1 //===--- SemaExprObjC.cpp - Semantic Analysis for ObjC Expressions --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for Objective-C expressions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/DeclObjC.h" 15 #include "clang/AST/ExprObjC.h" 16 #include "clang/AST/StmtVisitor.h" 17 #include "clang/AST/TypeLoc.h" 18 #include "clang/Analysis/DomainSpecific/CocoaConventions.h" 19 #include "clang/Basic/Builtins.h" 20 #include "clang/Edit/Commit.h" 21 #include "clang/Edit/Rewriters.h" 22 #include "clang/Lex/Preprocessor.h" 23 #include "clang/Sema/Initialization.h" 24 #include "clang/Sema/Lookup.h" 25 #include "clang/Sema/Scope.h" 26 #include "clang/Sema/ScopeInfo.h" 27 #include "clang/Sema/SemaInternal.h" 28 #include "llvm/ADT/SmallString.h" 29 #include "llvm/Support/ConvertUTF.h" 30 31 using namespace clang; 32 using namespace sema; 33 using llvm::makeArrayRef; 34 35 ExprResult Sema::ParseObjCStringLiteral(SourceLocation *AtLocs, 36 ArrayRef<Expr *> Strings) { 37 // Most ObjC strings are formed out of a single piece. However, we *can* 38 // have strings formed out of multiple @ strings with multiple pptokens in 39 // each one, e.g. @"foo" "bar" @"baz" "qux" which need to be turned into one 40 // StringLiteral for ObjCStringLiteral to hold onto. 41 StringLiteral *S = cast<StringLiteral>(Strings[0]); 42 43 // If we have a multi-part string, merge it all together. 44 if (Strings.size() != 1) { 45 // Concatenate objc strings. 46 SmallString<128> StrBuf; 47 SmallVector<SourceLocation, 8> StrLocs; 48 49 for (Expr *E : Strings) { 50 S = cast<StringLiteral>(E); 51 52 // ObjC strings can't be wide or UTF. 53 if (!S->isAscii()) { 54 Diag(S->getBeginLoc(), diag::err_cfstring_literal_not_string_constant) 55 << S->getSourceRange(); 56 return true; 57 } 58 59 // Append the string. 60 StrBuf += S->getString(); 61 62 // Get the locations of the string tokens. 63 StrLocs.append(S->tokloc_begin(), S->tokloc_end()); 64 } 65 66 // Create the aggregate string with the appropriate content and location 67 // information. 68 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 69 assert(CAT && "String literal not of constant array type!"); 70 QualType StrTy = Context.getConstantArrayType( 71 CAT->getElementType(), llvm::APInt(32, StrBuf.size() + 1), nullptr, 72 CAT->getSizeModifier(), CAT->getIndexTypeCVRQualifiers()); 73 S = StringLiteral::Create(Context, StrBuf, StringLiteral::Ascii, 74 /*Pascal=*/false, StrTy, &StrLocs[0], 75 StrLocs.size()); 76 } 77 78 return BuildObjCStringLiteral(AtLocs[0], S); 79 } 80 81 ExprResult Sema::BuildObjCStringLiteral(SourceLocation AtLoc, StringLiteral *S){ 82 // Verify that this composite string is acceptable for ObjC strings. 83 if (CheckObjCString(S)) 84 return true; 85 86 // Initialize the constant string interface lazily. This assumes 87 // the NSString interface is seen in this translation unit. Note: We 88 // don't use NSConstantString, since the runtime team considers this 89 // interface private (even though it appears in the header files). 90 QualType Ty = Context.getObjCConstantStringInterface(); 91 if (!Ty.isNull()) { 92 Ty = Context.getObjCObjectPointerType(Ty); 93 } else if (getLangOpts().NoConstantCFStrings) { 94 IdentifierInfo *NSIdent=nullptr; 95 std::string StringClass(getLangOpts().ObjCConstantStringClass); 96 97 if (StringClass.empty()) 98 NSIdent = &Context.Idents.get("NSConstantString"); 99 else 100 NSIdent = &Context.Idents.get(StringClass); 101 102 NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLoc, 103 LookupOrdinaryName); 104 if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) { 105 Context.setObjCConstantStringInterface(StrIF); 106 Ty = Context.getObjCConstantStringInterface(); 107 Ty = Context.getObjCObjectPointerType(Ty); 108 } else { 109 // If there is no NSConstantString interface defined then treat this 110 // as error and recover from it. 111 Diag(S->getBeginLoc(), diag::err_no_nsconstant_string_class) 112 << NSIdent << S->getSourceRange(); 113 Ty = Context.getObjCIdType(); 114 } 115 } else { 116 IdentifierInfo *NSIdent = NSAPIObj->getNSClassId(NSAPI::ClassId_NSString); 117 NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLoc, 118 LookupOrdinaryName); 119 if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) { 120 Context.setObjCConstantStringInterface(StrIF); 121 Ty = Context.getObjCConstantStringInterface(); 122 Ty = Context.getObjCObjectPointerType(Ty); 123 } else { 124 // If there is no NSString interface defined, implicitly declare 125 // a @class NSString; and use that instead. This is to make sure 126 // type of an NSString literal is represented correctly, instead of 127 // being an 'id' type. 128 Ty = Context.getObjCNSStringType(); 129 if (Ty.isNull()) { 130 ObjCInterfaceDecl *NSStringIDecl = 131 ObjCInterfaceDecl::Create (Context, 132 Context.getTranslationUnitDecl(), 133 SourceLocation(), NSIdent, 134 nullptr, nullptr, SourceLocation()); 135 Ty = Context.getObjCInterfaceType(NSStringIDecl); 136 Context.setObjCNSStringType(Ty); 137 } 138 Ty = Context.getObjCObjectPointerType(Ty); 139 } 140 } 141 142 return new (Context) ObjCStringLiteral(S, Ty, AtLoc); 143 } 144 145 /// Emits an error if the given method does not exist, or if the return 146 /// type is not an Objective-C object. 147 static bool validateBoxingMethod(Sema &S, SourceLocation Loc, 148 const ObjCInterfaceDecl *Class, 149 Selector Sel, const ObjCMethodDecl *Method) { 150 if (!Method) { 151 // FIXME: Is there a better way to avoid quotes than using getName()? 152 S.Diag(Loc, diag::err_undeclared_boxing_method) << Sel << Class->getName(); 153 return false; 154 } 155 156 // Make sure the return type is reasonable. 157 QualType ReturnType = Method->getReturnType(); 158 if (!ReturnType->isObjCObjectPointerType()) { 159 S.Diag(Loc, diag::err_objc_literal_method_sig) 160 << Sel; 161 S.Diag(Method->getLocation(), diag::note_objc_literal_method_return) 162 << ReturnType; 163 return false; 164 } 165 166 return true; 167 } 168 169 /// Maps ObjCLiteralKind to NSClassIdKindKind 170 static NSAPI::NSClassIdKindKind ClassKindFromLiteralKind( 171 Sema::ObjCLiteralKind LiteralKind) { 172 switch (LiteralKind) { 173 case Sema::LK_Array: 174 return NSAPI::ClassId_NSArray; 175 case Sema::LK_Dictionary: 176 return NSAPI::ClassId_NSDictionary; 177 case Sema::LK_Numeric: 178 return NSAPI::ClassId_NSNumber; 179 case Sema::LK_String: 180 return NSAPI::ClassId_NSString; 181 case Sema::LK_Boxed: 182 return NSAPI::ClassId_NSValue; 183 184 // there is no corresponding matching 185 // between LK_None/LK_Block and NSClassIdKindKind 186 case Sema::LK_Block: 187 case Sema::LK_None: 188 break; 189 } 190 llvm_unreachable("LiteralKind can't be converted into a ClassKind"); 191 } 192 193 /// Validates ObjCInterfaceDecl availability. 194 /// ObjCInterfaceDecl, used to create ObjC literals, should be defined 195 /// if clang not in a debugger mode. 196 static bool ValidateObjCLiteralInterfaceDecl(Sema &S, ObjCInterfaceDecl *Decl, 197 SourceLocation Loc, 198 Sema::ObjCLiteralKind LiteralKind) { 199 if (!Decl) { 200 NSAPI::NSClassIdKindKind Kind = ClassKindFromLiteralKind(LiteralKind); 201 IdentifierInfo *II = S.NSAPIObj->getNSClassId(Kind); 202 S.Diag(Loc, diag::err_undeclared_objc_literal_class) 203 << II->getName() << LiteralKind; 204 return false; 205 } else if (!Decl->hasDefinition() && !S.getLangOpts().DebuggerObjCLiteral) { 206 S.Diag(Loc, diag::err_undeclared_objc_literal_class) 207 << Decl->getName() << LiteralKind; 208 S.Diag(Decl->getLocation(), diag::note_forward_class); 209 return false; 210 } 211 212 return true; 213 } 214 215 /// Looks up ObjCInterfaceDecl of a given NSClassIdKindKind. 216 /// Used to create ObjC literals, such as NSDictionary (@{}), 217 /// NSArray (@[]) and Boxed Expressions (@()) 218 static ObjCInterfaceDecl *LookupObjCInterfaceDeclForLiteral(Sema &S, 219 SourceLocation Loc, 220 Sema::ObjCLiteralKind LiteralKind) { 221 NSAPI::NSClassIdKindKind ClassKind = ClassKindFromLiteralKind(LiteralKind); 222 IdentifierInfo *II = S.NSAPIObj->getNSClassId(ClassKind); 223 NamedDecl *IF = S.LookupSingleName(S.TUScope, II, Loc, 224 Sema::LookupOrdinaryName); 225 ObjCInterfaceDecl *ID = dyn_cast_or_null<ObjCInterfaceDecl>(IF); 226 if (!ID && S.getLangOpts().DebuggerObjCLiteral) { 227 ASTContext &Context = S.Context; 228 TranslationUnitDecl *TU = Context.getTranslationUnitDecl(); 229 ID = ObjCInterfaceDecl::Create (Context, TU, SourceLocation(), II, 230 nullptr, nullptr, SourceLocation()); 231 } 232 233 if (!ValidateObjCLiteralInterfaceDecl(S, ID, Loc, LiteralKind)) { 234 ID = nullptr; 235 } 236 237 return ID; 238 } 239 240 /// Retrieve the NSNumber factory method that should be used to create 241 /// an Objective-C literal for the given type. 242 static ObjCMethodDecl *getNSNumberFactoryMethod(Sema &S, SourceLocation Loc, 243 QualType NumberType, 244 bool isLiteral = false, 245 SourceRange R = SourceRange()) { 246 Optional<NSAPI::NSNumberLiteralMethodKind> Kind = 247 S.NSAPIObj->getNSNumberFactoryMethodKind(NumberType); 248 249 if (!Kind) { 250 if (isLiteral) { 251 S.Diag(Loc, diag::err_invalid_nsnumber_type) 252 << NumberType << R; 253 } 254 return nullptr; 255 } 256 257 // If we already looked up this method, we're done. 258 if (S.NSNumberLiteralMethods[*Kind]) 259 return S.NSNumberLiteralMethods[*Kind]; 260 261 Selector Sel = S.NSAPIObj->getNSNumberLiteralSelector(*Kind, 262 /*Instance=*/false); 263 264 ASTContext &CX = S.Context; 265 266 // Look up the NSNumber class, if we haven't done so already. It's cached 267 // in the Sema instance. 268 if (!S.NSNumberDecl) { 269 S.NSNumberDecl = LookupObjCInterfaceDeclForLiteral(S, Loc, 270 Sema::LK_Numeric); 271 if (!S.NSNumberDecl) { 272 return nullptr; 273 } 274 } 275 276 if (S.NSNumberPointer.isNull()) { 277 // generate the pointer to NSNumber type. 278 QualType NSNumberObject = CX.getObjCInterfaceType(S.NSNumberDecl); 279 S.NSNumberPointer = CX.getObjCObjectPointerType(NSNumberObject); 280 } 281 282 // Look for the appropriate method within NSNumber. 283 ObjCMethodDecl *Method = S.NSNumberDecl->lookupClassMethod(Sel); 284 if (!Method && S.getLangOpts().DebuggerObjCLiteral) { 285 // create a stub definition this NSNumber factory method. 286 TypeSourceInfo *ReturnTInfo = nullptr; 287 Method = 288 ObjCMethodDecl::Create(CX, SourceLocation(), SourceLocation(), Sel, 289 S.NSNumberPointer, ReturnTInfo, S.NSNumberDecl, 290 /*isInstance=*/false, /*isVariadic=*/false, 291 /*isPropertyAccessor=*/false, 292 /*isSynthesizedAccessorStub=*/false, 293 /*isImplicitlyDeclared=*/true, 294 /*isDefined=*/false, ObjCMethodDecl::Required, 295 /*HasRelatedResultType=*/false); 296 ParmVarDecl *value = ParmVarDecl::Create(S.Context, Method, 297 SourceLocation(), SourceLocation(), 298 &CX.Idents.get("value"), 299 NumberType, /*TInfo=*/nullptr, 300 SC_None, nullptr); 301 Method->setMethodParams(S.Context, value, None); 302 } 303 304 if (!validateBoxingMethod(S, Loc, S.NSNumberDecl, Sel, Method)) 305 return nullptr; 306 307 // Note: if the parameter type is out-of-line, we'll catch it later in the 308 // implicit conversion. 309 310 S.NSNumberLiteralMethods[*Kind] = Method; 311 return Method; 312 } 313 314 /// BuildObjCNumericLiteral - builds an ObjCBoxedExpr AST node for the 315 /// numeric literal expression. Type of the expression will be "NSNumber *". 316 ExprResult Sema::BuildObjCNumericLiteral(SourceLocation AtLoc, Expr *Number) { 317 // Determine the type of the literal. 318 QualType NumberType = Number->getType(); 319 if (CharacterLiteral *Char = dyn_cast<CharacterLiteral>(Number)) { 320 // In C, character literals have type 'int'. That's not the type we want 321 // to use to determine the Objective-c literal kind. 322 switch (Char->getKind()) { 323 case CharacterLiteral::Ascii: 324 case CharacterLiteral::UTF8: 325 NumberType = Context.CharTy; 326 break; 327 328 case CharacterLiteral::Wide: 329 NumberType = Context.getWideCharType(); 330 break; 331 332 case CharacterLiteral::UTF16: 333 NumberType = Context.Char16Ty; 334 break; 335 336 case CharacterLiteral::UTF32: 337 NumberType = Context.Char32Ty; 338 break; 339 } 340 } 341 342 // Look for the appropriate method within NSNumber. 343 // Construct the literal. 344 SourceRange NR(Number->getSourceRange()); 345 ObjCMethodDecl *Method = getNSNumberFactoryMethod(*this, AtLoc, NumberType, 346 true, NR); 347 if (!Method) 348 return ExprError(); 349 350 // Convert the number to the type that the parameter expects. 351 ParmVarDecl *ParamDecl = Method->parameters()[0]; 352 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 353 ParamDecl); 354 ExprResult ConvertedNumber = PerformCopyInitialization(Entity, 355 SourceLocation(), 356 Number); 357 if (ConvertedNumber.isInvalid()) 358 return ExprError(); 359 Number = ConvertedNumber.get(); 360 361 // Use the effective source range of the literal, including the leading '@'. 362 return MaybeBindToTemporary( 363 new (Context) ObjCBoxedExpr(Number, NSNumberPointer, Method, 364 SourceRange(AtLoc, NR.getEnd()))); 365 } 366 367 ExprResult Sema::ActOnObjCBoolLiteral(SourceLocation AtLoc, 368 SourceLocation ValueLoc, 369 bool Value) { 370 ExprResult Inner; 371 if (getLangOpts().CPlusPlus) { 372 Inner = ActOnCXXBoolLiteral(ValueLoc, Value? tok::kw_true : tok::kw_false); 373 } else { 374 // C doesn't actually have a way to represent literal values of type 375 // _Bool. So, we'll use 0/1 and implicit cast to _Bool. 376 Inner = ActOnIntegerConstant(ValueLoc, Value? 1 : 0); 377 Inner = ImpCastExprToType(Inner.get(), Context.BoolTy, 378 CK_IntegralToBoolean); 379 } 380 381 return BuildObjCNumericLiteral(AtLoc, Inner.get()); 382 } 383 384 /// Check that the given expression is a valid element of an Objective-C 385 /// collection literal. 386 static ExprResult CheckObjCCollectionLiteralElement(Sema &S, Expr *Element, 387 QualType T, 388 bool ArrayLiteral = false) { 389 // If the expression is type-dependent, there's nothing for us to do. 390 if (Element->isTypeDependent()) 391 return Element; 392 393 ExprResult Result = S.CheckPlaceholderExpr(Element); 394 if (Result.isInvalid()) 395 return ExprError(); 396 Element = Result.get(); 397 398 // In C++, check for an implicit conversion to an Objective-C object pointer 399 // type. 400 if (S.getLangOpts().CPlusPlus && Element->getType()->isRecordType()) { 401 InitializedEntity Entity 402 = InitializedEntity::InitializeParameter(S.Context, T, 403 /*Consumed=*/false); 404 InitializationKind Kind = InitializationKind::CreateCopy( 405 Element->getBeginLoc(), SourceLocation()); 406 InitializationSequence Seq(S, Entity, Kind, Element); 407 if (!Seq.Failed()) 408 return Seq.Perform(S, Entity, Kind, Element); 409 } 410 411 Expr *OrigElement = Element; 412 413 // Perform lvalue-to-rvalue conversion. 414 Result = S.DefaultLvalueConversion(Element); 415 if (Result.isInvalid()) 416 return ExprError(); 417 Element = Result.get(); 418 419 // Make sure that we have an Objective-C pointer type or block. 420 if (!Element->getType()->isObjCObjectPointerType() && 421 !Element->getType()->isBlockPointerType()) { 422 bool Recovered = false; 423 424 // If this is potentially an Objective-C numeric literal, add the '@'. 425 if (isa<IntegerLiteral>(OrigElement) || 426 isa<CharacterLiteral>(OrigElement) || 427 isa<FloatingLiteral>(OrigElement) || 428 isa<ObjCBoolLiteralExpr>(OrigElement) || 429 isa<CXXBoolLiteralExpr>(OrigElement)) { 430 if (S.NSAPIObj->getNSNumberFactoryMethodKind(OrigElement->getType())) { 431 int Which = isa<CharacterLiteral>(OrigElement) ? 1 432 : (isa<CXXBoolLiteralExpr>(OrigElement) || 433 isa<ObjCBoolLiteralExpr>(OrigElement)) ? 2 434 : 3; 435 436 S.Diag(OrigElement->getBeginLoc(), diag::err_box_literal_collection) 437 << Which << OrigElement->getSourceRange() 438 << FixItHint::CreateInsertion(OrigElement->getBeginLoc(), "@"); 439 440 Result = 441 S.BuildObjCNumericLiteral(OrigElement->getBeginLoc(), OrigElement); 442 if (Result.isInvalid()) 443 return ExprError(); 444 445 Element = Result.get(); 446 Recovered = true; 447 } 448 } 449 // If this is potentially an Objective-C string literal, add the '@'. 450 else if (StringLiteral *String = dyn_cast<StringLiteral>(OrigElement)) { 451 if (String->isAscii()) { 452 S.Diag(OrigElement->getBeginLoc(), diag::err_box_literal_collection) 453 << 0 << OrigElement->getSourceRange() 454 << FixItHint::CreateInsertion(OrigElement->getBeginLoc(), "@"); 455 456 Result = S.BuildObjCStringLiteral(OrigElement->getBeginLoc(), String); 457 if (Result.isInvalid()) 458 return ExprError(); 459 460 Element = Result.get(); 461 Recovered = true; 462 } 463 } 464 465 if (!Recovered) { 466 S.Diag(Element->getBeginLoc(), diag::err_invalid_collection_element) 467 << Element->getType(); 468 return ExprError(); 469 } 470 } 471 if (ArrayLiteral) 472 if (ObjCStringLiteral *getString = 473 dyn_cast<ObjCStringLiteral>(OrigElement)) { 474 if (StringLiteral *SL = getString->getString()) { 475 unsigned numConcat = SL->getNumConcatenated(); 476 if (numConcat > 1) { 477 // Only warn if the concatenated string doesn't come from a macro. 478 bool hasMacro = false; 479 for (unsigned i = 0; i < numConcat ; ++i) 480 if (SL->getStrTokenLoc(i).isMacroID()) { 481 hasMacro = true; 482 break; 483 } 484 if (!hasMacro) 485 S.Diag(Element->getBeginLoc(), 486 diag::warn_concatenated_nsarray_literal) 487 << Element->getType(); 488 } 489 } 490 } 491 492 // Make sure that the element has the type that the container factory 493 // function expects. 494 return S.PerformCopyInitialization( 495 InitializedEntity::InitializeParameter(S.Context, T, 496 /*Consumed=*/false), 497 Element->getBeginLoc(), Element); 498 } 499 500 ExprResult Sema::BuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr) { 501 if (ValueExpr->isTypeDependent()) { 502 ObjCBoxedExpr *BoxedExpr = 503 new (Context) ObjCBoxedExpr(ValueExpr, Context.DependentTy, nullptr, SR); 504 return BoxedExpr; 505 } 506 ObjCMethodDecl *BoxingMethod = nullptr; 507 QualType BoxedType; 508 // Convert the expression to an RValue, so we can check for pointer types... 509 ExprResult RValue = DefaultFunctionArrayLvalueConversion(ValueExpr); 510 if (RValue.isInvalid()) { 511 return ExprError(); 512 } 513 SourceLocation Loc = SR.getBegin(); 514 ValueExpr = RValue.get(); 515 QualType ValueType(ValueExpr->getType()); 516 if (const PointerType *PT = ValueType->getAs<PointerType>()) { 517 QualType PointeeType = PT->getPointeeType(); 518 if (Context.hasSameUnqualifiedType(PointeeType, Context.CharTy)) { 519 520 if (!NSStringDecl) { 521 NSStringDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc, 522 Sema::LK_String); 523 if (!NSStringDecl) { 524 return ExprError(); 525 } 526 QualType NSStringObject = Context.getObjCInterfaceType(NSStringDecl); 527 NSStringPointer = Context.getObjCObjectPointerType(NSStringObject); 528 } 529 530 // The boxed expression can be emitted as a compile time constant if it is 531 // a string literal whose character encoding is compatible with UTF-8. 532 if (auto *CE = dyn_cast<ImplicitCastExpr>(ValueExpr)) 533 if (CE->getCastKind() == CK_ArrayToPointerDecay) 534 if (auto *SL = 535 dyn_cast<StringLiteral>(CE->getSubExpr()->IgnoreParens())) { 536 assert((SL->isAscii() || SL->isUTF8()) && 537 "unexpected character encoding"); 538 StringRef Str = SL->getString(); 539 const llvm::UTF8 *StrBegin = Str.bytes_begin(); 540 const llvm::UTF8 *StrEnd = Str.bytes_end(); 541 // Check that this is a valid UTF-8 string. 542 if (llvm::isLegalUTF8String(&StrBegin, StrEnd)) { 543 BoxedType = Context.getAttributedType( 544 AttributedType::getNullabilityAttrKind( 545 NullabilityKind::NonNull), 546 NSStringPointer, NSStringPointer); 547 return new (Context) ObjCBoxedExpr(CE, BoxedType, nullptr, SR); 548 } 549 550 Diag(SL->getBeginLoc(), diag::warn_objc_boxing_invalid_utf8_string) 551 << NSStringPointer << SL->getSourceRange(); 552 } 553 554 if (!StringWithUTF8StringMethod) { 555 IdentifierInfo *II = &Context.Idents.get("stringWithUTF8String"); 556 Selector stringWithUTF8String = Context.Selectors.getUnarySelector(II); 557 558 // Look for the appropriate method within NSString. 559 BoxingMethod = NSStringDecl->lookupClassMethod(stringWithUTF8String); 560 if (!BoxingMethod && getLangOpts().DebuggerObjCLiteral) { 561 // Debugger needs to work even if NSString hasn't been defined. 562 TypeSourceInfo *ReturnTInfo = nullptr; 563 ObjCMethodDecl *M = ObjCMethodDecl::Create( 564 Context, SourceLocation(), SourceLocation(), stringWithUTF8String, 565 NSStringPointer, ReturnTInfo, NSStringDecl, 566 /*isInstance=*/false, /*isVariadic=*/false, 567 /*isPropertyAccessor=*/false, 568 /*isSynthesizedAccessorStub=*/false, 569 /*isImplicitlyDeclared=*/true, 570 /*isDefined=*/false, ObjCMethodDecl::Required, 571 /*HasRelatedResultType=*/false); 572 QualType ConstCharType = Context.CharTy.withConst(); 573 ParmVarDecl *value = 574 ParmVarDecl::Create(Context, M, 575 SourceLocation(), SourceLocation(), 576 &Context.Idents.get("value"), 577 Context.getPointerType(ConstCharType), 578 /*TInfo=*/nullptr, 579 SC_None, nullptr); 580 M->setMethodParams(Context, value, None); 581 BoxingMethod = M; 582 } 583 584 if (!validateBoxingMethod(*this, Loc, NSStringDecl, 585 stringWithUTF8String, BoxingMethod)) 586 return ExprError(); 587 588 StringWithUTF8StringMethod = BoxingMethod; 589 } 590 591 BoxingMethod = StringWithUTF8StringMethod; 592 BoxedType = NSStringPointer; 593 // Transfer the nullability from method's return type. 594 Optional<NullabilityKind> Nullability = 595 BoxingMethod->getReturnType()->getNullability(Context); 596 if (Nullability) 597 BoxedType = Context.getAttributedType( 598 AttributedType::getNullabilityAttrKind(*Nullability), BoxedType, 599 BoxedType); 600 } 601 } else if (ValueType->isBuiltinType()) { 602 // The other types we support are numeric, char and BOOL/bool. We could also 603 // provide limited support for structure types, such as NSRange, NSRect, and 604 // NSSize. See NSValue (NSValueGeometryExtensions) in <Foundation/NSGeometry.h> 605 // for more details. 606 607 // Check for a top-level character literal. 608 if (const CharacterLiteral *Char = 609 dyn_cast<CharacterLiteral>(ValueExpr->IgnoreParens())) { 610 // In C, character literals have type 'int'. That's not the type we want 611 // to use to determine the Objective-c literal kind. 612 switch (Char->getKind()) { 613 case CharacterLiteral::Ascii: 614 case CharacterLiteral::UTF8: 615 ValueType = Context.CharTy; 616 break; 617 618 case CharacterLiteral::Wide: 619 ValueType = Context.getWideCharType(); 620 break; 621 622 case CharacterLiteral::UTF16: 623 ValueType = Context.Char16Ty; 624 break; 625 626 case CharacterLiteral::UTF32: 627 ValueType = Context.Char32Ty; 628 break; 629 } 630 } 631 // FIXME: Do I need to do anything special with BoolTy expressions? 632 633 // Look for the appropriate method within NSNumber. 634 BoxingMethod = getNSNumberFactoryMethod(*this, Loc, ValueType); 635 BoxedType = NSNumberPointer; 636 } else if (const EnumType *ET = ValueType->getAs<EnumType>()) { 637 if (!ET->getDecl()->isComplete()) { 638 Diag(Loc, diag::err_objc_incomplete_boxed_expression_type) 639 << ValueType << ValueExpr->getSourceRange(); 640 return ExprError(); 641 } 642 643 BoxingMethod = getNSNumberFactoryMethod(*this, Loc, 644 ET->getDecl()->getIntegerType()); 645 BoxedType = NSNumberPointer; 646 } else if (ValueType->isObjCBoxableRecordType()) { 647 // Support for structure types, that marked as objc_boxable 648 // struct __attribute__((objc_boxable)) s { ... }; 649 650 // Look up the NSValue class, if we haven't done so already. It's cached 651 // in the Sema instance. 652 if (!NSValueDecl) { 653 NSValueDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc, 654 Sema::LK_Boxed); 655 if (!NSValueDecl) { 656 return ExprError(); 657 } 658 659 // generate the pointer to NSValue type. 660 QualType NSValueObject = Context.getObjCInterfaceType(NSValueDecl); 661 NSValuePointer = Context.getObjCObjectPointerType(NSValueObject); 662 } 663 664 if (!ValueWithBytesObjCTypeMethod) { 665 IdentifierInfo *II[] = { 666 &Context.Idents.get("valueWithBytes"), 667 &Context.Idents.get("objCType") 668 }; 669 Selector ValueWithBytesObjCType = Context.Selectors.getSelector(2, II); 670 671 // Look for the appropriate method within NSValue. 672 BoxingMethod = NSValueDecl->lookupClassMethod(ValueWithBytesObjCType); 673 if (!BoxingMethod && getLangOpts().DebuggerObjCLiteral) { 674 // Debugger needs to work even if NSValue hasn't been defined. 675 TypeSourceInfo *ReturnTInfo = nullptr; 676 ObjCMethodDecl *M = ObjCMethodDecl::Create( 677 Context, SourceLocation(), SourceLocation(), ValueWithBytesObjCType, 678 NSValuePointer, ReturnTInfo, NSValueDecl, 679 /*isInstance=*/false, 680 /*isVariadic=*/false, 681 /*isPropertyAccessor=*/false, 682 /*isSynthesizedAccessorStub=*/false, 683 /*isImplicitlyDeclared=*/true, 684 /*isDefined=*/false, ObjCMethodDecl::Required, 685 /*HasRelatedResultType=*/false); 686 687 SmallVector<ParmVarDecl *, 2> Params; 688 689 ParmVarDecl *bytes = 690 ParmVarDecl::Create(Context, M, 691 SourceLocation(), SourceLocation(), 692 &Context.Idents.get("bytes"), 693 Context.VoidPtrTy.withConst(), 694 /*TInfo=*/nullptr, 695 SC_None, nullptr); 696 Params.push_back(bytes); 697 698 QualType ConstCharType = Context.CharTy.withConst(); 699 ParmVarDecl *type = 700 ParmVarDecl::Create(Context, M, 701 SourceLocation(), SourceLocation(), 702 &Context.Idents.get("type"), 703 Context.getPointerType(ConstCharType), 704 /*TInfo=*/nullptr, 705 SC_None, nullptr); 706 Params.push_back(type); 707 708 M->setMethodParams(Context, Params, None); 709 BoxingMethod = M; 710 } 711 712 if (!validateBoxingMethod(*this, Loc, NSValueDecl, 713 ValueWithBytesObjCType, BoxingMethod)) 714 return ExprError(); 715 716 ValueWithBytesObjCTypeMethod = BoxingMethod; 717 } 718 719 if (!ValueType.isTriviallyCopyableType(Context)) { 720 Diag(Loc, diag::err_objc_non_trivially_copyable_boxed_expression_type) 721 << ValueType << ValueExpr->getSourceRange(); 722 return ExprError(); 723 } 724 725 BoxingMethod = ValueWithBytesObjCTypeMethod; 726 BoxedType = NSValuePointer; 727 } 728 729 if (!BoxingMethod) { 730 Diag(Loc, diag::err_objc_illegal_boxed_expression_type) 731 << ValueType << ValueExpr->getSourceRange(); 732 return ExprError(); 733 } 734 735 DiagnoseUseOfDecl(BoxingMethod, Loc); 736 737 ExprResult ConvertedValueExpr; 738 if (ValueType->isObjCBoxableRecordType()) { 739 InitializedEntity IE = InitializedEntity::InitializeTemporary(ValueType); 740 ConvertedValueExpr = PerformCopyInitialization(IE, ValueExpr->getExprLoc(), 741 ValueExpr); 742 } else { 743 // Convert the expression to the type that the parameter requires. 744 ParmVarDecl *ParamDecl = BoxingMethod->parameters()[0]; 745 InitializedEntity IE = InitializedEntity::InitializeParameter(Context, 746 ParamDecl); 747 ConvertedValueExpr = PerformCopyInitialization(IE, SourceLocation(), 748 ValueExpr); 749 } 750 751 if (ConvertedValueExpr.isInvalid()) 752 return ExprError(); 753 ValueExpr = ConvertedValueExpr.get(); 754 755 ObjCBoxedExpr *BoxedExpr = 756 new (Context) ObjCBoxedExpr(ValueExpr, BoxedType, 757 BoxingMethod, SR); 758 return MaybeBindToTemporary(BoxedExpr); 759 } 760 761 /// Build an ObjC subscript pseudo-object expression, given that 762 /// that's supported by the runtime. 763 ExprResult Sema::BuildObjCSubscriptExpression(SourceLocation RB, Expr *BaseExpr, 764 Expr *IndexExpr, 765 ObjCMethodDecl *getterMethod, 766 ObjCMethodDecl *setterMethod) { 767 assert(!LangOpts.isSubscriptPointerArithmetic()); 768 769 // We can't get dependent types here; our callers should have 770 // filtered them out. 771 assert((!BaseExpr->isTypeDependent() && !IndexExpr->isTypeDependent()) && 772 "base or index cannot have dependent type here"); 773 774 // Filter out placeholders in the index. In theory, overloads could 775 // be preserved here, although that might not actually work correctly. 776 ExprResult Result = CheckPlaceholderExpr(IndexExpr); 777 if (Result.isInvalid()) 778 return ExprError(); 779 IndexExpr = Result.get(); 780 781 // Perform lvalue-to-rvalue conversion on the base. 782 Result = DefaultLvalueConversion(BaseExpr); 783 if (Result.isInvalid()) 784 return ExprError(); 785 BaseExpr = Result.get(); 786 787 // Build the pseudo-object expression. 788 return new (Context) ObjCSubscriptRefExpr( 789 BaseExpr, IndexExpr, Context.PseudoObjectTy, VK_LValue, OK_ObjCSubscript, 790 getterMethod, setterMethod, RB); 791 } 792 793 ExprResult Sema::BuildObjCArrayLiteral(SourceRange SR, MultiExprArg Elements) { 794 SourceLocation Loc = SR.getBegin(); 795 796 if (!NSArrayDecl) { 797 NSArrayDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc, 798 Sema::LK_Array); 799 if (!NSArrayDecl) { 800 return ExprError(); 801 } 802 } 803 804 // Find the arrayWithObjects:count: method, if we haven't done so already. 805 QualType IdT = Context.getObjCIdType(); 806 if (!ArrayWithObjectsMethod) { 807 Selector 808 Sel = NSAPIObj->getNSArraySelector(NSAPI::NSArr_arrayWithObjectsCount); 809 ObjCMethodDecl *Method = NSArrayDecl->lookupClassMethod(Sel); 810 if (!Method && getLangOpts().DebuggerObjCLiteral) { 811 TypeSourceInfo *ReturnTInfo = nullptr; 812 Method = ObjCMethodDecl::Create( 813 Context, SourceLocation(), SourceLocation(), Sel, IdT, ReturnTInfo, 814 Context.getTranslationUnitDecl(), false /*Instance*/, 815 false /*isVariadic*/, 816 /*isPropertyAccessor=*/false, /*isSynthesizedAccessorStub=*/false, 817 /*isImplicitlyDeclared=*/true, /*isDefined=*/false, 818 ObjCMethodDecl::Required, false); 819 SmallVector<ParmVarDecl *, 2> Params; 820 ParmVarDecl *objects = ParmVarDecl::Create(Context, Method, 821 SourceLocation(), 822 SourceLocation(), 823 &Context.Idents.get("objects"), 824 Context.getPointerType(IdT), 825 /*TInfo=*/nullptr, 826 SC_None, nullptr); 827 Params.push_back(objects); 828 ParmVarDecl *cnt = ParmVarDecl::Create(Context, Method, 829 SourceLocation(), 830 SourceLocation(), 831 &Context.Idents.get("cnt"), 832 Context.UnsignedLongTy, 833 /*TInfo=*/nullptr, SC_None, 834 nullptr); 835 Params.push_back(cnt); 836 Method->setMethodParams(Context, Params, None); 837 } 838 839 if (!validateBoxingMethod(*this, Loc, NSArrayDecl, Sel, Method)) 840 return ExprError(); 841 842 // Dig out the type that all elements should be converted to. 843 QualType T = Method->parameters()[0]->getType(); 844 const PointerType *PtrT = T->getAs<PointerType>(); 845 if (!PtrT || 846 !Context.hasSameUnqualifiedType(PtrT->getPointeeType(), IdT)) { 847 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 848 << Sel; 849 Diag(Method->parameters()[0]->getLocation(), 850 diag::note_objc_literal_method_param) 851 << 0 << T 852 << Context.getPointerType(IdT.withConst()); 853 return ExprError(); 854 } 855 856 // Check that the 'count' parameter is integral. 857 if (!Method->parameters()[1]->getType()->isIntegerType()) { 858 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 859 << Sel; 860 Diag(Method->parameters()[1]->getLocation(), 861 diag::note_objc_literal_method_param) 862 << 1 863 << Method->parameters()[1]->getType() 864 << "integral"; 865 return ExprError(); 866 } 867 868 // We've found a good +arrayWithObjects:count: method. Save it! 869 ArrayWithObjectsMethod = Method; 870 } 871 872 QualType ObjectsType = ArrayWithObjectsMethod->parameters()[0]->getType(); 873 QualType RequiredType = ObjectsType->castAs<PointerType>()->getPointeeType(); 874 875 // Check that each of the elements provided is valid in a collection literal, 876 // performing conversions as necessary. 877 Expr **ElementsBuffer = Elements.data(); 878 for (unsigned I = 0, N = Elements.size(); I != N; ++I) { 879 ExprResult Converted = CheckObjCCollectionLiteralElement(*this, 880 ElementsBuffer[I], 881 RequiredType, true); 882 if (Converted.isInvalid()) 883 return ExprError(); 884 885 ElementsBuffer[I] = Converted.get(); 886 } 887 888 QualType Ty 889 = Context.getObjCObjectPointerType( 890 Context.getObjCInterfaceType(NSArrayDecl)); 891 892 return MaybeBindToTemporary( 893 ObjCArrayLiteral::Create(Context, Elements, Ty, 894 ArrayWithObjectsMethod, SR)); 895 } 896 897 /// Check for duplicate keys in an ObjC dictionary literal. For instance: 898 /// NSDictionary *nd = @{ @"foo" : @"bar", @"foo" : @"baz" }; 899 static void 900 CheckObjCDictionaryLiteralDuplicateKeys(Sema &S, 901 ObjCDictionaryLiteral *Literal) { 902 if (Literal->isValueDependent() || Literal->isTypeDependent()) 903 return; 904 905 // NSNumber has quite relaxed equality semantics (for instance, @YES is 906 // considered equal to @1.0). For now, ignore floating points and just do a 907 // bit-width and sign agnostic integer compare. 908 struct APSIntCompare { 909 bool operator()(const llvm::APSInt &LHS, const llvm::APSInt &RHS) const { 910 return llvm::APSInt::compareValues(LHS, RHS) < 0; 911 } 912 }; 913 914 llvm::DenseMap<StringRef, SourceLocation> StringKeys; 915 std::map<llvm::APSInt, SourceLocation, APSIntCompare> IntegralKeys; 916 917 auto checkOneKey = [&](auto &Map, const auto &Key, SourceLocation Loc) { 918 auto Pair = Map.insert({Key, Loc}); 919 if (!Pair.second) { 920 S.Diag(Loc, diag::warn_nsdictionary_duplicate_key); 921 S.Diag(Pair.first->second, diag::note_nsdictionary_duplicate_key_here); 922 } 923 }; 924 925 for (unsigned Idx = 0, End = Literal->getNumElements(); Idx != End; ++Idx) { 926 Expr *Key = Literal->getKeyValueElement(Idx).Key->IgnoreParenImpCasts(); 927 928 if (auto *StrLit = dyn_cast<ObjCStringLiteral>(Key)) { 929 StringRef Bytes = StrLit->getString()->getBytes(); 930 SourceLocation Loc = StrLit->getExprLoc(); 931 checkOneKey(StringKeys, Bytes, Loc); 932 } 933 934 if (auto *BE = dyn_cast<ObjCBoxedExpr>(Key)) { 935 Expr *Boxed = BE->getSubExpr(); 936 SourceLocation Loc = BE->getExprLoc(); 937 938 // Check for @("foo"). 939 if (auto *Str = dyn_cast<StringLiteral>(Boxed->IgnoreParenImpCasts())) { 940 checkOneKey(StringKeys, Str->getBytes(), Loc); 941 continue; 942 } 943 944 Expr::EvalResult Result; 945 if (Boxed->EvaluateAsInt(Result, S.getASTContext(), 946 Expr::SE_AllowSideEffects)) { 947 checkOneKey(IntegralKeys, Result.Val.getInt(), Loc); 948 } 949 } 950 } 951 } 952 953 ExprResult Sema::BuildObjCDictionaryLiteral(SourceRange SR, 954 MutableArrayRef<ObjCDictionaryElement> Elements) { 955 SourceLocation Loc = SR.getBegin(); 956 957 if (!NSDictionaryDecl) { 958 NSDictionaryDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc, 959 Sema::LK_Dictionary); 960 if (!NSDictionaryDecl) { 961 return ExprError(); 962 } 963 } 964 965 // Find the dictionaryWithObjects:forKeys:count: method, if we haven't done 966 // so already. 967 QualType IdT = Context.getObjCIdType(); 968 if (!DictionaryWithObjectsMethod) { 969 Selector Sel = NSAPIObj->getNSDictionarySelector( 970 NSAPI::NSDict_dictionaryWithObjectsForKeysCount); 971 ObjCMethodDecl *Method = NSDictionaryDecl->lookupClassMethod(Sel); 972 if (!Method && getLangOpts().DebuggerObjCLiteral) { 973 Method = ObjCMethodDecl::Create( 974 Context, SourceLocation(), SourceLocation(), Sel, IdT, 975 nullptr /*TypeSourceInfo */, Context.getTranslationUnitDecl(), 976 false /*Instance*/, false /*isVariadic*/, 977 /*isPropertyAccessor=*/false, 978 /*isSynthesizedAccessorStub=*/false, 979 /*isImplicitlyDeclared=*/true, /*isDefined=*/false, 980 ObjCMethodDecl::Required, false); 981 SmallVector<ParmVarDecl *, 3> Params; 982 ParmVarDecl *objects = ParmVarDecl::Create(Context, Method, 983 SourceLocation(), 984 SourceLocation(), 985 &Context.Idents.get("objects"), 986 Context.getPointerType(IdT), 987 /*TInfo=*/nullptr, SC_None, 988 nullptr); 989 Params.push_back(objects); 990 ParmVarDecl *keys = ParmVarDecl::Create(Context, Method, 991 SourceLocation(), 992 SourceLocation(), 993 &Context.Idents.get("keys"), 994 Context.getPointerType(IdT), 995 /*TInfo=*/nullptr, SC_None, 996 nullptr); 997 Params.push_back(keys); 998 ParmVarDecl *cnt = ParmVarDecl::Create(Context, Method, 999 SourceLocation(), 1000 SourceLocation(), 1001 &Context.Idents.get("cnt"), 1002 Context.UnsignedLongTy, 1003 /*TInfo=*/nullptr, SC_None, 1004 nullptr); 1005 Params.push_back(cnt); 1006 Method->setMethodParams(Context, Params, None); 1007 } 1008 1009 if (!validateBoxingMethod(*this, SR.getBegin(), NSDictionaryDecl, Sel, 1010 Method)) 1011 return ExprError(); 1012 1013 // Dig out the type that all values should be converted to. 1014 QualType ValueT = Method->parameters()[0]->getType(); 1015 const PointerType *PtrValue = ValueT->getAs<PointerType>(); 1016 if (!PtrValue || 1017 !Context.hasSameUnqualifiedType(PtrValue->getPointeeType(), IdT)) { 1018 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 1019 << Sel; 1020 Diag(Method->parameters()[0]->getLocation(), 1021 diag::note_objc_literal_method_param) 1022 << 0 << ValueT 1023 << Context.getPointerType(IdT.withConst()); 1024 return ExprError(); 1025 } 1026 1027 // Dig out the type that all keys should be converted to. 1028 QualType KeyT = Method->parameters()[1]->getType(); 1029 const PointerType *PtrKey = KeyT->getAs<PointerType>(); 1030 if (!PtrKey || 1031 !Context.hasSameUnqualifiedType(PtrKey->getPointeeType(), 1032 IdT)) { 1033 bool err = true; 1034 if (PtrKey) { 1035 if (QIDNSCopying.isNull()) { 1036 // key argument of selector is id<NSCopying>? 1037 if (ObjCProtocolDecl *NSCopyingPDecl = 1038 LookupProtocol(&Context.Idents.get("NSCopying"), SR.getBegin())) { 1039 ObjCProtocolDecl *PQ[] = {NSCopyingPDecl}; 1040 QIDNSCopying = 1041 Context.getObjCObjectType(Context.ObjCBuiltinIdTy, { }, 1042 llvm::makeArrayRef( 1043 (ObjCProtocolDecl**) PQ, 1044 1), 1045 false); 1046 QIDNSCopying = Context.getObjCObjectPointerType(QIDNSCopying); 1047 } 1048 } 1049 if (!QIDNSCopying.isNull()) 1050 err = !Context.hasSameUnqualifiedType(PtrKey->getPointeeType(), 1051 QIDNSCopying); 1052 } 1053 1054 if (err) { 1055 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 1056 << Sel; 1057 Diag(Method->parameters()[1]->getLocation(), 1058 diag::note_objc_literal_method_param) 1059 << 1 << KeyT 1060 << Context.getPointerType(IdT.withConst()); 1061 return ExprError(); 1062 } 1063 } 1064 1065 // Check that the 'count' parameter is integral. 1066 QualType CountType = Method->parameters()[2]->getType(); 1067 if (!CountType->isIntegerType()) { 1068 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 1069 << Sel; 1070 Diag(Method->parameters()[2]->getLocation(), 1071 diag::note_objc_literal_method_param) 1072 << 2 << CountType 1073 << "integral"; 1074 return ExprError(); 1075 } 1076 1077 // We've found a good +dictionaryWithObjects:keys:count: method; save it! 1078 DictionaryWithObjectsMethod = Method; 1079 } 1080 1081 QualType ValuesT = DictionaryWithObjectsMethod->parameters()[0]->getType(); 1082 QualType ValueT = ValuesT->castAs<PointerType>()->getPointeeType(); 1083 QualType KeysT = DictionaryWithObjectsMethod->parameters()[1]->getType(); 1084 QualType KeyT = KeysT->castAs<PointerType>()->getPointeeType(); 1085 1086 // Check that each of the keys and values provided is valid in a collection 1087 // literal, performing conversions as necessary. 1088 bool HasPackExpansions = false; 1089 for (ObjCDictionaryElement &Element : Elements) { 1090 // Check the key. 1091 ExprResult Key = CheckObjCCollectionLiteralElement(*this, Element.Key, 1092 KeyT); 1093 if (Key.isInvalid()) 1094 return ExprError(); 1095 1096 // Check the value. 1097 ExprResult Value 1098 = CheckObjCCollectionLiteralElement(*this, Element.Value, ValueT); 1099 if (Value.isInvalid()) 1100 return ExprError(); 1101 1102 Element.Key = Key.get(); 1103 Element.Value = Value.get(); 1104 1105 if (Element.EllipsisLoc.isInvalid()) 1106 continue; 1107 1108 if (!Element.Key->containsUnexpandedParameterPack() && 1109 !Element.Value->containsUnexpandedParameterPack()) { 1110 Diag(Element.EllipsisLoc, 1111 diag::err_pack_expansion_without_parameter_packs) 1112 << SourceRange(Element.Key->getBeginLoc(), 1113 Element.Value->getEndLoc()); 1114 return ExprError(); 1115 } 1116 1117 HasPackExpansions = true; 1118 } 1119 1120 QualType Ty = Context.getObjCObjectPointerType( 1121 Context.getObjCInterfaceType(NSDictionaryDecl)); 1122 1123 auto *Literal = 1124 ObjCDictionaryLiteral::Create(Context, Elements, HasPackExpansions, Ty, 1125 DictionaryWithObjectsMethod, SR); 1126 CheckObjCDictionaryLiteralDuplicateKeys(*this, Literal); 1127 return MaybeBindToTemporary(Literal); 1128 } 1129 1130 ExprResult Sema::BuildObjCEncodeExpression(SourceLocation AtLoc, 1131 TypeSourceInfo *EncodedTypeInfo, 1132 SourceLocation RParenLoc) { 1133 QualType EncodedType = EncodedTypeInfo->getType(); 1134 QualType StrTy; 1135 if (EncodedType->isDependentType()) 1136 StrTy = Context.DependentTy; 1137 else { 1138 if (!EncodedType->getAsArrayTypeUnsafe() && //// Incomplete array is handled. 1139 !EncodedType->isVoidType()) // void is handled too. 1140 if (RequireCompleteType(AtLoc, EncodedType, 1141 diag::err_incomplete_type_objc_at_encode, 1142 EncodedTypeInfo->getTypeLoc())) 1143 return ExprError(); 1144 1145 std::string Str; 1146 QualType NotEncodedT; 1147 Context.getObjCEncodingForType(EncodedType, Str, nullptr, &NotEncodedT); 1148 if (!NotEncodedT.isNull()) 1149 Diag(AtLoc, diag::warn_incomplete_encoded_type) 1150 << EncodedType << NotEncodedT; 1151 1152 // The type of @encode is the same as the type of the corresponding string, 1153 // which is an array type. 1154 StrTy = Context.getStringLiteralArrayType(Context.CharTy, Str.size()); 1155 } 1156 1157 return new (Context) ObjCEncodeExpr(StrTy, EncodedTypeInfo, AtLoc, RParenLoc); 1158 } 1159 1160 ExprResult Sema::ParseObjCEncodeExpression(SourceLocation AtLoc, 1161 SourceLocation EncodeLoc, 1162 SourceLocation LParenLoc, 1163 ParsedType ty, 1164 SourceLocation RParenLoc) { 1165 // FIXME: Preserve type source info ? 1166 TypeSourceInfo *TInfo; 1167 QualType EncodedType = GetTypeFromParser(ty, &TInfo); 1168 if (!TInfo) 1169 TInfo = Context.getTrivialTypeSourceInfo(EncodedType, 1170 getLocForEndOfToken(LParenLoc)); 1171 1172 return BuildObjCEncodeExpression(AtLoc, TInfo, RParenLoc); 1173 } 1174 1175 static bool HelperToDiagnoseMismatchedMethodsInGlobalPool(Sema &S, 1176 SourceLocation AtLoc, 1177 SourceLocation LParenLoc, 1178 SourceLocation RParenLoc, 1179 ObjCMethodDecl *Method, 1180 ObjCMethodList &MethList) { 1181 ObjCMethodList *M = &MethList; 1182 bool Warned = false; 1183 for (M = M->getNext(); M; M=M->getNext()) { 1184 ObjCMethodDecl *MatchingMethodDecl = M->getMethod(); 1185 if (MatchingMethodDecl == Method || 1186 isa<ObjCImplDecl>(MatchingMethodDecl->getDeclContext()) || 1187 MatchingMethodDecl->getSelector() != Method->getSelector()) 1188 continue; 1189 if (!S.MatchTwoMethodDeclarations(Method, 1190 MatchingMethodDecl, Sema::MMS_loose)) { 1191 if (!Warned) { 1192 Warned = true; 1193 S.Diag(AtLoc, diag::warn_multiple_selectors) 1194 << Method->getSelector() << FixItHint::CreateInsertion(LParenLoc, "(") 1195 << FixItHint::CreateInsertion(RParenLoc, ")"); 1196 S.Diag(Method->getLocation(), diag::note_method_declared_at) 1197 << Method->getDeclName(); 1198 } 1199 S.Diag(MatchingMethodDecl->getLocation(), diag::note_method_declared_at) 1200 << MatchingMethodDecl->getDeclName(); 1201 } 1202 } 1203 return Warned; 1204 } 1205 1206 static void DiagnoseMismatchedSelectors(Sema &S, SourceLocation AtLoc, 1207 ObjCMethodDecl *Method, 1208 SourceLocation LParenLoc, 1209 SourceLocation RParenLoc, 1210 bool WarnMultipleSelectors) { 1211 if (!WarnMultipleSelectors || 1212 S.Diags.isIgnored(diag::warn_multiple_selectors, SourceLocation())) 1213 return; 1214 bool Warned = false; 1215 for (Sema::GlobalMethodPool::iterator b = S.MethodPool.begin(), 1216 e = S.MethodPool.end(); b != e; b++) { 1217 // first, instance methods 1218 ObjCMethodList &InstMethList = b->second.first; 1219 if (HelperToDiagnoseMismatchedMethodsInGlobalPool(S, AtLoc, LParenLoc, RParenLoc, 1220 Method, InstMethList)) 1221 Warned = true; 1222 1223 // second, class methods 1224 ObjCMethodList &ClsMethList = b->second.second; 1225 if (HelperToDiagnoseMismatchedMethodsInGlobalPool(S, AtLoc, LParenLoc, RParenLoc, 1226 Method, ClsMethList) || Warned) 1227 return; 1228 } 1229 } 1230 1231 static ObjCMethodDecl *LookupDirectMethodInMethodList(Sema &S, Selector Sel, 1232 ObjCMethodList &MethList, 1233 bool &onlyDirect, 1234 bool &anyDirect) { 1235 (void)Sel; 1236 ObjCMethodList *M = &MethList; 1237 ObjCMethodDecl *DirectMethod = nullptr; 1238 for (; M; M = M->getNext()) { 1239 ObjCMethodDecl *Method = M->getMethod(); 1240 if (!Method) 1241 continue; 1242 assert(Method->getSelector() == Sel && "Method with wrong selector in method list"); 1243 if (Method->isDirectMethod()) { 1244 anyDirect = true; 1245 DirectMethod = Method; 1246 } else 1247 onlyDirect = false; 1248 } 1249 1250 return DirectMethod; 1251 } 1252 1253 // Search the global pool for (potentially) direct methods matching the given 1254 // selector. If a non-direct method is found, set \param onlyDirect to false. If 1255 // a direct method is found, set \param anyDirect to true. Returns a direct 1256 // method, if any. 1257 static ObjCMethodDecl *LookupDirectMethodInGlobalPool(Sema &S, Selector Sel, 1258 bool &onlyDirect, 1259 bool &anyDirect) { 1260 auto Iter = S.MethodPool.find(Sel); 1261 if (Iter == S.MethodPool.end()) 1262 return nullptr; 1263 1264 ObjCMethodDecl *DirectInstance = LookupDirectMethodInMethodList( 1265 S, Sel, Iter->second.first, onlyDirect, anyDirect); 1266 ObjCMethodDecl *DirectClass = LookupDirectMethodInMethodList( 1267 S, Sel, Iter->second.second, onlyDirect, anyDirect); 1268 1269 return DirectInstance ? DirectInstance : DirectClass; 1270 } 1271 1272 static ObjCMethodDecl *findMethodInCurrentClass(Sema &S, Selector Sel) { 1273 auto *CurMD = S.getCurMethodDecl(); 1274 if (!CurMD) 1275 return nullptr; 1276 ObjCInterfaceDecl *IFace = CurMD->getClassInterface(); 1277 1278 // The language enforce that only one direct method is present in a given 1279 // class, so we just need to find one method in the current class to know 1280 // whether Sel is potentially direct in this context. 1281 if (ObjCMethodDecl *MD = IFace->lookupMethod(Sel, /*isInstance=*/true)) 1282 return MD; 1283 if (ObjCMethodDecl *MD = IFace->lookupPrivateMethod(Sel, /*isInstance=*/true)) 1284 return MD; 1285 if (ObjCMethodDecl *MD = IFace->lookupMethod(Sel, /*isInstance=*/false)) 1286 return MD; 1287 if (ObjCMethodDecl *MD = IFace->lookupPrivateMethod(Sel, /*isInstance=*/false)) 1288 return MD; 1289 1290 return nullptr; 1291 } 1292 1293 ExprResult Sema::ParseObjCSelectorExpression(Selector Sel, 1294 SourceLocation AtLoc, 1295 SourceLocation SelLoc, 1296 SourceLocation LParenLoc, 1297 SourceLocation RParenLoc, 1298 bool WarnMultipleSelectors) { 1299 ObjCMethodDecl *Method = LookupInstanceMethodInGlobalPool(Sel, 1300 SourceRange(LParenLoc, RParenLoc)); 1301 if (!Method) 1302 Method = LookupFactoryMethodInGlobalPool(Sel, 1303 SourceRange(LParenLoc, RParenLoc)); 1304 if (!Method) { 1305 if (const ObjCMethodDecl *OM = SelectorsForTypoCorrection(Sel)) { 1306 Selector MatchedSel = OM->getSelector(); 1307 SourceRange SelectorRange(LParenLoc.getLocWithOffset(1), 1308 RParenLoc.getLocWithOffset(-1)); 1309 Diag(SelLoc, diag::warn_undeclared_selector_with_typo) 1310 << Sel << MatchedSel 1311 << FixItHint::CreateReplacement(SelectorRange, MatchedSel.getAsString()); 1312 1313 } else 1314 Diag(SelLoc, diag::warn_undeclared_selector) << Sel; 1315 } else { 1316 DiagnoseMismatchedSelectors(*this, AtLoc, Method, LParenLoc, RParenLoc, 1317 WarnMultipleSelectors); 1318 1319 bool onlyDirect = true; 1320 bool anyDirect = false; 1321 ObjCMethodDecl *GlobalDirectMethod = 1322 LookupDirectMethodInGlobalPool(*this, Sel, onlyDirect, anyDirect); 1323 1324 if (onlyDirect) { 1325 Diag(AtLoc, diag::err_direct_selector_expression) 1326 << Method->getSelector(); 1327 Diag(Method->getLocation(), diag::note_direct_method_declared_at) 1328 << Method->getDeclName(); 1329 } else if (anyDirect) { 1330 // If we saw any direct methods, see if we see a direct member of the 1331 // current class. If so, the @selector will likely be used to refer to 1332 // this direct method. 1333 ObjCMethodDecl *LikelyTargetMethod = findMethodInCurrentClass(*this, Sel); 1334 if (LikelyTargetMethod && LikelyTargetMethod->isDirectMethod()) { 1335 Diag(AtLoc, diag::warn_potentially_direct_selector_expression) << Sel; 1336 Diag(LikelyTargetMethod->getLocation(), 1337 diag::note_direct_method_declared_at) 1338 << LikelyTargetMethod->getDeclName(); 1339 } else if (!LikelyTargetMethod) { 1340 // Otherwise, emit the "strict" variant of this diagnostic, unless 1341 // LikelyTargetMethod is non-direct. 1342 Diag(AtLoc, diag::warn_strict_potentially_direct_selector_expression) 1343 << Sel; 1344 Diag(GlobalDirectMethod->getLocation(), 1345 diag::note_direct_method_declared_at) 1346 << GlobalDirectMethod->getDeclName(); 1347 } 1348 } 1349 } 1350 1351 if (Method && 1352 Method->getImplementationControl() != ObjCMethodDecl::Optional && 1353 !getSourceManager().isInSystemHeader(Method->getLocation())) 1354 ReferencedSelectors.insert(std::make_pair(Sel, AtLoc)); 1355 1356 // In ARC, forbid the user from using @selector for 1357 // retain/release/autorelease/dealloc/retainCount. 1358 if (getLangOpts().ObjCAutoRefCount) { 1359 switch (Sel.getMethodFamily()) { 1360 case OMF_retain: 1361 case OMF_release: 1362 case OMF_autorelease: 1363 case OMF_retainCount: 1364 case OMF_dealloc: 1365 Diag(AtLoc, diag::err_arc_illegal_selector) << 1366 Sel << SourceRange(LParenLoc, RParenLoc); 1367 break; 1368 1369 case OMF_None: 1370 case OMF_alloc: 1371 case OMF_copy: 1372 case OMF_finalize: 1373 case OMF_init: 1374 case OMF_mutableCopy: 1375 case OMF_new: 1376 case OMF_self: 1377 case OMF_initialize: 1378 case OMF_performSelector: 1379 break; 1380 } 1381 } 1382 QualType Ty = Context.getObjCSelType(); 1383 return new (Context) ObjCSelectorExpr(Ty, Sel, AtLoc, RParenLoc); 1384 } 1385 1386 ExprResult Sema::ParseObjCProtocolExpression(IdentifierInfo *ProtocolId, 1387 SourceLocation AtLoc, 1388 SourceLocation ProtoLoc, 1389 SourceLocation LParenLoc, 1390 SourceLocation ProtoIdLoc, 1391 SourceLocation RParenLoc) { 1392 ObjCProtocolDecl* PDecl = LookupProtocol(ProtocolId, ProtoIdLoc); 1393 if (!PDecl) { 1394 Diag(ProtoLoc, diag::err_undeclared_protocol) << ProtocolId; 1395 return true; 1396 } 1397 if (PDecl->isNonRuntimeProtocol()) 1398 Diag(ProtoLoc, diag::err_objc_non_runtime_protocol_in_protocol_expr) 1399 << PDecl; 1400 if (!PDecl->hasDefinition()) { 1401 Diag(ProtoLoc, diag::err_atprotocol_protocol) << PDecl; 1402 Diag(PDecl->getLocation(), diag::note_entity_declared_at) << PDecl; 1403 } else { 1404 PDecl = PDecl->getDefinition(); 1405 } 1406 1407 QualType Ty = Context.getObjCProtoType(); 1408 if (Ty.isNull()) 1409 return true; 1410 Ty = Context.getObjCObjectPointerType(Ty); 1411 return new (Context) ObjCProtocolExpr(Ty, PDecl, AtLoc, ProtoIdLoc, RParenLoc); 1412 } 1413 1414 /// Try to capture an implicit reference to 'self'. 1415 ObjCMethodDecl *Sema::tryCaptureObjCSelf(SourceLocation Loc) { 1416 DeclContext *DC = getFunctionLevelDeclContext(); 1417 1418 // If we're not in an ObjC method, error out. Note that, unlike the 1419 // C++ case, we don't require an instance method --- class methods 1420 // still have a 'self', and we really do still need to capture it! 1421 ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(DC); 1422 if (!method) 1423 return nullptr; 1424 1425 tryCaptureVariable(method->getSelfDecl(), Loc); 1426 1427 return method; 1428 } 1429 1430 static QualType stripObjCInstanceType(ASTContext &Context, QualType T) { 1431 QualType origType = T; 1432 if (auto nullability = AttributedType::stripOuterNullability(T)) { 1433 if (T == Context.getObjCInstanceType()) { 1434 return Context.getAttributedType( 1435 AttributedType::getNullabilityAttrKind(*nullability), 1436 Context.getObjCIdType(), 1437 Context.getObjCIdType()); 1438 } 1439 1440 return origType; 1441 } 1442 1443 if (T == Context.getObjCInstanceType()) 1444 return Context.getObjCIdType(); 1445 1446 return origType; 1447 } 1448 1449 /// Determine the result type of a message send based on the receiver type, 1450 /// method, and the kind of message send. 1451 /// 1452 /// This is the "base" result type, which will still need to be adjusted 1453 /// to account for nullability. 1454 static QualType getBaseMessageSendResultType(Sema &S, 1455 QualType ReceiverType, 1456 ObjCMethodDecl *Method, 1457 bool isClassMessage, 1458 bool isSuperMessage) { 1459 assert(Method && "Must have a method"); 1460 if (!Method->hasRelatedResultType()) 1461 return Method->getSendResultType(ReceiverType); 1462 1463 ASTContext &Context = S.Context; 1464 1465 // Local function that transfers the nullability of the method's 1466 // result type to the returned result. 1467 auto transferNullability = [&](QualType type) -> QualType { 1468 // If the method's result type has nullability, extract it. 1469 if (auto nullability = Method->getSendResultType(ReceiverType) 1470 ->getNullability(Context)){ 1471 // Strip off any outer nullability sugar from the provided type. 1472 (void)AttributedType::stripOuterNullability(type); 1473 1474 // Form a new attributed type using the method result type's nullability. 1475 return Context.getAttributedType( 1476 AttributedType::getNullabilityAttrKind(*nullability), 1477 type, 1478 type); 1479 } 1480 1481 return type; 1482 }; 1483 1484 // If a method has a related return type: 1485 // - if the method found is an instance method, but the message send 1486 // was a class message send, T is the declared return type of the method 1487 // found 1488 if (Method->isInstanceMethod() && isClassMessage) 1489 return stripObjCInstanceType(Context, 1490 Method->getSendResultType(ReceiverType)); 1491 1492 // - if the receiver is super, T is a pointer to the class of the 1493 // enclosing method definition 1494 if (isSuperMessage) { 1495 if (ObjCMethodDecl *CurMethod = S.getCurMethodDecl()) 1496 if (ObjCInterfaceDecl *Class = CurMethod->getClassInterface()) { 1497 return transferNullability( 1498 Context.getObjCObjectPointerType( 1499 Context.getObjCInterfaceType(Class))); 1500 } 1501 } 1502 1503 // - if the receiver is the name of a class U, T is a pointer to U 1504 if (ReceiverType->getAsObjCInterfaceType()) 1505 return transferNullability(Context.getObjCObjectPointerType(ReceiverType)); 1506 // - if the receiver is of type Class or qualified Class type, 1507 // T is the declared return type of the method. 1508 if (ReceiverType->isObjCClassType() || 1509 ReceiverType->isObjCQualifiedClassType()) 1510 return stripObjCInstanceType(Context, 1511 Method->getSendResultType(ReceiverType)); 1512 1513 // - if the receiver is id, qualified id, Class, or qualified Class, T 1514 // is the receiver type, otherwise 1515 // - T is the type of the receiver expression. 1516 return transferNullability(ReceiverType); 1517 } 1518 1519 QualType Sema::getMessageSendResultType(const Expr *Receiver, 1520 QualType ReceiverType, 1521 ObjCMethodDecl *Method, 1522 bool isClassMessage, 1523 bool isSuperMessage) { 1524 // Produce the result type. 1525 QualType resultType = getBaseMessageSendResultType(*this, ReceiverType, 1526 Method, 1527 isClassMessage, 1528 isSuperMessage); 1529 1530 // If this is a class message, ignore the nullability of the receiver. 1531 if (isClassMessage) { 1532 // In a class method, class messages to 'self' that return instancetype can 1533 // be typed as the current class. We can safely do this in ARC because self 1534 // can't be reassigned, and we do it unsafely outside of ARC because in 1535 // practice people never reassign self in class methods and there's some 1536 // virtue in not being aggressively pedantic. 1537 if (Receiver && Receiver->isObjCSelfExpr()) { 1538 assert(ReceiverType->isObjCClassType() && "expected a Class self"); 1539 QualType T = Method->getSendResultType(ReceiverType); 1540 AttributedType::stripOuterNullability(T); 1541 if (T == Context.getObjCInstanceType()) { 1542 const ObjCMethodDecl *MD = cast<ObjCMethodDecl>( 1543 cast<ImplicitParamDecl>( 1544 cast<DeclRefExpr>(Receiver->IgnoreParenImpCasts())->getDecl()) 1545 ->getDeclContext()); 1546 assert(MD->isClassMethod() && "expected a class method"); 1547 QualType NewResultType = Context.getObjCObjectPointerType( 1548 Context.getObjCInterfaceType(MD->getClassInterface())); 1549 if (auto Nullability = resultType->getNullability(Context)) 1550 NewResultType = Context.getAttributedType( 1551 AttributedType::getNullabilityAttrKind(*Nullability), 1552 NewResultType, NewResultType); 1553 return NewResultType; 1554 } 1555 } 1556 return resultType; 1557 } 1558 1559 // There is nothing left to do if the result type cannot have a nullability 1560 // specifier. 1561 if (!resultType->canHaveNullability()) 1562 return resultType; 1563 1564 // Map the nullability of the result into a table index. 1565 unsigned receiverNullabilityIdx = 0; 1566 if (Optional<NullabilityKind> nullability = 1567 ReceiverType->getNullability(Context)) { 1568 if (*nullability == NullabilityKind::NullableResult) 1569 nullability = NullabilityKind::Nullable; 1570 receiverNullabilityIdx = 1 + static_cast<unsigned>(*nullability); 1571 } 1572 1573 unsigned resultNullabilityIdx = 0; 1574 if (Optional<NullabilityKind> nullability = 1575 resultType->getNullability(Context)) { 1576 if (*nullability == NullabilityKind::NullableResult) 1577 nullability = NullabilityKind::Nullable; 1578 resultNullabilityIdx = 1 + static_cast<unsigned>(*nullability); 1579 } 1580 1581 // The table of nullability mappings, indexed by the receiver's nullability 1582 // and then the result type's nullability. 1583 static const uint8_t None = 0; 1584 static const uint8_t NonNull = 1; 1585 static const uint8_t Nullable = 2; 1586 static const uint8_t Unspecified = 3; 1587 static const uint8_t nullabilityMap[4][4] = { 1588 // None NonNull Nullable Unspecified 1589 /* None */ { None, None, Nullable, None }, 1590 /* NonNull */ { None, NonNull, Nullable, Unspecified }, 1591 /* Nullable */ { Nullable, Nullable, Nullable, Nullable }, 1592 /* Unspecified */ { None, Unspecified, Nullable, Unspecified } 1593 }; 1594 1595 unsigned newResultNullabilityIdx 1596 = nullabilityMap[receiverNullabilityIdx][resultNullabilityIdx]; 1597 if (newResultNullabilityIdx == resultNullabilityIdx) 1598 return resultType; 1599 1600 // Strip off the existing nullability. This removes as little type sugar as 1601 // possible. 1602 do { 1603 if (auto attributed = dyn_cast<AttributedType>(resultType.getTypePtr())) { 1604 resultType = attributed->getModifiedType(); 1605 } else { 1606 resultType = resultType.getDesugaredType(Context); 1607 } 1608 } while (resultType->getNullability(Context)); 1609 1610 // Add nullability back if needed. 1611 if (newResultNullabilityIdx > 0) { 1612 auto newNullability 1613 = static_cast<NullabilityKind>(newResultNullabilityIdx-1); 1614 return Context.getAttributedType( 1615 AttributedType::getNullabilityAttrKind(newNullability), 1616 resultType, resultType); 1617 } 1618 1619 return resultType; 1620 } 1621 1622 /// Look for an ObjC method whose result type exactly matches the given type. 1623 static const ObjCMethodDecl * 1624 findExplicitInstancetypeDeclarer(const ObjCMethodDecl *MD, 1625 QualType instancetype) { 1626 if (MD->getReturnType() == instancetype) 1627 return MD; 1628 1629 // For these purposes, a method in an @implementation overrides a 1630 // declaration in the @interface. 1631 if (const ObjCImplDecl *impl = 1632 dyn_cast<ObjCImplDecl>(MD->getDeclContext())) { 1633 const ObjCContainerDecl *iface; 1634 if (const ObjCCategoryImplDecl *catImpl = 1635 dyn_cast<ObjCCategoryImplDecl>(impl)) { 1636 iface = catImpl->getCategoryDecl(); 1637 } else { 1638 iface = impl->getClassInterface(); 1639 } 1640 1641 const ObjCMethodDecl *ifaceMD = 1642 iface->getMethod(MD->getSelector(), MD->isInstanceMethod()); 1643 if (ifaceMD) return findExplicitInstancetypeDeclarer(ifaceMD, instancetype); 1644 } 1645 1646 SmallVector<const ObjCMethodDecl *, 4> overrides; 1647 MD->getOverriddenMethods(overrides); 1648 for (unsigned i = 0, e = overrides.size(); i != e; ++i) { 1649 if (const ObjCMethodDecl *result = 1650 findExplicitInstancetypeDeclarer(overrides[i], instancetype)) 1651 return result; 1652 } 1653 1654 return nullptr; 1655 } 1656 1657 void Sema::EmitRelatedResultTypeNoteForReturn(QualType destType) { 1658 // Only complain if we're in an ObjC method and the required return 1659 // type doesn't match the method's declared return type. 1660 ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurContext); 1661 if (!MD || !MD->hasRelatedResultType() || 1662 Context.hasSameUnqualifiedType(destType, MD->getReturnType())) 1663 return; 1664 1665 // Look for a method overridden by this method which explicitly uses 1666 // 'instancetype'. 1667 if (const ObjCMethodDecl *overridden = 1668 findExplicitInstancetypeDeclarer(MD, Context.getObjCInstanceType())) { 1669 SourceRange range = overridden->getReturnTypeSourceRange(); 1670 SourceLocation loc = range.getBegin(); 1671 if (loc.isInvalid()) 1672 loc = overridden->getLocation(); 1673 Diag(loc, diag::note_related_result_type_explicit) 1674 << /*current method*/ 1 << range; 1675 return; 1676 } 1677 1678 // Otherwise, if we have an interesting method family, note that. 1679 // This should always trigger if the above didn't. 1680 if (ObjCMethodFamily family = MD->getMethodFamily()) 1681 Diag(MD->getLocation(), diag::note_related_result_type_family) 1682 << /*current method*/ 1 1683 << family; 1684 } 1685 1686 void Sema::EmitRelatedResultTypeNote(const Expr *E) { 1687 E = E->IgnoreParenImpCasts(); 1688 const ObjCMessageExpr *MsgSend = dyn_cast<ObjCMessageExpr>(E); 1689 if (!MsgSend) 1690 return; 1691 1692 const ObjCMethodDecl *Method = MsgSend->getMethodDecl(); 1693 if (!Method) 1694 return; 1695 1696 if (!Method->hasRelatedResultType()) 1697 return; 1698 1699 if (Context.hasSameUnqualifiedType( 1700 Method->getReturnType().getNonReferenceType(), MsgSend->getType())) 1701 return; 1702 1703 if (!Context.hasSameUnqualifiedType(Method->getReturnType(), 1704 Context.getObjCInstanceType())) 1705 return; 1706 1707 Diag(Method->getLocation(), diag::note_related_result_type_inferred) 1708 << Method->isInstanceMethod() << Method->getSelector() 1709 << MsgSend->getType(); 1710 } 1711 1712 bool Sema::CheckMessageArgumentTypes( 1713 const Expr *Receiver, QualType ReceiverType, MultiExprArg Args, 1714 Selector Sel, ArrayRef<SourceLocation> SelectorLocs, ObjCMethodDecl *Method, 1715 bool isClassMessage, bool isSuperMessage, SourceLocation lbrac, 1716 SourceLocation rbrac, SourceRange RecRange, QualType &ReturnType, 1717 ExprValueKind &VK) { 1718 SourceLocation SelLoc; 1719 if (!SelectorLocs.empty() && SelectorLocs.front().isValid()) 1720 SelLoc = SelectorLocs.front(); 1721 else 1722 SelLoc = lbrac; 1723 1724 if (!Method) { 1725 // Apply default argument promotion as for (C99 6.5.2.2p6). 1726 for (unsigned i = 0, e = Args.size(); i != e; i++) { 1727 if (Args[i]->isTypeDependent()) 1728 continue; 1729 1730 ExprResult result; 1731 if (getLangOpts().DebuggerSupport) { 1732 QualType paramTy; // ignored 1733 result = checkUnknownAnyArg(SelLoc, Args[i], paramTy); 1734 } else { 1735 result = DefaultArgumentPromotion(Args[i]); 1736 } 1737 if (result.isInvalid()) 1738 return true; 1739 Args[i] = result.get(); 1740 } 1741 1742 unsigned DiagID; 1743 if (getLangOpts().ObjCAutoRefCount) 1744 DiagID = diag::err_arc_method_not_found; 1745 else 1746 DiagID = isClassMessage ? diag::warn_class_method_not_found 1747 : diag::warn_inst_method_not_found; 1748 if (!getLangOpts().DebuggerSupport) { 1749 const ObjCMethodDecl *OMD = SelectorsForTypoCorrection(Sel, ReceiverType); 1750 if (OMD && !OMD->isInvalidDecl()) { 1751 if (getLangOpts().ObjCAutoRefCount) 1752 DiagID = diag::err_method_not_found_with_typo; 1753 else 1754 DiagID = isClassMessage ? diag::warn_class_method_not_found_with_typo 1755 : diag::warn_instance_method_not_found_with_typo; 1756 Selector MatchedSel = OMD->getSelector(); 1757 SourceRange SelectorRange(SelectorLocs.front(), SelectorLocs.back()); 1758 if (MatchedSel.isUnarySelector()) 1759 Diag(SelLoc, DiagID) 1760 << Sel<< isClassMessage << MatchedSel 1761 << FixItHint::CreateReplacement(SelectorRange, MatchedSel.getAsString()); 1762 else 1763 Diag(SelLoc, DiagID) << Sel<< isClassMessage << MatchedSel; 1764 } 1765 else 1766 Diag(SelLoc, DiagID) 1767 << Sel << isClassMessage << SourceRange(SelectorLocs.front(), 1768 SelectorLocs.back()); 1769 // Find the class to which we are sending this message. 1770 if (auto *ObjPT = ReceiverType->getAs<ObjCObjectPointerType>()) { 1771 if (ObjCInterfaceDecl *ThisClass = ObjPT->getInterfaceDecl()) { 1772 Diag(ThisClass->getLocation(), diag::note_receiver_class_declared); 1773 if (!RecRange.isInvalid()) 1774 if (ThisClass->lookupClassMethod(Sel)) 1775 Diag(RecRange.getBegin(), diag::note_receiver_expr_here) 1776 << FixItHint::CreateReplacement(RecRange, 1777 ThisClass->getNameAsString()); 1778 } 1779 } 1780 } 1781 1782 // In debuggers, we want to use __unknown_anytype for these 1783 // results so that clients can cast them. 1784 if (getLangOpts().DebuggerSupport) { 1785 ReturnType = Context.UnknownAnyTy; 1786 } else { 1787 ReturnType = Context.getObjCIdType(); 1788 } 1789 VK = VK_RValue; 1790 return false; 1791 } 1792 1793 ReturnType = getMessageSendResultType(Receiver, ReceiverType, Method, 1794 isClassMessage, isSuperMessage); 1795 VK = Expr::getValueKindForType(Method->getReturnType()); 1796 1797 unsigned NumNamedArgs = Sel.getNumArgs(); 1798 // Method might have more arguments than selector indicates. This is due 1799 // to addition of c-style arguments in method. 1800 if (Method->param_size() > Sel.getNumArgs()) 1801 NumNamedArgs = Method->param_size(); 1802 // FIXME. This need be cleaned up. 1803 if (Args.size() < NumNamedArgs) { 1804 Diag(SelLoc, diag::err_typecheck_call_too_few_args) 1805 << 2 << NumNamedArgs << static_cast<unsigned>(Args.size()); 1806 return false; 1807 } 1808 1809 // Compute the set of type arguments to be substituted into each parameter 1810 // type. 1811 Optional<ArrayRef<QualType>> typeArgs 1812 = ReceiverType->getObjCSubstitutions(Method->getDeclContext()); 1813 bool IsError = false; 1814 for (unsigned i = 0; i < NumNamedArgs; i++) { 1815 // We can't do any type-checking on a type-dependent argument. 1816 if (Args[i]->isTypeDependent()) 1817 continue; 1818 1819 Expr *argExpr = Args[i]; 1820 1821 ParmVarDecl *param = Method->parameters()[i]; 1822 assert(argExpr && "CheckMessageArgumentTypes(): missing expression"); 1823 1824 if (param->hasAttr<NoEscapeAttr>()) 1825 if (auto *BE = dyn_cast<BlockExpr>( 1826 argExpr->IgnoreParenNoopCasts(Context))) 1827 BE->getBlockDecl()->setDoesNotEscape(); 1828 1829 // Strip the unbridged-cast placeholder expression off unless it's 1830 // a consumed argument. 1831 if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) && 1832 !param->hasAttr<CFConsumedAttr>()) 1833 argExpr = stripARCUnbridgedCast(argExpr); 1834 1835 // If the parameter is __unknown_anytype, infer its type 1836 // from the argument. 1837 if (param->getType() == Context.UnknownAnyTy) { 1838 QualType paramType; 1839 ExprResult argE = checkUnknownAnyArg(SelLoc, argExpr, paramType); 1840 if (argE.isInvalid()) { 1841 IsError = true; 1842 } else { 1843 Args[i] = argE.get(); 1844 1845 // Update the parameter type in-place. 1846 param->setType(paramType); 1847 } 1848 continue; 1849 } 1850 1851 QualType origParamType = param->getType(); 1852 QualType paramType = param->getType(); 1853 if (typeArgs) 1854 paramType = paramType.substObjCTypeArgs( 1855 Context, 1856 *typeArgs, 1857 ObjCSubstitutionContext::Parameter); 1858 1859 if (RequireCompleteType(argExpr->getSourceRange().getBegin(), 1860 paramType, 1861 diag::err_call_incomplete_argument, argExpr)) 1862 return true; 1863 1864 InitializedEntity Entity 1865 = InitializedEntity::InitializeParameter(Context, param, paramType); 1866 ExprResult ArgE = PerformCopyInitialization(Entity, SourceLocation(), argExpr); 1867 if (ArgE.isInvalid()) 1868 IsError = true; 1869 else { 1870 Args[i] = ArgE.getAs<Expr>(); 1871 1872 // If we are type-erasing a block to a block-compatible 1873 // Objective-C pointer type, we may need to extend the lifetime 1874 // of the block object. 1875 if (typeArgs && Args[i]->isRValue() && paramType->isBlockPointerType() && 1876 Args[i]->getType()->isBlockPointerType() && 1877 origParamType->isObjCObjectPointerType()) { 1878 ExprResult arg = Args[i]; 1879 maybeExtendBlockObject(arg); 1880 Args[i] = arg.get(); 1881 } 1882 } 1883 } 1884 1885 // Promote additional arguments to variadic methods. 1886 if (Method->isVariadic()) { 1887 for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) { 1888 if (Args[i]->isTypeDependent()) 1889 continue; 1890 1891 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 1892 nullptr); 1893 IsError |= Arg.isInvalid(); 1894 Args[i] = Arg.get(); 1895 } 1896 } else { 1897 // Check for extra arguments to non-variadic methods. 1898 if (Args.size() != NumNamedArgs) { 1899 Diag(Args[NumNamedArgs]->getBeginLoc(), 1900 diag::err_typecheck_call_too_many_args) 1901 << 2 /*method*/ << NumNamedArgs << static_cast<unsigned>(Args.size()) 1902 << Method->getSourceRange() 1903 << SourceRange(Args[NumNamedArgs]->getBeginLoc(), 1904 Args.back()->getEndLoc()); 1905 } 1906 } 1907 1908 DiagnoseSentinelCalls(Method, SelLoc, Args); 1909 1910 // Do additional checkings on method. 1911 IsError |= CheckObjCMethodCall( 1912 Method, SelLoc, makeArrayRef(Args.data(), Args.size())); 1913 1914 return IsError; 1915 } 1916 1917 bool Sema::isSelfExpr(Expr *RExpr) { 1918 // 'self' is objc 'self' in an objc method only. 1919 ObjCMethodDecl *Method = 1920 dyn_cast_or_null<ObjCMethodDecl>(CurContext->getNonClosureAncestor()); 1921 return isSelfExpr(RExpr, Method); 1922 } 1923 1924 bool Sema::isSelfExpr(Expr *receiver, const ObjCMethodDecl *method) { 1925 if (!method) return false; 1926 1927 receiver = receiver->IgnoreParenLValueCasts(); 1928 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(receiver)) 1929 if (DRE->getDecl() == method->getSelfDecl()) 1930 return true; 1931 return false; 1932 } 1933 1934 /// LookupMethodInType - Look up a method in an ObjCObjectType. 1935 ObjCMethodDecl *Sema::LookupMethodInObjectType(Selector sel, QualType type, 1936 bool isInstance) { 1937 const ObjCObjectType *objType = type->castAs<ObjCObjectType>(); 1938 if (ObjCInterfaceDecl *iface = objType->getInterface()) { 1939 // Look it up in the main interface (and categories, etc.) 1940 if (ObjCMethodDecl *method = iface->lookupMethod(sel, isInstance)) 1941 return method; 1942 1943 // Okay, look for "private" methods declared in any 1944 // @implementations we've seen. 1945 if (ObjCMethodDecl *method = iface->lookupPrivateMethod(sel, isInstance)) 1946 return method; 1947 } 1948 1949 // Check qualifiers. 1950 for (const auto *I : objType->quals()) 1951 if (ObjCMethodDecl *method = I->lookupMethod(sel, isInstance)) 1952 return method; 1953 1954 return nullptr; 1955 } 1956 1957 /// LookupMethodInQualifiedType - Lookups up a method in protocol qualifier 1958 /// list of a qualified objective pointer type. 1959 ObjCMethodDecl *Sema::LookupMethodInQualifiedType(Selector Sel, 1960 const ObjCObjectPointerType *OPT, 1961 bool Instance) 1962 { 1963 ObjCMethodDecl *MD = nullptr; 1964 for (const auto *PROTO : OPT->quals()) { 1965 if ((MD = PROTO->lookupMethod(Sel, Instance))) { 1966 return MD; 1967 } 1968 } 1969 return nullptr; 1970 } 1971 1972 /// HandleExprPropertyRefExpr - Handle foo.bar where foo is a pointer to an 1973 /// objective C interface. This is a property reference expression. 1974 ExprResult Sema:: 1975 HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT, 1976 Expr *BaseExpr, SourceLocation OpLoc, 1977 DeclarationName MemberName, 1978 SourceLocation MemberLoc, 1979 SourceLocation SuperLoc, QualType SuperType, 1980 bool Super) { 1981 const ObjCInterfaceType *IFaceT = OPT->getInterfaceType(); 1982 ObjCInterfaceDecl *IFace = IFaceT->getDecl(); 1983 1984 if (!MemberName.isIdentifier()) { 1985 Diag(MemberLoc, diag::err_invalid_property_name) 1986 << MemberName << QualType(OPT, 0); 1987 return ExprError(); 1988 } 1989 1990 IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); 1991 1992 SourceRange BaseRange = Super? SourceRange(SuperLoc) 1993 : BaseExpr->getSourceRange(); 1994 if (RequireCompleteType(MemberLoc, OPT->getPointeeType(), 1995 diag::err_property_not_found_forward_class, 1996 MemberName, BaseRange)) 1997 return ExprError(); 1998 1999 if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration( 2000 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { 2001 // Check whether we can reference this property. 2002 if (DiagnoseUseOfDecl(PD, MemberLoc)) 2003 return ExprError(); 2004 if (Super) 2005 return new (Context) 2006 ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue, 2007 OK_ObjCProperty, MemberLoc, SuperLoc, SuperType); 2008 else 2009 return new (Context) 2010 ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue, 2011 OK_ObjCProperty, MemberLoc, BaseExpr); 2012 } 2013 // Check protocols on qualified interfaces. 2014 for (const auto *I : OPT->quals()) 2015 if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration( 2016 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { 2017 // Check whether we can reference this property. 2018 if (DiagnoseUseOfDecl(PD, MemberLoc)) 2019 return ExprError(); 2020 2021 if (Super) 2022 return new (Context) ObjCPropertyRefExpr( 2023 PD, Context.PseudoObjectTy, VK_LValue, OK_ObjCProperty, MemberLoc, 2024 SuperLoc, SuperType); 2025 else 2026 return new (Context) 2027 ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue, 2028 OK_ObjCProperty, MemberLoc, BaseExpr); 2029 } 2030 // If that failed, look for an "implicit" property by seeing if the nullary 2031 // selector is implemented. 2032 2033 // FIXME: The logic for looking up nullary and unary selectors should be 2034 // shared with the code in ActOnInstanceMessage. 2035 2036 Selector Sel = PP.getSelectorTable().getNullarySelector(Member); 2037 ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel); 2038 2039 // May be found in property's qualified list. 2040 if (!Getter) 2041 Getter = LookupMethodInQualifiedType(Sel, OPT, true); 2042 2043 // If this reference is in an @implementation, check for 'private' methods. 2044 if (!Getter) 2045 Getter = IFace->lookupPrivateMethod(Sel); 2046 2047 if (Getter) { 2048 // Check if we can reference this property. 2049 if (DiagnoseUseOfDecl(Getter, MemberLoc)) 2050 return ExprError(); 2051 } 2052 // If we found a getter then this may be a valid dot-reference, we 2053 // will look for the matching setter, in case it is needed. 2054 Selector SetterSel = 2055 SelectorTable::constructSetterSelector(PP.getIdentifierTable(), 2056 PP.getSelectorTable(), Member); 2057 ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel); 2058 2059 // May be found in property's qualified list. 2060 if (!Setter) 2061 Setter = LookupMethodInQualifiedType(SetterSel, OPT, true); 2062 2063 if (!Setter) { 2064 // If this reference is in an @implementation, also check for 'private' 2065 // methods. 2066 Setter = IFace->lookupPrivateMethod(SetterSel); 2067 } 2068 2069 if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc)) 2070 return ExprError(); 2071 2072 // Special warning if member name used in a property-dot for a setter accessor 2073 // does not use a property with same name; e.g. obj.X = ... for a property with 2074 // name 'x'. 2075 if (Setter && Setter->isImplicit() && Setter->isPropertyAccessor() && 2076 !IFace->FindPropertyDeclaration( 2077 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { 2078 if (const ObjCPropertyDecl *PDecl = Setter->findPropertyDecl()) { 2079 // Do not warn if user is using property-dot syntax to make call to 2080 // user named setter. 2081 if (!(PDecl->getPropertyAttributes() & 2082 ObjCPropertyAttribute::kind_setter)) 2083 Diag(MemberLoc, 2084 diag::warn_property_access_suggest) 2085 << MemberName << QualType(OPT, 0) << PDecl->getName() 2086 << FixItHint::CreateReplacement(MemberLoc, PDecl->getName()); 2087 } 2088 } 2089 2090 if (Getter || Setter) { 2091 if (Super) 2092 return new (Context) 2093 ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue, 2094 OK_ObjCProperty, MemberLoc, SuperLoc, SuperType); 2095 else 2096 return new (Context) 2097 ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue, 2098 OK_ObjCProperty, MemberLoc, BaseExpr); 2099 2100 } 2101 2102 // Attempt to correct for typos in property names. 2103 DeclFilterCCC<ObjCPropertyDecl> CCC{}; 2104 if (TypoCorrection Corrected = CorrectTypo( 2105 DeclarationNameInfo(MemberName, MemberLoc), LookupOrdinaryName, 2106 nullptr, nullptr, CCC, CTK_ErrorRecovery, IFace, false, OPT)) { 2107 DeclarationName TypoResult = Corrected.getCorrection(); 2108 if (TypoResult.isIdentifier() && 2109 TypoResult.getAsIdentifierInfo() == Member) { 2110 // There is no need to try the correction if it is the same. 2111 NamedDecl *ChosenDecl = 2112 Corrected.isKeyword() ? nullptr : Corrected.getFoundDecl(); 2113 if (ChosenDecl && isa<ObjCPropertyDecl>(ChosenDecl)) 2114 if (cast<ObjCPropertyDecl>(ChosenDecl)->isClassProperty()) { 2115 // This is a class property, we should not use the instance to 2116 // access it. 2117 Diag(MemberLoc, diag::err_class_property_found) << MemberName 2118 << OPT->getInterfaceDecl()->getName() 2119 << FixItHint::CreateReplacement(BaseExpr->getSourceRange(), 2120 OPT->getInterfaceDecl()->getName()); 2121 return ExprError(); 2122 } 2123 } else { 2124 diagnoseTypo(Corrected, PDiag(diag::err_property_not_found_suggest) 2125 << MemberName << QualType(OPT, 0)); 2126 return HandleExprPropertyRefExpr(OPT, BaseExpr, OpLoc, 2127 TypoResult, MemberLoc, 2128 SuperLoc, SuperType, Super); 2129 } 2130 } 2131 ObjCInterfaceDecl *ClassDeclared; 2132 if (ObjCIvarDecl *Ivar = 2133 IFace->lookupInstanceVariable(Member, ClassDeclared)) { 2134 QualType T = Ivar->getType(); 2135 if (const ObjCObjectPointerType * OBJPT = 2136 T->getAsObjCInterfacePointerType()) { 2137 if (RequireCompleteType(MemberLoc, OBJPT->getPointeeType(), 2138 diag::err_property_not_as_forward_class, 2139 MemberName, BaseExpr)) 2140 return ExprError(); 2141 } 2142 Diag(MemberLoc, 2143 diag::err_ivar_access_using_property_syntax_suggest) 2144 << MemberName << QualType(OPT, 0) << Ivar->getDeclName() 2145 << FixItHint::CreateReplacement(OpLoc, "->"); 2146 return ExprError(); 2147 } 2148 2149 Diag(MemberLoc, diag::err_property_not_found) 2150 << MemberName << QualType(OPT, 0); 2151 if (Setter) 2152 Diag(Setter->getLocation(), diag::note_getter_unavailable) 2153 << MemberName << BaseExpr->getSourceRange(); 2154 return ExprError(); 2155 } 2156 2157 ExprResult Sema:: 2158 ActOnClassPropertyRefExpr(IdentifierInfo &receiverName, 2159 IdentifierInfo &propertyName, 2160 SourceLocation receiverNameLoc, 2161 SourceLocation propertyNameLoc) { 2162 2163 IdentifierInfo *receiverNamePtr = &receiverName; 2164 ObjCInterfaceDecl *IFace = getObjCInterfaceDecl(receiverNamePtr, 2165 receiverNameLoc); 2166 2167 QualType SuperType; 2168 if (!IFace) { 2169 // If the "receiver" is 'super' in a method, handle it as an expression-like 2170 // property reference. 2171 if (receiverNamePtr->isStr("super")) { 2172 if (ObjCMethodDecl *CurMethod = tryCaptureObjCSelf(receiverNameLoc)) { 2173 if (auto classDecl = CurMethod->getClassInterface()) { 2174 SuperType = QualType(classDecl->getSuperClassType(), 0); 2175 if (CurMethod->isInstanceMethod()) { 2176 if (SuperType.isNull()) { 2177 // The current class does not have a superclass. 2178 Diag(receiverNameLoc, diag::err_root_class_cannot_use_super) 2179 << CurMethod->getClassInterface()->getIdentifier(); 2180 return ExprError(); 2181 } 2182 QualType T = Context.getObjCObjectPointerType(SuperType); 2183 2184 return HandleExprPropertyRefExpr(T->castAs<ObjCObjectPointerType>(), 2185 /*BaseExpr*/nullptr, 2186 SourceLocation()/*OpLoc*/, 2187 &propertyName, 2188 propertyNameLoc, 2189 receiverNameLoc, T, true); 2190 } 2191 2192 // Otherwise, if this is a class method, try dispatching to our 2193 // superclass. 2194 IFace = CurMethod->getClassInterface()->getSuperClass(); 2195 } 2196 } 2197 } 2198 2199 if (!IFace) { 2200 Diag(receiverNameLoc, diag::err_expected_either) << tok::identifier 2201 << tok::l_paren; 2202 return ExprError(); 2203 } 2204 } 2205 2206 Selector GetterSel; 2207 Selector SetterSel; 2208 if (auto PD = IFace->FindPropertyDeclaration( 2209 &propertyName, ObjCPropertyQueryKind::OBJC_PR_query_class)) { 2210 GetterSel = PD->getGetterName(); 2211 SetterSel = PD->getSetterName(); 2212 } else { 2213 GetterSel = PP.getSelectorTable().getNullarySelector(&propertyName); 2214 SetterSel = SelectorTable::constructSetterSelector( 2215 PP.getIdentifierTable(), PP.getSelectorTable(), &propertyName); 2216 } 2217 2218 // Search for a declared property first. 2219 ObjCMethodDecl *Getter = IFace->lookupClassMethod(GetterSel); 2220 2221 // If this reference is in an @implementation, check for 'private' methods. 2222 if (!Getter) 2223 Getter = IFace->lookupPrivateClassMethod(GetterSel); 2224 2225 if (Getter) { 2226 // FIXME: refactor/share with ActOnMemberReference(). 2227 // Check if we can reference this property. 2228 if (DiagnoseUseOfDecl(Getter, propertyNameLoc)) 2229 return ExprError(); 2230 } 2231 2232 // Look for the matching setter, in case it is needed. 2233 ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel); 2234 if (!Setter) { 2235 // If this reference is in an @implementation, also check for 'private' 2236 // methods. 2237 Setter = IFace->lookupPrivateClassMethod(SetterSel); 2238 } 2239 // Look through local category implementations associated with the class. 2240 if (!Setter) 2241 Setter = IFace->getCategoryClassMethod(SetterSel); 2242 2243 if (Setter && DiagnoseUseOfDecl(Setter, propertyNameLoc)) 2244 return ExprError(); 2245 2246 if (Getter || Setter) { 2247 if (!SuperType.isNull()) 2248 return new (Context) 2249 ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue, 2250 OK_ObjCProperty, propertyNameLoc, receiverNameLoc, 2251 SuperType); 2252 2253 return new (Context) ObjCPropertyRefExpr( 2254 Getter, Setter, Context.PseudoObjectTy, VK_LValue, OK_ObjCProperty, 2255 propertyNameLoc, receiverNameLoc, IFace); 2256 } 2257 return ExprError(Diag(propertyNameLoc, diag::err_property_not_found) 2258 << &propertyName << Context.getObjCInterfaceType(IFace)); 2259 } 2260 2261 namespace { 2262 2263 class ObjCInterfaceOrSuperCCC final : public CorrectionCandidateCallback { 2264 public: 2265 ObjCInterfaceOrSuperCCC(ObjCMethodDecl *Method) { 2266 // Determine whether "super" is acceptable in the current context. 2267 if (Method && Method->getClassInterface()) 2268 WantObjCSuper = Method->getClassInterface()->getSuperClass(); 2269 } 2270 2271 bool ValidateCandidate(const TypoCorrection &candidate) override { 2272 return candidate.getCorrectionDeclAs<ObjCInterfaceDecl>() || 2273 candidate.isKeyword("super"); 2274 } 2275 2276 std::unique_ptr<CorrectionCandidateCallback> clone() override { 2277 return std::make_unique<ObjCInterfaceOrSuperCCC>(*this); 2278 } 2279 }; 2280 2281 } // end anonymous namespace 2282 2283 Sema::ObjCMessageKind Sema::getObjCMessageKind(Scope *S, 2284 IdentifierInfo *Name, 2285 SourceLocation NameLoc, 2286 bool IsSuper, 2287 bool HasTrailingDot, 2288 ParsedType &ReceiverType) { 2289 ReceiverType = nullptr; 2290 2291 // If the identifier is "super" and there is no trailing dot, we're 2292 // messaging super. If the identifier is "super" and there is a 2293 // trailing dot, it's an instance message. 2294 if (IsSuper && S->isInObjcMethodScope()) 2295 return HasTrailingDot? ObjCInstanceMessage : ObjCSuperMessage; 2296 2297 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); 2298 LookupName(Result, S); 2299 2300 switch (Result.getResultKind()) { 2301 case LookupResult::NotFound: 2302 // Normal name lookup didn't find anything. If we're in an 2303 // Objective-C method, look for ivars. If we find one, we're done! 2304 // FIXME: This is a hack. Ivar lookup should be part of normal 2305 // lookup. 2306 if (ObjCMethodDecl *Method = getCurMethodDecl()) { 2307 if (!Method->getClassInterface()) { 2308 // Fall back: let the parser try to parse it as an instance message. 2309 return ObjCInstanceMessage; 2310 } 2311 2312 ObjCInterfaceDecl *ClassDeclared; 2313 if (Method->getClassInterface()->lookupInstanceVariable(Name, 2314 ClassDeclared)) 2315 return ObjCInstanceMessage; 2316 } 2317 2318 // Break out; we'll perform typo correction below. 2319 break; 2320 2321 case LookupResult::NotFoundInCurrentInstantiation: 2322 case LookupResult::FoundOverloaded: 2323 case LookupResult::FoundUnresolvedValue: 2324 case LookupResult::Ambiguous: 2325 Result.suppressDiagnostics(); 2326 return ObjCInstanceMessage; 2327 2328 case LookupResult::Found: { 2329 // If the identifier is a class or not, and there is a trailing dot, 2330 // it's an instance message. 2331 if (HasTrailingDot) 2332 return ObjCInstanceMessage; 2333 // We found something. If it's a type, then we have a class 2334 // message. Otherwise, it's an instance message. 2335 NamedDecl *ND = Result.getFoundDecl(); 2336 QualType T; 2337 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(ND)) 2338 T = Context.getObjCInterfaceType(Class); 2339 else if (TypeDecl *Type = dyn_cast<TypeDecl>(ND)) { 2340 T = Context.getTypeDeclType(Type); 2341 DiagnoseUseOfDecl(Type, NameLoc); 2342 } 2343 else 2344 return ObjCInstanceMessage; 2345 2346 // We have a class message, and T is the type we're 2347 // messaging. Build source-location information for it. 2348 TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc); 2349 ReceiverType = CreateParsedType(T, TSInfo); 2350 return ObjCClassMessage; 2351 } 2352 } 2353 2354 ObjCInterfaceOrSuperCCC CCC(getCurMethodDecl()); 2355 if (TypoCorrection Corrected = CorrectTypo( 2356 Result.getLookupNameInfo(), Result.getLookupKind(), S, nullptr, CCC, 2357 CTK_ErrorRecovery, nullptr, false, nullptr, false)) { 2358 if (Corrected.isKeyword()) { 2359 // If we've found the keyword "super" (the only keyword that would be 2360 // returned by CorrectTypo), this is a send to super. 2361 diagnoseTypo(Corrected, 2362 PDiag(diag::err_unknown_receiver_suggest) << Name); 2363 return ObjCSuperMessage; 2364 } else if (ObjCInterfaceDecl *Class = 2365 Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) { 2366 // If we found a declaration, correct when it refers to an Objective-C 2367 // class. 2368 diagnoseTypo(Corrected, 2369 PDiag(diag::err_unknown_receiver_suggest) << Name); 2370 QualType T = Context.getObjCInterfaceType(Class); 2371 TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc); 2372 ReceiverType = CreateParsedType(T, TSInfo); 2373 return ObjCClassMessage; 2374 } 2375 } 2376 2377 // Fall back: let the parser try to parse it as an instance message. 2378 return ObjCInstanceMessage; 2379 } 2380 2381 ExprResult Sema::ActOnSuperMessage(Scope *S, 2382 SourceLocation SuperLoc, 2383 Selector Sel, 2384 SourceLocation LBracLoc, 2385 ArrayRef<SourceLocation> SelectorLocs, 2386 SourceLocation RBracLoc, 2387 MultiExprArg Args) { 2388 // Determine whether we are inside a method or not. 2389 ObjCMethodDecl *Method = tryCaptureObjCSelf(SuperLoc); 2390 if (!Method) { 2391 Diag(SuperLoc, diag::err_invalid_receiver_to_message_super); 2392 return ExprError(); 2393 } 2394 2395 ObjCInterfaceDecl *Class = Method->getClassInterface(); 2396 if (!Class) { 2397 Diag(SuperLoc, diag::err_no_super_class_message) 2398 << Method->getDeclName(); 2399 return ExprError(); 2400 } 2401 2402 QualType SuperTy(Class->getSuperClassType(), 0); 2403 if (SuperTy.isNull()) { 2404 // The current class does not have a superclass. 2405 Diag(SuperLoc, diag::err_root_class_cannot_use_super) 2406 << Class->getIdentifier(); 2407 return ExprError(); 2408 } 2409 2410 // We are in a method whose class has a superclass, so 'super' 2411 // is acting as a keyword. 2412 if (Method->getSelector() == Sel) 2413 getCurFunction()->ObjCShouldCallSuper = false; 2414 2415 if (Method->isInstanceMethod()) { 2416 // Since we are in an instance method, this is an instance 2417 // message to the superclass instance. 2418 SuperTy = Context.getObjCObjectPointerType(SuperTy); 2419 return BuildInstanceMessage(nullptr, SuperTy, SuperLoc, 2420 Sel, /*Method=*/nullptr, 2421 LBracLoc, SelectorLocs, RBracLoc, Args); 2422 } 2423 2424 // Since we are in a class method, this is a class message to 2425 // the superclass. 2426 return BuildClassMessage(/*ReceiverTypeInfo=*/nullptr, 2427 SuperTy, 2428 SuperLoc, Sel, /*Method=*/nullptr, 2429 LBracLoc, SelectorLocs, RBracLoc, Args); 2430 } 2431 2432 ExprResult Sema::BuildClassMessageImplicit(QualType ReceiverType, 2433 bool isSuperReceiver, 2434 SourceLocation Loc, 2435 Selector Sel, 2436 ObjCMethodDecl *Method, 2437 MultiExprArg Args) { 2438 TypeSourceInfo *receiverTypeInfo = nullptr; 2439 if (!ReceiverType.isNull()) 2440 receiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType); 2441 2442 return BuildClassMessage(receiverTypeInfo, ReceiverType, 2443 /*SuperLoc=*/isSuperReceiver ? Loc : SourceLocation(), 2444 Sel, Method, Loc, Loc, Loc, Args, 2445 /*isImplicit=*/true); 2446 } 2447 2448 static void applyCocoaAPICheck(Sema &S, const ObjCMessageExpr *Msg, 2449 unsigned DiagID, 2450 bool (*refactor)(const ObjCMessageExpr *, 2451 const NSAPI &, edit::Commit &)) { 2452 SourceLocation MsgLoc = Msg->getExprLoc(); 2453 if (S.Diags.isIgnored(DiagID, MsgLoc)) 2454 return; 2455 2456 SourceManager &SM = S.SourceMgr; 2457 edit::Commit ECommit(SM, S.LangOpts); 2458 if (refactor(Msg,*S.NSAPIObj, ECommit)) { 2459 auto Builder = S.Diag(MsgLoc, DiagID) 2460 << Msg->getSelector() << Msg->getSourceRange(); 2461 // FIXME: Don't emit diagnostic at all if fixits are non-commitable. 2462 if (!ECommit.isCommitable()) 2463 return; 2464 for (edit::Commit::edit_iterator 2465 I = ECommit.edit_begin(), E = ECommit.edit_end(); I != E; ++I) { 2466 const edit::Commit::Edit &Edit = *I; 2467 switch (Edit.Kind) { 2468 case edit::Commit::Act_Insert: 2469 Builder.AddFixItHint(FixItHint::CreateInsertion(Edit.OrigLoc, 2470 Edit.Text, 2471 Edit.BeforePrev)); 2472 break; 2473 case edit::Commit::Act_InsertFromRange: 2474 Builder.AddFixItHint( 2475 FixItHint::CreateInsertionFromRange(Edit.OrigLoc, 2476 Edit.getInsertFromRange(SM), 2477 Edit.BeforePrev)); 2478 break; 2479 case edit::Commit::Act_Remove: 2480 Builder.AddFixItHint(FixItHint::CreateRemoval(Edit.getFileRange(SM))); 2481 break; 2482 } 2483 } 2484 } 2485 } 2486 2487 static void checkCocoaAPI(Sema &S, const ObjCMessageExpr *Msg) { 2488 applyCocoaAPICheck(S, Msg, diag::warn_objc_redundant_literal_use, 2489 edit::rewriteObjCRedundantCallWithLiteral); 2490 } 2491 2492 static void checkFoundationAPI(Sema &S, SourceLocation Loc, 2493 const ObjCMethodDecl *Method, 2494 ArrayRef<Expr *> Args, QualType ReceiverType, 2495 bool IsClassObjectCall) { 2496 // Check if this is a performSelector method that uses a selector that returns 2497 // a record or a vector type. 2498 if (Method->getSelector().getMethodFamily() != OMF_performSelector || 2499 Args.empty()) 2500 return; 2501 const auto *SE = dyn_cast<ObjCSelectorExpr>(Args[0]->IgnoreParens()); 2502 if (!SE) 2503 return; 2504 ObjCMethodDecl *ImpliedMethod; 2505 if (!IsClassObjectCall) { 2506 const auto *OPT = ReceiverType->getAs<ObjCObjectPointerType>(); 2507 if (!OPT || !OPT->getInterfaceDecl()) 2508 return; 2509 ImpliedMethod = 2510 OPT->getInterfaceDecl()->lookupInstanceMethod(SE->getSelector()); 2511 if (!ImpliedMethod) 2512 ImpliedMethod = 2513 OPT->getInterfaceDecl()->lookupPrivateMethod(SE->getSelector()); 2514 } else { 2515 const auto *IT = ReceiverType->getAs<ObjCInterfaceType>(); 2516 if (!IT) 2517 return; 2518 ImpliedMethod = IT->getDecl()->lookupClassMethod(SE->getSelector()); 2519 if (!ImpliedMethod) 2520 ImpliedMethod = 2521 IT->getDecl()->lookupPrivateClassMethod(SE->getSelector()); 2522 } 2523 if (!ImpliedMethod) 2524 return; 2525 QualType Ret = ImpliedMethod->getReturnType(); 2526 if (Ret->isRecordType() || Ret->isVectorType() || Ret->isExtVectorType()) { 2527 S.Diag(Loc, diag::warn_objc_unsafe_perform_selector) 2528 << Method->getSelector() 2529 << (!Ret->isRecordType() 2530 ? /*Vector*/ 2 2531 : Ret->isUnionType() ? /*Union*/ 1 : /*Struct*/ 0); 2532 S.Diag(ImpliedMethod->getBeginLoc(), 2533 diag::note_objc_unsafe_perform_selector_method_declared_here) 2534 << ImpliedMethod->getSelector() << Ret; 2535 } 2536 } 2537 2538 /// Diagnose use of %s directive in an NSString which is being passed 2539 /// as formatting string to formatting method. 2540 static void 2541 DiagnoseCStringFormatDirectiveInObjCAPI(Sema &S, 2542 ObjCMethodDecl *Method, 2543 Selector Sel, 2544 Expr **Args, unsigned NumArgs) { 2545 unsigned Idx = 0; 2546 bool Format = false; 2547 ObjCStringFormatFamily SFFamily = Sel.getStringFormatFamily(); 2548 if (SFFamily == ObjCStringFormatFamily::SFF_NSString) { 2549 Idx = 0; 2550 Format = true; 2551 } 2552 else if (Method) { 2553 for (const auto *I : Method->specific_attrs<FormatAttr>()) { 2554 if (S.GetFormatNSStringIdx(I, Idx)) { 2555 Format = true; 2556 break; 2557 } 2558 } 2559 } 2560 if (!Format || NumArgs <= Idx) 2561 return; 2562 2563 Expr *FormatExpr = Args[Idx]; 2564 if (ObjCStringLiteral *OSL = 2565 dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts())) { 2566 StringLiteral *FormatString = OSL->getString(); 2567 if (S.FormatStringHasSArg(FormatString)) { 2568 S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string) 2569 << "%s" << 0 << 0; 2570 if (Method) 2571 S.Diag(Method->getLocation(), diag::note_method_declared_at) 2572 << Method->getDeclName(); 2573 } 2574 } 2575 } 2576 2577 /// Build an Objective-C class message expression. 2578 /// 2579 /// This routine takes care of both normal class messages and 2580 /// class messages to the superclass. 2581 /// 2582 /// \param ReceiverTypeInfo Type source information that describes the 2583 /// receiver of this message. This may be NULL, in which case we are 2584 /// sending to the superclass and \p SuperLoc must be a valid source 2585 /// location. 2586 2587 /// \param ReceiverType The type of the object receiving the 2588 /// message. When \p ReceiverTypeInfo is non-NULL, this is the same 2589 /// type as that refers to. For a superclass send, this is the type of 2590 /// the superclass. 2591 /// 2592 /// \param SuperLoc The location of the "super" keyword in a 2593 /// superclass message. 2594 /// 2595 /// \param Sel The selector to which the message is being sent. 2596 /// 2597 /// \param Method The method that this class message is invoking, if 2598 /// already known. 2599 /// 2600 /// \param LBracLoc The location of the opening square bracket ']'. 2601 /// 2602 /// \param RBracLoc The location of the closing square bracket ']'. 2603 /// 2604 /// \param ArgsIn The message arguments. 2605 ExprResult Sema::BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo, 2606 QualType ReceiverType, 2607 SourceLocation SuperLoc, 2608 Selector Sel, 2609 ObjCMethodDecl *Method, 2610 SourceLocation LBracLoc, 2611 ArrayRef<SourceLocation> SelectorLocs, 2612 SourceLocation RBracLoc, 2613 MultiExprArg ArgsIn, 2614 bool isImplicit) { 2615 SourceLocation Loc = SuperLoc.isValid()? SuperLoc 2616 : ReceiverTypeInfo->getTypeLoc().getSourceRange().getBegin(); 2617 if (LBracLoc.isInvalid()) { 2618 Diag(Loc, diag::err_missing_open_square_message_send) 2619 << FixItHint::CreateInsertion(Loc, "["); 2620 LBracLoc = Loc; 2621 } 2622 ArrayRef<SourceLocation> SelectorSlotLocs; 2623 if (!SelectorLocs.empty() && SelectorLocs.front().isValid()) 2624 SelectorSlotLocs = SelectorLocs; 2625 else 2626 SelectorSlotLocs = Loc; 2627 SourceLocation SelLoc = SelectorSlotLocs.front(); 2628 2629 if (ReceiverType->isDependentType()) { 2630 // If the receiver type is dependent, we can't type-check anything 2631 // at this point. Build a dependent expression. 2632 unsigned NumArgs = ArgsIn.size(); 2633 Expr **Args = ArgsIn.data(); 2634 assert(SuperLoc.isInvalid() && "Message to super with dependent type"); 2635 return ObjCMessageExpr::Create( 2636 Context, ReceiverType, VK_RValue, LBracLoc, ReceiverTypeInfo, Sel, 2637 SelectorLocs, /*Method=*/nullptr, makeArrayRef(Args, NumArgs), RBracLoc, 2638 isImplicit); 2639 } 2640 2641 // Find the class to which we are sending this message. 2642 ObjCInterfaceDecl *Class = nullptr; 2643 const ObjCObjectType *ClassType = ReceiverType->getAs<ObjCObjectType>(); 2644 if (!ClassType || !(Class = ClassType->getInterface())) { 2645 Diag(Loc, diag::err_invalid_receiver_class_message) 2646 << ReceiverType; 2647 return ExprError(); 2648 } 2649 assert(Class && "We don't know which class we're messaging?"); 2650 // objc++ diagnoses during typename annotation. 2651 if (!getLangOpts().CPlusPlus) 2652 (void)DiagnoseUseOfDecl(Class, SelectorSlotLocs); 2653 // Find the method we are messaging. 2654 if (!Method) { 2655 SourceRange TypeRange 2656 = SuperLoc.isValid()? SourceRange(SuperLoc) 2657 : ReceiverTypeInfo->getTypeLoc().getSourceRange(); 2658 if (RequireCompleteType(Loc, Context.getObjCInterfaceType(Class), 2659 (getLangOpts().ObjCAutoRefCount 2660 ? diag::err_arc_receiver_forward_class 2661 : diag::warn_receiver_forward_class), 2662 TypeRange)) { 2663 // A forward class used in messaging is treated as a 'Class' 2664 Method = LookupFactoryMethodInGlobalPool(Sel, 2665 SourceRange(LBracLoc, RBracLoc)); 2666 if (Method && !getLangOpts().ObjCAutoRefCount) 2667 Diag(Method->getLocation(), diag::note_method_sent_forward_class) 2668 << Method->getDeclName(); 2669 } 2670 if (!Method) 2671 Method = Class->lookupClassMethod(Sel); 2672 2673 // If we have an implementation in scope, check "private" methods. 2674 if (!Method) 2675 Method = Class->lookupPrivateClassMethod(Sel); 2676 2677 if (Method && DiagnoseUseOfDecl(Method, SelectorSlotLocs, 2678 nullptr, false, false, Class)) 2679 return ExprError(); 2680 } 2681 2682 // Check the argument types and determine the result type. 2683 QualType ReturnType; 2684 ExprValueKind VK = VK_RValue; 2685 2686 unsigned NumArgs = ArgsIn.size(); 2687 Expr **Args = ArgsIn.data(); 2688 if (CheckMessageArgumentTypes(/*Receiver=*/nullptr, ReceiverType, 2689 MultiExprArg(Args, NumArgs), Sel, SelectorLocs, 2690 Method, true, SuperLoc.isValid(), LBracLoc, 2691 RBracLoc, SourceRange(), ReturnType, VK)) 2692 return ExprError(); 2693 2694 if (Method && !Method->getReturnType()->isVoidType() && 2695 RequireCompleteType(LBracLoc, Method->getReturnType(), 2696 diag::err_illegal_message_expr_incomplete_type)) 2697 return ExprError(); 2698 2699 if (Method && Method->isDirectMethod() && SuperLoc.isValid()) { 2700 Diag(SuperLoc, diag::err_messaging_super_with_direct_method) 2701 << FixItHint::CreateReplacement( 2702 SuperLoc, getLangOpts().ObjCAutoRefCount 2703 ? "self" 2704 : Method->getClassInterface()->getName()); 2705 Diag(Method->getLocation(), diag::note_direct_method_declared_at) 2706 << Method->getDeclName(); 2707 } 2708 2709 // Warn about explicit call of +initialize on its own class. But not on 'super'. 2710 if (Method && Method->getMethodFamily() == OMF_initialize) { 2711 if (!SuperLoc.isValid()) { 2712 const ObjCInterfaceDecl *ID = 2713 dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext()); 2714 if (ID == Class) { 2715 Diag(Loc, diag::warn_direct_initialize_call); 2716 Diag(Method->getLocation(), diag::note_method_declared_at) 2717 << Method->getDeclName(); 2718 } 2719 } 2720 else if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) { 2721 // [super initialize] is allowed only within an +initialize implementation 2722 if (CurMeth->getMethodFamily() != OMF_initialize) { 2723 Diag(Loc, diag::warn_direct_super_initialize_call); 2724 Diag(Method->getLocation(), diag::note_method_declared_at) 2725 << Method->getDeclName(); 2726 Diag(CurMeth->getLocation(), diag::note_method_declared_at) 2727 << CurMeth->getDeclName(); 2728 } 2729 } 2730 } 2731 2732 DiagnoseCStringFormatDirectiveInObjCAPI(*this, Method, Sel, Args, NumArgs); 2733 2734 // Construct the appropriate ObjCMessageExpr. 2735 ObjCMessageExpr *Result; 2736 if (SuperLoc.isValid()) 2737 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 2738 SuperLoc, /*IsInstanceSuper=*/false, 2739 ReceiverType, Sel, SelectorLocs, 2740 Method, makeArrayRef(Args, NumArgs), 2741 RBracLoc, isImplicit); 2742 else { 2743 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 2744 ReceiverTypeInfo, Sel, SelectorLocs, 2745 Method, makeArrayRef(Args, NumArgs), 2746 RBracLoc, isImplicit); 2747 if (!isImplicit) 2748 checkCocoaAPI(*this, Result); 2749 } 2750 if (Method) 2751 checkFoundationAPI(*this, SelLoc, Method, makeArrayRef(Args, NumArgs), 2752 ReceiverType, /*IsClassObjectCall=*/true); 2753 return MaybeBindToTemporary(Result); 2754 } 2755 2756 // ActOnClassMessage - used for both unary and keyword messages. 2757 // ArgExprs is optional - if it is present, the number of expressions 2758 // is obtained from Sel.getNumArgs(). 2759 ExprResult Sema::ActOnClassMessage(Scope *S, 2760 ParsedType Receiver, 2761 Selector Sel, 2762 SourceLocation LBracLoc, 2763 ArrayRef<SourceLocation> SelectorLocs, 2764 SourceLocation RBracLoc, 2765 MultiExprArg Args) { 2766 TypeSourceInfo *ReceiverTypeInfo; 2767 QualType ReceiverType = GetTypeFromParser(Receiver, &ReceiverTypeInfo); 2768 if (ReceiverType.isNull()) 2769 return ExprError(); 2770 2771 if (!ReceiverTypeInfo) 2772 ReceiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType, LBracLoc); 2773 2774 return BuildClassMessage(ReceiverTypeInfo, ReceiverType, 2775 /*SuperLoc=*/SourceLocation(), Sel, 2776 /*Method=*/nullptr, LBracLoc, SelectorLocs, RBracLoc, 2777 Args); 2778 } 2779 2780 ExprResult Sema::BuildInstanceMessageImplicit(Expr *Receiver, 2781 QualType ReceiverType, 2782 SourceLocation Loc, 2783 Selector Sel, 2784 ObjCMethodDecl *Method, 2785 MultiExprArg Args) { 2786 return BuildInstanceMessage(Receiver, ReceiverType, 2787 /*SuperLoc=*/!Receiver ? Loc : SourceLocation(), 2788 Sel, Method, Loc, Loc, Loc, Args, 2789 /*isImplicit=*/true); 2790 } 2791 2792 static bool isMethodDeclaredInRootProtocol(Sema &S, const ObjCMethodDecl *M) { 2793 if (!S.NSAPIObj) 2794 return false; 2795 const auto *Protocol = dyn_cast<ObjCProtocolDecl>(M->getDeclContext()); 2796 if (!Protocol) 2797 return false; 2798 const IdentifierInfo *II = S.NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject); 2799 if (const auto *RootClass = dyn_cast_or_null<ObjCInterfaceDecl>( 2800 S.LookupSingleName(S.TUScope, II, Protocol->getBeginLoc(), 2801 Sema::LookupOrdinaryName))) { 2802 for (const ObjCProtocolDecl *P : RootClass->all_referenced_protocols()) { 2803 if (P->getCanonicalDecl() == Protocol->getCanonicalDecl()) 2804 return true; 2805 } 2806 } 2807 return false; 2808 } 2809 2810 /// Build an Objective-C instance message expression. 2811 /// 2812 /// This routine takes care of both normal instance messages and 2813 /// instance messages to the superclass instance. 2814 /// 2815 /// \param Receiver The expression that computes the object that will 2816 /// receive this message. This may be empty, in which case we are 2817 /// sending to the superclass instance and \p SuperLoc must be a valid 2818 /// source location. 2819 /// 2820 /// \param ReceiverType The (static) type of the object receiving the 2821 /// message. When a \p Receiver expression is provided, this is the 2822 /// same type as that expression. For a superclass instance send, this 2823 /// is a pointer to the type of the superclass. 2824 /// 2825 /// \param SuperLoc The location of the "super" keyword in a 2826 /// superclass instance message. 2827 /// 2828 /// \param Sel The selector to which the message is being sent. 2829 /// 2830 /// \param Method The method that this instance message is invoking, if 2831 /// already known. 2832 /// 2833 /// \param LBracLoc The location of the opening square bracket ']'. 2834 /// 2835 /// \param RBracLoc The location of the closing square bracket ']'. 2836 /// 2837 /// \param ArgsIn The message arguments. 2838 ExprResult Sema::BuildInstanceMessage(Expr *Receiver, 2839 QualType ReceiverType, 2840 SourceLocation SuperLoc, 2841 Selector Sel, 2842 ObjCMethodDecl *Method, 2843 SourceLocation LBracLoc, 2844 ArrayRef<SourceLocation> SelectorLocs, 2845 SourceLocation RBracLoc, 2846 MultiExprArg ArgsIn, 2847 bool isImplicit) { 2848 assert((Receiver || SuperLoc.isValid()) && "If the Receiver is null, the " 2849 "SuperLoc must be valid so we can " 2850 "use it instead."); 2851 2852 // The location of the receiver. 2853 SourceLocation Loc = SuperLoc.isValid() ? SuperLoc : Receiver->getBeginLoc(); 2854 SourceRange RecRange = 2855 SuperLoc.isValid()? SuperLoc : Receiver->getSourceRange(); 2856 ArrayRef<SourceLocation> SelectorSlotLocs; 2857 if (!SelectorLocs.empty() && SelectorLocs.front().isValid()) 2858 SelectorSlotLocs = SelectorLocs; 2859 else 2860 SelectorSlotLocs = Loc; 2861 SourceLocation SelLoc = SelectorSlotLocs.front(); 2862 2863 if (LBracLoc.isInvalid()) { 2864 Diag(Loc, diag::err_missing_open_square_message_send) 2865 << FixItHint::CreateInsertion(Loc, "["); 2866 LBracLoc = Loc; 2867 } 2868 2869 // If we have a receiver expression, perform appropriate promotions 2870 // and determine receiver type. 2871 if (Receiver) { 2872 if (Receiver->hasPlaceholderType()) { 2873 ExprResult Result; 2874 if (Receiver->getType() == Context.UnknownAnyTy) 2875 Result = forceUnknownAnyToType(Receiver, Context.getObjCIdType()); 2876 else 2877 Result = CheckPlaceholderExpr(Receiver); 2878 if (Result.isInvalid()) return ExprError(); 2879 Receiver = Result.get(); 2880 } 2881 2882 if (Receiver->isTypeDependent()) { 2883 // If the receiver is type-dependent, we can't type-check anything 2884 // at this point. Build a dependent expression. 2885 unsigned NumArgs = ArgsIn.size(); 2886 Expr **Args = ArgsIn.data(); 2887 assert(SuperLoc.isInvalid() && "Message to super with dependent type"); 2888 return ObjCMessageExpr::Create( 2889 Context, Context.DependentTy, VK_RValue, LBracLoc, Receiver, Sel, 2890 SelectorLocs, /*Method=*/nullptr, makeArrayRef(Args, NumArgs), 2891 RBracLoc, isImplicit); 2892 } 2893 2894 // If necessary, apply function/array conversion to the receiver. 2895 // C99 6.7.5.3p[7,8]. 2896 ExprResult Result = DefaultFunctionArrayLvalueConversion(Receiver); 2897 if (Result.isInvalid()) 2898 return ExprError(); 2899 Receiver = Result.get(); 2900 ReceiverType = Receiver->getType(); 2901 2902 // If the receiver is an ObjC pointer, a block pointer, or an 2903 // __attribute__((NSObject)) pointer, we don't need to do any 2904 // special conversion in order to look up a receiver. 2905 if (ReceiverType->isObjCRetainableType()) { 2906 // do nothing 2907 } else if (!getLangOpts().ObjCAutoRefCount && 2908 !Context.getObjCIdType().isNull() && 2909 (ReceiverType->isPointerType() || 2910 ReceiverType->isIntegerType())) { 2911 // Implicitly convert integers and pointers to 'id' but emit a warning. 2912 // But not in ARC. 2913 Diag(Loc, diag::warn_bad_receiver_type) << ReceiverType << RecRange; 2914 if (ReceiverType->isPointerType()) { 2915 Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(), 2916 CK_CPointerToObjCPointerCast).get(); 2917 } else { 2918 // TODO: specialized warning on null receivers? 2919 bool IsNull = Receiver->isNullPointerConstant(Context, 2920 Expr::NPC_ValueDependentIsNull); 2921 CastKind Kind = IsNull ? CK_NullToPointer : CK_IntegralToPointer; 2922 Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(), 2923 Kind).get(); 2924 } 2925 ReceiverType = Receiver->getType(); 2926 } else if (getLangOpts().CPlusPlus) { 2927 // The receiver must be a complete type. 2928 if (RequireCompleteType(Loc, Receiver->getType(), 2929 diag::err_incomplete_receiver_type)) 2930 return ExprError(); 2931 2932 ExprResult result = PerformContextuallyConvertToObjCPointer(Receiver); 2933 if (result.isUsable()) { 2934 Receiver = result.get(); 2935 ReceiverType = Receiver->getType(); 2936 } 2937 } 2938 } 2939 2940 // There's a somewhat weird interaction here where we assume that we 2941 // won't actually have a method unless we also don't need to do some 2942 // of the more detailed type-checking on the receiver. 2943 2944 if (!Method) { 2945 // Handle messages to id and __kindof types (where we use the 2946 // global method pool). 2947 const ObjCObjectType *typeBound = nullptr; 2948 bool receiverIsIdLike = ReceiverType->isObjCIdOrObjectKindOfType(Context, 2949 typeBound); 2950 if (receiverIsIdLike || ReceiverType->isBlockPointerType() || 2951 (Receiver && Context.isObjCNSObjectType(Receiver->getType()))) { 2952 SmallVector<ObjCMethodDecl*, 4> Methods; 2953 // If we have a type bound, further filter the methods. 2954 CollectMultipleMethodsInGlobalPool(Sel, Methods, true/*InstanceFirst*/, 2955 true/*CheckTheOther*/, typeBound); 2956 if (!Methods.empty()) { 2957 // We choose the first method as the initial candidate, then try to 2958 // select a better one. 2959 Method = Methods[0]; 2960 2961 if (ObjCMethodDecl *BestMethod = 2962 SelectBestMethod(Sel, ArgsIn, Method->isInstanceMethod(), Methods)) 2963 Method = BestMethod; 2964 2965 if (!AreMultipleMethodsInGlobalPool(Sel, Method, 2966 SourceRange(LBracLoc, RBracLoc), 2967 receiverIsIdLike, Methods)) 2968 DiagnoseUseOfDecl(Method, SelectorSlotLocs); 2969 } 2970 } else if (ReceiverType->isObjCClassOrClassKindOfType() || 2971 ReceiverType->isObjCQualifiedClassType()) { 2972 // Handle messages to Class. 2973 // We allow sending a message to a qualified Class ("Class<foo>"), which 2974 // is ok as long as one of the protocols implements the selector (if not, 2975 // warn). 2976 if (!ReceiverType->isObjCClassOrClassKindOfType()) { 2977 const ObjCObjectPointerType *QClassTy 2978 = ReceiverType->getAsObjCQualifiedClassType(); 2979 // Search protocols for class methods. 2980 Method = LookupMethodInQualifiedType(Sel, QClassTy, false); 2981 if (!Method) { 2982 Method = LookupMethodInQualifiedType(Sel, QClassTy, true); 2983 // warn if instance method found for a Class message. 2984 if (Method && !isMethodDeclaredInRootProtocol(*this, Method)) { 2985 Diag(SelLoc, diag::warn_instance_method_on_class_found) 2986 << Method->getSelector() << Sel; 2987 Diag(Method->getLocation(), diag::note_method_declared_at) 2988 << Method->getDeclName(); 2989 } 2990 } 2991 } else { 2992 if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) { 2993 if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) { 2994 // As a guess, try looking for the method in the current interface. 2995 // This very well may not produce the "right" method. 2996 2997 // First check the public methods in the class interface. 2998 Method = ClassDecl->lookupClassMethod(Sel); 2999 3000 if (!Method) 3001 Method = ClassDecl->lookupPrivateClassMethod(Sel); 3002 3003 if (Method && DiagnoseUseOfDecl(Method, SelectorSlotLocs)) 3004 return ExprError(); 3005 } 3006 } 3007 if (!Method) { 3008 // If not messaging 'self', look for any factory method named 'Sel'. 3009 if (!Receiver || !isSelfExpr(Receiver)) { 3010 // If no class (factory) method was found, check if an _instance_ 3011 // method of the same name exists in the root class only. 3012 SmallVector<ObjCMethodDecl*, 4> Methods; 3013 CollectMultipleMethodsInGlobalPool(Sel, Methods, 3014 false/*InstanceFirst*/, 3015 true/*CheckTheOther*/); 3016 if (!Methods.empty()) { 3017 // We choose the first method as the initial candidate, then try 3018 // to select a better one. 3019 Method = Methods[0]; 3020 3021 // If we find an instance method, emit warning. 3022 if (Method->isInstanceMethod()) { 3023 if (const ObjCInterfaceDecl *ID = 3024 dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext())) { 3025 if (ID->getSuperClass()) 3026 Diag(SelLoc, diag::warn_root_inst_method_not_found) 3027 << Sel << SourceRange(LBracLoc, RBracLoc); 3028 } 3029 } 3030 3031 if (ObjCMethodDecl *BestMethod = 3032 SelectBestMethod(Sel, ArgsIn, Method->isInstanceMethod(), 3033 Methods)) 3034 Method = BestMethod; 3035 } 3036 } 3037 } 3038 } 3039 } else { 3040 ObjCInterfaceDecl *ClassDecl = nullptr; 3041 3042 // We allow sending a message to a qualified ID ("id<foo>"), which is ok as 3043 // long as one of the protocols implements the selector (if not, warn). 3044 // And as long as message is not deprecated/unavailable (warn if it is). 3045 if (const ObjCObjectPointerType *QIdTy 3046 = ReceiverType->getAsObjCQualifiedIdType()) { 3047 // Search protocols for instance methods. 3048 Method = LookupMethodInQualifiedType(Sel, QIdTy, true); 3049 if (!Method) 3050 Method = LookupMethodInQualifiedType(Sel, QIdTy, false); 3051 if (Method && DiagnoseUseOfDecl(Method, SelectorSlotLocs)) 3052 return ExprError(); 3053 } else if (const ObjCObjectPointerType *OCIType 3054 = ReceiverType->getAsObjCInterfacePointerType()) { 3055 // We allow sending a message to a pointer to an interface (an object). 3056 ClassDecl = OCIType->getInterfaceDecl(); 3057 3058 // Try to complete the type. Under ARC, this is a hard error from which 3059 // we don't try to recover. 3060 // FIXME: In the non-ARC case, this will still be a hard error if the 3061 // definition is found in a module that's not visible. 3062 const ObjCInterfaceDecl *forwardClass = nullptr; 3063 if (RequireCompleteType(Loc, OCIType->getPointeeType(), 3064 getLangOpts().ObjCAutoRefCount 3065 ? diag::err_arc_receiver_forward_instance 3066 : diag::warn_receiver_forward_instance, 3067 RecRange)) { 3068 if (getLangOpts().ObjCAutoRefCount) 3069 return ExprError(); 3070 3071 forwardClass = OCIType->getInterfaceDecl(); 3072 Diag(Receiver ? Receiver->getBeginLoc() : SuperLoc, 3073 diag::note_receiver_is_id); 3074 Method = nullptr; 3075 } else { 3076 Method = ClassDecl->lookupInstanceMethod(Sel); 3077 } 3078 3079 if (!Method) 3080 // Search protocol qualifiers. 3081 Method = LookupMethodInQualifiedType(Sel, OCIType, true); 3082 3083 if (!Method) { 3084 // If we have implementations in scope, check "private" methods. 3085 Method = ClassDecl->lookupPrivateMethod(Sel); 3086 3087 if (!Method && getLangOpts().ObjCAutoRefCount) { 3088 Diag(SelLoc, diag::err_arc_may_not_respond) 3089 << OCIType->getPointeeType() << Sel << RecRange 3090 << SourceRange(SelectorLocs.front(), SelectorLocs.back()); 3091 return ExprError(); 3092 } 3093 3094 if (!Method && (!Receiver || !isSelfExpr(Receiver))) { 3095 // If we still haven't found a method, look in the global pool. This 3096 // behavior isn't very desirable, however we need it for GCC 3097 // compatibility. FIXME: should we deviate?? 3098 if (OCIType->qual_empty()) { 3099 SmallVector<ObjCMethodDecl*, 4> Methods; 3100 CollectMultipleMethodsInGlobalPool(Sel, Methods, 3101 true/*InstanceFirst*/, 3102 false/*CheckTheOther*/); 3103 if (!Methods.empty()) { 3104 // We choose the first method as the initial candidate, then try 3105 // to select a better one. 3106 Method = Methods[0]; 3107 3108 if (ObjCMethodDecl *BestMethod = 3109 SelectBestMethod(Sel, ArgsIn, Method->isInstanceMethod(), 3110 Methods)) 3111 Method = BestMethod; 3112 3113 AreMultipleMethodsInGlobalPool(Sel, Method, 3114 SourceRange(LBracLoc, RBracLoc), 3115 true/*receiverIdOrClass*/, 3116 Methods); 3117 } 3118 if (Method && !forwardClass) 3119 Diag(SelLoc, diag::warn_maynot_respond) 3120 << OCIType->getInterfaceDecl()->getIdentifier() 3121 << Sel << RecRange; 3122 } 3123 } 3124 } 3125 if (Method && DiagnoseUseOfDecl(Method, SelectorSlotLocs, forwardClass)) 3126 return ExprError(); 3127 } else { 3128 // Reject other random receiver types (e.g. structs). 3129 Diag(Loc, diag::err_bad_receiver_type) << ReceiverType << RecRange; 3130 return ExprError(); 3131 } 3132 } 3133 } 3134 3135 FunctionScopeInfo *DIFunctionScopeInfo = 3136 (Method && Method->getMethodFamily() == OMF_init) 3137 ? getEnclosingFunction() : nullptr; 3138 3139 if (Method && Method->isDirectMethod()) { 3140 if (ReceiverType->isObjCIdType() && !isImplicit) { 3141 Diag(Receiver->getExprLoc(), 3142 diag::err_messaging_unqualified_id_with_direct_method); 3143 Diag(Method->getLocation(), diag::note_direct_method_declared_at) 3144 << Method->getDeclName(); 3145 } 3146 3147 // Under ARC, self can't be assigned, and doing a direct call to `self` 3148 // when it's a Class is hence safe. For other cases, we can't trust `self` 3149 // is what we think it is, so we reject it. 3150 if (ReceiverType->isObjCClassType() && !isImplicit && 3151 !(Receiver->isObjCSelfExpr() && getLangOpts().ObjCAutoRefCount)) { 3152 { 3153 auto Builder = Diag(Receiver->getExprLoc(), 3154 diag::err_messaging_class_with_direct_method); 3155 if (Receiver->isObjCSelfExpr()) { 3156 Builder.AddFixItHint(FixItHint::CreateReplacement( 3157 RecRange, Method->getClassInterface()->getName())); 3158 } 3159 } 3160 Diag(Method->getLocation(), diag::note_direct_method_declared_at) 3161 << Method->getDeclName(); 3162 } 3163 3164 if (SuperLoc.isValid()) { 3165 { 3166 auto Builder = 3167 Diag(SuperLoc, diag::err_messaging_super_with_direct_method); 3168 if (ReceiverType->isObjCClassType()) { 3169 Builder.AddFixItHint(FixItHint::CreateReplacement( 3170 SuperLoc, Method->getClassInterface()->getName())); 3171 } else { 3172 Builder.AddFixItHint(FixItHint::CreateReplacement(SuperLoc, "self")); 3173 } 3174 } 3175 Diag(Method->getLocation(), diag::note_direct_method_declared_at) 3176 << Method->getDeclName(); 3177 } 3178 } else if (ReceiverType->isObjCIdType() && !isImplicit) { 3179 Diag(Receiver->getExprLoc(), diag::warn_messaging_unqualified_id); 3180 } 3181 3182 if (DIFunctionScopeInfo && 3183 DIFunctionScopeInfo->ObjCIsDesignatedInit && 3184 (SuperLoc.isValid() || isSelfExpr(Receiver))) { 3185 bool isDesignatedInitChain = false; 3186 if (SuperLoc.isValid()) { 3187 if (const ObjCObjectPointerType * 3188 OCIType = ReceiverType->getAsObjCInterfacePointerType()) { 3189 if (const ObjCInterfaceDecl *ID = OCIType->getInterfaceDecl()) { 3190 // Either we know this is a designated initializer or we 3191 // conservatively assume it because we don't know for sure. 3192 if (!ID->declaresOrInheritsDesignatedInitializers() || 3193 ID->isDesignatedInitializer(Sel)) { 3194 isDesignatedInitChain = true; 3195 DIFunctionScopeInfo->ObjCWarnForNoDesignatedInitChain = false; 3196 } 3197 } 3198 } 3199 } 3200 if (!isDesignatedInitChain) { 3201 const ObjCMethodDecl *InitMethod = nullptr; 3202 bool isDesignated = 3203 getCurMethodDecl()->isDesignatedInitializerForTheInterface(&InitMethod); 3204 assert(isDesignated && InitMethod); 3205 (void)isDesignated; 3206 Diag(SelLoc, SuperLoc.isValid() ? 3207 diag::warn_objc_designated_init_non_designated_init_call : 3208 diag::warn_objc_designated_init_non_super_designated_init_call); 3209 Diag(InitMethod->getLocation(), 3210 diag::note_objc_designated_init_marked_here); 3211 } 3212 } 3213 3214 if (DIFunctionScopeInfo && 3215 DIFunctionScopeInfo->ObjCIsSecondaryInit && 3216 (SuperLoc.isValid() || isSelfExpr(Receiver))) { 3217 if (SuperLoc.isValid()) { 3218 Diag(SelLoc, diag::warn_objc_secondary_init_super_init_call); 3219 } else { 3220 DIFunctionScopeInfo->ObjCWarnForNoInitDelegation = false; 3221 } 3222 } 3223 3224 // Check the message arguments. 3225 unsigned NumArgs = ArgsIn.size(); 3226 Expr **Args = ArgsIn.data(); 3227 QualType ReturnType; 3228 ExprValueKind VK = VK_RValue; 3229 bool ClassMessage = (ReceiverType->isObjCClassType() || 3230 ReceiverType->isObjCQualifiedClassType()); 3231 if (CheckMessageArgumentTypes(Receiver, ReceiverType, 3232 MultiExprArg(Args, NumArgs), Sel, SelectorLocs, 3233 Method, ClassMessage, SuperLoc.isValid(), 3234 LBracLoc, RBracLoc, RecRange, ReturnType, VK)) 3235 return ExprError(); 3236 3237 if (Method && !Method->getReturnType()->isVoidType() && 3238 RequireCompleteType(LBracLoc, Method->getReturnType(), 3239 diag::err_illegal_message_expr_incomplete_type)) 3240 return ExprError(); 3241 3242 // In ARC, forbid the user from sending messages to 3243 // retain/release/autorelease/dealloc/retainCount explicitly. 3244 if (getLangOpts().ObjCAutoRefCount) { 3245 ObjCMethodFamily family = 3246 (Method ? Method->getMethodFamily() : Sel.getMethodFamily()); 3247 switch (family) { 3248 case OMF_init: 3249 if (Method) 3250 checkInitMethod(Method, ReceiverType); 3251 break; 3252 3253 case OMF_None: 3254 case OMF_alloc: 3255 case OMF_copy: 3256 case OMF_finalize: 3257 case OMF_mutableCopy: 3258 case OMF_new: 3259 case OMF_self: 3260 case OMF_initialize: 3261 break; 3262 3263 case OMF_dealloc: 3264 case OMF_retain: 3265 case OMF_release: 3266 case OMF_autorelease: 3267 case OMF_retainCount: 3268 Diag(SelLoc, diag::err_arc_illegal_explicit_message) 3269 << Sel << RecRange; 3270 break; 3271 3272 case OMF_performSelector: 3273 if (Method && NumArgs >= 1) { 3274 if (const auto *SelExp = 3275 dyn_cast<ObjCSelectorExpr>(Args[0]->IgnoreParens())) { 3276 Selector ArgSel = SelExp->getSelector(); 3277 ObjCMethodDecl *SelMethod = 3278 LookupInstanceMethodInGlobalPool(ArgSel, 3279 SelExp->getSourceRange()); 3280 if (!SelMethod) 3281 SelMethod = 3282 LookupFactoryMethodInGlobalPool(ArgSel, 3283 SelExp->getSourceRange()); 3284 if (SelMethod) { 3285 ObjCMethodFamily SelFamily = SelMethod->getMethodFamily(); 3286 switch (SelFamily) { 3287 case OMF_alloc: 3288 case OMF_copy: 3289 case OMF_mutableCopy: 3290 case OMF_new: 3291 case OMF_init: 3292 // Issue error, unless ns_returns_not_retained. 3293 if (!SelMethod->hasAttr<NSReturnsNotRetainedAttr>()) { 3294 // selector names a +1 method 3295 Diag(SelLoc, 3296 diag::err_arc_perform_selector_retains); 3297 Diag(SelMethod->getLocation(), diag::note_method_declared_at) 3298 << SelMethod->getDeclName(); 3299 } 3300 break; 3301 default: 3302 // +0 call. OK. unless ns_returns_retained. 3303 if (SelMethod->hasAttr<NSReturnsRetainedAttr>()) { 3304 // selector names a +1 method 3305 Diag(SelLoc, 3306 diag::err_arc_perform_selector_retains); 3307 Diag(SelMethod->getLocation(), diag::note_method_declared_at) 3308 << SelMethod->getDeclName(); 3309 } 3310 break; 3311 } 3312 } 3313 } else { 3314 // error (may leak). 3315 Diag(SelLoc, diag::warn_arc_perform_selector_leaks); 3316 Diag(Args[0]->getExprLoc(), diag::note_used_here); 3317 } 3318 } 3319 break; 3320 } 3321 } 3322 3323 DiagnoseCStringFormatDirectiveInObjCAPI(*this, Method, Sel, Args, NumArgs); 3324 3325 // Construct the appropriate ObjCMessageExpr instance. 3326 ObjCMessageExpr *Result; 3327 if (SuperLoc.isValid()) 3328 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 3329 SuperLoc, /*IsInstanceSuper=*/true, 3330 ReceiverType, Sel, SelectorLocs, Method, 3331 makeArrayRef(Args, NumArgs), RBracLoc, 3332 isImplicit); 3333 else { 3334 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 3335 Receiver, Sel, SelectorLocs, Method, 3336 makeArrayRef(Args, NumArgs), RBracLoc, 3337 isImplicit); 3338 if (!isImplicit) 3339 checkCocoaAPI(*this, Result); 3340 } 3341 if (Method) { 3342 bool IsClassObjectCall = ClassMessage; 3343 // 'self' message receivers in class methods should be treated as message 3344 // sends to the class object in order for the semantic checks to be 3345 // performed correctly. Messages to 'super' already count as class messages, 3346 // so they don't need to be handled here. 3347 if (Receiver && isSelfExpr(Receiver)) { 3348 if (const auto *OPT = ReceiverType->getAs<ObjCObjectPointerType>()) { 3349 if (OPT->getObjectType()->isObjCClass()) { 3350 if (const auto *CurMeth = getCurMethodDecl()) { 3351 IsClassObjectCall = true; 3352 ReceiverType = 3353 Context.getObjCInterfaceType(CurMeth->getClassInterface()); 3354 } 3355 } 3356 } 3357 } 3358 checkFoundationAPI(*this, SelLoc, Method, makeArrayRef(Args, NumArgs), 3359 ReceiverType, IsClassObjectCall); 3360 } 3361 3362 if (getLangOpts().ObjCAutoRefCount) { 3363 // In ARC, annotate delegate init calls. 3364 if (Result->getMethodFamily() == OMF_init && 3365 (SuperLoc.isValid() || isSelfExpr(Receiver))) { 3366 // Only consider init calls *directly* in init implementations, 3367 // not within blocks. 3368 ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(CurContext); 3369 if (method && method->getMethodFamily() == OMF_init) { 3370 // The implicit assignment to self means we also don't want to 3371 // consume the result. 3372 Result->setDelegateInitCall(true); 3373 return Result; 3374 } 3375 } 3376 3377 // In ARC, check for message sends which are likely to introduce 3378 // retain cycles. 3379 checkRetainCycles(Result); 3380 } 3381 3382 if (getLangOpts().ObjCWeak) { 3383 if (!isImplicit && Method) { 3384 if (const ObjCPropertyDecl *Prop = Method->findPropertyDecl()) { 3385 bool IsWeak = 3386 Prop->getPropertyAttributes() & ObjCPropertyAttribute::kind_weak; 3387 if (!IsWeak && Sel.isUnarySelector()) 3388 IsWeak = ReturnType.getObjCLifetime() & Qualifiers::OCL_Weak; 3389 if (IsWeak && !isUnevaluatedContext() && 3390 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, LBracLoc)) 3391 getCurFunction()->recordUseOfWeak(Result, Prop); 3392 } 3393 } 3394 } 3395 3396 CheckObjCCircularContainer(Result); 3397 3398 return MaybeBindToTemporary(Result); 3399 } 3400 3401 static void RemoveSelectorFromWarningCache(Sema &S, Expr* Arg) { 3402 if (ObjCSelectorExpr *OSE = 3403 dyn_cast<ObjCSelectorExpr>(Arg->IgnoreParenCasts())) { 3404 Selector Sel = OSE->getSelector(); 3405 SourceLocation Loc = OSE->getAtLoc(); 3406 auto Pos = S.ReferencedSelectors.find(Sel); 3407 if (Pos != S.ReferencedSelectors.end() && Pos->second == Loc) 3408 S.ReferencedSelectors.erase(Pos); 3409 } 3410 } 3411 3412 // ActOnInstanceMessage - used for both unary and keyword messages. 3413 // ArgExprs is optional - if it is present, the number of expressions 3414 // is obtained from Sel.getNumArgs(). 3415 ExprResult Sema::ActOnInstanceMessage(Scope *S, 3416 Expr *Receiver, 3417 Selector Sel, 3418 SourceLocation LBracLoc, 3419 ArrayRef<SourceLocation> SelectorLocs, 3420 SourceLocation RBracLoc, 3421 MultiExprArg Args) { 3422 if (!Receiver) 3423 return ExprError(); 3424 3425 // A ParenListExpr can show up while doing error recovery with invalid code. 3426 if (isa<ParenListExpr>(Receiver)) { 3427 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Receiver); 3428 if (Result.isInvalid()) return ExprError(); 3429 Receiver = Result.get(); 3430 } 3431 3432 if (RespondsToSelectorSel.isNull()) { 3433 IdentifierInfo *SelectorId = &Context.Idents.get("respondsToSelector"); 3434 RespondsToSelectorSel = Context.Selectors.getUnarySelector(SelectorId); 3435 } 3436 if (Sel == RespondsToSelectorSel) 3437 RemoveSelectorFromWarningCache(*this, Args[0]); 3438 3439 return BuildInstanceMessage(Receiver, Receiver->getType(), 3440 /*SuperLoc=*/SourceLocation(), Sel, 3441 /*Method=*/nullptr, LBracLoc, SelectorLocs, 3442 RBracLoc, Args); 3443 } 3444 3445 enum ARCConversionTypeClass { 3446 /// int, void, struct A 3447 ACTC_none, 3448 3449 /// id, void (^)() 3450 ACTC_retainable, 3451 3452 /// id*, id***, void (^*)(), 3453 ACTC_indirectRetainable, 3454 3455 /// void* might be a normal C type, or it might a CF type. 3456 ACTC_voidPtr, 3457 3458 /// struct A* 3459 ACTC_coreFoundation 3460 }; 3461 3462 static bool isAnyRetainable(ARCConversionTypeClass ACTC) { 3463 return (ACTC == ACTC_retainable || 3464 ACTC == ACTC_coreFoundation || 3465 ACTC == ACTC_voidPtr); 3466 } 3467 3468 static bool isAnyCLike(ARCConversionTypeClass ACTC) { 3469 return ACTC == ACTC_none || 3470 ACTC == ACTC_voidPtr || 3471 ACTC == ACTC_coreFoundation; 3472 } 3473 3474 static ARCConversionTypeClass classifyTypeForARCConversion(QualType type) { 3475 bool isIndirect = false; 3476 3477 // Ignore an outermost reference type. 3478 if (const ReferenceType *ref = type->getAs<ReferenceType>()) { 3479 type = ref->getPointeeType(); 3480 isIndirect = true; 3481 } 3482 3483 // Drill through pointers and arrays recursively. 3484 while (true) { 3485 if (const PointerType *ptr = type->getAs<PointerType>()) { 3486 type = ptr->getPointeeType(); 3487 3488 // The first level of pointer may be the innermost pointer on a CF type. 3489 if (!isIndirect) { 3490 if (type->isVoidType()) return ACTC_voidPtr; 3491 if (type->isRecordType()) return ACTC_coreFoundation; 3492 } 3493 } else if (const ArrayType *array = type->getAsArrayTypeUnsafe()) { 3494 type = QualType(array->getElementType()->getBaseElementTypeUnsafe(), 0); 3495 } else { 3496 break; 3497 } 3498 isIndirect = true; 3499 } 3500 3501 if (isIndirect) { 3502 if (type->isObjCARCBridgableType()) 3503 return ACTC_indirectRetainable; 3504 return ACTC_none; 3505 } 3506 3507 if (type->isObjCARCBridgableType()) 3508 return ACTC_retainable; 3509 3510 return ACTC_none; 3511 } 3512 3513 namespace { 3514 /// A result from the cast checker. 3515 enum ACCResult { 3516 /// Cannot be casted. 3517 ACC_invalid, 3518 3519 /// Can be safely retained or not retained. 3520 ACC_bottom, 3521 3522 /// Can be casted at +0. 3523 ACC_plusZero, 3524 3525 /// Can be casted at +1. 3526 ACC_plusOne 3527 }; 3528 ACCResult merge(ACCResult left, ACCResult right) { 3529 if (left == right) return left; 3530 if (left == ACC_bottom) return right; 3531 if (right == ACC_bottom) return left; 3532 return ACC_invalid; 3533 } 3534 3535 /// A checker which white-lists certain expressions whose conversion 3536 /// to or from retainable type would otherwise be forbidden in ARC. 3537 class ARCCastChecker : public StmtVisitor<ARCCastChecker, ACCResult> { 3538 typedef StmtVisitor<ARCCastChecker, ACCResult> super; 3539 3540 ASTContext &Context; 3541 ARCConversionTypeClass SourceClass; 3542 ARCConversionTypeClass TargetClass; 3543 bool Diagnose; 3544 3545 static bool isCFType(QualType type) { 3546 // Someday this can use ns_bridged. For now, it has to do this. 3547 return type->isCARCBridgableType(); 3548 } 3549 3550 public: 3551 ARCCastChecker(ASTContext &Context, ARCConversionTypeClass source, 3552 ARCConversionTypeClass target, bool diagnose) 3553 : Context(Context), SourceClass(source), TargetClass(target), 3554 Diagnose(diagnose) {} 3555 3556 using super::Visit; 3557 ACCResult Visit(Expr *e) { 3558 return super::Visit(e->IgnoreParens()); 3559 } 3560 3561 ACCResult VisitStmt(Stmt *s) { 3562 return ACC_invalid; 3563 } 3564 3565 /// Null pointer constants can be casted however you please. 3566 ACCResult VisitExpr(Expr *e) { 3567 if (e->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull)) 3568 return ACC_bottom; 3569 return ACC_invalid; 3570 } 3571 3572 /// Objective-C string literals can be safely casted. 3573 ACCResult VisitObjCStringLiteral(ObjCStringLiteral *e) { 3574 // If we're casting to any retainable type, go ahead. Global 3575 // strings are immune to retains, so this is bottom. 3576 if (isAnyRetainable(TargetClass)) return ACC_bottom; 3577 3578 return ACC_invalid; 3579 } 3580 3581 /// Look through certain implicit and explicit casts. 3582 ACCResult VisitCastExpr(CastExpr *e) { 3583 switch (e->getCastKind()) { 3584 case CK_NullToPointer: 3585 return ACC_bottom; 3586 3587 case CK_NoOp: 3588 case CK_LValueToRValue: 3589 case CK_BitCast: 3590 case CK_CPointerToObjCPointerCast: 3591 case CK_BlockPointerToObjCPointerCast: 3592 case CK_AnyPointerToBlockPointerCast: 3593 return Visit(e->getSubExpr()); 3594 3595 default: 3596 return ACC_invalid; 3597 } 3598 } 3599 3600 /// Look through unary extension. 3601 ACCResult VisitUnaryExtension(UnaryOperator *e) { 3602 return Visit(e->getSubExpr()); 3603 } 3604 3605 /// Ignore the LHS of a comma operator. 3606 ACCResult VisitBinComma(BinaryOperator *e) { 3607 return Visit(e->getRHS()); 3608 } 3609 3610 /// Conditional operators are okay if both sides are okay. 3611 ACCResult VisitConditionalOperator(ConditionalOperator *e) { 3612 ACCResult left = Visit(e->getTrueExpr()); 3613 if (left == ACC_invalid) return ACC_invalid; 3614 return merge(left, Visit(e->getFalseExpr())); 3615 } 3616 3617 /// Look through pseudo-objects. 3618 ACCResult VisitPseudoObjectExpr(PseudoObjectExpr *e) { 3619 // If we're getting here, we should always have a result. 3620 return Visit(e->getResultExpr()); 3621 } 3622 3623 /// Statement expressions are okay if their result expression is okay. 3624 ACCResult VisitStmtExpr(StmtExpr *e) { 3625 return Visit(e->getSubStmt()->body_back()); 3626 } 3627 3628 /// Some declaration references are okay. 3629 ACCResult VisitDeclRefExpr(DeclRefExpr *e) { 3630 VarDecl *var = dyn_cast<VarDecl>(e->getDecl()); 3631 // References to global constants are okay. 3632 if (isAnyRetainable(TargetClass) && 3633 isAnyRetainable(SourceClass) && 3634 var && 3635 !var->hasDefinition(Context) && 3636 var->getType().isConstQualified()) { 3637 3638 // In system headers, they can also be assumed to be immune to retains. 3639 // These are things like 'kCFStringTransformToLatin'. 3640 if (Context.getSourceManager().isInSystemHeader(var->getLocation())) 3641 return ACC_bottom; 3642 3643 return ACC_plusZero; 3644 } 3645 3646 // Nothing else. 3647 return ACC_invalid; 3648 } 3649 3650 /// Some calls are okay. 3651 ACCResult VisitCallExpr(CallExpr *e) { 3652 if (FunctionDecl *fn = e->getDirectCallee()) 3653 if (ACCResult result = checkCallToFunction(fn)) 3654 return result; 3655 3656 return super::VisitCallExpr(e); 3657 } 3658 3659 ACCResult checkCallToFunction(FunctionDecl *fn) { 3660 // Require a CF*Ref return type. 3661 if (!isCFType(fn->getReturnType())) 3662 return ACC_invalid; 3663 3664 if (!isAnyRetainable(TargetClass)) 3665 return ACC_invalid; 3666 3667 // Honor an explicit 'not retained' attribute. 3668 if (fn->hasAttr<CFReturnsNotRetainedAttr>()) 3669 return ACC_plusZero; 3670 3671 // Honor an explicit 'retained' attribute, except that for 3672 // now we're not going to permit implicit handling of +1 results, 3673 // because it's a bit frightening. 3674 if (fn->hasAttr<CFReturnsRetainedAttr>()) 3675 return Diagnose ? ACC_plusOne 3676 : ACC_invalid; // ACC_plusOne if we start accepting this 3677 3678 // Recognize this specific builtin function, which is used by CFSTR. 3679 unsigned builtinID = fn->getBuiltinID(); 3680 if (builtinID == Builtin::BI__builtin___CFStringMakeConstantString) 3681 return ACC_bottom; 3682 3683 // Otherwise, don't do anything implicit with an unaudited function. 3684 if (!fn->hasAttr<CFAuditedTransferAttr>()) 3685 return ACC_invalid; 3686 3687 // Otherwise, it's +0 unless it follows the create convention. 3688 if (ento::coreFoundation::followsCreateRule(fn)) 3689 return Diagnose ? ACC_plusOne 3690 : ACC_invalid; // ACC_plusOne if we start accepting this 3691 3692 return ACC_plusZero; 3693 } 3694 3695 ACCResult VisitObjCMessageExpr(ObjCMessageExpr *e) { 3696 return checkCallToMethod(e->getMethodDecl()); 3697 } 3698 3699 ACCResult VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *e) { 3700 ObjCMethodDecl *method; 3701 if (e->isExplicitProperty()) 3702 method = e->getExplicitProperty()->getGetterMethodDecl(); 3703 else 3704 method = e->getImplicitPropertyGetter(); 3705 return checkCallToMethod(method); 3706 } 3707 3708 ACCResult checkCallToMethod(ObjCMethodDecl *method) { 3709 if (!method) return ACC_invalid; 3710 3711 // Check for message sends to functions returning CF types. We 3712 // just obey the Cocoa conventions with these, even though the 3713 // return type is CF. 3714 if (!isAnyRetainable(TargetClass) || !isCFType(method->getReturnType())) 3715 return ACC_invalid; 3716 3717 // If the method is explicitly marked not-retained, it's +0. 3718 if (method->hasAttr<CFReturnsNotRetainedAttr>()) 3719 return ACC_plusZero; 3720 3721 // If the method is explicitly marked as returning retained, or its 3722 // selector follows a +1 Cocoa convention, treat it as +1. 3723 if (method->hasAttr<CFReturnsRetainedAttr>()) 3724 return ACC_plusOne; 3725 3726 switch (method->getSelector().getMethodFamily()) { 3727 case OMF_alloc: 3728 case OMF_copy: 3729 case OMF_mutableCopy: 3730 case OMF_new: 3731 return ACC_plusOne; 3732 3733 default: 3734 // Otherwise, treat it as +0. 3735 return ACC_plusZero; 3736 } 3737 } 3738 }; 3739 } // end anonymous namespace 3740 3741 bool Sema::isKnownName(StringRef name) { 3742 if (name.empty()) 3743 return false; 3744 LookupResult R(*this, &Context.Idents.get(name), SourceLocation(), 3745 Sema::LookupOrdinaryName); 3746 return LookupName(R, TUScope, false); 3747 } 3748 3749 template <typename DiagBuilderT> 3750 static void addFixitForObjCARCConversion( 3751 Sema &S, DiagBuilderT &DiagB, Sema::CheckedConversionKind CCK, 3752 SourceLocation afterLParen, QualType castType, Expr *castExpr, 3753 Expr *realCast, const char *bridgeKeyword, const char *CFBridgeName) { 3754 // We handle C-style and implicit casts here. 3755 switch (CCK) { 3756 case Sema::CCK_ImplicitConversion: 3757 case Sema::CCK_ForBuiltinOverloadedOp: 3758 case Sema::CCK_CStyleCast: 3759 case Sema::CCK_OtherCast: 3760 break; 3761 case Sema::CCK_FunctionalCast: 3762 return; 3763 } 3764 3765 if (CFBridgeName) { 3766 if (CCK == Sema::CCK_OtherCast) { 3767 if (const CXXNamedCastExpr *NCE = dyn_cast<CXXNamedCastExpr>(realCast)) { 3768 SourceRange range(NCE->getOperatorLoc(), 3769 NCE->getAngleBrackets().getEnd()); 3770 SmallString<32> BridgeCall; 3771 3772 SourceManager &SM = S.getSourceManager(); 3773 char PrevChar = *SM.getCharacterData(range.getBegin().getLocWithOffset(-1)); 3774 if (Lexer::isIdentifierBodyChar(PrevChar, S.getLangOpts())) 3775 BridgeCall += ' '; 3776 3777 BridgeCall += CFBridgeName; 3778 DiagB.AddFixItHint(FixItHint::CreateReplacement(range, BridgeCall)); 3779 } 3780 return; 3781 } 3782 Expr *castedE = castExpr; 3783 if (CStyleCastExpr *CCE = dyn_cast<CStyleCastExpr>(castedE)) 3784 castedE = CCE->getSubExpr(); 3785 castedE = castedE->IgnoreImpCasts(); 3786 SourceRange range = castedE->getSourceRange(); 3787 3788 SmallString<32> BridgeCall; 3789 3790 SourceManager &SM = S.getSourceManager(); 3791 char PrevChar = *SM.getCharacterData(range.getBegin().getLocWithOffset(-1)); 3792 if (Lexer::isIdentifierBodyChar(PrevChar, S.getLangOpts())) 3793 BridgeCall += ' '; 3794 3795 BridgeCall += CFBridgeName; 3796 3797 if (isa<ParenExpr>(castedE)) { 3798 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), 3799 BridgeCall)); 3800 } else { 3801 BridgeCall += '('; 3802 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), 3803 BridgeCall)); 3804 DiagB.AddFixItHint(FixItHint::CreateInsertion( 3805 S.getLocForEndOfToken(range.getEnd()), 3806 ")")); 3807 } 3808 return; 3809 } 3810 3811 if (CCK == Sema::CCK_CStyleCast) { 3812 DiagB.AddFixItHint(FixItHint::CreateInsertion(afterLParen, bridgeKeyword)); 3813 } else if (CCK == Sema::CCK_OtherCast) { 3814 if (const CXXNamedCastExpr *NCE = dyn_cast<CXXNamedCastExpr>(realCast)) { 3815 std::string castCode = "("; 3816 castCode += bridgeKeyword; 3817 castCode += castType.getAsString(); 3818 castCode += ")"; 3819 SourceRange Range(NCE->getOperatorLoc(), 3820 NCE->getAngleBrackets().getEnd()); 3821 DiagB.AddFixItHint(FixItHint::CreateReplacement(Range, castCode)); 3822 } 3823 } else { 3824 std::string castCode = "("; 3825 castCode += bridgeKeyword; 3826 castCode += castType.getAsString(); 3827 castCode += ")"; 3828 Expr *castedE = castExpr->IgnoreImpCasts(); 3829 SourceRange range = castedE->getSourceRange(); 3830 if (isa<ParenExpr>(castedE)) { 3831 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), 3832 castCode)); 3833 } else { 3834 castCode += "("; 3835 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), 3836 castCode)); 3837 DiagB.AddFixItHint(FixItHint::CreateInsertion( 3838 S.getLocForEndOfToken(range.getEnd()), 3839 ")")); 3840 } 3841 } 3842 } 3843 3844 template <typename T> 3845 static inline T *getObjCBridgeAttr(const TypedefType *TD) { 3846 TypedefNameDecl *TDNDecl = TD->getDecl(); 3847 QualType QT = TDNDecl->getUnderlyingType(); 3848 if (QT->isPointerType()) { 3849 QT = QT->getPointeeType(); 3850 if (const RecordType *RT = QT->getAs<RecordType>()) 3851 if (RecordDecl *RD = RT->getDecl()->getMostRecentDecl()) 3852 return RD->getAttr<T>(); 3853 } 3854 return nullptr; 3855 } 3856 3857 static ObjCBridgeRelatedAttr *ObjCBridgeRelatedAttrFromType(QualType T, 3858 TypedefNameDecl *&TDNDecl) { 3859 while (const TypedefType *TD = dyn_cast<TypedefType>(T.getTypePtr())) { 3860 TDNDecl = TD->getDecl(); 3861 if (ObjCBridgeRelatedAttr *ObjCBAttr = 3862 getObjCBridgeAttr<ObjCBridgeRelatedAttr>(TD)) 3863 return ObjCBAttr; 3864 T = TDNDecl->getUnderlyingType(); 3865 } 3866 return nullptr; 3867 } 3868 3869 static void 3870 diagnoseObjCARCConversion(Sema &S, SourceRange castRange, 3871 QualType castType, ARCConversionTypeClass castACTC, 3872 Expr *castExpr, Expr *realCast, 3873 ARCConversionTypeClass exprACTC, 3874 Sema::CheckedConversionKind CCK) { 3875 SourceLocation loc = 3876 (castRange.isValid() ? castRange.getBegin() : castExpr->getExprLoc()); 3877 3878 if (S.makeUnavailableInSystemHeader(loc, 3879 UnavailableAttr::IR_ARCForbiddenConversion)) 3880 return; 3881 3882 QualType castExprType = castExpr->getType(); 3883 // Defer emitting a diagnostic for bridge-related casts; that will be 3884 // handled by CheckObjCBridgeRelatedConversions. 3885 TypedefNameDecl *TDNDecl = nullptr; 3886 if ((castACTC == ACTC_coreFoundation && exprACTC == ACTC_retainable && 3887 ObjCBridgeRelatedAttrFromType(castType, TDNDecl)) || 3888 (exprACTC == ACTC_coreFoundation && castACTC == ACTC_retainable && 3889 ObjCBridgeRelatedAttrFromType(castExprType, TDNDecl))) 3890 return; 3891 3892 unsigned srcKind = 0; 3893 switch (exprACTC) { 3894 case ACTC_none: 3895 case ACTC_coreFoundation: 3896 case ACTC_voidPtr: 3897 srcKind = (castExprType->isPointerType() ? 1 : 0); 3898 break; 3899 case ACTC_retainable: 3900 srcKind = (castExprType->isBlockPointerType() ? 2 : 3); 3901 break; 3902 case ACTC_indirectRetainable: 3903 srcKind = 4; 3904 break; 3905 } 3906 3907 // Check whether this could be fixed with a bridge cast. 3908 SourceLocation afterLParen = S.getLocForEndOfToken(castRange.getBegin()); 3909 SourceLocation noteLoc = afterLParen.isValid() ? afterLParen : loc; 3910 3911 unsigned convKindForDiag = Sema::isCast(CCK) ? 0 : 1; 3912 3913 // Bridge from an ARC type to a CF type. 3914 if (castACTC == ACTC_retainable && isAnyRetainable(exprACTC)) { 3915 3916 S.Diag(loc, diag::err_arc_cast_requires_bridge) 3917 << convKindForDiag 3918 << 2 // of C pointer type 3919 << castExprType 3920 << unsigned(castType->isBlockPointerType()) // to ObjC|block type 3921 << castType 3922 << castRange 3923 << castExpr->getSourceRange(); 3924 bool br = S.isKnownName("CFBridgingRelease"); 3925 ACCResult CreateRule = 3926 ARCCastChecker(S.Context, exprACTC, castACTC, true).Visit(castExpr); 3927 assert(CreateRule != ACC_bottom && "This cast should already be accepted."); 3928 if (CreateRule != ACC_plusOne) 3929 { 3930 auto DiagB = (CCK != Sema::CCK_OtherCast) 3931 ? S.Diag(noteLoc, diag::note_arc_bridge) 3932 : S.Diag(noteLoc, diag::note_arc_cstyle_bridge); 3933 3934 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, 3935 castType, castExpr, realCast, "__bridge ", 3936 nullptr); 3937 } 3938 if (CreateRule != ACC_plusZero) 3939 { 3940 auto DiagB = (CCK == Sema::CCK_OtherCast && !br) 3941 ? S.Diag(noteLoc, diag::note_arc_cstyle_bridge_transfer) 3942 << castExprType 3943 : S.Diag(br ? castExpr->getExprLoc() : noteLoc, 3944 diag::note_arc_bridge_transfer) 3945 << castExprType << br; 3946 3947 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, 3948 castType, castExpr, realCast, "__bridge_transfer ", 3949 br ? "CFBridgingRelease" : nullptr); 3950 } 3951 3952 return; 3953 } 3954 3955 // Bridge from a CF type to an ARC type. 3956 if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC)) { 3957 bool br = S.isKnownName("CFBridgingRetain"); 3958 S.Diag(loc, diag::err_arc_cast_requires_bridge) 3959 << convKindForDiag 3960 << unsigned(castExprType->isBlockPointerType()) // of ObjC|block type 3961 << castExprType 3962 << 2 // to C pointer type 3963 << castType 3964 << castRange 3965 << castExpr->getSourceRange(); 3966 ACCResult CreateRule = 3967 ARCCastChecker(S.Context, exprACTC, castACTC, true).Visit(castExpr); 3968 assert(CreateRule != ACC_bottom && "This cast should already be accepted."); 3969 if (CreateRule != ACC_plusOne) 3970 { 3971 auto DiagB = (CCK != Sema::CCK_OtherCast) 3972 ? S.Diag(noteLoc, diag::note_arc_bridge) 3973 : S.Diag(noteLoc, diag::note_arc_cstyle_bridge); 3974 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, 3975 castType, castExpr, realCast, "__bridge ", 3976 nullptr); 3977 } 3978 if (CreateRule != ACC_plusZero) 3979 { 3980 auto DiagB = (CCK == Sema::CCK_OtherCast && !br) 3981 ? S.Diag(noteLoc, diag::note_arc_cstyle_bridge_retained) 3982 << castType 3983 : S.Diag(br ? castExpr->getExprLoc() : noteLoc, 3984 diag::note_arc_bridge_retained) 3985 << castType << br; 3986 3987 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, 3988 castType, castExpr, realCast, "__bridge_retained ", 3989 br ? "CFBridgingRetain" : nullptr); 3990 } 3991 3992 return; 3993 } 3994 3995 S.Diag(loc, diag::err_arc_mismatched_cast) 3996 << !convKindForDiag 3997 << srcKind << castExprType << castType 3998 << castRange << castExpr->getSourceRange(); 3999 } 4000 4001 template <typename TB> 4002 static bool CheckObjCBridgeNSCast(Sema &S, QualType castType, Expr *castExpr, 4003 bool &HadTheAttribute, bool warn) { 4004 QualType T = castExpr->getType(); 4005 HadTheAttribute = false; 4006 while (const TypedefType *TD = dyn_cast<TypedefType>(T.getTypePtr())) { 4007 TypedefNameDecl *TDNDecl = TD->getDecl(); 4008 if (TB *ObjCBAttr = getObjCBridgeAttr<TB>(TD)) { 4009 if (IdentifierInfo *Parm = ObjCBAttr->getBridgedType()) { 4010 HadTheAttribute = true; 4011 if (Parm->isStr("id")) 4012 return true; 4013 4014 NamedDecl *Target = nullptr; 4015 // Check for an existing type with this name. 4016 LookupResult R(S, DeclarationName(Parm), SourceLocation(), 4017 Sema::LookupOrdinaryName); 4018 if (S.LookupName(R, S.TUScope)) { 4019 Target = R.getFoundDecl(); 4020 if (Target && isa<ObjCInterfaceDecl>(Target)) { 4021 ObjCInterfaceDecl *ExprClass = cast<ObjCInterfaceDecl>(Target); 4022 if (const ObjCObjectPointerType *InterfacePointerType = 4023 castType->getAsObjCInterfacePointerType()) { 4024 ObjCInterfaceDecl *CastClass 4025 = InterfacePointerType->getObjectType()->getInterface(); 4026 if ((CastClass == ExprClass) || 4027 (CastClass && CastClass->isSuperClassOf(ExprClass))) 4028 return true; 4029 if (warn) 4030 S.Diag(castExpr->getBeginLoc(), diag::warn_objc_invalid_bridge) 4031 << T << Target->getName() << castType->getPointeeType(); 4032 return false; 4033 } else if (castType->isObjCIdType() || 4034 (S.Context.ObjCObjectAdoptsQTypeProtocols( 4035 castType, ExprClass))) 4036 // ok to cast to 'id'. 4037 // casting to id<p-list> is ok if bridge type adopts all of 4038 // p-list protocols. 4039 return true; 4040 else { 4041 if (warn) { 4042 S.Diag(castExpr->getBeginLoc(), diag::warn_objc_invalid_bridge) 4043 << T << Target->getName() << castType; 4044 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4045 S.Diag(Target->getBeginLoc(), diag::note_declared_at); 4046 } 4047 return false; 4048 } 4049 } 4050 } else if (!castType->isObjCIdType()) { 4051 S.Diag(castExpr->getBeginLoc(), 4052 diag::err_objc_cf_bridged_not_interface) 4053 << castExpr->getType() << Parm; 4054 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4055 if (Target) 4056 S.Diag(Target->getBeginLoc(), diag::note_declared_at); 4057 } 4058 return true; 4059 } 4060 return false; 4061 } 4062 T = TDNDecl->getUnderlyingType(); 4063 } 4064 return true; 4065 } 4066 4067 template <typename TB> 4068 static bool CheckObjCBridgeCFCast(Sema &S, QualType castType, Expr *castExpr, 4069 bool &HadTheAttribute, bool warn) { 4070 QualType T = castType; 4071 HadTheAttribute = false; 4072 while (const TypedefType *TD = dyn_cast<TypedefType>(T.getTypePtr())) { 4073 TypedefNameDecl *TDNDecl = TD->getDecl(); 4074 if (TB *ObjCBAttr = getObjCBridgeAttr<TB>(TD)) { 4075 if (IdentifierInfo *Parm = ObjCBAttr->getBridgedType()) { 4076 HadTheAttribute = true; 4077 if (Parm->isStr("id")) 4078 return true; 4079 4080 NamedDecl *Target = nullptr; 4081 // Check for an existing type with this name. 4082 LookupResult R(S, DeclarationName(Parm), SourceLocation(), 4083 Sema::LookupOrdinaryName); 4084 if (S.LookupName(R, S.TUScope)) { 4085 Target = R.getFoundDecl(); 4086 if (Target && isa<ObjCInterfaceDecl>(Target)) { 4087 ObjCInterfaceDecl *CastClass = cast<ObjCInterfaceDecl>(Target); 4088 if (const ObjCObjectPointerType *InterfacePointerType = 4089 castExpr->getType()->getAsObjCInterfacePointerType()) { 4090 ObjCInterfaceDecl *ExprClass 4091 = InterfacePointerType->getObjectType()->getInterface(); 4092 if ((CastClass == ExprClass) || 4093 (ExprClass && CastClass->isSuperClassOf(ExprClass))) 4094 return true; 4095 if (warn) { 4096 S.Diag(castExpr->getBeginLoc(), 4097 diag::warn_objc_invalid_bridge_to_cf) 4098 << castExpr->getType()->getPointeeType() << T; 4099 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4100 } 4101 return false; 4102 } else if (castExpr->getType()->isObjCIdType() || 4103 (S.Context.QIdProtocolsAdoptObjCObjectProtocols( 4104 castExpr->getType(), CastClass))) 4105 // ok to cast an 'id' expression to a CFtype. 4106 // ok to cast an 'id<plist>' expression to CFtype provided plist 4107 // adopts all of CFtype's ObjetiveC's class plist. 4108 return true; 4109 else { 4110 if (warn) { 4111 S.Diag(castExpr->getBeginLoc(), 4112 diag::warn_objc_invalid_bridge_to_cf) 4113 << castExpr->getType() << castType; 4114 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4115 S.Diag(Target->getBeginLoc(), diag::note_declared_at); 4116 } 4117 return false; 4118 } 4119 } 4120 } 4121 S.Diag(castExpr->getBeginLoc(), 4122 diag::err_objc_ns_bridged_invalid_cfobject) 4123 << castExpr->getType() << castType; 4124 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4125 if (Target) 4126 S.Diag(Target->getBeginLoc(), diag::note_declared_at); 4127 return true; 4128 } 4129 return false; 4130 } 4131 T = TDNDecl->getUnderlyingType(); 4132 } 4133 return true; 4134 } 4135 4136 void Sema::CheckTollFreeBridgeCast(QualType castType, Expr *castExpr) { 4137 if (!getLangOpts().ObjC) 4138 return; 4139 // warn in presence of __bridge casting to or from a toll free bridge cast. 4140 ARCConversionTypeClass exprACTC = classifyTypeForARCConversion(castExpr->getType()); 4141 ARCConversionTypeClass castACTC = classifyTypeForARCConversion(castType); 4142 if (castACTC == ACTC_retainable && exprACTC == ACTC_coreFoundation) { 4143 bool HasObjCBridgeAttr; 4144 bool ObjCBridgeAttrWillNotWarn = 4145 CheckObjCBridgeNSCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr, 4146 false); 4147 if (ObjCBridgeAttrWillNotWarn && HasObjCBridgeAttr) 4148 return; 4149 bool HasObjCBridgeMutableAttr; 4150 bool ObjCBridgeMutableAttrWillNotWarn = 4151 CheckObjCBridgeNSCast<ObjCBridgeMutableAttr>(*this, castType, castExpr, 4152 HasObjCBridgeMutableAttr, false); 4153 if (ObjCBridgeMutableAttrWillNotWarn && HasObjCBridgeMutableAttr) 4154 return; 4155 4156 if (HasObjCBridgeAttr) 4157 CheckObjCBridgeNSCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr, 4158 true); 4159 else if (HasObjCBridgeMutableAttr) 4160 CheckObjCBridgeNSCast<ObjCBridgeMutableAttr>(*this, castType, castExpr, 4161 HasObjCBridgeMutableAttr, true); 4162 } 4163 else if (castACTC == ACTC_coreFoundation && exprACTC == ACTC_retainable) { 4164 bool HasObjCBridgeAttr; 4165 bool ObjCBridgeAttrWillNotWarn = 4166 CheckObjCBridgeCFCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr, 4167 false); 4168 if (ObjCBridgeAttrWillNotWarn && HasObjCBridgeAttr) 4169 return; 4170 bool HasObjCBridgeMutableAttr; 4171 bool ObjCBridgeMutableAttrWillNotWarn = 4172 CheckObjCBridgeCFCast<ObjCBridgeMutableAttr>(*this, castType, castExpr, 4173 HasObjCBridgeMutableAttr, false); 4174 if (ObjCBridgeMutableAttrWillNotWarn && HasObjCBridgeMutableAttr) 4175 return; 4176 4177 if (HasObjCBridgeAttr) 4178 CheckObjCBridgeCFCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr, 4179 true); 4180 else if (HasObjCBridgeMutableAttr) 4181 CheckObjCBridgeCFCast<ObjCBridgeMutableAttr>(*this, castType, castExpr, 4182 HasObjCBridgeMutableAttr, true); 4183 } 4184 } 4185 4186 void Sema::CheckObjCBridgeRelatedCast(QualType castType, Expr *castExpr) { 4187 QualType SrcType = castExpr->getType(); 4188 if (ObjCPropertyRefExpr *PRE = dyn_cast<ObjCPropertyRefExpr>(castExpr)) { 4189 if (PRE->isExplicitProperty()) { 4190 if (ObjCPropertyDecl *PDecl = PRE->getExplicitProperty()) 4191 SrcType = PDecl->getType(); 4192 } 4193 else if (PRE->isImplicitProperty()) { 4194 if (ObjCMethodDecl *Getter = PRE->getImplicitPropertyGetter()) 4195 SrcType = Getter->getReturnType(); 4196 } 4197 } 4198 4199 ARCConversionTypeClass srcExprACTC = classifyTypeForARCConversion(SrcType); 4200 ARCConversionTypeClass castExprACTC = classifyTypeForARCConversion(castType); 4201 if (srcExprACTC != ACTC_retainable || castExprACTC != ACTC_coreFoundation) 4202 return; 4203 CheckObjCBridgeRelatedConversions(castExpr->getBeginLoc(), castType, SrcType, 4204 castExpr); 4205 } 4206 4207 bool Sema::CheckTollFreeBridgeStaticCast(QualType castType, Expr *castExpr, 4208 CastKind &Kind) { 4209 if (!getLangOpts().ObjC) 4210 return false; 4211 ARCConversionTypeClass exprACTC = 4212 classifyTypeForARCConversion(castExpr->getType()); 4213 ARCConversionTypeClass castACTC = classifyTypeForARCConversion(castType); 4214 if ((castACTC == ACTC_retainable && exprACTC == ACTC_coreFoundation) || 4215 (castACTC == ACTC_coreFoundation && exprACTC == ACTC_retainable)) { 4216 CheckTollFreeBridgeCast(castType, castExpr); 4217 Kind = (castACTC == ACTC_coreFoundation) ? CK_BitCast 4218 : CK_CPointerToObjCPointerCast; 4219 return true; 4220 } 4221 return false; 4222 } 4223 4224 bool Sema::checkObjCBridgeRelatedComponents(SourceLocation Loc, 4225 QualType DestType, QualType SrcType, 4226 ObjCInterfaceDecl *&RelatedClass, 4227 ObjCMethodDecl *&ClassMethod, 4228 ObjCMethodDecl *&InstanceMethod, 4229 TypedefNameDecl *&TDNDecl, 4230 bool CfToNs, bool Diagnose) { 4231 QualType T = CfToNs ? SrcType : DestType; 4232 ObjCBridgeRelatedAttr *ObjCBAttr = ObjCBridgeRelatedAttrFromType(T, TDNDecl); 4233 if (!ObjCBAttr) 4234 return false; 4235 4236 IdentifierInfo *RCId = ObjCBAttr->getRelatedClass(); 4237 IdentifierInfo *CMId = ObjCBAttr->getClassMethod(); 4238 IdentifierInfo *IMId = ObjCBAttr->getInstanceMethod(); 4239 if (!RCId) 4240 return false; 4241 NamedDecl *Target = nullptr; 4242 // Check for an existing type with this name. 4243 LookupResult R(*this, DeclarationName(RCId), SourceLocation(), 4244 Sema::LookupOrdinaryName); 4245 if (!LookupName(R, TUScope)) { 4246 if (Diagnose) { 4247 Diag(Loc, diag::err_objc_bridged_related_invalid_class) << RCId 4248 << SrcType << DestType; 4249 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4250 } 4251 return false; 4252 } 4253 Target = R.getFoundDecl(); 4254 if (Target && isa<ObjCInterfaceDecl>(Target)) 4255 RelatedClass = cast<ObjCInterfaceDecl>(Target); 4256 else { 4257 if (Diagnose) { 4258 Diag(Loc, diag::err_objc_bridged_related_invalid_class_name) << RCId 4259 << SrcType << DestType; 4260 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4261 if (Target) 4262 Diag(Target->getBeginLoc(), diag::note_declared_at); 4263 } 4264 return false; 4265 } 4266 4267 // Check for an existing class method with the given selector name. 4268 if (CfToNs && CMId) { 4269 Selector Sel = Context.Selectors.getUnarySelector(CMId); 4270 ClassMethod = RelatedClass->lookupMethod(Sel, false); 4271 if (!ClassMethod) { 4272 if (Diagnose) { 4273 Diag(Loc, diag::err_objc_bridged_related_known_method) 4274 << SrcType << DestType << Sel << false; 4275 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4276 } 4277 return false; 4278 } 4279 } 4280 4281 // Check for an existing instance method with the given selector name. 4282 if (!CfToNs && IMId) { 4283 Selector Sel = Context.Selectors.getNullarySelector(IMId); 4284 InstanceMethod = RelatedClass->lookupMethod(Sel, true); 4285 if (!InstanceMethod) { 4286 if (Diagnose) { 4287 Diag(Loc, diag::err_objc_bridged_related_known_method) 4288 << SrcType << DestType << Sel << true; 4289 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4290 } 4291 return false; 4292 } 4293 } 4294 return true; 4295 } 4296 4297 bool 4298 Sema::CheckObjCBridgeRelatedConversions(SourceLocation Loc, 4299 QualType DestType, QualType SrcType, 4300 Expr *&SrcExpr, bool Diagnose) { 4301 ARCConversionTypeClass rhsExprACTC = classifyTypeForARCConversion(SrcType); 4302 ARCConversionTypeClass lhsExprACTC = classifyTypeForARCConversion(DestType); 4303 bool CfToNs = (rhsExprACTC == ACTC_coreFoundation && lhsExprACTC == ACTC_retainable); 4304 bool NsToCf = (rhsExprACTC == ACTC_retainable && lhsExprACTC == ACTC_coreFoundation); 4305 if (!CfToNs && !NsToCf) 4306 return false; 4307 4308 ObjCInterfaceDecl *RelatedClass; 4309 ObjCMethodDecl *ClassMethod = nullptr; 4310 ObjCMethodDecl *InstanceMethod = nullptr; 4311 TypedefNameDecl *TDNDecl = nullptr; 4312 if (!checkObjCBridgeRelatedComponents(Loc, DestType, SrcType, RelatedClass, 4313 ClassMethod, InstanceMethod, TDNDecl, 4314 CfToNs, Diagnose)) 4315 return false; 4316 4317 if (CfToNs) { 4318 // Implicit conversion from CF to ObjC object is needed. 4319 if (ClassMethod) { 4320 if (Diagnose) { 4321 std::string ExpressionString = "["; 4322 ExpressionString += RelatedClass->getNameAsString(); 4323 ExpressionString += " "; 4324 ExpressionString += ClassMethod->getSelector().getAsString(); 4325 SourceLocation SrcExprEndLoc = 4326 getLocForEndOfToken(SrcExpr->getEndLoc()); 4327 // Provide a fixit: [RelatedClass ClassMethod SrcExpr] 4328 Diag(Loc, diag::err_objc_bridged_related_known_method) 4329 << SrcType << DestType << ClassMethod->getSelector() << false 4330 << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), 4331 ExpressionString) 4332 << FixItHint::CreateInsertion(SrcExprEndLoc, "]"); 4333 Diag(RelatedClass->getBeginLoc(), diag::note_declared_at); 4334 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4335 4336 QualType receiverType = Context.getObjCInterfaceType(RelatedClass); 4337 // Argument. 4338 Expr *args[] = { SrcExpr }; 4339 ExprResult msg = BuildClassMessageImplicit(receiverType, false, 4340 ClassMethod->getLocation(), 4341 ClassMethod->getSelector(), ClassMethod, 4342 MultiExprArg(args, 1)); 4343 SrcExpr = msg.get(); 4344 } 4345 return true; 4346 } 4347 } 4348 else { 4349 // Implicit conversion from ObjC type to CF object is needed. 4350 if (InstanceMethod) { 4351 if (Diagnose) { 4352 std::string ExpressionString; 4353 SourceLocation SrcExprEndLoc = 4354 getLocForEndOfToken(SrcExpr->getEndLoc()); 4355 if (InstanceMethod->isPropertyAccessor()) 4356 if (const ObjCPropertyDecl *PDecl = 4357 InstanceMethod->findPropertyDecl()) { 4358 // fixit: ObjectExpr.propertyname when it is aproperty accessor. 4359 ExpressionString = "."; 4360 ExpressionString += PDecl->getNameAsString(); 4361 Diag(Loc, diag::err_objc_bridged_related_known_method) 4362 << SrcType << DestType << InstanceMethod->getSelector() << true 4363 << FixItHint::CreateInsertion(SrcExprEndLoc, ExpressionString); 4364 } 4365 if (ExpressionString.empty()) { 4366 // Provide a fixit: [ObjectExpr InstanceMethod] 4367 ExpressionString = " "; 4368 ExpressionString += InstanceMethod->getSelector().getAsString(); 4369 ExpressionString += "]"; 4370 4371 Diag(Loc, diag::err_objc_bridged_related_known_method) 4372 << SrcType << DestType << InstanceMethod->getSelector() << true 4373 << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), "[") 4374 << FixItHint::CreateInsertion(SrcExprEndLoc, ExpressionString); 4375 } 4376 Diag(RelatedClass->getBeginLoc(), diag::note_declared_at); 4377 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4378 4379 ExprResult msg = 4380 BuildInstanceMessageImplicit(SrcExpr, SrcType, 4381 InstanceMethod->getLocation(), 4382 InstanceMethod->getSelector(), 4383 InstanceMethod, None); 4384 SrcExpr = msg.get(); 4385 } 4386 return true; 4387 } 4388 } 4389 return false; 4390 } 4391 4392 Sema::ARCConversionResult 4393 Sema::CheckObjCConversion(SourceRange castRange, QualType castType, 4394 Expr *&castExpr, CheckedConversionKind CCK, 4395 bool Diagnose, bool DiagnoseCFAudited, 4396 BinaryOperatorKind Opc) { 4397 QualType castExprType = castExpr->getType(); 4398 4399 // For the purposes of the classification, we assume reference types 4400 // will bind to temporaries. 4401 QualType effCastType = castType; 4402 if (const ReferenceType *ref = castType->getAs<ReferenceType>()) 4403 effCastType = ref->getPointeeType(); 4404 4405 ARCConversionTypeClass exprACTC = classifyTypeForARCConversion(castExprType); 4406 ARCConversionTypeClass castACTC = classifyTypeForARCConversion(effCastType); 4407 if (exprACTC == castACTC) { 4408 // Check for viability and report error if casting an rvalue to a 4409 // life-time qualifier. 4410 if (castACTC == ACTC_retainable && 4411 (CCK == CCK_CStyleCast || CCK == CCK_OtherCast) && 4412 castType != castExprType) { 4413 const Type *DT = castType.getTypePtr(); 4414 QualType QDT = castType; 4415 // We desugar some types but not others. We ignore those 4416 // that cannot happen in a cast; i.e. auto, and those which 4417 // should not be de-sugared; i.e typedef. 4418 if (const ParenType *PT = dyn_cast<ParenType>(DT)) 4419 QDT = PT->desugar(); 4420 else if (const TypeOfType *TP = dyn_cast<TypeOfType>(DT)) 4421 QDT = TP->desugar(); 4422 else if (const AttributedType *AT = dyn_cast<AttributedType>(DT)) 4423 QDT = AT->desugar(); 4424 if (QDT != castType && 4425 QDT.getObjCLifetime() != Qualifiers::OCL_None) { 4426 if (Diagnose) { 4427 SourceLocation loc = (castRange.isValid() ? castRange.getBegin() 4428 : castExpr->getExprLoc()); 4429 Diag(loc, diag::err_arc_nolifetime_behavior); 4430 } 4431 return ACR_error; 4432 } 4433 } 4434 return ACR_okay; 4435 } 4436 4437 // The life-time qualifier cast check above is all we need for ObjCWeak. 4438 // ObjCAutoRefCount has more restrictions on what is legal. 4439 if (!getLangOpts().ObjCAutoRefCount) 4440 return ACR_okay; 4441 4442 if (isAnyCLike(exprACTC) && isAnyCLike(castACTC)) return ACR_okay; 4443 4444 // Allow all of these types to be cast to integer types (but not 4445 // vice-versa). 4446 if (castACTC == ACTC_none && castType->isIntegralType(Context)) 4447 return ACR_okay; 4448 4449 // Allow casts between pointers to lifetime types (e.g., __strong id*) 4450 // and pointers to void (e.g., cv void *). Casting from void* to lifetime* 4451 // must be explicit. 4452 if (exprACTC == ACTC_indirectRetainable && castACTC == ACTC_voidPtr) 4453 return ACR_okay; 4454 if (castACTC == ACTC_indirectRetainable && exprACTC == ACTC_voidPtr && 4455 isCast(CCK)) 4456 return ACR_okay; 4457 4458 switch (ARCCastChecker(Context, exprACTC, castACTC, false).Visit(castExpr)) { 4459 // For invalid casts, fall through. 4460 case ACC_invalid: 4461 break; 4462 4463 // Do nothing for both bottom and +0. 4464 case ACC_bottom: 4465 case ACC_plusZero: 4466 return ACR_okay; 4467 4468 // If the result is +1, consume it here. 4469 case ACC_plusOne: 4470 castExpr = ImplicitCastExpr::Create(Context, castExpr->getType(), 4471 CK_ARCConsumeObject, castExpr, nullptr, 4472 VK_RValue, FPOptionsOverride()); 4473 Cleanup.setExprNeedsCleanups(true); 4474 return ACR_okay; 4475 } 4476 4477 // If this is a non-implicit cast from id or block type to a 4478 // CoreFoundation type, delay complaining in case the cast is used 4479 // in an acceptable context. 4480 if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC) && isCast(CCK)) 4481 return ACR_unbridged; 4482 4483 // Issue a diagnostic about a missing @-sign when implicit casting a cstring 4484 // to 'NSString *', instead of falling through to report a "bridge cast" 4485 // diagnostic. 4486 if (castACTC == ACTC_retainable && exprACTC == ACTC_none && 4487 CheckConversionToObjCLiteral(castType, castExpr, Diagnose)) 4488 return ACR_error; 4489 4490 // Do not issue "bridge cast" diagnostic when implicit casting 4491 // a retainable object to a CF type parameter belonging to an audited 4492 // CF API function. Let caller issue a normal type mismatched diagnostic 4493 // instead. 4494 if ((!DiagnoseCFAudited || exprACTC != ACTC_retainable || 4495 castACTC != ACTC_coreFoundation) && 4496 !(exprACTC == ACTC_voidPtr && castACTC == ACTC_retainable && 4497 (Opc == BO_NE || Opc == BO_EQ))) { 4498 if (Diagnose) 4499 diagnoseObjCARCConversion(*this, castRange, castType, castACTC, castExpr, 4500 castExpr, exprACTC, CCK); 4501 return ACR_error; 4502 } 4503 return ACR_okay; 4504 } 4505 4506 /// Given that we saw an expression with the ARCUnbridgedCastTy 4507 /// placeholder type, complain bitterly. 4508 void Sema::diagnoseARCUnbridgedCast(Expr *e) { 4509 // We expect the spurious ImplicitCastExpr to already have been stripped. 4510 assert(!e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)); 4511 CastExpr *realCast = cast<CastExpr>(e->IgnoreParens()); 4512 4513 SourceRange castRange; 4514 QualType castType; 4515 CheckedConversionKind CCK; 4516 4517 if (CStyleCastExpr *cast = dyn_cast<CStyleCastExpr>(realCast)) { 4518 castRange = SourceRange(cast->getLParenLoc(), cast->getRParenLoc()); 4519 castType = cast->getTypeAsWritten(); 4520 CCK = CCK_CStyleCast; 4521 } else if (ExplicitCastExpr *cast = dyn_cast<ExplicitCastExpr>(realCast)) { 4522 castRange = cast->getTypeInfoAsWritten()->getTypeLoc().getSourceRange(); 4523 castType = cast->getTypeAsWritten(); 4524 CCK = CCK_OtherCast; 4525 } else { 4526 llvm_unreachable("Unexpected ImplicitCastExpr"); 4527 } 4528 4529 ARCConversionTypeClass castACTC = 4530 classifyTypeForARCConversion(castType.getNonReferenceType()); 4531 4532 Expr *castExpr = realCast->getSubExpr(); 4533 assert(classifyTypeForARCConversion(castExpr->getType()) == ACTC_retainable); 4534 4535 diagnoseObjCARCConversion(*this, castRange, castType, castACTC, 4536 castExpr, realCast, ACTC_retainable, CCK); 4537 } 4538 4539 /// stripARCUnbridgedCast - Given an expression of ARCUnbridgedCast 4540 /// type, remove the placeholder cast. 4541 Expr *Sema::stripARCUnbridgedCast(Expr *e) { 4542 assert(e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)); 4543 4544 if (ParenExpr *pe = dyn_cast<ParenExpr>(e)) { 4545 Expr *sub = stripARCUnbridgedCast(pe->getSubExpr()); 4546 return new (Context) ParenExpr(pe->getLParen(), pe->getRParen(), sub); 4547 } else if (UnaryOperator *uo = dyn_cast<UnaryOperator>(e)) { 4548 assert(uo->getOpcode() == UO_Extension); 4549 Expr *sub = stripARCUnbridgedCast(uo->getSubExpr()); 4550 return UnaryOperator::Create(Context, sub, UO_Extension, sub->getType(), 4551 sub->getValueKind(), sub->getObjectKind(), 4552 uo->getOperatorLoc(), false, 4553 CurFPFeatureOverrides()); 4554 } else if (GenericSelectionExpr *gse = dyn_cast<GenericSelectionExpr>(e)) { 4555 assert(!gse->isResultDependent()); 4556 4557 unsigned n = gse->getNumAssocs(); 4558 SmallVector<Expr *, 4> subExprs; 4559 SmallVector<TypeSourceInfo *, 4> subTypes; 4560 subExprs.reserve(n); 4561 subTypes.reserve(n); 4562 for (const GenericSelectionExpr::Association assoc : gse->associations()) { 4563 subTypes.push_back(assoc.getTypeSourceInfo()); 4564 Expr *sub = assoc.getAssociationExpr(); 4565 if (assoc.isSelected()) 4566 sub = stripARCUnbridgedCast(sub); 4567 subExprs.push_back(sub); 4568 } 4569 4570 return GenericSelectionExpr::Create( 4571 Context, gse->getGenericLoc(), gse->getControllingExpr(), subTypes, 4572 subExprs, gse->getDefaultLoc(), gse->getRParenLoc(), 4573 gse->containsUnexpandedParameterPack(), gse->getResultIndex()); 4574 } else { 4575 assert(isa<ImplicitCastExpr>(e) && "bad form of unbridged cast!"); 4576 return cast<ImplicitCastExpr>(e)->getSubExpr(); 4577 } 4578 } 4579 4580 bool Sema::CheckObjCARCUnavailableWeakConversion(QualType castType, 4581 QualType exprType) { 4582 QualType canCastType = 4583 Context.getCanonicalType(castType).getUnqualifiedType(); 4584 QualType canExprType = 4585 Context.getCanonicalType(exprType).getUnqualifiedType(); 4586 if (isa<ObjCObjectPointerType>(canCastType) && 4587 castType.getObjCLifetime() == Qualifiers::OCL_Weak && 4588 canExprType->isObjCObjectPointerType()) { 4589 if (const ObjCObjectPointerType *ObjT = 4590 canExprType->getAs<ObjCObjectPointerType>()) 4591 if (const ObjCInterfaceDecl *ObjI = ObjT->getInterfaceDecl()) 4592 return !ObjI->isArcWeakrefUnavailable(); 4593 } 4594 return true; 4595 } 4596 4597 /// Look for an ObjCReclaimReturnedObject cast and destroy it. 4598 static Expr *maybeUndoReclaimObject(Expr *e) { 4599 Expr *curExpr = e, *prevExpr = nullptr; 4600 4601 // Walk down the expression until we hit an implicit cast of kind 4602 // ARCReclaimReturnedObject or an Expr that is neither a Paren nor a Cast. 4603 while (true) { 4604 if (auto *pe = dyn_cast<ParenExpr>(curExpr)) { 4605 prevExpr = curExpr; 4606 curExpr = pe->getSubExpr(); 4607 continue; 4608 } 4609 4610 if (auto *ce = dyn_cast<CastExpr>(curExpr)) { 4611 if (auto *ice = dyn_cast<ImplicitCastExpr>(ce)) 4612 if (ice->getCastKind() == CK_ARCReclaimReturnedObject) { 4613 if (!prevExpr) 4614 return ice->getSubExpr(); 4615 if (auto *pe = dyn_cast<ParenExpr>(prevExpr)) 4616 pe->setSubExpr(ice->getSubExpr()); 4617 else 4618 cast<CastExpr>(prevExpr)->setSubExpr(ice->getSubExpr()); 4619 return e; 4620 } 4621 4622 prevExpr = curExpr; 4623 curExpr = ce->getSubExpr(); 4624 continue; 4625 } 4626 4627 // Break out of the loop if curExpr is neither a Paren nor a Cast. 4628 break; 4629 } 4630 4631 return e; 4632 } 4633 4634 ExprResult Sema::BuildObjCBridgedCast(SourceLocation LParenLoc, 4635 ObjCBridgeCastKind Kind, 4636 SourceLocation BridgeKeywordLoc, 4637 TypeSourceInfo *TSInfo, 4638 Expr *SubExpr) { 4639 ExprResult SubResult = UsualUnaryConversions(SubExpr); 4640 if (SubResult.isInvalid()) return ExprError(); 4641 SubExpr = SubResult.get(); 4642 4643 QualType T = TSInfo->getType(); 4644 QualType FromType = SubExpr->getType(); 4645 4646 CastKind CK; 4647 4648 bool MustConsume = false; 4649 if (T->isDependentType() || SubExpr->isTypeDependent()) { 4650 // Okay: we'll build a dependent expression type. 4651 CK = CK_Dependent; 4652 } else if (T->isObjCARCBridgableType() && FromType->isCARCBridgableType()) { 4653 // Casting CF -> id 4654 CK = (T->isBlockPointerType() ? CK_AnyPointerToBlockPointerCast 4655 : CK_CPointerToObjCPointerCast); 4656 switch (Kind) { 4657 case OBC_Bridge: 4658 break; 4659 4660 case OBC_BridgeRetained: { 4661 bool br = isKnownName("CFBridgingRelease"); 4662 Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind) 4663 << 2 4664 << FromType 4665 << (T->isBlockPointerType()? 1 : 0) 4666 << T 4667 << SubExpr->getSourceRange() 4668 << Kind; 4669 Diag(BridgeKeywordLoc, diag::note_arc_bridge) 4670 << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge"); 4671 Diag(BridgeKeywordLoc, diag::note_arc_bridge_transfer) 4672 << FromType << br 4673 << FixItHint::CreateReplacement(BridgeKeywordLoc, 4674 br ? "CFBridgingRelease " 4675 : "__bridge_transfer "); 4676 4677 Kind = OBC_Bridge; 4678 break; 4679 } 4680 4681 case OBC_BridgeTransfer: 4682 // We must consume the Objective-C object produced by the cast. 4683 MustConsume = true; 4684 break; 4685 } 4686 } else if (T->isCARCBridgableType() && FromType->isObjCARCBridgableType()) { 4687 // Okay: id -> CF 4688 CK = CK_BitCast; 4689 switch (Kind) { 4690 case OBC_Bridge: 4691 // Reclaiming a value that's going to be __bridge-casted to CF 4692 // is very dangerous, so we don't do it. 4693 SubExpr = maybeUndoReclaimObject(SubExpr); 4694 break; 4695 4696 case OBC_BridgeRetained: 4697 // Produce the object before casting it. 4698 SubExpr = ImplicitCastExpr::Create(Context, FromType, CK_ARCProduceObject, 4699 SubExpr, nullptr, VK_RValue, 4700 FPOptionsOverride()); 4701 break; 4702 4703 case OBC_BridgeTransfer: { 4704 bool br = isKnownName("CFBridgingRetain"); 4705 Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind) 4706 << (FromType->isBlockPointerType()? 1 : 0) 4707 << FromType 4708 << 2 4709 << T 4710 << SubExpr->getSourceRange() 4711 << Kind; 4712 4713 Diag(BridgeKeywordLoc, diag::note_arc_bridge) 4714 << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge "); 4715 Diag(BridgeKeywordLoc, diag::note_arc_bridge_retained) 4716 << T << br 4717 << FixItHint::CreateReplacement(BridgeKeywordLoc, 4718 br ? "CFBridgingRetain " : "__bridge_retained"); 4719 4720 Kind = OBC_Bridge; 4721 break; 4722 } 4723 } 4724 } else { 4725 Diag(LParenLoc, diag::err_arc_bridge_cast_incompatible) 4726 << FromType << T << Kind 4727 << SubExpr->getSourceRange() 4728 << TSInfo->getTypeLoc().getSourceRange(); 4729 return ExprError(); 4730 } 4731 4732 Expr *Result = new (Context) ObjCBridgedCastExpr(LParenLoc, Kind, CK, 4733 BridgeKeywordLoc, 4734 TSInfo, SubExpr); 4735 4736 if (MustConsume) { 4737 Cleanup.setExprNeedsCleanups(true); 4738 Result = ImplicitCastExpr::Create(Context, T, CK_ARCConsumeObject, Result, 4739 nullptr, VK_RValue, FPOptionsOverride()); 4740 } 4741 4742 return Result; 4743 } 4744 4745 ExprResult Sema::ActOnObjCBridgedCast(Scope *S, 4746 SourceLocation LParenLoc, 4747 ObjCBridgeCastKind Kind, 4748 SourceLocation BridgeKeywordLoc, 4749 ParsedType Type, 4750 SourceLocation RParenLoc, 4751 Expr *SubExpr) { 4752 TypeSourceInfo *TSInfo = nullptr; 4753 QualType T = GetTypeFromParser(Type, &TSInfo); 4754 if (Kind == OBC_Bridge) 4755 CheckTollFreeBridgeCast(T, SubExpr); 4756 if (!TSInfo) 4757 TSInfo = Context.getTrivialTypeSourceInfo(T, LParenLoc); 4758 return BuildObjCBridgedCast(LParenLoc, Kind, BridgeKeywordLoc, TSInfo, 4759 SubExpr); 4760 } 4761