1 //===--- SemaExprObjC.cpp - Semantic Analysis for ObjC Expressions --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for Objective-C expressions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/DeclObjC.h" 15 #include "clang/AST/ExprObjC.h" 16 #include "clang/AST/StmtVisitor.h" 17 #include "clang/AST/TypeLoc.h" 18 #include "clang/Analysis/DomainSpecific/CocoaConventions.h" 19 #include "clang/Basic/Builtins.h" 20 #include "clang/Edit/Commit.h" 21 #include "clang/Edit/Rewriters.h" 22 #include "clang/Lex/Preprocessor.h" 23 #include "clang/Sema/Initialization.h" 24 #include "clang/Sema/Lookup.h" 25 #include "clang/Sema/Scope.h" 26 #include "clang/Sema/ScopeInfo.h" 27 #include "clang/Sema/SemaInternal.h" 28 #include "llvm/ADT/SmallString.h" 29 #include "llvm/Support/ConvertUTF.h" 30 31 using namespace clang; 32 using namespace sema; 33 using llvm::makeArrayRef; 34 35 ExprResult Sema::ParseObjCStringLiteral(SourceLocation *AtLocs, 36 ArrayRef<Expr *> Strings) { 37 // Most ObjC strings are formed out of a single piece. However, we *can* 38 // have strings formed out of multiple @ strings with multiple pptokens in 39 // each one, e.g. @"foo" "bar" @"baz" "qux" which need to be turned into one 40 // StringLiteral for ObjCStringLiteral to hold onto. 41 StringLiteral *S = cast<StringLiteral>(Strings[0]); 42 43 // If we have a multi-part string, merge it all together. 44 if (Strings.size() != 1) { 45 // Concatenate objc strings. 46 SmallString<128> StrBuf; 47 SmallVector<SourceLocation, 8> StrLocs; 48 49 for (Expr *E : Strings) { 50 S = cast<StringLiteral>(E); 51 52 // ObjC strings can't be wide or UTF. 53 if (!S->isAscii()) { 54 Diag(S->getBeginLoc(), diag::err_cfstring_literal_not_string_constant) 55 << S->getSourceRange(); 56 return true; 57 } 58 59 // Append the string. 60 StrBuf += S->getString(); 61 62 // Get the locations of the string tokens. 63 StrLocs.append(S->tokloc_begin(), S->tokloc_end()); 64 } 65 66 // Create the aggregate string with the appropriate content and location 67 // information. 68 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 69 assert(CAT && "String literal not of constant array type!"); 70 QualType StrTy = Context.getConstantArrayType( 71 CAT->getElementType(), llvm::APInt(32, StrBuf.size() + 1), nullptr, 72 CAT->getSizeModifier(), CAT->getIndexTypeCVRQualifiers()); 73 S = StringLiteral::Create(Context, StrBuf, StringLiteral::Ascii, 74 /*Pascal=*/false, StrTy, &StrLocs[0], 75 StrLocs.size()); 76 } 77 78 return BuildObjCStringLiteral(AtLocs[0], S); 79 } 80 81 ExprResult Sema::BuildObjCStringLiteral(SourceLocation AtLoc, StringLiteral *S){ 82 // Verify that this composite string is acceptable for ObjC strings. 83 if (CheckObjCString(S)) 84 return true; 85 86 // Initialize the constant string interface lazily. This assumes 87 // the NSString interface is seen in this translation unit. Note: We 88 // don't use NSConstantString, since the runtime team considers this 89 // interface private (even though it appears in the header files). 90 QualType Ty = Context.getObjCConstantStringInterface(); 91 if (!Ty.isNull()) { 92 Ty = Context.getObjCObjectPointerType(Ty); 93 } else if (getLangOpts().NoConstantCFStrings) { 94 IdentifierInfo *NSIdent=nullptr; 95 std::string StringClass(getLangOpts().ObjCConstantStringClass); 96 97 if (StringClass.empty()) 98 NSIdent = &Context.Idents.get("NSConstantString"); 99 else 100 NSIdent = &Context.Idents.get(StringClass); 101 102 NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLoc, 103 LookupOrdinaryName); 104 if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) { 105 Context.setObjCConstantStringInterface(StrIF); 106 Ty = Context.getObjCConstantStringInterface(); 107 Ty = Context.getObjCObjectPointerType(Ty); 108 } else { 109 // If there is no NSConstantString interface defined then treat this 110 // as error and recover from it. 111 Diag(S->getBeginLoc(), diag::err_no_nsconstant_string_class) 112 << NSIdent << S->getSourceRange(); 113 Ty = Context.getObjCIdType(); 114 } 115 } else { 116 IdentifierInfo *NSIdent = NSAPIObj->getNSClassId(NSAPI::ClassId_NSString); 117 NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLoc, 118 LookupOrdinaryName); 119 if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) { 120 Context.setObjCConstantStringInterface(StrIF); 121 Ty = Context.getObjCConstantStringInterface(); 122 Ty = Context.getObjCObjectPointerType(Ty); 123 } else { 124 // If there is no NSString interface defined, implicitly declare 125 // a @class NSString; and use that instead. This is to make sure 126 // type of an NSString literal is represented correctly, instead of 127 // being an 'id' type. 128 Ty = Context.getObjCNSStringType(); 129 if (Ty.isNull()) { 130 ObjCInterfaceDecl *NSStringIDecl = 131 ObjCInterfaceDecl::Create (Context, 132 Context.getTranslationUnitDecl(), 133 SourceLocation(), NSIdent, 134 nullptr, nullptr, SourceLocation()); 135 Ty = Context.getObjCInterfaceType(NSStringIDecl); 136 Context.setObjCNSStringType(Ty); 137 } 138 Ty = Context.getObjCObjectPointerType(Ty); 139 } 140 } 141 142 return new (Context) ObjCStringLiteral(S, Ty, AtLoc); 143 } 144 145 /// Emits an error if the given method does not exist, or if the return 146 /// type is not an Objective-C object. 147 static bool validateBoxingMethod(Sema &S, SourceLocation Loc, 148 const ObjCInterfaceDecl *Class, 149 Selector Sel, const ObjCMethodDecl *Method) { 150 if (!Method) { 151 // FIXME: Is there a better way to avoid quotes than using getName()? 152 S.Diag(Loc, diag::err_undeclared_boxing_method) << Sel << Class->getName(); 153 return false; 154 } 155 156 // Make sure the return type is reasonable. 157 QualType ReturnType = Method->getReturnType(); 158 if (!ReturnType->isObjCObjectPointerType()) { 159 S.Diag(Loc, diag::err_objc_literal_method_sig) 160 << Sel; 161 S.Diag(Method->getLocation(), diag::note_objc_literal_method_return) 162 << ReturnType; 163 return false; 164 } 165 166 return true; 167 } 168 169 /// Maps ObjCLiteralKind to NSClassIdKindKind 170 static NSAPI::NSClassIdKindKind ClassKindFromLiteralKind( 171 Sema::ObjCLiteralKind LiteralKind) { 172 switch (LiteralKind) { 173 case Sema::LK_Array: 174 return NSAPI::ClassId_NSArray; 175 case Sema::LK_Dictionary: 176 return NSAPI::ClassId_NSDictionary; 177 case Sema::LK_Numeric: 178 return NSAPI::ClassId_NSNumber; 179 case Sema::LK_String: 180 return NSAPI::ClassId_NSString; 181 case Sema::LK_Boxed: 182 return NSAPI::ClassId_NSValue; 183 184 // there is no corresponding matching 185 // between LK_None/LK_Block and NSClassIdKindKind 186 case Sema::LK_Block: 187 case Sema::LK_None: 188 break; 189 } 190 llvm_unreachable("LiteralKind can't be converted into a ClassKind"); 191 } 192 193 /// Validates ObjCInterfaceDecl availability. 194 /// ObjCInterfaceDecl, used to create ObjC literals, should be defined 195 /// if clang not in a debugger mode. 196 static bool ValidateObjCLiteralInterfaceDecl(Sema &S, ObjCInterfaceDecl *Decl, 197 SourceLocation Loc, 198 Sema::ObjCLiteralKind LiteralKind) { 199 if (!Decl) { 200 NSAPI::NSClassIdKindKind Kind = ClassKindFromLiteralKind(LiteralKind); 201 IdentifierInfo *II = S.NSAPIObj->getNSClassId(Kind); 202 S.Diag(Loc, diag::err_undeclared_objc_literal_class) 203 << II->getName() << LiteralKind; 204 return false; 205 } else if (!Decl->hasDefinition() && !S.getLangOpts().DebuggerObjCLiteral) { 206 S.Diag(Loc, diag::err_undeclared_objc_literal_class) 207 << Decl->getName() << LiteralKind; 208 S.Diag(Decl->getLocation(), diag::note_forward_class); 209 return false; 210 } 211 212 return true; 213 } 214 215 /// Looks up ObjCInterfaceDecl of a given NSClassIdKindKind. 216 /// Used to create ObjC literals, such as NSDictionary (@{}), 217 /// NSArray (@[]) and Boxed Expressions (@()) 218 static ObjCInterfaceDecl *LookupObjCInterfaceDeclForLiteral(Sema &S, 219 SourceLocation Loc, 220 Sema::ObjCLiteralKind LiteralKind) { 221 NSAPI::NSClassIdKindKind ClassKind = ClassKindFromLiteralKind(LiteralKind); 222 IdentifierInfo *II = S.NSAPIObj->getNSClassId(ClassKind); 223 NamedDecl *IF = S.LookupSingleName(S.TUScope, II, Loc, 224 Sema::LookupOrdinaryName); 225 ObjCInterfaceDecl *ID = dyn_cast_or_null<ObjCInterfaceDecl>(IF); 226 if (!ID && S.getLangOpts().DebuggerObjCLiteral) { 227 ASTContext &Context = S.Context; 228 TranslationUnitDecl *TU = Context.getTranslationUnitDecl(); 229 ID = ObjCInterfaceDecl::Create (Context, TU, SourceLocation(), II, 230 nullptr, nullptr, SourceLocation()); 231 } 232 233 if (!ValidateObjCLiteralInterfaceDecl(S, ID, Loc, LiteralKind)) { 234 ID = nullptr; 235 } 236 237 return ID; 238 } 239 240 /// Retrieve the NSNumber factory method that should be used to create 241 /// an Objective-C literal for the given type. 242 static ObjCMethodDecl *getNSNumberFactoryMethod(Sema &S, SourceLocation Loc, 243 QualType NumberType, 244 bool isLiteral = false, 245 SourceRange R = SourceRange()) { 246 Optional<NSAPI::NSNumberLiteralMethodKind> Kind = 247 S.NSAPIObj->getNSNumberFactoryMethodKind(NumberType); 248 249 if (!Kind) { 250 if (isLiteral) { 251 S.Diag(Loc, diag::err_invalid_nsnumber_type) 252 << NumberType << R; 253 } 254 return nullptr; 255 } 256 257 // If we already looked up this method, we're done. 258 if (S.NSNumberLiteralMethods[*Kind]) 259 return S.NSNumberLiteralMethods[*Kind]; 260 261 Selector Sel = S.NSAPIObj->getNSNumberLiteralSelector(*Kind, 262 /*Instance=*/false); 263 264 ASTContext &CX = S.Context; 265 266 // Look up the NSNumber class, if we haven't done so already. It's cached 267 // in the Sema instance. 268 if (!S.NSNumberDecl) { 269 S.NSNumberDecl = LookupObjCInterfaceDeclForLiteral(S, Loc, 270 Sema::LK_Numeric); 271 if (!S.NSNumberDecl) { 272 return nullptr; 273 } 274 } 275 276 if (S.NSNumberPointer.isNull()) { 277 // generate the pointer to NSNumber type. 278 QualType NSNumberObject = CX.getObjCInterfaceType(S.NSNumberDecl); 279 S.NSNumberPointer = CX.getObjCObjectPointerType(NSNumberObject); 280 } 281 282 // Look for the appropriate method within NSNumber. 283 ObjCMethodDecl *Method = S.NSNumberDecl->lookupClassMethod(Sel); 284 if (!Method && S.getLangOpts().DebuggerObjCLiteral) { 285 // create a stub definition this NSNumber factory method. 286 TypeSourceInfo *ReturnTInfo = nullptr; 287 Method = 288 ObjCMethodDecl::Create(CX, SourceLocation(), SourceLocation(), Sel, 289 S.NSNumberPointer, ReturnTInfo, S.NSNumberDecl, 290 /*isInstance=*/false, /*isVariadic=*/false, 291 /*isPropertyAccessor=*/false, 292 /*isSynthesizedAccessorStub=*/false, 293 /*isImplicitlyDeclared=*/true, 294 /*isDefined=*/false, ObjCMethodDecl::Required, 295 /*HasRelatedResultType=*/false); 296 ParmVarDecl *value = ParmVarDecl::Create(S.Context, Method, 297 SourceLocation(), SourceLocation(), 298 &CX.Idents.get("value"), 299 NumberType, /*TInfo=*/nullptr, 300 SC_None, nullptr); 301 Method->setMethodParams(S.Context, value, None); 302 } 303 304 if (!validateBoxingMethod(S, Loc, S.NSNumberDecl, Sel, Method)) 305 return nullptr; 306 307 // Note: if the parameter type is out-of-line, we'll catch it later in the 308 // implicit conversion. 309 310 S.NSNumberLiteralMethods[*Kind] = Method; 311 return Method; 312 } 313 314 /// BuildObjCNumericLiteral - builds an ObjCBoxedExpr AST node for the 315 /// numeric literal expression. Type of the expression will be "NSNumber *". 316 ExprResult Sema::BuildObjCNumericLiteral(SourceLocation AtLoc, Expr *Number) { 317 // Determine the type of the literal. 318 QualType NumberType = Number->getType(); 319 if (CharacterLiteral *Char = dyn_cast<CharacterLiteral>(Number)) { 320 // In C, character literals have type 'int'. That's not the type we want 321 // to use to determine the Objective-c literal kind. 322 switch (Char->getKind()) { 323 case CharacterLiteral::Ascii: 324 case CharacterLiteral::UTF8: 325 NumberType = Context.CharTy; 326 break; 327 328 case CharacterLiteral::Wide: 329 NumberType = Context.getWideCharType(); 330 break; 331 332 case CharacterLiteral::UTF16: 333 NumberType = Context.Char16Ty; 334 break; 335 336 case CharacterLiteral::UTF32: 337 NumberType = Context.Char32Ty; 338 break; 339 } 340 } 341 342 // Look for the appropriate method within NSNumber. 343 // Construct the literal. 344 SourceRange NR(Number->getSourceRange()); 345 ObjCMethodDecl *Method = getNSNumberFactoryMethod(*this, AtLoc, NumberType, 346 true, NR); 347 if (!Method) 348 return ExprError(); 349 350 // Convert the number to the type that the parameter expects. 351 ParmVarDecl *ParamDecl = Method->parameters()[0]; 352 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 353 ParamDecl); 354 ExprResult ConvertedNumber = PerformCopyInitialization(Entity, 355 SourceLocation(), 356 Number); 357 if (ConvertedNumber.isInvalid()) 358 return ExprError(); 359 Number = ConvertedNumber.get(); 360 361 // Use the effective source range of the literal, including the leading '@'. 362 return MaybeBindToTemporary( 363 new (Context) ObjCBoxedExpr(Number, NSNumberPointer, Method, 364 SourceRange(AtLoc, NR.getEnd()))); 365 } 366 367 ExprResult Sema::ActOnObjCBoolLiteral(SourceLocation AtLoc, 368 SourceLocation ValueLoc, 369 bool Value) { 370 ExprResult Inner; 371 if (getLangOpts().CPlusPlus) { 372 Inner = ActOnCXXBoolLiteral(ValueLoc, Value? tok::kw_true : tok::kw_false); 373 } else { 374 // C doesn't actually have a way to represent literal values of type 375 // _Bool. So, we'll use 0/1 and implicit cast to _Bool. 376 Inner = ActOnIntegerConstant(ValueLoc, Value? 1 : 0); 377 Inner = ImpCastExprToType(Inner.get(), Context.BoolTy, 378 CK_IntegralToBoolean); 379 } 380 381 return BuildObjCNumericLiteral(AtLoc, Inner.get()); 382 } 383 384 /// Check that the given expression is a valid element of an Objective-C 385 /// collection literal. 386 static ExprResult CheckObjCCollectionLiteralElement(Sema &S, Expr *Element, 387 QualType T, 388 bool ArrayLiteral = false) { 389 // If the expression is type-dependent, there's nothing for us to do. 390 if (Element->isTypeDependent()) 391 return Element; 392 393 ExprResult Result = S.CheckPlaceholderExpr(Element); 394 if (Result.isInvalid()) 395 return ExprError(); 396 Element = Result.get(); 397 398 // In C++, check for an implicit conversion to an Objective-C object pointer 399 // type. 400 if (S.getLangOpts().CPlusPlus && Element->getType()->isRecordType()) { 401 InitializedEntity Entity 402 = InitializedEntity::InitializeParameter(S.Context, T, 403 /*Consumed=*/false); 404 InitializationKind Kind = InitializationKind::CreateCopy( 405 Element->getBeginLoc(), SourceLocation()); 406 InitializationSequence Seq(S, Entity, Kind, Element); 407 if (!Seq.Failed()) 408 return Seq.Perform(S, Entity, Kind, Element); 409 } 410 411 Expr *OrigElement = Element; 412 413 // Perform lvalue-to-rvalue conversion. 414 Result = S.DefaultLvalueConversion(Element); 415 if (Result.isInvalid()) 416 return ExprError(); 417 Element = Result.get(); 418 419 // Make sure that we have an Objective-C pointer type or block. 420 if (!Element->getType()->isObjCObjectPointerType() && 421 !Element->getType()->isBlockPointerType()) { 422 bool Recovered = false; 423 424 // If this is potentially an Objective-C numeric literal, add the '@'. 425 if (isa<IntegerLiteral>(OrigElement) || 426 isa<CharacterLiteral>(OrigElement) || 427 isa<FloatingLiteral>(OrigElement) || 428 isa<ObjCBoolLiteralExpr>(OrigElement) || 429 isa<CXXBoolLiteralExpr>(OrigElement)) { 430 if (S.NSAPIObj->getNSNumberFactoryMethodKind(OrigElement->getType())) { 431 int Which = isa<CharacterLiteral>(OrigElement) ? 1 432 : (isa<CXXBoolLiteralExpr>(OrigElement) || 433 isa<ObjCBoolLiteralExpr>(OrigElement)) ? 2 434 : 3; 435 436 S.Diag(OrigElement->getBeginLoc(), diag::err_box_literal_collection) 437 << Which << OrigElement->getSourceRange() 438 << FixItHint::CreateInsertion(OrigElement->getBeginLoc(), "@"); 439 440 Result = 441 S.BuildObjCNumericLiteral(OrigElement->getBeginLoc(), OrigElement); 442 if (Result.isInvalid()) 443 return ExprError(); 444 445 Element = Result.get(); 446 Recovered = true; 447 } 448 } 449 // If this is potentially an Objective-C string literal, add the '@'. 450 else if (StringLiteral *String = dyn_cast<StringLiteral>(OrigElement)) { 451 if (String->isAscii()) { 452 S.Diag(OrigElement->getBeginLoc(), diag::err_box_literal_collection) 453 << 0 << OrigElement->getSourceRange() 454 << FixItHint::CreateInsertion(OrigElement->getBeginLoc(), "@"); 455 456 Result = S.BuildObjCStringLiteral(OrigElement->getBeginLoc(), String); 457 if (Result.isInvalid()) 458 return ExprError(); 459 460 Element = Result.get(); 461 Recovered = true; 462 } 463 } 464 465 if (!Recovered) { 466 S.Diag(Element->getBeginLoc(), diag::err_invalid_collection_element) 467 << Element->getType(); 468 return ExprError(); 469 } 470 } 471 if (ArrayLiteral) 472 if (ObjCStringLiteral *getString = 473 dyn_cast<ObjCStringLiteral>(OrigElement)) { 474 if (StringLiteral *SL = getString->getString()) { 475 unsigned numConcat = SL->getNumConcatenated(); 476 if (numConcat > 1) { 477 // Only warn if the concatenated string doesn't come from a macro. 478 bool hasMacro = false; 479 for (unsigned i = 0; i < numConcat ; ++i) 480 if (SL->getStrTokenLoc(i).isMacroID()) { 481 hasMacro = true; 482 break; 483 } 484 if (!hasMacro) 485 S.Diag(Element->getBeginLoc(), 486 diag::warn_concatenated_nsarray_literal) 487 << Element->getType(); 488 } 489 } 490 } 491 492 // Make sure that the element has the type that the container factory 493 // function expects. 494 return S.PerformCopyInitialization( 495 InitializedEntity::InitializeParameter(S.Context, T, 496 /*Consumed=*/false), 497 Element->getBeginLoc(), Element); 498 } 499 500 ExprResult Sema::BuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr) { 501 if (ValueExpr->isTypeDependent()) { 502 ObjCBoxedExpr *BoxedExpr = 503 new (Context) ObjCBoxedExpr(ValueExpr, Context.DependentTy, nullptr, SR); 504 return BoxedExpr; 505 } 506 ObjCMethodDecl *BoxingMethod = nullptr; 507 QualType BoxedType; 508 // Convert the expression to an RValue, so we can check for pointer types... 509 ExprResult RValue = DefaultFunctionArrayLvalueConversion(ValueExpr); 510 if (RValue.isInvalid()) { 511 return ExprError(); 512 } 513 SourceLocation Loc = SR.getBegin(); 514 ValueExpr = RValue.get(); 515 QualType ValueType(ValueExpr->getType()); 516 if (const PointerType *PT = ValueType->getAs<PointerType>()) { 517 QualType PointeeType = PT->getPointeeType(); 518 if (Context.hasSameUnqualifiedType(PointeeType, Context.CharTy)) { 519 520 if (!NSStringDecl) { 521 NSStringDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc, 522 Sema::LK_String); 523 if (!NSStringDecl) { 524 return ExprError(); 525 } 526 QualType NSStringObject = Context.getObjCInterfaceType(NSStringDecl); 527 NSStringPointer = Context.getObjCObjectPointerType(NSStringObject); 528 } 529 530 // The boxed expression can be emitted as a compile time constant if it is 531 // a string literal whose character encoding is compatible with UTF-8. 532 if (auto *CE = dyn_cast<ImplicitCastExpr>(ValueExpr)) 533 if (CE->getCastKind() == CK_ArrayToPointerDecay) 534 if (auto *SL = 535 dyn_cast<StringLiteral>(CE->getSubExpr()->IgnoreParens())) { 536 assert((SL->isAscii() || SL->isUTF8()) && 537 "unexpected character encoding"); 538 StringRef Str = SL->getString(); 539 const llvm::UTF8 *StrBegin = Str.bytes_begin(); 540 const llvm::UTF8 *StrEnd = Str.bytes_end(); 541 // Check that this is a valid UTF-8 string. 542 if (llvm::isLegalUTF8String(&StrBegin, StrEnd)) { 543 BoxedType = Context.getAttributedType( 544 AttributedType::getNullabilityAttrKind( 545 NullabilityKind::NonNull), 546 NSStringPointer, NSStringPointer); 547 return new (Context) ObjCBoxedExpr(CE, BoxedType, nullptr, SR); 548 } 549 550 Diag(SL->getBeginLoc(), diag::warn_objc_boxing_invalid_utf8_string) 551 << NSStringPointer << SL->getSourceRange(); 552 } 553 554 if (!StringWithUTF8StringMethod) { 555 IdentifierInfo *II = &Context.Idents.get("stringWithUTF8String"); 556 Selector stringWithUTF8String = Context.Selectors.getUnarySelector(II); 557 558 // Look for the appropriate method within NSString. 559 BoxingMethod = NSStringDecl->lookupClassMethod(stringWithUTF8String); 560 if (!BoxingMethod && getLangOpts().DebuggerObjCLiteral) { 561 // Debugger needs to work even if NSString hasn't been defined. 562 TypeSourceInfo *ReturnTInfo = nullptr; 563 ObjCMethodDecl *M = ObjCMethodDecl::Create( 564 Context, SourceLocation(), SourceLocation(), stringWithUTF8String, 565 NSStringPointer, ReturnTInfo, NSStringDecl, 566 /*isInstance=*/false, /*isVariadic=*/false, 567 /*isPropertyAccessor=*/false, 568 /*isSynthesizedAccessorStub=*/false, 569 /*isImplicitlyDeclared=*/true, 570 /*isDefined=*/false, ObjCMethodDecl::Required, 571 /*HasRelatedResultType=*/false); 572 QualType ConstCharType = Context.CharTy.withConst(); 573 ParmVarDecl *value = 574 ParmVarDecl::Create(Context, M, 575 SourceLocation(), SourceLocation(), 576 &Context.Idents.get("value"), 577 Context.getPointerType(ConstCharType), 578 /*TInfo=*/nullptr, 579 SC_None, nullptr); 580 M->setMethodParams(Context, value, None); 581 BoxingMethod = M; 582 } 583 584 if (!validateBoxingMethod(*this, Loc, NSStringDecl, 585 stringWithUTF8String, BoxingMethod)) 586 return ExprError(); 587 588 StringWithUTF8StringMethod = BoxingMethod; 589 } 590 591 BoxingMethod = StringWithUTF8StringMethod; 592 BoxedType = NSStringPointer; 593 // Transfer the nullability from method's return type. 594 Optional<NullabilityKind> Nullability = 595 BoxingMethod->getReturnType()->getNullability(Context); 596 if (Nullability) 597 BoxedType = Context.getAttributedType( 598 AttributedType::getNullabilityAttrKind(*Nullability), BoxedType, 599 BoxedType); 600 } 601 } else if (ValueType->isBuiltinType()) { 602 // The other types we support are numeric, char and BOOL/bool. We could also 603 // provide limited support for structure types, such as NSRange, NSRect, and 604 // NSSize. See NSValue (NSValueGeometryExtensions) in <Foundation/NSGeometry.h> 605 // for more details. 606 607 // Check for a top-level character literal. 608 if (const CharacterLiteral *Char = 609 dyn_cast<CharacterLiteral>(ValueExpr->IgnoreParens())) { 610 // In C, character literals have type 'int'. That's not the type we want 611 // to use to determine the Objective-c literal kind. 612 switch (Char->getKind()) { 613 case CharacterLiteral::Ascii: 614 case CharacterLiteral::UTF8: 615 ValueType = Context.CharTy; 616 break; 617 618 case CharacterLiteral::Wide: 619 ValueType = Context.getWideCharType(); 620 break; 621 622 case CharacterLiteral::UTF16: 623 ValueType = Context.Char16Ty; 624 break; 625 626 case CharacterLiteral::UTF32: 627 ValueType = Context.Char32Ty; 628 break; 629 } 630 } 631 // FIXME: Do I need to do anything special with BoolTy expressions? 632 633 // Look for the appropriate method within NSNumber. 634 BoxingMethod = getNSNumberFactoryMethod(*this, Loc, ValueType); 635 BoxedType = NSNumberPointer; 636 } else if (const EnumType *ET = ValueType->getAs<EnumType>()) { 637 if (!ET->getDecl()->isComplete()) { 638 Diag(Loc, diag::err_objc_incomplete_boxed_expression_type) 639 << ValueType << ValueExpr->getSourceRange(); 640 return ExprError(); 641 } 642 643 BoxingMethod = getNSNumberFactoryMethod(*this, Loc, 644 ET->getDecl()->getIntegerType()); 645 BoxedType = NSNumberPointer; 646 } else if (ValueType->isObjCBoxableRecordType()) { 647 // Support for structure types, that marked as objc_boxable 648 // struct __attribute__((objc_boxable)) s { ... }; 649 650 // Look up the NSValue class, if we haven't done so already. It's cached 651 // in the Sema instance. 652 if (!NSValueDecl) { 653 NSValueDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc, 654 Sema::LK_Boxed); 655 if (!NSValueDecl) { 656 return ExprError(); 657 } 658 659 // generate the pointer to NSValue type. 660 QualType NSValueObject = Context.getObjCInterfaceType(NSValueDecl); 661 NSValuePointer = Context.getObjCObjectPointerType(NSValueObject); 662 } 663 664 if (!ValueWithBytesObjCTypeMethod) { 665 IdentifierInfo *II[] = { 666 &Context.Idents.get("valueWithBytes"), 667 &Context.Idents.get("objCType") 668 }; 669 Selector ValueWithBytesObjCType = Context.Selectors.getSelector(2, II); 670 671 // Look for the appropriate method within NSValue. 672 BoxingMethod = NSValueDecl->lookupClassMethod(ValueWithBytesObjCType); 673 if (!BoxingMethod && getLangOpts().DebuggerObjCLiteral) { 674 // Debugger needs to work even if NSValue hasn't been defined. 675 TypeSourceInfo *ReturnTInfo = nullptr; 676 ObjCMethodDecl *M = ObjCMethodDecl::Create( 677 Context, SourceLocation(), SourceLocation(), ValueWithBytesObjCType, 678 NSValuePointer, ReturnTInfo, NSValueDecl, 679 /*isInstance=*/false, 680 /*isVariadic=*/false, 681 /*isPropertyAccessor=*/false, 682 /*isSynthesizedAccessorStub=*/false, 683 /*isImplicitlyDeclared=*/true, 684 /*isDefined=*/false, ObjCMethodDecl::Required, 685 /*HasRelatedResultType=*/false); 686 687 SmallVector<ParmVarDecl *, 2> Params; 688 689 ParmVarDecl *bytes = 690 ParmVarDecl::Create(Context, M, 691 SourceLocation(), SourceLocation(), 692 &Context.Idents.get("bytes"), 693 Context.VoidPtrTy.withConst(), 694 /*TInfo=*/nullptr, 695 SC_None, nullptr); 696 Params.push_back(bytes); 697 698 QualType ConstCharType = Context.CharTy.withConst(); 699 ParmVarDecl *type = 700 ParmVarDecl::Create(Context, M, 701 SourceLocation(), SourceLocation(), 702 &Context.Idents.get("type"), 703 Context.getPointerType(ConstCharType), 704 /*TInfo=*/nullptr, 705 SC_None, nullptr); 706 Params.push_back(type); 707 708 M->setMethodParams(Context, Params, None); 709 BoxingMethod = M; 710 } 711 712 if (!validateBoxingMethod(*this, Loc, NSValueDecl, 713 ValueWithBytesObjCType, BoxingMethod)) 714 return ExprError(); 715 716 ValueWithBytesObjCTypeMethod = BoxingMethod; 717 } 718 719 if (!ValueType.isTriviallyCopyableType(Context)) { 720 Diag(Loc, diag::err_objc_non_trivially_copyable_boxed_expression_type) 721 << ValueType << ValueExpr->getSourceRange(); 722 return ExprError(); 723 } 724 725 BoxingMethod = ValueWithBytesObjCTypeMethod; 726 BoxedType = NSValuePointer; 727 } 728 729 if (!BoxingMethod) { 730 Diag(Loc, diag::err_objc_illegal_boxed_expression_type) 731 << ValueType << ValueExpr->getSourceRange(); 732 return ExprError(); 733 } 734 735 DiagnoseUseOfDecl(BoxingMethod, Loc); 736 737 ExprResult ConvertedValueExpr; 738 if (ValueType->isObjCBoxableRecordType()) { 739 InitializedEntity IE = InitializedEntity::InitializeTemporary(ValueType); 740 ConvertedValueExpr = PerformCopyInitialization(IE, ValueExpr->getExprLoc(), 741 ValueExpr); 742 } else { 743 // Convert the expression to the type that the parameter requires. 744 ParmVarDecl *ParamDecl = BoxingMethod->parameters()[0]; 745 InitializedEntity IE = InitializedEntity::InitializeParameter(Context, 746 ParamDecl); 747 ConvertedValueExpr = PerformCopyInitialization(IE, SourceLocation(), 748 ValueExpr); 749 } 750 751 if (ConvertedValueExpr.isInvalid()) 752 return ExprError(); 753 ValueExpr = ConvertedValueExpr.get(); 754 755 ObjCBoxedExpr *BoxedExpr = 756 new (Context) ObjCBoxedExpr(ValueExpr, BoxedType, 757 BoxingMethod, SR); 758 return MaybeBindToTemporary(BoxedExpr); 759 } 760 761 /// Build an ObjC subscript pseudo-object expression, given that 762 /// that's supported by the runtime. 763 ExprResult Sema::BuildObjCSubscriptExpression(SourceLocation RB, Expr *BaseExpr, 764 Expr *IndexExpr, 765 ObjCMethodDecl *getterMethod, 766 ObjCMethodDecl *setterMethod) { 767 assert(!LangOpts.isSubscriptPointerArithmetic()); 768 769 // We can't get dependent types here; our callers should have 770 // filtered them out. 771 assert((!BaseExpr->isTypeDependent() && !IndexExpr->isTypeDependent()) && 772 "base or index cannot have dependent type here"); 773 774 // Filter out placeholders in the index. In theory, overloads could 775 // be preserved here, although that might not actually work correctly. 776 ExprResult Result = CheckPlaceholderExpr(IndexExpr); 777 if (Result.isInvalid()) 778 return ExprError(); 779 IndexExpr = Result.get(); 780 781 // Perform lvalue-to-rvalue conversion on the base. 782 Result = DefaultLvalueConversion(BaseExpr); 783 if (Result.isInvalid()) 784 return ExprError(); 785 BaseExpr = Result.get(); 786 787 // Build the pseudo-object expression. 788 return new (Context) ObjCSubscriptRefExpr( 789 BaseExpr, IndexExpr, Context.PseudoObjectTy, VK_LValue, OK_ObjCSubscript, 790 getterMethod, setterMethod, RB); 791 } 792 793 ExprResult Sema::BuildObjCArrayLiteral(SourceRange SR, MultiExprArg Elements) { 794 SourceLocation Loc = SR.getBegin(); 795 796 if (!NSArrayDecl) { 797 NSArrayDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc, 798 Sema::LK_Array); 799 if (!NSArrayDecl) { 800 return ExprError(); 801 } 802 } 803 804 // Find the arrayWithObjects:count: method, if we haven't done so already. 805 QualType IdT = Context.getObjCIdType(); 806 if (!ArrayWithObjectsMethod) { 807 Selector 808 Sel = NSAPIObj->getNSArraySelector(NSAPI::NSArr_arrayWithObjectsCount); 809 ObjCMethodDecl *Method = NSArrayDecl->lookupClassMethod(Sel); 810 if (!Method && getLangOpts().DebuggerObjCLiteral) { 811 TypeSourceInfo *ReturnTInfo = nullptr; 812 Method = ObjCMethodDecl::Create( 813 Context, SourceLocation(), SourceLocation(), Sel, IdT, ReturnTInfo, 814 Context.getTranslationUnitDecl(), false /*Instance*/, 815 false /*isVariadic*/, 816 /*isPropertyAccessor=*/false, /*isSynthesizedAccessorStub=*/false, 817 /*isImplicitlyDeclared=*/true, /*isDefined=*/false, 818 ObjCMethodDecl::Required, false); 819 SmallVector<ParmVarDecl *, 2> Params; 820 ParmVarDecl *objects = ParmVarDecl::Create(Context, Method, 821 SourceLocation(), 822 SourceLocation(), 823 &Context.Idents.get("objects"), 824 Context.getPointerType(IdT), 825 /*TInfo=*/nullptr, 826 SC_None, nullptr); 827 Params.push_back(objects); 828 ParmVarDecl *cnt = ParmVarDecl::Create(Context, Method, 829 SourceLocation(), 830 SourceLocation(), 831 &Context.Idents.get("cnt"), 832 Context.UnsignedLongTy, 833 /*TInfo=*/nullptr, SC_None, 834 nullptr); 835 Params.push_back(cnt); 836 Method->setMethodParams(Context, Params, None); 837 } 838 839 if (!validateBoxingMethod(*this, Loc, NSArrayDecl, Sel, Method)) 840 return ExprError(); 841 842 // Dig out the type that all elements should be converted to. 843 QualType T = Method->parameters()[0]->getType(); 844 const PointerType *PtrT = T->getAs<PointerType>(); 845 if (!PtrT || 846 !Context.hasSameUnqualifiedType(PtrT->getPointeeType(), IdT)) { 847 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 848 << Sel; 849 Diag(Method->parameters()[0]->getLocation(), 850 diag::note_objc_literal_method_param) 851 << 0 << T 852 << Context.getPointerType(IdT.withConst()); 853 return ExprError(); 854 } 855 856 // Check that the 'count' parameter is integral. 857 if (!Method->parameters()[1]->getType()->isIntegerType()) { 858 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 859 << Sel; 860 Diag(Method->parameters()[1]->getLocation(), 861 diag::note_objc_literal_method_param) 862 << 1 863 << Method->parameters()[1]->getType() 864 << "integral"; 865 return ExprError(); 866 } 867 868 // We've found a good +arrayWithObjects:count: method. Save it! 869 ArrayWithObjectsMethod = Method; 870 } 871 872 QualType ObjectsType = ArrayWithObjectsMethod->parameters()[0]->getType(); 873 QualType RequiredType = ObjectsType->castAs<PointerType>()->getPointeeType(); 874 875 // Check that each of the elements provided is valid in a collection literal, 876 // performing conversions as necessary. 877 Expr **ElementsBuffer = Elements.data(); 878 for (unsigned I = 0, N = Elements.size(); I != N; ++I) { 879 ExprResult Converted = CheckObjCCollectionLiteralElement(*this, 880 ElementsBuffer[I], 881 RequiredType, true); 882 if (Converted.isInvalid()) 883 return ExprError(); 884 885 ElementsBuffer[I] = Converted.get(); 886 } 887 888 QualType Ty 889 = Context.getObjCObjectPointerType( 890 Context.getObjCInterfaceType(NSArrayDecl)); 891 892 return MaybeBindToTemporary( 893 ObjCArrayLiteral::Create(Context, Elements, Ty, 894 ArrayWithObjectsMethod, SR)); 895 } 896 897 ExprResult Sema::BuildObjCDictionaryLiteral(SourceRange SR, 898 MutableArrayRef<ObjCDictionaryElement> Elements) { 899 SourceLocation Loc = SR.getBegin(); 900 901 if (!NSDictionaryDecl) { 902 NSDictionaryDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc, 903 Sema::LK_Dictionary); 904 if (!NSDictionaryDecl) { 905 return ExprError(); 906 } 907 } 908 909 // Find the dictionaryWithObjects:forKeys:count: method, if we haven't done 910 // so already. 911 QualType IdT = Context.getObjCIdType(); 912 if (!DictionaryWithObjectsMethod) { 913 Selector Sel = NSAPIObj->getNSDictionarySelector( 914 NSAPI::NSDict_dictionaryWithObjectsForKeysCount); 915 ObjCMethodDecl *Method = NSDictionaryDecl->lookupClassMethod(Sel); 916 if (!Method && getLangOpts().DebuggerObjCLiteral) { 917 Method = ObjCMethodDecl::Create( 918 Context, SourceLocation(), SourceLocation(), Sel, IdT, 919 nullptr /*TypeSourceInfo */, Context.getTranslationUnitDecl(), 920 false /*Instance*/, false /*isVariadic*/, 921 /*isPropertyAccessor=*/false, 922 /*isSynthesizedAccessorStub=*/false, 923 /*isImplicitlyDeclared=*/true, /*isDefined=*/false, 924 ObjCMethodDecl::Required, false); 925 SmallVector<ParmVarDecl *, 3> Params; 926 ParmVarDecl *objects = ParmVarDecl::Create(Context, Method, 927 SourceLocation(), 928 SourceLocation(), 929 &Context.Idents.get("objects"), 930 Context.getPointerType(IdT), 931 /*TInfo=*/nullptr, SC_None, 932 nullptr); 933 Params.push_back(objects); 934 ParmVarDecl *keys = ParmVarDecl::Create(Context, Method, 935 SourceLocation(), 936 SourceLocation(), 937 &Context.Idents.get("keys"), 938 Context.getPointerType(IdT), 939 /*TInfo=*/nullptr, SC_None, 940 nullptr); 941 Params.push_back(keys); 942 ParmVarDecl *cnt = ParmVarDecl::Create(Context, Method, 943 SourceLocation(), 944 SourceLocation(), 945 &Context.Idents.get("cnt"), 946 Context.UnsignedLongTy, 947 /*TInfo=*/nullptr, SC_None, 948 nullptr); 949 Params.push_back(cnt); 950 Method->setMethodParams(Context, Params, None); 951 } 952 953 if (!validateBoxingMethod(*this, SR.getBegin(), NSDictionaryDecl, Sel, 954 Method)) 955 return ExprError(); 956 957 // Dig out the type that all values should be converted to. 958 QualType ValueT = Method->parameters()[0]->getType(); 959 const PointerType *PtrValue = ValueT->getAs<PointerType>(); 960 if (!PtrValue || 961 !Context.hasSameUnqualifiedType(PtrValue->getPointeeType(), IdT)) { 962 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 963 << Sel; 964 Diag(Method->parameters()[0]->getLocation(), 965 diag::note_objc_literal_method_param) 966 << 0 << ValueT 967 << Context.getPointerType(IdT.withConst()); 968 return ExprError(); 969 } 970 971 // Dig out the type that all keys should be converted to. 972 QualType KeyT = Method->parameters()[1]->getType(); 973 const PointerType *PtrKey = KeyT->getAs<PointerType>(); 974 if (!PtrKey || 975 !Context.hasSameUnqualifiedType(PtrKey->getPointeeType(), 976 IdT)) { 977 bool err = true; 978 if (PtrKey) { 979 if (QIDNSCopying.isNull()) { 980 // key argument of selector is id<NSCopying>? 981 if (ObjCProtocolDecl *NSCopyingPDecl = 982 LookupProtocol(&Context.Idents.get("NSCopying"), SR.getBegin())) { 983 ObjCProtocolDecl *PQ[] = {NSCopyingPDecl}; 984 QIDNSCopying = 985 Context.getObjCObjectType(Context.ObjCBuiltinIdTy, { }, 986 llvm::makeArrayRef( 987 (ObjCProtocolDecl**) PQ, 988 1), 989 false); 990 QIDNSCopying = Context.getObjCObjectPointerType(QIDNSCopying); 991 } 992 } 993 if (!QIDNSCopying.isNull()) 994 err = !Context.hasSameUnqualifiedType(PtrKey->getPointeeType(), 995 QIDNSCopying); 996 } 997 998 if (err) { 999 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 1000 << Sel; 1001 Diag(Method->parameters()[1]->getLocation(), 1002 diag::note_objc_literal_method_param) 1003 << 1 << KeyT 1004 << Context.getPointerType(IdT.withConst()); 1005 return ExprError(); 1006 } 1007 } 1008 1009 // Check that the 'count' parameter is integral. 1010 QualType CountType = Method->parameters()[2]->getType(); 1011 if (!CountType->isIntegerType()) { 1012 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 1013 << Sel; 1014 Diag(Method->parameters()[2]->getLocation(), 1015 diag::note_objc_literal_method_param) 1016 << 2 << CountType 1017 << "integral"; 1018 return ExprError(); 1019 } 1020 1021 // We've found a good +dictionaryWithObjects:keys:count: method; save it! 1022 DictionaryWithObjectsMethod = Method; 1023 } 1024 1025 QualType ValuesT = DictionaryWithObjectsMethod->parameters()[0]->getType(); 1026 QualType ValueT = ValuesT->castAs<PointerType>()->getPointeeType(); 1027 QualType KeysT = DictionaryWithObjectsMethod->parameters()[1]->getType(); 1028 QualType KeyT = KeysT->castAs<PointerType>()->getPointeeType(); 1029 1030 // Check that each of the keys and values provided is valid in a collection 1031 // literal, performing conversions as necessary. 1032 bool HasPackExpansions = false; 1033 for (ObjCDictionaryElement &Element : Elements) { 1034 // Check the key. 1035 ExprResult Key = CheckObjCCollectionLiteralElement(*this, Element.Key, 1036 KeyT); 1037 if (Key.isInvalid()) 1038 return ExprError(); 1039 1040 // Check the value. 1041 ExprResult Value 1042 = CheckObjCCollectionLiteralElement(*this, Element.Value, ValueT); 1043 if (Value.isInvalid()) 1044 return ExprError(); 1045 1046 Element.Key = Key.get(); 1047 Element.Value = Value.get(); 1048 1049 if (Element.EllipsisLoc.isInvalid()) 1050 continue; 1051 1052 if (!Element.Key->containsUnexpandedParameterPack() && 1053 !Element.Value->containsUnexpandedParameterPack()) { 1054 Diag(Element.EllipsisLoc, 1055 diag::err_pack_expansion_without_parameter_packs) 1056 << SourceRange(Element.Key->getBeginLoc(), 1057 Element.Value->getEndLoc()); 1058 return ExprError(); 1059 } 1060 1061 HasPackExpansions = true; 1062 } 1063 1064 QualType Ty 1065 = Context.getObjCObjectPointerType( 1066 Context.getObjCInterfaceType(NSDictionaryDecl)); 1067 return MaybeBindToTemporary(ObjCDictionaryLiteral::Create( 1068 Context, Elements, HasPackExpansions, Ty, 1069 DictionaryWithObjectsMethod, SR)); 1070 } 1071 1072 ExprResult Sema::BuildObjCEncodeExpression(SourceLocation AtLoc, 1073 TypeSourceInfo *EncodedTypeInfo, 1074 SourceLocation RParenLoc) { 1075 QualType EncodedType = EncodedTypeInfo->getType(); 1076 QualType StrTy; 1077 if (EncodedType->isDependentType()) 1078 StrTy = Context.DependentTy; 1079 else { 1080 if (!EncodedType->getAsArrayTypeUnsafe() && //// Incomplete array is handled. 1081 !EncodedType->isVoidType()) // void is handled too. 1082 if (RequireCompleteType(AtLoc, EncodedType, 1083 diag::err_incomplete_type_objc_at_encode, 1084 EncodedTypeInfo->getTypeLoc())) 1085 return ExprError(); 1086 1087 std::string Str; 1088 QualType NotEncodedT; 1089 Context.getObjCEncodingForType(EncodedType, Str, nullptr, &NotEncodedT); 1090 if (!NotEncodedT.isNull()) 1091 Diag(AtLoc, diag::warn_incomplete_encoded_type) 1092 << EncodedType << NotEncodedT; 1093 1094 // The type of @encode is the same as the type of the corresponding string, 1095 // which is an array type. 1096 StrTy = Context.getStringLiteralArrayType(Context.CharTy, Str.size()); 1097 } 1098 1099 return new (Context) ObjCEncodeExpr(StrTy, EncodedTypeInfo, AtLoc, RParenLoc); 1100 } 1101 1102 ExprResult Sema::ParseObjCEncodeExpression(SourceLocation AtLoc, 1103 SourceLocation EncodeLoc, 1104 SourceLocation LParenLoc, 1105 ParsedType ty, 1106 SourceLocation RParenLoc) { 1107 // FIXME: Preserve type source info ? 1108 TypeSourceInfo *TInfo; 1109 QualType EncodedType = GetTypeFromParser(ty, &TInfo); 1110 if (!TInfo) 1111 TInfo = Context.getTrivialTypeSourceInfo(EncodedType, 1112 getLocForEndOfToken(LParenLoc)); 1113 1114 return BuildObjCEncodeExpression(AtLoc, TInfo, RParenLoc); 1115 } 1116 1117 static bool HelperToDiagnoseMismatchedMethodsInGlobalPool(Sema &S, 1118 SourceLocation AtLoc, 1119 SourceLocation LParenLoc, 1120 SourceLocation RParenLoc, 1121 ObjCMethodDecl *Method, 1122 ObjCMethodList &MethList) { 1123 ObjCMethodList *M = &MethList; 1124 bool Warned = false; 1125 for (M = M->getNext(); M; M=M->getNext()) { 1126 ObjCMethodDecl *MatchingMethodDecl = M->getMethod(); 1127 if (MatchingMethodDecl == Method || 1128 isa<ObjCImplDecl>(MatchingMethodDecl->getDeclContext()) || 1129 MatchingMethodDecl->getSelector() != Method->getSelector()) 1130 continue; 1131 if (!S.MatchTwoMethodDeclarations(Method, 1132 MatchingMethodDecl, Sema::MMS_loose)) { 1133 if (!Warned) { 1134 Warned = true; 1135 S.Diag(AtLoc, diag::warn_multiple_selectors) 1136 << Method->getSelector() << FixItHint::CreateInsertion(LParenLoc, "(") 1137 << FixItHint::CreateInsertion(RParenLoc, ")"); 1138 S.Diag(Method->getLocation(), diag::note_method_declared_at) 1139 << Method->getDeclName(); 1140 } 1141 S.Diag(MatchingMethodDecl->getLocation(), diag::note_method_declared_at) 1142 << MatchingMethodDecl->getDeclName(); 1143 } 1144 } 1145 return Warned; 1146 } 1147 1148 static void DiagnoseMismatchedSelectors(Sema &S, SourceLocation AtLoc, 1149 ObjCMethodDecl *Method, 1150 SourceLocation LParenLoc, 1151 SourceLocation RParenLoc, 1152 bool WarnMultipleSelectors) { 1153 if (!WarnMultipleSelectors || 1154 S.Diags.isIgnored(diag::warn_multiple_selectors, SourceLocation())) 1155 return; 1156 bool Warned = false; 1157 for (Sema::GlobalMethodPool::iterator b = S.MethodPool.begin(), 1158 e = S.MethodPool.end(); b != e; b++) { 1159 // first, instance methods 1160 ObjCMethodList &InstMethList = b->second.first; 1161 if (HelperToDiagnoseMismatchedMethodsInGlobalPool(S, AtLoc, LParenLoc, RParenLoc, 1162 Method, InstMethList)) 1163 Warned = true; 1164 1165 // second, class methods 1166 ObjCMethodList &ClsMethList = b->second.second; 1167 if (HelperToDiagnoseMismatchedMethodsInGlobalPool(S, AtLoc, LParenLoc, RParenLoc, 1168 Method, ClsMethList) || Warned) 1169 return; 1170 } 1171 } 1172 1173 static void HelperToDiagnoseDirectSelectorsExpr(Sema &S, SourceLocation AtLoc, 1174 Selector Sel, 1175 ObjCMethodList &MethList, 1176 bool &onlyDirect) { 1177 ObjCMethodList *M = &MethList; 1178 for (M = M->getNext(); M; M = M->getNext()) { 1179 ObjCMethodDecl *Method = M->getMethod(); 1180 if (Method->getSelector() != Sel) 1181 continue; 1182 if (!Method->isDirectMethod()) 1183 onlyDirect = false; 1184 } 1185 } 1186 1187 static void DiagnoseDirectSelectorsExpr(Sema &S, SourceLocation AtLoc, 1188 Selector Sel, bool &onlyDirect) { 1189 for (Sema::GlobalMethodPool::iterator b = S.MethodPool.begin(), 1190 e = S.MethodPool.end(); b != e; b++) { 1191 // first, instance methods 1192 ObjCMethodList &InstMethList = b->second.first; 1193 HelperToDiagnoseDirectSelectorsExpr(S, AtLoc, Sel, InstMethList, 1194 onlyDirect); 1195 1196 // second, class methods 1197 ObjCMethodList &ClsMethList = b->second.second; 1198 HelperToDiagnoseDirectSelectorsExpr(S, AtLoc, Sel, ClsMethList, onlyDirect); 1199 } 1200 } 1201 1202 ExprResult Sema::ParseObjCSelectorExpression(Selector Sel, 1203 SourceLocation AtLoc, 1204 SourceLocation SelLoc, 1205 SourceLocation LParenLoc, 1206 SourceLocation RParenLoc, 1207 bool WarnMultipleSelectors) { 1208 ObjCMethodDecl *Method = LookupInstanceMethodInGlobalPool(Sel, 1209 SourceRange(LParenLoc, RParenLoc)); 1210 if (!Method) 1211 Method = LookupFactoryMethodInGlobalPool(Sel, 1212 SourceRange(LParenLoc, RParenLoc)); 1213 if (!Method) { 1214 if (const ObjCMethodDecl *OM = SelectorsForTypoCorrection(Sel)) { 1215 Selector MatchedSel = OM->getSelector(); 1216 SourceRange SelectorRange(LParenLoc.getLocWithOffset(1), 1217 RParenLoc.getLocWithOffset(-1)); 1218 Diag(SelLoc, diag::warn_undeclared_selector_with_typo) 1219 << Sel << MatchedSel 1220 << FixItHint::CreateReplacement(SelectorRange, MatchedSel.getAsString()); 1221 1222 } else 1223 Diag(SelLoc, diag::warn_undeclared_selector) << Sel; 1224 } else { 1225 bool onlyDirect = Method->isDirectMethod(); 1226 DiagnoseDirectSelectorsExpr(*this, AtLoc, Sel, onlyDirect); 1227 DiagnoseMismatchedSelectors(*this, AtLoc, Method, LParenLoc, RParenLoc, 1228 WarnMultipleSelectors); 1229 if (onlyDirect) { 1230 Diag(AtLoc, diag::err_direct_selector_expression) 1231 << Method->getSelector(); 1232 Diag(Method->getLocation(), diag::note_direct_method_declared_at) 1233 << Method->getDeclName(); 1234 } 1235 } 1236 1237 if (Method && 1238 Method->getImplementationControl() != ObjCMethodDecl::Optional && 1239 !getSourceManager().isInSystemHeader(Method->getLocation())) 1240 ReferencedSelectors.insert(std::make_pair(Sel, AtLoc)); 1241 1242 // In ARC, forbid the user from using @selector for 1243 // retain/release/autorelease/dealloc/retainCount. 1244 if (getLangOpts().ObjCAutoRefCount) { 1245 switch (Sel.getMethodFamily()) { 1246 case OMF_retain: 1247 case OMF_release: 1248 case OMF_autorelease: 1249 case OMF_retainCount: 1250 case OMF_dealloc: 1251 Diag(AtLoc, diag::err_arc_illegal_selector) << 1252 Sel << SourceRange(LParenLoc, RParenLoc); 1253 break; 1254 1255 case OMF_None: 1256 case OMF_alloc: 1257 case OMF_copy: 1258 case OMF_finalize: 1259 case OMF_init: 1260 case OMF_mutableCopy: 1261 case OMF_new: 1262 case OMF_self: 1263 case OMF_initialize: 1264 case OMF_performSelector: 1265 break; 1266 } 1267 } 1268 QualType Ty = Context.getObjCSelType(); 1269 return new (Context) ObjCSelectorExpr(Ty, Sel, AtLoc, RParenLoc); 1270 } 1271 1272 ExprResult Sema::ParseObjCProtocolExpression(IdentifierInfo *ProtocolId, 1273 SourceLocation AtLoc, 1274 SourceLocation ProtoLoc, 1275 SourceLocation LParenLoc, 1276 SourceLocation ProtoIdLoc, 1277 SourceLocation RParenLoc) { 1278 ObjCProtocolDecl* PDecl = LookupProtocol(ProtocolId, ProtoIdLoc); 1279 if (!PDecl) { 1280 Diag(ProtoLoc, diag::err_undeclared_protocol) << ProtocolId; 1281 return true; 1282 } 1283 if (!PDecl->hasDefinition()) { 1284 Diag(ProtoLoc, diag::err_atprotocol_protocol) << PDecl; 1285 Diag(PDecl->getLocation(), diag::note_entity_declared_at) << PDecl; 1286 } else { 1287 PDecl = PDecl->getDefinition(); 1288 } 1289 1290 QualType Ty = Context.getObjCProtoType(); 1291 if (Ty.isNull()) 1292 return true; 1293 Ty = Context.getObjCObjectPointerType(Ty); 1294 return new (Context) ObjCProtocolExpr(Ty, PDecl, AtLoc, ProtoIdLoc, RParenLoc); 1295 } 1296 1297 /// Try to capture an implicit reference to 'self'. 1298 ObjCMethodDecl *Sema::tryCaptureObjCSelf(SourceLocation Loc) { 1299 DeclContext *DC = getFunctionLevelDeclContext(); 1300 1301 // If we're not in an ObjC method, error out. Note that, unlike the 1302 // C++ case, we don't require an instance method --- class methods 1303 // still have a 'self', and we really do still need to capture it! 1304 ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(DC); 1305 if (!method) 1306 return nullptr; 1307 1308 tryCaptureVariable(method->getSelfDecl(), Loc); 1309 1310 return method; 1311 } 1312 1313 static QualType stripObjCInstanceType(ASTContext &Context, QualType T) { 1314 QualType origType = T; 1315 if (auto nullability = AttributedType::stripOuterNullability(T)) { 1316 if (T == Context.getObjCInstanceType()) { 1317 return Context.getAttributedType( 1318 AttributedType::getNullabilityAttrKind(*nullability), 1319 Context.getObjCIdType(), 1320 Context.getObjCIdType()); 1321 } 1322 1323 return origType; 1324 } 1325 1326 if (T == Context.getObjCInstanceType()) 1327 return Context.getObjCIdType(); 1328 1329 return origType; 1330 } 1331 1332 /// Determine the result type of a message send based on the receiver type, 1333 /// method, and the kind of message send. 1334 /// 1335 /// This is the "base" result type, which will still need to be adjusted 1336 /// to account for nullability. 1337 static QualType getBaseMessageSendResultType(Sema &S, 1338 QualType ReceiverType, 1339 ObjCMethodDecl *Method, 1340 bool isClassMessage, 1341 bool isSuperMessage) { 1342 assert(Method && "Must have a method"); 1343 if (!Method->hasRelatedResultType()) 1344 return Method->getSendResultType(ReceiverType); 1345 1346 ASTContext &Context = S.Context; 1347 1348 // Local function that transfers the nullability of the method's 1349 // result type to the returned result. 1350 auto transferNullability = [&](QualType type) -> QualType { 1351 // If the method's result type has nullability, extract it. 1352 if (auto nullability = Method->getSendResultType(ReceiverType) 1353 ->getNullability(Context)){ 1354 // Strip off any outer nullability sugar from the provided type. 1355 (void)AttributedType::stripOuterNullability(type); 1356 1357 // Form a new attributed type using the method result type's nullability. 1358 return Context.getAttributedType( 1359 AttributedType::getNullabilityAttrKind(*nullability), 1360 type, 1361 type); 1362 } 1363 1364 return type; 1365 }; 1366 1367 // If a method has a related return type: 1368 // - if the method found is an instance method, but the message send 1369 // was a class message send, T is the declared return type of the method 1370 // found 1371 if (Method->isInstanceMethod() && isClassMessage) 1372 return stripObjCInstanceType(Context, 1373 Method->getSendResultType(ReceiverType)); 1374 1375 // - if the receiver is super, T is a pointer to the class of the 1376 // enclosing method definition 1377 if (isSuperMessage) { 1378 if (ObjCMethodDecl *CurMethod = S.getCurMethodDecl()) 1379 if (ObjCInterfaceDecl *Class = CurMethod->getClassInterface()) { 1380 return transferNullability( 1381 Context.getObjCObjectPointerType( 1382 Context.getObjCInterfaceType(Class))); 1383 } 1384 } 1385 1386 // - if the receiver is the name of a class U, T is a pointer to U 1387 if (ReceiverType->getAsObjCInterfaceType()) 1388 return transferNullability(Context.getObjCObjectPointerType(ReceiverType)); 1389 // - if the receiver is of type Class or qualified Class type, 1390 // T is the declared return type of the method. 1391 if (ReceiverType->isObjCClassType() || 1392 ReceiverType->isObjCQualifiedClassType()) 1393 return stripObjCInstanceType(Context, 1394 Method->getSendResultType(ReceiverType)); 1395 1396 // - if the receiver is id, qualified id, Class, or qualified Class, T 1397 // is the receiver type, otherwise 1398 // - T is the type of the receiver expression. 1399 return transferNullability(ReceiverType); 1400 } 1401 1402 QualType Sema::getMessageSendResultType(const Expr *Receiver, 1403 QualType ReceiverType, 1404 ObjCMethodDecl *Method, 1405 bool isClassMessage, 1406 bool isSuperMessage) { 1407 // Produce the result type. 1408 QualType resultType = getBaseMessageSendResultType(*this, ReceiverType, 1409 Method, 1410 isClassMessage, 1411 isSuperMessage); 1412 1413 // If this is a class message, ignore the nullability of the receiver. 1414 if (isClassMessage) { 1415 // In a class method, class messages to 'self' that return instancetype can 1416 // be typed as the current class. We can safely do this in ARC because self 1417 // can't be reassigned, and we do it unsafely outside of ARC because in 1418 // practice people never reassign self in class methods and there's some 1419 // virtue in not being aggressively pedantic. 1420 if (Receiver && Receiver->isObjCSelfExpr()) { 1421 assert(ReceiverType->isObjCClassType() && "expected a Class self"); 1422 QualType T = Method->getSendResultType(ReceiverType); 1423 AttributedType::stripOuterNullability(T); 1424 if (T == Context.getObjCInstanceType()) { 1425 const ObjCMethodDecl *MD = cast<ObjCMethodDecl>( 1426 cast<ImplicitParamDecl>( 1427 cast<DeclRefExpr>(Receiver->IgnoreParenImpCasts())->getDecl()) 1428 ->getDeclContext()); 1429 assert(MD->isClassMethod() && "expected a class method"); 1430 QualType NewResultType = Context.getObjCObjectPointerType( 1431 Context.getObjCInterfaceType(MD->getClassInterface())); 1432 if (auto Nullability = resultType->getNullability(Context)) 1433 NewResultType = Context.getAttributedType( 1434 AttributedType::getNullabilityAttrKind(*Nullability), 1435 NewResultType, NewResultType); 1436 return NewResultType; 1437 } 1438 } 1439 return resultType; 1440 } 1441 1442 // There is nothing left to do if the result type cannot have a nullability 1443 // specifier. 1444 if (!resultType->canHaveNullability()) 1445 return resultType; 1446 1447 // Map the nullability of the result into a table index. 1448 unsigned receiverNullabilityIdx = 0; 1449 if (auto nullability = ReceiverType->getNullability(Context)) 1450 receiverNullabilityIdx = 1 + static_cast<unsigned>(*nullability); 1451 1452 unsigned resultNullabilityIdx = 0; 1453 if (auto nullability = resultType->getNullability(Context)) 1454 resultNullabilityIdx = 1 + static_cast<unsigned>(*nullability); 1455 1456 // The table of nullability mappings, indexed by the receiver's nullability 1457 // and then the result type's nullability. 1458 static const uint8_t None = 0; 1459 static const uint8_t NonNull = 1; 1460 static const uint8_t Nullable = 2; 1461 static const uint8_t Unspecified = 3; 1462 static const uint8_t nullabilityMap[4][4] = { 1463 // None NonNull Nullable Unspecified 1464 /* None */ { None, None, Nullable, None }, 1465 /* NonNull */ { None, NonNull, Nullable, Unspecified }, 1466 /* Nullable */ { Nullable, Nullable, Nullable, Nullable }, 1467 /* Unspecified */ { None, Unspecified, Nullable, Unspecified } 1468 }; 1469 1470 unsigned newResultNullabilityIdx 1471 = nullabilityMap[receiverNullabilityIdx][resultNullabilityIdx]; 1472 if (newResultNullabilityIdx == resultNullabilityIdx) 1473 return resultType; 1474 1475 // Strip off the existing nullability. This removes as little type sugar as 1476 // possible. 1477 do { 1478 if (auto attributed = dyn_cast<AttributedType>(resultType.getTypePtr())) { 1479 resultType = attributed->getModifiedType(); 1480 } else { 1481 resultType = resultType.getDesugaredType(Context); 1482 } 1483 } while (resultType->getNullability(Context)); 1484 1485 // Add nullability back if needed. 1486 if (newResultNullabilityIdx > 0) { 1487 auto newNullability 1488 = static_cast<NullabilityKind>(newResultNullabilityIdx-1); 1489 return Context.getAttributedType( 1490 AttributedType::getNullabilityAttrKind(newNullability), 1491 resultType, resultType); 1492 } 1493 1494 return resultType; 1495 } 1496 1497 /// Look for an ObjC method whose result type exactly matches the given type. 1498 static const ObjCMethodDecl * 1499 findExplicitInstancetypeDeclarer(const ObjCMethodDecl *MD, 1500 QualType instancetype) { 1501 if (MD->getReturnType() == instancetype) 1502 return MD; 1503 1504 // For these purposes, a method in an @implementation overrides a 1505 // declaration in the @interface. 1506 if (const ObjCImplDecl *impl = 1507 dyn_cast<ObjCImplDecl>(MD->getDeclContext())) { 1508 const ObjCContainerDecl *iface; 1509 if (const ObjCCategoryImplDecl *catImpl = 1510 dyn_cast<ObjCCategoryImplDecl>(impl)) { 1511 iface = catImpl->getCategoryDecl(); 1512 } else { 1513 iface = impl->getClassInterface(); 1514 } 1515 1516 const ObjCMethodDecl *ifaceMD = 1517 iface->getMethod(MD->getSelector(), MD->isInstanceMethod()); 1518 if (ifaceMD) return findExplicitInstancetypeDeclarer(ifaceMD, instancetype); 1519 } 1520 1521 SmallVector<const ObjCMethodDecl *, 4> overrides; 1522 MD->getOverriddenMethods(overrides); 1523 for (unsigned i = 0, e = overrides.size(); i != e; ++i) { 1524 if (const ObjCMethodDecl *result = 1525 findExplicitInstancetypeDeclarer(overrides[i], instancetype)) 1526 return result; 1527 } 1528 1529 return nullptr; 1530 } 1531 1532 void Sema::EmitRelatedResultTypeNoteForReturn(QualType destType) { 1533 // Only complain if we're in an ObjC method and the required return 1534 // type doesn't match the method's declared return type. 1535 ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurContext); 1536 if (!MD || !MD->hasRelatedResultType() || 1537 Context.hasSameUnqualifiedType(destType, MD->getReturnType())) 1538 return; 1539 1540 // Look for a method overridden by this method which explicitly uses 1541 // 'instancetype'. 1542 if (const ObjCMethodDecl *overridden = 1543 findExplicitInstancetypeDeclarer(MD, Context.getObjCInstanceType())) { 1544 SourceRange range = overridden->getReturnTypeSourceRange(); 1545 SourceLocation loc = range.getBegin(); 1546 if (loc.isInvalid()) 1547 loc = overridden->getLocation(); 1548 Diag(loc, diag::note_related_result_type_explicit) 1549 << /*current method*/ 1 << range; 1550 return; 1551 } 1552 1553 // Otherwise, if we have an interesting method family, note that. 1554 // This should always trigger if the above didn't. 1555 if (ObjCMethodFamily family = MD->getMethodFamily()) 1556 Diag(MD->getLocation(), diag::note_related_result_type_family) 1557 << /*current method*/ 1 1558 << family; 1559 } 1560 1561 void Sema::EmitRelatedResultTypeNote(const Expr *E) { 1562 E = E->IgnoreParenImpCasts(); 1563 const ObjCMessageExpr *MsgSend = dyn_cast<ObjCMessageExpr>(E); 1564 if (!MsgSend) 1565 return; 1566 1567 const ObjCMethodDecl *Method = MsgSend->getMethodDecl(); 1568 if (!Method) 1569 return; 1570 1571 if (!Method->hasRelatedResultType()) 1572 return; 1573 1574 if (Context.hasSameUnqualifiedType( 1575 Method->getReturnType().getNonReferenceType(), MsgSend->getType())) 1576 return; 1577 1578 if (!Context.hasSameUnqualifiedType(Method->getReturnType(), 1579 Context.getObjCInstanceType())) 1580 return; 1581 1582 Diag(Method->getLocation(), diag::note_related_result_type_inferred) 1583 << Method->isInstanceMethod() << Method->getSelector() 1584 << MsgSend->getType(); 1585 } 1586 1587 bool Sema::CheckMessageArgumentTypes( 1588 const Expr *Receiver, QualType ReceiverType, MultiExprArg Args, 1589 Selector Sel, ArrayRef<SourceLocation> SelectorLocs, ObjCMethodDecl *Method, 1590 bool isClassMessage, bool isSuperMessage, SourceLocation lbrac, 1591 SourceLocation rbrac, SourceRange RecRange, QualType &ReturnType, 1592 ExprValueKind &VK) { 1593 SourceLocation SelLoc; 1594 if (!SelectorLocs.empty() && SelectorLocs.front().isValid()) 1595 SelLoc = SelectorLocs.front(); 1596 else 1597 SelLoc = lbrac; 1598 1599 if (!Method) { 1600 // Apply default argument promotion as for (C99 6.5.2.2p6). 1601 for (unsigned i = 0, e = Args.size(); i != e; i++) { 1602 if (Args[i]->isTypeDependent()) 1603 continue; 1604 1605 ExprResult result; 1606 if (getLangOpts().DebuggerSupport) { 1607 QualType paramTy; // ignored 1608 result = checkUnknownAnyArg(SelLoc, Args[i], paramTy); 1609 } else { 1610 result = DefaultArgumentPromotion(Args[i]); 1611 } 1612 if (result.isInvalid()) 1613 return true; 1614 Args[i] = result.get(); 1615 } 1616 1617 unsigned DiagID; 1618 if (getLangOpts().ObjCAutoRefCount) 1619 DiagID = diag::err_arc_method_not_found; 1620 else 1621 DiagID = isClassMessage ? diag::warn_class_method_not_found 1622 : diag::warn_inst_method_not_found; 1623 if (!getLangOpts().DebuggerSupport) { 1624 const ObjCMethodDecl *OMD = SelectorsForTypoCorrection(Sel, ReceiverType); 1625 if (OMD && !OMD->isInvalidDecl()) { 1626 if (getLangOpts().ObjCAutoRefCount) 1627 DiagID = diag::err_method_not_found_with_typo; 1628 else 1629 DiagID = isClassMessage ? diag::warn_class_method_not_found_with_typo 1630 : diag::warn_instance_method_not_found_with_typo; 1631 Selector MatchedSel = OMD->getSelector(); 1632 SourceRange SelectorRange(SelectorLocs.front(), SelectorLocs.back()); 1633 if (MatchedSel.isUnarySelector()) 1634 Diag(SelLoc, DiagID) 1635 << Sel<< isClassMessage << MatchedSel 1636 << FixItHint::CreateReplacement(SelectorRange, MatchedSel.getAsString()); 1637 else 1638 Diag(SelLoc, DiagID) << Sel<< isClassMessage << MatchedSel; 1639 } 1640 else 1641 Diag(SelLoc, DiagID) 1642 << Sel << isClassMessage << SourceRange(SelectorLocs.front(), 1643 SelectorLocs.back()); 1644 // Find the class to which we are sending this message. 1645 if (auto *ObjPT = ReceiverType->getAs<ObjCObjectPointerType>()) { 1646 if (ObjCInterfaceDecl *ThisClass = ObjPT->getInterfaceDecl()) { 1647 Diag(ThisClass->getLocation(), diag::note_receiver_class_declared); 1648 if (!RecRange.isInvalid()) 1649 if (ThisClass->lookupClassMethod(Sel)) 1650 Diag(RecRange.getBegin(), diag::note_receiver_expr_here) 1651 << FixItHint::CreateReplacement(RecRange, 1652 ThisClass->getNameAsString()); 1653 } 1654 } 1655 } 1656 1657 // In debuggers, we want to use __unknown_anytype for these 1658 // results so that clients can cast them. 1659 if (getLangOpts().DebuggerSupport) { 1660 ReturnType = Context.UnknownAnyTy; 1661 } else { 1662 ReturnType = Context.getObjCIdType(); 1663 } 1664 VK = VK_RValue; 1665 return false; 1666 } 1667 1668 ReturnType = getMessageSendResultType(Receiver, ReceiverType, Method, 1669 isClassMessage, isSuperMessage); 1670 VK = Expr::getValueKindForType(Method->getReturnType()); 1671 1672 unsigned NumNamedArgs = Sel.getNumArgs(); 1673 // Method might have more arguments than selector indicates. This is due 1674 // to addition of c-style arguments in method. 1675 if (Method->param_size() > Sel.getNumArgs()) 1676 NumNamedArgs = Method->param_size(); 1677 // FIXME. This need be cleaned up. 1678 if (Args.size() < NumNamedArgs) { 1679 Diag(SelLoc, diag::err_typecheck_call_too_few_args) 1680 << 2 << NumNamedArgs << static_cast<unsigned>(Args.size()); 1681 return false; 1682 } 1683 1684 // Compute the set of type arguments to be substituted into each parameter 1685 // type. 1686 Optional<ArrayRef<QualType>> typeArgs 1687 = ReceiverType->getObjCSubstitutions(Method->getDeclContext()); 1688 bool IsError = false; 1689 for (unsigned i = 0; i < NumNamedArgs; i++) { 1690 // We can't do any type-checking on a type-dependent argument. 1691 if (Args[i]->isTypeDependent()) 1692 continue; 1693 1694 Expr *argExpr = Args[i]; 1695 1696 ParmVarDecl *param = Method->parameters()[i]; 1697 assert(argExpr && "CheckMessageArgumentTypes(): missing expression"); 1698 1699 if (param->hasAttr<NoEscapeAttr>()) 1700 if (auto *BE = dyn_cast<BlockExpr>( 1701 argExpr->IgnoreParenNoopCasts(Context))) 1702 BE->getBlockDecl()->setDoesNotEscape(); 1703 1704 // Strip the unbridged-cast placeholder expression off unless it's 1705 // a consumed argument. 1706 if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) && 1707 !param->hasAttr<CFConsumedAttr>()) 1708 argExpr = stripARCUnbridgedCast(argExpr); 1709 1710 // If the parameter is __unknown_anytype, infer its type 1711 // from the argument. 1712 if (param->getType() == Context.UnknownAnyTy) { 1713 QualType paramType; 1714 ExprResult argE = checkUnknownAnyArg(SelLoc, argExpr, paramType); 1715 if (argE.isInvalid()) { 1716 IsError = true; 1717 } else { 1718 Args[i] = argE.get(); 1719 1720 // Update the parameter type in-place. 1721 param->setType(paramType); 1722 } 1723 continue; 1724 } 1725 1726 QualType origParamType = param->getType(); 1727 QualType paramType = param->getType(); 1728 if (typeArgs) 1729 paramType = paramType.substObjCTypeArgs( 1730 Context, 1731 *typeArgs, 1732 ObjCSubstitutionContext::Parameter); 1733 1734 if (RequireCompleteType(argExpr->getSourceRange().getBegin(), 1735 paramType, 1736 diag::err_call_incomplete_argument, argExpr)) 1737 return true; 1738 1739 InitializedEntity Entity 1740 = InitializedEntity::InitializeParameter(Context, param, paramType); 1741 ExprResult ArgE = PerformCopyInitialization(Entity, SourceLocation(), argExpr); 1742 if (ArgE.isInvalid()) 1743 IsError = true; 1744 else { 1745 Args[i] = ArgE.getAs<Expr>(); 1746 1747 // If we are type-erasing a block to a block-compatible 1748 // Objective-C pointer type, we may need to extend the lifetime 1749 // of the block object. 1750 if (typeArgs && Args[i]->isRValue() && paramType->isBlockPointerType() && 1751 Args[i]->getType()->isBlockPointerType() && 1752 origParamType->isObjCObjectPointerType()) { 1753 ExprResult arg = Args[i]; 1754 maybeExtendBlockObject(arg); 1755 Args[i] = arg.get(); 1756 } 1757 } 1758 } 1759 1760 // Promote additional arguments to variadic methods. 1761 if (Method->isVariadic()) { 1762 for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) { 1763 if (Args[i]->isTypeDependent()) 1764 continue; 1765 1766 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 1767 nullptr); 1768 IsError |= Arg.isInvalid(); 1769 Args[i] = Arg.get(); 1770 } 1771 } else { 1772 // Check for extra arguments to non-variadic methods. 1773 if (Args.size() != NumNamedArgs) { 1774 Diag(Args[NumNamedArgs]->getBeginLoc(), 1775 diag::err_typecheck_call_too_many_args) 1776 << 2 /*method*/ << NumNamedArgs << static_cast<unsigned>(Args.size()) 1777 << Method->getSourceRange() 1778 << SourceRange(Args[NumNamedArgs]->getBeginLoc(), 1779 Args.back()->getEndLoc()); 1780 } 1781 } 1782 1783 DiagnoseSentinelCalls(Method, SelLoc, Args); 1784 1785 // Do additional checkings on method. 1786 IsError |= CheckObjCMethodCall( 1787 Method, SelLoc, makeArrayRef(Args.data(), Args.size())); 1788 1789 return IsError; 1790 } 1791 1792 bool Sema::isSelfExpr(Expr *RExpr) { 1793 // 'self' is objc 'self' in an objc method only. 1794 ObjCMethodDecl *Method = 1795 dyn_cast_or_null<ObjCMethodDecl>(CurContext->getNonClosureAncestor()); 1796 return isSelfExpr(RExpr, Method); 1797 } 1798 1799 bool Sema::isSelfExpr(Expr *receiver, const ObjCMethodDecl *method) { 1800 if (!method) return false; 1801 1802 receiver = receiver->IgnoreParenLValueCasts(); 1803 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(receiver)) 1804 if (DRE->getDecl() == method->getSelfDecl()) 1805 return true; 1806 return false; 1807 } 1808 1809 /// LookupMethodInType - Look up a method in an ObjCObjectType. 1810 ObjCMethodDecl *Sema::LookupMethodInObjectType(Selector sel, QualType type, 1811 bool isInstance) { 1812 const ObjCObjectType *objType = type->castAs<ObjCObjectType>(); 1813 if (ObjCInterfaceDecl *iface = objType->getInterface()) { 1814 // Look it up in the main interface (and categories, etc.) 1815 if (ObjCMethodDecl *method = iface->lookupMethod(sel, isInstance)) 1816 return method; 1817 1818 // Okay, look for "private" methods declared in any 1819 // @implementations we've seen. 1820 if (ObjCMethodDecl *method = iface->lookupPrivateMethod(sel, isInstance)) 1821 return method; 1822 } 1823 1824 // Check qualifiers. 1825 for (const auto *I : objType->quals()) 1826 if (ObjCMethodDecl *method = I->lookupMethod(sel, isInstance)) 1827 return method; 1828 1829 return nullptr; 1830 } 1831 1832 /// LookupMethodInQualifiedType - Lookups up a method in protocol qualifier 1833 /// list of a qualified objective pointer type. 1834 ObjCMethodDecl *Sema::LookupMethodInQualifiedType(Selector Sel, 1835 const ObjCObjectPointerType *OPT, 1836 bool Instance) 1837 { 1838 ObjCMethodDecl *MD = nullptr; 1839 for (const auto *PROTO : OPT->quals()) { 1840 if ((MD = PROTO->lookupMethod(Sel, Instance))) { 1841 return MD; 1842 } 1843 } 1844 return nullptr; 1845 } 1846 1847 /// HandleExprPropertyRefExpr - Handle foo.bar where foo is a pointer to an 1848 /// objective C interface. This is a property reference expression. 1849 ExprResult Sema:: 1850 HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT, 1851 Expr *BaseExpr, SourceLocation OpLoc, 1852 DeclarationName MemberName, 1853 SourceLocation MemberLoc, 1854 SourceLocation SuperLoc, QualType SuperType, 1855 bool Super) { 1856 const ObjCInterfaceType *IFaceT = OPT->getInterfaceType(); 1857 ObjCInterfaceDecl *IFace = IFaceT->getDecl(); 1858 1859 if (!MemberName.isIdentifier()) { 1860 Diag(MemberLoc, diag::err_invalid_property_name) 1861 << MemberName << QualType(OPT, 0); 1862 return ExprError(); 1863 } 1864 1865 IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); 1866 1867 SourceRange BaseRange = Super? SourceRange(SuperLoc) 1868 : BaseExpr->getSourceRange(); 1869 if (RequireCompleteType(MemberLoc, OPT->getPointeeType(), 1870 diag::err_property_not_found_forward_class, 1871 MemberName, BaseRange)) 1872 return ExprError(); 1873 1874 if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration( 1875 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { 1876 // Check whether we can reference this property. 1877 if (DiagnoseUseOfDecl(PD, MemberLoc)) 1878 return ExprError(); 1879 if (Super) 1880 return new (Context) 1881 ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue, 1882 OK_ObjCProperty, MemberLoc, SuperLoc, SuperType); 1883 else 1884 return new (Context) 1885 ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue, 1886 OK_ObjCProperty, MemberLoc, BaseExpr); 1887 } 1888 // Check protocols on qualified interfaces. 1889 for (const auto *I : OPT->quals()) 1890 if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration( 1891 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { 1892 // Check whether we can reference this property. 1893 if (DiagnoseUseOfDecl(PD, MemberLoc)) 1894 return ExprError(); 1895 1896 if (Super) 1897 return new (Context) ObjCPropertyRefExpr( 1898 PD, Context.PseudoObjectTy, VK_LValue, OK_ObjCProperty, MemberLoc, 1899 SuperLoc, SuperType); 1900 else 1901 return new (Context) 1902 ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue, 1903 OK_ObjCProperty, MemberLoc, BaseExpr); 1904 } 1905 // If that failed, look for an "implicit" property by seeing if the nullary 1906 // selector is implemented. 1907 1908 // FIXME: The logic for looking up nullary and unary selectors should be 1909 // shared with the code in ActOnInstanceMessage. 1910 1911 Selector Sel = PP.getSelectorTable().getNullarySelector(Member); 1912 ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel); 1913 1914 // May be found in property's qualified list. 1915 if (!Getter) 1916 Getter = LookupMethodInQualifiedType(Sel, OPT, true); 1917 1918 // If this reference is in an @implementation, check for 'private' methods. 1919 if (!Getter) 1920 Getter = IFace->lookupPrivateMethod(Sel); 1921 1922 if (Getter) { 1923 // Check if we can reference this property. 1924 if (DiagnoseUseOfDecl(Getter, MemberLoc)) 1925 return ExprError(); 1926 } 1927 // If we found a getter then this may be a valid dot-reference, we 1928 // will look for the matching setter, in case it is needed. 1929 Selector SetterSel = 1930 SelectorTable::constructSetterSelector(PP.getIdentifierTable(), 1931 PP.getSelectorTable(), Member); 1932 ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel); 1933 1934 // May be found in property's qualified list. 1935 if (!Setter) 1936 Setter = LookupMethodInQualifiedType(SetterSel, OPT, true); 1937 1938 if (!Setter) { 1939 // If this reference is in an @implementation, also check for 'private' 1940 // methods. 1941 Setter = IFace->lookupPrivateMethod(SetterSel); 1942 } 1943 1944 if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc)) 1945 return ExprError(); 1946 1947 // Special warning if member name used in a property-dot for a setter accessor 1948 // does not use a property with same name; e.g. obj.X = ... for a property with 1949 // name 'x'. 1950 if (Setter && Setter->isImplicit() && Setter->isPropertyAccessor() && 1951 !IFace->FindPropertyDeclaration( 1952 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { 1953 if (const ObjCPropertyDecl *PDecl = Setter->findPropertyDecl()) { 1954 // Do not warn if user is using property-dot syntax to make call to 1955 // user named setter. 1956 if (!(PDecl->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter)) 1957 Diag(MemberLoc, 1958 diag::warn_property_access_suggest) 1959 << MemberName << QualType(OPT, 0) << PDecl->getName() 1960 << FixItHint::CreateReplacement(MemberLoc, PDecl->getName()); 1961 } 1962 } 1963 1964 if (Getter || Setter) { 1965 if (Super) 1966 return new (Context) 1967 ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue, 1968 OK_ObjCProperty, MemberLoc, SuperLoc, SuperType); 1969 else 1970 return new (Context) 1971 ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue, 1972 OK_ObjCProperty, MemberLoc, BaseExpr); 1973 1974 } 1975 1976 // Attempt to correct for typos in property names. 1977 DeclFilterCCC<ObjCPropertyDecl> CCC{}; 1978 if (TypoCorrection Corrected = CorrectTypo( 1979 DeclarationNameInfo(MemberName, MemberLoc), LookupOrdinaryName, 1980 nullptr, nullptr, CCC, CTK_ErrorRecovery, IFace, false, OPT)) { 1981 DeclarationName TypoResult = Corrected.getCorrection(); 1982 if (TypoResult.isIdentifier() && 1983 TypoResult.getAsIdentifierInfo() == Member) { 1984 // There is no need to try the correction if it is the same. 1985 NamedDecl *ChosenDecl = 1986 Corrected.isKeyword() ? nullptr : Corrected.getFoundDecl(); 1987 if (ChosenDecl && isa<ObjCPropertyDecl>(ChosenDecl)) 1988 if (cast<ObjCPropertyDecl>(ChosenDecl)->isClassProperty()) { 1989 // This is a class property, we should not use the instance to 1990 // access it. 1991 Diag(MemberLoc, diag::err_class_property_found) << MemberName 1992 << OPT->getInterfaceDecl()->getName() 1993 << FixItHint::CreateReplacement(BaseExpr->getSourceRange(), 1994 OPT->getInterfaceDecl()->getName()); 1995 return ExprError(); 1996 } 1997 } else { 1998 diagnoseTypo(Corrected, PDiag(diag::err_property_not_found_suggest) 1999 << MemberName << QualType(OPT, 0)); 2000 return HandleExprPropertyRefExpr(OPT, BaseExpr, OpLoc, 2001 TypoResult, MemberLoc, 2002 SuperLoc, SuperType, Super); 2003 } 2004 } 2005 ObjCInterfaceDecl *ClassDeclared; 2006 if (ObjCIvarDecl *Ivar = 2007 IFace->lookupInstanceVariable(Member, ClassDeclared)) { 2008 QualType T = Ivar->getType(); 2009 if (const ObjCObjectPointerType * OBJPT = 2010 T->getAsObjCInterfacePointerType()) { 2011 if (RequireCompleteType(MemberLoc, OBJPT->getPointeeType(), 2012 diag::err_property_not_as_forward_class, 2013 MemberName, BaseExpr)) 2014 return ExprError(); 2015 } 2016 Diag(MemberLoc, 2017 diag::err_ivar_access_using_property_syntax_suggest) 2018 << MemberName << QualType(OPT, 0) << Ivar->getDeclName() 2019 << FixItHint::CreateReplacement(OpLoc, "->"); 2020 return ExprError(); 2021 } 2022 2023 Diag(MemberLoc, diag::err_property_not_found) 2024 << MemberName << QualType(OPT, 0); 2025 if (Setter) 2026 Diag(Setter->getLocation(), diag::note_getter_unavailable) 2027 << MemberName << BaseExpr->getSourceRange(); 2028 return ExprError(); 2029 } 2030 2031 ExprResult Sema:: 2032 ActOnClassPropertyRefExpr(IdentifierInfo &receiverName, 2033 IdentifierInfo &propertyName, 2034 SourceLocation receiverNameLoc, 2035 SourceLocation propertyNameLoc) { 2036 2037 IdentifierInfo *receiverNamePtr = &receiverName; 2038 ObjCInterfaceDecl *IFace = getObjCInterfaceDecl(receiverNamePtr, 2039 receiverNameLoc); 2040 2041 QualType SuperType; 2042 if (!IFace) { 2043 // If the "receiver" is 'super' in a method, handle it as an expression-like 2044 // property reference. 2045 if (receiverNamePtr->isStr("super")) { 2046 if (ObjCMethodDecl *CurMethod = tryCaptureObjCSelf(receiverNameLoc)) { 2047 if (auto classDecl = CurMethod->getClassInterface()) { 2048 SuperType = QualType(classDecl->getSuperClassType(), 0); 2049 if (CurMethod->isInstanceMethod()) { 2050 if (SuperType.isNull()) { 2051 // The current class does not have a superclass. 2052 Diag(receiverNameLoc, diag::err_root_class_cannot_use_super) 2053 << CurMethod->getClassInterface()->getIdentifier(); 2054 return ExprError(); 2055 } 2056 QualType T = Context.getObjCObjectPointerType(SuperType); 2057 2058 return HandleExprPropertyRefExpr(T->castAs<ObjCObjectPointerType>(), 2059 /*BaseExpr*/nullptr, 2060 SourceLocation()/*OpLoc*/, 2061 &propertyName, 2062 propertyNameLoc, 2063 receiverNameLoc, T, true); 2064 } 2065 2066 // Otherwise, if this is a class method, try dispatching to our 2067 // superclass. 2068 IFace = CurMethod->getClassInterface()->getSuperClass(); 2069 } 2070 } 2071 } 2072 2073 if (!IFace) { 2074 Diag(receiverNameLoc, diag::err_expected_either) << tok::identifier 2075 << tok::l_paren; 2076 return ExprError(); 2077 } 2078 } 2079 2080 Selector GetterSel; 2081 Selector SetterSel; 2082 if (auto PD = IFace->FindPropertyDeclaration( 2083 &propertyName, ObjCPropertyQueryKind::OBJC_PR_query_class)) { 2084 GetterSel = PD->getGetterName(); 2085 SetterSel = PD->getSetterName(); 2086 } else { 2087 GetterSel = PP.getSelectorTable().getNullarySelector(&propertyName); 2088 SetterSel = SelectorTable::constructSetterSelector( 2089 PP.getIdentifierTable(), PP.getSelectorTable(), &propertyName); 2090 } 2091 2092 // Search for a declared property first. 2093 ObjCMethodDecl *Getter = IFace->lookupClassMethod(GetterSel); 2094 2095 // If this reference is in an @implementation, check for 'private' methods. 2096 if (!Getter) 2097 Getter = IFace->lookupPrivateClassMethod(GetterSel); 2098 2099 if (Getter) { 2100 // FIXME: refactor/share with ActOnMemberReference(). 2101 // Check if we can reference this property. 2102 if (DiagnoseUseOfDecl(Getter, propertyNameLoc)) 2103 return ExprError(); 2104 } 2105 2106 // Look for the matching setter, in case it is needed. 2107 ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel); 2108 if (!Setter) { 2109 // If this reference is in an @implementation, also check for 'private' 2110 // methods. 2111 Setter = IFace->lookupPrivateClassMethod(SetterSel); 2112 } 2113 // Look through local category implementations associated with the class. 2114 if (!Setter) 2115 Setter = IFace->getCategoryClassMethod(SetterSel); 2116 2117 if (Setter && DiagnoseUseOfDecl(Setter, propertyNameLoc)) 2118 return ExprError(); 2119 2120 if (Getter || Setter) { 2121 if (!SuperType.isNull()) 2122 return new (Context) 2123 ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue, 2124 OK_ObjCProperty, propertyNameLoc, receiverNameLoc, 2125 SuperType); 2126 2127 return new (Context) ObjCPropertyRefExpr( 2128 Getter, Setter, Context.PseudoObjectTy, VK_LValue, OK_ObjCProperty, 2129 propertyNameLoc, receiverNameLoc, IFace); 2130 } 2131 return ExprError(Diag(propertyNameLoc, diag::err_property_not_found) 2132 << &propertyName << Context.getObjCInterfaceType(IFace)); 2133 } 2134 2135 namespace { 2136 2137 class ObjCInterfaceOrSuperCCC final : public CorrectionCandidateCallback { 2138 public: 2139 ObjCInterfaceOrSuperCCC(ObjCMethodDecl *Method) { 2140 // Determine whether "super" is acceptable in the current context. 2141 if (Method && Method->getClassInterface()) 2142 WantObjCSuper = Method->getClassInterface()->getSuperClass(); 2143 } 2144 2145 bool ValidateCandidate(const TypoCorrection &candidate) override { 2146 return candidate.getCorrectionDeclAs<ObjCInterfaceDecl>() || 2147 candidate.isKeyword("super"); 2148 } 2149 2150 std::unique_ptr<CorrectionCandidateCallback> clone() override { 2151 return std::make_unique<ObjCInterfaceOrSuperCCC>(*this); 2152 } 2153 }; 2154 2155 } // end anonymous namespace 2156 2157 Sema::ObjCMessageKind Sema::getObjCMessageKind(Scope *S, 2158 IdentifierInfo *Name, 2159 SourceLocation NameLoc, 2160 bool IsSuper, 2161 bool HasTrailingDot, 2162 ParsedType &ReceiverType) { 2163 ReceiverType = nullptr; 2164 2165 // If the identifier is "super" and there is no trailing dot, we're 2166 // messaging super. If the identifier is "super" and there is a 2167 // trailing dot, it's an instance message. 2168 if (IsSuper && S->isInObjcMethodScope()) 2169 return HasTrailingDot? ObjCInstanceMessage : ObjCSuperMessage; 2170 2171 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); 2172 LookupName(Result, S); 2173 2174 switch (Result.getResultKind()) { 2175 case LookupResult::NotFound: 2176 // Normal name lookup didn't find anything. If we're in an 2177 // Objective-C method, look for ivars. If we find one, we're done! 2178 // FIXME: This is a hack. Ivar lookup should be part of normal 2179 // lookup. 2180 if (ObjCMethodDecl *Method = getCurMethodDecl()) { 2181 if (!Method->getClassInterface()) { 2182 // Fall back: let the parser try to parse it as an instance message. 2183 return ObjCInstanceMessage; 2184 } 2185 2186 ObjCInterfaceDecl *ClassDeclared; 2187 if (Method->getClassInterface()->lookupInstanceVariable(Name, 2188 ClassDeclared)) 2189 return ObjCInstanceMessage; 2190 } 2191 2192 // Break out; we'll perform typo correction below. 2193 break; 2194 2195 case LookupResult::NotFoundInCurrentInstantiation: 2196 case LookupResult::FoundOverloaded: 2197 case LookupResult::FoundUnresolvedValue: 2198 case LookupResult::Ambiguous: 2199 Result.suppressDiagnostics(); 2200 return ObjCInstanceMessage; 2201 2202 case LookupResult::Found: { 2203 // If the identifier is a class or not, and there is a trailing dot, 2204 // it's an instance message. 2205 if (HasTrailingDot) 2206 return ObjCInstanceMessage; 2207 // We found something. If it's a type, then we have a class 2208 // message. Otherwise, it's an instance message. 2209 NamedDecl *ND = Result.getFoundDecl(); 2210 QualType T; 2211 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(ND)) 2212 T = Context.getObjCInterfaceType(Class); 2213 else if (TypeDecl *Type = dyn_cast<TypeDecl>(ND)) { 2214 T = Context.getTypeDeclType(Type); 2215 DiagnoseUseOfDecl(Type, NameLoc); 2216 } 2217 else 2218 return ObjCInstanceMessage; 2219 2220 // We have a class message, and T is the type we're 2221 // messaging. Build source-location information for it. 2222 TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc); 2223 ReceiverType = CreateParsedType(T, TSInfo); 2224 return ObjCClassMessage; 2225 } 2226 } 2227 2228 ObjCInterfaceOrSuperCCC CCC(getCurMethodDecl()); 2229 if (TypoCorrection Corrected = CorrectTypo( 2230 Result.getLookupNameInfo(), Result.getLookupKind(), S, nullptr, CCC, 2231 CTK_ErrorRecovery, nullptr, false, nullptr, false)) { 2232 if (Corrected.isKeyword()) { 2233 // If we've found the keyword "super" (the only keyword that would be 2234 // returned by CorrectTypo), this is a send to super. 2235 diagnoseTypo(Corrected, 2236 PDiag(diag::err_unknown_receiver_suggest) << Name); 2237 return ObjCSuperMessage; 2238 } else if (ObjCInterfaceDecl *Class = 2239 Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) { 2240 // If we found a declaration, correct when it refers to an Objective-C 2241 // class. 2242 diagnoseTypo(Corrected, 2243 PDiag(diag::err_unknown_receiver_suggest) << Name); 2244 QualType T = Context.getObjCInterfaceType(Class); 2245 TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc); 2246 ReceiverType = CreateParsedType(T, TSInfo); 2247 return ObjCClassMessage; 2248 } 2249 } 2250 2251 // Fall back: let the parser try to parse it as an instance message. 2252 return ObjCInstanceMessage; 2253 } 2254 2255 ExprResult Sema::ActOnSuperMessage(Scope *S, 2256 SourceLocation SuperLoc, 2257 Selector Sel, 2258 SourceLocation LBracLoc, 2259 ArrayRef<SourceLocation> SelectorLocs, 2260 SourceLocation RBracLoc, 2261 MultiExprArg Args) { 2262 // Determine whether we are inside a method or not. 2263 ObjCMethodDecl *Method = tryCaptureObjCSelf(SuperLoc); 2264 if (!Method) { 2265 Diag(SuperLoc, diag::err_invalid_receiver_to_message_super); 2266 return ExprError(); 2267 } 2268 2269 ObjCInterfaceDecl *Class = Method->getClassInterface(); 2270 if (!Class) { 2271 Diag(SuperLoc, diag::err_no_super_class_message) 2272 << Method->getDeclName(); 2273 return ExprError(); 2274 } 2275 2276 QualType SuperTy(Class->getSuperClassType(), 0); 2277 if (SuperTy.isNull()) { 2278 // The current class does not have a superclass. 2279 Diag(SuperLoc, diag::err_root_class_cannot_use_super) 2280 << Class->getIdentifier(); 2281 return ExprError(); 2282 } 2283 2284 // We are in a method whose class has a superclass, so 'super' 2285 // is acting as a keyword. 2286 if (Method->getSelector() == Sel) 2287 getCurFunction()->ObjCShouldCallSuper = false; 2288 2289 if (Method->isInstanceMethod()) { 2290 // Since we are in an instance method, this is an instance 2291 // message to the superclass instance. 2292 SuperTy = Context.getObjCObjectPointerType(SuperTy); 2293 return BuildInstanceMessage(nullptr, SuperTy, SuperLoc, 2294 Sel, /*Method=*/nullptr, 2295 LBracLoc, SelectorLocs, RBracLoc, Args); 2296 } 2297 2298 // Since we are in a class method, this is a class message to 2299 // the superclass. 2300 return BuildClassMessage(/*ReceiverTypeInfo=*/nullptr, 2301 SuperTy, 2302 SuperLoc, Sel, /*Method=*/nullptr, 2303 LBracLoc, SelectorLocs, RBracLoc, Args); 2304 } 2305 2306 ExprResult Sema::BuildClassMessageImplicit(QualType ReceiverType, 2307 bool isSuperReceiver, 2308 SourceLocation Loc, 2309 Selector Sel, 2310 ObjCMethodDecl *Method, 2311 MultiExprArg Args) { 2312 TypeSourceInfo *receiverTypeInfo = nullptr; 2313 if (!ReceiverType.isNull()) 2314 receiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType); 2315 2316 return BuildClassMessage(receiverTypeInfo, ReceiverType, 2317 /*SuperLoc=*/isSuperReceiver ? Loc : SourceLocation(), 2318 Sel, Method, Loc, Loc, Loc, Args, 2319 /*isImplicit=*/true); 2320 } 2321 2322 static void applyCocoaAPICheck(Sema &S, const ObjCMessageExpr *Msg, 2323 unsigned DiagID, 2324 bool (*refactor)(const ObjCMessageExpr *, 2325 const NSAPI &, edit::Commit &)) { 2326 SourceLocation MsgLoc = Msg->getExprLoc(); 2327 if (S.Diags.isIgnored(DiagID, MsgLoc)) 2328 return; 2329 2330 SourceManager &SM = S.SourceMgr; 2331 edit::Commit ECommit(SM, S.LangOpts); 2332 if (refactor(Msg,*S.NSAPIObj, ECommit)) { 2333 DiagnosticBuilder Builder = S.Diag(MsgLoc, DiagID) 2334 << Msg->getSelector() << Msg->getSourceRange(); 2335 // FIXME: Don't emit diagnostic at all if fixits are non-commitable. 2336 if (!ECommit.isCommitable()) 2337 return; 2338 for (edit::Commit::edit_iterator 2339 I = ECommit.edit_begin(), E = ECommit.edit_end(); I != E; ++I) { 2340 const edit::Commit::Edit &Edit = *I; 2341 switch (Edit.Kind) { 2342 case edit::Commit::Act_Insert: 2343 Builder.AddFixItHint(FixItHint::CreateInsertion(Edit.OrigLoc, 2344 Edit.Text, 2345 Edit.BeforePrev)); 2346 break; 2347 case edit::Commit::Act_InsertFromRange: 2348 Builder.AddFixItHint( 2349 FixItHint::CreateInsertionFromRange(Edit.OrigLoc, 2350 Edit.getInsertFromRange(SM), 2351 Edit.BeforePrev)); 2352 break; 2353 case edit::Commit::Act_Remove: 2354 Builder.AddFixItHint(FixItHint::CreateRemoval(Edit.getFileRange(SM))); 2355 break; 2356 } 2357 } 2358 } 2359 } 2360 2361 static void checkCocoaAPI(Sema &S, const ObjCMessageExpr *Msg) { 2362 applyCocoaAPICheck(S, Msg, diag::warn_objc_redundant_literal_use, 2363 edit::rewriteObjCRedundantCallWithLiteral); 2364 } 2365 2366 static void checkFoundationAPI(Sema &S, SourceLocation Loc, 2367 const ObjCMethodDecl *Method, 2368 ArrayRef<Expr *> Args, QualType ReceiverType, 2369 bool IsClassObjectCall) { 2370 // Check if this is a performSelector method that uses a selector that returns 2371 // a record or a vector type. 2372 if (Method->getSelector().getMethodFamily() != OMF_performSelector || 2373 Args.empty()) 2374 return; 2375 const auto *SE = dyn_cast<ObjCSelectorExpr>(Args[0]->IgnoreParens()); 2376 if (!SE) 2377 return; 2378 ObjCMethodDecl *ImpliedMethod; 2379 if (!IsClassObjectCall) { 2380 const auto *OPT = ReceiverType->getAs<ObjCObjectPointerType>(); 2381 if (!OPT || !OPT->getInterfaceDecl()) 2382 return; 2383 ImpliedMethod = 2384 OPT->getInterfaceDecl()->lookupInstanceMethod(SE->getSelector()); 2385 if (!ImpliedMethod) 2386 ImpliedMethod = 2387 OPT->getInterfaceDecl()->lookupPrivateMethod(SE->getSelector()); 2388 } else { 2389 const auto *IT = ReceiverType->getAs<ObjCInterfaceType>(); 2390 if (!IT) 2391 return; 2392 ImpliedMethod = IT->getDecl()->lookupClassMethod(SE->getSelector()); 2393 if (!ImpliedMethod) 2394 ImpliedMethod = 2395 IT->getDecl()->lookupPrivateClassMethod(SE->getSelector()); 2396 } 2397 if (!ImpliedMethod) 2398 return; 2399 QualType Ret = ImpliedMethod->getReturnType(); 2400 if (Ret->isRecordType() || Ret->isVectorType() || Ret->isExtVectorType()) { 2401 S.Diag(Loc, diag::warn_objc_unsafe_perform_selector) 2402 << Method->getSelector() 2403 << (!Ret->isRecordType() 2404 ? /*Vector*/ 2 2405 : Ret->isUnionType() ? /*Union*/ 1 : /*Struct*/ 0); 2406 S.Diag(ImpliedMethod->getBeginLoc(), 2407 diag::note_objc_unsafe_perform_selector_method_declared_here) 2408 << ImpliedMethod->getSelector() << Ret; 2409 } 2410 } 2411 2412 /// Diagnose use of %s directive in an NSString which is being passed 2413 /// as formatting string to formatting method. 2414 static void 2415 DiagnoseCStringFormatDirectiveInObjCAPI(Sema &S, 2416 ObjCMethodDecl *Method, 2417 Selector Sel, 2418 Expr **Args, unsigned NumArgs) { 2419 unsigned Idx = 0; 2420 bool Format = false; 2421 ObjCStringFormatFamily SFFamily = Sel.getStringFormatFamily(); 2422 if (SFFamily == ObjCStringFormatFamily::SFF_NSString) { 2423 Idx = 0; 2424 Format = true; 2425 } 2426 else if (Method) { 2427 for (const auto *I : Method->specific_attrs<FormatAttr>()) { 2428 if (S.GetFormatNSStringIdx(I, Idx)) { 2429 Format = true; 2430 break; 2431 } 2432 } 2433 } 2434 if (!Format || NumArgs <= Idx) 2435 return; 2436 2437 Expr *FormatExpr = Args[Idx]; 2438 if (ObjCStringLiteral *OSL = 2439 dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts())) { 2440 StringLiteral *FormatString = OSL->getString(); 2441 if (S.FormatStringHasSArg(FormatString)) { 2442 S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string) 2443 << "%s" << 0 << 0; 2444 if (Method) 2445 S.Diag(Method->getLocation(), diag::note_method_declared_at) 2446 << Method->getDeclName(); 2447 } 2448 } 2449 } 2450 2451 /// Build an Objective-C class message expression. 2452 /// 2453 /// This routine takes care of both normal class messages and 2454 /// class messages to the superclass. 2455 /// 2456 /// \param ReceiverTypeInfo Type source information that describes the 2457 /// receiver of this message. This may be NULL, in which case we are 2458 /// sending to the superclass and \p SuperLoc must be a valid source 2459 /// location. 2460 2461 /// \param ReceiverType The type of the object receiving the 2462 /// message. When \p ReceiverTypeInfo is non-NULL, this is the same 2463 /// type as that refers to. For a superclass send, this is the type of 2464 /// the superclass. 2465 /// 2466 /// \param SuperLoc The location of the "super" keyword in a 2467 /// superclass message. 2468 /// 2469 /// \param Sel The selector to which the message is being sent. 2470 /// 2471 /// \param Method The method that this class message is invoking, if 2472 /// already known. 2473 /// 2474 /// \param LBracLoc The location of the opening square bracket ']'. 2475 /// 2476 /// \param RBracLoc The location of the closing square bracket ']'. 2477 /// 2478 /// \param ArgsIn The message arguments. 2479 ExprResult Sema::BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo, 2480 QualType ReceiverType, 2481 SourceLocation SuperLoc, 2482 Selector Sel, 2483 ObjCMethodDecl *Method, 2484 SourceLocation LBracLoc, 2485 ArrayRef<SourceLocation> SelectorLocs, 2486 SourceLocation RBracLoc, 2487 MultiExprArg ArgsIn, 2488 bool isImplicit) { 2489 SourceLocation Loc = SuperLoc.isValid()? SuperLoc 2490 : ReceiverTypeInfo->getTypeLoc().getSourceRange().getBegin(); 2491 if (LBracLoc.isInvalid()) { 2492 Diag(Loc, diag::err_missing_open_square_message_send) 2493 << FixItHint::CreateInsertion(Loc, "["); 2494 LBracLoc = Loc; 2495 } 2496 ArrayRef<SourceLocation> SelectorSlotLocs; 2497 if (!SelectorLocs.empty() && SelectorLocs.front().isValid()) 2498 SelectorSlotLocs = SelectorLocs; 2499 else 2500 SelectorSlotLocs = Loc; 2501 SourceLocation SelLoc = SelectorSlotLocs.front(); 2502 2503 if (ReceiverType->isDependentType()) { 2504 // If the receiver type is dependent, we can't type-check anything 2505 // at this point. Build a dependent expression. 2506 unsigned NumArgs = ArgsIn.size(); 2507 Expr **Args = ArgsIn.data(); 2508 assert(SuperLoc.isInvalid() && "Message to super with dependent type"); 2509 return ObjCMessageExpr::Create( 2510 Context, ReceiverType, VK_RValue, LBracLoc, ReceiverTypeInfo, Sel, 2511 SelectorLocs, /*Method=*/nullptr, makeArrayRef(Args, NumArgs), RBracLoc, 2512 isImplicit); 2513 } 2514 2515 // Find the class to which we are sending this message. 2516 ObjCInterfaceDecl *Class = nullptr; 2517 const ObjCObjectType *ClassType = ReceiverType->getAs<ObjCObjectType>(); 2518 if (!ClassType || !(Class = ClassType->getInterface())) { 2519 Diag(Loc, diag::err_invalid_receiver_class_message) 2520 << ReceiverType; 2521 return ExprError(); 2522 } 2523 assert(Class && "We don't know which class we're messaging?"); 2524 // objc++ diagnoses during typename annotation. 2525 if (!getLangOpts().CPlusPlus) 2526 (void)DiagnoseUseOfDecl(Class, SelectorSlotLocs); 2527 // Find the method we are messaging. 2528 if (!Method) { 2529 SourceRange TypeRange 2530 = SuperLoc.isValid()? SourceRange(SuperLoc) 2531 : ReceiverTypeInfo->getTypeLoc().getSourceRange(); 2532 if (RequireCompleteType(Loc, Context.getObjCInterfaceType(Class), 2533 (getLangOpts().ObjCAutoRefCount 2534 ? diag::err_arc_receiver_forward_class 2535 : diag::warn_receiver_forward_class), 2536 TypeRange)) { 2537 // A forward class used in messaging is treated as a 'Class' 2538 Method = LookupFactoryMethodInGlobalPool(Sel, 2539 SourceRange(LBracLoc, RBracLoc)); 2540 if (Method && !getLangOpts().ObjCAutoRefCount) 2541 Diag(Method->getLocation(), diag::note_method_sent_forward_class) 2542 << Method->getDeclName(); 2543 } 2544 if (!Method) 2545 Method = Class->lookupClassMethod(Sel); 2546 2547 // If we have an implementation in scope, check "private" methods. 2548 if (!Method) 2549 Method = Class->lookupPrivateClassMethod(Sel); 2550 2551 if (Method && DiagnoseUseOfDecl(Method, SelectorSlotLocs, 2552 nullptr, false, false, Class)) 2553 return ExprError(); 2554 } 2555 2556 // Check the argument types and determine the result type. 2557 QualType ReturnType; 2558 ExprValueKind VK = VK_RValue; 2559 2560 unsigned NumArgs = ArgsIn.size(); 2561 Expr **Args = ArgsIn.data(); 2562 if (CheckMessageArgumentTypes(/*Receiver=*/nullptr, ReceiverType, 2563 MultiExprArg(Args, NumArgs), Sel, SelectorLocs, 2564 Method, true, SuperLoc.isValid(), LBracLoc, 2565 RBracLoc, SourceRange(), ReturnType, VK)) 2566 return ExprError(); 2567 2568 if (Method && !Method->getReturnType()->isVoidType() && 2569 RequireCompleteType(LBracLoc, Method->getReturnType(), 2570 diag::err_illegal_message_expr_incomplete_type)) 2571 return ExprError(); 2572 2573 // Warn about explicit call of +initialize on its own class. But not on 'super'. 2574 if (Method && Method->getMethodFamily() == OMF_initialize) { 2575 if (!SuperLoc.isValid()) { 2576 const ObjCInterfaceDecl *ID = 2577 dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext()); 2578 if (ID == Class) { 2579 Diag(Loc, diag::warn_direct_initialize_call); 2580 Diag(Method->getLocation(), diag::note_method_declared_at) 2581 << Method->getDeclName(); 2582 } 2583 } 2584 else if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) { 2585 // [super initialize] is allowed only within an +initialize implementation 2586 if (CurMeth->getMethodFamily() != OMF_initialize) { 2587 Diag(Loc, diag::warn_direct_super_initialize_call); 2588 Diag(Method->getLocation(), diag::note_method_declared_at) 2589 << Method->getDeclName(); 2590 Diag(CurMeth->getLocation(), diag::note_method_declared_at) 2591 << CurMeth->getDeclName(); 2592 } 2593 } 2594 } 2595 2596 DiagnoseCStringFormatDirectiveInObjCAPI(*this, Method, Sel, Args, NumArgs); 2597 2598 // Construct the appropriate ObjCMessageExpr. 2599 ObjCMessageExpr *Result; 2600 if (SuperLoc.isValid()) 2601 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 2602 SuperLoc, /*IsInstanceSuper=*/false, 2603 ReceiverType, Sel, SelectorLocs, 2604 Method, makeArrayRef(Args, NumArgs), 2605 RBracLoc, isImplicit); 2606 else { 2607 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 2608 ReceiverTypeInfo, Sel, SelectorLocs, 2609 Method, makeArrayRef(Args, NumArgs), 2610 RBracLoc, isImplicit); 2611 if (!isImplicit) 2612 checkCocoaAPI(*this, Result); 2613 } 2614 if (Method) 2615 checkFoundationAPI(*this, SelLoc, Method, makeArrayRef(Args, NumArgs), 2616 ReceiverType, /*IsClassObjectCall=*/true); 2617 return MaybeBindToTemporary(Result); 2618 } 2619 2620 // ActOnClassMessage - used for both unary and keyword messages. 2621 // ArgExprs is optional - if it is present, the number of expressions 2622 // is obtained from Sel.getNumArgs(). 2623 ExprResult Sema::ActOnClassMessage(Scope *S, 2624 ParsedType Receiver, 2625 Selector Sel, 2626 SourceLocation LBracLoc, 2627 ArrayRef<SourceLocation> SelectorLocs, 2628 SourceLocation RBracLoc, 2629 MultiExprArg Args) { 2630 TypeSourceInfo *ReceiverTypeInfo; 2631 QualType ReceiverType = GetTypeFromParser(Receiver, &ReceiverTypeInfo); 2632 if (ReceiverType.isNull()) 2633 return ExprError(); 2634 2635 if (!ReceiverTypeInfo) 2636 ReceiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType, LBracLoc); 2637 2638 return BuildClassMessage(ReceiverTypeInfo, ReceiverType, 2639 /*SuperLoc=*/SourceLocation(), Sel, 2640 /*Method=*/nullptr, LBracLoc, SelectorLocs, RBracLoc, 2641 Args); 2642 } 2643 2644 ExprResult Sema::BuildInstanceMessageImplicit(Expr *Receiver, 2645 QualType ReceiverType, 2646 SourceLocation Loc, 2647 Selector Sel, 2648 ObjCMethodDecl *Method, 2649 MultiExprArg Args) { 2650 return BuildInstanceMessage(Receiver, ReceiverType, 2651 /*SuperLoc=*/!Receiver ? Loc : SourceLocation(), 2652 Sel, Method, Loc, Loc, Loc, Args, 2653 /*isImplicit=*/true); 2654 } 2655 2656 static bool isMethodDeclaredInRootProtocol(Sema &S, const ObjCMethodDecl *M) { 2657 if (!S.NSAPIObj) 2658 return false; 2659 const auto *Protocol = dyn_cast<ObjCProtocolDecl>(M->getDeclContext()); 2660 if (!Protocol) 2661 return false; 2662 const IdentifierInfo *II = S.NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject); 2663 if (const auto *RootClass = dyn_cast_or_null<ObjCInterfaceDecl>( 2664 S.LookupSingleName(S.TUScope, II, Protocol->getBeginLoc(), 2665 Sema::LookupOrdinaryName))) { 2666 for (const ObjCProtocolDecl *P : RootClass->all_referenced_protocols()) { 2667 if (P->getCanonicalDecl() == Protocol->getCanonicalDecl()) 2668 return true; 2669 } 2670 } 2671 return false; 2672 } 2673 2674 /// Build an Objective-C instance message expression. 2675 /// 2676 /// This routine takes care of both normal instance messages and 2677 /// instance messages to the superclass instance. 2678 /// 2679 /// \param Receiver The expression that computes the object that will 2680 /// receive this message. This may be empty, in which case we are 2681 /// sending to the superclass instance and \p SuperLoc must be a valid 2682 /// source location. 2683 /// 2684 /// \param ReceiverType The (static) type of the object receiving the 2685 /// message. When a \p Receiver expression is provided, this is the 2686 /// same type as that expression. For a superclass instance send, this 2687 /// is a pointer to the type of the superclass. 2688 /// 2689 /// \param SuperLoc The location of the "super" keyword in a 2690 /// superclass instance message. 2691 /// 2692 /// \param Sel The selector to which the message is being sent. 2693 /// 2694 /// \param Method The method that this instance message is invoking, if 2695 /// already known. 2696 /// 2697 /// \param LBracLoc The location of the opening square bracket ']'. 2698 /// 2699 /// \param RBracLoc The location of the closing square bracket ']'. 2700 /// 2701 /// \param ArgsIn The message arguments. 2702 ExprResult Sema::BuildInstanceMessage(Expr *Receiver, 2703 QualType ReceiverType, 2704 SourceLocation SuperLoc, 2705 Selector Sel, 2706 ObjCMethodDecl *Method, 2707 SourceLocation LBracLoc, 2708 ArrayRef<SourceLocation> SelectorLocs, 2709 SourceLocation RBracLoc, 2710 MultiExprArg ArgsIn, 2711 bool isImplicit) { 2712 assert((Receiver || SuperLoc.isValid()) && "If the Receiver is null, the " 2713 "SuperLoc must be valid so we can " 2714 "use it instead."); 2715 2716 // The location of the receiver. 2717 SourceLocation Loc = SuperLoc.isValid() ? SuperLoc : Receiver->getBeginLoc(); 2718 SourceRange RecRange = 2719 SuperLoc.isValid()? SuperLoc : Receiver->getSourceRange(); 2720 ArrayRef<SourceLocation> SelectorSlotLocs; 2721 if (!SelectorLocs.empty() && SelectorLocs.front().isValid()) 2722 SelectorSlotLocs = SelectorLocs; 2723 else 2724 SelectorSlotLocs = Loc; 2725 SourceLocation SelLoc = SelectorSlotLocs.front(); 2726 2727 if (LBracLoc.isInvalid()) { 2728 Diag(Loc, diag::err_missing_open_square_message_send) 2729 << FixItHint::CreateInsertion(Loc, "["); 2730 LBracLoc = Loc; 2731 } 2732 2733 // If we have a receiver expression, perform appropriate promotions 2734 // and determine receiver type. 2735 if (Receiver) { 2736 if (Receiver->hasPlaceholderType()) { 2737 ExprResult Result; 2738 if (Receiver->getType() == Context.UnknownAnyTy) 2739 Result = forceUnknownAnyToType(Receiver, Context.getObjCIdType()); 2740 else 2741 Result = CheckPlaceholderExpr(Receiver); 2742 if (Result.isInvalid()) return ExprError(); 2743 Receiver = Result.get(); 2744 } 2745 2746 if (Receiver->isTypeDependent()) { 2747 // If the receiver is type-dependent, we can't type-check anything 2748 // at this point. Build a dependent expression. 2749 unsigned NumArgs = ArgsIn.size(); 2750 Expr **Args = ArgsIn.data(); 2751 assert(SuperLoc.isInvalid() && "Message to super with dependent type"); 2752 return ObjCMessageExpr::Create( 2753 Context, Context.DependentTy, VK_RValue, LBracLoc, Receiver, Sel, 2754 SelectorLocs, /*Method=*/nullptr, makeArrayRef(Args, NumArgs), 2755 RBracLoc, isImplicit); 2756 } 2757 2758 // If necessary, apply function/array conversion to the receiver. 2759 // C99 6.7.5.3p[7,8]. 2760 ExprResult Result = DefaultFunctionArrayLvalueConversion(Receiver); 2761 if (Result.isInvalid()) 2762 return ExprError(); 2763 Receiver = Result.get(); 2764 ReceiverType = Receiver->getType(); 2765 2766 // If the receiver is an ObjC pointer, a block pointer, or an 2767 // __attribute__((NSObject)) pointer, we don't need to do any 2768 // special conversion in order to look up a receiver. 2769 if (ReceiverType->isObjCRetainableType()) { 2770 // do nothing 2771 } else if (!getLangOpts().ObjCAutoRefCount && 2772 !Context.getObjCIdType().isNull() && 2773 (ReceiverType->isPointerType() || 2774 ReceiverType->isIntegerType())) { 2775 // Implicitly convert integers and pointers to 'id' but emit a warning. 2776 // But not in ARC. 2777 Diag(Loc, diag::warn_bad_receiver_type) 2778 << ReceiverType 2779 << Receiver->getSourceRange(); 2780 if (ReceiverType->isPointerType()) { 2781 Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(), 2782 CK_CPointerToObjCPointerCast).get(); 2783 } else { 2784 // TODO: specialized warning on null receivers? 2785 bool IsNull = Receiver->isNullPointerConstant(Context, 2786 Expr::NPC_ValueDependentIsNull); 2787 CastKind Kind = IsNull ? CK_NullToPointer : CK_IntegralToPointer; 2788 Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(), 2789 Kind).get(); 2790 } 2791 ReceiverType = Receiver->getType(); 2792 } else if (getLangOpts().CPlusPlus) { 2793 // The receiver must be a complete type. 2794 if (RequireCompleteType(Loc, Receiver->getType(), 2795 diag::err_incomplete_receiver_type)) 2796 return ExprError(); 2797 2798 ExprResult result = PerformContextuallyConvertToObjCPointer(Receiver); 2799 if (result.isUsable()) { 2800 Receiver = result.get(); 2801 ReceiverType = Receiver->getType(); 2802 } 2803 } 2804 } 2805 2806 // There's a somewhat weird interaction here where we assume that we 2807 // won't actually have a method unless we also don't need to do some 2808 // of the more detailed type-checking on the receiver. 2809 2810 if (!Method) { 2811 // Handle messages to id and __kindof types (where we use the 2812 // global method pool). 2813 const ObjCObjectType *typeBound = nullptr; 2814 bool receiverIsIdLike = ReceiverType->isObjCIdOrObjectKindOfType(Context, 2815 typeBound); 2816 if (receiverIsIdLike || ReceiverType->isBlockPointerType() || 2817 (Receiver && Context.isObjCNSObjectType(Receiver->getType()))) { 2818 SmallVector<ObjCMethodDecl*, 4> Methods; 2819 // If we have a type bound, further filter the methods. 2820 CollectMultipleMethodsInGlobalPool(Sel, Methods, true/*InstanceFirst*/, 2821 true/*CheckTheOther*/, typeBound); 2822 if (!Methods.empty()) { 2823 // We choose the first method as the initial candidate, then try to 2824 // select a better one. 2825 Method = Methods[0]; 2826 2827 if (ObjCMethodDecl *BestMethod = 2828 SelectBestMethod(Sel, ArgsIn, Method->isInstanceMethod(), Methods)) 2829 Method = BestMethod; 2830 2831 if (!AreMultipleMethodsInGlobalPool(Sel, Method, 2832 SourceRange(LBracLoc, RBracLoc), 2833 receiverIsIdLike, Methods)) 2834 DiagnoseUseOfDecl(Method, SelectorSlotLocs); 2835 } 2836 } else if (ReceiverType->isObjCClassOrClassKindOfType() || 2837 ReceiverType->isObjCQualifiedClassType()) { 2838 // Handle messages to Class. 2839 // We allow sending a message to a qualified Class ("Class<foo>"), which 2840 // is ok as long as one of the protocols implements the selector (if not, 2841 // warn). 2842 if (!ReceiverType->isObjCClassOrClassKindOfType()) { 2843 const ObjCObjectPointerType *QClassTy 2844 = ReceiverType->getAsObjCQualifiedClassType(); 2845 // Search protocols for class methods. 2846 Method = LookupMethodInQualifiedType(Sel, QClassTy, false); 2847 if (!Method) { 2848 Method = LookupMethodInQualifiedType(Sel, QClassTy, true); 2849 // warn if instance method found for a Class message. 2850 if (Method && !isMethodDeclaredInRootProtocol(*this, Method)) { 2851 Diag(SelLoc, diag::warn_instance_method_on_class_found) 2852 << Method->getSelector() << Sel; 2853 Diag(Method->getLocation(), diag::note_method_declared_at) 2854 << Method->getDeclName(); 2855 } 2856 } 2857 } else { 2858 if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) { 2859 if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) { 2860 // As a guess, try looking for the method in the current interface. 2861 // This very well may not produce the "right" method. 2862 2863 // First check the public methods in the class interface. 2864 Method = ClassDecl->lookupClassMethod(Sel); 2865 2866 if (!Method) 2867 Method = ClassDecl->lookupPrivateClassMethod(Sel); 2868 2869 if (Method && DiagnoseUseOfDecl(Method, SelectorSlotLocs)) 2870 return ExprError(); 2871 } 2872 } 2873 if (!Method) { 2874 // If not messaging 'self', look for any factory method named 'Sel'. 2875 if (!Receiver || !isSelfExpr(Receiver)) { 2876 // If no class (factory) method was found, check if an _instance_ 2877 // method of the same name exists in the root class only. 2878 SmallVector<ObjCMethodDecl*, 4> Methods; 2879 CollectMultipleMethodsInGlobalPool(Sel, Methods, 2880 false/*InstanceFirst*/, 2881 true/*CheckTheOther*/); 2882 if (!Methods.empty()) { 2883 // We choose the first method as the initial candidate, then try 2884 // to select a better one. 2885 Method = Methods[0]; 2886 2887 // If we find an instance method, emit warning. 2888 if (Method->isInstanceMethod()) { 2889 if (const ObjCInterfaceDecl *ID = 2890 dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext())) { 2891 if (ID->getSuperClass()) 2892 Diag(SelLoc, diag::warn_root_inst_method_not_found) 2893 << Sel << SourceRange(LBracLoc, RBracLoc); 2894 } 2895 } 2896 2897 if (ObjCMethodDecl *BestMethod = 2898 SelectBestMethod(Sel, ArgsIn, Method->isInstanceMethod(), 2899 Methods)) 2900 Method = BestMethod; 2901 } 2902 } 2903 } 2904 } 2905 } else { 2906 ObjCInterfaceDecl *ClassDecl = nullptr; 2907 2908 // We allow sending a message to a qualified ID ("id<foo>"), which is ok as 2909 // long as one of the protocols implements the selector (if not, warn). 2910 // And as long as message is not deprecated/unavailable (warn if it is). 2911 if (const ObjCObjectPointerType *QIdTy 2912 = ReceiverType->getAsObjCQualifiedIdType()) { 2913 // Search protocols for instance methods. 2914 Method = LookupMethodInQualifiedType(Sel, QIdTy, true); 2915 if (!Method) 2916 Method = LookupMethodInQualifiedType(Sel, QIdTy, false); 2917 if (Method && DiagnoseUseOfDecl(Method, SelectorSlotLocs)) 2918 return ExprError(); 2919 } else if (const ObjCObjectPointerType *OCIType 2920 = ReceiverType->getAsObjCInterfacePointerType()) { 2921 // We allow sending a message to a pointer to an interface (an object). 2922 ClassDecl = OCIType->getInterfaceDecl(); 2923 2924 // Try to complete the type. Under ARC, this is a hard error from which 2925 // we don't try to recover. 2926 // FIXME: In the non-ARC case, this will still be a hard error if the 2927 // definition is found in a module that's not visible. 2928 const ObjCInterfaceDecl *forwardClass = nullptr; 2929 if (RequireCompleteType(Loc, OCIType->getPointeeType(), 2930 getLangOpts().ObjCAutoRefCount 2931 ? diag::err_arc_receiver_forward_instance 2932 : diag::warn_receiver_forward_instance, 2933 Receiver? Receiver->getSourceRange() 2934 : SourceRange(SuperLoc))) { 2935 if (getLangOpts().ObjCAutoRefCount) 2936 return ExprError(); 2937 2938 forwardClass = OCIType->getInterfaceDecl(); 2939 Diag(Receiver ? Receiver->getBeginLoc() : SuperLoc, 2940 diag::note_receiver_is_id); 2941 Method = nullptr; 2942 } else { 2943 Method = ClassDecl->lookupInstanceMethod(Sel); 2944 } 2945 2946 if (!Method) 2947 // Search protocol qualifiers. 2948 Method = LookupMethodInQualifiedType(Sel, OCIType, true); 2949 2950 if (!Method) { 2951 // If we have implementations in scope, check "private" methods. 2952 Method = ClassDecl->lookupPrivateMethod(Sel); 2953 2954 if (!Method && getLangOpts().ObjCAutoRefCount) { 2955 Diag(SelLoc, diag::err_arc_may_not_respond) 2956 << OCIType->getPointeeType() << Sel << RecRange 2957 << SourceRange(SelectorLocs.front(), SelectorLocs.back()); 2958 return ExprError(); 2959 } 2960 2961 if (!Method && (!Receiver || !isSelfExpr(Receiver))) { 2962 // If we still haven't found a method, look in the global pool. This 2963 // behavior isn't very desirable, however we need it for GCC 2964 // compatibility. FIXME: should we deviate?? 2965 if (OCIType->qual_empty()) { 2966 SmallVector<ObjCMethodDecl*, 4> Methods; 2967 CollectMultipleMethodsInGlobalPool(Sel, Methods, 2968 true/*InstanceFirst*/, 2969 false/*CheckTheOther*/); 2970 if (!Methods.empty()) { 2971 // We choose the first method as the initial candidate, then try 2972 // to select a better one. 2973 Method = Methods[0]; 2974 2975 if (ObjCMethodDecl *BestMethod = 2976 SelectBestMethod(Sel, ArgsIn, Method->isInstanceMethod(), 2977 Methods)) 2978 Method = BestMethod; 2979 2980 AreMultipleMethodsInGlobalPool(Sel, Method, 2981 SourceRange(LBracLoc, RBracLoc), 2982 true/*receiverIdOrClass*/, 2983 Methods); 2984 } 2985 if (Method && !forwardClass) 2986 Diag(SelLoc, diag::warn_maynot_respond) 2987 << OCIType->getInterfaceDecl()->getIdentifier() 2988 << Sel << RecRange; 2989 } 2990 } 2991 } 2992 if (Method && DiagnoseUseOfDecl(Method, SelectorSlotLocs, forwardClass)) 2993 return ExprError(); 2994 } else { 2995 // Reject other random receiver types (e.g. structs). 2996 Diag(Loc, diag::err_bad_receiver_type) 2997 << ReceiverType << Receiver->getSourceRange(); 2998 return ExprError(); 2999 } 3000 } 3001 } 3002 3003 FunctionScopeInfo *DIFunctionScopeInfo = 3004 (Method && Method->getMethodFamily() == OMF_init) 3005 ? getEnclosingFunction() : nullptr; 3006 3007 if (Method && Method->isDirectMethod()) { 3008 if (ReceiverType->isObjCIdType() && !isImplicit) { 3009 Diag(Receiver->getExprLoc(), 3010 diag::err_messaging_unqualified_id_with_direct_method); 3011 Diag(Method->getLocation(), diag::note_direct_method_declared_at) 3012 << Method->getDeclName(); 3013 } 3014 3015 if (ReceiverType->isObjCClassType() && !isImplicit) { 3016 Diag(Receiver->getExprLoc(), 3017 diag::err_messaging_class_with_direct_method); 3018 Diag(Method->getLocation(), diag::note_direct_method_declared_at) 3019 << Method->getDeclName(); 3020 } 3021 3022 if (SuperLoc.isValid()) { 3023 Diag(SuperLoc, diag::err_messaging_super_with_direct_method); 3024 Diag(Method->getLocation(), diag::note_direct_method_declared_at) 3025 << Method->getDeclName(); 3026 } 3027 } else if (ReceiverType->isObjCIdType() && !isImplicit) { 3028 Diag(Receiver->getExprLoc(), diag::warn_messaging_unqualified_id); 3029 } 3030 3031 if (DIFunctionScopeInfo && 3032 DIFunctionScopeInfo->ObjCIsDesignatedInit && 3033 (SuperLoc.isValid() || isSelfExpr(Receiver))) { 3034 bool isDesignatedInitChain = false; 3035 if (SuperLoc.isValid()) { 3036 if (const ObjCObjectPointerType * 3037 OCIType = ReceiverType->getAsObjCInterfacePointerType()) { 3038 if (const ObjCInterfaceDecl *ID = OCIType->getInterfaceDecl()) { 3039 // Either we know this is a designated initializer or we 3040 // conservatively assume it because we don't know for sure. 3041 if (!ID->declaresOrInheritsDesignatedInitializers() || 3042 ID->isDesignatedInitializer(Sel)) { 3043 isDesignatedInitChain = true; 3044 DIFunctionScopeInfo->ObjCWarnForNoDesignatedInitChain = false; 3045 } 3046 } 3047 } 3048 } 3049 if (!isDesignatedInitChain) { 3050 const ObjCMethodDecl *InitMethod = nullptr; 3051 bool isDesignated = 3052 getCurMethodDecl()->isDesignatedInitializerForTheInterface(&InitMethod); 3053 assert(isDesignated && InitMethod); 3054 (void)isDesignated; 3055 Diag(SelLoc, SuperLoc.isValid() ? 3056 diag::warn_objc_designated_init_non_designated_init_call : 3057 diag::warn_objc_designated_init_non_super_designated_init_call); 3058 Diag(InitMethod->getLocation(), 3059 diag::note_objc_designated_init_marked_here); 3060 } 3061 } 3062 3063 if (DIFunctionScopeInfo && 3064 DIFunctionScopeInfo->ObjCIsSecondaryInit && 3065 (SuperLoc.isValid() || isSelfExpr(Receiver))) { 3066 if (SuperLoc.isValid()) { 3067 Diag(SelLoc, diag::warn_objc_secondary_init_super_init_call); 3068 } else { 3069 DIFunctionScopeInfo->ObjCWarnForNoInitDelegation = false; 3070 } 3071 } 3072 3073 // Check the message arguments. 3074 unsigned NumArgs = ArgsIn.size(); 3075 Expr **Args = ArgsIn.data(); 3076 QualType ReturnType; 3077 ExprValueKind VK = VK_RValue; 3078 bool ClassMessage = (ReceiverType->isObjCClassType() || 3079 ReceiverType->isObjCQualifiedClassType()); 3080 if (CheckMessageArgumentTypes(Receiver, ReceiverType, 3081 MultiExprArg(Args, NumArgs), Sel, SelectorLocs, 3082 Method, ClassMessage, SuperLoc.isValid(), 3083 LBracLoc, RBracLoc, RecRange, ReturnType, VK)) 3084 return ExprError(); 3085 3086 if (Method && !Method->getReturnType()->isVoidType() && 3087 RequireCompleteType(LBracLoc, Method->getReturnType(), 3088 diag::err_illegal_message_expr_incomplete_type)) 3089 return ExprError(); 3090 3091 // In ARC, forbid the user from sending messages to 3092 // retain/release/autorelease/dealloc/retainCount explicitly. 3093 if (getLangOpts().ObjCAutoRefCount) { 3094 ObjCMethodFamily family = 3095 (Method ? Method->getMethodFamily() : Sel.getMethodFamily()); 3096 switch (family) { 3097 case OMF_init: 3098 if (Method) 3099 checkInitMethod(Method, ReceiverType); 3100 break; 3101 3102 case OMF_None: 3103 case OMF_alloc: 3104 case OMF_copy: 3105 case OMF_finalize: 3106 case OMF_mutableCopy: 3107 case OMF_new: 3108 case OMF_self: 3109 case OMF_initialize: 3110 break; 3111 3112 case OMF_dealloc: 3113 case OMF_retain: 3114 case OMF_release: 3115 case OMF_autorelease: 3116 case OMF_retainCount: 3117 Diag(SelLoc, diag::err_arc_illegal_explicit_message) 3118 << Sel << RecRange; 3119 break; 3120 3121 case OMF_performSelector: 3122 if (Method && NumArgs >= 1) { 3123 if (const auto *SelExp = 3124 dyn_cast<ObjCSelectorExpr>(Args[0]->IgnoreParens())) { 3125 Selector ArgSel = SelExp->getSelector(); 3126 ObjCMethodDecl *SelMethod = 3127 LookupInstanceMethodInGlobalPool(ArgSel, 3128 SelExp->getSourceRange()); 3129 if (!SelMethod) 3130 SelMethod = 3131 LookupFactoryMethodInGlobalPool(ArgSel, 3132 SelExp->getSourceRange()); 3133 if (SelMethod) { 3134 ObjCMethodFamily SelFamily = SelMethod->getMethodFamily(); 3135 switch (SelFamily) { 3136 case OMF_alloc: 3137 case OMF_copy: 3138 case OMF_mutableCopy: 3139 case OMF_new: 3140 case OMF_init: 3141 // Issue error, unless ns_returns_not_retained. 3142 if (!SelMethod->hasAttr<NSReturnsNotRetainedAttr>()) { 3143 // selector names a +1 method 3144 Diag(SelLoc, 3145 diag::err_arc_perform_selector_retains); 3146 Diag(SelMethod->getLocation(), diag::note_method_declared_at) 3147 << SelMethod->getDeclName(); 3148 } 3149 break; 3150 default: 3151 // +0 call. OK. unless ns_returns_retained. 3152 if (SelMethod->hasAttr<NSReturnsRetainedAttr>()) { 3153 // selector names a +1 method 3154 Diag(SelLoc, 3155 diag::err_arc_perform_selector_retains); 3156 Diag(SelMethod->getLocation(), diag::note_method_declared_at) 3157 << SelMethod->getDeclName(); 3158 } 3159 break; 3160 } 3161 } 3162 } else { 3163 // error (may leak). 3164 Diag(SelLoc, diag::warn_arc_perform_selector_leaks); 3165 Diag(Args[0]->getExprLoc(), diag::note_used_here); 3166 } 3167 } 3168 break; 3169 } 3170 } 3171 3172 DiagnoseCStringFormatDirectiveInObjCAPI(*this, Method, Sel, Args, NumArgs); 3173 3174 // Construct the appropriate ObjCMessageExpr instance. 3175 ObjCMessageExpr *Result; 3176 if (SuperLoc.isValid()) 3177 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 3178 SuperLoc, /*IsInstanceSuper=*/true, 3179 ReceiverType, Sel, SelectorLocs, Method, 3180 makeArrayRef(Args, NumArgs), RBracLoc, 3181 isImplicit); 3182 else { 3183 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 3184 Receiver, Sel, SelectorLocs, Method, 3185 makeArrayRef(Args, NumArgs), RBracLoc, 3186 isImplicit); 3187 if (!isImplicit) 3188 checkCocoaAPI(*this, Result); 3189 } 3190 if (Method) { 3191 bool IsClassObjectCall = ClassMessage; 3192 // 'self' message receivers in class methods should be treated as message 3193 // sends to the class object in order for the semantic checks to be 3194 // performed correctly. Messages to 'super' already count as class messages, 3195 // so they don't need to be handled here. 3196 if (Receiver && isSelfExpr(Receiver)) { 3197 if (const auto *OPT = ReceiverType->getAs<ObjCObjectPointerType>()) { 3198 if (OPT->getObjectType()->isObjCClass()) { 3199 if (const auto *CurMeth = getCurMethodDecl()) { 3200 IsClassObjectCall = true; 3201 ReceiverType = 3202 Context.getObjCInterfaceType(CurMeth->getClassInterface()); 3203 } 3204 } 3205 } 3206 } 3207 checkFoundationAPI(*this, SelLoc, Method, makeArrayRef(Args, NumArgs), 3208 ReceiverType, IsClassObjectCall); 3209 } 3210 3211 if (getLangOpts().ObjCAutoRefCount) { 3212 // In ARC, annotate delegate init calls. 3213 if (Result->getMethodFamily() == OMF_init && 3214 (SuperLoc.isValid() || isSelfExpr(Receiver))) { 3215 // Only consider init calls *directly* in init implementations, 3216 // not within blocks. 3217 ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(CurContext); 3218 if (method && method->getMethodFamily() == OMF_init) { 3219 // The implicit assignment to self means we also don't want to 3220 // consume the result. 3221 Result->setDelegateInitCall(true); 3222 return Result; 3223 } 3224 } 3225 3226 // In ARC, check for message sends which are likely to introduce 3227 // retain cycles. 3228 checkRetainCycles(Result); 3229 } 3230 3231 if (getLangOpts().ObjCWeak) { 3232 if (!isImplicit && Method) { 3233 if (const ObjCPropertyDecl *Prop = Method->findPropertyDecl()) { 3234 bool IsWeak = 3235 Prop->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak; 3236 if (!IsWeak && Sel.isUnarySelector()) 3237 IsWeak = ReturnType.getObjCLifetime() & Qualifiers::OCL_Weak; 3238 if (IsWeak && !isUnevaluatedContext() && 3239 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, LBracLoc)) 3240 getCurFunction()->recordUseOfWeak(Result, Prop); 3241 } 3242 } 3243 } 3244 3245 CheckObjCCircularContainer(Result); 3246 3247 return MaybeBindToTemporary(Result); 3248 } 3249 3250 static void RemoveSelectorFromWarningCache(Sema &S, Expr* Arg) { 3251 if (ObjCSelectorExpr *OSE = 3252 dyn_cast<ObjCSelectorExpr>(Arg->IgnoreParenCasts())) { 3253 Selector Sel = OSE->getSelector(); 3254 SourceLocation Loc = OSE->getAtLoc(); 3255 auto Pos = S.ReferencedSelectors.find(Sel); 3256 if (Pos != S.ReferencedSelectors.end() && Pos->second == Loc) 3257 S.ReferencedSelectors.erase(Pos); 3258 } 3259 } 3260 3261 // ActOnInstanceMessage - used for both unary and keyword messages. 3262 // ArgExprs is optional - if it is present, the number of expressions 3263 // is obtained from Sel.getNumArgs(). 3264 ExprResult Sema::ActOnInstanceMessage(Scope *S, 3265 Expr *Receiver, 3266 Selector Sel, 3267 SourceLocation LBracLoc, 3268 ArrayRef<SourceLocation> SelectorLocs, 3269 SourceLocation RBracLoc, 3270 MultiExprArg Args) { 3271 if (!Receiver) 3272 return ExprError(); 3273 3274 // A ParenListExpr can show up while doing error recovery with invalid code. 3275 if (isa<ParenListExpr>(Receiver)) { 3276 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Receiver); 3277 if (Result.isInvalid()) return ExprError(); 3278 Receiver = Result.get(); 3279 } 3280 3281 if (RespondsToSelectorSel.isNull()) { 3282 IdentifierInfo *SelectorId = &Context.Idents.get("respondsToSelector"); 3283 RespondsToSelectorSel = Context.Selectors.getUnarySelector(SelectorId); 3284 } 3285 if (Sel == RespondsToSelectorSel) 3286 RemoveSelectorFromWarningCache(*this, Args[0]); 3287 3288 return BuildInstanceMessage(Receiver, Receiver->getType(), 3289 /*SuperLoc=*/SourceLocation(), Sel, 3290 /*Method=*/nullptr, LBracLoc, SelectorLocs, 3291 RBracLoc, Args); 3292 } 3293 3294 enum ARCConversionTypeClass { 3295 /// int, void, struct A 3296 ACTC_none, 3297 3298 /// id, void (^)() 3299 ACTC_retainable, 3300 3301 /// id*, id***, void (^*)(), 3302 ACTC_indirectRetainable, 3303 3304 /// void* might be a normal C type, or it might a CF type. 3305 ACTC_voidPtr, 3306 3307 /// struct A* 3308 ACTC_coreFoundation 3309 }; 3310 3311 static bool isAnyRetainable(ARCConversionTypeClass ACTC) { 3312 return (ACTC == ACTC_retainable || 3313 ACTC == ACTC_coreFoundation || 3314 ACTC == ACTC_voidPtr); 3315 } 3316 3317 static bool isAnyCLike(ARCConversionTypeClass ACTC) { 3318 return ACTC == ACTC_none || 3319 ACTC == ACTC_voidPtr || 3320 ACTC == ACTC_coreFoundation; 3321 } 3322 3323 static ARCConversionTypeClass classifyTypeForARCConversion(QualType type) { 3324 bool isIndirect = false; 3325 3326 // Ignore an outermost reference type. 3327 if (const ReferenceType *ref = type->getAs<ReferenceType>()) { 3328 type = ref->getPointeeType(); 3329 isIndirect = true; 3330 } 3331 3332 // Drill through pointers and arrays recursively. 3333 while (true) { 3334 if (const PointerType *ptr = type->getAs<PointerType>()) { 3335 type = ptr->getPointeeType(); 3336 3337 // The first level of pointer may be the innermost pointer on a CF type. 3338 if (!isIndirect) { 3339 if (type->isVoidType()) return ACTC_voidPtr; 3340 if (type->isRecordType()) return ACTC_coreFoundation; 3341 } 3342 } else if (const ArrayType *array = type->getAsArrayTypeUnsafe()) { 3343 type = QualType(array->getElementType()->getBaseElementTypeUnsafe(), 0); 3344 } else { 3345 break; 3346 } 3347 isIndirect = true; 3348 } 3349 3350 if (isIndirect) { 3351 if (type->isObjCARCBridgableType()) 3352 return ACTC_indirectRetainable; 3353 return ACTC_none; 3354 } 3355 3356 if (type->isObjCARCBridgableType()) 3357 return ACTC_retainable; 3358 3359 return ACTC_none; 3360 } 3361 3362 namespace { 3363 /// A result from the cast checker. 3364 enum ACCResult { 3365 /// Cannot be casted. 3366 ACC_invalid, 3367 3368 /// Can be safely retained or not retained. 3369 ACC_bottom, 3370 3371 /// Can be casted at +0. 3372 ACC_plusZero, 3373 3374 /// Can be casted at +1. 3375 ACC_plusOne 3376 }; 3377 ACCResult merge(ACCResult left, ACCResult right) { 3378 if (left == right) return left; 3379 if (left == ACC_bottom) return right; 3380 if (right == ACC_bottom) return left; 3381 return ACC_invalid; 3382 } 3383 3384 /// A checker which white-lists certain expressions whose conversion 3385 /// to or from retainable type would otherwise be forbidden in ARC. 3386 class ARCCastChecker : public StmtVisitor<ARCCastChecker, ACCResult> { 3387 typedef StmtVisitor<ARCCastChecker, ACCResult> super; 3388 3389 ASTContext &Context; 3390 ARCConversionTypeClass SourceClass; 3391 ARCConversionTypeClass TargetClass; 3392 bool Diagnose; 3393 3394 static bool isCFType(QualType type) { 3395 // Someday this can use ns_bridged. For now, it has to do this. 3396 return type->isCARCBridgableType(); 3397 } 3398 3399 public: 3400 ARCCastChecker(ASTContext &Context, ARCConversionTypeClass source, 3401 ARCConversionTypeClass target, bool diagnose) 3402 : Context(Context), SourceClass(source), TargetClass(target), 3403 Diagnose(diagnose) {} 3404 3405 using super::Visit; 3406 ACCResult Visit(Expr *e) { 3407 return super::Visit(e->IgnoreParens()); 3408 } 3409 3410 ACCResult VisitStmt(Stmt *s) { 3411 return ACC_invalid; 3412 } 3413 3414 /// Null pointer constants can be casted however you please. 3415 ACCResult VisitExpr(Expr *e) { 3416 if (e->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull)) 3417 return ACC_bottom; 3418 return ACC_invalid; 3419 } 3420 3421 /// Objective-C string literals can be safely casted. 3422 ACCResult VisitObjCStringLiteral(ObjCStringLiteral *e) { 3423 // If we're casting to any retainable type, go ahead. Global 3424 // strings are immune to retains, so this is bottom. 3425 if (isAnyRetainable(TargetClass)) return ACC_bottom; 3426 3427 return ACC_invalid; 3428 } 3429 3430 /// Look through certain implicit and explicit casts. 3431 ACCResult VisitCastExpr(CastExpr *e) { 3432 switch (e->getCastKind()) { 3433 case CK_NullToPointer: 3434 return ACC_bottom; 3435 3436 case CK_NoOp: 3437 case CK_LValueToRValue: 3438 case CK_BitCast: 3439 case CK_CPointerToObjCPointerCast: 3440 case CK_BlockPointerToObjCPointerCast: 3441 case CK_AnyPointerToBlockPointerCast: 3442 return Visit(e->getSubExpr()); 3443 3444 default: 3445 return ACC_invalid; 3446 } 3447 } 3448 3449 /// Look through unary extension. 3450 ACCResult VisitUnaryExtension(UnaryOperator *e) { 3451 return Visit(e->getSubExpr()); 3452 } 3453 3454 /// Ignore the LHS of a comma operator. 3455 ACCResult VisitBinComma(BinaryOperator *e) { 3456 return Visit(e->getRHS()); 3457 } 3458 3459 /// Conditional operators are okay if both sides are okay. 3460 ACCResult VisitConditionalOperator(ConditionalOperator *e) { 3461 ACCResult left = Visit(e->getTrueExpr()); 3462 if (left == ACC_invalid) return ACC_invalid; 3463 return merge(left, Visit(e->getFalseExpr())); 3464 } 3465 3466 /// Look through pseudo-objects. 3467 ACCResult VisitPseudoObjectExpr(PseudoObjectExpr *e) { 3468 // If we're getting here, we should always have a result. 3469 return Visit(e->getResultExpr()); 3470 } 3471 3472 /// Statement expressions are okay if their result expression is okay. 3473 ACCResult VisitStmtExpr(StmtExpr *e) { 3474 return Visit(e->getSubStmt()->body_back()); 3475 } 3476 3477 /// Some declaration references are okay. 3478 ACCResult VisitDeclRefExpr(DeclRefExpr *e) { 3479 VarDecl *var = dyn_cast<VarDecl>(e->getDecl()); 3480 // References to global constants are okay. 3481 if (isAnyRetainable(TargetClass) && 3482 isAnyRetainable(SourceClass) && 3483 var && 3484 !var->hasDefinition(Context) && 3485 var->getType().isConstQualified()) { 3486 3487 // In system headers, they can also be assumed to be immune to retains. 3488 // These are things like 'kCFStringTransformToLatin'. 3489 if (Context.getSourceManager().isInSystemHeader(var->getLocation())) 3490 return ACC_bottom; 3491 3492 return ACC_plusZero; 3493 } 3494 3495 // Nothing else. 3496 return ACC_invalid; 3497 } 3498 3499 /// Some calls are okay. 3500 ACCResult VisitCallExpr(CallExpr *e) { 3501 if (FunctionDecl *fn = e->getDirectCallee()) 3502 if (ACCResult result = checkCallToFunction(fn)) 3503 return result; 3504 3505 return super::VisitCallExpr(e); 3506 } 3507 3508 ACCResult checkCallToFunction(FunctionDecl *fn) { 3509 // Require a CF*Ref return type. 3510 if (!isCFType(fn->getReturnType())) 3511 return ACC_invalid; 3512 3513 if (!isAnyRetainable(TargetClass)) 3514 return ACC_invalid; 3515 3516 // Honor an explicit 'not retained' attribute. 3517 if (fn->hasAttr<CFReturnsNotRetainedAttr>()) 3518 return ACC_plusZero; 3519 3520 // Honor an explicit 'retained' attribute, except that for 3521 // now we're not going to permit implicit handling of +1 results, 3522 // because it's a bit frightening. 3523 if (fn->hasAttr<CFReturnsRetainedAttr>()) 3524 return Diagnose ? ACC_plusOne 3525 : ACC_invalid; // ACC_plusOne if we start accepting this 3526 3527 // Recognize this specific builtin function, which is used by CFSTR. 3528 unsigned builtinID = fn->getBuiltinID(); 3529 if (builtinID == Builtin::BI__builtin___CFStringMakeConstantString) 3530 return ACC_bottom; 3531 3532 // Otherwise, don't do anything implicit with an unaudited function. 3533 if (!fn->hasAttr<CFAuditedTransferAttr>()) 3534 return ACC_invalid; 3535 3536 // Otherwise, it's +0 unless it follows the create convention. 3537 if (ento::coreFoundation::followsCreateRule(fn)) 3538 return Diagnose ? ACC_plusOne 3539 : ACC_invalid; // ACC_plusOne if we start accepting this 3540 3541 return ACC_plusZero; 3542 } 3543 3544 ACCResult VisitObjCMessageExpr(ObjCMessageExpr *e) { 3545 return checkCallToMethod(e->getMethodDecl()); 3546 } 3547 3548 ACCResult VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *e) { 3549 ObjCMethodDecl *method; 3550 if (e->isExplicitProperty()) 3551 method = e->getExplicitProperty()->getGetterMethodDecl(); 3552 else 3553 method = e->getImplicitPropertyGetter(); 3554 return checkCallToMethod(method); 3555 } 3556 3557 ACCResult checkCallToMethod(ObjCMethodDecl *method) { 3558 if (!method) return ACC_invalid; 3559 3560 // Check for message sends to functions returning CF types. We 3561 // just obey the Cocoa conventions with these, even though the 3562 // return type is CF. 3563 if (!isAnyRetainable(TargetClass) || !isCFType(method->getReturnType())) 3564 return ACC_invalid; 3565 3566 // If the method is explicitly marked not-retained, it's +0. 3567 if (method->hasAttr<CFReturnsNotRetainedAttr>()) 3568 return ACC_plusZero; 3569 3570 // If the method is explicitly marked as returning retained, or its 3571 // selector follows a +1 Cocoa convention, treat it as +1. 3572 if (method->hasAttr<CFReturnsRetainedAttr>()) 3573 return ACC_plusOne; 3574 3575 switch (method->getSelector().getMethodFamily()) { 3576 case OMF_alloc: 3577 case OMF_copy: 3578 case OMF_mutableCopy: 3579 case OMF_new: 3580 return ACC_plusOne; 3581 3582 default: 3583 // Otherwise, treat it as +0. 3584 return ACC_plusZero; 3585 } 3586 } 3587 }; 3588 } // end anonymous namespace 3589 3590 bool Sema::isKnownName(StringRef name) { 3591 if (name.empty()) 3592 return false; 3593 LookupResult R(*this, &Context.Idents.get(name), SourceLocation(), 3594 Sema::LookupOrdinaryName); 3595 return LookupName(R, TUScope, false); 3596 } 3597 3598 static void addFixitForObjCARCConversion(Sema &S, 3599 DiagnosticBuilder &DiagB, 3600 Sema::CheckedConversionKind CCK, 3601 SourceLocation afterLParen, 3602 QualType castType, 3603 Expr *castExpr, 3604 Expr *realCast, 3605 const char *bridgeKeyword, 3606 const char *CFBridgeName) { 3607 // We handle C-style and implicit casts here. 3608 switch (CCK) { 3609 case Sema::CCK_ImplicitConversion: 3610 case Sema::CCK_ForBuiltinOverloadedOp: 3611 case Sema::CCK_CStyleCast: 3612 case Sema::CCK_OtherCast: 3613 break; 3614 case Sema::CCK_FunctionalCast: 3615 return; 3616 } 3617 3618 if (CFBridgeName) { 3619 if (CCK == Sema::CCK_OtherCast) { 3620 if (const CXXNamedCastExpr *NCE = dyn_cast<CXXNamedCastExpr>(realCast)) { 3621 SourceRange range(NCE->getOperatorLoc(), 3622 NCE->getAngleBrackets().getEnd()); 3623 SmallString<32> BridgeCall; 3624 3625 SourceManager &SM = S.getSourceManager(); 3626 char PrevChar = *SM.getCharacterData(range.getBegin().getLocWithOffset(-1)); 3627 if (Lexer::isIdentifierBodyChar(PrevChar, S.getLangOpts())) 3628 BridgeCall += ' '; 3629 3630 BridgeCall += CFBridgeName; 3631 DiagB.AddFixItHint(FixItHint::CreateReplacement(range, BridgeCall)); 3632 } 3633 return; 3634 } 3635 Expr *castedE = castExpr; 3636 if (CStyleCastExpr *CCE = dyn_cast<CStyleCastExpr>(castedE)) 3637 castedE = CCE->getSubExpr(); 3638 castedE = castedE->IgnoreImpCasts(); 3639 SourceRange range = castedE->getSourceRange(); 3640 3641 SmallString<32> BridgeCall; 3642 3643 SourceManager &SM = S.getSourceManager(); 3644 char PrevChar = *SM.getCharacterData(range.getBegin().getLocWithOffset(-1)); 3645 if (Lexer::isIdentifierBodyChar(PrevChar, S.getLangOpts())) 3646 BridgeCall += ' '; 3647 3648 BridgeCall += CFBridgeName; 3649 3650 if (isa<ParenExpr>(castedE)) { 3651 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), 3652 BridgeCall)); 3653 } else { 3654 BridgeCall += '('; 3655 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), 3656 BridgeCall)); 3657 DiagB.AddFixItHint(FixItHint::CreateInsertion( 3658 S.getLocForEndOfToken(range.getEnd()), 3659 ")")); 3660 } 3661 return; 3662 } 3663 3664 if (CCK == Sema::CCK_CStyleCast) { 3665 DiagB.AddFixItHint(FixItHint::CreateInsertion(afterLParen, bridgeKeyword)); 3666 } else if (CCK == Sema::CCK_OtherCast) { 3667 if (const CXXNamedCastExpr *NCE = dyn_cast<CXXNamedCastExpr>(realCast)) { 3668 std::string castCode = "("; 3669 castCode += bridgeKeyword; 3670 castCode += castType.getAsString(); 3671 castCode += ")"; 3672 SourceRange Range(NCE->getOperatorLoc(), 3673 NCE->getAngleBrackets().getEnd()); 3674 DiagB.AddFixItHint(FixItHint::CreateReplacement(Range, castCode)); 3675 } 3676 } else { 3677 std::string castCode = "("; 3678 castCode += bridgeKeyword; 3679 castCode += castType.getAsString(); 3680 castCode += ")"; 3681 Expr *castedE = castExpr->IgnoreImpCasts(); 3682 SourceRange range = castedE->getSourceRange(); 3683 if (isa<ParenExpr>(castedE)) { 3684 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), 3685 castCode)); 3686 } else { 3687 castCode += "("; 3688 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), 3689 castCode)); 3690 DiagB.AddFixItHint(FixItHint::CreateInsertion( 3691 S.getLocForEndOfToken(range.getEnd()), 3692 ")")); 3693 } 3694 } 3695 } 3696 3697 template <typename T> 3698 static inline T *getObjCBridgeAttr(const TypedefType *TD) { 3699 TypedefNameDecl *TDNDecl = TD->getDecl(); 3700 QualType QT = TDNDecl->getUnderlyingType(); 3701 if (QT->isPointerType()) { 3702 QT = QT->getPointeeType(); 3703 if (const RecordType *RT = QT->getAs<RecordType>()) 3704 if (RecordDecl *RD = RT->getDecl()->getMostRecentDecl()) 3705 return RD->getAttr<T>(); 3706 } 3707 return nullptr; 3708 } 3709 3710 static ObjCBridgeRelatedAttr *ObjCBridgeRelatedAttrFromType(QualType T, 3711 TypedefNameDecl *&TDNDecl) { 3712 while (const TypedefType *TD = dyn_cast<TypedefType>(T.getTypePtr())) { 3713 TDNDecl = TD->getDecl(); 3714 if (ObjCBridgeRelatedAttr *ObjCBAttr = 3715 getObjCBridgeAttr<ObjCBridgeRelatedAttr>(TD)) 3716 return ObjCBAttr; 3717 T = TDNDecl->getUnderlyingType(); 3718 } 3719 return nullptr; 3720 } 3721 3722 static void 3723 diagnoseObjCARCConversion(Sema &S, SourceRange castRange, 3724 QualType castType, ARCConversionTypeClass castACTC, 3725 Expr *castExpr, Expr *realCast, 3726 ARCConversionTypeClass exprACTC, 3727 Sema::CheckedConversionKind CCK) { 3728 SourceLocation loc = 3729 (castRange.isValid() ? castRange.getBegin() : castExpr->getExprLoc()); 3730 3731 if (S.makeUnavailableInSystemHeader(loc, 3732 UnavailableAttr::IR_ARCForbiddenConversion)) 3733 return; 3734 3735 QualType castExprType = castExpr->getType(); 3736 // Defer emitting a diagnostic for bridge-related casts; that will be 3737 // handled by CheckObjCBridgeRelatedConversions. 3738 TypedefNameDecl *TDNDecl = nullptr; 3739 if ((castACTC == ACTC_coreFoundation && exprACTC == ACTC_retainable && 3740 ObjCBridgeRelatedAttrFromType(castType, TDNDecl)) || 3741 (exprACTC == ACTC_coreFoundation && castACTC == ACTC_retainable && 3742 ObjCBridgeRelatedAttrFromType(castExprType, TDNDecl))) 3743 return; 3744 3745 unsigned srcKind = 0; 3746 switch (exprACTC) { 3747 case ACTC_none: 3748 case ACTC_coreFoundation: 3749 case ACTC_voidPtr: 3750 srcKind = (castExprType->isPointerType() ? 1 : 0); 3751 break; 3752 case ACTC_retainable: 3753 srcKind = (castExprType->isBlockPointerType() ? 2 : 3); 3754 break; 3755 case ACTC_indirectRetainable: 3756 srcKind = 4; 3757 break; 3758 } 3759 3760 // Check whether this could be fixed with a bridge cast. 3761 SourceLocation afterLParen = S.getLocForEndOfToken(castRange.getBegin()); 3762 SourceLocation noteLoc = afterLParen.isValid() ? afterLParen : loc; 3763 3764 unsigned convKindForDiag = Sema::isCast(CCK) ? 0 : 1; 3765 3766 // Bridge from an ARC type to a CF type. 3767 if (castACTC == ACTC_retainable && isAnyRetainable(exprACTC)) { 3768 3769 S.Diag(loc, diag::err_arc_cast_requires_bridge) 3770 << convKindForDiag 3771 << 2 // of C pointer type 3772 << castExprType 3773 << unsigned(castType->isBlockPointerType()) // to ObjC|block type 3774 << castType 3775 << castRange 3776 << castExpr->getSourceRange(); 3777 bool br = S.isKnownName("CFBridgingRelease"); 3778 ACCResult CreateRule = 3779 ARCCastChecker(S.Context, exprACTC, castACTC, true).Visit(castExpr); 3780 assert(CreateRule != ACC_bottom && "This cast should already be accepted."); 3781 if (CreateRule != ACC_plusOne) 3782 { 3783 DiagnosticBuilder DiagB = 3784 (CCK != Sema::CCK_OtherCast) ? S.Diag(noteLoc, diag::note_arc_bridge) 3785 : S.Diag(noteLoc, diag::note_arc_cstyle_bridge); 3786 3787 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, 3788 castType, castExpr, realCast, "__bridge ", 3789 nullptr); 3790 } 3791 if (CreateRule != ACC_plusZero) 3792 { 3793 DiagnosticBuilder DiagB = 3794 (CCK == Sema::CCK_OtherCast && !br) ? 3795 S.Diag(noteLoc, diag::note_arc_cstyle_bridge_transfer) << castExprType : 3796 S.Diag(br ? castExpr->getExprLoc() : noteLoc, 3797 diag::note_arc_bridge_transfer) 3798 << castExprType << br; 3799 3800 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, 3801 castType, castExpr, realCast, "__bridge_transfer ", 3802 br ? "CFBridgingRelease" : nullptr); 3803 } 3804 3805 return; 3806 } 3807 3808 // Bridge from a CF type to an ARC type. 3809 if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC)) { 3810 bool br = S.isKnownName("CFBridgingRetain"); 3811 S.Diag(loc, diag::err_arc_cast_requires_bridge) 3812 << convKindForDiag 3813 << unsigned(castExprType->isBlockPointerType()) // of ObjC|block type 3814 << castExprType 3815 << 2 // to C pointer type 3816 << castType 3817 << castRange 3818 << castExpr->getSourceRange(); 3819 ACCResult CreateRule = 3820 ARCCastChecker(S.Context, exprACTC, castACTC, true).Visit(castExpr); 3821 assert(CreateRule != ACC_bottom && "This cast should already be accepted."); 3822 if (CreateRule != ACC_plusOne) 3823 { 3824 DiagnosticBuilder DiagB = 3825 (CCK != Sema::CCK_OtherCast) ? S.Diag(noteLoc, diag::note_arc_bridge) 3826 : S.Diag(noteLoc, diag::note_arc_cstyle_bridge); 3827 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, 3828 castType, castExpr, realCast, "__bridge ", 3829 nullptr); 3830 } 3831 if (CreateRule != ACC_plusZero) 3832 { 3833 DiagnosticBuilder DiagB = 3834 (CCK == Sema::CCK_OtherCast && !br) ? 3835 S.Diag(noteLoc, diag::note_arc_cstyle_bridge_retained) << castType : 3836 S.Diag(br ? castExpr->getExprLoc() : noteLoc, 3837 diag::note_arc_bridge_retained) 3838 << castType << br; 3839 3840 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, 3841 castType, castExpr, realCast, "__bridge_retained ", 3842 br ? "CFBridgingRetain" : nullptr); 3843 } 3844 3845 return; 3846 } 3847 3848 S.Diag(loc, diag::err_arc_mismatched_cast) 3849 << !convKindForDiag 3850 << srcKind << castExprType << castType 3851 << castRange << castExpr->getSourceRange(); 3852 } 3853 3854 template <typename TB> 3855 static bool CheckObjCBridgeNSCast(Sema &S, QualType castType, Expr *castExpr, 3856 bool &HadTheAttribute, bool warn) { 3857 QualType T = castExpr->getType(); 3858 HadTheAttribute = false; 3859 while (const TypedefType *TD = dyn_cast<TypedefType>(T.getTypePtr())) { 3860 TypedefNameDecl *TDNDecl = TD->getDecl(); 3861 if (TB *ObjCBAttr = getObjCBridgeAttr<TB>(TD)) { 3862 if (IdentifierInfo *Parm = ObjCBAttr->getBridgedType()) { 3863 HadTheAttribute = true; 3864 if (Parm->isStr("id")) 3865 return true; 3866 3867 NamedDecl *Target = nullptr; 3868 // Check for an existing type with this name. 3869 LookupResult R(S, DeclarationName(Parm), SourceLocation(), 3870 Sema::LookupOrdinaryName); 3871 if (S.LookupName(R, S.TUScope)) { 3872 Target = R.getFoundDecl(); 3873 if (Target && isa<ObjCInterfaceDecl>(Target)) { 3874 ObjCInterfaceDecl *ExprClass = cast<ObjCInterfaceDecl>(Target); 3875 if (const ObjCObjectPointerType *InterfacePointerType = 3876 castType->getAsObjCInterfacePointerType()) { 3877 ObjCInterfaceDecl *CastClass 3878 = InterfacePointerType->getObjectType()->getInterface(); 3879 if ((CastClass == ExprClass) || 3880 (CastClass && CastClass->isSuperClassOf(ExprClass))) 3881 return true; 3882 if (warn) 3883 S.Diag(castExpr->getBeginLoc(), diag::warn_objc_invalid_bridge) 3884 << T << Target->getName() << castType->getPointeeType(); 3885 return false; 3886 } else if (castType->isObjCIdType() || 3887 (S.Context.ObjCObjectAdoptsQTypeProtocols( 3888 castType, ExprClass))) 3889 // ok to cast to 'id'. 3890 // casting to id<p-list> is ok if bridge type adopts all of 3891 // p-list protocols. 3892 return true; 3893 else { 3894 if (warn) { 3895 S.Diag(castExpr->getBeginLoc(), diag::warn_objc_invalid_bridge) 3896 << T << Target->getName() << castType; 3897 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 3898 S.Diag(Target->getBeginLoc(), diag::note_declared_at); 3899 } 3900 return false; 3901 } 3902 } 3903 } else if (!castType->isObjCIdType()) { 3904 S.Diag(castExpr->getBeginLoc(), 3905 diag::err_objc_cf_bridged_not_interface) 3906 << castExpr->getType() << Parm; 3907 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 3908 if (Target) 3909 S.Diag(Target->getBeginLoc(), diag::note_declared_at); 3910 } 3911 return true; 3912 } 3913 return false; 3914 } 3915 T = TDNDecl->getUnderlyingType(); 3916 } 3917 return true; 3918 } 3919 3920 template <typename TB> 3921 static bool CheckObjCBridgeCFCast(Sema &S, QualType castType, Expr *castExpr, 3922 bool &HadTheAttribute, bool warn) { 3923 QualType T = castType; 3924 HadTheAttribute = false; 3925 while (const TypedefType *TD = dyn_cast<TypedefType>(T.getTypePtr())) { 3926 TypedefNameDecl *TDNDecl = TD->getDecl(); 3927 if (TB *ObjCBAttr = getObjCBridgeAttr<TB>(TD)) { 3928 if (IdentifierInfo *Parm = ObjCBAttr->getBridgedType()) { 3929 HadTheAttribute = true; 3930 if (Parm->isStr("id")) 3931 return true; 3932 3933 NamedDecl *Target = nullptr; 3934 // Check for an existing type with this name. 3935 LookupResult R(S, DeclarationName(Parm), SourceLocation(), 3936 Sema::LookupOrdinaryName); 3937 if (S.LookupName(R, S.TUScope)) { 3938 Target = R.getFoundDecl(); 3939 if (Target && isa<ObjCInterfaceDecl>(Target)) { 3940 ObjCInterfaceDecl *CastClass = cast<ObjCInterfaceDecl>(Target); 3941 if (const ObjCObjectPointerType *InterfacePointerType = 3942 castExpr->getType()->getAsObjCInterfacePointerType()) { 3943 ObjCInterfaceDecl *ExprClass 3944 = InterfacePointerType->getObjectType()->getInterface(); 3945 if ((CastClass == ExprClass) || 3946 (ExprClass && CastClass->isSuperClassOf(ExprClass))) 3947 return true; 3948 if (warn) { 3949 S.Diag(castExpr->getBeginLoc(), 3950 diag::warn_objc_invalid_bridge_to_cf) 3951 << castExpr->getType()->getPointeeType() << T; 3952 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 3953 } 3954 return false; 3955 } else if (castExpr->getType()->isObjCIdType() || 3956 (S.Context.QIdProtocolsAdoptObjCObjectProtocols( 3957 castExpr->getType(), CastClass))) 3958 // ok to cast an 'id' expression to a CFtype. 3959 // ok to cast an 'id<plist>' expression to CFtype provided plist 3960 // adopts all of CFtype's ObjetiveC's class plist. 3961 return true; 3962 else { 3963 if (warn) { 3964 S.Diag(castExpr->getBeginLoc(), 3965 diag::warn_objc_invalid_bridge_to_cf) 3966 << castExpr->getType() << castType; 3967 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 3968 S.Diag(Target->getBeginLoc(), diag::note_declared_at); 3969 } 3970 return false; 3971 } 3972 } 3973 } 3974 S.Diag(castExpr->getBeginLoc(), 3975 diag::err_objc_ns_bridged_invalid_cfobject) 3976 << castExpr->getType() << castType; 3977 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 3978 if (Target) 3979 S.Diag(Target->getBeginLoc(), diag::note_declared_at); 3980 return true; 3981 } 3982 return false; 3983 } 3984 T = TDNDecl->getUnderlyingType(); 3985 } 3986 return true; 3987 } 3988 3989 void Sema::CheckTollFreeBridgeCast(QualType castType, Expr *castExpr) { 3990 if (!getLangOpts().ObjC) 3991 return; 3992 // warn in presence of __bridge casting to or from a toll free bridge cast. 3993 ARCConversionTypeClass exprACTC = classifyTypeForARCConversion(castExpr->getType()); 3994 ARCConversionTypeClass castACTC = classifyTypeForARCConversion(castType); 3995 if (castACTC == ACTC_retainable && exprACTC == ACTC_coreFoundation) { 3996 bool HasObjCBridgeAttr; 3997 bool ObjCBridgeAttrWillNotWarn = 3998 CheckObjCBridgeNSCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr, 3999 false); 4000 if (ObjCBridgeAttrWillNotWarn && HasObjCBridgeAttr) 4001 return; 4002 bool HasObjCBridgeMutableAttr; 4003 bool ObjCBridgeMutableAttrWillNotWarn = 4004 CheckObjCBridgeNSCast<ObjCBridgeMutableAttr>(*this, castType, castExpr, 4005 HasObjCBridgeMutableAttr, false); 4006 if (ObjCBridgeMutableAttrWillNotWarn && HasObjCBridgeMutableAttr) 4007 return; 4008 4009 if (HasObjCBridgeAttr) 4010 CheckObjCBridgeNSCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr, 4011 true); 4012 else if (HasObjCBridgeMutableAttr) 4013 CheckObjCBridgeNSCast<ObjCBridgeMutableAttr>(*this, castType, castExpr, 4014 HasObjCBridgeMutableAttr, true); 4015 } 4016 else if (castACTC == ACTC_coreFoundation && exprACTC == ACTC_retainable) { 4017 bool HasObjCBridgeAttr; 4018 bool ObjCBridgeAttrWillNotWarn = 4019 CheckObjCBridgeCFCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr, 4020 false); 4021 if (ObjCBridgeAttrWillNotWarn && HasObjCBridgeAttr) 4022 return; 4023 bool HasObjCBridgeMutableAttr; 4024 bool ObjCBridgeMutableAttrWillNotWarn = 4025 CheckObjCBridgeCFCast<ObjCBridgeMutableAttr>(*this, castType, castExpr, 4026 HasObjCBridgeMutableAttr, false); 4027 if (ObjCBridgeMutableAttrWillNotWarn && HasObjCBridgeMutableAttr) 4028 return; 4029 4030 if (HasObjCBridgeAttr) 4031 CheckObjCBridgeCFCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr, 4032 true); 4033 else if (HasObjCBridgeMutableAttr) 4034 CheckObjCBridgeCFCast<ObjCBridgeMutableAttr>(*this, castType, castExpr, 4035 HasObjCBridgeMutableAttr, true); 4036 } 4037 } 4038 4039 void Sema::CheckObjCBridgeRelatedCast(QualType castType, Expr *castExpr) { 4040 QualType SrcType = castExpr->getType(); 4041 if (ObjCPropertyRefExpr *PRE = dyn_cast<ObjCPropertyRefExpr>(castExpr)) { 4042 if (PRE->isExplicitProperty()) { 4043 if (ObjCPropertyDecl *PDecl = PRE->getExplicitProperty()) 4044 SrcType = PDecl->getType(); 4045 } 4046 else if (PRE->isImplicitProperty()) { 4047 if (ObjCMethodDecl *Getter = PRE->getImplicitPropertyGetter()) 4048 SrcType = Getter->getReturnType(); 4049 } 4050 } 4051 4052 ARCConversionTypeClass srcExprACTC = classifyTypeForARCConversion(SrcType); 4053 ARCConversionTypeClass castExprACTC = classifyTypeForARCConversion(castType); 4054 if (srcExprACTC != ACTC_retainable || castExprACTC != ACTC_coreFoundation) 4055 return; 4056 CheckObjCBridgeRelatedConversions(castExpr->getBeginLoc(), castType, SrcType, 4057 castExpr); 4058 } 4059 4060 bool Sema::CheckTollFreeBridgeStaticCast(QualType castType, Expr *castExpr, 4061 CastKind &Kind) { 4062 if (!getLangOpts().ObjC) 4063 return false; 4064 ARCConversionTypeClass exprACTC = 4065 classifyTypeForARCConversion(castExpr->getType()); 4066 ARCConversionTypeClass castACTC = classifyTypeForARCConversion(castType); 4067 if ((castACTC == ACTC_retainable && exprACTC == ACTC_coreFoundation) || 4068 (castACTC == ACTC_coreFoundation && exprACTC == ACTC_retainable)) { 4069 CheckTollFreeBridgeCast(castType, castExpr); 4070 Kind = (castACTC == ACTC_coreFoundation) ? CK_BitCast 4071 : CK_CPointerToObjCPointerCast; 4072 return true; 4073 } 4074 return false; 4075 } 4076 4077 bool Sema::checkObjCBridgeRelatedComponents(SourceLocation Loc, 4078 QualType DestType, QualType SrcType, 4079 ObjCInterfaceDecl *&RelatedClass, 4080 ObjCMethodDecl *&ClassMethod, 4081 ObjCMethodDecl *&InstanceMethod, 4082 TypedefNameDecl *&TDNDecl, 4083 bool CfToNs, bool Diagnose) { 4084 QualType T = CfToNs ? SrcType : DestType; 4085 ObjCBridgeRelatedAttr *ObjCBAttr = ObjCBridgeRelatedAttrFromType(T, TDNDecl); 4086 if (!ObjCBAttr) 4087 return false; 4088 4089 IdentifierInfo *RCId = ObjCBAttr->getRelatedClass(); 4090 IdentifierInfo *CMId = ObjCBAttr->getClassMethod(); 4091 IdentifierInfo *IMId = ObjCBAttr->getInstanceMethod(); 4092 if (!RCId) 4093 return false; 4094 NamedDecl *Target = nullptr; 4095 // Check for an existing type with this name. 4096 LookupResult R(*this, DeclarationName(RCId), SourceLocation(), 4097 Sema::LookupOrdinaryName); 4098 if (!LookupName(R, TUScope)) { 4099 if (Diagnose) { 4100 Diag(Loc, diag::err_objc_bridged_related_invalid_class) << RCId 4101 << SrcType << DestType; 4102 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4103 } 4104 return false; 4105 } 4106 Target = R.getFoundDecl(); 4107 if (Target && isa<ObjCInterfaceDecl>(Target)) 4108 RelatedClass = cast<ObjCInterfaceDecl>(Target); 4109 else { 4110 if (Diagnose) { 4111 Diag(Loc, diag::err_objc_bridged_related_invalid_class_name) << RCId 4112 << SrcType << DestType; 4113 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4114 if (Target) 4115 Diag(Target->getBeginLoc(), diag::note_declared_at); 4116 } 4117 return false; 4118 } 4119 4120 // Check for an existing class method with the given selector name. 4121 if (CfToNs && CMId) { 4122 Selector Sel = Context.Selectors.getUnarySelector(CMId); 4123 ClassMethod = RelatedClass->lookupMethod(Sel, false); 4124 if (!ClassMethod) { 4125 if (Diagnose) { 4126 Diag(Loc, diag::err_objc_bridged_related_known_method) 4127 << SrcType << DestType << Sel << false; 4128 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4129 } 4130 return false; 4131 } 4132 } 4133 4134 // Check for an existing instance method with the given selector name. 4135 if (!CfToNs && IMId) { 4136 Selector Sel = Context.Selectors.getNullarySelector(IMId); 4137 InstanceMethod = RelatedClass->lookupMethod(Sel, true); 4138 if (!InstanceMethod) { 4139 if (Diagnose) { 4140 Diag(Loc, diag::err_objc_bridged_related_known_method) 4141 << SrcType << DestType << Sel << true; 4142 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4143 } 4144 return false; 4145 } 4146 } 4147 return true; 4148 } 4149 4150 bool 4151 Sema::CheckObjCBridgeRelatedConversions(SourceLocation Loc, 4152 QualType DestType, QualType SrcType, 4153 Expr *&SrcExpr, bool Diagnose) { 4154 ARCConversionTypeClass rhsExprACTC = classifyTypeForARCConversion(SrcType); 4155 ARCConversionTypeClass lhsExprACTC = classifyTypeForARCConversion(DestType); 4156 bool CfToNs = (rhsExprACTC == ACTC_coreFoundation && lhsExprACTC == ACTC_retainable); 4157 bool NsToCf = (rhsExprACTC == ACTC_retainable && lhsExprACTC == ACTC_coreFoundation); 4158 if (!CfToNs && !NsToCf) 4159 return false; 4160 4161 ObjCInterfaceDecl *RelatedClass; 4162 ObjCMethodDecl *ClassMethod = nullptr; 4163 ObjCMethodDecl *InstanceMethod = nullptr; 4164 TypedefNameDecl *TDNDecl = nullptr; 4165 if (!checkObjCBridgeRelatedComponents(Loc, DestType, SrcType, RelatedClass, 4166 ClassMethod, InstanceMethod, TDNDecl, 4167 CfToNs, Diagnose)) 4168 return false; 4169 4170 if (CfToNs) { 4171 // Implicit conversion from CF to ObjC object is needed. 4172 if (ClassMethod) { 4173 if (Diagnose) { 4174 std::string ExpressionString = "["; 4175 ExpressionString += RelatedClass->getNameAsString(); 4176 ExpressionString += " "; 4177 ExpressionString += ClassMethod->getSelector().getAsString(); 4178 SourceLocation SrcExprEndLoc = 4179 getLocForEndOfToken(SrcExpr->getEndLoc()); 4180 // Provide a fixit: [RelatedClass ClassMethod SrcExpr] 4181 Diag(Loc, diag::err_objc_bridged_related_known_method) 4182 << SrcType << DestType << ClassMethod->getSelector() << false 4183 << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), 4184 ExpressionString) 4185 << FixItHint::CreateInsertion(SrcExprEndLoc, "]"); 4186 Diag(RelatedClass->getBeginLoc(), diag::note_declared_at); 4187 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4188 4189 QualType receiverType = Context.getObjCInterfaceType(RelatedClass); 4190 // Argument. 4191 Expr *args[] = { SrcExpr }; 4192 ExprResult msg = BuildClassMessageImplicit(receiverType, false, 4193 ClassMethod->getLocation(), 4194 ClassMethod->getSelector(), ClassMethod, 4195 MultiExprArg(args, 1)); 4196 SrcExpr = msg.get(); 4197 } 4198 return true; 4199 } 4200 } 4201 else { 4202 // Implicit conversion from ObjC type to CF object is needed. 4203 if (InstanceMethod) { 4204 if (Diagnose) { 4205 std::string ExpressionString; 4206 SourceLocation SrcExprEndLoc = 4207 getLocForEndOfToken(SrcExpr->getEndLoc()); 4208 if (InstanceMethod->isPropertyAccessor()) 4209 if (const ObjCPropertyDecl *PDecl = 4210 InstanceMethod->findPropertyDecl()) { 4211 // fixit: ObjectExpr.propertyname when it is aproperty accessor. 4212 ExpressionString = "."; 4213 ExpressionString += PDecl->getNameAsString(); 4214 Diag(Loc, diag::err_objc_bridged_related_known_method) 4215 << SrcType << DestType << InstanceMethod->getSelector() << true 4216 << FixItHint::CreateInsertion(SrcExprEndLoc, ExpressionString); 4217 } 4218 if (ExpressionString.empty()) { 4219 // Provide a fixit: [ObjectExpr InstanceMethod] 4220 ExpressionString = " "; 4221 ExpressionString += InstanceMethod->getSelector().getAsString(); 4222 ExpressionString += "]"; 4223 4224 Diag(Loc, diag::err_objc_bridged_related_known_method) 4225 << SrcType << DestType << InstanceMethod->getSelector() << true 4226 << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), "[") 4227 << FixItHint::CreateInsertion(SrcExprEndLoc, ExpressionString); 4228 } 4229 Diag(RelatedClass->getBeginLoc(), diag::note_declared_at); 4230 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4231 4232 ExprResult msg = 4233 BuildInstanceMessageImplicit(SrcExpr, SrcType, 4234 InstanceMethod->getLocation(), 4235 InstanceMethod->getSelector(), 4236 InstanceMethod, None); 4237 SrcExpr = msg.get(); 4238 } 4239 return true; 4240 } 4241 } 4242 return false; 4243 } 4244 4245 Sema::ARCConversionResult 4246 Sema::CheckObjCConversion(SourceRange castRange, QualType castType, 4247 Expr *&castExpr, CheckedConversionKind CCK, 4248 bool Diagnose, bool DiagnoseCFAudited, 4249 BinaryOperatorKind Opc) { 4250 QualType castExprType = castExpr->getType(); 4251 4252 // For the purposes of the classification, we assume reference types 4253 // will bind to temporaries. 4254 QualType effCastType = castType; 4255 if (const ReferenceType *ref = castType->getAs<ReferenceType>()) 4256 effCastType = ref->getPointeeType(); 4257 4258 ARCConversionTypeClass exprACTC = classifyTypeForARCConversion(castExprType); 4259 ARCConversionTypeClass castACTC = classifyTypeForARCConversion(effCastType); 4260 if (exprACTC == castACTC) { 4261 // Check for viability and report error if casting an rvalue to a 4262 // life-time qualifier. 4263 if (castACTC == ACTC_retainable && 4264 (CCK == CCK_CStyleCast || CCK == CCK_OtherCast) && 4265 castType != castExprType) { 4266 const Type *DT = castType.getTypePtr(); 4267 QualType QDT = castType; 4268 // We desugar some types but not others. We ignore those 4269 // that cannot happen in a cast; i.e. auto, and those which 4270 // should not be de-sugared; i.e typedef. 4271 if (const ParenType *PT = dyn_cast<ParenType>(DT)) 4272 QDT = PT->desugar(); 4273 else if (const TypeOfType *TP = dyn_cast<TypeOfType>(DT)) 4274 QDT = TP->desugar(); 4275 else if (const AttributedType *AT = dyn_cast<AttributedType>(DT)) 4276 QDT = AT->desugar(); 4277 if (QDT != castType && 4278 QDT.getObjCLifetime() != Qualifiers::OCL_None) { 4279 if (Diagnose) { 4280 SourceLocation loc = (castRange.isValid() ? castRange.getBegin() 4281 : castExpr->getExprLoc()); 4282 Diag(loc, diag::err_arc_nolifetime_behavior); 4283 } 4284 return ACR_error; 4285 } 4286 } 4287 return ACR_okay; 4288 } 4289 4290 // The life-time qualifier cast check above is all we need for ObjCWeak. 4291 // ObjCAutoRefCount has more restrictions on what is legal. 4292 if (!getLangOpts().ObjCAutoRefCount) 4293 return ACR_okay; 4294 4295 if (isAnyCLike(exprACTC) && isAnyCLike(castACTC)) return ACR_okay; 4296 4297 // Allow all of these types to be cast to integer types (but not 4298 // vice-versa). 4299 if (castACTC == ACTC_none && castType->isIntegralType(Context)) 4300 return ACR_okay; 4301 4302 // Allow casts between pointers to lifetime types (e.g., __strong id*) 4303 // and pointers to void (e.g., cv void *). Casting from void* to lifetime* 4304 // must be explicit. 4305 if (exprACTC == ACTC_indirectRetainable && castACTC == ACTC_voidPtr) 4306 return ACR_okay; 4307 if (castACTC == ACTC_indirectRetainable && exprACTC == ACTC_voidPtr && 4308 isCast(CCK)) 4309 return ACR_okay; 4310 4311 switch (ARCCastChecker(Context, exprACTC, castACTC, false).Visit(castExpr)) { 4312 // For invalid casts, fall through. 4313 case ACC_invalid: 4314 break; 4315 4316 // Do nothing for both bottom and +0. 4317 case ACC_bottom: 4318 case ACC_plusZero: 4319 return ACR_okay; 4320 4321 // If the result is +1, consume it here. 4322 case ACC_plusOne: 4323 castExpr = ImplicitCastExpr::Create(Context, castExpr->getType(), 4324 CK_ARCConsumeObject, castExpr, 4325 nullptr, VK_RValue); 4326 Cleanup.setExprNeedsCleanups(true); 4327 return ACR_okay; 4328 } 4329 4330 // If this is a non-implicit cast from id or block type to a 4331 // CoreFoundation type, delay complaining in case the cast is used 4332 // in an acceptable context. 4333 if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC) && isCast(CCK)) 4334 return ACR_unbridged; 4335 4336 // Issue a diagnostic about a missing @-sign when implicit casting a cstring 4337 // to 'NSString *', instead of falling through to report a "bridge cast" 4338 // diagnostic. 4339 if (castACTC == ACTC_retainable && exprACTC == ACTC_none && 4340 ConversionToObjCStringLiteralCheck(castType, castExpr, Diagnose)) 4341 return ACR_error; 4342 4343 // Do not issue "bridge cast" diagnostic when implicit casting 4344 // a retainable object to a CF type parameter belonging to an audited 4345 // CF API function. Let caller issue a normal type mismatched diagnostic 4346 // instead. 4347 if ((!DiagnoseCFAudited || exprACTC != ACTC_retainable || 4348 castACTC != ACTC_coreFoundation) && 4349 !(exprACTC == ACTC_voidPtr && castACTC == ACTC_retainable && 4350 (Opc == BO_NE || Opc == BO_EQ))) { 4351 if (Diagnose) 4352 diagnoseObjCARCConversion(*this, castRange, castType, castACTC, castExpr, 4353 castExpr, exprACTC, CCK); 4354 return ACR_error; 4355 } 4356 return ACR_okay; 4357 } 4358 4359 /// Given that we saw an expression with the ARCUnbridgedCastTy 4360 /// placeholder type, complain bitterly. 4361 void Sema::diagnoseARCUnbridgedCast(Expr *e) { 4362 // We expect the spurious ImplicitCastExpr to already have been stripped. 4363 assert(!e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)); 4364 CastExpr *realCast = cast<CastExpr>(e->IgnoreParens()); 4365 4366 SourceRange castRange; 4367 QualType castType; 4368 CheckedConversionKind CCK; 4369 4370 if (CStyleCastExpr *cast = dyn_cast<CStyleCastExpr>(realCast)) { 4371 castRange = SourceRange(cast->getLParenLoc(), cast->getRParenLoc()); 4372 castType = cast->getTypeAsWritten(); 4373 CCK = CCK_CStyleCast; 4374 } else if (ExplicitCastExpr *cast = dyn_cast<ExplicitCastExpr>(realCast)) { 4375 castRange = cast->getTypeInfoAsWritten()->getTypeLoc().getSourceRange(); 4376 castType = cast->getTypeAsWritten(); 4377 CCK = CCK_OtherCast; 4378 } else { 4379 llvm_unreachable("Unexpected ImplicitCastExpr"); 4380 } 4381 4382 ARCConversionTypeClass castACTC = 4383 classifyTypeForARCConversion(castType.getNonReferenceType()); 4384 4385 Expr *castExpr = realCast->getSubExpr(); 4386 assert(classifyTypeForARCConversion(castExpr->getType()) == ACTC_retainable); 4387 4388 diagnoseObjCARCConversion(*this, castRange, castType, castACTC, 4389 castExpr, realCast, ACTC_retainable, CCK); 4390 } 4391 4392 /// stripARCUnbridgedCast - Given an expression of ARCUnbridgedCast 4393 /// type, remove the placeholder cast. 4394 Expr *Sema::stripARCUnbridgedCast(Expr *e) { 4395 assert(e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)); 4396 4397 if (ParenExpr *pe = dyn_cast<ParenExpr>(e)) { 4398 Expr *sub = stripARCUnbridgedCast(pe->getSubExpr()); 4399 return new (Context) ParenExpr(pe->getLParen(), pe->getRParen(), sub); 4400 } else if (UnaryOperator *uo = dyn_cast<UnaryOperator>(e)) { 4401 assert(uo->getOpcode() == UO_Extension); 4402 Expr *sub = stripARCUnbridgedCast(uo->getSubExpr()); 4403 return new (Context) 4404 UnaryOperator(sub, UO_Extension, sub->getType(), sub->getValueKind(), 4405 sub->getObjectKind(), uo->getOperatorLoc(), false); 4406 } else if (GenericSelectionExpr *gse = dyn_cast<GenericSelectionExpr>(e)) { 4407 assert(!gse->isResultDependent()); 4408 4409 unsigned n = gse->getNumAssocs(); 4410 SmallVector<Expr *, 4> subExprs; 4411 SmallVector<TypeSourceInfo *, 4> subTypes; 4412 subExprs.reserve(n); 4413 subTypes.reserve(n); 4414 for (const GenericSelectionExpr::Association assoc : gse->associations()) { 4415 subTypes.push_back(assoc.getTypeSourceInfo()); 4416 Expr *sub = assoc.getAssociationExpr(); 4417 if (assoc.isSelected()) 4418 sub = stripARCUnbridgedCast(sub); 4419 subExprs.push_back(sub); 4420 } 4421 4422 return GenericSelectionExpr::Create( 4423 Context, gse->getGenericLoc(), gse->getControllingExpr(), subTypes, 4424 subExprs, gse->getDefaultLoc(), gse->getRParenLoc(), 4425 gse->containsUnexpandedParameterPack(), gse->getResultIndex()); 4426 } else { 4427 assert(isa<ImplicitCastExpr>(e) && "bad form of unbridged cast!"); 4428 return cast<ImplicitCastExpr>(e)->getSubExpr(); 4429 } 4430 } 4431 4432 bool Sema::CheckObjCARCUnavailableWeakConversion(QualType castType, 4433 QualType exprType) { 4434 QualType canCastType = 4435 Context.getCanonicalType(castType).getUnqualifiedType(); 4436 QualType canExprType = 4437 Context.getCanonicalType(exprType).getUnqualifiedType(); 4438 if (isa<ObjCObjectPointerType>(canCastType) && 4439 castType.getObjCLifetime() == Qualifiers::OCL_Weak && 4440 canExprType->isObjCObjectPointerType()) { 4441 if (const ObjCObjectPointerType *ObjT = 4442 canExprType->getAs<ObjCObjectPointerType>()) 4443 if (const ObjCInterfaceDecl *ObjI = ObjT->getInterfaceDecl()) 4444 return !ObjI->isArcWeakrefUnavailable(); 4445 } 4446 return true; 4447 } 4448 4449 /// Look for an ObjCReclaimReturnedObject cast and destroy it. 4450 static Expr *maybeUndoReclaimObject(Expr *e) { 4451 Expr *curExpr = e, *prevExpr = nullptr; 4452 4453 // Walk down the expression until we hit an implicit cast of kind 4454 // ARCReclaimReturnedObject or an Expr that is neither a Paren nor a Cast. 4455 while (true) { 4456 if (auto *pe = dyn_cast<ParenExpr>(curExpr)) { 4457 prevExpr = curExpr; 4458 curExpr = pe->getSubExpr(); 4459 continue; 4460 } 4461 4462 if (auto *ce = dyn_cast<CastExpr>(curExpr)) { 4463 if (auto *ice = dyn_cast<ImplicitCastExpr>(ce)) 4464 if (ice->getCastKind() == CK_ARCReclaimReturnedObject) { 4465 if (!prevExpr) 4466 return ice->getSubExpr(); 4467 if (auto *pe = dyn_cast<ParenExpr>(prevExpr)) 4468 pe->setSubExpr(ice->getSubExpr()); 4469 else 4470 cast<CastExpr>(prevExpr)->setSubExpr(ice->getSubExpr()); 4471 return e; 4472 } 4473 4474 prevExpr = curExpr; 4475 curExpr = ce->getSubExpr(); 4476 continue; 4477 } 4478 4479 // Break out of the loop if curExpr is neither a Paren nor a Cast. 4480 break; 4481 } 4482 4483 return e; 4484 } 4485 4486 ExprResult Sema::BuildObjCBridgedCast(SourceLocation LParenLoc, 4487 ObjCBridgeCastKind Kind, 4488 SourceLocation BridgeKeywordLoc, 4489 TypeSourceInfo *TSInfo, 4490 Expr *SubExpr) { 4491 ExprResult SubResult = UsualUnaryConversions(SubExpr); 4492 if (SubResult.isInvalid()) return ExprError(); 4493 SubExpr = SubResult.get(); 4494 4495 QualType T = TSInfo->getType(); 4496 QualType FromType = SubExpr->getType(); 4497 4498 CastKind CK; 4499 4500 bool MustConsume = false; 4501 if (T->isDependentType() || SubExpr->isTypeDependent()) { 4502 // Okay: we'll build a dependent expression type. 4503 CK = CK_Dependent; 4504 } else if (T->isObjCARCBridgableType() && FromType->isCARCBridgableType()) { 4505 // Casting CF -> id 4506 CK = (T->isBlockPointerType() ? CK_AnyPointerToBlockPointerCast 4507 : CK_CPointerToObjCPointerCast); 4508 switch (Kind) { 4509 case OBC_Bridge: 4510 break; 4511 4512 case OBC_BridgeRetained: { 4513 bool br = isKnownName("CFBridgingRelease"); 4514 Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind) 4515 << 2 4516 << FromType 4517 << (T->isBlockPointerType()? 1 : 0) 4518 << T 4519 << SubExpr->getSourceRange() 4520 << Kind; 4521 Diag(BridgeKeywordLoc, diag::note_arc_bridge) 4522 << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge"); 4523 Diag(BridgeKeywordLoc, diag::note_arc_bridge_transfer) 4524 << FromType << br 4525 << FixItHint::CreateReplacement(BridgeKeywordLoc, 4526 br ? "CFBridgingRelease " 4527 : "__bridge_transfer "); 4528 4529 Kind = OBC_Bridge; 4530 break; 4531 } 4532 4533 case OBC_BridgeTransfer: 4534 // We must consume the Objective-C object produced by the cast. 4535 MustConsume = true; 4536 break; 4537 } 4538 } else if (T->isCARCBridgableType() && FromType->isObjCARCBridgableType()) { 4539 // Okay: id -> CF 4540 CK = CK_BitCast; 4541 switch (Kind) { 4542 case OBC_Bridge: 4543 // Reclaiming a value that's going to be __bridge-casted to CF 4544 // is very dangerous, so we don't do it. 4545 SubExpr = maybeUndoReclaimObject(SubExpr); 4546 break; 4547 4548 case OBC_BridgeRetained: 4549 // Produce the object before casting it. 4550 SubExpr = ImplicitCastExpr::Create(Context, FromType, 4551 CK_ARCProduceObject, 4552 SubExpr, nullptr, VK_RValue); 4553 break; 4554 4555 case OBC_BridgeTransfer: { 4556 bool br = isKnownName("CFBridgingRetain"); 4557 Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind) 4558 << (FromType->isBlockPointerType()? 1 : 0) 4559 << FromType 4560 << 2 4561 << T 4562 << SubExpr->getSourceRange() 4563 << Kind; 4564 4565 Diag(BridgeKeywordLoc, diag::note_arc_bridge) 4566 << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge "); 4567 Diag(BridgeKeywordLoc, diag::note_arc_bridge_retained) 4568 << T << br 4569 << FixItHint::CreateReplacement(BridgeKeywordLoc, 4570 br ? "CFBridgingRetain " : "__bridge_retained"); 4571 4572 Kind = OBC_Bridge; 4573 break; 4574 } 4575 } 4576 } else { 4577 Diag(LParenLoc, diag::err_arc_bridge_cast_incompatible) 4578 << FromType << T << Kind 4579 << SubExpr->getSourceRange() 4580 << TSInfo->getTypeLoc().getSourceRange(); 4581 return ExprError(); 4582 } 4583 4584 Expr *Result = new (Context) ObjCBridgedCastExpr(LParenLoc, Kind, CK, 4585 BridgeKeywordLoc, 4586 TSInfo, SubExpr); 4587 4588 if (MustConsume) { 4589 Cleanup.setExprNeedsCleanups(true); 4590 Result = ImplicitCastExpr::Create(Context, T, CK_ARCConsumeObject, Result, 4591 nullptr, VK_RValue); 4592 } 4593 4594 return Result; 4595 } 4596 4597 ExprResult Sema::ActOnObjCBridgedCast(Scope *S, 4598 SourceLocation LParenLoc, 4599 ObjCBridgeCastKind Kind, 4600 SourceLocation BridgeKeywordLoc, 4601 ParsedType Type, 4602 SourceLocation RParenLoc, 4603 Expr *SubExpr) { 4604 TypeSourceInfo *TSInfo = nullptr; 4605 QualType T = GetTypeFromParser(Type, &TSInfo); 4606 if (Kind == OBC_Bridge) 4607 CheckTollFreeBridgeCast(T, SubExpr); 4608 if (!TSInfo) 4609 TSInfo = Context.getTrivialTypeSourceInfo(T, LParenLoc); 4610 return BuildObjCBridgedCast(LParenLoc, Kind, BridgeKeywordLoc, TSInfo, 4611 SubExpr); 4612 } 4613