1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// Implements semantic analysis for C++ expressions. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "TreeTransform.h" 15 #include "TypeLocBuilder.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/ASTLambda.h" 18 #include "clang/AST/CXXInheritance.h" 19 #include "clang/AST/CharUnits.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/ExprCXX.h" 22 #include "clang/AST/ExprObjC.h" 23 #include "clang/AST/RecursiveASTVisitor.h" 24 #include "clang/AST/TypeLoc.h" 25 #include "clang/Basic/AlignedAllocation.h" 26 #include "clang/Basic/DiagnosticSema.h" 27 #include "clang/Basic/PartialDiagnostic.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "clang/Basic/TypeTraits.h" 30 #include "clang/Lex/Preprocessor.h" 31 #include "clang/Sema/DeclSpec.h" 32 #include "clang/Sema/Initialization.h" 33 #include "clang/Sema/Lookup.h" 34 #include "clang/Sema/ParsedTemplate.h" 35 #include "clang/Sema/Scope.h" 36 #include "clang/Sema/ScopeInfo.h" 37 #include "clang/Sema/SemaInternal.h" 38 #include "clang/Sema/SemaLambda.h" 39 #include "clang/Sema/Template.h" 40 #include "clang/Sema/TemplateDeduction.h" 41 #include "llvm/ADT/APInt.h" 42 #include "llvm/ADT/STLExtras.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/TypeSize.h" 45 using namespace clang; 46 using namespace sema; 47 48 /// Handle the result of the special case name lookup for inheriting 49 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as 50 /// constructor names in member using declarations, even if 'X' is not the 51 /// name of the corresponding type. 52 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS, 53 SourceLocation NameLoc, 54 IdentifierInfo &Name) { 55 NestedNameSpecifier *NNS = SS.getScopeRep(); 56 57 // Convert the nested-name-specifier into a type. 58 QualType Type; 59 switch (NNS->getKind()) { 60 case NestedNameSpecifier::TypeSpec: 61 case NestedNameSpecifier::TypeSpecWithTemplate: 62 Type = QualType(NNS->getAsType(), 0); 63 break; 64 65 case NestedNameSpecifier::Identifier: 66 // Strip off the last layer of the nested-name-specifier and build a 67 // typename type for it. 68 assert(NNS->getAsIdentifier() == &Name && "not a constructor name"); 69 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(), 70 NNS->getAsIdentifier()); 71 break; 72 73 case NestedNameSpecifier::Global: 74 case NestedNameSpecifier::Super: 75 case NestedNameSpecifier::Namespace: 76 case NestedNameSpecifier::NamespaceAlias: 77 llvm_unreachable("Nested name specifier is not a type for inheriting ctor"); 78 } 79 80 // This reference to the type is located entirely at the location of the 81 // final identifier in the qualified-id. 82 return CreateParsedType(Type, 83 Context.getTrivialTypeSourceInfo(Type, NameLoc)); 84 } 85 86 ParsedType Sema::getConstructorName(IdentifierInfo &II, 87 SourceLocation NameLoc, 88 Scope *S, CXXScopeSpec &SS, 89 bool EnteringContext) { 90 CXXRecordDecl *CurClass = getCurrentClass(S, &SS); 91 assert(CurClass && &II == CurClass->getIdentifier() && 92 "not a constructor name"); 93 94 // When naming a constructor as a member of a dependent context (eg, in a 95 // friend declaration or an inherited constructor declaration), form an 96 // unresolved "typename" type. 97 if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) { 98 QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II); 99 return ParsedType::make(T); 100 } 101 102 if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass)) 103 return ParsedType(); 104 105 // Find the injected-class-name declaration. Note that we make no attempt to 106 // diagnose cases where the injected-class-name is shadowed: the only 107 // declaration that can validly shadow the injected-class-name is a 108 // non-static data member, and if the class contains both a non-static data 109 // member and a constructor then it is ill-formed (we check that in 110 // CheckCompletedCXXClass). 111 CXXRecordDecl *InjectedClassName = nullptr; 112 for (NamedDecl *ND : CurClass->lookup(&II)) { 113 auto *RD = dyn_cast<CXXRecordDecl>(ND); 114 if (RD && RD->isInjectedClassName()) { 115 InjectedClassName = RD; 116 break; 117 } 118 } 119 if (!InjectedClassName) { 120 if (!CurClass->isInvalidDecl()) { 121 // FIXME: RequireCompleteDeclContext doesn't check dependent contexts 122 // properly. Work around it here for now. 123 Diag(SS.getLastQualifierNameLoc(), 124 diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange(); 125 } 126 return ParsedType(); 127 } 128 129 QualType T = Context.getTypeDeclType(InjectedClassName); 130 DiagnoseUseOfDecl(InjectedClassName, NameLoc); 131 MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false); 132 133 return ParsedType::make(T); 134 } 135 136 ParsedType Sema::getDestructorName(SourceLocation TildeLoc, 137 IdentifierInfo &II, 138 SourceLocation NameLoc, 139 Scope *S, CXXScopeSpec &SS, 140 ParsedType ObjectTypePtr, 141 bool EnteringContext) { 142 // Determine where to perform name lookup. 143 144 // FIXME: This area of the standard is very messy, and the current 145 // wording is rather unclear about which scopes we search for the 146 // destructor name; see core issues 399 and 555. Issue 399 in 147 // particular shows where the current description of destructor name 148 // lookup is completely out of line with existing practice, e.g., 149 // this appears to be ill-formed: 150 // 151 // namespace N { 152 // template <typename T> struct S { 153 // ~S(); 154 // }; 155 // } 156 // 157 // void f(N::S<int>* s) { 158 // s->N::S<int>::~S(); 159 // } 160 // 161 // See also PR6358 and PR6359. 162 // 163 // For now, we accept all the cases in which the name given could plausibly 164 // be interpreted as a correct destructor name, issuing off-by-default 165 // extension diagnostics on the cases that don't strictly conform to the 166 // C++20 rules. This basically means we always consider looking in the 167 // nested-name-specifier prefix, the complete nested-name-specifier, and 168 // the scope, and accept if we find the expected type in any of the three 169 // places. 170 171 if (SS.isInvalid()) 172 return nullptr; 173 174 // Whether we've failed with a diagnostic already. 175 bool Failed = false; 176 177 llvm::SmallVector<NamedDecl*, 8> FoundDecls; 178 llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet; 179 180 // If we have an object type, it's because we are in a 181 // pseudo-destructor-expression or a member access expression, and 182 // we know what type we're looking for. 183 QualType SearchType = 184 ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType(); 185 186 auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType { 187 auto IsAcceptableResult = [&](NamedDecl *D) -> bool { 188 auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl()); 189 if (!Type) 190 return false; 191 192 if (SearchType.isNull() || SearchType->isDependentType()) 193 return true; 194 195 QualType T = Context.getTypeDeclType(Type); 196 return Context.hasSameUnqualifiedType(T, SearchType); 197 }; 198 199 unsigned NumAcceptableResults = 0; 200 for (NamedDecl *D : Found) { 201 if (IsAcceptableResult(D)) 202 ++NumAcceptableResults; 203 204 // Don't list a class twice in the lookup failure diagnostic if it's 205 // found by both its injected-class-name and by the name in the enclosing 206 // scope. 207 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) 208 if (RD->isInjectedClassName()) 209 D = cast<NamedDecl>(RD->getParent()); 210 211 if (FoundDeclSet.insert(D).second) 212 FoundDecls.push_back(D); 213 } 214 215 // As an extension, attempt to "fix" an ambiguity by erasing all non-type 216 // results, and all non-matching results if we have a search type. It's not 217 // clear what the right behavior is if destructor lookup hits an ambiguity, 218 // but other compilers do generally accept at least some kinds of 219 // ambiguity. 220 if (Found.isAmbiguous() && NumAcceptableResults == 1) { 221 Diag(NameLoc, diag::ext_dtor_name_ambiguous); 222 LookupResult::Filter F = Found.makeFilter(); 223 while (F.hasNext()) { 224 NamedDecl *D = F.next(); 225 if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl())) 226 Diag(D->getLocation(), diag::note_destructor_type_here) 227 << Context.getTypeDeclType(TD); 228 else 229 Diag(D->getLocation(), diag::note_destructor_nontype_here); 230 231 if (!IsAcceptableResult(D)) 232 F.erase(); 233 } 234 F.done(); 235 } 236 237 if (Found.isAmbiguous()) 238 Failed = true; 239 240 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) { 241 if (IsAcceptableResult(Type)) { 242 QualType T = Context.getTypeDeclType(Type); 243 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); 244 return CreateParsedType(T, 245 Context.getTrivialTypeSourceInfo(T, NameLoc)); 246 } 247 } 248 249 return nullptr; 250 }; 251 252 bool IsDependent = false; 253 254 auto LookupInObjectType = [&]() -> ParsedType { 255 if (Failed || SearchType.isNull()) 256 return nullptr; 257 258 IsDependent |= SearchType->isDependentType(); 259 260 LookupResult Found(*this, &II, NameLoc, LookupDestructorName); 261 DeclContext *LookupCtx = computeDeclContext(SearchType); 262 if (!LookupCtx) 263 return nullptr; 264 LookupQualifiedName(Found, LookupCtx); 265 return CheckLookupResult(Found); 266 }; 267 268 auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType { 269 if (Failed) 270 return nullptr; 271 272 IsDependent |= isDependentScopeSpecifier(LookupSS); 273 DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext); 274 if (!LookupCtx) 275 return nullptr; 276 277 LookupResult Found(*this, &II, NameLoc, LookupDestructorName); 278 if (RequireCompleteDeclContext(LookupSS, LookupCtx)) { 279 Failed = true; 280 return nullptr; 281 } 282 LookupQualifiedName(Found, LookupCtx); 283 return CheckLookupResult(Found); 284 }; 285 286 auto LookupInScope = [&]() -> ParsedType { 287 if (Failed || !S) 288 return nullptr; 289 290 LookupResult Found(*this, &II, NameLoc, LookupDestructorName); 291 LookupName(Found, S); 292 return CheckLookupResult(Found); 293 }; 294 295 // C++2a [basic.lookup.qual]p6: 296 // In a qualified-id of the form 297 // 298 // nested-name-specifier[opt] type-name :: ~ type-name 299 // 300 // the second type-name is looked up in the same scope as the first. 301 // 302 // We interpret this as meaning that if you do a dual-scope lookup for the 303 // first name, you also do a dual-scope lookup for the second name, per 304 // C++ [basic.lookup.classref]p4: 305 // 306 // If the id-expression in a class member access is a qualified-id of the 307 // form 308 // 309 // class-name-or-namespace-name :: ... 310 // 311 // the class-name-or-namespace-name following the . or -> is first looked 312 // up in the class of the object expression and the name, if found, is used. 313 // Otherwise, it is looked up in the context of the entire 314 // postfix-expression. 315 // 316 // This looks in the same scopes as for an unqualified destructor name: 317 // 318 // C++ [basic.lookup.classref]p3: 319 // If the unqualified-id is ~ type-name, the type-name is looked up 320 // in the context of the entire postfix-expression. If the type T 321 // of the object expression is of a class type C, the type-name is 322 // also looked up in the scope of class C. At least one of the 323 // lookups shall find a name that refers to cv T. 324 // 325 // FIXME: The intent is unclear here. Should type-name::~type-name look in 326 // the scope anyway if it finds a non-matching name declared in the class? 327 // If both lookups succeed and find a dependent result, which result should 328 // we retain? (Same question for p->~type-name().) 329 330 if (NestedNameSpecifier *Prefix = 331 SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) { 332 // This is 333 // 334 // nested-name-specifier type-name :: ~ type-name 335 // 336 // Look for the second type-name in the nested-name-specifier. 337 CXXScopeSpec PrefixSS; 338 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data())); 339 if (ParsedType T = LookupInNestedNameSpec(PrefixSS)) 340 return T; 341 } else { 342 // This is one of 343 // 344 // type-name :: ~ type-name 345 // ~ type-name 346 // 347 // Look in the scope and (if any) the object type. 348 if (ParsedType T = LookupInScope()) 349 return T; 350 if (ParsedType T = LookupInObjectType()) 351 return T; 352 } 353 354 if (Failed) 355 return nullptr; 356 357 if (IsDependent) { 358 // We didn't find our type, but that's OK: it's dependent anyway. 359 360 // FIXME: What if we have no nested-name-specifier? 361 QualType T = CheckTypenameType(ETK_None, SourceLocation(), 362 SS.getWithLocInContext(Context), 363 II, NameLoc); 364 return ParsedType::make(T); 365 } 366 367 // The remaining cases are all non-standard extensions imitating the behavior 368 // of various other compilers. 369 unsigned NumNonExtensionDecls = FoundDecls.size(); 370 371 if (SS.isSet()) { 372 // For compatibility with older broken C++ rules and existing code, 373 // 374 // nested-name-specifier :: ~ type-name 375 // 376 // also looks for type-name within the nested-name-specifier. 377 if (ParsedType T = LookupInNestedNameSpec(SS)) { 378 Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope) 379 << SS.getRange() 380 << FixItHint::CreateInsertion(SS.getEndLoc(), 381 ("::" + II.getName()).str()); 382 return T; 383 } 384 385 // For compatibility with other compilers and older versions of Clang, 386 // 387 // nested-name-specifier type-name :: ~ type-name 388 // 389 // also looks for type-name in the scope. Unfortunately, we can't 390 // reasonably apply this fallback for dependent nested-name-specifiers. 391 if (SS.getScopeRep()->getPrefix()) { 392 if (ParsedType T = LookupInScope()) { 393 Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope) 394 << FixItHint::CreateRemoval(SS.getRange()); 395 Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here) 396 << GetTypeFromParser(T); 397 return T; 398 } 399 } 400 } 401 402 // We didn't find anything matching; tell the user what we did find (if 403 // anything). 404 405 // Don't tell the user about declarations we shouldn't have found. 406 FoundDecls.resize(NumNonExtensionDecls); 407 408 // List types before non-types. 409 std::stable_sort(FoundDecls.begin(), FoundDecls.end(), 410 [](NamedDecl *A, NamedDecl *B) { 411 return isa<TypeDecl>(A->getUnderlyingDecl()) > 412 isa<TypeDecl>(B->getUnderlyingDecl()); 413 }); 414 415 // Suggest a fixit to properly name the destroyed type. 416 auto MakeFixItHint = [&]{ 417 const CXXRecordDecl *Destroyed = nullptr; 418 // FIXME: If we have a scope specifier, suggest its last component? 419 if (!SearchType.isNull()) 420 Destroyed = SearchType->getAsCXXRecordDecl(); 421 else if (S) 422 Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity()); 423 if (Destroyed) 424 return FixItHint::CreateReplacement(SourceRange(NameLoc), 425 Destroyed->getNameAsString()); 426 return FixItHint(); 427 }; 428 429 if (FoundDecls.empty()) { 430 // FIXME: Attempt typo-correction? 431 Diag(NameLoc, diag::err_undeclared_destructor_name) 432 << &II << MakeFixItHint(); 433 } else if (!SearchType.isNull() && FoundDecls.size() == 1) { 434 if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) { 435 assert(!SearchType.isNull() && 436 "should only reject a type result if we have a search type"); 437 QualType T = Context.getTypeDeclType(TD); 438 Diag(NameLoc, diag::err_destructor_expr_type_mismatch) 439 << T << SearchType << MakeFixItHint(); 440 } else { 441 Diag(NameLoc, diag::err_destructor_expr_nontype) 442 << &II << MakeFixItHint(); 443 } 444 } else { 445 Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype 446 : diag::err_destructor_expr_mismatch) 447 << &II << SearchType << MakeFixItHint(); 448 } 449 450 for (NamedDecl *FoundD : FoundDecls) { 451 if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl())) 452 Diag(FoundD->getLocation(), diag::note_destructor_type_here) 453 << Context.getTypeDeclType(TD); 454 else 455 Diag(FoundD->getLocation(), diag::note_destructor_nontype_here) 456 << FoundD; 457 } 458 459 return nullptr; 460 } 461 462 ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS, 463 ParsedType ObjectType) { 464 if (DS.getTypeSpecType() == DeclSpec::TST_error) 465 return nullptr; 466 467 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) { 468 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); 469 return nullptr; 470 } 471 472 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype && 473 "unexpected type in getDestructorType"); 474 QualType T = BuildDecltypeType(DS.getRepAsExpr()); 475 476 // If we know the type of the object, check that the correct destructor 477 // type was named now; we can give better diagnostics this way. 478 QualType SearchType = GetTypeFromParser(ObjectType); 479 if (!SearchType.isNull() && !SearchType->isDependentType() && 480 !Context.hasSameUnqualifiedType(T, SearchType)) { 481 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch) 482 << T << SearchType; 483 return nullptr; 484 } 485 486 return ParsedType::make(T); 487 } 488 489 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS, 490 const UnqualifiedId &Name, bool IsUDSuffix) { 491 assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId); 492 if (!IsUDSuffix) { 493 // [over.literal] p8 494 // 495 // double operator""_Bq(long double); // OK: not a reserved identifier 496 // double operator"" _Bq(long double); // ill-formed, no diagnostic required 497 IdentifierInfo *II = Name.Identifier; 498 ReservedIdentifierStatus Status = II->isReserved(PP.getLangOpts()); 499 SourceLocation Loc = Name.getEndLoc(); 500 if (isReservedInAllContexts(Status) && 501 !PP.getSourceManager().isInSystemHeader(Loc)) { 502 Diag(Loc, diag::warn_reserved_extern_symbol) 503 << II << static_cast<int>(Status) 504 << FixItHint::CreateReplacement( 505 Name.getSourceRange(), 506 (StringRef("operator\"\"") + II->getName()).str()); 507 } 508 } 509 510 if (!SS.isValid()) 511 return false; 512 513 switch (SS.getScopeRep()->getKind()) { 514 case NestedNameSpecifier::Identifier: 515 case NestedNameSpecifier::TypeSpec: 516 case NestedNameSpecifier::TypeSpecWithTemplate: 517 // Per C++11 [over.literal]p2, literal operators can only be declared at 518 // namespace scope. Therefore, this unqualified-id cannot name anything. 519 // Reject it early, because we have no AST representation for this in the 520 // case where the scope is dependent. 521 Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace) 522 << SS.getScopeRep(); 523 return true; 524 525 case NestedNameSpecifier::Global: 526 case NestedNameSpecifier::Super: 527 case NestedNameSpecifier::Namespace: 528 case NestedNameSpecifier::NamespaceAlias: 529 return false; 530 } 531 532 llvm_unreachable("unknown nested name specifier kind"); 533 } 534 535 /// Build a C++ typeid expression with a type operand. 536 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, 537 SourceLocation TypeidLoc, 538 TypeSourceInfo *Operand, 539 SourceLocation RParenLoc) { 540 // C++ [expr.typeid]p4: 541 // The top-level cv-qualifiers of the lvalue expression or the type-id 542 // that is the operand of typeid are always ignored. 543 // If the type of the type-id is a class type or a reference to a class 544 // type, the class shall be completely-defined. 545 Qualifiers Quals; 546 QualType T 547 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(), 548 Quals); 549 if (T->getAs<RecordType>() && 550 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) 551 return ExprError(); 552 553 if (T->isVariablyModifiedType()) 554 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T); 555 556 if (CheckQualifiedFunctionForTypeId(T, TypeidLoc)) 557 return ExprError(); 558 559 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand, 560 SourceRange(TypeidLoc, RParenLoc)); 561 } 562 563 /// Build a C++ typeid expression with an expression operand. 564 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, 565 SourceLocation TypeidLoc, 566 Expr *E, 567 SourceLocation RParenLoc) { 568 bool WasEvaluated = false; 569 if (E && !E->isTypeDependent()) { 570 if (E->hasPlaceholderType()) { 571 ExprResult result = CheckPlaceholderExpr(E); 572 if (result.isInvalid()) return ExprError(); 573 E = result.get(); 574 } 575 576 QualType T = E->getType(); 577 if (const RecordType *RecordT = T->getAs<RecordType>()) { 578 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl()); 579 // C++ [expr.typeid]p3: 580 // [...] If the type of the expression is a class type, the class 581 // shall be completely-defined. 582 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) 583 return ExprError(); 584 585 // C++ [expr.typeid]p3: 586 // When typeid is applied to an expression other than an glvalue of a 587 // polymorphic class type [...] [the] expression is an unevaluated 588 // operand. [...] 589 if (RecordD->isPolymorphic() && E->isGLValue()) { 590 if (isUnevaluatedContext()) { 591 // The operand was processed in unevaluated context, switch the 592 // context and recheck the subexpression. 593 ExprResult Result = TransformToPotentiallyEvaluated(E); 594 if (Result.isInvalid()) 595 return ExprError(); 596 E = Result.get(); 597 } 598 599 // We require a vtable to query the type at run time. 600 MarkVTableUsed(TypeidLoc, RecordD); 601 WasEvaluated = true; 602 } 603 } 604 605 ExprResult Result = CheckUnevaluatedOperand(E); 606 if (Result.isInvalid()) 607 return ExprError(); 608 E = Result.get(); 609 610 // C++ [expr.typeid]p4: 611 // [...] If the type of the type-id is a reference to a possibly 612 // cv-qualified type, the result of the typeid expression refers to a 613 // std::type_info object representing the cv-unqualified referenced 614 // type. 615 Qualifiers Quals; 616 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals); 617 if (!Context.hasSameType(T, UnqualT)) { 618 T = UnqualT; 619 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get(); 620 } 621 } 622 623 if (E->getType()->isVariablyModifiedType()) 624 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) 625 << E->getType()); 626 else if (!inTemplateInstantiation() && 627 E->HasSideEffects(Context, WasEvaluated)) { 628 // The expression operand for typeid is in an unevaluated expression 629 // context, so side effects could result in unintended consequences. 630 Diag(E->getExprLoc(), WasEvaluated 631 ? diag::warn_side_effects_typeid 632 : diag::warn_side_effects_unevaluated_context); 633 } 634 635 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E, 636 SourceRange(TypeidLoc, RParenLoc)); 637 } 638 639 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression); 640 ExprResult 641 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, 642 bool isType, void *TyOrExpr, SourceLocation RParenLoc) { 643 // typeid is not supported in OpenCL. 644 if (getLangOpts().OpenCLCPlusPlus) { 645 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported) 646 << "typeid"); 647 } 648 649 // Find the std::type_info type. 650 if (!getStdNamespace()) 651 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); 652 653 if (!CXXTypeInfoDecl) { 654 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info"); 655 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName); 656 LookupQualifiedName(R, getStdNamespace()); 657 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); 658 // Microsoft's typeinfo doesn't have type_info in std but in the global 659 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153. 660 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) { 661 LookupQualifiedName(R, Context.getTranslationUnitDecl()); 662 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); 663 } 664 if (!CXXTypeInfoDecl) 665 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); 666 } 667 668 if (!getLangOpts().RTTI) { 669 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti)); 670 } 671 672 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl); 673 674 if (isType) { 675 // The operand is a type; handle it as such. 676 TypeSourceInfo *TInfo = nullptr; 677 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), 678 &TInfo); 679 if (T.isNull()) 680 return ExprError(); 681 682 if (!TInfo) 683 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); 684 685 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc); 686 } 687 688 // The operand is an expression. 689 ExprResult Result = 690 BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc); 691 692 if (!getLangOpts().RTTIData && !Result.isInvalid()) 693 if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get())) 694 if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context)) 695 Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled) 696 << (getDiagnostics().getDiagnosticOptions().getFormat() == 697 DiagnosticOptions::MSVC); 698 return Result; 699 } 700 701 /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to 702 /// a single GUID. 703 static void 704 getUuidAttrOfType(Sema &SemaRef, QualType QT, 705 llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) { 706 // Optionally remove one level of pointer, reference or array indirection. 707 const Type *Ty = QT.getTypePtr(); 708 if (QT->isPointerType() || QT->isReferenceType()) 709 Ty = QT->getPointeeType().getTypePtr(); 710 else if (QT->isArrayType()) 711 Ty = Ty->getBaseElementTypeUnsafe(); 712 713 const auto *TD = Ty->getAsTagDecl(); 714 if (!TD) 715 return; 716 717 if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) { 718 UuidAttrs.insert(Uuid); 719 return; 720 } 721 722 // __uuidof can grab UUIDs from template arguments. 723 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) { 724 const TemplateArgumentList &TAL = CTSD->getTemplateArgs(); 725 for (const TemplateArgument &TA : TAL.asArray()) { 726 const UuidAttr *UuidForTA = nullptr; 727 if (TA.getKind() == TemplateArgument::Type) 728 getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs); 729 else if (TA.getKind() == TemplateArgument::Declaration) 730 getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs); 731 732 if (UuidForTA) 733 UuidAttrs.insert(UuidForTA); 734 } 735 } 736 } 737 738 /// Build a Microsoft __uuidof expression with a type operand. 739 ExprResult Sema::BuildCXXUuidof(QualType Type, 740 SourceLocation TypeidLoc, 741 TypeSourceInfo *Operand, 742 SourceLocation RParenLoc) { 743 MSGuidDecl *Guid = nullptr; 744 if (!Operand->getType()->isDependentType()) { 745 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs; 746 getUuidAttrOfType(*this, Operand->getType(), UuidAttrs); 747 if (UuidAttrs.empty()) 748 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); 749 if (UuidAttrs.size() > 1) 750 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); 751 Guid = UuidAttrs.back()->getGuidDecl(); 752 } 753 754 return new (Context) 755 CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc)); 756 } 757 758 /// Build a Microsoft __uuidof expression with an expression operand. 759 ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc, 760 Expr *E, SourceLocation RParenLoc) { 761 MSGuidDecl *Guid = nullptr; 762 if (!E->getType()->isDependentType()) { 763 if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 764 // A null pointer results in {00000000-0000-0000-0000-000000000000}. 765 Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{}); 766 } else { 767 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs; 768 getUuidAttrOfType(*this, E->getType(), UuidAttrs); 769 if (UuidAttrs.empty()) 770 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); 771 if (UuidAttrs.size() > 1) 772 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); 773 Guid = UuidAttrs.back()->getGuidDecl(); 774 } 775 } 776 777 return new (Context) 778 CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc)); 779 } 780 781 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression); 782 ExprResult 783 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc, 784 bool isType, void *TyOrExpr, SourceLocation RParenLoc) { 785 QualType GuidType = Context.getMSGuidType(); 786 GuidType.addConst(); 787 788 if (isType) { 789 // The operand is a type; handle it as such. 790 TypeSourceInfo *TInfo = nullptr; 791 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), 792 &TInfo); 793 if (T.isNull()) 794 return ExprError(); 795 796 if (!TInfo) 797 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); 798 799 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc); 800 } 801 802 // The operand is an expression. 803 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc); 804 } 805 806 /// ActOnCXXBoolLiteral - Parse {true,false} literals. 807 ExprResult 808 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { 809 assert((Kind == tok::kw_true || Kind == tok::kw_false) && 810 "Unknown C++ Boolean value!"); 811 return new (Context) 812 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc); 813 } 814 815 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'. 816 ExprResult 817 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) { 818 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc); 819 } 820 821 /// ActOnCXXThrow - Parse throw expressions. 822 ExprResult 823 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) { 824 bool IsThrownVarInScope = false; 825 if (Ex) { 826 // C++0x [class.copymove]p31: 827 // When certain criteria are met, an implementation is allowed to omit the 828 // copy/move construction of a class object [...] 829 // 830 // - in a throw-expression, when the operand is the name of a 831 // non-volatile automatic object (other than a function or catch- 832 // clause parameter) whose scope does not extend beyond the end of the 833 // innermost enclosing try-block (if there is one), the copy/move 834 // operation from the operand to the exception object (15.1) can be 835 // omitted by constructing the automatic object directly into the 836 // exception object 837 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens())) 838 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 839 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) { 840 for( ; S; S = S->getParent()) { 841 if (S->isDeclScope(Var)) { 842 IsThrownVarInScope = true; 843 break; 844 } 845 846 // FIXME: Many of the scope checks here seem incorrect. 847 if (S->getFlags() & 848 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope | 849 Scope::ObjCMethodScope | Scope::TryScope)) 850 break; 851 } 852 } 853 } 854 } 855 856 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope); 857 } 858 859 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex, 860 bool IsThrownVarInScope) { 861 // Don't report an error if 'throw' is used in system headers. 862 if (!getLangOpts().CXXExceptions && 863 !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) { 864 // Delay error emission for the OpenMP device code. 865 targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw"; 866 } 867 868 // Exceptions aren't allowed in CUDA device code. 869 if (getLangOpts().CUDA) 870 CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions) 871 << "throw" << CurrentCUDATarget(); 872 873 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope()) 874 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw"; 875 876 if (Ex && !Ex->isTypeDependent()) { 877 // Initialize the exception result. This implicitly weeds out 878 // abstract types or types with inaccessible copy constructors. 879 880 // C++0x [class.copymove]p31: 881 // When certain criteria are met, an implementation is allowed to omit the 882 // copy/move construction of a class object [...] 883 // 884 // - in a throw-expression, when the operand is the name of a 885 // non-volatile automatic object (other than a function or 886 // catch-clause 887 // parameter) whose scope does not extend beyond the end of the 888 // innermost enclosing try-block (if there is one), the copy/move 889 // operation from the operand to the exception object (15.1) can be 890 // omitted by constructing the automatic object directly into the 891 // exception object 892 NamedReturnInfo NRInfo = 893 IsThrownVarInScope ? getNamedReturnInfo(Ex) : NamedReturnInfo(); 894 895 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType()); 896 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex)) 897 return ExprError(); 898 899 InitializedEntity Entity = 900 InitializedEntity::InitializeException(OpLoc, ExceptionObjectTy); 901 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Ex); 902 if (Res.isInvalid()) 903 return ExprError(); 904 Ex = Res.get(); 905 } 906 907 // PPC MMA non-pointer types are not allowed as throw expr types. 908 if (Ex && Context.getTargetInfo().getTriple().isPPC64()) 909 CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc()); 910 911 return new (Context) 912 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope); 913 } 914 915 static void 916 collectPublicBases(CXXRecordDecl *RD, 917 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen, 918 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases, 919 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen, 920 bool ParentIsPublic) { 921 for (const CXXBaseSpecifier &BS : RD->bases()) { 922 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl(); 923 bool NewSubobject; 924 // Virtual bases constitute the same subobject. Non-virtual bases are 925 // always distinct subobjects. 926 if (BS.isVirtual()) 927 NewSubobject = VBases.insert(BaseDecl).second; 928 else 929 NewSubobject = true; 930 931 if (NewSubobject) 932 ++SubobjectsSeen[BaseDecl]; 933 934 // Only add subobjects which have public access throughout the entire chain. 935 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public; 936 if (PublicPath) 937 PublicSubobjectsSeen.insert(BaseDecl); 938 939 // Recurse on to each base subobject. 940 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen, 941 PublicPath); 942 } 943 } 944 945 static void getUnambiguousPublicSubobjects( 946 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) { 947 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen; 948 llvm::SmallSet<CXXRecordDecl *, 2> VBases; 949 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen; 950 SubobjectsSeen[RD] = 1; 951 PublicSubobjectsSeen.insert(RD); 952 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen, 953 /*ParentIsPublic=*/true); 954 955 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) { 956 // Skip ambiguous objects. 957 if (SubobjectsSeen[PublicSubobject] > 1) 958 continue; 959 960 Objects.push_back(PublicSubobject); 961 } 962 } 963 964 /// CheckCXXThrowOperand - Validate the operand of a throw. 965 bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, 966 QualType ExceptionObjectTy, Expr *E) { 967 // If the type of the exception would be an incomplete type or a pointer 968 // to an incomplete type other than (cv) void the program is ill-formed. 969 QualType Ty = ExceptionObjectTy; 970 bool isPointer = false; 971 if (const PointerType* Ptr = Ty->getAs<PointerType>()) { 972 Ty = Ptr->getPointeeType(); 973 isPointer = true; 974 } 975 if (!isPointer || !Ty->isVoidType()) { 976 if (RequireCompleteType(ThrowLoc, Ty, 977 isPointer ? diag::err_throw_incomplete_ptr 978 : diag::err_throw_incomplete, 979 E->getSourceRange())) 980 return true; 981 982 if (!isPointer && Ty->isSizelessType()) { 983 Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange(); 984 return true; 985 } 986 987 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy, 988 diag::err_throw_abstract_type, E)) 989 return true; 990 } 991 992 // If the exception has class type, we need additional handling. 993 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 994 if (!RD) 995 return false; 996 997 // If we are throwing a polymorphic class type or pointer thereof, 998 // exception handling will make use of the vtable. 999 MarkVTableUsed(ThrowLoc, RD); 1000 1001 // If a pointer is thrown, the referenced object will not be destroyed. 1002 if (isPointer) 1003 return false; 1004 1005 // If the class has a destructor, we must be able to call it. 1006 if (!RD->hasIrrelevantDestructor()) { 1007 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) { 1008 MarkFunctionReferenced(E->getExprLoc(), Destructor); 1009 CheckDestructorAccess(E->getExprLoc(), Destructor, 1010 PDiag(diag::err_access_dtor_exception) << Ty); 1011 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) 1012 return true; 1013 } 1014 } 1015 1016 // The MSVC ABI creates a list of all types which can catch the exception 1017 // object. This list also references the appropriate copy constructor to call 1018 // if the object is caught by value and has a non-trivial copy constructor. 1019 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1020 // We are only interested in the public, unambiguous bases contained within 1021 // the exception object. Bases which are ambiguous or otherwise 1022 // inaccessible are not catchable types. 1023 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects; 1024 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects); 1025 1026 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) { 1027 // Attempt to lookup the copy constructor. Various pieces of machinery 1028 // will spring into action, like template instantiation, which means this 1029 // cannot be a simple walk of the class's decls. Instead, we must perform 1030 // lookup and overload resolution. 1031 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0); 1032 if (!CD || CD->isDeleted()) 1033 continue; 1034 1035 // Mark the constructor referenced as it is used by this throw expression. 1036 MarkFunctionReferenced(E->getExprLoc(), CD); 1037 1038 // Skip this copy constructor if it is trivial, we don't need to record it 1039 // in the catchable type data. 1040 if (CD->isTrivial()) 1041 continue; 1042 1043 // The copy constructor is non-trivial, create a mapping from this class 1044 // type to this constructor. 1045 // N.B. The selection of copy constructor is not sensitive to this 1046 // particular throw-site. Lookup will be performed at the catch-site to 1047 // ensure that the copy constructor is, in fact, accessible (via 1048 // friendship or any other means). 1049 Context.addCopyConstructorForExceptionObject(Subobject, CD); 1050 1051 // We don't keep the instantiated default argument expressions around so 1052 // we must rebuild them here. 1053 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) { 1054 if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I))) 1055 return true; 1056 } 1057 } 1058 } 1059 1060 // Under the Itanium C++ ABI, memory for the exception object is allocated by 1061 // the runtime with no ability for the compiler to request additional 1062 // alignment. Warn if the exception type requires alignment beyond the minimum 1063 // guaranteed by the target C++ runtime. 1064 if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) { 1065 CharUnits TypeAlign = Context.getTypeAlignInChars(Ty); 1066 CharUnits ExnObjAlign = Context.getExnObjectAlignment(); 1067 if (ExnObjAlign < TypeAlign) { 1068 Diag(ThrowLoc, diag::warn_throw_underaligned_obj); 1069 Diag(ThrowLoc, diag::note_throw_underaligned_obj) 1070 << Ty << (unsigned)TypeAlign.getQuantity() 1071 << (unsigned)ExnObjAlign.getQuantity(); 1072 } 1073 } 1074 1075 return false; 1076 } 1077 1078 static QualType adjustCVQualifiersForCXXThisWithinLambda( 1079 ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy, 1080 DeclContext *CurSemaContext, ASTContext &ASTCtx) { 1081 1082 QualType ClassType = ThisTy->getPointeeType(); 1083 LambdaScopeInfo *CurLSI = nullptr; 1084 DeclContext *CurDC = CurSemaContext; 1085 1086 // Iterate through the stack of lambdas starting from the innermost lambda to 1087 // the outermost lambda, checking if '*this' is ever captured by copy - since 1088 // that could change the cv-qualifiers of the '*this' object. 1089 // The object referred to by '*this' starts out with the cv-qualifiers of its 1090 // member function. We then start with the innermost lambda and iterate 1091 // outward checking to see if any lambda performs a by-copy capture of '*this' 1092 // - and if so, any nested lambda must respect the 'constness' of that 1093 // capturing lamdbda's call operator. 1094 // 1095 1096 // Since the FunctionScopeInfo stack is representative of the lexical 1097 // nesting of the lambda expressions during initial parsing (and is the best 1098 // place for querying information about captures about lambdas that are 1099 // partially processed) and perhaps during instantiation of function templates 1100 // that contain lambda expressions that need to be transformed BUT not 1101 // necessarily during instantiation of a nested generic lambda's function call 1102 // operator (which might even be instantiated at the end of the TU) - at which 1103 // time the DeclContext tree is mature enough to query capture information 1104 // reliably - we use a two pronged approach to walk through all the lexically 1105 // enclosing lambda expressions: 1106 // 1107 // 1) Climb down the FunctionScopeInfo stack as long as each item represents 1108 // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically 1109 // enclosed by the call-operator of the LSI below it on the stack (while 1110 // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on 1111 // the stack represents the innermost lambda. 1112 // 1113 // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext 1114 // represents a lambda's call operator. If it does, we must be instantiating 1115 // a generic lambda's call operator (represented by the Current LSI, and 1116 // should be the only scenario where an inconsistency between the LSI and the 1117 // DeclContext should occur), so climb out the DeclContexts if they 1118 // represent lambdas, while querying the corresponding closure types 1119 // regarding capture information. 1120 1121 // 1) Climb down the function scope info stack. 1122 for (int I = FunctionScopes.size(); 1123 I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) && 1124 (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() == 1125 cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator); 1126 CurDC = getLambdaAwareParentOfDeclContext(CurDC)) { 1127 CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]); 1128 1129 if (!CurLSI->isCXXThisCaptured()) 1130 continue; 1131 1132 auto C = CurLSI->getCXXThisCapture(); 1133 1134 if (C.isCopyCapture()) { 1135 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask); 1136 if (CurLSI->CallOperator->isConst()) 1137 ClassType.addConst(); 1138 return ASTCtx.getPointerType(ClassType); 1139 } 1140 } 1141 1142 // 2) We've run out of ScopeInfos but check 1. if CurDC is a lambda (which 1143 // can happen during instantiation of its nested generic lambda call 1144 // operator); 2. if we're in a lambda scope (lambda body). 1145 if (CurLSI && isLambdaCallOperator(CurDC)) { 1146 assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && 1147 "While computing 'this' capture-type for a generic lambda, when we " 1148 "run out of enclosing LSI's, yet the enclosing DC is a " 1149 "lambda-call-operator we must be (i.e. Current LSI) in a generic " 1150 "lambda call oeprator"); 1151 assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator)); 1152 1153 auto IsThisCaptured = 1154 [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) { 1155 IsConst = false; 1156 IsByCopy = false; 1157 for (auto &&C : Closure->captures()) { 1158 if (C.capturesThis()) { 1159 if (C.getCaptureKind() == LCK_StarThis) 1160 IsByCopy = true; 1161 if (Closure->getLambdaCallOperator()->isConst()) 1162 IsConst = true; 1163 return true; 1164 } 1165 } 1166 return false; 1167 }; 1168 1169 bool IsByCopyCapture = false; 1170 bool IsConstCapture = false; 1171 CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent()); 1172 while (Closure && 1173 IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) { 1174 if (IsByCopyCapture) { 1175 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask); 1176 if (IsConstCapture) 1177 ClassType.addConst(); 1178 return ASTCtx.getPointerType(ClassType); 1179 } 1180 Closure = isLambdaCallOperator(Closure->getParent()) 1181 ? cast<CXXRecordDecl>(Closure->getParent()->getParent()) 1182 : nullptr; 1183 } 1184 } 1185 return ASTCtx.getPointerType(ClassType); 1186 } 1187 1188 QualType Sema::getCurrentThisType() { 1189 DeclContext *DC = getFunctionLevelDeclContext(); 1190 QualType ThisTy = CXXThisTypeOverride; 1191 1192 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) { 1193 if (method && method->isInstance()) 1194 ThisTy = method->getThisType(); 1195 } 1196 1197 if (ThisTy.isNull() && isLambdaCallOperator(CurContext) && 1198 inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) { 1199 1200 // This is a lambda call operator that is being instantiated as a default 1201 // initializer. DC must point to the enclosing class type, so we can recover 1202 // the 'this' type from it. 1203 QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC)); 1204 // There are no cv-qualifiers for 'this' within default initializers, 1205 // per [expr.prim.general]p4. 1206 ThisTy = Context.getPointerType(ClassTy); 1207 } 1208 1209 // If we are within a lambda's call operator, the cv-qualifiers of 'this' 1210 // might need to be adjusted if the lambda or any of its enclosing lambda's 1211 // captures '*this' by copy. 1212 if (!ThisTy.isNull() && isLambdaCallOperator(CurContext)) 1213 return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy, 1214 CurContext, Context); 1215 return ThisTy; 1216 } 1217 1218 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S, 1219 Decl *ContextDecl, 1220 Qualifiers CXXThisTypeQuals, 1221 bool Enabled) 1222 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false) 1223 { 1224 if (!Enabled || !ContextDecl) 1225 return; 1226 1227 CXXRecordDecl *Record = nullptr; 1228 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl)) 1229 Record = Template->getTemplatedDecl(); 1230 else 1231 Record = cast<CXXRecordDecl>(ContextDecl); 1232 1233 QualType T = S.Context.getRecordType(Record); 1234 T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals); 1235 1236 S.CXXThisTypeOverride = S.Context.getPointerType(T); 1237 1238 this->Enabled = true; 1239 } 1240 1241 1242 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() { 1243 if (Enabled) { 1244 S.CXXThisTypeOverride = OldCXXThisTypeOverride; 1245 } 1246 } 1247 1248 static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) { 1249 SourceLocation DiagLoc = LSI->IntroducerRange.getEnd(); 1250 assert(!LSI->isCXXThisCaptured()); 1251 // [=, this] {}; // until C++20: Error: this when = is the default 1252 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval && 1253 !Sema.getLangOpts().CPlusPlus20) 1254 return; 1255 Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit) 1256 << FixItHint::CreateInsertion( 1257 DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this"); 1258 } 1259 1260 bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit, 1261 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt, 1262 const bool ByCopy) { 1263 // We don't need to capture this in an unevaluated context. 1264 if (isUnevaluatedContext() && !Explicit) 1265 return true; 1266 1267 assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value"); 1268 1269 const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt 1270 ? *FunctionScopeIndexToStopAt 1271 : FunctionScopes.size() - 1; 1272 1273 // Check that we can capture the *enclosing object* (referred to by '*this') 1274 // by the capturing-entity/closure (lambda/block/etc) at 1275 // MaxFunctionScopesIndex-deep on the FunctionScopes stack. 1276 1277 // Note: The *enclosing object* can only be captured by-value by a 1278 // closure that is a lambda, using the explicit notation: 1279 // [*this] { ... }. 1280 // Every other capture of the *enclosing object* results in its by-reference 1281 // capture. 1282 1283 // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes 1284 // stack), we can capture the *enclosing object* only if: 1285 // - 'L' has an explicit byref or byval capture of the *enclosing object* 1286 // - or, 'L' has an implicit capture. 1287 // AND 1288 // -- there is no enclosing closure 1289 // -- or, there is some enclosing closure 'E' that has already captured the 1290 // *enclosing object*, and every intervening closure (if any) between 'E' 1291 // and 'L' can implicitly capture the *enclosing object*. 1292 // -- or, every enclosing closure can implicitly capture the 1293 // *enclosing object* 1294 1295 1296 unsigned NumCapturingClosures = 0; 1297 for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) { 1298 if (CapturingScopeInfo *CSI = 1299 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) { 1300 if (CSI->CXXThisCaptureIndex != 0) { 1301 // 'this' is already being captured; there isn't anything more to do. 1302 CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose); 1303 break; 1304 } 1305 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI); 1306 if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) { 1307 // This context can't implicitly capture 'this'; fail out. 1308 if (BuildAndDiagnose) { 1309 Diag(Loc, diag::err_this_capture) 1310 << (Explicit && idx == MaxFunctionScopesIndex); 1311 if (!Explicit) 1312 buildLambdaThisCaptureFixit(*this, LSI); 1313 } 1314 return true; 1315 } 1316 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref || 1317 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval || 1318 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block || 1319 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion || 1320 (Explicit && idx == MaxFunctionScopesIndex)) { 1321 // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first 1322 // iteration through can be an explicit capture, all enclosing closures, 1323 // if any, must perform implicit captures. 1324 1325 // This closure can capture 'this'; continue looking upwards. 1326 NumCapturingClosures++; 1327 continue; 1328 } 1329 // This context can't implicitly capture 'this'; fail out. 1330 if (BuildAndDiagnose) 1331 Diag(Loc, diag::err_this_capture) 1332 << (Explicit && idx == MaxFunctionScopesIndex); 1333 1334 if (!Explicit) 1335 buildLambdaThisCaptureFixit(*this, LSI); 1336 return true; 1337 } 1338 break; 1339 } 1340 if (!BuildAndDiagnose) return false; 1341 1342 // If we got here, then the closure at MaxFunctionScopesIndex on the 1343 // FunctionScopes stack, can capture the *enclosing object*, so capture it 1344 // (including implicit by-reference captures in any enclosing closures). 1345 1346 // In the loop below, respect the ByCopy flag only for the closure requesting 1347 // the capture (i.e. first iteration through the loop below). Ignore it for 1348 // all enclosing closure's up to NumCapturingClosures (since they must be 1349 // implicitly capturing the *enclosing object* by reference (see loop 1350 // above)). 1351 assert((!ByCopy || 1352 isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && 1353 "Only a lambda can capture the enclosing object (referred to by " 1354 "*this) by copy"); 1355 QualType ThisTy = getCurrentThisType(); 1356 for (int idx = MaxFunctionScopesIndex; NumCapturingClosures; 1357 --idx, --NumCapturingClosures) { 1358 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]); 1359 1360 // The type of the corresponding data member (not a 'this' pointer if 'by 1361 // copy'). 1362 QualType CaptureType = ThisTy; 1363 if (ByCopy) { 1364 // If we are capturing the object referred to by '*this' by copy, ignore 1365 // any cv qualifiers inherited from the type of the member function for 1366 // the type of the closure-type's corresponding data member and any use 1367 // of 'this'. 1368 CaptureType = ThisTy->getPointeeType(); 1369 CaptureType.removeLocalCVRQualifiers(Qualifiers::CVRMask); 1370 } 1371 1372 bool isNested = NumCapturingClosures > 1; 1373 CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy); 1374 } 1375 return false; 1376 } 1377 1378 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) { 1379 /// C++ 9.3.2: In the body of a non-static member function, the keyword this 1380 /// is a non-lvalue expression whose value is the address of the object for 1381 /// which the function is called. 1382 1383 QualType ThisTy = getCurrentThisType(); 1384 if (ThisTy.isNull()) 1385 return Diag(Loc, diag::err_invalid_this_use); 1386 return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false); 1387 } 1388 1389 Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type, 1390 bool IsImplicit) { 1391 auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit); 1392 MarkThisReferenced(This); 1393 return This; 1394 } 1395 1396 void Sema::MarkThisReferenced(CXXThisExpr *This) { 1397 CheckCXXThisCapture(This->getExprLoc()); 1398 } 1399 1400 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) { 1401 // If we're outside the body of a member function, then we'll have a specified 1402 // type for 'this'. 1403 if (CXXThisTypeOverride.isNull()) 1404 return false; 1405 1406 // Determine whether we're looking into a class that's currently being 1407 // defined. 1408 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl(); 1409 return Class && Class->isBeingDefined(); 1410 } 1411 1412 /// Parse construction of a specified type. 1413 /// Can be interpreted either as function-style casting ("int(x)") 1414 /// or class type construction ("ClassType(x,y,z)") 1415 /// or creation of a value-initialized type ("int()"). 1416 ExprResult 1417 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep, 1418 SourceLocation LParenOrBraceLoc, 1419 MultiExprArg exprs, 1420 SourceLocation RParenOrBraceLoc, 1421 bool ListInitialization) { 1422 if (!TypeRep) 1423 return ExprError(); 1424 1425 TypeSourceInfo *TInfo; 1426 QualType Ty = GetTypeFromParser(TypeRep, &TInfo); 1427 if (!TInfo) 1428 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation()); 1429 1430 auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs, 1431 RParenOrBraceLoc, ListInitialization); 1432 // Avoid creating a non-type-dependent expression that contains typos. 1433 // Non-type-dependent expressions are liable to be discarded without 1434 // checking for embedded typos. 1435 if (!Result.isInvalid() && Result.get()->isInstantiationDependent() && 1436 !Result.get()->isTypeDependent()) 1437 Result = CorrectDelayedTyposInExpr(Result.get()); 1438 else if (Result.isInvalid()) 1439 Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(), 1440 RParenOrBraceLoc, exprs, Ty); 1441 return Result; 1442 } 1443 1444 ExprResult 1445 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo, 1446 SourceLocation LParenOrBraceLoc, 1447 MultiExprArg Exprs, 1448 SourceLocation RParenOrBraceLoc, 1449 bool ListInitialization) { 1450 QualType Ty = TInfo->getType(); 1451 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc(); 1452 1453 assert((!ListInitialization || 1454 (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && 1455 "List initialization must have initializer list as expression."); 1456 SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc); 1457 1458 InitializedEntity Entity = 1459 InitializedEntity::InitializeTemporary(Context, TInfo); 1460 InitializationKind Kind = 1461 Exprs.size() 1462 ? ListInitialization 1463 ? InitializationKind::CreateDirectList( 1464 TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc) 1465 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc, 1466 RParenOrBraceLoc) 1467 : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc, 1468 RParenOrBraceLoc); 1469 1470 // C++1z [expr.type.conv]p1: 1471 // If the type is a placeholder for a deduced class type, [...perform class 1472 // template argument deduction...] 1473 // C++2b: 1474 // Otherwise, if the type contains a placeholder type, it is replaced by the 1475 // type determined by placeholder type deduction. 1476 DeducedType *Deduced = Ty->getContainedDeducedType(); 1477 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) { 1478 Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity, 1479 Kind, Exprs); 1480 if (Ty.isNull()) 1481 return ExprError(); 1482 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty); 1483 } else if (Deduced) { 1484 MultiExprArg Inits = Exprs; 1485 if (ListInitialization) { 1486 auto *ILE = cast<InitListExpr>(Exprs[0]); 1487 Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits()); 1488 } 1489 1490 if (Inits.empty()) 1491 return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_init_no_expression) 1492 << Ty << FullRange); 1493 if (Inits.size() > 1) { 1494 Expr *FirstBad = Inits[1]; 1495 return ExprError(Diag(FirstBad->getBeginLoc(), 1496 diag::err_auto_expr_init_multiple_expressions) 1497 << Ty << FullRange); 1498 } 1499 if (getLangOpts().CPlusPlus2b) { 1500 if (Ty->getAs<AutoType>()) 1501 Diag(TyBeginLoc, diag::warn_cxx20_compat_auto_expr) << FullRange; 1502 } 1503 Expr *Deduce = Inits[0]; 1504 if (isa<InitListExpr>(Deduce)) 1505 return ExprError( 1506 Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces) 1507 << ListInitialization << Ty << FullRange); 1508 QualType DeducedType; 1509 if (DeduceAutoType(TInfo, Deduce, DeducedType) == DAR_Failed) 1510 return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_deduction_failure) 1511 << Ty << Deduce->getType() << FullRange 1512 << Deduce->getSourceRange()); 1513 if (DeducedType.isNull()) 1514 return ExprError(); 1515 1516 Ty = DeducedType; 1517 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty); 1518 } 1519 1520 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) { 1521 // FIXME: CXXUnresolvedConstructExpr does not model list-initialization 1522 // directly. We work around this by dropping the locations of the braces. 1523 SourceRange Locs = ListInitialization 1524 ? SourceRange() 1525 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc); 1526 return CXXUnresolvedConstructExpr::Create(Context, Ty.getNonReferenceType(), 1527 TInfo, Locs.getBegin(), Exprs, 1528 Locs.getEnd()); 1529 } 1530 1531 // C++ [expr.type.conv]p1: 1532 // If the expression list is a parenthesized single expression, the type 1533 // conversion expression is equivalent (in definedness, and if defined in 1534 // meaning) to the corresponding cast expression. 1535 if (Exprs.size() == 1 && !ListInitialization && 1536 !isa<InitListExpr>(Exprs[0])) { 1537 Expr *Arg = Exprs[0]; 1538 return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg, 1539 RParenOrBraceLoc); 1540 } 1541 1542 // For an expression of the form T(), T shall not be an array type. 1543 QualType ElemTy = Ty; 1544 if (Ty->isArrayType()) { 1545 if (!ListInitialization) 1546 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type) 1547 << FullRange); 1548 ElemTy = Context.getBaseElementType(Ty); 1549 } 1550 1551 // Only construct objects with object types. 1552 // The standard doesn't explicitly forbid function types here, but that's an 1553 // obvious oversight, as there's no way to dynamically construct a function 1554 // in general. 1555 if (Ty->isFunctionType()) 1556 return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type) 1557 << Ty << FullRange); 1558 1559 // C++17 [expr.type.conv]p2: 1560 // If the type is cv void and the initializer is (), the expression is a 1561 // prvalue of the specified type that performs no initialization. 1562 if (!Ty->isVoidType() && 1563 RequireCompleteType(TyBeginLoc, ElemTy, 1564 diag::err_invalid_incomplete_type_use, FullRange)) 1565 return ExprError(); 1566 1567 // Otherwise, the expression is a prvalue of the specified type whose 1568 // result object is direct-initialized (11.6) with the initializer. 1569 InitializationSequence InitSeq(*this, Entity, Kind, Exprs); 1570 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs); 1571 1572 if (Result.isInvalid()) 1573 return Result; 1574 1575 Expr *Inner = Result.get(); 1576 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner)) 1577 Inner = BTE->getSubExpr(); 1578 if (!isa<CXXTemporaryObjectExpr>(Inner) && 1579 !isa<CXXScalarValueInitExpr>(Inner)) { 1580 // If we created a CXXTemporaryObjectExpr, that node also represents the 1581 // functional cast. Otherwise, create an explicit cast to represent 1582 // the syntactic form of a functional-style cast that was used here. 1583 // 1584 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr 1585 // would give a more consistent AST representation than using a 1586 // CXXTemporaryObjectExpr. It's also weird that the functional cast 1587 // is sometimes handled by initialization and sometimes not. 1588 QualType ResultType = Result.get()->getType(); 1589 SourceRange Locs = ListInitialization 1590 ? SourceRange() 1591 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc); 1592 Result = CXXFunctionalCastExpr::Create( 1593 Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp, 1594 Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(), 1595 Locs.getBegin(), Locs.getEnd()); 1596 } 1597 1598 return Result; 1599 } 1600 1601 bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) { 1602 // [CUDA] Ignore this function, if we can't call it. 1603 const FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true); 1604 if (getLangOpts().CUDA) { 1605 auto CallPreference = IdentifyCUDAPreference(Caller, Method); 1606 // If it's not callable at all, it's not the right function. 1607 if (CallPreference < CFP_WrongSide) 1608 return false; 1609 if (CallPreference == CFP_WrongSide) { 1610 // Maybe. We have to check if there are better alternatives. 1611 DeclContext::lookup_result R = 1612 Method->getDeclContext()->lookup(Method->getDeclName()); 1613 for (const auto *D : R) { 1614 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 1615 if (IdentifyCUDAPreference(Caller, FD) > CFP_WrongSide) 1616 return false; 1617 } 1618 } 1619 // We've found no better variants. 1620 } 1621 } 1622 1623 SmallVector<const FunctionDecl*, 4> PreventedBy; 1624 bool Result = Method->isUsualDeallocationFunction(PreventedBy); 1625 1626 if (Result || !getLangOpts().CUDA || PreventedBy.empty()) 1627 return Result; 1628 1629 // In case of CUDA, return true if none of the 1-argument deallocator 1630 // functions are actually callable. 1631 return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) { 1632 assert(FD->getNumParams() == 1 && 1633 "Only single-operand functions should be in PreventedBy"); 1634 return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice; 1635 }); 1636 } 1637 1638 /// Determine whether the given function is a non-placement 1639 /// deallocation function. 1640 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) { 1641 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD)) 1642 return S.isUsualDeallocationFunction(Method); 1643 1644 if (FD->getOverloadedOperator() != OO_Delete && 1645 FD->getOverloadedOperator() != OO_Array_Delete) 1646 return false; 1647 1648 unsigned UsualParams = 1; 1649 1650 if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() && 1651 S.Context.hasSameUnqualifiedType( 1652 FD->getParamDecl(UsualParams)->getType(), 1653 S.Context.getSizeType())) 1654 ++UsualParams; 1655 1656 if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() && 1657 S.Context.hasSameUnqualifiedType( 1658 FD->getParamDecl(UsualParams)->getType(), 1659 S.Context.getTypeDeclType(S.getStdAlignValT()))) 1660 ++UsualParams; 1661 1662 return UsualParams == FD->getNumParams(); 1663 } 1664 1665 namespace { 1666 struct UsualDeallocFnInfo { 1667 UsualDeallocFnInfo() : Found(), FD(nullptr) {} 1668 UsualDeallocFnInfo(Sema &S, DeclAccessPair Found) 1669 : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())), 1670 Destroying(false), HasSizeT(false), HasAlignValT(false), 1671 CUDAPref(Sema::CFP_Native) { 1672 // A function template declaration is never a usual deallocation function. 1673 if (!FD) 1674 return; 1675 unsigned NumBaseParams = 1; 1676 if (FD->isDestroyingOperatorDelete()) { 1677 Destroying = true; 1678 ++NumBaseParams; 1679 } 1680 1681 if (NumBaseParams < FD->getNumParams() && 1682 S.Context.hasSameUnqualifiedType( 1683 FD->getParamDecl(NumBaseParams)->getType(), 1684 S.Context.getSizeType())) { 1685 ++NumBaseParams; 1686 HasSizeT = true; 1687 } 1688 1689 if (NumBaseParams < FD->getNumParams() && 1690 FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) { 1691 ++NumBaseParams; 1692 HasAlignValT = true; 1693 } 1694 1695 // In CUDA, determine how much we'd like / dislike to call this. 1696 if (S.getLangOpts().CUDA) 1697 if (auto *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true)) 1698 CUDAPref = S.IdentifyCUDAPreference(Caller, FD); 1699 } 1700 1701 explicit operator bool() const { return FD; } 1702 1703 bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize, 1704 bool WantAlign) const { 1705 // C++ P0722: 1706 // A destroying operator delete is preferred over a non-destroying 1707 // operator delete. 1708 if (Destroying != Other.Destroying) 1709 return Destroying; 1710 1711 // C++17 [expr.delete]p10: 1712 // If the type has new-extended alignment, a function with a parameter 1713 // of type std::align_val_t is preferred; otherwise a function without 1714 // such a parameter is preferred 1715 if (HasAlignValT != Other.HasAlignValT) 1716 return HasAlignValT == WantAlign; 1717 1718 if (HasSizeT != Other.HasSizeT) 1719 return HasSizeT == WantSize; 1720 1721 // Use CUDA call preference as a tiebreaker. 1722 return CUDAPref > Other.CUDAPref; 1723 } 1724 1725 DeclAccessPair Found; 1726 FunctionDecl *FD; 1727 bool Destroying, HasSizeT, HasAlignValT; 1728 Sema::CUDAFunctionPreference CUDAPref; 1729 }; 1730 } 1731 1732 /// Determine whether a type has new-extended alignment. This may be called when 1733 /// the type is incomplete (for a delete-expression with an incomplete pointee 1734 /// type), in which case it will conservatively return false if the alignment is 1735 /// not known. 1736 static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) { 1737 return S.getLangOpts().AlignedAllocation && 1738 S.getASTContext().getTypeAlignIfKnown(AllocType) > 1739 S.getASTContext().getTargetInfo().getNewAlign(); 1740 } 1741 1742 /// Select the correct "usual" deallocation function to use from a selection of 1743 /// deallocation functions (either global or class-scope). 1744 static UsualDeallocFnInfo resolveDeallocationOverload( 1745 Sema &S, LookupResult &R, bool WantSize, bool WantAlign, 1746 llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) { 1747 UsualDeallocFnInfo Best; 1748 1749 for (auto I = R.begin(), E = R.end(); I != E; ++I) { 1750 UsualDeallocFnInfo Info(S, I.getPair()); 1751 if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) || 1752 Info.CUDAPref == Sema::CFP_Never) 1753 continue; 1754 1755 if (!Best) { 1756 Best = Info; 1757 if (BestFns) 1758 BestFns->push_back(Info); 1759 continue; 1760 } 1761 1762 if (Best.isBetterThan(Info, WantSize, WantAlign)) 1763 continue; 1764 1765 // If more than one preferred function is found, all non-preferred 1766 // functions are eliminated from further consideration. 1767 if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign)) 1768 BestFns->clear(); 1769 1770 Best = Info; 1771 if (BestFns) 1772 BestFns->push_back(Info); 1773 } 1774 1775 return Best; 1776 } 1777 1778 /// Determine whether a given type is a class for which 'delete[]' would call 1779 /// a member 'operator delete[]' with a 'size_t' parameter. This implies that 1780 /// we need to store the array size (even if the type is 1781 /// trivially-destructible). 1782 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc, 1783 QualType allocType) { 1784 const RecordType *record = 1785 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>(); 1786 if (!record) return false; 1787 1788 // Try to find an operator delete[] in class scope. 1789 1790 DeclarationName deleteName = 1791 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete); 1792 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName); 1793 S.LookupQualifiedName(ops, record->getDecl()); 1794 1795 // We're just doing this for information. 1796 ops.suppressDiagnostics(); 1797 1798 // Very likely: there's no operator delete[]. 1799 if (ops.empty()) return false; 1800 1801 // If it's ambiguous, it should be illegal to call operator delete[] 1802 // on this thing, so it doesn't matter if we allocate extra space or not. 1803 if (ops.isAmbiguous()) return false; 1804 1805 // C++17 [expr.delete]p10: 1806 // If the deallocation functions have class scope, the one without a 1807 // parameter of type std::size_t is selected. 1808 auto Best = resolveDeallocationOverload( 1809 S, ops, /*WantSize*/false, 1810 /*WantAlign*/hasNewExtendedAlignment(S, allocType)); 1811 return Best && Best.HasSizeT; 1812 } 1813 1814 /// Parsed a C++ 'new' expression (C++ 5.3.4). 1815 /// 1816 /// E.g.: 1817 /// @code new (memory) int[size][4] @endcode 1818 /// or 1819 /// @code ::new Foo(23, "hello") @endcode 1820 /// 1821 /// \param StartLoc The first location of the expression. 1822 /// \param UseGlobal True if 'new' was prefixed with '::'. 1823 /// \param PlacementLParen Opening paren of the placement arguments. 1824 /// \param PlacementArgs Placement new arguments. 1825 /// \param PlacementRParen Closing paren of the placement arguments. 1826 /// \param TypeIdParens If the type is in parens, the source range. 1827 /// \param D The type to be allocated, as well as array dimensions. 1828 /// \param Initializer The initializing expression or initializer-list, or null 1829 /// if there is none. 1830 ExprResult 1831 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, 1832 SourceLocation PlacementLParen, MultiExprArg PlacementArgs, 1833 SourceLocation PlacementRParen, SourceRange TypeIdParens, 1834 Declarator &D, Expr *Initializer) { 1835 Optional<Expr *> ArraySize; 1836 // If the specified type is an array, unwrap it and save the expression. 1837 if (D.getNumTypeObjects() > 0 && 1838 D.getTypeObject(0).Kind == DeclaratorChunk::Array) { 1839 DeclaratorChunk &Chunk = D.getTypeObject(0); 1840 if (D.getDeclSpec().hasAutoTypeSpec()) 1841 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto) 1842 << D.getSourceRange()); 1843 if (Chunk.Arr.hasStatic) 1844 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new) 1845 << D.getSourceRange()); 1846 if (!Chunk.Arr.NumElts && !Initializer) 1847 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size) 1848 << D.getSourceRange()); 1849 1850 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts); 1851 D.DropFirstTypeObject(); 1852 } 1853 1854 // Every dimension shall be of constant size. 1855 if (ArraySize) { 1856 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) { 1857 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array) 1858 break; 1859 1860 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr; 1861 if (Expr *NumElts = (Expr *)Array.NumElts) { 1862 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) { 1863 // FIXME: GCC permits constant folding here. We should either do so consistently 1864 // or not do so at all, rather than changing behavior in C++14 onwards. 1865 if (getLangOpts().CPlusPlus14) { 1866 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator 1867 // shall be a converted constant expression (5.19) of type std::size_t 1868 // and shall evaluate to a strictly positive value. 1869 llvm::APSInt Value(Context.getIntWidth(Context.getSizeType())); 1870 Array.NumElts 1871 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value, 1872 CCEK_ArrayBound) 1873 .get(); 1874 } else { 1875 Array.NumElts = 1876 VerifyIntegerConstantExpression( 1877 NumElts, nullptr, diag::err_new_array_nonconst, AllowFold) 1878 .get(); 1879 } 1880 if (!Array.NumElts) 1881 return ExprError(); 1882 } 1883 } 1884 } 1885 } 1886 1887 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr); 1888 QualType AllocType = TInfo->getType(); 1889 if (D.isInvalidType()) 1890 return ExprError(); 1891 1892 SourceRange DirectInitRange; 1893 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) 1894 DirectInitRange = List->getSourceRange(); 1895 1896 return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal, 1897 PlacementLParen, PlacementArgs, PlacementRParen, 1898 TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange, 1899 Initializer); 1900 } 1901 1902 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style, 1903 Expr *Init) { 1904 if (!Init) 1905 return true; 1906 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) 1907 return PLE->getNumExprs() == 0; 1908 if (isa<ImplicitValueInitExpr>(Init)) 1909 return true; 1910 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) 1911 return !CCE->isListInitialization() && 1912 CCE->getConstructor()->isDefaultConstructor(); 1913 else if (Style == CXXNewExpr::ListInit) { 1914 assert(isa<InitListExpr>(Init) && 1915 "Shouldn't create list CXXConstructExprs for arrays."); 1916 return true; 1917 } 1918 return false; 1919 } 1920 1921 bool 1922 Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const { 1923 if (!getLangOpts().AlignedAllocationUnavailable) 1924 return false; 1925 if (FD.isDefined()) 1926 return false; 1927 Optional<unsigned> AlignmentParam; 1928 if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) && 1929 AlignmentParam) 1930 return true; 1931 return false; 1932 } 1933 1934 // Emit a diagnostic if an aligned allocation/deallocation function that is not 1935 // implemented in the standard library is selected. 1936 void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD, 1937 SourceLocation Loc) { 1938 if (isUnavailableAlignedAllocationFunction(FD)) { 1939 const llvm::Triple &T = getASTContext().getTargetInfo().getTriple(); 1940 StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling( 1941 getASTContext().getTargetInfo().getPlatformName()); 1942 VersionTuple OSVersion = alignedAllocMinVersion(T.getOS()); 1943 1944 OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator(); 1945 bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete; 1946 Diag(Loc, diag::err_aligned_allocation_unavailable) 1947 << IsDelete << FD.getType().getAsString() << OSName 1948 << OSVersion.getAsString() << OSVersion.empty(); 1949 Diag(Loc, diag::note_silence_aligned_allocation_unavailable); 1950 } 1951 } 1952 1953 ExprResult 1954 Sema::BuildCXXNew(SourceRange Range, bool UseGlobal, 1955 SourceLocation PlacementLParen, 1956 MultiExprArg PlacementArgs, 1957 SourceLocation PlacementRParen, 1958 SourceRange TypeIdParens, 1959 QualType AllocType, 1960 TypeSourceInfo *AllocTypeInfo, 1961 Optional<Expr *> ArraySize, 1962 SourceRange DirectInitRange, 1963 Expr *Initializer) { 1964 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange(); 1965 SourceLocation StartLoc = Range.getBegin(); 1966 1967 CXXNewExpr::InitializationStyle initStyle; 1968 if (DirectInitRange.isValid()) { 1969 assert(Initializer && "Have parens but no initializer."); 1970 initStyle = CXXNewExpr::CallInit; 1971 } else if (Initializer && isa<InitListExpr>(Initializer)) 1972 initStyle = CXXNewExpr::ListInit; 1973 else { 1974 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) || 1975 isa<CXXConstructExpr>(Initializer)) && 1976 "Initializer expression that cannot have been implicitly created."); 1977 initStyle = CXXNewExpr::NoInit; 1978 } 1979 1980 MultiExprArg Exprs(&Initializer, Initializer ? 1 : 0); 1981 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) { 1982 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init"); 1983 Exprs = MultiExprArg(List->getExprs(), List->getNumExprs()); 1984 } 1985 1986 // C++11 [expr.new]p15: 1987 // A new-expression that creates an object of type T initializes that 1988 // object as follows: 1989 InitializationKind Kind 1990 // - If the new-initializer is omitted, the object is default- 1991 // initialized (8.5); if no initialization is performed, 1992 // the object has indeterminate value 1993 = initStyle == CXXNewExpr::NoInit 1994 ? InitializationKind::CreateDefault(TypeRange.getBegin()) 1995 // - Otherwise, the new-initializer is interpreted according to 1996 // the 1997 // initialization rules of 8.5 for direct-initialization. 1998 : initStyle == CXXNewExpr::ListInit 1999 ? InitializationKind::CreateDirectList( 2000 TypeRange.getBegin(), Initializer->getBeginLoc(), 2001 Initializer->getEndLoc()) 2002 : InitializationKind::CreateDirect(TypeRange.getBegin(), 2003 DirectInitRange.getBegin(), 2004 DirectInitRange.getEnd()); 2005 2006 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for. 2007 auto *Deduced = AllocType->getContainedDeducedType(); 2008 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) { 2009 if (ArraySize) 2010 return ExprError( 2011 Diag(*ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(), 2012 diag::err_deduced_class_template_compound_type) 2013 << /*array*/ 2 2014 << (*ArraySize ? (*ArraySize)->getSourceRange() : TypeRange)); 2015 2016 InitializedEntity Entity 2017 = InitializedEntity::InitializeNew(StartLoc, AllocType); 2018 AllocType = DeduceTemplateSpecializationFromInitializer( 2019 AllocTypeInfo, Entity, Kind, Exprs); 2020 if (AllocType.isNull()) 2021 return ExprError(); 2022 } else if (Deduced) { 2023 MultiExprArg Inits = Exprs; 2024 bool Braced = (initStyle == CXXNewExpr::ListInit); 2025 if (Braced) { 2026 auto *ILE = cast<InitListExpr>(Exprs[0]); 2027 Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits()); 2028 } 2029 2030 if (initStyle == CXXNewExpr::NoInit || Inits.empty()) 2031 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg) 2032 << AllocType << TypeRange); 2033 if (Inits.size() > 1) { 2034 Expr *FirstBad = Inits[1]; 2035 return ExprError(Diag(FirstBad->getBeginLoc(), 2036 diag::err_auto_new_ctor_multiple_expressions) 2037 << AllocType << TypeRange); 2038 } 2039 if (Braced && !getLangOpts().CPlusPlus17) 2040 Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init) 2041 << AllocType << TypeRange; 2042 Expr *Deduce = Inits[0]; 2043 if (isa<InitListExpr>(Deduce)) 2044 return ExprError( 2045 Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces) 2046 << Braced << AllocType << TypeRange); 2047 QualType DeducedType; 2048 if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed) 2049 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure) 2050 << AllocType << Deduce->getType() 2051 << TypeRange << Deduce->getSourceRange()); 2052 if (DeducedType.isNull()) 2053 return ExprError(); 2054 AllocType = DeducedType; 2055 } 2056 2057 // Per C++0x [expr.new]p5, the type being constructed may be a 2058 // typedef of an array type. 2059 if (!ArraySize) { 2060 if (const ConstantArrayType *Array 2061 = Context.getAsConstantArrayType(AllocType)) { 2062 ArraySize = IntegerLiteral::Create(Context, Array->getSize(), 2063 Context.getSizeType(), 2064 TypeRange.getEnd()); 2065 AllocType = Array->getElementType(); 2066 } 2067 } 2068 2069 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange)) 2070 return ExprError(); 2071 2072 // In ARC, infer 'retaining' for the allocated 2073 if (getLangOpts().ObjCAutoRefCount && 2074 AllocType.getObjCLifetime() == Qualifiers::OCL_None && 2075 AllocType->isObjCLifetimeType()) { 2076 AllocType = Context.getLifetimeQualifiedType(AllocType, 2077 AllocType->getObjCARCImplicitLifetime()); 2078 } 2079 2080 QualType ResultType = Context.getPointerType(AllocType); 2081 2082 if (ArraySize && *ArraySize && 2083 (*ArraySize)->getType()->isNonOverloadPlaceholderType()) { 2084 ExprResult result = CheckPlaceholderExpr(*ArraySize); 2085 if (result.isInvalid()) return ExprError(); 2086 ArraySize = result.get(); 2087 } 2088 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have 2089 // integral or enumeration type with a non-negative value." 2090 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped 2091 // enumeration type, or a class type for which a single non-explicit 2092 // conversion function to integral or unscoped enumeration type exists. 2093 // C++1y [expr.new]p6: The expression [...] is implicitly converted to 2094 // std::size_t. 2095 llvm::Optional<uint64_t> KnownArraySize; 2096 if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) { 2097 ExprResult ConvertedSize; 2098 if (getLangOpts().CPlusPlus14) { 2099 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?"); 2100 2101 ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(), 2102 AA_Converting); 2103 2104 if (!ConvertedSize.isInvalid() && 2105 (*ArraySize)->getType()->getAs<RecordType>()) 2106 // Diagnose the compatibility of this conversion. 2107 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion) 2108 << (*ArraySize)->getType() << 0 << "'size_t'"; 2109 } else { 2110 class SizeConvertDiagnoser : public ICEConvertDiagnoser { 2111 protected: 2112 Expr *ArraySize; 2113 2114 public: 2115 SizeConvertDiagnoser(Expr *ArraySize) 2116 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false), 2117 ArraySize(ArraySize) {} 2118 2119 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, 2120 QualType T) override { 2121 return S.Diag(Loc, diag::err_array_size_not_integral) 2122 << S.getLangOpts().CPlusPlus11 << T; 2123 } 2124 2125 SemaDiagnosticBuilder diagnoseIncomplete( 2126 Sema &S, SourceLocation Loc, QualType T) override { 2127 return S.Diag(Loc, diag::err_array_size_incomplete_type) 2128 << T << ArraySize->getSourceRange(); 2129 } 2130 2131 SemaDiagnosticBuilder diagnoseExplicitConv( 2132 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { 2133 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy; 2134 } 2135 2136 SemaDiagnosticBuilder noteExplicitConv( 2137 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 2138 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 2139 << ConvTy->isEnumeralType() << ConvTy; 2140 } 2141 2142 SemaDiagnosticBuilder diagnoseAmbiguous( 2143 Sema &S, SourceLocation Loc, QualType T) override { 2144 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T; 2145 } 2146 2147 SemaDiagnosticBuilder noteAmbiguous( 2148 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 2149 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 2150 << ConvTy->isEnumeralType() << ConvTy; 2151 } 2152 2153 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 2154 QualType T, 2155 QualType ConvTy) override { 2156 return S.Diag(Loc, 2157 S.getLangOpts().CPlusPlus11 2158 ? diag::warn_cxx98_compat_array_size_conversion 2159 : diag::ext_array_size_conversion) 2160 << T << ConvTy->isEnumeralType() << ConvTy; 2161 } 2162 } SizeDiagnoser(*ArraySize); 2163 2164 ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize, 2165 SizeDiagnoser); 2166 } 2167 if (ConvertedSize.isInvalid()) 2168 return ExprError(); 2169 2170 ArraySize = ConvertedSize.get(); 2171 QualType SizeType = (*ArraySize)->getType(); 2172 2173 if (!SizeType->isIntegralOrUnscopedEnumerationType()) 2174 return ExprError(); 2175 2176 // C++98 [expr.new]p7: 2177 // The expression in a direct-new-declarator shall have integral type 2178 // with a non-negative value. 2179 // 2180 // Let's see if this is a constant < 0. If so, we reject it out of hand, 2181 // per CWG1464. Otherwise, if it's not a constant, we must have an 2182 // unparenthesized array type. 2183 2184 // We've already performed any required implicit conversion to integer or 2185 // unscoped enumeration type. 2186 // FIXME: Per CWG1464, we are required to check the value prior to 2187 // converting to size_t. This will never find a negative array size in 2188 // C++14 onwards, because Value is always unsigned here! 2189 if (Optional<llvm::APSInt> Value = 2190 (*ArraySize)->getIntegerConstantExpr(Context)) { 2191 if (Value->isSigned() && Value->isNegative()) { 2192 return ExprError(Diag((*ArraySize)->getBeginLoc(), 2193 diag::err_typecheck_negative_array_size) 2194 << (*ArraySize)->getSourceRange()); 2195 } 2196 2197 if (!AllocType->isDependentType()) { 2198 unsigned ActiveSizeBits = 2199 ConstantArrayType::getNumAddressingBits(Context, AllocType, *Value); 2200 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) 2201 return ExprError( 2202 Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large) 2203 << toString(*Value, 10) << (*ArraySize)->getSourceRange()); 2204 } 2205 2206 KnownArraySize = Value->getZExtValue(); 2207 } else if (TypeIdParens.isValid()) { 2208 // Can't have dynamic array size when the type-id is in parentheses. 2209 Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst) 2210 << (*ArraySize)->getSourceRange() 2211 << FixItHint::CreateRemoval(TypeIdParens.getBegin()) 2212 << FixItHint::CreateRemoval(TypeIdParens.getEnd()); 2213 2214 TypeIdParens = SourceRange(); 2215 } 2216 2217 // Note that we do *not* convert the argument in any way. It can 2218 // be signed, larger than size_t, whatever. 2219 } 2220 2221 FunctionDecl *OperatorNew = nullptr; 2222 FunctionDecl *OperatorDelete = nullptr; 2223 unsigned Alignment = 2224 AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType); 2225 unsigned NewAlignment = Context.getTargetInfo().getNewAlign(); 2226 bool PassAlignment = getLangOpts().AlignedAllocation && 2227 Alignment > NewAlignment; 2228 2229 AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both; 2230 if (!AllocType->isDependentType() && 2231 !Expr::hasAnyTypeDependentArguments(PlacementArgs) && 2232 FindAllocationFunctions( 2233 StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope, 2234 AllocType, ArraySize.has_value(), PassAlignment, PlacementArgs, 2235 OperatorNew, OperatorDelete)) 2236 return ExprError(); 2237 2238 // If this is an array allocation, compute whether the usual array 2239 // deallocation function for the type has a size_t parameter. 2240 bool UsualArrayDeleteWantsSize = false; 2241 if (ArraySize && !AllocType->isDependentType()) 2242 UsualArrayDeleteWantsSize = 2243 doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType); 2244 2245 SmallVector<Expr *, 8> AllPlaceArgs; 2246 if (OperatorNew) { 2247 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); 2248 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction 2249 : VariadicDoesNotApply; 2250 2251 // We've already converted the placement args, just fill in any default 2252 // arguments. Skip the first parameter because we don't have a corresponding 2253 // argument. Skip the second parameter too if we're passing in the 2254 // alignment; we've already filled it in. 2255 unsigned NumImplicitArgs = PassAlignment ? 2 : 1; 2256 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 2257 NumImplicitArgs, PlacementArgs, AllPlaceArgs, 2258 CallType)) 2259 return ExprError(); 2260 2261 if (!AllPlaceArgs.empty()) 2262 PlacementArgs = AllPlaceArgs; 2263 2264 // We would like to perform some checking on the given `operator new` call, 2265 // but the PlacementArgs does not contain the implicit arguments, 2266 // namely allocation size and maybe allocation alignment, 2267 // so we need to conjure them. 2268 2269 QualType SizeTy = Context.getSizeType(); 2270 unsigned SizeTyWidth = Context.getTypeSize(SizeTy); 2271 2272 llvm::APInt SingleEltSize( 2273 SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity()); 2274 2275 // How many bytes do we want to allocate here? 2276 llvm::Optional<llvm::APInt> AllocationSize; 2277 if (!ArraySize && !AllocType->isDependentType()) { 2278 // For non-array operator new, we only want to allocate one element. 2279 AllocationSize = SingleEltSize; 2280 } else if (KnownArraySize && !AllocType->isDependentType()) { 2281 // For array operator new, only deal with static array size case. 2282 bool Overflow; 2283 AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize) 2284 .umul_ov(SingleEltSize, Overflow); 2285 (void)Overflow; 2286 assert( 2287 !Overflow && 2288 "Expected that all the overflows would have been handled already."); 2289 } 2290 2291 IntegerLiteral AllocationSizeLiteral( 2292 Context, AllocationSize.value_or(llvm::APInt::getZero(SizeTyWidth)), 2293 SizeTy, SourceLocation()); 2294 // Otherwise, if we failed to constant-fold the allocation size, we'll 2295 // just give up and pass-in something opaque, that isn't a null pointer. 2296 OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue, 2297 OK_Ordinary, /*SourceExpr=*/nullptr); 2298 2299 // Let's synthesize the alignment argument in case we will need it. 2300 // Since we *really* want to allocate these on stack, this is slightly ugly 2301 // because there might not be a `std::align_val_t` type. 2302 EnumDecl *StdAlignValT = getStdAlignValT(); 2303 QualType AlignValT = 2304 StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy; 2305 IntegerLiteral AlignmentLiteral( 2306 Context, 2307 llvm::APInt(Context.getTypeSize(SizeTy), 2308 Alignment / Context.getCharWidth()), 2309 SizeTy, SourceLocation()); 2310 ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT, 2311 CK_IntegralCast, &AlignmentLiteral, 2312 VK_PRValue, FPOptionsOverride()); 2313 2314 // Adjust placement args by prepending conjured size and alignment exprs. 2315 llvm::SmallVector<Expr *, 8> CallArgs; 2316 CallArgs.reserve(NumImplicitArgs + PlacementArgs.size()); 2317 CallArgs.emplace_back(AllocationSize 2318 ? static_cast<Expr *>(&AllocationSizeLiteral) 2319 : &OpaqueAllocationSize); 2320 if (PassAlignment) 2321 CallArgs.emplace_back(&DesiredAlignment); 2322 CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end()); 2323 2324 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs); 2325 2326 checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs, 2327 /*IsMemberFunction=*/false, StartLoc, Range, CallType); 2328 2329 // Warn if the type is over-aligned and is being allocated by (unaligned) 2330 // global operator new. 2331 if (PlacementArgs.empty() && !PassAlignment && 2332 (OperatorNew->isImplicit() || 2333 (OperatorNew->getBeginLoc().isValid() && 2334 getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) { 2335 if (Alignment > NewAlignment) 2336 Diag(StartLoc, diag::warn_overaligned_type) 2337 << AllocType 2338 << unsigned(Alignment / Context.getCharWidth()) 2339 << unsigned(NewAlignment / Context.getCharWidth()); 2340 } 2341 } 2342 2343 // Array 'new' can't have any initializers except empty parentheses. 2344 // Initializer lists are also allowed, in C++11. Rely on the parser for the 2345 // dialect distinction. 2346 if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) { 2347 SourceRange InitRange(Exprs.front()->getBeginLoc(), 2348 Exprs.back()->getEndLoc()); 2349 Diag(StartLoc, diag::err_new_array_init_args) << InitRange; 2350 return ExprError(); 2351 } 2352 2353 // If we can perform the initialization, and we've not already done so, 2354 // do it now. 2355 if (!AllocType->isDependentType() && 2356 !Expr::hasAnyTypeDependentArguments(Exprs)) { 2357 // The type we initialize is the complete type, including the array bound. 2358 QualType InitType; 2359 if (KnownArraySize) 2360 InitType = Context.getConstantArrayType( 2361 AllocType, 2362 llvm::APInt(Context.getTypeSize(Context.getSizeType()), 2363 *KnownArraySize), 2364 *ArraySize, ArrayType::Normal, 0); 2365 else if (ArraySize) 2366 InitType = 2367 Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0); 2368 else 2369 InitType = AllocType; 2370 2371 InitializedEntity Entity 2372 = InitializedEntity::InitializeNew(StartLoc, InitType); 2373 InitializationSequence InitSeq(*this, Entity, Kind, Exprs); 2374 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, Exprs); 2375 if (FullInit.isInvalid()) 2376 return ExprError(); 2377 2378 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because 2379 // we don't want the initialized object to be destructed. 2380 // FIXME: We should not create these in the first place. 2381 if (CXXBindTemporaryExpr *Binder = 2382 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get())) 2383 FullInit = Binder->getSubExpr(); 2384 2385 Initializer = FullInit.get(); 2386 2387 // FIXME: If we have a KnownArraySize, check that the array bound of the 2388 // initializer is no greater than that constant value. 2389 2390 if (ArraySize && !*ArraySize) { 2391 auto *CAT = Context.getAsConstantArrayType(Initializer->getType()); 2392 if (CAT) { 2393 // FIXME: Track that the array size was inferred rather than explicitly 2394 // specified. 2395 ArraySize = IntegerLiteral::Create( 2396 Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd()); 2397 } else { 2398 Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init) 2399 << Initializer->getSourceRange(); 2400 } 2401 } 2402 } 2403 2404 // Mark the new and delete operators as referenced. 2405 if (OperatorNew) { 2406 if (DiagnoseUseOfDecl(OperatorNew, StartLoc)) 2407 return ExprError(); 2408 MarkFunctionReferenced(StartLoc, OperatorNew); 2409 } 2410 if (OperatorDelete) { 2411 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc)) 2412 return ExprError(); 2413 MarkFunctionReferenced(StartLoc, OperatorDelete); 2414 } 2415 2416 return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete, 2417 PassAlignment, UsualArrayDeleteWantsSize, 2418 PlacementArgs, TypeIdParens, ArraySize, initStyle, 2419 Initializer, ResultType, AllocTypeInfo, Range, 2420 DirectInitRange); 2421 } 2422 2423 /// Checks that a type is suitable as the allocated type 2424 /// in a new-expression. 2425 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc, 2426 SourceRange R) { 2427 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an 2428 // abstract class type or array thereof. 2429 if (AllocType->isFunctionType()) 2430 return Diag(Loc, diag::err_bad_new_type) 2431 << AllocType << 0 << R; 2432 else if (AllocType->isReferenceType()) 2433 return Diag(Loc, diag::err_bad_new_type) 2434 << AllocType << 1 << R; 2435 else if (!AllocType->isDependentType() && 2436 RequireCompleteSizedType( 2437 Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R)) 2438 return true; 2439 else if (RequireNonAbstractType(Loc, AllocType, 2440 diag::err_allocation_of_abstract_type)) 2441 return true; 2442 else if (AllocType->isVariablyModifiedType()) 2443 return Diag(Loc, diag::err_variably_modified_new_type) 2444 << AllocType; 2445 else if (AllocType.getAddressSpace() != LangAS::Default && 2446 !getLangOpts().OpenCLCPlusPlus) 2447 return Diag(Loc, diag::err_address_space_qualified_new) 2448 << AllocType.getUnqualifiedType() 2449 << AllocType.getQualifiers().getAddressSpaceAttributePrintValue(); 2450 else if (getLangOpts().ObjCAutoRefCount) { 2451 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) { 2452 QualType BaseAllocType = Context.getBaseElementType(AT); 2453 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None && 2454 BaseAllocType->isObjCLifetimeType()) 2455 return Diag(Loc, diag::err_arc_new_array_without_ownership) 2456 << BaseAllocType; 2457 } 2458 } 2459 2460 return false; 2461 } 2462 2463 static bool resolveAllocationOverload( 2464 Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args, 2465 bool &PassAlignment, FunctionDecl *&Operator, 2466 OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) { 2467 OverloadCandidateSet Candidates(R.getNameLoc(), 2468 OverloadCandidateSet::CSK_Normal); 2469 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end(); 2470 Alloc != AllocEnd; ++Alloc) { 2471 // Even member operator new/delete are implicitly treated as 2472 // static, so don't use AddMemberCandidate. 2473 NamedDecl *D = (*Alloc)->getUnderlyingDecl(); 2474 2475 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 2476 S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(), 2477 /*ExplicitTemplateArgs=*/nullptr, Args, 2478 Candidates, 2479 /*SuppressUserConversions=*/false); 2480 continue; 2481 } 2482 2483 FunctionDecl *Fn = cast<FunctionDecl>(D); 2484 S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates, 2485 /*SuppressUserConversions=*/false); 2486 } 2487 2488 // Do the resolution. 2489 OverloadCandidateSet::iterator Best; 2490 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { 2491 case OR_Success: { 2492 // Got one! 2493 FunctionDecl *FnDecl = Best->Function; 2494 if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(), 2495 Best->FoundDecl) == Sema::AR_inaccessible) 2496 return true; 2497 2498 Operator = FnDecl; 2499 return false; 2500 } 2501 2502 case OR_No_Viable_Function: 2503 // C++17 [expr.new]p13: 2504 // If no matching function is found and the allocated object type has 2505 // new-extended alignment, the alignment argument is removed from the 2506 // argument list, and overload resolution is performed again. 2507 if (PassAlignment) { 2508 PassAlignment = false; 2509 AlignArg = Args[1]; 2510 Args.erase(Args.begin() + 1); 2511 return resolveAllocationOverload(S, R, Range, Args, PassAlignment, 2512 Operator, &Candidates, AlignArg, 2513 Diagnose); 2514 } 2515 2516 // MSVC will fall back on trying to find a matching global operator new 2517 // if operator new[] cannot be found. Also, MSVC will leak by not 2518 // generating a call to operator delete or operator delete[], but we 2519 // will not replicate that bug. 2520 // FIXME: Find out how this interacts with the std::align_val_t fallback 2521 // once MSVC implements it. 2522 if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New && 2523 S.Context.getLangOpts().MSVCCompat) { 2524 R.clear(); 2525 R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New)); 2526 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); 2527 // FIXME: This will give bad diagnostics pointing at the wrong functions. 2528 return resolveAllocationOverload(S, R, Range, Args, PassAlignment, 2529 Operator, /*Candidates=*/nullptr, 2530 /*AlignArg=*/nullptr, Diagnose); 2531 } 2532 2533 if (Diagnose) { 2534 // If this is an allocation of the form 'new (p) X' for some object 2535 // pointer p (or an expression that will decay to such a pointer), 2536 // diagnose the missing inclusion of <new>. 2537 if (!R.isClassLookup() && Args.size() == 2 && 2538 (Args[1]->getType()->isObjectPointerType() || 2539 Args[1]->getType()->isArrayType())) { 2540 S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new) 2541 << R.getLookupName() << Range; 2542 // Listing the candidates is unlikely to be useful; skip it. 2543 return true; 2544 } 2545 2546 // Finish checking all candidates before we note any. This checking can 2547 // produce additional diagnostics so can't be interleaved with our 2548 // emission of notes. 2549 // 2550 // For an aligned allocation, separately check the aligned and unaligned 2551 // candidates with their respective argument lists. 2552 SmallVector<OverloadCandidate*, 32> Cands; 2553 SmallVector<OverloadCandidate*, 32> AlignedCands; 2554 llvm::SmallVector<Expr*, 4> AlignedArgs; 2555 if (AlignedCandidates) { 2556 auto IsAligned = [](OverloadCandidate &C) { 2557 return C.Function->getNumParams() > 1 && 2558 C.Function->getParamDecl(1)->getType()->isAlignValT(); 2559 }; 2560 auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); }; 2561 2562 AlignedArgs.reserve(Args.size() + 1); 2563 AlignedArgs.push_back(Args[0]); 2564 AlignedArgs.push_back(AlignArg); 2565 AlignedArgs.append(Args.begin() + 1, Args.end()); 2566 AlignedCands = AlignedCandidates->CompleteCandidates( 2567 S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned); 2568 2569 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args, 2570 R.getNameLoc(), IsUnaligned); 2571 } else { 2572 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args, 2573 R.getNameLoc()); 2574 } 2575 2576 S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call) 2577 << R.getLookupName() << Range; 2578 if (AlignedCandidates) 2579 AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "", 2580 R.getNameLoc()); 2581 Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc()); 2582 } 2583 return true; 2584 2585 case OR_Ambiguous: 2586 if (Diagnose) { 2587 Candidates.NoteCandidates( 2588 PartialDiagnosticAt(R.getNameLoc(), 2589 S.PDiag(diag::err_ovl_ambiguous_call) 2590 << R.getLookupName() << Range), 2591 S, OCD_AmbiguousCandidates, Args); 2592 } 2593 return true; 2594 2595 case OR_Deleted: { 2596 if (Diagnose) { 2597 Candidates.NoteCandidates( 2598 PartialDiagnosticAt(R.getNameLoc(), 2599 S.PDiag(diag::err_ovl_deleted_call) 2600 << R.getLookupName() << Range), 2601 S, OCD_AllCandidates, Args); 2602 } 2603 return true; 2604 } 2605 } 2606 llvm_unreachable("Unreachable, bad result from BestViableFunction"); 2607 } 2608 2609 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, 2610 AllocationFunctionScope NewScope, 2611 AllocationFunctionScope DeleteScope, 2612 QualType AllocType, bool IsArray, 2613 bool &PassAlignment, MultiExprArg PlaceArgs, 2614 FunctionDecl *&OperatorNew, 2615 FunctionDecl *&OperatorDelete, 2616 bool Diagnose) { 2617 // --- Choosing an allocation function --- 2618 // C++ 5.3.4p8 - 14 & 18 2619 // 1) If looking in AFS_Global scope for allocation functions, only look in 2620 // the global scope. Else, if AFS_Class, only look in the scope of the 2621 // allocated class. If AFS_Both, look in both. 2622 // 2) If an array size is given, look for operator new[], else look for 2623 // operator new. 2624 // 3) The first argument is always size_t. Append the arguments from the 2625 // placement form. 2626 2627 SmallVector<Expr*, 8> AllocArgs; 2628 AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size()); 2629 2630 // We don't care about the actual value of these arguments. 2631 // FIXME: Should the Sema create the expression and embed it in the syntax 2632 // tree? Or should the consumer just recalculate the value? 2633 // FIXME: Using a dummy value will interact poorly with attribute enable_if. 2634 IntegerLiteral Size( 2635 Context, llvm::APInt::getZero(Context.getTargetInfo().getPointerWidth(0)), 2636 Context.getSizeType(), SourceLocation()); 2637 AllocArgs.push_back(&Size); 2638 2639 QualType AlignValT = Context.VoidTy; 2640 if (PassAlignment) { 2641 DeclareGlobalNewDelete(); 2642 AlignValT = Context.getTypeDeclType(getStdAlignValT()); 2643 } 2644 CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation()); 2645 if (PassAlignment) 2646 AllocArgs.push_back(&Align); 2647 2648 AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end()); 2649 2650 // C++ [expr.new]p8: 2651 // If the allocated type is a non-array type, the allocation 2652 // function's name is operator new and the deallocation function's 2653 // name is operator delete. If the allocated type is an array 2654 // type, the allocation function's name is operator new[] and the 2655 // deallocation function's name is operator delete[]. 2656 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName( 2657 IsArray ? OO_Array_New : OO_New); 2658 2659 QualType AllocElemType = Context.getBaseElementType(AllocType); 2660 2661 // Find the allocation function. 2662 { 2663 LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName); 2664 2665 // C++1z [expr.new]p9: 2666 // If the new-expression begins with a unary :: operator, the allocation 2667 // function's name is looked up in the global scope. Otherwise, if the 2668 // allocated type is a class type T or array thereof, the allocation 2669 // function's name is looked up in the scope of T. 2670 if (AllocElemType->isRecordType() && NewScope != AFS_Global) 2671 LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl()); 2672 2673 // We can see ambiguity here if the allocation function is found in 2674 // multiple base classes. 2675 if (R.isAmbiguous()) 2676 return true; 2677 2678 // If this lookup fails to find the name, or if the allocated type is not 2679 // a class type, the allocation function's name is looked up in the 2680 // global scope. 2681 if (R.empty()) { 2682 if (NewScope == AFS_Class) 2683 return true; 2684 2685 LookupQualifiedName(R, Context.getTranslationUnitDecl()); 2686 } 2687 2688 if (getLangOpts().OpenCLCPlusPlus && R.empty()) { 2689 if (PlaceArgs.empty()) { 2690 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new"; 2691 } else { 2692 Diag(StartLoc, diag::err_openclcxx_placement_new); 2693 } 2694 return true; 2695 } 2696 2697 assert(!R.empty() && "implicitly declared allocation functions not found"); 2698 assert(!R.isAmbiguous() && "global allocation functions are ambiguous"); 2699 2700 // We do our own custom access checks below. 2701 R.suppressDiagnostics(); 2702 2703 if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment, 2704 OperatorNew, /*Candidates=*/nullptr, 2705 /*AlignArg=*/nullptr, Diagnose)) 2706 return true; 2707 } 2708 2709 // We don't need an operator delete if we're running under -fno-exceptions. 2710 if (!getLangOpts().Exceptions) { 2711 OperatorDelete = nullptr; 2712 return false; 2713 } 2714 2715 // Note, the name of OperatorNew might have been changed from array to 2716 // non-array by resolveAllocationOverload. 2717 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 2718 OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New 2719 ? OO_Array_Delete 2720 : OO_Delete); 2721 2722 // C++ [expr.new]p19: 2723 // 2724 // If the new-expression begins with a unary :: operator, the 2725 // deallocation function's name is looked up in the global 2726 // scope. Otherwise, if the allocated type is a class type T or an 2727 // array thereof, the deallocation function's name is looked up in 2728 // the scope of T. If this lookup fails to find the name, or if 2729 // the allocated type is not a class type or array thereof, the 2730 // deallocation function's name is looked up in the global scope. 2731 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName); 2732 if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) { 2733 auto *RD = 2734 cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl()); 2735 LookupQualifiedName(FoundDelete, RD); 2736 } 2737 if (FoundDelete.isAmbiguous()) 2738 return true; // FIXME: clean up expressions? 2739 2740 // Filter out any destroying operator deletes. We can't possibly call such a 2741 // function in this context, because we're handling the case where the object 2742 // was not successfully constructed. 2743 // FIXME: This is not covered by the language rules yet. 2744 { 2745 LookupResult::Filter Filter = FoundDelete.makeFilter(); 2746 while (Filter.hasNext()) { 2747 auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl()); 2748 if (FD && FD->isDestroyingOperatorDelete()) 2749 Filter.erase(); 2750 } 2751 Filter.done(); 2752 } 2753 2754 bool FoundGlobalDelete = FoundDelete.empty(); 2755 if (FoundDelete.empty()) { 2756 FoundDelete.clear(LookupOrdinaryName); 2757 2758 if (DeleteScope == AFS_Class) 2759 return true; 2760 2761 DeclareGlobalNewDelete(); 2762 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 2763 } 2764 2765 FoundDelete.suppressDiagnostics(); 2766 2767 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches; 2768 2769 // Whether we're looking for a placement operator delete is dictated 2770 // by whether we selected a placement operator new, not by whether 2771 // we had explicit placement arguments. This matters for things like 2772 // struct A { void *operator new(size_t, int = 0); ... }; 2773 // A *a = new A() 2774 // 2775 // We don't have any definition for what a "placement allocation function" 2776 // is, but we assume it's any allocation function whose 2777 // parameter-declaration-clause is anything other than (size_t). 2778 // 2779 // FIXME: Should (size_t, std::align_val_t) also be considered non-placement? 2780 // This affects whether an exception from the constructor of an overaligned 2781 // type uses the sized or non-sized form of aligned operator delete. 2782 bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 || 2783 OperatorNew->isVariadic(); 2784 2785 if (isPlacementNew) { 2786 // C++ [expr.new]p20: 2787 // A declaration of a placement deallocation function matches the 2788 // declaration of a placement allocation function if it has the 2789 // same number of parameters and, after parameter transformations 2790 // (8.3.5), all parameter types except the first are 2791 // identical. [...] 2792 // 2793 // To perform this comparison, we compute the function type that 2794 // the deallocation function should have, and use that type both 2795 // for template argument deduction and for comparison purposes. 2796 QualType ExpectedFunctionType; 2797 { 2798 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); 2799 2800 SmallVector<QualType, 4> ArgTypes; 2801 ArgTypes.push_back(Context.VoidPtrTy); 2802 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I) 2803 ArgTypes.push_back(Proto->getParamType(I)); 2804 2805 FunctionProtoType::ExtProtoInfo EPI; 2806 // FIXME: This is not part of the standard's rule. 2807 EPI.Variadic = Proto->isVariadic(); 2808 2809 ExpectedFunctionType 2810 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI); 2811 } 2812 2813 for (LookupResult::iterator D = FoundDelete.begin(), 2814 DEnd = FoundDelete.end(); 2815 D != DEnd; ++D) { 2816 FunctionDecl *Fn = nullptr; 2817 if (FunctionTemplateDecl *FnTmpl = 2818 dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) { 2819 // Perform template argument deduction to try to match the 2820 // expected function type. 2821 TemplateDeductionInfo Info(StartLoc); 2822 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn, 2823 Info)) 2824 continue; 2825 } else 2826 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl()); 2827 2828 if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(), 2829 ExpectedFunctionType, 2830 /*AdjustExcpetionSpec*/true), 2831 ExpectedFunctionType)) 2832 Matches.push_back(std::make_pair(D.getPair(), Fn)); 2833 } 2834 2835 if (getLangOpts().CUDA) 2836 EraseUnwantedCUDAMatches(getCurFunctionDecl(/*AllowLambda=*/true), 2837 Matches); 2838 } else { 2839 // C++1y [expr.new]p22: 2840 // For a non-placement allocation function, the normal deallocation 2841 // function lookup is used 2842 // 2843 // Per [expr.delete]p10, this lookup prefers a member operator delete 2844 // without a size_t argument, but prefers a non-member operator delete 2845 // with a size_t where possible (which it always is in this case). 2846 llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns; 2847 UsualDeallocFnInfo Selected = resolveDeallocationOverload( 2848 *this, FoundDelete, /*WantSize*/ FoundGlobalDelete, 2849 /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType), 2850 &BestDeallocFns); 2851 if (Selected) 2852 Matches.push_back(std::make_pair(Selected.Found, Selected.FD)); 2853 else { 2854 // If we failed to select an operator, all remaining functions are viable 2855 // but ambiguous. 2856 for (auto Fn : BestDeallocFns) 2857 Matches.push_back(std::make_pair(Fn.Found, Fn.FD)); 2858 } 2859 } 2860 2861 // C++ [expr.new]p20: 2862 // [...] If the lookup finds a single matching deallocation 2863 // function, that function will be called; otherwise, no 2864 // deallocation function will be called. 2865 if (Matches.size() == 1) { 2866 OperatorDelete = Matches[0].second; 2867 2868 // C++1z [expr.new]p23: 2869 // If the lookup finds a usual deallocation function (3.7.4.2) 2870 // with a parameter of type std::size_t and that function, considered 2871 // as a placement deallocation function, would have been 2872 // selected as a match for the allocation function, the program 2873 // is ill-formed. 2874 if (getLangOpts().CPlusPlus11 && isPlacementNew && 2875 isNonPlacementDeallocationFunction(*this, OperatorDelete)) { 2876 UsualDeallocFnInfo Info(*this, 2877 DeclAccessPair::make(OperatorDelete, AS_public)); 2878 // Core issue, per mail to core reflector, 2016-10-09: 2879 // If this is a member operator delete, and there is a corresponding 2880 // non-sized member operator delete, this isn't /really/ a sized 2881 // deallocation function, it just happens to have a size_t parameter. 2882 bool IsSizedDelete = Info.HasSizeT; 2883 if (IsSizedDelete && !FoundGlobalDelete) { 2884 auto NonSizedDelete = 2885 resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false, 2886 /*WantAlign*/Info.HasAlignValT); 2887 if (NonSizedDelete && !NonSizedDelete.HasSizeT && 2888 NonSizedDelete.HasAlignValT == Info.HasAlignValT) 2889 IsSizedDelete = false; 2890 } 2891 2892 if (IsSizedDelete) { 2893 SourceRange R = PlaceArgs.empty() 2894 ? SourceRange() 2895 : SourceRange(PlaceArgs.front()->getBeginLoc(), 2896 PlaceArgs.back()->getEndLoc()); 2897 Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R; 2898 if (!OperatorDelete->isImplicit()) 2899 Diag(OperatorDelete->getLocation(), diag::note_previous_decl) 2900 << DeleteName; 2901 } 2902 } 2903 2904 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(), 2905 Matches[0].first); 2906 } else if (!Matches.empty()) { 2907 // We found multiple suitable operators. Per [expr.new]p20, that means we 2908 // call no 'operator delete' function, but we should at least warn the user. 2909 // FIXME: Suppress this warning if the construction cannot throw. 2910 Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found) 2911 << DeleteName << AllocElemType; 2912 2913 for (auto &Match : Matches) 2914 Diag(Match.second->getLocation(), 2915 diag::note_member_declared_here) << DeleteName; 2916 } 2917 2918 return false; 2919 } 2920 2921 /// DeclareGlobalNewDelete - Declare the global forms of operator new and 2922 /// delete. These are: 2923 /// @code 2924 /// // C++03: 2925 /// void* operator new(std::size_t) throw(std::bad_alloc); 2926 /// void* operator new[](std::size_t) throw(std::bad_alloc); 2927 /// void operator delete(void *) throw(); 2928 /// void operator delete[](void *) throw(); 2929 /// // C++11: 2930 /// void* operator new(std::size_t); 2931 /// void* operator new[](std::size_t); 2932 /// void operator delete(void *) noexcept; 2933 /// void operator delete[](void *) noexcept; 2934 /// // C++1y: 2935 /// void* operator new(std::size_t); 2936 /// void* operator new[](std::size_t); 2937 /// void operator delete(void *) noexcept; 2938 /// void operator delete[](void *) noexcept; 2939 /// void operator delete(void *, std::size_t) noexcept; 2940 /// void operator delete[](void *, std::size_t) noexcept; 2941 /// @endcode 2942 /// Note that the placement and nothrow forms of new are *not* implicitly 2943 /// declared. Their use requires including \<new\>. 2944 void Sema::DeclareGlobalNewDelete() { 2945 if (GlobalNewDeleteDeclared) 2946 return; 2947 2948 // The implicitly declared new and delete operators 2949 // are not supported in OpenCL. 2950 if (getLangOpts().OpenCLCPlusPlus) 2951 return; 2952 2953 // C++ [basic.std.dynamic]p2: 2954 // [...] The following allocation and deallocation functions (18.4) are 2955 // implicitly declared in global scope in each translation unit of a 2956 // program 2957 // 2958 // C++03: 2959 // void* operator new(std::size_t) throw(std::bad_alloc); 2960 // void* operator new[](std::size_t) throw(std::bad_alloc); 2961 // void operator delete(void*) throw(); 2962 // void operator delete[](void*) throw(); 2963 // C++11: 2964 // void* operator new(std::size_t); 2965 // void* operator new[](std::size_t); 2966 // void operator delete(void*) noexcept; 2967 // void operator delete[](void*) noexcept; 2968 // C++1y: 2969 // void* operator new(std::size_t); 2970 // void* operator new[](std::size_t); 2971 // void operator delete(void*) noexcept; 2972 // void operator delete[](void*) noexcept; 2973 // void operator delete(void*, std::size_t) noexcept; 2974 // void operator delete[](void*, std::size_t) noexcept; 2975 // 2976 // These implicit declarations introduce only the function names operator 2977 // new, operator new[], operator delete, operator delete[]. 2978 // 2979 // Here, we need to refer to std::bad_alloc, so we will implicitly declare 2980 // "std" or "bad_alloc" as necessary to form the exception specification. 2981 // However, we do not make these implicit declarations visible to name 2982 // lookup. 2983 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) { 2984 // The "std::bad_alloc" class has not yet been declared, so build it 2985 // implicitly. 2986 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class, 2987 getOrCreateStdNamespace(), 2988 SourceLocation(), SourceLocation(), 2989 &PP.getIdentifierTable().get("bad_alloc"), 2990 nullptr); 2991 getStdBadAlloc()->setImplicit(true); 2992 } 2993 if (!StdAlignValT && getLangOpts().AlignedAllocation) { 2994 // The "std::align_val_t" enum class has not yet been declared, so build it 2995 // implicitly. 2996 auto *AlignValT = EnumDecl::Create( 2997 Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(), 2998 &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true); 2999 AlignValT->setIntegerType(Context.getSizeType()); 3000 AlignValT->setPromotionType(Context.getSizeType()); 3001 AlignValT->setImplicit(true); 3002 StdAlignValT = AlignValT; 3003 } 3004 3005 GlobalNewDeleteDeclared = true; 3006 3007 QualType VoidPtr = Context.getPointerType(Context.VoidTy); 3008 QualType SizeT = Context.getSizeType(); 3009 3010 auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind, 3011 QualType Return, QualType Param) { 3012 llvm::SmallVector<QualType, 3> Params; 3013 Params.push_back(Param); 3014 3015 // Create up to four variants of the function (sized/aligned). 3016 bool HasSizedVariant = getLangOpts().SizedDeallocation && 3017 (Kind == OO_Delete || Kind == OO_Array_Delete); 3018 bool HasAlignedVariant = getLangOpts().AlignedAllocation; 3019 3020 int NumSizeVariants = (HasSizedVariant ? 2 : 1); 3021 int NumAlignVariants = (HasAlignedVariant ? 2 : 1); 3022 for (int Sized = 0; Sized < NumSizeVariants; ++Sized) { 3023 if (Sized) 3024 Params.push_back(SizeT); 3025 3026 for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) { 3027 if (Aligned) 3028 Params.push_back(Context.getTypeDeclType(getStdAlignValT())); 3029 3030 DeclareGlobalAllocationFunction( 3031 Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params); 3032 3033 if (Aligned) 3034 Params.pop_back(); 3035 } 3036 } 3037 }; 3038 3039 DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT); 3040 DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT); 3041 DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr); 3042 DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr); 3043 } 3044 3045 /// DeclareGlobalAllocationFunction - Declares a single implicit global 3046 /// allocation function if it doesn't already exist. 3047 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name, 3048 QualType Return, 3049 ArrayRef<QualType> Params) { 3050 DeclContext *GlobalCtx = Context.getTranslationUnitDecl(); 3051 3052 // Check if this function is already declared. 3053 DeclContext::lookup_result R = GlobalCtx->lookup(Name); 3054 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end(); 3055 Alloc != AllocEnd; ++Alloc) { 3056 // Only look at non-template functions, as it is the predefined, 3057 // non-templated allocation function we are trying to declare here. 3058 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) { 3059 if (Func->getNumParams() == Params.size()) { 3060 llvm::SmallVector<QualType, 3> FuncParams; 3061 for (auto *P : Func->parameters()) 3062 FuncParams.push_back( 3063 Context.getCanonicalType(P->getType().getUnqualifiedType())); 3064 if (llvm::makeArrayRef(FuncParams) == Params) { 3065 // Make the function visible to name lookup, even if we found it in 3066 // an unimported module. It either is an implicitly-declared global 3067 // allocation function, or is suppressing that function. 3068 Func->setVisibleDespiteOwningModule(); 3069 return; 3070 } 3071 } 3072 } 3073 } 3074 3075 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention( 3076 /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true)); 3077 3078 QualType BadAllocType; 3079 bool HasBadAllocExceptionSpec 3080 = (Name.getCXXOverloadedOperator() == OO_New || 3081 Name.getCXXOverloadedOperator() == OO_Array_New); 3082 if (HasBadAllocExceptionSpec) { 3083 if (!getLangOpts().CPlusPlus11) { 3084 BadAllocType = Context.getTypeDeclType(getStdBadAlloc()); 3085 assert(StdBadAlloc && "Must have std::bad_alloc declared"); 3086 EPI.ExceptionSpec.Type = EST_Dynamic; 3087 EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType); 3088 } 3089 if (getLangOpts().NewInfallible) { 3090 EPI.ExceptionSpec.Type = EST_DynamicNone; 3091 } 3092 } else { 3093 EPI.ExceptionSpec = 3094 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone; 3095 } 3096 3097 auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) { 3098 QualType FnType = Context.getFunctionType(Return, Params, EPI); 3099 FunctionDecl *Alloc = FunctionDecl::Create( 3100 Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, FnType, 3101 /*TInfo=*/nullptr, SC_None, getCurFPFeatures().isFPConstrained(), false, 3102 true); 3103 Alloc->setImplicit(); 3104 // Global allocation functions should always be visible. 3105 Alloc->setVisibleDespiteOwningModule(); 3106 3107 if (HasBadAllocExceptionSpec && getLangOpts().NewInfallible) 3108 Alloc->addAttr( 3109 ReturnsNonNullAttr::CreateImplicit(Context, Alloc->getLocation())); 3110 3111 Alloc->addAttr(VisibilityAttr::CreateImplicit( 3112 Context, LangOpts.GlobalAllocationFunctionVisibilityHidden 3113 ? VisibilityAttr::Hidden 3114 : VisibilityAttr::Default)); 3115 3116 llvm::SmallVector<ParmVarDecl *, 3> ParamDecls; 3117 for (QualType T : Params) { 3118 ParamDecls.push_back(ParmVarDecl::Create( 3119 Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T, 3120 /*TInfo=*/nullptr, SC_None, nullptr)); 3121 ParamDecls.back()->setImplicit(); 3122 } 3123 Alloc->setParams(ParamDecls); 3124 if (ExtraAttr) 3125 Alloc->addAttr(ExtraAttr); 3126 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc); 3127 Context.getTranslationUnitDecl()->addDecl(Alloc); 3128 IdResolver.tryAddTopLevelDecl(Alloc, Name); 3129 }; 3130 3131 if (!LangOpts.CUDA) 3132 CreateAllocationFunctionDecl(nullptr); 3133 else { 3134 // Host and device get their own declaration so each can be 3135 // defined or re-declared independently. 3136 CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context)); 3137 CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context)); 3138 } 3139 } 3140 3141 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc, 3142 bool CanProvideSize, 3143 bool Overaligned, 3144 DeclarationName Name) { 3145 DeclareGlobalNewDelete(); 3146 3147 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName); 3148 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 3149 3150 // FIXME: It's possible for this to result in ambiguity, through a 3151 // user-declared variadic operator delete or the enable_if attribute. We 3152 // should probably not consider those cases to be usual deallocation 3153 // functions. But for now we just make an arbitrary choice in that case. 3154 auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize, 3155 Overaligned); 3156 assert(Result.FD && "operator delete missing from global scope?"); 3157 return Result.FD; 3158 } 3159 3160 FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc, 3161 CXXRecordDecl *RD) { 3162 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete); 3163 3164 FunctionDecl *OperatorDelete = nullptr; 3165 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete)) 3166 return nullptr; 3167 if (OperatorDelete) 3168 return OperatorDelete; 3169 3170 // If there's no class-specific operator delete, look up the global 3171 // non-array delete. 3172 return FindUsualDeallocationFunction( 3173 Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)), 3174 Name); 3175 } 3176 3177 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, 3178 DeclarationName Name, 3179 FunctionDecl *&Operator, bool Diagnose) { 3180 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName); 3181 // Try to find operator delete/operator delete[] in class scope. 3182 LookupQualifiedName(Found, RD); 3183 3184 if (Found.isAmbiguous()) 3185 return true; 3186 3187 Found.suppressDiagnostics(); 3188 3189 bool Overaligned = hasNewExtendedAlignment(*this, Context.getRecordType(RD)); 3190 3191 // C++17 [expr.delete]p10: 3192 // If the deallocation functions have class scope, the one without a 3193 // parameter of type std::size_t is selected. 3194 llvm::SmallVector<UsualDeallocFnInfo, 4> Matches; 3195 resolveDeallocationOverload(*this, Found, /*WantSize*/ false, 3196 /*WantAlign*/ Overaligned, &Matches); 3197 3198 // If we could find an overload, use it. 3199 if (Matches.size() == 1) { 3200 Operator = cast<CXXMethodDecl>(Matches[0].FD); 3201 3202 // FIXME: DiagnoseUseOfDecl? 3203 if (Operator->isDeleted()) { 3204 if (Diagnose) { 3205 Diag(StartLoc, diag::err_deleted_function_use); 3206 NoteDeletedFunction(Operator); 3207 } 3208 return true; 3209 } 3210 3211 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(), 3212 Matches[0].Found, Diagnose) == AR_inaccessible) 3213 return true; 3214 3215 return false; 3216 } 3217 3218 // We found multiple suitable operators; complain about the ambiguity. 3219 // FIXME: The standard doesn't say to do this; it appears that the intent 3220 // is that this should never happen. 3221 if (!Matches.empty()) { 3222 if (Diagnose) { 3223 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found) 3224 << Name << RD; 3225 for (auto &Match : Matches) 3226 Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name; 3227 } 3228 return true; 3229 } 3230 3231 // We did find operator delete/operator delete[] declarations, but 3232 // none of them were suitable. 3233 if (!Found.empty()) { 3234 if (Diagnose) { 3235 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found) 3236 << Name << RD; 3237 3238 for (NamedDecl *D : Found) 3239 Diag(D->getUnderlyingDecl()->getLocation(), 3240 diag::note_member_declared_here) << Name; 3241 } 3242 return true; 3243 } 3244 3245 Operator = nullptr; 3246 return false; 3247 } 3248 3249 namespace { 3250 /// Checks whether delete-expression, and new-expression used for 3251 /// initializing deletee have the same array form. 3252 class MismatchingNewDeleteDetector { 3253 public: 3254 enum MismatchResult { 3255 /// Indicates that there is no mismatch or a mismatch cannot be proven. 3256 NoMismatch, 3257 /// Indicates that variable is initialized with mismatching form of \a new. 3258 VarInitMismatches, 3259 /// Indicates that member is initialized with mismatching form of \a new. 3260 MemberInitMismatches, 3261 /// Indicates that 1 or more constructors' definitions could not been 3262 /// analyzed, and they will be checked again at the end of translation unit. 3263 AnalyzeLater 3264 }; 3265 3266 /// \param EndOfTU True, if this is the final analysis at the end of 3267 /// translation unit. False, if this is the initial analysis at the point 3268 /// delete-expression was encountered. 3269 explicit MismatchingNewDeleteDetector(bool EndOfTU) 3270 : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU), 3271 HasUndefinedConstructors(false) {} 3272 3273 /// Checks whether pointee of a delete-expression is initialized with 3274 /// matching form of new-expression. 3275 /// 3276 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the 3277 /// point where delete-expression is encountered, then a warning will be 3278 /// issued immediately. If return value is \c AnalyzeLater at the point where 3279 /// delete-expression is seen, then member will be analyzed at the end of 3280 /// translation unit. \c AnalyzeLater is returned iff at least one constructor 3281 /// couldn't be analyzed. If at least one constructor initializes the member 3282 /// with matching type of new, the return value is \c NoMismatch. 3283 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE); 3284 /// Analyzes a class member. 3285 /// \param Field Class member to analyze. 3286 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used 3287 /// for deleting the \p Field. 3288 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm); 3289 FieldDecl *Field; 3290 /// List of mismatching new-expressions used for initialization of the pointee 3291 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs; 3292 /// Indicates whether delete-expression was in array form. 3293 bool IsArrayForm; 3294 3295 private: 3296 const bool EndOfTU; 3297 /// Indicates that there is at least one constructor without body. 3298 bool HasUndefinedConstructors; 3299 /// Returns \c CXXNewExpr from given initialization expression. 3300 /// \param E Expression used for initializing pointee in delete-expression. 3301 /// E can be a single-element \c InitListExpr consisting of new-expression. 3302 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E); 3303 /// Returns whether member is initialized with mismatching form of 3304 /// \c new either by the member initializer or in-class initialization. 3305 /// 3306 /// If bodies of all constructors are not visible at the end of translation 3307 /// unit or at least one constructor initializes member with the matching 3308 /// form of \c new, mismatch cannot be proven, and this function will return 3309 /// \c NoMismatch. 3310 MismatchResult analyzeMemberExpr(const MemberExpr *ME); 3311 /// Returns whether variable is initialized with mismatching form of 3312 /// \c new. 3313 /// 3314 /// If variable is initialized with matching form of \c new or variable is not 3315 /// initialized with a \c new expression, this function will return true. 3316 /// If variable is initialized with mismatching form of \c new, returns false. 3317 /// \param D Variable to analyze. 3318 bool hasMatchingVarInit(const DeclRefExpr *D); 3319 /// Checks whether the constructor initializes pointee with mismatching 3320 /// form of \c new. 3321 /// 3322 /// Returns true, if member is initialized with matching form of \c new in 3323 /// member initializer list. Returns false, if member is initialized with the 3324 /// matching form of \c new in this constructor's initializer or given 3325 /// constructor isn't defined at the point where delete-expression is seen, or 3326 /// member isn't initialized by the constructor. 3327 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD); 3328 /// Checks whether member is initialized with matching form of 3329 /// \c new in member initializer list. 3330 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI); 3331 /// Checks whether member is initialized with mismatching form of \c new by 3332 /// in-class initializer. 3333 MismatchResult analyzeInClassInitializer(); 3334 }; 3335 } 3336 3337 MismatchingNewDeleteDetector::MismatchResult 3338 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) { 3339 NewExprs.clear(); 3340 assert(DE && "Expected delete-expression"); 3341 IsArrayForm = DE->isArrayForm(); 3342 const Expr *E = DE->getArgument()->IgnoreParenImpCasts(); 3343 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) { 3344 return analyzeMemberExpr(ME); 3345 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) { 3346 if (!hasMatchingVarInit(D)) 3347 return VarInitMismatches; 3348 } 3349 return NoMismatch; 3350 } 3351 3352 const CXXNewExpr * 3353 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) { 3354 assert(E != nullptr && "Expected a valid initializer expression"); 3355 E = E->IgnoreParenImpCasts(); 3356 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) { 3357 if (ILE->getNumInits() == 1) 3358 E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts()); 3359 } 3360 3361 return dyn_cast_or_null<const CXXNewExpr>(E); 3362 } 3363 3364 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit( 3365 const CXXCtorInitializer *CI) { 3366 const CXXNewExpr *NE = nullptr; 3367 if (Field == CI->getMember() && 3368 (NE = getNewExprFromInitListOrExpr(CI->getInit()))) { 3369 if (NE->isArray() == IsArrayForm) 3370 return true; 3371 else 3372 NewExprs.push_back(NE); 3373 } 3374 return false; 3375 } 3376 3377 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor( 3378 const CXXConstructorDecl *CD) { 3379 if (CD->isImplicit()) 3380 return false; 3381 const FunctionDecl *Definition = CD; 3382 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) { 3383 HasUndefinedConstructors = true; 3384 return EndOfTU; 3385 } 3386 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) { 3387 if (hasMatchingNewInCtorInit(CI)) 3388 return true; 3389 } 3390 return false; 3391 } 3392 3393 MismatchingNewDeleteDetector::MismatchResult 3394 MismatchingNewDeleteDetector::analyzeInClassInitializer() { 3395 assert(Field != nullptr && "This should be called only for members"); 3396 const Expr *InitExpr = Field->getInClassInitializer(); 3397 if (!InitExpr) 3398 return EndOfTU ? NoMismatch : AnalyzeLater; 3399 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) { 3400 if (NE->isArray() != IsArrayForm) { 3401 NewExprs.push_back(NE); 3402 return MemberInitMismatches; 3403 } 3404 } 3405 return NoMismatch; 3406 } 3407 3408 MismatchingNewDeleteDetector::MismatchResult 3409 MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field, 3410 bool DeleteWasArrayForm) { 3411 assert(Field != nullptr && "Analysis requires a valid class member."); 3412 this->Field = Field; 3413 IsArrayForm = DeleteWasArrayForm; 3414 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent()); 3415 for (const auto *CD : RD->ctors()) { 3416 if (hasMatchingNewInCtor(CD)) 3417 return NoMismatch; 3418 } 3419 if (HasUndefinedConstructors) 3420 return EndOfTU ? NoMismatch : AnalyzeLater; 3421 if (!NewExprs.empty()) 3422 return MemberInitMismatches; 3423 return Field->hasInClassInitializer() ? analyzeInClassInitializer() 3424 : NoMismatch; 3425 } 3426 3427 MismatchingNewDeleteDetector::MismatchResult 3428 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) { 3429 assert(ME != nullptr && "Expected a member expression"); 3430 if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl())) 3431 return analyzeField(F, IsArrayForm); 3432 return NoMismatch; 3433 } 3434 3435 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) { 3436 const CXXNewExpr *NE = nullptr; 3437 if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) { 3438 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) && 3439 NE->isArray() != IsArrayForm) { 3440 NewExprs.push_back(NE); 3441 } 3442 } 3443 return NewExprs.empty(); 3444 } 3445 3446 static void 3447 DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc, 3448 const MismatchingNewDeleteDetector &Detector) { 3449 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc); 3450 FixItHint H; 3451 if (!Detector.IsArrayForm) 3452 H = FixItHint::CreateInsertion(EndOfDelete, "[]"); 3453 else { 3454 SourceLocation RSquare = Lexer::findLocationAfterToken( 3455 DeleteLoc, tok::l_square, SemaRef.getSourceManager(), 3456 SemaRef.getLangOpts(), true); 3457 if (RSquare.isValid()) 3458 H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare)); 3459 } 3460 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new) 3461 << Detector.IsArrayForm << H; 3462 3463 for (const auto *NE : Detector.NewExprs) 3464 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here) 3465 << Detector.IsArrayForm; 3466 } 3467 3468 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) { 3469 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation())) 3470 return; 3471 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false); 3472 switch (Detector.analyzeDeleteExpr(DE)) { 3473 case MismatchingNewDeleteDetector::VarInitMismatches: 3474 case MismatchingNewDeleteDetector::MemberInitMismatches: { 3475 DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector); 3476 break; 3477 } 3478 case MismatchingNewDeleteDetector::AnalyzeLater: { 3479 DeleteExprs[Detector.Field].push_back( 3480 std::make_pair(DE->getBeginLoc(), DE->isArrayForm())); 3481 break; 3482 } 3483 case MismatchingNewDeleteDetector::NoMismatch: 3484 break; 3485 } 3486 } 3487 3488 void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc, 3489 bool DeleteWasArrayForm) { 3490 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true); 3491 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) { 3492 case MismatchingNewDeleteDetector::VarInitMismatches: 3493 llvm_unreachable("This analysis should have been done for class members."); 3494 case MismatchingNewDeleteDetector::AnalyzeLater: 3495 llvm_unreachable("Analysis cannot be postponed any point beyond end of " 3496 "translation unit."); 3497 case MismatchingNewDeleteDetector::MemberInitMismatches: 3498 DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector); 3499 break; 3500 case MismatchingNewDeleteDetector::NoMismatch: 3501 break; 3502 } 3503 } 3504 3505 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in: 3506 /// @code ::delete ptr; @endcode 3507 /// or 3508 /// @code delete [] ptr; @endcode 3509 ExprResult 3510 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, 3511 bool ArrayForm, Expr *ExE) { 3512 // C++ [expr.delete]p1: 3513 // The operand shall have a pointer type, or a class type having a single 3514 // non-explicit conversion function to a pointer type. The result has type 3515 // void. 3516 // 3517 // DR599 amends "pointer type" to "pointer to object type" in both cases. 3518 3519 ExprResult Ex = ExE; 3520 FunctionDecl *OperatorDelete = nullptr; 3521 bool ArrayFormAsWritten = ArrayForm; 3522 bool UsualArrayDeleteWantsSize = false; 3523 3524 if (!Ex.get()->isTypeDependent()) { 3525 // Perform lvalue-to-rvalue cast, if needed. 3526 Ex = DefaultLvalueConversion(Ex.get()); 3527 if (Ex.isInvalid()) 3528 return ExprError(); 3529 3530 QualType Type = Ex.get()->getType(); 3531 3532 class DeleteConverter : public ContextualImplicitConverter { 3533 public: 3534 DeleteConverter() : ContextualImplicitConverter(false, true) {} 3535 3536 bool match(QualType ConvType) override { 3537 // FIXME: If we have an operator T* and an operator void*, we must pick 3538 // the operator T*. 3539 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 3540 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType()) 3541 return true; 3542 return false; 3543 } 3544 3545 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc, 3546 QualType T) override { 3547 return S.Diag(Loc, diag::err_delete_operand) << T; 3548 } 3549 3550 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc, 3551 QualType T) override { 3552 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T; 3553 } 3554 3555 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc, 3556 QualType T, 3557 QualType ConvTy) override { 3558 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy; 3559 } 3560 3561 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv, 3562 QualType ConvTy) override { 3563 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 3564 << ConvTy; 3565 } 3566 3567 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, 3568 QualType T) override { 3569 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T; 3570 } 3571 3572 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv, 3573 QualType ConvTy) override { 3574 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 3575 << ConvTy; 3576 } 3577 3578 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 3579 QualType T, 3580 QualType ConvTy) override { 3581 llvm_unreachable("conversion functions are permitted"); 3582 } 3583 } Converter; 3584 3585 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter); 3586 if (Ex.isInvalid()) 3587 return ExprError(); 3588 Type = Ex.get()->getType(); 3589 if (!Converter.match(Type)) 3590 // FIXME: PerformContextualImplicitConversion should return ExprError 3591 // itself in this case. 3592 return ExprError(); 3593 3594 QualType Pointee = Type->castAs<PointerType>()->getPointeeType(); 3595 QualType PointeeElem = Context.getBaseElementType(Pointee); 3596 3597 if (Pointee.getAddressSpace() != LangAS::Default && 3598 !getLangOpts().OpenCLCPlusPlus) 3599 return Diag(Ex.get()->getBeginLoc(), 3600 diag::err_address_space_qualified_delete) 3601 << Pointee.getUnqualifiedType() 3602 << Pointee.getQualifiers().getAddressSpaceAttributePrintValue(); 3603 3604 CXXRecordDecl *PointeeRD = nullptr; 3605 if (Pointee->isVoidType() && !isSFINAEContext()) { 3606 // The C++ standard bans deleting a pointer to a non-object type, which 3607 // effectively bans deletion of "void*". However, most compilers support 3608 // this, so we treat it as a warning unless we're in a SFINAE context. 3609 Diag(StartLoc, diag::ext_delete_void_ptr_operand) 3610 << Type << Ex.get()->getSourceRange(); 3611 } else if (Pointee->isFunctionType() || Pointee->isVoidType() || 3612 Pointee->isSizelessType()) { 3613 return ExprError(Diag(StartLoc, diag::err_delete_operand) 3614 << Type << Ex.get()->getSourceRange()); 3615 } else if (!Pointee->isDependentType()) { 3616 // FIXME: This can result in errors if the definition was imported from a 3617 // module but is hidden. 3618 if (!RequireCompleteType(StartLoc, Pointee, 3619 diag::warn_delete_incomplete, Ex.get())) { 3620 if (const RecordType *RT = PointeeElem->getAs<RecordType>()) 3621 PointeeRD = cast<CXXRecordDecl>(RT->getDecl()); 3622 } 3623 } 3624 3625 if (Pointee->isArrayType() && !ArrayForm) { 3626 Diag(StartLoc, diag::warn_delete_array_type) 3627 << Type << Ex.get()->getSourceRange() 3628 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]"); 3629 ArrayForm = true; 3630 } 3631 3632 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 3633 ArrayForm ? OO_Array_Delete : OO_Delete); 3634 3635 if (PointeeRD) { 3636 if (!UseGlobal && 3637 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName, 3638 OperatorDelete)) 3639 return ExprError(); 3640 3641 // If we're allocating an array of records, check whether the 3642 // usual operator delete[] has a size_t parameter. 3643 if (ArrayForm) { 3644 // If the user specifically asked to use the global allocator, 3645 // we'll need to do the lookup into the class. 3646 if (UseGlobal) 3647 UsualArrayDeleteWantsSize = 3648 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem); 3649 3650 // Otherwise, the usual operator delete[] should be the 3651 // function we just found. 3652 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete)) 3653 UsualArrayDeleteWantsSize = 3654 UsualDeallocFnInfo(*this, 3655 DeclAccessPair::make(OperatorDelete, AS_public)) 3656 .HasSizeT; 3657 } 3658 3659 if (!PointeeRD->hasIrrelevantDestructor()) 3660 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 3661 MarkFunctionReferenced(StartLoc, 3662 const_cast<CXXDestructorDecl*>(Dtor)); 3663 if (DiagnoseUseOfDecl(Dtor, StartLoc)) 3664 return ExprError(); 3665 } 3666 3667 CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc, 3668 /*IsDelete=*/true, /*CallCanBeVirtual=*/true, 3669 /*WarnOnNonAbstractTypes=*/!ArrayForm, 3670 SourceLocation()); 3671 } 3672 3673 if (!OperatorDelete) { 3674 if (getLangOpts().OpenCLCPlusPlus) { 3675 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete"; 3676 return ExprError(); 3677 } 3678 3679 bool IsComplete = isCompleteType(StartLoc, Pointee); 3680 bool CanProvideSize = 3681 IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize || 3682 Pointee.isDestructedType()); 3683 bool Overaligned = hasNewExtendedAlignment(*this, Pointee); 3684 3685 // Look for a global declaration. 3686 OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize, 3687 Overaligned, DeleteName); 3688 } 3689 3690 MarkFunctionReferenced(StartLoc, OperatorDelete); 3691 3692 // Check access and ambiguity of destructor if we're going to call it. 3693 // Note that this is required even for a virtual delete. 3694 bool IsVirtualDelete = false; 3695 if (PointeeRD) { 3696 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 3697 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor, 3698 PDiag(diag::err_access_dtor) << PointeeElem); 3699 IsVirtualDelete = Dtor->isVirtual(); 3700 } 3701 } 3702 3703 DiagnoseUseOfDecl(OperatorDelete, StartLoc); 3704 3705 // Convert the operand to the type of the first parameter of operator 3706 // delete. This is only necessary if we selected a destroying operator 3707 // delete that we are going to call (non-virtually); converting to void* 3708 // is trivial and left to AST consumers to handle. 3709 QualType ParamType = OperatorDelete->getParamDecl(0)->getType(); 3710 if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) { 3711 Qualifiers Qs = Pointee.getQualifiers(); 3712 if (Qs.hasCVRQualifiers()) { 3713 // Qualifiers are irrelevant to this conversion; we're only looking 3714 // for access and ambiguity. 3715 Qs.removeCVRQualifiers(); 3716 QualType Unqual = Context.getPointerType( 3717 Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs)); 3718 Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp); 3719 } 3720 Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing); 3721 if (Ex.isInvalid()) 3722 return ExprError(); 3723 } 3724 } 3725 3726 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr( 3727 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten, 3728 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc); 3729 AnalyzeDeleteExprMismatch(Result); 3730 return Result; 3731 } 3732 3733 static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall, 3734 bool IsDelete, 3735 FunctionDecl *&Operator) { 3736 3737 DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName( 3738 IsDelete ? OO_Delete : OO_New); 3739 3740 LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName); 3741 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); 3742 assert(!R.empty() && "implicitly declared allocation functions not found"); 3743 assert(!R.isAmbiguous() && "global allocation functions are ambiguous"); 3744 3745 // We do our own custom access checks below. 3746 R.suppressDiagnostics(); 3747 3748 SmallVector<Expr *, 8> Args(TheCall->arguments()); 3749 OverloadCandidateSet Candidates(R.getNameLoc(), 3750 OverloadCandidateSet::CSK_Normal); 3751 for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end(); 3752 FnOvl != FnOvlEnd; ++FnOvl) { 3753 // Even member operator new/delete are implicitly treated as 3754 // static, so don't use AddMemberCandidate. 3755 NamedDecl *D = (*FnOvl)->getUnderlyingDecl(); 3756 3757 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 3758 S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(), 3759 /*ExplicitTemplateArgs=*/nullptr, Args, 3760 Candidates, 3761 /*SuppressUserConversions=*/false); 3762 continue; 3763 } 3764 3765 FunctionDecl *Fn = cast<FunctionDecl>(D); 3766 S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates, 3767 /*SuppressUserConversions=*/false); 3768 } 3769 3770 SourceRange Range = TheCall->getSourceRange(); 3771 3772 // Do the resolution. 3773 OverloadCandidateSet::iterator Best; 3774 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { 3775 case OR_Success: { 3776 // Got one! 3777 FunctionDecl *FnDecl = Best->Function; 3778 assert(R.getNamingClass() == nullptr && 3779 "class members should not be considered"); 3780 3781 if (!FnDecl->isReplaceableGlobalAllocationFunction()) { 3782 S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual) 3783 << (IsDelete ? 1 : 0) << Range; 3784 S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here) 3785 << R.getLookupName() << FnDecl->getSourceRange(); 3786 return true; 3787 } 3788 3789 Operator = FnDecl; 3790 return false; 3791 } 3792 3793 case OR_No_Viable_Function: 3794 Candidates.NoteCandidates( 3795 PartialDiagnosticAt(R.getNameLoc(), 3796 S.PDiag(diag::err_ovl_no_viable_function_in_call) 3797 << R.getLookupName() << Range), 3798 S, OCD_AllCandidates, Args); 3799 return true; 3800 3801 case OR_Ambiguous: 3802 Candidates.NoteCandidates( 3803 PartialDiagnosticAt(R.getNameLoc(), 3804 S.PDiag(diag::err_ovl_ambiguous_call) 3805 << R.getLookupName() << Range), 3806 S, OCD_AmbiguousCandidates, Args); 3807 return true; 3808 3809 case OR_Deleted: { 3810 Candidates.NoteCandidates( 3811 PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call) 3812 << R.getLookupName() << Range), 3813 S, OCD_AllCandidates, Args); 3814 return true; 3815 } 3816 } 3817 llvm_unreachable("Unreachable, bad result from BestViableFunction"); 3818 } 3819 3820 ExprResult 3821 Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult, 3822 bool IsDelete) { 3823 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get()); 3824 if (!getLangOpts().CPlusPlus) { 3825 Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language) 3826 << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new") 3827 << "C++"; 3828 return ExprError(); 3829 } 3830 // CodeGen assumes it can find the global new and delete to call, 3831 // so ensure that they are declared. 3832 DeclareGlobalNewDelete(); 3833 3834 FunctionDecl *OperatorNewOrDelete = nullptr; 3835 if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete, 3836 OperatorNewOrDelete)) 3837 return ExprError(); 3838 assert(OperatorNewOrDelete && "should be found"); 3839 3840 DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc()); 3841 MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete); 3842 3843 TheCall->setType(OperatorNewOrDelete->getReturnType()); 3844 for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) { 3845 QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType(); 3846 InitializedEntity Entity = 3847 InitializedEntity::InitializeParameter(Context, ParamTy, false); 3848 ExprResult Arg = PerformCopyInitialization( 3849 Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i)); 3850 if (Arg.isInvalid()) 3851 return ExprError(); 3852 TheCall->setArg(i, Arg.get()); 3853 } 3854 auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee()); 3855 assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && 3856 "Callee expected to be implicit cast to a builtin function pointer"); 3857 Callee->setType(OperatorNewOrDelete->getType()); 3858 3859 return TheCallResult; 3860 } 3861 3862 void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc, 3863 bool IsDelete, bool CallCanBeVirtual, 3864 bool WarnOnNonAbstractTypes, 3865 SourceLocation DtorLoc) { 3866 if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext()) 3867 return; 3868 3869 // C++ [expr.delete]p3: 3870 // In the first alternative (delete object), if the static type of the 3871 // object to be deleted is different from its dynamic type, the static 3872 // type shall be a base class of the dynamic type of the object to be 3873 // deleted and the static type shall have a virtual destructor or the 3874 // behavior is undefined. 3875 // 3876 const CXXRecordDecl *PointeeRD = dtor->getParent(); 3877 // Note: a final class cannot be derived from, no issue there 3878 if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>()) 3879 return; 3880 3881 // If the superclass is in a system header, there's nothing that can be done. 3882 // The `delete` (where we emit the warning) can be in a system header, 3883 // what matters for this warning is where the deleted type is defined. 3884 if (getSourceManager().isInSystemHeader(PointeeRD->getLocation())) 3885 return; 3886 3887 QualType ClassType = dtor->getThisType()->getPointeeType(); 3888 if (PointeeRD->isAbstract()) { 3889 // If the class is abstract, we warn by default, because we're 3890 // sure the code has undefined behavior. 3891 Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1) 3892 << ClassType; 3893 } else if (WarnOnNonAbstractTypes) { 3894 // Otherwise, if this is not an array delete, it's a bit suspect, 3895 // but not necessarily wrong. 3896 Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1) 3897 << ClassType; 3898 } 3899 if (!IsDelete) { 3900 std::string TypeStr; 3901 ClassType.getAsStringInternal(TypeStr, getPrintingPolicy()); 3902 Diag(DtorLoc, diag::note_delete_non_virtual) 3903 << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::"); 3904 } 3905 } 3906 3907 Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar, 3908 SourceLocation StmtLoc, 3909 ConditionKind CK) { 3910 ExprResult E = 3911 CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK); 3912 if (E.isInvalid()) 3913 return ConditionError(); 3914 return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc), 3915 CK == ConditionKind::ConstexprIf); 3916 } 3917 3918 /// Check the use of the given variable as a C++ condition in an if, 3919 /// while, do-while, or switch statement. 3920 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar, 3921 SourceLocation StmtLoc, 3922 ConditionKind CK) { 3923 if (ConditionVar->isInvalidDecl()) 3924 return ExprError(); 3925 3926 QualType T = ConditionVar->getType(); 3927 3928 // C++ [stmt.select]p2: 3929 // The declarator shall not specify a function or an array. 3930 if (T->isFunctionType()) 3931 return ExprError(Diag(ConditionVar->getLocation(), 3932 diag::err_invalid_use_of_function_type) 3933 << ConditionVar->getSourceRange()); 3934 else if (T->isArrayType()) 3935 return ExprError(Diag(ConditionVar->getLocation(), 3936 diag::err_invalid_use_of_array_type) 3937 << ConditionVar->getSourceRange()); 3938 3939 ExprResult Condition = BuildDeclRefExpr( 3940 ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue, 3941 ConditionVar->getLocation()); 3942 3943 switch (CK) { 3944 case ConditionKind::Boolean: 3945 return CheckBooleanCondition(StmtLoc, Condition.get()); 3946 3947 case ConditionKind::ConstexprIf: 3948 return CheckBooleanCondition(StmtLoc, Condition.get(), true); 3949 3950 case ConditionKind::Switch: 3951 return CheckSwitchCondition(StmtLoc, Condition.get()); 3952 } 3953 3954 llvm_unreachable("unexpected condition kind"); 3955 } 3956 3957 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. 3958 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) { 3959 // C++11 6.4p4: 3960 // The value of a condition that is an initialized declaration in a statement 3961 // other than a switch statement is the value of the declared variable 3962 // implicitly converted to type bool. If that conversion is ill-formed, the 3963 // program is ill-formed. 3964 // The value of a condition that is an expression is the value of the 3965 // expression, implicitly converted to bool. 3966 // 3967 // C++2b 8.5.2p2 3968 // If the if statement is of the form if constexpr, the value of the condition 3969 // is contextually converted to bool and the converted expression shall be 3970 // a constant expression. 3971 // 3972 3973 ExprResult E = PerformContextuallyConvertToBool(CondExpr); 3974 if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent()) 3975 return E; 3976 3977 // FIXME: Return this value to the caller so they don't need to recompute it. 3978 llvm::APSInt Cond; 3979 E = VerifyIntegerConstantExpression( 3980 E.get(), &Cond, 3981 diag::err_constexpr_if_condition_expression_is_not_constant); 3982 return E; 3983 } 3984 3985 /// Helper function to determine whether this is the (deprecated) C++ 3986 /// conversion from a string literal to a pointer to non-const char or 3987 /// non-const wchar_t (for narrow and wide string literals, 3988 /// respectively). 3989 bool 3990 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { 3991 // Look inside the implicit cast, if it exists. 3992 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From)) 3993 From = Cast->getSubExpr(); 3994 3995 // A string literal (2.13.4) that is not a wide string literal can 3996 // be converted to an rvalue of type "pointer to char"; a wide 3997 // string literal can be converted to an rvalue of type "pointer 3998 // to wchar_t" (C++ 4.2p2). 3999 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens())) 4000 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) 4001 if (const BuiltinType *ToPointeeType 4002 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) { 4003 // This conversion is considered only when there is an 4004 // explicit appropriate pointer target type (C++ 4.2p2). 4005 if (!ToPtrType->getPointeeType().hasQualifiers()) { 4006 switch (StrLit->getKind()) { 4007 case StringLiteral::UTF8: 4008 case StringLiteral::UTF16: 4009 case StringLiteral::UTF32: 4010 // We don't allow UTF literals to be implicitly converted 4011 break; 4012 case StringLiteral::Ordinary: 4013 return (ToPointeeType->getKind() == BuiltinType::Char_U || 4014 ToPointeeType->getKind() == BuiltinType::Char_S); 4015 case StringLiteral::Wide: 4016 return Context.typesAreCompatible(Context.getWideCharType(), 4017 QualType(ToPointeeType, 0)); 4018 } 4019 } 4020 } 4021 4022 return false; 4023 } 4024 4025 static ExprResult BuildCXXCastArgument(Sema &S, 4026 SourceLocation CastLoc, 4027 QualType Ty, 4028 CastKind Kind, 4029 CXXMethodDecl *Method, 4030 DeclAccessPair FoundDecl, 4031 bool HadMultipleCandidates, 4032 Expr *From) { 4033 switch (Kind) { 4034 default: llvm_unreachable("Unhandled cast kind!"); 4035 case CK_ConstructorConversion: { 4036 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method); 4037 SmallVector<Expr*, 8> ConstructorArgs; 4038 4039 if (S.RequireNonAbstractType(CastLoc, Ty, 4040 diag::err_allocation_of_abstract_type)) 4041 return ExprError(); 4042 4043 if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc, 4044 ConstructorArgs)) 4045 return ExprError(); 4046 4047 S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl, 4048 InitializedEntity::InitializeTemporary(Ty)); 4049 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 4050 return ExprError(); 4051 4052 ExprResult Result = S.BuildCXXConstructExpr( 4053 CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method), 4054 ConstructorArgs, HadMultipleCandidates, 4055 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4056 CXXConstructExpr::CK_Complete, SourceRange()); 4057 if (Result.isInvalid()) 4058 return ExprError(); 4059 4060 return S.MaybeBindToTemporary(Result.getAs<Expr>()); 4061 } 4062 4063 case CK_UserDefinedConversion: { 4064 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!"); 4065 4066 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl); 4067 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 4068 return ExprError(); 4069 4070 // Create an implicit call expr that calls it. 4071 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method); 4072 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv, 4073 HadMultipleCandidates); 4074 if (Result.isInvalid()) 4075 return ExprError(); 4076 // Record usage of conversion in an implicit cast. 4077 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(), 4078 CK_UserDefinedConversion, Result.get(), 4079 nullptr, Result.get()->getValueKind(), 4080 S.CurFPFeatureOverrides()); 4081 4082 return S.MaybeBindToTemporary(Result.get()); 4083 } 4084 } 4085 } 4086 4087 /// PerformImplicitConversion - Perform an implicit conversion of the 4088 /// expression From to the type ToType using the pre-computed implicit 4089 /// conversion sequence ICS. Returns the converted 4090 /// expression. Action is the kind of conversion we're performing, 4091 /// used in the error message. 4092 ExprResult 4093 Sema::PerformImplicitConversion(Expr *From, QualType ToType, 4094 const ImplicitConversionSequence &ICS, 4095 AssignmentAction Action, 4096 CheckedConversionKind CCK) { 4097 // C++ [over.match.oper]p7: [...] operands of class type are converted [...] 4098 if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType()) 4099 return From; 4100 4101 switch (ICS.getKind()) { 4102 case ImplicitConversionSequence::StandardConversion: { 4103 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard, 4104 Action, CCK); 4105 if (Res.isInvalid()) 4106 return ExprError(); 4107 From = Res.get(); 4108 break; 4109 } 4110 4111 case ImplicitConversionSequence::UserDefinedConversion: { 4112 4113 FunctionDecl *FD = ICS.UserDefined.ConversionFunction; 4114 CastKind CastKind; 4115 QualType BeforeToType; 4116 assert(FD && "no conversion function for user-defined conversion seq"); 4117 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) { 4118 CastKind = CK_UserDefinedConversion; 4119 4120 // If the user-defined conversion is specified by a conversion function, 4121 // the initial standard conversion sequence converts the source type to 4122 // the implicit object parameter of the conversion function. 4123 BeforeToType = Context.getTagDeclType(Conv->getParent()); 4124 } else { 4125 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD); 4126 CastKind = CK_ConstructorConversion; 4127 // Do no conversion if dealing with ... for the first conversion. 4128 if (!ICS.UserDefined.EllipsisConversion) { 4129 // If the user-defined conversion is specified by a constructor, the 4130 // initial standard conversion sequence converts the source type to 4131 // the type required by the argument of the constructor 4132 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType(); 4133 } 4134 } 4135 // Watch out for ellipsis conversion. 4136 if (!ICS.UserDefined.EllipsisConversion) { 4137 ExprResult Res = 4138 PerformImplicitConversion(From, BeforeToType, 4139 ICS.UserDefined.Before, AA_Converting, 4140 CCK); 4141 if (Res.isInvalid()) 4142 return ExprError(); 4143 From = Res.get(); 4144 } 4145 4146 ExprResult CastArg = BuildCXXCastArgument( 4147 *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind, 4148 cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction, 4149 ICS.UserDefined.HadMultipleCandidates, From); 4150 4151 if (CastArg.isInvalid()) 4152 return ExprError(); 4153 4154 From = CastArg.get(); 4155 4156 // C++ [over.match.oper]p7: 4157 // [...] the second standard conversion sequence of a user-defined 4158 // conversion sequence is not applied. 4159 if (CCK == CCK_ForBuiltinOverloadedOp) 4160 return From; 4161 4162 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After, 4163 AA_Converting, CCK); 4164 } 4165 4166 case ImplicitConversionSequence::AmbiguousConversion: 4167 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(), 4168 PDiag(diag::err_typecheck_ambiguous_condition) 4169 << From->getSourceRange()); 4170 return ExprError(); 4171 4172 case ImplicitConversionSequence::EllipsisConversion: 4173 llvm_unreachable("Cannot perform an ellipsis conversion"); 4174 4175 case ImplicitConversionSequence::BadConversion: 4176 Sema::AssignConvertType ConvTy = 4177 CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType()); 4178 bool Diagnosed = DiagnoseAssignmentResult( 4179 ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(), 4180 ToType, From->getType(), From, Action); 4181 assert(Diagnosed && "failed to diagnose bad conversion"); (void)Diagnosed; 4182 return ExprError(); 4183 } 4184 4185 // Everything went well. 4186 return From; 4187 } 4188 4189 /// PerformImplicitConversion - Perform an implicit conversion of the 4190 /// expression From to the type ToType by following the standard 4191 /// conversion sequence SCS. Returns the converted 4192 /// expression. Flavor is the context in which we're performing this 4193 /// conversion, for use in error messages. 4194 ExprResult 4195 Sema::PerformImplicitConversion(Expr *From, QualType ToType, 4196 const StandardConversionSequence& SCS, 4197 AssignmentAction Action, 4198 CheckedConversionKind CCK) { 4199 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast); 4200 4201 // Overall FIXME: we are recomputing too many types here and doing far too 4202 // much extra work. What this means is that we need to keep track of more 4203 // information that is computed when we try the implicit conversion initially, 4204 // so that we don't need to recompute anything here. 4205 QualType FromType = From->getType(); 4206 4207 if (SCS.CopyConstructor) { 4208 // FIXME: When can ToType be a reference type? 4209 assert(!ToType->isReferenceType()); 4210 if (SCS.Second == ICK_Derived_To_Base) { 4211 SmallVector<Expr*, 8> ConstructorArgs; 4212 if (CompleteConstructorCall( 4213 cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From, 4214 /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs)) 4215 return ExprError(); 4216 return BuildCXXConstructExpr( 4217 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, 4218 SCS.FoundCopyConstructor, SCS.CopyConstructor, 4219 ConstructorArgs, /*HadMultipleCandidates*/ false, 4220 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4221 CXXConstructExpr::CK_Complete, SourceRange()); 4222 } 4223 return BuildCXXConstructExpr( 4224 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, 4225 SCS.FoundCopyConstructor, SCS.CopyConstructor, 4226 From, /*HadMultipleCandidates*/ false, 4227 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4228 CXXConstructExpr::CK_Complete, SourceRange()); 4229 } 4230 4231 // Resolve overloaded function references. 4232 if (Context.hasSameType(FromType, Context.OverloadTy)) { 4233 DeclAccessPair Found; 4234 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, 4235 true, Found); 4236 if (!Fn) 4237 return ExprError(); 4238 4239 if (DiagnoseUseOfDecl(Fn, From->getBeginLoc())) 4240 return ExprError(); 4241 4242 From = FixOverloadedFunctionReference(From, Found, Fn); 4243 4244 // We might get back another placeholder expression if we resolved to a 4245 // builtin. 4246 ExprResult Checked = CheckPlaceholderExpr(From); 4247 if (Checked.isInvalid()) 4248 return ExprError(); 4249 4250 From = Checked.get(); 4251 FromType = From->getType(); 4252 } 4253 4254 // If we're converting to an atomic type, first convert to the corresponding 4255 // non-atomic type. 4256 QualType ToAtomicType; 4257 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) { 4258 ToAtomicType = ToType; 4259 ToType = ToAtomic->getValueType(); 4260 } 4261 4262 QualType InitialFromType = FromType; 4263 // Perform the first implicit conversion. 4264 switch (SCS.First) { 4265 case ICK_Identity: 4266 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) { 4267 FromType = FromAtomic->getValueType().getUnqualifiedType(); 4268 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic, 4269 From, /*BasePath=*/nullptr, VK_PRValue, 4270 FPOptionsOverride()); 4271 } 4272 break; 4273 4274 case ICK_Lvalue_To_Rvalue: { 4275 assert(From->getObjectKind() != OK_ObjCProperty); 4276 ExprResult FromRes = DefaultLvalueConversion(From); 4277 if (FromRes.isInvalid()) 4278 return ExprError(); 4279 4280 From = FromRes.get(); 4281 FromType = From->getType(); 4282 break; 4283 } 4284 4285 case ICK_Array_To_Pointer: 4286 FromType = Context.getArrayDecayedType(FromType); 4287 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_PRValue, 4288 /*BasePath=*/nullptr, CCK) 4289 .get(); 4290 break; 4291 4292 case ICK_Function_To_Pointer: 4293 FromType = Context.getPointerType(FromType); 4294 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay, 4295 VK_PRValue, /*BasePath=*/nullptr, CCK) 4296 .get(); 4297 break; 4298 4299 default: 4300 llvm_unreachable("Improper first standard conversion"); 4301 } 4302 4303 // Perform the second implicit conversion 4304 switch (SCS.Second) { 4305 case ICK_Identity: 4306 // C++ [except.spec]p5: 4307 // [For] assignment to and initialization of pointers to functions, 4308 // pointers to member functions, and references to functions: the 4309 // target entity shall allow at least the exceptions allowed by the 4310 // source value in the assignment or initialization. 4311 switch (Action) { 4312 case AA_Assigning: 4313 case AA_Initializing: 4314 // Note, function argument passing and returning are initialization. 4315 case AA_Passing: 4316 case AA_Returning: 4317 case AA_Sending: 4318 case AA_Passing_CFAudited: 4319 if (CheckExceptionSpecCompatibility(From, ToType)) 4320 return ExprError(); 4321 break; 4322 4323 case AA_Casting: 4324 case AA_Converting: 4325 // Casts and implicit conversions are not initialization, so are not 4326 // checked for exception specification mismatches. 4327 break; 4328 } 4329 // Nothing else to do. 4330 break; 4331 4332 case ICK_Integral_Promotion: 4333 case ICK_Integral_Conversion: 4334 if (ToType->isBooleanType()) { 4335 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() && 4336 SCS.Second == ICK_Integral_Promotion && 4337 "only enums with fixed underlying type can promote to bool"); 4338 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, VK_PRValue, 4339 /*BasePath=*/nullptr, CCK) 4340 .get(); 4341 } else { 4342 From = ImpCastExprToType(From, ToType, CK_IntegralCast, VK_PRValue, 4343 /*BasePath=*/nullptr, CCK) 4344 .get(); 4345 } 4346 break; 4347 4348 case ICK_Floating_Promotion: 4349 case ICK_Floating_Conversion: 4350 From = ImpCastExprToType(From, ToType, CK_FloatingCast, VK_PRValue, 4351 /*BasePath=*/nullptr, CCK) 4352 .get(); 4353 break; 4354 4355 case ICK_Complex_Promotion: 4356 case ICK_Complex_Conversion: { 4357 QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType(); 4358 QualType ToEl = ToType->castAs<ComplexType>()->getElementType(); 4359 CastKind CK; 4360 if (FromEl->isRealFloatingType()) { 4361 if (ToEl->isRealFloatingType()) 4362 CK = CK_FloatingComplexCast; 4363 else 4364 CK = CK_FloatingComplexToIntegralComplex; 4365 } else if (ToEl->isRealFloatingType()) { 4366 CK = CK_IntegralComplexToFloatingComplex; 4367 } else { 4368 CK = CK_IntegralComplexCast; 4369 } 4370 From = ImpCastExprToType(From, ToType, CK, VK_PRValue, /*BasePath=*/nullptr, 4371 CCK) 4372 .get(); 4373 break; 4374 } 4375 4376 case ICK_Floating_Integral: 4377 if (ToType->isRealFloatingType()) 4378 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, VK_PRValue, 4379 /*BasePath=*/nullptr, CCK) 4380 .get(); 4381 else 4382 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, VK_PRValue, 4383 /*BasePath=*/nullptr, CCK) 4384 .get(); 4385 break; 4386 4387 case ICK_Compatible_Conversion: 4388 From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(), 4389 /*BasePath=*/nullptr, CCK).get(); 4390 break; 4391 4392 case ICK_Writeback_Conversion: 4393 case ICK_Pointer_Conversion: { 4394 if (SCS.IncompatibleObjC && Action != AA_Casting) { 4395 // Diagnose incompatible Objective-C conversions 4396 if (Action == AA_Initializing || Action == AA_Assigning) 4397 Diag(From->getBeginLoc(), 4398 diag::ext_typecheck_convert_incompatible_pointer) 4399 << ToType << From->getType() << Action << From->getSourceRange() 4400 << 0; 4401 else 4402 Diag(From->getBeginLoc(), 4403 diag::ext_typecheck_convert_incompatible_pointer) 4404 << From->getType() << ToType << Action << From->getSourceRange() 4405 << 0; 4406 4407 if (From->getType()->isObjCObjectPointerType() && 4408 ToType->isObjCObjectPointerType()) 4409 EmitRelatedResultTypeNote(From); 4410 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && 4411 !CheckObjCARCUnavailableWeakConversion(ToType, 4412 From->getType())) { 4413 if (Action == AA_Initializing) 4414 Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign); 4415 else 4416 Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable) 4417 << (Action == AA_Casting) << From->getType() << ToType 4418 << From->getSourceRange(); 4419 } 4420 4421 // Defer address space conversion to the third conversion. 4422 QualType FromPteeType = From->getType()->getPointeeType(); 4423 QualType ToPteeType = ToType->getPointeeType(); 4424 QualType NewToType = ToType; 4425 if (!FromPteeType.isNull() && !ToPteeType.isNull() && 4426 FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) { 4427 NewToType = Context.removeAddrSpaceQualType(ToPteeType); 4428 NewToType = Context.getAddrSpaceQualType(NewToType, 4429 FromPteeType.getAddressSpace()); 4430 if (ToType->isObjCObjectPointerType()) 4431 NewToType = Context.getObjCObjectPointerType(NewToType); 4432 else if (ToType->isBlockPointerType()) 4433 NewToType = Context.getBlockPointerType(NewToType); 4434 else 4435 NewToType = Context.getPointerType(NewToType); 4436 } 4437 4438 CastKind Kind; 4439 CXXCastPath BasePath; 4440 if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle)) 4441 return ExprError(); 4442 4443 // Make sure we extend blocks if necessary. 4444 // FIXME: doing this here is really ugly. 4445 if (Kind == CK_BlockPointerToObjCPointerCast) { 4446 ExprResult E = From; 4447 (void) PrepareCastToObjCObjectPointer(E); 4448 From = E.get(); 4449 } 4450 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()) 4451 CheckObjCConversion(SourceRange(), NewToType, From, CCK); 4452 From = ImpCastExprToType(From, NewToType, Kind, VK_PRValue, &BasePath, CCK) 4453 .get(); 4454 break; 4455 } 4456 4457 case ICK_Pointer_Member: { 4458 CastKind Kind; 4459 CXXCastPath BasePath; 4460 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle)) 4461 return ExprError(); 4462 if (CheckExceptionSpecCompatibility(From, ToType)) 4463 return ExprError(); 4464 4465 // We may not have been able to figure out what this member pointer resolved 4466 // to up until this exact point. Attempt to lock-in it's inheritance model. 4467 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4468 (void)isCompleteType(From->getExprLoc(), From->getType()); 4469 (void)isCompleteType(From->getExprLoc(), ToType); 4470 } 4471 4472 From = 4473 ImpCastExprToType(From, ToType, Kind, VK_PRValue, &BasePath, CCK).get(); 4474 break; 4475 } 4476 4477 case ICK_Boolean_Conversion: 4478 // Perform half-to-boolean conversion via float. 4479 if (From->getType()->isHalfType()) { 4480 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get(); 4481 FromType = Context.FloatTy; 4482 } 4483 4484 From = ImpCastExprToType(From, Context.BoolTy, 4485 ScalarTypeToBooleanCastKind(FromType), VK_PRValue, 4486 /*BasePath=*/nullptr, CCK) 4487 .get(); 4488 break; 4489 4490 case ICK_Derived_To_Base: { 4491 CXXCastPath BasePath; 4492 if (CheckDerivedToBaseConversion( 4493 From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(), 4494 From->getSourceRange(), &BasePath, CStyle)) 4495 return ExprError(); 4496 4497 From = ImpCastExprToType(From, ToType.getNonReferenceType(), 4498 CK_DerivedToBase, From->getValueKind(), 4499 &BasePath, CCK).get(); 4500 break; 4501 } 4502 4503 case ICK_Vector_Conversion: 4504 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue, 4505 /*BasePath=*/nullptr, CCK) 4506 .get(); 4507 break; 4508 4509 case ICK_SVE_Vector_Conversion: 4510 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue, 4511 /*BasePath=*/nullptr, CCK) 4512 .get(); 4513 break; 4514 4515 case ICK_Vector_Splat: { 4516 // Vector splat from any arithmetic type to a vector. 4517 Expr *Elem = prepareVectorSplat(ToType, From).get(); 4518 From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue, 4519 /*BasePath=*/nullptr, CCK) 4520 .get(); 4521 break; 4522 } 4523 4524 case ICK_Complex_Real: 4525 // Case 1. x -> _Complex y 4526 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) { 4527 QualType ElType = ToComplex->getElementType(); 4528 bool isFloatingComplex = ElType->isRealFloatingType(); 4529 4530 // x -> y 4531 if (Context.hasSameUnqualifiedType(ElType, From->getType())) { 4532 // do nothing 4533 } else if (From->getType()->isRealFloatingType()) { 4534 From = ImpCastExprToType(From, ElType, 4535 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get(); 4536 } else { 4537 assert(From->getType()->isIntegerType()); 4538 From = ImpCastExprToType(From, ElType, 4539 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get(); 4540 } 4541 // y -> _Complex y 4542 From = ImpCastExprToType(From, ToType, 4543 isFloatingComplex ? CK_FloatingRealToComplex 4544 : CK_IntegralRealToComplex).get(); 4545 4546 // Case 2. _Complex x -> y 4547 } else { 4548 auto *FromComplex = From->getType()->castAs<ComplexType>(); 4549 QualType ElType = FromComplex->getElementType(); 4550 bool isFloatingComplex = ElType->isRealFloatingType(); 4551 4552 // _Complex x -> x 4553 From = ImpCastExprToType(From, ElType, 4554 isFloatingComplex ? CK_FloatingComplexToReal 4555 : CK_IntegralComplexToReal, 4556 VK_PRValue, /*BasePath=*/nullptr, CCK) 4557 .get(); 4558 4559 // x -> y 4560 if (Context.hasSameUnqualifiedType(ElType, ToType)) { 4561 // do nothing 4562 } else if (ToType->isRealFloatingType()) { 4563 From = ImpCastExprToType(From, ToType, 4564 isFloatingComplex ? CK_FloatingCast 4565 : CK_IntegralToFloating, 4566 VK_PRValue, /*BasePath=*/nullptr, CCK) 4567 .get(); 4568 } else { 4569 assert(ToType->isIntegerType()); 4570 From = ImpCastExprToType(From, ToType, 4571 isFloatingComplex ? CK_FloatingToIntegral 4572 : CK_IntegralCast, 4573 VK_PRValue, /*BasePath=*/nullptr, CCK) 4574 .get(); 4575 } 4576 } 4577 break; 4578 4579 case ICK_Block_Pointer_Conversion: { 4580 LangAS AddrSpaceL = 4581 ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); 4582 LangAS AddrSpaceR = 4583 FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); 4584 assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && 4585 "Invalid cast"); 4586 CastKind Kind = 4587 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast; 4588 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind, 4589 VK_PRValue, /*BasePath=*/nullptr, CCK) 4590 .get(); 4591 break; 4592 } 4593 4594 case ICK_TransparentUnionConversion: { 4595 ExprResult FromRes = From; 4596 Sema::AssignConvertType ConvTy = 4597 CheckTransparentUnionArgumentConstraints(ToType, FromRes); 4598 if (FromRes.isInvalid()) 4599 return ExprError(); 4600 From = FromRes.get(); 4601 assert ((ConvTy == Sema::Compatible) && 4602 "Improper transparent union conversion"); 4603 (void)ConvTy; 4604 break; 4605 } 4606 4607 case ICK_Zero_Event_Conversion: 4608 case ICK_Zero_Queue_Conversion: 4609 From = ImpCastExprToType(From, ToType, 4610 CK_ZeroToOCLOpaqueType, 4611 From->getValueKind()).get(); 4612 break; 4613 4614 case ICK_Lvalue_To_Rvalue: 4615 case ICK_Array_To_Pointer: 4616 case ICK_Function_To_Pointer: 4617 case ICK_Function_Conversion: 4618 case ICK_Qualification: 4619 case ICK_Num_Conversion_Kinds: 4620 case ICK_C_Only_Conversion: 4621 case ICK_Incompatible_Pointer_Conversion: 4622 llvm_unreachable("Improper second standard conversion"); 4623 } 4624 4625 switch (SCS.Third) { 4626 case ICK_Identity: 4627 // Nothing to do. 4628 break; 4629 4630 case ICK_Function_Conversion: 4631 // If both sides are functions (or pointers/references to them), there could 4632 // be incompatible exception declarations. 4633 if (CheckExceptionSpecCompatibility(From, ToType)) 4634 return ExprError(); 4635 4636 From = ImpCastExprToType(From, ToType, CK_NoOp, VK_PRValue, 4637 /*BasePath=*/nullptr, CCK) 4638 .get(); 4639 break; 4640 4641 case ICK_Qualification: { 4642 ExprValueKind VK = From->getValueKind(); 4643 CastKind CK = CK_NoOp; 4644 4645 if (ToType->isReferenceType() && 4646 ToType->getPointeeType().getAddressSpace() != 4647 From->getType().getAddressSpace()) 4648 CK = CK_AddressSpaceConversion; 4649 4650 if (ToType->isPointerType() && 4651 ToType->getPointeeType().getAddressSpace() != 4652 From->getType()->getPointeeType().getAddressSpace()) 4653 CK = CK_AddressSpaceConversion; 4654 4655 if (!isCast(CCK) && 4656 !ToType->getPointeeType().getQualifiers().hasUnaligned() && 4657 From->getType()->getPointeeType().getQualifiers().hasUnaligned()) { 4658 Diag(From->getBeginLoc(), diag::warn_imp_cast_drops_unaligned) 4659 << InitialFromType << ToType; 4660 } 4661 4662 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK, 4663 /*BasePath=*/nullptr, CCK) 4664 .get(); 4665 4666 if (SCS.DeprecatedStringLiteralToCharPtr && 4667 !getLangOpts().WritableStrings) { 4668 Diag(From->getBeginLoc(), 4669 getLangOpts().CPlusPlus11 4670 ? diag::ext_deprecated_string_literal_conversion 4671 : diag::warn_deprecated_string_literal_conversion) 4672 << ToType.getNonReferenceType(); 4673 } 4674 4675 break; 4676 } 4677 4678 default: 4679 llvm_unreachable("Improper third standard conversion"); 4680 } 4681 4682 // If this conversion sequence involved a scalar -> atomic conversion, perform 4683 // that conversion now. 4684 if (!ToAtomicType.isNull()) { 4685 assert(Context.hasSameType( 4686 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())); 4687 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic, 4688 VK_PRValue, nullptr, CCK) 4689 .get(); 4690 } 4691 4692 // Materialize a temporary if we're implicitly converting to a reference 4693 // type. This is not required by the C++ rules but is necessary to maintain 4694 // AST invariants. 4695 if (ToType->isReferenceType() && From->isPRValue()) { 4696 ExprResult Res = TemporaryMaterializationConversion(From); 4697 if (Res.isInvalid()) 4698 return ExprError(); 4699 From = Res.get(); 4700 } 4701 4702 // If this conversion sequence succeeded and involved implicitly converting a 4703 // _Nullable type to a _Nonnull one, complain. 4704 if (!isCast(CCK)) 4705 diagnoseNullableToNonnullConversion(ToType, InitialFromType, 4706 From->getBeginLoc()); 4707 4708 return From; 4709 } 4710 4711 /// Check the completeness of a type in a unary type trait. 4712 /// 4713 /// If the particular type trait requires a complete type, tries to complete 4714 /// it. If completing the type fails, a diagnostic is emitted and false 4715 /// returned. If completing the type succeeds or no completion was required, 4716 /// returns true. 4717 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT, 4718 SourceLocation Loc, 4719 QualType ArgTy) { 4720 // C++0x [meta.unary.prop]p3: 4721 // For all of the class templates X declared in this Clause, instantiating 4722 // that template with a template argument that is a class template 4723 // specialization may result in the implicit instantiation of the template 4724 // argument if and only if the semantics of X require that the argument 4725 // must be a complete type. 4726 // We apply this rule to all the type trait expressions used to implement 4727 // these class templates. We also try to follow any GCC documented behavior 4728 // in these expressions to ensure portability of standard libraries. 4729 switch (UTT) { 4730 default: llvm_unreachable("not a UTT"); 4731 // is_complete_type somewhat obviously cannot require a complete type. 4732 case UTT_IsCompleteType: 4733 // Fall-through 4734 4735 // These traits are modeled on the type predicates in C++0x 4736 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as 4737 // requiring a complete type, as whether or not they return true cannot be 4738 // impacted by the completeness of the type. 4739 case UTT_IsVoid: 4740 case UTT_IsIntegral: 4741 case UTT_IsFloatingPoint: 4742 case UTT_IsArray: 4743 case UTT_IsPointer: 4744 case UTT_IsLvalueReference: 4745 case UTT_IsRvalueReference: 4746 case UTT_IsMemberFunctionPointer: 4747 case UTT_IsMemberObjectPointer: 4748 case UTT_IsEnum: 4749 case UTT_IsUnion: 4750 case UTT_IsClass: 4751 case UTT_IsFunction: 4752 case UTT_IsReference: 4753 case UTT_IsArithmetic: 4754 case UTT_IsFundamental: 4755 case UTT_IsObject: 4756 case UTT_IsScalar: 4757 case UTT_IsCompound: 4758 case UTT_IsMemberPointer: 4759 // Fall-through 4760 4761 // These traits are modeled on type predicates in C++0x [meta.unary.prop] 4762 // which requires some of its traits to have the complete type. However, 4763 // the completeness of the type cannot impact these traits' semantics, and 4764 // so they don't require it. This matches the comments on these traits in 4765 // Table 49. 4766 case UTT_IsConst: 4767 case UTT_IsVolatile: 4768 case UTT_IsSigned: 4769 case UTT_IsUnsigned: 4770 4771 // This type trait always returns false, checking the type is moot. 4772 case UTT_IsInterfaceClass: 4773 return true; 4774 4775 // C++14 [meta.unary.prop]: 4776 // If T is a non-union class type, T shall be a complete type. 4777 case UTT_IsEmpty: 4778 case UTT_IsPolymorphic: 4779 case UTT_IsAbstract: 4780 if (const auto *RD = ArgTy->getAsCXXRecordDecl()) 4781 if (!RD->isUnion()) 4782 return !S.RequireCompleteType( 4783 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4784 return true; 4785 4786 // C++14 [meta.unary.prop]: 4787 // If T is a class type, T shall be a complete type. 4788 case UTT_IsFinal: 4789 case UTT_IsSealed: 4790 if (ArgTy->getAsCXXRecordDecl()) 4791 return !S.RequireCompleteType( 4792 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4793 return true; 4794 4795 // C++1z [meta.unary.prop]: 4796 // remove_all_extents_t<T> shall be a complete type or cv void. 4797 case UTT_IsAggregate: 4798 case UTT_IsTrivial: 4799 case UTT_IsTriviallyCopyable: 4800 case UTT_IsStandardLayout: 4801 case UTT_IsPOD: 4802 case UTT_IsLiteral: 4803 // By analogy, is_trivially_relocatable imposes the same constraints. 4804 case UTT_IsTriviallyRelocatable: 4805 // Per the GCC type traits documentation, T shall be a complete type, cv void, 4806 // or an array of unknown bound. But GCC actually imposes the same constraints 4807 // as above. 4808 case UTT_HasNothrowAssign: 4809 case UTT_HasNothrowMoveAssign: 4810 case UTT_HasNothrowConstructor: 4811 case UTT_HasNothrowCopy: 4812 case UTT_HasTrivialAssign: 4813 case UTT_HasTrivialMoveAssign: 4814 case UTT_HasTrivialDefaultConstructor: 4815 case UTT_HasTrivialMoveConstructor: 4816 case UTT_HasTrivialCopy: 4817 case UTT_HasTrivialDestructor: 4818 case UTT_HasVirtualDestructor: 4819 ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0); 4820 LLVM_FALLTHROUGH; 4821 4822 // C++1z [meta.unary.prop]: 4823 // T shall be a complete type, cv void, or an array of unknown bound. 4824 case UTT_IsDestructible: 4825 case UTT_IsNothrowDestructible: 4826 case UTT_IsTriviallyDestructible: 4827 case UTT_HasUniqueObjectRepresentations: 4828 if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType()) 4829 return true; 4830 4831 return !S.RequireCompleteType( 4832 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4833 } 4834 } 4835 4836 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op, 4837 Sema &Self, SourceLocation KeyLoc, ASTContext &C, 4838 bool (CXXRecordDecl::*HasTrivial)() const, 4839 bool (CXXRecordDecl::*HasNonTrivial)() const, 4840 bool (CXXMethodDecl::*IsDesiredOp)() const) 4841 { 4842 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 4843 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)()) 4844 return true; 4845 4846 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op); 4847 DeclarationNameInfo NameInfo(Name, KeyLoc); 4848 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName); 4849 if (Self.LookupQualifiedName(Res, RD)) { 4850 bool FoundOperator = false; 4851 Res.suppressDiagnostics(); 4852 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end(); 4853 Op != OpEnd; ++Op) { 4854 if (isa<FunctionTemplateDecl>(*Op)) 4855 continue; 4856 4857 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op); 4858 if((Operator->*IsDesiredOp)()) { 4859 FoundOperator = true; 4860 auto *CPT = Operator->getType()->castAs<FunctionProtoType>(); 4861 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 4862 if (!CPT || !CPT->isNothrow()) 4863 return false; 4864 } 4865 } 4866 return FoundOperator; 4867 } 4868 return false; 4869 } 4870 4871 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT, 4872 SourceLocation KeyLoc, QualType T) { 4873 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); 4874 4875 ASTContext &C = Self.Context; 4876 switch(UTT) { 4877 default: llvm_unreachable("not a UTT"); 4878 // Type trait expressions corresponding to the primary type category 4879 // predicates in C++0x [meta.unary.cat]. 4880 case UTT_IsVoid: 4881 return T->isVoidType(); 4882 case UTT_IsIntegral: 4883 return T->isIntegralType(C); 4884 case UTT_IsFloatingPoint: 4885 return T->isFloatingType(); 4886 case UTT_IsArray: 4887 return T->isArrayType(); 4888 case UTT_IsPointer: 4889 return T->isAnyPointerType(); 4890 case UTT_IsLvalueReference: 4891 return T->isLValueReferenceType(); 4892 case UTT_IsRvalueReference: 4893 return T->isRValueReferenceType(); 4894 case UTT_IsMemberFunctionPointer: 4895 return T->isMemberFunctionPointerType(); 4896 case UTT_IsMemberObjectPointer: 4897 return T->isMemberDataPointerType(); 4898 case UTT_IsEnum: 4899 return T->isEnumeralType(); 4900 case UTT_IsUnion: 4901 return T->isUnionType(); 4902 case UTT_IsClass: 4903 return T->isClassType() || T->isStructureType() || T->isInterfaceType(); 4904 case UTT_IsFunction: 4905 return T->isFunctionType(); 4906 4907 // Type trait expressions which correspond to the convenient composition 4908 // predicates in C++0x [meta.unary.comp]. 4909 case UTT_IsReference: 4910 return T->isReferenceType(); 4911 case UTT_IsArithmetic: 4912 return T->isArithmeticType() && !T->isEnumeralType(); 4913 case UTT_IsFundamental: 4914 return T->isFundamentalType(); 4915 case UTT_IsObject: 4916 return T->isObjectType(); 4917 case UTT_IsScalar: 4918 // Note: semantic analysis depends on Objective-C lifetime types to be 4919 // considered scalar types. However, such types do not actually behave 4920 // like scalar types at run time (since they may require retain/release 4921 // operations), so we report them as non-scalar. 4922 if (T->isObjCLifetimeType()) { 4923 switch (T.getObjCLifetime()) { 4924 case Qualifiers::OCL_None: 4925 case Qualifiers::OCL_ExplicitNone: 4926 return true; 4927 4928 case Qualifiers::OCL_Strong: 4929 case Qualifiers::OCL_Weak: 4930 case Qualifiers::OCL_Autoreleasing: 4931 return false; 4932 } 4933 } 4934 4935 return T->isScalarType(); 4936 case UTT_IsCompound: 4937 return T->isCompoundType(); 4938 case UTT_IsMemberPointer: 4939 return T->isMemberPointerType(); 4940 4941 // Type trait expressions which correspond to the type property predicates 4942 // in C++0x [meta.unary.prop]. 4943 case UTT_IsConst: 4944 return T.isConstQualified(); 4945 case UTT_IsVolatile: 4946 return T.isVolatileQualified(); 4947 case UTT_IsTrivial: 4948 return T.isTrivialType(C); 4949 case UTT_IsTriviallyCopyable: 4950 return T.isTriviallyCopyableType(C); 4951 case UTT_IsStandardLayout: 4952 return T->isStandardLayoutType(); 4953 case UTT_IsPOD: 4954 return T.isPODType(C); 4955 case UTT_IsLiteral: 4956 return T->isLiteralType(C); 4957 case UTT_IsEmpty: 4958 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4959 return !RD->isUnion() && RD->isEmpty(); 4960 return false; 4961 case UTT_IsPolymorphic: 4962 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4963 return !RD->isUnion() && RD->isPolymorphic(); 4964 return false; 4965 case UTT_IsAbstract: 4966 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4967 return !RD->isUnion() && RD->isAbstract(); 4968 return false; 4969 case UTT_IsAggregate: 4970 // Report vector extensions and complex types as aggregates because they 4971 // support aggregate initialization. GCC mirrors this behavior for vectors 4972 // but not _Complex. 4973 return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() || 4974 T->isAnyComplexType(); 4975 // __is_interface_class only returns true when CL is invoked in /CLR mode and 4976 // even then only when it is used with the 'interface struct ...' syntax 4977 // Clang doesn't support /CLR which makes this type trait moot. 4978 case UTT_IsInterfaceClass: 4979 return false; 4980 case UTT_IsFinal: 4981 case UTT_IsSealed: 4982 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4983 return RD->hasAttr<FinalAttr>(); 4984 return false; 4985 case UTT_IsSigned: 4986 // Enum types should always return false. 4987 // Floating points should always return true. 4988 return T->isFloatingType() || 4989 (T->isSignedIntegerType() && !T->isEnumeralType()); 4990 case UTT_IsUnsigned: 4991 // Enum types should always return false. 4992 return T->isUnsignedIntegerType() && !T->isEnumeralType(); 4993 4994 // Type trait expressions which query classes regarding their construction, 4995 // destruction, and copying. Rather than being based directly on the 4996 // related type predicates in the standard, they are specified by both 4997 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those 4998 // specifications. 4999 // 5000 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html 5001 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 5002 // 5003 // Note that these builtins do not behave as documented in g++: if a class 5004 // has both a trivial and a non-trivial special member of a particular kind, 5005 // they return false! For now, we emulate this behavior. 5006 // FIXME: This appears to be a g++ bug: more complex cases reveal that it 5007 // does not correctly compute triviality in the presence of multiple special 5008 // members of the same kind. Revisit this once the g++ bug is fixed. 5009 case UTT_HasTrivialDefaultConstructor: 5010 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5011 // If __is_pod (type) is true then the trait is true, else if type is 5012 // a cv class or union type (or array thereof) with a trivial default 5013 // constructor ([class.ctor]) then the trait is true, else it is false. 5014 if (T.isPODType(C)) 5015 return true; 5016 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 5017 return RD->hasTrivialDefaultConstructor() && 5018 !RD->hasNonTrivialDefaultConstructor(); 5019 return false; 5020 case UTT_HasTrivialMoveConstructor: 5021 // This trait is implemented by MSVC 2012 and needed to parse the 5022 // standard library headers. Specifically this is used as the logic 5023 // behind std::is_trivially_move_constructible (20.9.4.3). 5024 if (T.isPODType(C)) 5025 return true; 5026 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 5027 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor(); 5028 return false; 5029 case UTT_HasTrivialCopy: 5030 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5031 // If __is_pod (type) is true or type is a reference type then 5032 // the trait is true, else if type is a cv class or union type 5033 // with a trivial copy constructor ([class.copy]) then the trait 5034 // is true, else it is false. 5035 if (T.isPODType(C) || T->isReferenceType()) 5036 return true; 5037 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5038 return RD->hasTrivialCopyConstructor() && 5039 !RD->hasNonTrivialCopyConstructor(); 5040 return false; 5041 case UTT_HasTrivialMoveAssign: 5042 // This trait is implemented by MSVC 2012 and needed to parse the 5043 // standard library headers. Specifically it is used as the logic 5044 // behind std::is_trivially_move_assignable (20.9.4.3) 5045 if (T.isPODType(C)) 5046 return true; 5047 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 5048 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment(); 5049 return false; 5050 case UTT_HasTrivialAssign: 5051 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5052 // If type is const qualified or is a reference type then the 5053 // trait is false. Otherwise if __is_pod (type) is true then the 5054 // trait is true, else if type is a cv class or union type with 5055 // a trivial copy assignment ([class.copy]) then the trait is 5056 // true, else it is false. 5057 // Note: the const and reference restrictions are interesting, 5058 // given that const and reference members don't prevent a class 5059 // from having a trivial copy assignment operator (but do cause 5060 // errors if the copy assignment operator is actually used, q.v. 5061 // [class.copy]p12). 5062 5063 if (T.isConstQualified()) 5064 return false; 5065 if (T.isPODType(C)) 5066 return true; 5067 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5068 return RD->hasTrivialCopyAssignment() && 5069 !RD->hasNonTrivialCopyAssignment(); 5070 return false; 5071 case UTT_IsDestructible: 5072 case UTT_IsTriviallyDestructible: 5073 case UTT_IsNothrowDestructible: 5074 // C++14 [meta.unary.prop]: 5075 // For reference types, is_destructible<T>::value is true. 5076 if (T->isReferenceType()) 5077 return true; 5078 5079 // Objective-C++ ARC: autorelease types don't require destruction. 5080 if (T->isObjCLifetimeType() && 5081 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 5082 return true; 5083 5084 // C++14 [meta.unary.prop]: 5085 // For incomplete types and function types, is_destructible<T>::value is 5086 // false. 5087 if (T->isIncompleteType() || T->isFunctionType()) 5088 return false; 5089 5090 // A type that requires destruction (via a non-trivial destructor or ARC 5091 // lifetime semantics) is not trivially-destructible. 5092 if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType()) 5093 return false; 5094 5095 // C++14 [meta.unary.prop]: 5096 // For object types and given U equal to remove_all_extents_t<T>, if the 5097 // expression std::declval<U&>().~U() is well-formed when treated as an 5098 // unevaluated operand (Clause 5), then is_destructible<T>::value is true 5099 if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 5100 CXXDestructorDecl *Destructor = Self.LookupDestructor(RD); 5101 if (!Destructor) 5102 return false; 5103 // C++14 [dcl.fct.def.delete]p2: 5104 // A program that refers to a deleted function implicitly or 5105 // explicitly, other than to declare it, is ill-formed. 5106 if (Destructor->isDeleted()) 5107 return false; 5108 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public) 5109 return false; 5110 if (UTT == UTT_IsNothrowDestructible) { 5111 auto *CPT = Destructor->getType()->castAs<FunctionProtoType>(); 5112 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5113 if (!CPT || !CPT->isNothrow()) 5114 return false; 5115 } 5116 } 5117 return true; 5118 5119 case UTT_HasTrivialDestructor: 5120 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 5121 // If __is_pod (type) is true or type is a reference type 5122 // then the trait is true, else if type is a cv class or union 5123 // type (or array thereof) with a trivial destructor 5124 // ([class.dtor]) then the trait is true, else it is 5125 // false. 5126 if (T.isPODType(C) || T->isReferenceType()) 5127 return true; 5128 5129 // Objective-C++ ARC: autorelease types don't require destruction. 5130 if (T->isObjCLifetimeType() && 5131 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 5132 return true; 5133 5134 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 5135 return RD->hasTrivialDestructor(); 5136 return false; 5137 // TODO: Propagate nothrowness for implicitly declared special members. 5138 case UTT_HasNothrowAssign: 5139 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5140 // If type is const qualified or is a reference type then the 5141 // trait is false. Otherwise if __has_trivial_assign (type) 5142 // is true then the trait is true, else if type is a cv class 5143 // or union type with copy assignment operators that are known 5144 // not to throw an exception then the trait is true, else it is 5145 // false. 5146 if (C.getBaseElementType(T).isConstQualified()) 5147 return false; 5148 if (T->isReferenceType()) 5149 return false; 5150 if (T.isPODType(C) || T->isObjCLifetimeType()) 5151 return true; 5152 5153 if (const RecordType *RT = T->getAs<RecordType>()) 5154 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 5155 &CXXRecordDecl::hasTrivialCopyAssignment, 5156 &CXXRecordDecl::hasNonTrivialCopyAssignment, 5157 &CXXMethodDecl::isCopyAssignmentOperator); 5158 return false; 5159 case UTT_HasNothrowMoveAssign: 5160 // This trait is implemented by MSVC 2012 and needed to parse the 5161 // standard library headers. Specifically this is used as the logic 5162 // behind std::is_nothrow_move_assignable (20.9.4.3). 5163 if (T.isPODType(C)) 5164 return true; 5165 5166 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) 5167 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 5168 &CXXRecordDecl::hasTrivialMoveAssignment, 5169 &CXXRecordDecl::hasNonTrivialMoveAssignment, 5170 &CXXMethodDecl::isMoveAssignmentOperator); 5171 return false; 5172 case UTT_HasNothrowCopy: 5173 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5174 // If __has_trivial_copy (type) is true then the trait is true, else 5175 // if type is a cv class or union type with copy constructors that are 5176 // known not to throw an exception then the trait is true, else it is 5177 // false. 5178 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType()) 5179 return true; 5180 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { 5181 if (RD->hasTrivialCopyConstructor() && 5182 !RD->hasNonTrivialCopyConstructor()) 5183 return true; 5184 5185 bool FoundConstructor = false; 5186 unsigned FoundTQs; 5187 for (const auto *ND : Self.LookupConstructors(RD)) { 5188 // A template constructor is never a copy constructor. 5189 // FIXME: However, it may actually be selected at the actual overload 5190 // resolution point. 5191 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) 5192 continue; 5193 // UsingDecl itself is not a constructor 5194 if (isa<UsingDecl>(ND)) 5195 continue; 5196 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); 5197 if (Constructor->isCopyConstructor(FoundTQs)) { 5198 FoundConstructor = true; 5199 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); 5200 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5201 if (!CPT) 5202 return false; 5203 // TODO: check whether evaluating default arguments can throw. 5204 // For now, we'll be conservative and assume that they can throw. 5205 if (!CPT->isNothrow() || CPT->getNumParams() > 1) 5206 return false; 5207 } 5208 } 5209 5210 return FoundConstructor; 5211 } 5212 return false; 5213 case UTT_HasNothrowConstructor: 5214 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 5215 // If __has_trivial_constructor (type) is true then the trait is 5216 // true, else if type is a cv class or union type (or array 5217 // thereof) with a default constructor that is known not to 5218 // throw an exception then the trait is true, else it is false. 5219 if (T.isPODType(C) || T->isObjCLifetimeType()) 5220 return true; 5221 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 5222 if (RD->hasTrivialDefaultConstructor() && 5223 !RD->hasNonTrivialDefaultConstructor()) 5224 return true; 5225 5226 bool FoundConstructor = false; 5227 for (const auto *ND : Self.LookupConstructors(RD)) { 5228 // FIXME: In C++0x, a constructor template can be a default constructor. 5229 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) 5230 continue; 5231 // UsingDecl itself is not a constructor 5232 if (isa<UsingDecl>(ND)) 5233 continue; 5234 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); 5235 if (Constructor->isDefaultConstructor()) { 5236 FoundConstructor = true; 5237 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); 5238 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5239 if (!CPT) 5240 return false; 5241 // FIXME: check whether evaluating default arguments can throw. 5242 // For now, we'll be conservative and assume that they can throw. 5243 if (!CPT->isNothrow() || CPT->getNumParams() > 0) 5244 return false; 5245 } 5246 } 5247 return FoundConstructor; 5248 } 5249 return false; 5250 case UTT_HasVirtualDestructor: 5251 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5252 // If type is a class type with a virtual destructor ([class.dtor]) 5253 // then the trait is true, else it is false. 5254 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5255 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD)) 5256 return Destructor->isVirtual(); 5257 return false; 5258 5259 // These type trait expressions are modeled on the specifications for the 5260 // Embarcadero C++0x type trait functions: 5261 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 5262 case UTT_IsCompleteType: 5263 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_): 5264 // Returns True if and only if T is a complete type at the point of the 5265 // function call. 5266 return !T->isIncompleteType(); 5267 case UTT_HasUniqueObjectRepresentations: 5268 return C.hasUniqueObjectRepresentations(T); 5269 case UTT_IsTriviallyRelocatable: 5270 return T.isTriviallyRelocatableType(C); 5271 } 5272 } 5273 5274 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 5275 QualType RhsT, SourceLocation KeyLoc); 5276 5277 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc, 5278 ArrayRef<TypeSourceInfo *> Args, 5279 SourceLocation RParenLoc) { 5280 if (Kind <= UTT_Last) 5281 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType()); 5282 5283 // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible 5284 // traits to avoid duplication. 5285 if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary) 5286 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(), 5287 Args[1]->getType(), RParenLoc); 5288 5289 switch (Kind) { 5290 case clang::BTT_ReferenceBindsToTemporary: 5291 case clang::TT_IsConstructible: 5292 case clang::TT_IsNothrowConstructible: 5293 case clang::TT_IsTriviallyConstructible: { 5294 // C++11 [meta.unary.prop]: 5295 // is_trivially_constructible is defined as: 5296 // 5297 // is_constructible<T, Args...>::value is true and the variable 5298 // definition for is_constructible, as defined below, is known to call 5299 // no operation that is not trivial. 5300 // 5301 // The predicate condition for a template specialization 5302 // is_constructible<T, Args...> shall be satisfied if and only if the 5303 // following variable definition would be well-formed for some invented 5304 // variable t: 5305 // 5306 // T t(create<Args>()...); 5307 assert(!Args.empty()); 5308 5309 // Precondition: T and all types in the parameter pack Args shall be 5310 // complete types, (possibly cv-qualified) void, or arrays of 5311 // unknown bound. 5312 for (const auto *TSI : Args) { 5313 QualType ArgTy = TSI->getType(); 5314 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType()) 5315 continue; 5316 5317 if (S.RequireCompleteType(KWLoc, ArgTy, 5318 diag::err_incomplete_type_used_in_type_trait_expr)) 5319 return false; 5320 } 5321 5322 // Make sure the first argument is not incomplete nor a function type. 5323 QualType T = Args[0]->getType(); 5324 if (T->isIncompleteType() || T->isFunctionType()) 5325 return false; 5326 5327 // Make sure the first argument is not an abstract type. 5328 CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 5329 if (RD && RD->isAbstract()) 5330 return false; 5331 5332 llvm::BumpPtrAllocator OpaqueExprAllocator; 5333 SmallVector<Expr *, 2> ArgExprs; 5334 ArgExprs.reserve(Args.size() - 1); 5335 for (unsigned I = 1, N = Args.size(); I != N; ++I) { 5336 QualType ArgTy = Args[I]->getType(); 5337 if (ArgTy->isObjectType() || ArgTy->isFunctionType()) 5338 ArgTy = S.Context.getRValueReferenceType(ArgTy); 5339 ArgExprs.push_back( 5340 new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>()) 5341 OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(), 5342 ArgTy.getNonLValueExprType(S.Context), 5343 Expr::getValueKindForType(ArgTy))); 5344 } 5345 5346 // Perform the initialization in an unevaluated context within a SFINAE 5347 // trap at translation unit scope. 5348 EnterExpressionEvaluationContext Unevaluated( 5349 S, Sema::ExpressionEvaluationContext::Unevaluated); 5350 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true); 5351 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl()); 5352 InitializedEntity To( 5353 InitializedEntity::InitializeTemporary(S.Context, Args[0])); 5354 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc, 5355 RParenLoc)); 5356 InitializationSequence Init(S, To, InitKind, ArgExprs); 5357 if (Init.Failed()) 5358 return false; 5359 5360 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs); 5361 if (Result.isInvalid() || SFINAE.hasErrorOccurred()) 5362 return false; 5363 5364 if (Kind == clang::TT_IsConstructible) 5365 return true; 5366 5367 if (Kind == clang::BTT_ReferenceBindsToTemporary) { 5368 if (!T->isReferenceType()) 5369 return false; 5370 5371 return !Init.isDirectReferenceBinding(); 5372 } 5373 5374 if (Kind == clang::TT_IsNothrowConstructible) 5375 return S.canThrow(Result.get()) == CT_Cannot; 5376 5377 if (Kind == clang::TT_IsTriviallyConstructible) { 5378 // Under Objective-C ARC and Weak, if the destination has non-trivial 5379 // Objective-C lifetime, this is a non-trivial construction. 5380 if (T.getNonReferenceType().hasNonTrivialObjCLifetime()) 5381 return false; 5382 5383 // The initialization succeeded; now make sure there are no non-trivial 5384 // calls. 5385 return !Result.get()->hasNonTrivialCall(S.Context); 5386 } 5387 5388 llvm_unreachable("unhandled type trait"); 5389 return false; 5390 } 5391 default: llvm_unreachable("not a TT"); 5392 } 5393 5394 return false; 5395 } 5396 5397 namespace { 5398 void DiagnoseBuiltinDeprecation(Sema& S, TypeTrait Kind, 5399 SourceLocation KWLoc) { 5400 TypeTrait Replacement; 5401 switch (Kind) { 5402 case UTT_HasNothrowAssign: 5403 case UTT_HasNothrowMoveAssign: 5404 Replacement = BTT_IsNothrowAssignable; 5405 break; 5406 case UTT_HasNothrowCopy: 5407 case UTT_HasNothrowConstructor: 5408 Replacement = TT_IsNothrowConstructible; 5409 break; 5410 case UTT_HasTrivialAssign: 5411 case UTT_HasTrivialMoveAssign: 5412 Replacement = BTT_IsTriviallyAssignable; 5413 break; 5414 case UTT_HasTrivialCopy: 5415 Replacement = UTT_IsTriviallyCopyable; 5416 break; 5417 case UTT_HasTrivialDefaultConstructor: 5418 case UTT_HasTrivialMoveConstructor: 5419 Replacement = TT_IsTriviallyConstructible; 5420 break; 5421 case UTT_HasTrivialDestructor: 5422 Replacement = UTT_IsTriviallyDestructible; 5423 break; 5424 default: 5425 return; 5426 } 5427 S.Diag(KWLoc, diag::warn_deprecated_builtin) 5428 << getTraitSpelling(Kind) << getTraitSpelling(Replacement); 5429 } 5430 } 5431 5432 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 5433 ArrayRef<TypeSourceInfo *> Args, 5434 SourceLocation RParenLoc) { 5435 QualType ResultType = Context.getLogicalOperationType(); 5436 5437 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness( 5438 *this, Kind, KWLoc, Args[0]->getType())) 5439 return ExprError(); 5440 5441 DiagnoseBuiltinDeprecation(*this, Kind, KWLoc); 5442 5443 bool Dependent = false; 5444 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 5445 if (Args[I]->getType()->isDependentType()) { 5446 Dependent = true; 5447 break; 5448 } 5449 } 5450 5451 bool Result = false; 5452 if (!Dependent) 5453 Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc); 5454 5455 return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args, 5456 RParenLoc, Result); 5457 } 5458 5459 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 5460 ArrayRef<ParsedType> Args, 5461 SourceLocation RParenLoc) { 5462 SmallVector<TypeSourceInfo *, 4> ConvertedArgs; 5463 ConvertedArgs.reserve(Args.size()); 5464 5465 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 5466 TypeSourceInfo *TInfo; 5467 QualType T = GetTypeFromParser(Args[I], &TInfo); 5468 if (!TInfo) 5469 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc); 5470 5471 ConvertedArgs.push_back(TInfo); 5472 } 5473 5474 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc); 5475 } 5476 5477 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 5478 QualType RhsT, SourceLocation KeyLoc) { 5479 assert(!LhsT->isDependentType() && !RhsT->isDependentType() && 5480 "Cannot evaluate traits of dependent types"); 5481 5482 switch(BTT) { 5483 case BTT_IsBaseOf: { 5484 // C++0x [meta.rel]p2 5485 // Base is a base class of Derived without regard to cv-qualifiers or 5486 // Base and Derived are not unions and name the same class type without 5487 // regard to cv-qualifiers. 5488 5489 const RecordType *lhsRecord = LhsT->getAs<RecordType>(); 5490 const RecordType *rhsRecord = RhsT->getAs<RecordType>(); 5491 if (!rhsRecord || !lhsRecord) { 5492 const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>(); 5493 const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>(); 5494 if (!LHSObjTy || !RHSObjTy) 5495 return false; 5496 5497 ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface(); 5498 ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface(); 5499 if (!BaseInterface || !DerivedInterface) 5500 return false; 5501 5502 if (Self.RequireCompleteType( 5503 KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr)) 5504 return false; 5505 5506 return BaseInterface->isSuperClassOf(DerivedInterface); 5507 } 5508 5509 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT) 5510 == (lhsRecord == rhsRecord)); 5511 5512 // Unions are never base classes, and never have base classes. 5513 // It doesn't matter if they are complete or not. See PR#41843 5514 if (lhsRecord && lhsRecord->getDecl()->isUnion()) 5515 return false; 5516 if (rhsRecord && rhsRecord->getDecl()->isUnion()) 5517 return false; 5518 5519 if (lhsRecord == rhsRecord) 5520 return true; 5521 5522 // C++0x [meta.rel]p2: 5523 // If Base and Derived are class types and are different types 5524 // (ignoring possible cv-qualifiers) then Derived shall be a 5525 // complete type. 5526 if (Self.RequireCompleteType(KeyLoc, RhsT, 5527 diag::err_incomplete_type_used_in_type_trait_expr)) 5528 return false; 5529 5530 return cast<CXXRecordDecl>(rhsRecord->getDecl()) 5531 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl())); 5532 } 5533 case BTT_IsSame: 5534 return Self.Context.hasSameType(LhsT, RhsT); 5535 case BTT_TypeCompatible: { 5536 // GCC ignores cv-qualifiers on arrays for this builtin. 5537 Qualifiers LhsQuals, RhsQuals; 5538 QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals); 5539 QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals); 5540 return Self.Context.typesAreCompatible(Lhs, Rhs); 5541 } 5542 case BTT_IsConvertible: 5543 case BTT_IsConvertibleTo: { 5544 // C++0x [meta.rel]p4: 5545 // Given the following function prototype: 5546 // 5547 // template <class T> 5548 // typename add_rvalue_reference<T>::type create(); 5549 // 5550 // the predicate condition for a template specialization 5551 // is_convertible<From, To> shall be satisfied if and only if 5552 // the return expression in the following code would be 5553 // well-formed, including any implicit conversions to the return 5554 // type of the function: 5555 // 5556 // To test() { 5557 // return create<From>(); 5558 // } 5559 // 5560 // Access checking is performed as if in a context unrelated to To and 5561 // From. Only the validity of the immediate context of the expression 5562 // of the return-statement (including conversions to the return type) 5563 // is considered. 5564 // 5565 // We model the initialization as a copy-initialization of a temporary 5566 // of the appropriate type, which for this expression is identical to the 5567 // return statement (since NRVO doesn't apply). 5568 5569 // Functions aren't allowed to return function or array types. 5570 if (RhsT->isFunctionType() || RhsT->isArrayType()) 5571 return false; 5572 5573 // A return statement in a void function must have void type. 5574 if (RhsT->isVoidType()) 5575 return LhsT->isVoidType(); 5576 5577 // A function definition requires a complete, non-abstract return type. 5578 if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT)) 5579 return false; 5580 5581 // Compute the result of add_rvalue_reference. 5582 if (LhsT->isObjectType() || LhsT->isFunctionType()) 5583 LhsT = Self.Context.getRValueReferenceType(LhsT); 5584 5585 // Build a fake source and destination for initialization. 5586 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT)); 5587 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 5588 Expr::getValueKindForType(LhsT)); 5589 Expr *FromPtr = &From; 5590 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc, 5591 SourceLocation())); 5592 5593 // Perform the initialization in an unevaluated context within a SFINAE 5594 // trap at translation unit scope. 5595 EnterExpressionEvaluationContext Unevaluated( 5596 Self, Sema::ExpressionEvaluationContext::Unevaluated); 5597 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 5598 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 5599 InitializationSequence Init(Self, To, Kind, FromPtr); 5600 if (Init.Failed()) 5601 return false; 5602 5603 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr); 5604 return !Result.isInvalid() && !SFINAE.hasErrorOccurred(); 5605 } 5606 5607 case BTT_IsAssignable: 5608 case BTT_IsNothrowAssignable: 5609 case BTT_IsTriviallyAssignable: { 5610 // C++11 [meta.unary.prop]p3: 5611 // is_trivially_assignable is defined as: 5612 // is_assignable<T, U>::value is true and the assignment, as defined by 5613 // is_assignable, is known to call no operation that is not trivial 5614 // 5615 // is_assignable is defined as: 5616 // The expression declval<T>() = declval<U>() is well-formed when 5617 // treated as an unevaluated operand (Clause 5). 5618 // 5619 // For both, T and U shall be complete types, (possibly cv-qualified) 5620 // void, or arrays of unknown bound. 5621 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() && 5622 Self.RequireCompleteType(KeyLoc, LhsT, 5623 diag::err_incomplete_type_used_in_type_trait_expr)) 5624 return false; 5625 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() && 5626 Self.RequireCompleteType(KeyLoc, RhsT, 5627 diag::err_incomplete_type_used_in_type_trait_expr)) 5628 return false; 5629 5630 // cv void is never assignable. 5631 if (LhsT->isVoidType() || RhsT->isVoidType()) 5632 return false; 5633 5634 // Build expressions that emulate the effect of declval<T>() and 5635 // declval<U>(). 5636 if (LhsT->isObjectType() || LhsT->isFunctionType()) 5637 LhsT = Self.Context.getRValueReferenceType(LhsT); 5638 if (RhsT->isObjectType() || RhsT->isFunctionType()) 5639 RhsT = Self.Context.getRValueReferenceType(RhsT); 5640 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 5641 Expr::getValueKindForType(LhsT)); 5642 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context), 5643 Expr::getValueKindForType(RhsT)); 5644 5645 // Attempt the assignment in an unevaluated context within a SFINAE 5646 // trap at translation unit scope. 5647 EnterExpressionEvaluationContext Unevaluated( 5648 Self, Sema::ExpressionEvaluationContext::Unevaluated); 5649 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 5650 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 5651 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs, 5652 &Rhs); 5653 if (Result.isInvalid()) 5654 return false; 5655 5656 // Treat the assignment as unused for the purpose of -Wdeprecated-volatile. 5657 Self.CheckUnusedVolatileAssignment(Result.get()); 5658 5659 if (SFINAE.hasErrorOccurred()) 5660 return false; 5661 5662 if (BTT == BTT_IsAssignable) 5663 return true; 5664 5665 if (BTT == BTT_IsNothrowAssignable) 5666 return Self.canThrow(Result.get()) == CT_Cannot; 5667 5668 if (BTT == BTT_IsTriviallyAssignable) { 5669 // Under Objective-C ARC and Weak, if the destination has non-trivial 5670 // Objective-C lifetime, this is a non-trivial assignment. 5671 if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime()) 5672 return false; 5673 5674 return !Result.get()->hasNonTrivialCall(Self.Context); 5675 } 5676 5677 llvm_unreachable("unhandled type trait"); 5678 return false; 5679 } 5680 default: llvm_unreachable("not a BTT"); 5681 } 5682 llvm_unreachable("Unknown type trait or not implemented"); 5683 } 5684 5685 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT, 5686 SourceLocation KWLoc, 5687 ParsedType Ty, 5688 Expr* DimExpr, 5689 SourceLocation RParen) { 5690 TypeSourceInfo *TSInfo; 5691 QualType T = GetTypeFromParser(Ty, &TSInfo); 5692 if (!TSInfo) 5693 TSInfo = Context.getTrivialTypeSourceInfo(T); 5694 5695 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen); 5696 } 5697 5698 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT, 5699 QualType T, Expr *DimExpr, 5700 SourceLocation KeyLoc) { 5701 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); 5702 5703 switch(ATT) { 5704 case ATT_ArrayRank: 5705 if (T->isArrayType()) { 5706 unsigned Dim = 0; 5707 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 5708 ++Dim; 5709 T = AT->getElementType(); 5710 } 5711 return Dim; 5712 } 5713 return 0; 5714 5715 case ATT_ArrayExtent: { 5716 llvm::APSInt Value; 5717 uint64_t Dim; 5718 if (Self.VerifyIntegerConstantExpression( 5719 DimExpr, &Value, diag::err_dimension_expr_not_constant_integer) 5720 .isInvalid()) 5721 return 0; 5722 if (Value.isSigned() && Value.isNegative()) { 5723 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) 5724 << DimExpr->getSourceRange(); 5725 return 0; 5726 } 5727 Dim = Value.getLimitedValue(); 5728 5729 if (T->isArrayType()) { 5730 unsigned D = 0; 5731 bool Matched = false; 5732 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 5733 if (Dim == D) { 5734 Matched = true; 5735 break; 5736 } 5737 ++D; 5738 T = AT->getElementType(); 5739 } 5740 5741 if (Matched && T->isArrayType()) { 5742 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T)) 5743 return CAT->getSize().getLimitedValue(); 5744 } 5745 } 5746 return 0; 5747 } 5748 } 5749 llvm_unreachable("Unknown type trait or not implemented"); 5750 } 5751 5752 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT, 5753 SourceLocation KWLoc, 5754 TypeSourceInfo *TSInfo, 5755 Expr* DimExpr, 5756 SourceLocation RParen) { 5757 QualType T = TSInfo->getType(); 5758 5759 // FIXME: This should likely be tracked as an APInt to remove any host 5760 // assumptions about the width of size_t on the target. 5761 uint64_t Value = 0; 5762 if (!T->isDependentType()) 5763 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc); 5764 5765 // While the specification for these traits from the Embarcadero C++ 5766 // compiler's documentation says the return type is 'unsigned int', Clang 5767 // returns 'size_t'. On Windows, the primary platform for the Embarcadero 5768 // compiler, there is no difference. On several other platforms this is an 5769 // important distinction. 5770 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr, 5771 RParen, Context.getSizeType()); 5772 } 5773 5774 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET, 5775 SourceLocation KWLoc, 5776 Expr *Queried, 5777 SourceLocation RParen) { 5778 // If error parsing the expression, ignore. 5779 if (!Queried) 5780 return ExprError(); 5781 5782 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen); 5783 5784 return Result; 5785 } 5786 5787 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) { 5788 switch (ET) { 5789 case ET_IsLValueExpr: return E->isLValue(); 5790 case ET_IsRValueExpr: 5791 return E->isPRValue(); 5792 } 5793 llvm_unreachable("Expression trait not covered by switch"); 5794 } 5795 5796 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET, 5797 SourceLocation KWLoc, 5798 Expr *Queried, 5799 SourceLocation RParen) { 5800 if (Queried->isTypeDependent()) { 5801 // Delay type-checking for type-dependent expressions. 5802 } else if (Queried->hasPlaceholderType()) { 5803 ExprResult PE = CheckPlaceholderExpr(Queried); 5804 if (PE.isInvalid()) return ExprError(); 5805 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen); 5806 } 5807 5808 bool Value = EvaluateExpressionTrait(ET, Queried); 5809 5810 return new (Context) 5811 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy); 5812 } 5813 5814 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS, 5815 ExprValueKind &VK, 5816 SourceLocation Loc, 5817 bool isIndirect) { 5818 assert(!LHS.get()->hasPlaceholderType() && !RHS.get()->hasPlaceholderType() && 5819 "placeholders should have been weeded out by now"); 5820 5821 // The LHS undergoes lvalue conversions if this is ->*, and undergoes the 5822 // temporary materialization conversion otherwise. 5823 if (isIndirect) 5824 LHS = DefaultLvalueConversion(LHS.get()); 5825 else if (LHS.get()->isPRValue()) 5826 LHS = TemporaryMaterializationConversion(LHS.get()); 5827 if (LHS.isInvalid()) 5828 return QualType(); 5829 5830 // The RHS always undergoes lvalue conversions. 5831 RHS = DefaultLvalueConversion(RHS.get()); 5832 if (RHS.isInvalid()) return QualType(); 5833 5834 const char *OpSpelling = isIndirect ? "->*" : ".*"; 5835 // C++ 5.5p2 5836 // The binary operator .* [p3: ->*] binds its second operand, which shall 5837 // be of type "pointer to member of T" (where T is a completely-defined 5838 // class type) [...] 5839 QualType RHSType = RHS.get()->getType(); 5840 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>(); 5841 if (!MemPtr) { 5842 Diag(Loc, diag::err_bad_memptr_rhs) 5843 << OpSpelling << RHSType << RHS.get()->getSourceRange(); 5844 return QualType(); 5845 } 5846 5847 QualType Class(MemPtr->getClass(), 0); 5848 5849 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the 5850 // member pointer points must be completely-defined. However, there is no 5851 // reason for this semantic distinction, and the rule is not enforced by 5852 // other compilers. Therefore, we do not check this property, as it is 5853 // likely to be considered a defect. 5854 5855 // C++ 5.5p2 5856 // [...] to its first operand, which shall be of class T or of a class of 5857 // which T is an unambiguous and accessible base class. [p3: a pointer to 5858 // such a class] 5859 QualType LHSType = LHS.get()->getType(); 5860 if (isIndirect) { 5861 if (const PointerType *Ptr = LHSType->getAs<PointerType>()) 5862 LHSType = Ptr->getPointeeType(); 5863 else { 5864 Diag(Loc, diag::err_bad_memptr_lhs) 5865 << OpSpelling << 1 << LHSType 5866 << FixItHint::CreateReplacement(SourceRange(Loc), ".*"); 5867 return QualType(); 5868 } 5869 } 5870 5871 if (!Context.hasSameUnqualifiedType(Class, LHSType)) { 5872 // If we want to check the hierarchy, we need a complete type. 5873 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs, 5874 OpSpelling, (int)isIndirect)) { 5875 return QualType(); 5876 } 5877 5878 if (!IsDerivedFrom(Loc, LHSType, Class)) { 5879 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling 5880 << (int)isIndirect << LHS.get()->getType(); 5881 return QualType(); 5882 } 5883 5884 CXXCastPath BasePath; 5885 if (CheckDerivedToBaseConversion( 5886 LHSType, Class, Loc, 5887 SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()), 5888 &BasePath)) 5889 return QualType(); 5890 5891 // Cast LHS to type of use. 5892 QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers()); 5893 if (isIndirect) 5894 UseType = Context.getPointerType(UseType); 5895 ExprValueKind VK = isIndirect ? VK_PRValue : LHS.get()->getValueKind(); 5896 LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK, 5897 &BasePath); 5898 } 5899 5900 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) { 5901 // Diagnose use of pointer-to-member type which when used as 5902 // the functional cast in a pointer-to-member expression. 5903 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect; 5904 return QualType(); 5905 } 5906 5907 // C++ 5.5p2 5908 // The result is an object or a function of the type specified by the 5909 // second operand. 5910 // The cv qualifiers are the union of those in the pointer and the left side, 5911 // in accordance with 5.5p5 and 5.2.5. 5912 QualType Result = MemPtr->getPointeeType(); 5913 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers()); 5914 5915 // C++0x [expr.mptr.oper]p6: 5916 // In a .* expression whose object expression is an rvalue, the program is 5917 // ill-formed if the second operand is a pointer to member function with 5918 // ref-qualifier &. In a ->* expression or in a .* expression whose object 5919 // expression is an lvalue, the program is ill-formed if the second operand 5920 // is a pointer to member function with ref-qualifier &&. 5921 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) { 5922 switch (Proto->getRefQualifier()) { 5923 case RQ_None: 5924 // Do nothing 5925 break; 5926 5927 case RQ_LValue: 5928 if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) { 5929 // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq 5930 // is (exactly) 'const'. 5931 if (Proto->isConst() && !Proto->isVolatile()) 5932 Diag(Loc, getLangOpts().CPlusPlus20 5933 ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue 5934 : diag::ext_pointer_to_const_ref_member_on_rvalue); 5935 else 5936 Diag(Loc, diag::err_pointer_to_member_oper_value_classify) 5937 << RHSType << 1 << LHS.get()->getSourceRange(); 5938 } 5939 break; 5940 5941 case RQ_RValue: 5942 if (isIndirect || !LHS.get()->Classify(Context).isRValue()) 5943 Diag(Loc, diag::err_pointer_to_member_oper_value_classify) 5944 << RHSType << 0 << LHS.get()->getSourceRange(); 5945 break; 5946 } 5947 } 5948 5949 // C++ [expr.mptr.oper]p6: 5950 // The result of a .* expression whose second operand is a pointer 5951 // to a data member is of the same value category as its 5952 // first operand. The result of a .* expression whose second 5953 // operand is a pointer to a member function is a prvalue. The 5954 // result of an ->* expression is an lvalue if its second operand 5955 // is a pointer to data member and a prvalue otherwise. 5956 if (Result->isFunctionType()) { 5957 VK = VK_PRValue; 5958 return Context.BoundMemberTy; 5959 } else if (isIndirect) { 5960 VK = VK_LValue; 5961 } else { 5962 VK = LHS.get()->getValueKind(); 5963 } 5964 5965 return Result; 5966 } 5967 5968 /// Try to convert a type to another according to C++11 5.16p3. 5969 /// 5970 /// This is part of the parameter validation for the ? operator. If either 5971 /// value operand is a class type, the two operands are attempted to be 5972 /// converted to each other. This function does the conversion in one direction. 5973 /// It returns true if the program is ill-formed and has already been diagnosed 5974 /// as such. 5975 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To, 5976 SourceLocation QuestionLoc, 5977 bool &HaveConversion, 5978 QualType &ToType) { 5979 HaveConversion = false; 5980 ToType = To->getType(); 5981 5982 InitializationKind Kind = 5983 InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation()); 5984 // C++11 5.16p3 5985 // The process for determining whether an operand expression E1 of type T1 5986 // can be converted to match an operand expression E2 of type T2 is defined 5987 // as follows: 5988 // -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be 5989 // implicitly converted to type "lvalue reference to T2", subject to the 5990 // constraint that in the conversion the reference must bind directly to 5991 // an lvalue. 5992 // -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be 5993 // implicitly converted to the type "rvalue reference to R2", subject to 5994 // the constraint that the reference must bind directly. 5995 if (To->isGLValue()) { 5996 QualType T = Self.Context.getReferenceQualifiedType(To); 5997 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); 5998 5999 InitializationSequence InitSeq(Self, Entity, Kind, From); 6000 if (InitSeq.isDirectReferenceBinding()) { 6001 ToType = T; 6002 HaveConversion = true; 6003 return false; 6004 } 6005 6006 if (InitSeq.isAmbiguous()) 6007 return InitSeq.Diagnose(Self, Entity, Kind, From); 6008 } 6009 6010 // -- If E2 is an rvalue, or if the conversion above cannot be done: 6011 // -- if E1 and E2 have class type, and the underlying class types are 6012 // the same or one is a base class of the other: 6013 QualType FTy = From->getType(); 6014 QualType TTy = To->getType(); 6015 const RecordType *FRec = FTy->getAs<RecordType>(); 6016 const RecordType *TRec = TTy->getAs<RecordType>(); 6017 bool FDerivedFromT = FRec && TRec && FRec != TRec && 6018 Self.IsDerivedFrom(QuestionLoc, FTy, TTy); 6019 if (FRec && TRec && (FRec == TRec || FDerivedFromT || 6020 Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) { 6021 // E1 can be converted to match E2 if the class of T2 is the 6022 // same type as, or a base class of, the class of T1, and 6023 // [cv2 > cv1]. 6024 if (FRec == TRec || FDerivedFromT) { 6025 if (TTy.isAtLeastAsQualifiedAs(FTy)) { 6026 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); 6027 InitializationSequence InitSeq(Self, Entity, Kind, From); 6028 if (InitSeq) { 6029 HaveConversion = true; 6030 return false; 6031 } 6032 6033 if (InitSeq.isAmbiguous()) 6034 return InitSeq.Diagnose(Self, Entity, Kind, From); 6035 } 6036 } 6037 6038 return false; 6039 } 6040 6041 // -- Otherwise: E1 can be converted to match E2 if E1 can be 6042 // implicitly converted to the type that expression E2 would have 6043 // if E2 were converted to an rvalue (or the type it has, if E2 is 6044 // an rvalue). 6045 // 6046 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not 6047 // to the array-to-pointer or function-to-pointer conversions. 6048 TTy = TTy.getNonLValueExprType(Self.Context); 6049 6050 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); 6051 InitializationSequence InitSeq(Self, Entity, Kind, From); 6052 HaveConversion = !InitSeq.Failed(); 6053 ToType = TTy; 6054 if (InitSeq.isAmbiguous()) 6055 return InitSeq.Diagnose(Self, Entity, Kind, From); 6056 6057 return false; 6058 } 6059 6060 /// Try to find a common type for two according to C++0x 5.16p5. 6061 /// 6062 /// This is part of the parameter validation for the ? operator. If either 6063 /// value operand is a class type, overload resolution is used to find a 6064 /// conversion to a common type. 6065 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS, 6066 SourceLocation QuestionLoc) { 6067 Expr *Args[2] = { LHS.get(), RHS.get() }; 6068 OverloadCandidateSet CandidateSet(QuestionLoc, 6069 OverloadCandidateSet::CSK_Operator); 6070 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 6071 CandidateSet); 6072 6073 OverloadCandidateSet::iterator Best; 6074 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) { 6075 case OR_Success: { 6076 // We found a match. Perform the conversions on the arguments and move on. 6077 ExprResult LHSRes = Self.PerformImplicitConversion( 6078 LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0], 6079 Sema::AA_Converting); 6080 if (LHSRes.isInvalid()) 6081 break; 6082 LHS = LHSRes; 6083 6084 ExprResult RHSRes = Self.PerformImplicitConversion( 6085 RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1], 6086 Sema::AA_Converting); 6087 if (RHSRes.isInvalid()) 6088 break; 6089 RHS = RHSRes; 6090 if (Best->Function) 6091 Self.MarkFunctionReferenced(QuestionLoc, Best->Function); 6092 return false; 6093 } 6094 6095 case OR_No_Viable_Function: 6096 6097 // Emit a better diagnostic if one of the expressions is a null pointer 6098 // constant and the other is a pointer type. In this case, the user most 6099 // likely forgot to take the address of the other expression. 6100 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) 6101 return true; 6102 6103 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) 6104 << LHS.get()->getType() << RHS.get()->getType() 6105 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6106 return true; 6107 6108 case OR_Ambiguous: 6109 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl) 6110 << LHS.get()->getType() << RHS.get()->getType() 6111 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6112 // FIXME: Print the possible common types by printing the return types of 6113 // the viable candidates. 6114 break; 6115 6116 case OR_Deleted: 6117 llvm_unreachable("Conditional operator has only built-in overloads"); 6118 } 6119 return true; 6120 } 6121 6122 /// Perform an "extended" implicit conversion as returned by 6123 /// TryClassUnification. 6124 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) { 6125 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); 6126 InitializationKind Kind = 6127 InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation()); 6128 Expr *Arg = E.get(); 6129 InitializationSequence InitSeq(Self, Entity, Kind, Arg); 6130 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg); 6131 if (Result.isInvalid()) 6132 return true; 6133 6134 E = Result; 6135 return false; 6136 } 6137 6138 // Check the condition operand of ?: to see if it is valid for the GCC 6139 // extension. 6140 static bool isValidVectorForConditionalCondition(ASTContext &Ctx, 6141 QualType CondTy) { 6142 if (!CondTy->isVectorType() && !CondTy->isExtVectorType()) 6143 return false; 6144 const QualType EltTy = 6145 cast<VectorType>(CondTy.getCanonicalType())->getElementType(); 6146 assert(!EltTy->isEnumeralType() && "Vectors cant be enum types"); 6147 return EltTy->isIntegralType(Ctx); 6148 } 6149 6150 static bool isValidSizelessVectorForConditionalCondition(ASTContext &Ctx, 6151 QualType CondTy) { 6152 if (!CondTy->isVLSTBuiltinType()) 6153 return false; 6154 const QualType EltTy = 6155 cast<BuiltinType>(CondTy.getCanonicalType())->getSveEltType(Ctx); 6156 assert(!EltTy->isEnumeralType() && "Vectors cant be enum types"); 6157 return EltTy->isIntegralType(Ctx); 6158 } 6159 6160 QualType Sema::CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS, 6161 ExprResult &RHS, 6162 SourceLocation QuestionLoc) { 6163 LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); 6164 RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); 6165 6166 QualType CondType = Cond.get()->getType(); 6167 const auto *CondVT = CondType->castAs<VectorType>(); 6168 QualType CondElementTy = CondVT->getElementType(); 6169 unsigned CondElementCount = CondVT->getNumElements(); 6170 QualType LHSType = LHS.get()->getType(); 6171 const auto *LHSVT = LHSType->getAs<VectorType>(); 6172 QualType RHSType = RHS.get()->getType(); 6173 const auto *RHSVT = RHSType->getAs<VectorType>(); 6174 6175 QualType ResultType; 6176 6177 6178 if (LHSVT && RHSVT) { 6179 if (isa<ExtVectorType>(CondVT) != isa<ExtVectorType>(LHSVT)) { 6180 Diag(QuestionLoc, diag::err_conditional_vector_cond_result_mismatch) 6181 << /*isExtVector*/ isa<ExtVectorType>(CondVT); 6182 return {}; 6183 } 6184 6185 // If both are vector types, they must be the same type. 6186 if (!Context.hasSameType(LHSType, RHSType)) { 6187 Diag(QuestionLoc, diag::err_conditional_vector_mismatched) 6188 << LHSType << RHSType; 6189 return {}; 6190 } 6191 ResultType = LHSType; 6192 } else if (LHSVT || RHSVT) { 6193 ResultType = CheckVectorOperands( 6194 LHS, RHS, QuestionLoc, /*isCompAssign*/ false, /*AllowBothBool*/ true, 6195 /*AllowBoolConversions*/ false, 6196 /*AllowBoolOperation*/ true, 6197 /*ReportInvalid*/ true); 6198 if (ResultType.isNull()) 6199 return {}; 6200 } else { 6201 // Both are scalar. 6202 QualType ResultElementTy; 6203 LHSType = LHSType.getCanonicalType().getUnqualifiedType(); 6204 RHSType = RHSType.getCanonicalType().getUnqualifiedType(); 6205 6206 if (Context.hasSameType(LHSType, RHSType)) 6207 ResultElementTy = LHSType; 6208 else 6209 ResultElementTy = 6210 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional); 6211 6212 if (ResultElementTy->isEnumeralType()) { 6213 Diag(QuestionLoc, diag::err_conditional_vector_operand_type) 6214 << ResultElementTy; 6215 return {}; 6216 } 6217 if (CondType->isExtVectorType()) 6218 ResultType = 6219 Context.getExtVectorType(ResultElementTy, CondVT->getNumElements()); 6220 else 6221 ResultType = Context.getVectorType( 6222 ResultElementTy, CondVT->getNumElements(), VectorType::GenericVector); 6223 6224 LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat); 6225 RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat); 6226 } 6227 6228 assert(!ResultType.isNull() && ResultType->isVectorType() && 6229 (!CondType->isExtVectorType() || ResultType->isExtVectorType()) && 6230 "Result should have been a vector type"); 6231 auto *ResultVectorTy = ResultType->castAs<VectorType>(); 6232 QualType ResultElementTy = ResultVectorTy->getElementType(); 6233 unsigned ResultElementCount = ResultVectorTy->getNumElements(); 6234 6235 if (ResultElementCount != CondElementCount) { 6236 Diag(QuestionLoc, diag::err_conditional_vector_size) << CondType 6237 << ResultType; 6238 return {}; 6239 } 6240 6241 if (Context.getTypeSize(ResultElementTy) != 6242 Context.getTypeSize(CondElementTy)) { 6243 Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondType 6244 << ResultType; 6245 return {}; 6246 } 6247 6248 return ResultType; 6249 } 6250 6251 QualType Sema::CheckSizelessVectorConditionalTypes(ExprResult &Cond, 6252 ExprResult &LHS, 6253 ExprResult &RHS, 6254 SourceLocation QuestionLoc) { 6255 LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); 6256 RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); 6257 6258 QualType CondType = Cond.get()->getType(); 6259 const auto *CondBT = CondType->castAs<BuiltinType>(); 6260 QualType CondElementTy = CondBT->getSveEltType(Context); 6261 llvm::ElementCount CondElementCount = 6262 Context.getBuiltinVectorTypeInfo(CondBT).EC; 6263 6264 QualType LHSType = LHS.get()->getType(); 6265 const auto *LHSBT = 6266 LHSType->isVLSTBuiltinType() ? LHSType->getAs<BuiltinType>() : nullptr; 6267 QualType RHSType = RHS.get()->getType(); 6268 const auto *RHSBT = 6269 RHSType->isVLSTBuiltinType() ? RHSType->getAs<BuiltinType>() : nullptr; 6270 6271 QualType ResultType; 6272 6273 if (LHSBT && RHSBT) { 6274 // If both are sizeless vector types, they must be the same type. 6275 if (!Context.hasSameType(LHSType, RHSType)) { 6276 Diag(QuestionLoc, diag::err_conditional_vector_mismatched) 6277 << LHSType << RHSType; 6278 return QualType(); 6279 } 6280 ResultType = LHSType; 6281 } else if (LHSBT || RHSBT) { 6282 ResultType = CheckSizelessVectorOperands( 6283 LHS, RHS, QuestionLoc, /*IsCompAssign*/ false, ACK_Conditional); 6284 if (ResultType.isNull()) 6285 return QualType(); 6286 } else { 6287 // Both are scalar so splat 6288 QualType ResultElementTy; 6289 LHSType = LHSType.getCanonicalType().getUnqualifiedType(); 6290 RHSType = RHSType.getCanonicalType().getUnqualifiedType(); 6291 6292 if (Context.hasSameType(LHSType, RHSType)) 6293 ResultElementTy = LHSType; 6294 else 6295 ResultElementTy = 6296 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional); 6297 6298 if (ResultElementTy->isEnumeralType()) { 6299 Diag(QuestionLoc, diag::err_conditional_vector_operand_type) 6300 << ResultElementTy; 6301 return QualType(); 6302 } 6303 6304 ResultType = Context.getScalableVectorType( 6305 ResultElementTy, CondElementCount.getKnownMinValue()); 6306 6307 LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat); 6308 RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat); 6309 } 6310 6311 assert(!ResultType.isNull() && ResultType->isVLSTBuiltinType() && 6312 "Result should have been a vector type"); 6313 auto *ResultBuiltinTy = ResultType->castAs<BuiltinType>(); 6314 QualType ResultElementTy = ResultBuiltinTy->getSveEltType(Context); 6315 llvm::ElementCount ResultElementCount = 6316 Context.getBuiltinVectorTypeInfo(ResultBuiltinTy).EC; 6317 6318 if (ResultElementCount != CondElementCount) { 6319 Diag(QuestionLoc, diag::err_conditional_vector_size) 6320 << CondType << ResultType; 6321 return QualType(); 6322 } 6323 6324 if (Context.getTypeSize(ResultElementTy) != 6325 Context.getTypeSize(CondElementTy)) { 6326 Diag(QuestionLoc, diag::err_conditional_vector_element_size) 6327 << CondType << ResultType; 6328 return QualType(); 6329 } 6330 6331 return ResultType; 6332 } 6333 6334 /// Check the operands of ?: under C++ semantics. 6335 /// 6336 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y 6337 /// extension. In this case, LHS == Cond. (But they're not aliases.) 6338 /// 6339 /// This function also implements GCC's vector extension and the 6340 /// OpenCL/ext_vector_type extension for conditionals. The vector extensions 6341 /// permit the use of a?b:c where the type of a is that of a integer vector with 6342 /// the same number of elements and size as the vectors of b and c. If one of 6343 /// either b or c is a scalar it is implicitly converted to match the type of 6344 /// the vector. Otherwise the expression is ill-formed. If both b and c are 6345 /// scalars, then b and c are checked and converted to the type of a if 6346 /// possible. 6347 /// 6348 /// The expressions are evaluated differently for GCC's and OpenCL's extensions. 6349 /// For the GCC extension, the ?: operator is evaluated as 6350 /// (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]). 6351 /// For the OpenCL extensions, the ?: operator is evaluated as 6352 /// (most-significant-bit-set(a[0]) ? b[0] : c[0], .. , 6353 /// most-significant-bit-set(a[n]) ? b[n] : c[n]). 6354 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, 6355 ExprResult &RHS, ExprValueKind &VK, 6356 ExprObjectKind &OK, 6357 SourceLocation QuestionLoc) { 6358 // FIXME: Handle C99's complex types, block pointers and Obj-C++ interface 6359 // pointers. 6360 6361 // Assume r-value. 6362 VK = VK_PRValue; 6363 OK = OK_Ordinary; 6364 bool IsVectorConditional = 6365 isValidVectorForConditionalCondition(Context, Cond.get()->getType()); 6366 6367 bool IsSizelessVectorConditional = 6368 isValidSizelessVectorForConditionalCondition(Context, 6369 Cond.get()->getType()); 6370 6371 // C++11 [expr.cond]p1 6372 // The first expression is contextually converted to bool. 6373 if (!Cond.get()->isTypeDependent()) { 6374 ExprResult CondRes = IsVectorConditional || IsSizelessVectorConditional 6375 ? DefaultFunctionArrayLvalueConversion(Cond.get()) 6376 : CheckCXXBooleanCondition(Cond.get()); 6377 if (CondRes.isInvalid()) 6378 return QualType(); 6379 Cond = CondRes; 6380 } else { 6381 // To implement C++, the first expression typically doesn't alter the result 6382 // type of the conditional, however the GCC compatible vector extension 6383 // changes the result type to be that of the conditional. Since we cannot 6384 // know if this is a vector extension here, delay the conversion of the 6385 // LHS/RHS below until later. 6386 return Context.DependentTy; 6387 } 6388 6389 6390 // Either of the arguments dependent? 6391 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent()) 6392 return Context.DependentTy; 6393 6394 // C++11 [expr.cond]p2 6395 // If either the second or the third operand has type (cv) void, ... 6396 QualType LTy = LHS.get()->getType(); 6397 QualType RTy = RHS.get()->getType(); 6398 bool LVoid = LTy->isVoidType(); 6399 bool RVoid = RTy->isVoidType(); 6400 if (LVoid || RVoid) { 6401 // ... one of the following shall hold: 6402 // -- The second or the third operand (but not both) is a (possibly 6403 // parenthesized) throw-expression; the result is of the type 6404 // and value category of the other. 6405 bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts()); 6406 bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts()); 6407 6408 // Void expressions aren't legal in the vector-conditional expressions. 6409 if (IsVectorConditional) { 6410 SourceRange DiagLoc = 6411 LVoid ? LHS.get()->getSourceRange() : RHS.get()->getSourceRange(); 6412 bool IsThrow = LVoid ? LThrow : RThrow; 6413 Diag(DiagLoc.getBegin(), diag::err_conditional_vector_has_void) 6414 << DiagLoc << IsThrow; 6415 return QualType(); 6416 } 6417 6418 if (LThrow != RThrow) { 6419 Expr *NonThrow = LThrow ? RHS.get() : LHS.get(); 6420 VK = NonThrow->getValueKind(); 6421 // DR (no number yet): the result is a bit-field if the 6422 // non-throw-expression operand is a bit-field. 6423 OK = NonThrow->getObjectKind(); 6424 return NonThrow->getType(); 6425 } 6426 6427 // -- Both the second and third operands have type void; the result is of 6428 // type void and is a prvalue. 6429 if (LVoid && RVoid) 6430 return Context.VoidTy; 6431 6432 // Neither holds, error. 6433 Diag(QuestionLoc, diag::err_conditional_void_nonvoid) 6434 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1) 6435 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6436 return QualType(); 6437 } 6438 6439 // Neither is void. 6440 if (IsVectorConditional) 6441 return CheckVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc); 6442 6443 if (IsSizelessVectorConditional) 6444 return CheckSizelessVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc); 6445 6446 // C++11 [expr.cond]p3 6447 // Otherwise, if the second and third operand have different types, and 6448 // either has (cv) class type [...] an attempt is made to convert each of 6449 // those operands to the type of the other. 6450 if (!Context.hasSameType(LTy, RTy) && 6451 (LTy->isRecordType() || RTy->isRecordType())) { 6452 // These return true if a single direction is already ambiguous. 6453 QualType L2RType, R2LType; 6454 bool HaveL2R, HaveR2L; 6455 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType)) 6456 return QualType(); 6457 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType)) 6458 return QualType(); 6459 6460 // If both can be converted, [...] the program is ill-formed. 6461 if (HaveL2R && HaveR2L) { 6462 Diag(QuestionLoc, diag::err_conditional_ambiguous) 6463 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6464 return QualType(); 6465 } 6466 6467 // If exactly one conversion is possible, that conversion is applied to 6468 // the chosen operand and the converted operands are used in place of the 6469 // original operands for the remainder of this section. 6470 if (HaveL2R) { 6471 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid()) 6472 return QualType(); 6473 LTy = LHS.get()->getType(); 6474 } else if (HaveR2L) { 6475 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid()) 6476 return QualType(); 6477 RTy = RHS.get()->getType(); 6478 } 6479 } 6480 6481 // C++11 [expr.cond]p3 6482 // if both are glvalues of the same value category and the same type except 6483 // for cv-qualification, an attempt is made to convert each of those 6484 // operands to the type of the other. 6485 // FIXME: 6486 // Resolving a defect in P0012R1: we extend this to cover all cases where 6487 // one of the operands is reference-compatible with the other, in order 6488 // to support conditionals between functions differing in noexcept. This 6489 // will similarly cover difference in array bounds after P0388R4. 6490 // FIXME: If LTy and RTy have a composite pointer type, should we convert to 6491 // that instead? 6492 ExprValueKind LVK = LHS.get()->getValueKind(); 6493 ExprValueKind RVK = RHS.get()->getValueKind(); 6494 if (!Context.hasSameType(LTy, RTy) && LVK == RVK && LVK != VK_PRValue) { 6495 // DerivedToBase was already handled by the class-specific case above. 6496 // FIXME: Should we allow ObjC conversions here? 6497 const ReferenceConversions AllowedConversions = 6498 ReferenceConversions::Qualification | 6499 ReferenceConversions::NestedQualification | 6500 ReferenceConversions::Function; 6501 6502 ReferenceConversions RefConv; 6503 if (CompareReferenceRelationship(QuestionLoc, LTy, RTy, &RefConv) == 6504 Ref_Compatible && 6505 !(RefConv & ~AllowedConversions) && 6506 // [...] subject to the constraint that the reference must bind 6507 // directly [...] 6508 !RHS.get()->refersToBitField() && !RHS.get()->refersToVectorElement()) { 6509 RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK); 6510 RTy = RHS.get()->getType(); 6511 } else if (CompareReferenceRelationship(QuestionLoc, RTy, LTy, &RefConv) == 6512 Ref_Compatible && 6513 !(RefConv & ~AllowedConversions) && 6514 !LHS.get()->refersToBitField() && 6515 !LHS.get()->refersToVectorElement()) { 6516 LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK); 6517 LTy = LHS.get()->getType(); 6518 } 6519 } 6520 6521 // C++11 [expr.cond]p4 6522 // If the second and third operands are glvalues of the same value 6523 // category and have the same type, the result is of that type and 6524 // value category and it is a bit-field if the second or the third 6525 // operand is a bit-field, or if both are bit-fields. 6526 // We only extend this to bitfields, not to the crazy other kinds of 6527 // l-values. 6528 bool Same = Context.hasSameType(LTy, RTy); 6529 if (Same && LVK == RVK && LVK != VK_PRValue && 6530 LHS.get()->isOrdinaryOrBitFieldObject() && 6531 RHS.get()->isOrdinaryOrBitFieldObject()) { 6532 VK = LHS.get()->getValueKind(); 6533 if (LHS.get()->getObjectKind() == OK_BitField || 6534 RHS.get()->getObjectKind() == OK_BitField) 6535 OK = OK_BitField; 6536 6537 // If we have function pointer types, unify them anyway to unify their 6538 // exception specifications, if any. 6539 if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) { 6540 Qualifiers Qs = LTy.getQualifiers(); 6541 LTy = FindCompositePointerType(QuestionLoc, LHS, RHS, 6542 /*ConvertArgs*/false); 6543 LTy = Context.getQualifiedType(LTy, Qs); 6544 6545 assert(!LTy.isNull() && "failed to find composite pointer type for " 6546 "canonically equivalent function ptr types"); 6547 assert(Context.hasSameType(LTy, RTy) && "bad composite pointer type"); 6548 } 6549 6550 return LTy; 6551 } 6552 6553 // C++11 [expr.cond]p5 6554 // Otherwise, the result is a prvalue. If the second and third operands 6555 // do not have the same type, and either has (cv) class type, ... 6556 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) { 6557 // ... overload resolution is used to determine the conversions (if any) 6558 // to be applied to the operands. If the overload resolution fails, the 6559 // program is ill-formed. 6560 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc)) 6561 return QualType(); 6562 } 6563 6564 // C++11 [expr.cond]p6 6565 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard 6566 // conversions are performed on the second and third operands. 6567 LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); 6568 RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); 6569 if (LHS.isInvalid() || RHS.isInvalid()) 6570 return QualType(); 6571 LTy = LHS.get()->getType(); 6572 RTy = RHS.get()->getType(); 6573 6574 // After those conversions, one of the following shall hold: 6575 // -- The second and third operands have the same type; the result 6576 // is of that type. If the operands have class type, the result 6577 // is a prvalue temporary of the result type, which is 6578 // copy-initialized from either the second operand or the third 6579 // operand depending on the value of the first operand. 6580 if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) { 6581 if (LTy->isRecordType()) { 6582 // The operands have class type. Make a temporary copy. 6583 InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy); 6584 6585 ExprResult LHSCopy = PerformCopyInitialization(Entity, 6586 SourceLocation(), 6587 LHS); 6588 if (LHSCopy.isInvalid()) 6589 return QualType(); 6590 6591 ExprResult RHSCopy = PerformCopyInitialization(Entity, 6592 SourceLocation(), 6593 RHS); 6594 if (RHSCopy.isInvalid()) 6595 return QualType(); 6596 6597 LHS = LHSCopy; 6598 RHS = RHSCopy; 6599 } 6600 6601 // If we have function pointer types, unify them anyway to unify their 6602 // exception specifications, if any. 6603 if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) { 6604 LTy = FindCompositePointerType(QuestionLoc, LHS, RHS); 6605 assert(!LTy.isNull() && "failed to find composite pointer type for " 6606 "canonically equivalent function ptr types"); 6607 } 6608 6609 return LTy; 6610 } 6611 6612 // Extension: conditional operator involving vector types. 6613 if (LTy->isVectorType() || RTy->isVectorType()) 6614 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false, 6615 /*AllowBothBool*/ true, 6616 /*AllowBoolConversions*/ false, 6617 /*AllowBoolOperation*/ false, 6618 /*ReportInvalid*/ true); 6619 6620 // -- The second and third operands have arithmetic or enumeration type; 6621 // the usual arithmetic conversions are performed to bring them to a 6622 // common type, and the result is of that type. 6623 if (LTy->isArithmeticType() && RTy->isArithmeticType()) { 6624 QualType ResTy = 6625 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional); 6626 if (LHS.isInvalid() || RHS.isInvalid()) 6627 return QualType(); 6628 if (ResTy.isNull()) { 6629 Diag(QuestionLoc, 6630 diag::err_typecheck_cond_incompatible_operands) << LTy << RTy 6631 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6632 return QualType(); 6633 } 6634 6635 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy)); 6636 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy)); 6637 6638 return ResTy; 6639 } 6640 6641 // -- The second and third operands have pointer type, or one has pointer 6642 // type and the other is a null pointer constant, or both are null 6643 // pointer constants, at least one of which is non-integral; pointer 6644 // conversions and qualification conversions are performed to bring them 6645 // to their composite pointer type. The result is of the composite 6646 // pointer type. 6647 // -- The second and third operands have pointer to member type, or one has 6648 // pointer to member type and the other is a null pointer constant; 6649 // pointer to member conversions and qualification conversions are 6650 // performed to bring them to a common type, whose cv-qualification 6651 // shall match the cv-qualification of either the second or the third 6652 // operand. The result is of the common type. 6653 QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS); 6654 if (!Composite.isNull()) 6655 return Composite; 6656 6657 // Similarly, attempt to find composite type of two objective-c pointers. 6658 Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc); 6659 if (LHS.isInvalid() || RHS.isInvalid()) 6660 return QualType(); 6661 if (!Composite.isNull()) 6662 return Composite; 6663 6664 // Check if we are using a null with a non-pointer type. 6665 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) 6666 return QualType(); 6667 6668 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) 6669 << LHS.get()->getType() << RHS.get()->getType() 6670 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6671 return QualType(); 6672 } 6673 6674 static FunctionProtoType::ExceptionSpecInfo 6675 mergeExceptionSpecs(Sema &S, FunctionProtoType::ExceptionSpecInfo ESI1, 6676 FunctionProtoType::ExceptionSpecInfo ESI2, 6677 SmallVectorImpl<QualType> &ExceptionTypeStorage) { 6678 ExceptionSpecificationType EST1 = ESI1.Type; 6679 ExceptionSpecificationType EST2 = ESI2.Type; 6680 6681 // If either of them can throw anything, that is the result. 6682 if (EST1 == EST_None) return ESI1; 6683 if (EST2 == EST_None) return ESI2; 6684 if (EST1 == EST_MSAny) return ESI1; 6685 if (EST2 == EST_MSAny) return ESI2; 6686 if (EST1 == EST_NoexceptFalse) return ESI1; 6687 if (EST2 == EST_NoexceptFalse) return ESI2; 6688 6689 // If either of them is non-throwing, the result is the other. 6690 if (EST1 == EST_NoThrow) return ESI2; 6691 if (EST2 == EST_NoThrow) return ESI1; 6692 if (EST1 == EST_DynamicNone) return ESI2; 6693 if (EST2 == EST_DynamicNone) return ESI1; 6694 if (EST1 == EST_BasicNoexcept) return ESI2; 6695 if (EST2 == EST_BasicNoexcept) return ESI1; 6696 if (EST1 == EST_NoexceptTrue) return ESI2; 6697 if (EST2 == EST_NoexceptTrue) return ESI1; 6698 6699 // If we're left with value-dependent computed noexcept expressions, we're 6700 // stuck. Before C++17, we can just drop the exception specification entirely, 6701 // since it's not actually part of the canonical type. And this should never 6702 // happen in C++17, because it would mean we were computing the composite 6703 // pointer type of dependent types, which should never happen. 6704 if (EST1 == EST_DependentNoexcept || EST2 == EST_DependentNoexcept) { 6705 assert(!S.getLangOpts().CPlusPlus17 && 6706 "computing composite pointer type of dependent types"); 6707 return FunctionProtoType::ExceptionSpecInfo(); 6708 } 6709 6710 // Switch over the possibilities so that people adding new values know to 6711 // update this function. 6712 switch (EST1) { 6713 case EST_None: 6714 case EST_DynamicNone: 6715 case EST_MSAny: 6716 case EST_BasicNoexcept: 6717 case EST_DependentNoexcept: 6718 case EST_NoexceptFalse: 6719 case EST_NoexceptTrue: 6720 case EST_NoThrow: 6721 llvm_unreachable("handled above"); 6722 6723 case EST_Dynamic: { 6724 // This is the fun case: both exception specifications are dynamic. Form 6725 // the union of the two lists. 6726 assert(EST2 == EST_Dynamic && "other cases should already be handled"); 6727 llvm::SmallPtrSet<QualType, 8> Found; 6728 for (auto &Exceptions : {ESI1.Exceptions, ESI2.Exceptions}) 6729 for (QualType E : Exceptions) 6730 if (Found.insert(S.Context.getCanonicalType(E)).second) 6731 ExceptionTypeStorage.push_back(E); 6732 6733 FunctionProtoType::ExceptionSpecInfo Result(EST_Dynamic); 6734 Result.Exceptions = ExceptionTypeStorage; 6735 return Result; 6736 } 6737 6738 case EST_Unevaluated: 6739 case EST_Uninstantiated: 6740 case EST_Unparsed: 6741 llvm_unreachable("shouldn't see unresolved exception specifications here"); 6742 } 6743 6744 llvm_unreachable("invalid ExceptionSpecificationType"); 6745 } 6746 6747 /// Find a merged pointer type and convert the two expressions to it. 6748 /// 6749 /// This finds the composite pointer type for \p E1 and \p E2 according to 6750 /// C++2a [expr.type]p3. It converts both expressions to this type and returns 6751 /// it. It does not emit diagnostics (FIXME: that's not true if \p ConvertArgs 6752 /// is \c true). 6753 /// 6754 /// \param Loc The location of the operator requiring these two expressions to 6755 /// be converted to the composite pointer type. 6756 /// 6757 /// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type. 6758 QualType Sema::FindCompositePointerType(SourceLocation Loc, 6759 Expr *&E1, Expr *&E2, 6760 bool ConvertArgs) { 6761 assert(getLangOpts().CPlusPlus && "This function assumes C++"); 6762 6763 // C++1z [expr]p14: 6764 // The composite pointer type of two operands p1 and p2 having types T1 6765 // and T2 6766 QualType T1 = E1->getType(), T2 = E2->getType(); 6767 6768 // where at least one is a pointer or pointer to member type or 6769 // std::nullptr_t is: 6770 bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() || 6771 T1->isNullPtrType(); 6772 bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() || 6773 T2->isNullPtrType(); 6774 if (!T1IsPointerLike && !T2IsPointerLike) 6775 return QualType(); 6776 6777 // - if both p1 and p2 are null pointer constants, std::nullptr_t; 6778 // This can't actually happen, following the standard, but we also use this 6779 // to implement the end of [expr.conv], which hits this case. 6780 // 6781 // - if either p1 or p2 is a null pointer constant, T2 or T1, respectively; 6782 if (T1IsPointerLike && 6783 E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 6784 if (ConvertArgs) 6785 E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType() 6786 ? CK_NullToMemberPointer 6787 : CK_NullToPointer).get(); 6788 return T1; 6789 } 6790 if (T2IsPointerLike && 6791 E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 6792 if (ConvertArgs) 6793 E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType() 6794 ? CK_NullToMemberPointer 6795 : CK_NullToPointer).get(); 6796 return T2; 6797 } 6798 6799 // Now both have to be pointers or member pointers. 6800 if (!T1IsPointerLike || !T2IsPointerLike) 6801 return QualType(); 6802 assert(!T1->isNullPtrType() && !T2->isNullPtrType() && 6803 "nullptr_t should be a null pointer constant"); 6804 6805 struct Step { 6806 enum Kind { Pointer, ObjCPointer, MemberPointer, Array } K; 6807 // Qualifiers to apply under the step kind. 6808 Qualifiers Quals; 6809 /// The class for a pointer-to-member; a constant array type with a bound 6810 /// (if any) for an array. 6811 const Type *ClassOrBound; 6812 6813 Step(Kind K, const Type *ClassOrBound = nullptr) 6814 : K(K), ClassOrBound(ClassOrBound) {} 6815 QualType rebuild(ASTContext &Ctx, QualType T) const { 6816 T = Ctx.getQualifiedType(T, Quals); 6817 switch (K) { 6818 case Pointer: 6819 return Ctx.getPointerType(T); 6820 case MemberPointer: 6821 return Ctx.getMemberPointerType(T, ClassOrBound); 6822 case ObjCPointer: 6823 return Ctx.getObjCObjectPointerType(T); 6824 case Array: 6825 if (auto *CAT = cast_or_null<ConstantArrayType>(ClassOrBound)) 6826 return Ctx.getConstantArrayType(T, CAT->getSize(), nullptr, 6827 ArrayType::Normal, 0); 6828 else 6829 return Ctx.getIncompleteArrayType(T, ArrayType::Normal, 0); 6830 } 6831 llvm_unreachable("unknown step kind"); 6832 } 6833 }; 6834 6835 SmallVector<Step, 8> Steps; 6836 6837 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1 6838 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3), 6839 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1, 6840 // respectively; 6841 // - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer 6842 // to member of C2 of type cv2 U2" for some non-function type U, where 6843 // C1 is reference-related to C2 or C2 is reference-related to C1, the 6844 // cv-combined type of T2 and T1 or the cv-combined type of T1 and T2, 6845 // respectively; 6846 // - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and 6847 // T2; 6848 // 6849 // Dismantle T1 and T2 to simultaneously determine whether they are similar 6850 // and to prepare to form the cv-combined type if so. 6851 QualType Composite1 = T1; 6852 QualType Composite2 = T2; 6853 unsigned NeedConstBefore = 0; 6854 while (true) { 6855 assert(!Composite1.isNull() && !Composite2.isNull()); 6856 6857 Qualifiers Q1, Q2; 6858 Composite1 = Context.getUnqualifiedArrayType(Composite1, Q1); 6859 Composite2 = Context.getUnqualifiedArrayType(Composite2, Q2); 6860 6861 // Top-level qualifiers are ignored. Merge at all lower levels. 6862 if (!Steps.empty()) { 6863 // Find the qualifier union: (approximately) the unique minimal set of 6864 // qualifiers that is compatible with both types. 6865 Qualifiers Quals = Qualifiers::fromCVRUMask(Q1.getCVRUQualifiers() | 6866 Q2.getCVRUQualifiers()); 6867 6868 // Under one level of pointer or pointer-to-member, we can change to an 6869 // unambiguous compatible address space. 6870 if (Q1.getAddressSpace() == Q2.getAddressSpace()) { 6871 Quals.setAddressSpace(Q1.getAddressSpace()); 6872 } else if (Steps.size() == 1) { 6873 bool MaybeQ1 = Q1.isAddressSpaceSupersetOf(Q2); 6874 bool MaybeQ2 = Q2.isAddressSpaceSupersetOf(Q1); 6875 if (MaybeQ1 == MaybeQ2) { 6876 // Exception for ptr size address spaces. Should be able to choose 6877 // either address space during comparison. 6878 if (isPtrSizeAddressSpace(Q1.getAddressSpace()) || 6879 isPtrSizeAddressSpace(Q2.getAddressSpace())) 6880 MaybeQ1 = true; 6881 else 6882 return QualType(); // No unique best address space. 6883 } 6884 Quals.setAddressSpace(MaybeQ1 ? Q1.getAddressSpace() 6885 : Q2.getAddressSpace()); 6886 } else { 6887 return QualType(); 6888 } 6889 6890 // FIXME: In C, we merge __strong and none to __strong at the top level. 6891 if (Q1.getObjCGCAttr() == Q2.getObjCGCAttr()) 6892 Quals.setObjCGCAttr(Q1.getObjCGCAttr()); 6893 else if (T1->isVoidPointerType() || T2->isVoidPointerType()) 6894 assert(Steps.size() == 1); 6895 else 6896 return QualType(); 6897 6898 // Mismatched lifetime qualifiers never compatibly include each other. 6899 if (Q1.getObjCLifetime() == Q2.getObjCLifetime()) 6900 Quals.setObjCLifetime(Q1.getObjCLifetime()); 6901 else if (T1->isVoidPointerType() || T2->isVoidPointerType()) 6902 assert(Steps.size() == 1); 6903 else 6904 return QualType(); 6905 6906 Steps.back().Quals = Quals; 6907 if (Q1 != Quals || Q2 != Quals) 6908 NeedConstBefore = Steps.size() - 1; 6909 } 6910 6911 // FIXME: Can we unify the following with UnwrapSimilarTypes? 6912 6913 const ArrayType *Arr1, *Arr2; 6914 if ((Arr1 = Context.getAsArrayType(Composite1)) && 6915 (Arr2 = Context.getAsArrayType(Composite2))) { 6916 auto *CAT1 = dyn_cast<ConstantArrayType>(Arr1); 6917 auto *CAT2 = dyn_cast<ConstantArrayType>(Arr2); 6918 if (CAT1 && CAT2 && CAT1->getSize() == CAT2->getSize()) { 6919 Composite1 = Arr1->getElementType(); 6920 Composite2 = Arr2->getElementType(); 6921 Steps.emplace_back(Step::Array, CAT1); 6922 continue; 6923 } 6924 bool IAT1 = isa<IncompleteArrayType>(Arr1); 6925 bool IAT2 = isa<IncompleteArrayType>(Arr2); 6926 if ((IAT1 && IAT2) || 6927 (getLangOpts().CPlusPlus20 && (IAT1 != IAT2) && 6928 ((bool)CAT1 != (bool)CAT2) && 6929 (Steps.empty() || Steps.back().K != Step::Array))) { 6930 // In C++20 onwards, we can unify an array of N T with an array of 6931 // a different or unknown bound. But we can't form an array whose 6932 // element type is an array of unknown bound by doing so. 6933 Composite1 = Arr1->getElementType(); 6934 Composite2 = Arr2->getElementType(); 6935 Steps.emplace_back(Step::Array); 6936 if (CAT1 || CAT2) 6937 NeedConstBefore = Steps.size(); 6938 continue; 6939 } 6940 } 6941 6942 const PointerType *Ptr1, *Ptr2; 6943 if ((Ptr1 = Composite1->getAs<PointerType>()) && 6944 (Ptr2 = Composite2->getAs<PointerType>())) { 6945 Composite1 = Ptr1->getPointeeType(); 6946 Composite2 = Ptr2->getPointeeType(); 6947 Steps.emplace_back(Step::Pointer); 6948 continue; 6949 } 6950 6951 const ObjCObjectPointerType *ObjPtr1, *ObjPtr2; 6952 if ((ObjPtr1 = Composite1->getAs<ObjCObjectPointerType>()) && 6953 (ObjPtr2 = Composite2->getAs<ObjCObjectPointerType>())) { 6954 Composite1 = ObjPtr1->getPointeeType(); 6955 Composite2 = ObjPtr2->getPointeeType(); 6956 Steps.emplace_back(Step::ObjCPointer); 6957 continue; 6958 } 6959 6960 const MemberPointerType *MemPtr1, *MemPtr2; 6961 if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) && 6962 (MemPtr2 = Composite2->getAs<MemberPointerType>())) { 6963 Composite1 = MemPtr1->getPointeeType(); 6964 Composite2 = MemPtr2->getPointeeType(); 6965 6966 // At the top level, we can perform a base-to-derived pointer-to-member 6967 // conversion: 6968 // 6969 // - [...] where C1 is reference-related to C2 or C2 is 6970 // reference-related to C1 6971 // 6972 // (Note that the only kinds of reference-relatedness in scope here are 6973 // "same type or derived from".) At any other level, the class must 6974 // exactly match. 6975 const Type *Class = nullptr; 6976 QualType Cls1(MemPtr1->getClass(), 0); 6977 QualType Cls2(MemPtr2->getClass(), 0); 6978 if (Context.hasSameType(Cls1, Cls2)) 6979 Class = MemPtr1->getClass(); 6980 else if (Steps.empty()) 6981 Class = IsDerivedFrom(Loc, Cls1, Cls2) ? MemPtr1->getClass() : 6982 IsDerivedFrom(Loc, Cls2, Cls1) ? MemPtr2->getClass() : nullptr; 6983 if (!Class) 6984 return QualType(); 6985 6986 Steps.emplace_back(Step::MemberPointer, Class); 6987 continue; 6988 } 6989 6990 // Special case: at the top level, we can decompose an Objective-C pointer 6991 // and a 'cv void *'. Unify the qualifiers. 6992 if (Steps.empty() && ((Composite1->isVoidPointerType() && 6993 Composite2->isObjCObjectPointerType()) || 6994 (Composite1->isObjCObjectPointerType() && 6995 Composite2->isVoidPointerType()))) { 6996 Composite1 = Composite1->getPointeeType(); 6997 Composite2 = Composite2->getPointeeType(); 6998 Steps.emplace_back(Step::Pointer); 6999 continue; 7000 } 7001 7002 // FIXME: block pointer types? 7003 7004 // Cannot unwrap any more types. 7005 break; 7006 } 7007 7008 // - if T1 or T2 is "pointer to noexcept function" and the other type is 7009 // "pointer to function", where the function types are otherwise the same, 7010 // "pointer to function"; 7011 // - if T1 or T2 is "pointer to member of C1 of type function", the other 7012 // type is "pointer to member of C2 of type noexcept function", and C1 7013 // is reference-related to C2 or C2 is reference-related to C1, where 7014 // the function types are otherwise the same, "pointer to member of C2 of 7015 // type function" or "pointer to member of C1 of type function", 7016 // respectively; 7017 // 7018 // We also support 'noreturn' here, so as a Clang extension we generalize the 7019 // above to: 7020 // 7021 // - [Clang] If T1 and T2 are both of type "pointer to function" or 7022 // "pointer to member function" and the pointee types can be unified 7023 // by a function pointer conversion, that conversion is applied 7024 // before checking the following rules. 7025 // 7026 // We've already unwrapped down to the function types, and we want to merge 7027 // rather than just convert, so do this ourselves rather than calling 7028 // IsFunctionConversion. 7029 // 7030 // FIXME: In order to match the standard wording as closely as possible, we 7031 // currently only do this under a single level of pointers. Ideally, we would 7032 // allow this in general, and set NeedConstBefore to the relevant depth on 7033 // the side(s) where we changed anything. If we permit that, we should also 7034 // consider this conversion when determining type similarity and model it as 7035 // a qualification conversion. 7036 if (Steps.size() == 1) { 7037 if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) { 7038 if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) { 7039 FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo(); 7040 FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo(); 7041 7042 // The result is noreturn if both operands are. 7043 bool Noreturn = 7044 EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn(); 7045 EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn); 7046 EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn); 7047 7048 // The result is nothrow if both operands are. 7049 SmallVector<QualType, 8> ExceptionTypeStorage; 7050 EPI1.ExceptionSpec = EPI2.ExceptionSpec = 7051 mergeExceptionSpecs(*this, EPI1.ExceptionSpec, EPI2.ExceptionSpec, 7052 ExceptionTypeStorage); 7053 7054 Composite1 = Context.getFunctionType(FPT1->getReturnType(), 7055 FPT1->getParamTypes(), EPI1); 7056 Composite2 = Context.getFunctionType(FPT2->getReturnType(), 7057 FPT2->getParamTypes(), EPI2); 7058 } 7059 } 7060 } 7061 7062 // There are some more conversions we can perform under exactly one pointer. 7063 if (Steps.size() == 1 && Steps.front().K == Step::Pointer && 7064 !Context.hasSameType(Composite1, Composite2)) { 7065 // - if T1 or T2 is "pointer to cv1 void" and the other type is 7066 // "pointer to cv2 T", where T is an object type or void, 7067 // "pointer to cv12 void", where cv12 is the union of cv1 and cv2; 7068 if (Composite1->isVoidType() && Composite2->isObjectType()) 7069 Composite2 = Composite1; 7070 else if (Composite2->isVoidType() && Composite1->isObjectType()) 7071 Composite1 = Composite2; 7072 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1 7073 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3), 7074 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and 7075 // T1, respectively; 7076 // 7077 // The "similar type" handling covers all of this except for the "T1 is a 7078 // base class of T2" case in the definition of reference-related. 7079 else if (IsDerivedFrom(Loc, Composite1, Composite2)) 7080 Composite1 = Composite2; 7081 else if (IsDerivedFrom(Loc, Composite2, Composite1)) 7082 Composite2 = Composite1; 7083 } 7084 7085 // At this point, either the inner types are the same or we have failed to 7086 // find a composite pointer type. 7087 if (!Context.hasSameType(Composite1, Composite2)) 7088 return QualType(); 7089 7090 // Per C++ [conv.qual]p3, add 'const' to every level before the last 7091 // differing qualifier. 7092 for (unsigned I = 0; I != NeedConstBefore; ++I) 7093 Steps[I].Quals.addConst(); 7094 7095 // Rebuild the composite type. 7096 QualType Composite = Composite1; 7097 for (auto &S : llvm::reverse(Steps)) 7098 Composite = S.rebuild(Context, Composite); 7099 7100 if (ConvertArgs) { 7101 // Convert the expressions to the composite pointer type. 7102 InitializedEntity Entity = 7103 InitializedEntity::InitializeTemporary(Composite); 7104 InitializationKind Kind = 7105 InitializationKind::CreateCopy(Loc, SourceLocation()); 7106 7107 InitializationSequence E1ToC(*this, Entity, Kind, E1); 7108 if (!E1ToC) 7109 return QualType(); 7110 7111 InitializationSequence E2ToC(*this, Entity, Kind, E2); 7112 if (!E2ToC) 7113 return QualType(); 7114 7115 // FIXME: Let the caller know if these fail to avoid duplicate diagnostics. 7116 ExprResult E1Result = E1ToC.Perform(*this, Entity, Kind, E1); 7117 if (E1Result.isInvalid()) 7118 return QualType(); 7119 E1 = E1Result.get(); 7120 7121 ExprResult E2Result = E2ToC.Perform(*this, Entity, Kind, E2); 7122 if (E2Result.isInvalid()) 7123 return QualType(); 7124 E2 = E2Result.get(); 7125 } 7126 7127 return Composite; 7128 } 7129 7130 ExprResult Sema::MaybeBindToTemporary(Expr *E) { 7131 if (!E) 7132 return ExprError(); 7133 7134 assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?"); 7135 7136 // If the result is a glvalue, we shouldn't bind it. 7137 if (E->isGLValue()) 7138 return E; 7139 7140 // In ARC, calls that return a retainable type can return retained, 7141 // in which case we have to insert a consuming cast. 7142 if (getLangOpts().ObjCAutoRefCount && 7143 E->getType()->isObjCRetainableType()) { 7144 7145 bool ReturnsRetained; 7146 7147 // For actual calls, we compute this by examining the type of the 7148 // called value. 7149 if (CallExpr *Call = dyn_cast<CallExpr>(E)) { 7150 Expr *Callee = Call->getCallee()->IgnoreParens(); 7151 QualType T = Callee->getType(); 7152 7153 if (T == Context.BoundMemberTy) { 7154 // Handle pointer-to-members. 7155 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee)) 7156 T = BinOp->getRHS()->getType(); 7157 else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee)) 7158 T = Mem->getMemberDecl()->getType(); 7159 } 7160 7161 if (const PointerType *Ptr = T->getAs<PointerType>()) 7162 T = Ptr->getPointeeType(); 7163 else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>()) 7164 T = Ptr->getPointeeType(); 7165 else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>()) 7166 T = MemPtr->getPointeeType(); 7167 7168 auto *FTy = T->castAs<FunctionType>(); 7169 ReturnsRetained = FTy->getExtInfo().getProducesResult(); 7170 7171 // ActOnStmtExpr arranges things so that StmtExprs of retainable 7172 // type always produce a +1 object. 7173 } else if (isa<StmtExpr>(E)) { 7174 ReturnsRetained = true; 7175 7176 // We hit this case with the lambda conversion-to-block optimization; 7177 // we don't want any extra casts here. 7178 } else if (isa<CastExpr>(E) && 7179 isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) { 7180 return E; 7181 7182 // For message sends and property references, we try to find an 7183 // actual method. FIXME: we should infer retention by selector in 7184 // cases where we don't have an actual method. 7185 } else { 7186 ObjCMethodDecl *D = nullptr; 7187 if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) { 7188 D = Send->getMethodDecl(); 7189 } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) { 7190 D = BoxedExpr->getBoxingMethod(); 7191 } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) { 7192 // Don't do reclaims if we're using the zero-element array 7193 // constant. 7194 if (ArrayLit->getNumElements() == 0 && 7195 Context.getLangOpts().ObjCRuntime.hasEmptyCollections()) 7196 return E; 7197 7198 D = ArrayLit->getArrayWithObjectsMethod(); 7199 } else if (ObjCDictionaryLiteral *DictLit 7200 = dyn_cast<ObjCDictionaryLiteral>(E)) { 7201 // Don't do reclaims if we're using the zero-element dictionary 7202 // constant. 7203 if (DictLit->getNumElements() == 0 && 7204 Context.getLangOpts().ObjCRuntime.hasEmptyCollections()) 7205 return E; 7206 7207 D = DictLit->getDictWithObjectsMethod(); 7208 } 7209 7210 ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>()); 7211 7212 // Don't do reclaims on performSelector calls; despite their 7213 // return type, the invoked method doesn't necessarily actually 7214 // return an object. 7215 if (!ReturnsRetained && 7216 D && D->getMethodFamily() == OMF_performSelector) 7217 return E; 7218 } 7219 7220 // Don't reclaim an object of Class type. 7221 if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType()) 7222 return E; 7223 7224 Cleanup.setExprNeedsCleanups(true); 7225 7226 CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject 7227 : CK_ARCReclaimReturnedObject); 7228 return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr, 7229 VK_PRValue, FPOptionsOverride()); 7230 } 7231 7232 if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) 7233 Cleanup.setExprNeedsCleanups(true); 7234 7235 if (!getLangOpts().CPlusPlus) 7236 return E; 7237 7238 // Search for the base element type (cf. ASTContext::getBaseElementType) with 7239 // a fast path for the common case that the type is directly a RecordType. 7240 const Type *T = Context.getCanonicalType(E->getType().getTypePtr()); 7241 const RecordType *RT = nullptr; 7242 while (!RT) { 7243 switch (T->getTypeClass()) { 7244 case Type::Record: 7245 RT = cast<RecordType>(T); 7246 break; 7247 case Type::ConstantArray: 7248 case Type::IncompleteArray: 7249 case Type::VariableArray: 7250 case Type::DependentSizedArray: 7251 T = cast<ArrayType>(T)->getElementType().getTypePtr(); 7252 break; 7253 default: 7254 return E; 7255 } 7256 } 7257 7258 // That should be enough to guarantee that this type is complete, if we're 7259 // not processing a decltype expression. 7260 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 7261 if (RD->isInvalidDecl() || RD->isDependentContext()) 7262 return E; 7263 7264 bool IsDecltype = ExprEvalContexts.back().ExprContext == 7265 ExpressionEvaluationContextRecord::EK_Decltype; 7266 CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD); 7267 7268 if (Destructor) { 7269 MarkFunctionReferenced(E->getExprLoc(), Destructor); 7270 CheckDestructorAccess(E->getExprLoc(), Destructor, 7271 PDiag(diag::err_access_dtor_temp) 7272 << E->getType()); 7273 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) 7274 return ExprError(); 7275 7276 // If destructor is trivial, we can avoid the extra copy. 7277 if (Destructor->isTrivial()) 7278 return E; 7279 7280 // We need a cleanup, but we don't need to remember the temporary. 7281 Cleanup.setExprNeedsCleanups(true); 7282 } 7283 7284 CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor); 7285 CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E); 7286 7287 if (IsDecltype) 7288 ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind); 7289 7290 return Bind; 7291 } 7292 7293 ExprResult 7294 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) { 7295 if (SubExpr.isInvalid()) 7296 return ExprError(); 7297 7298 return MaybeCreateExprWithCleanups(SubExpr.get()); 7299 } 7300 7301 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) { 7302 assert(SubExpr && "subexpression can't be null!"); 7303 7304 CleanupVarDeclMarking(); 7305 7306 unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects; 7307 assert(ExprCleanupObjects.size() >= FirstCleanup); 7308 assert(Cleanup.exprNeedsCleanups() || 7309 ExprCleanupObjects.size() == FirstCleanup); 7310 if (!Cleanup.exprNeedsCleanups()) 7311 return SubExpr; 7312 7313 auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup, 7314 ExprCleanupObjects.size() - FirstCleanup); 7315 7316 auto *E = ExprWithCleanups::Create( 7317 Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups); 7318 DiscardCleanupsInEvaluationContext(); 7319 7320 return E; 7321 } 7322 7323 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) { 7324 assert(SubStmt && "sub-statement can't be null!"); 7325 7326 CleanupVarDeclMarking(); 7327 7328 if (!Cleanup.exprNeedsCleanups()) 7329 return SubStmt; 7330 7331 // FIXME: In order to attach the temporaries, wrap the statement into 7332 // a StmtExpr; currently this is only used for asm statements. 7333 // This is hacky, either create a new CXXStmtWithTemporaries statement or 7334 // a new AsmStmtWithTemporaries. 7335 CompoundStmt *CompStmt = 7336 CompoundStmt::Create(Context, SubStmt, FPOptionsOverride(), 7337 SourceLocation(), SourceLocation()); 7338 Expr *E = new (Context) 7339 StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), SourceLocation(), 7340 /*FIXME TemplateDepth=*/0); 7341 return MaybeCreateExprWithCleanups(E); 7342 } 7343 7344 /// Process the expression contained within a decltype. For such expressions, 7345 /// certain semantic checks on temporaries are delayed until this point, and 7346 /// are omitted for the 'topmost' call in the decltype expression. If the 7347 /// topmost call bound a temporary, strip that temporary off the expression. 7348 ExprResult Sema::ActOnDecltypeExpression(Expr *E) { 7349 assert(ExprEvalContexts.back().ExprContext == 7350 ExpressionEvaluationContextRecord::EK_Decltype && 7351 "not in a decltype expression"); 7352 7353 ExprResult Result = CheckPlaceholderExpr(E); 7354 if (Result.isInvalid()) 7355 return ExprError(); 7356 E = Result.get(); 7357 7358 // C++11 [expr.call]p11: 7359 // If a function call is a prvalue of object type, 7360 // -- if the function call is either 7361 // -- the operand of a decltype-specifier, or 7362 // -- the right operand of a comma operator that is the operand of a 7363 // decltype-specifier, 7364 // a temporary object is not introduced for the prvalue. 7365 7366 // Recursively rebuild ParenExprs and comma expressions to strip out the 7367 // outermost CXXBindTemporaryExpr, if any. 7368 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 7369 ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr()); 7370 if (SubExpr.isInvalid()) 7371 return ExprError(); 7372 if (SubExpr.get() == PE->getSubExpr()) 7373 return E; 7374 return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get()); 7375 } 7376 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 7377 if (BO->getOpcode() == BO_Comma) { 7378 ExprResult RHS = ActOnDecltypeExpression(BO->getRHS()); 7379 if (RHS.isInvalid()) 7380 return ExprError(); 7381 if (RHS.get() == BO->getRHS()) 7382 return E; 7383 return BinaryOperator::Create(Context, BO->getLHS(), RHS.get(), BO_Comma, 7384 BO->getType(), BO->getValueKind(), 7385 BO->getObjectKind(), BO->getOperatorLoc(), 7386 BO->getFPFeatures(getLangOpts())); 7387 } 7388 } 7389 7390 CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E); 7391 CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr()) 7392 : nullptr; 7393 if (TopCall) 7394 E = TopCall; 7395 else 7396 TopBind = nullptr; 7397 7398 // Disable the special decltype handling now. 7399 ExprEvalContexts.back().ExprContext = 7400 ExpressionEvaluationContextRecord::EK_Other; 7401 7402 Result = CheckUnevaluatedOperand(E); 7403 if (Result.isInvalid()) 7404 return ExprError(); 7405 E = Result.get(); 7406 7407 // In MS mode, don't perform any extra checking of call return types within a 7408 // decltype expression. 7409 if (getLangOpts().MSVCCompat) 7410 return E; 7411 7412 // Perform the semantic checks we delayed until this point. 7413 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size(); 7414 I != N; ++I) { 7415 CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I]; 7416 if (Call == TopCall) 7417 continue; 7418 7419 if (CheckCallReturnType(Call->getCallReturnType(Context), 7420 Call->getBeginLoc(), Call, Call->getDirectCallee())) 7421 return ExprError(); 7422 } 7423 7424 // Now all relevant types are complete, check the destructors are accessible 7425 // and non-deleted, and annotate them on the temporaries. 7426 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size(); 7427 I != N; ++I) { 7428 CXXBindTemporaryExpr *Bind = 7429 ExprEvalContexts.back().DelayedDecltypeBinds[I]; 7430 if (Bind == TopBind) 7431 continue; 7432 7433 CXXTemporary *Temp = Bind->getTemporary(); 7434 7435 CXXRecordDecl *RD = 7436 Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 7437 CXXDestructorDecl *Destructor = LookupDestructor(RD); 7438 Temp->setDestructor(Destructor); 7439 7440 MarkFunctionReferenced(Bind->getExprLoc(), Destructor); 7441 CheckDestructorAccess(Bind->getExprLoc(), Destructor, 7442 PDiag(diag::err_access_dtor_temp) 7443 << Bind->getType()); 7444 if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc())) 7445 return ExprError(); 7446 7447 // We need a cleanup, but we don't need to remember the temporary. 7448 Cleanup.setExprNeedsCleanups(true); 7449 } 7450 7451 // Possibly strip off the top CXXBindTemporaryExpr. 7452 return E; 7453 } 7454 7455 /// Note a set of 'operator->' functions that were used for a member access. 7456 static void noteOperatorArrows(Sema &S, 7457 ArrayRef<FunctionDecl *> OperatorArrows) { 7458 unsigned SkipStart = OperatorArrows.size(), SkipCount = 0; 7459 // FIXME: Make this configurable? 7460 unsigned Limit = 9; 7461 if (OperatorArrows.size() > Limit) { 7462 // Produce Limit-1 normal notes and one 'skipping' note. 7463 SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2; 7464 SkipCount = OperatorArrows.size() - (Limit - 1); 7465 } 7466 7467 for (unsigned I = 0; I < OperatorArrows.size(); /**/) { 7468 if (I == SkipStart) { 7469 S.Diag(OperatorArrows[I]->getLocation(), 7470 diag::note_operator_arrows_suppressed) 7471 << SkipCount; 7472 I += SkipCount; 7473 } else { 7474 S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here) 7475 << OperatorArrows[I]->getCallResultType(); 7476 ++I; 7477 } 7478 } 7479 } 7480 7481 ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, 7482 SourceLocation OpLoc, 7483 tok::TokenKind OpKind, 7484 ParsedType &ObjectType, 7485 bool &MayBePseudoDestructor) { 7486 // Since this might be a postfix expression, get rid of ParenListExprs. 7487 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); 7488 if (Result.isInvalid()) return ExprError(); 7489 Base = Result.get(); 7490 7491 Result = CheckPlaceholderExpr(Base); 7492 if (Result.isInvalid()) return ExprError(); 7493 Base = Result.get(); 7494 7495 QualType BaseType = Base->getType(); 7496 MayBePseudoDestructor = false; 7497 if (BaseType->isDependentType()) { 7498 // If we have a pointer to a dependent type and are using the -> operator, 7499 // the object type is the type that the pointer points to. We might still 7500 // have enough information about that type to do something useful. 7501 if (OpKind == tok::arrow) 7502 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) 7503 BaseType = Ptr->getPointeeType(); 7504 7505 ObjectType = ParsedType::make(BaseType); 7506 MayBePseudoDestructor = true; 7507 return Base; 7508 } 7509 7510 // C++ [over.match.oper]p8: 7511 // [...] When operator->returns, the operator-> is applied to the value 7512 // returned, with the original second operand. 7513 if (OpKind == tok::arrow) { 7514 QualType StartingType = BaseType; 7515 bool NoArrowOperatorFound = false; 7516 bool FirstIteration = true; 7517 FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext); 7518 // The set of types we've considered so far. 7519 llvm::SmallPtrSet<CanQualType,8> CTypes; 7520 SmallVector<FunctionDecl*, 8> OperatorArrows; 7521 CTypes.insert(Context.getCanonicalType(BaseType)); 7522 7523 while (BaseType->isRecordType()) { 7524 if (OperatorArrows.size() >= getLangOpts().ArrowDepth) { 7525 Diag(OpLoc, diag::err_operator_arrow_depth_exceeded) 7526 << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange(); 7527 noteOperatorArrows(*this, OperatorArrows); 7528 Diag(OpLoc, diag::note_operator_arrow_depth) 7529 << getLangOpts().ArrowDepth; 7530 return ExprError(); 7531 } 7532 7533 Result = BuildOverloadedArrowExpr( 7534 S, Base, OpLoc, 7535 // When in a template specialization and on the first loop iteration, 7536 // potentially give the default diagnostic (with the fixit in a 7537 // separate note) instead of having the error reported back to here 7538 // and giving a diagnostic with a fixit attached to the error itself. 7539 (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization()) 7540 ? nullptr 7541 : &NoArrowOperatorFound); 7542 if (Result.isInvalid()) { 7543 if (NoArrowOperatorFound) { 7544 if (FirstIteration) { 7545 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 7546 << BaseType << 1 << Base->getSourceRange() 7547 << FixItHint::CreateReplacement(OpLoc, "."); 7548 OpKind = tok::period; 7549 break; 7550 } 7551 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 7552 << BaseType << Base->getSourceRange(); 7553 CallExpr *CE = dyn_cast<CallExpr>(Base); 7554 if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) { 7555 Diag(CD->getBeginLoc(), 7556 diag::note_member_reference_arrow_from_operator_arrow); 7557 } 7558 } 7559 return ExprError(); 7560 } 7561 Base = Result.get(); 7562 if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base)) 7563 OperatorArrows.push_back(OpCall->getDirectCallee()); 7564 BaseType = Base->getType(); 7565 CanQualType CBaseType = Context.getCanonicalType(BaseType); 7566 if (!CTypes.insert(CBaseType).second) { 7567 Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType; 7568 noteOperatorArrows(*this, OperatorArrows); 7569 return ExprError(); 7570 } 7571 FirstIteration = false; 7572 } 7573 7574 if (OpKind == tok::arrow) { 7575 if (BaseType->isPointerType()) 7576 BaseType = BaseType->getPointeeType(); 7577 else if (auto *AT = Context.getAsArrayType(BaseType)) 7578 BaseType = AT->getElementType(); 7579 } 7580 } 7581 7582 // Objective-C properties allow "." access on Objective-C pointer types, 7583 // so adjust the base type to the object type itself. 7584 if (BaseType->isObjCObjectPointerType()) 7585 BaseType = BaseType->getPointeeType(); 7586 7587 // C++ [basic.lookup.classref]p2: 7588 // [...] If the type of the object expression is of pointer to scalar 7589 // type, the unqualified-id is looked up in the context of the complete 7590 // postfix-expression. 7591 // 7592 // This also indicates that we could be parsing a pseudo-destructor-name. 7593 // Note that Objective-C class and object types can be pseudo-destructor 7594 // expressions or normal member (ivar or property) access expressions, and 7595 // it's legal for the type to be incomplete if this is a pseudo-destructor 7596 // call. We'll do more incomplete-type checks later in the lookup process, 7597 // so just skip this check for ObjC types. 7598 if (!BaseType->isRecordType()) { 7599 ObjectType = ParsedType::make(BaseType); 7600 MayBePseudoDestructor = true; 7601 return Base; 7602 } 7603 7604 // The object type must be complete (or dependent), or 7605 // C++11 [expr.prim.general]p3: 7606 // Unlike the object expression in other contexts, *this is not required to 7607 // be of complete type for purposes of class member access (5.2.5) outside 7608 // the member function body. 7609 if (!BaseType->isDependentType() && 7610 !isThisOutsideMemberFunctionBody(BaseType) && 7611 RequireCompleteType(OpLoc, BaseType, 7612 diag::err_incomplete_member_access)) { 7613 return CreateRecoveryExpr(Base->getBeginLoc(), Base->getEndLoc(), {Base}); 7614 } 7615 7616 // C++ [basic.lookup.classref]p2: 7617 // If the id-expression in a class member access (5.2.5) is an 7618 // unqualified-id, and the type of the object expression is of a class 7619 // type C (or of pointer to a class type C), the unqualified-id is looked 7620 // up in the scope of class C. [...] 7621 ObjectType = ParsedType::make(BaseType); 7622 return Base; 7623 } 7624 7625 static bool CheckArrow(Sema &S, QualType &ObjectType, Expr *&Base, 7626 tok::TokenKind &OpKind, SourceLocation OpLoc) { 7627 if (Base->hasPlaceholderType()) { 7628 ExprResult result = S.CheckPlaceholderExpr(Base); 7629 if (result.isInvalid()) return true; 7630 Base = result.get(); 7631 } 7632 ObjectType = Base->getType(); 7633 7634 // C++ [expr.pseudo]p2: 7635 // The left-hand side of the dot operator shall be of scalar type. The 7636 // left-hand side of the arrow operator shall be of pointer to scalar type. 7637 // This scalar type is the object type. 7638 // Note that this is rather different from the normal handling for the 7639 // arrow operator. 7640 if (OpKind == tok::arrow) { 7641 // The operator requires a prvalue, so perform lvalue conversions. 7642 // Only do this if we might plausibly end with a pointer, as otherwise 7643 // this was likely to be intended to be a '.'. 7644 if (ObjectType->isPointerType() || ObjectType->isArrayType() || 7645 ObjectType->isFunctionType()) { 7646 ExprResult BaseResult = S.DefaultFunctionArrayLvalueConversion(Base); 7647 if (BaseResult.isInvalid()) 7648 return true; 7649 Base = BaseResult.get(); 7650 ObjectType = Base->getType(); 7651 } 7652 7653 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) { 7654 ObjectType = Ptr->getPointeeType(); 7655 } else if (!Base->isTypeDependent()) { 7656 // The user wrote "p->" when they probably meant "p."; fix it. 7657 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 7658 << ObjectType << true 7659 << FixItHint::CreateReplacement(OpLoc, "."); 7660 if (S.isSFINAEContext()) 7661 return true; 7662 7663 OpKind = tok::period; 7664 } 7665 } 7666 7667 return false; 7668 } 7669 7670 /// Check if it's ok to try and recover dot pseudo destructor calls on 7671 /// pointer objects. 7672 static bool 7673 canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef, 7674 QualType DestructedType) { 7675 // If this is a record type, check if its destructor is callable. 7676 if (auto *RD = DestructedType->getAsCXXRecordDecl()) { 7677 if (RD->hasDefinition()) 7678 if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD)) 7679 return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false); 7680 return false; 7681 } 7682 7683 // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor. 7684 return DestructedType->isDependentType() || DestructedType->isScalarType() || 7685 DestructedType->isVectorType(); 7686 } 7687 7688 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base, 7689 SourceLocation OpLoc, 7690 tok::TokenKind OpKind, 7691 const CXXScopeSpec &SS, 7692 TypeSourceInfo *ScopeTypeInfo, 7693 SourceLocation CCLoc, 7694 SourceLocation TildeLoc, 7695 PseudoDestructorTypeStorage Destructed) { 7696 TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo(); 7697 7698 QualType ObjectType; 7699 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 7700 return ExprError(); 7701 7702 if (!ObjectType->isDependentType() && !ObjectType->isScalarType() && 7703 !ObjectType->isVectorType()) { 7704 if (getLangOpts().MSVCCompat && ObjectType->isVoidType()) 7705 Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange(); 7706 else { 7707 Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar) 7708 << ObjectType << Base->getSourceRange(); 7709 return ExprError(); 7710 } 7711 } 7712 7713 // C++ [expr.pseudo]p2: 7714 // [...] The cv-unqualified versions of the object type and of the type 7715 // designated by the pseudo-destructor-name shall be the same type. 7716 if (DestructedTypeInfo) { 7717 QualType DestructedType = DestructedTypeInfo->getType(); 7718 SourceLocation DestructedTypeStart 7719 = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(); 7720 if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) { 7721 if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) { 7722 // Detect dot pseudo destructor calls on pointer objects, e.g.: 7723 // Foo *foo; 7724 // foo.~Foo(); 7725 if (OpKind == tok::period && ObjectType->isPointerType() && 7726 Context.hasSameUnqualifiedType(DestructedType, 7727 ObjectType->getPointeeType())) { 7728 auto Diagnostic = 7729 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 7730 << ObjectType << /*IsArrow=*/0 << Base->getSourceRange(); 7731 7732 // Issue a fixit only when the destructor is valid. 7733 if (canRecoverDotPseudoDestructorCallsOnPointerObjects( 7734 *this, DestructedType)) 7735 Diagnostic << FixItHint::CreateReplacement(OpLoc, "->"); 7736 7737 // Recover by setting the object type to the destructed type and the 7738 // operator to '->'. 7739 ObjectType = DestructedType; 7740 OpKind = tok::arrow; 7741 } else { 7742 Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch) 7743 << ObjectType << DestructedType << Base->getSourceRange() 7744 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); 7745 7746 // Recover by setting the destructed type to the object type. 7747 DestructedType = ObjectType; 7748 DestructedTypeInfo = 7749 Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart); 7750 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 7751 } 7752 } else if (DestructedType.getObjCLifetime() != 7753 ObjectType.getObjCLifetime()) { 7754 7755 if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) { 7756 // Okay: just pretend that the user provided the correctly-qualified 7757 // type. 7758 } else { 7759 Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals) 7760 << ObjectType << DestructedType << Base->getSourceRange() 7761 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); 7762 } 7763 7764 // Recover by setting the destructed type to the object type. 7765 DestructedType = ObjectType; 7766 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType, 7767 DestructedTypeStart); 7768 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 7769 } 7770 } 7771 } 7772 7773 // C++ [expr.pseudo]p2: 7774 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the 7775 // form 7776 // 7777 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name 7778 // 7779 // shall designate the same scalar type. 7780 if (ScopeTypeInfo) { 7781 QualType ScopeType = ScopeTypeInfo->getType(); 7782 if (!ScopeType->isDependentType() && !ObjectType->isDependentType() && 7783 !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) { 7784 7785 Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(), 7786 diag::err_pseudo_dtor_type_mismatch) 7787 << ObjectType << ScopeType << Base->getSourceRange() 7788 << ScopeTypeInfo->getTypeLoc().getLocalSourceRange(); 7789 7790 ScopeType = QualType(); 7791 ScopeTypeInfo = nullptr; 7792 } 7793 } 7794 7795 Expr *Result 7796 = new (Context) CXXPseudoDestructorExpr(Context, Base, 7797 OpKind == tok::arrow, OpLoc, 7798 SS.getWithLocInContext(Context), 7799 ScopeTypeInfo, 7800 CCLoc, 7801 TildeLoc, 7802 Destructed); 7803 7804 return Result; 7805 } 7806 7807 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, 7808 SourceLocation OpLoc, 7809 tok::TokenKind OpKind, 7810 CXXScopeSpec &SS, 7811 UnqualifiedId &FirstTypeName, 7812 SourceLocation CCLoc, 7813 SourceLocation TildeLoc, 7814 UnqualifiedId &SecondTypeName) { 7815 assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || 7816 FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && 7817 "Invalid first type name in pseudo-destructor"); 7818 assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || 7819 SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && 7820 "Invalid second type name in pseudo-destructor"); 7821 7822 QualType ObjectType; 7823 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 7824 return ExprError(); 7825 7826 // Compute the object type that we should use for name lookup purposes. Only 7827 // record types and dependent types matter. 7828 ParsedType ObjectTypePtrForLookup; 7829 if (!SS.isSet()) { 7830 if (ObjectType->isRecordType()) 7831 ObjectTypePtrForLookup = ParsedType::make(ObjectType); 7832 else if (ObjectType->isDependentType()) 7833 ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy); 7834 } 7835 7836 // Convert the name of the type being destructed (following the ~) into a 7837 // type (with source-location information). 7838 QualType DestructedType; 7839 TypeSourceInfo *DestructedTypeInfo = nullptr; 7840 PseudoDestructorTypeStorage Destructed; 7841 if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) { 7842 ParsedType T = getTypeName(*SecondTypeName.Identifier, 7843 SecondTypeName.StartLocation, 7844 S, &SS, true, false, ObjectTypePtrForLookup, 7845 /*IsCtorOrDtorName*/true); 7846 if (!T && 7847 ((SS.isSet() && !computeDeclContext(SS, false)) || 7848 (!SS.isSet() && ObjectType->isDependentType()))) { 7849 // The name of the type being destroyed is a dependent name, and we 7850 // couldn't find anything useful in scope. Just store the identifier and 7851 // it's location, and we'll perform (qualified) name lookup again at 7852 // template instantiation time. 7853 Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier, 7854 SecondTypeName.StartLocation); 7855 } else if (!T) { 7856 Diag(SecondTypeName.StartLocation, 7857 diag::err_pseudo_dtor_destructor_non_type) 7858 << SecondTypeName.Identifier << ObjectType; 7859 if (isSFINAEContext()) 7860 return ExprError(); 7861 7862 // Recover by assuming we had the right type all along. 7863 DestructedType = ObjectType; 7864 } else 7865 DestructedType = GetTypeFromParser(T, &DestructedTypeInfo); 7866 } else { 7867 // Resolve the template-id to a type. 7868 TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId; 7869 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 7870 TemplateId->NumArgs); 7871 TypeResult T = ActOnTemplateIdType(S, 7872 SS, 7873 TemplateId->TemplateKWLoc, 7874 TemplateId->Template, 7875 TemplateId->Name, 7876 TemplateId->TemplateNameLoc, 7877 TemplateId->LAngleLoc, 7878 TemplateArgsPtr, 7879 TemplateId->RAngleLoc, 7880 /*IsCtorOrDtorName*/true); 7881 if (T.isInvalid() || !T.get()) { 7882 // Recover by assuming we had the right type all along. 7883 DestructedType = ObjectType; 7884 } else 7885 DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo); 7886 } 7887 7888 // If we've performed some kind of recovery, (re-)build the type source 7889 // information. 7890 if (!DestructedType.isNull()) { 7891 if (!DestructedTypeInfo) 7892 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType, 7893 SecondTypeName.StartLocation); 7894 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 7895 } 7896 7897 // Convert the name of the scope type (the type prior to '::') into a type. 7898 TypeSourceInfo *ScopeTypeInfo = nullptr; 7899 QualType ScopeType; 7900 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || 7901 FirstTypeName.Identifier) { 7902 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) { 7903 ParsedType T = getTypeName(*FirstTypeName.Identifier, 7904 FirstTypeName.StartLocation, 7905 S, &SS, true, false, ObjectTypePtrForLookup, 7906 /*IsCtorOrDtorName*/true); 7907 if (!T) { 7908 Diag(FirstTypeName.StartLocation, 7909 diag::err_pseudo_dtor_destructor_non_type) 7910 << FirstTypeName.Identifier << ObjectType; 7911 7912 if (isSFINAEContext()) 7913 return ExprError(); 7914 7915 // Just drop this type. It's unnecessary anyway. 7916 ScopeType = QualType(); 7917 } else 7918 ScopeType = GetTypeFromParser(T, &ScopeTypeInfo); 7919 } else { 7920 // Resolve the template-id to a type. 7921 TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId; 7922 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 7923 TemplateId->NumArgs); 7924 TypeResult T = ActOnTemplateIdType(S, 7925 SS, 7926 TemplateId->TemplateKWLoc, 7927 TemplateId->Template, 7928 TemplateId->Name, 7929 TemplateId->TemplateNameLoc, 7930 TemplateId->LAngleLoc, 7931 TemplateArgsPtr, 7932 TemplateId->RAngleLoc, 7933 /*IsCtorOrDtorName*/true); 7934 if (T.isInvalid() || !T.get()) { 7935 // Recover by dropping this type. 7936 ScopeType = QualType(); 7937 } else 7938 ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo); 7939 } 7940 } 7941 7942 if (!ScopeType.isNull() && !ScopeTypeInfo) 7943 ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType, 7944 FirstTypeName.StartLocation); 7945 7946 7947 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS, 7948 ScopeTypeInfo, CCLoc, TildeLoc, 7949 Destructed); 7950 } 7951 7952 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, 7953 SourceLocation OpLoc, 7954 tok::TokenKind OpKind, 7955 SourceLocation TildeLoc, 7956 const DeclSpec& DS) { 7957 QualType ObjectType; 7958 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 7959 return ExprError(); 7960 7961 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) { 7962 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); 7963 return true; 7964 } 7965 7966 QualType T = BuildDecltypeType(DS.getRepAsExpr(), /*AsUnevaluated=*/false); 7967 7968 TypeLocBuilder TLB; 7969 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T); 7970 DecltypeTL.setDecltypeLoc(DS.getTypeSpecTypeLoc()); 7971 DecltypeTL.setRParenLoc(DS.getTypeofParensRange().getEnd()); 7972 TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T); 7973 PseudoDestructorTypeStorage Destructed(DestructedTypeInfo); 7974 7975 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(), 7976 nullptr, SourceLocation(), TildeLoc, 7977 Destructed); 7978 } 7979 7980 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl, 7981 CXXConversionDecl *Method, 7982 bool HadMultipleCandidates) { 7983 // Convert the expression to match the conversion function's implicit object 7984 // parameter. 7985 ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr, 7986 FoundDecl, Method); 7987 if (Exp.isInvalid()) 7988 return true; 7989 7990 if (Method->getParent()->isLambda() && 7991 Method->getConversionType()->isBlockPointerType()) { 7992 // This is a lambda conversion to block pointer; check if the argument 7993 // was a LambdaExpr. 7994 Expr *SubE = E; 7995 CastExpr *CE = dyn_cast<CastExpr>(SubE); 7996 if (CE && CE->getCastKind() == CK_NoOp) 7997 SubE = CE->getSubExpr(); 7998 SubE = SubE->IgnoreParens(); 7999 if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE)) 8000 SubE = BE->getSubExpr(); 8001 if (isa<LambdaExpr>(SubE)) { 8002 // For the conversion to block pointer on a lambda expression, we 8003 // construct a special BlockLiteral instead; this doesn't really make 8004 // a difference in ARC, but outside of ARC the resulting block literal 8005 // follows the normal lifetime rules for block literals instead of being 8006 // autoreleased. 8007 PushExpressionEvaluationContext( 8008 ExpressionEvaluationContext::PotentiallyEvaluated); 8009 ExprResult BlockExp = BuildBlockForLambdaConversion( 8010 Exp.get()->getExprLoc(), Exp.get()->getExprLoc(), Method, Exp.get()); 8011 PopExpressionEvaluationContext(); 8012 8013 // FIXME: This note should be produced by a CodeSynthesisContext. 8014 if (BlockExp.isInvalid()) 8015 Diag(Exp.get()->getExprLoc(), diag::note_lambda_to_block_conv); 8016 return BlockExp; 8017 } 8018 } 8019 8020 MemberExpr *ME = 8021 BuildMemberExpr(Exp.get(), /*IsArrow=*/false, SourceLocation(), 8022 NestedNameSpecifierLoc(), SourceLocation(), Method, 8023 DeclAccessPair::make(FoundDecl, FoundDecl->getAccess()), 8024 HadMultipleCandidates, DeclarationNameInfo(), 8025 Context.BoundMemberTy, VK_PRValue, OK_Ordinary); 8026 8027 QualType ResultType = Method->getReturnType(); 8028 ExprValueKind VK = Expr::getValueKindForType(ResultType); 8029 ResultType = ResultType.getNonLValueExprType(Context); 8030 8031 CXXMemberCallExpr *CE = CXXMemberCallExpr::Create( 8032 Context, ME, /*Args=*/{}, ResultType, VK, Exp.get()->getEndLoc(), 8033 CurFPFeatureOverrides()); 8034 8035 if (CheckFunctionCall(Method, CE, 8036 Method->getType()->castAs<FunctionProtoType>())) 8037 return ExprError(); 8038 8039 return CheckForImmediateInvocation(CE, CE->getMethodDecl()); 8040 } 8041 8042 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand, 8043 SourceLocation RParen) { 8044 // If the operand is an unresolved lookup expression, the expression is ill- 8045 // formed per [over.over]p1, because overloaded function names cannot be used 8046 // without arguments except in explicit contexts. 8047 ExprResult R = CheckPlaceholderExpr(Operand); 8048 if (R.isInvalid()) 8049 return R; 8050 8051 R = CheckUnevaluatedOperand(R.get()); 8052 if (R.isInvalid()) 8053 return ExprError(); 8054 8055 Operand = R.get(); 8056 8057 if (!inTemplateInstantiation() && !Operand->isInstantiationDependent() && 8058 Operand->HasSideEffects(Context, false)) { 8059 // The expression operand for noexcept is in an unevaluated expression 8060 // context, so side effects could result in unintended consequences. 8061 Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context); 8062 } 8063 8064 CanThrowResult CanThrow = canThrow(Operand); 8065 return new (Context) 8066 CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen); 8067 } 8068 8069 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation, 8070 Expr *Operand, SourceLocation RParen) { 8071 return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen); 8072 } 8073 8074 static void MaybeDecrementCount( 8075 Expr *E, llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) { 8076 DeclRefExpr *LHS = nullptr; 8077 bool IsCompoundAssign = false; 8078 bool isIncrementDecrementUnaryOp = false; 8079 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 8080 if (BO->getLHS()->getType()->isDependentType() || 8081 BO->getRHS()->getType()->isDependentType()) { 8082 if (BO->getOpcode() != BO_Assign) 8083 return; 8084 } else if (!BO->isAssignmentOp()) 8085 return; 8086 else 8087 IsCompoundAssign = BO->isCompoundAssignmentOp(); 8088 LHS = dyn_cast<DeclRefExpr>(BO->getLHS()); 8089 } else if (CXXOperatorCallExpr *COCE = dyn_cast<CXXOperatorCallExpr>(E)) { 8090 if (COCE->getOperator() != OO_Equal) 8091 return; 8092 LHS = dyn_cast<DeclRefExpr>(COCE->getArg(0)); 8093 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 8094 if (!UO->isIncrementDecrementOp()) 8095 return; 8096 isIncrementDecrementUnaryOp = true; 8097 LHS = dyn_cast<DeclRefExpr>(UO->getSubExpr()); 8098 } 8099 if (!LHS) 8100 return; 8101 VarDecl *VD = dyn_cast<VarDecl>(LHS->getDecl()); 8102 if (!VD) 8103 return; 8104 // Don't decrement RefsMinusAssignments if volatile variable with compound 8105 // assignment (+=, ...) or increment/decrement unary operator to avoid 8106 // potential unused-but-set-variable warning. 8107 if ((IsCompoundAssign || isIncrementDecrementUnaryOp) && 8108 VD->getType().isVolatileQualified()) 8109 return; 8110 auto iter = RefsMinusAssignments.find(VD); 8111 if (iter == RefsMinusAssignments.end()) 8112 return; 8113 iter->getSecond()--; 8114 } 8115 8116 /// Perform the conversions required for an expression used in a 8117 /// context that ignores the result. 8118 ExprResult Sema::IgnoredValueConversions(Expr *E) { 8119 MaybeDecrementCount(E, RefsMinusAssignments); 8120 8121 if (E->hasPlaceholderType()) { 8122 ExprResult result = CheckPlaceholderExpr(E); 8123 if (result.isInvalid()) return E; 8124 E = result.get(); 8125 } 8126 8127 // C99 6.3.2.1: 8128 // [Except in specific positions,] an lvalue that does not have 8129 // array type is converted to the value stored in the 8130 // designated object (and is no longer an lvalue). 8131 if (E->isPRValue()) { 8132 // In C, function designators (i.e. expressions of function type) 8133 // are r-values, but we still want to do function-to-pointer decay 8134 // on them. This is both technically correct and convenient for 8135 // some clients. 8136 if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType()) 8137 return DefaultFunctionArrayConversion(E); 8138 8139 return E; 8140 } 8141 8142 if (getLangOpts().CPlusPlus) { 8143 // The C++11 standard defines the notion of a discarded-value expression; 8144 // normally, we don't need to do anything to handle it, but if it is a 8145 // volatile lvalue with a special form, we perform an lvalue-to-rvalue 8146 // conversion. 8147 if (getLangOpts().CPlusPlus11 && E->isReadIfDiscardedInCPlusPlus11()) { 8148 ExprResult Res = DefaultLvalueConversion(E); 8149 if (Res.isInvalid()) 8150 return E; 8151 E = Res.get(); 8152 } else { 8153 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if 8154 // it occurs as a discarded-value expression. 8155 CheckUnusedVolatileAssignment(E); 8156 } 8157 8158 // C++1z: 8159 // If the expression is a prvalue after this optional conversion, the 8160 // temporary materialization conversion is applied. 8161 // 8162 // We skip this step: IR generation is able to synthesize the storage for 8163 // itself in the aggregate case, and adding the extra node to the AST is 8164 // just clutter. 8165 // FIXME: We don't emit lifetime markers for the temporaries due to this. 8166 // FIXME: Do any other AST consumers care about this? 8167 return E; 8168 } 8169 8170 // GCC seems to also exclude expressions of incomplete enum type. 8171 if (const EnumType *T = E->getType()->getAs<EnumType>()) { 8172 if (!T->getDecl()->isComplete()) { 8173 // FIXME: stupid workaround for a codegen bug! 8174 E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get(); 8175 return E; 8176 } 8177 } 8178 8179 ExprResult Res = DefaultFunctionArrayLvalueConversion(E); 8180 if (Res.isInvalid()) 8181 return E; 8182 E = Res.get(); 8183 8184 if (!E->getType()->isVoidType()) 8185 RequireCompleteType(E->getExprLoc(), E->getType(), 8186 diag::err_incomplete_type); 8187 return E; 8188 } 8189 8190 ExprResult Sema::CheckUnevaluatedOperand(Expr *E) { 8191 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if 8192 // it occurs as an unevaluated operand. 8193 CheckUnusedVolatileAssignment(E); 8194 8195 return E; 8196 } 8197 8198 // If we can unambiguously determine whether Var can never be used 8199 // in a constant expression, return true. 8200 // - if the variable and its initializer are non-dependent, then 8201 // we can unambiguously check if the variable is a constant expression. 8202 // - if the initializer is not value dependent - we can determine whether 8203 // it can be used to initialize a constant expression. If Init can not 8204 // be used to initialize a constant expression we conclude that Var can 8205 // never be a constant expression. 8206 // - FXIME: if the initializer is dependent, we can still do some analysis and 8207 // identify certain cases unambiguously as non-const by using a Visitor: 8208 // - such as those that involve odr-use of a ParmVarDecl, involve a new 8209 // delete, lambda-expr, dynamic-cast, reinterpret-cast etc... 8210 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var, 8211 ASTContext &Context) { 8212 if (isa<ParmVarDecl>(Var)) return true; 8213 const VarDecl *DefVD = nullptr; 8214 8215 // If there is no initializer - this can not be a constant expression. 8216 if (!Var->getAnyInitializer(DefVD)) return true; 8217 assert(DefVD); 8218 if (DefVD->isWeak()) return false; 8219 EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt(); 8220 8221 Expr *Init = cast<Expr>(Eval->Value); 8222 8223 if (Var->getType()->isDependentType() || Init->isValueDependent()) { 8224 // FIXME: Teach the constant evaluator to deal with the non-dependent parts 8225 // of value-dependent expressions, and use it here to determine whether the 8226 // initializer is a potential constant expression. 8227 return false; 8228 } 8229 8230 return !Var->isUsableInConstantExpressions(Context); 8231 } 8232 8233 /// Check if the current lambda has any potential captures 8234 /// that must be captured by any of its enclosing lambdas that are ready to 8235 /// capture. If there is a lambda that can capture a nested 8236 /// potential-capture, go ahead and do so. Also, check to see if any 8237 /// variables are uncaptureable or do not involve an odr-use so do not 8238 /// need to be captured. 8239 8240 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures( 8241 Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) { 8242 8243 assert(!S.isUnevaluatedContext()); 8244 assert(S.CurContext->isDependentContext()); 8245 #ifndef NDEBUG 8246 DeclContext *DC = S.CurContext; 8247 while (DC && isa<CapturedDecl>(DC)) 8248 DC = DC->getParent(); 8249 assert( 8250 CurrentLSI->CallOperator == DC && 8251 "The current call operator must be synchronized with Sema's CurContext"); 8252 #endif // NDEBUG 8253 8254 const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent(); 8255 8256 // All the potentially captureable variables in the current nested 8257 // lambda (within a generic outer lambda), must be captured by an 8258 // outer lambda that is enclosed within a non-dependent context. 8259 CurrentLSI->visitPotentialCaptures([&] (VarDecl *Var, Expr *VarExpr) { 8260 // If the variable is clearly identified as non-odr-used and the full 8261 // expression is not instantiation dependent, only then do we not 8262 // need to check enclosing lambda's for speculative captures. 8263 // For e.g.: 8264 // Even though 'x' is not odr-used, it should be captured. 8265 // int test() { 8266 // const int x = 10; 8267 // auto L = [=](auto a) { 8268 // (void) +x + a; 8269 // }; 8270 // } 8271 if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) && 8272 !IsFullExprInstantiationDependent) 8273 return; 8274 8275 // If we have a capture-capable lambda for the variable, go ahead and 8276 // capture the variable in that lambda (and all its enclosing lambdas). 8277 if (const Optional<unsigned> Index = 8278 getStackIndexOfNearestEnclosingCaptureCapableLambda( 8279 S.FunctionScopes, Var, S)) 8280 S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(), *Index); 8281 const bool IsVarNeverAConstantExpression = 8282 VariableCanNeverBeAConstantExpression(Var, S.Context); 8283 if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) { 8284 // This full expression is not instantiation dependent or the variable 8285 // can not be used in a constant expression - which means 8286 // this variable must be odr-used here, so diagnose a 8287 // capture violation early, if the variable is un-captureable. 8288 // This is purely for diagnosing errors early. Otherwise, this 8289 // error would get diagnosed when the lambda becomes capture ready. 8290 QualType CaptureType, DeclRefType; 8291 SourceLocation ExprLoc = VarExpr->getExprLoc(); 8292 if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, 8293 /*EllipsisLoc*/ SourceLocation(), 8294 /*BuildAndDiagnose*/false, CaptureType, 8295 DeclRefType, nullptr)) { 8296 // We will never be able to capture this variable, and we need 8297 // to be able to in any and all instantiations, so diagnose it. 8298 S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, 8299 /*EllipsisLoc*/ SourceLocation(), 8300 /*BuildAndDiagnose*/true, CaptureType, 8301 DeclRefType, nullptr); 8302 } 8303 } 8304 }); 8305 8306 // Check if 'this' needs to be captured. 8307 if (CurrentLSI->hasPotentialThisCapture()) { 8308 // If we have a capture-capable lambda for 'this', go ahead and capture 8309 // 'this' in that lambda (and all its enclosing lambdas). 8310 if (const Optional<unsigned> Index = 8311 getStackIndexOfNearestEnclosingCaptureCapableLambda( 8312 S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) { 8313 const unsigned FunctionScopeIndexOfCapturableLambda = *Index; 8314 S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation, 8315 /*Explicit*/ false, /*BuildAndDiagnose*/ true, 8316 &FunctionScopeIndexOfCapturableLambda); 8317 } 8318 } 8319 8320 // Reset all the potential captures at the end of each full-expression. 8321 CurrentLSI->clearPotentialCaptures(); 8322 } 8323 8324 static ExprResult attemptRecovery(Sema &SemaRef, 8325 const TypoCorrectionConsumer &Consumer, 8326 const TypoCorrection &TC) { 8327 LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(), 8328 Consumer.getLookupResult().getLookupKind()); 8329 const CXXScopeSpec *SS = Consumer.getSS(); 8330 CXXScopeSpec NewSS; 8331 8332 // Use an approprate CXXScopeSpec for building the expr. 8333 if (auto *NNS = TC.getCorrectionSpecifier()) 8334 NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange()); 8335 else if (SS && !TC.WillReplaceSpecifier()) 8336 NewSS = *SS; 8337 8338 if (auto *ND = TC.getFoundDecl()) { 8339 R.setLookupName(ND->getDeclName()); 8340 R.addDecl(ND); 8341 if (ND->isCXXClassMember()) { 8342 // Figure out the correct naming class to add to the LookupResult. 8343 CXXRecordDecl *Record = nullptr; 8344 if (auto *NNS = TC.getCorrectionSpecifier()) 8345 Record = NNS->getAsType()->getAsCXXRecordDecl(); 8346 if (!Record) 8347 Record = 8348 dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext()); 8349 if (Record) 8350 R.setNamingClass(Record); 8351 8352 // Detect and handle the case where the decl might be an implicit 8353 // member. 8354 bool MightBeImplicitMember; 8355 if (!Consumer.isAddressOfOperand()) 8356 MightBeImplicitMember = true; 8357 else if (!NewSS.isEmpty()) 8358 MightBeImplicitMember = false; 8359 else if (R.isOverloadedResult()) 8360 MightBeImplicitMember = false; 8361 else if (R.isUnresolvableResult()) 8362 MightBeImplicitMember = true; 8363 else 8364 MightBeImplicitMember = isa<FieldDecl>(ND) || 8365 isa<IndirectFieldDecl>(ND) || 8366 isa<MSPropertyDecl>(ND); 8367 8368 if (MightBeImplicitMember) 8369 return SemaRef.BuildPossibleImplicitMemberExpr( 8370 NewSS, /*TemplateKWLoc*/ SourceLocation(), R, 8371 /*TemplateArgs*/ nullptr, /*S*/ nullptr); 8372 } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) { 8373 return SemaRef.LookupInObjCMethod(R, Consumer.getScope(), 8374 Ivar->getIdentifier()); 8375 } 8376 } 8377 8378 return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false, 8379 /*AcceptInvalidDecl*/ true); 8380 } 8381 8382 namespace { 8383 class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> { 8384 llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs; 8385 8386 public: 8387 explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs) 8388 : TypoExprs(TypoExprs) {} 8389 bool VisitTypoExpr(TypoExpr *TE) { 8390 TypoExprs.insert(TE); 8391 return true; 8392 } 8393 }; 8394 8395 class TransformTypos : public TreeTransform<TransformTypos> { 8396 typedef TreeTransform<TransformTypos> BaseTransform; 8397 8398 VarDecl *InitDecl; // A decl to avoid as a correction because it is in the 8399 // process of being initialized. 8400 llvm::function_ref<ExprResult(Expr *)> ExprFilter; 8401 llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs; 8402 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache; 8403 llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution; 8404 8405 /// Emit diagnostics for all of the TypoExprs encountered. 8406 /// 8407 /// If the TypoExprs were successfully corrected, then the diagnostics should 8408 /// suggest the corrections. Otherwise the diagnostics will not suggest 8409 /// anything (having been passed an empty TypoCorrection). 8410 /// 8411 /// If we've failed to correct due to ambiguous corrections, we need to 8412 /// be sure to pass empty corrections and replacements. Otherwise it's 8413 /// possible that the Consumer has a TypoCorrection that failed to ambiguity 8414 /// and we don't want to report those diagnostics. 8415 void EmitAllDiagnostics(bool IsAmbiguous) { 8416 for (TypoExpr *TE : TypoExprs) { 8417 auto &State = SemaRef.getTypoExprState(TE); 8418 if (State.DiagHandler) { 8419 TypoCorrection TC = IsAmbiguous 8420 ? TypoCorrection() : State.Consumer->getCurrentCorrection(); 8421 ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE]; 8422 8423 // Extract the NamedDecl from the transformed TypoExpr and add it to the 8424 // TypoCorrection, replacing the existing decls. This ensures the right 8425 // NamedDecl is used in diagnostics e.g. in the case where overload 8426 // resolution was used to select one from several possible decls that 8427 // had been stored in the TypoCorrection. 8428 if (auto *ND = getDeclFromExpr( 8429 Replacement.isInvalid() ? nullptr : Replacement.get())) 8430 TC.setCorrectionDecl(ND); 8431 8432 State.DiagHandler(TC); 8433 } 8434 SemaRef.clearDelayedTypo(TE); 8435 } 8436 } 8437 8438 /// Try to advance the typo correction state of the first unfinished TypoExpr. 8439 /// We allow advancement of the correction stream by removing it from the 8440 /// TransformCache which allows `TransformTypoExpr` to advance during the 8441 /// next transformation attempt. 8442 /// 8443 /// Any substitution attempts for the previous TypoExprs (which must have been 8444 /// finished) will need to be retried since it's possible that they will now 8445 /// be invalid given the latest advancement. 8446 /// 8447 /// We need to be sure that we're making progress - it's possible that the 8448 /// tree is so malformed that the transform never makes it to the 8449 /// `TransformTypoExpr`. 8450 /// 8451 /// Returns true if there are any untried correction combinations. 8452 bool CheckAndAdvanceTypoExprCorrectionStreams() { 8453 for (auto TE : TypoExprs) { 8454 auto &State = SemaRef.getTypoExprState(TE); 8455 TransformCache.erase(TE); 8456 if (!State.Consumer->hasMadeAnyCorrectionProgress()) 8457 return false; 8458 if (!State.Consumer->finished()) 8459 return true; 8460 State.Consumer->resetCorrectionStream(); 8461 } 8462 return false; 8463 } 8464 8465 NamedDecl *getDeclFromExpr(Expr *E) { 8466 if (auto *OE = dyn_cast_or_null<OverloadExpr>(E)) 8467 E = OverloadResolution[OE]; 8468 8469 if (!E) 8470 return nullptr; 8471 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) 8472 return DRE->getFoundDecl(); 8473 if (auto *ME = dyn_cast<MemberExpr>(E)) 8474 return ME->getFoundDecl(); 8475 // FIXME: Add any other expr types that could be be seen by the delayed typo 8476 // correction TreeTransform for which the corresponding TypoCorrection could 8477 // contain multiple decls. 8478 return nullptr; 8479 } 8480 8481 ExprResult TryTransform(Expr *E) { 8482 Sema::SFINAETrap Trap(SemaRef); 8483 ExprResult Res = TransformExpr(E); 8484 if (Trap.hasErrorOccurred() || Res.isInvalid()) 8485 return ExprError(); 8486 8487 return ExprFilter(Res.get()); 8488 } 8489 8490 // Since correcting typos may intoduce new TypoExprs, this function 8491 // checks for new TypoExprs and recurses if it finds any. Note that it will 8492 // only succeed if it is able to correct all typos in the given expression. 8493 ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) { 8494 if (Res.isInvalid()) { 8495 return Res; 8496 } 8497 // Check to see if any new TypoExprs were created. If so, we need to recurse 8498 // to check their validity. 8499 Expr *FixedExpr = Res.get(); 8500 8501 auto SavedTypoExprs = std::move(TypoExprs); 8502 auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs); 8503 TypoExprs.clear(); 8504 AmbiguousTypoExprs.clear(); 8505 8506 FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr); 8507 if (!TypoExprs.empty()) { 8508 // Recurse to handle newly created TypoExprs. If we're not able to 8509 // handle them, discard these TypoExprs. 8510 ExprResult RecurResult = 8511 RecursiveTransformLoop(FixedExpr, IsAmbiguous); 8512 if (RecurResult.isInvalid()) { 8513 Res = ExprError(); 8514 // Recursive corrections didn't work, wipe them away and don't add 8515 // them to the TypoExprs set. Remove them from Sema's TypoExpr list 8516 // since we don't want to clear them twice. Note: it's possible the 8517 // TypoExprs were created recursively and thus won't be in our 8518 // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`. 8519 auto &SemaTypoExprs = SemaRef.TypoExprs; 8520 for (auto TE : TypoExprs) { 8521 TransformCache.erase(TE); 8522 SemaRef.clearDelayedTypo(TE); 8523 8524 auto SI = find(SemaTypoExprs, TE); 8525 if (SI != SemaTypoExprs.end()) { 8526 SemaTypoExprs.erase(SI); 8527 } 8528 } 8529 } else { 8530 // TypoExpr is valid: add newly created TypoExprs since we were 8531 // able to correct them. 8532 Res = RecurResult; 8533 SavedTypoExprs.set_union(TypoExprs); 8534 } 8535 } 8536 8537 TypoExprs = std::move(SavedTypoExprs); 8538 AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs); 8539 8540 return Res; 8541 } 8542 8543 // Try to transform the given expression, looping through the correction 8544 // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`. 8545 // 8546 // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to 8547 // true and this method immediately will return an `ExprError`. 8548 ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) { 8549 ExprResult Res; 8550 auto SavedTypoExprs = std::move(SemaRef.TypoExprs); 8551 SemaRef.TypoExprs.clear(); 8552 8553 while (true) { 8554 Res = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous); 8555 8556 // Recursion encountered an ambiguous correction. This means that our 8557 // correction itself is ambiguous, so stop now. 8558 if (IsAmbiguous) 8559 break; 8560 8561 // If the transform is still valid after checking for any new typos, 8562 // it's good to go. 8563 if (!Res.isInvalid()) 8564 break; 8565 8566 // The transform was invalid, see if we have any TypoExprs with untried 8567 // correction candidates. 8568 if (!CheckAndAdvanceTypoExprCorrectionStreams()) 8569 break; 8570 } 8571 8572 // If we found a valid result, double check to make sure it's not ambiguous. 8573 if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) { 8574 auto SavedTransformCache = 8575 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2>(TransformCache); 8576 8577 // Ensure none of the TypoExprs have multiple typo correction candidates 8578 // with the same edit length that pass all the checks and filters. 8579 while (!AmbiguousTypoExprs.empty()) { 8580 auto TE = AmbiguousTypoExprs.back(); 8581 8582 // TryTransform itself can create new Typos, adding them to the TypoExpr map 8583 // and invalidating our TypoExprState, so always fetch it instead of storing. 8584 SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition(); 8585 8586 TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection(); 8587 TypoCorrection Next; 8588 do { 8589 // Fetch the next correction by erasing the typo from the cache and calling 8590 // `TryTransform` which will iterate through corrections in 8591 // `TransformTypoExpr`. 8592 TransformCache.erase(TE); 8593 ExprResult AmbigRes = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous); 8594 8595 if (!AmbigRes.isInvalid() || IsAmbiguous) { 8596 SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream(); 8597 SavedTransformCache.erase(TE); 8598 Res = ExprError(); 8599 IsAmbiguous = true; 8600 break; 8601 } 8602 } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) && 8603 Next.getEditDistance(false) == TC.getEditDistance(false)); 8604 8605 if (IsAmbiguous) 8606 break; 8607 8608 AmbiguousTypoExprs.remove(TE); 8609 SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition(); 8610 TransformCache[TE] = SavedTransformCache[TE]; 8611 } 8612 TransformCache = std::move(SavedTransformCache); 8613 } 8614 8615 // Wipe away any newly created TypoExprs that we don't know about. Since we 8616 // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only 8617 // possible if a `TypoExpr` is created during a transformation but then 8618 // fails before we can discover it. 8619 auto &SemaTypoExprs = SemaRef.TypoExprs; 8620 for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) { 8621 auto TE = *Iterator; 8622 auto FI = find(TypoExprs, TE); 8623 if (FI != TypoExprs.end()) { 8624 Iterator++; 8625 continue; 8626 } 8627 SemaRef.clearDelayedTypo(TE); 8628 Iterator = SemaTypoExprs.erase(Iterator); 8629 } 8630 SemaRef.TypoExprs = std::move(SavedTypoExprs); 8631 8632 return Res; 8633 } 8634 8635 public: 8636 TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter) 8637 : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {} 8638 8639 ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc, 8640 MultiExprArg Args, 8641 SourceLocation RParenLoc, 8642 Expr *ExecConfig = nullptr) { 8643 auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args, 8644 RParenLoc, ExecConfig); 8645 if (auto *OE = dyn_cast<OverloadExpr>(Callee)) { 8646 if (Result.isUsable()) { 8647 Expr *ResultCall = Result.get(); 8648 if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall)) 8649 ResultCall = BE->getSubExpr(); 8650 if (auto *CE = dyn_cast<CallExpr>(ResultCall)) 8651 OverloadResolution[OE] = CE->getCallee(); 8652 } 8653 } 8654 return Result; 8655 } 8656 8657 ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); } 8658 8659 ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); } 8660 8661 ExprResult Transform(Expr *E) { 8662 bool IsAmbiguous = false; 8663 ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous); 8664 8665 if (!Res.isUsable()) 8666 FindTypoExprs(TypoExprs).TraverseStmt(E); 8667 8668 EmitAllDiagnostics(IsAmbiguous); 8669 8670 return Res; 8671 } 8672 8673 ExprResult TransformTypoExpr(TypoExpr *E) { 8674 // If the TypoExpr hasn't been seen before, record it. Otherwise, return the 8675 // cached transformation result if there is one and the TypoExpr isn't the 8676 // first one that was encountered. 8677 auto &CacheEntry = TransformCache[E]; 8678 if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) { 8679 return CacheEntry; 8680 } 8681 8682 auto &State = SemaRef.getTypoExprState(E); 8683 assert(State.Consumer && "Cannot transform a cleared TypoExpr"); 8684 8685 // For the first TypoExpr and an uncached TypoExpr, find the next likely 8686 // typo correction and return it. 8687 while (TypoCorrection TC = State.Consumer->getNextCorrection()) { 8688 if (InitDecl && TC.getFoundDecl() == InitDecl) 8689 continue; 8690 // FIXME: If we would typo-correct to an invalid declaration, it's 8691 // probably best to just suppress all errors from this typo correction. 8692 ExprResult NE = State.RecoveryHandler ? 8693 State.RecoveryHandler(SemaRef, E, TC) : 8694 attemptRecovery(SemaRef, *State.Consumer, TC); 8695 if (!NE.isInvalid()) { 8696 // Check whether there may be a second viable correction with the same 8697 // edit distance; if so, remember this TypoExpr may have an ambiguous 8698 // correction so it can be more thoroughly vetted later. 8699 TypoCorrection Next; 8700 if ((Next = State.Consumer->peekNextCorrection()) && 8701 Next.getEditDistance(false) == TC.getEditDistance(false)) { 8702 AmbiguousTypoExprs.insert(E); 8703 } else { 8704 AmbiguousTypoExprs.remove(E); 8705 } 8706 assert(!NE.isUnset() && 8707 "Typo was transformed into a valid-but-null ExprResult"); 8708 return CacheEntry = NE; 8709 } 8710 } 8711 return CacheEntry = ExprError(); 8712 } 8713 }; 8714 } 8715 8716 ExprResult 8717 Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl, 8718 bool RecoverUncorrectedTypos, 8719 llvm::function_ref<ExprResult(Expr *)> Filter) { 8720 // If the current evaluation context indicates there are uncorrected typos 8721 // and the current expression isn't guaranteed to not have typos, try to 8722 // resolve any TypoExpr nodes that might be in the expression. 8723 if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos && 8724 (E->isTypeDependent() || E->isValueDependent() || 8725 E->isInstantiationDependent())) { 8726 auto TyposResolved = DelayedTypos.size(); 8727 auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E); 8728 TyposResolved -= DelayedTypos.size(); 8729 if (Result.isInvalid() || Result.get() != E) { 8730 ExprEvalContexts.back().NumTypos -= TyposResolved; 8731 if (Result.isInvalid() && RecoverUncorrectedTypos) { 8732 struct TyposReplace : TreeTransform<TyposReplace> { 8733 TyposReplace(Sema &SemaRef) : TreeTransform(SemaRef) {} 8734 ExprResult TransformTypoExpr(clang::TypoExpr *E) { 8735 return this->SemaRef.CreateRecoveryExpr(E->getBeginLoc(), 8736 E->getEndLoc(), {}); 8737 } 8738 } TT(*this); 8739 return TT.TransformExpr(E); 8740 } 8741 return Result; 8742 } 8743 assert(TyposResolved == 0 && "Corrected typo but got same Expr back?"); 8744 } 8745 return E; 8746 } 8747 8748 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC, 8749 bool DiscardedValue, 8750 bool IsConstexpr) { 8751 ExprResult FullExpr = FE; 8752 8753 if (!FullExpr.get()) 8754 return ExprError(); 8755 8756 if (DiagnoseUnexpandedParameterPack(FullExpr.get())) 8757 return ExprError(); 8758 8759 if (DiscardedValue) { 8760 // Top-level expressions default to 'id' when we're in a debugger. 8761 if (getLangOpts().DebuggerCastResultToId && 8762 FullExpr.get()->getType() == Context.UnknownAnyTy) { 8763 FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType()); 8764 if (FullExpr.isInvalid()) 8765 return ExprError(); 8766 } 8767 8768 FullExpr = CheckPlaceholderExpr(FullExpr.get()); 8769 if (FullExpr.isInvalid()) 8770 return ExprError(); 8771 8772 FullExpr = IgnoredValueConversions(FullExpr.get()); 8773 if (FullExpr.isInvalid()) 8774 return ExprError(); 8775 8776 DiagnoseUnusedExprResult(FullExpr.get(), diag::warn_unused_expr); 8777 } 8778 8779 FullExpr = CorrectDelayedTyposInExpr(FullExpr.get(), /*InitDecl=*/nullptr, 8780 /*RecoverUncorrectedTypos=*/true); 8781 if (FullExpr.isInvalid()) 8782 return ExprError(); 8783 8784 CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr); 8785 8786 // At the end of this full expression (which could be a deeply nested 8787 // lambda), if there is a potential capture within the nested lambda, 8788 // have the outer capture-able lambda try and capture it. 8789 // Consider the following code: 8790 // void f(int, int); 8791 // void f(const int&, double); 8792 // void foo() { 8793 // const int x = 10, y = 20; 8794 // auto L = [=](auto a) { 8795 // auto M = [=](auto b) { 8796 // f(x, b); <-- requires x to be captured by L and M 8797 // f(y, a); <-- requires y to be captured by L, but not all Ms 8798 // }; 8799 // }; 8800 // } 8801 8802 // FIXME: Also consider what happens for something like this that involves 8803 // the gnu-extension statement-expressions or even lambda-init-captures: 8804 // void f() { 8805 // const int n = 0; 8806 // auto L = [&](auto a) { 8807 // +n + ({ 0; a; }); 8808 // }; 8809 // } 8810 // 8811 // Here, we see +n, and then the full-expression 0; ends, so we don't 8812 // capture n (and instead remove it from our list of potential captures), 8813 // and then the full-expression +n + ({ 0; }); ends, but it's too late 8814 // for us to see that we need to capture n after all. 8815 8816 LambdaScopeInfo *const CurrentLSI = 8817 getCurLambda(/*IgnoreCapturedRegions=*/true); 8818 // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer 8819 // even if CurContext is not a lambda call operator. Refer to that Bug Report 8820 // for an example of the code that might cause this asynchrony. 8821 // By ensuring we are in the context of a lambda's call operator 8822 // we can fix the bug (we only need to check whether we need to capture 8823 // if we are within a lambda's body); but per the comments in that 8824 // PR, a proper fix would entail : 8825 // "Alternative suggestion: 8826 // - Add to Sema an integer holding the smallest (outermost) scope 8827 // index that we are *lexically* within, and save/restore/set to 8828 // FunctionScopes.size() in InstantiatingTemplate's 8829 // constructor/destructor. 8830 // - Teach the handful of places that iterate over FunctionScopes to 8831 // stop at the outermost enclosing lexical scope." 8832 DeclContext *DC = CurContext; 8833 while (DC && isa<CapturedDecl>(DC)) 8834 DC = DC->getParent(); 8835 const bool IsInLambdaDeclContext = isLambdaCallOperator(DC); 8836 if (IsInLambdaDeclContext && CurrentLSI && 8837 CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid()) 8838 CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI, 8839 *this); 8840 return MaybeCreateExprWithCleanups(FullExpr); 8841 } 8842 8843 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) { 8844 if (!FullStmt) return StmtError(); 8845 8846 return MaybeCreateStmtWithCleanups(FullStmt); 8847 } 8848 8849 Sema::IfExistsResult 8850 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, 8851 CXXScopeSpec &SS, 8852 const DeclarationNameInfo &TargetNameInfo) { 8853 DeclarationName TargetName = TargetNameInfo.getName(); 8854 if (!TargetName) 8855 return IER_DoesNotExist; 8856 8857 // If the name itself is dependent, then the result is dependent. 8858 if (TargetName.isDependentName()) 8859 return IER_Dependent; 8860 8861 // Do the redeclaration lookup in the current scope. 8862 LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName, 8863 Sema::NotForRedeclaration); 8864 LookupParsedName(R, S, &SS); 8865 R.suppressDiagnostics(); 8866 8867 switch (R.getResultKind()) { 8868 case LookupResult::Found: 8869 case LookupResult::FoundOverloaded: 8870 case LookupResult::FoundUnresolvedValue: 8871 case LookupResult::Ambiguous: 8872 return IER_Exists; 8873 8874 case LookupResult::NotFound: 8875 return IER_DoesNotExist; 8876 8877 case LookupResult::NotFoundInCurrentInstantiation: 8878 return IER_Dependent; 8879 } 8880 8881 llvm_unreachable("Invalid LookupResult Kind!"); 8882 } 8883 8884 Sema::IfExistsResult 8885 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc, 8886 bool IsIfExists, CXXScopeSpec &SS, 8887 UnqualifiedId &Name) { 8888 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); 8889 8890 // Check for an unexpanded parameter pack. 8891 auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists; 8892 if (DiagnoseUnexpandedParameterPack(SS, UPPC) || 8893 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC)) 8894 return IER_Error; 8895 8896 return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo); 8897 } 8898 8899 concepts::Requirement *Sema::ActOnSimpleRequirement(Expr *E) { 8900 return BuildExprRequirement(E, /*IsSimple=*/true, 8901 /*NoexceptLoc=*/SourceLocation(), 8902 /*ReturnTypeRequirement=*/{}); 8903 } 8904 8905 concepts::Requirement * 8906 Sema::ActOnTypeRequirement(SourceLocation TypenameKWLoc, CXXScopeSpec &SS, 8907 SourceLocation NameLoc, IdentifierInfo *TypeName, 8908 TemplateIdAnnotation *TemplateId) { 8909 assert(((!TypeName && TemplateId) || (TypeName && !TemplateId)) && 8910 "Exactly one of TypeName and TemplateId must be specified."); 8911 TypeSourceInfo *TSI = nullptr; 8912 if (TypeName) { 8913 QualType T = CheckTypenameType(ETK_Typename, TypenameKWLoc, 8914 SS.getWithLocInContext(Context), *TypeName, 8915 NameLoc, &TSI, /*DeducedTSTContext=*/false); 8916 if (T.isNull()) 8917 return nullptr; 8918 } else { 8919 ASTTemplateArgsPtr ArgsPtr(TemplateId->getTemplateArgs(), 8920 TemplateId->NumArgs); 8921 TypeResult T = ActOnTypenameType(CurScope, TypenameKWLoc, SS, 8922 TemplateId->TemplateKWLoc, 8923 TemplateId->Template, TemplateId->Name, 8924 TemplateId->TemplateNameLoc, 8925 TemplateId->LAngleLoc, ArgsPtr, 8926 TemplateId->RAngleLoc); 8927 if (T.isInvalid()) 8928 return nullptr; 8929 if (GetTypeFromParser(T.get(), &TSI).isNull()) 8930 return nullptr; 8931 } 8932 return BuildTypeRequirement(TSI); 8933 } 8934 8935 concepts::Requirement * 8936 Sema::ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc) { 8937 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, 8938 /*ReturnTypeRequirement=*/{}); 8939 } 8940 8941 concepts::Requirement * 8942 Sema::ActOnCompoundRequirement( 8943 Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS, 8944 TemplateIdAnnotation *TypeConstraint, unsigned Depth) { 8945 // C++2a [expr.prim.req.compound] p1.3.3 8946 // [..] the expression is deduced against an invented function template 8947 // F [...] F is a void function template with a single type template 8948 // parameter T declared with the constrained-parameter. Form a new 8949 // cv-qualifier-seq cv by taking the union of const and volatile specifiers 8950 // around the constrained-parameter. F has a single parameter whose 8951 // type-specifier is cv T followed by the abstract-declarator. [...] 8952 // 8953 // The cv part is done in the calling function - we get the concept with 8954 // arguments and the abstract declarator with the correct CV qualification and 8955 // have to synthesize T and the single parameter of F. 8956 auto &II = Context.Idents.get("expr-type"); 8957 auto *TParam = TemplateTypeParmDecl::Create(Context, CurContext, 8958 SourceLocation(), 8959 SourceLocation(), Depth, 8960 /*Index=*/0, &II, 8961 /*Typename=*/true, 8962 /*ParameterPack=*/false, 8963 /*HasTypeConstraint=*/true); 8964 8965 if (BuildTypeConstraint(SS, TypeConstraint, TParam, 8966 /*EllipsisLoc=*/SourceLocation(), 8967 /*AllowUnexpandedPack=*/true)) 8968 // Just produce a requirement with no type requirements. 8969 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, {}); 8970 8971 auto *TPL = TemplateParameterList::Create(Context, SourceLocation(), 8972 SourceLocation(), 8973 ArrayRef<NamedDecl *>(TParam), 8974 SourceLocation(), 8975 /*RequiresClause=*/nullptr); 8976 return BuildExprRequirement( 8977 E, /*IsSimple=*/false, NoexceptLoc, 8978 concepts::ExprRequirement::ReturnTypeRequirement(TPL)); 8979 } 8980 8981 concepts::ExprRequirement * 8982 Sema::BuildExprRequirement( 8983 Expr *E, bool IsSimple, SourceLocation NoexceptLoc, 8984 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) { 8985 auto Status = concepts::ExprRequirement::SS_Satisfied; 8986 ConceptSpecializationExpr *SubstitutedConstraintExpr = nullptr; 8987 if (E->isInstantiationDependent() || ReturnTypeRequirement.isDependent()) 8988 Status = concepts::ExprRequirement::SS_Dependent; 8989 else if (NoexceptLoc.isValid() && canThrow(E) == CanThrowResult::CT_Can) 8990 Status = concepts::ExprRequirement::SS_NoexceptNotMet; 8991 else if (ReturnTypeRequirement.isSubstitutionFailure()) 8992 Status = concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure; 8993 else if (ReturnTypeRequirement.isTypeConstraint()) { 8994 // C++2a [expr.prim.req]p1.3.3 8995 // The immediately-declared constraint ([temp]) of decltype((E)) shall 8996 // be satisfied. 8997 TemplateParameterList *TPL = 8998 ReturnTypeRequirement.getTypeConstraintTemplateParameterList(); 8999 QualType MatchedType = 9000 Context.getReferenceQualifiedType(E).getCanonicalType(); 9001 llvm::SmallVector<TemplateArgument, 1> Args; 9002 Args.push_back(TemplateArgument(MatchedType)); 9003 TemplateArgumentList TAL(TemplateArgumentList::OnStack, Args); 9004 MultiLevelTemplateArgumentList MLTAL(TAL); 9005 for (unsigned I = 0; I < TPL->getDepth(); ++I) 9006 MLTAL.addOuterRetainedLevel(); 9007 Expr *IDC = 9008 cast<TemplateTypeParmDecl>(TPL->getParam(0))->getTypeConstraint() 9009 ->getImmediatelyDeclaredConstraint(); 9010 ExprResult Constraint = SubstExpr(IDC, MLTAL); 9011 if (Constraint.isInvalid()) { 9012 Status = concepts::ExprRequirement::SS_ExprSubstitutionFailure; 9013 } else { 9014 SubstitutedConstraintExpr = 9015 cast<ConceptSpecializationExpr>(Constraint.get()); 9016 if (!SubstitutedConstraintExpr->isSatisfied()) 9017 Status = concepts::ExprRequirement::SS_ConstraintsNotSatisfied; 9018 } 9019 } 9020 return new (Context) concepts::ExprRequirement(E, IsSimple, NoexceptLoc, 9021 ReturnTypeRequirement, Status, 9022 SubstitutedConstraintExpr); 9023 } 9024 9025 concepts::ExprRequirement * 9026 Sema::BuildExprRequirement( 9027 concepts::Requirement::SubstitutionDiagnostic *ExprSubstitutionDiagnostic, 9028 bool IsSimple, SourceLocation NoexceptLoc, 9029 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) { 9030 return new (Context) concepts::ExprRequirement(ExprSubstitutionDiagnostic, 9031 IsSimple, NoexceptLoc, 9032 ReturnTypeRequirement); 9033 } 9034 9035 concepts::TypeRequirement * 9036 Sema::BuildTypeRequirement(TypeSourceInfo *Type) { 9037 return new (Context) concepts::TypeRequirement(Type); 9038 } 9039 9040 concepts::TypeRequirement * 9041 Sema::BuildTypeRequirement( 9042 concepts::Requirement::SubstitutionDiagnostic *SubstDiag) { 9043 return new (Context) concepts::TypeRequirement(SubstDiag); 9044 } 9045 9046 concepts::Requirement *Sema::ActOnNestedRequirement(Expr *Constraint) { 9047 return BuildNestedRequirement(Constraint); 9048 } 9049 9050 concepts::NestedRequirement * 9051 Sema::BuildNestedRequirement(Expr *Constraint) { 9052 ConstraintSatisfaction Satisfaction; 9053 if (!Constraint->isInstantiationDependent() && 9054 CheckConstraintSatisfaction(nullptr, {Constraint}, /*TemplateArgs=*/{}, 9055 Constraint->getSourceRange(), Satisfaction)) 9056 return nullptr; 9057 return new (Context) concepts::NestedRequirement(Context, Constraint, 9058 Satisfaction); 9059 } 9060 9061 concepts::NestedRequirement * 9062 Sema::BuildNestedRequirement( 9063 concepts::Requirement::SubstitutionDiagnostic *SubstDiag) { 9064 return new (Context) concepts::NestedRequirement(SubstDiag); 9065 } 9066 9067 RequiresExprBodyDecl * 9068 Sema::ActOnStartRequiresExpr(SourceLocation RequiresKWLoc, 9069 ArrayRef<ParmVarDecl *> LocalParameters, 9070 Scope *BodyScope) { 9071 assert(BodyScope); 9072 9073 RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(Context, CurContext, 9074 RequiresKWLoc); 9075 9076 PushDeclContext(BodyScope, Body); 9077 9078 for (ParmVarDecl *Param : LocalParameters) { 9079 if (Param->hasDefaultArg()) 9080 // C++2a [expr.prim.req] p4 9081 // [...] A local parameter of a requires-expression shall not have a 9082 // default argument. [...] 9083 Diag(Param->getDefaultArgRange().getBegin(), 9084 diag::err_requires_expr_local_parameter_default_argument); 9085 // Ignore default argument and move on 9086 9087 Param->setDeclContext(Body); 9088 // If this has an identifier, add it to the scope stack. 9089 if (Param->getIdentifier()) { 9090 CheckShadow(BodyScope, Param); 9091 PushOnScopeChains(Param, BodyScope); 9092 } 9093 } 9094 return Body; 9095 } 9096 9097 void Sema::ActOnFinishRequiresExpr() { 9098 assert(CurContext && "DeclContext imbalance!"); 9099 CurContext = CurContext->getLexicalParent(); 9100 assert(CurContext && "Popped translation unit!"); 9101 } 9102 9103 ExprResult 9104 Sema::ActOnRequiresExpr(SourceLocation RequiresKWLoc, 9105 RequiresExprBodyDecl *Body, 9106 ArrayRef<ParmVarDecl *> LocalParameters, 9107 ArrayRef<concepts::Requirement *> Requirements, 9108 SourceLocation ClosingBraceLoc) { 9109 auto *RE = RequiresExpr::Create(Context, RequiresKWLoc, Body, LocalParameters, 9110 Requirements, ClosingBraceLoc); 9111 if (DiagnoseUnexpandedParameterPackInRequiresExpr(RE)) 9112 return ExprError(); 9113 return RE; 9114 } 9115