 // these qualifiers must all be top-level, so just convert to "cv1 T2". 5153 if (RefConv & (Sema::ReferenceConversions::Qualification)) 5154 Sequence.AddQualificationConversionStep( 5155 S.Context.getQualifiedType(T2, T1Quals), 5156 Initializer->getValueKind()); 5157 if (RefConv & Sema::ReferenceConversions::DerivedToBase) 5158 Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue); 5159 else 5160 Sequence.AddObjCObjectConversionStep(cv1T1); 5161 } else if (RefConv & Sema::ReferenceConversions::Qualification) { 5162 // Perform a (possibly multi-level) qualification conversion. 5163 Sequence.AddQualificationConversionStep(cv1T1, 5164 Initializer->getValueKind()); 5165 } else if (RefConv & Sema::ReferenceConversions::Function) { 5166 Sequence.AddFunctionReferenceConversionStep(cv1T1); 5167 } 5168 5169 // We only create a temporary here when binding a reference to a 5170 // bit-field or vector element. Those cases are't supposed to be 5171 // handled by this bullet, but the outcome is the same either way. 5172 Sequence.AddReferenceBindingStep(cv1T1, false); 5173 return; 5174 } 5175 5176 // - has a class type (i.e., T2 is a class type), where T1 is not 5177 // reference-related to T2, and can be implicitly converted to an 5178 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible 5179 // with "cv3 T3" (this conversion is selected by enumerating the 5180 // applicable conversion functions (13.3.1.6) and choosing the best 5181 // one through overload resolution (13.3)), 5182 // If we have an rvalue ref to function type here, the rhs must be 5183 // an rvalue. DR1287 removed the "implicitly" here. 5184 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() && 5185 (isLValueRef || InitCategory.isRValue())) { 5186 if (S.getLangOpts().CPlusPlus) { 5187 // Try conversion functions only for C++. 5188 ConvOvlResult = TryRefInitWithConversionFunction( 5189 S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef, 5190 /*IsLValueRef*/ isLValueRef, Sequence); 5191 if (ConvOvlResult == OR_Success) 5192 return; 5193 if (ConvOvlResult != OR_No_Viable_Function) 5194 Sequence.SetOverloadFailure( 5195 InitializationSequence::FK_ReferenceInitOverloadFailed, 5196 ConvOvlResult); 5197 } else { 5198 ConvOvlResult = OR_No_Viable_Function; 5199 } 5200 } 5201 } 5202 5203 // - Otherwise, the reference shall be an lvalue reference to a 5204 // non-volatile const type (i.e., cv1 shall be const), or the reference 5205 // shall be an rvalue reference. 5206 // For address spaces, we interpret this to mean that an addr space 5207 // of a reference "cv1 T1" is a superset of addr space of "cv2 T2". 5208 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() && 5209 T1Quals.isAddressSpaceSupersetOf(T2Quals))) { 5210 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 5211 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 5212 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 5213 Sequence.SetOverloadFailure( 5214 InitializationSequence::FK_ReferenceInitOverloadFailed, 5215 ConvOvlResult); 5216 else if (!InitCategory.isLValue()) 5217 Sequence.SetFailed( 5218 T1Quals.isAddressSpaceSupersetOf(T2Quals) 5219 ? InitializationSequence:: 5220 FK_NonConstLValueReferenceBindingToTemporary 5221 : InitializationSequence::FK_ReferenceInitDropsQualifiers); 5222 else { 5223 InitializationSequence::FailureKind FK; 5224 switch (RefRelationship) { 5225 case Sema::Ref_Compatible: 5226 if (Initializer->refersToBitField()) 5227 FK = InitializationSequence:: 5228 FK_NonConstLValueReferenceBindingToBitfield; 5229 else if (Initializer->refersToVectorElement()) 5230 FK = InitializationSequence:: 5231 FK_NonConstLValueReferenceBindingToVectorElement; 5232 else if (Initializer->refersToMatrixElement()) 5233 FK = InitializationSequence:: 5234 FK_NonConstLValueReferenceBindingToMatrixElement; 5235 else 5236 llvm_unreachable("unexpected kind of compatible initializer"); 5237 break; 5238 case Sema::Ref_Related: 5239 FK = InitializationSequence::FK_ReferenceInitDropsQualifiers; 5240 break; 5241 case Sema::Ref_Incompatible: 5242 FK = InitializationSequence:: 5243 FK_NonConstLValueReferenceBindingToUnrelated; 5244 break; 5245 } 5246 Sequence.SetFailed(FK); 5247 } 5248 return; 5249 } 5250 5251 // - If the initializer expression 5252 // - is an 5253 // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or 5254 // [1z] rvalue (but not a bit-field) or 5255 // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2" 5256 // 5257 // Note: functions are handled above and below rather than here... 5258 if (!T1Function && 5259 (RefRelationship == Sema::Ref_Compatible || 5260 (Kind.isCStyleOrFunctionalCast() && 5261 RefRelationship == Sema::Ref_Related)) && 5262 ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) || 5263 (InitCategory.isPRValue() && 5264 (S.getLangOpts().CPlusPlus17 || T2->isRecordType() || 5265 T2->isArrayType())))) { 5266 ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_PRValue; 5267 if (InitCategory.isPRValue() && T2->isRecordType()) { 5268 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the 5269 // compiler the freedom to perform a copy here or bind to the 5270 // object, while C++0x requires that we bind directly to the 5271 // object. Hence, we always bind to the object without making an 5272 // extra copy. However, in C++03 requires that we check for the 5273 // presence of a suitable copy constructor: 5274 // 5275 // The constructor that would be used to make the copy shall 5276 // be callable whether or not the copy is actually done. 5277 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt) 5278 Sequence.AddExtraneousCopyToTemporary(cv2T2); 5279 else if (S.getLangOpts().CPlusPlus11) 5280 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer); 5281 } 5282 5283 // C++1z [dcl.init.ref]/5.2.1.2: 5284 // If the converted initializer is a prvalue, its type T4 is adjusted 5285 // to type "cv1 T4" and the temporary materialization conversion is 5286 // applied. 5287 // Postpone address space conversions to after the temporary materialization 5288 // conversion to allow creating temporaries in the alloca address space. 5289 auto T1QualsIgnoreAS = T1Quals; 5290 auto T2QualsIgnoreAS = T2Quals; 5291 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { 5292 T1QualsIgnoreAS.removeAddressSpace(); 5293 T2QualsIgnoreAS.removeAddressSpace(); 5294 } 5295 QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS); 5296 if (T1QualsIgnoreAS != T2QualsIgnoreAS) 5297 Sequence.AddQualificationConversionStep(cv1T4, ValueKind); 5298 Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_PRValue); 5299 ValueKind = isLValueRef ? VK_LValue : VK_XValue; 5300 // Add addr space conversion if required. 5301 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { 5302 auto T4Quals = cv1T4.getQualifiers(); 5303 T4Quals.addAddressSpace(T1Quals.getAddressSpace()); 5304 QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals); 5305 Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind); 5306 cv1T4 = cv1T4WithAS; 5307 } 5308 5309 // In any case, the reference is bound to the resulting glvalue (or to 5310 // an appropriate base class subobject). 5311 if (RefConv & Sema::ReferenceConversions::DerivedToBase) 5312 Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind); 5313 else if (RefConv & Sema::ReferenceConversions::ObjC) 5314 Sequence.AddObjCObjectConversionStep(cv1T1); 5315 else if (RefConv & Sema::ReferenceConversions::Qualification) { 5316 if (!S.Context.hasSameType(cv1T4, cv1T1)) 5317 Sequence.AddQualificationConversionStep(cv1T1, ValueKind); 5318 } 5319 return; 5320 } 5321 5322 // - has a class type (i.e., T2 is a class type), where T1 is not 5323 // reference-related to T2, and can be implicitly converted to an 5324 // xvalue, class prvalue, or function lvalue of type "cv3 T3", 5325 // where "cv1 T1" is reference-compatible with "cv3 T3", 5326 // 5327 // DR1287 removes the "implicitly" here. 5328 if (T2->isRecordType()) { 5329 if (RefRelationship == Sema::Ref_Incompatible) { 5330 ConvOvlResult = TryRefInitWithConversionFunction( 5331 S, Entity, Kind, Initializer, /*AllowRValues*/ true, 5332 /*IsLValueRef*/ isLValueRef, Sequence); 5333 if (ConvOvlResult) 5334 Sequence.SetOverloadFailure( 5335 InitializationSequence::FK_ReferenceInitOverloadFailed, 5336 ConvOvlResult); 5337 5338 return; 5339 } 5340 5341 if (RefRelationship == Sema::Ref_Compatible && 5342 isRValueRef && InitCategory.isLValue()) { 5343 Sequence.SetFailed( 5344 InitializationSequence::FK_RValueReferenceBindingToLValue); 5345 return; 5346 } 5347 5348 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 5349 return; 5350 } 5351 5352 // - Otherwise, a temporary of type "cv1 T1" is created and initialized 5353 // from the initializer expression using the rules for a non-reference 5354 // copy-initialization (8.5). The reference is then bound to the 5355 // temporary. [...] 5356 5357 // Ignore address space of reference type at this point and perform address 5358 // space conversion after the reference binding step. 5359 QualType cv1T1IgnoreAS = 5360 T1Quals.hasAddressSpace() 5361 ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace()) 5362 : cv1T1; 5363 5364 InitializedEntity TempEntity = 5365 InitializedEntity::InitializeTemporary(cv1T1IgnoreAS); 5366 5367 // FIXME: Why do we use an implicit conversion here rather than trying 5368 // copy-initialization? 5369 ImplicitConversionSequence ICS 5370 = S.TryImplicitConversion(Initializer, TempEntity.getType(), 5371 /*SuppressUserConversions=*/false, 5372 Sema::AllowedExplicit::None, 5373 /*FIXME:InOverloadResolution=*/false, 5374 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 5375 /*AllowObjCWritebackConversion=*/false); 5376 5377 if (ICS.isBad()) { 5378 // FIXME: Use the conversion function set stored in ICS to turn 5379 // this into an overloading ambiguity diagnostic. However, we need 5380 // to keep that set as an OverloadCandidateSet rather than as some 5381 // other kind of set. 5382 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 5383 Sequence.SetOverloadFailure( 5384 InitializationSequence::FK_ReferenceInitOverloadFailed, 5385 ConvOvlResult); 5386 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 5387 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 5388 else 5389 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed); 5390 return; 5391 } else { 5392 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType(), 5393 TopLevelOfInitList); 5394 } 5395 5396 // [...] If T1 is reference-related to T2, cv1 must be the 5397 // same cv-qualification as, or greater cv-qualification 5398 // than, cv2; otherwise, the program is ill-formed. 5399 unsigned T1CVRQuals = T1Quals.getCVRQualifiers(); 5400 unsigned T2CVRQuals = T2Quals.getCVRQualifiers(); 5401 if (RefRelationship == Sema::Ref_Related && 5402 ((T1CVRQuals | T2CVRQuals) != T1CVRQuals || 5403 !T1Quals.isAddressSpaceSupersetOf(T2Quals))) { 5404 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 5405 return; 5406 } 5407 5408 // [...] If T1 is reference-related to T2 and the reference is an rvalue 5409 // reference, the initializer expression shall not be an lvalue. 5410 if (RefRelationship >= Sema::Ref_Related && !isLValueRef && 5411 InitCategory.isLValue()) { 5412 Sequence.SetFailed( 5413 InitializationSequence::FK_RValueReferenceBindingToLValue); 5414 return; 5415 } 5416 5417 Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true); 5418 5419 if (T1Quals.hasAddressSpace()) { 5420 if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(), 5421 LangAS::Default)) { 5422 Sequence.SetFailed( 5423 InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary); 5424 return; 5425 } 5426 Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue 5427 : VK_XValue); 5428 } 5429 } 5430 5431 /// Attempt character array initialization from a string literal 5432 /// (C++ [dcl.init.string], C99 6.7.8). 5433 static void TryStringLiteralInitialization(Sema &S, 5434 const InitializedEntity &Entity, 5435 const InitializationKind &Kind, 5436 Expr *Initializer, 5437 InitializationSequence &Sequence) { 5438 Sequence.AddStringInitStep(Entity.getType()); 5439 } 5440 5441 /// Attempt value initialization (C++ [dcl.init]p7). 5442 static void TryValueInitialization(Sema &S, 5443 const InitializedEntity &Entity, 5444 const InitializationKind &Kind, 5445 InitializationSequence &Sequence, 5446 InitListExpr *InitList) { 5447 assert((!InitList || InitList->getNumInits() == 0) && 5448 "Shouldn't use value-init for non-empty init lists"); 5449 5450 // C++98 [dcl.init]p5, C++11 [dcl.init]p7: 5451 // 5452 // To value-initialize an object of type T means: 5453 QualType T = Entity.getType(); 5454 5455 // -- if T is an array type, then each element is value-initialized; 5456 T = S.Context.getBaseElementType(T); 5457 5458 if (const RecordType *RT = T->getAs<RecordType>()) { 5459 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 5460 bool NeedZeroInitialization = true; 5461 // C++98: 5462 // -- if T is a class type (clause 9) with a user-declared constructor 5463 // (12.1), then the default constructor for T is called (and the 5464 // initialization is ill-formed if T has no accessible default 5465 // constructor); 5466 // C++11: 5467 // -- if T is a class type (clause 9) with either no default constructor 5468 // (12.1 [class.ctor]) or a default constructor that is user-provided 5469 // or deleted, then the object is default-initialized; 5470 // 5471 // Note that the C++11 rule is the same as the C++98 rule if there are no 5472 // defaulted or deleted constructors, so we just use it unconditionally. 5473 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl); 5474 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted()) 5475 NeedZeroInitialization = false; 5476 5477 // -- if T is a (possibly cv-qualified) non-union class type without a 5478 // user-provided or deleted default constructor, then the object is 5479 // zero-initialized and, if T has a non-trivial default constructor, 5480 // default-initialized; 5481 // The 'non-union' here was removed by DR1502. The 'non-trivial default 5482 // constructor' part was removed by DR1507. 5483 if (NeedZeroInitialization) 5484 Sequence.AddZeroInitializationStep(Entity.getType()); 5485 5486 // C++03: 5487 // -- if T is a non-union class type without a user-declared constructor, 5488 // then every non-static data member and base class component of T is 5489 // value-initialized; 5490 // [...] A program that calls for [...] value-initialization of an 5491 // entity of reference type is ill-formed. 5492 // 5493 // C++11 doesn't need this handling, because value-initialization does not 5494 // occur recursively there, and the implicit default constructor is 5495 // defined as deleted in the problematic cases. 5496 if (!S.getLangOpts().CPlusPlus11 && 5497 ClassDecl->hasUninitializedReferenceMember()) { 5498 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference); 5499 return; 5500 } 5501 5502 // If this is list-value-initialization, pass the empty init list on when 5503 // building the constructor call. This affects the semantics of a few 5504 // things (such as whether an explicit default constructor can be called). 5505 Expr *InitListAsExpr = InitList; 5506 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0); 5507 bool InitListSyntax = InitList; 5508 5509 // FIXME: Instead of creating a CXXConstructExpr of array type here, 5510 // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr. 5511 return TryConstructorInitialization( 5512 S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax); 5513 } 5514 } 5515 5516 Sequence.AddZeroInitializationStep(Entity.getType()); 5517 } 5518 5519 /// Attempt default initialization (C++ [dcl.init]p6). 5520 static void TryDefaultInitialization(Sema &S, 5521 const InitializedEntity &Entity, 5522 const InitializationKind &Kind, 5523 InitializationSequence &Sequence) { 5524 assert(Kind.getKind() == InitializationKind::IK_Default); 5525 5526 // C++ [dcl.init]p6: 5527 // To default-initialize an object of type T means: 5528 // - if T is an array type, each element is default-initialized; 5529 QualType DestType = S.Context.getBaseElementType(Entity.getType()); 5530 5531 // - if T is a (possibly cv-qualified) class type (Clause 9), the default 5532 // constructor for T is called (and the initialization is ill-formed if 5533 // T has no accessible default constructor); 5534 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) { 5535 TryConstructorInitialization(S, Entity, Kind, std::nullopt, DestType, 5536 Entity.getType(), Sequence); 5537 return; 5538 } 5539 5540 // - otherwise, no initialization is performed. 5541 5542 // If a program calls for the default initialization of an object of 5543 // a const-qualified type T, T shall be a class type with a user-provided 5544 // default constructor. 5545 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) { 5546 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 5547 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 5548 return; 5549 } 5550 5551 // If the destination type has a lifetime property, zero-initialize it. 5552 if (DestType.getQualifiers().hasObjCLifetime()) { 5553 Sequence.AddZeroInitializationStep(Entity.getType()); 5554 return; 5555 } 5556 } 5557 5558 static void TryOrBuildParenListInitialization( 5559 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, 5560 ArrayRef<Expr *> Args, InitializationSequence &Sequence, bool VerifyOnly, 5561 ExprResult *Result = nullptr) { 5562 unsigned EntityIndexToProcess = 0; 5563 SmallVector<Expr *, 4> InitExprs; 5564 QualType ResultType; 5565 Expr *ArrayFiller = nullptr; 5566 FieldDecl *InitializedFieldInUnion = nullptr; 5567 5568 auto HandleInitializedEntity = [&](const InitializedEntity &SubEntity, 5569 const InitializationKind &SubKind, 5570 Expr *Arg, Expr **InitExpr = nullptr) { 5571 InitializationSequence IS = InitializationSequence( 5572 S, SubEntity, SubKind, Arg ? MultiExprArg(Arg) : std::nullopt); 5573 5574 if (IS.Failed()) { 5575 if (!VerifyOnly) { 5576 IS.Diagnose(S, SubEntity, SubKind, Arg ? ArrayRef(Arg) : std::nullopt); 5577 } else { 5578 Sequence.SetFailed( 5579 InitializationSequence::FK_ParenthesizedListInitFailed); 5580 } 5581 5582 return false; 5583 } 5584 if (!VerifyOnly) { 5585 ExprResult ER; 5586 ER = IS.Perform(S, SubEntity, SubKind, 5587 Arg ? MultiExprArg(Arg) : std::nullopt); 5588 5589 if (ER.isInvalid()) 5590 return false; 5591 5592 if (InitExpr) 5593 *InitExpr = ER.get(); 5594 else 5595 InitExprs.push_back(ER.get()); 5596 } 5597 return true; 5598 }; 5599 5600 if (const ArrayType *AT = 5601 S.getASTContext().getAsArrayType(Entity.getType())) { 5602 SmallVector<InitializedEntity, 4> ElementEntities; 5603 uint64_t ArrayLength; 5604 // C++ [dcl.init]p16.5 5605 // if the destination type is an array, the object is initialized as 5606 // follows. Let x1, . . . , xk be the elements of the expression-list. If 5607 // the destination type is an array of unknown bound, it is defined as 5608 // having k elements. 5609 if (const ConstantArrayType *CAT = 5610 S.getASTContext().getAsConstantArrayType(Entity.getType())) { 5611 ArrayLength = CAT->getZExtSize(); 5612 ResultType = Entity.getType(); 5613 } else if (const VariableArrayType *VAT = 5614 S.getASTContext().getAsVariableArrayType(Entity.getType())) { 5615 // Braced-initialization of variable array types is not allowed, even if 5616 // the size is greater than or equal to the number of args, so we don't 5617 // allow them to be initialized via parenthesized aggregate initialization 5618 // either. 5619 const Expr *SE = VAT->getSizeExpr(); 5620 S.Diag(SE->getBeginLoc(), diag::err_variable_object_no_init) 5621 << SE->getSourceRange(); 5622 return; 5623 } else { 5624 assert(Entity.getType()->isIncompleteArrayType()); 5625 ArrayLength = Args.size(); 5626 } 5627 EntityIndexToProcess = ArrayLength; 5628 5629 // ...the ith array element is copy-initialized with xi for each 5630 // 1 <= i <= k 5631 for (Expr *E : Args) { 5632 InitializedEntity SubEntity = InitializedEntity::InitializeElement( 5633 S.getASTContext(), EntityIndexToProcess, Entity); 5634 InitializationKind SubKind = InitializationKind::CreateForInit( 5635 E->getExprLoc(), /*isDirectInit=*/false, E); 5636 if (!HandleInitializedEntity(SubEntity, SubKind, E)) 5637 return; 5638 } 5639 // ...and value-initialized for each k < i <= n; 5640 if (ArrayLength > Args.size() || Entity.isVariableLengthArrayNew()) { 5641 InitializedEntity SubEntity = InitializedEntity::InitializeElement( 5642 S.getASTContext(), Args.size(), Entity); 5643 InitializationKind SubKind = InitializationKind::CreateValue( 5644 Kind.getLocation(), Kind.getLocation(), Kind.getLocation(), true); 5645 if (!HandleInitializedEntity(SubEntity, SubKind, nullptr, &ArrayFiller)) 5646 return; 5647 } 5648 5649 if (ResultType.isNull()) { 5650 ResultType = S.Context.getConstantArrayType( 5651 AT->getElementType(), llvm::APInt(/*numBits=*/32, ArrayLength), 5652 /*SizeExpr=*/nullptr, ArraySizeModifier::Normal, 0); 5653 } 5654 } else if (auto *RT = Entity.getType()->getAs<RecordType>()) { 5655 bool IsUnion = RT->isUnionType(); 5656 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 5657 if (RD->isInvalidDecl()) { 5658 // Exit early to avoid confusion when processing members. 5659 // We do the same for braced list initialization in 5660 // `CheckStructUnionTypes`. 5661 Sequence.SetFailed( 5662 clang::InitializationSequence::FK_ParenthesizedListInitFailed); 5663 return; 5664 } 5665 5666 if (!IsUnion) { 5667 for (const CXXBaseSpecifier &Base : RD->bases()) { 5668 InitializedEntity SubEntity = InitializedEntity::InitializeBase( 5669 S.getASTContext(), &Base, false, &Entity); 5670 if (EntityIndexToProcess < Args.size()) { 5671 // C++ [dcl.init]p16.6.2.2. 5672 // ...the object is initialized is follows. Let e1, ..., en be the 5673 // elements of the aggregate([dcl.init.aggr]). Let x1, ..., xk be 5674 // the elements of the expression-list...The element ei is 5675 // copy-initialized with xi for 1 <= i <= k. 5676 Expr *E = Args[EntityIndexToProcess]; 5677 InitializationKind SubKind = InitializationKind::CreateForInit( 5678 E->getExprLoc(), /*isDirectInit=*/false, E); 5679 if (!HandleInitializedEntity(SubEntity, SubKind, E)) 5680 return; 5681 } else { 5682 // We've processed all of the args, but there are still base classes 5683 // that have to be initialized. 5684 // C++ [dcl.init]p17.6.2.2 5685 // The remaining elements...otherwise are value initialzed 5686 InitializationKind SubKind = InitializationKind::CreateValue( 5687 Kind.getLocation(), Kind.getLocation(), Kind.getLocation(), 5688 /*IsImplicit=*/true); 5689 if (!HandleInitializedEntity(SubEntity, SubKind, nullptr)) 5690 return; 5691 } 5692 EntityIndexToProcess++; 5693 } 5694 } 5695 5696 for (FieldDecl *FD : RD->fields()) { 5697 // Unnamed bitfields should not be initialized at all, either with an arg 5698 // or by default. 5699 if (FD->isUnnamedBitField()) 5700 continue; 5701 5702 InitializedEntity SubEntity = 5703 InitializedEntity::InitializeMemberFromParenAggInit(FD); 5704 5705 if (EntityIndexToProcess < Args.size()) { 5706 // ...The element ei is copy-initialized with xi for 1 <= i <= k. 5707 Expr *E = Args[EntityIndexToProcess]; 5708 5709 // Incomplete array types indicate flexible array members. Do not allow 5710 // paren list initializations of structs with these members, as GCC 5711 // doesn't either. 5712 if (FD->getType()->isIncompleteArrayType()) { 5713 if (!VerifyOnly) { 5714 S.Diag(E->getBeginLoc(), diag::err_flexible_array_init) 5715 << SourceRange(E->getBeginLoc(), E->getEndLoc()); 5716 S.Diag(FD->getLocation(), diag::note_flexible_array_member) << FD; 5717 } 5718 Sequence.SetFailed( 5719 InitializationSequence::FK_ParenthesizedListInitFailed); 5720 return; 5721 } 5722 5723 InitializationKind SubKind = InitializationKind::CreateForInit( 5724 E->getExprLoc(), /*isDirectInit=*/false, E); 5725 if (!HandleInitializedEntity(SubEntity, SubKind, E)) 5726 return; 5727 5728 // Unions should have only one initializer expression, so we bail out 5729 // after processing the first field. If there are more initializers then 5730 // it will be caught when we later check whether EntityIndexToProcess is 5731 // less than Args.size(); 5732 if (IsUnion) { 5733 InitializedFieldInUnion = FD; 5734 EntityIndexToProcess = 1; 5735 break; 5736 } 5737 } else { 5738 // We've processed all of the args, but there are still members that 5739 // have to be initialized. 5740 if (FD->hasInClassInitializer()) { 5741 if (!VerifyOnly) { 5742 // C++ [dcl.init]p16.6.2.2 5743 // The remaining elements are initialized with their default 5744 // member initializers, if any 5745 ExprResult DIE = S.BuildCXXDefaultInitExpr( 5746 Kind.getParenOrBraceRange().getEnd(), FD); 5747 if (DIE.isInvalid()) 5748 return; 5749 S.checkInitializerLifetime(SubEntity, DIE.get()); 5750 InitExprs.push_back(DIE.get()); 5751 } 5752 } else { 5753 // C++ [dcl.init]p17.6.2.2 5754 // The remaining elements...otherwise are value initialzed 5755 if (FD->getType()->isReferenceType()) { 5756 Sequence.SetFailed( 5757 InitializationSequence::FK_ParenthesizedListInitFailed); 5758 if (!VerifyOnly) { 5759 SourceRange SR = Kind.getParenOrBraceRange(); 5760 S.Diag(SR.getEnd(), diag::err_init_reference_member_uninitialized) 5761 << FD->getType() << SR; 5762 S.Diag(FD->getLocation(), diag::note_uninit_reference_member); 5763 } 5764 return; 5765 } 5766 InitializationKind SubKind = InitializationKind::CreateValue( 5767 Kind.getLocation(), Kind.getLocation(), Kind.getLocation(), true); 5768 if (!HandleInitializedEntity(SubEntity, SubKind, nullptr)) 5769 return; 5770 } 5771 } 5772 EntityIndexToProcess++; 5773 } 5774 ResultType = Entity.getType(); 5775 } 5776 5777 // Not all of the args have been processed, so there must've been more args 5778 // than were required to initialize the element. 5779 if (EntityIndexToProcess < Args.size()) { 5780 Sequence.SetFailed(InitializationSequence::FK_ParenthesizedListInitFailed); 5781 if (!VerifyOnly) { 5782 QualType T = Entity.getType(); 5783 int InitKind = T->isArrayType() ? 0 : T->isUnionType() ? 3 : 4; 5784 SourceRange ExcessInitSR(Args[EntityIndexToProcess]->getBeginLoc(), 5785 Args.back()->getEndLoc()); 5786 S.Diag(Kind.getLocation(), diag::err_excess_initializers) 5787 << InitKind << ExcessInitSR; 5788 } 5789 return; 5790 } 5791 5792 if (VerifyOnly) { 5793 Sequence.setSequenceKind(InitializationSequence::NormalSequence); 5794 Sequence.AddParenthesizedListInitStep(Entity.getType()); 5795 } else if (Result) { 5796 SourceRange SR = Kind.getParenOrBraceRange(); 5797 auto *CPLIE = CXXParenListInitExpr::Create( 5798 S.getASTContext(), InitExprs, ResultType, Args.size(), 5799 Kind.getLocation(), SR.getBegin(), SR.getEnd()); 5800 if (ArrayFiller) 5801 CPLIE->setArrayFiller(ArrayFiller); 5802 if (InitializedFieldInUnion) 5803 CPLIE->setInitializedFieldInUnion(InitializedFieldInUnion); 5804 *Result = CPLIE; 5805 S.Diag(Kind.getLocation(), 5806 diag::warn_cxx17_compat_aggregate_init_paren_list) 5807 << Kind.getLocation() << SR << ResultType; 5808 } 5809 } 5810 5811 /// Attempt a user-defined conversion between two types (C++ [dcl.init]), 5812 /// which enumerates all conversion functions and performs overload resolution 5813 /// to select the best. 5814 static void TryUserDefinedConversion(Sema &S, 5815 QualType DestType, 5816 const InitializationKind &Kind, 5817 Expr *Initializer, 5818 InitializationSequence &Sequence, 5819 bool TopLevelOfInitList) { 5820 assert(!DestType->isReferenceType() && "References are handled elsewhere"); 5821 QualType SourceType = Initializer->getType(); 5822 assert((DestType->isRecordType() || SourceType->isRecordType()) && 5823 "Must have a class type to perform a user-defined conversion"); 5824 5825 // Build the candidate set directly in the initialization sequence 5826 // structure, so that it will persist if we fail. 5827 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 5828 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 5829 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); 5830 5831 // Determine whether we are allowed to call explicit constructors or 5832 // explicit conversion operators. 5833 bool AllowExplicit = Kind.AllowExplicit(); 5834 5835 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) { 5836 // The type we're converting to is a class type. Enumerate its constructors 5837 // to see if there is a suitable conversion. 5838 CXXRecordDecl *DestRecordDecl 5839 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 5840 5841 // Try to complete the type we're converting to. 5842 if (S.isCompleteType(Kind.getLocation(), DestType)) { 5843 for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) { 5844 auto Info = getConstructorInfo(D); 5845 if (!Info.Constructor) 5846 continue; 5847 5848 if (!Info.Constructor->isInvalidDecl() && 5849 Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) { 5850 if (Info.ConstructorTmpl) 5851 S.AddTemplateOverloadCandidate( 5852 Info.ConstructorTmpl, Info.FoundDecl, 5853 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, 5854 /*SuppressUserConversions=*/true, 5855 /*PartialOverloading*/ false, AllowExplicit); 5856 else 5857 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, 5858 Initializer, CandidateSet, 5859 /*SuppressUserConversions=*/true, 5860 /*PartialOverloading*/ false, AllowExplicit); 5861 } 5862 } 5863 } 5864 } 5865 5866 SourceLocation DeclLoc = Initializer->getBeginLoc(); 5867 5868 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) { 5869 // The type we're converting from is a class type, enumerate its conversion 5870 // functions. 5871 5872 // We can only enumerate the conversion functions for a complete type; if 5873 // the type isn't complete, simply skip this step. 5874 if (S.isCompleteType(DeclLoc, SourceType)) { 5875 CXXRecordDecl *SourceRecordDecl 5876 = cast<CXXRecordDecl>(SourceRecordType->getDecl()); 5877 5878 const auto &Conversions = 5879 SourceRecordDecl->getVisibleConversionFunctions(); 5880 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 5881 NamedDecl *D = *I; 5882 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 5883 if (isa<UsingShadowDecl>(D)) 5884 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 5885 5886 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 5887 CXXConversionDecl *Conv; 5888 if (ConvTemplate) 5889 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 5890 else 5891 Conv = cast<CXXConversionDecl>(D); 5892 5893 if (ConvTemplate) 5894 S.AddTemplateConversionCandidate( 5895 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 5896 CandidateSet, AllowExplicit, AllowExplicit); 5897 else 5898 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, 5899 DestType, CandidateSet, AllowExplicit, 5900 AllowExplicit); 5901 } 5902 } 5903 } 5904 5905 // Perform overload resolution. If it fails, return the failed result. 5906 OverloadCandidateSet::iterator Best; 5907 if (OverloadingResult Result 5908 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) { 5909 Sequence.SetOverloadFailure( 5910 InitializationSequence::FK_UserConversionOverloadFailed, Result); 5911 5912 // [class.copy.elision]p3: 5913 // In some copy-initialization contexts, a two-stage overload resolution 5914 // is performed. 5915 // If the first overload resolution selects a deleted function, we also 5916 // need the initialization sequence to decide whether to perform the second 5917 // overload resolution. 5918 if (!(Result == OR_Deleted && 5919 Kind.getKind() == InitializationKind::IK_Copy)) 5920 return; 5921 } 5922 5923 FunctionDecl *Function = Best->Function; 5924 Function->setReferenced(); 5925 bool HadMultipleCandidates = (CandidateSet.size() > 1); 5926 5927 if (isa<CXXConstructorDecl>(Function)) { 5928 // Add the user-defined conversion step. Any cv-qualification conversion is 5929 // subsumed by the initialization. Per DR5, the created temporary is of the 5930 // cv-unqualified type of the destination. 5931 Sequence.AddUserConversionStep(Function, Best->FoundDecl, 5932 DestType.getUnqualifiedType(), 5933 HadMultipleCandidates); 5934 5935 // C++14 and before: 5936 // - if the function is a constructor, the call initializes a temporary 5937 // of the cv-unqualified version of the destination type. The [...] 5938 // temporary [...] is then used to direct-initialize, according to the 5939 // rules above, the object that is the destination of the 5940 // copy-initialization. 5941 // Note that this just performs a simple object copy from the temporary. 5942 // 5943 // C++17: 5944 // - if the function is a constructor, the call is a prvalue of the 5945 // cv-unqualified version of the destination type whose return object 5946 // is initialized by the constructor. The call is used to 5947 // direct-initialize, according to the rules above, the object that 5948 // is the destination of the copy-initialization. 5949 // Therefore we need to do nothing further. 5950 // 5951 // FIXME: Mark this copy as extraneous. 5952 if (!S.getLangOpts().CPlusPlus17) 5953 Sequence.AddFinalCopy(DestType); 5954 else if (DestType.hasQualifiers()) 5955 Sequence.AddQualificationConversionStep(DestType, VK_PRValue); 5956 return; 5957 } 5958 5959 // Add the user-defined conversion step that calls the conversion function. 5960 QualType ConvType = Function->getCallResultType(); 5961 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType, 5962 HadMultipleCandidates); 5963 5964 if (ConvType->getAs<RecordType>()) { 5965 // The call is used to direct-initialize [...] the object that is the 5966 // destination of the copy-initialization. 5967 // 5968 // In C++17, this does not call a constructor if we enter /17.6.1: 5969 // - If the initializer expression is a prvalue and the cv-unqualified 5970 // version of the source type is the same as the class of the 5971 // destination [... do not make an extra copy] 5972 // 5973 // FIXME: Mark this copy as extraneous. 5974 if (!S.getLangOpts().CPlusPlus17 || 5975 Function->getReturnType()->isReferenceType() || 5976 !S.Context.hasSameUnqualifiedType(ConvType, DestType)) 5977 Sequence.AddFinalCopy(DestType); 5978 else if (!S.Context.hasSameType(ConvType, DestType)) 5979 Sequence.AddQualificationConversionStep(DestType, VK_PRValue); 5980 return; 5981 } 5982 5983 // If the conversion following the call to the conversion function 5984 // is interesting, add it as a separate step. 5985 if (Best->FinalConversion.First || Best->FinalConversion.Second || 5986 Best->FinalConversion.Third) { 5987 ImplicitConversionSequence ICS; 5988 ICS.setStandard(); 5989 ICS.Standard = Best->FinalConversion; 5990 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 5991 } 5992 } 5993 5994 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>, 5995 /// a function with a pointer return type contains a 'return false;' statement. 5996 /// In C++11, 'false' is not a null pointer, so this breaks the build of any 5997 /// code using that header. 5998 /// 5999 /// Work around this by treating 'return false;' as zero-initializing the result 6000 /// if it's used in a pointer-returning function in a system header. 6001 static bool isLibstdcxxPointerReturnFalseHack(Sema &S, 6002 const InitializedEntity &Entity, 6003 const Expr *Init) { 6004 return S.getLangOpts().CPlusPlus11 && 6005 Entity.getKind() == InitializedEntity::EK_Result && 6006 Entity.getType()->isPointerType() && 6007 isa<CXXBoolLiteralExpr>(Init) && 6008 !cast<CXXBoolLiteralExpr>(Init)->getValue() && 6009 S.getSourceManager().isInSystemHeader(Init->getExprLoc()); 6010 } 6011 6012 /// The non-zero enum values here are indexes into diagnostic alternatives. 6013 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar }; 6014 6015 /// Determines whether this expression is an acceptable ICR source. 6016 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e, 6017 bool isAddressOf, bool &isWeakAccess) { 6018 // Skip parens. 6019 e = e->IgnoreParens(); 6020 6021 // Skip address-of nodes. 6022 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 6023 if (op->getOpcode() == UO_AddrOf) 6024 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true, 6025 isWeakAccess); 6026 6027 // Skip certain casts. 6028 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) { 6029 switch (ce->getCastKind()) { 6030 case CK_Dependent: 6031 case CK_BitCast: 6032 case CK_LValueBitCast: 6033 case CK_NoOp: 6034 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess); 6035 6036 case CK_ArrayToPointerDecay: 6037 return IIK_nonscalar; 6038 6039 case CK_NullToPointer: 6040 return IIK_okay; 6041 6042 default: 6043 break; 6044 } 6045 6046 // If we have a declaration reference, it had better be a local variable. 6047 } else if (isa<DeclRefExpr>(e)) { 6048 // set isWeakAccess to true, to mean that there will be an implicit 6049 // load which requires a cleanup. 6050 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 6051 isWeakAccess = true; 6052 6053 if (!isAddressOf) return IIK_nonlocal; 6054 6055 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl()); 6056 if (!var) return IIK_nonlocal; 6057 6058 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal); 6059 6060 // If we have a conditional operator, check both sides. 6061 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) { 6062 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf, 6063 isWeakAccess)) 6064 return iik; 6065 6066 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess); 6067 6068 // These are never scalar. 6069 } else if (isa<ArraySubscriptExpr>(e)) { 6070 return IIK_nonscalar; 6071 6072 // Otherwise, it needs to be a null pointer constant. 6073 } else { 6074 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull) 6075 ? IIK_okay : IIK_nonlocal); 6076 } 6077 6078 return IIK_nonlocal; 6079 } 6080 6081 /// Check whether the given expression is a valid operand for an 6082 /// indirect copy/restore. 6083 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) { 6084 assert(src->isPRValue()); 6085 bool isWeakAccess = false; 6086 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess); 6087 // If isWeakAccess to true, there will be an implicit 6088 // load which requires a cleanup. 6089 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess) 6090 S.Cleanup.setExprNeedsCleanups(true); 6091 6092 if (iik == IIK_okay) return; 6093 6094 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback) 6095 << ((unsigned) iik - 1) // shift index into diagnostic explanations 6096 << src->getSourceRange(); 6097 } 6098 6099 /// Determine whether we have compatible array types for the 6100 /// purposes of GNU by-copy array initialization. 6101 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest, 6102 const ArrayType *Source) { 6103 // If the source and destination array types are equivalent, we're 6104 // done. 6105 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0))) 6106 return true; 6107 6108 // Make sure that the element types are the same. 6109 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType())) 6110 return false; 6111 6112 // The only mismatch we allow is when the destination is an 6113 // incomplete array type and the source is a constant array type. 6114 return Source->isConstantArrayType() && Dest->isIncompleteArrayType(); 6115 } 6116 6117 static bool tryObjCWritebackConversion(Sema &S, 6118 InitializationSequence &Sequence, 6119 const InitializedEntity &Entity, 6120 Expr *Initializer) { 6121 bool ArrayDecay = false; 6122 QualType ArgType = Initializer->getType(); 6123 QualType ArgPointee; 6124 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) { 6125 ArrayDecay = true; 6126 ArgPointee = ArgArrayType->getElementType(); 6127 ArgType = S.Context.getPointerType(ArgPointee); 6128 } 6129 6130 // Handle write-back conversion. 6131 QualType ConvertedArgType; 6132 if (!S.ObjC().isObjCWritebackConversion(ArgType, Entity.getType(), 6133 ConvertedArgType)) 6134 return false; 6135 6136 // We should copy unless we're passing to an argument explicitly 6137 // marked 'out'. 6138 bool ShouldCopy = true; 6139 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 6140 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 6141 6142 // Do we need an lvalue conversion? 6143 if (ArrayDecay || Initializer->isGLValue()) { 6144 ImplicitConversionSequence ICS; 6145 ICS.setStandard(); 6146 ICS.Standard.setAsIdentityConversion(); 6147 6148 QualType ResultType; 6149 if (ArrayDecay) { 6150 ICS.Standard.First = ICK_Array_To_Pointer; 6151 ResultType = S.Context.getPointerType(ArgPointee); 6152 } else { 6153 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 6154 ResultType = Initializer->getType().getNonLValueExprType(S.Context); 6155 } 6156 6157 Sequence.AddConversionSequenceStep(ICS, ResultType); 6158 } 6159 6160 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy); 6161 return true; 6162 } 6163 6164 static bool TryOCLSamplerInitialization(Sema &S, 6165 InitializationSequence &Sequence, 6166 QualType DestType, 6167 Expr *Initializer) { 6168 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() || 6169 (!Initializer->isIntegerConstantExpr(S.Context) && 6170 !Initializer->getType()->isSamplerT())) 6171 return false; 6172 6173 Sequence.AddOCLSamplerInitStep(DestType); 6174 return true; 6175 } 6176 6177 static bool IsZeroInitializer(Expr *Initializer, Sema &S) { 6178 return Initializer->isIntegerConstantExpr(S.getASTContext()) && 6179 (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0); 6180 } 6181 6182 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S, 6183 InitializationSequence &Sequence, 6184 QualType DestType, 6185 Expr *Initializer) { 6186 if (!S.getLangOpts().OpenCL) 6187 return false; 6188 6189 // 6190 // OpenCL 1.2 spec, s6.12.10 6191 // 6192 // The event argument can also be used to associate the 6193 // async_work_group_copy with a previous async copy allowing 6194 // an event to be shared by multiple async copies; otherwise 6195 // event should be zero. 6196 // 6197 if (DestType->isEventT() || DestType->isQueueT()) { 6198 if (!IsZeroInitializer(Initializer, S)) 6199 return false; 6200 6201 Sequence.AddOCLZeroOpaqueTypeStep(DestType); 6202 return true; 6203 } 6204 6205 // We should allow zero initialization for all types defined in the 6206 // cl_intel_device_side_avc_motion_estimation extension, except 6207 // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t. 6208 if (S.getOpenCLOptions().isAvailableOption( 6209 "cl_intel_device_side_avc_motion_estimation", S.getLangOpts()) && 6210 DestType->isOCLIntelSubgroupAVCType()) { 6211 if (DestType->isOCLIntelSubgroupAVCMcePayloadType() || 6212 DestType->isOCLIntelSubgroupAVCMceResultType()) 6213 return false; 6214 if (!IsZeroInitializer(Initializer, S)) 6215 return false; 6216 6217 Sequence.AddOCLZeroOpaqueTypeStep(DestType); 6218 return true; 6219 } 6220 6221 return false; 6222 } 6223 6224 InitializationSequence::InitializationSequence( 6225 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, 6226 MultiExprArg Args, bool TopLevelOfInitList, bool TreatUnavailableAsInvalid) 6227 : FailedOverloadResult(OR_Success), 6228 FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) { 6229 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList, 6230 TreatUnavailableAsInvalid); 6231 } 6232 6233 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the 6234 /// address of that function, this returns true. Otherwise, it returns false. 6235 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) { 6236 auto *DRE = dyn_cast<DeclRefExpr>(E); 6237 if (!DRE || !isa<FunctionDecl>(DRE->getDecl())) 6238 return false; 6239 6240 return !S.checkAddressOfFunctionIsAvailable( 6241 cast<FunctionDecl>(DRE->getDecl())); 6242 } 6243 6244 /// Determine whether we can perform an elementwise array copy for this kind 6245 /// of entity. 6246 static bool canPerformArrayCopy(const InitializedEntity &Entity) { 6247 switch (Entity.getKind()) { 6248 case InitializedEntity::EK_LambdaCapture: 6249 // C++ [expr.prim.lambda]p24: 6250 // For array members, the array elements are direct-initialized in 6251 // increasing subscript order. 6252 return true; 6253 6254 case InitializedEntity::EK_Variable: 6255 // C++ [dcl.decomp]p1: 6256 // [...] each element is copy-initialized or direct-initialized from the 6257 // corresponding element of the assignment-expression [...] 6258 return isa<DecompositionDecl>(Entity.getDecl()); 6259 6260 case InitializedEntity::EK_Member: 6261 // C++ [class.copy.ctor]p14: 6262 // - if the member is an array, each element is direct-initialized with 6263 // the corresponding subobject of x 6264 return Entity.isImplicitMemberInitializer(); 6265 6266 case InitializedEntity::EK_ArrayElement: 6267 // All the above cases are intended to apply recursively, even though none 6268 // of them actually say that. 6269 if (auto *E = Entity.getParent()) 6270 return canPerformArrayCopy(*E); 6271 break; 6272 6273 default: 6274 break; 6275 } 6276 6277 return false; 6278 } 6279 6280 void InitializationSequence::InitializeFrom(Sema &S, 6281 const InitializedEntity &Entity, 6282 const InitializationKind &Kind, 6283 MultiExprArg Args, 6284 bool TopLevelOfInitList, 6285 bool TreatUnavailableAsInvalid) { 6286 ASTContext &Context = S.Context; 6287 6288 // Eliminate non-overload placeholder types in the arguments. We 6289 // need to do this before checking whether types are dependent 6290 // because lowering a pseudo-object expression might well give us 6291 // something of dependent type. 6292 for (unsigned I = 0, E = Args.size(); I != E; ++I) 6293 if (Args[I]->getType()->isNonOverloadPlaceholderType()) { 6294 // FIXME: should we be doing this here? 6295 ExprResult result = S.CheckPlaceholderExpr(Args[I]); 6296 if (result.isInvalid()) { 6297 SetFailed(FK_PlaceholderType); 6298 return; 6299 } 6300 Args[I] = result.get(); 6301 } 6302 6303 // C++0x [dcl.init]p16: 6304 // The semantics of initializers are as follows. The destination type is 6305 // the type of the object or reference being initialized and the source 6306 // type is the type of the initializer expression. The source type is not 6307 // defined when the initializer is a braced-init-list or when it is a 6308 // parenthesized list of expressions. 6309 QualType DestType = Entity.getType(); 6310 6311 if (DestType->isDependentType() || 6312 Expr::hasAnyTypeDependentArguments(Args)) { 6313 SequenceKind = DependentSequence; 6314 return; 6315 } 6316 6317 // Almost everything is a normal sequence. 6318 setSequenceKind(NormalSequence); 6319 6320 QualType SourceType; 6321 Expr *Initializer = nullptr; 6322 if (Args.size() == 1) { 6323 Initializer = Args[0]; 6324 if (S.getLangOpts().ObjC) { 6325 if (S.ObjC().CheckObjCBridgeRelatedConversions( 6326 Initializer->getBeginLoc(), DestType, Initializer->getType(), 6327 Initializer) || 6328 S.ObjC().CheckConversionToObjCLiteral(DestType, Initializer)) 6329 Args[0] = Initializer; 6330 } 6331 if (!isa<InitListExpr>(Initializer)) 6332 SourceType = Initializer->getType(); 6333 } 6334 6335 // - If the initializer is a (non-parenthesized) braced-init-list, the 6336 // object is list-initialized (8.5.4). 6337 if (Kind.getKind() != InitializationKind::IK_Direct) { 6338 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) { 6339 TryListInitialization(S, Entity, Kind, InitList, *this, 6340 TreatUnavailableAsInvalid); 6341 return; 6342 } 6343 } 6344 6345 // - If the destination type is a reference type, see 8.5.3. 6346 if (DestType->isReferenceType()) { 6347 // C++0x [dcl.init.ref]p1: 6348 // A variable declared to be a T& or T&&, that is, "reference to type T" 6349 // (8.3.2), shall be initialized by an object, or function, of type T or 6350 // by an object that can be converted into a T. 6351 // (Therefore, multiple arguments are not permitted.) 6352 if (Args.size() != 1) 6353 SetFailed(FK_TooManyInitsForReference); 6354 // C++17 [dcl.init.ref]p5: 6355 // A reference [...] is initialized by an expression [...] as follows: 6356 // If the initializer is not an expression, presumably we should reject, 6357 // but the standard fails to actually say so. 6358 else if (isa<InitListExpr>(Args[0])) 6359 SetFailed(FK_ParenthesizedListInitForReference); 6360 else 6361 TryReferenceInitialization(S, Entity, Kind, Args[0], *this, 6362 TopLevelOfInitList); 6363 return; 6364 } 6365 6366 // - If the initializer is (), the object is value-initialized. 6367 if (Kind.getKind() == InitializationKind::IK_Value || 6368 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) { 6369 TryValueInitialization(S, Entity, Kind, *this); 6370 return; 6371 } 6372 6373 // Handle default initialization. 6374 if (Kind.getKind() == InitializationKind::IK_Default) { 6375 TryDefaultInitialization(S, Entity, Kind, *this); 6376 return; 6377 } 6378 6379 // - If the destination type is an array of characters, an array of 6380 // char16_t, an array of char32_t, or an array of wchar_t, and the 6381 // initializer is a string literal, see 8.5.2. 6382 // - Otherwise, if the destination type is an array, the program is 6383 // ill-formed. 6384 // - Except in HLSL, where non-decaying array parameters behave like 6385 // non-array types for initialization. 6386 if (DestType->isArrayType() && !DestType->isArrayParameterType()) { 6387 const ArrayType *DestAT = Context.getAsArrayType(DestType); 6388 if (Initializer && isa<VariableArrayType>(DestAT)) { 6389 SetFailed(FK_VariableLengthArrayHasInitializer); 6390 return; 6391 } 6392 6393 if (Initializer) { 6394 switch (IsStringInit(Initializer, DestAT, Context)) { 6395 case SIF_None: 6396 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this); 6397 return; 6398 case SIF_NarrowStringIntoWideChar: 6399 SetFailed(FK_NarrowStringIntoWideCharArray); 6400 return; 6401 case SIF_WideStringIntoChar: 6402 SetFailed(FK_WideStringIntoCharArray); 6403 return; 6404 case SIF_IncompatWideStringIntoWideChar: 6405 SetFailed(FK_IncompatWideStringIntoWideChar); 6406 return; 6407 case SIF_PlainStringIntoUTF8Char: 6408 SetFailed(FK_PlainStringIntoUTF8Char); 6409 return; 6410 case SIF_UTF8StringIntoPlainChar: 6411 SetFailed(FK_UTF8StringIntoPlainChar); 6412 return; 6413 case SIF_Other: 6414 break; 6415 } 6416 } 6417 6418 // Some kinds of initialization permit an array to be initialized from 6419 // another array of the same type, and perform elementwise initialization. 6420 if (Initializer && isa<ConstantArrayType>(DestAT) && 6421 S.Context.hasSameUnqualifiedType(Initializer->getType(), 6422 Entity.getType()) && 6423 canPerformArrayCopy(Entity)) { 6424 // If source is a prvalue, use it directly. 6425 if (Initializer->isPRValue()) { 6426 AddArrayInitStep(DestType, /*IsGNUExtension*/false); 6427 return; 6428 } 6429 6430 // Emit element-at-a-time copy loop. 6431 InitializedEntity Element = 6432 InitializedEntity::InitializeElement(S.Context, 0, Entity); 6433 QualType InitEltT = 6434 Context.getAsArrayType(Initializer->getType())->getElementType(); 6435 OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT, 6436 Initializer->getValueKind(), 6437 Initializer->getObjectKind()); 6438 Expr *OVEAsExpr = &OVE; 6439 InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList, 6440 TreatUnavailableAsInvalid); 6441 if (!Failed()) 6442 AddArrayInitLoopStep(Entity.getType(), InitEltT); 6443 return; 6444 } 6445 6446 // Note: as an GNU C extension, we allow initialization of an 6447 // array from a compound literal that creates an array of the same 6448 // type, so long as the initializer has no side effects. 6449 if (!S.getLangOpts().CPlusPlus && Initializer && 6450 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) && 6451 Initializer->getType()->isArrayType()) { 6452 const ArrayType *SourceAT 6453 = Context.getAsArrayType(Initializer->getType()); 6454 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT)) 6455 SetFailed(FK_ArrayTypeMismatch); 6456 else if (Initializer->HasSideEffects(S.Context)) 6457 SetFailed(FK_NonConstantArrayInit); 6458 else { 6459 AddArrayInitStep(DestType, /*IsGNUExtension*/true); 6460 } 6461 } 6462 // Note: as a GNU C++ extension, we allow list-initialization of a 6463 // class member of array type from a parenthesized initializer list. 6464 else if (S.getLangOpts().CPlusPlus && 6465 Entity.getKind() == InitializedEntity::EK_Member && 6466 isa_and_nonnull<InitListExpr>(Initializer)) { 6467 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer), 6468 *this, TreatUnavailableAsInvalid); 6469 AddParenthesizedArrayInitStep(DestType); 6470 } else if (S.getLangOpts().CPlusPlus20 && !TopLevelOfInitList && 6471 Kind.getKind() == InitializationKind::IK_Direct) 6472 TryOrBuildParenListInitialization(S, Entity, Kind, Args, *this, 6473 /*VerifyOnly=*/true); 6474 else if (DestAT->getElementType()->isCharType()) 6475 SetFailed(FK_ArrayNeedsInitListOrStringLiteral); 6476 else if (IsWideCharCompatible(DestAT->getElementType(), Context)) 6477 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral); 6478 else 6479 SetFailed(FK_ArrayNeedsInitList); 6480 6481 return; 6482 } 6483 6484 // Determine whether we should consider writeback conversions for 6485 // Objective-C ARC. 6486 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount && 6487 Entity.isParameterKind(); 6488 6489 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer)) 6490 return; 6491 6492 // We're at the end of the line for C: it's either a write-back conversion 6493 // or it's a C assignment. There's no need to check anything else. 6494 if (!S.getLangOpts().CPlusPlus) { 6495 assert(Initializer && "Initializer must be non-null"); 6496 // If allowed, check whether this is an Objective-C writeback conversion. 6497 if (allowObjCWritebackConversion && 6498 tryObjCWritebackConversion(S, *this, Entity, Initializer)) { 6499 return; 6500 } 6501 6502 if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer)) 6503 return; 6504 6505 // Handle initialization in C 6506 AddCAssignmentStep(DestType); 6507 MaybeProduceObjCObject(S, *this, Entity); 6508 return; 6509 } 6510 6511 assert(S.getLangOpts().CPlusPlus); 6512 6513 // - If the destination type is a (possibly cv-qualified) class type: 6514 if (DestType->isRecordType()) { 6515 // - If the initialization is direct-initialization, or if it is 6516 // copy-initialization where the cv-unqualified version of the 6517 // source type is the same class as, or a derived class of, the 6518 // class of the destination, constructors are considered. [...] 6519 if (Kind.getKind() == InitializationKind::IK_Direct || 6520 (Kind.getKind() == InitializationKind::IK_Copy && 6521 (Context.hasSameUnqualifiedType(SourceType, DestType) || 6522 (Initializer && S.IsDerivedFrom(Initializer->getBeginLoc(), 6523 SourceType, DestType))))) { 6524 TryConstructorInitialization(S, Entity, Kind, Args, DestType, DestType, 6525 *this); 6526 6527 // We fall back to the "no matching constructor" path if the 6528 // failed candidate set has functions other than the three default 6529 // constructors. For example, conversion function. 6530 if (const auto *RD = 6531 dyn_cast<CXXRecordDecl>(DestType->getAs<RecordType>()->getDecl()); 6532 // In general, we should call isCompleteType for RD to check its 6533 // completeness, we don't call it here as it was already called in the 6534 // above TryConstructorInitialization. 6535 S.getLangOpts().CPlusPlus20 && RD && RD->hasDefinition() && 6536 RD->isAggregate() && Failed() && 6537 getFailureKind() == FK_ConstructorOverloadFailed) { 6538 // Do not attempt paren list initialization if overload resolution 6539 // resolves to a deleted function . 6540 // 6541 // We may reach this condition if we have a union wrapping a class with 6542 // a non-trivial copy or move constructor and we call one of those two 6543 // constructors. The union is an aggregate, but the matched constructor 6544 // is implicitly deleted, so we need to prevent aggregate initialization 6545 // (otherwise, it'll attempt aggregate initialization by initializing 6546 // the first element with a reference to the union). 6547 OverloadCandidateSet::iterator Best; 6548 OverloadingResult OR = getFailedCandidateSet().BestViableFunction( 6549 S, Kind.getLocation(), Best); 6550 if (OR != OverloadingResult::OR_Deleted) { 6551 // C++20 [dcl.init] 17.6.2.2: 6552 // - Otherwise, if no constructor is viable, the destination type is 6553 // an 6554 // aggregate class, and the initializer is a parenthesized 6555 // expression-list. 6556 TryOrBuildParenListInitialization(S, Entity, Kind, Args, *this, 6557 /*VerifyOnly=*/true); 6558 } 6559 } 6560 } else { 6561 // - Otherwise (i.e., for the remaining copy-initialization cases), 6562 // user-defined conversion sequences that can convert from the 6563 // source type to the destination type or (when a conversion 6564 // function is used) to a derived class thereof are enumerated as 6565 // described in 13.3.1.4, and the best one is chosen through 6566 // overload resolution (13.3). 6567 assert(Initializer && "Initializer must be non-null"); 6568 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 6569 TopLevelOfInitList); 6570 } 6571 return; 6572 } 6573 6574 assert(Args.size() >= 1 && "Zero-argument case handled above"); 6575 6576 // For HLSL ext vector types we allow list initialization behavior for C++ 6577 // constructor syntax. This is accomplished by converting initialization 6578 // arguments an InitListExpr late. 6579 if (S.getLangOpts().HLSL && Args.size() > 1 && DestType->isExtVectorType() && 6580 (SourceType.isNull() || 6581 !Context.hasSameUnqualifiedType(SourceType, DestType))) { 6582 6583 llvm::SmallVector<Expr *> InitArgs; 6584 for (auto *Arg : Args) { 6585 if (Arg->getType()->isExtVectorType()) { 6586 const auto *VTy = Arg->getType()->castAs<ExtVectorType>(); 6587 unsigned Elm = VTy->getNumElements(); 6588 for (unsigned Idx = 0; Idx < Elm; ++Idx) { 6589 InitArgs.emplace_back(new (Context) ArraySubscriptExpr( 6590 Arg, 6591 IntegerLiteral::Create( 6592 Context, llvm::APInt(Context.getIntWidth(Context.IntTy), Idx), 6593 Context.IntTy, SourceLocation()), 6594 VTy->getElementType(), Arg->getValueKind(), Arg->getObjectKind(), 6595 SourceLocation())); 6596 } 6597 } else 6598 InitArgs.emplace_back(Arg); 6599 } 6600 InitListExpr *ILE = new (Context) InitListExpr( 6601 S.getASTContext(), SourceLocation(), InitArgs, SourceLocation()); 6602 Args[0] = ILE; 6603 AddListInitializationStep(DestType); 6604 return; 6605 } 6606 6607 // The remaining cases all need a source type. 6608 if (Args.size() > 1) { 6609 SetFailed(FK_TooManyInitsForScalar); 6610 return; 6611 } else if (isa<InitListExpr>(Args[0])) { 6612 SetFailed(FK_ParenthesizedListInitForScalar); 6613 return; 6614 } 6615 6616 // - Otherwise, if the source type is a (possibly cv-qualified) class 6617 // type, conversion functions are considered. 6618 if (!SourceType.isNull() && SourceType->isRecordType()) { 6619 assert(Initializer && "Initializer must be non-null"); 6620 // For a conversion to _Atomic(T) from either T or a class type derived 6621 // from T, initialize the T object then convert to _Atomic type. 6622 bool NeedAtomicConversion = false; 6623 if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) { 6624 if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) || 6625 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, 6626 Atomic->getValueType())) { 6627 DestType = Atomic->getValueType(); 6628 NeedAtomicConversion = true; 6629 } 6630 } 6631 6632 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 6633 TopLevelOfInitList); 6634 MaybeProduceObjCObject(S, *this, Entity); 6635 if (!Failed() && NeedAtomicConversion) 6636 AddAtomicConversionStep(Entity.getType()); 6637 return; 6638 } 6639 6640 // - Otherwise, if the initialization is direct-initialization, the source 6641 // type is std::nullptr_t, and the destination type is bool, the initial 6642 // value of the object being initialized is false. 6643 if (!SourceType.isNull() && SourceType->isNullPtrType() && 6644 DestType->isBooleanType() && 6645 Kind.getKind() == InitializationKind::IK_Direct) { 6646 AddConversionSequenceStep( 6647 ImplicitConversionSequence::getNullptrToBool(SourceType, DestType, 6648 Initializer->isGLValue()), 6649 DestType); 6650 return; 6651 } 6652 6653 // - Otherwise, the initial value of the object being initialized is the 6654 // (possibly converted) value of the initializer expression. Standard 6655 // conversions (Clause 4) will be used, if necessary, to convert the 6656 // initializer expression to the cv-unqualified version of the 6657 // destination type; no user-defined conversions are considered. 6658 6659 ImplicitConversionSequence ICS 6660 = S.TryImplicitConversion(Initializer, DestType, 6661 /*SuppressUserConversions*/true, 6662 Sema::AllowedExplicit::None, 6663 /*InOverloadResolution*/ false, 6664 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 6665 allowObjCWritebackConversion); 6666 6667 if (ICS.isStandard() && 6668 ICS.Standard.Second == ICK_Writeback_Conversion) { 6669 // Objective-C ARC writeback conversion. 6670 6671 // We should copy unless we're passing to an argument explicitly 6672 // marked 'out'. 6673 bool ShouldCopy = true; 6674 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 6675 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 6676 6677 // If there was an lvalue adjustment, add it as a separate conversion. 6678 if (ICS.Standard.First == ICK_Array_To_Pointer || 6679 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 6680 ImplicitConversionSequence LvalueICS; 6681 LvalueICS.setStandard(); 6682 LvalueICS.Standard.setAsIdentityConversion(); 6683 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0)); 6684 LvalueICS.Standard.First = ICS.Standard.First; 6685 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0)); 6686 } 6687 6688 AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy); 6689 } else if (ICS.isBad()) { 6690 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) 6691 AddZeroInitializationStep(Entity.getType()); 6692 else if (DeclAccessPair Found; 6693 Initializer->getType() == Context.OverloadTy && 6694 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType, 6695 /*Complain=*/false, Found)) 6696 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 6697 else if (Initializer->getType()->isFunctionType() && 6698 isExprAnUnaddressableFunction(S, Initializer)) 6699 SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction); 6700 else 6701 SetFailed(InitializationSequence::FK_ConversionFailed); 6702 } else { 6703 AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 6704 6705 MaybeProduceObjCObject(S, *this, Entity); 6706 } 6707 } 6708 6709 InitializationSequence::~InitializationSequence() { 6710 for (auto &S : Steps) 6711 S.Destroy(); 6712 } 6713 6714 //===----------------------------------------------------------------------===// 6715 // Perform initialization 6716 //===----------------------------------------------------------------------===// 6717 static Sema::AssignmentAction 6718 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) { 6719 switch(Entity.getKind()) { 6720 case InitializedEntity::EK_Variable: 6721 case InitializedEntity::EK_New: 6722 case InitializedEntity::EK_Exception: 6723 case InitializedEntity::EK_Base: 6724 case InitializedEntity::EK_Delegating: 6725 return Sema::AA_Initializing; 6726 6727 case InitializedEntity::EK_Parameter: 6728 if (Entity.getDecl() && 6729 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 6730 return Sema::AA_Sending; 6731 6732 return Sema::AA_Passing; 6733 6734 case InitializedEntity::EK_Parameter_CF_Audited: 6735 if (Entity.getDecl() && 6736 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 6737 return Sema::AA_Sending; 6738 6739 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited; 6740 6741 case InitializedEntity::EK_Result: 6742 case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right. 6743 return Sema::AA_Returning; 6744 6745 case InitializedEntity::EK_Temporary: 6746 case InitializedEntity::EK_RelatedResult: 6747 // FIXME: Can we tell apart casting vs. converting? 6748 return Sema::AA_Casting; 6749 6750 case InitializedEntity::EK_TemplateParameter: 6751 // This is really initialization, but refer to it as conversion for 6752 // consistency with CheckConvertedConstantExpression. 6753 return Sema::AA_Converting; 6754 6755 case InitializedEntity::EK_Member: 6756 case InitializedEntity::EK_ParenAggInitMember: 6757 case InitializedEntity::EK_Binding: 6758 case InitializedEntity::EK_ArrayElement: 6759 case InitializedEntity::EK_VectorElement: 6760 case InitializedEntity::EK_ComplexElement: 6761 case InitializedEntity::EK_BlockElement: 6762 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6763 case InitializedEntity::EK_LambdaCapture: 6764 case InitializedEntity::EK_CompoundLiteralInit: 6765 return Sema::AA_Initializing; 6766 } 6767 6768 llvm_unreachable("Invalid EntityKind!"); 6769 } 6770 6771 /// Whether we should bind a created object as a temporary when 6772 /// initializing the given entity. 6773 static bool shouldBindAsTemporary(const InitializedEntity &Entity) { 6774 switch (Entity.getKind()) { 6775 case InitializedEntity::EK_ArrayElement: 6776 case InitializedEntity::EK_Member: 6777 case InitializedEntity::EK_ParenAggInitMember: 6778 case InitializedEntity::EK_Result: 6779 case InitializedEntity::EK_StmtExprResult: 6780 case InitializedEntity::EK_New: 6781 case InitializedEntity::EK_Variable: 6782 case InitializedEntity::EK_Base: 6783 case InitializedEntity::EK_Delegating: 6784 case InitializedEntity::EK_VectorElement: 6785 case InitializedEntity::EK_ComplexElement: 6786 case InitializedEntity::EK_Exception: 6787 case InitializedEntity::EK_BlockElement: 6788 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6789 case InitializedEntity::EK_LambdaCapture: 6790 case InitializedEntity::EK_CompoundLiteralInit: 6791 case InitializedEntity::EK_TemplateParameter: 6792 return false; 6793 6794 case InitializedEntity::EK_Parameter: 6795 case InitializedEntity::EK_Parameter_CF_Audited: 6796 case InitializedEntity::EK_Temporary: 6797 case InitializedEntity::EK_RelatedResult: 6798 case InitializedEntity::EK_Binding: 6799 return true; 6800 } 6801 6802 llvm_unreachable("missed an InitializedEntity kind?"); 6803 } 6804 6805 /// Whether the given entity, when initialized with an object 6806 /// created for that initialization, requires destruction. 6807 static bool shouldDestroyEntity(const InitializedEntity &Entity) { 6808 switch (Entity.getKind()) { 6809 case InitializedEntity::EK_Result: 6810 case InitializedEntity::EK_StmtExprResult: 6811 case InitializedEntity::EK_New: 6812 case InitializedEntity::EK_Base: 6813 case InitializedEntity::EK_Delegating: 6814 case InitializedEntity::EK_VectorElement: 6815 case InitializedEntity::EK_ComplexElement: 6816 case InitializedEntity::EK_BlockElement: 6817 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6818 case InitializedEntity::EK_LambdaCapture: 6819 return false; 6820 6821 case InitializedEntity::EK_Member: 6822 case InitializedEntity::EK_ParenAggInitMember: 6823 case InitializedEntity::EK_Binding: 6824 case InitializedEntity::EK_Variable: 6825 case InitializedEntity::EK_Parameter: 6826 case InitializedEntity::EK_Parameter_CF_Audited: 6827 case InitializedEntity::EK_TemplateParameter: 6828 case InitializedEntity::EK_Temporary: 6829 case InitializedEntity::EK_ArrayElement: 6830 case InitializedEntity::EK_Exception: 6831 case InitializedEntity::EK_CompoundLiteralInit: 6832 case InitializedEntity::EK_RelatedResult: 6833 return true; 6834 } 6835 6836 llvm_unreachable("missed an InitializedEntity kind?"); 6837 } 6838 6839 /// Get the location at which initialization diagnostics should appear. 6840 static SourceLocation getInitializationLoc(const InitializedEntity &Entity, 6841 Expr *Initializer) { 6842 switch (Entity.getKind()) { 6843 case InitializedEntity::EK_Result: 6844 case InitializedEntity::EK_StmtExprResult: 6845 return Entity.getReturnLoc(); 6846 6847 case InitializedEntity::EK_Exception: 6848 return Entity.getThrowLoc(); 6849 6850 case InitializedEntity::EK_Variable: 6851 case InitializedEntity::EK_Binding: 6852 return Entity.getDecl()->getLocation(); 6853 6854 case InitializedEntity::EK_LambdaCapture: 6855 return Entity.getCaptureLoc(); 6856 6857 case InitializedEntity::EK_ArrayElement: 6858 case InitializedEntity::EK_Member: 6859 case InitializedEntity::EK_ParenAggInitMember: 6860 case InitializedEntity::EK_Parameter: 6861 case InitializedEntity::EK_Parameter_CF_Audited: 6862 case InitializedEntity::EK_TemplateParameter: 6863 case InitializedEntity::EK_Temporary: 6864 case InitializedEntity::EK_New: 6865 case InitializedEntity::EK_Base: 6866 case InitializedEntity::EK_Delegating: 6867 case InitializedEntity::EK_VectorElement: 6868 case InitializedEntity::EK_ComplexElement: 6869 case InitializedEntity::EK_BlockElement: 6870 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6871 case InitializedEntity::EK_CompoundLiteralInit: 6872 case InitializedEntity::EK_RelatedResult: 6873 return Initializer->getBeginLoc(); 6874 } 6875 llvm_unreachable("missed an InitializedEntity kind?"); 6876 } 6877 6878 /// Make a (potentially elidable) temporary copy of the object 6879 /// provided by the given initializer by calling the appropriate copy 6880 /// constructor. 6881 /// 6882 /// \param S The Sema object used for type-checking. 6883 /// 6884 /// \param T The type of the temporary object, which must either be 6885 /// the type of the initializer expression or a superclass thereof. 6886 /// 6887 /// \param Entity The entity being initialized. 6888 /// 6889 /// \param CurInit The initializer expression. 6890 /// 6891 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that 6892 /// is permitted in C++03 (but not C++0x) when binding a reference to 6893 /// an rvalue. 6894 /// 6895 /// \returns An expression that copies the initializer expression into 6896 /// a temporary object, or an error expression if a copy could not be 6897 /// created. 6898 static ExprResult CopyObject(Sema &S, 6899 QualType T, 6900 const InitializedEntity &Entity, 6901 ExprResult CurInit, 6902 bool IsExtraneousCopy) { 6903 if (CurInit.isInvalid()) 6904 return CurInit; 6905 // Determine which class type we're copying to. 6906 Expr *CurInitExpr = (Expr *)CurInit.get(); 6907 CXXRecordDecl *Class = nullptr; 6908 if (const RecordType *Record = T->getAs<RecordType>()) 6909 Class = cast<CXXRecordDecl>(Record->getDecl()); 6910 if (!Class) 6911 return CurInit; 6912 6913 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get()); 6914 6915 // Make sure that the type we are copying is complete. 6916 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete)) 6917 return CurInit; 6918 6919 // Perform overload resolution using the class's constructors. Per 6920 // C++11 [dcl.init]p16, second bullet for class types, this initialization 6921 // is direct-initialization. 6922 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 6923 DeclContext::lookup_result Ctors = S.LookupConstructors(Class); 6924 6925 OverloadCandidateSet::iterator Best; 6926 switch (ResolveConstructorOverload( 6927 S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best, 6928 /*CopyInitializing=*/false, /*AllowExplicit=*/true, 6929 /*OnlyListConstructors=*/false, /*IsListInit=*/false, 6930 /*RequireActualConstructor=*/false, 6931 /*SecondStepOfCopyInit=*/true)) { 6932 case OR_Success: 6933 break; 6934 6935 case OR_No_Viable_Function: 6936 CandidateSet.NoteCandidates( 6937 PartialDiagnosticAt( 6938 Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext() 6939 ? diag::ext_rvalue_to_reference_temp_copy_no_viable 6940 : diag::err_temp_copy_no_viable) 6941 << (int)Entity.getKind() << CurInitExpr->getType() 6942 << CurInitExpr->getSourceRange()), 6943 S, OCD_AllCandidates, CurInitExpr); 6944 if (!IsExtraneousCopy || S.isSFINAEContext()) 6945 return ExprError(); 6946 return CurInit; 6947 6948 case OR_Ambiguous: 6949 CandidateSet.NoteCandidates( 6950 PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous) 6951 << (int)Entity.getKind() 6952 << CurInitExpr->getType() 6953 << CurInitExpr->getSourceRange()), 6954 S, OCD_AmbiguousCandidates, CurInitExpr); 6955 return ExprError(); 6956 6957 case OR_Deleted: 6958 S.Diag(Loc, diag::err_temp_copy_deleted) 6959 << (int)Entity.getKind() << CurInitExpr->getType() 6960 << CurInitExpr->getSourceRange(); 6961 S.NoteDeletedFunction(Best->Function); 6962 return ExprError(); 6963 } 6964 6965 bool HadMultipleCandidates = CandidateSet.size() > 1; 6966 6967 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); 6968 SmallVector<Expr*, 8> ConstructorArgs; 6969 CurInit.get(); // Ownership transferred into MultiExprArg, below. 6970 6971 S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity, 6972 IsExtraneousCopy); 6973 6974 if (IsExtraneousCopy) { 6975 // If this is a totally extraneous copy for C++03 reference 6976 // binding purposes, just return the original initialization 6977 // expression. We don't generate an (elided) copy operation here 6978 // because doing so would require us to pass down a flag to avoid 6979 // infinite recursion, where each step adds another extraneous, 6980 // elidable copy. 6981 6982 // Instantiate the default arguments of any extra parameters in 6983 // the selected copy constructor, as if we were going to create a 6984 // proper call to the copy constructor. 6985 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) { 6986 ParmVarDecl *Parm = Constructor->getParamDecl(I); 6987 if (S.RequireCompleteType(Loc, Parm->getType(), 6988 diag::err_call_incomplete_argument)) 6989 break; 6990 6991 // Build the default argument expression; we don't actually care 6992 // if this succeeds or not, because this routine will complain 6993 // if there was a problem. 6994 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm); 6995 } 6996 6997 return CurInitExpr; 6998 } 6999 7000 // Determine the arguments required to actually perform the 7001 // constructor call (we might have derived-to-base conversions, or 7002 // the copy constructor may have default arguments). 7003 if (S.CompleteConstructorCall(Constructor, T, CurInitExpr, Loc, 7004 ConstructorArgs)) 7005 return ExprError(); 7006 7007 // C++0x [class.copy]p32: 7008 // When certain criteria are met, an implementation is allowed to 7009 // omit the copy/move construction of a class object, even if the 7010 // copy/move constructor and/or destructor for the object have 7011 // side effects. [...] 7012 // - when a temporary class object that has not been bound to a 7013 // reference (12.2) would be copied/moved to a class object 7014 // with the same cv-unqualified type, the copy/move operation 7015 // can be omitted by constructing the temporary object 7016 // directly into the target of the omitted copy/move 7017 // 7018 // Note that the other three bullets are handled elsewhere. Copy 7019 // elision for return statements and throw expressions are handled as part 7020 // of constructor initialization, while copy elision for exception handlers 7021 // is handled by the run-time. 7022 // 7023 // FIXME: If the function parameter is not the same type as the temporary, we 7024 // should still be able to elide the copy, but we don't have a way to 7025 // represent in the AST how much should be elided in this case. 7026 bool Elidable = 7027 CurInitExpr->isTemporaryObject(S.Context, Class) && 7028 S.Context.hasSameUnqualifiedType( 7029 Best->Function->getParamDecl(0)->getType().getNonReferenceType(), 7030 CurInitExpr->getType()); 7031 7032 // Actually perform the constructor call. 7033 CurInit = S.BuildCXXConstructExpr( 7034 Loc, T, Best->FoundDecl, Constructor, Elidable, ConstructorArgs, 7035 HadMultipleCandidates, 7036 /*ListInit*/ false, 7037 /*StdInitListInit*/ false, 7038 /*ZeroInit*/ false, CXXConstructionKind::Complete, SourceRange()); 7039 7040 // If we're supposed to bind temporaries, do so. 7041 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity)) 7042 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 7043 return CurInit; 7044 } 7045 7046 /// Check whether elidable copy construction for binding a reference to 7047 /// a temporary would have succeeded if we were building in C++98 mode, for 7048 /// -Wc++98-compat. 7049 static void CheckCXX98CompatAccessibleCopy(Sema &S, 7050 const InitializedEntity &Entity, 7051 Expr *CurInitExpr) { 7052 assert(S.getLangOpts().CPlusPlus11); 7053 7054 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>(); 7055 if (!Record) 7056 return; 7057 7058 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr); 7059 if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc)) 7060 return; 7061 7062 // Find constructors which would have been considered. 7063 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 7064 DeclContext::lookup_result Ctors = 7065 S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl())); 7066 7067 // Perform overload resolution. 7068 OverloadCandidateSet::iterator Best; 7069 OverloadingResult OR = ResolveConstructorOverload( 7070 S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best, 7071 /*CopyInitializing=*/false, /*AllowExplicit=*/true, 7072 /*OnlyListConstructors=*/false, /*IsListInit=*/false, 7073 /*RequireActualConstructor=*/false, 7074 /*SecondStepOfCopyInit=*/true); 7075 7076 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy) 7077 << OR << (int)Entity.getKind() << CurInitExpr->getType() 7078 << CurInitExpr->getSourceRange(); 7079 7080 switch (OR) { 7081 case OR_Success: 7082 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function), 7083 Best->FoundDecl, Entity, Diag); 7084 // FIXME: Check default arguments as far as that's possible. 7085 break; 7086 7087 case OR_No_Viable_Function: 7088 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, 7089 OCD_AllCandidates, CurInitExpr); 7090 break; 7091 7092 case OR_Ambiguous: 7093 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, 7094 OCD_AmbiguousCandidates, CurInitExpr); 7095 break; 7096 7097 case OR_Deleted: 7098 S.Diag(Loc, Diag); 7099 S.NoteDeletedFunction(Best->Function); 7100 break; 7101 } 7102 } 7103 7104 void InitializationSequence::PrintInitLocationNote(Sema &S, 7105 const InitializedEntity &Entity) { 7106 if (Entity.isParamOrTemplateParamKind() && Entity.getDecl()) { 7107 if (Entity.getDecl()->getLocation().isInvalid()) 7108 return; 7109 7110 if (Entity.getDecl()->getDeclName()) 7111 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here) 7112 << Entity.getDecl()->getDeclName(); 7113 else 7114 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here); 7115 } 7116 else if (Entity.getKind() == InitializedEntity::EK_RelatedResult && 7117 Entity.getMethodDecl()) 7118 S.Diag(Entity.getMethodDecl()->getLocation(), 7119 diag::note_method_return_type_change) 7120 << Entity.getMethodDecl()->getDeclName(); 7121 } 7122 7123 /// Returns true if the parameters describe a constructor initialization of 7124 /// an explicit temporary object, e.g. "Point(x, y)". 7125 static bool isExplicitTemporary(const InitializedEntity &Entity, 7126 const InitializationKind &Kind, 7127 unsigned NumArgs) { 7128 switch (Entity.getKind()) { 7129 case InitializedEntity::EK_Temporary: 7130 case InitializedEntity::EK_CompoundLiteralInit: 7131 case InitializedEntity::EK_RelatedResult: 7132 break; 7133 default: 7134 return false; 7135 } 7136 7137 switch (Kind.getKind()) { 7138 case InitializationKind::IK_DirectList: 7139 return true; 7140 // FIXME: Hack to work around cast weirdness. 7141 case InitializationKind::IK_Direct: 7142 case InitializationKind::IK_Value: 7143 return NumArgs != 1; 7144 default: 7145 return false; 7146 } 7147 } 7148 7149 static ExprResult 7150 PerformConstructorInitialization(Sema &S, 7151 const InitializedEntity &Entity, 7152 const InitializationKind &Kind, 7153 MultiExprArg Args, 7154 const InitializationSequence::Step& Step, 7155 bool &ConstructorInitRequiresZeroInit, 7156 bool IsListInitialization, 7157 bool IsStdInitListInitialization, 7158 SourceLocation LBraceLoc, 7159 SourceLocation RBraceLoc) { 7160 unsigned NumArgs = Args.size(); 7161 CXXConstructorDecl *Constructor 7162 = cast<CXXConstructorDecl>(Step.Function.Function); 7163 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates; 7164 7165 // Build a call to the selected constructor. 7166 SmallVector<Expr*, 8> ConstructorArgs; 7167 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid()) 7168 ? Kind.getEqualLoc() 7169 : Kind.getLocation(); 7170 7171 if (Kind.getKind() == InitializationKind::IK_Default) { 7172 // Force even a trivial, implicit default constructor to be 7173 // semantically checked. We do this explicitly because we don't build 7174 // the definition for completely trivial constructors. 7175 assert(Constructor->getParent() && "No parent class for constructor."); 7176 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() && 7177 Constructor->isTrivial() && !Constructor->isUsed(false)) { 7178 S.runWithSufficientStackSpace(Loc, [&] { 7179 S.DefineImplicitDefaultConstructor(Loc, Constructor); 7180 }); 7181 } 7182 } 7183 7184 ExprResult CurInit((Expr *)nullptr); 7185 7186 // C++ [over.match.copy]p1: 7187 // - When initializing a temporary to be bound to the first parameter 7188 // of a constructor that takes a reference to possibly cv-qualified 7189 // T as its first argument, called with a single argument in the 7190 // context of direct-initialization, explicit conversion functions 7191 // are also considered. 7192 bool AllowExplicitConv = 7193 Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 && 7194 hasCopyOrMoveCtorParam(S.Context, 7195 getConstructorInfo(Step.Function.FoundDecl)); 7196 7197 // A smart pointer constructed from a nullable pointer is nullable. 7198 if (NumArgs == 1 && !Kind.isExplicitCast()) 7199 S.diagnoseNullableToNonnullConversion( 7200 Entity.getType(), Args.front()->getType(), Kind.getLocation()); 7201 7202 // Determine the arguments required to actually perform the constructor 7203 // call. 7204 if (S.CompleteConstructorCall(Constructor, Step.Type, Args, Loc, 7205 ConstructorArgs, AllowExplicitConv, 7206 IsListInitialization)) 7207 return ExprError(); 7208 7209 if (isExplicitTemporary(Entity, Kind, NumArgs)) { 7210 // An explicitly-constructed temporary, e.g., X(1, 2). 7211 if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc)) 7212 return ExprError(); 7213 7214 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 7215 if (!TSInfo) 7216 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc); 7217 SourceRange ParenOrBraceRange = 7218 (Kind.getKind() == InitializationKind::IK_DirectList) 7219 ? SourceRange(LBraceLoc, RBraceLoc) 7220 : Kind.getParenOrBraceRange(); 7221 7222 CXXConstructorDecl *CalleeDecl = Constructor; 7223 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>( 7224 Step.Function.FoundDecl.getDecl())) { 7225 CalleeDecl = S.findInheritingConstructor(Loc, Constructor, Shadow); 7226 } 7227 S.MarkFunctionReferenced(Loc, CalleeDecl); 7228 7229 CurInit = S.CheckForImmediateInvocation( 7230 CXXTemporaryObjectExpr::Create( 7231 S.Context, CalleeDecl, 7232 Entity.getType().getNonLValueExprType(S.Context), TSInfo, 7233 ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates, 7234 IsListInitialization, IsStdInitListInitialization, 7235 ConstructorInitRequiresZeroInit), 7236 CalleeDecl); 7237 } else { 7238 CXXConstructionKind ConstructKind = CXXConstructionKind::Complete; 7239 7240 if (Entity.getKind() == InitializedEntity::EK_Base) { 7241 ConstructKind = Entity.getBaseSpecifier()->isVirtual() 7242 ? CXXConstructionKind::VirtualBase 7243 : CXXConstructionKind::NonVirtualBase; 7244 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) { 7245 ConstructKind = CXXConstructionKind::Delegating; 7246 } 7247 7248 // Only get the parenthesis or brace range if it is a list initialization or 7249 // direct construction. 7250 SourceRange ParenOrBraceRange; 7251 if (IsListInitialization) 7252 ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc); 7253 else if (Kind.getKind() == InitializationKind::IK_Direct) 7254 ParenOrBraceRange = Kind.getParenOrBraceRange(); 7255 7256 // If the entity allows NRVO, mark the construction as elidable 7257 // unconditionally. 7258 if (Entity.allowsNRVO()) 7259 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, 7260 Step.Function.FoundDecl, 7261 Constructor, /*Elidable=*/true, 7262 ConstructorArgs, 7263 HadMultipleCandidates, 7264 IsListInitialization, 7265 IsStdInitListInitialization, 7266 ConstructorInitRequiresZeroInit, 7267 ConstructKind, 7268 ParenOrBraceRange); 7269 else 7270 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, 7271 Step.Function.FoundDecl, 7272 Constructor, 7273 ConstructorArgs, 7274 HadMultipleCandidates, 7275 IsListInitialization, 7276 IsStdInitListInitialization, 7277 ConstructorInitRequiresZeroInit, 7278 ConstructKind, 7279 ParenOrBraceRange); 7280 } 7281 if (CurInit.isInvalid()) 7282 return ExprError(); 7283 7284 // Only check access if all of that succeeded. 7285 S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity); 7286 if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc)) 7287 return ExprError(); 7288 7289 if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType())) 7290 if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S)) 7291 return ExprError(); 7292 7293 if (shouldBindAsTemporary(Entity)) 7294 CurInit = S.MaybeBindToTemporary(CurInit.get()); 7295 7296 return CurInit; 7297 } 7298 7299 void Sema::checkInitializerLifetime(const InitializedEntity &Entity, 7300 Expr *Init) { 7301 return sema::checkExprLifetime(*this, Entity, Init); 7302 } 7303 7304 static void DiagnoseNarrowingInInitList(Sema &S, 7305 const ImplicitConversionSequence &ICS, 7306 QualType PreNarrowingType, 7307 QualType EntityType, 7308 const Expr *PostInit); 7309 7310 static void CheckC23ConstexprInitConversion(Sema &S, QualType FromType, 7311 QualType ToType, Expr *Init); 7312 7313 /// Provide warnings when std::move is used on construction. 7314 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr, 7315 bool IsReturnStmt) { 7316 if (!InitExpr) 7317 return; 7318 7319 if (S.inTemplateInstantiation()) 7320 return; 7321 7322 QualType DestType = InitExpr->getType(); 7323 if (!DestType->isRecordType()) 7324 return; 7325 7326 unsigned DiagID = 0; 7327 if (IsReturnStmt) { 7328 const CXXConstructExpr *CCE = 7329 dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens()); 7330 if (!CCE || CCE->getNumArgs() != 1) 7331 return; 7332 7333 if (!CCE->getConstructor()->isCopyOrMoveConstructor()) 7334 return; 7335 7336 InitExpr = CCE->getArg(0)->IgnoreImpCasts(); 7337 } 7338 7339 // Find the std::move call and get the argument. 7340 const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens()); 7341 if (!CE || !CE->isCallToStdMove()) 7342 return; 7343 7344 const Expr *Arg = CE->getArg(0)->IgnoreImplicit(); 7345 7346 if (IsReturnStmt) { 7347 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts()); 7348 if (!DRE || DRE->refersToEnclosingVariableOrCapture()) 7349 return; 7350 7351 const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7352 if (!VD || !VD->hasLocalStorage()) 7353 return; 7354 7355 // __block variables are not moved implicitly. 7356 if (VD->hasAttr<BlocksAttr>()) 7357 return; 7358 7359 QualType SourceType = VD->getType(); 7360 if (!SourceType->isRecordType()) 7361 return; 7362 7363 if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) { 7364 return; 7365 } 7366 7367 // If we're returning a function parameter, copy elision 7368 // is not possible. 7369 if (isa<ParmVarDecl>(VD)) 7370 DiagID = diag::warn_redundant_move_on_return; 7371 else 7372 DiagID = diag::warn_pessimizing_move_on_return; 7373 } else { 7374 DiagID = diag::warn_pessimizing_move_on_initialization; 7375 const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens(); 7376 if (!ArgStripped->isPRValue() || !ArgStripped->getType()->isRecordType()) 7377 return; 7378 } 7379 7380 S.Diag(CE->getBeginLoc(), DiagID); 7381 7382 // Get all the locations for a fix-it. Don't emit the fix-it if any location 7383 // is within a macro. 7384 SourceLocation CallBegin = CE->getCallee()->getBeginLoc(); 7385 if (CallBegin.isMacroID()) 7386 return; 7387 SourceLocation RParen = CE->getRParenLoc(); 7388 if (RParen.isMacroID()) 7389 return; 7390 SourceLocation LParen; 7391 SourceLocation ArgLoc = Arg->getBeginLoc(); 7392 7393 // Special testing for the argument location. Since the fix-it needs the 7394 // location right before the argument, the argument location can be in a 7395 // macro only if it is at the beginning of the macro. 7396 while (ArgLoc.isMacroID() && 7397 S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) { 7398 ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin(); 7399 } 7400 7401 if (LParen.isMacroID()) 7402 return; 7403 7404 LParen = ArgLoc.getLocWithOffset(-1); 7405 7406 S.Diag(CE->getBeginLoc(), diag::note_remove_move) 7407 << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen)) 7408 << FixItHint::CreateRemoval(SourceRange(RParen, RParen)); 7409 } 7410 7411 static void CheckForNullPointerDereference(Sema &S, const Expr *E) { 7412 // Check to see if we are dereferencing a null pointer. If so, this is 7413 // undefined behavior, so warn about it. This only handles the pattern 7414 // "*null", which is a very syntactic check. 7415 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts())) 7416 if (UO->getOpcode() == UO_Deref && 7417 UO->getSubExpr()->IgnoreParenCasts()-> 7418 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) { 7419 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, 7420 S.PDiag(diag::warn_binding_null_to_reference) 7421 << UO->getSubExpr()->getSourceRange()); 7422 } 7423 } 7424 7425 MaterializeTemporaryExpr * 7426 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary, 7427 bool BoundToLvalueReference) { 7428 auto MTE = new (Context) 7429 MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference); 7430 7431 // Order an ExprWithCleanups for lifetime marks. 7432 // 7433 // TODO: It'll be good to have a single place to check the access of the 7434 // destructor and generate ExprWithCleanups for various uses. Currently these 7435 // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary, 7436 // but there may be a chance to merge them. 7437 Cleanup.setExprNeedsCleanups(false); 7438 if (isInLifetimeExtendingContext()) { 7439 auto &Record = ExprEvalContexts.back(); 7440 Record.ForRangeLifetimeExtendTemps.push_back(MTE); 7441 } 7442 return MTE; 7443 } 7444 7445 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) { 7446 // In C++98, we don't want to implicitly create an xvalue. 7447 // FIXME: This means that AST consumers need to deal with "prvalues" that 7448 // denote materialized temporaries. Maybe we should add another ValueKind 7449 // for "xvalue pretending to be a prvalue" for C++98 support. 7450 if (!E->isPRValue() || !getLangOpts().CPlusPlus11) 7451 return E; 7452 7453 // C++1z [conv.rval]/1: T shall be a complete type. 7454 // FIXME: Does this ever matter (can we form a prvalue of incomplete type)? 7455 // If so, we should check for a non-abstract class type here too. 7456 QualType T = E->getType(); 7457 if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type)) 7458 return ExprError(); 7459 7460 return CreateMaterializeTemporaryExpr(E->getType(), E, false); 7461 } 7462 7463 ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty, 7464 ExprValueKind VK, 7465 CheckedConversionKind CCK) { 7466 7467 CastKind CK = CK_NoOp; 7468 7469 if (VK == VK_PRValue) { 7470 auto PointeeTy = Ty->getPointeeType(); 7471 auto ExprPointeeTy = E->getType()->getPointeeType(); 7472 if (!PointeeTy.isNull() && 7473 PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace()) 7474 CK = CK_AddressSpaceConversion; 7475 } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) { 7476 CK = CK_AddressSpaceConversion; 7477 } 7478 7479 return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK); 7480 } 7481 7482 ExprResult InitializationSequence::Perform(Sema &S, 7483 const InitializedEntity &Entity, 7484 const InitializationKind &Kind, 7485 MultiExprArg Args, 7486 QualType *ResultType) { 7487 if (Failed()) { 7488 Diagnose(S, Entity, Kind, Args); 7489 return ExprError(); 7490 } 7491 if (!ZeroInitializationFixit.empty()) { 7492 const Decl *D = Entity.getDecl(); 7493 const auto *VD = dyn_cast_or_null<VarDecl>(D); 7494 QualType DestType = Entity.getType(); 7495 7496 // The initialization would have succeeded with this fixit. Since the fixit 7497 // is on the error, we need to build a valid AST in this case, so this isn't 7498 // handled in the Failed() branch above. 7499 if (!DestType->isRecordType() && VD && VD->isConstexpr()) { 7500 // Use a more useful diagnostic for constexpr variables. 7501 S.Diag(Kind.getLocation(), diag::err_constexpr_var_requires_const_init) 7502 << VD 7503 << FixItHint::CreateInsertion(ZeroInitializationFixitLoc, 7504 ZeroInitializationFixit); 7505 } else { 7506 unsigned DiagID = diag::err_default_init_const; 7507 if (S.getLangOpts().MSVCCompat && D && D->hasAttr<SelectAnyAttr>()) 7508 DiagID = diag::ext_default_init_const; 7509 7510 S.Diag(Kind.getLocation(), DiagID) 7511 << DestType << (bool)DestType->getAs<RecordType>() 7512 << FixItHint::CreateInsertion(ZeroInitializationFixitLoc, 7513 ZeroInitializationFixit); 7514 } 7515 } 7516 7517 if (getKind() == DependentSequence) { 7518 // If the declaration is a non-dependent, incomplete array type 7519 // that has an initializer, then its type will be completed once 7520 // the initializer is instantiated. 7521 if (ResultType && !Entity.getType()->isDependentType() && 7522 Args.size() == 1) { 7523 QualType DeclType = Entity.getType(); 7524 if (const IncompleteArrayType *ArrayT 7525 = S.Context.getAsIncompleteArrayType(DeclType)) { 7526 // FIXME: We don't currently have the ability to accurately 7527 // compute the length of an initializer list without 7528 // performing full type-checking of the initializer list 7529 // (since we have to determine where braces are implicitly 7530 // introduced and such). So, we fall back to making the array 7531 // type a dependently-sized array type with no specified 7532 // bound. 7533 if (isa<InitListExpr>((Expr *)Args[0])) { 7534 SourceRange Brackets; 7535 7536 // Scavange the location of the brackets from the entity, if we can. 7537 if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) { 7538 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) { 7539 TypeLoc TL = TInfo->getTypeLoc(); 7540 if (IncompleteArrayTypeLoc ArrayLoc = 7541 TL.getAs<IncompleteArrayTypeLoc>()) 7542 Brackets = ArrayLoc.getBracketsRange(); 7543 } 7544 } 7545 7546 *ResultType 7547 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(), 7548 /*NumElts=*/nullptr, 7549 ArrayT->getSizeModifier(), 7550 ArrayT->getIndexTypeCVRQualifiers(), 7551 Brackets); 7552 } 7553 7554 } 7555 } 7556 if (Kind.getKind() == InitializationKind::IK_Direct && 7557 !Kind.isExplicitCast()) { 7558 // Rebuild the ParenListExpr. 7559 SourceRange ParenRange = Kind.getParenOrBraceRange(); 7560 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(), 7561 Args); 7562 } 7563 assert(Kind.getKind() == InitializationKind::IK_Copy || 7564 Kind.isExplicitCast() || 7565 Kind.getKind() == InitializationKind::IK_DirectList); 7566 return ExprResult(Args[0]); 7567 } 7568 7569 // No steps means no initialization. 7570 if (Steps.empty()) 7571 return ExprResult((Expr *)nullptr); 7572 7573 if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() && 7574 Args.size() == 1 && isa<InitListExpr>(Args[0]) && 7575 !Entity.isParamOrTemplateParamKind()) { 7576 // Produce a C++98 compatibility warning if we are initializing a reference 7577 // from an initializer list. For parameters, we produce a better warning 7578 // elsewhere. 7579 Expr *Init = Args[0]; 7580 S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init) 7581 << Init->getSourceRange(); 7582 } 7583 7584 if (S.getLangOpts().MicrosoftExt && Args.size() == 1 && 7585 isa<PredefinedExpr>(Args[0]) && Entity.getType()->isArrayType()) { 7586 // Produce a Microsoft compatibility warning when initializing from a 7587 // predefined expression since MSVC treats predefined expressions as string 7588 // literals. 7589 Expr *Init = Args[0]; 7590 S.Diag(Init->getBeginLoc(), diag::ext_init_from_predefined) << Init; 7591 } 7592 7593 // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope 7594 QualType ETy = Entity.getType(); 7595 bool HasGlobalAS = ETy.hasAddressSpace() && 7596 ETy.getAddressSpace() == LangAS::opencl_global; 7597 7598 if (S.getLangOpts().OpenCLVersion >= 200 && 7599 ETy->isAtomicType() && !HasGlobalAS && 7600 Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) { 7601 S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init) 7602 << 1 7603 << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc()); 7604 return ExprError(); 7605 } 7606 7607 QualType DestType = Entity.getType().getNonReferenceType(); 7608 // FIXME: Ugly hack around the fact that Entity.getType() is not 7609 // the same as Entity.getDecl()->getType() in cases involving type merging, 7610 // and we want latter when it makes sense. 7611 if (ResultType) 7612 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() : 7613 Entity.getType(); 7614 7615 ExprResult CurInit((Expr *)nullptr); 7616 SmallVector<Expr*, 4> ArrayLoopCommonExprs; 7617 7618 // HLSL allows vector initialization to function like list initialization, but 7619 // use the syntax of a C++-like constructor. 7620 bool IsHLSLVectorInit = S.getLangOpts().HLSL && DestType->isExtVectorType() && 7621 isa<InitListExpr>(Args[0]); 7622 (void)IsHLSLVectorInit; 7623 7624 // For initialization steps that start with a single initializer, 7625 // grab the only argument out the Args and place it into the "current" 7626 // initializer. 7627 switch (Steps.front().Kind) { 7628 case SK_ResolveAddressOfOverloadedFunction: 7629 case SK_CastDerivedToBasePRValue: 7630 case SK_CastDerivedToBaseXValue: 7631 case SK_CastDerivedToBaseLValue: 7632 case SK_BindReference: 7633 case SK_BindReferenceToTemporary: 7634 case SK_FinalCopy: 7635 case SK_ExtraneousCopyToTemporary: 7636 case SK_UserConversion: 7637 case SK_QualificationConversionLValue: 7638 case SK_QualificationConversionXValue: 7639 case SK_QualificationConversionPRValue: 7640 case SK_FunctionReferenceConversion: 7641 case SK_AtomicConversion: 7642 case SK_ConversionSequence: 7643 case SK_ConversionSequenceNoNarrowing: 7644 case SK_ListInitialization: 7645 case SK_UnwrapInitList: 7646 case SK_RewrapInitList: 7647 case SK_CAssignment: 7648 case SK_StringInit: 7649 case SK_ObjCObjectConversion: 7650 case SK_ArrayLoopIndex: 7651 case SK_ArrayLoopInit: 7652 case SK_ArrayInit: 7653 case SK_GNUArrayInit: 7654 case SK_ParenthesizedArrayInit: 7655 case SK_PassByIndirectCopyRestore: 7656 case SK_PassByIndirectRestore: 7657 case SK_ProduceObjCObject: 7658 case SK_StdInitializerList: 7659 case SK_OCLSamplerInit: 7660 case SK_OCLZeroOpaqueType: { 7661 assert(Args.size() == 1 || IsHLSLVectorInit); 7662 CurInit = Args[0]; 7663 if (!CurInit.get()) return ExprError(); 7664 break; 7665 } 7666 7667 case SK_ConstructorInitialization: 7668 case SK_ConstructorInitializationFromList: 7669 case SK_StdInitializerListConstructorCall: 7670 case SK_ZeroInitialization: 7671 case SK_ParenthesizedListInit: 7672 break; 7673 } 7674 7675 // Promote from an unevaluated context to an unevaluated list context in 7676 // C++11 list-initialization; we need to instantiate entities usable in 7677 // constant expressions here in order to perform narrowing checks =( 7678 EnterExpressionEvaluationContext Evaluated( 7679 S, EnterExpressionEvaluationContext::InitList, 7680 isa_and_nonnull<InitListExpr>(CurInit.get())); 7681 7682 // C++ [class.abstract]p2: 7683 // no objects of an abstract class can be created except as subobjects 7684 // of a class derived from it 7685 auto checkAbstractType = [&](QualType T) -> bool { 7686 if (Entity.getKind() == InitializedEntity::EK_Base || 7687 Entity.getKind() == InitializedEntity::EK_Delegating) 7688 return false; 7689 return S.RequireNonAbstractType(Kind.getLocation(), T, 7690 diag::err_allocation_of_abstract_type); 7691 }; 7692 7693 // Walk through the computed steps for the initialization sequence, 7694 // performing the specified conversions along the way. 7695 bool ConstructorInitRequiresZeroInit = false; 7696 for (step_iterator Step = step_begin(), StepEnd = step_end(); 7697 Step != StepEnd; ++Step) { 7698 if (CurInit.isInvalid()) 7699 return ExprError(); 7700 7701 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType(); 7702 7703 switch (Step->Kind) { 7704 case SK_ResolveAddressOfOverloadedFunction: 7705 // Overload resolution determined which function invoke; update the 7706 // initializer to reflect that choice. 7707 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl); 7708 if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation())) 7709 return ExprError(); 7710 CurInit = S.FixOverloadedFunctionReference(CurInit, 7711 Step->Function.FoundDecl, 7712 Step->Function.Function); 7713 // We might get back another placeholder expression if we resolved to a 7714 // builtin. 7715 if (!CurInit.isInvalid()) 7716 CurInit = S.CheckPlaceholderExpr(CurInit.get()); 7717 break; 7718 7719 case SK_CastDerivedToBasePRValue: 7720 case SK_CastDerivedToBaseXValue: 7721 case SK_CastDerivedToBaseLValue: { 7722 // We have a derived-to-base cast that produces either an rvalue or an 7723 // lvalue. Perform that cast. 7724 7725 CXXCastPath BasePath; 7726 7727 // Casts to inaccessible base classes are allowed with C-style casts. 7728 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast(); 7729 if (S.CheckDerivedToBaseConversion( 7730 SourceType, Step->Type, CurInit.get()->getBeginLoc(), 7731 CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess)) 7732 return ExprError(); 7733 7734 ExprValueKind VK = 7735 Step->Kind == SK_CastDerivedToBaseLValue 7736 ? VK_LValue 7737 : (Step->Kind == SK_CastDerivedToBaseXValue ? VK_XValue 7738 : VK_PRValue); 7739 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type, 7740 CK_DerivedToBase, CurInit.get(), 7741 &BasePath, VK, FPOptionsOverride()); 7742 break; 7743 } 7744 7745 case SK_BindReference: 7746 // Reference binding does not have any corresponding ASTs. 7747 7748 // Check exception specifications 7749 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 7750 return ExprError(); 7751 7752 // We don't check for e.g. function pointers here, since address 7753 // availability checks should only occur when the function first decays 7754 // into a pointer or reference. 7755 if (CurInit.get()->getType()->isFunctionProtoType()) { 7756 if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) { 7757 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 7758 if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 7759 DRE->getBeginLoc())) 7760 return ExprError(); 7761 } 7762 } 7763 } 7764 7765 CheckForNullPointerDereference(S, CurInit.get()); 7766 break; 7767 7768 case SK_BindReferenceToTemporary: { 7769 // Make sure the "temporary" is actually an rvalue. 7770 assert(CurInit.get()->isPRValue() && "not a temporary"); 7771 7772 // Check exception specifications 7773 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 7774 return ExprError(); 7775 7776 QualType MTETy = Step->Type; 7777 7778 // When this is an incomplete array type (such as when this is 7779 // initializing an array of unknown bounds from an init list), use THAT 7780 // type instead so that we propagate the array bounds. 7781 if (MTETy->isIncompleteArrayType() && 7782 !CurInit.get()->getType()->isIncompleteArrayType() && 7783 S.Context.hasSameType( 7784 MTETy->getPointeeOrArrayElementType(), 7785 CurInit.get()->getType()->getPointeeOrArrayElementType())) 7786 MTETy = CurInit.get()->getType(); 7787 7788 // Materialize the temporary into memory. 7789 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( 7790 MTETy, CurInit.get(), Entity.getType()->isLValueReferenceType()); 7791 CurInit = MTE; 7792 7793 // If we're extending this temporary to automatic storage duration -- we 7794 // need to register its cleanup during the full-expression's cleanups. 7795 if (MTE->getStorageDuration() == SD_Automatic && 7796 MTE->getType().isDestructedType()) 7797 S.Cleanup.setExprNeedsCleanups(true); 7798 break; 7799 } 7800 7801 case SK_FinalCopy: 7802 if (checkAbstractType(Step->Type)) 7803 return ExprError(); 7804 7805 // If the overall initialization is initializing a temporary, we already 7806 // bound our argument if it was necessary to do so. If not (if we're 7807 // ultimately initializing a non-temporary), our argument needs to be 7808 // bound since it's initializing a function parameter. 7809 // FIXME: This is a mess. Rationalize temporary destruction. 7810 if (!shouldBindAsTemporary(Entity)) 7811 CurInit = S.MaybeBindToTemporary(CurInit.get()); 7812 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 7813 /*IsExtraneousCopy=*/false); 7814 break; 7815 7816 case SK_ExtraneousCopyToTemporary: 7817 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 7818 /*IsExtraneousCopy=*/true); 7819 break; 7820 7821 case SK_UserConversion: { 7822 // We have a user-defined conversion that invokes either a constructor 7823 // or a conversion function. 7824 CastKind CastKind; 7825 FunctionDecl *Fn = Step->Function.Function; 7826 DeclAccessPair FoundFn = Step->Function.FoundDecl; 7827 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates; 7828 bool CreatedObject = false; 7829 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) { 7830 // Build a call to the selected constructor. 7831 SmallVector<Expr*, 8> ConstructorArgs; 7832 SourceLocation Loc = CurInit.get()->getBeginLoc(); 7833 7834 // Determine the arguments required to actually perform the constructor 7835 // call. 7836 Expr *Arg = CurInit.get(); 7837 if (S.CompleteConstructorCall(Constructor, Step->Type, 7838 MultiExprArg(&Arg, 1), Loc, 7839 ConstructorArgs)) 7840 return ExprError(); 7841 7842 // Build an expression that constructs a temporary. 7843 CurInit = S.BuildCXXConstructExpr( 7844 Loc, Step->Type, FoundFn, Constructor, ConstructorArgs, 7845 HadMultipleCandidates, 7846 /*ListInit*/ false, 7847 /*StdInitListInit*/ false, 7848 /*ZeroInit*/ false, CXXConstructionKind::Complete, SourceRange()); 7849 if (CurInit.isInvalid()) 7850 return ExprError(); 7851 7852 S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn, 7853 Entity); 7854 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 7855 return ExprError(); 7856 7857 CastKind = CK_ConstructorConversion; 7858 CreatedObject = true; 7859 } else { 7860 // Build a call to the conversion function. 7861 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn); 7862 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr, 7863 FoundFn); 7864 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 7865 return ExprError(); 7866 7867 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion, 7868 HadMultipleCandidates); 7869 if (CurInit.isInvalid()) 7870 return ExprError(); 7871 7872 CastKind = CK_UserDefinedConversion; 7873 CreatedObject = Conversion->getReturnType()->isRecordType(); 7874 } 7875 7876 if (CreatedObject && checkAbstractType(CurInit.get()->getType())) 7877 return ExprError(); 7878 7879 CurInit = ImplicitCastExpr::Create( 7880 S.Context, CurInit.get()->getType(), CastKind, CurInit.get(), nullptr, 7881 CurInit.get()->getValueKind(), S.CurFPFeatureOverrides()); 7882 7883 if (shouldBindAsTemporary(Entity)) 7884 // The overall entity is temporary, so this expression should be 7885 // destroyed at the end of its full-expression. 7886 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 7887 else if (CreatedObject && shouldDestroyEntity(Entity)) { 7888 // The object outlasts the full-expression, but we need to prepare for 7889 // a destructor being run on it. 7890 // FIXME: It makes no sense to do this here. This should happen 7891 // regardless of how we initialized the entity. 7892 QualType T = CurInit.get()->getType(); 7893 if (const RecordType *Record = T->getAs<RecordType>()) { 7894 CXXDestructorDecl *Destructor 7895 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl())); 7896 S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor, 7897 S.PDiag(diag::err_access_dtor_temp) << T); 7898 S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor); 7899 if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc())) 7900 return ExprError(); 7901 } 7902 } 7903 break; 7904 } 7905 7906 case SK_QualificationConversionLValue: 7907 case SK_QualificationConversionXValue: 7908 case SK_QualificationConversionPRValue: { 7909 // Perform a qualification conversion; these can never go wrong. 7910 ExprValueKind VK = 7911 Step->Kind == SK_QualificationConversionLValue 7912 ? VK_LValue 7913 : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue 7914 : VK_PRValue); 7915 CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK); 7916 break; 7917 } 7918 7919 case SK_FunctionReferenceConversion: 7920 assert(CurInit.get()->isLValue() && 7921 "function reference should be lvalue"); 7922 CurInit = 7923 S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK_LValue); 7924 break; 7925 7926 case SK_AtomicConversion: { 7927 assert(CurInit.get()->isPRValue() && "cannot convert glvalue to atomic"); 7928 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 7929 CK_NonAtomicToAtomic, VK_PRValue); 7930 break; 7931 } 7932 7933 case SK_ConversionSequence: 7934 case SK_ConversionSequenceNoNarrowing: { 7935 if (const auto *FromPtrType = 7936 CurInit.get()->getType()->getAs<PointerType>()) { 7937 if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) { 7938 if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) && 7939 !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) { 7940 // Do not check static casts here because they are checked earlier 7941 // in Sema::ActOnCXXNamedCast() 7942 if (!Kind.isStaticCast()) { 7943 S.Diag(CurInit.get()->getExprLoc(), 7944 diag::warn_noderef_to_dereferenceable_pointer) 7945 << CurInit.get()->getSourceRange(); 7946 } 7947 } 7948 } 7949 } 7950 Expr *Init = CurInit.get(); 7951 CheckedConversionKind CCK = 7952 Kind.isCStyleCast() ? CheckedConversionKind::CStyleCast 7953 : Kind.isFunctionalCast() ? CheckedConversionKind::FunctionalCast 7954 : Kind.isExplicitCast() ? CheckedConversionKind::OtherCast 7955 : CheckedConversionKind::Implicit; 7956 ExprResult CurInitExprRes = S.PerformImplicitConversion( 7957 Init, Step->Type, *Step->ICS, getAssignmentAction(Entity), CCK); 7958 if (CurInitExprRes.isInvalid()) 7959 return ExprError(); 7960 7961 S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), Init); 7962 7963 CurInit = CurInitExprRes; 7964 7965 if (Step->Kind == SK_ConversionSequenceNoNarrowing && 7966 S.getLangOpts().CPlusPlus) 7967 DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(), 7968 CurInit.get()); 7969 7970 break; 7971 } 7972 7973 case SK_ListInitialization: { 7974 if (checkAbstractType(Step->Type)) 7975 return ExprError(); 7976 7977 InitListExpr *InitList = cast<InitListExpr>(CurInit.get()); 7978 // If we're not initializing the top-level entity, we need to create an 7979 // InitializeTemporary entity for our target type. 7980 QualType Ty = Step->Type; 7981 bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty); 7982 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty); 7983 InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity; 7984 InitListChecker PerformInitList(S, InitEntity, 7985 InitList, Ty, /*VerifyOnly=*/false, 7986 /*TreatUnavailableAsInvalid=*/false); 7987 if (PerformInitList.HadError()) 7988 return ExprError(); 7989 7990 // Hack: We must update *ResultType if available in order to set the 7991 // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'. 7992 // Worst case: 'const int (&arref)[] = {1, 2, 3};'. 7993 if (ResultType && 7994 ResultType->getNonReferenceType()->isIncompleteArrayType()) { 7995 if ((*ResultType)->isRValueReferenceType()) 7996 Ty = S.Context.getRValueReferenceType(Ty); 7997 else if ((*ResultType)->isLValueReferenceType()) 7998 Ty = S.Context.getLValueReferenceType(Ty, 7999 (*ResultType)->castAs<LValueReferenceType>()->isSpelledAsLValue()); 8000 *ResultType = Ty; 8001 } 8002 8003 InitListExpr *StructuredInitList = 8004 PerformInitList.getFullyStructuredList(); 8005 CurInit.get(); 8006 CurInit = shouldBindAsTemporary(InitEntity) 8007 ? S.MaybeBindToTemporary(StructuredInitList) 8008 : StructuredInitList; 8009 break; 8010 } 8011 8012 case SK_ConstructorInitializationFromList: { 8013 if (checkAbstractType(Step->Type)) 8014 return ExprError(); 8015 8016 // When an initializer list is passed for a parameter of type "reference 8017 // to object", we don't get an EK_Temporary entity, but instead an 8018 // EK_Parameter entity with reference type. 8019 // FIXME: This is a hack. What we really should do is create a user 8020 // conversion step for this case, but this makes it considerably more 8021 // complicated. For now, this will do. 8022 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 8023 Entity.getType().getNonReferenceType()); 8024 bool UseTemporary = Entity.getType()->isReferenceType(); 8025 assert(Args.size() == 1 && "expected a single argument for list init"); 8026 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 8027 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init) 8028 << InitList->getSourceRange(); 8029 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits()); 8030 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity : 8031 Entity, 8032 Kind, Arg, *Step, 8033 ConstructorInitRequiresZeroInit, 8034 /*IsListInitialization*/true, 8035 /*IsStdInitListInit*/false, 8036 InitList->getLBraceLoc(), 8037 InitList->getRBraceLoc()); 8038 break; 8039 } 8040 8041 case SK_UnwrapInitList: 8042 CurInit = cast<InitListExpr>(CurInit.get())->getInit(0); 8043 break; 8044 8045 case SK_RewrapInitList: { 8046 Expr *E = CurInit.get(); 8047 InitListExpr *Syntactic = Step->WrappingSyntacticList; 8048 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context, 8049 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc()); 8050 ILE->setSyntacticForm(Syntactic); 8051 ILE->setType(E->getType()); 8052 ILE->setValueKind(E->getValueKind()); 8053 CurInit = ILE; 8054 break; 8055 } 8056 8057 case SK_ConstructorInitialization: 8058 case SK_StdInitializerListConstructorCall: { 8059 if (checkAbstractType(Step->Type)) 8060 return ExprError(); 8061 8062 // When an initializer list is passed for a parameter of type "reference 8063 // to object", we don't get an EK_Temporary entity, but instead an 8064 // EK_Parameter entity with reference type. 8065 // FIXME: This is a hack. What we really should do is create a user 8066 // conversion step for this case, but this makes it considerably more 8067 // complicated. For now, this will do. 8068 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 8069 Entity.getType().getNonReferenceType()); 8070 bool UseTemporary = Entity.getType()->isReferenceType(); 8071 bool IsStdInitListInit = 8072 Step->Kind == SK_StdInitializerListConstructorCall; 8073 Expr *Source = CurInit.get(); 8074 SourceRange Range = Kind.hasParenOrBraceRange() 8075 ? Kind.getParenOrBraceRange() 8076 : SourceRange(); 8077 CurInit = PerformConstructorInitialization( 8078 S, UseTemporary ? TempEntity : Entity, Kind, 8079 Source ? MultiExprArg(Source) : Args, *Step, 8080 ConstructorInitRequiresZeroInit, 8081 /*IsListInitialization*/ IsStdInitListInit, 8082 /*IsStdInitListInitialization*/ IsStdInitListInit, 8083 /*LBraceLoc*/ Range.getBegin(), 8084 /*RBraceLoc*/ Range.getEnd()); 8085 break; 8086 } 8087 8088 case SK_ZeroInitialization: { 8089 step_iterator NextStep = Step; 8090 ++NextStep; 8091 if (NextStep != StepEnd && 8092 (NextStep->Kind == SK_ConstructorInitialization || 8093 NextStep->Kind == SK_ConstructorInitializationFromList)) { 8094 // The need for zero-initialization is recorded directly into 8095 // the call to the object's constructor within the next step. 8096 ConstructorInitRequiresZeroInit = true; 8097 } else if (Kind.getKind() == InitializationKind::IK_Value && 8098 S.getLangOpts().CPlusPlus && 8099 !Kind.isImplicitValueInit()) { 8100 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 8101 if (!TSInfo) 8102 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type, 8103 Kind.getRange().getBegin()); 8104 8105 CurInit = new (S.Context) CXXScalarValueInitExpr( 8106 Entity.getType().getNonLValueExprType(S.Context), TSInfo, 8107 Kind.getRange().getEnd()); 8108 } else { 8109 CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type); 8110 } 8111 break; 8112 } 8113 8114 case SK_CAssignment: { 8115 QualType SourceType = CurInit.get()->getType(); 8116 Expr *Init = CurInit.get(); 8117 8118 // Save off the initial CurInit in case we need to emit a diagnostic 8119 ExprResult InitialCurInit = Init; 8120 ExprResult Result = Init; 8121 Sema::AssignConvertType ConvTy = 8122 S.CheckSingleAssignmentConstraints(Step->Type, Result, true, 8123 Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited); 8124 if (Result.isInvalid()) 8125 return ExprError(); 8126 CurInit = Result; 8127 8128 // If this is a call, allow conversion to a transparent union. 8129 ExprResult CurInitExprRes = CurInit; 8130 if (ConvTy != Sema::Compatible && 8131 Entity.isParameterKind() && 8132 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes) 8133 == Sema::Compatible) 8134 ConvTy = Sema::Compatible; 8135 if (CurInitExprRes.isInvalid()) 8136 return ExprError(); 8137 CurInit = CurInitExprRes; 8138 8139 if (S.getLangOpts().C23 && initializingConstexprVariable(Entity)) { 8140 CheckC23ConstexprInitConversion(S, SourceType, Entity.getType(), 8141 CurInit.get()); 8142 8143 // C23 6.7.1p6: If an object or subobject declared with storage-class 8144 // specifier constexpr has pointer, integer, or arithmetic type, any 8145 // explicit initializer value for it shall be null, an integer 8146 // constant expression, or an arithmetic constant expression, 8147 // respectively. 8148 Expr::EvalResult ER; 8149 if (Entity.getType()->getAs<PointerType>() && 8150 CurInit.get()->EvaluateAsRValue(ER, S.Context) && 8151 !ER.Val.isNullPointer()) { 8152 S.Diag(Kind.getLocation(), diag::err_c23_constexpr_pointer_not_null); 8153 } 8154 } 8155 8156 bool Complained; 8157 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(), 8158 Step->Type, SourceType, 8159 InitialCurInit.get(), 8160 getAssignmentAction(Entity, true), 8161 &Complained)) { 8162 PrintInitLocationNote(S, Entity); 8163 return ExprError(); 8164 } else if (Complained) 8165 PrintInitLocationNote(S, Entity); 8166 break; 8167 } 8168 8169 case SK_StringInit: { 8170 QualType Ty = Step->Type; 8171 bool UpdateType = ResultType && Entity.getType()->isIncompleteArrayType(); 8172 CheckStringInit(CurInit.get(), UpdateType ? *ResultType : Ty, 8173 S.Context.getAsArrayType(Ty), S, 8174 S.getLangOpts().C23 && 8175 initializingConstexprVariable(Entity)); 8176 break; 8177 } 8178 8179 case SK_ObjCObjectConversion: 8180 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8181 CK_ObjCObjectLValueCast, 8182 CurInit.get()->getValueKind()); 8183 break; 8184 8185 case SK_ArrayLoopIndex: { 8186 Expr *Cur = CurInit.get(); 8187 Expr *BaseExpr = new (S.Context) 8188 OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(), 8189 Cur->getValueKind(), Cur->getObjectKind(), Cur); 8190 Expr *IndexExpr = 8191 new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType()); 8192 CurInit = S.CreateBuiltinArraySubscriptExpr( 8193 BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation()); 8194 ArrayLoopCommonExprs.push_back(BaseExpr); 8195 break; 8196 } 8197 8198 case SK_ArrayLoopInit: { 8199 assert(!ArrayLoopCommonExprs.empty() && 8200 "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit"); 8201 Expr *Common = ArrayLoopCommonExprs.pop_back_val(); 8202 CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common, 8203 CurInit.get()); 8204 break; 8205 } 8206 8207 case SK_GNUArrayInit: 8208 // Okay: we checked everything before creating this step. Note that 8209 // this is a GNU extension. 8210 S.Diag(Kind.getLocation(), diag::ext_array_init_copy) 8211 << Step->Type << CurInit.get()->getType() 8212 << CurInit.get()->getSourceRange(); 8213 updateGNUCompoundLiteralRValue(CurInit.get()); 8214 [[fallthrough]]; 8215 case SK_ArrayInit: 8216 // If the destination type is an incomplete array type, update the 8217 // type accordingly. 8218 if (ResultType) { 8219 if (const IncompleteArrayType *IncompleteDest 8220 = S.Context.getAsIncompleteArrayType(Step->Type)) { 8221 if (const ConstantArrayType *ConstantSource 8222 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) { 8223 *ResultType = S.Context.getConstantArrayType( 8224 IncompleteDest->getElementType(), ConstantSource->getSize(), 8225 ConstantSource->getSizeExpr(), ArraySizeModifier::Normal, 0); 8226 } 8227 } 8228 } 8229 break; 8230 8231 case SK_ParenthesizedArrayInit: 8232 // Okay: we checked everything before creating this step. Note that 8233 // this is a GNU extension. 8234 S.Diag(Kind.getLocation(), diag::ext_array_init_parens) 8235 << CurInit.get()->getSourceRange(); 8236 break; 8237 8238 case SK_PassByIndirectCopyRestore: 8239 case SK_PassByIndirectRestore: 8240 checkIndirectCopyRestoreSource(S, CurInit.get()); 8241 CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr( 8242 CurInit.get(), Step->Type, 8243 Step->Kind == SK_PassByIndirectCopyRestore); 8244 break; 8245 8246 case SK_ProduceObjCObject: 8247 CurInit = ImplicitCastExpr::Create( 8248 S.Context, Step->Type, CK_ARCProduceObject, CurInit.get(), nullptr, 8249 VK_PRValue, FPOptionsOverride()); 8250 break; 8251 8252 case SK_StdInitializerList: { 8253 S.Diag(CurInit.get()->getExprLoc(), 8254 diag::warn_cxx98_compat_initializer_list_init) 8255 << CurInit.get()->getSourceRange(); 8256 8257 // Materialize the temporary into memory. 8258 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( 8259 CurInit.get()->getType(), CurInit.get(), 8260 /*BoundToLvalueReference=*/false); 8261 8262 // Wrap it in a construction of a std::initializer_list<T>. 8263 CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE); 8264 8265 if (!Step->Type->isDependentType()) { 8266 QualType ElementType; 8267 [[maybe_unused]] bool IsStdInitializerList = 8268 S.isStdInitializerList(Step->Type, &ElementType); 8269 assert(IsStdInitializerList && 8270 "StdInitializerList step to non-std::initializer_list"); 8271 const CXXRecordDecl *Record = 8272 Step->Type->getAsCXXRecordDecl()->getDefinition(); 8273 assert(Record && Record->isCompleteDefinition() && 8274 "std::initializer_list should have already be " 8275 "complete/instantiated by this point"); 8276 8277 auto InvalidType = [&] { 8278 S.Diag(Record->getLocation(), 8279 diag::err_std_initializer_list_malformed) 8280 << Step->Type.getUnqualifiedType(); 8281 return ExprError(); 8282 }; 8283 8284 if (Record->isUnion() || Record->getNumBases() != 0 || 8285 Record->isPolymorphic()) 8286 return InvalidType(); 8287 8288 RecordDecl::field_iterator Field = Record->field_begin(); 8289 if (Field == Record->field_end()) 8290 return InvalidType(); 8291 8292 // Start pointer 8293 if (!Field->getType()->isPointerType() || 8294 !S.Context.hasSameType(Field->getType()->getPointeeType(), 8295 ElementType.withConst())) 8296 return InvalidType(); 8297 8298 if (++Field == Record->field_end()) 8299 return InvalidType(); 8300 8301 // Size or end pointer 8302 if (const auto *PT = Field->getType()->getAs<PointerType>()) { 8303 if (!S.Context.hasSameType(PT->getPointeeType(), 8304 ElementType.withConst())) 8305 return InvalidType(); 8306 } else { 8307 if (Field->isBitField() || 8308 !S.Context.hasSameType(Field->getType(), S.Context.getSizeType())) 8309 return InvalidType(); 8310 } 8311 8312 if (++Field != Record->field_end()) 8313 return InvalidType(); 8314 } 8315 8316 // Bind the result, in case the library has given initializer_list a 8317 // non-trivial destructor. 8318 if (shouldBindAsTemporary(Entity)) 8319 CurInit = S.MaybeBindToTemporary(CurInit.get()); 8320 break; 8321 } 8322 8323 case SK_OCLSamplerInit: { 8324 // Sampler initialization have 5 cases: 8325 // 1. function argument passing 8326 // 1a. argument is a file-scope variable 8327 // 1b. argument is a function-scope variable 8328 // 1c. argument is one of caller function's parameters 8329 // 2. variable initialization 8330 // 2a. initializing a file-scope variable 8331 // 2b. initializing a function-scope variable 8332 // 8333 // For file-scope variables, since they cannot be initialized by function 8334 // call of __translate_sampler_initializer in LLVM IR, their references 8335 // need to be replaced by a cast from their literal initializers to 8336 // sampler type. Since sampler variables can only be used in function 8337 // calls as arguments, we only need to replace them when handling the 8338 // argument passing. 8339 assert(Step->Type->isSamplerT() && 8340 "Sampler initialization on non-sampler type."); 8341 Expr *Init = CurInit.get()->IgnoreParens(); 8342 QualType SourceType = Init->getType(); 8343 // Case 1 8344 if (Entity.isParameterKind()) { 8345 if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) { 8346 S.Diag(Kind.getLocation(), diag::err_sampler_argument_required) 8347 << SourceType; 8348 break; 8349 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) { 8350 auto Var = cast<VarDecl>(DRE->getDecl()); 8351 // Case 1b and 1c 8352 // No cast from integer to sampler is needed. 8353 if (!Var->hasGlobalStorage()) { 8354 CurInit = ImplicitCastExpr::Create( 8355 S.Context, Step->Type, CK_LValueToRValue, Init, 8356 /*BasePath=*/nullptr, VK_PRValue, FPOptionsOverride()); 8357 break; 8358 } 8359 // Case 1a 8360 // For function call with a file-scope sampler variable as argument, 8361 // get the integer literal. 8362 // Do not diagnose if the file-scope variable does not have initializer 8363 // since this has already been diagnosed when parsing the variable 8364 // declaration. 8365 if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit())) 8366 break; 8367 Init = cast<ImplicitCastExpr>(const_cast<Expr*>( 8368 Var->getInit()))->getSubExpr(); 8369 SourceType = Init->getType(); 8370 } 8371 } else { 8372 // Case 2 8373 // Check initializer is 32 bit integer constant. 8374 // If the initializer is taken from global variable, do not diagnose since 8375 // this has already been done when parsing the variable declaration. 8376 if (!Init->isConstantInitializer(S.Context, false)) 8377 break; 8378 8379 if (!SourceType->isIntegerType() || 8380 32 != S.Context.getIntWidth(SourceType)) { 8381 S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer) 8382 << SourceType; 8383 break; 8384 } 8385 8386 Expr::EvalResult EVResult; 8387 Init->EvaluateAsInt(EVResult, S.Context); 8388 llvm::APSInt Result = EVResult.Val.getInt(); 8389 const uint64_t SamplerValue = Result.getLimitedValue(); 8390 // 32-bit value of sampler's initializer is interpreted as 8391 // bit-field with the following structure: 8392 // |unspecified|Filter|Addressing Mode| Normalized Coords| 8393 // |31 6|5 4|3 1| 0| 8394 // This structure corresponds to enum values of sampler properties 8395 // defined in SPIR spec v1.2 and also opencl-c.h 8396 unsigned AddressingMode = (0x0E & SamplerValue) >> 1; 8397 unsigned FilterMode = (0x30 & SamplerValue) >> 4; 8398 if (FilterMode != 1 && FilterMode != 2 && 8399 !S.getOpenCLOptions().isAvailableOption( 8400 "cl_intel_device_side_avc_motion_estimation", S.getLangOpts())) 8401 S.Diag(Kind.getLocation(), 8402 diag::warn_sampler_initializer_invalid_bits) 8403 << "Filter Mode"; 8404 if (AddressingMode > 4) 8405 S.Diag(Kind.getLocation(), 8406 diag::warn_sampler_initializer_invalid_bits) 8407 << "Addressing Mode"; 8408 } 8409 8410 // Cases 1a, 2a and 2b 8411 // Insert cast from integer to sampler. 8412 CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy, 8413 CK_IntToOCLSampler); 8414 break; 8415 } 8416 case SK_OCLZeroOpaqueType: { 8417 assert((Step->Type->isEventT() || Step->Type->isQueueT() || 8418 Step->Type->isOCLIntelSubgroupAVCType()) && 8419 "Wrong type for initialization of OpenCL opaque type."); 8420 8421 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8422 CK_ZeroToOCLOpaqueType, 8423 CurInit.get()->getValueKind()); 8424 break; 8425 } 8426 case SK_ParenthesizedListInit: { 8427 CurInit = nullptr; 8428 TryOrBuildParenListInitialization(S, Entity, Kind, Args, *this, 8429 /*VerifyOnly=*/false, &CurInit); 8430 if (CurInit.get() && ResultType) 8431 *ResultType = CurInit.get()->getType(); 8432 if (shouldBindAsTemporary(Entity)) 8433 CurInit = S.MaybeBindToTemporary(CurInit.get()); 8434 break; 8435 } 8436 } 8437 } 8438 8439 Expr *Init = CurInit.get(); 8440 if (!Init) 8441 return ExprError(); 8442 8443 // Check whether the initializer has a shorter lifetime than the initialized 8444 // entity, and if not, either lifetime-extend or warn as appropriate. 8445 S.checkInitializerLifetime(Entity, Init); 8446 8447 // Diagnose non-fatal problems with the completed initialization. 8448 if (InitializedEntity::EntityKind EK = Entity.getKind(); 8449 (EK == InitializedEntity::EK_Member || 8450 EK == InitializedEntity::EK_ParenAggInitMember) && 8451 cast<FieldDecl>(Entity.getDecl())->isBitField()) 8452 S.CheckBitFieldInitialization(Kind.getLocation(), 8453 cast<FieldDecl>(Entity.getDecl()), Init); 8454 8455 // Check for std::move on construction. 8456 CheckMoveOnConstruction(S, Init, 8457 Entity.getKind() == InitializedEntity::EK_Result); 8458 8459 return Init; 8460 } 8461 8462 /// Somewhere within T there is an uninitialized reference subobject. 8463 /// Dig it out and diagnose it. 8464 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc, 8465 QualType T) { 8466 if (T->isReferenceType()) { 8467 S.Diag(Loc, diag::err_reference_without_init) 8468 << T.getNonReferenceType(); 8469 return true; 8470 } 8471 8472 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 8473 if (!RD || !RD->hasUninitializedReferenceMember()) 8474 return false; 8475 8476 for (const auto *FI : RD->fields()) { 8477 if (FI->isUnnamedBitField()) 8478 continue; 8479 8480 if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) { 8481 S.Diag(Loc, diag::note_value_initialization_here) << RD; 8482 return true; 8483 } 8484 } 8485 8486 for (const auto &BI : RD->bases()) { 8487 if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) { 8488 S.Diag(Loc, diag::note_value_initialization_here) << RD; 8489 return true; 8490 } 8491 } 8492 8493 return false; 8494 } 8495 8496 8497 //===----------------------------------------------------------------------===// 8498 // Diagnose initialization failures 8499 //===----------------------------------------------------------------------===// 8500 8501 /// Emit notes associated with an initialization that failed due to a 8502 /// "simple" conversion failure. 8503 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity, 8504 Expr *op) { 8505 QualType destType = entity.getType(); 8506 if (destType.getNonReferenceType()->isObjCObjectPointerType() && 8507 op->getType()->isObjCObjectPointerType()) { 8508 8509 // Emit a possible note about the conversion failing because the 8510 // operand is a message send with a related result type. 8511 S.ObjC().EmitRelatedResultTypeNote(op); 8512 8513 // Emit a possible note about a return failing because we're 8514 // expecting a related result type. 8515 if (entity.getKind() == InitializedEntity::EK_Result) 8516 S.ObjC().EmitRelatedResultTypeNoteForReturn(destType); 8517 } 8518 QualType fromType = op->getType(); 8519 QualType fromPointeeType = fromType.getCanonicalType()->getPointeeType(); 8520 QualType destPointeeType = destType.getCanonicalType()->getPointeeType(); 8521 auto *fromDecl = fromType->getPointeeCXXRecordDecl(); 8522 auto *destDecl = destType->getPointeeCXXRecordDecl(); 8523 if (fromDecl && destDecl && fromDecl->getDeclKind() == Decl::CXXRecord && 8524 destDecl->getDeclKind() == Decl::CXXRecord && 8525 !fromDecl->isInvalidDecl() && !destDecl->isInvalidDecl() && 8526 !fromDecl->hasDefinition() && 8527 destPointeeType.getQualifiers().compatiblyIncludes( 8528 fromPointeeType.getQualifiers())) 8529 S.Diag(fromDecl->getLocation(), diag::note_forward_class_conversion) 8530 << S.getASTContext().getTagDeclType(fromDecl) 8531 << S.getASTContext().getTagDeclType(destDecl); 8532 } 8533 8534 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity, 8535 InitListExpr *InitList) { 8536 QualType DestType = Entity.getType(); 8537 8538 QualType E; 8539 if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) { 8540 QualType ArrayType = S.Context.getConstantArrayType( 8541 E.withConst(), 8542 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 8543 InitList->getNumInits()), 8544 nullptr, clang::ArraySizeModifier::Normal, 0); 8545 InitializedEntity HiddenArray = 8546 InitializedEntity::InitializeTemporary(ArrayType); 8547 return diagnoseListInit(S, HiddenArray, InitList); 8548 } 8549 8550 if (DestType->isReferenceType()) { 8551 // A list-initialization failure for a reference means that we tried to 8552 // create a temporary of the inner type (per [dcl.init.list]p3.6) and the 8553 // inner initialization failed. 8554 QualType T = DestType->castAs<ReferenceType>()->getPointeeType(); 8555 diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList); 8556 SourceLocation Loc = InitList->getBeginLoc(); 8557 if (auto *D = Entity.getDecl()) 8558 Loc = D->getLocation(); 8559 S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T; 8560 return; 8561 } 8562 8563 InitListChecker DiagnoseInitList(S, Entity, InitList, DestType, 8564 /*VerifyOnly=*/false, 8565 /*TreatUnavailableAsInvalid=*/false); 8566 assert(DiagnoseInitList.HadError() && 8567 "Inconsistent init list check result."); 8568 } 8569 8570 bool InitializationSequence::Diagnose(Sema &S, 8571 const InitializedEntity &Entity, 8572 const InitializationKind &Kind, 8573 ArrayRef<Expr *> Args) { 8574 if (!Failed()) 8575 return false; 8576 8577 QualType DestType = Entity.getType(); 8578 8579 // When we want to diagnose only one element of a braced-init-list, 8580 // we need to factor it out. 8581 Expr *OnlyArg; 8582 if (Args.size() == 1) { 8583 auto *List = dyn_cast<InitListExpr>(Args[0]); 8584 if (List && List->getNumInits() == 1) 8585 OnlyArg = List->getInit(0); 8586 else 8587 OnlyArg = Args[0]; 8588 8589 if (OnlyArg->getType() == S.Context.OverloadTy) { 8590 DeclAccessPair Found; 8591 if (FunctionDecl *FD = S.ResolveAddressOfOverloadedFunction( 8592 OnlyArg, DestType.getNonReferenceType(), /*Complain=*/false, 8593 Found)) { 8594 if (Expr *Resolved = 8595 S.FixOverloadedFunctionReference(OnlyArg, Found, FD).get()) 8596 OnlyArg = Resolved; 8597 } 8598 } 8599 } 8600 else 8601 OnlyArg = nullptr; 8602 8603 switch (Failure) { 8604 case FK_TooManyInitsForReference: 8605 // FIXME: Customize for the initialized entity? 8606 if (Args.empty()) { 8607 // Dig out the reference subobject which is uninitialized and diagnose it. 8608 // If this is value-initialization, this could be nested some way within 8609 // the target type. 8610 assert(Kind.getKind() == InitializationKind::IK_Value || 8611 DestType->isReferenceType()); 8612 bool Diagnosed = 8613 DiagnoseUninitializedReference(S, Kind.getLocation(), DestType); 8614 assert(Diagnosed && "couldn't find uninitialized reference to diagnose"); 8615 (void)Diagnosed; 8616 } else // FIXME: diagnostic below could be better! 8617 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits) 8618 << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); 8619 break; 8620 case FK_ParenthesizedListInitForReference: 8621 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) 8622 << 1 << Entity.getType() << Args[0]->getSourceRange(); 8623 break; 8624 8625 case FK_ArrayNeedsInitList: 8626 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0; 8627 break; 8628 case FK_ArrayNeedsInitListOrStringLiteral: 8629 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1; 8630 break; 8631 case FK_ArrayNeedsInitListOrWideStringLiteral: 8632 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2; 8633 break; 8634 case FK_NarrowStringIntoWideCharArray: 8635 S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar); 8636 break; 8637 case FK_WideStringIntoCharArray: 8638 S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char); 8639 break; 8640 case FK_IncompatWideStringIntoWideChar: 8641 S.Diag(Kind.getLocation(), 8642 diag::err_array_init_incompat_wide_string_into_wchar); 8643 break; 8644 case FK_PlainStringIntoUTF8Char: 8645 S.Diag(Kind.getLocation(), 8646 diag::err_array_init_plain_string_into_char8_t); 8647 S.Diag(Args.front()->getBeginLoc(), 8648 diag::note_array_init_plain_string_into_char8_t) 8649 << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8"); 8650 break; 8651 case FK_UTF8StringIntoPlainChar: 8652 S.Diag(Kind.getLocation(), diag::err_array_init_utf8_string_into_char) 8653 << DestType->isSignedIntegerType() << S.getLangOpts().CPlusPlus20; 8654 break; 8655 case FK_ArrayTypeMismatch: 8656 case FK_NonConstantArrayInit: 8657 S.Diag(Kind.getLocation(), 8658 (Failure == FK_ArrayTypeMismatch 8659 ? diag::err_array_init_different_type 8660 : diag::err_array_init_non_constant_array)) 8661 << DestType.getNonReferenceType() 8662 << OnlyArg->getType() 8663 << Args[0]->getSourceRange(); 8664 break; 8665 8666 case FK_VariableLengthArrayHasInitializer: 8667 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init) 8668 << Args[0]->getSourceRange(); 8669 break; 8670 8671 case FK_AddressOfOverloadFailed: { 8672 DeclAccessPair Found; 8673 S.ResolveAddressOfOverloadedFunction(OnlyArg, 8674 DestType.getNonReferenceType(), 8675 true, 8676 Found); 8677 break; 8678 } 8679 8680 case FK_AddressOfUnaddressableFunction: { 8681 auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl()); 8682 S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 8683 OnlyArg->getBeginLoc()); 8684 break; 8685 } 8686 8687 case FK_ReferenceInitOverloadFailed: 8688 case FK_UserConversionOverloadFailed: 8689 switch (FailedOverloadResult) { 8690 case OR_Ambiguous: 8691 8692 FailedCandidateSet.NoteCandidates( 8693 PartialDiagnosticAt( 8694 Kind.getLocation(), 8695 Failure == FK_UserConversionOverloadFailed 8696 ? (S.PDiag(diag::err_typecheck_ambiguous_condition) 8697 << OnlyArg->getType() << DestType 8698 << Args[0]->getSourceRange()) 8699 : (S.PDiag(diag::err_ref_init_ambiguous) 8700 << DestType << OnlyArg->getType() 8701 << Args[0]->getSourceRange())), 8702 S, OCD_AmbiguousCandidates, Args); 8703 break; 8704 8705 case OR_No_Viable_Function: { 8706 auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args); 8707 if (!S.RequireCompleteType(Kind.getLocation(), 8708 DestType.getNonReferenceType(), 8709 diag::err_typecheck_nonviable_condition_incomplete, 8710 OnlyArg->getType(), Args[0]->getSourceRange())) 8711 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition) 8712 << (Entity.getKind() == InitializedEntity::EK_Result) 8713 << OnlyArg->getType() << Args[0]->getSourceRange() 8714 << DestType.getNonReferenceType(); 8715 8716 FailedCandidateSet.NoteCandidates(S, Args, Cands); 8717 break; 8718 } 8719 case OR_Deleted: { 8720 OverloadCandidateSet::iterator Best; 8721 OverloadingResult Ovl 8722 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 8723 8724 StringLiteral *Msg = Best->Function->getDeletedMessage(); 8725 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function) 8726 << OnlyArg->getType() << DestType.getNonReferenceType() 8727 << (Msg != nullptr) << (Msg ? Msg->getString() : StringRef()) 8728 << Args[0]->getSourceRange(); 8729 if (Ovl == OR_Deleted) { 8730 S.NoteDeletedFunction(Best->Function); 8731 } else { 8732 llvm_unreachable("Inconsistent overload resolution?"); 8733 } 8734 break; 8735 } 8736 8737 case OR_Success: 8738 llvm_unreachable("Conversion did not fail!"); 8739 } 8740 break; 8741 8742 case FK_NonConstLValueReferenceBindingToTemporary: 8743 if (isa<InitListExpr>(Args[0])) { 8744 S.Diag(Kind.getLocation(), 8745 diag::err_lvalue_reference_bind_to_initlist) 8746 << DestType.getNonReferenceType().isVolatileQualified() 8747 << DestType.getNonReferenceType() 8748 << Args[0]->getSourceRange(); 8749 break; 8750 } 8751 [[fallthrough]]; 8752 8753 case FK_NonConstLValueReferenceBindingToUnrelated: 8754 S.Diag(Kind.getLocation(), 8755 Failure == FK_NonConstLValueReferenceBindingToTemporary 8756 ? diag::err_lvalue_reference_bind_to_temporary 8757 : diag::err_lvalue_reference_bind_to_unrelated) 8758 << DestType.getNonReferenceType().isVolatileQualified() 8759 << DestType.getNonReferenceType() 8760 << OnlyArg->getType() 8761 << Args[0]->getSourceRange(); 8762 break; 8763 8764 case FK_NonConstLValueReferenceBindingToBitfield: { 8765 // We don't necessarily have an unambiguous source bit-field. 8766 FieldDecl *BitField = Args[0]->getSourceBitField(); 8767 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield) 8768 << DestType.isVolatileQualified() 8769 << (BitField ? BitField->getDeclName() : DeclarationName()) 8770 << (BitField != nullptr) 8771 << Args[0]->getSourceRange(); 8772 if (BitField) 8773 S.Diag(BitField->getLocation(), diag::note_bitfield_decl); 8774 break; 8775 } 8776 8777 case FK_NonConstLValueReferenceBindingToVectorElement: 8778 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element) 8779 << DestType.isVolatileQualified() 8780 << Args[0]->getSourceRange(); 8781 break; 8782 8783 case FK_NonConstLValueReferenceBindingToMatrixElement: 8784 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_matrix_element) 8785 << DestType.isVolatileQualified() << Args[0]->getSourceRange(); 8786 break; 8787 8788 case FK_RValueReferenceBindingToLValue: 8789 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref) 8790 << DestType.getNonReferenceType() << OnlyArg->getType() 8791 << Args[0]->getSourceRange(); 8792 break; 8793 8794 case FK_ReferenceAddrspaceMismatchTemporary: 8795 S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace) 8796 << DestType << Args[0]->getSourceRange(); 8797 break; 8798 8799 case FK_ReferenceInitDropsQualifiers: { 8800 QualType SourceType = OnlyArg->getType(); 8801 QualType NonRefType = DestType.getNonReferenceType(); 8802 Qualifiers DroppedQualifiers = 8803 SourceType.getQualifiers() - NonRefType.getQualifiers(); 8804 8805 if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf( 8806 SourceType.getQualifiers())) 8807 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 8808 << NonRefType << SourceType << 1 /*addr space*/ 8809 << Args[0]->getSourceRange(); 8810 else if (DroppedQualifiers.hasQualifiers()) 8811 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 8812 << NonRefType << SourceType << 0 /*cv quals*/ 8813 << Qualifiers::fromCVRMask(DroppedQualifiers.getCVRQualifiers()) 8814 << DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange(); 8815 else 8816 // FIXME: Consider decomposing the type and explaining which qualifiers 8817 // were dropped where, or on which level a 'const' is missing, etc. 8818 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 8819 << NonRefType << SourceType << 2 /*incompatible quals*/ 8820 << Args[0]->getSourceRange(); 8821 break; 8822 } 8823 8824 case FK_ReferenceInitFailed: 8825 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed) 8826 << DestType.getNonReferenceType() 8827 << DestType.getNonReferenceType()->isIncompleteType() 8828 << OnlyArg->isLValue() 8829 << OnlyArg->getType() 8830 << Args[0]->getSourceRange(); 8831 emitBadConversionNotes(S, Entity, Args[0]); 8832 break; 8833 8834 case FK_ConversionFailed: { 8835 QualType FromType = OnlyArg->getType(); 8836 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed) 8837 << (int)Entity.getKind() 8838 << DestType 8839 << OnlyArg->isLValue() 8840 << FromType 8841 << Args[0]->getSourceRange(); 8842 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType); 8843 S.Diag(Kind.getLocation(), PDiag); 8844 emitBadConversionNotes(S, Entity, Args[0]); 8845 break; 8846 } 8847 8848 case FK_ConversionFromPropertyFailed: 8849 // No-op. This error has already been reported. 8850 break; 8851 8852 case FK_TooManyInitsForScalar: { 8853 SourceRange R; 8854 8855 auto *InitList = dyn_cast<InitListExpr>(Args[0]); 8856 if (InitList && InitList->getNumInits() >= 1) { 8857 R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc()); 8858 } else { 8859 assert(Args.size() > 1 && "Expected multiple initializers!"); 8860 R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc()); 8861 } 8862 8863 R.setBegin(S.getLocForEndOfToken(R.getBegin())); 8864 if (Kind.isCStyleOrFunctionalCast()) 8865 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg) 8866 << R; 8867 else 8868 S.Diag(Kind.getLocation(), diag::err_excess_initializers) 8869 << /*scalar=*/2 << R; 8870 break; 8871 } 8872 8873 case FK_ParenthesizedListInitForScalar: 8874 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) 8875 << 0 << Entity.getType() << Args[0]->getSourceRange(); 8876 break; 8877 8878 case FK_ReferenceBindingToInitList: 8879 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list) 8880 << DestType.getNonReferenceType() << Args[0]->getSourceRange(); 8881 break; 8882 8883 case FK_InitListBadDestinationType: 8884 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type) 8885 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange(); 8886 break; 8887 8888 case FK_ListConstructorOverloadFailed: 8889 case FK_ConstructorOverloadFailed: { 8890 SourceRange ArgsRange; 8891 if (Args.size()) 8892 ArgsRange = 8893 SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); 8894 8895 if (Failure == FK_ListConstructorOverloadFailed) { 8896 assert(Args.size() == 1 && 8897 "List construction from other than 1 argument."); 8898 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 8899 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); 8900 } 8901 8902 // FIXME: Using "DestType" for the entity we're printing is probably 8903 // bad. 8904 switch (FailedOverloadResult) { 8905 case OR_Ambiguous: 8906 FailedCandidateSet.NoteCandidates( 8907 PartialDiagnosticAt(Kind.getLocation(), 8908 S.PDiag(diag::err_ovl_ambiguous_init) 8909 << DestType << ArgsRange), 8910 S, OCD_AmbiguousCandidates, Args); 8911 break; 8912 8913 case OR_No_Viable_Function: 8914 if (Kind.getKind() == InitializationKind::IK_Default && 8915 (Entity.getKind() == InitializedEntity::EK_Base || 8916 Entity.getKind() == InitializedEntity::EK_Member || 8917 Entity.getKind() == InitializedEntity::EK_ParenAggInitMember) && 8918 isa<CXXConstructorDecl>(S.CurContext)) { 8919 // This is implicit default initialization of a member or 8920 // base within a constructor. If no viable function was 8921 // found, notify the user that they need to explicitly 8922 // initialize this base/member. 8923 CXXConstructorDecl *Constructor 8924 = cast<CXXConstructorDecl>(S.CurContext); 8925 const CXXRecordDecl *InheritedFrom = nullptr; 8926 if (auto Inherited = Constructor->getInheritedConstructor()) 8927 InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass(); 8928 if (Entity.getKind() == InitializedEntity::EK_Base) { 8929 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 8930 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) 8931 << S.Context.getTypeDeclType(Constructor->getParent()) 8932 << /*base=*/0 8933 << Entity.getType() 8934 << InheritedFrom; 8935 8936 RecordDecl *BaseDecl 8937 = Entity.getBaseSpecifier()->getType()->castAs<RecordType>() 8938 ->getDecl(); 8939 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl) 8940 << S.Context.getTagDeclType(BaseDecl); 8941 } else { 8942 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 8943 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) 8944 << S.Context.getTypeDeclType(Constructor->getParent()) 8945 << /*member=*/1 8946 << Entity.getName() 8947 << InheritedFrom; 8948 S.Diag(Entity.getDecl()->getLocation(), 8949 diag::note_member_declared_at); 8950 8951 if (const RecordType *Record 8952 = Entity.getType()->getAs<RecordType>()) 8953 S.Diag(Record->getDecl()->getLocation(), 8954 diag::note_previous_decl) 8955 << S.Context.getTagDeclType(Record->getDecl()); 8956 } 8957 break; 8958 } 8959 8960 FailedCandidateSet.NoteCandidates( 8961 PartialDiagnosticAt( 8962 Kind.getLocation(), 8963 S.PDiag(diag::err_ovl_no_viable_function_in_init) 8964 << DestType << ArgsRange), 8965 S, OCD_AllCandidates, Args); 8966 break; 8967 8968 case OR_Deleted: { 8969 OverloadCandidateSet::iterator Best; 8970 OverloadingResult Ovl 8971 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 8972 if (Ovl != OR_Deleted) { 8973 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 8974 << DestType << ArgsRange; 8975 llvm_unreachable("Inconsistent overload resolution?"); 8976 break; 8977 } 8978 8979 // If this is a defaulted or implicitly-declared function, then 8980 // it was implicitly deleted. Make it clear that the deletion was 8981 // implicit. 8982 if (S.isImplicitlyDeleted(Best->Function)) 8983 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init) 8984 << llvm::to_underlying( 8985 S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))) 8986 << DestType << ArgsRange; 8987 else { 8988 StringLiteral *Msg = Best->Function->getDeletedMessage(); 8989 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 8990 << DestType << (Msg != nullptr) 8991 << (Msg ? Msg->getString() : StringRef()) << ArgsRange; 8992 } 8993 8994 S.NoteDeletedFunction(Best->Function); 8995 break; 8996 } 8997 8998 case OR_Success: 8999 llvm_unreachable("Conversion did not fail!"); 9000 } 9001 } 9002 break; 9003 9004 case FK_DefaultInitOfConst: 9005 if (Entity.getKind() == InitializedEntity::EK_Member && 9006 isa<CXXConstructorDecl>(S.CurContext)) { 9007 // This is implicit default-initialization of a const member in 9008 // a constructor. Complain that it needs to be explicitly 9009 // initialized. 9010 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext); 9011 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor) 9012 << (Constructor->getInheritedConstructor() ? 2 : 9013 Constructor->isImplicit() ? 1 : 0) 9014 << S.Context.getTypeDeclType(Constructor->getParent()) 9015 << /*const=*/1 9016 << Entity.getName(); 9017 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl) 9018 << Entity.getName(); 9019 } else if (const auto *VD = dyn_cast_if_present<VarDecl>(Entity.getDecl()); 9020 VD && VD->isConstexpr()) { 9021 S.Diag(Kind.getLocation(), diag::err_constexpr_var_requires_const_init) 9022 << VD; 9023 } else { 9024 S.Diag(Kind.getLocation(), diag::err_default_init_const) 9025 << DestType << (bool)DestType->getAs<RecordType>(); 9026 } 9027 break; 9028 9029 case FK_Incomplete: 9030 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType, 9031 diag::err_init_incomplete_type); 9032 break; 9033 9034 case FK_ListInitializationFailed: { 9035 // Run the init list checker again to emit diagnostics. 9036 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 9037 diagnoseListInit(S, Entity, InitList); 9038 break; 9039 } 9040 9041 case FK_PlaceholderType: { 9042 // FIXME: Already diagnosed! 9043 break; 9044 } 9045 9046 case FK_ExplicitConstructor: { 9047 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor) 9048 << Args[0]->getSourceRange(); 9049 OverloadCandidateSet::iterator Best; 9050 OverloadingResult Ovl 9051 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 9052 (void)Ovl; 9053 assert(Ovl == OR_Success && "Inconsistent overload resolution"); 9054 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 9055 S.Diag(CtorDecl->getLocation(), 9056 diag::note_explicit_ctor_deduction_guide_here) << false; 9057 break; 9058 } 9059 9060 case FK_ParenthesizedListInitFailed: 9061 TryOrBuildParenListInitialization(S, Entity, Kind, Args, *this, 9062 /*VerifyOnly=*/false); 9063 break; 9064 9065 case FK_DesignatedInitForNonAggregate: 9066 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 9067 S.Diag(Kind.getLocation(), diag::err_designated_init_for_non_aggregate) 9068 << Entity.getType() << InitList->getSourceRange(); 9069 break; 9070 } 9071 9072 PrintInitLocationNote(S, Entity); 9073 return true; 9074 } 9075 9076 void InitializationSequence::dump(raw_ostream &OS) const { 9077 switch (SequenceKind) { 9078 case FailedSequence: { 9079 OS << "Failed sequence: "; 9080 switch (Failure) { 9081 case FK_TooManyInitsForReference: 9082 OS << "too many initializers for reference"; 9083 break; 9084 9085 case FK_ParenthesizedListInitForReference: 9086 OS << "parenthesized list init for reference"; 9087 break; 9088 9089 case FK_ArrayNeedsInitList: 9090 OS << "array requires initializer list"; 9091 break; 9092 9093 case FK_AddressOfUnaddressableFunction: 9094 OS << "address of unaddressable function was taken"; 9095 break; 9096 9097 case FK_ArrayNeedsInitListOrStringLiteral: 9098 OS << "array requires initializer list or string literal"; 9099 break; 9100 9101 case FK_ArrayNeedsInitListOrWideStringLiteral: 9102 OS << "array requires initializer list or wide string literal"; 9103 break; 9104 9105 case FK_NarrowStringIntoWideCharArray: 9106 OS << "narrow string into wide char array"; 9107 break; 9108 9109 case FK_WideStringIntoCharArray: 9110 OS << "wide string into char array"; 9111 break; 9112 9113 case FK_IncompatWideStringIntoWideChar: 9114 OS << "incompatible wide string into wide char array"; 9115 break; 9116 9117 case FK_PlainStringIntoUTF8Char: 9118 OS << "plain string literal into char8_t array"; 9119 break; 9120 9121 case FK_UTF8StringIntoPlainChar: 9122 OS << "u8 string literal into char array"; 9123 break; 9124 9125 case FK_ArrayTypeMismatch: 9126 OS << "array type mismatch"; 9127 break; 9128 9129 case FK_NonConstantArrayInit: 9130 OS << "non-constant array initializer"; 9131 break; 9132 9133 case FK_AddressOfOverloadFailed: 9134 OS << "address of overloaded function failed"; 9135 break; 9136 9137 case FK_ReferenceInitOverloadFailed: 9138 OS << "overload resolution for reference initialization failed"; 9139 break; 9140 9141 case FK_NonConstLValueReferenceBindingToTemporary: 9142 OS << "non-const lvalue reference bound to temporary"; 9143 break; 9144 9145 case FK_NonConstLValueReferenceBindingToBitfield: 9146 OS << "non-const lvalue reference bound to bit-field"; 9147 break; 9148 9149 case FK_NonConstLValueReferenceBindingToVectorElement: 9150 OS << "non-const lvalue reference bound to vector element"; 9151 break; 9152 9153 case FK_NonConstLValueReferenceBindingToMatrixElement: 9154 OS << "non-const lvalue reference bound to matrix element"; 9155 break; 9156 9157 case FK_NonConstLValueReferenceBindingToUnrelated: 9158 OS << "non-const lvalue reference bound to unrelated type"; 9159 break; 9160 9161 case FK_RValueReferenceBindingToLValue: 9162 OS << "rvalue reference bound to an lvalue"; 9163 break; 9164 9165 case FK_ReferenceInitDropsQualifiers: 9166 OS << "reference initialization drops qualifiers"; 9167 break; 9168 9169 case FK_ReferenceAddrspaceMismatchTemporary: 9170 OS << "reference with mismatching address space bound to temporary"; 9171 break; 9172 9173 case FK_ReferenceInitFailed: 9174 OS << "reference initialization failed"; 9175 break; 9176 9177 case FK_ConversionFailed: 9178 OS << "conversion failed"; 9179 break; 9180 9181 case FK_ConversionFromPropertyFailed: 9182 OS << "conversion from property failed"; 9183 break; 9184 9185 case FK_TooManyInitsForScalar: 9186 OS << "too many initializers for scalar"; 9187 break; 9188 9189 case FK_ParenthesizedListInitForScalar: 9190 OS << "parenthesized list init for reference"; 9191 break; 9192 9193 case FK_ReferenceBindingToInitList: 9194 OS << "referencing binding to initializer list"; 9195 break; 9196 9197 case FK_InitListBadDestinationType: 9198 OS << "initializer list for non-aggregate, non-scalar type"; 9199 break; 9200 9201 case FK_UserConversionOverloadFailed: 9202 OS << "overloading failed for user-defined conversion"; 9203 break; 9204 9205 case FK_ConstructorOverloadFailed: 9206 OS << "constructor overloading failed"; 9207 break; 9208 9209 case FK_DefaultInitOfConst: 9210 OS << "default initialization of a const variable"; 9211 break; 9212 9213 case FK_Incomplete: 9214 OS << "initialization of incomplete type"; 9215 break; 9216 9217 case FK_ListInitializationFailed: 9218 OS << "list initialization checker failure"; 9219 break; 9220 9221 case FK_VariableLengthArrayHasInitializer: 9222 OS << "variable length array has an initializer"; 9223 break; 9224 9225 case FK_PlaceholderType: 9226 OS << "initializer expression isn't contextually valid"; 9227 break; 9228 9229 case FK_ListConstructorOverloadFailed: 9230 OS << "list constructor overloading failed"; 9231 break; 9232 9233 case FK_ExplicitConstructor: 9234 OS << "list copy initialization chose explicit constructor"; 9235 break; 9236 9237 case FK_ParenthesizedListInitFailed: 9238 OS << "parenthesized list initialization failed"; 9239 break; 9240 9241 case FK_DesignatedInitForNonAggregate: 9242 OS << "designated initializer for non-aggregate type"; 9243 break; 9244 } 9245 OS << '\n'; 9246 return; 9247 } 9248 9249 case DependentSequence: 9250 OS << "Dependent sequence\n"; 9251 return; 9252 9253 case NormalSequence: 9254 OS << "Normal sequence: "; 9255 break; 9256 } 9257 9258 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) { 9259 if (S != step_begin()) { 9260 OS << " -> "; 9261 } 9262 9263 switch (S->Kind) { 9264 case SK_ResolveAddressOfOverloadedFunction: 9265 OS << "resolve address of overloaded function"; 9266 break; 9267 9268 case SK_CastDerivedToBasePRValue: 9269 OS << "derived-to-base (prvalue)"; 9270 break; 9271 9272 case SK_CastDerivedToBaseXValue: 9273 OS << "derived-to-base (xvalue)"; 9274 break; 9275 9276 case SK_CastDerivedToBaseLValue: 9277 OS << "derived-to-base (lvalue)"; 9278 break; 9279 9280 case SK_BindReference: 9281 OS << "bind reference to lvalue"; 9282 break; 9283 9284 case SK_BindReferenceToTemporary: 9285 OS << "bind reference to a temporary"; 9286 break; 9287 9288 case SK_FinalCopy: 9289 OS << "final copy in class direct-initialization"; 9290 break; 9291 9292 case SK_ExtraneousCopyToTemporary: 9293 OS << "extraneous C++03 copy to temporary"; 9294 break; 9295 9296 case SK_UserConversion: 9297 OS << "user-defined conversion via " << *S->Function.Function; 9298 break; 9299 9300 case SK_QualificationConversionPRValue: 9301 OS << "qualification conversion (prvalue)"; 9302 break; 9303 9304 case SK_QualificationConversionXValue: 9305 OS << "qualification conversion (xvalue)"; 9306 break; 9307 9308 case SK_QualificationConversionLValue: 9309 OS << "qualification conversion (lvalue)"; 9310 break; 9311 9312 case SK_FunctionReferenceConversion: 9313 OS << "function reference conversion"; 9314 break; 9315 9316 case SK_AtomicConversion: 9317 OS << "non-atomic-to-atomic conversion"; 9318 break; 9319 9320 case SK_ConversionSequence: 9321 OS << "implicit conversion sequence ("; 9322 S->ICS->dump(); // FIXME: use OS 9323 OS << ")"; 9324 break; 9325 9326 case SK_ConversionSequenceNoNarrowing: 9327 OS << "implicit conversion sequence with narrowing prohibited ("; 9328 S->ICS->dump(); // FIXME: use OS 9329 OS << ")"; 9330 break; 9331 9332 case SK_ListInitialization: 9333 OS << "list aggregate initialization"; 9334 break; 9335 9336 case SK_UnwrapInitList: 9337 OS << "unwrap reference initializer list"; 9338 break; 9339 9340 case SK_RewrapInitList: 9341 OS << "rewrap reference initializer list"; 9342 break; 9343 9344 case SK_ConstructorInitialization: 9345 OS << "constructor initialization"; 9346 break; 9347 9348 case SK_ConstructorInitializationFromList: 9349 OS << "list initialization via constructor"; 9350 break; 9351 9352 case SK_ZeroInitialization: 9353 OS << "zero initialization"; 9354 break; 9355 9356 case SK_CAssignment: 9357 OS << "C assignment"; 9358 break; 9359 9360 case SK_StringInit: 9361 OS << "string initialization"; 9362 break; 9363 9364 case SK_ObjCObjectConversion: 9365 OS << "Objective-C object conversion"; 9366 break; 9367 9368 case SK_ArrayLoopIndex: 9369 OS << "indexing for array initialization loop"; 9370 break; 9371 9372 case SK_ArrayLoopInit: 9373 OS << "array initialization loop"; 9374 break; 9375 9376 case SK_ArrayInit: 9377 OS << "array initialization"; 9378 break; 9379 9380 case SK_GNUArrayInit: 9381 OS << "array initialization (GNU extension)"; 9382 break; 9383 9384 case SK_ParenthesizedArrayInit: 9385 OS << "parenthesized array initialization"; 9386 break; 9387 9388 case SK_PassByIndirectCopyRestore: 9389 OS << "pass by indirect copy and restore"; 9390 break; 9391 9392 case SK_PassByIndirectRestore: 9393 OS << "pass by indirect restore"; 9394 break; 9395 9396 case SK_ProduceObjCObject: 9397 OS << "Objective-C object retension"; 9398 break; 9399 9400 case SK_StdInitializerList: 9401 OS << "std::initializer_list from initializer list"; 9402 break; 9403 9404 case SK_StdInitializerListConstructorCall: 9405 OS << "list initialization from std::initializer_list"; 9406 break; 9407 9408 case SK_OCLSamplerInit: 9409 OS << "OpenCL sampler_t from integer constant"; 9410 break; 9411 9412 case SK_OCLZeroOpaqueType: 9413 OS << "OpenCL opaque type from zero"; 9414 break; 9415 case SK_ParenthesizedListInit: 9416 OS << "initialization from a parenthesized list of values"; 9417 break; 9418 } 9419 9420 OS << " [" << S->Type << ']'; 9421 } 9422 9423 OS << '\n'; 9424 } 9425 9426 void InitializationSequence::dump() const { 9427 dump(llvm::errs()); 9428 } 9429 9430 static void DiagnoseNarrowingInInitList(Sema &S, 9431 const ImplicitConversionSequence &ICS, 9432 QualType PreNarrowingType, 9433 QualType EntityType, 9434 const Expr *PostInit) { 9435 const StandardConversionSequence *SCS = nullptr; 9436 switch (ICS.getKind()) { 9437 case ImplicitConversionSequence::StandardConversion: 9438 SCS = &ICS.Standard; 9439 break; 9440 case ImplicitConversionSequence::UserDefinedConversion: 9441 SCS = &ICS.UserDefined.After; 9442 break; 9443 case ImplicitConversionSequence::AmbiguousConversion: 9444 case ImplicitConversionSequence::StaticObjectArgumentConversion: 9445 case ImplicitConversionSequence::EllipsisConversion: 9446 case ImplicitConversionSequence::BadConversion: 9447 return; 9448 } 9449 9450 auto MakeDiag = [&](bool IsConstRef, unsigned DefaultDiagID, 9451 unsigned ConstRefDiagID, unsigned WarnDiagID) { 9452 unsigned DiagID; 9453 auto &L = S.getLangOpts(); 9454 if (L.CPlusPlus11 && 9455 (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015))) 9456 DiagID = IsConstRef ? ConstRefDiagID : DefaultDiagID; 9457 else 9458 DiagID = WarnDiagID; 9459 return S.Diag(PostInit->getBeginLoc(), DiagID) 9460 << PostInit->getSourceRange(); 9461 }; 9462 9463 // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion. 9464 APValue ConstantValue; 9465 QualType ConstantType; 9466 switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue, 9467 ConstantType)) { 9468 case NK_Not_Narrowing: 9469 case NK_Dependent_Narrowing: 9470 // No narrowing occurred. 9471 return; 9472 9473 case NK_Type_Narrowing: { 9474 // This was a floating-to-integer conversion, which is always considered a 9475 // narrowing conversion even if the value is a constant and can be 9476 // represented exactly as an integer. 9477 QualType T = EntityType.getNonReferenceType(); 9478 MakeDiag(T != EntityType, diag::ext_init_list_type_narrowing, 9479 diag::ext_init_list_type_narrowing_const_reference, 9480 diag::warn_init_list_type_narrowing) 9481 << PreNarrowingType.getLocalUnqualifiedType() 9482 << T.getLocalUnqualifiedType(); 9483 break; 9484 } 9485 9486 case NK_Constant_Narrowing: { 9487 // A constant value was narrowed. 9488 MakeDiag(EntityType.getNonReferenceType() != EntityType, 9489 diag::ext_init_list_constant_narrowing, 9490 diag::ext_init_list_constant_narrowing_const_reference, 9491 diag::warn_init_list_constant_narrowing) 9492 << ConstantValue.getAsString(S.getASTContext(), ConstantType) 9493 << EntityType.getNonReferenceType().getLocalUnqualifiedType(); 9494 break; 9495 } 9496 9497 case NK_Variable_Narrowing: { 9498 // A variable's value may have been narrowed. 9499 MakeDiag(EntityType.getNonReferenceType() != EntityType, 9500 diag::ext_init_list_variable_narrowing, 9501 diag::ext_init_list_variable_narrowing_const_reference, 9502 diag::warn_init_list_variable_narrowing) 9503 << PreNarrowingType.getLocalUnqualifiedType() 9504 << EntityType.getNonReferenceType().getLocalUnqualifiedType(); 9505 break; 9506 } 9507 } 9508 9509 SmallString<128> StaticCast; 9510 llvm::raw_svector_ostream OS(StaticCast); 9511 OS << "static_cast<"; 9512 if (const TypedefType *TT = EntityType->getAs<TypedefType>()) { 9513 // It's important to use the typedef's name if there is one so that the 9514 // fixit doesn't break code using types like int64_t. 9515 // 9516 // FIXME: This will break if the typedef requires qualification. But 9517 // getQualifiedNameAsString() includes non-machine-parsable components. 9518 OS << *TT->getDecl(); 9519 } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>()) 9520 OS << BT->getName(S.getLangOpts()); 9521 else { 9522 // Oops, we didn't find the actual type of the variable. Don't emit a fixit 9523 // with a broken cast. 9524 return; 9525 } 9526 OS << ">("; 9527 S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence) 9528 << PostInit->getSourceRange() 9529 << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str()) 9530 << FixItHint::CreateInsertion( 9531 S.getLocForEndOfToken(PostInit->getEndLoc()), ")"); 9532 } 9533 9534 static void CheckC23ConstexprInitConversion(Sema &S, QualType FromType, 9535 QualType ToType, Expr *Init) { 9536 assert(S.getLangOpts().C23); 9537 ImplicitConversionSequence ICS = S.TryImplicitConversion( 9538 Init->IgnoreParenImpCasts(), ToType, /*SuppressUserConversions*/ false, 9539 Sema::AllowedExplicit::None, 9540 /*InOverloadResolution*/ false, 9541 /*CStyle*/ false, 9542 /*AllowObjCWritebackConversion=*/false); 9543 9544 if (!ICS.isStandard()) 9545 return; 9546 9547 APValue Value; 9548 QualType PreNarrowingType; 9549 // Reuse C++ narrowing check. 9550 switch (ICS.Standard.getNarrowingKind( 9551 S.Context, Init, Value, PreNarrowingType, 9552 /*IgnoreFloatToIntegralConversion*/ false)) { 9553 // The value doesn't fit. 9554 case NK_Constant_Narrowing: 9555 S.Diag(Init->getBeginLoc(), diag::err_c23_constexpr_init_not_representable) 9556 << Value.getAsString(S.Context, PreNarrowingType) << ToType; 9557 return; 9558 9559 // Conversion to a narrower type. 9560 case NK_Type_Narrowing: 9561 S.Diag(Init->getBeginLoc(), diag::err_c23_constexpr_init_type_mismatch) 9562 << ToType << FromType; 9563 return; 9564 9565 // Since we only reuse narrowing check for C23 constexpr variables here, we're 9566 // not really interested in these cases. 9567 case NK_Dependent_Narrowing: 9568 case NK_Variable_Narrowing: 9569 case NK_Not_Narrowing: 9570 return; 9571 } 9572 llvm_unreachable("unhandled case in switch"); 9573 } 9574 9575 static void CheckC23ConstexprInitStringLiteral(const StringLiteral *SE, 9576 Sema &SemaRef, QualType &TT) { 9577 assert(SemaRef.getLangOpts().C23); 9578 // character that string literal contains fits into TT - target type. 9579 const ArrayType *AT = SemaRef.Context.getAsArrayType(TT); 9580 QualType CharType = AT->getElementType(); 9581 uint32_t BitWidth = SemaRef.Context.getTypeSize(CharType); 9582 bool isUnsigned = CharType->isUnsignedIntegerType(); 9583 llvm::APSInt Value(BitWidth, isUnsigned); 9584 for (unsigned I = 0, N = SE->getLength(); I != N; ++I) { 9585 int64_t C = SE->getCodeUnitS(I, SemaRef.Context.getCharWidth()); 9586 Value = C; 9587 if (Value != C) { 9588 SemaRef.Diag(SemaRef.getLocationOfStringLiteralByte(SE, I), 9589 diag::err_c23_constexpr_init_not_representable) 9590 << C << CharType; 9591 return; 9592 } 9593 } 9594 return; 9595 } 9596 9597 //===----------------------------------------------------------------------===// 9598 // Initialization helper functions 9599 //===----------------------------------------------------------------------===// 9600 bool 9601 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity, 9602 ExprResult Init) { 9603 if (Init.isInvalid()) 9604 return false; 9605 9606 Expr *InitE = Init.get(); 9607 assert(InitE && "No initialization expression"); 9608 9609 InitializationKind Kind = 9610 InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation()); 9611 InitializationSequence Seq(*this, Entity, Kind, InitE); 9612 return !Seq.Failed(); 9613 } 9614 9615 ExprResult 9616 Sema::PerformCopyInitialization(const InitializedEntity &Entity, 9617 SourceLocation EqualLoc, 9618 ExprResult Init, 9619 bool TopLevelOfInitList, 9620 bool AllowExplicit) { 9621 if (Init.isInvalid()) 9622 return ExprError(); 9623 9624 Expr *InitE = Init.get(); 9625 assert(InitE && "No initialization expression?"); 9626 9627 if (EqualLoc.isInvalid()) 9628 EqualLoc = InitE->getBeginLoc(); 9629 9630 InitializationKind Kind = InitializationKind::CreateCopy( 9631 InitE->getBeginLoc(), EqualLoc, AllowExplicit); 9632 InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList); 9633 9634 // Prevent infinite recursion when performing parameter copy-initialization. 9635 const bool ShouldTrackCopy = 9636 Entity.isParameterKind() && Seq.isConstructorInitialization(); 9637 if (ShouldTrackCopy) { 9638 if (llvm::is_contained(CurrentParameterCopyTypes, Entity.getType())) { 9639 Seq.SetOverloadFailure( 9640 InitializationSequence::FK_ConstructorOverloadFailed, 9641 OR_No_Viable_Function); 9642 9643 // Try to give a meaningful diagnostic note for the problematic 9644 // constructor. 9645 const auto LastStep = Seq.step_end() - 1; 9646 assert(LastStep->Kind == 9647 InitializationSequence::SK_ConstructorInitialization); 9648 const FunctionDecl *Function = LastStep->Function.Function; 9649 auto Candidate = 9650 llvm::find_if(Seq.getFailedCandidateSet(), 9651 [Function](const OverloadCandidate &Candidate) -> bool { 9652 return Candidate.Viable && 9653 Candidate.Function == Function && 9654 Candidate.Conversions.size() > 0; 9655 }); 9656 if (Candidate != Seq.getFailedCandidateSet().end() && 9657 Function->getNumParams() > 0) { 9658 Candidate->Viable = false; 9659 Candidate->FailureKind = ovl_fail_bad_conversion; 9660 Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion, 9661 InitE, 9662 Function->getParamDecl(0)->getType()); 9663 } 9664 } 9665 CurrentParameterCopyTypes.push_back(Entity.getType()); 9666 } 9667 9668 ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE); 9669 9670 if (ShouldTrackCopy) 9671 CurrentParameterCopyTypes.pop_back(); 9672 9673 return Result; 9674 } 9675 9676 /// Determine whether RD is, or is derived from, a specialization of CTD. 9677 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD, 9678 ClassTemplateDecl *CTD) { 9679 auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) { 9680 auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate); 9681 return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD); 9682 }; 9683 return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization)); 9684 } 9685 9686 QualType Sema::DeduceTemplateSpecializationFromInitializer( 9687 TypeSourceInfo *TSInfo, const InitializedEntity &Entity, 9688 const InitializationKind &Kind, MultiExprArg Inits) { 9689 auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>( 9690 TSInfo->getType()->getContainedDeducedType()); 9691 assert(DeducedTST && "not a deduced template specialization type"); 9692 9693 auto TemplateName = DeducedTST->getTemplateName(); 9694 if (TemplateName.isDependent()) 9695 return SubstAutoTypeDependent(TSInfo->getType()); 9696 9697 // We can only perform deduction for class templates or alias templates. 9698 auto *Template = 9699 dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl()); 9700 TemplateDecl *LookupTemplateDecl = Template; 9701 if (!Template) { 9702 if (auto *AliasTemplate = dyn_cast_or_null<TypeAliasTemplateDecl>( 9703 TemplateName.getAsTemplateDecl())) { 9704 Diag(Kind.getLocation(), 9705 diag::warn_cxx17_compat_ctad_for_alias_templates); 9706 LookupTemplateDecl = AliasTemplate; 9707 auto UnderlyingType = AliasTemplate->getTemplatedDecl() 9708 ->getUnderlyingType() 9709 .getCanonicalType(); 9710 // C++ [over.match.class.deduct#3]: ..., the defining-type-id of A must be 9711 // of the form 9712 // [typename] [nested-name-specifier] [template] simple-template-id 9713 if (const auto *TST = 9714 UnderlyingType->getAs<TemplateSpecializationType>()) { 9715 Template = dyn_cast_or_null<ClassTemplateDecl>( 9716 TST->getTemplateName().getAsTemplateDecl()); 9717 } else if (const auto *RT = UnderlyingType->getAs<RecordType>()) { 9718 // Cases where template arguments in the RHS of the alias are not 9719 // dependent. e.g. 9720 // using AliasFoo = Foo<bool>; 9721 if (const auto *CTSD = llvm::dyn_cast<ClassTemplateSpecializationDecl>( 9722 RT->getAsCXXRecordDecl())) 9723 Template = CTSD->getSpecializedTemplate(); 9724 } 9725 } 9726 } 9727 if (!Template) { 9728 Diag(Kind.getLocation(), 9729 diag::err_deduced_non_class_or_alias_template_specialization_type) 9730 << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName; 9731 if (auto *TD = TemplateName.getAsTemplateDecl()) 9732 NoteTemplateLocation(*TD); 9733 return QualType(); 9734 } 9735 9736 // Can't deduce from dependent arguments. 9737 if (Expr::hasAnyTypeDependentArguments(Inits)) { 9738 Diag(TSInfo->getTypeLoc().getBeginLoc(), 9739 diag::warn_cxx14_compat_class_template_argument_deduction) 9740 << TSInfo->getTypeLoc().getSourceRange() << 0; 9741 return SubstAutoTypeDependent(TSInfo->getType()); 9742 } 9743 9744 // FIXME: Perform "exact type" matching first, per CWG discussion? 9745 // Or implement this via an implied 'T(T) -> T' deduction guide? 9746 9747 // Look up deduction guides, including those synthesized from constructors. 9748 // 9749 // C++1z [over.match.class.deduct]p1: 9750 // A set of functions and function templates is formed comprising: 9751 // - For each constructor of the class template designated by the 9752 // template-name, a function template [...] 9753 // - For each deduction-guide, a function or function template [...] 9754 DeclarationNameInfo NameInfo( 9755 Context.DeclarationNames.getCXXDeductionGuideName(LookupTemplateDecl), 9756 TSInfo->getTypeLoc().getEndLoc()); 9757 LookupResult Guides(*this, NameInfo, LookupOrdinaryName); 9758 LookupQualifiedName(Guides, LookupTemplateDecl->getDeclContext()); 9759 9760 // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't 9761 // clear on this, but they're not found by name so access does not apply. 9762 Guides.suppressDiagnostics(); 9763 9764 // Figure out if this is list-initialization. 9765 InitListExpr *ListInit = 9766 (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct) 9767 ? dyn_cast<InitListExpr>(Inits[0]) 9768 : nullptr; 9769 9770 // C++1z [over.match.class.deduct]p1: 9771 // Initialization and overload resolution are performed as described in 9772 // [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list] 9773 // (as appropriate for the type of initialization performed) for an object 9774 // of a hypothetical class type, where the selected functions and function 9775 // templates are considered to be the constructors of that class type 9776 // 9777 // Since we know we're initializing a class type of a type unrelated to that 9778 // of the initializer, this reduces to something fairly reasonable. 9779 OverloadCandidateSet Candidates(Kind.getLocation(), 9780 OverloadCandidateSet::CSK_Normal); 9781 OverloadCandidateSet::iterator Best; 9782 9783 bool AllowExplicit = !Kind.isCopyInit() || ListInit; 9784 9785 // Return true if the candidate is added successfully, false otherwise. 9786 auto addDeductionCandidate = [&](FunctionTemplateDecl *TD, 9787 CXXDeductionGuideDecl *GD, 9788 DeclAccessPair FoundDecl, 9789 bool OnlyListConstructors, 9790 bool AllowAggregateDeductionCandidate) { 9791 // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class) 9792 // For copy-initialization, the candidate functions are all the 9793 // converting constructors (12.3.1) of that class. 9794 // C++ [over.match.copy]p1: (non-list copy-initialization from class) 9795 // The converting constructors of T are candidate functions. 9796 if (!AllowExplicit) { 9797 // Overload resolution checks whether the deduction guide is declared 9798 // explicit for us. 9799 9800 // When looking for a converting constructor, deduction guides that 9801 // could never be called with one argument are not interesting to 9802 // check or note. 9803 if (GD->getMinRequiredArguments() > 1 || 9804 (GD->getNumParams() == 0 && !GD->isVariadic())) 9805 return; 9806 } 9807 9808 // C++ [over.match.list]p1.1: (first phase list initialization) 9809 // Initially, the candidate functions are the initializer-list 9810 // constructors of the class T 9811 if (OnlyListConstructors && !isInitListConstructor(GD)) 9812 return; 9813 9814 if (!AllowAggregateDeductionCandidate && 9815 GD->getDeductionCandidateKind() == DeductionCandidate::Aggregate) 9816 return; 9817 9818 // C++ [over.match.list]p1.2: (second phase list initialization) 9819 // the candidate functions are all the constructors of the class T 9820 // C++ [over.match.ctor]p1: (all other cases) 9821 // the candidate functions are all the constructors of the class of 9822 // the object being initialized 9823 9824 // C++ [over.best.ics]p4: 9825 // When [...] the constructor [...] is a candidate by 9826 // - [over.match.copy] (in all cases) 9827 if (TD) { 9828 SmallVector<Expr *, 8> TmpInits; 9829 for (Expr *E : Inits) 9830 if (auto *DI = dyn_cast<DesignatedInitExpr>(E)) 9831 TmpInits.push_back(DI->getInit()); 9832 else 9833 TmpInits.push_back(E); 9834 AddTemplateOverloadCandidate( 9835 TD, FoundDecl, /*ExplicitArgs=*/nullptr, TmpInits, Candidates, 9836 /*SuppressUserConversions=*/false, 9837 /*PartialOverloading=*/false, AllowExplicit, ADLCallKind::NotADL, 9838 /*PO=*/{}, AllowAggregateDeductionCandidate); 9839 } else { 9840 AddOverloadCandidate(GD, FoundDecl, Inits, Candidates, 9841 /*SuppressUserConversions=*/false, 9842 /*PartialOverloading=*/false, AllowExplicit); 9843 } 9844 }; 9845 9846 bool FoundDeductionGuide = false; 9847 9848 auto TryToResolveOverload = 9849 [&](bool OnlyListConstructors) -> OverloadingResult { 9850 Candidates.clear(OverloadCandidateSet::CSK_Normal); 9851 bool HasAnyDeductionGuide = false; 9852 9853 auto SynthesizeAggrGuide = [&](InitListExpr *ListInit) { 9854 auto *Pattern = Template; 9855 while (Pattern->getInstantiatedFromMemberTemplate()) { 9856 if (Pattern->isMemberSpecialization()) 9857 break; 9858 Pattern = Pattern->getInstantiatedFromMemberTemplate(); 9859 } 9860 9861 auto *RD = cast<CXXRecordDecl>(Pattern->getTemplatedDecl()); 9862 if (!(RD->getDefinition() && RD->isAggregate())) 9863 return; 9864 QualType Ty = Context.getRecordType(RD); 9865 SmallVector<QualType, 8> ElementTypes; 9866 9867 InitListChecker CheckInitList(*this, Entity, ListInit, Ty, ElementTypes); 9868 if (!CheckInitList.HadError()) { 9869 // C++ [over.match.class.deduct]p1.8: 9870 // if e_i is of array type and x_i is a braced-init-list, T_i is an 9871 // rvalue reference to the declared type of e_i and 9872 // C++ [over.match.class.deduct]p1.9: 9873 // if e_i is of array type and x_i is a string-literal, T_i is an 9874 // lvalue reference to the const-qualified declared type of e_i and 9875 // C++ [over.match.class.deduct]p1.10: 9876 // otherwise, T_i is the declared type of e_i 9877 for (int I = 0, E = ListInit->getNumInits(); 9878 I < E && !isa<PackExpansionType>(ElementTypes[I]); ++I) 9879 if (ElementTypes[I]->isArrayType()) { 9880 if (isa<InitListExpr, DesignatedInitExpr>(ListInit->getInit(I))) 9881 ElementTypes[I] = Context.getRValueReferenceType(ElementTypes[I]); 9882 else if (isa<StringLiteral>( 9883 ListInit->getInit(I)->IgnoreParenImpCasts())) 9884 ElementTypes[I] = 9885 Context.getLValueReferenceType(ElementTypes[I].withConst()); 9886 } 9887 9888 if (FunctionTemplateDecl *TD = 9889 DeclareAggregateDeductionGuideFromInitList( 9890 LookupTemplateDecl, ElementTypes, 9891 TSInfo->getTypeLoc().getEndLoc())) { 9892 auto *GD = cast<CXXDeductionGuideDecl>(TD->getTemplatedDecl()); 9893 addDeductionCandidate(TD, GD, DeclAccessPair::make(TD, AS_public), 9894 OnlyListConstructors, 9895 /*AllowAggregateDeductionCandidate=*/true); 9896 HasAnyDeductionGuide = true; 9897 } 9898 } 9899 }; 9900 9901 for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) { 9902 NamedDecl *D = (*I)->getUnderlyingDecl(); 9903 if (D->isInvalidDecl()) 9904 continue; 9905 9906 auto *TD = dyn_cast<FunctionTemplateDecl>(D); 9907 auto *GD = dyn_cast_if_present<CXXDeductionGuideDecl>( 9908 TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D)); 9909 if (!GD) 9910 continue; 9911 9912 if (!GD->isImplicit()) 9913 HasAnyDeductionGuide = true; 9914 9915 addDeductionCandidate(TD, GD, I.getPair(), OnlyListConstructors, 9916 /*AllowAggregateDeductionCandidate=*/false); 9917 } 9918 9919 // C++ [over.match.class.deduct]p1.4: 9920 // if C is defined and its definition satisfies the conditions for an 9921 // aggregate class ([dcl.init.aggr]) with the assumption that any 9922 // dependent base class has no virtual functions and no virtual base 9923 // classes, and the initializer is a non-empty braced-init-list or 9924 // parenthesized expression-list, and there are no deduction-guides for 9925 // C, the set contains an additional function template, called the 9926 // aggregate deduction candidate, defined as follows. 9927 if (getLangOpts().CPlusPlus20 && !HasAnyDeductionGuide) { 9928 if (ListInit && ListInit->getNumInits()) { 9929 SynthesizeAggrGuide(ListInit); 9930 } else if (Inits.size()) { // parenthesized expression-list 9931 // Inits are expressions inside the parentheses. We don't have 9932 // the parentheses source locations, use the begin/end of Inits as the 9933 // best heuristic. 9934 InitListExpr TempListInit(getASTContext(), Inits.front()->getBeginLoc(), 9935 Inits, Inits.back()->getEndLoc()); 9936 SynthesizeAggrGuide(&TempListInit); 9937 } 9938 } 9939 9940 FoundDeductionGuide = FoundDeductionGuide || HasAnyDeductionGuide; 9941 9942 return Candidates.BestViableFunction(*this, Kind.getLocation(), Best); 9943 }; 9944 9945 OverloadingResult Result = OR_No_Viable_Function; 9946 9947 // C++11 [over.match.list]p1, per DR1467: for list-initialization, first 9948 // try initializer-list constructors. 9949 if (ListInit) { 9950 bool TryListConstructors = true; 9951 9952 // Try list constructors unless the list is empty and the class has one or 9953 // more default constructors, in which case those constructors win. 9954 if (!ListInit->getNumInits()) { 9955 for (NamedDecl *D : Guides) { 9956 auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl()); 9957 if (FD && FD->getMinRequiredArguments() == 0) { 9958 TryListConstructors = false; 9959 break; 9960 } 9961 } 9962 } else if (ListInit->getNumInits() == 1) { 9963 // C++ [over.match.class.deduct]: 9964 // As an exception, the first phase in [over.match.list] (considering 9965 // initializer-list constructors) is omitted if the initializer list 9966 // consists of a single expression of type cv U, where U is a 9967 // specialization of C or a class derived from a specialization of C. 9968 Expr *E = ListInit->getInit(0); 9969 auto *RD = E->getType()->getAsCXXRecordDecl(); 9970 if (!isa<InitListExpr>(E) && RD && 9971 isCompleteType(Kind.getLocation(), E->getType()) && 9972 isOrIsDerivedFromSpecializationOf(RD, Template)) 9973 TryListConstructors = false; 9974 } 9975 9976 if (TryListConstructors) 9977 Result = TryToResolveOverload(/*OnlyListConstructor*/true); 9978 // Then unwrap the initializer list and try again considering all 9979 // constructors. 9980 Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits()); 9981 } 9982 9983 // If list-initialization fails, or if we're doing any other kind of 9984 // initialization, we (eventually) consider constructors. 9985 if (Result == OR_No_Viable_Function) 9986 Result = TryToResolveOverload(/*OnlyListConstructor*/false); 9987 9988 switch (Result) { 9989 case OR_Ambiguous: 9990 // FIXME: For list-initialization candidates, it'd usually be better to 9991 // list why they were not viable when given the initializer list itself as 9992 // an argument. 9993 Candidates.NoteCandidates( 9994 PartialDiagnosticAt( 9995 Kind.getLocation(), 9996 PDiag(diag::err_deduced_class_template_ctor_ambiguous) 9997 << TemplateName), 9998 *this, OCD_AmbiguousCandidates, Inits); 9999 return QualType(); 10000 10001 case OR_No_Viable_Function: { 10002 CXXRecordDecl *Primary = 10003 cast<ClassTemplateDecl>(Template)->getTemplatedDecl(); 10004 bool Complete = 10005 isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary)); 10006 Candidates.NoteCandidates( 10007 PartialDiagnosticAt( 10008 Kind.getLocation(), 10009 PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable 10010 : diag::err_deduced_class_template_incomplete) 10011 << TemplateName << !Guides.empty()), 10012 *this, OCD_AllCandidates, Inits); 10013 return QualType(); 10014 } 10015 10016 case OR_Deleted: { 10017 // FIXME: There are no tests for this diagnostic, and it doesn't seem 10018 // like we ever get here; attempts to trigger this seem to yield a 10019 // generic c'all to deleted function' diagnostic instead. 10020 Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted) 10021 << TemplateName; 10022 NoteDeletedFunction(Best->Function); 10023 return QualType(); 10024 } 10025 10026 case OR_Success: 10027 // C++ [over.match.list]p1: 10028 // In copy-list-initialization, if an explicit constructor is chosen, the 10029 // initialization is ill-formed. 10030 if (Kind.isCopyInit() && ListInit && 10031 cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) { 10032 bool IsDeductionGuide = !Best->Function->isImplicit(); 10033 Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit) 10034 << TemplateName << IsDeductionGuide; 10035 Diag(Best->Function->getLocation(), 10036 diag::note_explicit_ctor_deduction_guide_here) 10037 << IsDeductionGuide; 10038 return QualType(); 10039 } 10040 10041 // Make sure we didn't select an unusable deduction guide, and mark it 10042 // as referenced. 10043 DiagnoseUseOfDecl(Best->FoundDecl, Kind.getLocation()); 10044 MarkFunctionReferenced(Kind.getLocation(), Best->Function); 10045 break; 10046 } 10047 10048 // C++ [dcl.type.class.deduct]p1: 10049 // The placeholder is replaced by the return type of the function selected 10050 // by overload resolution for class template deduction. 10051 QualType DeducedType = 10052 SubstAutoType(TSInfo->getType(), Best->Function->getReturnType()); 10053 Diag(TSInfo->getTypeLoc().getBeginLoc(), 10054 diag::warn_cxx14_compat_class_template_argument_deduction) 10055 << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType; 10056 10057 // Warn if CTAD was used on a type that does not have any user-defined 10058 // deduction guides. 10059 if (!FoundDeductionGuide) { 10060 Diag(TSInfo->getTypeLoc().getBeginLoc(), 10061 diag::warn_ctad_maybe_unsupported) 10062 << TemplateName; 10063 Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported); 10064 } 10065 10066 return DeducedType; 10067 } 10068