xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaExprCXX.cpp (revision e6bfd18d21b225af6a0ed67ceeaf1293b7b9eba5)
1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Implements semantic analysis for C++ expressions.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "TreeTransform.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/ExprObjC.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/AST/TypeLoc.h"
25 #include "clang/Basic/AlignedAllocation.h"
26 #include "clang/Basic/DiagnosticSema.h"
27 #include "clang/Basic/PartialDiagnostic.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Basic/TypeTraits.h"
30 #include "clang/Lex/Preprocessor.h"
31 #include "clang/Sema/DeclSpec.h"
32 #include "clang/Sema/Initialization.h"
33 #include "clang/Sema/Lookup.h"
34 #include "clang/Sema/ParsedTemplate.h"
35 #include "clang/Sema/Scope.h"
36 #include "clang/Sema/ScopeInfo.h"
37 #include "clang/Sema/SemaInternal.h"
38 #include "clang/Sema/SemaLambda.h"
39 #include "clang/Sema/Template.h"
40 #include "clang/Sema/TemplateDeduction.h"
41 #include "llvm/ADT/APInt.h"
42 #include "llvm/ADT/STLExtras.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/TypeSize.h"
45 using namespace clang;
46 using namespace sema;
47 
48 /// Handle the result of the special case name lookup for inheriting
49 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
50 /// constructor names in member using declarations, even if 'X' is not the
51 /// name of the corresponding type.
52 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
53                                               SourceLocation NameLoc,
54                                               IdentifierInfo &Name) {
55   NestedNameSpecifier *NNS = SS.getScopeRep();
56 
57   // Convert the nested-name-specifier into a type.
58   QualType Type;
59   switch (NNS->getKind()) {
60   case NestedNameSpecifier::TypeSpec:
61   case NestedNameSpecifier::TypeSpecWithTemplate:
62     Type = QualType(NNS->getAsType(), 0);
63     break;
64 
65   case NestedNameSpecifier::Identifier:
66     // Strip off the last layer of the nested-name-specifier and build a
67     // typename type for it.
68     assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
69     Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
70                                         NNS->getAsIdentifier());
71     break;
72 
73   case NestedNameSpecifier::Global:
74   case NestedNameSpecifier::Super:
75   case NestedNameSpecifier::Namespace:
76   case NestedNameSpecifier::NamespaceAlias:
77     llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
78   }
79 
80   // This reference to the type is located entirely at the location of the
81   // final identifier in the qualified-id.
82   return CreateParsedType(Type,
83                           Context.getTrivialTypeSourceInfo(Type, NameLoc));
84 }
85 
86 ParsedType Sema::getConstructorName(IdentifierInfo &II,
87                                     SourceLocation NameLoc,
88                                     Scope *S, CXXScopeSpec &SS,
89                                     bool EnteringContext) {
90   CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
91   assert(CurClass && &II == CurClass->getIdentifier() &&
92          "not a constructor name");
93 
94   // When naming a constructor as a member of a dependent context (eg, in a
95   // friend declaration or an inherited constructor declaration), form an
96   // unresolved "typename" type.
97   if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) {
98     QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II);
99     return ParsedType::make(T);
100   }
101 
102   if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
103     return ParsedType();
104 
105   // Find the injected-class-name declaration. Note that we make no attempt to
106   // diagnose cases where the injected-class-name is shadowed: the only
107   // declaration that can validly shadow the injected-class-name is a
108   // non-static data member, and if the class contains both a non-static data
109   // member and a constructor then it is ill-formed (we check that in
110   // CheckCompletedCXXClass).
111   CXXRecordDecl *InjectedClassName = nullptr;
112   for (NamedDecl *ND : CurClass->lookup(&II)) {
113     auto *RD = dyn_cast<CXXRecordDecl>(ND);
114     if (RD && RD->isInjectedClassName()) {
115       InjectedClassName = RD;
116       break;
117     }
118   }
119   if (!InjectedClassName) {
120     if (!CurClass->isInvalidDecl()) {
121       // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
122       // properly. Work around it here for now.
123       Diag(SS.getLastQualifierNameLoc(),
124            diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
125     }
126     return ParsedType();
127   }
128 
129   QualType T = Context.getTypeDeclType(InjectedClassName);
130   DiagnoseUseOfDecl(InjectedClassName, NameLoc);
131   MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
132 
133   return ParsedType::make(T);
134 }
135 
136 ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
137                                    IdentifierInfo &II,
138                                    SourceLocation NameLoc,
139                                    Scope *S, CXXScopeSpec &SS,
140                                    ParsedType ObjectTypePtr,
141                                    bool EnteringContext) {
142   // Determine where to perform name lookup.
143 
144   // FIXME: This area of the standard is very messy, and the current
145   // wording is rather unclear about which scopes we search for the
146   // destructor name; see core issues 399 and 555. Issue 399 in
147   // particular shows where the current description of destructor name
148   // lookup is completely out of line with existing practice, e.g.,
149   // this appears to be ill-formed:
150   //
151   //   namespace N {
152   //     template <typename T> struct S {
153   //       ~S();
154   //     };
155   //   }
156   //
157   //   void f(N::S<int>* s) {
158   //     s->N::S<int>::~S();
159   //   }
160   //
161   // See also PR6358 and PR6359.
162   //
163   // For now, we accept all the cases in which the name given could plausibly
164   // be interpreted as a correct destructor name, issuing off-by-default
165   // extension diagnostics on the cases that don't strictly conform to the
166   // C++20 rules. This basically means we always consider looking in the
167   // nested-name-specifier prefix, the complete nested-name-specifier, and
168   // the scope, and accept if we find the expected type in any of the three
169   // places.
170 
171   if (SS.isInvalid())
172     return nullptr;
173 
174   // Whether we've failed with a diagnostic already.
175   bool Failed = false;
176 
177   llvm::SmallVector<NamedDecl*, 8> FoundDecls;
178   llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet;
179 
180   // If we have an object type, it's because we are in a
181   // pseudo-destructor-expression or a member access expression, and
182   // we know what type we're looking for.
183   QualType SearchType =
184       ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType();
185 
186   auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType {
187     auto IsAcceptableResult = [&](NamedDecl *D) -> bool {
188       auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl());
189       if (!Type)
190         return false;
191 
192       if (SearchType.isNull() || SearchType->isDependentType())
193         return true;
194 
195       QualType T = Context.getTypeDeclType(Type);
196       return Context.hasSameUnqualifiedType(T, SearchType);
197     };
198 
199     unsigned NumAcceptableResults = 0;
200     for (NamedDecl *D : Found) {
201       if (IsAcceptableResult(D))
202         ++NumAcceptableResults;
203 
204       // Don't list a class twice in the lookup failure diagnostic if it's
205       // found by both its injected-class-name and by the name in the enclosing
206       // scope.
207       if (auto *RD = dyn_cast<CXXRecordDecl>(D))
208         if (RD->isInjectedClassName())
209           D = cast<NamedDecl>(RD->getParent());
210 
211       if (FoundDeclSet.insert(D).second)
212         FoundDecls.push_back(D);
213     }
214 
215     // As an extension, attempt to "fix" an ambiguity by erasing all non-type
216     // results, and all non-matching results if we have a search type. It's not
217     // clear what the right behavior is if destructor lookup hits an ambiguity,
218     // but other compilers do generally accept at least some kinds of
219     // ambiguity.
220     if (Found.isAmbiguous() && NumAcceptableResults == 1) {
221       Diag(NameLoc, diag::ext_dtor_name_ambiguous);
222       LookupResult::Filter F = Found.makeFilter();
223       while (F.hasNext()) {
224         NamedDecl *D = F.next();
225         if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
226           Diag(D->getLocation(), diag::note_destructor_type_here)
227               << Context.getTypeDeclType(TD);
228         else
229           Diag(D->getLocation(), diag::note_destructor_nontype_here);
230 
231         if (!IsAcceptableResult(D))
232           F.erase();
233       }
234       F.done();
235     }
236 
237     if (Found.isAmbiguous())
238       Failed = true;
239 
240     if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
241       if (IsAcceptableResult(Type)) {
242         QualType T = Context.getTypeDeclType(Type);
243         MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
244         return CreateParsedType(T,
245                                 Context.getTrivialTypeSourceInfo(T, NameLoc));
246       }
247     }
248 
249     return nullptr;
250   };
251 
252   bool IsDependent = false;
253 
254   auto LookupInObjectType = [&]() -> ParsedType {
255     if (Failed || SearchType.isNull())
256       return nullptr;
257 
258     IsDependent |= SearchType->isDependentType();
259 
260     LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
261     DeclContext *LookupCtx = computeDeclContext(SearchType);
262     if (!LookupCtx)
263       return nullptr;
264     LookupQualifiedName(Found, LookupCtx);
265     return CheckLookupResult(Found);
266   };
267 
268   auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType {
269     if (Failed)
270       return nullptr;
271 
272     IsDependent |= isDependentScopeSpecifier(LookupSS);
273     DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext);
274     if (!LookupCtx)
275       return nullptr;
276 
277     LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
278     if (RequireCompleteDeclContext(LookupSS, LookupCtx)) {
279       Failed = true;
280       return nullptr;
281     }
282     LookupQualifiedName(Found, LookupCtx);
283     return CheckLookupResult(Found);
284   };
285 
286   auto LookupInScope = [&]() -> ParsedType {
287     if (Failed || !S)
288       return nullptr;
289 
290     LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
291     LookupName(Found, S);
292     return CheckLookupResult(Found);
293   };
294 
295   // C++2a [basic.lookup.qual]p6:
296   //   In a qualified-id of the form
297   //
298   //     nested-name-specifier[opt] type-name :: ~ type-name
299   //
300   //   the second type-name is looked up in the same scope as the first.
301   //
302   // We interpret this as meaning that if you do a dual-scope lookup for the
303   // first name, you also do a dual-scope lookup for the second name, per
304   // C++ [basic.lookup.classref]p4:
305   //
306   //   If the id-expression in a class member access is a qualified-id of the
307   //   form
308   //
309   //     class-name-or-namespace-name :: ...
310   //
311   //   the class-name-or-namespace-name following the . or -> is first looked
312   //   up in the class of the object expression and the name, if found, is used.
313   //   Otherwise, it is looked up in the context of the entire
314   //   postfix-expression.
315   //
316   // This looks in the same scopes as for an unqualified destructor name:
317   //
318   // C++ [basic.lookup.classref]p3:
319   //   If the unqualified-id is ~ type-name, the type-name is looked up
320   //   in the context of the entire postfix-expression. If the type T
321   //   of the object expression is of a class type C, the type-name is
322   //   also looked up in the scope of class C. At least one of the
323   //   lookups shall find a name that refers to cv T.
324   //
325   // FIXME: The intent is unclear here. Should type-name::~type-name look in
326   // the scope anyway if it finds a non-matching name declared in the class?
327   // If both lookups succeed and find a dependent result, which result should
328   // we retain? (Same question for p->~type-name().)
329 
330   if (NestedNameSpecifier *Prefix =
331       SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) {
332     // This is
333     //
334     //   nested-name-specifier type-name :: ~ type-name
335     //
336     // Look for the second type-name in the nested-name-specifier.
337     CXXScopeSpec PrefixSS;
338     PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
339     if (ParsedType T = LookupInNestedNameSpec(PrefixSS))
340       return T;
341   } else {
342     // This is one of
343     //
344     //   type-name :: ~ type-name
345     //   ~ type-name
346     //
347     // Look in the scope and (if any) the object type.
348     if (ParsedType T = LookupInScope())
349       return T;
350     if (ParsedType T = LookupInObjectType())
351       return T;
352   }
353 
354   if (Failed)
355     return nullptr;
356 
357   if (IsDependent) {
358     // We didn't find our type, but that's OK: it's dependent anyway.
359 
360     // FIXME: What if we have no nested-name-specifier?
361     QualType T = CheckTypenameType(ETK_None, SourceLocation(),
362                                    SS.getWithLocInContext(Context),
363                                    II, NameLoc);
364     return ParsedType::make(T);
365   }
366 
367   // The remaining cases are all non-standard extensions imitating the behavior
368   // of various other compilers.
369   unsigned NumNonExtensionDecls = FoundDecls.size();
370 
371   if (SS.isSet()) {
372     // For compatibility with older broken C++ rules and existing code,
373     //
374     //   nested-name-specifier :: ~ type-name
375     //
376     // also looks for type-name within the nested-name-specifier.
377     if (ParsedType T = LookupInNestedNameSpec(SS)) {
378       Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope)
379           << SS.getRange()
380           << FixItHint::CreateInsertion(SS.getEndLoc(),
381                                         ("::" + II.getName()).str());
382       return T;
383     }
384 
385     // For compatibility with other compilers and older versions of Clang,
386     //
387     //   nested-name-specifier type-name :: ~ type-name
388     //
389     // also looks for type-name in the scope. Unfortunately, we can't
390     // reasonably apply this fallback for dependent nested-name-specifiers.
391     if (SS.getScopeRep()->getPrefix()) {
392       if (ParsedType T = LookupInScope()) {
393         Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope)
394             << FixItHint::CreateRemoval(SS.getRange());
395         Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here)
396             << GetTypeFromParser(T);
397         return T;
398       }
399     }
400   }
401 
402   // We didn't find anything matching; tell the user what we did find (if
403   // anything).
404 
405   // Don't tell the user about declarations we shouldn't have found.
406   FoundDecls.resize(NumNonExtensionDecls);
407 
408   // List types before non-types.
409   std::stable_sort(FoundDecls.begin(), FoundDecls.end(),
410                    [](NamedDecl *A, NamedDecl *B) {
411                      return isa<TypeDecl>(A->getUnderlyingDecl()) >
412                             isa<TypeDecl>(B->getUnderlyingDecl());
413                    });
414 
415   // Suggest a fixit to properly name the destroyed type.
416   auto MakeFixItHint = [&]{
417     const CXXRecordDecl *Destroyed = nullptr;
418     // FIXME: If we have a scope specifier, suggest its last component?
419     if (!SearchType.isNull())
420       Destroyed = SearchType->getAsCXXRecordDecl();
421     else if (S)
422       Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity());
423     if (Destroyed)
424       return FixItHint::CreateReplacement(SourceRange(NameLoc),
425                                           Destroyed->getNameAsString());
426     return FixItHint();
427   };
428 
429   if (FoundDecls.empty()) {
430     // FIXME: Attempt typo-correction?
431     Diag(NameLoc, diag::err_undeclared_destructor_name)
432       << &II << MakeFixItHint();
433   } else if (!SearchType.isNull() && FoundDecls.size() == 1) {
434     if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) {
435       assert(!SearchType.isNull() &&
436              "should only reject a type result if we have a search type");
437       QualType T = Context.getTypeDeclType(TD);
438       Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
439           << T << SearchType << MakeFixItHint();
440     } else {
441       Diag(NameLoc, diag::err_destructor_expr_nontype)
442           << &II << MakeFixItHint();
443     }
444   } else {
445     Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype
446                                       : diag::err_destructor_expr_mismatch)
447         << &II << SearchType << MakeFixItHint();
448   }
449 
450   for (NamedDecl *FoundD : FoundDecls) {
451     if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl()))
452       Diag(FoundD->getLocation(), diag::note_destructor_type_here)
453           << Context.getTypeDeclType(TD);
454     else
455       Diag(FoundD->getLocation(), diag::note_destructor_nontype_here)
456           << FoundD;
457   }
458 
459   return nullptr;
460 }
461 
462 ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
463                                               ParsedType ObjectType) {
464   if (DS.getTypeSpecType() == DeclSpec::TST_error)
465     return nullptr;
466 
467   if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
468     Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
469     return nullptr;
470   }
471 
472   assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&
473          "unexpected type in getDestructorType");
474   QualType T = BuildDecltypeType(DS.getRepAsExpr());
475 
476   // If we know the type of the object, check that the correct destructor
477   // type was named now; we can give better diagnostics this way.
478   QualType SearchType = GetTypeFromParser(ObjectType);
479   if (!SearchType.isNull() && !SearchType->isDependentType() &&
480       !Context.hasSameUnqualifiedType(T, SearchType)) {
481     Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
482       << T << SearchType;
483     return nullptr;
484   }
485 
486   return ParsedType::make(T);
487 }
488 
489 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
490                                   const UnqualifiedId &Name, bool IsUDSuffix) {
491   assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId);
492   if (!IsUDSuffix) {
493     // [over.literal] p8
494     //
495     // double operator""_Bq(long double);  // OK: not a reserved identifier
496     // double operator"" _Bq(long double); // ill-formed, no diagnostic required
497     IdentifierInfo *II = Name.Identifier;
498     ReservedIdentifierStatus Status = II->isReserved(PP.getLangOpts());
499     SourceLocation Loc = Name.getEndLoc();
500     if (isReservedInAllContexts(Status) &&
501         !PP.getSourceManager().isInSystemHeader(Loc)) {
502       Diag(Loc, diag::warn_reserved_extern_symbol)
503           << II << static_cast<int>(Status)
504           << FixItHint::CreateReplacement(
505                  Name.getSourceRange(),
506                  (StringRef("operator\"\"") + II->getName()).str());
507     }
508   }
509 
510   if (!SS.isValid())
511     return false;
512 
513   switch (SS.getScopeRep()->getKind()) {
514   case NestedNameSpecifier::Identifier:
515   case NestedNameSpecifier::TypeSpec:
516   case NestedNameSpecifier::TypeSpecWithTemplate:
517     // Per C++11 [over.literal]p2, literal operators can only be declared at
518     // namespace scope. Therefore, this unqualified-id cannot name anything.
519     // Reject it early, because we have no AST representation for this in the
520     // case where the scope is dependent.
521     Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
522         << SS.getScopeRep();
523     return true;
524 
525   case NestedNameSpecifier::Global:
526   case NestedNameSpecifier::Super:
527   case NestedNameSpecifier::Namespace:
528   case NestedNameSpecifier::NamespaceAlias:
529     return false;
530   }
531 
532   llvm_unreachable("unknown nested name specifier kind");
533 }
534 
535 /// Build a C++ typeid expression with a type operand.
536 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
537                                 SourceLocation TypeidLoc,
538                                 TypeSourceInfo *Operand,
539                                 SourceLocation RParenLoc) {
540   // C++ [expr.typeid]p4:
541   //   The top-level cv-qualifiers of the lvalue expression or the type-id
542   //   that is the operand of typeid are always ignored.
543   //   If the type of the type-id is a class type or a reference to a class
544   //   type, the class shall be completely-defined.
545   Qualifiers Quals;
546   QualType T
547     = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
548                                       Quals);
549   if (T->getAs<RecordType>() &&
550       RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
551     return ExprError();
552 
553   if (T->isVariablyModifiedType())
554     return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
555 
556   if (CheckQualifiedFunctionForTypeId(T, TypeidLoc))
557     return ExprError();
558 
559   return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
560                                      SourceRange(TypeidLoc, RParenLoc));
561 }
562 
563 /// Build a C++ typeid expression with an expression operand.
564 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
565                                 SourceLocation TypeidLoc,
566                                 Expr *E,
567                                 SourceLocation RParenLoc) {
568   bool WasEvaluated = false;
569   if (E && !E->isTypeDependent()) {
570     if (E->hasPlaceholderType()) {
571       ExprResult result = CheckPlaceholderExpr(E);
572       if (result.isInvalid()) return ExprError();
573       E = result.get();
574     }
575 
576     QualType T = E->getType();
577     if (const RecordType *RecordT = T->getAs<RecordType>()) {
578       CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
579       // C++ [expr.typeid]p3:
580       //   [...] If the type of the expression is a class type, the class
581       //   shall be completely-defined.
582       if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
583         return ExprError();
584 
585       // C++ [expr.typeid]p3:
586       //   When typeid is applied to an expression other than an glvalue of a
587       //   polymorphic class type [...] [the] expression is an unevaluated
588       //   operand. [...]
589       if (RecordD->isPolymorphic() && E->isGLValue()) {
590         if (isUnevaluatedContext()) {
591           // The operand was processed in unevaluated context, switch the
592           // context and recheck the subexpression.
593           ExprResult Result = TransformToPotentiallyEvaluated(E);
594           if (Result.isInvalid())
595             return ExprError();
596           E = Result.get();
597         }
598 
599         // We require a vtable to query the type at run time.
600         MarkVTableUsed(TypeidLoc, RecordD);
601         WasEvaluated = true;
602       }
603     }
604 
605     ExprResult Result = CheckUnevaluatedOperand(E);
606     if (Result.isInvalid())
607       return ExprError();
608     E = Result.get();
609 
610     // C++ [expr.typeid]p4:
611     //   [...] If the type of the type-id is a reference to a possibly
612     //   cv-qualified type, the result of the typeid expression refers to a
613     //   std::type_info object representing the cv-unqualified referenced
614     //   type.
615     Qualifiers Quals;
616     QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
617     if (!Context.hasSameType(T, UnqualT)) {
618       T = UnqualT;
619       E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
620     }
621   }
622 
623   if (E->getType()->isVariablyModifiedType())
624     return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
625                      << E->getType());
626   else if (!inTemplateInstantiation() &&
627            E->HasSideEffects(Context, WasEvaluated)) {
628     // The expression operand for typeid is in an unevaluated expression
629     // context, so side effects could result in unintended consequences.
630     Diag(E->getExprLoc(), WasEvaluated
631                               ? diag::warn_side_effects_typeid
632                               : diag::warn_side_effects_unevaluated_context);
633   }
634 
635   return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
636                                      SourceRange(TypeidLoc, RParenLoc));
637 }
638 
639 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
640 ExprResult
641 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
642                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
643   // typeid is not supported in OpenCL.
644   if (getLangOpts().OpenCLCPlusPlus) {
645     return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
646                      << "typeid");
647   }
648 
649   // Find the std::type_info type.
650   if (!getStdNamespace())
651     return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
652 
653   if (!CXXTypeInfoDecl) {
654     IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
655     LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
656     LookupQualifiedName(R, getStdNamespace());
657     CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
658     // Microsoft's typeinfo doesn't have type_info in std but in the global
659     // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
660     if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
661       LookupQualifiedName(R, Context.getTranslationUnitDecl());
662       CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
663     }
664     if (!CXXTypeInfoDecl)
665       return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
666   }
667 
668   if (!getLangOpts().RTTI) {
669     return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
670   }
671 
672   QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
673 
674   if (isType) {
675     // The operand is a type; handle it as such.
676     TypeSourceInfo *TInfo = nullptr;
677     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
678                                    &TInfo);
679     if (T.isNull())
680       return ExprError();
681 
682     if (!TInfo)
683       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
684 
685     return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
686   }
687 
688   // The operand is an expression.
689   ExprResult Result =
690       BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc);
691 
692   if (!getLangOpts().RTTIData && !Result.isInvalid())
693     if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get()))
694       if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context))
695         Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled)
696             << (getDiagnostics().getDiagnosticOptions().getFormat() ==
697                 DiagnosticOptions::MSVC);
698   return Result;
699 }
700 
701 /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
702 /// a single GUID.
703 static void
704 getUuidAttrOfType(Sema &SemaRef, QualType QT,
705                   llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
706   // Optionally remove one level of pointer, reference or array indirection.
707   const Type *Ty = QT.getTypePtr();
708   if (QT->isPointerType() || QT->isReferenceType())
709     Ty = QT->getPointeeType().getTypePtr();
710   else if (QT->isArrayType())
711     Ty = Ty->getBaseElementTypeUnsafe();
712 
713   const auto *TD = Ty->getAsTagDecl();
714   if (!TD)
715     return;
716 
717   if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
718     UuidAttrs.insert(Uuid);
719     return;
720   }
721 
722   // __uuidof can grab UUIDs from template arguments.
723   if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
724     const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
725     for (const TemplateArgument &TA : TAL.asArray()) {
726       const UuidAttr *UuidForTA = nullptr;
727       if (TA.getKind() == TemplateArgument::Type)
728         getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
729       else if (TA.getKind() == TemplateArgument::Declaration)
730         getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
731 
732       if (UuidForTA)
733         UuidAttrs.insert(UuidForTA);
734     }
735   }
736 }
737 
738 /// Build a Microsoft __uuidof expression with a type operand.
739 ExprResult Sema::BuildCXXUuidof(QualType Type,
740                                 SourceLocation TypeidLoc,
741                                 TypeSourceInfo *Operand,
742                                 SourceLocation RParenLoc) {
743   MSGuidDecl *Guid = nullptr;
744   if (!Operand->getType()->isDependentType()) {
745     llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
746     getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
747     if (UuidAttrs.empty())
748       return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
749     if (UuidAttrs.size() > 1)
750       return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
751     Guid = UuidAttrs.back()->getGuidDecl();
752   }
753 
754   return new (Context)
755       CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc));
756 }
757 
758 /// Build a Microsoft __uuidof expression with an expression operand.
759 ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc,
760                                 Expr *E, SourceLocation RParenLoc) {
761   MSGuidDecl *Guid = nullptr;
762   if (!E->getType()->isDependentType()) {
763     if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
764       // A null pointer results in {00000000-0000-0000-0000-000000000000}.
765       Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{});
766     } else {
767       llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
768       getUuidAttrOfType(*this, E->getType(), UuidAttrs);
769       if (UuidAttrs.empty())
770         return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
771       if (UuidAttrs.size() > 1)
772         return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
773       Guid = UuidAttrs.back()->getGuidDecl();
774     }
775   }
776 
777   return new (Context)
778       CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc));
779 }
780 
781 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
782 ExprResult
783 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
784                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
785   QualType GuidType = Context.getMSGuidType();
786   GuidType.addConst();
787 
788   if (isType) {
789     // The operand is a type; handle it as such.
790     TypeSourceInfo *TInfo = nullptr;
791     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
792                                    &TInfo);
793     if (T.isNull())
794       return ExprError();
795 
796     if (!TInfo)
797       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
798 
799     return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
800   }
801 
802   // The operand is an expression.
803   return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
804 }
805 
806 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
807 ExprResult
808 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
809   assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
810          "Unknown C++ Boolean value!");
811   return new (Context)
812       CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
813 }
814 
815 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
816 ExprResult
817 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
818   return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
819 }
820 
821 /// ActOnCXXThrow - Parse throw expressions.
822 ExprResult
823 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
824   bool IsThrownVarInScope = false;
825   if (Ex) {
826     // C++0x [class.copymove]p31:
827     //   When certain criteria are met, an implementation is allowed to omit the
828     //   copy/move construction of a class object [...]
829     //
830     //     - in a throw-expression, when the operand is the name of a
831     //       non-volatile automatic object (other than a function or catch-
832     //       clause parameter) whose scope does not extend beyond the end of the
833     //       innermost enclosing try-block (if there is one), the copy/move
834     //       operation from the operand to the exception object (15.1) can be
835     //       omitted by constructing the automatic object directly into the
836     //       exception object
837     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
838       if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
839         if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
840           for( ; S; S = S->getParent()) {
841             if (S->isDeclScope(Var)) {
842               IsThrownVarInScope = true;
843               break;
844             }
845 
846             // FIXME: Many of the scope checks here seem incorrect.
847             if (S->getFlags() &
848                 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
849                  Scope::ObjCMethodScope | Scope::TryScope))
850               break;
851           }
852         }
853       }
854   }
855 
856   return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
857 }
858 
859 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
860                                bool IsThrownVarInScope) {
861   // Don't report an error if 'throw' is used in system headers.
862   if (!getLangOpts().CXXExceptions &&
863       !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) {
864     // Delay error emission for the OpenMP device code.
865     targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw";
866   }
867 
868   // Exceptions aren't allowed in CUDA device code.
869   if (getLangOpts().CUDA)
870     CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
871         << "throw" << CurrentCUDATarget();
872 
873   if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
874     Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
875 
876   if (Ex && !Ex->isTypeDependent()) {
877     // Initialize the exception result.  This implicitly weeds out
878     // abstract types or types with inaccessible copy constructors.
879 
880     // C++0x [class.copymove]p31:
881     //   When certain criteria are met, an implementation is allowed to omit the
882     //   copy/move construction of a class object [...]
883     //
884     //     - in a throw-expression, when the operand is the name of a
885     //       non-volatile automatic object (other than a function or
886     //       catch-clause
887     //       parameter) whose scope does not extend beyond the end of the
888     //       innermost enclosing try-block (if there is one), the copy/move
889     //       operation from the operand to the exception object (15.1) can be
890     //       omitted by constructing the automatic object directly into the
891     //       exception object
892     NamedReturnInfo NRInfo =
893         IsThrownVarInScope ? getNamedReturnInfo(Ex) : NamedReturnInfo();
894 
895     QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
896     if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
897       return ExprError();
898 
899     InitializedEntity Entity =
900         InitializedEntity::InitializeException(OpLoc, ExceptionObjectTy);
901     ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Ex);
902     if (Res.isInvalid())
903       return ExprError();
904     Ex = Res.get();
905   }
906 
907   // PPC MMA non-pointer types are not allowed as throw expr types.
908   if (Ex && Context.getTargetInfo().getTriple().isPPC64())
909     CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc());
910 
911   return new (Context)
912       CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
913 }
914 
915 static void
916 collectPublicBases(CXXRecordDecl *RD,
917                    llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
918                    llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
919                    llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
920                    bool ParentIsPublic) {
921   for (const CXXBaseSpecifier &BS : RD->bases()) {
922     CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
923     bool NewSubobject;
924     // Virtual bases constitute the same subobject.  Non-virtual bases are
925     // always distinct subobjects.
926     if (BS.isVirtual())
927       NewSubobject = VBases.insert(BaseDecl).second;
928     else
929       NewSubobject = true;
930 
931     if (NewSubobject)
932       ++SubobjectsSeen[BaseDecl];
933 
934     // Only add subobjects which have public access throughout the entire chain.
935     bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
936     if (PublicPath)
937       PublicSubobjectsSeen.insert(BaseDecl);
938 
939     // Recurse on to each base subobject.
940     collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
941                        PublicPath);
942   }
943 }
944 
945 static void getUnambiguousPublicSubobjects(
946     CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
947   llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
948   llvm::SmallSet<CXXRecordDecl *, 2> VBases;
949   llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
950   SubobjectsSeen[RD] = 1;
951   PublicSubobjectsSeen.insert(RD);
952   collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
953                      /*ParentIsPublic=*/true);
954 
955   for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
956     // Skip ambiguous objects.
957     if (SubobjectsSeen[PublicSubobject] > 1)
958       continue;
959 
960     Objects.push_back(PublicSubobject);
961   }
962 }
963 
964 /// CheckCXXThrowOperand - Validate the operand of a throw.
965 bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
966                                 QualType ExceptionObjectTy, Expr *E) {
967   //   If the type of the exception would be an incomplete type or a pointer
968   //   to an incomplete type other than (cv) void the program is ill-formed.
969   QualType Ty = ExceptionObjectTy;
970   bool isPointer = false;
971   if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
972     Ty = Ptr->getPointeeType();
973     isPointer = true;
974   }
975   if (!isPointer || !Ty->isVoidType()) {
976     if (RequireCompleteType(ThrowLoc, Ty,
977                             isPointer ? diag::err_throw_incomplete_ptr
978                                       : diag::err_throw_incomplete,
979                             E->getSourceRange()))
980       return true;
981 
982     if (!isPointer && Ty->isSizelessType()) {
983       Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange();
984       return true;
985     }
986 
987     if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
988                                diag::err_throw_abstract_type, E))
989       return true;
990   }
991 
992   // If the exception has class type, we need additional handling.
993   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
994   if (!RD)
995     return false;
996 
997   // If we are throwing a polymorphic class type or pointer thereof,
998   // exception handling will make use of the vtable.
999   MarkVTableUsed(ThrowLoc, RD);
1000 
1001   // If a pointer is thrown, the referenced object will not be destroyed.
1002   if (isPointer)
1003     return false;
1004 
1005   // If the class has a destructor, we must be able to call it.
1006   if (!RD->hasIrrelevantDestructor()) {
1007     if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
1008       MarkFunctionReferenced(E->getExprLoc(), Destructor);
1009       CheckDestructorAccess(E->getExprLoc(), Destructor,
1010                             PDiag(diag::err_access_dtor_exception) << Ty);
1011       if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
1012         return true;
1013     }
1014   }
1015 
1016   // The MSVC ABI creates a list of all types which can catch the exception
1017   // object.  This list also references the appropriate copy constructor to call
1018   // if the object is caught by value and has a non-trivial copy constructor.
1019   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1020     // We are only interested in the public, unambiguous bases contained within
1021     // the exception object.  Bases which are ambiguous or otherwise
1022     // inaccessible are not catchable types.
1023     llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
1024     getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
1025 
1026     for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
1027       // Attempt to lookup the copy constructor.  Various pieces of machinery
1028       // will spring into action, like template instantiation, which means this
1029       // cannot be a simple walk of the class's decls.  Instead, we must perform
1030       // lookup and overload resolution.
1031       CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
1032       if (!CD || CD->isDeleted())
1033         continue;
1034 
1035       // Mark the constructor referenced as it is used by this throw expression.
1036       MarkFunctionReferenced(E->getExprLoc(), CD);
1037 
1038       // Skip this copy constructor if it is trivial, we don't need to record it
1039       // in the catchable type data.
1040       if (CD->isTrivial())
1041         continue;
1042 
1043       // The copy constructor is non-trivial, create a mapping from this class
1044       // type to this constructor.
1045       // N.B.  The selection of copy constructor is not sensitive to this
1046       // particular throw-site.  Lookup will be performed at the catch-site to
1047       // ensure that the copy constructor is, in fact, accessible (via
1048       // friendship or any other means).
1049       Context.addCopyConstructorForExceptionObject(Subobject, CD);
1050 
1051       // We don't keep the instantiated default argument expressions around so
1052       // we must rebuild them here.
1053       for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
1054         if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
1055           return true;
1056       }
1057     }
1058   }
1059 
1060   // Under the Itanium C++ ABI, memory for the exception object is allocated by
1061   // the runtime with no ability for the compiler to request additional
1062   // alignment. Warn if the exception type requires alignment beyond the minimum
1063   // guaranteed by the target C++ runtime.
1064   if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) {
1065     CharUnits TypeAlign = Context.getTypeAlignInChars(Ty);
1066     CharUnits ExnObjAlign = Context.getExnObjectAlignment();
1067     if (ExnObjAlign < TypeAlign) {
1068       Diag(ThrowLoc, diag::warn_throw_underaligned_obj);
1069       Diag(ThrowLoc, diag::note_throw_underaligned_obj)
1070           << Ty << (unsigned)TypeAlign.getQuantity()
1071           << (unsigned)ExnObjAlign.getQuantity();
1072     }
1073   }
1074 
1075   return false;
1076 }
1077 
1078 static QualType adjustCVQualifiersForCXXThisWithinLambda(
1079     ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
1080     DeclContext *CurSemaContext, ASTContext &ASTCtx) {
1081 
1082   QualType ClassType = ThisTy->getPointeeType();
1083   LambdaScopeInfo *CurLSI = nullptr;
1084   DeclContext *CurDC = CurSemaContext;
1085 
1086   // Iterate through the stack of lambdas starting from the innermost lambda to
1087   // the outermost lambda, checking if '*this' is ever captured by copy - since
1088   // that could change the cv-qualifiers of the '*this' object.
1089   // The object referred to by '*this' starts out with the cv-qualifiers of its
1090   // member function.  We then start with the innermost lambda and iterate
1091   // outward checking to see if any lambda performs a by-copy capture of '*this'
1092   // - and if so, any nested lambda must respect the 'constness' of that
1093   // capturing lamdbda's call operator.
1094   //
1095 
1096   // Since the FunctionScopeInfo stack is representative of the lexical
1097   // nesting of the lambda expressions during initial parsing (and is the best
1098   // place for querying information about captures about lambdas that are
1099   // partially processed) and perhaps during instantiation of function templates
1100   // that contain lambda expressions that need to be transformed BUT not
1101   // necessarily during instantiation of a nested generic lambda's function call
1102   // operator (which might even be instantiated at the end of the TU) - at which
1103   // time the DeclContext tree is mature enough to query capture information
1104   // reliably - we use a two pronged approach to walk through all the lexically
1105   // enclosing lambda expressions:
1106   //
1107   //  1) Climb down the FunctionScopeInfo stack as long as each item represents
1108   //  a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
1109   //  enclosed by the call-operator of the LSI below it on the stack (while
1110   //  tracking the enclosing DC for step 2 if needed).  Note the topmost LSI on
1111   //  the stack represents the innermost lambda.
1112   //
1113   //  2) If we run out of enclosing LSI's, check if the enclosing DeclContext
1114   //  represents a lambda's call operator.  If it does, we must be instantiating
1115   //  a generic lambda's call operator (represented by the Current LSI, and
1116   //  should be the only scenario where an inconsistency between the LSI and the
1117   //  DeclContext should occur), so climb out the DeclContexts if they
1118   //  represent lambdas, while querying the corresponding closure types
1119   //  regarding capture information.
1120 
1121   // 1) Climb down the function scope info stack.
1122   for (int I = FunctionScopes.size();
1123        I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
1124        (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
1125                        cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
1126        CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
1127     CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
1128 
1129     if (!CurLSI->isCXXThisCaptured())
1130         continue;
1131 
1132     auto C = CurLSI->getCXXThisCapture();
1133 
1134     if (C.isCopyCapture()) {
1135       ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1136       if (CurLSI->CallOperator->isConst())
1137         ClassType.addConst();
1138       return ASTCtx.getPointerType(ClassType);
1139     }
1140   }
1141 
1142   // 2) We've run out of ScopeInfos but check 1. if CurDC is a lambda (which
1143   //    can happen during instantiation of its nested generic lambda call
1144   //    operator); 2. if we're in a lambda scope (lambda body).
1145   if (CurLSI && isLambdaCallOperator(CurDC)) {
1146     assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&
1147            "While computing 'this' capture-type for a generic lambda, when we "
1148            "run out of enclosing LSI's, yet the enclosing DC is a "
1149            "lambda-call-operator we must be (i.e. Current LSI) in a generic "
1150            "lambda call oeprator");
1151     assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator));
1152 
1153     auto IsThisCaptured =
1154         [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1155       IsConst = false;
1156       IsByCopy = false;
1157       for (auto &&C : Closure->captures()) {
1158         if (C.capturesThis()) {
1159           if (C.getCaptureKind() == LCK_StarThis)
1160             IsByCopy = true;
1161           if (Closure->getLambdaCallOperator()->isConst())
1162             IsConst = true;
1163           return true;
1164         }
1165       }
1166       return false;
1167     };
1168 
1169     bool IsByCopyCapture = false;
1170     bool IsConstCapture = false;
1171     CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
1172     while (Closure &&
1173            IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1174       if (IsByCopyCapture) {
1175         ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1176         if (IsConstCapture)
1177           ClassType.addConst();
1178         return ASTCtx.getPointerType(ClassType);
1179       }
1180       Closure = isLambdaCallOperator(Closure->getParent())
1181                     ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1182                     : nullptr;
1183     }
1184   }
1185   return ASTCtx.getPointerType(ClassType);
1186 }
1187 
1188 QualType Sema::getCurrentThisType() {
1189   DeclContext *DC = getFunctionLevelDeclContext();
1190   QualType ThisTy = CXXThisTypeOverride;
1191 
1192   if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1193     if (method && method->isInstance())
1194       ThisTy = method->getThisType();
1195   }
1196 
1197   if (ThisTy.isNull() && isLambdaCallOperator(CurContext) &&
1198       inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) {
1199 
1200     // This is a lambda call operator that is being instantiated as a default
1201     // initializer. DC must point to the enclosing class type, so we can recover
1202     // the 'this' type from it.
1203     QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1204     // There are no cv-qualifiers for 'this' within default initializers,
1205     // per [expr.prim.general]p4.
1206     ThisTy = Context.getPointerType(ClassTy);
1207   }
1208 
1209   // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1210   // might need to be adjusted if the lambda or any of its enclosing lambda's
1211   // captures '*this' by copy.
1212   if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1213     return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1214                                                     CurContext, Context);
1215   return ThisTy;
1216 }
1217 
1218 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1219                                          Decl *ContextDecl,
1220                                          Qualifiers CXXThisTypeQuals,
1221                                          bool Enabled)
1222   : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1223 {
1224   if (!Enabled || !ContextDecl)
1225     return;
1226 
1227   CXXRecordDecl *Record = nullptr;
1228   if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1229     Record = Template->getTemplatedDecl();
1230   else
1231     Record = cast<CXXRecordDecl>(ContextDecl);
1232 
1233   QualType T = S.Context.getRecordType(Record);
1234   T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
1235 
1236   S.CXXThisTypeOverride = S.Context.getPointerType(T);
1237 
1238   this->Enabled = true;
1239 }
1240 
1241 
1242 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1243   if (Enabled) {
1244     S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1245   }
1246 }
1247 
1248 static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) {
1249   SourceLocation DiagLoc = LSI->IntroducerRange.getEnd();
1250   assert(!LSI->isCXXThisCaptured());
1251   //  [=, this] {};   // until C++20: Error: this when = is the default
1252   if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval &&
1253       !Sema.getLangOpts().CPlusPlus20)
1254     return;
1255   Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit)
1256       << FixItHint::CreateInsertion(
1257              DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this");
1258 }
1259 
1260 bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1261     bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1262     const bool ByCopy) {
1263   // We don't need to capture this in an unevaluated context.
1264   if (isUnevaluatedContext() && !Explicit)
1265     return true;
1266 
1267   assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value");
1268 
1269   const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
1270                                          ? *FunctionScopeIndexToStopAt
1271                                          : FunctionScopes.size() - 1;
1272 
1273   // Check that we can capture the *enclosing object* (referred to by '*this')
1274   // by the capturing-entity/closure (lambda/block/etc) at
1275   // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
1276 
1277   // Note: The *enclosing object* can only be captured by-value by a
1278   // closure that is a lambda, using the explicit notation:
1279   //    [*this] { ... }.
1280   // Every other capture of the *enclosing object* results in its by-reference
1281   // capture.
1282 
1283   // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
1284   // stack), we can capture the *enclosing object* only if:
1285   // - 'L' has an explicit byref or byval capture of the *enclosing object*
1286   // -  or, 'L' has an implicit capture.
1287   // AND
1288   //   -- there is no enclosing closure
1289   //   -- or, there is some enclosing closure 'E' that has already captured the
1290   //      *enclosing object*, and every intervening closure (if any) between 'E'
1291   //      and 'L' can implicitly capture the *enclosing object*.
1292   //   -- or, every enclosing closure can implicitly capture the
1293   //      *enclosing object*
1294 
1295 
1296   unsigned NumCapturingClosures = 0;
1297   for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) {
1298     if (CapturingScopeInfo *CSI =
1299             dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
1300       if (CSI->CXXThisCaptureIndex != 0) {
1301         // 'this' is already being captured; there isn't anything more to do.
1302         CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose);
1303         break;
1304       }
1305       LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
1306       if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
1307         // This context can't implicitly capture 'this'; fail out.
1308         if (BuildAndDiagnose) {
1309           Diag(Loc, diag::err_this_capture)
1310               << (Explicit && idx == MaxFunctionScopesIndex);
1311           if (!Explicit)
1312             buildLambdaThisCaptureFixit(*this, LSI);
1313         }
1314         return true;
1315       }
1316       if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
1317           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
1318           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
1319           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
1320           (Explicit && idx == MaxFunctionScopesIndex)) {
1321         // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
1322         // iteration through can be an explicit capture, all enclosing closures,
1323         // if any, must perform implicit captures.
1324 
1325         // This closure can capture 'this'; continue looking upwards.
1326         NumCapturingClosures++;
1327         continue;
1328       }
1329       // This context can't implicitly capture 'this'; fail out.
1330       if (BuildAndDiagnose)
1331         Diag(Loc, diag::err_this_capture)
1332             << (Explicit && idx == MaxFunctionScopesIndex);
1333 
1334       if (!Explicit)
1335         buildLambdaThisCaptureFixit(*this, LSI);
1336       return true;
1337     }
1338     break;
1339   }
1340   if (!BuildAndDiagnose) return false;
1341 
1342   // If we got here, then the closure at MaxFunctionScopesIndex on the
1343   // FunctionScopes stack, can capture the *enclosing object*, so capture it
1344   // (including implicit by-reference captures in any enclosing closures).
1345 
1346   // In the loop below, respect the ByCopy flag only for the closure requesting
1347   // the capture (i.e. first iteration through the loop below).  Ignore it for
1348   // all enclosing closure's up to NumCapturingClosures (since they must be
1349   // implicitly capturing the *enclosing  object* by reference (see loop
1350   // above)).
1351   assert((!ByCopy ||
1352           isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&
1353          "Only a lambda can capture the enclosing object (referred to by "
1354          "*this) by copy");
1355   QualType ThisTy = getCurrentThisType();
1356   for (int idx = MaxFunctionScopesIndex; NumCapturingClosures;
1357        --idx, --NumCapturingClosures) {
1358     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
1359 
1360     // The type of the corresponding data member (not a 'this' pointer if 'by
1361     // copy').
1362     QualType CaptureType = ThisTy;
1363     if (ByCopy) {
1364       // If we are capturing the object referred to by '*this' by copy, ignore
1365       // any cv qualifiers inherited from the type of the member function for
1366       // the type of the closure-type's corresponding data member and any use
1367       // of 'this'.
1368       CaptureType = ThisTy->getPointeeType();
1369       CaptureType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1370     }
1371 
1372     bool isNested = NumCapturingClosures > 1;
1373     CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy);
1374   }
1375   return false;
1376 }
1377 
1378 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
1379   /// C++ 9.3.2: In the body of a non-static member function, the keyword this
1380   /// is a non-lvalue expression whose value is the address of the object for
1381   /// which the function is called.
1382 
1383   QualType ThisTy = getCurrentThisType();
1384   if (ThisTy.isNull())
1385     return Diag(Loc, diag::err_invalid_this_use);
1386   return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false);
1387 }
1388 
1389 Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type,
1390                              bool IsImplicit) {
1391   auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit);
1392   MarkThisReferenced(This);
1393   return This;
1394 }
1395 
1396 void Sema::MarkThisReferenced(CXXThisExpr *This) {
1397   CheckCXXThisCapture(This->getExprLoc());
1398 }
1399 
1400 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
1401   // If we're outside the body of a member function, then we'll have a specified
1402   // type for 'this'.
1403   if (CXXThisTypeOverride.isNull())
1404     return false;
1405 
1406   // Determine whether we're looking into a class that's currently being
1407   // defined.
1408   CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
1409   return Class && Class->isBeingDefined();
1410 }
1411 
1412 /// Parse construction of a specified type.
1413 /// Can be interpreted either as function-style casting ("int(x)")
1414 /// or class type construction ("ClassType(x,y,z)")
1415 /// or creation of a value-initialized type ("int()").
1416 ExprResult
1417 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
1418                                 SourceLocation LParenOrBraceLoc,
1419                                 MultiExprArg exprs,
1420                                 SourceLocation RParenOrBraceLoc,
1421                                 bool ListInitialization) {
1422   if (!TypeRep)
1423     return ExprError();
1424 
1425   TypeSourceInfo *TInfo;
1426   QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
1427   if (!TInfo)
1428     TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
1429 
1430   auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs,
1431                                           RParenOrBraceLoc, ListInitialization);
1432   // Avoid creating a non-type-dependent expression that contains typos.
1433   // Non-type-dependent expressions are liable to be discarded without
1434   // checking for embedded typos.
1435   if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
1436       !Result.get()->isTypeDependent())
1437     Result = CorrectDelayedTyposInExpr(Result.get());
1438   else if (Result.isInvalid())
1439     Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(),
1440                                 RParenOrBraceLoc, exprs, Ty);
1441   return Result;
1442 }
1443 
1444 ExprResult
1445 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
1446                                 SourceLocation LParenOrBraceLoc,
1447                                 MultiExprArg Exprs,
1448                                 SourceLocation RParenOrBraceLoc,
1449                                 bool ListInitialization) {
1450   QualType Ty = TInfo->getType();
1451   SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1452 
1453   assert((!ListInitialization ||
1454           (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) &&
1455          "List initialization must have initializer list as expression.");
1456   SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc);
1457 
1458   InitializedEntity Entity =
1459       InitializedEntity::InitializeTemporary(Context, TInfo);
1460   InitializationKind Kind =
1461       Exprs.size()
1462           ? ListInitialization
1463                 ? InitializationKind::CreateDirectList(
1464                       TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc)
1465                 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc,
1466                                                    RParenOrBraceLoc)
1467           : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc,
1468                                             RParenOrBraceLoc);
1469 
1470   // C++1z [expr.type.conv]p1:
1471   //   If the type is a placeholder for a deduced class type, [...perform class
1472   //   template argument deduction...]
1473   // C++2b:
1474   //   Otherwise, if the type contains a placeholder type, it is replaced by the
1475   //   type determined by placeholder type deduction.
1476   DeducedType *Deduced = Ty->getContainedDeducedType();
1477   if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1478     Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity,
1479                                                      Kind, Exprs);
1480     if (Ty.isNull())
1481       return ExprError();
1482     Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1483   } else if (Deduced) {
1484     MultiExprArg Inits = Exprs;
1485     if (ListInitialization) {
1486       auto *ILE = cast<InitListExpr>(Exprs[0]);
1487       Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits());
1488     }
1489 
1490     if (Inits.empty())
1491       return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_init_no_expression)
1492                        << Ty << FullRange);
1493     if (Inits.size() > 1) {
1494       Expr *FirstBad = Inits[1];
1495       return ExprError(Diag(FirstBad->getBeginLoc(),
1496                             diag::err_auto_expr_init_multiple_expressions)
1497                        << Ty << FullRange);
1498     }
1499     if (getLangOpts().CPlusPlus2b) {
1500       if (Ty->getAs<AutoType>())
1501         Diag(TyBeginLoc, diag::warn_cxx20_compat_auto_expr) << FullRange;
1502     }
1503     Expr *Deduce = Inits[0];
1504     if (isa<InitListExpr>(Deduce))
1505       return ExprError(
1506           Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces)
1507           << ListInitialization << Ty << FullRange);
1508     QualType DeducedType;
1509     if (DeduceAutoType(TInfo, Deduce, DeducedType) == DAR_Failed)
1510       return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_deduction_failure)
1511                        << Ty << Deduce->getType() << FullRange
1512                        << Deduce->getSourceRange());
1513     if (DeducedType.isNull())
1514       return ExprError();
1515 
1516     Ty = DeducedType;
1517     Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1518   }
1519 
1520   if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
1521     // FIXME: CXXUnresolvedConstructExpr does not model list-initialization
1522     // directly. We work around this by dropping the locations of the braces.
1523     SourceRange Locs = ListInitialization
1524                            ? SourceRange()
1525                            : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1526     return CXXUnresolvedConstructExpr::Create(Context, Ty.getNonReferenceType(),
1527                                               TInfo, Locs.getBegin(), Exprs,
1528                                               Locs.getEnd());
1529   }
1530 
1531   // C++ [expr.type.conv]p1:
1532   // If the expression list is a parenthesized single expression, the type
1533   // conversion expression is equivalent (in definedness, and if defined in
1534   // meaning) to the corresponding cast expression.
1535   if (Exprs.size() == 1 && !ListInitialization &&
1536       !isa<InitListExpr>(Exprs[0])) {
1537     Expr *Arg = Exprs[0];
1538     return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg,
1539                                       RParenOrBraceLoc);
1540   }
1541 
1542   //   For an expression of the form T(), T shall not be an array type.
1543   QualType ElemTy = Ty;
1544   if (Ty->isArrayType()) {
1545     if (!ListInitialization)
1546       return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type)
1547                          << FullRange);
1548     ElemTy = Context.getBaseElementType(Ty);
1549   }
1550 
1551   // Only construct objects with object types.
1552   // The standard doesn't explicitly forbid function types here, but that's an
1553   // obvious oversight, as there's no way to dynamically construct a function
1554   // in general.
1555   if (Ty->isFunctionType())
1556     return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type)
1557                        << Ty << FullRange);
1558 
1559   // C++17 [expr.type.conv]p2:
1560   //   If the type is cv void and the initializer is (), the expression is a
1561   //   prvalue of the specified type that performs no initialization.
1562   if (!Ty->isVoidType() &&
1563       RequireCompleteType(TyBeginLoc, ElemTy,
1564                           diag::err_invalid_incomplete_type_use, FullRange))
1565     return ExprError();
1566 
1567   //   Otherwise, the expression is a prvalue of the specified type whose
1568   //   result object is direct-initialized (11.6) with the initializer.
1569   InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1570   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1571 
1572   if (Result.isInvalid())
1573     return Result;
1574 
1575   Expr *Inner = Result.get();
1576   if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1577     Inner = BTE->getSubExpr();
1578   if (!isa<CXXTemporaryObjectExpr>(Inner) &&
1579       !isa<CXXScalarValueInitExpr>(Inner)) {
1580     // If we created a CXXTemporaryObjectExpr, that node also represents the
1581     // functional cast. Otherwise, create an explicit cast to represent
1582     // the syntactic form of a functional-style cast that was used here.
1583     //
1584     // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1585     // would give a more consistent AST representation than using a
1586     // CXXTemporaryObjectExpr. It's also weird that the functional cast
1587     // is sometimes handled by initialization and sometimes not.
1588     QualType ResultType = Result.get()->getType();
1589     SourceRange Locs = ListInitialization
1590                            ? SourceRange()
1591                            : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1592     Result = CXXFunctionalCastExpr::Create(
1593         Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp,
1594         Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(),
1595         Locs.getBegin(), Locs.getEnd());
1596   }
1597 
1598   return Result;
1599 }
1600 
1601 bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) {
1602   // [CUDA] Ignore this function, if we can't call it.
1603   const FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true);
1604   if (getLangOpts().CUDA) {
1605     auto CallPreference = IdentifyCUDAPreference(Caller, Method);
1606     // If it's not callable at all, it's not the right function.
1607     if (CallPreference < CFP_WrongSide)
1608       return false;
1609     if (CallPreference == CFP_WrongSide) {
1610       // Maybe. We have to check if there are better alternatives.
1611       DeclContext::lookup_result R =
1612           Method->getDeclContext()->lookup(Method->getDeclName());
1613       for (const auto *D : R) {
1614         if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1615           if (IdentifyCUDAPreference(Caller, FD) > CFP_WrongSide)
1616             return false;
1617         }
1618       }
1619       // We've found no better variants.
1620     }
1621   }
1622 
1623   SmallVector<const FunctionDecl*, 4> PreventedBy;
1624   bool Result = Method->isUsualDeallocationFunction(PreventedBy);
1625 
1626   if (Result || !getLangOpts().CUDA || PreventedBy.empty())
1627     return Result;
1628 
1629   // In case of CUDA, return true if none of the 1-argument deallocator
1630   // functions are actually callable.
1631   return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) {
1632     assert(FD->getNumParams() == 1 &&
1633            "Only single-operand functions should be in PreventedBy");
1634     return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice;
1635   });
1636 }
1637 
1638 /// Determine whether the given function is a non-placement
1639 /// deallocation function.
1640 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1641   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1642     return S.isUsualDeallocationFunction(Method);
1643 
1644   if (FD->getOverloadedOperator() != OO_Delete &&
1645       FD->getOverloadedOperator() != OO_Array_Delete)
1646     return false;
1647 
1648   unsigned UsualParams = 1;
1649 
1650   if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
1651       S.Context.hasSameUnqualifiedType(
1652           FD->getParamDecl(UsualParams)->getType(),
1653           S.Context.getSizeType()))
1654     ++UsualParams;
1655 
1656   if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
1657       S.Context.hasSameUnqualifiedType(
1658           FD->getParamDecl(UsualParams)->getType(),
1659           S.Context.getTypeDeclType(S.getStdAlignValT())))
1660     ++UsualParams;
1661 
1662   return UsualParams == FD->getNumParams();
1663 }
1664 
1665 namespace {
1666   struct UsualDeallocFnInfo {
1667     UsualDeallocFnInfo() : Found(), FD(nullptr) {}
1668     UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
1669         : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())),
1670           Destroying(false), HasSizeT(false), HasAlignValT(false),
1671           CUDAPref(Sema::CFP_Native) {
1672       // A function template declaration is never a usual deallocation function.
1673       if (!FD)
1674         return;
1675       unsigned NumBaseParams = 1;
1676       if (FD->isDestroyingOperatorDelete()) {
1677         Destroying = true;
1678         ++NumBaseParams;
1679       }
1680 
1681       if (NumBaseParams < FD->getNumParams() &&
1682           S.Context.hasSameUnqualifiedType(
1683               FD->getParamDecl(NumBaseParams)->getType(),
1684               S.Context.getSizeType())) {
1685         ++NumBaseParams;
1686         HasSizeT = true;
1687       }
1688 
1689       if (NumBaseParams < FD->getNumParams() &&
1690           FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) {
1691         ++NumBaseParams;
1692         HasAlignValT = true;
1693       }
1694 
1695       // In CUDA, determine how much we'd like / dislike to call this.
1696       if (S.getLangOpts().CUDA)
1697         if (auto *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true))
1698           CUDAPref = S.IdentifyCUDAPreference(Caller, FD);
1699     }
1700 
1701     explicit operator bool() const { return FD; }
1702 
1703     bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
1704                       bool WantAlign) const {
1705       // C++ P0722:
1706       //   A destroying operator delete is preferred over a non-destroying
1707       //   operator delete.
1708       if (Destroying != Other.Destroying)
1709         return Destroying;
1710 
1711       // C++17 [expr.delete]p10:
1712       //   If the type has new-extended alignment, a function with a parameter
1713       //   of type std::align_val_t is preferred; otherwise a function without
1714       //   such a parameter is preferred
1715       if (HasAlignValT != Other.HasAlignValT)
1716         return HasAlignValT == WantAlign;
1717 
1718       if (HasSizeT != Other.HasSizeT)
1719         return HasSizeT == WantSize;
1720 
1721       // Use CUDA call preference as a tiebreaker.
1722       return CUDAPref > Other.CUDAPref;
1723     }
1724 
1725     DeclAccessPair Found;
1726     FunctionDecl *FD;
1727     bool Destroying, HasSizeT, HasAlignValT;
1728     Sema::CUDAFunctionPreference CUDAPref;
1729   };
1730 }
1731 
1732 /// Determine whether a type has new-extended alignment. This may be called when
1733 /// the type is incomplete (for a delete-expression with an incomplete pointee
1734 /// type), in which case it will conservatively return false if the alignment is
1735 /// not known.
1736 static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
1737   return S.getLangOpts().AlignedAllocation &&
1738          S.getASTContext().getTypeAlignIfKnown(AllocType) >
1739              S.getASTContext().getTargetInfo().getNewAlign();
1740 }
1741 
1742 /// Select the correct "usual" deallocation function to use from a selection of
1743 /// deallocation functions (either global or class-scope).
1744 static UsualDeallocFnInfo resolveDeallocationOverload(
1745     Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
1746     llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
1747   UsualDeallocFnInfo Best;
1748 
1749   for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1750     UsualDeallocFnInfo Info(S, I.getPair());
1751     if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) ||
1752         Info.CUDAPref == Sema::CFP_Never)
1753       continue;
1754 
1755     if (!Best) {
1756       Best = Info;
1757       if (BestFns)
1758         BestFns->push_back(Info);
1759       continue;
1760     }
1761 
1762     if (Best.isBetterThan(Info, WantSize, WantAlign))
1763       continue;
1764 
1765     //   If more than one preferred function is found, all non-preferred
1766     //   functions are eliminated from further consideration.
1767     if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign))
1768       BestFns->clear();
1769 
1770     Best = Info;
1771     if (BestFns)
1772       BestFns->push_back(Info);
1773   }
1774 
1775   return Best;
1776 }
1777 
1778 /// Determine whether a given type is a class for which 'delete[]' would call
1779 /// a member 'operator delete[]' with a 'size_t' parameter. This implies that
1780 /// we need to store the array size (even if the type is
1781 /// trivially-destructible).
1782 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
1783                                          QualType allocType) {
1784   const RecordType *record =
1785     allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1786   if (!record) return false;
1787 
1788   // Try to find an operator delete[] in class scope.
1789 
1790   DeclarationName deleteName =
1791     S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1792   LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1793   S.LookupQualifiedName(ops, record->getDecl());
1794 
1795   // We're just doing this for information.
1796   ops.suppressDiagnostics();
1797 
1798   // Very likely: there's no operator delete[].
1799   if (ops.empty()) return false;
1800 
1801   // If it's ambiguous, it should be illegal to call operator delete[]
1802   // on this thing, so it doesn't matter if we allocate extra space or not.
1803   if (ops.isAmbiguous()) return false;
1804 
1805   // C++17 [expr.delete]p10:
1806   //   If the deallocation functions have class scope, the one without a
1807   //   parameter of type std::size_t is selected.
1808   auto Best = resolveDeallocationOverload(
1809       S, ops, /*WantSize*/false,
1810       /*WantAlign*/hasNewExtendedAlignment(S, allocType));
1811   return Best && Best.HasSizeT;
1812 }
1813 
1814 /// Parsed a C++ 'new' expression (C++ 5.3.4).
1815 ///
1816 /// E.g.:
1817 /// @code new (memory) int[size][4] @endcode
1818 /// or
1819 /// @code ::new Foo(23, "hello") @endcode
1820 ///
1821 /// \param StartLoc The first location of the expression.
1822 /// \param UseGlobal True if 'new' was prefixed with '::'.
1823 /// \param PlacementLParen Opening paren of the placement arguments.
1824 /// \param PlacementArgs Placement new arguments.
1825 /// \param PlacementRParen Closing paren of the placement arguments.
1826 /// \param TypeIdParens If the type is in parens, the source range.
1827 /// \param D The type to be allocated, as well as array dimensions.
1828 /// \param Initializer The initializing expression or initializer-list, or null
1829 ///   if there is none.
1830 ExprResult
1831 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1832                   SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1833                   SourceLocation PlacementRParen, SourceRange TypeIdParens,
1834                   Declarator &D, Expr *Initializer) {
1835   Optional<Expr *> ArraySize;
1836   // If the specified type is an array, unwrap it and save the expression.
1837   if (D.getNumTypeObjects() > 0 &&
1838       D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1839     DeclaratorChunk &Chunk = D.getTypeObject(0);
1840     if (D.getDeclSpec().hasAutoTypeSpec())
1841       return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1842         << D.getSourceRange());
1843     if (Chunk.Arr.hasStatic)
1844       return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1845         << D.getSourceRange());
1846     if (!Chunk.Arr.NumElts && !Initializer)
1847       return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1848         << D.getSourceRange());
1849 
1850     ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1851     D.DropFirstTypeObject();
1852   }
1853 
1854   // Every dimension shall be of constant size.
1855   if (ArraySize) {
1856     for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1857       if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1858         break;
1859 
1860       DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1861       if (Expr *NumElts = (Expr *)Array.NumElts) {
1862         if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1863           // FIXME: GCC permits constant folding here. We should either do so consistently
1864           // or not do so at all, rather than changing behavior in C++14 onwards.
1865           if (getLangOpts().CPlusPlus14) {
1866             // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1867             //   shall be a converted constant expression (5.19) of type std::size_t
1868             //   and shall evaluate to a strictly positive value.
1869             llvm::APSInt Value(Context.getIntWidth(Context.getSizeType()));
1870             Array.NumElts
1871              = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1872                                                 CCEK_ArrayBound)
1873                  .get();
1874           } else {
1875             Array.NumElts =
1876                 VerifyIntegerConstantExpression(
1877                     NumElts, nullptr, diag::err_new_array_nonconst, AllowFold)
1878                     .get();
1879           }
1880           if (!Array.NumElts)
1881             return ExprError();
1882         }
1883       }
1884     }
1885   }
1886 
1887   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1888   QualType AllocType = TInfo->getType();
1889   if (D.isInvalidType())
1890     return ExprError();
1891 
1892   SourceRange DirectInitRange;
1893   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1894     DirectInitRange = List->getSourceRange();
1895 
1896   return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal,
1897                      PlacementLParen, PlacementArgs, PlacementRParen,
1898                      TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange,
1899                      Initializer);
1900 }
1901 
1902 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1903                                        Expr *Init) {
1904   if (!Init)
1905     return true;
1906   if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1907     return PLE->getNumExprs() == 0;
1908   if (isa<ImplicitValueInitExpr>(Init))
1909     return true;
1910   else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1911     return !CCE->isListInitialization() &&
1912            CCE->getConstructor()->isDefaultConstructor();
1913   else if (Style == CXXNewExpr::ListInit) {
1914     assert(isa<InitListExpr>(Init) &&
1915            "Shouldn't create list CXXConstructExprs for arrays.");
1916     return true;
1917   }
1918   return false;
1919 }
1920 
1921 bool
1922 Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const {
1923   if (!getLangOpts().AlignedAllocationUnavailable)
1924     return false;
1925   if (FD.isDefined())
1926     return false;
1927   Optional<unsigned> AlignmentParam;
1928   if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) &&
1929       AlignmentParam)
1930     return true;
1931   return false;
1932 }
1933 
1934 // Emit a diagnostic if an aligned allocation/deallocation function that is not
1935 // implemented in the standard library is selected.
1936 void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
1937                                                 SourceLocation Loc) {
1938   if (isUnavailableAlignedAllocationFunction(FD)) {
1939     const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
1940     StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling(
1941         getASTContext().getTargetInfo().getPlatformName());
1942     VersionTuple OSVersion = alignedAllocMinVersion(T.getOS());
1943 
1944     OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator();
1945     bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete;
1946     Diag(Loc, diag::err_aligned_allocation_unavailable)
1947         << IsDelete << FD.getType().getAsString() << OSName
1948         << OSVersion.getAsString() << OSVersion.empty();
1949     Diag(Loc, diag::note_silence_aligned_allocation_unavailable);
1950   }
1951 }
1952 
1953 ExprResult
1954 Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1955                   SourceLocation PlacementLParen,
1956                   MultiExprArg PlacementArgs,
1957                   SourceLocation PlacementRParen,
1958                   SourceRange TypeIdParens,
1959                   QualType AllocType,
1960                   TypeSourceInfo *AllocTypeInfo,
1961                   Optional<Expr *> ArraySize,
1962                   SourceRange DirectInitRange,
1963                   Expr *Initializer) {
1964   SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1965   SourceLocation StartLoc = Range.getBegin();
1966 
1967   CXXNewExpr::InitializationStyle initStyle;
1968   if (DirectInitRange.isValid()) {
1969     assert(Initializer && "Have parens but no initializer.");
1970     initStyle = CXXNewExpr::CallInit;
1971   } else if (Initializer && isa<InitListExpr>(Initializer))
1972     initStyle = CXXNewExpr::ListInit;
1973   else {
1974     assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1975             isa<CXXConstructExpr>(Initializer)) &&
1976            "Initializer expression that cannot have been implicitly created.");
1977     initStyle = CXXNewExpr::NoInit;
1978   }
1979 
1980   MultiExprArg Exprs(&Initializer, Initializer ? 1 : 0);
1981   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1982     assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
1983     Exprs = MultiExprArg(List->getExprs(), List->getNumExprs());
1984   }
1985 
1986   // C++11 [expr.new]p15:
1987   //   A new-expression that creates an object of type T initializes that
1988   //   object as follows:
1989   InitializationKind Kind
1990       //     - If the new-initializer is omitted, the object is default-
1991       //       initialized (8.5); if no initialization is performed,
1992       //       the object has indeterminate value
1993       = initStyle == CXXNewExpr::NoInit
1994             ? InitializationKind::CreateDefault(TypeRange.getBegin())
1995             //     - Otherwise, the new-initializer is interpreted according to
1996             //     the
1997             //       initialization rules of 8.5 for direct-initialization.
1998             : initStyle == CXXNewExpr::ListInit
1999                   ? InitializationKind::CreateDirectList(
2000                         TypeRange.getBegin(), Initializer->getBeginLoc(),
2001                         Initializer->getEndLoc())
2002                   : InitializationKind::CreateDirect(TypeRange.getBegin(),
2003                                                      DirectInitRange.getBegin(),
2004                                                      DirectInitRange.getEnd());
2005 
2006   // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
2007   auto *Deduced = AllocType->getContainedDeducedType();
2008   if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
2009     if (ArraySize)
2010       return ExprError(
2011           Diag(*ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(),
2012                diag::err_deduced_class_template_compound_type)
2013           << /*array*/ 2
2014           << (*ArraySize ? (*ArraySize)->getSourceRange() : TypeRange));
2015 
2016     InitializedEntity Entity
2017       = InitializedEntity::InitializeNew(StartLoc, AllocType);
2018     AllocType = DeduceTemplateSpecializationFromInitializer(
2019         AllocTypeInfo, Entity, Kind, Exprs);
2020     if (AllocType.isNull())
2021       return ExprError();
2022   } else if (Deduced) {
2023     MultiExprArg Inits = Exprs;
2024     bool Braced = (initStyle == CXXNewExpr::ListInit);
2025     if (Braced) {
2026       auto *ILE = cast<InitListExpr>(Exprs[0]);
2027       Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits());
2028     }
2029 
2030     if (initStyle == CXXNewExpr::NoInit || Inits.empty())
2031       return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
2032                        << AllocType << TypeRange);
2033     if (Inits.size() > 1) {
2034       Expr *FirstBad = Inits[1];
2035       return ExprError(Diag(FirstBad->getBeginLoc(),
2036                             diag::err_auto_new_ctor_multiple_expressions)
2037                        << AllocType << TypeRange);
2038     }
2039     if (Braced && !getLangOpts().CPlusPlus17)
2040       Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init)
2041           << AllocType << TypeRange;
2042     Expr *Deduce = Inits[0];
2043     if (isa<InitListExpr>(Deduce))
2044       return ExprError(
2045           Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces)
2046           << Braced << AllocType << TypeRange);
2047     QualType DeducedType;
2048     if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
2049       return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
2050                        << AllocType << Deduce->getType()
2051                        << TypeRange << Deduce->getSourceRange());
2052     if (DeducedType.isNull())
2053       return ExprError();
2054     AllocType = DeducedType;
2055   }
2056 
2057   // Per C++0x [expr.new]p5, the type being constructed may be a
2058   // typedef of an array type.
2059   if (!ArraySize) {
2060     if (const ConstantArrayType *Array
2061                               = Context.getAsConstantArrayType(AllocType)) {
2062       ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
2063                                          Context.getSizeType(),
2064                                          TypeRange.getEnd());
2065       AllocType = Array->getElementType();
2066     }
2067   }
2068 
2069   if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
2070     return ExprError();
2071 
2072   // In ARC, infer 'retaining' for the allocated
2073   if (getLangOpts().ObjCAutoRefCount &&
2074       AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2075       AllocType->isObjCLifetimeType()) {
2076     AllocType = Context.getLifetimeQualifiedType(AllocType,
2077                                     AllocType->getObjCARCImplicitLifetime());
2078   }
2079 
2080   QualType ResultType = Context.getPointerType(AllocType);
2081 
2082   if (ArraySize && *ArraySize &&
2083       (*ArraySize)->getType()->isNonOverloadPlaceholderType()) {
2084     ExprResult result = CheckPlaceholderExpr(*ArraySize);
2085     if (result.isInvalid()) return ExprError();
2086     ArraySize = result.get();
2087   }
2088   // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
2089   //   integral or enumeration type with a non-negative value."
2090   // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
2091   //   enumeration type, or a class type for which a single non-explicit
2092   //   conversion function to integral or unscoped enumeration type exists.
2093   // C++1y [expr.new]p6: The expression [...] is implicitly converted to
2094   //   std::size_t.
2095   llvm::Optional<uint64_t> KnownArraySize;
2096   if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) {
2097     ExprResult ConvertedSize;
2098     if (getLangOpts().CPlusPlus14) {
2099       assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
2100 
2101       ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(),
2102                                                 AA_Converting);
2103 
2104       if (!ConvertedSize.isInvalid() &&
2105           (*ArraySize)->getType()->getAs<RecordType>())
2106         // Diagnose the compatibility of this conversion.
2107         Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
2108           << (*ArraySize)->getType() << 0 << "'size_t'";
2109     } else {
2110       class SizeConvertDiagnoser : public ICEConvertDiagnoser {
2111       protected:
2112         Expr *ArraySize;
2113 
2114       public:
2115         SizeConvertDiagnoser(Expr *ArraySize)
2116             : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
2117               ArraySize(ArraySize) {}
2118 
2119         SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
2120                                              QualType T) override {
2121           return S.Diag(Loc, diag::err_array_size_not_integral)
2122                    << S.getLangOpts().CPlusPlus11 << T;
2123         }
2124 
2125         SemaDiagnosticBuilder diagnoseIncomplete(
2126             Sema &S, SourceLocation Loc, QualType T) override {
2127           return S.Diag(Loc, diag::err_array_size_incomplete_type)
2128                    << T << ArraySize->getSourceRange();
2129         }
2130 
2131         SemaDiagnosticBuilder diagnoseExplicitConv(
2132             Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
2133           return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
2134         }
2135 
2136         SemaDiagnosticBuilder noteExplicitConv(
2137             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2138           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2139                    << ConvTy->isEnumeralType() << ConvTy;
2140         }
2141 
2142         SemaDiagnosticBuilder diagnoseAmbiguous(
2143             Sema &S, SourceLocation Loc, QualType T) override {
2144           return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
2145         }
2146 
2147         SemaDiagnosticBuilder noteAmbiguous(
2148             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2149           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2150                    << ConvTy->isEnumeralType() << ConvTy;
2151         }
2152 
2153         SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
2154                                                  QualType T,
2155                                                  QualType ConvTy) override {
2156           return S.Diag(Loc,
2157                         S.getLangOpts().CPlusPlus11
2158                           ? diag::warn_cxx98_compat_array_size_conversion
2159                           : diag::ext_array_size_conversion)
2160                    << T << ConvTy->isEnumeralType() << ConvTy;
2161         }
2162       } SizeDiagnoser(*ArraySize);
2163 
2164       ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize,
2165                                                           SizeDiagnoser);
2166     }
2167     if (ConvertedSize.isInvalid())
2168       return ExprError();
2169 
2170     ArraySize = ConvertedSize.get();
2171     QualType SizeType = (*ArraySize)->getType();
2172 
2173     if (!SizeType->isIntegralOrUnscopedEnumerationType())
2174       return ExprError();
2175 
2176     // C++98 [expr.new]p7:
2177     //   The expression in a direct-new-declarator shall have integral type
2178     //   with a non-negative value.
2179     //
2180     // Let's see if this is a constant < 0. If so, we reject it out of hand,
2181     // per CWG1464. Otherwise, if it's not a constant, we must have an
2182     // unparenthesized array type.
2183 
2184     // We've already performed any required implicit conversion to integer or
2185     // unscoped enumeration type.
2186     // FIXME: Per CWG1464, we are required to check the value prior to
2187     // converting to size_t. This will never find a negative array size in
2188     // C++14 onwards, because Value is always unsigned here!
2189     if (Optional<llvm::APSInt> Value =
2190             (*ArraySize)->getIntegerConstantExpr(Context)) {
2191       if (Value->isSigned() && Value->isNegative()) {
2192         return ExprError(Diag((*ArraySize)->getBeginLoc(),
2193                               diag::err_typecheck_negative_array_size)
2194                          << (*ArraySize)->getSourceRange());
2195       }
2196 
2197       if (!AllocType->isDependentType()) {
2198         unsigned ActiveSizeBits =
2199             ConstantArrayType::getNumAddressingBits(Context, AllocType, *Value);
2200         if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
2201           return ExprError(
2202               Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large)
2203               << toString(*Value, 10) << (*ArraySize)->getSourceRange());
2204       }
2205 
2206       KnownArraySize = Value->getZExtValue();
2207     } else if (TypeIdParens.isValid()) {
2208       // Can't have dynamic array size when the type-id is in parentheses.
2209       Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst)
2210           << (*ArraySize)->getSourceRange()
2211           << FixItHint::CreateRemoval(TypeIdParens.getBegin())
2212           << FixItHint::CreateRemoval(TypeIdParens.getEnd());
2213 
2214       TypeIdParens = SourceRange();
2215     }
2216 
2217     // Note that we do *not* convert the argument in any way.  It can
2218     // be signed, larger than size_t, whatever.
2219   }
2220 
2221   FunctionDecl *OperatorNew = nullptr;
2222   FunctionDecl *OperatorDelete = nullptr;
2223   unsigned Alignment =
2224       AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType);
2225   unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
2226   bool PassAlignment = getLangOpts().AlignedAllocation &&
2227                        Alignment > NewAlignment;
2228 
2229   AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both;
2230   if (!AllocType->isDependentType() &&
2231       !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
2232       FindAllocationFunctions(
2233           StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope,
2234           AllocType, ArraySize.has_value(), PassAlignment, PlacementArgs,
2235           OperatorNew, OperatorDelete))
2236     return ExprError();
2237 
2238   // If this is an array allocation, compute whether the usual array
2239   // deallocation function for the type has a size_t parameter.
2240   bool UsualArrayDeleteWantsSize = false;
2241   if (ArraySize && !AllocType->isDependentType())
2242     UsualArrayDeleteWantsSize =
2243         doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
2244 
2245   SmallVector<Expr *, 8> AllPlaceArgs;
2246   if (OperatorNew) {
2247     auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2248     VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
2249                                                     : VariadicDoesNotApply;
2250 
2251     // We've already converted the placement args, just fill in any default
2252     // arguments. Skip the first parameter because we don't have a corresponding
2253     // argument. Skip the second parameter too if we're passing in the
2254     // alignment; we've already filled it in.
2255     unsigned NumImplicitArgs = PassAlignment ? 2 : 1;
2256     if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto,
2257                                NumImplicitArgs, PlacementArgs, AllPlaceArgs,
2258                                CallType))
2259       return ExprError();
2260 
2261     if (!AllPlaceArgs.empty())
2262       PlacementArgs = AllPlaceArgs;
2263 
2264     // We would like to perform some checking on the given `operator new` call,
2265     // but the PlacementArgs does not contain the implicit arguments,
2266     // namely allocation size and maybe allocation alignment,
2267     // so we need to conjure them.
2268 
2269     QualType SizeTy = Context.getSizeType();
2270     unsigned SizeTyWidth = Context.getTypeSize(SizeTy);
2271 
2272     llvm::APInt SingleEltSize(
2273         SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity());
2274 
2275     // How many bytes do we want to allocate here?
2276     llvm::Optional<llvm::APInt> AllocationSize;
2277     if (!ArraySize && !AllocType->isDependentType()) {
2278       // For non-array operator new, we only want to allocate one element.
2279       AllocationSize = SingleEltSize;
2280     } else if (KnownArraySize && !AllocType->isDependentType()) {
2281       // For array operator new, only deal with static array size case.
2282       bool Overflow;
2283       AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize)
2284                            .umul_ov(SingleEltSize, Overflow);
2285       (void)Overflow;
2286       assert(
2287           !Overflow &&
2288           "Expected that all the overflows would have been handled already.");
2289     }
2290 
2291     IntegerLiteral AllocationSizeLiteral(
2292         Context, AllocationSize.value_or(llvm::APInt::getZero(SizeTyWidth)),
2293         SizeTy, SourceLocation());
2294     // Otherwise, if we failed to constant-fold the allocation size, we'll
2295     // just give up and pass-in something opaque, that isn't a null pointer.
2296     OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue,
2297                                          OK_Ordinary, /*SourceExpr=*/nullptr);
2298 
2299     // Let's synthesize the alignment argument in case we will need it.
2300     // Since we *really* want to allocate these on stack, this is slightly ugly
2301     // because there might not be a `std::align_val_t` type.
2302     EnumDecl *StdAlignValT = getStdAlignValT();
2303     QualType AlignValT =
2304         StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy;
2305     IntegerLiteral AlignmentLiteral(
2306         Context,
2307         llvm::APInt(Context.getTypeSize(SizeTy),
2308                     Alignment / Context.getCharWidth()),
2309         SizeTy, SourceLocation());
2310     ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT,
2311                                       CK_IntegralCast, &AlignmentLiteral,
2312                                       VK_PRValue, FPOptionsOverride());
2313 
2314     // Adjust placement args by prepending conjured size and alignment exprs.
2315     llvm::SmallVector<Expr *, 8> CallArgs;
2316     CallArgs.reserve(NumImplicitArgs + PlacementArgs.size());
2317     CallArgs.emplace_back(AllocationSize
2318                               ? static_cast<Expr *>(&AllocationSizeLiteral)
2319                               : &OpaqueAllocationSize);
2320     if (PassAlignment)
2321       CallArgs.emplace_back(&DesiredAlignment);
2322     CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end());
2323 
2324     DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs);
2325 
2326     checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs,
2327               /*IsMemberFunction=*/false, StartLoc, Range, CallType);
2328 
2329     // Warn if the type is over-aligned and is being allocated by (unaligned)
2330     // global operator new.
2331     if (PlacementArgs.empty() && !PassAlignment &&
2332         (OperatorNew->isImplicit() ||
2333          (OperatorNew->getBeginLoc().isValid() &&
2334           getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) {
2335       if (Alignment > NewAlignment)
2336         Diag(StartLoc, diag::warn_overaligned_type)
2337             << AllocType
2338             << unsigned(Alignment / Context.getCharWidth())
2339             << unsigned(NewAlignment / Context.getCharWidth());
2340     }
2341   }
2342 
2343   // Array 'new' can't have any initializers except empty parentheses.
2344   // Initializer lists are also allowed, in C++11. Rely on the parser for the
2345   // dialect distinction.
2346   if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) {
2347     SourceRange InitRange(Exprs.front()->getBeginLoc(),
2348                           Exprs.back()->getEndLoc());
2349     Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
2350     return ExprError();
2351   }
2352 
2353   // If we can perform the initialization, and we've not already done so,
2354   // do it now.
2355   if (!AllocType->isDependentType() &&
2356       !Expr::hasAnyTypeDependentArguments(Exprs)) {
2357     // The type we initialize is the complete type, including the array bound.
2358     QualType InitType;
2359     if (KnownArraySize)
2360       InitType = Context.getConstantArrayType(
2361           AllocType,
2362           llvm::APInt(Context.getTypeSize(Context.getSizeType()),
2363                       *KnownArraySize),
2364           *ArraySize, ArrayType::Normal, 0);
2365     else if (ArraySize)
2366       InitType =
2367           Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0);
2368     else
2369       InitType = AllocType;
2370 
2371     InitializedEntity Entity
2372       = InitializedEntity::InitializeNew(StartLoc, InitType);
2373     InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
2374     ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, Exprs);
2375     if (FullInit.isInvalid())
2376       return ExprError();
2377 
2378     // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
2379     // we don't want the initialized object to be destructed.
2380     // FIXME: We should not create these in the first place.
2381     if (CXXBindTemporaryExpr *Binder =
2382             dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
2383       FullInit = Binder->getSubExpr();
2384 
2385     Initializer = FullInit.get();
2386 
2387     // FIXME: If we have a KnownArraySize, check that the array bound of the
2388     // initializer is no greater than that constant value.
2389 
2390     if (ArraySize && !*ArraySize) {
2391       auto *CAT = Context.getAsConstantArrayType(Initializer->getType());
2392       if (CAT) {
2393         // FIXME: Track that the array size was inferred rather than explicitly
2394         // specified.
2395         ArraySize = IntegerLiteral::Create(
2396             Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd());
2397       } else {
2398         Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init)
2399             << Initializer->getSourceRange();
2400       }
2401     }
2402   }
2403 
2404   // Mark the new and delete operators as referenced.
2405   if (OperatorNew) {
2406     if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
2407       return ExprError();
2408     MarkFunctionReferenced(StartLoc, OperatorNew);
2409   }
2410   if (OperatorDelete) {
2411     if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
2412       return ExprError();
2413     MarkFunctionReferenced(StartLoc, OperatorDelete);
2414   }
2415 
2416   return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete,
2417                             PassAlignment, UsualArrayDeleteWantsSize,
2418                             PlacementArgs, TypeIdParens, ArraySize, initStyle,
2419                             Initializer, ResultType, AllocTypeInfo, Range,
2420                             DirectInitRange);
2421 }
2422 
2423 /// Checks that a type is suitable as the allocated type
2424 /// in a new-expression.
2425 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
2426                               SourceRange R) {
2427   // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
2428   //   abstract class type or array thereof.
2429   if (AllocType->isFunctionType())
2430     return Diag(Loc, diag::err_bad_new_type)
2431       << AllocType << 0 << R;
2432   else if (AllocType->isReferenceType())
2433     return Diag(Loc, diag::err_bad_new_type)
2434       << AllocType << 1 << R;
2435   else if (!AllocType->isDependentType() &&
2436            RequireCompleteSizedType(
2437                Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R))
2438     return true;
2439   else if (RequireNonAbstractType(Loc, AllocType,
2440                                   diag::err_allocation_of_abstract_type))
2441     return true;
2442   else if (AllocType->isVariablyModifiedType())
2443     return Diag(Loc, diag::err_variably_modified_new_type)
2444              << AllocType;
2445   else if (AllocType.getAddressSpace() != LangAS::Default &&
2446            !getLangOpts().OpenCLCPlusPlus)
2447     return Diag(Loc, diag::err_address_space_qualified_new)
2448       << AllocType.getUnqualifiedType()
2449       << AllocType.getQualifiers().getAddressSpaceAttributePrintValue();
2450   else if (getLangOpts().ObjCAutoRefCount) {
2451     if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
2452       QualType BaseAllocType = Context.getBaseElementType(AT);
2453       if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2454           BaseAllocType->isObjCLifetimeType())
2455         return Diag(Loc, diag::err_arc_new_array_without_ownership)
2456           << BaseAllocType;
2457     }
2458   }
2459 
2460   return false;
2461 }
2462 
2463 static bool resolveAllocationOverload(
2464     Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args,
2465     bool &PassAlignment, FunctionDecl *&Operator,
2466     OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) {
2467   OverloadCandidateSet Candidates(R.getNameLoc(),
2468                                   OverloadCandidateSet::CSK_Normal);
2469   for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
2470        Alloc != AllocEnd; ++Alloc) {
2471     // Even member operator new/delete are implicitly treated as
2472     // static, so don't use AddMemberCandidate.
2473     NamedDecl *D = (*Alloc)->getUnderlyingDecl();
2474 
2475     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
2476       S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
2477                                      /*ExplicitTemplateArgs=*/nullptr, Args,
2478                                      Candidates,
2479                                      /*SuppressUserConversions=*/false);
2480       continue;
2481     }
2482 
2483     FunctionDecl *Fn = cast<FunctionDecl>(D);
2484     S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
2485                            /*SuppressUserConversions=*/false);
2486   }
2487 
2488   // Do the resolution.
2489   OverloadCandidateSet::iterator Best;
2490   switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
2491   case OR_Success: {
2492     // Got one!
2493     FunctionDecl *FnDecl = Best->Function;
2494     if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(),
2495                                 Best->FoundDecl) == Sema::AR_inaccessible)
2496       return true;
2497 
2498     Operator = FnDecl;
2499     return false;
2500   }
2501 
2502   case OR_No_Viable_Function:
2503     // C++17 [expr.new]p13:
2504     //   If no matching function is found and the allocated object type has
2505     //   new-extended alignment, the alignment argument is removed from the
2506     //   argument list, and overload resolution is performed again.
2507     if (PassAlignment) {
2508       PassAlignment = false;
2509       AlignArg = Args[1];
2510       Args.erase(Args.begin() + 1);
2511       return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2512                                        Operator, &Candidates, AlignArg,
2513                                        Diagnose);
2514     }
2515 
2516     // MSVC will fall back on trying to find a matching global operator new
2517     // if operator new[] cannot be found.  Also, MSVC will leak by not
2518     // generating a call to operator delete or operator delete[], but we
2519     // will not replicate that bug.
2520     // FIXME: Find out how this interacts with the std::align_val_t fallback
2521     // once MSVC implements it.
2522     if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
2523         S.Context.getLangOpts().MSVCCompat) {
2524       R.clear();
2525       R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New));
2526       S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
2527       // FIXME: This will give bad diagnostics pointing at the wrong functions.
2528       return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2529                                        Operator, /*Candidates=*/nullptr,
2530                                        /*AlignArg=*/nullptr, Diagnose);
2531     }
2532 
2533     if (Diagnose) {
2534       // If this is an allocation of the form 'new (p) X' for some object
2535       // pointer p (or an expression that will decay to such a pointer),
2536       // diagnose the missing inclusion of <new>.
2537       if (!R.isClassLookup() && Args.size() == 2 &&
2538           (Args[1]->getType()->isObjectPointerType() ||
2539            Args[1]->getType()->isArrayType())) {
2540         S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new)
2541             << R.getLookupName() << Range;
2542         // Listing the candidates is unlikely to be useful; skip it.
2543         return true;
2544       }
2545 
2546       // Finish checking all candidates before we note any. This checking can
2547       // produce additional diagnostics so can't be interleaved with our
2548       // emission of notes.
2549       //
2550       // For an aligned allocation, separately check the aligned and unaligned
2551       // candidates with their respective argument lists.
2552       SmallVector<OverloadCandidate*, 32> Cands;
2553       SmallVector<OverloadCandidate*, 32> AlignedCands;
2554       llvm::SmallVector<Expr*, 4> AlignedArgs;
2555       if (AlignedCandidates) {
2556         auto IsAligned = [](OverloadCandidate &C) {
2557           return C.Function->getNumParams() > 1 &&
2558                  C.Function->getParamDecl(1)->getType()->isAlignValT();
2559         };
2560         auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };
2561 
2562         AlignedArgs.reserve(Args.size() + 1);
2563         AlignedArgs.push_back(Args[0]);
2564         AlignedArgs.push_back(AlignArg);
2565         AlignedArgs.append(Args.begin() + 1, Args.end());
2566         AlignedCands = AlignedCandidates->CompleteCandidates(
2567             S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned);
2568 
2569         Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2570                                               R.getNameLoc(), IsUnaligned);
2571       } else {
2572         Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2573                                               R.getNameLoc());
2574       }
2575 
2576       S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call)
2577           << R.getLookupName() << Range;
2578       if (AlignedCandidates)
2579         AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "",
2580                                           R.getNameLoc());
2581       Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc());
2582     }
2583     return true;
2584 
2585   case OR_Ambiguous:
2586     if (Diagnose) {
2587       Candidates.NoteCandidates(
2588           PartialDiagnosticAt(R.getNameLoc(),
2589                               S.PDiag(diag::err_ovl_ambiguous_call)
2590                                   << R.getLookupName() << Range),
2591           S, OCD_AmbiguousCandidates, Args);
2592     }
2593     return true;
2594 
2595   case OR_Deleted: {
2596     if (Diagnose) {
2597       Candidates.NoteCandidates(
2598           PartialDiagnosticAt(R.getNameLoc(),
2599                               S.PDiag(diag::err_ovl_deleted_call)
2600                                   << R.getLookupName() << Range),
2601           S, OCD_AllCandidates, Args);
2602     }
2603     return true;
2604   }
2605   }
2606   llvm_unreachable("Unreachable, bad result from BestViableFunction");
2607 }
2608 
2609 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
2610                                    AllocationFunctionScope NewScope,
2611                                    AllocationFunctionScope DeleteScope,
2612                                    QualType AllocType, bool IsArray,
2613                                    bool &PassAlignment, MultiExprArg PlaceArgs,
2614                                    FunctionDecl *&OperatorNew,
2615                                    FunctionDecl *&OperatorDelete,
2616                                    bool Diagnose) {
2617   // --- Choosing an allocation function ---
2618   // C++ 5.3.4p8 - 14 & 18
2619   // 1) If looking in AFS_Global scope for allocation functions, only look in
2620   //    the global scope. Else, if AFS_Class, only look in the scope of the
2621   //    allocated class. If AFS_Both, look in both.
2622   // 2) If an array size is given, look for operator new[], else look for
2623   //   operator new.
2624   // 3) The first argument is always size_t. Append the arguments from the
2625   //   placement form.
2626 
2627   SmallVector<Expr*, 8> AllocArgs;
2628   AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size());
2629 
2630   // We don't care about the actual value of these arguments.
2631   // FIXME: Should the Sema create the expression and embed it in the syntax
2632   // tree? Or should the consumer just recalculate the value?
2633   // FIXME: Using a dummy value will interact poorly with attribute enable_if.
2634   IntegerLiteral Size(
2635       Context, llvm::APInt::getZero(Context.getTargetInfo().getPointerWidth(0)),
2636       Context.getSizeType(), SourceLocation());
2637   AllocArgs.push_back(&Size);
2638 
2639   QualType AlignValT = Context.VoidTy;
2640   if (PassAlignment) {
2641     DeclareGlobalNewDelete();
2642     AlignValT = Context.getTypeDeclType(getStdAlignValT());
2643   }
2644   CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
2645   if (PassAlignment)
2646     AllocArgs.push_back(&Align);
2647 
2648   AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end());
2649 
2650   // C++ [expr.new]p8:
2651   //   If the allocated type is a non-array type, the allocation
2652   //   function's name is operator new and the deallocation function's
2653   //   name is operator delete. If the allocated type is an array
2654   //   type, the allocation function's name is operator new[] and the
2655   //   deallocation function's name is operator delete[].
2656   DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
2657       IsArray ? OO_Array_New : OO_New);
2658 
2659   QualType AllocElemType = Context.getBaseElementType(AllocType);
2660 
2661   // Find the allocation function.
2662   {
2663     LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);
2664 
2665     // C++1z [expr.new]p9:
2666     //   If the new-expression begins with a unary :: operator, the allocation
2667     //   function's name is looked up in the global scope. Otherwise, if the
2668     //   allocated type is a class type T or array thereof, the allocation
2669     //   function's name is looked up in the scope of T.
2670     if (AllocElemType->isRecordType() && NewScope != AFS_Global)
2671       LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());
2672 
2673     // We can see ambiguity here if the allocation function is found in
2674     // multiple base classes.
2675     if (R.isAmbiguous())
2676       return true;
2677 
2678     //   If this lookup fails to find the name, or if the allocated type is not
2679     //   a class type, the allocation function's name is looked up in the
2680     //   global scope.
2681     if (R.empty()) {
2682       if (NewScope == AFS_Class)
2683         return true;
2684 
2685       LookupQualifiedName(R, Context.getTranslationUnitDecl());
2686     }
2687 
2688     if (getLangOpts().OpenCLCPlusPlus && R.empty()) {
2689       if (PlaceArgs.empty()) {
2690         Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new";
2691       } else {
2692         Diag(StartLoc, diag::err_openclcxx_placement_new);
2693       }
2694       return true;
2695     }
2696 
2697     assert(!R.empty() && "implicitly declared allocation functions not found");
2698     assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
2699 
2700     // We do our own custom access checks below.
2701     R.suppressDiagnostics();
2702 
2703     if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment,
2704                                   OperatorNew, /*Candidates=*/nullptr,
2705                                   /*AlignArg=*/nullptr, Diagnose))
2706       return true;
2707   }
2708 
2709   // We don't need an operator delete if we're running under -fno-exceptions.
2710   if (!getLangOpts().Exceptions) {
2711     OperatorDelete = nullptr;
2712     return false;
2713   }
2714 
2715   // Note, the name of OperatorNew might have been changed from array to
2716   // non-array by resolveAllocationOverload.
2717   DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2718       OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
2719           ? OO_Array_Delete
2720           : OO_Delete);
2721 
2722   // C++ [expr.new]p19:
2723   //
2724   //   If the new-expression begins with a unary :: operator, the
2725   //   deallocation function's name is looked up in the global
2726   //   scope. Otherwise, if the allocated type is a class type T or an
2727   //   array thereof, the deallocation function's name is looked up in
2728   //   the scope of T. If this lookup fails to find the name, or if
2729   //   the allocated type is not a class type or array thereof, the
2730   //   deallocation function's name is looked up in the global scope.
2731   LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
2732   if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) {
2733     auto *RD =
2734         cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl());
2735     LookupQualifiedName(FoundDelete, RD);
2736   }
2737   if (FoundDelete.isAmbiguous())
2738     return true; // FIXME: clean up expressions?
2739 
2740   // Filter out any destroying operator deletes. We can't possibly call such a
2741   // function in this context, because we're handling the case where the object
2742   // was not successfully constructed.
2743   // FIXME: This is not covered by the language rules yet.
2744   {
2745     LookupResult::Filter Filter = FoundDelete.makeFilter();
2746     while (Filter.hasNext()) {
2747       auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl());
2748       if (FD && FD->isDestroyingOperatorDelete())
2749         Filter.erase();
2750     }
2751     Filter.done();
2752   }
2753 
2754   bool FoundGlobalDelete = FoundDelete.empty();
2755   if (FoundDelete.empty()) {
2756     FoundDelete.clear(LookupOrdinaryName);
2757 
2758     if (DeleteScope == AFS_Class)
2759       return true;
2760 
2761     DeclareGlobalNewDelete();
2762     LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2763   }
2764 
2765   FoundDelete.suppressDiagnostics();
2766 
2767   SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
2768 
2769   // Whether we're looking for a placement operator delete is dictated
2770   // by whether we selected a placement operator new, not by whether
2771   // we had explicit placement arguments.  This matters for things like
2772   //   struct A { void *operator new(size_t, int = 0); ... };
2773   //   A *a = new A()
2774   //
2775   // We don't have any definition for what a "placement allocation function"
2776   // is, but we assume it's any allocation function whose
2777   // parameter-declaration-clause is anything other than (size_t).
2778   //
2779   // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
2780   // This affects whether an exception from the constructor of an overaligned
2781   // type uses the sized or non-sized form of aligned operator delete.
2782   bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
2783                         OperatorNew->isVariadic();
2784 
2785   if (isPlacementNew) {
2786     // C++ [expr.new]p20:
2787     //   A declaration of a placement deallocation function matches the
2788     //   declaration of a placement allocation function if it has the
2789     //   same number of parameters and, after parameter transformations
2790     //   (8.3.5), all parameter types except the first are
2791     //   identical. [...]
2792     //
2793     // To perform this comparison, we compute the function type that
2794     // the deallocation function should have, and use that type both
2795     // for template argument deduction and for comparison purposes.
2796     QualType ExpectedFunctionType;
2797     {
2798       auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2799 
2800       SmallVector<QualType, 4> ArgTypes;
2801       ArgTypes.push_back(Context.VoidPtrTy);
2802       for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
2803         ArgTypes.push_back(Proto->getParamType(I));
2804 
2805       FunctionProtoType::ExtProtoInfo EPI;
2806       // FIXME: This is not part of the standard's rule.
2807       EPI.Variadic = Proto->isVariadic();
2808 
2809       ExpectedFunctionType
2810         = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
2811     }
2812 
2813     for (LookupResult::iterator D = FoundDelete.begin(),
2814                              DEnd = FoundDelete.end();
2815          D != DEnd; ++D) {
2816       FunctionDecl *Fn = nullptr;
2817       if (FunctionTemplateDecl *FnTmpl =
2818               dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
2819         // Perform template argument deduction to try to match the
2820         // expected function type.
2821         TemplateDeductionInfo Info(StartLoc);
2822         if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
2823                                     Info))
2824           continue;
2825       } else
2826         Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
2827 
2828       if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(),
2829                                                   ExpectedFunctionType,
2830                                                   /*AdjustExcpetionSpec*/true),
2831                               ExpectedFunctionType))
2832         Matches.push_back(std::make_pair(D.getPair(), Fn));
2833     }
2834 
2835     if (getLangOpts().CUDA)
2836       EraseUnwantedCUDAMatches(getCurFunctionDecl(/*AllowLambda=*/true),
2837                                Matches);
2838   } else {
2839     // C++1y [expr.new]p22:
2840     //   For a non-placement allocation function, the normal deallocation
2841     //   function lookup is used
2842     //
2843     // Per [expr.delete]p10, this lookup prefers a member operator delete
2844     // without a size_t argument, but prefers a non-member operator delete
2845     // with a size_t where possible (which it always is in this case).
2846     llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns;
2847     UsualDeallocFnInfo Selected = resolveDeallocationOverload(
2848         *this, FoundDelete, /*WantSize*/ FoundGlobalDelete,
2849         /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType),
2850         &BestDeallocFns);
2851     if (Selected)
2852       Matches.push_back(std::make_pair(Selected.Found, Selected.FD));
2853     else {
2854       // If we failed to select an operator, all remaining functions are viable
2855       // but ambiguous.
2856       for (auto Fn : BestDeallocFns)
2857         Matches.push_back(std::make_pair(Fn.Found, Fn.FD));
2858     }
2859   }
2860 
2861   // C++ [expr.new]p20:
2862   //   [...] If the lookup finds a single matching deallocation
2863   //   function, that function will be called; otherwise, no
2864   //   deallocation function will be called.
2865   if (Matches.size() == 1) {
2866     OperatorDelete = Matches[0].second;
2867 
2868     // C++1z [expr.new]p23:
2869     //   If the lookup finds a usual deallocation function (3.7.4.2)
2870     //   with a parameter of type std::size_t and that function, considered
2871     //   as a placement deallocation function, would have been
2872     //   selected as a match for the allocation function, the program
2873     //   is ill-formed.
2874     if (getLangOpts().CPlusPlus11 && isPlacementNew &&
2875         isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
2876       UsualDeallocFnInfo Info(*this,
2877                               DeclAccessPair::make(OperatorDelete, AS_public));
2878       // Core issue, per mail to core reflector, 2016-10-09:
2879       //   If this is a member operator delete, and there is a corresponding
2880       //   non-sized member operator delete, this isn't /really/ a sized
2881       //   deallocation function, it just happens to have a size_t parameter.
2882       bool IsSizedDelete = Info.HasSizeT;
2883       if (IsSizedDelete && !FoundGlobalDelete) {
2884         auto NonSizedDelete =
2885             resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false,
2886                                         /*WantAlign*/Info.HasAlignValT);
2887         if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
2888             NonSizedDelete.HasAlignValT == Info.HasAlignValT)
2889           IsSizedDelete = false;
2890       }
2891 
2892       if (IsSizedDelete) {
2893         SourceRange R = PlaceArgs.empty()
2894                             ? SourceRange()
2895                             : SourceRange(PlaceArgs.front()->getBeginLoc(),
2896                                           PlaceArgs.back()->getEndLoc());
2897         Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
2898         if (!OperatorDelete->isImplicit())
2899           Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
2900               << DeleteName;
2901       }
2902     }
2903 
2904     CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
2905                           Matches[0].first);
2906   } else if (!Matches.empty()) {
2907     // We found multiple suitable operators. Per [expr.new]p20, that means we
2908     // call no 'operator delete' function, but we should at least warn the user.
2909     // FIXME: Suppress this warning if the construction cannot throw.
2910     Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
2911       << DeleteName << AllocElemType;
2912 
2913     for (auto &Match : Matches)
2914       Diag(Match.second->getLocation(),
2915            diag::note_member_declared_here) << DeleteName;
2916   }
2917 
2918   return false;
2919 }
2920 
2921 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
2922 /// delete. These are:
2923 /// @code
2924 ///   // C++03:
2925 ///   void* operator new(std::size_t) throw(std::bad_alloc);
2926 ///   void* operator new[](std::size_t) throw(std::bad_alloc);
2927 ///   void operator delete(void *) throw();
2928 ///   void operator delete[](void *) throw();
2929 ///   // C++11:
2930 ///   void* operator new(std::size_t);
2931 ///   void* operator new[](std::size_t);
2932 ///   void operator delete(void *) noexcept;
2933 ///   void operator delete[](void *) noexcept;
2934 ///   // C++1y:
2935 ///   void* operator new(std::size_t);
2936 ///   void* operator new[](std::size_t);
2937 ///   void operator delete(void *) noexcept;
2938 ///   void operator delete[](void *) noexcept;
2939 ///   void operator delete(void *, std::size_t) noexcept;
2940 ///   void operator delete[](void *, std::size_t) noexcept;
2941 /// @endcode
2942 /// Note that the placement and nothrow forms of new are *not* implicitly
2943 /// declared. Their use requires including \<new\>.
2944 void Sema::DeclareGlobalNewDelete() {
2945   if (GlobalNewDeleteDeclared)
2946     return;
2947 
2948   // The implicitly declared new and delete operators
2949   // are not supported in OpenCL.
2950   if (getLangOpts().OpenCLCPlusPlus)
2951     return;
2952 
2953   // C++ [basic.std.dynamic]p2:
2954   //   [...] The following allocation and deallocation functions (18.4) are
2955   //   implicitly declared in global scope in each translation unit of a
2956   //   program
2957   //
2958   //     C++03:
2959   //     void* operator new(std::size_t) throw(std::bad_alloc);
2960   //     void* operator new[](std::size_t) throw(std::bad_alloc);
2961   //     void  operator delete(void*) throw();
2962   //     void  operator delete[](void*) throw();
2963   //     C++11:
2964   //     void* operator new(std::size_t);
2965   //     void* operator new[](std::size_t);
2966   //     void  operator delete(void*) noexcept;
2967   //     void  operator delete[](void*) noexcept;
2968   //     C++1y:
2969   //     void* operator new(std::size_t);
2970   //     void* operator new[](std::size_t);
2971   //     void  operator delete(void*) noexcept;
2972   //     void  operator delete[](void*) noexcept;
2973   //     void  operator delete(void*, std::size_t) noexcept;
2974   //     void  operator delete[](void*, std::size_t) noexcept;
2975   //
2976   //   These implicit declarations introduce only the function names operator
2977   //   new, operator new[], operator delete, operator delete[].
2978   //
2979   // Here, we need to refer to std::bad_alloc, so we will implicitly declare
2980   // "std" or "bad_alloc" as necessary to form the exception specification.
2981   // However, we do not make these implicit declarations visible to name
2982   // lookup.
2983   if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
2984     // The "std::bad_alloc" class has not yet been declared, so build it
2985     // implicitly.
2986     StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
2987                                         getOrCreateStdNamespace(),
2988                                         SourceLocation(), SourceLocation(),
2989                                       &PP.getIdentifierTable().get("bad_alloc"),
2990                                         nullptr);
2991     getStdBadAlloc()->setImplicit(true);
2992   }
2993   if (!StdAlignValT && getLangOpts().AlignedAllocation) {
2994     // The "std::align_val_t" enum class has not yet been declared, so build it
2995     // implicitly.
2996     auto *AlignValT = EnumDecl::Create(
2997         Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(),
2998         &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
2999     AlignValT->setIntegerType(Context.getSizeType());
3000     AlignValT->setPromotionType(Context.getSizeType());
3001     AlignValT->setImplicit(true);
3002     StdAlignValT = AlignValT;
3003   }
3004 
3005   GlobalNewDeleteDeclared = true;
3006 
3007   QualType VoidPtr = Context.getPointerType(Context.VoidTy);
3008   QualType SizeT = Context.getSizeType();
3009 
3010   auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
3011                                               QualType Return, QualType Param) {
3012     llvm::SmallVector<QualType, 3> Params;
3013     Params.push_back(Param);
3014 
3015     // Create up to four variants of the function (sized/aligned).
3016     bool HasSizedVariant = getLangOpts().SizedDeallocation &&
3017                            (Kind == OO_Delete || Kind == OO_Array_Delete);
3018     bool HasAlignedVariant = getLangOpts().AlignedAllocation;
3019 
3020     int NumSizeVariants = (HasSizedVariant ? 2 : 1);
3021     int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
3022     for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
3023       if (Sized)
3024         Params.push_back(SizeT);
3025 
3026       for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
3027         if (Aligned)
3028           Params.push_back(Context.getTypeDeclType(getStdAlignValT()));
3029 
3030         DeclareGlobalAllocationFunction(
3031             Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params);
3032 
3033         if (Aligned)
3034           Params.pop_back();
3035       }
3036     }
3037   };
3038 
3039   DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
3040   DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);
3041   DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr);
3042   DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr);
3043 }
3044 
3045 /// DeclareGlobalAllocationFunction - Declares a single implicit global
3046 /// allocation function if it doesn't already exist.
3047 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
3048                                            QualType Return,
3049                                            ArrayRef<QualType> Params) {
3050   DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
3051 
3052   // Check if this function is already declared.
3053   DeclContext::lookup_result R = GlobalCtx->lookup(Name);
3054   for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
3055        Alloc != AllocEnd; ++Alloc) {
3056     // Only look at non-template functions, as it is the predefined,
3057     // non-templated allocation function we are trying to declare here.
3058     if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
3059       if (Func->getNumParams() == Params.size()) {
3060         llvm::SmallVector<QualType, 3> FuncParams;
3061         for (auto *P : Func->parameters())
3062           FuncParams.push_back(
3063               Context.getCanonicalType(P->getType().getUnqualifiedType()));
3064         if (llvm::makeArrayRef(FuncParams) == Params) {
3065           // Make the function visible to name lookup, even if we found it in
3066           // an unimported module. It either is an implicitly-declared global
3067           // allocation function, or is suppressing that function.
3068           Func->setVisibleDespiteOwningModule();
3069           return;
3070         }
3071       }
3072     }
3073   }
3074 
3075   FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
3076       /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
3077 
3078   QualType BadAllocType;
3079   bool HasBadAllocExceptionSpec
3080     = (Name.getCXXOverloadedOperator() == OO_New ||
3081        Name.getCXXOverloadedOperator() == OO_Array_New);
3082   if (HasBadAllocExceptionSpec) {
3083     if (!getLangOpts().CPlusPlus11) {
3084       BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
3085       assert(StdBadAlloc && "Must have std::bad_alloc declared");
3086       EPI.ExceptionSpec.Type = EST_Dynamic;
3087       EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType);
3088     }
3089     if (getLangOpts().NewInfallible) {
3090       EPI.ExceptionSpec.Type = EST_DynamicNone;
3091     }
3092   } else {
3093     EPI.ExceptionSpec =
3094         getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
3095   }
3096 
3097   auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) {
3098     QualType FnType = Context.getFunctionType(Return, Params, EPI);
3099     FunctionDecl *Alloc = FunctionDecl::Create(
3100         Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, FnType,
3101         /*TInfo=*/nullptr, SC_None, getCurFPFeatures().isFPConstrained(), false,
3102         true);
3103     Alloc->setImplicit();
3104     // Global allocation functions should always be visible.
3105     Alloc->setVisibleDespiteOwningModule();
3106 
3107     if (HasBadAllocExceptionSpec && getLangOpts().NewInfallible)
3108       Alloc->addAttr(
3109           ReturnsNonNullAttr::CreateImplicit(Context, Alloc->getLocation()));
3110 
3111     Alloc->addAttr(VisibilityAttr::CreateImplicit(
3112         Context, LangOpts.GlobalAllocationFunctionVisibilityHidden
3113                      ? VisibilityAttr::Hidden
3114                      : VisibilityAttr::Default));
3115 
3116     llvm::SmallVector<ParmVarDecl *, 3> ParamDecls;
3117     for (QualType T : Params) {
3118       ParamDecls.push_back(ParmVarDecl::Create(
3119           Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T,
3120           /*TInfo=*/nullptr, SC_None, nullptr));
3121       ParamDecls.back()->setImplicit();
3122     }
3123     Alloc->setParams(ParamDecls);
3124     if (ExtraAttr)
3125       Alloc->addAttr(ExtraAttr);
3126     AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc);
3127     Context.getTranslationUnitDecl()->addDecl(Alloc);
3128     IdResolver.tryAddTopLevelDecl(Alloc, Name);
3129   };
3130 
3131   if (!LangOpts.CUDA)
3132     CreateAllocationFunctionDecl(nullptr);
3133   else {
3134     // Host and device get their own declaration so each can be
3135     // defined or re-declared independently.
3136     CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context));
3137     CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context));
3138   }
3139 }
3140 
3141 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
3142                                                   bool CanProvideSize,
3143                                                   bool Overaligned,
3144                                                   DeclarationName Name) {
3145   DeclareGlobalNewDelete();
3146 
3147   LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
3148   LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
3149 
3150   // FIXME: It's possible for this to result in ambiguity, through a
3151   // user-declared variadic operator delete or the enable_if attribute. We
3152   // should probably not consider those cases to be usual deallocation
3153   // functions. But for now we just make an arbitrary choice in that case.
3154   auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize,
3155                                             Overaligned);
3156   assert(Result.FD && "operator delete missing from global scope?");
3157   return Result.FD;
3158 }
3159 
3160 FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc,
3161                                                           CXXRecordDecl *RD) {
3162   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3163 
3164   FunctionDecl *OperatorDelete = nullptr;
3165   if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3166     return nullptr;
3167   if (OperatorDelete)
3168     return OperatorDelete;
3169 
3170   // If there's no class-specific operator delete, look up the global
3171   // non-array delete.
3172   return FindUsualDeallocationFunction(
3173       Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)),
3174       Name);
3175 }
3176 
3177 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
3178                                     DeclarationName Name,
3179                                     FunctionDecl *&Operator, bool Diagnose) {
3180   LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
3181   // Try to find operator delete/operator delete[] in class scope.
3182   LookupQualifiedName(Found, RD);
3183 
3184   if (Found.isAmbiguous())
3185     return true;
3186 
3187   Found.suppressDiagnostics();
3188 
3189   bool Overaligned = hasNewExtendedAlignment(*this, Context.getRecordType(RD));
3190 
3191   // C++17 [expr.delete]p10:
3192   //   If the deallocation functions have class scope, the one without a
3193   //   parameter of type std::size_t is selected.
3194   llvm::SmallVector<UsualDeallocFnInfo, 4> Matches;
3195   resolveDeallocationOverload(*this, Found, /*WantSize*/ false,
3196                               /*WantAlign*/ Overaligned, &Matches);
3197 
3198   // If we could find an overload, use it.
3199   if (Matches.size() == 1) {
3200     Operator = cast<CXXMethodDecl>(Matches[0].FD);
3201 
3202     // FIXME: DiagnoseUseOfDecl?
3203     if (Operator->isDeleted()) {
3204       if (Diagnose) {
3205         Diag(StartLoc, diag::err_deleted_function_use);
3206         NoteDeletedFunction(Operator);
3207       }
3208       return true;
3209     }
3210 
3211     if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
3212                               Matches[0].Found, Diagnose) == AR_inaccessible)
3213       return true;
3214 
3215     return false;
3216   }
3217 
3218   // We found multiple suitable operators; complain about the ambiguity.
3219   // FIXME: The standard doesn't say to do this; it appears that the intent
3220   // is that this should never happen.
3221   if (!Matches.empty()) {
3222     if (Diagnose) {
3223       Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
3224         << Name << RD;
3225       for (auto &Match : Matches)
3226         Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name;
3227     }
3228     return true;
3229   }
3230 
3231   // We did find operator delete/operator delete[] declarations, but
3232   // none of them were suitable.
3233   if (!Found.empty()) {
3234     if (Diagnose) {
3235       Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
3236         << Name << RD;
3237 
3238       for (NamedDecl *D : Found)
3239         Diag(D->getUnderlyingDecl()->getLocation(),
3240              diag::note_member_declared_here) << Name;
3241     }
3242     return true;
3243   }
3244 
3245   Operator = nullptr;
3246   return false;
3247 }
3248 
3249 namespace {
3250 /// Checks whether delete-expression, and new-expression used for
3251 ///  initializing deletee have the same array form.
3252 class MismatchingNewDeleteDetector {
3253 public:
3254   enum MismatchResult {
3255     /// Indicates that there is no mismatch or a mismatch cannot be proven.
3256     NoMismatch,
3257     /// Indicates that variable is initialized with mismatching form of \a new.
3258     VarInitMismatches,
3259     /// Indicates that member is initialized with mismatching form of \a new.
3260     MemberInitMismatches,
3261     /// Indicates that 1 or more constructors' definitions could not been
3262     /// analyzed, and they will be checked again at the end of translation unit.
3263     AnalyzeLater
3264   };
3265 
3266   /// \param EndOfTU True, if this is the final analysis at the end of
3267   /// translation unit. False, if this is the initial analysis at the point
3268   /// delete-expression was encountered.
3269   explicit MismatchingNewDeleteDetector(bool EndOfTU)
3270       : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU),
3271         HasUndefinedConstructors(false) {}
3272 
3273   /// Checks whether pointee of a delete-expression is initialized with
3274   /// matching form of new-expression.
3275   ///
3276   /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
3277   /// point where delete-expression is encountered, then a warning will be
3278   /// issued immediately. If return value is \c AnalyzeLater at the point where
3279   /// delete-expression is seen, then member will be analyzed at the end of
3280   /// translation unit. \c AnalyzeLater is returned iff at least one constructor
3281   /// couldn't be analyzed. If at least one constructor initializes the member
3282   /// with matching type of new, the return value is \c NoMismatch.
3283   MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
3284   /// Analyzes a class member.
3285   /// \param Field Class member to analyze.
3286   /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
3287   /// for deleting the \p Field.
3288   MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
3289   FieldDecl *Field;
3290   /// List of mismatching new-expressions used for initialization of the pointee
3291   llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
3292   /// Indicates whether delete-expression was in array form.
3293   bool IsArrayForm;
3294 
3295 private:
3296   const bool EndOfTU;
3297   /// Indicates that there is at least one constructor without body.
3298   bool HasUndefinedConstructors;
3299   /// Returns \c CXXNewExpr from given initialization expression.
3300   /// \param E Expression used for initializing pointee in delete-expression.
3301   /// E can be a single-element \c InitListExpr consisting of new-expression.
3302   const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
3303   /// Returns whether member is initialized with mismatching form of
3304   /// \c new either by the member initializer or in-class initialization.
3305   ///
3306   /// If bodies of all constructors are not visible at the end of translation
3307   /// unit or at least one constructor initializes member with the matching
3308   /// form of \c new, mismatch cannot be proven, and this function will return
3309   /// \c NoMismatch.
3310   MismatchResult analyzeMemberExpr(const MemberExpr *ME);
3311   /// Returns whether variable is initialized with mismatching form of
3312   /// \c new.
3313   ///
3314   /// If variable is initialized with matching form of \c new or variable is not
3315   /// initialized with a \c new expression, this function will return true.
3316   /// If variable is initialized with mismatching form of \c new, returns false.
3317   /// \param D Variable to analyze.
3318   bool hasMatchingVarInit(const DeclRefExpr *D);
3319   /// Checks whether the constructor initializes pointee with mismatching
3320   /// form of \c new.
3321   ///
3322   /// Returns true, if member is initialized with matching form of \c new in
3323   /// member initializer list. Returns false, if member is initialized with the
3324   /// matching form of \c new in this constructor's initializer or given
3325   /// constructor isn't defined at the point where delete-expression is seen, or
3326   /// member isn't initialized by the constructor.
3327   bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
3328   /// Checks whether member is initialized with matching form of
3329   /// \c new in member initializer list.
3330   bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
3331   /// Checks whether member is initialized with mismatching form of \c new by
3332   /// in-class initializer.
3333   MismatchResult analyzeInClassInitializer();
3334 };
3335 }
3336 
3337 MismatchingNewDeleteDetector::MismatchResult
3338 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
3339   NewExprs.clear();
3340   assert(DE && "Expected delete-expression");
3341   IsArrayForm = DE->isArrayForm();
3342   const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
3343   if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
3344     return analyzeMemberExpr(ME);
3345   } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
3346     if (!hasMatchingVarInit(D))
3347       return VarInitMismatches;
3348   }
3349   return NoMismatch;
3350 }
3351 
3352 const CXXNewExpr *
3353 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
3354   assert(E != nullptr && "Expected a valid initializer expression");
3355   E = E->IgnoreParenImpCasts();
3356   if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
3357     if (ILE->getNumInits() == 1)
3358       E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
3359   }
3360 
3361   return dyn_cast_or_null<const CXXNewExpr>(E);
3362 }
3363 
3364 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
3365     const CXXCtorInitializer *CI) {
3366   const CXXNewExpr *NE = nullptr;
3367   if (Field == CI->getMember() &&
3368       (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
3369     if (NE->isArray() == IsArrayForm)
3370       return true;
3371     else
3372       NewExprs.push_back(NE);
3373   }
3374   return false;
3375 }
3376 
3377 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
3378     const CXXConstructorDecl *CD) {
3379   if (CD->isImplicit())
3380     return false;
3381   const FunctionDecl *Definition = CD;
3382   if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
3383     HasUndefinedConstructors = true;
3384     return EndOfTU;
3385   }
3386   for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
3387     if (hasMatchingNewInCtorInit(CI))
3388       return true;
3389   }
3390   return false;
3391 }
3392 
3393 MismatchingNewDeleteDetector::MismatchResult
3394 MismatchingNewDeleteDetector::analyzeInClassInitializer() {
3395   assert(Field != nullptr && "This should be called only for members");
3396   const Expr *InitExpr = Field->getInClassInitializer();
3397   if (!InitExpr)
3398     return EndOfTU ? NoMismatch : AnalyzeLater;
3399   if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
3400     if (NE->isArray() != IsArrayForm) {
3401       NewExprs.push_back(NE);
3402       return MemberInitMismatches;
3403     }
3404   }
3405   return NoMismatch;
3406 }
3407 
3408 MismatchingNewDeleteDetector::MismatchResult
3409 MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
3410                                            bool DeleteWasArrayForm) {
3411   assert(Field != nullptr && "Analysis requires a valid class member.");
3412   this->Field = Field;
3413   IsArrayForm = DeleteWasArrayForm;
3414   const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
3415   for (const auto *CD : RD->ctors()) {
3416     if (hasMatchingNewInCtor(CD))
3417       return NoMismatch;
3418   }
3419   if (HasUndefinedConstructors)
3420     return EndOfTU ? NoMismatch : AnalyzeLater;
3421   if (!NewExprs.empty())
3422     return MemberInitMismatches;
3423   return Field->hasInClassInitializer() ? analyzeInClassInitializer()
3424                                         : NoMismatch;
3425 }
3426 
3427 MismatchingNewDeleteDetector::MismatchResult
3428 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
3429   assert(ME != nullptr && "Expected a member expression");
3430   if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3431     return analyzeField(F, IsArrayForm);
3432   return NoMismatch;
3433 }
3434 
3435 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
3436   const CXXNewExpr *NE = nullptr;
3437   if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
3438     if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
3439         NE->isArray() != IsArrayForm) {
3440       NewExprs.push_back(NE);
3441     }
3442   }
3443   return NewExprs.empty();
3444 }
3445 
3446 static void
3447 DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
3448                             const MismatchingNewDeleteDetector &Detector) {
3449   SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
3450   FixItHint H;
3451   if (!Detector.IsArrayForm)
3452     H = FixItHint::CreateInsertion(EndOfDelete, "[]");
3453   else {
3454     SourceLocation RSquare = Lexer::findLocationAfterToken(
3455         DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
3456         SemaRef.getLangOpts(), true);
3457     if (RSquare.isValid())
3458       H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
3459   }
3460   SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
3461       << Detector.IsArrayForm << H;
3462 
3463   for (const auto *NE : Detector.NewExprs)
3464     SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
3465         << Detector.IsArrayForm;
3466 }
3467 
3468 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
3469   if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
3470     return;
3471   MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
3472   switch (Detector.analyzeDeleteExpr(DE)) {
3473   case MismatchingNewDeleteDetector::VarInitMismatches:
3474   case MismatchingNewDeleteDetector::MemberInitMismatches: {
3475     DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector);
3476     break;
3477   }
3478   case MismatchingNewDeleteDetector::AnalyzeLater: {
3479     DeleteExprs[Detector.Field].push_back(
3480         std::make_pair(DE->getBeginLoc(), DE->isArrayForm()));
3481     break;
3482   }
3483   case MismatchingNewDeleteDetector::NoMismatch:
3484     break;
3485   }
3486 }
3487 
3488 void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
3489                                      bool DeleteWasArrayForm) {
3490   MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
3491   switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
3492   case MismatchingNewDeleteDetector::VarInitMismatches:
3493     llvm_unreachable("This analysis should have been done for class members.");
3494   case MismatchingNewDeleteDetector::AnalyzeLater:
3495     llvm_unreachable("Analysis cannot be postponed any point beyond end of "
3496                      "translation unit.");
3497   case MismatchingNewDeleteDetector::MemberInitMismatches:
3498     DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
3499     break;
3500   case MismatchingNewDeleteDetector::NoMismatch:
3501     break;
3502   }
3503 }
3504 
3505 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
3506 /// @code ::delete ptr; @endcode
3507 /// or
3508 /// @code delete [] ptr; @endcode
3509 ExprResult
3510 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
3511                      bool ArrayForm, Expr *ExE) {
3512   // C++ [expr.delete]p1:
3513   //   The operand shall have a pointer type, or a class type having a single
3514   //   non-explicit conversion function to a pointer type. The result has type
3515   //   void.
3516   //
3517   // DR599 amends "pointer type" to "pointer to object type" in both cases.
3518 
3519   ExprResult Ex = ExE;
3520   FunctionDecl *OperatorDelete = nullptr;
3521   bool ArrayFormAsWritten = ArrayForm;
3522   bool UsualArrayDeleteWantsSize = false;
3523 
3524   if (!Ex.get()->isTypeDependent()) {
3525     // Perform lvalue-to-rvalue cast, if needed.
3526     Ex = DefaultLvalueConversion(Ex.get());
3527     if (Ex.isInvalid())
3528       return ExprError();
3529 
3530     QualType Type = Ex.get()->getType();
3531 
3532     class DeleteConverter : public ContextualImplicitConverter {
3533     public:
3534       DeleteConverter() : ContextualImplicitConverter(false, true) {}
3535 
3536       bool match(QualType ConvType) override {
3537         // FIXME: If we have an operator T* and an operator void*, we must pick
3538         // the operator T*.
3539         if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
3540           if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
3541             return true;
3542         return false;
3543       }
3544 
3545       SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
3546                                             QualType T) override {
3547         return S.Diag(Loc, diag::err_delete_operand) << T;
3548       }
3549 
3550       SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
3551                                                QualType T) override {
3552         return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
3553       }
3554 
3555       SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
3556                                                  QualType T,
3557                                                  QualType ConvTy) override {
3558         return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
3559       }
3560 
3561       SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
3562                                              QualType ConvTy) override {
3563         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3564           << ConvTy;
3565       }
3566 
3567       SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
3568                                               QualType T) override {
3569         return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
3570       }
3571 
3572       SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
3573                                           QualType ConvTy) override {
3574         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3575           << ConvTy;
3576       }
3577 
3578       SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
3579                                                QualType T,
3580                                                QualType ConvTy) override {
3581         llvm_unreachable("conversion functions are permitted");
3582       }
3583     } Converter;
3584 
3585     Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
3586     if (Ex.isInvalid())
3587       return ExprError();
3588     Type = Ex.get()->getType();
3589     if (!Converter.match(Type))
3590       // FIXME: PerformContextualImplicitConversion should return ExprError
3591       //        itself in this case.
3592       return ExprError();
3593 
3594     QualType Pointee = Type->castAs<PointerType>()->getPointeeType();
3595     QualType PointeeElem = Context.getBaseElementType(Pointee);
3596 
3597     if (Pointee.getAddressSpace() != LangAS::Default &&
3598         !getLangOpts().OpenCLCPlusPlus)
3599       return Diag(Ex.get()->getBeginLoc(),
3600                   diag::err_address_space_qualified_delete)
3601              << Pointee.getUnqualifiedType()
3602              << Pointee.getQualifiers().getAddressSpaceAttributePrintValue();
3603 
3604     CXXRecordDecl *PointeeRD = nullptr;
3605     if (Pointee->isVoidType() && !isSFINAEContext()) {
3606       // The C++ standard bans deleting a pointer to a non-object type, which
3607       // effectively bans deletion of "void*". However, most compilers support
3608       // this, so we treat it as a warning unless we're in a SFINAE context.
3609       Diag(StartLoc, diag::ext_delete_void_ptr_operand)
3610         << Type << Ex.get()->getSourceRange();
3611     } else if (Pointee->isFunctionType() || Pointee->isVoidType() ||
3612                Pointee->isSizelessType()) {
3613       return ExprError(Diag(StartLoc, diag::err_delete_operand)
3614         << Type << Ex.get()->getSourceRange());
3615     } else if (!Pointee->isDependentType()) {
3616       // FIXME: This can result in errors if the definition was imported from a
3617       // module but is hidden.
3618       if (!RequireCompleteType(StartLoc, Pointee,
3619                                diag::warn_delete_incomplete, Ex.get())) {
3620         if (const RecordType *RT = PointeeElem->getAs<RecordType>())
3621           PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
3622       }
3623     }
3624 
3625     if (Pointee->isArrayType() && !ArrayForm) {
3626       Diag(StartLoc, diag::warn_delete_array_type)
3627           << Type << Ex.get()->getSourceRange()
3628           << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
3629       ArrayForm = true;
3630     }
3631 
3632     DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
3633                                       ArrayForm ? OO_Array_Delete : OO_Delete);
3634 
3635     if (PointeeRD) {
3636       if (!UseGlobal &&
3637           FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
3638                                    OperatorDelete))
3639         return ExprError();
3640 
3641       // If we're allocating an array of records, check whether the
3642       // usual operator delete[] has a size_t parameter.
3643       if (ArrayForm) {
3644         // If the user specifically asked to use the global allocator,
3645         // we'll need to do the lookup into the class.
3646         if (UseGlobal)
3647           UsualArrayDeleteWantsSize =
3648             doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
3649 
3650         // Otherwise, the usual operator delete[] should be the
3651         // function we just found.
3652         else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
3653           UsualArrayDeleteWantsSize =
3654             UsualDeallocFnInfo(*this,
3655                                DeclAccessPair::make(OperatorDelete, AS_public))
3656               .HasSizeT;
3657       }
3658 
3659       if (!PointeeRD->hasIrrelevantDestructor())
3660         if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3661           MarkFunctionReferenced(StartLoc,
3662                                     const_cast<CXXDestructorDecl*>(Dtor));
3663           if (DiagnoseUseOfDecl(Dtor, StartLoc))
3664             return ExprError();
3665         }
3666 
3667       CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc,
3668                            /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
3669                            /*WarnOnNonAbstractTypes=*/!ArrayForm,
3670                            SourceLocation());
3671     }
3672 
3673     if (!OperatorDelete) {
3674       if (getLangOpts().OpenCLCPlusPlus) {
3675         Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete";
3676         return ExprError();
3677       }
3678 
3679       bool IsComplete = isCompleteType(StartLoc, Pointee);
3680       bool CanProvideSize =
3681           IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize ||
3682                          Pointee.isDestructedType());
3683       bool Overaligned = hasNewExtendedAlignment(*this, Pointee);
3684 
3685       // Look for a global declaration.
3686       OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize,
3687                                                      Overaligned, DeleteName);
3688     }
3689 
3690     MarkFunctionReferenced(StartLoc, OperatorDelete);
3691 
3692     // Check access and ambiguity of destructor if we're going to call it.
3693     // Note that this is required even for a virtual delete.
3694     bool IsVirtualDelete = false;
3695     if (PointeeRD) {
3696       if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3697         CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
3698                               PDiag(diag::err_access_dtor) << PointeeElem);
3699         IsVirtualDelete = Dtor->isVirtual();
3700       }
3701     }
3702 
3703     DiagnoseUseOfDecl(OperatorDelete, StartLoc);
3704 
3705     // Convert the operand to the type of the first parameter of operator
3706     // delete. This is only necessary if we selected a destroying operator
3707     // delete that we are going to call (non-virtually); converting to void*
3708     // is trivial and left to AST consumers to handle.
3709     QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
3710     if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) {
3711       Qualifiers Qs = Pointee.getQualifiers();
3712       if (Qs.hasCVRQualifiers()) {
3713         // Qualifiers are irrelevant to this conversion; we're only looking
3714         // for access and ambiguity.
3715         Qs.removeCVRQualifiers();
3716         QualType Unqual = Context.getPointerType(
3717             Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs));
3718         Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp);
3719       }
3720       Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing);
3721       if (Ex.isInvalid())
3722         return ExprError();
3723     }
3724   }
3725 
3726   CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
3727       Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
3728       UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
3729   AnalyzeDeleteExprMismatch(Result);
3730   return Result;
3731 }
3732 
3733 static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall,
3734                                             bool IsDelete,
3735                                             FunctionDecl *&Operator) {
3736 
3737   DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName(
3738       IsDelete ? OO_Delete : OO_New);
3739 
3740   LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName);
3741   S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
3742   assert(!R.empty() && "implicitly declared allocation functions not found");
3743   assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
3744 
3745   // We do our own custom access checks below.
3746   R.suppressDiagnostics();
3747 
3748   SmallVector<Expr *, 8> Args(TheCall->arguments());
3749   OverloadCandidateSet Candidates(R.getNameLoc(),
3750                                   OverloadCandidateSet::CSK_Normal);
3751   for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end();
3752        FnOvl != FnOvlEnd; ++FnOvl) {
3753     // Even member operator new/delete are implicitly treated as
3754     // static, so don't use AddMemberCandidate.
3755     NamedDecl *D = (*FnOvl)->getUnderlyingDecl();
3756 
3757     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
3758       S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(),
3759                                      /*ExplicitTemplateArgs=*/nullptr, Args,
3760                                      Candidates,
3761                                      /*SuppressUserConversions=*/false);
3762       continue;
3763     }
3764 
3765     FunctionDecl *Fn = cast<FunctionDecl>(D);
3766     S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates,
3767                            /*SuppressUserConversions=*/false);
3768   }
3769 
3770   SourceRange Range = TheCall->getSourceRange();
3771 
3772   // Do the resolution.
3773   OverloadCandidateSet::iterator Best;
3774   switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
3775   case OR_Success: {
3776     // Got one!
3777     FunctionDecl *FnDecl = Best->Function;
3778     assert(R.getNamingClass() == nullptr &&
3779            "class members should not be considered");
3780 
3781     if (!FnDecl->isReplaceableGlobalAllocationFunction()) {
3782       S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual)
3783           << (IsDelete ? 1 : 0) << Range;
3784       S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here)
3785           << R.getLookupName() << FnDecl->getSourceRange();
3786       return true;
3787     }
3788 
3789     Operator = FnDecl;
3790     return false;
3791   }
3792 
3793   case OR_No_Viable_Function:
3794     Candidates.NoteCandidates(
3795         PartialDiagnosticAt(R.getNameLoc(),
3796                             S.PDiag(diag::err_ovl_no_viable_function_in_call)
3797                                 << R.getLookupName() << Range),
3798         S, OCD_AllCandidates, Args);
3799     return true;
3800 
3801   case OR_Ambiguous:
3802     Candidates.NoteCandidates(
3803         PartialDiagnosticAt(R.getNameLoc(),
3804                             S.PDiag(diag::err_ovl_ambiguous_call)
3805                                 << R.getLookupName() << Range),
3806         S, OCD_AmbiguousCandidates, Args);
3807     return true;
3808 
3809   case OR_Deleted: {
3810     Candidates.NoteCandidates(
3811         PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call)
3812                                                 << R.getLookupName() << Range),
3813         S, OCD_AllCandidates, Args);
3814     return true;
3815   }
3816   }
3817   llvm_unreachable("Unreachable, bad result from BestViableFunction");
3818 }
3819 
3820 ExprResult
3821 Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
3822                                              bool IsDelete) {
3823   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
3824   if (!getLangOpts().CPlusPlus) {
3825     Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
3826         << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new")
3827         << "C++";
3828     return ExprError();
3829   }
3830   // CodeGen assumes it can find the global new and delete to call,
3831   // so ensure that they are declared.
3832   DeclareGlobalNewDelete();
3833 
3834   FunctionDecl *OperatorNewOrDelete = nullptr;
3835   if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete,
3836                                       OperatorNewOrDelete))
3837     return ExprError();
3838   assert(OperatorNewOrDelete && "should be found");
3839 
3840   DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc());
3841   MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete);
3842 
3843   TheCall->setType(OperatorNewOrDelete->getReturnType());
3844   for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) {
3845     QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType();
3846     InitializedEntity Entity =
3847         InitializedEntity::InitializeParameter(Context, ParamTy, false);
3848     ExprResult Arg = PerformCopyInitialization(
3849         Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i));
3850     if (Arg.isInvalid())
3851       return ExprError();
3852     TheCall->setArg(i, Arg.get());
3853   }
3854   auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee());
3855   assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&
3856          "Callee expected to be implicit cast to a builtin function pointer");
3857   Callee->setType(OperatorNewOrDelete->getType());
3858 
3859   return TheCallResult;
3860 }
3861 
3862 void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
3863                                 bool IsDelete, bool CallCanBeVirtual,
3864                                 bool WarnOnNonAbstractTypes,
3865                                 SourceLocation DtorLoc) {
3866   if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext())
3867     return;
3868 
3869   // C++ [expr.delete]p3:
3870   //   In the first alternative (delete object), if the static type of the
3871   //   object to be deleted is different from its dynamic type, the static
3872   //   type shall be a base class of the dynamic type of the object to be
3873   //   deleted and the static type shall have a virtual destructor or the
3874   //   behavior is undefined.
3875   //
3876   const CXXRecordDecl *PointeeRD = dtor->getParent();
3877   // Note: a final class cannot be derived from, no issue there
3878   if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
3879     return;
3880 
3881   // If the superclass is in a system header, there's nothing that can be done.
3882   // The `delete` (where we emit the warning) can be in a system header,
3883   // what matters for this warning is where the deleted type is defined.
3884   if (getSourceManager().isInSystemHeader(PointeeRD->getLocation()))
3885     return;
3886 
3887   QualType ClassType = dtor->getThisType()->getPointeeType();
3888   if (PointeeRD->isAbstract()) {
3889     // If the class is abstract, we warn by default, because we're
3890     // sure the code has undefined behavior.
3891     Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
3892                                                            << ClassType;
3893   } else if (WarnOnNonAbstractTypes) {
3894     // Otherwise, if this is not an array delete, it's a bit suspect,
3895     // but not necessarily wrong.
3896     Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
3897                                                   << ClassType;
3898   }
3899   if (!IsDelete) {
3900     std::string TypeStr;
3901     ClassType.getAsStringInternal(TypeStr, getPrintingPolicy());
3902     Diag(DtorLoc, diag::note_delete_non_virtual)
3903         << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
3904   }
3905 }
3906 
3907 Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar,
3908                                                    SourceLocation StmtLoc,
3909                                                    ConditionKind CK) {
3910   ExprResult E =
3911       CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK);
3912   if (E.isInvalid())
3913     return ConditionError();
3914   return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc),
3915                          CK == ConditionKind::ConstexprIf);
3916 }
3917 
3918 /// Check the use of the given variable as a C++ condition in an if,
3919 /// while, do-while, or switch statement.
3920 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
3921                                         SourceLocation StmtLoc,
3922                                         ConditionKind CK) {
3923   if (ConditionVar->isInvalidDecl())
3924     return ExprError();
3925 
3926   QualType T = ConditionVar->getType();
3927 
3928   // C++ [stmt.select]p2:
3929   //   The declarator shall not specify a function or an array.
3930   if (T->isFunctionType())
3931     return ExprError(Diag(ConditionVar->getLocation(),
3932                           diag::err_invalid_use_of_function_type)
3933                        << ConditionVar->getSourceRange());
3934   else if (T->isArrayType())
3935     return ExprError(Diag(ConditionVar->getLocation(),
3936                           diag::err_invalid_use_of_array_type)
3937                      << ConditionVar->getSourceRange());
3938 
3939   ExprResult Condition = BuildDeclRefExpr(
3940       ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue,
3941       ConditionVar->getLocation());
3942 
3943   switch (CK) {
3944   case ConditionKind::Boolean:
3945     return CheckBooleanCondition(StmtLoc, Condition.get());
3946 
3947   case ConditionKind::ConstexprIf:
3948     return CheckBooleanCondition(StmtLoc, Condition.get(), true);
3949 
3950   case ConditionKind::Switch:
3951     return CheckSwitchCondition(StmtLoc, Condition.get());
3952   }
3953 
3954   llvm_unreachable("unexpected condition kind");
3955 }
3956 
3957 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
3958 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
3959   // C++11 6.4p4:
3960   // The value of a condition that is an initialized declaration in a statement
3961   // other than a switch statement is the value of the declared variable
3962   // implicitly converted to type bool. If that conversion is ill-formed, the
3963   // program is ill-formed.
3964   // The value of a condition that is an expression is the value of the
3965   // expression, implicitly converted to bool.
3966   //
3967   // C++2b 8.5.2p2
3968   // If the if statement is of the form if constexpr, the value of the condition
3969   // is contextually converted to bool and the converted expression shall be
3970   // a constant expression.
3971   //
3972 
3973   ExprResult E = PerformContextuallyConvertToBool(CondExpr);
3974   if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent())
3975     return E;
3976 
3977   // FIXME: Return this value to the caller so they don't need to recompute it.
3978   llvm::APSInt Cond;
3979   E = VerifyIntegerConstantExpression(
3980       E.get(), &Cond,
3981       diag::err_constexpr_if_condition_expression_is_not_constant);
3982   return E;
3983 }
3984 
3985 /// Helper function to determine whether this is the (deprecated) C++
3986 /// conversion from a string literal to a pointer to non-const char or
3987 /// non-const wchar_t (for narrow and wide string literals,
3988 /// respectively).
3989 bool
3990 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
3991   // Look inside the implicit cast, if it exists.
3992   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
3993     From = Cast->getSubExpr();
3994 
3995   // A string literal (2.13.4) that is not a wide string literal can
3996   // be converted to an rvalue of type "pointer to char"; a wide
3997   // string literal can be converted to an rvalue of type "pointer
3998   // to wchar_t" (C++ 4.2p2).
3999   if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
4000     if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
4001       if (const BuiltinType *ToPointeeType
4002           = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
4003         // This conversion is considered only when there is an
4004         // explicit appropriate pointer target type (C++ 4.2p2).
4005         if (!ToPtrType->getPointeeType().hasQualifiers()) {
4006           switch (StrLit->getKind()) {
4007             case StringLiteral::UTF8:
4008             case StringLiteral::UTF16:
4009             case StringLiteral::UTF32:
4010               // We don't allow UTF literals to be implicitly converted
4011               break;
4012             case StringLiteral::Ordinary:
4013               return (ToPointeeType->getKind() == BuiltinType::Char_U ||
4014                       ToPointeeType->getKind() == BuiltinType::Char_S);
4015             case StringLiteral::Wide:
4016               return Context.typesAreCompatible(Context.getWideCharType(),
4017                                                 QualType(ToPointeeType, 0));
4018           }
4019         }
4020       }
4021 
4022   return false;
4023 }
4024 
4025 static ExprResult BuildCXXCastArgument(Sema &S,
4026                                        SourceLocation CastLoc,
4027                                        QualType Ty,
4028                                        CastKind Kind,
4029                                        CXXMethodDecl *Method,
4030                                        DeclAccessPair FoundDecl,
4031                                        bool HadMultipleCandidates,
4032                                        Expr *From) {
4033   switch (Kind) {
4034   default: llvm_unreachable("Unhandled cast kind!");
4035   case CK_ConstructorConversion: {
4036     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
4037     SmallVector<Expr*, 8> ConstructorArgs;
4038 
4039     if (S.RequireNonAbstractType(CastLoc, Ty,
4040                                  diag::err_allocation_of_abstract_type))
4041       return ExprError();
4042 
4043     if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc,
4044                                   ConstructorArgs))
4045       return ExprError();
4046 
4047     S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl,
4048                              InitializedEntity::InitializeTemporary(Ty));
4049     if (S.DiagnoseUseOfDecl(Method, CastLoc))
4050       return ExprError();
4051 
4052     ExprResult Result = S.BuildCXXConstructExpr(
4053         CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method),
4054         ConstructorArgs, HadMultipleCandidates,
4055         /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4056         CXXConstructExpr::CK_Complete, SourceRange());
4057     if (Result.isInvalid())
4058       return ExprError();
4059 
4060     return S.MaybeBindToTemporary(Result.getAs<Expr>());
4061   }
4062 
4063   case CK_UserDefinedConversion: {
4064     assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
4065 
4066     S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
4067     if (S.DiagnoseUseOfDecl(Method, CastLoc))
4068       return ExprError();
4069 
4070     // Create an implicit call expr that calls it.
4071     CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
4072     ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
4073                                                  HadMultipleCandidates);
4074     if (Result.isInvalid())
4075       return ExprError();
4076     // Record usage of conversion in an implicit cast.
4077     Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
4078                                       CK_UserDefinedConversion, Result.get(),
4079                                       nullptr, Result.get()->getValueKind(),
4080                                       S.CurFPFeatureOverrides());
4081 
4082     return S.MaybeBindToTemporary(Result.get());
4083   }
4084   }
4085 }
4086 
4087 /// PerformImplicitConversion - Perform an implicit conversion of the
4088 /// expression From to the type ToType using the pre-computed implicit
4089 /// conversion sequence ICS. Returns the converted
4090 /// expression. Action is the kind of conversion we're performing,
4091 /// used in the error message.
4092 ExprResult
4093 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4094                                 const ImplicitConversionSequence &ICS,
4095                                 AssignmentAction Action,
4096                                 CheckedConversionKind CCK) {
4097   // C++ [over.match.oper]p7: [...] operands of class type are converted [...]
4098   if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType())
4099     return From;
4100 
4101   switch (ICS.getKind()) {
4102   case ImplicitConversionSequence::StandardConversion: {
4103     ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
4104                                                Action, CCK);
4105     if (Res.isInvalid())
4106       return ExprError();
4107     From = Res.get();
4108     break;
4109   }
4110 
4111   case ImplicitConversionSequence::UserDefinedConversion: {
4112 
4113       FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
4114       CastKind CastKind;
4115       QualType BeforeToType;
4116       assert(FD && "no conversion function for user-defined conversion seq");
4117       if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
4118         CastKind = CK_UserDefinedConversion;
4119 
4120         // If the user-defined conversion is specified by a conversion function,
4121         // the initial standard conversion sequence converts the source type to
4122         // the implicit object parameter of the conversion function.
4123         BeforeToType = Context.getTagDeclType(Conv->getParent());
4124       } else {
4125         const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
4126         CastKind = CK_ConstructorConversion;
4127         // Do no conversion if dealing with ... for the first conversion.
4128         if (!ICS.UserDefined.EllipsisConversion) {
4129           // If the user-defined conversion is specified by a constructor, the
4130           // initial standard conversion sequence converts the source type to
4131           // the type required by the argument of the constructor
4132           BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
4133         }
4134       }
4135       // Watch out for ellipsis conversion.
4136       if (!ICS.UserDefined.EllipsisConversion) {
4137         ExprResult Res =
4138           PerformImplicitConversion(From, BeforeToType,
4139                                     ICS.UserDefined.Before, AA_Converting,
4140                                     CCK);
4141         if (Res.isInvalid())
4142           return ExprError();
4143         From = Res.get();
4144       }
4145 
4146       ExprResult CastArg = BuildCXXCastArgument(
4147           *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind,
4148           cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction,
4149           ICS.UserDefined.HadMultipleCandidates, From);
4150 
4151       if (CastArg.isInvalid())
4152         return ExprError();
4153 
4154       From = CastArg.get();
4155 
4156       // C++ [over.match.oper]p7:
4157       //   [...] the second standard conversion sequence of a user-defined
4158       //   conversion sequence is not applied.
4159       if (CCK == CCK_ForBuiltinOverloadedOp)
4160         return From;
4161 
4162       return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
4163                                        AA_Converting, CCK);
4164   }
4165 
4166   case ImplicitConversionSequence::AmbiguousConversion:
4167     ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
4168                           PDiag(diag::err_typecheck_ambiguous_condition)
4169                             << From->getSourceRange());
4170     return ExprError();
4171 
4172   case ImplicitConversionSequence::EllipsisConversion:
4173     llvm_unreachable("Cannot perform an ellipsis conversion");
4174 
4175   case ImplicitConversionSequence::BadConversion:
4176     Sema::AssignConvertType ConvTy =
4177         CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType());
4178     bool Diagnosed = DiagnoseAssignmentResult(
4179         ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(),
4180         ToType, From->getType(), From, Action);
4181     assert(Diagnosed && "failed to diagnose bad conversion"); (void)Diagnosed;
4182     return ExprError();
4183   }
4184 
4185   // Everything went well.
4186   return From;
4187 }
4188 
4189 /// PerformImplicitConversion - Perform an implicit conversion of the
4190 /// expression From to the type ToType by following the standard
4191 /// conversion sequence SCS. Returns the converted
4192 /// expression. Flavor is the context in which we're performing this
4193 /// conversion, for use in error messages.
4194 ExprResult
4195 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4196                                 const StandardConversionSequence& SCS,
4197                                 AssignmentAction Action,
4198                                 CheckedConversionKind CCK) {
4199   bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
4200 
4201   // Overall FIXME: we are recomputing too many types here and doing far too
4202   // much extra work. What this means is that we need to keep track of more
4203   // information that is computed when we try the implicit conversion initially,
4204   // so that we don't need to recompute anything here.
4205   QualType FromType = From->getType();
4206 
4207   if (SCS.CopyConstructor) {
4208     // FIXME: When can ToType be a reference type?
4209     assert(!ToType->isReferenceType());
4210     if (SCS.Second == ICK_Derived_To_Base) {
4211       SmallVector<Expr*, 8> ConstructorArgs;
4212       if (CompleteConstructorCall(
4213               cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From,
4214               /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs))
4215         return ExprError();
4216       return BuildCXXConstructExpr(
4217           /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4218           SCS.FoundCopyConstructor, SCS.CopyConstructor,
4219           ConstructorArgs, /*HadMultipleCandidates*/ false,
4220           /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4221           CXXConstructExpr::CK_Complete, SourceRange());
4222     }
4223     return BuildCXXConstructExpr(
4224         /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4225         SCS.FoundCopyConstructor, SCS.CopyConstructor,
4226         From, /*HadMultipleCandidates*/ false,
4227         /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4228         CXXConstructExpr::CK_Complete, SourceRange());
4229   }
4230 
4231   // Resolve overloaded function references.
4232   if (Context.hasSameType(FromType, Context.OverloadTy)) {
4233     DeclAccessPair Found;
4234     FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
4235                                                           true, Found);
4236     if (!Fn)
4237       return ExprError();
4238 
4239     if (DiagnoseUseOfDecl(Fn, From->getBeginLoc()))
4240       return ExprError();
4241 
4242     From = FixOverloadedFunctionReference(From, Found, Fn);
4243 
4244     // We might get back another placeholder expression if we resolved to a
4245     // builtin.
4246     ExprResult Checked = CheckPlaceholderExpr(From);
4247     if (Checked.isInvalid())
4248       return ExprError();
4249 
4250     From = Checked.get();
4251     FromType = From->getType();
4252   }
4253 
4254   // If we're converting to an atomic type, first convert to the corresponding
4255   // non-atomic type.
4256   QualType ToAtomicType;
4257   if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
4258     ToAtomicType = ToType;
4259     ToType = ToAtomic->getValueType();
4260   }
4261 
4262   QualType InitialFromType = FromType;
4263   // Perform the first implicit conversion.
4264   switch (SCS.First) {
4265   case ICK_Identity:
4266     if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
4267       FromType = FromAtomic->getValueType().getUnqualifiedType();
4268       From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
4269                                       From, /*BasePath=*/nullptr, VK_PRValue,
4270                                       FPOptionsOverride());
4271     }
4272     break;
4273 
4274   case ICK_Lvalue_To_Rvalue: {
4275     assert(From->getObjectKind() != OK_ObjCProperty);
4276     ExprResult FromRes = DefaultLvalueConversion(From);
4277     if (FromRes.isInvalid())
4278       return ExprError();
4279 
4280     From = FromRes.get();
4281     FromType = From->getType();
4282     break;
4283   }
4284 
4285   case ICK_Array_To_Pointer:
4286     FromType = Context.getArrayDecayedType(FromType);
4287     From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_PRValue,
4288                              /*BasePath=*/nullptr, CCK)
4289                .get();
4290     break;
4291 
4292   case ICK_Function_To_Pointer:
4293     FromType = Context.getPointerType(FromType);
4294     From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
4295                              VK_PRValue, /*BasePath=*/nullptr, CCK)
4296                .get();
4297     break;
4298 
4299   default:
4300     llvm_unreachable("Improper first standard conversion");
4301   }
4302 
4303   // Perform the second implicit conversion
4304   switch (SCS.Second) {
4305   case ICK_Identity:
4306     // C++ [except.spec]p5:
4307     //   [For] assignment to and initialization of pointers to functions,
4308     //   pointers to member functions, and references to functions: the
4309     //   target entity shall allow at least the exceptions allowed by the
4310     //   source value in the assignment or initialization.
4311     switch (Action) {
4312     case AA_Assigning:
4313     case AA_Initializing:
4314       // Note, function argument passing and returning are initialization.
4315     case AA_Passing:
4316     case AA_Returning:
4317     case AA_Sending:
4318     case AA_Passing_CFAudited:
4319       if (CheckExceptionSpecCompatibility(From, ToType))
4320         return ExprError();
4321       break;
4322 
4323     case AA_Casting:
4324     case AA_Converting:
4325       // Casts and implicit conversions are not initialization, so are not
4326       // checked for exception specification mismatches.
4327       break;
4328     }
4329     // Nothing else to do.
4330     break;
4331 
4332   case ICK_Integral_Promotion:
4333   case ICK_Integral_Conversion:
4334     if (ToType->isBooleanType()) {
4335       assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
4336              SCS.Second == ICK_Integral_Promotion &&
4337              "only enums with fixed underlying type can promote to bool");
4338       From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, VK_PRValue,
4339                                /*BasePath=*/nullptr, CCK)
4340                  .get();
4341     } else {
4342       From = ImpCastExprToType(From, ToType, CK_IntegralCast, VK_PRValue,
4343                                /*BasePath=*/nullptr, CCK)
4344                  .get();
4345     }
4346     break;
4347 
4348   case ICK_Floating_Promotion:
4349   case ICK_Floating_Conversion:
4350     From = ImpCastExprToType(From, ToType, CK_FloatingCast, VK_PRValue,
4351                              /*BasePath=*/nullptr, CCK)
4352                .get();
4353     break;
4354 
4355   case ICK_Complex_Promotion:
4356   case ICK_Complex_Conversion: {
4357     QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType();
4358     QualType ToEl = ToType->castAs<ComplexType>()->getElementType();
4359     CastKind CK;
4360     if (FromEl->isRealFloatingType()) {
4361       if (ToEl->isRealFloatingType())
4362         CK = CK_FloatingComplexCast;
4363       else
4364         CK = CK_FloatingComplexToIntegralComplex;
4365     } else if (ToEl->isRealFloatingType()) {
4366       CK = CK_IntegralComplexToFloatingComplex;
4367     } else {
4368       CK = CK_IntegralComplexCast;
4369     }
4370     From = ImpCastExprToType(From, ToType, CK, VK_PRValue, /*BasePath=*/nullptr,
4371                              CCK)
4372                .get();
4373     break;
4374   }
4375 
4376   case ICK_Floating_Integral:
4377     if (ToType->isRealFloatingType())
4378       From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, VK_PRValue,
4379                                /*BasePath=*/nullptr, CCK)
4380                  .get();
4381     else
4382       From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, VK_PRValue,
4383                                /*BasePath=*/nullptr, CCK)
4384                  .get();
4385     break;
4386 
4387   case ICK_Compatible_Conversion:
4388     From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(),
4389                              /*BasePath=*/nullptr, CCK).get();
4390     break;
4391 
4392   case ICK_Writeback_Conversion:
4393   case ICK_Pointer_Conversion: {
4394     if (SCS.IncompatibleObjC && Action != AA_Casting) {
4395       // Diagnose incompatible Objective-C conversions
4396       if (Action == AA_Initializing || Action == AA_Assigning)
4397         Diag(From->getBeginLoc(),
4398              diag::ext_typecheck_convert_incompatible_pointer)
4399             << ToType << From->getType() << Action << From->getSourceRange()
4400             << 0;
4401       else
4402         Diag(From->getBeginLoc(),
4403              diag::ext_typecheck_convert_incompatible_pointer)
4404             << From->getType() << ToType << Action << From->getSourceRange()
4405             << 0;
4406 
4407       if (From->getType()->isObjCObjectPointerType() &&
4408           ToType->isObjCObjectPointerType())
4409         EmitRelatedResultTypeNote(From);
4410     } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
4411                !CheckObjCARCUnavailableWeakConversion(ToType,
4412                                                       From->getType())) {
4413       if (Action == AA_Initializing)
4414         Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign);
4415       else
4416         Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable)
4417             << (Action == AA_Casting) << From->getType() << ToType
4418             << From->getSourceRange();
4419     }
4420 
4421     // Defer address space conversion to the third conversion.
4422     QualType FromPteeType = From->getType()->getPointeeType();
4423     QualType ToPteeType = ToType->getPointeeType();
4424     QualType NewToType = ToType;
4425     if (!FromPteeType.isNull() && !ToPteeType.isNull() &&
4426         FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) {
4427       NewToType = Context.removeAddrSpaceQualType(ToPteeType);
4428       NewToType = Context.getAddrSpaceQualType(NewToType,
4429                                                FromPteeType.getAddressSpace());
4430       if (ToType->isObjCObjectPointerType())
4431         NewToType = Context.getObjCObjectPointerType(NewToType);
4432       else if (ToType->isBlockPointerType())
4433         NewToType = Context.getBlockPointerType(NewToType);
4434       else
4435         NewToType = Context.getPointerType(NewToType);
4436     }
4437 
4438     CastKind Kind;
4439     CXXCastPath BasePath;
4440     if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle))
4441       return ExprError();
4442 
4443     // Make sure we extend blocks if necessary.
4444     // FIXME: doing this here is really ugly.
4445     if (Kind == CK_BlockPointerToObjCPointerCast) {
4446       ExprResult E = From;
4447       (void) PrepareCastToObjCObjectPointer(E);
4448       From = E.get();
4449     }
4450     if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
4451       CheckObjCConversion(SourceRange(), NewToType, From, CCK);
4452     From = ImpCastExprToType(From, NewToType, Kind, VK_PRValue, &BasePath, CCK)
4453                .get();
4454     break;
4455   }
4456 
4457   case ICK_Pointer_Member: {
4458     CastKind Kind;
4459     CXXCastPath BasePath;
4460     if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
4461       return ExprError();
4462     if (CheckExceptionSpecCompatibility(From, ToType))
4463       return ExprError();
4464 
4465     // We may not have been able to figure out what this member pointer resolved
4466     // to up until this exact point.  Attempt to lock-in it's inheritance model.
4467     if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4468       (void)isCompleteType(From->getExprLoc(), From->getType());
4469       (void)isCompleteType(From->getExprLoc(), ToType);
4470     }
4471 
4472     From =
4473         ImpCastExprToType(From, ToType, Kind, VK_PRValue, &BasePath, CCK).get();
4474     break;
4475   }
4476 
4477   case ICK_Boolean_Conversion:
4478     // Perform half-to-boolean conversion via float.
4479     if (From->getType()->isHalfType()) {
4480       From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
4481       FromType = Context.FloatTy;
4482     }
4483 
4484     From = ImpCastExprToType(From, Context.BoolTy,
4485                              ScalarTypeToBooleanCastKind(FromType), VK_PRValue,
4486                              /*BasePath=*/nullptr, CCK)
4487                .get();
4488     break;
4489 
4490   case ICK_Derived_To_Base: {
4491     CXXCastPath BasePath;
4492     if (CheckDerivedToBaseConversion(
4493             From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(),
4494             From->getSourceRange(), &BasePath, CStyle))
4495       return ExprError();
4496 
4497     From = ImpCastExprToType(From, ToType.getNonReferenceType(),
4498                       CK_DerivedToBase, From->getValueKind(),
4499                       &BasePath, CCK).get();
4500     break;
4501   }
4502 
4503   case ICK_Vector_Conversion:
4504     From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4505                              /*BasePath=*/nullptr, CCK)
4506                .get();
4507     break;
4508 
4509   case ICK_SVE_Vector_Conversion:
4510     From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4511                              /*BasePath=*/nullptr, CCK)
4512                .get();
4513     break;
4514 
4515   case ICK_Vector_Splat: {
4516     // Vector splat from any arithmetic type to a vector.
4517     Expr *Elem = prepareVectorSplat(ToType, From).get();
4518     From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue,
4519                              /*BasePath=*/nullptr, CCK)
4520                .get();
4521     break;
4522   }
4523 
4524   case ICK_Complex_Real:
4525     // Case 1.  x -> _Complex y
4526     if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
4527       QualType ElType = ToComplex->getElementType();
4528       bool isFloatingComplex = ElType->isRealFloatingType();
4529 
4530       // x -> y
4531       if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
4532         // do nothing
4533       } else if (From->getType()->isRealFloatingType()) {
4534         From = ImpCastExprToType(From, ElType,
4535                 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
4536       } else {
4537         assert(From->getType()->isIntegerType());
4538         From = ImpCastExprToType(From, ElType,
4539                 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
4540       }
4541       // y -> _Complex y
4542       From = ImpCastExprToType(From, ToType,
4543                    isFloatingComplex ? CK_FloatingRealToComplex
4544                                      : CK_IntegralRealToComplex).get();
4545 
4546     // Case 2.  _Complex x -> y
4547     } else {
4548       auto *FromComplex = From->getType()->castAs<ComplexType>();
4549       QualType ElType = FromComplex->getElementType();
4550       bool isFloatingComplex = ElType->isRealFloatingType();
4551 
4552       // _Complex x -> x
4553       From = ImpCastExprToType(From, ElType,
4554                                isFloatingComplex ? CK_FloatingComplexToReal
4555                                                  : CK_IntegralComplexToReal,
4556                                VK_PRValue, /*BasePath=*/nullptr, CCK)
4557                  .get();
4558 
4559       // x -> y
4560       if (Context.hasSameUnqualifiedType(ElType, ToType)) {
4561         // do nothing
4562       } else if (ToType->isRealFloatingType()) {
4563         From = ImpCastExprToType(From, ToType,
4564                                  isFloatingComplex ? CK_FloatingCast
4565                                                    : CK_IntegralToFloating,
4566                                  VK_PRValue, /*BasePath=*/nullptr, CCK)
4567                    .get();
4568       } else {
4569         assert(ToType->isIntegerType());
4570         From = ImpCastExprToType(From, ToType,
4571                                  isFloatingComplex ? CK_FloatingToIntegral
4572                                                    : CK_IntegralCast,
4573                                  VK_PRValue, /*BasePath=*/nullptr, CCK)
4574                    .get();
4575       }
4576     }
4577     break;
4578 
4579   case ICK_Block_Pointer_Conversion: {
4580     LangAS AddrSpaceL =
4581         ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4582     LangAS AddrSpaceR =
4583         FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4584     assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) &&
4585            "Invalid cast");
4586     CastKind Kind =
4587         AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
4588     From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind,
4589                              VK_PRValue, /*BasePath=*/nullptr, CCK)
4590                .get();
4591     break;
4592   }
4593 
4594   case ICK_TransparentUnionConversion: {
4595     ExprResult FromRes = From;
4596     Sema::AssignConvertType ConvTy =
4597       CheckTransparentUnionArgumentConstraints(ToType, FromRes);
4598     if (FromRes.isInvalid())
4599       return ExprError();
4600     From = FromRes.get();
4601     assert ((ConvTy == Sema::Compatible) &&
4602             "Improper transparent union conversion");
4603     (void)ConvTy;
4604     break;
4605   }
4606 
4607   case ICK_Zero_Event_Conversion:
4608   case ICK_Zero_Queue_Conversion:
4609     From = ImpCastExprToType(From, ToType,
4610                              CK_ZeroToOCLOpaqueType,
4611                              From->getValueKind()).get();
4612     break;
4613 
4614   case ICK_Lvalue_To_Rvalue:
4615   case ICK_Array_To_Pointer:
4616   case ICK_Function_To_Pointer:
4617   case ICK_Function_Conversion:
4618   case ICK_Qualification:
4619   case ICK_Num_Conversion_Kinds:
4620   case ICK_C_Only_Conversion:
4621   case ICK_Incompatible_Pointer_Conversion:
4622     llvm_unreachable("Improper second standard conversion");
4623   }
4624 
4625   switch (SCS.Third) {
4626   case ICK_Identity:
4627     // Nothing to do.
4628     break;
4629 
4630   case ICK_Function_Conversion:
4631     // If both sides are functions (or pointers/references to them), there could
4632     // be incompatible exception declarations.
4633     if (CheckExceptionSpecCompatibility(From, ToType))
4634       return ExprError();
4635 
4636     From = ImpCastExprToType(From, ToType, CK_NoOp, VK_PRValue,
4637                              /*BasePath=*/nullptr, CCK)
4638                .get();
4639     break;
4640 
4641   case ICK_Qualification: {
4642     ExprValueKind VK = From->getValueKind();
4643     CastKind CK = CK_NoOp;
4644 
4645     if (ToType->isReferenceType() &&
4646         ToType->getPointeeType().getAddressSpace() !=
4647             From->getType().getAddressSpace())
4648       CK = CK_AddressSpaceConversion;
4649 
4650     if (ToType->isPointerType() &&
4651         ToType->getPointeeType().getAddressSpace() !=
4652             From->getType()->getPointeeType().getAddressSpace())
4653       CK = CK_AddressSpaceConversion;
4654 
4655     if (!isCast(CCK) &&
4656         !ToType->getPointeeType().getQualifiers().hasUnaligned() &&
4657         From->getType()->getPointeeType().getQualifiers().hasUnaligned()) {
4658       Diag(From->getBeginLoc(), diag::warn_imp_cast_drops_unaligned)
4659           << InitialFromType << ToType;
4660     }
4661 
4662     From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK,
4663                              /*BasePath=*/nullptr, CCK)
4664                .get();
4665 
4666     if (SCS.DeprecatedStringLiteralToCharPtr &&
4667         !getLangOpts().WritableStrings) {
4668       Diag(From->getBeginLoc(),
4669            getLangOpts().CPlusPlus11
4670                ? diag::ext_deprecated_string_literal_conversion
4671                : diag::warn_deprecated_string_literal_conversion)
4672           << ToType.getNonReferenceType();
4673     }
4674 
4675     break;
4676   }
4677 
4678   default:
4679     llvm_unreachable("Improper third standard conversion");
4680   }
4681 
4682   // If this conversion sequence involved a scalar -> atomic conversion, perform
4683   // that conversion now.
4684   if (!ToAtomicType.isNull()) {
4685     assert(Context.hasSameType(
4686         ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
4687     From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
4688                              VK_PRValue, nullptr, CCK)
4689                .get();
4690   }
4691 
4692   // Materialize a temporary if we're implicitly converting to a reference
4693   // type. This is not required by the C++ rules but is necessary to maintain
4694   // AST invariants.
4695   if (ToType->isReferenceType() && From->isPRValue()) {
4696     ExprResult Res = TemporaryMaterializationConversion(From);
4697     if (Res.isInvalid())
4698       return ExprError();
4699     From = Res.get();
4700   }
4701 
4702   // If this conversion sequence succeeded and involved implicitly converting a
4703   // _Nullable type to a _Nonnull one, complain.
4704   if (!isCast(CCK))
4705     diagnoseNullableToNonnullConversion(ToType, InitialFromType,
4706                                         From->getBeginLoc());
4707 
4708   return From;
4709 }
4710 
4711 /// Check the completeness of a type in a unary type trait.
4712 ///
4713 /// If the particular type trait requires a complete type, tries to complete
4714 /// it. If completing the type fails, a diagnostic is emitted and false
4715 /// returned. If completing the type succeeds or no completion was required,
4716 /// returns true.
4717 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
4718                                                 SourceLocation Loc,
4719                                                 QualType ArgTy) {
4720   // C++0x [meta.unary.prop]p3:
4721   //   For all of the class templates X declared in this Clause, instantiating
4722   //   that template with a template argument that is a class template
4723   //   specialization may result in the implicit instantiation of the template
4724   //   argument if and only if the semantics of X require that the argument
4725   //   must be a complete type.
4726   // We apply this rule to all the type trait expressions used to implement
4727   // these class templates. We also try to follow any GCC documented behavior
4728   // in these expressions to ensure portability of standard libraries.
4729   switch (UTT) {
4730   default: llvm_unreachable("not a UTT");
4731     // is_complete_type somewhat obviously cannot require a complete type.
4732   case UTT_IsCompleteType:
4733     // Fall-through
4734 
4735     // These traits are modeled on the type predicates in C++0x
4736     // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
4737     // requiring a complete type, as whether or not they return true cannot be
4738     // impacted by the completeness of the type.
4739   case UTT_IsVoid:
4740   case UTT_IsIntegral:
4741   case UTT_IsFloatingPoint:
4742   case UTT_IsArray:
4743   case UTT_IsPointer:
4744   case UTT_IsLvalueReference:
4745   case UTT_IsRvalueReference:
4746   case UTT_IsMemberFunctionPointer:
4747   case UTT_IsMemberObjectPointer:
4748   case UTT_IsEnum:
4749   case UTT_IsUnion:
4750   case UTT_IsClass:
4751   case UTT_IsFunction:
4752   case UTT_IsReference:
4753   case UTT_IsArithmetic:
4754   case UTT_IsFundamental:
4755   case UTT_IsObject:
4756   case UTT_IsScalar:
4757   case UTT_IsCompound:
4758   case UTT_IsMemberPointer:
4759     // Fall-through
4760 
4761     // These traits are modeled on type predicates in C++0x [meta.unary.prop]
4762     // which requires some of its traits to have the complete type. However,
4763     // the completeness of the type cannot impact these traits' semantics, and
4764     // so they don't require it. This matches the comments on these traits in
4765     // Table 49.
4766   case UTT_IsConst:
4767   case UTT_IsVolatile:
4768   case UTT_IsSigned:
4769   case UTT_IsUnsigned:
4770 
4771   // This type trait always returns false, checking the type is moot.
4772   case UTT_IsInterfaceClass:
4773     return true;
4774 
4775   // C++14 [meta.unary.prop]:
4776   //   If T is a non-union class type, T shall be a complete type.
4777   case UTT_IsEmpty:
4778   case UTT_IsPolymorphic:
4779   case UTT_IsAbstract:
4780     if (const auto *RD = ArgTy->getAsCXXRecordDecl())
4781       if (!RD->isUnion())
4782         return !S.RequireCompleteType(
4783             Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4784     return true;
4785 
4786   // C++14 [meta.unary.prop]:
4787   //   If T is a class type, T shall be a complete type.
4788   case UTT_IsFinal:
4789   case UTT_IsSealed:
4790     if (ArgTy->getAsCXXRecordDecl())
4791       return !S.RequireCompleteType(
4792           Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4793     return true;
4794 
4795   // C++1z [meta.unary.prop]:
4796   //   remove_all_extents_t<T> shall be a complete type or cv void.
4797   case UTT_IsAggregate:
4798   case UTT_IsTrivial:
4799   case UTT_IsTriviallyCopyable:
4800   case UTT_IsStandardLayout:
4801   case UTT_IsPOD:
4802   case UTT_IsLiteral:
4803   // By analogy, is_trivially_relocatable imposes the same constraints.
4804   case UTT_IsTriviallyRelocatable:
4805   // Per the GCC type traits documentation, T shall be a complete type, cv void,
4806   // or an array of unknown bound. But GCC actually imposes the same constraints
4807   // as above.
4808   case UTT_HasNothrowAssign:
4809   case UTT_HasNothrowMoveAssign:
4810   case UTT_HasNothrowConstructor:
4811   case UTT_HasNothrowCopy:
4812   case UTT_HasTrivialAssign:
4813   case UTT_HasTrivialMoveAssign:
4814   case UTT_HasTrivialDefaultConstructor:
4815   case UTT_HasTrivialMoveConstructor:
4816   case UTT_HasTrivialCopy:
4817   case UTT_HasTrivialDestructor:
4818   case UTT_HasVirtualDestructor:
4819     ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0);
4820     LLVM_FALLTHROUGH;
4821 
4822   // C++1z [meta.unary.prop]:
4823   //   T shall be a complete type, cv void, or an array of unknown bound.
4824   case UTT_IsDestructible:
4825   case UTT_IsNothrowDestructible:
4826   case UTT_IsTriviallyDestructible:
4827   case UTT_HasUniqueObjectRepresentations:
4828     if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType())
4829       return true;
4830 
4831     return !S.RequireCompleteType(
4832         Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4833   }
4834 }
4835 
4836 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
4837                                Sema &Self, SourceLocation KeyLoc, ASTContext &C,
4838                                bool (CXXRecordDecl::*HasTrivial)() const,
4839                                bool (CXXRecordDecl::*HasNonTrivial)() const,
4840                                bool (CXXMethodDecl::*IsDesiredOp)() const)
4841 {
4842   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4843   if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
4844     return true;
4845 
4846   DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
4847   DeclarationNameInfo NameInfo(Name, KeyLoc);
4848   LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
4849   if (Self.LookupQualifiedName(Res, RD)) {
4850     bool FoundOperator = false;
4851     Res.suppressDiagnostics();
4852     for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
4853          Op != OpEnd; ++Op) {
4854       if (isa<FunctionTemplateDecl>(*Op))
4855         continue;
4856 
4857       CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
4858       if((Operator->*IsDesiredOp)()) {
4859         FoundOperator = true;
4860         auto *CPT = Operator->getType()->castAs<FunctionProtoType>();
4861         CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4862         if (!CPT || !CPT->isNothrow())
4863           return false;
4864       }
4865     }
4866     return FoundOperator;
4867   }
4868   return false;
4869 }
4870 
4871 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
4872                                    SourceLocation KeyLoc, QualType T) {
4873   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
4874 
4875   ASTContext &C = Self.Context;
4876   switch(UTT) {
4877   default: llvm_unreachable("not a UTT");
4878     // Type trait expressions corresponding to the primary type category
4879     // predicates in C++0x [meta.unary.cat].
4880   case UTT_IsVoid:
4881     return T->isVoidType();
4882   case UTT_IsIntegral:
4883     return T->isIntegralType(C);
4884   case UTT_IsFloatingPoint:
4885     return T->isFloatingType();
4886   case UTT_IsArray:
4887     return T->isArrayType();
4888   case UTT_IsPointer:
4889     return T->isAnyPointerType();
4890   case UTT_IsLvalueReference:
4891     return T->isLValueReferenceType();
4892   case UTT_IsRvalueReference:
4893     return T->isRValueReferenceType();
4894   case UTT_IsMemberFunctionPointer:
4895     return T->isMemberFunctionPointerType();
4896   case UTT_IsMemberObjectPointer:
4897     return T->isMemberDataPointerType();
4898   case UTT_IsEnum:
4899     return T->isEnumeralType();
4900   case UTT_IsUnion:
4901     return T->isUnionType();
4902   case UTT_IsClass:
4903     return T->isClassType() || T->isStructureType() || T->isInterfaceType();
4904   case UTT_IsFunction:
4905     return T->isFunctionType();
4906 
4907     // Type trait expressions which correspond to the convenient composition
4908     // predicates in C++0x [meta.unary.comp].
4909   case UTT_IsReference:
4910     return T->isReferenceType();
4911   case UTT_IsArithmetic:
4912     return T->isArithmeticType() && !T->isEnumeralType();
4913   case UTT_IsFundamental:
4914     return T->isFundamentalType();
4915   case UTT_IsObject:
4916     return T->isObjectType();
4917   case UTT_IsScalar:
4918     // Note: semantic analysis depends on Objective-C lifetime types to be
4919     // considered scalar types. However, such types do not actually behave
4920     // like scalar types at run time (since they may require retain/release
4921     // operations), so we report them as non-scalar.
4922     if (T->isObjCLifetimeType()) {
4923       switch (T.getObjCLifetime()) {
4924       case Qualifiers::OCL_None:
4925       case Qualifiers::OCL_ExplicitNone:
4926         return true;
4927 
4928       case Qualifiers::OCL_Strong:
4929       case Qualifiers::OCL_Weak:
4930       case Qualifiers::OCL_Autoreleasing:
4931         return false;
4932       }
4933     }
4934 
4935     return T->isScalarType();
4936   case UTT_IsCompound:
4937     return T->isCompoundType();
4938   case UTT_IsMemberPointer:
4939     return T->isMemberPointerType();
4940 
4941     // Type trait expressions which correspond to the type property predicates
4942     // in C++0x [meta.unary.prop].
4943   case UTT_IsConst:
4944     return T.isConstQualified();
4945   case UTT_IsVolatile:
4946     return T.isVolatileQualified();
4947   case UTT_IsTrivial:
4948     return T.isTrivialType(C);
4949   case UTT_IsTriviallyCopyable:
4950     return T.isTriviallyCopyableType(C);
4951   case UTT_IsStandardLayout:
4952     return T->isStandardLayoutType();
4953   case UTT_IsPOD:
4954     return T.isPODType(C);
4955   case UTT_IsLiteral:
4956     return T->isLiteralType(C);
4957   case UTT_IsEmpty:
4958     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4959       return !RD->isUnion() && RD->isEmpty();
4960     return false;
4961   case UTT_IsPolymorphic:
4962     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4963       return !RD->isUnion() && RD->isPolymorphic();
4964     return false;
4965   case UTT_IsAbstract:
4966     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4967       return !RD->isUnion() && RD->isAbstract();
4968     return false;
4969   case UTT_IsAggregate:
4970     // Report vector extensions and complex types as aggregates because they
4971     // support aggregate initialization. GCC mirrors this behavior for vectors
4972     // but not _Complex.
4973     return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() ||
4974            T->isAnyComplexType();
4975   // __is_interface_class only returns true when CL is invoked in /CLR mode and
4976   // even then only when it is used with the 'interface struct ...' syntax
4977   // Clang doesn't support /CLR which makes this type trait moot.
4978   case UTT_IsInterfaceClass:
4979     return false;
4980   case UTT_IsFinal:
4981   case UTT_IsSealed:
4982     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4983       return RD->hasAttr<FinalAttr>();
4984     return false;
4985   case UTT_IsSigned:
4986     // Enum types should always return false.
4987     // Floating points should always return true.
4988     return T->isFloatingType() ||
4989            (T->isSignedIntegerType() && !T->isEnumeralType());
4990   case UTT_IsUnsigned:
4991     // Enum types should always return false.
4992     return T->isUnsignedIntegerType() && !T->isEnumeralType();
4993 
4994     // Type trait expressions which query classes regarding their construction,
4995     // destruction, and copying. Rather than being based directly on the
4996     // related type predicates in the standard, they are specified by both
4997     // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
4998     // specifications.
4999     //
5000     //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
5001     //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5002     //
5003     // Note that these builtins do not behave as documented in g++: if a class
5004     // has both a trivial and a non-trivial special member of a particular kind,
5005     // they return false! For now, we emulate this behavior.
5006     // FIXME: This appears to be a g++ bug: more complex cases reveal that it
5007     // does not correctly compute triviality in the presence of multiple special
5008     // members of the same kind. Revisit this once the g++ bug is fixed.
5009   case UTT_HasTrivialDefaultConstructor:
5010     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5011     //   If __is_pod (type) is true then the trait is true, else if type is
5012     //   a cv class or union type (or array thereof) with a trivial default
5013     //   constructor ([class.ctor]) then the trait is true, else it is false.
5014     if (T.isPODType(C))
5015       return true;
5016     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5017       return RD->hasTrivialDefaultConstructor() &&
5018              !RD->hasNonTrivialDefaultConstructor();
5019     return false;
5020   case UTT_HasTrivialMoveConstructor:
5021     //  This trait is implemented by MSVC 2012 and needed to parse the
5022     //  standard library headers. Specifically this is used as the logic
5023     //  behind std::is_trivially_move_constructible (20.9.4.3).
5024     if (T.isPODType(C))
5025       return true;
5026     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5027       return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
5028     return false;
5029   case UTT_HasTrivialCopy:
5030     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5031     //   If __is_pod (type) is true or type is a reference type then
5032     //   the trait is true, else if type is a cv class or union type
5033     //   with a trivial copy constructor ([class.copy]) then the trait
5034     //   is true, else it is false.
5035     if (T.isPODType(C) || T->isReferenceType())
5036       return true;
5037     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5038       return RD->hasTrivialCopyConstructor() &&
5039              !RD->hasNonTrivialCopyConstructor();
5040     return false;
5041   case UTT_HasTrivialMoveAssign:
5042     //  This trait is implemented by MSVC 2012 and needed to parse the
5043     //  standard library headers. Specifically it is used as the logic
5044     //  behind std::is_trivially_move_assignable (20.9.4.3)
5045     if (T.isPODType(C))
5046       return true;
5047     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5048       return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
5049     return false;
5050   case UTT_HasTrivialAssign:
5051     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5052     //   If type is const qualified or is a reference type then the
5053     //   trait is false. Otherwise if __is_pod (type) is true then the
5054     //   trait is true, else if type is a cv class or union type with
5055     //   a trivial copy assignment ([class.copy]) then the trait is
5056     //   true, else it is false.
5057     // Note: the const and reference restrictions are interesting,
5058     // given that const and reference members don't prevent a class
5059     // from having a trivial copy assignment operator (but do cause
5060     // errors if the copy assignment operator is actually used, q.v.
5061     // [class.copy]p12).
5062 
5063     if (T.isConstQualified())
5064       return false;
5065     if (T.isPODType(C))
5066       return true;
5067     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5068       return RD->hasTrivialCopyAssignment() &&
5069              !RD->hasNonTrivialCopyAssignment();
5070     return false;
5071   case UTT_IsDestructible:
5072   case UTT_IsTriviallyDestructible:
5073   case UTT_IsNothrowDestructible:
5074     // C++14 [meta.unary.prop]:
5075     //   For reference types, is_destructible<T>::value is true.
5076     if (T->isReferenceType())
5077       return true;
5078 
5079     // Objective-C++ ARC: autorelease types don't require destruction.
5080     if (T->isObjCLifetimeType() &&
5081         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5082       return true;
5083 
5084     // C++14 [meta.unary.prop]:
5085     //   For incomplete types and function types, is_destructible<T>::value is
5086     //   false.
5087     if (T->isIncompleteType() || T->isFunctionType())
5088       return false;
5089 
5090     // A type that requires destruction (via a non-trivial destructor or ARC
5091     // lifetime semantics) is not trivially-destructible.
5092     if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType())
5093       return false;
5094 
5095     // C++14 [meta.unary.prop]:
5096     //   For object types and given U equal to remove_all_extents_t<T>, if the
5097     //   expression std::declval<U&>().~U() is well-formed when treated as an
5098     //   unevaluated operand (Clause 5), then is_destructible<T>::value is true
5099     if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5100       CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
5101       if (!Destructor)
5102         return false;
5103       //  C++14 [dcl.fct.def.delete]p2:
5104       //    A program that refers to a deleted function implicitly or
5105       //    explicitly, other than to declare it, is ill-formed.
5106       if (Destructor->isDeleted())
5107         return false;
5108       if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
5109         return false;
5110       if (UTT == UTT_IsNothrowDestructible) {
5111         auto *CPT = Destructor->getType()->castAs<FunctionProtoType>();
5112         CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5113         if (!CPT || !CPT->isNothrow())
5114           return false;
5115       }
5116     }
5117     return true;
5118 
5119   case UTT_HasTrivialDestructor:
5120     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5121     //   If __is_pod (type) is true or type is a reference type
5122     //   then the trait is true, else if type is a cv class or union
5123     //   type (or array thereof) with a trivial destructor
5124     //   ([class.dtor]) then the trait is true, else it is
5125     //   false.
5126     if (T.isPODType(C) || T->isReferenceType())
5127       return true;
5128 
5129     // Objective-C++ ARC: autorelease types don't require destruction.
5130     if (T->isObjCLifetimeType() &&
5131         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5132       return true;
5133 
5134     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5135       return RD->hasTrivialDestructor();
5136     return false;
5137   // TODO: Propagate nothrowness for implicitly declared special members.
5138   case UTT_HasNothrowAssign:
5139     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5140     //   If type is const qualified or is a reference type then the
5141     //   trait is false. Otherwise if __has_trivial_assign (type)
5142     //   is true then the trait is true, else if type is a cv class
5143     //   or union type with copy assignment operators that are known
5144     //   not to throw an exception then the trait is true, else it is
5145     //   false.
5146     if (C.getBaseElementType(T).isConstQualified())
5147       return false;
5148     if (T->isReferenceType())
5149       return false;
5150     if (T.isPODType(C) || T->isObjCLifetimeType())
5151       return true;
5152 
5153     if (const RecordType *RT = T->getAs<RecordType>())
5154       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5155                                 &CXXRecordDecl::hasTrivialCopyAssignment,
5156                                 &CXXRecordDecl::hasNonTrivialCopyAssignment,
5157                                 &CXXMethodDecl::isCopyAssignmentOperator);
5158     return false;
5159   case UTT_HasNothrowMoveAssign:
5160     //  This trait is implemented by MSVC 2012 and needed to parse the
5161     //  standard library headers. Specifically this is used as the logic
5162     //  behind std::is_nothrow_move_assignable (20.9.4.3).
5163     if (T.isPODType(C))
5164       return true;
5165 
5166     if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
5167       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5168                                 &CXXRecordDecl::hasTrivialMoveAssignment,
5169                                 &CXXRecordDecl::hasNonTrivialMoveAssignment,
5170                                 &CXXMethodDecl::isMoveAssignmentOperator);
5171     return false;
5172   case UTT_HasNothrowCopy:
5173     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5174     //   If __has_trivial_copy (type) is true then the trait is true, else
5175     //   if type is a cv class or union type with copy constructors that are
5176     //   known not to throw an exception then the trait is true, else it is
5177     //   false.
5178     if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
5179       return true;
5180     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
5181       if (RD->hasTrivialCopyConstructor() &&
5182           !RD->hasNonTrivialCopyConstructor())
5183         return true;
5184 
5185       bool FoundConstructor = false;
5186       unsigned FoundTQs;
5187       for (const auto *ND : Self.LookupConstructors(RD)) {
5188         // A template constructor is never a copy constructor.
5189         // FIXME: However, it may actually be selected at the actual overload
5190         // resolution point.
5191         if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5192           continue;
5193         // UsingDecl itself is not a constructor
5194         if (isa<UsingDecl>(ND))
5195           continue;
5196         auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5197         if (Constructor->isCopyConstructor(FoundTQs)) {
5198           FoundConstructor = true;
5199           auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5200           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5201           if (!CPT)
5202             return false;
5203           // TODO: check whether evaluating default arguments can throw.
5204           // For now, we'll be conservative and assume that they can throw.
5205           if (!CPT->isNothrow() || CPT->getNumParams() > 1)
5206             return false;
5207         }
5208       }
5209 
5210       return FoundConstructor;
5211     }
5212     return false;
5213   case UTT_HasNothrowConstructor:
5214     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5215     //   If __has_trivial_constructor (type) is true then the trait is
5216     //   true, else if type is a cv class or union type (or array
5217     //   thereof) with a default constructor that is known not to
5218     //   throw an exception then the trait is true, else it is false.
5219     if (T.isPODType(C) || T->isObjCLifetimeType())
5220       return true;
5221     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5222       if (RD->hasTrivialDefaultConstructor() &&
5223           !RD->hasNonTrivialDefaultConstructor())
5224         return true;
5225 
5226       bool FoundConstructor = false;
5227       for (const auto *ND : Self.LookupConstructors(RD)) {
5228         // FIXME: In C++0x, a constructor template can be a default constructor.
5229         if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5230           continue;
5231         // UsingDecl itself is not a constructor
5232         if (isa<UsingDecl>(ND))
5233           continue;
5234         auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5235         if (Constructor->isDefaultConstructor()) {
5236           FoundConstructor = true;
5237           auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5238           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5239           if (!CPT)
5240             return false;
5241           // FIXME: check whether evaluating default arguments can throw.
5242           // For now, we'll be conservative and assume that they can throw.
5243           if (!CPT->isNothrow() || CPT->getNumParams() > 0)
5244             return false;
5245         }
5246       }
5247       return FoundConstructor;
5248     }
5249     return false;
5250   case UTT_HasVirtualDestructor:
5251     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5252     //   If type is a class type with a virtual destructor ([class.dtor])
5253     //   then the trait is true, else it is false.
5254     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5255       if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
5256         return Destructor->isVirtual();
5257     return false;
5258 
5259     // These type trait expressions are modeled on the specifications for the
5260     // Embarcadero C++0x type trait functions:
5261     //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5262   case UTT_IsCompleteType:
5263     // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
5264     //   Returns True if and only if T is a complete type at the point of the
5265     //   function call.
5266     return !T->isIncompleteType();
5267   case UTT_HasUniqueObjectRepresentations:
5268     return C.hasUniqueObjectRepresentations(T);
5269   case UTT_IsTriviallyRelocatable:
5270     return T.isTriviallyRelocatableType(C);
5271   }
5272 }
5273 
5274 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5275                                     QualType RhsT, SourceLocation KeyLoc);
5276 
5277 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
5278                               ArrayRef<TypeSourceInfo *> Args,
5279                               SourceLocation RParenLoc) {
5280   if (Kind <= UTT_Last)
5281     return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
5282 
5283   // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible
5284   // traits to avoid duplication.
5285   if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary)
5286     return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
5287                                    Args[1]->getType(), RParenLoc);
5288 
5289   switch (Kind) {
5290   case clang::BTT_ReferenceBindsToTemporary:
5291   case clang::TT_IsConstructible:
5292   case clang::TT_IsNothrowConstructible:
5293   case clang::TT_IsTriviallyConstructible: {
5294     // C++11 [meta.unary.prop]:
5295     //   is_trivially_constructible is defined as:
5296     //
5297     //     is_constructible<T, Args...>::value is true and the variable
5298     //     definition for is_constructible, as defined below, is known to call
5299     //     no operation that is not trivial.
5300     //
5301     //   The predicate condition for a template specialization
5302     //   is_constructible<T, Args...> shall be satisfied if and only if the
5303     //   following variable definition would be well-formed for some invented
5304     //   variable t:
5305     //
5306     //     T t(create<Args>()...);
5307     assert(!Args.empty());
5308 
5309     // Precondition: T and all types in the parameter pack Args shall be
5310     // complete types, (possibly cv-qualified) void, or arrays of
5311     // unknown bound.
5312     for (const auto *TSI : Args) {
5313       QualType ArgTy = TSI->getType();
5314       if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
5315         continue;
5316 
5317       if (S.RequireCompleteType(KWLoc, ArgTy,
5318           diag::err_incomplete_type_used_in_type_trait_expr))
5319         return false;
5320     }
5321 
5322     // Make sure the first argument is not incomplete nor a function type.
5323     QualType T = Args[0]->getType();
5324     if (T->isIncompleteType() || T->isFunctionType())
5325       return false;
5326 
5327     // Make sure the first argument is not an abstract type.
5328     CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5329     if (RD && RD->isAbstract())
5330       return false;
5331 
5332     llvm::BumpPtrAllocator OpaqueExprAllocator;
5333     SmallVector<Expr *, 2> ArgExprs;
5334     ArgExprs.reserve(Args.size() - 1);
5335     for (unsigned I = 1, N = Args.size(); I != N; ++I) {
5336       QualType ArgTy = Args[I]->getType();
5337       if (ArgTy->isObjectType() || ArgTy->isFunctionType())
5338         ArgTy = S.Context.getRValueReferenceType(ArgTy);
5339       ArgExprs.push_back(
5340           new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>())
5341               OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(),
5342                               ArgTy.getNonLValueExprType(S.Context),
5343                               Expr::getValueKindForType(ArgTy)));
5344     }
5345 
5346     // Perform the initialization in an unevaluated context within a SFINAE
5347     // trap at translation unit scope.
5348     EnterExpressionEvaluationContext Unevaluated(
5349         S, Sema::ExpressionEvaluationContext::Unevaluated);
5350     Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
5351     Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
5352     InitializedEntity To(
5353         InitializedEntity::InitializeTemporary(S.Context, Args[0]));
5354     InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
5355                                                                  RParenLoc));
5356     InitializationSequence Init(S, To, InitKind, ArgExprs);
5357     if (Init.Failed())
5358       return false;
5359 
5360     ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
5361     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
5362       return false;
5363 
5364     if (Kind == clang::TT_IsConstructible)
5365       return true;
5366 
5367     if (Kind == clang::BTT_ReferenceBindsToTemporary) {
5368       if (!T->isReferenceType())
5369         return false;
5370 
5371       return !Init.isDirectReferenceBinding();
5372     }
5373 
5374     if (Kind == clang::TT_IsNothrowConstructible)
5375       return S.canThrow(Result.get()) == CT_Cannot;
5376 
5377     if (Kind == clang::TT_IsTriviallyConstructible) {
5378       // Under Objective-C ARC and Weak, if the destination has non-trivial
5379       // Objective-C lifetime, this is a non-trivial construction.
5380       if (T.getNonReferenceType().hasNonTrivialObjCLifetime())
5381         return false;
5382 
5383       // The initialization succeeded; now make sure there are no non-trivial
5384       // calls.
5385       return !Result.get()->hasNonTrivialCall(S.Context);
5386     }
5387 
5388     llvm_unreachable("unhandled type trait");
5389     return false;
5390   }
5391     default: llvm_unreachable("not a TT");
5392   }
5393 
5394   return false;
5395 }
5396 
5397 namespace {
5398 void DiagnoseBuiltinDeprecation(Sema& S, TypeTrait Kind,
5399                                 SourceLocation KWLoc) {
5400   TypeTrait Replacement;
5401   switch (Kind) {
5402     case UTT_HasNothrowAssign:
5403     case UTT_HasNothrowMoveAssign:
5404       Replacement = BTT_IsNothrowAssignable;
5405       break;
5406     case UTT_HasNothrowCopy:
5407     case UTT_HasNothrowConstructor:
5408       Replacement = TT_IsNothrowConstructible;
5409       break;
5410     case UTT_HasTrivialAssign:
5411     case UTT_HasTrivialMoveAssign:
5412       Replacement = BTT_IsTriviallyAssignable;
5413       break;
5414     case UTT_HasTrivialCopy:
5415       Replacement = UTT_IsTriviallyCopyable;
5416       break;
5417     case UTT_HasTrivialDefaultConstructor:
5418     case UTT_HasTrivialMoveConstructor:
5419       Replacement = TT_IsTriviallyConstructible;
5420       break;
5421     case UTT_HasTrivialDestructor:
5422       Replacement = UTT_IsTriviallyDestructible;
5423       break;
5424     default:
5425       return;
5426   }
5427   S.Diag(KWLoc, diag::warn_deprecated_builtin)
5428     << getTraitSpelling(Kind) << getTraitSpelling(Replacement);
5429 }
5430 }
5431 
5432 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5433                                 ArrayRef<TypeSourceInfo *> Args,
5434                                 SourceLocation RParenLoc) {
5435   QualType ResultType = Context.getLogicalOperationType();
5436 
5437   if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
5438                                *this, Kind, KWLoc, Args[0]->getType()))
5439     return ExprError();
5440 
5441   DiagnoseBuiltinDeprecation(*this, Kind, KWLoc);
5442 
5443   bool Dependent = false;
5444   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5445     if (Args[I]->getType()->isDependentType()) {
5446       Dependent = true;
5447       break;
5448     }
5449   }
5450 
5451   bool Result = false;
5452   if (!Dependent)
5453     Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
5454 
5455   return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
5456                                RParenLoc, Result);
5457 }
5458 
5459 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5460                                 ArrayRef<ParsedType> Args,
5461                                 SourceLocation RParenLoc) {
5462   SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
5463   ConvertedArgs.reserve(Args.size());
5464 
5465   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5466     TypeSourceInfo *TInfo;
5467     QualType T = GetTypeFromParser(Args[I], &TInfo);
5468     if (!TInfo)
5469       TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
5470 
5471     ConvertedArgs.push_back(TInfo);
5472   }
5473 
5474   return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
5475 }
5476 
5477 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5478                                     QualType RhsT, SourceLocation KeyLoc) {
5479   assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
5480          "Cannot evaluate traits of dependent types");
5481 
5482   switch(BTT) {
5483   case BTT_IsBaseOf: {
5484     // C++0x [meta.rel]p2
5485     // Base is a base class of Derived without regard to cv-qualifiers or
5486     // Base and Derived are not unions and name the same class type without
5487     // regard to cv-qualifiers.
5488 
5489     const RecordType *lhsRecord = LhsT->getAs<RecordType>();
5490     const RecordType *rhsRecord = RhsT->getAs<RecordType>();
5491     if (!rhsRecord || !lhsRecord) {
5492       const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>();
5493       const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>();
5494       if (!LHSObjTy || !RHSObjTy)
5495         return false;
5496 
5497       ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface();
5498       ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface();
5499       if (!BaseInterface || !DerivedInterface)
5500         return false;
5501 
5502       if (Self.RequireCompleteType(
5503               KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr))
5504         return false;
5505 
5506       return BaseInterface->isSuperClassOf(DerivedInterface);
5507     }
5508 
5509     assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
5510              == (lhsRecord == rhsRecord));
5511 
5512     // Unions are never base classes, and never have base classes.
5513     // It doesn't matter if they are complete or not. See PR#41843
5514     if (lhsRecord && lhsRecord->getDecl()->isUnion())
5515       return false;
5516     if (rhsRecord && rhsRecord->getDecl()->isUnion())
5517       return false;
5518 
5519     if (lhsRecord == rhsRecord)
5520       return true;
5521 
5522     // C++0x [meta.rel]p2:
5523     //   If Base and Derived are class types and are different types
5524     //   (ignoring possible cv-qualifiers) then Derived shall be a
5525     //   complete type.
5526     if (Self.RequireCompleteType(KeyLoc, RhsT,
5527                           diag::err_incomplete_type_used_in_type_trait_expr))
5528       return false;
5529 
5530     return cast<CXXRecordDecl>(rhsRecord->getDecl())
5531       ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
5532   }
5533   case BTT_IsSame:
5534     return Self.Context.hasSameType(LhsT, RhsT);
5535   case BTT_TypeCompatible: {
5536     // GCC ignores cv-qualifiers on arrays for this builtin.
5537     Qualifiers LhsQuals, RhsQuals;
5538     QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals);
5539     QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals);
5540     return Self.Context.typesAreCompatible(Lhs, Rhs);
5541   }
5542   case BTT_IsConvertible:
5543   case BTT_IsConvertibleTo: {
5544     // C++0x [meta.rel]p4:
5545     //   Given the following function prototype:
5546     //
5547     //     template <class T>
5548     //       typename add_rvalue_reference<T>::type create();
5549     //
5550     //   the predicate condition for a template specialization
5551     //   is_convertible<From, To> shall be satisfied if and only if
5552     //   the return expression in the following code would be
5553     //   well-formed, including any implicit conversions to the return
5554     //   type of the function:
5555     //
5556     //     To test() {
5557     //       return create<From>();
5558     //     }
5559     //
5560     //   Access checking is performed as if in a context unrelated to To and
5561     //   From. Only the validity of the immediate context of the expression
5562     //   of the return-statement (including conversions to the return type)
5563     //   is considered.
5564     //
5565     // We model the initialization as a copy-initialization of a temporary
5566     // of the appropriate type, which for this expression is identical to the
5567     // return statement (since NRVO doesn't apply).
5568 
5569     // Functions aren't allowed to return function or array types.
5570     if (RhsT->isFunctionType() || RhsT->isArrayType())
5571       return false;
5572 
5573     // A return statement in a void function must have void type.
5574     if (RhsT->isVoidType())
5575       return LhsT->isVoidType();
5576 
5577     // A function definition requires a complete, non-abstract return type.
5578     if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
5579       return false;
5580 
5581     // Compute the result of add_rvalue_reference.
5582     if (LhsT->isObjectType() || LhsT->isFunctionType())
5583       LhsT = Self.Context.getRValueReferenceType(LhsT);
5584 
5585     // Build a fake source and destination for initialization.
5586     InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
5587     OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5588                          Expr::getValueKindForType(LhsT));
5589     Expr *FromPtr = &From;
5590     InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
5591                                                            SourceLocation()));
5592 
5593     // Perform the initialization in an unevaluated context within a SFINAE
5594     // trap at translation unit scope.
5595     EnterExpressionEvaluationContext Unevaluated(
5596         Self, Sema::ExpressionEvaluationContext::Unevaluated);
5597     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5598     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5599     InitializationSequence Init(Self, To, Kind, FromPtr);
5600     if (Init.Failed())
5601       return false;
5602 
5603     ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
5604     return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
5605   }
5606 
5607   case BTT_IsAssignable:
5608   case BTT_IsNothrowAssignable:
5609   case BTT_IsTriviallyAssignable: {
5610     // C++11 [meta.unary.prop]p3:
5611     //   is_trivially_assignable is defined as:
5612     //     is_assignable<T, U>::value is true and the assignment, as defined by
5613     //     is_assignable, is known to call no operation that is not trivial
5614     //
5615     //   is_assignable is defined as:
5616     //     The expression declval<T>() = declval<U>() is well-formed when
5617     //     treated as an unevaluated operand (Clause 5).
5618     //
5619     //   For both, T and U shall be complete types, (possibly cv-qualified)
5620     //   void, or arrays of unknown bound.
5621     if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
5622         Self.RequireCompleteType(KeyLoc, LhsT,
5623           diag::err_incomplete_type_used_in_type_trait_expr))
5624       return false;
5625     if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
5626         Self.RequireCompleteType(KeyLoc, RhsT,
5627           diag::err_incomplete_type_used_in_type_trait_expr))
5628       return false;
5629 
5630     // cv void is never assignable.
5631     if (LhsT->isVoidType() || RhsT->isVoidType())
5632       return false;
5633 
5634     // Build expressions that emulate the effect of declval<T>() and
5635     // declval<U>().
5636     if (LhsT->isObjectType() || LhsT->isFunctionType())
5637       LhsT = Self.Context.getRValueReferenceType(LhsT);
5638     if (RhsT->isObjectType() || RhsT->isFunctionType())
5639       RhsT = Self.Context.getRValueReferenceType(RhsT);
5640     OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5641                         Expr::getValueKindForType(LhsT));
5642     OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
5643                         Expr::getValueKindForType(RhsT));
5644 
5645     // Attempt the assignment in an unevaluated context within a SFINAE
5646     // trap at translation unit scope.
5647     EnterExpressionEvaluationContext Unevaluated(
5648         Self, Sema::ExpressionEvaluationContext::Unevaluated);
5649     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5650     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5651     ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
5652                                         &Rhs);
5653     if (Result.isInvalid())
5654       return false;
5655 
5656     // Treat the assignment as unused for the purpose of -Wdeprecated-volatile.
5657     Self.CheckUnusedVolatileAssignment(Result.get());
5658 
5659     if (SFINAE.hasErrorOccurred())
5660       return false;
5661 
5662     if (BTT == BTT_IsAssignable)
5663       return true;
5664 
5665     if (BTT == BTT_IsNothrowAssignable)
5666       return Self.canThrow(Result.get()) == CT_Cannot;
5667 
5668     if (BTT == BTT_IsTriviallyAssignable) {
5669       // Under Objective-C ARC and Weak, if the destination has non-trivial
5670       // Objective-C lifetime, this is a non-trivial assignment.
5671       if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime())
5672         return false;
5673 
5674       return !Result.get()->hasNonTrivialCall(Self.Context);
5675     }
5676 
5677     llvm_unreachable("unhandled type trait");
5678     return false;
5679   }
5680     default: llvm_unreachable("not a BTT");
5681   }
5682   llvm_unreachable("Unknown type trait or not implemented");
5683 }
5684 
5685 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
5686                                      SourceLocation KWLoc,
5687                                      ParsedType Ty,
5688                                      Expr* DimExpr,
5689                                      SourceLocation RParen) {
5690   TypeSourceInfo *TSInfo;
5691   QualType T = GetTypeFromParser(Ty, &TSInfo);
5692   if (!TSInfo)
5693     TSInfo = Context.getTrivialTypeSourceInfo(T);
5694 
5695   return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
5696 }
5697 
5698 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
5699                                            QualType T, Expr *DimExpr,
5700                                            SourceLocation KeyLoc) {
5701   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
5702 
5703   switch(ATT) {
5704   case ATT_ArrayRank:
5705     if (T->isArrayType()) {
5706       unsigned Dim = 0;
5707       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5708         ++Dim;
5709         T = AT->getElementType();
5710       }
5711       return Dim;
5712     }
5713     return 0;
5714 
5715   case ATT_ArrayExtent: {
5716     llvm::APSInt Value;
5717     uint64_t Dim;
5718     if (Self.VerifyIntegerConstantExpression(
5719                 DimExpr, &Value, diag::err_dimension_expr_not_constant_integer)
5720             .isInvalid())
5721       return 0;
5722     if (Value.isSigned() && Value.isNegative()) {
5723       Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
5724         << DimExpr->getSourceRange();
5725       return 0;
5726     }
5727     Dim = Value.getLimitedValue();
5728 
5729     if (T->isArrayType()) {
5730       unsigned D = 0;
5731       bool Matched = false;
5732       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5733         if (Dim == D) {
5734           Matched = true;
5735           break;
5736         }
5737         ++D;
5738         T = AT->getElementType();
5739       }
5740 
5741       if (Matched && T->isArrayType()) {
5742         if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
5743           return CAT->getSize().getLimitedValue();
5744       }
5745     }
5746     return 0;
5747   }
5748   }
5749   llvm_unreachable("Unknown type trait or not implemented");
5750 }
5751 
5752 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
5753                                      SourceLocation KWLoc,
5754                                      TypeSourceInfo *TSInfo,
5755                                      Expr* DimExpr,
5756                                      SourceLocation RParen) {
5757   QualType T = TSInfo->getType();
5758 
5759   // FIXME: This should likely be tracked as an APInt to remove any host
5760   // assumptions about the width of size_t on the target.
5761   uint64_t Value = 0;
5762   if (!T->isDependentType())
5763     Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
5764 
5765   // While the specification for these traits from the Embarcadero C++
5766   // compiler's documentation says the return type is 'unsigned int', Clang
5767   // returns 'size_t'. On Windows, the primary platform for the Embarcadero
5768   // compiler, there is no difference. On several other platforms this is an
5769   // important distinction.
5770   return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
5771                                           RParen, Context.getSizeType());
5772 }
5773 
5774 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
5775                                       SourceLocation KWLoc,
5776                                       Expr *Queried,
5777                                       SourceLocation RParen) {
5778   // If error parsing the expression, ignore.
5779   if (!Queried)
5780     return ExprError();
5781 
5782   ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
5783 
5784   return Result;
5785 }
5786 
5787 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
5788   switch (ET) {
5789   case ET_IsLValueExpr: return E->isLValue();
5790   case ET_IsRValueExpr:
5791     return E->isPRValue();
5792   }
5793   llvm_unreachable("Expression trait not covered by switch");
5794 }
5795 
5796 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
5797                                       SourceLocation KWLoc,
5798                                       Expr *Queried,
5799                                       SourceLocation RParen) {
5800   if (Queried->isTypeDependent()) {
5801     // Delay type-checking for type-dependent expressions.
5802   } else if (Queried->hasPlaceholderType()) {
5803     ExprResult PE = CheckPlaceholderExpr(Queried);
5804     if (PE.isInvalid()) return ExprError();
5805     return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
5806   }
5807 
5808   bool Value = EvaluateExpressionTrait(ET, Queried);
5809 
5810   return new (Context)
5811       ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
5812 }
5813 
5814 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
5815                                             ExprValueKind &VK,
5816                                             SourceLocation Loc,
5817                                             bool isIndirect) {
5818   assert(!LHS.get()->hasPlaceholderType() && !RHS.get()->hasPlaceholderType() &&
5819          "placeholders should have been weeded out by now");
5820 
5821   // The LHS undergoes lvalue conversions if this is ->*, and undergoes the
5822   // temporary materialization conversion otherwise.
5823   if (isIndirect)
5824     LHS = DefaultLvalueConversion(LHS.get());
5825   else if (LHS.get()->isPRValue())
5826     LHS = TemporaryMaterializationConversion(LHS.get());
5827   if (LHS.isInvalid())
5828     return QualType();
5829 
5830   // The RHS always undergoes lvalue conversions.
5831   RHS = DefaultLvalueConversion(RHS.get());
5832   if (RHS.isInvalid()) return QualType();
5833 
5834   const char *OpSpelling = isIndirect ? "->*" : ".*";
5835   // C++ 5.5p2
5836   //   The binary operator .* [p3: ->*] binds its second operand, which shall
5837   //   be of type "pointer to member of T" (where T is a completely-defined
5838   //   class type) [...]
5839   QualType RHSType = RHS.get()->getType();
5840   const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
5841   if (!MemPtr) {
5842     Diag(Loc, diag::err_bad_memptr_rhs)
5843       << OpSpelling << RHSType << RHS.get()->getSourceRange();
5844     return QualType();
5845   }
5846 
5847   QualType Class(MemPtr->getClass(), 0);
5848 
5849   // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
5850   // member pointer points must be completely-defined. However, there is no
5851   // reason for this semantic distinction, and the rule is not enforced by
5852   // other compilers. Therefore, we do not check this property, as it is
5853   // likely to be considered a defect.
5854 
5855   // C++ 5.5p2
5856   //   [...] to its first operand, which shall be of class T or of a class of
5857   //   which T is an unambiguous and accessible base class. [p3: a pointer to
5858   //   such a class]
5859   QualType LHSType = LHS.get()->getType();
5860   if (isIndirect) {
5861     if (const PointerType *Ptr = LHSType->getAs<PointerType>())
5862       LHSType = Ptr->getPointeeType();
5863     else {
5864       Diag(Loc, diag::err_bad_memptr_lhs)
5865         << OpSpelling << 1 << LHSType
5866         << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
5867       return QualType();
5868     }
5869   }
5870 
5871   if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
5872     // If we want to check the hierarchy, we need a complete type.
5873     if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
5874                             OpSpelling, (int)isIndirect)) {
5875       return QualType();
5876     }
5877 
5878     if (!IsDerivedFrom(Loc, LHSType, Class)) {
5879       Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
5880         << (int)isIndirect << LHS.get()->getType();
5881       return QualType();
5882     }
5883 
5884     CXXCastPath BasePath;
5885     if (CheckDerivedToBaseConversion(
5886             LHSType, Class, Loc,
5887             SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()),
5888             &BasePath))
5889       return QualType();
5890 
5891     // Cast LHS to type of use.
5892     QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers());
5893     if (isIndirect)
5894       UseType = Context.getPointerType(UseType);
5895     ExprValueKind VK = isIndirect ? VK_PRValue : LHS.get()->getValueKind();
5896     LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
5897                             &BasePath);
5898   }
5899 
5900   if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
5901     // Diagnose use of pointer-to-member type which when used as
5902     // the functional cast in a pointer-to-member expression.
5903     Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
5904      return QualType();
5905   }
5906 
5907   // C++ 5.5p2
5908   //   The result is an object or a function of the type specified by the
5909   //   second operand.
5910   // The cv qualifiers are the union of those in the pointer and the left side,
5911   // in accordance with 5.5p5 and 5.2.5.
5912   QualType Result = MemPtr->getPointeeType();
5913   Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
5914 
5915   // C++0x [expr.mptr.oper]p6:
5916   //   In a .* expression whose object expression is an rvalue, the program is
5917   //   ill-formed if the second operand is a pointer to member function with
5918   //   ref-qualifier &. In a ->* expression or in a .* expression whose object
5919   //   expression is an lvalue, the program is ill-formed if the second operand
5920   //   is a pointer to member function with ref-qualifier &&.
5921   if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
5922     switch (Proto->getRefQualifier()) {
5923     case RQ_None:
5924       // Do nothing
5925       break;
5926 
5927     case RQ_LValue:
5928       if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) {
5929         // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq
5930         // is (exactly) 'const'.
5931         if (Proto->isConst() && !Proto->isVolatile())
5932           Diag(Loc, getLangOpts().CPlusPlus20
5933                         ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue
5934                         : diag::ext_pointer_to_const_ref_member_on_rvalue);
5935         else
5936           Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
5937               << RHSType << 1 << LHS.get()->getSourceRange();
5938       }
5939       break;
5940 
5941     case RQ_RValue:
5942       if (isIndirect || !LHS.get()->Classify(Context).isRValue())
5943         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
5944           << RHSType << 0 << LHS.get()->getSourceRange();
5945       break;
5946     }
5947   }
5948 
5949   // C++ [expr.mptr.oper]p6:
5950   //   The result of a .* expression whose second operand is a pointer
5951   //   to a data member is of the same value category as its
5952   //   first operand. The result of a .* expression whose second
5953   //   operand is a pointer to a member function is a prvalue. The
5954   //   result of an ->* expression is an lvalue if its second operand
5955   //   is a pointer to data member and a prvalue otherwise.
5956   if (Result->isFunctionType()) {
5957     VK = VK_PRValue;
5958     return Context.BoundMemberTy;
5959   } else if (isIndirect) {
5960     VK = VK_LValue;
5961   } else {
5962     VK = LHS.get()->getValueKind();
5963   }
5964 
5965   return Result;
5966 }
5967 
5968 /// Try to convert a type to another according to C++11 5.16p3.
5969 ///
5970 /// This is part of the parameter validation for the ? operator. If either
5971 /// value operand is a class type, the two operands are attempted to be
5972 /// converted to each other. This function does the conversion in one direction.
5973 /// It returns true if the program is ill-formed and has already been diagnosed
5974 /// as such.
5975 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
5976                                 SourceLocation QuestionLoc,
5977                                 bool &HaveConversion,
5978                                 QualType &ToType) {
5979   HaveConversion = false;
5980   ToType = To->getType();
5981 
5982   InitializationKind Kind =
5983       InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation());
5984   // C++11 5.16p3
5985   //   The process for determining whether an operand expression E1 of type T1
5986   //   can be converted to match an operand expression E2 of type T2 is defined
5987   //   as follows:
5988   //   -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
5989   //      implicitly converted to type "lvalue reference to T2", subject to the
5990   //      constraint that in the conversion the reference must bind directly to
5991   //      an lvalue.
5992   //   -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be
5993   //      implicitly converted to the type "rvalue reference to R2", subject to
5994   //      the constraint that the reference must bind directly.
5995   if (To->isGLValue()) {
5996     QualType T = Self.Context.getReferenceQualifiedType(To);
5997     InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
5998 
5999     InitializationSequence InitSeq(Self, Entity, Kind, From);
6000     if (InitSeq.isDirectReferenceBinding()) {
6001       ToType = T;
6002       HaveConversion = true;
6003       return false;
6004     }
6005 
6006     if (InitSeq.isAmbiguous())
6007       return InitSeq.Diagnose(Self, Entity, Kind, From);
6008   }
6009 
6010   //   -- If E2 is an rvalue, or if the conversion above cannot be done:
6011   //      -- if E1 and E2 have class type, and the underlying class types are
6012   //         the same or one is a base class of the other:
6013   QualType FTy = From->getType();
6014   QualType TTy = To->getType();
6015   const RecordType *FRec = FTy->getAs<RecordType>();
6016   const RecordType *TRec = TTy->getAs<RecordType>();
6017   bool FDerivedFromT = FRec && TRec && FRec != TRec &&
6018                        Self.IsDerivedFrom(QuestionLoc, FTy, TTy);
6019   if (FRec && TRec && (FRec == TRec || FDerivedFromT ||
6020                        Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) {
6021     //         E1 can be converted to match E2 if the class of T2 is the
6022     //         same type as, or a base class of, the class of T1, and
6023     //         [cv2 > cv1].
6024     if (FRec == TRec || FDerivedFromT) {
6025       if (TTy.isAtLeastAsQualifiedAs(FTy)) {
6026         InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
6027         InitializationSequence InitSeq(Self, Entity, Kind, From);
6028         if (InitSeq) {
6029           HaveConversion = true;
6030           return false;
6031         }
6032 
6033         if (InitSeq.isAmbiguous())
6034           return InitSeq.Diagnose(Self, Entity, Kind, From);
6035       }
6036     }
6037 
6038     return false;
6039   }
6040 
6041   //     -- Otherwise: E1 can be converted to match E2 if E1 can be
6042   //        implicitly converted to the type that expression E2 would have
6043   //        if E2 were converted to an rvalue (or the type it has, if E2 is
6044   //        an rvalue).
6045   //
6046   // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
6047   // to the array-to-pointer or function-to-pointer conversions.
6048   TTy = TTy.getNonLValueExprType(Self.Context);
6049 
6050   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
6051   InitializationSequence InitSeq(Self, Entity, Kind, From);
6052   HaveConversion = !InitSeq.Failed();
6053   ToType = TTy;
6054   if (InitSeq.isAmbiguous())
6055     return InitSeq.Diagnose(Self, Entity, Kind, From);
6056 
6057   return false;
6058 }
6059 
6060 /// Try to find a common type for two according to C++0x 5.16p5.
6061 ///
6062 /// This is part of the parameter validation for the ? operator. If either
6063 /// value operand is a class type, overload resolution is used to find a
6064 /// conversion to a common type.
6065 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
6066                                     SourceLocation QuestionLoc) {
6067   Expr *Args[2] = { LHS.get(), RHS.get() };
6068   OverloadCandidateSet CandidateSet(QuestionLoc,
6069                                     OverloadCandidateSet::CSK_Operator);
6070   Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
6071                                     CandidateSet);
6072 
6073   OverloadCandidateSet::iterator Best;
6074   switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
6075     case OR_Success: {
6076       // We found a match. Perform the conversions on the arguments and move on.
6077       ExprResult LHSRes = Self.PerformImplicitConversion(
6078           LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0],
6079           Sema::AA_Converting);
6080       if (LHSRes.isInvalid())
6081         break;
6082       LHS = LHSRes;
6083 
6084       ExprResult RHSRes = Self.PerformImplicitConversion(
6085           RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1],
6086           Sema::AA_Converting);
6087       if (RHSRes.isInvalid())
6088         break;
6089       RHS = RHSRes;
6090       if (Best->Function)
6091         Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
6092       return false;
6093     }
6094 
6095     case OR_No_Viable_Function:
6096 
6097       // Emit a better diagnostic if one of the expressions is a null pointer
6098       // constant and the other is a pointer type. In this case, the user most
6099       // likely forgot to take the address of the other expression.
6100       if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6101         return true;
6102 
6103       Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6104         << LHS.get()->getType() << RHS.get()->getType()
6105         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6106       return true;
6107 
6108     case OR_Ambiguous:
6109       Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
6110         << LHS.get()->getType() << RHS.get()->getType()
6111         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6112       // FIXME: Print the possible common types by printing the return types of
6113       // the viable candidates.
6114       break;
6115 
6116     case OR_Deleted:
6117       llvm_unreachable("Conditional operator has only built-in overloads");
6118   }
6119   return true;
6120 }
6121 
6122 /// Perform an "extended" implicit conversion as returned by
6123 /// TryClassUnification.
6124 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
6125   InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
6126   InitializationKind Kind =
6127       InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation());
6128   Expr *Arg = E.get();
6129   InitializationSequence InitSeq(Self, Entity, Kind, Arg);
6130   ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
6131   if (Result.isInvalid())
6132     return true;
6133 
6134   E = Result;
6135   return false;
6136 }
6137 
6138 // Check the condition operand of ?: to see if it is valid for the GCC
6139 // extension.
6140 static bool isValidVectorForConditionalCondition(ASTContext &Ctx,
6141                                                  QualType CondTy) {
6142   if (!CondTy->isVectorType() && !CondTy->isExtVectorType())
6143     return false;
6144   const QualType EltTy =
6145       cast<VectorType>(CondTy.getCanonicalType())->getElementType();
6146   assert(!EltTy->isEnumeralType() && "Vectors cant be enum types");
6147   return EltTy->isIntegralType(Ctx);
6148 }
6149 
6150 static bool isValidSizelessVectorForConditionalCondition(ASTContext &Ctx,
6151                                                          QualType CondTy) {
6152   if (!CondTy->isVLSTBuiltinType())
6153     return false;
6154   const QualType EltTy =
6155       cast<BuiltinType>(CondTy.getCanonicalType())->getSveEltType(Ctx);
6156   assert(!EltTy->isEnumeralType() && "Vectors cant be enum types");
6157   return EltTy->isIntegralType(Ctx);
6158 }
6159 
6160 QualType Sema::CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS,
6161                                            ExprResult &RHS,
6162                                            SourceLocation QuestionLoc) {
6163   LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6164   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6165 
6166   QualType CondType = Cond.get()->getType();
6167   const auto *CondVT = CondType->castAs<VectorType>();
6168   QualType CondElementTy = CondVT->getElementType();
6169   unsigned CondElementCount = CondVT->getNumElements();
6170   QualType LHSType = LHS.get()->getType();
6171   const auto *LHSVT = LHSType->getAs<VectorType>();
6172   QualType RHSType = RHS.get()->getType();
6173   const auto *RHSVT = RHSType->getAs<VectorType>();
6174 
6175   QualType ResultType;
6176 
6177 
6178   if (LHSVT && RHSVT) {
6179     if (isa<ExtVectorType>(CondVT) != isa<ExtVectorType>(LHSVT)) {
6180       Diag(QuestionLoc, diag::err_conditional_vector_cond_result_mismatch)
6181           << /*isExtVector*/ isa<ExtVectorType>(CondVT);
6182       return {};
6183     }
6184 
6185     // If both are vector types, they must be the same type.
6186     if (!Context.hasSameType(LHSType, RHSType)) {
6187       Diag(QuestionLoc, diag::err_conditional_vector_mismatched)
6188           << LHSType << RHSType;
6189       return {};
6190     }
6191     ResultType = LHSType;
6192   } else if (LHSVT || RHSVT) {
6193     ResultType = CheckVectorOperands(
6194         LHS, RHS, QuestionLoc, /*isCompAssign*/ false, /*AllowBothBool*/ true,
6195         /*AllowBoolConversions*/ false,
6196         /*AllowBoolOperation*/ true,
6197         /*ReportInvalid*/ true);
6198     if (ResultType.isNull())
6199       return {};
6200   } else {
6201     // Both are scalar.
6202     QualType ResultElementTy;
6203     LHSType = LHSType.getCanonicalType().getUnqualifiedType();
6204     RHSType = RHSType.getCanonicalType().getUnqualifiedType();
6205 
6206     if (Context.hasSameType(LHSType, RHSType))
6207       ResultElementTy = LHSType;
6208     else
6209       ResultElementTy =
6210           UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
6211 
6212     if (ResultElementTy->isEnumeralType()) {
6213       Diag(QuestionLoc, diag::err_conditional_vector_operand_type)
6214           << ResultElementTy;
6215       return {};
6216     }
6217     if (CondType->isExtVectorType())
6218       ResultType =
6219           Context.getExtVectorType(ResultElementTy, CondVT->getNumElements());
6220     else
6221       ResultType = Context.getVectorType(
6222           ResultElementTy, CondVT->getNumElements(), VectorType::GenericVector);
6223 
6224     LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat);
6225     RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat);
6226   }
6227 
6228   assert(!ResultType.isNull() && ResultType->isVectorType() &&
6229          (!CondType->isExtVectorType() || ResultType->isExtVectorType()) &&
6230          "Result should have been a vector type");
6231   auto *ResultVectorTy = ResultType->castAs<VectorType>();
6232   QualType ResultElementTy = ResultVectorTy->getElementType();
6233   unsigned ResultElementCount = ResultVectorTy->getNumElements();
6234 
6235   if (ResultElementCount != CondElementCount) {
6236     Diag(QuestionLoc, diag::err_conditional_vector_size) << CondType
6237                                                          << ResultType;
6238     return {};
6239   }
6240 
6241   if (Context.getTypeSize(ResultElementTy) !=
6242       Context.getTypeSize(CondElementTy)) {
6243     Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondType
6244                                                                  << ResultType;
6245     return {};
6246   }
6247 
6248   return ResultType;
6249 }
6250 
6251 QualType Sema::CheckSizelessVectorConditionalTypes(ExprResult &Cond,
6252                                                    ExprResult &LHS,
6253                                                    ExprResult &RHS,
6254                                                    SourceLocation QuestionLoc) {
6255   LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6256   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6257 
6258   QualType CondType = Cond.get()->getType();
6259   const auto *CondBT = CondType->castAs<BuiltinType>();
6260   QualType CondElementTy = CondBT->getSveEltType(Context);
6261   llvm::ElementCount CondElementCount =
6262       Context.getBuiltinVectorTypeInfo(CondBT).EC;
6263 
6264   QualType LHSType = LHS.get()->getType();
6265   const auto *LHSBT =
6266       LHSType->isVLSTBuiltinType() ? LHSType->getAs<BuiltinType>() : nullptr;
6267   QualType RHSType = RHS.get()->getType();
6268   const auto *RHSBT =
6269       RHSType->isVLSTBuiltinType() ? RHSType->getAs<BuiltinType>() : nullptr;
6270 
6271   QualType ResultType;
6272 
6273   if (LHSBT && RHSBT) {
6274     // If both are sizeless vector types, they must be the same type.
6275     if (!Context.hasSameType(LHSType, RHSType)) {
6276       Diag(QuestionLoc, diag::err_conditional_vector_mismatched)
6277           << LHSType << RHSType;
6278       return QualType();
6279     }
6280     ResultType = LHSType;
6281   } else if (LHSBT || RHSBT) {
6282     ResultType = CheckSizelessVectorOperands(
6283         LHS, RHS, QuestionLoc, /*IsCompAssign*/ false, ACK_Conditional);
6284     if (ResultType.isNull())
6285       return QualType();
6286   } else {
6287     // Both are scalar so splat
6288     QualType ResultElementTy;
6289     LHSType = LHSType.getCanonicalType().getUnqualifiedType();
6290     RHSType = RHSType.getCanonicalType().getUnqualifiedType();
6291 
6292     if (Context.hasSameType(LHSType, RHSType))
6293       ResultElementTy = LHSType;
6294     else
6295       ResultElementTy =
6296           UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
6297 
6298     if (ResultElementTy->isEnumeralType()) {
6299       Diag(QuestionLoc, diag::err_conditional_vector_operand_type)
6300           << ResultElementTy;
6301       return QualType();
6302     }
6303 
6304     ResultType = Context.getScalableVectorType(
6305         ResultElementTy, CondElementCount.getKnownMinValue());
6306 
6307     LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat);
6308     RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat);
6309   }
6310 
6311   assert(!ResultType.isNull() && ResultType->isVLSTBuiltinType() &&
6312          "Result should have been a vector type");
6313   auto *ResultBuiltinTy = ResultType->castAs<BuiltinType>();
6314   QualType ResultElementTy = ResultBuiltinTy->getSveEltType(Context);
6315   llvm::ElementCount ResultElementCount =
6316       Context.getBuiltinVectorTypeInfo(ResultBuiltinTy).EC;
6317 
6318   if (ResultElementCount != CondElementCount) {
6319     Diag(QuestionLoc, diag::err_conditional_vector_size)
6320         << CondType << ResultType;
6321     return QualType();
6322   }
6323 
6324   if (Context.getTypeSize(ResultElementTy) !=
6325       Context.getTypeSize(CondElementTy)) {
6326     Diag(QuestionLoc, diag::err_conditional_vector_element_size)
6327         << CondType << ResultType;
6328     return QualType();
6329   }
6330 
6331   return ResultType;
6332 }
6333 
6334 /// Check the operands of ?: under C++ semantics.
6335 ///
6336 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
6337 /// extension. In this case, LHS == Cond. (But they're not aliases.)
6338 ///
6339 /// This function also implements GCC's vector extension and the
6340 /// OpenCL/ext_vector_type extension for conditionals. The vector extensions
6341 /// permit the use of a?b:c where the type of a is that of a integer vector with
6342 /// the same number of elements and size as the vectors of b and c. If one of
6343 /// either b or c is a scalar it is implicitly converted to match the type of
6344 /// the vector. Otherwise the expression is ill-formed. If both b and c are
6345 /// scalars, then b and c are checked and converted to the type of a if
6346 /// possible.
6347 ///
6348 /// The expressions are evaluated differently for GCC's and OpenCL's extensions.
6349 /// For the GCC extension, the ?: operator is evaluated as
6350 ///   (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]).
6351 /// For the OpenCL extensions, the ?: operator is evaluated as
6352 ///   (most-significant-bit-set(a[0])  ? b[0] : c[0], .. ,
6353 ///    most-significant-bit-set(a[n]) ? b[n] : c[n]).
6354 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
6355                                            ExprResult &RHS, ExprValueKind &VK,
6356                                            ExprObjectKind &OK,
6357                                            SourceLocation QuestionLoc) {
6358   // FIXME: Handle C99's complex types, block pointers and Obj-C++ interface
6359   // pointers.
6360 
6361   // Assume r-value.
6362   VK = VK_PRValue;
6363   OK = OK_Ordinary;
6364   bool IsVectorConditional =
6365       isValidVectorForConditionalCondition(Context, Cond.get()->getType());
6366 
6367   bool IsSizelessVectorConditional =
6368       isValidSizelessVectorForConditionalCondition(Context,
6369                                                    Cond.get()->getType());
6370 
6371   // C++11 [expr.cond]p1
6372   //   The first expression is contextually converted to bool.
6373   if (!Cond.get()->isTypeDependent()) {
6374     ExprResult CondRes = IsVectorConditional || IsSizelessVectorConditional
6375                              ? DefaultFunctionArrayLvalueConversion(Cond.get())
6376                              : CheckCXXBooleanCondition(Cond.get());
6377     if (CondRes.isInvalid())
6378       return QualType();
6379     Cond = CondRes;
6380   } else {
6381     // To implement C++, the first expression typically doesn't alter the result
6382     // type of the conditional, however the GCC compatible vector extension
6383     // changes the result type to be that of the conditional. Since we cannot
6384     // know if this is a vector extension here, delay the conversion of the
6385     // LHS/RHS below until later.
6386     return Context.DependentTy;
6387   }
6388 
6389 
6390   // Either of the arguments dependent?
6391   if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
6392     return Context.DependentTy;
6393 
6394   // C++11 [expr.cond]p2
6395   //   If either the second or the third operand has type (cv) void, ...
6396   QualType LTy = LHS.get()->getType();
6397   QualType RTy = RHS.get()->getType();
6398   bool LVoid = LTy->isVoidType();
6399   bool RVoid = RTy->isVoidType();
6400   if (LVoid || RVoid) {
6401     //   ... one of the following shall hold:
6402     //   -- The second or the third operand (but not both) is a (possibly
6403     //      parenthesized) throw-expression; the result is of the type
6404     //      and value category of the other.
6405     bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
6406     bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
6407 
6408     // Void expressions aren't legal in the vector-conditional expressions.
6409     if (IsVectorConditional) {
6410       SourceRange DiagLoc =
6411           LVoid ? LHS.get()->getSourceRange() : RHS.get()->getSourceRange();
6412       bool IsThrow = LVoid ? LThrow : RThrow;
6413       Diag(DiagLoc.getBegin(), diag::err_conditional_vector_has_void)
6414           << DiagLoc << IsThrow;
6415       return QualType();
6416     }
6417 
6418     if (LThrow != RThrow) {
6419       Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
6420       VK = NonThrow->getValueKind();
6421       // DR (no number yet): the result is a bit-field if the
6422       // non-throw-expression operand is a bit-field.
6423       OK = NonThrow->getObjectKind();
6424       return NonThrow->getType();
6425     }
6426 
6427     //   -- Both the second and third operands have type void; the result is of
6428     //      type void and is a prvalue.
6429     if (LVoid && RVoid)
6430       return Context.VoidTy;
6431 
6432     // Neither holds, error.
6433     Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
6434       << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
6435       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6436     return QualType();
6437   }
6438 
6439   // Neither is void.
6440   if (IsVectorConditional)
6441     return CheckVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc);
6442 
6443   if (IsSizelessVectorConditional)
6444     return CheckSizelessVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc);
6445 
6446   // C++11 [expr.cond]p3
6447   //   Otherwise, if the second and third operand have different types, and
6448   //   either has (cv) class type [...] an attempt is made to convert each of
6449   //   those operands to the type of the other.
6450   if (!Context.hasSameType(LTy, RTy) &&
6451       (LTy->isRecordType() || RTy->isRecordType())) {
6452     // These return true if a single direction is already ambiguous.
6453     QualType L2RType, R2LType;
6454     bool HaveL2R, HaveR2L;
6455     if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
6456       return QualType();
6457     if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
6458       return QualType();
6459 
6460     //   If both can be converted, [...] the program is ill-formed.
6461     if (HaveL2R && HaveR2L) {
6462       Diag(QuestionLoc, diag::err_conditional_ambiguous)
6463         << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6464       return QualType();
6465     }
6466 
6467     //   If exactly one conversion is possible, that conversion is applied to
6468     //   the chosen operand and the converted operands are used in place of the
6469     //   original operands for the remainder of this section.
6470     if (HaveL2R) {
6471       if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
6472         return QualType();
6473       LTy = LHS.get()->getType();
6474     } else if (HaveR2L) {
6475       if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
6476         return QualType();
6477       RTy = RHS.get()->getType();
6478     }
6479   }
6480 
6481   // C++11 [expr.cond]p3
6482   //   if both are glvalues of the same value category and the same type except
6483   //   for cv-qualification, an attempt is made to convert each of those
6484   //   operands to the type of the other.
6485   // FIXME:
6486   //   Resolving a defect in P0012R1: we extend this to cover all cases where
6487   //   one of the operands is reference-compatible with the other, in order
6488   //   to support conditionals between functions differing in noexcept. This
6489   //   will similarly cover difference in array bounds after P0388R4.
6490   // FIXME: If LTy and RTy have a composite pointer type, should we convert to
6491   //   that instead?
6492   ExprValueKind LVK = LHS.get()->getValueKind();
6493   ExprValueKind RVK = RHS.get()->getValueKind();
6494   if (!Context.hasSameType(LTy, RTy) && LVK == RVK && LVK != VK_PRValue) {
6495     // DerivedToBase was already handled by the class-specific case above.
6496     // FIXME: Should we allow ObjC conversions here?
6497     const ReferenceConversions AllowedConversions =
6498         ReferenceConversions::Qualification |
6499         ReferenceConversions::NestedQualification |
6500         ReferenceConversions::Function;
6501 
6502     ReferenceConversions RefConv;
6503     if (CompareReferenceRelationship(QuestionLoc, LTy, RTy, &RefConv) ==
6504             Ref_Compatible &&
6505         !(RefConv & ~AllowedConversions) &&
6506         // [...] subject to the constraint that the reference must bind
6507         // directly [...]
6508         !RHS.get()->refersToBitField() && !RHS.get()->refersToVectorElement()) {
6509       RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
6510       RTy = RHS.get()->getType();
6511     } else if (CompareReferenceRelationship(QuestionLoc, RTy, LTy, &RefConv) ==
6512                    Ref_Compatible &&
6513                !(RefConv & ~AllowedConversions) &&
6514                !LHS.get()->refersToBitField() &&
6515                !LHS.get()->refersToVectorElement()) {
6516       LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
6517       LTy = LHS.get()->getType();
6518     }
6519   }
6520 
6521   // C++11 [expr.cond]p4
6522   //   If the second and third operands are glvalues of the same value
6523   //   category and have the same type, the result is of that type and
6524   //   value category and it is a bit-field if the second or the third
6525   //   operand is a bit-field, or if both are bit-fields.
6526   // We only extend this to bitfields, not to the crazy other kinds of
6527   // l-values.
6528   bool Same = Context.hasSameType(LTy, RTy);
6529   if (Same && LVK == RVK && LVK != VK_PRValue &&
6530       LHS.get()->isOrdinaryOrBitFieldObject() &&
6531       RHS.get()->isOrdinaryOrBitFieldObject()) {
6532     VK = LHS.get()->getValueKind();
6533     if (LHS.get()->getObjectKind() == OK_BitField ||
6534         RHS.get()->getObjectKind() == OK_BitField)
6535       OK = OK_BitField;
6536 
6537     // If we have function pointer types, unify them anyway to unify their
6538     // exception specifications, if any.
6539     if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) {
6540       Qualifiers Qs = LTy.getQualifiers();
6541       LTy = FindCompositePointerType(QuestionLoc, LHS, RHS,
6542                                      /*ConvertArgs*/false);
6543       LTy = Context.getQualifiedType(LTy, Qs);
6544 
6545       assert(!LTy.isNull() && "failed to find composite pointer type for "
6546                               "canonically equivalent function ptr types");
6547       assert(Context.hasSameType(LTy, RTy) && "bad composite pointer type");
6548     }
6549 
6550     return LTy;
6551   }
6552 
6553   // C++11 [expr.cond]p5
6554   //   Otherwise, the result is a prvalue. If the second and third operands
6555   //   do not have the same type, and either has (cv) class type, ...
6556   if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
6557     //   ... overload resolution is used to determine the conversions (if any)
6558     //   to be applied to the operands. If the overload resolution fails, the
6559     //   program is ill-formed.
6560     if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
6561       return QualType();
6562   }
6563 
6564   // C++11 [expr.cond]p6
6565   //   Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
6566   //   conversions are performed on the second and third operands.
6567   LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6568   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6569   if (LHS.isInvalid() || RHS.isInvalid())
6570     return QualType();
6571   LTy = LHS.get()->getType();
6572   RTy = RHS.get()->getType();
6573 
6574   //   After those conversions, one of the following shall hold:
6575   //   -- The second and third operands have the same type; the result
6576   //      is of that type. If the operands have class type, the result
6577   //      is a prvalue temporary of the result type, which is
6578   //      copy-initialized from either the second operand or the third
6579   //      operand depending on the value of the first operand.
6580   if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
6581     if (LTy->isRecordType()) {
6582       // The operands have class type. Make a temporary copy.
6583       InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
6584 
6585       ExprResult LHSCopy = PerformCopyInitialization(Entity,
6586                                                      SourceLocation(),
6587                                                      LHS);
6588       if (LHSCopy.isInvalid())
6589         return QualType();
6590 
6591       ExprResult RHSCopy = PerformCopyInitialization(Entity,
6592                                                      SourceLocation(),
6593                                                      RHS);
6594       if (RHSCopy.isInvalid())
6595         return QualType();
6596 
6597       LHS = LHSCopy;
6598       RHS = RHSCopy;
6599     }
6600 
6601     // If we have function pointer types, unify them anyway to unify their
6602     // exception specifications, if any.
6603     if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) {
6604       LTy = FindCompositePointerType(QuestionLoc, LHS, RHS);
6605       assert(!LTy.isNull() && "failed to find composite pointer type for "
6606                               "canonically equivalent function ptr types");
6607     }
6608 
6609     return LTy;
6610   }
6611 
6612   // Extension: conditional operator involving vector types.
6613   if (LTy->isVectorType() || RTy->isVectorType())
6614     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false,
6615                                /*AllowBothBool*/ true,
6616                                /*AllowBoolConversions*/ false,
6617                                /*AllowBoolOperation*/ false,
6618                                /*ReportInvalid*/ true);
6619 
6620   //   -- The second and third operands have arithmetic or enumeration type;
6621   //      the usual arithmetic conversions are performed to bring them to a
6622   //      common type, and the result is of that type.
6623   if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
6624     QualType ResTy =
6625         UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
6626     if (LHS.isInvalid() || RHS.isInvalid())
6627       return QualType();
6628     if (ResTy.isNull()) {
6629       Diag(QuestionLoc,
6630            diag::err_typecheck_cond_incompatible_operands) << LTy << RTy
6631         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6632       return QualType();
6633     }
6634 
6635     LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
6636     RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
6637 
6638     return ResTy;
6639   }
6640 
6641   //   -- The second and third operands have pointer type, or one has pointer
6642   //      type and the other is a null pointer constant, or both are null
6643   //      pointer constants, at least one of which is non-integral; pointer
6644   //      conversions and qualification conversions are performed to bring them
6645   //      to their composite pointer type. The result is of the composite
6646   //      pointer type.
6647   //   -- The second and third operands have pointer to member type, or one has
6648   //      pointer to member type and the other is a null pointer constant;
6649   //      pointer to member conversions and qualification conversions are
6650   //      performed to bring them to a common type, whose cv-qualification
6651   //      shall match the cv-qualification of either the second or the third
6652   //      operand. The result is of the common type.
6653   QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS);
6654   if (!Composite.isNull())
6655     return Composite;
6656 
6657   // Similarly, attempt to find composite type of two objective-c pointers.
6658   Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
6659   if (LHS.isInvalid() || RHS.isInvalid())
6660     return QualType();
6661   if (!Composite.isNull())
6662     return Composite;
6663 
6664   // Check if we are using a null with a non-pointer type.
6665   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6666     return QualType();
6667 
6668   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6669     << LHS.get()->getType() << RHS.get()->getType()
6670     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6671   return QualType();
6672 }
6673 
6674 static FunctionProtoType::ExceptionSpecInfo
6675 mergeExceptionSpecs(Sema &S, FunctionProtoType::ExceptionSpecInfo ESI1,
6676                     FunctionProtoType::ExceptionSpecInfo ESI2,
6677                     SmallVectorImpl<QualType> &ExceptionTypeStorage) {
6678   ExceptionSpecificationType EST1 = ESI1.Type;
6679   ExceptionSpecificationType EST2 = ESI2.Type;
6680 
6681   // If either of them can throw anything, that is the result.
6682   if (EST1 == EST_None) return ESI1;
6683   if (EST2 == EST_None) return ESI2;
6684   if (EST1 == EST_MSAny) return ESI1;
6685   if (EST2 == EST_MSAny) return ESI2;
6686   if (EST1 == EST_NoexceptFalse) return ESI1;
6687   if (EST2 == EST_NoexceptFalse) return ESI2;
6688 
6689   // If either of them is non-throwing, the result is the other.
6690   if (EST1 == EST_NoThrow) return ESI2;
6691   if (EST2 == EST_NoThrow) return ESI1;
6692   if (EST1 == EST_DynamicNone) return ESI2;
6693   if (EST2 == EST_DynamicNone) return ESI1;
6694   if (EST1 == EST_BasicNoexcept) return ESI2;
6695   if (EST2 == EST_BasicNoexcept) return ESI1;
6696   if (EST1 == EST_NoexceptTrue) return ESI2;
6697   if (EST2 == EST_NoexceptTrue) return ESI1;
6698 
6699   // If we're left with value-dependent computed noexcept expressions, we're
6700   // stuck. Before C++17, we can just drop the exception specification entirely,
6701   // since it's not actually part of the canonical type. And this should never
6702   // happen in C++17, because it would mean we were computing the composite
6703   // pointer type of dependent types, which should never happen.
6704   if (EST1 == EST_DependentNoexcept || EST2 == EST_DependentNoexcept) {
6705     assert(!S.getLangOpts().CPlusPlus17 &&
6706            "computing composite pointer type of dependent types");
6707     return FunctionProtoType::ExceptionSpecInfo();
6708   }
6709 
6710   // Switch over the possibilities so that people adding new values know to
6711   // update this function.
6712   switch (EST1) {
6713   case EST_None:
6714   case EST_DynamicNone:
6715   case EST_MSAny:
6716   case EST_BasicNoexcept:
6717   case EST_DependentNoexcept:
6718   case EST_NoexceptFalse:
6719   case EST_NoexceptTrue:
6720   case EST_NoThrow:
6721     llvm_unreachable("handled above");
6722 
6723   case EST_Dynamic: {
6724     // This is the fun case: both exception specifications are dynamic. Form
6725     // the union of the two lists.
6726     assert(EST2 == EST_Dynamic && "other cases should already be handled");
6727     llvm::SmallPtrSet<QualType, 8> Found;
6728     for (auto &Exceptions : {ESI1.Exceptions, ESI2.Exceptions})
6729       for (QualType E : Exceptions)
6730         if (Found.insert(S.Context.getCanonicalType(E)).second)
6731           ExceptionTypeStorage.push_back(E);
6732 
6733     FunctionProtoType::ExceptionSpecInfo Result(EST_Dynamic);
6734     Result.Exceptions = ExceptionTypeStorage;
6735     return Result;
6736   }
6737 
6738   case EST_Unevaluated:
6739   case EST_Uninstantiated:
6740   case EST_Unparsed:
6741     llvm_unreachable("shouldn't see unresolved exception specifications here");
6742   }
6743 
6744   llvm_unreachable("invalid ExceptionSpecificationType");
6745 }
6746 
6747 /// Find a merged pointer type and convert the two expressions to it.
6748 ///
6749 /// This finds the composite pointer type for \p E1 and \p E2 according to
6750 /// C++2a [expr.type]p3. It converts both expressions to this type and returns
6751 /// it.  It does not emit diagnostics (FIXME: that's not true if \p ConvertArgs
6752 /// is \c true).
6753 ///
6754 /// \param Loc The location of the operator requiring these two expressions to
6755 /// be converted to the composite pointer type.
6756 ///
6757 /// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type.
6758 QualType Sema::FindCompositePointerType(SourceLocation Loc,
6759                                         Expr *&E1, Expr *&E2,
6760                                         bool ConvertArgs) {
6761   assert(getLangOpts().CPlusPlus && "This function assumes C++");
6762 
6763   // C++1z [expr]p14:
6764   //   The composite pointer type of two operands p1 and p2 having types T1
6765   //   and T2
6766   QualType T1 = E1->getType(), T2 = E2->getType();
6767 
6768   //   where at least one is a pointer or pointer to member type or
6769   //   std::nullptr_t is:
6770   bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() ||
6771                          T1->isNullPtrType();
6772   bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() ||
6773                          T2->isNullPtrType();
6774   if (!T1IsPointerLike && !T2IsPointerLike)
6775     return QualType();
6776 
6777   //   - if both p1 and p2 are null pointer constants, std::nullptr_t;
6778   // This can't actually happen, following the standard, but we also use this
6779   // to implement the end of [expr.conv], which hits this case.
6780   //
6781   //   - if either p1 or p2 is a null pointer constant, T2 or T1, respectively;
6782   if (T1IsPointerLike &&
6783       E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6784     if (ConvertArgs)
6785       E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType()
6786                                          ? CK_NullToMemberPointer
6787                                          : CK_NullToPointer).get();
6788     return T1;
6789   }
6790   if (T2IsPointerLike &&
6791       E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6792     if (ConvertArgs)
6793       E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType()
6794                                          ? CK_NullToMemberPointer
6795                                          : CK_NullToPointer).get();
6796     return T2;
6797   }
6798 
6799   // Now both have to be pointers or member pointers.
6800   if (!T1IsPointerLike || !T2IsPointerLike)
6801     return QualType();
6802   assert(!T1->isNullPtrType() && !T2->isNullPtrType() &&
6803          "nullptr_t should be a null pointer constant");
6804 
6805   struct Step {
6806     enum Kind { Pointer, ObjCPointer, MemberPointer, Array } K;
6807     // Qualifiers to apply under the step kind.
6808     Qualifiers Quals;
6809     /// The class for a pointer-to-member; a constant array type with a bound
6810     /// (if any) for an array.
6811     const Type *ClassOrBound;
6812 
6813     Step(Kind K, const Type *ClassOrBound = nullptr)
6814         : K(K), ClassOrBound(ClassOrBound) {}
6815     QualType rebuild(ASTContext &Ctx, QualType T) const {
6816       T = Ctx.getQualifiedType(T, Quals);
6817       switch (K) {
6818       case Pointer:
6819         return Ctx.getPointerType(T);
6820       case MemberPointer:
6821         return Ctx.getMemberPointerType(T, ClassOrBound);
6822       case ObjCPointer:
6823         return Ctx.getObjCObjectPointerType(T);
6824       case Array:
6825         if (auto *CAT = cast_or_null<ConstantArrayType>(ClassOrBound))
6826           return Ctx.getConstantArrayType(T, CAT->getSize(), nullptr,
6827                                           ArrayType::Normal, 0);
6828         else
6829           return Ctx.getIncompleteArrayType(T, ArrayType::Normal, 0);
6830       }
6831       llvm_unreachable("unknown step kind");
6832     }
6833   };
6834 
6835   SmallVector<Step, 8> Steps;
6836 
6837   //  - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
6838   //    is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
6839   //    the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1,
6840   //    respectively;
6841   //  - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer
6842   //    to member of C2 of type cv2 U2" for some non-function type U, where
6843   //    C1 is reference-related to C2 or C2 is reference-related to C1, the
6844   //    cv-combined type of T2 and T1 or the cv-combined type of T1 and T2,
6845   //    respectively;
6846   //  - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and
6847   //    T2;
6848   //
6849   // Dismantle T1 and T2 to simultaneously determine whether they are similar
6850   // and to prepare to form the cv-combined type if so.
6851   QualType Composite1 = T1;
6852   QualType Composite2 = T2;
6853   unsigned NeedConstBefore = 0;
6854   while (true) {
6855     assert(!Composite1.isNull() && !Composite2.isNull());
6856 
6857     Qualifiers Q1, Q2;
6858     Composite1 = Context.getUnqualifiedArrayType(Composite1, Q1);
6859     Composite2 = Context.getUnqualifiedArrayType(Composite2, Q2);
6860 
6861     // Top-level qualifiers are ignored. Merge at all lower levels.
6862     if (!Steps.empty()) {
6863       // Find the qualifier union: (approximately) the unique minimal set of
6864       // qualifiers that is compatible with both types.
6865       Qualifiers Quals = Qualifiers::fromCVRUMask(Q1.getCVRUQualifiers() |
6866                                                   Q2.getCVRUQualifiers());
6867 
6868       // Under one level of pointer or pointer-to-member, we can change to an
6869       // unambiguous compatible address space.
6870       if (Q1.getAddressSpace() == Q2.getAddressSpace()) {
6871         Quals.setAddressSpace(Q1.getAddressSpace());
6872       } else if (Steps.size() == 1) {
6873         bool MaybeQ1 = Q1.isAddressSpaceSupersetOf(Q2);
6874         bool MaybeQ2 = Q2.isAddressSpaceSupersetOf(Q1);
6875         if (MaybeQ1 == MaybeQ2) {
6876           // Exception for ptr size address spaces. Should be able to choose
6877           // either address space during comparison.
6878           if (isPtrSizeAddressSpace(Q1.getAddressSpace()) ||
6879               isPtrSizeAddressSpace(Q2.getAddressSpace()))
6880             MaybeQ1 = true;
6881           else
6882             return QualType(); // No unique best address space.
6883         }
6884         Quals.setAddressSpace(MaybeQ1 ? Q1.getAddressSpace()
6885                                       : Q2.getAddressSpace());
6886       } else {
6887         return QualType();
6888       }
6889 
6890       // FIXME: In C, we merge __strong and none to __strong at the top level.
6891       if (Q1.getObjCGCAttr() == Q2.getObjCGCAttr())
6892         Quals.setObjCGCAttr(Q1.getObjCGCAttr());
6893       else if (T1->isVoidPointerType() || T2->isVoidPointerType())
6894         assert(Steps.size() == 1);
6895       else
6896         return QualType();
6897 
6898       // Mismatched lifetime qualifiers never compatibly include each other.
6899       if (Q1.getObjCLifetime() == Q2.getObjCLifetime())
6900         Quals.setObjCLifetime(Q1.getObjCLifetime());
6901       else if (T1->isVoidPointerType() || T2->isVoidPointerType())
6902         assert(Steps.size() == 1);
6903       else
6904         return QualType();
6905 
6906       Steps.back().Quals = Quals;
6907       if (Q1 != Quals || Q2 != Quals)
6908         NeedConstBefore = Steps.size() - 1;
6909     }
6910 
6911     // FIXME: Can we unify the following with UnwrapSimilarTypes?
6912 
6913     const ArrayType *Arr1, *Arr2;
6914     if ((Arr1 = Context.getAsArrayType(Composite1)) &&
6915         (Arr2 = Context.getAsArrayType(Composite2))) {
6916       auto *CAT1 = dyn_cast<ConstantArrayType>(Arr1);
6917       auto *CAT2 = dyn_cast<ConstantArrayType>(Arr2);
6918       if (CAT1 && CAT2 && CAT1->getSize() == CAT2->getSize()) {
6919         Composite1 = Arr1->getElementType();
6920         Composite2 = Arr2->getElementType();
6921         Steps.emplace_back(Step::Array, CAT1);
6922         continue;
6923       }
6924       bool IAT1 = isa<IncompleteArrayType>(Arr1);
6925       bool IAT2 = isa<IncompleteArrayType>(Arr2);
6926       if ((IAT1 && IAT2) ||
6927           (getLangOpts().CPlusPlus20 && (IAT1 != IAT2) &&
6928            ((bool)CAT1 != (bool)CAT2) &&
6929            (Steps.empty() || Steps.back().K != Step::Array))) {
6930         // In C++20 onwards, we can unify an array of N T with an array of
6931         // a different or unknown bound. But we can't form an array whose
6932         // element type is an array of unknown bound by doing so.
6933         Composite1 = Arr1->getElementType();
6934         Composite2 = Arr2->getElementType();
6935         Steps.emplace_back(Step::Array);
6936         if (CAT1 || CAT2)
6937           NeedConstBefore = Steps.size();
6938         continue;
6939       }
6940     }
6941 
6942     const PointerType *Ptr1, *Ptr2;
6943     if ((Ptr1 = Composite1->getAs<PointerType>()) &&
6944         (Ptr2 = Composite2->getAs<PointerType>())) {
6945       Composite1 = Ptr1->getPointeeType();
6946       Composite2 = Ptr2->getPointeeType();
6947       Steps.emplace_back(Step::Pointer);
6948       continue;
6949     }
6950 
6951     const ObjCObjectPointerType *ObjPtr1, *ObjPtr2;
6952     if ((ObjPtr1 = Composite1->getAs<ObjCObjectPointerType>()) &&
6953         (ObjPtr2 = Composite2->getAs<ObjCObjectPointerType>())) {
6954       Composite1 = ObjPtr1->getPointeeType();
6955       Composite2 = ObjPtr2->getPointeeType();
6956       Steps.emplace_back(Step::ObjCPointer);
6957       continue;
6958     }
6959 
6960     const MemberPointerType *MemPtr1, *MemPtr2;
6961     if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
6962         (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
6963       Composite1 = MemPtr1->getPointeeType();
6964       Composite2 = MemPtr2->getPointeeType();
6965 
6966       // At the top level, we can perform a base-to-derived pointer-to-member
6967       // conversion:
6968       //
6969       //  - [...] where C1 is reference-related to C2 or C2 is
6970       //    reference-related to C1
6971       //
6972       // (Note that the only kinds of reference-relatedness in scope here are
6973       // "same type or derived from".) At any other level, the class must
6974       // exactly match.
6975       const Type *Class = nullptr;
6976       QualType Cls1(MemPtr1->getClass(), 0);
6977       QualType Cls2(MemPtr2->getClass(), 0);
6978       if (Context.hasSameType(Cls1, Cls2))
6979         Class = MemPtr1->getClass();
6980       else if (Steps.empty())
6981         Class = IsDerivedFrom(Loc, Cls1, Cls2) ? MemPtr1->getClass() :
6982                 IsDerivedFrom(Loc, Cls2, Cls1) ? MemPtr2->getClass() : nullptr;
6983       if (!Class)
6984         return QualType();
6985 
6986       Steps.emplace_back(Step::MemberPointer, Class);
6987       continue;
6988     }
6989 
6990     // Special case: at the top level, we can decompose an Objective-C pointer
6991     // and a 'cv void *'. Unify the qualifiers.
6992     if (Steps.empty() && ((Composite1->isVoidPointerType() &&
6993                            Composite2->isObjCObjectPointerType()) ||
6994                           (Composite1->isObjCObjectPointerType() &&
6995                            Composite2->isVoidPointerType()))) {
6996       Composite1 = Composite1->getPointeeType();
6997       Composite2 = Composite2->getPointeeType();
6998       Steps.emplace_back(Step::Pointer);
6999       continue;
7000     }
7001 
7002     // FIXME: block pointer types?
7003 
7004     // Cannot unwrap any more types.
7005     break;
7006   }
7007 
7008   //  - if T1 or T2 is "pointer to noexcept function" and the other type is
7009   //    "pointer to function", where the function types are otherwise the same,
7010   //    "pointer to function";
7011   //  - if T1 or T2 is "pointer to member of C1 of type function", the other
7012   //    type is "pointer to member of C2 of type noexcept function", and C1
7013   //    is reference-related to C2 or C2 is reference-related to C1, where
7014   //    the function types are otherwise the same, "pointer to member of C2 of
7015   //    type function" or "pointer to member of C1 of type function",
7016   //    respectively;
7017   //
7018   // We also support 'noreturn' here, so as a Clang extension we generalize the
7019   // above to:
7020   //
7021   //  - [Clang] If T1 and T2 are both of type "pointer to function" or
7022   //    "pointer to member function" and the pointee types can be unified
7023   //    by a function pointer conversion, that conversion is applied
7024   //    before checking the following rules.
7025   //
7026   // We've already unwrapped down to the function types, and we want to merge
7027   // rather than just convert, so do this ourselves rather than calling
7028   // IsFunctionConversion.
7029   //
7030   // FIXME: In order to match the standard wording as closely as possible, we
7031   // currently only do this under a single level of pointers. Ideally, we would
7032   // allow this in general, and set NeedConstBefore to the relevant depth on
7033   // the side(s) where we changed anything. If we permit that, we should also
7034   // consider this conversion when determining type similarity and model it as
7035   // a qualification conversion.
7036   if (Steps.size() == 1) {
7037     if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) {
7038       if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) {
7039         FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo();
7040         FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo();
7041 
7042         // The result is noreturn if both operands are.
7043         bool Noreturn =
7044             EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn();
7045         EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn);
7046         EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn);
7047 
7048         // The result is nothrow if both operands are.
7049         SmallVector<QualType, 8> ExceptionTypeStorage;
7050         EPI1.ExceptionSpec = EPI2.ExceptionSpec =
7051             mergeExceptionSpecs(*this, EPI1.ExceptionSpec, EPI2.ExceptionSpec,
7052                                 ExceptionTypeStorage);
7053 
7054         Composite1 = Context.getFunctionType(FPT1->getReturnType(),
7055                                              FPT1->getParamTypes(), EPI1);
7056         Composite2 = Context.getFunctionType(FPT2->getReturnType(),
7057                                              FPT2->getParamTypes(), EPI2);
7058       }
7059     }
7060   }
7061 
7062   // There are some more conversions we can perform under exactly one pointer.
7063   if (Steps.size() == 1 && Steps.front().K == Step::Pointer &&
7064       !Context.hasSameType(Composite1, Composite2)) {
7065     //  - if T1 or T2 is "pointer to cv1 void" and the other type is
7066     //    "pointer to cv2 T", where T is an object type or void,
7067     //    "pointer to cv12 void", where cv12 is the union of cv1 and cv2;
7068     if (Composite1->isVoidType() && Composite2->isObjectType())
7069       Composite2 = Composite1;
7070     else if (Composite2->isVoidType() && Composite1->isObjectType())
7071       Composite1 = Composite2;
7072     //  - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
7073     //    is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
7074     //    the cv-combined type of T1 and T2 or the cv-combined type of T2 and
7075     //    T1, respectively;
7076     //
7077     // The "similar type" handling covers all of this except for the "T1 is a
7078     // base class of T2" case in the definition of reference-related.
7079     else if (IsDerivedFrom(Loc, Composite1, Composite2))
7080       Composite1 = Composite2;
7081     else if (IsDerivedFrom(Loc, Composite2, Composite1))
7082       Composite2 = Composite1;
7083   }
7084 
7085   // At this point, either the inner types are the same or we have failed to
7086   // find a composite pointer type.
7087   if (!Context.hasSameType(Composite1, Composite2))
7088     return QualType();
7089 
7090   // Per C++ [conv.qual]p3, add 'const' to every level before the last
7091   // differing qualifier.
7092   for (unsigned I = 0; I != NeedConstBefore; ++I)
7093     Steps[I].Quals.addConst();
7094 
7095   // Rebuild the composite type.
7096   QualType Composite = Composite1;
7097   for (auto &S : llvm::reverse(Steps))
7098     Composite = S.rebuild(Context, Composite);
7099 
7100   if (ConvertArgs) {
7101     // Convert the expressions to the composite pointer type.
7102     InitializedEntity Entity =
7103         InitializedEntity::InitializeTemporary(Composite);
7104     InitializationKind Kind =
7105         InitializationKind::CreateCopy(Loc, SourceLocation());
7106 
7107     InitializationSequence E1ToC(*this, Entity, Kind, E1);
7108     if (!E1ToC)
7109       return QualType();
7110 
7111     InitializationSequence E2ToC(*this, Entity, Kind, E2);
7112     if (!E2ToC)
7113       return QualType();
7114 
7115     // FIXME: Let the caller know if these fail to avoid duplicate diagnostics.
7116     ExprResult E1Result = E1ToC.Perform(*this, Entity, Kind, E1);
7117     if (E1Result.isInvalid())
7118       return QualType();
7119     E1 = E1Result.get();
7120 
7121     ExprResult E2Result = E2ToC.Perform(*this, Entity, Kind, E2);
7122     if (E2Result.isInvalid())
7123       return QualType();
7124     E2 = E2Result.get();
7125   }
7126 
7127   return Composite;
7128 }
7129 
7130 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
7131   if (!E)
7132     return ExprError();
7133 
7134   assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
7135 
7136   // If the result is a glvalue, we shouldn't bind it.
7137   if (E->isGLValue())
7138     return E;
7139 
7140   // In ARC, calls that return a retainable type can return retained,
7141   // in which case we have to insert a consuming cast.
7142   if (getLangOpts().ObjCAutoRefCount &&
7143       E->getType()->isObjCRetainableType()) {
7144 
7145     bool ReturnsRetained;
7146 
7147     // For actual calls, we compute this by examining the type of the
7148     // called value.
7149     if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
7150       Expr *Callee = Call->getCallee()->IgnoreParens();
7151       QualType T = Callee->getType();
7152 
7153       if (T == Context.BoundMemberTy) {
7154         // Handle pointer-to-members.
7155         if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
7156           T = BinOp->getRHS()->getType();
7157         else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
7158           T = Mem->getMemberDecl()->getType();
7159       }
7160 
7161       if (const PointerType *Ptr = T->getAs<PointerType>())
7162         T = Ptr->getPointeeType();
7163       else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
7164         T = Ptr->getPointeeType();
7165       else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
7166         T = MemPtr->getPointeeType();
7167 
7168       auto *FTy = T->castAs<FunctionType>();
7169       ReturnsRetained = FTy->getExtInfo().getProducesResult();
7170 
7171     // ActOnStmtExpr arranges things so that StmtExprs of retainable
7172     // type always produce a +1 object.
7173     } else if (isa<StmtExpr>(E)) {
7174       ReturnsRetained = true;
7175 
7176     // We hit this case with the lambda conversion-to-block optimization;
7177     // we don't want any extra casts here.
7178     } else if (isa<CastExpr>(E) &&
7179                isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
7180       return E;
7181 
7182     // For message sends and property references, we try to find an
7183     // actual method.  FIXME: we should infer retention by selector in
7184     // cases where we don't have an actual method.
7185     } else {
7186       ObjCMethodDecl *D = nullptr;
7187       if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
7188         D = Send->getMethodDecl();
7189       } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
7190         D = BoxedExpr->getBoxingMethod();
7191       } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
7192         // Don't do reclaims if we're using the zero-element array
7193         // constant.
7194         if (ArrayLit->getNumElements() == 0 &&
7195             Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
7196           return E;
7197 
7198         D = ArrayLit->getArrayWithObjectsMethod();
7199       } else if (ObjCDictionaryLiteral *DictLit
7200                                         = dyn_cast<ObjCDictionaryLiteral>(E)) {
7201         // Don't do reclaims if we're using the zero-element dictionary
7202         // constant.
7203         if (DictLit->getNumElements() == 0 &&
7204             Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
7205           return E;
7206 
7207         D = DictLit->getDictWithObjectsMethod();
7208       }
7209 
7210       ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
7211 
7212       // Don't do reclaims on performSelector calls; despite their
7213       // return type, the invoked method doesn't necessarily actually
7214       // return an object.
7215       if (!ReturnsRetained &&
7216           D && D->getMethodFamily() == OMF_performSelector)
7217         return E;
7218     }
7219 
7220     // Don't reclaim an object of Class type.
7221     if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
7222       return E;
7223 
7224     Cleanup.setExprNeedsCleanups(true);
7225 
7226     CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
7227                                    : CK_ARCReclaimReturnedObject);
7228     return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
7229                                     VK_PRValue, FPOptionsOverride());
7230   }
7231 
7232   if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
7233     Cleanup.setExprNeedsCleanups(true);
7234 
7235   if (!getLangOpts().CPlusPlus)
7236     return E;
7237 
7238   // Search for the base element type (cf. ASTContext::getBaseElementType) with
7239   // a fast path for the common case that the type is directly a RecordType.
7240   const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
7241   const RecordType *RT = nullptr;
7242   while (!RT) {
7243     switch (T->getTypeClass()) {
7244     case Type::Record:
7245       RT = cast<RecordType>(T);
7246       break;
7247     case Type::ConstantArray:
7248     case Type::IncompleteArray:
7249     case Type::VariableArray:
7250     case Type::DependentSizedArray:
7251       T = cast<ArrayType>(T)->getElementType().getTypePtr();
7252       break;
7253     default:
7254       return E;
7255     }
7256   }
7257 
7258   // That should be enough to guarantee that this type is complete, if we're
7259   // not processing a decltype expression.
7260   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
7261   if (RD->isInvalidDecl() || RD->isDependentContext())
7262     return E;
7263 
7264   bool IsDecltype = ExprEvalContexts.back().ExprContext ==
7265                     ExpressionEvaluationContextRecord::EK_Decltype;
7266   CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
7267 
7268   if (Destructor) {
7269     MarkFunctionReferenced(E->getExprLoc(), Destructor);
7270     CheckDestructorAccess(E->getExprLoc(), Destructor,
7271                           PDiag(diag::err_access_dtor_temp)
7272                             << E->getType());
7273     if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
7274       return ExprError();
7275 
7276     // If destructor is trivial, we can avoid the extra copy.
7277     if (Destructor->isTrivial())
7278       return E;
7279 
7280     // We need a cleanup, but we don't need to remember the temporary.
7281     Cleanup.setExprNeedsCleanups(true);
7282   }
7283 
7284   CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
7285   CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
7286 
7287   if (IsDecltype)
7288     ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
7289 
7290   return Bind;
7291 }
7292 
7293 ExprResult
7294 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
7295   if (SubExpr.isInvalid())
7296     return ExprError();
7297 
7298   return MaybeCreateExprWithCleanups(SubExpr.get());
7299 }
7300 
7301 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
7302   assert(SubExpr && "subexpression can't be null!");
7303 
7304   CleanupVarDeclMarking();
7305 
7306   unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
7307   assert(ExprCleanupObjects.size() >= FirstCleanup);
7308   assert(Cleanup.exprNeedsCleanups() ||
7309          ExprCleanupObjects.size() == FirstCleanup);
7310   if (!Cleanup.exprNeedsCleanups())
7311     return SubExpr;
7312 
7313   auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
7314                                      ExprCleanupObjects.size() - FirstCleanup);
7315 
7316   auto *E = ExprWithCleanups::Create(
7317       Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups);
7318   DiscardCleanupsInEvaluationContext();
7319 
7320   return E;
7321 }
7322 
7323 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
7324   assert(SubStmt && "sub-statement can't be null!");
7325 
7326   CleanupVarDeclMarking();
7327 
7328   if (!Cleanup.exprNeedsCleanups())
7329     return SubStmt;
7330 
7331   // FIXME: In order to attach the temporaries, wrap the statement into
7332   // a StmtExpr; currently this is only used for asm statements.
7333   // This is hacky, either create a new CXXStmtWithTemporaries statement or
7334   // a new AsmStmtWithTemporaries.
7335   CompoundStmt *CompStmt =
7336       CompoundStmt::Create(Context, SubStmt, FPOptionsOverride(),
7337                            SourceLocation(), SourceLocation());
7338   Expr *E = new (Context)
7339       StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), SourceLocation(),
7340                /*FIXME TemplateDepth=*/0);
7341   return MaybeCreateExprWithCleanups(E);
7342 }
7343 
7344 /// Process the expression contained within a decltype. For such expressions,
7345 /// certain semantic checks on temporaries are delayed until this point, and
7346 /// are omitted for the 'topmost' call in the decltype expression. If the
7347 /// topmost call bound a temporary, strip that temporary off the expression.
7348 ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
7349   assert(ExprEvalContexts.back().ExprContext ==
7350              ExpressionEvaluationContextRecord::EK_Decltype &&
7351          "not in a decltype expression");
7352 
7353   ExprResult Result = CheckPlaceholderExpr(E);
7354   if (Result.isInvalid())
7355     return ExprError();
7356   E = Result.get();
7357 
7358   // C++11 [expr.call]p11:
7359   //   If a function call is a prvalue of object type,
7360   // -- if the function call is either
7361   //   -- the operand of a decltype-specifier, or
7362   //   -- the right operand of a comma operator that is the operand of a
7363   //      decltype-specifier,
7364   //   a temporary object is not introduced for the prvalue.
7365 
7366   // Recursively rebuild ParenExprs and comma expressions to strip out the
7367   // outermost CXXBindTemporaryExpr, if any.
7368   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
7369     ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
7370     if (SubExpr.isInvalid())
7371       return ExprError();
7372     if (SubExpr.get() == PE->getSubExpr())
7373       return E;
7374     return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
7375   }
7376   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
7377     if (BO->getOpcode() == BO_Comma) {
7378       ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
7379       if (RHS.isInvalid())
7380         return ExprError();
7381       if (RHS.get() == BO->getRHS())
7382         return E;
7383       return BinaryOperator::Create(Context, BO->getLHS(), RHS.get(), BO_Comma,
7384                                     BO->getType(), BO->getValueKind(),
7385                                     BO->getObjectKind(), BO->getOperatorLoc(),
7386                                     BO->getFPFeatures(getLangOpts()));
7387     }
7388   }
7389 
7390   CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
7391   CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
7392                               : nullptr;
7393   if (TopCall)
7394     E = TopCall;
7395   else
7396     TopBind = nullptr;
7397 
7398   // Disable the special decltype handling now.
7399   ExprEvalContexts.back().ExprContext =
7400       ExpressionEvaluationContextRecord::EK_Other;
7401 
7402   Result = CheckUnevaluatedOperand(E);
7403   if (Result.isInvalid())
7404     return ExprError();
7405   E = Result.get();
7406 
7407   // In MS mode, don't perform any extra checking of call return types within a
7408   // decltype expression.
7409   if (getLangOpts().MSVCCompat)
7410     return E;
7411 
7412   // Perform the semantic checks we delayed until this point.
7413   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
7414        I != N; ++I) {
7415     CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
7416     if (Call == TopCall)
7417       continue;
7418 
7419     if (CheckCallReturnType(Call->getCallReturnType(Context),
7420                             Call->getBeginLoc(), Call, Call->getDirectCallee()))
7421       return ExprError();
7422   }
7423 
7424   // Now all relevant types are complete, check the destructors are accessible
7425   // and non-deleted, and annotate them on the temporaries.
7426   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
7427        I != N; ++I) {
7428     CXXBindTemporaryExpr *Bind =
7429       ExprEvalContexts.back().DelayedDecltypeBinds[I];
7430     if (Bind == TopBind)
7431       continue;
7432 
7433     CXXTemporary *Temp = Bind->getTemporary();
7434 
7435     CXXRecordDecl *RD =
7436       Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
7437     CXXDestructorDecl *Destructor = LookupDestructor(RD);
7438     Temp->setDestructor(Destructor);
7439 
7440     MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
7441     CheckDestructorAccess(Bind->getExprLoc(), Destructor,
7442                           PDiag(diag::err_access_dtor_temp)
7443                             << Bind->getType());
7444     if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
7445       return ExprError();
7446 
7447     // We need a cleanup, but we don't need to remember the temporary.
7448     Cleanup.setExprNeedsCleanups(true);
7449   }
7450 
7451   // Possibly strip off the top CXXBindTemporaryExpr.
7452   return E;
7453 }
7454 
7455 /// Note a set of 'operator->' functions that were used for a member access.
7456 static void noteOperatorArrows(Sema &S,
7457                                ArrayRef<FunctionDecl *> OperatorArrows) {
7458   unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
7459   // FIXME: Make this configurable?
7460   unsigned Limit = 9;
7461   if (OperatorArrows.size() > Limit) {
7462     // Produce Limit-1 normal notes and one 'skipping' note.
7463     SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
7464     SkipCount = OperatorArrows.size() - (Limit - 1);
7465   }
7466 
7467   for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
7468     if (I == SkipStart) {
7469       S.Diag(OperatorArrows[I]->getLocation(),
7470              diag::note_operator_arrows_suppressed)
7471           << SkipCount;
7472       I += SkipCount;
7473     } else {
7474       S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
7475           << OperatorArrows[I]->getCallResultType();
7476       ++I;
7477     }
7478   }
7479 }
7480 
7481 ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base,
7482                                               SourceLocation OpLoc,
7483                                               tok::TokenKind OpKind,
7484                                               ParsedType &ObjectType,
7485                                               bool &MayBePseudoDestructor) {
7486   // Since this might be a postfix expression, get rid of ParenListExprs.
7487   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
7488   if (Result.isInvalid()) return ExprError();
7489   Base = Result.get();
7490 
7491   Result = CheckPlaceholderExpr(Base);
7492   if (Result.isInvalid()) return ExprError();
7493   Base = Result.get();
7494 
7495   QualType BaseType = Base->getType();
7496   MayBePseudoDestructor = false;
7497   if (BaseType->isDependentType()) {
7498     // If we have a pointer to a dependent type and are using the -> operator,
7499     // the object type is the type that the pointer points to. We might still
7500     // have enough information about that type to do something useful.
7501     if (OpKind == tok::arrow)
7502       if (const PointerType *Ptr = BaseType->getAs<PointerType>())
7503         BaseType = Ptr->getPointeeType();
7504 
7505     ObjectType = ParsedType::make(BaseType);
7506     MayBePseudoDestructor = true;
7507     return Base;
7508   }
7509 
7510   // C++ [over.match.oper]p8:
7511   //   [...] When operator->returns, the operator-> is applied  to the value
7512   //   returned, with the original second operand.
7513   if (OpKind == tok::arrow) {
7514     QualType StartingType = BaseType;
7515     bool NoArrowOperatorFound = false;
7516     bool FirstIteration = true;
7517     FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
7518     // The set of types we've considered so far.
7519     llvm::SmallPtrSet<CanQualType,8> CTypes;
7520     SmallVector<FunctionDecl*, 8> OperatorArrows;
7521     CTypes.insert(Context.getCanonicalType(BaseType));
7522 
7523     while (BaseType->isRecordType()) {
7524       if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
7525         Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
7526           << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
7527         noteOperatorArrows(*this, OperatorArrows);
7528         Diag(OpLoc, diag::note_operator_arrow_depth)
7529           << getLangOpts().ArrowDepth;
7530         return ExprError();
7531       }
7532 
7533       Result = BuildOverloadedArrowExpr(
7534           S, Base, OpLoc,
7535           // When in a template specialization and on the first loop iteration,
7536           // potentially give the default diagnostic (with the fixit in a
7537           // separate note) instead of having the error reported back to here
7538           // and giving a diagnostic with a fixit attached to the error itself.
7539           (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
7540               ? nullptr
7541               : &NoArrowOperatorFound);
7542       if (Result.isInvalid()) {
7543         if (NoArrowOperatorFound) {
7544           if (FirstIteration) {
7545             Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7546               << BaseType << 1 << Base->getSourceRange()
7547               << FixItHint::CreateReplacement(OpLoc, ".");
7548             OpKind = tok::period;
7549             break;
7550           }
7551           Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
7552             << BaseType << Base->getSourceRange();
7553           CallExpr *CE = dyn_cast<CallExpr>(Base);
7554           if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
7555             Diag(CD->getBeginLoc(),
7556                  diag::note_member_reference_arrow_from_operator_arrow);
7557           }
7558         }
7559         return ExprError();
7560       }
7561       Base = Result.get();
7562       if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
7563         OperatorArrows.push_back(OpCall->getDirectCallee());
7564       BaseType = Base->getType();
7565       CanQualType CBaseType = Context.getCanonicalType(BaseType);
7566       if (!CTypes.insert(CBaseType).second) {
7567         Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
7568         noteOperatorArrows(*this, OperatorArrows);
7569         return ExprError();
7570       }
7571       FirstIteration = false;
7572     }
7573 
7574     if (OpKind == tok::arrow) {
7575       if (BaseType->isPointerType())
7576         BaseType = BaseType->getPointeeType();
7577       else if (auto *AT = Context.getAsArrayType(BaseType))
7578         BaseType = AT->getElementType();
7579     }
7580   }
7581 
7582   // Objective-C properties allow "." access on Objective-C pointer types,
7583   // so adjust the base type to the object type itself.
7584   if (BaseType->isObjCObjectPointerType())
7585     BaseType = BaseType->getPointeeType();
7586 
7587   // C++ [basic.lookup.classref]p2:
7588   //   [...] If the type of the object expression is of pointer to scalar
7589   //   type, the unqualified-id is looked up in the context of the complete
7590   //   postfix-expression.
7591   //
7592   // This also indicates that we could be parsing a pseudo-destructor-name.
7593   // Note that Objective-C class and object types can be pseudo-destructor
7594   // expressions or normal member (ivar or property) access expressions, and
7595   // it's legal for the type to be incomplete if this is a pseudo-destructor
7596   // call.  We'll do more incomplete-type checks later in the lookup process,
7597   // so just skip this check for ObjC types.
7598   if (!BaseType->isRecordType()) {
7599     ObjectType = ParsedType::make(BaseType);
7600     MayBePseudoDestructor = true;
7601     return Base;
7602   }
7603 
7604   // The object type must be complete (or dependent), or
7605   // C++11 [expr.prim.general]p3:
7606   //   Unlike the object expression in other contexts, *this is not required to
7607   //   be of complete type for purposes of class member access (5.2.5) outside
7608   //   the member function body.
7609   if (!BaseType->isDependentType() &&
7610       !isThisOutsideMemberFunctionBody(BaseType) &&
7611       RequireCompleteType(OpLoc, BaseType,
7612                           diag::err_incomplete_member_access)) {
7613     return CreateRecoveryExpr(Base->getBeginLoc(), Base->getEndLoc(), {Base});
7614   }
7615 
7616   // C++ [basic.lookup.classref]p2:
7617   //   If the id-expression in a class member access (5.2.5) is an
7618   //   unqualified-id, and the type of the object expression is of a class
7619   //   type C (or of pointer to a class type C), the unqualified-id is looked
7620   //   up in the scope of class C. [...]
7621   ObjectType = ParsedType::make(BaseType);
7622   return Base;
7623 }
7624 
7625 static bool CheckArrow(Sema &S, QualType &ObjectType, Expr *&Base,
7626                        tok::TokenKind &OpKind, SourceLocation OpLoc) {
7627   if (Base->hasPlaceholderType()) {
7628     ExprResult result = S.CheckPlaceholderExpr(Base);
7629     if (result.isInvalid()) return true;
7630     Base = result.get();
7631   }
7632   ObjectType = Base->getType();
7633 
7634   // C++ [expr.pseudo]p2:
7635   //   The left-hand side of the dot operator shall be of scalar type. The
7636   //   left-hand side of the arrow operator shall be of pointer to scalar type.
7637   //   This scalar type is the object type.
7638   // Note that this is rather different from the normal handling for the
7639   // arrow operator.
7640   if (OpKind == tok::arrow) {
7641     // The operator requires a prvalue, so perform lvalue conversions.
7642     // Only do this if we might plausibly end with a pointer, as otherwise
7643     // this was likely to be intended to be a '.'.
7644     if (ObjectType->isPointerType() || ObjectType->isArrayType() ||
7645         ObjectType->isFunctionType()) {
7646       ExprResult BaseResult = S.DefaultFunctionArrayLvalueConversion(Base);
7647       if (BaseResult.isInvalid())
7648         return true;
7649       Base = BaseResult.get();
7650       ObjectType = Base->getType();
7651     }
7652 
7653     if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
7654       ObjectType = Ptr->getPointeeType();
7655     } else if (!Base->isTypeDependent()) {
7656       // The user wrote "p->" when they probably meant "p."; fix it.
7657       S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7658         << ObjectType << true
7659         << FixItHint::CreateReplacement(OpLoc, ".");
7660       if (S.isSFINAEContext())
7661         return true;
7662 
7663       OpKind = tok::period;
7664     }
7665   }
7666 
7667   return false;
7668 }
7669 
7670 /// Check if it's ok to try and recover dot pseudo destructor calls on
7671 /// pointer objects.
7672 static bool
7673 canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef,
7674                                                    QualType DestructedType) {
7675   // If this is a record type, check if its destructor is callable.
7676   if (auto *RD = DestructedType->getAsCXXRecordDecl()) {
7677     if (RD->hasDefinition())
7678       if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD))
7679         return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false);
7680     return false;
7681   }
7682 
7683   // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor.
7684   return DestructedType->isDependentType() || DestructedType->isScalarType() ||
7685          DestructedType->isVectorType();
7686 }
7687 
7688 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
7689                                            SourceLocation OpLoc,
7690                                            tok::TokenKind OpKind,
7691                                            const CXXScopeSpec &SS,
7692                                            TypeSourceInfo *ScopeTypeInfo,
7693                                            SourceLocation CCLoc,
7694                                            SourceLocation TildeLoc,
7695                                          PseudoDestructorTypeStorage Destructed) {
7696   TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
7697 
7698   QualType ObjectType;
7699   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7700     return ExprError();
7701 
7702   if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
7703       !ObjectType->isVectorType()) {
7704     if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
7705       Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
7706     else {
7707       Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
7708         << ObjectType << Base->getSourceRange();
7709       return ExprError();
7710     }
7711   }
7712 
7713   // C++ [expr.pseudo]p2:
7714   //   [...] The cv-unqualified versions of the object type and of the type
7715   //   designated by the pseudo-destructor-name shall be the same type.
7716   if (DestructedTypeInfo) {
7717     QualType DestructedType = DestructedTypeInfo->getType();
7718     SourceLocation DestructedTypeStart
7719       = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
7720     if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
7721       if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
7722         // Detect dot pseudo destructor calls on pointer objects, e.g.:
7723         //   Foo *foo;
7724         //   foo.~Foo();
7725         if (OpKind == tok::period && ObjectType->isPointerType() &&
7726             Context.hasSameUnqualifiedType(DestructedType,
7727                                            ObjectType->getPointeeType())) {
7728           auto Diagnostic =
7729               Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7730               << ObjectType << /*IsArrow=*/0 << Base->getSourceRange();
7731 
7732           // Issue a fixit only when the destructor is valid.
7733           if (canRecoverDotPseudoDestructorCallsOnPointerObjects(
7734                   *this, DestructedType))
7735             Diagnostic << FixItHint::CreateReplacement(OpLoc, "->");
7736 
7737           // Recover by setting the object type to the destructed type and the
7738           // operator to '->'.
7739           ObjectType = DestructedType;
7740           OpKind = tok::arrow;
7741         } else {
7742           Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
7743               << ObjectType << DestructedType << Base->getSourceRange()
7744               << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
7745 
7746           // Recover by setting the destructed type to the object type.
7747           DestructedType = ObjectType;
7748           DestructedTypeInfo =
7749               Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart);
7750           Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7751         }
7752       } else if (DestructedType.getObjCLifetime() !=
7753                                                 ObjectType.getObjCLifetime()) {
7754 
7755         if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
7756           // Okay: just pretend that the user provided the correctly-qualified
7757           // type.
7758         } else {
7759           Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
7760             << ObjectType << DestructedType << Base->getSourceRange()
7761             << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
7762         }
7763 
7764         // Recover by setting the destructed type to the object type.
7765         DestructedType = ObjectType;
7766         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
7767                                                            DestructedTypeStart);
7768         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7769       }
7770     }
7771   }
7772 
7773   // C++ [expr.pseudo]p2:
7774   //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
7775   //   form
7776   //
7777   //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
7778   //
7779   //   shall designate the same scalar type.
7780   if (ScopeTypeInfo) {
7781     QualType ScopeType = ScopeTypeInfo->getType();
7782     if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
7783         !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
7784 
7785       Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
7786            diag::err_pseudo_dtor_type_mismatch)
7787         << ObjectType << ScopeType << Base->getSourceRange()
7788         << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
7789 
7790       ScopeType = QualType();
7791       ScopeTypeInfo = nullptr;
7792     }
7793   }
7794 
7795   Expr *Result
7796     = new (Context) CXXPseudoDestructorExpr(Context, Base,
7797                                             OpKind == tok::arrow, OpLoc,
7798                                             SS.getWithLocInContext(Context),
7799                                             ScopeTypeInfo,
7800                                             CCLoc,
7801                                             TildeLoc,
7802                                             Destructed);
7803 
7804   return Result;
7805 }
7806 
7807 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
7808                                            SourceLocation OpLoc,
7809                                            tok::TokenKind OpKind,
7810                                            CXXScopeSpec &SS,
7811                                            UnqualifiedId &FirstTypeName,
7812                                            SourceLocation CCLoc,
7813                                            SourceLocation TildeLoc,
7814                                            UnqualifiedId &SecondTypeName) {
7815   assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7816           FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
7817          "Invalid first type name in pseudo-destructor");
7818   assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7819           SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
7820          "Invalid second type name in pseudo-destructor");
7821 
7822   QualType ObjectType;
7823   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7824     return ExprError();
7825 
7826   // Compute the object type that we should use for name lookup purposes. Only
7827   // record types and dependent types matter.
7828   ParsedType ObjectTypePtrForLookup;
7829   if (!SS.isSet()) {
7830     if (ObjectType->isRecordType())
7831       ObjectTypePtrForLookup = ParsedType::make(ObjectType);
7832     else if (ObjectType->isDependentType())
7833       ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
7834   }
7835 
7836   // Convert the name of the type being destructed (following the ~) into a
7837   // type (with source-location information).
7838   QualType DestructedType;
7839   TypeSourceInfo *DestructedTypeInfo = nullptr;
7840   PseudoDestructorTypeStorage Destructed;
7841   if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7842     ParsedType T = getTypeName(*SecondTypeName.Identifier,
7843                                SecondTypeName.StartLocation,
7844                                S, &SS, true, false, ObjectTypePtrForLookup,
7845                                /*IsCtorOrDtorName*/true);
7846     if (!T &&
7847         ((SS.isSet() && !computeDeclContext(SS, false)) ||
7848          (!SS.isSet() && ObjectType->isDependentType()))) {
7849       // The name of the type being destroyed is a dependent name, and we
7850       // couldn't find anything useful in scope. Just store the identifier and
7851       // it's location, and we'll perform (qualified) name lookup again at
7852       // template instantiation time.
7853       Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
7854                                                SecondTypeName.StartLocation);
7855     } else if (!T) {
7856       Diag(SecondTypeName.StartLocation,
7857            diag::err_pseudo_dtor_destructor_non_type)
7858         << SecondTypeName.Identifier << ObjectType;
7859       if (isSFINAEContext())
7860         return ExprError();
7861 
7862       // Recover by assuming we had the right type all along.
7863       DestructedType = ObjectType;
7864     } else
7865       DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
7866   } else {
7867     // Resolve the template-id to a type.
7868     TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
7869     ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7870                                        TemplateId->NumArgs);
7871     TypeResult T = ActOnTemplateIdType(S,
7872                                        SS,
7873                                        TemplateId->TemplateKWLoc,
7874                                        TemplateId->Template,
7875                                        TemplateId->Name,
7876                                        TemplateId->TemplateNameLoc,
7877                                        TemplateId->LAngleLoc,
7878                                        TemplateArgsPtr,
7879                                        TemplateId->RAngleLoc,
7880                                        /*IsCtorOrDtorName*/true);
7881     if (T.isInvalid() || !T.get()) {
7882       // Recover by assuming we had the right type all along.
7883       DestructedType = ObjectType;
7884     } else
7885       DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
7886   }
7887 
7888   // If we've performed some kind of recovery, (re-)build the type source
7889   // information.
7890   if (!DestructedType.isNull()) {
7891     if (!DestructedTypeInfo)
7892       DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
7893                                                   SecondTypeName.StartLocation);
7894     Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7895   }
7896 
7897   // Convert the name of the scope type (the type prior to '::') into a type.
7898   TypeSourceInfo *ScopeTypeInfo = nullptr;
7899   QualType ScopeType;
7900   if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7901       FirstTypeName.Identifier) {
7902     if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7903       ParsedType T = getTypeName(*FirstTypeName.Identifier,
7904                                  FirstTypeName.StartLocation,
7905                                  S, &SS, true, false, ObjectTypePtrForLookup,
7906                                  /*IsCtorOrDtorName*/true);
7907       if (!T) {
7908         Diag(FirstTypeName.StartLocation,
7909              diag::err_pseudo_dtor_destructor_non_type)
7910           << FirstTypeName.Identifier << ObjectType;
7911 
7912         if (isSFINAEContext())
7913           return ExprError();
7914 
7915         // Just drop this type. It's unnecessary anyway.
7916         ScopeType = QualType();
7917       } else
7918         ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
7919     } else {
7920       // Resolve the template-id to a type.
7921       TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
7922       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7923                                          TemplateId->NumArgs);
7924       TypeResult T = ActOnTemplateIdType(S,
7925                                          SS,
7926                                          TemplateId->TemplateKWLoc,
7927                                          TemplateId->Template,
7928                                          TemplateId->Name,
7929                                          TemplateId->TemplateNameLoc,
7930                                          TemplateId->LAngleLoc,
7931                                          TemplateArgsPtr,
7932                                          TemplateId->RAngleLoc,
7933                                          /*IsCtorOrDtorName*/true);
7934       if (T.isInvalid() || !T.get()) {
7935         // Recover by dropping this type.
7936         ScopeType = QualType();
7937       } else
7938         ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
7939     }
7940   }
7941 
7942   if (!ScopeType.isNull() && !ScopeTypeInfo)
7943     ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
7944                                                   FirstTypeName.StartLocation);
7945 
7946 
7947   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
7948                                    ScopeTypeInfo, CCLoc, TildeLoc,
7949                                    Destructed);
7950 }
7951 
7952 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
7953                                            SourceLocation OpLoc,
7954                                            tok::TokenKind OpKind,
7955                                            SourceLocation TildeLoc,
7956                                            const DeclSpec& DS) {
7957   QualType ObjectType;
7958   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7959     return ExprError();
7960 
7961   if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
7962     Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
7963     return true;
7964   }
7965 
7966   QualType T = BuildDecltypeType(DS.getRepAsExpr(), /*AsUnevaluated=*/false);
7967 
7968   TypeLocBuilder TLB;
7969   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
7970   DecltypeTL.setDecltypeLoc(DS.getTypeSpecTypeLoc());
7971   DecltypeTL.setRParenLoc(DS.getTypeofParensRange().getEnd());
7972   TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
7973   PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
7974 
7975   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
7976                                    nullptr, SourceLocation(), TildeLoc,
7977                                    Destructed);
7978 }
7979 
7980 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
7981                                         CXXConversionDecl *Method,
7982                                         bool HadMultipleCandidates) {
7983   // Convert the expression to match the conversion function's implicit object
7984   // parameter.
7985   ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr,
7986                                           FoundDecl, Method);
7987   if (Exp.isInvalid())
7988     return true;
7989 
7990   if (Method->getParent()->isLambda() &&
7991       Method->getConversionType()->isBlockPointerType()) {
7992     // This is a lambda conversion to block pointer; check if the argument
7993     // was a LambdaExpr.
7994     Expr *SubE = E;
7995     CastExpr *CE = dyn_cast<CastExpr>(SubE);
7996     if (CE && CE->getCastKind() == CK_NoOp)
7997       SubE = CE->getSubExpr();
7998     SubE = SubE->IgnoreParens();
7999     if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
8000       SubE = BE->getSubExpr();
8001     if (isa<LambdaExpr>(SubE)) {
8002       // For the conversion to block pointer on a lambda expression, we
8003       // construct a special BlockLiteral instead; this doesn't really make
8004       // a difference in ARC, but outside of ARC the resulting block literal
8005       // follows the normal lifetime rules for block literals instead of being
8006       // autoreleased.
8007       PushExpressionEvaluationContext(
8008           ExpressionEvaluationContext::PotentiallyEvaluated);
8009       ExprResult BlockExp = BuildBlockForLambdaConversion(
8010           Exp.get()->getExprLoc(), Exp.get()->getExprLoc(), Method, Exp.get());
8011       PopExpressionEvaluationContext();
8012 
8013       // FIXME: This note should be produced by a CodeSynthesisContext.
8014       if (BlockExp.isInvalid())
8015         Diag(Exp.get()->getExprLoc(), diag::note_lambda_to_block_conv);
8016       return BlockExp;
8017     }
8018   }
8019 
8020   MemberExpr *ME =
8021       BuildMemberExpr(Exp.get(), /*IsArrow=*/false, SourceLocation(),
8022                       NestedNameSpecifierLoc(), SourceLocation(), Method,
8023                       DeclAccessPair::make(FoundDecl, FoundDecl->getAccess()),
8024                       HadMultipleCandidates, DeclarationNameInfo(),
8025                       Context.BoundMemberTy, VK_PRValue, OK_Ordinary);
8026 
8027   QualType ResultType = Method->getReturnType();
8028   ExprValueKind VK = Expr::getValueKindForType(ResultType);
8029   ResultType = ResultType.getNonLValueExprType(Context);
8030 
8031   CXXMemberCallExpr *CE = CXXMemberCallExpr::Create(
8032       Context, ME, /*Args=*/{}, ResultType, VK, Exp.get()->getEndLoc(),
8033       CurFPFeatureOverrides());
8034 
8035   if (CheckFunctionCall(Method, CE,
8036                         Method->getType()->castAs<FunctionProtoType>()))
8037     return ExprError();
8038 
8039   return CheckForImmediateInvocation(CE, CE->getMethodDecl());
8040 }
8041 
8042 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
8043                                       SourceLocation RParen) {
8044   // If the operand is an unresolved lookup expression, the expression is ill-
8045   // formed per [over.over]p1, because overloaded function names cannot be used
8046   // without arguments except in explicit contexts.
8047   ExprResult R = CheckPlaceholderExpr(Operand);
8048   if (R.isInvalid())
8049     return R;
8050 
8051   R = CheckUnevaluatedOperand(R.get());
8052   if (R.isInvalid())
8053     return ExprError();
8054 
8055   Operand = R.get();
8056 
8057   if (!inTemplateInstantiation() && !Operand->isInstantiationDependent() &&
8058       Operand->HasSideEffects(Context, false)) {
8059     // The expression operand for noexcept is in an unevaluated expression
8060     // context, so side effects could result in unintended consequences.
8061     Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context);
8062   }
8063 
8064   CanThrowResult CanThrow = canThrow(Operand);
8065   return new (Context)
8066       CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
8067 }
8068 
8069 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
8070                                    Expr *Operand, SourceLocation RParen) {
8071   return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
8072 }
8073 
8074 static void MaybeDecrementCount(
8075     Expr *E, llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
8076   DeclRefExpr *LHS = nullptr;
8077   bool IsCompoundAssign = false;
8078   bool isIncrementDecrementUnaryOp = false;
8079   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
8080     if (BO->getLHS()->getType()->isDependentType() ||
8081         BO->getRHS()->getType()->isDependentType()) {
8082       if (BO->getOpcode() != BO_Assign)
8083         return;
8084     } else if (!BO->isAssignmentOp())
8085       return;
8086     else
8087       IsCompoundAssign = BO->isCompoundAssignmentOp();
8088     LHS = dyn_cast<DeclRefExpr>(BO->getLHS());
8089   } else if (CXXOperatorCallExpr *COCE = dyn_cast<CXXOperatorCallExpr>(E)) {
8090     if (COCE->getOperator() != OO_Equal)
8091       return;
8092     LHS = dyn_cast<DeclRefExpr>(COCE->getArg(0));
8093   } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
8094     if (!UO->isIncrementDecrementOp())
8095       return;
8096     isIncrementDecrementUnaryOp = true;
8097     LHS = dyn_cast<DeclRefExpr>(UO->getSubExpr());
8098   }
8099   if (!LHS)
8100     return;
8101   VarDecl *VD = dyn_cast<VarDecl>(LHS->getDecl());
8102   if (!VD)
8103     return;
8104   // Don't decrement RefsMinusAssignments if volatile variable with compound
8105   // assignment (+=, ...) or increment/decrement unary operator to avoid
8106   // potential unused-but-set-variable warning.
8107   if ((IsCompoundAssign || isIncrementDecrementUnaryOp) &&
8108       VD->getType().isVolatileQualified())
8109     return;
8110   auto iter = RefsMinusAssignments.find(VD);
8111   if (iter == RefsMinusAssignments.end())
8112     return;
8113   iter->getSecond()--;
8114 }
8115 
8116 /// Perform the conversions required for an expression used in a
8117 /// context that ignores the result.
8118 ExprResult Sema::IgnoredValueConversions(Expr *E) {
8119   MaybeDecrementCount(E, RefsMinusAssignments);
8120 
8121   if (E->hasPlaceholderType()) {
8122     ExprResult result = CheckPlaceholderExpr(E);
8123     if (result.isInvalid()) return E;
8124     E = result.get();
8125   }
8126 
8127   // C99 6.3.2.1:
8128   //   [Except in specific positions,] an lvalue that does not have
8129   //   array type is converted to the value stored in the
8130   //   designated object (and is no longer an lvalue).
8131   if (E->isPRValue()) {
8132     // In C, function designators (i.e. expressions of function type)
8133     // are r-values, but we still want to do function-to-pointer decay
8134     // on them.  This is both technically correct and convenient for
8135     // some clients.
8136     if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
8137       return DefaultFunctionArrayConversion(E);
8138 
8139     return E;
8140   }
8141 
8142   if (getLangOpts().CPlusPlus) {
8143     // The C++11 standard defines the notion of a discarded-value expression;
8144     // normally, we don't need to do anything to handle it, but if it is a
8145     // volatile lvalue with a special form, we perform an lvalue-to-rvalue
8146     // conversion.
8147     if (getLangOpts().CPlusPlus11 && E->isReadIfDiscardedInCPlusPlus11()) {
8148       ExprResult Res = DefaultLvalueConversion(E);
8149       if (Res.isInvalid())
8150         return E;
8151       E = Res.get();
8152     } else {
8153       // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
8154       // it occurs as a discarded-value expression.
8155       CheckUnusedVolatileAssignment(E);
8156     }
8157 
8158     // C++1z:
8159     //   If the expression is a prvalue after this optional conversion, the
8160     //   temporary materialization conversion is applied.
8161     //
8162     // We skip this step: IR generation is able to synthesize the storage for
8163     // itself in the aggregate case, and adding the extra node to the AST is
8164     // just clutter.
8165     // FIXME: We don't emit lifetime markers for the temporaries due to this.
8166     // FIXME: Do any other AST consumers care about this?
8167     return E;
8168   }
8169 
8170   // GCC seems to also exclude expressions of incomplete enum type.
8171   if (const EnumType *T = E->getType()->getAs<EnumType>()) {
8172     if (!T->getDecl()->isComplete()) {
8173       // FIXME: stupid workaround for a codegen bug!
8174       E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
8175       return E;
8176     }
8177   }
8178 
8179   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
8180   if (Res.isInvalid())
8181     return E;
8182   E = Res.get();
8183 
8184   if (!E->getType()->isVoidType())
8185     RequireCompleteType(E->getExprLoc(), E->getType(),
8186                         diag::err_incomplete_type);
8187   return E;
8188 }
8189 
8190 ExprResult Sema::CheckUnevaluatedOperand(Expr *E) {
8191   // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
8192   // it occurs as an unevaluated operand.
8193   CheckUnusedVolatileAssignment(E);
8194 
8195   return E;
8196 }
8197 
8198 // If we can unambiguously determine whether Var can never be used
8199 // in a constant expression, return true.
8200 //  - if the variable and its initializer are non-dependent, then
8201 //    we can unambiguously check if the variable is a constant expression.
8202 //  - if the initializer is not value dependent - we can determine whether
8203 //    it can be used to initialize a constant expression.  If Init can not
8204 //    be used to initialize a constant expression we conclude that Var can
8205 //    never be a constant expression.
8206 //  - FXIME: if the initializer is dependent, we can still do some analysis and
8207 //    identify certain cases unambiguously as non-const by using a Visitor:
8208 //      - such as those that involve odr-use of a ParmVarDecl, involve a new
8209 //        delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
8210 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
8211     ASTContext &Context) {
8212   if (isa<ParmVarDecl>(Var)) return true;
8213   const VarDecl *DefVD = nullptr;
8214 
8215   // If there is no initializer - this can not be a constant expression.
8216   if (!Var->getAnyInitializer(DefVD)) return true;
8217   assert(DefVD);
8218   if (DefVD->isWeak()) return false;
8219   EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
8220 
8221   Expr *Init = cast<Expr>(Eval->Value);
8222 
8223   if (Var->getType()->isDependentType() || Init->isValueDependent()) {
8224     // FIXME: Teach the constant evaluator to deal with the non-dependent parts
8225     // of value-dependent expressions, and use it here to determine whether the
8226     // initializer is a potential constant expression.
8227     return false;
8228   }
8229 
8230   return !Var->isUsableInConstantExpressions(Context);
8231 }
8232 
8233 /// Check if the current lambda has any potential captures
8234 /// that must be captured by any of its enclosing lambdas that are ready to
8235 /// capture. If there is a lambda that can capture a nested
8236 /// potential-capture, go ahead and do so.  Also, check to see if any
8237 /// variables are uncaptureable or do not involve an odr-use so do not
8238 /// need to be captured.
8239 
8240 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
8241     Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
8242 
8243   assert(!S.isUnevaluatedContext());
8244   assert(S.CurContext->isDependentContext());
8245 #ifndef NDEBUG
8246   DeclContext *DC = S.CurContext;
8247   while (DC && isa<CapturedDecl>(DC))
8248     DC = DC->getParent();
8249   assert(
8250       CurrentLSI->CallOperator == DC &&
8251       "The current call operator must be synchronized with Sema's CurContext");
8252 #endif // NDEBUG
8253 
8254   const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
8255 
8256   // All the potentially captureable variables in the current nested
8257   // lambda (within a generic outer lambda), must be captured by an
8258   // outer lambda that is enclosed within a non-dependent context.
8259   CurrentLSI->visitPotentialCaptures([&] (VarDecl *Var, Expr *VarExpr) {
8260     // If the variable is clearly identified as non-odr-used and the full
8261     // expression is not instantiation dependent, only then do we not
8262     // need to check enclosing lambda's for speculative captures.
8263     // For e.g.:
8264     // Even though 'x' is not odr-used, it should be captured.
8265     // int test() {
8266     //   const int x = 10;
8267     //   auto L = [=](auto a) {
8268     //     (void) +x + a;
8269     //   };
8270     // }
8271     if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
8272         !IsFullExprInstantiationDependent)
8273       return;
8274 
8275     // If we have a capture-capable lambda for the variable, go ahead and
8276     // capture the variable in that lambda (and all its enclosing lambdas).
8277     if (const Optional<unsigned> Index =
8278             getStackIndexOfNearestEnclosingCaptureCapableLambda(
8279                 S.FunctionScopes, Var, S))
8280       S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(), *Index);
8281     const bool IsVarNeverAConstantExpression =
8282         VariableCanNeverBeAConstantExpression(Var, S.Context);
8283     if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
8284       // This full expression is not instantiation dependent or the variable
8285       // can not be used in a constant expression - which means
8286       // this variable must be odr-used here, so diagnose a
8287       // capture violation early, if the variable is un-captureable.
8288       // This is purely for diagnosing errors early.  Otherwise, this
8289       // error would get diagnosed when the lambda becomes capture ready.
8290       QualType CaptureType, DeclRefType;
8291       SourceLocation ExprLoc = VarExpr->getExprLoc();
8292       if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
8293                           /*EllipsisLoc*/ SourceLocation(),
8294                           /*BuildAndDiagnose*/false, CaptureType,
8295                           DeclRefType, nullptr)) {
8296         // We will never be able to capture this variable, and we need
8297         // to be able to in any and all instantiations, so diagnose it.
8298         S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
8299                           /*EllipsisLoc*/ SourceLocation(),
8300                           /*BuildAndDiagnose*/true, CaptureType,
8301                           DeclRefType, nullptr);
8302       }
8303     }
8304   });
8305 
8306   // Check if 'this' needs to be captured.
8307   if (CurrentLSI->hasPotentialThisCapture()) {
8308     // If we have a capture-capable lambda for 'this', go ahead and capture
8309     // 'this' in that lambda (and all its enclosing lambdas).
8310     if (const Optional<unsigned> Index =
8311             getStackIndexOfNearestEnclosingCaptureCapableLambda(
8312                 S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) {
8313       const unsigned FunctionScopeIndexOfCapturableLambda = *Index;
8314       S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
8315                             /*Explicit*/ false, /*BuildAndDiagnose*/ true,
8316                             &FunctionScopeIndexOfCapturableLambda);
8317     }
8318   }
8319 
8320   // Reset all the potential captures at the end of each full-expression.
8321   CurrentLSI->clearPotentialCaptures();
8322 }
8323 
8324 static ExprResult attemptRecovery(Sema &SemaRef,
8325                                   const TypoCorrectionConsumer &Consumer,
8326                                   const TypoCorrection &TC) {
8327   LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(),
8328                  Consumer.getLookupResult().getLookupKind());
8329   const CXXScopeSpec *SS = Consumer.getSS();
8330   CXXScopeSpec NewSS;
8331 
8332   // Use an approprate CXXScopeSpec for building the expr.
8333   if (auto *NNS = TC.getCorrectionSpecifier())
8334     NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange());
8335   else if (SS && !TC.WillReplaceSpecifier())
8336     NewSS = *SS;
8337 
8338   if (auto *ND = TC.getFoundDecl()) {
8339     R.setLookupName(ND->getDeclName());
8340     R.addDecl(ND);
8341     if (ND->isCXXClassMember()) {
8342       // Figure out the correct naming class to add to the LookupResult.
8343       CXXRecordDecl *Record = nullptr;
8344       if (auto *NNS = TC.getCorrectionSpecifier())
8345         Record = NNS->getAsType()->getAsCXXRecordDecl();
8346       if (!Record)
8347         Record =
8348             dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext());
8349       if (Record)
8350         R.setNamingClass(Record);
8351 
8352       // Detect and handle the case where the decl might be an implicit
8353       // member.
8354       bool MightBeImplicitMember;
8355       if (!Consumer.isAddressOfOperand())
8356         MightBeImplicitMember = true;
8357       else if (!NewSS.isEmpty())
8358         MightBeImplicitMember = false;
8359       else if (R.isOverloadedResult())
8360         MightBeImplicitMember = false;
8361       else if (R.isUnresolvableResult())
8362         MightBeImplicitMember = true;
8363       else
8364         MightBeImplicitMember = isa<FieldDecl>(ND) ||
8365                                 isa<IndirectFieldDecl>(ND) ||
8366                                 isa<MSPropertyDecl>(ND);
8367 
8368       if (MightBeImplicitMember)
8369         return SemaRef.BuildPossibleImplicitMemberExpr(
8370             NewSS, /*TemplateKWLoc*/ SourceLocation(), R,
8371             /*TemplateArgs*/ nullptr, /*S*/ nullptr);
8372     } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) {
8373       return SemaRef.LookupInObjCMethod(R, Consumer.getScope(),
8374                                         Ivar->getIdentifier());
8375     }
8376   }
8377 
8378   return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false,
8379                                           /*AcceptInvalidDecl*/ true);
8380 }
8381 
8382 namespace {
8383 class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> {
8384   llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs;
8385 
8386 public:
8387   explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs)
8388       : TypoExprs(TypoExprs) {}
8389   bool VisitTypoExpr(TypoExpr *TE) {
8390     TypoExprs.insert(TE);
8391     return true;
8392   }
8393 };
8394 
8395 class TransformTypos : public TreeTransform<TransformTypos> {
8396   typedef TreeTransform<TransformTypos> BaseTransform;
8397 
8398   VarDecl *InitDecl; // A decl to avoid as a correction because it is in the
8399                      // process of being initialized.
8400   llvm::function_ref<ExprResult(Expr *)> ExprFilter;
8401   llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs;
8402   llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache;
8403   llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution;
8404 
8405   /// Emit diagnostics for all of the TypoExprs encountered.
8406   ///
8407   /// If the TypoExprs were successfully corrected, then the diagnostics should
8408   /// suggest the corrections. Otherwise the diagnostics will not suggest
8409   /// anything (having been passed an empty TypoCorrection).
8410   ///
8411   /// If we've failed to correct due to ambiguous corrections, we need to
8412   /// be sure to pass empty corrections and replacements. Otherwise it's
8413   /// possible that the Consumer has a TypoCorrection that failed to ambiguity
8414   /// and we don't want to report those diagnostics.
8415   void EmitAllDiagnostics(bool IsAmbiguous) {
8416     for (TypoExpr *TE : TypoExprs) {
8417       auto &State = SemaRef.getTypoExprState(TE);
8418       if (State.DiagHandler) {
8419         TypoCorrection TC = IsAmbiguous
8420             ? TypoCorrection() : State.Consumer->getCurrentCorrection();
8421         ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE];
8422 
8423         // Extract the NamedDecl from the transformed TypoExpr and add it to the
8424         // TypoCorrection, replacing the existing decls. This ensures the right
8425         // NamedDecl is used in diagnostics e.g. in the case where overload
8426         // resolution was used to select one from several possible decls that
8427         // had been stored in the TypoCorrection.
8428         if (auto *ND = getDeclFromExpr(
8429                 Replacement.isInvalid() ? nullptr : Replacement.get()))
8430           TC.setCorrectionDecl(ND);
8431 
8432         State.DiagHandler(TC);
8433       }
8434       SemaRef.clearDelayedTypo(TE);
8435     }
8436   }
8437 
8438   /// Try to advance the typo correction state of the first unfinished TypoExpr.
8439   /// We allow advancement of the correction stream by removing it from the
8440   /// TransformCache which allows `TransformTypoExpr` to advance during the
8441   /// next transformation attempt.
8442   ///
8443   /// Any substitution attempts for the previous TypoExprs (which must have been
8444   /// finished) will need to be retried since it's possible that they will now
8445   /// be invalid given the latest advancement.
8446   ///
8447   /// We need to be sure that we're making progress - it's possible that the
8448   /// tree is so malformed that the transform never makes it to the
8449   /// `TransformTypoExpr`.
8450   ///
8451   /// Returns true if there are any untried correction combinations.
8452   bool CheckAndAdvanceTypoExprCorrectionStreams() {
8453     for (auto TE : TypoExprs) {
8454       auto &State = SemaRef.getTypoExprState(TE);
8455       TransformCache.erase(TE);
8456       if (!State.Consumer->hasMadeAnyCorrectionProgress())
8457         return false;
8458       if (!State.Consumer->finished())
8459         return true;
8460       State.Consumer->resetCorrectionStream();
8461     }
8462     return false;
8463   }
8464 
8465   NamedDecl *getDeclFromExpr(Expr *E) {
8466     if (auto *OE = dyn_cast_or_null<OverloadExpr>(E))
8467       E = OverloadResolution[OE];
8468 
8469     if (!E)
8470       return nullptr;
8471     if (auto *DRE = dyn_cast<DeclRefExpr>(E))
8472       return DRE->getFoundDecl();
8473     if (auto *ME = dyn_cast<MemberExpr>(E))
8474       return ME->getFoundDecl();
8475     // FIXME: Add any other expr types that could be be seen by the delayed typo
8476     // correction TreeTransform for which the corresponding TypoCorrection could
8477     // contain multiple decls.
8478     return nullptr;
8479   }
8480 
8481   ExprResult TryTransform(Expr *E) {
8482     Sema::SFINAETrap Trap(SemaRef);
8483     ExprResult Res = TransformExpr(E);
8484     if (Trap.hasErrorOccurred() || Res.isInvalid())
8485       return ExprError();
8486 
8487     return ExprFilter(Res.get());
8488   }
8489 
8490   // Since correcting typos may intoduce new TypoExprs, this function
8491   // checks for new TypoExprs and recurses if it finds any. Note that it will
8492   // only succeed if it is able to correct all typos in the given expression.
8493   ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) {
8494     if (Res.isInvalid()) {
8495       return Res;
8496     }
8497     // Check to see if any new TypoExprs were created. If so, we need to recurse
8498     // to check their validity.
8499     Expr *FixedExpr = Res.get();
8500 
8501     auto SavedTypoExprs = std::move(TypoExprs);
8502     auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs);
8503     TypoExprs.clear();
8504     AmbiguousTypoExprs.clear();
8505 
8506     FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr);
8507     if (!TypoExprs.empty()) {
8508       // Recurse to handle newly created TypoExprs. If we're not able to
8509       // handle them, discard these TypoExprs.
8510       ExprResult RecurResult =
8511           RecursiveTransformLoop(FixedExpr, IsAmbiguous);
8512       if (RecurResult.isInvalid()) {
8513         Res = ExprError();
8514         // Recursive corrections didn't work, wipe them away and don't add
8515         // them to the TypoExprs set. Remove them from Sema's TypoExpr list
8516         // since we don't want to clear them twice. Note: it's possible the
8517         // TypoExprs were created recursively and thus won't be in our
8518         // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`.
8519         auto &SemaTypoExprs = SemaRef.TypoExprs;
8520         for (auto TE : TypoExprs) {
8521           TransformCache.erase(TE);
8522           SemaRef.clearDelayedTypo(TE);
8523 
8524           auto SI = find(SemaTypoExprs, TE);
8525           if (SI != SemaTypoExprs.end()) {
8526             SemaTypoExprs.erase(SI);
8527           }
8528         }
8529       } else {
8530         // TypoExpr is valid: add newly created TypoExprs since we were
8531         // able to correct them.
8532         Res = RecurResult;
8533         SavedTypoExprs.set_union(TypoExprs);
8534       }
8535     }
8536 
8537     TypoExprs = std::move(SavedTypoExprs);
8538     AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs);
8539 
8540     return Res;
8541   }
8542 
8543   // Try to transform the given expression, looping through the correction
8544   // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`.
8545   //
8546   // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to
8547   // true and this method immediately will return an `ExprError`.
8548   ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) {
8549     ExprResult Res;
8550     auto SavedTypoExprs = std::move(SemaRef.TypoExprs);
8551     SemaRef.TypoExprs.clear();
8552 
8553     while (true) {
8554       Res = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
8555 
8556       // Recursion encountered an ambiguous correction. This means that our
8557       // correction itself is ambiguous, so stop now.
8558       if (IsAmbiguous)
8559         break;
8560 
8561       // If the transform is still valid after checking for any new typos,
8562       // it's good to go.
8563       if (!Res.isInvalid())
8564         break;
8565 
8566       // The transform was invalid, see if we have any TypoExprs with untried
8567       // correction candidates.
8568       if (!CheckAndAdvanceTypoExprCorrectionStreams())
8569         break;
8570     }
8571 
8572     // If we found a valid result, double check to make sure it's not ambiguous.
8573     if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) {
8574       auto SavedTransformCache =
8575           llvm::SmallDenseMap<TypoExpr *, ExprResult, 2>(TransformCache);
8576 
8577       // Ensure none of the TypoExprs have multiple typo correction candidates
8578       // with the same edit length that pass all the checks and filters.
8579       while (!AmbiguousTypoExprs.empty()) {
8580         auto TE  = AmbiguousTypoExprs.back();
8581 
8582         // TryTransform itself can create new Typos, adding them to the TypoExpr map
8583         // and invalidating our TypoExprState, so always fetch it instead of storing.
8584         SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition();
8585 
8586         TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection();
8587         TypoCorrection Next;
8588         do {
8589           // Fetch the next correction by erasing the typo from the cache and calling
8590           // `TryTransform` which will iterate through corrections in
8591           // `TransformTypoExpr`.
8592           TransformCache.erase(TE);
8593           ExprResult AmbigRes = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
8594 
8595           if (!AmbigRes.isInvalid() || IsAmbiguous) {
8596             SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream();
8597             SavedTransformCache.erase(TE);
8598             Res = ExprError();
8599             IsAmbiguous = true;
8600             break;
8601           }
8602         } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) &&
8603                  Next.getEditDistance(false) == TC.getEditDistance(false));
8604 
8605         if (IsAmbiguous)
8606           break;
8607 
8608         AmbiguousTypoExprs.remove(TE);
8609         SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition();
8610         TransformCache[TE] = SavedTransformCache[TE];
8611       }
8612       TransformCache = std::move(SavedTransformCache);
8613     }
8614 
8615     // Wipe away any newly created TypoExprs that we don't know about. Since we
8616     // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only
8617     // possible if a `TypoExpr` is created during a transformation but then
8618     // fails before we can discover it.
8619     auto &SemaTypoExprs = SemaRef.TypoExprs;
8620     for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) {
8621       auto TE = *Iterator;
8622       auto FI = find(TypoExprs, TE);
8623       if (FI != TypoExprs.end()) {
8624         Iterator++;
8625         continue;
8626       }
8627       SemaRef.clearDelayedTypo(TE);
8628       Iterator = SemaTypoExprs.erase(Iterator);
8629     }
8630     SemaRef.TypoExprs = std::move(SavedTypoExprs);
8631 
8632     return Res;
8633   }
8634 
8635 public:
8636   TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter)
8637       : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {}
8638 
8639   ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
8640                                    MultiExprArg Args,
8641                                    SourceLocation RParenLoc,
8642                                    Expr *ExecConfig = nullptr) {
8643     auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args,
8644                                                  RParenLoc, ExecConfig);
8645     if (auto *OE = dyn_cast<OverloadExpr>(Callee)) {
8646       if (Result.isUsable()) {
8647         Expr *ResultCall = Result.get();
8648         if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall))
8649           ResultCall = BE->getSubExpr();
8650         if (auto *CE = dyn_cast<CallExpr>(ResultCall))
8651           OverloadResolution[OE] = CE->getCallee();
8652       }
8653     }
8654     return Result;
8655   }
8656 
8657   ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); }
8658 
8659   ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); }
8660 
8661   ExprResult Transform(Expr *E) {
8662     bool IsAmbiguous = false;
8663     ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous);
8664 
8665     if (!Res.isUsable())
8666       FindTypoExprs(TypoExprs).TraverseStmt(E);
8667 
8668     EmitAllDiagnostics(IsAmbiguous);
8669 
8670     return Res;
8671   }
8672 
8673   ExprResult TransformTypoExpr(TypoExpr *E) {
8674     // If the TypoExpr hasn't been seen before, record it. Otherwise, return the
8675     // cached transformation result if there is one and the TypoExpr isn't the
8676     // first one that was encountered.
8677     auto &CacheEntry = TransformCache[E];
8678     if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) {
8679       return CacheEntry;
8680     }
8681 
8682     auto &State = SemaRef.getTypoExprState(E);
8683     assert(State.Consumer && "Cannot transform a cleared TypoExpr");
8684 
8685     // For the first TypoExpr and an uncached TypoExpr, find the next likely
8686     // typo correction and return it.
8687     while (TypoCorrection TC = State.Consumer->getNextCorrection()) {
8688       if (InitDecl && TC.getFoundDecl() == InitDecl)
8689         continue;
8690       // FIXME: If we would typo-correct to an invalid declaration, it's
8691       // probably best to just suppress all errors from this typo correction.
8692       ExprResult NE = State.RecoveryHandler ?
8693           State.RecoveryHandler(SemaRef, E, TC) :
8694           attemptRecovery(SemaRef, *State.Consumer, TC);
8695       if (!NE.isInvalid()) {
8696         // Check whether there may be a second viable correction with the same
8697         // edit distance; if so, remember this TypoExpr may have an ambiguous
8698         // correction so it can be more thoroughly vetted later.
8699         TypoCorrection Next;
8700         if ((Next = State.Consumer->peekNextCorrection()) &&
8701             Next.getEditDistance(false) == TC.getEditDistance(false)) {
8702           AmbiguousTypoExprs.insert(E);
8703         } else {
8704           AmbiguousTypoExprs.remove(E);
8705         }
8706         assert(!NE.isUnset() &&
8707                "Typo was transformed into a valid-but-null ExprResult");
8708         return CacheEntry = NE;
8709       }
8710     }
8711     return CacheEntry = ExprError();
8712   }
8713 };
8714 }
8715 
8716 ExprResult
8717 Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl,
8718                                 bool RecoverUncorrectedTypos,
8719                                 llvm::function_ref<ExprResult(Expr *)> Filter) {
8720   // If the current evaluation context indicates there are uncorrected typos
8721   // and the current expression isn't guaranteed to not have typos, try to
8722   // resolve any TypoExpr nodes that might be in the expression.
8723   if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos &&
8724       (E->isTypeDependent() || E->isValueDependent() ||
8725        E->isInstantiationDependent())) {
8726     auto TyposResolved = DelayedTypos.size();
8727     auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E);
8728     TyposResolved -= DelayedTypos.size();
8729     if (Result.isInvalid() || Result.get() != E) {
8730       ExprEvalContexts.back().NumTypos -= TyposResolved;
8731       if (Result.isInvalid() && RecoverUncorrectedTypos) {
8732         struct TyposReplace : TreeTransform<TyposReplace> {
8733           TyposReplace(Sema &SemaRef) : TreeTransform(SemaRef) {}
8734           ExprResult TransformTypoExpr(clang::TypoExpr *E) {
8735             return this->SemaRef.CreateRecoveryExpr(E->getBeginLoc(),
8736                                                     E->getEndLoc(), {});
8737           }
8738         } TT(*this);
8739         return TT.TransformExpr(E);
8740       }
8741       return Result;
8742     }
8743     assert(TyposResolved == 0 && "Corrected typo but got same Expr back?");
8744   }
8745   return E;
8746 }
8747 
8748 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
8749                                      bool DiscardedValue,
8750                                      bool IsConstexpr) {
8751   ExprResult FullExpr = FE;
8752 
8753   if (!FullExpr.get())
8754     return ExprError();
8755 
8756   if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
8757     return ExprError();
8758 
8759   if (DiscardedValue) {
8760     // Top-level expressions default to 'id' when we're in a debugger.
8761     if (getLangOpts().DebuggerCastResultToId &&
8762         FullExpr.get()->getType() == Context.UnknownAnyTy) {
8763       FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
8764       if (FullExpr.isInvalid())
8765         return ExprError();
8766     }
8767 
8768     FullExpr = CheckPlaceholderExpr(FullExpr.get());
8769     if (FullExpr.isInvalid())
8770       return ExprError();
8771 
8772     FullExpr = IgnoredValueConversions(FullExpr.get());
8773     if (FullExpr.isInvalid())
8774       return ExprError();
8775 
8776     DiagnoseUnusedExprResult(FullExpr.get(), diag::warn_unused_expr);
8777   }
8778 
8779   FullExpr = CorrectDelayedTyposInExpr(FullExpr.get(), /*InitDecl=*/nullptr,
8780                                        /*RecoverUncorrectedTypos=*/true);
8781   if (FullExpr.isInvalid())
8782     return ExprError();
8783 
8784   CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
8785 
8786   // At the end of this full expression (which could be a deeply nested
8787   // lambda), if there is a potential capture within the nested lambda,
8788   // have the outer capture-able lambda try and capture it.
8789   // Consider the following code:
8790   // void f(int, int);
8791   // void f(const int&, double);
8792   // void foo() {
8793   //  const int x = 10, y = 20;
8794   //  auto L = [=](auto a) {
8795   //      auto M = [=](auto b) {
8796   //         f(x, b); <-- requires x to be captured by L and M
8797   //         f(y, a); <-- requires y to be captured by L, but not all Ms
8798   //      };
8799   //   };
8800   // }
8801 
8802   // FIXME: Also consider what happens for something like this that involves
8803   // the gnu-extension statement-expressions or even lambda-init-captures:
8804   //   void f() {
8805   //     const int n = 0;
8806   //     auto L =  [&](auto a) {
8807   //       +n + ({ 0; a; });
8808   //     };
8809   //   }
8810   //
8811   // Here, we see +n, and then the full-expression 0; ends, so we don't
8812   // capture n (and instead remove it from our list of potential captures),
8813   // and then the full-expression +n + ({ 0; }); ends, but it's too late
8814   // for us to see that we need to capture n after all.
8815 
8816   LambdaScopeInfo *const CurrentLSI =
8817       getCurLambda(/*IgnoreCapturedRegions=*/true);
8818   // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
8819   // even if CurContext is not a lambda call operator. Refer to that Bug Report
8820   // for an example of the code that might cause this asynchrony.
8821   // By ensuring we are in the context of a lambda's call operator
8822   // we can fix the bug (we only need to check whether we need to capture
8823   // if we are within a lambda's body); but per the comments in that
8824   // PR, a proper fix would entail :
8825   //   "Alternative suggestion:
8826   //   - Add to Sema an integer holding the smallest (outermost) scope
8827   //     index that we are *lexically* within, and save/restore/set to
8828   //     FunctionScopes.size() in InstantiatingTemplate's
8829   //     constructor/destructor.
8830   //  - Teach the handful of places that iterate over FunctionScopes to
8831   //    stop at the outermost enclosing lexical scope."
8832   DeclContext *DC = CurContext;
8833   while (DC && isa<CapturedDecl>(DC))
8834     DC = DC->getParent();
8835   const bool IsInLambdaDeclContext = isLambdaCallOperator(DC);
8836   if (IsInLambdaDeclContext && CurrentLSI &&
8837       CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
8838     CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
8839                                                               *this);
8840   return MaybeCreateExprWithCleanups(FullExpr);
8841 }
8842 
8843 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
8844   if (!FullStmt) return StmtError();
8845 
8846   return MaybeCreateStmtWithCleanups(FullStmt);
8847 }
8848 
8849 Sema::IfExistsResult
8850 Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
8851                                    CXXScopeSpec &SS,
8852                                    const DeclarationNameInfo &TargetNameInfo) {
8853   DeclarationName TargetName = TargetNameInfo.getName();
8854   if (!TargetName)
8855     return IER_DoesNotExist;
8856 
8857   // If the name itself is dependent, then the result is dependent.
8858   if (TargetName.isDependentName())
8859     return IER_Dependent;
8860 
8861   // Do the redeclaration lookup in the current scope.
8862   LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
8863                  Sema::NotForRedeclaration);
8864   LookupParsedName(R, S, &SS);
8865   R.suppressDiagnostics();
8866 
8867   switch (R.getResultKind()) {
8868   case LookupResult::Found:
8869   case LookupResult::FoundOverloaded:
8870   case LookupResult::FoundUnresolvedValue:
8871   case LookupResult::Ambiguous:
8872     return IER_Exists;
8873 
8874   case LookupResult::NotFound:
8875     return IER_DoesNotExist;
8876 
8877   case LookupResult::NotFoundInCurrentInstantiation:
8878     return IER_Dependent;
8879   }
8880 
8881   llvm_unreachable("Invalid LookupResult Kind!");
8882 }
8883 
8884 Sema::IfExistsResult
8885 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
8886                                    bool IsIfExists, CXXScopeSpec &SS,
8887                                    UnqualifiedId &Name) {
8888   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
8889 
8890   // Check for an unexpanded parameter pack.
8891   auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists;
8892   if (DiagnoseUnexpandedParameterPack(SS, UPPC) ||
8893       DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC))
8894     return IER_Error;
8895 
8896   return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
8897 }
8898 
8899 concepts::Requirement *Sema::ActOnSimpleRequirement(Expr *E) {
8900   return BuildExprRequirement(E, /*IsSimple=*/true,
8901                               /*NoexceptLoc=*/SourceLocation(),
8902                               /*ReturnTypeRequirement=*/{});
8903 }
8904 
8905 concepts::Requirement *
8906 Sema::ActOnTypeRequirement(SourceLocation TypenameKWLoc, CXXScopeSpec &SS,
8907                            SourceLocation NameLoc, IdentifierInfo *TypeName,
8908                            TemplateIdAnnotation *TemplateId) {
8909   assert(((!TypeName && TemplateId) || (TypeName && !TemplateId)) &&
8910          "Exactly one of TypeName and TemplateId must be specified.");
8911   TypeSourceInfo *TSI = nullptr;
8912   if (TypeName) {
8913     QualType T = CheckTypenameType(ETK_Typename, TypenameKWLoc,
8914                                    SS.getWithLocInContext(Context), *TypeName,
8915                                    NameLoc, &TSI, /*DeducedTSTContext=*/false);
8916     if (T.isNull())
8917       return nullptr;
8918   } else {
8919     ASTTemplateArgsPtr ArgsPtr(TemplateId->getTemplateArgs(),
8920                                TemplateId->NumArgs);
8921     TypeResult T = ActOnTypenameType(CurScope, TypenameKWLoc, SS,
8922                                      TemplateId->TemplateKWLoc,
8923                                      TemplateId->Template, TemplateId->Name,
8924                                      TemplateId->TemplateNameLoc,
8925                                      TemplateId->LAngleLoc, ArgsPtr,
8926                                      TemplateId->RAngleLoc);
8927     if (T.isInvalid())
8928       return nullptr;
8929     if (GetTypeFromParser(T.get(), &TSI).isNull())
8930       return nullptr;
8931   }
8932   return BuildTypeRequirement(TSI);
8933 }
8934 
8935 concepts::Requirement *
8936 Sema::ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc) {
8937   return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc,
8938                               /*ReturnTypeRequirement=*/{});
8939 }
8940 
8941 concepts::Requirement *
8942 Sema::ActOnCompoundRequirement(
8943     Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS,
8944     TemplateIdAnnotation *TypeConstraint, unsigned Depth) {
8945   // C++2a [expr.prim.req.compound] p1.3.3
8946   //   [..] the expression is deduced against an invented function template
8947   //   F [...] F is a void function template with a single type template
8948   //   parameter T declared with the constrained-parameter. Form a new
8949   //   cv-qualifier-seq cv by taking the union of const and volatile specifiers
8950   //   around the constrained-parameter. F has a single parameter whose
8951   //   type-specifier is cv T followed by the abstract-declarator. [...]
8952   //
8953   // The cv part is done in the calling function - we get the concept with
8954   // arguments and the abstract declarator with the correct CV qualification and
8955   // have to synthesize T and the single parameter of F.
8956   auto &II = Context.Idents.get("expr-type");
8957   auto *TParam = TemplateTypeParmDecl::Create(Context, CurContext,
8958                                               SourceLocation(),
8959                                               SourceLocation(), Depth,
8960                                               /*Index=*/0, &II,
8961                                               /*Typename=*/true,
8962                                               /*ParameterPack=*/false,
8963                                               /*HasTypeConstraint=*/true);
8964 
8965   if (BuildTypeConstraint(SS, TypeConstraint, TParam,
8966                           /*EllipsisLoc=*/SourceLocation(),
8967                           /*AllowUnexpandedPack=*/true))
8968     // Just produce a requirement with no type requirements.
8969     return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, {});
8970 
8971   auto *TPL = TemplateParameterList::Create(Context, SourceLocation(),
8972                                             SourceLocation(),
8973                                             ArrayRef<NamedDecl *>(TParam),
8974                                             SourceLocation(),
8975                                             /*RequiresClause=*/nullptr);
8976   return BuildExprRequirement(
8977       E, /*IsSimple=*/false, NoexceptLoc,
8978       concepts::ExprRequirement::ReturnTypeRequirement(TPL));
8979 }
8980 
8981 concepts::ExprRequirement *
8982 Sema::BuildExprRequirement(
8983     Expr *E, bool IsSimple, SourceLocation NoexceptLoc,
8984     concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
8985   auto Status = concepts::ExprRequirement::SS_Satisfied;
8986   ConceptSpecializationExpr *SubstitutedConstraintExpr = nullptr;
8987   if (E->isInstantiationDependent() || ReturnTypeRequirement.isDependent())
8988     Status = concepts::ExprRequirement::SS_Dependent;
8989   else if (NoexceptLoc.isValid() && canThrow(E) == CanThrowResult::CT_Can)
8990     Status = concepts::ExprRequirement::SS_NoexceptNotMet;
8991   else if (ReturnTypeRequirement.isSubstitutionFailure())
8992     Status = concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure;
8993   else if (ReturnTypeRequirement.isTypeConstraint()) {
8994     // C++2a [expr.prim.req]p1.3.3
8995     //     The immediately-declared constraint ([temp]) of decltype((E)) shall
8996     //     be satisfied.
8997     TemplateParameterList *TPL =
8998         ReturnTypeRequirement.getTypeConstraintTemplateParameterList();
8999     QualType MatchedType =
9000         Context.getReferenceQualifiedType(E).getCanonicalType();
9001     llvm::SmallVector<TemplateArgument, 1> Args;
9002     Args.push_back(TemplateArgument(MatchedType));
9003     TemplateArgumentList TAL(TemplateArgumentList::OnStack, Args);
9004     MultiLevelTemplateArgumentList MLTAL(TAL);
9005     for (unsigned I = 0; I < TPL->getDepth(); ++I)
9006       MLTAL.addOuterRetainedLevel();
9007     Expr *IDC =
9008         cast<TemplateTypeParmDecl>(TPL->getParam(0))->getTypeConstraint()
9009             ->getImmediatelyDeclaredConstraint();
9010     ExprResult Constraint = SubstExpr(IDC, MLTAL);
9011     if (Constraint.isInvalid()) {
9012       Status = concepts::ExprRequirement::SS_ExprSubstitutionFailure;
9013     } else {
9014       SubstitutedConstraintExpr =
9015           cast<ConceptSpecializationExpr>(Constraint.get());
9016       if (!SubstitutedConstraintExpr->isSatisfied())
9017         Status = concepts::ExprRequirement::SS_ConstraintsNotSatisfied;
9018     }
9019   }
9020   return new (Context) concepts::ExprRequirement(E, IsSimple, NoexceptLoc,
9021                                                  ReturnTypeRequirement, Status,
9022                                                  SubstitutedConstraintExpr);
9023 }
9024 
9025 concepts::ExprRequirement *
9026 Sema::BuildExprRequirement(
9027     concepts::Requirement::SubstitutionDiagnostic *ExprSubstitutionDiagnostic,
9028     bool IsSimple, SourceLocation NoexceptLoc,
9029     concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
9030   return new (Context) concepts::ExprRequirement(ExprSubstitutionDiagnostic,
9031                                                  IsSimple, NoexceptLoc,
9032                                                  ReturnTypeRequirement);
9033 }
9034 
9035 concepts::TypeRequirement *
9036 Sema::BuildTypeRequirement(TypeSourceInfo *Type) {
9037   return new (Context) concepts::TypeRequirement(Type);
9038 }
9039 
9040 concepts::TypeRequirement *
9041 Sema::BuildTypeRequirement(
9042     concepts::Requirement::SubstitutionDiagnostic *SubstDiag) {
9043   return new (Context) concepts::TypeRequirement(SubstDiag);
9044 }
9045 
9046 concepts::Requirement *Sema::ActOnNestedRequirement(Expr *Constraint) {
9047   return BuildNestedRequirement(Constraint);
9048 }
9049 
9050 concepts::NestedRequirement *
9051 Sema::BuildNestedRequirement(Expr *Constraint) {
9052   ConstraintSatisfaction Satisfaction;
9053   if (!Constraint->isInstantiationDependent() &&
9054       CheckConstraintSatisfaction(nullptr, {Constraint}, /*TemplateArgs=*/{},
9055                                   Constraint->getSourceRange(), Satisfaction))
9056     return nullptr;
9057   return new (Context) concepts::NestedRequirement(Context, Constraint,
9058                                                    Satisfaction);
9059 }
9060 
9061 concepts::NestedRequirement *
9062 Sema::BuildNestedRequirement(
9063     concepts::Requirement::SubstitutionDiagnostic *SubstDiag) {
9064   return new (Context) concepts::NestedRequirement(SubstDiag);
9065 }
9066 
9067 RequiresExprBodyDecl *
9068 Sema::ActOnStartRequiresExpr(SourceLocation RequiresKWLoc,
9069                              ArrayRef<ParmVarDecl *> LocalParameters,
9070                              Scope *BodyScope) {
9071   assert(BodyScope);
9072 
9073   RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(Context, CurContext,
9074                                                             RequiresKWLoc);
9075 
9076   PushDeclContext(BodyScope, Body);
9077 
9078   for (ParmVarDecl *Param : LocalParameters) {
9079     if (Param->hasDefaultArg())
9080       // C++2a [expr.prim.req] p4
9081       //     [...] A local parameter of a requires-expression shall not have a
9082       //     default argument. [...]
9083       Diag(Param->getDefaultArgRange().getBegin(),
9084            diag::err_requires_expr_local_parameter_default_argument);
9085     // Ignore default argument and move on
9086 
9087     Param->setDeclContext(Body);
9088     // If this has an identifier, add it to the scope stack.
9089     if (Param->getIdentifier()) {
9090       CheckShadow(BodyScope, Param);
9091       PushOnScopeChains(Param, BodyScope);
9092     }
9093   }
9094   return Body;
9095 }
9096 
9097 void Sema::ActOnFinishRequiresExpr() {
9098   assert(CurContext && "DeclContext imbalance!");
9099   CurContext = CurContext->getLexicalParent();
9100   assert(CurContext && "Popped translation unit!");
9101 }
9102 
9103 ExprResult
9104 Sema::ActOnRequiresExpr(SourceLocation RequiresKWLoc,
9105                         RequiresExprBodyDecl *Body,
9106                         ArrayRef<ParmVarDecl *> LocalParameters,
9107                         ArrayRef<concepts::Requirement *> Requirements,
9108                         SourceLocation ClosingBraceLoc) {
9109   auto *RE = RequiresExpr::Create(Context, RequiresKWLoc, Body, LocalParameters,
9110                                   Requirements, ClosingBraceLoc);
9111   if (DiagnoseUnexpandedParameterPackInRequiresExpr(RE))
9112     return ExprError();
9113   return RE;
9114 }
9115