1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for initializers. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/DeclObjC.h" 15 #include "clang/AST/ExprCXX.h" 16 #include "clang/AST/ExprObjC.h" 17 #include "clang/AST/ExprOpenMP.h" 18 #include "clang/AST/TypeLoc.h" 19 #include "clang/Basic/CharInfo.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/Sema/Designator.h" 22 #include "clang/Sema/Initialization.h" 23 #include "clang/Sema/Lookup.h" 24 #include "clang/Sema/SemaInternal.h" 25 #include "llvm/ADT/APInt.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/raw_ostream.h" 29 30 using namespace clang; 31 32 //===----------------------------------------------------------------------===// 33 // Sema Initialization Checking 34 //===----------------------------------------------------------------------===// 35 36 /// Check whether T is compatible with a wide character type (wchar_t, 37 /// char16_t or char32_t). 38 static bool IsWideCharCompatible(QualType T, ASTContext &Context) { 39 if (Context.typesAreCompatible(Context.getWideCharType(), T)) 40 return true; 41 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) { 42 return Context.typesAreCompatible(Context.Char16Ty, T) || 43 Context.typesAreCompatible(Context.Char32Ty, T); 44 } 45 return false; 46 } 47 48 enum StringInitFailureKind { 49 SIF_None, 50 SIF_NarrowStringIntoWideChar, 51 SIF_WideStringIntoChar, 52 SIF_IncompatWideStringIntoWideChar, 53 SIF_UTF8StringIntoPlainChar, 54 SIF_PlainStringIntoUTF8Char, 55 SIF_Other 56 }; 57 58 /// Check whether the array of type AT can be initialized by the Init 59 /// expression by means of string initialization. Returns SIF_None if so, 60 /// otherwise returns a StringInitFailureKind that describes why the 61 /// initialization would not work. 62 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT, 63 ASTContext &Context) { 64 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT)) 65 return SIF_Other; 66 67 // See if this is a string literal or @encode. 68 Init = Init->IgnoreParens(); 69 70 // Handle @encode, which is a narrow string. 71 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType()) 72 return SIF_None; 73 74 // Otherwise we can only handle string literals. 75 StringLiteral *SL = dyn_cast<StringLiteral>(Init); 76 if (!SL) 77 return SIF_Other; 78 79 const QualType ElemTy = 80 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType(); 81 82 switch (SL->getKind()) { 83 case StringLiteral::UTF8: 84 // char8_t array can be initialized with a UTF-8 string. 85 if (ElemTy->isChar8Type()) 86 return SIF_None; 87 LLVM_FALLTHROUGH; 88 case StringLiteral::Ascii: 89 // char array can be initialized with a narrow string. 90 // Only allow char x[] = "foo"; not char x[] = L"foo"; 91 if (ElemTy->isCharType()) 92 return (SL->getKind() == StringLiteral::UTF8 && 93 Context.getLangOpts().Char8) 94 ? SIF_UTF8StringIntoPlainChar 95 : SIF_None; 96 if (ElemTy->isChar8Type()) 97 return SIF_PlainStringIntoUTF8Char; 98 if (IsWideCharCompatible(ElemTy, Context)) 99 return SIF_NarrowStringIntoWideChar; 100 return SIF_Other; 101 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15: 102 // "An array with element type compatible with a qualified or unqualified 103 // version of wchar_t, char16_t, or char32_t may be initialized by a wide 104 // string literal with the corresponding encoding prefix (L, u, or U, 105 // respectively), optionally enclosed in braces. 106 case StringLiteral::UTF16: 107 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy)) 108 return SIF_None; 109 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 110 return SIF_WideStringIntoChar; 111 if (IsWideCharCompatible(ElemTy, Context)) 112 return SIF_IncompatWideStringIntoWideChar; 113 return SIF_Other; 114 case StringLiteral::UTF32: 115 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy)) 116 return SIF_None; 117 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 118 return SIF_WideStringIntoChar; 119 if (IsWideCharCompatible(ElemTy, Context)) 120 return SIF_IncompatWideStringIntoWideChar; 121 return SIF_Other; 122 case StringLiteral::Wide: 123 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy)) 124 return SIF_None; 125 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 126 return SIF_WideStringIntoChar; 127 if (IsWideCharCompatible(ElemTy, Context)) 128 return SIF_IncompatWideStringIntoWideChar; 129 return SIF_Other; 130 } 131 132 llvm_unreachable("missed a StringLiteral kind?"); 133 } 134 135 static StringInitFailureKind IsStringInit(Expr *init, QualType declType, 136 ASTContext &Context) { 137 const ArrayType *arrayType = Context.getAsArrayType(declType); 138 if (!arrayType) 139 return SIF_Other; 140 return IsStringInit(init, arrayType, Context); 141 } 142 143 /// Update the type of a string literal, including any surrounding parentheses, 144 /// to match the type of the object which it is initializing. 145 static void updateStringLiteralType(Expr *E, QualType Ty) { 146 while (true) { 147 E->setType(Ty); 148 E->setValueKind(VK_RValue); 149 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) { 150 break; 151 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 152 E = PE->getSubExpr(); 153 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 154 assert(UO->getOpcode() == UO_Extension); 155 E = UO->getSubExpr(); 156 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) { 157 E = GSE->getResultExpr(); 158 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) { 159 E = CE->getChosenSubExpr(); 160 } else { 161 llvm_unreachable("unexpected expr in string literal init"); 162 } 163 } 164 } 165 166 /// Fix a compound literal initializing an array so it's correctly marked 167 /// as an rvalue. 168 static void updateGNUCompoundLiteralRValue(Expr *E) { 169 while (true) { 170 E->setValueKind(VK_RValue); 171 if (isa<CompoundLiteralExpr>(E)) { 172 break; 173 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 174 E = PE->getSubExpr(); 175 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 176 assert(UO->getOpcode() == UO_Extension); 177 E = UO->getSubExpr(); 178 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) { 179 E = GSE->getResultExpr(); 180 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) { 181 E = CE->getChosenSubExpr(); 182 } else { 183 llvm_unreachable("unexpected expr in array compound literal init"); 184 } 185 } 186 } 187 188 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT, 189 Sema &S) { 190 // Get the length of the string as parsed. 191 auto *ConstantArrayTy = 192 cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe()); 193 uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue(); 194 195 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { 196 // C99 6.7.8p14. We have an array of character type with unknown size 197 // being initialized to a string literal. 198 llvm::APInt ConstVal(32, StrLength); 199 // Return a new array type (C99 6.7.8p22). 200 DeclT = S.Context.getConstantArrayType(IAT->getElementType(), 201 ConstVal, nullptr, 202 ArrayType::Normal, 0); 203 updateStringLiteralType(Str, DeclT); 204 return; 205 } 206 207 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT); 208 209 // We have an array of character type with known size. However, 210 // the size may be smaller or larger than the string we are initializing. 211 // FIXME: Avoid truncation for 64-bit length strings. 212 if (S.getLangOpts().CPlusPlus) { 213 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) { 214 // For Pascal strings it's OK to strip off the terminating null character, 215 // so the example below is valid: 216 // 217 // unsigned char a[2] = "\pa"; 218 if (SL->isPascal()) 219 StrLength--; 220 } 221 222 // [dcl.init.string]p2 223 if (StrLength > CAT->getSize().getZExtValue()) 224 S.Diag(Str->getBeginLoc(), 225 diag::err_initializer_string_for_char_array_too_long) 226 << Str->getSourceRange(); 227 } else { 228 // C99 6.7.8p14. 229 if (StrLength-1 > CAT->getSize().getZExtValue()) 230 S.Diag(Str->getBeginLoc(), 231 diag::ext_initializer_string_for_char_array_too_long) 232 << Str->getSourceRange(); 233 } 234 235 // Set the type to the actual size that we are initializing. If we have 236 // something like: 237 // char x[1] = "foo"; 238 // then this will set the string literal's type to char[1]. 239 updateStringLiteralType(Str, DeclT); 240 } 241 242 //===----------------------------------------------------------------------===// 243 // Semantic checking for initializer lists. 244 //===----------------------------------------------------------------------===// 245 246 namespace { 247 248 /// Semantic checking for initializer lists. 249 /// 250 /// The InitListChecker class contains a set of routines that each 251 /// handle the initialization of a certain kind of entity, e.g., 252 /// arrays, vectors, struct/union types, scalars, etc. The 253 /// InitListChecker itself performs a recursive walk of the subobject 254 /// structure of the type to be initialized, while stepping through 255 /// the initializer list one element at a time. The IList and Index 256 /// parameters to each of the Check* routines contain the active 257 /// (syntactic) initializer list and the index into that initializer 258 /// list that represents the current initializer. Each routine is 259 /// responsible for moving that Index forward as it consumes elements. 260 /// 261 /// Each Check* routine also has a StructuredList/StructuredIndex 262 /// arguments, which contains the current "structured" (semantic) 263 /// initializer list and the index into that initializer list where we 264 /// are copying initializers as we map them over to the semantic 265 /// list. Once we have completed our recursive walk of the subobject 266 /// structure, we will have constructed a full semantic initializer 267 /// list. 268 /// 269 /// C99 designators cause changes in the initializer list traversal, 270 /// because they make the initialization "jump" into a specific 271 /// subobject and then continue the initialization from that 272 /// point. CheckDesignatedInitializer() recursively steps into the 273 /// designated subobject and manages backing out the recursion to 274 /// initialize the subobjects after the one designated. 275 /// 276 /// If an initializer list contains any designators, we build a placeholder 277 /// structured list even in 'verify only' mode, so that we can track which 278 /// elements need 'empty' initializtion. 279 class InitListChecker { 280 Sema &SemaRef; 281 bool hadError = false; 282 bool VerifyOnly; // No diagnostics. 283 bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode. 284 bool InOverloadResolution; 285 InitListExpr *FullyStructuredList = nullptr; 286 NoInitExpr *DummyExpr = nullptr; 287 288 NoInitExpr *getDummyInit() { 289 if (!DummyExpr) 290 DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy); 291 return DummyExpr; 292 } 293 294 void CheckImplicitInitList(const InitializedEntity &Entity, 295 InitListExpr *ParentIList, QualType T, 296 unsigned &Index, InitListExpr *StructuredList, 297 unsigned &StructuredIndex); 298 void CheckExplicitInitList(const InitializedEntity &Entity, 299 InitListExpr *IList, QualType &T, 300 InitListExpr *StructuredList, 301 bool TopLevelObject = false); 302 void CheckListElementTypes(const InitializedEntity &Entity, 303 InitListExpr *IList, QualType &DeclType, 304 bool SubobjectIsDesignatorContext, 305 unsigned &Index, 306 InitListExpr *StructuredList, 307 unsigned &StructuredIndex, 308 bool TopLevelObject = false); 309 void CheckSubElementType(const InitializedEntity &Entity, 310 InitListExpr *IList, QualType ElemType, 311 unsigned &Index, 312 InitListExpr *StructuredList, 313 unsigned &StructuredIndex); 314 void CheckComplexType(const InitializedEntity &Entity, 315 InitListExpr *IList, QualType DeclType, 316 unsigned &Index, 317 InitListExpr *StructuredList, 318 unsigned &StructuredIndex); 319 void CheckScalarType(const InitializedEntity &Entity, 320 InitListExpr *IList, QualType DeclType, 321 unsigned &Index, 322 InitListExpr *StructuredList, 323 unsigned &StructuredIndex); 324 void CheckReferenceType(const InitializedEntity &Entity, 325 InitListExpr *IList, QualType DeclType, 326 unsigned &Index, 327 InitListExpr *StructuredList, 328 unsigned &StructuredIndex); 329 void CheckVectorType(const InitializedEntity &Entity, 330 InitListExpr *IList, QualType DeclType, unsigned &Index, 331 InitListExpr *StructuredList, 332 unsigned &StructuredIndex); 333 void CheckStructUnionTypes(const InitializedEntity &Entity, 334 InitListExpr *IList, QualType DeclType, 335 CXXRecordDecl::base_class_range Bases, 336 RecordDecl::field_iterator Field, 337 bool SubobjectIsDesignatorContext, unsigned &Index, 338 InitListExpr *StructuredList, 339 unsigned &StructuredIndex, 340 bool TopLevelObject = false); 341 void CheckArrayType(const InitializedEntity &Entity, 342 InitListExpr *IList, QualType &DeclType, 343 llvm::APSInt elementIndex, 344 bool SubobjectIsDesignatorContext, unsigned &Index, 345 InitListExpr *StructuredList, 346 unsigned &StructuredIndex); 347 bool CheckDesignatedInitializer(const InitializedEntity &Entity, 348 InitListExpr *IList, DesignatedInitExpr *DIE, 349 unsigned DesigIdx, 350 QualType &CurrentObjectType, 351 RecordDecl::field_iterator *NextField, 352 llvm::APSInt *NextElementIndex, 353 unsigned &Index, 354 InitListExpr *StructuredList, 355 unsigned &StructuredIndex, 356 bool FinishSubobjectInit, 357 bool TopLevelObject); 358 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 359 QualType CurrentObjectType, 360 InitListExpr *StructuredList, 361 unsigned StructuredIndex, 362 SourceRange InitRange, 363 bool IsFullyOverwritten = false); 364 void UpdateStructuredListElement(InitListExpr *StructuredList, 365 unsigned &StructuredIndex, 366 Expr *expr); 367 InitListExpr *createInitListExpr(QualType CurrentObjectType, 368 SourceRange InitRange, 369 unsigned ExpectedNumInits); 370 int numArrayElements(QualType DeclType); 371 int numStructUnionElements(QualType DeclType); 372 373 ExprResult PerformEmptyInit(SourceLocation Loc, 374 const InitializedEntity &Entity); 375 376 /// Diagnose that OldInit (or part thereof) has been overridden by NewInit. 377 void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange, 378 bool FullyOverwritten = true) { 379 // Overriding an initializer via a designator is valid with C99 designated 380 // initializers, but ill-formed with C++20 designated initializers. 381 unsigned DiagID = SemaRef.getLangOpts().CPlusPlus 382 ? diag::ext_initializer_overrides 383 : diag::warn_initializer_overrides; 384 385 if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) { 386 // In overload resolution, we have to strictly enforce the rules, and so 387 // don't allow any overriding of prior initializers. This matters for a 388 // case such as: 389 // 390 // union U { int a, b; }; 391 // struct S { int a, b; }; 392 // void f(U), f(S); 393 // 394 // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For 395 // consistency, we disallow all overriding of prior initializers in 396 // overload resolution, not only overriding of union members. 397 hadError = true; 398 } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) { 399 // If we'll be keeping around the old initializer but overwriting part of 400 // the object it initialized, and that object is not trivially 401 // destructible, this can leak. Don't allow that, not even as an 402 // extension. 403 // 404 // FIXME: It might be reasonable to allow this in cases where the part of 405 // the initializer that we're overriding has trivial destruction. 406 DiagID = diag::err_initializer_overrides_destructed; 407 } else if (!OldInit->getSourceRange().isValid()) { 408 // We need to check on source range validity because the previous 409 // initializer does not have to be an explicit initializer. e.g., 410 // 411 // struct P { int a, b; }; 412 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 }; 413 // 414 // There is an overwrite taking place because the first braced initializer 415 // list "{ .a = 2 }" already provides value for .p.b (which is zero). 416 // 417 // Such overwrites are harmless, so we don't diagnose them. (Note that in 418 // C++, this cannot be reached unless we've already seen and diagnosed a 419 // different conformance issue, such as a mixture of designated and 420 // non-designated initializers or a multi-level designator.) 421 return; 422 } 423 424 if (!VerifyOnly) { 425 SemaRef.Diag(NewInitRange.getBegin(), DiagID) 426 << NewInitRange << FullyOverwritten << OldInit->getType(); 427 SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer) 428 << (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten) 429 << OldInit->getSourceRange(); 430 } 431 } 432 433 // Explanation on the "FillWithNoInit" mode: 434 // 435 // Assume we have the following definitions (Case#1): 436 // struct P { char x[6][6]; } xp = { .x[1] = "bar" }; 437 // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' }; 438 // 439 // l.lp.x[1][0..1] should not be filled with implicit initializers because the 440 // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf". 441 // 442 // But if we have (Case#2): 443 // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } }; 444 // 445 // l.lp.x[1][0..1] are implicitly initialized and do not use values from the 446 // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0". 447 // 448 // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes" 449 // in the InitListExpr, the "holes" in Case#1 are filled not with empty 450 // initializers but with special "NoInitExpr" place holders, which tells the 451 // CodeGen not to generate any initializers for these parts. 452 void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base, 453 const InitializedEntity &ParentEntity, 454 InitListExpr *ILE, bool &RequiresSecondPass, 455 bool FillWithNoInit); 456 void FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 457 const InitializedEntity &ParentEntity, 458 InitListExpr *ILE, bool &RequiresSecondPass, 459 bool FillWithNoInit = false); 460 void FillInEmptyInitializations(const InitializedEntity &Entity, 461 InitListExpr *ILE, bool &RequiresSecondPass, 462 InitListExpr *OuterILE, unsigned OuterIndex, 463 bool FillWithNoInit = false); 464 bool CheckFlexibleArrayInit(const InitializedEntity &Entity, 465 Expr *InitExpr, FieldDecl *Field, 466 bool TopLevelObject); 467 void CheckEmptyInitializable(const InitializedEntity &Entity, 468 SourceLocation Loc); 469 470 public: 471 InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL, 472 QualType &T, bool VerifyOnly, bool TreatUnavailableAsInvalid, 473 bool InOverloadResolution = false); 474 bool HadError() { return hadError; } 475 476 // Retrieves the fully-structured initializer list used for 477 // semantic analysis and code generation. 478 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; } 479 }; 480 481 } // end anonymous namespace 482 483 ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc, 484 const InitializedEntity &Entity) { 485 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, 486 true); 487 MultiExprArg SubInit; 488 Expr *InitExpr; 489 InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc); 490 491 // C++ [dcl.init.aggr]p7: 492 // If there are fewer initializer-clauses in the list than there are 493 // members in the aggregate, then each member not explicitly initialized 494 // ... 495 bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 && 496 Entity.getType()->getBaseElementTypeUnsafe()->isRecordType(); 497 if (EmptyInitList) { 498 // C++1y / DR1070: 499 // shall be initialized [...] from an empty initializer list. 500 // 501 // We apply the resolution of this DR to C++11 but not C++98, since C++98 502 // does not have useful semantics for initialization from an init list. 503 // We treat this as copy-initialization, because aggregate initialization 504 // always performs copy-initialization on its elements. 505 // 506 // Only do this if we're initializing a class type, to avoid filling in 507 // the initializer list where possible. 508 InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context) 509 InitListExpr(SemaRef.Context, Loc, None, Loc); 510 InitExpr->setType(SemaRef.Context.VoidTy); 511 SubInit = InitExpr; 512 Kind = InitializationKind::CreateCopy(Loc, Loc); 513 } else { 514 // C++03: 515 // shall be value-initialized. 516 } 517 518 InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit); 519 // libstdc++4.6 marks the vector default constructor as explicit in 520 // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case. 521 // stlport does so too. Look for std::__debug for libstdc++, and for 522 // std:: for stlport. This is effectively a compiler-side implementation of 523 // LWG2193. 524 if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() == 525 InitializationSequence::FK_ExplicitConstructor) { 526 OverloadCandidateSet::iterator Best; 527 OverloadingResult O = 528 InitSeq.getFailedCandidateSet() 529 .BestViableFunction(SemaRef, Kind.getLocation(), Best); 530 (void)O; 531 assert(O == OR_Success && "Inconsistent overload resolution"); 532 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 533 CXXRecordDecl *R = CtorDecl->getParent(); 534 535 if (CtorDecl->getMinRequiredArguments() == 0 && 536 CtorDecl->isExplicit() && R->getDeclName() && 537 SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) { 538 bool IsInStd = false; 539 for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext()); 540 ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) { 541 if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND)) 542 IsInStd = true; 543 } 544 545 if (IsInStd && llvm::StringSwitch<bool>(R->getName()) 546 .Cases("basic_string", "deque", "forward_list", true) 547 .Cases("list", "map", "multimap", "multiset", true) 548 .Cases("priority_queue", "queue", "set", "stack", true) 549 .Cases("unordered_map", "unordered_set", "vector", true) 550 .Default(false)) { 551 InitSeq.InitializeFrom( 552 SemaRef, Entity, 553 InitializationKind::CreateValue(Loc, Loc, Loc, true), 554 MultiExprArg(), /*TopLevelOfInitList=*/false, 555 TreatUnavailableAsInvalid); 556 // Emit a warning for this. System header warnings aren't shown 557 // by default, but people working on system headers should see it. 558 if (!VerifyOnly) { 559 SemaRef.Diag(CtorDecl->getLocation(), 560 diag::warn_invalid_initializer_from_system_header); 561 if (Entity.getKind() == InitializedEntity::EK_Member) 562 SemaRef.Diag(Entity.getDecl()->getLocation(), 563 diag::note_used_in_initialization_here); 564 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) 565 SemaRef.Diag(Loc, diag::note_used_in_initialization_here); 566 } 567 } 568 } 569 } 570 if (!InitSeq) { 571 if (!VerifyOnly) { 572 InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit); 573 if (Entity.getKind() == InitializedEntity::EK_Member) 574 SemaRef.Diag(Entity.getDecl()->getLocation(), 575 diag::note_in_omitted_aggregate_initializer) 576 << /*field*/1 << Entity.getDecl(); 577 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) { 578 bool IsTrailingArrayNewMember = 579 Entity.getParent() && 580 Entity.getParent()->isVariableLengthArrayNew(); 581 SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer) 582 << (IsTrailingArrayNewMember ? 2 : /*array element*/0) 583 << Entity.getElementIndex(); 584 } 585 } 586 hadError = true; 587 return ExprError(); 588 } 589 590 return VerifyOnly ? ExprResult() 591 : InitSeq.Perform(SemaRef, Entity, Kind, SubInit); 592 } 593 594 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity, 595 SourceLocation Loc) { 596 // If we're building a fully-structured list, we'll check this at the end 597 // once we know which elements are actually initialized. Otherwise, we know 598 // that there are no designators so we can just check now. 599 if (FullyStructuredList) 600 return; 601 PerformEmptyInit(Loc, Entity); 602 } 603 604 void InitListChecker::FillInEmptyInitForBase( 605 unsigned Init, const CXXBaseSpecifier &Base, 606 const InitializedEntity &ParentEntity, InitListExpr *ILE, 607 bool &RequiresSecondPass, bool FillWithNoInit) { 608 InitializedEntity BaseEntity = InitializedEntity::InitializeBase( 609 SemaRef.Context, &Base, false, &ParentEntity); 610 611 if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) { 612 ExprResult BaseInit = FillWithNoInit 613 ? new (SemaRef.Context) NoInitExpr(Base.getType()) 614 : PerformEmptyInit(ILE->getEndLoc(), BaseEntity); 615 if (BaseInit.isInvalid()) { 616 hadError = true; 617 return; 618 } 619 620 if (!VerifyOnly) { 621 assert(Init < ILE->getNumInits() && "should have been expanded"); 622 ILE->setInit(Init, BaseInit.getAs<Expr>()); 623 } 624 } else if (InitListExpr *InnerILE = 625 dyn_cast<InitListExpr>(ILE->getInit(Init))) { 626 FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass, 627 ILE, Init, FillWithNoInit); 628 } else if (DesignatedInitUpdateExpr *InnerDIUE = 629 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { 630 FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(), 631 RequiresSecondPass, ILE, Init, 632 /*FillWithNoInit =*/true); 633 } 634 } 635 636 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 637 const InitializedEntity &ParentEntity, 638 InitListExpr *ILE, 639 bool &RequiresSecondPass, 640 bool FillWithNoInit) { 641 SourceLocation Loc = ILE->getEndLoc(); 642 unsigned NumInits = ILE->getNumInits(); 643 InitializedEntity MemberEntity 644 = InitializedEntity::InitializeMember(Field, &ParentEntity); 645 646 if (Init >= NumInits || !ILE->getInit(Init)) { 647 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) 648 if (!RType->getDecl()->isUnion()) 649 assert((Init < NumInits || VerifyOnly) && 650 "This ILE should have been expanded"); 651 652 if (FillWithNoInit) { 653 assert(!VerifyOnly && "should not fill with no-init in verify-only mode"); 654 Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType()); 655 if (Init < NumInits) 656 ILE->setInit(Init, Filler); 657 else 658 ILE->updateInit(SemaRef.Context, Init, Filler); 659 return; 660 } 661 // C++1y [dcl.init.aggr]p7: 662 // If there are fewer initializer-clauses in the list than there are 663 // members in the aggregate, then each member not explicitly initialized 664 // shall be initialized from its brace-or-equal-initializer [...] 665 if (Field->hasInClassInitializer()) { 666 if (VerifyOnly) 667 return; 668 669 ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field); 670 if (DIE.isInvalid()) { 671 hadError = true; 672 return; 673 } 674 SemaRef.checkInitializerLifetime(MemberEntity, DIE.get()); 675 if (Init < NumInits) 676 ILE->setInit(Init, DIE.get()); 677 else { 678 ILE->updateInit(SemaRef.Context, Init, DIE.get()); 679 RequiresSecondPass = true; 680 } 681 return; 682 } 683 684 if (Field->getType()->isReferenceType()) { 685 if (!VerifyOnly) { 686 // C++ [dcl.init.aggr]p9: 687 // If an incomplete or empty initializer-list leaves a 688 // member of reference type uninitialized, the program is 689 // ill-formed. 690 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized) 691 << Field->getType() 692 << ILE->getSyntacticForm()->getSourceRange(); 693 SemaRef.Diag(Field->getLocation(), 694 diag::note_uninit_reference_member); 695 } 696 hadError = true; 697 return; 698 } 699 700 ExprResult MemberInit = PerformEmptyInit(Loc, MemberEntity); 701 if (MemberInit.isInvalid()) { 702 hadError = true; 703 return; 704 } 705 706 if (hadError || VerifyOnly) { 707 // Do nothing 708 } else if (Init < NumInits) { 709 ILE->setInit(Init, MemberInit.getAs<Expr>()); 710 } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) { 711 // Empty initialization requires a constructor call, so 712 // extend the initializer list to include the constructor 713 // call and make a note that we'll need to take another pass 714 // through the initializer list. 715 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>()); 716 RequiresSecondPass = true; 717 } 718 } else if (InitListExpr *InnerILE 719 = dyn_cast<InitListExpr>(ILE->getInit(Init))) { 720 FillInEmptyInitializations(MemberEntity, InnerILE, 721 RequiresSecondPass, ILE, Init, FillWithNoInit); 722 } else if (DesignatedInitUpdateExpr *InnerDIUE = 723 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { 724 FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(), 725 RequiresSecondPass, ILE, Init, 726 /*FillWithNoInit =*/true); 727 } 728 } 729 730 /// Recursively replaces NULL values within the given initializer list 731 /// with expressions that perform value-initialization of the 732 /// appropriate type, and finish off the InitListExpr formation. 733 void 734 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity, 735 InitListExpr *ILE, 736 bool &RequiresSecondPass, 737 InitListExpr *OuterILE, 738 unsigned OuterIndex, 739 bool FillWithNoInit) { 740 assert((ILE->getType() != SemaRef.Context.VoidTy) && 741 "Should not have void type"); 742 743 // We don't need to do any checks when just filling NoInitExprs; that can't 744 // fail. 745 if (FillWithNoInit && VerifyOnly) 746 return; 747 748 // If this is a nested initializer list, we might have changed its contents 749 // (and therefore some of its properties, such as instantiation-dependence) 750 // while filling it in. Inform the outer initializer list so that its state 751 // can be updated to match. 752 // FIXME: We should fully build the inner initializers before constructing 753 // the outer InitListExpr instead of mutating AST nodes after they have 754 // been used as subexpressions of other nodes. 755 struct UpdateOuterILEWithUpdatedInit { 756 InitListExpr *Outer; 757 unsigned OuterIndex; 758 ~UpdateOuterILEWithUpdatedInit() { 759 if (Outer) 760 Outer->setInit(OuterIndex, Outer->getInit(OuterIndex)); 761 } 762 } UpdateOuterRAII = {OuterILE, OuterIndex}; 763 764 // A transparent ILE is not performing aggregate initialization and should 765 // not be filled in. 766 if (ILE->isTransparent()) 767 return; 768 769 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 770 const RecordDecl *RDecl = RType->getDecl(); 771 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion()) 772 FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(), 773 Entity, ILE, RequiresSecondPass, FillWithNoInit); 774 else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) && 775 cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) { 776 for (auto *Field : RDecl->fields()) { 777 if (Field->hasInClassInitializer()) { 778 FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass, 779 FillWithNoInit); 780 break; 781 } 782 } 783 } else { 784 // The fields beyond ILE->getNumInits() are default initialized, so in 785 // order to leave them uninitialized, the ILE is expanded and the extra 786 // fields are then filled with NoInitExpr. 787 unsigned NumElems = numStructUnionElements(ILE->getType()); 788 if (RDecl->hasFlexibleArrayMember()) 789 ++NumElems; 790 if (!VerifyOnly && ILE->getNumInits() < NumElems) 791 ILE->resizeInits(SemaRef.Context, NumElems); 792 793 unsigned Init = 0; 794 795 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) { 796 for (auto &Base : CXXRD->bases()) { 797 if (hadError) 798 return; 799 800 FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass, 801 FillWithNoInit); 802 ++Init; 803 } 804 } 805 806 for (auto *Field : RDecl->fields()) { 807 if (Field->isUnnamedBitfield()) 808 continue; 809 810 if (hadError) 811 return; 812 813 FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass, 814 FillWithNoInit); 815 if (hadError) 816 return; 817 818 ++Init; 819 820 // Only look at the first initialization of a union. 821 if (RDecl->isUnion()) 822 break; 823 } 824 } 825 826 return; 827 } 828 829 QualType ElementType; 830 831 InitializedEntity ElementEntity = Entity; 832 unsigned NumInits = ILE->getNumInits(); 833 unsigned NumElements = NumInits; 834 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) { 835 ElementType = AType->getElementType(); 836 if (const auto *CAType = dyn_cast<ConstantArrayType>(AType)) 837 NumElements = CAType->getSize().getZExtValue(); 838 // For an array new with an unknown bound, ask for one additional element 839 // in order to populate the array filler. 840 if (Entity.isVariableLengthArrayNew()) 841 ++NumElements; 842 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 843 0, Entity); 844 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) { 845 ElementType = VType->getElementType(); 846 NumElements = VType->getNumElements(); 847 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 848 0, Entity); 849 } else 850 ElementType = ILE->getType(); 851 852 bool SkipEmptyInitChecks = false; 853 for (unsigned Init = 0; Init != NumElements; ++Init) { 854 if (hadError) 855 return; 856 857 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement || 858 ElementEntity.getKind() == InitializedEntity::EK_VectorElement) 859 ElementEntity.setElementIndex(Init); 860 861 if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks)) 862 return; 863 864 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr); 865 if (!InitExpr && Init < NumInits && ILE->hasArrayFiller()) 866 ILE->setInit(Init, ILE->getArrayFiller()); 867 else if (!InitExpr && !ILE->hasArrayFiller()) { 868 // In VerifyOnly mode, there's no point performing empty initialization 869 // more than once. 870 if (SkipEmptyInitChecks) 871 continue; 872 873 Expr *Filler = nullptr; 874 875 if (FillWithNoInit) 876 Filler = new (SemaRef.Context) NoInitExpr(ElementType); 877 else { 878 ExprResult ElementInit = 879 PerformEmptyInit(ILE->getEndLoc(), ElementEntity); 880 if (ElementInit.isInvalid()) { 881 hadError = true; 882 return; 883 } 884 885 Filler = ElementInit.getAs<Expr>(); 886 } 887 888 if (hadError) { 889 // Do nothing 890 } else if (VerifyOnly) { 891 SkipEmptyInitChecks = true; 892 } else if (Init < NumInits) { 893 // For arrays, just set the expression used for value-initialization 894 // of the "holes" in the array. 895 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) 896 ILE->setArrayFiller(Filler); 897 else 898 ILE->setInit(Init, Filler); 899 } else { 900 // For arrays, just set the expression used for value-initialization 901 // of the rest of elements and exit. 902 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) { 903 ILE->setArrayFiller(Filler); 904 return; 905 } 906 907 if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) { 908 // Empty initialization requires a constructor call, so 909 // extend the initializer list to include the constructor 910 // call and make a note that we'll need to take another pass 911 // through the initializer list. 912 ILE->updateInit(SemaRef.Context, Init, Filler); 913 RequiresSecondPass = true; 914 } 915 } 916 } else if (InitListExpr *InnerILE 917 = dyn_cast_or_null<InitListExpr>(InitExpr)) { 918 FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass, 919 ILE, Init, FillWithNoInit); 920 } else if (DesignatedInitUpdateExpr *InnerDIUE = 921 dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) { 922 FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(), 923 RequiresSecondPass, ILE, Init, 924 /*FillWithNoInit =*/true); 925 } 926 } 927 } 928 929 static bool hasAnyDesignatedInits(const InitListExpr *IL) { 930 for (const Stmt *Init : *IL) 931 if (Init && isa<DesignatedInitExpr>(Init)) 932 return true; 933 return false; 934 } 935 936 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity, 937 InitListExpr *IL, QualType &T, bool VerifyOnly, 938 bool TreatUnavailableAsInvalid, 939 bool InOverloadResolution) 940 : SemaRef(S), VerifyOnly(VerifyOnly), 941 TreatUnavailableAsInvalid(TreatUnavailableAsInvalid), 942 InOverloadResolution(InOverloadResolution) { 943 if (!VerifyOnly || hasAnyDesignatedInits(IL)) { 944 FullyStructuredList = 945 createInitListExpr(T, IL->getSourceRange(), IL->getNumInits()); 946 947 // FIXME: Check that IL isn't already the semantic form of some other 948 // InitListExpr. If it is, we'd create a broken AST. 949 if (!VerifyOnly) 950 FullyStructuredList->setSyntacticForm(IL); 951 } 952 953 CheckExplicitInitList(Entity, IL, T, FullyStructuredList, 954 /*TopLevelObject=*/true); 955 956 if (!hadError && FullyStructuredList) { 957 bool RequiresSecondPass = false; 958 FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass, 959 /*OuterILE=*/nullptr, /*OuterIndex=*/0); 960 if (RequiresSecondPass && !hadError) 961 FillInEmptyInitializations(Entity, FullyStructuredList, 962 RequiresSecondPass, nullptr, 0); 963 } 964 } 965 966 int InitListChecker::numArrayElements(QualType DeclType) { 967 // FIXME: use a proper constant 968 int maxElements = 0x7FFFFFFF; 969 if (const ConstantArrayType *CAT = 970 SemaRef.Context.getAsConstantArrayType(DeclType)) { 971 maxElements = static_cast<int>(CAT->getSize().getZExtValue()); 972 } 973 return maxElements; 974 } 975 976 int InitListChecker::numStructUnionElements(QualType DeclType) { 977 RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl(); 978 int InitializableMembers = 0; 979 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl)) 980 InitializableMembers += CXXRD->getNumBases(); 981 for (const auto *Field : structDecl->fields()) 982 if (!Field->isUnnamedBitfield()) 983 ++InitializableMembers; 984 985 if (structDecl->isUnion()) 986 return std::min(InitializableMembers, 1); 987 return InitializableMembers - structDecl->hasFlexibleArrayMember(); 988 } 989 990 /// Determine whether Entity is an entity for which it is idiomatic to elide 991 /// the braces in aggregate initialization. 992 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) { 993 // Recursive initialization of the one and only field within an aggregate 994 // class is considered idiomatic. This case arises in particular for 995 // initialization of std::array, where the C++ standard suggests the idiom of 996 // 997 // std::array<T, N> arr = {1, 2, 3}; 998 // 999 // (where std::array is an aggregate struct containing a single array field. 1000 1001 // FIXME: Should aggregate initialization of a struct with a single 1002 // base class and no members also suppress the warning? 1003 if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent()) 1004 return false; 1005 1006 auto *ParentRD = 1007 Entity.getParent()->getType()->castAs<RecordType>()->getDecl(); 1008 if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD)) 1009 if (CXXRD->getNumBases()) 1010 return false; 1011 1012 auto FieldIt = ParentRD->field_begin(); 1013 assert(FieldIt != ParentRD->field_end() && 1014 "no fields but have initializer for member?"); 1015 return ++FieldIt == ParentRD->field_end(); 1016 } 1017 1018 /// Check whether the range of the initializer \p ParentIList from element 1019 /// \p Index onwards can be used to initialize an object of type \p T. Update 1020 /// \p Index to indicate how many elements of the list were consumed. 1021 /// 1022 /// This also fills in \p StructuredList, from element \p StructuredIndex 1023 /// onwards, with the fully-braced, desugared form of the initialization. 1024 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity, 1025 InitListExpr *ParentIList, 1026 QualType T, unsigned &Index, 1027 InitListExpr *StructuredList, 1028 unsigned &StructuredIndex) { 1029 int maxElements = 0; 1030 1031 if (T->isArrayType()) 1032 maxElements = numArrayElements(T); 1033 else if (T->isRecordType()) 1034 maxElements = numStructUnionElements(T); 1035 else if (T->isVectorType()) 1036 maxElements = T->castAs<VectorType>()->getNumElements(); 1037 else 1038 llvm_unreachable("CheckImplicitInitList(): Illegal type"); 1039 1040 if (maxElements == 0) { 1041 if (!VerifyOnly) 1042 SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(), 1043 diag::err_implicit_empty_initializer); 1044 ++Index; 1045 hadError = true; 1046 return; 1047 } 1048 1049 // Build a structured initializer list corresponding to this subobject. 1050 InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit( 1051 ParentIList, Index, T, StructuredList, StructuredIndex, 1052 SourceRange(ParentIList->getInit(Index)->getBeginLoc(), 1053 ParentIList->getSourceRange().getEnd())); 1054 unsigned StructuredSubobjectInitIndex = 0; 1055 1056 // Check the element types and build the structural subobject. 1057 unsigned StartIndex = Index; 1058 CheckListElementTypes(Entity, ParentIList, T, 1059 /*SubobjectIsDesignatorContext=*/false, Index, 1060 StructuredSubobjectInitList, 1061 StructuredSubobjectInitIndex); 1062 1063 if (StructuredSubobjectInitList) { 1064 StructuredSubobjectInitList->setType(T); 1065 1066 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1); 1067 // Update the structured sub-object initializer so that it's ending 1068 // range corresponds with the end of the last initializer it used. 1069 if (EndIndex < ParentIList->getNumInits() && 1070 ParentIList->getInit(EndIndex)) { 1071 SourceLocation EndLoc 1072 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd(); 1073 StructuredSubobjectInitList->setRBraceLoc(EndLoc); 1074 } 1075 1076 // Complain about missing braces. 1077 if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) && 1078 !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) && 1079 !isIdiomaticBraceElisionEntity(Entity)) { 1080 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), 1081 diag::warn_missing_braces) 1082 << StructuredSubobjectInitList->getSourceRange() 1083 << FixItHint::CreateInsertion( 1084 StructuredSubobjectInitList->getBeginLoc(), "{") 1085 << FixItHint::CreateInsertion( 1086 SemaRef.getLocForEndOfToken( 1087 StructuredSubobjectInitList->getEndLoc()), 1088 "}"); 1089 } 1090 1091 // Warn if this type won't be an aggregate in future versions of C++. 1092 auto *CXXRD = T->getAsCXXRecordDecl(); 1093 if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) { 1094 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), 1095 diag::warn_cxx2a_compat_aggregate_init_with_ctors) 1096 << StructuredSubobjectInitList->getSourceRange() << T; 1097 } 1098 } 1099 } 1100 1101 /// Warn that \p Entity was of scalar type and was initialized by a 1102 /// single-element braced initializer list. 1103 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity, 1104 SourceRange Braces) { 1105 // Don't warn during template instantiation. If the initialization was 1106 // non-dependent, we warned during the initial parse; otherwise, the 1107 // type might not be scalar in some uses of the template. 1108 if (S.inTemplateInstantiation()) 1109 return; 1110 1111 unsigned DiagID = 0; 1112 1113 switch (Entity.getKind()) { 1114 case InitializedEntity::EK_VectorElement: 1115 case InitializedEntity::EK_ComplexElement: 1116 case InitializedEntity::EK_ArrayElement: 1117 case InitializedEntity::EK_Parameter: 1118 case InitializedEntity::EK_Parameter_CF_Audited: 1119 case InitializedEntity::EK_Result: 1120 // Extra braces here are suspicious. 1121 DiagID = diag::warn_braces_around_scalar_init; 1122 break; 1123 1124 case InitializedEntity::EK_Member: 1125 // Warn on aggregate initialization but not on ctor init list or 1126 // default member initializer. 1127 if (Entity.getParent()) 1128 DiagID = diag::warn_braces_around_scalar_init; 1129 break; 1130 1131 case InitializedEntity::EK_Variable: 1132 case InitializedEntity::EK_LambdaCapture: 1133 // No warning, might be direct-list-initialization. 1134 // FIXME: Should we warn for copy-list-initialization in these cases? 1135 break; 1136 1137 case InitializedEntity::EK_New: 1138 case InitializedEntity::EK_Temporary: 1139 case InitializedEntity::EK_CompoundLiteralInit: 1140 // No warning, braces are part of the syntax of the underlying construct. 1141 break; 1142 1143 case InitializedEntity::EK_RelatedResult: 1144 // No warning, we already warned when initializing the result. 1145 break; 1146 1147 case InitializedEntity::EK_Exception: 1148 case InitializedEntity::EK_Base: 1149 case InitializedEntity::EK_Delegating: 1150 case InitializedEntity::EK_BlockElement: 1151 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 1152 case InitializedEntity::EK_Binding: 1153 case InitializedEntity::EK_StmtExprResult: 1154 llvm_unreachable("unexpected braced scalar init"); 1155 } 1156 1157 if (DiagID) { 1158 S.Diag(Braces.getBegin(), DiagID) 1159 << Braces 1160 << FixItHint::CreateRemoval(Braces.getBegin()) 1161 << FixItHint::CreateRemoval(Braces.getEnd()); 1162 } 1163 } 1164 1165 /// Check whether the initializer \p IList (that was written with explicit 1166 /// braces) can be used to initialize an object of type \p T. 1167 /// 1168 /// This also fills in \p StructuredList with the fully-braced, desugared 1169 /// form of the initialization. 1170 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity, 1171 InitListExpr *IList, QualType &T, 1172 InitListExpr *StructuredList, 1173 bool TopLevelObject) { 1174 unsigned Index = 0, StructuredIndex = 0; 1175 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true, 1176 Index, StructuredList, StructuredIndex, TopLevelObject); 1177 if (StructuredList) { 1178 QualType ExprTy = T; 1179 if (!ExprTy->isArrayType()) 1180 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context); 1181 if (!VerifyOnly) 1182 IList->setType(ExprTy); 1183 StructuredList->setType(ExprTy); 1184 } 1185 if (hadError) 1186 return; 1187 1188 // Don't complain for incomplete types, since we'll get an error elsewhere. 1189 if (Index < IList->getNumInits() && !T->isIncompleteType()) { 1190 // We have leftover initializers 1191 bool ExtraInitsIsError = SemaRef.getLangOpts().CPlusPlus || 1192 (SemaRef.getLangOpts().OpenCL && T->isVectorType()); 1193 hadError = ExtraInitsIsError; 1194 if (VerifyOnly) { 1195 return; 1196 } else if (StructuredIndex == 1 && 1197 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) == 1198 SIF_None) { 1199 unsigned DK = 1200 ExtraInitsIsError 1201 ? diag::err_excess_initializers_in_char_array_initializer 1202 : diag::ext_excess_initializers_in_char_array_initializer; 1203 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1204 << IList->getInit(Index)->getSourceRange(); 1205 } else { 1206 int initKind = T->isArrayType() ? 0 : 1207 T->isVectorType() ? 1 : 1208 T->isScalarType() ? 2 : 1209 T->isUnionType() ? 3 : 1210 4; 1211 1212 unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers 1213 : diag::ext_excess_initializers; 1214 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1215 << initKind << IList->getInit(Index)->getSourceRange(); 1216 } 1217 } 1218 1219 if (!VerifyOnly) { 1220 if (T->isScalarType() && IList->getNumInits() == 1 && 1221 !isa<InitListExpr>(IList->getInit(0))) 1222 warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange()); 1223 1224 // Warn if this is a class type that won't be an aggregate in future 1225 // versions of C++. 1226 auto *CXXRD = T->getAsCXXRecordDecl(); 1227 if (CXXRD && CXXRD->hasUserDeclaredConstructor()) { 1228 // Don't warn if there's an equivalent default constructor that would be 1229 // used instead. 1230 bool HasEquivCtor = false; 1231 if (IList->getNumInits() == 0) { 1232 auto *CD = SemaRef.LookupDefaultConstructor(CXXRD); 1233 HasEquivCtor = CD && !CD->isDeleted(); 1234 } 1235 1236 if (!HasEquivCtor) { 1237 SemaRef.Diag(IList->getBeginLoc(), 1238 diag::warn_cxx2a_compat_aggregate_init_with_ctors) 1239 << IList->getSourceRange() << T; 1240 } 1241 } 1242 } 1243 } 1244 1245 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity, 1246 InitListExpr *IList, 1247 QualType &DeclType, 1248 bool SubobjectIsDesignatorContext, 1249 unsigned &Index, 1250 InitListExpr *StructuredList, 1251 unsigned &StructuredIndex, 1252 bool TopLevelObject) { 1253 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) { 1254 // Explicitly braced initializer for complex type can be real+imaginary 1255 // parts. 1256 CheckComplexType(Entity, IList, DeclType, Index, 1257 StructuredList, StructuredIndex); 1258 } else if (DeclType->isScalarType()) { 1259 CheckScalarType(Entity, IList, DeclType, Index, 1260 StructuredList, StructuredIndex); 1261 } else if (DeclType->isVectorType()) { 1262 CheckVectorType(Entity, IList, DeclType, Index, 1263 StructuredList, StructuredIndex); 1264 } else if (DeclType->isRecordType()) { 1265 assert(DeclType->isAggregateType() && 1266 "non-aggregate records should be handed in CheckSubElementType"); 1267 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); 1268 auto Bases = 1269 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), 1270 CXXRecordDecl::base_class_iterator()); 1271 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1272 Bases = CXXRD->bases(); 1273 CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(), 1274 SubobjectIsDesignatorContext, Index, StructuredList, 1275 StructuredIndex, TopLevelObject); 1276 } else if (DeclType->isArrayType()) { 1277 llvm::APSInt Zero( 1278 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()), 1279 false); 1280 CheckArrayType(Entity, IList, DeclType, Zero, 1281 SubobjectIsDesignatorContext, Index, 1282 StructuredList, StructuredIndex); 1283 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) { 1284 // This type is invalid, issue a diagnostic. 1285 ++Index; 1286 if (!VerifyOnly) 1287 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) 1288 << DeclType; 1289 hadError = true; 1290 } else if (DeclType->isReferenceType()) { 1291 CheckReferenceType(Entity, IList, DeclType, Index, 1292 StructuredList, StructuredIndex); 1293 } else if (DeclType->isObjCObjectType()) { 1294 if (!VerifyOnly) 1295 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType; 1296 hadError = true; 1297 } else if (DeclType->isOCLIntelSubgroupAVCType()) { 1298 // Checks for scalar type are sufficient for these types too. 1299 CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 1300 StructuredIndex); 1301 } else { 1302 if (!VerifyOnly) 1303 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) 1304 << DeclType; 1305 hadError = true; 1306 } 1307 } 1308 1309 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity, 1310 InitListExpr *IList, 1311 QualType ElemType, 1312 unsigned &Index, 1313 InitListExpr *StructuredList, 1314 unsigned &StructuredIndex) { 1315 Expr *expr = IList->getInit(Index); 1316 1317 if (ElemType->isReferenceType()) 1318 return CheckReferenceType(Entity, IList, ElemType, Index, 1319 StructuredList, StructuredIndex); 1320 1321 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) { 1322 if (SubInitList->getNumInits() == 1 && 1323 IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) == 1324 SIF_None) { 1325 // FIXME: It would be more faithful and no less correct to include an 1326 // InitListExpr in the semantic form of the initializer list in this case. 1327 expr = SubInitList->getInit(0); 1328 } 1329 // Nested aggregate initialization and C++ initialization are handled later. 1330 } else if (isa<ImplicitValueInitExpr>(expr)) { 1331 // This happens during template instantiation when we see an InitListExpr 1332 // that we've already checked once. 1333 assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) && 1334 "found implicit initialization for the wrong type"); 1335 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1336 ++Index; 1337 return; 1338 } 1339 1340 if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(expr)) { 1341 // C++ [dcl.init.aggr]p2: 1342 // Each member is copy-initialized from the corresponding 1343 // initializer-clause. 1344 1345 // FIXME: Better EqualLoc? 1346 InitializationKind Kind = 1347 InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation()); 1348 1349 // Vector elements can be initialized from other vectors in which case 1350 // we need initialization entity with a type of a vector (and not a vector 1351 // element!) initializing multiple vector elements. 1352 auto TmpEntity = 1353 (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType()) 1354 ? InitializedEntity::InitializeTemporary(ElemType) 1355 : Entity; 1356 1357 InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr, 1358 /*TopLevelOfInitList*/ true); 1359 1360 // C++14 [dcl.init.aggr]p13: 1361 // If the assignment-expression can initialize a member, the member is 1362 // initialized. Otherwise [...] brace elision is assumed 1363 // 1364 // Brace elision is never performed if the element is not an 1365 // assignment-expression. 1366 if (Seq || isa<InitListExpr>(expr)) { 1367 if (!VerifyOnly) { 1368 ExprResult Result = Seq.Perform(SemaRef, TmpEntity, Kind, expr); 1369 if (Result.isInvalid()) 1370 hadError = true; 1371 1372 UpdateStructuredListElement(StructuredList, StructuredIndex, 1373 Result.getAs<Expr>()); 1374 } else if (!Seq) { 1375 hadError = true; 1376 } else if (StructuredList) { 1377 UpdateStructuredListElement(StructuredList, StructuredIndex, 1378 getDummyInit()); 1379 } 1380 ++Index; 1381 return; 1382 } 1383 1384 // Fall through for subaggregate initialization 1385 } else if (ElemType->isScalarType() || ElemType->isAtomicType()) { 1386 // FIXME: Need to handle atomic aggregate types with implicit init lists. 1387 return CheckScalarType(Entity, IList, ElemType, Index, 1388 StructuredList, StructuredIndex); 1389 } else if (const ArrayType *arrayType = 1390 SemaRef.Context.getAsArrayType(ElemType)) { 1391 // arrayType can be incomplete if we're initializing a flexible 1392 // array member. There's nothing we can do with the completed 1393 // type here, though. 1394 1395 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) { 1396 // FIXME: Should we do this checking in verify-only mode? 1397 if (!VerifyOnly) 1398 CheckStringInit(expr, ElemType, arrayType, SemaRef); 1399 if (StructuredList) 1400 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1401 ++Index; 1402 return; 1403 } 1404 1405 // Fall through for subaggregate initialization. 1406 1407 } else { 1408 assert((ElemType->isRecordType() || ElemType->isVectorType() || 1409 ElemType->isOpenCLSpecificType()) && "Unexpected type"); 1410 1411 // C99 6.7.8p13: 1412 // 1413 // The initializer for a structure or union object that has 1414 // automatic storage duration shall be either an initializer 1415 // list as described below, or a single expression that has 1416 // compatible structure or union type. In the latter case, the 1417 // initial value of the object, including unnamed members, is 1418 // that of the expression. 1419 ExprResult ExprRes = expr; 1420 if (SemaRef.CheckSingleAssignmentConstraints( 1421 ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) { 1422 if (ExprRes.isInvalid()) 1423 hadError = true; 1424 else { 1425 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get()); 1426 if (ExprRes.isInvalid()) 1427 hadError = true; 1428 } 1429 UpdateStructuredListElement(StructuredList, StructuredIndex, 1430 ExprRes.getAs<Expr>()); 1431 ++Index; 1432 return; 1433 } 1434 ExprRes.get(); 1435 // Fall through for subaggregate initialization 1436 } 1437 1438 // C++ [dcl.init.aggr]p12: 1439 // 1440 // [...] Otherwise, if the member is itself a non-empty 1441 // subaggregate, brace elision is assumed and the initializer is 1442 // considered for the initialization of the first member of 1443 // the subaggregate. 1444 // OpenCL vector initializer is handled elsewhere. 1445 if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) || 1446 ElemType->isAggregateType()) { 1447 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList, 1448 StructuredIndex); 1449 ++StructuredIndex; 1450 } else { 1451 if (!VerifyOnly) { 1452 // We cannot initialize this element, so let PerformCopyInitialization 1453 // produce the appropriate diagnostic. We already checked that this 1454 // initialization will fail. 1455 ExprResult Copy = 1456 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr, 1457 /*TopLevelOfInitList=*/true); 1458 (void)Copy; 1459 assert(Copy.isInvalid() && 1460 "expected non-aggregate initialization to fail"); 1461 } 1462 hadError = true; 1463 ++Index; 1464 ++StructuredIndex; 1465 } 1466 } 1467 1468 void InitListChecker::CheckComplexType(const InitializedEntity &Entity, 1469 InitListExpr *IList, QualType DeclType, 1470 unsigned &Index, 1471 InitListExpr *StructuredList, 1472 unsigned &StructuredIndex) { 1473 assert(Index == 0 && "Index in explicit init list must be zero"); 1474 1475 // As an extension, clang supports complex initializers, which initialize 1476 // a complex number component-wise. When an explicit initializer list for 1477 // a complex number contains two two initializers, this extension kicks in: 1478 // it exepcts the initializer list to contain two elements convertible to 1479 // the element type of the complex type. The first element initializes 1480 // the real part, and the second element intitializes the imaginary part. 1481 1482 if (IList->getNumInits() != 2) 1483 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 1484 StructuredIndex); 1485 1486 // This is an extension in C. (The builtin _Complex type does not exist 1487 // in the C++ standard.) 1488 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly) 1489 SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init) 1490 << IList->getSourceRange(); 1491 1492 // Initialize the complex number. 1493 QualType elementType = DeclType->castAs<ComplexType>()->getElementType(); 1494 InitializedEntity ElementEntity = 1495 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1496 1497 for (unsigned i = 0; i < 2; ++i) { 1498 ElementEntity.setElementIndex(Index); 1499 CheckSubElementType(ElementEntity, IList, elementType, Index, 1500 StructuredList, StructuredIndex); 1501 } 1502 } 1503 1504 void InitListChecker::CheckScalarType(const InitializedEntity &Entity, 1505 InitListExpr *IList, QualType DeclType, 1506 unsigned &Index, 1507 InitListExpr *StructuredList, 1508 unsigned &StructuredIndex) { 1509 if (Index >= IList->getNumInits()) { 1510 if (!VerifyOnly) 1511 SemaRef.Diag(IList->getBeginLoc(), 1512 SemaRef.getLangOpts().CPlusPlus11 1513 ? diag::warn_cxx98_compat_empty_scalar_initializer 1514 : diag::err_empty_scalar_initializer) 1515 << IList->getSourceRange(); 1516 hadError = !SemaRef.getLangOpts().CPlusPlus11; 1517 ++Index; 1518 ++StructuredIndex; 1519 return; 1520 } 1521 1522 Expr *expr = IList->getInit(Index); 1523 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) { 1524 // FIXME: This is invalid, and accepting it causes overload resolution 1525 // to pick the wrong overload in some corner cases. 1526 if (!VerifyOnly) 1527 SemaRef.Diag(SubIList->getBeginLoc(), 1528 diag::ext_many_braces_around_scalar_init) 1529 << SubIList->getSourceRange(); 1530 1531 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList, 1532 StructuredIndex); 1533 return; 1534 } else if (isa<DesignatedInitExpr>(expr)) { 1535 if (!VerifyOnly) 1536 SemaRef.Diag(expr->getBeginLoc(), diag::err_designator_for_scalar_init) 1537 << DeclType << expr->getSourceRange(); 1538 hadError = true; 1539 ++Index; 1540 ++StructuredIndex; 1541 return; 1542 } 1543 1544 ExprResult Result; 1545 if (VerifyOnly) { 1546 if (SemaRef.CanPerformCopyInitialization(Entity, expr)) 1547 Result = getDummyInit(); 1548 else 1549 Result = ExprError(); 1550 } else { 1551 Result = 1552 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, 1553 /*TopLevelOfInitList=*/true); 1554 } 1555 1556 Expr *ResultExpr = nullptr; 1557 1558 if (Result.isInvalid()) 1559 hadError = true; // types weren't compatible. 1560 else { 1561 ResultExpr = Result.getAs<Expr>(); 1562 1563 if (ResultExpr != expr && !VerifyOnly) { 1564 // The type was promoted, update initializer list. 1565 // FIXME: Why are we updating the syntactic init list? 1566 IList->setInit(Index, ResultExpr); 1567 } 1568 } 1569 if (hadError) 1570 ++StructuredIndex; 1571 else 1572 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); 1573 ++Index; 1574 } 1575 1576 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity, 1577 InitListExpr *IList, QualType DeclType, 1578 unsigned &Index, 1579 InitListExpr *StructuredList, 1580 unsigned &StructuredIndex) { 1581 if (Index >= IList->getNumInits()) { 1582 // FIXME: It would be wonderful if we could point at the actual member. In 1583 // general, it would be useful to pass location information down the stack, 1584 // so that we know the location (or decl) of the "current object" being 1585 // initialized. 1586 if (!VerifyOnly) 1587 SemaRef.Diag(IList->getBeginLoc(), 1588 diag::err_init_reference_member_uninitialized) 1589 << DeclType << IList->getSourceRange(); 1590 hadError = true; 1591 ++Index; 1592 ++StructuredIndex; 1593 return; 1594 } 1595 1596 Expr *expr = IList->getInit(Index); 1597 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) { 1598 if (!VerifyOnly) 1599 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list) 1600 << DeclType << IList->getSourceRange(); 1601 hadError = true; 1602 ++Index; 1603 ++StructuredIndex; 1604 return; 1605 } 1606 1607 ExprResult Result; 1608 if (VerifyOnly) { 1609 if (SemaRef.CanPerformCopyInitialization(Entity,expr)) 1610 Result = getDummyInit(); 1611 else 1612 Result = ExprError(); 1613 } else { 1614 Result = 1615 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, 1616 /*TopLevelOfInitList=*/true); 1617 } 1618 1619 if (Result.isInvalid()) 1620 hadError = true; 1621 1622 expr = Result.getAs<Expr>(); 1623 // FIXME: Why are we updating the syntactic init list? 1624 if (!VerifyOnly) 1625 IList->setInit(Index, expr); 1626 1627 if (hadError) 1628 ++StructuredIndex; 1629 else 1630 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1631 ++Index; 1632 } 1633 1634 void InitListChecker::CheckVectorType(const InitializedEntity &Entity, 1635 InitListExpr *IList, QualType DeclType, 1636 unsigned &Index, 1637 InitListExpr *StructuredList, 1638 unsigned &StructuredIndex) { 1639 const VectorType *VT = DeclType->castAs<VectorType>(); 1640 unsigned maxElements = VT->getNumElements(); 1641 unsigned numEltsInit = 0; 1642 QualType elementType = VT->getElementType(); 1643 1644 if (Index >= IList->getNumInits()) { 1645 // Make sure the element type can be value-initialized. 1646 CheckEmptyInitializable( 1647 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 1648 IList->getEndLoc()); 1649 return; 1650 } 1651 1652 if (!SemaRef.getLangOpts().OpenCL) { 1653 // If the initializing element is a vector, try to copy-initialize 1654 // instead of breaking it apart (which is doomed to failure anyway). 1655 Expr *Init = IList->getInit(Index); 1656 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) { 1657 ExprResult Result; 1658 if (VerifyOnly) { 1659 if (SemaRef.CanPerformCopyInitialization(Entity, Init)) 1660 Result = getDummyInit(); 1661 else 1662 Result = ExprError(); 1663 } else { 1664 Result = 1665 SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init, 1666 /*TopLevelOfInitList=*/true); 1667 } 1668 1669 Expr *ResultExpr = nullptr; 1670 if (Result.isInvalid()) 1671 hadError = true; // types weren't compatible. 1672 else { 1673 ResultExpr = Result.getAs<Expr>(); 1674 1675 if (ResultExpr != Init && !VerifyOnly) { 1676 // The type was promoted, update initializer list. 1677 // FIXME: Why are we updating the syntactic init list? 1678 IList->setInit(Index, ResultExpr); 1679 } 1680 } 1681 if (hadError) 1682 ++StructuredIndex; 1683 else 1684 UpdateStructuredListElement(StructuredList, StructuredIndex, 1685 ResultExpr); 1686 ++Index; 1687 return; 1688 } 1689 1690 InitializedEntity ElementEntity = 1691 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1692 1693 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) { 1694 // Don't attempt to go past the end of the init list 1695 if (Index >= IList->getNumInits()) { 1696 CheckEmptyInitializable(ElementEntity, IList->getEndLoc()); 1697 break; 1698 } 1699 1700 ElementEntity.setElementIndex(Index); 1701 CheckSubElementType(ElementEntity, IList, elementType, Index, 1702 StructuredList, StructuredIndex); 1703 } 1704 1705 if (VerifyOnly) 1706 return; 1707 1708 bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian(); 1709 const VectorType *T = Entity.getType()->castAs<VectorType>(); 1710 if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector || 1711 T->getVectorKind() == VectorType::NeonPolyVector)) { 1712 // The ability to use vector initializer lists is a GNU vector extension 1713 // and is unrelated to the NEON intrinsics in arm_neon.h. On little 1714 // endian machines it works fine, however on big endian machines it 1715 // exhibits surprising behaviour: 1716 // 1717 // uint32x2_t x = {42, 64}; 1718 // return vget_lane_u32(x, 0); // Will return 64. 1719 // 1720 // Because of this, explicitly call out that it is non-portable. 1721 // 1722 SemaRef.Diag(IList->getBeginLoc(), 1723 diag::warn_neon_vector_initializer_non_portable); 1724 1725 const char *typeCode; 1726 unsigned typeSize = SemaRef.Context.getTypeSize(elementType); 1727 1728 if (elementType->isFloatingType()) 1729 typeCode = "f"; 1730 else if (elementType->isSignedIntegerType()) 1731 typeCode = "s"; 1732 else if (elementType->isUnsignedIntegerType()) 1733 typeCode = "u"; 1734 else 1735 llvm_unreachable("Invalid element type!"); 1736 1737 SemaRef.Diag(IList->getBeginLoc(), 1738 SemaRef.Context.getTypeSize(VT) > 64 1739 ? diag::note_neon_vector_initializer_non_portable_q 1740 : diag::note_neon_vector_initializer_non_portable) 1741 << typeCode << typeSize; 1742 } 1743 1744 return; 1745 } 1746 1747 InitializedEntity ElementEntity = 1748 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1749 1750 // OpenCL initializers allows vectors to be constructed from vectors. 1751 for (unsigned i = 0; i < maxElements; ++i) { 1752 // Don't attempt to go past the end of the init list 1753 if (Index >= IList->getNumInits()) 1754 break; 1755 1756 ElementEntity.setElementIndex(Index); 1757 1758 QualType IType = IList->getInit(Index)->getType(); 1759 if (!IType->isVectorType()) { 1760 CheckSubElementType(ElementEntity, IList, elementType, Index, 1761 StructuredList, StructuredIndex); 1762 ++numEltsInit; 1763 } else { 1764 QualType VecType; 1765 const VectorType *IVT = IType->castAs<VectorType>(); 1766 unsigned numIElts = IVT->getNumElements(); 1767 1768 if (IType->isExtVectorType()) 1769 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts); 1770 else 1771 VecType = SemaRef.Context.getVectorType(elementType, numIElts, 1772 IVT->getVectorKind()); 1773 CheckSubElementType(ElementEntity, IList, VecType, Index, 1774 StructuredList, StructuredIndex); 1775 numEltsInit += numIElts; 1776 } 1777 } 1778 1779 // OpenCL requires all elements to be initialized. 1780 if (numEltsInit != maxElements) { 1781 if (!VerifyOnly) 1782 SemaRef.Diag(IList->getBeginLoc(), 1783 diag::err_vector_incorrect_num_initializers) 1784 << (numEltsInit < maxElements) << maxElements << numEltsInit; 1785 hadError = true; 1786 } 1787 } 1788 1789 /// Check if the type of a class element has an accessible destructor, and marks 1790 /// it referenced. Returns true if we shouldn't form a reference to the 1791 /// destructor. 1792 /// 1793 /// Aggregate initialization requires a class element's destructor be 1794 /// accessible per 11.6.1 [dcl.init.aggr]: 1795 /// 1796 /// The destructor for each element of class type is potentially invoked 1797 /// (15.4 [class.dtor]) from the context where the aggregate initialization 1798 /// occurs. 1799 static bool checkDestructorReference(QualType ElementType, SourceLocation Loc, 1800 Sema &SemaRef) { 1801 auto *CXXRD = ElementType->getAsCXXRecordDecl(); 1802 if (!CXXRD) 1803 return false; 1804 1805 CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD); 1806 SemaRef.CheckDestructorAccess(Loc, Destructor, 1807 SemaRef.PDiag(diag::err_access_dtor_temp) 1808 << ElementType); 1809 SemaRef.MarkFunctionReferenced(Loc, Destructor); 1810 return SemaRef.DiagnoseUseOfDecl(Destructor, Loc); 1811 } 1812 1813 void InitListChecker::CheckArrayType(const InitializedEntity &Entity, 1814 InitListExpr *IList, QualType &DeclType, 1815 llvm::APSInt elementIndex, 1816 bool SubobjectIsDesignatorContext, 1817 unsigned &Index, 1818 InitListExpr *StructuredList, 1819 unsigned &StructuredIndex) { 1820 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType); 1821 1822 if (!VerifyOnly) { 1823 if (checkDestructorReference(arrayType->getElementType(), 1824 IList->getEndLoc(), SemaRef)) { 1825 hadError = true; 1826 return; 1827 } 1828 } 1829 1830 // Check for the special-case of initializing an array with a string. 1831 if (Index < IList->getNumInits()) { 1832 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) == 1833 SIF_None) { 1834 // We place the string literal directly into the resulting 1835 // initializer list. This is the only place where the structure 1836 // of the structured initializer list doesn't match exactly, 1837 // because doing so would involve allocating one character 1838 // constant for each string. 1839 // FIXME: Should we do these checks in verify-only mode too? 1840 if (!VerifyOnly) 1841 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef); 1842 if (StructuredList) { 1843 UpdateStructuredListElement(StructuredList, StructuredIndex, 1844 IList->getInit(Index)); 1845 StructuredList->resizeInits(SemaRef.Context, StructuredIndex); 1846 } 1847 ++Index; 1848 return; 1849 } 1850 } 1851 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) { 1852 // Check for VLAs; in standard C it would be possible to check this 1853 // earlier, but I don't know where clang accepts VLAs (gcc accepts 1854 // them in all sorts of strange places). 1855 if (!VerifyOnly) 1856 SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(), 1857 diag::err_variable_object_no_init) 1858 << VAT->getSizeExpr()->getSourceRange(); 1859 hadError = true; 1860 ++Index; 1861 ++StructuredIndex; 1862 return; 1863 } 1864 1865 // We might know the maximum number of elements in advance. 1866 llvm::APSInt maxElements(elementIndex.getBitWidth(), 1867 elementIndex.isUnsigned()); 1868 bool maxElementsKnown = false; 1869 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) { 1870 maxElements = CAT->getSize(); 1871 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth()); 1872 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1873 maxElementsKnown = true; 1874 } 1875 1876 QualType elementType = arrayType->getElementType(); 1877 while (Index < IList->getNumInits()) { 1878 Expr *Init = IList->getInit(Index); 1879 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 1880 // If we're not the subobject that matches up with the '{' for 1881 // the designator, we shouldn't be handling the 1882 // designator. Return immediately. 1883 if (!SubobjectIsDesignatorContext) 1884 return; 1885 1886 // Handle this designated initializer. elementIndex will be 1887 // updated to be the next array element we'll initialize. 1888 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 1889 DeclType, nullptr, &elementIndex, Index, 1890 StructuredList, StructuredIndex, true, 1891 false)) { 1892 hadError = true; 1893 continue; 1894 } 1895 1896 if (elementIndex.getBitWidth() > maxElements.getBitWidth()) 1897 maxElements = maxElements.extend(elementIndex.getBitWidth()); 1898 else if (elementIndex.getBitWidth() < maxElements.getBitWidth()) 1899 elementIndex = elementIndex.extend(maxElements.getBitWidth()); 1900 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1901 1902 // If the array is of incomplete type, keep track of the number of 1903 // elements in the initializer. 1904 if (!maxElementsKnown && elementIndex > maxElements) 1905 maxElements = elementIndex; 1906 1907 continue; 1908 } 1909 1910 // If we know the maximum number of elements, and we've already 1911 // hit it, stop consuming elements in the initializer list. 1912 if (maxElementsKnown && elementIndex == maxElements) 1913 break; 1914 1915 InitializedEntity ElementEntity = 1916 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex, 1917 Entity); 1918 // Check this element. 1919 CheckSubElementType(ElementEntity, IList, elementType, Index, 1920 StructuredList, StructuredIndex); 1921 ++elementIndex; 1922 1923 // If the array is of incomplete type, keep track of the number of 1924 // elements in the initializer. 1925 if (!maxElementsKnown && elementIndex > maxElements) 1926 maxElements = elementIndex; 1927 } 1928 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) { 1929 // If this is an incomplete array type, the actual type needs to 1930 // be calculated here. 1931 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned()); 1932 if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) { 1933 // Sizing an array implicitly to zero is not allowed by ISO C, 1934 // but is supported by GNU. 1935 SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size); 1936 } 1937 1938 DeclType = SemaRef.Context.getConstantArrayType( 1939 elementType, maxElements, nullptr, ArrayType::Normal, 0); 1940 } 1941 if (!hadError) { 1942 // If there are any members of the array that get value-initialized, check 1943 // that is possible. That happens if we know the bound and don't have 1944 // enough elements, or if we're performing an array new with an unknown 1945 // bound. 1946 if ((maxElementsKnown && elementIndex < maxElements) || 1947 Entity.isVariableLengthArrayNew()) 1948 CheckEmptyInitializable( 1949 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 1950 IList->getEndLoc()); 1951 } 1952 } 1953 1954 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity, 1955 Expr *InitExpr, 1956 FieldDecl *Field, 1957 bool TopLevelObject) { 1958 // Handle GNU flexible array initializers. 1959 unsigned FlexArrayDiag; 1960 if (isa<InitListExpr>(InitExpr) && 1961 cast<InitListExpr>(InitExpr)->getNumInits() == 0) { 1962 // Empty flexible array init always allowed as an extension 1963 FlexArrayDiag = diag::ext_flexible_array_init; 1964 } else if (SemaRef.getLangOpts().CPlusPlus) { 1965 // Disallow flexible array init in C++; it is not required for gcc 1966 // compatibility, and it needs work to IRGen correctly in general. 1967 FlexArrayDiag = diag::err_flexible_array_init; 1968 } else if (!TopLevelObject) { 1969 // Disallow flexible array init on non-top-level object 1970 FlexArrayDiag = diag::err_flexible_array_init; 1971 } else if (Entity.getKind() != InitializedEntity::EK_Variable) { 1972 // Disallow flexible array init on anything which is not a variable. 1973 FlexArrayDiag = diag::err_flexible_array_init; 1974 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) { 1975 // Disallow flexible array init on local variables. 1976 FlexArrayDiag = diag::err_flexible_array_init; 1977 } else { 1978 // Allow other cases. 1979 FlexArrayDiag = diag::ext_flexible_array_init; 1980 } 1981 1982 if (!VerifyOnly) { 1983 SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag) 1984 << InitExpr->getBeginLoc(); 1985 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 1986 << Field; 1987 } 1988 1989 return FlexArrayDiag != diag::ext_flexible_array_init; 1990 } 1991 1992 void InitListChecker::CheckStructUnionTypes( 1993 const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType, 1994 CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field, 1995 bool SubobjectIsDesignatorContext, unsigned &Index, 1996 InitListExpr *StructuredList, unsigned &StructuredIndex, 1997 bool TopLevelObject) { 1998 RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl(); 1999 2000 // If the record is invalid, some of it's members are invalid. To avoid 2001 // confusion, we forgo checking the intializer for the entire record. 2002 if (structDecl->isInvalidDecl()) { 2003 // Assume it was supposed to consume a single initializer. 2004 ++Index; 2005 hadError = true; 2006 return; 2007 } 2008 2009 if (DeclType->isUnionType() && IList->getNumInits() == 0) { 2010 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); 2011 2012 if (!VerifyOnly) 2013 for (FieldDecl *FD : RD->fields()) { 2014 QualType ET = SemaRef.Context.getBaseElementType(FD->getType()); 2015 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { 2016 hadError = true; 2017 return; 2018 } 2019 } 2020 2021 // If there's a default initializer, use it. 2022 if (isa<CXXRecordDecl>(RD) && 2023 cast<CXXRecordDecl>(RD)->hasInClassInitializer()) { 2024 if (!StructuredList) 2025 return; 2026 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 2027 Field != FieldEnd; ++Field) { 2028 if (Field->hasInClassInitializer()) { 2029 StructuredList->setInitializedFieldInUnion(*Field); 2030 // FIXME: Actually build a CXXDefaultInitExpr? 2031 return; 2032 } 2033 } 2034 } 2035 2036 // Value-initialize the first member of the union that isn't an unnamed 2037 // bitfield. 2038 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 2039 Field != FieldEnd; ++Field) { 2040 if (!Field->isUnnamedBitfield()) { 2041 CheckEmptyInitializable( 2042 InitializedEntity::InitializeMember(*Field, &Entity), 2043 IList->getEndLoc()); 2044 if (StructuredList) 2045 StructuredList->setInitializedFieldInUnion(*Field); 2046 break; 2047 } 2048 } 2049 return; 2050 } 2051 2052 bool InitializedSomething = false; 2053 2054 // If we have any base classes, they are initialized prior to the fields. 2055 for (auto &Base : Bases) { 2056 Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr; 2057 2058 // Designated inits always initialize fields, so if we see one, all 2059 // remaining base classes have no explicit initializer. 2060 if (Init && isa<DesignatedInitExpr>(Init)) 2061 Init = nullptr; 2062 2063 SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc(); 2064 InitializedEntity BaseEntity = InitializedEntity::InitializeBase( 2065 SemaRef.Context, &Base, false, &Entity); 2066 if (Init) { 2067 CheckSubElementType(BaseEntity, IList, Base.getType(), Index, 2068 StructuredList, StructuredIndex); 2069 InitializedSomething = true; 2070 } else { 2071 CheckEmptyInitializable(BaseEntity, InitLoc); 2072 } 2073 2074 if (!VerifyOnly) 2075 if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) { 2076 hadError = true; 2077 return; 2078 } 2079 } 2080 2081 // If structDecl is a forward declaration, this loop won't do 2082 // anything except look at designated initializers; That's okay, 2083 // because an error should get printed out elsewhere. It might be 2084 // worthwhile to skip over the rest of the initializer, though. 2085 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); 2086 RecordDecl::field_iterator FieldEnd = RD->field_end(); 2087 bool CheckForMissingFields = 2088 !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()); 2089 bool HasDesignatedInit = false; 2090 2091 while (Index < IList->getNumInits()) { 2092 Expr *Init = IList->getInit(Index); 2093 SourceLocation InitLoc = Init->getBeginLoc(); 2094 2095 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 2096 // If we're not the subobject that matches up with the '{' for 2097 // the designator, we shouldn't be handling the 2098 // designator. Return immediately. 2099 if (!SubobjectIsDesignatorContext) 2100 return; 2101 2102 HasDesignatedInit = true; 2103 2104 // Handle this designated initializer. Field will be updated to 2105 // the next field that we'll be initializing. 2106 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 2107 DeclType, &Field, nullptr, Index, 2108 StructuredList, StructuredIndex, 2109 true, TopLevelObject)) 2110 hadError = true; 2111 else if (!VerifyOnly) { 2112 // Find the field named by the designated initializer. 2113 RecordDecl::field_iterator F = RD->field_begin(); 2114 while (std::next(F) != Field) 2115 ++F; 2116 QualType ET = SemaRef.Context.getBaseElementType(F->getType()); 2117 if (checkDestructorReference(ET, InitLoc, SemaRef)) { 2118 hadError = true; 2119 return; 2120 } 2121 } 2122 2123 InitializedSomething = true; 2124 2125 // Disable check for missing fields when designators are used. 2126 // This matches gcc behaviour. 2127 CheckForMissingFields = false; 2128 continue; 2129 } 2130 2131 if (Field == FieldEnd) { 2132 // We've run out of fields. We're done. 2133 break; 2134 } 2135 2136 // We've already initialized a member of a union. We're done. 2137 if (InitializedSomething && DeclType->isUnionType()) 2138 break; 2139 2140 // If we've hit the flexible array member at the end, we're done. 2141 if (Field->getType()->isIncompleteArrayType()) 2142 break; 2143 2144 if (Field->isUnnamedBitfield()) { 2145 // Don't initialize unnamed bitfields, e.g. "int : 20;" 2146 ++Field; 2147 continue; 2148 } 2149 2150 // Make sure we can use this declaration. 2151 bool InvalidUse; 2152 if (VerifyOnly) 2153 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); 2154 else 2155 InvalidUse = SemaRef.DiagnoseUseOfDecl( 2156 *Field, IList->getInit(Index)->getBeginLoc()); 2157 if (InvalidUse) { 2158 ++Index; 2159 ++Field; 2160 hadError = true; 2161 continue; 2162 } 2163 2164 if (!VerifyOnly) { 2165 QualType ET = SemaRef.Context.getBaseElementType(Field->getType()); 2166 if (checkDestructorReference(ET, InitLoc, SemaRef)) { 2167 hadError = true; 2168 return; 2169 } 2170 } 2171 2172 InitializedEntity MemberEntity = 2173 InitializedEntity::InitializeMember(*Field, &Entity); 2174 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2175 StructuredList, StructuredIndex); 2176 InitializedSomething = true; 2177 2178 if (DeclType->isUnionType() && StructuredList) { 2179 // Initialize the first field within the union. 2180 StructuredList->setInitializedFieldInUnion(*Field); 2181 } 2182 2183 ++Field; 2184 } 2185 2186 // Emit warnings for missing struct field initializers. 2187 if (!VerifyOnly && InitializedSomething && CheckForMissingFields && 2188 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() && 2189 !DeclType->isUnionType()) { 2190 // It is possible we have one or more unnamed bitfields remaining. 2191 // Find first (if any) named field and emit warning. 2192 for (RecordDecl::field_iterator it = Field, end = RD->field_end(); 2193 it != end; ++it) { 2194 if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) { 2195 SemaRef.Diag(IList->getSourceRange().getEnd(), 2196 diag::warn_missing_field_initializers) << *it; 2197 break; 2198 } 2199 } 2200 } 2201 2202 // Check that any remaining fields can be value-initialized if we're not 2203 // building a structured list. (If we are, we'll check this later.) 2204 if (!StructuredList && Field != FieldEnd && !DeclType->isUnionType() && 2205 !Field->getType()->isIncompleteArrayType()) { 2206 for (; Field != FieldEnd && !hadError; ++Field) { 2207 if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer()) 2208 CheckEmptyInitializable( 2209 InitializedEntity::InitializeMember(*Field, &Entity), 2210 IList->getEndLoc()); 2211 } 2212 } 2213 2214 // Check that the types of the remaining fields have accessible destructors. 2215 if (!VerifyOnly) { 2216 // If the initializer expression has a designated initializer, check the 2217 // elements for which a designated initializer is not provided too. 2218 RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin() 2219 : Field; 2220 for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) { 2221 QualType ET = SemaRef.Context.getBaseElementType(I->getType()); 2222 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { 2223 hadError = true; 2224 return; 2225 } 2226 } 2227 } 2228 2229 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() || 2230 Index >= IList->getNumInits()) 2231 return; 2232 2233 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field, 2234 TopLevelObject)) { 2235 hadError = true; 2236 ++Index; 2237 return; 2238 } 2239 2240 InitializedEntity MemberEntity = 2241 InitializedEntity::InitializeMember(*Field, &Entity); 2242 2243 if (isa<InitListExpr>(IList->getInit(Index))) 2244 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2245 StructuredList, StructuredIndex); 2246 else 2247 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index, 2248 StructuredList, StructuredIndex); 2249 } 2250 2251 /// Expand a field designator that refers to a member of an 2252 /// anonymous struct or union into a series of field designators that 2253 /// refers to the field within the appropriate subobject. 2254 /// 2255 static void ExpandAnonymousFieldDesignator(Sema &SemaRef, 2256 DesignatedInitExpr *DIE, 2257 unsigned DesigIdx, 2258 IndirectFieldDecl *IndirectField) { 2259 typedef DesignatedInitExpr::Designator Designator; 2260 2261 // Build the replacement designators. 2262 SmallVector<Designator, 4> Replacements; 2263 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(), 2264 PE = IndirectField->chain_end(); PI != PE; ++PI) { 2265 if (PI + 1 == PE) 2266 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 2267 DIE->getDesignator(DesigIdx)->getDotLoc(), 2268 DIE->getDesignator(DesigIdx)->getFieldLoc())); 2269 else 2270 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 2271 SourceLocation(), SourceLocation())); 2272 assert(isa<FieldDecl>(*PI)); 2273 Replacements.back().setField(cast<FieldDecl>(*PI)); 2274 } 2275 2276 // Expand the current designator into the set of replacement 2277 // designators, so we have a full subobject path down to where the 2278 // member of the anonymous struct/union is actually stored. 2279 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0], 2280 &Replacements[0] + Replacements.size()); 2281 } 2282 2283 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef, 2284 DesignatedInitExpr *DIE) { 2285 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1; 2286 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs); 2287 for (unsigned I = 0; I < NumIndexExprs; ++I) 2288 IndexExprs[I] = DIE->getSubExpr(I + 1); 2289 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(), 2290 IndexExprs, 2291 DIE->getEqualOrColonLoc(), 2292 DIE->usesGNUSyntax(), DIE->getInit()); 2293 } 2294 2295 namespace { 2296 2297 // Callback to only accept typo corrections that are for field members of 2298 // the given struct or union. 2299 class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback { 2300 public: 2301 explicit FieldInitializerValidatorCCC(RecordDecl *RD) 2302 : Record(RD) {} 2303 2304 bool ValidateCandidate(const TypoCorrection &candidate) override { 2305 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>(); 2306 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record); 2307 } 2308 2309 std::unique_ptr<CorrectionCandidateCallback> clone() override { 2310 return std::make_unique<FieldInitializerValidatorCCC>(*this); 2311 } 2312 2313 private: 2314 RecordDecl *Record; 2315 }; 2316 2317 } // end anonymous namespace 2318 2319 /// Check the well-formedness of a C99 designated initializer. 2320 /// 2321 /// Determines whether the designated initializer @p DIE, which 2322 /// resides at the given @p Index within the initializer list @p 2323 /// IList, is well-formed for a current object of type @p DeclType 2324 /// (C99 6.7.8). The actual subobject that this designator refers to 2325 /// within the current subobject is returned in either 2326 /// @p NextField or @p NextElementIndex (whichever is appropriate). 2327 /// 2328 /// @param IList The initializer list in which this designated 2329 /// initializer occurs. 2330 /// 2331 /// @param DIE The designated initializer expression. 2332 /// 2333 /// @param DesigIdx The index of the current designator. 2334 /// 2335 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17), 2336 /// into which the designation in @p DIE should refer. 2337 /// 2338 /// @param NextField If non-NULL and the first designator in @p DIE is 2339 /// a field, this will be set to the field declaration corresponding 2340 /// to the field named by the designator. On input, this is expected to be 2341 /// the next field that would be initialized in the absence of designation, 2342 /// if the complete object being initialized is a struct. 2343 /// 2344 /// @param NextElementIndex If non-NULL and the first designator in @p 2345 /// DIE is an array designator or GNU array-range designator, this 2346 /// will be set to the last index initialized by this designator. 2347 /// 2348 /// @param Index Index into @p IList where the designated initializer 2349 /// @p DIE occurs. 2350 /// 2351 /// @param StructuredList The initializer list expression that 2352 /// describes all of the subobject initializers in the order they'll 2353 /// actually be initialized. 2354 /// 2355 /// @returns true if there was an error, false otherwise. 2356 bool 2357 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity, 2358 InitListExpr *IList, 2359 DesignatedInitExpr *DIE, 2360 unsigned DesigIdx, 2361 QualType &CurrentObjectType, 2362 RecordDecl::field_iterator *NextField, 2363 llvm::APSInt *NextElementIndex, 2364 unsigned &Index, 2365 InitListExpr *StructuredList, 2366 unsigned &StructuredIndex, 2367 bool FinishSubobjectInit, 2368 bool TopLevelObject) { 2369 if (DesigIdx == DIE->size()) { 2370 // C++20 designated initialization can result in direct-list-initialization 2371 // of the designated subobject. This is the only way that we can end up 2372 // performing direct initialization as part of aggregate initialization, so 2373 // it needs special handling. 2374 if (DIE->isDirectInit()) { 2375 Expr *Init = DIE->getInit(); 2376 assert(isa<InitListExpr>(Init) && 2377 "designator result in direct non-list initialization?"); 2378 InitializationKind Kind = InitializationKind::CreateDirectList( 2379 DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc()); 2380 InitializationSequence Seq(SemaRef, Entity, Kind, Init, 2381 /*TopLevelOfInitList*/ true); 2382 if (StructuredList) { 2383 ExprResult Result = VerifyOnly 2384 ? getDummyInit() 2385 : Seq.Perform(SemaRef, Entity, Kind, Init); 2386 UpdateStructuredListElement(StructuredList, StructuredIndex, 2387 Result.get()); 2388 } 2389 ++Index; 2390 return !Seq; 2391 } 2392 2393 // Check the actual initialization for the designated object type. 2394 bool prevHadError = hadError; 2395 2396 // Temporarily remove the designator expression from the 2397 // initializer list that the child calls see, so that we don't try 2398 // to re-process the designator. 2399 unsigned OldIndex = Index; 2400 IList->setInit(OldIndex, DIE->getInit()); 2401 2402 CheckSubElementType(Entity, IList, CurrentObjectType, Index, 2403 StructuredList, StructuredIndex); 2404 2405 // Restore the designated initializer expression in the syntactic 2406 // form of the initializer list. 2407 if (IList->getInit(OldIndex) != DIE->getInit()) 2408 DIE->setInit(IList->getInit(OldIndex)); 2409 IList->setInit(OldIndex, DIE); 2410 2411 return hadError && !prevHadError; 2412 } 2413 2414 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx); 2415 bool IsFirstDesignator = (DesigIdx == 0); 2416 if (IsFirstDesignator ? FullyStructuredList : StructuredList) { 2417 // Determine the structural initializer list that corresponds to the 2418 // current subobject. 2419 if (IsFirstDesignator) 2420 StructuredList = FullyStructuredList; 2421 else { 2422 Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ? 2423 StructuredList->getInit(StructuredIndex) : nullptr; 2424 if (!ExistingInit && StructuredList->hasArrayFiller()) 2425 ExistingInit = StructuredList->getArrayFiller(); 2426 2427 if (!ExistingInit) 2428 StructuredList = getStructuredSubobjectInit( 2429 IList, Index, CurrentObjectType, StructuredList, StructuredIndex, 2430 SourceRange(D->getBeginLoc(), DIE->getEndLoc())); 2431 else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit)) 2432 StructuredList = Result; 2433 else { 2434 // We are creating an initializer list that initializes the 2435 // subobjects of the current object, but there was already an 2436 // initialization that completely initialized the current 2437 // subobject, e.g., by a compound literal: 2438 // 2439 // struct X { int a, b; }; 2440 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 2441 // 2442 // Here, xs[0].a == 1 and xs[0].b == 3, since the second, 2443 // designated initializer re-initializes only its current object 2444 // subobject [0].b. 2445 diagnoseInitOverride(ExistingInit, 2446 SourceRange(D->getBeginLoc(), DIE->getEndLoc()), 2447 /*FullyOverwritten=*/false); 2448 2449 if (!VerifyOnly) { 2450 if (DesignatedInitUpdateExpr *E = 2451 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit)) 2452 StructuredList = E->getUpdater(); 2453 else { 2454 DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context) 2455 DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(), 2456 ExistingInit, DIE->getEndLoc()); 2457 StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE); 2458 StructuredList = DIUE->getUpdater(); 2459 } 2460 } else { 2461 // We don't need to track the structured representation of a 2462 // designated init update of an already-fully-initialized object in 2463 // verify-only mode. The only reason we would need the structure is 2464 // to determine where the uninitialized "holes" are, and in this 2465 // case, we know there aren't any and we can't introduce any. 2466 StructuredList = nullptr; 2467 } 2468 } 2469 } 2470 } 2471 2472 if (D->isFieldDesignator()) { 2473 // C99 6.7.8p7: 2474 // 2475 // If a designator has the form 2476 // 2477 // . identifier 2478 // 2479 // then the current object (defined below) shall have 2480 // structure or union type and the identifier shall be the 2481 // name of a member of that type. 2482 const RecordType *RT = CurrentObjectType->getAs<RecordType>(); 2483 if (!RT) { 2484 SourceLocation Loc = D->getDotLoc(); 2485 if (Loc.isInvalid()) 2486 Loc = D->getFieldLoc(); 2487 if (!VerifyOnly) 2488 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr) 2489 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType; 2490 ++Index; 2491 return true; 2492 } 2493 2494 FieldDecl *KnownField = D->getField(); 2495 if (!KnownField) { 2496 IdentifierInfo *FieldName = D->getFieldName(); 2497 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName); 2498 for (NamedDecl *ND : Lookup) { 2499 if (auto *FD = dyn_cast<FieldDecl>(ND)) { 2500 KnownField = FD; 2501 break; 2502 } 2503 if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) { 2504 // In verify mode, don't modify the original. 2505 if (VerifyOnly) 2506 DIE = CloneDesignatedInitExpr(SemaRef, DIE); 2507 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD); 2508 D = DIE->getDesignator(DesigIdx); 2509 KnownField = cast<FieldDecl>(*IFD->chain_begin()); 2510 break; 2511 } 2512 } 2513 if (!KnownField) { 2514 if (VerifyOnly) { 2515 ++Index; 2516 return true; // No typo correction when just trying this out. 2517 } 2518 2519 // Name lookup found something, but it wasn't a field. 2520 if (!Lookup.empty()) { 2521 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield) 2522 << FieldName; 2523 SemaRef.Diag(Lookup.front()->getLocation(), 2524 diag::note_field_designator_found); 2525 ++Index; 2526 return true; 2527 } 2528 2529 // Name lookup didn't find anything. 2530 // Determine whether this was a typo for another field name. 2531 FieldInitializerValidatorCCC CCC(RT->getDecl()); 2532 if (TypoCorrection Corrected = SemaRef.CorrectTypo( 2533 DeclarationNameInfo(FieldName, D->getFieldLoc()), 2534 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC, 2535 Sema::CTK_ErrorRecovery, RT->getDecl())) { 2536 SemaRef.diagnoseTypo( 2537 Corrected, 2538 SemaRef.PDiag(diag::err_field_designator_unknown_suggest) 2539 << FieldName << CurrentObjectType); 2540 KnownField = Corrected.getCorrectionDeclAs<FieldDecl>(); 2541 hadError = true; 2542 } else { 2543 // Typo correction didn't find anything. 2544 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown) 2545 << FieldName << CurrentObjectType; 2546 ++Index; 2547 return true; 2548 } 2549 } 2550 } 2551 2552 unsigned NumBases = 0; 2553 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2554 NumBases = CXXRD->getNumBases(); 2555 2556 unsigned FieldIndex = NumBases; 2557 2558 for (auto *FI : RT->getDecl()->fields()) { 2559 if (FI->isUnnamedBitfield()) 2560 continue; 2561 if (declaresSameEntity(KnownField, FI)) { 2562 KnownField = FI; 2563 break; 2564 } 2565 ++FieldIndex; 2566 } 2567 2568 RecordDecl::field_iterator Field = 2569 RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField)); 2570 2571 // All of the fields of a union are located at the same place in 2572 // the initializer list. 2573 if (RT->getDecl()->isUnion()) { 2574 FieldIndex = 0; 2575 if (StructuredList) { 2576 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion(); 2577 if (CurrentField && !declaresSameEntity(CurrentField, *Field)) { 2578 assert(StructuredList->getNumInits() == 1 2579 && "A union should never have more than one initializer!"); 2580 2581 Expr *ExistingInit = StructuredList->getInit(0); 2582 if (ExistingInit) { 2583 // We're about to throw away an initializer, emit warning. 2584 diagnoseInitOverride( 2585 ExistingInit, SourceRange(D->getBeginLoc(), DIE->getEndLoc())); 2586 } 2587 2588 // remove existing initializer 2589 StructuredList->resizeInits(SemaRef.Context, 0); 2590 StructuredList->setInitializedFieldInUnion(nullptr); 2591 } 2592 2593 StructuredList->setInitializedFieldInUnion(*Field); 2594 } 2595 } 2596 2597 // Make sure we can use this declaration. 2598 bool InvalidUse; 2599 if (VerifyOnly) 2600 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); 2601 else 2602 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc()); 2603 if (InvalidUse) { 2604 ++Index; 2605 return true; 2606 } 2607 2608 // C++20 [dcl.init.list]p3: 2609 // The ordered identifiers in the designators of the designated- 2610 // initializer-list shall form a subsequence of the ordered identifiers 2611 // in the direct non-static data members of T. 2612 // 2613 // Note that this is not a condition on forming the aggregate 2614 // initialization, only on actually performing initialization, 2615 // so it is not checked in VerifyOnly mode. 2616 // 2617 // FIXME: This is the only reordering diagnostic we produce, and it only 2618 // catches cases where we have a top-level field designator that jumps 2619 // backwards. This is the only such case that is reachable in an 2620 // otherwise-valid C++20 program, so is the only case that's required for 2621 // conformance, but for consistency, we should diagnose all the other 2622 // cases where a designator takes us backwards too. 2623 if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus && 2624 NextField && 2625 (*NextField == RT->getDecl()->field_end() || 2626 (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) { 2627 // Find the field that we just initialized. 2628 FieldDecl *PrevField = nullptr; 2629 for (auto FI = RT->getDecl()->field_begin(); 2630 FI != RT->getDecl()->field_end(); ++FI) { 2631 if (FI->isUnnamedBitfield()) 2632 continue; 2633 if (*NextField != RT->getDecl()->field_end() && 2634 declaresSameEntity(*FI, **NextField)) 2635 break; 2636 PrevField = *FI; 2637 } 2638 2639 if (PrevField && 2640 PrevField->getFieldIndex() > KnownField->getFieldIndex()) { 2641 SemaRef.Diag(DIE->getBeginLoc(), diag::ext_designated_init_reordered) 2642 << KnownField << PrevField << DIE->getSourceRange(); 2643 2644 unsigned OldIndex = NumBases + PrevField->getFieldIndex(); 2645 if (StructuredList && OldIndex <= StructuredList->getNumInits()) { 2646 if (Expr *PrevInit = StructuredList->getInit(OldIndex)) { 2647 SemaRef.Diag(PrevInit->getBeginLoc(), 2648 diag::note_previous_field_init) 2649 << PrevField << PrevInit->getSourceRange(); 2650 } 2651 } 2652 } 2653 } 2654 2655 2656 // Update the designator with the field declaration. 2657 if (!VerifyOnly) 2658 D->setField(*Field); 2659 2660 // Make sure that our non-designated initializer list has space 2661 // for a subobject corresponding to this field. 2662 if (StructuredList && FieldIndex >= StructuredList->getNumInits()) 2663 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1); 2664 2665 // This designator names a flexible array member. 2666 if (Field->getType()->isIncompleteArrayType()) { 2667 bool Invalid = false; 2668 if ((DesigIdx + 1) != DIE->size()) { 2669 // We can't designate an object within the flexible array 2670 // member (because GCC doesn't allow it). 2671 if (!VerifyOnly) { 2672 DesignatedInitExpr::Designator *NextD 2673 = DIE->getDesignator(DesigIdx + 1); 2674 SemaRef.Diag(NextD->getBeginLoc(), 2675 diag::err_designator_into_flexible_array_member) 2676 << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc()); 2677 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2678 << *Field; 2679 } 2680 Invalid = true; 2681 } 2682 2683 if (!hadError && !isa<InitListExpr>(DIE->getInit()) && 2684 !isa<StringLiteral>(DIE->getInit())) { 2685 // The initializer is not an initializer list. 2686 if (!VerifyOnly) { 2687 SemaRef.Diag(DIE->getInit()->getBeginLoc(), 2688 diag::err_flexible_array_init_needs_braces) 2689 << DIE->getInit()->getSourceRange(); 2690 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2691 << *Field; 2692 } 2693 Invalid = true; 2694 } 2695 2696 // Check GNU flexible array initializer. 2697 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field, 2698 TopLevelObject)) 2699 Invalid = true; 2700 2701 if (Invalid) { 2702 ++Index; 2703 return true; 2704 } 2705 2706 // Initialize the array. 2707 bool prevHadError = hadError; 2708 unsigned newStructuredIndex = FieldIndex; 2709 unsigned OldIndex = Index; 2710 IList->setInit(Index, DIE->getInit()); 2711 2712 InitializedEntity MemberEntity = 2713 InitializedEntity::InitializeMember(*Field, &Entity); 2714 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2715 StructuredList, newStructuredIndex); 2716 2717 IList->setInit(OldIndex, DIE); 2718 if (hadError && !prevHadError) { 2719 ++Field; 2720 ++FieldIndex; 2721 if (NextField) 2722 *NextField = Field; 2723 StructuredIndex = FieldIndex; 2724 return true; 2725 } 2726 } else { 2727 // Recurse to check later designated subobjects. 2728 QualType FieldType = Field->getType(); 2729 unsigned newStructuredIndex = FieldIndex; 2730 2731 InitializedEntity MemberEntity = 2732 InitializedEntity::InitializeMember(*Field, &Entity); 2733 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1, 2734 FieldType, nullptr, nullptr, Index, 2735 StructuredList, newStructuredIndex, 2736 FinishSubobjectInit, false)) 2737 return true; 2738 } 2739 2740 // Find the position of the next field to be initialized in this 2741 // subobject. 2742 ++Field; 2743 ++FieldIndex; 2744 2745 // If this the first designator, our caller will continue checking 2746 // the rest of this struct/class/union subobject. 2747 if (IsFirstDesignator) { 2748 if (NextField) 2749 *NextField = Field; 2750 StructuredIndex = FieldIndex; 2751 return false; 2752 } 2753 2754 if (!FinishSubobjectInit) 2755 return false; 2756 2757 // We've already initialized something in the union; we're done. 2758 if (RT->getDecl()->isUnion()) 2759 return hadError; 2760 2761 // Check the remaining fields within this class/struct/union subobject. 2762 bool prevHadError = hadError; 2763 2764 auto NoBases = 2765 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), 2766 CXXRecordDecl::base_class_iterator()); 2767 CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field, 2768 false, Index, StructuredList, FieldIndex); 2769 return hadError && !prevHadError; 2770 } 2771 2772 // C99 6.7.8p6: 2773 // 2774 // If a designator has the form 2775 // 2776 // [ constant-expression ] 2777 // 2778 // then the current object (defined below) shall have array 2779 // type and the expression shall be an integer constant 2780 // expression. If the array is of unknown size, any 2781 // nonnegative value is valid. 2782 // 2783 // Additionally, cope with the GNU extension that permits 2784 // designators of the form 2785 // 2786 // [ constant-expression ... constant-expression ] 2787 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType); 2788 if (!AT) { 2789 if (!VerifyOnly) 2790 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array) 2791 << CurrentObjectType; 2792 ++Index; 2793 return true; 2794 } 2795 2796 Expr *IndexExpr = nullptr; 2797 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex; 2798 if (D->isArrayDesignator()) { 2799 IndexExpr = DIE->getArrayIndex(*D); 2800 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context); 2801 DesignatedEndIndex = DesignatedStartIndex; 2802 } else { 2803 assert(D->isArrayRangeDesignator() && "Need array-range designator"); 2804 2805 DesignatedStartIndex = 2806 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context); 2807 DesignatedEndIndex = 2808 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context); 2809 IndexExpr = DIE->getArrayRangeEnd(*D); 2810 2811 // Codegen can't handle evaluating array range designators that have side 2812 // effects, because we replicate the AST value for each initialized element. 2813 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple 2814 // elements with something that has a side effect, so codegen can emit an 2815 // "error unsupported" error instead of miscompiling the app. 2816 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&& 2817 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly) 2818 FullyStructuredList->sawArrayRangeDesignator(); 2819 } 2820 2821 if (isa<ConstantArrayType>(AT)) { 2822 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false); 2823 DesignatedStartIndex 2824 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth()); 2825 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned()); 2826 DesignatedEndIndex 2827 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth()); 2828 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned()); 2829 if (DesignatedEndIndex >= MaxElements) { 2830 if (!VerifyOnly) 2831 SemaRef.Diag(IndexExpr->getBeginLoc(), 2832 diag::err_array_designator_too_large) 2833 << DesignatedEndIndex.toString(10) << MaxElements.toString(10) 2834 << IndexExpr->getSourceRange(); 2835 ++Index; 2836 return true; 2837 } 2838 } else { 2839 unsigned DesignatedIndexBitWidth = 2840 ConstantArrayType::getMaxSizeBits(SemaRef.Context); 2841 DesignatedStartIndex = 2842 DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth); 2843 DesignatedEndIndex = 2844 DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth); 2845 DesignatedStartIndex.setIsUnsigned(true); 2846 DesignatedEndIndex.setIsUnsigned(true); 2847 } 2848 2849 bool IsStringLiteralInitUpdate = 2850 StructuredList && StructuredList->isStringLiteralInit(); 2851 if (IsStringLiteralInitUpdate && VerifyOnly) { 2852 // We're just verifying an update to a string literal init. We don't need 2853 // to split the string up into individual characters to do that. 2854 StructuredList = nullptr; 2855 } else if (IsStringLiteralInitUpdate) { 2856 // We're modifying a string literal init; we have to decompose the string 2857 // so we can modify the individual characters. 2858 ASTContext &Context = SemaRef.Context; 2859 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens(); 2860 2861 // Compute the character type 2862 QualType CharTy = AT->getElementType(); 2863 2864 // Compute the type of the integer literals. 2865 QualType PromotedCharTy = CharTy; 2866 if (CharTy->isPromotableIntegerType()) 2867 PromotedCharTy = Context.getPromotedIntegerType(CharTy); 2868 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy); 2869 2870 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) { 2871 // Get the length of the string. 2872 uint64_t StrLen = SL->getLength(); 2873 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2874 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2875 StructuredList->resizeInits(Context, StrLen); 2876 2877 // Build a literal for each character in the string, and put them into 2878 // the init list. 2879 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2880 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i)); 2881 Expr *Init = new (Context) IntegerLiteral( 2882 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2883 if (CharTy != PromotedCharTy) 2884 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2885 Init, nullptr, VK_RValue); 2886 StructuredList->updateInit(Context, i, Init); 2887 } 2888 } else { 2889 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr); 2890 std::string Str; 2891 Context.getObjCEncodingForType(E->getEncodedType(), Str); 2892 2893 // Get the length of the string. 2894 uint64_t StrLen = Str.size(); 2895 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2896 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2897 StructuredList->resizeInits(Context, StrLen); 2898 2899 // Build a literal for each character in the string, and put them into 2900 // the init list. 2901 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2902 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]); 2903 Expr *Init = new (Context) IntegerLiteral( 2904 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2905 if (CharTy != PromotedCharTy) 2906 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2907 Init, nullptr, VK_RValue); 2908 StructuredList->updateInit(Context, i, Init); 2909 } 2910 } 2911 } 2912 2913 // Make sure that our non-designated initializer list has space 2914 // for a subobject corresponding to this array element. 2915 if (StructuredList && 2916 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits()) 2917 StructuredList->resizeInits(SemaRef.Context, 2918 DesignatedEndIndex.getZExtValue() + 1); 2919 2920 // Repeatedly perform subobject initializations in the range 2921 // [DesignatedStartIndex, DesignatedEndIndex]. 2922 2923 // Move to the next designator 2924 unsigned ElementIndex = DesignatedStartIndex.getZExtValue(); 2925 unsigned OldIndex = Index; 2926 2927 InitializedEntity ElementEntity = 2928 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 2929 2930 while (DesignatedStartIndex <= DesignatedEndIndex) { 2931 // Recurse to check later designated subobjects. 2932 QualType ElementType = AT->getElementType(); 2933 Index = OldIndex; 2934 2935 ElementEntity.setElementIndex(ElementIndex); 2936 if (CheckDesignatedInitializer( 2937 ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr, 2938 nullptr, Index, StructuredList, ElementIndex, 2939 FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex), 2940 false)) 2941 return true; 2942 2943 // Move to the next index in the array that we'll be initializing. 2944 ++DesignatedStartIndex; 2945 ElementIndex = DesignatedStartIndex.getZExtValue(); 2946 } 2947 2948 // If this the first designator, our caller will continue checking 2949 // the rest of this array subobject. 2950 if (IsFirstDesignator) { 2951 if (NextElementIndex) 2952 *NextElementIndex = DesignatedStartIndex; 2953 StructuredIndex = ElementIndex; 2954 return false; 2955 } 2956 2957 if (!FinishSubobjectInit) 2958 return false; 2959 2960 // Check the remaining elements within this array subobject. 2961 bool prevHadError = hadError; 2962 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex, 2963 /*SubobjectIsDesignatorContext=*/false, Index, 2964 StructuredList, ElementIndex); 2965 return hadError && !prevHadError; 2966 } 2967 2968 // Get the structured initializer list for a subobject of type 2969 // @p CurrentObjectType. 2970 InitListExpr * 2971 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 2972 QualType CurrentObjectType, 2973 InitListExpr *StructuredList, 2974 unsigned StructuredIndex, 2975 SourceRange InitRange, 2976 bool IsFullyOverwritten) { 2977 if (!StructuredList) 2978 return nullptr; 2979 2980 Expr *ExistingInit = nullptr; 2981 if (StructuredIndex < StructuredList->getNumInits()) 2982 ExistingInit = StructuredList->getInit(StructuredIndex); 2983 2984 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit)) 2985 // There might have already been initializers for subobjects of the current 2986 // object, but a subsequent initializer list will overwrite the entirety 2987 // of the current object. (See DR 253 and C99 6.7.8p21). e.g., 2988 // 2989 // struct P { char x[6]; }; 2990 // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } }; 2991 // 2992 // The first designated initializer is ignored, and l.x is just "f". 2993 if (!IsFullyOverwritten) 2994 return Result; 2995 2996 if (ExistingInit) { 2997 // We are creating an initializer list that initializes the 2998 // subobjects of the current object, but there was already an 2999 // initialization that completely initialized the current 3000 // subobject: 3001 // 3002 // struct X { int a, b; }; 3003 // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 }; 3004 // 3005 // Here, xs[0].a == 1 and xs[0].b == 3, since the second, 3006 // designated initializer overwrites the [0].b initializer 3007 // from the prior initialization. 3008 // 3009 // When the existing initializer is an expression rather than an 3010 // initializer list, we cannot decompose and update it in this way. 3011 // For example: 3012 // 3013 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 3014 // 3015 // This case is handled by CheckDesignatedInitializer. 3016 diagnoseInitOverride(ExistingInit, InitRange); 3017 } 3018 3019 unsigned ExpectedNumInits = 0; 3020 if (Index < IList->getNumInits()) { 3021 if (auto *Init = dyn_cast_or_null<InitListExpr>(IList->getInit(Index))) 3022 ExpectedNumInits = Init->getNumInits(); 3023 else 3024 ExpectedNumInits = IList->getNumInits() - Index; 3025 } 3026 3027 InitListExpr *Result = 3028 createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits); 3029 3030 // Link this new initializer list into the structured initializer 3031 // lists. 3032 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result); 3033 return Result; 3034 } 3035 3036 InitListExpr * 3037 InitListChecker::createInitListExpr(QualType CurrentObjectType, 3038 SourceRange InitRange, 3039 unsigned ExpectedNumInits) { 3040 InitListExpr *Result 3041 = new (SemaRef.Context) InitListExpr(SemaRef.Context, 3042 InitRange.getBegin(), None, 3043 InitRange.getEnd()); 3044 3045 QualType ResultType = CurrentObjectType; 3046 if (!ResultType->isArrayType()) 3047 ResultType = ResultType.getNonLValueExprType(SemaRef.Context); 3048 Result->setType(ResultType); 3049 3050 // Pre-allocate storage for the structured initializer list. 3051 unsigned NumElements = 0; 3052 3053 if (const ArrayType *AType 3054 = SemaRef.Context.getAsArrayType(CurrentObjectType)) { 3055 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) { 3056 NumElements = CAType->getSize().getZExtValue(); 3057 // Simple heuristic so that we don't allocate a very large 3058 // initializer with many empty entries at the end. 3059 if (NumElements > ExpectedNumInits) 3060 NumElements = 0; 3061 } 3062 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) { 3063 NumElements = VType->getNumElements(); 3064 } else if (CurrentObjectType->isRecordType()) { 3065 NumElements = numStructUnionElements(CurrentObjectType); 3066 } 3067 3068 Result->reserveInits(SemaRef.Context, NumElements); 3069 3070 return Result; 3071 } 3072 3073 /// Update the initializer at index @p StructuredIndex within the 3074 /// structured initializer list to the value @p expr. 3075 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList, 3076 unsigned &StructuredIndex, 3077 Expr *expr) { 3078 // No structured initializer list to update 3079 if (!StructuredList) 3080 return; 3081 3082 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context, 3083 StructuredIndex, expr)) { 3084 // This initializer overwrites a previous initializer. Warn. 3085 diagnoseInitOverride(PrevInit, expr->getSourceRange()); 3086 } 3087 3088 ++StructuredIndex; 3089 } 3090 3091 /// Determine whether we can perform aggregate initialization for the purposes 3092 /// of overload resolution. 3093 bool Sema::CanPerformAggregateInitializationForOverloadResolution( 3094 const InitializedEntity &Entity, InitListExpr *From) { 3095 QualType Type = Entity.getType(); 3096 InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true, 3097 /*TreatUnavailableAsInvalid=*/false, 3098 /*InOverloadResolution=*/true); 3099 return !Check.HadError(); 3100 } 3101 3102 /// Check that the given Index expression is a valid array designator 3103 /// value. This is essentially just a wrapper around 3104 /// VerifyIntegerConstantExpression that also checks for negative values 3105 /// and produces a reasonable diagnostic if there is a 3106 /// failure. Returns the index expression, possibly with an implicit cast 3107 /// added, on success. If everything went okay, Value will receive the 3108 /// value of the constant expression. 3109 static ExprResult 3110 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) { 3111 SourceLocation Loc = Index->getBeginLoc(); 3112 3113 // Make sure this is an integer constant expression. 3114 ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value); 3115 if (Result.isInvalid()) 3116 return Result; 3117 3118 if (Value.isSigned() && Value.isNegative()) 3119 return S.Diag(Loc, diag::err_array_designator_negative) 3120 << Value.toString(10) << Index->getSourceRange(); 3121 3122 Value.setIsUnsigned(true); 3123 return Result; 3124 } 3125 3126 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig, 3127 SourceLocation EqualOrColonLoc, 3128 bool GNUSyntax, 3129 ExprResult Init) { 3130 typedef DesignatedInitExpr::Designator ASTDesignator; 3131 3132 bool Invalid = false; 3133 SmallVector<ASTDesignator, 32> Designators; 3134 SmallVector<Expr *, 32> InitExpressions; 3135 3136 // Build designators and check array designator expressions. 3137 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) { 3138 const Designator &D = Desig.getDesignator(Idx); 3139 switch (D.getKind()) { 3140 case Designator::FieldDesignator: 3141 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(), 3142 D.getFieldLoc())); 3143 break; 3144 3145 case Designator::ArrayDesignator: { 3146 Expr *Index = static_cast<Expr *>(D.getArrayIndex()); 3147 llvm::APSInt IndexValue; 3148 if (!Index->isTypeDependent() && !Index->isValueDependent()) 3149 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get(); 3150 if (!Index) 3151 Invalid = true; 3152 else { 3153 Designators.push_back(ASTDesignator(InitExpressions.size(), 3154 D.getLBracketLoc(), 3155 D.getRBracketLoc())); 3156 InitExpressions.push_back(Index); 3157 } 3158 break; 3159 } 3160 3161 case Designator::ArrayRangeDesignator: { 3162 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart()); 3163 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd()); 3164 llvm::APSInt StartValue; 3165 llvm::APSInt EndValue; 3166 bool StartDependent = StartIndex->isTypeDependent() || 3167 StartIndex->isValueDependent(); 3168 bool EndDependent = EndIndex->isTypeDependent() || 3169 EndIndex->isValueDependent(); 3170 if (!StartDependent) 3171 StartIndex = 3172 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get(); 3173 if (!EndDependent) 3174 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get(); 3175 3176 if (!StartIndex || !EndIndex) 3177 Invalid = true; 3178 else { 3179 // Make sure we're comparing values with the same bit width. 3180 if (StartDependent || EndDependent) { 3181 // Nothing to compute. 3182 } else if (StartValue.getBitWidth() > EndValue.getBitWidth()) 3183 EndValue = EndValue.extend(StartValue.getBitWidth()); 3184 else if (StartValue.getBitWidth() < EndValue.getBitWidth()) 3185 StartValue = StartValue.extend(EndValue.getBitWidth()); 3186 3187 if (!StartDependent && !EndDependent && EndValue < StartValue) { 3188 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range) 3189 << StartValue.toString(10) << EndValue.toString(10) 3190 << StartIndex->getSourceRange() << EndIndex->getSourceRange(); 3191 Invalid = true; 3192 } else { 3193 Designators.push_back(ASTDesignator(InitExpressions.size(), 3194 D.getLBracketLoc(), 3195 D.getEllipsisLoc(), 3196 D.getRBracketLoc())); 3197 InitExpressions.push_back(StartIndex); 3198 InitExpressions.push_back(EndIndex); 3199 } 3200 } 3201 break; 3202 } 3203 } 3204 } 3205 3206 if (Invalid || Init.isInvalid()) 3207 return ExprError(); 3208 3209 // Clear out the expressions within the designation. 3210 Desig.ClearExprs(*this); 3211 3212 return DesignatedInitExpr::Create(Context, Designators, InitExpressions, 3213 EqualOrColonLoc, GNUSyntax, 3214 Init.getAs<Expr>()); 3215 } 3216 3217 //===----------------------------------------------------------------------===// 3218 // Initialization entity 3219 //===----------------------------------------------------------------------===// 3220 3221 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index, 3222 const InitializedEntity &Parent) 3223 : Parent(&Parent), Index(Index) 3224 { 3225 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) { 3226 Kind = EK_ArrayElement; 3227 Type = AT->getElementType(); 3228 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) { 3229 Kind = EK_VectorElement; 3230 Type = VT->getElementType(); 3231 } else { 3232 const ComplexType *CT = Parent.getType()->getAs<ComplexType>(); 3233 assert(CT && "Unexpected type"); 3234 Kind = EK_ComplexElement; 3235 Type = CT->getElementType(); 3236 } 3237 } 3238 3239 InitializedEntity 3240 InitializedEntity::InitializeBase(ASTContext &Context, 3241 const CXXBaseSpecifier *Base, 3242 bool IsInheritedVirtualBase, 3243 const InitializedEntity *Parent) { 3244 InitializedEntity Result; 3245 Result.Kind = EK_Base; 3246 Result.Parent = Parent; 3247 Result.Base = reinterpret_cast<uintptr_t>(Base); 3248 if (IsInheritedVirtualBase) 3249 Result.Base |= 0x01; 3250 3251 Result.Type = Base->getType(); 3252 return Result; 3253 } 3254 3255 DeclarationName InitializedEntity::getName() const { 3256 switch (getKind()) { 3257 case EK_Parameter: 3258 case EK_Parameter_CF_Audited: { 3259 ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 3260 return (D ? D->getDeclName() : DeclarationName()); 3261 } 3262 3263 case EK_Variable: 3264 case EK_Member: 3265 case EK_Binding: 3266 return Variable.VariableOrMember->getDeclName(); 3267 3268 case EK_LambdaCapture: 3269 return DeclarationName(Capture.VarID); 3270 3271 case EK_Result: 3272 case EK_StmtExprResult: 3273 case EK_Exception: 3274 case EK_New: 3275 case EK_Temporary: 3276 case EK_Base: 3277 case EK_Delegating: 3278 case EK_ArrayElement: 3279 case EK_VectorElement: 3280 case EK_ComplexElement: 3281 case EK_BlockElement: 3282 case EK_LambdaToBlockConversionBlockElement: 3283 case EK_CompoundLiteralInit: 3284 case EK_RelatedResult: 3285 return DeclarationName(); 3286 } 3287 3288 llvm_unreachable("Invalid EntityKind!"); 3289 } 3290 3291 ValueDecl *InitializedEntity::getDecl() const { 3292 switch (getKind()) { 3293 case EK_Variable: 3294 case EK_Member: 3295 case EK_Binding: 3296 return Variable.VariableOrMember; 3297 3298 case EK_Parameter: 3299 case EK_Parameter_CF_Audited: 3300 return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 3301 3302 case EK_Result: 3303 case EK_StmtExprResult: 3304 case EK_Exception: 3305 case EK_New: 3306 case EK_Temporary: 3307 case EK_Base: 3308 case EK_Delegating: 3309 case EK_ArrayElement: 3310 case EK_VectorElement: 3311 case EK_ComplexElement: 3312 case EK_BlockElement: 3313 case EK_LambdaToBlockConversionBlockElement: 3314 case EK_LambdaCapture: 3315 case EK_CompoundLiteralInit: 3316 case EK_RelatedResult: 3317 return nullptr; 3318 } 3319 3320 llvm_unreachable("Invalid EntityKind!"); 3321 } 3322 3323 bool InitializedEntity::allowsNRVO() const { 3324 switch (getKind()) { 3325 case EK_Result: 3326 case EK_Exception: 3327 return LocAndNRVO.NRVO; 3328 3329 case EK_StmtExprResult: 3330 case EK_Variable: 3331 case EK_Parameter: 3332 case EK_Parameter_CF_Audited: 3333 case EK_Member: 3334 case EK_Binding: 3335 case EK_New: 3336 case EK_Temporary: 3337 case EK_CompoundLiteralInit: 3338 case EK_Base: 3339 case EK_Delegating: 3340 case EK_ArrayElement: 3341 case EK_VectorElement: 3342 case EK_ComplexElement: 3343 case EK_BlockElement: 3344 case EK_LambdaToBlockConversionBlockElement: 3345 case EK_LambdaCapture: 3346 case EK_RelatedResult: 3347 break; 3348 } 3349 3350 return false; 3351 } 3352 3353 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const { 3354 assert(getParent() != this); 3355 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0; 3356 for (unsigned I = 0; I != Depth; ++I) 3357 OS << "`-"; 3358 3359 switch (getKind()) { 3360 case EK_Variable: OS << "Variable"; break; 3361 case EK_Parameter: OS << "Parameter"; break; 3362 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter"; 3363 break; 3364 case EK_Result: OS << "Result"; break; 3365 case EK_StmtExprResult: OS << "StmtExprResult"; break; 3366 case EK_Exception: OS << "Exception"; break; 3367 case EK_Member: OS << "Member"; break; 3368 case EK_Binding: OS << "Binding"; break; 3369 case EK_New: OS << "New"; break; 3370 case EK_Temporary: OS << "Temporary"; break; 3371 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break; 3372 case EK_RelatedResult: OS << "RelatedResult"; break; 3373 case EK_Base: OS << "Base"; break; 3374 case EK_Delegating: OS << "Delegating"; break; 3375 case EK_ArrayElement: OS << "ArrayElement " << Index; break; 3376 case EK_VectorElement: OS << "VectorElement " << Index; break; 3377 case EK_ComplexElement: OS << "ComplexElement " << Index; break; 3378 case EK_BlockElement: OS << "Block"; break; 3379 case EK_LambdaToBlockConversionBlockElement: 3380 OS << "Block (lambda)"; 3381 break; 3382 case EK_LambdaCapture: 3383 OS << "LambdaCapture "; 3384 OS << DeclarationName(Capture.VarID); 3385 break; 3386 } 3387 3388 if (auto *D = getDecl()) { 3389 OS << " "; 3390 D->printQualifiedName(OS); 3391 } 3392 3393 OS << " '" << getType().getAsString() << "'\n"; 3394 3395 return Depth + 1; 3396 } 3397 3398 LLVM_DUMP_METHOD void InitializedEntity::dump() const { 3399 dumpImpl(llvm::errs()); 3400 } 3401 3402 //===----------------------------------------------------------------------===// 3403 // Initialization sequence 3404 //===----------------------------------------------------------------------===// 3405 3406 void InitializationSequence::Step::Destroy() { 3407 switch (Kind) { 3408 case SK_ResolveAddressOfOverloadedFunction: 3409 case SK_CastDerivedToBaseRValue: 3410 case SK_CastDerivedToBaseXValue: 3411 case SK_CastDerivedToBaseLValue: 3412 case SK_BindReference: 3413 case SK_BindReferenceToTemporary: 3414 case SK_FinalCopy: 3415 case SK_ExtraneousCopyToTemporary: 3416 case SK_UserConversion: 3417 case SK_QualificationConversionRValue: 3418 case SK_QualificationConversionXValue: 3419 case SK_QualificationConversionLValue: 3420 case SK_AtomicConversion: 3421 case SK_ListInitialization: 3422 case SK_UnwrapInitList: 3423 case SK_RewrapInitList: 3424 case SK_ConstructorInitialization: 3425 case SK_ConstructorInitializationFromList: 3426 case SK_ZeroInitialization: 3427 case SK_CAssignment: 3428 case SK_StringInit: 3429 case SK_ObjCObjectConversion: 3430 case SK_ArrayLoopIndex: 3431 case SK_ArrayLoopInit: 3432 case SK_ArrayInit: 3433 case SK_GNUArrayInit: 3434 case SK_ParenthesizedArrayInit: 3435 case SK_PassByIndirectCopyRestore: 3436 case SK_PassByIndirectRestore: 3437 case SK_ProduceObjCObject: 3438 case SK_StdInitializerList: 3439 case SK_StdInitializerListConstructorCall: 3440 case SK_OCLSamplerInit: 3441 case SK_OCLZeroOpaqueType: 3442 break; 3443 3444 case SK_ConversionSequence: 3445 case SK_ConversionSequenceNoNarrowing: 3446 delete ICS; 3447 } 3448 } 3449 3450 bool InitializationSequence::isDirectReferenceBinding() const { 3451 // There can be some lvalue adjustments after the SK_BindReference step. 3452 for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) { 3453 if (I->Kind == SK_BindReference) 3454 return true; 3455 if (I->Kind == SK_BindReferenceToTemporary) 3456 return false; 3457 } 3458 return false; 3459 } 3460 3461 bool InitializationSequence::isAmbiguous() const { 3462 if (!Failed()) 3463 return false; 3464 3465 switch (getFailureKind()) { 3466 case FK_TooManyInitsForReference: 3467 case FK_ParenthesizedListInitForReference: 3468 case FK_ArrayNeedsInitList: 3469 case FK_ArrayNeedsInitListOrStringLiteral: 3470 case FK_ArrayNeedsInitListOrWideStringLiteral: 3471 case FK_NarrowStringIntoWideCharArray: 3472 case FK_WideStringIntoCharArray: 3473 case FK_IncompatWideStringIntoWideChar: 3474 case FK_PlainStringIntoUTF8Char: 3475 case FK_UTF8StringIntoPlainChar: 3476 case FK_AddressOfOverloadFailed: // FIXME: Could do better 3477 case FK_NonConstLValueReferenceBindingToTemporary: 3478 case FK_NonConstLValueReferenceBindingToBitfield: 3479 case FK_NonConstLValueReferenceBindingToVectorElement: 3480 case FK_NonConstLValueReferenceBindingToUnrelated: 3481 case FK_RValueReferenceBindingToLValue: 3482 case FK_ReferenceAddrspaceMismatchTemporary: 3483 case FK_ReferenceInitDropsQualifiers: 3484 case FK_ReferenceInitFailed: 3485 case FK_ConversionFailed: 3486 case FK_ConversionFromPropertyFailed: 3487 case FK_TooManyInitsForScalar: 3488 case FK_ParenthesizedListInitForScalar: 3489 case FK_ReferenceBindingToInitList: 3490 case FK_InitListBadDestinationType: 3491 case FK_DefaultInitOfConst: 3492 case FK_Incomplete: 3493 case FK_ArrayTypeMismatch: 3494 case FK_NonConstantArrayInit: 3495 case FK_ListInitializationFailed: 3496 case FK_VariableLengthArrayHasInitializer: 3497 case FK_PlaceholderType: 3498 case FK_ExplicitConstructor: 3499 case FK_AddressOfUnaddressableFunction: 3500 return false; 3501 3502 case FK_ReferenceInitOverloadFailed: 3503 case FK_UserConversionOverloadFailed: 3504 case FK_ConstructorOverloadFailed: 3505 case FK_ListConstructorOverloadFailed: 3506 return FailedOverloadResult == OR_Ambiguous; 3507 } 3508 3509 llvm_unreachable("Invalid EntityKind!"); 3510 } 3511 3512 bool InitializationSequence::isConstructorInitialization() const { 3513 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization; 3514 } 3515 3516 void 3517 InitializationSequence 3518 ::AddAddressOverloadResolutionStep(FunctionDecl *Function, 3519 DeclAccessPair Found, 3520 bool HadMultipleCandidates) { 3521 Step S; 3522 S.Kind = SK_ResolveAddressOfOverloadedFunction; 3523 S.Type = Function->getType(); 3524 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3525 S.Function.Function = Function; 3526 S.Function.FoundDecl = Found; 3527 Steps.push_back(S); 3528 } 3529 3530 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType, 3531 ExprValueKind VK) { 3532 Step S; 3533 switch (VK) { 3534 case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break; 3535 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break; 3536 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break; 3537 } 3538 S.Type = BaseType; 3539 Steps.push_back(S); 3540 } 3541 3542 void InitializationSequence::AddReferenceBindingStep(QualType T, 3543 bool BindingTemporary) { 3544 Step S; 3545 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference; 3546 S.Type = T; 3547 Steps.push_back(S); 3548 } 3549 3550 void InitializationSequence::AddFinalCopy(QualType T) { 3551 Step S; 3552 S.Kind = SK_FinalCopy; 3553 S.Type = T; 3554 Steps.push_back(S); 3555 } 3556 3557 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) { 3558 Step S; 3559 S.Kind = SK_ExtraneousCopyToTemporary; 3560 S.Type = T; 3561 Steps.push_back(S); 3562 } 3563 3564 void 3565 InitializationSequence::AddUserConversionStep(FunctionDecl *Function, 3566 DeclAccessPair FoundDecl, 3567 QualType T, 3568 bool HadMultipleCandidates) { 3569 Step S; 3570 S.Kind = SK_UserConversion; 3571 S.Type = T; 3572 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3573 S.Function.Function = Function; 3574 S.Function.FoundDecl = FoundDecl; 3575 Steps.push_back(S); 3576 } 3577 3578 void InitializationSequence::AddQualificationConversionStep(QualType Ty, 3579 ExprValueKind VK) { 3580 Step S; 3581 S.Kind = SK_QualificationConversionRValue; // work around a gcc warning 3582 switch (VK) { 3583 case VK_RValue: 3584 S.Kind = SK_QualificationConversionRValue; 3585 break; 3586 case VK_XValue: 3587 S.Kind = SK_QualificationConversionXValue; 3588 break; 3589 case VK_LValue: 3590 S.Kind = SK_QualificationConversionLValue; 3591 break; 3592 } 3593 S.Type = Ty; 3594 Steps.push_back(S); 3595 } 3596 3597 void InitializationSequence::AddAtomicConversionStep(QualType Ty) { 3598 Step S; 3599 S.Kind = SK_AtomicConversion; 3600 S.Type = Ty; 3601 Steps.push_back(S); 3602 } 3603 3604 void InitializationSequence::AddConversionSequenceStep( 3605 const ImplicitConversionSequence &ICS, QualType T, 3606 bool TopLevelOfInitList) { 3607 Step S; 3608 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing 3609 : SK_ConversionSequence; 3610 S.Type = T; 3611 S.ICS = new ImplicitConversionSequence(ICS); 3612 Steps.push_back(S); 3613 } 3614 3615 void InitializationSequence::AddListInitializationStep(QualType T) { 3616 Step S; 3617 S.Kind = SK_ListInitialization; 3618 S.Type = T; 3619 Steps.push_back(S); 3620 } 3621 3622 void InitializationSequence::AddConstructorInitializationStep( 3623 DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T, 3624 bool HadMultipleCandidates, bool FromInitList, bool AsInitList) { 3625 Step S; 3626 S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall 3627 : SK_ConstructorInitializationFromList 3628 : SK_ConstructorInitialization; 3629 S.Type = T; 3630 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3631 S.Function.Function = Constructor; 3632 S.Function.FoundDecl = FoundDecl; 3633 Steps.push_back(S); 3634 } 3635 3636 void InitializationSequence::AddZeroInitializationStep(QualType T) { 3637 Step S; 3638 S.Kind = SK_ZeroInitialization; 3639 S.Type = T; 3640 Steps.push_back(S); 3641 } 3642 3643 void InitializationSequence::AddCAssignmentStep(QualType T) { 3644 Step S; 3645 S.Kind = SK_CAssignment; 3646 S.Type = T; 3647 Steps.push_back(S); 3648 } 3649 3650 void InitializationSequence::AddStringInitStep(QualType T) { 3651 Step S; 3652 S.Kind = SK_StringInit; 3653 S.Type = T; 3654 Steps.push_back(S); 3655 } 3656 3657 void InitializationSequence::AddObjCObjectConversionStep(QualType T) { 3658 Step S; 3659 S.Kind = SK_ObjCObjectConversion; 3660 S.Type = T; 3661 Steps.push_back(S); 3662 } 3663 3664 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) { 3665 Step S; 3666 S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit; 3667 S.Type = T; 3668 Steps.push_back(S); 3669 } 3670 3671 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) { 3672 Step S; 3673 S.Kind = SK_ArrayLoopIndex; 3674 S.Type = EltT; 3675 Steps.insert(Steps.begin(), S); 3676 3677 S.Kind = SK_ArrayLoopInit; 3678 S.Type = T; 3679 Steps.push_back(S); 3680 } 3681 3682 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) { 3683 Step S; 3684 S.Kind = SK_ParenthesizedArrayInit; 3685 S.Type = T; 3686 Steps.push_back(S); 3687 } 3688 3689 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type, 3690 bool shouldCopy) { 3691 Step s; 3692 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore 3693 : SK_PassByIndirectRestore); 3694 s.Type = type; 3695 Steps.push_back(s); 3696 } 3697 3698 void InitializationSequence::AddProduceObjCObjectStep(QualType T) { 3699 Step S; 3700 S.Kind = SK_ProduceObjCObject; 3701 S.Type = T; 3702 Steps.push_back(S); 3703 } 3704 3705 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) { 3706 Step S; 3707 S.Kind = SK_StdInitializerList; 3708 S.Type = T; 3709 Steps.push_back(S); 3710 } 3711 3712 void InitializationSequence::AddOCLSamplerInitStep(QualType T) { 3713 Step S; 3714 S.Kind = SK_OCLSamplerInit; 3715 S.Type = T; 3716 Steps.push_back(S); 3717 } 3718 3719 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) { 3720 Step S; 3721 S.Kind = SK_OCLZeroOpaqueType; 3722 S.Type = T; 3723 Steps.push_back(S); 3724 } 3725 3726 void InitializationSequence::RewrapReferenceInitList(QualType T, 3727 InitListExpr *Syntactic) { 3728 assert(Syntactic->getNumInits() == 1 && 3729 "Can only rewrap trivial init lists."); 3730 Step S; 3731 S.Kind = SK_UnwrapInitList; 3732 S.Type = Syntactic->getInit(0)->getType(); 3733 Steps.insert(Steps.begin(), S); 3734 3735 S.Kind = SK_RewrapInitList; 3736 S.Type = T; 3737 S.WrappingSyntacticList = Syntactic; 3738 Steps.push_back(S); 3739 } 3740 3741 void InitializationSequence::SetOverloadFailure(FailureKind Failure, 3742 OverloadingResult Result) { 3743 setSequenceKind(FailedSequence); 3744 this->Failure = Failure; 3745 this->FailedOverloadResult = Result; 3746 } 3747 3748 //===----------------------------------------------------------------------===// 3749 // Attempt initialization 3750 //===----------------------------------------------------------------------===// 3751 3752 /// Tries to add a zero initializer. Returns true if that worked. 3753 static bool 3754 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence, 3755 const InitializedEntity &Entity) { 3756 if (Entity.getKind() != InitializedEntity::EK_Variable) 3757 return false; 3758 3759 VarDecl *VD = cast<VarDecl>(Entity.getDecl()); 3760 if (VD->getInit() || VD->getEndLoc().isMacroID()) 3761 return false; 3762 3763 QualType VariableTy = VD->getType().getCanonicalType(); 3764 SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc()); 3765 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc); 3766 if (!Init.empty()) { 3767 Sequence.AddZeroInitializationStep(Entity.getType()); 3768 Sequence.SetZeroInitializationFixit(Init, Loc); 3769 return true; 3770 } 3771 return false; 3772 } 3773 3774 static void MaybeProduceObjCObject(Sema &S, 3775 InitializationSequence &Sequence, 3776 const InitializedEntity &Entity) { 3777 if (!S.getLangOpts().ObjCAutoRefCount) return; 3778 3779 /// When initializing a parameter, produce the value if it's marked 3780 /// __attribute__((ns_consumed)). 3781 if (Entity.isParameterKind()) { 3782 if (!Entity.isParameterConsumed()) 3783 return; 3784 3785 assert(Entity.getType()->isObjCRetainableType() && 3786 "consuming an object of unretainable type?"); 3787 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3788 3789 /// When initializing a return value, if the return type is a 3790 /// retainable type, then returns need to immediately retain the 3791 /// object. If an autorelease is required, it will be done at the 3792 /// last instant. 3793 } else if (Entity.getKind() == InitializedEntity::EK_Result || 3794 Entity.getKind() == InitializedEntity::EK_StmtExprResult) { 3795 if (!Entity.getType()->isObjCRetainableType()) 3796 return; 3797 3798 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3799 } 3800 } 3801 3802 static void TryListInitialization(Sema &S, 3803 const InitializedEntity &Entity, 3804 const InitializationKind &Kind, 3805 InitListExpr *InitList, 3806 InitializationSequence &Sequence, 3807 bool TreatUnavailableAsInvalid); 3808 3809 /// When initializing from init list via constructor, handle 3810 /// initialization of an object of type std::initializer_list<T>. 3811 /// 3812 /// \return true if we have handled initialization of an object of type 3813 /// std::initializer_list<T>, false otherwise. 3814 static bool TryInitializerListConstruction(Sema &S, 3815 InitListExpr *List, 3816 QualType DestType, 3817 InitializationSequence &Sequence, 3818 bool TreatUnavailableAsInvalid) { 3819 QualType E; 3820 if (!S.isStdInitializerList(DestType, &E)) 3821 return false; 3822 3823 if (!S.isCompleteType(List->getExprLoc(), E)) { 3824 Sequence.setIncompleteTypeFailure(E); 3825 return true; 3826 } 3827 3828 // Try initializing a temporary array from the init list. 3829 QualType ArrayType = S.Context.getConstantArrayType( 3830 E.withConst(), 3831 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 3832 List->getNumInits()), 3833 nullptr, clang::ArrayType::Normal, 0); 3834 InitializedEntity HiddenArray = 3835 InitializedEntity::InitializeTemporary(ArrayType); 3836 InitializationKind Kind = InitializationKind::CreateDirectList( 3837 List->getExprLoc(), List->getBeginLoc(), List->getEndLoc()); 3838 TryListInitialization(S, HiddenArray, Kind, List, Sequence, 3839 TreatUnavailableAsInvalid); 3840 if (Sequence) 3841 Sequence.AddStdInitializerListConstructionStep(DestType); 3842 return true; 3843 } 3844 3845 /// Determine if the constructor has the signature of a copy or move 3846 /// constructor for the type T of the class in which it was found. That is, 3847 /// determine if its first parameter is of type T or reference to (possibly 3848 /// cv-qualified) T. 3849 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx, 3850 const ConstructorInfo &Info) { 3851 if (Info.Constructor->getNumParams() == 0) 3852 return false; 3853 3854 QualType ParmT = 3855 Info.Constructor->getParamDecl(0)->getType().getNonReferenceType(); 3856 QualType ClassT = 3857 Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext())); 3858 3859 return Ctx.hasSameUnqualifiedType(ParmT, ClassT); 3860 } 3861 3862 static OverloadingResult 3863 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc, 3864 MultiExprArg Args, 3865 OverloadCandidateSet &CandidateSet, 3866 QualType DestType, 3867 DeclContext::lookup_result Ctors, 3868 OverloadCandidateSet::iterator &Best, 3869 bool CopyInitializing, bool AllowExplicit, 3870 bool OnlyListConstructors, bool IsListInit, 3871 bool SecondStepOfCopyInit = false) { 3872 CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor); 3873 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); 3874 3875 for (NamedDecl *D : Ctors) { 3876 auto Info = getConstructorInfo(D); 3877 if (!Info.Constructor || Info.Constructor->isInvalidDecl()) 3878 continue; 3879 3880 if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor)) 3881 continue; 3882 3883 // C++11 [over.best.ics]p4: 3884 // ... and the constructor or user-defined conversion function is a 3885 // candidate by 3886 // - 13.3.1.3, when the argument is the temporary in the second step 3887 // of a class copy-initialization, or 3888 // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here] 3889 // - the second phase of 13.3.1.7 when the initializer list has exactly 3890 // one element that is itself an initializer list, and the target is 3891 // the first parameter of a constructor of class X, and the conversion 3892 // is to X or reference to (possibly cv-qualified X), 3893 // user-defined conversion sequences are not considered. 3894 bool SuppressUserConversions = 3895 SecondStepOfCopyInit || 3896 (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) && 3897 hasCopyOrMoveCtorParam(S.Context, Info)); 3898 3899 if (Info.ConstructorTmpl) 3900 S.AddTemplateOverloadCandidate( 3901 Info.ConstructorTmpl, Info.FoundDecl, 3902 /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions, 3903 /*PartialOverloading=*/false, AllowExplicit); 3904 else { 3905 // C++ [over.match.copy]p1: 3906 // - When initializing a temporary to be bound to the first parameter 3907 // of a constructor [for type T] that takes a reference to possibly 3908 // cv-qualified T as its first argument, called with a single 3909 // argument in the context of direct-initialization, explicit 3910 // conversion functions are also considered. 3911 // FIXME: What if a constructor template instantiates to such a signature? 3912 bool AllowExplicitConv = AllowExplicit && !CopyInitializing && 3913 Args.size() == 1 && 3914 hasCopyOrMoveCtorParam(S.Context, Info); 3915 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args, 3916 CandidateSet, SuppressUserConversions, 3917 /*PartialOverloading=*/false, AllowExplicit, 3918 AllowExplicitConv); 3919 } 3920 } 3921 3922 // FIXME: Work around a bug in C++17 guaranteed copy elision. 3923 // 3924 // When initializing an object of class type T by constructor 3925 // ([over.match.ctor]) or by list-initialization ([over.match.list]) 3926 // from a single expression of class type U, conversion functions of 3927 // U that convert to the non-reference type cv T are candidates. 3928 // Explicit conversion functions are only candidates during 3929 // direct-initialization. 3930 // 3931 // Note: SecondStepOfCopyInit is only ever true in this case when 3932 // evaluating whether to produce a C++98 compatibility warning. 3933 if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 && 3934 !SecondStepOfCopyInit) { 3935 Expr *Initializer = Args[0]; 3936 auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl(); 3937 if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) { 3938 const auto &Conversions = SourceRD->getVisibleConversionFunctions(); 3939 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 3940 NamedDecl *D = *I; 3941 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 3942 D = D->getUnderlyingDecl(); 3943 3944 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 3945 CXXConversionDecl *Conv; 3946 if (ConvTemplate) 3947 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 3948 else 3949 Conv = cast<CXXConversionDecl>(D); 3950 3951 if (ConvTemplate) 3952 S.AddTemplateConversionCandidate( 3953 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 3954 CandidateSet, AllowExplicit, AllowExplicit, 3955 /*AllowResultConversion*/ false); 3956 else 3957 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, 3958 DestType, CandidateSet, AllowExplicit, 3959 AllowExplicit, 3960 /*AllowResultConversion*/ false); 3961 } 3962 } 3963 } 3964 3965 // Perform overload resolution and return the result. 3966 return CandidateSet.BestViableFunction(S, DeclLoc, Best); 3967 } 3968 3969 /// Attempt initialization by constructor (C++ [dcl.init]), which 3970 /// enumerates the constructors of the initialized entity and performs overload 3971 /// resolution to select the best. 3972 /// \param DestType The destination class type. 3973 /// \param DestArrayType The destination type, which is either DestType or 3974 /// a (possibly multidimensional) array of DestType. 3975 /// \param IsListInit Is this list-initialization? 3976 /// \param IsInitListCopy Is this non-list-initialization resulting from a 3977 /// list-initialization from {x} where x is the same 3978 /// type as the entity? 3979 static void TryConstructorInitialization(Sema &S, 3980 const InitializedEntity &Entity, 3981 const InitializationKind &Kind, 3982 MultiExprArg Args, QualType DestType, 3983 QualType DestArrayType, 3984 InitializationSequence &Sequence, 3985 bool IsListInit = false, 3986 bool IsInitListCopy = false) { 3987 assert(((!IsListInit && !IsInitListCopy) || 3988 (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && 3989 "IsListInit/IsInitListCopy must come with a single initializer list " 3990 "argument."); 3991 InitListExpr *ILE = 3992 (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr; 3993 MultiExprArg UnwrappedArgs = 3994 ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args; 3995 3996 // The type we're constructing needs to be complete. 3997 if (!S.isCompleteType(Kind.getLocation(), DestType)) { 3998 Sequence.setIncompleteTypeFailure(DestType); 3999 return; 4000 } 4001 4002 // C++17 [dcl.init]p17: 4003 // - If the initializer expression is a prvalue and the cv-unqualified 4004 // version of the source type is the same class as the class of the 4005 // destination, the initializer expression is used to initialize the 4006 // destination object. 4007 // Per DR (no number yet), this does not apply when initializing a base 4008 // class or delegating to another constructor from a mem-initializer. 4009 // ObjC++: Lambda captured by the block in the lambda to block conversion 4010 // should avoid copy elision. 4011 if (S.getLangOpts().CPlusPlus17 && 4012 Entity.getKind() != InitializedEntity::EK_Base && 4013 Entity.getKind() != InitializedEntity::EK_Delegating && 4014 Entity.getKind() != 4015 InitializedEntity::EK_LambdaToBlockConversionBlockElement && 4016 UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() && 4017 S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) { 4018 // Convert qualifications if necessary. 4019 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 4020 if (ILE) 4021 Sequence.RewrapReferenceInitList(DestType, ILE); 4022 return; 4023 } 4024 4025 const RecordType *DestRecordType = DestType->getAs<RecordType>(); 4026 assert(DestRecordType && "Constructor initialization requires record type"); 4027 CXXRecordDecl *DestRecordDecl 4028 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 4029 4030 // Build the candidate set directly in the initialization sequence 4031 // structure, so that it will persist if we fail. 4032 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4033 4034 // Determine whether we are allowed to call explicit constructors or 4035 // explicit conversion operators. 4036 bool AllowExplicit = Kind.AllowExplicit() || IsListInit; 4037 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy; 4038 4039 // - Otherwise, if T is a class type, constructors are considered. The 4040 // applicable constructors are enumerated, and the best one is chosen 4041 // through overload resolution. 4042 DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl); 4043 4044 OverloadingResult Result = OR_No_Viable_Function; 4045 OverloadCandidateSet::iterator Best; 4046 bool AsInitializerList = false; 4047 4048 // C++11 [over.match.list]p1, per DR1467: 4049 // When objects of non-aggregate type T are list-initialized, such that 4050 // 8.5.4 [dcl.init.list] specifies that overload resolution is performed 4051 // according to the rules in this section, overload resolution selects 4052 // the constructor in two phases: 4053 // 4054 // - Initially, the candidate functions are the initializer-list 4055 // constructors of the class T and the argument list consists of the 4056 // initializer list as a single argument. 4057 if (IsListInit) { 4058 AsInitializerList = true; 4059 4060 // If the initializer list has no elements and T has a default constructor, 4061 // the first phase is omitted. 4062 if (!(UnwrappedArgs.empty() && S.LookupDefaultConstructor(DestRecordDecl))) 4063 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, 4064 CandidateSet, DestType, Ctors, Best, 4065 CopyInitialization, AllowExplicit, 4066 /*OnlyListConstructors=*/true, 4067 IsListInit); 4068 } 4069 4070 // C++11 [over.match.list]p1: 4071 // - If no viable initializer-list constructor is found, overload resolution 4072 // is performed again, where the candidate functions are all the 4073 // constructors of the class T and the argument list consists of the 4074 // elements of the initializer list. 4075 if (Result == OR_No_Viable_Function) { 4076 AsInitializerList = false; 4077 Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs, 4078 CandidateSet, DestType, Ctors, Best, 4079 CopyInitialization, AllowExplicit, 4080 /*OnlyListConstructors=*/false, 4081 IsListInit); 4082 } 4083 if (Result) { 4084 Sequence.SetOverloadFailure(IsListInit ? 4085 InitializationSequence::FK_ListConstructorOverloadFailed : 4086 InitializationSequence::FK_ConstructorOverloadFailed, 4087 Result); 4088 return; 4089 } 4090 4091 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4092 4093 // In C++17, ResolveConstructorOverload can select a conversion function 4094 // instead of a constructor. 4095 if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) { 4096 // Add the user-defined conversion step that calls the conversion function. 4097 QualType ConvType = CD->getConversionType(); 4098 assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) && 4099 "should not have selected this conversion function"); 4100 Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType, 4101 HadMultipleCandidates); 4102 if (!S.Context.hasSameType(ConvType, DestType)) 4103 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 4104 if (IsListInit) 4105 Sequence.RewrapReferenceInitList(Entity.getType(), ILE); 4106 return; 4107 } 4108 4109 // C++11 [dcl.init]p6: 4110 // If a program calls for the default initialization of an object 4111 // of a const-qualified type T, T shall be a class type with a 4112 // user-provided default constructor. 4113 // C++ core issue 253 proposal: 4114 // If the implicit default constructor initializes all subobjects, no 4115 // initializer should be required. 4116 // The 253 proposal is for example needed to process libstdc++ headers in 5.x. 4117 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 4118 if (Kind.getKind() == InitializationKind::IK_Default && 4119 Entity.getType().isConstQualified()) { 4120 if (!CtorDecl->getParent()->allowConstDefaultInit()) { 4121 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 4122 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 4123 return; 4124 } 4125 } 4126 4127 // C++11 [over.match.list]p1: 4128 // In copy-list-initialization, if an explicit constructor is chosen, the 4129 // initializer is ill-formed. 4130 if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) { 4131 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor); 4132 return; 4133 } 4134 4135 // Add the constructor initialization step. Any cv-qualification conversion is 4136 // subsumed by the initialization. 4137 Sequence.AddConstructorInitializationStep( 4138 Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates, 4139 IsListInit | IsInitListCopy, AsInitializerList); 4140 } 4141 4142 static bool 4143 ResolveOverloadedFunctionForReferenceBinding(Sema &S, 4144 Expr *Initializer, 4145 QualType &SourceType, 4146 QualType &UnqualifiedSourceType, 4147 QualType UnqualifiedTargetType, 4148 InitializationSequence &Sequence) { 4149 if (S.Context.getCanonicalType(UnqualifiedSourceType) == 4150 S.Context.OverloadTy) { 4151 DeclAccessPair Found; 4152 bool HadMultipleCandidates = false; 4153 if (FunctionDecl *Fn 4154 = S.ResolveAddressOfOverloadedFunction(Initializer, 4155 UnqualifiedTargetType, 4156 false, Found, 4157 &HadMultipleCandidates)) { 4158 Sequence.AddAddressOverloadResolutionStep(Fn, Found, 4159 HadMultipleCandidates); 4160 SourceType = Fn->getType(); 4161 UnqualifiedSourceType = SourceType.getUnqualifiedType(); 4162 } else if (!UnqualifiedTargetType->isRecordType()) { 4163 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4164 return true; 4165 } 4166 } 4167 return false; 4168 } 4169 4170 static void TryReferenceInitializationCore(Sema &S, 4171 const InitializedEntity &Entity, 4172 const InitializationKind &Kind, 4173 Expr *Initializer, 4174 QualType cv1T1, QualType T1, 4175 Qualifiers T1Quals, 4176 QualType cv2T2, QualType T2, 4177 Qualifiers T2Quals, 4178 InitializationSequence &Sequence); 4179 4180 static void TryValueInitialization(Sema &S, 4181 const InitializedEntity &Entity, 4182 const InitializationKind &Kind, 4183 InitializationSequence &Sequence, 4184 InitListExpr *InitList = nullptr); 4185 4186 /// Attempt list initialization of a reference. 4187 static void TryReferenceListInitialization(Sema &S, 4188 const InitializedEntity &Entity, 4189 const InitializationKind &Kind, 4190 InitListExpr *InitList, 4191 InitializationSequence &Sequence, 4192 bool TreatUnavailableAsInvalid) { 4193 // First, catch C++03 where this isn't possible. 4194 if (!S.getLangOpts().CPlusPlus11) { 4195 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 4196 return; 4197 } 4198 // Can't reference initialize a compound literal. 4199 if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) { 4200 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 4201 return; 4202 } 4203 4204 QualType DestType = Entity.getType(); 4205 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); 4206 Qualifiers T1Quals; 4207 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 4208 4209 // Reference initialization via an initializer list works thus: 4210 // If the initializer list consists of a single element that is 4211 // reference-related to the referenced type, bind directly to that element 4212 // (possibly creating temporaries). 4213 // Otherwise, initialize a temporary with the initializer list and 4214 // bind to that. 4215 if (InitList->getNumInits() == 1) { 4216 Expr *Initializer = InitList->getInit(0); 4217 QualType cv2T2 = Initializer->getType(); 4218 Qualifiers T2Quals; 4219 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 4220 4221 // If this fails, creating a temporary wouldn't work either. 4222 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 4223 T1, Sequence)) 4224 return; 4225 4226 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4227 Sema::ReferenceCompareResult RefRelationship 4228 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2); 4229 if (RefRelationship >= Sema::Ref_Related) { 4230 // Try to bind the reference here. 4231 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 4232 T1Quals, cv2T2, T2, T2Quals, Sequence); 4233 if (Sequence) 4234 Sequence.RewrapReferenceInitList(cv1T1, InitList); 4235 return; 4236 } 4237 4238 // Update the initializer if we've resolved an overloaded function. 4239 if (Sequence.step_begin() != Sequence.step_end()) 4240 Sequence.RewrapReferenceInitList(cv1T1, InitList); 4241 } 4242 4243 // Not reference-related. Create a temporary and bind to that. 4244 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1); 4245 4246 TryListInitialization(S, TempEntity, Kind, InitList, Sequence, 4247 TreatUnavailableAsInvalid); 4248 if (Sequence) { 4249 if (DestType->isRValueReferenceType() || 4250 (T1Quals.hasConst() && !T1Quals.hasVolatile())) 4251 Sequence.AddReferenceBindingStep(cv1T1, /*BindingTemporary=*/true); 4252 else 4253 Sequence.SetFailed( 4254 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); 4255 } 4256 } 4257 4258 /// Attempt list initialization (C++0x [dcl.init.list]) 4259 static void TryListInitialization(Sema &S, 4260 const InitializedEntity &Entity, 4261 const InitializationKind &Kind, 4262 InitListExpr *InitList, 4263 InitializationSequence &Sequence, 4264 bool TreatUnavailableAsInvalid) { 4265 QualType DestType = Entity.getType(); 4266 4267 // C++ doesn't allow scalar initialization with more than one argument. 4268 // But C99 complex numbers are scalars and it makes sense there. 4269 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() && 4270 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) { 4271 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar); 4272 return; 4273 } 4274 if (DestType->isReferenceType()) { 4275 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence, 4276 TreatUnavailableAsInvalid); 4277 return; 4278 } 4279 4280 if (DestType->isRecordType() && 4281 !S.isCompleteType(InitList->getBeginLoc(), DestType)) { 4282 Sequence.setIncompleteTypeFailure(DestType); 4283 return; 4284 } 4285 4286 // C++11 [dcl.init.list]p3, per DR1467: 4287 // - If T is a class type and the initializer list has a single element of 4288 // type cv U, where U is T or a class derived from T, the object is 4289 // initialized from that element (by copy-initialization for 4290 // copy-list-initialization, or by direct-initialization for 4291 // direct-list-initialization). 4292 // - Otherwise, if T is a character array and the initializer list has a 4293 // single element that is an appropriately-typed string literal 4294 // (8.5.2 [dcl.init.string]), initialization is performed as described 4295 // in that section. 4296 // - Otherwise, if T is an aggregate, [...] (continue below). 4297 if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) { 4298 if (DestType->isRecordType()) { 4299 QualType InitType = InitList->getInit(0)->getType(); 4300 if (S.Context.hasSameUnqualifiedType(InitType, DestType) || 4301 S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) { 4302 Expr *InitListAsExpr = InitList; 4303 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 4304 DestType, Sequence, 4305 /*InitListSyntax*/false, 4306 /*IsInitListCopy*/true); 4307 return; 4308 } 4309 } 4310 if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) { 4311 Expr *SubInit[1] = {InitList->getInit(0)}; 4312 if (!isa<VariableArrayType>(DestAT) && 4313 IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) { 4314 InitializationKind SubKind = 4315 Kind.getKind() == InitializationKind::IK_DirectList 4316 ? InitializationKind::CreateDirect(Kind.getLocation(), 4317 InitList->getLBraceLoc(), 4318 InitList->getRBraceLoc()) 4319 : Kind; 4320 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 4321 /*TopLevelOfInitList*/ true, 4322 TreatUnavailableAsInvalid); 4323 4324 // TryStringLiteralInitialization() (in InitializeFrom()) will fail if 4325 // the element is not an appropriately-typed string literal, in which 4326 // case we should proceed as in C++11 (below). 4327 if (Sequence) { 4328 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4329 return; 4330 } 4331 } 4332 } 4333 } 4334 4335 // C++11 [dcl.init.list]p3: 4336 // - If T is an aggregate, aggregate initialization is performed. 4337 if ((DestType->isRecordType() && !DestType->isAggregateType()) || 4338 (S.getLangOpts().CPlusPlus11 && 4339 S.isStdInitializerList(DestType, nullptr))) { 4340 if (S.getLangOpts().CPlusPlus11) { 4341 // - Otherwise, if the initializer list has no elements and T is a 4342 // class type with a default constructor, the object is 4343 // value-initialized. 4344 if (InitList->getNumInits() == 0) { 4345 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl(); 4346 if (S.LookupDefaultConstructor(RD)) { 4347 TryValueInitialization(S, Entity, Kind, Sequence, InitList); 4348 return; 4349 } 4350 } 4351 4352 // - Otherwise, if T is a specialization of std::initializer_list<E>, 4353 // an initializer_list object constructed [...] 4354 if (TryInitializerListConstruction(S, InitList, DestType, Sequence, 4355 TreatUnavailableAsInvalid)) 4356 return; 4357 4358 // - Otherwise, if T is a class type, constructors are considered. 4359 Expr *InitListAsExpr = InitList; 4360 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 4361 DestType, Sequence, /*InitListSyntax*/true); 4362 } else 4363 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType); 4364 return; 4365 } 4366 4367 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() && 4368 InitList->getNumInits() == 1) { 4369 Expr *E = InitList->getInit(0); 4370 4371 // - Otherwise, if T is an enumeration with a fixed underlying type, 4372 // the initializer-list has a single element v, and the initialization 4373 // is direct-list-initialization, the object is initialized with the 4374 // value T(v); if a narrowing conversion is required to convert v to 4375 // the underlying type of T, the program is ill-formed. 4376 auto *ET = DestType->getAs<EnumType>(); 4377 if (S.getLangOpts().CPlusPlus17 && 4378 Kind.getKind() == InitializationKind::IK_DirectList && 4379 ET && ET->getDecl()->isFixed() && 4380 !S.Context.hasSameUnqualifiedType(E->getType(), DestType) && 4381 (E->getType()->isIntegralOrEnumerationType() || 4382 E->getType()->isFloatingType())) { 4383 // There are two ways that T(v) can work when T is an enumeration type. 4384 // If there is either an implicit conversion sequence from v to T or 4385 // a conversion function that can convert from v to T, then we use that. 4386 // Otherwise, if v is of integral, enumeration, or floating-point type, 4387 // it is converted to the enumeration type via its underlying type. 4388 // There is no overlap possible between these two cases (except when the 4389 // source value is already of the destination type), and the first 4390 // case is handled by the general case for single-element lists below. 4391 ImplicitConversionSequence ICS; 4392 ICS.setStandard(); 4393 ICS.Standard.setAsIdentityConversion(); 4394 if (!E->isRValue()) 4395 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 4396 // If E is of a floating-point type, then the conversion is ill-formed 4397 // due to narrowing, but go through the motions in order to produce the 4398 // right diagnostic. 4399 ICS.Standard.Second = E->getType()->isFloatingType() 4400 ? ICK_Floating_Integral 4401 : ICK_Integral_Conversion; 4402 ICS.Standard.setFromType(E->getType()); 4403 ICS.Standard.setToType(0, E->getType()); 4404 ICS.Standard.setToType(1, DestType); 4405 ICS.Standard.setToType(2, DestType); 4406 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2), 4407 /*TopLevelOfInitList*/true); 4408 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4409 return; 4410 } 4411 4412 // - Otherwise, if the initializer list has a single element of type E 4413 // [...references are handled above...], the object or reference is 4414 // initialized from that element (by copy-initialization for 4415 // copy-list-initialization, or by direct-initialization for 4416 // direct-list-initialization); if a narrowing conversion is required 4417 // to convert the element to T, the program is ill-formed. 4418 // 4419 // Per core-24034, this is direct-initialization if we were performing 4420 // direct-list-initialization and copy-initialization otherwise. 4421 // We can't use InitListChecker for this, because it always performs 4422 // copy-initialization. This only matters if we might use an 'explicit' 4423 // conversion operator, so we only need to handle the cases where the source 4424 // is of record type. 4425 if (InitList->getInit(0)->getType()->isRecordType()) { 4426 InitializationKind SubKind = 4427 Kind.getKind() == InitializationKind::IK_DirectList 4428 ? InitializationKind::CreateDirect(Kind.getLocation(), 4429 InitList->getLBraceLoc(), 4430 InitList->getRBraceLoc()) 4431 : Kind; 4432 Expr *SubInit[1] = { InitList->getInit(0) }; 4433 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 4434 /*TopLevelOfInitList*/true, 4435 TreatUnavailableAsInvalid); 4436 if (Sequence) 4437 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4438 return; 4439 } 4440 } 4441 4442 InitListChecker CheckInitList(S, Entity, InitList, 4443 DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid); 4444 if (CheckInitList.HadError()) { 4445 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed); 4446 return; 4447 } 4448 4449 // Add the list initialization step with the built init list. 4450 Sequence.AddListInitializationStep(DestType); 4451 } 4452 4453 /// Try a reference initialization that involves calling a conversion 4454 /// function. 4455 static OverloadingResult TryRefInitWithConversionFunction( 4456 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, 4457 Expr *Initializer, bool AllowRValues, bool IsLValueRef, 4458 InitializationSequence &Sequence) { 4459 QualType DestType = Entity.getType(); 4460 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); 4461 QualType T1 = cv1T1.getUnqualifiedType(); 4462 QualType cv2T2 = Initializer->getType(); 4463 QualType T2 = cv2T2.getUnqualifiedType(); 4464 4465 assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) && 4466 "Must have incompatible references when binding via conversion"); 4467 4468 // Build the candidate set directly in the initialization sequence 4469 // structure, so that it will persist if we fail. 4470 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4471 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 4472 4473 // Determine whether we are allowed to call explicit conversion operators. 4474 // Note that none of [over.match.copy], [over.match.conv], nor 4475 // [over.match.ref] permit an explicit constructor to be chosen when 4476 // initializing a reference, not even for direct-initialization. 4477 bool AllowExplicitCtors = false; 4478 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding(); 4479 4480 const RecordType *T1RecordType = nullptr; 4481 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) && 4482 S.isCompleteType(Kind.getLocation(), T1)) { 4483 // The type we're converting to is a class type. Enumerate its constructors 4484 // to see if there is a suitable conversion. 4485 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl()); 4486 4487 for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) { 4488 auto Info = getConstructorInfo(D); 4489 if (!Info.Constructor) 4490 continue; 4491 4492 if (!Info.Constructor->isInvalidDecl() && 4493 Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) { 4494 if (Info.ConstructorTmpl) 4495 S.AddTemplateOverloadCandidate( 4496 Info.ConstructorTmpl, Info.FoundDecl, 4497 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, 4498 /*SuppressUserConversions=*/true, 4499 /*PartialOverloading*/ false, AllowExplicitCtors); 4500 else 4501 S.AddOverloadCandidate( 4502 Info.Constructor, Info.FoundDecl, Initializer, CandidateSet, 4503 /*SuppressUserConversions=*/true, 4504 /*PartialOverloading*/ false, AllowExplicitCtors); 4505 } 4506 } 4507 } 4508 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl()) 4509 return OR_No_Viable_Function; 4510 4511 const RecordType *T2RecordType = nullptr; 4512 if ((T2RecordType = T2->getAs<RecordType>()) && 4513 S.isCompleteType(Kind.getLocation(), T2)) { 4514 // The type we're converting from is a class type, enumerate its conversion 4515 // functions. 4516 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl()); 4517 4518 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); 4519 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 4520 NamedDecl *D = *I; 4521 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 4522 if (isa<UsingShadowDecl>(D)) 4523 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4524 4525 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 4526 CXXConversionDecl *Conv; 4527 if (ConvTemplate) 4528 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 4529 else 4530 Conv = cast<CXXConversionDecl>(D); 4531 4532 // If the conversion function doesn't return a reference type, 4533 // it can't be considered for this conversion unless we're allowed to 4534 // consider rvalues. 4535 // FIXME: Do we need to make sure that we only consider conversion 4536 // candidates with reference-compatible results? That might be needed to 4537 // break recursion. 4538 if ((AllowRValues || 4539 Conv->getConversionType()->isLValueReferenceType())) { 4540 if (ConvTemplate) 4541 S.AddTemplateConversionCandidate( 4542 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 4543 CandidateSet, 4544 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); 4545 else 4546 S.AddConversionCandidate( 4547 Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet, 4548 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); 4549 } 4550 } 4551 } 4552 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl()) 4553 return OR_No_Viable_Function; 4554 4555 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4556 4557 // Perform overload resolution. If it fails, return the failed result. 4558 OverloadCandidateSet::iterator Best; 4559 if (OverloadingResult Result 4560 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) 4561 return Result; 4562 4563 FunctionDecl *Function = Best->Function; 4564 // This is the overload that will be used for this initialization step if we 4565 // use this initialization. Mark it as referenced. 4566 Function->setReferenced(); 4567 4568 // Compute the returned type and value kind of the conversion. 4569 QualType cv3T3; 4570 if (isa<CXXConversionDecl>(Function)) 4571 cv3T3 = Function->getReturnType(); 4572 else 4573 cv3T3 = T1; 4574 4575 ExprValueKind VK = VK_RValue; 4576 if (cv3T3->isLValueReferenceType()) 4577 VK = VK_LValue; 4578 else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>()) 4579 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue; 4580 cv3T3 = cv3T3.getNonLValueExprType(S.Context); 4581 4582 // Add the user-defined conversion step. 4583 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4584 Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3, 4585 HadMultipleCandidates); 4586 4587 // Determine whether we'll need to perform derived-to-base adjustments or 4588 // other conversions. 4589 Sema::ReferenceConversions RefConv; 4590 Sema::ReferenceCompareResult NewRefRelationship = 4591 S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, &RefConv); 4592 4593 // Add the final conversion sequence, if necessary. 4594 if (NewRefRelationship == Sema::Ref_Incompatible) { 4595 assert(!isa<CXXConstructorDecl>(Function) && 4596 "should not have conversion after constructor"); 4597 4598 ImplicitConversionSequence ICS; 4599 ICS.setStandard(); 4600 ICS.Standard = Best->FinalConversion; 4601 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2)); 4602 4603 // Every implicit conversion results in a prvalue, except for a glvalue 4604 // derived-to-base conversion, which we handle below. 4605 cv3T3 = ICS.Standard.getToType(2); 4606 VK = VK_RValue; 4607 } 4608 4609 // If the converted initializer is a prvalue, its type T4 is adjusted to 4610 // type "cv1 T4" and the temporary materialization conversion is applied. 4611 // 4612 // We adjust the cv-qualifications to match the reference regardless of 4613 // whether we have a prvalue so that the AST records the change. In this 4614 // case, T4 is "cv3 T3". 4615 QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers()); 4616 if (cv1T4.getQualifiers() != cv3T3.getQualifiers()) 4617 Sequence.AddQualificationConversionStep(cv1T4, VK); 4618 Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue); 4619 VK = IsLValueRef ? VK_LValue : VK_XValue; 4620 4621 if (RefConv & Sema::ReferenceConversions::DerivedToBase) 4622 Sequence.AddDerivedToBaseCastStep(cv1T1, VK); 4623 else if (RefConv & Sema::ReferenceConversions::ObjC) 4624 Sequence.AddObjCObjectConversionStep(cv1T1); 4625 else if (RefConv & Sema::ReferenceConversions::Function) 4626 Sequence.AddQualificationConversionStep(cv1T1, VK); 4627 else if (RefConv & Sema::ReferenceConversions::Qualification) { 4628 if (!S.Context.hasSameType(cv1T4, cv1T1)) 4629 Sequence.AddQualificationConversionStep(cv1T1, VK); 4630 } 4631 4632 return OR_Success; 4633 } 4634 4635 static void CheckCXX98CompatAccessibleCopy(Sema &S, 4636 const InitializedEntity &Entity, 4637 Expr *CurInitExpr); 4638 4639 /// Attempt reference initialization (C++0x [dcl.init.ref]) 4640 static void TryReferenceInitialization(Sema &S, 4641 const InitializedEntity &Entity, 4642 const InitializationKind &Kind, 4643 Expr *Initializer, 4644 InitializationSequence &Sequence) { 4645 QualType DestType = Entity.getType(); 4646 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); 4647 Qualifiers T1Quals; 4648 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 4649 QualType cv2T2 = Initializer->getType(); 4650 Qualifiers T2Quals; 4651 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 4652 4653 // If the initializer is the address of an overloaded function, try 4654 // to resolve the overloaded function. If all goes well, T2 is the 4655 // type of the resulting function. 4656 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 4657 T1, Sequence)) 4658 return; 4659 4660 // Delegate everything else to a subfunction. 4661 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 4662 T1Quals, cv2T2, T2, T2Quals, Sequence); 4663 } 4664 4665 /// Determine whether an expression is a non-referenceable glvalue (one to 4666 /// which a reference can never bind). Attempting to bind a reference to 4667 /// such a glvalue will always create a temporary. 4668 static bool isNonReferenceableGLValue(Expr *E) { 4669 return E->refersToBitField() || E->refersToVectorElement(); 4670 } 4671 4672 /// Reference initialization without resolving overloaded functions. 4673 static void TryReferenceInitializationCore(Sema &S, 4674 const InitializedEntity &Entity, 4675 const InitializationKind &Kind, 4676 Expr *Initializer, 4677 QualType cv1T1, QualType T1, 4678 Qualifiers T1Quals, 4679 QualType cv2T2, QualType T2, 4680 Qualifiers T2Quals, 4681 InitializationSequence &Sequence) { 4682 QualType DestType = Entity.getType(); 4683 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4684 4685 // Compute some basic properties of the types and the initializer. 4686 bool isLValueRef = DestType->isLValueReferenceType(); 4687 bool isRValueRef = !isLValueRef; 4688 Expr::Classification InitCategory = Initializer->Classify(S.Context); 4689 4690 Sema::ReferenceConversions RefConv; 4691 Sema::ReferenceCompareResult RefRelationship = 4692 S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, &RefConv); 4693 4694 // C++0x [dcl.init.ref]p5: 4695 // A reference to type "cv1 T1" is initialized by an expression of type 4696 // "cv2 T2" as follows: 4697 // 4698 // - If the reference is an lvalue reference and the initializer 4699 // expression 4700 // Note the analogous bullet points for rvalue refs to functions. Because 4701 // there are no function rvalues in C++, rvalue refs to functions are treated 4702 // like lvalue refs. 4703 OverloadingResult ConvOvlResult = OR_Success; 4704 bool T1Function = T1->isFunctionType(); 4705 if (isLValueRef || T1Function) { 4706 if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) && 4707 (RefRelationship == Sema::Ref_Compatible || 4708 (Kind.isCStyleOrFunctionalCast() && 4709 RefRelationship == Sema::Ref_Related))) { 4710 // - is an lvalue (but is not a bit-field), and "cv1 T1" is 4711 // reference-compatible with "cv2 T2," or 4712 if (RefConv & (Sema::ReferenceConversions::DerivedToBase | 4713 Sema::ReferenceConversions::ObjC)) { 4714 // If we're converting the pointee, add any qualifiers first; 4715 // these qualifiers must all be top-level, so just convert to "cv1 T2". 4716 if (RefConv & (Sema::ReferenceConversions::Qualification)) 4717 Sequence.AddQualificationConversionStep( 4718 S.Context.getQualifiedType(T2, T1Quals), 4719 Initializer->getValueKind()); 4720 if (RefConv & Sema::ReferenceConversions::DerivedToBase) 4721 Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue); 4722 else 4723 Sequence.AddObjCObjectConversionStep(cv1T1); 4724 } else if (RefConv & (Sema::ReferenceConversions::Qualification | 4725 Sema::ReferenceConversions::Function)) { 4726 // Perform a (possibly multi-level) qualification conversion. 4727 // FIXME: Should we use a different step kind for function conversions? 4728 Sequence.AddQualificationConversionStep(cv1T1, 4729 Initializer->getValueKind()); 4730 } 4731 4732 // We only create a temporary here when binding a reference to a 4733 // bit-field or vector element. Those cases are't supposed to be 4734 // handled by this bullet, but the outcome is the same either way. 4735 Sequence.AddReferenceBindingStep(cv1T1, false); 4736 return; 4737 } 4738 4739 // - has a class type (i.e., T2 is a class type), where T1 is not 4740 // reference-related to T2, and can be implicitly converted to an 4741 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible 4742 // with "cv3 T3" (this conversion is selected by enumerating the 4743 // applicable conversion functions (13.3.1.6) and choosing the best 4744 // one through overload resolution (13.3)), 4745 // If we have an rvalue ref to function type here, the rhs must be 4746 // an rvalue. DR1287 removed the "implicitly" here. 4747 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() && 4748 (isLValueRef || InitCategory.isRValue())) { 4749 ConvOvlResult = TryRefInitWithConversionFunction( 4750 S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef, 4751 /*IsLValueRef*/ isLValueRef, Sequence); 4752 if (ConvOvlResult == OR_Success) 4753 return; 4754 if (ConvOvlResult != OR_No_Viable_Function) 4755 Sequence.SetOverloadFailure( 4756 InitializationSequence::FK_ReferenceInitOverloadFailed, 4757 ConvOvlResult); 4758 } 4759 } 4760 4761 // - Otherwise, the reference shall be an lvalue reference to a 4762 // non-volatile const type (i.e., cv1 shall be const), or the reference 4763 // shall be an rvalue reference. 4764 // For address spaces, we interpret this to mean that an addr space 4765 // of a reference "cv1 T1" is a superset of addr space of "cv2 T2". 4766 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() && 4767 T1Quals.isAddressSpaceSupersetOf(T2Quals))) { 4768 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 4769 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4770 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 4771 Sequence.SetOverloadFailure( 4772 InitializationSequence::FK_ReferenceInitOverloadFailed, 4773 ConvOvlResult); 4774 else if (!InitCategory.isLValue()) 4775 Sequence.SetFailed( 4776 T1Quals.isAddressSpaceSupersetOf(T2Quals) 4777 ? InitializationSequence:: 4778 FK_NonConstLValueReferenceBindingToTemporary 4779 : InitializationSequence::FK_ReferenceInitDropsQualifiers); 4780 else { 4781 InitializationSequence::FailureKind FK; 4782 switch (RefRelationship) { 4783 case Sema::Ref_Compatible: 4784 if (Initializer->refersToBitField()) 4785 FK = InitializationSequence:: 4786 FK_NonConstLValueReferenceBindingToBitfield; 4787 else if (Initializer->refersToVectorElement()) 4788 FK = InitializationSequence:: 4789 FK_NonConstLValueReferenceBindingToVectorElement; 4790 else 4791 llvm_unreachable("unexpected kind of compatible initializer"); 4792 break; 4793 case Sema::Ref_Related: 4794 FK = InitializationSequence::FK_ReferenceInitDropsQualifiers; 4795 break; 4796 case Sema::Ref_Incompatible: 4797 FK = InitializationSequence:: 4798 FK_NonConstLValueReferenceBindingToUnrelated; 4799 break; 4800 } 4801 Sequence.SetFailed(FK); 4802 } 4803 return; 4804 } 4805 4806 // - If the initializer expression 4807 // - is an 4808 // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or 4809 // [1z] rvalue (but not a bit-field) or 4810 // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2" 4811 // 4812 // Note: functions are handled above and below rather than here... 4813 if (!T1Function && 4814 (RefRelationship == Sema::Ref_Compatible || 4815 (Kind.isCStyleOrFunctionalCast() && 4816 RefRelationship == Sema::Ref_Related)) && 4817 ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) || 4818 (InitCategory.isPRValue() && 4819 (S.getLangOpts().CPlusPlus17 || T2->isRecordType() || 4820 T2->isArrayType())))) { 4821 ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue; 4822 if (InitCategory.isPRValue() && T2->isRecordType()) { 4823 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the 4824 // compiler the freedom to perform a copy here or bind to the 4825 // object, while C++0x requires that we bind directly to the 4826 // object. Hence, we always bind to the object without making an 4827 // extra copy. However, in C++03 requires that we check for the 4828 // presence of a suitable copy constructor: 4829 // 4830 // The constructor that would be used to make the copy shall 4831 // be callable whether or not the copy is actually done. 4832 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt) 4833 Sequence.AddExtraneousCopyToTemporary(cv2T2); 4834 else if (S.getLangOpts().CPlusPlus11) 4835 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer); 4836 } 4837 4838 // C++1z [dcl.init.ref]/5.2.1.2: 4839 // If the converted initializer is a prvalue, its type T4 is adjusted 4840 // to type "cv1 T4" and the temporary materialization conversion is 4841 // applied. 4842 // Postpone address space conversions to after the temporary materialization 4843 // conversion to allow creating temporaries in the alloca address space. 4844 auto T1QualsIgnoreAS = T1Quals; 4845 auto T2QualsIgnoreAS = T2Quals; 4846 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { 4847 T1QualsIgnoreAS.removeAddressSpace(); 4848 T2QualsIgnoreAS.removeAddressSpace(); 4849 } 4850 QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS); 4851 if (T1QualsIgnoreAS != T2QualsIgnoreAS) 4852 Sequence.AddQualificationConversionStep(cv1T4, ValueKind); 4853 Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue); 4854 ValueKind = isLValueRef ? VK_LValue : VK_XValue; 4855 // Add addr space conversion if required. 4856 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { 4857 auto T4Quals = cv1T4.getQualifiers(); 4858 T4Quals.addAddressSpace(T1Quals.getAddressSpace()); 4859 QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals); 4860 Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind); 4861 cv1T4 = cv1T4WithAS; 4862 } 4863 4864 // In any case, the reference is bound to the resulting glvalue (or to 4865 // an appropriate base class subobject). 4866 if (RefConv & Sema::ReferenceConversions::DerivedToBase) 4867 Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind); 4868 else if (RefConv & Sema::ReferenceConversions::ObjC) 4869 Sequence.AddObjCObjectConversionStep(cv1T1); 4870 else if (RefConv & Sema::ReferenceConversions::Qualification) { 4871 if (!S.Context.hasSameType(cv1T4, cv1T1)) 4872 Sequence.AddQualificationConversionStep(cv1T1, ValueKind); 4873 } 4874 return; 4875 } 4876 4877 // - has a class type (i.e., T2 is a class type), where T1 is not 4878 // reference-related to T2, and can be implicitly converted to an 4879 // xvalue, class prvalue, or function lvalue of type "cv3 T3", 4880 // where "cv1 T1" is reference-compatible with "cv3 T3", 4881 // 4882 // DR1287 removes the "implicitly" here. 4883 if (T2->isRecordType()) { 4884 if (RefRelationship == Sema::Ref_Incompatible) { 4885 ConvOvlResult = TryRefInitWithConversionFunction( 4886 S, Entity, Kind, Initializer, /*AllowRValues*/ true, 4887 /*IsLValueRef*/ isLValueRef, Sequence); 4888 if (ConvOvlResult) 4889 Sequence.SetOverloadFailure( 4890 InitializationSequence::FK_ReferenceInitOverloadFailed, 4891 ConvOvlResult); 4892 4893 return; 4894 } 4895 4896 if (RefRelationship == Sema::Ref_Compatible && 4897 isRValueRef && InitCategory.isLValue()) { 4898 Sequence.SetFailed( 4899 InitializationSequence::FK_RValueReferenceBindingToLValue); 4900 return; 4901 } 4902 4903 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 4904 return; 4905 } 4906 4907 // - Otherwise, a temporary of type "cv1 T1" is created and initialized 4908 // from the initializer expression using the rules for a non-reference 4909 // copy-initialization (8.5). The reference is then bound to the 4910 // temporary. [...] 4911 4912 // Ignore address space of reference type at this point and perform address 4913 // space conversion after the reference binding step. 4914 QualType cv1T1IgnoreAS = 4915 T1Quals.hasAddressSpace() 4916 ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace()) 4917 : cv1T1; 4918 4919 InitializedEntity TempEntity = 4920 InitializedEntity::InitializeTemporary(cv1T1IgnoreAS); 4921 4922 // FIXME: Why do we use an implicit conversion here rather than trying 4923 // copy-initialization? 4924 ImplicitConversionSequence ICS 4925 = S.TryImplicitConversion(Initializer, TempEntity.getType(), 4926 /*SuppressUserConversions=*/false, 4927 /*AllowExplicit=*/false, 4928 /*FIXME:InOverloadResolution=*/false, 4929 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 4930 /*AllowObjCWritebackConversion=*/false); 4931 4932 if (ICS.isBad()) { 4933 // FIXME: Use the conversion function set stored in ICS to turn 4934 // this into an overloading ambiguity diagnostic. However, we need 4935 // to keep that set as an OverloadCandidateSet rather than as some 4936 // other kind of set. 4937 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 4938 Sequence.SetOverloadFailure( 4939 InitializationSequence::FK_ReferenceInitOverloadFailed, 4940 ConvOvlResult); 4941 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 4942 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4943 else 4944 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed); 4945 return; 4946 } else { 4947 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType()); 4948 } 4949 4950 // [...] If T1 is reference-related to T2, cv1 must be the 4951 // same cv-qualification as, or greater cv-qualification 4952 // than, cv2; otherwise, the program is ill-formed. 4953 unsigned T1CVRQuals = T1Quals.getCVRQualifiers(); 4954 unsigned T2CVRQuals = T2Quals.getCVRQualifiers(); 4955 if ((RefRelationship == Sema::Ref_Related && 4956 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) || 4957 !T1Quals.isAddressSpaceSupersetOf(T2Quals)) { 4958 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 4959 return; 4960 } 4961 4962 // [...] If T1 is reference-related to T2 and the reference is an rvalue 4963 // reference, the initializer expression shall not be an lvalue. 4964 if (RefRelationship >= Sema::Ref_Related && !isLValueRef && 4965 InitCategory.isLValue()) { 4966 Sequence.SetFailed( 4967 InitializationSequence::FK_RValueReferenceBindingToLValue); 4968 return; 4969 } 4970 4971 Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true); 4972 4973 if (T1Quals.hasAddressSpace()) { 4974 if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(), 4975 LangAS::Default)) { 4976 Sequence.SetFailed( 4977 InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary); 4978 return; 4979 } 4980 Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue 4981 : VK_XValue); 4982 } 4983 } 4984 4985 /// Attempt character array initialization from a string literal 4986 /// (C++ [dcl.init.string], C99 6.7.8). 4987 static void TryStringLiteralInitialization(Sema &S, 4988 const InitializedEntity &Entity, 4989 const InitializationKind &Kind, 4990 Expr *Initializer, 4991 InitializationSequence &Sequence) { 4992 Sequence.AddStringInitStep(Entity.getType()); 4993 } 4994 4995 /// Attempt value initialization (C++ [dcl.init]p7). 4996 static void TryValueInitialization(Sema &S, 4997 const InitializedEntity &Entity, 4998 const InitializationKind &Kind, 4999 InitializationSequence &Sequence, 5000 InitListExpr *InitList) { 5001 assert((!InitList || InitList->getNumInits() == 0) && 5002 "Shouldn't use value-init for non-empty init lists"); 5003 5004 // C++98 [dcl.init]p5, C++11 [dcl.init]p7: 5005 // 5006 // To value-initialize an object of type T means: 5007 QualType T = Entity.getType(); 5008 5009 // -- if T is an array type, then each element is value-initialized; 5010 T = S.Context.getBaseElementType(T); 5011 5012 if (const RecordType *RT = T->getAs<RecordType>()) { 5013 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 5014 bool NeedZeroInitialization = true; 5015 // C++98: 5016 // -- if T is a class type (clause 9) with a user-declared constructor 5017 // (12.1), then the default constructor for T is called (and the 5018 // initialization is ill-formed if T has no accessible default 5019 // constructor); 5020 // C++11: 5021 // -- if T is a class type (clause 9) with either no default constructor 5022 // (12.1 [class.ctor]) or a default constructor that is user-provided 5023 // or deleted, then the object is default-initialized; 5024 // 5025 // Note that the C++11 rule is the same as the C++98 rule if there are no 5026 // defaulted or deleted constructors, so we just use it unconditionally. 5027 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl); 5028 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted()) 5029 NeedZeroInitialization = false; 5030 5031 // -- if T is a (possibly cv-qualified) non-union class type without a 5032 // user-provided or deleted default constructor, then the object is 5033 // zero-initialized and, if T has a non-trivial default constructor, 5034 // default-initialized; 5035 // The 'non-union' here was removed by DR1502. The 'non-trivial default 5036 // constructor' part was removed by DR1507. 5037 if (NeedZeroInitialization) 5038 Sequence.AddZeroInitializationStep(Entity.getType()); 5039 5040 // C++03: 5041 // -- if T is a non-union class type without a user-declared constructor, 5042 // then every non-static data member and base class component of T is 5043 // value-initialized; 5044 // [...] A program that calls for [...] value-initialization of an 5045 // entity of reference type is ill-formed. 5046 // 5047 // C++11 doesn't need this handling, because value-initialization does not 5048 // occur recursively there, and the implicit default constructor is 5049 // defined as deleted in the problematic cases. 5050 if (!S.getLangOpts().CPlusPlus11 && 5051 ClassDecl->hasUninitializedReferenceMember()) { 5052 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference); 5053 return; 5054 } 5055 5056 // If this is list-value-initialization, pass the empty init list on when 5057 // building the constructor call. This affects the semantics of a few 5058 // things (such as whether an explicit default constructor can be called). 5059 Expr *InitListAsExpr = InitList; 5060 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0); 5061 bool InitListSyntax = InitList; 5062 5063 // FIXME: Instead of creating a CXXConstructExpr of array type here, 5064 // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr. 5065 return TryConstructorInitialization( 5066 S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax); 5067 } 5068 } 5069 5070 Sequence.AddZeroInitializationStep(Entity.getType()); 5071 } 5072 5073 /// Attempt default initialization (C++ [dcl.init]p6). 5074 static void TryDefaultInitialization(Sema &S, 5075 const InitializedEntity &Entity, 5076 const InitializationKind &Kind, 5077 InitializationSequence &Sequence) { 5078 assert(Kind.getKind() == InitializationKind::IK_Default); 5079 5080 // C++ [dcl.init]p6: 5081 // To default-initialize an object of type T means: 5082 // - if T is an array type, each element is default-initialized; 5083 QualType DestType = S.Context.getBaseElementType(Entity.getType()); 5084 5085 // - if T is a (possibly cv-qualified) class type (Clause 9), the default 5086 // constructor for T is called (and the initialization is ill-formed if 5087 // T has no accessible default constructor); 5088 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) { 5089 TryConstructorInitialization(S, Entity, Kind, None, DestType, 5090 Entity.getType(), Sequence); 5091 return; 5092 } 5093 5094 // - otherwise, no initialization is performed. 5095 5096 // If a program calls for the default initialization of an object of 5097 // a const-qualified type T, T shall be a class type with a user-provided 5098 // default constructor. 5099 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) { 5100 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 5101 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 5102 return; 5103 } 5104 5105 // If the destination type has a lifetime property, zero-initialize it. 5106 if (DestType.getQualifiers().hasObjCLifetime()) { 5107 Sequence.AddZeroInitializationStep(Entity.getType()); 5108 return; 5109 } 5110 } 5111 5112 /// Attempt a user-defined conversion between two types (C++ [dcl.init]), 5113 /// which enumerates all conversion functions and performs overload resolution 5114 /// to select the best. 5115 static void TryUserDefinedConversion(Sema &S, 5116 QualType DestType, 5117 const InitializationKind &Kind, 5118 Expr *Initializer, 5119 InitializationSequence &Sequence, 5120 bool TopLevelOfInitList) { 5121 assert(!DestType->isReferenceType() && "References are handled elsewhere"); 5122 QualType SourceType = Initializer->getType(); 5123 assert((DestType->isRecordType() || SourceType->isRecordType()) && 5124 "Must have a class type to perform a user-defined conversion"); 5125 5126 // Build the candidate set directly in the initialization sequence 5127 // structure, so that it will persist if we fail. 5128 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 5129 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 5130 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); 5131 5132 // Determine whether we are allowed to call explicit constructors or 5133 // explicit conversion operators. 5134 bool AllowExplicit = Kind.AllowExplicit(); 5135 5136 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) { 5137 // The type we're converting to is a class type. Enumerate its constructors 5138 // to see if there is a suitable conversion. 5139 CXXRecordDecl *DestRecordDecl 5140 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 5141 5142 // Try to complete the type we're converting to. 5143 if (S.isCompleteType(Kind.getLocation(), DestType)) { 5144 for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) { 5145 auto Info = getConstructorInfo(D); 5146 if (!Info.Constructor) 5147 continue; 5148 5149 if (!Info.Constructor->isInvalidDecl() && 5150 Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) { 5151 if (Info.ConstructorTmpl) 5152 S.AddTemplateOverloadCandidate( 5153 Info.ConstructorTmpl, Info.FoundDecl, 5154 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, 5155 /*SuppressUserConversions=*/true, 5156 /*PartialOverloading*/ false, AllowExplicit); 5157 else 5158 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, 5159 Initializer, CandidateSet, 5160 /*SuppressUserConversions=*/true, 5161 /*PartialOverloading*/ false, AllowExplicit); 5162 } 5163 } 5164 } 5165 } 5166 5167 SourceLocation DeclLoc = Initializer->getBeginLoc(); 5168 5169 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) { 5170 // The type we're converting from is a class type, enumerate its conversion 5171 // functions. 5172 5173 // We can only enumerate the conversion functions for a complete type; if 5174 // the type isn't complete, simply skip this step. 5175 if (S.isCompleteType(DeclLoc, SourceType)) { 5176 CXXRecordDecl *SourceRecordDecl 5177 = cast<CXXRecordDecl>(SourceRecordType->getDecl()); 5178 5179 const auto &Conversions = 5180 SourceRecordDecl->getVisibleConversionFunctions(); 5181 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 5182 NamedDecl *D = *I; 5183 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 5184 if (isa<UsingShadowDecl>(D)) 5185 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 5186 5187 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 5188 CXXConversionDecl *Conv; 5189 if (ConvTemplate) 5190 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 5191 else 5192 Conv = cast<CXXConversionDecl>(D); 5193 5194 if (ConvTemplate) 5195 S.AddTemplateConversionCandidate( 5196 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 5197 CandidateSet, AllowExplicit, AllowExplicit); 5198 else 5199 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, 5200 DestType, CandidateSet, AllowExplicit, 5201 AllowExplicit); 5202 } 5203 } 5204 } 5205 5206 // Perform overload resolution. If it fails, return the failed result. 5207 OverloadCandidateSet::iterator Best; 5208 if (OverloadingResult Result 5209 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) { 5210 Sequence.SetOverloadFailure( 5211 InitializationSequence::FK_UserConversionOverloadFailed, 5212 Result); 5213 return; 5214 } 5215 5216 FunctionDecl *Function = Best->Function; 5217 Function->setReferenced(); 5218 bool HadMultipleCandidates = (CandidateSet.size() > 1); 5219 5220 if (isa<CXXConstructorDecl>(Function)) { 5221 // Add the user-defined conversion step. Any cv-qualification conversion is 5222 // subsumed by the initialization. Per DR5, the created temporary is of the 5223 // cv-unqualified type of the destination. 5224 Sequence.AddUserConversionStep(Function, Best->FoundDecl, 5225 DestType.getUnqualifiedType(), 5226 HadMultipleCandidates); 5227 5228 // C++14 and before: 5229 // - if the function is a constructor, the call initializes a temporary 5230 // of the cv-unqualified version of the destination type. The [...] 5231 // temporary [...] is then used to direct-initialize, according to the 5232 // rules above, the object that is the destination of the 5233 // copy-initialization. 5234 // Note that this just performs a simple object copy from the temporary. 5235 // 5236 // C++17: 5237 // - if the function is a constructor, the call is a prvalue of the 5238 // cv-unqualified version of the destination type whose return object 5239 // is initialized by the constructor. The call is used to 5240 // direct-initialize, according to the rules above, the object that 5241 // is the destination of the copy-initialization. 5242 // Therefore we need to do nothing further. 5243 // 5244 // FIXME: Mark this copy as extraneous. 5245 if (!S.getLangOpts().CPlusPlus17) 5246 Sequence.AddFinalCopy(DestType); 5247 else if (DestType.hasQualifiers()) 5248 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 5249 return; 5250 } 5251 5252 // Add the user-defined conversion step that calls the conversion function. 5253 QualType ConvType = Function->getCallResultType(); 5254 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType, 5255 HadMultipleCandidates); 5256 5257 if (ConvType->getAs<RecordType>()) { 5258 // The call is used to direct-initialize [...] the object that is the 5259 // destination of the copy-initialization. 5260 // 5261 // In C++17, this does not call a constructor if we enter /17.6.1: 5262 // - If the initializer expression is a prvalue and the cv-unqualified 5263 // version of the source type is the same as the class of the 5264 // destination [... do not make an extra copy] 5265 // 5266 // FIXME: Mark this copy as extraneous. 5267 if (!S.getLangOpts().CPlusPlus17 || 5268 Function->getReturnType()->isReferenceType() || 5269 !S.Context.hasSameUnqualifiedType(ConvType, DestType)) 5270 Sequence.AddFinalCopy(DestType); 5271 else if (!S.Context.hasSameType(ConvType, DestType)) 5272 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 5273 return; 5274 } 5275 5276 // If the conversion following the call to the conversion function 5277 // is interesting, add it as a separate step. 5278 if (Best->FinalConversion.First || Best->FinalConversion.Second || 5279 Best->FinalConversion.Third) { 5280 ImplicitConversionSequence ICS; 5281 ICS.setStandard(); 5282 ICS.Standard = Best->FinalConversion; 5283 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 5284 } 5285 } 5286 5287 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>, 5288 /// a function with a pointer return type contains a 'return false;' statement. 5289 /// In C++11, 'false' is not a null pointer, so this breaks the build of any 5290 /// code using that header. 5291 /// 5292 /// Work around this by treating 'return false;' as zero-initializing the result 5293 /// if it's used in a pointer-returning function in a system header. 5294 static bool isLibstdcxxPointerReturnFalseHack(Sema &S, 5295 const InitializedEntity &Entity, 5296 const Expr *Init) { 5297 return S.getLangOpts().CPlusPlus11 && 5298 Entity.getKind() == InitializedEntity::EK_Result && 5299 Entity.getType()->isPointerType() && 5300 isa<CXXBoolLiteralExpr>(Init) && 5301 !cast<CXXBoolLiteralExpr>(Init)->getValue() && 5302 S.getSourceManager().isInSystemHeader(Init->getExprLoc()); 5303 } 5304 5305 /// The non-zero enum values here are indexes into diagnostic alternatives. 5306 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar }; 5307 5308 /// Determines whether this expression is an acceptable ICR source. 5309 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e, 5310 bool isAddressOf, bool &isWeakAccess) { 5311 // Skip parens. 5312 e = e->IgnoreParens(); 5313 5314 // Skip address-of nodes. 5315 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 5316 if (op->getOpcode() == UO_AddrOf) 5317 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true, 5318 isWeakAccess); 5319 5320 // Skip certain casts. 5321 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) { 5322 switch (ce->getCastKind()) { 5323 case CK_Dependent: 5324 case CK_BitCast: 5325 case CK_LValueBitCast: 5326 case CK_NoOp: 5327 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess); 5328 5329 case CK_ArrayToPointerDecay: 5330 return IIK_nonscalar; 5331 5332 case CK_NullToPointer: 5333 return IIK_okay; 5334 5335 default: 5336 break; 5337 } 5338 5339 // If we have a declaration reference, it had better be a local variable. 5340 } else if (isa<DeclRefExpr>(e)) { 5341 // set isWeakAccess to true, to mean that there will be an implicit 5342 // load which requires a cleanup. 5343 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 5344 isWeakAccess = true; 5345 5346 if (!isAddressOf) return IIK_nonlocal; 5347 5348 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl()); 5349 if (!var) return IIK_nonlocal; 5350 5351 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal); 5352 5353 // If we have a conditional operator, check both sides. 5354 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) { 5355 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf, 5356 isWeakAccess)) 5357 return iik; 5358 5359 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess); 5360 5361 // These are never scalar. 5362 } else if (isa<ArraySubscriptExpr>(e)) { 5363 return IIK_nonscalar; 5364 5365 // Otherwise, it needs to be a null pointer constant. 5366 } else { 5367 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull) 5368 ? IIK_okay : IIK_nonlocal); 5369 } 5370 5371 return IIK_nonlocal; 5372 } 5373 5374 /// Check whether the given expression is a valid operand for an 5375 /// indirect copy/restore. 5376 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) { 5377 assert(src->isRValue()); 5378 bool isWeakAccess = false; 5379 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess); 5380 // If isWeakAccess to true, there will be an implicit 5381 // load which requires a cleanup. 5382 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess) 5383 S.Cleanup.setExprNeedsCleanups(true); 5384 5385 if (iik == IIK_okay) return; 5386 5387 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback) 5388 << ((unsigned) iik - 1) // shift index into diagnostic explanations 5389 << src->getSourceRange(); 5390 } 5391 5392 /// Determine whether we have compatible array types for the 5393 /// purposes of GNU by-copy array initialization. 5394 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest, 5395 const ArrayType *Source) { 5396 // If the source and destination array types are equivalent, we're 5397 // done. 5398 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0))) 5399 return true; 5400 5401 // Make sure that the element types are the same. 5402 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType())) 5403 return false; 5404 5405 // The only mismatch we allow is when the destination is an 5406 // incomplete array type and the source is a constant array type. 5407 return Source->isConstantArrayType() && Dest->isIncompleteArrayType(); 5408 } 5409 5410 static bool tryObjCWritebackConversion(Sema &S, 5411 InitializationSequence &Sequence, 5412 const InitializedEntity &Entity, 5413 Expr *Initializer) { 5414 bool ArrayDecay = false; 5415 QualType ArgType = Initializer->getType(); 5416 QualType ArgPointee; 5417 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) { 5418 ArrayDecay = true; 5419 ArgPointee = ArgArrayType->getElementType(); 5420 ArgType = S.Context.getPointerType(ArgPointee); 5421 } 5422 5423 // Handle write-back conversion. 5424 QualType ConvertedArgType; 5425 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(), 5426 ConvertedArgType)) 5427 return false; 5428 5429 // We should copy unless we're passing to an argument explicitly 5430 // marked 'out'. 5431 bool ShouldCopy = true; 5432 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 5433 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 5434 5435 // Do we need an lvalue conversion? 5436 if (ArrayDecay || Initializer->isGLValue()) { 5437 ImplicitConversionSequence ICS; 5438 ICS.setStandard(); 5439 ICS.Standard.setAsIdentityConversion(); 5440 5441 QualType ResultType; 5442 if (ArrayDecay) { 5443 ICS.Standard.First = ICK_Array_To_Pointer; 5444 ResultType = S.Context.getPointerType(ArgPointee); 5445 } else { 5446 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 5447 ResultType = Initializer->getType().getNonLValueExprType(S.Context); 5448 } 5449 5450 Sequence.AddConversionSequenceStep(ICS, ResultType); 5451 } 5452 5453 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy); 5454 return true; 5455 } 5456 5457 static bool TryOCLSamplerInitialization(Sema &S, 5458 InitializationSequence &Sequence, 5459 QualType DestType, 5460 Expr *Initializer) { 5461 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() || 5462 (!Initializer->isIntegerConstantExpr(S.Context) && 5463 !Initializer->getType()->isSamplerT())) 5464 return false; 5465 5466 Sequence.AddOCLSamplerInitStep(DestType); 5467 return true; 5468 } 5469 5470 static bool IsZeroInitializer(Expr *Initializer, Sema &S) { 5471 return Initializer->isIntegerConstantExpr(S.getASTContext()) && 5472 (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0); 5473 } 5474 5475 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S, 5476 InitializationSequence &Sequence, 5477 QualType DestType, 5478 Expr *Initializer) { 5479 if (!S.getLangOpts().OpenCL) 5480 return false; 5481 5482 // 5483 // OpenCL 1.2 spec, s6.12.10 5484 // 5485 // The event argument can also be used to associate the 5486 // async_work_group_copy with a previous async copy allowing 5487 // an event to be shared by multiple async copies; otherwise 5488 // event should be zero. 5489 // 5490 if (DestType->isEventT() || DestType->isQueueT()) { 5491 if (!IsZeroInitializer(Initializer, S)) 5492 return false; 5493 5494 Sequence.AddOCLZeroOpaqueTypeStep(DestType); 5495 return true; 5496 } 5497 5498 // We should allow zero initialization for all types defined in the 5499 // cl_intel_device_side_avc_motion_estimation extension, except 5500 // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t. 5501 if (S.getOpenCLOptions().isEnabled( 5502 "cl_intel_device_side_avc_motion_estimation") && 5503 DestType->isOCLIntelSubgroupAVCType()) { 5504 if (DestType->isOCLIntelSubgroupAVCMcePayloadType() || 5505 DestType->isOCLIntelSubgroupAVCMceResultType()) 5506 return false; 5507 if (!IsZeroInitializer(Initializer, S)) 5508 return false; 5509 5510 Sequence.AddOCLZeroOpaqueTypeStep(DestType); 5511 return true; 5512 } 5513 5514 return false; 5515 } 5516 5517 InitializationSequence::InitializationSequence(Sema &S, 5518 const InitializedEntity &Entity, 5519 const InitializationKind &Kind, 5520 MultiExprArg Args, 5521 bool TopLevelOfInitList, 5522 bool TreatUnavailableAsInvalid) 5523 : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) { 5524 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList, 5525 TreatUnavailableAsInvalid); 5526 } 5527 5528 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the 5529 /// address of that function, this returns true. Otherwise, it returns false. 5530 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) { 5531 auto *DRE = dyn_cast<DeclRefExpr>(E); 5532 if (!DRE || !isa<FunctionDecl>(DRE->getDecl())) 5533 return false; 5534 5535 return !S.checkAddressOfFunctionIsAvailable( 5536 cast<FunctionDecl>(DRE->getDecl())); 5537 } 5538 5539 /// Determine whether we can perform an elementwise array copy for this kind 5540 /// of entity. 5541 static bool canPerformArrayCopy(const InitializedEntity &Entity) { 5542 switch (Entity.getKind()) { 5543 case InitializedEntity::EK_LambdaCapture: 5544 // C++ [expr.prim.lambda]p24: 5545 // For array members, the array elements are direct-initialized in 5546 // increasing subscript order. 5547 return true; 5548 5549 case InitializedEntity::EK_Variable: 5550 // C++ [dcl.decomp]p1: 5551 // [...] each element is copy-initialized or direct-initialized from the 5552 // corresponding element of the assignment-expression [...] 5553 return isa<DecompositionDecl>(Entity.getDecl()); 5554 5555 case InitializedEntity::EK_Member: 5556 // C++ [class.copy.ctor]p14: 5557 // - if the member is an array, each element is direct-initialized with 5558 // the corresponding subobject of x 5559 return Entity.isImplicitMemberInitializer(); 5560 5561 case InitializedEntity::EK_ArrayElement: 5562 // All the above cases are intended to apply recursively, even though none 5563 // of them actually say that. 5564 if (auto *E = Entity.getParent()) 5565 return canPerformArrayCopy(*E); 5566 break; 5567 5568 default: 5569 break; 5570 } 5571 5572 return false; 5573 } 5574 5575 void InitializationSequence::InitializeFrom(Sema &S, 5576 const InitializedEntity &Entity, 5577 const InitializationKind &Kind, 5578 MultiExprArg Args, 5579 bool TopLevelOfInitList, 5580 bool TreatUnavailableAsInvalid) { 5581 ASTContext &Context = S.Context; 5582 5583 // Eliminate non-overload placeholder types in the arguments. We 5584 // need to do this before checking whether types are dependent 5585 // because lowering a pseudo-object expression might well give us 5586 // something of dependent type. 5587 for (unsigned I = 0, E = Args.size(); I != E; ++I) 5588 if (Args[I]->getType()->isNonOverloadPlaceholderType()) { 5589 // FIXME: should we be doing this here? 5590 ExprResult result = S.CheckPlaceholderExpr(Args[I]); 5591 if (result.isInvalid()) { 5592 SetFailed(FK_PlaceholderType); 5593 return; 5594 } 5595 Args[I] = result.get(); 5596 } 5597 5598 // C++0x [dcl.init]p16: 5599 // The semantics of initializers are as follows. The destination type is 5600 // the type of the object or reference being initialized and the source 5601 // type is the type of the initializer expression. The source type is not 5602 // defined when the initializer is a braced-init-list or when it is a 5603 // parenthesized list of expressions. 5604 QualType DestType = Entity.getType(); 5605 5606 if (DestType->isDependentType() || 5607 Expr::hasAnyTypeDependentArguments(Args)) { 5608 SequenceKind = DependentSequence; 5609 return; 5610 } 5611 5612 // Almost everything is a normal sequence. 5613 setSequenceKind(NormalSequence); 5614 5615 QualType SourceType; 5616 Expr *Initializer = nullptr; 5617 if (Args.size() == 1) { 5618 Initializer = Args[0]; 5619 if (S.getLangOpts().ObjC) { 5620 if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(), 5621 DestType, Initializer->getType(), 5622 Initializer) || 5623 S.ConversionToObjCStringLiteralCheck(DestType, Initializer)) 5624 Args[0] = Initializer; 5625 } 5626 if (!isa<InitListExpr>(Initializer)) 5627 SourceType = Initializer->getType(); 5628 } 5629 5630 // - If the initializer is a (non-parenthesized) braced-init-list, the 5631 // object is list-initialized (8.5.4). 5632 if (Kind.getKind() != InitializationKind::IK_Direct) { 5633 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) { 5634 TryListInitialization(S, Entity, Kind, InitList, *this, 5635 TreatUnavailableAsInvalid); 5636 return; 5637 } 5638 } 5639 5640 // - If the destination type is a reference type, see 8.5.3. 5641 if (DestType->isReferenceType()) { 5642 // C++0x [dcl.init.ref]p1: 5643 // A variable declared to be a T& or T&&, that is, "reference to type T" 5644 // (8.3.2), shall be initialized by an object, or function, of type T or 5645 // by an object that can be converted into a T. 5646 // (Therefore, multiple arguments are not permitted.) 5647 if (Args.size() != 1) 5648 SetFailed(FK_TooManyInitsForReference); 5649 // C++17 [dcl.init.ref]p5: 5650 // A reference [...] is initialized by an expression [...] as follows: 5651 // If the initializer is not an expression, presumably we should reject, 5652 // but the standard fails to actually say so. 5653 else if (isa<InitListExpr>(Args[0])) 5654 SetFailed(FK_ParenthesizedListInitForReference); 5655 else 5656 TryReferenceInitialization(S, Entity, Kind, Args[0], *this); 5657 return; 5658 } 5659 5660 // - If the initializer is (), the object is value-initialized. 5661 if (Kind.getKind() == InitializationKind::IK_Value || 5662 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) { 5663 TryValueInitialization(S, Entity, Kind, *this); 5664 return; 5665 } 5666 5667 // Handle default initialization. 5668 if (Kind.getKind() == InitializationKind::IK_Default) { 5669 TryDefaultInitialization(S, Entity, Kind, *this); 5670 return; 5671 } 5672 5673 // - If the destination type is an array of characters, an array of 5674 // char16_t, an array of char32_t, or an array of wchar_t, and the 5675 // initializer is a string literal, see 8.5.2. 5676 // - Otherwise, if the destination type is an array, the program is 5677 // ill-formed. 5678 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) { 5679 if (Initializer && isa<VariableArrayType>(DestAT)) { 5680 SetFailed(FK_VariableLengthArrayHasInitializer); 5681 return; 5682 } 5683 5684 if (Initializer) { 5685 switch (IsStringInit(Initializer, DestAT, Context)) { 5686 case SIF_None: 5687 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this); 5688 return; 5689 case SIF_NarrowStringIntoWideChar: 5690 SetFailed(FK_NarrowStringIntoWideCharArray); 5691 return; 5692 case SIF_WideStringIntoChar: 5693 SetFailed(FK_WideStringIntoCharArray); 5694 return; 5695 case SIF_IncompatWideStringIntoWideChar: 5696 SetFailed(FK_IncompatWideStringIntoWideChar); 5697 return; 5698 case SIF_PlainStringIntoUTF8Char: 5699 SetFailed(FK_PlainStringIntoUTF8Char); 5700 return; 5701 case SIF_UTF8StringIntoPlainChar: 5702 SetFailed(FK_UTF8StringIntoPlainChar); 5703 return; 5704 case SIF_Other: 5705 break; 5706 } 5707 } 5708 5709 // Some kinds of initialization permit an array to be initialized from 5710 // another array of the same type, and perform elementwise initialization. 5711 if (Initializer && isa<ConstantArrayType>(DestAT) && 5712 S.Context.hasSameUnqualifiedType(Initializer->getType(), 5713 Entity.getType()) && 5714 canPerformArrayCopy(Entity)) { 5715 // If source is a prvalue, use it directly. 5716 if (Initializer->getValueKind() == VK_RValue) { 5717 AddArrayInitStep(DestType, /*IsGNUExtension*/false); 5718 return; 5719 } 5720 5721 // Emit element-at-a-time copy loop. 5722 InitializedEntity Element = 5723 InitializedEntity::InitializeElement(S.Context, 0, Entity); 5724 QualType InitEltT = 5725 Context.getAsArrayType(Initializer->getType())->getElementType(); 5726 OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT, 5727 Initializer->getValueKind(), 5728 Initializer->getObjectKind()); 5729 Expr *OVEAsExpr = &OVE; 5730 InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList, 5731 TreatUnavailableAsInvalid); 5732 if (!Failed()) 5733 AddArrayInitLoopStep(Entity.getType(), InitEltT); 5734 return; 5735 } 5736 5737 // Note: as an GNU C extension, we allow initialization of an 5738 // array from a compound literal that creates an array of the same 5739 // type, so long as the initializer has no side effects. 5740 if (!S.getLangOpts().CPlusPlus && Initializer && 5741 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) && 5742 Initializer->getType()->isArrayType()) { 5743 const ArrayType *SourceAT 5744 = Context.getAsArrayType(Initializer->getType()); 5745 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT)) 5746 SetFailed(FK_ArrayTypeMismatch); 5747 else if (Initializer->HasSideEffects(S.Context)) 5748 SetFailed(FK_NonConstantArrayInit); 5749 else { 5750 AddArrayInitStep(DestType, /*IsGNUExtension*/true); 5751 } 5752 } 5753 // Note: as a GNU C++ extension, we allow list-initialization of a 5754 // class member of array type from a parenthesized initializer list. 5755 else if (S.getLangOpts().CPlusPlus && 5756 Entity.getKind() == InitializedEntity::EK_Member && 5757 Initializer && isa<InitListExpr>(Initializer)) { 5758 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer), 5759 *this, TreatUnavailableAsInvalid); 5760 AddParenthesizedArrayInitStep(DestType); 5761 } else if (DestAT->getElementType()->isCharType()) 5762 SetFailed(FK_ArrayNeedsInitListOrStringLiteral); 5763 else if (IsWideCharCompatible(DestAT->getElementType(), Context)) 5764 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral); 5765 else 5766 SetFailed(FK_ArrayNeedsInitList); 5767 5768 return; 5769 } 5770 5771 // Determine whether we should consider writeback conversions for 5772 // Objective-C ARC. 5773 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount && 5774 Entity.isParameterKind(); 5775 5776 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer)) 5777 return; 5778 5779 // We're at the end of the line for C: it's either a write-back conversion 5780 // or it's a C assignment. There's no need to check anything else. 5781 if (!S.getLangOpts().CPlusPlus) { 5782 // If allowed, check whether this is an Objective-C writeback conversion. 5783 if (allowObjCWritebackConversion && 5784 tryObjCWritebackConversion(S, *this, Entity, Initializer)) { 5785 return; 5786 } 5787 5788 if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer)) 5789 return; 5790 5791 // Handle initialization in C 5792 AddCAssignmentStep(DestType); 5793 MaybeProduceObjCObject(S, *this, Entity); 5794 return; 5795 } 5796 5797 assert(S.getLangOpts().CPlusPlus); 5798 5799 // - If the destination type is a (possibly cv-qualified) class type: 5800 if (DestType->isRecordType()) { 5801 // - If the initialization is direct-initialization, or if it is 5802 // copy-initialization where the cv-unqualified version of the 5803 // source type is the same class as, or a derived class of, the 5804 // class of the destination, constructors are considered. [...] 5805 if (Kind.getKind() == InitializationKind::IK_Direct || 5806 (Kind.getKind() == InitializationKind::IK_Copy && 5807 (Context.hasSameUnqualifiedType(SourceType, DestType) || 5808 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType)))) 5809 TryConstructorInitialization(S, Entity, Kind, Args, 5810 DestType, DestType, *this); 5811 // - Otherwise (i.e., for the remaining copy-initialization cases), 5812 // user-defined conversion sequences that can convert from the source 5813 // type to the destination type or (when a conversion function is 5814 // used) to a derived class thereof are enumerated as described in 5815 // 13.3.1.4, and the best one is chosen through overload resolution 5816 // (13.3). 5817 else 5818 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 5819 TopLevelOfInitList); 5820 return; 5821 } 5822 5823 assert(Args.size() >= 1 && "Zero-argument case handled above"); 5824 5825 // The remaining cases all need a source type. 5826 if (Args.size() > 1) { 5827 SetFailed(FK_TooManyInitsForScalar); 5828 return; 5829 } else if (isa<InitListExpr>(Args[0])) { 5830 SetFailed(FK_ParenthesizedListInitForScalar); 5831 return; 5832 } 5833 5834 // - Otherwise, if the source type is a (possibly cv-qualified) class 5835 // type, conversion functions are considered. 5836 if (!SourceType.isNull() && SourceType->isRecordType()) { 5837 // For a conversion to _Atomic(T) from either T or a class type derived 5838 // from T, initialize the T object then convert to _Atomic type. 5839 bool NeedAtomicConversion = false; 5840 if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) { 5841 if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) || 5842 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, 5843 Atomic->getValueType())) { 5844 DestType = Atomic->getValueType(); 5845 NeedAtomicConversion = true; 5846 } 5847 } 5848 5849 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 5850 TopLevelOfInitList); 5851 MaybeProduceObjCObject(S, *this, Entity); 5852 if (!Failed() && NeedAtomicConversion) 5853 AddAtomicConversionStep(Entity.getType()); 5854 return; 5855 } 5856 5857 // - Otherwise, the initial value of the object being initialized is the 5858 // (possibly converted) value of the initializer expression. Standard 5859 // conversions (Clause 4) will be used, if necessary, to convert the 5860 // initializer expression to the cv-unqualified version of the 5861 // destination type; no user-defined conversions are considered. 5862 5863 ImplicitConversionSequence ICS 5864 = S.TryImplicitConversion(Initializer, DestType, 5865 /*SuppressUserConversions*/true, 5866 /*AllowExplicitConversions*/ false, 5867 /*InOverloadResolution*/ false, 5868 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 5869 allowObjCWritebackConversion); 5870 5871 if (ICS.isStandard() && 5872 ICS.Standard.Second == ICK_Writeback_Conversion) { 5873 // Objective-C ARC writeback conversion. 5874 5875 // We should copy unless we're passing to an argument explicitly 5876 // marked 'out'. 5877 bool ShouldCopy = true; 5878 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 5879 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 5880 5881 // If there was an lvalue adjustment, add it as a separate conversion. 5882 if (ICS.Standard.First == ICK_Array_To_Pointer || 5883 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 5884 ImplicitConversionSequence LvalueICS; 5885 LvalueICS.setStandard(); 5886 LvalueICS.Standard.setAsIdentityConversion(); 5887 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0)); 5888 LvalueICS.Standard.First = ICS.Standard.First; 5889 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0)); 5890 } 5891 5892 AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy); 5893 } else if (ICS.isBad()) { 5894 DeclAccessPair dap; 5895 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) { 5896 AddZeroInitializationStep(Entity.getType()); 5897 } else if (Initializer->getType() == Context.OverloadTy && 5898 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType, 5899 false, dap)) 5900 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 5901 else if (Initializer->getType()->isFunctionType() && 5902 isExprAnUnaddressableFunction(S, Initializer)) 5903 SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction); 5904 else 5905 SetFailed(InitializationSequence::FK_ConversionFailed); 5906 } else { 5907 AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 5908 5909 MaybeProduceObjCObject(S, *this, Entity); 5910 } 5911 } 5912 5913 InitializationSequence::~InitializationSequence() { 5914 for (auto &S : Steps) 5915 S.Destroy(); 5916 } 5917 5918 //===----------------------------------------------------------------------===// 5919 // Perform initialization 5920 //===----------------------------------------------------------------------===// 5921 static Sema::AssignmentAction 5922 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) { 5923 switch(Entity.getKind()) { 5924 case InitializedEntity::EK_Variable: 5925 case InitializedEntity::EK_New: 5926 case InitializedEntity::EK_Exception: 5927 case InitializedEntity::EK_Base: 5928 case InitializedEntity::EK_Delegating: 5929 return Sema::AA_Initializing; 5930 5931 case InitializedEntity::EK_Parameter: 5932 if (Entity.getDecl() && 5933 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 5934 return Sema::AA_Sending; 5935 5936 return Sema::AA_Passing; 5937 5938 case InitializedEntity::EK_Parameter_CF_Audited: 5939 if (Entity.getDecl() && 5940 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 5941 return Sema::AA_Sending; 5942 5943 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited; 5944 5945 case InitializedEntity::EK_Result: 5946 case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right. 5947 return Sema::AA_Returning; 5948 5949 case InitializedEntity::EK_Temporary: 5950 case InitializedEntity::EK_RelatedResult: 5951 // FIXME: Can we tell apart casting vs. converting? 5952 return Sema::AA_Casting; 5953 5954 case InitializedEntity::EK_Member: 5955 case InitializedEntity::EK_Binding: 5956 case InitializedEntity::EK_ArrayElement: 5957 case InitializedEntity::EK_VectorElement: 5958 case InitializedEntity::EK_ComplexElement: 5959 case InitializedEntity::EK_BlockElement: 5960 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 5961 case InitializedEntity::EK_LambdaCapture: 5962 case InitializedEntity::EK_CompoundLiteralInit: 5963 return Sema::AA_Initializing; 5964 } 5965 5966 llvm_unreachable("Invalid EntityKind!"); 5967 } 5968 5969 /// Whether we should bind a created object as a temporary when 5970 /// initializing the given entity. 5971 static bool shouldBindAsTemporary(const InitializedEntity &Entity) { 5972 switch (Entity.getKind()) { 5973 case InitializedEntity::EK_ArrayElement: 5974 case InitializedEntity::EK_Member: 5975 case InitializedEntity::EK_Result: 5976 case InitializedEntity::EK_StmtExprResult: 5977 case InitializedEntity::EK_New: 5978 case InitializedEntity::EK_Variable: 5979 case InitializedEntity::EK_Base: 5980 case InitializedEntity::EK_Delegating: 5981 case InitializedEntity::EK_VectorElement: 5982 case InitializedEntity::EK_ComplexElement: 5983 case InitializedEntity::EK_Exception: 5984 case InitializedEntity::EK_BlockElement: 5985 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 5986 case InitializedEntity::EK_LambdaCapture: 5987 case InitializedEntity::EK_CompoundLiteralInit: 5988 return false; 5989 5990 case InitializedEntity::EK_Parameter: 5991 case InitializedEntity::EK_Parameter_CF_Audited: 5992 case InitializedEntity::EK_Temporary: 5993 case InitializedEntity::EK_RelatedResult: 5994 case InitializedEntity::EK_Binding: 5995 return true; 5996 } 5997 5998 llvm_unreachable("missed an InitializedEntity kind?"); 5999 } 6000 6001 /// Whether the given entity, when initialized with an object 6002 /// created for that initialization, requires destruction. 6003 static bool shouldDestroyEntity(const InitializedEntity &Entity) { 6004 switch (Entity.getKind()) { 6005 case InitializedEntity::EK_Result: 6006 case InitializedEntity::EK_StmtExprResult: 6007 case InitializedEntity::EK_New: 6008 case InitializedEntity::EK_Base: 6009 case InitializedEntity::EK_Delegating: 6010 case InitializedEntity::EK_VectorElement: 6011 case InitializedEntity::EK_ComplexElement: 6012 case InitializedEntity::EK_BlockElement: 6013 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6014 case InitializedEntity::EK_LambdaCapture: 6015 return false; 6016 6017 case InitializedEntity::EK_Member: 6018 case InitializedEntity::EK_Binding: 6019 case InitializedEntity::EK_Variable: 6020 case InitializedEntity::EK_Parameter: 6021 case InitializedEntity::EK_Parameter_CF_Audited: 6022 case InitializedEntity::EK_Temporary: 6023 case InitializedEntity::EK_ArrayElement: 6024 case InitializedEntity::EK_Exception: 6025 case InitializedEntity::EK_CompoundLiteralInit: 6026 case InitializedEntity::EK_RelatedResult: 6027 return true; 6028 } 6029 6030 llvm_unreachable("missed an InitializedEntity kind?"); 6031 } 6032 6033 /// Get the location at which initialization diagnostics should appear. 6034 static SourceLocation getInitializationLoc(const InitializedEntity &Entity, 6035 Expr *Initializer) { 6036 switch (Entity.getKind()) { 6037 case InitializedEntity::EK_Result: 6038 case InitializedEntity::EK_StmtExprResult: 6039 return Entity.getReturnLoc(); 6040 6041 case InitializedEntity::EK_Exception: 6042 return Entity.getThrowLoc(); 6043 6044 case InitializedEntity::EK_Variable: 6045 case InitializedEntity::EK_Binding: 6046 return Entity.getDecl()->getLocation(); 6047 6048 case InitializedEntity::EK_LambdaCapture: 6049 return Entity.getCaptureLoc(); 6050 6051 case InitializedEntity::EK_ArrayElement: 6052 case InitializedEntity::EK_Member: 6053 case InitializedEntity::EK_Parameter: 6054 case InitializedEntity::EK_Parameter_CF_Audited: 6055 case InitializedEntity::EK_Temporary: 6056 case InitializedEntity::EK_New: 6057 case InitializedEntity::EK_Base: 6058 case InitializedEntity::EK_Delegating: 6059 case InitializedEntity::EK_VectorElement: 6060 case InitializedEntity::EK_ComplexElement: 6061 case InitializedEntity::EK_BlockElement: 6062 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6063 case InitializedEntity::EK_CompoundLiteralInit: 6064 case InitializedEntity::EK_RelatedResult: 6065 return Initializer->getBeginLoc(); 6066 } 6067 llvm_unreachable("missed an InitializedEntity kind?"); 6068 } 6069 6070 /// Make a (potentially elidable) temporary copy of the object 6071 /// provided by the given initializer by calling the appropriate copy 6072 /// constructor. 6073 /// 6074 /// \param S The Sema object used for type-checking. 6075 /// 6076 /// \param T The type of the temporary object, which must either be 6077 /// the type of the initializer expression or a superclass thereof. 6078 /// 6079 /// \param Entity The entity being initialized. 6080 /// 6081 /// \param CurInit The initializer expression. 6082 /// 6083 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that 6084 /// is permitted in C++03 (but not C++0x) when binding a reference to 6085 /// an rvalue. 6086 /// 6087 /// \returns An expression that copies the initializer expression into 6088 /// a temporary object, or an error expression if a copy could not be 6089 /// created. 6090 static ExprResult CopyObject(Sema &S, 6091 QualType T, 6092 const InitializedEntity &Entity, 6093 ExprResult CurInit, 6094 bool IsExtraneousCopy) { 6095 if (CurInit.isInvalid()) 6096 return CurInit; 6097 // Determine which class type we're copying to. 6098 Expr *CurInitExpr = (Expr *)CurInit.get(); 6099 CXXRecordDecl *Class = nullptr; 6100 if (const RecordType *Record = T->getAs<RecordType>()) 6101 Class = cast<CXXRecordDecl>(Record->getDecl()); 6102 if (!Class) 6103 return CurInit; 6104 6105 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get()); 6106 6107 // Make sure that the type we are copying is complete. 6108 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete)) 6109 return CurInit; 6110 6111 // Perform overload resolution using the class's constructors. Per 6112 // C++11 [dcl.init]p16, second bullet for class types, this initialization 6113 // is direct-initialization. 6114 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 6115 DeclContext::lookup_result Ctors = S.LookupConstructors(Class); 6116 6117 OverloadCandidateSet::iterator Best; 6118 switch (ResolveConstructorOverload( 6119 S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best, 6120 /*CopyInitializing=*/false, /*AllowExplicit=*/true, 6121 /*OnlyListConstructors=*/false, /*IsListInit=*/false, 6122 /*SecondStepOfCopyInit=*/true)) { 6123 case OR_Success: 6124 break; 6125 6126 case OR_No_Viable_Function: 6127 CandidateSet.NoteCandidates( 6128 PartialDiagnosticAt( 6129 Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext() 6130 ? diag::ext_rvalue_to_reference_temp_copy_no_viable 6131 : diag::err_temp_copy_no_viable) 6132 << (int)Entity.getKind() << CurInitExpr->getType() 6133 << CurInitExpr->getSourceRange()), 6134 S, OCD_AllCandidates, CurInitExpr); 6135 if (!IsExtraneousCopy || S.isSFINAEContext()) 6136 return ExprError(); 6137 return CurInit; 6138 6139 case OR_Ambiguous: 6140 CandidateSet.NoteCandidates( 6141 PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous) 6142 << (int)Entity.getKind() 6143 << CurInitExpr->getType() 6144 << CurInitExpr->getSourceRange()), 6145 S, OCD_AmbiguousCandidates, CurInitExpr); 6146 return ExprError(); 6147 6148 case OR_Deleted: 6149 S.Diag(Loc, diag::err_temp_copy_deleted) 6150 << (int)Entity.getKind() << CurInitExpr->getType() 6151 << CurInitExpr->getSourceRange(); 6152 S.NoteDeletedFunction(Best->Function); 6153 return ExprError(); 6154 } 6155 6156 bool HadMultipleCandidates = CandidateSet.size() > 1; 6157 6158 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); 6159 SmallVector<Expr*, 8> ConstructorArgs; 6160 CurInit.get(); // Ownership transferred into MultiExprArg, below. 6161 6162 S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity, 6163 IsExtraneousCopy); 6164 6165 if (IsExtraneousCopy) { 6166 // If this is a totally extraneous copy for C++03 reference 6167 // binding purposes, just return the original initialization 6168 // expression. We don't generate an (elided) copy operation here 6169 // because doing so would require us to pass down a flag to avoid 6170 // infinite recursion, where each step adds another extraneous, 6171 // elidable copy. 6172 6173 // Instantiate the default arguments of any extra parameters in 6174 // the selected copy constructor, as if we were going to create a 6175 // proper call to the copy constructor. 6176 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) { 6177 ParmVarDecl *Parm = Constructor->getParamDecl(I); 6178 if (S.RequireCompleteType(Loc, Parm->getType(), 6179 diag::err_call_incomplete_argument)) 6180 break; 6181 6182 // Build the default argument expression; we don't actually care 6183 // if this succeeds or not, because this routine will complain 6184 // if there was a problem. 6185 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm); 6186 } 6187 6188 return CurInitExpr; 6189 } 6190 6191 // Determine the arguments required to actually perform the 6192 // constructor call (we might have derived-to-base conversions, or 6193 // the copy constructor may have default arguments). 6194 if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs)) 6195 return ExprError(); 6196 6197 // C++0x [class.copy]p32: 6198 // When certain criteria are met, an implementation is allowed to 6199 // omit the copy/move construction of a class object, even if the 6200 // copy/move constructor and/or destructor for the object have 6201 // side effects. [...] 6202 // - when a temporary class object that has not been bound to a 6203 // reference (12.2) would be copied/moved to a class object 6204 // with the same cv-unqualified type, the copy/move operation 6205 // can be omitted by constructing the temporary object 6206 // directly into the target of the omitted copy/move 6207 // 6208 // Note that the other three bullets are handled elsewhere. Copy 6209 // elision for return statements and throw expressions are handled as part 6210 // of constructor initialization, while copy elision for exception handlers 6211 // is handled by the run-time. 6212 // 6213 // FIXME: If the function parameter is not the same type as the temporary, we 6214 // should still be able to elide the copy, but we don't have a way to 6215 // represent in the AST how much should be elided in this case. 6216 bool Elidable = 6217 CurInitExpr->isTemporaryObject(S.Context, Class) && 6218 S.Context.hasSameUnqualifiedType( 6219 Best->Function->getParamDecl(0)->getType().getNonReferenceType(), 6220 CurInitExpr->getType()); 6221 6222 // Actually perform the constructor call. 6223 CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor, 6224 Elidable, 6225 ConstructorArgs, 6226 HadMultipleCandidates, 6227 /*ListInit*/ false, 6228 /*StdInitListInit*/ false, 6229 /*ZeroInit*/ false, 6230 CXXConstructExpr::CK_Complete, 6231 SourceRange()); 6232 6233 // If we're supposed to bind temporaries, do so. 6234 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity)) 6235 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 6236 return CurInit; 6237 } 6238 6239 /// Check whether elidable copy construction for binding a reference to 6240 /// a temporary would have succeeded if we were building in C++98 mode, for 6241 /// -Wc++98-compat. 6242 static void CheckCXX98CompatAccessibleCopy(Sema &S, 6243 const InitializedEntity &Entity, 6244 Expr *CurInitExpr) { 6245 assert(S.getLangOpts().CPlusPlus11); 6246 6247 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>(); 6248 if (!Record) 6249 return; 6250 6251 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr); 6252 if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc)) 6253 return; 6254 6255 // Find constructors which would have been considered. 6256 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 6257 DeclContext::lookup_result Ctors = 6258 S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl())); 6259 6260 // Perform overload resolution. 6261 OverloadCandidateSet::iterator Best; 6262 OverloadingResult OR = ResolveConstructorOverload( 6263 S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best, 6264 /*CopyInitializing=*/false, /*AllowExplicit=*/true, 6265 /*OnlyListConstructors=*/false, /*IsListInit=*/false, 6266 /*SecondStepOfCopyInit=*/true); 6267 6268 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy) 6269 << OR << (int)Entity.getKind() << CurInitExpr->getType() 6270 << CurInitExpr->getSourceRange(); 6271 6272 switch (OR) { 6273 case OR_Success: 6274 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function), 6275 Best->FoundDecl, Entity, Diag); 6276 // FIXME: Check default arguments as far as that's possible. 6277 break; 6278 6279 case OR_No_Viable_Function: 6280 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, 6281 OCD_AllCandidates, CurInitExpr); 6282 break; 6283 6284 case OR_Ambiguous: 6285 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, 6286 OCD_AmbiguousCandidates, CurInitExpr); 6287 break; 6288 6289 case OR_Deleted: 6290 S.Diag(Loc, Diag); 6291 S.NoteDeletedFunction(Best->Function); 6292 break; 6293 } 6294 } 6295 6296 void InitializationSequence::PrintInitLocationNote(Sema &S, 6297 const InitializedEntity &Entity) { 6298 if (Entity.isParameterKind() && Entity.getDecl()) { 6299 if (Entity.getDecl()->getLocation().isInvalid()) 6300 return; 6301 6302 if (Entity.getDecl()->getDeclName()) 6303 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here) 6304 << Entity.getDecl()->getDeclName(); 6305 else 6306 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here); 6307 } 6308 else if (Entity.getKind() == InitializedEntity::EK_RelatedResult && 6309 Entity.getMethodDecl()) 6310 S.Diag(Entity.getMethodDecl()->getLocation(), 6311 diag::note_method_return_type_change) 6312 << Entity.getMethodDecl()->getDeclName(); 6313 } 6314 6315 /// Returns true if the parameters describe a constructor initialization of 6316 /// an explicit temporary object, e.g. "Point(x, y)". 6317 static bool isExplicitTemporary(const InitializedEntity &Entity, 6318 const InitializationKind &Kind, 6319 unsigned NumArgs) { 6320 switch (Entity.getKind()) { 6321 case InitializedEntity::EK_Temporary: 6322 case InitializedEntity::EK_CompoundLiteralInit: 6323 case InitializedEntity::EK_RelatedResult: 6324 break; 6325 default: 6326 return false; 6327 } 6328 6329 switch (Kind.getKind()) { 6330 case InitializationKind::IK_DirectList: 6331 return true; 6332 // FIXME: Hack to work around cast weirdness. 6333 case InitializationKind::IK_Direct: 6334 case InitializationKind::IK_Value: 6335 return NumArgs != 1; 6336 default: 6337 return false; 6338 } 6339 } 6340 6341 static ExprResult 6342 PerformConstructorInitialization(Sema &S, 6343 const InitializedEntity &Entity, 6344 const InitializationKind &Kind, 6345 MultiExprArg Args, 6346 const InitializationSequence::Step& Step, 6347 bool &ConstructorInitRequiresZeroInit, 6348 bool IsListInitialization, 6349 bool IsStdInitListInitialization, 6350 SourceLocation LBraceLoc, 6351 SourceLocation RBraceLoc) { 6352 unsigned NumArgs = Args.size(); 6353 CXXConstructorDecl *Constructor 6354 = cast<CXXConstructorDecl>(Step.Function.Function); 6355 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates; 6356 6357 // Build a call to the selected constructor. 6358 SmallVector<Expr*, 8> ConstructorArgs; 6359 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid()) 6360 ? Kind.getEqualLoc() 6361 : Kind.getLocation(); 6362 6363 if (Kind.getKind() == InitializationKind::IK_Default) { 6364 // Force even a trivial, implicit default constructor to be 6365 // semantically checked. We do this explicitly because we don't build 6366 // the definition for completely trivial constructors. 6367 assert(Constructor->getParent() && "No parent class for constructor."); 6368 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() && 6369 Constructor->isTrivial() && !Constructor->isUsed(false)) { 6370 S.runWithSufficientStackSpace(Loc, [&] { 6371 S.DefineImplicitDefaultConstructor(Loc, Constructor); 6372 }); 6373 } 6374 } 6375 6376 ExprResult CurInit((Expr *)nullptr); 6377 6378 // C++ [over.match.copy]p1: 6379 // - When initializing a temporary to be bound to the first parameter 6380 // of a constructor that takes a reference to possibly cv-qualified 6381 // T as its first argument, called with a single argument in the 6382 // context of direct-initialization, explicit conversion functions 6383 // are also considered. 6384 bool AllowExplicitConv = 6385 Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 && 6386 hasCopyOrMoveCtorParam(S.Context, 6387 getConstructorInfo(Step.Function.FoundDecl)); 6388 6389 // Determine the arguments required to actually perform the constructor 6390 // call. 6391 if (S.CompleteConstructorCall(Constructor, Args, 6392 Loc, ConstructorArgs, 6393 AllowExplicitConv, 6394 IsListInitialization)) 6395 return ExprError(); 6396 6397 6398 if (isExplicitTemporary(Entity, Kind, NumArgs)) { 6399 // An explicitly-constructed temporary, e.g., X(1, 2). 6400 if (S.DiagnoseUseOfDecl(Constructor, Loc)) 6401 return ExprError(); 6402 6403 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 6404 if (!TSInfo) 6405 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc); 6406 SourceRange ParenOrBraceRange = 6407 (Kind.getKind() == InitializationKind::IK_DirectList) 6408 ? SourceRange(LBraceLoc, RBraceLoc) 6409 : Kind.getParenOrBraceRange(); 6410 6411 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>( 6412 Step.Function.FoundDecl.getDecl())) { 6413 Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow); 6414 if (S.DiagnoseUseOfDecl(Constructor, Loc)) 6415 return ExprError(); 6416 } 6417 S.MarkFunctionReferenced(Loc, Constructor); 6418 6419 CurInit = CXXTemporaryObjectExpr::Create( 6420 S.Context, Constructor, 6421 Entity.getType().getNonLValueExprType(S.Context), TSInfo, 6422 ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates, 6423 IsListInitialization, IsStdInitListInitialization, 6424 ConstructorInitRequiresZeroInit); 6425 } else { 6426 CXXConstructExpr::ConstructionKind ConstructKind = 6427 CXXConstructExpr::CK_Complete; 6428 6429 if (Entity.getKind() == InitializedEntity::EK_Base) { 6430 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ? 6431 CXXConstructExpr::CK_VirtualBase : 6432 CXXConstructExpr::CK_NonVirtualBase; 6433 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) { 6434 ConstructKind = CXXConstructExpr::CK_Delegating; 6435 } 6436 6437 // Only get the parenthesis or brace range if it is a list initialization or 6438 // direct construction. 6439 SourceRange ParenOrBraceRange; 6440 if (IsListInitialization) 6441 ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc); 6442 else if (Kind.getKind() == InitializationKind::IK_Direct) 6443 ParenOrBraceRange = Kind.getParenOrBraceRange(); 6444 6445 // If the entity allows NRVO, mark the construction as elidable 6446 // unconditionally. 6447 if (Entity.allowsNRVO()) 6448 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, 6449 Step.Function.FoundDecl, 6450 Constructor, /*Elidable=*/true, 6451 ConstructorArgs, 6452 HadMultipleCandidates, 6453 IsListInitialization, 6454 IsStdInitListInitialization, 6455 ConstructorInitRequiresZeroInit, 6456 ConstructKind, 6457 ParenOrBraceRange); 6458 else 6459 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, 6460 Step.Function.FoundDecl, 6461 Constructor, 6462 ConstructorArgs, 6463 HadMultipleCandidates, 6464 IsListInitialization, 6465 IsStdInitListInitialization, 6466 ConstructorInitRequiresZeroInit, 6467 ConstructKind, 6468 ParenOrBraceRange); 6469 } 6470 if (CurInit.isInvalid()) 6471 return ExprError(); 6472 6473 // Only check access if all of that succeeded. 6474 S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity); 6475 if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc)) 6476 return ExprError(); 6477 6478 if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType())) 6479 if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S)) 6480 return ExprError(); 6481 6482 if (shouldBindAsTemporary(Entity)) 6483 CurInit = S.MaybeBindToTemporary(CurInit.get()); 6484 6485 return CurInit; 6486 } 6487 6488 namespace { 6489 enum LifetimeKind { 6490 /// The lifetime of a temporary bound to this entity ends at the end of the 6491 /// full-expression, and that's (probably) fine. 6492 LK_FullExpression, 6493 6494 /// The lifetime of a temporary bound to this entity is extended to the 6495 /// lifeitme of the entity itself. 6496 LK_Extended, 6497 6498 /// The lifetime of a temporary bound to this entity probably ends too soon, 6499 /// because the entity is allocated in a new-expression. 6500 LK_New, 6501 6502 /// The lifetime of a temporary bound to this entity ends too soon, because 6503 /// the entity is a return object. 6504 LK_Return, 6505 6506 /// The lifetime of a temporary bound to this entity ends too soon, because 6507 /// the entity is the result of a statement expression. 6508 LK_StmtExprResult, 6509 6510 /// This is a mem-initializer: if it would extend a temporary (other than via 6511 /// a default member initializer), the program is ill-formed. 6512 LK_MemInitializer, 6513 }; 6514 using LifetimeResult = 6515 llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>; 6516 } 6517 6518 /// Determine the declaration which an initialized entity ultimately refers to, 6519 /// for the purpose of lifetime-extending a temporary bound to a reference in 6520 /// the initialization of \p Entity. 6521 static LifetimeResult getEntityLifetime( 6522 const InitializedEntity *Entity, 6523 const InitializedEntity *InitField = nullptr) { 6524 // C++11 [class.temporary]p5: 6525 switch (Entity->getKind()) { 6526 case InitializedEntity::EK_Variable: 6527 // The temporary [...] persists for the lifetime of the reference 6528 return {Entity, LK_Extended}; 6529 6530 case InitializedEntity::EK_Member: 6531 // For subobjects, we look at the complete object. 6532 if (Entity->getParent()) 6533 return getEntityLifetime(Entity->getParent(), Entity); 6534 6535 // except: 6536 // C++17 [class.base.init]p8: 6537 // A temporary expression bound to a reference member in a 6538 // mem-initializer is ill-formed. 6539 // C++17 [class.base.init]p11: 6540 // A temporary expression bound to a reference member from a 6541 // default member initializer is ill-formed. 6542 // 6543 // The context of p11 and its example suggest that it's only the use of a 6544 // default member initializer from a constructor that makes the program 6545 // ill-formed, not its mere existence, and that it can even be used by 6546 // aggregate initialization. 6547 return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended 6548 : LK_MemInitializer}; 6549 6550 case InitializedEntity::EK_Binding: 6551 // Per [dcl.decomp]p3, the binding is treated as a variable of reference 6552 // type. 6553 return {Entity, LK_Extended}; 6554 6555 case InitializedEntity::EK_Parameter: 6556 case InitializedEntity::EK_Parameter_CF_Audited: 6557 // -- A temporary bound to a reference parameter in a function call 6558 // persists until the completion of the full-expression containing 6559 // the call. 6560 return {nullptr, LK_FullExpression}; 6561 6562 case InitializedEntity::EK_Result: 6563 // -- The lifetime of a temporary bound to the returned value in a 6564 // function return statement is not extended; the temporary is 6565 // destroyed at the end of the full-expression in the return statement. 6566 return {nullptr, LK_Return}; 6567 6568 case InitializedEntity::EK_StmtExprResult: 6569 // FIXME: Should we lifetime-extend through the result of a statement 6570 // expression? 6571 return {nullptr, LK_StmtExprResult}; 6572 6573 case InitializedEntity::EK_New: 6574 // -- A temporary bound to a reference in a new-initializer persists 6575 // until the completion of the full-expression containing the 6576 // new-initializer. 6577 return {nullptr, LK_New}; 6578 6579 case InitializedEntity::EK_Temporary: 6580 case InitializedEntity::EK_CompoundLiteralInit: 6581 case InitializedEntity::EK_RelatedResult: 6582 // We don't yet know the storage duration of the surrounding temporary. 6583 // Assume it's got full-expression duration for now, it will patch up our 6584 // storage duration if that's not correct. 6585 return {nullptr, LK_FullExpression}; 6586 6587 case InitializedEntity::EK_ArrayElement: 6588 // For subobjects, we look at the complete object. 6589 return getEntityLifetime(Entity->getParent(), InitField); 6590 6591 case InitializedEntity::EK_Base: 6592 // For subobjects, we look at the complete object. 6593 if (Entity->getParent()) 6594 return getEntityLifetime(Entity->getParent(), InitField); 6595 return {InitField, LK_MemInitializer}; 6596 6597 case InitializedEntity::EK_Delegating: 6598 // We can reach this case for aggregate initialization in a constructor: 6599 // struct A { int &&r; }; 6600 // struct B : A { B() : A{0} {} }; 6601 // In this case, use the outermost field decl as the context. 6602 return {InitField, LK_MemInitializer}; 6603 6604 case InitializedEntity::EK_BlockElement: 6605 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6606 case InitializedEntity::EK_LambdaCapture: 6607 case InitializedEntity::EK_VectorElement: 6608 case InitializedEntity::EK_ComplexElement: 6609 return {nullptr, LK_FullExpression}; 6610 6611 case InitializedEntity::EK_Exception: 6612 // FIXME: Can we diagnose lifetime problems with exceptions? 6613 return {nullptr, LK_FullExpression}; 6614 } 6615 llvm_unreachable("unknown entity kind"); 6616 } 6617 6618 namespace { 6619 enum ReferenceKind { 6620 /// Lifetime would be extended by a reference binding to a temporary. 6621 RK_ReferenceBinding, 6622 /// Lifetime would be extended by a std::initializer_list object binding to 6623 /// its backing array. 6624 RK_StdInitializerList, 6625 }; 6626 6627 /// A temporary or local variable. This will be one of: 6628 /// * A MaterializeTemporaryExpr. 6629 /// * A DeclRefExpr whose declaration is a local. 6630 /// * An AddrLabelExpr. 6631 /// * A BlockExpr for a block with captures. 6632 using Local = Expr*; 6633 6634 /// Expressions we stepped over when looking for the local state. Any steps 6635 /// that would inhibit lifetime extension or take us out of subexpressions of 6636 /// the initializer are included. 6637 struct IndirectLocalPathEntry { 6638 enum EntryKind { 6639 DefaultInit, 6640 AddressOf, 6641 VarInit, 6642 LValToRVal, 6643 LifetimeBoundCall, 6644 GslReferenceInit, 6645 GslPointerInit 6646 } Kind; 6647 Expr *E; 6648 const Decl *D = nullptr; 6649 IndirectLocalPathEntry() {} 6650 IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {} 6651 IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D) 6652 : Kind(K), E(E), D(D) {} 6653 }; 6654 6655 using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>; 6656 6657 struct RevertToOldSizeRAII { 6658 IndirectLocalPath &Path; 6659 unsigned OldSize = Path.size(); 6660 RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {} 6661 ~RevertToOldSizeRAII() { Path.resize(OldSize); } 6662 }; 6663 6664 using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L, 6665 ReferenceKind RK)>; 6666 } 6667 6668 static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) { 6669 for (auto E : Path) 6670 if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD) 6671 return true; 6672 return false; 6673 } 6674 6675 static bool pathContainsInit(IndirectLocalPath &Path) { 6676 return llvm::any_of(Path, [=](IndirectLocalPathEntry E) { 6677 return E.Kind == IndirectLocalPathEntry::DefaultInit || 6678 E.Kind == IndirectLocalPathEntry::VarInit; 6679 }); 6680 } 6681 6682 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, 6683 Expr *Init, LocalVisitor Visit, 6684 bool RevisitSubinits, 6685 bool EnableLifetimeWarnings); 6686 6687 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, 6688 Expr *Init, ReferenceKind RK, 6689 LocalVisitor Visit, 6690 bool EnableLifetimeWarnings); 6691 6692 template <typename T> static bool isRecordWithAttr(QualType Type) { 6693 if (auto *RD = Type->getAsCXXRecordDecl()) 6694 return RD->hasAttr<T>(); 6695 return false; 6696 } 6697 6698 // Decl::isInStdNamespace will return false for iterators in some STL 6699 // implementations due to them being defined in a namespace outside of the std 6700 // namespace. 6701 static bool isInStlNamespace(const Decl *D) { 6702 const DeclContext *DC = D->getDeclContext(); 6703 if (!DC) 6704 return false; 6705 if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) 6706 if (const IdentifierInfo *II = ND->getIdentifier()) { 6707 StringRef Name = II->getName(); 6708 if (Name.size() >= 2 && Name.front() == '_' && 6709 (Name[1] == '_' || isUppercase(Name[1]))) 6710 return true; 6711 } 6712 6713 return DC->isStdNamespace(); 6714 } 6715 6716 static bool shouldTrackImplicitObjectArg(const CXXMethodDecl *Callee) { 6717 if (auto *Conv = dyn_cast_or_null<CXXConversionDecl>(Callee)) 6718 if (isRecordWithAttr<PointerAttr>(Conv->getConversionType())) 6719 return true; 6720 if (!isInStlNamespace(Callee->getParent())) 6721 return false; 6722 if (!isRecordWithAttr<PointerAttr>(Callee->getThisObjectType()) && 6723 !isRecordWithAttr<OwnerAttr>(Callee->getThisObjectType())) 6724 return false; 6725 if (Callee->getReturnType()->isPointerType() || 6726 isRecordWithAttr<PointerAttr>(Callee->getReturnType())) { 6727 if (!Callee->getIdentifier()) 6728 return false; 6729 return llvm::StringSwitch<bool>(Callee->getName()) 6730 .Cases("begin", "rbegin", "cbegin", "crbegin", true) 6731 .Cases("end", "rend", "cend", "crend", true) 6732 .Cases("c_str", "data", "get", true) 6733 // Map and set types. 6734 .Cases("find", "equal_range", "lower_bound", "upper_bound", true) 6735 .Default(false); 6736 } else if (Callee->getReturnType()->isReferenceType()) { 6737 if (!Callee->getIdentifier()) { 6738 auto OO = Callee->getOverloadedOperator(); 6739 return OO == OverloadedOperatorKind::OO_Subscript || 6740 OO == OverloadedOperatorKind::OO_Star; 6741 } 6742 return llvm::StringSwitch<bool>(Callee->getName()) 6743 .Cases("front", "back", "at", "top", "value", true) 6744 .Default(false); 6745 } 6746 return false; 6747 } 6748 6749 static bool shouldTrackFirstArgument(const FunctionDecl *FD) { 6750 if (!FD->getIdentifier() || FD->getNumParams() != 1) 6751 return false; 6752 const auto *RD = FD->getParamDecl(0)->getType()->getPointeeCXXRecordDecl(); 6753 if (!FD->isInStdNamespace() || !RD || !RD->isInStdNamespace()) 6754 return false; 6755 if (!isRecordWithAttr<PointerAttr>(QualType(RD->getTypeForDecl(), 0)) && 6756 !isRecordWithAttr<OwnerAttr>(QualType(RD->getTypeForDecl(), 0))) 6757 return false; 6758 if (FD->getReturnType()->isPointerType() || 6759 isRecordWithAttr<PointerAttr>(FD->getReturnType())) { 6760 return llvm::StringSwitch<bool>(FD->getName()) 6761 .Cases("begin", "rbegin", "cbegin", "crbegin", true) 6762 .Cases("end", "rend", "cend", "crend", true) 6763 .Case("data", true) 6764 .Default(false); 6765 } else if (FD->getReturnType()->isReferenceType()) { 6766 return llvm::StringSwitch<bool>(FD->getName()) 6767 .Cases("get", "any_cast", true) 6768 .Default(false); 6769 } 6770 return false; 6771 } 6772 6773 static void handleGslAnnotatedTypes(IndirectLocalPath &Path, Expr *Call, 6774 LocalVisitor Visit) { 6775 auto VisitPointerArg = [&](const Decl *D, Expr *Arg, bool Value) { 6776 // We are not interested in the temporary base objects of gsl Pointers: 6777 // Temp().ptr; // Here ptr might not dangle. 6778 if (isa<MemberExpr>(Arg->IgnoreImpCasts())) 6779 return; 6780 // Once we initialized a value with a reference, it can no longer dangle. 6781 if (!Value) { 6782 for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) { 6783 if (It->Kind == IndirectLocalPathEntry::GslReferenceInit) 6784 continue; 6785 if (It->Kind == IndirectLocalPathEntry::GslPointerInit) 6786 return; 6787 break; 6788 } 6789 } 6790 Path.push_back({Value ? IndirectLocalPathEntry::GslPointerInit 6791 : IndirectLocalPathEntry::GslReferenceInit, 6792 Arg, D}); 6793 if (Arg->isGLValue()) 6794 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, 6795 Visit, 6796 /*EnableLifetimeWarnings=*/true); 6797 else 6798 visitLocalsRetainedByInitializer(Path, Arg, Visit, true, 6799 /*EnableLifetimeWarnings=*/true); 6800 Path.pop_back(); 6801 }; 6802 6803 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) { 6804 const auto *MD = cast_or_null<CXXMethodDecl>(MCE->getDirectCallee()); 6805 if (MD && shouldTrackImplicitObjectArg(MD)) 6806 VisitPointerArg(MD, MCE->getImplicitObjectArgument(), 6807 !MD->getReturnType()->isReferenceType()); 6808 return; 6809 } else if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(Call)) { 6810 FunctionDecl *Callee = OCE->getDirectCallee(); 6811 if (Callee && Callee->isCXXInstanceMember() && 6812 shouldTrackImplicitObjectArg(cast<CXXMethodDecl>(Callee))) 6813 VisitPointerArg(Callee, OCE->getArg(0), 6814 !Callee->getReturnType()->isReferenceType()); 6815 return; 6816 } else if (auto *CE = dyn_cast<CallExpr>(Call)) { 6817 FunctionDecl *Callee = CE->getDirectCallee(); 6818 if (Callee && shouldTrackFirstArgument(Callee)) 6819 VisitPointerArg(Callee, CE->getArg(0), 6820 !Callee->getReturnType()->isReferenceType()); 6821 return; 6822 } 6823 6824 if (auto *CCE = dyn_cast<CXXConstructExpr>(Call)) { 6825 const auto *Ctor = CCE->getConstructor(); 6826 const CXXRecordDecl *RD = Ctor->getParent(); 6827 if (CCE->getNumArgs() > 0 && RD->hasAttr<PointerAttr>()) 6828 VisitPointerArg(Ctor->getParamDecl(0), CCE->getArgs()[0], true); 6829 } 6830 } 6831 6832 static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) { 6833 const TypeSourceInfo *TSI = FD->getTypeSourceInfo(); 6834 if (!TSI) 6835 return false; 6836 // Don't declare this variable in the second operand of the for-statement; 6837 // GCC miscompiles that by ending its lifetime before evaluating the 6838 // third operand. See gcc.gnu.org/PR86769. 6839 AttributedTypeLoc ATL; 6840 for (TypeLoc TL = TSI->getTypeLoc(); 6841 (ATL = TL.getAsAdjusted<AttributedTypeLoc>()); 6842 TL = ATL.getModifiedLoc()) { 6843 if (ATL.getAttrAs<LifetimeBoundAttr>()) 6844 return true; 6845 } 6846 return false; 6847 } 6848 6849 static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call, 6850 LocalVisitor Visit) { 6851 const FunctionDecl *Callee; 6852 ArrayRef<Expr*> Args; 6853 6854 if (auto *CE = dyn_cast<CallExpr>(Call)) { 6855 Callee = CE->getDirectCallee(); 6856 Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs()); 6857 } else { 6858 auto *CCE = cast<CXXConstructExpr>(Call); 6859 Callee = CCE->getConstructor(); 6860 Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs()); 6861 } 6862 if (!Callee) 6863 return; 6864 6865 Expr *ObjectArg = nullptr; 6866 if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) { 6867 ObjectArg = Args[0]; 6868 Args = Args.slice(1); 6869 } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) { 6870 ObjectArg = MCE->getImplicitObjectArgument(); 6871 } 6872 6873 auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) { 6874 Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D}); 6875 if (Arg->isGLValue()) 6876 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, 6877 Visit, 6878 /*EnableLifetimeWarnings=*/false); 6879 else 6880 visitLocalsRetainedByInitializer(Path, Arg, Visit, true, 6881 /*EnableLifetimeWarnings=*/false); 6882 Path.pop_back(); 6883 }; 6884 6885 if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee)) 6886 VisitLifetimeBoundArg(Callee, ObjectArg); 6887 6888 for (unsigned I = 0, 6889 N = std::min<unsigned>(Callee->getNumParams(), Args.size()); 6890 I != N; ++I) { 6891 if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>()) 6892 VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]); 6893 } 6894 } 6895 6896 /// Visit the locals that would be reachable through a reference bound to the 6897 /// glvalue expression \c Init. 6898 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, 6899 Expr *Init, ReferenceKind RK, 6900 LocalVisitor Visit, 6901 bool EnableLifetimeWarnings) { 6902 RevertToOldSizeRAII RAII(Path); 6903 6904 // Walk past any constructs which we can lifetime-extend across. 6905 Expr *Old; 6906 do { 6907 Old = Init; 6908 6909 if (auto *FE = dyn_cast<FullExpr>(Init)) 6910 Init = FE->getSubExpr(); 6911 6912 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 6913 // If this is just redundant braces around an initializer, step over it. 6914 if (ILE->isTransparent()) 6915 Init = ILE->getInit(0); 6916 } 6917 6918 // Step over any subobject adjustments; we may have a materialized 6919 // temporary inside them. 6920 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); 6921 6922 // Per current approach for DR1376, look through casts to reference type 6923 // when performing lifetime extension. 6924 if (CastExpr *CE = dyn_cast<CastExpr>(Init)) 6925 if (CE->getSubExpr()->isGLValue()) 6926 Init = CE->getSubExpr(); 6927 6928 // Per the current approach for DR1299, look through array element access 6929 // on array glvalues when performing lifetime extension. 6930 if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) { 6931 Init = ASE->getBase(); 6932 auto *ICE = dyn_cast<ImplicitCastExpr>(Init); 6933 if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay) 6934 Init = ICE->getSubExpr(); 6935 else 6936 // We can't lifetime extend through this but we might still find some 6937 // retained temporaries. 6938 return visitLocalsRetainedByInitializer(Path, Init, Visit, true, 6939 EnableLifetimeWarnings); 6940 } 6941 6942 // Step into CXXDefaultInitExprs so we can diagnose cases where a 6943 // constructor inherits one as an implicit mem-initializer. 6944 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { 6945 Path.push_back( 6946 {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); 6947 Init = DIE->getExpr(); 6948 } 6949 } while (Init != Old); 6950 6951 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) { 6952 if (Visit(Path, Local(MTE), RK)) 6953 visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true, 6954 EnableLifetimeWarnings); 6955 } 6956 6957 if (isa<CallExpr>(Init)) { 6958 if (EnableLifetimeWarnings) 6959 handleGslAnnotatedTypes(Path, Init, Visit); 6960 return visitLifetimeBoundArguments(Path, Init, Visit); 6961 } 6962 6963 switch (Init->getStmtClass()) { 6964 case Stmt::DeclRefExprClass: { 6965 // If we find the name of a local non-reference parameter, we could have a 6966 // lifetime problem. 6967 auto *DRE = cast<DeclRefExpr>(Init); 6968 auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 6969 if (VD && VD->hasLocalStorage() && 6970 !DRE->refersToEnclosingVariableOrCapture()) { 6971 if (!VD->getType()->isReferenceType()) { 6972 Visit(Path, Local(DRE), RK); 6973 } else if (isa<ParmVarDecl>(DRE->getDecl())) { 6974 // The lifetime of a reference parameter is unknown; assume it's OK 6975 // for now. 6976 break; 6977 } else if (VD->getInit() && !isVarOnPath(Path, VD)) { 6978 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); 6979 visitLocalsRetainedByReferenceBinding(Path, VD->getInit(), 6980 RK_ReferenceBinding, Visit, 6981 EnableLifetimeWarnings); 6982 } 6983 } 6984 break; 6985 } 6986 6987 case Stmt::UnaryOperatorClass: { 6988 // The only unary operator that make sense to handle here 6989 // is Deref. All others don't resolve to a "name." This includes 6990 // handling all sorts of rvalues passed to a unary operator. 6991 const UnaryOperator *U = cast<UnaryOperator>(Init); 6992 if (U->getOpcode() == UO_Deref) 6993 visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true, 6994 EnableLifetimeWarnings); 6995 break; 6996 } 6997 6998 case Stmt::OMPArraySectionExprClass: { 6999 visitLocalsRetainedByInitializer(Path, 7000 cast<OMPArraySectionExpr>(Init)->getBase(), 7001 Visit, true, EnableLifetimeWarnings); 7002 break; 7003 } 7004 7005 case Stmt::ConditionalOperatorClass: 7006 case Stmt::BinaryConditionalOperatorClass: { 7007 auto *C = cast<AbstractConditionalOperator>(Init); 7008 if (!C->getTrueExpr()->getType()->isVoidType()) 7009 visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit, 7010 EnableLifetimeWarnings); 7011 if (!C->getFalseExpr()->getType()->isVoidType()) 7012 visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit, 7013 EnableLifetimeWarnings); 7014 break; 7015 } 7016 7017 // FIXME: Visit the left-hand side of an -> or ->*. 7018 7019 default: 7020 break; 7021 } 7022 } 7023 7024 /// Visit the locals that would be reachable through an object initialized by 7025 /// the prvalue expression \c Init. 7026 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, 7027 Expr *Init, LocalVisitor Visit, 7028 bool RevisitSubinits, 7029 bool EnableLifetimeWarnings) { 7030 RevertToOldSizeRAII RAII(Path); 7031 7032 Expr *Old; 7033 do { 7034 Old = Init; 7035 7036 // Step into CXXDefaultInitExprs so we can diagnose cases where a 7037 // constructor inherits one as an implicit mem-initializer. 7038 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { 7039 Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); 7040 Init = DIE->getExpr(); 7041 } 7042 7043 if (auto *FE = dyn_cast<FullExpr>(Init)) 7044 Init = FE->getSubExpr(); 7045 7046 // Dig out the expression which constructs the extended temporary. 7047 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); 7048 7049 if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init)) 7050 Init = BTE->getSubExpr(); 7051 7052 Init = Init->IgnoreParens(); 7053 7054 // Step over value-preserving rvalue casts. 7055 if (auto *CE = dyn_cast<CastExpr>(Init)) { 7056 switch (CE->getCastKind()) { 7057 case CK_LValueToRValue: 7058 // If we can match the lvalue to a const object, we can look at its 7059 // initializer. 7060 Path.push_back({IndirectLocalPathEntry::LValToRVal, CE}); 7061 return visitLocalsRetainedByReferenceBinding( 7062 Path, Init, RK_ReferenceBinding, 7063 [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool { 7064 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { 7065 auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7066 if (VD && VD->getType().isConstQualified() && VD->getInit() && 7067 !isVarOnPath(Path, VD)) { 7068 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); 7069 visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true, 7070 EnableLifetimeWarnings); 7071 } 7072 } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) { 7073 if (MTE->getType().isConstQualified()) 7074 visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, 7075 true, EnableLifetimeWarnings); 7076 } 7077 return false; 7078 }, EnableLifetimeWarnings); 7079 7080 // We assume that objects can be retained by pointers cast to integers, 7081 // but not if the integer is cast to floating-point type or to _Complex. 7082 // We assume that casts to 'bool' do not preserve enough information to 7083 // retain a local object. 7084 case CK_NoOp: 7085 case CK_BitCast: 7086 case CK_BaseToDerived: 7087 case CK_DerivedToBase: 7088 case CK_UncheckedDerivedToBase: 7089 case CK_Dynamic: 7090 case CK_ToUnion: 7091 case CK_UserDefinedConversion: 7092 case CK_ConstructorConversion: 7093 case CK_IntegralToPointer: 7094 case CK_PointerToIntegral: 7095 case CK_VectorSplat: 7096 case CK_IntegralCast: 7097 case CK_CPointerToObjCPointerCast: 7098 case CK_BlockPointerToObjCPointerCast: 7099 case CK_AnyPointerToBlockPointerCast: 7100 case CK_AddressSpaceConversion: 7101 break; 7102 7103 case CK_ArrayToPointerDecay: 7104 // Model array-to-pointer decay as taking the address of the array 7105 // lvalue. 7106 Path.push_back({IndirectLocalPathEntry::AddressOf, CE}); 7107 return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(), 7108 RK_ReferenceBinding, Visit, 7109 EnableLifetimeWarnings); 7110 7111 default: 7112 return; 7113 } 7114 7115 Init = CE->getSubExpr(); 7116 } 7117 } while (Old != Init); 7118 7119 // C++17 [dcl.init.list]p6: 7120 // initializing an initializer_list object from the array extends the 7121 // lifetime of the array exactly like binding a reference to a temporary. 7122 if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init)) 7123 return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(), 7124 RK_StdInitializerList, Visit, 7125 EnableLifetimeWarnings); 7126 7127 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 7128 // We already visited the elements of this initializer list while 7129 // performing the initialization. Don't visit them again unless we've 7130 // changed the lifetime of the initialized entity. 7131 if (!RevisitSubinits) 7132 return; 7133 7134 if (ILE->isTransparent()) 7135 return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit, 7136 RevisitSubinits, 7137 EnableLifetimeWarnings); 7138 7139 if (ILE->getType()->isArrayType()) { 7140 for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I) 7141 visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit, 7142 RevisitSubinits, 7143 EnableLifetimeWarnings); 7144 return; 7145 } 7146 7147 if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) { 7148 assert(RD->isAggregate() && "aggregate init on non-aggregate"); 7149 7150 // If we lifetime-extend a braced initializer which is initializing an 7151 // aggregate, and that aggregate contains reference members which are 7152 // bound to temporaries, those temporaries are also lifetime-extended. 7153 if (RD->isUnion() && ILE->getInitializedFieldInUnion() && 7154 ILE->getInitializedFieldInUnion()->getType()->isReferenceType()) 7155 visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0), 7156 RK_ReferenceBinding, Visit, 7157 EnableLifetimeWarnings); 7158 else { 7159 unsigned Index = 0; 7160 for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index) 7161 visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit, 7162 RevisitSubinits, 7163 EnableLifetimeWarnings); 7164 for (const auto *I : RD->fields()) { 7165 if (Index >= ILE->getNumInits()) 7166 break; 7167 if (I->isUnnamedBitfield()) 7168 continue; 7169 Expr *SubInit = ILE->getInit(Index); 7170 if (I->getType()->isReferenceType()) 7171 visitLocalsRetainedByReferenceBinding(Path, SubInit, 7172 RK_ReferenceBinding, Visit, 7173 EnableLifetimeWarnings); 7174 else 7175 // This might be either aggregate-initialization of a member or 7176 // initialization of a std::initializer_list object. Regardless, 7177 // we should recursively lifetime-extend that initializer. 7178 visitLocalsRetainedByInitializer(Path, SubInit, Visit, 7179 RevisitSubinits, 7180 EnableLifetimeWarnings); 7181 ++Index; 7182 } 7183 } 7184 } 7185 return; 7186 } 7187 7188 // The lifetime of an init-capture is that of the closure object constructed 7189 // by a lambda-expression. 7190 if (auto *LE = dyn_cast<LambdaExpr>(Init)) { 7191 for (Expr *E : LE->capture_inits()) { 7192 if (!E) 7193 continue; 7194 if (E->isGLValue()) 7195 visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding, 7196 Visit, EnableLifetimeWarnings); 7197 else 7198 visitLocalsRetainedByInitializer(Path, E, Visit, true, 7199 EnableLifetimeWarnings); 7200 } 7201 } 7202 7203 if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) { 7204 if (EnableLifetimeWarnings) 7205 handleGslAnnotatedTypes(Path, Init, Visit); 7206 return visitLifetimeBoundArguments(Path, Init, Visit); 7207 } 7208 7209 switch (Init->getStmtClass()) { 7210 case Stmt::UnaryOperatorClass: { 7211 auto *UO = cast<UnaryOperator>(Init); 7212 // If the initializer is the address of a local, we could have a lifetime 7213 // problem. 7214 if (UO->getOpcode() == UO_AddrOf) { 7215 // If this is &rvalue, then it's ill-formed and we have already diagnosed 7216 // it. Don't produce a redundant warning about the lifetime of the 7217 // temporary. 7218 if (isa<MaterializeTemporaryExpr>(UO->getSubExpr())) 7219 return; 7220 7221 Path.push_back({IndirectLocalPathEntry::AddressOf, UO}); 7222 visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(), 7223 RK_ReferenceBinding, Visit, 7224 EnableLifetimeWarnings); 7225 } 7226 break; 7227 } 7228 7229 case Stmt::BinaryOperatorClass: { 7230 // Handle pointer arithmetic. 7231 auto *BO = cast<BinaryOperator>(Init); 7232 BinaryOperatorKind BOK = BO->getOpcode(); 7233 if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub)) 7234 break; 7235 7236 if (BO->getLHS()->getType()->isPointerType()) 7237 visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true, 7238 EnableLifetimeWarnings); 7239 else if (BO->getRHS()->getType()->isPointerType()) 7240 visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true, 7241 EnableLifetimeWarnings); 7242 break; 7243 } 7244 7245 case Stmt::ConditionalOperatorClass: 7246 case Stmt::BinaryConditionalOperatorClass: { 7247 auto *C = cast<AbstractConditionalOperator>(Init); 7248 // In C++, we can have a throw-expression operand, which has 'void' type 7249 // and isn't interesting from a lifetime perspective. 7250 if (!C->getTrueExpr()->getType()->isVoidType()) 7251 visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true, 7252 EnableLifetimeWarnings); 7253 if (!C->getFalseExpr()->getType()->isVoidType()) 7254 visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true, 7255 EnableLifetimeWarnings); 7256 break; 7257 } 7258 7259 case Stmt::BlockExprClass: 7260 if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) { 7261 // This is a local block, whose lifetime is that of the function. 7262 Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding); 7263 } 7264 break; 7265 7266 case Stmt::AddrLabelExprClass: 7267 // We want to warn if the address of a label would escape the function. 7268 Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding); 7269 break; 7270 7271 default: 7272 break; 7273 } 7274 } 7275 7276 /// Determine whether this is an indirect path to a temporary that we are 7277 /// supposed to lifetime-extend along (but don't). 7278 static bool shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) { 7279 for (auto Elem : Path) { 7280 if (Elem.Kind != IndirectLocalPathEntry::DefaultInit) 7281 return false; 7282 } 7283 return true; 7284 } 7285 7286 /// Find the range for the first interesting entry in the path at or after I. 7287 static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I, 7288 Expr *E) { 7289 for (unsigned N = Path.size(); I != N; ++I) { 7290 switch (Path[I].Kind) { 7291 case IndirectLocalPathEntry::AddressOf: 7292 case IndirectLocalPathEntry::LValToRVal: 7293 case IndirectLocalPathEntry::LifetimeBoundCall: 7294 case IndirectLocalPathEntry::GslReferenceInit: 7295 case IndirectLocalPathEntry::GslPointerInit: 7296 // These exist primarily to mark the path as not permitting or 7297 // supporting lifetime extension. 7298 break; 7299 7300 case IndirectLocalPathEntry::VarInit: 7301 if (cast<VarDecl>(Path[I].D)->isImplicit()) 7302 return SourceRange(); 7303 LLVM_FALLTHROUGH; 7304 case IndirectLocalPathEntry::DefaultInit: 7305 return Path[I].E->getSourceRange(); 7306 } 7307 } 7308 return E->getSourceRange(); 7309 } 7310 7311 static bool pathOnlyInitializesGslPointer(IndirectLocalPath &Path) { 7312 for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) { 7313 if (It->Kind == IndirectLocalPathEntry::VarInit) 7314 continue; 7315 if (It->Kind == IndirectLocalPathEntry::AddressOf) 7316 continue; 7317 return It->Kind == IndirectLocalPathEntry::GslPointerInit || 7318 It->Kind == IndirectLocalPathEntry::GslReferenceInit; 7319 } 7320 return false; 7321 } 7322 7323 void Sema::checkInitializerLifetime(const InitializedEntity &Entity, 7324 Expr *Init) { 7325 LifetimeResult LR = getEntityLifetime(&Entity); 7326 LifetimeKind LK = LR.getInt(); 7327 const InitializedEntity *ExtendingEntity = LR.getPointer(); 7328 7329 // If this entity doesn't have an interesting lifetime, don't bother looking 7330 // for temporaries within its initializer. 7331 if (LK == LK_FullExpression) 7332 return; 7333 7334 auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L, 7335 ReferenceKind RK) -> bool { 7336 SourceRange DiagRange = nextPathEntryRange(Path, 0, L); 7337 SourceLocation DiagLoc = DiagRange.getBegin(); 7338 7339 auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L); 7340 7341 bool IsGslPtrInitWithGslTempOwner = false; 7342 bool IsLocalGslOwner = false; 7343 if (pathOnlyInitializesGslPointer(Path)) { 7344 if (isa<DeclRefExpr>(L)) { 7345 // We do not want to follow the references when returning a pointer originating 7346 // from a local owner to avoid the following false positive: 7347 // int &p = *localUniquePtr; 7348 // someContainer.add(std::move(localUniquePtr)); 7349 // return p; 7350 IsLocalGslOwner = isRecordWithAttr<OwnerAttr>(L->getType()); 7351 if (pathContainsInit(Path) || !IsLocalGslOwner) 7352 return false; 7353 } else { 7354 IsGslPtrInitWithGslTempOwner = MTE && !MTE->getExtendingDecl() && 7355 isRecordWithAttr<OwnerAttr>(MTE->getType()); 7356 // Skipping a chain of initializing gsl::Pointer annotated objects. 7357 // We are looking only for the final source to find out if it was 7358 // a local or temporary owner or the address of a local variable/param. 7359 if (!IsGslPtrInitWithGslTempOwner) 7360 return true; 7361 } 7362 } 7363 7364 switch (LK) { 7365 case LK_FullExpression: 7366 llvm_unreachable("already handled this"); 7367 7368 case LK_Extended: { 7369 if (!MTE) { 7370 // The initialized entity has lifetime beyond the full-expression, 7371 // and the local entity does too, so don't warn. 7372 // 7373 // FIXME: We should consider warning if a static / thread storage 7374 // duration variable retains an automatic storage duration local. 7375 return false; 7376 } 7377 7378 if (IsGslPtrInitWithGslTempOwner && DiagLoc.isValid()) { 7379 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange; 7380 return false; 7381 } 7382 7383 // Lifetime-extend the temporary. 7384 if (Path.empty()) { 7385 // Update the storage duration of the materialized temporary. 7386 // FIXME: Rebuild the expression instead of mutating it. 7387 MTE->setExtendingDecl(ExtendingEntity->getDecl(), 7388 ExtendingEntity->allocateManglingNumber()); 7389 // Also visit the temporaries lifetime-extended by this initializer. 7390 return true; 7391 } 7392 7393 if (shouldLifetimeExtendThroughPath(Path)) { 7394 // We're supposed to lifetime-extend the temporary along this path (per 7395 // the resolution of DR1815), but we don't support that yet. 7396 // 7397 // FIXME: Properly handle this situation. Perhaps the easiest approach 7398 // would be to clone the initializer expression on each use that would 7399 // lifetime extend its temporaries. 7400 Diag(DiagLoc, diag::warn_unsupported_lifetime_extension) 7401 << RK << DiagRange; 7402 } else { 7403 // If the path goes through the initialization of a variable or field, 7404 // it can't possibly reach a temporary created in this full-expression. 7405 // We will have already diagnosed any problems with the initializer. 7406 if (pathContainsInit(Path)) 7407 return false; 7408 7409 Diag(DiagLoc, diag::warn_dangling_variable) 7410 << RK << !Entity.getParent() 7411 << ExtendingEntity->getDecl()->isImplicit() 7412 << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange; 7413 } 7414 break; 7415 } 7416 7417 case LK_MemInitializer: { 7418 if (isa<MaterializeTemporaryExpr>(L)) { 7419 // Under C++ DR1696, if a mem-initializer (or a default member 7420 // initializer used by the absence of one) would lifetime-extend a 7421 // temporary, the program is ill-formed. 7422 if (auto *ExtendingDecl = 7423 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { 7424 if (IsGslPtrInitWithGslTempOwner) { 7425 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_member) 7426 << ExtendingDecl << DiagRange; 7427 Diag(ExtendingDecl->getLocation(), 7428 diag::note_ref_or_ptr_member_declared_here) 7429 << true; 7430 return false; 7431 } 7432 bool IsSubobjectMember = ExtendingEntity != &Entity; 7433 Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path) 7434 ? diag::err_dangling_member 7435 : diag::warn_dangling_member) 7436 << ExtendingDecl << IsSubobjectMember << RK << DiagRange; 7437 // Don't bother adding a note pointing to the field if we're inside 7438 // its default member initializer; our primary diagnostic points to 7439 // the same place in that case. 7440 if (Path.empty() || 7441 Path.back().Kind != IndirectLocalPathEntry::DefaultInit) { 7442 Diag(ExtendingDecl->getLocation(), 7443 diag::note_lifetime_extending_member_declared_here) 7444 << RK << IsSubobjectMember; 7445 } 7446 } else { 7447 // We have a mem-initializer but no particular field within it; this 7448 // is either a base class or a delegating initializer directly 7449 // initializing the base-class from something that doesn't live long 7450 // enough. 7451 // 7452 // FIXME: Warn on this. 7453 return false; 7454 } 7455 } else { 7456 // Paths via a default initializer can only occur during error recovery 7457 // (there's no other way that a default initializer can refer to a 7458 // local). Don't produce a bogus warning on those cases. 7459 if (pathContainsInit(Path)) 7460 return false; 7461 7462 // Suppress false positives for code like the one below: 7463 // Ctor(unique_ptr<T> up) : member(*up), member2(move(up)) {} 7464 if (IsLocalGslOwner && pathOnlyInitializesGslPointer(Path)) 7465 return false; 7466 7467 auto *DRE = dyn_cast<DeclRefExpr>(L); 7468 auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr; 7469 if (!VD) { 7470 // A member was initialized to a local block. 7471 // FIXME: Warn on this. 7472 return false; 7473 } 7474 7475 if (auto *Member = 7476 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { 7477 bool IsPointer = !Member->getType()->isReferenceType(); 7478 Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr 7479 : diag::warn_bind_ref_member_to_parameter) 7480 << Member << VD << isa<ParmVarDecl>(VD) << DiagRange; 7481 Diag(Member->getLocation(), 7482 diag::note_ref_or_ptr_member_declared_here) 7483 << (unsigned)IsPointer; 7484 } 7485 } 7486 break; 7487 } 7488 7489 case LK_New: 7490 if (isa<MaterializeTemporaryExpr>(L)) { 7491 if (IsGslPtrInitWithGslTempOwner) 7492 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange; 7493 else 7494 Diag(DiagLoc, RK == RK_ReferenceBinding 7495 ? diag::warn_new_dangling_reference 7496 : diag::warn_new_dangling_initializer_list) 7497 << !Entity.getParent() << DiagRange; 7498 } else { 7499 // We can't determine if the allocation outlives the local declaration. 7500 return false; 7501 } 7502 break; 7503 7504 case LK_Return: 7505 case LK_StmtExprResult: 7506 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { 7507 // We can't determine if the local variable outlives the statement 7508 // expression. 7509 if (LK == LK_StmtExprResult) 7510 return false; 7511 Diag(DiagLoc, diag::warn_ret_stack_addr_ref) 7512 << Entity.getType()->isReferenceType() << DRE->getDecl() 7513 << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange; 7514 } else if (isa<BlockExpr>(L)) { 7515 Diag(DiagLoc, diag::err_ret_local_block) << DiagRange; 7516 } else if (isa<AddrLabelExpr>(L)) { 7517 // Don't warn when returning a label from a statement expression. 7518 // Leaving the scope doesn't end its lifetime. 7519 if (LK == LK_StmtExprResult) 7520 return false; 7521 Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange; 7522 } else { 7523 Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref) 7524 << Entity.getType()->isReferenceType() << DiagRange; 7525 } 7526 break; 7527 } 7528 7529 for (unsigned I = 0; I != Path.size(); ++I) { 7530 auto Elem = Path[I]; 7531 7532 switch (Elem.Kind) { 7533 case IndirectLocalPathEntry::AddressOf: 7534 case IndirectLocalPathEntry::LValToRVal: 7535 // These exist primarily to mark the path as not permitting or 7536 // supporting lifetime extension. 7537 break; 7538 7539 case IndirectLocalPathEntry::LifetimeBoundCall: 7540 case IndirectLocalPathEntry::GslPointerInit: 7541 case IndirectLocalPathEntry::GslReferenceInit: 7542 // FIXME: Consider adding a note for these. 7543 break; 7544 7545 case IndirectLocalPathEntry::DefaultInit: { 7546 auto *FD = cast<FieldDecl>(Elem.D); 7547 Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer) 7548 << FD << nextPathEntryRange(Path, I + 1, L); 7549 break; 7550 } 7551 7552 case IndirectLocalPathEntry::VarInit: 7553 const VarDecl *VD = cast<VarDecl>(Elem.D); 7554 Diag(VD->getLocation(), diag::note_local_var_initializer) 7555 << VD->getType()->isReferenceType() 7556 << VD->isImplicit() << VD->getDeclName() 7557 << nextPathEntryRange(Path, I + 1, L); 7558 break; 7559 } 7560 } 7561 7562 // We didn't lifetime-extend, so don't go any further; we don't need more 7563 // warnings or errors on inner temporaries within this one's initializer. 7564 return false; 7565 }; 7566 7567 bool EnableLifetimeWarnings = !getDiagnostics().isIgnored( 7568 diag::warn_dangling_lifetime_pointer, SourceLocation()); 7569 llvm::SmallVector<IndirectLocalPathEntry, 8> Path; 7570 if (Init->isGLValue()) 7571 visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding, 7572 TemporaryVisitor, 7573 EnableLifetimeWarnings); 7574 else 7575 visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false, 7576 EnableLifetimeWarnings); 7577 } 7578 7579 static void DiagnoseNarrowingInInitList(Sema &S, 7580 const ImplicitConversionSequence &ICS, 7581 QualType PreNarrowingType, 7582 QualType EntityType, 7583 const Expr *PostInit); 7584 7585 /// Provide warnings when std::move is used on construction. 7586 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr, 7587 bool IsReturnStmt) { 7588 if (!InitExpr) 7589 return; 7590 7591 if (S.inTemplateInstantiation()) 7592 return; 7593 7594 QualType DestType = InitExpr->getType(); 7595 if (!DestType->isRecordType()) 7596 return; 7597 7598 unsigned DiagID = 0; 7599 if (IsReturnStmt) { 7600 const CXXConstructExpr *CCE = 7601 dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens()); 7602 if (!CCE || CCE->getNumArgs() != 1) 7603 return; 7604 7605 if (!CCE->getConstructor()->isCopyOrMoveConstructor()) 7606 return; 7607 7608 InitExpr = CCE->getArg(0)->IgnoreImpCasts(); 7609 } 7610 7611 // Find the std::move call and get the argument. 7612 const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens()); 7613 if (!CE || !CE->isCallToStdMove()) 7614 return; 7615 7616 const Expr *Arg = CE->getArg(0)->IgnoreImplicit(); 7617 7618 if (IsReturnStmt) { 7619 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts()); 7620 if (!DRE || DRE->refersToEnclosingVariableOrCapture()) 7621 return; 7622 7623 const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7624 if (!VD || !VD->hasLocalStorage()) 7625 return; 7626 7627 // __block variables are not moved implicitly. 7628 if (VD->hasAttr<BlocksAttr>()) 7629 return; 7630 7631 QualType SourceType = VD->getType(); 7632 if (!SourceType->isRecordType()) 7633 return; 7634 7635 if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) { 7636 return; 7637 } 7638 7639 // If we're returning a function parameter, copy elision 7640 // is not possible. 7641 if (isa<ParmVarDecl>(VD)) 7642 DiagID = diag::warn_redundant_move_on_return; 7643 else 7644 DiagID = diag::warn_pessimizing_move_on_return; 7645 } else { 7646 DiagID = diag::warn_pessimizing_move_on_initialization; 7647 const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens(); 7648 if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType()) 7649 return; 7650 } 7651 7652 S.Diag(CE->getBeginLoc(), DiagID); 7653 7654 // Get all the locations for a fix-it. Don't emit the fix-it if any location 7655 // is within a macro. 7656 SourceLocation CallBegin = CE->getCallee()->getBeginLoc(); 7657 if (CallBegin.isMacroID()) 7658 return; 7659 SourceLocation RParen = CE->getRParenLoc(); 7660 if (RParen.isMacroID()) 7661 return; 7662 SourceLocation LParen; 7663 SourceLocation ArgLoc = Arg->getBeginLoc(); 7664 7665 // Special testing for the argument location. Since the fix-it needs the 7666 // location right before the argument, the argument location can be in a 7667 // macro only if it is at the beginning of the macro. 7668 while (ArgLoc.isMacroID() && 7669 S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) { 7670 ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin(); 7671 } 7672 7673 if (LParen.isMacroID()) 7674 return; 7675 7676 LParen = ArgLoc.getLocWithOffset(-1); 7677 7678 S.Diag(CE->getBeginLoc(), diag::note_remove_move) 7679 << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen)) 7680 << FixItHint::CreateRemoval(SourceRange(RParen, RParen)); 7681 } 7682 7683 static void CheckForNullPointerDereference(Sema &S, const Expr *E) { 7684 // Check to see if we are dereferencing a null pointer. If so, this is 7685 // undefined behavior, so warn about it. This only handles the pattern 7686 // "*null", which is a very syntactic check. 7687 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts())) 7688 if (UO->getOpcode() == UO_Deref && 7689 UO->getSubExpr()->IgnoreParenCasts()-> 7690 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) { 7691 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, 7692 S.PDiag(diag::warn_binding_null_to_reference) 7693 << UO->getSubExpr()->getSourceRange()); 7694 } 7695 } 7696 7697 MaterializeTemporaryExpr * 7698 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary, 7699 bool BoundToLvalueReference) { 7700 auto MTE = new (Context) 7701 MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference); 7702 7703 // Order an ExprWithCleanups for lifetime marks. 7704 // 7705 // TODO: It'll be good to have a single place to check the access of the 7706 // destructor and generate ExprWithCleanups for various uses. Currently these 7707 // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary, 7708 // but there may be a chance to merge them. 7709 Cleanup.setExprNeedsCleanups(false); 7710 return MTE; 7711 } 7712 7713 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) { 7714 // In C++98, we don't want to implicitly create an xvalue. 7715 // FIXME: This means that AST consumers need to deal with "prvalues" that 7716 // denote materialized temporaries. Maybe we should add another ValueKind 7717 // for "xvalue pretending to be a prvalue" for C++98 support. 7718 if (!E->isRValue() || !getLangOpts().CPlusPlus11) 7719 return E; 7720 7721 // C++1z [conv.rval]/1: T shall be a complete type. 7722 // FIXME: Does this ever matter (can we form a prvalue of incomplete type)? 7723 // If so, we should check for a non-abstract class type here too. 7724 QualType T = E->getType(); 7725 if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type)) 7726 return ExprError(); 7727 7728 return CreateMaterializeTemporaryExpr(E->getType(), E, false); 7729 } 7730 7731 ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty, 7732 ExprValueKind VK, 7733 CheckedConversionKind CCK) { 7734 7735 CastKind CK = CK_NoOp; 7736 7737 if (VK == VK_RValue) { 7738 auto PointeeTy = Ty->getPointeeType(); 7739 auto ExprPointeeTy = E->getType()->getPointeeType(); 7740 if (!PointeeTy.isNull() && 7741 PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace()) 7742 CK = CK_AddressSpaceConversion; 7743 } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) { 7744 CK = CK_AddressSpaceConversion; 7745 } 7746 7747 return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK); 7748 } 7749 7750 ExprResult InitializationSequence::Perform(Sema &S, 7751 const InitializedEntity &Entity, 7752 const InitializationKind &Kind, 7753 MultiExprArg Args, 7754 QualType *ResultType) { 7755 if (Failed()) { 7756 Diagnose(S, Entity, Kind, Args); 7757 return ExprError(); 7758 } 7759 if (!ZeroInitializationFixit.empty()) { 7760 unsigned DiagID = diag::err_default_init_const; 7761 if (Decl *D = Entity.getDecl()) 7762 if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>()) 7763 DiagID = diag::ext_default_init_const; 7764 7765 // The initialization would have succeeded with this fixit. Since the fixit 7766 // is on the error, we need to build a valid AST in this case, so this isn't 7767 // handled in the Failed() branch above. 7768 QualType DestType = Entity.getType(); 7769 S.Diag(Kind.getLocation(), DiagID) 7770 << DestType << (bool)DestType->getAs<RecordType>() 7771 << FixItHint::CreateInsertion(ZeroInitializationFixitLoc, 7772 ZeroInitializationFixit); 7773 } 7774 7775 if (getKind() == DependentSequence) { 7776 // If the declaration is a non-dependent, incomplete array type 7777 // that has an initializer, then its type will be completed once 7778 // the initializer is instantiated. 7779 if (ResultType && !Entity.getType()->isDependentType() && 7780 Args.size() == 1) { 7781 QualType DeclType = Entity.getType(); 7782 if (const IncompleteArrayType *ArrayT 7783 = S.Context.getAsIncompleteArrayType(DeclType)) { 7784 // FIXME: We don't currently have the ability to accurately 7785 // compute the length of an initializer list without 7786 // performing full type-checking of the initializer list 7787 // (since we have to determine where braces are implicitly 7788 // introduced and such). So, we fall back to making the array 7789 // type a dependently-sized array type with no specified 7790 // bound. 7791 if (isa<InitListExpr>((Expr *)Args[0])) { 7792 SourceRange Brackets; 7793 7794 // Scavange the location of the brackets from the entity, if we can. 7795 if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) { 7796 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) { 7797 TypeLoc TL = TInfo->getTypeLoc(); 7798 if (IncompleteArrayTypeLoc ArrayLoc = 7799 TL.getAs<IncompleteArrayTypeLoc>()) 7800 Brackets = ArrayLoc.getBracketsRange(); 7801 } 7802 } 7803 7804 *ResultType 7805 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(), 7806 /*NumElts=*/nullptr, 7807 ArrayT->getSizeModifier(), 7808 ArrayT->getIndexTypeCVRQualifiers(), 7809 Brackets); 7810 } 7811 7812 } 7813 } 7814 if (Kind.getKind() == InitializationKind::IK_Direct && 7815 !Kind.isExplicitCast()) { 7816 // Rebuild the ParenListExpr. 7817 SourceRange ParenRange = Kind.getParenOrBraceRange(); 7818 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(), 7819 Args); 7820 } 7821 assert(Kind.getKind() == InitializationKind::IK_Copy || 7822 Kind.isExplicitCast() || 7823 Kind.getKind() == InitializationKind::IK_DirectList); 7824 return ExprResult(Args[0]); 7825 } 7826 7827 // No steps means no initialization. 7828 if (Steps.empty()) 7829 return ExprResult((Expr *)nullptr); 7830 7831 if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() && 7832 Args.size() == 1 && isa<InitListExpr>(Args[0]) && 7833 !Entity.isParameterKind()) { 7834 // Produce a C++98 compatibility warning if we are initializing a reference 7835 // from an initializer list. For parameters, we produce a better warning 7836 // elsewhere. 7837 Expr *Init = Args[0]; 7838 S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init) 7839 << Init->getSourceRange(); 7840 } 7841 7842 // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope 7843 QualType ETy = Entity.getType(); 7844 bool HasGlobalAS = ETy.hasAddressSpace() && 7845 ETy.getAddressSpace() == LangAS::opencl_global; 7846 7847 if (S.getLangOpts().OpenCLVersion >= 200 && 7848 ETy->isAtomicType() && !HasGlobalAS && 7849 Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) { 7850 S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init) 7851 << 1 7852 << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc()); 7853 return ExprError(); 7854 } 7855 7856 QualType DestType = Entity.getType().getNonReferenceType(); 7857 // FIXME: Ugly hack around the fact that Entity.getType() is not 7858 // the same as Entity.getDecl()->getType() in cases involving type merging, 7859 // and we want latter when it makes sense. 7860 if (ResultType) 7861 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() : 7862 Entity.getType(); 7863 7864 ExprResult CurInit((Expr *)nullptr); 7865 SmallVector<Expr*, 4> ArrayLoopCommonExprs; 7866 7867 // For initialization steps that start with a single initializer, 7868 // grab the only argument out the Args and place it into the "current" 7869 // initializer. 7870 switch (Steps.front().Kind) { 7871 case SK_ResolveAddressOfOverloadedFunction: 7872 case SK_CastDerivedToBaseRValue: 7873 case SK_CastDerivedToBaseXValue: 7874 case SK_CastDerivedToBaseLValue: 7875 case SK_BindReference: 7876 case SK_BindReferenceToTemporary: 7877 case SK_FinalCopy: 7878 case SK_ExtraneousCopyToTemporary: 7879 case SK_UserConversion: 7880 case SK_QualificationConversionLValue: 7881 case SK_QualificationConversionXValue: 7882 case SK_QualificationConversionRValue: 7883 case SK_AtomicConversion: 7884 case SK_ConversionSequence: 7885 case SK_ConversionSequenceNoNarrowing: 7886 case SK_ListInitialization: 7887 case SK_UnwrapInitList: 7888 case SK_RewrapInitList: 7889 case SK_CAssignment: 7890 case SK_StringInit: 7891 case SK_ObjCObjectConversion: 7892 case SK_ArrayLoopIndex: 7893 case SK_ArrayLoopInit: 7894 case SK_ArrayInit: 7895 case SK_GNUArrayInit: 7896 case SK_ParenthesizedArrayInit: 7897 case SK_PassByIndirectCopyRestore: 7898 case SK_PassByIndirectRestore: 7899 case SK_ProduceObjCObject: 7900 case SK_StdInitializerList: 7901 case SK_OCLSamplerInit: 7902 case SK_OCLZeroOpaqueType: { 7903 assert(Args.size() == 1); 7904 CurInit = Args[0]; 7905 if (!CurInit.get()) return ExprError(); 7906 break; 7907 } 7908 7909 case SK_ConstructorInitialization: 7910 case SK_ConstructorInitializationFromList: 7911 case SK_StdInitializerListConstructorCall: 7912 case SK_ZeroInitialization: 7913 break; 7914 } 7915 7916 // Promote from an unevaluated context to an unevaluated list context in 7917 // C++11 list-initialization; we need to instantiate entities usable in 7918 // constant expressions here in order to perform narrowing checks =( 7919 EnterExpressionEvaluationContext Evaluated( 7920 S, EnterExpressionEvaluationContext::InitList, 7921 CurInit.get() && isa<InitListExpr>(CurInit.get())); 7922 7923 // C++ [class.abstract]p2: 7924 // no objects of an abstract class can be created except as subobjects 7925 // of a class derived from it 7926 auto checkAbstractType = [&](QualType T) -> bool { 7927 if (Entity.getKind() == InitializedEntity::EK_Base || 7928 Entity.getKind() == InitializedEntity::EK_Delegating) 7929 return false; 7930 return S.RequireNonAbstractType(Kind.getLocation(), T, 7931 diag::err_allocation_of_abstract_type); 7932 }; 7933 7934 // Walk through the computed steps for the initialization sequence, 7935 // performing the specified conversions along the way. 7936 bool ConstructorInitRequiresZeroInit = false; 7937 for (step_iterator Step = step_begin(), StepEnd = step_end(); 7938 Step != StepEnd; ++Step) { 7939 if (CurInit.isInvalid()) 7940 return ExprError(); 7941 7942 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType(); 7943 7944 switch (Step->Kind) { 7945 case SK_ResolveAddressOfOverloadedFunction: 7946 // Overload resolution determined which function invoke; update the 7947 // initializer to reflect that choice. 7948 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl); 7949 if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation())) 7950 return ExprError(); 7951 CurInit = S.FixOverloadedFunctionReference(CurInit, 7952 Step->Function.FoundDecl, 7953 Step->Function.Function); 7954 break; 7955 7956 case SK_CastDerivedToBaseRValue: 7957 case SK_CastDerivedToBaseXValue: 7958 case SK_CastDerivedToBaseLValue: { 7959 // We have a derived-to-base cast that produces either an rvalue or an 7960 // lvalue. Perform that cast. 7961 7962 CXXCastPath BasePath; 7963 7964 // Casts to inaccessible base classes are allowed with C-style casts. 7965 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast(); 7966 if (S.CheckDerivedToBaseConversion( 7967 SourceType, Step->Type, CurInit.get()->getBeginLoc(), 7968 CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess)) 7969 return ExprError(); 7970 7971 ExprValueKind VK = 7972 Step->Kind == SK_CastDerivedToBaseLValue ? 7973 VK_LValue : 7974 (Step->Kind == SK_CastDerivedToBaseXValue ? 7975 VK_XValue : 7976 VK_RValue); 7977 CurInit = 7978 ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase, 7979 CurInit.get(), &BasePath, VK); 7980 break; 7981 } 7982 7983 case SK_BindReference: 7984 // Reference binding does not have any corresponding ASTs. 7985 7986 // Check exception specifications 7987 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 7988 return ExprError(); 7989 7990 // We don't check for e.g. function pointers here, since address 7991 // availability checks should only occur when the function first decays 7992 // into a pointer or reference. 7993 if (CurInit.get()->getType()->isFunctionProtoType()) { 7994 if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) { 7995 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 7996 if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 7997 DRE->getBeginLoc())) 7998 return ExprError(); 7999 } 8000 } 8001 } 8002 8003 CheckForNullPointerDereference(S, CurInit.get()); 8004 break; 8005 8006 case SK_BindReferenceToTemporary: { 8007 // Make sure the "temporary" is actually an rvalue. 8008 assert(CurInit.get()->isRValue() && "not a temporary"); 8009 8010 // Check exception specifications 8011 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 8012 return ExprError(); 8013 8014 // Materialize the temporary into memory. 8015 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( 8016 Step->Type, CurInit.get(), Entity.getType()->isLValueReferenceType()); 8017 CurInit = MTE; 8018 8019 // If we're extending this temporary to automatic storage duration -- we 8020 // need to register its cleanup during the full-expression's cleanups. 8021 if (MTE->getStorageDuration() == SD_Automatic && 8022 MTE->getType().isDestructedType()) 8023 S.Cleanup.setExprNeedsCleanups(true); 8024 break; 8025 } 8026 8027 case SK_FinalCopy: 8028 if (checkAbstractType(Step->Type)) 8029 return ExprError(); 8030 8031 // If the overall initialization is initializing a temporary, we already 8032 // bound our argument if it was necessary to do so. If not (if we're 8033 // ultimately initializing a non-temporary), our argument needs to be 8034 // bound since it's initializing a function parameter. 8035 // FIXME: This is a mess. Rationalize temporary destruction. 8036 if (!shouldBindAsTemporary(Entity)) 8037 CurInit = S.MaybeBindToTemporary(CurInit.get()); 8038 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 8039 /*IsExtraneousCopy=*/false); 8040 break; 8041 8042 case SK_ExtraneousCopyToTemporary: 8043 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 8044 /*IsExtraneousCopy=*/true); 8045 break; 8046 8047 case SK_UserConversion: { 8048 // We have a user-defined conversion that invokes either a constructor 8049 // or a conversion function. 8050 CastKind CastKind; 8051 FunctionDecl *Fn = Step->Function.Function; 8052 DeclAccessPair FoundFn = Step->Function.FoundDecl; 8053 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates; 8054 bool CreatedObject = false; 8055 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) { 8056 // Build a call to the selected constructor. 8057 SmallVector<Expr*, 8> ConstructorArgs; 8058 SourceLocation Loc = CurInit.get()->getBeginLoc(); 8059 8060 // Determine the arguments required to actually perform the constructor 8061 // call. 8062 Expr *Arg = CurInit.get(); 8063 if (S.CompleteConstructorCall(Constructor, 8064 MultiExprArg(&Arg, 1), 8065 Loc, ConstructorArgs)) 8066 return ExprError(); 8067 8068 // Build an expression that constructs a temporary. 8069 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, 8070 FoundFn, Constructor, 8071 ConstructorArgs, 8072 HadMultipleCandidates, 8073 /*ListInit*/ false, 8074 /*StdInitListInit*/ false, 8075 /*ZeroInit*/ false, 8076 CXXConstructExpr::CK_Complete, 8077 SourceRange()); 8078 if (CurInit.isInvalid()) 8079 return ExprError(); 8080 8081 S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn, 8082 Entity); 8083 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 8084 return ExprError(); 8085 8086 CastKind = CK_ConstructorConversion; 8087 CreatedObject = true; 8088 } else { 8089 // Build a call to the conversion function. 8090 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn); 8091 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr, 8092 FoundFn); 8093 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 8094 return ExprError(); 8095 8096 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion, 8097 HadMultipleCandidates); 8098 if (CurInit.isInvalid()) 8099 return ExprError(); 8100 8101 CastKind = CK_UserDefinedConversion; 8102 CreatedObject = Conversion->getReturnType()->isRecordType(); 8103 } 8104 8105 if (CreatedObject && checkAbstractType(CurInit.get()->getType())) 8106 return ExprError(); 8107 8108 CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(), 8109 CastKind, CurInit.get(), nullptr, 8110 CurInit.get()->getValueKind()); 8111 8112 if (shouldBindAsTemporary(Entity)) 8113 // The overall entity is temporary, so this expression should be 8114 // destroyed at the end of its full-expression. 8115 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 8116 else if (CreatedObject && shouldDestroyEntity(Entity)) { 8117 // The object outlasts the full-expression, but we need to prepare for 8118 // a destructor being run on it. 8119 // FIXME: It makes no sense to do this here. This should happen 8120 // regardless of how we initialized the entity. 8121 QualType T = CurInit.get()->getType(); 8122 if (const RecordType *Record = T->getAs<RecordType>()) { 8123 CXXDestructorDecl *Destructor 8124 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl())); 8125 S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor, 8126 S.PDiag(diag::err_access_dtor_temp) << T); 8127 S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor); 8128 if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc())) 8129 return ExprError(); 8130 } 8131 } 8132 break; 8133 } 8134 8135 case SK_QualificationConversionLValue: 8136 case SK_QualificationConversionXValue: 8137 case SK_QualificationConversionRValue: { 8138 // Perform a qualification conversion; these can never go wrong. 8139 ExprValueKind VK = 8140 Step->Kind == SK_QualificationConversionLValue 8141 ? VK_LValue 8142 : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue 8143 : VK_RValue); 8144 CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK); 8145 break; 8146 } 8147 8148 case SK_AtomicConversion: { 8149 assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic"); 8150 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8151 CK_NonAtomicToAtomic, VK_RValue); 8152 break; 8153 } 8154 8155 case SK_ConversionSequence: 8156 case SK_ConversionSequenceNoNarrowing: { 8157 if (const auto *FromPtrType = 8158 CurInit.get()->getType()->getAs<PointerType>()) { 8159 if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) { 8160 if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) && 8161 !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) { 8162 S.Diag(CurInit.get()->getExprLoc(), 8163 diag::warn_noderef_to_dereferenceable_pointer) 8164 << CurInit.get()->getSourceRange(); 8165 } 8166 } 8167 } 8168 8169 Sema::CheckedConversionKind CCK 8170 = Kind.isCStyleCast()? Sema::CCK_CStyleCast 8171 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast 8172 : Kind.isExplicitCast()? Sema::CCK_OtherCast 8173 : Sema::CCK_ImplicitConversion; 8174 ExprResult CurInitExprRes = 8175 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS, 8176 getAssignmentAction(Entity), CCK); 8177 if (CurInitExprRes.isInvalid()) 8178 return ExprError(); 8179 8180 S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get()); 8181 8182 CurInit = CurInitExprRes; 8183 8184 if (Step->Kind == SK_ConversionSequenceNoNarrowing && 8185 S.getLangOpts().CPlusPlus) 8186 DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(), 8187 CurInit.get()); 8188 8189 break; 8190 } 8191 8192 case SK_ListInitialization: { 8193 if (checkAbstractType(Step->Type)) 8194 return ExprError(); 8195 8196 InitListExpr *InitList = cast<InitListExpr>(CurInit.get()); 8197 // If we're not initializing the top-level entity, we need to create an 8198 // InitializeTemporary entity for our target type. 8199 QualType Ty = Step->Type; 8200 bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty); 8201 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty); 8202 InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity; 8203 InitListChecker PerformInitList(S, InitEntity, 8204 InitList, Ty, /*VerifyOnly=*/false, 8205 /*TreatUnavailableAsInvalid=*/false); 8206 if (PerformInitList.HadError()) 8207 return ExprError(); 8208 8209 // Hack: We must update *ResultType if available in order to set the 8210 // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'. 8211 // Worst case: 'const int (&arref)[] = {1, 2, 3};'. 8212 if (ResultType && 8213 ResultType->getNonReferenceType()->isIncompleteArrayType()) { 8214 if ((*ResultType)->isRValueReferenceType()) 8215 Ty = S.Context.getRValueReferenceType(Ty); 8216 else if ((*ResultType)->isLValueReferenceType()) 8217 Ty = S.Context.getLValueReferenceType(Ty, 8218 (*ResultType)->castAs<LValueReferenceType>()->isSpelledAsLValue()); 8219 *ResultType = Ty; 8220 } 8221 8222 InitListExpr *StructuredInitList = 8223 PerformInitList.getFullyStructuredList(); 8224 CurInit.get(); 8225 CurInit = shouldBindAsTemporary(InitEntity) 8226 ? S.MaybeBindToTemporary(StructuredInitList) 8227 : StructuredInitList; 8228 break; 8229 } 8230 8231 case SK_ConstructorInitializationFromList: { 8232 if (checkAbstractType(Step->Type)) 8233 return ExprError(); 8234 8235 // When an initializer list is passed for a parameter of type "reference 8236 // to object", we don't get an EK_Temporary entity, but instead an 8237 // EK_Parameter entity with reference type. 8238 // FIXME: This is a hack. What we really should do is create a user 8239 // conversion step for this case, but this makes it considerably more 8240 // complicated. For now, this will do. 8241 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 8242 Entity.getType().getNonReferenceType()); 8243 bool UseTemporary = Entity.getType()->isReferenceType(); 8244 assert(Args.size() == 1 && "expected a single argument for list init"); 8245 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 8246 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init) 8247 << InitList->getSourceRange(); 8248 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits()); 8249 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity : 8250 Entity, 8251 Kind, Arg, *Step, 8252 ConstructorInitRequiresZeroInit, 8253 /*IsListInitialization*/true, 8254 /*IsStdInitListInit*/false, 8255 InitList->getLBraceLoc(), 8256 InitList->getRBraceLoc()); 8257 break; 8258 } 8259 8260 case SK_UnwrapInitList: 8261 CurInit = cast<InitListExpr>(CurInit.get())->getInit(0); 8262 break; 8263 8264 case SK_RewrapInitList: { 8265 Expr *E = CurInit.get(); 8266 InitListExpr *Syntactic = Step->WrappingSyntacticList; 8267 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context, 8268 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc()); 8269 ILE->setSyntacticForm(Syntactic); 8270 ILE->setType(E->getType()); 8271 ILE->setValueKind(E->getValueKind()); 8272 CurInit = ILE; 8273 break; 8274 } 8275 8276 case SK_ConstructorInitialization: 8277 case SK_StdInitializerListConstructorCall: { 8278 if (checkAbstractType(Step->Type)) 8279 return ExprError(); 8280 8281 // When an initializer list is passed for a parameter of type "reference 8282 // to object", we don't get an EK_Temporary entity, but instead an 8283 // EK_Parameter entity with reference type. 8284 // FIXME: This is a hack. What we really should do is create a user 8285 // conversion step for this case, but this makes it considerably more 8286 // complicated. For now, this will do. 8287 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 8288 Entity.getType().getNonReferenceType()); 8289 bool UseTemporary = Entity.getType()->isReferenceType(); 8290 bool IsStdInitListInit = 8291 Step->Kind == SK_StdInitializerListConstructorCall; 8292 Expr *Source = CurInit.get(); 8293 SourceRange Range = Kind.hasParenOrBraceRange() 8294 ? Kind.getParenOrBraceRange() 8295 : SourceRange(); 8296 CurInit = PerformConstructorInitialization( 8297 S, UseTemporary ? TempEntity : Entity, Kind, 8298 Source ? MultiExprArg(Source) : Args, *Step, 8299 ConstructorInitRequiresZeroInit, 8300 /*IsListInitialization*/ IsStdInitListInit, 8301 /*IsStdInitListInitialization*/ IsStdInitListInit, 8302 /*LBraceLoc*/ Range.getBegin(), 8303 /*RBraceLoc*/ Range.getEnd()); 8304 break; 8305 } 8306 8307 case SK_ZeroInitialization: { 8308 step_iterator NextStep = Step; 8309 ++NextStep; 8310 if (NextStep != StepEnd && 8311 (NextStep->Kind == SK_ConstructorInitialization || 8312 NextStep->Kind == SK_ConstructorInitializationFromList)) { 8313 // The need for zero-initialization is recorded directly into 8314 // the call to the object's constructor within the next step. 8315 ConstructorInitRequiresZeroInit = true; 8316 } else if (Kind.getKind() == InitializationKind::IK_Value && 8317 S.getLangOpts().CPlusPlus && 8318 !Kind.isImplicitValueInit()) { 8319 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 8320 if (!TSInfo) 8321 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type, 8322 Kind.getRange().getBegin()); 8323 8324 CurInit = new (S.Context) CXXScalarValueInitExpr( 8325 Entity.getType().getNonLValueExprType(S.Context), TSInfo, 8326 Kind.getRange().getEnd()); 8327 } else { 8328 CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type); 8329 } 8330 break; 8331 } 8332 8333 case SK_CAssignment: { 8334 QualType SourceType = CurInit.get()->getType(); 8335 8336 // Save off the initial CurInit in case we need to emit a diagnostic 8337 ExprResult InitialCurInit = CurInit; 8338 ExprResult Result = CurInit; 8339 Sema::AssignConvertType ConvTy = 8340 S.CheckSingleAssignmentConstraints(Step->Type, Result, true, 8341 Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited); 8342 if (Result.isInvalid()) 8343 return ExprError(); 8344 CurInit = Result; 8345 8346 // If this is a call, allow conversion to a transparent union. 8347 ExprResult CurInitExprRes = CurInit; 8348 if (ConvTy != Sema::Compatible && 8349 Entity.isParameterKind() && 8350 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes) 8351 == Sema::Compatible) 8352 ConvTy = Sema::Compatible; 8353 if (CurInitExprRes.isInvalid()) 8354 return ExprError(); 8355 CurInit = CurInitExprRes; 8356 8357 bool Complained; 8358 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(), 8359 Step->Type, SourceType, 8360 InitialCurInit.get(), 8361 getAssignmentAction(Entity, true), 8362 &Complained)) { 8363 PrintInitLocationNote(S, Entity); 8364 return ExprError(); 8365 } else if (Complained) 8366 PrintInitLocationNote(S, Entity); 8367 break; 8368 } 8369 8370 case SK_StringInit: { 8371 QualType Ty = Step->Type; 8372 CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty, 8373 S.Context.getAsArrayType(Ty), S); 8374 break; 8375 } 8376 8377 case SK_ObjCObjectConversion: 8378 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8379 CK_ObjCObjectLValueCast, 8380 CurInit.get()->getValueKind()); 8381 break; 8382 8383 case SK_ArrayLoopIndex: { 8384 Expr *Cur = CurInit.get(); 8385 Expr *BaseExpr = new (S.Context) 8386 OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(), 8387 Cur->getValueKind(), Cur->getObjectKind(), Cur); 8388 Expr *IndexExpr = 8389 new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType()); 8390 CurInit = S.CreateBuiltinArraySubscriptExpr( 8391 BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation()); 8392 ArrayLoopCommonExprs.push_back(BaseExpr); 8393 break; 8394 } 8395 8396 case SK_ArrayLoopInit: { 8397 assert(!ArrayLoopCommonExprs.empty() && 8398 "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit"); 8399 Expr *Common = ArrayLoopCommonExprs.pop_back_val(); 8400 CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common, 8401 CurInit.get()); 8402 break; 8403 } 8404 8405 case SK_GNUArrayInit: 8406 // Okay: we checked everything before creating this step. Note that 8407 // this is a GNU extension. 8408 S.Diag(Kind.getLocation(), diag::ext_array_init_copy) 8409 << Step->Type << CurInit.get()->getType() 8410 << CurInit.get()->getSourceRange(); 8411 updateGNUCompoundLiteralRValue(CurInit.get()); 8412 LLVM_FALLTHROUGH; 8413 case SK_ArrayInit: 8414 // If the destination type is an incomplete array type, update the 8415 // type accordingly. 8416 if (ResultType) { 8417 if (const IncompleteArrayType *IncompleteDest 8418 = S.Context.getAsIncompleteArrayType(Step->Type)) { 8419 if (const ConstantArrayType *ConstantSource 8420 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) { 8421 *ResultType = S.Context.getConstantArrayType( 8422 IncompleteDest->getElementType(), 8423 ConstantSource->getSize(), 8424 ConstantSource->getSizeExpr(), 8425 ArrayType::Normal, 0); 8426 } 8427 } 8428 } 8429 break; 8430 8431 case SK_ParenthesizedArrayInit: 8432 // Okay: we checked everything before creating this step. Note that 8433 // this is a GNU extension. 8434 S.Diag(Kind.getLocation(), diag::ext_array_init_parens) 8435 << CurInit.get()->getSourceRange(); 8436 break; 8437 8438 case SK_PassByIndirectCopyRestore: 8439 case SK_PassByIndirectRestore: 8440 checkIndirectCopyRestoreSource(S, CurInit.get()); 8441 CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr( 8442 CurInit.get(), Step->Type, 8443 Step->Kind == SK_PassByIndirectCopyRestore); 8444 break; 8445 8446 case SK_ProduceObjCObject: 8447 CurInit = 8448 ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject, 8449 CurInit.get(), nullptr, VK_RValue); 8450 break; 8451 8452 case SK_StdInitializerList: { 8453 S.Diag(CurInit.get()->getExprLoc(), 8454 diag::warn_cxx98_compat_initializer_list_init) 8455 << CurInit.get()->getSourceRange(); 8456 8457 // Materialize the temporary into memory. 8458 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( 8459 CurInit.get()->getType(), CurInit.get(), 8460 /*BoundToLvalueReference=*/false); 8461 8462 // Wrap it in a construction of a std::initializer_list<T>. 8463 CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE); 8464 8465 // Bind the result, in case the library has given initializer_list a 8466 // non-trivial destructor. 8467 if (shouldBindAsTemporary(Entity)) 8468 CurInit = S.MaybeBindToTemporary(CurInit.get()); 8469 break; 8470 } 8471 8472 case SK_OCLSamplerInit: { 8473 // Sampler initialization have 5 cases: 8474 // 1. function argument passing 8475 // 1a. argument is a file-scope variable 8476 // 1b. argument is a function-scope variable 8477 // 1c. argument is one of caller function's parameters 8478 // 2. variable initialization 8479 // 2a. initializing a file-scope variable 8480 // 2b. initializing a function-scope variable 8481 // 8482 // For file-scope variables, since they cannot be initialized by function 8483 // call of __translate_sampler_initializer in LLVM IR, their references 8484 // need to be replaced by a cast from their literal initializers to 8485 // sampler type. Since sampler variables can only be used in function 8486 // calls as arguments, we only need to replace them when handling the 8487 // argument passing. 8488 assert(Step->Type->isSamplerT() && 8489 "Sampler initialization on non-sampler type."); 8490 Expr *Init = CurInit.get()->IgnoreParens(); 8491 QualType SourceType = Init->getType(); 8492 // Case 1 8493 if (Entity.isParameterKind()) { 8494 if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) { 8495 S.Diag(Kind.getLocation(), diag::err_sampler_argument_required) 8496 << SourceType; 8497 break; 8498 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) { 8499 auto Var = cast<VarDecl>(DRE->getDecl()); 8500 // Case 1b and 1c 8501 // No cast from integer to sampler is needed. 8502 if (!Var->hasGlobalStorage()) { 8503 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type, 8504 CK_LValueToRValue, Init, 8505 /*BasePath=*/nullptr, VK_RValue); 8506 break; 8507 } 8508 // Case 1a 8509 // For function call with a file-scope sampler variable as argument, 8510 // get the integer literal. 8511 // Do not diagnose if the file-scope variable does not have initializer 8512 // since this has already been diagnosed when parsing the variable 8513 // declaration. 8514 if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit())) 8515 break; 8516 Init = cast<ImplicitCastExpr>(const_cast<Expr*>( 8517 Var->getInit()))->getSubExpr(); 8518 SourceType = Init->getType(); 8519 } 8520 } else { 8521 // Case 2 8522 // Check initializer is 32 bit integer constant. 8523 // If the initializer is taken from global variable, do not diagnose since 8524 // this has already been done when parsing the variable declaration. 8525 if (!Init->isConstantInitializer(S.Context, false)) 8526 break; 8527 8528 if (!SourceType->isIntegerType() || 8529 32 != S.Context.getIntWidth(SourceType)) { 8530 S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer) 8531 << SourceType; 8532 break; 8533 } 8534 8535 Expr::EvalResult EVResult; 8536 Init->EvaluateAsInt(EVResult, S.Context); 8537 llvm::APSInt Result = EVResult.Val.getInt(); 8538 const uint64_t SamplerValue = Result.getLimitedValue(); 8539 // 32-bit value of sampler's initializer is interpreted as 8540 // bit-field with the following structure: 8541 // |unspecified|Filter|Addressing Mode| Normalized Coords| 8542 // |31 6|5 4|3 1| 0| 8543 // This structure corresponds to enum values of sampler properties 8544 // defined in SPIR spec v1.2 and also opencl-c.h 8545 unsigned AddressingMode = (0x0E & SamplerValue) >> 1; 8546 unsigned FilterMode = (0x30 & SamplerValue) >> 4; 8547 if (FilterMode != 1 && FilterMode != 2 && 8548 !S.getOpenCLOptions().isEnabled( 8549 "cl_intel_device_side_avc_motion_estimation")) 8550 S.Diag(Kind.getLocation(), 8551 diag::warn_sampler_initializer_invalid_bits) 8552 << "Filter Mode"; 8553 if (AddressingMode > 4) 8554 S.Diag(Kind.getLocation(), 8555 diag::warn_sampler_initializer_invalid_bits) 8556 << "Addressing Mode"; 8557 } 8558 8559 // Cases 1a, 2a and 2b 8560 // Insert cast from integer to sampler. 8561 CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy, 8562 CK_IntToOCLSampler); 8563 break; 8564 } 8565 case SK_OCLZeroOpaqueType: { 8566 assert((Step->Type->isEventT() || Step->Type->isQueueT() || 8567 Step->Type->isOCLIntelSubgroupAVCType()) && 8568 "Wrong type for initialization of OpenCL opaque type."); 8569 8570 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8571 CK_ZeroToOCLOpaqueType, 8572 CurInit.get()->getValueKind()); 8573 break; 8574 } 8575 } 8576 } 8577 8578 // Check whether the initializer has a shorter lifetime than the initialized 8579 // entity, and if not, either lifetime-extend or warn as appropriate. 8580 if (auto *Init = CurInit.get()) 8581 S.checkInitializerLifetime(Entity, Init); 8582 8583 // Diagnose non-fatal problems with the completed initialization. 8584 if (Entity.getKind() == InitializedEntity::EK_Member && 8585 cast<FieldDecl>(Entity.getDecl())->isBitField()) 8586 S.CheckBitFieldInitialization(Kind.getLocation(), 8587 cast<FieldDecl>(Entity.getDecl()), 8588 CurInit.get()); 8589 8590 // Check for std::move on construction. 8591 if (const Expr *E = CurInit.get()) { 8592 CheckMoveOnConstruction(S, E, 8593 Entity.getKind() == InitializedEntity::EK_Result); 8594 } 8595 8596 return CurInit; 8597 } 8598 8599 /// Somewhere within T there is an uninitialized reference subobject. 8600 /// Dig it out and diagnose it. 8601 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc, 8602 QualType T) { 8603 if (T->isReferenceType()) { 8604 S.Diag(Loc, diag::err_reference_without_init) 8605 << T.getNonReferenceType(); 8606 return true; 8607 } 8608 8609 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 8610 if (!RD || !RD->hasUninitializedReferenceMember()) 8611 return false; 8612 8613 for (const auto *FI : RD->fields()) { 8614 if (FI->isUnnamedBitfield()) 8615 continue; 8616 8617 if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) { 8618 S.Diag(Loc, diag::note_value_initialization_here) << RD; 8619 return true; 8620 } 8621 } 8622 8623 for (const auto &BI : RD->bases()) { 8624 if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) { 8625 S.Diag(Loc, diag::note_value_initialization_here) << RD; 8626 return true; 8627 } 8628 } 8629 8630 return false; 8631 } 8632 8633 8634 //===----------------------------------------------------------------------===// 8635 // Diagnose initialization failures 8636 //===----------------------------------------------------------------------===// 8637 8638 /// Emit notes associated with an initialization that failed due to a 8639 /// "simple" conversion failure. 8640 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity, 8641 Expr *op) { 8642 QualType destType = entity.getType(); 8643 if (destType.getNonReferenceType()->isObjCObjectPointerType() && 8644 op->getType()->isObjCObjectPointerType()) { 8645 8646 // Emit a possible note about the conversion failing because the 8647 // operand is a message send with a related result type. 8648 S.EmitRelatedResultTypeNote(op); 8649 8650 // Emit a possible note about a return failing because we're 8651 // expecting a related result type. 8652 if (entity.getKind() == InitializedEntity::EK_Result) 8653 S.EmitRelatedResultTypeNoteForReturn(destType); 8654 } 8655 } 8656 8657 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity, 8658 InitListExpr *InitList) { 8659 QualType DestType = Entity.getType(); 8660 8661 QualType E; 8662 if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) { 8663 QualType ArrayType = S.Context.getConstantArrayType( 8664 E.withConst(), 8665 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 8666 InitList->getNumInits()), 8667 nullptr, clang::ArrayType::Normal, 0); 8668 InitializedEntity HiddenArray = 8669 InitializedEntity::InitializeTemporary(ArrayType); 8670 return diagnoseListInit(S, HiddenArray, InitList); 8671 } 8672 8673 if (DestType->isReferenceType()) { 8674 // A list-initialization failure for a reference means that we tried to 8675 // create a temporary of the inner type (per [dcl.init.list]p3.6) and the 8676 // inner initialization failed. 8677 QualType T = DestType->castAs<ReferenceType>()->getPointeeType(); 8678 diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList); 8679 SourceLocation Loc = InitList->getBeginLoc(); 8680 if (auto *D = Entity.getDecl()) 8681 Loc = D->getLocation(); 8682 S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T; 8683 return; 8684 } 8685 8686 InitListChecker DiagnoseInitList(S, Entity, InitList, DestType, 8687 /*VerifyOnly=*/false, 8688 /*TreatUnavailableAsInvalid=*/false); 8689 assert(DiagnoseInitList.HadError() && 8690 "Inconsistent init list check result."); 8691 } 8692 8693 bool InitializationSequence::Diagnose(Sema &S, 8694 const InitializedEntity &Entity, 8695 const InitializationKind &Kind, 8696 ArrayRef<Expr *> Args) { 8697 if (!Failed()) 8698 return false; 8699 8700 // When we want to diagnose only one element of a braced-init-list, 8701 // we need to factor it out. 8702 Expr *OnlyArg; 8703 if (Args.size() == 1) { 8704 auto *List = dyn_cast<InitListExpr>(Args[0]); 8705 if (List && List->getNumInits() == 1) 8706 OnlyArg = List->getInit(0); 8707 else 8708 OnlyArg = Args[0]; 8709 } 8710 else 8711 OnlyArg = nullptr; 8712 8713 QualType DestType = Entity.getType(); 8714 switch (Failure) { 8715 case FK_TooManyInitsForReference: 8716 // FIXME: Customize for the initialized entity? 8717 if (Args.empty()) { 8718 // Dig out the reference subobject which is uninitialized and diagnose it. 8719 // If this is value-initialization, this could be nested some way within 8720 // the target type. 8721 assert(Kind.getKind() == InitializationKind::IK_Value || 8722 DestType->isReferenceType()); 8723 bool Diagnosed = 8724 DiagnoseUninitializedReference(S, Kind.getLocation(), DestType); 8725 assert(Diagnosed && "couldn't find uninitialized reference to diagnose"); 8726 (void)Diagnosed; 8727 } else // FIXME: diagnostic below could be better! 8728 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits) 8729 << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); 8730 break; 8731 case FK_ParenthesizedListInitForReference: 8732 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) 8733 << 1 << Entity.getType() << Args[0]->getSourceRange(); 8734 break; 8735 8736 case FK_ArrayNeedsInitList: 8737 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0; 8738 break; 8739 case FK_ArrayNeedsInitListOrStringLiteral: 8740 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1; 8741 break; 8742 case FK_ArrayNeedsInitListOrWideStringLiteral: 8743 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2; 8744 break; 8745 case FK_NarrowStringIntoWideCharArray: 8746 S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar); 8747 break; 8748 case FK_WideStringIntoCharArray: 8749 S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char); 8750 break; 8751 case FK_IncompatWideStringIntoWideChar: 8752 S.Diag(Kind.getLocation(), 8753 diag::err_array_init_incompat_wide_string_into_wchar); 8754 break; 8755 case FK_PlainStringIntoUTF8Char: 8756 S.Diag(Kind.getLocation(), 8757 diag::err_array_init_plain_string_into_char8_t); 8758 S.Diag(Args.front()->getBeginLoc(), 8759 diag::note_array_init_plain_string_into_char8_t) 8760 << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8"); 8761 break; 8762 case FK_UTF8StringIntoPlainChar: 8763 S.Diag(Kind.getLocation(), 8764 diag::err_array_init_utf8_string_into_char) 8765 << S.getLangOpts().CPlusPlus2a; 8766 break; 8767 case FK_ArrayTypeMismatch: 8768 case FK_NonConstantArrayInit: 8769 S.Diag(Kind.getLocation(), 8770 (Failure == FK_ArrayTypeMismatch 8771 ? diag::err_array_init_different_type 8772 : diag::err_array_init_non_constant_array)) 8773 << DestType.getNonReferenceType() 8774 << OnlyArg->getType() 8775 << Args[0]->getSourceRange(); 8776 break; 8777 8778 case FK_VariableLengthArrayHasInitializer: 8779 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init) 8780 << Args[0]->getSourceRange(); 8781 break; 8782 8783 case FK_AddressOfOverloadFailed: { 8784 DeclAccessPair Found; 8785 S.ResolveAddressOfOverloadedFunction(OnlyArg, 8786 DestType.getNonReferenceType(), 8787 true, 8788 Found); 8789 break; 8790 } 8791 8792 case FK_AddressOfUnaddressableFunction: { 8793 auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl()); 8794 S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 8795 OnlyArg->getBeginLoc()); 8796 break; 8797 } 8798 8799 case FK_ReferenceInitOverloadFailed: 8800 case FK_UserConversionOverloadFailed: 8801 switch (FailedOverloadResult) { 8802 case OR_Ambiguous: 8803 8804 FailedCandidateSet.NoteCandidates( 8805 PartialDiagnosticAt( 8806 Kind.getLocation(), 8807 Failure == FK_UserConversionOverloadFailed 8808 ? (S.PDiag(diag::err_typecheck_ambiguous_condition) 8809 << OnlyArg->getType() << DestType 8810 << Args[0]->getSourceRange()) 8811 : (S.PDiag(diag::err_ref_init_ambiguous) 8812 << DestType << OnlyArg->getType() 8813 << Args[0]->getSourceRange())), 8814 S, OCD_AmbiguousCandidates, Args); 8815 break; 8816 8817 case OR_No_Viable_Function: { 8818 auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args); 8819 if (!S.RequireCompleteType(Kind.getLocation(), 8820 DestType.getNonReferenceType(), 8821 diag::err_typecheck_nonviable_condition_incomplete, 8822 OnlyArg->getType(), Args[0]->getSourceRange())) 8823 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition) 8824 << (Entity.getKind() == InitializedEntity::EK_Result) 8825 << OnlyArg->getType() << Args[0]->getSourceRange() 8826 << DestType.getNonReferenceType(); 8827 8828 FailedCandidateSet.NoteCandidates(S, Args, Cands); 8829 break; 8830 } 8831 case OR_Deleted: { 8832 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function) 8833 << OnlyArg->getType() << DestType.getNonReferenceType() 8834 << Args[0]->getSourceRange(); 8835 OverloadCandidateSet::iterator Best; 8836 OverloadingResult Ovl 8837 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 8838 if (Ovl == OR_Deleted) { 8839 S.NoteDeletedFunction(Best->Function); 8840 } else { 8841 llvm_unreachable("Inconsistent overload resolution?"); 8842 } 8843 break; 8844 } 8845 8846 case OR_Success: 8847 llvm_unreachable("Conversion did not fail!"); 8848 } 8849 break; 8850 8851 case FK_NonConstLValueReferenceBindingToTemporary: 8852 if (isa<InitListExpr>(Args[0])) { 8853 S.Diag(Kind.getLocation(), 8854 diag::err_lvalue_reference_bind_to_initlist) 8855 << DestType.getNonReferenceType().isVolatileQualified() 8856 << DestType.getNonReferenceType() 8857 << Args[0]->getSourceRange(); 8858 break; 8859 } 8860 LLVM_FALLTHROUGH; 8861 8862 case FK_NonConstLValueReferenceBindingToUnrelated: 8863 S.Diag(Kind.getLocation(), 8864 Failure == FK_NonConstLValueReferenceBindingToTemporary 8865 ? diag::err_lvalue_reference_bind_to_temporary 8866 : diag::err_lvalue_reference_bind_to_unrelated) 8867 << DestType.getNonReferenceType().isVolatileQualified() 8868 << DestType.getNonReferenceType() 8869 << OnlyArg->getType() 8870 << Args[0]->getSourceRange(); 8871 break; 8872 8873 case FK_NonConstLValueReferenceBindingToBitfield: { 8874 // We don't necessarily have an unambiguous source bit-field. 8875 FieldDecl *BitField = Args[0]->getSourceBitField(); 8876 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield) 8877 << DestType.isVolatileQualified() 8878 << (BitField ? BitField->getDeclName() : DeclarationName()) 8879 << (BitField != nullptr) 8880 << Args[0]->getSourceRange(); 8881 if (BitField) 8882 S.Diag(BitField->getLocation(), diag::note_bitfield_decl); 8883 break; 8884 } 8885 8886 case FK_NonConstLValueReferenceBindingToVectorElement: 8887 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element) 8888 << DestType.isVolatileQualified() 8889 << Args[0]->getSourceRange(); 8890 break; 8891 8892 case FK_RValueReferenceBindingToLValue: 8893 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref) 8894 << DestType.getNonReferenceType() << OnlyArg->getType() 8895 << Args[0]->getSourceRange(); 8896 break; 8897 8898 case FK_ReferenceAddrspaceMismatchTemporary: 8899 S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace) 8900 << DestType << Args[0]->getSourceRange(); 8901 break; 8902 8903 case FK_ReferenceInitDropsQualifiers: { 8904 QualType SourceType = OnlyArg->getType(); 8905 QualType NonRefType = DestType.getNonReferenceType(); 8906 Qualifiers DroppedQualifiers = 8907 SourceType.getQualifiers() - NonRefType.getQualifiers(); 8908 8909 if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf( 8910 SourceType.getQualifiers())) 8911 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 8912 << NonRefType << SourceType << 1 /*addr space*/ 8913 << Args[0]->getSourceRange(); 8914 else if (DroppedQualifiers.hasQualifiers()) 8915 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 8916 << NonRefType << SourceType << 0 /*cv quals*/ 8917 << Qualifiers::fromCVRMask(DroppedQualifiers.getCVRQualifiers()) 8918 << DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange(); 8919 else 8920 // FIXME: Consider decomposing the type and explaining which qualifiers 8921 // were dropped where, or on which level a 'const' is missing, etc. 8922 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 8923 << NonRefType << SourceType << 2 /*incompatible quals*/ 8924 << Args[0]->getSourceRange(); 8925 break; 8926 } 8927 8928 case FK_ReferenceInitFailed: 8929 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed) 8930 << DestType.getNonReferenceType() 8931 << DestType.getNonReferenceType()->isIncompleteType() 8932 << OnlyArg->isLValue() 8933 << OnlyArg->getType() 8934 << Args[0]->getSourceRange(); 8935 emitBadConversionNotes(S, Entity, Args[0]); 8936 break; 8937 8938 case FK_ConversionFailed: { 8939 QualType FromType = OnlyArg->getType(); 8940 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed) 8941 << (int)Entity.getKind() 8942 << DestType 8943 << OnlyArg->isLValue() 8944 << FromType 8945 << Args[0]->getSourceRange(); 8946 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType); 8947 S.Diag(Kind.getLocation(), PDiag); 8948 emitBadConversionNotes(S, Entity, Args[0]); 8949 break; 8950 } 8951 8952 case FK_ConversionFromPropertyFailed: 8953 // No-op. This error has already been reported. 8954 break; 8955 8956 case FK_TooManyInitsForScalar: { 8957 SourceRange R; 8958 8959 auto *InitList = dyn_cast<InitListExpr>(Args[0]); 8960 if (InitList && InitList->getNumInits() >= 1) { 8961 R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc()); 8962 } else { 8963 assert(Args.size() > 1 && "Expected multiple initializers!"); 8964 R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc()); 8965 } 8966 8967 R.setBegin(S.getLocForEndOfToken(R.getBegin())); 8968 if (Kind.isCStyleOrFunctionalCast()) 8969 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg) 8970 << R; 8971 else 8972 S.Diag(Kind.getLocation(), diag::err_excess_initializers) 8973 << /*scalar=*/2 << R; 8974 break; 8975 } 8976 8977 case FK_ParenthesizedListInitForScalar: 8978 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) 8979 << 0 << Entity.getType() << Args[0]->getSourceRange(); 8980 break; 8981 8982 case FK_ReferenceBindingToInitList: 8983 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list) 8984 << DestType.getNonReferenceType() << Args[0]->getSourceRange(); 8985 break; 8986 8987 case FK_InitListBadDestinationType: 8988 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type) 8989 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange(); 8990 break; 8991 8992 case FK_ListConstructorOverloadFailed: 8993 case FK_ConstructorOverloadFailed: { 8994 SourceRange ArgsRange; 8995 if (Args.size()) 8996 ArgsRange = 8997 SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); 8998 8999 if (Failure == FK_ListConstructorOverloadFailed) { 9000 assert(Args.size() == 1 && 9001 "List construction from other than 1 argument."); 9002 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 9003 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); 9004 } 9005 9006 // FIXME: Using "DestType" for the entity we're printing is probably 9007 // bad. 9008 switch (FailedOverloadResult) { 9009 case OR_Ambiguous: 9010 FailedCandidateSet.NoteCandidates( 9011 PartialDiagnosticAt(Kind.getLocation(), 9012 S.PDiag(diag::err_ovl_ambiguous_init) 9013 << DestType << ArgsRange), 9014 S, OCD_AmbiguousCandidates, Args); 9015 break; 9016 9017 case OR_No_Viable_Function: 9018 if (Kind.getKind() == InitializationKind::IK_Default && 9019 (Entity.getKind() == InitializedEntity::EK_Base || 9020 Entity.getKind() == InitializedEntity::EK_Member) && 9021 isa<CXXConstructorDecl>(S.CurContext)) { 9022 // This is implicit default initialization of a member or 9023 // base within a constructor. If no viable function was 9024 // found, notify the user that they need to explicitly 9025 // initialize this base/member. 9026 CXXConstructorDecl *Constructor 9027 = cast<CXXConstructorDecl>(S.CurContext); 9028 const CXXRecordDecl *InheritedFrom = nullptr; 9029 if (auto Inherited = Constructor->getInheritedConstructor()) 9030 InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass(); 9031 if (Entity.getKind() == InitializedEntity::EK_Base) { 9032 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 9033 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) 9034 << S.Context.getTypeDeclType(Constructor->getParent()) 9035 << /*base=*/0 9036 << Entity.getType() 9037 << InheritedFrom; 9038 9039 RecordDecl *BaseDecl 9040 = Entity.getBaseSpecifier()->getType()->castAs<RecordType>() 9041 ->getDecl(); 9042 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl) 9043 << S.Context.getTagDeclType(BaseDecl); 9044 } else { 9045 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 9046 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) 9047 << S.Context.getTypeDeclType(Constructor->getParent()) 9048 << /*member=*/1 9049 << Entity.getName() 9050 << InheritedFrom; 9051 S.Diag(Entity.getDecl()->getLocation(), 9052 diag::note_member_declared_at); 9053 9054 if (const RecordType *Record 9055 = Entity.getType()->getAs<RecordType>()) 9056 S.Diag(Record->getDecl()->getLocation(), 9057 diag::note_previous_decl) 9058 << S.Context.getTagDeclType(Record->getDecl()); 9059 } 9060 break; 9061 } 9062 9063 FailedCandidateSet.NoteCandidates( 9064 PartialDiagnosticAt( 9065 Kind.getLocation(), 9066 S.PDiag(diag::err_ovl_no_viable_function_in_init) 9067 << DestType << ArgsRange), 9068 S, OCD_AllCandidates, Args); 9069 break; 9070 9071 case OR_Deleted: { 9072 OverloadCandidateSet::iterator Best; 9073 OverloadingResult Ovl 9074 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 9075 if (Ovl != OR_Deleted) { 9076 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 9077 << DestType << ArgsRange; 9078 llvm_unreachable("Inconsistent overload resolution?"); 9079 break; 9080 } 9081 9082 // If this is a defaulted or implicitly-declared function, then 9083 // it was implicitly deleted. Make it clear that the deletion was 9084 // implicit. 9085 if (S.isImplicitlyDeleted(Best->Function)) 9086 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init) 9087 << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function)) 9088 << DestType << ArgsRange; 9089 else 9090 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 9091 << DestType << ArgsRange; 9092 9093 S.NoteDeletedFunction(Best->Function); 9094 break; 9095 } 9096 9097 case OR_Success: 9098 llvm_unreachable("Conversion did not fail!"); 9099 } 9100 } 9101 break; 9102 9103 case FK_DefaultInitOfConst: 9104 if (Entity.getKind() == InitializedEntity::EK_Member && 9105 isa<CXXConstructorDecl>(S.CurContext)) { 9106 // This is implicit default-initialization of a const member in 9107 // a constructor. Complain that it needs to be explicitly 9108 // initialized. 9109 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext); 9110 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor) 9111 << (Constructor->getInheritedConstructor() ? 2 : 9112 Constructor->isImplicit() ? 1 : 0) 9113 << S.Context.getTypeDeclType(Constructor->getParent()) 9114 << /*const=*/1 9115 << Entity.getName(); 9116 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl) 9117 << Entity.getName(); 9118 } else { 9119 S.Diag(Kind.getLocation(), diag::err_default_init_const) 9120 << DestType << (bool)DestType->getAs<RecordType>(); 9121 } 9122 break; 9123 9124 case FK_Incomplete: 9125 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType, 9126 diag::err_init_incomplete_type); 9127 break; 9128 9129 case FK_ListInitializationFailed: { 9130 // Run the init list checker again to emit diagnostics. 9131 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 9132 diagnoseListInit(S, Entity, InitList); 9133 break; 9134 } 9135 9136 case FK_PlaceholderType: { 9137 // FIXME: Already diagnosed! 9138 break; 9139 } 9140 9141 case FK_ExplicitConstructor: { 9142 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor) 9143 << Args[0]->getSourceRange(); 9144 OverloadCandidateSet::iterator Best; 9145 OverloadingResult Ovl 9146 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 9147 (void)Ovl; 9148 assert(Ovl == OR_Success && "Inconsistent overload resolution"); 9149 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 9150 S.Diag(CtorDecl->getLocation(), 9151 diag::note_explicit_ctor_deduction_guide_here) << false; 9152 break; 9153 } 9154 } 9155 9156 PrintInitLocationNote(S, Entity); 9157 return true; 9158 } 9159 9160 void InitializationSequence::dump(raw_ostream &OS) const { 9161 switch (SequenceKind) { 9162 case FailedSequence: { 9163 OS << "Failed sequence: "; 9164 switch (Failure) { 9165 case FK_TooManyInitsForReference: 9166 OS << "too many initializers for reference"; 9167 break; 9168 9169 case FK_ParenthesizedListInitForReference: 9170 OS << "parenthesized list init for reference"; 9171 break; 9172 9173 case FK_ArrayNeedsInitList: 9174 OS << "array requires initializer list"; 9175 break; 9176 9177 case FK_AddressOfUnaddressableFunction: 9178 OS << "address of unaddressable function was taken"; 9179 break; 9180 9181 case FK_ArrayNeedsInitListOrStringLiteral: 9182 OS << "array requires initializer list or string literal"; 9183 break; 9184 9185 case FK_ArrayNeedsInitListOrWideStringLiteral: 9186 OS << "array requires initializer list or wide string literal"; 9187 break; 9188 9189 case FK_NarrowStringIntoWideCharArray: 9190 OS << "narrow string into wide char array"; 9191 break; 9192 9193 case FK_WideStringIntoCharArray: 9194 OS << "wide string into char array"; 9195 break; 9196 9197 case FK_IncompatWideStringIntoWideChar: 9198 OS << "incompatible wide string into wide char array"; 9199 break; 9200 9201 case FK_PlainStringIntoUTF8Char: 9202 OS << "plain string literal into char8_t array"; 9203 break; 9204 9205 case FK_UTF8StringIntoPlainChar: 9206 OS << "u8 string literal into char array"; 9207 break; 9208 9209 case FK_ArrayTypeMismatch: 9210 OS << "array type mismatch"; 9211 break; 9212 9213 case FK_NonConstantArrayInit: 9214 OS << "non-constant array initializer"; 9215 break; 9216 9217 case FK_AddressOfOverloadFailed: 9218 OS << "address of overloaded function failed"; 9219 break; 9220 9221 case FK_ReferenceInitOverloadFailed: 9222 OS << "overload resolution for reference initialization failed"; 9223 break; 9224 9225 case FK_NonConstLValueReferenceBindingToTemporary: 9226 OS << "non-const lvalue reference bound to temporary"; 9227 break; 9228 9229 case FK_NonConstLValueReferenceBindingToBitfield: 9230 OS << "non-const lvalue reference bound to bit-field"; 9231 break; 9232 9233 case FK_NonConstLValueReferenceBindingToVectorElement: 9234 OS << "non-const lvalue reference bound to vector element"; 9235 break; 9236 9237 case FK_NonConstLValueReferenceBindingToUnrelated: 9238 OS << "non-const lvalue reference bound to unrelated type"; 9239 break; 9240 9241 case FK_RValueReferenceBindingToLValue: 9242 OS << "rvalue reference bound to an lvalue"; 9243 break; 9244 9245 case FK_ReferenceInitDropsQualifiers: 9246 OS << "reference initialization drops qualifiers"; 9247 break; 9248 9249 case FK_ReferenceAddrspaceMismatchTemporary: 9250 OS << "reference with mismatching address space bound to temporary"; 9251 break; 9252 9253 case FK_ReferenceInitFailed: 9254 OS << "reference initialization failed"; 9255 break; 9256 9257 case FK_ConversionFailed: 9258 OS << "conversion failed"; 9259 break; 9260 9261 case FK_ConversionFromPropertyFailed: 9262 OS << "conversion from property failed"; 9263 break; 9264 9265 case FK_TooManyInitsForScalar: 9266 OS << "too many initializers for scalar"; 9267 break; 9268 9269 case FK_ParenthesizedListInitForScalar: 9270 OS << "parenthesized list init for reference"; 9271 break; 9272 9273 case FK_ReferenceBindingToInitList: 9274 OS << "referencing binding to initializer list"; 9275 break; 9276 9277 case FK_InitListBadDestinationType: 9278 OS << "initializer list for non-aggregate, non-scalar type"; 9279 break; 9280 9281 case FK_UserConversionOverloadFailed: 9282 OS << "overloading failed for user-defined conversion"; 9283 break; 9284 9285 case FK_ConstructorOverloadFailed: 9286 OS << "constructor overloading failed"; 9287 break; 9288 9289 case FK_DefaultInitOfConst: 9290 OS << "default initialization of a const variable"; 9291 break; 9292 9293 case FK_Incomplete: 9294 OS << "initialization of incomplete type"; 9295 break; 9296 9297 case FK_ListInitializationFailed: 9298 OS << "list initialization checker failure"; 9299 break; 9300 9301 case FK_VariableLengthArrayHasInitializer: 9302 OS << "variable length array has an initializer"; 9303 break; 9304 9305 case FK_PlaceholderType: 9306 OS << "initializer expression isn't contextually valid"; 9307 break; 9308 9309 case FK_ListConstructorOverloadFailed: 9310 OS << "list constructor overloading failed"; 9311 break; 9312 9313 case FK_ExplicitConstructor: 9314 OS << "list copy initialization chose explicit constructor"; 9315 break; 9316 } 9317 OS << '\n'; 9318 return; 9319 } 9320 9321 case DependentSequence: 9322 OS << "Dependent sequence\n"; 9323 return; 9324 9325 case NormalSequence: 9326 OS << "Normal sequence: "; 9327 break; 9328 } 9329 9330 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) { 9331 if (S != step_begin()) { 9332 OS << " -> "; 9333 } 9334 9335 switch (S->Kind) { 9336 case SK_ResolveAddressOfOverloadedFunction: 9337 OS << "resolve address of overloaded function"; 9338 break; 9339 9340 case SK_CastDerivedToBaseRValue: 9341 OS << "derived-to-base (rvalue)"; 9342 break; 9343 9344 case SK_CastDerivedToBaseXValue: 9345 OS << "derived-to-base (xvalue)"; 9346 break; 9347 9348 case SK_CastDerivedToBaseLValue: 9349 OS << "derived-to-base (lvalue)"; 9350 break; 9351 9352 case SK_BindReference: 9353 OS << "bind reference to lvalue"; 9354 break; 9355 9356 case SK_BindReferenceToTemporary: 9357 OS << "bind reference to a temporary"; 9358 break; 9359 9360 case SK_FinalCopy: 9361 OS << "final copy in class direct-initialization"; 9362 break; 9363 9364 case SK_ExtraneousCopyToTemporary: 9365 OS << "extraneous C++03 copy to temporary"; 9366 break; 9367 9368 case SK_UserConversion: 9369 OS << "user-defined conversion via " << *S->Function.Function; 9370 break; 9371 9372 case SK_QualificationConversionRValue: 9373 OS << "qualification conversion (rvalue)"; 9374 break; 9375 9376 case SK_QualificationConversionXValue: 9377 OS << "qualification conversion (xvalue)"; 9378 break; 9379 9380 case SK_QualificationConversionLValue: 9381 OS << "qualification conversion (lvalue)"; 9382 break; 9383 9384 case SK_AtomicConversion: 9385 OS << "non-atomic-to-atomic conversion"; 9386 break; 9387 9388 case SK_ConversionSequence: 9389 OS << "implicit conversion sequence ("; 9390 S->ICS->dump(); // FIXME: use OS 9391 OS << ")"; 9392 break; 9393 9394 case SK_ConversionSequenceNoNarrowing: 9395 OS << "implicit conversion sequence with narrowing prohibited ("; 9396 S->ICS->dump(); // FIXME: use OS 9397 OS << ")"; 9398 break; 9399 9400 case SK_ListInitialization: 9401 OS << "list aggregate initialization"; 9402 break; 9403 9404 case SK_UnwrapInitList: 9405 OS << "unwrap reference initializer list"; 9406 break; 9407 9408 case SK_RewrapInitList: 9409 OS << "rewrap reference initializer list"; 9410 break; 9411 9412 case SK_ConstructorInitialization: 9413 OS << "constructor initialization"; 9414 break; 9415 9416 case SK_ConstructorInitializationFromList: 9417 OS << "list initialization via constructor"; 9418 break; 9419 9420 case SK_ZeroInitialization: 9421 OS << "zero initialization"; 9422 break; 9423 9424 case SK_CAssignment: 9425 OS << "C assignment"; 9426 break; 9427 9428 case SK_StringInit: 9429 OS << "string initialization"; 9430 break; 9431 9432 case SK_ObjCObjectConversion: 9433 OS << "Objective-C object conversion"; 9434 break; 9435 9436 case SK_ArrayLoopIndex: 9437 OS << "indexing for array initialization loop"; 9438 break; 9439 9440 case SK_ArrayLoopInit: 9441 OS << "array initialization loop"; 9442 break; 9443 9444 case SK_ArrayInit: 9445 OS << "array initialization"; 9446 break; 9447 9448 case SK_GNUArrayInit: 9449 OS << "array initialization (GNU extension)"; 9450 break; 9451 9452 case SK_ParenthesizedArrayInit: 9453 OS << "parenthesized array initialization"; 9454 break; 9455 9456 case SK_PassByIndirectCopyRestore: 9457 OS << "pass by indirect copy and restore"; 9458 break; 9459 9460 case SK_PassByIndirectRestore: 9461 OS << "pass by indirect restore"; 9462 break; 9463 9464 case SK_ProduceObjCObject: 9465 OS << "Objective-C object retension"; 9466 break; 9467 9468 case SK_StdInitializerList: 9469 OS << "std::initializer_list from initializer list"; 9470 break; 9471 9472 case SK_StdInitializerListConstructorCall: 9473 OS << "list initialization from std::initializer_list"; 9474 break; 9475 9476 case SK_OCLSamplerInit: 9477 OS << "OpenCL sampler_t from integer constant"; 9478 break; 9479 9480 case SK_OCLZeroOpaqueType: 9481 OS << "OpenCL opaque type from zero"; 9482 break; 9483 } 9484 9485 OS << " [" << S->Type.getAsString() << ']'; 9486 } 9487 9488 OS << '\n'; 9489 } 9490 9491 void InitializationSequence::dump() const { 9492 dump(llvm::errs()); 9493 } 9494 9495 static bool NarrowingErrs(const LangOptions &L) { 9496 return L.CPlusPlus11 && 9497 (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015)); 9498 } 9499 9500 static void DiagnoseNarrowingInInitList(Sema &S, 9501 const ImplicitConversionSequence &ICS, 9502 QualType PreNarrowingType, 9503 QualType EntityType, 9504 const Expr *PostInit) { 9505 const StandardConversionSequence *SCS = nullptr; 9506 switch (ICS.getKind()) { 9507 case ImplicitConversionSequence::StandardConversion: 9508 SCS = &ICS.Standard; 9509 break; 9510 case ImplicitConversionSequence::UserDefinedConversion: 9511 SCS = &ICS.UserDefined.After; 9512 break; 9513 case ImplicitConversionSequence::AmbiguousConversion: 9514 case ImplicitConversionSequence::EllipsisConversion: 9515 case ImplicitConversionSequence::BadConversion: 9516 return; 9517 } 9518 9519 // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion. 9520 APValue ConstantValue; 9521 QualType ConstantType; 9522 switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue, 9523 ConstantType)) { 9524 case NK_Not_Narrowing: 9525 case NK_Dependent_Narrowing: 9526 // No narrowing occurred. 9527 return; 9528 9529 case NK_Type_Narrowing: 9530 // This was a floating-to-integer conversion, which is always considered a 9531 // narrowing conversion even if the value is a constant and can be 9532 // represented exactly as an integer. 9533 S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts()) 9534 ? diag::ext_init_list_type_narrowing 9535 : diag::warn_init_list_type_narrowing) 9536 << PostInit->getSourceRange() 9537 << PreNarrowingType.getLocalUnqualifiedType() 9538 << EntityType.getLocalUnqualifiedType(); 9539 break; 9540 9541 case NK_Constant_Narrowing: 9542 // A constant value was narrowed. 9543 S.Diag(PostInit->getBeginLoc(), 9544 NarrowingErrs(S.getLangOpts()) 9545 ? diag::ext_init_list_constant_narrowing 9546 : diag::warn_init_list_constant_narrowing) 9547 << PostInit->getSourceRange() 9548 << ConstantValue.getAsString(S.getASTContext(), ConstantType) 9549 << EntityType.getLocalUnqualifiedType(); 9550 break; 9551 9552 case NK_Variable_Narrowing: 9553 // A variable's value may have been narrowed. 9554 S.Diag(PostInit->getBeginLoc(), 9555 NarrowingErrs(S.getLangOpts()) 9556 ? diag::ext_init_list_variable_narrowing 9557 : diag::warn_init_list_variable_narrowing) 9558 << PostInit->getSourceRange() 9559 << PreNarrowingType.getLocalUnqualifiedType() 9560 << EntityType.getLocalUnqualifiedType(); 9561 break; 9562 } 9563 9564 SmallString<128> StaticCast; 9565 llvm::raw_svector_ostream OS(StaticCast); 9566 OS << "static_cast<"; 9567 if (const TypedefType *TT = EntityType->getAs<TypedefType>()) { 9568 // It's important to use the typedef's name if there is one so that the 9569 // fixit doesn't break code using types like int64_t. 9570 // 9571 // FIXME: This will break if the typedef requires qualification. But 9572 // getQualifiedNameAsString() includes non-machine-parsable components. 9573 OS << *TT->getDecl(); 9574 } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>()) 9575 OS << BT->getName(S.getLangOpts()); 9576 else { 9577 // Oops, we didn't find the actual type of the variable. Don't emit a fixit 9578 // with a broken cast. 9579 return; 9580 } 9581 OS << ">("; 9582 S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence) 9583 << PostInit->getSourceRange() 9584 << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str()) 9585 << FixItHint::CreateInsertion( 9586 S.getLocForEndOfToken(PostInit->getEndLoc()), ")"); 9587 } 9588 9589 //===----------------------------------------------------------------------===// 9590 // Initialization helper functions 9591 //===----------------------------------------------------------------------===// 9592 bool 9593 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity, 9594 ExprResult Init) { 9595 if (Init.isInvalid()) 9596 return false; 9597 9598 Expr *InitE = Init.get(); 9599 assert(InitE && "No initialization expression"); 9600 9601 InitializationKind Kind = 9602 InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation()); 9603 InitializationSequence Seq(*this, Entity, Kind, InitE); 9604 return !Seq.Failed(); 9605 } 9606 9607 ExprResult 9608 Sema::PerformCopyInitialization(const InitializedEntity &Entity, 9609 SourceLocation EqualLoc, 9610 ExprResult Init, 9611 bool TopLevelOfInitList, 9612 bool AllowExplicit) { 9613 if (Init.isInvalid()) 9614 return ExprError(); 9615 9616 Expr *InitE = Init.get(); 9617 assert(InitE && "No initialization expression?"); 9618 9619 if (EqualLoc.isInvalid()) 9620 EqualLoc = InitE->getBeginLoc(); 9621 9622 InitializationKind Kind = InitializationKind::CreateCopy( 9623 InitE->getBeginLoc(), EqualLoc, AllowExplicit); 9624 InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList); 9625 9626 // Prevent infinite recursion when performing parameter copy-initialization. 9627 const bool ShouldTrackCopy = 9628 Entity.isParameterKind() && Seq.isConstructorInitialization(); 9629 if (ShouldTrackCopy) { 9630 if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) != 9631 CurrentParameterCopyTypes.end()) { 9632 Seq.SetOverloadFailure( 9633 InitializationSequence::FK_ConstructorOverloadFailed, 9634 OR_No_Viable_Function); 9635 9636 // Try to give a meaningful diagnostic note for the problematic 9637 // constructor. 9638 const auto LastStep = Seq.step_end() - 1; 9639 assert(LastStep->Kind == 9640 InitializationSequence::SK_ConstructorInitialization); 9641 const FunctionDecl *Function = LastStep->Function.Function; 9642 auto Candidate = 9643 llvm::find_if(Seq.getFailedCandidateSet(), 9644 [Function](const OverloadCandidate &Candidate) -> bool { 9645 return Candidate.Viable && 9646 Candidate.Function == Function && 9647 Candidate.Conversions.size() > 0; 9648 }); 9649 if (Candidate != Seq.getFailedCandidateSet().end() && 9650 Function->getNumParams() > 0) { 9651 Candidate->Viable = false; 9652 Candidate->FailureKind = ovl_fail_bad_conversion; 9653 Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion, 9654 InitE, 9655 Function->getParamDecl(0)->getType()); 9656 } 9657 } 9658 CurrentParameterCopyTypes.push_back(Entity.getType()); 9659 } 9660 9661 ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE); 9662 9663 if (ShouldTrackCopy) 9664 CurrentParameterCopyTypes.pop_back(); 9665 9666 return Result; 9667 } 9668 9669 /// Determine whether RD is, or is derived from, a specialization of CTD. 9670 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD, 9671 ClassTemplateDecl *CTD) { 9672 auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) { 9673 auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate); 9674 return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD); 9675 }; 9676 return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization)); 9677 } 9678 9679 QualType Sema::DeduceTemplateSpecializationFromInitializer( 9680 TypeSourceInfo *TSInfo, const InitializedEntity &Entity, 9681 const InitializationKind &Kind, MultiExprArg Inits) { 9682 auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>( 9683 TSInfo->getType()->getContainedDeducedType()); 9684 assert(DeducedTST && "not a deduced template specialization type"); 9685 9686 auto TemplateName = DeducedTST->getTemplateName(); 9687 if (TemplateName.isDependent()) 9688 return Context.DependentTy; 9689 9690 // We can only perform deduction for class templates. 9691 auto *Template = 9692 dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl()); 9693 if (!Template) { 9694 Diag(Kind.getLocation(), 9695 diag::err_deduced_non_class_template_specialization_type) 9696 << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName; 9697 if (auto *TD = TemplateName.getAsTemplateDecl()) 9698 Diag(TD->getLocation(), diag::note_template_decl_here); 9699 return QualType(); 9700 } 9701 9702 // Can't deduce from dependent arguments. 9703 if (Expr::hasAnyTypeDependentArguments(Inits)) { 9704 Diag(TSInfo->getTypeLoc().getBeginLoc(), 9705 diag::warn_cxx14_compat_class_template_argument_deduction) 9706 << TSInfo->getTypeLoc().getSourceRange() << 0; 9707 return Context.DependentTy; 9708 } 9709 9710 // FIXME: Perform "exact type" matching first, per CWG discussion? 9711 // Or implement this via an implied 'T(T) -> T' deduction guide? 9712 9713 // FIXME: Do we need/want a std::initializer_list<T> special case? 9714 9715 // Look up deduction guides, including those synthesized from constructors. 9716 // 9717 // C++1z [over.match.class.deduct]p1: 9718 // A set of functions and function templates is formed comprising: 9719 // - For each constructor of the class template designated by the 9720 // template-name, a function template [...] 9721 // - For each deduction-guide, a function or function template [...] 9722 DeclarationNameInfo NameInfo( 9723 Context.DeclarationNames.getCXXDeductionGuideName(Template), 9724 TSInfo->getTypeLoc().getEndLoc()); 9725 LookupResult Guides(*this, NameInfo, LookupOrdinaryName); 9726 LookupQualifiedName(Guides, Template->getDeclContext()); 9727 9728 // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't 9729 // clear on this, but they're not found by name so access does not apply. 9730 Guides.suppressDiagnostics(); 9731 9732 // Figure out if this is list-initialization. 9733 InitListExpr *ListInit = 9734 (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct) 9735 ? dyn_cast<InitListExpr>(Inits[0]) 9736 : nullptr; 9737 9738 // C++1z [over.match.class.deduct]p1: 9739 // Initialization and overload resolution are performed as described in 9740 // [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list] 9741 // (as appropriate for the type of initialization performed) for an object 9742 // of a hypothetical class type, where the selected functions and function 9743 // templates are considered to be the constructors of that class type 9744 // 9745 // Since we know we're initializing a class type of a type unrelated to that 9746 // of the initializer, this reduces to something fairly reasonable. 9747 OverloadCandidateSet Candidates(Kind.getLocation(), 9748 OverloadCandidateSet::CSK_Normal); 9749 OverloadCandidateSet::iterator Best; 9750 9751 bool HasAnyDeductionGuide = false; 9752 bool AllowExplicit = !Kind.isCopyInit() || ListInit; 9753 9754 auto tryToResolveOverload = 9755 [&](bool OnlyListConstructors) -> OverloadingResult { 9756 Candidates.clear(OverloadCandidateSet::CSK_Normal); 9757 HasAnyDeductionGuide = false; 9758 9759 for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) { 9760 NamedDecl *D = (*I)->getUnderlyingDecl(); 9761 if (D->isInvalidDecl()) 9762 continue; 9763 9764 auto *TD = dyn_cast<FunctionTemplateDecl>(D); 9765 auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>( 9766 TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D)); 9767 if (!GD) 9768 continue; 9769 9770 if (!GD->isImplicit()) 9771 HasAnyDeductionGuide = true; 9772 9773 // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class) 9774 // For copy-initialization, the candidate functions are all the 9775 // converting constructors (12.3.1) of that class. 9776 // C++ [over.match.copy]p1: (non-list copy-initialization from class) 9777 // The converting constructors of T are candidate functions. 9778 if (!AllowExplicit) { 9779 // Overload resolution checks whether the deduction guide is declared 9780 // explicit for us. 9781 9782 // When looking for a converting constructor, deduction guides that 9783 // could never be called with one argument are not interesting to 9784 // check or note. 9785 if (GD->getMinRequiredArguments() > 1 || 9786 (GD->getNumParams() == 0 && !GD->isVariadic())) 9787 continue; 9788 } 9789 9790 // C++ [over.match.list]p1.1: (first phase list initialization) 9791 // Initially, the candidate functions are the initializer-list 9792 // constructors of the class T 9793 if (OnlyListConstructors && !isInitListConstructor(GD)) 9794 continue; 9795 9796 // C++ [over.match.list]p1.2: (second phase list initialization) 9797 // the candidate functions are all the constructors of the class T 9798 // C++ [over.match.ctor]p1: (all other cases) 9799 // the candidate functions are all the constructors of the class of 9800 // the object being initialized 9801 9802 // C++ [over.best.ics]p4: 9803 // When [...] the constructor [...] is a candidate by 9804 // - [over.match.copy] (in all cases) 9805 // FIXME: The "second phase of [over.match.list] case can also 9806 // theoretically happen here, but it's not clear whether we can 9807 // ever have a parameter of the right type. 9808 bool SuppressUserConversions = Kind.isCopyInit(); 9809 9810 if (TD) 9811 AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr, 9812 Inits, Candidates, SuppressUserConversions, 9813 /*PartialOverloading*/ false, 9814 AllowExplicit); 9815 else 9816 AddOverloadCandidate(GD, I.getPair(), Inits, Candidates, 9817 SuppressUserConversions, 9818 /*PartialOverloading*/ false, AllowExplicit); 9819 } 9820 return Candidates.BestViableFunction(*this, Kind.getLocation(), Best); 9821 }; 9822 9823 OverloadingResult Result = OR_No_Viable_Function; 9824 9825 // C++11 [over.match.list]p1, per DR1467: for list-initialization, first 9826 // try initializer-list constructors. 9827 if (ListInit) { 9828 bool TryListConstructors = true; 9829 9830 // Try list constructors unless the list is empty and the class has one or 9831 // more default constructors, in which case those constructors win. 9832 if (!ListInit->getNumInits()) { 9833 for (NamedDecl *D : Guides) { 9834 auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl()); 9835 if (FD && FD->getMinRequiredArguments() == 0) { 9836 TryListConstructors = false; 9837 break; 9838 } 9839 } 9840 } else if (ListInit->getNumInits() == 1) { 9841 // C++ [over.match.class.deduct]: 9842 // As an exception, the first phase in [over.match.list] (considering 9843 // initializer-list constructors) is omitted if the initializer list 9844 // consists of a single expression of type cv U, where U is a 9845 // specialization of C or a class derived from a specialization of C. 9846 Expr *E = ListInit->getInit(0); 9847 auto *RD = E->getType()->getAsCXXRecordDecl(); 9848 if (!isa<InitListExpr>(E) && RD && 9849 isCompleteType(Kind.getLocation(), E->getType()) && 9850 isOrIsDerivedFromSpecializationOf(RD, Template)) 9851 TryListConstructors = false; 9852 } 9853 9854 if (TryListConstructors) 9855 Result = tryToResolveOverload(/*OnlyListConstructor*/true); 9856 // Then unwrap the initializer list and try again considering all 9857 // constructors. 9858 Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits()); 9859 } 9860 9861 // If list-initialization fails, or if we're doing any other kind of 9862 // initialization, we (eventually) consider constructors. 9863 if (Result == OR_No_Viable_Function) 9864 Result = tryToResolveOverload(/*OnlyListConstructor*/false); 9865 9866 switch (Result) { 9867 case OR_Ambiguous: 9868 // FIXME: For list-initialization candidates, it'd usually be better to 9869 // list why they were not viable when given the initializer list itself as 9870 // an argument. 9871 Candidates.NoteCandidates( 9872 PartialDiagnosticAt( 9873 Kind.getLocation(), 9874 PDiag(diag::err_deduced_class_template_ctor_ambiguous) 9875 << TemplateName), 9876 *this, OCD_AmbiguousCandidates, Inits); 9877 return QualType(); 9878 9879 case OR_No_Viable_Function: { 9880 CXXRecordDecl *Primary = 9881 cast<ClassTemplateDecl>(Template)->getTemplatedDecl(); 9882 bool Complete = 9883 isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary)); 9884 Candidates.NoteCandidates( 9885 PartialDiagnosticAt( 9886 Kind.getLocation(), 9887 PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable 9888 : diag::err_deduced_class_template_incomplete) 9889 << TemplateName << !Guides.empty()), 9890 *this, OCD_AllCandidates, Inits); 9891 return QualType(); 9892 } 9893 9894 case OR_Deleted: { 9895 Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted) 9896 << TemplateName; 9897 NoteDeletedFunction(Best->Function); 9898 return QualType(); 9899 } 9900 9901 case OR_Success: 9902 // C++ [over.match.list]p1: 9903 // In copy-list-initialization, if an explicit constructor is chosen, the 9904 // initialization is ill-formed. 9905 if (Kind.isCopyInit() && ListInit && 9906 cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) { 9907 bool IsDeductionGuide = !Best->Function->isImplicit(); 9908 Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit) 9909 << TemplateName << IsDeductionGuide; 9910 Diag(Best->Function->getLocation(), 9911 diag::note_explicit_ctor_deduction_guide_here) 9912 << IsDeductionGuide; 9913 return QualType(); 9914 } 9915 9916 // Make sure we didn't select an unusable deduction guide, and mark it 9917 // as referenced. 9918 DiagnoseUseOfDecl(Best->Function, Kind.getLocation()); 9919 MarkFunctionReferenced(Kind.getLocation(), Best->Function); 9920 break; 9921 } 9922 9923 // C++ [dcl.type.class.deduct]p1: 9924 // The placeholder is replaced by the return type of the function selected 9925 // by overload resolution for class template deduction. 9926 QualType DeducedType = 9927 SubstAutoType(TSInfo->getType(), Best->Function->getReturnType()); 9928 Diag(TSInfo->getTypeLoc().getBeginLoc(), 9929 diag::warn_cxx14_compat_class_template_argument_deduction) 9930 << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType; 9931 9932 // Warn if CTAD was used on a type that does not have any user-defined 9933 // deduction guides. 9934 if (!HasAnyDeductionGuide) { 9935 Diag(TSInfo->getTypeLoc().getBeginLoc(), 9936 diag::warn_ctad_maybe_unsupported) 9937 << TemplateName; 9938 Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported); 9939 } 9940 9941 return DeducedType; 9942 } 9943