1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for initializers. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/DeclObjC.h" 15 #include "clang/AST/ExprCXX.h" 16 #include "clang/AST/ExprObjC.h" 17 #include "clang/AST/ExprOpenMP.h" 18 #include "clang/AST/TypeLoc.h" 19 #include "clang/Basic/CharInfo.h" 20 #include "clang/Basic/SourceManager.h" 21 #include "clang/Basic/TargetInfo.h" 22 #include "clang/Sema/Designator.h" 23 #include "clang/Sema/Initialization.h" 24 #include "clang/Sema/Lookup.h" 25 #include "clang/Sema/SemaInternal.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/PointerIntPair.h" 28 #include "llvm/ADT/SmallString.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/raw_ostream.h" 31 32 using namespace clang; 33 34 //===----------------------------------------------------------------------===// 35 // Sema Initialization Checking 36 //===----------------------------------------------------------------------===// 37 38 /// Check whether T is compatible with a wide character type (wchar_t, 39 /// char16_t or char32_t). 40 static bool IsWideCharCompatible(QualType T, ASTContext &Context) { 41 if (Context.typesAreCompatible(Context.getWideCharType(), T)) 42 return true; 43 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) { 44 return Context.typesAreCompatible(Context.Char16Ty, T) || 45 Context.typesAreCompatible(Context.Char32Ty, T); 46 } 47 return false; 48 } 49 50 enum StringInitFailureKind { 51 SIF_None, 52 SIF_NarrowStringIntoWideChar, 53 SIF_WideStringIntoChar, 54 SIF_IncompatWideStringIntoWideChar, 55 SIF_UTF8StringIntoPlainChar, 56 SIF_PlainStringIntoUTF8Char, 57 SIF_Other 58 }; 59 60 /// Check whether the array of type AT can be initialized by the Init 61 /// expression by means of string initialization. Returns SIF_None if so, 62 /// otherwise returns a StringInitFailureKind that describes why the 63 /// initialization would not work. 64 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT, 65 ASTContext &Context) { 66 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT)) 67 return SIF_Other; 68 69 // See if this is a string literal or @encode. 70 Init = Init->IgnoreParens(); 71 72 // Handle @encode, which is a narrow string. 73 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType()) 74 return SIF_None; 75 76 // Otherwise we can only handle string literals. 77 StringLiteral *SL = dyn_cast<StringLiteral>(Init); 78 if (!SL) 79 return SIF_Other; 80 81 const QualType ElemTy = 82 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType(); 83 84 switch (SL->getKind()) { 85 case StringLiteral::UTF8: 86 // char8_t array can be initialized with a UTF-8 string. 87 if (ElemTy->isChar8Type()) 88 return SIF_None; 89 LLVM_FALLTHROUGH; 90 case StringLiteral::Ascii: 91 // char array can be initialized with a narrow string. 92 // Only allow char x[] = "foo"; not char x[] = L"foo"; 93 if (ElemTy->isCharType()) 94 return (SL->getKind() == StringLiteral::UTF8 && 95 Context.getLangOpts().Char8) 96 ? SIF_UTF8StringIntoPlainChar 97 : SIF_None; 98 if (ElemTy->isChar8Type()) 99 return SIF_PlainStringIntoUTF8Char; 100 if (IsWideCharCompatible(ElemTy, Context)) 101 return SIF_NarrowStringIntoWideChar; 102 return SIF_Other; 103 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15: 104 // "An array with element type compatible with a qualified or unqualified 105 // version of wchar_t, char16_t, or char32_t may be initialized by a wide 106 // string literal with the corresponding encoding prefix (L, u, or U, 107 // respectively), optionally enclosed in braces. 108 case StringLiteral::UTF16: 109 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy)) 110 return SIF_None; 111 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 112 return SIF_WideStringIntoChar; 113 if (IsWideCharCompatible(ElemTy, Context)) 114 return SIF_IncompatWideStringIntoWideChar; 115 return SIF_Other; 116 case StringLiteral::UTF32: 117 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy)) 118 return SIF_None; 119 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 120 return SIF_WideStringIntoChar; 121 if (IsWideCharCompatible(ElemTy, Context)) 122 return SIF_IncompatWideStringIntoWideChar; 123 return SIF_Other; 124 case StringLiteral::Wide: 125 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy)) 126 return SIF_None; 127 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 128 return SIF_WideStringIntoChar; 129 if (IsWideCharCompatible(ElemTy, Context)) 130 return SIF_IncompatWideStringIntoWideChar; 131 return SIF_Other; 132 } 133 134 llvm_unreachable("missed a StringLiteral kind?"); 135 } 136 137 static StringInitFailureKind IsStringInit(Expr *init, QualType declType, 138 ASTContext &Context) { 139 const ArrayType *arrayType = Context.getAsArrayType(declType); 140 if (!arrayType) 141 return SIF_Other; 142 return IsStringInit(init, arrayType, Context); 143 } 144 145 bool Sema::IsStringInit(Expr *Init, const ArrayType *AT) { 146 return ::IsStringInit(Init, AT, Context) == SIF_None; 147 } 148 149 /// Update the type of a string literal, including any surrounding parentheses, 150 /// to match the type of the object which it is initializing. 151 static void updateStringLiteralType(Expr *E, QualType Ty) { 152 while (true) { 153 E->setType(Ty); 154 E->setValueKind(VK_PRValue); 155 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) { 156 break; 157 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 158 E = PE->getSubExpr(); 159 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 160 assert(UO->getOpcode() == UO_Extension); 161 E = UO->getSubExpr(); 162 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) { 163 E = GSE->getResultExpr(); 164 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) { 165 E = CE->getChosenSubExpr(); 166 } else { 167 llvm_unreachable("unexpected expr in string literal init"); 168 } 169 } 170 } 171 172 /// Fix a compound literal initializing an array so it's correctly marked 173 /// as an rvalue. 174 static void updateGNUCompoundLiteralRValue(Expr *E) { 175 while (true) { 176 E->setValueKind(VK_PRValue); 177 if (isa<CompoundLiteralExpr>(E)) { 178 break; 179 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 180 E = PE->getSubExpr(); 181 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 182 assert(UO->getOpcode() == UO_Extension); 183 E = UO->getSubExpr(); 184 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) { 185 E = GSE->getResultExpr(); 186 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) { 187 E = CE->getChosenSubExpr(); 188 } else { 189 llvm_unreachable("unexpected expr in array compound literal init"); 190 } 191 } 192 } 193 194 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT, 195 Sema &S) { 196 // Get the length of the string as parsed. 197 auto *ConstantArrayTy = 198 cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe()); 199 uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue(); 200 201 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { 202 // C99 6.7.8p14. We have an array of character type with unknown size 203 // being initialized to a string literal. 204 llvm::APInt ConstVal(32, StrLength); 205 // Return a new array type (C99 6.7.8p22). 206 DeclT = S.Context.getConstantArrayType(IAT->getElementType(), 207 ConstVal, nullptr, 208 ArrayType::Normal, 0); 209 updateStringLiteralType(Str, DeclT); 210 return; 211 } 212 213 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT); 214 215 // We have an array of character type with known size. However, 216 // the size may be smaller or larger than the string we are initializing. 217 // FIXME: Avoid truncation for 64-bit length strings. 218 if (S.getLangOpts().CPlusPlus) { 219 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) { 220 // For Pascal strings it's OK to strip off the terminating null character, 221 // so the example below is valid: 222 // 223 // unsigned char a[2] = "\pa"; 224 if (SL->isPascal()) 225 StrLength--; 226 } 227 228 // [dcl.init.string]p2 229 if (StrLength > CAT->getSize().getZExtValue()) 230 S.Diag(Str->getBeginLoc(), 231 diag::err_initializer_string_for_char_array_too_long) 232 << Str->getSourceRange(); 233 } else { 234 // C99 6.7.8p14. 235 if (StrLength-1 > CAT->getSize().getZExtValue()) 236 S.Diag(Str->getBeginLoc(), 237 diag::ext_initializer_string_for_char_array_too_long) 238 << Str->getSourceRange(); 239 } 240 241 // Set the type to the actual size that we are initializing. If we have 242 // something like: 243 // char x[1] = "foo"; 244 // then this will set the string literal's type to char[1]. 245 updateStringLiteralType(Str, DeclT); 246 } 247 248 //===----------------------------------------------------------------------===// 249 // Semantic checking for initializer lists. 250 //===----------------------------------------------------------------------===// 251 252 namespace { 253 254 /// Semantic checking for initializer lists. 255 /// 256 /// The InitListChecker class contains a set of routines that each 257 /// handle the initialization of a certain kind of entity, e.g., 258 /// arrays, vectors, struct/union types, scalars, etc. The 259 /// InitListChecker itself performs a recursive walk of the subobject 260 /// structure of the type to be initialized, while stepping through 261 /// the initializer list one element at a time. The IList and Index 262 /// parameters to each of the Check* routines contain the active 263 /// (syntactic) initializer list and the index into that initializer 264 /// list that represents the current initializer. Each routine is 265 /// responsible for moving that Index forward as it consumes elements. 266 /// 267 /// Each Check* routine also has a StructuredList/StructuredIndex 268 /// arguments, which contains the current "structured" (semantic) 269 /// initializer list and the index into that initializer list where we 270 /// are copying initializers as we map them over to the semantic 271 /// list. Once we have completed our recursive walk of the subobject 272 /// structure, we will have constructed a full semantic initializer 273 /// list. 274 /// 275 /// C99 designators cause changes in the initializer list traversal, 276 /// because they make the initialization "jump" into a specific 277 /// subobject and then continue the initialization from that 278 /// point. CheckDesignatedInitializer() recursively steps into the 279 /// designated subobject and manages backing out the recursion to 280 /// initialize the subobjects after the one designated. 281 /// 282 /// If an initializer list contains any designators, we build a placeholder 283 /// structured list even in 'verify only' mode, so that we can track which 284 /// elements need 'empty' initializtion. 285 class InitListChecker { 286 Sema &SemaRef; 287 bool hadError = false; 288 bool VerifyOnly; // No diagnostics. 289 bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode. 290 bool InOverloadResolution; 291 InitListExpr *FullyStructuredList = nullptr; 292 NoInitExpr *DummyExpr = nullptr; 293 294 NoInitExpr *getDummyInit() { 295 if (!DummyExpr) 296 DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy); 297 return DummyExpr; 298 } 299 300 void CheckImplicitInitList(const InitializedEntity &Entity, 301 InitListExpr *ParentIList, QualType T, 302 unsigned &Index, InitListExpr *StructuredList, 303 unsigned &StructuredIndex); 304 void CheckExplicitInitList(const InitializedEntity &Entity, 305 InitListExpr *IList, QualType &T, 306 InitListExpr *StructuredList, 307 bool TopLevelObject = false); 308 void CheckListElementTypes(const InitializedEntity &Entity, 309 InitListExpr *IList, QualType &DeclType, 310 bool SubobjectIsDesignatorContext, 311 unsigned &Index, 312 InitListExpr *StructuredList, 313 unsigned &StructuredIndex, 314 bool TopLevelObject = false); 315 void CheckSubElementType(const InitializedEntity &Entity, 316 InitListExpr *IList, QualType ElemType, 317 unsigned &Index, 318 InitListExpr *StructuredList, 319 unsigned &StructuredIndex, 320 bool DirectlyDesignated = false); 321 void CheckComplexType(const InitializedEntity &Entity, 322 InitListExpr *IList, QualType DeclType, 323 unsigned &Index, 324 InitListExpr *StructuredList, 325 unsigned &StructuredIndex); 326 void CheckScalarType(const InitializedEntity &Entity, 327 InitListExpr *IList, QualType DeclType, 328 unsigned &Index, 329 InitListExpr *StructuredList, 330 unsigned &StructuredIndex); 331 void CheckReferenceType(const InitializedEntity &Entity, 332 InitListExpr *IList, QualType DeclType, 333 unsigned &Index, 334 InitListExpr *StructuredList, 335 unsigned &StructuredIndex); 336 void CheckVectorType(const InitializedEntity &Entity, 337 InitListExpr *IList, QualType DeclType, unsigned &Index, 338 InitListExpr *StructuredList, 339 unsigned &StructuredIndex); 340 void CheckStructUnionTypes(const InitializedEntity &Entity, 341 InitListExpr *IList, QualType DeclType, 342 CXXRecordDecl::base_class_range Bases, 343 RecordDecl::field_iterator Field, 344 bool SubobjectIsDesignatorContext, unsigned &Index, 345 InitListExpr *StructuredList, 346 unsigned &StructuredIndex, 347 bool TopLevelObject = false); 348 void CheckArrayType(const InitializedEntity &Entity, 349 InitListExpr *IList, QualType &DeclType, 350 llvm::APSInt elementIndex, 351 bool SubobjectIsDesignatorContext, unsigned &Index, 352 InitListExpr *StructuredList, 353 unsigned &StructuredIndex); 354 bool CheckDesignatedInitializer(const InitializedEntity &Entity, 355 InitListExpr *IList, DesignatedInitExpr *DIE, 356 unsigned DesigIdx, 357 QualType &CurrentObjectType, 358 RecordDecl::field_iterator *NextField, 359 llvm::APSInt *NextElementIndex, 360 unsigned &Index, 361 InitListExpr *StructuredList, 362 unsigned &StructuredIndex, 363 bool FinishSubobjectInit, 364 bool TopLevelObject); 365 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 366 QualType CurrentObjectType, 367 InitListExpr *StructuredList, 368 unsigned StructuredIndex, 369 SourceRange InitRange, 370 bool IsFullyOverwritten = false); 371 void UpdateStructuredListElement(InitListExpr *StructuredList, 372 unsigned &StructuredIndex, 373 Expr *expr); 374 InitListExpr *createInitListExpr(QualType CurrentObjectType, 375 SourceRange InitRange, 376 unsigned ExpectedNumInits); 377 int numArrayElements(QualType DeclType); 378 int numStructUnionElements(QualType DeclType); 379 380 ExprResult PerformEmptyInit(SourceLocation Loc, 381 const InitializedEntity &Entity); 382 383 /// Diagnose that OldInit (or part thereof) has been overridden by NewInit. 384 void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange, 385 bool FullyOverwritten = true) { 386 // Overriding an initializer via a designator is valid with C99 designated 387 // initializers, but ill-formed with C++20 designated initializers. 388 unsigned DiagID = SemaRef.getLangOpts().CPlusPlus 389 ? diag::ext_initializer_overrides 390 : diag::warn_initializer_overrides; 391 392 if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) { 393 // In overload resolution, we have to strictly enforce the rules, and so 394 // don't allow any overriding of prior initializers. This matters for a 395 // case such as: 396 // 397 // union U { int a, b; }; 398 // struct S { int a, b; }; 399 // void f(U), f(S); 400 // 401 // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For 402 // consistency, we disallow all overriding of prior initializers in 403 // overload resolution, not only overriding of union members. 404 hadError = true; 405 } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) { 406 // If we'll be keeping around the old initializer but overwriting part of 407 // the object it initialized, and that object is not trivially 408 // destructible, this can leak. Don't allow that, not even as an 409 // extension. 410 // 411 // FIXME: It might be reasonable to allow this in cases where the part of 412 // the initializer that we're overriding has trivial destruction. 413 DiagID = diag::err_initializer_overrides_destructed; 414 } else if (!OldInit->getSourceRange().isValid()) { 415 // We need to check on source range validity because the previous 416 // initializer does not have to be an explicit initializer. e.g., 417 // 418 // struct P { int a, b; }; 419 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 }; 420 // 421 // There is an overwrite taking place because the first braced initializer 422 // list "{ .a = 2 }" already provides value for .p.b (which is zero). 423 // 424 // Such overwrites are harmless, so we don't diagnose them. (Note that in 425 // C++, this cannot be reached unless we've already seen and diagnosed a 426 // different conformance issue, such as a mixture of designated and 427 // non-designated initializers or a multi-level designator.) 428 return; 429 } 430 431 if (!VerifyOnly) { 432 SemaRef.Diag(NewInitRange.getBegin(), DiagID) 433 << NewInitRange << FullyOverwritten << OldInit->getType(); 434 SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer) 435 << (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten) 436 << OldInit->getSourceRange(); 437 } 438 } 439 440 // Explanation on the "FillWithNoInit" mode: 441 // 442 // Assume we have the following definitions (Case#1): 443 // struct P { char x[6][6]; } xp = { .x[1] = "bar" }; 444 // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' }; 445 // 446 // l.lp.x[1][0..1] should not be filled with implicit initializers because the 447 // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf". 448 // 449 // But if we have (Case#2): 450 // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } }; 451 // 452 // l.lp.x[1][0..1] are implicitly initialized and do not use values from the 453 // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0". 454 // 455 // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes" 456 // in the InitListExpr, the "holes" in Case#1 are filled not with empty 457 // initializers but with special "NoInitExpr" place holders, which tells the 458 // CodeGen not to generate any initializers for these parts. 459 void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base, 460 const InitializedEntity &ParentEntity, 461 InitListExpr *ILE, bool &RequiresSecondPass, 462 bool FillWithNoInit); 463 void FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 464 const InitializedEntity &ParentEntity, 465 InitListExpr *ILE, bool &RequiresSecondPass, 466 bool FillWithNoInit = false); 467 void FillInEmptyInitializations(const InitializedEntity &Entity, 468 InitListExpr *ILE, bool &RequiresSecondPass, 469 InitListExpr *OuterILE, unsigned OuterIndex, 470 bool FillWithNoInit = false); 471 bool CheckFlexibleArrayInit(const InitializedEntity &Entity, 472 Expr *InitExpr, FieldDecl *Field, 473 bool TopLevelObject); 474 void CheckEmptyInitializable(const InitializedEntity &Entity, 475 SourceLocation Loc); 476 477 public: 478 InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL, 479 QualType &T, bool VerifyOnly, bool TreatUnavailableAsInvalid, 480 bool InOverloadResolution = false); 481 bool HadError() { return hadError; } 482 483 // Retrieves the fully-structured initializer list used for 484 // semantic analysis and code generation. 485 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; } 486 }; 487 488 } // end anonymous namespace 489 490 ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc, 491 const InitializedEntity &Entity) { 492 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, 493 true); 494 MultiExprArg SubInit; 495 Expr *InitExpr; 496 InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc); 497 498 // C++ [dcl.init.aggr]p7: 499 // If there are fewer initializer-clauses in the list than there are 500 // members in the aggregate, then each member not explicitly initialized 501 // ... 502 bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 && 503 Entity.getType()->getBaseElementTypeUnsafe()->isRecordType(); 504 if (EmptyInitList) { 505 // C++1y / DR1070: 506 // shall be initialized [...] from an empty initializer list. 507 // 508 // We apply the resolution of this DR to C++11 but not C++98, since C++98 509 // does not have useful semantics for initialization from an init list. 510 // We treat this as copy-initialization, because aggregate initialization 511 // always performs copy-initialization on its elements. 512 // 513 // Only do this if we're initializing a class type, to avoid filling in 514 // the initializer list where possible. 515 InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context) 516 InitListExpr(SemaRef.Context, Loc, None, Loc); 517 InitExpr->setType(SemaRef.Context.VoidTy); 518 SubInit = InitExpr; 519 Kind = InitializationKind::CreateCopy(Loc, Loc); 520 } else { 521 // C++03: 522 // shall be value-initialized. 523 } 524 525 InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit); 526 // libstdc++4.6 marks the vector default constructor as explicit in 527 // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case. 528 // stlport does so too. Look for std::__debug for libstdc++, and for 529 // std:: for stlport. This is effectively a compiler-side implementation of 530 // LWG2193. 531 if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() == 532 InitializationSequence::FK_ExplicitConstructor) { 533 OverloadCandidateSet::iterator Best; 534 OverloadingResult O = 535 InitSeq.getFailedCandidateSet() 536 .BestViableFunction(SemaRef, Kind.getLocation(), Best); 537 (void)O; 538 assert(O == OR_Success && "Inconsistent overload resolution"); 539 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 540 CXXRecordDecl *R = CtorDecl->getParent(); 541 542 if (CtorDecl->getMinRequiredArguments() == 0 && 543 CtorDecl->isExplicit() && R->getDeclName() && 544 SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) { 545 bool IsInStd = false; 546 for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext()); 547 ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) { 548 if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND)) 549 IsInStd = true; 550 } 551 552 if (IsInStd && llvm::StringSwitch<bool>(R->getName()) 553 .Cases("basic_string", "deque", "forward_list", true) 554 .Cases("list", "map", "multimap", "multiset", true) 555 .Cases("priority_queue", "queue", "set", "stack", true) 556 .Cases("unordered_map", "unordered_set", "vector", true) 557 .Default(false)) { 558 InitSeq.InitializeFrom( 559 SemaRef, Entity, 560 InitializationKind::CreateValue(Loc, Loc, Loc, true), 561 MultiExprArg(), /*TopLevelOfInitList=*/false, 562 TreatUnavailableAsInvalid); 563 // Emit a warning for this. System header warnings aren't shown 564 // by default, but people working on system headers should see it. 565 if (!VerifyOnly) { 566 SemaRef.Diag(CtorDecl->getLocation(), 567 diag::warn_invalid_initializer_from_system_header); 568 if (Entity.getKind() == InitializedEntity::EK_Member) 569 SemaRef.Diag(Entity.getDecl()->getLocation(), 570 diag::note_used_in_initialization_here); 571 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) 572 SemaRef.Diag(Loc, diag::note_used_in_initialization_here); 573 } 574 } 575 } 576 } 577 if (!InitSeq) { 578 if (!VerifyOnly) { 579 InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit); 580 if (Entity.getKind() == InitializedEntity::EK_Member) 581 SemaRef.Diag(Entity.getDecl()->getLocation(), 582 diag::note_in_omitted_aggregate_initializer) 583 << /*field*/1 << Entity.getDecl(); 584 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) { 585 bool IsTrailingArrayNewMember = 586 Entity.getParent() && 587 Entity.getParent()->isVariableLengthArrayNew(); 588 SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer) 589 << (IsTrailingArrayNewMember ? 2 : /*array element*/0) 590 << Entity.getElementIndex(); 591 } 592 } 593 hadError = true; 594 return ExprError(); 595 } 596 597 return VerifyOnly ? ExprResult() 598 : InitSeq.Perform(SemaRef, Entity, Kind, SubInit); 599 } 600 601 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity, 602 SourceLocation Loc) { 603 // If we're building a fully-structured list, we'll check this at the end 604 // once we know which elements are actually initialized. Otherwise, we know 605 // that there are no designators so we can just check now. 606 if (FullyStructuredList) 607 return; 608 PerformEmptyInit(Loc, Entity); 609 } 610 611 void InitListChecker::FillInEmptyInitForBase( 612 unsigned Init, const CXXBaseSpecifier &Base, 613 const InitializedEntity &ParentEntity, InitListExpr *ILE, 614 bool &RequiresSecondPass, bool FillWithNoInit) { 615 InitializedEntity BaseEntity = InitializedEntity::InitializeBase( 616 SemaRef.Context, &Base, false, &ParentEntity); 617 618 if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) { 619 ExprResult BaseInit = FillWithNoInit 620 ? new (SemaRef.Context) NoInitExpr(Base.getType()) 621 : PerformEmptyInit(ILE->getEndLoc(), BaseEntity); 622 if (BaseInit.isInvalid()) { 623 hadError = true; 624 return; 625 } 626 627 if (!VerifyOnly) { 628 assert(Init < ILE->getNumInits() && "should have been expanded"); 629 ILE->setInit(Init, BaseInit.getAs<Expr>()); 630 } 631 } else if (InitListExpr *InnerILE = 632 dyn_cast<InitListExpr>(ILE->getInit(Init))) { 633 FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass, 634 ILE, Init, FillWithNoInit); 635 } else if (DesignatedInitUpdateExpr *InnerDIUE = 636 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { 637 FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(), 638 RequiresSecondPass, ILE, Init, 639 /*FillWithNoInit =*/true); 640 } 641 } 642 643 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 644 const InitializedEntity &ParentEntity, 645 InitListExpr *ILE, 646 bool &RequiresSecondPass, 647 bool FillWithNoInit) { 648 SourceLocation Loc = ILE->getEndLoc(); 649 unsigned NumInits = ILE->getNumInits(); 650 InitializedEntity MemberEntity 651 = InitializedEntity::InitializeMember(Field, &ParentEntity); 652 653 if (Init >= NumInits || !ILE->getInit(Init)) { 654 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) 655 if (!RType->getDecl()->isUnion()) 656 assert((Init < NumInits || VerifyOnly) && 657 "This ILE should have been expanded"); 658 659 if (FillWithNoInit) { 660 assert(!VerifyOnly && "should not fill with no-init in verify-only mode"); 661 Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType()); 662 if (Init < NumInits) 663 ILE->setInit(Init, Filler); 664 else 665 ILE->updateInit(SemaRef.Context, Init, Filler); 666 return; 667 } 668 // C++1y [dcl.init.aggr]p7: 669 // If there are fewer initializer-clauses in the list than there are 670 // members in the aggregate, then each member not explicitly initialized 671 // shall be initialized from its brace-or-equal-initializer [...] 672 if (Field->hasInClassInitializer()) { 673 if (VerifyOnly) 674 return; 675 676 ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field); 677 if (DIE.isInvalid()) { 678 hadError = true; 679 return; 680 } 681 SemaRef.checkInitializerLifetime(MemberEntity, DIE.get()); 682 if (Init < NumInits) 683 ILE->setInit(Init, DIE.get()); 684 else { 685 ILE->updateInit(SemaRef.Context, Init, DIE.get()); 686 RequiresSecondPass = true; 687 } 688 return; 689 } 690 691 if (Field->getType()->isReferenceType()) { 692 if (!VerifyOnly) { 693 // C++ [dcl.init.aggr]p9: 694 // If an incomplete or empty initializer-list leaves a 695 // member of reference type uninitialized, the program is 696 // ill-formed. 697 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized) 698 << Field->getType() 699 << ILE->getSyntacticForm()->getSourceRange(); 700 SemaRef.Diag(Field->getLocation(), 701 diag::note_uninit_reference_member); 702 } 703 hadError = true; 704 return; 705 } 706 707 ExprResult MemberInit = PerformEmptyInit(Loc, MemberEntity); 708 if (MemberInit.isInvalid()) { 709 hadError = true; 710 return; 711 } 712 713 if (hadError || VerifyOnly) { 714 // Do nothing 715 } else if (Init < NumInits) { 716 ILE->setInit(Init, MemberInit.getAs<Expr>()); 717 } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) { 718 // Empty initialization requires a constructor call, so 719 // extend the initializer list to include the constructor 720 // call and make a note that we'll need to take another pass 721 // through the initializer list. 722 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>()); 723 RequiresSecondPass = true; 724 } 725 } else if (InitListExpr *InnerILE 726 = dyn_cast<InitListExpr>(ILE->getInit(Init))) { 727 FillInEmptyInitializations(MemberEntity, InnerILE, 728 RequiresSecondPass, ILE, Init, FillWithNoInit); 729 } else if (DesignatedInitUpdateExpr *InnerDIUE = 730 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { 731 FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(), 732 RequiresSecondPass, ILE, Init, 733 /*FillWithNoInit =*/true); 734 } 735 } 736 737 /// Recursively replaces NULL values within the given initializer list 738 /// with expressions that perform value-initialization of the 739 /// appropriate type, and finish off the InitListExpr formation. 740 void 741 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity, 742 InitListExpr *ILE, 743 bool &RequiresSecondPass, 744 InitListExpr *OuterILE, 745 unsigned OuterIndex, 746 bool FillWithNoInit) { 747 assert((ILE->getType() != SemaRef.Context.VoidTy) && 748 "Should not have void type"); 749 750 // We don't need to do any checks when just filling NoInitExprs; that can't 751 // fail. 752 if (FillWithNoInit && VerifyOnly) 753 return; 754 755 // If this is a nested initializer list, we might have changed its contents 756 // (and therefore some of its properties, such as instantiation-dependence) 757 // while filling it in. Inform the outer initializer list so that its state 758 // can be updated to match. 759 // FIXME: We should fully build the inner initializers before constructing 760 // the outer InitListExpr instead of mutating AST nodes after they have 761 // been used as subexpressions of other nodes. 762 struct UpdateOuterILEWithUpdatedInit { 763 InitListExpr *Outer; 764 unsigned OuterIndex; 765 ~UpdateOuterILEWithUpdatedInit() { 766 if (Outer) 767 Outer->setInit(OuterIndex, Outer->getInit(OuterIndex)); 768 } 769 } UpdateOuterRAII = {OuterILE, OuterIndex}; 770 771 // A transparent ILE is not performing aggregate initialization and should 772 // not be filled in. 773 if (ILE->isTransparent()) 774 return; 775 776 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 777 const RecordDecl *RDecl = RType->getDecl(); 778 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion()) 779 FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(), 780 Entity, ILE, RequiresSecondPass, FillWithNoInit); 781 else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) && 782 cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) { 783 for (auto *Field : RDecl->fields()) { 784 if (Field->hasInClassInitializer()) { 785 FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass, 786 FillWithNoInit); 787 break; 788 } 789 } 790 } else { 791 // The fields beyond ILE->getNumInits() are default initialized, so in 792 // order to leave them uninitialized, the ILE is expanded and the extra 793 // fields are then filled with NoInitExpr. 794 unsigned NumElems = numStructUnionElements(ILE->getType()); 795 if (RDecl->hasFlexibleArrayMember()) 796 ++NumElems; 797 if (!VerifyOnly && ILE->getNumInits() < NumElems) 798 ILE->resizeInits(SemaRef.Context, NumElems); 799 800 unsigned Init = 0; 801 802 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) { 803 for (auto &Base : CXXRD->bases()) { 804 if (hadError) 805 return; 806 807 FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass, 808 FillWithNoInit); 809 ++Init; 810 } 811 } 812 813 for (auto *Field : RDecl->fields()) { 814 if (Field->isUnnamedBitfield()) 815 continue; 816 817 if (hadError) 818 return; 819 820 FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass, 821 FillWithNoInit); 822 if (hadError) 823 return; 824 825 ++Init; 826 827 // Only look at the first initialization of a union. 828 if (RDecl->isUnion()) 829 break; 830 } 831 } 832 833 return; 834 } 835 836 QualType ElementType; 837 838 InitializedEntity ElementEntity = Entity; 839 unsigned NumInits = ILE->getNumInits(); 840 unsigned NumElements = NumInits; 841 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) { 842 ElementType = AType->getElementType(); 843 if (const auto *CAType = dyn_cast<ConstantArrayType>(AType)) 844 NumElements = CAType->getSize().getZExtValue(); 845 // For an array new with an unknown bound, ask for one additional element 846 // in order to populate the array filler. 847 if (Entity.isVariableLengthArrayNew()) 848 ++NumElements; 849 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 850 0, Entity); 851 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) { 852 ElementType = VType->getElementType(); 853 NumElements = VType->getNumElements(); 854 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 855 0, Entity); 856 } else 857 ElementType = ILE->getType(); 858 859 bool SkipEmptyInitChecks = false; 860 for (unsigned Init = 0; Init != NumElements; ++Init) { 861 if (hadError) 862 return; 863 864 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement || 865 ElementEntity.getKind() == InitializedEntity::EK_VectorElement) 866 ElementEntity.setElementIndex(Init); 867 868 if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks)) 869 return; 870 871 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr); 872 if (!InitExpr && Init < NumInits && ILE->hasArrayFiller()) 873 ILE->setInit(Init, ILE->getArrayFiller()); 874 else if (!InitExpr && !ILE->hasArrayFiller()) { 875 // In VerifyOnly mode, there's no point performing empty initialization 876 // more than once. 877 if (SkipEmptyInitChecks) 878 continue; 879 880 Expr *Filler = nullptr; 881 882 if (FillWithNoInit) 883 Filler = new (SemaRef.Context) NoInitExpr(ElementType); 884 else { 885 ExprResult ElementInit = 886 PerformEmptyInit(ILE->getEndLoc(), ElementEntity); 887 if (ElementInit.isInvalid()) { 888 hadError = true; 889 return; 890 } 891 892 Filler = ElementInit.getAs<Expr>(); 893 } 894 895 if (hadError) { 896 // Do nothing 897 } else if (VerifyOnly) { 898 SkipEmptyInitChecks = true; 899 } else if (Init < NumInits) { 900 // For arrays, just set the expression used for value-initialization 901 // of the "holes" in the array. 902 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) 903 ILE->setArrayFiller(Filler); 904 else 905 ILE->setInit(Init, Filler); 906 } else { 907 // For arrays, just set the expression used for value-initialization 908 // of the rest of elements and exit. 909 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) { 910 ILE->setArrayFiller(Filler); 911 return; 912 } 913 914 if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) { 915 // Empty initialization requires a constructor call, so 916 // extend the initializer list to include the constructor 917 // call and make a note that we'll need to take another pass 918 // through the initializer list. 919 ILE->updateInit(SemaRef.Context, Init, Filler); 920 RequiresSecondPass = true; 921 } 922 } 923 } else if (InitListExpr *InnerILE 924 = dyn_cast_or_null<InitListExpr>(InitExpr)) { 925 FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass, 926 ILE, Init, FillWithNoInit); 927 } else if (DesignatedInitUpdateExpr *InnerDIUE = 928 dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) { 929 FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(), 930 RequiresSecondPass, ILE, Init, 931 /*FillWithNoInit =*/true); 932 } 933 } 934 } 935 936 static bool hasAnyDesignatedInits(const InitListExpr *IL) { 937 for (const Stmt *Init : *IL) 938 if (Init && isa<DesignatedInitExpr>(Init)) 939 return true; 940 return false; 941 } 942 943 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity, 944 InitListExpr *IL, QualType &T, bool VerifyOnly, 945 bool TreatUnavailableAsInvalid, 946 bool InOverloadResolution) 947 : SemaRef(S), VerifyOnly(VerifyOnly), 948 TreatUnavailableAsInvalid(TreatUnavailableAsInvalid), 949 InOverloadResolution(InOverloadResolution) { 950 if (!VerifyOnly || hasAnyDesignatedInits(IL)) { 951 FullyStructuredList = 952 createInitListExpr(T, IL->getSourceRange(), IL->getNumInits()); 953 954 // FIXME: Check that IL isn't already the semantic form of some other 955 // InitListExpr. If it is, we'd create a broken AST. 956 if (!VerifyOnly) 957 FullyStructuredList->setSyntacticForm(IL); 958 } 959 960 CheckExplicitInitList(Entity, IL, T, FullyStructuredList, 961 /*TopLevelObject=*/true); 962 963 if (!hadError && FullyStructuredList) { 964 bool RequiresSecondPass = false; 965 FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass, 966 /*OuterILE=*/nullptr, /*OuterIndex=*/0); 967 if (RequiresSecondPass && !hadError) 968 FillInEmptyInitializations(Entity, FullyStructuredList, 969 RequiresSecondPass, nullptr, 0); 970 } 971 if (hadError && FullyStructuredList) 972 FullyStructuredList->markError(); 973 } 974 975 int InitListChecker::numArrayElements(QualType DeclType) { 976 // FIXME: use a proper constant 977 int maxElements = 0x7FFFFFFF; 978 if (const ConstantArrayType *CAT = 979 SemaRef.Context.getAsConstantArrayType(DeclType)) { 980 maxElements = static_cast<int>(CAT->getSize().getZExtValue()); 981 } 982 return maxElements; 983 } 984 985 int InitListChecker::numStructUnionElements(QualType DeclType) { 986 RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl(); 987 int InitializableMembers = 0; 988 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl)) 989 InitializableMembers += CXXRD->getNumBases(); 990 for (const auto *Field : structDecl->fields()) 991 if (!Field->isUnnamedBitfield()) 992 ++InitializableMembers; 993 994 if (structDecl->isUnion()) 995 return std::min(InitializableMembers, 1); 996 return InitializableMembers - structDecl->hasFlexibleArrayMember(); 997 } 998 999 /// Determine whether Entity is an entity for which it is idiomatic to elide 1000 /// the braces in aggregate initialization. 1001 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) { 1002 // Recursive initialization of the one and only field within an aggregate 1003 // class is considered idiomatic. This case arises in particular for 1004 // initialization of std::array, where the C++ standard suggests the idiom of 1005 // 1006 // std::array<T, N> arr = {1, 2, 3}; 1007 // 1008 // (where std::array is an aggregate struct containing a single array field. 1009 1010 if (!Entity.getParent()) 1011 return false; 1012 1013 // Allows elide brace initialization for aggregates with empty base. 1014 if (Entity.getKind() == InitializedEntity::EK_Base) { 1015 auto *ParentRD = 1016 Entity.getParent()->getType()->castAs<RecordType>()->getDecl(); 1017 CXXRecordDecl *CXXRD = cast<CXXRecordDecl>(ParentRD); 1018 return CXXRD->getNumBases() == 1 && CXXRD->field_empty(); 1019 } 1020 1021 // Allow brace elision if the only subobject is a field. 1022 if (Entity.getKind() == InitializedEntity::EK_Member) { 1023 auto *ParentRD = 1024 Entity.getParent()->getType()->castAs<RecordType>()->getDecl(); 1025 if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD)) { 1026 if (CXXRD->getNumBases()) { 1027 return false; 1028 } 1029 } 1030 auto FieldIt = ParentRD->field_begin(); 1031 assert(FieldIt != ParentRD->field_end() && 1032 "no fields but have initializer for member?"); 1033 return ++FieldIt == ParentRD->field_end(); 1034 } 1035 1036 return false; 1037 } 1038 1039 /// Check whether the range of the initializer \p ParentIList from element 1040 /// \p Index onwards can be used to initialize an object of type \p T. Update 1041 /// \p Index to indicate how many elements of the list were consumed. 1042 /// 1043 /// This also fills in \p StructuredList, from element \p StructuredIndex 1044 /// onwards, with the fully-braced, desugared form of the initialization. 1045 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity, 1046 InitListExpr *ParentIList, 1047 QualType T, unsigned &Index, 1048 InitListExpr *StructuredList, 1049 unsigned &StructuredIndex) { 1050 int maxElements = 0; 1051 1052 if (T->isArrayType()) 1053 maxElements = numArrayElements(T); 1054 else if (T->isRecordType()) 1055 maxElements = numStructUnionElements(T); 1056 else if (T->isVectorType()) 1057 maxElements = T->castAs<VectorType>()->getNumElements(); 1058 else 1059 llvm_unreachable("CheckImplicitInitList(): Illegal type"); 1060 1061 if (maxElements == 0) { 1062 if (!VerifyOnly) 1063 SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(), 1064 diag::err_implicit_empty_initializer); 1065 ++Index; 1066 hadError = true; 1067 return; 1068 } 1069 1070 // Build a structured initializer list corresponding to this subobject. 1071 InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit( 1072 ParentIList, Index, T, StructuredList, StructuredIndex, 1073 SourceRange(ParentIList->getInit(Index)->getBeginLoc(), 1074 ParentIList->getSourceRange().getEnd())); 1075 unsigned StructuredSubobjectInitIndex = 0; 1076 1077 // Check the element types and build the structural subobject. 1078 unsigned StartIndex = Index; 1079 CheckListElementTypes(Entity, ParentIList, T, 1080 /*SubobjectIsDesignatorContext=*/false, Index, 1081 StructuredSubobjectInitList, 1082 StructuredSubobjectInitIndex); 1083 1084 if (StructuredSubobjectInitList) { 1085 StructuredSubobjectInitList->setType(T); 1086 1087 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1); 1088 // Update the structured sub-object initializer so that it's ending 1089 // range corresponds with the end of the last initializer it used. 1090 if (EndIndex < ParentIList->getNumInits() && 1091 ParentIList->getInit(EndIndex)) { 1092 SourceLocation EndLoc 1093 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd(); 1094 StructuredSubobjectInitList->setRBraceLoc(EndLoc); 1095 } 1096 1097 // Complain about missing braces. 1098 if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) && 1099 !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) && 1100 !isIdiomaticBraceElisionEntity(Entity)) { 1101 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), 1102 diag::warn_missing_braces) 1103 << StructuredSubobjectInitList->getSourceRange() 1104 << FixItHint::CreateInsertion( 1105 StructuredSubobjectInitList->getBeginLoc(), "{") 1106 << FixItHint::CreateInsertion( 1107 SemaRef.getLocForEndOfToken( 1108 StructuredSubobjectInitList->getEndLoc()), 1109 "}"); 1110 } 1111 1112 // Warn if this type won't be an aggregate in future versions of C++. 1113 auto *CXXRD = T->getAsCXXRecordDecl(); 1114 if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) { 1115 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), 1116 diag::warn_cxx20_compat_aggregate_init_with_ctors) 1117 << StructuredSubobjectInitList->getSourceRange() << T; 1118 } 1119 } 1120 } 1121 1122 /// Warn that \p Entity was of scalar type and was initialized by a 1123 /// single-element braced initializer list. 1124 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity, 1125 SourceRange Braces) { 1126 // Don't warn during template instantiation. If the initialization was 1127 // non-dependent, we warned during the initial parse; otherwise, the 1128 // type might not be scalar in some uses of the template. 1129 if (S.inTemplateInstantiation()) 1130 return; 1131 1132 unsigned DiagID = 0; 1133 1134 switch (Entity.getKind()) { 1135 case InitializedEntity::EK_VectorElement: 1136 case InitializedEntity::EK_ComplexElement: 1137 case InitializedEntity::EK_ArrayElement: 1138 case InitializedEntity::EK_Parameter: 1139 case InitializedEntity::EK_Parameter_CF_Audited: 1140 case InitializedEntity::EK_TemplateParameter: 1141 case InitializedEntity::EK_Result: 1142 // Extra braces here are suspicious. 1143 DiagID = diag::warn_braces_around_init; 1144 break; 1145 1146 case InitializedEntity::EK_Member: 1147 // Warn on aggregate initialization but not on ctor init list or 1148 // default member initializer. 1149 if (Entity.getParent()) 1150 DiagID = diag::warn_braces_around_init; 1151 break; 1152 1153 case InitializedEntity::EK_Variable: 1154 case InitializedEntity::EK_LambdaCapture: 1155 // No warning, might be direct-list-initialization. 1156 // FIXME: Should we warn for copy-list-initialization in these cases? 1157 break; 1158 1159 case InitializedEntity::EK_New: 1160 case InitializedEntity::EK_Temporary: 1161 case InitializedEntity::EK_CompoundLiteralInit: 1162 // No warning, braces are part of the syntax of the underlying construct. 1163 break; 1164 1165 case InitializedEntity::EK_RelatedResult: 1166 // No warning, we already warned when initializing the result. 1167 break; 1168 1169 case InitializedEntity::EK_Exception: 1170 case InitializedEntity::EK_Base: 1171 case InitializedEntity::EK_Delegating: 1172 case InitializedEntity::EK_BlockElement: 1173 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 1174 case InitializedEntity::EK_Binding: 1175 case InitializedEntity::EK_StmtExprResult: 1176 llvm_unreachable("unexpected braced scalar init"); 1177 } 1178 1179 if (DiagID) { 1180 S.Diag(Braces.getBegin(), DiagID) 1181 << Entity.getType()->isSizelessBuiltinType() << Braces 1182 << FixItHint::CreateRemoval(Braces.getBegin()) 1183 << FixItHint::CreateRemoval(Braces.getEnd()); 1184 } 1185 } 1186 1187 /// Check whether the initializer \p IList (that was written with explicit 1188 /// braces) can be used to initialize an object of type \p T. 1189 /// 1190 /// This also fills in \p StructuredList with the fully-braced, desugared 1191 /// form of the initialization. 1192 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity, 1193 InitListExpr *IList, QualType &T, 1194 InitListExpr *StructuredList, 1195 bool TopLevelObject) { 1196 unsigned Index = 0, StructuredIndex = 0; 1197 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true, 1198 Index, StructuredList, StructuredIndex, TopLevelObject); 1199 if (StructuredList) { 1200 QualType ExprTy = T; 1201 if (!ExprTy->isArrayType()) 1202 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context); 1203 if (!VerifyOnly) 1204 IList->setType(ExprTy); 1205 StructuredList->setType(ExprTy); 1206 } 1207 if (hadError) 1208 return; 1209 1210 // Don't complain for incomplete types, since we'll get an error elsewhere. 1211 if (Index < IList->getNumInits() && !T->isIncompleteType()) { 1212 // We have leftover initializers 1213 bool ExtraInitsIsError = SemaRef.getLangOpts().CPlusPlus || 1214 (SemaRef.getLangOpts().OpenCL && T->isVectorType()); 1215 hadError = ExtraInitsIsError; 1216 if (VerifyOnly) { 1217 return; 1218 } else if (StructuredIndex == 1 && 1219 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) == 1220 SIF_None) { 1221 unsigned DK = 1222 ExtraInitsIsError 1223 ? diag::err_excess_initializers_in_char_array_initializer 1224 : diag::ext_excess_initializers_in_char_array_initializer; 1225 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1226 << IList->getInit(Index)->getSourceRange(); 1227 } else if (T->isSizelessBuiltinType()) { 1228 unsigned DK = ExtraInitsIsError 1229 ? diag::err_excess_initializers_for_sizeless_type 1230 : diag::ext_excess_initializers_for_sizeless_type; 1231 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1232 << T << IList->getInit(Index)->getSourceRange(); 1233 } else { 1234 int initKind = T->isArrayType() ? 0 : 1235 T->isVectorType() ? 1 : 1236 T->isScalarType() ? 2 : 1237 T->isUnionType() ? 3 : 1238 4; 1239 1240 unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers 1241 : diag::ext_excess_initializers; 1242 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1243 << initKind << IList->getInit(Index)->getSourceRange(); 1244 } 1245 } 1246 1247 if (!VerifyOnly) { 1248 if (T->isScalarType() && IList->getNumInits() == 1 && 1249 !isa<InitListExpr>(IList->getInit(0))) 1250 warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange()); 1251 1252 // Warn if this is a class type that won't be an aggregate in future 1253 // versions of C++. 1254 auto *CXXRD = T->getAsCXXRecordDecl(); 1255 if (CXXRD && CXXRD->hasUserDeclaredConstructor()) { 1256 // Don't warn if there's an equivalent default constructor that would be 1257 // used instead. 1258 bool HasEquivCtor = false; 1259 if (IList->getNumInits() == 0) { 1260 auto *CD = SemaRef.LookupDefaultConstructor(CXXRD); 1261 HasEquivCtor = CD && !CD->isDeleted(); 1262 } 1263 1264 if (!HasEquivCtor) { 1265 SemaRef.Diag(IList->getBeginLoc(), 1266 diag::warn_cxx20_compat_aggregate_init_with_ctors) 1267 << IList->getSourceRange() << T; 1268 } 1269 } 1270 } 1271 } 1272 1273 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity, 1274 InitListExpr *IList, 1275 QualType &DeclType, 1276 bool SubobjectIsDesignatorContext, 1277 unsigned &Index, 1278 InitListExpr *StructuredList, 1279 unsigned &StructuredIndex, 1280 bool TopLevelObject) { 1281 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) { 1282 // Explicitly braced initializer for complex type can be real+imaginary 1283 // parts. 1284 CheckComplexType(Entity, IList, DeclType, Index, 1285 StructuredList, StructuredIndex); 1286 } else if (DeclType->isScalarType()) { 1287 CheckScalarType(Entity, IList, DeclType, Index, 1288 StructuredList, StructuredIndex); 1289 } else if (DeclType->isVectorType()) { 1290 CheckVectorType(Entity, IList, DeclType, Index, 1291 StructuredList, StructuredIndex); 1292 } else if (DeclType->isRecordType()) { 1293 assert(DeclType->isAggregateType() && 1294 "non-aggregate records should be handed in CheckSubElementType"); 1295 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); 1296 auto Bases = 1297 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), 1298 CXXRecordDecl::base_class_iterator()); 1299 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1300 Bases = CXXRD->bases(); 1301 CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(), 1302 SubobjectIsDesignatorContext, Index, StructuredList, 1303 StructuredIndex, TopLevelObject); 1304 } else if (DeclType->isArrayType()) { 1305 llvm::APSInt Zero( 1306 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()), 1307 false); 1308 CheckArrayType(Entity, IList, DeclType, Zero, 1309 SubobjectIsDesignatorContext, Index, 1310 StructuredList, StructuredIndex); 1311 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) { 1312 // This type is invalid, issue a diagnostic. 1313 ++Index; 1314 if (!VerifyOnly) 1315 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) 1316 << DeclType; 1317 hadError = true; 1318 } else if (DeclType->isReferenceType()) { 1319 CheckReferenceType(Entity, IList, DeclType, Index, 1320 StructuredList, StructuredIndex); 1321 } else if (DeclType->isObjCObjectType()) { 1322 if (!VerifyOnly) 1323 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType; 1324 hadError = true; 1325 } else if (DeclType->isOCLIntelSubgroupAVCType() || 1326 DeclType->isSizelessBuiltinType()) { 1327 // Checks for scalar type are sufficient for these types too. 1328 CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 1329 StructuredIndex); 1330 } else { 1331 if (!VerifyOnly) 1332 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) 1333 << DeclType; 1334 hadError = true; 1335 } 1336 } 1337 1338 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity, 1339 InitListExpr *IList, 1340 QualType ElemType, 1341 unsigned &Index, 1342 InitListExpr *StructuredList, 1343 unsigned &StructuredIndex, 1344 bool DirectlyDesignated) { 1345 Expr *expr = IList->getInit(Index); 1346 1347 if (ElemType->isReferenceType()) 1348 return CheckReferenceType(Entity, IList, ElemType, Index, 1349 StructuredList, StructuredIndex); 1350 1351 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) { 1352 if (SubInitList->getNumInits() == 1 && 1353 IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) == 1354 SIF_None) { 1355 // FIXME: It would be more faithful and no less correct to include an 1356 // InitListExpr in the semantic form of the initializer list in this case. 1357 expr = SubInitList->getInit(0); 1358 } 1359 // Nested aggregate initialization and C++ initialization are handled later. 1360 } else if (isa<ImplicitValueInitExpr>(expr)) { 1361 // This happens during template instantiation when we see an InitListExpr 1362 // that we've already checked once. 1363 assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) && 1364 "found implicit initialization for the wrong type"); 1365 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1366 ++Index; 1367 return; 1368 } 1369 1370 if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(expr)) { 1371 // C++ [dcl.init.aggr]p2: 1372 // Each member is copy-initialized from the corresponding 1373 // initializer-clause. 1374 1375 // FIXME: Better EqualLoc? 1376 InitializationKind Kind = 1377 InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation()); 1378 1379 // Vector elements can be initialized from other vectors in which case 1380 // we need initialization entity with a type of a vector (and not a vector 1381 // element!) initializing multiple vector elements. 1382 auto TmpEntity = 1383 (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType()) 1384 ? InitializedEntity::InitializeTemporary(ElemType) 1385 : Entity; 1386 1387 InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr, 1388 /*TopLevelOfInitList*/ true); 1389 1390 // C++14 [dcl.init.aggr]p13: 1391 // If the assignment-expression can initialize a member, the member is 1392 // initialized. Otherwise [...] brace elision is assumed 1393 // 1394 // Brace elision is never performed if the element is not an 1395 // assignment-expression. 1396 if (Seq || isa<InitListExpr>(expr)) { 1397 if (!VerifyOnly) { 1398 ExprResult Result = Seq.Perform(SemaRef, TmpEntity, Kind, expr); 1399 if (Result.isInvalid()) 1400 hadError = true; 1401 1402 UpdateStructuredListElement(StructuredList, StructuredIndex, 1403 Result.getAs<Expr>()); 1404 } else if (!Seq) { 1405 hadError = true; 1406 } else if (StructuredList) { 1407 UpdateStructuredListElement(StructuredList, StructuredIndex, 1408 getDummyInit()); 1409 } 1410 ++Index; 1411 return; 1412 } 1413 1414 // Fall through for subaggregate initialization 1415 } else if (ElemType->isScalarType() || ElemType->isAtomicType()) { 1416 // FIXME: Need to handle atomic aggregate types with implicit init lists. 1417 return CheckScalarType(Entity, IList, ElemType, Index, 1418 StructuredList, StructuredIndex); 1419 } else if (const ArrayType *arrayType = 1420 SemaRef.Context.getAsArrayType(ElemType)) { 1421 // arrayType can be incomplete if we're initializing a flexible 1422 // array member. There's nothing we can do with the completed 1423 // type here, though. 1424 1425 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) { 1426 // FIXME: Should we do this checking in verify-only mode? 1427 if (!VerifyOnly) 1428 CheckStringInit(expr, ElemType, arrayType, SemaRef); 1429 if (StructuredList) 1430 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1431 ++Index; 1432 return; 1433 } 1434 1435 // Fall through for subaggregate initialization. 1436 1437 } else { 1438 assert((ElemType->isRecordType() || ElemType->isVectorType() || 1439 ElemType->isOpenCLSpecificType()) && "Unexpected type"); 1440 1441 // C99 6.7.8p13: 1442 // 1443 // The initializer for a structure or union object that has 1444 // automatic storage duration shall be either an initializer 1445 // list as described below, or a single expression that has 1446 // compatible structure or union type. In the latter case, the 1447 // initial value of the object, including unnamed members, is 1448 // that of the expression. 1449 ExprResult ExprRes = expr; 1450 if (SemaRef.CheckSingleAssignmentConstraints( 1451 ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) { 1452 if (ExprRes.isInvalid()) 1453 hadError = true; 1454 else { 1455 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get()); 1456 if (ExprRes.isInvalid()) 1457 hadError = true; 1458 } 1459 UpdateStructuredListElement(StructuredList, StructuredIndex, 1460 ExprRes.getAs<Expr>()); 1461 ++Index; 1462 return; 1463 } 1464 ExprRes.get(); 1465 // Fall through for subaggregate initialization 1466 } 1467 1468 // C++ [dcl.init.aggr]p12: 1469 // 1470 // [...] Otherwise, if the member is itself a non-empty 1471 // subaggregate, brace elision is assumed and the initializer is 1472 // considered for the initialization of the first member of 1473 // the subaggregate. 1474 // OpenCL vector initializer is handled elsewhere. 1475 if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) || 1476 ElemType->isAggregateType()) { 1477 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList, 1478 StructuredIndex); 1479 ++StructuredIndex; 1480 1481 // In C++20, brace elision is not permitted for a designated initializer. 1482 if (DirectlyDesignated && SemaRef.getLangOpts().CPlusPlus && !hadError) { 1483 if (InOverloadResolution) 1484 hadError = true; 1485 if (!VerifyOnly) { 1486 SemaRef.Diag(expr->getBeginLoc(), 1487 diag::ext_designated_init_brace_elision) 1488 << expr->getSourceRange() 1489 << FixItHint::CreateInsertion(expr->getBeginLoc(), "{") 1490 << FixItHint::CreateInsertion( 1491 SemaRef.getLocForEndOfToken(expr->getEndLoc()), "}"); 1492 } 1493 } 1494 } else { 1495 if (!VerifyOnly) { 1496 // We cannot initialize this element, so let PerformCopyInitialization 1497 // produce the appropriate diagnostic. We already checked that this 1498 // initialization will fail. 1499 ExprResult Copy = 1500 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr, 1501 /*TopLevelOfInitList=*/true); 1502 (void)Copy; 1503 assert(Copy.isInvalid() && 1504 "expected non-aggregate initialization to fail"); 1505 } 1506 hadError = true; 1507 ++Index; 1508 ++StructuredIndex; 1509 } 1510 } 1511 1512 void InitListChecker::CheckComplexType(const InitializedEntity &Entity, 1513 InitListExpr *IList, QualType DeclType, 1514 unsigned &Index, 1515 InitListExpr *StructuredList, 1516 unsigned &StructuredIndex) { 1517 assert(Index == 0 && "Index in explicit init list must be zero"); 1518 1519 // As an extension, clang supports complex initializers, which initialize 1520 // a complex number component-wise. When an explicit initializer list for 1521 // a complex number contains two two initializers, this extension kicks in: 1522 // it exepcts the initializer list to contain two elements convertible to 1523 // the element type of the complex type. The first element initializes 1524 // the real part, and the second element intitializes the imaginary part. 1525 1526 if (IList->getNumInits() != 2) 1527 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 1528 StructuredIndex); 1529 1530 // This is an extension in C. (The builtin _Complex type does not exist 1531 // in the C++ standard.) 1532 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly) 1533 SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init) 1534 << IList->getSourceRange(); 1535 1536 // Initialize the complex number. 1537 QualType elementType = DeclType->castAs<ComplexType>()->getElementType(); 1538 InitializedEntity ElementEntity = 1539 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1540 1541 for (unsigned i = 0; i < 2; ++i) { 1542 ElementEntity.setElementIndex(Index); 1543 CheckSubElementType(ElementEntity, IList, elementType, Index, 1544 StructuredList, StructuredIndex); 1545 } 1546 } 1547 1548 void InitListChecker::CheckScalarType(const InitializedEntity &Entity, 1549 InitListExpr *IList, QualType DeclType, 1550 unsigned &Index, 1551 InitListExpr *StructuredList, 1552 unsigned &StructuredIndex) { 1553 if (Index >= IList->getNumInits()) { 1554 if (!VerifyOnly) { 1555 if (DeclType->isSizelessBuiltinType()) 1556 SemaRef.Diag(IList->getBeginLoc(), 1557 SemaRef.getLangOpts().CPlusPlus11 1558 ? diag::warn_cxx98_compat_empty_sizeless_initializer 1559 : diag::err_empty_sizeless_initializer) 1560 << DeclType << IList->getSourceRange(); 1561 else 1562 SemaRef.Diag(IList->getBeginLoc(), 1563 SemaRef.getLangOpts().CPlusPlus11 1564 ? diag::warn_cxx98_compat_empty_scalar_initializer 1565 : diag::err_empty_scalar_initializer) 1566 << IList->getSourceRange(); 1567 } 1568 hadError = !SemaRef.getLangOpts().CPlusPlus11; 1569 ++Index; 1570 ++StructuredIndex; 1571 return; 1572 } 1573 1574 Expr *expr = IList->getInit(Index); 1575 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) { 1576 // FIXME: This is invalid, and accepting it causes overload resolution 1577 // to pick the wrong overload in some corner cases. 1578 if (!VerifyOnly) 1579 SemaRef.Diag(SubIList->getBeginLoc(), diag::ext_many_braces_around_init) 1580 << DeclType->isSizelessBuiltinType() << SubIList->getSourceRange(); 1581 1582 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList, 1583 StructuredIndex); 1584 return; 1585 } else if (isa<DesignatedInitExpr>(expr)) { 1586 if (!VerifyOnly) 1587 SemaRef.Diag(expr->getBeginLoc(), 1588 diag::err_designator_for_scalar_or_sizeless_init) 1589 << DeclType->isSizelessBuiltinType() << DeclType 1590 << expr->getSourceRange(); 1591 hadError = true; 1592 ++Index; 1593 ++StructuredIndex; 1594 return; 1595 } 1596 1597 ExprResult Result; 1598 if (VerifyOnly) { 1599 if (SemaRef.CanPerformCopyInitialization(Entity, expr)) 1600 Result = getDummyInit(); 1601 else 1602 Result = ExprError(); 1603 } else { 1604 Result = 1605 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, 1606 /*TopLevelOfInitList=*/true); 1607 } 1608 1609 Expr *ResultExpr = nullptr; 1610 1611 if (Result.isInvalid()) 1612 hadError = true; // types weren't compatible. 1613 else { 1614 ResultExpr = Result.getAs<Expr>(); 1615 1616 if (ResultExpr != expr && !VerifyOnly) { 1617 // The type was promoted, update initializer list. 1618 // FIXME: Why are we updating the syntactic init list? 1619 IList->setInit(Index, ResultExpr); 1620 } 1621 } 1622 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); 1623 ++Index; 1624 } 1625 1626 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity, 1627 InitListExpr *IList, QualType DeclType, 1628 unsigned &Index, 1629 InitListExpr *StructuredList, 1630 unsigned &StructuredIndex) { 1631 if (Index >= IList->getNumInits()) { 1632 // FIXME: It would be wonderful if we could point at the actual member. In 1633 // general, it would be useful to pass location information down the stack, 1634 // so that we know the location (or decl) of the "current object" being 1635 // initialized. 1636 if (!VerifyOnly) 1637 SemaRef.Diag(IList->getBeginLoc(), 1638 diag::err_init_reference_member_uninitialized) 1639 << DeclType << IList->getSourceRange(); 1640 hadError = true; 1641 ++Index; 1642 ++StructuredIndex; 1643 return; 1644 } 1645 1646 Expr *expr = IList->getInit(Index); 1647 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) { 1648 if (!VerifyOnly) 1649 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list) 1650 << DeclType << IList->getSourceRange(); 1651 hadError = true; 1652 ++Index; 1653 ++StructuredIndex; 1654 return; 1655 } 1656 1657 ExprResult Result; 1658 if (VerifyOnly) { 1659 if (SemaRef.CanPerformCopyInitialization(Entity,expr)) 1660 Result = getDummyInit(); 1661 else 1662 Result = ExprError(); 1663 } else { 1664 Result = 1665 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, 1666 /*TopLevelOfInitList=*/true); 1667 } 1668 1669 if (Result.isInvalid()) 1670 hadError = true; 1671 1672 expr = Result.getAs<Expr>(); 1673 // FIXME: Why are we updating the syntactic init list? 1674 if (!VerifyOnly && expr) 1675 IList->setInit(Index, expr); 1676 1677 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1678 ++Index; 1679 } 1680 1681 void InitListChecker::CheckVectorType(const InitializedEntity &Entity, 1682 InitListExpr *IList, QualType DeclType, 1683 unsigned &Index, 1684 InitListExpr *StructuredList, 1685 unsigned &StructuredIndex) { 1686 const VectorType *VT = DeclType->castAs<VectorType>(); 1687 unsigned maxElements = VT->getNumElements(); 1688 unsigned numEltsInit = 0; 1689 QualType elementType = VT->getElementType(); 1690 1691 if (Index >= IList->getNumInits()) { 1692 // Make sure the element type can be value-initialized. 1693 CheckEmptyInitializable( 1694 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 1695 IList->getEndLoc()); 1696 return; 1697 } 1698 1699 if (!SemaRef.getLangOpts().OpenCL) { 1700 // If the initializing element is a vector, try to copy-initialize 1701 // instead of breaking it apart (which is doomed to failure anyway). 1702 Expr *Init = IList->getInit(Index); 1703 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) { 1704 ExprResult Result; 1705 if (VerifyOnly) { 1706 if (SemaRef.CanPerformCopyInitialization(Entity, Init)) 1707 Result = getDummyInit(); 1708 else 1709 Result = ExprError(); 1710 } else { 1711 Result = 1712 SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init, 1713 /*TopLevelOfInitList=*/true); 1714 } 1715 1716 Expr *ResultExpr = nullptr; 1717 if (Result.isInvalid()) 1718 hadError = true; // types weren't compatible. 1719 else { 1720 ResultExpr = Result.getAs<Expr>(); 1721 1722 if (ResultExpr != Init && !VerifyOnly) { 1723 // The type was promoted, update initializer list. 1724 // FIXME: Why are we updating the syntactic init list? 1725 IList->setInit(Index, ResultExpr); 1726 } 1727 } 1728 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); 1729 ++Index; 1730 return; 1731 } 1732 1733 InitializedEntity ElementEntity = 1734 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1735 1736 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) { 1737 // Don't attempt to go past the end of the init list 1738 if (Index >= IList->getNumInits()) { 1739 CheckEmptyInitializable(ElementEntity, IList->getEndLoc()); 1740 break; 1741 } 1742 1743 ElementEntity.setElementIndex(Index); 1744 CheckSubElementType(ElementEntity, IList, elementType, Index, 1745 StructuredList, StructuredIndex); 1746 } 1747 1748 if (VerifyOnly) 1749 return; 1750 1751 bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian(); 1752 const VectorType *T = Entity.getType()->castAs<VectorType>(); 1753 if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector || 1754 T->getVectorKind() == VectorType::NeonPolyVector)) { 1755 // The ability to use vector initializer lists is a GNU vector extension 1756 // and is unrelated to the NEON intrinsics in arm_neon.h. On little 1757 // endian machines it works fine, however on big endian machines it 1758 // exhibits surprising behaviour: 1759 // 1760 // uint32x2_t x = {42, 64}; 1761 // return vget_lane_u32(x, 0); // Will return 64. 1762 // 1763 // Because of this, explicitly call out that it is non-portable. 1764 // 1765 SemaRef.Diag(IList->getBeginLoc(), 1766 diag::warn_neon_vector_initializer_non_portable); 1767 1768 const char *typeCode; 1769 unsigned typeSize = SemaRef.Context.getTypeSize(elementType); 1770 1771 if (elementType->isFloatingType()) 1772 typeCode = "f"; 1773 else if (elementType->isSignedIntegerType()) 1774 typeCode = "s"; 1775 else if (elementType->isUnsignedIntegerType()) 1776 typeCode = "u"; 1777 else 1778 llvm_unreachable("Invalid element type!"); 1779 1780 SemaRef.Diag(IList->getBeginLoc(), 1781 SemaRef.Context.getTypeSize(VT) > 64 1782 ? diag::note_neon_vector_initializer_non_portable_q 1783 : diag::note_neon_vector_initializer_non_portable) 1784 << typeCode << typeSize; 1785 } 1786 1787 return; 1788 } 1789 1790 InitializedEntity ElementEntity = 1791 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1792 1793 // OpenCL initializers allows vectors to be constructed from vectors. 1794 for (unsigned i = 0; i < maxElements; ++i) { 1795 // Don't attempt to go past the end of the init list 1796 if (Index >= IList->getNumInits()) 1797 break; 1798 1799 ElementEntity.setElementIndex(Index); 1800 1801 QualType IType = IList->getInit(Index)->getType(); 1802 if (!IType->isVectorType()) { 1803 CheckSubElementType(ElementEntity, IList, elementType, Index, 1804 StructuredList, StructuredIndex); 1805 ++numEltsInit; 1806 } else { 1807 QualType VecType; 1808 const VectorType *IVT = IType->castAs<VectorType>(); 1809 unsigned numIElts = IVT->getNumElements(); 1810 1811 if (IType->isExtVectorType()) 1812 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts); 1813 else 1814 VecType = SemaRef.Context.getVectorType(elementType, numIElts, 1815 IVT->getVectorKind()); 1816 CheckSubElementType(ElementEntity, IList, VecType, Index, 1817 StructuredList, StructuredIndex); 1818 numEltsInit += numIElts; 1819 } 1820 } 1821 1822 // OpenCL requires all elements to be initialized. 1823 if (numEltsInit != maxElements) { 1824 if (!VerifyOnly) 1825 SemaRef.Diag(IList->getBeginLoc(), 1826 diag::err_vector_incorrect_num_initializers) 1827 << (numEltsInit < maxElements) << maxElements << numEltsInit; 1828 hadError = true; 1829 } 1830 } 1831 1832 /// Check if the type of a class element has an accessible destructor, and marks 1833 /// it referenced. Returns true if we shouldn't form a reference to the 1834 /// destructor. 1835 /// 1836 /// Aggregate initialization requires a class element's destructor be 1837 /// accessible per 11.6.1 [dcl.init.aggr]: 1838 /// 1839 /// The destructor for each element of class type is potentially invoked 1840 /// (15.4 [class.dtor]) from the context where the aggregate initialization 1841 /// occurs. 1842 static bool checkDestructorReference(QualType ElementType, SourceLocation Loc, 1843 Sema &SemaRef) { 1844 auto *CXXRD = ElementType->getAsCXXRecordDecl(); 1845 if (!CXXRD) 1846 return false; 1847 1848 CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD); 1849 SemaRef.CheckDestructorAccess(Loc, Destructor, 1850 SemaRef.PDiag(diag::err_access_dtor_temp) 1851 << ElementType); 1852 SemaRef.MarkFunctionReferenced(Loc, Destructor); 1853 return SemaRef.DiagnoseUseOfDecl(Destructor, Loc); 1854 } 1855 1856 void InitListChecker::CheckArrayType(const InitializedEntity &Entity, 1857 InitListExpr *IList, QualType &DeclType, 1858 llvm::APSInt elementIndex, 1859 bool SubobjectIsDesignatorContext, 1860 unsigned &Index, 1861 InitListExpr *StructuredList, 1862 unsigned &StructuredIndex) { 1863 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType); 1864 1865 if (!VerifyOnly) { 1866 if (checkDestructorReference(arrayType->getElementType(), 1867 IList->getEndLoc(), SemaRef)) { 1868 hadError = true; 1869 return; 1870 } 1871 } 1872 1873 // Check for the special-case of initializing an array with a string. 1874 if (Index < IList->getNumInits()) { 1875 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) == 1876 SIF_None) { 1877 // We place the string literal directly into the resulting 1878 // initializer list. This is the only place where the structure 1879 // of the structured initializer list doesn't match exactly, 1880 // because doing so would involve allocating one character 1881 // constant for each string. 1882 // FIXME: Should we do these checks in verify-only mode too? 1883 if (!VerifyOnly) 1884 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef); 1885 if (StructuredList) { 1886 UpdateStructuredListElement(StructuredList, StructuredIndex, 1887 IList->getInit(Index)); 1888 StructuredList->resizeInits(SemaRef.Context, StructuredIndex); 1889 } 1890 ++Index; 1891 return; 1892 } 1893 } 1894 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) { 1895 // Check for VLAs; in standard C it would be possible to check this 1896 // earlier, but I don't know where clang accepts VLAs (gcc accepts 1897 // them in all sorts of strange places). 1898 if (!VerifyOnly) 1899 SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(), 1900 diag::err_variable_object_no_init) 1901 << VAT->getSizeExpr()->getSourceRange(); 1902 hadError = true; 1903 ++Index; 1904 ++StructuredIndex; 1905 return; 1906 } 1907 1908 // We might know the maximum number of elements in advance. 1909 llvm::APSInt maxElements(elementIndex.getBitWidth(), 1910 elementIndex.isUnsigned()); 1911 bool maxElementsKnown = false; 1912 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) { 1913 maxElements = CAT->getSize(); 1914 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth()); 1915 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1916 maxElementsKnown = true; 1917 } 1918 1919 QualType elementType = arrayType->getElementType(); 1920 while (Index < IList->getNumInits()) { 1921 Expr *Init = IList->getInit(Index); 1922 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 1923 // If we're not the subobject that matches up with the '{' for 1924 // the designator, we shouldn't be handling the 1925 // designator. Return immediately. 1926 if (!SubobjectIsDesignatorContext) 1927 return; 1928 1929 // Handle this designated initializer. elementIndex will be 1930 // updated to be the next array element we'll initialize. 1931 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 1932 DeclType, nullptr, &elementIndex, Index, 1933 StructuredList, StructuredIndex, true, 1934 false)) { 1935 hadError = true; 1936 continue; 1937 } 1938 1939 if (elementIndex.getBitWidth() > maxElements.getBitWidth()) 1940 maxElements = maxElements.extend(elementIndex.getBitWidth()); 1941 else if (elementIndex.getBitWidth() < maxElements.getBitWidth()) 1942 elementIndex = elementIndex.extend(maxElements.getBitWidth()); 1943 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1944 1945 // If the array is of incomplete type, keep track of the number of 1946 // elements in the initializer. 1947 if (!maxElementsKnown && elementIndex > maxElements) 1948 maxElements = elementIndex; 1949 1950 continue; 1951 } 1952 1953 // If we know the maximum number of elements, and we've already 1954 // hit it, stop consuming elements in the initializer list. 1955 if (maxElementsKnown && elementIndex == maxElements) 1956 break; 1957 1958 InitializedEntity ElementEntity = 1959 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex, 1960 Entity); 1961 // Check this element. 1962 CheckSubElementType(ElementEntity, IList, elementType, Index, 1963 StructuredList, StructuredIndex); 1964 ++elementIndex; 1965 1966 // If the array is of incomplete type, keep track of the number of 1967 // elements in the initializer. 1968 if (!maxElementsKnown && elementIndex > maxElements) 1969 maxElements = elementIndex; 1970 } 1971 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) { 1972 // If this is an incomplete array type, the actual type needs to 1973 // be calculated here. 1974 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned()); 1975 if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) { 1976 // Sizing an array implicitly to zero is not allowed by ISO C, 1977 // but is supported by GNU. 1978 SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size); 1979 } 1980 1981 DeclType = SemaRef.Context.getConstantArrayType( 1982 elementType, maxElements, nullptr, ArrayType::Normal, 0); 1983 } 1984 if (!hadError) { 1985 // If there are any members of the array that get value-initialized, check 1986 // that is possible. That happens if we know the bound and don't have 1987 // enough elements, or if we're performing an array new with an unknown 1988 // bound. 1989 if ((maxElementsKnown && elementIndex < maxElements) || 1990 Entity.isVariableLengthArrayNew()) 1991 CheckEmptyInitializable( 1992 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 1993 IList->getEndLoc()); 1994 } 1995 } 1996 1997 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity, 1998 Expr *InitExpr, 1999 FieldDecl *Field, 2000 bool TopLevelObject) { 2001 // Handle GNU flexible array initializers. 2002 unsigned FlexArrayDiag; 2003 if (isa<InitListExpr>(InitExpr) && 2004 cast<InitListExpr>(InitExpr)->getNumInits() == 0) { 2005 // Empty flexible array init always allowed as an extension 2006 FlexArrayDiag = diag::ext_flexible_array_init; 2007 } else if (SemaRef.getLangOpts().CPlusPlus) { 2008 // Disallow flexible array init in C++; it is not required for gcc 2009 // compatibility, and it needs work to IRGen correctly in general. 2010 FlexArrayDiag = diag::err_flexible_array_init; 2011 } else if (!TopLevelObject) { 2012 // Disallow flexible array init on non-top-level object 2013 FlexArrayDiag = diag::err_flexible_array_init; 2014 } else if (Entity.getKind() != InitializedEntity::EK_Variable) { 2015 // Disallow flexible array init on anything which is not a variable. 2016 FlexArrayDiag = diag::err_flexible_array_init; 2017 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) { 2018 // Disallow flexible array init on local variables. 2019 FlexArrayDiag = diag::err_flexible_array_init; 2020 } else { 2021 // Allow other cases. 2022 FlexArrayDiag = diag::ext_flexible_array_init; 2023 } 2024 2025 if (!VerifyOnly) { 2026 SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag) 2027 << InitExpr->getBeginLoc(); 2028 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2029 << Field; 2030 } 2031 2032 return FlexArrayDiag != diag::ext_flexible_array_init; 2033 } 2034 2035 void InitListChecker::CheckStructUnionTypes( 2036 const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType, 2037 CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field, 2038 bool SubobjectIsDesignatorContext, unsigned &Index, 2039 InitListExpr *StructuredList, unsigned &StructuredIndex, 2040 bool TopLevelObject) { 2041 RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl(); 2042 2043 // If the record is invalid, some of it's members are invalid. To avoid 2044 // confusion, we forgo checking the intializer for the entire record. 2045 if (structDecl->isInvalidDecl()) { 2046 // Assume it was supposed to consume a single initializer. 2047 ++Index; 2048 hadError = true; 2049 return; 2050 } 2051 2052 if (DeclType->isUnionType() && IList->getNumInits() == 0) { 2053 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); 2054 2055 if (!VerifyOnly) 2056 for (FieldDecl *FD : RD->fields()) { 2057 QualType ET = SemaRef.Context.getBaseElementType(FD->getType()); 2058 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { 2059 hadError = true; 2060 return; 2061 } 2062 } 2063 2064 // If there's a default initializer, use it. 2065 if (isa<CXXRecordDecl>(RD) && 2066 cast<CXXRecordDecl>(RD)->hasInClassInitializer()) { 2067 if (!StructuredList) 2068 return; 2069 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 2070 Field != FieldEnd; ++Field) { 2071 if (Field->hasInClassInitializer()) { 2072 StructuredList->setInitializedFieldInUnion(*Field); 2073 // FIXME: Actually build a CXXDefaultInitExpr? 2074 return; 2075 } 2076 } 2077 } 2078 2079 // Value-initialize the first member of the union that isn't an unnamed 2080 // bitfield. 2081 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 2082 Field != FieldEnd; ++Field) { 2083 if (!Field->isUnnamedBitfield()) { 2084 CheckEmptyInitializable( 2085 InitializedEntity::InitializeMember(*Field, &Entity), 2086 IList->getEndLoc()); 2087 if (StructuredList) 2088 StructuredList->setInitializedFieldInUnion(*Field); 2089 break; 2090 } 2091 } 2092 return; 2093 } 2094 2095 bool InitializedSomething = false; 2096 2097 // If we have any base classes, they are initialized prior to the fields. 2098 for (auto &Base : Bases) { 2099 Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr; 2100 2101 // Designated inits always initialize fields, so if we see one, all 2102 // remaining base classes have no explicit initializer. 2103 if (Init && isa<DesignatedInitExpr>(Init)) 2104 Init = nullptr; 2105 2106 SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc(); 2107 InitializedEntity BaseEntity = InitializedEntity::InitializeBase( 2108 SemaRef.Context, &Base, false, &Entity); 2109 if (Init) { 2110 CheckSubElementType(BaseEntity, IList, Base.getType(), Index, 2111 StructuredList, StructuredIndex); 2112 InitializedSomething = true; 2113 } else { 2114 CheckEmptyInitializable(BaseEntity, InitLoc); 2115 } 2116 2117 if (!VerifyOnly) 2118 if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) { 2119 hadError = true; 2120 return; 2121 } 2122 } 2123 2124 // If structDecl is a forward declaration, this loop won't do 2125 // anything except look at designated initializers; That's okay, 2126 // because an error should get printed out elsewhere. It might be 2127 // worthwhile to skip over the rest of the initializer, though. 2128 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); 2129 RecordDecl::field_iterator FieldEnd = RD->field_end(); 2130 bool CheckForMissingFields = 2131 !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()); 2132 bool HasDesignatedInit = false; 2133 2134 while (Index < IList->getNumInits()) { 2135 Expr *Init = IList->getInit(Index); 2136 SourceLocation InitLoc = Init->getBeginLoc(); 2137 2138 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 2139 // If we're not the subobject that matches up with the '{' for 2140 // the designator, we shouldn't be handling the 2141 // designator. Return immediately. 2142 if (!SubobjectIsDesignatorContext) 2143 return; 2144 2145 HasDesignatedInit = true; 2146 2147 // Handle this designated initializer. Field will be updated to 2148 // the next field that we'll be initializing. 2149 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 2150 DeclType, &Field, nullptr, Index, 2151 StructuredList, StructuredIndex, 2152 true, TopLevelObject)) 2153 hadError = true; 2154 else if (!VerifyOnly) { 2155 // Find the field named by the designated initializer. 2156 RecordDecl::field_iterator F = RD->field_begin(); 2157 while (std::next(F) != Field) 2158 ++F; 2159 QualType ET = SemaRef.Context.getBaseElementType(F->getType()); 2160 if (checkDestructorReference(ET, InitLoc, SemaRef)) { 2161 hadError = true; 2162 return; 2163 } 2164 } 2165 2166 InitializedSomething = true; 2167 2168 // Disable check for missing fields when designators are used. 2169 // This matches gcc behaviour. 2170 CheckForMissingFields = false; 2171 continue; 2172 } 2173 2174 if (Field == FieldEnd) { 2175 // We've run out of fields. We're done. 2176 break; 2177 } 2178 2179 // We've already initialized a member of a union. We're done. 2180 if (InitializedSomething && DeclType->isUnionType()) 2181 break; 2182 2183 // If we've hit the flexible array member at the end, we're done. 2184 if (Field->getType()->isIncompleteArrayType()) 2185 break; 2186 2187 if (Field->isUnnamedBitfield()) { 2188 // Don't initialize unnamed bitfields, e.g. "int : 20;" 2189 ++Field; 2190 continue; 2191 } 2192 2193 // Make sure we can use this declaration. 2194 bool InvalidUse; 2195 if (VerifyOnly) 2196 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); 2197 else 2198 InvalidUse = SemaRef.DiagnoseUseOfDecl( 2199 *Field, IList->getInit(Index)->getBeginLoc()); 2200 if (InvalidUse) { 2201 ++Index; 2202 ++Field; 2203 hadError = true; 2204 continue; 2205 } 2206 2207 if (!VerifyOnly) { 2208 QualType ET = SemaRef.Context.getBaseElementType(Field->getType()); 2209 if (checkDestructorReference(ET, InitLoc, SemaRef)) { 2210 hadError = true; 2211 return; 2212 } 2213 } 2214 2215 InitializedEntity MemberEntity = 2216 InitializedEntity::InitializeMember(*Field, &Entity); 2217 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2218 StructuredList, StructuredIndex); 2219 InitializedSomething = true; 2220 2221 if (DeclType->isUnionType() && StructuredList) { 2222 // Initialize the first field within the union. 2223 StructuredList->setInitializedFieldInUnion(*Field); 2224 } 2225 2226 ++Field; 2227 } 2228 2229 // Emit warnings for missing struct field initializers. 2230 if (!VerifyOnly && InitializedSomething && CheckForMissingFields && 2231 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() && 2232 !DeclType->isUnionType()) { 2233 // It is possible we have one or more unnamed bitfields remaining. 2234 // Find first (if any) named field and emit warning. 2235 for (RecordDecl::field_iterator it = Field, end = RD->field_end(); 2236 it != end; ++it) { 2237 if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) { 2238 SemaRef.Diag(IList->getSourceRange().getEnd(), 2239 diag::warn_missing_field_initializers) << *it; 2240 break; 2241 } 2242 } 2243 } 2244 2245 // Check that any remaining fields can be value-initialized if we're not 2246 // building a structured list. (If we are, we'll check this later.) 2247 if (!StructuredList && Field != FieldEnd && !DeclType->isUnionType() && 2248 !Field->getType()->isIncompleteArrayType()) { 2249 for (; Field != FieldEnd && !hadError; ++Field) { 2250 if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer()) 2251 CheckEmptyInitializable( 2252 InitializedEntity::InitializeMember(*Field, &Entity), 2253 IList->getEndLoc()); 2254 } 2255 } 2256 2257 // Check that the types of the remaining fields have accessible destructors. 2258 if (!VerifyOnly) { 2259 // If the initializer expression has a designated initializer, check the 2260 // elements for which a designated initializer is not provided too. 2261 RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin() 2262 : Field; 2263 for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) { 2264 QualType ET = SemaRef.Context.getBaseElementType(I->getType()); 2265 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { 2266 hadError = true; 2267 return; 2268 } 2269 } 2270 } 2271 2272 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() || 2273 Index >= IList->getNumInits()) 2274 return; 2275 2276 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field, 2277 TopLevelObject)) { 2278 hadError = true; 2279 ++Index; 2280 return; 2281 } 2282 2283 InitializedEntity MemberEntity = 2284 InitializedEntity::InitializeMember(*Field, &Entity); 2285 2286 if (isa<InitListExpr>(IList->getInit(Index))) 2287 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2288 StructuredList, StructuredIndex); 2289 else 2290 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index, 2291 StructuredList, StructuredIndex); 2292 } 2293 2294 /// Expand a field designator that refers to a member of an 2295 /// anonymous struct or union into a series of field designators that 2296 /// refers to the field within the appropriate subobject. 2297 /// 2298 static void ExpandAnonymousFieldDesignator(Sema &SemaRef, 2299 DesignatedInitExpr *DIE, 2300 unsigned DesigIdx, 2301 IndirectFieldDecl *IndirectField) { 2302 typedef DesignatedInitExpr::Designator Designator; 2303 2304 // Build the replacement designators. 2305 SmallVector<Designator, 4> Replacements; 2306 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(), 2307 PE = IndirectField->chain_end(); PI != PE; ++PI) { 2308 if (PI + 1 == PE) 2309 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 2310 DIE->getDesignator(DesigIdx)->getDotLoc(), 2311 DIE->getDesignator(DesigIdx)->getFieldLoc())); 2312 else 2313 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 2314 SourceLocation(), SourceLocation())); 2315 assert(isa<FieldDecl>(*PI)); 2316 Replacements.back().setField(cast<FieldDecl>(*PI)); 2317 } 2318 2319 // Expand the current designator into the set of replacement 2320 // designators, so we have a full subobject path down to where the 2321 // member of the anonymous struct/union is actually stored. 2322 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0], 2323 &Replacements[0] + Replacements.size()); 2324 } 2325 2326 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef, 2327 DesignatedInitExpr *DIE) { 2328 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1; 2329 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs); 2330 for (unsigned I = 0; I < NumIndexExprs; ++I) 2331 IndexExprs[I] = DIE->getSubExpr(I + 1); 2332 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(), 2333 IndexExprs, 2334 DIE->getEqualOrColonLoc(), 2335 DIE->usesGNUSyntax(), DIE->getInit()); 2336 } 2337 2338 namespace { 2339 2340 // Callback to only accept typo corrections that are for field members of 2341 // the given struct or union. 2342 class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback { 2343 public: 2344 explicit FieldInitializerValidatorCCC(RecordDecl *RD) 2345 : Record(RD) {} 2346 2347 bool ValidateCandidate(const TypoCorrection &candidate) override { 2348 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>(); 2349 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record); 2350 } 2351 2352 std::unique_ptr<CorrectionCandidateCallback> clone() override { 2353 return std::make_unique<FieldInitializerValidatorCCC>(*this); 2354 } 2355 2356 private: 2357 RecordDecl *Record; 2358 }; 2359 2360 } // end anonymous namespace 2361 2362 /// Check the well-formedness of a C99 designated initializer. 2363 /// 2364 /// Determines whether the designated initializer @p DIE, which 2365 /// resides at the given @p Index within the initializer list @p 2366 /// IList, is well-formed for a current object of type @p DeclType 2367 /// (C99 6.7.8). The actual subobject that this designator refers to 2368 /// within the current subobject is returned in either 2369 /// @p NextField or @p NextElementIndex (whichever is appropriate). 2370 /// 2371 /// @param IList The initializer list in which this designated 2372 /// initializer occurs. 2373 /// 2374 /// @param DIE The designated initializer expression. 2375 /// 2376 /// @param DesigIdx The index of the current designator. 2377 /// 2378 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17), 2379 /// into which the designation in @p DIE should refer. 2380 /// 2381 /// @param NextField If non-NULL and the first designator in @p DIE is 2382 /// a field, this will be set to the field declaration corresponding 2383 /// to the field named by the designator. On input, this is expected to be 2384 /// the next field that would be initialized in the absence of designation, 2385 /// if the complete object being initialized is a struct. 2386 /// 2387 /// @param NextElementIndex If non-NULL and the first designator in @p 2388 /// DIE is an array designator or GNU array-range designator, this 2389 /// will be set to the last index initialized by this designator. 2390 /// 2391 /// @param Index Index into @p IList where the designated initializer 2392 /// @p DIE occurs. 2393 /// 2394 /// @param StructuredList The initializer list expression that 2395 /// describes all of the subobject initializers in the order they'll 2396 /// actually be initialized. 2397 /// 2398 /// @returns true if there was an error, false otherwise. 2399 bool 2400 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity, 2401 InitListExpr *IList, 2402 DesignatedInitExpr *DIE, 2403 unsigned DesigIdx, 2404 QualType &CurrentObjectType, 2405 RecordDecl::field_iterator *NextField, 2406 llvm::APSInt *NextElementIndex, 2407 unsigned &Index, 2408 InitListExpr *StructuredList, 2409 unsigned &StructuredIndex, 2410 bool FinishSubobjectInit, 2411 bool TopLevelObject) { 2412 if (DesigIdx == DIE->size()) { 2413 // C++20 designated initialization can result in direct-list-initialization 2414 // of the designated subobject. This is the only way that we can end up 2415 // performing direct initialization as part of aggregate initialization, so 2416 // it needs special handling. 2417 if (DIE->isDirectInit()) { 2418 Expr *Init = DIE->getInit(); 2419 assert(isa<InitListExpr>(Init) && 2420 "designator result in direct non-list initialization?"); 2421 InitializationKind Kind = InitializationKind::CreateDirectList( 2422 DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc()); 2423 InitializationSequence Seq(SemaRef, Entity, Kind, Init, 2424 /*TopLevelOfInitList*/ true); 2425 if (StructuredList) { 2426 ExprResult Result = VerifyOnly 2427 ? getDummyInit() 2428 : Seq.Perform(SemaRef, Entity, Kind, Init); 2429 UpdateStructuredListElement(StructuredList, StructuredIndex, 2430 Result.get()); 2431 } 2432 ++Index; 2433 return !Seq; 2434 } 2435 2436 // Check the actual initialization for the designated object type. 2437 bool prevHadError = hadError; 2438 2439 // Temporarily remove the designator expression from the 2440 // initializer list that the child calls see, so that we don't try 2441 // to re-process the designator. 2442 unsigned OldIndex = Index; 2443 IList->setInit(OldIndex, DIE->getInit()); 2444 2445 CheckSubElementType(Entity, IList, CurrentObjectType, Index, StructuredList, 2446 StructuredIndex, /*DirectlyDesignated=*/true); 2447 2448 // Restore the designated initializer expression in the syntactic 2449 // form of the initializer list. 2450 if (IList->getInit(OldIndex) != DIE->getInit()) 2451 DIE->setInit(IList->getInit(OldIndex)); 2452 IList->setInit(OldIndex, DIE); 2453 2454 return hadError && !prevHadError; 2455 } 2456 2457 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx); 2458 bool IsFirstDesignator = (DesigIdx == 0); 2459 if (IsFirstDesignator ? FullyStructuredList : StructuredList) { 2460 // Determine the structural initializer list that corresponds to the 2461 // current subobject. 2462 if (IsFirstDesignator) 2463 StructuredList = FullyStructuredList; 2464 else { 2465 Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ? 2466 StructuredList->getInit(StructuredIndex) : nullptr; 2467 if (!ExistingInit && StructuredList->hasArrayFiller()) 2468 ExistingInit = StructuredList->getArrayFiller(); 2469 2470 if (!ExistingInit) 2471 StructuredList = getStructuredSubobjectInit( 2472 IList, Index, CurrentObjectType, StructuredList, StructuredIndex, 2473 SourceRange(D->getBeginLoc(), DIE->getEndLoc())); 2474 else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit)) 2475 StructuredList = Result; 2476 else { 2477 // We are creating an initializer list that initializes the 2478 // subobjects of the current object, but there was already an 2479 // initialization that completely initialized the current 2480 // subobject, e.g., by a compound literal: 2481 // 2482 // struct X { int a, b; }; 2483 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 2484 // 2485 // Here, xs[0].a == 1 and xs[0].b == 3, since the second, 2486 // designated initializer re-initializes only its current object 2487 // subobject [0].b. 2488 diagnoseInitOverride(ExistingInit, 2489 SourceRange(D->getBeginLoc(), DIE->getEndLoc()), 2490 /*FullyOverwritten=*/false); 2491 2492 if (!VerifyOnly) { 2493 if (DesignatedInitUpdateExpr *E = 2494 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit)) 2495 StructuredList = E->getUpdater(); 2496 else { 2497 DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context) 2498 DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(), 2499 ExistingInit, DIE->getEndLoc()); 2500 StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE); 2501 StructuredList = DIUE->getUpdater(); 2502 } 2503 } else { 2504 // We don't need to track the structured representation of a 2505 // designated init update of an already-fully-initialized object in 2506 // verify-only mode. The only reason we would need the structure is 2507 // to determine where the uninitialized "holes" are, and in this 2508 // case, we know there aren't any and we can't introduce any. 2509 StructuredList = nullptr; 2510 } 2511 } 2512 } 2513 } 2514 2515 if (D->isFieldDesignator()) { 2516 // C99 6.7.8p7: 2517 // 2518 // If a designator has the form 2519 // 2520 // . identifier 2521 // 2522 // then the current object (defined below) shall have 2523 // structure or union type and the identifier shall be the 2524 // name of a member of that type. 2525 const RecordType *RT = CurrentObjectType->getAs<RecordType>(); 2526 if (!RT) { 2527 SourceLocation Loc = D->getDotLoc(); 2528 if (Loc.isInvalid()) 2529 Loc = D->getFieldLoc(); 2530 if (!VerifyOnly) 2531 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr) 2532 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType; 2533 ++Index; 2534 return true; 2535 } 2536 2537 FieldDecl *KnownField = D->getField(); 2538 if (!KnownField) { 2539 IdentifierInfo *FieldName = D->getFieldName(); 2540 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName); 2541 for (NamedDecl *ND : Lookup) { 2542 if (auto *FD = dyn_cast<FieldDecl>(ND)) { 2543 KnownField = FD; 2544 break; 2545 } 2546 if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) { 2547 // In verify mode, don't modify the original. 2548 if (VerifyOnly) 2549 DIE = CloneDesignatedInitExpr(SemaRef, DIE); 2550 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD); 2551 D = DIE->getDesignator(DesigIdx); 2552 KnownField = cast<FieldDecl>(*IFD->chain_begin()); 2553 break; 2554 } 2555 } 2556 if (!KnownField) { 2557 if (VerifyOnly) { 2558 ++Index; 2559 return true; // No typo correction when just trying this out. 2560 } 2561 2562 // Name lookup found something, but it wasn't a field. 2563 if (!Lookup.empty()) { 2564 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield) 2565 << FieldName; 2566 SemaRef.Diag(Lookup.front()->getLocation(), 2567 diag::note_field_designator_found); 2568 ++Index; 2569 return true; 2570 } 2571 2572 // Name lookup didn't find anything. 2573 // Determine whether this was a typo for another field name. 2574 FieldInitializerValidatorCCC CCC(RT->getDecl()); 2575 if (TypoCorrection Corrected = SemaRef.CorrectTypo( 2576 DeclarationNameInfo(FieldName, D->getFieldLoc()), 2577 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC, 2578 Sema::CTK_ErrorRecovery, RT->getDecl())) { 2579 SemaRef.diagnoseTypo( 2580 Corrected, 2581 SemaRef.PDiag(diag::err_field_designator_unknown_suggest) 2582 << FieldName << CurrentObjectType); 2583 KnownField = Corrected.getCorrectionDeclAs<FieldDecl>(); 2584 hadError = true; 2585 } else { 2586 // Typo correction didn't find anything. 2587 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown) 2588 << FieldName << CurrentObjectType; 2589 ++Index; 2590 return true; 2591 } 2592 } 2593 } 2594 2595 unsigned NumBases = 0; 2596 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2597 NumBases = CXXRD->getNumBases(); 2598 2599 unsigned FieldIndex = NumBases; 2600 2601 for (auto *FI : RT->getDecl()->fields()) { 2602 if (FI->isUnnamedBitfield()) 2603 continue; 2604 if (declaresSameEntity(KnownField, FI)) { 2605 KnownField = FI; 2606 break; 2607 } 2608 ++FieldIndex; 2609 } 2610 2611 RecordDecl::field_iterator Field = 2612 RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField)); 2613 2614 // All of the fields of a union are located at the same place in 2615 // the initializer list. 2616 if (RT->getDecl()->isUnion()) { 2617 FieldIndex = 0; 2618 if (StructuredList) { 2619 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion(); 2620 if (CurrentField && !declaresSameEntity(CurrentField, *Field)) { 2621 assert(StructuredList->getNumInits() == 1 2622 && "A union should never have more than one initializer!"); 2623 2624 Expr *ExistingInit = StructuredList->getInit(0); 2625 if (ExistingInit) { 2626 // We're about to throw away an initializer, emit warning. 2627 diagnoseInitOverride( 2628 ExistingInit, SourceRange(D->getBeginLoc(), DIE->getEndLoc())); 2629 } 2630 2631 // remove existing initializer 2632 StructuredList->resizeInits(SemaRef.Context, 0); 2633 StructuredList->setInitializedFieldInUnion(nullptr); 2634 } 2635 2636 StructuredList->setInitializedFieldInUnion(*Field); 2637 } 2638 } 2639 2640 // Make sure we can use this declaration. 2641 bool InvalidUse; 2642 if (VerifyOnly) 2643 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); 2644 else 2645 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc()); 2646 if (InvalidUse) { 2647 ++Index; 2648 return true; 2649 } 2650 2651 // C++20 [dcl.init.list]p3: 2652 // The ordered identifiers in the designators of the designated- 2653 // initializer-list shall form a subsequence of the ordered identifiers 2654 // in the direct non-static data members of T. 2655 // 2656 // Note that this is not a condition on forming the aggregate 2657 // initialization, only on actually performing initialization, 2658 // so it is not checked in VerifyOnly mode. 2659 // 2660 // FIXME: This is the only reordering diagnostic we produce, and it only 2661 // catches cases where we have a top-level field designator that jumps 2662 // backwards. This is the only such case that is reachable in an 2663 // otherwise-valid C++20 program, so is the only case that's required for 2664 // conformance, but for consistency, we should diagnose all the other 2665 // cases where a designator takes us backwards too. 2666 if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus && 2667 NextField && 2668 (*NextField == RT->getDecl()->field_end() || 2669 (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) { 2670 // Find the field that we just initialized. 2671 FieldDecl *PrevField = nullptr; 2672 for (auto FI = RT->getDecl()->field_begin(); 2673 FI != RT->getDecl()->field_end(); ++FI) { 2674 if (FI->isUnnamedBitfield()) 2675 continue; 2676 if (*NextField != RT->getDecl()->field_end() && 2677 declaresSameEntity(*FI, **NextField)) 2678 break; 2679 PrevField = *FI; 2680 } 2681 2682 if (PrevField && 2683 PrevField->getFieldIndex() > KnownField->getFieldIndex()) { 2684 SemaRef.Diag(DIE->getBeginLoc(), diag::ext_designated_init_reordered) 2685 << KnownField << PrevField << DIE->getSourceRange(); 2686 2687 unsigned OldIndex = NumBases + PrevField->getFieldIndex(); 2688 if (StructuredList && OldIndex <= StructuredList->getNumInits()) { 2689 if (Expr *PrevInit = StructuredList->getInit(OldIndex)) { 2690 SemaRef.Diag(PrevInit->getBeginLoc(), 2691 diag::note_previous_field_init) 2692 << PrevField << PrevInit->getSourceRange(); 2693 } 2694 } 2695 } 2696 } 2697 2698 2699 // Update the designator with the field declaration. 2700 if (!VerifyOnly) 2701 D->setField(*Field); 2702 2703 // Make sure that our non-designated initializer list has space 2704 // for a subobject corresponding to this field. 2705 if (StructuredList && FieldIndex >= StructuredList->getNumInits()) 2706 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1); 2707 2708 // This designator names a flexible array member. 2709 if (Field->getType()->isIncompleteArrayType()) { 2710 bool Invalid = false; 2711 if ((DesigIdx + 1) != DIE->size()) { 2712 // We can't designate an object within the flexible array 2713 // member (because GCC doesn't allow it). 2714 if (!VerifyOnly) { 2715 DesignatedInitExpr::Designator *NextD 2716 = DIE->getDesignator(DesigIdx + 1); 2717 SemaRef.Diag(NextD->getBeginLoc(), 2718 diag::err_designator_into_flexible_array_member) 2719 << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc()); 2720 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2721 << *Field; 2722 } 2723 Invalid = true; 2724 } 2725 2726 if (!hadError && !isa<InitListExpr>(DIE->getInit()) && 2727 !isa<StringLiteral>(DIE->getInit())) { 2728 // The initializer is not an initializer list. 2729 if (!VerifyOnly) { 2730 SemaRef.Diag(DIE->getInit()->getBeginLoc(), 2731 diag::err_flexible_array_init_needs_braces) 2732 << DIE->getInit()->getSourceRange(); 2733 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2734 << *Field; 2735 } 2736 Invalid = true; 2737 } 2738 2739 // Check GNU flexible array initializer. 2740 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field, 2741 TopLevelObject)) 2742 Invalid = true; 2743 2744 if (Invalid) { 2745 ++Index; 2746 return true; 2747 } 2748 2749 // Initialize the array. 2750 bool prevHadError = hadError; 2751 unsigned newStructuredIndex = FieldIndex; 2752 unsigned OldIndex = Index; 2753 IList->setInit(Index, DIE->getInit()); 2754 2755 InitializedEntity MemberEntity = 2756 InitializedEntity::InitializeMember(*Field, &Entity); 2757 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2758 StructuredList, newStructuredIndex); 2759 2760 IList->setInit(OldIndex, DIE); 2761 if (hadError && !prevHadError) { 2762 ++Field; 2763 ++FieldIndex; 2764 if (NextField) 2765 *NextField = Field; 2766 StructuredIndex = FieldIndex; 2767 return true; 2768 } 2769 } else { 2770 // Recurse to check later designated subobjects. 2771 QualType FieldType = Field->getType(); 2772 unsigned newStructuredIndex = FieldIndex; 2773 2774 InitializedEntity MemberEntity = 2775 InitializedEntity::InitializeMember(*Field, &Entity); 2776 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1, 2777 FieldType, nullptr, nullptr, Index, 2778 StructuredList, newStructuredIndex, 2779 FinishSubobjectInit, false)) 2780 return true; 2781 } 2782 2783 // Find the position of the next field to be initialized in this 2784 // subobject. 2785 ++Field; 2786 ++FieldIndex; 2787 2788 // If this the first designator, our caller will continue checking 2789 // the rest of this struct/class/union subobject. 2790 if (IsFirstDesignator) { 2791 if (NextField) 2792 *NextField = Field; 2793 StructuredIndex = FieldIndex; 2794 return false; 2795 } 2796 2797 if (!FinishSubobjectInit) 2798 return false; 2799 2800 // We've already initialized something in the union; we're done. 2801 if (RT->getDecl()->isUnion()) 2802 return hadError; 2803 2804 // Check the remaining fields within this class/struct/union subobject. 2805 bool prevHadError = hadError; 2806 2807 auto NoBases = 2808 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), 2809 CXXRecordDecl::base_class_iterator()); 2810 CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field, 2811 false, Index, StructuredList, FieldIndex); 2812 return hadError && !prevHadError; 2813 } 2814 2815 // C99 6.7.8p6: 2816 // 2817 // If a designator has the form 2818 // 2819 // [ constant-expression ] 2820 // 2821 // then the current object (defined below) shall have array 2822 // type and the expression shall be an integer constant 2823 // expression. If the array is of unknown size, any 2824 // nonnegative value is valid. 2825 // 2826 // Additionally, cope with the GNU extension that permits 2827 // designators of the form 2828 // 2829 // [ constant-expression ... constant-expression ] 2830 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType); 2831 if (!AT) { 2832 if (!VerifyOnly) 2833 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array) 2834 << CurrentObjectType; 2835 ++Index; 2836 return true; 2837 } 2838 2839 Expr *IndexExpr = nullptr; 2840 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex; 2841 if (D->isArrayDesignator()) { 2842 IndexExpr = DIE->getArrayIndex(*D); 2843 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context); 2844 DesignatedEndIndex = DesignatedStartIndex; 2845 } else { 2846 assert(D->isArrayRangeDesignator() && "Need array-range designator"); 2847 2848 DesignatedStartIndex = 2849 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context); 2850 DesignatedEndIndex = 2851 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context); 2852 IndexExpr = DIE->getArrayRangeEnd(*D); 2853 2854 // Codegen can't handle evaluating array range designators that have side 2855 // effects, because we replicate the AST value for each initialized element. 2856 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple 2857 // elements with something that has a side effect, so codegen can emit an 2858 // "error unsupported" error instead of miscompiling the app. 2859 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&& 2860 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly) 2861 FullyStructuredList->sawArrayRangeDesignator(); 2862 } 2863 2864 if (isa<ConstantArrayType>(AT)) { 2865 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false); 2866 DesignatedStartIndex 2867 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth()); 2868 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned()); 2869 DesignatedEndIndex 2870 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth()); 2871 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned()); 2872 if (DesignatedEndIndex >= MaxElements) { 2873 if (!VerifyOnly) 2874 SemaRef.Diag(IndexExpr->getBeginLoc(), 2875 diag::err_array_designator_too_large) 2876 << toString(DesignatedEndIndex, 10) << toString(MaxElements, 10) 2877 << IndexExpr->getSourceRange(); 2878 ++Index; 2879 return true; 2880 } 2881 } else { 2882 unsigned DesignatedIndexBitWidth = 2883 ConstantArrayType::getMaxSizeBits(SemaRef.Context); 2884 DesignatedStartIndex = 2885 DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth); 2886 DesignatedEndIndex = 2887 DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth); 2888 DesignatedStartIndex.setIsUnsigned(true); 2889 DesignatedEndIndex.setIsUnsigned(true); 2890 } 2891 2892 bool IsStringLiteralInitUpdate = 2893 StructuredList && StructuredList->isStringLiteralInit(); 2894 if (IsStringLiteralInitUpdate && VerifyOnly) { 2895 // We're just verifying an update to a string literal init. We don't need 2896 // to split the string up into individual characters to do that. 2897 StructuredList = nullptr; 2898 } else if (IsStringLiteralInitUpdate) { 2899 // We're modifying a string literal init; we have to decompose the string 2900 // so we can modify the individual characters. 2901 ASTContext &Context = SemaRef.Context; 2902 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens(); 2903 2904 // Compute the character type 2905 QualType CharTy = AT->getElementType(); 2906 2907 // Compute the type of the integer literals. 2908 QualType PromotedCharTy = CharTy; 2909 if (CharTy->isPromotableIntegerType()) 2910 PromotedCharTy = Context.getPromotedIntegerType(CharTy); 2911 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy); 2912 2913 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) { 2914 // Get the length of the string. 2915 uint64_t StrLen = SL->getLength(); 2916 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2917 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2918 StructuredList->resizeInits(Context, StrLen); 2919 2920 // Build a literal for each character in the string, and put them into 2921 // the init list. 2922 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2923 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i)); 2924 Expr *Init = new (Context) IntegerLiteral( 2925 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2926 if (CharTy != PromotedCharTy) 2927 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2928 Init, nullptr, VK_PRValue, 2929 FPOptionsOverride()); 2930 StructuredList->updateInit(Context, i, Init); 2931 } 2932 } else { 2933 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr); 2934 std::string Str; 2935 Context.getObjCEncodingForType(E->getEncodedType(), Str); 2936 2937 // Get the length of the string. 2938 uint64_t StrLen = Str.size(); 2939 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2940 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2941 StructuredList->resizeInits(Context, StrLen); 2942 2943 // Build a literal for each character in the string, and put them into 2944 // the init list. 2945 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2946 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]); 2947 Expr *Init = new (Context) IntegerLiteral( 2948 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2949 if (CharTy != PromotedCharTy) 2950 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2951 Init, nullptr, VK_PRValue, 2952 FPOptionsOverride()); 2953 StructuredList->updateInit(Context, i, Init); 2954 } 2955 } 2956 } 2957 2958 // Make sure that our non-designated initializer list has space 2959 // for a subobject corresponding to this array element. 2960 if (StructuredList && 2961 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits()) 2962 StructuredList->resizeInits(SemaRef.Context, 2963 DesignatedEndIndex.getZExtValue() + 1); 2964 2965 // Repeatedly perform subobject initializations in the range 2966 // [DesignatedStartIndex, DesignatedEndIndex]. 2967 2968 // Move to the next designator 2969 unsigned ElementIndex = DesignatedStartIndex.getZExtValue(); 2970 unsigned OldIndex = Index; 2971 2972 InitializedEntity ElementEntity = 2973 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 2974 2975 while (DesignatedStartIndex <= DesignatedEndIndex) { 2976 // Recurse to check later designated subobjects. 2977 QualType ElementType = AT->getElementType(); 2978 Index = OldIndex; 2979 2980 ElementEntity.setElementIndex(ElementIndex); 2981 if (CheckDesignatedInitializer( 2982 ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr, 2983 nullptr, Index, StructuredList, ElementIndex, 2984 FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex), 2985 false)) 2986 return true; 2987 2988 // Move to the next index in the array that we'll be initializing. 2989 ++DesignatedStartIndex; 2990 ElementIndex = DesignatedStartIndex.getZExtValue(); 2991 } 2992 2993 // If this the first designator, our caller will continue checking 2994 // the rest of this array subobject. 2995 if (IsFirstDesignator) { 2996 if (NextElementIndex) 2997 *NextElementIndex = DesignatedStartIndex; 2998 StructuredIndex = ElementIndex; 2999 return false; 3000 } 3001 3002 if (!FinishSubobjectInit) 3003 return false; 3004 3005 // Check the remaining elements within this array subobject. 3006 bool prevHadError = hadError; 3007 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex, 3008 /*SubobjectIsDesignatorContext=*/false, Index, 3009 StructuredList, ElementIndex); 3010 return hadError && !prevHadError; 3011 } 3012 3013 // Get the structured initializer list for a subobject of type 3014 // @p CurrentObjectType. 3015 InitListExpr * 3016 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 3017 QualType CurrentObjectType, 3018 InitListExpr *StructuredList, 3019 unsigned StructuredIndex, 3020 SourceRange InitRange, 3021 bool IsFullyOverwritten) { 3022 if (!StructuredList) 3023 return nullptr; 3024 3025 Expr *ExistingInit = nullptr; 3026 if (StructuredIndex < StructuredList->getNumInits()) 3027 ExistingInit = StructuredList->getInit(StructuredIndex); 3028 3029 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit)) 3030 // There might have already been initializers for subobjects of the current 3031 // object, but a subsequent initializer list will overwrite the entirety 3032 // of the current object. (See DR 253 and C99 6.7.8p21). e.g., 3033 // 3034 // struct P { char x[6]; }; 3035 // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } }; 3036 // 3037 // The first designated initializer is ignored, and l.x is just "f". 3038 if (!IsFullyOverwritten) 3039 return Result; 3040 3041 if (ExistingInit) { 3042 // We are creating an initializer list that initializes the 3043 // subobjects of the current object, but there was already an 3044 // initialization that completely initialized the current 3045 // subobject: 3046 // 3047 // struct X { int a, b; }; 3048 // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 }; 3049 // 3050 // Here, xs[0].a == 1 and xs[0].b == 3, since the second, 3051 // designated initializer overwrites the [0].b initializer 3052 // from the prior initialization. 3053 // 3054 // When the existing initializer is an expression rather than an 3055 // initializer list, we cannot decompose and update it in this way. 3056 // For example: 3057 // 3058 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 3059 // 3060 // This case is handled by CheckDesignatedInitializer. 3061 diagnoseInitOverride(ExistingInit, InitRange); 3062 } 3063 3064 unsigned ExpectedNumInits = 0; 3065 if (Index < IList->getNumInits()) { 3066 if (auto *Init = dyn_cast_or_null<InitListExpr>(IList->getInit(Index))) 3067 ExpectedNumInits = Init->getNumInits(); 3068 else 3069 ExpectedNumInits = IList->getNumInits() - Index; 3070 } 3071 3072 InitListExpr *Result = 3073 createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits); 3074 3075 // Link this new initializer list into the structured initializer 3076 // lists. 3077 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result); 3078 return Result; 3079 } 3080 3081 InitListExpr * 3082 InitListChecker::createInitListExpr(QualType CurrentObjectType, 3083 SourceRange InitRange, 3084 unsigned ExpectedNumInits) { 3085 InitListExpr *Result 3086 = new (SemaRef.Context) InitListExpr(SemaRef.Context, 3087 InitRange.getBegin(), None, 3088 InitRange.getEnd()); 3089 3090 QualType ResultType = CurrentObjectType; 3091 if (!ResultType->isArrayType()) 3092 ResultType = ResultType.getNonLValueExprType(SemaRef.Context); 3093 Result->setType(ResultType); 3094 3095 // Pre-allocate storage for the structured initializer list. 3096 unsigned NumElements = 0; 3097 3098 if (const ArrayType *AType 3099 = SemaRef.Context.getAsArrayType(CurrentObjectType)) { 3100 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) { 3101 NumElements = CAType->getSize().getZExtValue(); 3102 // Simple heuristic so that we don't allocate a very large 3103 // initializer with many empty entries at the end. 3104 if (NumElements > ExpectedNumInits) 3105 NumElements = 0; 3106 } 3107 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) { 3108 NumElements = VType->getNumElements(); 3109 } else if (CurrentObjectType->isRecordType()) { 3110 NumElements = numStructUnionElements(CurrentObjectType); 3111 } 3112 3113 Result->reserveInits(SemaRef.Context, NumElements); 3114 3115 return Result; 3116 } 3117 3118 /// Update the initializer at index @p StructuredIndex within the 3119 /// structured initializer list to the value @p expr. 3120 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList, 3121 unsigned &StructuredIndex, 3122 Expr *expr) { 3123 // No structured initializer list to update 3124 if (!StructuredList) 3125 return; 3126 3127 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context, 3128 StructuredIndex, expr)) { 3129 // This initializer overwrites a previous initializer. 3130 // No need to diagnose when `expr` is nullptr because a more relevant 3131 // diagnostic has already been issued and this diagnostic is potentially 3132 // noise. 3133 if (expr) 3134 diagnoseInitOverride(PrevInit, expr->getSourceRange()); 3135 } 3136 3137 ++StructuredIndex; 3138 } 3139 3140 /// Determine whether we can perform aggregate initialization for the purposes 3141 /// of overload resolution. 3142 bool Sema::CanPerformAggregateInitializationForOverloadResolution( 3143 const InitializedEntity &Entity, InitListExpr *From) { 3144 QualType Type = Entity.getType(); 3145 InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true, 3146 /*TreatUnavailableAsInvalid=*/false, 3147 /*InOverloadResolution=*/true); 3148 return !Check.HadError(); 3149 } 3150 3151 /// Check that the given Index expression is a valid array designator 3152 /// value. This is essentially just a wrapper around 3153 /// VerifyIntegerConstantExpression that also checks for negative values 3154 /// and produces a reasonable diagnostic if there is a 3155 /// failure. Returns the index expression, possibly with an implicit cast 3156 /// added, on success. If everything went okay, Value will receive the 3157 /// value of the constant expression. 3158 static ExprResult 3159 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) { 3160 SourceLocation Loc = Index->getBeginLoc(); 3161 3162 // Make sure this is an integer constant expression. 3163 ExprResult Result = 3164 S.VerifyIntegerConstantExpression(Index, &Value, Sema::AllowFold); 3165 if (Result.isInvalid()) 3166 return Result; 3167 3168 if (Value.isSigned() && Value.isNegative()) 3169 return S.Diag(Loc, diag::err_array_designator_negative) 3170 << toString(Value, 10) << Index->getSourceRange(); 3171 3172 Value.setIsUnsigned(true); 3173 return Result; 3174 } 3175 3176 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig, 3177 SourceLocation EqualOrColonLoc, 3178 bool GNUSyntax, 3179 ExprResult Init) { 3180 typedef DesignatedInitExpr::Designator ASTDesignator; 3181 3182 bool Invalid = false; 3183 SmallVector<ASTDesignator, 32> Designators; 3184 SmallVector<Expr *, 32> InitExpressions; 3185 3186 // Build designators and check array designator expressions. 3187 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) { 3188 const Designator &D = Desig.getDesignator(Idx); 3189 switch (D.getKind()) { 3190 case Designator::FieldDesignator: 3191 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(), 3192 D.getFieldLoc())); 3193 break; 3194 3195 case Designator::ArrayDesignator: { 3196 Expr *Index = static_cast<Expr *>(D.getArrayIndex()); 3197 llvm::APSInt IndexValue; 3198 if (!Index->isTypeDependent() && !Index->isValueDependent()) 3199 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get(); 3200 if (!Index) 3201 Invalid = true; 3202 else { 3203 Designators.push_back(ASTDesignator(InitExpressions.size(), 3204 D.getLBracketLoc(), 3205 D.getRBracketLoc())); 3206 InitExpressions.push_back(Index); 3207 } 3208 break; 3209 } 3210 3211 case Designator::ArrayRangeDesignator: { 3212 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart()); 3213 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd()); 3214 llvm::APSInt StartValue; 3215 llvm::APSInt EndValue; 3216 bool StartDependent = StartIndex->isTypeDependent() || 3217 StartIndex->isValueDependent(); 3218 bool EndDependent = EndIndex->isTypeDependent() || 3219 EndIndex->isValueDependent(); 3220 if (!StartDependent) 3221 StartIndex = 3222 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get(); 3223 if (!EndDependent) 3224 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get(); 3225 3226 if (!StartIndex || !EndIndex) 3227 Invalid = true; 3228 else { 3229 // Make sure we're comparing values with the same bit width. 3230 if (StartDependent || EndDependent) { 3231 // Nothing to compute. 3232 } else if (StartValue.getBitWidth() > EndValue.getBitWidth()) 3233 EndValue = EndValue.extend(StartValue.getBitWidth()); 3234 else if (StartValue.getBitWidth() < EndValue.getBitWidth()) 3235 StartValue = StartValue.extend(EndValue.getBitWidth()); 3236 3237 if (!StartDependent && !EndDependent && EndValue < StartValue) { 3238 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range) 3239 << toString(StartValue, 10) << toString(EndValue, 10) 3240 << StartIndex->getSourceRange() << EndIndex->getSourceRange(); 3241 Invalid = true; 3242 } else { 3243 Designators.push_back(ASTDesignator(InitExpressions.size(), 3244 D.getLBracketLoc(), 3245 D.getEllipsisLoc(), 3246 D.getRBracketLoc())); 3247 InitExpressions.push_back(StartIndex); 3248 InitExpressions.push_back(EndIndex); 3249 } 3250 } 3251 break; 3252 } 3253 } 3254 } 3255 3256 if (Invalid || Init.isInvalid()) 3257 return ExprError(); 3258 3259 // Clear out the expressions within the designation. 3260 Desig.ClearExprs(*this); 3261 3262 return DesignatedInitExpr::Create(Context, Designators, InitExpressions, 3263 EqualOrColonLoc, GNUSyntax, 3264 Init.getAs<Expr>()); 3265 } 3266 3267 //===----------------------------------------------------------------------===// 3268 // Initialization entity 3269 //===----------------------------------------------------------------------===// 3270 3271 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index, 3272 const InitializedEntity &Parent) 3273 : Parent(&Parent), Index(Index) 3274 { 3275 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) { 3276 Kind = EK_ArrayElement; 3277 Type = AT->getElementType(); 3278 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) { 3279 Kind = EK_VectorElement; 3280 Type = VT->getElementType(); 3281 } else { 3282 const ComplexType *CT = Parent.getType()->getAs<ComplexType>(); 3283 assert(CT && "Unexpected type"); 3284 Kind = EK_ComplexElement; 3285 Type = CT->getElementType(); 3286 } 3287 } 3288 3289 InitializedEntity 3290 InitializedEntity::InitializeBase(ASTContext &Context, 3291 const CXXBaseSpecifier *Base, 3292 bool IsInheritedVirtualBase, 3293 const InitializedEntity *Parent) { 3294 InitializedEntity Result; 3295 Result.Kind = EK_Base; 3296 Result.Parent = Parent; 3297 Result.Base = {Base, IsInheritedVirtualBase}; 3298 Result.Type = Base->getType(); 3299 return Result; 3300 } 3301 3302 DeclarationName InitializedEntity::getName() const { 3303 switch (getKind()) { 3304 case EK_Parameter: 3305 case EK_Parameter_CF_Audited: { 3306 ParmVarDecl *D = Parameter.getPointer(); 3307 return (D ? D->getDeclName() : DeclarationName()); 3308 } 3309 3310 case EK_Variable: 3311 case EK_Member: 3312 case EK_Binding: 3313 case EK_TemplateParameter: 3314 return Variable.VariableOrMember->getDeclName(); 3315 3316 case EK_LambdaCapture: 3317 return DeclarationName(Capture.VarID); 3318 3319 case EK_Result: 3320 case EK_StmtExprResult: 3321 case EK_Exception: 3322 case EK_New: 3323 case EK_Temporary: 3324 case EK_Base: 3325 case EK_Delegating: 3326 case EK_ArrayElement: 3327 case EK_VectorElement: 3328 case EK_ComplexElement: 3329 case EK_BlockElement: 3330 case EK_LambdaToBlockConversionBlockElement: 3331 case EK_CompoundLiteralInit: 3332 case EK_RelatedResult: 3333 return DeclarationName(); 3334 } 3335 3336 llvm_unreachable("Invalid EntityKind!"); 3337 } 3338 3339 ValueDecl *InitializedEntity::getDecl() const { 3340 switch (getKind()) { 3341 case EK_Variable: 3342 case EK_Member: 3343 case EK_Binding: 3344 case EK_TemplateParameter: 3345 return Variable.VariableOrMember; 3346 3347 case EK_Parameter: 3348 case EK_Parameter_CF_Audited: 3349 return Parameter.getPointer(); 3350 3351 case EK_Result: 3352 case EK_StmtExprResult: 3353 case EK_Exception: 3354 case EK_New: 3355 case EK_Temporary: 3356 case EK_Base: 3357 case EK_Delegating: 3358 case EK_ArrayElement: 3359 case EK_VectorElement: 3360 case EK_ComplexElement: 3361 case EK_BlockElement: 3362 case EK_LambdaToBlockConversionBlockElement: 3363 case EK_LambdaCapture: 3364 case EK_CompoundLiteralInit: 3365 case EK_RelatedResult: 3366 return nullptr; 3367 } 3368 3369 llvm_unreachable("Invalid EntityKind!"); 3370 } 3371 3372 bool InitializedEntity::allowsNRVO() const { 3373 switch (getKind()) { 3374 case EK_Result: 3375 case EK_Exception: 3376 return LocAndNRVO.NRVO; 3377 3378 case EK_StmtExprResult: 3379 case EK_Variable: 3380 case EK_Parameter: 3381 case EK_Parameter_CF_Audited: 3382 case EK_TemplateParameter: 3383 case EK_Member: 3384 case EK_Binding: 3385 case EK_New: 3386 case EK_Temporary: 3387 case EK_CompoundLiteralInit: 3388 case EK_Base: 3389 case EK_Delegating: 3390 case EK_ArrayElement: 3391 case EK_VectorElement: 3392 case EK_ComplexElement: 3393 case EK_BlockElement: 3394 case EK_LambdaToBlockConversionBlockElement: 3395 case EK_LambdaCapture: 3396 case EK_RelatedResult: 3397 break; 3398 } 3399 3400 return false; 3401 } 3402 3403 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const { 3404 assert(getParent() != this); 3405 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0; 3406 for (unsigned I = 0; I != Depth; ++I) 3407 OS << "`-"; 3408 3409 switch (getKind()) { 3410 case EK_Variable: OS << "Variable"; break; 3411 case EK_Parameter: OS << "Parameter"; break; 3412 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter"; 3413 break; 3414 case EK_TemplateParameter: OS << "TemplateParameter"; break; 3415 case EK_Result: OS << "Result"; break; 3416 case EK_StmtExprResult: OS << "StmtExprResult"; break; 3417 case EK_Exception: OS << "Exception"; break; 3418 case EK_Member: OS << "Member"; break; 3419 case EK_Binding: OS << "Binding"; break; 3420 case EK_New: OS << "New"; break; 3421 case EK_Temporary: OS << "Temporary"; break; 3422 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break; 3423 case EK_RelatedResult: OS << "RelatedResult"; break; 3424 case EK_Base: OS << "Base"; break; 3425 case EK_Delegating: OS << "Delegating"; break; 3426 case EK_ArrayElement: OS << "ArrayElement " << Index; break; 3427 case EK_VectorElement: OS << "VectorElement " << Index; break; 3428 case EK_ComplexElement: OS << "ComplexElement " << Index; break; 3429 case EK_BlockElement: OS << "Block"; break; 3430 case EK_LambdaToBlockConversionBlockElement: 3431 OS << "Block (lambda)"; 3432 break; 3433 case EK_LambdaCapture: 3434 OS << "LambdaCapture "; 3435 OS << DeclarationName(Capture.VarID); 3436 break; 3437 } 3438 3439 if (auto *D = getDecl()) { 3440 OS << " "; 3441 D->printQualifiedName(OS); 3442 } 3443 3444 OS << " '" << getType().getAsString() << "'\n"; 3445 3446 return Depth + 1; 3447 } 3448 3449 LLVM_DUMP_METHOD void InitializedEntity::dump() const { 3450 dumpImpl(llvm::errs()); 3451 } 3452 3453 //===----------------------------------------------------------------------===// 3454 // Initialization sequence 3455 //===----------------------------------------------------------------------===// 3456 3457 void InitializationSequence::Step::Destroy() { 3458 switch (Kind) { 3459 case SK_ResolveAddressOfOverloadedFunction: 3460 case SK_CastDerivedToBasePRValue: 3461 case SK_CastDerivedToBaseXValue: 3462 case SK_CastDerivedToBaseLValue: 3463 case SK_BindReference: 3464 case SK_BindReferenceToTemporary: 3465 case SK_FinalCopy: 3466 case SK_ExtraneousCopyToTemporary: 3467 case SK_UserConversion: 3468 case SK_QualificationConversionPRValue: 3469 case SK_QualificationConversionXValue: 3470 case SK_QualificationConversionLValue: 3471 case SK_FunctionReferenceConversion: 3472 case SK_AtomicConversion: 3473 case SK_ListInitialization: 3474 case SK_UnwrapInitList: 3475 case SK_RewrapInitList: 3476 case SK_ConstructorInitialization: 3477 case SK_ConstructorInitializationFromList: 3478 case SK_ZeroInitialization: 3479 case SK_CAssignment: 3480 case SK_StringInit: 3481 case SK_ObjCObjectConversion: 3482 case SK_ArrayLoopIndex: 3483 case SK_ArrayLoopInit: 3484 case SK_ArrayInit: 3485 case SK_GNUArrayInit: 3486 case SK_ParenthesizedArrayInit: 3487 case SK_PassByIndirectCopyRestore: 3488 case SK_PassByIndirectRestore: 3489 case SK_ProduceObjCObject: 3490 case SK_StdInitializerList: 3491 case SK_StdInitializerListConstructorCall: 3492 case SK_OCLSamplerInit: 3493 case SK_OCLZeroOpaqueType: 3494 break; 3495 3496 case SK_ConversionSequence: 3497 case SK_ConversionSequenceNoNarrowing: 3498 delete ICS; 3499 } 3500 } 3501 3502 bool InitializationSequence::isDirectReferenceBinding() const { 3503 // There can be some lvalue adjustments after the SK_BindReference step. 3504 for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) { 3505 if (I->Kind == SK_BindReference) 3506 return true; 3507 if (I->Kind == SK_BindReferenceToTemporary) 3508 return false; 3509 } 3510 return false; 3511 } 3512 3513 bool InitializationSequence::isAmbiguous() const { 3514 if (!Failed()) 3515 return false; 3516 3517 switch (getFailureKind()) { 3518 case FK_TooManyInitsForReference: 3519 case FK_ParenthesizedListInitForReference: 3520 case FK_ArrayNeedsInitList: 3521 case FK_ArrayNeedsInitListOrStringLiteral: 3522 case FK_ArrayNeedsInitListOrWideStringLiteral: 3523 case FK_NarrowStringIntoWideCharArray: 3524 case FK_WideStringIntoCharArray: 3525 case FK_IncompatWideStringIntoWideChar: 3526 case FK_PlainStringIntoUTF8Char: 3527 case FK_UTF8StringIntoPlainChar: 3528 case FK_AddressOfOverloadFailed: // FIXME: Could do better 3529 case FK_NonConstLValueReferenceBindingToTemporary: 3530 case FK_NonConstLValueReferenceBindingToBitfield: 3531 case FK_NonConstLValueReferenceBindingToVectorElement: 3532 case FK_NonConstLValueReferenceBindingToMatrixElement: 3533 case FK_NonConstLValueReferenceBindingToUnrelated: 3534 case FK_RValueReferenceBindingToLValue: 3535 case FK_ReferenceAddrspaceMismatchTemporary: 3536 case FK_ReferenceInitDropsQualifiers: 3537 case FK_ReferenceInitFailed: 3538 case FK_ConversionFailed: 3539 case FK_ConversionFromPropertyFailed: 3540 case FK_TooManyInitsForScalar: 3541 case FK_ParenthesizedListInitForScalar: 3542 case FK_ReferenceBindingToInitList: 3543 case FK_InitListBadDestinationType: 3544 case FK_DefaultInitOfConst: 3545 case FK_Incomplete: 3546 case FK_ArrayTypeMismatch: 3547 case FK_NonConstantArrayInit: 3548 case FK_ListInitializationFailed: 3549 case FK_VariableLengthArrayHasInitializer: 3550 case FK_PlaceholderType: 3551 case FK_ExplicitConstructor: 3552 case FK_AddressOfUnaddressableFunction: 3553 return false; 3554 3555 case FK_ReferenceInitOverloadFailed: 3556 case FK_UserConversionOverloadFailed: 3557 case FK_ConstructorOverloadFailed: 3558 case FK_ListConstructorOverloadFailed: 3559 return FailedOverloadResult == OR_Ambiguous; 3560 } 3561 3562 llvm_unreachable("Invalid EntityKind!"); 3563 } 3564 3565 bool InitializationSequence::isConstructorInitialization() const { 3566 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization; 3567 } 3568 3569 void 3570 InitializationSequence 3571 ::AddAddressOverloadResolutionStep(FunctionDecl *Function, 3572 DeclAccessPair Found, 3573 bool HadMultipleCandidates) { 3574 Step S; 3575 S.Kind = SK_ResolveAddressOfOverloadedFunction; 3576 S.Type = Function->getType(); 3577 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3578 S.Function.Function = Function; 3579 S.Function.FoundDecl = Found; 3580 Steps.push_back(S); 3581 } 3582 3583 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType, 3584 ExprValueKind VK) { 3585 Step S; 3586 switch (VK) { 3587 case VK_PRValue: 3588 S.Kind = SK_CastDerivedToBasePRValue; 3589 break; 3590 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break; 3591 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break; 3592 } 3593 S.Type = BaseType; 3594 Steps.push_back(S); 3595 } 3596 3597 void InitializationSequence::AddReferenceBindingStep(QualType T, 3598 bool BindingTemporary) { 3599 Step S; 3600 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference; 3601 S.Type = T; 3602 Steps.push_back(S); 3603 } 3604 3605 void InitializationSequence::AddFinalCopy(QualType T) { 3606 Step S; 3607 S.Kind = SK_FinalCopy; 3608 S.Type = T; 3609 Steps.push_back(S); 3610 } 3611 3612 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) { 3613 Step S; 3614 S.Kind = SK_ExtraneousCopyToTemporary; 3615 S.Type = T; 3616 Steps.push_back(S); 3617 } 3618 3619 void 3620 InitializationSequence::AddUserConversionStep(FunctionDecl *Function, 3621 DeclAccessPair FoundDecl, 3622 QualType T, 3623 bool HadMultipleCandidates) { 3624 Step S; 3625 S.Kind = SK_UserConversion; 3626 S.Type = T; 3627 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3628 S.Function.Function = Function; 3629 S.Function.FoundDecl = FoundDecl; 3630 Steps.push_back(S); 3631 } 3632 3633 void InitializationSequence::AddQualificationConversionStep(QualType Ty, 3634 ExprValueKind VK) { 3635 Step S; 3636 S.Kind = SK_QualificationConversionPRValue; // work around a gcc warning 3637 switch (VK) { 3638 case VK_PRValue: 3639 S.Kind = SK_QualificationConversionPRValue; 3640 break; 3641 case VK_XValue: 3642 S.Kind = SK_QualificationConversionXValue; 3643 break; 3644 case VK_LValue: 3645 S.Kind = SK_QualificationConversionLValue; 3646 break; 3647 } 3648 S.Type = Ty; 3649 Steps.push_back(S); 3650 } 3651 3652 void InitializationSequence::AddFunctionReferenceConversionStep(QualType Ty) { 3653 Step S; 3654 S.Kind = SK_FunctionReferenceConversion; 3655 S.Type = Ty; 3656 Steps.push_back(S); 3657 } 3658 3659 void InitializationSequence::AddAtomicConversionStep(QualType Ty) { 3660 Step S; 3661 S.Kind = SK_AtomicConversion; 3662 S.Type = Ty; 3663 Steps.push_back(S); 3664 } 3665 3666 void InitializationSequence::AddConversionSequenceStep( 3667 const ImplicitConversionSequence &ICS, QualType T, 3668 bool TopLevelOfInitList) { 3669 Step S; 3670 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing 3671 : SK_ConversionSequence; 3672 S.Type = T; 3673 S.ICS = new ImplicitConversionSequence(ICS); 3674 Steps.push_back(S); 3675 } 3676 3677 void InitializationSequence::AddListInitializationStep(QualType T) { 3678 Step S; 3679 S.Kind = SK_ListInitialization; 3680 S.Type = T; 3681 Steps.push_back(S); 3682 } 3683 3684 void InitializationSequence::AddConstructorInitializationStep( 3685 DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T, 3686 bool HadMultipleCandidates, bool FromInitList, bool AsInitList) { 3687 Step S; 3688 S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall 3689 : SK_ConstructorInitializationFromList 3690 : SK_ConstructorInitialization; 3691 S.Type = T; 3692 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3693 S.Function.Function = Constructor; 3694 S.Function.FoundDecl = FoundDecl; 3695 Steps.push_back(S); 3696 } 3697 3698 void InitializationSequence::AddZeroInitializationStep(QualType T) { 3699 Step S; 3700 S.Kind = SK_ZeroInitialization; 3701 S.Type = T; 3702 Steps.push_back(S); 3703 } 3704 3705 void InitializationSequence::AddCAssignmentStep(QualType T) { 3706 Step S; 3707 S.Kind = SK_CAssignment; 3708 S.Type = T; 3709 Steps.push_back(S); 3710 } 3711 3712 void InitializationSequence::AddStringInitStep(QualType T) { 3713 Step S; 3714 S.Kind = SK_StringInit; 3715 S.Type = T; 3716 Steps.push_back(S); 3717 } 3718 3719 void InitializationSequence::AddObjCObjectConversionStep(QualType T) { 3720 Step S; 3721 S.Kind = SK_ObjCObjectConversion; 3722 S.Type = T; 3723 Steps.push_back(S); 3724 } 3725 3726 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) { 3727 Step S; 3728 S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit; 3729 S.Type = T; 3730 Steps.push_back(S); 3731 } 3732 3733 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) { 3734 Step S; 3735 S.Kind = SK_ArrayLoopIndex; 3736 S.Type = EltT; 3737 Steps.insert(Steps.begin(), S); 3738 3739 S.Kind = SK_ArrayLoopInit; 3740 S.Type = T; 3741 Steps.push_back(S); 3742 } 3743 3744 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) { 3745 Step S; 3746 S.Kind = SK_ParenthesizedArrayInit; 3747 S.Type = T; 3748 Steps.push_back(S); 3749 } 3750 3751 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type, 3752 bool shouldCopy) { 3753 Step s; 3754 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore 3755 : SK_PassByIndirectRestore); 3756 s.Type = type; 3757 Steps.push_back(s); 3758 } 3759 3760 void InitializationSequence::AddProduceObjCObjectStep(QualType T) { 3761 Step S; 3762 S.Kind = SK_ProduceObjCObject; 3763 S.Type = T; 3764 Steps.push_back(S); 3765 } 3766 3767 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) { 3768 Step S; 3769 S.Kind = SK_StdInitializerList; 3770 S.Type = T; 3771 Steps.push_back(S); 3772 } 3773 3774 void InitializationSequence::AddOCLSamplerInitStep(QualType T) { 3775 Step S; 3776 S.Kind = SK_OCLSamplerInit; 3777 S.Type = T; 3778 Steps.push_back(S); 3779 } 3780 3781 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) { 3782 Step S; 3783 S.Kind = SK_OCLZeroOpaqueType; 3784 S.Type = T; 3785 Steps.push_back(S); 3786 } 3787 3788 void InitializationSequence::RewrapReferenceInitList(QualType T, 3789 InitListExpr *Syntactic) { 3790 assert(Syntactic->getNumInits() == 1 && 3791 "Can only rewrap trivial init lists."); 3792 Step S; 3793 S.Kind = SK_UnwrapInitList; 3794 S.Type = Syntactic->getInit(0)->getType(); 3795 Steps.insert(Steps.begin(), S); 3796 3797 S.Kind = SK_RewrapInitList; 3798 S.Type = T; 3799 S.WrappingSyntacticList = Syntactic; 3800 Steps.push_back(S); 3801 } 3802 3803 void InitializationSequence::SetOverloadFailure(FailureKind Failure, 3804 OverloadingResult Result) { 3805 setSequenceKind(FailedSequence); 3806 this->Failure = Failure; 3807 this->FailedOverloadResult = Result; 3808 } 3809 3810 //===----------------------------------------------------------------------===// 3811 // Attempt initialization 3812 //===----------------------------------------------------------------------===// 3813 3814 /// Tries to add a zero initializer. Returns true if that worked. 3815 static bool 3816 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence, 3817 const InitializedEntity &Entity) { 3818 if (Entity.getKind() != InitializedEntity::EK_Variable) 3819 return false; 3820 3821 VarDecl *VD = cast<VarDecl>(Entity.getDecl()); 3822 if (VD->getInit() || VD->getEndLoc().isMacroID()) 3823 return false; 3824 3825 QualType VariableTy = VD->getType().getCanonicalType(); 3826 SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc()); 3827 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc); 3828 if (!Init.empty()) { 3829 Sequence.AddZeroInitializationStep(Entity.getType()); 3830 Sequence.SetZeroInitializationFixit(Init, Loc); 3831 return true; 3832 } 3833 return false; 3834 } 3835 3836 static void MaybeProduceObjCObject(Sema &S, 3837 InitializationSequence &Sequence, 3838 const InitializedEntity &Entity) { 3839 if (!S.getLangOpts().ObjCAutoRefCount) return; 3840 3841 /// When initializing a parameter, produce the value if it's marked 3842 /// __attribute__((ns_consumed)). 3843 if (Entity.isParameterKind()) { 3844 if (!Entity.isParameterConsumed()) 3845 return; 3846 3847 assert(Entity.getType()->isObjCRetainableType() && 3848 "consuming an object of unretainable type?"); 3849 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3850 3851 /// When initializing a return value, if the return type is a 3852 /// retainable type, then returns need to immediately retain the 3853 /// object. If an autorelease is required, it will be done at the 3854 /// last instant. 3855 } else if (Entity.getKind() == InitializedEntity::EK_Result || 3856 Entity.getKind() == InitializedEntity::EK_StmtExprResult) { 3857 if (!Entity.getType()->isObjCRetainableType()) 3858 return; 3859 3860 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3861 } 3862 } 3863 3864 static void TryListInitialization(Sema &S, 3865 const InitializedEntity &Entity, 3866 const InitializationKind &Kind, 3867 InitListExpr *InitList, 3868 InitializationSequence &Sequence, 3869 bool TreatUnavailableAsInvalid); 3870 3871 /// When initializing from init list via constructor, handle 3872 /// initialization of an object of type std::initializer_list<T>. 3873 /// 3874 /// \return true if we have handled initialization of an object of type 3875 /// std::initializer_list<T>, false otherwise. 3876 static bool TryInitializerListConstruction(Sema &S, 3877 InitListExpr *List, 3878 QualType DestType, 3879 InitializationSequence &Sequence, 3880 bool TreatUnavailableAsInvalid) { 3881 QualType E; 3882 if (!S.isStdInitializerList(DestType, &E)) 3883 return false; 3884 3885 if (!S.isCompleteType(List->getExprLoc(), E)) { 3886 Sequence.setIncompleteTypeFailure(E); 3887 return true; 3888 } 3889 3890 // Try initializing a temporary array from the init list. 3891 QualType ArrayType = S.Context.getConstantArrayType( 3892 E.withConst(), 3893 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 3894 List->getNumInits()), 3895 nullptr, clang::ArrayType::Normal, 0); 3896 InitializedEntity HiddenArray = 3897 InitializedEntity::InitializeTemporary(ArrayType); 3898 InitializationKind Kind = InitializationKind::CreateDirectList( 3899 List->getExprLoc(), List->getBeginLoc(), List->getEndLoc()); 3900 TryListInitialization(S, HiddenArray, Kind, List, Sequence, 3901 TreatUnavailableAsInvalid); 3902 if (Sequence) 3903 Sequence.AddStdInitializerListConstructionStep(DestType); 3904 return true; 3905 } 3906 3907 /// Determine if the constructor has the signature of a copy or move 3908 /// constructor for the type T of the class in which it was found. That is, 3909 /// determine if its first parameter is of type T or reference to (possibly 3910 /// cv-qualified) T. 3911 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx, 3912 const ConstructorInfo &Info) { 3913 if (Info.Constructor->getNumParams() == 0) 3914 return false; 3915 3916 QualType ParmT = 3917 Info.Constructor->getParamDecl(0)->getType().getNonReferenceType(); 3918 QualType ClassT = 3919 Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext())); 3920 3921 return Ctx.hasSameUnqualifiedType(ParmT, ClassT); 3922 } 3923 3924 static OverloadingResult 3925 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc, 3926 MultiExprArg Args, 3927 OverloadCandidateSet &CandidateSet, 3928 QualType DestType, 3929 DeclContext::lookup_result Ctors, 3930 OverloadCandidateSet::iterator &Best, 3931 bool CopyInitializing, bool AllowExplicit, 3932 bool OnlyListConstructors, bool IsListInit, 3933 bool SecondStepOfCopyInit = false) { 3934 CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor); 3935 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); 3936 3937 for (NamedDecl *D : Ctors) { 3938 auto Info = getConstructorInfo(D); 3939 if (!Info.Constructor || Info.Constructor->isInvalidDecl()) 3940 continue; 3941 3942 if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor)) 3943 continue; 3944 3945 // C++11 [over.best.ics]p4: 3946 // ... and the constructor or user-defined conversion function is a 3947 // candidate by 3948 // - 13.3.1.3, when the argument is the temporary in the second step 3949 // of a class copy-initialization, or 3950 // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here] 3951 // - the second phase of 13.3.1.7 when the initializer list has exactly 3952 // one element that is itself an initializer list, and the target is 3953 // the first parameter of a constructor of class X, and the conversion 3954 // is to X or reference to (possibly cv-qualified X), 3955 // user-defined conversion sequences are not considered. 3956 bool SuppressUserConversions = 3957 SecondStepOfCopyInit || 3958 (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) && 3959 hasCopyOrMoveCtorParam(S.Context, Info)); 3960 3961 if (Info.ConstructorTmpl) 3962 S.AddTemplateOverloadCandidate( 3963 Info.ConstructorTmpl, Info.FoundDecl, 3964 /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions, 3965 /*PartialOverloading=*/false, AllowExplicit); 3966 else { 3967 // C++ [over.match.copy]p1: 3968 // - When initializing a temporary to be bound to the first parameter 3969 // of a constructor [for type T] that takes a reference to possibly 3970 // cv-qualified T as its first argument, called with a single 3971 // argument in the context of direct-initialization, explicit 3972 // conversion functions are also considered. 3973 // FIXME: What if a constructor template instantiates to such a signature? 3974 bool AllowExplicitConv = AllowExplicit && !CopyInitializing && 3975 Args.size() == 1 && 3976 hasCopyOrMoveCtorParam(S.Context, Info); 3977 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args, 3978 CandidateSet, SuppressUserConversions, 3979 /*PartialOverloading=*/false, AllowExplicit, 3980 AllowExplicitConv); 3981 } 3982 } 3983 3984 // FIXME: Work around a bug in C++17 guaranteed copy elision. 3985 // 3986 // When initializing an object of class type T by constructor 3987 // ([over.match.ctor]) or by list-initialization ([over.match.list]) 3988 // from a single expression of class type U, conversion functions of 3989 // U that convert to the non-reference type cv T are candidates. 3990 // Explicit conversion functions are only candidates during 3991 // direct-initialization. 3992 // 3993 // Note: SecondStepOfCopyInit is only ever true in this case when 3994 // evaluating whether to produce a C++98 compatibility warning. 3995 if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 && 3996 !SecondStepOfCopyInit) { 3997 Expr *Initializer = Args[0]; 3998 auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl(); 3999 if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) { 4000 const auto &Conversions = SourceRD->getVisibleConversionFunctions(); 4001 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 4002 NamedDecl *D = *I; 4003 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 4004 D = D->getUnderlyingDecl(); 4005 4006 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 4007 CXXConversionDecl *Conv; 4008 if (ConvTemplate) 4009 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 4010 else 4011 Conv = cast<CXXConversionDecl>(D); 4012 4013 if (ConvTemplate) 4014 S.AddTemplateConversionCandidate( 4015 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 4016 CandidateSet, AllowExplicit, AllowExplicit, 4017 /*AllowResultConversion*/ false); 4018 else 4019 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, 4020 DestType, CandidateSet, AllowExplicit, 4021 AllowExplicit, 4022 /*AllowResultConversion*/ false); 4023 } 4024 } 4025 } 4026 4027 // Perform overload resolution and return the result. 4028 return CandidateSet.BestViableFunction(S, DeclLoc, Best); 4029 } 4030 4031 /// Attempt initialization by constructor (C++ [dcl.init]), which 4032 /// enumerates the constructors of the initialized entity and performs overload 4033 /// resolution to select the best. 4034 /// \param DestType The destination class type. 4035 /// \param DestArrayType The destination type, which is either DestType or 4036 /// a (possibly multidimensional) array of DestType. 4037 /// \param IsListInit Is this list-initialization? 4038 /// \param IsInitListCopy Is this non-list-initialization resulting from a 4039 /// list-initialization from {x} where x is the same 4040 /// type as the entity? 4041 static void TryConstructorInitialization(Sema &S, 4042 const InitializedEntity &Entity, 4043 const InitializationKind &Kind, 4044 MultiExprArg Args, QualType DestType, 4045 QualType DestArrayType, 4046 InitializationSequence &Sequence, 4047 bool IsListInit = false, 4048 bool IsInitListCopy = false) { 4049 assert(((!IsListInit && !IsInitListCopy) || 4050 (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && 4051 "IsListInit/IsInitListCopy must come with a single initializer list " 4052 "argument."); 4053 InitListExpr *ILE = 4054 (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr; 4055 MultiExprArg UnwrappedArgs = 4056 ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args; 4057 4058 // The type we're constructing needs to be complete. 4059 if (!S.isCompleteType(Kind.getLocation(), DestType)) { 4060 Sequence.setIncompleteTypeFailure(DestType); 4061 return; 4062 } 4063 4064 // C++17 [dcl.init]p17: 4065 // - If the initializer expression is a prvalue and the cv-unqualified 4066 // version of the source type is the same class as the class of the 4067 // destination, the initializer expression is used to initialize the 4068 // destination object. 4069 // Per DR (no number yet), this does not apply when initializing a base 4070 // class or delegating to another constructor from a mem-initializer. 4071 // ObjC++: Lambda captured by the block in the lambda to block conversion 4072 // should avoid copy elision. 4073 if (S.getLangOpts().CPlusPlus17 && 4074 Entity.getKind() != InitializedEntity::EK_Base && 4075 Entity.getKind() != InitializedEntity::EK_Delegating && 4076 Entity.getKind() != 4077 InitializedEntity::EK_LambdaToBlockConversionBlockElement && 4078 UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isPRValue() && 4079 S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) { 4080 // Convert qualifications if necessary. 4081 Sequence.AddQualificationConversionStep(DestType, VK_PRValue); 4082 if (ILE) 4083 Sequence.RewrapReferenceInitList(DestType, ILE); 4084 return; 4085 } 4086 4087 const RecordType *DestRecordType = DestType->getAs<RecordType>(); 4088 assert(DestRecordType && "Constructor initialization requires record type"); 4089 CXXRecordDecl *DestRecordDecl 4090 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 4091 4092 // Build the candidate set directly in the initialization sequence 4093 // structure, so that it will persist if we fail. 4094 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4095 4096 // Determine whether we are allowed to call explicit constructors or 4097 // explicit conversion operators. 4098 bool AllowExplicit = Kind.AllowExplicit() || IsListInit; 4099 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy; 4100 4101 // - Otherwise, if T is a class type, constructors are considered. The 4102 // applicable constructors are enumerated, and the best one is chosen 4103 // through overload resolution. 4104 DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl); 4105 4106 OverloadingResult Result = OR_No_Viable_Function; 4107 OverloadCandidateSet::iterator Best; 4108 bool AsInitializerList = false; 4109 4110 // C++11 [over.match.list]p1, per DR1467: 4111 // When objects of non-aggregate type T are list-initialized, such that 4112 // 8.5.4 [dcl.init.list] specifies that overload resolution is performed 4113 // according to the rules in this section, overload resolution selects 4114 // the constructor in two phases: 4115 // 4116 // - Initially, the candidate functions are the initializer-list 4117 // constructors of the class T and the argument list consists of the 4118 // initializer list as a single argument. 4119 if (IsListInit) { 4120 AsInitializerList = true; 4121 4122 // If the initializer list has no elements and T has a default constructor, 4123 // the first phase is omitted. 4124 if (!(UnwrappedArgs.empty() && S.LookupDefaultConstructor(DestRecordDecl))) 4125 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, 4126 CandidateSet, DestType, Ctors, Best, 4127 CopyInitialization, AllowExplicit, 4128 /*OnlyListConstructors=*/true, 4129 IsListInit); 4130 } 4131 4132 // C++11 [over.match.list]p1: 4133 // - If no viable initializer-list constructor is found, overload resolution 4134 // is performed again, where the candidate functions are all the 4135 // constructors of the class T and the argument list consists of the 4136 // elements of the initializer list. 4137 if (Result == OR_No_Viable_Function) { 4138 AsInitializerList = false; 4139 Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs, 4140 CandidateSet, DestType, Ctors, Best, 4141 CopyInitialization, AllowExplicit, 4142 /*OnlyListConstructors=*/false, 4143 IsListInit); 4144 } 4145 if (Result) { 4146 Sequence.SetOverloadFailure( 4147 IsListInit ? InitializationSequence::FK_ListConstructorOverloadFailed 4148 : InitializationSequence::FK_ConstructorOverloadFailed, 4149 Result); 4150 4151 if (Result != OR_Deleted) 4152 return; 4153 } 4154 4155 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4156 4157 // In C++17, ResolveConstructorOverload can select a conversion function 4158 // instead of a constructor. 4159 if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) { 4160 // Add the user-defined conversion step that calls the conversion function. 4161 QualType ConvType = CD->getConversionType(); 4162 assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) && 4163 "should not have selected this conversion function"); 4164 Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType, 4165 HadMultipleCandidates); 4166 if (!S.Context.hasSameType(ConvType, DestType)) 4167 Sequence.AddQualificationConversionStep(DestType, VK_PRValue); 4168 if (IsListInit) 4169 Sequence.RewrapReferenceInitList(Entity.getType(), ILE); 4170 return; 4171 } 4172 4173 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 4174 if (Result != OR_Deleted) { 4175 // C++11 [dcl.init]p6: 4176 // If a program calls for the default initialization of an object 4177 // of a const-qualified type T, T shall be a class type with a 4178 // user-provided default constructor. 4179 // C++ core issue 253 proposal: 4180 // If the implicit default constructor initializes all subobjects, no 4181 // initializer should be required. 4182 // The 253 proposal is for example needed to process libstdc++ headers 4183 // in 5.x. 4184 if (Kind.getKind() == InitializationKind::IK_Default && 4185 Entity.getType().isConstQualified()) { 4186 if (!CtorDecl->getParent()->allowConstDefaultInit()) { 4187 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 4188 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 4189 return; 4190 } 4191 } 4192 4193 // C++11 [over.match.list]p1: 4194 // In copy-list-initialization, if an explicit constructor is chosen, the 4195 // initializer is ill-formed. 4196 if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) { 4197 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor); 4198 return; 4199 } 4200 } 4201 4202 // [class.copy.elision]p3: 4203 // In some copy-initialization contexts, a two-stage overload resolution 4204 // is performed. 4205 // If the first overload resolution selects a deleted function, we also 4206 // need the initialization sequence to decide whether to perform the second 4207 // overload resolution. 4208 // For deleted functions in other contexts, there is no need to get the 4209 // initialization sequence. 4210 if (Result == OR_Deleted && Kind.getKind() != InitializationKind::IK_Copy) 4211 return; 4212 4213 // Add the constructor initialization step. Any cv-qualification conversion is 4214 // subsumed by the initialization. 4215 Sequence.AddConstructorInitializationStep( 4216 Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates, 4217 IsListInit | IsInitListCopy, AsInitializerList); 4218 } 4219 4220 static bool 4221 ResolveOverloadedFunctionForReferenceBinding(Sema &S, 4222 Expr *Initializer, 4223 QualType &SourceType, 4224 QualType &UnqualifiedSourceType, 4225 QualType UnqualifiedTargetType, 4226 InitializationSequence &Sequence) { 4227 if (S.Context.getCanonicalType(UnqualifiedSourceType) == 4228 S.Context.OverloadTy) { 4229 DeclAccessPair Found; 4230 bool HadMultipleCandidates = false; 4231 if (FunctionDecl *Fn 4232 = S.ResolveAddressOfOverloadedFunction(Initializer, 4233 UnqualifiedTargetType, 4234 false, Found, 4235 &HadMultipleCandidates)) { 4236 Sequence.AddAddressOverloadResolutionStep(Fn, Found, 4237 HadMultipleCandidates); 4238 SourceType = Fn->getType(); 4239 UnqualifiedSourceType = SourceType.getUnqualifiedType(); 4240 } else if (!UnqualifiedTargetType->isRecordType()) { 4241 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4242 return true; 4243 } 4244 } 4245 return false; 4246 } 4247 4248 static void TryReferenceInitializationCore(Sema &S, 4249 const InitializedEntity &Entity, 4250 const InitializationKind &Kind, 4251 Expr *Initializer, 4252 QualType cv1T1, QualType T1, 4253 Qualifiers T1Quals, 4254 QualType cv2T2, QualType T2, 4255 Qualifiers T2Quals, 4256 InitializationSequence &Sequence); 4257 4258 static void TryValueInitialization(Sema &S, 4259 const InitializedEntity &Entity, 4260 const InitializationKind &Kind, 4261 InitializationSequence &Sequence, 4262 InitListExpr *InitList = nullptr); 4263 4264 /// Attempt list initialization of a reference. 4265 static void TryReferenceListInitialization(Sema &S, 4266 const InitializedEntity &Entity, 4267 const InitializationKind &Kind, 4268 InitListExpr *InitList, 4269 InitializationSequence &Sequence, 4270 bool TreatUnavailableAsInvalid) { 4271 // First, catch C++03 where this isn't possible. 4272 if (!S.getLangOpts().CPlusPlus11) { 4273 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 4274 return; 4275 } 4276 // Can't reference initialize a compound literal. 4277 if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) { 4278 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 4279 return; 4280 } 4281 4282 QualType DestType = Entity.getType(); 4283 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); 4284 Qualifiers T1Quals; 4285 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 4286 4287 // Reference initialization via an initializer list works thus: 4288 // If the initializer list consists of a single element that is 4289 // reference-related to the referenced type, bind directly to that element 4290 // (possibly creating temporaries). 4291 // Otherwise, initialize a temporary with the initializer list and 4292 // bind to that. 4293 if (InitList->getNumInits() == 1) { 4294 Expr *Initializer = InitList->getInit(0); 4295 QualType cv2T2 = S.getCompletedType(Initializer); 4296 Qualifiers T2Quals; 4297 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 4298 4299 // If this fails, creating a temporary wouldn't work either. 4300 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 4301 T1, Sequence)) 4302 return; 4303 4304 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4305 Sema::ReferenceCompareResult RefRelationship 4306 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2); 4307 if (RefRelationship >= Sema::Ref_Related) { 4308 // Try to bind the reference here. 4309 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 4310 T1Quals, cv2T2, T2, T2Quals, Sequence); 4311 if (Sequence) 4312 Sequence.RewrapReferenceInitList(cv1T1, InitList); 4313 return; 4314 } 4315 4316 // Update the initializer if we've resolved an overloaded function. 4317 if (Sequence.step_begin() != Sequence.step_end()) 4318 Sequence.RewrapReferenceInitList(cv1T1, InitList); 4319 } 4320 // Perform address space compatibility check. 4321 QualType cv1T1IgnoreAS = cv1T1; 4322 if (T1Quals.hasAddressSpace()) { 4323 Qualifiers T2Quals; 4324 (void)S.Context.getUnqualifiedArrayType(InitList->getType(), T2Quals); 4325 if (!T1Quals.isAddressSpaceSupersetOf(T2Quals)) { 4326 Sequence.SetFailed( 4327 InitializationSequence::FK_ReferenceInitDropsQualifiers); 4328 return; 4329 } 4330 // Ignore address space of reference type at this point and perform address 4331 // space conversion after the reference binding step. 4332 cv1T1IgnoreAS = 4333 S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace()); 4334 } 4335 // Not reference-related. Create a temporary and bind to that. 4336 InitializedEntity TempEntity = 4337 InitializedEntity::InitializeTemporary(cv1T1IgnoreAS); 4338 4339 TryListInitialization(S, TempEntity, Kind, InitList, Sequence, 4340 TreatUnavailableAsInvalid); 4341 if (Sequence) { 4342 if (DestType->isRValueReferenceType() || 4343 (T1Quals.hasConst() && !T1Quals.hasVolatile())) { 4344 Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, 4345 /*BindingTemporary=*/true); 4346 if (T1Quals.hasAddressSpace()) 4347 Sequence.AddQualificationConversionStep( 4348 cv1T1, DestType->isRValueReferenceType() ? VK_XValue : VK_LValue); 4349 } else 4350 Sequence.SetFailed( 4351 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); 4352 } 4353 } 4354 4355 /// Attempt list initialization (C++0x [dcl.init.list]) 4356 static void TryListInitialization(Sema &S, 4357 const InitializedEntity &Entity, 4358 const InitializationKind &Kind, 4359 InitListExpr *InitList, 4360 InitializationSequence &Sequence, 4361 bool TreatUnavailableAsInvalid) { 4362 QualType DestType = Entity.getType(); 4363 4364 // C++ doesn't allow scalar initialization with more than one argument. 4365 // But C99 complex numbers are scalars and it makes sense there. 4366 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() && 4367 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) { 4368 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar); 4369 return; 4370 } 4371 if (DestType->isReferenceType()) { 4372 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence, 4373 TreatUnavailableAsInvalid); 4374 return; 4375 } 4376 4377 if (DestType->isRecordType() && 4378 !S.isCompleteType(InitList->getBeginLoc(), DestType)) { 4379 Sequence.setIncompleteTypeFailure(DestType); 4380 return; 4381 } 4382 4383 // C++11 [dcl.init.list]p3, per DR1467: 4384 // - If T is a class type and the initializer list has a single element of 4385 // type cv U, where U is T or a class derived from T, the object is 4386 // initialized from that element (by copy-initialization for 4387 // copy-list-initialization, or by direct-initialization for 4388 // direct-list-initialization). 4389 // - Otherwise, if T is a character array and the initializer list has a 4390 // single element that is an appropriately-typed string literal 4391 // (8.5.2 [dcl.init.string]), initialization is performed as described 4392 // in that section. 4393 // - Otherwise, if T is an aggregate, [...] (continue below). 4394 if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) { 4395 if (DestType->isRecordType()) { 4396 QualType InitType = InitList->getInit(0)->getType(); 4397 if (S.Context.hasSameUnqualifiedType(InitType, DestType) || 4398 S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) { 4399 Expr *InitListAsExpr = InitList; 4400 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 4401 DestType, Sequence, 4402 /*InitListSyntax*/false, 4403 /*IsInitListCopy*/true); 4404 return; 4405 } 4406 } 4407 if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) { 4408 Expr *SubInit[1] = {InitList->getInit(0)}; 4409 if (!isa<VariableArrayType>(DestAT) && 4410 IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) { 4411 InitializationKind SubKind = 4412 Kind.getKind() == InitializationKind::IK_DirectList 4413 ? InitializationKind::CreateDirect(Kind.getLocation(), 4414 InitList->getLBraceLoc(), 4415 InitList->getRBraceLoc()) 4416 : Kind; 4417 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 4418 /*TopLevelOfInitList*/ true, 4419 TreatUnavailableAsInvalid); 4420 4421 // TryStringLiteralInitialization() (in InitializeFrom()) will fail if 4422 // the element is not an appropriately-typed string literal, in which 4423 // case we should proceed as in C++11 (below). 4424 if (Sequence) { 4425 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4426 return; 4427 } 4428 } 4429 } 4430 } 4431 4432 // C++11 [dcl.init.list]p3: 4433 // - If T is an aggregate, aggregate initialization is performed. 4434 if ((DestType->isRecordType() && !DestType->isAggregateType()) || 4435 (S.getLangOpts().CPlusPlus11 && 4436 S.isStdInitializerList(DestType, nullptr))) { 4437 if (S.getLangOpts().CPlusPlus11) { 4438 // - Otherwise, if the initializer list has no elements and T is a 4439 // class type with a default constructor, the object is 4440 // value-initialized. 4441 if (InitList->getNumInits() == 0) { 4442 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl(); 4443 if (S.LookupDefaultConstructor(RD)) { 4444 TryValueInitialization(S, Entity, Kind, Sequence, InitList); 4445 return; 4446 } 4447 } 4448 4449 // - Otherwise, if T is a specialization of std::initializer_list<E>, 4450 // an initializer_list object constructed [...] 4451 if (TryInitializerListConstruction(S, InitList, DestType, Sequence, 4452 TreatUnavailableAsInvalid)) 4453 return; 4454 4455 // - Otherwise, if T is a class type, constructors are considered. 4456 Expr *InitListAsExpr = InitList; 4457 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 4458 DestType, Sequence, /*InitListSyntax*/true); 4459 } else 4460 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType); 4461 return; 4462 } 4463 4464 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() && 4465 InitList->getNumInits() == 1) { 4466 Expr *E = InitList->getInit(0); 4467 4468 // - Otherwise, if T is an enumeration with a fixed underlying type, 4469 // the initializer-list has a single element v, and the initialization 4470 // is direct-list-initialization, the object is initialized with the 4471 // value T(v); if a narrowing conversion is required to convert v to 4472 // the underlying type of T, the program is ill-formed. 4473 auto *ET = DestType->getAs<EnumType>(); 4474 if (S.getLangOpts().CPlusPlus17 && 4475 Kind.getKind() == InitializationKind::IK_DirectList && 4476 ET && ET->getDecl()->isFixed() && 4477 !S.Context.hasSameUnqualifiedType(E->getType(), DestType) && 4478 (E->getType()->isIntegralOrEnumerationType() || 4479 E->getType()->isFloatingType())) { 4480 // There are two ways that T(v) can work when T is an enumeration type. 4481 // If there is either an implicit conversion sequence from v to T or 4482 // a conversion function that can convert from v to T, then we use that. 4483 // Otherwise, if v is of integral, enumeration, or floating-point type, 4484 // it is converted to the enumeration type via its underlying type. 4485 // There is no overlap possible between these two cases (except when the 4486 // source value is already of the destination type), and the first 4487 // case is handled by the general case for single-element lists below. 4488 ImplicitConversionSequence ICS; 4489 ICS.setStandard(); 4490 ICS.Standard.setAsIdentityConversion(); 4491 if (!E->isPRValue()) 4492 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 4493 // If E is of a floating-point type, then the conversion is ill-formed 4494 // due to narrowing, but go through the motions in order to produce the 4495 // right diagnostic. 4496 ICS.Standard.Second = E->getType()->isFloatingType() 4497 ? ICK_Floating_Integral 4498 : ICK_Integral_Conversion; 4499 ICS.Standard.setFromType(E->getType()); 4500 ICS.Standard.setToType(0, E->getType()); 4501 ICS.Standard.setToType(1, DestType); 4502 ICS.Standard.setToType(2, DestType); 4503 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2), 4504 /*TopLevelOfInitList*/true); 4505 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4506 return; 4507 } 4508 4509 // - Otherwise, if the initializer list has a single element of type E 4510 // [...references are handled above...], the object or reference is 4511 // initialized from that element (by copy-initialization for 4512 // copy-list-initialization, or by direct-initialization for 4513 // direct-list-initialization); if a narrowing conversion is required 4514 // to convert the element to T, the program is ill-formed. 4515 // 4516 // Per core-24034, this is direct-initialization if we were performing 4517 // direct-list-initialization and copy-initialization otherwise. 4518 // We can't use InitListChecker for this, because it always performs 4519 // copy-initialization. This only matters if we might use an 'explicit' 4520 // conversion operator, or for the special case conversion of nullptr_t to 4521 // bool, so we only need to handle those cases. 4522 // 4523 // FIXME: Why not do this in all cases? 4524 Expr *Init = InitList->getInit(0); 4525 if (Init->getType()->isRecordType() || 4526 (Init->getType()->isNullPtrType() && DestType->isBooleanType())) { 4527 InitializationKind SubKind = 4528 Kind.getKind() == InitializationKind::IK_DirectList 4529 ? InitializationKind::CreateDirect(Kind.getLocation(), 4530 InitList->getLBraceLoc(), 4531 InitList->getRBraceLoc()) 4532 : Kind; 4533 Expr *SubInit[1] = { Init }; 4534 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 4535 /*TopLevelOfInitList*/true, 4536 TreatUnavailableAsInvalid); 4537 if (Sequence) 4538 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4539 return; 4540 } 4541 } 4542 4543 InitListChecker CheckInitList(S, Entity, InitList, 4544 DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid); 4545 if (CheckInitList.HadError()) { 4546 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed); 4547 return; 4548 } 4549 4550 // Add the list initialization step with the built init list. 4551 Sequence.AddListInitializationStep(DestType); 4552 } 4553 4554 /// Try a reference initialization that involves calling a conversion 4555 /// function. 4556 static OverloadingResult TryRefInitWithConversionFunction( 4557 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, 4558 Expr *Initializer, bool AllowRValues, bool IsLValueRef, 4559 InitializationSequence &Sequence) { 4560 QualType DestType = Entity.getType(); 4561 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); 4562 QualType T1 = cv1T1.getUnqualifiedType(); 4563 QualType cv2T2 = Initializer->getType(); 4564 QualType T2 = cv2T2.getUnqualifiedType(); 4565 4566 assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) && 4567 "Must have incompatible references when binding via conversion"); 4568 4569 // Build the candidate set directly in the initialization sequence 4570 // structure, so that it will persist if we fail. 4571 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4572 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 4573 4574 // Determine whether we are allowed to call explicit conversion operators. 4575 // Note that none of [over.match.copy], [over.match.conv], nor 4576 // [over.match.ref] permit an explicit constructor to be chosen when 4577 // initializing a reference, not even for direct-initialization. 4578 bool AllowExplicitCtors = false; 4579 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding(); 4580 4581 const RecordType *T1RecordType = nullptr; 4582 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) && 4583 S.isCompleteType(Kind.getLocation(), T1)) { 4584 // The type we're converting to is a class type. Enumerate its constructors 4585 // to see if there is a suitable conversion. 4586 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl()); 4587 4588 for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) { 4589 auto Info = getConstructorInfo(D); 4590 if (!Info.Constructor) 4591 continue; 4592 4593 if (!Info.Constructor->isInvalidDecl() && 4594 Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) { 4595 if (Info.ConstructorTmpl) 4596 S.AddTemplateOverloadCandidate( 4597 Info.ConstructorTmpl, Info.FoundDecl, 4598 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, 4599 /*SuppressUserConversions=*/true, 4600 /*PartialOverloading*/ false, AllowExplicitCtors); 4601 else 4602 S.AddOverloadCandidate( 4603 Info.Constructor, Info.FoundDecl, Initializer, CandidateSet, 4604 /*SuppressUserConversions=*/true, 4605 /*PartialOverloading*/ false, AllowExplicitCtors); 4606 } 4607 } 4608 } 4609 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl()) 4610 return OR_No_Viable_Function; 4611 4612 const RecordType *T2RecordType = nullptr; 4613 if ((T2RecordType = T2->getAs<RecordType>()) && 4614 S.isCompleteType(Kind.getLocation(), T2)) { 4615 // The type we're converting from is a class type, enumerate its conversion 4616 // functions. 4617 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl()); 4618 4619 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); 4620 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 4621 NamedDecl *D = *I; 4622 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 4623 if (isa<UsingShadowDecl>(D)) 4624 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4625 4626 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 4627 CXXConversionDecl *Conv; 4628 if (ConvTemplate) 4629 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 4630 else 4631 Conv = cast<CXXConversionDecl>(D); 4632 4633 // If the conversion function doesn't return a reference type, 4634 // it can't be considered for this conversion unless we're allowed to 4635 // consider rvalues. 4636 // FIXME: Do we need to make sure that we only consider conversion 4637 // candidates with reference-compatible results? That might be needed to 4638 // break recursion. 4639 if ((AllowRValues || 4640 Conv->getConversionType()->isLValueReferenceType())) { 4641 if (ConvTemplate) 4642 S.AddTemplateConversionCandidate( 4643 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 4644 CandidateSet, 4645 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); 4646 else 4647 S.AddConversionCandidate( 4648 Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet, 4649 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); 4650 } 4651 } 4652 } 4653 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl()) 4654 return OR_No_Viable_Function; 4655 4656 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4657 4658 // Perform overload resolution. If it fails, return the failed result. 4659 OverloadCandidateSet::iterator Best; 4660 if (OverloadingResult Result 4661 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) 4662 return Result; 4663 4664 FunctionDecl *Function = Best->Function; 4665 // This is the overload that will be used for this initialization step if we 4666 // use this initialization. Mark it as referenced. 4667 Function->setReferenced(); 4668 4669 // Compute the returned type and value kind of the conversion. 4670 QualType cv3T3; 4671 if (isa<CXXConversionDecl>(Function)) 4672 cv3T3 = Function->getReturnType(); 4673 else 4674 cv3T3 = T1; 4675 4676 ExprValueKind VK = VK_PRValue; 4677 if (cv3T3->isLValueReferenceType()) 4678 VK = VK_LValue; 4679 else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>()) 4680 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue; 4681 cv3T3 = cv3T3.getNonLValueExprType(S.Context); 4682 4683 // Add the user-defined conversion step. 4684 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4685 Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3, 4686 HadMultipleCandidates); 4687 4688 // Determine whether we'll need to perform derived-to-base adjustments or 4689 // other conversions. 4690 Sema::ReferenceConversions RefConv; 4691 Sema::ReferenceCompareResult NewRefRelationship = 4692 S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, &RefConv); 4693 4694 // Add the final conversion sequence, if necessary. 4695 if (NewRefRelationship == Sema::Ref_Incompatible) { 4696 assert(!isa<CXXConstructorDecl>(Function) && 4697 "should not have conversion after constructor"); 4698 4699 ImplicitConversionSequence ICS; 4700 ICS.setStandard(); 4701 ICS.Standard = Best->FinalConversion; 4702 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2)); 4703 4704 // Every implicit conversion results in a prvalue, except for a glvalue 4705 // derived-to-base conversion, which we handle below. 4706 cv3T3 = ICS.Standard.getToType(2); 4707 VK = VK_PRValue; 4708 } 4709 4710 // If the converted initializer is a prvalue, its type T4 is adjusted to 4711 // type "cv1 T4" and the temporary materialization conversion is applied. 4712 // 4713 // We adjust the cv-qualifications to match the reference regardless of 4714 // whether we have a prvalue so that the AST records the change. In this 4715 // case, T4 is "cv3 T3". 4716 QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers()); 4717 if (cv1T4.getQualifiers() != cv3T3.getQualifiers()) 4718 Sequence.AddQualificationConversionStep(cv1T4, VK); 4719 Sequence.AddReferenceBindingStep(cv1T4, VK == VK_PRValue); 4720 VK = IsLValueRef ? VK_LValue : VK_XValue; 4721 4722 if (RefConv & Sema::ReferenceConversions::DerivedToBase) 4723 Sequence.AddDerivedToBaseCastStep(cv1T1, VK); 4724 else if (RefConv & Sema::ReferenceConversions::ObjC) 4725 Sequence.AddObjCObjectConversionStep(cv1T1); 4726 else if (RefConv & Sema::ReferenceConversions::Function) 4727 Sequence.AddFunctionReferenceConversionStep(cv1T1); 4728 else if (RefConv & Sema::ReferenceConversions::Qualification) { 4729 if (!S.Context.hasSameType(cv1T4, cv1T1)) 4730 Sequence.AddQualificationConversionStep(cv1T1, VK); 4731 } 4732 4733 return OR_Success; 4734 } 4735 4736 static void CheckCXX98CompatAccessibleCopy(Sema &S, 4737 const InitializedEntity &Entity, 4738 Expr *CurInitExpr); 4739 4740 /// Attempt reference initialization (C++0x [dcl.init.ref]) 4741 static void TryReferenceInitialization(Sema &S, 4742 const InitializedEntity &Entity, 4743 const InitializationKind &Kind, 4744 Expr *Initializer, 4745 InitializationSequence &Sequence) { 4746 QualType DestType = Entity.getType(); 4747 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); 4748 Qualifiers T1Quals; 4749 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 4750 QualType cv2T2 = S.getCompletedType(Initializer); 4751 Qualifiers T2Quals; 4752 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 4753 4754 // If the initializer is the address of an overloaded function, try 4755 // to resolve the overloaded function. If all goes well, T2 is the 4756 // type of the resulting function. 4757 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 4758 T1, Sequence)) 4759 return; 4760 4761 // Delegate everything else to a subfunction. 4762 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 4763 T1Quals, cv2T2, T2, T2Quals, Sequence); 4764 } 4765 4766 /// Determine whether an expression is a non-referenceable glvalue (one to 4767 /// which a reference can never bind). Attempting to bind a reference to 4768 /// such a glvalue will always create a temporary. 4769 static bool isNonReferenceableGLValue(Expr *E) { 4770 return E->refersToBitField() || E->refersToVectorElement() || 4771 E->refersToMatrixElement(); 4772 } 4773 4774 /// Reference initialization without resolving overloaded functions. 4775 /// 4776 /// We also can get here in C if we call a builtin which is declared as 4777 /// a function with a parameter of reference type (such as __builtin_va_end()). 4778 static void TryReferenceInitializationCore(Sema &S, 4779 const InitializedEntity &Entity, 4780 const InitializationKind &Kind, 4781 Expr *Initializer, 4782 QualType cv1T1, QualType T1, 4783 Qualifiers T1Quals, 4784 QualType cv2T2, QualType T2, 4785 Qualifiers T2Quals, 4786 InitializationSequence &Sequence) { 4787 QualType DestType = Entity.getType(); 4788 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4789 4790 // Compute some basic properties of the types and the initializer. 4791 bool isLValueRef = DestType->isLValueReferenceType(); 4792 bool isRValueRef = !isLValueRef; 4793 Expr::Classification InitCategory = Initializer->Classify(S.Context); 4794 4795 Sema::ReferenceConversions RefConv; 4796 Sema::ReferenceCompareResult RefRelationship = 4797 S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, &RefConv); 4798 4799 // C++0x [dcl.init.ref]p5: 4800 // A reference to type "cv1 T1" is initialized by an expression of type 4801 // "cv2 T2" as follows: 4802 // 4803 // - If the reference is an lvalue reference and the initializer 4804 // expression 4805 // Note the analogous bullet points for rvalue refs to functions. Because 4806 // there are no function rvalues in C++, rvalue refs to functions are treated 4807 // like lvalue refs. 4808 OverloadingResult ConvOvlResult = OR_Success; 4809 bool T1Function = T1->isFunctionType(); 4810 if (isLValueRef || T1Function) { 4811 if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) && 4812 (RefRelationship == Sema::Ref_Compatible || 4813 (Kind.isCStyleOrFunctionalCast() && 4814 RefRelationship == Sema::Ref_Related))) { 4815 // - is an lvalue (but is not a bit-field), and "cv1 T1" is 4816 // reference-compatible with "cv2 T2," or 4817 if (RefConv & (Sema::ReferenceConversions::DerivedToBase | 4818 Sema::ReferenceConversions::ObjC)) { 4819 // If we're converting the pointee, add any qualifiers first; 4820 // these qualifiers must all be top-level, so just convert to "cv1 T2". 4821 if (RefConv & (Sema::ReferenceConversions::Qualification)) 4822 Sequence.AddQualificationConversionStep( 4823 S.Context.getQualifiedType(T2, T1Quals), 4824 Initializer->getValueKind()); 4825 if (RefConv & Sema::ReferenceConversions::DerivedToBase) 4826 Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue); 4827 else 4828 Sequence.AddObjCObjectConversionStep(cv1T1); 4829 } else if (RefConv & Sema::ReferenceConversions::Qualification) { 4830 // Perform a (possibly multi-level) qualification conversion. 4831 Sequence.AddQualificationConversionStep(cv1T1, 4832 Initializer->getValueKind()); 4833 } else if (RefConv & Sema::ReferenceConversions::Function) { 4834 Sequence.AddFunctionReferenceConversionStep(cv1T1); 4835 } 4836 4837 // We only create a temporary here when binding a reference to a 4838 // bit-field or vector element. Those cases are't supposed to be 4839 // handled by this bullet, but the outcome is the same either way. 4840 Sequence.AddReferenceBindingStep(cv1T1, false); 4841 return; 4842 } 4843 4844 // - has a class type (i.e., T2 is a class type), where T1 is not 4845 // reference-related to T2, and can be implicitly converted to an 4846 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible 4847 // with "cv3 T3" (this conversion is selected by enumerating the 4848 // applicable conversion functions (13.3.1.6) and choosing the best 4849 // one through overload resolution (13.3)), 4850 // If we have an rvalue ref to function type here, the rhs must be 4851 // an rvalue. DR1287 removed the "implicitly" here. 4852 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() && 4853 (isLValueRef || InitCategory.isRValue())) { 4854 if (S.getLangOpts().CPlusPlus) { 4855 // Try conversion functions only for C++. 4856 ConvOvlResult = TryRefInitWithConversionFunction( 4857 S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef, 4858 /*IsLValueRef*/ isLValueRef, Sequence); 4859 if (ConvOvlResult == OR_Success) 4860 return; 4861 if (ConvOvlResult != OR_No_Viable_Function) 4862 Sequence.SetOverloadFailure( 4863 InitializationSequence::FK_ReferenceInitOverloadFailed, 4864 ConvOvlResult); 4865 } else { 4866 ConvOvlResult = OR_No_Viable_Function; 4867 } 4868 } 4869 } 4870 4871 // - Otherwise, the reference shall be an lvalue reference to a 4872 // non-volatile const type (i.e., cv1 shall be const), or the reference 4873 // shall be an rvalue reference. 4874 // For address spaces, we interpret this to mean that an addr space 4875 // of a reference "cv1 T1" is a superset of addr space of "cv2 T2". 4876 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() && 4877 T1Quals.isAddressSpaceSupersetOf(T2Quals))) { 4878 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 4879 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4880 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 4881 Sequence.SetOverloadFailure( 4882 InitializationSequence::FK_ReferenceInitOverloadFailed, 4883 ConvOvlResult); 4884 else if (!InitCategory.isLValue()) 4885 Sequence.SetFailed( 4886 T1Quals.isAddressSpaceSupersetOf(T2Quals) 4887 ? InitializationSequence:: 4888 FK_NonConstLValueReferenceBindingToTemporary 4889 : InitializationSequence::FK_ReferenceInitDropsQualifiers); 4890 else { 4891 InitializationSequence::FailureKind FK; 4892 switch (RefRelationship) { 4893 case Sema::Ref_Compatible: 4894 if (Initializer->refersToBitField()) 4895 FK = InitializationSequence:: 4896 FK_NonConstLValueReferenceBindingToBitfield; 4897 else if (Initializer->refersToVectorElement()) 4898 FK = InitializationSequence:: 4899 FK_NonConstLValueReferenceBindingToVectorElement; 4900 else if (Initializer->refersToMatrixElement()) 4901 FK = InitializationSequence:: 4902 FK_NonConstLValueReferenceBindingToMatrixElement; 4903 else 4904 llvm_unreachable("unexpected kind of compatible initializer"); 4905 break; 4906 case Sema::Ref_Related: 4907 FK = InitializationSequence::FK_ReferenceInitDropsQualifiers; 4908 break; 4909 case Sema::Ref_Incompatible: 4910 FK = InitializationSequence:: 4911 FK_NonConstLValueReferenceBindingToUnrelated; 4912 break; 4913 } 4914 Sequence.SetFailed(FK); 4915 } 4916 return; 4917 } 4918 4919 // - If the initializer expression 4920 // - is an 4921 // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or 4922 // [1z] rvalue (but not a bit-field) or 4923 // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2" 4924 // 4925 // Note: functions are handled above and below rather than here... 4926 if (!T1Function && 4927 (RefRelationship == Sema::Ref_Compatible || 4928 (Kind.isCStyleOrFunctionalCast() && 4929 RefRelationship == Sema::Ref_Related)) && 4930 ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) || 4931 (InitCategory.isPRValue() && 4932 (S.getLangOpts().CPlusPlus17 || T2->isRecordType() || 4933 T2->isArrayType())))) { 4934 ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_PRValue; 4935 if (InitCategory.isPRValue() && T2->isRecordType()) { 4936 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the 4937 // compiler the freedom to perform a copy here or bind to the 4938 // object, while C++0x requires that we bind directly to the 4939 // object. Hence, we always bind to the object without making an 4940 // extra copy. However, in C++03 requires that we check for the 4941 // presence of a suitable copy constructor: 4942 // 4943 // The constructor that would be used to make the copy shall 4944 // be callable whether or not the copy is actually done. 4945 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt) 4946 Sequence.AddExtraneousCopyToTemporary(cv2T2); 4947 else if (S.getLangOpts().CPlusPlus11) 4948 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer); 4949 } 4950 4951 // C++1z [dcl.init.ref]/5.2.1.2: 4952 // If the converted initializer is a prvalue, its type T4 is adjusted 4953 // to type "cv1 T4" and the temporary materialization conversion is 4954 // applied. 4955 // Postpone address space conversions to after the temporary materialization 4956 // conversion to allow creating temporaries in the alloca address space. 4957 auto T1QualsIgnoreAS = T1Quals; 4958 auto T2QualsIgnoreAS = T2Quals; 4959 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { 4960 T1QualsIgnoreAS.removeAddressSpace(); 4961 T2QualsIgnoreAS.removeAddressSpace(); 4962 } 4963 QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS); 4964 if (T1QualsIgnoreAS != T2QualsIgnoreAS) 4965 Sequence.AddQualificationConversionStep(cv1T4, ValueKind); 4966 Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_PRValue); 4967 ValueKind = isLValueRef ? VK_LValue : VK_XValue; 4968 // Add addr space conversion if required. 4969 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { 4970 auto T4Quals = cv1T4.getQualifiers(); 4971 T4Quals.addAddressSpace(T1Quals.getAddressSpace()); 4972 QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals); 4973 Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind); 4974 cv1T4 = cv1T4WithAS; 4975 } 4976 4977 // In any case, the reference is bound to the resulting glvalue (or to 4978 // an appropriate base class subobject). 4979 if (RefConv & Sema::ReferenceConversions::DerivedToBase) 4980 Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind); 4981 else if (RefConv & Sema::ReferenceConversions::ObjC) 4982 Sequence.AddObjCObjectConversionStep(cv1T1); 4983 else if (RefConv & Sema::ReferenceConversions::Qualification) { 4984 if (!S.Context.hasSameType(cv1T4, cv1T1)) 4985 Sequence.AddQualificationConversionStep(cv1T1, ValueKind); 4986 } 4987 return; 4988 } 4989 4990 // - has a class type (i.e., T2 is a class type), where T1 is not 4991 // reference-related to T2, and can be implicitly converted to an 4992 // xvalue, class prvalue, or function lvalue of type "cv3 T3", 4993 // where "cv1 T1" is reference-compatible with "cv3 T3", 4994 // 4995 // DR1287 removes the "implicitly" here. 4996 if (T2->isRecordType()) { 4997 if (RefRelationship == Sema::Ref_Incompatible) { 4998 ConvOvlResult = TryRefInitWithConversionFunction( 4999 S, Entity, Kind, Initializer, /*AllowRValues*/ true, 5000 /*IsLValueRef*/ isLValueRef, Sequence); 5001 if (ConvOvlResult) 5002 Sequence.SetOverloadFailure( 5003 InitializationSequence::FK_ReferenceInitOverloadFailed, 5004 ConvOvlResult); 5005 5006 return; 5007 } 5008 5009 if (RefRelationship == Sema::Ref_Compatible && 5010 isRValueRef && InitCategory.isLValue()) { 5011 Sequence.SetFailed( 5012 InitializationSequence::FK_RValueReferenceBindingToLValue); 5013 return; 5014 } 5015 5016 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 5017 return; 5018 } 5019 5020 // - Otherwise, a temporary of type "cv1 T1" is created and initialized 5021 // from the initializer expression using the rules for a non-reference 5022 // copy-initialization (8.5). The reference is then bound to the 5023 // temporary. [...] 5024 5025 // Ignore address space of reference type at this point and perform address 5026 // space conversion after the reference binding step. 5027 QualType cv1T1IgnoreAS = 5028 T1Quals.hasAddressSpace() 5029 ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace()) 5030 : cv1T1; 5031 5032 InitializedEntity TempEntity = 5033 InitializedEntity::InitializeTemporary(cv1T1IgnoreAS); 5034 5035 // FIXME: Why do we use an implicit conversion here rather than trying 5036 // copy-initialization? 5037 ImplicitConversionSequence ICS 5038 = S.TryImplicitConversion(Initializer, TempEntity.getType(), 5039 /*SuppressUserConversions=*/false, 5040 Sema::AllowedExplicit::None, 5041 /*FIXME:InOverloadResolution=*/false, 5042 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 5043 /*AllowObjCWritebackConversion=*/false); 5044 5045 if (ICS.isBad()) { 5046 // FIXME: Use the conversion function set stored in ICS to turn 5047 // this into an overloading ambiguity diagnostic. However, we need 5048 // to keep that set as an OverloadCandidateSet rather than as some 5049 // other kind of set. 5050 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 5051 Sequence.SetOverloadFailure( 5052 InitializationSequence::FK_ReferenceInitOverloadFailed, 5053 ConvOvlResult); 5054 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 5055 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 5056 else 5057 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed); 5058 return; 5059 } else { 5060 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType()); 5061 } 5062 5063 // [...] If T1 is reference-related to T2, cv1 must be the 5064 // same cv-qualification as, or greater cv-qualification 5065 // than, cv2; otherwise, the program is ill-formed. 5066 unsigned T1CVRQuals = T1Quals.getCVRQualifiers(); 5067 unsigned T2CVRQuals = T2Quals.getCVRQualifiers(); 5068 if (RefRelationship == Sema::Ref_Related && 5069 ((T1CVRQuals | T2CVRQuals) != T1CVRQuals || 5070 !T1Quals.isAddressSpaceSupersetOf(T2Quals))) { 5071 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 5072 return; 5073 } 5074 5075 // [...] If T1 is reference-related to T2 and the reference is an rvalue 5076 // reference, the initializer expression shall not be an lvalue. 5077 if (RefRelationship >= Sema::Ref_Related && !isLValueRef && 5078 InitCategory.isLValue()) { 5079 Sequence.SetFailed( 5080 InitializationSequence::FK_RValueReferenceBindingToLValue); 5081 return; 5082 } 5083 5084 Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true); 5085 5086 if (T1Quals.hasAddressSpace()) { 5087 if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(), 5088 LangAS::Default)) { 5089 Sequence.SetFailed( 5090 InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary); 5091 return; 5092 } 5093 Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue 5094 : VK_XValue); 5095 } 5096 } 5097 5098 /// Attempt character array initialization from a string literal 5099 /// (C++ [dcl.init.string], C99 6.7.8). 5100 static void TryStringLiteralInitialization(Sema &S, 5101 const InitializedEntity &Entity, 5102 const InitializationKind &Kind, 5103 Expr *Initializer, 5104 InitializationSequence &Sequence) { 5105 Sequence.AddStringInitStep(Entity.getType()); 5106 } 5107 5108 /// Attempt value initialization (C++ [dcl.init]p7). 5109 static void TryValueInitialization(Sema &S, 5110 const InitializedEntity &Entity, 5111 const InitializationKind &Kind, 5112 InitializationSequence &Sequence, 5113 InitListExpr *InitList) { 5114 assert((!InitList || InitList->getNumInits() == 0) && 5115 "Shouldn't use value-init for non-empty init lists"); 5116 5117 // C++98 [dcl.init]p5, C++11 [dcl.init]p7: 5118 // 5119 // To value-initialize an object of type T means: 5120 QualType T = Entity.getType(); 5121 5122 // -- if T is an array type, then each element is value-initialized; 5123 T = S.Context.getBaseElementType(T); 5124 5125 if (const RecordType *RT = T->getAs<RecordType>()) { 5126 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 5127 bool NeedZeroInitialization = true; 5128 // C++98: 5129 // -- if T is a class type (clause 9) with a user-declared constructor 5130 // (12.1), then the default constructor for T is called (and the 5131 // initialization is ill-formed if T has no accessible default 5132 // constructor); 5133 // C++11: 5134 // -- if T is a class type (clause 9) with either no default constructor 5135 // (12.1 [class.ctor]) or a default constructor that is user-provided 5136 // or deleted, then the object is default-initialized; 5137 // 5138 // Note that the C++11 rule is the same as the C++98 rule if there are no 5139 // defaulted or deleted constructors, so we just use it unconditionally. 5140 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl); 5141 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted()) 5142 NeedZeroInitialization = false; 5143 5144 // -- if T is a (possibly cv-qualified) non-union class type without a 5145 // user-provided or deleted default constructor, then the object is 5146 // zero-initialized and, if T has a non-trivial default constructor, 5147 // default-initialized; 5148 // The 'non-union' here was removed by DR1502. The 'non-trivial default 5149 // constructor' part was removed by DR1507. 5150 if (NeedZeroInitialization) 5151 Sequence.AddZeroInitializationStep(Entity.getType()); 5152 5153 // C++03: 5154 // -- if T is a non-union class type without a user-declared constructor, 5155 // then every non-static data member and base class component of T is 5156 // value-initialized; 5157 // [...] A program that calls for [...] value-initialization of an 5158 // entity of reference type is ill-formed. 5159 // 5160 // C++11 doesn't need this handling, because value-initialization does not 5161 // occur recursively there, and the implicit default constructor is 5162 // defined as deleted in the problematic cases. 5163 if (!S.getLangOpts().CPlusPlus11 && 5164 ClassDecl->hasUninitializedReferenceMember()) { 5165 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference); 5166 return; 5167 } 5168 5169 // If this is list-value-initialization, pass the empty init list on when 5170 // building the constructor call. This affects the semantics of a few 5171 // things (such as whether an explicit default constructor can be called). 5172 Expr *InitListAsExpr = InitList; 5173 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0); 5174 bool InitListSyntax = InitList; 5175 5176 // FIXME: Instead of creating a CXXConstructExpr of array type here, 5177 // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr. 5178 return TryConstructorInitialization( 5179 S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax); 5180 } 5181 } 5182 5183 Sequence.AddZeroInitializationStep(Entity.getType()); 5184 } 5185 5186 /// Attempt default initialization (C++ [dcl.init]p6). 5187 static void TryDefaultInitialization(Sema &S, 5188 const InitializedEntity &Entity, 5189 const InitializationKind &Kind, 5190 InitializationSequence &Sequence) { 5191 assert(Kind.getKind() == InitializationKind::IK_Default); 5192 5193 // C++ [dcl.init]p6: 5194 // To default-initialize an object of type T means: 5195 // - if T is an array type, each element is default-initialized; 5196 QualType DestType = S.Context.getBaseElementType(Entity.getType()); 5197 5198 // - if T is a (possibly cv-qualified) class type (Clause 9), the default 5199 // constructor for T is called (and the initialization is ill-formed if 5200 // T has no accessible default constructor); 5201 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) { 5202 TryConstructorInitialization(S, Entity, Kind, None, DestType, 5203 Entity.getType(), Sequence); 5204 return; 5205 } 5206 5207 // - otherwise, no initialization is performed. 5208 5209 // If a program calls for the default initialization of an object of 5210 // a const-qualified type T, T shall be a class type with a user-provided 5211 // default constructor. 5212 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) { 5213 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 5214 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 5215 return; 5216 } 5217 5218 // If the destination type has a lifetime property, zero-initialize it. 5219 if (DestType.getQualifiers().hasObjCLifetime()) { 5220 Sequence.AddZeroInitializationStep(Entity.getType()); 5221 return; 5222 } 5223 } 5224 5225 /// Attempt a user-defined conversion between two types (C++ [dcl.init]), 5226 /// which enumerates all conversion functions and performs overload resolution 5227 /// to select the best. 5228 static void TryUserDefinedConversion(Sema &S, 5229 QualType DestType, 5230 const InitializationKind &Kind, 5231 Expr *Initializer, 5232 InitializationSequence &Sequence, 5233 bool TopLevelOfInitList) { 5234 assert(!DestType->isReferenceType() && "References are handled elsewhere"); 5235 QualType SourceType = Initializer->getType(); 5236 assert((DestType->isRecordType() || SourceType->isRecordType()) && 5237 "Must have a class type to perform a user-defined conversion"); 5238 5239 // Build the candidate set directly in the initialization sequence 5240 // structure, so that it will persist if we fail. 5241 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 5242 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 5243 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); 5244 5245 // Determine whether we are allowed to call explicit constructors or 5246 // explicit conversion operators. 5247 bool AllowExplicit = Kind.AllowExplicit(); 5248 5249 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) { 5250 // The type we're converting to is a class type. Enumerate its constructors 5251 // to see if there is a suitable conversion. 5252 CXXRecordDecl *DestRecordDecl 5253 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 5254 5255 // Try to complete the type we're converting to. 5256 if (S.isCompleteType(Kind.getLocation(), DestType)) { 5257 for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) { 5258 auto Info = getConstructorInfo(D); 5259 if (!Info.Constructor) 5260 continue; 5261 5262 if (!Info.Constructor->isInvalidDecl() && 5263 Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) { 5264 if (Info.ConstructorTmpl) 5265 S.AddTemplateOverloadCandidate( 5266 Info.ConstructorTmpl, Info.FoundDecl, 5267 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, 5268 /*SuppressUserConversions=*/true, 5269 /*PartialOverloading*/ false, AllowExplicit); 5270 else 5271 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, 5272 Initializer, CandidateSet, 5273 /*SuppressUserConversions=*/true, 5274 /*PartialOverloading*/ false, AllowExplicit); 5275 } 5276 } 5277 } 5278 } 5279 5280 SourceLocation DeclLoc = Initializer->getBeginLoc(); 5281 5282 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) { 5283 // The type we're converting from is a class type, enumerate its conversion 5284 // functions. 5285 5286 // We can only enumerate the conversion functions for a complete type; if 5287 // the type isn't complete, simply skip this step. 5288 if (S.isCompleteType(DeclLoc, SourceType)) { 5289 CXXRecordDecl *SourceRecordDecl 5290 = cast<CXXRecordDecl>(SourceRecordType->getDecl()); 5291 5292 const auto &Conversions = 5293 SourceRecordDecl->getVisibleConversionFunctions(); 5294 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 5295 NamedDecl *D = *I; 5296 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 5297 if (isa<UsingShadowDecl>(D)) 5298 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 5299 5300 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 5301 CXXConversionDecl *Conv; 5302 if (ConvTemplate) 5303 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 5304 else 5305 Conv = cast<CXXConversionDecl>(D); 5306 5307 if (ConvTemplate) 5308 S.AddTemplateConversionCandidate( 5309 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 5310 CandidateSet, AllowExplicit, AllowExplicit); 5311 else 5312 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, 5313 DestType, CandidateSet, AllowExplicit, 5314 AllowExplicit); 5315 } 5316 } 5317 } 5318 5319 // Perform overload resolution. If it fails, return the failed result. 5320 OverloadCandidateSet::iterator Best; 5321 if (OverloadingResult Result 5322 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) { 5323 Sequence.SetOverloadFailure( 5324 InitializationSequence::FK_UserConversionOverloadFailed, Result); 5325 5326 // [class.copy.elision]p3: 5327 // In some copy-initialization contexts, a two-stage overload resolution 5328 // is performed. 5329 // If the first overload resolution selects a deleted function, we also 5330 // need the initialization sequence to decide whether to perform the second 5331 // overload resolution. 5332 if (!(Result == OR_Deleted && 5333 Kind.getKind() == InitializationKind::IK_Copy)) 5334 return; 5335 } 5336 5337 FunctionDecl *Function = Best->Function; 5338 Function->setReferenced(); 5339 bool HadMultipleCandidates = (CandidateSet.size() > 1); 5340 5341 if (isa<CXXConstructorDecl>(Function)) { 5342 // Add the user-defined conversion step. Any cv-qualification conversion is 5343 // subsumed by the initialization. Per DR5, the created temporary is of the 5344 // cv-unqualified type of the destination. 5345 Sequence.AddUserConversionStep(Function, Best->FoundDecl, 5346 DestType.getUnqualifiedType(), 5347 HadMultipleCandidates); 5348 5349 // C++14 and before: 5350 // - if the function is a constructor, the call initializes a temporary 5351 // of the cv-unqualified version of the destination type. The [...] 5352 // temporary [...] is then used to direct-initialize, according to the 5353 // rules above, the object that is the destination of the 5354 // copy-initialization. 5355 // Note that this just performs a simple object copy from the temporary. 5356 // 5357 // C++17: 5358 // - if the function is a constructor, the call is a prvalue of the 5359 // cv-unqualified version of the destination type whose return object 5360 // is initialized by the constructor. The call is used to 5361 // direct-initialize, according to the rules above, the object that 5362 // is the destination of the copy-initialization. 5363 // Therefore we need to do nothing further. 5364 // 5365 // FIXME: Mark this copy as extraneous. 5366 if (!S.getLangOpts().CPlusPlus17) 5367 Sequence.AddFinalCopy(DestType); 5368 else if (DestType.hasQualifiers()) 5369 Sequence.AddQualificationConversionStep(DestType, VK_PRValue); 5370 return; 5371 } 5372 5373 // Add the user-defined conversion step that calls the conversion function. 5374 QualType ConvType = Function->getCallResultType(); 5375 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType, 5376 HadMultipleCandidates); 5377 5378 if (ConvType->getAs<RecordType>()) { 5379 // The call is used to direct-initialize [...] the object that is the 5380 // destination of the copy-initialization. 5381 // 5382 // In C++17, this does not call a constructor if we enter /17.6.1: 5383 // - If the initializer expression is a prvalue and the cv-unqualified 5384 // version of the source type is the same as the class of the 5385 // destination [... do not make an extra copy] 5386 // 5387 // FIXME: Mark this copy as extraneous. 5388 if (!S.getLangOpts().CPlusPlus17 || 5389 Function->getReturnType()->isReferenceType() || 5390 !S.Context.hasSameUnqualifiedType(ConvType, DestType)) 5391 Sequence.AddFinalCopy(DestType); 5392 else if (!S.Context.hasSameType(ConvType, DestType)) 5393 Sequence.AddQualificationConversionStep(DestType, VK_PRValue); 5394 return; 5395 } 5396 5397 // If the conversion following the call to the conversion function 5398 // is interesting, add it as a separate step. 5399 if (Best->FinalConversion.First || Best->FinalConversion.Second || 5400 Best->FinalConversion.Third) { 5401 ImplicitConversionSequence ICS; 5402 ICS.setStandard(); 5403 ICS.Standard = Best->FinalConversion; 5404 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 5405 } 5406 } 5407 5408 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>, 5409 /// a function with a pointer return type contains a 'return false;' statement. 5410 /// In C++11, 'false' is not a null pointer, so this breaks the build of any 5411 /// code using that header. 5412 /// 5413 /// Work around this by treating 'return false;' as zero-initializing the result 5414 /// if it's used in a pointer-returning function in a system header. 5415 static bool isLibstdcxxPointerReturnFalseHack(Sema &S, 5416 const InitializedEntity &Entity, 5417 const Expr *Init) { 5418 return S.getLangOpts().CPlusPlus11 && 5419 Entity.getKind() == InitializedEntity::EK_Result && 5420 Entity.getType()->isPointerType() && 5421 isa<CXXBoolLiteralExpr>(Init) && 5422 !cast<CXXBoolLiteralExpr>(Init)->getValue() && 5423 S.getSourceManager().isInSystemHeader(Init->getExprLoc()); 5424 } 5425 5426 /// The non-zero enum values here are indexes into diagnostic alternatives. 5427 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar }; 5428 5429 /// Determines whether this expression is an acceptable ICR source. 5430 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e, 5431 bool isAddressOf, bool &isWeakAccess) { 5432 // Skip parens. 5433 e = e->IgnoreParens(); 5434 5435 // Skip address-of nodes. 5436 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 5437 if (op->getOpcode() == UO_AddrOf) 5438 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true, 5439 isWeakAccess); 5440 5441 // Skip certain casts. 5442 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) { 5443 switch (ce->getCastKind()) { 5444 case CK_Dependent: 5445 case CK_BitCast: 5446 case CK_LValueBitCast: 5447 case CK_NoOp: 5448 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess); 5449 5450 case CK_ArrayToPointerDecay: 5451 return IIK_nonscalar; 5452 5453 case CK_NullToPointer: 5454 return IIK_okay; 5455 5456 default: 5457 break; 5458 } 5459 5460 // If we have a declaration reference, it had better be a local variable. 5461 } else if (isa<DeclRefExpr>(e)) { 5462 // set isWeakAccess to true, to mean that there will be an implicit 5463 // load which requires a cleanup. 5464 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 5465 isWeakAccess = true; 5466 5467 if (!isAddressOf) return IIK_nonlocal; 5468 5469 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl()); 5470 if (!var) return IIK_nonlocal; 5471 5472 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal); 5473 5474 // If we have a conditional operator, check both sides. 5475 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) { 5476 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf, 5477 isWeakAccess)) 5478 return iik; 5479 5480 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess); 5481 5482 // These are never scalar. 5483 } else if (isa<ArraySubscriptExpr>(e)) { 5484 return IIK_nonscalar; 5485 5486 // Otherwise, it needs to be a null pointer constant. 5487 } else { 5488 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull) 5489 ? IIK_okay : IIK_nonlocal); 5490 } 5491 5492 return IIK_nonlocal; 5493 } 5494 5495 /// Check whether the given expression is a valid operand for an 5496 /// indirect copy/restore. 5497 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) { 5498 assert(src->isPRValue()); 5499 bool isWeakAccess = false; 5500 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess); 5501 // If isWeakAccess to true, there will be an implicit 5502 // load which requires a cleanup. 5503 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess) 5504 S.Cleanup.setExprNeedsCleanups(true); 5505 5506 if (iik == IIK_okay) return; 5507 5508 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback) 5509 << ((unsigned) iik - 1) // shift index into diagnostic explanations 5510 << src->getSourceRange(); 5511 } 5512 5513 /// Determine whether we have compatible array types for the 5514 /// purposes of GNU by-copy array initialization. 5515 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest, 5516 const ArrayType *Source) { 5517 // If the source and destination array types are equivalent, we're 5518 // done. 5519 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0))) 5520 return true; 5521 5522 // Make sure that the element types are the same. 5523 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType())) 5524 return false; 5525 5526 // The only mismatch we allow is when the destination is an 5527 // incomplete array type and the source is a constant array type. 5528 return Source->isConstantArrayType() && Dest->isIncompleteArrayType(); 5529 } 5530 5531 static bool tryObjCWritebackConversion(Sema &S, 5532 InitializationSequence &Sequence, 5533 const InitializedEntity &Entity, 5534 Expr *Initializer) { 5535 bool ArrayDecay = false; 5536 QualType ArgType = Initializer->getType(); 5537 QualType ArgPointee; 5538 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) { 5539 ArrayDecay = true; 5540 ArgPointee = ArgArrayType->getElementType(); 5541 ArgType = S.Context.getPointerType(ArgPointee); 5542 } 5543 5544 // Handle write-back conversion. 5545 QualType ConvertedArgType; 5546 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(), 5547 ConvertedArgType)) 5548 return false; 5549 5550 // We should copy unless we're passing to an argument explicitly 5551 // marked 'out'. 5552 bool ShouldCopy = true; 5553 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 5554 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 5555 5556 // Do we need an lvalue conversion? 5557 if (ArrayDecay || Initializer->isGLValue()) { 5558 ImplicitConversionSequence ICS; 5559 ICS.setStandard(); 5560 ICS.Standard.setAsIdentityConversion(); 5561 5562 QualType ResultType; 5563 if (ArrayDecay) { 5564 ICS.Standard.First = ICK_Array_To_Pointer; 5565 ResultType = S.Context.getPointerType(ArgPointee); 5566 } else { 5567 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 5568 ResultType = Initializer->getType().getNonLValueExprType(S.Context); 5569 } 5570 5571 Sequence.AddConversionSequenceStep(ICS, ResultType); 5572 } 5573 5574 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy); 5575 return true; 5576 } 5577 5578 static bool TryOCLSamplerInitialization(Sema &S, 5579 InitializationSequence &Sequence, 5580 QualType DestType, 5581 Expr *Initializer) { 5582 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() || 5583 (!Initializer->isIntegerConstantExpr(S.Context) && 5584 !Initializer->getType()->isSamplerT())) 5585 return false; 5586 5587 Sequence.AddOCLSamplerInitStep(DestType); 5588 return true; 5589 } 5590 5591 static bool IsZeroInitializer(Expr *Initializer, Sema &S) { 5592 return Initializer->isIntegerConstantExpr(S.getASTContext()) && 5593 (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0); 5594 } 5595 5596 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S, 5597 InitializationSequence &Sequence, 5598 QualType DestType, 5599 Expr *Initializer) { 5600 if (!S.getLangOpts().OpenCL) 5601 return false; 5602 5603 // 5604 // OpenCL 1.2 spec, s6.12.10 5605 // 5606 // The event argument can also be used to associate the 5607 // async_work_group_copy with a previous async copy allowing 5608 // an event to be shared by multiple async copies; otherwise 5609 // event should be zero. 5610 // 5611 if (DestType->isEventT() || DestType->isQueueT()) { 5612 if (!IsZeroInitializer(Initializer, S)) 5613 return false; 5614 5615 Sequence.AddOCLZeroOpaqueTypeStep(DestType); 5616 return true; 5617 } 5618 5619 // We should allow zero initialization for all types defined in the 5620 // cl_intel_device_side_avc_motion_estimation extension, except 5621 // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t. 5622 if (S.getOpenCLOptions().isAvailableOption( 5623 "cl_intel_device_side_avc_motion_estimation", S.getLangOpts()) && 5624 DestType->isOCLIntelSubgroupAVCType()) { 5625 if (DestType->isOCLIntelSubgroupAVCMcePayloadType() || 5626 DestType->isOCLIntelSubgroupAVCMceResultType()) 5627 return false; 5628 if (!IsZeroInitializer(Initializer, S)) 5629 return false; 5630 5631 Sequence.AddOCLZeroOpaqueTypeStep(DestType); 5632 return true; 5633 } 5634 5635 return false; 5636 } 5637 5638 InitializationSequence::InitializationSequence( 5639 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, 5640 MultiExprArg Args, bool TopLevelOfInitList, bool TreatUnavailableAsInvalid) 5641 : FailedOverloadResult(OR_Success), 5642 FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) { 5643 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList, 5644 TreatUnavailableAsInvalid); 5645 } 5646 5647 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the 5648 /// address of that function, this returns true. Otherwise, it returns false. 5649 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) { 5650 auto *DRE = dyn_cast<DeclRefExpr>(E); 5651 if (!DRE || !isa<FunctionDecl>(DRE->getDecl())) 5652 return false; 5653 5654 return !S.checkAddressOfFunctionIsAvailable( 5655 cast<FunctionDecl>(DRE->getDecl())); 5656 } 5657 5658 /// Determine whether we can perform an elementwise array copy for this kind 5659 /// of entity. 5660 static bool canPerformArrayCopy(const InitializedEntity &Entity) { 5661 switch (Entity.getKind()) { 5662 case InitializedEntity::EK_LambdaCapture: 5663 // C++ [expr.prim.lambda]p24: 5664 // For array members, the array elements are direct-initialized in 5665 // increasing subscript order. 5666 return true; 5667 5668 case InitializedEntity::EK_Variable: 5669 // C++ [dcl.decomp]p1: 5670 // [...] each element is copy-initialized or direct-initialized from the 5671 // corresponding element of the assignment-expression [...] 5672 return isa<DecompositionDecl>(Entity.getDecl()); 5673 5674 case InitializedEntity::EK_Member: 5675 // C++ [class.copy.ctor]p14: 5676 // - if the member is an array, each element is direct-initialized with 5677 // the corresponding subobject of x 5678 return Entity.isImplicitMemberInitializer(); 5679 5680 case InitializedEntity::EK_ArrayElement: 5681 // All the above cases are intended to apply recursively, even though none 5682 // of them actually say that. 5683 if (auto *E = Entity.getParent()) 5684 return canPerformArrayCopy(*E); 5685 break; 5686 5687 default: 5688 break; 5689 } 5690 5691 return false; 5692 } 5693 5694 void InitializationSequence::InitializeFrom(Sema &S, 5695 const InitializedEntity &Entity, 5696 const InitializationKind &Kind, 5697 MultiExprArg Args, 5698 bool TopLevelOfInitList, 5699 bool TreatUnavailableAsInvalid) { 5700 ASTContext &Context = S.Context; 5701 5702 // Eliminate non-overload placeholder types in the arguments. We 5703 // need to do this before checking whether types are dependent 5704 // because lowering a pseudo-object expression might well give us 5705 // something of dependent type. 5706 for (unsigned I = 0, E = Args.size(); I != E; ++I) 5707 if (Args[I]->getType()->isNonOverloadPlaceholderType()) { 5708 // FIXME: should we be doing this here? 5709 ExprResult result = S.CheckPlaceholderExpr(Args[I]); 5710 if (result.isInvalid()) { 5711 SetFailed(FK_PlaceholderType); 5712 return; 5713 } 5714 Args[I] = result.get(); 5715 } 5716 5717 // C++0x [dcl.init]p16: 5718 // The semantics of initializers are as follows. The destination type is 5719 // the type of the object or reference being initialized and the source 5720 // type is the type of the initializer expression. The source type is not 5721 // defined when the initializer is a braced-init-list or when it is a 5722 // parenthesized list of expressions. 5723 QualType DestType = Entity.getType(); 5724 5725 if (DestType->isDependentType() || 5726 Expr::hasAnyTypeDependentArguments(Args)) { 5727 SequenceKind = DependentSequence; 5728 return; 5729 } 5730 5731 // Almost everything is a normal sequence. 5732 setSequenceKind(NormalSequence); 5733 5734 QualType SourceType; 5735 Expr *Initializer = nullptr; 5736 if (Args.size() == 1) { 5737 Initializer = Args[0]; 5738 if (S.getLangOpts().ObjC) { 5739 if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(), 5740 DestType, Initializer->getType(), 5741 Initializer) || 5742 S.CheckConversionToObjCLiteral(DestType, Initializer)) 5743 Args[0] = Initializer; 5744 } 5745 if (!isa<InitListExpr>(Initializer)) 5746 SourceType = Initializer->getType(); 5747 } 5748 5749 // - If the initializer is a (non-parenthesized) braced-init-list, the 5750 // object is list-initialized (8.5.4). 5751 if (Kind.getKind() != InitializationKind::IK_Direct) { 5752 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) { 5753 TryListInitialization(S, Entity, Kind, InitList, *this, 5754 TreatUnavailableAsInvalid); 5755 return; 5756 } 5757 } 5758 5759 // - If the destination type is a reference type, see 8.5.3. 5760 if (DestType->isReferenceType()) { 5761 // C++0x [dcl.init.ref]p1: 5762 // A variable declared to be a T& or T&&, that is, "reference to type T" 5763 // (8.3.2), shall be initialized by an object, or function, of type T or 5764 // by an object that can be converted into a T. 5765 // (Therefore, multiple arguments are not permitted.) 5766 if (Args.size() != 1) 5767 SetFailed(FK_TooManyInitsForReference); 5768 // C++17 [dcl.init.ref]p5: 5769 // A reference [...] is initialized by an expression [...] as follows: 5770 // If the initializer is not an expression, presumably we should reject, 5771 // but the standard fails to actually say so. 5772 else if (isa<InitListExpr>(Args[0])) 5773 SetFailed(FK_ParenthesizedListInitForReference); 5774 else 5775 TryReferenceInitialization(S, Entity, Kind, Args[0], *this); 5776 return; 5777 } 5778 5779 // - If the initializer is (), the object is value-initialized. 5780 if (Kind.getKind() == InitializationKind::IK_Value || 5781 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) { 5782 TryValueInitialization(S, Entity, Kind, *this); 5783 return; 5784 } 5785 5786 // Handle default initialization. 5787 if (Kind.getKind() == InitializationKind::IK_Default) { 5788 TryDefaultInitialization(S, Entity, Kind, *this); 5789 return; 5790 } 5791 5792 // - If the destination type is an array of characters, an array of 5793 // char16_t, an array of char32_t, or an array of wchar_t, and the 5794 // initializer is a string literal, see 8.5.2. 5795 // - Otherwise, if the destination type is an array, the program is 5796 // ill-formed. 5797 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) { 5798 if (Initializer && isa<VariableArrayType>(DestAT)) { 5799 SetFailed(FK_VariableLengthArrayHasInitializer); 5800 return; 5801 } 5802 5803 if (Initializer) { 5804 switch (IsStringInit(Initializer, DestAT, Context)) { 5805 case SIF_None: 5806 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this); 5807 return; 5808 case SIF_NarrowStringIntoWideChar: 5809 SetFailed(FK_NarrowStringIntoWideCharArray); 5810 return; 5811 case SIF_WideStringIntoChar: 5812 SetFailed(FK_WideStringIntoCharArray); 5813 return; 5814 case SIF_IncompatWideStringIntoWideChar: 5815 SetFailed(FK_IncompatWideStringIntoWideChar); 5816 return; 5817 case SIF_PlainStringIntoUTF8Char: 5818 SetFailed(FK_PlainStringIntoUTF8Char); 5819 return; 5820 case SIF_UTF8StringIntoPlainChar: 5821 SetFailed(FK_UTF8StringIntoPlainChar); 5822 return; 5823 case SIF_Other: 5824 break; 5825 } 5826 } 5827 5828 // Some kinds of initialization permit an array to be initialized from 5829 // another array of the same type, and perform elementwise initialization. 5830 if (Initializer && isa<ConstantArrayType>(DestAT) && 5831 S.Context.hasSameUnqualifiedType(Initializer->getType(), 5832 Entity.getType()) && 5833 canPerformArrayCopy(Entity)) { 5834 // If source is a prvalue, use it directly. 5835 if (Initializer->isPRValue()) { 5836 AddArrayInitStep(DestType, /*IsGNUExtension*/false); 5837 return; 5838 } 5839 5840 // Emit element-at-a-time copy loop. 5841 InitializedEntity Element = 5842 InitializedEntity::InitializeElement(S.Context, 0, Entity); 5843 QualType InitEltT = 5844 Context.getAsArrayType(Initializer->getType())->getElementType(); 5845 OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT, 5846 Initializer->getValueKind(), 5847 Initializer->getObjectKind()); 5848 Expr *OVEAsExpr = &OVE; 5849 InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList, 5850 TreatUnavailableAsInvalid); 5851 if (!Failed()) 5852 AddArrayInitLoopStep(Entity.getType(), InitEltT); 5853 return; 5854 } 5855 5856 // Note: as an GNU C extension, we allow initialization of an 5857 // array from a compound literal that creates an array of the same 5858 // type, so long as the initializer has no side effects. 5859 if (!S.getLangOpts().CPlusPlus && Initializer && 5860 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) && 5861 Initializer->getType()->isArrayType()) { 5862 const ArrayType *SourceAT 5863 = Context.getAsArrayType(Initializer->getType()); 5864 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT)) 5865 SetFailed(FK_ArrayTypeMismatch); 5866 else if (Initializer->HasSideEffects(S.Context)) 5867 SetFailed(FK_NonConstantArrayInit); 5868 else { 5869 AddArrayInitStep(DestType, /*IsGNUExtension*/true); 5870 } 5871 } 5872 // Note: as a GNU C++ extension, we allow list-initialization of a 5873 // class member of array type from a parenthesized initializer list. 5874 else if (S.getLangOpts().CPlusPlus && 5875 Entity.getKind() == InitializedEntity::EK_Member && 5876 Initializer && isa<InitListExpr>(Initializer)) { 5877 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer), 5878 *this, TreatUnavailableAsInvalid); 5879 AddParenthesizedArrayInitStep(DestType); 5880 } else if (DestAT->getElementType()->isCharType()) 5881 SetFailed(FK_ArrayNeedsInitListOrStringLiteral); 5882 else if (IsWideCharCompatible(DestAT->getElementType(), Context)) 5883 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral); 5884 else 5885 SetFailed(FK_ArrayNeedsInitList); 5886 5887 return; 5888 } 5889 5890 // Determine whether we should consider writeback conversions for 5891 // Objective-C ARC. 5892 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount && 5893 Entity.isParameterKind(); 5894 5895 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer)) 5896 return; 5897 5898 // We're at the end of the line for C: it's either a write-back conversion 5899 // or it's a C assignment. There's no need to check anything else. 5900 if (!S.getLangOpts().CPlusPlus) { 5901 // If allowed, check whether this is an Objective-C writeback conversion. 5902 if (allowObjCWritebackConversion && 5903 tryObjCWritebackConversion(S, *this, Entity, Initializer)) { 5904 return; 5905 } 5906 5907 if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer)) 5908 return; 5909 5910 // Handle initialization in C 5911 AddCAssignmentStep(DestType); 5912 MaybeProduceObjCObject(S, *this, Entity); 5913 return; 5914 } 5915 5916 assert(S.getLangOpts().CPlusPlus); 5917 5918 // - If the destination type is a (possibly cv-qualified) class type: 5919 if (DestType->isRecordType()) { 5920 // - If the initialization is direct-initialization, or if it is 5921 // copy-initialization where the cv-unqualified version of the 5922 // source type is the same class as, or a derived class of, the 5923 // class of the destination, constructors are considered. [...] 5924 if (Kind.getKind() == InitializationKind::IK_Direct || 5925 (Kind.getKind() == InitializationKind::IK_Copy && 5926 (Context.hasSameUnqualifiedType(SourceType, DestType) || 5927 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType)))) 5928 TryConstructorInitialization(S, Entity, Kind, Args, 5929 DestType, DestType, *this); 5930 // - Otherwise (i.e., for the remaining copy-initialization cases), 5931 // user-defined conversion sequences that can convert from the source 5932 // type to the destination type or (when a conversion function is 5933 // used) to a derived class thereof are enumerated as described in 5934 // 13.3.1.4, and the best one is chosen through overload resolution 5935 // (13.3). 5936 else 5937 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 5938 TopLevelOfInitList); 5939 return; 5940 } 5941 5942 assert(Args.size() >= 1 && "Zero-argument case handled above"); 5943 5944 // The remaining cases all need a source type. 5945 if (Args.size() > 1) { 5946 SetFailed(FK_TooManyInitsForScalar); 5947 return; 5948 } else if (isa<InitListExpr>(Args[0])) { 5949 SetFailed(FK_ParenthesizedListInitForScalar); 5950 return; 5951 } 5952 5953 // - Otherwise, if the source type is a (possibly cv-qualified) class 5954 // type, conversion functions are considered. 5955 if (!SourceType.isNull() && SourceType->isRecordType()) { 5956 // For a conversion to _Atomic(T) from either T or a class type derived 5957 // from T, initialize the T object then convert to _Atomic type. 5958 bool NeedAtomicConversion = false; 5959 if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) { 5960 if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) || 5961 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, 5962 Atomic->getValueType())) { 5963 DestType = Atomic->getValueType(); 5964 NeedAtomicConversion = true; 5965 } 5966 } 5967 5968 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 5969 TopLevelOfInitList); 5970 MaybeProduceObjCObject(S, *this, Entity); 5971 if (!Failed() && NeedAtomicConversion) 5972 AddAtomicConversionStep(Entity.getType()); 5973 return; 5974 } 5975 5976 // - Otherwise, if the initialization is direct-initialization, the source 5977 // type is std::nullptr_t, and the destination type is bool, the initial 5978 // value of the object being initialized is false. 5979 if (!SourceType.isNull() && SourceType->isNullPtrType() && 5980 DestType->isBooleanType() && 5981 Kind.getKind() == InitializationKind::IK_Direct) { 5982 AddConversionSequenceStep( 5983 ImplicitConversionSequence::getNullptrToBool(SourceType, DestType, 5984 Initializer->isGLValue()), 5985 DestType); 5986 return; 5987 } 5988 5989 // - Otherwise, the initial value of the object being initialized is the 5990 // (possibly converted) value of the initializer expression. Standard 5991 // conversions (Clause 4) will be used, if necessary, to convert the 5992 // initializer expression to the cv-unqualified version of the 5993 // destination type; no user-defined conversions are considered. 5994 5995 ImplicitConversionSequence ICS 5996 = S.TryImplicitConversion(Initializer, DestType, 5997 /*SuppressUserConversions*/true, 5998 Sema::AllowedExplicit::None, 5999 /*InOverloadResolution*/ false, 6000 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 6001 allowObjCWritebackConversion); 6002 6003 if (ICS.isStandard() && 6004 ICS.Standard.Second == ICK_Writeback_Conversion) { 6005 // Objective-C ARC writeback conversion. 6006 6007 // We should copy unless we're passing to an argument explicitly 6008 // marked 'out'. 6009 bool ShouldCopy = true; 6010 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 6011 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 6012 6013 // If there was an lvalue adjustment, add it as a separate conversion. 6014 if (ICS.Standard.First == ICK_Array_To_Pointer || 6015 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 6016 ImplicitConversionSequence LvalueICS; 6017 LvalueICS.setStandard(); 6018 LvalueICS.Standard.setAsIdentityConversion(); 6019 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0)); 6020 LvalueICS.Standard.First = ICS.Standard.First; 6021 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0)); 6022 } 6023 6024 AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy); 6025 } else if (ICS.isBad()) { 6026 DeclAccessPair dap; 6027 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) { 6028 AddZeroInitializationStep(Entity.getType()); 6029 } else if (Initializer->getType() == Context.OverloadTy && 6030 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType, 6031 false, dap)) 6032 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 6033 else if (Initializer->getType()->isFunctionType() && 6034 isExprAnUnaddressableFunction(S, Initializer)) 6035 SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction); 6036 else 6037 SetFailed(InitializationSequence::FK_ConversionFailed); 6038 } else { 6039 AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 6040 6041 MaybeProduceObjCObject(S, *this, Entity); 6042 } 6043 } 6044 6045 InitializationSequence::~InitializationSequence() { 6046 for (auto &S : Steps) 6047 S.Destroy(); 6048 } 6049 6050 //===----------------------------------------------------------------------===// 6051 // Perform initialization 6052 //===----------------------------------------------------------------------===// 6053 static Sema::AssignmentAction 6054 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) { 6055 switch(Entity.getKind()) { 6056 case InitializedEntity::EK_Variable: 6057 case InitializedEntity::EK_New: 6058 case InitializedEntity::EK_Exception: 6059 case InitializedEntity::EK_Base: 6060 case InitializedEntity::EK_Delegating: 6061 return Sema::AA_Initializing; 6062 6063 case InitializedEntity::EK_Parameter: 6064 if (Entity.getDecl() && 6065 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 6066 return Sema::AA_Sending; 6067 6068 return Sema::AA_Passing; 6069 6070 case InitializedEntity::EK_Parameter_CF_Audited: 6071 if (Entity.getDecl() && 6072 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 6073 return Sema::AA_Sending; 6074 6075 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited; 6076 6077 case InitializedEntity::EK_Result: 6078 case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right. 6079 return Sema::AA_Returning; 6080 6081 case InitializedEntity::EK_Temporary: 6082 case InitializedEntity::EK_RelatedResult: 6083 // FIXME: Can we tell apart casting vs. converting? 6084 return Sema::AA_Casting; 6085 6086 case InitializedEntity::EK_TemplateParameter: 6087 // This is really initialization, but refer to it as conversion for 6088 // consistency with CheckConvertedConstantExpression. 6089 return Sema::AA_Converting; 6090 6091 case InitializedEntity::EK_Member: 6092 case InitializedEntity::EK_Binding: 6093 case InitializedEntity::EK_ArrayElement: 6094 case InitializedEntity::EK_VectorElement: 6095 case InitializedEntity::EK_ComplexElement: 6096 case InitializedEntity::EK_BlockElement: 6097 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6098 case InitializedEntity::EK_LambdaCapture: 6099 case InitializedEntity::EK_CompoundLiteralInit: 6100 return Sema::AA_Initializing; 6101 } 6102 6103 llvm_unreachable("Invalid EntityKind!"); 6104 } 6105 6106 /// Whether we should bind a created object as a temporary when 6107 /// initializing the given entity. 6108 static bool shouldBindAsTemporary(const InitializedEntity &Entity) { 6109 switch (Entity.getKind()) { 6110 case InitializedEntity::EK_ArrayElement: 6111 case InitializedEntity::EK_Member: 6112 case InitializedEntity::EK_Result: 6113 case InitializedEntity::EK_StmtExprResult: 6114 case InitializedEntity::EK_New: 6115 case InitializedEntity::EK_Variable: 6116 case InitializedEntity::EK_Base: 6117 case InitializedEntity::EK_Delegating: 6118 case InitializedEntity::EK_VectorElement: 6119 case InitializedEntity::EK_ComplexElement: 6120 case InitializedEntity::EK_Exception: 6121 case InitializedEntity::EK_BlockElement: 6122 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6123 case InitializedEntity::EK_LambdaCapture: 6124 case InitializedEntity::EK_CompoundLiteralInit: 6125 case InitializedEntity::EK_TemplateParameter: 6126 return false; 6127 6128 case InitializedEntity::EK_Parameter: 6129 case InitializedEntity::EK_Parameter_CF_Audited: 6130 case InitializedEntity::EK_Temporary: 6131 case InitializedEntity::EK_RelatedResult: 6132 case InitializedEntity::EK_Binding: 6133 return true; 6134 } 6135 6136 llvm_unreachable("missed an InitializedEntity kind?"); 6137 } 6138 6139 /// Whether the given entity, when initialized with an object 6140 /// created for that initialization, requires destruction. 6141 static bool shouldDestroyEntity(const InitializedEntity &Entity) { 6142 switch (Entity.getKind()) { 6143 case InitializedEntity::EK_Result: 6144 case InitializedEntity::EK_StmtExprResult: 6145 case InitializedEntity::EK_New: 6146 case InitializedEntity::EK_Base: 6147 case InitializedEntity::EK_Delegating: 6148 case InitializedEntity::EK_VectorElement: 6149 case InitializedEntity::EK_ComplexElement: 6150 case InitializedEntity::EK_BlockElement: 6151 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6152 case InitializedEntity::EK_LambdaCapture: 6153 return false; 6154 6155 case InitializedEntity::EK_Member: 6156 case InitializedEntity::EK_Binding: 6157 case InitializedEntity::EK_Variable: 6158 case InitializedEntity::EK_Parameter: 6159 case InitializedEntity::EK_Parameter_CF_Audited: 6160 case InitializedEntity::EK_TemplateParameter: 6161 case InitializedEntity::EK_Temporary: 6162 case InitializedEntity::EK_ArrayElement: 6163 case InitializedEntity::EK_Exception: 6164 case InitializedEntity::EK_CompoundLiteralInit: 6165 case InitializedEntity::EK_RelatedResult: 6166 return true; 6167 } 6168 6169 llvm_unreachable("missed an InitializedEntity kind?"); 6170 } 6171 6172 /// Get the location at which initialization diagnostics should appear. 6173 static SourceLocation getInitializationLoc(const InitializedEntity &Entity, 6174 Expr *Initializer) { 6175 switch (Entity.getKind()) { 6176 case InitializedEntity::EK_Result: 6177 case InitializedEntity::EK_StmtExprResult: 6178 return Entity.getReturnLoc(); 6179 6180 case InitializedEntity::EK_Exception: 6181 return Entity.getThrowLoc(); 6182 6183 case InitializedEntity::EK_Variable: 6184 case InitializedEntity::EK_Binding: 6185 return Entity.getDecl()->getLocation(); 6186 6187 case InitializedEntity::EK_LambdaCapture: 6188 return Entity.getCaptureLoc(); 6189 6190 case InitializedEntity::EK_ArrayElement: 6191 case InitializedEntity::EK_Member: 6192 case InitializedEntity::EK_Parameter: 6193 case InitializedEntity::EK_Parameter_CF_Audited: 6194 case InitializedEntity::EK_TemplateParameter: 6195 case InitializedEntity::EK_Temporary: 6196 case InitializedEntity::EK_New: 6197 case InitializedEntity::EK_Base: 6198 case InitializedEntity::EK_Delegating: 6199 case InitializedEntity::EK_VectorElement: 6200 case InitializedEntity::EK_ComplexElement: 6201 case InitializedEntity::EK_BlockElement: 6202 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6203 case InitializedEntity::EK_CompoundLiteralInit: 6204 case InitializedEntity::EK_RelatedResult: 6205 return Initializer->getBeginLoc(); 6206 } 6207 llvm_unreachable("missed an InitializedEntity kind?"); 6208 } 6209 6210 /// Make a (potentially elidable) temporary copy of the object 6211 /// provided by the given initializer by calling the appropriate copy 6212 /// constructor. 6213 /// 6214 /// \param S The Sema object used for type-checking. 6215 /// 6216 /// \param T The type of the temporary object, which must either be 6217 /// the type of the initializer expression or a superclass thereof. 6218 /// 6219 /// \param Entity The entity being initialized. 6220 /// 6221 /// \param CurInit The initializer expression. 6222 /// 6223 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that 6224 /// is permitted in C++03 (but not C++0x) when binding a reference to 6225 /// an rvalue. 6226 /// 6227 /// \returns An expression that copies the initializer expression into 6228 /// a temporary object, or an error expression if a copy could not be 6229 /// created. 6230 static ExprResult CopyObject(Sema &S, 6231 QualType T, 6232 const InitializedEntity &Entity, 6233 ExprResult CurInit, 6234 bool IsExtraneousCopy) { 6235 if (CurInit.isInvalid()) 6236 return CurInit; 6237 // Determine which class type we're copying to. 6238 Expr *CurInitExpr = (Expr *)CurInit.get(); 6239 CXXRecordDecl *Class = nullptr; 6240 if (const RecordType *Record = T->getAs<RecordType>()) 6241 Class = cast<CXXRecordDecl>(Record->getDecl()); 6242 if (!Class) 6243 return CurInit; 6244 6245 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get()); 6246 6247 // Make sure that the type we are copying is complete. 6248 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete)) 6249 return CurInit; 6250 6251 // Perform overload resolution using the class's constructors. Per 6252 // C++11 [dcl.init]p16, second bullet for class types, this initialization 6253 // is direct-initialization. 6254 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 6255 DeclContext::lookup_result Ctors = S.LookupConstructors(Class); 6256 6257 OverloadCandidateSet::iterator Best; 6258 switch (ResolveConstructorOverload( 6259 S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best, 6260 /*CopyInitializing=*/false, /*AllowExplicit=*/true, 6261 /*OnlyListConstructors=*/false, /*IsListInit=*/false, 6262 /*SecondStepOfCopyInit=*/true)) { 6263 case OR_Success: 6264 break; 6265 6266 case OR_No_Viable_Function: 6267 CandidateSet.NoteCandidates( 6268 PartialDiagnosticAt( 6269 Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext() 6270 ? diag::ext_rvalue_to_reference_temp_copy_no_viable 6271 : diag::err_temp_copy_no_viable) 6272 << (int)Entity.getKind() << CurInitExpr->getType() 6273 << CurInitExpr->getSourceRange()), 6274 S, OCD_AllCandidates, CurInitExpr); 6275 if (!IsExtraneousCopy || S.isSFINAEContext()) 6276 return ExprError(); 6277 return CurInit; 6278 6279 case OR_Ambiguous: 6280 CandidateSet.NoteCandidates( 6281 PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous) 6282 << (int)Entity.getKind() 6283 << CurInitExpr->getType() 6284 << CurInitExpr->getSourceRange()), 6285 S, OCD_AmbiguousCandidates, CurInitExpr); 6286 return ExprError(); 6287 6288 case OR_Deleted: 6289 S.Diag(Loc, diag::err_temp_copy_deleted) 6290 << (int)Entity.getKind() << CurInitExpr->getType() 6291 << CurInitExpr->getSourceRange(); 6292 S.NoteDeletedFunction(Best->Function); 6293 return ExprError(); 6294 } 6295 6296 bool HadMultipleCandidates = CandidateSet.size() > 1; 6297 6298 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); 6299 SmallVector<Expr*, 8> ConstructorArgs; 6300 CurInit.get(); // Ownership transferred into MultiExprArg, below. 6301 6302 S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity, 6303 IsExtraneousCopy); 6304 6305 if (IsExtraneousCopy) { 6306 // If this is a totally extraneous copy for C++03 reference 6307 // binding purposes, just return the original initialization 6308 // expression. We don't generate an (elided) copy operation here 6309 // because doing so would require us to pass down a flag to avoid 6310 // infinite recursion, where each step adds another extraneous, 6311 // elidable copy. 6312 6313 // Instantiate the default arguments of any extra parameters in 6314 // the selected copy constructor, as if we were going to create a 6315 // proper call to the copy constructor. 6316 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) { 6317 ParmVarDecl *Parm = Constructor->getParamDecl(I); 6318 if (S.RequireCompleteType(Loc, Parm->getType(), 6319 diag::err_call_incomplete_argument)) 6320 break; 6321 6322 // Build the default argument expression; we don't actually care 6323 // if this succeeds or not, because this routine will complain 6324 // if there was a problem. 6325 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm); 6326 } 6327 6328 return CurInitExpr; 6329 } 6330 6331 // Determine the arguments required to actually perform the 6332 // constructor call (we might have derived-to-base conversions, or 6333 // the copy constructor may have default arguments). 6334 if (S.CompleteConstructorCall(Constructor, T, CurInitExpr, Loc, 6335 ConstructorArgs)) 6336 return ExprError(); 6337 6338 // C++0x [class.copy]p32: 6339 // When certain criteria are met, an implementation is allowed to 6340 // omit the copy/move construction of a class object, even if the 6341 // copy/move constructor and/or destructor for the object have 6342 // side effects. [...] 6343 // - when a temporary class object that has not been bound to a 6344 // reference (12.2) would be copied/moved to a class object 6345 // with the same cv-unqualified type, the copy/move operation 6346 // can be omitted by constructing the temporary object 6347 // directly into the target of the omitted copy/move 6348 // 6349 // Note that the other three bullets are handled elsewhere. Copy 6350 // elision for return statements and throw expressions are handled as part 6351 // of constructor initialization, while copy elision for exception handlers 6352 // is handled by the run-time. 6353 // 6354 // FIXME: If the function parameter is not the same type as the temporary, we 6355 // should still be able to elide the copy, but we don't have a way to 6356 // represent in the AST how much should be elided in this case. 6357 bool Elidable = 6358 CurInitExpr->isTemporaryObject(S.Context, Class) && 6359 S.Context.hasSameUnqualifiedType( 6360 Best->Function->getParamDecl(0)->getType().getNonReferenceType(), 6361 CurInitExpr->getType()); 6362 6363 // Actually perform the constructor call. 6364 CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor, 6365 Elidable, 6366 ConstructorArgs, 6367 HadMultipleCandidates, 6368 /*ListInit*/ false, 6369 /*StdInitListInit*/ false, 6370 /*ZeroInit*/ false, 6371 CXXConstructExpr::CK_Complete, 6372 SourceRange()); 6373 6374 // If we're supposed to bind temporaries, do so. 6375 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity)) 6376 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 6377 return CurInit; 6378 } 6379 6380 /// Check whether elidable copy construction for binding a reference to 6381 /// a temporary would have succeeded if we were building in C++98 mode, for 6382 /// -Wc++98-compat. 6383 static void CheckCXX98CompatAccessibleCopy(Sema &S, 6384 const InitializedEntity &Entity, 6385 Expr *CurInitExpr) { 6386 assert(S.getLangOpts().CPlusPlus11); 6387 6388 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>(); 6389 if (!Record) 6390 return; 6391 6392 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr); 6393 if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc)) 6394 return; 6395 6396 // Find constructors which would have been considered. 6397 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 6398 DeclContext::lookup_result Ctors = 6399 S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl())); 6400 6401 // Perform overload resolution. 6402 OverloadCandidateSet::iterator Best; 6403 OverloadingResult OR = ResolveConstructorOverload( 6404 S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best, 6405 /*CopyInitializing=*/false, /*AllowExplicit=*/true, 6406 /*OnlyListConstructors=*/false, /*IsListInit=*/false, 6407 /*SecondStepOfCopyInit=*/true); 6408 6409 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy) 6410 << OR << (int)Entity.getKind() << CurInitExpr->getType() 6411 << CurInitExpr->getSourceRange(); 6412 6413 switch (OR) { 6414 case OR_Success: 6415 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function), 6416 Best->FoundDecl, Entity, Diag); 6417 // FIXME: Check default arguments as far as that's possible. 6418 break; 6419 6420 case OR_No_Viable_Function: 6421 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, 6422 OCD_AllCandidates, CurInitExpr); 6423 break; 6424 6425 case OR_Ambiguous: 6426 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, 6427 OCD_AmbiguousCandidates, CurInitExpr); 6428 break; 6429 6430 case OR_Deleted: 6431 S.Diag(Loc, Diag); 6432 S.NoteDeletedFunction(Best->Function); 6433 break; 6434 } 6435 } 6436 6437 void InitializationSequence::PrintInitLocationNote(Sema &S, 6438 const InitializedEntity &Entity) { 6439 if (Entity.isParamOrTemplateParamKind() && Entity.getDecl()) { 6440 if (Entity.getDecl()->getLocation().isInvalid()) 6441 return; 6442 6443 if (Entity.getDecl()->getDeclName()) 6444 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here) 6445 << Entity.getDecl()->getDeclName(); 6446 else 6447 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here); 6448 } 6449 else if (Entity.getKind() == InitializedEntity::EK_RelatedResult && 6450 Entity.getMethodDecl()) 6451 S.Diag(Entity.getMethodDecl()->getLocation(), 6452 diag::note_method_return_type_change) 6453 << Entity.getMethodDecl()->getDeclName(); 6454 } 6455 6456 /// Returns true if the parameters describe a constructor initialization of 6457 /// an explicit temporary object, e.g. "Point(x, y)". 6458 static bool isExplicitTemporary(const InitializedEntity &Entity, 6459 const InitializationKind &Kind, 6460 unsigned NumArgs) { 6461 switch (Entity.getKind()) { 6462 case InitializedEntity::EK_Temporary: 6463 case InitializedEntity::EK_CompoundLiteralInit: 6464 case InitializedEntity::EK_RelatedResult: 6465 break; 6466 default: 6467 return false; 6468 } 6469 6470 switch (Kind.getKind()) { 6471 case InitializationKind::IK_DirectList: 6472 return true; 6473 // FIXME: Hack to work around cast weirdness. 6474 case InitializationKind::IK_Direct: 6475 case InitializationKind::IK_Value: 6476 return NumArgs != 1; 6477 default: 6478 return false; 6479 } 6480 } 6481 6482 static ExprResult 6483 PerformConstructorInitialization(Sema &S, 6484 const InitializedEntity &Entity, 6485 const InitializationKind &Kind, 6486 MultiExprArg Args, 6487 const InitializationSequence::Step& Step, 6488 bool &ConstructorInitRequiresZeroInit, 6489 bool IsListInitialization, 6490 bool IsStdInitListInitialization, 6491 SourceLocation LBraceLoc, 6492 SourceLocation RBraceLoc) { 6493 unsigned NumArgs = Args.size(); 6494 CXXConstructorDecl *Constructor 6495 = cast<CXXConstructorDecl>(Step.Function.Function); 6496 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates; 6497 6498 // Build a call to the selected constructor. 6499 SmallVector<Expr*, 8> ConstructorArgs; 6500 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid()) 6501 ? Kind.getEqualLoc() 6502 : Kind.getLocation(); 6503 6504 if (Kind.getKind() == InitializationKind::IK_Default) { 6505 // Force even a trivial, implicit default constructor to be 6506 // semantically checked. We do this explicitly because we don't build 6507 // the definition for completely trivial constructors. 6508 assert(Constructor->getParent() && "No parent class for constructor."); 6509 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() && 6510 Constructor->isTrivial() && !Constructor->isUsed(false)) { 6511 S.runWithSufficientStackSpace(Loc, [&] { 6512 S.DefineImplicitDefaultConstructor(Loc, Constructor); 6513 }); 6514 } 6515 } 6516 6517 ExprResult CurInit((Expr *)nullptr); 6518 6519 // C++ [over.match.copy]p1: 6520 // - When initializing a temporary to be bound to the first parameter 6521 // of a constructor that takes a reference to possibly cv-qualified 6522 // T as its first argument, called with a single argument in the 6523 // context of direct-initialization, explicit conversion functions 6524 // are also considered. 6525 bool AllowExplicitConv = 6526 Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 && 6527 hasCopyOrMoveCtorParam(S.Context, 6528 getConstructorInfo(Step.Function.FoundDecl)); 6529 6530 // Determine the arguments required to actually perform the constructor 6531 // call. 6532 if (S.CompleteConstructorCall(Constructor, Step.Type, Args, Loc, 6533 ConstructorArgs, AllowExplicitConv, 6534 IsListInitialization)) 6535 return ExprError(); 6536 6537 if (isExplicitTemporary(Entity, Kind, NumArgs)) { 6538 // An explicitly-constructed temporary, e.g., X(1, 2). 6539 if (S.DiagnoseUseOfDecl(Constructor, Loc)) 6540 return ExprError(); 6541 6542 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 6543 if (!TSInfo) 6544 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc); 6545 SourceRange ParenOrBraceRange = 6546 (Kind.getKind() == InitializationKind::IK_DirectList) 6547 ? SourceRange(LBraceLoc, RBraceLoc) 6548 : Kind.getParenOrBraceRange(); 6549 6550 CXXConstructorDecl *CalleeDecl = Constructor; 6551 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>( 6552 Step.Function.FoundDecl.getDecl())) { 6553 CalleeDecl = S.findInheritingConstructor(Loc, Constructor, Shadow); 6554 if (S.DiagnoseUseOfDecl(CalleeDecl, Loc)) 6555 return ExprError(); 6556 } 6557 S.MarkFunctionReferenced(Loc, CalleeDecl); 6558 6559 CurInit = S.CheckForImmediateInvocation( 6560 CXXTemporaryObjectExpr::Create( 6561 S.Context, CalleeDecl, 6562 Entity.getType().getNonLValueExprType(S.Context), TSInfo, 6563 ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates, 6564 IsListInitialization, IsStdInitListInitialization, 6565 ConstructorInitRequiresZeroInit), 6566 CalleeDecl); 6567 } else { 6568 CXXConstructExpr::ConstructionKind ConstructKind = 6569 CXXConstructExpr::CK_Complete; 6570 6571 if (Entity.getKind() == InitializedEntity::EK_Base) { 6572 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ? 6573 CXXConstructExpr::CK_VirtualBase : 6574 CXXConstructExpr::CK_NonVirtualBase; 6575 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) { 6576 ConstructKind = CXXConstructExpr::CK_Delegating; 6577 } 6578 6579 // Only get the parenthesis or brace range if it is a list initialization or 6580 // direct construction. 6581 SourceRange ParenOrBraceRange; 6582 if (IsListInitialization) 6583 ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc); 6584 else if (Kind.getKind() == InitializationKind::IK_Direct) 6585 ParenOrBraceRange = Kind.getParenOrBraceRange(); 6586 6587 // If the entity allows NRVO, mark the construction as elidable 6588 // unconditionally. 6589 if (Entity.allowsNRVO()) 6590 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, 6591 Step.Function.FoundDecl, 6592 Constructor, /*Elidable=*/true, 6593 ConstructorArgs, 6594 HadMultipleCandidates, 6595 IsListInitialization, 6596 IsStdInitListInitialization, 6597 ConstructorInitRequiresZeroInit, 6598 ConstructKind, 6599 ParenOrBraceRange); 6600 else 6601 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, 6602 Step.Function.FoundDecl, 6603 Constructor, 6604 ConstructorArgs, 6605 HadMultipleCandidates, 6606 IsListInitialization, 6607 IsStdInitListInitialization, 6608 ConstructorInitRequiresZeroInit, 6609 ConstructKind, 6610 ParenOrBraceRange); 6611 } 6612 if (CurInit.isInvalid()) 6613 return ExprError(); 6614 6615 // Only check access if all of that succeeded. 6616 S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity); 6617 if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc)) 6618 return ExprError(); 6619 6620 if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType())) 6621 if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S)) 6622 return ExprError(); 6623 6624 if (shouldBindAsTemporary(Entity)) 6625 CurInit = S.MaybeBindToTemporary(CurInit.get()); 6626 6627 return CurInit; 6628 } 6629 6630 namespace { 6631 enum LifetimeKind { 6632 /// The lifetime of a temporary bound to this entity ends at the end of the 6633 /// full-expression, and that's (probably) fine. 6634 LK_FullExpression, 6635 6636 /// The lifetime of a temporary bound to this entity is extended to the 6637 /// lifeitme of the entity itself. 6638 LK_Extended, 6639 6640 /// The lifetime of a temporary bound to this entity probably ends too soon, 6641 /// because the entity is allocated in a new-expression. 6642 LK_New, 6643 6644 /// The lifetime of a temporary bound to this entity ends too soon, because 6645 /// the entity is a return object. 6646 LK_Return, 6647 6648 /// The lifetime of a temporary bound to this entity ends too soon, because 6649 /// the entity is the result of a statement expression. 6650 LK_StmtExprResult, 6651 6652 /// This is a mem-initializer: if it would extend a temporary (other than via 6653 /// a default member initializer), the program is ill-formed. 6654 LK_MemInitializer, 6655 }; 6656 using LifetimeResult = 6657 llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>; 6658 } 6659 6660 /// Determine the declaration which an initialized entity ultimately refers to, 6661 /// for the purpose of lifetime-extending a temporary bound to a reference in 6662 /// the initialization of \p Entity. 6663 static LifetimeResult getEntityLifetime( 6664 const InitializedEntity *Entity, 6665 const InitializedEntity *InitField = nullptr) { 6666 // C++11 [class.temporary]p5: 6667 switch (Entity->getKind()) { 6668 case InitializedEntity::EK_Variable: 6669 // The temporary [...] persists for the lifetime of the reference 6670 return {Entity, LK_Extended}; 6671 6672 case InitializedEntity::EK_Member: 6673 // For subobjects, we look at the complete object. 6674 if (Entity->getParent()) 6675 return getEntityLifetime(Entity->getParent(), Entity); 6676 6677 // except: 6678 // C++17 [class.base.init]p8: 6679 // A temporary expression bound to a reference member in a 6680 // mem-initializer is ill-formed. 6681 // C++17 [class.base.init]p11: 6682 // A temporary expression bound to a reference member from a 6683 // default member initializer is ill-formed. 6684 // 6685 // The context of p11 and its example suggest that it's only the use of a 6686 // default member initializer from a constructor that makes the program 6687 // ill-formed, not its mere existence, and that it can even be used by 6688 // aggregate initialization. 6689 return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended 6690 : LK_MemInitializer}; 6691 6692 case InitializedEntity::EK_Binding: 6693 // Per [dcl.decomp]p3, the binding is treated as a variable of reference 6694 // type. 6695 return {Entity, LK_Extended}; 6696 6697 case InitializedEntity::EK_Parameter: 6698 case InitializedEntity::EK_Parameter_CF_Audited: 6699 // -- A temporary bound to a reference parameter in a function call 6700 // persists until the completion of the full-expression containing 6701 // the call. 6702 return {nullptr, LK_FullExpression}; 6703 6704 case InitializedEntity::EK_TemplateParameter: 6705 // FIXME: This will always be ill-formed; should we eagerly diagnose it here? 6706 return {nullptr, LK_FullExpression}; 6707 6708 case InitializedEntity::EK_Result: 6709 // -- The lifetime of a temporary bound to the returned value in a 6710 // function return statement is not extended; the temporary is 6711 // destroyed at the end of the full-expression in the return statement. 6712 return {nullptr, LK_Return}; 6713 6714 case InitializedEntity::EK_StmtExprResult: 6715 // FIXME: Should we lifetime-extend through the result of a statement 6716 // expression? 6717 return {nullptr, LK_StmtExprResult}; 6718 6719 case InitializedEntity::EK_New: 6720 // -- A temporary bound to a reference in a new-initializer persists 6721 // until the completion of the full-expression containing the 6722 // new-initializer. 6723 return {nullptr, LK_New}; 6724 6725 case InitializedEntity::EK_Temporary: 6726 case InitializedEntity::EK_CompoundLiteralInit: 6727 case InitializedEntity::EK_RelatedResult: 6728 // We don't yet know the storage duration of the surrounding temporary. 6729 // Assume it's got full-expression duration for now, it will patch up our 6730 // storage duration if that's not correct. 6731 return {nullptr, LK_FullExpression}; 6732 6733 case InitializedEntity::EK_ArrayElement: 6734 // For subobjects, we look at the complete object. 6735 return getEntityLifetime(Entity->getParent(), InitField); 6736 6737 case InitializedEntity::EK_Base: 6738 // For subobjects, we look at the complete object. 6739 if (Entity->getParent()) 6740 return getEntityLifetime(Entity->getParent(), InitField); 6741 return {InitField, LK_MemInitializer}; 6742 6743 case InitializedEntity::EK_Delegating: 6744 // We can reach this case for aggregate initialization in a constructor: 6745 // struct A { int &&r; }; 6746 // struct B : A { B() : A{0} {} }; 6747 // In this case, use the outermost field decl as the context. 6748 return {InitField, LK_MemInitializer}; 6749 6750 case InitializedEntity::EK_BlockElement: 6751 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6752 case InitializedEntity::EK_LambdaCapture: 6753 case InitializedEntity::EK_VectorElement: 6754 case InitializedEntity::EK_ComplexElement: 6755 return {nullptr, LK_FullExpression}; 6756 6757 case InitializedEntity::EK_Exception: 6758 // FIXME: Can we diagnose lifetime problems with exceptions? 6759 return {nullptr, LK_FullExpression}; 6760 } 6761 llvm_unreachable("unknown entity kind"); 6762 } 6763 6764 namespace { 6765 enum ReferenceKind { 6766 /// Lifetime would be extended by a reference binding to a temporary. 6767 RK_ReferenceBinding, 6768 /// Lifetime would be extended by a std::initializer_list object binding to 6769 /// its backing array. 6770 RK_StdInitializerList, 6771 }; 6772 6773 /// A temporary or local variable. This will be one of: 6774 /// * A MaterializeTemporaryExpr. 6775 /// * A DeclRefExpr whose declaration is a local. 6776 /// * An AddrLabelExpr. 6777 /// * A BlockExpr for a block with captures. 6778 using Local = Expr*; 6779 6780 /// Expressions we stepped over when looking for the local state. Any steps 6781 /// that would inhibit lifetime extension or take us out of subexpressions of 6782 /// the initializer are included. 6783 struct IndirectLocalPathEntry { 6784 enum EntryKind { 6785 DefaultInit, 6786 AddressOf, 6787 VarInit, 6788 LValToRVal, 6789 LifetimeBoundCall, 6790 TemporaryCopy, 6791 LambdaCaptureInit, 6792 GslReferenceInit, 6793 GslPointerInit 6794 } Kind; 6795 Expr *E; 6796 union { 6797 const Decl *D = nullptr; 6798 const LambdaCapture *Capture; 6799 }; 6800 IndirectLocalPathEntry() {} 6801 IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {} 6802 IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D) 6803 : Kind(K), E(E), D(D) {} 6804 IndirectLocalPathEntry(EntryKind K, Expr *E, const LambdaCapture *Capture) 6805 : Kind(K), E(E), Capture(Capture) {} 6806 }; 6807 6808 using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>; 6809 6810 struct RevertToOldSizeRAII { 6811 IndirectLocalPath &Path; 6812 unsigned OldSize = Path.size(); 6813 RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {} 6814 ~RevertToOldSizeRAII() { Path.resize(OldSize); } 6815 }; 6816 6817 using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L, 6818 ReferenceKind RK)>; 6819 } 6820 6821 static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) { 6822 for (auto E : Path) 6823 if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD) 6824 return true; 6825 return false; 6826 } 6827 6828 static bool pathContainsInit(IndirectLocalPath &Path) { 6829 return llvm::any_of(Path, [=](IndirectLocalPathEntry E) { 6830 return E.Kind == IndirectLocalPathEntry::DefaultInit || 6831 E.Kind == IndirectLocalPathEntry::VarInit; 6832 }); 6833 } 6834 6835 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, 6836 Expr *Init, LocalVisitor Visit, 6837 bool RevisitSubinits, 6838 bool EnableLifetimeWarnings); 6839 6840 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, 6841 Expr *Init, ReferenceKind RK, 6842 LocalVisitor Visit, 6843 bool EnableLifetimeWarnings); 6844 6845 template <typename T> static bool isRecordWithAttr(QualType Type) { 6846 if (auto *RD = Type->getAsCXXRecordDecl()) 6847 return RD->hasAttr<T>(); 6848 return false; 6849 } 6850 6851 // Decl::isInStdNamespace will return false for iterators in some STL 6852 // implementations due to them being defined in a namespace outside of the std 6853 // namespace. 6854 static bool isInStlNamespace(const Decl *D) { 6855 const DeclContext *DC = D->getDeclContext(); 6856 if (!DC) 6857 return false; 6858 if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) 6859 if (const IdentifierInfo *II = ND->getIdentifier()) { 6860 StringRef Name = II->getName(); 6861 if (Name.size() >= 2 && Name.front() == '_' && 6862 (Name[1] == '_' || isUppercase(Name[1]))) 6863 return true; 6864 } 6865 6866 return DC->isStdNamespace(); 6867 } 6868 6869 static bool shouldTrackImplicitObjectArg(const CXXMethodDecl *Callee) { 6870 if (auto *Conv = dyn_cast_or_null<CXXConversionDecl>(Callee)) 6871 if (isRecordWithAttr<PointerAttr>(Conv->getConversionType())) 6872 return true; 6873 if (!isInStlNamespace(Callee->getParent())) 6874 return false; 6875 if (!isRecordWithAttr<PointerAttr>(Callee->getThisObjectType()) && 6876 !isRecordWithAttr<OwnerAttr>(Callee->getThisObjectType())) 6877 return false; 6878 if (Callee->getReturnType()->isPointerType() || 6879 isRecordWithAttr<PointerAttr>(Callee->getReturnType())) { 6880 if (!Callee->getIdentifier()) 6881 return false; 6882 return llvm::StringSwitch<bool>(Callee->getName()) 6883 .Cases("begin", "rbegin", "cbegin", "crbegin", true) 6884 .Cases("end", "rend", "cend", "crend", true) 6885 .Cases("c_str", "data", "get", true) 6886 // Map and set types. 6887 .Cases("find", "equal_range", "lower_bound", "upper_bound", true) 6888 .Default(false); 6889 } else if (Callee->getReturnType()->isReferenceType()) { 6890 if (!Callee->getIdentifier()) { 6891 auto OO = Callee->getOverloadedOperator(); 6892 return OO == OverloadedOperatorKind::OO_Subscript || 6893 OO == OverloadedOperatorKind::OO_Star; 6894 } 6895 return llvm::StringSwitch<bool>(Callee->getName()) 6896 .Cases("front", "back", "at", "top", "value", true) 6897 .Default(false); 6898 } 6899 return false; 6900 } 6901 6902 static bool shouldTrackFirstArgument(const FunctionDecl *FD) { 6903 if (!FD->getIdentifier() || FD->getNumParams() != 1) 6904 return false; 6905 const auto *RD = FD->getParamDecl(0)->getType()->getPointeeCXXRecordDecl(); 6906 if (!FD->isInStdNamespace() || !RD || !RD->isInStdNamespace()) 6907 return false; 6908 if (!isRecordWithAttr<PointerAttr>(QualType(RD->getTypeForDecl(), 0)) && 6909 !isRecordWithAttr<OwnerAttr>(QualType(RD->getTypeForDecl(), 0))) 6910 return false; 6911 if (FD->getReturnType()->isPointerType() || 6912 isRecordWithAttr<PointerAttr>(FD->getReturnType())) { 6913 return llvm::StringSwitch<bool>(FD->getName()) 6914 .Cases("begin", "rbegin", "cbegin", "crbegin", true) 6915 .Cases("end", "rend", "cend", "crend", true) 6916 .Case("data", true) 6917 .Default(false); 6918 } else if (FD->getReturnType()->isReferenceType()) { 6919 return llvm::StringSwitch<bool>(FD->getName()) 6920 .Cases("get", "any_cast", true) 6921 .Default(false); 6922 } 6923 return false; 6924 } 6925 6926 static void handleGslAnnotatedTypes(IndirectLocalPath &Path, Expr *Call, 6927 LocalVisitor Visit) { 6928 auto VisitPointerArg = [&](const Decl *D, Expr *Arg, bool Value) { 6929 // We are not interested in the temporary base objects of gsl Pointers: 6930 // Temp().ptr; // Here ptr might not dangle. 6931 if (isa<MemberExpr>(Arg->IgnoreImpCasts())) 6932 return; 6933 // Once we initialized a value with a reference, it can no longer dangle. 6934 if (!Value) { 6935 for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) { 6936 if (It->Kind == IndirectLocalPathEntry::GslReferenceInit) 6937 continue; 6938 if (It->Kind == IndirectLocalPathEntry::GslPointerInit) 6939 return; 6940 break; 6941 } 6942 } 6943 Path.push_back({Value ? IndirectLocalPathEntry::GslPointerInit 6944 : IndirectLocalPathEntry::GslReferenceInit, 6945 Arg, D}); 6946 if (Arg->isGLValue()) 6947 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, 6948 Visit, 6949 /*EnableLifetimeWarnings=*/true); 6950 else 6951 visitLocalsRetainedByInitializer(Path, Arg, Visit, true, 6952 /*EnableLifetimeWarnings=*/true); 6953 Path.pop_back(); 6954 }; 6955 6956 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) { 6957 const auto *MD = cast_or_null<CXXMethodDecl>(MCE->getDirectCallee()); 6958 if (MD && shouldTrackImplicitObjectArg(MD)) 6959 VisitPointerArg(MD, MCE->getImplicitObjectArgument(), 6960 !MD->getReturnType()->isReferenceType()); 6961 return; 6962 } else if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(Call)) { 6963 FunctionDecl *Callee = OCE->getDirectCallee(); 6964 if (Callee && Callee->isCXXInstanceMember() && 6965 shouldTrackImplicitObjectArg(cast<CXXMethodDecl>(Callee))) 6966 VisitPointerArg(Callee, OCE->getArg(0), 6967 !Callee->getReturnType()->isReferenceType()); 6968 return; 6969 } else if (auto *CE = dyn_cast<CallExpr>(Call)) { 6970 FunctionDecl *Callee = CE->getDirectCallee(); 6971 if (Callee && shouldTrackFirstArgument(Callee)) 6972 VisitPointerArg(Callee, CE->getArg(0), 6973 !Callee->getReturnType()->isReferenceType()); 6974 return; 6975 } 6976 6977 if (auto *CCE = dyn_cast<CXXConstructExpr>(Call)) { 6978 const auto *Ctor = CCE->getConstructor(); 6979 const CXXRecordDecl *RD = Ctor->getParent(); 6980 if (CCE->getNumArgs() > 0 && RD->hasAttr<PointerAttr>()) 6981 VisitPointerArg(Ctor->getParamDecl(0), CCE->getArgs()[0], true); 6982 } 6983 } 6984 6985 static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) { 6986 const TypeSourceInfo *TSI = FD->getTypeSourceInfo(); 6987 if (!TSI) 6988 return false; 6989 // Don't declare this variable in the second operand of the for-statement; 6990 // GCC miscompiles that by ending its lifetime before evaluating the 6991 // third operand. See gcc.gnu.org/PR86769. 6992 AttributedTypeLoc ATL; 6993 for (TypeLoc TL = TSI->getTypeLoc(); 6994 (ATL = TL.getAsAdjusted<AttributedTypeLoc>()); 6995 TL = ATL.getModifiedLoc()) { 6996 if (ATL.getAttrAs<LifetimeBoundAttr>()) 6997 return true; 6998 } 6999 7000 // Assume that all assignment operators with a "normal" return type return 7001 // *this, that is, an lvalue reference that is the same type as the implicit 7002 // object parameter (or the LHS for a non-member operator$=). 7003 OverloadedOperatorKind OO = FD->getDeclName().getCXXOverloadedOperator(); 7004 if (OO == OO_Equal || isCompoundAssignmentOperator(OO)) { 7005 QualType RetT = FD->getReturnType(); 7006 if (RetT->isLValueReferenceType()) { 7007 ASTContext &Ctx = FD->getASTContext(); 7008 QualType LHST; 7009 auto *MD = dyn_cast<CXXMethodDecl>(FD); 7010 if (MD && MD->isCXXInstanceMember()) 7011 LHST = Ctx.getLValueReferenceType(MD->getThisObjectType()); 7012 else 7013 LHST = MD->getParamDecl(0)->getType(); 7014 if (Ctx.hasSameType(RetT, LHST)) 7015 return true; 7016 } 7017 } 7018 7019 return false; 7020 } 7021 7022 static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call, 7023 LocalVisitor Visit) { 7024 const FunctionDecl *Callee; 7025 ArrayRef<Expr*> Args; 7026 7027 if (auto *CE = dyn_cast<CallExpr>(Call)) { 7028 Callee = CE->getDirectCallee(); 7029 Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs()); 7030 } else { 7031 auto *CCE = cast<CXXConstructExpr>(Call); 7032 Callee = CCE->getConstructor(); 7033 Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs()); 7034 } 7035 if (!Callee) 7036 return; 7037 7038 Expr *ObjectArg = nullptr; 7039 if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) { 7040 ObjectArg = Args[0]; 7041 Args = Args.slice(1); 7042 } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) { 7043 ObjectArg = MCE->getImplicitObjectArgument(); 7044 } 7045 7046 auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) { 7047 Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D}); 7048 if (Arg->isGLValue()) 7049 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, 7050 Visit, 7051 /*EnableLifetimeWarnings=*/false); 7052 else 7053 visitLocalsRetainedByInitializer(Path, Arg, Visit, true, 7054 /*EnableLifetimeWarnings=*/false); 7055 Path.pop_back(); 7056 }; 7057 7058 if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee)) 7059 VisitLifetimeBoundArg(Callee, ObjectArg); 7060 7061 for (unsigned I = 0, 7062 N = std::min<unsigned>(Callee->getNumParams(), Args.size()); 7063 I != N; ++I) { 7064 if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>()) 7065 VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]); 7066 } 7067 } 7068 7069 /// Visit the locals that would be reachable through a reference bound to the 7070 /// glvalue expression \c Init. 7071 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, 7072 Expr *Init, ReferenceKind RK, 7073 LocalVisitor Visit, 7074 bool EnableLifetimeWarnings) { 7075 RevertToOldSizeRAII RAII(Path); 7076 7077 // Walk past any constructs which we can lifetime-extend across. 7078 Expr *Old; 7079 do { 7080 Old = Init; 7081 7082 if (auto *FE = dyn_cast<FullExpr>(Init)) 7083 Init = FE->getSubExpr(); 7084 7085 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 7086 // If this is just redundant braces around an initializer, step over it. 7087 if (ILE->isTransparent()) 7088 Init = ILE->getInit(0); 7089 } 7090 7091 // Step over any subobject adjustments; we may have a materialized 7092 // temporary inside them. 7093 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); 7094 7095 // Per current approach for DR1376, look through casts to reference type 7096 // when performing lifetime extension. 7097 if (CastExpr *CE = dyn_cast<CastExpr>(Init)) 7098 if (CE->getSubExpr()->isGLValue()) 7099 Init = CE->getSubExpr(); 7100 7101 // Per the current approach for DR1299, look through array element access 7102 // on array glvalues when performing lifetime extension. 7103 if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) { 7104 Init = ASE->getBase(); 7105 auto *ICE = dyn_cast<ImplicitCastExpr>(Init); 7106 if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay) 7107 Init = ICE->getSubExpr(); 7108 else 7109 // We can't lifetime extend through this but we might still find some 7110 // retained temporaries. 7111 return visitLocalsRetainedByInitializer(Path, Init, Visit, true, 7112 EnableLifetimeWarnings); 7113 } 7114 7115 // Step into CXXDefaultInitExprs so we can diagnose cases where a 7116 // constructor inherits one as an implicit mem-initializer. 7117 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { 7118 Path.push_back( 7119 {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); 7120 Init = DIE->getExpr(); 7121 } 7122 } while (Init != Old); 7123 7124 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) { 7125 if (Visit(Path, Local(MTE), RK)) 7126 visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true, 7127 EnableLifetimeWarnings); 7128 } 7129 7130 if (isa<CallExpr>(Init)) { 7131 if (EnableLifetimeWarnings) 7132 handleGslAnnotatedTypes(Path, Init, Visit); 7133 return visitLifetimeBoundArguments(Path, Init, Visit); 7134 } 7135 7136 switch (Init->getStmtClass()) { 7137 case Stmt::DeclRefExprClass: { 7138 // If we find the name of a local non-reference parameter, we could have a 7139 // lifetime problem. 7140 auto *DRE = cast<DeclRefExpr>(Init); 7141 auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7142 if (VD && VD->hasLocalStorage() && 7143 !DRE->refersToEnclosingVariableOrCapture()) { 7144 if (!VD->getType()->isReferenceType()) { 7145 Visit(Path, Local(DRE), RK); 7146 } else if (isa<ParmVarDecl>(DRE->getDecl())) { 7147 // The lifetime of a reference parameter is unknown; assume it's OK 7148 // for now. 7149 break; 7150 } else if (VD->getInit() && !isVarOnPath(Path, VD)) { 7151 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); 7152 visitLocalsRetainedByReferenceBinding(Path, VD->getInit(), 7153 RK_ReferenceBinding, Visit, 7154 EnableLifetimeWarnings); 7155 } 7156 } 7157 break; 7158 } 7159 7160 case Stmt::UnaryOperatorClass: { 7161 // The only unary operator that make sense to handle here 7162 // is Deref. All others don't resolve to a "name." This includes 7163 // handling all sorts of rvalues passed to a unary operator. 7164 const UnaryOperator *U = cast<UnaryOperator>(Init); 7165 if (U->getOpcode() == UO_Deref) 7166 visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true, 7167 EnableLifetimeWarnings); 7168 break; 7169 } 7170 7171 case Stmt::OMPArraySectionExprClass: { 7172 visitLocalsRetainedByInitializer(Path, 7173 cast<OMPArraySectionExpr>(Init)->getBase(), 7174 Visit, true, EnableLifetimeWarnings); 7175 break; 7176 } 7177 7178 case Stmt::ConditionalOperatorClass: 7179 case Stmt::BinaryConditionalOperatorClass: { 7180 auto *C = cast<AbstractConditionalOperator>(Init); 7181 if (!C->getTrueExpr()->getType()->isVoidType()) 7182 visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit, 7183 EnableLifetimeWarnings); 7184 if (!C->getFalseExpr()->getType()->isVoidType()) 7185 visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit, 7186 EnableLifetimeWarnings); 7187 break; 7188 } 7189 7190 // FIXME: Visit the left-hand side of an -> or ->*. 7191 7192 default: 7193 break; 7194 } 7195 } 7196 7197 /// Visit the locals that would be reachable through an object initialized by 7198 /// the prvalue expression \c Init. 7199 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, 7200 Expr *Init, LocalVisitor Visit, 7201 bool RevisitSubinits, 7202 bool EnableLifetimeWarnings) { 7203 RevertToOldSizeRAII RAII(Path); 7204 7205 Expr *Old; 7206 do { 7207 Old = Init; 7208 7209 // Step into CXXDefaultInitExprs so we can diagnose cases where a 7210 // constructor inherits one as an implicit mem-initializer. 7211 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { 7212 Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); 7213 Init = DIE->getExpr(); 7214 } 7215 7216 if (auto *FE = dyn_cast<FullExpr>(Init)) 7217 Init = FE->getSubExpr(); 7218 7219 // Dig out the expression which constructs the extended temporary. 7220 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); 7221 7222 if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init)) 7223 Init = BTE->getSubExpr(); 7224 7225 Init = Init->IgnoreParens(); 7226 7227 // Step over value-preserving rvalue casts. 7228 if (auto *CE = dyn_cast<CastExpr>(Init)) { 7229 switch (CE->getCastKind()) { 7230 case CK_LValueToRValue: 7231 // If we can match the lvalue to a const object, we can look at its 7232 // initializer. 7233 Path.push_back({IndirectLocalPathEntry::LValToRVal, CE}); 7234 return visitLocalsRetainedByReferenceBinding( 7235 Path, Init, RK_ReferenceBinding, 7236 [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool { 7237 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { 7238 auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7239 if (VD && VD->getType().isConstQualified() && VD->getInit() && 7240 !isVarOnPath(Path, VD)) { 7241 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); 7242 visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true, 7243 EnableLifetimeWarnings); 7244 } 7245 } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) { 7246 if (MTE->getType().isConstQualified()) 7247 visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, 7248 true, EnableLifetimeWarnings); 7249 } 7250 return false; 7251 }, EnableLifetimeWarnings); 7252 7253 // We assume that objects can be retained by pointers cast to integers, 7254 // but not if the integer is cast to floating-point type or to _Complex. 7255 // We assume that casts to 'bool' do not preserve enough information to 7256 // retain a local object. 7257 case CK_NoOp: 7258 case CK_BitCast: 7259 case CK_BaseToDerived: 7260 case CK_DerivedToBase: 7261 case CK_UncheckedDerivedToBase: 7262 case CK_Dynamic: 7263 case CK_ToUnion: 7264 case CK_UserDefinedConversion: 7265 case CK_ConstructorConversion: 7266 case CK_IntegralToPointer: 7267 case CK_PointerToIntegral: 7268 case CK_VectorSplat: 7269 case CK_IntegralCast: 7270 case CK_CPointerToObjCPointerCast: 7271 case CK_BlockPointerToObjCPointerCast: 7272 case CK_AnyPointerToBlockPointerCast: 7273 case CK_AddressSpaceConversion: 7274 break; 7275 7276 case CK_ArrayToPointerDecay: 7277 // Model array-to-pointer decay as taking the address of the array 7278 // lvalue. 7279 Path.push_back({IndirectLocalPathEntry::AddressOf, CE}); 7280 return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(), 7281 RK_ReferenceBinding, Visit, 7282 EnableLifetimeWarnings); 7283 7284 default: 7285 return; 7286 } 7287 7288 Init = CE->getSubExpr(); 7289 } 7290 } while (Old != Init); 7291 7292 // C++17 [dcl.init.list]p6: 7293 // initializing an initializer_list object from the array extends the 7294 // lifetime of the array exactly like binding a reference to a temporary. 7295 if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init)) 7296 return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(), 7297 RK_StdInitializerList, Visit, 7298 EnableLifetimeWarnings); 7299 7300 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 7301 // We already visited the elements of this initializer list while 7302 // performing the initialization. Don't visit them again unless we've 7303 // changed the lifetime of the initialized entity. 7304 if (!RevisitSubinits) 7305 return; 7306 7307 if (ILE->isTransparent()) 7308 return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit, 7309 RevisitSubinits, 7310 EnableLifetimeWarnings); 7311 7312 if (ILE->getType()->isArrayType()) { 7313 for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I) 7314 visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit, 7315 RevisitSubinits, 7316 EnableLifetimeWarnings); 7317 return; 7318 } 7319 7320 if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) { 7321 assert(RD->isAggregate() && "aggregate init on non-aggregate"); 7322 7323 // If we lifetime-extend a braced initializer which is initializing an 7324 // aggregate, and that aggregate contains reference members which are 7325 // bound to temporaries, those temporaries are also lifetime-extended. 7326 if (RD->isUnion() && ILE->getInitializedFieldInUnion() && 7327 ILE->getInitializedFieldInUnion()->getType()->isReferenceType()) 7328 visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0), 7329 RK_ReferenceBinding, Visit, 7330 EnableLifetimeWarnings); 7331 else { 7332 unsigned Index = 0; 7333 for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index) 7334 visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit, 7335 RevisitSubinits, 7336 EnableLifetimeWarnings); 7337 for (const auto *I : RD->fields()) { 7338 if (Index >= ILE->getNumInits()) 7339 break; 7340 if (I->isUnnamedBitfield()) 7341 continue; 7342 Expr *SubInit = ILE->getInit(Index); 7343 if (I->getType()->isReferenceType()) 7344 visitLocalsRetainedByReferenceBinding(Path, SubInit, 7345 RK_ReferenceBinding, Visit, 7346 EnableLifetimeWarnings); 7347 else 7348 // This might be either aggregate-initialization of a member or 7349 // initialization of a std::initializer_list object. Regardless, 7350 // we should recursively lifetime-extend that initializer. 7351 visitLocalsRetainedByInitializer(Path, SubInit, Visit, 7352 RevisitSubinits, 7353 EnableLifetimeWarnings); 7354 ++Index; 7355 } 7356 } 7357 } 7358 return; 7359 } 7360 7361 // The lifetime of an init-capture is that of the closure object constructed 7362 // by a lambda-expression. 7363 if (auto *LE = dyn_cast<LambdaExpr>(Init)) { 7364 LambdaExpr::capture_iterator CapI = LE->capture_begin(); 7365 for (Expr *E : LE->capture_inits()) { 7366 assert(CapI != LE->capture_end()); 7367 const LambdaCapture &Cap = *CapI++; 7368 if (!E) 7369 continue; 7370 if (Cap.capturesVariable()) 7371 Path.push_back({IndirectLocalPathEntry::LambdaCaptureInit, E, &Cap}); 7372 if (E->isGLValue()) 7373 visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding, 7374 Visit, EnableLifetimeWarnings); 7375 else 7376 visitLocalsRetainedByInitializer(Path, E, Visit, true, 7377 EnableLifetimeWarnings); 7378 if (Cap.capturesVariable()) 7379 Path.pop_back(); 7380 } 7381 } 7382 7383 // Assume that a copy or move from a temporary references the same objects 7384 // that the temporary does. 7385 if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) { 7386 if (CCE->getConstructor()->isCopyOrMoveConstructor()) { 7387 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(CCE->getArg(0))) { 7388 Expr *Arg = MTE->getSubExpr(); 7389 Path.push_back({IndirectLocalPathEntry::TemporaryCopy, Arg, 7390 CCE->getConstructor()}); 7391 visitLocalsRetainedByInitializer(Path, Arg, Visit, true, 7392 /*EnableLifetimeWarnings*/false); 7393 Path.pop_back(); 7394 } 7395 } 7396 } 7397 7398 if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) { 7399 if (EnableLifetimeWarnings) 7400 handleGslAnnotatedTypes(Path, Init, Visit); 7401 return visitLifetimeBoundArguments(Path, Init, Visit); 7402 } 7403 7404 switch (Init->getStmtClass()) { 7405 case Stmt::UnaryOperatorClass: { 7406 auto *UO = cast<UnaryOperator>(Init); 7407 // If the initializer is the address of a local, we could have a lifetime 7408 // problem. 7409 if (UO->getOpcode() == UO_AddrOf) { 7410 // If this is &rvalue, then it's ill-formed and we have already diagnosed 7411 // it. Don't produce a redundant warning about the lifetime of the 7412 // temporary. 7413 if (isa<MaterializeTemporaryExpr>(UO->getSubExpr())) 7414 return; 7415 7416 Path.push_back({IndirectLocalPathEntry::AddressOf, UO}); 7417 visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(), 7418 RK_ReferenceBinding, Visit, 7419 EnableLifetimeWarnings); 7420 } 7421 break; 7422 } 7423 7424 case Stmt::BinaryOperatorClass: { 7425 // Handle pointer arithmetic. 7426 auto *BO = cast<BinaryOperator>(Init); 7427 BinaryOperatorKind BOK = BO->getOpcode(); 7428 if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub)) 7429 break; 7430 7431 if (BO->getLHS()->getType()->isPointerType()) 7432 visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true, 7433 EnableLifetimeWarnings); 7434 else if (BO->getRHS()->getType()->isPointerType()) 7435 visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true, 7436 EnableLifetimeWarnings); 7437 break; 7438 } 7439 7440 case Stmt::ConditionalOperatorClass: 7441 case Stmt::BinaryConditionalOperatorClass: { 7442 auto *C = cast<AbstractConditionalOperator>(Init); 7443 // In C++, we can have a throw-expression operand, which has 'void' type 7444 // and isn't interesting from a lifetime perspective. 7445 if (!C->getTrueExpr()->getType()->isVoidType()) 7446 visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true, 7447 EnableLifetimeWarnings); 7448 if (!C->getFalseExpr()->getType()->isVoidType()) 7449 visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true, 7450 EnableLifetimeWarnings); 7451 break; 7452 } 7453 7454 case Stmt::BlockExprClass: 7455 if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) { 7456 // This is a local block, whose lifetime is that of the function. 7457 Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding); 7458 } 7459 break; 7460 7461 case Stmt::AddrLabelExprClass: 7462 // We want to warn if the address of a label would escape the function. 7463 Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding); 7464 break; 7465 7466 default: 7467 break; 7468 } 7469 } 7470 7471 /// Whether a path to an object supports lifetime extension. 7472 enum PathLifetimeKind { 7473 /// Lifetime-extend along this path. 7474 Extend, 7475 /// We should lifetime-extend, but we don't because (due to technical 7476 /// limitations) we can't. This happens for default member initializers, 7477 /// which we don't clone for every use, so we don't have a unique 7478 /// MaterializeTemporaryExpr to update. 7479 ShouldExtend, 7480 /// Do not lifetime extend along this path. 7481 NoExtend 7482 }; 7483 7484 /// Determine whether this is an indirect path to a temporary that we are 7485 /// supposed to lifetime-extend along. 7486 static PathLifetimeKind 7487 shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) { 7488 PathLifetimeKind Kind = PathLifetimeKind::Extend; 7489 for (auto Elem : Path) { 7490 if (Elem.Kind == IndirectLocalPathEntry::DefaultInit) 7491 Kind = PathLifetimeKind::ShouldExtend; 7492 else if (Elem.Kind != IndirectLocalPathEntry::LambdaCaptureInit) 7493 return PathLifetimeKind::NoExtend; 7494 } 7495 return Kind; 7496 } 7497 7498 /// Find the range for the first interesting entry in the path at or after I. 7499 static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I, 7500 Expr *E) { 7501 for (unsigned N = Path.size(); I != N; ++I) { 7502 switch (Path[I].Kind) { 7503 case IndirectLocalPathEntry::AddressOf: 7504 case IndirectLocalPathEntry::LValToRVal: 7505 case IndirectLocalPathEntry::LifetimeBoundCall: 7506 case IndirectLocalPathEntry::TemporaryCopy: 7507 case IndirectLocalPathEntry::GslReferenceInit: 7508 case IndirectLocalPathEntry::GslPointerInit: 7509 // These exist primarily to mark the path as not permitting or 7510 // supporting lifetime extension. 7511 break; 7512 7513 case IndirectLocalPathEntry::VarInit: 7514 if (cast<VarDecl>(Path[I].D)->isImplicit()) 7515 return SourceRange(); 7516 LLVM_FALLTHROUGH; 7517 case IndirectLocalPathEntry::DefaultInit: 7518 return Path[I].E->getSourceRange(); 7519 7520 case IndirectLocalPathEntry::LambdaCaptureInit: 7521 if (!Path[I].Capture->capturesVariable()) 7522 continue; 7523 return Path[I].E->getSourceRange(); 7524 } 7525 } 7526 return E->getSourceRange(); 7527 } 7528 7529 static bool pathOnlyInitializesGslPointer(IndirectLocalPath &Path) { 7530 for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) { 7531 if (It->Kind == IndirectLocalPathEntry::VarInit) 7532 continue; 7533 if (It->Kind == IndirectLocalPathEntry::AddressOf) 7534 continue; 7535 if (It->Kind == IndirectLocalPathEntry::LifetimeBoundCall) 7536 continue; 7537 return It->Kind == IndirectLocalPathEntry::GslPointerInit || 7538 It->Kind == IndirectLocalPathEntry::GslReferenceInit; 7539 } 7540 return false; 7541 } 7542 7543 void Sema::checkInitializerLifetime(const InitializedEntity &Entity, 7544 Expr *Init) { 7545 LifetimeResult LR = getEntityLifetime(&Entity); 7546 LifetimeKind LK = LR.getInt(); 7547 const InitializedEntity *ExtendingEntity = LR.getPointer(); 7548 7549 // If this entity doesn't have an interesting lifetime, don't bother looking 7550 // for temporaries within its initializer. 7551 if (LK == LK_FullExpression) 7552 return; 7553 7554 auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L, 7555 ReferenceKind RK) -> bool { 7556 SourceRange DiagRange = nextPathEntryRange(Path, 0, L); 7557 SourceLocation DiagLoc = DiagRange.getBegin(); 7558 7559 auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L); 7560 7561 bool IsGslPtrInitWithGslTempOwner = false; 7562 bool IsLocalGslOwner = false; 7563 if (pathOnlyInitializesGslPointer(Path)) { 7564 if (isa<DeclRefExpr>(L)) { 7565 // We do not want to follow the references when returning a pointer originating 7566 // from a local owner to avoid the following false positive: 7567 // int &p = *localUniquePtr; 7568 // someContainer.add(std::move(localUniquePtr)); 7569 // return p; 7570 IsLocalGslOwner = isRecordWithAttr<OwnerAttr>(L->getType()); 7571 if (pathContainsInit(Path) || !IsLocalGslOwner) 7572 return false; 7573 } else { 7574 IsGslPtrInitWithGslTempOwner = MTE && !MTE->getExtendingDecl() && 7575 isRecordWithAttr<OwnerAttr>(MTE->getType()); 7576 // Skipping a chain of initializing gsl::Pointer annotated objects. 7577 // We are looking only for the final source to find out if it was 7578 // a local or temporary owner or the address of a local variable/param. 7579 if (!IsGslPtrInitWithGslTempOwner) 7580 return true; 7581 } 7582 } 7583 7584 switch (LK) { 7585 case LK_FullExpression: 7586 llvm_unreachable("already handled this"); 7587 7588 case LK_Extended: { 7589 if (!MTE) { 7590 // The initialized entity has lifetime beyond the full-expression, 7591 // and the local entity does too, so don't warn. 7592 // 7593 // FIXME: We should consider warning if a static / thread storage 7594 // duration variable retains an automatic storage duration local. 7595 return false; 7596 } 7597 7598 if (IsGslPtrInitWithGslTempOwner && DiagLoc.isValid()) { 7599 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange; 7600 return false; 7601 } 7602 7603 switch (shouldLifetimeExtendThroughPath(Path)) { 7604 case PathLifetimeKind::Extend: 7605 // Update the storage duration of the materialized temporary. 7606 // FIXME: Rebuild the expression instead of mutating it. 7607 MTE->setExtendingDecl(ExtendingEntity->getDecl(), 7608 ExtendingEntity->allocateManglingNumber()); 7609 // Also visit the temporaries lifetime-extended by this initializer. 7610 return true; 7611 7612 case PathLifetimeKind::ShouldExtend: 7613 // We're supposed to lifetime-extend the temporary along this path (per 7614 // the resolution of DR1815), but we don't support that yet. 7615 // 7616 // FIXME: Properly handle this situation. Perhaps the easiest approach 7617 // would be to clone the initializer expression on each use that would 7618 // lifetime extend its temporaries. 7619 Diag(DiagLoc, diag::warn_unsupported_lifetime_extension) 7620 << RK << DiagRange; 7621 break; 7622 7623 case PathLifetimeKind::NoExtend: 7624 // If the path goes through the initialization of a variable or field, 7625 // it can't possibly reach a temporary created in this full-expression. 7626 // We will have already diagnosed any problems with the initializer. 7627 if (pathContainsInit(Path)) 7628 return false; 7629 7630 Diag(DiagLoc, diag::warn_dangling_variable) 7631 << RK << !Entity.getParent() 7632 << ExtendingEntity->getDecl()->isImplicit() 7633 << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange; 7634 break; 7635 } 7636 break; 7637 } 7638 7639 case LK_MemInitializer: { 7640 if (isa<MaterializeTemporaryExpr>(L)) { 7641 // Under C++ DR1696, if a mem-initializer (or a default member 7642 // initializer used by the absence of one) would lifetime-extend a 7643 // temporary, the program is ill-formed. 7644 if (auto *ExtendingDecl = 7645 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { 7646 if (IsGslPtrInitWithGslTempOwner) { 7647 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_member) 7648 << ExtendingDecl << DiagRange; 7649 Diag(ExtendingDecl->getLocation(), 7650 diag::note_ref_or_ptr_member_declared_here) 7651 << true; 7652 return false; 7653 } 7654 bool IsSubobjectMember = ExtendingEntity != &Entity; 7655 Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path) != 7656 PathLifetimeKind::NoExtend 7657 ? diag::err_dangling_member 7658 : diag::warn_dangling_member) 7659 << ExtendingDecl << IsSubobjectMember << RK << DiagRange; 7660 // Don't bother adding a note pointing to the field if we're inside 7661 // its default member initializer; our primary diagnostic points to 7662 // the same place in that case. 7663 if (Path.empty() || 7664 Path.back().Kind != IndirectLocalPathEntry::DefaultInit) { 7665 Diag(ExtendingDecl->getLocation(), 7666 diag::note_lifetime_extending_member_declared_here) 7667 << RK << IsSubobjectMember; 7668 } 7669 } else { 7670 // We have a mem-initializer but no particular field within it; this 7671 // is either a base class or a delegating initializer directly 7672 // initializing the base-class from something that doesn't live long 7673 // enough. 7674 // 7675 // FIXME: Warn on this. 7676 return false; 7677 } 7678 } else { 7679 // Paths via a default initializer can only occur during error recovery 7680 // (there's no other way that a default initializer can refer to a 7681 // local). Don't produce a bogus warning on those cases. 7682 if (pathContainsInit(Path)) 7683 return false; 7684 7685 // Suppress false positives for code like the one below: 7686 // Ctor(unique_ptr<T> up) : member(*up), member2(move(up)) {} 7687 if (IsLocalGslOwner && pathOnlyInitializesGslPointer(Path)) 7688 return false; 7689 7690 auto *DRE = dyn_cast<DeclRefExpr>(L); 7691 auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr; 7692 if (!VD) { 7693 // A member was initialized to a local block. 7694 // FIXME: Warn on this. 7695 return false; 7696 } 7697 7698 if (auto *Member = 7699 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { 7700 bool IsPointer = !Member->getType()->isReferenceType(); 7701 Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr 7702 : diag::warn_bind_ref_member_to_parameter) 7703 << Member << VD << isa<ParmVarDecl>(VD) << DiagRange; 7704 Diag(Member->getLocation(), 7705 diag::note_ref_or_ptr_member_declared_here) 7706 << (unsigned)IsPointer; 7707 } 7708 } 7709 break; 7710 } 7711 7712 case LK_New: 7713 if (isa<MaterializeTemporaryExpr>(L)) { 7714 if (IsGslPtrInitWithGslTempOwner) 7715 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange; 7716 else 7717 Diag(DiagLoc, RK == RK_ReferenceBinding 7718 ? diag::warn_new_dangling_reference 7719 : diag::warn_new_dangling_initializer_list) 7720 << !Entity.getParent() << DiagRange; 7721 } else { 7722 // We can't determine if the allocation outlives the local declaration. 7723 return false; 7724 } 7725 break; 7726 7727 case LK_Return: 7728 case LK_StmtExprResult: 7729 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { 7730 // We can't determine if the local variable outlives the statement 7731 // expression. 7732 if (LK == LK_StmtExprResult) 7733 return false; 7734 Diag(DiagLoc, diag::warn_ret_stack_addr_ref) 7735 << Entity.getType()->isReferenceType() << DRE->getDecl() 7736 << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange; 7737 } else if (isa<BlockExpr>(L)) { 7738 Diag(DiagLoc, diag::err_ret_local_block) << DiagRange; 7739 } else if (isa<AddrLabelExpr>(L)) { 7740 // Don't warn when returning a label from a statement expression. 7741 // Leaving the scope doesn't end its lifetime. 7742 if (LK == LK_StmtExprResult) 7743 return false; 7744 Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange; 7745 } else { 7746 Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref) 7747 << Entity.getType()->isReferenceType() << DiagRange; 7748 } 7749 break; 7750 } 7751 7752 for (unsigned I = 0; I != Path.size(); ++I) { 7753 auto Elem = Path[I]; 7754 7755 switch (Elem.Kind) { 7756 case IndirectLocalPathEntry::AddressOf: 7757 case IndirectLocalPathEntry::LValToRVal: 7758 // These exist primarily to mark the path as not permitting or 7759 // supporting lifetime extension. 7760 break; 7761 7762 case IndirectLocalPathEntry::LifetimeBoundCall: 7763 case IndirectLocalPathEntry::TemporaryCopy: 7764 case IndirectLocalPathEntry::GslPointerInit: 7765 case IndirectLocalPathEntry::GslReferenceInit: 7766 // FIXME: Consider adding a note for these. 7767 break; 7768 7769 case IndirectLocalPathEntry::DefaultInit: { 7770 auto *FD = cast<FieldDecl>(Elem.D); 7771 Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer) 7772 << FD << nextPathEntryRange(Path, I + 1, L); 7773 break; 7774 } 7775 7776 case IndirectLocalPathEntry::VarInit: { 7777 const VarDecl *VD = cast<VarDecl>(Elem.D); 7778 Diag(VD->getLocation(), diag::note_local_var_initializer) 7779 << VD->getType()->isReferenceType() 7780 << VD->isImplicit() << VD->getDeclName() 7781 << nextPathEntryRange(Path, I + 1, L); 7782 break; 7783 } 7784 7785 case IndirectLocalPathEntry::LambdaCaptureInit: 7786 if (!Elem.Capture->capturesVariable()) 7787 break; 7788 // FIXME: We can't easily tell apart an init-capture from a nested 7789 // capture of an init-capture. 7790 const VarDecl *VD = Elem.Capture->getCapturedVar(); 7791 Diag(Elem.Capture->getLocation(), diag::note_lambda_capture_initializer) 7792 << VD << VD->isInitCapture() << Elem.Capture->isExplicit() 7793 << (Elem.Capture->getCaptureKind() == LCK_ByRef) << VD 7794 << nextPathEntryRange(Path, I + 1, L); 7795 break; 7796 } 7797 } 7798 7799 // We didn't lifetime-extend, so don't go any further; we don't need more 7800 // warnings or errors on inner temporaries within this one's initializer. 7801 return false; 7802 }; 7803 7804 bool EnableLifetimeWarnings = !getDiagnostics().isIgnored( 7805 diag::warn_dangling_lifetime_pointer, SourceLocation()); 7806 llvm::SmallVector<IndirectLocalPathEntry, 8> Path; 7807 if (Init->isGLValue()) 7808 visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding, 7809 TemporaryVisitor, 7810 EnableLifetimeWarnings); 7811 else 7812 visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false, 7813 EnableLifetimeWarnings); 7814 } 7815 7816 static void DiagnoseNarrowingInInitList(Sema &S, 7817 const ImplicitConversionSequence &ICS, 7818 QualType PreNarrowingType, 7819 QualType EntityType, 7820 const Expr *PostInit); 7821 7822 /// Provide warnings when std::move is used on construction. 7823 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr, 7824 bool IsReturnStmt) { 7825 if (!InitExpr) 7826 return; 7827 7828 if (S.inTemplateInstantiation()) 7829 return; 7830 7831 QualType DestType = InitExpr->getType(); 7832 if (!DestType->isRecordType()) 7833 return; 7834 7835 unsigned DiagID = 0; 7836 if (IsReturnStmt) { 7837 const CXXConstructExpr *CCE = 7838 dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens()); 7839 if (!CCE || CCE->getNumArgs() != 1) 7840 return; 7841 7842 if (!CCE->getConstructor()->isCopyOrMoveConstructor()) 7843 return; 7844 7845 InitExpr = CCE->getArg(0)->IgnoreImpCasts(); 7846 } 7847 7848 // Find the std::move call and get the argument. 7849 const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens()); 7850 if (!CE || !CE->isCallToStdMove()) 7851 return; 7852 7853 const Expr *Arg = CE->getArg(0)->IgnoreImplicit(); 7854 7855 if (IsReturnStmt) { 7856 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts()); 7857 if (!DRE || DRE->refersToEnclosingVariableOrCapture()) 7858 return; 7859 7860 const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7861 if (!VD || !VD->hasLocalStorage()) 7862 return; 7863 7864 // __block variables are not moved implicitly. 7865 if (VD->hasAttr<BlocksAttr>()) 7866 return; 7867 7868 QualType SourceType = VD->getType(); 7869 if (!SourceType->isRecordType()) 7870 return; 7871 7872 if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) { 7873 return; 7874 } 7875 7876 // If we're returning a function parameter, copy elision 7877 // is not possible. 7878 if (isa<ParmVarDecl>(VD)) 7879 DiagID = diag::warn_redundant_move_on_return; 7880 else 7881 DiagID = diag::warn_pessimizing_move_on_return; 7882 } else { 7883 DiagID = diag::warn_pessimizing_move_on_initialization; 7884 const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens(); 7885 if (!ArgStripped->isPRValue() || !ArgStripped->getType()->isRecordType()) 7886 return; 7887 } 7888 7889 S.Diag(CE->getBeginLoc(), DiagID); 7890 7891 // Get all the locations for a fix-it. Don't emit the fix-it if any location 7892 // is within a macro. 7893 SourceLocation CallBegin = CE->getCallee()->getBeginLoc(); 7894 if (CallBegin.isMacroID()) 7895 return; 7896 SourceLocation RParen = CE->getRParenLoc(); 7897 if (RParen.isMacroID()) 7898 return; 7899 SourceLocation LParen; 7900 SourceLocation ArgLoc = Arg->getBeginLoc(); 7901 7902 // Special testing for the argument location. Since the fix-it needs the 7903 // location right before the argument, the argument location can be in a 7904 // macro only if it is at the beginning of the macro. 7905 while (ArgLoc.isMacroID() && 7906 S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) { 7907 ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin(); 7908 } 7909 7910 if (LParen.isMacroID()) 7911 return; 7912 7913 LParen = ArgLoc.getLocWithOffset(-1); 7914 7915 S.Diag(CE->getBeginLoc(), diag::note_remove_move) 7916 << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen)) 7917 << FixItHint::CreateRemoval(SourceRange(RParen, RParen)); 7918 } 7919 7920 static void CheckForNullPointerDereference(Sema &S, const Expr *E) { 7921 // Check to see if we are dereferencing a null pointer. If so, this is 7922 // undefined behavior, so warn about it. This only handles the pattern 7923 // "*null", which is a very syntactic check. 7924 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts())) 7925 if (UO->getOpcode() == UO_Deref && 7926 UO->getSubExpr()->IgnoreParenCasts()-> 7927 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) { 7928 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, 7929 S.PDiag(diag::warn_binding_null_to_reference) 7930 << UO->getSubExpr()->getSourceRange()); 7931 } 7932 } 7933 7934 MaterializeTemporaryExpr * 7935 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary, 7936 bool BoundToLvalueReference) { 7937 auto MTE = new (Context) 7938 MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference); 7939 7940 // Order an ExprWithCleanups for lifetime marks. 7941 // 7942 // TODO: It'll be good to have a single place to check the access of the 7943 // destructor and generate ExprWithCleanups for various uses. Currently these 7944 // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary, 7945 // but there may be a chance to merge them. 7946 Cleanup.setExprNeedsCleanups(false); 7947 return MTE; 7948 } 7949 7950 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) { 7951 // In C++98, we don't want to implicitly create an xvalue. 7952 // FIXME: This means that AST consumers need to deal with "prvalues" that 7953 // denote materialized temporaries. Maybe we should add another ValueKind 7954 // for "xvalue pretending to be a prvalue" for C++98 support. 7955 if (!E->isPRValue() || !getLangOpts().CPlusPlus11) 7956 return E; 7957 7958 // C++1z [conv.rval]/1: T shall be a complete type. 7959 // FIXME: Does this ever matter (can we form a prvalue of incomplete type)? 7960 // If so, we should check for a non-abstract class type here too. 7961 QualType T = E->getType(); 7962 if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type)) 7963 return ExprError(); 7964 7965 return CreateMaterializeTemporaryExpr(E->getType(), E, false); 7966 } 7967 7968 ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty, 7969 ExprValueKind VK, 7970 CheckedConversionKind CCK) { 7971 7972 CastKind CK = CK_NoOp; 7973 7974 if (VK == VK_PRValue) { 7975 auto PointeeTy = Ty->getPointeeType(); 7976 auto ExprPointeeTy = E->getType()->getPointeeType(); 7977 if (!PointeeTy.isNull() && 7978 PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace()) 7979 CK = CK_AddressSpaceConversion; 7980 } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) { 7981 CK = CK_AddressSpaceConversion; 7982 } 7983 7984 return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK); 7985 } 7986 7987 ExprResult InitializationSequence::Perform(Sema &S, 7988 const InitializedEntity &Entity, 7989 const InitializationKind &Kind, 7990 MultiExprArg Args, 7991 QualType *ResultType) { 7992 if (Failed()) { 7993 Diagnose(S, Entity, Kind, Args); 7994 return ExprError(); 7995 } 7996 if (!ZeroInitializationFixit.empty()) { 7997 unsigned DiagID = diag::err_default_init_const; 7998 if (Decl *D = Entity.getDecl()) 7999 if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>()) 8000 DiagID = diag::ext_default_init_const; 8001 8002 // The initialization would have succeeded with this fixit. Since the fixit 8003 // is on the error, we need to build a valid AST in this case, so this isn't 8004 // handled in the Failed() branch above. 8005 QualType DestType = Entity.getType(); 8006 S.Diag(Kind.getLocation(), DiagID) 8007 << DestType << (bool)DestType->getAs<RecordType>() 8008 << FixItHint::CreateInsertion(ZeroInitializationFixitLoc, 8009 ZeroInitializationFixit); 8010 } 8011 8012 if (getKind() == DependentSequence) { 8013 // If the declaration is a non-dependent, incomplete array type 8014 // that has an initializer, then its type will be completed once 8015 // the initializer is instantiated. 8016 if (ResultType && !Entity.getType()->isDependentType() && 8017 Args.size() == 1) { 8018 QualType DeclType = Entity.getType(); 8019 if (const IncompleteArrayType *ArrayT 8020 = S.Context.getAsIncompleteArrayType(DeclType)) { 8021 // FIXME: We don't currently have the ability to accurately 8022 // compute the length of an initializer list without 8023 // performing full type-checking of the initializer list 8024 // (since we have to determine where braces are implicitly 8025 // introduced and such). So, we fall back to making the array 8026 // type a dependently-sized array type with no specified 8027 // bound. 8028 if (isa<InitListExpr>((Expr *)Args[0])) { 8029 SourceRange Brackets; 8030 8031 // Scavange the location of the brackets from the entity, if we can. 8032 if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) { 8033 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) { 8034 TypeLoc TL = TInfo->getTypeLoc(); 8035 if (IncompleteArrayTypeLoc ArrayLoc = 8036 TL.getAs<IncompleteArrayTypeLoc>()) 8037 Brackets = ArrayLoc.getBracketsRange(); 8038 } 8039 } 8040 8041 *ResultType 8042 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(), 8043 /*NumElts=*/nullptr, 8044 ArrayT->getSizeModifier(), 8045 ArrayT->getIndexTypeCVRQualifiers(), 8046 Brackets); 8047 } 8048 8049 } 8050 } 8051 if (Kind.getKind() == InitializationKind::IK_Direct && 8052 !Kind.isExplicitCast()) { 8053 // Rebuild the ParenListExpr. 8054 SourceRange ParenRange = Kind.getParenOrBraceRange(); 8055 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(), 8056 Args); 8057 } 8058 assert(Kind.getKind() == InitializationKind::IK_Copy || 8059 Kind.isExplicitCast() || 8060 Kind.getKind() == InitializationKind::IK_DirectList); 8061 return ExprResult(Args[0]); 8062 } 8063 8064 // No steps means no initialization. 8065 if (Steps.empty()) 8066 return ExprResult((Expr *)nullptr); 8067 8068 if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() && 8069 Args.size() == 1 && isa<InitListExpr>(Args[0]) && 8070 !Entity.isParamOrTemplateParamKind()) { 8071 // Produce a C++98 compatibility warning if we are initializing a reference 8072 // from an initializer list. For parameters, we produce a better warning 8073 // elsewhere. 8074 Expr *Init = Args[0]; 8075 S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init) 8076 << Init->getSourceRange(); 8077 } 8078 8079 // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope 8080 QualType ETy = Entity.getType(); 8081 bool HasGlobalAS = ETy.hasAddressSpace() && 8082 ETy.getAddressSpace() == LangAS::opencl_global; 8083 8084 if (S.getLangOpts().OpenCLVersion >= 200 && 8085 ETy->isAtomicType() && !HasGlobalAS && 8086 Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) { 8087 S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init) 8088 << 1 8089 << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc()); 8090 return ExprError(); 8091 } 8092 8093 QualType DestType = Entity.getType().getNonReferenceType(); 8094 // FIXME: Ugly hack around the fact that Entity.getType() is not 8095 // the same as Entity.getDecl()->getType() in cases involving type merging, 8096 // and we want latter when it makes sense. 8097 if (ResultType) 8098 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() : 8099 Entity.getType(); 8100 8101 ExprResult CurInit((Expr *)nullptr); 8102 SmallVector<Expr*, 4> ArrayLoopCommonExprs; 8103 8104 // For initialization steps that start with a single initializer, 8105 // grab the only argument out the Args and place it into the "current" 8106 // initializer. 8107 switch (Steps.front().Kind) { 8108 case SK_ResolveAddressOfOverloadedFunction: 8109 case SK_CastDerivedToBasePRValue: 8110 case SK_CastDerivedToBaseXValue: 8111 case SK_CastDerivedToBaseLValue: 8112 case SK_BindReference: 8113 case SK_BindReferenceToTemporary: 8114 case SK_FinalCopy: 8115 case SK_ExtraneousCopyToTemporary: 8116 case SK_UserConversion: 8117 case SK_QualificationConversionLValue: 8118 case SK_QualificationConversionXValue: 8119 case SK_QualificationConversionPRValue: 8120 case SK_FunctionReferenceConversion: 8121 case SK_AtomicConversion: 8122 case SK_ConversionSequence: 8123 case SK_ConversionSequenceNoNarrowing: 8124 case SK_ListInitialization: 8125 case SK_UnwrapInitList: 8126 case SK_RewrapInitList: 8127 case SK_CAssignment: 8128 case SK_StringInit: 8129 case SK_ObjCObjectConversion: 8130 case SK_ArrayLoopIndex: 8131 case SK_ArrayLoopInit: 8132 case SK_ArrayInit: 8133 case SK_GNUArrayInit: 8134 case SK_ParenthesizedArrayInit: 8135 case SK_PassByIndirectCopyRestore: 8136 case SK_PassByIndirectRestore: 8137 case SK_ProduceObjCObject: 8138 case SK_StdInitializerList: 8139 case SK_OCLSamplerInit: 8140 case SK_OCLZeroOpaqueType: { 8141 assert(Args.size() == 1); 8142 CurInit = Args[0]; 8143 if (!CurInit.get()) return ExprError(); 8144 break; 8145 } 8146 8147 case SK_ConstructorInitialization: 8148 case SK_ConstructorInitializationFromList: 8149 case SK_StdInitializerListConstructorCall: 8150 case SK_ZeroInitialization: 8151 break; 8152 } 8153 8154 // Promote from an unevaluated context to an unevaluated list context in 8155 // C++11 list-initialization; we need to instantiate entities usable in 8156 // constant expressions here in order to perform narrowing checks =( 8157 EnterExpressionEvaluationContext Evaluated( 8158 S, EnterExpressionEvaluationContext::InitList, 8159 CurInit.get() && isa<InitListExpr>(CurInit.get())); 8160 8161 // C++ [class.abstract]p2: 8162 // no objects of an abstract class can be created except as subobjects 8163 // of a class derived from it 8164 auto checkAbstractType = [&](QualType T) -> bool { 8165 if (Entity.getKind() == InitializedEntity::EK_Base || 8166 Entity.getKind() == InitializedEntity::EK_Delegating) 8167 return false; 8168 return S.RequireNonAbstractType(Kind.getLocation(), T, 8169 diag::err_allocation_of_abstract_type); 8170 }; 8171 8172 // Walk through the computed steps for the initialization sequence, 8173 // performing the specified conversions along the way. 8174 bool ConstructorInitRequiresZeroInit = false; 8175 for (step_iterator Step = step_begin(), StepEnd = step_end(); 8176 Step != StepEnd; ++Step) { 8177 if (CurInit.isInvalid()) 8178 return ExprError(); 8179 8180 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType(); 8181 8182 switch (Step->Kind) { 8183 case SK_ResolveAddressOfOverloadedFunction: 8184 // Overload resolution determined which function invoke; update the 8185 // initializer to reflect that choice. 8186 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl); 8187 if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation())) 8188 return ExprError(); 8189 CurInit = S.FixOverloadedFunctionReference(CurInit, 8190 Step->Function.FoundDecl, 8191 Step->Function.Function); 8192 break; 8193 8194 case SK_CastDerivedToBasePRValue: 8195 case SK_CastDerivedToBaseXValue: 8196 case SK_CastDerivedToBaseLValue: { 8197 // We have a derived-to-base cast that produces either an rvalue or an 8198 // lvalue. Perform that cast. 8199 8200 CXXCastPath BasePath; 8201 8202 // Casts to inaccessible base classes are allowed with C-style casts. 8203 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast(); 8204 if (S.CheckDerivedToBaseConversion( 8205 SourceType, Step->Type, CurInit.get()->getBeginLoc(), 8206 CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess)) 8207 return ExprError(); 8208 8209 ExprValueKind VK = 8210 Step->Kind == SK_CastDerivedToBaseLValue 8211 ? VK_LValue 8212 : (Step->Kind == SK_CastDerivedToBaseXValue ? VK_XValue 8213 : VK_PRValue); 8214 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type, 8215 CK_DerivedToBase, CurInit.get(), 8216 &BasePath, VK, FPOptionsOverride()); 8217 break; 8218 } 8219 8220 case SK_BindReference: 8221 // Reference binding does not have any corresponding ASTs. 8222 8223 // Check exception specifications 8224 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 8225 return ExprError(); 8226 8227 // We don't check for e.g. function pointers here, since address 8228 // availability checks should only occur when the function first decays 8229 // into a pointer or reference. 8230 if (CurInit.get()->getType()->isFunctionProtoType()) { 8231 if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) { 8232 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 8233 if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 8234 DRE->getBeginLoc())) 8235 return ExprError(); 8236 } 8237 } 8238 } 8239 8240 CheckForNullPointerDereference(S, CurInit.get()); 8241 break; 8242 8243 case SK_BindReferenceToTemporary: { 8244 // Make sure the "temporary" is actually an rvalue. 8245 assert(CurInit.get()->isPRValue() && "not a temporary"); 8246 8247 // Check exception specifications 8248 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 8249 return ExprError(); 8250 8251 QualType MTETy = Step->Type; 8252 8253 // When this is an incomplete array type (such as when this is 8254 // initializing an array of unknown bounds from an init list), use THAT 8255 // type instead so that we propogate the array bounds. 8256 if (MTETy->isIncompleteArrayType() && 8257 !CurInit.get()->getType()->isIncompleteArrayType() && 8258 S.Context.hasSameType( 8259 MTETy->getPointeeOrArrayElementType(), 8260 CurInit.get()->getType()->getPointeeOrArrayElementType())) 8261 MTETy = CurInit.get()->getType(); 8262 8263 // Materialize the temporary into memory. 8264 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( 8265 MTETy, CurInit.get(), Entity.getType()->isLValueReferenceType()); 8266 CurInit = MTE; 8267 8268 // If we're extending this temporary to automatic storage duration -- we 8269 // need to register its cleanup during the full-expression's cleanups. 8270 if (MTE->getStorageDuration() == SD_Automatic && 8271 MTE->getType().isDestructedType()) 8272 S.Cleanup.setExprNeedsCleanups(true); 8273 break; 8274 } 8275 8276 case SK_FinalCopy: 8277 if (checkAbstractType(Step->Type)) 8278 return ExprError(); 8279 8280 // If the overall initialization is initializing a temporary, we already 8281 // bound our argument if it was necessary to do so. If not (if we're 8282 // ultimately initializing a non-temporary), our argument needs to be 8283 // bound since it's initializing a function parameter. 8284 // FIXME: This is a mess. Rationalize temporary destruction. 8285 if (!shouldBindAsTemporary(Entity)) 8286 CurInit = S.MaybeBindToTemporary(CurInit.get()); 8287 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 8288 /*IsExtraneousCopy=*/false); 8289 break; 8290 8291 case SK_ExtraneousCopyToTemporary: 8292 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 8293 /*IsExtraneousCopy=*/true); 8294 break; 8295 8296 case SK_UserConversion: { 8297 // We have a user-defined conversion that invokes either a constructor 8298 // or a conversion function. 8299 CastKind CastKind; 8300 FunctionDecl *Fn = Step->Function.Function; 8301 DeclAccessPair FoundFn = Step->Function.FoundDecl; 8302 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates; 8303 bool CreatedObject = false; 8304 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) { 8305 // Build a call to the selected constructor. 8306 SmallVector<Expr*, 8> ConstructorArgs; 8307 SourceLocation Loc = CurInit.get()->getBeginLoc(); 8308 8309 // Determine the arguments required to actually perform the constructor 8310 // call. 8311 Expr *Arg = CurInit.get(); 8312 if (S.CompleteConstructorCall(Constructor, Step->Type, 8313 MultiExprArg(&Arg, 1), Loc, 8314 ConstructorArgs)) 8315 return ExprError(); 8316 8317 // Build an expression that constructs a temporary. 8318 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, 8319 FoundFn, Constructor, 8320 ConstructorArgs, 8321 HadMultipleCandidates, 8322 /*ListInit*/ false, 8323 /*StdInitListInit*/ false, 8324 /*ZeroInit*/ false, 8325 CXXConstructExpr::CK_Complete, 8326 SourceRange()); 8327 if (CurInit.isInvalid()) 8328 return ExprError(); 8329 8330 S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn, 8331 Entity); 8332 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 8333 return ExprError(); 8334 8335 CastKind = CK_ConstructorConversion; 8336 CreatedObject = true; 8337 } else { 8338 // Build a call to the conversion function. 8339 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn); 8340 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr, 8341 FoundFn); 8342 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 8343 return ExprError(); 8344 8345 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion, 8346 HadMultipleCandidates); 8347 if (CurInit.isInvalid()) 8348 return ExprError(); 8349 8350 CastKind = CK_UserDefinedConversion; 8351 CreatedObject = Conversion->getReturnType()->isRecordType(); 8352 } 8353 8354 if (CreatedObject && checkAbstractType(CurInit.get()->getType())) 8355 return ExprError(); 8356 8357 CurInit = ImplicitCastExpr::Create( 8358 S.Context, CurInit.get()->getType(), CastKind, CurInit.get(), nullptr, 8359 CurInit.get()->getValueKind(), S.CurFPFeatureOverrides()); 8360 8361 if (shouldBindAsTemporary(Entity)) 8362 // The overall entity is temporary, so this expression should be 8363 // destroyed at the end of its full-expression. 8364 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 8365 else if (CreatedObject && shouldDestroyEntity(Entity)) { 8366 // The object outlasts the full-expression, but we need to prepare for 8367 // a destructor being run on it. 8368 // FIXME: It makes no sense to do this here. This should happen 8369 // regardless of how we initialized the entity. 8370 QualType T = CurInit.get()->getType(); 8371 if (const RecordType *Record = T->getAs<RecordType>()) { 8372 CXXDestructorDecl *Destructor 8373 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl())); 8374 S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor, 8375 S.PDiag(diag::err_access_dtor_temp) << T); 8376 S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor); 8377 if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc())) 8378 return ExprError(); 8379 } 8380 } 8381 break; 8382 } 8383 8384 case SK_QualificationConversionLValue: 8385 case SK_QualificationConversionXValue: 8386 case SK_QualificationConversionPRValue: { 8387 // Perform a qualification conversion; these can never go wrong. 8388 ExprValueKind VK = 8389 Step->Kind == SK_QualificationConversionLValue 8390 ? VK_LValue 8391 : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue 8392 : VK_PRValue); 8393 CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK); 8394 break; 8395 } 8396 8397 case SK_FunctionReferenceConversion: 8398 assert(CurInit.get()->isLValue() && 8399 "function reference should be lvalue"); 8400 CurInit = 8401 S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK_LValue); 8402 break; 8403 8404 case SK_AtomicConversion: { 8405 assert(CurInit.get()->isPRValue() && "cannot convert glvalue to atomic"); 8406 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8407 CK_NonAtomicToAtomic, VK_PRValue); 8408 break; 8409 } 8410 8411 case SK_ConversionSequence: 8412 case SK_ConversionSequenceNoNarrowing: { 8413 if (const auto *FromPtrType = 8414 CurInit.get()->getType()->getAs<PointerType>()) { 8415 if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) { 8416 if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) && 8417 !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) { 8418 // Do not check static casts here because they are checked earlier 8419 // in Sema::ActOnCXXNamedCast() 8420 if (!Kind.isStaticCast()) { 8421 S.Diag(CurInit.get()->getExprLoc(), 8422 diag::warn_noderef_to_dereferenceable_pointer) 8423 << CurInit.get()->getSourceRange(); 8424 } 8425 } 8426 } 8427 } 8428 8429 Sema::CheckedConversionKind CCK 8430 = Kind.isCStyleCast()? Sema::CCK_CStyleCast 8431 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast 8432 : Kind.isExplicitCast()? Sema::CCK_OtherCast 8433 : Sema::CCK_ImplicitConversion; 8434 ExprResult CurInitExprRes = 8435 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS, 8436 getAssignmentAction(Entity), CCK); 8437 if (CurInitExprRes.isInvalid()) 8438 return ExprError(); 8439 8440 S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get()); 8441 8442 CurInit = CurInitExprRes; 8443 8444 if (Step->Kind == SK_ConversionSequenceNoNarrowing && 8445 S.getLangOpts().CPlusPlus) 8446 DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(), 8447 CurInit.get()); 8448 8449 break; 8450 } 8451 8452 case SK_ListInitialization: { 8453 if (checkAbstractType(Step->Type)) 8454 return ExprError(); 8455 8456 InitListExpr *InitList = cast<InitListExpr>(CurInit.get()); 8457 // If we're not initializing the top-level entity, we need to create an 8458 // InitializeTemporary entity for our target type. 8459 QualType Ty = Step->Type; 8460 bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty); 8461 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty); 8462 InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity; 8463 InitListChecker PerformInitList(S, InitEntity, 8464 InitList, Ty, /*VerifyOnly=*/false, 8465 /*TreatUnavailableAsInvalid=*/false); 8466 if (PerformInitList.HadError()) 8467 return ExprError(); 8468 8469 // Hack: We must update *ResultType if available in order to set the 8470 // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'. 8471 // Worst case: 'const int (&arref)[] = {1, 2, 3};'. 8472 if (ResultType && 8473 ResultType->getNonReferenceType()->isIncompleteArrayType()) { 8474 if ((*ResultType)->isRValueReferenceType()) 8475 Ty = S.Context.getRValueReferenceType(Ty); 8476 else if ((*ResultType)->isLValueReferenceType()) 8477 Ty = S.Context.getLValueReferenceType(Ty, 8478 (*ResultType)->castAs<LValueReferenceType>()->isSpelledAsLValue()); 8479 *ResultType = Ty; 8480 } 8481 8482 InitListExpr *StructuredInitList = 8483 PerformInitList.getFullyStructuredList(); 8484 CurInit.get(); 8485 CurInit = shouldBindAsTemporary(InitEntity) 8486 ? S.MaybeBindToTemporary(StructuredInitList) 8487 : StructuredInitList; 8488 break; 8489 } 8490 8491 case SK_ConstructorInitializationFromList: { 8492 if (checkAbstractType(Step->Type)) 8493 return ExprError(); 8494 8495 // When an initializer list is passed for a parameter of type "reference 8496 // to object", we don't get an EK_Temporary entity, but instead an 8497 // EK_Parameter entity with reference type. 8498 // FIXME: This is a hack. What we really should do is create a user 8499 // conversion step for this case, but this makes it considerably more 8500 // complicated. For now, this will do. 8501 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 8502 Entity.getType().getNonReferenceType()); 8503 bool UseTemporary = Entity.getType()->isReferenceType(); 8504 assert(Args.size() == 1 && "expected a single argument for list init"); 8505 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 8506 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init) 8507 << InitList->getSourceRange(); 8508 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits()); 8509 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity : 8510 Entity, 8511 Kind, Arg, *Step, 8512 ConstructorInitRequiresZeroInit, 8513 /*IsListInitialization*/true, 8514 /*IsStdInitListInit*/false, 8515 InitList->getLBraceLoc(), 8516 InitList->getRBraceLoc()); 8517 break; 8518 } 8519 8520 case SK_UnwrapInitList: 8521 CurInit = cast<InitListExpr>(CurInit.get())->getInit(0); 8522 break; 8523 8524 case SK_RewrapInitList: { 8525 Expr *E = CurInit.get(); 8526 InitListExpr *Syntactic = Step->WrappingSyntacticList; 8527 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context, 8528 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc()); 8529 ILE->setSyntacticForm(Syntactic); 8530 ILE->setType(E->getType()); 8531 ILE->setValueKind(E->getValueKind()); 8532 CurInit = ILE; 8533 break; 8534 } 8535 8536 case SK_ConstructorInitialization: 8537 case SK_StdInitializerListConstructorCall: { 8538 if (checkAbstractType(Step->Type)) 8539 return ExprError(); 8540 8541 // When an initializer list is passed for a parameter of type "reference 8542 // to object", we don't get an EK_Temporary entity, but instead an 8543 // EK_Parameter entity with reference type. 8544 // FIXME: This is a hack. What we really should do is create a user 8545 // conversion step for this case, but this makes it considerably more 8546 // complicated. For now, this will do. 8547 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 8548 Entity.getType().getNonReferenceType()); 8549 bool UseTemporary = Entity.getType()->isReferenceType(); 8550 bool IsStdInitListInit = 8551 Step->Kind == SK_StdInitializerListConstructorCall; 8552 Expr *Source = CurInit.get(); 8553 SourceRange Range = Kind.hasParenOrBraceRange() 8554 ? Kind.getParenOrBraceRange() 8555 : SourceRange(); 8556 CurInit = PerformConstructorInitialization( 8557 S, UseTemporary ? TempEntity : Entity, Kind, 8558 Source ? MultiExprArg(Source) : Args, *Step, 8559 ConstructorInitRequiresZeroInit, 8560 /*IsListInitialization*/ IsStdInitListInit, 8561 /*IsStdInitListInitialization*/ IsStdInitListInit, 8562 /*LBraceLoc*/ Range.getBegin(), 8563 /*RBraceLoc*/ Range.getEnd()); 8564 break; 8565 } 8566 8567 case SK_ZeroInitialization: { 8568 step_iterator NextStep = Step; 8569 ++NextStep; 8570 if (NextStep != StepEnd && 8571 (NextStep->Kind == SK_ConstructorInitialization || 8572 NextStep->Kind == SK_ConstructorInitializationFromList)) { 8573 // The need for zero-initialization is recorded directly into 8574 // the call to the object's constructor within the next step. 8575 ConstructorInitRequiresZeroInit = true; 8576 } else if (Kind.getKind() == InitializationKind::IK_Value && 8577 S.getLangOpts().CPlusPlus && 8578 !Kind.isImplicitValueInit()) { 8579 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 8580 if (!TSInfo) 8581 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type, 8582 Kind.getRange().getBegin()); 8583 8584 CurInit = new (S.Context) CXXScalarValueInitExpr( 8585 Entity.getType().getNonLValueExprType(S.Context), TSInfo, 8586 Kind.getRange().getEnd()); 8587 } else { 8588 CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type); 8589 } 8590 break; 8591 } 8592 8593 case SK_CAssignment: { 8594 QualType SourceType = CurInit.get()->getType(); 8595 8596 // Save off the initial CurInit in case we need to emit a diagnostic 8597 ExprResult InitialCurInit = CurInit; 8598 ExprResult Result = CurInit; 8599 Sema::AssignConvertType ConvTy = 8600 S.CheckSingleAssignmentConstraints(Step->Type, Result, true, 8601 Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited); 8602 if (Result.isInvalid()) 8603 return ExprError(); 8604 CurInit = Result; 8605 8606 // If this is a call, allow conversion to a transparent union. 8607 ExprResult CurInitExprRes = CurInit; 8608 if (ConvTy != Sema::Compatible && 8609 Entity.isParameterKind() && 8610 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes) 8611 == Sema::Compatible) 8612 ConvTy = Sema::Compatible; 8613 if (CurInitExprRes.isInvalid()) 8614 return ExprError(); 8615 CurInit = CurInitExprRes; 8616 8617 bool Complained; 8618 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(), 8619 Step->Type, SourceType, 8620 InitialCurInit.get(), 8621 getAssignmentAction(Entity, true), 8622 &Complained)) { 8623 PrintInitLocationNote(S, Entity); 8624 return ExprError(); 8625 } else if (Complained) 8626 PrintInitLocationNote(S, Entity); 8627 break; 8628 } 8629 8630 case SK_StringInit: { 8631 QualType Ty = Step->Type; 8632 bool UpdateType = ResultType && Entity.getType()->isIncompleteArrayType(); 8633 CheckStringInit(CurInit.get(), UpdateType ? *ResultType : Ty, 8634 S.Context.getAsArrayType(Ty), S); 8635 break; 8636 } 8637 8638 case SK_ObjCObjectConversion: 8639 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8640 CK_ObjCObjectLValueCast, 8641 CurInit.get()->getValueKind()); 8642 break; 8643 8644 case SK_ArrayLoopIndex: { 8645 Expr *Cur = CurInit.get(); 8646 Expr *BaseExpr = new (S.Context) 8647 OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(), 8648 Cur->getValueKind(), Cur->getObjectKind(), Cur); 8649 Expr *IndexExpr = 8650 new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType()); 8651 CurInit = S.CreateBuiltinArraySubscriptExpr( 8652 BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation()); 8653 ArrayLoopCommonExprs.push_back(BaseExpr); 8654 break; 8655 } 8656 8657 case SK_ArrayLoopInit: { 8658 assert(!ArrayLoopCommonExprs.empty() && 8659 "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit"); 8660 Expr *Common = ArrayLoopCommonExprs.pop_back_val(); 8661 CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common, 8662 CurInit.get()); 8663 break; 8664 } 8665 8666 case SK_GNUArrayInit: 8667 // Okay: we checked everything before creating this step. Note that 8668 // this is a GNU extension. 8669 S.Diag(Kind.getLocation(), diag::ext_array_init_copy) 8670 << Step->Type << CurInit.get()->getType() 8671 << CurInit.get()->getSourceRange(); 8672 updateGNUCompoundLiteralRValue(CurInit.get()); 8673 LLVM_FALLTHROUGH; 8674 case SK_ArrayInit: 8675 // If the destination type is an incomplete array type, update the 8676 // type accordingly. 8677 if (ResultType) { 8678 if (const IncompleteArrayType *IncompleteDest 8679 = S.Context.getAsIncompleteArrayType(Step->Type)) { 8680 if (const ConstantArrayType *ConstantSource 8681 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) { 8682 *ResultType = S.Context.getConstantArrayType( 8683 IncompleteDest->getElementType(), 8684 ConstantSource->getSize(), 8685 ConstantSource->getSizeExpr(), 8686 ArrayType::Normal, 0); 8687 } 8688 } 8689 } 8690 break; 8691 8692 case SK_ParenthesizedArrayInit: 8693 // Okay: we checked everything before creating this step. Note that 8694 // this is a GNU extension. 8695 S.Diag(Kind.getLocation(), diag::ext_array_init_parens) 8696 << CurInit.get()->getSourceRange(); 8697 break; 8698 8699 case SK_PassByIndirectCopyRestore: 8700 case SK_PassByIndirectRestore: 8701 checkIndirectCopyRestoreSource(S, CurInit.get()); 8702 CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr( 8703 CurInit.get(), Step->Type, 8704 Step->Kind == SK_PassByIndirectCopyRestore); 8705 break; 8706 8707 case SK_ProduceObjCObject: 8708 CurInit = ImplicitCastExpr::Create( 8709 S.Context, Step->Type, CK_ARCProduceObject, CurInit.get(), nullptr, 8710 VK_PRValue, FPOptionsOverride()); 8711 break; 8712 8713 case SK_StdInitializerList: { 8714 S.Diag(CurInit.get()->getExprLoc(), 8715 diag::warn_cxx98_compat_initializer_list_init) 8716 << CurInit.get()->getSourceRange(); 8717 8718 // Materialize the temporary into memory. 8719 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( 8720 CurInit.get()->getType(), CurInit.get(), 8721 /*BoundToLvalueReference=*/false); 8722 8723 // Wrap it in a construction of a std::initializer_list<T>. 8724 CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE); 8725 8726 // Bind the result, in case the library has given initializer_list a 8727 // non-trivial destructor. 8728 if (shouldBindAsTemporary(Entity)) 8729 CurInit = S.MaybeBindToTemporary(CurInit.get()); 8730 break; 8731 } 8732 8733 case SK_OCLSamplerInit: { 8734 // Sampler initialization have 5 cases: 8735 // 1. function argument passing 8736 // 1a. argument is a file-scope variable 8737 // 1b. argument is a function-scope variable 8738 // 1c. argument is one of caller function's parameters 8739 // 2. variable initialization 8740 // 2a. initializing a file-scope variable 8741 // 2b. initializing a function-scope variable 8742 // 8743 // For file-scope variables, since they cannot be initialized by function 8744 // call of __translate_sampler_initializer in LLVM IR, their references 8745 // need to be replaced by a cast from their literal initializers to 8746 // sampler type. Since sampler variables can only be used in function 8747 // calls as arguments, we only need to replace them when handling the 8748 // argument passing. 8749 assert(Step->Type->isSamplerT() && 8750 "Sampler initialization on non-sampler type."); 8751 Expr *Init = CurInit.get()->IgnoreParens(); 8752 QualType SourceType = Init->getType(); 8753 // Case 1 8754 if (Entity.isParameterKind()) { 8755 if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) { 8756 S.Diag(Kind.getLocation(), diag::err_sampler_argument_required) 8757 << SourceType; 8758 break; 8759 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) { 8760 auto Var = cast<VarDecl>(DRE->getDecl()); 8761 // Case 1b and 1c 8762 // No cast from integer to sampler is needed. 8763 if (!Var->hasGlobalStorage()) { 8764 CurInit = ImplicitCastExpr::Create( 8765 S.Context, Step->Type, CK_LValueToRValue, Init, 8766 /*BasePath=*/nullptr, VK_PRValue, FPOptionsOverride()); 8767 break; 8768 } 8769 // Case 1a 8770 // For function call with a file-scope sampler variable as argument, 8771 // get the integer literal. 8772 // Do not diagnose if the file-scope variable does not have initializer 8773 // since this has already been diagnosed when parsing the variable 8774 // declaration. 8775 if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit())) 8776 break; 8777 Init = cast<ImplicitCastExpr>(const_cast<Expr*>( 8778 Var->getInit()))->getSubExpr(); 8779 SourceType = Init->getType(); 8780 } 8781 } else { 8782 // Case 2 8783 // Check initializer is 32 bit integer constant. 8784 // If the initializer is taken from global variable, do not diagnose since 8785 // this has already been done when parsing the variable declaration. 8786 if (!Init->isConstantInitializer(S.Context, false)) 8787 break; 8788 8789 if (!SourceType->isIntegerType() || 8790 32 != S.Context.getIntWidth(SourceType)) { 8791 S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer) 8792 << SourceType; 8793 break; 8794 } 8795 8796 Expr::EvalResult EVResult; 8797 Init->EvaluateAsInt(EVResult, S.Context); 8798 llvm::APSInt Result = EVResult.Val.getInt(); 8799 const uint64_t SamplerValue = Result.getLimitedValue(); 8800 // 32-bit value of sampler's initializer is interpreted as 8801 // bit-field with the following structure: 8802 // |unspecified|Filter|Addressing Mode| Normalized Coords| 8803 // |31 6|5 4|3 1| 0| 8804 // This structure corresponds to enum values of sampler properties 8805 // defined in SPIR spec v1.2 and also opencl-c.h 8806 unsigned AddressingMode = (0x0E & SamplerValue) >> 1; 8807 unsigned FilterMode = (0x30 & SamplerValue) >> 4; 8808 if (FilterMode != 1 && FilterMode != 2 && 8809 !S.getOpenCLOptions().isAvailableOption( 8810 "cl_intel_device_side_avc_motion_estimation", S.getLangOpts())) 8811 S.Diag(Kind.getLocation(), 8812 diag::warn_sampler_initializer_invalid_bits) 8813 << "Filter Mode"; 8814 if (AddressingMode > 4) 8815 S.Diag(Kind.getLocation(), 8816 diag::warn_sampler_initializer_invalid_bits) 8817 << "Addressing Mode"; 8818 } 8819 8820 // Cases 1a, 2a and 2b 8821 // Insert cast from integer to sampler. 8822 CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy, 8823 CK_IntToOCLSampler); 8824 break; 8825 } 8826 case SK_OCLZeroOpaqueType: { 8827 assert((Step->Type->isEventT() || Step->Type->isQueueT() || 8828 Step->Type->isOCLIntelSubgroupAVCType()) && 8829 "Wrong type for initialization of OpenCL opaque type."); 8830 8831 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8832 CK_ZeroToOCLOpaqueType, 8833 CurInit.get()->getValueKind()); 8834 break; 8835 } 8836 } 8837 } 8838 8839 // Check whether the initializer has a shorter lifetime than the initialized 8840 // entity, and if not, either lifetime-extend or warn as appropriate. 8841 if (auto *Init = CurInit.get()) 8842 S.checkInitializerLifetime(Entity, Init); 8843 8844 // Diagnose non-fatal problems with the completed initialization. 8845 if (Entity.getKind() == InitializedEntity::EK_Member && 8846 cast<FieldDecl>(Entity.getDecl())->isBitField()) 8847 S.CheckBitFieldInitialization(Kind.getLocation(), 8848 cast<FieldDecl>(Entity.getDecl()), 8849 CurInit.get()); 8850 8851 // Check for std::move on construction. 8852 if (const Expr *E = CurInit.get()) { 8853 CheckMoveOnConstruction(S, E, 8854 Entity.getKind() == InitializedEntity::EK_Result); 8855 } 8856 8857 return CurInit; 8858 } 8859 8860 /// Somewhere within T there is an uninitialized reference subobject. 8861 /// Dig it out and diagnose it. 8862 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc, 8863 QualType T) { 8864 if (T->isReferenceType()) { 8865 S.Diag(Loc, diag::err_reference_without_init) 8866 << T.getNonReferenceType(); 8867 return true; 8868 } 8869 8870 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 8871 if (!RD || !RD->hasUninitializedReferenceMember()) 8872 return false; 8873 8874 for (const auto *FI : RD->fields()) { 8875 if (FI->isUnnamedBitfield()) 8876 continue; 8877 8878 if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) { 8879 S.Diag(Loc, diag::note_value_initialization_here) << RD; 8880 return true; 8881 } 8882 } 8883 8884 for (const auto &BI : RD->bases()) { 8885 if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) { 8886 S.Diag(Loc, diag::note_value_initialization_here) << RD; 8887 return true; 8888 } 8889 } 8890 8891 return false; 8892 } 8893 8894 8895 //===----------------------------------------------------------------------===// 8896 // Diagnose initialization failures 8897 //===----------------------------------------------------------------------===// 8898 8899 /// Emit notes associated with an initialization that failed due to a 8900 /// "simple" conversion failure. 8901 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity, 8902 Expr *op) { 8903 QualType destType = entity.getType(); 8904 if (destType.getNonReferenceType()->isObjCObjectPointerType() && 8905 op->getType()->isObjCObjectPointerType()) { 8906 8907 // Emit a possible note about the conversion failing because the 8908 // operand is a message send with a related result type. 8909 S.EmitRelatedResultTypeNote(op); 8910 8911 // Emit a possible note about a return failing because we're 8912 // expecting a related result type. 8913 if (entity.getKind() == InitializedEntity::EK_Result) 8914 S.EmitRelatedResultTypeNoteForReturn(destType); 8915 } 8916 QualType fromType = op->getType(); 8917 auto *fromDecl = fromType.getTypePtr()->getPointeeCXXRecordDecl(); 8918 auto *destDecl = destType.getTypePtr()->getPointeeCXXRecordDecl(); 8919 if (fromDecl && destDecl && fromDecl->getDeclKind() == Decl::CXXRecord && 8920 destDecl->getDeclKind() == Decl::CXXRecord && 8921 !fromDecl->isInvalidDecl() && !destDecl->isInvalidDecl() && 8922 !fromDecl->hasDefinition()) 8923 S.Diag(fromDecl->getLocation(), diag::note_forward_class_conversion) 8924 << S.getASTContext().getTagDeclType(fromDecl) 8925 << S.getASTContext().getTagDeclType(destDecl); 8926 } 8927 8928 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity, 8929 InitListExpr *InitList) { 8930 QualType DestType = Entity.getType(); 8931 8932 QualType E; 8933 if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) { 8934 QualType ArrayType = S.Context.getConstantArrayType( 8935 E.withConst(), 8936 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 8937 InitList->getNumInits()), 8938 nullptr, clang::ArrayType::Normal, 0); 8939 InitializedEntity HiddenArray = 8940 InitializedEntity::InitializeTemporary(ArrayType); 8941 return diagnoseListInit(S, HiddenArray, InitList); 8942 } 8943 8944 if (DestType->isReferenceType()) { 8945 // A list-initialization failure for a reference means that we tried to 8946 // create a temporary of the inner type (per [dcl.init.list]p3.6) and the 8947 // inner initialization failed. 8948 QualType T = DestType->castAs<ReferenceType>()->getPointeeType(); 8949 diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList); 8950 SourceLocation Loc = InitList->getBeginLoc(); 8951 if (auto *D = Entity.getDecl()) 8952 Loc = D->getLocation(); 8953 S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T; 8954 return; 8955 } 8956 8957 InitListChecker DiagnoseInitList(S, Entity, InitList, DestType, 8958 /*VerifyOnly=*/false, 8959 /*TreatUnavailableAsInvalid=*/false); 8960 assert(DiagnoseInitList.HadError() && 8961 "Inconsistent init list check result."); 8962 } 8963 8964 bool InitializationSequence::Diagnose(Sema &S, 8965 const InitializedEntity &Entity, 8966 const InitializationKind &Kind, 8967 ArrayRef<Expr *> Args) { 8968 if (!Failed()) 8969 return false; 8970 8971 // When we want to diagnose only one element of a braced-init-list, 8972 // we need to factor it out. 8973 Expr *OnlyArg; 8974 if (Args.size() == 1) { 8975 auto *List = dyn_cast<InitListExpr>(Args[0]); 8976 if (List && List->getNumInits() == 1) 8977 OnlyArg = List->getInit(0); 8978 else 8979 OnlyArg = Args[0]; 8980 } 8981 else 8982 OnlyArg = nullptr; 8983 8984 QualType DestType = Entity.getType(); 8985 switch (Failure) { 8986 case FK_TooManyInitsForReference: 8987 // FIXME: Customize for the initialized entity? 8988 if (Args.empty()) { 8989 // Dig out the reference subobject which is uninitialized and diagnose it. 8990 // If this is value-initialization, this could be nested some way within 8991 // the target type. 8992 assert(Kind.getKind() == InitializationKind::IK_Value || 8993 DestType->isReferenceType()); 8994 bool Diagnosed = 8995 DiagnoseUninitializedReference(S, Kind.getLocation(), DestType); 8996 assert(Diagnosed && "couldn't find uninitialized reference to diagnose"); 8997 (void)Diagnosed; 8998 } else // FIXME: diagnostic below could be better! 8999 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits) 9000 << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); 9001 break; 9002 case FK_ParenthesizedListInitForReference: 9003 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) 9004 << 1 << Entity.getType() << Args[0]->getSourceRange(); 9005 break; 9006 9007 case FK_ArrayNeedsInitList: 9008 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0; 9009 break; 9010 case FK_ArrayNeedsInitListOrStringLiteral: 9011 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1; 9012 break; 9013 case FK_ArrayNeedsInitListOrWideStringLiteral: 9014 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2; 9015 break; 9016 case FK_NarrowStringIntoWideCharArray: 9017 S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar); 9018 break; 9019 case FK_WideStringIntoCharArray: 9020 S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char); 9021 break; 9022 case FK_IncompatWideStringIntoWideChar: 9023 S.Diag(Kind.getLocation(), 9024 diag::err_array_init_incompat_wide_string_into_wchar); 9025 break; 9026 case FK_PlainStringIntoUTF8Char: 9027 S.Diag(Kind.getLocation(), 9028 diag::err_array_init_plain_string_into_char8_t); 9029 S.Diag(Args.front()->getBeginLoc(), 9030 diag::note_array_init_plain_string_into_char8_t) 9031 << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8"); 9032 break; 9033 case FK_UTF8StringIntoPlainChar: 9034 S.Diag(Kind.getLocation(), 9035 diag::err_array_init_utf8_string_into_char) 9036 << S.getLangOpts().CPlusPlus20; 9037 break; 9038 case FK_ArrayTypeMismatch: 9039 case FK_NonConstantArrayInit: 9040 S.Diag(Kind.getLocation(), 9041 (Failure == FK_ArrayTypeMismatch 9042 ? diag::err_array_init_different_type 9043 : diag::err_array_init_non_constant_array)) 9044 << DestType.getNonReferenceType() 9045 << OnlyArg->getType() 9046 << Args[0]->getSourceRange(); 9047 break; 9048 9049 case FK_VariableLengthArrayHasInitializer: 9050 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init) 9051 << Args[0]->getSourceRange(); 9052 break; 9053 9054 case FK_AddressOfOverloadFailed: { 9055 DeclAccessPair Found; 9056 S.ResolveAddressOfOverloadedFunction(OnlyArg, 9057 DestType.getNonReferenceType(), 9058 true, 9059 Found); 9060 break; 9061 } 9062 9063 case FK_AddressOfUnaddressableFunction: { 9064 auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl()); 9065 S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 9066 OnlyArg->getBeginLoc()); 9067 break; 9068 } 9069 9070 case FK_ReferenceInitOverloadFailed: 9071 case FK_UserConversionOverloadFailed: 9072 switch (FailedOverloadResult) { 9073 case OR_Ambiguous: 9074 9075 FailedCandidateSet.NoteCandidates( 9076 PartialDiagnosticAt( 9077 Kind.getLocation(), 9078 Failure == FK_UserConversionOverloadFailed 9079 ? (S.PDiag(diag::err_typecheck_ambiguous_condition) 9080 << OnlyArg->getType() << DestType 9081 << Args[0]->getSourceRange()) 9082 : (S.PDiag(diag::err_ref_init_ambiguous) 9083 << DestType << OnlyArg->getType() 9084 << Args[0]->getSourceRange())), 9085 S, OCD_AmbiguousCandidates, Args); 9086 break; 9087 9088 case OR_No_Viable_Function: { 9089 auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args); 9090 if (!S.RequireCompleteType(Kind.getLocation(), 9091 DestType.getNonReferenceType(), 9092 diag::err_typecheck_nonviable_condition_incomplete, 9093 OnlyArg->getType(), Args[0]->getSourceRange())) 9094 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition) 9095 << (Entity.getKind() == InitializedEntity::EK_Result) 9096 << OnlyArg->getType() << Args[0]->getSourceRange() 9097 << DestType.getNonReferenceType(); 9098 9099 FailedCandidateSet.NoteCandidates(S, Args, Cands); 9100 break; 9101 } 9102 case OR_Deleted: { 9103 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function) 9104 << OnlyArg->getType() << DestType.getNonReferenceType() 9105 << Args[0]->getSourceRange(); 9106 OverloadCandidateSet::iterator Best; 9107 OverloadingResult Ovl 9108 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 9109 if (Ovl == OR_Deleted) { 9110 S.NoteDeletedFunction(Best->Function); 9111 } else { 9112 llvm_unreachable("Inconsistent overload resolution?"); 9113 } 9114 break; 9115 } 9116 9117 case OR_Success: 9118 llvm_unreachable("Conversion did not fail!"); 9119 } 9120 break; 9121 9122 case FK_NonConstLValueReferenceBindingToTemporary: 9123 if (isa<InitListExpr>(Args[0])) { 9124 S.Diag(Kind.getLocation(), 9125 diag::err_lvalue_reference_bind_to_initlist) 9126 << DestType.getNonReferenceType().isVolatileQualified() 9127 << DestType.getNonReferenceType() 9128 << Args[0]->getSourceRange(); 9129 break; 9130 } 9131 LLVM_FALLTHROUGH; 9132 9133 case FK_NonConstLValueReferenceBindingToUnrelated: 9134 S.Diag(Kind.getLocation(), 9135 Failure == FK_NonConstLValueReferenceBindingToTemporary 9136 ? diag::err_lvalue_reference_bind_to_temporary 9137 : diag::err_lvalue_reference_bind_to_unrelated) 9138 << DestType.getNonReferenceType().isVolatileQualified() 9139 << DestType.getNonReferenceType() 9140 << OnlyArg->getType() 9141 << Args[0]->getSourceRange(); 9142 break; 9143 9144 case FK_NonConstLValueReferenceBindingToBitfield: { 9145 // We don't necessarily have an unambiguous source bit-field. 9146 FieldDecl *BitField = Args[0]->getSourceBitField(); 9147 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield) 9148 << DestType.isVolatileQualified() 9149 << (BitField ? BitField->getDeclName() : DeclarationName()) 9150 << (BitField != nullptr) 9151 << Args[0]->getSourceRange(); 9152 if (BitField) 9153 S.Diag(BitField->getLocation(), diag::note_bitfield_decl); 9154 break; 9155 } 9156 9157 case FK_NonConstLValueReferenceBindingToVectorElement: 9158 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element) 9159 << DestType.isVolatileQualified() 9160 << Args[0]->getSourceRange(); 9161 break; 9162 9163 case FK_NonConstLValueReferenceBindingToMatrixElement: 9164 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_matrix_element) 9165 << DestType.isVolatileQualified() << Args[0]->getSourceRange(); 9166 break; 9167 9168 case FK_RValueReferenceBindingToLValue: 9169 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref) 9170 << DestType.getNonReferenceType() << OnlyArg->getType() 9171 << Args[0]->getSourceRange(); 9172 break; 9173 9174 case FK_ReferenceAddrspaceMismatchTemporary: 9175 S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace) 9176 << DestType << Args[0]->getSourceRange(); 9177 break; 9178 9179 case FK_ReferenceInitDropsQualifiers: { 9180 QualType SourceType = OnlyArg->getType(); 9181 QualType NonRefType = DestType.getNonReferenceType(); 9182 Qualifiers DroppedQualifiers = 9183 SourceType.getQualifiers() - NonRefType.getQualifiers(); 9184 9185 if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf( 9186 SourceType.getQualifiers())) 9187 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 9188 << NonRefType << SourceType << 1 /*addr space*/ 9189 << Args[0]->getSourceRange(); 9190 else if (DroppedQualifiers.hasQualifiers()) 9191 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 9192 << NonRefType << SourceType << 0 /*cv quals*/ 9193 << Qualifiers::fromCVRMask(DroppedQualifiers.getCVRQualifiers()) 9194 << DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange(); 9195 else 9196 // FIXME: Consider decomposing the type and explaining which qualifiers 9197 // were dropped where, or on which level a 'const' is missing, etc. 9198 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 9199 << NonRefType << SourceType << 2 /*incompatible quals*/ 9200 << Args[0]->getSourceRange(); 9201 break; 9202 } 9203 9204 case FK_ReferenceInitFailed: 9205 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed) 9206 << DestType.getNonReferenceType() 9207 << DestType.getNonReferenceType()->isIncompleteType() 9208 << OnlyArg->isLValue() 9209 << OnlyArg->getType() 9210 << Args[0]->getSourceRange(); 9211 emitBadConversionNotes(S, Entity, Args[0]); 9212 break; 9213 9214 case FK_ConversionFailed: { 9215 QualType FromType = OnlyArg->getType(); 9216 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed) 9217 << (int)Entity.getKind() 9218 << DestType 9219 << OnlyArg->isLValue() 9220 << FromType 9221 << Args[0]->getSourceRange(); 9222 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType); 9223 S.Diag(Kind.getLocation(), PDiag); 9224 emitBadConversionNotes(S, Entity, Args[0]); 9225 break; 9226 } 9227 9228 case FK_ConversionFromPropertyFailed: 9229 // No-op. This error has already been reported. 9230 break; 9231 9232 case FK_TooManyInitsForScalar: { 9233 SourceRange R; 9234 9235 auto *InitList = dyn_cast<InitListExpr>(Args[0]); 9236 if (InitList && InitList->getNumInits() >= 1) { 9237 R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc()); 9238 } else { 9239 assert(Args.size() > 1 && "Expected multiple initializers!"); 9240 R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc()); 9241 } 9242 9243 R.setBegin(S.getLocForEndOfToken(R.getBegin())); 9244 if (Kind.isCStyleOrFunctionalCast()) 9245 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg) 9246 << R; 9247 else 9248 S.Diag(Kind.getLocation(), diag::err_excess_initializers) 9249 << /*scalar=*/2 << R; 9250 break; 9251 } 9252 9253 case FK_ParenthesizedListInitForScalar: 9254 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) 9255 << 0 << Entity.getType() << Args[0]->getSourceRange(); 9256 break; 9257 9258 case FK_ReferenceBindingToInitList: 9259 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list) 9260 << DestType.getNonReferenceType() << Args[0]->getSourceRange(); 9261 break; 9262 9263 case FK_InitListBadDestinationType: 9264 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type) 9265 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange(); 9266 break; 9267 9268 case FK_ListConstructorOverloadFailed: 9269 case FK_ConstructorOverloadFailed: { 9270 SourceRange ArgsRange; 9271 if (Args.size()) 9272 ArgsRange = 9273 SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); 9274 9275 if (Failure == FK_ListConstructorOverloadFailed) { 9276 assert(Args.size() == 1 && 9277 "List construction from other than 1 argument."); 9278 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 9279 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); 9280 } 9281 9282 // FIXME: Using "DestType" for the entity we're printing is probably 9283 // bad. 9284 switch (FailedOverloadResult) { 9285 case OR_Ambiguous: 9286 FailedCandidateSet.NoteCandidates( 9287 PartialDiagnosticAt(Kind.getLocation(), 9288 S.PDiag(diag::err_ovl_ambiguous_init) 9289 << DestType << ArgsRange), 9290 S, OCD_AmbiguousCandidates, Args); 9291 break; 9292 9293 case OR_No_Viable_Function: 9294 if (Kind.getKind() == InitializationKind::IK_Default && 9295 (Entity.getKind() == InitializedEntity::EK_Base || 9296 Entity.getKind() == InitializedEntity::EK_Member) && 9297 isa<CXXConstructorDecl>(S.CurContext)) { 9298 // This is implicit default initialization of a member or 9299 // base within a constructor. If no viable function was 9300 // found, notify the user that they need to explicitly 9301 // initialize this base/member. 9302 CXXConstructorDecl *Constructor 9303 = cast<CXXConstructorDecl>(S.CurContext); 9304 const CXXRecordDecl *InheritedFrom = nullptr; 9305 if (auto Inherited = Constructor->getInheritedConstructor()) 9306 InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass(); 9307 if (Entity.getKind() == InitializedEntity::EK_Base) { 9308 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 9309 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) 9310 << S.Context.getTypeDeclType(Constructor->getParent()) 9311 << /*base=*/0 9312 << Entity.getType() 9313 << InheritedFrom; 9314 9315 RecordDecl *BaseDecl 9316 = Entity.getBaseSpecifier()->getType()->castAs<RecordType>() 9317 ->getDecl(); 9318 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl) 9319 << S.Context.getTagDeclType(BaseDecl); 9320 } else { 9321 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 9322 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) 9323 << S.Context.getTypeDeclType(Constructor->getParent()) 9324 << /*member=*/1 9325 << Entity.getName() 9326 << InheritedFrom; 9327 S.Diag(Entity.getDecl()->getLocation(), 9328 diag::note_member_declared_at); 9329 9330 if (const RecordType *Record 9331 = Entity.getType()->getAs<RecordType>()) 9332 S.Diag(Record->getDecl()->getLocation(), 9333 diag::note_previous_decl) 9334 << S.Context.getTagDeclType(Record->getDecl()); 9335 } 9336 break; 9337 } 9338 9339 FailedCandidateSet.NoteCandidates( 9340 PartialDiagnosticAt( 9341 Kind.getLocation(), 9342 S.PDiag(diag::err_ovl_no_viable_function_in_init) 9343 << DestType << ArgsRange), 9344 S, OCD_AllCandidates, Args); 9345 break; 9346 9347 case OR_Deleted: { 9348 OverloadCandidateSet::iterator Best; 9349 OverloadingResult Ovl 9350 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 9351 if (Ovl != OR_Deleted) { 9352 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 9353 << DestType << ArgsRange; 9354 llvm_unreachable("Inconsistent overload resolution?"); 9355 break; 9356 } 9357 9358 // If this is a defaulted or implicitly-declared function, then 9359 // it was implicitly deleted. Make it clear that the deletion was 9360 // implicit. 9361 if (S.isImplicitlyDeleted(Best->Function)) 9362 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init) 9363 << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function)) 9364 << DestType << ArgsRange; 9365 else 9366 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 9367 << DestType << ArgsRange; 9368 9369 S.NoteDeletedFunction(Best->Function); 9370 break; 9371 } 9372 9373 case OR_Success: 9374 llvm_unreachable("Conversion did not fail!"); 9375 } 9376 } 9377 break; 9378 9379 case FK_DefaultInitOfConst: 9380 if (Entity.getKind() == InitializedEntity::EK_Member && 9381 isa<CXXConstructorDecl>(S.CurContext)) { 9382 // This is implicit default-initialization of a const member in 9383 // a constructor. Complain that it needs to be explicitly 9384 // initialized. 9385 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext); 9386 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor) 9387 << (Constructor->getInheritedConstructor() ? 2 : 9388 Constructor->isImplicit() ? 1 : 0) 9389 << S.Context.getTypeDeclType(Constructor->getParent()) 9390 << /*const=*/1 9391 << Entity.getName(); 9392 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl) 9393 << Entity.getName(); 9394 } else { 9395 S.Diag(Kind.getLocation(), diag::err_default_init_const) 9396 << DestType << (bool)DestType->getAs<RecordType>(); 9397 } 9398 break; 9399 9400 case FK_Incomplete: 9401 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType, 9402 diag::err_init_incomplete_type); 9403 break; 9404 9405 case FK_ListInitializationFailed: { 9406 // Run the init list checker again to emit diagnostics. 9407 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 9408 diagnoseListInit(S, Entity, InitList); 9409 break; 9410 } 9411 9412 case FK_PlaceholderType: { 9413 // FIXME: Already diagnosed! 9414 break; 9415 } 9416 9417 case FK_ExplicitConstructor: { 9418 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor) 9419 << Args[0]->getSourceRange(); 9420 OverloadCandidateSet::iterator Best; 9421 OverloadingResult Ovl 9422 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 9423 (void)Ovl; 9424 assert(Ovl == OR_Success && "Inconsistent overload resolution"); 9425 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 9426 S.Diag(CtorDecl->getLocation(), 9427 diag::note_explicit_ctor_deduction_guide_here) << false; 9428 break; 9429 } 9430 } 9431 9432 PrintInitLocationNote(S, Entity); 9433 return true; 9434 } 9435 9436 void InitializationSequence::dump(raw_ostream &OS) const { 9437 switch (SequenceKind) { 9438 case FailedSequence: { 9439 OS << "Failed sequence: "; 9440 switch (Failure) { 9441 case FK_TooManyInitsForReference: 9442 OS << "too many initializers for reference"; 9443 break; 9444 9445 case FK_ParenthesizedListInitForReference: 9446 OS << "parenthesized list init for reference"; 9447 break; 9448 9449 case FK_ArrayNeedsInitList: 9450 OS << "array requires initializer list"; 9451 break; 9452 9453 case FK_AddressOfUnaddressableFunction: 9454 OS << "address of unaddressable function was taken"; 9455 break; 9456 9457 case FK_ArrayNeedsInitListOrStringLiteral: 9458 OS << "array requires initializer list or string literal"; 9459 break; 9460 9461 case FK_ArrayNeedsInitListOrWideStringLiteral: 9462 OS << "array requires initializer list or wide string literal"; 9463 break; 9464 9465 case FK_NarrowStringIntoWideCharArray: 9466 OS << "narrow string into wide char array"; 9467 break; 9468 9469 case FK_WideStringIntoCharArray: 9470 OS << "wide string into char array"; 9471 break; 9472 9473 case FK_IncompatWideStringIntoWideChar: 9474 OS << "incompatible wide string into wide char array"; 9475 break; 9476 9477 case FK_PlainStringIntoUTF8Char: 9478 OS << "plain string literal into char8_t array"; 9479 break; 9480 9481 case FK_UTF8StringIntoPlainChar: 9482 OS << "u8 string literal into char array"; 9483 break; 9484 9485 case FK_ArrayTypeMismatch: 9486 OS << "array type mismatch"; 9487 break; 9488 9489 case FK_NonConstantArrayInit: 9490 OS << "non-constant array initializer"; 9491 break; 9492 9493 case FK_AddressOfOverloadFailed: 9494 OS << "address of overloaded function failed"; 9495 break; 9496 9497 case FK_ReferenceInitOverloadFailed: 9498 OS << "overload resolution for reference initialization failed"; 9499 break; 9500 9501 case FK_NonConstLValueReferenceBindingToTemporary: 9502 OS << "non-const lvalue reference bound to temporary"; 9503 break; 9504 9505 case FK_NonConstLValueReferenceBindingToBitfield: 9506 OS << "non-const lvalue reference bound to bit-field"; 9507 break; 9508 9509 case FK_NonConstLValueReferenceBindingToVectorElement: 9510 OS << "non-const lvalue reference bound to vector element"; 9511 break; 9512 9513 case FK_NonConstLValueReferenceBindingToMatrixElement: 9514 OS << "non-const lvalue reference bound to matrix element"; 9515 break; 9516 9517 case FK_NonConstLValueReferenceBindingToUnrelated: 9518 OS << "non-const lvalue reference bound to unrelated type"; 9519 break; 9520 9521 case FK_RValueReferenceBindingToLValue: 9522 OS << "rvalue reference bound to an lvalue"; 9523 break; 9524 9525 case FK_ReferenceInitDropsQualifiers: 9526 OS << "reference initialization drops qualifiers"; 9527 break; 9528 9529 case FK_ReferenceAddrspaceMismatchTemporary: 9530 OS << "reference with mismatching address space bound to temporary"; 9531 break; 9532 9533 case FK_ReferenceInitFailed: 9534 OS << "reference initialization failed"; 9535 break; 9536 9537 case FK_ConversionFailed: 9538 OS << "conversion failed"; 9539 break; 9540 9541 case FK_ConversionFromPropertyFailed: 9542 OS << "conversion from property failed"; 9543 break; 9544 9545 case FK_TooManyInitsForScalar: 9546 OS << "too many initializers for scalar"; 9547 break; 9548 9549 case FK_ParenthesizedListInitForScalar: 9550 OS << "parenthesized list init for reference"; 9551 break; 9552 9553 case FK_ReferenceBindingToInitList: 9554 OS << "referencing binding to initializer list"; 9555 break; 9556 9557 case FK_InitListBadDestinationType: 9558 OS << "initializer list for non-aggregate, non-scalar type"; 9559 break; 9560 9561 case FK_UserConversionOverloadFailed: 9562 OS << "overloading failed for user-defined conversion"; 9563 break; 9564 9565 case FK_ConstructorOverloadFailed: 9566 OS << "constructor overloading failed"; 9567 break; 9568 9569 case FK_DefaultInitOfConst: 9570 OS << "default initialization of a const variable"; 9571 break; 9572 9573 case FK_Incomplete: 9574 OS << "initialization of incomplete type"; 9575 break; 9576 9577 case FK_ListInitializationFailed: 9578 OS << "list initialization checker failure"; 9579 break; 9580 9581 case FK_VariableLengthArrayHasInitializer: 9582 OS << "variable length array has an initializer"; 9583 break; 9584 9585 case FK_PlaceholderType: 9586 OS << "initializer expression isn't contextually valid"; 9587 break; 9588 9589 case FK_ListConstructorOverloadFailed: 9590 OS << "list constructor overloading failed"; 9591 break; 9592 9593 case FK_ExplicitConstructor: 9594 OS << "list copy initialization chose explicit constructor"; 9595 break; 9596 } 9597 OS << '\n'; 9598 return; 9599 } 9600 9601 case DependentSequence: 9602 OS << "Dependent sequence\n"; 9603 return; 9604 9605 case NormalSequence: 9606 OS << "Normal sequence: "; 9607 break; 9608 } 9609 9610 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) { 9611 if (S != step_begin()) { 9612 OS << " -> "; 9613 } 9614 9615 switch (S->Kind) { 9616 case SK_ResolveAddressOfOverloadedFunction: 9617 OS << "resolve address of overloaded function"; 9618 break; 9619 9620 case SK_CastDerivedToBasePRValue: 9621 OS << "derived-to-base (prvalue)"; 9622 break; 9623 9624 case SK_CastDerivedToBaseXValue: 9625 OS << "derived-to-base (xvalue)"; 9626 break; 9627 9628 case SK_CastDerivedToBaseLValue: 9629 OS << "derived-to-base (lvalue)"; 9630 break; 9631 9632 case SK_BindReference: 9633 OS << "bind reference to lvalue"; 9634 break; 9635 9636 case SK_BindReferenceToTemporary: 9637 OS << "bind reference to a temporary"; 9638 break; 9639 9640 case SK_FinalCopy: 9641 OS << "final copy in class direct-initialization"; 9642 break; 9643 9644 case SK_ExtraneousCopyToTemporary: 9645 OS << "extraneous C++03 copy to temporary"; 9646 break; 9647 9648 case SK_UserConversion: 9649 OS << "user-defined conversion via " << *S->Function.Function; 9650 break; 9651 9652 case SK_QualificationConversionPRValue: 9653 OS << "qualification conversion (prvalue)"; 9654 break; 9655 9656 case SK_QualificationConversionXValue: 9657 OS << "qualification conversion (xvalue)"; 9658 break; 9659 9660 case SK_QualificationConversionLValue: 9661 OS << "qualification conversion (lvalue)"; 9662 break; 9663 9664 case SK_FunctionReferenceConversion: 9665 OS << "function reference conversion"; 9666 break; 9667 9668 case SK_AtomicConversion: 9669 OS << "non-atomic-to-atomic conversion"; 9670 break; 9671 9672 case SK_ConversionSequence: 9673 OS << "implicit conversion sequence ("; 9674 S->ICS->dump(); // FIXME: use OS 9675 OS << ")"; 9676 break; 9677 9678 case SK_ConversionSequenceNoNarrowing: 9679 OS << "implicit conversion sequence with narrowing prohibited ("; 9680 S->ICS->dump(); // FIXME: use OS 9681 OS << ")"; 9682 break; 9683 9684 case SK_ListInitialization: 9685 OS << "list aggregate initialization"; 9686 break; 9687 9688 case SK_UnwrapInitList: 9689 OS << "unwrap reference initializer list"; 9690 break; 9691 9692 case SK_RewrapInitList: 9693 OS << "rewrap reference initializer list"; 9694 break; 9695 9696 case SK_ConstructorInitialization: 9697 OS << "constructor initialization"; 9698 break; 9699 9700 case SK_ConstructorInitializationFromList: 9701 OS << "list initialization via constructor"; 9702 break; 9703 9704 case SK_ZeroInitialization: 9705 OS << "zero initialization"; 9706 break; 9707 9708 case SK_CAssignment: 9709 OS << "C assignment"; 9710 break; 9711 9712 case SK_StringInit: 9713 OS << "string initialization"; 9714 break; 9715 9716 case SK_ObjCObjectConversion: 9717 OS << "Objective-C object conversion"; 9718 break; 9719 9720 case SK_ArrayLoopIndex: 9721 OS << "indexing for array initialization loop"; 9722 break; 9723 9724 case SK_ArrayLoopInit: 9725 OS << "array initialization loop"; 9726 break; 9727 9728 case SK_ArrayInit: 9729 OS << "array initialization"; 9730 break; 9731 9732 case SK_GNUArrayInit: 9733 OS << "array initialization (GNU extension)"; 9734 break; 9735 9736 case SK_ParenthesizedArrayInit: 9737 OS << "parenthesized array initialization"; 9738 break; 9739 9740 case SK_PassByIndirectCopyRestore: 9741 OS << "pass by indirect copy and restore"; 9742 break; 9743 9744 case SK_PassByIndirectRestore: 9745 OS << "pass by indirect restore"; 9746 break; 9747 9748 case SK_ProduceObjCObject: 9749 OS << "Objective-C object retension"; 9750 break; 9751 9752 case SK_StdInitializerList: 9753 OS << "std::initializer_list from initializer list"; 9754 break; 9755 9756 case SK_StdInitializerListConstructorCall: 9757 OS << "list initialization from std::initializer_list"; 9758 break; 9759 9760 case SK_OCLSamplerInit: 9761 OS << "OpenCL sampler_t from integer constant"; 9762 break; 9763 9764 case SK_OCLZeroOpaqueType: 9765 OS << "OpenCL opaque type from zero"; 9766 break; 9767 } 9768 9769 OS << " [" << S->Type.getAsString() << ']'; 9770 } 9771 9772 OS << '\n'; 9773 } 9774 9775 void InitializationSequence::dump() const { 9776 dump(llvm::errs()); 9777 } 9778 9779 static bool NarrowingErrs(const LangOptions &L) { 9780 return L.CPlusPlus11 && 9781 (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015)); 9782 } 9783 9784 static void DiagnoseNarrowingInInitList(Sema &S, 9785 const ImplicitConversionSequence &ICS, 9786 QualType PreNarrowingType, 9787 QualType EntityType, 9788 const Expr *PostInit) { 9789 const StandardConversionSequence *SCS = nullptr; 9790 switch (ICS.getKind()) { 9791 case ImplicitConversionSequence::StandardConversion: 9792 SCS = &ICS.Standard; 9793 break; 9794 case ImplicitConversionSequence::UserDefinedConversion: 9795 SCS = &ICS.UserDefined.After; 9796 break; 9797 case ImplicitConversionSequence::AmbiguousConversion: 9798 case ImplicitConversionSequence::EllipsisConversion: 9799 case ImplicitConversionSequence::BadConversion: 9800 return; 9801 } 9802 9803 // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion. 9804 APValue ConstantValue; 9805 QualType ConstantType; 9806 switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue, 9807 ConstantType)) { 9808 case NK_Not_Narrowing: 9809 case NK_Dependent_Narrowing: 9810 // No narrowing occurred. 9811 return; 9812 9813 case NK_Type_Narrowing: 9814 // This was a floating-to-integer conversion, which is always considered a 9815 // narrowing conversion even if the value is a constant and can be 9816 // represented exactly as an integer. 9817 S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts()) 9818 ? diag::ext_init_list_type_narrowing 9819 : diag::warn_init_list_type_narrowing) 9820 << PostInit->getSourceRange() 9821 << PreNarrowingType.getLocalUnqualifiedType() 9822 << EntityType.getLocalUnqualifiedType(); 9823 break; 9824 9825 case NK_Constant_Narrowing: 9826 // A constant value was narrowed. 9827 S.Diag(PostInit->getBeginLoc(), 9828 NarrowingErrs(S.getLangOpts()) 9829 ? diag::ext_init_list_constant_narrowing 9830 : diag::warn_init_list_constant_narrowing) 9831 << PostInit->getSourceRange() 9832 << ConstantValue.getAsString(S.getASTContext(), ConstantType) 9833 << EntityType.getLocalUnqualifiedType(); 9834 break; 9835 9836 case NK_Variable_Narrowing: 9837 // A variable's value may have been narrowed. 9838 S.Diag(PostInit->getBeginLoc(), 9839 NarrowingErrs(S.getLangOpts()) 9840 ? diag::ext_init_list_variable_narrowing 9841 : diag::warn_init_list_variable_narrowing) 9842 << PostInit->getSourceRange() 9843 << PreNarrowingType.getLocalUnqualifiedType() 9844 << EntityType.getLocalUnqualifiedType(); 9845 break; 9846 } 9847 9848 SmallString<128> StaticCast; 9849 llvm::raw_svector_ostream OS(StaticCast); 9850 OS << "static_cast<"; 9851 if (const TypedefType *TT = EntityType->getAs<TypedefType>()) { 9852 // It's important to use the typedef's name if there is one so that the 9853 // fixit doesn't break code using types like int64_t. 9854 // 9855 // FIXME: This will break if the typedef requires qualification. But 9856 // getQualifiedNameAsString() includes non-machine-parsable components. 9857 OS << *TT->getDecl(); 9858 } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>()) 9859 OS << BT->getName(S.getLangOpts()); 9860 else { 9861 // Oops, we didn't find the actual type of the variable. Don't emit a fixit 9862 // with a broken cast. 9863 return; 9864 } 9865 OS << ">("; 9866 S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence) 9867 << PostInit->getSourceRange() 9868 << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str()) 9869 << FixItHint::CreateInsertion( 9870 S.getLocForEndOfToken(PostInit->getEndLoc()), ")"); 9871 } 9872 9873 //===----------------------------------------------------------------------===// 9874 // Initialization helper functions 9875 //===----------------------------------------------------------------------===// 9876 bool 9877 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity, 9878 ExprResult Init) { 9879 if (Init.isInvalid()) 9880 return false; 9881 9882 Expr *InitE = Init.get(); 9883 assert(InitE && "No initialization expression"); 9884 9885 InitializationKind Kind = 9886 InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation()); 9887 InitializationSequence Seq(*this, Entity, Kind, InitE); 9888 return !Seq.Failed(); 9889 } 9890 9891 ExprResult 9892 Sema::PerformCopyInitialization(const InitializedEntity &Entity, 9893 SourceLocation EqualLoc, 9894 ExprResult Init, 9895 bool TopLevelOfInitList, 9896 bool AllowExplicit) { 9897 if (Init.isInvalid()) 9898 return ExprError(); 9899 9900 Expr *InitE = Init.get(); 9901 assert(InitE && "No initialization expression?"); 9902 9903 if (EqualLoc.isInvalid()) 9904 EqualLoc = InitE->getBeginLoc(); 9905 9906 InitializationKind Kind = InitializationKind::CreateCopy( 9907 InitE->getBeginLoc(), EqualLoc, AllowExplicit); 9908 InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList); 9909 9910 // Prevent infinite recursion when performing parameter copy-initialization. 9911 const bool ShouldTrackCopy = 9912 Entity.isParameterKind() && Seq.isConstructorInitialization(); 9913 if (ShouldTrackCopy) { 9914 if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) != 9915 CurrentParameterCopyTypes.end()) { 9916 Seq.SetOverloadFailure( 9917 InitializationSequence::FK_ConstructorOverloadFailed, 9918 OR_No_Viable_Function); 9919 9920 // Try to give a meaningful diagnostic note for the problematic 9921 // constructor. 9922 const auto LastStep = Seq.step_end() - 1; 9923 assert(LastStep->Kind == 9924 InitializationSequence::SK_ConstructorInitialization); 9925 const FunctionDecl *Function = LastStep->Function.Function; 9926 auto Candidate = 9927 llvm::find_if(Seq.getFailedCandidateSet(), 9928 [Function](const OverloadCandidate &Candidate) -> bool { 9929 return Candidate.Viable && 9930 Candidate.Function == Function && 9931 Candidate.Conversions.size() > 0; 9932 }); 9933 if (Candidate != Seq.getFailedCandidateSet().end() && 9934 Function->getNumParams() > 0) { 9935 Candidate->Viable = false; 9936 Candidate->FailureKind = ovl_fail_bad_conversion; 9937 Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion, 9938 InitE, 9939 Function->getParamDecl(0)->getType()); 9940 } 9941 } 9942 CurrentParameterCopyTypes.push_back(Entity.getType()); 9943 } 9944 9945 ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE); 9946 9947 if (ShouldTrackCopy) 9948 CurrentParameterCopyTypes.pop_back(); 9949 9950 return Result; 9951 } 9952 9953 /// Determine whether RD is, or is derived from, a specialization of CTD. 9954 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD, 9955 ClassTemplateDecl *CTD) { 9956 auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) { 9957 auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate); 9958 return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD); 9959 }; 9960 return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization)); 9961 } 9962 9963 QualType Sema::DeduceTemplateSpecializationFromInitializer( 9964 TypeSourceInfo *TSInfo, const InitializedEntity &Entity, 9965 const InitializationKind &Kind, MultiExprArg Inits) { 9966 auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>( 9967 TSInfo->getType()->getContainedDeducedType()); 9968 assert(DeducedTST && "not a deduced template specialization type"); 9969 9970 auto TemplateName = DeducedTST->getTemplateName(); 9971 if (TemplateName.isDependent()) 9972 return SubstAutoType(TSInfo->getType(), Context.DependentTy); 9973 9974 // We can only perform deduction for class templates. 9975 auto *Template = 9976 dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl()); 9977 if (!Template) { 9978 Diag(Kind.getLocation(), 9979 diag::err_deduced_non_class_template_specialization_type) 9980 << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName; 9981 if (auto *TD = TemplateName.getAsTemplateDecl()) 9982 Diag(TD->getLocation(), diag::note_template_decl_here); 9983 return QualType(); 9984 } 9985 9986 // Can't deduce from dependent arguments. 9987 if (Expr::hasAnyTypeDependentArguments(Inits)) { 9988 Diag(TSInfo->getTypeLoc().getBeginLoc(), 9989 diag::warn_cxx14_compat_class_template_argument_deduction) 9990 << TSInfo->getTypeLoc().getSourceRange() << 0; 9991 return SubstAutoType(TSInfo->getType(), Context.DependentTy); 9992 } 9993 9994 // FIXME: Perform "exact type" matching first, per CWG discussion? 9995 // Or implement this via an implied 'T(T) -> T' deduction guide? 9996 9997 // FIXME: Do we need/want a std::initializer_list<T> special case? 9998 9999 // Look up deduction guides, including those synthesized from constructors. 10000 // 10001 // C++1z [over.match.class.deduct]p1: 10002 // A set of functions and function templates is formed comprising: 10003 // - For each constructor of the class template designated by the 10004 // template-name, a function template [...] 10005 // - For each deduction-guide, a function or function template [...] 10006 DeclarationNameInfo NameInfo( 10007 Context.DeclarationNames.getCXXDeductionGuideName(Template), 10008 TSInfo->getTypeLoc().getEndLoc()); 10009 LookupResult Guides(*this, NameInfo, LookupOrdinaryName); 10010 LookupQualifiedName(Guides, Template->getDeclContext()); 10011 10012 // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't 10013 // clear on this, but they're not found by name so access does not apply. 10014 Guides.suppressDiagnostics(); 10015 10016 // Figure out if this is list-initialization. 10017 InitListExpr *ListInit = 10018 (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct) 10019 ? dyn_cast<InitListExpr>(Inits[0]) 10020 : nullptr; 10021 10022 // C++1z [over.match.class.deduct]p1: 10023 // Initialization and overload resolution are performed as described in 10024 // [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list] 10025 // (as appropriate for the type of initialization performed) for an object 10026 // of a hypothetical class type, where the selected functions and function 10027 // templates are considered to be the constructors of that class type 10028 // 10029 // Since we know we're initializing a class type of a type unrelated to that 10030 // of the initializer, this reduces to something fairly reasonable. 10031 OverloadCandidateSet Candidates(Kind.getLocation(), 10032 OverloadCandidateSet::CSK_Normal); 10033 OverloadCandidateSet::iterator Best; 10034 10035 bool HasAnyDeductionGuide = false; 10036 bool AllowExplicit = !Kind.isCopyInit() || ListInit; 10037 10038 auto tryToResolveOverload = 10039 [&](bool OnlyListConstructors) -> OverloadingResult { 10040 Candidates.clear(OverloadCandidateSet::CSK_Normal); 10041 HasAnyDeductionGuide = false; 10042 10043 for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) { 10044 NamedDecl *D = (*I)->getUnderlyingDecl(); 10045 if (D->isInvalidDecl()) 10046 continue; 10047 10048 auto *TD = dyn_cast<FunctionTemplateDecl>(D); 10049 auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>( 10050 TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D)); 10051 if (!GD) 10052 continue; 10053 10054 if (!GD->isImplicit()) 10055 HasAnyDeductionGuide = true; 10056 10057 // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class) 10058 // For copy-initialization, the candidate functions are all the 10059 // converting constructors (12.3.1) of that class. 10060 // C++ [over.match.copy]p1: (non-list copy-initialization from class) 10061 // The converting constructors of T are candidate functions. 10062 if (!AllowExplicit) { 10063 // Overload resolution checks whether the deduction guide is declared 10064 // explicit for us. 10065 10066 // When looking for a converting constructor, deduction guides that 10067 // could never be called with one argument are not interesting to 10068 // check or note. 10069 if (GD->getMinRequiredArguments() > 1 || 10070 (GD->getNumParams() == 0 && !GD->isVariadic())) 10071 continue; 10072 } 10073 10074 // C++ [over.match.list]p1.1: (first phase list initialization) 10075 // Initially, the candidate functions are the initializer-list 10076 // constructors of the class T 10077 if (OnlyListConstructors && !isInitListConstructor(GD)) 10078 continue; 10079 10080 // C++ [over.match.list]p1.2: (second phase list initialization) 10081 // the candidate functions are all the constructors of the class T 10082 // C++ [over.match.ctor]p1: (all other cases) 10083 // the candidate functions are all the constructors of the class of 10084 // the object being initialized 10085 10086 // C++ [over.best.ics]p4: 10087 // When [...] the constructor [...] is a candidate by 10088 // - [over.match.copy] (in all cases) 10089 // FIXME: The "second phase of [over.match.list] case can also 10090 // theoretically happen here, but it's not clear whether we can 10091 // ever have a parameter of the right type. 10092 bool SuppressUserConversions = Kind.isCopyInit(); 10093 10094 if (TD) 10095 AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr, 10096 Inits, Candidates, SuppressUserConversions, 10097 /*PartialOverloading*/ false, 10098 AllowExplicit); 10099 else 10100 AddOverloadCandidate(GD, I.getPair(), Inits, Candidates, 10101 SuppressUserConversions, 10102 /*PartialOverloading*/ false, AllowExplicit); 10103 } 10104 return Candidates.BestViableFunction(*this, Kind.getLocation(), Best); 10105 }; 10106 10107 OverloadingResult Result = OR_No_Viable_Function; 10108 10109 // C++11 [over.match.list]p1, per DR1467: for list-initialization, first 10110 // try initializer-list constructors. 10111 if (ListInit) { 10112 bool TryListConstructors = true; 10113 10114 // Try list constructors unless the list is empty and the class has one or 10115 // more default constructors, in which case those constructors win. 10116 if (!ListInit->getNumInits()) { 10117 for (NamedDecl *D : Guides) { 10118 auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl()); 10119 if (FD && FD->getMinRequiredArguments() == 0) { 10120 TryListConstructors = false; 10121 break; 10122 } 10123 } 10124 } else if (ListInit->getNumInits() == 1) { 10125 // C++ [over.match.class.deduct]: 10126 // As an exception, the first phase in [over.match.list] (considering 10127 // initializer-list constructors) is omitted if the initializer list 10128 // consists of a single expression of type cv U, where U is a 10129 // specialization of C or a class derived from a specialization of C. 10130 Expr *E = ListInit->getInit(0); 10131 auto *RD = E->getType()->getAsCXXRecordDecl(); 10132 if (!isa<InitListExpr>(E) && RD && 10133 isCompleteType(Kind.getLocation(), E->getType()) && 10134 isOrIsDerivedFromSpecializationOf(RD, Template)) 10135 TryListConstructors = false; 10136 } 10137 10138 if (TryListConstructors) 10139 Result = tryToResolveOverload(/*OnlyListConstructor*/true); 10140 // Then unwrap the initializer list and try again considering all 10141 // constructors. 10142 Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits()); 10143 } 10144 10145 // If list-initialization fails, or if we're doing any other kind of 10146 // initialization, we (eventually) consider constructors. 10147 if (Result == OR_No_Viable_Function) 10148 Result = tryToResolveOverload(/*OnlyListConstructor*/false); 10149 10150 switch (Result) { 10151 case OR_Ambiguous: 10152 // FIXME: For list-initialization candidates, it'd usually be better to 10153 // list why they were not viable when given the initializer list itself as 10154 // an argument. 10155 Candidates.NoteCandidates( 10156 PartialDiagnosticAt( 10157 Kind.getLocation(), 10158 PDiag(diag::err_deduced_class_template_ctor_ambiguous) 10159 << TemplateName), 10160 *this, OCD_AmbiguousCandidates, Inits); 10161 return QualType(); 10162 10163 case OR_No_Viable_Function: { 10164 CXXRecordDecl *Primary = 10165 cast<ClassTemplateDecl>(Template)->getTemplatedDecl(); 10166 bool Complete = 10167 isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary)); 10168 Candidates.NoteCandidates( 10169 PartialDiagnosticAt( 10170 Kind.getLocation(), 10171 PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable 10172 : diag::err_deduced_class_template_incomplete) 10173 << TemplateName << !Guides.empty()), 10174 *this, OCD_AllCandidates, Inits); 10175 return QualType(); 10176 } 10177 10178 case OR_Deleted: { 10179 Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted) 10180 << TemplateName; 10181 NoteDeletedFunction(Best->Function); 10182 return QualType(); 10183 } 10184 10185 case OR_Success: 10186 // C++ [over.match.list]p1: 10187 // In copy-list-initialization, if an explicit constructor is chosen, the 10188 // initialization is ill-formed. 10189 if (Kind.isCopyInit() && ListInit && 10190 cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) { 10191 bool IsDeductionGuide = !Best->Function->isImplicit(); 10192 Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit) 10193 << TemplateName << IsDeductionGuide; 10194 Diag(Best->Function->getLocation(), 10195 diag::note_explicit_ctor_deduction_guide_here) 10196 << IsDeductionGuide; 10197 return QualType(); 10198 } 10199 10200 // Make sure we didn't select an unusable deduction guide, and mark it 10201 // as referenced. 10202 DiagnoseUseOfDecl(Best->Function, Kind.getLocation()); 10203 MarkFunctionReferenced(Kind.getLocation(), Best->Function); 10204 break; 10205 } 10206 10207 // C++ [dcl.type.class.deduct]p1: 10208 // The placeholder is replaced by the return type of the function selected 10209 // by overload resolution for class template deduction. 10210 QualType DeducedType = 10211 SubstAutoType(TSInfo->getType(), Best->Function->getReturnType()); 10212 Diag(TSInfo->getTypeLoc().getBeginLoc(), 10213 diag::warn_cxx14_compat_class_template_argument_deduction) 10214 << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType; 10215 10216 // Warn if CTAD was used on a type that does not have any user-defined 10217 // deduction guides. 10218 if (!HasAnyDeductionGuide) { 10219 Diag(TSInfo->getTypeLoc().getBeginLoc(), 10220 diag::warn_ctad_maybe_unsupported) 10221 << TemplateName; 10222 Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported); 10223 } 10224 10225 return DeducedType; 10226 } 10227