1 //===--- SemaExprObjC.cpp - Semantic Analysis for ObjC Expressions --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for Objective-C expressions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/DeclObjC.h" 15 #include "clang/AST/ExprObjC.h" 16 #include "clang/AST/StmtVisitor.h" 17 #include "clang/AST/TypeLoc.h" 18 #include "clang/Analysis/DomainSpecific/CocoaConventions.h" 19 #include "clang/Basic/Builtins.h" 20 #include "clang/Edit/Commit.h" 21 #include "clang/Edit/Rewriters.h" 22 #include "clang/Lex/Preprocessor.h" 23 #include "clang/Sema/Initialization.h" 24 #include "clang/Sema/Lookup.h" 25 #include "clang/Sema/Scope.h" 26 #include "clang/Sema/ScopeInfo.h" 27 #include "clang/Sema/SemaInternal.h" 28 #include "llvm/ADT/SmallString.h" 29 #include "llvm/Support/ConvertUTF.h" 30 31 using namespace clang; 32 using namespace sema; 33 using llvm::makeArrayRef; 34 35 ExprResult Sema::ParseObjCStringLiteral(SourceLocation *AtLocs, 36 ArrayRef<Expr *> Strings) { 37 // Most ObjC strings are formed out of a single piece. However, we *can* 38 // have strings formed out of multiple @ strings with multiple pptokens in 39 // each one, e.g. @"foo" "bar" @"baz" "qux" which need to be turned into one 40 // StringLiteral for ObjCStringLiteral to hold onto. 41 StringLiteral *S = cast<StringLiteral>(Strings[0]); 42 43 // If we have a multi-part string, merge it all together. 44 if (Strings.size() != 1) { 45 // Concatenate objc strings. 46 SmallString<128> StrBuf; 47 SmallVector<SourceLocation, 8> StrLocs; 48 49 for (Expr *E : Strings) { 50 S = cast<StringLiteral>(E); 51 52 // ObjC strings can't be wide or UTF. 53 if (!S->isAscii()) { 54 Diag(S->getBeginLoc(), diag::err_cfstring_literal_not_string_constant) 55 << S->getSourceRange(); 56 return true; 57 } 58 59 // Append the string. 60 StrBuf += S->getString(); 61 62 // Get the locations of the string tokens. 63 StrLocs.append(S->tokloc_begin(), S->tokloc_end()); 64 } 65 66 // Create the aggregate string with the appropriate content and location 67 // information. 68 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 69 assert(CAT && "String literal not of constant array type!"); 70 QualType StrTy = Context.getConstantArrayType( 71 CAT->getElementType(), llvm::APInt(32, StrBuf.size() + 1), nullptr, 72 CAT->getSizeModifier(), CAT->getIndexTypeCVRQualifiers()); 73 S = StringLiteral::Create(Context, StrBuf, StringLiteral::Ascii, 74 /*Pascal=*/false, StrTy, &StrLocs[0], 75 StrLocs.size()); 76 } 77 78 return BuildObjCStringLiteral(AtLocs[0], S); 79 } 80 81 ExprResult Sema::BuildObjCStringLiteral(SourceLocation AtLoc, StringLiteral *S){ 82 // Verify that this composite string is acceptable for ObjC strings. 83 if (CheckObjCString(S)) 84 return true; 85 86 // Initialize the constant string interface lazily. This assumes 87 // the NSString interface is seen in this translation unit. Note: We 88 // don't use NSConstantString, since the runtime team considers this 89 // interface private (even though it appears in the header files). 90 QualType Ty = Context.getObjCConstantStringInterface(); 91 if (!Ty.isNull()) { 92 Ty = Context.getObjCObjectPointerType(Ty); 93 } else if (getLangOpts().NoConstantCFStrings) { 94 IdentifierInfo *NSIdent=nullptr; 95 std::string StringClass(getLangOpts().ObjCConstantStringClass); 96 97 if (StringClass.empty()) 98 NSIdent = &Context.Idents.get("NSConstantString"); 99 else 100 NSIdent = &Context.Idents.get(StringClass); 101 102 NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLoc, 103 LookupOrdinaryName); 104 if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) { 105 Context.setObjCConstantStringInterface(StrIF); 106 Ty = Context.getObjCConstantStringInterface(); 107 Ty = Context.getObjCObjectPointerType(Ty); 108 } else { 109 // If there is no NSConstantString interface defined then treat this 110 // as error and recover from it. 111 Diag(S->getBeginLoc(), diag::err_no_nsconstant_string_class) 112 << NSIdent << S->getSourceRange(); 113 Ty = Context.getObjCIdType(); 114 } 115 } else { 116 IdentifierInfo *NSIdent = NSAPIObj->getNSClassId(NSAPI::ClassId_NSString); 117 NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLoc, 118 LookupOrdinaryName); 119 if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) { 120 Context.setObjCConstantStringInterface(StrIF); 121 Ty = Context.getObjCConstantStringInterface(); 122 Ty = Context.getObjCObjectPointerType(Ty); 123 } else { 124 // If there is no NSString interface defined, implicitly declare 125 // a @class NSString; and use that instead. This is to make sure 126 // type of an NSString literal is represented correctly, instead of 127 // being an 'id' type. 128 Ty = Context.getObjCNSStringType(); 129 if (Ty.isNull()) { 130 ObjCInterfaceDecl *NSStringIDecl = 131 ObjCInterfaceDecl::Create (Context, 132 Context.getTranslationUnitDecl(), 133 SourceLocation(), NSIdent, 134 nullptr, nullptr, SourceLocation()); 135 Ty = Context.getObjCInterfaceType(NSStringIDecl); 136 Context.setObjCNSStringType(Ty); 137 } 138 Ty = Context.getObjCObjectPointerType(Ty); 139 } 140 } 141 142 return new (Context) ObjCStringLiteral(S, Ty, AtLoc); 143 } 144 145 /// Emits an error if the given method does not exist, or if the return 146 /// type is not an Objective-C object. 147 static bool validateBoxingMethod(Sema &S, SourceLocation Loc, 148 const ObjCInterfaceDecl *Class, 149 Selector Sel, const ObjCMethodDecl *Method) { 150 if (!Method) { 151 // FIXME: Is there a better way to avoid quotes than using getName()? 152 S.Diag(Loc, diag::err_undeclared_boxing_method) << Sel << Class->getName(); 153 return false; 154 } 155 156 // Make sure the return type is reasonable. 157 QualType ReturnType = Method->getReturnType(); 158 if (!ReturnType->isObjCObjectPointerType()) { 159 S.Diag(Loc, diag::err_objc_literal_method_sig) 160 << Sel; 161 S.Diag(Method->getLocation(), diag::note_objc_literal_method_return) 162 << ReturnType; 163 return false; 164 } 165 166 return true; 167 } 168 169 /// Maps ObjCLiteralKind to NSClassIdKindKind 170 static NSAPI::NSClassIdKindKind ClassKindFromLiteralKind( 171 Sema::ObjCLiteralKind LiteralKind) { 172 switch (LiteralKind) { 173 case Sema::LK_Array: 174 return NSAPI::ClassId_NSArray; 175 case Sema::LK_Dictionary: 176 return NSAPI::ClassId_NSDictionary; 177 case Sema::LK_Numeric: 178 return NSAPI::ClassId_NSNumber; 179 case Sema::LK_String: 180 return NSAPI::ClassId_NSString; 181 case Sema::LK_Boxed: 182 return NSAPI::ClassId_NSValue; 183 184 // there is no corresponding matching 185 // between LK_None/LK_Block and NSClassIdKindKind 186 case Sema::LK_Block: 187 case Sema::LK_None: 188 break; 189 } 190 llvm_unreachable("LiteralKind can't be converted into a ClassKind"); 191 } 192 193 /// Validates ObjCInterfaceDecl availability. 194 /// ObjCInterfaceDecl, used to create ObjC literals, should be defined 195 /// if clang not in a debugger mode. 196 static bool ValidateObjCLiteralInterfaceDecl(Sema &S, ObjCInterfaceDecl *Decl, 197 SourceLocation Loc, 198 Sema::ObjCLiteralKind LiteralKind) { 199 if (!Decl) { 200 NSAPI::NSClassIdKindKind Kind = ClassKindFromLiteralKind(LiteralKind); 201 IdentifierInfo *II = S.NSAPIObj->getNSClassId(Kind); 202 S.Diag(Loc, diag::err_undeclared_objc_literal_class) 203 << II->getName() << LiteralKind; 204 return false; 205 } else if (!Decl->hasDefinition() && !S.getLangOpts().DebuggerObjCLiteral) { 206 S.Diag(Loc, diag::err_undeclared_objc_literal_class) 207 << Decl->getName() << LiteralKind; 208 S.Diag(Decl->getLocation(), diag::note_forward_class); 209 return false; 210 } 211 212 return true; 213 } 214 215 /// Looks up ObjCInterfaceDecl of a given NSClassIdKindKind. 216 /// Used to create ObjC literals, such as NSDictionary (@{}), 217 /// NSArray (@[]) and Boxed Expressions (@()) 218 static ObjCInterfaceDecl *LookupObjCInterfaceDeclForLiteral(Sema &S, 219 SourceLocation Loc, 220 Sema::ObjCLiteralKind LiteralKind) { 221 NSAPI::NSClassIdKindKind ClassKind = ClassKindFromLiteralKind(LiteralKind); 222 IdentifierInfo *II = S.NSAPIObj->getNSClassId(ClassKind); 223 NamedDecl *IF = S.LookupSingleName(S.TUScope, II, Loc, 224 Sema::LookupOrdinaryName); 225 ObjCInterfaceDecl *ID = dyn_cast_or_null<ObjCInterfaceDecl>(IF); 226 if (!ID && S.getLangOpts().DebuggerObjCLiteral) { 227 ASTContext &Context = S.Context; 228 TranslationUnitDecl *TU = Context.getTranslationUnitDecl(); 229 ID = ObjCInterfaceDecl::Create (Context, TU, SourceLocation(), II, 230 nullptr, nullptr, SourceLocation()); 231 } 232 233 if (!ValidateObjCLiteralInterfaceDecl(S, ID, Loc, LiteralKind)) { 234 ID = nullptr; 235 } 236 237 return ID; 238 } 239 240 /// Retrieve the NSNumber factory method that should be used to create 241 /// an Objective-C literal for the given type. 242 static ObjCMethodDecl *getNSNumberFactoryMethod(Sema &S, SourceLocation Loc, 243 QualType NumberType, 244 bool isLiteral = false, 245 SourceRange R = SourceRange()) { 246 Optional<NSAPI::NSNumberLiteralMethodKind> Kind = 247 S.NSAPIObj->getNSNumberFactoryMethodKind(NumberType); 248 249 if (!Kind) { 250 if (isLiteral) { 251 S.Diag(Loc, diag::err_invalid_nsnumber_type) 252 << NumberType << R; 253 } 254 return nullptr; 255 } 256 257 // If we already looked up this method, we're done. 258 if (S.NSNumberLiteralMethods[*Kind]) 259 return S.NSNumberLiteralMethods[*Kind]; 260 261 Selector Sel = S.NSAPIObj->getNSNumberLiteralSelector(*Kind, 262 /*Instance=*/false); 263 264 ASTContext &CX = S.Context; 265 266 // Look up the NSNumber class, if we haven't done so already. It's cached 267 // in the Sema instance. 268 if (!S.NSNumberDecl) { 269 S.NSNumberDecl = LookupObjCInterfaceDeclForLiteral(S, Loc, 270 Sema::LK_Numeric); 271 if (!S.NSNumberDecl) { 272 return nullptr; 273 } 274 } 275 276 if (S.NSNumberPointer.isNull()) { 277 // generate the pointer to NSNumber type. 278 QualType NSNumberObject = CX.getObjCInterfaceType(S.NSNumberDecl); 279 S.NSNumberPointer = CX.getObjCObjectPointerType(NSNumberObject); 280 } 281 282 // Look for the appropriate method within NSNumber. 283 ObjCMethodDecl *Method = S.NSNumberDecl->lookupClassMethod(Sel); 284 if (!Method && S.getLangOpts().DebuggerObjCLiteral) { 285 // create a stub definition this NSNumber factory method. 286 TypeSourceInfo *ReturnTInfo = nullptr; 287 Method = 288 ObjCMethodDecl::Create(CX, SourceLocation(), SourceLocation(), Sel, 289 S.NSNumberPointer, ReturnTInfo, S.NSNumberDecl, 290 /*isInstance=*/false, /*isVariadic=*/false, 291 /*isPropertyAccessor=*/false, 292 /*isSynthesizedAccessorStub=*/false, 293 /*isImplicitlyDeclared=*/true, 294 /*isDefined=*/false, ObjCMethodDecl::Required, 295 /*HasRelatedResultType=*/false); 296 ParmVarDecl *value = ParmVarDecl::Create(S.Context, Method, 297 SourceLocation(), SourceLocation(), 298 &CX.Idents.get("value"), 299 NumberType, /*TInfo=*/nullptr, 300 SC_None, nullptr); 301 Method->setMethodParams(S.Context, value, None); 302 } 303 304 if (!validateBoxingMethod(S, Loc, S.NSNumberDecl, Sel, Method)) 305 return nullptr; 306 307 // Note: if the parameter type is out-of-line, we'll catch it later in the 308 // implicit conversion. 309 310 S.NSNumberLiteralMethods[*Kind] = Method; 311 return Method; 312 } 313 314 /// BuildObjCNumericLiteral - builds an ObjCBoxedExpr AST node for the 315 /// numeric literal expression. Type of the expression will be "NSNumber *". 316 ExprResult Sema::BuildObjCNumericLiteral(SourceLocation AtLoc, Expr *Number) { 317 // Determine the type of the literal. 318 QualType NumberType = Number->getType(); 319 if (CharacterLiteral *Char = dyn_cast<CharacterLiteral>(Number)) { 320 // In C, character literals have type 'int'. That's not the type we want 321 // to use to determine the Objective-c literal kind. 322 switch (Char->getKind()) { 323 case CharacterLiteral::Ascii: 324 case CharacterLiteral::UTF8: 325 NumberType = Context.CharTy; 326 break; 327 328 case CharacterLiteral::Wide: 329 NumberType = Context.getWideCharType(); 330 break; 331 332 case CharacterLiteral::UTF16: 333 NumberType = Context.Char16Ty; 334 break; 335 336 case CharacterLiteral::UTF32: 337 NumberType = Context.Char32Ty; 338 break; 339 } 340 } 341 342 // Look for the appropriate method within NSNumber. 343 // Construct the literal. 344 SourceRange NR(Number->getSourceRange()); 345 ObjCMethodDecl *Method = getNSNumberFactoryMethod(*this, AtLoc, NumberType, 346 true, NR); 347 if (!Method) 348 return ExprError(); 349 350 // Convert the number to the type that the parameter expects. 351 ParmVarDecl *ParamDecl = Method->parameters()[0]; 352 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 353 ParamDecl); 354 ExprResult ConvertedNumber = PerformCopyInitialization(Entity, 355 SourceLocation(), 356 Number); 357 if (ConvertedNumber.isInvalid()) 358 return ExprError(); 359 Number = ConvertedNumber.get(); 360 361 // Use the effective source range of the literal, including the leading '@'. 362 return MaybeBindToTemporary( 363 new (Context) ObjCBoxedExpr(Number, NSNumberPointer, Method, 364 SourceRange(AtLoc, NR.getEnd()))); 365 } 366 367 ExprResult Sema::ActOnObjCBoolLiteral(SourceLocation AtLoc, 368 SourceLocation ValueLoc, 369 bool Value) { 370 ExprResult Inner; 371 if (getLangOpts().CPlusPlus) { 372 Inner = ActOnCXXBoolLiteral(ValueLoc, Value? tok::kw_true : tok::kw_false); 373 } else { 374 // C doesn't actually have a way to represent literal values of type 375 // _Bool. So, we'll use 0/1 and implicit cast to _Bool. 376 Inner = ActOnIntegerConstant(ValueLoc, Value? 1 : 0); 377 Inner = ImpCastExprToType(Inner.get(), Context.BoolTy, 378 CK_IntegralToBoolean); 379 } 380 381 return BuildObjCNumericLiteral(AtLoc, Inner.get()); 382 } 383 384 /// Check that the given expression is a valid element of an Objective-C 385 /// collection literal. 386 static ExprResult CheckObjCCollectionLiteralElement(Sema &S, Expr *Element, 387 QualType T, 388 bool ArrayLiteral = false) { 389 // If the expression is type-dependent, there's nothing for us to do. 390 if (Element->isTypeDependent()) 391 return Element; 392 393 ExprResult Result = S.CheckPlaceholderExpr(Element); 394 if (Result.isInvalid()) 395 return ExprError(); 396 Element = Result.get(); 397 398 // In C++, check for an implicit conversion to an Objective-C object pointer 399 // type. 400 if (S.getLangOpts().CPlusPlus && Element->getType()->isRecordType()) { 401 InitializedEntity Entity 402 = InitializedEntity::InitializeParameter(S.Context, T, 403 /*Consumed=*/false); 404 InitializationKind Kind = InitializationKind::CreateCopy( 405 Element->getBeginLoc(), SourceLocation()); 406 InitializationSequence Seq(S, Entity, Kind, Element); 407 if (!Seq.Failed()) 408 return Seq.Perform(S, Entity, Kind, Element); 409 } 410 411 Expr *OrigElement = Element; 412 413 // Perform lvalue-to-rvalue conversion. 414 Result = S.DefaultLvalueConversion(Element); 415 if (Result.isInvalid()) 416 return ExprError(); 417 Element = Result.get(); 418 419 // Make sure that we have an Objective-C pointer type or block. 420 if (!Element->getType()->isObjCObjectPointerType() && 421 !Element->getType()->isBlockPointerType()) { 422 bool Recovered = false; 423 424 // If this is potentially an Objective-C numeric literal, add the '@'. 425 if (isa<IntegerLiteral>(OrigElement) || 426 isa<CharacterLiteral>(OrigElement) || 427 isa<FloatingLiteral>(OrigElement) || 428 isa<ObjCBoolLiteralExpr>(OrigElement) || 429 isa<CXXBoolLiteralExpr>(OrigElement)) { 430 if (S.NSAPIObj->getNSNumberFactoryMethodKind(OrigElement->getType())) { 431 int Which = isa<CharacterLiteral>(OrigElement) ? 1 432 : (isa<CXXBoolLiteralExpr>(OrigElement) || 433 isa<ObjCBoolLiteralExpr>(OrigElement)) ? 2 434 : 3; 435 436 S.Diag(OrigElement->getBeginLoc(), diag::err_box_literal_collection) 437 << Which << OrigElement->getSourceRange() 438 << FixItHint::CreateInsertion(OrigElement->getBeginLoc(), "@"); 439 440 Result = 441 S.BuildObjCNumericLiteral(OrigElement->getBeginLoc(), OrigElement); 442 if (Result.isInvalid()) 443 return ExprError(); 444 445 Element = Result.get(); 446 Recovered = true; 447 } 448 } 449 // If this is potentially an Objective-C string literal, add the '@'. 450 else if (StringLiteral *String = dyn_cast<StringLiteral>(OrigElement)) { 451 if (String->isAscii()) { 452 S.Diag(OrigElement->getBeginLoc(), diag::err_box_literal_collection) 453 << 0 << OrigElement->getSourceRange() 454 << FixItHint::CreateInsertion(OrigElement->getBeginLoc(), "@"); 455 456 Result = S.BuildObjCStringLiteral(OrigElement->getBeginLoc(), String); 457 if (Result.isInvalid()) 458 return ExprError(); 459 460 Element = Result.get(); 461 Recovered = true; 462 } 463 } 464 465 if (!Recovered) { 466 S.Diag(Element->getBeginLoc(), diag::err_invalid_collection_element) 467 << Element->getType(); 468 return ExprError(); 469 } 470 } 471 if (ArrayLiteral) 472 if (ObjCStringLiteral *getString = 473 dyn_cast<ObjCStringLiteral>(OrigElement)) { 474 if (StringLiteral *SL = getString->getString()) { 475 unsigned numConcat = SL->getNumConcatenated(); 476 if (numConcat > 1) { 477 // Only warn if the concatenated string doesn't come from a macro. 478 bool hasMacro = false; 479 for (unsigned i = 0; i < numConcat ; ++i) 480 if (SL->getStrTokenLoc(i).isMacroID()) { 481 hasMacro = true; 482 break; 483 } 484 if (!hasMacro) 485 S.Diag(Element->getBeginLoc(), 486 diag::warn_concatenated_nsarray_literal) 487 << Element->getType(); 488 } 489 } 490 } 491 492 // Make sure that the element has the type that the container factory 493 // function expects. 494 return S.PerformCopyInitialization( 495 InitializedEntity::InitializeParameter(S.Context, T, 496 /*Consumed=*/false), 497 Element->getBeginLoc(), Element); 498 } 499 500 ExprResult Sema::BuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr) { 501 if (ValueExpr->isTypeDependent()) { 502 ObjCBoxedExpr *BoxedExpr = 503 new (Context) ObjCBoxedExpr(ValueExpr, Context.DependentTy, nullptr, SR); 504 return BoxedExpr; 505 } 506 ObjCMethodDecl *BoxingMethod = nullptr; 507 QualType BoxedType; 508 // Convert the expression to an RValue, so we can check for pointer types... 509 ExprResult RValue = DefaultFunctionArrayLvalueConversion(ValueExpr); 510 if (RValue.isInvalid()) { 511 return ExprError(); 512 } 513 SourceLocation Loc = SR.getBegin(); 514 ValueExpr = RValue.get(); 515 QualType ValueType(ValueExpr->getType()); 516 if (const PointerType *PT = ValueType->getAs<PointerType>()) { 517 QualType PointeeType = PT->getPointeeType(); 518 if (Context.hasSameUnqualifiedType(PointeeType, Context.CharTy)) { 519 520 if (!NSStringDecl) { 521 NSStringDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc, 522 Sema::LK_String); 523 if (!NSStringDecl) { 524 return ExprError(); 525 } 526 QualType NSStringObject = Context.getObjCInterfaceType(NSStringDecl); 527 NSStringPointer = Context.getObjCObjectPointerType(NSStringObject); 528 } 529 530 // The boxed expression can be emitted as a compile time constant if it is 531 // a string literal whose character encoding is compatible with UTF-8. 532 if (auto *CE = dyn_cast<ImplicitCastExpr>(ValueExpr)) 533 if (CE->getCastKind() == CK_ArrayToPointerDecay) 534 if (auto *SL = 535 dyn_cast<StringLiteral>(CE->getSubExpr()->IgnoreParens())) { 536 assert((SL->isAscii() || SL->isUTF8()) && 537 "unexpected character encoding"); 538 StringRef Str = SL->getString(); 539 const llvm::UTF8 *StrBegin = Str.bytes_begin(); 540 const llvm::UTF8 *StrEnd = Str.bytes_end(); 541 // Check that this is a valid UTF-8 string. 542 if (llvm::isLegalUTF8String(&StrBegin, StrEnd)) { 543 BoxedType = Context.getAttributedType( 544 AttributedType::getNullabilityAttrKind( 545 NullabilityKind::NonNull), 546 NSStringPointer, NSStringPointer); 547 return new (Context) ObjCBoxedExpr(CE, BoxedType, nullptr, SR); 548 } 549 550 Diag(SL->getBeginLoc(), diag::warn_objc_boxing_invalid_utf8_string) 551 << NSStringPointer << SL->getSourceRange(); 552 } 553 554 if (!StringWithUTF8StringMethod) { 555 IdentifierInfo *II = &Context.Idents.get("stringWithUTF8String"); 556 Selector stringWithUTF8String = Context.Selectors.getUnarySelector(II); 557 558 // Look for the appropriate method within NSString. 559 BoxingMethod = NSStringDecl->lookupClassMethod(stringWithUTF8String); 560 if (!BoxingMethod && getLangOpts().DebuggerObjCLiteral) { 561 // Debugger needs to work even if NSString hasn't been defined. 562 TypeSourceInfo *ReturnTInfo = nullptr; 563 ObjCMethodDecl *M = ObjCMethodDecl::Create( 564 Context, SourceLocation(), SourceLocation(), stringWithUTF8String, 565 NSStringPointer, ReturnTInfo, NSStringDecl, 566 /*isInstance=*/false, /*isVariadic=*/false, 567 /*isPropertyAccessor=*/false, 568 /*isSynthesizedAccessorStub=*/false, 569 /*isImplicitlyDeclared=*/true, 570 /*isDefined=*/false, ObjCMethodDecl::Required, 571 /*HasRelatedResultType=*/false); 572 QualType ConstCharType = Context.CharTy.withConst(); 573 ParmVarDecl *value = 574 ParmVarDecl::Create(Context, M, 575 SourceLocation(), SourceLocation(), 576 &Context.Idents.get("value"), 577 Context.getPointerType(ConstCharType), 578 /*TInfo=*/nullptr, 579 SC_None, nullptr); 580 M->setMethodParams(Context, value, None); 581 BoxingMethod = M; 582 } 583 584 if (!validateBoxingMethod(*this, Loc, NSStringDecl, 585 stringWithUTF8String, BoxingMethod)) 586 return ExprError(); 587 588 StringWithUTF8StringMethod = BoxingMethod; 589 } 590 591 BoxingMethod = StringWithUTF8StringMethod; 592 BoxedType = NSStringPointer; 593 // Transfer the nullability from method's return type. 594 Optional<NullabilityKind> Nullability = 595 BoxingMethod->getReturnType()->getNullability(Context); 596 if (Nullability) 597 BoxedType = Context.getAttributedType( 598 AttributedType::getNullabilityAttrKind(*Nullability), BoxedType, 599 BoxedType); 600 } 601 } else if (ValueType->isBuiltinType()) { 602 // The other types we support are numeric, char and BOOL/bool. We could also 603 // provide limited support for structure types, such as NSRange, NSRect, and 604 // NSSize. See NSValue (NSValueGeometryExtensions) in <Foundation/NSGeometry.h> 605 // for more details. 606 607 // Check for a top-level character literal. 608 if (const CharacterLiteral *Char = 609 dyn_cast<CharacterLiteral>(ValueExpr->IgnoreParens())) { 610 // In C, character literals have type 'int'. That's not the type we want 611 // to use to determine the Objective-c literal kind. 612 switch (Char->getKind()) { 613 case CharacterLiteral::Ascii: 614 case CharacterLiteral::UTF8: 615 ValueType = Context.CharTy; 616 break; 617 618 case CharacterLiteral::Wide: 619 ValueType = Context.getWideCharType(); 620 break; 621 622 case CharacterLiteral::UTF16: 623 ValueType = Context.Char16Ty; 624 break; 625 626 case CharacterLiteral::UTF32: 627 ValueType = Context.Char32Ty; 628 break; 629 } 630 } 631 // FIXME: Do I need to do anything special with BoolTy expressions? 632 633 // Look for the appropriate method within NSNumber. 634 BoxingMethod = getNSNumberFactoryMethod(*this, Loc, ValueType); 635 BoxedType = NSNumberPointer; 636 } else if (const EnumType *ET = ValueType->getAs<EnumType>()) { 637 if (!ET->getDecl()->isComplete()) { 638 Diag(Loc, diag::err_objc_incomplete_boxed_expression_type) 639 << ValueType << ValueExpr->getSourceRange(); 640 return ExprError(); 641 } 642 643 BoxingMethod = getNSNumberFactoryMethod(*this, Loc, 644 ET->getDecl()->getIntegerType()); 645 BoxedType = NSNumberPointer; 646 } else if (ValueType->isObjCBoxableRecordType()) { 647 // Support for structure types, that marked as objc_boxable 648 // struct __attribute__((objc_boxable)) s { ... }; 649 650 // Look up the NSValue class, if we haven't done so already. It's cached 651 // in the Sema instance. 652 if (!NSValueDecl) { 653 NSValueDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc, 654 Sema::LK_Boxed); 655 if (!NSValueDecl) { 656 return ExprError(); 657 } 658 659 // generate the pointer to NSValue type. 660 QualType NSValueObject = Context.getObjCInterfaceType(NSValueDecl); 661 NSValuePointer = Context.getObjCObjectPointerType(NSValueObject); 662 } 663 664 if (!ValueWithBytesObjCTypeMethod) { 665 IdentifierInfo *II[] = { 666 &Context.Idents.get("valueWithBytes"), 667 &Context.Idents.get("objCType") 668 }; 669 Selector ValueWithBytesObjCType = Context.Selectors.getSelector(2, II); 670 671 // Look for the appropriate method within NSValue. 672 BoxingMethod = NSValueDecl->lookupClassMethod(ValueWithBytesObjCType); 673 if (!BoxingMethod && getLangOpts().DebuggerObjCLiteral) { 674 // Debugger needs to work even if NSValue hasn't been defined. 675 TypeSourceInfo *ReturnTInfo = nullptr; 676 ObjCMethodDecl *M = ObjCMethodDecl::Create( 677 Context, SourceLocation(), SourceLocation(), ValueWithBytesObjCType, 678 NSValuePointer, ReturnTInfo, NSValueDecl, 679 /*isInstance=*/false, 680 /*isVariadic=*/false, 681 /*isPropertyAccessor=*/false, 682 /*isSynthesizedAccessorStub=*/false, 683 /*isImplicitlyDeclared=*/true, 684 /*isDefined=*/false, ObjCMethodDecl::Required, 685 /*HasRelatedResultType=*/false); 686 687 SmallVector<ParmVarDecl *, 2> Params; 688 689 ParmVarDecl *bytes = 690 ParmVarDecl::Create(Context, M, 691 SourceLocation(), SourceLocation(), 692 &Context.Idents.get("bytes"), 693 Context.VoidPtrTy.withConst(), 694 /*TInfo=*/nullptr, 695 SC_None, nullptr); 696 Params.push_back(bytes); 697 698 QualType ConstCharType = Context.CharTy.withConst(); 699 ParmVarDecl *type = 700 ParmVarDecl::Create(Context, M, 701 SourceLocation(), SourceLocation(), 702 &Context.Idents.get("type"), 703 Context.getPointerType(ConstCharType), 704 /*TInfo=*/nullptr, 705 SC_None, nullptr); 706 Params.push_back(type); 707 708 M->setMethodParams(Context, Params, None); 709 BoxingMethod = M; 710 } 711 712 if (!validateBoxingMethod(*this, Loc, NSValueDecl, 713 ValueWithBytesObjCType, BoxingMethod)) 714 return ExprError(); 715 716 ValueWithBytesObjCTypeMethod = BoxingMethod; 717 } 718 719 if (!ValueType.isTriviallyCopyableType(Context)) { 720 Diag(Loc, diag::err_objc_non_trivially_copyable_boxed_expression_type) 721 << ValueType << ValueExpr->getSourceRange(); 722 return ExprError(); 723 } 724 725 BoxingMethod = ValueWithBytesObjCTypeMethod; 726 BoxedType = NSValuePointer; 727 } 728 729 if (!BoxingMethod) { 730 Diag(Loc, diag::err_objc_illegal_boxed_expression_type) 731 << ValueType << ValueExpr->getSourceRange(); 732 return ExprError(); 733 } 734 735 DiagnoseUseOfDecl(BoxingMethod, Loc); 736 737 ExprResult ConvertedValueExpr; 738 if (ValueType->isObjCBoxableRecordType()) { 739 InitializedEntity IE = InitializedEntity::InitializeTemporary(ValueType); 740 ConvertedValueExpr = PerformCopyInitialization(IE, ValueExpr->getExprLoc(), 741 ValueExpr); 742 } else { 743 // Convert the expression to the type that the parameter requires. 744 ParmVarDecl *ParamDecl = BoxingMethod->parameters()[0]; 745 InitializedEntity IE = InitializedEntity::InitializeParameter(Context, 746 ParamDecl); 747 ConvertedValueExpr = PerformCopyInitialization(IE, SourceLocation(), 748 ValueExpr); 749 } 750 751 if (ConvertedValueExpr.isInvalid()) 752 return ExprError(); 753 ValueExpr = ConvertedValueExpr.get(); 754 755 ObjCBoxedExpr *BoxedExpr = 756 new (Context) ObjCBoxedExpr(ValueExpr, BoxedType, 757 BoxingMethod, SR); 758 return MaybeBindToTemporary(BoxedExpr); 759 } 760 761 /// Build an ObjC subscript pseudo-object expression, given that 762 /// that's supported by the runtime. 763 ExprResult Sema::BuildObjCSubscriptExpression(SourceLocation RB, Expr *BaseExpr, 764 Expr *IndexExpr, 765 ObjCMethodDecl *getterMethod, 766 ObjCMethodDecl *setterMethod) { 767 assert(!LangOpts.isSubscriptPointerArithmetic()); 768 769 // We can't get dependent types here; our callers should have 770 // filtered them out. 771 assert((!BaseExpr->isTypeDependent() && !IndexExpr->isTypeDependent()) && 772 "base or index cannot have dependent type here"); 773 774 // Filter out placeholders in the index. In theory, overloads could 775 // be preserved here, although that might not actually work correctly. 776 ExprResult Result = CheckPlaceholderExpr(IndexExpr); 777 if (Result.isInvalid()) 778 return ExprError(); 779 IndexExpr = Result.get(); 780 781 // Perform lvalue-to-rvalue conversion on the base. 782 Result = DefaultLvalueConversion(BaseExpr); 783 if (Result.isInvalid()) 784 return ExprError(); 785 BaseExpr = Result.get(); 786 787 // Build the pseudo-object expression. 788 return new (Context) ObjCSubscriptRefExpr( 789 BaseExpr, IndexExpr, Context.PseudoObjectTy, VK_LValue, OK_ObjCSubscript, 790 getterMethod, setterMethod, RB); 791 } 792 793 ExprResult Sema::BuildObjCArrayLiteral(SourceRange SR, MultiExprArg Elements) { 794 SourceLocation Loc = SR.getBegin(); 795 796 if (!NSArrayDecl) { 797 NSArrayDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc, 798 Sema::LK_Array); 799 if (!NSArrayDecl) { 800 return ExprError(); 801 } 802 } 803 804 // Find the arrayWithObjects:count: method, if we haven't done so already. 805 QualType IdT = Context.getObjCIdType(); 806 if (!ArrayWithObjectsMethod) { 807 Selector 808 Sel = NSAPIObj->getNSArraySelector(NSAPI::NSArr_arrayWithObjectsCount); 809 ObjCMethodDecl *Method = NSArrayDecl->lookupClassMethod(Sel); 810 if (!Method && getLangOpts().DebuggerObjCLiteral) { 811 TypeSourceInfo *ReturnTInfo = nullptr; 812 Method = ObjCMethodDecl::Create( 813 Context, SourceLocation(), SourceLocation(), Sel, IdT, ReturnTInfo, 814 Context.getTranslationUnitDecl(), false /*Instance*/, 815 false /*isVariadic*/, 816 /*isPropertyAccessor=*/false, /*isSynthesizedAccessorStub=*/false, 817 /*isImplicitlyDeclared=*/true, /*isDefined=*/false, 818 ObjCMethodDecl::Required, false); 819 SmallVector<ParmVarDecl *, 2> Params; 820 ParmVarDecl *objects = ParmVarDecl::Create(Context, Method, 821 SourceLocation(), 822 SourceLocation(), 823 &Context.Idents.get("objects"), 824 Context.getPointerType(IdT), 825 /*TInfo=*/nullptr, 826 SC_None, nullptr); 827 Params.push_back(objects); 828 ParmVarDecl *cnt = ParmVarDecl::Create(Context, Method, 829 SourceLocation(), 830 SourceLocation(), 831 &Context.Idents.get("cnt"), 832 Context.UnsignedLongTy, 833 /*TInfo=*/nullptr, SC_None, 834 nullptr); 835 Params.push_back(cnt); 836 Method->setMethodParams(Context, Params, None); 837 } 838 839 if (!validateBoxingMethod(*this, Loc, NSArrayDecl, Sel, Method)) 840 return ExprError(); 841 842 // Dig out the type that all elements should be converted to. 843 QualType T = Method->parameters()[0]->getType(); 844 const PointerType *PtrT = T->getAs<PointerType>(); 845 if (!PtrT || 846 !Context.hasSameUnqualifiedType(PtrT->getPointeeType(), IdT)) { 847 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 848 << Sel; 849 Diag(Method->parameters()[0]->getLocation(), 850 diag::note_objc_literal_method_param) 851 << 0 << T 852 << Context.getPointerType(IdT.withConst()); 853 return ExprError(); 854 } 855 856 // Check that the 'count' parameter is integral. 857 if (!Method->parameters()[1]->getType()->isIntegerType()) { 858 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 859 << Sel; 860 Diag(Method->parameters()[1]->getLocation(), 861 diag::note_objc_literal_method_param) 862 << 1 863 << Method->parameters()[1]->getType() 864 << "integral"; 865 return ExprError(); 866 } 867 868 // We've found a good +arrayWithObjects:count: method. Save it! 869 ArrayWithObjectsMethod = Method; 870 } 871 872 QualType ObjectsType = ArrayWithObjectsMethod->parameters()[0]->getType(); 873 QualType RequiredType = ObjectsType->castAs<PointerType>()->getPointeeType(); 874 875 // Check that each of the elements provided is valid in a collection literal, 876 // performing conversions as necessary. 877 Expr **ElementsBuffer = Elements.data(); 878 for (unsigned I = 0, N = Elements.size(); I != N; ++I) { 879 ExprResult Converted = CheckObjCCollectionLiteralElement(*this, 880 ElementsBuffer[I], 881 RequiredType, true); 882 if (Converted.isInvalid()) 883 return ExprError(); 884 885 ElementsBuffer[I] = Converted.get(); 886 } 887 888 QualType Ty 889 = Context.getObjCObjectPointerType( 890 Context.getObjCInterfaceType(NSArrayDecl)); 891 892 return MaybeBindToTemporary( 893 ObjCArrayLiteral::Create(Context, Elements, Ty, 894 ArrayWithObjectsMethod, SR)); 895 } 896 897 /// Check for duplicate keys in an ObjC dictionary literal. For instance: 898 /// NSDictionary *nd = @{ @"foo" : @"bar", @"foo" : @"baz" }; 899 static void 900 CheckObjCDictionaryLiteralDuplicateKeys(Sema &S, 901 ObjCDictionaryLiteral *Literal) { 902 if (Literal->isValueDependent() || Literal->isTypeDependent()) 903 return; 904 905 // NSNumber has quite relaxed equality semantics (for instance, @YES is 906 // considered equal to @1.0). For now, ignore floating points and just do a 907 // bit-width and sign agnostic integer compare. 908 struct APSIntCompare { 909 bool operator()(const llvm::APSInt &LHS, const llvm::APSInt &RHS) const { 910 return llvm::APSInt::compareValues(LHS, RHS) < 0; 911 } 912 }; 913 914 llvm::DenseMap<StringRef, SourceLocation> StringKeys; 915 std::map<llvm::APSInt, SourceLocation, APSIntCompare> IntegralKeys; 916 917 auto checkOneKey = [&](auto &Map, const auto &Key, SourceLocation Loc) { 918 auto Pair = Map.insert({Key, Loc}); 919 if (!Pair.second) { 920 S.Diag(Loc, diag::warn_nsdictionary_duplicate_key); 921 S.Diag(Pair.first->second, diag::note_nsdictionary_duplicate_key_here); 922 } 923 }; 924 925 for (unsigned Idx = 0, End = Literal->getNumElements(); Idx != End; ++Idx) { 926 Expr *Key = Literal->getKeyValueElement(Idx).Key->IgnoreParenImpCasts(); 927 928 if (auto *StrLit = dyn_cast<ObjCStringLiteral>(Key)) { 929 StringRef Bytes = StrLit->getString()->getBytes(); 930 SourceLocation Loc = StrLit->getExprLoc(); 931 checkOneKey(StringKeys, Bytes, Loc); 932 } 933 934 if (auto *BE = dyn_cast<ObjCBoxedExpr>(Key)) { 935 Expr *Boxed = BE->getSubExpr(); 936 SourceLocation Loc = BE->getExprLoc(); 937 938 // Check for @("foo"). 939 if (auto *Str = dyn_cast<StringLiteral>(Boxed->IgnoreParenImpCasts())) { 940 checkOneKey(StringKeys, Str->getBytes(), Loc); 941 continue; 942 } 943 944 Expr::EvalResult Result; 945 if (Boxed->EvaluateAsInt(Result, S.getASTContext(), 946 Expr::SE_AllowSideEffects)) { 947 checkOneKey(IntegralKeys, Result.Val.getInt(), Loc); 948 } 949 } 950 } 951 } 952 953 ExprResult Sema::BuildObjCDictionaryLiteral(SourceRange SR, 954 MutableArrayRef<ObjCDictionaryElement> Elements) { 955 SourceLocation Loc = SR.getBegin(); 956 957 if (!NSDictionaryDecl) { 958 NSDictionaryDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc, 959 Sema::LK_Dictionary); 960 if (!NSDictionaryDecl) { 961 return ExprError(); 962 } 963 } 964 965 // Find the dictionaryWithObjects:forKeys:count: method, if we haven't done 966 // so already. 967 QualType IdT = Context.getObjCIdType(); 968 if (!DictionaryWithObjectsMethod) { 969 Selector Sel = NSAPIObj->getNSDictionarySelector( 970 NSAPI::NSDict_dictionaryWithObjectsForKeysCount); 971 ObjCMethodDecl *Method = NSDictionaryDecl->lookupClassMethod(Sel); 972 if (!Method && getLangOpts().DebuggerObjCLiteral) { 973 Method = ObjCMethodDecl::Create( 974 Context, SourceLocation(), SourceLocation(), Sel, IdT, 975 nullptr /*TypeSourceInfo */, Context.getTranslationUnitDecl(), 976 false /*Instance*/, false /*isVariadic*/, 977 /*isPropertyAccessor=*/false, 978 /*isSynthesizedAccessorStub=*/false, 979 /*isImplicitlyDeclared=*/true, /*isDefined=*/false, 980 ObjCMethodDecl::Required, false); 981 SmallVector<ParmVarDecl *, 3> Params; 982 ParmVarDecl *objects = ParmVarDecl::Create(Context, Method, 983 SourceLocation(), 984 SourceLocation(), 985 &Context.Idents.get("objects"), 986 Context.getPointerType(IdT), 987 /*TInfo=*/nullptr, SC_None, 988 nullptr); 989 Params.push_back(objects); 990 ParmVarDecl *keys = ParmVarDecl::Create(Context, Method, 991 SourceLocation(), 992 SourceLocation(), 993 &Context.Idents.get("keys"), 994 Context.getPointerType(IdT), 995 /*TInfo=*/nullptr, SC_None, 996 nullptr); 997 Params.push_back(keys); 998 ParmVarDecl *cnt = ParmVarDecl::Create(Context, Method, 999 SourceLocation(), 1000 SourceLocation(), 1001 &Context.Idents.get("cnt"), 1002 Context.UnsignedLongTy, 1003 /*TInfo=*/nullptr, SC_None, 1004 nullptr); 1005 Params.push_back(cnt); 1006 Method->setMethodParams(Context, Params, None); 1007 } 1008 1009 if (!validateBoxingMethod(*this, SR.getBegin(), NSDictionaryDecl, Sel, 1010 Method)) 1011 return ExprError(); 1012 1013 // Dig out the type that all values should be converted to. 1014 QualType ValueT = Method->parameters()[0]->getType(); 1015 const PointerType *PtrValue = ValueT->getAs<PointerType>(); 1016 if (!PtrValue || 1017 !Context.hasSameUnqualifiedType(PtrValue->getPointeeType(), IdT)) { 1018 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 1019 << Sel; 1020 Diag(Method->parameters()[0]->getLocation(), 1021 diag::note_objc_literal_method_param) 1022 << 0 << ValueT 1023 << Context.getPointerType(IdT.withConst()); 1024 return ExprError(); 1025 } 1026 1027 // Dig out the type that all keys should be converted to. 1028 QualType KeyT = Method->parameters()[1]->getType(); 1029 const PointerType *PtrKey = KeyT->getAs<PointerType>(); 1030 if (!PtrKey || 1031 !Context.hasSameUnqualifiedType(PtrKey->getPointeeType(), 1032 IdT)) { 1033 bool err = true; 1034 if (PtrKey) { 1035 if (QIDNSCopying.isNull()) { 1036 // key argument of selector is id<NSCopying>? 1037 if (ObjCProtocolDecl *NSCopyingPDecl = 1038 LookupProtocol(&Context.Idents.get("NSCopying"), SR.getBegin())) { 1039 ObjCProtocolDecl *PQ[] = {NSCopyingPDecl}; 1040 QIDNSCopying = 1041 Context.getObjCObjectType(Context.ObjCBuiltinIdTy, { }, 1042 llvm::makeArrayRef( 1043 (ObjCProtocolDecl**) PQ, 1044 1), 1045 false); 1046 QIDNSCopying = Context.getObjCObjectPointerType(QIDNSCopying); 1047 } 1048 } 1049 if (!QIDNSCopying.isNull()) 1050 err = !Context.hasSameUnqualifiedType(PtrKey->getPointeeType(), 1051 QIDNSCopying); 1052 } 1053 1054 if (err) { 1055 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 1056 << Sel; 1057 Diag(Method->parameters()[1]->getLocation(), 1058 diag::note_objc_literal_method_param) 1059 << 1 << KeyT 1060 << Context.getPointerType(IdT.withConst()); 1061 return ExprError(); 1062 } 1063 } 1064 1065 // Check that the 'count' parameter is integral. 1066 QualType CountType = Method->parameters()[2]->getType(); 1067 if (!CountType->isIntegerType()) { 1068 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 1069 << Sel; 1070 Diag(Method->parameters()[2]->getLocation(), 1071 diag::note_objc_literal_method_param) 1072 << 2 << CountType 1073 << "integral"; 1074 return ExprError(); 1075 } 1076 1077 // We've found a good +dictionaryWithObjects:keys:count: method; save it! 1078 DictionaryWithObjectsMethod = Method; 1079 } 1080 1081 QualType ValuesT = DictionaryWithObjectsMethod->parameters()[0]->getType(); 1082 QualType ValueT = ValuesT->castAs<PointerType>()->getPointeeType(); 1083 QualType KeysT = DictionaryWithObjectsMethod->parameters()[1]->getType(); 1084 QualType KeyT = KeysT->castAs<PointerType>()->getPointeeType(); 1085 1086 // Check that each of the keys and values provided is valid in a collection 1087 // literal, performing conversions as necessary. 1088 bool HasPackExpansions = false; 1089 for (ObjCDictionaryElement &Element : Elements) { 1090 // Check the key. 1091 ExprResult Key = CheckObjCCollectionLiteralElement(*this, Element.Key, 1092 KeyT); 1093 if (Key.isInvalid()) 1094 return ExprError(); 1095 1096 // Check the value. 1097 ExprResult Value 1098 = CheckObjCCollectionLiteralElement(*this, Element.Value, ValueT); 1099 if (Value.isInvalid()) 1100 return ExprError(); 1101 1102 Element.Key = Key.get(); 1103 Element.Value = Value.get(); 1104 1105 if (Element.EllipsisLoc.isInvalid()) 1106 continue; 1107 1108 if (!Element.Key->containsUnexpandedParameterPack() && 1109 !Element.Value->containsUnexpandedParameterPack()) { 1110 Diag(Element.EllipsisLoc, 1111 diag::err_pack_expansion_without_parameter_packs) 1112 << SourceRange(Element.Key->getBeginLoc(), 1113 Element.Value->getEndLoc()); 1114 return ExprError(); 1115 } 1116 1117 HasPackExpansions = true; 1118 } 1119 1120 QualType Ty = Context.getObjCObjectPointerType( 1121 Context.getObjCInterfaceType(NSDictionaryDecl)); 1122 1123 auto *Literal = 1124 ObjCDictionaryLiteral::Create(Context, Elements, HasPackExpansions, Ty, 1125 DictionaryWithObjectsMethod, SR); 1126 CheckObjCDictionaryLiteralDuplicateKeys(*this, Literal); 1127 return MaybeBindToTemporary(Literal); 1128 } 1129 1130 ExprResult Sema::BuildObjCEncodeExpression(SourceLocation AtLoc, 1131 TypeSourceInfo *EncodedTypeInfo, 1132 SourceLocation RParenLoc) { 1133 QualType EncodedType = EncodedTypeInfo->getType(); 1134 QualType StrTy; 1135 if (EncodedType->isDependentType()) 1136 StrTy = Context.DependentTy; 1137 else { 1138 if (!EncodedType->getAsArrayTypeUnsafe() && //// Incomplete array is handled. 1139 !EncodedType->isVoidType()) // void is handled too. 1140 if (RequireCompleteType(AtLoc, EncodedType, 1141 diag::err_incomplete_type_objc_at_encode, 1142 EncodedTypeInfo->getTypeLoc())) 1143 return ExprError(); 1144 1145 std::string Str; 1146 QualType NotEncodedT; 1147 Context.getObjCEncodingForType(EncodedType, Str, nullptr, &NotEncodedT); 1148 if (!NotEncodedT.isNull()) 1149 Diag(AtLoc, diag::warn_incomplete_encoded_type) 1150 << EncodedType << NotEncodedT; 1151 1152 // The type of @encode is the same as the type of the corresponding string, 1153 // which is an array type. 1154 StrTy = Context.getStringLiteralArrayType(Context.CharTy, Str.size()); 1155 } 1156 1157 return new (Context) ObjCEncodeExpr(StrTy, EncodedTypeInfo, AtLoc, RParenLoc); 1158 } 1159 1160 ExprResult Sema::ParseObjCEncodeExpression(SourceLocation AtLoc, 1161 SourceLocation EncodeLoc, 1162 SourceLocation LParenLoc, 1163 ParsedType ty, 1164 SourceLocation RParenLoc) { 1165 // FIXME: Preserve type source info ? 1166 TypeSourceInfo *TInfo; 1167 QualType EncodedType = GetTypeFromParser(ty, &TInfo); 1168 if (!TInfo) 1169 TInfo = Context.getTrivialTypeSourceInfo(EncodedType, 1170 getLocForEndOfToken(LParenLoc)); 1171 1172 return BuildObjCEncodeExpression(AtLoc, TInfo, RParenLoc); 1173 } 1174 1175 static bool HelperToDiagnoseMismatchedMethodsInGlobalPool(Sema &S, 1176 SourceLocation AtLoc, 1177 SourceLocation LParenLoc, 1178 SourceLocation RParenLoc, 1179 ObjCMethodDecl *Method, 1180 ObjCMethodList &MethList) { 1181 ObjCMethodList *M = &MethList; 1182 bool Warned = false; 1183 for (M = M->getNext(); M; M=M->getNext()) { 1184 ObjCMethodDecl *MatchingMethodDecl = M->getMethod(); 1185 if (MatchingMethodDecl == Method || 1186 isa<ObjCImplDecl>(MatchingMethodDecl->getDeclContext()) || 1187 MatchingMethodDecl->getSelector() != Method->getSelector()) 1188 continue; 1189 if (!S.MatchTwoMethodDeclarations(Method, 1190 MatchingMethodDecl, Sema::MMS_loose)) { 1191 if (!Warned) { 1192 Warned = true; 1193 S.Diag(AtLoc, diag::warn_multiple_selectors) 1194 << Method->getSelector() << FixItHint::CreateInsertion(LParenLoc, "(") 1195 << FixItHint::CreateInsertion(RParenLoc, ")"); 1196 S.Diag(Method->getLocation(), diag::note_method_declared_at) 1197 << Method->getDeclName(); 1198 } 1199 S.Diag(MatchingMethodDecl->getLocation(), diag::note_method_declared_at) 1200 << MatchingMethodDecl->getDeclName(); 1201 } 1202 } 1203 return Warned; 1204 } 1205 1206 static void DiagnoseMismatchedSelectors(Sema &S, SourceLocation AtLoc, 1207 ObjCMethodDecl *Method, 1208 SourceLocation LParenLoc, 1209 SourceLocation RParenLoc, 1210 bool WarnMultipleSelectors) { 1211 if (!WarnMultipleSelectors || 1212 S.Diags.isIgnored(diag::warn_multiple_selectors, SourceLocation())) 1213 return; 1214 bool Warned = false; 1215 for (Sema::GlobalMethodPool::iterator b = S.MethodPool.begin(), 1216 e = S.MethodPool.end(); b != e; b++) { 1217 // first, instance methods 1218 ObjCMethodList &InstMethList = b->second.first; 1219 if (HelperToDiagnoseMismatchedMethodsInGlobalPool(S, AtLoc, LParenLoc, RParenLoc, 1220 Method, InstMethList)) 1221 Warned = true; 1222 1223 // second, class methods 1224 ObjCMethodList &ClsMethList = b->second.second; 1225 if (HelperToDiagnoseMismatchedMethodsInGlobalPool(S, AtLoc, LParenLoc, RParenLoc, 1226 Method, ClsMethList) || Warned) 1227 return; 1228 } 1229 } 1230 1231 static ObjCMethodDecl *LookupDirectMethodInMethodList(Sema &S, Selector Sel, 1232 ObjCMethodList &MethList, 1233 bool &onlyDirect, 1234 bool &anyDirect) { 1235 (void)Sel; 1236 ObjCMethodList *M = &MethList; 1237 ObjCMethodDecl *DirectMethod = nullptr; 1238 for (; M; M = M->getNext()) { 1239 ObjCMethodDecl *Method = M->getMethod(); 1240 if (!Method) 1241 continue; 1242 assert(Method->getSelector() == Sel && "Method with wrong selector in method list"); 1243 if (Method->isDirectMethod()) { 1244 anyDirect = true; 1245 DirectMethod = Method; 1246 } else 1247 onlyDirect = false; 1248 } 1249 1250 return DirectMethod; 1251 } 1252 1253 // Search the global pool for (potentially) direct methods matching the given 1254 // selector. If a non-direct method is found, set \param onlyDirect to false. If 1255 // a direct method is found, set \param anyDirect to true. Returns a direct 1256 // method, if any. 1257 static ObjCMethodDecl *LookupDirectMethodInGlobalPool(Sema &S, Selector Sel, 1258 bool &onlyDirect, 1259 bool &anyDirect) { 1260 auto Iter = S.MethodPool.find(Sel); 1261 if (Iter == S.MethodPool.end()) 1262 return nullptr; 1263 1264 ObjCMethodDecl *DirectInstance = LookupDirectMethodInMethodList( 1265 S, Sel, Iter->second.first, onlyDirect, anyDirect); 1266 ObjCMethodDecl *DirectClass = LookupDirectMethodInMethodList( 1267 S, Sel, Iter->second.second, onlyDirect, anyDirect); 1268 1269 return DirectInstance ? DirectInstance : DirectClass; 1270 } 1271 1272 static ObjCMethodDecl *findMethodInCurrentClass(Sema &S, Selector Sel) { 1273 auto *CurMD = S.getCurMethodDecl(); 1274 if (!CurMD) 1275 return nullptr; 1276 ObjCInterfaceDecl *IFace = CurMD->getClassInterface(); 1277 1278 // The language enforce that only one direct method is present in a given 1279 // class, so we just need to find one method in the current class to know 1280 // whether Sel is potentially direct in this context. 1281 if (ObjCMethodDecl *MD = IFace->lookupMethod(Sel, /*isInstance=*/true)) 1282 return MD; 1283 if (ObjCMethodDecl *MD = IFace->lookupPrivateMethod(Sel, /*isInstance=*/true)) 1284 return MD; 1285 if (ObjCMethodDecl *MD = IFace->lookupMethod(Sel, /*isInstance=*/false)) 1286 return MD; 1287 if (ObjCMethodDecl *MD = IFace->lookupPrivateMethod(Sel, /*isInstance=*/false)) 1288 return MD; 1289 1290 return nullptr; 1291 } 1292 1293 ExprResult Sema::ParseObjCSelectorExpression(Selector Sel, 1294 SourceLocation AtLoc, 1295 SourceLocation SelLoc, 1296 SourceLocation LParenLoc, 1297 SourceLocation RParenLoc, 1298 bool WarnMultipleSelectors) { 1299 ObjCMethodDecl *Method = LookupInstanceMethodInGlobalPool(Sel, 1300 SourceRange(LParenLoc, RParenLoc)); 1301 if (!Method) 1302 Method = LookupFactoryMethodInGlobalPool(Sel, 1303 SourceRange(LParenLoc, RParenLoc)); 1304 if (!Method) { 1305 if (const ObjCMethodDecl *OM = SelectorsForTypoCorrection(Sel)) { 1306 Selector MatchedSel = OM->getSelector(); 1307 SourceRange SelectorRange(LParenLoc.getLocWithOffset(1), 1308 RParenLoc.getLocWithOffset(-1)); 1309 Diag(SelLoc, diag::warn_undeclared_selector_with_typo) 1310 << Sel << MatchedSel 1311 << FixItHint::CreateReplacement(SelectorRange, MatchedSel.getAsString()); 1312 1313 } else 1314 Diag(SelLoc, diag::warn_undeclared_selector) << Sel; 1315 } else { 1316 DiagnoseMismatchedSelectors(*this, AtLoc, Method, LParenLoc, RParenLoc, 1317 WarnMultipleSelectors); 1318 1319 bool onlyDirect = true; 1320 bool anyDirect = false; 1321 ObjCMethodDecl *GlobalDirectMethod = 1322 LookupDirectMethodInGlobalPool(*this, Sel, onlyDirect, anyDirect); 1323 1324 if (onlyDirect) { 1325 Diag(AtLoc, diag::err_direct_selector_expression) 1326 << Method->getSelector(); 1327 Diag(Method->getLocation(), diag::note_direct_method_declared_at) 1328 << Method->getDeclName(); 1329 } else if (anyDirect) { 1330 // If we saw any direct methods, see if we see a direct member of the 1331 // current class. If so, the @selector will likely be used to refer to 1332 // this direct method. 1333 ObjCMethodDecl *LikelyTargetMethod = findMethodInCurrentClass(*this, Sel); 1334 if (LikelyTargetMethod && LikelyTargetMethod->isDirectMethod()) { 1335 Diag(AtLoc, diag::warn_potentially_direct_selector_expression) << Sel; 1336 Diag(LikelyTargetMethod->getLocation(), 1337 diag::note_direct_method_declared_at) 1338 << LikelyTargetMethod->getDeclName(); 1339 } else if (!LikelyTargetMethod) { 1340 // Otherwise, emit the "strict" variant of this diagnostic, unless 1341 // LikelyTargetMethod is non-direct. 1342 Diag(AtLoc, diag::warn_strict_potentially_direct_selector_expression) 1343 << Sel; 1344 Diag(GlobalDirectMethod->getLocation(), 1345 diag::note_direct_method_declared_at) 1346 << GlobalDirectMethod->getDeclName(); 1347 } 1348 } 1349 } 1350 1351 if (Method && 1352 Method->getImplementationControl() != ObjCMethodDecl::Optional && 1353 !getSourceManager().isInSystemHeader(Method->getLocation())) 1354 ReferencedSelectors.insert(std::make_pair(Sel, AtLoc)); 1355 1356 // In ARC, forbid the user from using @selector for 1357 // retain/release/autorelease/dealloc/retainCount. 1358 if (getLangOpts().ObjCAutoRefCount) { 1359 switch (Sel.getMethodFamily()) { 1360 case OMF_retain: 1361 case OMF_release: 1362 case OMF_autorelease: 1363 case OMF_retainCount: 1364 case OMF_dealloc: 1365 Diag(AtLoc, diag::err_arc_illegal_selector) << 1366 Sel << SourceRange(LParenLoc, RParenLoc); 1367 break; 1368 1369 case OMF_None: 1370 case OMF_alloc: 1371 case OMF_copy: 1372 case OMF_finalize: 1373 case OMF_init: 1374 case OMF_mutableCopy: 1375 case OMF_new: 1376 case OMF_self: 1377 case OMF_initialize: 1378 case OMF_performSelector: 1379 break; 1380 } 1381 } 1382 QualType Ty = Context.getObjCSelType(); 1383 return new (Context) ObjCSelectorExpr(Ty, Sel, AtLoc, RParenLoc); 1384 } 1385 1386 ExprResult Sema::ParseObjCProtocolExpression(IdentifierInfo *ProtocolId, 1387 SourceLocation AtLoc, 1388 SourceLocation ProtoLoc, 1389 SourceLocation LParenLoc, 1390 SourceLocation ProtoIdLoc, 1391 SourceLocation RParenLoc) { 1392 ObjCProtocolDecl* PDecl = LookupProtocol(ProtocolId, ProtoIdLoc); 1393 if (!PDecl) { 1394 Diag(ProtoLoc, diag::err_undeclared_protocol) << ProtocolId; 1395 return true; 1396 } 1397 if (PDecl->isNonRuntimeProtocol()) 1398 Diag(ProtoLoc, diag::err_objc_non_runtime_protocol_in_protocol_expr) 1399 << PDecl; 1400 if (!PDecl->hasDefinition()) { 1401 Diag(ProtoLoc, diag::err_atprotocol_protocol) << PDecl; 1402 Diag(PDecl->getLocation(), diag::note_entity_declared_at) << PDecl; 1403 } else { 1404 PDecl = PDecl->getDefinition(); 1405 } 1406 1407 QualType Ty = Context.getObjCProtoType(); 1408 if (Ty.isNull()) 1409 return true; 1410 Ty = Context.getObjCObjectPointerType(Ty); 1411 return new (Context) ObjCProtocolExpr(Ty, PDecl, AtLoc, ProtoIdLoc, RParenLoc); 1412 } 1413 1414 /// Try to capture an implicit reference to 'self'. 1415 ObjCMethodDecl *Sema::tryCaptureObjCSelf(SourceLocation Loc) { 1416 DeclContext *DC = getFunctionLevelDeclContext(); 1417 1418 // If we're not in an ObjC method, error out. Note that, unlike the 1419 // C++ case, we don't require an instance method --- class methods 1420 // still have a 'self', and we really do still need to capture it! 1421 ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(DC); 1422 if (!method) 1423 return nullptr; 1424 1425 tryCaptureVariable(method->getSelfDecl(), Loc); 1426 1427 return method; 1428 } 1429 1430 static QualType stripObjCInstanceType(ASTContext &Context, QualType T) { 1431 QualType origType = T; 1432 if (auto nullability = AttributedType::stripOuterNullability(T)) { 1433 if (T == Context.getObjCInstanceType()) { 1434 return Context.getAttributedType( 1435 AttributedType::getNullabilityAttrKind(*nullability), 1436 Context.getObjCIdType(), 1437 Context.getObjCIdType()); 1438 } 1439 1440 return origType; 1441 } 1442 1443 if (T == Context.getObjCInstanceType()) 1444 return Context.getObjCIdType(); 1445 1446 return origType; 1447 } 1448 1449 /// Determine the result type of a message send based on the receiver type, 1450 /// method, and the kind of message send. 1451 /// 1452 /// This is the "base" result type, which will still need to be adjusted 1453 /// to account for nullability. 1454 static QualType getBaseMessageSendResultType(Sema &S, 1455 QualType ReceiverType, 1456 ObjCMethodDecl *Method, 1457 bool isClassMessage, 1458 bool isSuperMessage) { 1459 assert(Method && "Must have a method"); 1460 if (!Method->hasRelatedResultType()) 1461 return Method->getSendResultType(ReceiverType); 1462 1463 ASTContext &Context = S.Context; 1464 1465 // Local function that transfers the nullability of the method's 1466 // result type to the returned result. 1467 auto transferNullability = [&](QualType type) -> QualType { 1468 // If the method's result type has nullability, extract it. 1469 if (auto nullability = Method->getSendResultType(ReceiverType) 1470 ->getNullability(Context)){ 1471 // Strip off any outer nullability sugar from the provided type. 1472 (void)AttributedType::stripOuterNullability(type); 1473 1474 // Form a new attributed type using the method result type's nullability. 1475 return Context.getAttributedType( 1476 AttributedType::getNullabilityAttrKind(*nullability), 1477 type, 1478 type); 1479 } 1480 1481 return type; 1482 }; 1483 1484 // If a method has a related return type: 1485 // - if the method found is an instance method, but the message send 1486 // was a class message send, T is the declared return type of the method 1487 // found 1488 if (Method->isInstanceMethod() && isClassMessage) 1489 return stripObjCInstanceType(Context, 1490 Method->getSendResultType(ReceiverType)); 1491 1492 // - if the receiver is super, T is a pointer to the class of the 1493 // enclosing method definition 1494 if (isSuperMessage) { 1495 if (ObjCMethodDecl *CurMethod = S.getCurMethodDecl()) 1496 if (ObjCInterfaceDecl *Class = CurMethod->getClassInterface()) { 1497 return transferNullability( 1498 Context.getObjCObjectPointerType( 1499 Context.getObjCInterfaceType(Class))); 1500 } 1501 } 1502 1503 // - if the receiver is the name of a class U, T is a pointer to U 1504 if (ReceiverType->getAsObjCInterfaceType()) 1505 return transferNullability(Context.getObjCObjectPointerType(ReceiverType)); 1506 // - if the receiver is of type Class or qualified Class type, 1507 // T is the declared return type of the method. 1508 if (ReceiverType->isObjCClassType() || 1509 ReceiverType->isObjCQualifiedClassType()) 1510 return stripObjCInstanceType(Context, 1511 Method->getSendResultType(ReceiverType)); 1512 1513 // - if the receiver is id, qualified id, Class, or qualified Class, T 1514 // is the receiver type, otherwise 1515 // - T is the type of the receiver expression. 1516 return transferNullability(ReceiverType); 1517 } 1518 1519 QualType Sema::getMessageSendResultType(const Expr *Receiver, 1520 QualType ReceiverType, 1521 ObjCMethodDecl *Method, 1522 bool isClassMessage, 1523 bool isSuperMessage) { 1524 // Produce the result type. 1525 QualType resultType = getBaseMessageSendResultType(*this, ReceiverType, 1526 Method, 1527 isClassMessage, 1528 isSuperMessage); 1529 1530 // If this is a class message, ignore the nullability of the receiver. 1531 if (isClassMessage) { 1532 // In a class method, class messages to 'self' that return instancetype can 1533 // be typed as the current class. We can safely do this in ARC because self 1534 // can't be reassigned, and we do it unsafely outside of ARC because in 1535 // practice people never reassign self in class methods and there's some 1536 // virtue in not being aggressively pedantic. 1537 if (Receiver && Receiver->isObjCSelfExpr()) { 1538 assert(ReceiverType->isObjCClassType() && "expected a Class self"); 1539 QualType T = Method->getSendResultType(ReceiverType); 1540 AttributedType::stripOuterNullability(T); 1541 if (T == Context.getObjCInstanceType()) { 1542 const ObjCMethodDecl *MD = cast<ObjCMethodDecl>( 1543 cast<ImplicitParamDecl>( 1544 cast<DeclRefExpr>(Receiver->IgnoreParenImpCasts())->getDecl()) 1545 ->getDeclContext()); 1546 assert(MD->isClassMethod() && "expected a class method"); 1547 QualType NewResultType = Context.getObjCObjectPointerType( 1548 Context.getObjCInterfaceType(MD->getClassInterface())); 1549 if (auto Nullability = resultType->getNullability(Context)) 1550 NewResultType = Context.getAttributedType( 1551 AttributedType::getNullabilityAttrKind(*Nullability), 1552 NewResultType, NewResultType); 1553 return NewResultType; 1554 } 1555 } 1556 return resultType; 1557 } 1558 1559 // There is nothing left to do if the result type cannot have a nullability 1560 // specifier. 1561 if (!resultType->canHaveNullability()) 1562 return resultType; 1563 1564 // Map the nullability of the result into a table index. 1565 unsigned receiverNullabilityIdx = 0; 1566 if (Optional<NullabilityKind> nullability = 1567 ReceiverType->getNullability(Context)) { 1568 if (*nullability == NullabilityKind::NullableResult) 1569 nullability = NullabilityKind::Nullable; 1570 receiverNullabilityIdx = 1 + static_cast<unsigned>(*nullability); 1571 } 1572 1573 unsigned resultNullabilityIdx = 0; 1574 if (Optional<NullabilityKind> nullability = 1575 resultType->getNullability(Context)) { 1576 if (*nullability == NullabilityKind::NullableResult) 1577 nullability = NullabilityKind::Nullable; 1578 resultNullabilityIdx = 1 + static_cast<unsigned>(*nullability); 1579 } 1580 1581 // The table of nullability mappings, indexed by the receiver's nullability 1582 // and then the result type's nullability. 1583 static const uint8_t None = 0; 1584 static const uint8_t NonNull = 1; 1585 static const uint8_t Nullable = 2; 1586 static const uint8_t Unspecified = 3; 1587 static const uint8_t nullabilityMap[4][4] = { 1588 // None NonNull Nullable Unspecified 1589 /* None */ { None, None, Nullable, None }, 1590 /* NonNull */ { None, NonNull, Nullable, Unspecified }, 1591 /* Nullable */ { Nullable, Nullable, Nullable, Nullable }, 1592 /* Unspecified */ { None, Unspecified, Nullable, Unspecified } 1593 }; 1594 1595 unsigned newResultNullabilityIdx 1596 = nullabilityMap[receiverNullabilityIdx][resultNullabilityIdx]; 1597 if (newResultNullabilityIdx == resultNullabilityIdx) 1598 return resultType; 1599 1600 // Strip off the existing nullability. This removes as little type sugar as 1601 // possible. 1602 do { 1603 if (auto attributed = dyn_cast<AttributedType>(resultType.getTypePtr())) { 1604 resultType = attributed->getModifiedType(); 1605 } else { 1606 resultType = resultType.getDesugaredType(Context); 1607 } 1608 } while (resultType->getNullability(Context)); 1609 1610 // Add nullability back if needed. 1611 if (newResultNullabilityIdx > 0) { 1612 auto newNullability 1613 = static_cast<NullabilityKind>(newResultNullabilityIdx-1); 1614 return Context.getAttributedType( 1615 AttributedType::getNullabilityAttrKind(newNullability), 1616 resultType, resultType); 1617 } 1618 1619 return resultType; 1620 } 1621 1622 /// Look for an ObjC method whose result type exactly matches the given type. 1623 static const ObjCMethodDecl * 1624 findExplicitInstancetypeDeclarer(const ObjCMethodDecl *MD, 1625 QualType instancetype) { 1626 if (MD->getReturnType() == instancetype) 1627 return MD; 1628 1629 // For these purposes, a method in an @implementation overrides a 1630 // declaration in the @interface. 1631 if (const ObjCImplDecl *impl = 1632 dyn_cast<ObjCImplDecl>(MD->getDeclContext())) { 1633 const ObjCContainerDecl *iface; 1634 if (const ObjCCategoryImplDecl *catImpl = 1635 dyn_cast<ObjCCategoryImplDecl>(impl)) { 1636 iface = catImpl->getCategoryDecl(); 1637 } else { 1638 iface = impl->getClassInterface(); 1639 } 1640 1641 const ObjCMethodDecl *ifaceMD = 1642 iface->getMethod(MD->getSelector(), MD->isInstanceMethod()); 1643 if (ifaceMD) return findExplicitInstancetypeDeclarer(ifaceMD, instancetype); 1644 } 1645 1646 SmallVector<const ObjCMethodDecl *, 4> overrides; 1647 MD->getOverriddenMethods(overrides); 1648 for (unsigned i = 0, e = overrides.size(); i != e; ++i) { 1649 if (const ObjCMethodDecl *result = 1650 findExplicitInstancetypeDeclarer(overrides[i], instancetype)) 1651 return result; 1652 } 1653 1654 return nullptr; 1655 } 1656 1657 void Sema::EmitRelatedResultTypeNoteForReturn(QualType destType) { 1658 // Only complain if we're in an ObjC method and the required return 1659 // type doesn't match the method's declared return type. 1660 ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurContext); 1661 if (!MD || !MD->hasRelatedResultType() || 1662 Context.hasSameUnqualifiedType(destType, MD->getReturnType())) 1663 return; 1664 1665 // Look for a method overridden by this method which explicitly uses 1666 // 'instancetype'. 1667 if (const ObjCMethodDecl *overridden = 1668 findExplicitInstancetypeDeclarer(MD, Context.getObjCInstanceType())) { 1669 SourceRange range = overridden->getReturnTypeSourceRange(); 1670 SourceLocation loc = range.getBegin(); 1671 if (loc.isInvalid()) 1672 loc = overridden->getLocation(); 1673 Diag(loc, diag::note_related_result_type_explicit) 1674 << /*current method*/ 1 << range; 1675 return; 1676 } 1677 1678 // Otherwise, if we have an interesting method family, note that. 1679 // This should always trigger if the above didn't. 1680 if (ObjCMethodFamily family = MD->getMethodFamily()) 1681 Diag(MD->getLocation(), diag::note_related_result_type_family) 1682 << /*current method*/ 1 1683 << family; 1684 } 1685 1686 void Sema::EmitRelatedResultTypeNote(const Expr *E) { 1687 E = E->IgnoreParenImpCasts(); 1688 const ObjCMessageExpr *MsgSend = dyn_cast<ObjCMessageExpr>(E); 1689 if (!MsgSend) 1690 return; 1691 1692 const ObjCMethodDecl *Method = MsgSend->getMethodDecl(); 1693 if (!Method) 1694 return; 1695 1696 if (!Method->hasRelatedResultType()) 1697 return; 1698 1699 if (Context.hasSameUnqualifiedType( 1700 Method->getReturnType().getNonReferenceType(), MsgSend->getType())) 1701 return; 1702 1703 if (!Context.hasSameUnqualifiedType(Method->getReturnType(), 1704 Context.getObjCInstanceType())) 1705 return; 1706 1707 Diag(Method->getLocation(), diag::note_related_result_type_inferred) 1708 << Method->isInstanceMethod() << Method->getSelector() 1709 << MsgSend->getType(); 1710 } 1711 1712 bool Sema::CheckMessageArgumentTypes( 1713 const Expr *Receiver, QualType ReceiverType, MultiExprArg Args, 1714 Selector Sel, ArrayRef<SourceLocation> SelectorLocs, ObjCMethodDecl *Method, 1715 bool isClassMessage, bool isSuperMessage, SourceLocation lbrac, 1716 SourceLocation rbrac, SourceRange RecRange, QualType &ReturnType, 1717 ExprValueKind &VK) { 1718 SourceLocation SelLoc; 1719 if (!SelectorLocs.empty() && SelectorLocs.front().isValid()) 1720 SelLoc = SelectorLocs.front(); 1721 else 1722 SelLoc = lbrac; 1723 1724 if (!Method) { 1725 // Apply default argument promotion as for (C99 6.5.2.2p6). 1726 for (unsigned i = 0, e = Args.size(); i != e; i++) { 1727 if (Args[i]->isTypeDependent()) 1728 continue; 1729 1730 ExprResult result; 1731 if (getLangOpts().DebuggerSupport) { 1732 QualType paramTy; // ignored 1733 result = checkUnknownAnyArg(SelLoc, Args[i], paramTy); 1734 } else { 1735 result = DefaultArgumentPromotion(Args[i]); 1736 } 1737 if (result.isInvalid()) 1738 return true; 1739 Args[i] = result.get(); 1740 } 1741 1742 unsigned DiagID; 1743 if (getLangOpts().ObjCAutoRefCount) 1744 DiagID = diag::err_arc_method_not_found; 1745 else 1746 DiagID = isClassMessage ? diag::warn_class_method_not_found 1747 : diag::warn_inst_method_not_found; 1748 if (!getLangOpts().DebuggerSupport) { 1749 const ObjCMethodDecl *OMD = SelectorsForTypoCorrection(Sel, ReceiverType); 1750 if (OMD && !OMD->isInvalidDecl()) { 1751 if (getLangOpts().ObjCAutoRefCount) 1752 DiagID = diag::err_method_not_found_with_typo; 1753 else 1754 DiagID = isClassMessage ? diag::warn_class_method_not_found_with_typo 1755 : diag::warn_instance_method_not_found_with_typo; 1756 Selector MatchedSel = OMD->getSelector(); 1757 SourceRange SelectorRange(SelectorLocs.front(), SelectorLocs.back()); 1758 if (MatchedSel.isUnarySelector()) 1759 Diag(SelLoc, DiagID) 1760 << Sel<< isClassMessage << MatchedSel 1761 << FixItHint::CreateReplacement(SelectorRange, MatchedSel.getAsString()); 1762 else 1763 Diag(SelLoc, DiagID) << Sel<< isClassMessage << MatchedSel; 1764 } 1765 else 1766 Diag(SelLoc, DiagID) 1767 << Sel << isClassMessage << SourceRange(SelectorLocs.front(), 1768 SelectorLocs.back()); 1769 // Find the class to which we are sending this message. 1770 if (auto *ObjPT = ReceiverType->getAs<ObjCObjectPointerType>()) { 1771 if (ObjCInterfaceDecl *ThisClass = ObjPT->getInterfaceDecl()) { 1772 Diag(ThisClass->getLocation(), diag::note_receiver_class_declared); 1773 if (!RecRange.isInvalid()) 1774 if (ThisClass->lookupClassMethod(Sel)) 1775 Diag(RecRange.getBegin(), diag::note_receiver_expr_here) 1776 << FixItHint::CreateReplacement(RecRange, 1777 ThisClass->getNameAsString()); 1778 } 1779 } 1780 } 1781 1782 // In debuggers, we want to use __unknown_anytype for these 1783 // results so that clients can cast them. 1784 if (getLangOpts().DebuggerSupport) { 1785 ReturnType = Context.UnknownAnyTy; 1786 } else { 1787 ReturnType = Context.getObjCIdType(); 1788 } 1789 VK = VK_PRValue; 1790 return false; 1791 } 1792 1793 ReturnType = getMessageSendResultType(Receiver, ReceiverType, Method, 1794 isClassMessage, isSuperMessage); 1795 VK = Expr::getValueKindForType(Method->getReturnType()); 1796 1797 unsigned NumNamedArgs = Sel.getNumArgs(); 1798 // Method might have more arguments than selector indicates. This is due 1799 // to addition of c-style arguments in method. 1800 if (Method->param_size() > Sel.getNumArgs()) 1801 NumNamedArgs = Method->param_size(); 1802 // FIXME. This need be cleaned up. 1803 if (Args.size() < NumNamedArgs) { 1804 Diag(SelLoc, diag::err_typecheck_call_too_few_args) 1805 << 2 << NumNamedArgs << static_cast<unsigned>(Args.size()); 1806 return false; 1807 } 1808 1809 // Compute the set of type arguments to be substituted into each parameter 1810 // type. 1811 Optional<ArrayRef<QualType>> typeArgs 1812 = ReceiverType->getObjCSubstitutions(Method->getDeclContext()); 1813 bool IsError = false; 1814 for (unsigned i = 0; i < NumNamedArgs; i++) { 1815 // We can't do any type-checking on a type-dependent argument. 1816 if (Args[i]->isTypeDependent()) 1817 continue; 1818 1819 Expr *argExpr = Args[i]; 1820 1821 ParmVarDecl *param = Method->parameters()[i]; 1822 assert(argExpr && "CheckMessageArgumentTypes(): missing expression"); 1823 1824 if (param->hasAttr<NoEscapeAttr>() && 1825 param->getType()->isBlockPointerType()) 1826 if (auto *BE = dyn_cast<BlockExpr>( 1827 argExpr->IgnoreParenNoopCasts(Context))) 1828 BE->getBlockDecl()->setDoesNotEscape(); 1829 1830 // Strip the unbridged-cast placeholder expression off unless it's 1831 // a consumed argument. 1832 if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) && 1833 !param->hasAttr<CFConsumedAttr>()) 1834 argExpr = stripARCUnbridgedCast(argExpr); 1835 1836 // If the parameter is __unknown_anytype, infer its type 1837 // from the argument. 1838 if (param->getType() == Context.UnknownAnyTy) { 1839 QualType paramType; 1840 ExprResult argE = checkUnknownAnyArg(SelLoc, argExpr, paramType); 1841 if (argE.isInvalid()) { 1842 IsError = true; 1843 } else { 1844 Args[i] = argE.get(); 1845 1846 // Update the parameter type in-place. 1847 param->setType(paramType); 1848 } 1849 continue; 1850 } 1851 1852 QualType origParamType = param->getType(); 1853 QualType paramType = param->getType(); 1854 if (typeArgs) 1855 paramType = paramType.substObjCTypeArgs( 1856 Context, 1857 *typeArgs, 1858 ObjCSubstitutionContext::Parameter); 1859 1860 if (RequireCompleteType(argExpr->getSourceRange().getBegin(), 1861 paramType, 1862 diag::err_call_incomplete_argument, argExpr)) 1863 return true; 1864 1865 InitializedEntity Entity 1866 = InitializedEntity::InitializeParameter(Context, param, paramType); 1867 ExprResult ArgE = PerformCopyInitialization(Entity, SourceLocation(), argExpr); 1868 if (ArgE.isInvalid()) 1869 IsError = true; 1870 else { 1871 Args[i] = ArgE.getAs<Expr>(); 1872 1873 // If we are type-erasing a block to a block-compatible 1874 // Objective-C pointer type, we may need to extend the lifetime 1875 // of the block object. 1876 if (typeArgs && Args[i]->isPRValue() && paramType->isBlockPointerType() && 1877 Args[i]->getType()->isBlockPointerType() && 1878 origParamType->isObjCObjectPointerType()) { 1879 ExprResult arg = Args[i]; 1880 maybeExtendBlockObject(arg); 1881 Args[i] = arg.get(); 1882 } 1883 } 1884 } 1885 1886 // Promote additional arguments to variadic methods. 1887 if (Method->isVariadic()) { 1888 for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) { 1889 if (Args[i]->isTypeDependent()) 1890 continue; 1891 1892 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 1893 nullptr); 1894 IsError |= Arg.isInvalid(); 1895 Args[i] = Arg.get(); 1896 } 1897 } else { 1898 // Check for extra arguments to non-variadic methods. 1899 if (Args.size() != NumNamedArgs) { 1900 Diag(Args[NumNamedArgs]->getBeginLoc(), 1901 diag::err_typecheck_call_too_many_args) 1902 << 2 /*method*/ << NumNamedArgs << static_cast<unsigned>(Args.size()) 1903 << Method->getSourceRange() 1904 << SourceRange(Args[NumNamedArgs]->getBeginLoc(), 1905 Args.back()->getEndLoc()); 1906 } 1907 } 1908 1909 DiagnoseSentinelCalls(Method, SelLoc, Args); 1910 1911 // Do additional checkings on method. 1912 IsError |= CheckObjCMethodCall( 1913 Method, SelLoc, makeArrayRef(Args.data(), Args.size())); 1914 1915 return IsError; 1916 } 1917 1918 bool Sema::isSelfExpr(Expr *RExpr) { 1919 // 'self' is objc 'self' in an objc method only. 1920 ObjCMethodDecl *Method = 1921 dyn_cast_or_null<ObjCMethodDecl>(CurContext->getNonClosureAncestor()); 1922 return isSelfExpr(RExpr, Method); 1923 } 1924 1925 bool Sema::isSelfExpr(Expr *receiver, const ObjCMethodDecl *method) { 1926 if (!method) return false; 1927 1928 receiver = receiver->IgnoreParenLValueCasts(); 1929 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(receiver)) 1930 if (DRE->getDecl() == method->getSelfDecl()) 1931 return true; 1932 return false; 1933 } 1934 1935 /// LookupMethodInType - Look up a method in an ObjCObjectType. 1936 ObjCMethodDecl *Sema::LookupMethodInObjectType(Selector sel, QualType type, 1937 bool isInstance) { 1938 const ObjCObjectType *objType = type->castAs<ObjCObjectType>(); 1939 if (ObjCInterfaceDecl *iface = objType->getInterface()) { 1940 // Look it up in the main interface (and categories, etc.) 1941 if (ObjCMethodDecl *method = iface->lookupMethod(sel, isInstance)) 1942 return method; 1943 1944 // Okay, look for "private" methods declared in any 1945 // @implementations we've seen. 1946 if (ObjCMethodDecl *method = iface->lookupPrivateMethod(sel, isInstance)) 1947 return method; 1948 } 1949 1950 // Check qualifiers. 1951 for (const auto *I : objType->quals()) 1952 if (ObjCMethodDecl *method = I->lookupMethod(sel, isInstance)) 1953 return method; 1954 1955 return nullptr; 1956 } 1957 1958 /// LookupMethodInQualifiedType - Lookups up a method in protocol qualifier 1959 /// list of a qualified objective pointer type. 1960 ObjCMethodDecl *Sema::LookupMethodInQualifiedType(Selector Sel, 1961 const ObjCObjectPointerType *OPT, 1962 bool Instance) 1963 { 1964 ObjCMethodDecl *MD = nullptr; 1965 for (const auto *PROTO : OPT->quals()) { 1966 if ((MD = PROTO->lookupMethod(Sel, Instance))) { 1967 return MD; 1968 } 1969 } 1970 return nullptr; 1971 } 1972 1973 /// HandleExprPropertyRefExpr - Handle foo.bar where foo is a pointer to an 1974 /// objective C interface. This is a property reference expression. 1975 ExprResult Sema:: 1976 HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT, 1977 Expr *BaseExpr, SourceLocation OpLoc, 1978 DeclarationName MemberName, 1979 SourceLocation MemberLoc, 1980 SourceLocation SuperLoc, QualType SuperType, 1981 bool Super) { 1982 const ObjCInterfaceType *IFaceT = OPT->getInterfaceType(); 1983 ObjCInterfaceDecl *IFace = IFaceT->getDecl(); 1984 1985 if (!MemberName.isIdentifier()) { 1986 Diag(MemberLoc, diag::err_invalid_property_name) 1987 << MemberName << QualType(OPT, 0); 1988 return ExprError(); 1989 } 1990 1991 IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); 1992 1993 SourceRange BaseRange = Super? SourceRange(SuperLoc) 1994 : BaseExpr->getSourceRange(); 1995 if (RequireCompleteType(MemberLoc, OPT->getPointeeType(), 1996 diag::err_property_not_found_forward_class, 1997 MemberName, BaseRange)) 1998 return ExprError(); 1999 2000 if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration( 2001 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { 2002 // Check whether we can reference this property. 2003 if (DiagnoseUseOfDecl(PD, MemberLoc)) 2004 return ExprError(); 2005 if (Super) 2006 return new (Context) 2007 ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue, 2008 OK_ObjCProperty, MemberLoc, SuperLoc, SuperType); 2009 else 2010 return new (Context) 2011 ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue, 2012 OK_ObjCProperty, MemberLoc, BaseExpr); 2013 } 2014 // Check protocols on qualified interfaces. 2015 for (const auto *I : OPT->quals()) 2016 if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration( 2017 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { 2018 // Check whether we can reference this property. 2019 if (DiagnoseUseOfDecl(PD, MemberLoc)) 2020 return ExprError(); 2021 2022 if (Super) 2023 return new (Context) ObjCPropertyRefExpr( 2024 PD, Context.PseudoObjectTy, VK_LValue, OK_ObjCProperty, MemberLoc, 2025 SuperLoc, SuperType); 2026 else 2027 return new (Context) 2028 ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue, 2029 OK_ObjCProperty, MemberLoc, BaseExpr); 2030 } 2031 // If that failed, look for an "implicit" property by seeing if the nullary 2032 // selector is implemented. 2033 2034 // FIXME: The logic for looking up nullary and unary selectors should be 2035 // shared with the code in ActOnInstanceMessage. 2036 2037 Selector Sel = PP.getSelectorTable().getNullarySelector(Member); 2038 ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel); 2039 2040 // May be found in property's qualified list. 2041 if (!Getter) 2042 Getter = LookupMethodInQualifiedType(Sel, OPT, true); 2043 2044 // If this reference is in an @implementation, check for 'private' methods. 2045 if (!Getter) 2046 Getter = IFace->lookupPrivateMethod(Sel); 2047 2048 if (Getter) { 2049 // Check if we can reference this property. 2050 if (DiagnoseUseOfDecl(Getter, MemberLoc)) 2051 return ExprError(); 2052 } 2053 // If we found a getter then this may be a valid dot-reference, we 2054 // will look for the matching setter, in case it is needed. 2055 Selector SetterSel = 2056 SelectorTable::constructSetterSelector(PP.getIdentifierTable(), 2057 PP.getSelectorTable(), Member); 2058 ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel); 2059 2060 // May be found in property's qualified list. 2061 if (!Setter) 2062 Setter = LookupMethodInQualifiedType(SetterSel, OPT, true); 2063 2064 if (!Setter) { 2065 // If this reference is in an @implementation, also check for 'private' 2066 // methods. 2067 Setter = IFace->lookupPrivateMethod(SetterSel); 2068 } 2069 2070 if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc)) 2071 return ExprError(); 2072 2073 // Special warning if member name used in a property-dot for a setter accessor 2074 // does not use a property with same name; e.g. obj.X = ... for a property with 2075 // name 'x'. 2076 if (Setter && Setter->isImplicit() && Setter->isPropertyAccessor() && 2077 !IFace->FindPropertyDeclaration( 2078 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { 2079 if (const ObjCPropertyDecl *PDecl = Setter->findPropertyDecl()) { 2080 // Do not warn if user is using property-dot syntax to make call to 2081 // user named setter. 2082 if (!(PDecl->getPropertyAttributes() & 2083 ObjCPropertyAttribute::kind_setter)) 2084 Diag(MemberLoc, 2085 diag::warn_property_access_suggest) 2086 << MemberName << QualType(OPT, 0) << PDecl->getName() 2087 << FixItHint::CreateReplacement(MemberLoc, PDecl->getName()); 2088 } 2089 } 2090 2091 if (Getter || Setter) { 2092 if (Super) 2093 return new (Context) 2094 ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue, 2095 OK_ObjCProperty, MemberLoc, SuperLoc, SuperType); 2096 else 2097 return new (Context) 2098 ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue, 2099 OK_ObjCProperty, MemberLoc, BaseExpr); 2100 2101 } 2102 2103 // Attempt to correct for typos in property names. 2104 DeclFilterCCC<ObjCPropertyDecl> CCC{}; 2105 if (TypoCorrection Corrected = CorrectTypo( 2106 DeclarationNameInfo(MemberName, MemberLoc), LookupOrdinaryName, 2107 nullptr, nullptr, CCC, CTK_ErrorRecovery, IFace, false, OPT)) { 2108 DeclarationName TypoResult = Corrected.getCorrection(); 2109 if (TypoResult.isIdentifier() && 2110 TypoResult.getAsIdentifierInfo() == Member) { 2111 // There is no need to try the correction if it is the same. 2112 NamedDecl *ChosenDecl = 2113 Corrected.isKeyword() ? nullptr : Corrected.getFoundDecl(); 2114 if (ChosenDecl && isa<ObjCPropertyDecl>(ChosenDecl)) 2115 if (cast<ObjCPropertyDecl>(ChosenDecl)->isClassProperty()) { 2116 // This is a class property, we should not use the instance to 2117 // access it. 2118 Diag(MemberLoc, diag::err_class_property_found) << MemberName 2119 << OPT->getInterfaceDecl()->getName() 2120 << FixItHint::CreateReplacement(BaseExpr->getSourceRange(), 2121 OPT->getInterfaceDecl()->getName()); 2122 return ExprError(); 2123 } 2124 } else { 2125 diagnoseTypo(Corrected, PDiag(diag::err_property_not_found_suggest) 2126 << MemberName << QualType(OPT, 0)); 2127 return HandleExprPropertyRefExpr(OPT, BaseExpr, OpLoc, 2128 TypoResult, MemberLoc, 2129 SuperLoc, SuperType, Super); 2130 } 2131 } 2132 ObjCInterfaceDecl *ClassDeclared; 2133 if (ObjCIvarDecl *Ivar = 2134 IFace->lookupInstanceVariable(Member, ClassDeclared)) { 2135 QualType T = Ivar->getType(); 2136 if (const ObjCObjectPointerType * OBJPT = 2137 T->getAsObjCInterfacePointerType()) { 2138 if (RequireCompleteType(MemberLoc, OBJPT->getPointeeType(), 2139 diag::err_property_not_as_forward_class, 2140 MemberName, BaseExpr)) 2141 return ExprError(); 2142 } 2143 Diag(MemberLoc, 2144 diag::err_ivar_access_using_property_syntax_suggest) 2145 << MemberName << QualType(OPT, 0) << Ivar->getDeclName() 2146 << FixItHint::CreateReplacement(OpLoc, "->"); 2147 return ExprError(); 2148 } 2149 2150 Diag(MemberLoc, diag::err_property_not_found) 2151 << MemberName << QualType(OPT, 0); 2152 if (Setter) 2153 Diag(Setter->getLocation(), diag::note_getter_unavailable) 2154 << MemberName << BaseExpr->getSourceRange(); 2155 return ExprError(); 2156 } 2157 2158 ExprResult Sema:: 2159 ActOnClassPropertyRefExpr(IdentifierInfo &receiverName, 2160 IdentifierInfo &propertyName, 2161 SourceLocation receiverNameLoc, 2162 SourceLocation propertyNameLoc) { 2163 2164 IdentifierInfo *receiverNamePtr = &receiverName; 2165 ObjCInterfaceDecl *IFace = getObjCInterfaceDecl(receiverNamePtr, 2166 receiverNameLoc); 2167 2168 QualType SuperType; 2169 if (!IFace) { 2170 // If the "receiver" is 'super' in a method, handle it as an expression-like 2171 // property reference. 2172 if (receiverNamePtr->isStr("super")) { 2173 if (ObjCMethodDecl *CurMethod = tryCaptureObjCSelf(receiverNameLoc)) { 2174 if (auto classDecl = CurMethod->getClassInterface()) { 2175 SuperType = QualType(classDecl->getSuperClassType(), 0); 2176 if (CurMethod->isInstanceMethod()) { 2177 if (SuperType.isNull()) { 2178 // The current class does not have a superclass. 2179 Diag(receiverNameLoc, diag::err_root_class_cannot_use_super) 2180 << CurMethod->getClassInterface()->getIdentifier(); 2181 return ExprError(); 2182 } 2183 QualType T = Context.getObjCObjectPointerType(SuperType); 2184 2185 return HandleExprPropertyRefExpr(T->castAs<ObjCObjectPointerType>(), 2186 /*BaseExpr*/nullptr, 2187 SourceLocation()/*OpLoc*/, 2188 &propertyName, 2189 propertyNameLoc, 2190 receiverNameLoc, T, true); 2191 } 2192 2193 // Otherwise, if this is a class method, try dispatching to our 2194 // superclass. 2195 IFace = CurMethod->getClassInterface()->getSuperClass(); 2196 } 2197 } 2198 } 2199 2200 if (!IFace) { 2201 Diag(receiverNameLoc, diag::err_expected_either) << tok::identifier 2202 << tok::l_paren; 2203 return ExprError(); 2204 } 2205 } 2206 2207 Selector GetterSel; 2208 Selector SetterSel; 2209 if (auto PD = IFace->FindPropertyDeclaration( 2210 &propertyName, ObjCPropertyQueryKind::OBJC_PR_query_class)) { 2211 GetterSel = PD->getGetterName(); 2212 SetterSel = PD->getSetterName(); 2213 } else { 2214 GetterSel = PP.getSelectorTable().getNullarySelector(&propertyName); 2215 SetterSel = SelectorTable::constructSetterSelector( 2216 PP.getIdentifierTable(), PP.getSelectorTable(), &propertyName); 2217 } 2218 2219 // Search for a declared property first. 2220 ObjCMethodDecl *Getter = IFace->lookupClassMethod(GetterSel); 2221 2222 // If this reference is in an @implementation, check for 'private' methods. 2223 if (!Getter) 2224 Getter = IFace->lookupPrivateClassMethod(GetterSel); 2225 2226 if (Getter) { 2227 // FIXME: refactor/share with ActOnMemberReference(). 2228 // Check if we can reference this property. 2229 if (DiagnoseUseOfDecl(Getter, propertyNameLoc)) 2230 return ExprError(); 2231 } 2232 2233 // Look for the matching setter, in case it is needed. 2234 ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel); 2235 if (!Setter) { 2236 // If this reference is in an @implementation, also check for 'private' 2237 // methods. 2238 Setter = IFace->lookupPrivateClassMethod(SetterSel); 2239 } 2240 // Look through local category implementations associated with the class. 2241 if (!Setter) 2242 Setter = IFace->getCategoryClassMethod(SetterSel); 2243 2244 if (Setter && DiagnoseUseOfDecl(Setter, propertyNameLoc)) 2245 return ExprError(); 2246 2247 if (Getter || Setter) { 2248 if (!SuperType.isNull()) 2249 return new (Context) 2250 ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue, 2251 OK_ObjCProperty, propertyNameLoc, receiverNameLoc, 2252 SuperType); 2253 2254 return new (Context) ObjCPropertyRefExpr( 2255 Getter, Setter, Context.PseudoObjectTy, VK_LValue, OK_ObjCProperty, 2256 propertyNameLoc, receiverNameLoc, IFace); 2257 } 2258 return ExprError(Diag(propertyNameLoc, diag::err_property_not_found) 2259 << &propertyName << Context.getObjCInterfaceType(IFace)); 2260 } 2261 2262 namespace { 2263 2264 class ObjCInterfaceOrSuperCCC final : public CorrectionCandidateCallback { 2265 public: 2266 ObjCInterfaceOrSuperCCC(ObjCMethodDecl *Method) { 2267 // Determine whether "super" is acceptable in the current context. 2268 if (Method && Method->getClassInterface()) 2269 WantObjCSuper = Method->getClassInterface()->getSuperClass(); 2270 } 2271 2272 bool ValidateCandidate(const TypoCorrection &candidate) override { 2273 return candidate.getCorrectionDeclAs<ObjCInterfaceDecl>() || 2274 candidate.isKeyword("super"); 2275 } 2276 2277 std::unique_ptr<CorrectionCandidateCallback> clone() override { 2278 return std::make_unique<ObjCInterfaceOrSuperCCC>(*this); 2279 } 2280 }; 2281 2282 } // end anonymous namespace 2283 2284 Sema::ObjCMessageKind Sema::getObjCMessageKind(Scope *S, 2285 IdentifierInfo *Name, 2286 SourceLocation NameLoc, 2287 bool IsSuper, 2288 bool HasTrailingDot, 2289 ParsedType &ReceiverType) { 2290 ReceiverType = nullptr; 2291 2292 // If the identifier is "super" and there is no trailing dot, we're 2293 // messaging super. If the identifier is "super" and there is a 2294 // trailing dot, it's an instance message. 2295 if (IsSuper && S->isInObjcMethodScope()) 2296 return HasTrailingDot? ObjCInstanceMessage : ObjCSuperMessage; 2297 2298 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); 2299 LookupName(Result, S); 2300 2301 switch (Result.getResultKind()) { 2302 case LookupResult::NotFound: 2303 // Normal name lookup didn't find anything. If we're in an 2304 // Objective-C method, look for ivars. If we find one, we're done! 2305 // FIXME: This is a hack. Ivar lookup should be part of normal 2306 // lookup. 2307 if (ObjCMethodDecl *Method = getCurMethodDecl()) { 2308 if (!Method->getClassInterface()) { 2309 // Fall back: let the parser try to parse it as an instance message. 2310 return ObjCInstanceMessage; 2311 } 2312 2313 ObjCInterfaceDecl *ClassDeclared; 2314 if (Method->getClassInterface()->lookupInstanceVariable(Name, 2315 ClassDeclared)) 2316 return ObjCInstanceMessage; 2317 } 2318 2319 // Break out; we'll perform typo correction below. 2320 break; 2321 2322 case LookupResult::NotFoundInCurrentInstantiation: 2323 case LookupResult::FoundOverloaded: 2324 case LookupResult::FoundUnresolvedValue: 2325 case LookupResult::Ambiguous: 2326 Result.suppressDiagnostics(); 2327 return ObjCInstanceMessage; 2328 2329 case LookupResult::Found: { 2330 // If the identifier is a class or not, and there is a trailing dot, 2331 // it's an instance message. 2332 if (HasTrailingDot) 2333 return ObjCInstanceMessage; 2334 // We found something. If it's a type, then we have a class 2335 // message. Otherwise, it's an instance message. 2336 NamedDecl *ND = Result.getFoundDecl(); 2337 QualType T; 2338 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(ND)) 2339 T = Context.getObjCInterfaceType(Class); 2340 else if (TypeDecl *Type = dyn_cast<TypeDecl>(ND)) { 2341 T = Context.getTypeDeclType(Type); 2342 DiagnoseUseOfDecl(Type, NameLoc); 2343 } 2344 else 2345 return ObjCInstanceMessage; 2346 2347 // We have a class message, and T is the type we're 2348 // messaging. Build source-location information for it. 2349 TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc); 2350 ReceiverType = CreateParsedType(T, TSInfo); 2351 return ObjCClassMessage; 2352 } 2353 } 2354 2355 ObjCInterfaceOrSuperCCC CCC(getCurMethodDecl()); 2356 if (TypoCorrection Corrected = CorrectTypo( 2357 Result.getLookupNameInfo(), Result.getLookupKind(), S, nullptr, CCC, 2358 CTK_ErrorRecovery, nullptr, false, nullptr, false)) { 2359 if (Corrected.isKeyword()) { 2360 // If we've found the keyword "super" (the only keyword that would be 2361 // returned by CorrectTypo), this is a send to super. 2362 diagnoseTypo(Corrected, 2363 PDiag(diag::err_unknown_receiver_suggest) << Name); 2364 return ObjCSuperMessage; 2365 } else if (ObjCInterfaceDecl *Class = 2366 Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) { 2367 // If we found a declaration, correct when it refers to an Objective-C 2368 // class. 2369 diagnoseTypo(Corrected, 2370 PDiag(diag::err_unknown_receiver_suggest) << Name); 2371 QualType T = Context.getObjCInterfaceType(Class); 2372 TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc); 2373 ReceiverType = CreateParsedType(T, TSInfo); 2374 return ObjCClassMessage; 2375 } 2376 } 2377 2378 // Fall back: let the parser try to parse it as an instance message. 2379 return ObjCInstanceMessage; 2380 } 2381 2382 ExprResult Sema::ActOnSuperMessage(Scope *S, 2383 SourceLocation SuperLoc, 2384 Selector Sel, 2385 SourceLocation LBracLoc, 2386 ArrayRef<SourceLocation> SelectorLocs, 2387 SourceLocation RBracLoc, 2388 MultiExprArg Args) { 2389 // Determine whether we are inside a method or not. 2390 ObjCMethodDecl *Method = tryCaptureObjCSelf(SuperLoc); 2391 if (!Method) { 2392 Diag(SuperLoc, diag::err_invalid_receiver_to_message_super); 2393 return ExprError(); 2394 } 2395 2396 ObjCInterfaceDecl *Class = Method->getClassInterface(); 2397 if (!Class) { 2398 Diag(SuperLoc, diag::err_no_super_class_message) 2399 << Method->getDeclName(); 2400 return ExprError(); 2401 } 2402 2403 QualType SuperTy(Class->getSuperClassType(), 0); 2404 if (SuperTy.isNull()) { 2405 // The current class does not have a superclass. 2406 Diag(SuperLoc, diag::err_root_class_cannot_use_super) 2407 << Class->getIdentifier(); 2408 return ExprError(); 2409 } 2410 2411 // We are in a method whose class has a superclass, so 'super' 2412 // is acting as a keyword. 2413 if (Method->getSelector() == Sel) 2414 getCurFunction()->ObjCShouldCallSuper = false; 2415 2416 if (Method->isInstanceMethod()) { 2417 // Since we are in an instance method, this is an instance 2418 // message to the superclass instance. 2419 SuperTy = Context.getObjCObjectPointerType(SuperTy); 2420 return BuildInstanceMessage(nullptr, SuperTy, SuperLoc, 2421 Sel, /*Method=*/nullptr, 2422 LBracLoc, SelectorLocs, RBracLoc, Args); 2423 } 2424 2425 // Since we are in a class method, this is a class message to 2426 // the superclass. 2427 return BuildClassMessage(/*ReceiverTypeInfo=*/nullptr, 2428 SuperTy, 2429 SuperLoc, Sel, /*Method=*/nullptr, 2430 LBracLoc, SelectorLocs, RBracLoc, Args); 2431 } 2432 2433 ExprResult Sema::BuildClassMessageImplicit(QualType ReceiverType, 2434 bool isSuperReceiver, 2435 SourceLocation Loc, 2436 Selector Sel, 2437 ObjCMethodDecl *Method, 2438 MultiExprArg Args) { 2439 TypeSourceInfo *receiverTypeInfo = nullptr; 2440 if (!ReceiverType.isNull()) 2441 receiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType); 2442 2443 return BuildClassMessage(receiverTypeInfo, ReceiverType, 2444 /*SuperLoc=*/isSuperReceiver ? Loc : SourceLocation(), 2445 Sel, Method, Loc, Loc, Loc, Args, 2446 /*isImplicit=*/true); 2447 } 2448 2449 static void applyCocoaAPICheck(Sema &S, const ObjCMessageExpr *Msg, 2450 unsigned DiagID, 2451 bool (*refactor)(const ObjCMessageExpr *, 2452 const NSAPI &, edit::Commit &)) { 2453 SourceLocation MsgLoc = Msg->getExprLoc(); 2454 if (S.Diags.isIgnored(DiagID, MsgLoc)) 2455 return; 2456 2457 SourceManager &SM = S.SourceMgr; 2458 edit::Commit ECommit(SM, S.LangOpts); 2459 if (refactor(Msg,*S.NSAPIObj, ECommit)) { 2460 auto Builder = S.Diag(MsgLoc, DiagID) 2461 << Msg->getSelector() << Msg->getSourceRange(); 2462 // FIXME: Don't emit diagnostic at all if fixits are non-commitable. 2463 if (!ECommit.isCommitable()) 2464 return; 2465 for (edit::Commit::edit_iterator 2466 I = ECommit.edit_begin(), E = ECommit.edit_end(); I != E; ++I) { 2467 const edit::Commit::Edit &Edit = *I; 2468 switch (Edit.Kind) { 2469 case edit::Commit::Act_Insert: 2470 Builder.AddFixItHint(FixItHint::CreateInsertion(Edit.OrigLoc, 2471 Edit.Text, 2472 Edit.BeforePrev)); 2473 break; 2474 case edit::Commit::Act_InsertFromRange: 2475 Builder.AddFixItHint( 2476 FixItHint::CreateInsertionFromRange(Edit.OrigLoc, 2477 Edit.getInsertFromRange(SM), 2478 Edit.BeforePrev)); 2479 break; 2480 case edit::Commit::Act_Remove: 2481 Builder.AddFixItHint(FixItHint::CreateRemoval(Edit.getFileRange(SM))); 2482 break; 2483 } 2484 } 2485 } 2486 } 2487 2488 static void checkCocoaAPI(Sema &S, const ObjCMessageExpr *Msg) { 2489 applyCocoaAPICheck(S, Msg, diag::warn_objc_redundant_literal_use, 2490 edit::rewriteObjCRedundantCallWithLiteral); 2491 } 2492 2493 static void checkFoundationAPI(Sema &S, SourceLocation Loc, 2494 const ObjCMethodDecl *Method, 2495 ArrayRef<Expr *> Args, QualType ReceiverType, 2496 bool IsClassObjectCall) { 2497 // Check if this is a performSelector method that uses a selector that returns 2498 // a record or a vector type. 2499 if (Method->getSelector().getMethodFamily() != OMF_performSelector || 2500 Args.empty()) 2501 return; 2502 const auto *SE = dyn_cast<ObjCSelectorExpr>(Args[0]->IgnoreParens()); 2503 if (!SE) 2504 return; 2505 ObjCMethodDecl *ImpliedMethod; 2506 if (!IsClassObjectCall) { 2507 const auto *OPT = ReceiverType->getAs<ObjCObjectPointerType>(); 2508 if (!OPT || !OPT->getInterfaceDecl()) 2509 return; 2510 ImpliedMethod = 2511 OPT->getInterfaceDecl()->lookupInstanceMethod(SE->getSelector()); 2512 if (!ImpliedMethod) 2513 ImpliedMethod = 2514 OPT->getInterfaceDecl()->lookupPrivateMethod(SE->getSelector()); 2515 } else { 2516 const auto *IT = ReceiverType->getAs<ObjCInterfaceType>(); 2517 if (!IT) 2518 return; 2519 ImpliedMethod = IT->getDecl()->lookupClassMethod(SE->getSelector()); 2520 if (!ImpliedMethod) 2521 ImpliedMethod = 2522 IT->getDecl()->lookupPrivateClassMethod(SE->getSelector()); 2523 } 2524 if (!ImpliedMethod) 2525 return; 2526 QualType Ret = ImpliedMethod->getReturnType(); 2527 if (Ret->isRecordType() || Ret->isVectorType() || Ret->isExtVectorType()) { 2528 S.Diag(Loc, diag::warn_objc_unsafe_perform_selector) 2529 << Method->getSelector() 2530 << (!Ret->isRecordType() 2531 ? /*Vector*/ 2 2532 : Ret->isUnionType() ? /*Union*/ 1 : /*Struct*/ 0); 2533 S.Diag(ImpliedMethod->getBeginLoc(), 2534 diag::note_objc_unsafe_perform_selector_method_declared_here) 2535 << ImpliedMethod->getSelector() << Ret; 2536 } 2537 } 2538 2539 /// Diagnose use of %s directive in an NSString which is being passed 2540 /// as formatting string to formatting method. 2541 static void 2542 DiagnoseCStringFormatDirectiveInObjCAPI(Sema &S, 2543 ObjCMethodDecl *Method, 2544 Selector Sel, 2545 Expr **Args, unsigned NumArgs) { 2546 unsigned Idx = 0; 2547 bool Format = false; 2548 ObjCStringFormatFamily SFFamily = Sel.getStringFormatFamily(); 2549 if (SFFamily == ObjCStringFormatFamily::SFF_NSString) { 2550 Idx = 0; 2551 Format = true; 2552 } 2553 else if (Method) { 2554 for (const auto *I : Method->specific_attrs<FormatAttr>()) { 2555 if (S.GetFormatNSStringIdx(I, Idx)) { 2556 Format = true; 2557 break; 2558 } 2559 } 2560 } 2561 if (!Format || NumArgs <= Idx) 2562 return; 2563 2564 Expr *FormatExpr = Args[Idx]; 2565 if (ObjCStringLiteral *OSL = 2566 dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts())) { 2567 StringLiteral *FormatString = OSL->getString(); 2568 if (S.FormatStringHasSArg(FormatString)) { 2569 S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string) 2570 << "%s" << 0 << 0; 2571 if (Method) 2572 S.Diag(Method->getLocation(), diag::note_method_declared_at) 2573 << Method->getDeclName(); 2574 } 2575 } 2576 } 2577 2578 /// Build an Objective-C class message expression. 2579 /// 2580 /// This routine takes care of both normal class messages and 2581 /// class messages to the superclass. 2582 /// 2583 /// \param ReceiverTypeInfo Type source information that describes the 2584 /// receiver of this message. This may be NULL, in which case we are 2585 /// sending to the superclass and \p SuperLoc must be a valid source 2586 /// location. 2587 2588 /// \param ReceiverType The type of the object receiving the 2589 /// message. When \p ReceiverTypeInfo is non-NULL, this is the same 2590 /// type as that refers to. For a superclass send, this is the type of 2591 /// the superclass. 2592 /// 2593 /// \param SuperLoc The location of the "super" keyword in a 2594 /// superclass message. 2595 /// 2596 /// \param Sel The selector to which the message is being sent. 2597 /// 2598 /// \param Method The method that this class message is invoking, if 2599 /// already known. 2600 /// 2601 /// \param LBracLoc The location of the opening square bracket ']'. 2602 /// 2603 /// \param RBracLoc The location of the closing square bracket ']'. 2604 /// 2605 /// \param ArgsIn The message arguments. 2606 ExprResult Sema::BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo, 2607 QualType ReceiverType, 2608 SourceLocation SuperLoc, 2609 Selector Sel, 2610 ObjCMethodDecl *Method, 2611 SourceLocation LBracLoc, 2612 ArrayRef<SourceLocation> SelectorLocs, 2613 SourceLocation RBracLoc, 2614 MultiExprArg ArgsIn, 2615 bool isImplicit) { 2616 SourceLocation Loc = SuperLoc.isValid()? SuperLoc 2617 : ReceiverTypeInfo->getTypeLoc().getSourceRange().getBegin(); 2618 if (LBracLoc.isInvalid()) { 2619 Diag(Loc, diag::err_missing_open_square_message_send) 2620 << FixItHint::CreateInsertion(Loc, "["); 2621 LBracLoc = Loc; 2622 } 2623 ArrayRef<SourceLocation> SelectorSlotLocs; 2624 if (!SelectorLocs.empty() && SelectorLocs.front().isValid()) 2625 SelectorSlotLocs = SelectorLocs; 2626 else 2627 SelectorSlotLocs = Loc; 2628 SourceLocation SelLoc = SelectorSlotLocs.front(); 2629 2630 if (ReceiverType->isDependentType()) { 2631 // If the receiver type is dependent, we can't type-check anything 2632 // at this point. Build a dependent expression. 2633 unsigned NumArgs = ArgsIn.size(); 2634 Expr **Args = ArgsIn.data(); 2635 assert(SuperLoc.isInvalid() && "Message to super with dependent type"); 2636 return ObjCMessageExpr::Create( 2637 Context, ReceiverType, VK_PRValue, LBracLoc, ReceiverTypeInfo, Sel, 2638 SelectorLocs, /*Method=*/nullptr, makeArrayRef(Args, NumArgs), RBracLoc, 2639 isImplicit); 2640 } 2641 2642 // Find the class to which we are sending this message. 2643 ObjCInterfaceDecl *Class = nullptr; 2644 const ObjCObjectType *ClassType = ReceiverType->getAs<ObjCObjectType>(); 2645 if (!ClassType || !(Class = ClassType->getInterface())) { 2646 Diag(Loc, diag::err_invalid_receiver_class_message) 2647 << ReceiverType; 2648 return ExprError(); 2649 } 2650 assert(Class && "We don't know which class we're messaging?"); 2651 // objc++ diagnoses during typename annotation. 2652 if (!getLangOpts().CPlusPlus) 2653 (void)DiagnoseUseOfDecl(Class, SelectorSlotLocs); 2654 // Find the method we are messaging. 2655 if (!Method) { 2656 SourceRange TypeRange 2657 = SuperLoc.isValid()? SourceRange(SuperLoc) 2658 : ReceiverTypeInfo->getTypeLoc().getSourceRange(); 2659 if (RequireCompleteType(Loc, Context.getObjCInterfaceType(Class), 2660 (getLangOpts().ObjCAutoRefCount 2661 ? diag::err_arc_receiver_forward_class 2662 : diag::warn_receiver_forward_class), 2663 TypeRange)) { 2664 // A forward class used in messaging is treated as a 'Class' 2665 Method = LookupFactoryMethodInGlobalPool(Sel, 2666 SourceRange(LBracLoc, RBracLoc)); 2667 if (Method && !getLangOpts().ObjCAutoRefCount) 2668 Diag(Method->getLocation(), diag::note_method_sent_forward_class) 2669 << Method->getDeclName(); 2670 } 2671 if (!Method) 2672 Method = Class->lookupClassMethod(Sel); 2673 2674 // If we have an implementation in scope, check "private" methods. 2675 if (!Method) 2676 Method = Class->lookupPrivateClassMethod(Sel); 2677 2678 if (Method && DiagnoseUseOfDecl(Method, SelectorSlotLocs, 2679 nullptr, false, false, Class)) 2680 return ExprError(); 2681 } 2682 2683 // Check the argument types and determine the result type. 2684 QualType ReturnType; 2685 ExprValueKind VK = VK_PRValue; 2686 2687 unsigned NumArgs = ArgsIn.size(); 2688 Expr **Args = ArgsIn.data(); 2689 if (CheckMessageArgumentTypes(/*Receiver=*/nullptr, ReceiverType, 2690 MultiExprArg(Args, NumArgs), Sel, SelectorLocs, 2691 Method, true, SuperLoc.isValid(), LBracLoc, 2692 RBracLoc, SourceRange(), ReturnType, VK)) 2693 return ExprError(); 2694 2695 if (Method && !Method->getReturnType()->isVoidType() && 2696 RequireCompleteType(LBracLoc, Method->getReturnType(), 2697 diag::err_illegal_message_expr_incomplete_type)) 2698 return ExprError(); 2699 2700 if (Method && Method->isDirectMethod() && SuperLoc.isValid()) { 2701 Diag(SuperLoc, diag::err_messaging_super_with_direct_method) 2702 << FixItHint::CreateReplacement( 2703 SuperLoc, getLangOpts().ObjCAutoRefCount 2704 ? "self" 2705 : Method->getClassInterface()->getName()); 2706 Diag(Method->getLocation(), diag::note_direct_method_declared_at) 2707 << Method->getDeclName(); 2708 } 2709 2710 // Warn about explicit call of +initialize on its own class. But not on 'super'. 2711 if (Method && Method->getMethodFamily() == OMF_initialize) { 2712 if (!SuperLoc.isValid()) { 2713 const ObjCInterfaceDecl *ID = 2714 dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext()); 2715 if (ID == Class) { 2716 Diag(Loc, diag::warn_direct_initialize_call); 2717 Diag(Method->getLocation(), diag::note_method_declared_at) 2718 << Method->getDeclName(); 2719 } 2720 } 2721 else if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) { 2722 // [super initialize] is allowed only within an +initialize implementation 2723 if (CurMeth->getMethodFamily() != OMF_initialize) { 2724 Diag(Loc, diag::warn_direct_super_initialize_call); 2725 Diag(Method->getLocation(), diag::note_method_declared_at) 2726 << Method->getDeclName(); 2727 Diag(CurMeth->getLocation(), diag::note_method_declared_at) 2728 << CurMeth->getDeclName(); 2729 } 2730 } 2731 } 2732 2733 DiagnoseCStringFormatDirectiveInObjCAPI(*this, Method, Sel, Args, NumArgs); 2734 2735 // Construct the appropriate ObjCMessageExpr. 2736 ObjCMessageExpr *Result; 2737 if (SuperLoc.isValid()) 2738 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 2739 SuperLoc, /*IsInstanceSuper=*/false, 2740 ReceiverType, Sel, SelectorLocs, 2741 Method, makeArrayRef(Args, NumArgs), 2742 RBracLoc, isImplicit); 2743 else { 2744 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 2745 ReceiverTypeInfo, Sel, SelectorLocs, 2746 Method, makeArrayRef(Args, NumArgs), 2747 RBracLoc, isImplicit); 2748 if (!isImplicit) 2749 checkCocoaAPI(*this, Result); 2750 } 2751 if (Method) 2752 checkFoundationAPI(*this, SelLoc, Method, makeArrayRef(Args, NumArgs), 2753 ReceiverType, /*IsClassObjectCall=*/true); 2754 return MaybeBindToTemporary(Result); 2755 } 2756 2757 // ActOnClassMessage - used for both unary and keyword messages. 2758 // ArgExprs is optional - if it is present, the number of expressions 2759 // is obtained from Sel.getNumArgs(). 2760 ExprResult Sema::ActOnClassMessage(Scope *S, 2761 ParsedType Receiver, 2762 Selector Sel, 2763 SourceLocation LBracLoc, 2764 ArrayRef<SourceLocation> SelectorLocs, 2765 SourceLocation RBracLoc, 2766 MultiExprArg Args) { 2767 TypeSourceInfo *ReceiverTypeInfo; 2768 QualType ReceiverType = GetTypeFromParser(Receiver, &ReceiverTypeInfo); 2769 if (ReceiverType.isNull()) 2770 return ExprError(); 2771 2772 if (!ReceiverTypeInfo) 2773 ReceiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType, LBracLoc); 2774 2775 return BuildClassMessage(ReceiverTypeInfo, ReceiverType, 2776 /*SuperLoc=*/SourceLocation(), Sel, 2777 /*Method=*/nullptr, LBracLoc, SelectorLocs, RBracLoc, 2778 Args); 2779 } 2780 2781 ExprResult Sema::BuildInstanceMessageImplicit(Expr *Receiver, 2782 QualType ReceiverType, 2783 SourceLocation Loc, 2784 Selector Sel, 2785 ObjCMethodDecl *Method, 2786 MultiExprArg Args) { 2787 return BuildInstanceMessage(Receiver, ReceiverType, 2788 /*SuperLoc=*/!Receiver ? Loc : SourceLocation(), 2789 Sel, Method, Loc, Loc, Loc, Args, 2790 /*isImplicit=*/true); 2791 } 2792 2793 static bool isMethodDeclaredInRootProtocol(Sema &S, const ObjCMethodDecl *M) { 2794 if (!S.NSAPIObj) 2795 return false; 2796 const auto *Protocol = dyn_cast<ObjCProtocolDecl>(M->getDeclContext()); 2797 if (!Protocol) 2798 return false; 2799 const IdentifierInfo *II = S.NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject); 2800 if (const auto *RootClass = dyn_cast_or_null<ObjCInterfaceDecl>( 2801 S.LookupSingleName(S.TUScope, II, Protocol->getBeginLoc(), 2802 Sema::LookupOrdinaryName))) { 2803 for (const ObjCProtocolDecl *P : RootClass->all_referenced_protocols()) { 2804 if (P->getCanonicalDecl() == Protocol->getCanonicalDecl()) 2805 return true; 2806 } 2807 } 2808 return false; 2809 } 2810 2811 /// Build an Objective-C instance message expression. 2812 /// 2813 /// This routine takes care of both normal instance messages and 2814 /// instance messages to the superclass instance. 2815 /// 2816 /// \param Receiver The expression that computes the object that will 2817 /// receive this message. This may be empty, in which case we are 2818 /// sending to the superclass instance and \p SuperLoc must be a valid 2819 /// source location. 2820 /// 2821 /// \param ReceiverType The (static) type of the object receiving the 2822 /// message. When a \p Receiver expression is provided, this is the 2823 /// same type as that expression. For a superclass instance send, this 2824 /// is a pointer to the type of the superclass. 2825 /// 2826 /// \param SuperLoc The location of the "super" keyword in a 2827 /// superclass instance message. 2828 /// 2829 /// \param Sel The selector to which the message is being sent. 2830 /// 2831 /// \param Method The method that this instance message is invoking, if 2832 /// already known. 2833 /// 2834 /// \param LBracLoc The location of the opening square bracket ']'. 2835 /// 2836 /// \param RBracLoc The location of the closing square bracket ']'. 2837 /// 2838 /// \param ArgsIn The message arguments. 2839 ExprResult Sema::BuildInstanceMessage(Expr *Receiver, 2840 QualType ReceiverType, 2841 SourceLocation SuperLoc, 2842 Selector Sel, 2843 ObjCMethodDecl *Method, 2844 SourceLocation LBracLoc, 2845 ArrayRef<SourceLocation> SelectorLocs, 2846 SourceLocation RBracLoc, 2847 MultiExprArg ArgsIn, 2848 bool isImplicit) { 2849 assert((Receiver || SuperLoc.isValid()) && "If the Receiver is null, the " 2850 "SuperLoc must be valid so we can " 2851 "use it instead."); 2852 2853 // The location of the receiver. 2854 SourceLocation Loc = SuperLoc.isValid() ? SuperLoc : Receiver->getBeginLoc(); 2855 SourceRange RecRange = 2856 SuperLoc.isValid()? SuperLoc : Receiver->getSourceRange(); 2857 ArrayRef<SourceLocation> SelectorSlotLocs; 2858 if (!SelectorLocs.empty() && SelectorLocs.front().isValid()) 2859 SelectorSlotLocs = SelectorLocs; 2860 else 2861 SelectorSlotLocs = Loc; 2862 SourceLocation SelLoc = SelectorSlotLocs.front(); 2863 2864 if (LBracLoc.isInvalid()) { 2865 Diag(Loc, diag::err_missing_open_square_message_send) 2866 << FixItHint::CreateInsertion(Loc, "["); 2867 LBracLoc = Loc; 2868 } 2869 2870 // If we have a receiver expression, perform appropriate promotions 2871 // and determine receiver type. 2872 if (Receiver) { 2873 if (Receiver->hasPlaceholderType()) { 2874 ExprResult Result; 2875 if (Receiver->getType() == Context.UnknownAnyTy) 2876 Result = forceUnknownAnyToType(Receiver, Context.getObjCIdType()); 2877 else 2878 Result = CheckPlaceholderExpr(Receiver); 2879 if (Result.isInvalid()) return ExprError(); 2880 Receiver = Result.get(); 2881 } 2882 2883 if (Receiver->isTypeDependent()) { 2884 // If the receiver is type-dependent, we can't type-check anything 2885 // at this point. Build a dependent expression. 2886 unsigned NumArgs = ArgsIn.size(); 2887 Expr **Args = ArgsIn.data(); 2888 assert(SuperLoc.isInvalid() && "Message to super with dependent type"); 2889 return ObjCMessageExpr::Create( 2890 Context, Context.DependentTy, VK_PRValue, LBracLoc, Receiver, Sel, 2891 SelectorLocs, /*Method=*/nullptr, makeArrayRef(Args, NumArgs), 2892 RBracLoc, isImplicit); 2893 } 2894 2895 // If necessary, apply function/array conversion to the receiver. 2896 // C99 6.7.5.3p[7,8]. 2897 ExprResult Result = DefaultFunctionArrayLvalueConversion(Receiver); 2898 if (Result.isInvalid()) 2899 return ExprError(); 2900 Receiver = Result.get(); 2901 ReceiverType = Receiver->getType(); 2902 2903 // If the receiver is an ObjC pointer, a block pointer, or an 2904 // __attribute__((NSObject)) pointer, we don't need to do any 2905 // special conversion in order to look up a receiver. 2906 if (ReceiverType->isObjCRetainableType()) { 2907 // do nothing 2908 } else if (!getLangOpts().ObjCAutoRefCount && 2909 !Context.getObjCIdType().isNull() && 2910 (ReceiverType->isPointerType() || 2911 ReceiverType->isIntegerType())) { 2912 // Implicitly convert integers and pointers to 'id' but emit a warning. 2913 // But not in ARC. 2914 Diag(Loc, diag::warn_bad_receiver_type) << ReceiverType << RecRange; 2915 if (ReceiverType->isPointerType()) { 2916 Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(), 2917 CK_CPointerToObjCPointerCast).get(); 2918 } else { 2919 // TODO: specialized warning on null receivers? 2920 bool IsNull = Receiver->isNullPointerConstant(Context, 2921 Expr::NPC_ValueDependentIsNull); 2922 CastKind Kind = IsNull ? CK_NullToPointer : CK_IntegralToPointer; 2923 Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(), 2924 Kind).get(); 2925 } 2926 ReceiverType = Receiver->getType(); 2927 } else if (getLangOpts().CPlusPlus) { 2928 // The receiver must be a complete type. 2929 if (RequireCompleteType(Loc, Receiver->getType(), 2930 diag::err_incomplete_receiver_type)) 2931 return ExprError(); 2932 2933 ExprResult result = PerformContextuallyConvertToObjCPointer(Receiver); 2934 if (result.isUsable()) { 2935 Receiver = result.get(); 2936 ReceiverType = Receiver->getType(); 2937 } 2938 } 2939 } 2940 2941 // There's a somewhat weird interaction here where we assume that we 2942 // won't actually have a method unless we also don't need to do some 2943 // of the more detailed type-checking on the receiver. 2944 2945 if (!Method) { 2946 // Handle messages to id and __kindof types (where we use the 2947 // global method pool). 2948 const ObjCObjectType *typeBound = nullptr; 2949 bool receiverIsIdLike = ReceiverType->isObjCIdOrObjectKindOfType(Context, 2950 typeBound); 2951 if (receiverIsIdLike || ReceiverType->isBlockPointerType() || 2952 (Receiver && Context.isObjCNSObjectType(Receiver->getType()))) { 2953 SmallVector<ObjCMethodDecl*, 4> Methods; 2954 // If we have a type bound, further filter the methods. 2955 CollectMultipleMethodsInGlobalPool(Sel, Methods, true/*InstanceFirst*/, 2956 true/*CheckTheOther*/, typeBound); 2957 if (!Methods.empty()) { 2958 // We choose the first method as the initial candidate, then try to 2959 // select a better one. 2960 Method = Methods[0]; 2961 2962 if (ObjCMethodDecl *BestMethod = 2963 SelectBestMethod(Sel, ArgsIn, Method->isInstanceMethod(), Methods)) 2964 Method = BestMethod; 2965 2966 if (!AreMultipleMethodsInGlobalPool(Sel, Method, 2967 SourceRange(LBracLoc, RBracLoc), 2968 receiverIsIdLike, Methods)) 2969 DiagnoseUseOfDecl(Method, SelectorSlotLocs); 2970 } 2971 } else if (ReceiverType->isObjCClassOrClassKindOfType() || 2972 ReceiverType->isObjCQualifiedClassType()) { 2973 // Handle messages to Class. 2974 // We allow sending a message to a qualified Class ("Class<foo>"), which 2975 // is ok as long as one of the protocols implements the selector (if not, 2976 // warn). 2977 if (!ReceiverType->isObjCClassOrClassKindOfType()) { 2978 const ObjCObjectPointerType *QClassTy 2979 = ReceiverType->getAsObjCQualifiedClassType(); 2980 // Search protocols for class methods. 2981 Method = LookupMethodInQualifiedType(Sel, QClassTy, false); 2982 if (!Method) { 2983 Method = LookupMethodInQualifiedType(Sel, QClassTy, true); 2984 // warn if instance method found for a Class message. 2985 if (Method && !isMethodDeclaredInRootProtocol(*this, Method)) { 2986 Diag(SelLoc, diag::warn_instance_method_on_class_found) 2987 << Method->getSelector() << Sel; 2988 Diag(Method->getLocation(), diag::note_method_declared_at) 2989 << Method->getDeclName(); 2990 } 2991 } 2992 } else { 2993 if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) { 2994 if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) { 2995 // As a guess, try looking for the method in the current interface. 2996 // This very well may not produce the "right" method. 2997 2998 // First check the public methods in the class interface. 2999 Method = ClassDecl->lookupClassMethod(Sel); 3000 3001 if (!Method) 3002 Method = ClassDecl->lookupPrivateClassMethod(Sel); 3003 3004 if (Method && DiagnoseUseOfDecl(Method, SelectorSlotLocs)) 3005 return ExprError(); 3006 } 3007 } 3008 if (!Method) { 3009 // If not messaging 'self', look for any factory method named 'Sel'. 3010 if (!Receiver || !isSelfExpr(Receiver)) { 3011 // If no class (factory) method was found, check if an _instance_ 3012 // method of the same name exists in the root class only. 3013 SmallVector<ObjCMethodDecl*, 4> Methods; 3014 CollectMultipleMethodsInGlobalPool(Sel, Methods, 3015 false/*InstanceFirst*/, 3016 true/*CheckTheOther*/); 3017 if (!Methods.empty()) { 3018 // We choose the first method as the initial candidate, then try 3019 // to select a better one. 3020 Method = Methods[0]; 3021 3022 // If we find an instance method, emit warning. 3023 if (Method->isInstanceMethod()) { 3024 if (const ObjCInterfaceDecl *ID = 3025 dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext())) { 3026 if (ID->getSuperClass()) 3027 Diag(SelLoc, diag::warn_root_inst_method_not_found) 3028 << Sel << SourceRange(LBracLoc, RBracLoc); 3029 } 3030 } 3031 3032 if (ObjCMethodDecl *BestMethod = 3033 SelectBestMethod(Sel, ArgsIn, Method->isInstanceMethod(), 3034 Methods)) 3035 Method = BestMethod; 3036 } 3037 } 3038 } 3039 } 3040 } else { 3041 ObjCInterfaceDecl *ClassDecl = nullptr; 3042 3043 // We allow sending a message to a qualified ID ("id<foo>"), which is ok as 3044 // long as one of the protocols implements the selector (if not, warn). 3045 // And as long as message is not deprecated/unavailable (warn if it is). 3046 if (const ObjCObjectPointerType *QIdTy 3047 = ReceiverType->getAsObjCQualifiedIdType()) { 3048 // Search protocols for instance methods. 3049 Method = LookupMethodInQualifiedType(Sel, QIdTy, true); 3050 if (!Method) 3051 Method = LookupMethodInQualifiedType(Sel, QIdTy, false); 3052 if (Method && DiagnoseUseOfDecl(Method, SelectorSlotLocs)) 3053 return ExprError(); 3054 } else if (const ObjCObjectPointerType *OCIType 3055 = ReceiverType->getAsObjCInterfacePointerType()) { 3056 // We allow sending a message to a pointer to an interface (an object). 3057 ClassDecl = OCIType->getInterfaceDecl(); 3058 3059 // Try to complete the type. Under ARC, this is a hard error from which 3060 // we don't try to recover. 3061 // FIXME: In the non-ARC case, this will still be a hard error if the 3062 // definition is found in a module that's not visible. 3063 const ObjCInterfaceDecl *forwardClass = nullptr; 3064 if (RequireCompleteType(Loc, OCIType->getPointeeType(), 3065 getLangOpts().ObjCAutoRefCount 3066 ? diag::err_arc_receiver_forward_instance 3067 : diag::warn_receiver_forward_instance, 3068 RecRange)) { 3069 if (getLangOpts().ObjCAutoRefCount) 3070 return ExprError(); 3071 3072 forwardClass = OCIType->getInterfaceDecl(); 3073 Diag(Receiver ? Receiver->getBeginLoc() : SuperLoc, 3074 diag::note_receiver_is_id); 3075 Method = nullptr; 3076 } else { 3077 Method = ClassDecl->lookupInstanceMethod(Sel); 3078 } 3079 3080 if (!Method) 3081 // Search protocol qualifiers. 3082 Method = LookupMethodInQualifiedType(Sel, OCIType, true); 3083 3084 if (!Method) { 3085 // If we have implementations in scope, check "private" methods. 3086 Method = ClassDecl->lookupPrivateMethod(Sel); 3087 3088 if (!Method && getLangOpts().ObjCAutoRefCount) { 3089 Diag(SelLoc, diag::err_arc_may_not_respond) 3090 << OCIType->getPointeeType() << Sel << RecRange 3091 << SourceRange(SelectorLocs.front(), SelectorLocs.back()); 3092 return ExprError(); 3093 } 3094 3095 if (!Method && (!Receiver || !isSelfExpr(Receiver))) { 3096 // If we still haven't found a method, look in the global pool. This 3097 // behavior isn't very desirable, however we need it for GCC 3098 // compatibility. FIXME: should we deviate?? 3099 if (OCIType->qual_empty()) { 3100 SmallVector<ObjCMethodDecl*, 4> Methods; 3101 CollectMultipleMethodsInGlobalPool(Sel, Methods, 3102 true/*InstanceFirst*/, 3103 false/*CheckTheOther*/); 3104 if (!Methods.empty()) { 3105 // We choose the first method as the initial candidate, then try 3106 // to select a better one. 3107 Method = Methods[0]; 3108 3109 if (ObjCMethodDecl *BestMethod = 3110 SelectBestMethod(Sel, ArgsIn, Method->isInstanceMethod(), 3111 Methods)) 3112 Method = BestMethod; 3113 3114 AreMultipleMethodsInGlobalPool(Sel, Method, 3115 SourceRange(LBracLoc, RBracLoc), 3116 true/*receiverIdOrClass*/, 3117 Methods); 3118 } 3119 if (Method && !forwardClass) 3120 Diag(SelLoc, diag::warn_maynot_respond) 3121 << OCIType->getInterfaceDecl()->getIdentifier() 3122 << Sel << RecRange; 3123 } 3124 } 3125 } 3126 if (Method && DiagnoseUseOfDecl(Method, SelectorSlotLocs, forwardClass)) 3127 return ExprError(); 3128 } else { 3129 // Reject other random receiver types (e.g. structs). 3130 Diag(Loc, diag::err_bad_receiver_type) << ReceiverType << RecRange; 3131 return ExprError(); 3132 } 3133 } 3134 } 3135 3136 FunctionScopeInfo *DIFunctionScopeInfo = 3137 (Method && Method->getMethodFamily() == OMF_init) 3138 ? getEnclosingFunction() : nullptr; 3139 3140 if (Method && Method->isDirectMethod()) { 3141 if (ReceiverType->isObjCIdType() && !isImplicit) { 3142 Diag(Receiver->getExprLoc(), 3143 diag::err_messaging_unqualified_id_with_direct_method); 3144 Diag(Method->getLocation(), diag::note_direct_method_declared_at) 3145 << Method->getDeclName(); 3146 } 3147 3148 // Under ARC, self can't be assigned, and doing a direct call to `self` 3149 // when it's a Class is hence safe. For other cases, we can't trust `self` 3150 // is what we think it is, so we reject it. 3151 if (ReceiverType->isObjCClassType() && !isImplicit && 3152 !(Receiver->isObjCSelfExpr() && getLangOpts().ObjCAutoRefCount)) { 3153 { 3154 auto Builder = Diag(Receiver->getExprLoc(), 3155 diag::err_messaging_class_with_direct_method); 3156 if (Receiver->isObjCSelfExpr()) { 3157 Builder.AddFixItHint(FixItHint::CreateReplacement( 3158 RecRange, Method->getClassInterface()->getName())); 3159 } 3160 } 3161 Diag(Method->getLocation(), diag::note_direct_method_declared_at) 3162 << Method->getDeclName(); 3163 } 3164 3165 if (SuperLoc.isValid()) { 3166 { 3167 auto Builder = 3168 Diag(SuperLoc, diag::err_messaging_super_with_direct_method); 3169 if (ReceiverType->isObjCClassType()) { 3170 Builder.AddFixItHint(FixItHint::CreateReplacement( 3171 SuperLoc, Method->getClassInterface()->getName())); 3172 } else { 3173 Builder.AddFixItHint(FixItHint::CreateReplacement(SuperLoc, "self")); 3174 } 3175 } 3176 Diag(Method->getLocation(), diag::note_direct_method_declared_at) 3177 << Method->getDeclName(); 3178 } 3179 } else if (ReceiverType->isObjCIdType() && !isImplicit) { 3180 Diag(Receiver->getExprLoc(), diag::warn_messaging_unqualified_id); 3181 } 3182 3183 if (DIFunctionScopeInfo && 3184 DIFunctionScopeInfo->ObjCIsDesignatedInit && 3185 (SuperLoc.isValid() || isSelfExpr(Receiver))) { 3186 bool isDesignatedInitChain = false; 3187 if (SuperLoc.isValid()) { 3188 if (const ObjCObjectPointerType * 3189 OCIType = ReceiverType->getAsObjCInterfacePointerType()) { 3190 if (const ObjCInterfaceDecl *ID = OCIType->getInterfaceDecl()) { 3191 // Either we know this is a designated initializer or we 3192 // conservatively assume it because we don't know for sure. 3193 if (!ID->declaresOrInheritsDesignatedInitializers() || 3194 ID->isDesignatedInitializer(Sel)) { 3195 isDesignatedInitChain = true; 3196 DIFunctionScopeInfo->ObjCWarnForNoDesignatedInitChain = false; 3197 } 3198 } 3199 } 3200 } 3201 if (!isDesignatedInitChain) { 3202 const ObjCMethodDecl *InitMethod = nullptr; 3203 bool isDesignated = 3204 getCurMethodDecl()->isDesignatedInitializerForTheInterface(&InitMethod); 3205 assert(isDesignated && InitMethod); 3206 (void)isDesignated; 3207 Diag(SelLoc, SuperLoc.isValid() ? 3208 diag::warn_objc_designated_init_non_designated_init_call : 3209 diag::warn_objc_designated_init_non_super_designated_init_call); 3210 Diag(InitMethod->getLocation(), 3211 diag::note_objc_designated_init_marked_here); 3212 } 3213 } 3214 3215 if (DIFunctionScopeInfo && 3216 DIFunctionScopeInfo->ObjCIsSecondaryInit && 3217 (SuperLoc.isValid() || isSelfExpr(Receiver))) { 3218 if (SuperLoc.isValid()) { 3219 Diag(SelLoc, diag::warn_objc_secondary_init_super_init_call); 3220 } else { 3221 DIFunctionScopeInfo->ObjCWarnForNoInitDelegation = false; 3222 } 3223 } 3224 3225 // Check the message arguments. 3226 unsigned NumArgs = ArgsIn.size(); 3227 Expr **Args = ArgsIn.data(); 3228 QualType ReturnType; 3229 ExprValueKind VK = VK_PRValue; 3230 bool ClassMessage = (ReceiverType->isObjCClassType() || 3231 ReceiverType->isObjCQualifiedClassType()); 3232 if (CheckMessageArgumentTypes(Receiver, ReceiverType, 3233 MultiExprArg(Args, NumArgs), Sel, SelectorLocs, 3234 Method, ClassMessage, SuperLoc.isValid(), 3235 LBracLoc, RBracLoc, RecRange, ReturnType, VK)) 3236 return ExprError(); 3237 3238 if (Method && !Method->getReturnType()->isVoidType() && 3239 RequireCompleteType(LBracLoc, Method->getReturnType(), 3240 diag::err_illegal_message_expr_incomplete_type)) 3241 return ExprError(); 3242 3243 // In ARC, forbid the user from sending messages to 3244 // retain/release/autorelease/dealloc/retainCount explicitly. 3245 if (getLangOpts().ObjCAutoRefCount) { 3246 ObjCMethodFamily family = 3247 (Method ? Method->getMethodFamily() : Sel.getMethodFamily()); 3248 switch (family) { 3249 case OMF_init: 3250 if (Method) 3251 checkInitMethod(Method, ReceiverType); 3252 break; 3253 3254 case OMF_None: 3255 case OMF_alloc: 3256 case OMF_copy: 3257 case OMF_finalize: 3258 case OMF_mutableCopy: 3259 case OMF_new: 3260 case OMF_self: 3261 case OMF_initialize: 3262 break; 3263 3264 case OMF_dealloc: 3265 case OMF_retain: 3266 case OMF_release: 3267 case OMF_autorelease: 3268 case OMF_retainCount: 3269 Diag(SelLoc, diag::err_arc_illegal_explicit_message) 3270 << Sel << RecRange; 3271 break; 3272 3273 case OMF_performSelector: 3274 if (Method && NumArgs >= 1) { 3275 if (const auto *SelExp = 3276 dyn_cast<ObjCSelectorExpr>(Args[0]->IgnoreParens())) { 3277 Selector ArgSel = SelExp->getSelector(); 3278 ObjCMethodDecl *SelMethod = 3279 LookupInstanceMethodInGlobalPool(ArgSel, 3280 SelExp->getSourceRange()); 3281 if (!SelMethod) 3282 SelMethod = 3283 LookupFactoryMethodInGlobalPool(ArgSel, 3284 SelExp->getSourceRange()); 3285 if (SelMethod) { 3286 ObjCMethodFamily SelFamily = SelMethod->getMethodFamily(); 3287 switch (SelFamily) { 3288 case OMF_alloc: 3289 case OMF_copy: 3290 case OMF_mutableCopy: 3291 case OMF_new: 3292 case OMF_init: 3293 // Issue error, unless ns_returns_not_retained. 3294 if (!SelMethod->hasAttr<NSReturnsNotRetainedAttr>()) { 3295 // selector names a +1 method 3296 Diag(SelLoc, 3297 diag::err_arc_perform_selector_retains); 3298 Diag(SelMethod->getLocation(), diag::note_method_declared_at) 3299 << SelMethod->getDeclName(); 3300 } 3301 break; 3302 default: 3303 // +0 call. OK. unless ns_returns_retained. 3304 if (SelMethod->hasAttr<NSReturnsRetainedAttr>()) { 3305 // selector names a +1 method 3306 Diag(SelLoc, 3307 diag::err_arc_perform_selector_retains); 3308 Diag(SelMethod->getLocation(), diag::note_method_declared_at) 3309 << SelMethod->getDeclName(); 3310 } 3311 break; 3312 } 3313 } 3314 } else { 3315 // error (may leak). 3316 Diag(SelLoc, diag::warn_arc_perform_selector_leaks); 3317 Diag(Args[0]->getExprLoc(), diag::note_used_here); 3318 } 3319 } 3320 break; 3321 } 3322 } 3323 3324 DiagnoseCStringFormatDirectiveInObjCAPI(*this, Method, Sel, Args, NumArgs); 3325 3326 // Construct the appropriate ObjCMessageExpr instance. 3327 ObjCMessageExpr *Result; 3328 if (SuperLoc.isValid()) 3329 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 3330 SuperLoc, /*IsInstanceSuper=*/true, 3331 ReceiverType, Sel, SelectorLocs, Method, 3332 makeArrayRef(Args, NumArgs), RBracLoc, 3333 isImplicit); 3334 else { 3335 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 3336 Receiver, Sel, SelectorLocs, Method, 3337 makeArrayRef(Args, NumArgs), RBracLoc, 3338 isImplicit); 3339 if (!isImplicit) 3340 checkCocoaAPI(*this, Result); 3341 } 3342 if (Method) { 3343 bool IsClassObjectCall = ClassMessage; 3344 // 'self' message receivers in class methods should be treated as message 3345 // sends to the class object in order for the semantic checks to be 3346 // performed correctly. Messages to 'super' already count as class messages, 3347 // so they don't need to be handled here. 3348 if (Receiver && isSelfExpr(Receiver)) { 3349 if (const auto *OPT = ReceiverType->getAs<ObjCObjectPointerType>()) { 3350 if (OPT->getObjectType()->isObjCClass()) { 3351 if (const auto *CurMeth = getCurMethodDecl()) { 3352 IsClassObjectCall = true; 3353 ReceiverType = 3354 Context.getObjCInterfaceType(CurMeth->getClassInterface()); 3355 } 3356 } 3357 } 3358 } 3359 checkFoundationAPI(*this, SelLoc, Method, makeArrayRef(Args, NumArgs), 3360 ReceiverType, IsClassObjectCall); 3361 } 3362 3363 if (getLangOpts().ObjCAutoRefCount) { 3364 // In ARC, annotate delegate init calls. 3365 if (Result->getMethodFamily() == OMF_init && 3366 (SuperLoc.isValid() || isSelfExpr(Receiver))) { 3367 // Only consider init calls *directly* in init implementations, 3368 // not within blocks. 3369 ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(CurContext); 3370 if (method && method->getMethodFamily() == OMF_init) { 3371 // The implicit assignment to self means we also don't want to 3372 // consume the result. 3373 Result->setDelegateInitCall(true); 3374 return Result; 3375 } 3376 } 3377 3378 // In ARC, check for message sends which are likely to introduce 3379 // retain cycles. 3380 checkRetainCycles(Result); 3381 } 3382 3383 if (getLangOpts().ObjCWeak) { 3384 if (!isImplicit && Method) { 3385 if (const ObjCPropertyDecl *Prop = Method->findPropertyDecl()) { 3386 bool IsWeak = 3387 Prop->getPropertyAttributes() & ObjCPropertyAttribute::kind_weak; 3388 if (!IsWeak && Sel.isUnarySelector()) 3389 IsWeak = ReturnType.getObjCLifetime() & Qualifiers::OCL_Weak; 3390 if (IsWeak && !isUnevaluatedContext() && 3391 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, LBracLoc)) 3392 getCurFunction()->recordUseOfWeak(Result, Prop); 3393 } 3394 } 3395 } 3396 3397 CheckObjCCircularContainer(Result); 3398 3399 return MaybeBindToTemporary(Result); 3400 } 3401 3402 static void RemoveSelectorFromWarningCache(Sema &S, Expr* Arg) { 3403 if (ObjCSelectorExpr *OSE = 3404 dyn_cast<ObjCSelectorExpr>(Arg->IgnoreParenCasts())) { 3405 Selector Sel = OSE->getSelector(); 3406 SourceLocation Loc = OSE->getAtLoc(); 3407 auto Pos = S.ReferencedSelectors.find(Sel); 3408 if (Pos != S.ReferencedSelectors.end() && Pos->second == Loc) 3409 S.ReferencedSelectors.erase(Pos); 3410 } 3411 } 3412 3413 // ActOnInstanceMessage - used for both unary and keyword messages. 3414 // ArgExprs is optional - if it is present, the number of expressions 3415 // is obtained from Sel.getNumArgs(). 3416 ExprResult Sema::ActOnInstanceMessage(Scope *S, 3417 Expr *Receiver, 3418 Selector Sel, 3419 SourceLocation LBracLoc, 3420 ArrayRef<SourceLocation> SelectorLocs, 3421 SourceLocation RBracLoc, 3422 MultiExprArg Args) { 3423 if (!Receiver) 3424 return ExprError(); 3425 3426 // A ParenListExpr can show up while doing error recovery with invalid code. 3427 if (isa<ParenListExpr>(Receiver)) { 3428 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Receiver); 3429 if (Result.isInvalid()) return ExprError(); 3430 Receiver = Result.get(); 3431 } 3432 3433 if (RespondsToSelectorSel.isNull()) { 3434 IdentifierInfo *SelectorId = &Context.Idents.get("respondsToSelector"); 3435 RespondsToSelectorSel = Context.Selectors.getUnarySelector(SelectorId); 3436 } 3437 if (Sel == RespondsToSelectorSel) 3438 RemoveSelectorFromWarningCache(*this, Args[0]); 3439 3440 return BuildInstanceMessage(Receiver, Receiver->getType(), 3441 /*SuperLoc=*/SourceLocation(), Sel, 3442 /*Method=*/nullptr, LBracLoc, SelectorLocs, 3443 RBracLoc, Args); 3444 } 3445 3446 enum ARCConversionTypeClass { 3447 /// int, void, struct A 3448 ACTC_none, 3449 3450 /// id, void (^)() 3451 ACTC_retainable, 3452 3453 /// id*, id***, void (^*)(), 3454 ACTC_indirectRetainable, 3455 3456 /// void* might be a normal C type, or it might a CF type. 3457 ACTC_voidPtr, 3458 3459 /// struct A* 3460 ACTC_coreFoundation 3461 }; 3462 3463 static bool isAnyRetainable(ARCConversionTypeClass ACTC) { 3464 return (ACTC == ACTC_retainable || 3465 ACTC == ACTC_coreFoundation || 3466 ACTC == ACTC_voidPtr); 3467 } 3468 3469 static bool isAnyCLike(ARCConversionTypeClass ACTC) { 3470 return ACTC == ACTC_none || 3471 ACTC == ACTC_voidPtr || 3472 ACTC == ACTC_coreFoundation; 3473 } 3474 3475 static ARCConversionTypeClass classifyTypeForARCConversion(QualType type) { 3476 bool isIndirect = false; 3477 3478 // Ignore an outermost reference type. 3479 if (const ReferenceType *ref = type->getAs<ReferenceType>()) { 3480 type = ref->getPointeeType(); 3481 isIndirect = true; 3482 } 3483 3484 // Drill through pointers and arrays recursively. 3485 while (true) { 3486 if (const PointerType *ptr = type->getAs<PointerType>()) { 3487 type = ptr->getPointeeType(); 3488 3489 // The first level of pointer may be the innermost pointer on a CF type. 3490 if (!isIndirect) { 3491 if (type->isVoidType()) return ACTC_voidPtr; 3492 if (type->isRecordType()) return ACTC_coreFoundation; 3493 } 3494 } else if (const ArrayType *array = type->getAsArrayTypeUnsafe()) { 3495 type = QualType(array->getElementType()->getBaseElementTypeUnsafe(), 0); 3496 } else { 3497 break; 3498 } 3499 isIndirect = true; 3500 } 3501 3502 if (isIndirect) { 3503 if (type->isObjCARCBridgableType()) 3504 return ACTC_indirectRetainable; 3505 return ACTC_none; 3506 } 3507 3508 if (type->isObjCARCBridgableType()) 3509 return ACTC_retainable; 3510 3511 return ACTC_none; 3512 } 3513 3514 namespace { 3515 /// A result from the cast checker. 3516 enum ACCResult { 3517 /// Cannot be casted. 3518 ACC_invalid, 3519 3520 /// Can be safely retained or not retained. 3521 ACC_bottom, 3522 3523 /// Can be casted at +0. 3524 ACC_plusZero, 3525 3526 /// Can be casted at +1. 3527 ACC_plusOne 3528 }; 3529 ACCResult merge(ACCResult left, ACCResult right) { 3530 if (left == right) return left; 3531 if (left == ACC_bottom) return right; 3532 if (right == ACC_bottom) return left; 3533 return ACC_invalid; 3534 } 3535 3536 /// A checker which white-lists certain expressions whose conversion 3537 /// to or from retainable type would otherwise be forbidden in ARC. 3538 class ARCCastChecker : public StmtVisitor<ARCCastChecker, ACCResult> { 3539 typedef StmtVisitor<ARCCastChecker, ACCResult> super; 3540 3541 ASTContext &Context; 3542 ARCConversionTypeClass SourceClass; 3543 ARCConversionTypeClass TargetClass; 3544 bool Diagnose; 3545 3546 static bool isCFType(QualType type) { 3547 // Someday this can use ns_bridged. For now, it has to do this. 3548 return type->isCARCBridgableType(); 3549 } 3550 3551 public: 3552 ARCCastChecker(ASTContext &Context, ARCConversionTypeClass source, 3553 ARCConversionTypeClass target, bool diagnose) 3554 : Context(Context), SourceClass(source), TargetClass(target), 3555 Diagnose(diagnose) {} 3556 3557 using super::Visit; 3558 ACCResult Visit(Expr *e) { 3559 return super::Visit(e->IgnoreParens()); 3560 } 3561 3562 ACCResult VisitStmt(Stmt *s) { 3563 return ACC_invalid; 3564 } 3565 3566 /// Null pointer constants can be casted however you please. 3567 ACCResult VisitExpr(Expr *e) { 3568 if (e->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull)) 3569 return ACC_bottom; 3570 return ACC_invalid; 3571 } 3572 3573 /// Objective-C string literals can be safely casted. 3574 ACCResult VisitObjCStringLiteral(ObjCStringLiteral *e) { 3575 // If we're casting to any retainable type, go ahead. Global 3576 // strings are immune to retains, so this is bottom. 3577 if (isAnyRetainable(TargetClass)) return ACC_bottom; 3578 3579 return ACC_invalid; 3580 } 3581 3582 /// Look through certain implicit and explicit casts. 3583 ACCResult VisitCastExpr(CastExpr *e) { 3584 switch (e->getCastKind()) { 3585 case CK_NullToPointer: 3586 return ACC_bottom; 3587 3588 case CK_NoOp: 3589 case CK_LValueToRValue: 3590 case CK_BitCast: 3591 case CK_CPointerToObjCPointerCast: 3592 case CK_BlockPointerToObjCPointerCast: 3593 case CK_AnyPointerToBlockPointerCast: 3594 return Visit(e->getSubExpr()); 3595 3596 default: 3597 return ACC_invalid; 3598 } 3599 } 3600 3601 /// Look through unary extension. 3602 ACCResult VisitUnaryExtension(UnaryOperator *e) { 3603 return Visit(e->getSubExpr()); 3604 } 3605 3606 /// Ignore the LHS of a comma operator. 3607 ACCResult VisitBinComma(BinaryOperator *e) { 3608 return Visit(e->getRHS()); 3609 } 3610 3611 /// Conditional operators are okay if both sides are okay. 3612 ACCResult VisitConditionalOperator(ConditionalOperator *e) { 3613 ACCResult left = Visit(e->getTrueExpr()); 3614 if (left == ACC_invalid) return ACC_invalid; 3615 return merge(left, Visit(e->getFalseExpr())); 3616 } 3617 3618 /// Look through pseudo-objects. 3619 ACCResult VisitPseudoObjectExpr(PseudoObjectExpr *e) { 3620 // If we're getting here, we should always have a result. 3621 return Visit(e->getResultExpr()); 3622 } 3623 3624 /// Statement expressions are okay if their result expression is okay. 3625 ACCResult VisitStmtExpr(StmtExpr *e) { 3626 return Visit(e->getSubStmt()->body_back()); 3627 } 3628 3629 /// Some declaration references are okay. 3630 ACCResult VisitDeclRefExpr(DeclRefExpr *e) { 3631 VarDecl *var = dyn_cast<VarDecl>(e->getDecl()); 3632 // References to global constants are okay. 3633 if (isAnyRetainable(TargetClass) && 3634 isAnyRetainable(SourceClass) && 3635 var && 3636 !var->hasDefinition(Context) && 3637 var->getType().isConstQualified()) { 3638 3639 // In system headers, they can also be assumed to be immune to retains. 3640 // These are things like 'kCFStringTransformToLatin'. 3641 if (Context.getSourceManager().isInSystemHeader(var->getLocation())) 3642 return ACC_bottom; 3643 3644 return ACC_plusZero; 3645 } 3646 3647 // Nothing else. 3648 return ACC_invalid; 3649 } 3650 3651 /// Some calls are okay. 3652 ACCResult VisitCallExpr(CallExpr *e) { 3653 if (FunctionDecl *fn = e->getDirectCallee()) 3654 if (ACCResult result = checkCallToFunction(fn)) 3655 return result; 3656 3657 return super::VisitCallExpr(e); 3658 } 3659 3660 ACCResult checkCallToFunction(FunctionDecl *fn) { 3661 // Require a CF*Ref return type. 3662 if (!isCFType(fn->getReturnType())) 3663 return ACC_invalid; 3664 3665 if (!isAnyRetainable(TargetClass)) 3666 return ACC_invalid; 3667 3668 // Honor an explicit 'not retained' attribute. 3669 if (fn->hasAttr<CFReturnsNotRetainedAttr>()) 3670 return ACC_plusZero; 3671 3672 // Honor an explicit 'retained' attribute, except that for 3673 // now we're not going to permit implicit handling of +1 results, 3674 // because it's a bit frightening. 3675 if (fn->hasAttr<CFReturnsRetainedAttr>()) 3676 return Diagnose ? ACC_plusOne 3677 : ACC_invalid; // ACC_plusOne if we start accepting this 3678 3679 // Recognize this specific builtin function, which is used by CFSTR. 3680 unsigned builtinID = fn->getBuiltinID(); 3681 if (builtinID == Builtin::BI__builtin___CFStringMakeConstantString) 3682 return ACC_bottom; 3683 3684 // Otherwise, don't do anything implicit with an unaudited function. 3685 if (!fn->hasAttr<CFAuditedTransferAttr>()) 3686 return ACC_invalid; 3687 3688 // Otherwise, it's +0 unless it follows the create convention. 3689 if (ento::coreFoundation::followsCreateRule(fn)) 3690 return Diagnose ? ACC_plusOne 3691 : ACC_invalid; // ACC_plusOne if we start accepting this 3692 3693 return ACC_plusZero; 3694 } 3695 3696 ACCResult VisitObjCMessageExpr(ObjCMessageExpr *e) { 3697 return checkCallToMethod(e->getMethodDecl()); 3698 } 3699 3700 ACCResult VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *e) { 3701 ObjCMethodDecl *method; 3702 if (e->isExplicitProperty()) 3703 method = e->getExplicitProperty()->getGetterMethodDecl(); 3704 else 3705 method = e->getImplicitPropertyGetter(); 3706 return checkCallToMethod(method); 3707 } 3708 3709 ACCResult checkCallToMethod(ObjCMethodDecl *method) { 3710 if (!method) return ACC_invalid; 3711 3712 // Check for message sends to functions returning CF types. We 3713 // just obey the Cocoa conventions with these, even though the 3714 // return type is CF. 3715 if (!isAnyRetainable(TargetClass) || !isCFType(method->getReturnType())) 3716 return ACC_invalid; 3717 3718 // If the method is explicitly marked not-retained, it's +0. 3719 if (method->hasAttr<CFReturnsNotRetainedAttr>()) 3720 return ACC_plusZero; 3721 3722 // If the method is explicitly marked as returning retained, or its 3723 // selector follows a +1 Cocoa convention, treat it as +1. 3724 if (method->hasAttr<CFReturnsRetainedAttr>()) 3725 return ACC_plusOne; 3726 3727 switch (method->getSelector().getMethodFamily()) { 3728 case OMF_alloc: 3729 case OMF_copy: 3730 case OMF_mutableCopy: 3731 case OMF_new: 3732 return ACC_plusOne; 3733 3734 default: 3735 // Otherwise, treat it as +0. 3736 return ACC_plusZero; 3737 } 3738 } 3739 }; 3740 } // end anonymous namespace 3741 3742 bool Sema::isKnownName(StringRef name) { 3743 if (name.empty()) 3744 return false; 3745 LookupResult R(*this, &Context.Idents.get(name), SourceLocation(), 3746 Sema::LookupOrdinaryName); 3747 return LookupName(R, TUScope, false); 3748 } 3749 3750 template <typename DiagBuilderT> 3751 static void addFixitForObjCARCConversion( 3752 Sema &S, DiagBuilderT &DiagB, Sema::CheckedConversionKind CCK, 3753 SourceLocation afterLParen, QualType castType, Expr *castExpr, 3754 Expr *realCast, const char *bridgeKeyword, const char *CFBridgeName) { 3755 // We handle C-style and implicit casts here. 3756 switch (CCK) { 3757 case Sema::CCK_ImplicitConversion: 3758 case Sema::CCK_ForBuiltinOverloadedOp: 3759 case Sema::CCK_CStyleCast: 3760 case Sema::CCK_OtherCast: 3761 break; 3762 case Sema::CCK_FunctionalCast: 3763 return; 3764 } 3765 3766 if (CFBridgeName) { 3767 if (CCK == Sema::CCK_OtherCast) { 3768 if (const CXXNamedCastExpr *NCE = dyn_cast<CXXNamedCastExpr>(realCast)) { 3769 SourceRange range(NCE->getOperatorLoc(), 3770 NCE->getAngleBrackets().getEnd()); 3771 SmallString<32> BridgeCall; 3772 3773 SourceManager &SM = S.getSourceManager(); 3774 char PrevChar = *SM.getCharacterData(range.getBegin().getLocWithOffset(-1)); 3775 if (Lexer::isIdentifierBodyChar(PrevChar, S.getLangOpts())) 3776 BridgeCall += ' '; 3777 3778 BridgeCall += CFBridgeName; 3779 DiagB.AddFixItHint(FixItHint::CreateReplacement(range, BridgeCall)); 3780 } 3781 return; 3782 } 3783 Expr *castedE = castExpr; 3784 if (CStyleCastExpr *CCE = dyn_cast<CStyleCastExpr>(castedE)) 3785 castedE = CCE->getSubExpr(); 3786 castedE = castedE->IgnoreImpCasts(); 3787 SourceRange range = castedE->getSourceRange(); 3788 3789 SmallString<32> BridgeCall; 3790 3791 SourceManager &SM = S.getSourceManager(); 3792 char PrevChar = *SM.getCharacterData(range.getBegin().getLocWithOffset(-1)); 3793 if (Lexer::isIdentifierBodyChar(PrevChar, S.getLangOpts())) 3794 BridgeCall += ' '; 3795 3796 BridgeCall += CFBridgeName; 3797 3798 if (isa<ParenExpr>(castedE)) { 3799 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), 3800 BridgeCall)); 3801 } else { 3802 BridgeCall += '('; 3803 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), 3804 BridgeCall)); 3805 DiagB.AddFixItHint(FixItHint::CreateInsertion( 3806 S.getLocForEndOfToken(range.getEnd()), 3807 ")")); 3808 } 3809 return; 3810 } 3811 3812 if (CCK == Sema::CCK_CStyleCast) { 3813 DiagB.AddFixItHint(FixItHint::CreateInsertion(afterLParen, bridgeKeyword)); 3814 } else if (CCK == Sema::CCK_OtherCast) { 3815 if (const CXXNamedCastExpr *NCE = dyn_cast<CXXNamedCastExpr>(realCast)) { 3816 std::string castCode = "("; 3817 castCode += bridgeKeyword; 3818 castCode += castType.getAsString(); 3819 castCode += ")"; 3820 SourceRange Range(NCE->getOperatorLoc(), 3821 NCE->getAngleBrackets().getEnd()); 3822 DiagB.AddFixItHint(FixItHint::CreateReplacement(Range, castCode)); 3823 } 3824 } else { 3825 std::string castCode = "("; 3826 castCode += bridgeKeyword; 3827 castCode += castType.getAsString(); 3828 castCode += ")"; 3829 Expr *castedE = castExpr->IgnoreImpCasts(); 3830 SourceRange range = castedE->getSourceRange(); 3831 if (isa<ParenExpr>(castedE)) { 3832 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), 3833 castCode)); 3834 } else { 3835 castCode += "("; 3836 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), 3837 castCode)); 3838 DiagB.AddFixItHint(FixItHint::CreateInsertion( 3839 S.getLocForEndOfToken(range.getEnd()), 3840 ")")); 3841 } 3842 } 3843 } 3844 3845 template <typename T> 3846 static inline T *getObjCBridgeAttr(const TypedefType *TD) { 3847 TypedefNameDecl *TDNDecl = TD->getDecl(); 3848 QualType QT = TDNDecl->getUnderlyingType(); 3849 if (QT->isPointerType()) { 3850 QT = QT->getPointeeType(); 3851 if (const RecordType *RT = QT->getAs<RecordType>()) { 3852 for (auto *Redecl : RT->getDecl()->getMostRecentDecl()->redecls()) { 3853 if (auto *attr = Redecl->getAttr<T>()) 3854 return attr; 3855 } 3856 } 3857 } 3858 return nullptr; 3859 } 3860 3861 static ObjCBridgeRelatedAttr *ObjCBridgeRelatedAttrFromType(QualType T, 3862 TypedefNameDecl *&TDNDecl) { 3863 while (const TypedefType *TD = dyn_cast<TypedefType>(T.getTypePtr())) { 3864 TDNDecl = TD->getDecl(); 3865 if (ObjCBridgeRelatedAttr *ObjCBAttr = 3866 getObjCBridgeAttr<ObjCBridgeRelatedAttr>(TD)) 3867 return ObjCBAttr; 3868 T = TDNDecl->getUnderlyingType(); 3869 } 3870 return nullptr; 3871 } 3872 3873 static void 3874 diagnoseObjCARCConversion(Sema &S, SourceRange castRange, 3875 QualType castType, ARCConversionTypeClass castACTC, 3876 Expr *castExpr, Expr *realCast, 3877 ARCConversionTypeClass exprACTC, 3878 Sema::CheckedConversionKind CCK) { 3879 SourceLocation loc = 3880 (castRange.isValid() ? castRange.getBegin() : castExpr->getExprLoc()); 3881 3882 if (S.makeUnavailableInSystemHeader(loc, 3883 UnavailableAttr::IR_ARCForbiddenConversion)) 3884 return; 3885 3886 QualType castExprType = castExpr->getType(); 3887 // Defer emitting a diagnostic for bridge-related casts; that will be 3888 // handled by CheckObjCBridgeRelatedConversions. 3889 TypedefNameDecl *TDNDecl = nullptr; 3890 if ((castACTC == ACTC_coreFoundation && exprACTC == ACTC_retainable && 3891 ObjCBridgeRelatedAttrFromType(castType, TDNDecl)) || 3892 (exprACTC == ACTC_coreFoundation && castACTC == ACTC_retainable && 3893 ObjCBridgeRelatedAttrFromType(castExprType, TDNDecl))) 3894 return; 3895 3896 unsigned srcKind = 0; 3897 switch (exprACTC) { 3898 case ACTC_none: 3899 case ACTC_coreFoundation: 3900 case ACTC_voidPtr: 3901 srcKind = (castExprType->isPointerType() ? 1 : 0); 3902 break; 3903 case ACTC_retainable: 3904 srcKind = (castExprType->isBlockPointerType() ? 2 : 3); 3905 break; 3906 case ACTC_indirectRetainable: 3907 srcKind = 4; 3908 break; 3909 } 3910 3911 // Check whether this could be fixed with a bridge cast. 3912 SourceLocation afterLParen = S.getLocForEndOfToken(castRange.getBegin()); 3913 SourceLocation noteLoc = afterLParen.isValid() ? afterLParen : loc; 3914 3915 unsigned convKindForDiag = Sema::isCast(CCK) ? 0 : 1; 3916 3917 // Bridge from an ARC type to a CF type. 3918 if (castACTC == ACTC_retainable && isAnyRetainable(exprACTC)) { 3919 3920 S.Diag(loc, diag::err_arc_cast_requires_bridge) 3921 << convKindForDiag 3922 << 2 // of C pointer type 3923 << castExprType 3924 << unsigned(castType->isBlockPointerType()) // to ObjC|block type 3925 << castType 3926 << castRange 3927 << castExpr->getSourceRange(); 3928 bool br = S.isKnownName("CFBridgingRelease"); 3929 ACCResult CreateRule = 3930 ARCCastChecker(S.Context, exprACTC, castACTC, true).Visit(castExpr); 3931 assert(CreateRule != ACC_bottom && "This cast should already be accepted."); 3932 if (CreateRule != ACC_plusOne) 3933 { 3934 auto DiagB = (CCK != Sema::CCK_OtherCast) 3935 ? S.Diag(noteLoc, diag::note_arc_bridge) 3936 : S.Diag(noteLoc, diag::note_arc_cstyle_bridge); 3937 3938 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, 3939 castType, castExpr, realCast, "__bridge ", 3940 nullptr); 3941 } 3942 if (CreateRule != ACC_plusZero) 3943 { 3944 auto DiagB = (CCK == Sema::CCK_OtherCast && !br) 3945 ? S.Diag(noteLoc, diag::note_arc_cstyle_bridge_transfer) 3946 << castExprType 3947 : S.Diag(br ? castExpr->getExprLoc() : noteLoc, 3948 diag::note_arc_bridge_transfer) 3949 << castExprType << br; 3950 3951 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, 3952 castType, castExpr, realCast, "__bridge_transfer ", 3953 br ? "CFBridgingRelease" : nullptr); 3954 } 3955 3956 return; 3957 } 3958 3959 // Bridge from a CF type to an ARC type. 3960 if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC)) { 3961 bool br = S.isKnownName("CFBridgingRetain"); 3962 S.Diag(loc, diag::err_arc_cast_requires_bridge) 3963 << convKindForDiag 3964 << unsigned(castExprType->isBlockPointerType()) // of ObjC|block type 3965 << castExprType 3966 << 2 // to C pointer type 3967 << castType 3968 << castRange 3969 << castExpr->getSourceRange(); 3970 ACCResult CreateRule = 3971 ARCCastChecker(S.Context, exprACTC, castACTC, true).Visit(castExpr); 3972 assert(CreateRule != ACC_bottom && "This cast should already be accepted."); 3973 if (CreateRule != ACC_plusOne) 3974 { 3975 auto DiagB = (CCK != Sema::CCK_OtherCast) 3976 ? S.Diag(noteLoc, diag::note_arc_bridge) 3977 : S.Diag(noteLoc, diag::note_arc_cstyle_bridge); 3978 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, 3979 castType, castExpr, realCast, "__bridge ", 3980 nullptr); 3981 } 3982 if (CreateRule != ACC_plusZero) 3983 { 3984 auto DiagB = (CCK == Sema::CCK_OtherCast && !br) 3985 ? S.Diag(noteLoc, diag::note_arc_cstyle_bridge_retained) 3986 << castType 3987 : S.Diag(br ? castExpr->getExprLoc() : noteLoc, 3988 diag::note_arc_bridge_retained) 3989 << castType << br; 3990 3991 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, 3992 castType, castExpr, realCast, "__bridge_retained ", 3993 br ? "CFBridgingRetain" : nullptr); 3994 } 3995 3996 return; 3997 } 3998 3999 S.Diag(loc, diag::err_arc_mismatched_cast) 4000 << !convKindForDiag 4001 << srcKind << castExprType << castType 4002 << castRange << castExpr->getSourceRange(); 4003 } 4004 4005 template <typename TB> 4006 static bool CheckObjCBridgeNSCast(Sema &S, QualType castType, Expr *castExpr, 4007 bool &HadTheAttribute, bool warn) { 4008 QualType T = castExpr->getType(); 4009 HadTheAttribute = false; 4010 while (const TypedefType *TD = dyn_cast<TypedefType>(T.getTypePtr())) { 4011 TypedefNameDecl *TDNDecl = TD->getDecl(); 4012 if (TB *ObjCBAttr = getObjCBridgeAttr<TB>(TD)) { 4013 if (IdentifierInfo *Parm = ObjCBAttr->getBridgedType()) { 4014 HadTheAttribute = true; 4015 if (Parm->isStr("id")) 4016 return true; 4017 4018 NamedDecl *Target = nullptr; 4019 // Check for an existing type with this name. 4020 LookupResult R(S, DeclarationName(Parm), SourceLocation(), 4021 Sema::LookupOrdinaryName); 4022 if (S.LookupName(R, S.TUScope)) { 4023 Target = R.getFoundDecl(); 4024 if (Target && isa<ObjCInterfaceDecl>(Target)) { 4025 ObjCInterfaceDecl *ExprClass = cast<ObjCInterfaceDecl>(Target); 4026 if (const ObjCObjectPointerType *InterfacePointerType = 4027 castType->getAsObjCInterfacePointerType()) { 4028 ObjCInterfaceDecl *CastClass 4029 = InterfacePointerType->getObjectType()->getInterface(); 4030 if ((CastClass == ExprClass) || 4031 (CastClass && CastClass->isSuperClassOf(ExprClass))) 4032 return true; 4033 if (warn) 4034 S.Diag(castExpr->getBeginLoc(), diag::warn_objc_invalid_bridge) 4035 << T << Target->getName() << castType->getPointeeType(); 4036 return false; 4037 } else if (castType->isObjCIdType() || 4038 (S.Context.ObjCObjectAdoptsQTypeProtocols( 4039 castType, ExprClass))) 4040 // ok to cast to 'id'. 4041 // casting to id<p-list> is ok if bridge type adopts all of 4042 // p-list protocols. 4043 return true; 4044 else { 4045 if (warn) { 4046 S.Diag(castExpr->getBeginLoc(), diag::warn_objc_invalid_bridge) 4047 << T << Target->getName() << castType; 4048 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4049 S.Diag(Target->getBeginLoc(), diag::note_declared_at); 4050 } 4051 return false; 4052 } 4053 } 4054 } else if (!castType->isObjCIdType()) { 4055 S.Diag(castExpr->getBeginLoc(), 4056 diag::err_objc_cf_bridged_not_interface) 4057 << castExpr->getType() << Parm; 4058 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4059 if (Target) 4060 S.Diag(Target->getBeginLoc(), diag::note_declared_at); 4061 } 4062 return true; 4063 } 4064 return false; 4065 } 4066 T = TDNDecl->getUnderlyingType(); 4067 } 4068 return true; 4069 } 4070 4071 template <typename TB> 4072 static bool CheckObjCBridgeCFCast(Sema &S, QualType castType, Expr *castExpr, 4073 bool &HadTheAttribute, bool warn) { 4074 QualType T = castType; 4075 HadTheAttribute = false; 4076 while (const TypedefType *TD = dyn_cast<TypedefType>(T.getTypePtr())) { 4077 TypedefNameDecl *TDNDecl = TD->getDecl(); 4078 if (TB *ObjCBAttr = getObjCBridgeAttr<TB>(TD)) { 4079 if (IdentifierInfo *Parm = ObjCBAttr->getBridgedType()) { 4080 HadTheAttribute = true; 4081 if (Parm->isStr("id")) 4082 return true; 4083 4084 NamedDecl *Target = nullptr; 4085 // Check for an existing type with this name. 4086 LookupResult R(S, DeclarationName(Parm), SourceLocation(), 4087 Sema::LookupOrdinaryName); 4088 if (S.LookupName(R, S.TUScope)) { 4089 Target = R.getFoundDecl(); 4090 if (Target && isa<ObjCInterfaceDecl>(Target)) { 4091 ObjCInterfaceDecl *CastClass = cast<ObjCInterfaceDecl>(Target); 4092 if (const ObjCObjectPointerType *InterfacePointerType = 4093 castExpr->getType()->getAsObjCInterfacePointerType()) { 4094 ObjCInterfaceDecl *ExprClass 4095 = InterfacePointerType->getObjectType()->getInterface(); 4096 if ((CastClass == ExprClass) || 4097 (ExprClass && CastClass->isSuperClassOf(ExprClass))) 4098 return true; 4099 if (warn) { 4100 S.Diag(castExpr->getBeginLoc(), 4101 diag::warn_objc_invalid_bridge_to_cf) 4102 << castExpr->getType()->getPointeeType() << T; 4103 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4104 } 4105 return false; 4106 } else if (castExpr->getType()->isObjCIdType() || 4107 (S.Context.QIdProtocolsAdoptObjCObjectProtocols( 4108 castExpr->getType(), CastClass))) 4109 // ok to cast an 'id' expression to a CFtype. 4110 // ok to cast an 'id<plist>' expression to CFtype provided plist 4111 // adopts all of CFtype's ObjetiveC's class plist. 4112 return true; 4113 else { 4114 if (warn) { 4115 S.Diag(castExpr->getBeginLoc(), 4116 diag::warn_objc_invalid_bridge_to_cf) 4117 << castExpr->getType() << castType; 4118 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4119 S.Diag(Target->getBeginLoc(), diag::note_declared_at); 4120 } 4121 return false; 4122 } 4123 } 4124 } 4125 S.Diag(castExpr->getBeginLoc(), 4126 diag::err_objc_ns_bridged_invalid_cfobject) 4127 << castExpr->getType() << castType; 4128 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4129 if (Target) 4130 S.Diag(Target->getBeginLoc(), diag::note_declared_at); 4131 return true; 4132 } 4133 return false; 4134 } 4135 T = TDNDecl->getUnderlyingType(); 4136 } 4137 return true; 4138 } 4139 4140 void Sema::CheckTollFreeBridgeCast(QualType castType, Expr *castExpr) { 4141 if (!getLangOpts().ObjC) 4142 return; 4143 // warn in presence of __bridge casting to or from a toll free bridge cast. 4144 ARCConversionTypeClass exprACTC = classifyTypeForARCConversion(castExpr->getType()); 4145 ARCConversionTypeClass castACTC = classifyTypeForARCConversion(castType); 4146 if (castACTC == ACTC_retainable && exprACTC == ACTC_coreFoundation) { 4147 bool HasObjCBridgeAttr; 4148 bool ObjCBridgeAttrWillNotWarn = 4149 CheckObjCBridgeNSCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr, 4150 false); 4151 if (ObjCBridgeAttrWillNotWarn && HasObjCBridgeAttr) 4152 return; 4153 bool HasObjCBridgeMutableAttr; 4154 bool ObjCBridgeMutableAttrWillNotWarn = 4155 CheckObjCBridgeNSCast<ObjCBridgeMutableAttr>(*this, castType, castExpr, 4156 HasObjCBridgeMutableAttr, false); 4157 if (ObjCBridgeMutableAttrWillNotWarn && HasObjCBridgeMutableAttr) 4158 return; 4159 4160 if (HasObjCBridgeAttr) 4161 CheckObjCBridgeNSCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr, 4162 true); 4163 else if (HasObjCBridgeMutableAttr) 4164 CheckObjCBridgeNSCast<ObjCBridgeMutableAttr>(*this, castType, castExpr, 4165 HasObjCBridgeMutableAttr, true); 4166 } 4167 else if (castACTC == ACTC_coreFoundation && exprACTC == ACTC_retainable) { 4168 bool HasObjCBridgeAttr; 4169 bool ObjCBridgeAttrWillNotWarn = 4170 CheckObjCBridgeCFCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr, 4171 false); 4172 if (ObjCBridgeAttrWillNotWarn && HasObjCBridgeAttr) 4173 return; 4174 bool HasObjCBridgeMutableAttr; 4175 bool ObjCBridgeMutableAttrWillNotWarn = 4176 CheckObjCBridgeCFCast<ObjCBridgeMutableAttr>(*this, castType, castExpr, 4177 HasObjCBridgeMutableAttr, false); 4178 if (ObjCBridgeMutableAttrWillNotWarn && HasObjCBridgeMutableAttr) 4179 return; 4180 4181 if (HasObjCBridgeAttr) 4182 CheckObjCBridgeCFCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr, 4183 true); 4184 else if (HasObjCBridgeMutableAttr) 4185 CheckObjCBridgeCFCast<ObjCBridgeMutableAttr>(*this, castType, castExpr, 4186 HasObjCBridgeMutableAttr, true); 4187 } 4188 } 4189 4190 void Sema::CheckObjCBridgeRelatedCast(QualType castType, Expr *castExpr) { 4191 QualType SrcType = castExpr->getType(); 4192 if (ObjCPropertyRefExpr *PRE = dyn_cast<ObjCPropertyRefExpr>(castExpr)) { 4193 if (PRE->isExplicitProperty()) { 4194 if (ObjCPropertyDecl *PDecl = PRE->getExplicitProperty()) 4195 SrcType = PDecl->getType(); 4196 } 4197 else if (PRE->isImplicitProperty()) { 4198 if (ObjCMethodDecl *Getter = PRE->getImplicitPropertyGetter()) 4199 SrcType = Getter->getReturnType(); 4200 } 4201 } 4202 4203 ARCConversionTypeClass srcExprACTC = classifyTypeForARCConversion(SrcType); 4204 ARCConversionTypeClass castExprACTC = classifyTypeForARCConversion(castType); 4205 if (srcExprACTC != ACTC_retainable || castExprACTC != ACTC_coreFoundation) 4206 return; 4207 CheckObjCBridgeRelatedConversions(castExpr->getBeginLoc(), castType, SrcType, 4208 castExpr); 4209 } 4210 4211 bool Sema::CheckTollFreeBridgeStaticCast(QualType castType, Expr *castExpr, 4212 CastKind &Kind) { 4213 if (!getLangOpts().ObjC) 4214 return false; 4215 ARCConversionTypeClass exprACTC = 4216 classifyTypeForARCConversion(castExpr->getType()); 4217 ARCConversionTypeClass castACTC = classifyTypeForARCConversion(castType); 4218 if ((castACTC == ACTC_retainable && exprACTC == ACTC_coreFoundation) || 4219 (castACTC == ACTC_coreFoundation && exprACTC == ACTC_retainable)) { 4220 CheckTollFreeBridgeCast(castType, castExpr); 4221 Kind = (castACTC == ACTC_coreFoundation) ? CK_BitCast 4222 : CK_CPointerToObjCPointerCast; 4223 return true; 4224 } 4225 return false; 4226 } 4227 4228 bool Sema::checkObjCBridgeRelatedComponents(SourceLocation Loc, 4229 QualType DestType, QualType SrcType, 4230 ObjCInterfaceDecl *&RelatedClass, 4231 ObjCMethodDecl *&ClassMethod, 4232 ObjCMethodDecl *&InstanceMethod, 4233 TypedefNameDecl *&TDNDecl, 4234 bool CfToNs, bool Diagnose) { 4235 QualType T = CfToNs ? SrcType : DestType; 4236 ObjCBridgeRelatedAttr *ObjCBAttr = ObjCBridgeRelatedAttrFromType(T, TDNDecl); 4237 if (!ObjCBAttr) 4238 return false; 4239 4240 IdentifierInfo *RCId = ObjCBAttr->getRelatedClass(); 4241 IdentifierInfo *CMId = ObjCBAttr->getClassMethod(); 4242 IdentifierInfo *IMId = ObjCBAttr->getInstanceMethod(); 4243 if (!RCId) 4244 return false; 4245 NamedDecl *Target = nullptr; 4246 // Check for an existing type with this name. 4247 LookupResult R(*this, DeclarationName(RCId), SourceLocation(), 4248 Sema::LookupOrdinaryName); 4249 if (!LookupName(R, TUScope)) { 4250 if (Diagnose) { 4251 Diag(Loc, diag::err_objc_bridged_related_invalid_class) << RCId 4252 << SrcType << DestType; 4253 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4254 } 4255 return false; 4256 } 4257 Target = R.getFoundDecl(); 4258 if (Target && isa<ObjCInterfaceDecl>(Target)) 4259 RelatedClass = cast<ObjCInterfaceDecl>(Target); 4260 else { 4261 if (Diagnose) { 4262 Diag(Loc, diag::err_objc_bridged_related_invalid_class_name) << RCId 4263 << SrcType << DestType; 4264 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4265 if (Target) 4266 Diag(Target->getBeginLoc(), diag::note_declared_at); 4267 } 4268 return false; 4269 } 4270 4271 // Check for an existing class method with the given selector name. 4272 if (CfToNs && CMId) { 4273 Selector Sel = Context.Selectors.getUnarySelector(CMId); 4274 ClassMethod = RelatedClass->lookupMethod(Sel, false); 4275 if (!ClassMethod) { 4276 if (Diagnose) { 4277 Diag(Loc, diag::err_objc_bridged_related_known_method) 4278 << SrcType << DestType << Sel << false; 4279 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4280 } 4281 return false; 4282 } 4283 } 4284 4285 // Check for an existing instance method with the given selector name. 4286 if (!CfToNs && IMId) { 4287 Selector Sel = Context.Selectors.getNullarySelector(IMId); 4288 InstanceMethod = RelatedClass->lookupMethod(Sel, true); 4289 if (!InstanceMethod) { 4290 if (Diagnose) { 4291 Diag(Loc, diag::err_objc_bridged_related_known_method) 4292 << SrcType << DestType << Sel << true; 4293 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4294 } 4295 return false; 4296 } 4297 } 4298 return true; 4299 } 4300 4301 bool 4302 Sema::CheckObjCBridgeRelatedConversions(SourceLocation Loc, 4303 QualType DestType, QualType SrcType, 4304 Expr *&SrcExpr, bool Diagnose) { 4305 ARCConversionTypeClass rhsExprACTC = classifyTypeForARCConversion(SrcType); 4306 ARCConversionTypeClass lhsExprACTC = classifyTypeForARCConversion(DestType); 4307 bool CfToNs = (rhsExprACTC == ACTC_coreFoundation && lhsExprACTC == ACTC_retainable); 4308 bool NsToCf = (rhsExprACTC == ACTC_retainable && lhsExprACTC == ACTC_coreFoundation); 4309 if (!CfToNs && !NsToCf) 4310 return false; 4311 4312 ObjCInterfaceDecl *RelatedClass; 4313 ObjCMethodDecl *ClassMethod = nullptr; 4314 ObjCMethodDecl *InstanceMethod = nullptr; 4315 TypedefNameDecl *TDNDecl = nullptr; 4316 if (!checkObjCBridgeRelatedComponents(Loc, DestType, SrcType, RelatedClass, 4317 ClassMethod, InstanceMethod, TDNDecl, 4318 CfToNs, Diagnose)) 4319 return false; 4320 4321 if (CfToNs) { 4322 // Implicit conversion from CF to ObjC object is needed. 4323 if (ClassMethod) { 4324 if (Diagnose) { 4325 std::string ExpressionString = "["; 4326 ExpressionString += RelatedClass->getNameAsString(); 4327 ExpressionString += " "; 4328 ExpressionString += ClassMethod->getSelector().getAsString(); 4329 SourceLocation SrcExprEndLoc = 4330 getLocForEndOfToken(SrcExpr->getEndLoc()); 4331 // Provide a fixit: [RelatedClass ClassMethod SrcExpr] 4332 Diag(Loc, diag::err_objc_bridged_related_known_method) 4333 << SrcType << DestType << ClassMethod->getSelector() << false 4334 << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), 4335 ExpressionString) 4336 << FixItHint::CreateInsertion(SrcExprEndLoc, "]"); 4337 Diag(RelatedClass->getBeginLoc(), diag::note_declared_at); 4338 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4339 4340 QualType receiverType = Context.getObjCInterfaceType(RelatedClass); 4341 // Argument. 4342 Expr *args[] = { SrcExpr }; 4343 ExprResult msg = BuildClassMessageImplicit(receiverType, false, 4344 ClassMethod->getLocation(), 4345 ClassMethod->getSelector(), ClassMethod, 4346 MultiExprArg(args, 1)); 4347 SrcExpr = msg.get(); 4348 } 4349 return true; 4350 } 4351 } 4352 else { 4353 // Implicit conversion from ObjC type to CF object is needed. 4354 if (InstanceMethod) { 4355 if (Diagnose) { 4356 std::string ExpressionString; 4357 SourceLocation SrcExprEndLoc = 4358 getLocForEndOfToken(SrcExpr->getEndLoc()); 4359 if (InstanceMethod->isPropertyAccessor()) 4360 if (const ObjCPropertyDecl *PDecl = 4361 InstanceMethod->findPropertyDecl()) { 4362 // fixit: ObjectExpr.propertyname when it is aproperty accessor. 4363 ExpressionString = "."; 4364 ExpressionString += PDecl->getNameAsString(); 4365 Diag(Loc, diag::err_objc_bridged_related_known_method) 4366 << SrcType << DestType << InstanceMethod->getSelector() << true 4367 << FixItHint::CreateInsertion(SrcExprEndLoc, ExpressionString); 4368 } 4369 if (ExpressionString.empty()) { 4370 // Provide a fixit: [ObjectExpr InstanceMethod] 4371 ExpressionString = " "; 4372 ExpressionString += InstanceMethod->getSelector().getAsString(); 4373 ExpressionString += "]"; 4374 4375 Diag(Loc, diag::err_objc_bridged_related_known_method) 4376 << SrcType << DestType << InstanceMethod->getSelector() << true 4377 << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), "[") 4378 << FixItHint::CreateInsertion(SrcExprEndLoc, ExpressionString); 4379 } 4380 Diag(RelatedClass->getBeginLoc(), diag::note_declared_at); 4381 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at); 4382 4383 ExprResult msg = 4384 BuildInstanceMessageImplicit(SrcExpr, SrcType, 4385 InstanceMethod->getLocation(), 4386 InstanceMethod->getSelector(), 4387 InstanceMethod, None); 4388 SrcExpr = msg.get(); 4389 } 4390 return true; 4391 } 4392 } 4393 return false; 4394 } 4395 4396 Sema::ARCConversionResult 4397 Sema::CheckObjCConversion(SourceRange castRange, QualType castType, 4398 Expr *&castExpr, CheckedConversionKind CCK, 4399 bool Diagnose, bool DiagnoseCFAudited, 4400 BinaryOperatorKind Opc) { 4401 QualType castExprType = castExpr->getType(); 4402 4403 // For the purposes of the classification, we assume reference types 4404 // will bind to temporaries. 4405 QualType effCastType = castType; 4406 if (const ReferenceType *ref = castType->getAs<ReferenceType>()) 4407 effCastType = ref->getPointeeType(); 4408 4409 ARCConversionTypeClass exprACTC = classifyTypeForARCConversion(castExprType); 4410 ARCConversionTypeClass castACTC = classifyTypeForARCConversion(effCastType); 4411 if (exprACTC == castACTC) { 4412 // Check for viability and report error if casting an rvalue to a 4413 // life-time qualifier. 4414 if (castACTC == ACTC_retainable && 4415 (CCK == CCK_CStyleCast || CCK == CCK_OtherCast) && 4416 castType != castExprType) { 4417 const Type *DT = castType.getTypePtr(); 4418 QualType QDT = castType; 4419 // We desugar some types but not others. We ignore those 4420 // that cannot happen in a cast; i.e. auto, and those which 4421 // should not be de-sugared; i.e typedef. 4422 if (const ParenType *PT = dyn_cast<ParenType>(DT)) 4423 QDT = PT->desugar(); 4424 else if (const TypeOfType *TP = dyn_cast<TypeOfType>(DT)) 4425 QDT = TP->desugar(); 4426 else if (const AttributedType *AT = dyn_cast<AttributedType>(DT)) 4427 QDT = AT->desugar(); 4428 if (QDT != castType && 4429 QDT.getObjCLifetime() != Qualifiers::OCL_None) { 4430 if (Diagnose) { 4431 SourceLocation loc = (castRange.isValid() ? castRange.getBegin() 4432 : castExpr->getExprLoc()); 4433 Diag(loc, diag::err_arc_nolifetime_behavior); 4434 } 4435 return ACR_error; 4436 } 4437 } 4438 return ACR_okay; 4439 } 4440 4441 // The life-time qualifier cast check above is all we need for ObjCWeak. 4442 // ObjCAutoRefCount has more restrictions on what is legal. 4443 if (!getLangOpts().ObjCAutoRefCount) 4444 return ACR_okay; 4445 4446 if (isAnyCLike(exprACTC) && isAnyCLike(castACTC)) return ACR_okay; 4447 4448 // Allow all of these types to be cast to integer types (but not 4449 // vice-versa). 4450 if (castACTC == ACTC_none && castType->isIntegralType(Context)) 4451 return ACR_okay; 4452 4453 // Allow casts between pointers to lifetime types (e.g., __strong id*) 4454 // and pointers to void (e.g., cv void *). Casting from void* to lifetime* 4455 // must be explicit. 4456 if (exprACTC == ACTC_indirectRetainable && castACTC == ACTC_voidPtr) 4457 return ACR_okay; 4458 if (castACTC == ACTC_indirectRetainable && exprACTC == ACTC_voidPtr && 4459 isCast(CCK)) 4460 return ACR_okay; 4461 4462 switch (ARCCastChecker(Context, exprACTC, castACTC, false).Visit(castExpr)) { 4463 // For invalid casts, fall through. 4464 case ACC_invalid: 4465 break; 4466 4467 // Do nothing for both bottom and +0. 4468 case ACC_bottom: 4469 case ACC_plusZero: 4470 return ACR_okay; 4471 4472 // If the result is +1, consume it here. 4473 case ACC_plusOne: 4474 castExpr = ImplicitCastExpr::Create(Context, castExpr->getType(), 4475 CK_ARCConsumeObject, castExpr, nullptr, 4476 VK_PRValue, FPOptionsOverride()); 4477 Cleanup.setExprNeedsCleanups(true); 4478 return ACR_okay; 4479 } 4480 4481 // If this is a non-implicit cast from id or block type to a 4482 // CoreFoundation type, delay complaining in case the cast is used 4483 // in an acceptable context. 4484 if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC) && isCast(CCK)) 4485 return ACR_unbridged; 4486 4487 // Issue a diagnostic about a missing @-sign when implicit casting a cstring 4488 // to 'NSString *', instead of falling through to report a "bridge cast" 4489 // diagnostic. 4490 if (castACTC == ACTC_retainable && exprACTC == ACTC_none && 4491 CheckConversionToObjCLiteral(castType, castExpr, Diagnose)) 4492 return ACR_error; 4493 4494 // Do not issue "bridge cast" diagnostic when implicit casting 4495 // a retainable object to a CF type parameter belonging to an audited 4496 // CF API function. Let caller issue a normal type mismatched diagnostic 4497 // instead. 4498 if ((!DiagnoseCFAudited || exprACTC != ACTC_retainable || 4499 castACTC != ACTC_coreFoundation) && 4500 !(exprACTC == ACTC_voidPtr && castACTC == ACTC_retainable && 4501 (Opc == BO_NE || Opc == BO_EQ))) { 4502 if (Diagnose) 4503 diagnoseObjCARCConversion(*this, castRange, castType, castACTC, castExpr, 4504 castExpr, exprACTC, CCK); 4505 return ACR_error; 4506 } 4507 return ACR_okay; 4508 } 4509 4510 /// Given that we saw an expression with the ARCUnbridgedCastTy 4511 /// placeholder type, complain bitterly. 4512 void Sema::diagnoseARCUnbridgedCast(Expr *e) { 4513 // We expect the spurious ImplicitCastExpr to already have been stripped. 4514 assert(!e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)); 4515 CastExpr *realCast = cast<CastExpr>(e->IgnoreParens()); 4516 4517 SourceRange castRange; 4518 QualType castType; 4519 CheckedConversionKind CCK; 4520 4521 if (CStyleCastExpr *cast = dyn_cast<CStyleCastExpr>(realCast)) { 4522 castRange = SourceRange(cast->getLParenLoc(), cast->getRParenLoc()); 4523 castType = cast->getTypeAsWritten(); 4524 CCK = CCK_CStyleCast; 4525 } else if (ExplicitCastExpr *cast = dyn_cast<ExplicitCastExpr>(realCast)) { 4526 castRange = cast->getTypeInfoAsWritten()->getTypeLoc().getSourceRange(); 4527 castType = cast->getTypeAsWritten(); 4528 CCK = CCK_OtherCast; 4529 } else { 4530 llvm_unreachable("Unexpected ImplicitCastExpr"); 4531 } 4532 4533 ARCConversionTypeClass castACTC = 4534 classifyTypeForARCConversion(castType.getNonReferenceType()); 4535 4536 Expr *castExpr = realCast->getSubExpr(); 4537 assert(classifyTypeForARCConversion(castExpr->getType()) == ACTC_retainable); 4538 4539 diagnoseObjCARCConversion(*this, castRange, castType, castACTC, 4540 castExpr, realCast, ACTC_retainable, CCK); 4541 } 4542 4543 /// stripARCUnbridgedCast - Given an expression of ARCUnbridgedCast 4544 /// type, remove the placeholder cast. 4545 Expr *Sema::stripARCUnbridgedCast(Expr *e) { 4546 assert(e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)); 4547 4548 if (ParenExpr *pe = dyn_cast<ParenExpr>(e)) { 4549 Expr *sub = stripARCUnbridgedCast(pe->getSubExpr()); 4550 return new (Context) ParenExpr(pe->getLParen(), pe->getRParen(), sub); 4551 } else if (UnaryOperator *uo = dyn_cast<UnaryOperator>(e)) { 4552 assert(uo->getOpcode() == UO_Extension); 4553 Expr *sub = stripARCUnbridgedCast(uo->getSubExpr()); 4554 return UnaryOperator::Create(Context, sub, UO_Extension, sub->getType(), 4555 sub->getValueKind(), sub->getObjectKind(), 4556 uo->getOperatorLoc(), false, 4557 CurFPFeatureOverrides()); 4558 } else if (GenericSelectionExpr *gse = dyn_cast<GenericSelectionExpr>(e)) { 4559 assert(!gse->isResultDependent()); 4560 4561 unsigned n = gse->getNumAssocs(); 4562 SmallVector<Expr *, 4> subExprs; 4563 SmallVector<TypeSourceInfo *, 4> subTypes; 4564 subExprs.reserve(n); 4565 subTypes.reserve(n); 4566 for (const GenericSelectionExpr::Association assoc : gse->associations()) { 4567 subTypes.push_back(assoc.getTypeSourceInfo()); 4568 Expr *sub = assoc.getAssociationExpr(); 4569 if (assoc.isSelected()) 4570 sub = stripARCUnbridgedCast(sub); 4571 subExprs.push_back(sub); 4572 } 4573 4574 return GenericSelectionExpr::Create( 4575 Context, gse->getGenericLoc(), gse->getControllingExpr(), subTypes, 4576 subExprs, gse->getDefaultLoc(), gse->getRParenLoc(), 4577 gse->containsUnexpandedParameterPack(), gse->getResultIndex()); 4578 } else { 4579 assert(isa<ImplicitCastExpr>(e) && "bad form of unbridged cast!"); 4580 return cast<ImplicitCastExpr>(e)->getSubExpr(); 4581 } 4582 } 4583 4584 bool Sema::CheckObjCARCUnavailableWeakConversion(QualType castType, 4585 QualType exprType) { 4586 QualType canCastType = 4587 Context.getCanonicalType(castType).getUnqualifiedType(); 4588 QualType canExprType = 4589 Context.getCanonicalType(exprType).getUnqualifiedType(); 4590 if (isa<ObjCObjectPointerType>(canCastType) && 4591 castType.getObjCLifetime() == Qualifiers::OCL_Weak && 4592 canExprType->isObjCObjectPointerType()) { 4593 if (const ObjCObjectPointerType *ObjT = 4594 canExprType->getAs<ObjCObjectPointerType>()) 4595 if (const ObjCInterfaceDecl *ObjI = ObjT->getInterfaceDecl()) 4596 return !ObjI->isArcWeakrefUnavailable(); 4597 } 4598 return true; 4599 } 4600 4601 /// Look for an ObjCReclaimReturnedObject cast and destroy it. 4602 static Expr *maybeUndoReclaimObject(Expr *e) { 4603 Expr *curExpr = e, *prevExpr = nullptr; 4604 4605 // Walk down the expression until we hit an implicit cast of kind 4606 // ARCReclaimReturnedObject or an Expr that is neither a Paren nor a Cast. 4607 while (true) { 4608 if (auto *pe = dyn_cast<ParenExpr>(curExpr)) { 4609 prevExpr = curExpr; 4610 curExpr = pe->getSubExpr(); 4611 continue; 4612 } 4613 4614 if (auto *ce = dyn_cast<CastExpr>(curExpr)) { 4615 if (auto *ice = dyn_cast<ImplicitCastExpr>(ce)) 4616 if (ice->getCastKind() == CK_ARCReclaimReturnedObject) { 4617 if (!prevExpr) 4618 return ice->getSubExpr(); 4619 if (auto *pe = dyn_cast<ParenExpr>(prevExpr)) 4620 pe->setSubExpr(ice->getSubExpr()); 4621 else 4622 cast<CastExpr>(prevExpr)->setSubExpr(ice->getSubExpr()); 4623 return e; 4624 } 4625 4626 prevExpr = curExpr; 4627 curExpr = ce->getSubExpr(); 4628 continue; 4629 } 4630 4631 // Break out of the loop if curExpr is neither a Paren nor a Cast. 4632 break; 4633 } 4634 4635 return e; 4636 } 4637 4638 ExprResult Sema::BuildObjCBridgedCast(SourceLocation LParenLoc, 4639 ObjCBridgeCastKind Kind, 4640 SourceLocation BridgeKeywordLoc, 4641 TypeSourceInfo *TSInfo, 4642 Expr *SubExpr) { 4643 ExprResult SubResult = UsualUnaryConversions(SubExpr); 4644 if (SubResult.isInvalid()) return ExprError(); 4645 SubExpr = SubResult.get(); 4646 4647 QualType T = TSInfo->getType(); 4648 QualType FromType = SubExpr->getType(); 4649 4650 CastKind CK; 4651 4652 bool MustConsume = false; 4653 if (T->isDependentType() || SubExpr->isTypeDependent()) { 4654 // Okay: we'll build a dependent expression type. 4655 CK = CK_Dependent; 4656 } else if (T->isObjCARCBridgableType() && FromType->isCARCBridgableType()) { 4657 // Casting CF -> id 4658 CK = (T->isBlockPointerType() ? CK_AnyPointerToBlockPointerCast 4659 : CK_CPointerToObjCPointerCast); 4660 switch (Kind) { 4661 case OBC_Bridge: 4662 break; 4663 4664 case OBC_BridgeRetained: { 4665 bool br = isKnownName("CFBridgingRelease"); 4666 Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind) 4667 << 2 4668 << FromType 4669 << (T->isBlockPointerType()? 1 : 0) 4670 << T 4671 << SubExpr->getSourceRange() 4672 << Kind; 4673 Diag(BridgeKeywordLoc, diag::note_arc_bridge) 4674 << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge"); 4675 Diag(BridgeKeywordLoc, diag::note_arc_bridge_transfer) 4676 << FromType << br 4677 << FixItHint::CreateReplacement(BridgeKeywordLoc, 4678 br ? "CFBridgingRelease " 4679 : "__bridge_transfer "); 4680 4681 Kind = OBC_Bridge; 4682 break; 4683 } 4684 4685 case OBC_BridgeTransfer: 4686 // We must consume the Objective-C object produced by the cast. 4687 MustConsume = true; 4688 break; 4689 } 4690 } else if (T->isCARCBridgableType() && FromType->isObjCARCBridgableType()) { 4691 // Okay: id -> CF 4692 CK = CK_BitCast; 4693 switch (Kind) { 4694 case OBC_Bridge: 4695 // Reclaiming a value that's going to be __bridge-casted to CF 4696 // is very dangerous, so we don't do it. 4697 SubExpr = maybeUndoReclaimObject(SubExpr); 4698 break; 4699 4700 case OBC_BridgeRetained: 4701 // Produce the object before casting it. 4702 SubExpr = ImplicitCastExpr::Create(Context, FromType, CK_ARCProduceObject, 4703 SubExpr, nullptr, VK_PRValue, 4704 FPOptionsOverride()); 4705 break; 4706 4707 case OBC_BridgeTransfer: { 4708 bool br = isKnownName("CFBridgingRetain"); 4709 Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind) 4710 << (FromType->isBlockPointerType()? 1 : 0) 4711 << FromType 4712 << 2 4713 << T 4714 << SubExpr->getSourceRange() 4715 << Kind; 4716 4717 Diag(BridgeKeywordLoc, diag::note_arc_bridge) 4718 << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge "); 4719 Diag(BridgeKeywordLoc, diag::note_arc_bridge_retained) 4720 << T << br 4721 << FixItHint::CreateReplacement(BridgeKeywordLoc, 4722 br ? "CFBridgingRetain " : "__bridge_retained"); 4723 4724 Kind = OBC_Bridge; 4725 break; 4726 } 4727 } 4728 } else { 4729 Diag(LParenLoc, diag::err_arc_bridge_cast_incompatible) 4730 << FromType << T << Kind 4731 << SubExpr->getSourceRange() 4732 << TSInfo->getTypeLoc().getSourceRange(); 4733 return ExprError(); 4734 } 4735 4736 Expr *Result = new (Context) ObjCBridgedCastExpr(LParenLoc, Kind, CK, 4737 BridgeKeywordLoc, 4738 TSInfo, SubExpr); 4739 4740 if (MustConsume) { 4741 Cleanup.setExprNeedsCleanups(true); 4742 Result = ImplicitCastExpr::Create(Context, T, CK_ARCConsumeObject, Result, 4743 nullptr, VK_PRValue, FPOptionsOverride()); 4744 } 4745 4746 return Result; 4747 } 4748 4749 ExprResult Sema::ActOnObjCBridgedCast(Scope *S, 4750 SourceLocation LParenLoc, 4751 ObjCBridgeCastKind Kind, 4752 SourceLocation BridgeKeywordLoc, 4753 ParsedType Type, 4754 SourceLocation RParenLoc, 4755 Expr *SubExpr) { 4756 TypeSourceInfo *TSInfo = nullptr; 4757 QualType T = GetTypeFromParser(Type, &TSInfo); 4758 if (Kind == OBC_Bridge) 4759 CheckTollFreeBridgeCast(T, SubExpr); 4760 if (!TSInfo) 4761 TSInfo = Context.getTrivialTypeSourceInfo(T, LParenLoc); 4762 return BuildObjCBridgedCast(LParenLoc, Kind, BridgeKeywordLoc, TSInfo, 4763 SubExpr); 4764 } 4765