xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaExprMember.cpp (revision 4824e7fd18a1223177218d4aec1b3c6c5c4a444e)
1 //===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis member access expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 #include "clang/Sema/Overload.h"
13 #include "clang/AST/ASTLambda.h"
14 #include "clang/AST/DeclCXX.h"
15 #include "clang/AST/DeclObjC.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/ExprObjC.h"
19 #include "clang/Lex/Preprocessor.h"
20 #include "clang/Sema/Lookup.h"
21 #include "clang/Sema/Scope.h"
22 #include "clang/Sema/ScopeInfo.h"
23 #include "clang/Sema/SemaInternal.h"
24 
25 using namespace clang;
26 using namespace sema;
27 
28 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> BaseSet;
29 
30 /// Determines if the given class is provably not derived from all of
31 /// the prospective base classes.
32 static bool isProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record,
33                                      const BaseSet &Bases) {
34   auto BaseIsNotInSet = [&Bases](const CXXRecordDecl *Base) {
35     return !Bases.count(Base->getCanonicalDecl());
36   };
37   return BaseIsNotInSet(Record) && Record->forallBases(BaseIsNotInSet);
38 }
39 
40 enum IMAKind {
41   /// The reference is definitely not an instance member access.
42   IMA_Static,
43 
44   /// The reference may be an implicit instance member access.
45   IMA_Mixed,
46 
47   /// The reference may be to an instance member, but it might be invalid if
48   /// so, because the context is not an instance method.
49   IMA_Mixed_StaticContext,
50 
51   /// The reference may be to an instance member, but it is invalid if
52   /// so, because the context is from an unrelated class.
53   IMA_Mixed_Unrelated,
54 
55   /// The reference is definitely an implicit instance member access.
56   IMA_Instance,
57 
58   /// The reference may be to an unresolved using declaration.
59   IMA_Unresolved,
60 
61   /// The reference is a contextually-permitted abstract member reference.
62   IMA_Abstract,
63 
64   /// The reference may be to an unresolved using declaration and the
65   /// context is not an instance method.
66   IMA_Unresolved_StaticContext,
67 
68   // The reference refers to a field which is not a member of the containing
69   // class, which is allowed because we're in C++11 mode and the context is
70   // unevaluated.
71   IMA_Field_Uneval_Context,
72 
73   /// All possible referrents are instance members and the current
74   /// context is not an instance method.
75   IMA_Error_StaticContext,
76 
77   /// All possible referrents are instance members of an unrelated
78   /// class.
79   IMA_Error_Unrelated
80 };
81 
82 /// The given lookup names class member(s) and is not being used for
83 /// an address-of-member expression.  Classify the type of access
84 /// according to whether it's possible that this reference names an
85 /// instance member.  This is best-effort in dependent contexts; it is okay to
86 /// conservatively answer "yes", in which case some errors will simply
87 /// not be caught until template-instantiation.
88 static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
89                                             const LookupResult &R) {
90   assert(!R.empty() && (*R.begin())->isCXXClassMember());
91 
92   DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
93 
94   bool isStaticContext = SemaRef.CXXThisTypeOverride.isNull() &&
95     (!isa<CXXMethodDecl>(DC) || cast<CXXMethodDecl>(DC)->isStatic());
96 
97   if (R.isUnresolvableResult())
98     return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
99 
100   // Collect all the declaring classes of instance members we find.
101   bool hasNonInstance = false;
102   bool isField = false;
103   BaseSet Classes;
104   for (NamedDecl *D : R) {
105     // Look through any using decls.
106     D = D->getUnderlyingDecl();
107 
108     if (D->isCXXInstanceMember()) {
109       isField |= isa<FieldDecl>(D) || isa<MSPropertyDecl>(D) ||
110                  isa<IndirectFieldDecl>(D);
111 
112       CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
113       Classes.insert(R->getCanonicalDecl());
114     } else
115       hasNonInstance = true;
116   }
117 
118   // If we didn't find any instance members, it can't be an implicit
119   // member reference.
120   if (Classes.empty())
121     return IMA_Static;
122 
123   // C++11 [expr.prim.general]p12:
124   //   An id-expression that denotes a non-static data member or non-static
125   //   member function of a class can only be used:
126   //   (...)
127   //   - if that id-expression denotes a non-static data member and it
128   //     appears in an unevaluated operand.
129   //
130   // This rule is specific to C++11.  However, we also permit this form
131   // in unevaluated inline assembly operands, like the operand to a SIZE.
132   IMAKind AbstractInstanceResult = IMA_Static; // happens to be 'false'
133   assert(!AbstractInstanceResult);
134   switch (SemaRef.ExprEvalContexts.back().Context) {
135   case Sema::ExpressionEvaluationContext::Unevaluated:
136   case Sema::ExpressionEvaluationContext::UnevaluatedList:
137     if (isField && SemaRef.getLangOpts().CPlusPlus11)
138       AbstractInstanceResult = IMA_Field_Uneval_Context;
139     break;
140 
141   case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
142     AbstractInstanceResult = IMA_Abstract;
143     break;
144 
145   case Sema::ExpressionEvaluationContext::DiscardedStatement:
146   case Sema::ExpressionEvaluationContext::ConstantEvaluated:
147   case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
148   case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
149   case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
150     break;
151   }
152 
153   // If the current context is not an instance method, it can't be
154   // an implicit member reference.
155   if (isStaticContext) {
156     if (hasNonInstance)
157       return IMA_Mixed_StaticContext;
158 
159     return AbstractInstanceResult ? AbstractInstanceResult
160                                   : IMA_Error_StaticContext;
161   }
162 
163   CXXRecordDecl *contextClass;
164   if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
165     contextClass = MD->getParent()->getCanonicalDecl();
166   else
167     contextClass = cast<CXXRecordDecl>(DC);
168 
169   // [class.mfct.non-static]p3:
170   // ...is used in the body of a non-static member function of class X,
171   // if name lookup (3.4.1) resolves the name in the id-expression to a
172   // non-static non-type member of some class C [...]
173   // ...if C is not X or a base class of X, the class member access expression
174   // is ill-formed.
175   if (R.getNamingClass() &&
176       contextClass->getCanonicalDecl() !=
177         R.getNamingClass()->getCanonicalDecl()) {
178     // If the naming class is not the current context, this was a qualified
179     // member name lookup, and it's sufficient to check that we have the naming
180     // class as a base class.
181     Classes.clear();
182     Classes.insert(R.getNamingClass()->getCanonicalDecl());
183   }
184 
185   // If we can prove that the current context is unrelated to all the
186   // declaring classes, it can't be an implicit member reference (in
187   // which case it's an error if any of those members are selected).
188   if (isProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
189     return hasNonInstance ? IMA_Mixed_Unrelated :
190            AbstractInstanceResult ? AbstractInstanceResult :
191                                     IMA_Error_Unrelated;
192 
193   return (hasNonInstance ? IMA_Mixed : IMA_Instance);
194 }
195 
196 /// Diagnose a reference to a field with no object available.
197 static void diagnoseInstanceReference(Sema &SemaRef,
198                                       const CXXScopeSpec &SS,
199                                       NamedDecl *Rep,
200                                       const DeclarationNameInfo &nameInfo) {
201   SourceLocation Loc = nameInfo.getLoc();
202   SourceRange Range(Loc);
203   if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
204 
205   // Look through using shadow decls and aliases.
206   Rep = Rep->getUnderlyingDecl();
207 
208   DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext();
209   CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC);
210   CXXRecordDecl *ContextClass = Method ? Method->getParent() : nullptr;
211   CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext());
212 
213   bool InStaticMethod = Method && Method->isStatic();
214   bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep);
215 
216   if (IsField && InStaticMethod)
217     // "invalid use of member 'x' in static member function"
218     SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
219         << Range << nameInfo.getName();
220   else if (ContextClass && RepClass && SS.isEmpty() && !InStaticMethod &&
221            !RepClass->Equals(ContextClass) && RepClass->Encloses(ContextClass))
222     // Unqualified lookup in a non-static member function found a member of an
223     // enclosing class.
224     SemaRef.Diag(Loc, diag::err_nested_non_static_member_use)
225       << IsField << RepClass << nameInfo.getName() << ContextClass << Range;
226   else if (IsField)
227     SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
228       << nameInfo.getName() << Range;
229   else
230     SemaRef.Diag(Loc, diag::err_member_call_without_object)
231       << Range;
232 }
233 
234 /// Builds an expression which might be an implicit member expression.
235 ExprResult Sema::BuildPossibleImplicitMemberExpr(
236     const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R,
237     const TemplateArgumentListInfo *TemplateArgs, const Scope *S,
238     UnresolvedLookupExpr *AsULE) {
239   switch (ClassifyImplicitMemberAccess(*this, R)) {
240   case IMA_Instance:
241     return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true, S);
242 
243   case IMA_Mixed:
244   case IMA_Mixed_Unrelated:
245   case IMA_Unresolved:
246     return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false,
247                                    S);
248 
249   case IMA_Field_Uneval_Context:
250     Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use)
251       << R.getLookupNameInfo().getName();
252     LLVM_FALLTHROUGH;
253   case IMA_Static:
254   case IMA_Abstract:
255   case IMA_Mixed_StaticContext:
256   case IMA_Unresolved_StaticContext:
257     if (TemplateArgs || TemplateKWLoc.isValid())
258       return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs);
259     return AsULE ? AsULE : BuildDeclarationNameExpr(SS, R, false);
260 
261   case IMA_Error_StaticContext:
262   case IMA_Error_Unrelated:
263     diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
264                               R.getLookupNameInfo());
265     return ExprError();
266   }
267 
268   llvm_unreachable("unexpected instance member access kind");
269 }
270 
271 /// Determine whether input char is from rgba component set.
272 static bool
273 IsRGBA(char c) {
274   switch (c) {
275   case 'r':
276   case 'g':
277   case 'b':
278   case 'a':
279     return true;
280   default:
281     return false;
282   }
283 }
284 
285 // OpenCL v1.1, s6.1.7
286 // The component swizzle length must be in accordance with the acceptable
287 // vector sizes.
288 static bool IsValidOpenCLComponentSwizzleLength(unsigned len)
289 {
290   return (len >= 1 && len <= 4) || len == 8 || len == 16;
291 }
292 
293 /// Check an ext-vector component access expression.
294 ///
295 /// VK should be set in advance to the value kind of the base
296 /// expression.
297 static QualType
298 CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
299                         SourceLocation OpLoc, const IdentifierInfo *CompName,
300                         SourceLocation CompLoc) {
301   // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
302   // see FIXME there.
303   //
304   // FIXME: This logic can be greatly simplified by splitting it along
305   // halving/not halving and reworking the component checking.
306   const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
307 
308   // The vector accessor can't exceed the number of elements.
309   const char *compStr = CompName->getNameStart();
310 
311   // This flag determines whether or not the component is one of the four
312   // special names that indicate a subset of exactly half the elements are
313   // to be selected.
314   bool HalvingSwizzle = false;
315 
316   // This flag determines whether or not CompName has an 's' char prefix,
317   // indicating that it is a string of hex values to be used as vector indices.
318   bool HexSwizzle = (*compStr == 's' || *compStr == 'S') && compStr[1];
319 
320   bool HasRepeated = false;
321   bool HasIndex[16] = {};
322 
323   int Idx;
324 
325   // Check that we've found one of the special components, or that the component
326   // names must come from the same set.
327   if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
328       !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
329     HalvingSwizzle = true;
330   } else if (!HexSwizzle &&
331              (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
332     bool HasRGBA = IsRGBA(*compStr);
333     do {
334       // Ensure that xyzw and rgba components don't intermingle.
335       if (HasRGBA != IsRGBA(*compStr))
336         break;
337       if (HasIndex[Idx]) HasRepeated = true;
338       HasIndex[Idx] = true;
339       compStr++;
340     } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
341 
342     // Emit a warning if an rgba selector is used earlier than OpenCL C 3.0.
343     if (HasRGBA || (*compStr && IsRGBA(*compStr))) {
344       if (S.getLangOpts().OpenCL &&
345           S.getLangOpts().getOpenCLCompatibleVersion() < 300) {
346         const char *DiagBegin = HasRGBA ? CompName->getNameStart() : compStr;
347         S.Diag(OpLoc, diag::ext_opencl_ext_vector_type_rgba_selector)
348             << StringRef(DiagBegin, 1) << SourceRange(CompLoc);
349       }
350     }
351   } else {
352     if (HexSwizzle) compStr++;
353     while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
354       if (HasIndex[Idx]) HasRepeated = true;
355       HasIndex[Idx] = true;
356       compStr++;
357     }
358   }
359 
360   if (!HalvingSwizzle && *compStr) {
361     // We didn't get to the end of the string. This means the component names
362     // didn't come from the same set *or* we encountered an illegal name.
363     S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
364       << StringRef(compStr, 1) << SourceRange(CompLoc);
365     return QualType();
366   }
367 
368   // Ensure no component accessor exceeds the width of the vector type it
369   // operates on.
370   if (!HalvingSwizzle) {
371     compStr = CompName->getNameStart();
372 
373     if (HexSwizzle)
374       compStr++;
375 
376     while (*compStr) {
377       if (!vecType->isAccessorWithinNumElements(*compStr++, HexSwizzle)) {
378         S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
379           << baseType << SourceRange(CompLoc);
380         return QualType();
381       }
382     }
383   }
384 
385   // OpenCL mode requires swizzle length to be in accordance with accepted
386   // sizes. Clang however supports arbitrary lengths for other languages.
387   if (S.getLangOpts().OpenCL && !HalvingSwizzle) {
388     unsigned SwizzleLength = CompName->getLength();
389 
390     if (HexSwizzle)
391       SwizzleLength--;
392 
393     if (IsValidOpenCLComponentSwizzleLength(SwizzleLength) == false) {
394       S.Diag(OpLoc, diag::err_opencl_ext_vector_component_invalid_length)
395         << SwizzleLength << SourceRange(CompLoc);
396       return QualType();
397     }
398   }
399 
400   // The component accessor looks fine - now we need to compute the actual type.
401   // The vector type is implied by the component accessor. For example,
402   // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
403   // vec4.s0 is a float, vec4.s23 is a vec3, etc.
404   // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
405   unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
406                                      : CompName->getLength();
407   if (HexSwizzle)
408     CompSize--;
409 
410   if (CompSize == 1)
411     return vecType->getElementType();
412 
413   if (HasRepeated)
414     VK = VK_PRValue;
415 
416   QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
417   // Now look up the TypeDefDecl from the vector type. Without this,
418   // diagostics look bad. We want extended vector types to appear built-in.
419   for (Sema::ExtVectorDeclsType::iterator
420          I = S.ExtVectorDecls.begin(S.getExternalSource()),
421          E = S.ExtVectorDecls.end();
422        I != E; ++I) {
423     if ((*I)->getUnderlyingType() == VT)
424       return S.Context.getTypedefType(*I);
425   }
426 
427   return VT; // should never get here (a typedef type should always be found).
428 }
429 
430 static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
431                                                 IdentifierInfo *Member,
432                                                 const Selector &Sel,
433                                                 ASTContext &Context) {
434   if (Member)
435     if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(
436             Member, ObjCPropertyQueryKind::OBJC_PR_query_instance))
437       return PD;
438   if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
439     return OMD;
440 
441   for (const auto *I : PDecl->protocols()) {
442     if (Decl *D = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel,
443                                                            Context))
444       return D;
445   }
446   return nullptr;
447 }
448 
449 static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
450                                       IdentifierInfo *Member,
451                                       const Selector &Sel,
452                                       ASTContext &Context) {
453   // Check protocols on qualified interfaces.
454   Decl *GDecl = nullptr;
455   for (const auto *I : QIdTy->quals()) {
456     if (Member)
457       if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration(
458               Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
459         GDecl = PD;
460         break;
461       }
462     // Also must look for a getter or setter name which uses property syntax.
463     if (ObjCMethodDecl *OMD = I->getInstanceMethod(Sel)) {
464       GDecl = OMD;
465       break;
466     }
467   }
468   if (!GDecl) {
469     for (const auto *I : QIdTy->quals()) {
470       // Search in the protocol-qualifier list of current protocol.
471       GDecl = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, Context);
472       if (GDecl)
473         return GDecl;
474     }
475   }
476   return GDecl;
477 }
478 
479 ExprResult
480 Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
481                                bool IsArrow, SourceLocation OpLoc,
482                                const CXXScopeSpec &SS,
483                                SourceLocation TemplateKWLoc,
484                                NamedDecl *FirstQualifierInScope,
485                                const DeclarationNameInfo &NameInfo,
486                                const TemplateArgumentListInfo *TemplateArgs) {
487   // Even in dependent contexts, try to diagnose base expressions with
488   // obviously wrong types, e.g.:
489   //
490   // T* t;
491   // t.f;
492   //
493   // In Obj-C++, however, the above expression is valid, since it could be
494   // accessing the 'f' property if T is an Obj-C interface. The extra check
495   // allows this, while still reporting an error if T is a struct pointer.
496   if (!IsArrow) {
497     const PointerType *PT = BaseType->getAs<PointerType>();
498     if (PT && (!getLangOpts().ObjC ||
499                PT->getPointeeType()->isRecordType())) {
500       assert(BaseExpr && "cannot happen with implicit member accesses");
501       Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
502         << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange();
503       return ExprError();
504     }
505   }
506 
507   assert(BaseType->isDependentType() ||
508          NameInfo.getName().isDependentName() ||
509          isDependentScopeSpecifier(SS));
510 
511   // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
512   // must have pointer type, and the accessed type is the pointee.
513   return CXXDependentScopeMemberExpr::Create(
514       Context, BaseExpr, BaseType, IsArrow, OpLoc,
515       SS.getWithLocInContext(Context), TemplateKWLoc, FirstQualifierInScope,
516       NameInfo, TemplateArgs);
517 }
518 
519 /// We know that the given qualified member reference points only to
520 /// declarations which do not belong to the static type of the base
521 /// expression.  Diagnose the problem.
522 static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
523                                              Expr *BaseExpr,
524                                              QualType BaseType,
525                                              const CXXScopeSpec &SS,
526                                              NamedDecl *rep,
527                                        const DeclarationNameInfo &nameInfo) {
528   // If this is an implicit member access, use a different set of
529   // diagnostics.
530   if (!BaseExpr)
531     return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
532 
533   SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
534     << SS.getRange() << rep << BaseType;
535 }
536 
537 // Check whether the declarations we found through a nested-name
538 // specifier in a member expression are actually members of the base
539 // type.  The restriction here is:
540 //
541 //   C++ [expr.ref]p2:
542 //     ... In these cases, the id-expression shall name a
543 //     member of the class or of one of its base classes.
544 //
545 // So it's perfectly legitimate for the nested-name specifier to name
546 // an unrelated class, and for us to find an overload set including
547 // decls from classes which are not superclasses, as long as the decl
548 // we actually pick through overload resolution is from a superclass.
549 bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
550                                          QualType BaseType,
551                                          const CXXScopeSpec &SS,
552                                          const LookupResult &R) {
553   CXXRecordDecl *BaseRecord =
554     cast_or_null<CXXRecordDecl>(computeDeclContext(BaseType));
555   if (!BaseRecord) {
556     // We can't check this yet because the base type is still
557     // dependent.
558     assert(BaseType->isDependentType());
559     return false;
560   }
561 
562   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
563     // If this is an implicit member reference and we find a
564     // non-instance member, it's not an error.
565     if (!BaseExpr && !(*I)->isCXXInstanceMember())
566       return false;
567 
568     // Note that we use the DC of the decl, not the underlying decl.
569     DeclContext *DC = (*I)->getDeclContext()->getNonTransparentContext();
570     if (!DC->isRecord())
571       continue;
572 
573     CXXRecordDecl *MemberRecord = cast<CXXRecordDecl>(DC)->getCanonicalDecl();
574     if (BaseRecord->getCanonicalDecl() == MemberRecord ||
575         !BaseRecord->isProvablyNotDerivedFrom(MemberRecord))
576       return false;
577   }
578 
579   DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
580                                    R.getRepresentativeDecl(),
581                                    R.getLookupNameInfo());
582   return true;
583 }
584 
585 namespace {
586 
587 // Callback to only accept typo corrections that are either a ValueDecl or a
588 // FunctionTemplateDecl and are declared in the current record or, for a C++
589 // classes, one of its base classes.
590 class RecordMemberExprValidatorCCC final : public CorrectionCandidateCallback {
591 public:
592   explicit RecordMemberExprValidatorCCC(const RecordType *RTy)
593       : Record(RTy->getDecl()) {
594     // Don't add bare keywords to the consumer since they will always fail
595     // validation by virtue of not being associated with any decls.
596     WantTypeSpecifiers = false;
597     WantExpressionKeywords = false;
598     WantCXXNamedCasts = false;
599     WantFunctionLikeCasts = false;
600     WantRemainingKeywords = false;
601   }
602 
603   bool ValidateCandidate(const TypoCorrection &candidate) override {
604     NamedDecl *ND = candidate.getCorrectionDecl();
605     // Don't accept candidates that cannot be member functions, constants,
606     // variables, or templates.
607     if (!ND || !(isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)))
608       return false;
609 
610     // Accept candidates that occur in the current record.
611     if (Record->containsDecl(ND))
612       return true;
613 
614     if (const auto *RD = dyn_cast<CXXRecordDecl>(Record)) {
615       // Accept candidates that occur in any of the current class' base classes.
616       for (const auto &BS : RD->bases()) {
617         if (const auto *BSTy = BS.getType()->getAs<RecordType>()) {
618           if (BSTy->getDecl()->containsDecl(ND))
619             return true;
620         }
621       }
622     }
623 
624     return false;
625   }
626 
627   std::unique_ptr<CorrectionCandidateCallback> clone() override {
628     return std::make_unique<RecordMemberExprValidatorCCC>(*this);
629   }
630 
631 private:
632   const RecordDecl *const Record;
633 };
634 
635 }
636 
637 static bool LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
638                                      Expr *BaseExpr,
639                                      const RecordType *RTy,
640                                      SourceLocation OpLoc, bool IsArrow,
641                                      CXXScopeSpec &SS, bool HasTemplateArgs,
642                                      SourceLocation TemplateKWLoc,
643                                      TypoExpr *&TE) {
644   SourceRange BaseRange = BaseExpr ? BaseExpr->getSourceRange() : SourceRange();
645   RecordDecl *RDecl = RTy->getDecl();
646   if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) &&
647       SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
648                                   diag::err_typecheck_incomplete_tag,
649                                   BaseRange))
650     return true;
651 
652   if (HasTemplateArgs || TemplateKWLoc.isValid()) {
653     // LookupTemplateName doesn't expect these both to exist simultaneously.
654     QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
655 
656     bool MOUS;
657     return SemaRef.LookupTemplateName(R, nullptr, SS, ObjectType, false, MOUS,
658                                       TemplateKWLoc);
659   }
660 
661   DeclContext *DC = RDecl;
662   if (SS.isSet()) {
663     // If the member name was a qualified-id, look into the
664     // nested-name-specifier.
665     DC = SemaRef.computeDeclContext(SS, false);
666 
667     if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
668       SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
669           << SS.getRange() << DC;
670       return true;
671     }
672 
673     assert(DC && "Cannot handle non-computable dependent contexts in lookup");
674 
675     if (!isa<TypeDecl>(DC)) {
676       SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
677           << DC << SS.getRange();
678       return true;
679     }
680   }
681 
682   // The record definition is complete, now look up the member.
683   SemaRef.LookupQualifiedName(R, DC, SS);
684 
685   if (!R.empty())
686     return false;
687 
688   DeclarationName Typo = R.getLookupName();
689   SourceLocation TypoLoc = R.getNameLoc();
690 
691   struct QueryState {
692     Sema &SemaRef;
693     DeclarationNameInfo NameInfo;
694     Sema::LookupNameKind LookupKind;
695     Sema::RedeclarationKind Redecl;
696   };
697   QueryState Q = {R.getSema(), R.getLookupNameInfo(), R.getLookupKind(),
698                   R.redeclarationKind()};
699   RecordMemberExprValidatorCCC CCC(RTy);
700   TE = SemaRef.CorrectTypoDelayed(
701       R.getLookupNameInfo(), R.getLookupKind(), nullptr, &SS, CCC,
702       [=, &SemaRef](const TypoCorrection &TC) {
703         if (TC) {
704           assert(!TC.isKeyword() &&
705                  "Got a keyword as a correction for a member!");
706           bool DroppedSpecifier =
707               TC.WillReplaceSpecifier() &&
708               Typo.getAsString() == TC.getAsString(SemaRef.getLangOpts());
709           SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
710                                        << Typo << DC << DroppedSpecifier
711                                        << SS.getRange());
712         } else {
713           SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << DC << BaseRange;
714         }
715       },
716       [=](Sema &SemaRef, TypoExpr *TE, TypoCorrection TC) mutable {
717         LookupResult R(Q.SemaRef, Q.NameInfo, Q.LookupKind, Q.Redecl);
718         R.clear(); // Ensure there's no decls lingering in the shared state.
719         R.suppressDiagnostics();
720         R.setLookupName(TC.getCorrection());
721         for (NamedDecl *ND : TC)
722           R.addDecl(ND);
723         R.resolveKind();
724         return SemaRef.BuildMemberReferenceExpr(
725             BaseExpr, BaseExpr->getType(), OpLoc, IsArrow, SS, SourceLocation(),
726             nullptr, R, nullptr, nullptr);
727       },
728       Sema::CTK_ErrorRecovery, DC);
729 
730   return false;
731 }
732 
733 static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
734                                    ExprResult &BaseExpr, bool &IsArrow,
735                                    SourceLocation OpLoc, CXXScopeSpec &SS,
736                                    Decl *ObjCImpDecl, bool HasTemplateArgs,
737                                    SourceLocation TemplateKWLoc);
738 
739 ExprResult
740 Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
741                                SourceLocation OpLoc, bool IsArrow,
742                                CXXScopeSpec &SS,
743                                SourceLocation TemplateKWLoc,
744                                NamedDecl *FirstQualifierInScope,
745                                const DeclarationNameInfo &NameInfo,
746                                const TemplateArgumentListInfo *TemplateArgs,
747                                const Scope *S,
748                                ActOnMemberAccessExtraArgs *ExtraArgs) {
749   if (BaseType->isDependentType() ||
750       (SS.isSet() && isDependentScopeSpecifier(SS)))
751     return ActOnDependentMemberExpr(Base, BaseType,
752                                     IsArrow, OpLoc,
753                                     SS, TemplateKWLoc, FirstQualifierInScope,
754                                     NameInfo, TemplateArgs);
755 
756   LookupResult R(*this, NameInfo, LookupMemberName);
757 
758   // Implicit member accesses.
759   if (!Base) {
760     TypoExpr *TE = nullptr;
761     QualType RecordTy = BaseType;
762     if (IsArrow) RecordTy = RecordTy->castAs<PointerType>()->getPointeeType();
763     if (LookupMemberExprInRecord(
764             *this, R, nullptr, RecordTy->getAs<RecordType>(), OpLoc, IsArrow,
765             SS, TemplateArgs != nullptr, TemplateKWLoc, TE))
766       return ExprError();
767     if (TE)
768       return TE;
769 
770   // Explicit member accesses.
771   } else {
772     ExprResult BaseResult = Base;
773     ExprResult Result =
774         LookupMemberExpr(*this, R, BaseResult, IsArrow, OpLoc, SS,
775                          ExtraArgs ? ExtraArgs->ObjCImpDecl : nullptr,
776                          TemplateArgs != nullptr, TemplateKWLoc);
777 
778     if (BaseResult.isInvalid())
779       return ExprError();
780     Base = BaseResult.get();
781 
782     if (Result.isInvalid())
783       return ExprError();
784 
785     if (Result.get())
786       return Result;
787 
788     // LookupMemberExpr can modify Base, and thus change BaseType
789     BaseType = Base->getType();
790   }
791 
792   return BuildMemberReferenceExpr(Base, BaseType,
793                                   OpLoc, IsArrow, SS, TemplateKWLoc,
794                                   FirstQualifierInScope, R, TemplateArgs, S,
795                                   false, ExtraArgs);
796 }
797 
798 ExprResult
799 Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
800                                                SourceLocation loc,
801                                                IndirectFieldDecl *indirectField,
802                                                DeclAccessPair foundDecl,
803                                                Expr *baseObjectExpr,
804                                                SourceLocation opLoc) {
805   // First, build the expression that refers to the base object.
806 
807   // Case 1:  the base of the indirect field is not a field.
808   VarDecl *baseVariable = indirectField->getVarDecl();
809   CXXScopeSpec EmptySS;
810   if (baseVariable) {
811     assert(baseVariable->getType()->isRecordType());
812 
813     // In principle we could have a member access expression that
814     // accesses an anonymous struct/union that's a static member of
815     // the base object's class.  However, under the current standard,
816     // static data members cannot be anonymous structs or unions.
817     // Supporting this is as easy as building a MemberExpr here.
818     assert(!baseObjectExpr && "anonymous struct/union is static data member?");
819 
820     DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
821 
822     ExprResult result
823       = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
824     if (result.isInvalid()) return ExprError();
825 
826     baseObjectExpr = result.get();
827   }
828 
829   assert((baseVariable || baseObjectExpr) &&
830          "referencing anonymous struct/union without a base variable or "
831          "expression");
832 
833   // Build the implicit member references to the field of the
834   // anonymous struct/union.
835   Expr *result = baseObjectExpr;
836   IndirectFieldDecl::chain_iterator
837   FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
838 
839   // Case 2: the base of the indirect field is a field and the user
840   // wrote a member expression.
841   if (!baseVariable) {
842     FieldDecl *field = cast<FieldDecl>(*FI);
843 
844     bool baseObjectIsPointer = baseObjectExpr->getType()->isPointerType();
845 
846     // Make a nameInfo that properly uses the anonymous name.
847     DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
848 
849     // Build the first member access in the chain with full information.
850     result =
851         BuildFieldReferenceExpr(result, baseObjectIsPointer, SourceLocation(),
852                                 SS, field, foundDecl, memberNameInfo)
853             .get();
854     if (!result)
855       return ExprError();
856   }
857 
858   // In all cases, we should now skip the first declaration in the chain.
859   ++FI;
860 
861   while (FI != FEnd) {
862     FieldDecl *field = cast<FieldDecl>(*FI++);
863 
864     // FIXME: these are somewhat meaningless
865     DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
866     DeclAccessPair fakeFoundDecl =
867         DeclAccessPair::make(field, field->getAccess());
868 
869     result =
870         BuildFieldReferenceExpr(result, /*isarrow*/ false, SourceLocation(),
871                                 (FI == FEnd ? SS : EmptySS), field,
872                                 fakeFoundDecl, memberNameInfo)
873             .get();
874   }
875 
876   return result;
877 }
878 
879 static ExprResult
880 BuildMSPropertyRefExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
881                        const CXXScopeSpec &SS,
882                        MSPropertyDecl *PD,
883                        const DeclarationNameInfo &NameInfo) {
884   // Property names are always simple identifiers and therefore never
885   // require any interesting additional storage.
886   return new (S.Context) MSPropertyRefExpr(BaseExpr, PD, IsArrow,
887                                            S.Context.PseudoObjectTy, VK_LValue,
888                                            SS.getWithLocInContext(S.Context),
889                                            NameInfo.getLoc());
890 }
891 
892 MemberExpr *Sema::BuildMemberExpr(
893     Expr *Base, bool IsArrow, SourceLocation OpLoc, const CXXScopeSpec *SS,
894     SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl,
895     bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo,
896     QualType Ty, ExprValueKind VK, ExprObjectKind OK,
897     const TemplateArgumentListInfo *TemplateArgs) {
898   NestedNameSpecifierLoc NNS =
899       SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
900   return BuildMemberExpr(Base, IsArrow, OpLoc, NNS, TemplateKWLoc, Member,
901                          FoundDecl, HadMultipleCandidates, MemberNameInfo, Ty,
902                          VK, OK, TemplateArgs);
903 }
904 
905 MemberExpr *Sema::BuildMemberExpr(
906     Expr *Base, bool IsArrow, SourceLocation OpLoc, NestedNameSpecifierLoc NNS,
907     SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl,
908     bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo,
909     QualType Ty, ExprValueKind VK, ExprObjectKind OK,
910     const TemplateArgumentListInfo *TemplateArgs) {
911   assert((!IsArrow || Base->isPRValue()) &&
912          "-> base must be a pointer prvalue");
913   MemberExpr *E =
914       MemberExpr::Create(Context, Base, IsArrow, OpLoc, NNS, TemplateKWLoc,
915                          Member, FoundDecl, MemberNameInfo, TemplateArgs, Ty,
916                          VK, OK, getNonOdrUseReasonInCurrentContext(Member));
917   E->setHadMultipleCandidates(HadMultipleCandidates);
918   MarkMemberReferenced(E);
919 
920   // C++ [except.spec]p17:
921   //   An exception-specification is considered to be needed when:
922   //   - in an expression the function is the unique lookup result or the
923   //     selected member of a set of overloaded functions
924   if (auto *FPT = Ty->getAs<FunctionProtoType>()) {
925     if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
926       if (auto *NewFPT = ResolveExceptionSpec(MemberNameInfo.getLoc(), FPT))
927         E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
928     }
929   }
930 
931   return E;
932 }
933 
934 /// Determine if the given scope is within a function-try-block handler.
935 static bool IsInFnTryBlockHandler(const Scope *S) {
936   // Walk the scope stack until finding a FnTryCatchScope, or leave the
937   // function scope. If a FnTryCatchScope is found, check whether the TryScope
938   // flag is set. If it is not, it's a function-try-block handler.
939   for (; S != S->getFnParent(); S = S->getParent()) {
940     if (S->getFlags() & Scope::FnTryCatchScope)
941       return (S->getFlags() & Scope::TryScope) != Scope::TryScope;
942   }
943   return false;
944 }
945 
946 ExprResult
947 Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
948                                SourceLocation OpLoc, bool IsArrow,
949                                const CXXScopeSpec &SS,
950                                SourceLocation TemplateKWLoc,
951                                NamedDecl *FirstQualifierInScope,
952                                LookupResult &R,
953                                const TemplateArgumentListInfo *TemplateArgs,
954                                const Scope *S,
955                                bool SuppressQualifierCheck,
956                                ActOnMemberAccessExtraArgs *ExtraArgs) {
957   QualType BaseType = BaseExprType;
958   if (IsArrow) {
959     assert(BaseType->isPointerType());
960     BaseType = BaseType->castAs<PointerType>()->getPointeeType();
961   }
962   R.setBaseObjectType(BaseType);
963 
964   // C++1z [expr.ref]p2:
965   //   For the first option (dot) the first expression shall be a glvalue [...]
966   if (!IsArrow && BaseExpr && BaseExpr->isPRValue()) {
967     ExprResult Converted = TemporaryMaterializationConversion(BaseExpr);
968     if (Converted.isInvalid())
969       return ExprError();
970     BaseExpr = Converted.get();
971   }
972 
973   const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
974   DeclarationName MemberName = MemberNameInfo.getName();
975   SourceLocation MemberLoc = MemberNameInfo.getLoc();
976 
977   if (R.isAmbiguous())
978     return ExprError();
979 
980   // [except.handle]p10: Referring to any non-static member or base class of an
981   // object in the handler for a function-try-block of a constructor or
982   // destructor for that object results in undefined behavior.
983   const auto *FD = getCurFunctionDecl();
984   if (S && BaseExpr && FD &&
985       (isa<CXXDestructorDecl>(FD) || isa<CXXConstructorDecl>(FD)) &&
986       isa<CXXThisExpr>(BaseExpr->IgnoreImpCasts()) &&
987       IsInFnTryBlockHandler(S))
988     Diag(MemberLoc, diag::warn_cdtor_function_try_handler_mem_expr)
989         << isa<CXXDestructorDecl>(FD);
990 
991   if (R.empty()) {
992     // Rederive where we looked up.
993     DeclContext *DC = (SS.isSet()
994                        ? computeDeclContext(SS, false)
995                        : BaseType->castAs<RecordType>()->getDecl());
996 
997     if (ExtraArgs) {
998       ExprResult RetryExpr;
999       if (!IsArrow && BaseExpr) {
1000         SFINAETrap Trap(*this, true);
1001         ParsedType ObjectType;
1002         bool MayBePseudoDestructor = false;
1003         RetryExpr = ActOnStartCXXMemberReference(getCurScope(), BaseExpr,
1004                                                  OpLoc, tok::arrow, ObjectType,
1005                                                  MayBePseudoDestructor);
1006         if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) {
1007           CXXScopeSpec TempSS(SS);
1008           RetryExpr = ActOnMemberAccessExpr(
1009               ExtraArgs->S, RetryExpr.get(), OpLoc, tok::arrow, TempSS,
1010               TemplateKWLoc, ExtraArgs->Id, ExtraArgs->ObjCImpDecl);
1011         }
1012         if (Trap.hasErrorOccurred())
1013           RetryExpr = ExprError();
1014       }
1015       if (RetryExpr.isUsable()) {
1016         Diag(OpLoc, diag::err_no_member_overloaded_arrow)
1017           << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->");
1018         return RetryExpr;
1019       }
1020     }
1021 
1022     Diag(R.getNameLoc(), diag::err_no_member)
1023       << MemberName << DC
1024       << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
1025     return ExprError();
1026   }
1027 
1028   // Diagnose lookups that find only declarations from a non-base
1029   // type.  This is possible for either qualified lookups (which may
1030   // have been qualified with an unrelated type) or implicit member
1031   // expressions (which were found with unqualified lookup and thus
1032   // may have come from an enclosing scope).  Note that it's okay for
1033   // lookup to find declarations from a non-base type as long as those
1034   // aren't the ones picked by overload resolution.
1035   if ((SS.isSet() || !BaseExpr ||
1036        (isa<CXXThisExpr>(BaseExpr) &&
1037         cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
1038       !SuppressQualifierCheck &&
1039       CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
1040     return ExprError();
1041 
1042   // Construct an unresolved result if we in fact got an unresolved
1043   // result.
1044   if (R.isOverloadedResult() || R.isUnresolvableResult()) {
1045     // Suppress any lookup-related diagnostics; we'll do these when we
1046     // pick a member.
1047     R.suppressDiagnostics();
1048 
1049     UnresolvedMemberExpr *MemExpr
1050       = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
1051                                      BaseExpr, BaseExprType,
1052                                      IsArrow, OpLoc,
1053                                      SS.getWithLocInContext(Context),
1054                                      TemplateKWLoc, MemberNameInfo,
1055                                      TemplateArgs, R.begin(), R.end());
1056 
1057     return MemExpr;
1058   }
1059 
1060   assert(R.isSingleResult());
1061   DeclAccessPair FoundDecl = R.begin().getPair();
1062   NamedDecl *MemberDecl = R.getFoundDecl();
1063 
1064   // FIXME: diagnose the presence of template arguments now.
1065 
1066   // If the decl being referenced had an error, return an error for this
1067   // sub-expr without emitting another error, in order to avoid cascading
1068   // error cases.
1069   if (MemberDecl->isInvalidDecl())
1070     return ExprError();
1071 
1072   // Handle the implicit-member-access case.
1073   if (!BaseExpr) {
1074     // If this is not an instance member, convert to a non-member access.
1075     if (!MemberDecl->isCXXInstanceMember()) {
1076       // We might have a variable template specialization (or maybe one day a
1077       // member concept-id).
1078       if (TemplateArgs || TemplateKWLoc.isValid())
1079         return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/false, TemplateArgs);
1080 
1081       return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl,
1082                                       FoundDecl, TemplateArgs);
1083     }
1084     SourceLocation Loc = R.getNameLoc();
1085     if (SS.getRange().isValid())
1086       Loc = SS.getRange().getBegin();
1087     BaseExpr = BuildCXXThisExpr(Loc, BaseExprType, /*IsImplicit=*/true);
1088   }
1089 
1090   // Check the use of this member.
1091   if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
1092     return ExprError();
1093 
1094   if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
1095     return BuildFieldReferenceExpr(BaseExpr, IsArrow, OpLoc, SS, FD, FoundDecl,
1096                                    MemberNameInfo);
1097 
1098   if (MSPropertyDecl *PD = dyn_cast<MSPropertyDecl>(MemberDecl))
1099     return BuildMSPropertyRefExpr(*this, BaseExpr, IsArrow, SS, PD,
1100                                   MemberNameInfo);
1101 
1102   if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
1103     // We may have found a field within an anonymous union or struct
1104     // (C++ [class.union]).
1105     return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
1106                                                     FoundDecl, BaseExpr,
1107                                                     OpLoc);
1108 
1109   if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
1110     return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Var,
1111                            FoundDecl, /*HadMultipleCandidates=*/false,
1112                            MemberNameInfo, Var->getType().getNonReferenceType(),
1113                            VK_LValue, OK_Ordinary);
1114   }
1115 
1116   if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
1117     ExprValueKind valueKind;
1118     QualType type;
1119     if (MemberFn->isInstance()) {
1120       valueKind = VK_PRValue;
1121       type = Context.BoundMemberTy;
1122     } else {
1123       valueKind = VK_LValue;
1124       type = MemberFn->getType();
1125     }
1126 
1127     return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc,
1128                            MemberFn, FoundDecl, /*HadMultipleCandidates=*/false,
1129                            MemberNameInfo, type, valueKind, OK_Ordinary);
1130   }
1131   assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
1132 
1133   if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
1134     return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Enum,
1135                            FoundDecl, /*HadMultipleCandidates=*/false,
1136                            MemberNameInfo, Enum->getType(), VK_PRValue,
1137                            OK_Ordinary);
1138   }
1139 
1140   if (VarTemplateDecl *VarTempl = dyn_cast<VarTemplateDecl>(MemberDecl)) {
1141     if (!TemplateArgs) {
1142       diagnoseMissingTemplateArguments(TemplateName(VarTempl), MemberLoc);
1143       return ExprError();
1144     }
1145 
1146     DeclResult VDecl = CheckVarTemplateId(VarTempl, TemplateKWLoc,
1147                                           MemberNameInfo.getLoc(), *TemplateArgs);
1148     if (VDecl.isInvalid())
1149       return ExprError();
1150 
1151     // Non-dependent member, but dependent template arguments.
1152     if (!VDecl.get())
1153       return ActOnDependentMemberExpr(
1154           BaseExpr, BaseExpr->getType(), IsArrow, OpLoc, SS, TemplateKWLoc,
1155           FirstQualifierInScope, MemberNameInfo, TemplateArgs);
1156 
1157     VarDecl *Var = cast<VarDecl>(VDecl.get());
1158     if (!Var->getTemplateSpecializationKind())
1159       Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation, MemberLoc);
1160 
1161     return BuildMemberExpr(
1162         BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Var, FoundDecl,
1163         /*HadMultipleCandidates=*/false, MemberNameInfo,
1164         Var->getType().getNonReferenceType(), VK_LValue, OK_Ordinary);
1165   }
1166 
1167   // We found something that we didn't expect. Complain.
1168   if (isa<TypeDecl>(MemberDecl))
1169     Diag(MemberLoc, diag::err_typecheck_member_reference_type)
1170       << MemberName << BaseType << int(IsArrow);
1171   else
1172     Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
1173       << MemberName << BaseType << int(IsArrow);
1174 
1175   Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
1176     << MemberName;
1177   R.suppressDiagnostics();
1178   return ExprError();
1179 }
1180 
1181 /// Given that normal member access failed on the given expression,
1182 /// and given that the expression's type involves builtin-id or
1183 /// builtin-Class, decide whether substituting in the redefinition
1184 /// types would be profitable.  The redefinition type is whatever
1185 /// this translation unit tried to typedef to id/Class;  we store
1186 /// it to the side and then re-use it in places like this.
1187 static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
1188   const ObjCObjectPointerType *opty
1189     = base.get()->getType()->getAs<ObjCObjectPointerType>();
1190   if (!opty) return false;
1191 
1192   const ObjCObjectType *ty = opty->getObjectType();
1193 
1194   QualType redef;
1195   if (ty->isObjCId()) {
1196     redef = S.Context.getObjCIdRedefinitionType();
1197   } else if (ty->isObjCClass()) {
1198     redef = S.Context.getObjCClassRedefinitionType();
1199   } else {
1200     return false;
1201   }
1202 
1203   // Do the substitution as long as the redefinition type isn't just a
1204   // possibly-qualified pointer to builtin-id or builtin-Class again.
1205   opty = redef->getAs<ObjCObjectPointerType>();
1206   if (opty && !opty->getObjectType()->getInterface())
1207     return false;
1208 
1209   base = S.ImpCastExprToType(base.get(), redef, CK_BitCast);
1210   return true;
1211 }
1212 
1213 static bool isRecordType(QualType T) {
1214   return T->isRecordType();
1215 }
1216 static bool isPointerToRecordType(QualType T) {
1217   if (const PointerType *PT = T->getAs<PointerType>())
1218     return PT->getPointeeType()->isRecordType();
1219   return false;
1220 }
1221 
1222 /// Perform conversions on the LHS of a member access expression.
1223 ExprResult
1224 Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) {
1225   if (IsArrow && !Base->getType()->isFunctionType())
1226     return DefaultFunctionArrayLvalueConversion(Base);
1227 
1228   return CheckPlaceholderExpr(Base);
1229 }
1230 
1231 /// Look up the given member of the given non-type-dependent
1232 /// expression.  This can return in one of two ways:
1233 ///  * If it returns a sentinel null-but-valid result, the caller will
1234 ///    assume that lookup was performed and the results written into
1235 ///    the provided structure.  It will take over from there.
1236 ///  * Otherwise, the returned expression will be produced in place of
1237 ///    an ordinary member expression.
1238 ///
1239 /// The ObjCImpDecl bit is a gross hack that will need to be properly
1240 /// fixed for ObjC++.
1241 static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
1242                                    ExprResult &BaseExpr, bool &IsArrow,
1243                                    SourceLocation OpLoc, CXXScopeSpec &SS,
1244                                    Decl *ObjCImpDecl, bool HasTemplateArgs,
1245                                    SourceLocation TemplateKWLoc) {
1246   assert(BaseExpr.get() && "no base expression");
1247 
1248   // Perform default conversions.
1249   BaseExpr = S.PerformMemberExprBaseConversion(BaseExpr.get(), IsArrow);
1250   if (BaseExpr.isInvalid())
1251     return ExprError();
1252 
1253   QualType BaseType = BaseExpr.get()->getType();
1254   assert(!BaseType->isDependentType());
1255 
1256   DeclarationName MemberName = R.getLookupName();
1257   SourceLocation MemberLoc = R.getNameLoc();
1258 
1259   // For later type-checking purposes, turn arrow accesses into dot
1260   // accesses.  The only access type we support that doesn't follow
1261   // the C equivalence "a->b === (*a).b" is ObjC property accesses,
1262   // and those never use arrows, so this is unaffected.
1263   if (IsArrow) {
1264     if (const PointerType *Ptr = BaseType->getAs<PointerType>())
1265       BaseType = Ptr->getPointeeType();
1266     else if (const ObjCObjectPointerType *Ptr
1267                = BaseType->getAs<ObjCObjectPointerType>())
1268       BaseType = Ptr->getPointeeType();
1269     else if (BaseType->isRecordType()) {
1270       // Recover from arrow accesses to records, e.g.:
1271       //   struct MyRecord foo;
1272       //   foo->bar
1273       // This is actually well-formed in C++ if MyRecord has an
1274       // overloaded operator->, but that should have been dealt with
1275       // by now--or a diagnostic message already issued if a problem
1276       // was encountered while looking for the overloaded operator->.
1277       if (!S.getLangOpts().CPlusPlus) {
1278         S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1279           << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1280           << FixItHint::CreateReplacement(OpLoc, ".");
1281       }
1282       IsArrow = false;
1283     } else if (BaseType->isFunctionType()) {
1284       goto fail;
1285     } else {
1286       S.Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
1287         << BaseType << BaseExpr.get()->getSourceRange();
1288       return ExprError();
1289     }
1290   }
1291 
1292   // Handle field access to simple records.
1293   if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
1294     TypoExpr *TE = nullptr;
1295     if (LookupMemberExprInRecord(S, R, BaseExpr.get(), RTy, OpLoc, IsArrow, SS,
1296                                  HasTemplateArgs, TemplateKWLoc, TE))
1297       return ExprError();
1298 
1299     // Returning valid-but-null is how we indicate to the caller that
1300     // the lookup result was filled in. If typo correction was attempted and
1301     // failed, the lookup result will have been cleared--that combined with the
1302     // valid-but-null ExprResult will trigger the appropriate diagnostics.
1303     return ExprResult(TE);
1304   }
1305 
1306   // Handle ivar access to Objective-C objects.
1307   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
1308     if (!SS.isEmpty() && !SS.isInvalid()) {
1309       S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1310         << 1 << SS.getScopeRep()
1311         << FixItHint::CreateRemoval(SS.getRange());
1312       SS.clear();
1313     }
1314 
1315     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1316 
1317     // There are three cases for the base type:
1318     //   - builtin id (qualified or unqualified)
1319     //   - builtin Class (qualified or unqualified)
1320     //   - an interface
1321     ObjCInterfaceDecl *IDecl = OTy->getInterface();
1322     if (!IDecl) {
1323       if (S.getLangOpts().ObjCAutoRefCount &&
1324           (OTy->isObjCId() || OTy->isObjCClass()))
1325         goto fail;
1326       // There's an implicit 'isa' ivar on all objects.
1327       // But we only actually find it this way on objects of type 'id',
1328       // apparently.
1329       if (OTy->isObjCId() && Member->isStr("isa"))
1330         return new (S.Context) ObjCIsaExpr(BaseExpr.get(), IsArrow, MemberLoc,
1331                                            OpLoc, S.Context.getObjCClassType());
1332       if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1333         return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1334                                 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1335       goto fail;
1336     }
1337 
1338     if (S.RequireCompleteType(OpLoc, BaseType,
1339                               diag::err_typecheck_incomplete_tag,
1340                               BaseExpr.get()))
1341       return ExprError();
1342 
1343     ObjCInterfaceDecl *ClassDeclared = nullptr;
1344     ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
1345 
1346     if (!IV) {
1347       // Attempt to correct for typos in ivar names.
1348       DeclFilterCCC<ObjCIvarDecl> Validator{};
1349       Validator.IsObjCIvarLookup = IsArrow;
1350       if (TypoCorrection Corrected = S.CorrectTypo(
1351               R.getLookupNameInfo(), Sema::LookupMemberName, nullptr, nullptr,
1352               Validator, Sema::CTK_ErrorRecovery, IDecl)) {
1353         IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>();
1354         S.diagnoseTypo(
1355             Corrected,
1356             S.PDiag(diag::err_typecheck_member_reference_ivar_suggest)
1357                 << IDecl->getDeclName() << MemberName);
1358 
1359         // Figure out the class that declares the ivar.
1360         assert(!ClassDeclared);
1361 
1362         Decl *D = cast<Decl>(IV->getDeclContext());
1363         if (auto *Category = dyn_cast<ObjCCategoryDecl>(D))
1364           D = Category->getClassInterface();
1365 
1366         if (auto *Implementation = dyn_cast<ObjCImplementationDecl>(D))
1367           ClassDeclared = Implementation->getClassInterface();
1368         else if (auto *Interface = dyn_cast<ObjCInterfaceDecl>(D))
1369           ClassDeclared = Interface;
1370 
1371         assert(ClassDeclared && "cannot query interface");
1372       } else {
1373         if (IsArrow &&
1374             IDecl->FindPropertyDeclaration(
1375                 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
1376           S.Diag(MemberLoc, diag::err_property_found_suggest)
1377               << Member << BaseExpr.get()->getType()
1378               << FixItHint::CreateReplacement(OpLoc, ".");
1379           return ExprError();
1380         }
1381 
1382         S.Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1383             << IDecl->getDeclName() << MemberName
1384             << BaseExpr.get()->getSourceRange();
1385         return ExprError();
1386       }
1387     }
1388 
1389     assert(ClassDeclared);
1390 
1391     // If the decl being referenced had an error, return an error for this
1392     // sub-expr without emitting another error, in order to avoid cascading
1393     // error cases.
1394     if (IV->isInvalidDecl())
1395       return ExprError();
1396 
1397     // Check whether we can reference this field.
1398     if (S.DiagnoseUseOfDecl(IV, MemberLoc))
1399       return ExprError();
1400     if (IV->getAccessControl() != ObjCIvarDecl::Public &&
1401         IV->getAccessControl() != ObjCIvarDecl::Package) {
1402       ObjCInterfaceDecl *ClassOfMethodDecl = nullptr;
1403       if (ObjCMethodDecl *MD = S.getCurMethodDecl())
1404         ClassOfMethodDecl =  MD->getClassInterface();
1405       else if (ObjCImpDecl && S.getCurFunctionDecl()) {
1406         // Case of a c-function declared inside an objc implementation.
1407         // FIXME: For a c-style function nested inside an objc implementation
1408         // class, there is no implementation context available, so we pass
1409         // down the context as argument to this routine. Ideally, this context
1410         // need be passed down in the AST node and somehow calculated from the
1411         // AST for a function decl.
1412         if (ObjCImplementationDecl *IMPD =
1413               dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
1414           ClassOfMethodDecl = IMPD->getClassInterface();
1415         else if (ObjCCategoryImplDecl* CatImplClass =
1416                    dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
1417           ClassOfMethodDecl = CatImplClass->getClassInterface();
1418       }
1419       if (!S.getLangOpts().DebuggerSupport) {
1420         if (IV->getAccessControl() == ObjCIvarDecl::Private) {
1421           if (!declaresSameEntity(ClassDeclared, IDecl) ||
1422               !declaresSameEntity(ClassOfMethodDecl, ClassDeclared))
1423             S.Diag(MemberLoc, diag::err_private_ivar_access)
1424               << IV->getDeclName();
1425         } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
1426           // @protected
1427           S.Diag(MemberLoc, diag::err_protected_ivar_access)
1428               << IV->getDeclName();
1429       }
1430     }
1431     bool warn = true;
1432     if (S.getLangOpts().ObjCWeak) {
1433       Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
1434       if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp))
1435         if (UO->getOpcode() == UO_Deref)
1436           BaseExp = UO->getSubExpr()->IgnoreParenCasts();
1437 
1438       if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp))
1439         if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1440           S.Diag(DE->getLocation(), diag::err_arc_weak_ivar_access);
1441           warn = false;
1442         }
1443     }
1444     if (warn) {
1445       if (ObjCMethodDecl *MD = S.getCurMethodDecl()) {
1446         ObjCMethodFamily MF = MD->getMethodFamily();
1447         warn = (MF != OMF_init && MF != OMF_dealloc &&
1448                 MF != OMF_finalize &&
1449                 !S.IvarBacksCurrentMethodAccessor(IDecl, MD, IV));
1450       }
1451       if (warn)
1452         S.Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName();
1453     }
1454 
1455     ObjCIvarRefExpr *Result = new (S.Context) ObjCIvarRefExpr(
1456         IV, IV->getUsageType(BaseType), MemberLoc, OpLoc, BaseExpr.get(),
1457         IsArrow);
1458 
1459     if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1460       if (!S.isUnevaluatedContext() &&
1461           !S.Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, MemberLoc))
1462         S.getCurFunction()->recordUseOfWeak(Result);
1463     }
1464 
1465     return Result;
1466   }
1467 
1468   // Objective-C property access.
1469   const ObjCObjectPointerType *OPT;
1470   if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
1471     if (!SS.isEmpty() && !SS.isInvalid()) {
1472       S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1473           << 0 << SS.getScopeRep() << FixItHint::CreateRemoval(SS.getRange());
1474       SS.clear();
1475     }
1476 
1477     // This actually uses the base as an r-value.
1478     BaseExpr = S.DefaultLvalueConversion(BaseExpr.get());
1479     if (BaseExpr.isInvalid())
1480       return ExprError();
1481 
1482     assert(S.Context.hasSameUnqualifiedType(BaseType,
1483                                             BaseExpr.get()->getType()));
1484 
1485     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1486 
1487     const ObjCObjectType *OT = OPT->getObjectType();
1488 
1489     // id, with and without qualifiers.
1490     if (OT->isObjCId()) {
1491       // Check protocols on qualified interfaces.
1492       Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
1493       if (Decl *PMDecl =
1494               FindGetterSetterNameDecl(OPT, Member, Sel, S.Context)) {
1495         if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
1496           // Check the use of this declaration
1497           if (S.DiagnoseUseOfDecl(PD, MemberLoc))
1498             return ExprError();
1499 
1500           return new (S.Context)
1501               ObjCPropertyRefExpr(PD, S.Context.PseudoObjectTy, VK_LValue,
1502                                   OK_ObjCProperty, MemberLoc, BaseExpr.get());
1503         }
1504 
1505         if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
1506           Selector SetterSel =
1507             SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
1508                                                    S.PP.getSelectorTable(),
1509                                                    Member);
1510           ObjCMethodDecl *SMD = nullptr;
1511           if (Decl *SDecl = FindGetterSetterNameDecl(OPT,
1512                                                      /*Property id*/ nullptr,
1513                                                      SetterSel, S.Context))
1514             SMD = dyn_cast<ObjCMethodDecl>(SDecl);
1515 
1516           return new (S.Context)
1517               ObjCPropertyRefExpr(OMD, SMD, S.Context.PseudoObjectTy, VK_LValue,
1518                                   OK_ObjCProperty, MemberLoc, BaseExpr.get());
1519         }
1520       }
1521       // Use of id.member can only be for a property reference. Do not
1522       // use the 'id' redefinition in this case.
1523       if (IsArrow && ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1524         return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1525                                 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1526 
1527       return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
1528                          << MemberName << BaseType);
1529     }
1530 
1531     // 'Class', unqualified only.
1532     if (OT->isObjCClass()) {
1533       // Only works in a method declaration (??!).
1534       ObjCMethodDecl *MD = S.getCurMethodDecl();
1535       if (!MD) {
1536         if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1537           return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1538                                   ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1539 
1540         goto fail;
1541       }
1542 
1543       // Also must look for a getter name which uses property syntax.
1544       Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
1545       ObjCInterfaceDecl *IFace = MD->getClassInterface();
1546       if (!IFace)
1547         goto fail;
1548 
1549       ObjCMethodDecl *Getter;
1550       if ((Getter = IFace->lookupClassMethod(Sel))) {
1551         // Check the use of this method.
1552         if (S.DiagnoseUseOfDecl(Getter, MemberLoc))
1553           return ExprError();
1554       } else
1555         Getter = IFace->lookupPrivateMethod(Sel, false);
1556       // If we found a getter then this may be a valid dot-reference, we
1557       // will look for the matching setter, in case it is needed.
1558       Selector SetterSel =
1559         SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
1560                                                S.PP.getSelectorTable(),
1561                                                Member);
1562       ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
1563       if (!Setter) {
1564         // If this reference is in an @implementation, also check for 'private'
1565         // methods.
1566         Setter = IFace->lookupPrivateMethod(SetterSel, false);
1567       }
1568 
1569       if (Setter && S.DiagnoseUseOfDecl(Setter, MemberLoc))
1570         return ExprError();
1571 
1572       if (Getter || Setter) {
1573         return new (S.Context) ObjCPropertyRefExpr(
1574             Getter, Setter, S.Context.PseudoObjectTy, VK_LValue,
1575             OK_ObjCProperty, MemberLoc, BaseExpr.get());
1576       }
1577 
1578       if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1579         return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1580                                 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1581 
1582       return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
1583                          << MemberName << BaseType);
1584     }
1585 
1586     // Normal property access.
1587     return S.HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc, MemberName,
1588                                        MemberLoc, SourceLocation(), QualType(),
1589                                        false);
1590   }
1591 
1592   // Handle 'field access' to vectors, such as 'V.xx'.
1593   if (BaseType->isExtVectorType()) {
1594     // FIXME: this expr should store IsArrow.
1595     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1596     ExprValueKind VK;
1597     if (IsArrow)
1598       VK = VK_LValue;
1599     else {
1600       if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(BaseExpr.get()))
1601         VK = POE->getSyntacticForm()->getValueKind();
1602       else
1603         VK = BaseExpr.get()->getValueKind();
1604     }
1605 
1606     QualType ret = CheckExtVectorComponent(S, BaseType, VK, OpLoc,
1607                                            Member, MemberLoc);
1608     if (ret.isNull())
1609       return ExprError();
1610     Qualifiers BaseQ =
1611         S.Context.getCanonicalType(BaseExpr.get()->getType()).getQualifiers();
1612     ret = S.Context.getQualifiedType(ret, BaseQ);
1613 
1614     return new (S.Context)
1615         ExtVectorElementExpr(ret, VK, BaseExpr.get(), *Member, MemberLoc);
1616   }
1617 
1618   // Adjust builtin-sel to the appropriate redefinition type if that's
1619   // not just a pointer to builtin-sel again.
1620   if (IsArrow && BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
1621       !S.Context.getObjCSelRedefinitionType()->isObjCSelType()) {
1622     BaseExpr = S.ImpCastExprToType(
1623         BaseExpr.get(), S.Context.getObjCSelRedefinitionType(), CK_BitCast);
1624     return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1625                             ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1626   }
1627 
1628   // Failure cases.
1629  fail:
1630 
1631   // Recover from dot accesses to pointers, e.g.:
1632   //   type *foo;
1633   //   foo.bar
1634   // This is actually well-formed in two cases:
1635   //   - 'type' is an Objective C type
1636   //   - 'bar' is a pseudo-destructor name which happens to refer to
1637   //     the appropriate pointer type
1638   if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
1639     if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
1640         MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
1641       S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1642           << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1643           << FixItHint::CreateReplacement(OpLoc, "->");
1644 
1645       // Recurse as an -> access.
1646       IsArrow = true;
1647       return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1648                               ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1649     }
1650   }
1651 
1652   // If the user is trying to apply -> or . to a function name, it's probably
1653   // because they forgot parentheses to call that function.
1654   if (S.tryToRecoverWithCall(
1655           BaseExpr, S.PDiag(diag::err_member_reference_needs_call),
1656           /*complain*/ false,
1657           IsArrow ? &isPointerToRecordType : &isRecordType)) {
1658     if (BaseExpr.isInvalid())
1659       return ExprError();
1660     BaseExpr = S.DefaultFunctionArrayConversion(BaseExpr.get());
1661     return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1662                             ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1663   }
1664 
1665   S.Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
1666     << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc;
1667 
1668   return ExprError();
1669 }
1670 
1671 /// The main callback when the parser finds something like
1672 ///   expression . [nested-name-specifier] identifier
1673 ///   expression -> [nested-name-specifier] identifier
1674 /// where 'identifier' encompasses a fairly broad spectrum of
1675 /// possibilities, including destructor and operator references.
1676 ///
1677 /// \param OpKind either tok::arrow or tok::period
1678 /// \param ObjCImpDecl the current Objective-C \@implementation
1679 ///   decl; this is an ugly hack around the fact that Objective-C
1680 ///   \@implementations aren't properly put in the context chain
1681 ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
1682                                        SourceLocation OpLoc,
1683                                        tok::TokenKind OpKind,
1684                                        CXXScopeSpec &SS,
1685                                        SourceLocation TemplateKWLoc,
1686                                        UnqualifiedId &Id,
1687                                        Decl *ObjCImpDecl) {
1688   if (SS.isSet() && SS.isInvalid())
1689     return ExprError();
1690 
1691   // Warn about the explicit constructor calls Microsoft extension.
1692   if (getLangOpts().MicrosoftExt &&
1693       Id.getKind() == UnqualifiedIdKind::IK_ConstructorName)
1694     Diag(Id.getSourceRange().getBegin(),
1695          diag::ext_ms_explicit_constructor_call);
1696 
1697   TemplateArgumentListInfo TemplateArgsBuffer;
1698 
1699   // Decompose the name into its component parts.
1700   DeclarationNameInfo NameInfo;
1701   const TemplateArgumentListInfo *TemplateArgs;
1702   DecomposeUnqualifiedId(Id, TemplateArgsBuffer,
1703                          NameInfo, TemplateArgs);
1704 
1705   DeclarationName Name = NameInfo.getName();
1706   bool IsArrow = (OpKind == tok::arrow);
1707 
1708   NamedDecl *FirstQualifierInScope
1709     = (!SS.isSet() ? nullptr : FindFirstQualifierInScope(S, SS.getScopeRep()));
1710 
1711   // This is a postfix expression, so get rid of ParenListExprs.
1712   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
1713   if (Result.isInvalid()) return ExprError();
1714   Base = Result.get();
1715 
1716   if (Base->getType()->isDependentType() || Name.isDependentName() ||
1717       isDependentScopeSpecifier(SS)) {
1718     return ActOnDependentMemberExpr(Base, Base->getType(), IsArrow, OpLoc, SS,
1719                                     TemplateKWLoc, FirstQualifierInScope,
1720                                     NameInfo, TemplateArgs);
1721   }
1722 
1723   ActOnMemberAccessExtraArgs ExtraArgs = {S, Id, ObjCImpDecl};
1724   ExprResult Res = BuildMemberReferenceExpr(
1725       Base, Base->getType(), OpLoc, IsArrow, SS, TemplateKWLoc,
1726       FirstQualifierInScope, NameInfo, TemplateArgs, S, &ExtraArgs);
1727 
1728   if (!Res.isInvalid() && isa<MemberExpr>(Res.get()))
1729     CheckMemberAccessOfNoDeref(cast<MemberExpr>(Res.get()));
1730 
1731   return Res;
1732 }
1733 
1734 void Sema::CheckMemberAccessOfNoDeref(const MemberExpr *E) {
1735   if (isUnevaluatedContext())
1736     return;
1737 
1738   QualType ResultTy = E->getType();
1739 
1740   // Member accesses have four cases:
1741   // 1: non-array member via "->": dereferences
1742   // 2: non-array member via ".": nothing interesting happens
1743   // 3: array member access via "->": nothing interesting happens
1744   //    (this returns an array lvalue and does not actually dereference memory)
1745   // 4: array member access via ".": *adds* a layer of indirection
1746   if (ResultTy->isArrayType()) {
1747     if (!E->isArrow()) {
1748       // This might be something like:
1749       //     (*structPtr).arrayMember
1750       // which behaves roughly like:
1751       //     &(*structPtr).pointerMember
1752       // in that the apparent dereference in the base expression does not
1753       // actually happen.
1754       CheckAddressOfNoDeref(E->getBase());
1755     }
1756   } else if (E->isArrow()) {
1757     if (const auto *Ptr = dyn_cast<PointerType>(
1758             E->getBase()->getType().getDesugaredType(Context))) {
1759       if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
1760         ExprEvalContexts.back().PossibleDerefs.insert(E);
1761     }
1762   }
1763 }
1764 
1765 ExprResult
1766 Sema::BuildFieldReferenceExpr(Expr *BaseExpr, bool IsArrow,
1767                               SourceLocation OpLoc, const CXXScopeSpec &SS,
1768                               FieldDecl *Field, DeclAccessPair FoundDecl,
1769                               const DeclarationNameInfo &MemberNameInfo) {
1770   // x.a is an l-value if 'a' has a reference type. Otherwise:
1771   // x.a is an l-value/x-value/pr-value if the base is (and note
1772   //   that *x is always an l-value), except that if the base isn't
1773   //   an ordinary object then we must have an rvalue.
1774   ExprValueKind VK = VK_LValue;
1775   ExprObjectKind OK = OK_Ordinary;
1776   if (!IsArrow) {
1777     if (BaseExpr->getObjectKind() == OK_Ordinary)
1778       VK = BaseExpr->getValueKind();
1779     else
1780       VK = VK_PRValue;
1781   }
1782   if (VK != VK_PRValue && Field->isBitField())
1783     OK = OK_BitField;
1784 
1785   // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1786   QualType MemberType = Field->getType();
1787   if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
1788     MemberType = Ref->getPointeeType();
1789     VK = VK_LValue;
1790   } else {
1791     QualType BaseType = BaseExpr->getType();
1792     if (IsArrow) BaseType = BaseType->castAs<PointerType>()->getPointeeType();
1793 
1794     Qualifiers BaseQuals = BaseType.getQualifiers();
1795 
1796     // GC attributes are never picked up by members.
1797     BaseQuals.removeObjCGCAttr();
1798 
1799     // CVR attributes from the base are picked up by members,
1800     // except that 'mutable' members don't pick up 'const'.
1801     if (Field->isMutable()) BaseQuals.removeConst();
1802 
1803     Qualifiers MemberQuals =
1804         Context.getCanonicalType(MemberType).getQualifiers();
1805 
1806     assert(!MemberQuals.hasAddressSpace());
1807 
1808     Qualifiers Combined = BaseQuals + MemberQuals;
1809     if (Combined != MemberQuals)
1810       MemberType = Context.getQualifiedType(MemberType, Combined);
1811 
1812     // Pick up NoDeref from the base in case we end up using AddrOf on the
1813     // result. E.g. the expression
1814     //     &someNoDerefPtr->pointerMember
1815     // should be a noderef pointer again.
1816     if (BaseType->hasAttr(attr::NoDeref))
1817       MemberType =
1818           Context.getAttributedType(attr::NoDeref, MemberType, MemberType);
1819   }
1820 
1821   auto *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1822   if (!(CurMethod && CurMethod->isDefaulted()))
1823     UnusedPrivateFields.remove(Field);
1824 
1825   ExprResult Base = PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
1826                                                   FoundDecl, Field);
1827   if (Base.isInvalid())
1828     return ExprError();
1829 
1830   // Build a reference to a private copy for non-static data members in
1831   // non-static member functions, privatized by OpenMP constructs.
1832   if (getLangOpts().OpenMP && IsArrow &&
1833       !CurContext->isDependentContext() &&
1834       isa<CXXThisExpr>(Base.get()->IgnoreParenImpCasts())) {
1835     if (auto *PrivateCopy = isOpenMPCapturedDecl(Field)) {
1836       return getOpenMPCapturedExpr(PrivateCopy, VK, OK,
1837                                    MemberNameInfo.getLoc());
1838     }
1839   }
1840 
1841   return BuildMemberExpr(Base.get(), IsArrow, OpLoc, &SS,
1842                          /*TemplateKWLoc=*/SourceLocation(), Field, FoundDecl,
1843                          /*HadMultipleCandidates=*/false, MemberNameInfo,
1844                          MemberType, VK, OK);
1845 }
1846 
1847 /// Builds an implicit member access expression.  The current context
1848 /// is known to be an instance method, and the given unqualified lookup
1849 /// set is known to contain only instance members, at least one of which
1850 /// is from an appropriate type.
1851 ExprResult
1852 Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1853                               SourceLocation TemplateKWLoc,
1854                               LookupResult &R,
1855                               const TemplateArgumentListInfo *TemplateArgs,
1856                               bool IsKnownInstance, const Scope *S) {
1857   assert(!R.empty() && !R.isAmbiguous());
1858 
1859   SourceLocation loc = R.getNameLoc();
1860 
1861   // If this is known to be an instance access, go ahead and build an
1862   // implicit 'this' expression now.
1863   QualType ThisTy = getCurrentThisType();
1864   assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");
1865 
1866   Expr *baseExpr = nullptr; // null signifies implicit access
1867   if (IsKnownInstance) {
1868     SourceLocation Loc = R.getNameLoc();
1869     if (SS.getRange().isValid())
1870       Loc = SS.getRange().getBegin();
1871     baseExpr = BuildCXXThisExpr(loc, ThisTy, /*IsImplicit=*/true);
1872   }
1873 
1874   return BuildMemberReferenceExpr(baseExpr, ThisTy,
1875                                   /*OpLoc*/ SourceLocation(),
1876                                   /*IsArrow*/ true,
1877                                   SS, TemplateKWLoc,
1878                                   /*FirstQualifierInScope*/ nullptr,
1879                                   R, TemplateArgs, S);
1880 }
1881