1 //===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis member access expressions. 10 // 11 //===----------------------------------------------------------------------===// 12 #include "clang/Sema/Overload.h" 13 #include "clang/AST/ASTLambda.h" 14 #include "clang/AST/DeclCXX.h" 15 #include "clang/AST/DeclObjC.h" 16 #include "clang/AST/DeclTemplate.h" 17 #include "clang/AST/ExprCXX.h" 18 #include "clang/AST/ExprObjC.h" 19 #include "clang/Lex/Preprocessor.h" 20 #include "clang/Sema/Lookup.h" 21 #include "clang/Sema/Scope.h" 22 #include "clang/Sema/ScopeInfo.h" 23 #include "clang/Sema/SemaInternal.h" 24 25 using namespace clang; 26 using namespace sema; 27 28 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> BaseSet; 29 30 /// Determines if the given class is provably not derived from all of 31 /// the prospective base classes. 32 static bool isProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record, 33 const BaseSet &Bases) { 34 auto BaseIsNotInSet = [&Bases](const CXXRecordDecl *Base) { 35 return !Bases.count(Base->getCanonicalDecl()); 36 }; 37 return BaseIsNotInSet(Record) && Record->forallBases(BaseIsNotInSet); 38 } 39 40 enum IMAKind { 41 /// The reference is definitely not an instance member access. 42 IMA_Static, 43 44 /// The reference may be an implicit instance member access. 45 IMA_Mixed, 46 47 /// The reference may be to an instance member, but it might be invalid if 48 /// so, because the context is not an instance method. 49 IMA_Mixed_StaticOrExplicitContext, 50 51 /// The reference may be to an instance member, but it is invalid if 52 /// so, because the context is from an unrelated class. 53 IMA_Mixed_Unrelated, 54 55 /// The reference is definitely an implicit instance member access. 56 IMA_Instance, 57 58 /// The reference may be to an unresolved using declaration. 59 IMA_Unresolved, 60 61 /// The reference is a contextually-permitted abstract member reference. 62 IMA_Abstract, 63 64 /// The reference may be to an unresolved using declaration and the 65 /// context is not an instance method. 66 IMA_Unresolved_StaticOrExplicitContext, 67 68 // The reference refers to a field which is not a member of the containing 69 // class, which is allowed because we're in C++11 mode and the context is 70 // unevaluated. 71 IMA_Field_Uneval_Context, 72 73 /// All possible referrents are instance members and the current 74 /// context is not an instance method. 75 IMA_Error_StaticOrExplicitContext, 76 77 /// All possible referrents are instance members of an unrelated 78 /// class. 79 IMA_Error_Unrelated 80 }; 81 82 /// The given lookup names class member(s) and is not being used for 83 /// an address-of-member expression. Classify the type of access 84 /// according to whether it's possible that this reference names an 85 /// instance member. This is best-effort in dependent contexts; it is okay to 86 /// conservatively answer "yes", in which case some errors will simply 87 /// not be caught until template-instantiation. 88 static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef, 89 const LookupResult &R) { 90 assert(!R.empty() && (*R.begin())->isCXXClassMember()); 91 92 DeclContext *DC = SemaRef.getFunctionLevelDeclContext(); 93 94 bool isStaticOrExplicitContext = 95 SemaRef.CXXThisTypeOverride.isNull() && 96 (!isa<CXXMethodDecl>(DC) || cast<CXXMethodDecl>(DC)->isStatic() || 97 cast<CXXMethodDecl>(DC)->isExplicitObjectMemberFunction()); 98 99 if (R.isUnresolvableResult()) 100 return isStaticOrExplicitContext ? IMA_Unresolved_StaticOrExplicitContext 101 : IMA_Unresolved; 102 103 // Collect all the declaring classes of instance members we find. 104 bool hasNonInstance = false; 105 bool isField = false; 106 BaseSet Classes; 107 for (NamedDecl *D : R) { 108 // Look through any using decls. 109 D = D->getUnderlyingDecl(); 110 111 if (D->isCXXInstanceMember()) { 112 isField |= isa<FieldDecl>(D) || isa<MSPropertyDecl>(D) || 113 isa<IndirectFieldDecl>(D); 114 115 CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext()); 116 Classes.insert(R->getCanonicalDecl()); 117 } else 118 hasNonInstance = true; 119 } 120 121 // If we didn't find any instance members, it can't be an implicit 122 // member reference. 123 if (Classes.empty()) 124 return IMA_Static; 125 126 // C++11 [expr.prim.general]p12: 127 // An id-expression that denotes a non-static data member or non-static 128 // member function of a class can only be used: 129 // (...) 130 // - if that id-expression denotes a non-static data member and it 131 // appears in an unevaluated operand. 132 // 133 // This rule is specific to C++11. However, we also permit this form 134 // in unevaluated inline assembly operands, like the operand to a SIZE. 135 IMAKind AbstractInstanceResult = IMA_Static; // happens to be 'false' 136 assert(!AbstractInstanceResult); 137 switch (SemaRef.ExprEvalContexts.back().Context) { 138 case Sema::ExpressionEvaluationContext::Unevaluated: 139 case Sema::ExpressionEvaluationContext::UnevaluatedList: 140 if (isField && SemaRef.getLangOpts().CPlusPlus11) 141 AbstractInstanceResult = IMA_Field_Uneval_Context; 142 break; 143 144 case Sema::ExpressionEvaluationContext::UnevaluatedAbstract: 145 AbstractInstanceResult = IMA_Abstract; 146 break; 147 148 case Sema::ExpressionEvaluationContext::DiscardedStatement: 149 case Sema::ExpressionEvaluationContext::ConstantEvaluated: 150 case Sema::ExpressionEvaluationContext::ImmediateFunctionContext: 151 case Sema::ExpressionEvaluationContext::PotentiallyEvaluated: 152 case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed: 153 break; 154 } 155 156 // If the current context is not an instance method, it can't be 157 // an implicit member reference. 158 if (isStaticOrExplicitContext) { 159 if (hasNonInstance) 160 return IMA_Mixed_StaticOrExplicitContext; 161 162 return AbstractInstanceResult ? AbstractInstanceResult 163 : IMA_Error_StaticOrExplicitContext; 164 } 165 166 CXXRecordDecl *contextClass; 167 if (auto *MD = dyn_cast<CXXMethodDecl>(DC)) 168 contextClass = MD->getParent()->getCanonicalDecl(); 169 else if (auto *RD = dyn_cast<CXXRecordDecl>(DC)) 170 contextClass = RD; 171 else 172 return AbstractInstanceResult ? AbstractInstanceResult 173 : IMA_Error_StaticOrExplicitContext; 174 175 // [class.mfct.non-static]p3: 176 // ...is used in the body of a non-static member function of class X, 177 // if name lookup (3.4.1) resolves the name in the id-expression to a 178 // non-static non-type member of some class C [...] 179 // ...if C is not X or a base class of X, the class member access expression 180 // is ill-formed. 181 if (R.getNamingClass() && 182 contextClass->getCanonicalDecl() != 183 R.getNamingClass()->getCanonicalDecl()) { 184 // If the naming class is not the current context, this was a qualified 185 // member name lookup, and it's sufficient to check that we have the naming 186 // class as a base class. 187 Classes.clear(); 188 Classes.insert(R.getNamingClass()->getCanonicalDecl()); 189 } 190 191 // If we can prove that the current context is unrelated to all the 192 // declaring classes, it can't be an implicit member reference (in 193 // which case it's an error if any of those members are selected). 194 if (isProvablyNotDerivedFrom(SemaRef, contextClass, Classes)) 195 return hasNonInstance ? IMA_Mixed_Unrelated : 196 AbstractInstanceResult ? AbstractInstanceResult : 197 IMA_Error_Unrelated; 198 199 return (hasNonInstance ? IMA_Mixed : IMA_Instance); 200 } 201 202 /// Diagnose a reference to a field with no object available. 203 static void diagnoseInstanceReference(Sema &SemaRef, 204 const CXXScopeSpec &SS, 205 NamedDecl *Rep, 206 const DeclarationNameInfo &nameInfo) { 207 SourceLocation Loc = nameInfo.getLoc(); 208 SourceRange Range(Loc); 209 if (SS.isSet()) Range.setBegin(SS.getRange().getBegin()); 210 211 // Look through using shadow decls and aliases. 212 Rep = Rep->getUnderlyingDecl(); 213 214 DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext(); 215 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC); 216 CXXRecordDecl *ContextClass = Method ? Method->getParent() : nullptr; 217 CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext()); 218 219 bool InStaticMethod = Method && Method->isStatic(); 220 bool InExplicitObjectMethod = 221 Method && Method->isExplicitObjectMemberFunction(); 222 bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep); 223 224 std::string Replacement; 225 if (InExplicitObjectMethod) { 226 DeclarationName N = Method->getParamDecl(0)->getDeclName(); 227 if (!N.isEmpty()) { 228 Replacement.append(N.getAsString()); 229 Replacement.append("."); 230 } 231 } 232 if (IsField && InStaticMethod) 233 // "invalid use of member 'x' in static member function" 234 SemaRef.Diag(Loc, diag::err_invalid_member_use_in_method) 235 << Range << nameInfo.getName() << /*static*/ 0; 236 else if (IsField && InExplicitObjectMethod) { 237 auto Diag = SemaRef.Diag(Loc, diag::err_invalid_member_use_in_method) 238 << Range << nameInfo.getName() << /*explicit*/ 1; 239 if (!Replacement.empty()) 240 Diag << FixItHint::CreateInsertion(Loc, Replacement); 241 } else if (ContextClass && RepClass && SS.isEmpty() && 242 !InExplicitObjectMethod && !InStaticMethod && 243 !RepClass->Equals(ContextClass) && 244 RepClass->Encloses(ContextClass)) 245 // Unqualified lookup in a non-static member function found a member of an 246 // enclosing class. 247 SemaRef.Diag(Loc, diag::err_nested_non_static_member_use) 248 << IsField << RepClass << nameInfo.getName() << ContextClass << Range; 249 else if (IsField) 250 SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use) 251 << nameInfo.getName() << Range; 252 else if (!InExplicitObjectMethod) 253 SemaRef.Diag(Loc, diag::err_member_call_without_object) 254 << Range << /*static*/ 0; 255 else { 256 if (const auto *Tpl = dyn_cast<FunctionTemplateDecl>(Rep)) 257 Rep = Tpl->getTemplatedDecl(); 258 const auto *Callee = cast<CXXMethodDecl>(Rep); 259 auto Diag = SemaRef.Diag(Loc, diag::err_member_call_without_object) 260 << Range << Callee->isExplicitObjectMemberFunction(); 261 if (!Replacement.empty()) 262 Diag << FixItHint::CreateInsertion(Loc, Replacement); 263 } 264 } 265 266 /// Builds an expression which might be an implicit member expression. 267 ExprResult Sema::BuildPossibleImplicitMemberExpr( 268 const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R, 269 const TemplateArgumentListInfo *TemplateArgs, const Scope *S, 270 UnresolvedLookupExpr *AsULE) { 271 switch (ClassifyImplicitMemberAccess(*this, R)) { 272 case IMA_Instance: 273 return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true, S); 274 275 case IMA_Mixed: 276 case IMA_Mixed_Unrelated: 277 case IMA_Unresolved: 278 return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false, 279 S); 280 281 case IMA_Field_Uneval_Context: 282 Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use) 283 << R.getLookupNameInfo().getName(); 284 [[fallthrough]]; 285 case IMA_Static: 286 case IMA_Abstract: 287 case IMA_Mixed_StaticOrExplicitContext: 288 case IMA_Unresolved_StaticOrExplicitContext: 289 if (TemplateArgs || TemplateKWLoc.isValid()) 290 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs); 291 return AsULE ? AsULE : BuildDeclarationNameExpr(SS, R, false); 292 293 case IMA_Error_StaticOrExplicitContext: 294 case IMA_Error_Unrelated: 295 diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(), 296 R.getLookupNameInfo()); 297 return ExprError(); 298 } 299 300 llvm_unreachable("unexpected instance member access kind"); 301 } 302 303 /// Determine whether input char is from rgba component set. 304 static bool 305 IsRGBA(char c) { 306 switch (c) { 307 case 'r': 308 case 'g': 309 case 'b': 310 case 'a': 311 return true; 312 default: 313 return false; 314 } 315 } 316 317 // OpenCL v1.1, s6.1.7 318 // The component swizzle length must be in accordance with the acceptable 319 // vector sizes. 320 static bool IsValidOpenCLComponentSwizzleLength(unsigned len) 321 { 322 return (len >= 1 && len <= 4) || len == 8 || len == 16; 323 } 324 325 /// Check an ext-vector component access expression. 326 /// 327 /// VK should be set in advance to the value kind of the base 328 /// expression. 329 static QualType 330 CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK, 331 SourceLocation OpLoc, const IdentifierInfo *CompName, 332 SourceLocation CompLoc) { 333 // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements, 334 // see FIXME there. 335 // 336 // FIXME: This logic can be greatly simplified by splitting it along 337 // halving/not halving and reworking the component checking. 338 const ExtVectorType *vecType = baseType->getAs<ExtVectorType>(); 339 340 // The vector accessor can't exceed the number of elements. 341 const char *compStr = CompName->getNameStart(); 342 343 // This flag determines whether or not the component is one of the four 344 // special names that indicate a subset of exactly half the elements are 345 // to be selected. 346 bool HalvingSwizzle = false; 347 348 // This flag determines whether or not CompName has an 's' char prefix, 349 // indicating that it is a string of hex values to be used as vector indices. 350 bool HexSwizzle = (*compStr == 's' || *compStr == 'S') && compStr[1]; 351 352 bool HasRepeated = false; 353 bool HasIndex[16] = {}; 354 355 int Idx; 356 357 // Check that we've found one of the special components, or that the component 358 // names must come from the same set. 359 if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") || 360 !strcmp(compStr, "even") || !strcmp(compStr, "odd")) { 361 HalvingSwizzle = true; 362 } else if (!HexSwizzle && 363 (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) { 364 bool HasRGBA = IsRGBA(*compStr); 365 do { 366 // Ensure that xyzw and rgba components don't intermingle. 367 if (HasRGBA != IsRGBA(*compStr)) 368 break; 369 if (HasIndex[Idx]) HasRepeated = true; 370 HasIndex[Idx] = true; 371 compStr++; 372 } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1); 373 374 // Emit a warning if an rgba selector is used earlier than OpenCL C 3.0. 375 if (HasRGBA || (*compStr && IsRGBA(*compStr))) { 376 if (S.getLangOpts().OpenCL && 377 S.getLangOpts().getOpenCLCompatibleVersion() < 300) { 378 const char *DiagBegin = HasRGBA ? CompName->getNameStart() : compStr; 379 S.Diag(OpLoc, diag::ext_opencl_ext_vector_type_rgba_selector) 380 << StringRef(DiagBegin, 1) << SourceRange(CompLoc); 381 } 382 } 383 } else { 384 if (HexSwizzle) compStr++; 385 while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) { 386 if (HasIndex[Idx]) HasRepeated = true; 387 HasIndex[Idx] = true; 388 compStr++; 389 } 390 } 391 392 if (!HalvingSwizzle && *compStr) { 393 // We didn't get to the end of the string. This means the component names 394 // didn't come from the same set *or* we encountered an illegal name. 395 S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal) 396 << StringRef(compStr, 1) << SourceRange(CompLoc); 397 return QualType(); 398 } 399 400 // Ensure no component accessor exceeds the width of the vector type it 401 // operates on. 402 if (!HalvingSwizzle) { 403 compStr = CompName->getNameStart(); 404 405 if (HexSwizzle) 406 compStr++; 407 408 while (*compStr) { 409 if (!vecType->isAccessorWithinNumElements(*compStr++, HexSwizzle)) { 410 S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length) 411 << baseType << SourceRange(CompLoc); 412 return QualType(); 413 } 414 } 415 } 416 417 // OpenCL mode requires swizzle length to be in accordance with accepted 418 // sizes. Clang however supports arbitrary lengths for other languages. 419 if (S.getLangOpts().OpenCL && !HalvingSwizzle) { 420 unsigned SwizzleLength = CompName->getLength(); 421 422 if (HexSwizzle) 423 SwizzleLength--; 424 425 if (IsValidOpenCLComponentSwizzleLength(SwizzleLength) == false) { 426 S.Diag(OpLoc, diag::err_opencl_ext_vector_component_invalid_length) 427 << SwizzleLength << SourceRange(CompLoc); 428 return QualType(); 429 } 430 } 431 432 // The component accessor looks fine - now we need to compute the actual type. 433 // The vector type is implied by the component accessor. For example, 434 // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc. 435 // vec4.s0 is a float, vec4.s23 is a vec3, etc. 436 // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2. 437 unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2 438 : CompName->getLength(); 439 if (HexSwizzle) 440 CompSize--; 441 442 if (CompSize == 1) 443 return vecType->getElementType(); 444 445 if (HasRepeated) 446 VK = VK_PRValue; 447 448 QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize); 449 // Now look up the TypeDefDecl from the vector type. Without this, 450 // diagostics look bad. We want extended vector types to appear built-in. 451 for (Sema::ExtVectorDeclsType::iterator 452 I = S.ExtVectorDecls.begin(S.getExternalSource()), 453 E = S.ExtVectorDecls.end(); 454 I != E; ++I) { 455 if ((*I)->getUnderlyingType() == VT) 456 return S.Context.getTypedefType(*I); 457 } 458 459 return VT; // should never get here (a typedef type should always be found). 460 } 461 462 static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl, 463 IdentifierInfo *Member, 464 const Selector &Sel, 465 ASTContext &Context) { 466 if (Member) 467 if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration( 468 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) 469 return PD; 470 if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel)) 471 return OMD; 472 473 for (const auto *I : PDecl->protocols()) { 474 if (Decl *D = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, 475 Context)) 476 return D; 477 } 478 return nullptr; 479 } 480 481 static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy, 482 IdentifierInfo *Member, 483 const Selector &Sel, 484 ASTContext &Context) { 485 // Check protocols on qualified interfaces. 486 Decl *GDecl = nullptr; 487 for (const auto *I : QIdTy->quals()) { 488 if (Member) 489 if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration( 490 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { 491 GDecl = PD; 492 break; 493 } 494 // Also must look for a getter or setter name which uses property syntax. 495 if (ObjCMethodDecl *OMD = I->getInstanceMethod(Sel)) { 496 GDecl = OMD; 497 break; 498 } 499 } 500 if (!GDecl) { 501 for (const auto *I : QIdTy->quals()) { 502 // Search in the protocol-qualifier list of current protocol. 503 GDecl = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, Context); 504 if (GDecl) 505 return GDecl; 506 } 507 } 508 return GDecl; 509 } 510 511 ExprResult 512 Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType, 513 bool IsArrow, SourceLocation OpLoc, 514 const CXXScopeSpec &SS, 515 SourceLocation TemplateKWLoc, 516 NamedDecl *FirstQualifierInScope, 517 const DeclarationNameInfo &NameInfo, 518 const TemplateArgumentListInfo *TemplateArgs) { 519 // Even in dependent contexts, try to diagnose base expressions with 520 // obviously wrong types, e.g.: 521 // 522 // T* t; 523 // t.f; 524 // 525 // In Obj-C++, however, the above expression is valid, since it could be 526 // accessing the 'f' property if T is an Obj-C interface. The extra check 527 // allows this, while still reporting an error if T is a struct pointer. 528 if (!IsArrow) { 529 const PointerType *PT = BaseType->getAs<PointerType>(); 530 if (PT && (!getLangOpts().ObjC || 531 PT->getPointeeType()->isRecordType())) { 532 assert(BaseExpr && "cannot happen with implicit member accesses"); 533 Diag(OpLoc, diag::err_typecheck_member_reference_struct_union) 534 << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange(); 535 return ExprError(); 536 } 537 } 538 539 assert(BaseType->isDependentType() || NameInfo.getName().isDependentName() || 540 isDependentScopeSpecifier(SS) || 541 (TemplateArgs && llvm::any_of(TemplateArgs->arguments(), 542 [](const TemplateArgumentLoc &Arg) { 543 return Arg.getArgument().isDependent(); 544 }))); 545 546 // Get the type being accessed in BaseType. If this is an arrow, the BaseExpr 547 // must have pointer type, and the accessed type is the pointee. 548 return CXXDependentScopeMemberExpr::Create( 549 Context, BaseExpr, BaseType, IsArrow, OpLoc, 550 SS.getWithLocInContext(Context), TemplateKWLoc, FirstQualifierInScope, 551 NameInfo, TemplateArgs); 552 } 553 554 /// We know that the given qualified member reference points only to 555 /// declarations which do not belong to the static type of the base 556 /// expression. Diagnose the problem. 557 static void DiagnoseQualifiedMemberReference(Sema &SemaRef, 558 Expr *BaseExpr, 559 QualType BaseType, 560 const CXXScopeSpec &SS, 561 NamedDecl *rep, 562 const DeclarationNameInfo &nameInfo) { 563 // If this is an implicit member access, use a different set of 564 // diagnostics. 565 if (!BaseExpr) 566 return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo); 567 568 SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated) 569 << SS.getRange() << rep << BaseType; 570 } 571 572 // Check whether the declarations we found through a nested-name 573 // specifier in a member expression are actually members of the base 574 // type. The restriction here is: 575 // 576 // C++ [expr.ref]p2: 577 // ... In these cases, the id-expression shall name a 578 // member of the class or of one of its base classes. 579 // 580 // So it's perfectly legitimate for the nested-name specifier to name 581 // an unrelated class, and for us to find an overload set including 582 // decls from classes which are not superclasses, as long as the decl 583 // we actually pick through overload resolution is from a superclass. 584 bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr, 585 QualType BaseType, 586 const CXXScopeSpec &SS, 587 const LookupResult &R) { 588 CXXRecordDecl *BaseRecord = 589 cast_or_null<CXXRecordDecl>(computeDeclContext(BaseType)); 590 if (!BaseRecord) { 591 // We can't check this yet because the base type is still 592 // dependent. 593 assert(BaseType->isDependentType()); 594 return false; 595 } 596 597 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { 598 // If this is an implicit member reference and we find a 599 // non-instance member, it's not an error. 600 if (!BaseExpr && !(*I)->isCXXInstanceMember()) 601 return false; 602 603 // Note that we use the DC of the decl, not the underlying decl. 604 DeclContext *DC = (*I)->getDeclContext()->getNonTransparentContext(); 605 if (!DC->isRecord()) 606 continue; 607 608 CXXRecordDecl *MemberRecord = cast<CXXRecordDecl>(DC)->getCanonicalDecl(); 609 if (BaseRecord->getCanonicalDecl() == MemberRecord || 610 !BaseRecord->isProvablyNotDerivedFrom(MemberRecord)) 611 return false; 612 } 613 614 DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS, 615 R.getRepresentativeDecl(), 616 R.getLookupNameInfo()); 617 return true; 618 } 619 620 namespace { 621 622 // Callback to only accept typo corrections that are either a ValueDecl or a 623 // FunctionTemplateDecl and are declared in the current record or, for a C++ 624 // classes, one of its base classes. 625 class RecordMemberExprValidatorCCC final : public CorrectionCandidateCallback { 626 public: 627 explicit RecordMemberExprValidatorCCC(const RecordType *RTy) 628 : Record(RTy->getDecl()) { 629 // Don't add bare keywords to the consumer since they will always fail 630 // validation by virtue of not being associated with any decls. 631 WantTypeSpecifiers = false; 632 WantExpressionKeywords = false; 633 WantCXXNamedCasts = false; 634 WantFunctionLikeCasts = false; 635 WantRemainingKeywords = false; 636 } 637 638 bool ValidateCandidate(const TypoCorrection &candidate) override { 639 NamedDecl *ND = candidate.getCorrectionDecl(); 640 // Don't accept candidates that cannot be member functions, constants, 641 // variables, or templates. 642 if (!ND || !(isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))) 643 return false; 644 645 // Accept candidates that occur in the current record. 646 if (Record->containsDecl(ND)) 647 return true; 648 649 if (const auto *RD = dyn_cast<CXXRecordDecl>(Record)) { 650 // Accept candidates that occur in any of the current class' base classes. 651 for (const auto &BS : RD->bases()) { 652 if (const auto *BSTy = BS.getType()->getAs<RecordType>()) { 653 if (BSTy->getDecl()->containsDecl(ND)) 654 return true; 655 } 656 } 657 } 658 659 return false; 660 } 661 662 std::unique_ptr<CorrectionCandidateCallback> clone() override { 663 return std::make_unique<RecordMemberExprValidatorCCC>(*this); 664 } 665 666 private: 667 const RecordDecl *const Record; 668 }; 669 670 } 671 672 static bool LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R, 673 Expr *BaseExpr, 674 const RecordType *RTy, 675 SourceLocation OpLoc, bool IsArrow, 676 CXXScopeSpec &SS, bool HasTemplateArgs, 677 SourceLocation TemplateKWLoc, 678 TypoExpr *&TE) { 679 SourceRange BaseRange = BaseExpr ? BaseExpr->getSourceRange() : SourceRange(); 680 RecordDecl *RDecl = RTy->getDecl(); 681 if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) && 682 SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0), 683 diag::err_typecheck_incomplete_tag, 684 BaseRange)) 685 return true; 686 687 if (HasTemplateArgs || TemplateKWLoc.isValid()) { 688 // LookupTemplateName doesn't expect these both to exist simultaneously. 689 QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0); 690 691 bool MOUS; 692 return SemaRef.LookupTemplateName(R, nullptr, SS, ObjectType, false, MOUS, 693 TemplateKWLoc); 694 } 695 696 DeclContext *DC = RDecl; 697 if (SS.isSet()) { 698 // If the member name was a qualified-id, look into the 699 // nested-name-specifier. 700 DC = SemaRef.computeDeclContext(SS, false); 701 702 if (SemaRef.RequireCompleteDeclContext(SS, DC)) { 703 SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag) 704 << SS.getRange() << DC; 705 return true; 706 } 707 708 assert(DC && "Cannot handle non-computable dependent contexts in lookup"); 709 710 if (!isa<TypeDecl>(DC)) { 711 SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass) 712 << DC << SS.getRange(); 713 return true; 714 } 715 } 716 717 // The record definition is complete, now look up the member. 718 SemaRef.LookupQualifiedName(R, DC, SS); 719 720 if (!R.empty()) 721 return false; 722 723 DeclarationName Typo = R.getLookupName(); 724 SourceLocation TypoLoc = R.getNameLoc(); 725 726 struct QueryState { 727 Sema &SemaRef; 728 DeclarationNameInfo NameInfo; 729 Sema::LookupNameKind LookupKind; 730 Sema::RedeclarationKind Redecl; 731 }; 732 QueryState Q = {R.getSema(), R.getLookupNameInfo(), R.getLookupKind(), 733 R.redeclarationKind()}; 734 RecordMemberExprValidatorCCC CCC(RTy); 735 TE = SemaRef.CorrectTypoDelayed( 736 R.getLookupNameInfo(), R.getLookupKind(), nullptr, &SS, CCC, 737 [=, &SemaRef](const TypoCorrection &TC) { 738 if (TC) { 739 assert(!TC.isKeyword() && 740 "Got a keyword as a correction for a member!"); 741 bool DroppedSpecifier = 742 TC.WillReplaceSpecifier() && 743 Typo.getAsString() == TC.getAsString(SemaRef.getLangOpts()); 744 SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest) 745 << Typo << DC << DroppedSpecifier 746 << SS.getRange()); 747 } else { 748 SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << DC << BaseRange; 749 } 750 }, 751 [=](Sema &SemaRef, TypoExpr *TE, TypoCorrection TC) mutable { 752 LookupResult R(Q.SemaRef, Q.NameInfo, Q.LookupKind, Q.Redecl); 753 R.clear(); // Ensure there's no decls lingering in the shared state. 754 R.suppressDiagnostics(); 755 R.setLookupName(TC.getCorrection()); 756 for (NamedDecl *ND : TC) 757 R.addDecl(ND); 758 R.resolveKind(); 759 return SemaRef.BuildMemberReferenceExpr( 760 BaseExpr, BaseExpr->getType(), OpLoc, IsArrow, SS, SourceLocation(), 761 nullptr, R, nullptr, nullptr); 762 }, 763 Sema::CTK_ErrorRecovery, DC); 764 765 return false; 766 } 767 768 static ExprResult LookupMemberExpr(Sema &S, LookupResult &R, 769 ExprResult &BaseExpr, bool &IsArrow, 770 SourceLocation OpLoc, CXXScopeSpec &SS, 771 Decl *ObjCImpDecl, bool HasTemplateArgs, 772 SourceLocation TemplateKWLoc); 773 774 ExprResult 775 Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType, 776 SourceLocation OpLoc, bool IsArrow, 777 CXXScopeSpec &SS, 778 SourceLocation TemplateKWLoc, 779 NamedDecl *FirstQualifierInScope, 780 const DeclarationNameInfo &NameInfo, 781 const TemplateArgumentListInfo *TemplateArgs, 782 const Scope *S, 783 ActOnMemberAccessExtraArgs *ExtraArgs) { 784 if (BaseType->isDependentType() || 785 (SS.isSet() && isDependentScopeSpecifier(SS)) || 786 NameInfo.getName().isDependentName()) 787 return ActOnDependentMemberExpr(Base, BaseType, 788 IsArrow, OpLoc, 789 SS, TemplateKWLoc, FirstQualifierInScope, 790 NameInfo, TemplateArgs); 791 792 LookupResult R(*this, NameInfo, LookupMemberName); 793 794 // Implicit member accesses. 795 if (!Base) { 796 TypoExpr *TE = nullptr; 797 QualType RecordTy = BaseType; 798 if (IsArrow) RecordTy = RecordTy->castAs<PointerType>()->getPointeeType(); 799 if (LookupMemberExprInRecord( 800 *this, R, nullptr, RecordTy->castAs<RecordType>(), OpLoc, IsArrow, 801 SS, TemplateArgs != nullptr, TemplateKWLoc, TE)) 802 return ExprError(); 803 if (TE) 804 return TE; 805 806 // Explicit member accesses. 807 } else { 808 ExprResult BaseResult = Base; 809 ExprResult Result = 810 LookupMemberExpr(*this, R, BaseResult, IsArrow, OpLoc, SS, 811 ExtraArgs ? ExtraArgs->ObjCImpDecl : nullptr, 812 TemplateArgs != nullptr, TemplateKWLoc); 813 814 if (BaseResult.isInvalid()) 815 return ExprError(); 816 Base = BaseResult.get(); 817 818 if (Result.isInvalid()) 819 return ExprError(); 820 821 if (Result.get()) 822 return Result; 823 824 // LookupMemberExpr can modify Base, and thus change BaseType 825 BaseType = Base->getType(); 826 } 827 828 return BuildMemberReferenceExpr(Base, BaseType, 829 OpLoc, IsArrow, SS, TemplateKWLoc, 830 FirstQualifierInScope, R, TemplateArgs, S, 831 false, ExtraArgs); 832 } 833 834 ExprResult 835 Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS, 836 SourceLocation loc, 837 IndirectFieldDecl *indirectField, 838 DeclAccessPair foundDecl, 839 Expr *baseObjectExpr, 840 SourceLocation opLoc) { 841 // First, build the expression that refers to the base object. 842 843 // Case 1: the base of the indirect field is not a field. 844 VarDecl *baseVariable = indirectField->getVarDecl(); 845 CXXScopeSpec EmptySS; 846 if (baseVariable) { 847 assert(baseVariable->getType()->isRecordType()); 848 849 // In principle we could have a member access expression that 850 // accesses an anonymous struct/union that's a static member of 851 // the base object's class. However, under the current standard, 852 // static data members cannot be anonymous structs or unions. 853 // Supporting this is as easy as building a MemberExpr here. 854 assert(!baseObjectExpr && "anonymous struct/union is static data member?"); 855 856 DeclarationNameInfo baseNameInfo(DeclarationName(), loc); 857 858 ExprResult result 859 = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable); 860 if (result.isInvalid()) return ExprError(); 861 862 baseObjectExpr = result.get(); 863 } 864 865 assert((baseVariable || baseObjectExpr) && 866 "referencing anonymous struct/union without a base variable or " 867 "expression"); 868 869 // Build the implicit member references to the field of the 870 // anonymous struct/union. 871 Expr *result = baseObjectExpr; 872 IndirectFieldDecl::chain_iterator 873 FI = indirectField->chain_begin(), FEnd = indirectField->chain_end(); 874 875 // Case 2: the base of the indirect field is a field and the user 876 // wrote a member expression. 877 if (!baseVariable) { 878 FieldDecl *field = cast<FieldDecl>(*FI); 879 880 bool baseObjectIsPointer = baseObjectExpr->getType()->isPointerType(); 881 882 // Make a nameInfo that properly uses the anonymous name. 883 DeclarationNameInfo memberNameInfo(field->getDeclName(), loc); 884 885 // Build the first member access in the chain with full information. 886 result = 887 BuildFieldReferenceExpr(result, baseObjectIsPointer, SourceLocation(), 888 SS, field, foundDecl, memberNameInfo) 889 .get(); 890 if (!result) 891 return ExprError(); 892 } 893 894 // In all cases, we should now skip the first declaration in the chain. 895 ++FI; 896 897 while (FI != FEnd) { 898 FieldDecl *field = cast<FieldDecl>(*FI++); 899 900 // FIXME: these are somewhat meaningless 901 DeclarationNameInfo memberNameInfo(field->getDeclName(), loc); 902 DeclAccessPair fakeFoundDecl = 903 DeclAccessPair::make(field, field->getAccess()); 904 905 result = 906 BuildFieldReferenceExpr(result, /*isarrow*/ false, SourceLocation(), 907 (FI == FEnd ? SS : EmptySS), field, 908 fakeFoundDecl, memberNameInfo) 909 .get(); 910 } 911 912 return result; 913 } 914 915 static ExprResult 916 BuildMSPropertyRefExpr(Sema &S, Expr *BaseExpr, bool IsArrow, 917 const CXXScopeSpec &SS, 918 MSPropertyDecl *PD, 919 const DeclarationNameInfo &NameInfo) { 920 // Property names are always simple identifiers and therefore never 921 // require any interesting additional storage. 922 return new (S.Context) MSPropertyRefExpr(BaseExpr, PD, IsArrow, 923 S.Context.PseudoObjectTy, VK_LValue, 924 SS.getWithLocInContext(S.Context), 925 NameInfo.getLoc()); 926 } 927 928 MemberExpr *Sema::BuildMemberExpr( 929 Expr *Base, bool IsArrow, SourceLocation OpLoc, const CXXScopeSpec *SS, 930 SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl, 931 bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo, 932 QualType Ty, ExprValueKind VK, ExprObjectKind OK, 933 const TemplateArgumentListInfo *TemplateArgs) { 934 NestedNameSpecifierLoc NNS = 935 SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc(); 936 return BuildMemberExpr(Base, IsArrow, OpLoc, NNS, TemplateKWLoc, Member, 937 FoundDecl, HadMultipleCandidates, MemberNameInfo, Ty, 938 VK, OK, TemplateArgs); 939 } 940 941 MemberExpr *Sema::BuildMemberExpr( 942 Expr *Base, bool IsArrow, SourceLocation OpLoc, NestedNameSpecifierLoc NNS, 943 SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl, 944 bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo, 945 QualType Ty, ExprValueKind VK, ExprObjectKind OK, 946 const TemplateArgumentListInfo *TemplateArgs) { 947 assert((!IsArrow || Base->isPRValue()) && 948 "-> base must be a pointer prvalue"); 949 MemberExpr *E = 950 MemberExpr::Create(Context, Base, IsArrow, OpLoc, NNS, TemplateKWLoc, 951 Member, FoundDecl, MemberNameInfo, TemplateArgs, Ty, 952 VK, OK, getNonOdrUseReasonInCurrentContext(Member)); 953 E->setHadMultipleCandidates(HadMultipleCandidates); 954 MarkMemberReferenced(E); 955 956 // C++ [except.spec]p17: 957 // An exception-specification is considered to be needed when: 958 // - in an expression the function is the unique lookup result or the 959 // selected member of a set of overloaded functions 960 if (auto *FPT = Ty->getAs<FunctionProtoType>()) { 961 if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) { 962 if (auto *NewFPT = ResolveExceptionSpec(MemberNameInfo.getLoc(), FPT)) 963 E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers())); 964 } 965 } 966 967 return E; 968 } 969 970 /// Determine if the given scope is within a function-try-block handler. 971 static bool IsInFnTryBlockHandler(const Scope *S) { 972 // Walk the scope stack until finding a FnTryCatchScope, or leave the 973 // function scope. If a FnTryCatchScope is found, check whether the TryScope 974 // flag is set. If it is not, it's a function-try-block handler. 975 for (; S != S->getFnParent(); S = S->getParent()) { 976 if (S->isFnTryCatchScope()) 977 return (S->getFlags() & Scope::TryScope) != Scope::TryScope; 978 } 979 return false; 980 } 981 982 ExprResult 983 Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType, 984 SourceLocation OpLoc, bool IsArrow, 985 const CXXScopeSpec &SS, 986 SourceLocation TemplateKWLoc, 987 NamedDecl *FirstQualifierInScope, 988 LookupResult &R, 989 const TemplateArgumentListInfo *TemplateArgs, 990 const Scope *S, 991 bool SuppressQualifierCheck, 992 ActOnMemberAccessExtraArgs *ExtraArgs) { 993 QualType BaseType = BaseExprType; 994 if (IsArrow) { 995 assert(BaseType->isPointerType()); 996 BaseType = BaseType->castAs<PointerType>()->getPointeeType(); 997 } 998 R.setBaseObjectType(BaseType); 999 1000 // C++1z [expr.ref]p2: 1001 // For the first option (dot) the first expression shall be a glvalue [...] 1002 if (!IsArrow && BaseExpr && BaseExpr->isPRValue()) { 1003 ExprResult Converted = TemporaryMaterializationConversion(BaseExpr); 1004 if (Converted.isInvalid()) 1005 return ExprError(); 1006 BaseExpr = Converted.get(); 1007 } 1008 1009 const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo(); 1010 DeclarationName MemberName = MemberNameInfo.getName(); 1011 SourceLocation MemberLoc = MemberNameInfo.getLoc(); 1012 1013 if (R.isAmbiguous()) 1014 return ExprError(); 1015 1016 // [except.handle]p10: Referring to any non-static member or base class of an 1017 // object in the handler for a function-try-block of a constructor or 1018 // destructor for that object results in undefined behavior. 1019 const auto *FD = getCurFunctionDecl(); 1020 if (S && BaseExpr && FD && 1021 (isa<CXXDestructorDecl>(FD) || isa<CXXConstructorDecl>(FD)) && 1022 isa<CXXThisExpr>(BaseExpr->IgnoreImpCasts()) && 1023 IsInFnTryBlockHandler(S)) 1024 Diag(MemberLoc, diag::warn_cdtor_function_try_handler_mem_expr) 1025 << isa<CXXDestructorDecl>(FD); 1026 1027 if (R.empty()) { 1028 // Rederive where we looked up. 1029 DeclContext *DC = (SS.isSet() 1030 ? computeDeclContext(SS, false) 1031 : BaseType->castAs<RecordType>()->getDecl()); 1032 1033 if (ExtraArgs) { 1034 ExprResult RetryExpr; 1035 if (!IsArrow && BaseExpr) { 1036 SFINAETrap Trap(*this, true); 1037 ParsedType ObjectType; 1038 bool MayBePseudoDestructor = false; 1039 RetryExpr = ActOnStartCXXMemberReference(getCurScope(), BaseExpr, 1040 OpLoc, tok::arrow, ObjectType, 1041 MayBePseudoDestructor); 1042 if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) { 1043 CXXScopeSpec TempSS(SS); 1044 RetryExpr = ActOnMemberAccessExpr( 1045 ExtraArgs->S, RetryExpr.get(), OpLoc, tok::arrow, TempSS, 1046 TemplateKWLoc, ExtraArgs->Id, ExtraArgs->ObjCImpDecl); 1047 } 1048 if (Trap.hasErrorOccurred()) 1049 RetryExpr = ExprError(); 1050 } 1051 if (RetryExpr.isUsable()) { 1052 Diag(OpLoc, diag::err_no_member_overloaded_arrow) 1053 << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->"); 1054 return RetryExpr; 1055 } 1056 } 1057 1058 Diag(R.getNameLoc(), diag::err_no_member) 1059 << MemberName << DC 1060 << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange()); 1061 return ExprError(); 1062 } 1063 1064 // Diagnose lookups that find only declarations from a non-base 1065 // type. This is possible for either qualified lookups (which may 1066 // have been qualified with an unrelated type) or implicit member 1067 // expressions (which were found with unqualified lookup and thus 1068 // may have come from an enclosing scope). Note that it's okay for 1069 // lookup to find declarations from a non-base type as long as those 1070 // aren't the ones picked by overload resolution. 1071 if ((SS.isSet() || !BaseExpr || 1072 (isa<CXXThisExpr>(BaseExpr) && 1073 cast<CXXThisExpr>(BaseExpr)->isImplicit())) && 1074 !SuppressQualifierCheck && 1075 CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R)) 1076 return ExprError(); 1077 1078 // Construct an unresolved result if we in fact got an unresolved 1079 // result. 1080 if (R.isOverloadedResult() || R.isUnresolvableResult()) { 1081 // Suppress any lookup-related diagnostics; we'll do these when we 1082 // pick a member. 1083 R.suppressDiagnostics(); 1084 1085 UnresolvedMemberExpr *MemExpr 1086 = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(), 1087 BaseExpr, BaseExprType, 1088 IsArrow, OpLoc, 1089 SS.getWithLocInContext(Context), 1090 TemplateKWLoc, MemberNameInfo, 1091 TemplateArgs, R.begin(), R.end()); 1092 1093 return MemExpr; 1094 } 1095 1096 assert(R.isSingleResult()); 1097 DeclAccessPair FoundDecl = R.begin().getPair(); 1098 NamedDecl *MemberDecl = R.getFoundDecl(); 1099 1100 // FIXME: diagnose the presence of template arguments now. 1101 1102 // If the decl being referenced had an error, return an error for this 1103 // sub-expr without emitting another error, in order to avoid cascading 1104 // error cases. 1105 if (MemberDecl->isInvalidDecl()) 1106 return ExprError(); 1107 1108 // Handle the implicit-member-access case. 1109 if (!BaseExpr) { 1110 // If this is not an instance member, convert to a non-member access. 1111 if (!MemberDecl->isCXXInstanceMember()) { 1112 // We might have a variable template specialization (or maybe one day a 1113 // member concept-id). 1114 if (TemplateArgs || TemplateKWLoc.isValid()) 1115 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/false, TemplateArgs); 1116 1117 return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl, 1118 FoundDecl, TemplateArgs); 1119 } 1120 SourceLocation Loc = R.getNameLoc(); 1121 if (SS.getRange().isValid()) 1122 Loc = SS.getRange().getBegin(); 1123 BaseExpr = BuildCXXThisExpr(Loc, BaseExprType, /*IsImplicit=*/true); 1124 } 1125 1126 // Check the use of this member. 1127 if (DiagnoseUseOfDecl(MemberDecl, MemberLoc)) 1128 return ExprError(); 1129 1130 if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) 1131 return BuildFieldReferenceExpr(BaseExpr, IsArrow, OpLoc, SS, FD, FoundDecl, 1132 MemberNameInfo); 1133 1134 if (MSPropertyDecl *PD = dyn_cast<MSPropertyDecl>(MemberDecl)) 1135 return BuildMSPropertyRefExpr(*this, BaseExpr, IsArrow, SS, PD, 1136 MemberNameInfo); 1137 1138 if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl)) 1139 // We may have found a field within an anonymous union or struct 1140 // (C++ [class.union]). 1141 return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD, 1142 FoundDecl, BaseExpr, 1143 OpLoc); 1144 1145 if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) { 1146 return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Var, 1147 FoundDecl, /*HadMultipleCandidates=*/false, 1148 MemberNameInfo, Var->getType().getNonReferenceType(), 1149 VK_LValue, OK_Ordinary); 1150 } 1151 1152 if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) { 1153 ExprValueKind valueKind; 1154 QualType type; 1155 if (MemberFn->isInstance()) { 1156 valueKind = VK_PRValue; 1157 type = Context.BoundMemberTy; 1158 } else { 1159 valueKind = VK_LValue; 1160 type = MemberFn->getType(); 1161 } 1162 1163 return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, 1164 MemberFn, FoundDecl, /*HadMultipleCandidates=*/false, 1165 MemberNameInfo, type, valueKind, OK_Ordinary); 1166 } 1167 assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?"); 1168 1169 if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) { 1170 return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Enum, 1171 FoundDecl, /*HadMultipleCandidates=*/false, 1172 MemberNameInfo, Enum->getType(), VK_PRValue, 1173 OK_Ordinary); 1174 } 1175 1176 if (VarTemplateDecl *VarTempl = dyn_cast<VarTemplateDecl>(MemberDecl)) { 1177 if (!TemplateArgs) { 1178 diagnoseMissingTemplateArguments(TemplateName(VarTempl), MemberLoc); 1179 return ExprError(); 1180 } 1181 1182 DeclResult VDecl = CheckVarTemplateId(VarTempl, TemplateKWLoc, 1183 MemberNameInfo.getLoc(), *TemplateArgs); 1184 if (VDecl.isInvalid()) 1185 return ExprError(); 1186 1187 // Non-dependent member, but dependent template arguments. 1188 if (!VDecl.get()) 1189 return ActOnDependentMemberExpr( 1190 BaseExpr, BaseExpr->getType(), IsArrow, OpLoc, SS, TemplateKWLoc, 1191 FirstQualifierInScope, MemberNameInfo, TemplateArgs); 1192 1193 VarDecl *Var = cast<VarDecl>(VDecl.get()); 1194 if (!Var->getTemplateSpecializationKind()) 1195 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation, MemberLoc); 1196 1197 return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Var, 1198 FoundDecl, /*HadMultipleCandidates=*/false, 1199 MemberNameInfo, Var->getType().getNonReferenceType(), 1200 VK_LValue, OK_Ordinary, TemplateArgs); 1201 } 1202 1203 // We found something that we didn't expect. Complain. 1204 if (isa<TypeDecl>(MemberDecl)) 1205 Diag(MemberLoc, diag::err_typecheck_member_reference_type) 1206 << MemberName << BaseType << int(IsArrow); 1207 else 1208 Diag(MemberLoc, diag::err_typecheck_member_reference_unknown) 1209 << MemberName << BaseType << int(IsArrow); 1210 1211 Diag(MemberDecl->getLocation(), diag::note_member_declared_here) 1212 << MemberName; 1213 R.suppressDiagnostics(); 1214 return ExprError(); 1215 } 1216 1217 /// Given that normal member access failed on the given expression, 1218 /// and given that the expression's type involves builtin-id or 1219 /// builtin-Class, decide whether substituting in the redefinition 1220 /// types would be profitable. The redefinition type is whatever 1221 /// this translation unit tried to typedef to id/Class; we store 1222 /// it to the side and then re-use it in places like this. 1223 static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) { 1224 const ObjCObjectPointerType *opty 1225 = base.get()->getType()->getAs<ObjCObjectPointerType>(); 1226 if (!opty) return false; 1227 1228 const ObjCObjectType *ty = opty->getObjectType(); 1229 1230 QualType redef; 1231 if (ty->isObjCId()) { 1232 redef = S.Context.getObjCIdRedefinitionType(); 1233 } else if (ty->isObjCClass()) { 1234 redef = S.Context.getObjCClassRedefinitionType(); 1235 } else { 1236 return false; 1237 } 1238 1239 // Do the substitution as long as the redefinition type isn't just a 1240 // possibly-qualified pointer to builtin-id or builtin-Class again. 1241 opty = redef->getAs<ObjCObjectPointerType>(); 1242 if (opty && !opty->getObjectType()->getInterface()) 1243 return false; 1244 1245 base = S.ImpCastExprToType(base.get(), redef, CK_BitCast); 1246 return true; 1247 } 1248 1249 static bool isRecordType(QualType T) { 1250 return T->isRecordType(); 1251 } 1252 static bool isPointerToRecordType(QualType T) { 1253 if (const PointerType *PT = T->getAs<PointerType>()) 1254 return PT->getPointeeType()->isRecordType(); 1255 return false; 1256 } 1257 1258 /// Perform conversions on the LHS of a member access expression. 1259 ExprResult 1260 Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) { 1261 if (IsArrow && !Base->getType()->isFunctionType()) 1262 return DefaultFunctionArrayLvalueConversion(Base); 1263 1264 return CheckPlaceholderExpr(Base); 1265 } 1266 1267 /// Look up the given member of the given non-type-dependent 1268 /// expression. This can return in one of two ways: 1269 /// * If it returns a sentinel null-but-valid result, the caller will 1270 /// assume that lookup was performed and the results written into 1271 /// the provided structure. It will take over from there. 1272 /// * Otherwise, the returned expression will be produced in place of 1273 /// an ordinary member expression. 1274 /// 1275 /// The ObjCImpDecl bit is a gross hack that will need to be properly 1276 /// fixed for ObjC++. 1277 static ExprResult LookupMemberExpr(Sema &S, LookupResult &R, 1278 ExprResult &BaseExpr, bool &IsArrow, 1279 SourceLocation OpLoc, CXXScopeSpec &SS, 1280 Decl *ObjCImpDecl, bool HasTemplateArgs, 1281 SourceLocation TemplateKWLoc) { 1282 assert(BaseExpr.get() && "no base expression"); 1283 1284 // Perform default conversions. 1285 BaseExpr = S.PerformMemberExprBaseConversion(BaseExpr.get(), IsArrow); 1286 if (BaseExpr.isInvalid()) 1287 return ExprError(); 1288 1289 QualType BaseType = BaseExpr.get()->getType(); 1290 assert(!BaseType->isDependentType()); 1291 1292 DeclarationName MemberName = R.getLookupName(); 1293 SourceLocation MemberLoc = R.getNameLoc(); 1294 1295 // For later type-checking purposes, turn arrow accesses into dot 1296 // accesses. The only access type we support that doesn't follow 1297 // the C equivalence "a->b === (*a).b" is ObjC property accesses, 1298 // and those never use arrows, so this is unaffected. 1299 if (IsArrow) { 1300 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) 1301 BaseType = Ptr->getPointeeType(); 1302 else if (const ObjCObjectPointerType *Ptr 1303 = BaseType->getAs<ObjCObjectPointerType>()) 1304 BaseType = Ptr->getPointeeType(); 1305 else if (BaseType->isRecordType()) { 1306 // Recover from arrow accesses to records, e.g.: 1307 // struct MyRecord foo; 1308 // foo->bar 1309 // This is actually well-formed in C++ if MyRecord has an 1310 // overloaded operator->, but that should have been dealt with 1311 // by now--or a diagnostic message already issued if a problem 1312 // was encountered while looking for the overloaded operator->. 1313 if (!S.getLangOpts().CPlusPlus) { 1314 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 1315 << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange() 1316 << FixItHint::CreateReplacement(OpLoc, "."); 1317 } 1318 IsArrow = false; 1319 } else if (BaseType->isFunctionType()) { 1320 goto fail; 1321 } else { 1322 S.Diag(MemberLoc, diag::err_typecheck_member_reference_arrow) 1323 << BaseType << BaseExpr.get()->getSourceRange(); 1324 return ExprError(); 1325 } 1326 } 1327 1328 // If the base type is an atomic type, this access is undefined behavior per 1329 // C11 6.5.2.3p5. Instead of giving a typecheck error, we'll warn the user 1330 // about the UB and recover by converting the atomic lvalue into a non-atomic 1331 // lvalue. Because this is inherently unsafe as an atomic operation, the 1332 // warning defaults to an error. 1333 if (const auto *ATy = BaseType->getAs<AtomicType>()) { 1334 S.DiagRuntimeBehavior(OpLoc, nullptr, 1335 S.PDiag(diag::warn_atomic_member_access)); 1336 BaseType = ATy->getValueType().getUnqualifiedType(); 1337 BaseExpr = ImplicitCastExpr::Create( 1338 S.Context, IsArrow ? S.Context.getPointerType(BaseType) : BaseType, 1339 CK_AtomicToNonAtomic, BaseExpr.get(), nullptr, 1340 BaseExpr.get()->getValueKind(), FPOptionsOverride()); 1341 } 1342 1343 // Handle field access to simple records. 1344 if (const RecordType *RTy = BaseType->getAs<RecordType>()) { 1345 TypoExpr *TE = nullptr; 1346 if (LookupMemberExprInRecord(S, R, BaseExpr.get(), RTy, OpLoc, IsArrow, SS, 1347 HasTemplateArgs, TemplateKWLoc, TE)) 1348 return ExprError(); 1349 1350 // Returning valid-but-null is how we indicate to the caller that 1351 // the lookup result was filled in. If typo correction was attempted and 1352 // failed, the lookup result will have been cleared--that combined with the 1353 // valid-but-null ExprResult will trigger the appropriate diagnostics. 1354 return ExprResult(TE); 1355 } 1356 1357 // Handle ivar access to Objective-C objects. 1358 if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) { 1359 if (!SS.isEmpty() && !SS.isInvalid()) { 1360 S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access) 1361 << 1 << SS.getScopeRep() 1362 << FixItHint::CreateRemoval(SS.getRange()); 1363 SS.clear(); 1364 } 1365 1366 IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); 1367 1368 // There are three cases for the base type: 1369 // - builtin id (qualified or unqualified) 1370 // - builtin Class (qualified or unqualified) 1371 // - an interface 1372 ObjCInterfaceDecl *IDecl = OTy->getInterface(); 1373 if (!IDecl) { 1374 if (S.getLangOpts().ObjCAutoRefCount && 1375 (OTy->isObjCId() || OTy->isObjCClass())) 1376 goto fail; 1377 // There's an implicit 'isa' ivar on all objects. 1378 // But we only actually find it this way on objects of type 'id', 1379 // apparently. 1380 if (OTy->isObjCId() && Member->isStr("isa")) 1381 return new (S.Context) ObjCIsaExpr(BaseExpr.get(), IsArrow, MemberLoc, 1382 OpLoc, S.Context.getObjCClassType()); 1383 if (ShouldTryAgainWithRedefinitionType(S, BaseExpr)) 1384 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, 1385 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); 1386 goto fail; 1387 } 1388 1389 if (S.RequireCompleteType(OpLoc, BaseType, 1390 diag::err_typecheck_incomplete_tag, 1391 BaseExpr.get())) 1392 return ExprError(); 1393 1394 ObjCInterfaceDecl *ClassDeclared = nullptr; 1395 ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared); 1396 1397 if (!IV) { 1398 // Attempt to correct for typos in ivar names. 1399 DeclFilterCCC<ObjCIvarDecl> Validator{}; 1400 Validator.IsObjCIvarLookup = IsArrow; 1401 if (TypoCorrection Corrected = S.CorrectTypo( 1402 R.getLookupNameInfo(), Sema::LookupMemberName, nullptr, nullptr, 1403 Validator, Sema::CTK_ErrorRecovery, IDecl)) { 1404 IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>(); 1405 S.diagnoseTypo( 1406 Corrected, 1407 S.PDiag(diag::err_typecheck_member_reference_ivar_suggest) 1408 << IDecl->getDeclName() << MemberName); 1409 1410 // Figure out the class that declares the ivar. 1411 assert(!ClassDeclared); 1412 1413 Decl *D = cast<Decl>(IV->getDeclContext()); 1414 if (auto *Category = dyn_cast<ObjCCategoryDecl>(D)) 1415 D = Category->getClassInterface(); 1416 1417 if (auto *Implementation = dyn_cast<ObjCImplementationDecl>(D)) 1418 ClassDeclared = Implementation->getClassInterface(); 1419 else if (auto *Interface = dyn_cast<ObjCInterfaceDecl>(D)) 1420 ClassDeclared = Interface; 1421 1422 assert(ClassDeclared && "cannot query interface"); 1423 } else { 1424 if (IsArrow && 1425 IDecl->FindPropertyDeclaration( 1426 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { 1427 S.Diag(MemberLoc, diag::err_property_found_suggest) 1428 << Member << BaseExpr.get()->getType() 1429 << FixItHint::CreateReplacement(OpLoc, "."); 1430 return ExprError(); 1431 } 1432 1433 S.Diag(MemberLoc, diag::err_typecheck_member_reference_ivar) 1434 << IDecl->getDeclName() << MemberName 1435 << BaseExpr.get()->getSourceRange(); 1436 return ExprError(); 1437 } 1438 } 1439 1440 assert(ClassDeclared); 1441 1442 // If the decl being referenced had an error, return an error for this 1443 // sub-expr without emitting another error, in order to avoid cascading 1444 // error cases. 1445 if (IV->isInvalidDecl()) 1446 return ExprError(); 1447 1448 // Check whether we can reference this field. 1449 if (S.DiagnoseUseOfDecl(IV, MemberLoc)) 1450 return ExprError(); 1451 if (IV->getAccessControl() != ObjCIvarDecl::Public && 1452 IV->getAccessControl() != ObjCIvarDecl::Package) { 1453 ObjCInterfaceDecl *ClassOfMethodDecl = nullptr; 1454 if (ObjCMethodDecl *MD = S.getCurMethodDecl()) 1455 ClassOfMethodDecl = MD->getClassInterface(); 1456 else if (ObjCImpDecl && S.getCurFunctionDecl()) { 1457 // Case of a c-function declared inside an objc implementation. 1458 // FIXME: For a c-style function nested inside an objc implementation 1459 // class, there is no implementation context available, so we pass 1460 // down the context as argument to this routine. Ideally, this context 1461 // need be passed down in the AST node and somehow calculated from the 1462 // AST for a function decl. 1463 if (ObjCImplementationDecl *IMPD = 1464 dyn_cast<ObjCImplementationDecl>(ObjCImpDecl)) 1465 ClassOfMethodDecl = IMPD->getClassInterface(); 1466 else if (ObjCCategoryImplDecl* CatImplClass = 1467 dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl)) 1468 ClassOfMethodDecl = CatImplClass->getClassInterface(); 1469 } 1470 if (!S.getLangOpts().DebuggerSupport) { 1471 if (IV->getAccessControl() == ObjCIvarDecl::Private) { 1472 if (!declaresSameEntity(ClassDeclared, IDecl) || 1473 !declaresSameEntity(ClassOfMethodDecl, ClassDeclared)) 1474 S.Diag(MemberLoc, diag::err_private_ivar_access) 1475 << IV->getDeclName(); 1476 } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl)) 1477 // @protected 1478 S.Diag(MemberLoc, diag::err_protected_ivar_access) 1479 << IV->getDeclName(); 1480 } 1481 } 1482 bool warn = true; 1483 if (S.getLangOpts().ObjCWeak) { 1484 Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts(); 1485 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp)) 1486 if (UO->getOpcode() == UO_Deref) 1487 BaseExp = UO->getSubExpr()->IgnoreParenCasts(); 1488 1489 if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp)) 1490 if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) { 1491 S.Diag(DE->getLocation(), diag::err_arc_weak_ivar_access); 1492 warn = false; 1493 } 1494 } 1495 if (warn) { 1496 if (ObjCMethodDecl *MD = S.getCurMethodDecl()) { 1497 ObjCMethodFamily MF = MD->getMethodFamily(); 1498 warn = (MF != OMF_init && MF != OMF_dealloc && 1499 MF != OMF_finalize && 1500 !S.IvarBacksCurrentMethodAccessor(IDecl, MD, IV)); 1501 } 1502 if (warn) 1503 S.Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName(); 1504 } 1505 1506 ObjCIvarRefExpr *Result = new (S.Context) ObjCIvarRefExpr( 1507 IV, IV->getUsageType(BaseType), MemberLoc, OpLoc, BaseExpr.get(), 1508 IsArrow); 1509 1510 if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) { 1511 if (!S.isUnevaluatedContext() && 1512 !S.Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, MemberLoc)) 1513 S.getCurFunction()->recordUseOfWeak(Result); 1514 } 1515 1516 return Result; 1517 } 1518 1519 // Objective-C property access. 1520 const ObjCObjectPointerType *OPT; 1521 if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) { 1522 if (!SS.isEmpty() && !SS.isInvalid()) { 1523 S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access) 1524 << 0 << SS.getScopeRep() << FixItHint::CreateRemoval(SS.getRange()); 1525 SS.clear(); 1526 } 1527 1528 // This actually uses the base as an r-value. 1529 BaseExpr = S.DefaultLvalueConversion(BaseExpr.get()); 1530 if (BaseExpr.isInvalid()) 1531 return ExprError(); 1532 1533 assert(S.Context.hasSameUnqualifiedType(BaseType, 1534 BaseExpr.get()->getType())); 1535 1536 IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); 1537 1538 const ObjCObjectType *OT = OPT->getObjectType(); 1539 1540 // id, with and without qualifiers. 1541 if (OT->isObjCId()) { 1542 // Check protocols on qualified interfaces. 1543 Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member); 1544 if (Decl *PMDecl = 1545 FindGetterSetterNameDecl(OPT, Member, Sel, S.Context)) { 1546 if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) { 1547 // Check the use of this declaration 1548 if (S.DiagnoseUseOfDecl(PD, MemberLoc)) 1549 return ExprError(); 1550 1551 return new (S.Context) 1552 ObjCPropertyRefExpr(PD, S.Context.PseudoObjectTy, VK_LValue, 1553 OK_ObjCProperty, MemberLoc, BaseExpr.get()); 1554 } 1555 1556 if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) { 1557 Selector SetterSel = 1558 SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(), 1559 S.PP.getSelectorTable(), 1560 Member); 1561 ObjCMethodDecl *SMD = nullptr; 1562 if (Decl *SDecl = FindGetterSetterNameDecl(OPT, 1563 /*Property id*/ nullptr, 1564 SetterSel, S.Context)) 1565 SMD = dyn_cast<ObjCMethodDecl>(SDecl); 1566 1567 return new (S.Context) 1568 ObjCPropertyRefExpr(OMD, SMD, S.Context.PseudoObjectTy, VK_LValue, 1569 OK_ObjCProperty, MemberLoc, BaseExpr.get()); 1570 } 1571 } 1572 // Use of id.member can only be for a property reference. Do not 1573 // use the 'id' redefinition in this case. 1574 if (IsArrow && ShouldTryAgainWithRedefinitionType(S, BaseExpr)) 1575 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, 1576 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); 1577 1578 return ExprError(S.Diag(MemberLoc, diag::err_property_not_found) 1579 << MemberName << BaseType); 1580 } 1581 1582 // 'Class', unqualified only. 1583 if (OT->isObjCClass()) { 1584 // Only works in a method declaration (??!). 1585 ObjCMethodDecl *MD = S.getCurMethodDecl(); 1586 if (!MD) { 1587 if (ShouldTryAgainWithRedefinitionType(S, BaseExpr)) 1588 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, 1589 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); 1590 1591 goto fail; 1592 } 1593 1594 // Also must look for a getter name which uses property syntax. 1595 Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member); 1596 ObjCInterfaceDecl *IFace = MD->getClassInterface(); 1597 if (!IFace) 1598 goto fail; 1599 1600 ObjCMethodDecl *Getter; 1601 if ((Getter = IFace->lookupClassMethod(Sel))) { 1602 // Check the use of this method. 1603 if (S.DiagnoseUseOfDecl(Getter, MemberLoc)) 1604 return ExprError(); 1605 } else 1606 Getter = IFace->lookupPrivateMethod(Sel, false); 1607 // If we found a getter then this may be a valid dot-reference, we 1608 // will look for the matching setter, in case it is needed. 1609 Selector SetterSel = 1610 SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(), 1611 S.PP.getSelectorTable(), 1612 Member); 1613 ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel); 1614 if (!Setter) { 1615 // If this reference is in an @implementation, also check for 'private' 1616 // methods. 1617 Setter = IFace->lookupPrivateMethod(SetterSel, false); 1618 } 1619 1620 if (Setter && S.DiagnoseUseOfDecl(Setter, MemberLoc)) 1621 return ExprError(); 1622 1623 if (Getter || Setter) { 1624 return new (S.Context) ObjCPropertyRefExpr( 1625 Getter, Setter, S.Context.PseudoObjectTy, VK_LValue, 1626 OK_ObjCProperty, MemberLoc, BaseExpr.get()); 1627 } 1628 1629 if (ShouldTryAgainWithRedefinitionType(S, BaseExpr)) 1630 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, 1631 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); 1632 1633 return ExprError(S.Diag(MemberLoc, diag::err_property_not_found) 1634 << MemberName << BaseType); 1635 } 1636 1637 // Normal property access. 1638 return S.HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc, MemberName, 1639 MemberLoc, SourceLocation(), QualType(), 1640 false); 1641 } 1642 1643 if (BaseType->isExtVectorBoolType()) { 1644 // We disallow element access for ext_vector_type bool. There is no way to 1645 // materialize a reference to a vector element as a pointer (each element is 1646 // one bit in the vector). 1647 S.Diag(R.getNameLoc(), diag::err_ext_vector_component_name_illegal) 1648 << MemberName 1649 << (BaseExpr.get() ? BaseExpr.get()->getSourceRange() : SourceRange()); 1650 return ExprError(); 1651 } 1652 1653 // Handle 'field access' to vectors, such as 'V.xx'. 1654 if (BaseType->isExtVectorType()) { 1655 // FIXME: this expr should store IsArrow. 1656 IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); 1657 ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr.get()->getValueKind()); 1658 QualType ret = CheckExtVectorComponent(S, BaseType, VK, OpLoc, 1659 Member, MemberLoc); 1660 if (ret.isNull()) 1661 return ExprError(); 1662 Qualifiers BaseQ = 1663 S.Context.getCanonicalType(BaseExpr.get()->getType()).getQualifiers(); 1664 ret = S.Context.getQualifiedType(ret, BaseQ); 1665 1666 return new (S.Context) 1667 ExtVectorElementExpr(ret, VK, BaseExpr.get(), *Member, MemberLoc); 1668 } 1669 1670 // Adjust builtin-sel to the appropriate redefinition type if that's 1671 // not just a pointer to builtin-sel again. 1672 if (IsArrow && BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) && 1673 !S.Context.getObjCSelRedefinitionType()->isObjCSelType()) { 1674 BaseExpr = S.ImpCastExprToType( 1675 BaseExpr.get(), S.Context.getObjCSelRedefinitionType(), CK_BitCast); 1676 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, 1677 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); 1678 } 1679 1680 // Failure cases. 1681 fail: 1682 1683 // Recover from dot accesses to pointers, e.g.: 1684 // type *foo; 1685 // foo.bar 1686 // This is actually well-formed in two cases: 1687 // - 'type' is an Objective C type 1688 // - 'bar' is a pseudo-destructor name which happens to refer to 1689 // the appropriate pointer type 1690 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) { 1691 if (!IsArrow && Ptr->getPointeeType()->isRecordType() && 1692 MemberName.getNameKind() != DeclarationName::CXXDestructorName) { 1693 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 1694 << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange() 1695 << FixItHint::CreateReplacement(OpLoc, "->"); 1696 1697 if (S.isSFINAEContext()) 1698 return ExprError(); 1699 1700 // Recurse as an -> access. 1701 IsArrow = true; 1702 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, 1703 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); 1704 } 1705 } 1706 1707 // If the user is trying to apply -> or . to a function name, it's probably 1708 // because they forgot parentheses to call that function. 1709 if (S.tryToRecoverWithCall( 1710 BaseExpr, S.PDiag(diag::err_member_reference_needs_call), 1711 /*complain*/ false, 1712 IsArrow ? &isPointerToRecordType : &isRecordType)) { 1713 if (BaseExpr.isInvalid()) 1714 return ExprError(); 1715 BaseExpr = S.DefaultFunctionArrayConversion(BaseExpr.get()); 1716 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, 1717 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); 1718 } 1719 1720 // HLSL supports implicit conversion of scalar types to single element vector 1721 // rvalues in member expressions. 1722 if (S.getLangOpts().HLSL && BaseType->isScalarType()) { 1723 QualType VectorTy = S.Context.getExtVectorType(BaseType, 1); 1724 BaseExpr = S.ImpCastExprToType(BaseExpr.get(), VectorTy, CK_VectorSplat, 1725 BaseExpr.get()->getValueKind()); 1726 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, ObjCImpDecl, 1727 HasTemplateArgs, TemplateKWLoc); 1728 } 1729 1730 S.Diag(OpLoc, diag::err_typecheck_member_reference_struct_union) 1731 << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc; 1732 1733 return ExprError(); 1734 } 1735 1736 /// The main callback when the parser finds something like 1737 /// expression . [nested-name-specifier] identifier 1738 /// expression -> [nested-name-specifier] identifier 1739 /// where 'identifier' encompasses a fairly broad spectrum of 1740 /// possibilities, including destructor and operator references. 1741 /// 1742 /// \param OpKind either tok::arrow or tok::period 1743 /// \param ObjCImpDecl the current Objective-C \@implementation 1744 /// decl; this is an ugly hack around the fact that Objective-C 1745 /// \@implementations aren't properly put in the context chain 1746 ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base, 1747 SourceLocation OpLoc, 1748 tok::TokenKind OpKind, 1749 CXXScopeSpec &SS, 1750 SourceLocation TemplateKWLoc, 1751 UnqualifiedId &Id, 1752 Decl *ObjCImpDecl) { 1753 if (SS.isSet() && SS.isInvalid()) 1754 return ExprError(); 1755 1756 // Warn about the explicit constructor calls Microsoft extension. 1757 if (getLangOpts().MicrosoftExt && 1758 Id.getKind() == UnqualifiedIdKind::IK_ConstructorName) 1759 Diag(Id.getSourceRange().getBegin(), 1760 diag::ext_ms_explicit_constructor_call); 1761 1762 TemplateArgumentListInfo TemplateArgsBuffer; 1763 1764 // Decompose the name into its component parts. 1765 DeclarationNameInfo NameInfo; 1766 const TemplateArgumentListInfo *TemplateArgs; 1767 DecomposeUnqualifiedId(Id, TemplateArgsBuffer, 1768 NameInfo, TemplateArgs); 1769 1770 DeclarationName Name = NameInfo.getName(); 1771 bool IsArrow = (OpKind == tok::arrow); 1772 1773 if (getLangOpts().HLSL && IsArrow) 1774 return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 2); 1775 1776 NamedDecl *FirstQualifierInScope 1777 = (!SS.isSet() ? nullptr : FindFirstQualifierInScope(S, SS.getScopeRep())); 1778 1779 // This is a postfix expression, so get rid of ParenListExprs. 1780 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); 1781 if (Result.isInvalid()) return ExprError(); 1782 Base = Result.get(); 1783 1784 if (Base->getType()->isDependentType() || Name.isDependentName() || 1785 isDependentScopeSpecifier(SS)) { 1786 return ActOnDependentMemberExpr(Base, Base->getType(), IsArrow, OpLoc, SS, 1787 TemplateKWLoc, FirstQualifierInScope, 1788 NameInfo, TemplateArgs); 1789 } 1790 1791 ActOnMemberAccessExtraArgs ExtraArgs = {S, Id, ObjCImpDecl}; 1792 ExprResult Res = BuildMemberReferenceExpr( 1793 Base, Base->getType(), OpLoc, IsArrow, SS, TemplateKWLoc, 1794 FirstQualifierInScope, NameInfo, TemplateArgs, S, &ExtraArgs); 1795 1796 if (!Res.isInvalid() && isa<MemberExpr>(Res.get())) 1797 CheckMemberAccessOfNoDeref(cast<MemberExpr>(Res.get())); 1798 1799 return Res; 1800 } 1801 1802 void Sema::CheckMemberAccessOfNoDeref(const MemberExpr *E) { 1803 if (isUnevaluatedContext()) 1804 return; 1805 1806 QualType ResultTy = E->getType(); 1807 1808 // Member accesses have four cases: 1809 // 1: non-array member via "->": dereferences 1810 // 2: non-array member via ".": nothing interesting happens 1811 // 3: array member access via "->": nothing interesting happens 1812 // (this returns an array lvalue and does not actually dereference memory) 1813 // 4: array member access via ".": *adds* a layer of indirection 1814 if (ResultTy->isArrayType()) { 1815 if (!E->isArrow()) { 1816 // This might be something like: 1817 // (*structPtr).arrayMember 1818 // which behaves roughly like: 1819 // &(*structPtr).pointerMember 1820 // in that the apparent dereference in the base expression does not 1821 // actually happen. 1822 CheckAddressOfNoDeref(E->getBase()); 1823 } 1824 } else if (E->isArrow()) { 1825 if (const auto *Ptr = dyn_cast<PointerType>( 1826 E->getBase()->getType().getDesugaredType(Context))) { 1827 if (Ptr->getPointeeType()->hasAttr(attr::NoDeref)) 1828 ExprEvalContexts.back().PossibleDerefs.insert(E); 1829 } 1830 } 1831 } 1832 1833 ExprResult 1834 Sema::BuildFieldReferenceExpr(Expr *BaseExpr, bool IsArrow, 1835 SourceLocation OpLoc, const CXXScopeSpec &SS, 1836 FieldDecl *Field, DeclAccessPair FoundDecl, 1837 const DeclarationNameInfo &MemberNameInfo) { 1838 // x.a is an l-value if 'a' has a reference type. Otherwise: 1839 // x.a is an l-value/x-value/pr-value if the base is (and note 1840 // that *x is always an l-value), except that if the base isn't 1841 // an ordinary object then we must have an rvalue. 1842 ExprValueKind VK = VK_LValue; 1843 ExprObjectKind OK = OK_Ordinary; 1844 if (!IsArrow) { 1845 if (BaseExpr->getObjectKind() == OK_Ordinary) 1846 VK = BaseExpr->getValueKind(); 1847 else 1848 VK = VK_PRValue; 1849 } 1850 if (VK != VK_PRValue && Field->isBitField()) 1851 OK = OK_BitField; 1852 1853 // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref] 1854 QualType MemberType = Field->getType(); 1855 if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) { 1856 MemberType = Ref->getPointeeType(); 1857 VK = VK_LValue; 1858 } else { 1859 QualType BaseType = BaseExpr->getType(); 1860 if (IsArrow) BaseType = BaseType->castAs<PointerType>()->getPointeeType(); 1861 1862 Qualifiers BaseQuals = BaseType.getQualifiers(); 1863 1864 // GC attributes are never picked up by members. 1865 BaseQuals.removeObjCGCAttr(); 1866 1867 // CVR attributes from the base are picked up by members, 1868 // except that 'mutable' members don't pick up 'const'. 1869 if (Field->isMutable()) BaseQuals.removeConst(); 1870 1871 Qualifiers MemberQuals = 1872 Context.getCanonicalType(MemberType).getQualifiers(); 1873 1874 assert(!MemberQuals.hasAddressSpace()); 1875 1876 Qualifiers Combined = BaseQuals + MemberQuals; 1877 if (Combined != MemberQuals) 1878 MemberType = Context.getQualifiedType(MemberType, Combined); 1879 1880 // Pick up NoDeref from the base in case we end up using AddrOf on the 1881 // result. E.g. the expression 1882 // &someNoDerefPtr->pointerMember 1883 // should be a noderef pointer again. 1884 if (BaseType->hasAttr(attr::NoDeref)) 1885 MemberType = 1886 Context.getAttributedType(attr::NoDeref, MemberType, MemberType); 1887 } 1888 1889 auto *CurMethod = dyn_cast<CXXMethodDecl>(CurContext); 1890 if (!(CurMethod && CurMethod->isDefaulted())) 1891 UnusedPrivateFields.remove(Field); 1892 1893 ExprResult Base = PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(), 1894 FoundDecl, Field); 1895 if (Base.isInvalid()) 1896 return ExprError(); 1897 1898 // Build a reference to a private copy for non-static data members in 1899 // non-static member functions, privatized by OpenMP constructs. 1900 if (getLangOpts().OpenMP && IsArrow && 1901 !CurContext->isDependentContext() && 1902 isa<CXXThisExpr>(Base.get()->IgnoreParenImpCasts())) { 1903 if (auto *PrivateCopy = isOpenMPCapturedDecl(Field)) { 1904 return getOpenMPCapturedExpr(PrivateCopy, VK, OK, 1905 MemberNameInfo.getLoc()); 1906 } 1907 } 1908 1909 return BuildMemberExpr(Base.get(), IsArrow, OpLoc, &SS, 1910 /*TemplateKWLoc=*/SourceLocation(), Field, FoundDecl, 1911 /*HadMultipleCandidates=*/false, MemberNameInfo, 1912 MemberType, VK, OK); 1913 } 1914 1915 /// Builds an implicit member access expression. The current context 1916 /// is known to be an instance method, and the given unqualified lookup 1917 /// set is known to contain only instance members, at least one of which 1918 /// is from an appropriate type. 1919 ExprResult 1920 Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS, 1921 SourceLocation TemplateKWLoc, 1922 LookupResult &R, 1923 const TemplateArgumentListInfo *TemplateArgs, 1924 bool IsKnownInstance, const Scope *S) { 1925 assert(!R.empty() && !R.isAmbiguous()); 1926 1927 SourceLocation loc = R.getNameLoc(); 1928 1929 // If this is known to be an instance access, go ahead and build an 1930 // implicit 'this' expression now. 1931 QualType ThisTy = getCurrentThisType(); 1932 assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'"); 1933 1934 Expr *baseExpr = nullptr; // null signifies implicit access 1935 if (IsKnownInstance) { 1936 SourceLocation Loc = R.getNameLoc(); 1937 if (SS.getRange().isValid()) 1938 Loc = SS.getRange().getBegin(); 1939 baseExpr = BuildCXXThisExpr(loc, ThisTy, /*IsImplicit=*/true); 1940 } 1941 1942 return BuildMemberReferenceExpr( 1943 baseExpr, ThisTy, 1944 /*OpLoc=*/SourceLocation(), 1945 /*IsArrow=*/!getLangOpts().HLSL, SS, TemplateKWLoc, 1946 /*FirstQualifierInScope=*/nullptr, R, TemplateArgs, S); 1947 } 1948