1 //===--- SemaExprObjC.cpp - Semantic Analysis for ObjC Expressions --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for Objective-C expressions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/DeclObjC.h" 15 #include "clang/AST/ExprObjC.h" 16 #include "clang/AST/StmtVisitor.h" 17 #include "clang/AST/TypeLoc.h" 18 #include "clang/Analysis/DomainSpecific/CocoaConventions.h" 19 #include "clang/Basic/Builtins.h" 20 #include "clang/Edit/Commit.h" 21 #include "clang/Edit/Rewriters.h" 22 #include "clang/Lex/Preprocessor.h" 23 #include "clang/Sema/Initialization.h" 24 #include "clang/Sema/Lookup.h" 25 #include "clang/Sema/Scope.h" 26 #include "clang/Sema/ScopeInfo.h" 27 #include "clang/Sema/SemaInternal.h" 28 #include "llvm/ADT/SmallString.h" 29 #include "llvm/Support/ConvertUTF.h" 30 31 using namespace clang; 32 using namespace sema; 33 using llvm::makeArrayRef; 34 35 ExprResult Sema::ParseObjCStringLiteral(SourceLocation *AtLocs, 36 ArrayRef<Expr *> Strings) { 37 // Most ObjC strings are formed out of a single piece. However, we *can* 38 // have strings formed out of multiple @ strings with multiple pptokens in 39 // each one, e.g. @"foo" "bar" @"baz" "qux" which need to be turned into one 40 // StringLiteral for ObjCStringLiteral to hold onto. 41 StringLiteral *S = cast<StringLiteral>(Strings[0]); 42 43 // If we have a multi-part string, merge it all together. 44 if (Strings.size() != 1) { 45 // Concatenate objc strings. 46 SmallString<128> StrBuf; 47 SmallVector<SourceLocation, 8> StrLocs; 48 49 for (Expr *E : Strings) { 50 S = cast<StringLiteral>(E); 51 52 // ObjC strings can't be wide or UTF. 53 if (!S->isAscii()) { 54 Diag(S->getBeginLoc(), diag::err_cfstring_literal_not_string_constant) 55 << S->getSourceRange(); 56 return true; 57 } 58 59 // Append the string. 60 StrBuf += S->getString(); 61 62 // Get the locations of the string tokens. 63 StrLocs.append(S->tokloc_begin(), S->tokloc_end()); 64 } 65 66 // Create the aggregate string with the appropriate content and location 67 // information. 68 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 69 assert(CAT && "String literal not of constant array type!"); 70 QualType StrTy = Context.getConstantArrayType( 71 CAT->getElementType(), llvm::APInt(32, StrBuf.size() + 1), nullptr, 72 CAT->getSizeModifier(), CAT->getIndexTypeCVRQualifiers()); 73 S = StringLiteral::Create(Context, StrBuf, StringLiteral::Ascii, 74 /*Pascal=*/false, StrTy, &StrLocs[0], 75 StrLocs.size()); 76 } 77 78 return BuildObjCStringLiteral(AtLocs[0], S); 79 } 80 81 ExprResult Sema::BuildObjCStringLiteral(SourceLocation AtLoc, StringLiteral *S){ 82 // Verify that this composite string is acceptable for ObjC strings. 83 if (CheckObjCString(S)) 84 return true; 85 86 // Initialize the constant string interface lazily. This assumes 87 // the NSString interface is seen in this translation unit. Note: We 88 // don't use NSConstantString, since the runtime team considers this 89 // interface private (even though it appears in the header files). 90 QualType Ty = Context.getObjCConstantStringInterface(); 91 if (!Ty.isNull()) { 92 Ty = Context.getObjCObjectPointerType(Ty); 93 } else if (getLangOpts().NoConstantCFStrings) { 94 IdentifierInfo *NSIdent=nullptr; 95 std::string StringClass(getLangOpts().ObjCConstantStringClass); 96 97 if (StringClass.empty()) 98 NSIdent = &Context.Idents.get("NSConstantString"); 99 else 100 NSIdent = &Context.Idents.get(StringClass); 101 102 NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLoc, 103 LookupOrdinaryName); 104 if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) { 105 Context.setObjCConstantStringInterface(StrIF); 106 Ty = Context.getObjCConstantStringInterface(); 107 Ty = Context.getObjCObjectPointerType(Ty); 108 } else { 109 // If there is no NSConstantString interface defined then treat this 110 // as error and recover from it. 111 Diag(S->getBeginLoc(), diag::err_no_nsconstant_string_class) 112 << NSIdent << S->getSourceRange(); 113 Ty = Context.getObjCIdType(); 114 } 115 } else { 116 IdentifierInfo *NSIdent = NSAPIObj->getNSClassId(NSAPI::ClassId_NSString); 117 NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLoc, 118 LookupOrdinaryName); 119 if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) { 120 Context.setObjCConstantStringInterface(StrIF); 121 Ty = Context.getObjCConstantStringInterface(); 122 Ty = Context.getObjCObjectPointerType(Ty); 123 } else { 124 // If there is no NSString interface defined, implicitly declare 125 // a @class NSString; and use that instead. This is to make sure 126 // type of an NSString literal is represented correctly, instead of 127 // being an 'id' type. 128 Ty = Context.getObjCNSStringType(); 129 if (Ty.isNull()) { 130 ObjCInterfaceDecl *NSStringIDecl = 131 ObjCInterfaceDecl::Create (Context, 132 Context.getTranslationUnitDecl(), 133 SourceLocation(), NSIdent, 134 nullptr, nullptr, SourceLocation()); 135 Ty = Context.getObjCInterfaceType(NSStringIDecl); 136 Context.setObjCNSStringType(Ty); 137 } 138 Ty = Context.getObjCObjectPointerType(Ty); 139 } 140 } 141 142 return new (Context) ObjCStringLiteral(S, Ty, AtLoc); 143 } 144 145 /// Emits an error if the given method does not exist, or if the return 146 /// type is not an Objective-C object. 147 static bool validateBoxingMethod(Sema &S, SourceLocation Loc, 148 const ObjCInterfaceDecl *Class, 149 Selector Sel, const ObjCMethodDecl *Method) { 150 if (!Method) { 151 // FIXME: Is there a better way to avoid quotes than using getName()? 152 S.Diag(Loc, diag::err_undeclared_boxing_method) << Sel << Class->getName(); 153 return false; 154 } 155 156 // Make sure the return type is reasonable. 157 QualType ReturnType = Method->getReturnType(); 158 if (!ReturnType->isObjCObjectPointerType()) { 159 S.Diag(Loc, diag::err_objc_literal_method_sig) 160 << Sel; 161 S.Diag(Method->getLocation(), diag::note_objc_literal_method_return) 162 << ReturnType; 163 return false; 164 } 165 166 return true; 167 } 168 169 /// Maps ObjCLiteralKind to NSClassIdKindKind 170 static NSAPI::NSClassIdKindKind ClassKindFromLiteralKind( 171 Sema::ObjCLiteralKind LiteralKind) { 172 switch (LiteralKind) { 173 case Sema::LK_Array: 174 return NSAPI::ClassId_NSArray; 175 case Sema::LK_Dictionary: 176 return NSAPI::ClassId_NSDictionary; 177 case Sema::LK_Numeric: 178 return NSAPI::ClassId_NSNumber; 179 case Sema::LK_String: 180 return NSAPI::ClassId_NSString; 181 case Sema::LK_Boxed: 182 return NSAPI::ClassId_NSValue; 183 184 // there is no corresponding matching 185 // between LK_None/LK_Block and NSClassIdKindKind 186 case Sema::LK_Block: 187 case Sema::LK_None: 188 break; 189 } 190 llvm_unreachable("LiteralKind can't be converted into a ClassKind"); 191 } 192 193 /// Validates ObjCInterfaceDecl availability. 194 /// ObjCInterfaceDecl, used to create ObjC literals, should be defined 195 /// if clang not in a debugger mode. 196 static bool ValidateObjCLiteralInterfaceDecl(Sema &S, ObjCInterfaceDecl *Decl, 197 SourceLocation Loc, 198 Sema::ObjCLiteralKind LiteralKind) { 199 if (!Decl) { 200 NSAPI::NSClassIdKindKind Kind = ClassKindFromLiteralKind(LiteralKind); 201 IdentifierInfo *II = S.NSAPIObj->getNSClassId(Kind); 202 S.Diag(Loc, diag::err_undeclared_objc_literal_class) 203 << II->getName() << LiteralKind; 204 return false; 205 } else if (!Decl->hasDefinition() && !S.getLangOpts().DebuggerObjCLiteral) { 206 S.Diag(Loc, diag::err_undeclared_objc_literal_class) 207 << Decl->getName() << LiteralKind; 208 S.Diag(Decl->getLocation(), diag::note_forward_class); 209 return false; 210 } 211 212 return true; 213 } 214 215 /// Looks up ObjCInterfaceDecl of a given NSClassIdKindKind. 216 /// Used to create ObjC literals, such as NSDictionary (@{}), 217 /// NSArray (@[]) and Boxed Expressions (@()) 218 static ObjCInterfaceDecl *LookupObjCInterfaceDeclForLiteral(Sema &S, 219 SourceLocation Loc, 220 Sema::ObjCLiteralKind LiteralKind) { 221 NSAPI::NSClassIdKindKind ClassKind = ClassKindFromLiteralKind(LiteralKind); 222 IdentifierInfo *II = S.NSAPIObj->getNSClassId(ClassKind); 223 NamedDecl *IF = S.LookupSingleName(S.TUScope, II, Loc, 224 Sema::LookupOrdinaryName); 225 ObjCInterfaceDecl *ID = dyn_cast_or_null<ObjCInterfaceDecl>(IF); 226 if (!ID && S.getLangOpts().DebuggerObjCLiteral) { 227 ASTContext &Context = S.Context; 228 TranslationUnitDecl *TU = Context.getTranslationUnitDecl(); 229 ID = ObjCInterfaceDecl::Create (Context, TU, SourceLocation(), II, 230 nullptr, nullptr, SourceLocation()); 231 } 232 233 if (!ValidateObjCLiteralInterfaceDecl(S, ID, Loc, LiteralKind)) { 234 ID = nullptr; 235 } 236 237 return ID; 238 } 239 240 /// Retrieve the NSNumber factory method that should be used to create 241 /// an Objective-C literal for the given type. 242 static ObjCMethodDecl *getNSNumberFactoryMethod(Sema &S, SourceLocation Loc, 243 QualType NumberType, 244 bool isLiteral = false, 245 SourceRange R = SourceRange()) { 246 Optional<NSAPI::NSNumberLiteralMethodKind> Kind = 247 S.NSAPIObj->getNSNumberFactoryMethodKind(NumberType); 248 249 if (!Kind) { 250 if (isLiteral) { 251 S.Diag(Loc, diag::err_invalid_nsnumber_type) 252 << NumberType << R; 253 } 254 return nullptr; 255 } 256 257 // If we already looked up this method, we're done. 258 if (S.NSNumberLiteralMethods[*Kind]) 259 return S.NSNumberLiteralMethods[*Kind]; 260 261 Selector Sel = S.NSAPIObj->getNSNumberLiteralSelector(*Kind, 262 /*Instance=*/false); 263 264 ASTContext &CX = S.Context; 265 266 // Look up the NSNumber class, if we haven't done so already. It's cached 267 // in the Sema instance. 268 if (!S.NSNumberDecl) { 269 S.NSNumberDecl = LookupObjCInterfaceDeclForLiteral(S, Loc, 270 Sema::LK_Numeric); 271 if (!S.NSNumberDecl) { 272 return nullptr; 273 } 274 } 275 276 if (S.NSNumberPointer.isNull()) { 277 // generate the pointer to NSNumber type. 278 QualType NSNumberObject = CX.getObjCInterfaceType(S.NSNumberDecl); 279 S.NSNumberPointer = CX.getObjCObjectPointerType(NSNumberObject); 280 } 281 282 // Look for the appropriate method within NSNumber. 283 ObjCMethodDecl *Method = S.NSNumberDecl->lookupClassMethod(Sel); 284 if (!Method && S.getLangOpts().DebuggerObjCLiteral) { 285 // create a stub definition this NSNumber factory method. 286 TypeSourceInfo *ReturnTInfo = nullptr; 287 Method = 288 ObjCMethodDecl::Create(CX, SourceLocation(), SourceLocation(), Sel, 289 S.NSNumberPointer, ReturnTInfo, S.NSNumberDecl, 290 /*isInstance=*/false, /*isVariadic=*/false, 291 /*isPropertyAccessor=*/false, 292 /*isSynthesizedAccessorStub=*/false, 293 /*isImplicitlyDeclared=*/true, 294 /*isDefined=*/false, ObjCMethodDecl::Required, 295 /*HasRelatedResultType=*/false); 296 ParmVarDecl *value = ParmVarDecl::Create(S.Context, Method, 297 SourceLocation(), SourceLocation(), 298 &CX.Idents.get("value"), 299 NumberType, /*TInfo=*/nullptr, 300 SC_None, nullptr); 301 Method->setMethodParams(S.Context, value, None); 302 } 303 304 if (!validateBoxingMethod(S, Loc, S.NSNumberDecl, Sel, Method)) 305 return nullptr; 306 307 // Note: if the parameter type is out-of-line, we'll catch it later in the 308 // implicit conversion. 309 310 S.NSNumberLiteralMethods[*Kind] = Method; 311 return Method; 312 } 313 314 /// BuildObjCNumericLiteral - builds an ObjCBoxedExpr AST node for the 315 /// numeric literal expression. Type of the expression will be "NSNumber *". 316 ExprResult Sema::BuildObjCNumericLiteral(SourceLocation AtLoc, Expr *Number) { 317 // Determine the type of the literal. 318 QualType NumberType = Number->getType(); 319 if (CharacterLiteral *Char = dyn_cast<CharacterLiteral>(Number)) { 320 // In C, character literals have type 'int'. That's not the type we want 321 // to use to determine the Objective-c literal kind. 322 switch (Char->getKind()) { 323 case CharacterLiteral::Ascii: 324 case CharacterLiteral::UTF8: 325 NumberType = Context.CharTy; 326 break; 327 328 case CharacterLiteral::Wide: 329 NumberType = Context.getWideCharType(); 330 break; 331 332 case CharacterLiteral::UTF16: 333 NumberType = Context.Char16Ty; 334 break; 335 336 case CharacterLiteral::UTF32: 337 NumberType = Context.Char32Ty; 338 break; 339 } 340 } 341 342 // Look for the appropriate method within NSNumber. 343 // Construct the literal. 344 SourceRange NR(Number->getSourceRange()); 345 ObjCMethodDecl *Method = getNSNumberFactoryMethod(*this, AtLoc, NumberType, 346 true, NR); 347 if (!Method) 348 return ExprError(); 349 350 // Convert the number to the type that the parameter expects. 351 ParmVarDecl *ParamDecl = Method->parameters()[0]; 352 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 353 ParamDecl); 354 ExprResult ConvertedNumber = PerformCopyInitialization(Entity, 355 SourceLocation(), 356 Number); 357 if (ConvertedNumber.isInvalid()) 358 return ExprError(); 359 Number = ConvertedNumber.get(); 360 361 // Use the effective source range of the literal, including the leading '@'. 362 return MaybeBindToTemporary( 363 new (Context) ObjCBoxedExpr(Number, NSNumberPointer, Method, 364 SourceRange(AtLoc, NR.getEnd()))); 365 } 366 367 ExprResult Sema::ActOnObjCBoolLiteral(SourceLocation AtLoc, 368 SourceLocation ValueLoc, 369 bool Value) { 370 ExprResult Inner; 371 if (getLangOpts().CPlusPlus) { 372 Inner = ActOnCXXBoolLiteral(ValueLoc, Value? tok::kw_true : tok::kw_false); 373 } else { 374 // C doesn't actually have a way to represent literal values of type 375 // _Bool. So, we'll use 0/1 and implicit cast to _Bool. 376 Inner = ActOnIntegerConstant(ValueLoc, Value? 1 : 0); 377 Inner = ImpCastExprToType(Inner.get(), Context.BoolTy, 378 CK_IntegralToBoolean); 379 } 380 381 return BuildObjCNumericLiteral(AtLoc, Inner.get()); 382 } 383 384 /// Check that the given expression is a valid element of an Objective-C 385 /// collection literal. 386 static ExprResult CheckObjCCollectionLiteralElement(Sema &S, Expr *Element, 387 QualType T, 388 bool ArrayLiteral = false) { 389 // If the expression is type-dependent, there's nothing for us to do. 390 if (Element->isTypeDependent()) 391 return Element; 392 393 ExprResult Result = S.CheckPlaceholderExpr(Element); 394 if (Result.isInvalid()) 395 return ExprError(); 396 Element = Result.get(); 397 398 // In C++, check for an implicit conversion to an Objective-C object pointer 399 // type. 400 if (S.getLangOpts().CPlusPlus && Element->getType()->isRecordType()) { 401 InitializedEntity Entity 402 = InitializedEntity::InitializeParameter(S.Context, T, 403 /*Consumed=*/false); 404 InitializationKind Kind = InitializationKind::CreateCopy( 405 Element->getBeginLoc(), SourceLocation()); 406 InitializationSequence Seq(S, Entity, Kind, Element); 407 if (!Seq.Failed()) 408 return Seq.Perform(S, Entity, Kind, Element); 409 } 410 411 Expr *OrigElement = Element; 412 413 // Perform lvalue-to-rvalue conversion. 414 Result = S.DefaultLvalueConversion(Element); 415 if (Result.isInvalid()) 416 return ExprError(); 417 Element = Result.get(); 418 419 // Make sure that we have an Objective-C pointer type or block. 420 if (!Element->getType()->isObjCObjectPointerType() && 421 !Element->getType()->isBlockPointerType()) { 422 bool Recovered = false; 423 424 // If this is potentially an Objective-C numeric literal, add the '@'. 425 if (isa<IntegerLiteral>(OrigElement) || 426 isa<CharacterLiteral>(OrigElement) || 427 isa<FloatingLiteral>(OrigElement) || 428 isa<ObjCBoolLiteralExpr>(OrigElement) || 429 isa<CXXBoolLiteralExpr>(OrigElement)) { 430 if (S.NSAPIObj->getNSNumberFactoryMethodKind(OrigElement->getType())) { 431 int Which = isa<CharacterLiteral>(OrigElement) ? 1 432 : (isa<CXXBoolLiteralExpr>(OrigElement) || 433 isa<ObjCBoolLiteralExpr>(OrigElement)) ? 2 434 : 3; 435 436 S.Diag(OrigElement->getBeginLoc(), diag::err_box_literal_collection) 437 << Which << OrigElement->getSourceRange() 438 << FixItHint::CreateInsertion(OrigElement->getBeginLoc(), "@"); 439 440 Result = 441 S.BuildObjCNumericLiteral(OrigElement->getBeginLoc(), OrigElement); 442 if (Result.isInvalid()) 443 return ExprError(); 444 445 Element = Result.get(); 446 Recovered = true; 447 } 448 } 449 // If this is potentially an Objective-C string literal, add the '@'. 450 else if (StringLiteral *String = dyn_cast<StringLiteral>(OrigElement)) { 451 if (String->isAscii()) { 452 S.Diag(OrigElement->getBeginLoc(), diag::err_box_literal_collection) 453 << 0 << OrigElement->getSourceRange() 454 << FixItHint::CreateInsertion(OrigElement->getBeginLoc(), "@"); 455 456 Result = S.BuildObjCStringLiteral(OrigElement->getBeginLoc(), String); 457 if (Result.isInvalid()) 458 return ExprError(); 459 460 Element = Result.get(); 461 Recovered = true; 462 } 463 } 464 465 if (!Recovered) { 466 S.Diag(Element->getBeginLoc(), diag::err_invalid_collection_element) 467 << Element->getType(); 468 return ExprError(); 469 } 470 } 471 if (ArrayLiteral) 472 if (ObjCStringLiteral *getString = 473 dyn_cast<ObjCStringLiteral>(OrigElement)) { 474 if (StringLiteral *SL = getString->getString()) { 475 unsigned numConcat = SL->getNumConcatenated(); 476 if (numConcat > 1) { 477 // Only warn if the concatenated string doesn't come from a macro. 478 bool hasMacro = false; 479 for (unsigned i = 0; i < numConcat ; ++i) 480 if (SL->getStrTokenLoc(i).isMacroID()) { 481 hasMacro = true; 482 break; 483 } 484 if (!hasMacro) 485 S.Diag(Element->getBeginLoc(), 486 diag::warn_concatenated_nsarray_literal) 487 << Element->getType(); 488 } 489 } 490 } 491 492 // Make sure that the element has the type that the container factory 493 // function expects. 494 return S.PerformCopyInitialization( 495 InitializedEntity::InitializeParameter(S.Context, T, 496 /*Consumed=*/false), 497 Element->getBeginLoc(), Element); 498 } 499 500 ExprResult Sema::BuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr) { 501 if (ValueExpr->isTypeDependent()) { 502 ObjCBoxedExpr *BoxedExpr = 503 new (Context) ObjCBoxedExpr(ValueExpr, Context.DependentTy, nullptr, SR); 504 return BoxedExpr; 505 } 506 ObjCMethodDecl *BoxingMethod = nullptr; 507 QualType BoxedType; 508 // Convert the expression to an RValue, so we can check for pointer types... 509 ExprResult RValue = DefaultFunctionArrayLvalueConversion(ValueExpr); 510 if (RValue.isInvalid()) { 511 return ExprError(); 512 } 513 SourceLocation Loc = SR.getBegin(); 514 ValueExpr = RValue.get(); 515 QualType ValueType(ValueExpr->getType()); 516 if (const PointerType *PT = ValueType->getAs<PointerType>()) { 517 QualType PointeeType = PT->getPointeeType(); 518 if (Context.hasSameUnqualifiedType(PointeeType, Context.CharTy)) { 519 520 if (!NSStringDecl) { 521 NSStringDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc, 522 Sema::LK_String); 523 if (!NSStringDecl) { 524 return ExprError(); 525 } 526 QualType NSStringObject = Context.getObjCInterfaceType(NSStringDecl); 527 NSStringPointer = Context.getObjCObjectPointerType(NSStringObject); 528 } 529 530 // The boxed expression can be emitted as a compile time constant if it is 531 // a string literal whose character encoding is compatible with UTF-8. 532 if (auto *CE = dyn_cast<ImplicitCastExpr>(ValueExpr)) 533 if (CE->getCastKind() == CK_ArrayToPointerDecay) 534 if (auto *SL = 535 dyn_cast<StringLiteral>(CE->getSubExpr()->IgnoreParens())) { 536 assert((SL->isAscii() || SL->isUTF8()) && 537 "unexpected character encoding"); 538 StringRef Str = SL->getString(); 539 const llvm::UTF8 *StrBegin = Str.bytes_begin(); 540 const llvm::UTF8 *StrEnd = Str.bytes_end(); 541 // Check that this is a valid UTF-8 string. 542 if (llvm::isLegalUTF8String(&StrBegin, StrEnd)) { 543 BoxedType = Context.getAttributedType( 544 AttributedType::getNullabilityAttrKind( 545 NullabilityKind::NonNull), 546 NSStringPointer, NSStringPointer); 547 return new (Context) ObjCBoxedExpr(CE, BoxedType, nullptr, SR); 548 } 549 550 Diag(SL->getBeginLoc(), diag::warn_objc_boxing_invalid_utf8_string) 551 << NSStringPointer << SL->getSourceRange(); 552 } 553 554 if (!StringWithUTF8StringMethod) { 555 IdentifierInfo *II = &Context.Idents.get("stringWithUTF8String"); 556 Selector stringWithUTF8String = Context.Selectors.getUnarySelector(II); 557 558 // Look for the appropriate method within NSString. 559 BoxingMethod = NSStringDecl->lookupClassMethod(stringWithUTF8String); 560 if (!BoxingMethod && getLangOpts().DebuggerObjCLiteral) { 561 // Debugger needs to work even if NSString hasn't been defined. 562 TypeSourceInfo *ReturnTInfo = nullptr; 563 ObjCMethodDecl *M = ObjCMethodDecl::Create( 564 Context, SourceLocation(), SourceLocation(), stringWithUTF8String, 565 NSStringPointer, ReturnTInfo, NSStringDecl, 566 /*isInstance=*/false, /*isVariadic=*/false, 567 /*isPropertyAccessor=*/false, 568 /*isSynthesizedAccessorStub=*/false, 569 /*isImplicitlyDeclared=*/true, 570 /*isDefined=*/false, ObjCMethodDecl::Required, 571 /*HasRelatedResultType=*/false); 572 QualType ConstCharType = Context.CharTy.withConst(); 573 ParmVarDecl *value = 574 ParmVarDecl::Create(Context, M, 575 SourceLocation(), SourceLocation(), 576 &Context.Idents.get("value"), 577 Context.getPointerType(ConstCharType), 578 /*TInfo=*/nullptr, 579 SC_None, nullptr); 580 M->setMethodParams(Context, value, None); 581 BoxingMethod = M; 582 } 583 584 if (!validateBoxingMethod(*this, Loc, NSStringDecl, 585 stringWithUTF8String, BoxingMethod)) 586 return ExprError(); 587 588 StringWithUTF8StringMethod = BoxingMethod; 589 } 590 591 BoxingMethod = StringWithUTF8StringMethod; 592 BoxedType = NSStringPointer; 593 // Transfer the nullability from method's return type. 594 Optional<NullabilityKind> Nullability = 595 BoxingMethod->getReturnType()->getNullability(Context); 596 if (Nullability) 597 BoxedType = Context.getAttributedType( 598 AttributedType::getNullabilityAttrKind(*Nullability), BoxedType, 599 BoxedType); 600 } 601 } else if (ValueType->isBuiltinType()) { 602 // The other types we support are numeric, char and BOOL/bool. We could also 603 // provide limited support for structure types, such as NSRange, NSRect, and 604 // NSSize. See NSValue (NSValueGeometryExtensions) in <Foundation/NSGeometry.h> 605 // for more details. 606 607 // Check for a top-level character literal. 608 if (const CharacterLiteral *Char = 609 dyn_cast<CharacterLiteral>(ValueExpr->IgnoreParens())) { 610 // In C, character literals have type 'int'. That's not the type we want 611 // to use to determine the Objective-c literal kind. 612 switch (Char->getKind()) { 613 case CharacterLiteral::Ascii: 614 case CharacterLiteral::UTF8: 615 ValueType = Context.CharTy; 616 break; 617 618 case CharacterLiteral::Wide: 619 ValueType = Context.getWideCharType(); 620 break; 621 622 case CharacterLiteral::UTF16: 623 ValueType = Context.Char16Ty; 624 break; 625 626 case CharacterLiteral::UTF32: 627 ValueType = Context.Char32Ty; 628 break; 629 } 630 } 631 // FIXME: Do I need to do anything special with BoolTy expressions? 632 633 // Look for the appropriate method within NSNumber. 634 BoxingMethod = getNSNumberFactoryMethod(*this, Loc, ValueType); 635 BoxedType = NSNumberPointer; 636 } else if (const EnumType *ET = ValueType->getAs<EnumType>()) { 637 if (!ET->getDecl()->isComplete()) { 638 Diag(Loc, diag::err_objc_incomplete_boxed_expression_type) 639 << ValueType << ValueExpr->getSourceRange(); 640 return ExprError(); 641 } 642 643 BoxingMethod = getNSNumberFactoryMethod(*this, Loc, 644 ET->getDecl()->getIntegerType()); 645 BoxedType = NSNumberPointer; 646 } else if (ValueType->isObjCBoxableRecordType()) { 647 // Support for structure types, that marked as objc_boxable 648 // struct __attribute__((objc_boxable)) s { ... }; 649 650 // Look up the NSValue class, if we haven't done so already. It's cached 651 // in the Sema instance. 652 if (!NSValueDecl) { 653 NSValueDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc, 654 Sema::LK_Boxed); 655 if (!NSValueDecl) { 656 return ExprError(); 657 } 658 659 // generate the pointer to NSValue type. 660 QualType NSValueObject = Context.getObjCInterfaceType(NSValueDecl); 661 NSValuePointer = Context.getObjCObjectPointerType(NSValueObject); 662 } 663 664 if (!ValueWithBytesObjCTypeMethod) { 665 IdentifierInfo *II[] = { 666 &Context.Idents.get("valueWithBytes"), 667 &Context.Idents.get("objCType") 668 }; 669 Selector ValueWithBytesObjCType = Context.Selectors.getSelector(2, II); 670 671 // Look for the appropriate method within NSValue. 672 BoxingMethod = NSValueDecl->lookupClassMethod(ValueWithBytesObjCType); 673 if (!BoxingMethod && getLangOpts().DebuggerObjCLiteral) { 674 // Debugger needs to work even if NSValue hasn't been defined. 675 TypeSourceInfo *ReturnTInfo = nullptr; 676 ObjCMethodDecl *M = ObjCMethodDecl::Create( 677 Context, SourceLocation(), SourceLocation(), ValueWithBytesObjCType, 678 NSValuePointer, ReturnTInfo, NSValueDecl, 679 /*isInstance=*/false, 680 /*isVariadic=*/false, 681 /*isPropertyAccessor=*/false, 682 /*isSynthesizedAccessorStub=*/false, 683 /*isImplicitlyDeclared=*/true, 684 /*isDefined=*/false, ObjCMethodDecl::Required, 685 /*HasRelatedResultType=*/false); 686 687 SmallVector<ParmVarDecl *, 2> Params; 688 689 ParmVarDecl *bytes = 690 ParmVarDecl::Create(Context, M, 691 SourceLocation(), SourceLocation(), 692 &Context.Idents.get("bytes"), 693 Context.VoidPtrTy.withConst(), 694 /*TInfo=*/nullptr, 695 SC_None, nullptr); 696 Params.push_back(bytes); 697 698 QualType ConstCharType = Context.CharTy.withConst(); 699 ParmVarDecl *type = 700 ParmVarDecl::Create(Context, M, 701 SourceLocation(), SourceLocation(), 702 &Context.Idents.get("type"), 703 Context.getPointerType(ConstCharType), 704 /*TInfo=*/nullptr, 705 SC_None, nullptr); 706 Params.push_back(type); 707 708 M->setMethodParams(Context, Params, None); 709 BoxingMethod = M; 710 } 711 712 if (!validateBoxingMethod(*this, Loc, NSValueDecl, 713 ValueWithBytesObjCType, BoxingMethod)) 714 return ExprError(); 715 716 ValueWithBytesObjCTypeMethod = BoxingMethod; 717 } 718 719 if (!ValueType.isTriviallyCopyableType(Context)) { 720 Diag(Loc, diag::err_objc_non_trivially_copyable_boxed_expression_type) 721 << ValueType << ValueExpr->getSourceRange(); 722 return ExprError(); 723 } 724 725 BoxingMethod = ValueWithBytesObjCTypeMethod; 726 BoxedType = NSValuePointer; 727 } 728 729 if (!BoxingMethod) { 730 Diag(Loc, diag::err_objc_illegal_boxed_expression_type) 731 << ValueType << ValueExpr->getSourceRange(); 732 return ExprError(); 733 } 734 735 DiagnoseUseOfDecl(BoxingMethod, Loc); 736 737 ExprResult ConvertedValueExpr; 738 if (ValueType->isObjCBoxableRecordType()) { 739 InitializedEntity IE = InitializedEntity::InitializeTemporary(ValueType); 740 ConvertedValueExpr = PerformCopyInitialization(IE, ValueExpr->getExprLoc(), 741 ValueExpr); 742 } else { 743 // Convert the expression to the type that the parameter requires. 744 ParmVarDecl *ParamDecl = BoxingMethod->parameters()[0]; 745 InitializedEntity IE = InitializedEntity::InitializeParameter(Context, 746 ParamDecl); 747 ConvertedValueExpr = PerformCopyInitialization(IE, SourceLocation(), 748 ValueExpr); 749 } 750 751 if (ConvertedValueExpr.isInvalid()) 752 return ExprError(); 753 ValueExpr = ConvertedValueExpr.get(); 754 755 ObjCBoxedExpr *BoxedExpr = 756 new (Context) ObjCBoxedExpr(ValueExpr, BoxedType, 757 BoxingMethod, SR); 758 return MaybeBindToTemporary(BoxedExpr); 759 } 760 761 /// Build an ObjC subscript pseudo-object expression, given that 762 /// that's supported by the runtime. 763 ExprResult Sema::BuildObjCSubscriptExpression(SourceLocation RB, Expr *BaseExpr, 764 Expr *IndexExpr, 765 ObjCMethodDecl *getterMethod, 766 ObjCMethodDecl *setterMethod) { 767 assert(!LangOpts.isSubscriptPointerArithmetic()); 768 769 // We can't get dependent types here; our callers should have 770 // filtered them out. 771 assert((!BaseExpr->isTypeDependent() && !IndexExpr->isTypeDependent()) && 772 "base or index cannot have dependent type here"); 773 774 // Filter out placeholders in the index. In theory, overloads could 775 // be preserved here, although that might not actually work correctly. 776 ExprResult Result = CheckPlaceholderExpr(IndexExpr); 777 if (Result.isInvalid()) 778 return ExprError(); 779 IndexExpr = Result.get(); 780 781 // Perform lvalue-to-rvalue conversion on the base. 782 Result = DefaultLvalueConversion(BaseExpr); 783 if (Result.isInvalid()) 784 return ExprError(); 785 BaseExpr = Result.get(); 786 787 // Build the pseudo-object expression. 788 return new (Context) ObjCSubscriptRefExpr( 789 BaseExpr, IndexExpr, Context.PseudoObjectTy, VK_LValue, OK_ObjCSubscript, 790 getterMethod, setterMethod, RB); 791 } 792 793 ExprResult Sema::BuildObjCArrayLiteral(SourceRange SR, MultiExprArg Elements) { 794 SourceLocation Loc = SR.getBegin(); 795 796 if (!NSArrayDecl) { 797 NSArrayDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc, 798 Sema::LK_Array); 799 if (!NSArrayDecl) { 800 return ExprError(); 801 } 802 } 803 804 // Find the arrayWithObjects:count: method, if we haven't done so already. 805 QualType IdT = Context.getObjCIdType(); 806 if (!ArrayWithObjectsMethod) { 807 Selector 808 Sel = NSAPIObj->getNSArraySelector(NSAPI::NSArr_arrayWithObjectsCount); 809 ObjCMethodDecl *Method = NSArrayDecl->lookupClassMethod(Sel); 810 if (!Method && getLangOpts().DebuggerObjCLiteral) { 811 TypeSourceInfo *ReturnTInfo = nullptr; 812 Method = ObjCMethodDecl::Create( 813 Context, SourceLocation(), SourceLocation(), Sel, IdT, ReturnTInfo, 814 Context.getTranslationUnitDecl(), false /*Instance*/, 815 false /*isVariadic*/, 816 /*isPropertyAccessor=*/false, /*isSynthesizedAccessorStub=*/false, 817 /*isImplicitlyDeclared=*/true, /*isDefined=*/false, 818 ObjCMethodDecl::Required, false); 819 SmallVector<ParmVarDecl *, 2> Params; 820 ParmVarDecl *objects = ParmVarDecl::Create(Context, Method, 821 SourceLocation(), 822 SourceLocation(), 823 &Context.Idents.get("objects"), 824 Context.getPointerType(IdT), 825 /*TInfo=*/nullptr, 826 SC_None, nullptr); 827 Params.push_back(objects); 828 ParmVarDecl *cnt = ParmVarDecl::Create(Context, Method, 829 SourceLocation(), 830 SourceLocation(), 831 &Context.Idents.get("cnt"), 832 Context.UnsignedLongTy, 833 /*TInfo=*/nullptr, SC_None, 834 nullptr); 835 Params.push_back(cnt); 836 Method->setMethodParams(Context, Params, None); 837 } 838 839 if (!validateBoxingMethod(*this, Loc, NSArrayDecl, Sel, Method)) 840 return ExprError(); 841 842 // Dig out the type that all elements should be converted to. 843 QualType T = Method->parameters()[0]->getType(); 844 const PointerType *PtrT = T->getAs<PointerType>(); 845 if (!PtrT || 846 !Context.hasSameUnqualifiedType(PtrT->getPointeeType(), IdT)) { 847 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 848 << Sel; 849 Diag(Method->parameters()[0]->getLocation(), 850 diag::note_objc_literal_method_param) 851 << 0 << T 852 << Context.getPointerType(IdT.withConst()); 853 return ExprError(); 854 } 855 856 // Check that the 'count' parameter is integral. 857 if (!Method->parameters()[1]->getType()->isIntegerType()) { 858 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 859 << Sel; 860 Diag(Method->parameters()[1]->getLocation(), 861 diag::note_objc_literal_method_param) 862 << 1 863 << Method->parameters()[1]->getType() 864 << "integral"; 865 return ExprError(); 866 } 867 868 // We've found a good +arrayWithObjects:count: method. Save it! 869 ArrayWithObjectsMethod = Method; 870 } 871 872 QualType ObjectsType = ArrayWithObjectsMethod->parameters()[0]->getType(); 873 QualType RequiredType = ObjectsType->castAs<PointerType>()->getPointeeType(); 874 875 // Check that each of the elements provided is valid in a collection literal, 876 // performing conversions as necessary. 877 Expr **ElementsBuffer = Elements.data(); 878 for (unsigned I = 0, N = Elements.size(); I != N; ++I) { 879 ExprResult Converted = CheckObjCCollectionLiteralElement(*this, 880 ElementsBuffer[I], 881 RequiredType, true); 882 if (Converted.isInvalid()) 883 return ExprError(); 884 885 ElementsBuffer[I] = Converted.get(); 886 } 887 888 QualType Ty 889 = Context.getObjCObjectPointerType( 890 Context.getObjCInterfaceType(NSArrayDecl)); 891 892 return MaybeBindToTemporary( 893 ObjCArrayLiteral::Create(Context, Elements, Ty, 894 ArrayWithObjectsMethod, SR)); 895 } 896 897 /// Check for duplicate keys in an ObjC dictionary literal. For instance: 898 /// NSDictionary *nd = @{ @"foo" : @"bar", @"foo" : @"baz" }; 899 static void 900 CheckObjCDictionaryLiteralDuplicateKeys(Sema &S, 901 ObjCDictionaryLiteral *Literal) { 902 if (Literal->isValueDependent() || Literal->isTypeDependent()) 903 return; 904 905 // NSNumber has quite relaxed equality semantics (for instance, @YES is 906 // considered equal to @1.0). For now, ignore floating points and just do a 907 // bit-width and sign agnostic integer compare. 908 struct APSIntCompare { 909 bool operator()(const llvm::APSInt &LHS, const llvm::APSInt &RHS) const { 910 return llvm::APSInt::compareValues(LHS, RHS) < 0; 911 } 912 }; 913 914 llvm::DenseMap<StringRef, SourceLocation> StringKeys; 915 std::map<llvm::APSInt, SourceLocation, APSIntCompare> IntegralKeys; 916 917 auto checkOneKey = [&](auto &Map, const auto &Key, SourceLocation Loc) { 918 auto Pair = Map.insert({Key, Loc}); 919 if (!Pair.second) { 920 S.Diag(Loc, diag::warn_nsdictionary_duplicate_key); 921 S.Diag(Pair.first->second, diag::note_nsdictionary_duplicate_key_here); 922 } 923 }; 924 925 for (unsigned Idx = 0, End = Literal->getNumElements(); Idx != End; ++Idx) { 926 Expr *Key = Literal->getKeyValueElement(Idx).Key->IgnoreParenImpCasts(); 927 928 if (auto *StrLit = dyn_cast<ObjCStringLiteral>(Key)) { 929 StringRef Bytes = StrLit->getString()->getBytes(); 930 SourceLocation Loc = StrLit->getExprLoc(); 931 checkOneKey(StringKeys, Bytes, Loc); 932 } 933 934 if (auto *BE = dyn_cast<ObjCBoxedExpr>(Key)) { 935 Expr *Boxed = BE->getSubExpr(); 936 SourceLocation Loc = BE->getExprLoc(); 937 938 // Check for @("foo"). 939 if (auto *Str = dyn_cast<StringLiteral>(Boxed->IgnoreParenImpCasts())) { 940 checkOneKey(StringKeys, Str->getBytes(), Loc); 941 continue; 942 } 943 944 Expr::EvalResult Result; 945 if (Boxed->EvaluateAsInt(Result, S.getASTContext(), 946 Expr::SE_AllowSideEffects)) { 947 checkOneKey(IntegralKeys, Result.Val.getInt(), Loc); 948 } 949 } 950 } 951 } 952 953 ExprResult Sema::BuildObjCDictionaryLiteral(SourceRange SR, 954 MutableArrayRef<ObjCDictionaryElement> Elements) { 955 SourceLocation Loc = SR.getBegin(); 956 957 if (!NSDictionaryDecl) { 958 NSDictionaryDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc, 959 Sema::LK_Dictionary); 960 if (!NSDictionaryDecl) { 961 return ExprError(); 962 } 963 } 964 965 // Find the dictionaryWithObjects:forKeys:count: method, if we haven't done 966 // so already. 967 QualType IdT = Context.getObjCIdType(); 968 if (!DictionaryWithObjectsMethod) { 969 Selector Sel = NSAPIObj->getNSDictionarySelector( 970 NSAPI::NSDict_dictionaryWithObjectsForKeysCount); 971 ObjCMethodDecl *Method = NSDictionaryDecl->lookupClassMethod(Sel); 972 if (!Method && getLangOpts().DebuggerObjCLiteral) { 973 Method = ObjCMethodDecl::Create( 974 Context, SourceLocation(), SourceLocation(), Sel, IdT, 975 nullptr /*TypeSourceInfo */, Context.getTranslationUnitDecl(), 976 false /*Instance*/, false /*isVariadic*/, 977 /*isPropertyAccessor=*/false, 978 /*isSynthesizedAccessorStub=*/false, 979 /*isImplicitlyDeclared=*/true, /*isDefined=*/false, 980 ObjCMethodDecl::Required, false); 981 SmallVector<ParmVarDecl *, 3> Params; 982 ParmVarDecl *objects = ParmVarDecl::Create(Context, Method, 983 SourceLocation(), 984 SourceLocation(), 985 &Context.Idents.get("objects"), 986 Context.getPointerType(IdT), 987 /*TInfo=*/nullptr, SC_None, 988 nullptr); 989 Params.push_back(objects); 990 ParmVarDecl *keys = ParmVarDecl::Create(Context, Method, 991 SourceLocation(), 992 SourceLocation(), 993 &Context.Idents.get("keys"), 994 Context.getPointerType(IdT), 995 /*TInfo=*/nullptr, SC_None, 996 nullptr); 997 Params.push_back(keys); 998 ParmVarDecl *cnt = ParmVarDecl::Create(Context, Method, 999 SourceLocation(), 1000 SourceLocation(), 1001 &Context.Idents.get("cnt"), 1002 Context.UnsignedLongTy, 1003 /*TInfo=*/nullptr, SC_None, 1004 nullptr); 1005 Params.push_back(cnt); 1006 Method->setMethodParams(Context, Params, None); 1007 } 1008 1009 if (!validateBoxingMethod(*this, SR.getBegin(), NSDictionaryDecl, Sel, 1010 Method)) 1011 return ExprError(); 1012 1013 // Dig out the type that all values should be converted to. 1014 QualType ValueT = Method->parameters()[0]->getType(); 1015 const PointerType *PtrValue = ValueT->getAs<PointerType>(); 1016 if (!PtrValue || 1017 !Context.hasSameUnqualifiedType(PtrValue->getPointeeType(), IdT)) { 1018 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 1019 << Sel; 1020 Diag(Method->parameters()[0]->getLocation(), 1021 diag::note_objc_literal_method_param) 1022 << 0 << ValueT 1023 << Context.getPointerType(IdT.withConst()); 1024 return ExprError(); 1025 } 1026 1027 // Dig out the type that all keys should be converted to. 1028 QualType KeyT = Method->parameters()[1]->getType(); 1029 const PointerType *PtrKey = KeyT->getAs<PointerType>(); 1030 if (!PtrKey || 1031 !Context.hasSameUnqualifiedType(PtrKey->getPointeeType(), 1032 IdT)) { 1033 bool err = true; 1034 if (PtrKey) { 1035 if (QIDNSCopying.isNull()) { 1036 // key argument of selector is id<NSCopying>? 1037 if (ObjCProtocolDecl *NSCopyingPDecl = 1038 LookupProtocol(&Context.Idents.get("NSCopying"), SR.getBegin())) { 1039 ObjCProtocolDecl *PQ[] = {NSCopyingPDecl}; 1040 QIDNSCopying = 1041 Context.getObjCObjectType(Context.ObjCBuiltinIdTy, { }, 1042 llvm::makeArrayRef( 1043 (ObjCProtocolDecl**) PQ, 1044 1), 1045 false); 1046 QIDNSCopying = Context.getObjCObjectPointerType(QIDNSCopying); 1047 } 1048 } 1049 if (!QIDNSCopying.isNull()) 1050 err = !Context.hasSameUnqualifiedType(PtrKey->getPointeeType(), 1051 QIDNSCopying); 1052 } 1053 1054 if (err) { 1055 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 1056 << Sel; 1057 Diag(Method->parameters()[1]->getLocation(), 1058 diag::note_objc_literal_method_param) 1059 << 1 << KeyT 1060 << Context.getPointerType(IdT.withConst()); 1061 return ExprError(); 1062 } 1063 } 1064 1065 // Check that the 'count' parameter is integral. 1066 QualType CountType = Method->parameters()[2]->getType(); 1067 if (!CountType->isIntegerType()) { 1068 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 1069 << Sel; 1070 Diag(Method->parameters()[2]->getLocation(), 1071 diag::note_objc_literal_method_param) 1072 << 2 << CountType 1073 << "integral"; 1074 return ExprError(); 1075 } 1076 1077 // We've found a good +dictionaryWithObjects:keys:count: method; save it! 1078 DictionaryWithObjectsMethod = Method; 1079 } 1080 1081 QualType ValuesT = DictionaryWithObjectsMethod->parameters()[0]->getType(); 1082 QualType ValueT = ValuesT->castAs<PointerType>()->getPointeeType(); 1083 QualType KeysT = DictionaryWithObjectsMethod->parameters()[1]->getType(); 1084 QualType KeyT = KeysT->castAs<PointerType>()->getPointeeType(); 1085 1086 // Check that each of the keys and values provided is valid in a collection 1087 // literal, performing conversions as necessary. 1088 bool HasPackExpansions = false; 1089 for (ObjCDictionaryElement &Element : Elements) { 1090 // Check the key. 1091 ExprResult Key = CheckObjCCollectionLiteralElement(*this, Element.Key, 1092 KeyT); 1093 if (Key.isInvalid()) 1094 return ExprError(); 1095 1096 // Check the value. 1097 ExprResult Value 1098 = CheckObjCCollectionLiteralElement(*this, Element.Value, ValueT); 1099 if (Value.isInvalid()) 1100 return ExprError(); 1101 1102 Element.Key = Key.get(); 1103 Element.Value = Value.get(); 1104 1105 if (Element.EllipsisLoc.isInvalid()) 1106 continue; 1107 1108 if (!Element.Key->containsUnexpandedParameterPack() && 1109 !Element.Value->containsUnexpandedParameterPack()) { 1110 Diag(Element.EllipsisLoc, 1111 diag::err_pack_expansion_without_parameter_packs) 1112 << SourceRange(Element.Key->getBeginLoc(), 1113 Element.Value->getEndLoc()); 1114 return ExprError(); 1115 } 1116 1117 HasPackExpansions = true; 1118 } 1119 1120 QualType Ty = Context.getObjCObjectPointerType( 1121 Context.getObjCInterfaceType(NSDictionaryDecl)); 1122 1123 auto *Literal = 1124 ObjCDictionaryLiteral::Create(Context, Elements, HasPackExpansions, Ty, 1125 DictionaryWithObjectsMethod, SR); 1126 CheckObjCDictionaryLiteralDuplicateKeys(*this, Literal); 1127 return MaybeBindToTemporary(Literal); 1128 } 1129 1130 ExprResult Sema::BuildObjCEncodeExpression(SourceLocation AtLoc, 1131 TypeSourceInfo *EncodedTypeInfo, 1132 SourceLocation RParenLoc) { 1133 QualType EncodedType = EncodedTypeInfo->getType(); 1134 QualType StrTy; 1135 if (EncodedType->isDependentType()) 1136 StrTy = Context.DependentTy; 1137 else { 1138 if (!EncodedType->getAsArrayTypeUnsafe() && //// Incomplete array is handled. 1139 !EncodedType->isVoidType()) // void is handled too. 1140 if (RequireCompleteType(AtLoc, EncodedType, 1141 diag::err_incomplete_type_objc_at_encode, 1142 EncodedTypeInfo->getTypeLoc())) 1143 return ExprError(); 1144 1145 std::string Str; 1146 QualType NotEncodedT; 1147 Context.getObjCEncodingForType(EncodedType, Str, nullptr, &NotEncodedT); 1148 if (!NotEncodedT.isNull()) 1149 Diag(AtLoc, diag::warn_incomplete_encoded_type) 1150 << EncodedType << NotEncodedT; 1151 1152 // The type of @encode is the same as the type of the corresponding string, 1153 // which is an array type. 1154 StrTy = Context.getStringLiteralArrayType(Context.CharTy, Str.size()); 1155 } 1156 1157 return new (Context) ObjCEncodeExpr(StrTy, EncodedTypeInfo, AtLoc, RParenLoc); 1158 } 1159 1160 ExprResult Sema::ParseObjCEncodeExpression(SourceLocation AtLoc, 1161 SourceLocation EncodeLoc, 1162 SourceLocation LParenLoc, 1163 ParsedType ty, 1164 SourceLocation RParenLoc) { 1165 // FIXME: Preserve type source info ? 1166 TypeSourceInfo *TInfo; 1167 QualType EncodedType = GetTypeFromParser(ty, &TInfo); 1168 if (!TInfo) 1169 TInfo = Context.getTrivialTypeSourceInfo(EncodedType, 1170 getLocForEndOfToken(LParenLoc)); 1171 1172 return BuildObjCEncodeExpression(AtLoc, TInfo, RParenLoc); 1173 } 1174 1175 static bool HelperToDiagnoseMismatchedMethodsInGlobalPool(Sema &S, 1176 SourceLocation AtLoc, 1177 SourceLocation LParenLoc, 1178 SourceLocation RParenLoc, 1179 ObjCMethodDecl *Method, 1180 ObjCMethodList &MethList) { 1181 ObjCMethodList *M = &MethList; 1182 bool Warned = false; 1183 for (M = M->getNext(); M; M=M->getNext()) { 1184 ObjCMethodDecl *MatchingMethodDecl = M->getMethod(); 1185 if (MatchingMethodDecl == Method || 1186 isa<ObjCImplDecl>(MatchingMethodDecl->getDeclContext()) || 1187 MatchingMethodDecl->getSelector() != Method->getSelector()) 1188 continue; 1189 if (!S.MatchTwoMethodDeclarations(Method, 1190 MatchingMethodDecl, Sema::MMS_loose)) { 1191 if (!Warned) { 1192 Warned = true; 1193 S.Diag(AtLoc, diag::warn_multiple_selectors) 1194 << Method->getSelector() << FixItHint::CreateInsertion(LParenLoc, "(") 1195 << FixItHint::CreateInsertion(RParenLoc, ")"); 1196 S.Diag(Method->getLocation(), diag::note_method_declared_at) 1197 << Method->getDeclName(); 1198 } 1199 S.Diag(MatchingMethodDecl->getLocation(), diag::note_method_declared_at) 1200 << MatchingMethodDecl->getDeclName(); 1201 } 1202 } 1203 return Warned; 1204 } 1205 1206 static void DiagnoseMismatchedSelectors(Sema &S, SourceLocation AtLoc, 1207 ObjCMethodDecl *Method, 1208 SourceLocation LParenLoc, 1209 SourceLocation RParenLoc, 1210 bool WarnMultipleSelectors) { 1211 if (!WarnMultipleSelectors || 1212 S.Diags.isIgnored(diag::warn_multiple_selectors, SourceLocation())) 1213 return; 1214 bool Warned = false; 1215 for (Sema::GlobalMethodPool::iterator b = S.MethodPool.begin(), 1216 e = S.MethodPool.end(); b != e; b++) { 1217 // first, instance methods 1218 ObjCMethodList &InstMethList = b->second.first; 1219 if (HelperToDiagnoseMismatchedMethodsInGlobalPool(S, AtLoc, LParenLoc, RParenLoc, 1220 Method, InstMethList)) 1221 Warned = true; 1222 1223 // second, class methods 1224 ObjCMethodList &ClsMethList = b->second.second; 1225 if (HelperToDiagnoseMismatchedMethodsInGlobalPool(S, AtLoc, LParenLoc, RParenLoc, 1226 Method, ClsMethList) || Warned) 1227 return; 1228 } 1229 } 1230 1231 static ObjCMethodDecl *LookupDirectMethodInMethodList(Sema &S, Selector Sel, 1232 ObjCMethodList &MethList, 1233 bool &onlyDirect, 1234 bool &anyDirect) { 1235 (void)Sel; 1236 ObjCMethodList *M = &MethList; 1237 ObjCMethodDecl *DirectMethod = nullptr; 1238 for (; M; M = M->getNext()) { 1239 ObjCMethodDecl *Method = M->getMethod(); 1240 if (!Method) 1241 continue; 1242 assert(Method->getSelector() == Sel && "Method with wrong selector in method list"); 1243 if (Method->isDirectMethod()) { 1244 anyDirect = true; 1245 DirectMethod = Method; 1246 } else 1247 onlyDirect = false; 1248 } 1249 1250 return DirectMethod; 1251 } 1252 1253 // Search the global pool for (potentially) direct methods matching the given 1254 // selector. If a non-direct method is found, set \param onlyDirect to false. If 1255 // a direct method is found, set \param anyDirect to true. Returns a direct 1256 // method, if any. 1257 static ObjCMethodDecl *LookupDirectMethodInGlobalPool(Sema &S, Selector Sel, 1258 bool &onlyDirect, 1259 bool &anyDirect) { 1260 auto Iter = S.MethodPool.find(Sel); 1261 if (Iter == S.MethodPool.end()) 1262 return nullptr; 1263 1264 ObjCMethodDecl *DirectInstance = LookupDirectMethodInMethodList( 1265 S, Sel, Iter->second.first, onlyDirect, anyDirect); 1266 ObjCMethodDecl *DirectClass = LookupDirectMethodInMethodList( 1267 S, Sel, Iter->second.second, onlyDirect, anyDirect); 1268 1269 return DirectInstance ? DirectInstance : DirectClass; 1270 } 1271 1272 static ObjCMethodDecl *findMethodInCurrentClass(Sema &S, Selector Sel) { 1273 auto *CurMD = S.getCurMethodDecl(); 1274 if (!CurMD) 1275 return nullptr; 1276 ObjCInterfaceDecl *IFace = CurMD->getClassInterface(); 1277 1278 // The language enforce that only one direct method is present in a given 1279 // class, so we just need to find one method in the current class to know 1280 // whether Sel is potentially direct in this context. 1281 if (ObjCMethodDecl *MD = IFace->lookupMethod(Sel, /*isInstance=*/true)) 1282 return MD; 1283 if (ObjCMethodDecl *MD = IFace->lookupPrivateMethod(Sel, /*isInstance=*/true)) 1284 return MD; 1285 if (ObjCMethodDecl *MD = IFace->lookupMethod(Sel, /*isInstance=*/false)) 1286 return MD; 1287 if (ObjCMethodDecl *MD = IFace->lookupPrivateMethod(Sel, /*isInstance=*/false)) 1288 return MD; 1289 1290 return nullptr; 1291 } 1292 1293 ExprResult Sema::ParseObjCSelectorExpression(Selector Sel, 1294 SourceLocation AtLoc, 1295 SourceLocation SelLoc, 1296 SourceLocation LParenLoc, 1297 SourceLocation RParenLoc, 1298 bool WarnMultipleSelectors) { 1299 ObjCMethodDecl *Method = LookupInstanceMethodInGlobalPool(Sel, 1300 SourceRange(LParenLoc, RParenLoc)); 1301 if (!Method) 1302 Method = LookupFactoryMethodInGlobalPool(Sel, 1303 SourceRange(LParenLoc, RParenLoc)); 1304 if (!Method) { 1305 if (const ObjCMethodDecl *OM = SelectorsForTypoCorrection(Sel)) { 1306 Selector MatchedSel = OM->getSelector(); 1307 SourceRange SelectorRange(LParenLoc.getLocWithOffset(1), 1308 RParenLoc.getLocWithOffset(-1)); 1309 Diag(SelLoc, diag::warn_undeclared_selector_with_typo) 1310 << Sel << MatchedSel 1311 << FixItHint::CreateReplacement(SelectorRange, MatchedSel.getAsString()); 1312 1313 } else 1314 Diag(SelLoc, diag::warn_undeclared_selector) << Sel; 1315 } else { 1316 DiagnoseMismatchedSelectors(*this, AtLoc, Method, LParenLoc, RParenLoc, 1317 WarnMultipleSelectors); 1318 1319 bool onlyDirect = true; 1320 bool anyDirect = false; 1321 ObjCMethodDecl *GlobalDirectMethod = 1322 LookupDirectMethodInGlobalPool(*this, Sel, onlyDirect, anyDirect); 1323 1324 if (onlyDirect) { 1325 Diag(AtLoc, diag::err_direct_selector_expression) 1326 << Method->getSelector(); 1327 Diag(Method->getLocation(), diag::note_direct_method_declared_at) 1328 << Method->getDeclName(); 1329 } else if (anyDirect) { 1330 // If we saw any direct methods, see if we see a direct member of the 1331 // current class. If so, the @selector will likely be used to refer to 1332 // this direct method. 1333 ObjCMethodDecl *LikelyTargetMethod = findMethodInCurrentClass(*this, Sel); 1334 if (LikelyTargetMethod && LikelyTargetMethod->isDirectMethod()) { 1335 Diag(AtLoc, diag::warn_potentially_direct_selector_expression) << Sel; 1336 Diag(LikelyTargetMethod->getLocation(), 1337 diag::note_direct_method_declared_at) 1338 << LikelyTargetMethod->getDeclName(); 1339 } else if (!LikelyTargetMethod) { 1340 // Otherwise, emit the "strict" variant of this diagnostic, unless 1341 // LikelyTargetMethod is non-direct. 1342 Diag(AtLoc, diag::warn_strict_potentially_direct_selector_expression) 1343 << Sel; 1344 Diag(GlobalDirectMethod->getLocation(), 1345 diag::note_direct_method_declared_at) 1346 << GlobalDirectMethod->getDeclName(); 1347 } 1348 } 1349 } 1350 1351 if (Method && 1352 Method->getImplementationControl() != ObjCMethodDecl::Optional && 1353 !getSourceManager().isInSystemHeader(Method->getLocation())) 1354 ReferencedSelectors.insert(std::make_pair(Sel, AtLoc)); 1355 1356 // In ARC, forbid the user from using @selector for 1357 // retain/release/autorelease/dealloc/retainCount. 1358 if (getLangOpts().ObjCAutoRefCount) { 1359 switch (Sel.getMethodFamily()) { 1360 case OMF_retain: 1361 case OMF_release: 1362 case OMF_autorelease: 1363 case OMF_retainCount: 1364 case OMF_dealloc: 1365 Diag(AtLoc, diag::err_arc_illegal_selector) << 1366 Sel << SourceRange(LParenLoc, RParenLoc); 1367 break; 1368 1369 case OMF_None: 1370 case OMF_alloc: 1371 case OMF_copy: 1372 case OMF_finalize: 1373 case OMF_init: 1374 case OMF_mutableCopy: 1375 case OMF_new: 1376 case OMF_self: 1377 case OMF_initialize: 1378 case OMF_performSelector: 1379 break; 1380 } 1381 } 1382 QualType Ty = Context.getObjCSelType(); 1383 return new (Context) ObjCSelectorExpr(Ty, Sel, AtLoc, RParenLoc); 1384 } 1385 1386 ExprResult Sema::ParseObjCProtocolExpression(IdentifierInfo *ProtocolId, 1387 SourceLocation AtLoc, 1388 SourceLocation ProtoLoc, 1389 SourceLocation LParenLoc, 1390 SourceLocation ProtoIdLoc, 1391 SourceLocation RParenLoc) { 1392 ObjCProtocolDecl* PDecl = LookupProtocol(ProtocolId, ProtoIdLoc); 1393 if (!PDecl) { 1394 Diag(ProtoLoc, diag::err_undeclared_protocol) << ProtocolId; 1395 return true; 1396 } 1397 if (!PDecl->hasDefinition()) { 1398 Diag(ProtoLoc, diag::err_atprotocol_protocol) << PDecl; 1399 Diag(PDecl->getLocation(), diag::note_entity_declared_at) << PDecl; 1400 } else { 1401 PDecl = PDecl->getDefinition(); 1402 } 1403 1404 QualType Ty = Context.getObjCProtoType(); 1405 if (Ty.isNull()) 1406 return true; 1407 Ty = Context.getObjCObjectPointerType(Ty); 1408 return new (Context) ObjCProtocolExpr(Ty, PDecl, AtLoc, ProtoIdLoc, RParenLoc); 1409 } 1410 1411 /// Try to capture an implicit reference to 'self'. 1412 ObjCMethodDecl *Sema::tryCaptureObjCSelf(SourceLocation Loc) { 1413 DeclContext *DC = getFunctionLevelDeclContext(); 1414 1415 // If we're not in an ObjC method, error out. Note that, unlike the 1416 // C++ case, we don't require an instance method --- class methods 1417 // still have a 'self', and we really do still need to capture it! 1418 ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(DC); 1419 if (!method) 1420 return nullptr; 1421 1422 tryCaptureVariable(method->getSelfDecl(), Loc); 1423 1424 return method; 1425 } 1426 1427 static QualType stripObjCInstanceType(ASTContext &Context, QualType T) { 1428 QualType origType = T; 1429 if (auto nullability = AttributedType::stripOuterNullability(T)) { 1430 if (T == Context.getObjCInstanceType()) { 1431 return Context.getAttributedType( 1432 AttributedType::getNullabilityAttrKind(*nullability), 1433 Context.getObjCIdType(), 1434 Context.getObjCIdType()); 1435 } 1436 1437 return origType; 1438 } 1439 1440 if (T == Context.getObjCInstanceType()) 1441 return Context.getObjCIdType(); 1442 1443 return origType; 1444 } 1445 1446 /// Determine the result type of a message send based on the receiver type, 1447 /// method, and the kind of message send. 1448 /// 1449 /// This is the "base" result type, which will still need to be adjusted 1450 /// to account for nullability. 1451 static QualType getBaseMessageSendResultType(Sema &S, 1452 QualType ReceiverType, 1453 ObjCMethodDecl *Method, 1454 bool isClassMessage, 1455 bool isSuperMessage) { 1456 assert(Method && "Must have a method"); 1457 if (!Method->hasRelatedResultType()) 1458 return Method->getSendResultType(ReceiverType); 1459 1460 ASTContext &Context = S.Context; 1461 1462 // Local function that transfers the nullability of the method's 1463 // result type to the returned result. 1464 auto transferNullability = [&](QualType type) -> QualType { 1465 // If the method's result type has nullability, extract it. 1466 if (auto nullability = Method->getSendResultType(ReceiverType) 1467 ->getNullability(Context)){ 1468 // Strip off any outer nullability sugar from the provided type. 1469 (void)AttributedType::stripOuterNullability(type); 1470 1471 // Form a new attributed type using the method result type's nullability. 1472 return Context.getAttributedType( 1473 AttributedType::getNullabilityAttrKind(*nullability), 1474 type, 1475 type); 1476 } 1477 1478 return type; 1479 }; 1480 1481 // If a method has a related return type: 1482 // - if the method found is an instance method, but the message send 1483 // was a class message send, T is the declared return type of the method 1484 // found 1485 if (Method->isInstanceMethod() && isClassMessage) 1486 return stripObjCInstanceType(Context, 1487 Method->getSendResultType(ReceiverType)); 1488 1489 // - if the receiver is super, T is a pointer to the class of the 1490 // enclosing method definition 1491 if (isSuperMessage) { 1492 if (ObjCMethodDecl *CurMethod = S.getCurMethodDecl()) 1493 if (ObjCInterfaceDecl *Class = CurMethod->getClassInterface()) { 1494 return transferNullability( 1495 Context.getObjCObjectPointerType( 1496 Context.getObjCInterfaceType(Class))); 1497 } 1498 } 1499 1500 // - if the receiver is the name of a class U, T is a pointer to U 1501 if (ReceiverType->getAsObjCInterfaceType()) 1502 return transferNullability(Context.getObjCObjectPointerType(ReceiverType)); 1503 // - if the receiver is of type Class or qualified Class type, 1504 // T is the declared return type of the method. 1505 if (ReceiverType->isObjCClassType() || 1506 ReceiverType->isObjCQualifiedClassType()) 1507 return stripObjCInstanceType(Context, 1508 Method->getSendResultType(ReceiverType)); 1509 1510 // - if the receiver is id, qualified id, Class, or qualified Class, T 1511 // is the receiver type, otherwise 1512 // - T is the type of the receiver expression. 1513 return transferNullability(ReceiverType); 1514 } 1515 1516 QualType Sema::getMessageSendResultType(const Expr *Receiver, 1517 QualType ReceiverType, 1518 ObjCMethodDecl *Method, 1519 bool isClassMessage, 1520 bool isSuperMessage) { 1521 // Produce the result type. 1522 QualType resultType = getBaseMessageSendResultType(*this, ReceiverType, 1523 Method, 1524 isClassMessage, 1525 isSuperMessage); 1526 1527 // If this is a class message, ignore the nullability of the receiver. 1528 if (isClassMessage) { 1529 // In a class method, class messages to 'self' that return instancetype can 1530 // be typed as the current class. We can safely do this in ARC because self 1531 // can't be reassigned, and we do it unsafely outside of ARC because in 1532 // practice people never reassign self in class methods and there's some 1533 // virtue in not being aggressively pedantic. 1534 if (Receiver && Receiver->isObjCSelfExpr()) { 1535 assert(ReceiverType->isObjCClassType() && "expected a Class self"); 1536 QualType T = Method->getSendResultType(ReceiverType); 1537 AttributedType::stripOuterNullability(T); 1538 if (T == Context.getObjCInstanceType()) { 1539 const ObjCMethodDecl *MD = cast<ObjCMethodDecl>( 1540 cast<ImplicitParamDecl>( 1541 cast<DeclRefExpr>(Receiver->IgnoreParenImpCasts())->getDecl()) 1542 ->getDeclContext()); 1543 assert(MD->isClassMethod() && "expected a class method"); 1544 QualType NewResultType = Context.getObjCObjectPointerType( 1545 Context.getObjCInterfaceType(MD->getClassInterface())); 1546 if (auto Nullability = resultType->getNullability(Context)) 1547 NewResultType = Context.getAttributedType( 1548 AttributedType::getNullabilityAttrKind(*Nullability), 1549 NewResultType, NewResultType); 1550 return NewResultType; 1551 } 1552 } 1553 return resultType; 1554 } 1555 1556 // There is nothing left to do if the result type cannot have a nullability 1557 // specifier. 1558 if (!resultType->canHaveNullability()) 1559 return resultType; 1560 1561 // Map the nullability of the result into a table index. 1562 unsigned receiverNullabilityIdx = 0; 1563 if (auto nullability = ReceiverType->getNullability(Context)) 1564 receiverNullabilityIdx = 1 + static_cast<unsigned>(*nullability); 1565 1566 unsigned resultNullabilityIdx = 0; 1567 if (auto nullability = resultType->getNullability(Context)) 1568 resultNullabilityIdx = 1 + static_cast<unsigned>(*nullability); 1569 1570 // The table of nullability mappings, indexed by the receiver's nullability 1571 // and then the result type's nullability. 1572 static const uint8_t None = 0; 1573 static const uint8_t NonNull = 1; 1574 static const uint8_t Nullable = 2; 1575 static const uint8_t Unspecified = 3; 1576 static const uint8_t nullabilityMap[4][4] = { 1577 // None NonNull Nullable Unspecified 1578 /* None */ { None, None, Nullable, None }, 1579 /* NonNull */ { None, NonNull, Nullable, Unspecified }, 1580 /* Nullable */ { Nullable, Nullable, Nullable, Nullable }, 1581 /* Unspecified */ { None, Unspecified, Nullable, Unspecified } 1582 }; 1583 1584 unsigned newResultNullabilityIdx 1585 = nullabilityMap[receiverNullabilityIdx][resultNullabilityIdx]; 1586 if (newResultNullabilityIdx == resultNullabilityIdx) 1587 return resultType; 1588 1589 // Strip off the existing nullability. This removes as little type sugar as 1590 // possible. 1591 do { 1592 if (auto attributed = dyn_cast<AttributedType>(resultType.getTypePtr())) { 1593 resultType = attributed->getModifiedType(); 1594 } else { 1595 resultType = resultType.getDesugaredType(Context); 1596 } 1597 } while (resultType->getNullability(Context)); 1598 1599 // Add nullability back if needed. 1600 if (newResultNullabilityIdx > 0) { 1601 auto newNullability 1602 = static_cast<NullabilityKind>(newResultNullabilityIdx-1); 1603 return Context.getAttributedType( 1604 AttributedType::getNullabilityAttrKind(newNullability), 1605 resultType, resultType); 1606 } 1607 1608 return resultType; 1609 } 1610 1611 /// Look for an ObjC method whose result type exactly matches the given type. 1612 static const ObjCMethodDecl * 1613 findExplicitInstancetypeDeclarer(const ObjCMethodDecl *MD, 1614 QualType instancetype) { 1615 if (MD->getReturnType() == instancetype) 1616 return MD; 1617 1618 // For these purposes, a method in an @implementation overrides a 1619 // declaration in the @interface. 1620 if (const ObjCImplDecl *impl = 1621 dyn_cast<ObjCImplDecl>(MD->getDeclContext())) { 1622 const ObjCContainerDecl *iface; 1623 if (const ObjCCategoryImplDecl *catImpl = 1624 dyn_cast<ObjCCategoryImplDecl>(impl)) { 1625 iface = catImpl->getCategoryDecl(); 1626 } else { 1627 iface = impl->getClassInterface(); 1628 } 1629 1630 const ObjCMethodDecl *ifaceMD = 1631 iface->getMethod(MD->getSelector(), MD->isInstanceMethod()); 1632 if (ifaceMD) return findExplicitInstancetypeDeclarer(ifaceMD, instancetype); 1633 } 1634 1635 SmallVector<const ObjCMethodDecl *, 4> overrides; 1636 MD->getOverriddenMethods(overrides); 1637 for (unsigned i = 0, e = overrides.size(); i != e; ++i) { 1638 if (const ObjCMethodDecl *result = 1639 findExplicitInstancetypeDeclarer(overrides[i], instancetype)) 1640 return result; 1641 } 1642 1643 return nullptr; 1644 } 1645 1646 void Sema::EmitRelatedResultTypeNoteForReturn(QualType destType) { 1647 // Only complain if we're in an ObjC method and the required return 1648 // type doesn't match the method's declared return type. 1649 ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurContext); 1650 if (!MD || !MD->hasRelatedResultType() || 1651 Context.hasSameUnqualifiedType(destType, MD->getReturnType())) 1652 return; 1653 1654 // Look for a method overridden by this method which explicitly uses 1655 // 'instancetype'. 1656 if (const ObjCMethodDecl *overridden = 1657 findExplicitInstancetypeDeclarer(MD, Context.getObjCInstanceType())) { 1658 SourceRange range = overridden->getReturnTypeSourceRange(); 1659 SourceLocation loc = range.getBegin(); 1660 if (loc.isInvalid()) 1661 loc = overridden->getLocation(); 1662 Diag(loc, diag::note_related_result_type_explicit) 1663 << /*current method*/ 1 << range; 1664 return; 1665 } 1666 1667 // Otherwise, if we have an interesting method family, note that. 1668 // This should always trigger if the above didn't. 1669 if (ObjCMethodFamily family = MD->getMethodFamily()) 1670 Diag(MD->getLocation(), diag::note_related_result_type_family) 1671 << /*current method*/ 1 1672 << family; 1673 } 1674 1675 void Sema::EmitRelatedResultTypeNote(const Expr *E) { 1676 E = E->IgnoreParenImpCasts(); 1677 const ObjCMessageExpr *MsgSend = dyn_cast<ObjCMessageExpr>(E); 1678 if (!MsgSend) 1679 return; 1680 1681 const ObjCMethodDecl *Method = MsgSend->getMethodDecl(); 1682 if (!Method) 1683 return; 1684 1685 if (!Method->hasRelatedResultType()) 1686 return; 1687 1688 if (Context.hasSameUnqualifiedType( 1689 Method->getReturnType().getNonReferenceType(), MsgSend->getType())) 1690 return; 1691 1692 if (!Context.hasSameUnqualifiedType(Method->getReturnType(), 1693 Context.getObjCInstanceType())) 1694 return; 1695 1696 Diag(Method->getLocation(), diag::note_related_result_type_inferred) 1697 << Method->isInstanceMethod() << Method->getSelector() 1698 << MsgSend->getType(); 1699 } 1700 1701 bool Sema::CheckMessageArgumentTypes( 1702 const Expr *Receiver, QualType ReceiverType, MultiExprArg Args, 1703 Selector Sel, ArrayRef<SourceLocation> SelectorLocs, ObjCMethodDecl *Method, 1704 bool isClassMessage, bool isSuperMessage, SourceLocation lbrac, 1705 SourceLocation rbrac, SourceRange RecRange, QualType &ReturnType, 1706 ExprValueKind &VK) { 1707 SourceLocation SelLoc; 1708 if (!SelectorLocs.empty() && SelectorLocs.front().isValid()) 1709 SelLoc = SelectorLocs.front(); 1710 else 1711 SelLoc = lbrac; 1712 1713 if (!Method) { 1714 // Apply default argument promotion as for (C99 6.5.2.2p6). 1715 for (unsigned i = 0, e = Args.size(); i != e; i++) { 1716 if (Args[i]->isTypeDependent()) 1717 continue; 1718 1719 ExprResult result; 1720 if (getLangOpts().DebuggerSupport) { 1721 QualType paramTy; // ignored 1722 result = checkUnknownAnyArg(SelLoc, Args[i], paramTy); 1723 } else { 1724 result = DefaultArgumentPromotion(Args[i]); 1725 } 1726 if (result.isInvalid()) 1727 return true; 1728 Args[i] = result.get(); 1729 } 1730 1731 unsigned DiagID; 1732 if (getLangOpts().ObjCAutoRefCount) 1733 DiagID = diag::err_arc_method_not_found; 1734 else 1735 DiagID = isClassMessage ? diag::warn_class_method_not_found 1736 : diag::warn_inst_method_not_found; 1737 if (!getLangOpts().DebuggerSupport) { 1738 const ObjCMethodDecl *OMD = SelectorsForTypoCorrection(Sel, ReceiverType); 1739 if (OMD && !OMD->isInvalidDecl()) { 1740 if (getLangOpts().ObjCAutoRefCount) 1741 DiagID = diag::err_method_not_found_with_typo; 1742 else 1743 DiagID = isClassMessage ? diag::warn_class_method_not_found_with_typo 1744 : diag::warn_instance_method_not_found_with_typo; 1745 Selector MatchedSel = OMD->getSelector(); 1746 SourceRange SelectorRange(SelectorLocs.front(), SelectorLocs.back()); 1747 if (MatchedSel.isUnarySelector()) 1748 Diag(SelLoc, DiagID) 1749 << Sel<< isClassMessage << MatchedSel 1750 << FixItHint::CreateReplacement(SelectorRange, MatchedSel.getAsString()); 1751 else 1752 Diag(SelLoc, DiagID) << Sel<< isClassMessage << MatchedSel; 1753 } 1754 else 1755 Diag(SelLoc, DiagID) 1756 << Sel << isClassMessage << SourceRange(SelectorLocs.front(), 1757 SelectorLocs.back()); 1758 // Find the class to which we are sending this message. 1759 if (auto *ObjPT = ReceiverType->getAs<ObjCObjectPointerType>()) { 1760 if (ObjCInterfaceDecl *ThisClass = ObjPT->getInterfaceDecl()) { 1761 Diag(ThisClass->getLocation(), diag::note_receiver_class_declared); 1762 if (!RecRange.isInvalid()) 1763 if (ThisClass->lookupClassMethod(Sel)) 1764 Diag(RecRange.getBegin(), diag::note_receiver_expr_here) 1765 << FixItHint::CreateReplacement(RecRange, 1766 ThisClass->getNameAsString()); 1767 } 1768 } 1769 } 1770 1771 // In debuggers, we want to use __unknown_anytype for these 1772 // results so that clients can cast them. 1773 if (getLangOpts().DebuggerSupport) { 1774 ReturnType = Context.UnknownAnyTy; 1775 } else { 1776 ReturnType = Context.getObjCIdType(); 1777 } 1778 VK = VK_RValue; 1779 return false; 1780 } 1781 1782 ReturnType = getMessageSendResultType(Receiver, ReceiverType, Method, 1783 isClassMessage, isSuperMessage); 1784 VK = Expr::getValueKindForType(Method->getReturnType()); 1785 1786 unsigned NumNamedArgs = Sel.getNumArgs(); 1787 // Method might have more arguments than selector indicates. This is due 1788 // to addition of c-style arguments in method. 1789 if (Method->param_size() > Sel.getNumArgs()) 1790 NumNamedArgs = Method->param_size(); 1791 // FIXME. This need be cleaned up. 1792 if (Args.size() < NumNamedArgs) { 1793 Diag(SelLoc, diag::err_typecheck_call_too_few_args) 1794 << 2 << NumNamedArgs << static_cast<unsigned>(Args.size()); 1795 return false; 1796 } 1797 1798 // Compute the set of type arguments to be substituted into each parameter 1799 // type. 1800 Optional<ArrayRef<QualType>> typeArgs 1801 = ReceiverType->getObjCSubstitutions(Method->getDeclContext()); 1802 bool IsError = false; 1803 for (unsigned i = 0; i < NumNamedArgs; i++) { 1804 // We can't do any type-checking on a type-dependent argument. 1805 if (Args[i]->isTypeDependent()) 1806 continue; 1807 1808 Expr *argExpr = Args[i]; 1809 1810 ParmVarDecl *param = Method->parameters()[i]; 1811 assert(argExpr && "CheckMessageArgumentTypes(): missing expression"); 1812 1813 if (param->hasAttr<NoEscapeAttr>()) 1814 if (auto *BE = dyn_cast<BlockExpr>( 1815 argExpr->IgnoreParenNoopCasts(Context))) 1816 BE->getBlockDecl()->setDoesNotEscape(); 1817 1818 // Strip the unbridged-cast placeholder expression off unless it's 1819 // a consumed argument. 1820 if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) && 1821 !param->hasAttr<CFConsumedAttr>()) 1822 argExpr = stripARCUnbridgedCast(argExpr); 1823 1824 // If the parameter is __unknown_anytype, infer its type 1825 // from the argument. 1826 if (param->getType() == Context.UnknownAnyTy) { 1827 QualType paramType; 1828 ExprResult argE = checkUnknownAnyArg(SelLoc, argExpr, paramType); 1829 if (argE.isInvalid()) { 1830 IsError = true; 1831 } else { 1832 Args[i] = argE.get(); 1833 1834 // Update the parameter type in-place. 1835 param->setType(paramType); 1836 } 1837 continue; 1838 } 1839 1840 QualType origParamType = param->getType(); 1841 QualType paramType = param->getType(); 1842 if (typeArgs) 1843 paramType = paramType.substObjCTypeArgs( 1844 Context, 1845 *typeArgs, 1846 ObjCSubstitutionContext::Parameter); 1847 1848 if (RequireCompleteType(argExpr->getSourceRange().getBegin(), 1849 paramType, 1850 diag::err_call_incomplete_argument, argExpr)) 1851 return true; 1852 1853 InitializedEntity Entity 1854 = InitializedEntity::InitializeParameter(Context, param, paramType); 1855 ExprResult ArgE = PerformCopyInitialization(Entity, SourceLocation(), argExpr); 1856 if (ArgE.isInvalid()) 1857 IsError = true; 1858 else { 1859 Args[i] = ArgE.getAs<Expr>(); 1860 1861 // If we are type-erasing a block to a block-compatible 1862 // Objective-C pointer type, we may need to extend the lifetime 1863 // of the block object. 1864 if (typeArgs && Args[i]->isRValue() && paramType->isBlockPointerType() && 1865 Args[i]->getType()->isBlockPointerType() && 1866 origParamType->isObjCObjectPointerType()) { 1867 ExprResult arg = Args[i]; 1868 maybeExtendBlockObject(arg); 1869 Args[i] = arg.get(); 1870 } 1871 } 1872 } 1873 1874 // Promote additional arguments to variadic methods. 1875 if (Method->isVariadic()) { 1876 for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) { 1877 if (Args[i]->isTypeDependent()) 1878 continue; 1879 1880 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 1881 nullptr); 1882 IsError |= Arg.isInvalid(); 1883 Args[i] = Arg.get(); 1884 } 1885 } else { 1886 // Check for extra arguments to non-variadic methods. 1887 if (Args.size() != NumNamedArgs) { 1888 Diag(Args[NumNamedArgs]->getBeginLoc(), 1889 diag::err_typecheck_call_too_many_args) 1890 << 2 /*method*/ << NumNamedArgs << static_cast<unsigned>(Args.size()) 1891 << Method->getSourceRange() 1892 << SourceRange(Args[NumNamedArgs]->getBeginLoc(), 1893 Args.back()->getEndLoc()); 1894 } 1895 } 1896 1897 DiagnoseSentinelCalls(Method, SelLoc, Args); 1898 1899 // Do additional checkings on method. 1900 IsError |= CheckObjCMethodCall( 1901 Method, SelLoc, makeArrayRef(Args.data(), Args.size())); 1902 1903 return IsError; 1904 } 1905 1906 bool Sema::isSelfExpr(Expr *RExpr) { 1907 // 'self' is objc 'self' in an objc method only. 1908 ObjCMethodDecl *Method = 1909 dyn_cast_or_null<ObjCMethodDecl>(CurContext->getNonClosureAncestor()); 1910 return isSelfExpr(RExpr, Method); 1911 } 1912 1913 bool Sema::isSelfExpr(Expr *receiver, const ObjCMethodDecl *method) { 1914 if (!method) return false; 1915 1916 receiver = receiver->IgnoreParenLValueCasts(); 1917 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(receiver)) 1918 if (DRE->getDecl() == method->getSelfDecl()) 1919 return true; 1920 return false; 1921 } 1922 1923 /// LookupMethodInType - Look up a method in an ObjCObjectType. 1924 ObjCMethodDecl *Sema::LookupMethodInObjectType(Selector sel, QualType type, 1925 bool isInstance) { 1926 const ObjCObjectType *objType = type->castAs<ObjCObjectType>(); 1927 if (ObjCInterfaceDecl *iface = objType->getInterface()) { 1928 // Look it up in the main interface (and categories, etc.) 1929 if (ObjCMethodDecl *method = iface->lookupMethod(sel, isInstance)) 1930 return method; 1931 1932 // Okay, look for "private" methods declared in any 1933 // @implementations we've seen. 1934 if (ObjCMethodDecl *method = iface->lookupPrivateMethod(sel, isInstance)) 1935 return method; 1936 } 1937 1938 // Check qualifiers. 1939 for (const auto *I : objType->quals()) 1940 if (ObjCMethodDecl *method = I->lookupMethod(sel, isInstance)) 1941 return method; 1942 1943 return nullptr; 1944 } 1945 1946 /// LookupMethodInQualifiedType - Lookups up a method in protocol qualifier 1947 /// list of a qualified objective pointer type. 1948 ObjCMethodDecl *Sema::LookupMethodInQualifiedType(Selector Sel, 1949 const ObjCObjectPointerType *OPT, 1950 bool Instance) 1951 { 1952 ObjCMethodDecl *MD = nullptr; 1953 for (const auto *PROTO : OPT->quals()) { 1954 if ((MD = PROTO->lookupMethod(Sel, Instance))) { 1955 return MD; 1956 } 1957 } 1958 return nullptr; 1959 } 1960 1961 /// HandleExprPropertyRefExpr - Handle foo.bar where foo is a pointer to an 1962 /// objective C interface. This is a property reference expression. 1963 ExprResult Sema:: 1964 HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT, 1965 Expr *BaseExpr, SourceLocation OpLoc, 1966 DeclarationName MemberName, 1967 SourceLocation MemberLoc, 1968 SourceLocation SuperLoc, QualType SuperType, 1969 bool Super) { 1970 const ObjCInterfaceType *IFaceT = OPT->getInterfaceType(); 1971 ObjCInterfaceDecl *IFace = IFaceT->getDecl(); 1972 1973 if (!MemberName.isIdentifier()) { 1974 Diag(MemberLoc, diag::err_invalid_property_name) 1975 << MemberName << QualType(OPT, 0); 1976 return ExprError(); 1977 } 1978 1979 IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); 1980 1981 SourceRange BaseRange = Super? SourceRange(SuperLoc) 1982 : BaseExpr->getSourceRange(); 1983 if (RequireCompleteType(MemberLoc, OPT->getPointeeType(), 1984 diag::err_property_not_found_forward_class, 1985 MemberName, BaseRange)) 1986 return ExprError(); 1987 1988 if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration( 1989 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { 1990 // Check whether we can reference this property. 1991 if (DiagnoseUseOfDecl(PD, MemberLoc)) 1992 return ExprError(); 1993 if (Super) 1994 return new (Context) 1995 ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue, 1996 OK_ObjCProperty, MemberLoc, SuperLoc, SuperType); 1997 else 1998 return new (Context) 1999 ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue, 2000 OK_ObjCProperty, MemberLoc, BaseExpr); 2001 } 2002 // Check protocols on qualified interfaces. 2003 for (const auto *I : OPT->quals()) 2004 if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration( 2005 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { 2006 // Check whether we can reference this property. 2007 if (DiagnoseUseOfDecl(PD, MemberLoc)) 2008 return ExprError(); 2009 2010 if (Super) 2011 return new (Context) ObjCPropertyRefExpr( 2012 PD, Context.PseudoObjectTy, VK_LValue, OK_ObjCProperty, MemberLoc, 2013 SuperLoc, SuperType); 2014 else 2015 return new (Context) 2016 ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue, 2017 OK_ObjCProperty, MemberLoc, BaseExpr); 2018 } 2019 // If that failed, look for an "implicit" property by seeing if the nullary 2020 // selector is implemented. 2021 2022 // FIXME: The logic for looking up nullary and unary selectors should be 2023 // shared with the code in ActOnInstanceMessage. 2024 2025 Selector Sel = PP.getSelectorTable().getNullarySelector(Member); 2026 ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel); 2027 2028 // May be found in property's qualified list. 2029 if (!Getter) 2030 Getter = LookupMethodInQualifiedType(Sel, OPT, true); 2031 2032 // If this reference is in an @implementation, check for 'private' methods. 2033 if (!Getter) 2034 Getter = IFace->lookupPrivateMethod(Sel); 2035 2036 if (Getter) { 2037 // Check if we can reference this property. 2038 if (DiagnoseUseOfDecl(Getter, MemberLoc)) 2039 return ExprError(); 2040 } 2041 // If we found a getter then this may be a valid dot-reference, we 2042 // will look for the matching setter, in case it is needed. 2043 Selector SetterSel = 2044 SelectorTable::constructSetterSelector(PP.getIdentifierTable(), 2045 PP.getSelectorTable(), Member); 2046 ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel); 2047 2048 // May be found in property's qualified list. 2049 if (!Setter) 2050 Setter = LookupMethodInQualifiedType(SetterSel, OPT, true); 2051 2052 if (!Setter) { 2053 // If this reference is in an @implementation, also check for 'private' 2054 // methods. 2055 Setter = IFace->lookupPrivateMethod(SetterSel); 2056 } 2057 2058 if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc)) 2059 return ExprError(); 2060 2061 // Special warning if member name used in a property-dot for a setter accessor 2062 // does not use a property with same name; e.g. obj.X = ... for a property with 2063 // name 'x'. 2064 if (Setter && Setter->isImplicit() && Setter->isPropertyAccessor() && 2065 !IFace->FindPropertyDeclaration( 2066 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { 2067 if (const ObjCPropertyDecl *PDecl = Setter->findPropertyDecl()) { 2068 // Do not warn if user is using property-dot syntax to make call to 2069 // user named setter. 2070 if (!(PDecl->getPropertyAttributes() & 2071 ObjCPropertyAttribute::kind_setter)) 2072 Diag(MemberLoc, 2073 diag::warn_property_access_suggest) 2074 << MemberName << QualType(OPT, 0) << PDecl->getName() 2075 << FixItHint::CreateReplacement(MemberLoc, PDecl->getName()); 2076 } 2077 } 2078 2079 if (Getter || Setter) { 2080 if (Super) 2081 return new (Context) 2082 ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue, 2083 OK_ObjCProperty, MemberLoc, SuperLoc, SuperType); 2084 else 2085 return new (Context) 2086 ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue, 2087 OK_ObjCProperty, MemberLoc, BaseExpr); 2088 2089 } 2090 2091 // Attempt to correct for typos in property names. 2092 DeclFilterCCC<ObjCPropertyDecl> CCC{}; 2093 if (TypoCorrection Corrected = CorrectTypo( 2094 DeclarationNameInfo(MemberName, MemberLoc), LookupOrdinaryName, 2095 nullptr, nullptr, CCC, CTK_ErrorRecovery, IFace, false, OPT)) { 2096 DeclarationName TypoResult = Corrected.getCorrection(); 2097 if (TypoResult.isIdentifier() && 2098 TypoResult.getAsIdentifierInfo() == Member) { 2099 // There is no need to try the correction if it is the same. 2100 NamedDecl *ChosenDecl = 2101 Corrected.isKeyword() ? nullptr : Corrected.getFoundDecl(); 2102 if (ChosenDecl && isa<ObjCPropertyDecl>(ChosenDecl)) 2103 if (cast<ObjCPropertyDecl>(ChosenDecl)->isClassProperty()) { 2104 // This is a class property, we should not use the instance to 2105 // access it. 2106 Diag(MemberLoc, diag::err_class_property_found) << MemberName 2107 << OPT->getInterfaceDecl()->getName() 2108 << FixItHint::CreateReplacement(BaseExpr->getSourceRange(), 2109 OPT->getInterfaceDecl()->getName()); 2110 return ExprError(); 2111 } 2112 } else { 2113 diagnoseTypo(Corrected, PDiag(diag::err_property_not_found_suggest) 2114 << MemberName << QualType(OPT, 0)); 2115 return HandleExprPropertyRefExpr(OPT, BaseExpr, OpLoc, 2116 TypoResult, MemberLoc, 2117 SuperLoc, SuperType, Super); 2118 } 2119 } 2120 ObjCInterfaceDecl *ClassDeclared; 2121 if (ObjCIvarDecl *Ivar = 2122 IFace->lookupInstanceVariable(Member, ClassDeclared)) { 2123 QualType T = Ivar->getType(); 2124 if (const ObjCObjectPointerType * OBJPT = 2125 T->getAsObjCInterfacePointerType()) { 2126 if (RequireCompleteType(MemberLoc, OBJPT->getPointeeType(), 2127 diag::err_property_not_as_forward_class, 2128 MemberName, BaseExpr)) 2129 return ExprError(); 2130 } 2131 Diag(MemberLoc, 2132 diag::err_ivar_access_using_property_syntax_suggest) 2133 << MemberName << QualType(OPT, 0) << Ivar->getDeclName() 2134 << FixItHint::CreateReplacement(OpLoc, "->"); 2135 return ExprError(); 2136 } 2137 2138 Diag(MemberLoc, diag::err_property_not_found) 2139 << MemberName << QualType(OPT, 0); 2140 if (Setter) 2141 Diag(Setter->getLocation(), diag::note_getter_unavailable) 2142 << MemberName << BaseExpr->getSourceRange(); 2143 return ExprError(); 2144 } 2145 2146 ExprResult Sema:: 2147 ActOnClassPropertyRefExpr(IdentifierInfo &receiverName, 2148 IdentifierInfo &propertyName, 2149 SourceLocation receiverNameLoc, 2150 SourceLocation propertyNameLoc) { 2151 2152 IdentifierInfo *receiverNamePtr = &receiverName; 2153 ObjCInterfaceDecl *IFace = getObjCInterfaceDecl(receiverNamePtr, 2154 receiverNameLoc); 2155 2156 QualType SuperType; 2157 if (!IFace) { 2158 // If the "receiver" is 'super' in a method, handle it as an expression-like 2159 // property reference. 2160 if (receiverNamePtr->isStr("super")) { 2161 if (ObjCMethodDecl *CurMethod = tryCaptureObjCSelf(receiverNameLoc)) { 2162 if (auto classDecl = CurMethod->getClassInterface()) { 2163 SuperType = QualType(classDecl->getSuperClassType(), 0); 2164 if (CurMethod->isInstanceMethod()) { 2165 if (SuperType.isNull()) { 2166 // The current class does not have a superclass. 2167 Diag(receiverNameLoc, diag::err_root_class_cannot_use_super) 2168 << CurMethod->getClassInterface()->getIdentifier(); 2169 return ExprError(); 2170 } 2171 QualType T = Context.getObjCObjectPointerType(SuperType); 2172 2173 return HandleExprPropertyRefExpr(T->castAs<ObjCObjectPointerType>(), 2174 /*BaseExpr*/nullptr, 2175 SourceLocation()/*OpLoc*/, 2176 &propertyName, 2177 propertyNameLoc, 2178 receiverNameLoc, T, true); 2179 } 2180 2181 // Otherwise, if this is a class method, try dispatching to our 2182 // superclass. 2183 IFace = CurMethod->getClassInterface()->getSuperClass(); 2184 } 2185 } 2186 } 2187 2188 if (!IFace) { 2189 Diag(receiverNameLoc, diag::err_expected_either) << tok::identifier 2190 << tok::l_paren; 2191 return ExprError(); 2192 } 2193 } 2194 2195 Selector GetterSel; 2196 Selector SetterSel; 2197 if (auto PD = IFace->FindPropertyDeclaration( 2198 &propertyName, ObjCPropertyQueryKind::OBJC_PR_query_class)) { 2199 GetterSel = PD->getGetterName(); 2200 SetterSel = PD->getSetterName(); 2201 } else { 2202 GetterSel = PP.getSelectorTable().getNullarySelector(&propertyName); 2203 SetterSel = SelectorTable::constructSetterSelector( 2204 PP.getIdentifierTable(), PP.getSelectorTable(), &propertyName); 2205 } 2206 2207 // Search for a declared property first. 2208 ObjCMethodDecl *Getter = IFace->lookupClassMethod(GetterSel); 2209 2210 // If this reference is in an @implementation, check for 'private' methods. 2211 if (!Getter) 2212 Getter = IFace->lookupPrivateClassMethod(GetterSel); 2213 2214 if (Getter) { 2215 // FIXME: refactor/share with ActOnMemberReference(). 2216 // Check if we can reference this property. 2217 if (DiagnoseUseOfDecl(Getter, propertyNameLoc)) 2218 return ExprError(); 2219 } 2220 2221 // Look for the matching setter, in case it is needed. 2222 ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel); 2223 if (!Setter) { 2224 // If this reference is in an @implementation, also check for 'private' 2225 // methods. 2226 Setter = IFace->lookupPrivateClassMethod(SetterSel); 2227 } 2228 // Look through local category implementations associated with the class. 2229 if (!Setter) 2230 Setter = IFace->getCategoryClassMethod(SetterSel); 2231 2232 if (Setter && DiagnoseUseOfDecl(Setter, propertyNameLoc)) 2233 return ExprError(); 2234 2235 if (Getter || Setter) { 2236 if (!SuperType.isNull()) 2237 return new (Context) 2238 ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue, 2239 OK_ObjCProperty, propertyNameLoc, receiverNameLoc, 2240 SuperType); 2241 2242 return new (Context) ObjCPropertyRefExpr( 2243 Getter, Setter, Context.PseudoObjectTy, VK_LValue, OK_ObjCProperty, 2244 propertyNameLoc, receiverNameLoc, IFace); 2245 } 2246 return ExprError(Diag(propertyNameLoc, diag::err_property_not_found) 2247 << &propertyName << Context.getObjCInterfaceType(IFace)); 2248 } 2249 2250 namespace { 2251 2252 class ObjCInterfaceOrSuperCCC final : public CorrectionCandidateCallback { 2253 public: 2254 ObjCInterfaceOrSuperCCC(ObjCMethodDecl *Method) { 2255 // Determine whether "super" is acceptable in the current context. 2256 if (Method && Method->getClassInterface()) 2257 WantObjCSuper = Method->getClassInterface()->getSuperClass(); 2258 } 2259 2260 bool ValidateCandidate(const TypoCorrection &candidate) override { 2261 return candidate.getCorrectionDeclAs<ObjCInterfaceDecl>() || 2262 candidate.isKeyword("super"); 2263 } 2264 2265 std::unique_ptr<CorrectionCandidateCallback> clone() override { 2266 return std::make_unique<ObjCInterfaceOrSuperCCC>(*this); 2267 } 2268 }; 2269 2270 } // end anonymous namespace 2271 2272 Sema::ObjCMessageKind Sema::getObjCMessageKind(Scope *S, 2273 IdentifierInfo *Name, 2274 SourceLocation NameLoc, 2275 bool IsSuper, 2276 bool HasTrailingDot, 2277 ParsedType &ReceiverType) { 2278 ReceiverType = nullptr; 2279 2280 // If the identifier is "super" and there is no trailing dot, we're 2281 // messaging super. If the identifier is "super" and there is a 2282 // trailing dot, it's an instance message. 2283 if (IsSuper && S->isInObjcMethodScope()) 2284 return HasTrailingDot? ObjCInstanceMessage : ObjCSuperMessage; 2285 2286 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); 2287 LookupName(Result, S); 2288 2289 switch (Result.getResultKind()) { 2290 case LookupResult::NotFound: 2291 // Normal name lookup didn't find anything. If we're in an 2292 // Objective-C method, look for ivars. If we find one, we're done! 2293 // FIXME: This is a hack. Ivar lookup should be part of normal 2294 // lookup. 2295 if (ObjCMethodDecl *Method = getCurMethodDecl()) { 2296 if (!Method->getClassInterface()) { 2297 // Fall back: let the parser try to parse it as an instance message. 2298 return ObjCInstanceMessage; 2299 } 2300 2301 ObjCInterfaceDecl *ClassDeclared; 2302 if (Method->getClassInterface()->lookupInstanceVariable(Name, 2303 ClassDeclared)) 2304 return ObjCInstanceMessage; 2305 } 2306 2307 // Break out; we'll perform typo correction below. 2308 break; 2309 2310 case LookupResult::NotFoundInCurrentInstantiation: 2311 case LookupResult::FoundOverloaded: 2312 case LookupResult::FoundUnresolvedValue: 2313 case LookupResult::Ambiguous: 2314 Result.suppressDiagnostics(); 2315 return ObjCInstanceMessage; 2316 2317 case LookupResult::Found: { 2318 // If the identifier is a class or not, and there is a trailing dot, 2319 // it's an instance message. 2320 if (HasTrailingDot) 2321 return ObjCInstanceMessage; 2322 // We found something. If it's a type, then we have a class 2323 // message. Otherwise, it's an instance message. 2324 NamedDecl *ND = Result.getFoundDecl(); 2325 QualType T; 2326 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(ND)) 2327 T = Context.getObjCInterfaceType(Class); 2328 else if (TypeDecl *Type = dyn_cast<TypeDecl>(ND)) { 2329 T = Context.getTypeDeclType(Type); 2330 DiagnoseUseOfDecl(Type, NameLoc); 2331 } 2332 else 2333 return ObjCInstanceMessage; 2334 2335 // We have a class message, and T is the type we're 2336 // messaging. Build source-location information for it. 2337 TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc); 2338 ReceiverType = CreateParsedType(T, TSInfo); 2339 return ObjCClassMessage; 2340 } 2341 } 2342 2343 ObjCInterfaceOrSuperCCC CCC(getCurMethodDecl()); 2344 if (TypoCorrection Corrected = CorrectTypo( 2345 Result.getLookupNameInfo(), Result.getLookupKind(), S, nullptr, CCC, 2346 CTK_ErrorRecovery, nullptr, false, nullptr, false)) { 2347 if (Corrected.isKeyword()) { 2348 // If we've found the keyword "super" (the only keyword that would be 2349 // returned by CorrectTypo), this is a send to super. 2350 diagnoseTypo(Corrected, 2351 PDiag(diag::err_unknown_receiver_suggest) << Name); 2352 return ObjCSuperMessage; 2353 } else if (ObjCInterfaceDecl *Class = 2354 Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) { 2355 // If we found a declaration, correct when it refers to an Objective-C 2356 // class. 2357 diagnoseTypo(Corrected, 2358 PDiag(diag::err_unknown_receiver_suggest) << Name); 2359 QualType T = Context.getObjCInterfaceType(Class); 2360 TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc); 2361 ReceiverType = CreateParsedType(T, TSInfo); 2362 return ObjCClassMessage; 2363 } 2364 } 2365 2366 // Fall back: let the parser try to parse it as an instance message. 2367 return ObjCInstanceMessage; 2368 } 2369 2370 ExprResult Sema::ActOnSuperMessage(Scope *S, 2371 SourceLocation SuperLoc, 2372 Selector Sel, 2373 SourceLocation LBracLoc, 2374 ArrayRef<SourceLocation> SelectorLocs, 2375 SourceLocation RBracLoc, 2376 MultiExprArg Args) { 2377 // Determine whether we are inside a method or not. 2378 ObjCMethodDecl *Method = tryCaptureObjCSelf(SuperLoc); 2379 if (!Method) { 2380 Diag(SuperLoc, diag::err_invalid_receiver_to_message_super); 2381 return ExprError(); 2382 } 2383 2384 ObjCInterfaceDecl *Class = Method->getClassInterface(); 2385 if (!Class) { 2386 Diag(SuperLoc, diag::err_no_super_class_message) 2387 << Method->getDeclName(); 2388 return ExprError(); 2389 } 2390 2391 QualType SuperTy(Class->getSuperClassType(), 0); 2392 if (SuperTy.isNull()) { 2393 // The current class does not have a superclass. 2394 Diag(SuperLoc, diag::err_root_class_cannot_use_super) 2395 << Class->getIdentifier(); 2396 return ExprError(); 2397 } 2398 2399 // We are in a method whose class has a superclass, so 'super' 2400 // is acting as a keyword. 2401 if (Method->getSelector() == Sel) 2402 getCurFunction()->ObjCShouldCallSuper = false; 2403 2404 if (Method->isInstanceMethod()) { 2405 // Since we are in an instance method, this is an instance 2406 // message to the superclass instance. 2407 SuperTy = Context.getObjCObjectPointerType(SuperTy); 2408 return BuildInstanceMessage(nullptr, SuperTy, SuperLoc, 2409 Sel, /*Method=*/nullptr, 2410 LBracLoc, SelectorLocs, RBracLoc, Args); 2411 } 2412 2413 // Since we are in a class method, this is a class message to 2414 // the superclass. 2415 return BuildClassMessage(/*ReceiverTypeInfo=*/nullptr, 2416 SuperTy, 2417 SuperLoc, Sel, /*Method=*/nullptr, 2418 LBracLoc, SelectorLocs, RBracLoc, Args); 2419 } 2420 2421 ExprResult Sema::BuildClassMessageImplicit(QualType ReceiverType, 2422 bool isSuperReceiver, 2423 SourceLocation Loc, 2424 Selector Sel, 2425 ObjCMethodDecl *Method, 2426 MultiExprArg Args) { 2427 TypeSourceInfo *receiverTypeInfo = nullptr; 2428 if (!ReceiverType.isNull()) 2429 receiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType); 2430 2431 return BuildClassMessage(receiverTypeInfo, ReceiverType, 2432 /*SuperLoc=*/isSuperReceiver ? Loc : SourceLocation(), 2433 Sel, Method, Loc, Loc, Loc, Args, 2434 /*isImplicit=*/true); 2435 } 2436 2437 static void applyCocoaAPICheck(Sema &S, const ObjCMessageExpr *Msg, 2438 unsigned DiagID, 2439 bool (*refactor)(const ObjCMessageExpr *, 2440 const NSAPI &, edit::Commit &)) { 2441 SourceLocation MsgLoc = Msg->getExprLoc(); 2442 if (S.Diags.isIgnored(DiagID, MsgLoc)) 2443 return; 2444 2445 SourceManager &SM = S.SourceMgr; 2446 edit::Commit ECommit(SM, S.LangOpts); 2447 if (refactor(Msg,*S.NSAPIObj, ECommit)) { 2448 DiagnosticBuilder Builder = S.Diag(MsgLoc, DiagID) 2449 << Msg->getSelector() << Msg->getSourceRange(); 2450 // FIXME: Don't emit diagnostic at all if fixits are non-commitable. 2451 if (!ECommit.isCommitable()) 2452 return; 2453 for (edit::Commit::edit_iterator 2454 I = ECommit.edit_begin(), E = ECommit.edit_end(); I != E; ++I) { 2455 const edit::Commit::Edit &Edit = *I; 2456 switch (Edit.Kind) { 2457 case edit::Commit::Act_Insert: 2458 Builder.AddFixItHint(FixItHint::CreateInsertion(Edit.OrigLoc, 2459 Edit.Text, 2460 Edit.BeforePrev)); 2461 break; 2462 case edit::Commit::Act_InsertFromRange: 2463 Builder.AddFixItHint( 2464 FixItHint::CreateInsertionFromRange(Edit.OrigLoc, 2465 Edit.getInsertFromRange(SM), 2466 Edit.BeforePrev)); 2467 break; 2468 case edit::Commit::Act_Remove: 2469 Builder.AddFixItHint(FixItHint::CreateRemoval(Edit.getFileRange(SM))); 2470 break; 2471 } 2472 } 2473 } 2474 } 2475 2476 static void checkCocoaAPI(Sema &S, const ObjCMessageExpr *Msg) { 2477 applyCocoaAPICheck(S, Msg, diag::warn_objc_redundant_literal_use, 2478 edit::rewriteObjCRedundantCallWithLiteral); 2479 } 2480 2481 static void checkFoundationAPI(Sema &S, SourceLocation Loc, 2482 const ObjCMethodDecl *Method, 2483 ArrayRef<Expr *> Args, QualType ReceiverType, 2484 bool IsClassObjectCall) { 2485 // Check if this is a performSelector method that uses a selector that returns 2486 // a record or a vector type. 2487 if (Method->getSelector().getMethodFamily() != OMF_performSelector || 2488 Args.empty()) 2489 return; 2490 const auto *SE = dyn_cast<ObjCSelectorExpr>(Args[0]->IgnoreParens()); 2491 if (!SE) 2492 return; 2493 ObjCMethodDecl *ImpliedMethod; 2494 if (!IsClassObjectCall) { 2495 const auto *OPT = ReceiverType->getAs<ObjCObjectPointerType>(); 2496 if (!OPT || !OPT->getInterfaceDecl()) 2497 return; 2498 ImpliedMethod = 2499 OPT->getInterfaceDecl()->lookupInstanceMethod(SE->getSelector()); 2500 if (!ImpliedMethod) 2501 ImpliedMethod = 2502 OPT->getInterfaceDecl()->lookupPrivateMethod(SE->getSelector()); 2503 } else { 2504 const auto *IT = ReceiverType->getAs<ObjCInterfaceType>(); 2505 if (!IT) 2506 return; 2507 ImpliedMethod = IT->getDecl()->lookupClassMethod(SE->getSelector()); 2508 if (!ImpliedMethod) 2509 ImpliedMethod = 2510 IT->getDecl()->lookupPrivateClassMethod(SE->getSelector()); 2511 } 2512 if (!ImpliedMethod) 2513 return; 2514 QualType Ret = ImpliedMethod->getReturnType(); 2515 if (Ret->isRecordType() || Ret->isVectorType() || Ret->isExtVectorType()) { 2516 S.Diag(Loc, diag::warn_objc_unsafe_perform_selector) 2517 << Method->getSelector() 2518 << (!Ret->isRecordType() 2519 ? /*Vector*/ 2 2520 : Ret->isUnionType() ? /*Union*/ 1 : /*Struct*/ 0); 2521 S.Diag(ImpliedMethod->getBeginLoc(), 2522 diag::note_objc_unsafe_perform_selector_method_declared_here) 2523 << ImpliedMethod->getSelector() << Ret; 2524 } 2525 } 2526 2527 /// Diagnose use of %s directive in an NSString which is being passed 2528 /// as formatting string to formatting method. 2529 static void 2530 DiagnoseCStringFormatDirectiveInObjCAPI(Sema &S, 2531 ObjCMethodDecl *Method, 2532 Selector Sel, 2533 Expr **Args, unsigned NumArgs) { 2534 unsigned Idx = 0; 2535 bool Format = false; 2536 ObjCStringFormatFamily SFFamily = Sel.getStringFormatFamily(); 2537 if (SFFamily == ObjCStringFormatFamily::SFF_NSString) { 2538 Idx = 0; 2539 Format = true; 2540 } 2541 else if (Method) { 2542 for (const auto *I : Method->specific_attrs<FormatAttr>()) { 2543 if (S.GetFormatNSStringIdx(I, Idx)) { 2544 Format = true; 2545 break; 2546 } 2547 } 2548 } 2549 if (!Format || NumArgs <= Idx) 2550 return; 2551 2552 Expr *FormatExpr = Args[Idx]; 2553 if (ObjCStringLiteral *OSL = 2554 dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts())) { 2555 StringLiteral *FormatString = OSL->getString(); 2556 if (S.FormatStringHasSArg(FormatString)) { 2557 S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string) 2558 << "%s" << 0 << 0; 2559 if (Method) 2560 S.Diag(Method->getLocation(), diag::note_method_declared_at) 2561 << Method->getDeclName(); 2562 } 2563 } 2564 } 2565 2566 /// Build an Objective-C class message expression. 2567 /// 2568 /// This routine takes care of both normal class messages and 2569 /// class messages to the superclass. 2570 /// 2571 /// \param ReceiverTypeInfo Type source information that describes the 2572 /// receiver of this message. This may be NULL, in which case we are 2573 /// sending to the superclass and \p SuperLoc must be a valid source 2574 /// location. 2575 2576 /// \param ReceiverType The type of the object receiving the 2577 /// message. When \p ReceiverTypeInfo is non-NULL, this is the same 2578 /// type as that refers to. For a superclass send, this is the type of 2579 /// the superclass. 2580 /// 2581 /// \param SuperLoc The location of the "super" keyword in a 2582 /// superclass message. 2583 /// 2584 /// \param Sel The selector to which the message is being sent. 2585 /// 2586 /// \param Method The method that this class message is invoking, if 2587 /// already known. 2588 /// 2589 /// \param LBracLoc The location of the opening square bracket ']'. 2590 /// 2591 /// \param RBracLoc The location of the closing square bracket ']'. 2592 /// 2593 /// \param ArgsIn The message arguments. 2594 ExprResult Sema::BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo, 2595 QualType ReceiverType, 2596 SourceLocation SuperLoc, 2597 Selector Sel, 2598 ObjCMethodDecl *Method, 2599 SourceLocation LBracLoc, 2600 ArrayRef<SourceLocation> SelectorLocs, 2601 SourceLocation RBracLoc, 2602 MultiExprArg ArgsIn, 2603 bool isImplicit) { 2604 SourceLocation Loc = SuperLoc.isValid()? SuperLoc 2605 : ReceiverTypeInfo->getTypeLoc().getSourceRange().getBegin(); 2606 if (LBracLoc.isInvalid()) { 2607 Diag(Loc, diag::err_missing_open_square_message_send) 2608 << FixItHint::CreateInsertion(Loc, "["); 2609 LBracLoc = Loc; 2610 } 2611 ArrayRef<SourceLocation> SelectorSlotLocs; 2612 if (!SelectorLocs.empty() && SelectorLocs.front().isValid()) 2613 SelectorSlotLocs = SelectorLocs; 2614 else 2615 SelectorSlotLocs = Loc; 2616 SourceLocation SelLoc = SelectorSlotLocs.front(); 2617 2618 if (ReceiverType->isDependentType()) { 2619 // If the receiver type is dependent, we can't type-check anything 2620 // at this point. Build a dependent expression. 2621 unsigned NumArgs = ArgsIn.size(); 2622 Expr **Args = ArgsIn.data(); 2623 assert(SuperLoc.isInvalid() && "Message to super with dependent type"); 2624 return ObjCMessageExpr::Create( 2625 Context, ReceiverType, VK_RValue, LBracLoc, ReceiverTypeInfo, Sel, 2626 SelectorLocs, /*Method=*/nullptr, makeArrayRef(Args, NumArgs), RBracLoc, 2627 isImplicit); 2628 } 2629 2630 // Find the class to which we are sending this message. 2631 ObjCInterfaceDecl *Class = nullptr; 2632 const ObjCObjectType *ClassType = ReceiverType->getAs<ObjCObjectType>(); 2633 if (!ClassType || !(Class = ClassType->getInterface())) { 2634 Diag(Loc, diag::err_invalid_receiver_class_message) 2635 << ReceiverType; 2636 return ExprError(); 2637 } 2638 assert(Class && "We don't know which class we're messaging?"); 2639 // objc++ diagnoses during typename annotation. 2640 if (!getLangOpts().CPlusPlus) 2641 (void)DiagnoseUseOfDecl(Class, SelectorSlotLocs); 2642 // Find the method we are messaging. 2643 if (!Method) { 2644 SourceRange TypeRange 2645 = SuperLoc.isValid()? SourceRange(SuperLoc) 2646 : ReceiverTypeInfo->getTypeLoc().getSourceRange(); 2647 if (RequireCompleteType(Loc, Context.getObjCInterfaceType(Class), 2648 (getLangOpts().ObjCAutoRefCount 2649 ? diag::err_arc_receiver_forward_class 2650 : diag::warn_receiver_forward_class), 2651 TypeRange)) { 2652 // A forward class used in messaging is treated as a 'Class' 2653 Method = LookupFactoryMethodInGlobalPool(Sel, 2654 SourceRange(LBracLoc, RBracLoc)); 2655 if (Method && !getLangOpts().ObjCAutoRefCount) 2656 Diag(Method->getLocation(), diag::note_method_sent_forward_class) 2657 << Method->getDeclName(); 2658 } 2659 if (!Method) 2660 Method = Class->lookupClassMethod(Sel); 2661 2662 // If we have an implementation in scope, check "private" methods. 2663 if (!Method) 2664 Method = Class->lookupPrivateClassMethod(Sel); 2665 2666 if (Method && DiagnoseUseOfDecl(Method, SelectorSlotLocs, 2667 nullptr, false, false, Class)) 2668 return ExprError(); 2669 } 2670 2671 // Check the argument types and determine the result type. 2672 QualType ReturnType; 2673 ExprValueKind VK = VK_RValue; 2674 2675 unsigned NumArgs = ArgsIn.size(); 2676 Expr **Args = ArgsIn.data(); 2677 if (CheckMessageArgumentTypes(/*Receiver=*/nullptr, ReceiverType, 2678 MultiExprArg(Args, NumArgs), Sel, SelectorLocs, 2679 Method, true, SuperLoc.isValid(), LBracLoc, 2680 RBracLoc, SourceRange(), ReturnType, VK)) 2681 return ExprError(); 2682 2683 if (Method && !Method->getReturnType()->isVoidType() && 2684 RequireCompleteType(LBracLoc, Method->getReturnType(), 2685 diag::err_illegal_message_expr_incomplete_type)) 2686 return ExprError(); 2687 2688 if (Method && Method->isDirectMethod() && SuperLoc.isValid()) { 2689 Diag(SuperLoc, diag::err_messaging_super_with_direct_method) 2690 << FixItHint::CreateReplacement( 2691 SuperLoc, getLangOpts().ObjCAutoRefCount 2692 ? "self" 2693 : Method->getClassInterface()->getName()); 2694 Diag(Method->getLocation(), diag::note_direct_method_declared_at) 2695 << Method->getDeclName(); 2696 } 2697 2698 // Warn about explicit call of +initialize on its own class. But not on 'super'. 2699 if (Method && Method->getMethodFamily() == OMF_initialize) { 2700 if (!SuperLoc.isValid()) { 2701 const ObjCInterfaceDecl *ID = 2702 dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext()); 2703 if (ID == Class) { 2704 Diag(Loc, diag::warn_direct_initialize_call); 2705 Diag(Method->getLocation(), diag::note_method_declared_at) 2706 << Method->getDeclName(); 2707 } 2708 } 2709 else if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) { 2710 // [super initialize] is allowed only within an +initialize implementation 2711 if (CurMeth->getMethodFamily() != OMF_initialize) { 2712 Diag(Loc, diag::warn_direct_super_initialize_call); 2713 Diag(Method->getLocation(), diag::note_method_declared_at) 2714 << Method->getDeclName(); 2715 Diag(CurMeth->getLocation(), diag::note_method_declared_at) 2716 << CurMeth->getDeclName(); 2717 } 2718 } 2719 } 2720 2721 DiagnoseCStringFormatDirectiveInObjCAPI(*this, Method, Sel, Args, NumArgs); 2722 2723 // Construct the appropriate ObjCMessageExpr. 2724 ObjCMessageExpr *Result; 2725 if (SuperLoc.isValid()) 2726 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 2727 SuperLoc, /*IsInstanceSuper=*/false, 2728 ReceiverType, Sel, SelectorLocs, 2729 Method, makeArrayRef(Args, NumArgs), 2730 RBracLoc, isImplicit); 2731 else { 2732 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 2733 ReceiverTypeInfo, Sel, SelectorLocs, 2734 Method, makeArrayRef(Args, NumArgs), 2735 RBracLoc, isImplicit); 2736 if (!isImplicit) 2737 checkCocoaAPI(*this, Result); 2738 } 2739 if (Method) 2740 checkFoundationAPI(*this, SelLoc, Method, makeArrayRef(Args, NumArgs), 2741 ReceiverType, /*IsClassObjectCall=*/true); 2742 return MaybeBindToTemporary(Result); 2743 } 2744 2745 // ActOnClassMessage - used for both unary and keyword messages. 2746 // ArgExprs is optional - if it is present, the number of expressions 2747 // is obtained from Sel.getNumArgs(). 2748 ExprResult Sema::ActOnClassMessage(Scope *S, 2749 ParsedType Receiver, 2750 Selector Sel, 2751 SourceLocation LBracLoc, 2752 ArrayRef<SourceLocation> SelectorLocs, 2753 SourceLocation RBracLoc, 2754 MultiExprArg Args) { 2755 TypeSourceInfo *ReceiverTypeInfo; 2756 QualType ReceiverType = GetTypeFromParser(Receiver, &ReceiverTypeInfo); 2757 if (ReceiverType.isNull()) 2758 return ExprError(); 2759 2760 if (!ReceiverTypeInfo) 2761 ReceiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType, LBracLoc); 2762 2763 return BuildClassMessage(ReceiverTypeInfo, ReceiverType, 2764 /*SuperLoc=*/SourceLocation(), Sel, 2765 /*Method=*/nullptr, LBracLoc, SelectorLocs, RBracLoc, 2766 Args); 2767 } 2768 2769 ExprResult Sema::BuildInstanceMessageImplicit(Expr *Receiver, 2770 QualType ReceiverType, 2771 SourceLocation Loc, 2772 Selector Sel, 2773 ObjCMethodDecl *Method, 2774 MultiExprArg Args) { 2775 return BuildInstanceMessage(Receiver, ReceiverType, 2776 /*SuperLoc=*/!Receiver ? Loc : SourceLocation(), 2777 Sel, Method, Loc, Loc, Loc, Args, 2778 /*isImplicit=*/true); 2779 } 2780 2781 static bool isMethodDeclaredInRootProtocol(Sema &S, const ObjCMethodDecl *M) { 2782 if (!S.NSAPIObj) 2783 return false; 2784 const auto *Protocol = dyn_cast<ObjCProtocolDecl>(M->getDeclContext()); 2785 if (!Protocol) 2786 return false; 2787 const IdentifierInfo *II = S.NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject); 2788 if (const auto *RootClass = dyn_cast_or_null<ObjCInterfaceDecl>( 2789 S.LookupSingleName(S.TUScope, II, Protocol->getBeginLoc(), 2790 Sema::LookupOrdinaryName))) { 2791 for (const ObjCProtocolDecl *P : RootClass->all_referenced_protocols()) { 2792 if (P->getCanonicalDecl() == Protocol->getCanonicalDecl()) 2793 return true; 2794 } 2795 } 2796 return false; 2797 } 2798 2799 /// Build an Objective-C instance message expression. 2800 /// 2801 /// This routine takes care of both normal instance messages and 2802 /// instance messages to the superclass instance. 2803 /// 2804 /// \param Receiver The expression that computes the object that will 2805 /// receive this message. This may be empty, in which case we are 2806 /// sending to the superclass instance and \p SuperLoc must be a valid 2807 /// source location. 2808 /// 2809 /// \param ReceiverType The (static) type of the object receiving the 2810 /// message. When a \p Receiver expression is provided, this is the 2811 /// same type as that expression. For a superclass instance send, this 2812 /// is a pointer to the type of the superclass. 2813 /// 2814 /// \param SuperLoc The location of the "super" keyword in a 2815 /// superclass instance message. 2816 /// 2817 /// \param Sel The selector to which the message is being sent. 2818 /// 2819 /// \param Method The method that this instance message is invoking, if 2820 /// already known. 2821 /// 2822 /// \param LBracLoc The location of the opening square bracket ']'. 2823 /// 2824 /// \param RBracLoc The location of the closing square bracket ']'. 2825 /// 2826 /// \param ArgsIn The message arguments. 2827 ExprResult Sema::BuildInstanceMessage(Expr *Receiver, 2828 QualType ReceiverType, 2829 SourceLocation SuperLoc, 2830 Selector Sel, 2831 ObjCMethodDecl *Method, 2832 SourceLocation LBracLoc, 2833 ArrayRef<SourceLocation> SelectorLocs, 2834 SourceLocation RBracLoc, 2835 MultiExprArg ArgsIn, 2836 bool isImplicit) { 2837 assert((Receiver || SuperLoc.isValid()) && "If the Receiver is null, the " 2838 "SuperLoc must be valid so we can " 2839 "use it instead."); 2840 2841 // The location of the receiver. 2842 SourceLocation Loc = SuperLoc.isValid() ? SuperLoc : Receiver->getBeginLoc(); 2843 SourceRange RecRange = 2844 SuperLoc.isValid()? SuperLoc : Receiver->getSourceRange(); 2845 ArrayRef<SourceLocation> SelectorSlotLocs; 2846 if (!SelectorLocs.empty() && SelectorLocs.front().isValid()) 2847 SelectorSlotLocs = SelectorLocs; 2848 else 2849 SelectorSlotLocs = Loc; 2850 SourceLocation SelLoc = SelectorSlotLocs.front(); 2851 2852 if (LBracLoc.isInvalid()) { 2853 Diag(Loc, diag::err_missing_open_square_message_send) 2854 << FixItHint::CreateInsertion(Loc, "["); 2855 LBracLoc = Loc; 2856 } 2857 2858 // If we have a receiver expression, perform appropriate promotions 2859 // and determine receiver type. 2860 if (Receiver) { 2861 if (Receiver->hasPlaceholderType()) { 2862 ExprResult Result; 2863 if (Receiver->getType() == Context.UnknownAnyTy) 2864 Result = forceUnknownAnyToType(Receiver, Context.getObjCIdType()); 2865 else 2866 Result = CheckPlaceholderExpr(Receiver); 2867 if (Result.isInvalid()) return ExprError(); 2868 Receiver = Result.get(); 2869 } 2870 2871 if (Receiver->isTypeDependent()) { 2872 // If the receiver is type-dependent, we can't type-check anything 2873 // at this point. Build a dependent expression. 2874 unsigned NumArgs = ArgsIn.size(); 2875 Expr **Args = ArgsIn.data(); 2876 assert(SuperLoc.isInvalid() && "Message to super with dependent type"); 2877 return ObjCMessageExpr::Create( 2878 Context, Context.DependentTy, VK_RValue, LBracLoc, Receiver, Sel, 2879 SelectorLocs, /*Method=*/nullptr, makeArrayRef(Args, NumArgs), 2880 RBracLoc, isImplicit); 2881 } 2882 2883 // If necessary, apply function/array conversion to the receiver. 2884 // C99 6.7.5.3p[7,8]. 2885 ExprResult Result = DefaultFunctionArrayLvalueConversion(Receiver); 2886 if (Result.isInvalid()) 2887 return ExprError(); 2888 Receiver = Result.get(); 2889 ReceiverType = Receiver->getType(); 2890 2891 // If the receiver is an ObjC pointer, a block pointer, or an 2892 // __attribute__((NSObject)) pointer, we don't need to do any 2893 // special conversion in order to look up a receiver. 2894 if (ReceiverType->isObjCRetainableType()) { 2895 // do nothing 2896 } else if (!getLangOpts().ObjCAutoRefCount && 2897 !Context.getObjCIdType().isNull() && 2898 (ReceiverType->isPointerType() || 2899 ReceiverType->isIntegerType())) { 2900 // Implicitly convert integers and pointers to 'id' but emit a warning. 2901 // But not in ARC. 2902 Diag(Loc, diag::warn_bad_receiver_type) << ReceiverType << RecRange; 2903 if (ReceiverType->isPointerType()) { 2904 Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(), 2905 CK_CPointerToObjCPointerCast).get(); 2906 } else { 2907 // TODO: specialized warning on null receivers? 2908 bool IsNull = Receiver->isNullPointerConstant(Context, 2909 Expr::NPC_ValueDependentIsNull); 2910 CastKind Kind = IsNull ? CK_NullToPointer : CK_IntegralToPointer; 2911 Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(), 2912 Kind).get(); 2913 } 2914 ReceiverType = Receiver->getType(); 2915 } else if (getLangOpts().CPlusPlus) { 2916 // The receiver must be a complete type. 2917 if (RequireCompleteType(Loc, Receiver->getType(), 2918 diag::err_incomplete_receiver_type)) 2919 return ExprError(); 2920 2921 ExprResult result = PerformContextuallyConvertToObjCPointer(Receiver); 2922 if (result.isUsable()) { 2923 Receiver = result.get(); 2924 ReceiverType = Receiver->getType(); 2925 } 2926 } 2927 } 2928 2929 // There's a somewhat weird interaction here where we assume that we 2930 // won't actually have a method unless we also don't need to do some 2931 // of the more detailed type-checking on the receiver. 2932 2933 if (!Method) { 2934 // Handle messages to id and __kindof types (where we use the 2935 // global method pool). 2936 const ObjCObjectType *typeBound = nullptr; 2937 bool receiverIsIdLike = ReceiverType->isObjCIdOrObjectKindOfType(Context, 2938 typeBound); 2939 if (receiverIsIdLike || ReceiverType->isBlockPointerType() || 2940 (Receiver && Context.isObjCNSObjectType(Receiver->getType()))) { 2941 SmallVector<ObjCMethodDecl*, 4> Methods; 2942 // If we have a type bound, further filter the methods. 2943 CollectMultipleMethodsInGlobalPool(Sel, Methods, true/*InstanceFirst*/, 2944 true/*CheckTheOther*/, typeBound); 2945 if (!Methods.empty()) { 2946 // We choose the first method as the initial candidate, then try to 2947 // select a better one. 2948 Method = Methods[0]; 2949 2950 if (ObjCMethodDecl *BestMethod = 2951 SelectBestMethod(Sel, ArgsIn, Method->isInstanceMethod(), Methods)) 2952 Method = BestMethod; 2953 2954 if (!AreMultipleMethodsInGlobalPool(Sel, Method, 2955 SourceRange(LBracLoc, RBracLoc), 2956 receiverIsIdLike, Methods)) 2957 DiagnoseUseOfDecl(Method, SelectorSlotLocs); 2958 } 2959 } else if (ReceiverType->isObjCClassOrClassKindOfType() || 2960 ReceiverType->isObjCQualifiedClassType()) { 2961 // Handle messages to Class. 2962 // We allow sending a message to a qualified Class ("Class<foo>"), which 2963 // is ok as long as one of the protocols implements the selector (if not, 2964 // warn). 2965 if (!ReceiverType->isObjCClassOrClassKindOfType()) { 2966 const ObjCObjectPointerType *QClassTy 2967 = ReceiverType->getAsObjCQualifiedClassType(); 2968 // Search protocols for class methods. 2969 Method = LookupMethodInQualifiedType(Sel, QClassTy, false); 2970 if (!Method) { 2971 Method = LookupMethodInQualifiedType(Sel, QClassTy, true); 2972 // warn if instance method found for a Class message. 2973 if (Method && !isMethodDeclaredInRootProtocol(*this, Method)) { 2974 Diag(SelLoc, diag::warn_instance_method_on_class_found) 2975 << Method->getSelector() << Sel; 2976 Diag(Method->getLocation(), diag::note_method_declared_at) 2977 << Method->getDeclName(); 2978 } 2979 } 2980 } else { 2981 if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) { 2982 if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) { 2983 // As a guess, try looking for the method in the current interface. 2984 // This very well may not produce the "right" method. 2985 2986 // First check the public methods in the class interface. 2987 Method = ClassDecl->lookupClassMethod(Sel); 2988 2989 if (!Method) 2990 Method = ClassDecl->lookupPrivateClassMethod(Sel); 2991 2992 if (Method && DiagnoseUseOfDecl(Method, SelectorSlotLocs)) 2993 return ExprError(); 2994 } 2995 } 2996 if (!Method) { 2997 // If not messaging 'self', look for any factory method named 'Sel'. 2998 if (!Receiver || !isSelfExpr(Receiver)) { 2999 // If no class (factory) method was found, check if an _instance_ 3000 // method of the same name exists in the root class only. 3001 SmallVector<ObjCMethodDecl*, 4> Methods; 3002 CollectMultipleMethodsInGlobalPool(Sel, Methods, 3003 false/*InstanceFirst*/, 3004 true/*CheckTheOther*/); 3005 if (!Methods.empty()) { 3006 // We choose the first method as the initial candidate, then try 3007 // to select a better one. 3008 Method = Methods[0]; 3009 3010 // If we find an instance method, emit warning. 3011 if (Method->isInstanceMethod()) { 3012 if (const ObjCInterfaceDecl *ID = 3013 dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext())) { 3014 if (ID->getSuperClass()) 3015 Diag(SelLoc, diag::warn_root_inst_method_not_found) 3016 << Sel << SourceRange(LBracLoc, RBracLoc); 3017 } 3018 } 3019 3020 if (ObjCMethodDecl *BestMethod = 3021 SelectBestMethod(Sel, ArgsIn, Method->isInstanceMethod(), 3022 Methods)) 3023 Method = BestMethod; 3024 } 3025 } 3026 } 3027 } 3028 } else { 3029 ObjCInterfaceDecl *ClassDecl = nullptr; 3030 3031 // We allow sending a message to a qualified ID ("id<foo>"), which is ok as 3032 // long as one of the protocols implements the selector (if not, warn). 3033 // And as long as message is not deprecated/unavailable (warn if it is). 3034 if (const ObjCObjectPointerType *QIdTy 3035 = ReceiverType->getAsObjCQualifiedIdType()) { 3036 // Search protocols for instance methods. 3037 Method = LookupMethodInQualifiedType(Sel, QIdTy, true); 3038 if (!Method) 3039 Method = LookupMethodInQualifiedType(Sel, QIdTy, false); 3040 if (Method && DiagnoseUseOfDecl(Method, SelectorSlotLocs)) 3041 return ExprError(); 3042 } else if (const ObjCObjectPointerType *OCIType 3043 = ReceiverType->getAsObjCInterfacePointerType()) { 3044 // We allow sending a message to a pointer to an interface (an object). 3045 ClassDecl = OCIType->getInterfaceDecl(); 3046 3047 // Try to complete the type. Under ARC, this is a hard error from which 3048 // we don't try to recover. 3049 // FIXME: In the non-ARC case, this will still be a hard error if the 3050 // definition is found in a module that's not visible. 3051 const ObjCInterfaceDecl *forwardClass = nullptr; 3052 if (RequireCompleteType(Loc, OCIType->getPointeeType(), 3053 getLangOpts().ObjCAutoRefCount 3054 ? diag::err_arc_receiver_forward_instance 3055 : diag::warn_receiver_forward_instance, 3056 RecRange)) { 3057 if (getLangOpts().ObjCAutoRefCount) 3058 return ExprError(); 3059 3060 forwardClass = OCIType->getInterfaceDecl(); 3061 Diag(Receiver ? Receiver->getBeginLoc() : SuperLoc, 3062 diag::note_receiver_is_id); 3063 Method = nullptr; 3064 } else { 3065 Method = ClassDecl->lookupInstanceMethod(Sel); 3066 } 3067 3068 if (!Method) 3069 // Search protocol qualifiers. 3070 Method = LookupMethodInQualifiedType(Sel, OCIType, true); 3071 3072 if (!Method) { 3073 // If we have implementations in scope, check "private" methods. 3074 Method = ClassDecl->lookupPrivateMethod(Sel); 3075 3076 if (!Method && getLangOpts().ObjCAutoRefCount) { 3077 Diag(SelLoc, diag::err_arc_may_not_respond) 3078 << OCIType->getPointeeType() << Sel << RecRange 3079 << SourceRange(SelectorLocs.front(), SelectorLocs.back()); 3080 return ExprError(); 3081 } 3082 3083 if (!Method && (!Receiver || !isSelfExpr(Receiver))) { 3084 // If we still haven't found a method, look in the global pool. This 3085 // behavior isn't very desirable, however we need it for GCC 3086 // compatibility. FIXME: should we deviate?? 3087 if (OCIType->qual_empty()) { 3088 SmallVector<ObjCMethodDecl*, 4> Methods; 3089 CollectMultipleMethodsInGlobalPool(Sel, Methods, 3090 true/*InstanceFirst*/, 3091 false/*CheckTheOther*/); 3092 if (!Methods.empty()) { 3093 // We choose the first method as the initial candidate, then try 3094 // to select a better one. 3095 Method = Methods[0]; 3096 3097 if (ObjCMethodDecl *BestMethod = 3098 SelectBestMethod(Sel, ArgsIn, Method->isInstanceMethod(), 3099 Methods)) 3100 Method = BestMethod; 3101 3102 AreMultipleMethodsInGlobalPool(Sel, Method, 3103 SourceRange(LBracLoc, RBracLoc), 3104 true/*receiverIdOrClass*/, 3105 Methods); 3106 } 3107 if (Method && !forwardClass) 3108 Diag(SelLoc, diag::warn_maynot_respond) 3109 << OCIType->getInterfaceDecl()->getIdentifier() 3110 << Sel << RecRange; 3111 } 3112 } 3113 } 3114 if (Method && DiagnoseUseOfDecl(Method, SelectorSlotLocs, forwardClass)) 3115 return ExprError(); 3116 } else { 3117 // Reject other random receiver types (e.g. structs). 3118 Diag(Loc, diag::err_bad_receiver_type) << ReceiverType << RecRange; 3119 return ExprError(); 3120 } 3121 } 3122 } 3123 3124 FunctionScopeInfo *DIFunctionScopeInfo = 3125 (Method && Method->getMethodFamily() == OMF_init) 3126 ? getEnclosingFunction() : nullptr; 3127 3128 if (Method && Method->isDirectMethod()) { 3129 if (ReceiverType->isObjCIdType() && !isImplicit) { 3130 Diag(Receiver->getExprLoc(), 3131 diag::err_messaging_unqualified_id_with_direct_method); 3132 Diag(Method->getLocation(), diag::note_direct_method_declared_at) 3133 << Method->getDeclName(); 3134 } 3135 3136 // Under ARC, self can't be assigned, and doing a direct call to `self` 3137 // when it's a Class is hence safe. For other cases, we can't trust `self` 3138 // is what we think it is, so we reject it. 3139 if (ReceiverType->isObjCClassType() && !isImplicit && 3140 !(Receiver->isObjCSelfExpr() && getLangOpts().ObjCAutoRefCount)) { 3141 { 3142 DiagnosticBuilder Builder = 3143 Diag(Receiver->getExprLoc(), 3144 diag::err_messaging_class_with_direct_method); 3145 if (Receiver->isObjCSelfExpr()) { 3146 Builder.AddFixItHint(FixItHint::CreateReplacement( 3147 RecRange, Method->getClassInterface()->getName())); 3148 } 3149 } 3150 Diag(Method->getLocation(), diag::note_direct_method_declared_at) 3151 << Method->getDeclName(); 3152 } 3153 3154 if (SuperLoc.isValid()) { 3155 { 3156 DiagnosticBuilder Builder = 3157 Diag(SuperLoc, diag::err_messaging_super_with_direct_method); 3158 if (ReceiverType->isObjCClassType()) { 3159 Builder.AddFixItHint(FixItHint::CreateReplacement( 3160 SuperLoc, Method->getClassInterface()->getName())); 3161 } else { 3162 Builder.AddFixItHint(FixItHint::CreateReplacement(SuperLoc, "self")); 3163 } 3164 } 3165 Diag(Method->getLocation(), diag::note_direct_method_declared_at) 3166 << Method->getDeclName(); 3167 } 3168 } else if (ReceiverType->isObjCIdType() && !isImplicit) { 3169 Diag(Receiver->getExprLoc(), diag::warn_messaging_unqualified_id); 3170 } 3171 3172 if (DIFunctionScopeInfo && 3173 DIFunctionScopeInfo->ObjCIsDesignatedInit && 3174 (SuperLoc.isValid() || isSelfExpr(Receiver))) { 3175 bool isDesignatedInitChain = false; 3176 if (SuperLoc.isValid()) { 3177 if (const ObjCObjectPointerType * 3178 OCIType = ReceiverType->getAsObjCInterfacePointerType()) { 3179 if (const ObjCInterfaceDecl *ID = OCIType->getInterfaceDecl()) { 3180 // Either we know this is a designated initializer or we 3181 // conservatively assume it because we don't know for sure. 3182 if (!ID->declaresOrInheritsDesignatedInitializers() || 3183 ID->isDesignatedInitializer(Sel)) { 3184 isDesignatedInitChain = true; 3185 DIFunctionScopeInfo->ObjCWarnForNoDesignatedInitChain = false; 3186 } 3187 } 3188 } 3189 } 3190 if (!isDesignatedInitChain) { 3191 const ObjCMethodDecl *InitMethod = nullptr; 3192 bool isDesignated = 3193 getCurMethodDecl()->isDesignatedInitializerForTheInterface(&InitMethod); 3194 assert(isDesignated && InitMethod); 3195 (void)isDesignated; 3196 Diag(SelLoc, SuperLoc.isValid() ? 3197 diag::warn_objc_designated_init_non_designated_init_call : 3198 diag::warn_objc_designated_init_non_super_designated_init_call); 3199 Diag(InitMethod->getLocation(), 3200 diag::note_objc_designated_init_marked_here); 3201 } 3202 } 3203 3204 if (DIFunctionScopeInfo && 3205 DIFunctionScopeInfo->ObjCIsSecondaryInit && 3206 (SuperLoc.isValid() || isSelfExpr(Receiver))) { 3207 if (SuperLoc.isValid()) { 3208 Diag(SelLoc, diag::warn_objc_secondary_init_super_init_call); 3209 } else { 3210 DIFunctionScopeInfo->ObjCWarnForNoInitDelegation = false; 3211 } 3212 } 3213 3214 // Check the message arguments. 3215 unsigned NumArgs = ArgsIn.size(); 3216 Expr **Args = ArgsIn.data(); 3217 QualType ReturnType; 3218 ExprValueKind VK = VK_RValue; 3219 bool ClassMessage = (ReceiverType->isObjCClassType() || 3220 ReceiverType->isObjCQualifiedClassType()); 3221 if (CheckMessageArgumentTypes(Receiver, ReceiverType, 3222 MultiExprArg(Args, NumArgs), Sel, SelectorLocs, 3223 Method, ClassMessage, SuperLoc.isValid(), 3224 LBracLoc, RBracLoc, RecRange, ReturnType, VK)) 3225 return ExprError(); 3226 3227 if (Method && !Method->getReturnType()->isVoidType() && 3228 RequireCompleteType(LBracLoc, Method->getReturnType(), 3229 diag::err_illegal_message_expr_incomplete_type)) 3230 return ExprError(); 3231 3232 // In ARC, forbid the user from sending messages to 3233 // retain/release/autorelease/dealloc/retainCount explicitly. 3234 if (getLangOpts().ObjCAutoRefCount) { 3235 ObjCMethodFamily family = 3236 (Method ? Method->getMethodFamily() : Sel.getMethodFamily()); 3237 switch (family) { 3238 case OMF_init: 3239 if (Method) 3240 checkInitMethod(Method, ReceiverType); 3241 break; 3242 3243 case OMF_None: 3244 case OMF_alloc: 3245 case OMF_copy: 3246 case OMF_finalize: 3247 case OMF_mutableCopy: 3248 case OMF_new: 3249 case OMF_self: 3250 case OMF_initialize: 3251 break; 3252 3253 case OMF_dealloc: 3254 case OMF_retain: 3255 case OMF_release: 3256 case OMF_autorelease: 3257 case OMF_retainCount: 3258 Diag(SelLoc, diag::err_arc_illegal_explicit_message) 3259 << Sel << RecRange; 3260 break; 3261 3262 case OMF_performSelector: 3263 if (Method && NumArgs >= 1) { 3264 if (const auto *SelExp = 3265 dyn_cast<ObjCSelectorExpr>(Args[0]->IgnoreParens())) { 3266 Selector ArgSel = SelExp->getSelector(); 3267 ObjCMethodDecl *SelMethod = 3268 LookupInstanceMethodInGlobalPool(ArgSel, 3269 SelExp->getSourceRange()); 3270 if (!SelMethod) 3271 SelMethod = 3272 LookupFactoryMethodInGlobalPool(ArgSel, 3273 SelExp->getSourceRange()); 3274 if (SelMethod) { 3275 ObjCMethodFamily SelFamily = SelMethod->getMethodFamily(); 3276 switch (SelFamily) { 3277 case OMF_alloc: 3278 case OMF_copy: 3279 case OMF_mutableCopy: 3280 case OMF_new: 3281 case OMF_init: 3282 // Issue error, unless ns_returns_not_retained. 3283 if (!SelMethod->hasAttr<NSReturnsNotRetainedAttr>()) { 3284 // selector names a +1 method 3285 Diag(SelLoc, 3286 diag::err_arc_perform_selector_retains); 3287 Diag(SelMethod->getLocation(), diag::note_method_declared_at) 3288 << SelMethod->getDeclName(); 3289 } 3290 break; 3291 default: 3292 // +0 call. OK. unless ns_returns_retained. 3293 if (SelMethod->hasAttr<NSReturnsRetainedAttr>()) { 3294 // selector names a +1 method 3295 Diag(SelLoc, 3296 diag::err_arc_perform_selector_retains); 3297 Diag(SelMethod->getLocation(), diag::note_method_declared_at) 3298 << SelMethod->getDeclName(); 3299 } 3300 break; 3301 } 3302 } 3303 } else { 3304 // error (may leak). 3305 Diag(SelLoc, diag::warn_arc_perform_selector_leaks); 3306 Diag(Args[0]->getExprLoc(), diag::note_used_here); 3307 } 3308 } 3309 break; 3310 } 3311 } 3312 3313 DiagnoseCStringFormatDirectiveInObjCAPI(*this, Method, Sel, Args, NumArgs); 3314 3315 // Construct the appropriate ObjCMessageExpr instance. 3316 ObjCMessageExpr *Result; 3317 if (SuperLoc.isValid()) 3318 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 3319 SuperLoc, /*IsInstanceSuper=*/true, 3320 ReceiverType, Sel, SelectorLocs, Method, 3321 makeArrayRef(Args, NumArgs), RBracLoc, 3322 isImplicit); 3323 else { 3324 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 3325 Receiver, Sel, SelectorLocs, Method, 3326 makeArrayRef(Args, NumArgs), RBracLoc, 3327 isImplicit); 3328 if (!isImplicit) 3329 checkCocoaAPI(*this, Result); 3330 } 3331 if (Method) { 3332 bool IsClassObjectCall = ClassMessage; 3333 // 'self' message receivers in class methods should be treated as message 3334 // sends to the class object in order for the semantic checks to be 3335 // performed correctly. Messages to 'super' already count as class messages, 3336 // so they don't need to be handled here. 3337 if (Receiver && isSelfExpr(Receiver)) { 3338 if (const auto *OPT = ReceiverType->getAs<ObjCObjectPointerType>()) { 3339 if (OPT->getObjectType()->isObjCClass()) { 3340 if (const auto *CurMeth = getCurMethodDecl()) { 3341 IsClassObjectCall = true; 3342 ReceiverType = 3343 Context.getObjCInterfaceType(CurMeth->getClassInterface()); 3344 } 3345 } 3346 } 3347 } 3348 checkFoundationAPI(*this, SelLoc, Method, makeArrayRef(Args, NumArgs), 3349 ReceiverType, IsClassObjectCall); 3350 } 3351 3352 if (getLangOpts().ObjCAutoRefCount) { 3353 // In ARC, annotate delegate init calls. 3354 if (Result->getMethodFamily() == OMF_init && 3355 (SuperLoc.isValid() || isSelfExpr(Receiver))) { 3356 // Only consider init calls *directly* in init implementations, 3357 // not within blocks. 3358 ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(CurContext); 3359 if (method && method->getMethodFamily() == OMF_init) { 3360 // The implicit assignment to self means we also don't want to 3361 // consume the result. 3362 Result->setDelegateInitCall(true); 3363 return Result; 3364 } 3365 } 3366 3367 // In ARC, check for message sends which are likely to introduce 3368 // retain cycles. 3369 checkRetainCycles(Result); 3370 } 3371 3372 if (getLangOpts().ObjCWeak) { 3373 if (!isImplicit && Method) { 3374 if (const ObjCPropertyDecl *Prop = Method->findPropertyDecl()) { 3375 bool IsWeak = 3376 Prop->getPropertyAttributes() & ObjCPropertyAttribute::kind_weak; 3377 if (!IsWeak && Sel.isUnarySelector()) 3378 IsWeak = ReturnType.getObjCLifetime() & Qualifiers::OCL_Weak; 3379 if (IsWeak && !isUnevaluatedContext() && 3380 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, LBracLoc)) 3381 getCurFunction()->recordUseOfWeak(Result, Prop); 3382 } 3383 } 3384 } 3385 3386 CheckObjCCircularContainer(Result); 3387 3388 return MaybeBindToTemporary(Result); 3389 } 3390 3391 static void RemoveSelectorFromWarningCache(Sema &S, Expr* Arg) { 3392 if (ObjCSelectorExpr *OSE = 3393 dyn_cast<ObjCSelectorExpr>(Arg->IgnoreParenCasts())) { 3394 Selector Sel = OSE->getSelector(); 3395 SourceLocation Loc = OSE->getAtLoc(); 3396 auto Pos = S.ReferencedSelectors.find(Sel); 3397 if (Pos != S.ReferencedSelectors.end() && Pos->second == Loc) 3398 S.ReferencedSelectors.erase(Pos); 3399 } 3400 } 3401 3402 // ActOnInstanceMessage - used for both unary and keyword messages. 3403 // ArgExprs is optional - if it is present, the number of expressions 3404 // is obtained from Sel.getNumArgs(). 3405 ExprResult Sema::ActOnInstanceMessage(Scope *S, 3406 Expr *Receiver, 3407 Selector Sel, 3408 SourceLocation LBracLoc, 3409 ArrayRef<SourceLocation> SelectorLocs, 3410 SourceLocation RBracLoc, 3411 MultiExprArg Args) { 3412 if (!Receiver) 3413 return ExprError(); 3414 3415 // A ParenListExpr can show up while doing error recovery with invalid code. 3416 if (isa<ParenListExpr>(Receiver)) { 3417 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Receiver); 3418 if (Result.isInvalid()) return ExprError(); 3419 Receiver = Result.get(); 3420 } 3421 3422 if (RespondsToSelectorSel.isNull()) { 3423 IdentifierInfo *SelectorId = &Context.Idents.get("respondsToSelector"); 3424 RespondsToSelectorSel = Context.Selectors.getUnarySelector(SelectorId); 3425 } 3426 if (Sel == RespondsToSelectorSel) 3427 RemoveSelectorFromWarningCache(*this, Args[0]); 3428 3429 return BuildInstanceMessage(Receiver, Receiver->getType(), 3430 /*SuperLoc=*/SourceLocation(), Sel, 3431 /*Method=*/nullptr, LBracLoc, SelectorLocs, 3432 RBracLoc, Args); 3433 } 3434 3435 enum ARCConversionTypeClass { 3436 /// int, void, struct A 3437 ACTC_none, 3438 3439 /// id, void (^)() 3440 ACTC_retainable, 3441 3442 /// id*, id***, void (^*)(), 3443 ACTC_indirectRetainable, 3444 3445 /// void* might be a normal C type, or it might a CF type. 3446 ACTC_voidPtr, 3447 3448 /// struct A* 3449 ACTC_coreFoundation 3450 }; 3451 3452 static bool isAnyRetainable(ARCConversionTypeClass ACTC) { 3453 return (ACTC == ACTC_retainable || 3454 ACTC == ACTC_coreFoundation || 3455 ACTC == ACTC_voidPtr); 3456 } 3457 3458 static bool isAnyCLike(ARCConversionTypeClass ACTC) { 3459 return ACTC == ACTC_none || 3460 ACTC == ACTC_voidPtr || 3461 ACTC == ACTC_coreFoundation; 3462 } 3463 3464 static ARCConversionTypeClass classifyTypeForARCConversion(QualType type) { 3465 bool isIndirect = false; 3466 3467 // Ignore an outermost reference type. 3468 if (const ReferenceType *ref = type->getAs<ReferenceType>()) { 3469 type = ref->getPointeeType(); 3470 isIndirect = true; 3471 } 3472 3473 // Drill through pointers and arrays recursively. 3474 while (true) { 3475 if (const PointerType *ptr = type->getAs<PointerType>()) { 3476 type = ptr->getPointeeType(); 3477 3478 // The first level of pointer may be the innermost pointer on a CF type. 3479 if (!isIndirect) { 3480 if (type->isVoidType()) return ACTC_voidPtr; 3481 if (type->isRecordType()) return ACTC_coreFoundation; 3482 } 3483 } else if (const ArrayType *array = type->getAsArrayTypeUnsafe()) { 3484 type = QualType(array->getElementType()->getBaseElementTypeUnsafe(), 0); 3485 } else { 3486 break; 3487 } 3488 isIndirect = true; 3489 } 3490 3491 if (isIndirect) { 3492 if (type->isObjCARCBridgableType()) 3493 return ACTC_indirectRetainable; 3494 return ACTC_none; 3495 } 3496 3497 if (type->isObjCARCBridgableType()) 3498 return ACTC_retainable; 3499 3500 return ACTC_none; 3501 } 3502 3503 namespace { 3504 /// A result from the cast checker. 3505 enum ACCResult { 3506 /// Cannot be casted. 3507 ACC_invalid, 3508 3509 /// Can be safely retained or not retained. 3510 ACC_bottom, 3511 3512 /// Can be casted at +0. 3513 ACC_plusZero, 3514 3515 /// Can be casted at +1. 3516 ACC_plusOne 3517 }; 3518 ACCResult merge(ACCResult left, ACCResult right) { 3519 if (left == right) return left; 3520 if (left == ACC_bottom) return right; 3521 if (right == ACC_bottom) return left; 3522 return ACC_invalid; 3523 } 3524 3525 /// A checker which white-lists certain expressions whose conversion 3526 /// to or from retainable type would otherwise be forbidden in ARC. 3527 class ARCCastChecker : public StmtVisitor<ARCCastChecker, ACCResult> { 3528 typedef StmtVisitor<ARCCastChecker, ACCResult> super; 3529 3530 ASTContext &Context; 3531 ARCConversionTypeClass SourceClass; 3532 ARCConversionTypeClass TargetClass; 3533 bool Diagnose; 3534 3535 static bool isCFType(QualType type) { 3536 // Someday this can use ns_bridged. For now, it has to do this. 3537 return type->isCARCBridgableType(); 3538 } 3539 3540 public: 3541 ARCCastChecker(ASTContext &Context, ARCConversionTypeClass source, 3542 ARCConversionTypeClass target, bool diagnose) 3543 : Context(Context), SourceClass(source), TargetClass(target), 3544 Diagnose(diagnose) {} 3545 3546 using super::Visit; 3547 ACCResult Visit(Expr *e) { 3548 return super::Visit(e->IgnoreParens()); 3549 } 3550 3551 ACCResult VisitStmt(Stmt *s) { 3552 return ACC_invalid; 3553 } 3554 3555 /// Null pointer constants can be casted however you please. 3556 ACCResult VisitExpr(Expr *e) { 3557 if (e->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull)) 3558 return ACC_bottom; 3559 return ACC_invalid; 3560 } 3561 3562 /// Objective-C string literals can be safely casted. 3563 ACCResult VisitObjCStringLiteral(ObjCStringLiteral *e) { 3564 // If we're casting to any retainable type, go ahead. Global 3565 // strings are immune to retains, so this is bottom. 3566 if (isAnyRetainable(TargetClass)) return ACC_bottom; 3567 3568 return ACC_invalid; 3569 } 3570 3571 /// Look through certain implicit and explicit casts. 3572 ACCResult VisitCastExpr(CastExpr *e) { 3573 switch (e->getCastKind()) { 3574 case CK_NullToPointer: 3575 return ACC_bottom; 3576 3577 case CK_NoOp: 3578 case CK_LValueToRValue: 3579 case CK_BitCast: 3580 case CK_CPointerToObjCPointerCast: 3581 case CK_BlockPointerToObjCPointerCast: 3582 case CK_AnyPointerToBlockPointerCast: 3583 return Visit(e->getSubExpr()); 3584 3585 default: 3586 return ACC_invalid; 3587 } 3588 } 3589 3590 /// Look through unary extension. 3591 ACCResult VisitUnaryExtension(UnaryOperator *e) { 3592 return Visit(e->getSubExpr()); 3593 } 3594 3595 /// Ignore the LHS of a comma operator. 3596 ACCResult VisitBinComma(BinaryOperator *e) { 3597 return Visit(e->getRHS()); 3598 } 3599 3600 /// Conditional operators are okay if both sides are okay. 3601 ACCResult VisitConditionalOperator(ConditionalOperator *e) { 3602 ACCResult left = Visit(e->getTrueExpr()); 3603 if (left == ACC_invalid) return ACC_invalid; 3604 return merge(left, Visit(e->getFalseExpr())); 3605 } 3606 3607 /// Look through pseudo-objects. 3608 ACCResult VisitPseudoObjectExpr(PseudoObjectExpr *e) { 3609 // If we're getting here, we should always have a result. 3610 return Visit(e->getResultExpr()); 3611 } 3612 3613 /// Statement expressions are okay if their result expression is okay. 3614 ACCResult VisitStmtExpr(StmtExpr *e) { 3615 return Visit(e->getSubStmt()->body_back()); 3616 } 3617 3618 /// Some declaration references are okay. 3619 ACCResult VisitDeclRefExpr(DeclRefExpr *e) { 3620 VarDecl *var = dyn_cast<VarDecl>(e->getDecl()); 3621 // References to global constants are okay. 3622 if (isAnyRetainable(TargetClass) && 3623 isAnyRetainable(SourceClass) && 3624 var && 3625 !var->hasDefinition(Context) && 3626 var->getType().isConstQualified()) { 3627 3628 // In system headers, they can also be assumed to be immune to retains. 3629 // These are things like 'kCFStringTransformToLatin'. 3630 if (Context.getSourceManager().isInSystemHeader(var->getLocation())) 3631 return ACC_bottom; 3632 3633 return ACC_plusZero; 3634 } 3635 3636 // Nothing else. 3637 return ACC_invalid; 3638 } 3639 3640 /// Some calls are okay. 3641 ACCResult VisitCallExpr(CallExpr *e) { 3642 if (FunctionDecl *fn = e->getDirectCallee()) 3643 if (ACCResult result = checkCallToFunction(fn)) 3644 return result; 3645 3646 return super::VisitCallExpr(e); 3647 } 3648 3649 ACCResult checkCallToFunction(FunctionDecl *fn) { 3650 // Require a CF*Ref return type. 3651 if (!isCFType(fn->getReturnType())) 3652 return ACC_invalid; 3653 3654 if (!isAnyRetainable(TargetClass)) 3655 return ACC_invalid; 3656 3657 // Honor an explicit 'not retained' attribute. 3658 if (fn->hasAttr<CFReturnsNotRetainedAttr>()) 3659 return ACC_plusZero; 3660 3661 // Honor an explicit 'retained' attribute, except that for 3662 // now we're not going to permit implicit handling of +1 results, 3663 // because it's a bit frightening. 3664 if (fn->hasAttr<CFReturnsRetainedAttr>()) 3665 return Diagnose ? ACC_plusOne 3666 : ACC_invalid; // ACC_plusOne if we start accepting this 3667 3668 // Recognize this specific builtin function, which is used by CFSTR. 3669 unsigned builtinID = fn->getBuiltinID(); 3670 if (builtinID == Builtin::BI__builtin___CFStringMakeConstantString) 3671 return ACC_bottom; 3672 3673 // Otherwise, don't do anything implicit with an unaudited function. 3674 if (!fn->hasAttr<CFAuditedTransferAttr>()) 3675 return ACC_invalid; 3676 3677 // Otherwise, it's +0 unless it follows the create convention. 3678 if (ento::coreFoundation::followsCreateRule(fn)) 3679 return Diagnose ? ACC_plusOne 3680 : ACC_invalid; // ACC_plusOne if we start accepting this 3681 3682 return ACC_plusZero; 3683 } 3684 3685 ACCResult VisitObjCMessageExpr(ObjCMessageExpr *e) { 3686 return checkCallToMethod(e->getMethodDecl()); 3687 } 3688 3689 ACCResult VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *e) { 3690 ObjCMethodDecl *method; 3691 if (e->isExplicitProperty()) 3692 method = e->getExplicitProperty()->getGetterMethodDecl(); 3693 else 3694 method = e->getImplicitPropertyGetter(); 3695 return checkCallToMethod(method); 3696 } 3697 3698 ACCResult checkCallToMethod(ObjCMethodDecl *method) { 3699 if (!method) return ACC_invalid; 3700 3701 // Check for message sends to functions returning CF types. We 3702 // just obey the Cocoa conventions with these, even though the 3703 // return type is CF. 3704 if (!isAnyRetainable(TargetClass) || !isCFType(method->getReturnType())) 3705 return ACC_invalid; 3706 3707 // If the method is explicitly marked not-retained, it's +0. 3708 if (method->hasAttr<CFReturnsNotRetainedAttr>()) 3709 return ACC_plusZero; 3710 3711 // If the method is explicitly marked as returning retained, or its 3712 // selector follows a +1 Cocoa convention, treat it as +1. 3713 if (method->hasAttr<CFReturnsRetainedAttr>()) 3714 return ACC_plusOne; 3715 3716 switch (method->getSelector().getMethodFamily()) { 3717 case OMF_alloc: 3718 case OMF_copy: 3719 case OMF_mutableCopy: 3720 case OMF_new: 3721 return ACC_plusOne; 3722 3723 default: 3724 // Otherwise, treat it as +0. 3725 return ACC_plusZero; 3726 } 3727 } 3728 }; 3729 } // end anonymous namespace 3730 3731 bool Sema::isKnownName(StringRef name) { 3732 if (name.empty()) 3733 return false; 3734 LookupResult R(*this, &Context.Idents.get(name), SourceLocation(), 3735 Sema::LookupOrdinaryName); 3736 return LookupName(R, TUScope, false); 3737 } 3738 3739 static void addFixitForObjCARCConversion(Sema &S, 3740 DiagnosticBuilder &DiagB, 3741 Sema::CheckedConversionKind CCK, 3742 SourceLocation afterLParen, 3743 QualType castType, 3744 Expr *castExpr, 3745 Expr *realCast, 3746 const char *bridgeKeyword, 3747 const char *CFBridgeName) { 3748 // We handle C-style and implicit casts here. 3749 switch (CCK) { 3750 case Sema::CCK_ImplicitConversion: 3751 case Sema::CCK_ForBuiltinOverloadedOp: 3752 case Sema::CCK_CStyleCast: 3753 case Sema::CCK_OtherCast: 3754 break; 3755 case Sema::CCK_FunctionalCast: 3756 return; 3757 } 3758 3759 if (CFBridgeName) { 3760 if (CCK == Sema::CCK_OtherCast) { 3761 if (const CXXNamedCastExpr *NCE = dyn_cast<CXXNamedCastExpr>(realCast)) { 3762 SourceRange range(NCE->getOperatorLoc(), 3763 NCE->getAngleBrackets().getEnd()); 3764 SmallString<32> BridgeCall; 3765 3766 SourceManager &SM = S.getSourceManager(); 3767 char PrevChar = *SM.getCharacterData(range.getBegin().getLocWithOffset(-1)); 3768 if (Lexer::isIdentifierBodyChar(PrevChar, S.getLangOpts())) 3769 BridgeCall += ' '; 3770 3771 BridgeCall += CFBridgeName; 3772 DiagB.AddFixItHint(FixItHint::CreateReplacement(range, BridgeCall)); 3773 } 3774 return; 3775 } 3776 Expr *castedE = castExpr; 3777 if (CStyleCastExpr *CCE = dyn_cast<CStyleCastExpr>(castedE)) 3778 castedE = CCE->getSubExpr(); 3779 castedE = castedE->IgnoreImpCasts(); 3780 SourceRange range = castedE->getSourceRange(); 3781 3782 SmallString<32> BridgeCall; 3783 3784 SourceManager &SM = S.getSourceManager(); 3785 char PrevChar = *SM.getCharacterData(range.getBegin().getLocWithOffset(-1)); 3786 if (Lexer::isIdentifierBodyChar(PrevChar, S.getLangOpts())) 3787 BridgeCall += ' '; 3788 3789 BridgeCall += CFBridgeName; 3790 3791 if (isa<ParenExpr>(castedE)) { 3792 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), 3793 BridgeCall)); 3794 } else { 3795 BridgeCall += '('; 3796 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), 3797 BridgeCall)); 3798 DiagB.AddFixItHint(FixItHint::CreateInsertion( 3799 S.getLocForEndOfToken(range.getEnd()), 3800 ")")); 3801 } 3802 return; 3803 } 3804 3805 if (CCK == Sema::CCK_CStyleCast) { 3806 DiagB.AddFixItHint(FixItHint::CreateInsertion(afterLParen, bridgeKeyword)); 3807 } else if (CCK == Sema::CCK_OtherCast) { 3808 if (const CXXNamedCastExpr *NCE = dyn_cast<CXXNamedCastExpr>(realCast)) { 3809 std::string castCode = "("; 3810 castCode += bridgeKeyword; 3811 castCode += castType.getAsString(); 3812 castCode += ")"; 3813 SourceRange Range(NCE->getOperatorLoc(), 3814 NCE->getAngleBrackets().getEnd()); 3815 DiagB.AddFixItHint(FixItHint::CreateReplacement(Range, castCode)); 3816 } 3817 } else { 3818 std::string castCode = "("; 3819 castCode += bridgeKeyword; 3820 castCode += castType.getAsString(); 3821 castCode += ")"; 3822 Expr *castedE = castExpr->IgnoreImpCasts(); 3823 SourceRange range = castedE->getSourceRange(); 3824 if (isa<ParenExpr>(castedE)) { 3825 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), 3826 castCode)); 3827 } else { 3828 castCode += "("; 3829 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), 3830 castCode)); 3831 DiagB.AddFixItHint(FixItHint::CreateInsertion( 3832 S.getLocForEndOfToken(range.getEnd()), 3833 ")")); 3834 } 3835 } 3836 } 3837 3838 template <typename T> 3839 static inline T *getObjCBridgeAttr(const TypedefType *TD) { 3840 TypedefNameDecl *TDNDecl = TD->getDecl(); 3841 QualType QT = TDNDecl->getUnderlyingType(); 3842 if (QT->isPointerType()) { 3843 QT = QT->getPointeeType(); 3844 if (const RecordType *RT = QT->getAs<RecordType>()) 3845 if (RecordDecl *RD = RT->getDecl()->getMostRecentDecl()) 3846 return RD->getAttr<T>(); 3847 } 3848 return nullptr; 3849 } 3850 3851 static ObjCBridgeRelatedAttr *ObjCBridgeRelatedAttrFromType(QualType T, 3852 TypedefNameDecl *&TDNDecl) { 3853 while (const TypedefType *TD = dyn_cast<TypedefType>(T.getTypePtr())) { 3854 TDNDecl = TD->getDecl(); 3855 if (ObjCBridgeRelatedAttr *ObjCBAttr = 3856 getObjCBridgeAttr<ObjCBridgeRelatedAttr>(TD)) 3857 return ObjCBAttr; 3858 T = TDNDecl->getUnderlyingType(); 3859 } 3860 return nullptr; 3861 } 3862 3863 static void 3864 diagnoseObjCARCConversion(Sema &S, SourceRange castRange, 3865 QualType castType, ARCConversionTypeClass castACTC, 3866 Expr *castExpr, Expr *realCast, 3867 ARCConversionTypeClass exprACTC, 3868 Sema::CheckedConversionKind CCK) { 3869 SourceLocation loc = 3870 (castRange.isValid() ? castRange.getBegin() : castExpr->getExprLoc()); 3871 3872 if (S.makeUnavailableInSystemHeader(loc, 3873 UnavailableAttr::IR_ARCForbiddenConversion)) 3874 return; 3875 3876 QualType castExprType = castExpr->getType(); 3877 // Defer emitting a diagnostic for bridge-related casts; that will be 3878 // handled by CheckObjCBridgeRelatedConversions. 3879 TypedefNameDecl *TDNDecl = nullptr; 3880 if ((castACTC == ACTC_coreFoundation && exprACTC == ACTC_retainable && 3881 ObjCBridgeRelatedAttrFromType(castType, TDNDecl)) || 3882 (exprACTC == ACTC_coreFoundation && castACTC == ACTC_retainable && 3883 ObjCBridgeRelatedAttrFromType(castExprType, TDNDecl))) 3884 return; 3885 3886 unsigned srcKind = 0; 3887 switch (exprACTC) { 3888 case ACTC_none: 3889 case ACTC_coreFoundation: 3890 case ACTC_voidPtr: 3891 srcKind = (castExprType->isPointerType() ? 1 : 0); 3892 break; 3893 case ACTC_retainable: 3894 srcKind = (castExprType->isBlockPointerType() ? 2 : 3); 3895 break; 3896 case ACTC_indirectRetainable: 3897 srcKind = 4; 3898 break; 3899 } 3900 3901 // Check whether this could be fixed with a bridge cast. 3902 SourceLocation afterLParen = S.getLocForEndOfToken(castRange.getBegin()); 3903 SourceLocation noteLoc = afterLParen.isValid() ? afterLParen : loc; 3904 3905 unsigned convKindForDiag = Sema::isCast(CCK) ? 0 : 1; 3906 3907 // Bridge from an ARC type to a CF type. 3908 if (castACTC == ACTC_retainable && isAnyRetainable(exprACTC)) { 3909 3910 S.Diag(loc, diag::err_arc_cast_requires_bridge) 3911 << convKindForDiag 3912 << 2 // of C pointer type 3913 << castExprType 3914 << unsigned(castType->isBlockPointerType()) // to ObjC|block type 3915 << castType 3916 << castRange 3917 << castExpr->getSourceRange(); 3918 bool br = S.isKnownName("CFBridgingRelease"); 3919 ACCResult CreateRule = 3920 ARCCastChecker(S.Context, exprACTC, castACTC, true).Visit(castExpr); 3921 assert(CreateRule != ACC_bottom && "This cast should already be accepted."); 3922 if (CreateRule != ACC_plusOne) 3923 { 3924 DiagnosticBuilder DiagB = 3925 (CCK != Sema::CCK_OtherCast) ? S.Diag(noteLoc, diag::note_arc_bridge) 3926 : S.Diag(noteLoc, diag::note_arc_cstyle_bridge); 3927 3928 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, 3929 castType, castExpr, realCast, "__bridge ", 3930 nullptr); 3931 } 3932 if (CreateRule != ACC_plusZero) 3933 { 3934 DiagnosticBuilder DiagB = 3935 (CCK == Sema::CCK_OtherCast && !br) ? 3936 S.Diag(noteLoc, diag::note_arc_cstyle_bridge_transfer) << castExprType : 3937 S.Diag(br ? castExpr->getExprLoc() : noteLoc, 3938 diag::note_arc_bridge_transfer) 3939 << castExprType << br; 3940 3941 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, 3942 castType, castExpr, realCast, "__bridge_transfer ", 3943 br ? "CFBridgingRelease" : nullptr); 3944 } 3945 3946 return; 3947 } 3948 3949 // Bridge from a CF type to an ARC type. 3950 if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC)) { 3951 bool br = S.isKnownName("CFBridgingRetain"); 3952 S.Diag(loc, diag::err_arc_cast_requires_bridge) 3953 << convKindForDiag 3954 << unsigned(castExprType->isBlockPointerType()) // of ObjC|block type 3955 << castExprType 3956 << 2 // to C pointer type 3957 << castType 3958 << castRange 3959 << castExpr->getSourceRange(); 3960 ACCResult CreateRule = 3961 ARCCastChecker(S.Context, exprACTC, castACTC, true).Visit(castExpr); 3962 assert(CreateRule != ACC_bottom && "This cast should already be accepted."); 3963 if (CreateRule != ACC_plusOne) 3964 { 3965 DiagnosticBuilder DiagB = 3966 (CCK != Sema::CCK_OtherCast) ? S.Diag(noteLoc, diag::note_arc_bridge) 3967 : S.Diag(noteLoc, diag::note_arc_cstyle_bridge); 3968 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, 3969 castType, castExpr, realCast, "__bridge ", 3970 nullptr); 3971 } 3972 if (CreateRule != ACC_plusZero) 3973 { 3974 DiagnosticBuilder DiagB = 3975 (CCK == Sema::CCK_OtherCast && !br) ? 3976 S.Diag(noteLoc, diag::note_arc_cstyle_bridge_retained) << castType : 3977 S.Diag(br ? castExpr->getExprLoc() : noteLoc, 3978 diag::note_arc_bridge_retained) 3979 << castType << br; 3980 3981 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, 3982 castType, castExpr, realCast, "__bridge_retained ", 3983 br ? "CFBridgingRetain" : nullptr); 3984 } 3985 3986 return; 3987 } 3988 3989 S.Diag(loc, diag::err_arc_mismatched_cast) 3990 << !convKindForDiag 3991 << srcKind << castExprType << castType 3992 << castRange << castExpr->getSourceRange(); 3993 } 3994 3995 template <typename TB> 3996 static bool CheckObjCBridgeNSCast(Sema &S, QualType castType, Expr *castExpr, 3997 bool &HadTheAttribute, bool warn) { 3998 QualType T = castExpr->getType(); 3999 HadTheAttribute = false; 4000 while (const TypedefType *TD = dyn_cast<TypedefType>(T.getTypePtr())) { 4001 TypedefNameDecl *TDNDecl = TD->getDecl(); 4002 if (TB *ObjCBAttr = getObjCBridgeAttr<TB>(TD)) { 4003 if (IdentifierInfo *Parm = ObjCBAttr->getBridgedType()) { 4004 HadTheAttribute = true; 4005 if (Parm->isStr("id")) 4006 return true; 4007 4008 NamedDecl *Target = nullptr; 4009 // Check for an existing type with this name. 4010 LookupResult R(S, DeclarationName(Parm), SourceLocation(), 4011 Sema::LookupOrdinaryName); 4012 if (S.LookupName(R, S.TUScope)) { 4013 Target = R.getFoundDecl(); 4014 if (Target && isa<ObjCInterfaceDecl>(Target)) { 4015 ObjCInterfaceDecl *ExprClass = cast<ObjCInterfaceDecl>(Target); 4016 if (const ObjCObjectPointerType *InterfacePointerType = 4017 castType->getAsObjCInterfacePointerType()) { 4018 ObjCInterfaceDecl *CastClass 4019 = InterfacePointerType->getObjectType()->getInterface(); 4020 if ((CastClass == ExprClass) || 4021 (CastClass && CastClass->isSuperClassOf(ExprClass))) 4022 return true; 4023 if (warn) 4024 S.Diag(castExpr->getBeginLoc(), diag::warn_objc_invalid_bridge) 4025 << T << Target->getName() << castType->getPointeeType(); 4026 return false; 4027 } else if (castType->isObjCIdType() || 4028 (S.Context.ObjCObjectAdoptsQTypeProtocols( 4029 castType, ExprClass))) 4030 // ok to cast to 'id'. 4031 // casting to id<p-list> is ok if bridge type adopts all of 4032 // p-list protocols. 4033 return true; 4034 else { 4035 if (warn) { 4036 S.Diag(castExpr->getBeginLoc(), diag::warn_objc_invalid_bridge) 4037 << T << Target->getName() << castType; 4038 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4039 S.Diag(Target->getBeginLoc(), diag::note_declared_at); 4040 } 4041 return false; 4042 } 4043 } 4044 } else if (!castType->isObjCIdType()) { 4045 S.Diag(castExpr->getBeginLoc(), 4046 diag::err_objc_cf_bridged_not_interface) 4047 << castExpr->getType() << Parm; 4048 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4049 if (Target) 4050 S.Diag(Target->getBeginLoc(), diag::note_declared_at); 4051 } 4052 return true; 4053 } 4054 return false; 4055 } 4056 T = TDNDecl->getUnderlyingType(); 4057 } 4058 return true; 4059 } 4060 4061 template <typename TB> 4062 static bool CheckObjCBridgeCFCast(Sema &S, QualType castType, Expr *castExpr, 4063 bool &HadTheAttribute, bool warn) { 4064 QualType T = castType; 4065 HadTheAttribute = false; 4066 while (const TypedefType *TD = dyn_cast<TypedefType>(T.getTypePtr())) { 4067 TypedefNameDecl *TDNDecl = TD->getDecl(); 4068 if (TB *ObjCBAttr = getObjCBridgeAttr<TB>(TD)) { 4069 if (IdentifierInfo *Parm = ObjCBAttr->getBridgedType()) { 4070 HadTheAttribute = true; 4071 if (Parm->isStr("id")) 4072 return true; 4073 4074 NamedDecl *Target = nullptr; 4075 // Check for an existing type with this name. 4076 LookupResult R(S, DeclarationName(Parm), SourceLocation(), 4077 Sema::LookupOrdinaryName); 4078 if (S.LookupName(R, S.TUScope)) { 4079 Target = R.getFoundDecl(); 4080 if (Target && isa<ObjCInterfaceDecl>(Target)) { 4081 ObjCInterfaceDecl *CastClass = cast<ObjCInterfaceDecl>(Target); 4082 if (const ObjCObjectPointerType *InterfacePointerType = 4083 castExpr->getType()->getAsObjCInterfacePointerType()) { 4084 ObjCInterfaceDecl *ExprClass 4085 = InterfacePointerType->getObjectType()->getInterface(); 4086 if ((CastClass == ExprClass) || 4087 (ExprClass && CastClass->isSuperClassOf(ExprClass))) 4088 return true; 4089 if (warn) { 4090 S.Diag(castExpr->getBeginLoc(), 4091 diag::warn_objc_invalid_bridge_to_cf) 4092 << castExpr->getType()->getPointeeType() << T; 4093 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4094 } 4095 return false; 4096 } else if (castExpr->getType()->isObjCIdType() || 4097 (S.Context.QIdProtocolsAdoptObjCObjectProtocols( 4098 castExpr->getType(), CastClass))) 4099 // ok to cast an 'id' expression to a CFtype. 4100 // ok to cast an 'id<plist>' expression to CFtype provided plist 4101 // adopts all of CFtype's ObjetiveC's class plist. 4102 return true; 4103 else { 4104 if (warn) { 4105 S.Diag(castExpr->getBeginLoc(), 4106 diag::warn_objc_invalid_bridge_to_cf) 4107 << castExpr->getType() << castType; 4108 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4109 S.Diag(Target->getBeginLoc(), diag::note_declared_at); 4110 } 4111 return false; 4112 } 4113 } 4114 } 4115 S.Diag(castExpr->getBeginLoc(), 4116 diag::err_objc_ns_bridged_invalid_cfobject) 4117 << castExpr->getType() << castType; 4118 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4119 if (Target) 4120 S.Diag(Target->getBeginLoc(), diag::note_declared_at); 4121 return true; 4122 } 4123 return false; 4124 } 4125 T = TDNDecl->getUnderlyingType(); 4126 } 4127 return true; 4128 } 4129 4130 void Sema::CheckTollFreeBridgeCast(QualType castType, Expr *castExpr) { 4131 if (!getLangOpts().ObjC) 4132 return; 4133 // warn in presence of __bridge casting to or from a toll free bridge cast. 4134 ARCConversionTypeClass exprACTC = classifyTypeForARCConversion(castExpr->getType()); 4135 ARCConversionTypeClass castACTC = classifyTypeForARCConversion(castType); 4136 if (castACTC == ACTC_retainable && exprACTC == ACTC_coreFoundation) { 4137 bool HasObjCBridgeAttr; 4138 bool ObjCBridgeAttrWillNotWarn = 4139 CheckObjCBridgeNSCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr, 4140 false); 4141 if (ObjCBridgeAttrWillNotWarn && HasObjCBridgeAttr) 4142 return; 4143 bool HasObjCBridgeMutableAttr; 4144 bool ObjCBridgeMutableAttrWillNotWarn = 4145 CheckObjCBridgeNSCast<ObjCBridgeMutableAttr>(*this, castType, castExpr, 4146 HasObjCBridgeMutableAttr, false); 4147 if (ObjCBridgeMutableAttrWillNotWarn && HasObjCBridgeMutableAttr) 4148 return; 4149 4150 if (HasObjCBridgeAttr) 4151 CheckObjCBridgeNSCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr, 4152 true); 4153 else if (HasObjCBridgeMutableAttr) 4154 CheckObjCBridgeNSCast<ObjCBridgeMutableAttr>(*this, castType, castExpr, 4155 HasObjCBridgeMutableAttr, true); 4156 } 4157 else if (castACTC == ACTC_coreFoundation && exprACTC == ACTC_retainable) { 4158 bool HasObjCBridgeAttr; 4159 bool ObjCBridgeAttrWillNotWarn = 4160 CheckObjCBridgeCFCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr, 4161 false); 4162 if (ObjCBridgeAttrWillNotWarn && HasObjCBridgeAttr) 4163 return; 4164 bool HasObjCBridgeMutableAttr; 4165 bool ObjCBridgeMutableAttrWillNotWarn = 4166 CheckObjCBridgeCFCast<ObjCBridgeMutableAttr>(*this, castType, castExpr, 4167 HasObjCBridgeMutableAttr, false); 4168 if (ObjCBridgeMutableAttrWillNotWarn && HasObjCBridgeMutableAttr) 4169 return; 4170 4171 if (HasObjCBridgeAttr) 4172 CheckObjCBridgeCFCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr, 4173 true); 4174 else if (HasObjCBridgeMutableAttr) 4175 CheckObjCBridgeCFCast<ObjCBridgeMutableAttr>(*this, castType, castExpr, 4176 HasObjCBridgeMutableAttr, true); 4177 } 4178 } 4179 4180 void Sema::CheckObjCBridgeRelatedCast(QualType castType, Expr *castExpr) { 4181 QualType SrcType = castExpr->getType(); 4182 if (ObjCPropertyRefExpr *PRE = dyn_cast<ObjCPropertyRefExpr>(castExpr)) { 4183 if (PRE->isExplicitProperty()) { 4184 if (ObjCPropertyDecl *PDecl = PRE->getExplicitProperty()) 4185 SrcType = PDecl->getType(); 4186 } 4187 else if (PRE->isImplicitProperty()) { 4188 if (ObjCMethodDecl *Getter = PRE->getImplicitPropertyGetter()) 4189 SrcType = Getter->getReturnType(); 4190 } 4191 } 4192 4193 ARCConversionTypeClass srcExprACTC = classifyTypeForARCConversion(SrcType); 4194 ARCConversionTypeClass castExprACTC = classifyTypeForARCConversion(castType); 4195 if (srcExprACTC != ACTC_retainable || castExprACTC != ACTC_coreFoundation) 4196 return; 4197 CheckObjCBridgeRelatedConversions(castExpr->getBeginLoc(), castType, SrcType, 4198 castExpr); 4199 } 4200 4201 bool Sema::CheckTollFreeBridgeStaticCast(QualType castType, Expr *castExpr, 4202 CastKind &Kind) { 4203 if (!getLangOpts().ObjC) 4204 return false; 4205 ARCConversionTypeClass exprACTC = 4206 classifyTypeForARCConversion(castExpr->getType()); 4207 ARCConversionTypeClass castACTC = classifyTypeForARCConversion(castType); 4208 if ((castACTC == ACTC_retainable && exprACTC == ACTC_coreFoundation) || 4209 (castACTC == ACTC_coreFoundation && exprACTC == ACTC_retainable)) { 4210 CheckTollFreeBridgeCast(castType, castExpr); 4211 Kind = (castACTC == ACTC_coreFoundation) ? CK_BitCast 4212 : CK_CPointerToObjCPointerCast; 4213 return true; 4214 } 4215 return false; 4216 } 4217 4218 bool Sema::checkObjCBridgeRelatedComponents(SourceLocation Loc, 4219 QualType DestType, QualType SrcType, 4220 ObjCInterfaceDecl *&RelatedClass, 4221 ObjCMethodDecl *&ClassMethod, 4222 ObjCMethodDecl *&InstanceMethod, 4223 TypedefNameDecl *&TDNDecl, 4224 bool CfToNs, bool Diagnose) { 4225 QualType T = CfToNs ? SrcType : DestType; 4226 ObjCBridgeRelatedAttr *ObjCBAttr = ObjCBridgeRelatedAttrFromType(T, TDNDecl); 4227 if (!ObjCBAttr) 4228 return false; 4229 4230 IdentifierInfo *RCId = ObjCBAttr->getRelatedClass(); 4231 IdentifierInfo *CMId = ObjCBAttr->getClassMethod(); 4232 IdentifierInfo *IMId = ObjCBAttr->getInstanceMethod(); 4233 if (!RCId) 4234 return false; 4235 NamedDecl *Target = nullptr; 4236 // Check for an existing type with this name. 4237 LookupResult R(*this, DeclarationName(RCId), SourceLocation(), 4238 Sema::LookupOrdinaryName); 4239 if (!LookupName(R, TUScope)) { 4240 if (Diagnose) { 4241 Diag(Loc, diag::err_objc_bridged_related_invalid_class) << RCId 4242 << SrcType << DestType; 4243 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4244 } 4245 return false; 4246 } 4247 Target = R.getFoundDecl(); 4248 if (Target && isa<ObjCInterfaceDecl>(Target)) 4249 RelatedClass = cast<ObjCInterfaceDecl>(Target); 4250 else { 4251 if (Diagnose) { 4252 Diag(Loc, diag::err_objc_bridged_related_invalid_class_name) << RCId 4253 << SrcType << DestType; 4254 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4255 if (Target) 4256 Diag(Target->getBeginLoc(), diag::note_declared_at); 4257 } 4258 return false; 4259 } 4260 4261 // Check for an existing class method with the given selector name. 4262 if (CfToNs && CMId) { 4263 Selector Sel = Context.Selectors.getUnarySelector(CMId); 4264 ClassMethod = RelatedClass->lookupMethod(Sel, false); 4265 if (!ClassMethod) { 4266 if (Diagnose) { 4267 Diag(Loc, diag::err_objc_bridged_related_known_method) 4268 << SrcType << DestType << Sel << false; 4269 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4270 } 4271 return false; 4272 } 4273 } 4274 4275 // Check for an existing instance method with the given selector name. 4276 if (!CfToNs && IMId) { 4277 Selector Sel = Context.Selectors.getNullarySelector(IMId); 4278 InstanceMethod = RelatedClass->lookupMethod(Sel, true); 4279 if (!InstanceMethod) { 4280 if (Diagnose) { 4281 Diag(Loc, diag::err_objc_bridged_related_known_method) 4282 << SrcType << DestType << Sel << true; 4283 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4284 } 4285 return false; 4286 } 4287 } 4288 return true; 4289 } 4290 4291 bool 4292 Sema::CheckObjCBridgeRelatedConversions(SourceLocation Loc, 4293 QualType DestType, QualType SrcType, 4294 Expr *&SrcExpr, bool Diagnose) { 4295 ARCConversionTypeClass rhsExprACTC = classifyTypeForARCConversion(SrcType); 4296 ARCConversionTypeClass lhsExprACTC = classifyTypeForARCConversion(DestType); 4297 bool CfToNs = (rhsExprACTC == ACTC_coreFoundation && lhsExprACTC == ACTC_retainable); 4298 bool NsToCf = (rhsExprACTC == ACTC_retainable && lhsExprACTC == ACTC_coreFoundation); 4299 if (!CfToNs && !NsToCf) 4300 return false; 4301 4302 ObjCInterfaceDecl *RelatedClass; 4303 ObjCMethodDecl *ClassMethod = nullptr; 4304 ObjCMethodDecl *InstanceMethod = nullptr; 4305 TypedefNameDecl *TDNDecl = nullptr; 4306 if (!checkObjCBridgeRelatedComponents(Loc, DestType, SrcType, RelatedClass, 4307 ClassMethod, InstanceMethod, TDNDecl, 4308 CfToNs, Diagnose)) 4309 return false; 4310 4311 if (CfToNs) { 4312 // Implicit conversion from CF to ObjC object is needed. 4313 if (ClassMethod) { 4314 if (Diagnose) { 4315 std::string ExpressionString = "["; 4316 ExpressionString += RelatedClass->getNameAsString(); 4317 ExpressionString += " "; 4318 ExpressionString += ClassMethod->getSelector().getAsString(); 4319 SourceLocation SrcExprEndLoc = 4320 getLocForEndOfToken(SrcExpr->getEndLoc()); 4321 // Provide a fixit: [RelatedClass ClassMethod SrcExpr] 4322 Diag(Loc, diag::err_objc_bridged_related_known_method) 4323 << SrcType << DestType << ClassMethod->getSelector() << false 4324 << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), 4325 ExpressionString) 4326 << FixItHint::CreateInsertion(SrcExprEndLoc, "]"); 4327 Diag(RelatedClass->getBeginLoc(), diag::note_declared_at); 4328 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4329 4330 QualType receiverType = Context.getObjCInterfaceType(RelatedClass); 4331 // Argument. 4332 Expr *args[] = { SrcExpr }; 4333 ExprResult msg = BuildClassMessageImplicit(receiverType, false, 4334 ClassMethod->getLocation(), 4335 ClassMethod->getSelector(), ClassMethod, 4336 MultiExprArg(args, 1)); 4337 SrcExpr = msg.get(); 4338 } 4339 return true; 4340 } 4341 } 4342 else { 4343 // Implicit conversion from ObjC type to CF object is needed. 4344 if (InstanceMethod) { 4345 if (Diagnose) { 4346 std::string ExpressionString; 4347 SourceLocation SrcExprEndLoc = 4348 getLocForEndOfToken(SrcExpr->getEndLoc()); 4349 if (InstanceMethod->isPropertyAccessor()) 4350 if (const ObjCPropertyDecl *PDecl = 4351 InstanceMethod->findPropertyDecl()) { 4352 // fixit: ObjectExpr.propertyname when it is aproperty accessor. 4353 ExpressionString = "."; 4354 ExpressionString += PDecl->getNameAsString(); 4355 Diag(Loc, diag::err_objc_bridged_related_known_method) 4356 << SrcType << DestType << InstanceMethod->getSelector() << true 4357 << FixItHint::CreateInsertion(SrcExprEndLoc, ExpressionString); 4358 } 4359 if (ExpressionString.empty()) { 4360 // Provide a fixit: [ObjectExpr InstanceMethod] 4361 ExpressionString = " "; 4362 ExpressionString += InstanceMethod->getSelector().getAsString(); 4363 ExpressionString += "]"; 4364 4365 Diag(Loc, diag::err_objc_bridged_related_known_method) 4366 << SrcType << DestType << InstanceMethod->getSelector() << true 4367 << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), "[") 4368 << FixItHint::CreateInsertion(SrcExprEndLoc, ExpressionString); 4369 } 4370 Diag(RelatedClass->getBeginLoc(), diag::note_declared_at); 4371 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4372 4373 ExprResult msg = 4374 BuildInstanceMessageImplicit(SrcExpr, SrcType, 4375 InstanceMethod->getLocation(), 4376 InstanceMethod->getSelector(), 4377 InstanceMethod, None); 4378 SrcExpr = msg.get(); 4379 } 4380 return true; 4381 } 4382 } 4383 return false; 4384 } 4385 4386 Sema::ARCConversionResult 4387 Sema::CheckObjCConversion(SourceRange castRange, QualType castType, 4388 Expr *&castExpr, CheckedConversionKind CCK, 4389 bool Diagnose, bool DiagnoseCFAudited, 4390 BinaryOperatorKind Opc) { 4391 QualType castExprType = castExpr->getType(); 4392 4393 // For the purposes of the classification, we assume reference types 4394 // will bind to temporaries. 4395 QualType effCastType = castType; 4396 if (const ReferenceType *ref = castType->getAs<ReferenceType>()) 4397 effCastType = ref->getPointeeType(); 4398 4399 ARCConversionTypeClass exprACTC = classifyTypeForARCConversion(castExprType); 4400 ARCConversionTypeClass castACTC = classifyTypeForARCConversion(effCastType); 4401 if (exprACTC == castACTC) { 4402 // Check for viability and report error if casting an rvalue to a 4403 // life-time qualifier. 4404 if (castACTC == ACTC_retainable && 4405 (CCK == CCK_CStyleCast || CCK == CCK_OtherCast) && 4406 castType != castExprType) { 4407 const Type *DT = castType.getTypePtr(); 4408 QualType QDT = castType; 4409 // We desugar some types but not others. We ignore those 4410 // that cannot happen in a cast; i.e. auto, and those which 4411 // should not be de-sugared; i.e typedef. 4412 if (const ParenType *PT = dyn_cast<ParenType>(DT)) 4413 QDT = PT->desugar(); 4414 else if (const TypeOfType *TP = dyn_cast<TypeOfType>(DT)) 4415 QDT = TP->desugar(); 4416 else if (const AttributedType *AT = dyn_cast<AttributedType>(DT)) 4417 QDT = AT->desugar(); 4418 if (QDT != castType && 4419 QDT.getObjCLifetime() != Qualifiers::OCL_None) { 4420 if (Diagnose) { 4421 SourceLocation loc = (castRange.isValid() ? castRange.getBegin() 4422 : castExpr->getExprLoc()); 4423 Diag(loc, diag::err_arc_nolifetime_behavior); 4424 } 4425 return ACR_error; 4426 } 4427 } 4428 return ACR_okay; 4429 } 4430 4431 // The life-time qualifier cast check above is all we need for ObjCWeak. 4432 // ObjCAutoRefCount has more restrictions on what is legal. 4433 if (!getLangOpts().ObjCAutoRefCount) 4434 return ACR_okay; 4435 4436 if (isAnyCLike(exprACTC) && isAnyCLike(castACTC)) return ACR_okay; 4437 4438 // Allow all of these types to be cast to integer types (but not 4439 // vice-versa). 4440 if (castACTC == ACTC_none && castType->isIntegralType(Context)) 4441 return ACR_okay; 4442 4443 // Allow casts between pointers to lifetime types (e.g., __strong id*) 4444 // and pointers to void (e.g., cv void *). Casting from void* to lifetime* 4445 // must be explicit. 4446 if (exprACTC == ACTC_indirectRetainable && castACTC == ACTC_voidPtr) 4447 return ACR_okay; 4448 if (castACTC == ACTC_indirectRetainable && exprACTC == ACTC_voidPtr && 4449 isCast(CCK)) 4450 return ACR_okay; 4451 4452 switch (ARCCastChecker(Context, exprACTC, castACTC, false).Visit(castExpr)) { 4453 // For invalid casts, fall through. 4454 case ACC_invalid: 4455 break; 4456 4457 // Do nothing for both bottom and +0. 4458 case ACC_bottom: 4459 case ACC_plusZero: 4460 return ACR_okay; 4461 4462 // If the result is +1, consume it here. 4463 case ACC_plusOne: 4464 castExpr = ImplicitCastExpr::Create(Context, castExpr->getType(), 4465 CK_ARCConsumeObject, castExpr, 4466 nullptr, VK_RValue); 4467 Cleanup.setExprNeedsCleanups(true); 4468 return ACR_okay; 4469 } 4470 4471 // If this is a non-implicit cast from id or block type to a 4472 // CoreFoundation type, delay complaining in case the cast is used 4473 // in an acceptable context. 4474 if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC) && isCast(CCK)) 4475 return ACR_unbridged; 4476 4477 // Issue a diagnostic about a missing @-sign when implicit casting a cstring 4478 // to 'NSString *', instead of falling through to report a "bridge cast" 4479 // diagnostic. 4480 if (castACTC == ACTC_retainable && exprACTC == ACTC_none && 4481 CheckConversionToObjCLiteral(castType, castExpr, Diagnose)) 4482 return ACR_error; 4483 4484 // Do not issue "bridge cast" diagnostic when implicit casting 4485 // a retainable object to a CF type parameter belonging to an audited 4486 // CF API function. Let caller issue a normal type mismatched diagnostic 4487 // instead. 4488 if ((!DiagnoseCFAudited || exprACTC != ACTC_retainable || 4489 castACTC != ACTC_coreFoundation) && 4490 !(exprACTC == ACTC_voidPtr && castACTC == ACTC_retainable && 4491 (Opc == BO_NE || Opc == BO_EQ))) { 4492 if (Diagnose) 4493 diagnoseObjCARCConversion(*this, castRange, castType, castACTC, castExpr, 4494 castExpr, exprACTC, CCK); 4495 return ACR_error; 4496 } 4497 return ACR_okay; 4498 } 4499 4500 /// Given that we saw an expression with the ARCUnbridgedCastTy 4501 /// placeholder type, complain bitterly. 4502 void Sema::diagnoseARCUnbridgedCast(Expr *e) { 4503 // We expect the spurious ImplicitCastExpr to already have been stripped. 4504 assert(!e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)); 4505 CastExpr *realCast = cast<CastExpr>(e->IgnoreParens()); 4506 4507 SourceRange castRange; 4508 QualType castType; 4509 CheckedConversionKind CCK; 4510 4511 if (CStyleCastExpr *cast = dyn_cast<CStyleCastExpr>(realCast)) { 4512 castRange = SourceRange(cast->getLParenLoc(), cast->getRParenLoc()); 4513 castType = cast->getTypeAsWritten(); 4514 CCK = CCK_CStyleCast; 4515 } else if (ExplicitCastExpr *cast = dyn_cast<ExplicitCastExpr>(realCast)) { 4516 castRange = cast->getTypeInfoAsWritten()->getTypeLoc().getSourceRange(); 4517 castType = cast->getTypeAsWritten(); 4518 CCK = CCK_OtherCast; 4519 } else { 4520 llvm_unreachable("Unexpected ImplicitCastExpr"); 4521 } 4522 4523 ARCConversionTypeClass castACTC = 4524 classifyTypeForARCConversion(castType.getNonReferenceType()); 4525 4526 Expr *castExpr = realCast->getSubExpr(); 4527 assert(classifyTypeForARCConversion(castExpr->getType()) == ACTC_retainable); 4528 4529 diagnoseObjCARCConversion(*this, castRange, castType, castACTC, 4530 castExpr, realCast, ACTC_retainable, CCK); 4531 } 4532 4533 /// stripARCUnbridgedCast - Given an expression of ARCUnbridgedCast 4534 /// type, remove the placeholder cast. 4535 Expr *Sema::stripARCUnbridgedCast(Expr *e) { 4536 assert(e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)); 4537 4538 if (ParenExpr *pe = dyn_cast<ParenExpr>(e)) { 4539 Expr *sub = stripARCUnbridgedCast(pe->getSubExpr()); 4540 return new (Context) ParenExpr(pe->getLParen(), pe->getRParen(), sub); 4541 } else if (UnaryOperator *uo = dyn_cast<UnaryOperator>(e)) { 4542 assert(uo->getOpcode() == UO_Extension); 4543 Expr *sub = stripARCUnbridgedCast(uo->getSubExpr()); 4544 return UnaryOperator::Create(Context, sub, UO_Extension, sub->getType(), 4545 sub->getValueKind(), sub->getObjectKind(), 4546 uo->getOperatorLoc(), false, 4547 CurFPFeatureOverrides()); 4548 } else if (GenericSelectionExpr *gse = dyn_cast<GenericSelectionExpr>(e)) { 4549 assert(!gse->isResultDependent()); 4550 4551 unsigned n = gse->getNumAssocs(); 4552 SmallVector<Expr *, 4> subExprs; 4553 SmallVector<TypeSourceInfo *, 4> subTypes; 4554 subExprs.reserve(n); 4555 subTypes.reserve(n); 4556 for (const GenericSelectionExpr::Association assoc : gse->associations()) { 4557 subTypes.push_back(assoc.getTypeSourceInfo()); 4558 Expr *sub = assoc.getAssociationExpr(); 4559 if (assoc.isSelected()) 4560 sub = stripARCUnbridgedCast(sub); 4561 subExprs.push_back(sub); 4562 } 4563 4564 return GenericSelectionExpr::Create( 4565 Context, gse->getGenericLoc(), gse->getControllingExpr(), subTypes, 4566 subExprs, gse->getDefaultLoc(), gse->getRParenLoc(), 4567 gse->containsUnexpandedParameterPack(), gse->getResultIndex()); 4568 } else { 4569 assert(isa<ImplicitCastExpr>(e) && "bad form of unbridged cast!"); 4570 return cast<ImplicitCastExpr>(e)->getSubExpr(); 4571 } 4572 } 4573 4574 bool Sema::CheckObjCARCUnavailableWeakConversion(QualType castType, 4575 QualType exprType) { 4576 QualType canCastType = 4577 Context.getCanonicalType(castType).getUnqualifiedType(); 4578 QualType canExprType = 4579 Context.getCanonicalType(exprType).getUnqualifiedType(); 4580 if (isa<ObjCObjectPointerType>(canCastType) && 4581 castType.getObjCLifetime() == Qualifiers::OCL_Weak && 4582 canExprType->isObjCObjectPointerType()) { 4583 if (const ObjCObjectPointerType *ObjT = 4584 canExprType->getAs<ObjCObjectPointerType>()) 4585 if (const ObjCInterfaceDecl *ObjI = ObjT->getInterfaceDecl()) 4586 return !ObjI->isArcWeakrefUnavailable(); 4587 } 4588 return true; 4589 } 4590 4591 /// Look for an ObjCReclaimReturnedObject cast and destroy it. 4592 static Expr *maybeUndoReclaimObject(Expr *e) { 4593 Expr *curExpr = e, *prevExpr = nullptr; 4594 4595 // Walk down the expression until we hit an implicit cast of kind 4596 // ARCReclaimReturnedObject or an Expr that is neither a Paren nor a Cast. 4597 while (true) { 4598 if (auto *pe = dyn_cast<ParenExpr>(curExpr)) { 4599 prevExpr = curExpr; 4600 curExpr = pe->getSubExpr(); 4601 continue; 4602 } 4603 4604 if (auto *ce = dyn_cast<CastExpr>(curExpr)) { 4605 if (auto *ice = dyn_cast<ImplicitCastExpr>(ce)) 4606 if (ice->getCastKind() == CK_ARCReclaimReturnedObject) { 4607 if (!prevExpr) 4608 return ice->getSubExpr(); 4609 if (auto *pe = dyn_cast<ParenExpr>(prevExpr)) 4610 pe->setSubExpr(ice->getSubExpr()); 4611 else 4612 cast<CastExpr>(prevExpr)->setSubExpr(ice->getSubExpr()); 4613 return e; 4614 } 4615 4616 prevExpr = curExpr; 4617 curExpr = ce->getSubExpr(); 4618 continue; 4619 } 4620 4621 // Break out of the loop if curExpr is neither a Paren nor a Cast. 4622 break; 4623 } 4624 4625 return e; 4626 } 4627 4628 ExprResult Sema::BuildObjCBridgedCast(SourceLocation LParenLoc, 4629 ObjCBridgeCastKind Kind, 4630 SourceLocation BridgeKeywordLoc, 4631 TypeSourceInfo *TSInfo, 4632 Expr *SubExpr) { 4633 ExprResult SubResult = UsualUnaryConversions(SubExpr); 4634 if (SubResult.isInvalid()) return ExprError(); 4635 SubExpr = SubResult.get(); 4636 4637 QualType T = TSInfo->getType(); 4638 QualType FromType = SubExpr->getType(); 4639 4640 CastKind CK; 4641 4642 bool MustConsume = false; 4643 if (T->isDependentType() || SubExpr->isTypeDependent()) { 4644 // Okay: we'll build a dependent expression type. 4645 CK = CK_Dependent; 4646 } else if (T->isObjCARCBridgableType() && FromType->isCARCBridgableType()) { 4647 // Casting CF -> id 4648 CK = (T->isBlockPointerType() ? CK_AnyPointerToBlockPointerCast 4649 : CK_CPointerToObjCPointerCast); 4650 switch (Kind) { 4651 case OBC_Bridge: 4652 break; 4653 4654 case OBC_BridgeRetained: { 4655 bool br = isKnownName("CFBridgingRelease"); 4656 Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind) 4657 << 2 4658 << FromType 4659 << (T->isBlockPointerType()? 1 : 0) 4660 << T 4661 << SubExpr->getSourceRange() 4662 << Kind; 4663 Diag(BridgeKeywordLoc, diag::note_arc_bridge) 4664 << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge"); 4665 Diag(BridgeKeywordLoc, diag::note_arc_bridge_transfer) 4666 << FromType << br 4667 << FixItHint::CreateReplacement(BridgeKeywordLoc, 4668 br ? "CFBridgingRelease " 4669 : "__bridge_transfer "); 4670 4671 Kind = OBC_Bridge; 4672 break; 4673 } 4674 4675 case OBC_BridgeTransfer: 4676 // We must consume the Objective-C object produced by the cast. 4677 MustConsume = true; 4678 break; 4679 } 4680 } else if (T->isCARCBridgableType() && FromType->isObjCARCBridgableType()) { 4681 // Okay: id -> CF 4682 CK = CK_BitCast; 4683 switch (Kind) { 4684 case OBC_Bridge: 4685 // Reclaiming a value that's going to be __bridge-casted to CF 4686 // is very dangerous, so we don't do it. 4687 SubExpr = maybeUndoReclaimObject(SubExpr); 4688 break; 4689 4690 case OBC_BridgeRetained: 4691 // Produce the object before casting it. 4692 SubExpr = ImplicitCastExpr::Create(Context, FromType, 4693 CK_ARCProduceObject, 4694 SubExpr, nullptr, VK_RValue); 4695 break; 4696 4697 case OBC_BridgeTransfer: { 4698 bool br = isKnownName("CFBridgingRetain"); 4699 Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind) 4700 << (FromType->isBlockPointerType()? 1 : 0) 4701 << FromType 4702 << 2 4703 << T 4704 << SubExpr->getSourceRange() 4705 << Kind; 4706 4707 Diag(BridgeKeywordLoc, diag::note_arc_bridge) 4708 << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge "); 4709 Diag(BridgeKeywordLoc, diag::note_arc_bridge_retained) 4710 << T << br 4711 << FixItHint::CreateReplacement(BridgeKeywordLoc, 4712 br ? "CFBridgingRetain " : "__bridge_retained"); 4713 4714 Kind = OBC_Bridge; 4715 break; 4716 } 4717 } 4718 } else { 4719 Diag(LParenLoc, diag::err_arc_bridge_cast_incompatible) 4720 << FromType << T << Kind 4721 << SubExpr->getSourceRange() 4722 << TSInfo->getTypeLoc().getSourceRange(); 4723 return ExprError(); 4724 } 4725 4726 Expr *Result = new (Context) ObjCBridgedCastExpr(LParenLoc, Kind, CK, 4727 BridgeKeywordLoc, 4728 TSInfo, SubExpr); 4729 4730 if (MustConsume) { 4731 Cleanup.setExprNeedsCleanups(true); 4732 Result = ImplicitCastExpr::Create(Context, T, CK_ARCConsumeObject, Result, 4733 nullptr, VK_RValue); 4734 } 4735 4736 return Result; 4737 } 4738 4739 ExprResult Sema::ActOnObjCBridgedCast(Scope *S, 4740 SourceLocation LParenLoc, 4741 ObjCBridgeCastKind Kind, 4742 SourceLocation BridgeKeywordLoc, 4743 ParsedType Type, 4744 SourceLocation RParenLoc, 4745 Expr *SubExpr) { 4746 TypeSourceInfo *TSInfo = nullptr; 4747 QualType T = GetTypeFromParser(Type, &TSInfo); 4748 if (Kind == OBC_Bridge) 4749 CheckTollFreeBridgeCast(T, SubExpr); 4750 if (!TSInfo) 4751 TSInfo = Context.getTrivialTypeSourceInfo(T, LParenLoc); 4752 return BuildObjCBridgedCast(LParenLoc, Kind, BridgeKeywordLoc, TSInfo, 4753 SubExpr); 4754 } 4755