1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for initializers. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/DeclObjC.h" 15 #include "clang/AST/ExprCXX.h" 16 #include "clang/AST/ExprObjC.h" 17 #include "clang/AST/ExprOpenMP.h" 18 #include "clang/AST/TypeLoc.h" 19 #include "clang/Basic/TargetInfo.h" 20 #include "clang/Sema/Designator.h" 21 #include "clang/Sema/Initialization.h" 22 #include "clang/Sema/Lookup.h" 23 #include "clang/Sema/SemaInternal.h" 24 #include "llvm/ADT/APInt.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/raw_ostream.h" 28 29 using namespace clang; 30 31 //===----------------------------------------------------------------------===// 32 // Sema Initialization Checking 33 //===----------------------------------------------------------------------===// 34 35 /// Check whether T is compatible with a wide character type (wchar_t, 36 /// char16_t or char32_t). 37 static bool IsWideCharCompatible(QualType T, ASTContext &Context) { 38 if (Context.typesAreCompatible(Context.getWideCharType(), T)) 39 return true; 40 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) { 41 return Context.typesAreCompatible(Context.Char16Ty, T) || 42 Context.typesAreCompatible(Context.Char32Ty, T); 43 } 44 return false; 45 } 46 47 enum StringInitFailureKind { 48 SIF_None, 49 SIF_NarrowStringIntoWideChar, 50 SIF_WideStringIntoChar, 51 SIF_IncompatWideStringIntoWideChar, 52 SIF_UTF8StringIntoPlainChar, 53 SIF_PlainStringIntoUTF8Char, 54 SIF_Other 55 }; 56 57 /// Check whether the array of type AT can be initialized by the Init 58 /// expression by means of string initialization. Returns SIF_None if so, 59 /// otherwise returns a StringInitFailureKind that describes why the 60 /// initialization would not work. 61 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT, 62 ASTContext &Context) { 63 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT)) 64 return SIF_Other; 65 66 // See if this is a string literal or @encode. 67 Init = Init->IgnoreParens(); 68 69 // Handle @encode, which is a narrow string. 70 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType()) 71 return SIF_None; 72 73 // Otherwise we can only handle string literals. 74 StringLiteral *SL = dyn_cast<StringLiteral>(Init); 75 if (!SL) 76 return SIF_Other; 77 78 const QualType ElemTy = 79 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType(); 80 81 switch (SL->getKind()) { 82 case StringLiteral::UTF8: 83 // char8_t array can be initialized with a UTF-8 string. 84 if (ElemTy->isChar8Type()) 85 return SIF_None; 86 LLVM_FALLTHROUGH; 87 case StringLiteral::Ascii: 88 // char array can be initialized with a narrow string. 89 // Only allow char x[] = "foo"; not char x[] = L"foo"; 90 if (ElemTy->isCharType()) 91 return (SL->getKind() == StringLiteral::UTF8 && 92 Context.getLangOpts().Char8) 93 ? SIF_UTF8StringIntoPlainChar 94 : SIF_None; 95 if (ElemTy->isChar8Type()) 96 return SIF_PlainStringIntoUTF8Char; 97 if (IsWideCharCompatible(ElemTy, Context)) 98 return SIF_NarrowStringIntoWideChar; 99 return SIF_Other; 100 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15: 101 // "An array with element type compatible with a qualified or unqualified 102 // version of wchar_t, char16_t, or char32_t may be initialized by a wide 103 // string literal with the corresponding encoding prefix (L, u, or U, 104 // respectively), optionally enclosed in braces. 105 case StringLiteral::UTF16: 106 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy)) 107 return SIF_None; 108 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 109 return SIF_WideStringIntoChar; 110 if (IsWideCharCompatible(ElemTy, Context)) 111 return SIF_IncompatWideStringIntoWideChar; 112 return SIF_Other; 113 case StringLiteral::UTF32: 114 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy)) 115 return SIF_None; 116 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 117 return SIF_WideStringIntoChar; 118 if (IsWideCharCompatible(ElemTy, Context)) 119 return SIF_IncompatWideStringIntoWideChar; 120 return SIF_Other; 121 case StringLiteral::Wide: 122 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy)) 123 return SIF_None; 124 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 125 return SIF_WideStringIntoChar; 126 if (IsWideCharCompatible(ElemTy, Context)) 127 return SIF_IncompatWideStringIntoWideChar; 128 return SIF_Other; 129 } 130 131 llvm_unreachable("missed a StringLiteral kind?"); 132 } 133 134 static StringInitFailureKind IsStringInit(Expr *init, QualType declType, 135 ASTContext &Context) { 136 const ArrayType *arrayType = Context.getAsArrayType(declType); 137 if (!arrayType) 138 return SIF_Other; 139 return IsStringInit(init, arrayType, Context); 140 } 141 142 /// Update the type of a string literal, including any surrounding parentheses, 143 /// to match the type of the object which it is initializing. 144 static void updateStringLiteralType(Expr *E, QualType Ty) { 145 while (true) { 146 E->setType(Ty); 147 E->setValueKind(VK_RValue); 148 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) { 149 break; 150 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 151 E = PE->getSubExpr(); 152 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 153 assert(UO->getOpcode() == UO_Extension); 154 E = UO->getSubExpr(); 155 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) { 156 E = GSE->getResultExpr(); 157 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) { 158 E = CE->getChosenSubExpr(); 159 } else { 160 llvm_unreachable("unexpected expr in string literal init"); 161 } 162 } 163 } 164 165 /// Fix a compound literal initializing an array so it's correctly marked 166 /// as an rvalue. 167 static void updateGNUCompoundLiteralRValue(Expr *E) { 168 while (true) { 169 E->setValueKind(VK_RValue); 170 if (isa<CompoundLiteralExpr>(E)) { 171 break; 172 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 173 E = PE->getSubExpr(); 174 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 175 assert(UO->getOpcode() == UO_Extension); 176 E = UO->getSubExpr(); 177 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) { 178 E = GSE->getResultExpr(); 179 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) { 180 E = CE->getChosenSubExpr(); 181 } else { 182 llvm_unreachable("unexpected expr in array compound literal init"); 183 } 184 } 185 } 186 187 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT, 188 Sema &S) { 189 // Get the length of the string as parsed. 190 auto *ConstantArrayTy = 191 cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe()); 192 uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue(); 193 194 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { 195 // C99 6.7.8p14. We have an array of character type with unknown size 196 // being initialized to a string literal. 197 llvm::APInt ConstVal(32, StrLength); 198 // Return a new array type (C99 6.7.8p22). 199 DeclT = S.Context.getConstantArrayType(IAT->getElementType(), 200 ConstVal, 201 ArrayType::Normal, 0); 202 updateStringLiteralType(Str, DeclT); 203 return; 204 } 205 206 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT); 207 208 // We have an array of character type with known size. However, 209 // the size may be smaller or larger than the string we are initializing. 210 // FIXME: Avoid truncation for 64-bit length strings. 211 if (S.getLangOpts().CPlusPlus) { 212 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) { 213 // For Pascal strings it's OK to strip off the terminating null character, 214 // so the example below is valid: 215 // 216 // unsigned char a[2] = "\pa"; 217 if (SL->isPascal()) 218 StrLength--; 219 } 220 221 // [dcl.init.string]p2 222 if (StrLength > CAT->getSize().getZExtValue()) 223 S.Diag(Str->getBeginLoc(), 224 diag::err_initializer_string_for_char_array_too_long) 225 << Str->getSourceRange(); 226 } else { 227 // C99 6.7.8p14. 228 if (StrLength-1 > CAT->getSize().getZExtValue()) 229 S.Diag(Str->getBeginLoc(), 230 diag::ext_initializer_string_for_char_array_too_long) 231 << Str->getSourceRange(); 232 } 233 234 // Set the type to the actual size that we are initializing. If we have 235 // something like: 236 // char x[1] = "foo"; 237 // then this will set the string literal's type to char[1]. 238 updateStringLiteralType(Str, DeclT); 239 } 240 241 //===----------------------------------------------------------------------===// 242 // Semantic checking for initializer lists. 243 //===----------------------------------------------------------------------===// 244 245 namespace { 246 247 /// Semantic checking for initializer lists. 248 /// 249 /// The InitListChecker class contains a set of routines that each 250 /// handle the initialization of a certain kind of entity, e.g., 251 /// arrays, vectors, struct/union types, scalars, etc. The 252 /// InitListChecker itself performs a recursive walk of the subobject 253 /// structure of the type to be initialized, while stepping through 254 /// the initializer list one element at a time. The IList and Index 255 /// parameters to each of the Check* routines contain the active 256 /// (syntactic) initializer list and the index into that initializer 257 /// list that represents the current initializer. Each routine is 258 /// responsible for moving that Index forward as it consumes elements. 259 /// 260 /// Each Check* routine also has a StructuredList/StructuredIndex 261 /// arguments, which contains the current "structured" (semantic) 262 /// initializer list and the index into that initializer list where we 263 /// are copying initializers as we map them over to the semantic 264 /// list. Once we have completed our recursive walk of the subobject 265 /// structure, we will have constructed a full semantic initializer 266 /// list. 267 /// 268 /// C99 designators cause changes in the initializer list traversal, 269 /// because they make the initialization "jump" into a specific 270 /// subobject and then continue the initialization from that 271 /// point. CheckDesignatedInitializer() recursively steps into the 272 /// designated subobject and manages backing out the recursion to 273 /// initialize the subobjects after the one designated. 274 class InitListChecker { 275 Sema &SemaRef; 276 bool hadError; 277 bool VerifyOnly; // no diagnostics, no structure building 278 bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode. 279 llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic; 280 InitListExpr *FullyStructuredList; 281 282 void CheckImplicitInitList(const InitializedEntity &Entity, 283 InitListExpr *ParentIList, QualType T, 284 unsigned &Index, InitListExpr *StructuredList, 285 unsigned &StructuredIndex); 286 void CheckExplicitInitList(const InitializedEntity &Entity, 287 InitListExpr *IList, QualType &T, 288 InitListExpr *StructuredList, 289 bool TopLevelObject = false); 290 void CheckListElementTypes(const InitializedEntity &Entity, 291 InitListExpr *IList, QualType &DeclType, 292 bool SubobjectIsDesignatorContext, 293 unsigned &Index, 294 InitListExpr *StructuredList, 295 unsigned &StructuredIndex, 296 bool TopLevelObject = false); 297 void CheckSubElementType(const InitializedEntity &Entity, 298 InitListExpr *IList, QualType ElemType, 299 unsigned &Index, 300 InitListExpr *StructuredList, 301 unsigned &StructuredIndex); 302 void CheckComplexType(const InitializedEntity &Entity, 303 InitListExpr *IList, QualType DeclType, 304 unsigned &Index, 305 InitListExpr *StructuredList, 306 unsigned &StructuredIndex); 307 void CheckScalarType(const InitializedEntity &Entity, 308 InitListExpr *IList, QualType DeclType, 309 unsigned &Index, 310 InitListExpr *StructuredList, 311 unsigned &StructuredIndex); 312 void CheckReferenceType(const InitializedEntity &Entity, 313 InitListExpr *IList, QualType DeclType, 314 unsigned &Index, 315 InitListExpr *StructuredList, 316 unsigned &StructuredIndex); 317 void CheckVectorType(const InitializedEntity &Entity, 318 InitListExpr *IList, QualType DeclType, unsigned &Index, 319 InitListExpr *StructuredList, 320 unsigned &StructuredIndex); 321 void CheckStructUnionTypes(const InitializedEntity &Entity, 322 InitListExpr *IList, QualType DeclType, 323 CXXRecordDecl::base_class_range Bases, 324 RecordDecl::field_iterator Field, 325 bool SubobjectIsDesignatorContext, unsigned &Index, 326 InitListExpr *StructuredList, 327 unsigned &StructuredIndex, 328 bool TopLevelObject = false); 329 void CheckArrayType(const InitializedEntity &Entity, 330 InitListExpr *IList, QualType &DeclType, 331 llvm::APSInt elementIndex, 332 bool SubobjectIsDesignatorContext, unsigned &Index, 333 InitListExpr *StructuredList, 334 unsigned &StructuredIndex); 335 bool CheckDesignatedInitializer(const InitializedEntity &Entity, 336 InitListExpr *IList, DesignatedInitExpr *DIE, 337 unsigned DesigIdx, 338 QualType &CurrentObjectType, 339 RecordDecl::field_iterator *NextField, 340 llvm::APSInt *NextElementIndex, 341 unsigned &Index, 342 InitListExpr *StructuredList, 343 unsigned &StructuredIndex, 344 bool FinishSubobjectInit, 345 bool TopLevelObject); 346 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 347 QualType CurrentObjectType, 348 InitListExpr *StructuredList, 349 unsigned StructuredIndex, 350 SourceRange InitRange, 351 bool IsFullyOverwritten = false); 352 void UpdateStructuredListElement(InitListExpr *StructuredList, 353 unsigned &StructuredIndex, 354 Expr *expr); 355 int numArrayElements(QualType DeclType); 356 int numStructUnionElements(QualType DeclType); 357 358 static ExprResult PerformEmptyInit(Sema &SemaRef, 359 SourceLocation Loc, 360 const InitializedEntity &Entity, 361 bool VerifyOnly, 362 bool TreatUnavailableAsInvalid); 363 364 // Explanation on the "FillWithNoInit" mode: 365 // 366 // Assume we have the following definitions (Case#1): 367 // struct P { char x[6][6]; } xp = { .x[1] = "bar" }; 368 // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' }; 369 // 370 // l.lp.x[1][0..1] should not be filled with implicit initializers because the 371 // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf". 372 // 373 // But if we have (Case#2): 374 // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } }; 375 // 376 // l.lp.x[1][0..1] are implicitly initialized and do not use values from the 377 // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0". 378 // 379 // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes" 380 // in the InitListExpr, the "holes" in Case#1 are filled not with empty 381 // initializers but with special "NoInitExpr" place holders, which tells the 382 // CodeGen not to generate any initializers for these parts. 383 void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base, 384 const InitializedEntity &ParentEntity, 385 InitListExpr *ILE, bool &RequiresSecondPass, 386 bool FillWithNoInit); 387 void FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 388 const InitializedEntity &ParentEntity, 389 InitListExpr *ILE, bool &RequiresSecondPass, 390 bool FillWithNoInit = false); 391 void FillInEmptyInitializations(const InitializedEntity &Entity, 392 InitListExpr *ILE, bool &RequiresSecondPass, 393 InitListExpr *OuterILE, unsigned OuterIndex, 394 bool FillWithNoInit = false); 395 bool CheckFlexibleArrayInit(const InitializedEntity &Entity, 396 Expr *InitExpr, FieldDecl *Field, 397 bool TopLevelObject); 398 void CheckEmptyInitializable(const InitializedEntity &Entity, 399 SourceLocation Loc); 400 401 public: 402 InitListChecker(Sema &S, const InitializedEntity &Entity, 403 InitListExpr *IL, QualType &T, bool VerifyOnly, 404 bool TreatUnavailableAsInvalid); 405 bool HadError() { return hadError; } 406 407 // Retrieves the fully-structured initializer list used for 408 // semantic analysis and code generation. 409 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; } 410 }; 411 412 } // end anonymous namespace 413 414 ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef, 415 SourceLocation Loc, 416 const InitializedEntity &Entity, 417 bool VerifyOnly, 418 bool TreatUnavailableAsInvalid) { 419 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, 420 true); 421 MultiExprArg SubInit; 422 Expr *InitExpr; 423 InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc); 424 425 // C++ [dcl.init.aggr]p7: 426 // If there are fewer initializer-clauses in the list than there are 427 // members in the aggregate, then each member not explicitly initialized 428 // ... 429 bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 && 430 Entity.getType()->getBaseElementTypeUnsafe()->isRecordType(); 431 if (EmptyInitList) { 432 // C++1y / DR1070: 433 // shall be initialized [...] from an empty initializer list. 434 // 435 // We apply the resolution of this DR to C++11 but not C++98, since C++98 436 // does not have useful semantics for initialization from an init list. 437 // We treat this as copy-initialization, because aggregate initialization 438 // always performs copy-initialization on its elements. 439 // 440 // Only do this if we're initializing a class type, to avoid filling in 441 // the initializer list where possible. 442 InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context) 443 InitListExpr(SemaRef.Context, Loc, None, Loc); 444 InitExpr->setType(SemaRef.Context.VoidTy); 445 SubInit = InitExpr; 446 Kind = InitializationKind::CreateCopy(Loc, Loc); 447 } else { 448 // C++03: 449 // shall be value-initialized. 450 } 451 452 InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit); 453 // libstdc++4.6 marks the vector default constructor as explicit in 454 // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case. 455 // stlport does so too. Look for std::__debug for libstdc++, and for 456 // std:: for stlport. This is effectively a compiler-side implementation of 457 // LWG2193. 458 if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() == 459 InitializationSequence::FK_ExplicitConstructor) { 460 OverloadCandidateSet::iterator Best; 461 OverloadingResult O = 462 InitSeq.getFailedCandidateSet() 463 .BestViableFunction(SemaRef, Kind.getLocation(), Best); 464 (void)O; 465 assert(O == OR_Success && "Inconsistent overload resolution"); 466 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 467 CXXRecordDecl *R = CtorDecl->getParent(); 468 469 if (CtorDecl->getMinRequiredArguments() == 0 && 470 CtorDecl->isExplicit() && R->getDeclName() && 471 SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) { 472 bool IsInStd = false; 473 for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext()); 474 ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) { 475 if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND)) 476 IsInStd = true; 477 } 478 479 if (IsInStd && llvm::StringSwitch<bool>(R->getName()) 480 .Cases("basic_string", "deque", "forward_list", true) 481 .Cases("list", "map", "multimap", "multiset", true) 482 .Cases("priority_queue", "queue", "set", "stack", true) 483 .Cases("unordered_map", "unordered_set", "vector", true) 484 .Default(false)) { 485 InitSeq.InitializeFrom( 486 SemaRef, Entity, 487 InitializationKind::CreateValue(Loc, Loc, Loc, true), 488 MultiExprArg(), /*TopLevelOfInitList=*/false, 489 TreatUnavailableAsInvalid); 490 // Emit a warning for this. System header warnings aren't shown 491 // by default, but people working on system headers should see it. 492 if (!VerifyOnly) { 493 SemaRef.Diag(CtorDecl->getLocation(), 494 diag::warn_invalid_initializer_from_system_header); 495 if (Entity.getKind() == InitializedEntity::EK_Member) 496 SemaRef.Diag(Entity.getDecl()->getLocation(), 497 diag::note_used_in_initialization_here); 498 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) 499 SemaRef.Diag(Loc, diag::note_used_in_initialization_here); 500 } 501 } 502 } 503 } 504 if (!InitSeq) { 505 if (!VerifyOnly) { 506 InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit); 507 if (Entity.getKind() == InitializedEntity::EK_Member) 508 SemaRef.Diag(Entity.getDecl()->getLocation(), 509 diag::note_in_omitted_aggregate_initializer) 510 << /*field*/1 << Entity.getDecl(); 511 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) { 512 bool IsTrailingArrayNewMember = 513 Entity.getParent() && 514 Entity.getParent()->isVariableLengthArrayNew(); 515 SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer) 516 << (IsTrailingArrayNewMember ? 2 : /*array element*/0) 517 << Entity.getElementIndex(); 518 } 519 } 520 return ExprError(); 521 } 522 523 return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr)) 524 : InitSeq.Perform(SemaRef, Entity, Kind, SubInit); 525 } 526 527 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity, 528 SourceLocation Loc) { 529 assert(VerifyOnly && 530 "CheckEmptyInitializable is only inteded for verification mode."); 531 if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true, 532 TreatUnavailableAsInvalid).isInvalid()) 533 hadError = true; 534 } 535 536 void InitListChecker::FillInEmptyInitForBase( 537 unsigned Init, const CXXBaseSpecifier &Base, 538 const InitializedEntity &ParentEntity, InitListExpr *ILE, 539 bool &RequiresSecondPass, bool FillWithNoInit) { 540 assert(Init < ILE->getNumInits() && "should have been expanded"); 541 542 InitializedEntity BaseEntity = InitializedEntity::InitializeBase( 543 SemaRef.Context, &Base, false, &ParentEntity); 544 545 if (!ILE->getInit(Init)) { 546 ExprResult BaseInit = 547 FillWithNoInit 548 ? new (SemaRef.Context) NoInitExpr(Base.getType()) 549 : PerformEmptyInit(SemaRef, ILE->getEndLoc(), BaseEntity, 550 /*VerifyOnly*/ false, TreatUnavailableAsInvalid); 551 if (BaseInit.isInvalid()) { 552 hadError = true; 553 return; 554 } 555 556 ILE->setInit(Init, BaseInit.getAs<Expr>()); 557 } else if (InitListExpr *InnerILE = 558 dyn_cast<InitListExpr>(ILE->getInit(Init))) { 559 FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass, 560 ILE, Init, FillWithNoInit); 561 } else if (DesignatedInitUpdateExpr *InnerDIUE = 562 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { 563 FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(), 564 RequiresSecondPass, ILE, Init, 565 /*FillWithNoInit =*/true); 566 } 567 } 568 569 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 570 const InitializedEntity &ParentEntity, 571 InitListExpr *ILE, 572 bool &RequiresSecondPass, 573 bool FillWithNoInit) { 574 SourceLocation Loc = ILE->getEndLoc(); 575 unsigned NumInits = ILE->getNumInits(); 576 InitializedEntity MemberEntity 577 = InitializedEntity::InitializeMember(Field, &ParentEntity); 578 579 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) 580 if (!RType->getDecl()->isUnion()) 581 assert(Init < NumInits && "This ILE should have been expanded"); 582 583 if (Init >= NumInits || !ILE->getInit(Init)) { 584 if (FillWithNoInit) { 585 Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType()); 586 if (Init < NumInits) 587 ILE->setInit(Init, Filler); 588 else 589 ILE->updateInit(SemaRef.Context, Init, Filler); 590 return; 591 } 592 // C++1y [dcl.init.aggr]p7: 593 // If there are fewer initializer-clauses in the list than there are 594 // members in the aggregate, then each member not explicitly initialized 595 // shall be initialized from its brace-or-equal-initializer [...] 596 if (Field->hasInClassInitializer()) { 597 ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field); 598 if (DIE.isInvalid()) { 599 hadError = true; 600 return; 601 } 602 SemaRef.checkInitializerLifetime(MemberEntity, DIE.get()); 603 if (Init < NumInits) 604 ILE->setInit(Init, DIE.get()); 605 else { 606 ILE->updateInit(SemaRef.Context, Init, DIE.get()); 607 RequiresSecondPass = true; 608 } 609 return; 610 } 611 612 if (Field->getType()->isReferenceType()) { 613 // C++ [dcl.init.aggr]p9: 614 // If an incomplete or empty initializer-list leaves a 615 // member of reference type uninitialized, the program is 616 // ill-formed. 617 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized) 618 << Field->getType() 619 << ILE->getSyntacticForm()->getSourceRange(); 620 SemaRef.Diag(Field->getLocation(), 621 diag::note_uninit_reference_member); 622 hadError = true; 623 return; 624 } 625 626 ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity, 627 /*VerifyOnly*/false, 628 TreatUnavailableAsInvalid); 629 if (MemberInit.isInvalid()) { 630 hadError = true; 631 return; 632 } 633 634 if (hadError) { 635 // Do nothing 636 } else if (Init < NumInits) { 637 ILE->setInit(Init, MemberInit.getAs<Expr>()); 638 } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) { 639 // Empty initialization requires a constructor call, so 640 // extend the initializer list to include the constructor 641 // call and make a note that we'll need to take another pass 642 // through the initializer list. 643 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>()); 644 RequiresSecondPass = true; 645 } 646 } else if (InitListExpr *InnerILE 647 = dyn_cast<InitListExpr>(ILE->getInit(Init))) 648 FillInEmptyInitializations(MemberEntity, InnerILE, 649 RequiresSecondPass, ILE, Init, FillWithNoInit); 650 else if (DesignatedInitUpdateExpr *InnerDIUE 651 = dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) 652 FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(), 653 RequiresSecondPass, ILE, Init, 654 /*FillWithNoInit =*/true); 655 } 656 657 /// Recursively replaces NULL values within the given initializer list 658 /// with expressions that perform value-initialization of the 659 /// appropriate type, and finish off the InitListExpr formation. 660 void 661 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity, 662 InitListExpr *ILE, 663 bool &RequiresSecondPass, 664 InitListExpr *OuterILE, 665 unsigned OuterIndex, 666 bool FillWithNoInit) { 667 assert((ILE->getType() != SemaRef.Context.VoidTy) && 668 "Should not have void type"); 669 670 // If this is a nested initializer list, we might have changed its contents 671 // (and therefore some of its properties, such as instantiation-dependence) 672 // while filling it in. Inform the outer initializer list so that its state 673 // can be updated to match. 674 // FIXME: We should fully build the inner initializers before constructing 675 // the outer InitListExpr instead of mutating AST nodes after they have 676 // been used as subexpressions of other nodes. 677 struct UpdateOuterILEWithUpdatedInit { 678 InitListExpr *Outer; 679 unsigned OuterIndex; 680 ~UpdateOuterILEWithUpdatedInit() { 681 if (Outer) 682 Outer->setInit(OuterIndex, Outer->getInit(OuterIndex)); 683 } 684 } UpdateOuterRAII = {OuterILE, OuterIndex}; 685 686 // A transparent ILE is not performing aggregate initialization and should 687 // not be filled in. 688 if (ILE->isTransparent()) 689 return; 690 691 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 692 const RecordDecl *RDecl = RType->getDecl(); 693 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion()) 694 FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(), 695 Entity, ILE, RequiresSecondPass, FillWithNoInit); 696 else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) && 697 cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) { 698 for (auto *Field : RDecl->fields()) { 699 if (Field->hasInClassInitializer()) { 700 FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass, 701 FillWithNoInit); 702 break; 703 } 704 } 705 } else { 706 // The fields beyond ILE->getNumInits() are default initialized, so in 707 // order to leave them uninitialized, the ILE is expanded and the extra 708 // fields are then filled with NoInitExpr. 709 unsigned NumElems = numStructUnionElements(ILE->getType()); 710 if (RDecl->hasFlexibleArrayMember()) 711 ++NumElems; 712 if (ILE->getNumInits() < NumElems) 713 ILE->resizeInits(SemaRef.Context, NumElems); 714 715 unsigned Init = 0; 716 717 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) { 718 for (auto &Base : CXXRD->bases()) { 719 if (hadError) 720 return; 721 722 FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass, 723 FillWithNoInit); 724 ++Init; 725 } 726 } 727 728 for (auto *Field : RDecl->fields()) { 729 if (Field->isUnnamedBitfield()) 730 continue; 731 732 if (hadError) 733 return; 734 735 FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass, 736 FillWithNoInit); 737 if (hadError) 738 return; 739 740 ++Init; 741 742 // Only look at the first initialization of a union. 743 if (RDecl->isUnion()) 744 break; 745 } 746 } 747 748 return; 749 } 750 751 QualType ElementType; 752 753 InitializedEntity ElementEntity = Entity; 754 unsigned NumInits = ILE->getNumInits(); 755 unsigned NumElements = NumInits; 756 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) { 757 ElementType = AType->getElementType(); 758 if (const auto *CAType = dyn_cast<ConstantArrayType>(AType)) 759 NumElements = CAType->getSize().getZExtValue(); 760 // For an array new with an unknown bound, ask for one additional element 761 // in order to populate the array filler. 762 if (Entity.isVariableLengthArrayNew()) 763 ++NumElements; 764 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 765 0, Entity); 766 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) { 767 ElementType = VType->getElementType(); 768 NumElements = VType->getNumElements(); 769 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 770 0, Entity); 771 } else 772 ElementType = ILE->getType(); 773 774 for (unsigned Init = 0; Init != NumElements; ++Init) { 775 if (hadError) 776 return; 777 778 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement || 779 ElementEntity.getKind() == InitializedEntity::EK_VectorElement) 780 ElementEntity.setElementIndex(Init); 781 782 if (Init >= NumInits && ILE->hasArrayFiller()) 783 return; 784 785 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr); 786 if (!InitExpr && Init < NumInits && ILE->hasArrayFiller()) 787 ILE->setInit(Init, ILE->getArrayFiller()); 788 else if (!InitExpr && !ILE->hasArrayFiller()) { 789 Expr *Filler = nullptr; 790 791 if (FillWithNoInit) 792 Filler = new (SemaRef.Context) NoInitExpr(ElementType); 793 else { 794 ExprResult ElementInit = 795 PerformEmptyInit(SemaRef, ILE->getEndLoc(), ElementEntity, 796 /*VerifyOnly*/ false, TreatUnavailableAsInvalid); 797 if (ElementInit.isInvalid()) { 798 hadError = true; 799 return; 800 } 801 802 Filler = ElementInit.getAs<Expr>(); 803 } 804 805 if (hadError) { 806 // Do nothing 807 } else if (Init < NumInits) { 808 // For arrays, just set the expression used for value-initialization 809 // of the "holes" in the array. 810 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) 811 ILE->setArrayFiller(Filler); 812 else 813 ILE->setInit(Init, Filler); 814 } else { 815 // For arrays, just set the expression used for value-initialization 816 // of the rest of elements and exit. 817 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) { 818 ILE->setArrayFiller(Filler); 819 return; 820 } 821 822 if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) { 823 // Empty initialization requires a constructor call, so 824 // extend the initializer list to include the constructor 825 // call and make a note that we'll need to take another pass 826 // through the initializer list. 827 ILE->updateInit(SemaRef.Context, Init, Filler); 828 RequiresSecondPass = true; 829 } 830 } 831 } else if (InitListExpr *InnerILE 832 = dyn_cast_or_null<InitListExpr>(InitExpr)) 833 FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass, 834 ILE, Init, FillWithNoInit); 835 else if (DesignatedInitUpdateExpr *InnerDIUE 836 = dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) 837 FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(), 838 RequiresSecondPass, ILE, Init, 839 /*FillWithNoInit =*/true); 840 } 841 } 842 843 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity, 844 InitListExpr *IL, QualType &T, 845 bool VerifyOnly, 846 bool TreatUnavailableAsInvalid) 847 : SemaRef(S), VerifyOnly(VerifyOnly), 848 TreatUnavailableAsInvalid(TreatUnavailableAsInvalid) { 849 // FIXME: Check that IL isn't already the semantic form of some other 850 // InitListExpr. If it is, we'd create a broken AST. 851 852 hadError = false; 853 854 FullyStructuredList = 855 getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange()); 856 CheckExplicitInitList(Entity, IL, T, FullyStructuredList, 857 /*TopLevelObject=*/true); 858 859 if (!hadError && !VerifyOnly) { 860 bool RequiresSecondPass = false; 861 FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass, 862 /*OuterILE=*/nullptr, /*OuterIndex=*/0); 863 if (RequiresSecondPass && !hadError) 864 FillInEmptyInitializations(Entity, FullyStructuredList, 865 RequiresSecondPass, nullptr, 0); 866 } 867 } 868 869 int InitListChecker::numArrayElements(QualType DeclType) { 870 // FIXME: use a proper constant 871 int maxElements = 0x7FFFFFFF; 872 if (const ConstantArrayType *CAT = 873 SemaRef.Context.getAsConstantArrayType(DeclType)) { 874 maxElements = static_cast<int>(CAT->getSize().getZExtValue()); 875 } 876 return maxElements; 877 } 878 879 int InitListChecker::numStructUnionElements(QualType DeclType) { 880 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl(); 881 int InitializableMembers = 0; 882 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl)) 883 InitializableMembers += CXXRD->getNumBases(); 884 for (const auto *Field : structDecl->fields()) 885 if (!Field->isUnnamedBitfield()) 886 ++InitializableMembers; 887 888 if (structDecl->isUnion()) 889 return std::min(InitializableMembers, 1); 890 return InitializableMembers - structDecl->hasFlexibleArrayMember(); 891 } 892 893 /// Determine whether Entity is an entity for which it is idiomatic to elide 894 /// the braces in aggregate initialization. 895 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) { 896 // Recursive initialization of the one and only field within an aggregate 897 // class is considered idiomatic. This case arises in particular for 898 // initialization of std::array, where the C++ standard suggests the idiom of 899 // 900 // std::array<T, N> arr = {1, 2, 3}; 901 // 902 // (where std::array is an aggregate struct containing a single array field. 903 904 // FIXME: Should aggregate initialization of a struct with a single 905 // base class and no members also suppress the warning? 906 if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent()) 907 return false; 908 909 auto *ParentRD = 910 Entity.getParent()->getType()->castAs<RecordType>()->getDecl(); 911 if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD)) 912 if (CXXRD->getNumBases()) 913 return false; 914 915 auto FieldIt = ParentRD->field_begin(); 916 assert(FieldIt != ParentRD->field_end() && 917 "no fields but have initializer for member?"); 918 return ++FieldIt == ParentRD->field_end(); 919 } 920 921 /// Check whether the range of the initializer \p ParentIList from element 922 /// \p Index onwards can be used to initialize an object of type \p T. Update 923 /// \p Index to indicate how many elements of the list were consumed. 924 /// 925 /// This also fills in \p StructuredList, from element \p StructuredIndex 926 /// onwards, with the fully-braced, desugared form of the initialization. 927 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity, 928 InitListExpr *ParentIList, 929 QualType T, unsigned &Index, 930 InitListExpr *StructuredList, 931 unsigned &StructuredIndex) { 932 int maxElements = 0; 933 934 if (T->isArrayType()) 935 maxElements = numArrayElements(T); 936 else if (T->isRecordType()) 937 maxElements = numStructUnionElements(T); 938 else if (T->isVectorType()) 939 maxElements = T->getAs<VectorType>()->getNumElements(); 940 else 941 llvm_unreachable("CheckImplicitInitList(): Illegal type"); 942 943 if (maxElements == 0) { 944 if (!VerifyOnly) 945 SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(), 946 diag::err_implicit_empty_initializer); 947 ++Index; 948 hadError = true; 949 return; 950 } 951 952 // Build a structured initializer list corresponding to this subobject. 953 InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit( 954 ParentIList, Index, T, StructuredList, StructuredIndex, 955 SourceRange(ParentIList->getInit(Index)->getBeginLoc(), 956 ParentIList->getSourceRange().getEnd())); 957 unsigned StructuredSubobjectInitIndex = 0; 958 959 // Check the element types and build the structural subobject. 960 unsigned StartIndex = Index; 961 CheckListElementTypes(Entity, ParentIList, T, 962 /*SubobjectIsDesignatorContext=*/false, Index, 963 StructuredSubobjectInitList, 964 StructuredSubobjectInitIndex); 965 966 if (!VerifyOnly) { 967 StructuredSubobjectInitList->setType(T); 968 969 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1); 970 // Update the structured sub-object initializer so that it's ending 971 // range corresponds with the end of the last initializer it used. 972 if (EndIndex < ParentIList->getNumInits() && 973 ParentIList->getInit(EndIndex)) { 974 SourceLocation EndLoc 975 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd(); 976 StructuredSubobjectInitList->setRBraceLoc(EndLoc); 977 } 978 979 // Complain about missing braces. 980 if ((T->isArrayType() || T->isRecordType()) && 981 !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) && 982 !isIdiomaticBraceElisionEntity(Entity)) { 983 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), 984 diag::warn_missing_braces) 985 << StructuredSubobjectInitList->getSourceRange() 986 << FixItHint::CreateInsertion( 987 StructuredSubobjectInitList->getBeginLoc(), "{") 988 << FixItHint::CreateInsertion( 989 SemaRef.getLocForEndOfToken( 990 StructuredSubobjectInitList->getEndLoc()), 991 "}"); 992 } 993 994 // Warn if this type won't be an aggregate in future versions of C++. 995 auto *CXXRD = T->getAsCXXRecordDecl(); 996 if (CXXRD && CXXRD->hasUserDeclaredConstructor()) { 997 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), 998 diag::warn_cxx2a_compat_aggregate_init_with_ctors) 999 << StructuredSubobjectInitList->getSourceRange() << T; 1000 } 1001 } 1002 } 1003 1004 /// Warn that \p Entity was of scalar type and was initialized by a 1005 /// single-element braced initializer list. 1006 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity, 1007 SourceRange Braces) { 1008 // Don't warn during template instantiation. If the initialization was 1009 // non-dependent, we warned during the initial parse; otherwise, the 1010 // type might not be scalar in some uses of the template. 1011 if (S.inTemplateInstantiation()) 1012 return; 1013 1014 unsigned DiagID = 0; 1015 1016 switch (Entity.getKind()) { 1017 case InitializedEntity::EK_VectorElement: 1018 case InitializedEntity::EK_ComplexElement: 1019 case InitializedEntity::EK_ArrayElement: 1020 case InitializedEntity::EK_Parameter: 1021 case InitializedEntity::EK_Parameter_CF_Audited: 1022 case InitializedEntity::EK_Result: 1023 // Extra braces here are suspicious. 1024 DiagID = diag::warn_braces_around_scalar_init; 1025 break; 1026 1027 case InitializedEntity::EK_Member: 1028 // Warn on aggregate initialization but not on ctor init list or 1029 // default member initializer. 1030 if (Entity.getParent()) 1031 DiagID = diag::warn_braces_around_scalar_init; 1032 break; 1033 1034 case InitializedEntity::EK_Variable: 1035 case InitializedEntity::EK_LambdaCapture: 1036 // No warning, might be direct-list-initialization. 1037 // FIXME: Should we warn for copy-list-initialization in these cases? 1038 break; 1039 1040 case InitializedEntity::EK_New: 1041 case InitializedEntity::EK_Temporary: 1042 case InitializedEntity::EK_CompoundLiteralInit: 1043 // No warning, braces are part of the syntax of the underlying construct. 1044 break; 1045 1046 case InitializedEntity::EK_RelatedResult: 1047 // No warning, we already warned when initializing the result. 1048 break; 1049 1050 case InitializedEntity::EK_Exception: 1051 case InitializedEntity::EK_Base: 1052 case InitializedEntity::EK_Delegating: 1053 case InitializedEntity::EK_BlockElement: 1054 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 1055 case InitializedEntity::EK_Binding: 1056 case InitializedEntity::EK_StmtExprResult: 1057 llvm_unreachable("unexpected braced scalar init"); 1058 } 1059 1060 if (DiagID) { 1061 S.Diag(Braces.getBegin(), DiagID) 1062 << Braces 1063 << FixItHint::CreateRemoval(Braces.getBegin()) 1064 << FixItHint::CreateRemoval(Braces.getEnd()); 1065 } 1066 } 1067 1068 /// Check whether the initializer \p IList (that was written with explicit 1069 /// braces) can be used to initialize an object of type \p T. 1070 /// 1071 /// This also fills in \p StructuredList with the fully-braced, desugared 1072 /// form of the initialization. 1073 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity, 1074 InitListExpr *IList, QualType &T, 1075 InitListExpr *StructuredList, 1076 bool TopLevelObject) { 1077 if (!VerifyOnly) { 1078 SyntacticToSemantic[IList] = StructuredList; 1079 StructuredList->setSyntacticForm(IList); 1080 } 1081 1082 unsigned Index = 0, StructuredIndex = 0; 1083 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true, 1084 Index, StructuredList, StructuredIndex, TopLevelObject); 1085 if (!VerifyOnly) { 1086 QualType ExprTy = T; 1087 if (!ExprTy->isArrayType()) 1088 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context); 1089 IList->setType(ExprTy); 1090 StructuredList->setType(ExprTy); 1091 } 1092 if (hadError) 1093 return; 1094 1095 if (Index < IList->getNumInits()) { 1096 // We have leftover initializers 1097 if (VerifyOnly) { 1098 if (SemaRef.getLangOpts().CPlusPlus || 1099 (SemaRef.getLangOpts().OpenCL && 1100 IList->getType()->isVectorType())) { 1101 hadError = true; 1102 } 1103 return; 1104 } 1105 1106 if (StructuredIndex == 1 && 1107 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) == 1108 SIF_None) { 1109 unsigned DK = diag::ext_excess_initializers_in_char_array_initializer; 1110 if (SemaRef.getLangOpts().CPlusPlus) { 1111 DK = diag::err_excess_initializers_in_char_array_initializer; 1112 hadError = true; 1113 } 1114 // Special-case 1115 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1116 << IList->getInit(Index)->getSourceRange(); 1117 } else if (!T->isIncompleteType()) { 1118 // Don't complain for incomplete types, since we'll get an error 1119 // elsewhere 1120 QualType CurrentObjectType = StructuredList->getType(); 1121 int initKind = 1122 CurrentObjectType->isArrayType()? 0 : 1123 CurrentObjectType->isVectorType()? 1 : 1124 CurrentObjectType->isScalarType()? 2 : 1125 CurrentObjectType->isUnionType()? 3 : 1126 4; 1127 1128 unsigned DK = diag::ext_excess_initializers; 1129 if (SemaRef.getLangOpts().CPlusPlus) { 1130 DK = diag::err_excess_initializers; 1131 hadError = true; 1132 } 1133 if (SemaRef.getLangOpts().OpenCL && initKind == 1) { 1134 DK = diag::err_excess_initializers; 1135 hadError = true; 1136 } 1137 1138 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1139 << initKind << IList->getInit(Index)->getSourceRange(); 1140 } 1141 } 1142 1143 if (!VerifyOnly) { 1144 if (T->isScalarType() && IList->getNumInits() == 1 && 1145 !isa<InitListExpr>(IList->getInit(0))) 1146 warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange()); 1147 1148 // Warn if this is a class type that won't be an aggregate in future 1149 // versions of C++. 1150 auto *CXXRD = T->getAsCXXRecordDecl(); 1151 if (CXXRD && CXXRD->hasUserDeclaredConstructor()) { 1152 // Don't warn if there's an equivalent default constructor that would be 1153 // used instead. 1154 bool HasEquivCtor = false; 1155 if (IList->getNumInits() == 0) { 1156 auto *CD = SemaRef.LookupDefaultConstructor(CXXRD); 1157 HasEquivCtor = CD && !CD->isDeleted(); 1158 } 1159 1160 if (!HasEquivCtor) { 1161 SemaRef.Diag(IList->getBeginLoc(), 1162 diag::warn_cxx2a_compat_aggregate_init_with_ctors) 1163 << IList->getSourceRange() << T; 1164 } 1165 } 1166 } 1167 } 1168 1169 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity, 1170 InitListExpr *IList, 1171 QualType &DeclType, 1172 bool SubobjectIsDesignatorContext, 1173 unsigned &Index, 1174 InitListExpr *StructuredList, 1175 unsigned &StructuredIndex, 1176 bool TopLevelObject) { 1177 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) { 1178 // Explicitly braced initializer for complex type can be real+imaginary 1179 // parts. 1180 CheckComplexType(Entity, IList, DeclType, Index, 1181 StructuredList, StructuredIndex); 1182 } else if (DeclType->isScalarType()) { 1183 CheckScalarType(Entity, IList, DeclType, Index, 1184 StructuredList, StructuredIndex); 1185 } else if (DeclType->isVectorType()) { 1186 CheckVectorType(Entity, IList, DeclType, Index, 1187 StructuredList, StructuredIndex); 1188 } else if (DeclType->isRecordType()) { 1189 assert(DeclType->isAggregateType() && 1190 "non-aggregate records should be handed in CheckSubElementType"); 1191 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); 1192 auto Bases = 1193 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), 1194 CXXRecordDecl::base_class_iterator()); 1195 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1196 Bases = CXXRD->bases(); 1197 CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(), 1198 SubobjectIsDesignatorContext, Index, StructuredList, 1199 StructuredIndex, TopLevelObject); 1200 } else if (DeclType->isArrayType()) { 1201 llvm::APSInt Zero( 1202 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()), 1203 false); 1204 CheckArrayType(Entity, IList, DeclType, Zero, 1205 SubobjectIsDesignatorContext, Index, 1206 StructuredList, StructuredIndex); 1207 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) { 1208 // This type is invalid, issue a diagnostic. 1209 ++Index; 1210 if (!VerifyOnly) 1211 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) 1212 << DeclType; 1213 hadError = true; 1214 } else if (DeclType->isReferenceType()) { 1215 CheckReferenceType(Entity, IList, DeclType, Index, 1216 StructuredList, StructuredIndex); 1217 } else if (DeclType->isObjCObjectType()) { 1218 if (!VerifyOnly) 1219 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType; 1220 hadError = true; 1221 } else if (DeclType->isOCLIntelSubgroupAVCType()) { 1222 // Checks for scalar type are sufficient for these types too. 1223 CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 1224 StructuredIndex); 1225 } else { 1226 if (!VerifyOnly) 1227 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) 1228 << DeclType; 1229 hadError = true; 1230 } 1231 } 1232 1233 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity, 1234 InitListExpr *IList, 1235 QualType ElemType, 1236 unsigned &Index, 1237 InitListExpr *StructuredList, 1238 unsigned &StructuredIndex) { 1239 Expr *expr = IList->getInit(Index); 1240 1241 if (ElemType->isReferenceType()) 1242 return CheckReferenceType(Entity, IList, ElemType, Index, 1243 StructuredList, StructuredIndex); 1244 1245 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) { 1246 if (SubInitList->getNumInits() == 1 && 1247 IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) == 1248 SIF_None) { 1249 expr = SubInitList->getInit(0); 1250 } else if (!SemaRef.getLangOpts().CPlusPlus) { 1251 InitListExpr *InnerStructuredList 1252 = getStructuredSubobjectInit(IList, Index, ElemType, 1253 StructuredList, StructuredIndex, 1254 SubInitList->getSourceRange(), true); 1255 CheckExplicitInitList(Entity, SubInitList, ElemType, 1256 InnerStructuredList); 1257 1258 if (!hadError && !VerifyOnly) { 1259 bool RequiresSecondPass = false; 1260 FillInEmptyInitializations(Entity, InnerStructuredList, 1261 RequiresSecondPass, StructuredList, 1262 StructuredIndex); 1263 if (RequiresSecondPass && !hadError) 1264 FillInEmptyInitializations(Entity, InnerStructuredList, 1265 RequiresSecondPass, StructuredList, 1266 StructuredIndex); 1267 } 1268 ++StructuredIndex; 1269 ++Index; 1270 return; 1271 } 1272 // C++ initialization is handled later. 1273 } else if (isa<ImplicitValueInitExpr>(expr)) { 1274 // This happens during template instantiation when we see an InitListExpr 1275 // that we've already checked once. 1276 assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) && 1277 "found implicit initialization for the wrong type"); 1278 if (!VerifyOnly) 1279 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1280 ++Index; 1281 return; 1282 } 1283 1284 if (SemaRef.getLangOpts().CPlusPlus) { 1285 // C++ [dcl.init.aggr]p2: 1286 // Each member is copy-initialized from the corresponding 1287 // initializer-clause. 1288 1289 // FIXME: Better EqualLoc? 1290 InitializationKind Kind = 1291 InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation()); 1292 1293 // Vector elements can be initialized from other vectors in which case 1294 // we need initialization entity with a type of a vector (and not a vector 1295 // element!) initializing multiple vector elements. 1296 auto TmpEntity = 1297 (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType()) 1298 ? InitializedEntity::InitializeTemporary(ElemType) 1299 : Entity; 1300 1301 InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr, 1302 /*TopLevelOfInitList*/ true); 1303 1304 // C++14 [dcl.init.aggr]p13: 1305 // If the assignment-expression can initialize a member, the member is 1306 // initialized. Otherwise [...] brace elision is assumed 1307 // 1308 // Brace elision is never performed if the element is not an 1309 // assignment-expression. 1310 if (Seq || isa<InitListExpr>(expr)) { 1311 if (!VerifyOnly) { 1312 ExprResult Result = Seq.Perform(SemaRef, TmpEntity, Kind, expr); 1313 if (Result.isInvalid()) 1314 hadError = true; 1315 1316 UpdateStructuredListElement(StructuredList, StructuredIndex, 1317 Result.getAs<Expr>()); 1318 } else if (!Seq) 1319 hadError = true; 1320 ++Index; 1321 return; 1322 } 1323 1324 // Fall through for subaggregate initialization 1325 } else if (ElemType->isScalarType() || ElemType->isAtomicType()) { 1326 // FIXME: Need to handle atomic aggregate types with implicit init lists. 1327 return CheckScalarType(Entity, IList, ElemType, Index, 1328 StructuredList, StructuredIndex); 1329 } else if (const ArrayType *arrayType = 1330 SemaRef.Context.getAsArrayType(ElemType)) { 1331 // arrayType can be incomplete if we're initializing a flexible 1332 // array member. There's nothing we can do with the completed 1333 // type here, though. 1334 1335 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) { 1336 if (!VerifyOnly) { 1337 CheckStringInit(expr, ElemType, arrayType, SemaRef); 1338 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1339 } 1340 ++Index; 1341 return; 1342 } 1343 1344 // Fall through for subaggregate initialization. 1345 1346 } else { 1347 assert((ElemType->isRecordType() || ElemType->isVectorType() || 1348 ElemType->isOpenCLSpecificType()) && "Unexpected type"); 1349 1350 // C99 6.7.8p13: 1351 // 1352 // The initializer for a structure or union object that has 1353 // automatic storage duration shall be either an initializer 1354 // list as described below, or a single expression that has 1355 // compatible structure or union type. In the latter case, the 1356 // initial value of the object, including unnamed members, is 1357 // that of the expression. 1358 ExprResult ExprRes = expr; 1359 if (SemaRef.CheckSingleAssignmentConstraints( 1360 ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) { 1361 if (ExprRes.isInvalid()) 1362 hadError = true; 1363 else { 1364 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get()); 1365 if (ExprRes.isInvalid()) 1366 hadError = true; 1367 } 1368 UpdateStructuredListElement(StructuredList, StructuredIndex, 1369 ExprRes.getAs<Expr>()); 1370 ++Index; 1371 return; 1372 } 1373 ExprRes.get(); 1374 // Fall through for subaggregate initialization 1375 } 1376 1377 // C++ [dcl.init.aggr]p12: 1378 // 1379 // [...] Otherwise, if the member is itself a non-empty 1380 // subaggregate, brace elision is assumed and the initializer is 1381 // considered for the initialization of the first member of 1382 // the subaggregate. 1383 // OpenCL vector initializer is handled elsewhere. 1384 if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) || 1385 ElemType->isAggregateType()) { 1386 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList, 1387 StructuredIndex); 1388 ++StructuredIndex; 1389 } else { 1390 if (!VerifyOnly) { 1391 // We cannot initialize this element, so let 1392 // PerformCopyInitialization produce the appropriate diagnostic. 1393 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr, 1394 /*TopLevelOfInitList=*/true); 1395 } 1396 hadError = true; 1397 ++Index; 1398 ++StructuredIndex; 1399 } 1400 } 1401 1402 void InitListChecker::CheckComplexType(const InitializedEntity &Entity, 1403 InitListExpr *IList, QualType DeclType, 1404 unsigned &Index, 1405 InitListExpr *StructuredList, 1406 unsigned &StructuredIndex) { 1407 assert(Index == 0 && "Index in explicit init list must be zero"); 1408 1409 // As an extension, clang supports complex initializers, which initialize 1410 // a complex number component-wise. When an explicit initializer list for 1411 // a complex number contains two two initializers, this extension kicks in: 1412 // it exepcts the initializer list to contain two elements convertible to 1413 // the element type of the complex type. The first element initializes 1414 // the real part, and the second element intitializes the imaginary part. 1415 1416 if (IList->getNumInits() != 2) 1417 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 1418 StructuredIndex); 1419 1420 // This is an extension in C. (The builtin _Complex type does not exist 1421 // in the C++ standard.) 1422 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly) 1423 SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init) 1424 << IList->getSourceRange(); 1425 1426 // Initialize the complex number. 1427 QualType elementType = DeclType->getAs<ComplexType>()->getElementType(); 1428 InitializedEntity ElementEntity = 1429 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1430 1431 for (unsigned i = 0; i < 2; ++i) { 1432 ElementEntity.setElementIndex(Index); 1433 CheckSubElementType(ElementEntity, IList, elementType, Index, 1434 StructuredList, StructuredIndex); 1435 } 1436 } 1437 1438 void InitListChecker::CheckScalarType(const InitializedEntity &Entity, 1439 InitListExpr *IList, QualType DeclType, 1440 unsigned &Index, 1441 InitListExpr *StructuredList, 1442 unsigned &StructuredIndex) { 1443 if (Index >= IList->getNumInits()) { 1444 if (!VerifyOnly) 1445 SemaRef.Diag(IList->getBeginLoc(), 1446 SemaRef.getLangOpts().CPlusPlus11 1447 ? diag::warn_cxx98_compat_empty_scalar_initializer 1448 : diag::err_empty_scalar_initializer) 1449 << IList->getSourceRange(); 1450 hadError = !SemaRef.getLangOpts().CPlusPlus11; 1451 ++Index; 1452 ++StructuredIndex; 1453 return; 1454 } 1455 1456 Expr *expr = IList->getInit(Index); 1457 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) { 1458 // FIXME: This is invalid, and accepting it causes overload resolution 1459 // to pick the wrong overload in some corner cases. 1460 if (!VerifyOnly) 1461 SemaRef.Diag(SubIList->getBeginLoc(), 1462 diag::ext_many_braces_around_scalar_init) 1463 << SubIList->getSourceRange(); 1464 1465 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList, 1466 StructuredIndex); 1467 return; 1468 } else if (isa<DesignatedInitExpr>(expr)) { 1469 if (!VerifyOnly) 1470 SemaRef.Diag(expr->getBeginLoc(), diag::err_designator_for_scalar_init) 1471 << DeclType << expr->getSourceRange(); 1472 hadError = true; 1473 ++Index; 1474 ++StructuredIndex; 1475 return; 1476 } 1477 1478 if (VerifyOnly) { 1479 if (!SemaRef.CanPerformCopyInitialization(Entity,expr)) 1480 hadError = true; 1481 ++Index; 1482 return; 1483 } 1484 1485 ExprResult Result = 1486 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, 1487 /*TopLevelOfInitList=*/true); 1488 1489 Expr *ResultExpr = nullptr; 1490 1491 if (Result.isInvalid()) 1492 hadError = true; // types weren't compatible. 1493 else { 1494 ResultExpr = Result.getAs<Expr>(); 1495 1496 if (ResultExpr != expr) { 1497 // The type was promoted, update initializer list. 1498 IList->setInit(Index, ResultExpr); 1499 } 1500 } 1501 if (hadError) 1502 ++StructuredIndex; 1503 else 1504 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); 1505 ++Index; 1506 } 1507 1508 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity, 1509 InitListExpr *IList, QualType DeclType, 1510 unsigned &Index, 1511 InitListExpr *StructuredList, 1512 unsigned &StructuredIndex) { 1513 if (Index >= IList->getNumInits()) { 1514 // FIXME: It would be wonderful if we could point at the actual member. In 1515 // general, it would be useful to pass location information down the stack, 1516 // so that we know the location (or decl) of the "current object" being 1517 // initialized. 1518 if (!VerifyOnly) 1519 SemaRef.Diag(IList->getBeginLoc(), 1520 diag::err_init_reference_member_uninitialized) 1521 << DeclType << IList->getSourceRange(); 1522 hadError = true; 1523 ++Index; 1524 ++StructuredIndex; 1525 return; 1526 } 1527 1528 Expr *expr = IList->getInit(Index); 1529 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) { 1530 if (!VerifyOnly) 1531 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list) 1532 << DeclType << IList->getSourceRange(); 1533 hadError = true; 1534 ++Index; 1535 ++StructuredIndex; 1536 return; 1537 } 1538 1539 if (VerifyOnly) { 1540 if (!SemaRef.CanPerformCopyInitialization(Entity,expr)) 1541 hadError = true; 1542 ++Index; 1543 return; 1544 } 1545 1546 ExprResult Result = 1547 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, 1548 /*TopLevelOfInitList=*/true); 1549 1550 if (Result.isInvalid()) 1551 hadError = true; 1552 1553 expr = Result.getAs<Expr>(); 1554 IList->setInit(Index, expr); 1555 1556 if (hadError) 1557 ++StructuredIndex; 1558 else 1559 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1560 ++Index; 1561 } 1562 1563 void InitListChecker::CheckVectorType(const InitializedEntity &Entity, 1564 InitListExpr *IList, QualType DeclType, 1565 unsigned &Index, 1566 InitListExpr *StructuredList, 1567 unsigned &StructuredIndex) { 1568 const VectorType *VT = DeclType->getAs<VectorType>(); 1569 unsigned maxElements = VT->getNumElements(); 1570 unsigned numEltsInit = 0; 1571 QualType elementType = VT->getElementType(); 1572 1573 if (Index >= IList->getNumInits()) { 1574 // Make sure the element type can be value-initialized. 1575 if (VerifyOnly) 1576 CheckEmptyInitializable( 1577 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 1578 IList->getEndLoc()); 1579 return; 1580 } 1581 1582 if (!SemaRef.getLangOpts().OpenCL) { 1583 // If the initializing element is a vector, try to copy-initialize 1584 // instead of breaking it apart (which is doomed to failure anyway). 1585 Expr *Init = IList->getInit(Index); 1586 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) { 1587 if (VerifyOnly) { 1588 if (!SemaRef.CanPerformCopyInitialization(Entity, Init)) 1589 hadError = true; 1590 ++Index; 1591 return; 1592 } 1593 1594 ExprResult Result = 1595 SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init, 1596 /*TopLevelOfInitList=*/true); 1597 1598 Expr *ResultExpr = nullptr; 1599 if (Result.isInvalid()) 1600 hadError = true; // types weren't compatible. 1601 else { 1602 ResultExpr = Result.getAs<Expr>(); 1603 1604 if (ResultExpr != Init) { 1605 // The type was promoted, update initializer list. 1606 IList->setInit(Index, ResultExpr); 1607 } 1608 } 1609 if (hadError) 1610 ++StructuredIndex; 1611 else 1612 UpdateStructuredListElement(StructuredList, StructuredIndex, 1613 ResultExpr); 1614 ++Index; 1615 return; 1616 } 1617 1618 InitializedEntity ElementEntity = 1619 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1620 1621 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) { 1622 // Don't attempt to go past the end of the init list 1623 if (Index >= IList->getNumInits()) { 1624 if (VerifyOnly) 1625 CheckEmptyInitializable(ElementEntity, IList->getEndLoc()); 1626 break; 1627 } 1628 1629 ElementEntity.setElementIndex(Index); 1630 CheckSubElementType(ElementEntity, IList, elementType, Index, 1631 StructuredList, StructuredIndex); 1632 } 1633 1634 if (VerifyOnly) 1635 return; 1636 1637 bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian(); 1638 const VectorType *T = Entity.getType()->getAs<VectorType>(); 1639 if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector || 1640 T->getVectorKind() == VectorType::NeonPolyVector)) { 1641 // The ability to use vector initializer lists is a GNU vector extension 1642 // and is unrelated to the NEON intrinsics in arm_neon.h. On little 1643 // endian machines it works fine, however on big endian machines it 1644 // exhibits surprising behaviour: 1645 // 1646 // uint32x2_t x = {42, 64}; 1647 // return vget_lane_u32(x, 0); // Will return 64. 1648 // 1649 // Because of this, explicitly call out that it is non-portable. 1650 // 1651 SemaRef.Diag(IList->getBeginLoc(), 1652 diag::warn_neon_vector_initializer_non_portable); 1653 1654 const char *typeCode; 1655 unsigned typeSize = SemaRef.Context.getTypeSize(elementType); 1656 1657 if (elementType->isFloatingType()) 1658 typeCode = "f"; 1659 else if (elementType->isSignedIntegerType()) 1660 typeCode = "s"; 1661 else if (elementType->isUnsignedIntegerType()) 1662 typeCode = "u"; 1663 else 1664 llvm_unreachable("Invalid element type!"); 1665 1666 SemaRef.Diag(IList->getBeginLoc(), 1667 SemaRef.Context.getTypeSize(VT) > 64 1668 ? diag::note_neon_vector_initializer_non_portable_q 1669 : diag::note_neon_vector_initializer_non_portable) 1670 << typeCode << typeSize; 1671 } 1672 1673 return; 1674 } 1675 1676 InitializedEntity ElementEntity = 1677 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1678 1679 // OpenCL initializers allows vectors to be constructed from vectors. 1680 for (unsigned i = 0; i < maxElements; ++i) { 1681 // Don't attempt to go past the end of the init list 1682 if (Index >= IList->getNumInits()) 1683 break; 1684 1685 ElementEntity.setElementIndex(Index); 1686 1687 QualType IType = IList->getInit(Index)->getType(); 1688 if (!IType->isVectorType()) { 1689 CheckSubElementType(ElementEntity, IList, elementType, Index, 1690 StructuredList, StructuredIndex); 1691 ++numEltsInit; 1692 } else { 1693 QualType VecType; 1694 const VectorType *IVT = IType->getAs<VectorType>(); 1695 unsigned numIElts = IVT->getNumElements(); 1696 1697 if (IType->isExtVectorType()) 1698 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts); 1699 else 1700 VecType = SemaRef.Context.getVectorType(elementType, numIElts, 1701 IVT->getVectorKind()); 1702 CheckSubElementType(ElementEntity, IList, VecType, Index, 1703 StructuredList, StructuredIndex); 1704 numEltsInit += numIElts; 1705 } 1706 } 1707 1708 // OpenCL requires all elements to be initialized. 1709 if (numEltsInit != maxElements) { 1710 if (!VerifyOnly) 1711 SemaRef.Diag(IList->getBeginLoc(), 1712 diag::err_vector_incorrect_num_initializers) 1713 << (numEltsInit < maxElements) << maxElements << numEltsInit; 1714 hadError = true; 1715 } 1716 } 1717 1718 /// Check if the type of a class element has an accessible destructor, and marks 1719 /// it referenced. Returns true if we shouldn't form a reference to the 1720 /// destructor. 1721 /// 1722 /// Aggregate initialization requires a class element's destructor be 1723 /// accessible per 11.6.1 [dcl.init.aggr]: 1724 /// 1725 /// The destructor for each element of class type is potentially invoked 1726 /// (15.4 [class.dtor]) from the context where the aggregate initialization 1727 /// occurs. 1728 static bool checkDestructorReference(QualType ElementType, SourceLocation Loc, 1729 Sema &SemaRef) { 1730 auto *CXXRD = ElementType->getAsCXXRecordDecl(); 1731 if (!CXXRD) 1732 return false; 1733 1734 CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD); 1735 SemaRef.CheckDestructorAccess(Loc, Destructor, 1736 SemaRef.PDiag(diag::err_access_dtor_temp) 1737 << ElementType); 1738 SemaRef.MarkFunctionReferenced(Loc, Destructor); 1739 return SemaRef.DiagnoseUseOfDecl(Destructor, Loc); 1740 } 1741 1742 void InitListChecker::CheckArrayType(const InitializedEntity &Entity, 1743 InitListExpr *IList, QualType &DeclType, 1744 llvm::APSInt elementIndex, 1745 bool SubobjectIsDesignatorContext, 1746 unsigned &Index, 1747 InitListExpr *StructuredList, 1748 unsigned &StructuredIndex) { 1749 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType); 1750 1751 if (!VerifyOnly) { 1752 if (checkDestructorReference(arrayType->getElementType(), 1753 IList->getEndLoc(), SemaRef)) { 1754 hadError = true; 1755 return; 1756 } 1757 } 1758 1759 // Check for the special-case of initializing an array with a string. 1760 if (Index < IList->getNumInits()) { 1761 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) == 1762 SIF_None) { 1763 // We place the string literal directly into the resulting 1764 // initializer list. This is the only place where the structure 1765 // of the structured initializer list doesn't match exactly, 1766 // because doing so would involve allocating one character 1767 // constant for each string. 1768 if (!VerifyOnly) { 1769 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef); 1770 UpdateStructuredListElement(StructuredList, StructuredIndex, 1771 IList->getInit(Index)); 1772 StructuredList->resizeInits(SemaRef.Context, StructuredIndex); 1773 } 1774 ++Index; 1775 return; 1776 } 1777 } 1778 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) { 1779 // Check for VLAs; in standard C it would be possible to check this 1780 // earlier, but I don't know where clang accepts VLAs (gcc accepts 1781 // them in all sorts of strange places). 1782 if (!VerifyOnly) 1783 SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(), 1784 diag::err_variable_object_no_init) 1785 << VAT->getSizeExpr()->getSourceRange(); 1786 hadError = true; 1787 ++Index; 1788 ++StructuredIndex; 1789 return; 1790 } 1791 1792 // We might know the maximum number of elements in advance. 1793 llvm::APSInt maxElements(elementIndex.getBitWidth(), 1794 elementIndex.isUnsigned()); 1795 bool maxElementsKnown = false; 1796 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) { 1797 maxElements = CAT->getSize(); 1798 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth()); 1799 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1800 maxElementsKnown = true; 1801 } 1802 1803 QualType elementType = arrayType->getElementType(); 1804 while (Index < IList->getNumInits()) { 1805 Expr *Init = IList->getInit(Index); 1806 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 1807 // If we're not the subobject that matches up with the '{' for 1808 // the designator, we shouldn't be handling the 1809 // designator. Return immediately. 1810 if (!SubobjectIsDesignatorContext) 1811 return; 1812 1813 // Handle this designated initializer. elementIndex will be 1814 // updated to be the next array element we'll initialize. 1815 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 1816 DeclType, nullptr, &elementIndex, Index, 1817 StructuredList, StructuredIndex, true, 1818 false)) { 1819 hadError = true; 1820 continue; 1821 } 1822 1823 if (elementIndex.getBitWidth() > maxElements.getBitWidth()) 1824 maxElements = maxElements.extend(elementIndex.getBitWidth()); 1825 else if (elementIndex.getBitWidth() < maxElements.getBitWidth()) 1826 elementIndex = elementIndex.extend(maxElements.getBitWidth()); 1827 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1828 1829 // If the array is of incomplete type, keep track of the number of 1830 // elements in the initializer. 1831 if (!maxElementsKnown && elementIndex > maxElements) 1832 maxElements = elementIndex; 1833 1834 continue; 1835 } 1836 1837 // If we know the maximum number of elements, and we've already 1838 // hit it, stop consuming elements in the initializer list. 1839 if (maxElementsKnown && elementIndex == maxElements) 1840 break; 1841 1842 InitializedEntity ElementEntity = 1843 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex, 1844 Entity); 1845 // Check this element. 1846 CheckSubElementType(ElementEntity, IList, elementType, Index, 1847 StructuredList, StructuredIndex); 1848 ++elementIndex; 1849 1850 // If the array is of incomplete type, keep track of the number of 1851 // elements in the initializer. 1852 if (!maxElementsKnown && elementIndex > maxElements) 1853 maxElements = elementIndex; 1854 } 1855 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) { 1856 // If this is an incomplete array type, the actual type needs to 1857 // be calculated here. 1858 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned()); 1859 if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) { 1860 // Sizing an array implicitly to zero is not allowed by ISO C, 1861 // but is supported by GNU. 1862 SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size); 1863 } 1864 1865 DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements, 1866 ArrayType::Normal, 0); 1867 } 1868 if (!hadError && VerifyOnly) { 1869 // If there are any members of the array that get value-initialized, check 1870 // that is possible. That happens if we know the bound and don't have 1871 // enough elements, or if we're performing an array new with an unknown 1872 // bound. 1873 // FIXME: This needs to detect holes left by designated initializers too. 1874 if ((maxElementsKnown && elementIndex < maxElements) || 1875 Entity.isVariableLengthArrayNew()) 1876 CheckEmptyInitializable( 1877 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 1878 IList->getEndLoc()); 1879 } 1880 } 1881 1882 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity, 1883 Expr *InitExpr, 1884 FieldDecl *Field, 1885 bool TopLevelObject) { 1886 // Handle GNU flexible array initializers. 1887 unsigned FlexArrayDiag; 1888 if (isa<InitListExpr>(InitExpr) && 1889 cast<InitListExpr>(InitExpr)->getNumInits() == 0) { 1890 // Empty flexible array init always allowed as an extension 1891 FlexArrayDiag = diag::ext_flexible_array_init; 1892 } else if (SemaRef.getLangOpts().CPlusPlus) { 1893 // Disallow flexible array init in C++; it is not required for gcc 1894 // compatibility, and it needs work to IRGen correctly in general. 1895 FlexArrayDiag = diag::err_flexible_array_init; 1896 } else if (!TopLevelObject) { 1897 // Disallow flexible array init on non-top-level object 1898 FlexArrayDiag = diag::err_flexible_array_init; 1899 } else if (Entity.getKind() != InitializedEntity::EK_Variable) { 1900 // Disallow flexible array init on anything which is not a variable. 1901 FlexArrayDiag = diag::err_flexible_array_init; 1902 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) { 1903 // Disallow flexible array init on local variables. 1904 FlexArrayDiag = diag::err_flexible_array_init; 1905 } else { 1906 // Allow other cases. 1907 FlexArrayDiag = diag::ext_flexible_array_init; 1908 } 1909 1910 if (!VerifyOnly) { 1911 SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag) 1912 << InitExpr->getBeginLoc(); 1913 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 1914 << Field; 1915 } 1916 1917 return FlexArrayDiag != diag::ext_flexible_array_init; 1918 } 1919 1920 void InitListChecker::CheckStructUnionTypes( 1921 const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType, 1922 CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field, 1923 bool SubobjectIsDesignatorContext, unsigned &Index, 1924 InitListExpr *StructuredList, unsigned &StructuredIndex, 1925 bool TopLevelObject) { 1926 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl(); 1927 1928 // If the record is invalid, some of it's members are invalid. To avoid 1929 // confusion, we forgo checking the intializer for the entire record. 1930 if (structDecl->isInvalidDecl()) { 1931 // Assume it was supposed to consume a single initializer. 1932 ++Index; 1933 hadError = true; 1934 return; 1935 } 1936 1937 if (DeclType->isUnionType() && IList->getNumInits() == 0) { 1938 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); 1939 1940 if (!VerifyOnly) 1941 for (FieldDecl *FD : RD->fields()) { 1942 QualType ET = SemaRef.Context.getBaseElementType(FD->getType()); 1943 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { 1944 hadError = true; 1945 return; 1946 } 1947 } 1948 1949 // If there's a default initializer, use it. 1950 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) { 1951 if (VerifyOnly) 1952 return; 1953 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 1954 Field != FieldEnd; ++Field) { 1955 if (Field->hasInClassInitializer()) { 1956 StructuredList->setInitializedFieldInUnion(*Field); 1957 // FIXME: Actually build a CXXDefaultInitExpr? 1958 return; 1959 } 1960 } 1961 } 1962 1963 // Value-initialize the first member of the union that isn't an unnamed 1964 // bitfield. 1965 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 1966 Field != FieldEnd; ++Field) { 1967 if (!Field->isUnnamedBitfield()) { 1968 if (VerifyOnly) 1969 CheckEmptyInitializable( 1970 InitializedEntity::InitializeMember(*Field, &Entity), 1971 IList->getEndLoc()); 1972 else 1973 StructuredList->setInitializedFieldInUnion(*Field); 1974 break; 1975 } 1976 } 1977 return; 1978 } 1979 1980 bool InitializedSomething = false; 1981 1982 // If we have any base classes, they are initialized prior to the fields. 1983 for (auto &Base : Bases) { 1984 Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr; 1985 1986 // Designated inits always initialize fields, so if we see one, all 1987 // remaining base classes have no explicit initializer. 1988 if (Init && isa<DesignatedInitExpr>(Init)) 1989 Init = nullptr; 1990 1991 SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc(); 1992 InitializedEntity BaseEntity = InitializedEntity::InitializeBase( 1993 SemaRef.Context, &Base, false, &Entity); 1994 if (Init) { 1995 CheckSubElementType(BaseEntity, IList, Base.getType(), Index, 1996 StructuredList, StructuredIndex); 1997 InitializedSomething = true; 1998 } else if (VerifyOnly) { 1999 CheckEmptyInitializable(BaseEntity, InitLoc); 2000 } 2001 2002 if (!VerifyOnly) 2003 if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) { 2004 hadError = true; 2005 return; 2006 } 2007 } 2008 2009 // If structDecl is a forward declaration, this loop won't do 2010 // anything except look at designated initializers; That's okay, 2011 // because an error should get printed out elsewhere. It might be 2012 // worthwhile to skip over the rest of the initializer, though. 2013 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); 2014 RecordDecl::field_iterator FieldEnd = RD->field_end(); 2015 bool CheckForMissingFields = 2016 !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()); 2017 bool HasDesignatedInit = false; 2018 2019 while (Index < IList->getNumInits()) { 2020 Expr *Init = IList->getInit(Index); 2021 SourceLocation InitLoc = Init->getBeginLoc(); 2022 2023 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 2024 // If we're not the subobject that matches up with the '{' for 2025 // the designator, we shouldn't be handling the 2026 // designator. Return immediately. 2027 if (!SubobjectIsDesignatorContext) 2028 return; 2029 2030 HasDesignatedInit = true; 2031 2032 // Handle this designated initializer. Field will be updated to 2033 // the next field that we'll be initializing. 2034 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 2035 DeclType, &Field, nullptr, Index, 2036 StructuredList, StructuredIndex, 2037 true, TopLevelObject)) 2038 hadError = true; 2039 else if (!VerifyOnly) { 2040 // Find the field named by the designated initializer. 2041 RecordDecl::field_iterator F = RD->field_begin(); 2042 while (std::next(F) != Field) 2043 ++F; 2044 QualType ET = SemaRef.Context.getBaseElementType(F->getType()); 2045 if (checkDestructorReference(ET, InitLoc, SemaRef)) { 2046 hadError = true; 2047 return; 2048 } 2049 } 2050 2051 InitializedSomething = true; 2052 2053 // Disable check for missing fields when designators are used. 2054 // This matches gcc behaviour. 2055 CheckForMissingFields = false; 2056 continue; 2057 } 2058 2059 if (Field == FieldEnd) { 2060 // We've run out of fields. We're done. 2061 break; 2062 } 2063 2064 // We've already initialized a member of a union. We're done. 2065 if (InitializedSomething && DeclType->isUnionType()) 2066 break; 2067 2068 // If we've hit the flexible array member at the end, we're done. 2069 if (Field->getType()->isIncompleteArrayType()) 2070 break; 2071 2072 if (Field->isUnnamedBitfield()) { 2073 // Don't initialize unnamed bitfields, e.g. "int : 20;" 2074 ++Field; 2075 continue; 2076 } 2077 2078 // Make sure we can use this declaration. 2079 bool InvalidUse; 2080 if (VerifyOnly) 2081 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); 2082 else 2083 InvalidUse = SemaRef.DiagnoseUseOfDecl( 2084 *Field, IList->getInit(Index)->getBeginLoc()); 2085 if (InvalidUse) { 2086 ++Index; 2087 ++Field; 2088 hadError = true; 2089 continue; 2090 } 2091 2092 if (!VerifyOnly) { 2093 QualType ET = SemaRef.Context.getBaseElementType(Field->getType()); 2094 if (checkDestructorReference(ET, InitLoc, SemaRef)) { 2095 hadError = true; 2096 return; 2097 } 2098 } 2099 2100 InitializedEntity MemberEntity = 2101 InitializedEntity::InitializeMember(*Field, &Entity); 2102 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2103 StructuredList, StructuredIndex); 2104 InitializedSomething = true; 2105 2106 if (DeclType->isUnionType() && !VerifyOnly) { 2107 // Initialize the first field within the union. 2108 StructuredList->setInitializedFieldInUnion(*Field); 2109 } 2110 2111 ++Field; 2112 } 2113 2114 // Emit warnings for missing struct field initializers. 2115 if (!VerifyOnly && InitializedSomething && CheckForMissingFields && 2116 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() && 2117 !DeclType->isUnionType()) { 2118 // It is possible we have one or more unnamed bitfields remaining. 2119 // Find first (if any) named field and emit warning. 2120 for (RecordDecl::field_iterator it = Field, end = RD->field_end(); 2121 it != end; ++it) { 2122 if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) { 2123 SemaRef.Diag(IList->getSourceRange().getEnd(), 2124 diag::warn_missing_field_initializers) << *it; 2125 break; 2126 } 2127 } 2128 } 2129 2130 // Check that any remaining fields can be value-initialized. 2131 if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() && 2132 !Field->getType()->isIncompleteArrayType()) { 2133 // FIXME: Should check for holes left by designated initializers too. 2134 for (; Field != FieldEnd && !hadError; ++Field) { 2135 if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer()) 2136 CheckEmptyInitializable( 2137 InitializedEntity::InitializeMember(*Field, &Entity), 2138 IList->getEndLoc()); 2139 } 2140 } 2141 2142 // Check that the types of the remaining fields have accessible destructors. 2143 if (!VerifyOnly) { 2144 // If the initializer expression has a designated initializer, check the 2145 // elements for which a designated initializer is not provided too. 2146 RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin() 2147 : Field; 2148 for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) { 2149 QualType ET = SemaRef.Context.getBaseElementType(I->getType()); 2150 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { 2151 hadError = true; 2152 return; 2153 } 2154 } 2155 } 2156 2157 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() || 2158 Index >= IList->getNumInits()) 2159 return; 2160 2161 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field, 2162 TopLevelObject)) { 2163 hadError = true; 2164 ++Index; 2165 return; 2166 } 2167 2168 InitializedEntity MemberEntity = 2169 InitializedEntity::InitializeMember(*Field, &Entity); 2170 2171 if (isa<InitListExpr>(IList->getInit(Index))) 2172 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2173 StructuredList, StructuredIndex); 2174 else 2175 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index, 2176 StructuredList, StructuredIndex); 2177 } 2178 2179 /// Expand a field designator that refers to a member of an 2180 /// anonymous struct or union into a series of field designators that 2181 /// refers to the field within the appropriate subobject. 2182 /// 2183 static void ExpandAnonymousFieldDesignator(Sema &SemaRef, 2184 DesignatedInitExpr *DIE, 2185 unsigned DesigIdx, 2186 IndirectFieldDecl *IndirectField) { 2187 typedef DesignatedInitExpr::Designator Designator; 2188 2189 // Build the replacement designators. 2190 SmallVector<Designator, 4> Replacements; 2191 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(), 2192 PE = IndirectField->chain_end(); PI != PE; ++PI) { 2193 if (PI + 1 == PE) 2194 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 2195 DIE->getDesignator(DesigIdx)->getDotLoc(), 2196 DIE->getDesignator(DesigIdx)->getFieldLoc())); 2197 else 2198 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 2199 SourceLocation(), SourceLocation())); 2200 assert(isa<FieldDecl>(*PI)); 2201 Replacements.back().setField(cast<FieldDecl>(*PI)); 2202 } 2203 2204 // Expand the current designator into the set of replacement 2205 // designators, so we have a full subobject path down to where the 2206 // member of the anonymous struct/union is actually stored. 2207 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0], 2208 &Replacements[0] + Replacements.size()); 2209 } 2210 2211 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef, 2212 DesignatedInitExpr *DIE) { 2213 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1; 2214 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs); 2215 for (unsigned I = 0; I < NumIndexExprs; ++I) 2216 IndexExprs[I] = DIE->getSubExpr(I + 1); 2217 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(), 2218 IndexExprs, 2219 DIE->getEqualOrColonLoc(), 2220 DIE->usesGNUSyntax(), DIE->getInit()); 2221 } 2222 2223 namespace { 2224 2225 // Callback to only accept typo corrections that are for field members of 2226 // the given struct or union. 2227 class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback { 2228 public: 2229 explicit FieldInitializerValidatorCCC(RecordDecl *RD) 2230 : Record(RD) {} 2231 2232 bool ValidateCandidate(const TypoCorrection &candidate) override { 2233 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>(); 2234 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record); 2235 } 2236 2237 std::unique_ptr<CorrectionCandidateCallback> clone() override { 2238 return llvm::make_unique<FieldInitializerValidatorCCC>(*this); 2239 } 2240 2241 private: 2242 RecordDecl *Record; 2243 }; 2244 2245 } // end anonymous namespace 2246 2247 /// Check the well-formedness of a C99 designated initializer. 2248 /// 2249 /// Determines whether the designated initializer @p DIE, which 2250 /// resides at the given @p Index within the initializer list @p 2251 /// IList, is well-formed for a current object of type @p DeclType 2252 /// (C99 6.7.8). The actual subobject that this designator refers to 2253 /// within the current subobject is returned in either 2254 /// @p NextField or @p NextElementIndex (whichever is appropriate). 2255 /// 2256 /// @param IList The initializer list in which this designated 2257 /// initializer occurs. 2258 /// 2259 /// @param DIE The designated initializer expression. 2260 /// 2261 /// @param DesigIdx The index of the current designator. 2262 /// 2263 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17), 2264 /// into which the designation in @p DIE should refer. 2265 /// 2266 /// @param NextField If non-NULL and the first designator in @p DIE is 2267 /// a field, this will be set to the field declaration corresponding 2268 /// to the field named by the designator. 2269 /// 2270 /// @param NextElementIndex If non-NULL and the first designator in @p 2271 /// DIE is an array designator or GNU array-range designator, this 2272 /// will be set to the last index initialized by this designator. 2273 /// 2274 /// @param Index Index into @p IList where the designated initializer 2275 /// @p DIE occurs. 2276 /// 2277 /// @param StructuredList The initializer list expression that 2278 /// describes all of the subobject initializers in the order they'll 2279 /// actually be initialized. 2280 /// 2281 /// @returns true if there was an error, false otherwise. 2282 bool 2283 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity, 2284 InitListExpr *IList, 2285 DesignatedInitExpr *DIE, 2286 unsigned DesigIdx, 2287 QualType &CurrentObjectType, 2288 RecordDecl::field_iterator *NextField, 2289 llvm::APSInt *NextElementIndex, 2290 unsigned &Index, 2291 InitListExpr *StructuredList, 2292 unsigned &StructuredIndex, 2293 bool FinishSubobjectInit, 2294 bool TopLevelObject) { 2295 if (DesigIdx == DIE->size()) { 2296 // Check the actual initialization for the designated object type. 2297 bool prevHadError = hadError; 2298 2299 // Temporarily remove the designator expression from the 2300 // initializer list that the child calls see, so that we don't try 2301 // to re-process the designator. 2302 unsigned OldIndex = Index; 2303 IList->setInit(OldIndex, DIE->getInit()); 2304 2305 CheckSubElementType(Entity, IList, CurrentObjectType, Index, 2306 StructuredList, StructuredIndex); 2307 2308 // Restore the designated initializer expression in the syntactic 2309 // form of the initializer list. 2310 if (IList->getInit(OldIndex) != DIE->getInit()) 2311 DIE->setInit(IList->getInit(OldIndex)); 2312 IList->setInit(OldIndex, DIE); 2313 2314 return hadError && !prevHadError; 2315 } 2316 2317 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx); 2318 bool IsFirstDesignator = (DesigIdx == 0); 2319 if (!VerifyOnly) { 2320 assert((IsFirstDesignator || StructuredList) && 2321 "Need a non-designated initializer list to start from"); 2322 2323 // Determine the structural initializer list that corresponds to the 2324 // current subobject. 2325 if (IsFirstDesignator) 2326 StructuredList = SyntacticToSemantic.lookup(IList); 2327 else { 2328 Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ? 2329 StructuredList->getInit(StructuredIndex) : nullptr; 2330 if (!ExistingInit && StructuredList->hasArrayFiller()) 2331 ExistingInit = StructuredList->getArrayFiller(); 2332 2333 if (!ExistingInit) 2334 StructuredList = getStructuredSubobjectInit( 2335 IList, Index, CurrentObjectType, StructuredList, StructuredIndex, 2336 SourceRange(D->getBeginLoc(), DIE->getEndLoc())); 2337 else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit)) 2338 StructuredList = Result; 2339 else { 2340 if (DesignatedInitUpdateExpr *E = 2341 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit)) 2342 StructuredList = E->getUpdater(); 2343 else { 2344 DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context) 2345 DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(), 2346 ExistingInit, DIE->getEndLoc()); 2347 StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE); 2348 StructuredList = DIUE->getUpdater(); 2349 } 2350 2351 // We need to check on source range validity because the previous 2352 // initializer does not have to be an explicit initializer. e.g., 2353 // 2354 // struct P { int a, b; }; 2355 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 }; 2356 // 2357 // There is an overwrite taking place because the first braced initializer 2358 // list "{ .a = 2 }" already provides value for .p.b (which is zero). 2359 if (ExistingInit->getSourceRange().isValid()) { 2360 // We are creating an initializer list that initializes the 2361 // subobjects of the current object, but there was already an 2362 // initialization that completely initialized the current 2363 // subobject, e.g., by a compound literal: 2364 // 2365 // struct X { int a, b; }; 2366 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 2367 // 2368 // Here, xs[0].a == 0 and xs[0].b == 3, since the second, 2369 // designated initializer re-initializes the whole 2370 // subobject [0], overwriting previous initializers. 2371 SemaRef.Diag(D->getBeginLoc(), 2372 diag::warn_subobject_initializer_overrides) 2373 << SourceRange(D->getBeginLoc(), DIE->getEndLoc()); 2374 2375 SemaRef.Diag(ExistingInit->getBeginLoc(), 2376 diag::note_previous_initializer) 2377 << /*FIXME:has side effects=*/0 << ExistingInit->getSourceRange(); 2378 } 2379 } 2380 } 2381 assert(StructuredList && "Expected a structured initializer list"); 2382 } 2383 2384 if (D->isFieldDesignator()) { 2385 // C99 6.7.8p7: 2386 // 2387 // If a designator has the form 2388 // 2389 // . identifier 2390 // 2391 // then the current object (defined below) shall have 2392 // structure or union type and the identifier shall be the 2393 // name of a member of that type. 2394 const RecordType *RT = CurrentObjectType->getAs<RecordType>(); 2395 if (!RT) { 2396 SourceLocation Loc = D->getDotLoc(); 2397 if (Loc.isInvalid()) 2398 Loc = D->getFieldLoc(); 2399 if (!VerifyOnly) 2400 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr) 2401 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType; 2402 ++Index; 2403 return true; 2404 } 2405 2406 FieldDecl *KnownField = D->getField(); 2407 if (!KnownField) { 2408 IdentifierInfo *FieldName = D->getFieldName(); 2409 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName); 2410 for (NamedDecl *ND : Lookup) { 2411 if (auto *FD = dyn_cast<FieldDecl>(ND)) { 2412 KnownField = FD; 2413 break; 2414 } 2415 if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) { 2416 // In verify mode, don't modify the original. 2417 if (VerifyOnly) 2418 DIE = CloneDesignatedInitExpr(SemaRef, DIE); 2419 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD); 2420 D = DIE->getDesignator(DesigIdx); 2421 KnownField = cast<FieldDecl>(*IFD->chain_begin()); 2422 break; 2423 } 2424 } 2425 if (!KnownField) { 2426 if (VerifyOnly) { 2427 ++Index; 2428 return true; // No typo correction when just trying this out. 2429 } 2430 2431 // Name lookup found something, but it wasn't a field. 2432 if (!Lookup.empty()) { 2433 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield) 2434 << FieldName; 2435 SemaRef.Diag(Lookup.front()->getLocation(), 2436 diag::note_field_designator_found); 2437 ++Index; 2438 return true; 2439 } 2440 2441 // Name lookup didn't find anything. 2442 // Determine whether this was a typo for another field name. 2443 FieldInitializerValidatorCCC CCC(RT->getDecl()); 2444 if (TypoCorrection Corrected = SemaRef.CorrectTypo( 2445 DeclarationNameInfo(FieldName, D->getFieldLoc()), 2446 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC, 2447 Sema::CTK_ErrorRecovery, RT->getDecl())) { 2448 SemaRef.diagnoseTypo( 2449 Corrected, 2450 SemaRef.PDiag(diag::err_field_designator_unknown_suggest) 2451 << FieldName << CurrentObjectType); 2452 KnownField = Corrected.getCorrectionDeclAs<FieldDecl>(); 2453 hadError = true; 2454 } else { 2455 // Typo correction didn't find anything. 2456 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown) 2457 << FieldName << CurrentObjectType; 2458 ++Index; 2459 return true; 2460 } 2461 } 2462 } 2463 2464 unsigned FieldIndex = 0; 2465 2466 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2467 FieldIndex = CXXRD->getNumBases(); 2468 2469 for (auto *FI : RT->getDecl()->fields()) { 2470 if (FI->isUnnamedBitfield()) 2471 continue; 2472 if (declaresSameEntity(KnownField, FI)) { 2473 KnownField = FI; 2474 break; 2475 } 2476 ++FieldIndex; 2477 } 2478 2479 RecordDecl::field_iterator Field = 2480 RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField)); 2481 2482 // All of the fields of a union are located at the same place in 2483 // the initializer list. 2484 if (RT->getDecl()->isUnion()) { 2485 FieldIndex = 0; 2486 if (!VerifyOnly) { 2487 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion(); 2488 if (CurrentField && !declaresSameEntity(CurrentField, *Field)) { 2489 assert(StructuredList->getNumInits() == 1 2490 && "A union should never have more than one initializer!"); 2491 2492 Expr *ExistingInit = StructuredList->getInit(0); 2493 if (ExistingInit) { 2494 // We're about to throw away an initializer, emit warning. 2495 SemaRef.Diag(D->getFieldLoc(), 2496 diag::warn_initializer_overrides) 2497 << D->getSourceRange(); 2498 SemaRef.Diag(ExistingInit->getBeginLoc(), 2499 diag::note_previous_initializer) 2500 << /*FIXME:has side effects=*/0 2501 << ExistingInit->getSourceRange(); 2502 } 2503 2504 // remove existing initializer 2505 StructuredList->resizeInits(SemaRef.Context, 0); 2506 StructuredList->setInitializedFieldInUnion(nullptr); 2507 } 2508 2509 StructuredList->setInitializedFieldInUnion(*Field); 2510 } 2511 } 2512 2513 // Make sure we can use this declaration. 2514 bool InvalidUse; 2515 if (VerifyOnly) 2516 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); 2517 else 2518 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc()); 2519 if (InvalidUse) { 2520 ++Index; 2521 return true; 2522 } 2523 2524 if (!VerifyOnly) { 2525 // Update the designator with the field declaration. 2526 D->setField(*Field); 2527 2528 // Make sure that our non-designated initializer list has space 2529 // for a subobject corresponding to this field. 2530 if (FieldIndex >= StructuredList->getNumInits()) 2531 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1); 2532 } 2533 2534 // This designator names a flexible array member. 2535 if (Field->getType()->isIncompleteArrayType()) { 2536 bool Invalid = false; 2537 if ((DesigIdx + 1) != DIE->size()) { 2538 // We can't designate an object within the flexible array 2539 // member (because GCC doesn't allow it). 2540 if (!VerifyOnly) { 2541 DesignatedInitExpr::Designator *NextD 2542 = DIE->getDesignator(DesigIdx + 1); 2543 SemaRef.Diag(NextD->getBeginLoc(), 2544 diag::err_designator_into_flexible_array_member) 2545 << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc()); 2546 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2547 << *Field; 2548 } 2549 Invalid = true; 2550 } 2551 2552 if (!hadError && !isa<InitListExpr>(DIE->getInit()) && 2553 !isa<StringLiteral>(DIE->getInit())) { 2554 // The initializer is not an initializer list. 2555 if (!VerifyOnly) { 2556 SemaRef.Diag(DIE->getInit()->getBeginLoc(), 2557 diag::err_flexible_array_init_needs_braces) 2558 << DIE->getInit()->getSourceRange(); 2559 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2560 << *Field; 2561 } 2562 Invalid = true; 2563 } 2564 2565 // Check GNU flexible array initializer. 2566 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field, 2567 TopLevelObject)) 2568 Invalid = true; 2569 2570 if (Invalid) { 2571 ++Index; 2572 return true; 2573 } 2574 2575 // Initialize the array. 2576 bool prevHadError = hadError; 2577 unsigned newStructuredIndex = FieldIndex; 2578 unsigned OldIndex = Index; 2579 IList->setInit(Index, DIE->getInit()); 2580 2581 InitializedEntity MemberEntity = 2582 InitializedEntity::InitializeMember(*Field, &Entity); 2583 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2584 StructuredList, newStructuredIndex); 2585 2586 IList->setInit(OldIndex, DIE); 2587 if (hadError && !prevHadError) { 2588 ++Field; 2589 ++FieldIndex; 2590 if (NextField) 2591 *NextField = Field; 2592 StructuredIndex = FieldIndex; 2593 return true; 2594 } 2595 } else { 2596 // Recurse to check later designated subobjects. 2597 QualType FieldType = Field->getType(); 2598 unsigned newStructuredIndex = FieldIndex; 2599 2600 InitializedEntity MemberEntity = 2601 InitializedEntity::InitializeMember(*Field, &Entity); 2602 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1, 2603 FieldType, nullptr, nullptr, Index, 2604 StructuredList, newStructuredIndex, 2605 FinishSubobjectInit, false)) 2606 return true; 2607 } 2608 2609 // Find the position of the next field to be initialized in this 2610 // subobject. 2611 ++Field; 2612 ++FieldIndex; 2613 2614 // If this the first designator, our caller will continue checking 2615 // the rest of this struct/class/union subobject. 2616 if (IsFirstDesignator) { 2617 if (NextField) 2618 *NextField = Field; 2619 StructuredIndex = FieldIndex; 2620 return false; 2621 } 2622 2623 if (!FinishSubobjectInit) 2624 return false; 2625 2626 // We've already initialized something in the union; we're done. 2627 if (RT->getDecl()->isUnion()) 2628 return hadError; 2629 2630 // Check the remaining fields within this class/struct/union subobject. 2631 bool prevHadError = hadError; 2632 2633 auto NoBases = 2634 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), 2635 CXXRecordDecl::base_class_iterator()); 2636 CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field, 2637 false, Index, StructuredList, FieldIndex); 2638 return hadError && !prevHadError; 2639 } 2640 2641 // C99 6.7.8p6: 2642 // 2643 // If a designator has the form 2644 // 2645 // [ constant-expression ] 2646 // 2647 // then the current object (defined below) shall have array 2648 // type and the expression shall be an integer constant 2649 // expression. If the array is of unknown size, any 2650 // nonnegative value is valid. 2651 // 2652 // Additionally, cope with the GNU extension that permits 2653 // designators of the form 2654 // 2655 // [ constant-expression ... constant-expression ] 2656 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType); 2657 if (!AT) { 2658 if (!VerifyOnly) 2659 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array) 2660 << CurrentObjectType; 2661 ++Index; 2662 return true; 2663 } 2664 2665 Expr *IndexExpr = nullptr; 2666 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex; 2667 if (D->isArrayDesignator()) { 2668 IndexExpr = DIE->getArrayIndex(*D); 2669 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context); 2670 DesignatedEndIndex = DesignatedStartIndex; 2671 } else { 2672 assert(D->isArrayRangeDesignator() && "Need array-range designator"); 2673 2674 DesignatedStartIndex = 2675 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context); 2676 DesignatedEndIndex = 2677 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context); 2678 IndexExpr = DIE->getArrayRangeEnd(*D); 2679 2680 // Codegen can't handle evaluating array range designators that have side 2681 // effects, because we replicate the AST value for each initialized element. 2682 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple 2683 // elements with something that has a side effect, so codegen can emit an 2684 // "error unsupported" error instead of miscompiling the app. 2685 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&& 2686 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly) 2687 FullyStructuredList->sawArrayRangeDesignator(); 2688 } 2689 2690 if (isa<ConstantArrayType>(AT)) { 2691 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false); 2692 DesignatedStartIndex 2693 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth()); 2694 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned()); 2695 DesignatedEndIndex 2696 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth()); 2697 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned()); 2698 if (DesignatedEndIndex >= MaxElements) { 2699 if (!VerifyOnly) 2700 SemaRef.Diag(IndexExpr->getBeginLoc(), 2701 diag::err_array_designator_too_large) 2702 << DesignatedEndIndex.toString(10) << MaxElements.toString(10) 2703 << IndexExpr->getSourceRange(); 2704 ++Index; 2705 return true; 2706 } 2707 } else { 2708 unsigned DesignatedIndexBitWidth = 2709 ConstantArrayType::getMaxSizeBits(SemaRef.Context); 2710 DesignatedStartIndex = 2711 DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth); 2712 DesignatedEndIndex = 2713 DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth); 2714 DesignatedStartIndex.setIsUnsigned(true); 2715 DesignatedEndIndex.setIsUnsigned(true); 2716 } 2717 2718 if (!VerifyOnly && StructuredList->isStringLiteralInit()) { 2719 // We're modifying a string literal init; we have to decompose the string 2720 // so we can modify the individual characters. 2721 ASTContext &Context = SemaRef.Context; 2722 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens(); 2723 2724 // Compute the character type 2725 QualType CharTy = AT->getElementType(); 2726 2727 // Compute the type of the integer literals. 2728 QualType PromotedCharTy = CharTy; 2729 if (CharTy->isPromotableIntegerType()) 2730 PromotedCharTy = Context.getPromotedIntegerType(CharTy); 2731 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy); 2732 2733 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) { 2734 // Get the length of the string. 2735 uint64_t StrLen = SL->getLength(); 2736 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2737 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2738 StructuredList->resizeInits(Context, StrLen); 2739 2740 // Build a literal for each character in the string, and put them into 2741 // the init list. 2742 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2743 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i)); 2744 Expr *Init = new (Context) IntegerLiteral( 2745 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2746 if (CharTy != PromotedCharTy) 2747 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2748 Init, nullptr, VK_RValue); 2749 StructuredList->updateInit(Context, i, Init); 2750 } 2751 } else { 2752 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr); 2753 std::string Str; 2754 Context.getObjCEncodingForType(E->getEncodedType(), Str); 2755 2756 // Get the length of the string. 2757 uint64_t StrLen = Str.size(); 2758 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2759 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2760 StructuredList->resizeInits(Context, StrLen); 2761 2762 // Build a literal for each character in the string, and put them into 2763 // the init list. 2764 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2765 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]); 2766 Expr *Init = new (Context) IntegerLiteral( 2767 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2768 if (CharTy != PromotedCharTy) 2769 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2770 Init, nullptr, VK_RValue); 2771 StructuredList->updateInit(Context, i, Init); 2772 } 2773 } 2774 } 2775 2776 // Make sure that our non-designated initializer list has space 2777 // for a subobject corresponding to this array element. 2778 if (!VerifyOnly && 2779 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits()) 2780 StructuredList->resizeInits(SemaRef.Context, 2781 DesignatedEndIndex.getZExtValue() + 1); 2782 2783 // Repeatedly perform subobject initializations in the range 2784 // [DesignatedStartIndex, DesignatedEndIndex]. 2785 2786 // Move to the next designator 2787 unsigned ElementIndex = DesignatedStartIndex.getZExtValue(); 2788 unsigned OldIndex = Index; 2789 2790 InitializedEntity ElementEntity = 2791 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 2792 2793 while (DesignatedStartIndex <= DesignatedEndIndex) { 2794 // Recurse to check later designated subobjects. 2795 QualType ElementType = AT->getElementType(); 2796 Index = OldIndex; 2797 2798 ElementEntity.setElementIndex(ElementIndex); 2799 if (CheckDesignatedInitializer( 2800 ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr, 2801 nullptr, Index, StructuredList, ElementIndex, 2802 FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex), 2803 false)) 2804 return true; 2805 2806 // Move to the next index in the array that we'll be initializing. 2807 ++DesignatedStartIndex; 2808 ElementIndex = DesignatedStartIndex.getZExtValue(); 2809 } 2810 2811 // If this the first designator, our caller will continue checking 2812 // the rest of this array subobject. 2813 if (IsFirstDesignator) { 2814 if (NextElementIndex) 2815 *NextElementIndex = DesignatedStartIndex; 2816 StructuredIndex = ElementIndex; 2817 return false; 2818 } 2819 2820 if (!FinishSubobjectInit) 2821 return false; 2822 2823 // Check the remaining elements within this array subobject. 2824 bool prevHadError = hadError; 2825 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex, 2826 /*SubobjectIsDesignatorContext=*/false, Index, 2827 StructuredList, ElementIndex); 2828 return hadError && !prevHadError; 2829 } 2830 2831 // Get the structured initializer list for a subobject of type 2832 // @p CurrentObjectType. 2833 InitListExpr * 2834 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 2835 QualType CurrentObjectType, 2836 InitListExpr *StructuredList, 2837 unsigned StructuredIndex, 2838 SourceRange InitRange, 2839 bool IsFullyOverwritten) { 2840 if (VerifyOnly) 2841 return nullptr; // No structured list in verification-only mode. 2842 Expr *ExistingInit = nullptr; 2843 if (!StructuredList) 2844 ExistingInit = SyntacticToSemantic.lookup(IList); 2845 else if (StructuredIndex < StructuredList->getNumInits()) 2846 ExistingInit = StructuredList->getInit(StructuredIndex); 2847 2848 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit)) 2849 // There might have already been initializers for subobjects of the current 2850 // object, but a subsequent initializer list will overwrite the entirety 2851 // of the current object. (See DR 253 and C99 6.7.8p21). e.g., 2852 // 2853 // struct P { char x[6]; }; 2854 // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } }; 2855 // 2856 // The first designated initializer is ignored, and l.x is just "f". 2857 if (!IsFullyOverwritten) 2858 return Result; 2859 2860 if (ExistingInit) { 2861 // We are creating an initializer list that initializes the 2862 // subobjects of the current object, but there was already an 2863 // initialization that completely initialized the current 2864 // subobject, e.g., by a compound literal: 2865 // 2866 // struct X { int a, b; }; 2867 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 2868 // 2869 // Here, xs[0].a == 0 and xs[0].b == 3, since the second, 2870 // designated initializer re-initializes the whole 2871 // subobject [0], overwriting previous initializers. 2872 SemaRef.Diag(InitRange.getBegin(), 2873 diag::warn_subobject_initializer_overrides) 2874 << InitRange; 2875 SemaRef.Diag(ExistingInit->getBeginLoc(), diag::note_previous_initializer) 2876 << /*FIXME:has side effects=*/0 << ExistingInit->getSourceRange(); 2877 } 2878 2879 InitListExpr *Result 2880 = new (SemaRef.Context) InitListExpr(SemaRef.Context, 2881 InitRange.getBegin(), None, 2882 InitRange.getEnd()); 2883 2884 QualType ResultType = CurrentObjectType; 2885 if (!ResultType->isArrayType()) 2886 ResultType = ResultType.getNonLValueExprType(SemaRef.Context); 2887 Result->setType(ResultType); 2888 2889 // Pre-allocate storage for the structured initializer list. 2890 unsigned NumElements = 0; 2891 unsigned NumInits = 0; 2892 bool GotNumInits = false; 2893 if (!StructuredList) { 2894 NumInits = IList->getNumInits(); 2895 GotNumInits = true; 2896 } else if (Index < IList->getNumInits()) { 2897 if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) { 2898 NumInits = SubList->getNumInits(); 2899 GotNumInits = true; 2900 } 2901 } 2902 2903 if (const ArrayType *AType 2904 = SemaRef.Context.getAsArrayType(CurrentObjectType)) { 2905 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) { 2906 NumElements = CAType->getSize().getZExtValue(); 2907 // Simple heuristic so that we don't allocate a very large 2908 // initializer with many empty entries at the end. 2909 if (GotNumInits && NumElements > NumInits) 2910 NumElements = 0; 2911 } 2912 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) 2913 NumElements = VType->getNumElements(); 2914 else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) { 2915 RecordDecl *RDecl = RType->getDecl(); 2916 if (RDecl->isUnion()) 2917 NumElements = 1; 2918 else 2919 NumElements = std::distance(RDecl->field_begin(), RDecl->field_end()); 2920 } 2921 2922 Result->reserveInits(SemaRef.Context, NumElements); 2923 2924 // Link this new initializer list into the structured initializer 2925 // lists. 2926 if (StructuredList) 2927 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result); 2928 else { 2929 Result->setSyntacticForm(IList); 2930 SyntacticToSemantic[IList] = Result; 2931 } 2932 2933 return Result; 2934 } 2935 2936 /// Update the initializer at index @p StructuredIndex within the 2937 /// structured initializer list to the value @p expr. 2938 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList, 2939 unsigned &StructuredIndex, 2940 Expr *expr) { 2941 // No structured initializer list to update 2942 if (!StructuredList) 2943 return; 2944 2945 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context, 2946 StructuredIndex, expr)) { 2947 // This initializer overwrites a previous initializer. Warn. 2948 // We need to check on source range validity because the previous 2949 // initializer does not have to be an explicit initializer. 2950 // struct P { int a, b; }; 2951 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 }; 2952 // There is an overwrite taking place because the first braced initializer 2953 // list "{ .a = 2 }' already provides value for .p.b (which is zero). 2954 if (PrevInit->getSourceRange().isValid()) { 2955 SemaRef.Diag(expr->getBeginLoc(), diag::warn_initializer_overrides) 2956 << expr->getSourceRange(); 2957 2958 SemaRef.Diag(PrevInit->getBeginLoc(), diag::note_previous_initializer) 2959 << /*FIXME:has side effects=*/0 << PrevInit->getSourceRange(); 2960 } 2961 } 2962 2963 ++StructuredIndex; 2964 } 2965 2966 /// Check that the given Index expression is a valid array designator 2967 /// value. This is essentially just a wrapper around 2968 /// VerifyIntegerConstantExpression that also checks for negative values 2969 /// and produces a reasonable diagnostic if there is a 2970 /// failure. Returns the index expression, possibly with an implicit cast 2971 /// added, on success. If everything went okay, Value will receive the 2972 /// value of the constant expression. 2973 static ExprResult 2974 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) { 2975 SourceLocation Loc = Index->getBeginLoc(); 2976 2977 // Make sure this is an integer constant expression. 2978 ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value); 2979 if (Result.isInvalid()) 2980 return Result; 2981 2982 if (Value.isSigned() && Value.isNegative()) 2983 return S.Diag(Loc, diag::err_array_designator_negative) 2984 << Value.toString(10) << Index->getSourceRange(); 2985 2986 Value.setIsUnsigned(true); 2987 return Result; 2988 } 2989 2990 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig, 2991 SourceLocation Loc, 2992 bool GNUSyntax, 2993 ExprResult Init) { 2994 typedef DesignatedInitExpr::Designator ASTDesignator; 2995 2996 bool Invalid = false; 2997 SmallVector<ASTDesignator, 32> Designators; 2998 SmallVector<Expr *, 32> InitExpressions; 2999 3000 // Build designators and check array designator expressions. 3001 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) { 3002 const Designator &D = Desig.getDesignator(Idx); 3003 switch (D.getKind()) { 3004 case Designator::FieldDesignator: 3005 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(), 3006 D.getFieldLoc())); 3007 break; 3008 3009 case Designator::ArrayDesignator: { 3010 Expr *Index = static_cast<Expr *>(D.getArrayIndex()); 3011 llvm::APSInt IndexValue; 3012 if (!Index->isTypeDependent() && !Index->isValueDependent()) 3013 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get(); 3014 if (!Index) 3015 Invalid = true; 3016 else { 3017 Designators.push_back(ASTDesignator(InitExpressions.size(), 3018 D.getLBracketLoc(), 3019 D.getRBracketLoc())); 3020 InitExpressions.push_back(Index); 3021 } 3022 break; 3023 } 3024 3025 case Designator::ArrayRangeDesignator: { 3026 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart()); 3027 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd()); 3028 llvm::APSInt StartValue; 3029 llvm::APSInt EndValue; 3030 bool StartDependent = StartIndex->isTypeDependent() || 3031 StartIndex->isValueDependent(); 3032 bool EndDependent = EndIndex->isTypeDependent() || 3033 EndIndex->isValueDependent(); 3034 if (!StartDependent) 3035 StartIndex = 3036 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get(); 3037 if (!EndDependent) 3038 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get(); 3039 3040 if (!StartIndex || !EndIndex) 3041 Invalid = true; 3042 else { 3043 // Make sure we're comparing values with the same bit width. 3044 if (StartDependent || EndDependent) { 3045 // Nothing to compute. 3046 } else if (StartValue.getBitWidth() > EndValue.getBitWidth()) 3047 EndValue = EndValue.extend(StartValue.getBitWidth()); 3048 else if (StartValue.getBitWidth() < EndValue.getBitWidth()) 3049 StartValue = StartValue.extend(EndValue.getBitWidth()); 3050 3051 if (!StartDependent && !EndDependent && EndValue < StartValue) { 3052 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range) 3053 << StartValue.toString(10) << EndValue.toString(10) 3054 << StartIndex->getSourceRange() << EndIndex->getSourceRange(); 3055 Invalid = true; 3056 } else { 3057 Designators.push_back(ASTDesignator(InitExpressions.size(), 3058 D.getLBracketLoc(), 3059 D.getEllipsisLoc(), 3060 D.getRBracketLoc())); 3061 InitExpressions.push_back(StartIndex); 3062 InitExpressions.push_back(EndIndex); 3063 } 3064 } 3065 break; 3066 } 3067 } 3068 } 3069 3070 if (Invalid || Init.isInvalid()) 3071 return ExprError(); 3072 3073 // Clear out the expressions within the designation. 3074 Desig.ClearExprs(*this); 3075 3076 DesignatedInitExpr *DIE 3077 = DesignatedInitExpr::Create(Context, 3078 Designators, 3079 InitExpressions, Loc, GNUSyntax, 3080 Init.getAs<Expr>()); 3081 3082 if (!getLangOpts().C99) 3083 Diag(DIE->getBeginLoc(), diag::ext_designated_init) 3084 << DIE->getSourceRange(); 3085 3086 return DIE; 3087 } 3088 3089 //===----------------------------------------------------------------------===// 3090 // Initialization entity 3091 //===----------------------------------------------------------------------===// 3092 3093 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index, 3094 const InitializedEntity &Parent) 3095 : Parent(&Parent), Index(Index) 3096 { 3097 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) { 3098 Kind = EK_ArrayElement; 3099 Type = AT->getElementType(); 3100 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) { 3101 Kind = EK_VectorElement; 3102 Type = VT->getElementType(); 3103 } else { 3104 const ComplexType *CT = Parent.getType()->getAs<ComplexType>(); 3105 assert(CT && "Unexpected type"); 3106 Kind = EK_ComplexElement; 3107 Type = CT->getElementType(); 3108 } 3109 } 3110 3111 InitializedEntity 3112 InitializedEntity::InitializeBase(ASTContext &Context, 3113 const CXXBaseSpecifier *Base, 3114 bool IsInheritedVirtualBase, 3115 const InitializedEntity *Parent) { 3116 InitializedEntity Result; 3117 Result.Kind = EK_Base; 3118 Result.Parent = Parent; 3119 Result.Base = reinterpret_cast<uintptr_t>(Base); 3120 if (IsInheritedVirtualBase) 3121 Result.Base |= 0x01; 3122 3123 Result.Type = Base->getType(); 3124 return Result; 3125 } 3126 3127 DeclarationName InitializedEntity::getName() const { 3128 switch (getKind()) { 3129 case EK_Parameter: 3130 case EK_Parameter_CF_Audited: { 3131 ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 3132 return (D ? D->getDeclName() : DeclarationName()); 3133 } 3134 3135 case EK_Variable: 3136 case EK_Member: 3137 case EK_Binding: 3138 return Variable.VariableOrMember->getDeclName(); 3139 3140 case EK_LambdaCapture: 3141 return DeclarationName(Capture.VarID); 3142 3143 case EK_Result: 3144 case EK_StmtExprResult: 3145 case EK_Exception: 3146 case EK_New: 3147 case EK_Temporary: 3148 case EK_Base: 3149 case EK_Delegating: 3150 case EK_ArrayElement: 3151 case EK_VectorElement: 3152 case EK_ComplexElement: 3153 case EK_BlockElement: 3154 case EK_LambdaToBlockConversionBlockElement: 3155 case EK_CompoundLiteralInit: 3156 case EK_RelatedResult: 3157 return DeclarationName(); 3158 } 3159 3160 llvm_unreachable("Invalid EntityKind!"); 3161 } 3162 3163 ValueDecl *InitializedEntity::getDecl() const { 3164 switch (getKind()) { 3165 case EK_Variable: 3166 case EK_Member: 3167 case EK_Binding: 3168 return Variable.VariableOrMember; 3169 3170 case EK_Parameter: 3171 case EK_Parameter_CF_Audited: 3172 return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 3173 3174 case EK_Result: 3175 case EK_StmtExprResult: 3176 case EK_Exception: 3177 case EK_New: 3178 case EK_Temporary: 3179 case EK_Base: 3180 case EK_Delegating: 3181 case EK_ArrayElement: 3182 case EK_VectorElement: 3183 case EK_ComplexElement: 3184 case EK_BlockElement: 3185 case EK_LambdaToBlockConversionBlockElement: 3186 case EK_LambdaCapture: 3187 case EK_CompoundLiteralInit: 3188 case EK_RelatedResult: 3189 return nullptr; 3190 } 3191 3192 llvm_unreachable("Invalid EntityKind!"); 3193 } 3194 3195 bool InitializedEntity::allowsNRVO() const { 3196 switch (getKind()) { 3197 case EK_Result: 3198 case EK_Exception: 3199 return LocAndNRVO.NRVO; 3200 3201 case EK_StmtExprResult: 3202 case EK_Variable: 3203 case EK_Parameter: 3204 case EK_Parameter_CF_Audited: 3205 case EK_Member: 3206 case EK_Binding: 3207 case EK_New: 3208 case EK_Temporary: 3209 case EK_CompoundLiteralInit: 3210 case EK_Base: 3211 case EK_Delegating: 3212 case EK_ArrayElement: 3213 case EK_VectorElement: 3214 case EK_ComplexElement: 3215 case EK_BlockElement: 3216 case EK_LambdaToBlockConversionBlockElement: 3217 case EK_LambdaCapture: 3218 case EK_RelatedResult: 3219 break; 3220 } 3221 3222 return false; 3223 } 3224 3225 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const { 3226 assert(getParent() != this); 3227 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0; 3228 for (unsigned I = 0; I != Depth; ++I) 3229 OS << "`-"; 3230 3231 switch (getKind()) { 3232 case EK_Variable: OS << "Variable"; break; 3233 case EK_Parameter: OS << "Parameter"; break; 3234 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter"; 3235 break; 3236 case EK_Result: OS << "Result"; break; 3237 case EK_StmtExprResult: OS << "StmtExprResult"; break; 3238 case EK_Exception: OS << "Exception"; break; 3239 case EK_Member: OS << "Member"; break; 3240 case EK_Binding: OS << "Binding"; break; 3241 case EK_New: OS << "New"; break; 3242 case EK_Temporary: OS << "Temporary"; break; 3243 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break; 3244 case EK_RelatedResult: OS << "RelatedResult"; break; 3245 case EK_Base: OS << "Base"; break; 3246 case EK_Delegating: OS << "Delegating"; break; 3247 case EK_ArrayElement: OS << "ArrayElement " << Index; break; 3248 case EK_VectorElement: OS << "VectorElement " << Index; break; 3249 case EK_ComplexElement: OS << "ComplexElement " << Index; break; 3250 case EK_BlockElement: OS << "Block"; break; 3251 case EK_LambdaToBlockConversionBlockElement: 3252 OS << "Block (lambda)"; 3253 break; 3254 case EK_LambdaCapture: 3255 OS << "LambdaCapture "; 3256 OS << DeclarationName(Capture.VarID); 3257 break; 3258 } 3259 3260 if (auto *D = getDecl()) { 3261 OS << " "; 3262 D->printQualifiedName(OS); 3263 } 3264 3265 OS << " '" << getType().getAsString() << "'\n"; 3266 3267 return Depth + 1; 3268 } 3269 3270 LLVM_DUMP_METHOD void InitializedEntity::dump() const { 3271 dumpImpl(llvm::errs()); 3272 } 3273 3274 //===----------------------------------------------------------------------===// 3275 // Initialization sequence 3276 //===----------------------------------------------------------------------===// 3277 3278 void InitializationSequence::Step::Destroy() { 3279 switch (Kind) { 3280 case SK_ResolveAddressOfOverloadedFunction: 3281 case SK_CastDerivedToBaseRValue: 3282 case SK_CastDerivedToBaseXValue: 3283 case SK_CastDerivedToBaseLValue: 3284 case SK_BindReference: 3285 case SK_BindReferenceToTemporary: 3286 case SK_FinalCopy: 3287 case SK_ExtraneousCopyToTemporary: 3288 case SK_UserConversion: 3289 case SK_QualificationConversionRValue: 3290 case SK_QualificationConversionXValue: 3291 case SK_QualificationConversionLValue: 3292 case SK_AtomicConversion: 3293 case SK_ListInitialization: 3294 case SK_UnwrapInitList: 3295 case SK_RewrapInitList: 3296 case SK_ConstructorInitialization: 3297 case SK_ConstructorInitializationFromList: 3298 case SK_ZeroInitialization: 3299 case SK_CAssignment: 3300 case SK_StringInit: 3301 case SK_ObjCObjectConversion: 3302 case SK_ArrayLoopIndex: 3303 case SK_ArrayLoopInit: 3304 case SK_ArrayInit: 3305 case SK_GNUArrayInit: 3306 case SK_ParenthesizedArrayInit: 3307 case SK_PassByIndirectCopyRestore: 3308 case SK_PassByIndirectRestore: 3309 case SK_ProduceObjCObject: 3310 case SK_StdInitializerList: 3311 case SK_StdInitializerListConstructorCall: 3312 case SK_OCLSamplerInit: 3313 case SK_OCLZeroOpaqueType: 3314 break; 3315 3316 case SK_ConversionSequence: 3317 case SK_ConversionSequenceNoNarrowing: 3318 delete ICS; 3319 } 3320 } 3321 3322 bool InitializationSequence::isDirectReferenceBinding() const { 3323 // There can be some lvalue adjustments after the SK_BindReference step. 3324 for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) { 3325 if (I->Kind == SK_BindReference) 3326 return true; 3327 if (I->Kind == SK_BindReferenceToTemporary) 3328 return false; 3329 } 3330 return false; 3331 } 3332 3333 bool InitializationSequence::isAmbiguous() const { 3334 if (!Failed()) 3335 return false; 3336 3337 switch (getFailureKind()) { 3338 case FK_TooManyInitsForReference: 3339 case FK_ParenthesizedListInitForReference: 3340 case FK_ArrayNeedsInitList: 3341 case FK_ArrayNeedsInitListOrStringLiteral: 3342 case FK_ArrayNeedsInitListOrWideStringLiteral: 3343 case FK_NarrowStringIntoWideCharArray: 3344 case FK_WideStringIntoCharArray: 3345 case FK_IncompatWideStringIntoWideChar: 3346 case FK_PlainStringIntoUTF8Char: 3347 case FK_UTF8StringIntoPlainChar: 3348 case FK_AddressOfOverloadFailed: // FIXME: Could do better 3349 case FK_NonConstLValueReferenceBindingToTemporary: 3350 case FK_NonConstLValueReferenceBindingToBitfield: 3351 case FK_NonConstLValueReferenceBindingToVectorElement: 3352 case FK_NonConstLValueReferenceBindingToUnrelated: 3353 case FK_RValueReferenceBindingToLValue: 3354 case FK_ReferenceAddrspaceMismatchTemporary: 3355 case FK_ReferenceInitDropsQualifiers: 3356 case FK_ReferenceInitFailed: 3357 case FK_ConversionFailed: 3358 case FK_ConversionFromPropertyFailed: 3359 case FK_TooManyInitsForScalar: 3360 case FK_ParenthesizedListInitForScalar: 3361 case FK_ReferenceBindingToInitList: 3362 case FK_InitListBadDestinationType: 3363 case FK_DefaultInitOfConst: 3364 case FK_Incomplete: 3365 case FK_ArrayTypeMismatch: 3366 case FK_NonConstantArrayInit: 3367 case FK_ListInitializationFailed: 3368 case FK_VariableLengthArrayHasInitializer: 3369 case FK_PlaceholderType: 3370 case FK_ExplicitConstructor: 3371 case FK_AddressOfUnaddressableFunction: 3372 return false; 3373 3374 case FK_ReferenceInitOverloadFailed: 3375 case FK_UserConversionOverloadFailed: 3376 case FK_ConstructorOverloadFailed: 3377 case FK_ListConstructorOverloadFailed: 3378 return FailedOverloadResult == OR_Ambiguous; 3379 } 3380 3381 llvm_unreachable("Invalid EntityKind!"); 3382 } 3383 3384 bool InitializationSequence::isConstructorInitialization() const { 3385 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization; 3386 } 3387 3388 void 3389 InitializationSequence 3390 ::AddAddressOverloadResolutionStep(FunctionDecl *Function, 3391 DeclAccessPair Found, 3392 bool HadMultipleCandidates) { 3393 Step S; 3394 S.Kind = SK_ResolveAddressOfOverloadedFunction; 3395 S.Type = Function->getType(); 3396 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3397 S.Function.Function = Function; 3398 S.Function.FoundDecl = Found; 3399 Steps.push_back(S); 3400 } 3401 3402 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType, 3403 ExprValueKind VK) { 3404 Step S; 3405 switch (VK) { 3406 case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break; 3407 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break; 3408 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break; 3409 } 3410 S.Type = BaseType; 3411 Steps.push_back(S); 3412 } 3413 3414 void InitializationSequence::AddReferenceBindingStep(QualType T, 3415 bool BindingTemporary) { 3416 Step S; 3417 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference; 3418 S.Type = T; 3419 Steps.push_back(S); 3420 } 3421 3422 void InitializationSequence::AddFinalCopy(QualType T) { 3423 Step S; 3424 S.Kind = SK_FinalCopy; 3425 S.Type = T; 3426 Steps.push_back(S); 3427 } 3428 3429 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) { 3430 Step S; 3431 S.Kind = SK_ExtraneousCopyToTemporary; 3432 S.Type = T; 3433 Steps.push_back(S); 3434 } 3435 3436 void 3437 InitializationSequence::AddUserConversionStep(FunctionDecl *Function, 3438 DeclAccessPair FoundDecl, 3439 QualType T, 3440 bool HadMultipleCandidates) { 3441 Step S; 3442 S.Kind = SK_UserConversion; 3443 S.Type = T; 3444 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3445 S.Function.Function = Function; 3446 S.Function.FoundDecl = FoundDecl; 3447 Steps.push_back(S); 3448 } 3449 3450 void InitializationSequence::AddQualificationConversionStep(QualType Ty, 3451 ExprValueKind VK) { 3452 Step S; 3453 S.Kind = SK_QualificationConversionRValue; // work around a gcc warning 3454 switch (VK) { 3455 case VK_RValue: 3456 S.Kind = SK_QualificationConversionRValue; 3457 break; 3458 case VK_XValue: 3459 S.Kind = SK_QualificationConversionXValue; 3460 break; 3461 case VK_LValue: 3462 S.Kind = SK_QualificationConversionLValue; 3463 break; 3464 } 3465 S.Type = Ty; 3466 Steps.push_back(S); 3467 } 3468 3469 void InitializationSequence::AddAtomicConversionStep(QualType Ty) { 3470 Step S; 3471 S.Kind = SK_AtomicConversion; 3472 S.Type = Ty; 3473 Steps.push_back(S); 3474 } 3475 3476 void InitializationSequence::AddConversionSequenceStep( 3477 const ImplicitConversionSequence &ICS, QualType T, 3478 bool TopLevelOfInitList) { 3479 Step S; 3480 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing 3481 : SK_ConversionSequence; 3482 S.Type = T; 3483 S.ICS = new ImplicitConversionSequence(ICS); 3484 Steps.push_back(S); 3485 } 3486 3487 void InitializationSequence::AddListInitializationStep(QualType T) { 3488 Step S; 3489 S.Kind = SK_ListInitialization; 3490 S.Type = T; 3491 Steps.push_back(S); 3492 } 3493 3494 void InitializationSequence::AddConstructorInitializationStep( 3495 DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T, 3496 bool HadMultipleCandidates, bool FromInitList, bool AsInitList) { 3497 Step S; 3498 S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall 3499 : SK_ConstructorInitializationFromList 3500 : SK_ConstructorInitialization; 3501 S.Type = T; 3502 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3503 S.Function.Function = Constructor; 3504 S.Function.FoundDecl = FoundDecl; 3505 Steps.push_back(S); 3506 } 3507 3508 void InitializationSequence::AddZeroInitializationStep(QualType T) { 3509 Step S; 3510 S.Kind = SK_ZeroInitialization; 3511 S.Type = T; 3512 Steps.push_back(S); 3513 } 3514 3515 void InitializationSequence::AddCAssignmentStep(QualType T) { 3516 Step S; 3517 S.Kind = SK_CAssignment; 3518 S.Type = T; 3519 Steps.push_back(S); 3520 } 3521 3522 void InitializationSequence::AddStringInitStep(QualType T) { 3523 Step S; 3524 S.Kind = SK_StringInit; 3525 S.Type = T; 3526 Steps.push_back(S); 3527 } 3528 3529 void InitializationSequence::AddObjCObjectConversionStep(QualType T) { 3530 Step S; 3531 S.Kind = SK_ObjCObjectConversion; 3532 S.Type = T; 3533 Steps.push_back(S); 3534 } 3535 3536 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) { 3537 Step S; 3538 S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit; 3539 S.Type = T; 3540 Steps.push_back(S); 3541 } 3542 3543 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) { 3544 Step S; 3545 S.Kind = SK_ArrayLoopIndex; 3546 S.Type = EltT; 3547 Steps.insert(Steps.begin(), S); 3548 3549 S.Kind = SK_ArrayLoopInit; 3550 S.Type = T; 3551 Steps.push_back(S); 3552 } 3553 3554 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) { 3555 Step S; 3556 S.Kind = SK_ParenthesizedArrayInit; 3557 S.Type = T; 3558 Steps.push_back(S); 3559 } 3560 3561 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type, 3562 bool shouldCopy) { 3563 Step s; 3564 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore 3565 : SK_PassByIndirectRestore); 3566 s.Type = type; 3567 Steps.push_back(s); 3568 } 3569 3570 void InitializationSequence::AddProduceObjCObjectStep(QualType T) { 3571 Step S; 3572 S.Kind = SK_ProduceObjCObject; 3573 S.Type = T; 3574 Steps.push_back(S); 3575 } 3576 3577 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) { 3578 Step S; 3579 S.Kind = SK_StdInitializerList; 3580 S.Type = T; 3581 Steps.push_back(S); 3582 } 3583 3584 void InitializationSequence::AddOCLSamplerInitStep(QualType T) { 3585 Step S; 3586 S.Kind = SK_OCLSamplerInit; 3587 S.Type = T; 3588 Steps.push_back(S); 3589 } 3590 3591 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) { 3592 Step S; 3593 S.Kind = SK_OCLZeroOpaqueType; 3594 S.Type = T; 3595 Steps.push_back(S); 3596 } 3597 3598 void InitializationSequence::RewrapReferenceInitList(QualType T, 3599 InitListExpr *Syntactic) { 3600 assert(Syntactic->getNumInits() == 1 && 3601 "Can only rewrap trivial init lists."); 3602 Step S; 3603 S.Kind = SK_UnwrapInitList; 3604 S.Type = Syntactic->getInit(0)->getType(); 3605 Steps.insert(Steps.begin(), S); 3606 3607 S.Kind = SK_RewrapInitList; 3608 S.Type = T; 3609 S.WrappingSyntacticList = Syntactic; 3610 Steps.push_back(S); 3611 } 3612 3613 void InitializationSequence::SetOverloadFailure(FailureKind Failure, 3614 OverloadingResult Result) { 3615 setSequenceKind(FailedSequence); 3616 this->Failure = Failure; 3617 this->FailedOverloadResult = Result; 3618 } 3619 3620 //===----------------------------------------------------------------------===// 3621 // Attempt initialization 3622 //===----------------------------------------------------------------------===// 3623 3624 /// Tries to add a zero initializer. Returns true if that worked. 3625 static bool 3626 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence, 3627 const InitializedEntity &Entity) { 3628 if (Entity.getKind() != InitializedEntity::EK_Variable) 3629 return false; 3630 3631 VarDecl *VD = cast<VarDecl>(Entity.getDecl()); 3632 if (VD->getInit() || VD->getEndLoc().isMacroID()) 3633 return false; 3634 3635 QualType VariableTy = VD->getType().getCanonicalType(); 3636 SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc()); 3637 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc); 3638 if (!Init.empty()) { 3639 Sequence.AddZeroInitializationStep(Entity.getType()); 3640 Sequence.SetZeroInitializationFixit(Init, Loc); 3641 return true; 3642 } 3643 return false; 3644 } 3645 3646 static void MaybeProduceObjCObject(Sema &S, 3647 InitializationSequence &Sequence, 3648 const InitializedEntity &Entity) { 3649 if (!S.getLangOpts().ObjCAutoRefCount) return; 3650 3651 /// When initializing a parameter, produce the value if it's marked 3652 /// __attribute__((ns_consumed)). 3653 if (Entity.isParameterKind()) { 3654 if (!Entity.isParameterConsumed()) 3655 return; 3656 3657 assert(Entity.getType()->isObjCRetainableType() && 3658 "consuming an object of unretainable type?"); 3659 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3660 3661 /// When initializing a return value, if the return type is a 3662 /// retainable type, then returns need to immediately retain the 3663 /// object. If an autorelease is required, it will be done at the 3664 /// last instant. 3665 } else if (Entity.getKind() == InitializedEntity::EK_Result || 3666 Entity.getKind() == InitializedEntity::EK_StmtExprResult) { 3667 if (!Entity.getType()->isObjCRetainableType()) 3668 return; 3669 3670 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3671 } 3672 } 3673 3674 static void TryListInitialization(Sema &S, 3675 const InitializedEntity &Entity, 3676 const InitializationKind &Kind, 3677 InitListExpr *InitList, 3678 InitializationSequence &Sequence, 3679 bool TreatUnavailableAsInvalid); 3680 3681 /// When initializing from init list via constructor, handle 3682 /// initialization of an object of type std::initializer_list<T>. 3683 /// 3684 /// \return true if we have handled initialization of an object of type 3685 /// std::initializer_list<T>, false otherwise. 3686 static bool TryInitializerListConstruction(Sema &S, 3687 InitListExpr *List, 3688 QualType DestType, 3689 InitializationSequence &Sequence, 3690 bool TreatUnavailableAsInvalid) { 3691 QualType E; 3692 if (!S.isStdInitializerList(DestType, &E)) 3693 return false; 3694 3695 if (!S.isCompleteType(List->getExprLoc(), E)) { 3696 Sequence.setIncompleteTypeFailure(E); 3697 return true; 3698 } 3699 3700 // Try initializing a temporary array from the init list. 3701 QualType ArrayType = S.Context.getConstantArrayType( 3702 E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 3703 List->getNumInits()), 3704 clang::ArrayType::Normal, 0); 3705 InitializedEntity HiddenArray = 3706 InitializedEntity::InitializeTemporary(ArrayType); 3707 InitializationKind Kind = InitializationKind::CreateDirectList( 3708 List->getExprLoc(), List->getBeginLoc(), List->getEndLoc()); 3709 TryListInitialization(S, HiddenArray, Kind, List, Sequence, 3710 TreatUnavailableAsInvalid); 3711 if (Sequence) 3712 Sequence.AddStdInitializerListConstructionStep(DestType); 3713 return true; 3714 } 3715 3716 /// Determine if the constructor has the signature of a copy or move 3717 /// constructor for the type T of the class in which it was found. That is, 3718 /// determine if its first parameter is of type T or reference to (possibly 3719 /// cv-qualified) T. 3720 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx, 3721 const ConstructorInfo &Info) { 3722 if (Info.Constructor->getNumParams() == 0) 3723 return false; 3724 3725 QualType ParmT = 3726 Info.Constructor->getParamDecl(0)->getType().getNonReferenceType(); 3727 QualType ClassT = 3728 Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext())); 3729 3730 return Ctx.hasSameUnqualifiedType(ParmT, ClassT); 3731 } 3732 3733 static OverloadingResult 3734 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc, 3735 MultiExprArg Args, 3736 OverloadCandidateSet &CandidateSet, 3737 QualType DestType, 3738 DeclContext::lookup_result Ctors, 3739 OverloadCandidateSet::iterator &Best, 3740 bool CopyInitializing, bool AllowExplicit, 3741 bool OnlyListConstructors, bool IsListInit, 3742 bool SecondStepOfCopyInit = false) { 3743 CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor); 3744 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); 3745 3746 for (NamedDecl *D : Ctors) { 3747 auto Info = getConstructorInfo(D); 3748 if (!Info.Constructor || Info.Constructor->isInvalidDecl()) 3749 continue; 3750 3751 if (!AllowExplicit && Info.Constructor->isExplicit()) 3752 continue; 3753 3754 if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor)) 3755 continue; 3756 3757 // C++11 [over.best.ics]p4: 3758 // ... and the constructor or user-defined conversion function is a 3759 // candidate by 3760 // - 13.3.1.3, when the argument is the temporary in the second step 3761 // of a class copy-initialization, or 3762 // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here] 3763 // - the second phase of 13.3.1.7 when the initializer list has exactly 3764 // one element that is itself an initializer list, and the target is 3765 // the first parameter of a constructor of class X, and the conversion 3766 // is to X or reference to (possibly cv-qualified X), 3767 // user-defined conversion sequences are not considered. 3768 bool SuppressUserConversions = 3769 SecondStepOfCopyInit || 3770 (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) && 3771 hasCopyOrMoveCtorParam(S.Context, Info)); 3772 3773 if (Info.ConstructorTmpl) 3774 S.AddTemplateOverloadCandidate( 3775 Info.ConstructorTmpl, Info.FoundDecl, 3776 /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions, 3777 /*PartialOverloading=*/false, AllowExplicit); 3778 else { 3779 // C++ [over.match.copy]p1: 3780 // - When initializing a temporary to be bound to the first parameter 3781 // of a constructor [for type T] that takes a reference to possibly 3782 // cv-qualified T as its first argument, called with a single 3783 // argument in the context of direct-initialization, explicit 3784 // conversion functions are also considered. 3785 // FIXME: What if a constructor template instantiates to such a signature? 3786 bool AllowExplicitConv = AllowExplicit && !CopyInitializing && 3787 Args.size() == 1 && 3788 hasCopyOrMoveCtorParam(S.Context, Info); 3789 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args, 3790 CandidateSet, SuppressUserConversions, 3791 /*PartialOverloading=*/false, AllowExplicit, 3792 AllowExplicitConv); 3793 } 3794 } 3795 3796 // FIXME: Work around a bug in C++17 guaranteed copy elision. 3797 // 3798 // When initializing an object of class type T by constructor 3799 // ([over.match.ctor]) or by list-initialization ([over.match.list]) 3800 // from a single expression of class type U, conversion functions of 3801 // U that convert to the non-reference type cv T are candidates. 3802 // Explicit conversion functions are only candidates during 3803 // direct-initialization. 3804 // 3805 // Note: SecondStepOfCopyInit is only ever true in this case when 3806 // evaluating whether to produce a C++98 compatibility warning. 3807 if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 && 3808 !SecondStepOfCopyInit) { 3809 Expr *Initializer = Args[0]; 3810 auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl(); 3811 if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) { 3812 const auto &Conversions = SourceRD->getVisibleConversionFunctions(); 3813 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 3814 NamedDecl *D = *I; 3815 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 3816 D = D->getUnderlyingDecl(); 3817 3818 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 3819 CXXConversionDecl *Conv; 3820 if (ConvTemplate) 3821 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 3822 else 3823 Conv = cast<CXXConversionDecl>(D); 3824 3825 if (AllowExplicit || !Conv->isExplicit()) { 3826 if (ConvTemplate) 3827 S.AddTemplateConversionCandidate( 3828 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 3829 CandidateSet, AllowExplicit, AllowExplicit, 3830 /*AllowResultConversion*/ false); 3831 else 3832 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, 3833 DestType, CandidateSet, AllowExplicit, 3834 AllowExplicit, 3835 /*AllowResultConversion*/ false); 3836 } 3837 } 3838 } 3839 } 3840 3841 // Perform overload resolution and return the result. 3842 return CandidateSet.BestViableFunction(S, DeclLoc, Best); 3843 } 3844 3845 /// Attempt initialization by constructor (C++ [dcl.init]), which 3846 /// enumerates the constructors of the initialized entity and performs overload 3847 /// resolution to select the best. 3848 /// \param DestType The destination class type. 3849 /// \param DestArrayType The destination type, which is either DestType or 3850 /// a (possibly multidimensional) array of DestType. 3851 /// \param IsListInit Is this list-initialization? 3852 /// \param IsInitListCopy Is this non-list-initialization resulting from a 3853 /// list-initialization from {x} where x is the same 3854 /// type as the entity? 3855 static void TryConstructorInitialization(Sema &S, 3856 const InitializedEntity &Entity, 3857 const InitializationKind &Kind, 3858 MultiExprArg Args, QualType DestType, 3859 QualType DestArrayType, 3860 InitializationSequence &Sequence, 3861 bool IsListInit = false, 3862 bool IsInitListCopy = false) { 3863 assert(((!IsListInit && !IsInitListCopy) || 3864 (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && 3865 "IsListInit/IsInitListCopy must come with a single initializer list " 3866 "argument."); 3867 InitListExpr *ILE = 3868 (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr; 3869 MultiExprArg UnwrappedArgs = 3870 ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args; 3871 3872 // The type we're constructing needs to be complete. 3873 if (!S.isCompleteType(Kind.getLocation(), DestType)) { 3874 Sequence.setIncompleteTypeFailure(DestType); 3875 return; 3876 } 3877 3878 // C++17 [dcl.init]p17: 3879 // - If the initializer expression is a prvalue and the cv-unqualified 3880 // version of the source type is the same class as the class of the 3881 // destination, the initializer expression is used to initialize the 3882 // destination object. 3883 // Per DR (no number yet), this does not apply when initializing a base 3884 // class or delegating to another constructor from a mem-initializer. 3885 // ObjC++: Lambda captured by the block in the lambda to block conversion 3886 // should avoid copy elision. 3887 if (S.getLangOpts().CPlusPlus17 && 3888 Entity.getKind() != InitializedEntity::EK_Base && 3889 Entity.getKind() != InitializedEntity::EK_Delegating && 3890 Entity.getKind() != 3891 InitializedEntity::EK_LambdaToBlockConversionBlockElement && 3892 UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() && 3893 S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) { 3894 // Convert qualifications if necessary. 3895 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 3896 if (ILE) 3897 Sequence.RewrapReferenceInitList(DestType, ILE); 3898 return; 3899 } 3900 3901 const RecordType *DestRecordType = DestType->getAs<RecordType>(); 3902 assert(DestRecordType && "Constructor initialization requires record type"); 3903 CXXRecordDecl *DestRecordDecl 3904 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 3905 3906 // Build the candidate set directly in the initialization sequence 3907 // structure, so that it will persist if we fail. 3908 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 3909 3910 // Determine whether we are allowed to call explicit constructors or 3911 // explicit conversion operators. 3912 bool AllowExplicit = Kind.AllowExplicit() || IsListInit; 3913 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy; 3914 3915 // - Otherwise, if T is a class type, constructors are considered. The 3916 // applicable constructors are enumerated, and the best one is chosen 3917 // through overload resolution. 3918 DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl); 3919 3920 OverloadingResult Result = OR_No_Viable_Function; 3921 OverloadCandidateSet::iterator Best; 3922 bool AsInitializerList = false; 3923 3924 // C++11 [over.match.list]p1, per DR1467: 3925 // When objects of non-aggregate type T are list-initialized, such that 3926 // 8.5.4 [dcl.init.list] specifies that overload resolution is performed 3927 // according to the rules in this section, overload resolution selects 3928 // the constructor in two phases: 3929 // 3930 // - Initially, the candidate functions are the initializer-list 3931 // constructors of the class T and the argument list consists of the 3932 // initializer list as a single argument. 3933 if (IsListInit) { 3934 AsInitializerList = true; 3935 3936 // If the initializer list has no elements and T has a default constructor, 3937 // the first phase is omitted. 3938 if (!(UnwrappedArgs.empty() && DestRecordDecl->hasDefaultConstructor())) 3939 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, 3940 CandidateSet, DestType, Ctors, Best, 3941 CopyInitialization, AllowExplicit, 3942 /*OnlyListConstructors=*/true, 3943 IsListInit); 3944 } 3945 3946 // C++11 [over.match.list]p1: 3947 // - If no viable initializer-list constructor is found, overload resolution 3948 // is performed again, where the candidate functions are all the 3949 // constructors of the class T and the argument list consists of the 3950 // elements of the initializer list. 3951 if (Result == OR_No_Viable_Function) { 3952 AsInitializerList = false; 3953 Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs, 3954 CandidateSet, DestType, Ctors, Best, 3955 CopyInitialization, AllowExplicit, 3956 /*OnlyListConstructors=*/false, 3957 IsListInit); 3958 } 3959 if (Result) { 3960 Sequence.SetOverloadFailure(IsListInit ? 3961 InitializationSequence::FK_ListConstructorOverloadFailed : 3962 InitializationSequence::FK_ConstructorOverloadFailed, 3963 Result); 3964 return; 3965 } 3966 3967 bool HadMultipleCandidates = (CandidateSet.size() > 1); 3968 3969 // In C++17, ResolveConstructorOverload can select a conversion function 3970 // instead of a constructor. 3971 if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) { 3972 // Add the user-defined conversion step that calls the conversion function. 3973 QualType ConvType = CD->getConversionType(); 3974 assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) && 3975 "should not have selected this conversion function"); 3976 Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType, 3977 HadMultipleCandidates); 3978 if (!S.Context.hasSameType(ConvType, DestType)) 3979 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 3980 if (IsListInit) 3981 Sequence.RewrapReferenceInitList(Entity.getType(), ILE); 3982 return; 3983 } 3984 3985 // C++11 [dcl.init]p6: 3986 // If a program calls for the default initialization of an object 3987 // of a const-qualified type T, T shall be a class type with a 3988 // user-provided default constructor. 3989 // C++ core issue 253 proposal: 3990 // If the implicit default constructor initializes all subobjects, no 3991 // initializer should be required. 3992 // The 253 proposal is for example needed to process libstdc++ headers in 5.x. 3993 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 3994 if (Kind.getKind() == InitializationKind::IK_Default && 3995 Entity.getType().isConstQualified()) { 3996 if (!CtorDecl->getParent()->allowConstDefaultInit()) { 3997 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 3998 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 3999 return; 4000 } 4001 } 4002 4003 // C++11 [over.match.list]p1: 4004 // In copy-list-initialization, if an explicit constructor is chosen, the 4005 // initializer is ill-formed. 4006 if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) { 4007 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor); 4008 return; 4009 } 4010 4011 // Add the constructor initialization step. Any cv-qualification conversion is 4012 // subsumed by the initialization. 4013 Sequence.AddConstructorInitializationStep( 4014 Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates, 4015 IsListInit | IsInitListCopy, AsInitializerList); 4016 } 4017 4018 static bool 4019 ResolveOverloadedFunctionForReferenceBinding(Sema &S, 4020 Expr *Initializer, 4021 QualType &SourceType, 4022 QualType &UnqualifiedSourceType, 4023 QualType UnqualifiedTargetType, 4024 InitializationSequence &Sequence) { 4025 if (S.Context.getCanonicalType(UnqualifiedSourceType) == 4026 S.Context.OverloadTy) { 4027 DeclAccessPair Found; 4028 bool HadMultipleCandidates = false; 4029 if (FunctionDecl *Fn 4030 = S.ResolveAddressOfOverloadedFunction(Initializer, 4031 UnqualifiedTargetType, 4032 false, Found, 4033 &HadMultipleCandidates)) { 4034 Sequence.AddAddressOverloadResolutionStep(Fn, Found, 4035 HadMultipleCandidates); 4036 SourceType = Fn->getType(); 4037 UnqualifiedSourceType = SourceType.getUnqualifiedType(); 4038 } else if (!UnqualifiedTargetType->isRecordType()) { 4039 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4040 return true; 4041 } 4042 } 4043 return false; 4044 } 4045 4046 static void TryReferenceInitializationCore(Sema &S, 4047 const InitializedEntity &Entity, 4048 const InitializationKind &Kind, 4049 Expr *Initializer, 4050 QualType cv1T1, QualType T1, 4051 Qualifiers T1Quals, 4052 QualType cv2T2, QualType T2, 4053 Qualifiers T2Quals, 4054 InitializationSequence &Sequence); 4055 4056 static void TryValueInitialization(Sema &S, 4057 const InitializedEntity &Entity, 4058 const InitializationKind &Kind, 4059 InitializationSequence &Sequence, 4060 InitListExpr *InitList = nullptr); 4061 4062 /// Attempt list initialization of a reference. 4063 static void TryReferenceListInitialization(Sema &S, 4064 const InitializedEntity &Entity, 4065 const InitializationKind &Kind, 4066 InitListExpr *InitList, 4067 InitializationSequence &Sequence, 4068 bool TreatUnavailableAsInvalid) { 4069 // First, catch C++03 where this isn't possible. 4070 if (!S.getLangOpts().CPlusPlus11) { 4071 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 4072 return; 4073 } 4074 // Can't reference initialize a compound literal. 4075 if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) { 4076 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 4077 return; 4078 } 4079 4080 QualType DestType = Entity.getType(); 4081 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); 4082 Qualifiers T1Quals; 4083 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 4084 4085 // Reference initialization via an initializer list works thus: 4086 // If the initializer list consists of a single element that is 4087 // reference-related to the referenced type, bind directly to that element 4088 // (possibly creating temporaries). 4089 // Otherwise, initialize a temporary with the initializer list and 4090 // bind to that. 4091 if (InitList->getNumInits() == 1) { 4092 Expr *Initializer = InitList->getInit(0); 4093 QualType cv2T2 = Initializer->getType(); 4094 Qualifiers T2Quals; 4095 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 4096 4097 // If this fails, creating a temporary wouldn't work either. 4098 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 4099 T1, Sequence)) 4100 return; 4101 4102 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4103 bool dummy1, dummy2, dummy3; 4104 Sema::ReferenceCompareResult RefRelationship 4105 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1, 4106 dummy2, dummy3); 4107 if (RefRelationship >= Sema::Ref_Related) { 4108 // Try to bind the reference here. 4109 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 4110 T1Quals, cv2T2, T2, T2Quals, Sequence); 4111 if (Sequence) 4112 Sequence.RewrapReferenceInitList(cv1T1, InitList); 4113 return; 4114 } 4115 4116 // Update the initializer if we've resolved an overloaded function. 4117 if (Sequence.step_begin() != Sequence.step_end()) 4118 Sequence.RewrapReferenceInitList(cv1T1, InitList); 4119 } 4120 4121 // Not reference-related. Create a temporary and bind to that. 4122 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1); 4123 4124 TryListInitialization(S, TempEntity, Kind, InitList, Sequence, 4125 TreatUnavailableAsInvalid); 4126 if (Sequence) { 4127 if (DestType->isRValueReferenceType() || 4128 (T1Quals.hasConst() && !T1Quals.hasVolatile())) 4129 Sequence.AddReferenceBindingStep(cv1T1, /*BindingTemporary=*/true); 4130 else 4131 Sequence.SetFailed( 4132 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); 4133 } 4134 } 4135 4136 /// Attempt list initialization (C++0x [dcl.init.list]) 4137 static void TryListInitialization(Sema &S, 4138 const InitializedEntity &Entity, 4139 const InitializationKind &Kind, 4140 InitListExpr *InitList, 4141 InitializationSequence &Sequence, 4142 bool TreatUnavailableAsInvalid) { 4143 QualType DestType = Entity.getType(); 4144 4145 // C++ doesn't allow scalar initialization with more than one argument. 4146 // But C99 complex numbers are scalars and it makes sense there. 4147 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() && 4148 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) { 4149 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar); 4150 return; 4151 } 4152 if (DestType->isReferenceType()) { 4153 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence, 4154 TreatUnavailableAsInvalid); 4155 return; 4156 } 4157 4158 if (DestType->isRecordType() && 4159 !S.isCompleteType(InitList->getBeginLoc(), DestType)) { 4160 Sequence.setIncompleteTypeFailure(DestType); 4161 return; 4162 } 4163 4164 // C++11 [dcl.init.list]p3, per DR1467: 4165 // - If T is a class type and the initializer list has a single element of 4166 // type cv U, where U is T or a class derived from T, the object is 4167 // initialized from that element (by copy-initialization for 4168 // copy-list-initialization, or by direct-initialization for 4169 // direct-list-initialization). 4170 // - Otherwise, if T is a character array and the initializer list has a 4171 // single element that is an appropriately-typed string literal 4172 // (8.5.2 [dcl.init.string]), initialization is performed as described 4173 // in that section. 4174 // - Otherwise, if T is an aggregate, [...] (continue below). 4175 if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) { 4176 if (DestType->isRecordType()) { 4177 QualType InitType = InitList->getInit(0)->getType(); 4178 if (S.Context.hasSameUnqualifiedType(InitType, DestType) || 4179 S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) { 4180 Expr *InitListAsExpr = InitList; 4181 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 4182 DestType, Sequence, 4183 /*InitListSyntax*/false, 4184 /*IsInitListCopy*/true); 4185 return; 4186 } 4187 } 4188 if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) { 4189 Expr *SubInit[1] = {InitList->getInit(0)}; 4190 if (!isa<VariableArrayType>(DestAT) && 4191 IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) { 4192 InitializationKind SubKind = 4193 Kind.getKind() == InitializationKind::IK_DirectList 4194 ? InitializationKind::CreateDirect(Kind.getLocation(), 4195 InitList->getLBraceLoc(), 4196 InitList->getRBraceLoc()) 4197 : Kind; 4198 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 4199 /*TopLevelOfInitList*/ true, 4200 TreatUnavailableAsInvalid); 4201 4202 // TryStringLiteralInitialization() (in InitializeFrom()) will fail if 4203 // the element is not an appropriately-typed string literal, in which 4204 // case we should proceed as in C++11 (below). 4205 if (Sequence) { 4206 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4207 return; 4208 } 4209 } 4210 } 4211 } 4212 4213 // C++11 [dcl.init.list]p3: 4214 // - If T is an aggregate, aggregate initialization is performed. 4215 if ((DestType->isRecordType() && !DestType->isAggregateType()) || 4216 (S.getLangOpts().CPlusPlus11 && 4217 S.isStdInitializerList(DestType, nullptr))) { 4218 if (S.getLangOpts().CPlusPlus11) { 4219 // - Otherwise, if the initializer list has no elements and T is a 4220 // class type with a default constructor, the object is 4221 // value-initialized. 4222 if (InitList->getNumInits() == 0) { 4223 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl(); 4224 if (RD->hasDefaultConstructor()) { 4225 TryValueInitialization(S, Entity, Kind, Sequence, InitList); 4226 return; 4227 } 4228 } 4229 4230 // - Otherwise, if T is a specialization of std::initializer_list<E>, 4231 // an initializer_list object constructed [...] 4232 if (TryInitializerListConstruction(S, InitList, DestType, Sequence, 4233 TreatUnavailableAsInvalid)) 4234 return; 4235 4236 // - Otherwise, if T is a class type, constructors are considered. 4237 Expr *InitListAsExpr = InitList; 4238 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 4239 DestType, Sequence, /*InitListSyntax*/true); 4240 } else 4241 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType); 4242 return; 4243 } 4244 4245 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() && 4246 InitList->getNumInits() == 1) { 4247 Expr *E = InitList->getInit(0); 4248 4249 // - Otherwise, if T is an enumeration with a fixed underlying type, 4250 // the initializer-list has a single element v, and the initialization 4251 // is direct-list-initialization, the object is initialized with the 4252 // value T(v); if a narrowing conversion is required to convert v to 4253 // the underlying type of T, the program is ill-formed. 4254 auto *ET = DestType->getAs<EnumType>(); 4255 if (S.getLangOpts().CPlusPlus17 && 4256 Kind.getKind() == InitializationKind::IK_DirectList && 4257 ET && ET->getDecl()->isFixed() && 4258 !S.Context.hasSameUnqualifiedType(E->getType(), DestType) && 4259 (E->getType()->isIntegralOrEnumerationType() || 4260 E->getType()->isFloatingType())) { 4261 // There are two ways that T(v) can work when T is an enumeration type. 4262 // If there is either an implicit conversion sequence from v to T or 4263 // a conversion function that can convert from v to T, then we use that. 4264 // Otherwise, if v is of integral, enumeration, or floating-point type, 4265 // it is converted to the enumeration type via its underlying type. 4266 // There is no overlap possible between these two cases (except when the 4267 // source value is already of the destination type), and the first 4268 // case is handled by the general case for single-element lists below. 4269 ImplicitConversionSequence ICS; 4270 ICS.setStandard(); 4271 ICS.Standard.setAsIdentityConversion(); 4272 if (!E->isRValue()) 4273 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 4274 // If E is of a floating-point type, then the conversion is ill-formed 4275 // due to narrowing, but go through the motions in order to produce the 4276 // right diagnostic. 4277 ICS.Standard.Second = E->getType()->isFloatingType() 4278 ? ICK_Floating_Integral 4279 : ICK_Integral_Conversion; 4280 ICS.Standard.setFromType(E->getType()); 4281 ICS.Standard.setToType(0, E->getType()); 4282 ICS.Standard.setToType(1, DestType); 4283 ICS.Standard.setToType(2, DestType); 4284 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2), 4285 /*TopLevelOfInitList*/true); 4286 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4287 return; 4288 } 4289 4290 // - Otherwise, if the initializer list has a single element of type E 4291 // [...references are handled above...], the object or reference is 4292 // initialized from that element (by copy-initialization for 4293 // copy-list-initialization, or by direct-initialization for 4294 // direct-list-initialization); if a narrowing conversion is required 4295 // to convert the element to T, the program is ill-formed. 4296 // 4297 // Per core-24034, this is direct-initialization if we were performing 4298 // direct-list-initialization and copy-initialization otherwise. 4299 // We can't use InitListChecker for this, because it always performs 4300 // copy-initialization. This only matters if we might use an 'explicit' 4301 // conversion operator, so we only need to handle the cases where the source 4302 // is of record type. 4303 if (InitList->getInit(0)->getType()->isRecordType()) { 4304 InitializationKind SubKind = 4305 Kind.getKind() == InitializationKind::IK_DirectList 4306 ? InitializationKind::CreateDirect(Kind.getLocation(), 4307 InitList->getLBraceLoc(), 4308 InitList->getRBraceLoc()) 4309 : Kind; 4310 Expr *SubInit[1] = { InitList->getInit(0) }; 4311 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 4312 /*TopLevelOfInitList*/true, 4313 TreatUnavailableAsInvalid); 4314 if (Sequence) 4315 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4316 return; 4317 } 4318 } 4319 4320 InitListChecker CheckInitList(S, Entity, InitList, 4321 DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid); 4322 if (CheckInitList.HadError()) { 4323 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed); 4324 return; 4325 } 4326 4327 // Add the list initialization step with the built init list. 4328 Sequence.AddListInitializationStep(DestType); 4329 } 4330 4331 /// Try a reference initialization that involves calling a conversion 4332 /// function. 4333 static OverloadingResult TryRefInitWithConversionFunction( 4334 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, 4335 Expr *Initializer, bool AllowRValues, bool IsLValueRef, 4336 InitializationSequence &Sequence) { 4337 QualType DestType = Entity.getType(); 4338 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); 4339 QualType T1 = cv1T1.getUnqualifiedType(); 4340 QualType cv2T2 = Initializer->getType(); 4341 QualType T2 = cv2T2.getUnqualifiedType(); 4342 4343 bool DerivedToBase; 4344 bool ObjCConversion; 4345 bool ObjCLifetimeConversion; 4346 assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2, 4347 DerivedToBase, ObjCConversion, 4348 ObjCLifetimeConversion) && 4349 "Must have incompatible references when binding via conversion"); 4350 (void)DerivedToBase; 4351 (void)ObjCConversion; 4352 (void)ObjCLifetimeConversion; 4353 4354 // Build the candidate set directly in the initialization sequence 4355 // structure, so that it will persist if we fail. 4356 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4357 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 4358 4359 // Determine whether we are allowed to call explicit conversion operators. 4360 // Note that none of [over.match.copy], [over.match.conv], nor 4361 // [over.match.ref] permit an explicit constructor to be chosen when 4362 // initializing a reference, not even for direct-initialization. 4363 bool AllowExplicitCtors = false; 4364 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding(); 4365 4366 const RecordType *T1RecordType = nullptr; 4367 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) && 4368 S.isCompleteType(Kind.getLocation(), T1)) { 4369 // The type we're converting to is a class type. Enumerate its constructors 4370 // to see if there is a suitable conversion. 4371 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl()); 4372 4373 for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) { 4374 auto Info = getConstructorInfo(D); 4375 if (!Info.Constructor) 4376 continue; 4377 4378 if (!Info.Constructor->isInvalidDecl() && 4379 Info.Constructor->isConvertingConstructor(AllowExplicitCtors)) { 4380 if (Info.ConstructorTmpl) 4381 S.AddTemplateOverloadCandidate( 4382 Info.ConstructorTmpl, Info.FoundDecl, 4383 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, 4384 /*SuppressUserConversions=*/true, 4385 /*PartialOverloading*/ false, AllowExplicitCtors); 4386 else 4387 S.AddOverloadCandidate( 4388 Info.Constructor, Info.FoundDecl, Initializer, CandidateSet, 4389 /*SuppressUserConversions=*/true, 4390 /*PartialOverloading*/ false, AllowExplicitCtors); 4391 } 4392 } 4393 } 4394 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl()) 4395 return OR_No_Viable_Function; 4396 4397 const RecordType *T2RecordType = nullptr; 4398 if ((T2RecordType = T2->getAs<RecordType>()) && 4399 S.isCompleteType(Kind.getLocation(), T2)) { 4400 // The type we're converting from is a class type, enumerate its conversion 4401 // functions. 4402 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl()); 4403 4404 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); 4405 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 4406 NamedDecl *D = *I; 4407 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 4408 if (isa<UsingShadowDecl>(D)) 4409 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4410 4411 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 4412 CXXConversionDecl *Conv; 4413 if (ConvTemplate) 4414 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 4415 else 4416 Conv = cast<CXXConversionDecl>(D); 4417 4418 // If the conversion function doesn't return a reference type, 4419 // it can't be considered for this conversion unless we're allowed to 4420 // consider rvalues. 4421 // FIXME: Do we need to make sure that we only consider conversion 4422 // candidates with reference-compatible results? That might be needed to 4423 // break recursion. 4424 if ((AllowExplicitConvs || !Conv->isExplicit()) && 4425 (AllowRValues || 4426 Conv->getConversionType()->isLValueReferenceType())) { 4427 if (ConvTemplate) 4428 S.AddTemplateConversionCandidate( 4429 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 4430 CandidateSet, 4431 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); 4432 else 4433 S.AddConversionCandidate( 4434 Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet, 4435 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); 4436 } 4437 } 4438 } 4439 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl()) 4440 return OR_No_Viable_Function; 4441 4442 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4443 4444 // Perform overload resolution. If it fails, return the failed result. 4445 OverloadCandidateSet::iterator Best; 4446 if (OverloadingResult Result 4447 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) 4448 return Result; 4449 4450 FunctionDecl *Function = Best->Function; 4451 // This is the overload that will be used for this initialization step if we 4452 // use this initialization. Mark it as referenced. 4453 Function->setReferenced(); 4454 4455 // Compute the returned type and value kind of the conversion. 4456 QualType cv3T3; 4457 if (isa<CXXConversionDecl>(Function)) 4458 cv3T3 = Function->getReturnType(); 4459 else 4460 cv3T3 = T1; 4461 4462 ExprValueKind VK = VK_RValue; 4463 if (cv3T3->isLValueReferenceType()) 4464 VK = VK_LValue; 4465 else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>()) 4466 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue; 4467 cv3T3 = cv3T3.getNonLValueExprType(S.Context); 4468 4469 // Add the user-defined conversion step. 4470 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4471 Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3, 4472 HadMultipleCandidates); 4473 4474 // Determine whether we'll need to perform derived-to-base adjustments or 4475 // other conversions. 4476 bool NewDerivedToBase = false; 4477 bool NewObjCConversion = false; 4478 bool NewObjCLifetimeConversion = false; 4479 Sema::ReferenceCompareResult NewRefRelationship 4480 = S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, 4481 NewDerivedToBase, NewObjCConversion, 4482 NewObjCLifetimeConversion); 4483 4484 // Add the final conversion sequence, if necessary. 4485 if (NewRefRelationship == Sema::Ref_Incompatible) { 4486 assert(!isa<CXXConstructorDecl>(Function) && 4487 "should not have conversion after constructor"); 4488 4489 ImplicitConversionSequence ICS; 4490 ICS.setStandard(); 4491 ICS.Standard = Best->FinalConversion; 4492 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2)); 4493 4494 // Every implicit conversion results in a prvalue, except for a glvalue 4495 // derived-to-base conversion, which we handle below. 4496 cv3T3 = ICS.Standard.getToType(2); 4497 VK = VK_RValue; 4498 } 4499 4500 // If the converted initializer is a prvalue, its type T4 is adjusted to 4501 // type "cv1 T4" and the temporary materialization conversion is applied. 4502 // 4503 // We adjust the cv-qualifications to match the reference regardless of 4504 // whether we have a prvalue so that the AST records the change. In this 4505 // case, T4 is "cv3 T3". 4506 QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers()); 4507 if (cv1T4.getQualifiers() != cv3T3.getQualifiers()) 4508 Sequence.AddQualificationConversionStep(cv1T4, VK); 4509 Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue); 4510 VK = IsLValueRef ? VK_LValue : VK_XValue; 4511 4512 if (NewDerivedToBase) 4513 Sequence.AddDerivedToBaseCastStep(cv1T1, VK); 4514 else if (NewObjCConversion) 4515 Sequence.AddObjCObjectConversionStep(cv1T1); 4516 4517 return OR_Success; 4518 } 4519 4520 static void CheckCXX98CompatAccessibleCopy(Sema &S, 4521 const InitializedEntity &Entity, 4522 Expr *CurInitExpr); 4523 4524 /// Attempt reference initialization (C++0x [dcl.init.ref]) 4525 static void TryReferenceInitialization(Sema &S, 4526 const InitializedEntity &Entity, 4527 const InitializationKind &Kind, 4528 Expr *Initializer, 4529 InitializationSequence &Sequence) { 4530 QualType DestType = Entity.getType(); 4531 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); 4532 Qualifiers T1Quals; 4533 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 4534 QualType cv2T2 = Initializer->getType(); 4535 Qualifiers T2Quals; 4536 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 4537 4538 // If the initializer is the address of an overloaded function, try 4539 // to resolve the overloaded function. If all goes well, T2 is the 4540 // type of the resulting function. 4541 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 4542 T1, Sequence)) 4543 return; 4544 4545 // Delegate everything else to a subfunction. 4546 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 4547 T1Quals, cv2T2, T2, T2Quals, Sequence); 4548 } 4549 4550 /// Determine whether an expression is a non-referenceable glvalue (one to 4551 /// which a reference can never bind). Attempting to bind a reference to 4552 /// such a glvalue will always create a temporary. 4553 static bool isNonReferenceableGLValue(Expr *E) { 4554 return E->refersToBitField() || E->refersToVectorElement(); 4555 } 4556 4557 /// Reference initialization without resolving overloaded functions. 4558 static void TryReferenceInitializationCore(Sema &S, 4559 const InitializedEntity &Entity, 4560 const InitializationKind &Kind, 4561 Expr *Initializer, 4562 QualType cv1T1, QualType T1, 4563 Qualifiers T1Quals, 4564 QualType cv2T2, QualType T2, 4565 Qualifiers T2Quals, 4566 InitializationSequence &Sequence) { 4567 QualType DestType = Entity.getType(); 4568 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4569 // Compute some basic properties of the types and the initializer. 4570 bool isLValueRef = DestType->isLValueReferenceType(); 4571 bool isRValueRef = !isLValueRef; 4572 bool DerivedToBase = false; 4573 bool ObjCConversion = false; 4574 bool ObjCLifetimeConversion = false; 4575 Expr::Classification InitCategory = Initializer->Classify(S.Context); 4576 Sema::ReferenceCompareResult RefRelationship 4577 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase, 4578 ObjCConversion, ObjCLifetimeConversion); 4579 4580 // C++0x [dcl.init.ref]p5: 4581 // A reference to type "cv1 T1" is initialized by an expression of type 4582 // "cv2 T2" as follows: 4583 // 4584 // - If the reference is an lvalue reference and the initializer 4585 // expression 4586 // Note the analogous bullet points for rvalue refs to functions. Because 4587 // there are no function rvalues in C++, rvalue refs to functions are treated 4588 // like lvalue refs. 4589 OverloadingResult ConvOvlResult = OR_Success; 4590 bool T1Function = T1->isFunctionType(); 4591 if (isLValueRef || T1Function) { 4592 if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) && 4593 (RefRelationship == Sema::Ref_Compatible || 4594 (Kind.isCStyleOrFunctionalCast() && 4595 RefRelationship == Sema::Ref_Related))) { 4596 // - is an lvalue (but is not a bit-field), and "cv1 T1" is 4597 // reference-compatible with "cv2 T2," or 4598 if (T1Quals != T2Quals) 4599 // Convert to cv1 T2. This should only add qualifiers unless this is a 4600 // c-style cast. The removal of qualifiers in that case notionally 4601 // happens after the reference binding, but that doesn't matter. 4602 Sequence.AddQualificationConversionStep( 4603 S.Context.getQualifiedType(T2, T1Quals), 4604 Initializer->getValueKind()); 4605 if (DerivedToBase) 4606 Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue); 4607 else if (ObjCConversion) 4608 Sequence.AddObjCObjectConversionStep(cv1T1); 4609 4610 // We only create a temporary here when binding a reference to a 4611 // bit-field or vector element. Those cases are't supposed to be 4612 // handled by this bullet, but the outcome is the same either way. 4613 Sequence.AddReferenceBindingStep(cv1T1, false); 4614 return; 4615 } 4616 4617 // - has a class type (i.e., T2 is a class type), where T1 is not 4618 // reference-related to T2, and can be implicitly converted to an 4619 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible 4620 // with "cv3 T3" (this conversion is selected by enumerating the 4621 // applicable conversion functions (13.3.1.6) and choosing the best 4622 // one through overload resolution (13.3)), 4623 // If we have an rvalue ref to function type here, the rhs must be 4624 // an rvalue. DR1287 removed the "implicitly" here. 4625 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() && 4626 (isLValueRef || InitCategory.isRValue())) { 4627 ConvOvlResult = TryRefInitWithConversionFunction( 4628 S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef, 4629 /*IsLValueRef*/ isLValueRef, Sequence); 4630 if (ConvOvlResult == OR_Success) 4631 return; 4632 if (ConvOvlResult != OR_No_Viable_Function) 4633 Sequence.SetOverloadFailure( 4634 InitializationSequence::FK_ReferenceInitOverloadFailed, 4635 ConvOvlResult); 4636 } 4637 } 4638 4639 // - Otherwise, the reference shall be an lvalue reference to a 4640 // non-volatile const type (i.e., cv1 shall be const), or the reference 4641 // shall be an rvalue reference. 4642 // For address spaces, we interpret this to mean that an addr space 4643 // of a reference "cv1 T1" is a superset of addr space of "cv2 T2". 4644 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() && 4645 T1Quals.isAddressSpaceSupersetOf(T2Quals))) { 4646 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 4647 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4648 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 4649 Sequence.SetOverloadFailure( 4650 InitializationSequence::FK_ReferenceInitOverloadFailed, 4651 ConvOvlResult); 4652 else if (!InitCategory.isLValue()) 4653 Sequence.SetFailed( 4654 T1Quals.isAddressSpaceSupersetOf(T2Quals) 4655 ? InitializationSequence:: 4656 FK_NonConstLValueReferenceBindingToTemporary 4657 : InitializationSequence::FK_ReferenceInitDropsQualifiers); 4658 else { 4659 InitializationSequence::FailureKind FK; 4660 switch (RefRelationship) { 4661 case Sema::Ref_Compatible: 4662 if (Initializer->refersToBitField()) 4663 FK = InitializationSequence:: 4664 FK_NonConstLValueReferenceBindingToBitfield; 4665 else if (Initializer->refersToVectorElement()) 4666 FK = InitializationSequence:: 4667 FK_NonConstLValueReferenceBindingToVectorElement; 4668 else 4669 llvm_unreachable("unexpected kind of compatible initializer"); 4670 break; 4671 case Sema::Ref_Related: 4672 FK = InitializationSequence::FK_ReferenceInitDropsQualifiers; 4673 break; 4674 case Sema::Ref_Incompatible: 4675 FK = InitializationSequence:: 4676 FK_NonConstLValueReferenceBindingToUnrelated; 4677 break; 4678 } 4679 Sequence.SetFailed(FK); 4680 } 4681 return; 4682 } 4683 4684 // - If the initializer expression 4685 // - is an 4686 // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or 4687 // [1z] rvalue (but not a bit-field) or 4688 // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2" 4689 // 4690 // Note: functions are handled above and below rather than here... 4691 if (!T1Function && 4692 (RefRelationship == Sema::Ref_Compatible || 4693 (Kind.isCStyleOrFunctionalCast() && 4694 RefRelationship == Sema::Ref_Related)) && 4695 ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) || 4696 (InitCategory.isPRValue() && 4697 (S.getLangOpts().CPlusPlus17 || T2->isRecordType() || 4698 T2->isArrayType())))) { 4699 ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue; 4700 if (InitCategory.isPRValue() && T2->isRecordType()) { 4701 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the 4702 // compiler the freedom to perform a copy here or bind to the 4703 // object, while C++0x requires that we bind directly to the 4704 // object. Hence, we always bind to the object without making an 4705 // extra copy. However, in C++03 requires that we check for the 4706 // presence of a suitable copy constructor: 4707 // 4708 // The constructor that would be used to make the copy shall 4709 // be callable whether or not the copy is actually done. 4710 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt) 4711 Sequence.AddExtraneousCopyToTemporary(cv2T2); 4712 else if (S.getLangOpts().CPlusPlus11) 4713 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer); 4714 } 4715 4716 // C++1z [dcl.init.ref]/5.2.1.2: 4717 // If the converted initializer is a prvalue, its type T4 is adjusted 4718 // to type "cv1 T4" and the temporary materialization conversion is 4719 // applied. 4720 // Postpone address space conversions to after the temporary materialization 4721 // conversion to allow creating temporaries in the alloca address space. 4722 auto T1QualsIgnoreAS = T1Quals; 4723 auto T2QualsIgnoreAS = T2Quals; 4724 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { 4725 T1QualsIgnoreAS.removeAddressSpace(); 4726 T2QualsIgnoreAS.removeAddressSpace(); 4727 } 4728 QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS); 4729 if (T1QualsIgnoreAS != T2QualsIgnoreAS) 4730 Sequence.AddQualificationConversionStep(cv1T4, ValueKind); 4731 Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue); 4732 ValueKind = isLValueRef ? VK_LValue : VK_XValue; 4733 // Add addr space conversion if required. 4734 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { 4735 auto T4Quals = cv1T4.getQualifiers(); 4736 T4Quals.addAddressSpace(T1Quals.getAddressSpace()); 4737 QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals); 4738 Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind); 4739 } 4740 4741 // In any case, the reference is bound to the resulting glvalue (or to 4742 // an appropriate base class subobject). 4743 if (DerivedToBase) 4744 Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind); 4745 else if (ObjCConversion) 4746 Sequence.AddObjCObjectConversionStep(cv1T1); 4747 return; 4748 } 4749 4750 // - has a class type (i.e., T2 is a class type), where T1 is not 4751 // reference-related to T2, and can be implicitly converted to an 4752 // xvalue, class prvalue, or function lvalue of type "cv3 T3", 4753 // where "cv1 T1" is reference-compatible with "cv3 T3", 4754 // 4755 // DR1287 removes the "implicitly" here. 4756 if (T2->isRecordType()) { 4757 if (RefRelationship == Sema::Ref_Incompatible) { 4758 ConvOvlResult = TryRefInitWithConversionFunction( 4759 S, Entity, Kind, Initializer, /*AllowRValues*/ true, 4760 /*IsLValueRef*/ isLValueRef, Sequence); 4761 if (ConvOvlResult) 4762 Sequence.SetOverloadFailure( 4763 InitializationSequence::FK_ReferenceInitOverloadFailed, 4764 ConvOvlResult); 4765 4766 return; 4767 } 4768 4769 if (RefRelationship == Sema::Ref_Compatible && 4770 isRValueRef && InitCategory.isLValue()) { 4771 Sequence.SetFailed( 4772 InitializationSequence::FK_RValueReferenceBindingToLValue); 4773 return; 4774 } 4775 4776 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 4777 return; 4778 } 4779 4780 // - Otherwise, a temporary of type "cv1 T1" is created and initialized 4781 // from the initializer expression using the rules for a non-reference 4782 // copy-initialization (8.5). The reference is then bound to the 4783 // temporary. [...] 4784 4785 // Ignore address space of reference type at this point and perform address 4786 // space conversion after the reference binding step. 4787 QualType cv1T1IgnoreAS = 4788 T1Quals.hasAddressSpace() 4789 ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace()) 4790 : cv1T1; 4791 4792 InitializedEntity TempEntity = 4793 InitializedEntity::InitializeTemporary(cv1T1IgnoreAS); 4794 4795 // FIXME: Why do we use an implicit conversion here rather than trying 4796 // copy-initialization? 4797 ImplicitConversionSequence ICS 4798 = S.TryImplicitConversion(Initializer, TempEntity.getType(), 4799 /*SuppressUserConversions=*/false, 4800 /*AllowExplicit=*/false, 4801 /*FIXME:InOverloadResolution=*/false, 4802 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 4803 /*AllowObjCWritebackConversion=*/false); 4804 4805 if (ICS.isBad()) { 4806 // FIXME: Use the conversion function set stored in ICS to turn 4807 // this into an overloading ambiguity diagnostic. However, we need 4808 // to keep that set as an OverloadCandidateSet rather than as some 4809 // other kind of set. 4810 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 4811 Sequence.SetOverloadFailure( 4812 InitializationSequence::FK_ReferenceInitOverloadFailed, 4813 ConvOvlResult); 4814 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 4815 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4816 else 4817 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed); 4818 return; 4819 } else { 4820 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType()); 4821 } 4822 4823 // [...] If T1 is reference-related to T2, cv1 must be the 4824 // same cv-qualification as, or greater cv-qualification 4825 // than, cv2; otherwise, the program is ill-formed. 4826 unsigned T1CVRQuals = T1Quals.getCVRQualifiers(); 4827 unsigned T2CVRQuals = T2Quals.getCVRQualifiers(); 4828 if ((RefRelationship == Sema::Ref_Related && 4829 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) || 4830 !T1Quals.isAddressSpaceSupersetOf(T2Quals)) { 4831 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 4832 return; 4833 } 4834 4835 // [...] If T1 is reference-related to T2 and the reference is an rvalue 4836 // reference, the initializer expression shall not be an lvalue. 4837 if (RefRelationship >= Sema::Ref_Related && !isLValueRef && 4838 InitCategory.isLValue()) { 4839 Sequence.SetFailed( 4840 InitializationSequence::FK_RValueReferenceBindingToLValue); 4841 return; 4842 } 4843 4844 Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true); 4845 4846 if (T1Quals.hasAddressSpace()) { 4847 if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(), 4848 LangAS::Default)) { 4849 Sequence.SetFailed( 4850 InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary); 4851 return; 4852 } 4853 Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue 4854 : VK_XValue); 4855 } 4856 } 4857 4858 /// Attempt character array initialization from a string literal 4859 /// (C++ [dcl.init.string], C99 6.7.8). 4860 static void TryStringLiteralInitialization(Sema &S, 4861 const InitializedEntity &Entity, 4862 const InitializationKind &Kind, 4863 Expr *Initializer, 4864 InitializationSequence &Sequence) { 4865 Sequence.AddStringInitStep(Entity.getType()); 4866 } 4867 4868 /// Attempt value initialization (C++ [dcl.init]p7). 4869 static void TryValueInitialization(Sema &S, 4870 const InitializedEntity &Entity, 4871 const InitializationKind &Kind, 4872 InitializationSequence &Sequence, 4873 InitListExpr *InitList) { 4874 assert((!InitList || InitList->getNumInits() == 0) && 4875 "Shouldn't use value-init for non-empty init lists"); 4876 4877 // C++98 [dcl.init]p5, C++11 [dcl.init]p7: 4878 // 4879 // To value-initialize an object of type T means: 4880 QualType T = Entity.getType(); 4881 4882 // -- if T is an array type, then each element is value-initialized; 4883 T = S.Context.getBaseElementType(T); 4884 4885 if (const RecordType *RT = T->getAs<RecordType>()) { 4886 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 4887 bool NeedZeroInitialization = true; 4888 // C++98: 4889 // -- if T is a class type (clause 9) with a user-declared constructor 4890 // (12.1), then the default constructor for T is called (and the 4891 // initialization is ill-formed if T has no accessible default 4892 // constructor); 4893 // C++11: 4894 // -- if T is a class type (clause 9) with either no default constructor 4895 // (12.1 [class.ctor]) or a default constructor that is user-provided 4896 // or deleted, then the object is default-initialized; 4897 // 4898 // Note that the C++11 rule is the same as the C++98 rule if there are no 4899 // defaulted or deleted constructors, so we just use it unconditionally. 4900 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl); 4901 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted()) 4902 NeedZeroInitialization = false; 4903 4904 // -- if T is a (possibly cv-qualified) non-union class type without a 4905 // user-provided or deleted default constructor, then the object is 4906 // zero-initialized and, if T has a non-trivial default constructor, 4907 // default-initialized; 4908 // The 'non-union' here was removed by DR1502. The 'non-trivial default 4909 // constructor' part was removed by DR1507. 4910 if (NeedZeroInitialization) 4911 Sequence.AddZeroInitializationStep(Entity.getType()); 4912 4913 // C++03: 4914 // -- if T is a non-union class type without a user-declared constructor, 4915 // then every non-static data member and base class component of T is 4916 // value-initialized; 4917 // [...] A program that calls for [...] value-initialization of an 4918 // entity of reference type is ill-formed. 4919 // 4920 // C++11 doesn't need this handling, because value-initialization does not 4921 // occur recursively there, and the implicit default constructor is 4922 // defined as deleted in the problematic cases. 4923 if (!S.getLangOpts().CPlusPlus11 && 4924 ClassDecl->hasUninitializedReferenceMember()) { 4925 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference); 4926 return; 4927 } 4928 4929 // If this is list-value-initialization, pass the empty init list on when 4930 // building the constructor call. This affects the semantics of a few 4931 // things (such as whether an explicit default constructor can be called). 4932 Expr *InitListAsExpr = InitList; 4933 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0); 4934 bool InitListSyntax = InitList; 4935 4936 // FIXME: Instead of creating a CXXConstructExpr of array type here, 4937 // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr. 4938 return TryConstructorInitialization( 4939 S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax); 4940 } 4941 } 4942 4943 Sequence.AddZeroInitializationStep(Entity.getType()); 4944 } 4945 4946 /// Attempt default initialization (C++ [dcl.init]p6). 4947 static void TryDefaultInitialization(Sema &S, 4948 const InitializedEntity &Entity, 4949 const InitializationKind &Kind, 4950 InitializationSequence &Sequence) { 4951 assert(Kind.getKind() == InitializationKind::IK_Default); 4952 4953 // C++ [dcl.init]p6: 4954 // To default-initialize an object of type T means: 4955 // - if T is an array type, each element is default-initialized; 4956 QualType DestType = S.Context.getBaseElementType(Entity.getType()); 4957 4958 // - if T is a (possibly cv-qualified) class type (Clause 9), the default 4959 // constructor for T is called (and the initialization is ill-formed if 4960 // T has no accessible default constructor); 4961 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) { 4962 TryConstructorInitialization(S, Entity, Kind, None, DestType, 4963 Entity.getType(), Sequence); 4964 return; 4965 } 4966 4967 // - otherwise, no initialization is performed. 4968 4969 // If a program calls for the default initialization of an object of 4970 // a const-qualified type T, T shall be a class type with a user-provided 4971 // default constructor. 4972 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) { 4973 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 4974 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 4975 return; 4976 } 4977 4978 // If the destination type has a lifetime property, zero-initialize it. 4979 if (DestType.getQualifiers().hasObjCLifetime()) { 4980 Sequence.AddZeroInitializationStep(Entity.getType()); 4981 return; 4982 } 4983 } 4984 4985 /// Attempt a user-defined conversion between two types (C++ [dcl.init]), 4986 /// which enumerates all conversion functions and performs overload resolution 4987 /// to select the best. 4988 static void TryUserDefinedConversion(Sema &S, 4989 QualType DestType, 4990 const InitializationKind &Kind, 4991 Expr *Initializer, 4992 InitializationSequence &Sequence, 4993 bool TopLevelOfInitList) { 4994 assert(!DestType->isReferenceType() && "References are handled elsewhere"); 4995 QualType SourceType = Initializer->getType(); 4996 assert((DestType->isRecordType() || SourceType->isRecordType()) && 4997 "Must have a class type to perform a user-defined conversion"); 4998 4999 // Build the candidate set directly in the initialization sequence 5000 // structure, so that it will persist if we fail. 5001 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 5002 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 5003 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); 5004 5005 // Determine whether we are allowed to call explicit constructors or 5006 // explicit conversion operators. 5007 bool AllowExplicit = Kind.AllowExplicit(); 5008 5009 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) { 5010 // The type we're converting to is a class type. Enumerate its constructors 5011 // to see if there is a suitable conversion. 5012 CXXRecordDecl *DestRecordDecl 5013 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 5014 5015 // Try to complete the type we're converting to. 5016 if (S.isCompleteType(Kind.getLocation(), DestType)) { 5017 for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) { 5018 auto Info = getConstructorInfo(D); 5019 if (!Info.Constructor) 5020 continue; 5021 5022 if (!Info.Constructor->isInvalidDecl() && 5023 Info.Constructor->isConvertingConstructor(AllowExplicit)) { 5024 if (Info.ConstructorTmpl) 5025 S.AddTemplateOverloadCandidate( 5026 Info.ConstructorTmpl, Info.FoundDecl, 5027 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, 5028 /*SuppressUserConversions=*/true, 5029 /*PartialOverloading*/ false, AllowExplicit); 5030 else 5031 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, 5032 Initializer, CandidateSet, 5033 /*SuppressUserConversions=*/true, 5034 /*PartialOverloading*/ false, AllowExplicit); 5035 } 5036 } 5037 } 5038 } 5039 5040 SourceLocation DeclLoc = Initializer->getBeginLoc(); 5041 5042 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) { 5043 // The type we're converting from is a class type, enumerate its conversion 5044 // functions. 5045 5046 // We can only enumerate the conversion functions for a complete type; if 5047 // the type isn't complete, simply skip this step. 5048 if (S.isCompleteType(DeclLoc, SourceType)) { 5049 CXXRecordDecl *SourceRecordDecl 5050 = cast<CXXRecordDecl>(SourceRecordType->getDecl()); 5051 5052 const auto &Conversions = 5053 SourceRecordDecl->getVisibleConversionFunctions(); 5054 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 5055 NamedDecl *D = *I; 5056 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 5057 if (isa<UsingShadowDecl>(D)) 5058 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 5059 5060 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 5061 CXXConversionDecl *Conv; 5062 if (ConvTemplate) 5063 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 5064 else 5065 Conv = cast<CXXConversionDecl>(D); 5066 5067 if (AllowExplicit || !Conv->isExplicit()) { 5068 if (ConvTemplate) 5069 S.AddTemplateConversionCandidate( 5070 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 5071 CandidateSet, AllowExplicit, AllowExplicit); 5072 else 5073 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, 5074 DestType, CandidateSet, AllowExplicit, 5075 AllowExplicit); 5076 } 5077 } 5078 } 5079 } 5080 5081 // Perform overload resolution. If it fails, return the failed result. 5082 OverloadCandidateSet::iterator Best; 5083 if (OverloadingResult Result 5084 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) { 5085 Sequence.SetOverloadFailure( 5086 InitializationSequence::FK_UserConversionOverloadFailed, 5087 Result); 5088 return; 5089 } 5090 5091 FunctionDecl *Function = Best->Function; 5092 Function->setReferenced(); 5093 bool HadMultipleCandidates = (CandidateSet.size() > 1); 5094 5095 if (isa<CXXConstructorDecl>(Function)) { 5096 // Add the user-defined conversion step. Any cv-qualification conversion is 5097 // subsumed by the initialization. Per DR5, the created temporary is of the 5098 // cv-unqualified type of the destination. 5099 Sequence.AddUserConversionStep(Function, Best->FoundDecl, 5100 DestType.getUnqualifiedType(), 5101 HadMultipleCandidates); 5102 5103 // C++14 and before: 5104 // - if the function is a constructor, the call initializes a temporary 5105 // of the cv-unqualified version of the destination type. The [...] 5106 // temporary [...] is then used to direct-initialize, according to the 5107 // rules above, the object that is the destination of the 5108 // copy-initialization. 5109 // Note that this just performs a simple object copy from the temporary. 5110 // 5111 // C++17: 5112 // - if the function is a constructor, the call is a prvalue of the 5113 // cv-unqualified version of the destination type whose return object 5114 // is initialized by the constructor. The call is used to 5115 // direct-initialize, according to the rules above, the object that 5116 // is the destination of the copy-initialization. 5117 // Therefore we need to do nothing further. 5118 // 5119 // FIXME: Mark this copy as extraneous. 5120 if (!S.getLangOpts().CPlusPlus17) 5121 Sequence.AddFinalCopy(DestType); 5122 else if (DestType.hasQualifiers()) 5123 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 5124 return; 5125 } 5126 5127 // Add the user-defined conversion step that calls the conversion function. 5128 QualType ConvType = Function->getCallResultType(); 5129 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType, 5130 HadMultipleCandidates); 5131 5132 if (ConvType->getAs<RecordType>()) { 5133 // The call is used to direct-initialize [...] the object that is the 5134 // destination of the copy-initialization. 5135 // 5136 // In C++17, this does not call a constructor if we enter /17.6.1: 5137 // - If the initializer expression is a prvalue and the cv-unqualified 5138 // version of the source type is the same as the class of the 5139 // destination [... do not make an extra copy] 5140 // 5141 // FIXME: Mark this copy as extraneous. 5142 if (!S.getLangOpts().CPlusPlus17 || 5143 Function->getReturnType()->isReferenceType() || 5144 !S.Context.hasSameUnqualifiedType(ConvType, DestType)) 5145 Sequence.AddFinalCopy(DestType); 5146 else if (!S.Context.hasSameType(ConvType, DestType)) 5147 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 5148 return; 5149 } 5150 5151 // If the conversion following the call to the conversion function 5152 // is interesting, add it as a separate step. 5153 if (Best->FinalConversion.First || Best->FinalConversion.Second || 5154 Best->FinalConversion.Third) { 5155 ImplicitConversionSequence ICS; 5156 ICS.setStandard(); 5157 ICS.Standard = Best->FinalConversion; 5158 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 5159 } 5160 } 5161 5162 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>, 5163 /// a function with a pointer return type contains a 'return false;' statement. 5164 /// In C++11, 'false' is not a null pointer, so this breaks the build of any 5165 /// code using that header. 5166 /// 5167 /// Work around this by treating 'return false;' as zero-initializing the result 5168 /// if it's used in a pointer-returning function in a system header. 5169 static bool isLibstdcxxPointerReturnFalseHack(Sema &S, 5170 const InitializedEntity &Entity, 5171 const Expr *Init) { 5172 return S.getLangOpts().CPlusPlus11 && 5173 Entity.getKind() == InitializedEntity::EK_Result && 5174 Entity.getType()->isPointerType() && 5175 isa<CXXBoolLiteralExpr>(Init) && 5176 !cast<CXXBoolLiteralExpr>(Init)->getValue() && 5177 S.getSourceManager().isInSystemHeader(Init->getExprLoc()); 5178 } 5179 5180 /// The non-zero enum values here are indexes into diagnostic alternatives. 5181 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar }; 5182 5183 /// Determines whether this expression is an acceptable ICR source. 5184 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e, 5185 bool isAddressOf, bool &isWeakAccess) { 5186 // Skip parens. 5187 e = e->IgnoreParens(); 5188 5189 // Skip address-of nodes. 5190 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 5191 if (op->getOpcode() == UO_AddrOf) 5192 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true, 5193 isWeakAccess); 5194 5195 // Skip certain casts. 5196 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) { 5197 switch (ce->getCastKind()) { 5198 case CK_Dependent: 5199 case CK_BitCast: 5200 case CK_LValueBitCast: 5201 case CK_NoOp: 5202 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess); 5203 5204 case CK_ArrayToPointerDecay: 5205 return IIK_nonscalar; 5206 5207 case CK_NullToPointer: 5208 return IIK_okay; 5209 5210 default: 5211 break; 5212 } 5213 5214 // If we have a declaration reference, it had better be a local variable. 5215 } else if (isa<DeclRefExpr>(e)) { 5216 // set isWeakAccess to true, to mean that there will be an implicit 5217 // load which requires a cleanup. 5218 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 5219 isWeakAccess = true; 5220 5221 if (!isAddressOf) return IIK_nonlocal; 5222 5223 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl()); 5224 if (!var) return IIK_nonlocal; 5225 5226 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal); 5227 5228 // If we have a conditional operator, check both sides. 5229 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) { 5230 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf, 5231 isWeakAccess)) 5232 return iik; 5233 5234 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess); 5235 5236 // These are never scalar. 5237 } else if (isa<ArraySubscriptExpr>(e)) { 5238 return IIK_nonscalar; 5239 5240 // Otherwise, it needs to be a null pointer constant. 5241 } else { 5242 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull) 5243 ? IIK_okay : IIK_nonlocal); 5244 } 5245 5246 return IIK_nonlocal; 5247 } 5248 5249 /// Check whether the given expression is a valid operand for an 5250 /// indirect copy/restore. 5251 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) { 5252 assert(src->isRValue()); 5253 bool isWeakAccess = false; 5254 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess); 5255 // If isWeakAccess to true, there will be an implicit 5256 // load which requires a cleanup. 5257 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess) 5258 S.Cleanup.setExprNeedsCleanups(true); 5259 5260 if (iik == IIK_okay) return; 5261 5262 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback) 5263 << ((unsigned) iik - 1) // shift index into diagnostic explanations 5264 << src->getSourceRange(); 5265 } 5266 5267 /// Determine whether we have compatible array types for the 5268 /// purposes of GNU by-copy array initialization. 5269 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest, 5270 const ArrayType *Source) { 5271 // If the source and destination array types are equivalent, we're 5272 // done. 5273 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0))) 5274 return true; 5275 5276 // Make sure that the element types are the same. 5277 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType())) 5278 return false; 5279 5280 // The only mismatch we allow is when the destination is an 5281 // incomplete array type and the source is a constant array type. 5282 return Source->isConstantArrayType() && Dest->isIncompleteArrayType(); 5283 } 5284 5285 static bool tryObjCWritebackConversion(Sema &S, 5286 InitializationSequence &Sequence, 5287 const InitializedEntity &Entity, 5288 Expr *Initializer) { 5289 bool ArrayDecay = false; 5290 QualType ArgType = Initializer->getType(); 5291 QualType ArgPointee; 5292 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) { 5293 ArrayDecay = true; 5294 ArgPointee = ArgArrayType->getElementType(); 5295 ArgType = S.Context.getPointerType(ArgPointee); 5296 } 5297 5298 // Handle write-back conversion. 5299 QualType ConvertedArgType; 5300 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(), 5301 ConvertedArgType)) 5302 return false; 5303 5304 // We should copy unless we're passing to an argument explicitly 5305 // marked 'out'. 5306 bool ShouldCopy = true; 5307 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 5308 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 5309 5310 // Do we need an lvalue conversion? 5311 if (ArrayDecay || Initializer->isGLValue()) { 5312 ImplicitConversionSequence ICS; 5313 ICS.setStandard(); 5314 ICS.Standard.setAsIdentityConversion(); 5315 5316 QualType ResultType; 5317 if (ArrayDecay) { 5318 ICS.Standard.First = ICK_Array_To_Pointer; 5319 ResultType = S.Context.getPointerType(ArgPointee); 5320 } else { 5321 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 5322 ResultType = Initializer->getType().getNonLValueExprType(S.Context); 5323 } 5324 5325 Sequence.AddConversionSequenceStep(ICS, ResultType); 5326 } 5327 5328 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy); 5329 return true; 5330 } 5331 5332 static bool TryOCLSamplerInitialization(Sema &S, 5333 InitializationSequence &Sequence, 5334 QualType DestType, 5335 Expr *Initializer) { 5336 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() || 5337 (!Initializer->isIntegerConstantExpr(S.Context) && 5338 !Initializer->getType()->isSamplerT())) 5339 return false; 5340 5341 Sequence.AddOCLSamplerInitStep(DestType); 5342 return true; 5343 } 5344 5345 static bool IsZeroInitializer(Expr *Initializer, Sema &S) { 5346 return Initializer->isIntegerConstantExpr(S.getASTContext()) && 5347 (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0); 5348 } 5349 5350 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S, 5351 InitializationSequence &Sequence, 5352 QualType DestType, 5353 Expr *Initializer) { 5354 if (!S.getLangOpts().OpenCL) 5355 return false; 5356 5357 // 5358 // OpenCL 1.2 spec, s6.12.10 5359 // 5360 // The event argument can also be used to associate the 5361 // async_work_group_copy with a previous async copy allowing 5362 // an event to be shared by multiple async copies; otherwise 5363 // event should be zero. 5364 // 5365 if (DestType->isEventT() || DestType->isQueueT()) { 5366 if (!IsZeroInitializer(Initializer, S)) 5367 return false; 5368 5369 Sequence.AddOCLZeroOpaqueTypeStep(DestType); 5370 return true; 5371 } 5372 5373 // We should allow zero initialization for all types defined in the 5374 // cl_intel_device_side_avc_motion_estimation extension, except 5375 // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t. 5376 if (S.getOpenCLOptions().isEnabled( 5377 "cl_intel_device_side_avc_motion_estimation") && 5378 DestType->isOCLIntelSubgroupAVCType()) { 5379 if (DestType->isOCLIntelSubgroupAVCMcePayloadType() || 5380 DestType->isOCLIntelSubgroupAVCMceResultType()) 5381 return false; 5382 if (!IsZeroInitializer(Initializer, S)) 5383 return false; 5384 5385 Sequence.AddOCLZeroOpaqueTypeStep(DestType); 5386 return true; 5387 } 5388 5389 return false; 5390 } 5391 5392 InitializationSequence::InitializationSequence(Sema &S, 5393 const InitializedEntity &Entity, 5394 const InitializationKind &Kind, 5395 MultiExprArg Args, 5396 bool TopLevelOfInitList, 5397 bool TreatUnavailableAsInvalid) 5398 : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) { 5399 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList, 5400 TreatUnavailableAsInvalid); 5401 } 5402 5403 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the 5404 /// address of that function, this returns true. Otherwise, it returns false. 5405 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) { 5406 auto *DRE = dyn_cast<DeclRefExpr>(E); 5407 if (!DRE || !isa<FunctionDecl>(DRE->getDecl())) 5408 return false; 5409 5410 return !S.checkAddressOfFunctionIsAvailable( 5411 cast<FunctionDecl>(DRE->getDecl())); 5412 } 5413 5414 /// Determine whether we can perform an elementwise array copy for this kind 5415 /// of entity. 5416 static bool canPerformArrayCopy(const InitializedEntity &Entity) { 5417 switch (Entity.getKind()) { 5418 case InitializedEntity::EK_LambdaCapture: 5419 // C++ [expr.prim.lambda]p24: 5420 // For array members, the array elements are direct-initialized in 5421 // increasing subscript order. 5422 return true; 5423 5424 case InitializedEntity::EK_Variable: 5425 // C++ [dcl.decomp]p1: 5426 // [...] each element is copy-initialized or direct-initialized from the 5427 // corresponding element of the assignment-expression [...] 5428 return isa<DecompositionDecl>(Entity.getDecl()); 5429 5430 case InitializedEntity::EK_Member: 5431 // C++ [class.copy.ctor]p14: 5432 // - if the member is an array, each element is direct-initialized with 5433 // the corresponding subobject of x 5434 return Entity.isImplicitMemberInitializer(); 5435 5436 case InitializedEntity::EK_ArrayElement: 5437 // All the above cases are intended to apply recursively, even though none 5438 // of them actually say that. 5439 if (auto *E = Entity.getParent()) 5440 return canPerformArrayCopy(*E); 5441 break; 5442 5443 default: 5444 break; 5445 } 5446 5447 return false; 5448 } 5449 5450 void InitializationSequence::InitializeFrom(Sema &S, 5451 const InitializedEntity &Entity, 5452 const InitializationKind &Kind, 5453 MultiExprArg Args, 5454 bool TopLevelOfInitList, 5455 bool TreatUnavailableAsInvalid) { 5456 ASTContext &Context = S.Context; 5457 5458 // Eliminate non-overload placeholder types in the arguments. We 5459 // need to do this before checking whether types are dependent 5460 // because lowering a pseudo-object expression might well give us 5461 // something of dependent type. 5462 for (unsigned I = 0, E = Args.size(); I != E; ++I) 5463 if (Args[I]->getType()->isNonOverloadPlaceholderType()) { 5464 // FIXME: should we be doing this here? 5465 ExprResult result = S.CheckPlaceholderExpr(Args[I]); 5466 if (result.isInvalid()) { 5467 SetFailed(FK_PlaceholderType); 5468 return; 5469 } 5470 Args[I] = result.get(); 5471 } 5472 5473 // C++0x [dcl.init]p16: 5474 // The semantics of initializers are as follows. The destination type is 5475 // the type of the object or reference being initialized and the source 5476 // type is the type of the initializer expression. The source type is not 5477 // defined when the initializer is a braced-init-list or when it is a 5478 // parenthesized list of expressions. 5479 QualType DestType = Entity.getType(); 5480 5481 if (DestType->isDependentType() || 5482 Expr::hasAnyTypeDependentArguments(Args)) { 5483 SequenceKind = DependentSequence; 5484 return; 5485 } 5486 5487 // Almost everything is a normal sequence. 5488 setSequenceKind(NormalSequence); 5489 5490 QualType SourceType; 5491 Expr *Initializer = nullptr; 5492 if (Args.size() == 1) { 5493 Initializer = Args[0]; 5494 if (S.getLangOpts().ObjC) { 5495 if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(), 5496 DestType, Initializer->getType(), 5497 Initializer) || 5498 S.ConversionToObjCStringLiteralCheck(DestType, Initializer)) 5499 Args[0] = Initializer; 5500 } 5501 if (!isa<InitListExpr>(Initializer)) 5502 SourceType = Initializer->getType(); 5503 } 5504 5505 // - If the initializer is a (non-parenthesized) braced-init-list, the 5506 // object is list-initialized (8.5.4). 5507 if (Kind.getKind() != InitializationKind::IK_Direct) { 5508 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) { 5509 TryListInitialization(S, Entity, Kind, InitList, *this, 5510 TreatUnavailableAsInvalid); 5511 return; 5512 } 5513 } 5514 5515 // - If the destination type is a reference type, see 8.5.3. 5516 if (DestType->isReferenceType()) { 5517 // C++0x [dcl.init.ref]p1: 5518 // A variable declared to be a T& or T&&, that is, "reference to type T" 5519 // (8.3.2), shall be initialized by an object, or function, of type T or 5520 // by an object that can be converted into a T. 5521 // (Therefore, multiple arguments are not permitted.) 5522 if (Args.size() != 1) 5523 SetFailed(FK_TooManyInitsForReference); 5524 // C++17 [dcl.init.ref]p5: 5525 // A reference [...] is initialized by an expression [...] as follows: 5526 // If the initializer is not an expression, presumably we should reject, 5527 // but the standard fails to actually say so. 5528 else if (isa<InitListExpr>(Args[0])) 5529 SetFailed(FK_ParenthesizedListInitForReference); 5530 else 5531 TryReferenceInitialization(S, Entity, Kind, Args[0], *this); 5532 return; 5533 } 5534 5535 // - If the initializer is (), the object is value-initialized. 5536 if (Kind.getKind() == InitializationKind::IK_Value || 5537 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) { 5538 TryValueInitialization(S, Entity, Kind, *this); 5539 return; 5540 } 5541 5542 // Handle default initialization. 5543 if (Kind.getKind() == InitializationKind::IK_Default) { 5544 TryDefaultInitialization(S, Entity, Kind, *this); 5545 return; 5546 } 5547 5548 // - If the destination type is an array of characters, an array of 5549 // char16_t, an array of char32_t, or an array of wchar_t, and the 5550 // initializer is a string literal, see 8.5.2. 5551 // - Otherwise, if the destination type is an array, the program is 5552 // ill-formed. 5553 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) { 5554 if (Initializer && isa<VariableArrayType>(DestAT)) { 5555 SetFailed(FK_VariableLengthArrayHasInitializer); 5556 return; 5557 } 5558 5559 if (Initializer) { 5560 switch (IsStringInit(Initializer, DestAT, Context)) { 5561 case SIF_None: 5562 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this); 5563 return; 5564 case SIF_NarrowStringIntoWideChar: 5565 SetFailed(FK_NarrowStringIntoWideCharArray); 5566 return; 5567 case SIF_WideStringIntoChar: 5568 SetFailed(FK_WideStringIntoCharArray); 5569 return; 5570 case SIF_IncompatWideStringIntoWideChar: 5571 SetFailed(FK_IncompatWideStringIntoWideChar); 5572 return; 5573 case SIF_PlainStringIntoUTF8Char: 5574 SetFailed(FK_PlainStringIntoUTF8Char); 5575 return; 5576 case SIF_UTF8StringIntoPlainChar: 5577 SetFailed(FK_UTF8StringIntoPlainChar); 5578 return; 5579 case SIF_Other: 5580 break; 5581 } 5582 } 5583 5584 // Some kinds of initialization permit an array to be initialized from 5585 // another array of the same type, and perform elementwise initialization. 5586 if (Initializer && isa<ConstantArrayType>(DestAT) && 5587 S.Context.hasSameUnqualifiedType(Initializer->getType(), 5588 Entity.getType()) && 5589 canPerformArrayCopy(Entity)) { 5590 // If source is a prvalue, use it directly. 5591 if (Initializer->getValueKind() == VK_RValue) { 5592 AddArrayInitStep(DestType, /*IsGNUExtension*/false); 5593 return; 5594 } 5595 5596 // Emit element-at-a-time copy loop. 5597 InitializedEntity Element = 5598 InitializedEntity::InitializeElement(S.Context, 0, Entity); 5599 QualType InitEltT = 5600 Context.getAsArrayType(Initializer->getType())->getElementType(); 5601 OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT, 5602 Initializer->getValueKind(), 5603 Initializer->getObjectKind()); 5604 Expr *OVEAsExpr = &OVE; 5605 InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList, 5606 TreatUnavailableAsInvalid); 5607 if (!Failed()) 5608 AddArrayInitLoopStep(Entity.getType(), InitEltT); 5609 return; 5610 } 5611 5612 // Note: as an GNU C extension, we allow initialization of an 5613 // array from a compound literal that creates an array of the same 5614 // type, so long as the initializer has no side effects. 5615 if (!S.getLangOpts().CPlusPlus && Initializer && 5616 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) && 5617 Initializer->getType()->isArrayType()) { 5618 const ArrayType *SourceAT 5619 = Context.getAsArrayType(Initializer->getType()); 5620 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT)) 5621 SetFailed(FK_ArrayTypeMismatch); 5622 else if (Initializer->HasSideEffects(S.Context)) 5623 SetFailed(FK_NonConstantArrayInit); 5624 else { 5625 AddArrayInitStep(DestType, /*IsGNUExtension*/true); 5626 } 5627 } 5628 // Note: as a GNU C++ extension, we allow list-initialization of a 5629 // class member of array type from a parenthesized initializer list. 5630 else if (S.getLangOpts().CPlusPlus && 5631 Entity.getKind() == InitializedEntity::EK_Member && 5632 Initializer && isa<InitListExpr>(Initializer)) { 5633 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer), 5634 *this, TreatUnavailableAsInvalid); 5635 AddParenthesizedArrayInitStep(DestType); 5636 } else if (DestAT->getElementType()->isCharType()) 5637 SetFailed(FK_ArrayNeedsInitListOrStringLiteral); 5638 else if (IsWideCharCompatible(DestAT->getElementType(), Context)) 5639 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral); 5640 else 5641 SetFailed(FK_ArrayNeedsInitList); 5642 5643 return; 5644 } 5645 5646 // Determine whether we should consider writeback conversions for 5647 // Objective-C ARC. 5648 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount && 5649 Entity.isParameterKind(); 5650 5651 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer)) 5652 return; 5653 5654 // We're at the end of the line for C: it's either a write-back conversion 5655 // or it's a C assignment. There's no need to check anything else. 5656 if (!S.getLangOpts().CPlusPlus) { 5657 // If allowed, check whether this is an Objective-C writeback conversion. 5658 if (allowObjCWritebackConversion && 5659 tryObjCWritebackConversion(S, *this, Entity, Initializer)) { 5660 return; 5661 } 5662 5663 if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer)) 5664 return; 5665 5666 // Handle initialization in C 5667 AddCAssignmentStep(DestType); 5668 MaybeProduceObjCObject(S, *this, Entity); 5669 return; 5670 } 5671 5672 assert(S.getLangOpts().CPlusPlus); 5673 5674 // - If the destination type is a (possibly cv-qualified) class type: 5675 if (DestType->isRecordType()) { 5676 // - If the initialization is direct-initialization, or if it is 5677 // copy-initialization where the cv-unqualified version of the 5678 // source type is the same class as, or a derived class of, the 5679 // class of the destination, constructors are considered. [...] 5680 if (Kind.getKind() == InitializationKind::IK_Direct || 5681 (Kind.getKind() == InitializationKind::IK_Copy && 5682 (Context.hasSameUnqualifiedType(SourceType, DestType) || 5683 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType)))) 5684 TryConstructorInitialization(S, Entity, Kind, Args, 5685 DestType, DestType, *this); 5686 // - Otherwise (i.e., for the remaining copy-initialization cases), 5687 // user-defined conversion sequences that can convert from the source 5688 // type to the destination type or (when a conversion function is 5689 // used) to a derived class thereof are enumerated as described in 5690 // 13.3.1.4, and the best one is chosen through overload resolution 5691 // (13.3). 5692 else 5693 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 5694 TopLevelOfInitList); 5695 return; 5696 } 5697 5698 assert(Args.size() >= 1 && "Zero-argument case handled above"); 5699 5700 // The remaining cases all need a source type. 5701 if (Args.size() > 1) { 5702 SetFailed(FK_TooManyInitsForScalar); 5703 return; 5704 } else if (isa<InitListExpr>(Args[0])) { 5705 SetFailed(FK_ParenthesizedListInitForScalar); 5706 return; 5707 } 5708 5709 // - Otherwise, if the source type is a (possibly cv-qualified) class 5710 // type, conversion functions are considered. 5711 if (!SourceType.isNull() && SourceType->isRecordType()) { 5712 // For a conversion to _Atomic(T) from either T or a class type derived 5713 // from T, initialize the T object then convert to _Atomic type. 5714 bool NeedAtomicConversion = false; 5715 if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) { 5716 if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) || 5717 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, 5718 Atomic->getValueType())) { 5719 DestType = Atomic->getValueType(); 5720 NeedAtomicConversion = true; 5721 } 5722 } 5723 5724 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 5725 TopLevelOfInitList); 5726 MaybeProduceObjCObject(S, *this, Entity); 5727 if (!Failed() && NeedAtomicConversion) 5728 AddAtomicConversionStep(Entity.getType()); 5729 return; 5730 } 5731 5732 // - Otherwise, the initial value of the object being initialized is the 5733 // (possibly converted) value of the initializer expression. Standard 5734 // conversions (Clause 4) will be used, if necessary, to convert the 5735 // initializer expression to the cv-unqualified version of the 5736 // destination type; no user-defined conversions are considered. 5737 5738 ImplicitConversionSequence ICS 5739 = S.TryImplicitConversion(Initializer, DestType, 5740 /*SuppressUserConversions*/true, 5741 /*AllowExplicitConversions*/ false, 5742 /*InOverloadResolution*/ false, 5743 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 5744 allowObjCWritebackConversion); 5745 5746 if (ICS.isStandard() && 5747 ICS.Standard.Second == ICK_Writeback_Conversion) { 5748 // Objective-C ARC writeback conversion. 5749 5750 // We should copy unless we're passing to an argument explicitly 5751 // marked 'out'. 5752 bool ShouldCopy = true; 5753 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 5754 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 5755 5756 // If there was an lvalue adjustment, add it as a separate conversion. 5757 if (ICS.Standard.First == ICK_Array_To_Pointer || 5758 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 5759 ImplicitConversionSequence LvalueICS; 5760 LvalueICS.setStandard(); 5761 LvalueICS.Standard.setAsIdentityConversion(); 5762 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0)); 5763 LvalueICS.Standard.First = ICS.Standard.First; 5764 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0)); 5765 } 5766 5767 AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy); 5768 } else if (ICS.isBad()) { 5769 DeclAccessPair dap; 5770 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) { 5771 AddZeroInitializationStep(Entity.getType()); 5772 } else if (Initializer->getType() == Context.OverloadTy && 5773 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType, 5774 false, dap)) 5775 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 5776 else if (Initializer->getType()->isFunctionType() && 5777 isExprAnUnaddressableFunction(S, Initializer)) 5778 SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction); 5779 else 5780 SetFailed(InitializationSequence::FK_ConversionFailed); 5781 } else { 5782 AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 5783 5784 MaybeProduceObjCObject(S, *this, Entity); 5785 } 5786 } 5787 5788 InitializationSequence::~InitializationSequence() { 5789 for (auto &S : Steps) 5790 S.Destroy(); 5791 } 5792 5793 //===----------------------------------------------------------------------===// 5794 // Perform initialization 5795 //===----------------------------------------------------------------------===// 5796 static Sema::AssignmentAction 5797 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) { 5798 switch(Entity.getKind()) { 5799 case InitializedEntity::EK_Variable: 5800 case InitializedEntity::EK_New: 5801 case InitializedEntity::EK_Exception: 5802 case InitializedEntity::EK_Base: 5803 case InitializedEntity::EK_Delegating: 5804 return Sema::AA_Initializing; 5805 5806 case InitializedEntity::EK_Parameter: 5807 if (Entity.getDecl() && 5808 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 5809 return Sema::AA_Sending; 5810 5811 return Sema::AA_Passing; 5812 5813 case InitializedEntity::EK_Parameter_CF_Audited: 5814 if (Entity.getDecl() && 5815 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 5816 return Sema::AA_Sending; 5817 5818 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited; 5819 5820 case InitializedEntity::EK_Result: 5821 case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right. 5822 return Sema::AA_Returning; 5823 5824 case InitializedEntity::EK_Temporary: 5825 case InitializedEntity::EK_RelatedResult: 5826 // FIXME: Can we tell apart casting vs. converting? 5827 return Sema::AA_Casting; 5828 5829 case InitializedEntity::EK_Member: 5830 case InitializedEntity::EK_Binding: 5831 case InitializedEntity::EK_ArrayElement: 5832 case InitializedEntity::EK_VectorElement: 5833 case InitializedEntity::EK_ComplexElement: 5834 case InitializedEntity::EK_BlockElement: 5835 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 5836 case InitializedEntity::EK_LambdaCapture: 5837 case InitializedEntity::EK_CompoundLiteralInit: 5838 return Sema::AA_Initializing; 5839 } 5840 5841 llvm_unreachable("Invalid EntityKind!"); 5842 } 5843 5844 /// Whether we should bind a created object as a temporary when 5845 /// initializing the given entity. 5846 static bool shouldBindAsTemporary(const InitializedEntity &Entity) { 5847 switch (Entity.getKind()) { 5848 case InitializedEntity::EK_ArrayElement: 5849 case InitializedEntity::EK_Member: 5850 case InitializedEntity::EK_Result: 5851 case InitializedEntity::EK_StmtExprResult: 5852 case InitializedEntity::EK_New: 5853 case InitializedEntity::EK_Variable: 5854 case InitializedEntity::EK_Base: 5855 case InitializedEntity::EK_Delegating: 5856 case InitializedEntity::EK_VectorElement: 5857 case InitializedEntity::EK_ComplexElement: 5858 case InitializedEntity::EK_Exception: 5859 case InitializedEntity::EK_BlockElement: 5860 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 5861 case InitializedEntity::EK_LambdaCapture: 5862 case InitializedEntity::EK_CompoundLiteralInit: 5863 return false; 5864 5865 case InitializedEntity::EK_Parameter: 5866 case InitializedEntity::EK_Parameter_CF_Audited: 5867 case InitializedEntity::EK_Temporary: 5868 case InitializedEntity::EK_RelatedResult: 5869 case InitializedEntity::EK_Binding: 5870 return true; 5871 } 5872 5873 llvm_unreachable("missed an InitializedEntity kind?"); 5874 } 5875 5876 /// Whether the given entity, when initialized with an object 5877 /// created for that initialization, requires destruction. 5878 static bool shouldDestroyEntity(const InitializedEntity &Entity) { 5879 switch (Entity.getKind()) { 5880 case InitializedEntity::EK_Result: 5881 case InitializedEntity::EK_StmtExprResult: 5882 case InitializedEntity::EK_New: 5883 case InitializedEntity::EK_Base: 5884 case InitializedEntity::EK_Delegating: 5885 case InitializedEntity::EK_VectorElement: 5886 case InitializedEntity::EK_ComplexElement: 5887 case InitializedEntity::EK_BlockElement: 5888 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 5889 case InitializedEntity::EK_LambdaCapture: 5890 return false; 5891 5892 case InitializedEntity::EK_Member: 5893 case InitializedEntity::EK_Binding: 5894 case InitializedEntity::EK_Variable: 5895 case InitializedEntity::EK_Parameter: 5896 case InitializedEntity::EK_Parameter_CF_Audited: 5897 case InitializedEntity::EK_Temporary: 5898 case InitializedEntity::EK_ArrayElement: 5899 case InitializedEntity::EK_Exception: 5900 case InitializedEntity::EK_CompoundLiteralInit: 5901 case InitializedEntity::EK_RelatedResult: 5902 return true; 5903 } 5904 5905 llvm_unreachable("missed an InitializedEntity kind?"); 5906 } 5907 5908 /// Get the location at which initialization diagnostics should appear. 5909 static SourceLocation getInitializationLoc(const InitializedEntity &Entity, 5910 Expr *Initializer) { 5911 switch (Entity.getKind()) { 5912 case InitializedEntity::EK_Result: 5913 case InitializedEntity::EK_StmtExprResult: 5914 return Entity.getReturnLoc(); 5915 5916 case InitializedEntity::EK_Exception: 5917 return Entity.getThrowLoc(); 5918 5919 case InitializedEntity::EK_Variable: 5920 case InitializedEntity::EK_Binding: 5921 return Entity.getDecl()->getLocation(); 5922 5923 case InitializedEntity::EK_LambdaCapture: 5924 return Entity.getCaptureLoc(); 5925 5926 case InitializedEntity::EK_ArrayElement: 5927 case InitializedEntity::EK_Member: 5928 case InitializedEntity::EK_Parameter: 5929 case InitializedEntity::EK_Parameter_CF_Audited: 5930 case InitializedEntity::EK_Temporary: 5931 case InitializedEntity::EK_New: 5932 case InitializedEntity::EK_Base: 5933 case InitializedEntity::EK_Delegating: 5934 case InitializedEntity::EK_VectorElement: 5935 case InitializedEntity::EK_ComplexElement: 5936 case InitializedEntity::EK_BlockElement: 5937 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 5938 case InitializedEntity::EK_CompoundLiteralInit: 5939 case InitializedEntity::EK_RelatedResult: 5940 return Initializer->getBeginLoc(); 5941 } 5942 llvm_unreachable("missed an InitializedEntity kind?"); 5943 } 5944 5945 /// Make a (potentially elidable) temporary copy of the object 5946 /// provided by the given initializer by calling the appropriate copy 5947 /// constructor. 5948 /// 5949 /// \param S The Sema object used for type-checking. 5950 /// 5951 /// \param T The type of the temporary object, which must either be 5952 /// the type of the initializer expression or a superclass thereof. 5953 /// 5954 /// \param Entity The entity being initialized. 5955 /// 5956 /// \param CurInit The initializer expression. 5957 /// 5958 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that 5959 /// is permitted in C++03 (but not C++0x) when binding a reference to 5960 /// an rvalue. 5961 /// 5962 /// \returns An expression that copies the initializer expression into 5963 /// a temporary object, or an error expression if a copy could not be 5964 /// created. 5965 static ExprResult CopyObject(Sema &S, 5966 QualType T, 5967 const InitializedEntity &Entity, 5968 ExprResult CurInit, 5969 bool IsExtraneousCopy) { 5970 if (CurInit.isInvalid()) 5971 return CurInit; 5972 // Determine which class type we're copying to. 5973 Expr *CurInitExpr = (Expr *)CurInit.get(); 5974 CXXRecordDecl *Class = nullptr; 5975 if (const RecordType *Record = T->getAs<RecordType>()) 5976 Class = cast<CXXRecordDecl>(Record->getDecl()); 5977 if (!Class) 5978 return CurInit; 5979 5980 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get()); 5981 5982 // Make sure that the type we are copying is complete. 5983 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete)) 5984 return CurInit; 5985 5986 // Perform overload resolution using the class's constructors. Per 5987 // C++11 [dcl.init]p16, second bullet for class types, this initialization 5988 // is direct-initialization. 5989 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 5990 DeclContext::lookup_result Ctors = S.LookupConstructors(Class); 5991 5992 OverloadCandidateSet::iterator Best; 5993 switch (ResolveConstructorOverload( 5994 S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best, 5995 /*CopyInitializing=*/false, /*AllowExplicit=*/true, 5996 /*OnlyListConstructors=*/false, /*IsListInit=*/false, 5997 /*SecondStepOfCopyInit=*/true)) { 5998 case OR_Success: 5999 break; 6000 6001 case OR_No_Viable_Function: 6002 CandidateSet.NoteCandidates( 6003 PartialDiagnosticAt( 6004 Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext() 6005 ? diag::ext_rvalue_to_reference_temp_copy_no_viable 6006 : diag::err_temp_copy_no_viable) 6007 << (int)Entity.getKind() << CurInitExpr->getType() 6008 << CurInitExpr->getSourceRange()), 6009 S, OCD_AllCandidates, CurInitExpr); 6010 if (!IsExtraneousCopy || S.isSFINAEContext()) 6011 return ExprError(); 6012 return CurInit; 6013 6014 case OR_Ambiguous: 6015 CandidateSet.NoteCandidates( 6016 PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous) 6017 << (int)Entity.getKind() 6018 << CurInitExpr->getType() 6019 << CurInitExpr->getSourceRange()), 6020 S, OCD_ViableCandidates, CurInitExpr); 6021 return ExprError(); 6022 6023 case OR_Deleted: 6024 S.Diag(Loc, diag::err_temp_copy_deleted) 6025 << (int)Entity.getKind() << CurInitExpr->getType() 6026 << CurInitExpr->getSourceRange(); 6027 S.NoteDeletedFunction(Best->Function); 6028 return ExprError(); 6029 } 6030 6031 bool HadMultipleCandidates = CandidateSet.size() > 1; 6032 6033 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); 6034 SmallVector<Expr*, 8> ConstructorArgs; 6035 CurInit.get(); // Ownership transferred into MultiExprArg, below. 6036 6037 S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity, 6038 IsExtraneousCopy); 6039 6040 if (IsExtraneousCopy) { 6041 // If this is a totally extraneous copy for C++03 reference 6042 // binding purposes, just return the original initialization 6043 // expression. We don't generate an (elided) copy operation here 6044 // because doing so would require us to pass down a flag to avoid 6045 // infinite recursion, where each step adds another extraneous, 6046 // elidable copy. 6047 6048 // Instantiate the default arguments of any extra parameters in 6049 // the selected copy constructor, as if we were going to create a 6050 // proper call to the copy constructor. 6051 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) { 6052 ParmVarDecl *Parm = Constructor->getParamDecl(I); 6053 if (S.RequireCompleteType(Loc, Parm->getType(), 6054 diag::err_call_incomplete_argument)) 6055 break; 6056 6057 // Build the default argument expression; we don't actually care 6058 // if this succeeds or not, because this routine will complain 6059 // if there was a problem. 6060 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm); 6061 } 6062 6063 return CurInitExpr; 6064 } 6065 6066 // Determine the arguments required to actually perform the 6067 // constructor call (we might have derived-to-base conversions, or 6068 // the copy constructor may have default arguments). 6069 if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs)) 6070 return ExprError(); 6071 6072 // C++0x [class.copy]p32: 6073 // When certain criteria are met, an implementation is allowed to 6074 // omit the copy/move construction of a class object, even if the 6075 // copy/move constructor and/or destructor for the object have 6076 // side effects. [...] 6077 // - when a temporary class object that has not been bound to a 6078 // reference (12.2) would be copied/moved to a class object 6079 // with the same cv-unqualified type, the copy/move operation 6080 // can be omitted by constructing the temporary object 6081 // directly into the target of the omitted copy/move 6082 // 6083 // Note that the other three bullets are handled elsewhere. Copy 6084 // elision for return statements and throw expressions are handled as part 6085 // of constructor initialization, while copy elision for exception handlers 6086 // is handled by the run-time. 6087 // 6088 // FIXME: If the function parameter is not the same type as the temporary, we 6089 // should still be able to elide the copy, but we don't have a way to 6090 // represent in the AST how much should be elided in this case. 6091 bool Elidable = 6092 CurInitExpr->isTemporaryObject(S.Context, Class) && 6093 S.Context.hasSameUnqualifiedType( 6094 Best->Function->getParamDecl(0)->getType().getNonReferenceType(), 6095 CurInitExpr->getType()); 6096 6097 // Actually perform the constructor call. 6098 CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor, 6099 Elidable, 6100 ConstructorArgs, 6101 HadMultipleCandidates, 6102 /*ListInit*/ false, 6103 /*StdInitListInit*/ false, 6104 /*ZeroInit*/ false, 6105 CXXConstructExpr::CK_Complete, 6106 SourceRange()); 6107 6108 // If we're supposed to bind temporaries, do so. 6109 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity)) 6110 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 6111 return CurInit; 6112 } 6113 6114 /// Check whether elidable copy construction for binding a reference to 6115 /// a temporary would have succeeded if we were building in C++98 mode, for 6116 /// -Wc++98-compat. 6117 static void CheckCXX98CompatAccessibleCopy(Sema &S, 6118 const InitializedEntity &Entity, 6119 Expr *CurInitExpr) { 6120 assert(S.getLangOpts().CPlusPlus11); 6121 6122 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>(); 6123 if (!Record) 6124 return; 6125 6126 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr); 6127 if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc)) 6128 return; 6129 6130 // Find constructors which would have been considered. 6131 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 6132 DeclContext::lookup_result Ctors = 6133 S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl())); 6134 6135 // Perform overload resolution. 6136 OverloadCandidateSet::iterator Best; 6137 OverloadingResult OR = ResolveConstructorOverload( 6138 S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best, 6139 /*CopyInitializing=*/false, /*AllowExplicit=*/true, 6140 /*OnlyListConstructors=*/false, /*IsListInit=*/false, 6141 /*SecondStepOfCopyInit=*/true); 6142 6143 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy) 6144 << OR << (int)Entity.getKind() << CurInitExpr->getType() 6145 << CurInitExpr->getSourceRange(); 6146 6147 switch (OR) { 6148 case OR_Success: 6149 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function), 6150 Best->FoundDecl, Entity, Diag); 6151 // FIXME: Check default arguments as far as that's possible. 6152 break; 6153 6154 case OR_No_Viable_Function: 6155 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, 6156 OCD_AllCandidates, CurInitExpr); 6157 break; 6158 6159 case OR_Ambiguous: 6160 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, 6161 OCD_ViableCandidates, CurInitExpr); 6162 break; 6163 6164 case OR_Deleted: 6165 S.Diag(Loc, Diag); 6166 S.NoteDeletedFunction(Best->Function); 6167 break; 6168 } 6169 } 6170 6171 void InitializationSequence::PrintInitLocationNote(Sema &S, 6172 const InitializedEntity &Entity) { 6173 if (Entity.isParameterKind() && Entity.getDecl()) { 6174 if (Entity.getDecl()->getLocation().isInvalid()) 6175 return; 6176 6177 if (Entity.getDecl()->getDeclName()) 6178 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here) 6179 << Entity.getDecl()->getDeclName(); 6180 else 6181 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here); 6182 } 6183 else if (Entity.getKind() == InitializedEntity::EK_RelatedResult && 6184 Entity.getMethodDecl()) 6185 S.Diag(Entity.getMethodDecl()->getLocation(), 6186 diag::note_method_return_type_change) 6187 << Entity.getMethodDecl()->getDeclName(); 6188 } 6189 6190 /// Returns true if the parameters describe a constructor initialization of 6191 /// an explicit temporary object, e.g. "Point(x, y)". 6192 static bool isExplicitTemporary(const InitializedEntity &Entity, 6193 const InitializationKind &Kind, 6194 unsigned NumArgs) { 6195 switch (Entity.getKind()) { 6196 case InitializedEntity::EK_Temporary: 6197 case InitializedEntity::EK_CompoundLiteralInit: 6198 case InitializedEntity::EK_RelatedResult: 6199 break; 6200 default: 6201 return false; 6202 } 6203 6204 switch (Kind.getKind()) { 6205 case InitializationKind::IK_DirectList: 6206 return true; 6207 // FIXME: Hack to work around cast weirdness. 6208 case InitializationKind::IK_Direct: 6209 case InitializationKind::IK_Value: 6210 return NumArgs != 1; 6211 default: 6212 return false; 6213 } 6214 } 6215 6216 static ExprResult 6217 PerformConstructorInitialization(Sema &S, 6218 const InitializedEntity &Entity, 6219 const InitializationKind &Kind, 6220 MultiExprArg Args, 6221 const InitializationSequence::Step& Step, 6222 bool &ConstructorInitRequiresZeroInit, 6223 bool IsListInitialization, 6224 bool IsStdInitListInitialization, 6225 SourceLocation LBraceLoc, 6226 SourceLocation RBraceLoc) { 6227 unsigned NumArgs = Args.size(); 6228 CXXConstructorDecl *Constructor 6229 = cast<CXXConstructorDecl>(Step.Function.Function); 6230 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates; 6231 6232 // Build a call to the selected constructor. 6233 SmallVector<Expr*, 8> ConstructorArgs; 6234 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid()) 6235 ? Kind.getEqualLoc() 6236 : Kind.getLocation(); 6237 6238 if (Kind.getKind() == InitializationKind::IK_Default) { 6239 // Force even a trivial, implicit default constructor to be 6240 // semantically checked. We do this explicitly because we don't build 6241 // the definition for completely trivial constructors. 6242 assert(Constructor->getParent() && "No parent class for constructor."); 6243 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() && 6244 Constructor->isTrivial() && !Constructor->isUsed(false)) 6245 S.DefineImplicitDefaultConstructor(Loc, Constructor); 6246 } 6247 6248 ExprResult CurInit((Expr *)nullptr); 6249 6250 // C++ [over.match.copy]p1: 6251 // - When initializing a temporary to be bound to the first parameter 6252 // of a constructor that takes a reference to possibly cv-qualified 6253 // T as its first argument, called with a single argument in the 6254 // context of direct-initialization, explicit conversion functions 6255 // are also considered. 6256 bool AllowExplicitConv = 6257 Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 && 6258 hasCopyOrMoveCtorParam(S.Context, 6259 getConstructorInfo(Step.Function.FoundDecl)); 6260 6261 // Determine the arguments required to actually perform the constructor 6262 // call. 6263 if (S.CompleteConstructorCall(Constructor, Args, 6264 Loc, ConstructorArgs, 6265 AllowExplicitConv, 6266 IsListInitialization)) 6267 return ExprError(); 6268 6269 6270 if (isExplicitTemporary(Entity, Kind, NumArgs)) { 6271 // An explicitly-constructed temporary, e.g., X(1, 2). 6272 if (S.DiagnoseUseOfDecl(Constructor, Loc)) 6273 return ExprError(); 6274 6275 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 6276 if (!TSInfo) 6277 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc); 6278 SourceRange ParenOrBraceRange = 6279 (Kind.getKind() == InitializationKind::IK_DirectList) 6280 ? SourceRange(LBraceLoc, RBraceLoc) 6281 : Kind.getParenOrBraceRange(); 6282 6283 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>( 6284 Step.Function.FoundDecl.getDecl())) { 6285 Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow); 6286 if (S.DiagnoseUseOfDecl(Constructor, Loc)) 6287 return ExprError(); 6288 } 6289 S.MarkFunctionReferenced(Loc, Constructor); 6290 6291 CurInit = CXXTemporaryObjectExpr::Create( 6292 S.Context, Constructor, 6293 Entity.getType().getNonLValueExprType(S.Context), TSInfo, 6294 ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates, 6295 IsListInitialization, IsStdInitListInitialization, 6296 ConstructorInitRequiresZeroInit); 6297 } else { 6298 CXXConstructExpr::ConstructionKind ConstructKind = 6299 CXXConstructExpr::CK_Complete; 6300 6301 if (Entity.getKind() == InitializedEntity::EK_Base) { 6302 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ? 6303 CXXConstructExpr::CK_VirtualBase : 6304 CXXConstructExpr::CK_NonVirtualBase; 6305 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) { 6306 ConstructKind = CXXConstructExpr::CK_Delegating; 6307 } 6308 6309 // Only get the parenthesis or brace range if it is a list initialization or 6310 // direct construction. 6311 SourceRange ParenOrBraceRange; 6312 if (IsListInitialization) 6313 ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc); 6314 else if (Kind.getKind() == InitializationKind::IK_Direct) 6315 ParenOrBraceRange = Kind.getParenOrBraceRange(); 6316 6317 // If the entity allows NRVO, mark the construction as elidable 6318 // unconditionally. 6319 if (Entity.allowsNRVO()) 6320 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, 6321 Step.Function.FoundDecl, 6322 Constructor, /*Elidable=*/true, 6323 ConstructorArgs, 6324 HadMultipleCandidates, 6325 IsListInitialization, 6326 IsStdInitListInitialization, 6327 ConstructorInitRequiresZeroInit, 6328 ConstructKind, 6329 ParenOrBraceRange); 6330 else 6331 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, 6332 Step.Function.FoundDecl, 6333 Constructor, 6334 ConstructorArgs, 6335 HadMultipleCandidates, 6336 IsListInitialization, 6337 IsStdInitListInitialization, 6338 ConstructorInitRequiresZeroInit, 6339 ConstructKind, 6340 ParenOrBraceRange); 6341 } 6342 if (CurInit.isInvalid()) 6343 return ExprError(); 6344 6345 // Only check access if all of that succeeded. 6346 S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity); 6347 if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc)) 6348 return ExprError(); 6349 6350 if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType())) 6351 if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S)) 6352 return ExprError(); 6353 6354 if (shouldBindAsTemporary(Entity)) 6355 CurInit = S.MaybeBindToTemporary(CurInit.get()); 6356 6357 return CurInit; 6358 } 6359 6360 namespace { 6361 enum LifetimeKind { 6362 /// The lifetime of a temporary bound to this entity ends at the end of the 6363 /// full-expression, and that's (probably) fine. 6364 LK_FullExpression, 6365 6366 /// The lifetime of a temporary bound to this entity is extended to the 6367 /// lifeitme of the entity itself. 6368 LK_Extended, 6369 6370 /// The lifetime of a temporary bound to this entity probably ends too soon, 6371 /// because the entity is allocated in a new-expression. 6372 LK_New, 6373 6374 /// The lifetime of a temporary bound to this entity ends too soon, because 6375 /// the entity is a return object. 6376 LK_Return, 6377 6378 /// The lifetime of a temporary bound to this entity ends too soon, because 6379 /// the entity is the result of a statement expression. 6380 LK_StmtExprResult, 6381 6382 /// This is a mem-initializer: if it would extend a temporary (other than via 6383 /// a default member initializer), the program is ill-formed. 6384 LK_MemInitializer, 6385 }; 6386 using LifetimeResult = 6387 llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>; 6388 } 6389 6390 /// Determine the declaration which an initialized entity ultimately refers to, 6391 /// for the purpose of lifetime-extending a temporary bound to a reference in 6392 /// the initialization of \p Entity. 6393 static LifetimeResult getEntityLifetime( 6394 const InitializedEntity *Entity, 6395 const InitializedEntity *InitField = nullptr) { 6396 // C++11 [class.temporary]p5: 6397 switch (Entity->getKind()) { 6398 case InitializedEntity::EK_Variable: 6399 // The temporary [...] persists for the lifetime of the reference 6400 return {Entity, LK_Extended}; 6401 6402 case InitializedEntity::EK_Member: 6403 // For subobjects, we look at the complete object. 6404 if (Entity->getParent()) 6405 return getEntityLifetime(Entity->getParent(), Entity); 6406 6407 // except: 6408 // C++17 [class.base.init]p8: 6409 // A temporary expression bound to a reference member in a 6410 // mem-initializer is ill-formed. 6411 // C++17 [class.base.init]p11: 6412 // A temporary expression bound to a reference member from a 6413 // default member initializer is ill-formed. 6414 // 6415 // The context of p11 and its example suggest that it's only the use of a 6416 // default member initializer from a constructor that makes the program 6417 // ill-formed, not its mere existence, and that it can even be used by 6418 // aggregate initialization. 6419 return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended 6420 : LK_MemInitializer}; 6421 6422 case InitializedEntity::EK_Binding: 6423 // Per [dcl.decomp]p3, the binding is treated as a variable of reference 6424 // type. 6425 return {Entity, LK_Extended}; 6426 6427 case InitializedEntity::EK_Parameter: 6428 case InitializedEntity::EK_Parameter_CF_Audited: 6429 // -- A temporary bound to a reference parameter in a function call 6430 // persists until the completion of the full-expression containing 6431 // the call. 6432 return {nullptr, LK_FullExpression}; 6433 6434 case InitializedEntity::EK_Result: 6435 // -- The lifetime of a temporary bound to the returned value in a 6436 // function return statement is not extended; the temporary is 6437 // destroyed at the end of the full-expression in the return statement. 6438 return {nullptr, LK_Return}; 6439 6440 case InitializedEntity::EK_StmtExprResult: 6441 // FIXME: Should we lifetime-extend through the result of a statement 6442 // expression? 6443 return {nullptr, LK_StmtExprResult}; 6444 6445 case InitializedEntity::EK_New: 6446 // -- A temporary bound to a reference in a new-initializer persists 6447 // until the completion of the full-expression containing the 6448 // new-initializer. 6449 return {nullptr, LK_New}; 6450 6451 case InitializedEntity::EK_Temporary: 6452 case InitializedEntity::EK_CompoundLiteralInit: 6453 case InitializedEntity::EK_RelatedResult: 6454 // We don't yet know the storage duration of the surrounding temporary. 6455 // Assume it's got full-expression duration for now, it will patch up our 6456 // storage duration if that's not correct. 6457 return {nullptr, LK_FullExpression}; 6458 6459 case InitializedEntity::EK_ArrayElement: 6460 // For subobjects, we look at the complete object. 6461 return getEntityLifetime(Entity->getParent(), InitField); 6462 6463 case InitializedEntity::EK_Base: 6464 // For subobjects, we look at the complete object. 6465 if (Entity->getParent()) 6466 return getEntityLifetime(Entity->getParent(), InitField); 6467 return {InitField, LK_MemInitializer}; 6468 6469 case InitializedEntity::EK_Delegating: 6470 // We can reach this case for aggregate initialization in a constructor: 6471 // struct A { int &&r; }; 6472 // struct B : A { B() : A{0} {} }; 6473 // In this case, use the outermost field decl as the context. 6474 return {InitField, LK_MemInitializer}; 6475 6476 case InitializedEntity::EK_BlockElement: 6477 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6478 case InitializedEntity::EK_LambdaCapture: 6479 case InitializedEntity::EK_VectorElement: 6480 case InitializedEntity::EK_ComplexElement: 6481 return {nullptr, LK_FullExpression}; 6482 6483 case InitializedEntity::EK_Exception: 6484 // FIXME: Can we diagnose lifetime problems with exceptions? 6485 return {nullptr, LK_FullExpression}; 6486 } 6487 llvm_unreachable("unknown entity kind"); 6488 } 6489 6490 namespace { 6491 enum ReferenceKind { 6492 /// Lifetime would be extended by a reference binding to a temporary. 6493 RK_ReferenceBinding, 6494 /// Lifetime would be extended by a std::initializer_list object binding to 6495 /// its backing array. 6496 RK_StdInitializerList, 6497 }; 6498 6499 /// A temporary or local variable. This will be one of: 6500 /// * A MaterializeTemporaryExpr. 6501 /// * A DeclRefExpr whose declaration is a local. 6502 /// * An AddrLabelExpr. 6503 /// * A BlockExpr for a block with captures. 6504 using Local = Expr*; 6505 6506 /// Expressions we stepped over when looking for the local state. Any steps 6507 /// that would inhibit lifetime extension or take us out of subexpressions of 6508 /// the initializer are included. 6509 struct IndirectLocalPathEntry { 6510 enum EntryKind { 6511 DefaultInit, 6512 AddressOf, 6513 VarInit, 6514 LValToRVal, 6515 LifetimeBoundCall, 6516 } Kind; 6517 Expr *E; 6518 const Decl *D = nullptr; 6519 IndirectLocalPathEntry() {} 6520 IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {} 6521 IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D) 6522 : Kind(K), E(E), D(D) {} 6523 }; 6524 6525 using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>; 6526 6527 struct RevertToOldSizeRAII { 6528 IndirectLocalPath &Path; 6529 unsigned OldSize = Path.size(); 6530 RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {} 6531 ~RevertToOldSizeRAII() { Path.resize(OldSize); } 6532 }; 6533 6534 using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L, 6535 ReferenceKind RK)>; 6536 } 6537 6538 static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) { 6539 for (auto E : Path) 6540 if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD) 6541 return true; 6542 return false; 6543 } 6544 6545 static bool pathContainsInit(IndirectLocalPath &Path) { 6546 return llvm::any_of(Path, [=](IndirectLocalPathEntry E) { 6547 return E.Kind == IndirectLocalPathEntry::DefaultInit || 6548 E.Kind == IndirectLocalPathEntry::VarInit; 6549 }); 6550 } 6551 6552 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, 6553 Expr *Init, LocalVisitor Visit, 6554 bool RevisitSubinits); 6555 6556 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, 6557 Expr *Init, ReferenceKind RK, 6558 LocalVisitor Visit); 6559 6560 static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) { 6561 const TypeSourceInfo *TSI = FD->getTypeSourceInfo(); 6562 if (!TSI) 6563 return false; 6564 // Don't declare this variable in the second operand of the for-statement; 6565 // GCC miscompiles that by ending its lifetime before evaluating the 6566 // third operand. See gcc.gnu.org/PR86769. 6567 AttributedTypeLoc ATL; 6568 for (TypeLoc TL = TSI->getTypeLoc(); 6569 (ATL = TL.getAsAdjusted<AttributedTypeLoc>()); 6570 TL = ATL.getModifiedLoc()) { 6571 if (ATL.getAttrAs<LifetimeBoundAttr>()) 6572 return true; 6573 } 6574 return false; 6575 } 6576 6577 static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call, 6578 LocalVisitor Visit) { 6579 const FunctionDecl *Callee; 6580 ArrayRef<Expr*> Args; 6581 6582 if (auto *CE = dyn_cast<CallExpr>(Call)) { 6583 Callee = CE->getDirectCallee(); 6584 Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs()); 6585 } else { 6586 auto *CCE = cast<CXXConstructExpr>(Call); 6587 Callee = CCE->getConstructor(); 6588 Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs()); 6589 } 6590 if (!Callee) 6591 return; 6592 6593 Expr *ObjectArg = nullptr; 6594 if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) { 6595 ObjectArg = Args[0]; 6596 Args = Args.slice(1); 6597 } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) { 6598 ObjectArg = MCE->getImplicitObjectArgument(); 6599 } 6600 6601 auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) { 6602 Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D}); 6603 if (Arg->isGLValue()) 6604 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, 6605 Visit); 6606 else 6607 visitLocalsRetainedByInitializer(Path, Arg, Visit, true); 6608 Path.pop_back(); 6609 }; 6610 6611 if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee)) 6612 VisitLifetimeBoundArg(Callee, ObjectArg); 6613 6614 for (unsigned I = 0, 6615 N = std::min<unsigned>(Callee->getNumParams(), Args.size()); 6616 I != N; ++I) { 6617 if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>()) 6618 VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]); 6619 } 6620 } 6621 6622 /// Visit the locals that would be reachable through a reference bound to the 6623 /// glvalue expression \c Init. 6624 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, 6625 Expr *Init, ReferenceKind RK, 6626 LocalVisitor Visit) { 6627 RevertToOldSizeRAII RAII(Path); 6628 6629 // Walk past any constructs which we can lifetime-extend across. 6630 Expr *Old; 6631 do { 6632 Old = Init; 6633 6634 if (auto *FE = dyn_cast<FullExpr>(Init)) 6635 Init = FE->getSubExpr(); 6636 6637 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 6638 // If this is just redundant braces around an initializer, step over it. 6639 if (ILE->isTransparent()) 6640 Init = ILE->getInit(0); 6641 } 6642 6643 // Step over any subobject adjustments; we may have a materialized 6644 // temporary inside them. 6645 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); 6646 6647 // Per current approach for DR1376, look through casts to reference type 6648 // when performing lifetime extension. 6649 if (CastExpr *CE = dyn_cast<CastExpr>(Init)) 6650 if (CE->getSubExpr()->isGLValue()) 6651 Init = CE->getSubExpr(); 6652 6653 // Per the current approach for DR1299, look through array element access 6654 // on array glvalues when performing lifetime extension. 6655 if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) { 6656 Init = ASE->getBase(); 6657 auto *ICE = dyn_cast<ImplicitCastExpr>(Init); 6658 if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay) 6659 Init = ICE->getSubExpr(); 6660 else 6661 // We can't lifetime extend through this but we might still find some 6662 // retained temporaries. 6663 return visitLocalsRetainedByInitializer(Path, Init, Visit, true); 6664 } 6665 6666 // Step into CXXDefaultInitExprs so we can diagnose cases where a 6667 // constructor inherits one as an implicit mem-initializer. 6668 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { 6669 Path.push_back( 6670 {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); 6671 Init = DIE->getExpr(); 6672 } 6673 } while (Init != Old); 6674 6675 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) { 6676 if (Visit(Path, Local(MTE), RK)) 6677 visitLocalsRetainedByInitializer(Path, MTE->GetTemporaryExpr(), Visit, 6678 true); 6679 } 6680 6681 if (isa<CallExpr>(Init)) 6682 return visitLifetimeBoundArguments(Path, Init, Visit); 6683 6684 switch (Init->getStmtClass()) { 6685 case Stmt::DeclRefExprClass: { 6686 // If we find the name of a local non-reference parameter, we could have a 6687 // lifetime problem. 6688 auto *DRE = cast<DeclRefExpr>(Init); 6689 auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 6690 if (VD && VD->hasLocalStorage() && 6691 !DRE->refersToEnclosingVariableOrCapture()) { 6692 if (!VD->getType()->isReferenceType()) { 6693 Visit(Path, Local(DRE), RK); 6694 } else if (isa<ParmVarDecl>(DRE->getDecl())) { 6695 // The lifetime of a reference parameter is unknown; assume it's OK 6696 // for now. 6697 break; 6698 } else if (VD->getInit() && !isVarOnPath(Path, VD)) { 6699 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); 6700 visitLocalsRetainedByReferenceBinding(Path, VD->getInit(), 6701 RK_ReferenceBinding, Visit); 6702 } 6703 } 6704 break; 6705 } 6706 6707 case Stmt::UnaryOperatorClass: { 6708 // The only unary operator that make sense to handle here 6709 // is Deref. All others don't resolve to a "name." This includes 6710 // handling all sorts of rvalues passed to a unary operator. 6711 const UnaryOperator *U = cast<UnaryOperator>(Init); 6712 if (U->getOpcode() == UO_Deref) 6713 visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true); 6714 break; 6715 } 6716 6717 case Stmt::OMPArraySectionExprClass: { 6718 visitLocalsRetainedByInitializer( 6719 Path, cast<OMPArraySectionExpr>(Init)->getBase(), Visit, true); 6720 break; 6721 } 6722 6723 case Stmt::ConditionalOperatorClass: 6724 case Stmt::BinaryConditionalOperatorClass: { 6725 auto *C = cast<AbstractConditionalOperator>(Init); 6726 if (!C->getTrueExpr()->getType()->isVoidType()) 6727 visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit); 6728 if (!C->getFalseExpr()->getType()->isVoidType()) 6729 visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit); 6730 break; 6731 } 6732 6733 // FIXME: Visit the left-hand side of an -> or ->*. 6734 6735 default: 6736 break; 6737 } 6738 } 6739 6740 /// Visit the locals that would be reachable through an object initialized by 6741 /// the prvalue expression \c Init. 6742 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, 6743 Expr *Init, LocalVisitor Visit, 6744 bool RevisitSubinits) { 6745 RevertToOldSizeRAII RAII(Path); 6746 6747 Expr *Old; 6748 do { 6749 Old = Init; 6750 6751 // Step into CXXDefaultInitExprs so we can diagnose cases where a 6752 // constructor inherits one as an implicit mem-initializer. 6753 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { 6754 Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); 6755 Init = DIE->getExpr(); 6756 } 6757 6758 if (auto *FE = dyn_cast<FullExpr>(Init)) 6759 Init = FE->getSubExpr(); 6760 6761 // Dig out the expression which constructs the extended temporary. 6762 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); 6763 6764 if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init)) 6765 Init = BTE->getSubExpr(); 6766 6767 Init = Init->IgnoreParens(); 6768 6769 // Step over value-preserving rvalue casts. 6770 if (auto *CE = dyn_cast<CastExpr>(Init)) { 6771 switch (CE->getCastKind()) { 6772 case CK_LValueToRValue: 6773 // If we can match the lvalue to a const object, we can look at its 6774 // initializer. 6775 Path.push_back({IndirectLocalPathEntry::LValToRVal, CE}); 6776 return visitLocalsRetainedByReferenceBinding( 6777 Path, Init, RK_ReferenceBinding, 6778 [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool { 6779 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { 6780 auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 6781 if (VD && VD->getType().isConstQualified() && VD->getInit() && 6782 !isVarOnPath(Path, VD)) { 6783 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); 6784 visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true); 6785 } 6786 } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) { 6787 if (MTE->getType().isConstQualified()) 6788 visitLocalsRetainedByInitializer(Path, MTE->GetTemporaryExpr(), 6789 Visit, true); 6790 } 6791 return false; 6792 }); 6793 6794 // We assume that objects can be retained by pointers cast to integers, 6795 // but not if the integer is cast to floating-point type or to _Complex. 6796 // We assume that casts to 'bool' do not preserve enough information to 6797 // retain a local object. 6798 case CK_NoOp: 6799 case CK_BitCast: 6800 case CK_BaseToDerived: 6801 case CK_DerivedToBase: 6802 case CK_UncheckedDerivedToBase: 6803 case CK_Dynamic: 6804 case CK_ToUnion: 6805 case CK_UserDefinedConversion: 6806 case CK_ConstructorConversion: 6807 case CK_IntegralToPointer: 6808 case CK_PointerToIntegral: 6809 case CK_VectorSplat: 6810 case CK_IntegralCast: 6811 case CK_CPointerToObjCPointerCast: 6812 case CK_BlockPointerToObjCPointerCast: 6813 case CK_AnyPointerToBlockPointerCast: 6814 case CK_AddressSpaceConversion: 6815 break; 6816 6817 case CK_ArrayToPointerDecay: 6818 // Model array-to-pointer decay as taking the address of the array 6819 // lvalue. 6820 Path.push_back({IndirectLocalPathEntry::AddressOf, CE}); 6821 return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(), 6822 RK_ReferenceBinding, Visit); 6823 6824 default: 6825 return; 6826 } 6827 6828 Init = CE->getSubExpr(); 6829 } 6830 } while (Old != Init); 6831 6832 // C++17 [dcl.init.list]p6: 6833 // initializing an initializer_list object from the array extends the 6834 // lifetime of the array exactly like binding a reference to a temporary. 6835 if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init)) 6836 return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(), 6837 RK_StdInitializerList, Visit); 6838 6839 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 6840 // We already visited the elements of this initializer list while 6841 // performing the initialization. Don't visit them again unless we've 6842 // changed the lifetime of the initialized entity. 6843 if (!RevisitSubinits) 6844 return; 6845 6846 if (ILE->isTransparent()) 6847 return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit, 6848 RevisitSubinits); 6849 6850 if (ILE->getType()->isArrayType()) { 6851 for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I) 6852 visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit, 6853 RevisitSubinits); 6854 return; 6855 } 6856 6857 if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) { 6858 assert(RD->isAggregate() && "aggregate init on non-aggregate"); 6859 6860 // If we lifetime-extend a braced initializer which is initializing an 6861 // aggregate, and that aggregate contains reference members which are 6862 // bound to temporaries, those temporaries are also lifetime-extended. 6863 if (RD->isUnion() && ILE->getInitializedFieldInUnion() && 6864 ILE->getInitializedFieldInUnion()->getType()->isReferenceType()) 6865 visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0), 6866 RK_ReferenceBinding, Visit); 6867 else { 6868 unsigned Index = 0; 6869 for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index) 6870 visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit, 6871 RevisitSubinits); 6872 for (const auto *I : RD->fields()) { 6873 if (Index >= ILE->getNumInits()) 6874 break; 6875 if (I->isUnnamedBitfield()) 6876 continue; 6877 Expr *SubInit = ILE->getInit(Index); 6878 if (I->getType()->isReferenceType()) 6879 visitLocalsRetainedByReferenceBinding(Path, SubInit, 6880 RK_ReferenceBinding, Visit); 6881 else 6882 // This might be either aggregate-initialization of a member or 6883 // initialization of a std::initializer_list object. Regardless, 6884 // we should recursively lifetime-extend that initializer. 6885 visitLocalsRetainedByInitializer(Path, SubInit, Visit, 6886 RevisitSubinits); 6887 ++Index; 6888 } 6889 } 6890 } 6891 return; 6892 } 6893 6894 // The lifetime of an init-capture is that of the closure object constructed 6895 // by a lambda-expression. 6896 if (auto *LE = dyn_cast<LambdaExpr>(Init)) { 6897 for (Expr *E : LE->capture_inits()) { 6898 if (!E) 6899 continue; 6900 if (E->isGLValue()) 6901 visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding, 6902 Visit); 6903 else 6904 visitLocalsRetainedByInitializer(Path, E, Visit, true); 6905 } 6906 } 6907 6908 if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) 6909 return visitLifetimeBoundArguments(Path, Init, Visit); 6910 6911 switch (Init->getStmtClass()) { 6912 case Stmt::UnaryOperatorClass: { 6913 auto *UO = cast<UnaryOperator>(Init); 6914 // If the initializer is the address of a local, we could have a lifetime 6915 // problem. 6916 if (UO->getOpcode() == UO_AddrOf) { 6917 // If this is &rvalue, then it's ill-formed and we have already diagnosed 6918 // it. Don't produce a redundant warning about the lifetime of the 6919 // temporary. 6920 if (isa<MaterializeTemporaryExpr>(UO->getSubExpr())) 6921 return; 6922 6923 Path.push_back({IndirectLocalPathEntry::AddressOf, UO}); 6924 visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(), 6925 RK_ReferenceBinding, Visit); 6926 } 6927 break; 6928 } 6929 6930 case Stmt::BinaryOperatorClass: { 6931 // Handle pointer arithmetic. 6932 auto *BO = cast<BinaryOperator>(Init); 6933 BinaryOperatorKind BOK = BO->getOpcode(); 6934 if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub)) 6935 break; 6936 6937 if (BO->getLHS()->getType()->isPointerType()) 6938 visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true); 6939 else if (BO->getRHS()->getType()->isPointerType()) 6940 visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true); 6941 break; 6942 } 6943 6944 case Stmt::ConditionalOperatorClass: 6945 case Stmt::BinaryConditionalOperatorClass: { 6946 auto *C = cast<AbstractConditionalOperator>(Init); 6947 // In C++, we can have a throw-expression operand, which has 'void' type 6948 // and isn't interesting from a lifetime perspective. 6949 if (!C->getTrueExpr()->getType()->isVoidType()) 6950 visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true); 6951 if (!C->getFalseExpr()->getType()->isVoidType()) 6952 visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true); 6953 break; 6954 } 6955 6956 case Stmt::BlockExprClass: 6957 if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) { 6958 // This is a local block, whose lifetime is that of the function. 6959 Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding); 6960 } 6961 break; 6962 6963 case Stmt::AddrLabelExprClass: 6964 // We want to warn if the address of a label would escape the function. 6965 Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding); 6966 break; 6967 6968 default: 6969 break; 6970 } 6971 } 6972 6973 /// Determine whether this is an indirect path to a temporary that we are 6974 /// supposed to lifetime-extend along (but don't). 6975 static bool shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) { 6976 for (auto Elem : Path) { 6977 if (Elem.Kind != IndirectLocalPathEntry::DefaultInit) 6978 return false; 6979 } 6980 return true; 6981 } 6982 6983 /// Find the range for the first interesting entry in the path at or after I. 6984 static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I, 6985 Expr *E) { 6986 for (unsigned N = Path.size(); I != N; ++I) { 6987 switch (Path[I].Kind) { 6988 case IndirectLocalPathEntry::AddressOf: 6989 case IndirectLocalPathEntry::LValToRVal: 6990 case IndirectLocalPathEntry::LifetimeBoundCall: 6991 // These exist primarily to mark the path as not permitting or 6992 // supporting lifetime extension. 6993 break; 6994 6995 case IndirectLocalPathEntry::DefaultInit: 6996 case IndirectLocalPathEntry::VarInit: 6997 return Path[I].E->getSourceRange(); 6998 } 6999 } 7000 return E->getSourceRange(); 7001 } 7002 7003 void Sema::checkInitializerLifetime(const InitializedEntity &Entity, 7004 Expr *Init) { 7005 LifetimeResult LR = getEntityLifetime(&Entity); 7006 LifetimeKind LK = LR.getInt(); 7007 const InitializedEntity *ExtendingEntity = LR.getPointer(); 7008 7009 // If this entity doesn't have an interesting lifetime, don't bother looking 7010 // for temporaries within its initializer. 7011 if (LK == LK_FullExpression) 7012 return; 7013 7014 auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L, 7015 ReferenceKind RK) -> bool { 7016 SourceRange DiagRange = nextPathEntryRange(Path, 0, L); 7017 SourceLocation DiagLoc = DiagRange.getBegin(); 7018 7019 switch (LK) { 7020 case LK_FullExpression: 7021 llvm_unreachable("already handled this"); 7022 7023 case LK_Extended: { 7024 auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L); 7025 if (!MTE) { 7026 // The initialized entity has lifetime beyond the full-expression, 7027 // and the local entity does too, so don't warn. 7028 // 7029 // FIXME: We should consider warning if a static / thread storage 7030 // duration variable retains an automatic storage duration local. 7031 return false; 7032 } 7033 7034 // Lifetime-extend the temporary. 7035 if (Path.empty()) { 7036 // Update the storage duration of the materialized temporary. 7037 // FIXME: Rebuild the expression instead of mutating it. 7038 MTE->setExtendingDecl(ExtendingEntity->getDecl(), 7039 ExtendingEntity->allocateManglingNumber()); 7040 // Also visit the temporaries lifetime-extended by this initializer. 7041 return true; 7042 } 7043 7044 if (shouldLifetimeExtendThroughPath(Path)) { 7045 // We're supposed to lifetime-extend the temporary along this path (per 7046 // the resolution of DR1815), but we don't support that yet. 7047 // 7048 // FIXME: Properly handle this situation. Perhaps the easiest approach 7049 // would be to clone the initializer expression on each use that would 7050 // lifetime extend its temporaries. 7051 Diag(DiagLoc, diag::warn_unsupported_lifetime_extension) 7052 << RK << DiagRange; 7053 } else { 7054 // If the path goes through the initialization of a variable or field, 7055 // it can't possibly reach a temporary created in this full-expression. 7056 // We will have already diagnosed any problems with the initializer. 7057 if (pathContainsInit(Path)) 7058 return false; 7059 7060 Diag(DiagLoc, diag::warn_dangling_variable) 7061 << RK << !Entity.getParent() 7062 << ExtendingEntity->getDecl()->isImplicit() 7063 << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange; 7064 } 7065 break; 7066 } 7067 7068 case LK_MemInitializer: { 7069 if (isa<MaterializeTemporaryExpr>(L)) { 7070 // Under C++ DR1696, if a mem-initializer (or a default member 7071 // initializer used by the absence of one) would lifetime-extend a 7072 // temporary, the program is ill-formed. 7073 if (auto *ExtendingDecl = 7074 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { 7075 bool IsSubobjectMember = ExtendingEntity != &Entity; 7076 Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path) 7077 ? diag::err_dangling_member 7078 : diag::warn_dangling_member) 7079 << ExtendingDecl << IsSubobjectMember << RK << DiagRange; 7080 // Don't bother adding a note pointing to the field if we're inside 7081 // its default member initializer; our primary diagnostic points to 7082 // the same place in that case. 7083 if (Path.empty() || 7084 Path.back().Kind != IndirectLocalPathEntry::DefaultInit) { 7085 Diag(ExtendingDecl->getLocation(), 7086 diag::note_lifetime_extending_member_declared_here) 7087 << RK << IsSubobjectMember; 7088 } 7089 } else { 7090 // We have a mem-initializer but no particular field within it; this 7091 // is either a base class or a delegating initializer directly 7092 // initializing the base-class from something that doesn't live long 7093 // enough. 7094 // 7095 // FIXME: Warn on this. 7096 return false; 7097 } 7098 } else { 7099 // Paths via a default initializer can only occur during error recovery 7100 // (there's no other way that a default initializer can refer to a 7101 // local). Don't produce a bogus warning on those cases. 7102 if (pathContainsInit(Path)) 7103 return false; 7104 7105 auto *DRE = dyn_cast<DeclRefExpr>(L); 7106 auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr; 7107 if (!VD) { 7108 // A member was initialized to a local block. 7109 // FIXME: Warn on this. 7110 return false; 7111 } 7112 7113 if (auto *Member = 7114 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { 7115 bool IsPointer = Member->getType()->isAnyPointerType(); 7116 Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr 7117 : diag::warn_bind_ref_member_to_parameter) 7118 << Member << VD << isa<ParmVarDecl>(VD) << DiagRange; 7119 Diag(Member->getLocation(), 7120 diag::note_ref_or_ptr_member_declared_here) 7121 << (unsigned)IsPointer; 7122 } 7123 } 7124 break; 7125 } 7126 7127 case LK_New: 7128 if (isa<MaterializeTemporaryExpr>(L)) { 7129 Diag(DiagLoc, RK == RK_ReferenceBinding 7130 ? diag::warn_new_dangling_reference 7131 : diag::warn_new_dangling_initializer_list) 7132 << !Entity.getParent() << DiagRange; 7133 } else { 7134 // We can't determine if the allocation outlives the local declaration. 7135 return false; 7136 } 7137 break; 7138 7139 case LK_Return: 7140 case LK_StmtExprResult: 7141 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { 7142 // We can't determine if the local variable outlives the statement 7143 // expression. 7144 if (LK == LK_StmtExprResult) 7145 return false; 7146 Diag(DiagLoc, diag::warn_ret_stack_addr_ref) 7147 << Entity.getType()->isReferenceType() << DRE->getDecl() 7148 << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange; 7149 } else if (isa<BlockExpr>(L)) { 7150 Diag(DiagLoc, diag::err_ret_local_block) << DiagRange; 7151 } else if (isa<AddrLabelExpr>(L)) { 7152 // Don't warn when returning a label from a statement expression. 7153 // Leaving the scope doesn't end its lifetime. 7154 if (LK == LK_StmtExprResult) 7155 return false; 7156 Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange; 7157 } else { 7158 Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref) 7159 << Entity.getType()->isReferenceType() << DiagRange; 7160 } 7161 break; 7162 } 7163 7164 for (unsigned I = 0; I != Path.size(); ++I) { 7165 auto Elem = Path[I]; 7166 7167 switch (Elem.Kind) { 7168 case IndirectLocalPathEntry::AddressOf: 7169 case IndirectLocalPathEntry::LValToRVal: 7170 // These exist primarily to mark the path as not permitting or 7171 // supporting lifetime extension. 7172 break; 7173 7174 case IndirectLocalPathEntry::LifetimeBoundCall: 7175 // FIXME: Consider adding a note for this. 7176 break; 7177 7178 case IndirectLocalPathEntry::DefaultInit: { 7179 auto *FD = cast<FieldDecl>(Elem.D); 7180 Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer) 7181 << FD << nextPathEntryRange(Path, I + 1, L); 7182 break; 7183 } 7184 7185 case IndirectLocalPathEntry::VarInit: 7186 const VarDecl *VD = cast<VarDecl>(Elem.D); 7187 Diag(VD->getLocation(), diag::note_local_var_initializer) 7188 << VD->getType()->isReferenceType() 7189 << VD->isImplicit() << VD->getDeclName() 7190 << nextPathEntryRange(Path, I + 1, L); 7191 break; 7192 } 7193 } 7194 7195 // We didn't lifetime-extend, so don't go any further; we don't need more 7196 // warnings or errors on inner temporaries within this one's initializer. 7197 return false; 7198 }; 7199 7200 llvm::SmallVector<IndirectLocalPathEntry, 8> Path; 7201 if (Init->isGLValue()) 7202 visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding, 7203 TemporaryVisitor); 7204 else 7205 visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false); 7206 } 7207 7208 static void DiagnoseNarrowingInInitList(Sema &S, 7209 const ImplicitConversionSequence &ICS, 7210 QualType PreNarrowingType, 7211 QualType EntityType, 7212 const Expr *PostInit); 7213 7214 /// Provide warnings when std::move is used on construction. 7215 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr, 7216 bool IsReturnStmt) { 7217 if (!InitExpr) 7218 return; 7219 7220 if (S.inTemplateInstantiation()) 7221 return; 7222 7223 QualType DestType = InitExpr->getType(); 7224 if (!DestType->isRecordType()) 7225 return; 7226 7227 unsigned DiagID = 0; 7228 if (IsReturnStmt) { 7229 const CXXConstructExpr *CCE = 7230 dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens()); 7231 if (!CCE || CCE->getNumArgs() != 1) 7232 return; 7233 7234 if (!CCE->getConstructor()->isCopyOrMoveConstructor()) 7235 return; 7236 7237 InitExpr = CCE->getArg(0)->IgnoreImpCasts(); 7238 } 7239 7240 // Find the std::move call and get the argument. 7241 const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens()); 7242 if (!CE || !CE->isCallToStdMove()) 7243 return; 7244 7245 const Expr *Arg = CE->getArg(0)->IgnoreImplicit(); 7246 7247 if (IsReturnStmt) { 7248 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts()); 7249 if (!DRE || DRE->refersToEnclosingVariableOrCapture()) 7250 return; 7251 7252 const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7253 if (!VD || !VD->hasLocalStorage()) 7254 return; 7255 7256 // __block variables are not moved implicitly. 7257 if (VD->hasAttr<BlocksAttr>()) 7258 return; 7259 7260 QualType SourceType = VD->getType(); 7261 if (!SourceType->isRecordType()) 7262 return; 7263 7264 if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) { 7265 return; 7266 } 7267 7268 // If we're returning a function parameter, copy elision 7269 // is not possible. 7270 if (isa<ParmVarDecl>(VD)) 7271 DiagID = diag::warn_redundant_move_on_return; 7272 else 7273 DiagID = diag::warn_pessimizing_move_on_return; 7274 } else { 7275 DiagID = diag::warn_pessimizing_move_on_initialization; 7276 const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens(); 7277 if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType()) 7278 return; 7279 } 7280 7281 S.Diag(CE->getBeginLoc(), DiagID); 7282 7283 // Get all the locations for a fix-it. Don't emit the fix-it if any location 7284 // is within a macro. 7285 SourceLocation CallBegin = CE->getCallee()->getBeginLoc(); 7286 if (CallBegin.isMacroID()) 7287 return; 7288 SourceLocation RParen = CE->getRParenLoc(); 7289 if (RParen.isMacroID()) 7290 return; 7291 SourceLocation LParen; 7292 SourceLocation ArgLoc = Arg->getBeginLoc(); 7293 7294 // Special testing for the argument location. Since the fix-it needs the 7295 // location right before the argument, the argument location can be in a 7296 // macro only if it is at the beginning of the macro. 7297 while (ArgLoc.isMacroID() && 7298 S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) { 7299 ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin(); 7300 } 7301 7302 if (LParen.isMacroID()) 7303 return; 7304 7305 LParen = ArgLoc.getLocWithOffset(-1); 7306 7307 S.Diag(CE->getBeginLoc(), diag::note_remove_move) 7308 << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen)) 7309 << FixItHint::CreateRemoval(SourceRange(RParen, RParen)); 7310 } 7311 7312 static void CheckForNullPointerDereference(Sema &S, const Expr *E) { 7313 // Check to see if we are dereferencing a null pointer. If so, this is 7314 // undefined behavior, so warn about it. This only handles the pattern 7315 // "*null", which is a very syntactic check. 7316 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts())) 7317 if (UO->getOpcode() == UO_Deref && 7318 UO->getSubExpr()->IgnoreParenCasts()-> 7319 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) { 7320 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, 7321 S.PDiag(diag::warn_binding_null_to_reference) 7322 << UO->getSubExpr()->getSourceRange()); 7323 } 7324 } 7325 7326 MaterializeTemporaryExpr * 7327 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary, 7328 bool BoundToLvalueReference) { 7329 auto MTE = new (Context) 7330 MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference); 7331 7332 // Order an ExprWithCleanups for lifetime marks. 7333 // 7334 // TODO: It'll be good to have a single place to check the access of the 7335 // destructor and generate ExprWithCleanups for various uses. Currently these 7336 // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary, 7337 // but there may be a chance to merge them. 7338 Cleanup.setExprNeedsCleanups(false); 7339 return MTE; 7340 } 7341 7342 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) { 7343 // In C++98, we don't want to implicitly create an xvalue. 7344 // FIXME: This means that AST consumers need to deal with "prvalues" that 7345 // denote materialized temporaries. Maybe we should add another ValueKind 7346 // for "xvalue pretending to be a prvalue" for C++98 support. 7347 if (!E->isRValue() || !getLangOpts().CPlusPlus11) 7348 return E; 7349 7350 // C++1z [conv.rval]/1: T shall be a complete type. 7351 // FIXME: Does this ever matter (can we form a prvalue of incomplete type)? 7352 // If so, we should check for a non-abstract class type here too. 7353 QualType T = E->getType(); 7354 if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type)) 7355 return ExprError(); 7356 7357 return CreateMaterializeTemporaryExpr(E->getType(), E, false); 7358 } 7359 7360 ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty, 7361 ExprValueKind VK, 7362 CheckedConversionKind CCK) { 7363 7364 CastKind CK = CK_NoOp; 7365 7366 if (VK == VK_RValue) { 7367 auto PointeeTy = Ty->getPointeeType(); 7368 auto ExprPointeeTy = E->getType()->getPointeeType(); 7369 if (!PointeeTy.isNull() && 7370 PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace()) 7371 CK = CK_AddressSpaceConversion; 7372 } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) { 7373 CK = CK_AddressSpaceConversion; 7374 } 7375 7376 return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK); 7377 } 7378 7379 ExprResult InitializationSequence::Perform(Sema &S, 7380 const InitializedEntity &Entity, 7381 const InitializationKind &Kind, 7382 MultiExprArg Args, 7383 QualType *ResultType) { 7384 if (Failed()) { 7385 Diagnose(S, Entity, Kind, Args); 7386 return ExprError(); 7387 } 7388 if (!ZeroInitializationFixit.empty()) { 7389 unsigned DiagID = diag::err_default_init_const; 7390 if (Decl *D = Entity.getDecl()) 7391 if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>()) 7392 DiagID = diag::ext_default_init_const; 7393 7394 // The initialization would have succeeded with this fixit. Since the fixit 7395 // is on the error, we need to build a valid AST in this case, so this isn't 7396 // handled in the Failed() branch above. 7397 QualType DestType = Entity.getType(); 7398 S.Diag(Kind.getLocation(), DiagID) 7399 << DestType << (bool)DestType->getAs<RecordType>() 7400 << FixItHint::CreateInsertion(ZeroInitializationFixitLoc, 7401 ZeroInitializationFixit); 7402 } 7403 7404 if (getKind() == DependentSequence) { 7405 // If the declaration is a non-dependent, incomplete array type 7406 // that has an initializer, then its type will be completed once 7407 // the initializer is instantiated. 7408 if (ResultType && !Entity.getType()->isDependentType() && 7409 Args.size() == 1) { 7410 QualType DeclType = Entity.getType(); 7411 if (const IncompleteArrayType *ArrayT 7412 = S.Context.getAsIncompleteArrayType(DeclType)) { 7413 // FIXME: We don't currently have the ability to accurately 7414 // compute the length of an initializer list without 7415 // performing full type-checking of the initializer list 7416 // (since we have to determine where braces are implicitly 7417 // introduced and such). So, we fall back to making the array 7418 // type a dependently-sized array type with no specified 7419 // bound. 7420 if (isa<InitListExpr>((Expr *)Args[0])) { 7421 SourceRange Brackets; 7422 7423 // Scavange the location of the brackets from the entity, if we can. 7424 if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) { 7425 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) { 7426 TypeLoc TL = TInfo->getTypeLoc(); 7427 if (IncompleteArrayTypeLoc ArrayLoc = 7428 TL.getAs<IncompleteArrayTypeLoc>()) 7429 Brackets = ArrayLoc.getBracketsRange(); 7430 } 7431 } 7432 7433 *ResultType 7434 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(), 7435 /*NumElts=*/nullptr, 7436 ArrayT->getSizeModifier(), 7437 ArrayT->getIndexTypeCVRQualifiers(), 7438 Brackets); 7439 } 7440 7441 } 7442 } 7443 if (Kind.getKind() == InitializationKind::IK_Direct && 7444 !Kind.isExplicitCast()) { 7445 // Rebuild the ParenListExpr. 7446 SourceRange ParenRange = Kind.getParenOrBraceRange(); 7447 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(), 7448 Args); 7449 } 7450 assert(Kind.getKind() == InitializationKind::IK_Copy || 7451 Kind.isExplicitCast() || 7452 Kind.getKind() == InitializationKind::IK_DirectList); 7453 return ExprResult(Args[0]); 7454 } 7455 7456 // No steps means no initialization. 7457 if (Steps.empty()) 7458 return ExprResult((Expr *)nullptr); 7459 7460 if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() && 7461 Args.size() == 1 && isa<InitListExpr>(Args[0]) && 7462 !Entity.isParameterKind()) { 7463 // Produce a C++98 compatibility warning if we are initializing a reference 7464 // from an initializer list. For parameters, we produce a better warning 7465 // elsewhere. 7466 Expr *Init = Args[0]; 7467 S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init) 7468 << Init->getSourceRange(); 7469 } 7470 7471 // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope 7472 QualType ETy = Entity.getType(); 7473 Qualifiers TyQualifiers = ETy.getQualifiers(); 7474 bool HasGlobalAS = TyQualifiers.hasAddressSpace() && 7475 TyQualifiers.getAddressSpace() == LangAS::opencl_global; 7476 7477 if (S.getLangOpts().OpenCLVersion >= 200 && 7478 ETy->isAtomicType() && !HasGlobalAS && 7479 Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) { 7480 S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init) 7481 << 1 7482 << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc()); 7483 return ExprError(); 7484 } 7485 7486 QualType DestType = Entity.getType().getNonReferenceType(); 7487 // FIXME: Ugly hack around the fact that Entity.getType() is not 7488 // the same as Entity.getDecl()->getType() in cases involving type merging, 7489 // and we want latter when it makes sense. 7490 if (ResultType) 7491 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() : 7492 Entity.getType(); 7493 7494 ExprResult CurInit((Expr *)nullptr); 7495 SmallVector<Expr*, 4> ArrayLoopCommonExprs; 7496 7497 // For initialization steps that start with a single initializer, 7498 // grab the only argument out the Args and place it into the "current" 7499 // initializer. 7500 switch (Steps.front().Kind) { 7501 case SK_ResolveAddressOfOverloadedFunction: 7502 case SK_CastDerivedToBaseRValue: 7503 case SK_CastDerivedToBaseXValue: 7504 case SK_CastDerivedToBaseLValue: 7505 case SK_BindReference: 7506 case SK_BindReferenceToTemporary: 7507 case SK_FinalCopy: 7508 case SK_ExtraneousCopyToTemporary: 7509 case SK_UserConversion: 7510 case SK_QualificationConversionLValue: 7511 case SK_QualificationConversionXValue: 7512 case SK_QualificationConversionRValue: 7513 case SK_AtomicConversion: 7514 case SK_ConversionSequence: 7515 case SK_ConversionSequenceNoNarrowing: 7516 case SK_ListInitialization: 7517 case SK_UnwrapInitList: 7518 case SK_RewrapInitList: 7519 case SK_CAssignment: 7520 case SK_StringInit: 7521 case SK_ObjCObjectConversion: 7522 case SK_ArrayLoopIndex: 7523 case SK_ArrayLoopInit: 7524 case SK_ArrayInit: 7525 case SK_GNUArrayInit: 7526 case SK_ParenthesizedArrayInit: 7527 case SK_PassByIndirectCopyRestore: 7528 case SK_PassByIndirectRestore: 7529 case SK_ProduceObjCObject: 7530 case SK_StdInitializerList: 7531 case SK_OCLSamplerInit: 7532 case SK_OCLZeroOpaqueType: { 7533 assert(Args.size() == 1); 7534 CurInit = Args[0]; 7535 if (!CurInit.get()) return ExprError(); 7536 break; 7537 } 7538 7539 case SK_ConstructorInitialization: 7540 case SK_ConstructorInitializationFromList: 7541 case SK_StdInitializerListConstructorCall: 7542 case SK_ZeroInitialization: 7543 break; 7544 } 7545 7546 // Promote from an unevaluated context to an unevaluated list context in 7547 // C++11 list-initialization; we need to instantiate entities usable in 7548 // constant expressions here in order to perform narrowing checks =( 7549 EnterExpressionEvaluationContext Evaluated( 7550 S, EnterExpressionEvaluationContext::InitList, 7551 CurInit.get() && isa<InitListExpr>(CurInit.get())); 7552 7553 // C++ [class.abstract]p2: 7554 // no objects of an abstract class can be created except as subobjects 7555 // of a class derived from it 7556 auto checkAbstractType = [&](QualType T) -> bool { 7557 if (Entity.getKind() == InitializedEntity::EK_Base || 7558 Entity.getKind() == InitializedEntity::EK_Delegating) 7559 return false; 7560 return S.RequireNonAbstractType(Kind.getLocation(), T, 7561 diag::err_allocation_of_abstract_type); 7562 }; 7563 7564 // Walk through the computed steps for the initialization sequence, 7565 // performing the specified conversions along the way. 7566 bool ConstructorInitRequiresZeroInit = false; 7567 for (step_iterator Step = step_begin(), StepEnd = step_end(); 7568 Step != StepEnd; ++Step) { 7569 if (CurInit.isInvalid()) 7570 return ExprError(); 7571 7572 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType(); 7573 7574 switch (Step->Kind) { 7575 case SK_ResolveAddressOfOverloadedFunction: 7576 // Overload resolution determined which function invoke; update the 7577 // initializer to reflect that choice. 7578 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl); 7579 if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation())) 7580 return ExprError(); 7581 CurInit = S.FixOverloadedFunctionReference(CurInit, 7582 Step->Function.FoundDecl, 7583 Step->Function.Function); 7584 break; 7585 7586 case SK_CastDerivedToBaseRValue: 7587 case SK_CastDerivedToBaseXValue: 7588 case SK_CastDerivedToBaseLValue: { 7589 // We have a derived-to-base cast that produces either an rvalue or an 7590 // lvalue. Perform that cast. 7591 7592 CXXCastPath BasePath; 7593 7594 // Casts to inaccessible base classes are allowed with C-style casts. 7595 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast(); 7596 if (S.CheckDerivedToBaseConversion( 7597 SourceType, Step->Type, CurInit.get()->getBeginLoc(), 7598 CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess)) 7599 return ExprError(); 7600 7601 ExprValueKind VK = 7602 Step->Kind == SK_CastDerivedToBaseLValue ? 7603 VK_LValue : 7604 (Step->Kind == SK_CastDerivedToBaseXValue ? 7605 VK_XValue : 7606 VK_RValue); 7607 CurInit = 7608 ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase, 7609 CurInit.get(), &BasePath, VK); 7610 break; 7611 } 7612 7613 case SK_BindReference: 7614 // Reference binding does not have any corresponding ASTs. 7615 7616 // Check exception specifications 7617 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 7618 return ExprError(); 7619 7620 // We don't check for e.g. function pointers here, since address 7621 // availability checks should only occur when the function first decays 7622 // into a pointer or reference. 7623 if (CurInit.get()->getType()->isFunctionProtoType()) { 7624 if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) { 7625 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 7626 if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 7627 DRE->getBeginLoc())) 7628 return ExprError(); 7629 } 7630 } 7631 } 7632 7633 CheckForNullPointerDereference(S, CurInit.get()); 7634 break; 7635 7636 case SK_BindReferenceToTemporary: { 7637 // Make sure the "temporary" is actually an rvalue. 7638 assert(CurInit.get()->isRValue() && "not a temporary"); 7639 7640 // Check exception specifications 7641 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 7642 return ExprError(); 7643 7644 // Materialize the temporary into memory. 7645 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( 7646 Step->Type, CurInit.get(), Entity.getType()->isLValueReferenceType()); 7647 CurInit = MTE; 7648 7649 // If we're extending this temporary to automatic storage duration -- we 7650 // need to register its cleanup during the full-expression's cleanups. 7651 if (MTE->getStorageDuration() == SD_Automatic && 7652 MTE->getType().isDestructedType()) 7653 S.Cleanup.setExprNeedsCleanups(true); 7654 break; 7655 } 7656 7657 case SK_FinalCopy: 7658 if (checkAbstractType(Step->Type)) 7659 return ExprError(); 7660 7661 // If the overall initialization is initializing a temporary, we already 7662 // bound our argument if it was necessary to do so. If not (if we're 7663 // ultimately initializing a non-temporary), our argument needs to be 7664 // bound since it's initializing a function parameter. 7665 // FIXME: This is a mess. Rationalize temporary destruction. 7666 if (!shouldBindAsTemporary(Entity)) 7667 CurInit = S.MaybeBindToTemporary(CurInit.get()); 7668 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 7669 /*IsExtraneousCopy=*/false); 7670 break; 7671 7672 case SK_ExtraneousCopyToTemporary: 7673 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 7674 /*IsExtraneousCopy=*/true); 7675 break; 7676 7677 case SK_UserConversion: { 7678 // We have a user-defined conversion that invokes either a constructor 7679 // or a conversion function. 7680 CastKind CastKind; 7681 FunctionDecl *Fn = Step->Function.Function; 7682 DeclAccessPair FoundFn = Step->Function.FoundDecl; 7683 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates; 7684 bool CreatedObject = false; 7685 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) { 7686 // Build a call to the selected constructor. 7687 SmallVector<Expr*, 8> ConstructorArgs; 7688 SourceLocation Loc = CurInit.get()->getBeginLoc(); 7689 7690 // Determine the arguments required to actually perform the constructor 7691 // call. 7692 Expr *Arg = CurInit.get(); 7693 if (S.CompleteConstructorCall(Constructor, 7694 MultiExprArg(&Arg, 1), 7695 Loc, ConstructorArgs)) 7696 return ExprError(); 7697 7698 // Build an expression that constructs a temporary. 7699 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, 7700 FoundFn, Constructor, 7701 ConstructorArgs, 7702 HadMultipleCandidates, 7703 /*ListInit*/ false, 7704 /*StdInitListInit*/ false, 7705 /*ZeroInit*/ false, 7706 CXXConstructExpr::CK_Complete, 7707 SourceRange()); 7708 if (CurInit.isInvalid()) 7709 return ExprError(); 7710 7711 S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn, 7712 Entity); 7713 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 7714 return ExprError(); 7715 7716 CastKind = CK_ConstructorConversion; 7717 CreatedObject = true; 7718 } else { 7719 // Build a call to the conversion function. 7720 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn); 7721 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr, 7722 FoundFn); 7723 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 7724 return ExprError(); 7725 7726 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion, 7727 HadMultipleCandidates); 7728 if (CurInit.isInvalid()) 7729 return ExprError(); 7730 7731 CastKind = CK_UserDefinedConversion; 7732 CreatedObject = Conversion->getReturnType()->isRecordType(); 7733 } 7734 7735 if (CreatedObject && checkAbstractType(CurInit.get()->getType())) 7736 return ExprError(); 7737 7738 CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(), 7739 CastKind, CurInit.get(), nullptr, 7740 CurInit.get()->getValueKind()); 7741 7742 if (shouldBindAsTemporary(Entity)) 7743 // The overall entity is temporary, so this expression should be 7744 // destroyed at the end of its full-expression. 7745 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 7746 else if (CreatedObject && shouldDestroyEntity(Entity)) { 7747 // The object outlasts the full-expression, but we need to prepare for 7748 // a destructor being run on it. 7749 // FIXME: It makes no sense to do this here. This should happen 7750 // regardless of how we initialized the entity. 7751 QualType T = CurInit.get()->getType(); 7752 if (const RecordType *Record = T->getAs<RecordType>()) { 7753 CXXDestructorDecl *Destructor 7754 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl())); 7755 S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor, 7756 S.PDiag(diag::err_access_dtor_temp) << T); 7757 S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor); 7758 if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc())) 7759 return ExprError(); 7760 } 7761 } 7762 break; 7763 } 7764 7765 case SK_QualificationConversionLValue: 7766 case SK_QualificationConversionXValue: 7767 case SK_QualificationConversionRValue: { 7768 // Perform a qualification conversion; these can never go wrong. 7769 ExprValueKind VK = 7770 Step->Kind == SK_QualificationConversionLValue 7771 ? VK_LValue 7772 : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue 7773 : VK_RValue); 7774 CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK); 7775 break; 7776 } 7777 7778 case SK_AtomicConversion: { 7779 assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic"); 7780 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 7781 CK_NonAtomicToAtomic, VK_RValue); 7782 break; 7783 } 7784 7785 case SK_ConversionSequence: 7786 case SK_ConversionSequenceNoNarrowing: { 7787 if (const auto *FromPtrType = 7788 CurInit.get()->getType()->getAs<PointerType>()) { 7789 if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) { 7790 if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) && 7791 !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) { 7792 S.Diag(CurInit.get()->getExprLoc(), 7793 diag::warn_noderef_to_dereferenceable_pointer) 7794 << CurInit.get()->getSourceRange(); 7795 } 7796 } 7797 } 7798 7799 Sema::CheckedConversionKind CCK 7800 = Kind.isCStyleCast()? Sema::CCK_CStyleCast 7801 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast 7802 : Kind.isExplicitCast()? Sema::CCK_OtherCast 7803 : Sema::CCK_ImplicitConversion; 7804 ExprResult CurInitExprRes = 7805 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS, 7806 getAssignmentAction(Entity), CCK); 7807 if (CurInitExprRes.isInvalid()) 7808 return ExprError(); 7809 7810 S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get()); 7811 7812 CurInit = CurInitExprRes; 7813 7814 if (Step->Kind == SK_ConversionSequenceNoNarrowing && 7815 S.getLangOpts().CPlusPlus) 7816 DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(), 7817 CurInit.get()); 7818 7819 break; 7820 } 7821 7822 case SK_ListInitialization: { 7823 if (checkAbstractType(Step->Type)) 7824 return ExprError(); 7825 7826 InitListExpr *InitList = cast<InitListExpr>(CurInit.get()); 7827 // If we're not initializing the top-level entity, we need to create an 7828 // InitializeTemporary entity for our target type. 7829 QualType Ty = Step->Type; 7830 bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty); 7831 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty); 7832 InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity; 7833 InitListChecker PerformInitList(S, InitEntity, 7834 InitList, Ty, /*VerifyOnly=*/false, 7835 /*TreatUnavailableAsInvalid=*/false); 7836 if (PerformInitList.HadError()) 7837 return ExprError(); 7838 7839 // Hack: We must update *ResultType if available in order to set the 7840 // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'. 7841 // Worst case: 'const int (&arref)[] = {1, 2, 3};'. 7842 if (ResultType && 7843 ResultType->getNonReferenceType()->isIncompleteArrayType()) { 7844 if ((*ResultType)->isRValueReferenceType()) 7845 Ty = S.Context.getRValueReferenceType(Ty); 7846 else if ((*ResultType)->isLValueReferenceType()) 7847 Ty = S.Context.getLValueReferenceType(Ty, 7848 (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue()); 7849 *ResultType = Ty; 7850 } 7851 7852 InitListExpr *StructuredInitList = 7853 PerformInitList.getFullyStructuredList(); 7854 CurInit.get(); 7855 CurInit = shouldBindAsTemporary(InitEntity) 7856 ? S.MaybeBindToTemporary(StructuredInitList) 7857 : StructuredInitList; 7858 break; 7859 } 7860 7861 case SK_ConstructorInitializationFromList: { 7862 if (checkAbstractType(Step->Type)) 7863 return ExprError(); 7864 7865 // When an initializer list is passed for a parameter of type "reference 7866 // to object", we don't get an EK_Temporary entity, but instead an 7867 // EK_Parameter entity with reference type. 7868 // FIXME: This is a hack. What we really should do is create a user 7869 // conversion step for this case, but this makes it considerably more 7870 // complicated. For now, this will do. 7871 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 7872 Entity.getType().getNonReferenceType()); 7873 bool UseTemporary = Entity.getType()->isReferenceType(); 7874 assert(Args.size() == 1 && "expected a single argument for list init"); 7875 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 7876 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init) 7877 << InitList->getSourceRange(); 7878 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits()); 7879 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity : 7880 Entity, 7881 Kind, Arg, *Step, 7882 ConstructorInitRequiresZeroInit, 7883 /*IsListInitialization*/true, 7884 /*IsStdInitListInit*/false, 7885 InitList->getLBraceLoc(), 7886 InitList->getRBraceLoc()); 7887 break; 7888 } 7889 7890 case SK_UnwrapInitList: 7891 CurInit = cast<InitListExpr>(CurInit.get())->getInit(0); 7892 break; 7893 7894 case SK_RewrapInitList: { 7895 Expr *E = CurInit.get(); 7896 InitListExpr *Syntactic = Step->WrappingSyntacticList; 7897 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context, 7898 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc()); 7899 ILE->setSyntacticForm(Syntactic); 7900 ILE->setType(E->getType()); 7901 ILE->setValueKind(E->getValueKind()); 7902 CurInit = ILE; 7903 break; 7904 } 7905 7906 case SK_ConstructorInitialization: 7907 case SK_StdInitializerListConstructorCall: { 7908 if (checkAbstractType(Step->Type)) 7909 return ExprError(); 7910 7911 // When an initializer list is passed for a parameter of type "reference 7912 // to object", we don't get an EK_Temporary entity, but instead an 7913 // EK_Parameter entity with reference type. 7914 // FIXME: This is a hack. What we really should do is create a user 7915 // conversion step for this case, but this makes it considerably more 7916 // complicated. For now, this will do. 7917 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 7918 Entity.getType().getNonReferenceType()); 7919 bool UseTemporary = Entity.getType()->isReferenceType(); 7920 bool IsStdInitListInit = 7921 Step->Kind == SK_StdInitializerListConstructorCall; 7922 Expr *Source = CurInit.get(); 7923 SourceRange Range = Kind.hasParenOrBraceRange() 7924 ? Kind.getParenOrBraceRange() 7925 : SourceRange(); 7926 CurInit = PerformConstructorInitialization( 7927 S, UseTemporary ? TempEntity : Entity, Kind, 7928 Source ? MultiExprArg(Source) : Args, *Step, 7929 ConstructorInitRequiresZeroInit, 7930 /*IsListInitialization*/ IsStdInitListInit, 7931 /*IsStdInitListInitialization*/ IsStdInitListInit, 7932 /*LBraceLoc*/ Range.getBegin(), 7933 /*RBraceLoc*/ Range.getEnd()); 7934 break; 7935 } 7936 7937 case SK_ZeroInitialization: { 7938 step_iterator NextStep = Step; 7939 ++NextStep; 7940 if (NextStep != StepEnd && 7941 (NextStep->Kind == SK_ConstructorInitialization || 7942 NextStep->Kind == SK_ConstructorInitializationFromList)) { 7943 // The need for zero-initialization is recorded directly into 7944 // the call to the object's constructor within the next step. 7945 ConstructorInitRequiresZeroInit = true; 7946 } else if (Kind.getKind() == InitializationKind::IK_Value && 7947 S.getLangOpts().CPlusPlus && 7948 !Kind.isImplicitValueInit()) { 7949 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 7950 if (!TSInfo) 7951 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type, 7952 Kind.getRange().getBegin()); 7953 7954 CurInit = new (S.Context) CXXScalarValueInitExpr( 7955 Entity.getType().getNonLValueExprType(S.Context), TSInfo, 7956 Kind.getRange().getEnd()); 7957 } else { 7958 CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type); 7959 } 7960 break; 7961 } 7962 7963 case SK_CAssignment: { 7964 QualType SourceType = CurInit.get()->getType(); 7965 7966 // Save off the initial CurInit in case we need to emit a diagnostic 7967 ExprResult InitialCurInit = CurInit; 7968 ExprResult Result = CurInit; 7969 Sema::AssignConvertType ConvTy = 7970 S.CheckSingleAssignmentConstraints(Step->Type, Result, true, 7971 Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited); 7972 if (Result.isInvalid()) 7973 return ExprError(); 7974 CurInit = Result; 7975 7976 // If this is a call, allow conversion to a transparent union. 7977 ExprResult CurInitExprRes = CurInit; 7978 if (ConvTy != Sema::Compatible && 7979 Entity.isParameterKind() && 7980 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes) 7981 == Sema::Compatible) 7982 ConvTy = Sema::Compatible; 7983 if (CurInitExprRes.isInvalid()) 7984 return ExprError(); 7985 CurInit = CurInitExprRes; 7986 7987 bool Complained; 7988 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(), 7989 Step->Type, SourceType, 7990 InitialCurInit.get(), 7991 getAssignmentAction(Entity, true), 7992 &Complained)) { 7993 PrintInitLocationNote(S, Entity); 7994 return ExprError(); 7995 } else if (Complained) 7996 PrintInitLocationNote(S, Entity); 7997 break; 7998 } 7999 8000 case SK_StringInit: { 8001 QualType Ty = Step->Type; 8002 CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty, 8003 S.Context.getAsArrayType(Ty), S); 8004 break; 8005 } 8006 8007 case SK_ObjCObjectConversion: 8008 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8009 CK_ObjCObjectLValueCast, 8010 CurInit.get()->getValueKind()); 8011 break; 8012 8013 case SK_ArrayLoopIndex: { 8014 Expr *Cur = CurInit.get(); 8015 Expr *BaseExpr = new (S.Context) 8016 OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(), 8017 Cur->getValueKind(), Cur->getObjectKind(), Cur); 8018 Expr *IndexExpr = 8019 new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType()); 8020 CurInit = S.CreateBuiltinArraySubscriptExpr( 8021 BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation()); 8022 ArrayLoopCommonExprs.push_back(BaseExpr); 8023 break; 8024 } 8025 8026 case SK_ArrayLoopInit: { 8027 assert(!ArrayLoopCommonExprs.empty() && 8028 "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit"); 8029 Expr *Common = ArrayLoopCommonExprs.pop_back_val(); 8030 CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common, 8031 CurInit.get()); 8032 break; 8033 } 8034 8035 case SK_GNUArrayInit: 8036 // Okay: we checked everything before creating this step. Note that 8037 // this is a GNU extension. 8038 S.Diag(Kind.getLocation(), diag::ext_array_init_copy) 8039 << Step->Type << CurInit.get()->getType() 8040 << CurInit.get()->getSourceRange(); 8041 updateGNUCompoundLiteralRValue(CurInit.get()); 8042 LLVM_FALLTHROUGH; 8043 case SK_ArrayInit: 8044 // If the destination type is an incomplete array type, update the 8045 // type accordingly. 8046 if (ResultType) { 8047 if (const IncompleteArrayType *IncompleteDest 8048 = S.Context.getAsIncompleteArrayType(Step->Type)) { 8049 if (const ConstantArrayType *ConstantSource 8050 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) { 8051 *ResultType = S.Context.getConstantArrayType( 8052 IncompleteDest->getElementType(), 8053 ConstantSource->getSize(), 8054 ArrayType::Normal, 0); 8055 } 8056 } 8057 } 8058 break; 8059 8060 case SK_ParenthesizedArrayInit: 8061 // Okay: we checked everything before creating this step. Note that 8062 // this is a GNU extension. 8063 S.Diag(Kind.getLocation(), diag::ext_array_init_parens) 8064 << CurInit.get()->getSourceRange(); 8065 break; 8066 8067 case SK_PassByIndirectCopyRestore: 8068 case SK_PassByIndirectRestore: 8069 checkIndirectCopyRestoreSource(S, CurInit.get()); 8070 CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr( 8071 CurInit.get(), Step->Type, 8072 Step->Kind == SK_PassByIndirectCopyRestore); 8073 break; 8074 8075 case SK_ProduceObjCObject: 8076 CurInit = 8077 ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject, 8078 CurInit.get(), nullptr, VK_RValue); 8079 break; 8080 8081 case SK_StdInitializerList: { 8082 S.Diag(CurInit.get()->getExprLoc(), 8083 diag::warn_cxx98_compat_initializer_list_init) 8084 << CurInit.get()->getSourceRange(); 8085 8086 // Materialize the temporary into memory. 8087 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( 8088 CurInit.get()->getType(), CurInit.get(), 8089 /*BoundToLvalueReference=*/false); 8090 8091 // Wrap it in a construction of a std::initializer_list<T>. 8092 CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE); 8093 8094 // Bind the result, in case the library has given initializer_list a 8095 // non-trivial destructor. 8096 if (shouldBindAsTemporary(Entity)) 8097 CurInit = S.MaybeBindToTemporary(CurInit.get()); 8098 break; 8099 } 8100 8101 case SK_OCLSamplerInit: { 8102 // Sampler initialization have 5 cases: 8103 // 1. function argument passing 8104 // 1a. argument is a file-scope variable 8105 // 1b. argument is a function-scope variable 8106 // 1c. argument is one of caller function's parameters 8107 // 2. variable initialization 8108 // 2a. initializing a file-scope variable 8109 // 2b. initializing a function-scope variable 8110 // 8111 // For file-scope variables, since they cannot be initialized by function 8112 // call of __translate_sampler_initializer in LLVM IR, their references 8113 // need to be replaced by a cast from their literal initializers to 8114 // sampler type. Since sampler variables can only be used in function 8115 // calls as arguments, we only need to replace them when handling the 8116 // argument passing. 8117 assert(Step->Type->isSamplerT() && 8118 "Sampler initialization on non-sampler type."); 8119 Expr *Init = CurInit.get()->IgnoreParens(); 8120 QualType SourceType = Init->getType(); 8121 // Case 1 8122 if (Entity.isParameterKind()) { 8123 if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) { 8124 S.Diag(Kind.getLocation(), diag::err_sampler_argument_required) 8125 << SourceType; 8126 break; 8127 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) { 8128 auto Var = cast<VarDecl>(DRE->getDecl()); 8129 // Case 1b and 1c 8130 // No cast from integer to sampler is needed. 8131 if (!Var->hasGlobalStorage()) { 8132 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type, 8133 CK_LValueToRValue, Init, 8134 /*BasePath=*/nullptr, VK_RValue); 8135 break; 8136 } 8137 // Case 1a 8138 // For function call with a file-scope sampler variable as argument, 8139 // get the integer literal. 8140 // Do not diagnose if the file-scope variable does not have initializer 8141 // since this has already been diagnosed when parsing the variable 8142 // declaration. 8143 if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit())) 8144 break; 8145 Init = cast<ImplicitCastExpr>(const_cast<Expr*>( 8146 Var->getInit()))->getSubExpr(); 8147 SourceType = Init->getType(); 8148 } 8149 } else { 8150 // Case 2 8151 // Check initializer is 32 bit integer constant. 8152 // If the initializer is taken from global variable, do not diagnose since 8153 // this has already been done when parsing the variable declaration. 8154 if (!Init->isConstantInitializer(S.Context, false)) 8155 break; 8156 8157 if (!SourceType->isIntegerType() || 8158 32 != S.Context.getIntWidth(SourceType)) { 8159 S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer) 8160 << SourceType; 8161 break; 8162 } 8163 8164 Expr::EvalResult EVResult; 8165 Init->EvaluateAsInt(EVResult, S.Context); 8166 llvm::APSInt Result = EVResult.Val.getInt(); 8167 const uint64_t SamplerValue = Result.getLimitedValue(); 8168 // 32-bit value of sampler's initializer is interpreted as 8169 // bit-field with the following structure: 8170 // |unspecified|Filter|Addressing Mode| Normalized Coords| 8171 // |31 6|5 4|3 1| 0| 8172 // This structure corresponds to enum values of sampler properties 8173 // defined in SPIR spec v1.2 and also opencl-c.h 8174 unsigned AddressingMode = (0x0E & SamplerValue) >> 1; 8175 unsigned FilterMode = (0x30 & SamplerValue) >> 4; 8176 if (FilterMode != 1 && FilterMode != 2 && 8177 !S.getOpenCLOptions().isEnabled( 8178 "cl_intel_device_side_avc_motion_estimation")) 8179 S.Diag(Kind.getLocation(), 8180 diag::warn_sampler_initializer_invalid_bits) 8181 << "Filter Mode"; 8182 if (AddressingMode > 4) 8183 S.Diag(Kind.getLocation(), 8184 diag::warn_sampler_initializer_invalid_bits) 8185 << "Addressing Mode"; 8186 } 8187 8188 // Cases 1a, 2a and 2b 8189 // Insert cast from integer to sampler. 8190 CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy, 8191 CK_IntToOCLSampler); 8192 break; 8193 } 8194 case SK_OCLZeroOpaqueType: { 8195 assert((Step->Type->isEventT() || Step->Type->isQueueT() || 8196 Step->Type->isOCLIntelSubgroupAVCType()) && 8197 "Wrong type for initialization of OpenCL opaque type."); 8198 8199 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8200 CK_ZeroToOCLOpaqueType, 8201 CurInit.get()->getValueKind()); 8202 break; 8203 } 8204 } 8205 } 8206 8207 // Check whether the initializer has a shorter lifetime than the initialized 8208 // entity, and if not, either lifetime-extend or warn as appropriate. 8209 if (auto *Init = CurInit.get()) 8210 S.checkInitializerLifetime(Entity, Init); 8211 8212 // Diagnose non-fatal problems with the completed initialization. 8213 if (Entity.getKind() == InitializedEntity::EK_Member && 8214 cast<FieldDecl>(Entity.getDecl())->isBitField()) 8215 S.CheckBitFieldInitialization(Kind.getLocation(), 8216 cast<FieldDecl>(Entity.getDecl()), 8217 CurInit.get()); 8218 8219 // Check for std::move on construction. 8220 if (const Expr *E = CurInit.get()) { 8221 CheckMoveOnConstruction(S, E, 8222 Entity.getKind() == InitializedEntity::EK_Result); 8223 } 8224 8225 return CurInit; 8226 } 8227 8228 /// Somewhere within T there is an uninitialized reference subobject. 8229 /// Dig it out and diagnose it. 8230 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc, 8231 QualType T) { 8232 if (T->isReferenceType()) { 8233 S.Diag(Loc, diag::err_reference_without_init) 8234 << T.getNonReferenceType(); 8235 return true; 8236 } 8237 8238 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 8239 if (!RD || !RD->hasUninitializedReferenceMember()) 8240 return false; 8241 8242 for (const auto *FI : RD->fields()) { 8243 if (FI->isUnnamedBitfield()) 8244 continue; 8245 8246 if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) { 8247 S.Diag(Loc, diag::note_value_initialization_here) << RD; 8248 return true; 8249 } 8250 } 8251 8252 for (const auto &BI : RD->bases()) { 8253 if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) { 8254 S.Diag(Loc, diag::note_value_initialization_here) << RD; 8255 return true; 8256 } 8257 } 8258 8259 return false; 8260 } 8261 8262 8263 //===----------------------------------------------------------------------===// 8264 // Diagnose initialization failures 8265 //===----------------------------------------------------------------------===// 8266 8267 /// Emit notes associated with an initialization that failed due to a 8268 /// "simple" conversion failure. 8269 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity, 8270 Expr *op) { 8271 QualType destType = entity.getType(); 8272 if (destType.getNonReferenceType()->isObjCObjectPointerType() && 8273 op->getType()->isObjCObjectPointerType()) { 8274 8275 // Emit a possible note about the conversion failing because the 8276 // operand is a message send with a related result type. 8277 S.EmitRelatedResultTypeNote(op); 8278 8279 // Emit a possible note about a return failing because we're 8280 // expecting a related result type. 8281 if (entity.getKind() == InitializedEntity::EK_Result) 8282 S.EmitRelatedResultTypeNoteForReturn(destType); 8283 } 8284 } 8285 8286 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity, 8287 InitListExpr *InitList) { 8288 QualType DestType = Entity.getType(); 8289 8290 QualType E; 8291 if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) { 8292 QualType ArrayType = S.Context.getConstantArrayType( 8293 E.withConst(), 8294 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 8295 InitList->getNumInits()), 8296 clang::ArrayType::Normal, 0); 8297 InitializedEntity HiddenArray = 8298 InitializedEntity::InitializeTemporary(ArrayType); 8299 return diagnoseListInit(S, HiddenArray, InitList); 8300 } 8301 8302 if (DestType->isReferenceType()) { 8303 // A list-initialization failure for a reference means that we tried to 8304 // create a temporary of the inner type (per [dcl.init.list]p3.6) and the 8305 // inner initialization failed. 8306 QualType T = DestType->getAs<ReferenceType>()->getPointeeType(); 8307 diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList); 8308 SourceLocation Loc = InitList->getBeginLoc(); 8309 if (auto *D = Entity.getDecl()) 8310 Loc = D->getLocation(); 8311 S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T; 8312 return; 8313 } 8314 8315 InitListChecker DiagnoseInitList(S, Entity, InitList, DestType, 8316 /*VerifyOnly=*/false, 8317 /*TreatUnavailableAsInvalid=*/false); 8318 assert(DiagnoseInitList.HadError() && 8319 "Inconsistent init list check result."); 8320 } 8321 8322 bool InitializationSequence::Diagnose(Sema &S, 8323 const InitializedEntity &Entity, 8324 const InitializationKind &Kind, 8325 ArrayRef<Expr *> Args) { 8326 if (!Failed()) 8327 return false; 8328 8329 // When we want to diagnose only one element of a braced-init-list, 8330 // we need to factor it out. 8331 Expr *OnlyArg; 8332 if (Args.size() == 1) { 8333 auto *List = dyn_cast<InitListExpr>(Args[0]); 8334 if (List && List->getNumInits() == 1) 8335 OnlyArg = List->getInit(0); 8336 else 8337 OnlyArg = Args[0]; 8338 } 8339 else 8340 OnlyArg = nullptr; 8341 8342 QualType DestType = Entity.getType(); 8343 switch (Failure) { 8344 case FK_TooManyInitsForReference: 8345 // FIXME: Customize for the initialized entity? 8346 if (Args.empty()) { 8347 // Dig out the reference subobject which is uninitialized and diagnose it. 8348 // If this is value-initialization, this could be nested some way within 8349 // the target type. 8350 assert(Kind.getKind() == InitializationKind::IK_Value || 8351 DestType->isReferenceType()); 8352 bool Diagnosed = 8353 DiagnoseUninitializedReference(S, Kind.getLocation(), DestType); 8354 assert(Diagnosed && "couldn't find uninitialized reference to diagnose"); 8355 (void)Diagnosed; 8356 } else // FIXME: diagnostic below could be better! 8357 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits) 8358 << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); 8359 break; 8360 case FK_ParenthesizedListInitForReference: 8361 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) 8362 << 1 << Entity.getType() << Args[0]->getSourceRange(); 8363 break; 8364 8365 case FK_ArrayNeedsInitList: 8366 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0; 8367 break; 8368 case FK_ArrayNeedsInitListOrStringLiteral: 8369 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1; 8370 break; 8371 case FK_ArrayNeedsInitListOrWideStringLiteral: 8372 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2; 8373 break; 8374 case FK_NarrowStringIntoWideCharArray: 8375 S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar); 8376 break; 8377 case FK_WideStringIntoCharArray: 8378 S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char); 8379 break; 8380 case FK_IncompatWideStringIntoWideChar: 8381 S.Diag(Kind.getLocation(), 8382 diag::err_array_init_incompat_wide_string_into_wchar); 8383 break; 8384 case FK_PlainStringIntoUTF8Char: 8385 S.Diag(Kind.getLocation(), 8386 diag::err_array_init_plain_string_into_char8_t); 8387 S.Diag(Args.front()->getBeginLoc(), 8388 diag::note_array_init_plain_string_into_char8_t) 8389 << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8"); 8390 break; 8391 case FK_UTF8StringIntoPlainChar: 8392 S.Diag(Kind.getLocation(), 8393 diag::err_array_init_utf8_string_into_char) 8394 << S.getLangOpts().CPlusPlus2a; 8395 break; 8396 case FK_ArrayTypeMismatch: 8397 case FK_NonConstantArrayInit: 8398 S.Diag(Kind.getLocation(), 8399 (Failure == FK_ArrayTypeMismatch 8400 ? diag::err_array_init_different_type 8401 : diag::err_array_init_non_constant_array)) 8402 << DestType.getNonReferenceType() 8403 << OnlyArg->getType() 8404 << Args[0]->getSourceRange(); 8405 break; 8406 8407 case FK_VariableLengthArrayHasInitializer: 8408 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init) 8409 << Args[0]->getSourceRange(); 8410 break; 8411 8412 case FK_AddressOfOverloadFailed: { 8413 DeclAccessPair Found; 8414 S.ResolveAddressOfOverloadedFunction(OnlyArg, 8415 DestType.getNonReferenceType(), 8416 true, 8417 Found); 8418 break; 8419 } 8420 8421 case FK_AddressOfUnaddressableFunction: { 8422 auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl()); 8423 S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 8424 OnlyArg->getBeginLoc()); 8425 break; 8426 } 8427 8428 case FK_ReferenceInitOverloadFailed: 8429 case FK_UserConversionOverloadFailed: 8430 switch (FailedOverloadResult) { 8431 case OR_Ambiguous: 8432 8433 FailedCandidateSet.NoteCandidates( 8434 PartialDiagnosticAt( 8435 Kind.getLocation(), 8436 Failure == FK_UserConversionOverloadFailed 8437 ? (S.PDiag(diag::err_typecheck_ambiguous_condition) 8438 << OnlyArg->getType() << DestType 8439 << Args[0]->getSourceRange()) 8440 : (S.PDiag(diag::err_ref_init_ambiguous) 8441 << DestType << OnlyArg->getType() 8442 << Args[0]->getSourceRange())), 8443 S, OCD_ViableCandidates, Args); 8444 break; 8445 8446 case OR_No_Viable_Function: { 8447 auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args); 8448 if (!S.RequireCompleteType(Kind.getLocation(), 8449 DestType.getNonReferenceType(), 8450 diag::err_typecheck_nonviable_condition_incomplete, 8451 OnlyArg->getType(), Args[0]->getSourceRange())) 8452 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition) 8453 << (Entity.getKind() == InitializedEntity::EK_Result) 8454 << OnlyArg->getType() << Args[0]->getSourceRange() 8455 << DestType.getNonReferenceType(); 8456 8457 FailedCandidateSet.NoteCandidates(S, Args, Cands); 8458 break; 8459 } 8460 case OR_Deleted: { 8461 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function) 8462 << OnlyArg->getType() << DestType.getNonReferenceType() 8463 << Args[0]->getSourceRange(); 8464 OverloadCandidateSet::iterator Best; 8465 OverloadingResult Ovl 8466 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 8467 if (Ovl == OR_Deleted) { 8468 S.NoteDeletedFunction(Best->Function); 8469 } else { 8470 llvm_unreachable("Inconsistent overload resolution?"); 8471 } 8472 break; 8473 } 8474 8475 case OR_Success: 8476 llvm_unreachable("Conversion did not fail!"); 8477 } 8478 break; 8479 8480 case FK_NonConstLValueReferenceBindingToTemporary: 8481 if (isa<InitListExpr>(Args[0])) { 8482 S.Diag(Kind.getLocation(), 8483 diag::err_lvalue_reference_bind_to_initlist) 8484 << DestType.getNonReferenceType().isVolatileQualified() 8485 << DestType.getNonReferenceType() 8486 << Args[0]->getSourceRange(); 8487 break; 8488 } 8489 LLVM_FALLTHROUGH; 8490 8491 case FK_NonConstLValueReferenceBindingToUnrelated: 8492 S.Diag(Kind.getLocation(), 8493 Failure == FK_NonConstLValueReferenceBindingToTemporary 8494 ? diag::err_lvalue_reference_bind_to_temporary 8495 : diag::err_lvalue_reference_bind_to_unrelated) 8496 << DestType.getNonReferenceType().isVolatileQualified() 8497 << DestType.getNonReferenceType() 8498 << OnlyArg->getType() 8499 << Args[0]->getSourceRange(); 8500 break; 8501 8502 case FK_NonConstLValueReferenceBindingToBitfield: { 8503 // We don't necessarily have an unambiguous source bit-field. 8504 FieldDecl *BitField = Args[0]->getSourceBitField(); 8505 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield) 8506 << DestType.isVolatileQualified() 8507 << (BitField ? BitField->getDeclName() : DeclarationName()) 8508 << (BitField != nullptr) 8509 << Args[0]->getSourceRange(); 8510 if (BitField) 8511 S.Diag(BitField->getLocation(), diag::note_bitfield_decl); 8512 break; 8513 } 8514 8515 case FK_NonConstLValueReferenceBindingToVectorElement: 8516 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element) 8517 << DestType.isVolatileQualified() 8518 << Args[0]->getSourceRange(); 8519 break; 8520 8521 case FK_RValueReferenceBindingToLValue: 8522 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref) 8523 << DestType.getNonReferenceType() << OnlyArg->getType() 8524 << Args[0]->getSourceRange(); 8525 break; 8526 8527 case FK_ReferenceAddrspaceMismatchTemporary: 8528 S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace) 8529 << DestType << Args[0]->getSourceRange(); 8530 break; 8531 8532 case FK_ReferenceInitDropsQualifiers: { 8533 QualType SourceType = OnlyArg->getType(); 8534 QualType NonRefType = DestType.getNonReferenceType(); 8535 Qualifiers DroppedQualifiers = 8536 SourceType.getQualifiers() - NonRefType.getQualifiers(); 8537 8538 if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf( 8539 SourceType.getQualifiers())) 8540 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 8541 << NonRefType << SourceType << 1 /*addr space*/ 8542 << Args[0]->getSourceRange(); 8543 else 8544 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 8545 << NonRefType << SourceType << 0 /*cv quals*/ 8546 << Qualifiers::fromCVRMask(DroppedQualifiers.getCVRQualifiers()) 8547 << DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange(); 8548 break; 8549 } 8550 8551 case FK_ReferenceInitFailed: 8552 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed) 8553 << DestType.getNonReferenceType() 8554 << DestType.getNonReferenceType()->isIncompleteType() 8555 << OnlyArg->isLValue() 8556 << OnlyArg->getType() 8557 << Args[0]->getSourceRange(); 8558 emitBadConversionNotes(S, Entity, Args[0]); 8559 break; 8560 8561 case FK_ConversionFailed: { 8562 QualType FromType = OnlyArg->getType(); 8563 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed) 8564 << (int)Entity.getKind() 8565 << DestType 8566 << OnlyArg->isLValue() 8567 << FromType 8568 << Args[0]->getSourceRange(); 8569 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType); 8570 S.Diag(Kind.getLocation(), PDiag); 8571 emitBadConversionNotes(S, Entity, Args[0]); 8572 break; 8573 } 8574 8575 case FK_ConversionFromPropertyFailed: 8576 // No-op. This error has already been reported. 8577 break; 8578 8579 case FK_TooManyInitsForScalar: { 8580 SourceRange R; 8581 8582 auto *InitList = dyn_cast<InitListExpr>(Args[0]); 8583 if (InitList && InitList->getNumInits() >= 1) { 8584 R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc()); 8585 } else { 8586 assert(Args.size() > 1 && "Expected multiple initializers!"); 8587 R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc()); 8588 } 8589 8590 R.setBegin(S.getLocForEndOfToken(R.getBegin())); 8591 if (Kind.isCStyleOrFunctionalCast()) 8592 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg) 8593 << R; 8594 else 8595 S.Diag(Kind.getLocation(), diag::err_excess_initializers) 8596 << /*scalar=*/2 << R; 8597 break; 8598 } 8599 8600 case FK_ParenthesizedListInitForScalar: 8601 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) 8602 << 0 << Entity.getType() << Args[0]->getSourceRange(); 8603 break; 8604 8605 case FK_ReferenceBindingToInitList: 8606 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list) 8607 << DestType.getNonReferenceType() << Args[0]->getSourceRange(); 8608 break; 8609 8610 case FK_InitListBadDestinationType: 8611 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type) 8612 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange(); 8613 break; 8614 8615 case FK_ListConstructorOverloadFailed: 8616 case FK_ConstructorOverloadFailed: { 8617 SourceRange ArgsRange; 8618 if (Args.size()) 8619 ArgsRange = 8620 SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); 8621 8622 if (Failure == FK_ListConstructorOverloadFailed) { 8623 assert(Args.size() == 1 && 8624 "List construction from other than 1 argument."); 8625 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 8626 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); 8627 } 8628 8629 // FIXME: Using "DestType" for the entity we're printing is probably 8630 // bad. 8631 switch (FailedOverloadResult) { 8632 case OR_Ambiguous: 8633 FailedCandidateSet.NoteCandidates( 8634 PartialDiagnosticAt(Kind.getLocation(), 8635 S.PDiag(diag::err_ovl_ambiguous_init) 8636 << DestType << ArgsRange), 8637 S, OCD_ViableCandidates, Args); 8638 break; 8639 8640 case OR_No_Viable_Function: 8641 if (Kind.getKind() == InitializationKind::IK_Default && 8642 (Entity.getKind() == InitializedEntity::EK_Base || 8643 Entity.getKind() == InitializedEntity::EK_Member) && 8644 isa<CXXConstructorDecl>(S.CurContext)) { 8645 // This is implicit default initialization of a member or 8646 // base within a constructor. If no viable function was 8647 // found, notify the user that they need to explicitly 8648 // initialize this base/member. 8649 CXXConstructorDecl *Constructor 8650 = cast<CXXConstructorDecl>(S.CurContext); 8651 const CXXRecordDecl *InheritedFrom = nullptr; 8652 if (auto Inherited = Constructor->getInheritedConstructor()) 8653 InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass(); 8654 if (Entity.getKind() == InitializedEntity::EK_Base) { 8655 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 8656 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) 8657 << S.Context.getTypeDeclType(Constructor->getParent()) 8658 << /*base=*/0 8659 << Entity.getType() 8660 << InheritedFrom; 8661 8662 RecordDecl *BaseDecl 8663 = Entity.getBaseSpecifier()->getType()->getAs<RecordType>() 8664 ->getDecl(); 8665 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl) 8666 << S.Context.getTagDeclType(BaseDecl); 8667 } else { 8668 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 8669 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) 8670 << S.Context.getTypeDeclType(Constructor->getParent()) 8671 << /*member=*/1 8672 << Entity.getName() 8673 << InheritedFrom; 8674 S.Diag(Entity.getDecl()->getLocation(), 8675 diag::note_member_declared_at); 8676 8677 if (const RecordType *Record 8678 = Entity.getType()->getAs<RecordType>()) 8679 S.Diag(Record->getDecl()->getLocation(), 8680 diag::note_previous_decl) 8681 << S.Context.getTagDeclType(Record->getDecl()); 8682 } 8683 break; 8684 } 8685 8686 FailedCandidateSet.NoteCandidates( 8687 PartialDiagnosticAt( 8688 Kind.getLocation(), 8689 S.PDiag(diag::err_ovl_no_viable_function_in_init) 8690 << DestType << ArgsRange), 8691 S, OCD_AllCandidates, Args); 8692 break; 8693 8694 case OR_Deleted: { 8695 OverloadCandidateSet::iterator Best; 8696 OverloadingResult Ovl 8697 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 8698 if (Ovl != OR_Deleted) { 8699 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 8700 << DestType << ArgsRange; 8701 llvm_unreachable("Inconsistent overload resolution?"); 8702 break; 8703 } 8704 8705 // If this is a defaulted or implicitly-declared function, then 8706 // it was implicitly deleted. Make it clear that the deletion was 8707 // implicit. 8708 if (S.isImplicitlyDeleted(Best->Function)) 8709 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init) 8710 << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function)) 8711 << DestType << ArgsRange; 8712 else 8713 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 8714 << DestType << ArgsRange; 8715 8716 S.NoteDeletedFunction(Best->Function); 8717 break; 8718 } 8719 8720 case OR_Success: 8721 llvm_unreachable("Conversion did not fail!"); 8722 } 8723 } 8724 break; 8725 8726 case FK_DefaultInitOfConst: 8727 if (Entity.getKind() == InitializedEntity::EK_Member && 8728 isa<CXXConstructorDecl>(S.CurContext)) { 8729 // This is implicit default-initialization of a const member in 8730 // a constructor. Complain that it needs to be explicitly 8731 // initialized. 8732 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext); 8733 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor) 8734 << (Constructor->getInheritedConstructor() ? 2 : 8735 Constructor->isImplicit() ? 1 : 0) 8736 << S.Context.getTypeDeclType(Constructor->getParent()) 8737 << /*const=*/1 8738 << Entity.getName(); 8739 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl) 8740 << Entity.getName(); 8741 } else { 8742 S.Diag(Kind.getLocation(), diag::err_default_init_const) 8743 << DestType << (bool)DestType->getAs<RecordType>(); 8744 } 8745 break; 8746 8747 case FK_Incomplete: 8748 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType, 8749 diag::err_init_incomplete_type); 8750 break; 8751 8752 case FK_ListInitializationFailed: { 8753 // Run the init list checker again to emit diagnostics. 8754 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 8755 diagnoseListInit(S, Entity, InitList); 8756 break; 8757 } 8758 8759 case FK_PlaceholderType: { 8760 // FIXME: Already diagnosed! 8761 break; 8762 } 8763 8764 case FK_ExplicitConstructor: { 8765 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor) 8766 << Args[0]->getSourceRange(); 8767 OverloadCandidateSet::iterator Best; 8768 OverloadingResult Ovl 8769 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 8770 (void)Ovl; 8771 assert(Ovl == OR_Success && "Inconsistent overload resolution"); 8772 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 8773 S.Diag(CtorDecl->getLocation(), 8774 diag::note_explicit_ctor_deduction_guide_here) << false; 8775 break; 8776 } 8777 } 8778 8779 PrintInitLocationNote(S, Entity); 8780 return true; 8781 } 8782 8783 void InitializationSequence::dump(raw_ostream &OS) const { 8784 switch (SequenceKind) { 8785 case FailedSequence: { 8786 OS << "Failed sequence: "; 8787 switch (Failure) { 8788 case FK_TooManyInitsForReference: 8789 OS << "too many initializers for reference"; 8790 break; 8791 8792 case FK_ParenthesizedListInitForReference: 8793 OS << "parenthesized list init for reference"; 8794 break; 8795 8796 case FK_ArrayNeedsInitList: 8797 OS << "array requires initializer list"; 8798 break; 8799 8800 case FK_AddressOfUnaddressableFunction: 8801 OS << "address of unaddressable function was taken"; 8802 break; 8803 8804 case FK_ArrayNeedsInitListOrStringLiteral: 8805 OS << "array requires initializer list or string literal"; 8806 break; 8807 8808 case FK_ArrayNeedsInitListOrWideStringLiteral: 8809 OS << "array requires initializer list or wide string literal"; 8810 break; 8811 8812 case FK_NarrowStringIntoWideCharArray: 8813 OS << "narrow string into wide char array"; 8814 break; 8815 8816 case FK_WideStringIntoCharArray: 8817 OS << "wide string into char array"; 8818 break; 8819 8820 case FK_IncompatWideStringIntoWideChar: 8821 OS << "incompatible wide string into wide char array"; 8822 break; 8823 8824 case FK_PlainStringIntoUTF8Char: 8825 OS << "plain string literal into char8_t array"; 8826 break; 8827 8828 case FK_UTF8StringIntoPlainChar: 8829 OS << "u8 string literal into char array"; 8830 break; 8831 8832 case FK_ArrayTypeMismatch: 8833 OS << "array type mismatch"; 8834 break; 8835 8836 case FK_NonConstantArrayInit: 8837 OS << "non-constant array initializer"; 8838 break; 8839 8840 case FK_AddressOfOverloadFailed: 8841 OS << "address of overloaded function failed"; 8842 break; 8843 8844 case FK_ReferenceInitOverloadFailed: 8845 OS << "overload resolution for reference initialization failed"; 8846 break; 8847 8848 case FK_NonConstLValueReferenceBindingToTemporary: 8849 OS << "non-const lvalue reference bound to temporary"; 8850 break; 8851 8852 case FK_NonConstLValueReferenceBindingToBitfield: 8853 OS << "non-const lvalue reference bound to bit-field"; 8854 break; 8855 8856 case FK_NonConstLValueReferenceBindingToVectorElement: 8857 OS << "non-const lvalue reference bound to vector element"; 8858 break; 8859 8860 case FK_NonConstLValueReferenceBindingToUnrelated: 8861 OS << "non-const lvalue reference bound to unrelated type"; 8862 break; 8863 8864 case FK_RValueReferenceBindingToLValue: 8865 OS << "rvalue reference bound to an lvalue"; 8866 break; 8867 8868 case FK_ReferenceInitDropsQualifiers: 8869 OS << "reference initialization drops qualifiers"; 8870 break; 8871 8872 case FK_ReferenceAddrspaceMismatchTemporary: 8873 OS << "reference with mismatching address space bound to temporary"; 8874 break; 8875 8876 case FK_ReferenceInitFailed: 8877 OS << "reference initialization failed"; 8878 break; 8879 8880 case FK_ConversionFailed: 8881 OS << "conversion failed"; 8882 break; 8883 8884 case FK_ConversionFromPropertyFailed: 8885 OS << "conversion from property failed"; 8886 break; 8887 8888 case FK_TooManyInitsForScalar: 8889 OS << "too many initializers for scalar"; 8890 break; 8891 8892 case FK_ParenthesizedListInitForScalar: 8893 OS << "parenthesized list init for reference"; 8894 break; 8895 8896 case FK_ReferenceBindingToInitList: 8897 OS << "referencing binding to initializer list"; 8898 break; 8899 8900 case FK_InitListBadDestinationType: 8901 OS << "initializer list for non-aggregate, non-scalar type"; 8902 break; 8903 8904 case FK_UserConversionOverloadFailed: 8905 OS << "overloading failed for user-defined conversion"; 8906 break; 8907 8908 case FK_ConstructorOverloadFailed: 8909 OS << "constructor overloading failed"; 8910 break; 8911 8912 case FK_DefaultInitOfConst: 8913 OS << "default initialization of a const variable"; 8914 break; 8915 8916 case FK_Incomplete: 8917 OS << "initialization of incomplete type"; 8918 break; 8919 8920 case FK_ListInitializationFailed: 8921 OS << "list initialization checker failure"; 8922 break; 8923 8924 case FK_VariableLengthArrayHasInitializer: 8925 OS << "variable length array has an initializer"; 8926 break; 8927 8928 case FK_PlaceholderType: 8929 OS << "initializer expression isn't contextually valid"; 8930 break; 8931 8932 case FK_ListConstructorOverloadFailed: 8933 OS << "list constructor overloading failed"; 8934 break; 8935 8936 case FK_ExplicitConstructor: 8937 OS << "list copy initialization chose explicit constructor"; 8938 break; 8939 } 8940 OS << '\n'; 8941 return; 8942 } 8943 8944 case DependentSequence: 8945 OS << "Dependent sequence\n"; 8946 return; 8947 8948 case NormalSequence: 8949 OS << "Normal sequence: "; 8950 break; 8951 } 8952 8953 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) { 8954 if (S != step_begin()) { 8955 OS << " -> "; 8956 } 8957 8958 switch (S->Kind) { 8959 case SK_ResolveAddressOfOverloadedFunction: 8960 OS << "resolve address of overloaded function"; 8961 break; 8962 8963 case SK_CastDerivedToBaseRValue: 8964 OS << "derived-to-base (rvalue)"; 8965 break; 8966 8967 case SK_CastDerivedToBaseXValue: 8968 OS << "derived-to-base (xvalue)"; 8969 break; 8970 8971 case SK_CastDerivedToBaseLValue: 8972 OS << "derived-to-base (lvalue)"; 8973 break; 8974 8975 case SK_BindReference: 8976 OS << "bind reference to lvalue"; 8977 break; 8978 8979 case SK_BindReferenceToTemporary: 8980 OS << "bind reference to a temporary"; 8981 break; 8982 8983 case SK_FinalCopy: 8984 OS << "final copy in class direct-initialization"; 8985 break; 8986 8987 case SK_ExtraneousCopyToTemporary: 8988 OS << "extraneous C++03 copy to temporary"; 8989 break; 8990 8991 case SK_UserConversion: 8992 OS << "user-defined conversion via " << *S->Function.Function; 8993 break; 8994 8995 case SK_QualificationConversionRValue: 8996 OS << "qualification conversion (rvalue)"; 8997 break; 8998 8999 case SK_QualificationConversionXValue: 9000 OS << "qualification conversion (xvalue)"; 9001 break; 9002 9003 case SK_QualificationConversionLValue: 9004 OS << "qualification conversion (lvalue)"; 9005 break; 9006 9007 case SK_AtomicConversion: 9008 OS << "non-atomic-to-atomic conversion"; 9009 break; 9010 9011 case SK_ConversionSequence: 9012 OS << "implicit conversion sequence ("; 9013 S->ICS->dump(); // FIXME: use OS 9014 OS << ")"; 9015 break; 9016 9017 case SK_ConversionSequenceNoNarrowing: 9018 OS << "implicit conversion sequence with narrowing prohibited ("; 9019 S->ICS->dump(); // FIXME: use OS 9020 OS << ")"; 9021 break; 9022 9023 case SK_ListInitialization: 9024 OS << "list aggregate initialization"; 9025 break; 9026 9027 case SK_UnwrapInitList: 9028 OS << "unwrap reference initializer list"; 9029 break; 9030 9031 case SK_RewrapInitList: 9032 OS << "rewrap reference initializer list"; 9033 break; 9034 9035 case SK_ConstructorInitialization: 9036 OS << "constructor initialization"; 9037 break; 9038 9039 case SK_ConstructorInitializationFromList: 9040 OS << "list initialization via constructor"; 9041 break; 9042 9043 case SK_ZeroInitialization: 9044 OS << "zero initialization"; 9045 break; 9046 9047 case SK_CAssignment: 9048 OS << "C assignment"; 9049 break; 9050 9051 case SK_StringInit: 9052 OS << "string initialization"; 9053 break; 9054 9055 case SK_ObjCObjectConversion: 9056 OS << "Objective-C object conversion"; 9057 break; 9058 9059 case SK_ArrayLoopIndex: 9060 OS << "indexing for array initialization loop"; 9061 break; 9062 9063 case SK_ArrayLoopInit: 9064 OS << "array initialization loop"; 9065 break; 9066 9067 case SK_ArrayInit: 9068 OS << "array initialization"; 9069 break; 9070 9071 case SK_GNUArrayInit: 9072 OS << "array initialization (GNU extension)"; 9073 break; 9074 9075 case SK_ParenthesizedArrayInit: 9076 OS << "parenthesized array initialization"; 9077 break; 9078 9079 case SK_PassByIndirectCopyRestore: 9080 OS << "pass by indirect copy and restore"; 9081 break; 9082 9083 case SK_PassByIndirectRestore: 9084 OS << "pass by indirect restore"; 9085 break; 9086 9087 case SK_ProduceObjCObject: 9088 OS << "Objective-C object retension"; 9089 break; 9090 9091 case SK_StdInitializerList: 9092 OS << "std::initializer_list from initializer list"; 9093 break; 9094 9095 case SK_StdInitializerListConstructorCall: 9096 OS << "list initialization from std::initializer_list"; 9097 break; 9098 9099 case SK_OCLSamplerInit: 9100 OS << "OpenCL sampler_t from integer constant"; 9101 break; 9102 9103 case SK_OCLZeroOpaqueType: 9104 OS << "OpenCL opaque type from zero"; 9105 break; 9106 } 9107 9108 OS << " [" << S->Type.getAsString() << ']'; 9109 } 9110 9111 OS << '\n'; 9112 } 9113 9114 void InitializationSequence::dump() const { 9115 dump(llvm::errs()); 9116 } 9117 9118 static bool NarrowingErrs(const LangOptions &L) { 9119 return L.CPlusPlus11 && 9120 (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015)); 9121 } 9122 9123 static void DiagnoseNarrowingInInitList(Sema &S, 9124 const ImplicitConversionSequence &ICS, 9125 QualType PreNarrowingType, 9126 QualType EntityType, 9127 const Expr *PostInit) { 9128 const StandardConversionSequence *SCS = nullptr; 9129 switch (ICS.getKind()) { 9130 case ImplicitConversionSequence::StandardConversion: 9131 SCS = &ICS.Standard; 9132 break; 9133 case ImplicitConversionSequence::UserDefinedConversion: 9134 SCS = &ICS.UserDefined.After; 9135 break; 9136 case ImplicitConversionSequence::AmbiguousConversion: 9137 case ImplicitConversionSequence::EllipsisConversion: 9138 case ImplicitConversionSequence::BadConversion: 9139 return; 9140 } 9141 9142 // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion. 9143 APValue ConstantValue; 9144 QualType ConstantType; 9145 switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue, 9146 ConstantType)) { 9147 case NK_Not_Narrowing: 9148 case NK_Dependent_Narrowing: 9149 // No narrowing occurred. 9150 return; 9151 9152 case NK_Type_Narrowing: 9153 // This was a floating-to-integer conversion, which is always considered a 9154 // narrowing conversion even if the value is a constant and can be 9155 // represented exactly as an integer. 9156 S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts()) 9157 ? diag::ext_init_list_type_narrowing 9158 : diag::warn_init_list_type_narrowing) 9159 << PostInit->getSourceRange() 9160 << PreNarrowingType.getLocalUnqualifiedType() 9161 << EntityType.getLocalUnqualifiedType(); 9162 break; 9163 9164 case NK_Constant_Narrowing: 9165 // A constant value was narrowed. 9166 S.Diag(PostInit->getBeginLoc(), 9167 NarrowingErrs(S.getLangOpts()) 9168 ? diag::ext_init_list_constant_narrowing 9169 : diag::warn_init_list_constant_narrowing) 9170 << PostInit->getSourceRange() 9171 << ConstantValue.getAsString(S.getASTContext(), ConstantType) 9172 << EntityType.getLocalUnqualifiedType(); 9173 break; 9174 9175 case NK_Variable_Narrowing: 9176 // A variable's value may have been narrowed. 9177 S.Diag(PostInit->getBeginLoc(), 9178 NarrowingErrs(S.getLangOpts()) 9179 ? diag::ext_init_list_variable_narrowing 9180 : diag::warn_init_list_variable_narrowing) 9181 << PostInit->getSourceRange() 9182 << PreNarrowingType.getLocalUnqualifiedType() 9183 << EntityType.getLocalUnqualifiedType(); 9184 break; 9185 } 9186 9187 SmallString<128> StaticCast; 9188 llvm::raw_svector_ostream OS(StaticCast); 9189 OS << "static_cast<"; 9190 if (const TypedefType *TT = EntityType->getAs<TypedefType>()) { 9191 // It's important to use the typedef's name if there is one so that the 9192 // fixit doesn't break code using types like int64_t. 9193 // 9194 // FIXME: This will break if the typedef requires qualification. But 9195 // getQualifiedNameAsString() includes non-machine-parsable components. 9196 OS << *TT->getDecl(); 9197 } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>()) 9198 OS << BT->getName(S.getLangOpts()); 9199 else { 9200 // Oops, we didn't find the actual type of the variable. Don't emit a fixit 9201 // with a broken cast. 9202 return; 9203 } 9204 OS << ">("; 9205 S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence) 9206 << PostInit->getSourceRange() 9207 << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str()) 9208 << FixItHint::CreateInsertion( 9209 S.getLocForEndOfToken(PostInit->getEndLoc()), ")"); 9210 } 9211 9212 //===----------------------------------------------------------------------===// 9213 // Initialization helper functions 9214 //===----------------------------------------------------------------------===// 9215 bool 9216 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity, 9217 ExprResult Init) { 9218 if (Init.isInvalid()) 9219 return false; 9220 9221 Expr *InitE = Init.get(); 9222 assert(InitE && "No initialization expression"); 9223 9224 InitializationKind Kind = 9225 InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation()); 9226 InitializationSequence Seq(*this, Entity, Kind, InitE); 9227 return !Seq.Failed(); 9228 } 9229 9230 ExprResult 9231 Sema::PerformCopyInitialization(const InitializedEntity &Entity, 9232 SourceLocation EqualLoc, 9233 ExprResult Init, 9234 bool TopLevelOfInitList, 9235 bool AllowExplicit) { 9236 if (Init.isInvalid()) 9237 return ExprError(); 9238 9239 Expr *InitE = Init.get(); 9240 assert(InitE && "No initialization expression?"); 9241 9242 if (EqualLoc.isInvalid()) 9243 EqualLoc = InitE->getBeginLoc(); 9244 9245 InitializationKind Kind = InitializationKind::CreateCopy( 9246 InitE->getBeginLoc(), EqualLoc, AllowExplicit); 9247 InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList); 9248 9249 // Prevent infinite recursion when performing parameter copy-initialization. 9250 const bool ShouldTrackCopy = 9251 Entity.isParameterKind() && Seq.isConstructorInitialization(); 9252 if (ShouldTrackCopy) { 9253 if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) != 9254 CurrentParameterCopyTypes.end()) { 9255 Seq.SetOverloadFailure( 9256 InitializationSequence::FK_ConstructorOverloadFailed, 9257 OR_No_Viable_Function); 9258 9259 // Try to give a meaningful diagnostic note for the problematic 9260 // constructor. 9261 const auto LastStep = Seq.step_end() - 1; 9262 assert(LastStep->Kind == 9263 InitializationSequence::SK_ConstructorInitialization); 9264 const FunctionDecl *Function = LastStep->Function.Function; 9265 auto Candidate = 9266 llvm::find_if(Seq.getFailedCandidateSet(), 9267 [Function](const OverloadCandidate &Candidate) -> bool { 9268 return Candidate.Viable && 9269 Candidate.Function == Function && 9270 Candidate.Conversions.size() > 0; 9271 }); 9272 if (Candidate != Seq.getFailedCandidateSet().end() && 9273 Function->getNumParams() > 0) { 9274 Candidate->Viable = false; 9275 Candidate->FailureKind = ovl_fail_bad_conversion; 9276 Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion, 9277 InitE, 9278 Function->getParamDecl(0)->getType()); 9279 } 9280 } 9281 CurrentParameterCopyTypes.push_back(Entity.getType()); 9282 } 9283 9284 ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE); 9285 9286 if (ShouldTrackCopy) 9287 CurrentParameterCopyTypes.pop_back(); 9288 9289 return Result; 9290 } 9291 9292 /// Determine whether RD is, or is derived from, a specialization of CTD. 9293 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD, 9294 ClassTemplateDecl *CTD) { 9295 auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) { 9296 auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate); 9297 return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD); 9298 }; 9299 return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization)); 9300 } 9301 9302 QualType Sema::DeduceTemplateSpecializationFromInitializer( 9303 TypeSourceInfo *TSInfo, const InitializedEntity &Entity, 9304 const InitializationKind &Kind, MultiExprArg Inits) { 9305 auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>( 9306 TSInfo->getType()->getContainedDeducedType()); 9307 assert(DeducedTST && "not a deduced template specialization type"); 9308 9309 auto TemplateName = DeducedTST->getTemplateName(); 9310 if (TemplateName.isDependent()) 9311 return Context.DependentTy; 9312 9313 // We can only perform deduction for class templates. 9314 auto *Template = 9315 dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl()); 9316 if (!Template) { 9317 Diag(Kind.getLocation(), 9318 diag::err_deduced_non_class_template_specialization_type) 9319 << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName; 9320 if (auto *TD = TemplateName.getAsTemplateDecl()) 9321 Diag(TD->getLocation(), diag::note_template_decl_here); 9322 return QualType(); 9323 } 9324 9325 // Can't deduce from dependent arguments. 9326 if (Expr::hasAnyTypeDependentArguments(Inits)) { 9327 Diag(TSInfo->getTypeLoc().getBeginLoc(), 9328 diag::warn_cxx14_compat_class_template_argument_deduction) 9329 << TSInfo->getTypeLoc().getSourceRange() << 0; 9330 return Context.DependentTy; 9331 } 9332 9333 // FIXME: Perform "exact type" matching first, per CWG discussion? 9334 // Or implement this via an implied 'T(T) -> T' deduction guide? 9335 9336 // FIXME: Do we need/want a std::initializer_list<T> special case? 9337 9338 // Look up deduction guides, including those synthesized from constructors. 9339 // 9340 // C++1z [over.match.class.deduct]p1: 9341 // A set of functions and function templates is formed comprising: 9342 // - For each constructor of the class template designated by the 9343 // template-name, a function template [...] 9344 // - For each deduction-guide, a function or function template [...] 9345 DeclarationNameInfo NameInfo( 9346 Context.DeclarationNames.getCXXDeductionGuideName(Template), 9347 TSInfo->getTypeLoc().getEndLoc()); 9348 LookupResult Guides(*this, NameInfo, LookupOrdinaryName); 9349 LookupQualifiedName(Guides, Template->getDeclContext()); 9350 9351 // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't 9352 // clear on this, but they're not found by name so access does not apply. 9353 Guides.suppressDiagnostics(); 9354 9355 // Figure out if this is list-initialization. 9356 InitListExpr *ListInit = 9357 (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct) 9358 ? dyn_cast<InitListExpr>(Inits[0]) 9359 : nullptr; 9360 9361 // C++1z [over.match.class.deduct]p1: 9362 // Initialization and overload resolution are performed as described in 9363 // [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list] 9364 // (as appropriate for the type of initialization performed) for an object 9365 // of a hypothetical class type, where the selected functions and function 9366 // templates are considered to be the constructors of that class type 9367 // 9368 // Since we know we're initializing a class type of a type unrelated to that 9369 // of the initializer, this reduces to something fairly reasonable. 9370 OverloadCandidateSet Candidates(Kind.getLocation(), 9371 OverloadCandidateSet::CSK_Normal); 9372 OverloadCandidateSet::iterator Best; 9373 9374 bool HasAnyDeductionGuide = false; 9375 bool AllowExplicit = !Kind.isCopyInit() || ListInit; 9376 9377 auto tryToResolveOverload = 9378 [&](bool OnlyListConstructors) -> OverloadingResult { 9379 Candidates.clear(OverloadCandidateSet::CSK_Normal); 9380 HasAnyDeductionGuide = false; 9381 9382 for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) { 9383 NamedDecl *D = (*I)->getUnderlyingDecl(); 9384 if (D->isInvalidDecl()) 9385 continue; 9386 9387 auto *TD = dyn_cast<FunctionTemplateDecl>(D); 9388 auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>( 9389 TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D)); 9390 if (!GD) 9391 continue; 9392 9393 if (!GD->isImplicit()) 9394 HasAnyDeductionGuide = true; 9395 9396 // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class) 9397 // For copy-initialization, the candidate functions are all the 9398 // converting constructors (12.3.1) of that class. 9399 // C++ [over.match.copy]p1: (non-list copy-initialization from class) 9400 // The converting constructors of T are candidate functions. 9401 if (!AllowExplicit) { 9402 // Only consider converting constructors. 9403 if (GD->isExplicit()) 9404 continue; 9405 9406 // When looking for a converting constructor, deduction guides that 9407 // could never be called with one argument are not interesting to 9408 // check or note. 9409 if (GD->getMinRequiredArguments() > 1 || 9410 (GD->getNumParams() == 0 && !GD->isVariadic())) 9411 continue; 9412 } 9413 9414 // C++ [over.match.list]p1.1: (first phase list initialization) 9415 // Initially, the candidate functions are the initializer-list 9416 // constructors of the class T 9417 if (OnlyListConstructors && !isInitListConstructor(GD)) 9418 continue; 9419 9420 // C++ [over.match.list]p1.2: (second phase list initialization) 9421 // the candidate functions are all the constructors of the class T 9422 // C++ [over.match.ctor]p1: (all other cases) 9423 // the candidate functions are all the constructors of the class of 9424 // the object being initialized 9425 9426 // C++ [over.best.ics]p4: 9427 // When [...] the constructor [...] is a candidate by 9428 // - [over.match.copy] (in all cases) 9429 // FIXME: The "second phase of [over.match.list] case can also 9430 // theoretically happen here, but it's not clear whether we can 9431 // ever have a parameter of the right type. 9432 bool SuppressUserConversions = Kind.isCopyInit(); 9433 9434 if (TD) 9435 AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr, 9436 Inits, Candidates, SuppressUserConversions, 9437 /*PartialOverloading*/ false, 9438 AllowExplicit); 9439 else 9440 AddOverloadCandidate(GD, I.getPair(), Inits, Candidates, 9441 SuppressUserConversions, 9442 /*PartialOverloading*/ false, AllowExplicit); 9443 } 9444 return Candidates.BestViableFunction(*this, Kind.getLocation(), Best); 9445 }; 9446 9447 OverloadingResult Result = OR_No_Viable_Function; 9448 9449 // C++11 [over.match.list]p1, per DR1467: for list-initialization, first 9450 // try initializer-list constructors. 9451 if (ListInit) { 9452 bool TryListConstructors = true; 9453 9454 // Try list constructors unless the list is empty and the class has one or 9455 // more default constructors, in which case those constructors win. 9456 if (!ListInit->getNumInits()) { 9457 for (NamedDecl *D : Guides) { 9458 auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl()); 9459 if (FD && FD->getMinRequiredArguments() == 0) { 9460 TryListConstructors = false; 9461 break; 9462 } 9463 } 9464 } else if (ListInit->getNumInits() == 1) { 9465 // C++ [over.match.class.deduct]: 9466 // As an exception, the first phase in [over.match.list] (considering 9467 // initializer-list constructors) is omitted if the initializer list 9468 // consists of a single expression of type cv U, where U is a 9469 // specialization of C or a class derived from a specialization of C. 9470 Expr *E = ListInit->getInit(0); 9471 auto *RD = E->getType()->getAsCXXRecordDecl(); 9472 if (!isa<InitListExpr>(E) && RD && 9473 isCompleteType(Kind.getLocation(), E->getType()) && 9474 isOrIsDerivedFromSpecializationOf(RD, Template)) 9475 TryListConstructors = false; 9476 } 9477 9478 if (TryListConstructors) 9479 Result = tryToResolveOverload(/*OnlyListConstructor*/true); 9480 // Then unwrap the initializer list and try again considering all 9481 // constructors. 9482 Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits()); 9483 } 9484 9485 // If list-initialization fails, or if we're doing any other kind of 9486 // initialization, we (eventually) consider constructors. 9487 if (Result == OR_No_Viable_Function) 9488 Result = tryToResolveOverload(/*OnlyListConstructor*/false); 9489 9490 switch (Result) { 9491 case OR_Ambiguous: 9492 // FIXME: For list-initialization candidates, it'd usually be better to 9493 // list why they were not viable when given the initializer list itself as 9494 // an argument. 9495 Candidates.NoteCandidates( 9496 PartialDiagnosticAt( 9497 Kind.getLocation(), 9498 PDiag(diag::err_deduced_class_template_ctor_ambiguous) 9499 << TemplateName), 9500 *this, OCD_ViableCandidates, Inits); 9501 return QualType(); 9502 9503 case OR_No_Viable_Function: { 9504 CXXRecordDecl *Primary = 9505 cast<ClassTemplateDecl>(Template)->getTemplatedDecl(); 9506 bool Complete = 9507 isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary)); 9508 Candidates.NoteCandidates( 9509 PartialDiagnosticAt( 9510 Kind.getLocation(), 9511 PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable 9512 : diag::err_deduced_class_template_incomplete) 9513 << TemplateName << !Guides.empty()), 9514 *this, OCD_AllCandidates, Inits); 9515 return QualType(); 9516 } 9517 9518 case OR_Deleted: { 9519 Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted) 9520 << TemplateName; 9521 NoteDeletedFunction(Best->Function); 9522 return QualType(); 9523 } 9524 9525 case OR_Success: 9526 // C++ [over.match.list]p1: 9527 // In copy-list-initialization, if an explicit constructor is chosen, the 9528 // initialization is ill-formed. 9529 if (Kind.isCopyInit() && ListInit && 9530 cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) { 9531 bool IsDeductionGuide = !Best->Function->isImplicit(); 9532 Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit) 9533 << TemplateName << IsDeductionGuide; 9534 Diag(Best->Function->getLocation(), 9535 diag::note_explicit_ctor_deduction_guide_here) 9536 << IsDeductionGuide; 9537 return QualType(); 9538 } 9539 9540 // Make sure we didn't select an unusable deduction guide, and mark it 9541 // as referenced. 9542 DiagnoseUseOfDecl(Best->Function, Kind.getLocation()); 9543 MarkFunctionReferenced(Kind.getLocation(), Best->Function); 9544 break; 9545 } 9546 9547 // C++ [dcl.type.class.deduct]p1: 9548 // The placeholder is replaced by the return type of the function selected 9549 // by overload resolution for class template deduction. 9550 QualType DeducedType = 9551 SubstAutoType(TSInfo->getType(), Best->Function->getReturnType()); 9552 Diag(TSInfo->getTypeLoc().getBeginLoc(), 9553 diag::warn_cxx14_compat_class_template_argument_deduction) 9554 << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType; 9555 9556 // Warn if CTAD was used on a type that does not have any user-defined 9557 // deduction guides. 9558 if (!HasAnyDeductionGuide) { 9559 Diag(TSInfo->getTypeLoc().getBeginLoc(), 9560 diag::warn_ctad_maybe_unsupported) 9561 << TemplateName; 9562 Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported); 9563 } 9564 9565 return DeducedType; 9566 } 9567