1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// Implements semantic analysis for C++ expressions. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "TreeTransform.h" 15 #include "TypeLocBuilder.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/ASTLambda.h" 18 #include "clang/AST/CXXInheritance.h" 19 #include "clang/AST/CharUnits.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/ExprCXX.h" 22 #include "clang/AST/ExprObjC.h" 23 #include "clang/AST/RecursiveASTVisitor.h" 24 #include "clang/AST/Type.h" 25 #include "clang/AST/TypeLoc.h" 26 #include "clang/Basic/AlignedAllocation.h" 27 #include "clang/Basic/DiagnosticSema.h" 28 #include "clang/Basic/PartialDiagnostic.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/Basic/TokenKinds.h" 31 #include "clang/Basic/TypeTraits.h" 32 #include "clang/Lex/Preprocessor.h" 33 #include "clang/Sema/DeclSpec.h" 34 #include "clang/Sema/Initialization.h" 35 #include "clang/Sema/Lookup.h" 36 #include "clang/Sema/ParsedTemplate.h" 37 #include "clang/Sema/Scope.h" 38 #include "clang/Sema/ScopeInfo.h" 39 #include "clang/Sema/SemaInternal.h" 40 #include "clang/Sema/SemaLambda.h" 41 #include "clang/Sema/Template.h" 42 #include "clang/Sema/TemplateDeduction.h" 43 #include "llvm/ADT/APInt.h" 44 #include "llvm/ADT/STLExtras.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/TypeSize.h" 47 #include <optional> 48 using namespace clang; 49 using namespace sema; 50 51 /// Handle the result of the special case name lookup for inheriting 52 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as 53 /// constructor names in member using declarations, even if 'X' is not the 54 /// name of the corresponding type. 55 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS, 56 SourceLocation NameLoc, 57 IdentifierInfo &Name) { 58 NestedNameSpecifier *NNS = SS.getScopeRep(); 59 60 // Convert the nested-name-specifier into a type. 61 QualType Type; 62 switch (NNS->getKind()) { 63 case NestedNameSpecifier::TypeSpec: 64 case NestedNameSpecifier::TypeSpecWithTemplate: 65 Type = QualType(NNS->getAsType(), 0); 66 break; 67 68 case NestedNameSpecifier::Identifier: 69 // Strip off the last layer of the nested-name-specifier and build a 70 // typename type for it. 71 assert(NNS->getAsIdentifier() == &Name && "not a constructor name"); 72 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(), 73 NNS->getAsIdentifier()); 74 break; 75 76 case NestedNameSpecifier::Global: 77 case NestedNameSpecifier::Super: 78 case NestedNameSpecifier::Namespace: 79 case NestedNameSpecifier::NamespaceAlias: 80 llvm_unreachable("Nested name specifier is not a type for inheriting ctor"); 81 } 82 83 // This reference to the type is located entirely at the location of the 84 // final identifier in the qualified-id. 85 return CreateParsedType(Type, 86 Context.getTrivialTypeSourceInfo(Type, NameLoc)); 87 } 88 89 ParsedType Sema::getConstructorName(IdentifierInfo &II, 90 SourceLocation NameLoc, 91 Scope *S, CXXScopeSpec &SS, 92 bool EnteringContext) { 93 CXXRecordDecl *CurClass = getCurrentClass(S, &SS); 94 assert(CurClass && &II == CurClass->getIdentifier() && 95 "not a constructor name"); 96 97 // When naming a constructor as a member of a dependent context (eg, in a 98 // friend declaration or an inherited constructor declaration), form an 99 // unresolved "typename" type. 100 if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) { 101 QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II); 102 return ParsedType::make(T); 103 } 104 105 if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass)) 106 return ParsedType(); 107 108 // Find the injected-class-name declaration. Note that we make no attempt to 109 // diagnose cases where the injected-class-name is shadowed: the only 110 // declaration that can validly shadow the injected-class-name is a 111 // non-static data member, and if the class contains both a non-static data 112 // member and a constructor then it is ill-formed (we check that in 113 // CheckCompletedCXXClass). 114 CXXRecordDecl *InjectedClassName = nullptr; 115 for (NamedDecl *ND : CurClass->lookup(&II)) { 116 auto *RD = dyn_cast<CXXRecordDecl>(ND); 117 if (RD && RD->isInjectedClassName()) { 118 InjectedClassName = RD; 119 break; 120 } 121 } 122 if (!InjectedClassName) { 123 if (!CurClass->isInvalidDecl()) { 124 // FIXME: RequireCompleteDeclContext doesn't check dependent contexts 125 // properly. Work around it here for now. 126 Diag(SS.getLastQualifierNameLoc(), 127 diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange(); 128 } 129 return ParsedType(); 130 } 131 132 QualType T = Context.getTypeDeclType(InjectedClassName); 133 DiagnoseUseOfDecl(InjectedClassName, NameLoc); 134 MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false); 135 136 return ParsedType::make(T); 137 } 138 139 ParsedType Sema::getDestructorName(SourceLocation TildeLoc, 140 IdentifierInfo &II, 141 SourceLocation NameLoc, 142 Scope *S, CXXScopeSpec &SS, 143 ParsedType ObjectTypePtr, 144 bool EnteringContext) { 145 // Determine where to perform name lookup. 146 147 // FIXME: This area of the standard is very messy, and the current 148 // wording is rather unclear about which scopes we search for the 149 // destructor name; see core issues 399 and 555. Issue 399 in 150 // particular shows where the current description of destructor name 151 // lookup is completely out of line with existing practice, e.g., 152 // this appears to be ill-formed: 153 // 154 // namespace N { 155 // template <typename T> struct S { 156 // ~S(); 157 // }; 158 // } 159 // 160 // void f(N::S<int>* s) { 161 // s->N::S<int>::~S(); 162 // } 163 // 164 // See also PR6358 and PR6359. 165 // 166 // For now, we accept all the cases in which the name given could plausibly 167 // be interpreted as a correct destructor name, issuing off-by-default 168 // extension diagnostics on the cases that don't strictly conform to the 169 // C++20 rules. This basically means we always consider looking in the 170 // nested-name-specifier prefix, the complete nested-name-specifier, and 171 // the scope, and accept if we find the expected type in any of the three 172 // places. 173 174 if (SS.isInvalid()) 175 return nullptr; 176 177 // Whether we've failed with a diagnostic already. 178 bool Failed = false; 179 180 llvm::SmallVector<NamedDecl*, 8> FoundDecls; 181 llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet; 182 183 // If we have an object type, it's because we are in a 184 // pseudo-destructor-expression or a member access expression, and 185 // we know what type we're looking for. 186 QualType SearchType = 187 ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType(); 188 189 auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType { 190 auto IsAcceptableResult = [&](NamedDecl *D) -> bool { 191 auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl()); 192 if (!Type) 193 return false; 194 195 if (SearchType.isNull() || SearchType->isDependentType()) 196 return true; 197 198 QualType T = Context.getTypeDeclType(Type); 199 return Context.hasSameUnqualifiedType(T, SearchType); 200 }; 201 202 unsigned NumAcceptableResults = 0; 203 for (NamedDecl *D : Found) { 204 if (IsAcceptableResult(D)) 205 ++NumAcceptableResults; 206 207 // Don't list a class twice in the lookup failure diagnostic if it's 208 // found by both its injected-class-name and by the name in the enclosing 209 // scope. 210 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) 211 if (RD->isInjectedClassName()) 212 D = cast<NamedDecl>(RD->getParent()); 213 214 if (FoundDeclSet.insert(D).second) 215 FoundDecls.push_back(D); 216 } 217 218 // As an extension, attempt to "fix" an ambiguity by erasing all non-type 219 // results, and all non-matching results if we have a search type. It's not 220 // clear what the right behavior is if destructor lookup hits an ambiguity, 221 // but other compilers do generally accept at least some kinds of 222 // ambiguity. 223 if (Found.isAmbiguous() && NumAcceptableResults == 1) { 224 Diag(NameLoc, diag::ext_dtor_name_ambiguous); 225 LookupResult::Filter F = Found.makeFilter(); 226 while (F.hasNext()) { 227 NamedDecl *D = F.next(); 228 if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl())) 229 Diag(D->getLocation(), diag::note_destructor_type_here) 230 << Context.getTypeDeclType(TD); 231 else 232 Diag(D->getLocation(), diag::note_destructor_nontype_here); 233 234 if (!IsAcceptableResult(D)) 235 F.erase(); 236 } 237 F.done(); 238 } 239 240 if (Found.isAmbiguous()) 241 Failed = true; 242 243 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) { 244 if (IsAcceptableResult(Type)) { 245 QualType T = Context.getTypeDeclType(Type); 246 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); 247 return CreateParsedType(Context.getElaboratedType(ETK_None, nullptr, T), 248 Context.getTrivialTypeSourceInfo(T, NameLoc)); 249 } 250 } 251 252 return nullptr; 253 }; 254 255 bool IsDependent = false; 256 257 auto LookupInObjectType = [&]() -> ParsedType { 258 if (Failed || SearchType.isNull()) 259 return nullptr; 260 261 IsDependent |= SearchType->isDependentType(); 262 263 LookupResult Found(*this, &II, NameLoc, LookupDestructorName); 264 DeclContext *LookupCtx = computeDeclContext(SearchType); 265 if (!LookupCtx) 266 return nullptr; 267 LookupQualifiedName(Found, LookupCtx); 268 return CheckLookupResult(Found); 269 }; 270 271 auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType { 272 if (Failed) 273 return nullptr; 274 275 IsDependent |= isDependentScopeSpecifier(LookupSS); 276 DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext); 277 if (!LookupCtx) 278 return nullptr; 279 280 LookupResult Found(*this, &II, NameLoc, LookupDestructorName); 281 if (RequireCompleteDeclContext(LookupSS, LookupCtx)) { 282 Failed = true; 283 return nullptr; 284 } 285 LookupQualifiedName(Found, LookupCtx); 286 return CheckLookupResult(Found); 287 }; 288 289 auto LookupInScope = [&]() -> ParsedType { 290 if (Failed || !S) 291 return nullptr; 292 293 LookupResult Found(*this, &II, NameLoc, LookupDestructorName); 294 LookupName(Found, S); 295 return CheckLookupResult(Found); 296 }; 297 298 // C++2a [basic.lookup.qual]p6: 299 // In a qualified-id of the form 300 // 301 // nested-name-specifier[opt] type-name :: ~ type-name 302 // 303 // the second type-name is looked up in the same scope as the first. 304 // 305 // We interpret this as meaning that if you do a dual-scope lookup for the 306 // first name, you also do a dual-scope lookup for the second name, per 307 // C++ [basic.lookup.classref]p4: 308 // 309 // If the id-expression in a class member access is a qualified-id of the 310 // form 311 // 312 // class-name-or-namespace-name :: ... 313 // 314 // the class-name-or-namespace-name following the . or -> is first looked 315 // up in the class of the object expression and the name, if found, is used. 316 // Otherwise, it is looked up in the context of the entire 317 // postfix-expression. 318 // 319 // This looks in the same scopes as for an unqualified destructor name: 320 // 321 // C++ [basic.lookup.classref]p3: 322 // If the unqualified-id is ~ type-name, the type-name is looked up 323 // in the context of the entire postfix-expression. If the type T 324 // of the object expression is of a class type C, the type-name is 325 // also looked up in the scope of class C. At least one of the 326 // lookups shall find a name that refers to cv T. 327 // 328 // FIXME: The intent is unclear here. Should type-name::~type-name look in 329 // the scope anyway if it finds a non-matching name declared in the class? 330 // If both lookups succeed and find a dependent result, which result should 331 // we retain? (Same question for p->~type-name().) 332 333 if (NestedNameSpecifier *Prefix = 334 SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) { 335 // This is 336 // 337 // nested-name-specifier type-name :: ~ type-name 338 // 339 // Look for the second type-name in the nested-name-specifier. 340 CXXScopeSpec PrefixSS; 341 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data())); 342 if (ParsedType T = LookupInNestedNameSpec(PrefixSS)) 343 return T; 344 } else { 345 // This is one of 346 // 347 // type-name :: ~ type-name 348 // ~ type-name 349 // 350 // Look in the scope and (if any) the object type. 351 if (ParsedType T = LookupInScope()) 352 return T; 353 if (ParsedType T = LookupInObjectType()) 354 return T; 355 } 356 357 if (Failed) 358 return nullptr; 359 360 if (IsDependent) { 361 // We didn't find our type, but that's OK: it's dependent anyway. 362 363 // FIXME: What if we have no nested-name-specifier? 364 QualType T = CheckTypenameType(ETK_None, SourceLocation(), 365 SS.getWithLocInContext(Context), 366 II, NameLoc); 367 return ParsedType::make(T); 368 } 369 370 // The remaining cases are all non-standard extensions imitating the behavior 371 // of various other compilers. 372 unsigned NumNonExtensionDecls = FoundDecls.size(); 373 374 if (SS.isSet()) { 375 // For compatibility with older broken C++ rules and existing code, 376 // 377 // nested-name-specifier :: ~ type-name 378 // 379 // also looks for type-name within the nested-name-specifier. 380 if (ParsedType T = LookupInNestedNameSpec(SS)) { 381 Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope) 382 << SS.getRange() 383 << FixItHint::CreateInsertion(SS.getEndLoc(), 384 ("::" + II.getName()).str()); 385 return T; 386 } 387 388 // For compatibility with other compilers and older versions of Clang, 389 // 390 // nested-name-specifier type-name :: ~ type-name 391 // 392 // also looks for type-name in the scope. Unfortunately, we can't 393 // reasonably apply this fallback for dependent nested-name-specifiers. 394 if (SS.getScopeRep()->getPrefix()) { 395 if (ParsedType T = LookupInScope()) { 396 Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope) 397 << FixItHint::CreateRemoval(SS.getRange()); 398 Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here) 399 << GetTypeFromParser(T); 400 return T; 401 } 402 } 403 } 404 405 // We didn't find anything matching; tell the user what we did find (if 406 // anything). 407 408 // Don't tell the user about declarations we shouldn't have found. 409 FoundDecls.resize(NumNonExtensionDecls); 410 411 // List types before non-types. 412 std::stable_sort(FoundDecls.begin(), FoundDecls.end(), 413 [](NamedDecl *A, NamedDecl *B) { 414 return isa<TypeDecl>(A->getUnderlyingDecl()) > 415 isa<TypeDecl>(B->getUnderlyingDecl()); 416 }); 417 418 // Suggest a fixit to properly name the destroyed type. 419 auto MakeFixItHint = [&]{ 420 const CXXRecordDecl *Destroyed = nullptr; 421 // FIXME: If we have a scope specifier, suggest its last component? 422 if (!SearchType.isNull()) 423 Destroyed = SearchType->getAsCXXRecordDecl(); 424 else if (S) 425 Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity()); 426 if (Destroyed) 427 return FixItHint::CreateReplacement(SourceRange(NameLoc), 428 Destroyed->getNameAsString()); 429 return FixItHint(); 430 }; 431 432 if (FoundDecls.empty()) { 433 // FIXME: Attempt typo-correction? 434 Diag(NameLoc, diag::err_undeclared_destructor_name) 435 << &II << MakeFixItHint(); 436 } else if (!SearchType.isNull() && FoundDecls.size() == 1) { 437 if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) { 438 assert(!SearchType.isNull() && 439 "should only reject a type result if we have a search type"); 440 QualType T = Context.getTypeDeclType(TD); 441 Diag(NameLoc, diag::err_destructor_expr_type_mismatch) 442 << T << SearchType << MakeFixItHint(); 443 } else { 444 Diag(NameLoc, diag::err_destructor_expr_nontype) 445 << &II << MakeFixItHint(); 446 } 447 } else { 448 Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype 449 : diag::err_destructor_expr_mismatch) 450 << &II << SearchType << MakeFixItHint(); 451 } 452 453 for (NamedDecl *FoundD : FoundDecls) { 454 if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl())) 455 Diag(FoundD->getLocation(), diag::note_destructor_type_here) 456 << Context.getTypeDeclType(TD); 457 else 458 Diag(FoundD->getLocation(), diag::note_destructor_nontype_here) 459 << FoundD; 460 } 461 462 return nullptr; 463 } 464 465 ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS, 466 ParsedType ObjectType) { 467 if (DS.getTypeSpecType() == DeclSpec::TST_error) 468 return nullptr; 469 470 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) { 471 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); 472 return nullptr; 473 } 474 475 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype && 476 "unexpected type in getDestructorType"); 477 QualType T = BuildDecltypeType(DS.getRepAsExpr()); 478 479 // If we know the type of the object, check that the correct destructor 480 // type was named now; we can give better diagnostics this way. 481 QualType SearchType = GetTypeFromParser(ObjectType); 482 if (!SearchType.isNull() && !SearchType->isDependentType() && 483 !Context.hasSameUnqualifiedType(T, SearchType)) { 484 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch) 485 << T << SearchType; 486 return nullptr; 487 } 488 489 return ParsedType::make(T); 490 } 491 492 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS, 493 const UnqualifiedId &Name, bool IsUDSuffix) { 494 assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId); 495 if (!IsUDSuffix) { 496 // [over.literal] p8 497 // 498 // double operator""_Bq(long double); // OK: not a reserved identifier 499 // double operator"" _Bq(long double); // ill-formed, no diagnostic required 500 IdentifierInfo *II = Name.Identifier; 501 ReservedIdentifierStatus Status = II->isReserved(PP.getLangOpts()); 502 SourceLocation Loc = Name.getEndLoc(); 503 if (isReservedInAllContexts(Status) && 504 !PP.getSourceManager().isInSystemHeader(Loc)) { 505 Diag(Loc, diag::warn_reserved_extern_symbol) 506 << II << static_cast<int>(Status) 507 << FixItHint::CreateReplacement( 508 Name.getSourceRange(), 509 (StringRef("operator\"\"") + II->getName()).str()); 510 } 511 } 512 513 if (!SS.isValid()) 514 return false; 515 516 switch (SS.getScopeRep()->getKind()) { 517 case NestedNameSpecifier::Identifier: 518 case NestedNameSpecifier::TypeSpec: 519 case NestedNameSpecifier::TypeSpecWithTemplate: 520 // Per C++11 [over.literal]p2, literal operators can only be declared at 521 // namespace scope. Therefore, this unqualified-id cannot name anything. 522 // Reject it early, because we have no AST representation for this in the 523 // case where the scope is dependent. 524 Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace) 525 << SS.getScopeRep(); 526 return true; 527 528 case NestedNameSpecifier::Global: 529 case NestedNameSpecifier::Super: 530 case NestedNameSpecifier::Namespace: 531 case NestedNameSpecifier::NamespaceAlias: 532 return false; 533 } 534 535 llvm_unreachable("unknown nested name specifier kind"); 536 } 537 538 /// Build a C++ typeid expression with a type operand. 539 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, 540 SourceLocation TypeidLoc, 541 TypeSourceInfo *Operand, 542 SourceLocation RParenLoc) { 543 // C++ [expr.typeid]p4: 544 // The top-level cv-qualifiers of the lvalue expression or the type-id 545 // that is the operand of typeid are always ignored. 546 // If the type of the type-id is a class type or a reference to a class 547 // type, the class shall be completely-defined. 548 Qualifiers Quals; 549 QualType T 550 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(), 551 Quals); 552 if (T->getAs<RecordType>() && 553 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) 554 return ExprError(); 555 556 if (T->isVariablyModifiedType()) 557 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T); 558 559 if (CheckQualifiedFunctionForTypeId(T, TypeidLoc)) 560 return ExprError(); 561 562 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand, 563 SourceRange(TypeidLoc, RParenLoc)); 564 } 565 566 /// Build a C++ typeid expression with an expression operand. 567 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, 568 SourceLocation TypeidLoc, 569 Expr *E, 570 SourceLocation RParenLoc) { 571 bool WasEvaluated = false; 572 if (E && !E->isTypeDependent()) { 573 if (E->hasPlaceholderType()) { 574 ExprResult result = CheckPlaceholderExpr(E); 575 if (result.isInvalid()) return ExprError(); 576 E = result.get(); 577 } 578 579 QualType T = E->getType(); 580 if (const RecordType *RecordT = T->getAs<RecordType>()) { 581 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl()); 582 // C++ [expr.typeid]p3: 583 // [...] If the type of the expression is a class type, the class 584 // shall be completely-defined. 585 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) 586 return ExprError(); 587 588 // C++ [expr.typeid]p3: 589 // When typeid is applied to an expression other than an glvalue of a 590 // polymorphic class type [...] [the] expression is an unevaluated 591 // operand. [...] 592 if (RecordD->isPolymorphic() && E->isGLValue()) { 593 if (isUnevaluatedContext()) { 594 // The operand was processed in unevaluated context, switch the 595 // context and recheck the subexpression. 596 ExprResult Result = TransformToPotentiallyEvaluated(E); 597 if (Result.isInvalid()) 598 return ExprError(); 599 E = Result.get(); 600 } 601 602 // We require a vtable to query the type at run time. 603 MarkVTableUsed(TypeidLoc, RecordD); 604 WasEvaluated = true; 605 } 606 } 607 608 ExprResult Result = CheckUnevaluatedOperand(E); 609 if (Result.isInvalid()) 610 return ExprError(); 611 E = Result.get(); 612 613 // C++ [expr.typeid]p4: 614 // [...] If the type of the type-id is a reference to a possibly 615 // cv-qualified type, the result of the typeid expression refers to a 616 // std::type_info object representing the cv-unqualified referenced 617 // type. 618 Qualifiers Quals; 619 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals); 620 if (!Context.hasSameType(T, UnqualT)) { 621 T = UnqualT; 622 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get(); 623 } 624 } 625 626 if (E->getType()->isVariablyModifiedType()) 627 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) 628 << E->getType()); 629 else if (!inTemplateInstantiation() && 630 E->HasSideEffects(Context, WasEvaluated)) { 631 // The expression operand for typeid is in an unevaluated expression 632 // context, so side effects could result in unintended consequences. 633 Diag(E->getExprLoc(), WasEvaluated 634 ? diag::warn_side_effects_typeid 635 : diag::warn_side_effects_unevaluated_context); 636 } 637 638 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E, 639 SourceRange(TypeidLoc, RParenLoc)); 640 } 641 642 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression); 643 ExprResult 644 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, 645 bool isType, void *TyOrExpr, SourceLocation RParenLoc) { 646 // typeid is not supported in OpenCL. 647 if (getLangOpts().OpenCLCPlusPlus) { 648 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported) 649 << "typeid"); 650 } 651 652 // Find the std::type_info type. 653 if (!getStdNamespace()) 654 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); 655 656 if (!CXXTypeInfoDecl) { 657 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info"); 658 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName); 659 LookupQualifiedName(R, getStdNamespace()); 660 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); 661 // Microsoft's typeinfo doesn't have type_info in std but in the global 662 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153. 663 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) { 664 LookupQualifiedName(R, Context.getTranslationUnitDecl()); 665 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); 666 } 667 if (!CXXTypeInfoDecl) 668 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); 669 } 670 671 if (!getLangOpts().RTTI) { 672 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti)); 673 } 674 675 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl); 676 677 if (isType) { 678 // The operand is a type; handle it as such. 679 TypeSourceInfo *TInfo = nullptr; 680 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), 681 &TInfo); 682 if (T.isNull()) 683 return ExprError(); 684 685 if (!TInfo) 686 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); 687 688 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc); 689 } 690 691 // The operand is an expression. 692 ExprResult Result = 693 BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc); 694 695 if (!getLangOpts().RTTIData && !Result.isInvalid()) 696 if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get())) 697 if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context)) 698 Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled) 699 << (getDiagnostics().getDiagnosticOptions().getFormat() == 700 DiagnosticOptions::MSVC); 701 return Result; 702 } 703 704 /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to 705 /// a single GUID. 706 static void 707 getUuidAttrOfType(Sema &SemaRef, QualType QT, 708 llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) { 709 // Optionally remove one level of pointer, reference or array indirection. 710 const Type *Ty = QT.getTypePtr(); 711 if (QT->isPointerType() || QT->isReferenceType()) 712 Ty = QT->getPointeeType().getTypePtr(); 713 else if (QT->isArrayType()) 714 Ty = Ty->getBaseElementTypeUnsafe(); 715 716 const auto *TD = Ty->getAsTagDecl(); 717 if (!TD) 718 return; 719 720 if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) { 721 UuidAttrs.insert(Uuid); 722 return; 723 } 724 725 // __uuidof can grab UUIDs from template arguments. 726 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) { 727 const TemplateArgumentList &TAL = CTSD->getTemplateArgs(); 728 for (const TemplateArgument &TA : TAL.asArray()) { 729 const UuidAttr *UuidForTA = nullptr; 730 if (TA.getKind() == TemplateArgument::Type) 731 getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs); 732 else if (TA.getKind() == TemplateArgument::Declaration) 733 getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs); 734 735 if (UuidForTA) 736 UuidAttrs.insert(UuidForTA); 737 } 738 } 739 } 740 741 /// Build a Microsoft __uuidof expression with a type operand. 742 ExprResult Sema::BuildCXXUuidof(QualType Type, 743 SourceLocation TypeidLoc, 744 TypeSourceInfo *Operand, 745 SourceLocation RParenLoc) { 746 MSGuidDecl *Guid = nullptr; 747 if (!Operand->getType()->isDependentType()) { 748 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs; 749 getUuidAttrOfType(*this, Operand->getType(), UuidAttrs); 750 if (UuidAttrs.empty()) 751 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); 752 if (UuidAttrs.size() > 1) 753 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); 754 Guid = UuidAttrs.back()->getGuidDecl(); 755 } 756 757 return new (Context) 758 CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc)); 759 } 760 761 /// Build a Microsoft __uuidof expression with an expression operand. 762 ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc, 763 Expr *E, SourceLocation RParenLoc) { 764 MSGuidDecl *Guid = nullptr; 765 if (!E->getType()->isDependentType()) { 766 if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 767 // A null pointer results in {00000000-0000-0000-0000-000000000000}. 768 Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{}); 769 } else { 770 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs; 771 getUuidAttrOfType(*this, E->getType(), UuidAttrs); 772 if (UuidAttrs.empty()) 773 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); 774 if (UuidAttrs.size() > 1) 775 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); 776 Guid = UuidAttrs.back()->getGuidDecl(); 777 } 778 } 779 780 return new (Context) 781 CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc)); 782 } 783 784 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression); 785 ExprResult 786 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc, 787 bool isType, void *TyOrExpr, SourceLocation RParenLoc) { 788 QualType GuidType = Context.getMSGuidType(); 789 GuidType.addConst(); 790 791 if (isType) { 792 // The operand is a type; handle it as such. 793 TypeSourceInfo *TInfo = nullptr; 794 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), 795 &TInfo); 796 if (T.isNull()) 797 return ExprError(); 798 799 if (!TInfo) 800 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); 801 802 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc); 803 } 804 805 // The operand is an expression. 806 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc); 807 } 808 809 /// ActOnCXXBoolLiteral - Parse {true,false} literals. 810 ExprResult 811 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { 812 assert((Kind == tok::kw_true || Kind == tok::kw_false) && 813 "Unknown C++ Boolean value!"); 814 return new (Context) 815 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc); 816 } 817 818 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'. 819 ExprResult 820 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) { 821 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc); 822 } 823 824 /// ActOnCXXThrow - Parse throw expressions. 825 ExprResult 826 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) { 827 bool IsThrownVarInScope = false; 828 if (Ex) { 829 // C++0x [class.copymove]p31: 830 // When certain criteria are met, an implementation is allowed to omit the 831 // copy/move construction of a class object [...] 832 // 833 // - in a throw-expression, when the operand is the name of a 834 // non-volatile automatic object (other than a function or catch- 835 // clause parameter) whose scope does not extend beyond the end of the 836 // innermost enclosing try-block (if there is one), the copy/move 837 // operation from the operand to the exception object (15.1) can be 838 // omitted by constructing the automatic object directly into the 839 // exception object 840 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens())) 841 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 842 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) { 843 for( ; S; S = S->getParent()) { 844 if (S->isDeclScope(Var)) { 845 IsThrownVarInScope = true; 846 break; 847 } 848 849 // FIXME: Many of the scope checks here seem incorrect. 850 if (S->getFlags() & 851 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope | 852 Scope::ObjCMethodScope | Scope::TryScope)) 853 break; 854 } 855 } 856 } 857 } 858 859 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope); 860 } 861 862 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex, 863 bool IsThrownVarInScope) { 864 // Don't report an error if 'throw' is used in system headers. 865 if (!getLangOpts().CXXExceptions && 866 !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) { 867 // Delay error emission for the OpenMP device code. 868 targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw"; 869 } 870 871 // Exceptions aren't allowed in CUDA device code. 872 if (getLangOpts().CUDA) 873 CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions) 874 << "throw" << CurrentCUDATarget(); 875 876 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope()) 877 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw"; 878 879 if (Ex && !Ex->isTypeDependent()) { 880 // Initialize the exception result. This implicitly weeds out 881 // abstract types or types with inaccessible copy constructors. 882 883 // C++0x [class.copymove]p31: 884 // When certain criteria are met, an implementation is allowed to omit the 885 // copy/move construction of a class object [...] 886 // 887 // - in a throw-expression, when the operand is the name of a 888 // non-volatile automatic object (other than a function or 889 // catch-clause 890 // parameter) whose scope does not extend beyond the end of the 891 // innermost enclosing try-block (if there is one), the copy/move 892 // operation from the operand to the exception object (15.1) can be 893 // omitted by constructing the automatic object directly into the 894 // exception object 895 NamedReturnInfo NRInfo = 896 IsThrownVarInScope ? getNamedReturnInfo(Ex) : NamedReturnInfo(); 897 898 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType()); 899 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex)) 900 return ExprError(); 901 902 InitializedEntity Entity = 903 InitializedEntity::InitializeException(OpLoc, ExceptionObjectTy); 904 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Ex); 905 if (Res.isInvalid()) 906 return ExprError(); 907 Ex = Res.get(); 908 } 909 910 // PPC MMA non-pointer types are not allowed as throw expr types. 911 if (Ex && Context.getTargetInfo().getTriple().isPPC64()) 912 CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc()); 913 914 return new (Context) 915 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope); 916 } 917 918 static void 919 collectPublicBases(CXXRecordDecl *RD, 920 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen, 921 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases, 922 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen, 923 bool ParentIsPublic) { 924 for (const CXXBaseSpecifier &BS : RD->bases()) { 925 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl(); 926 bool NewSubobject; 927 // Virtual bases constitute the same subobject. Non-virtual bases are 928 // always distinct subobjects. 929 if (BS.isVirtual()) 930 NewSubobject = VBases.insert(BaseDecl).second; 931 else 932 NewSubobject = true; 933 934 if (NewSubobject) 935 ++SubobjectsSeen[BaseDecl]; 936 937 // Only add subobjects which have public access throughout the entire chain. 938 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public; 939 if (PublicPath) 940 PublicSubobjectsSeen.insert(BaseDecl); 941 942 // Recurse on to each base subobject. 943 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen, 944 PublicPath); 945 } 946 } 947 948 static void getUnambiguousPublicSubobjects( 949 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) { 950 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen; 951 llvm::SmallSet<CXXRecordDecl *, 2> VBases; 952 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen; 953 SubobjectsSeen[RD] = 1; 954 PublicSubobjectsSeen.insert(RD); 955 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen, 956 /*ParentIsPublic=*/true); 957 958 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) { 959 // Skip ambiguous objects. 960 if (SubobjectsSeen[PublicSubobject] > 1) 961 continue; 962 963 Objects.push_back(PublicSubobject); 964 } 965 } 966 967 /// CheckCXXThrowOperand - Validate the operand of a throw. 968 bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, 969 QualType ExceptionObjectTy, Expr *E) { 970 // If the type of the exception would be an incomplete type or a pointer 971 // to an incomplete type other than (cv) void the program is ill-formed. 972 QualType Ty = ExceptionObjectTy; 973 bool isPointer = false; 974 if (const PointerType* Ptr = Ty->getAs<PointerType>()) { 975 Ty = Ptr->getPointeeType(); 976 isPointer = true; 977 } 978 if (!isPointer || !Ty->isVoidType()) { 979 if (RequireCompleteType(ThrowLoc, Ty, 980 isPointer ? diag::err_throw_incomplete_ptr 981 : diag::err_throw_incomplete, 982 E->getSourceRange())) 983 return true; 984 985 if (!isPointer && Ty->isSizelessType()) { 986 Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange(); 987 return true; 988 } 989 990 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy, 991 diag::err_throw_abstract_type, E)) 992 return true; 993 } 994 995 // If the exception has class type, we need additional handling. 996 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 997 if (!RD) 998 return false; 999 1000 // If we are throwing a polymorphic class type or pointer thereof, 1001 // exception handling will make use of the vtable. 1002 MarkVTableUsed(ThrowLoc, RD); 1003 1004 // If a pointer is thrown, the referenced object will not be destroyed. 1005 if (isPointer) 1006 return false; 1007 1008 // If the class has a destructor, we must be able to call it. 1009 if (!RD->hasIrrelevantDestructor()) { 1010 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) { 1011 MarkFunctionReferenced(E->getExprLoc(), Destructor); 1012 CheckDestructorAccess(E->getExprLoc(), Destructor, 1013 PDiag(diag::err_access_dtor_exception) << Ty); 1014 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) 1015 return true; 1016 } 1017 } 1018 1019 // The MSVC ABI creates a list of all types which can catch the exception 1020 // object. This list also references the appropriate copy constructor to call 1021 // if the object is caught by value and has a non-trivial copy constructor. 1022 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1023 // We are only interested in the public, unambiguous bases contained within 1024 // the exception object. Bases which are ambiguous or otherwise 1025 // inaccessible are not catchable types. 1026 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects; 1027 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects); 1028 1029 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) { 1030 // Attempt to lookup the copy constructor. Various pieces of machinery 1031 // will spring into action, like template instantiation, which means this 1032 // cannot be a simple walk of the class's decls. Instead, we must perform 1033 // lookup and overload resolution. 1034 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0); 1035 if (!CD || CD->isDeleted()) 1036 continue; 1037 1038 // Mark the constructor referenced as it is used by this throw expression. 1039 MarkFunctionReferenced(E->getExprLoc(), CD); 1040 1041 // Skip this copy constructor if it is trivial, we don't need to record it 1042 // in the catchable type data. 1043 if (CD->isTrivial()) 1044 continue; 1045 1046 // The copy constructor is non-trivial, create a mapping from this class 1047 // type to this constructor. 1048 // N.B. The selection of copy constructor is not sensitive to this 1049 // particular throw-site. Lookup will be performed at the catch-site to 1050 // ensure that the copy constructor is, in fact, accessible (via 1051 // friendship or any other means). 1052 Context.addCopyConstructorForExceptionObject(Subobject, CD); 1053 1054 // We don't keep the instantiated default argument expressions around so 1055 // we must rebuild them here. 1056 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) { 1057 if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I))) 1058 return true; 1059 } 1060 } 1061 } 1062 1063 // Under the Itanium C++ ABI, memory for the exception object is allocated by 1064 // the runtime with no ability for the compiler to request additional 1065 // alignment. Warn if the exception type requires alignment beyond the minimum 1066 // guaranteed by the target C++ runtime. 1067 if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) { 1068 CharUnits TypeAlign = Context.getTypeAlignInChars(Ty); 1069 CharUnits ExnObjAlign = Context.getExnObjectAlignment(); 1070 if (ExnObjAlign < TypeAlign) { 1071 Diag(ThrowLoc, diag::warn_throw_underaligned_obj); 1072 Diag(ThrowLoc, diag::note_throw_underaligned_obj) 1073 << Ty << (unsigned)TypeAlign.getQuantity() 1074 << (unsigned)ExnObjAlign.getQuantity(); 1075 } 1076 } 1077 1078 return false; 1079 } 1080 1081 static QualType adjustCVQualifiersForCXXThisWithinLambda( 1082 ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy, 1083 DeclContext *CurSemaContext, ASTContext &ASTCtx) { 1084 1085 QualType ClassType = ThisTy->getPointeeType(); 1086 LambdaScopeInfo *CurLSI = nullptr; 1087 DeclContext *CurDC = CurSemaContext; 1088 1089 // Iterate through the stack of lambdas starting from the innermost lambda to 1090 // the outermost lambda, checking if '*this' is ever captured by copy - since 1091 // that could change the cv-qualifiers of the '*this' object. 1092 // The object referred to by '*this' starts out with the cv-qualifiers of its 1093 // member function. We then start with the innermost lambda and iterate 1094 // outward checking to see if any lambda performs a by-copy capture of '*this' 1095 // - and if so, any nested lambda must respect the 'constness' of that 1096 // capturing lamdbda's call operator. 1097 // 1098 1099 // Since the FunctionScopeInfo stack is representative of the lexical 1100 // nesting of the lambda expressions during initial parsing (and is the best 1101 // place for querying information about captures about lambdas that are 1102 // partially processed) and perhaps during instantiation of function templates 1103 // that contain lambda expressions that need to be transformed BUT not 1104 // necessarily during instantiation of a nested generic lambda's function call 1105 // operator (which might even be instantiated at the end of the TU) - at which 1106 // time the DeclContext tree is mature enough to query capture information 1107 // reliably - we use a two pronged approach to walk through all the lexically 1108 // enclosing lambda expressions: 1109 // 1110 // 1) Climb down the FunctionScopeInfo stack as long as each item represents 1111 // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically 1112 // enclosed by the call-operator of the LSI below it on the stack (while 1113 // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on 1114 // the stack represents the innermost lambda. 1115 // 1116 // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext 1117 // represents a lambda's call operator. If it does, we must be instantiating 1118 // a generic lambda's call operator (represented by the Current LSI, and 1119 // should be the only scenario where an inconsistency between the LSI and the 1120 // DeclContext should occur), so climb out the DeclContexts if they 1121 // represent lambdas, while querying the corresponding closure types 1122 // regarding capture information. 1123 1124 // 1) Climb down the function scope info stack. 1125 for (int I = FunctionScopes.size(); 1126 I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) && 1127 (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() == 1128 cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator); 1129 CurDC = getLambdaAwareParentOfDeclContext(CurDC)) { 1130 CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]); 1131 1132 if (!CurLSI->isCXXThisCaptured()) 1133 continue; 1134 1135 auto C = CurLSI->getCXXThisCapture(); 1136 1137 if (C.isCopyCapture()) { 1138 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask); 1139 if (CurLSI->CallOperator->isConst()) 1140 ClassType.addConst(); 1141 return ASTCtx.getPointerType(ClassType); 1142 } 1143 } 1144 1145 // 2) We've run out of ScopeInfos but check 1. if CurDC is a lambda (which 1146 // can happen during instantiation of its nested generic lambda call 1147 // operator); 2. if we're in a lambda scope (lambda body). 1148 if (CurLSI && isLambdaCallOperator(CurDC)) { 1149 assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && 1150 "While computing 'this' capture-type for a generic lambda, when we " 1151 "run out of enclosing LSI's, yet the enclosing DC is a " 1152 "lambda-call-operator we must be (i.e. Current LSI) in a generic " 1153 "lambda call oeprator"); 1154 assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator)); 1155 1156 auto IsThisCaptured = 1157 [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) { 1158 IsConst = false; 1159 IsByCopy = false; 1160 for (auto &&C : Closure->captures()) { 1161 if (C.capturesThis()) { 1162 if (C.getCaptureKind() == LCK_StarThis) 1163 IsByCopy = true; 1164 if (Closure->getLambdaCallOperator()->isConst()) 1165 IsConst = true; 1166 return true; 1167 } 1168 } 1169 return false; 1170 }; 1171 1172 bool IsByCopyCapture = false; 1173 bool IsConstCapture = false; 1174 CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent()); 1175 while (Closure && 1176 IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) { 1177 if (IsByCopyCapture) { 1178 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask); 1179 if (IsConstCapture) 1180 ClassType.addConst(); 1181 return ASTCtx.getPointerType(ClassType); 1182 } 1183 Closure = isLambdaCallOperator(Closure->getParent()) 1184 ? cast<CXXRecordDecl>(Closure->getParent()->getParent()) 1185 : nullptr; 1186 } 1187 } 1188 return ASTCtx.getPointerType(ClassType); 1189 } 1190 1191 QualType Sema::getCurrentThisType() { 1192 DeclContext *DC = getFunctionLevelDeclContext(); 1193 QualType ThisTy = CXXThisTypeOverride; 1194 1195 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) { 1196 if (method && method->isInstance()) 1197 ThisTy = method->getThisType(); 1198 } 1199 1200 if (ThisTy.isNull() && isLambdaCallOperator(CurContext) && 1201 inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) { 1202 1203 // This is a lambda call operator that is being instantiated as a default 1204 // initializer. DC must point to the enclosing class type, so we can recover 1205 // the 'this' type from it. 1206 QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC)); 1207 // There are no cv-qualifiers for 'this' within default initializers, 1208 // per [expr.prim.general]p4. 1209 ThisTy = Context.getPointerType(ClassTy); 1210 } 1211 1212 // If we are within a lambda's call operator, the cv-qualifiers of 'this' 1213 // might need to be adjusted if the lambda or any of its enclosing lambda's 1214 // captures '*this' by copy. 1215 if (!ThisTy.isNull() && isLambdaCallOperator(CurContext)) 1216 return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy, 1217 CurContext, Context); 1218 return ThisTy; 1219 } 1220 1221 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S, 1222 Decl *ContextDecl, 1223 Qualifiers CXXThisTypeQuals, 1224 bool Enabled) 1225 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false) 1226 { 1227 if (!Enabled || !ContextDecl) 1228 return; 1229 1230 CXXRecordDecl *Record = nullptr; 1231 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl)) 1232 Record = Template->getTemplatedDecl(); 1233 else 1234 Record = cast<CXXRecordDecl>(ContextDecl); 1235 1236 QualType T = S.Context.getRecordType(Record); 1237 T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals); 1238 1239 S.CXXThisTypeOverride = S.Context.getPointerType(T); 1240 1241 this->Enabled = true; 1242 } 1243 1244 1245 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() { 1246 if (Enabled) { 1247 S.CXXThisTypeOverride = OldCXXThisTypeOverride; 1248 } 1249 } 1250 1251 static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) { 1252 SourceLocation DiagLoc = LSI->IntroducerRange.getEnd(); 1253 assert(!LSI->isCXXThisCaptured()); 1254 // [=, this] {}; // until C++20: Error: this when = is the default 1255 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval && 1256 !Sema.getLangOpts().CPlusPlus20) 1257 return; 1258 Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit) 1259 << FixItHint::CreateInsertion( 1260 DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this"); 1261 } 1262 1263 bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit, 1264 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt, 1265 const bool ByCopy) { 1266 // We don't need to capture this in an unevaluated context. 1267 if (isUnevaluatedContext() && !Explicit) 1268 return true; 1269 1270 assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value"); 1271 1272 const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt 1273 ? *FunctionScopeIndexToStopAt 1274 : FunctionScopes.size() - 1; 1275 1276 // Check that we can capture the *enclosing object* (referred to by '*this') 1277 // by the capturing-entity/closure (lambda/block/etc) at 1278 // MaxFunctionScopesIndex-deep on the FunctionScopes stack. 1279 1280 // Note: The *enclosing object* can only be captured by-value by a 1281 // closure that is a lambda, using the explicit notation: 1282 // [*this] { ... }. 1283 // Every other capture of the *enclosing object* results in its by-reference 1284 // capture. 1285 1286 // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes 1287 // stack), we can capture the *enclosing object* only if: 1288 // - 'L' has an explicit byref or byval capture of the *enclosing object* 1289 // - or, 'L' has an implicit capture. 1290 // AND 1291 // -- there is no enclosing closure 1292 // -- or, there is some enclosing closure 'E' that has already captured the 1293 // *enclosing object*, and every intervening closure (if any) between 'E' 1294 // and 'L' can implicitly capture the *enclosing object*. 1295 // -- or, every enclosing closure can implicitly capture the 1296 // *enclosing object* 1297 1298 1299 unsigned NumCapturingClosures = 0; 1300 for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) { 1301 if (CapturingScopeInfo *CSI = 1302 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) { 1303 if (CSI->CXXThisCaptureIndex != 0) { 1304 // 'this' is already being captured; there isn't anything more to do. 1305 CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose); 1306 break; 1307 } 1308 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI); 1309 if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) { 1310 // This context can't implicitly capture 'this'; fail out. 1311 if (BuildAndDiagnose) { 1312 Diag(Loc, diag::err_this_capture) 1313 << (Explicit && idx == MaxFunctionScopesIndex); 1314 if (!Explicit) 1315 buildLambdaThisCaptureFixit(*this, LSI); 1316 } 1317 return true; 1318 } 1319 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref || 1320 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval || 1321 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block || 1322 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion || 1323 (Explicit && idx == MaxFunctionScopesIndex)) { 1324 // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first 1325 // iteration through can be an explicit capture, all enclosing closures, 1326 // if any, must perform implicit captures. 1327 1328 // This closure can capture 'this'; continue looking upwards. 1329 NumCapturingClosures++; 1330 continue; 1331 } 1332 // This context can't implicitly capture 'this'; fail out. 1333 if (BuildAndDiagnose) 1334 Diag(Loc, diag::err_this_capture) 1335 << (Explicit && idx == MaxFunctionScopesIndex); 1336 1337 if (!Explicit) 1338 buildLambdaThisCaptureFixit(*this, LSI); 1339 return true; 1340 } 1341 break; 1342 } 1343 if (!BuildAndDiagnose) return false; 1344 1345 // If we got here, then the closure at MaxFunctionScopesIndex on the 1346 // FunctionScopes stack, can capture the *enclosing object*, so capture it 1347 // (including implicit by-reference captures in any enclosing closures). 1348 1349 // In the loop below, respect the ByCopy flag only for the closure requesting 1350 // the capture (i.e. first iteration through the loop below). Ignore it for 1351 // all enclosing closure's up to NumCapturingClosures (since they must be 1352 // implicitly capturing the *enclosing object* by reference (see loop 1353 // above)). 1354 assert((!ByCopy || 1355 isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && 1356 "Only a lambda can capture the enclosing object (referred to by " 1357 "*this) by copy"); 1358 QualType ThisTy = getCurrentThisType(); 1359 for (int idx = MaxFunctionScopesIndex; NumCapturingClosures; 1360 --idx, --NumCapturingClosures) { 1361 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]); 1362 1363 // The type of the corresponding data member (not a 'this' pointer if 'by 1364 // copy'). 1365 QualType CaptureType = ThisTy; 1366 if (ByCopy) { 1367 // If we are capturing the object referred to by '*this' by copy, ignore 1368 // any cv qualifiers inherited from the type of the member function for 1369 // the type of the closure-type's corresponding data member and any use 1370 // of 'this'. 1371 CaptureType = ThisTy->getPointeeType(); 1372 CaptureType.removeLocalCVRQualifiers(Qualifiers::CVRMask); 1373 } 1374 1375 bool isNested = NumCapturingClosures > 1; 1376 CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy); 1377 } 1378 return false; 1379 } 1380 1381 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) { 1382 /// C++ 9.3.2: In the body of a non-static member function, the keyword this 1383 /// is a non-lvalue expression whose value is the address of the object for 1384 /// which the function is called. 1385 1386 QualType ThisTy = getCurrentThisType(); 1387 if (ThisTy.isNull()) 1388 return Diag(Loc, diag::err_invalid_this_use); 1389 return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false); 1390 } 1391 1392 Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type, 1393 bool IsImplicit) { 1394 if (getLangOpts().HLSL && Type.getTypePtr()->isPointerType()) { 1395 auto *This = new (Context) 1396 CXXThisExpr(Loc, Type.getTypePtr()->getPointeeType(), IsImplicit); 1397 This->setValueKind(ExprValueKind::VK_LValue); 1398 MarkThisReferenced(This); 1399 return This; 1400 } 1401 auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit); 1402 MarkThisReferenced(This); 1403 return This; 1404 } 1405 1406 void Sema::MarkThisReferenced(CXXThisExpr *This) { 1407 CheckCXXThisCapture(This->getExprLoc()); 1408 } 1409 1410 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) { 1411 // If we're outside the body of a member function, then we'll have a specified 1412 // type for 'this'. 1413 if (CXXThisTypeOverride.isNull()) 1414 return false; 1415 1416 // Determine whether we're looking into a class that's currently being 1417 // defined. 1418 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl(); 1419 return Class && Class->isBeingDefined(); 1420 } 1421 1422 /// Parse construction of a specified type. 1423 /// Can be interpreted either as function-style casting ("int(x)") 1424 /// or class type construction ("ClassType(x,y,z)") 1425 /// or creation of a value-initialized type ("int()"). 1426 ExprResult 1427 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep, 1428 SourceLocation LParenOrBraceLoc, 1429 MultiExprArg exprs, 1430 SourceLocation RParenOrBraceLoc, 1431 bool ListInitialization) { 1432 if (!TypeRep) 1433 return ExprError(); 1434 1435 TypeSourceInfo *TInfo; 1436 QualType Ty = GetTypeFromParser(TypeRep, &TInfo); 1437 if (!TInfo) 1438 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation()); 1439 1440 auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs, 1441 RParenOrBraceLoc, ListInitialization); 1442 // Avoid creating a non-type-dependent expression that contains typos. 1443 // Non-type-dependent expressions are liable to be discarded without 1444 // checking for embedded typos. 1445 if (!Result.isInvalid() && Result.get()->isInstantiationDependent() && 1446 !Result.get()->isTypeDependent()) 1447 Result = CorrectDelayedTyposInExpr(Result.get()); 1448 else if (Result.isInvalid()) 1449 Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(), 1450 RParenOrBraceLoc, exprs, Ty); 1451 return Result; 1452 } 1453 1454 ExprResult 1455 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo, 1456 SourceLocation LParenOrBraceLoc, 1457 MultiExprArg Exprs, 1458 SourceLocation RParenOrBraceLoc, 1459 bool ListInitialization) { 1460 QualType Ty = TInfo->getType(); 1461 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc(); 1462 1463 assert((!ListInitialization || Exprs.size() == 1) && 1464 "List initialization must have exactly one expression."); 1465 SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc); 1466 1467 InitializedEntity Entity = 1468 InitializedEntity::InitializeTemporary(Context, TInfo); 1469 InitializationKind Kind = 1470 Exprs.size() 1471 ? ListInitialization 1472 ? InitializationKind::CreateDirectList( 1473 TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc) 1474 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc, 1475 RParenOrBraceLoc) 1476 : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc, 1477 RParenOrBraceLoc); 1478 1479 // C++1z [expr.type.conv]p1: 1480 // If the type is a placeholder for a deduced class type, [...perform class 1481 // template argument deduction...] 1482 // C++2b: 1483 // Otherwise, if the type contains a placeholder type, it is replaced by the 1484 // type determined by placeholder type deduction. 1485 DeducedType *Deduced = Ty->getContainedDeducedType(); 1486 if (Deduced && !Deduced->isDeduced() && 1487 isa<DeducedTemplateSpecializationType>(Deduced)) { 1488 Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity, 1489 Kind, Exprs); 1490 if (Ty.isNull()) 1491 return ExprError(); 1492 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty); 1493 } else if (Deduced && !Deduced->isDeduced()) { 1494 MultiExprArg Inits = Exprs; 1495 if (ListInitialization) { 1496 auto *ILE = cast<InitListExpr>(Exprs[0]); 1497 Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits()); 1498 } 1499 1500 if (Inits.empty()) 1501 return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_init_no_expression) 1502 << Ty << FullRange); 1503 if (Inits.size() > 1) { 1504 Expr *FirstBad = Inits[1]; 1505 return ExprError(Diag(FirstBad->getBeginLoc(), 1506 diag::err_auto_expr_init_multiple_expressions) 1507 << Ty << FullRange); 1508 } 1509 if (getLangOpts().CPlusPlus2b) { 1510 if (Ty->getAs<AutoType>()) 1511 Diag(TyBeginLoc, diag::warn_cxx20_compat_auto_expr) << FullRange; 1512 } 1513 Expr *Deduce = Inits[0]; 1514 if (isa<InitListExpr>(Deduce)) 1515 return ExprError( 1516 Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces) 1517 << ListInitialization << Ty << FullRange); 1518 QualType DeducedType; 1519 TemplateDeductionInfo Info(Deduce->getExprLoc()); 1520 TemplateDeductionResult Result = 1521 DeduceAutoType(TInfo->getTypeLoc(), Deduce, DeducedType, Info); 1522 if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed) 1523 return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_deduction_failure) 1524 << Ty << Deduce->getType() << FullRange 1525 << Deduce->getSourceRange()); 1526 if (DeducedType.isNull()) { 1527 assert(Result == TDK_AlreadyDiagnosed); 1528 return ExprError(); 1529 } 1530 1531 Ty = DeducedType; 1532 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty); 1533 } 1534 1535 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) { 1536 // FIXME: CXXUnresolvedConstructExpr does not model list-initialization 1537 // directly. We work around this by dropping the locations of the braces. 1538 SourceRange Locs = ListInitialization 1539 ? SourceRange() 1540 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc); 1541 return CXXUnresolvedConstructExpr::Create(Context, Ty.getNonReferenceType(), 1542 TInfo, Locs.getBegin(), Exprs, 1543 Locs.getEnd()); 1544 } 1545 1546 // C++ [expr.type.conv]p1: 1547 // If the expression list is a parenthesized single expression, the type 1548 // conversion expression is equivalent (in definedness, and if defined in 1549 // meaning) to the corresponding cast expression. 1550 if (Exprs.size() == 1 && !ListInitialization && 1551 !isa<InitListExpr>(Exprs[0])) { 1552 Expr *Arg = Exprs[0]; 1553 return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg, 1554 RParenOrBraceLoc); 1555 } 1556 1557 // For an expression of the form T(), T shall not be an array type. 1558 QualType ElemTy = Ty; 1559 if (Ty->isArrayType()) { 1560 if (!ListInitialization) 1561 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type) 1562 << FullRange); 1563 ElemTy = Context.getBaseElementType(Ty); 1564 } 1565 1566 // Only construct objects with object types. 1567 // The standard doesn't explicitly forbid function types here, but that's an 1568 // obvious oversight, as there's no way to dynamically construct a function 1569 // in general. 1570 if (Ty->isFunctionType()) 1571 return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type) 1572 << Ty << FullRange); 1573 1574 // C++17 [expr.type.conv]p2: 1575 // If the type is cv void and the initializer is (), the expression is a 1576 // prvalue of the specified type that performs no initialization. 1577 if (!Ty->isVoidType() && 1578 RequireCompleteType(TyBeginLoc, ElemTy, 1579 diag::err_invalid_incomplete_type_use, FullRange)) 1580 return ExprError(); 1581 1582 // Otherwise, the expression is a prvalue of the specified type whose 1583 // result object is direct-initialized (11.6) with the initializer. 1584 InitializationSequence InitSeq(*this, Entity, Kind, Exprs); 1585 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs); 1586 1587 if (Result.isInvalid()) 1588 return Result; 1589 1590 Expr *Inner = Result.get(); 1591 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner)) 1592 Inner = BTE->getSubExpr(); 1593 if (!isa<CXXTemporaryObjectExpr>(Inner) && 1594 !isa<CXXScalarValueInitExpr>(Inner)) { 1595 // If we created a CXXTemporaryObjectExpr, that node also represents the 1596 // functional cast. Otherwise, create an explicit cast to represent 1597 // the syntactic form of a functional-style cast that was used here. 1598 // 1599 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr 1600 // would give a more consistent AST representation than using a 1601 // CXXTemporaryObjectExpr. It's also weird that the functional cast 1602 // is sometimes handled by initialization and sometimes not. 1603 QualType ResultType = Result.get()->getType(); 1604 SourceRange Locs = ListInitialization 1605 ? SourceRange() 1606 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc); 1607 Result = CXXFunctionalCastExpr::Create( 1608 Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp, 1609 Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(), 1610 Locs.getBegin(), Locs.getEnd()); 1611 } 1612 1613 return Result; 1614 } 1615 1616 bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) { 1617 // [CUDA] Ignore this function, if we can't call it. 1618 const FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true); 1619 if (getLangOpts().CUDA) { 1620 auto CallPreference = IdentifyCUDAPreference(Caller, Method); 1621 // If it's not callable at all, it's not the right function. 1622 if (CallPreference < CFP_WrongSide) 1623 return false; 1624 if (CallPreference == CFP_WrongSide) { 1625 // Maybe. We have to check if there are better alternatives. 1626 DeclContext::lookup_result R = 1627 Method->getDeclContext()->lookup(Method->getDeclName()); 1628 for (const auto *D : R) { 1629 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 1630 if (IdentifyCUDAPreference(Caller, FD) > CFP_WrongSide) 1631 return false; 1632 } 1633 } 1634 // We've found no better variants. 1635 } 1636 } 1637 1638 SmallVector<const FunctionDecl*, 4> PreventedBy; 1639 bool Result = Method->isUsualDeallocationFunction(PreventedBy); 1640 1641 if (Result || !getLangOpts().CUDA || PreventedBy.empty()) 1642 return Result; 1643 1644 // In case of CUDA, return true if none of the 1-argument deallocator 1645 // functions are actually callable. 1646 return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) { 1647 assert(FD->getNumParams() == 1 && 1648 "Only single-operand functions should be in PreventedBy"); 1649 return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice; 1650 }); 1651 } 1652 1653 /// Determine whether the given function is a non-placement 1654 /// deallocation function. 1655 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) { 1656 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD)) 1657 return S.isUsualDeallocationFunction(Method); 1658 1659 if (FD->getOverloadedOperator() != OO_Delete && 1660 FD->getOverloadedOperator() != OO_Array_Delete) 1661 return false; 1662 1663 unsigned UsualParams = 1; 1664 1665 if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() && 1666 S.Context.hasSameUnqualifiedType( 1667 FD->getParamDecl(UsualParams)->getType(), 1668 S.Context.getSizeType())) 1669 ++UsualParams; 1670 1671 if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() && 1672 S.Context.hasSameUnqualifiedType( 1673 FD->getParamDecl(UsualParams)->getType(), 1674 S.Context.getTypeDeclType(S.getStdAlignValT()))) 1675 ++UsualParams; 1676 1677 return UsualParams == FD->getNumParams(); 1678 } 1679 1680 namespace { 1681 struct UsualDeallocFnInfo { 1682 UsualDeallocFnInfo() : Found(), FD(nullptr) {} 1683 UsualDeallocFnInfo(Sema &S, DeclAccessPair Found) 1684 : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())), 1685 Destroying(false), HasSizeT(false), HasAlignValT(false), 1686 CUDAPref(Sema::CFP_Native) { 1687 // A function template declaration is never a usual deallocation function. 1688 if (!FD) 1689 return; 1690 unsigned NumBaseParams = 1; 1691 if (FD->isDestroyingOperatorDelete()) { 1692 Destroying = true; 1693 ++NumBaseParams; 1694 } 1695 1696 if (NumBaseParams < FD->getNumParams() && 1697 S.Context.hasSameUnqualifiedType( 1698 FD->getParamDecl(NumBaseParams)->getType(), 1699 S.Context.getSizeType())) { 1700 ++NumBaseParams; 1701 HasSizeT = true; 1702 } 1703 1704 if (NumBaseParams < FD->getNumParams() && 1705 FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) { 1706 ++NumBaseParams; 1707 HasAlignValT = true; 1708 } 1709 1710 // In CUDA, determine how much we'd like / dislike to call this. 1711 if (S.getLangOpts().CUDA) 1712 if (auto *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true)) 1713 CUDAPref = S.IdentifyCUDAPreference(Caller, FD); 1714 } 1715 1716 explicit operator bool() const { return FD; } 1717 1718 bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize, 1719 bool WantAlign) const { 1720 // C++ P0722: 1721 // A destroying operator delete is preferred over a non-destroying 1722 // operator delete. 1723 if (Destroying != Other.Destroying) 1724 return Destroying; 1725 1726 // C++17 [expr.delete]p10: 1727 // If the type has new-extended alignment, a function with a parameter 1728 // of type std::align_val_t is preferred; otherwise a function without 1729 // such a parameter is preferred 1730 if (HasAlignValT != Other.HasAlignValT) 1731 return HasAlignValT == WantAlign; 1732 1733 if (HasSizeT != Other.HasSizeT) 1734 return HasSizeT == WantSize; 1735 1736 // Use CUDA call preference as a tiebreaker. 1737 return CUDAPref > Other.CUDAPref; 1738 } 1739 1740 DeclAccessPair Found; 1741 FunctionDecl *FD; 1742 bool Destroying, HasSizeT, HasAlignValT; 1743 Sema::CUDAFunctionPreference CUDAPref; 1744 }; 1745 } 1746 1747 /// Determine whether a type has new-extended alignment. This may be called when 1748 /// the type is incomplete (for a delete-expression with an incomplete pointee 1749 /// type), in which case it will conservatively return false if the alignment is 1750 /// not known. 1751 static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) { 1752 return S.getLangOpts().AlignedAllocation && 1753 S.getASTContext().getTypeAlignIfKnown(AllocType) > 1754 S.getASTContext().getTargetInfo().getNewAlign(); 1755 } 1756 1757 /// Select the correct "usual" deallocation function to use from a selection of 1758 /// deallocation functions (either global or class-scope). 1759 static UsualDeallocFnInfo resolveDeallocationOverload( 1760 Sema &S, LookupResult &R, bool WantSize, bool WantAlign, 1761 llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) { 1762 UsualDeallocFnInfo Best; 1763 1764 for (auto I = R.begin(), E = R.end(); I != E; ++I) { 1765 UsualDeallocFnInfo Info(S, I.getPair()); 1766 if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) || 1767 Info.CUDAPref == Sema::CFP_Never) 1768 continue; 1769 1770 if (!Best) { 1771 Best = Info; 1772 if (BestFns) 1773 BestFns->push_back(Info); 1774 continue; 1775 } 1776 1777 if (Best.isBetterThan(Info, WantSize, WantAlign)) 1778 continue; 1779 1780 // If more than one preferred function is found, all non-preferred 1781 // functions are eliminated from further consideration. 1782 if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign)) 1783 BestFns->clear(); 1784 1785 Best = Info; 1786 if (BestFns) 1787 BestFns->push_back(Info); 1788 } 1789 1790 return Best; 1791 } 1792 1793 /// Determine whether a given type is a class for which 'delete[]' would call 1794 /// a member 'operator delete[]' with a 'size_t' parameter. This implies that 1795 /// we need to store the array size (even if the type is 1796 /// trivially-destructible). 1797 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc, 1798 QualType allocType) { 1799 const RecordType *record = 1800 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>(); 1801 if (!record) return false; 1802 1803 // Try to find an operator delete[] in class scope. 1804 1805 DeclarationName deleteName = 1806 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete); 1807 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName); 1808 S.LookupQualifiedName(ops, record->getDecl()); 1809 1810 // We're just doing this for information. 1811 ops.suppressDiagnostics(); 1812 1813 // Very likely: there's no operator delete[]. 1814 if (ops.empty()) return false; 1815 1816 // If it's ambiguous, it should be illegal to call operator delete[] 1817 // on this thing, so it doesn't matter if we allocate extra space or not. 1818 if (ops.isAmbiguous()) return false; 1819 1820 // C++17 [expr.delete]p10: 1821 // If the deallocation functions have class scope, the one without a 1822 // parameter of type std::size_t is selected. 1823 auto Best = resolveDeallocationOverload( 1824 S, ops, /*WantSize*/false, 1825 /*WantAlign*/hasNewExtendedAlignment(S, allocType)); 1826 return Best && Best.HasSizeT; 1827 } 1828 1829 /// Parsed a C++ 'new' expression (C++ 5.3.4). 1830 /// 1831 /// E.g.: 1832 /// @code new (memory) int[size][4] @endcode 1833 /// or 1834 /// @code ::new Foo(23, "hello") @endcode 1835 /// 1836 /// \param StartLoc The first location of the expression. 1837 /// \param UseGlobal True if 'new' was prefixed with '::'. 1838 /// \param PlacementLParen Opening paren of the placement arguments. 1839 /// \param PlacementArgs Placement new arguments. 1840 /// \param PlacementRParen Closing paren of the placement arguments. 1841 /// \param TypeIdParens If the type is in parens, the source range. 1842 /// \param D The type to be allocated, as well as array dimensions. 1843 /// \param Initializer The initializing expression or initializer-list, or null 1844 /// if there is none. 1845 ExprResult 1846 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, 1847 SourceLocation PlacementLParen, MultiExprArg PlacementArgs, 1848 SourceLocation PlacementRParen, SourceRange TypeIdParens, 1849 Declarator &D, Expr *Initializer) { 1850 std::optional<Expr *> ArraySize; 1851 // If the specified type is an array, unwrap it and save the expression. 1852 if (D.getNumTypeObjects() > 0 && 1853 D.getTypeObject(0).Kind == DeclaratorChunk::Array) { 1854 DeclaratorChunk &Chunk = D.getTypeObject(0); 1855 if (D.getDeclSpec().hasAutoTypeSpec()) 1856 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto) 1857 << D.getSourceRange()); 1858 if (Chunk.Arr.hasStatic) 1859 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new) 1860 << D.getSourceRange()); 1861 if (!Chunk.Arr.NumElts && !Initializer) 1862 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size) 1863 << D.getSourceRange()); 1864 1865 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts); 1866 D.DropFirstTypeObject(); 1867 } 1868 1869 // Every dimension shall be of constant size. 1870 if (ArraySize) { 1871 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) { 1872 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array) 1873 break; 1874 1875 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr; 1876 if (Expr *NumElts = (Expr *)Array.NumElts) { 1877 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) { 1878 // FIXME: GCC permits constant folding here. We should either do so consistently 1879 // or not do so at all, rather than changing behavior in C++14 onwards. 1880 if (getLangOpts().CPlusPlus14) { 1881 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator 1882 // shall be a converted constant expression (5.19) of type std::size_t 1883 // and shall evaluate to a strictly positive value. 1884 llvm::APSInt Value(Context.getIntWidth(Context.getSizeType())); 1885 Array.NumElts 1886 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value, 1887 CCEK_ArrayBound) 1888 .get(); 1889 } else { 1890 Array.NumElts = 1891 VerifyIntegerConstantExpression( 1892 NumElts, nullptr, diag::err_new_array_nonconst, AllowFold) 1893 .get(); 1894 } 1895 if (!Array.NumElts) 1896 return ExprError(); 1897 } 1898 } 1899 } 1900 } 1901 1902 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr); 1903 QualType AllocType = TInfo->getType(); 1904 if (D.isInvalidType()) 1905 return ExprError(); 1906 1907 SourceRange DirectInitRange; 1908 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) 1909 DirectInitRange = List->getSourceRange(); 1910 1911 return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal, 1912 PlacementLParen, PlacementArgs, PlacementRParen, 1913 TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange, 1914 Initializer); 1915 } 1916 1917 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style, 1918 Expr *Init) { 1919 if (!Init) 1920 return true; 1921 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) 1922 return PLE->getNumExprs() == 0; 1923 if (isa<ImplicitValueInitExpr>(Init)) 1924 return true; 1925 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) 1926 return !CCE->isListInitialization() && 1927 CCE->getConstructor()->isDefaultConstructor(); 1928 else if (Style == CXXNewExpr::ListInit) { 1929 assert(isa<InitListExpr>(Init) && 1930 "Shouldn't create list CXXConstructExprs for arrays."); 1931 return true; 1932 } 1933 return false; 1934 } 1935 1936 bool 1937 Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const { 1938 if (!getLangOpts().AlignedAllocationUnavailable) 1939 return false; 1940 if (FD.isDefined()) 1941 return false; 1942 std::optional<unsigned> AlignmentParam; 1943 if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) && 1944 AlignmentParam) 1945 return true; 1946 return false; 1947 } 1948 1949 // Emit a diagnostic if an aligned allocation/deallocation function that is not 1950 // implemented in the standard library is selected. 1951 void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD, 1952 SourceLocation Loc) { 1953 if (isUnavailableAlignedAllocationFunction(FD)) { 1954 const llvm::Triple &T = getASTContext().getTargetInfo().getTriple(); 1955 StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling( 1956 getASTContext().getTargetInfo().getPlatformName()); 1957 VersionTuple OSVersion = alignedAllocMinVersion(T.getOS()); 1958 1959 OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator(); 1960 bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete; 1961 Diag(Loc, diag::err_aligned_allocation_unavailable) 1962 << IsDelete << FD.getType().getAsString() << OSName 1963 << OSVersion.getAsString() << OSVersion.empty(); 1964 Diag(Loc, diag::note_silence_aligned_allocation_unavailable); 1965 } 1966 } 1967 1968 ExprResult Sema::BuildCXXNew(SourceRange Range, bool UseGlobal, 1969 SourceLocation PlacementLParen, 1970 MultiExprArg PlacementArgs, 1971 SourceLocation PlacementRParen, 1972 SourceRange TypeIdParens, QualType AllocType, 1973 TypeSourceInfo *AllocTypeInfo, 1974 std::optional<Expr *> ArraySize, 1975 SourceRange DirectInitRange, Expr *Initializer) { 1976 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange(); 1977 SourceLocation StartLoc = Range.getBegin(); 1978 1979 CXXNewExpr::InitializationStyle initStyle; 1980 if (DirectInitRange.isValid()) { 1981 assert(Initializer && "Have parens but no initializer."); 1982 initStyle = CXXNewExpr::CallInit; 1983 } else if (Initializer && isa<InitListExpr>(Initializer)) 1984 initStyle = CXXNewExpr::ListInit; 1985 else { 1986 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) || 1987 isa<CXXConstructExpr>(Initializer)) && 1988 "Initializer expression that cannot have been implicitly created."); 1989 initStyle = CXXNewExpr::NoInit; 1990 } 1991 1992 MultiExprArg Exprs(&Initializer, Initializer ? 1 : 0); 1993 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) { 1994 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init"); 1995 Exprs = MultiExprArg(List->getExprs(), List->getNumExprs()); 1996 } 1997 1998 // C++11 [expr.new]p15: 1999 // A new-expression that creates an object of type T initializes that 2000 // object as follows: 2001 InitializationKind Kind 2002 // - If the new-initializer is omitted, the object is default- 2003 // initialized (8.5); if no initialization is performed, 2004 // the object has indeterminate value 2005 = initStyle == CXXNewExpr::NoInit 2006 ? InitializationKind::CreateDefault(TypeRange.getBegin()) 2007 // - Otherwise, the new-initializer is interpreted according to 2008 // the 2009 // initialization rules of 8.5 for direct-initialization. 2010 : initStyle == CXXNewExpr::ListInit 2011 ? InitializationKind::CreateDirectList( 2012 TypeRange.getBegin(), Initializer->getBeginLoc(), 2013 Initializer->getEndLoc()) 2014 : InitializationKind::CreateDirect(TypeRange.getBegin(), 2015 DirectInitRange.getBegin(), 2016 DirectInitRange.getEnd()); 2017 2018 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for. 2019 auto *Deduced = AllocType->getContainedDeducedType(); 2020 if (Deduced && !Deduced->isDeduced() && 2021 isa<DeducedTemplateSpecializationType>(Deduced)) { 2022 if (ArraySize) 2023 return ExprError( 2024 Diag(*ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(), 2025 diag::err_deduced_class_template_compound_type) 2026 << /*array*/ 2 2027 << (*ArraySize ? (*ArraySize)->getSourceRange() : TypeRange)); 2028 2029 InitializedEntity Entity 2030 = InitializedEntity::InitializeNew(StartLoc, AllocType); 2031 AllocType = DeduceTemplateSpecializationFromInitializer( 2032 AllocTypeInfo, Entity, Kind, Exprs); 2033 if (AllocType.isNull()) 2034 return ExprError(); 2035 } else if (Deduced && !Deduced->isDeduced()) { 2036 MultiExprArg Inits = Exprs; 2037 bool Braced = (initStyle == CXXNewExpr::ListInit); 2038 if (Braced) { 2039 auto *ILE = cast<InitListExpr>(Exprs[0]); 2040 Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits()); 2041 } 2042 2043 if (initStyle == CXXNewExpr::NoInit || Inits.empty()) 2044 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg) 2045 << AllocType << TypeRange); 2046 if (Inits.size() > 1) { 2047 Expr *FirstBad = Inits[1]; 2048 return ExprError(Diag(FirstBad->getBeginLoc(), 2049 diag::err_auto_new_ctor_multiple_expressions) 2050 << AllocType << TypeRange); 2051 } 2052 if (Braced && !getLangOpts().CPlusPlus17) 2053 Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init) 2054 << AllocType << TypeRange; 2055 Expr *Deduce = Inits[0]; 2056 if (isa<InitListExpr>(Deduce)) 2057 return ExprError( 2058 Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces) 2059 << Braced << AllocType << TypeRange); 2060 QualType DeducedType; 2061 TemplateDeductionInfo Info(Deduce->getExprLoc()); 2062 TemplateDeductionResult Result = 2063 DeduceAutoType(AllocTypeInfo->getTypeLoc(), Deduce, DeducedType, Info); 2064 if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed) 2065 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure) 2066 << AllocType << Deduce->getType() << TypeRange 2067 << Deduce->getSourceRange()); 2068 if (DeducedType.isNull()) { 2069 assert(Result == TDK_AlreadyDiagnosed); 2070 return ExprError(); 2071 } 2072 AllocType = DeducedType; 2073 } 2074 2075 // Per C++0x [expr.new]p5, the type being constructed may be a 2076 // typedef of an array type. 2077 if (!ArraySize) { 2078 if (const ConstantArrayType *Array 2079 = Context.getAsConstantArrayType(AllocType)) { 2080 ArraySize = IntegerLiteral::Create(Context, Array->getSize(), 2081 Context.getSizeType(), 2082 TypeRange.getEnd()); 2083 AllocType = Array->getElementType(); 2084 } 2085 } 2086 2087 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange)) 2088 return ExprError(); 2089 2090 if (ArraySize && !checkArrayElementAlignment(AllocType, TypeRange.getBegin())) 2091 return ExprError(); 2092 2093 // In ARC, infer 'retaining' for the allocated 2094 if (getLangOpts().ObjCAutoRefCount && 2095 AllocType.getObjCLifetime() == Qualifiers::OCL_None && 2096 AllocType->isObjCLifetimeType()) { 2097 AllocType = Context.getLifetimeQualifiedType(AllocType, 2098 AllocType->getObjCARCImplicitLifetime()); 2099 } 2100 2101 QualType ResultType = Context.getPointerType(AllocType); 2102 2103 if (ArraySize && *ArraySize && 2104 (*ArraySize)->getType()->isNonOverloadPlaceholderType()) { 2105 ExprResult result = CheckPlaceholderExpr(*ArraySize); 2106 if (result.isInvalid()) return ExprError(); 2107 ArraySize = result.get(); 2108 } 2109 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have 2110 // integral or enumeration type with a non-negative value." 2111 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped 2112 // enumeration type, or a class type for which a single non-explicit 2113 // conversion function to integral or unscoped enumeration type exists. 2114 // C++1y [expr.new]p6: The expression [...] is implicitly converted to 2115 // std::size_t. 2116 std::optional<uint64_t> KnownArraySize; 2117 if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) { 2118 ExprResult ConvertedSize; 2119 if (getLangOpts().CPlusPlus14) { 2120 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?"); 2121 2122 ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(), 2123 AA_Converting); 2124 2125 if (!ConvertedSize.isInvalid() && 2126 (*ArraySize)->getType()->getAs<RecordType>()) 2127 // Diagnose the compatibility of this conversion. 2128 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion) 2129 << (*ArraySize)->getType() << 0 << "'size_t'"; 2130 } else { 2131 class SizeConvertDiagnoser : public ICEConvertDiagnoser { 2132 protected: 2133 Expr *ArraySize; 2134 2135 public: 2136 SizeConvertDiagnoser(Expr *ArraySize) 2137 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false), 2138 ArraySize(ArraySize) {} 2139 2140 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, 2141 QualType T) override { 2142 return S.Diag(Loc, diag::err_array_size_not_integral) 2143 << S.getLangOpts().CPlusPlus11 << T; 2144 } 2145 2146 SemaDiagnosticBuilder diagnoseIncomplete( 2147 Sema &S, SourceLocation Loc, QualType T) override { 2148 return S.Diag(Loc, diag::err_array_size_incomplete_type) 2149 << T << ArraySize->getSourceRange(); 2150 } 2151 2152 SemaDiagnosticBuilder diagnoseExplicitConv( 2153 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { 2154 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy; 2155 } 2156 2157 SemaDiagnosticBuilder noteExplicitConv( 2158 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 2159 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 2160 << ConvTy->isEnumeralType() << ConvTy; 2161 } 2162 2163 SemaDiagnosticBuilder diagnoseAmbiguous( 2164 Sema &S, SourceLocation Loc, QualType T) override { 2165 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T; 2166 } 2167 2168 SemaDiagnosticBuilder noteAmbiguous( 2169 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 2170 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 2171 << ConvTy->isEnumeralType() << ConvTy; 2172 } 2173 2174 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 2175 QualType T, 2176 QualType ConvTy) override { 2177 return S.Diag(Loc, 2178 S.getLangOpts().CPlusPlus11 2179 ? diag::warn_cxx98_compat_array_size_conversion 2180 : diag::ext_array_size_conversion) 2181 << T << ConvTy->isEnumeralType() << ConvTy; 2182 } 2183 } SizeDiagnoser(*ArraySize); 2184 2185 ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize, 2186 SizeDiagnoser); 2187 } 2188 if (ConvertedSize.isInvalid()) 2189 return ExprError(); 2190 2191 ArraySize = ConvertedSize.get(); 2192 QualType SizeType = (*ArraySize)->getType(); 2193 2194 if (!SizeType->isIntegralOrUnscopedEnumerationType()) 2195 return ExprError(); 2196 2197 // C++98 [expr.new]p7: 2198 // The expression in a direct-new-declarator shall have integral type 2199 // with a non-negative value. 2200 // 2201 // Let's see if this is a constant < 0. If so, we reject it out of hand, 2202 // per CWG1464. Otherwise, if it's not a constant, we must have an 2203 // unparenthesized array type. 2204 2205 // We've already performed any required implicit conversion to integer or 2206 // unscoped enumeration type. 2207 // FIXME: Per CWG1464, we are required to check the value prior to 2208 // converting to size_t. This will never find a negative array size in 2209 // C++14 onwards, because Value is always unsigned here! 2210 if (std::optional<llvm::APSInt> Value = 2211 (*ArraySize)->getIntegerConstantExpr(Context)) { 2212 if (Value->isSigned() && Value->isNegative()) { 2213 return ExprError(Diag((*ArraySize)->getBeginLoc(), 2214 diag::err_typecheck_negative_array_size) 2215 << (*ArraySize)->getSourceRange()); 2216 } 2217 2218 if (!AllocType->isDependentType()) { 2219 unsigned ActiveSizeBits = 2220 ConstantArrayType::getNumAddressingBits(Context, AllocType, *Value); 2221 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) 2222 return ExprError( 2223 Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large) 2224 << toString(*Value, 10) << (*ArraySize)->getSourceRange()); 2225 } 2226 2227 KnownArraySize = Value->getZExtValue(); 2228 } else if (TypeIdParens.isValid()) { 2229 // Can't have dynamic array size when the type-id is in parentheses. 2230 Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst) 2231 << (*ArraySize)->getSourceRange() 2232 << FixItHint::CreateRemoval(TypeIdParens.getBegin()) 2233 << FixItHint::CreateRemoval(TypeIdParens.getEnd()); 2234 2235 TypeIdParens = SourceRange(); 2236 } 2237 2238 // Note that we do *not* convert the argument in any way. It can 2239 // be signed, larger than size_t, whatever. 2240 } 2241 2242 FunctionDecl *OperatorNew = nullptr; 2243 FunctionDecl *OperatorDelete = nullptr; 2244 unsigned Alignment = 2245 AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType); 2246 unsigned NewAlignment = Context.getTargetInfo().getNewAlign(); 2247 bool PassAlignment = getLangOpts().AlignedAllocation && 2248 Alignment > NewAlignment; 2249 2250 AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both; 2251 if (!AllocType->isDependentType() && 2252 !Expr::hasAnyTypeDependentArguments(PlacementArgs) && 2253 FindAllocationFunctions( 2254 StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope, 2255 AllocType, ArraySize.has_value(), PassAlignment, PlacementArgs, 2256 OperatorNew, OperatorDelete)) 2257 return ExprError(); 2258 2259 // If this is an array allocation, compute whether the usual array 2260 // deallocation function for the type has a size_t parameter. 2261 bool UsualArrayDeleteWantsSize = false; 2262 if (ArraySize && !AllocType->isDependentType()) 2263 UsualArrayDeleteWantsSize = 2264 doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType); 2265 2266 SmallVector<Expr *, 8> AllPlaceArgs; 2267 if (OperatorNew) { 2268 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); 2269 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction 2270 : VariadicDoesNotApply; 2271 2272 // We've already converted the placement args, just fill in any default 2273 // arguments. Skip the first parameter because we don't have a corresponding 2274 // argument. Skip the second parameter too if we're passing in the 2275 // alignment; we've already filled it in. 2276 unsigned NumImplicitArgs = PassAlignment ? 2 : 1; 2277 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 2278 NumImplicitArgs, PlacementArgs, AllPlaceArgs, 2279 CallType)) 2280 return ExprError(); 2281 2282 if (!AllPlaceArgs.empty()) 2283 PlacementArgs = AllPlaceArgs; 2284 2285 // We would like to perform some checking on the given `operator new` call, 2286 // but the PlacementArgs does not contain the implicit arguments, 2287 // namely allocation size and maybe allocation alignment, 2288 // so we need to conjure them. 2289 2290 QualType SizeTy = Context.getSizeType(); 2291 unsigned SizeTyWidth = Context.getTypeSize(SizeTy); 2292 2293 llvm::APInt SingleEltSize( 2294 SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity()); 2295 2296 // How many bytes do we want to allocate here? 2297 std::optional<llvm::APInt> AllocationSize; 2298 if (!ArraySize && !AllocType->isDependentType()) { 2299 // For non-array operator new, we only want to allocate one element. 2300 AllocationSize = SingleEltSize; 2301 } else if (KnownArraySize && !AllocType->isDependentType()) { 2302 // For array operator new, only deal with static array size case. 2303 bool Overflow; 2304 AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize) 2305 .umul_ov(SingleEltSize, Overflow); 2306 (void)Overflow; 2307 assert( 2308 !Overflow && 2309 "Expected that all the overflows would have been handled already."); 2310 } 2311 2312 IntegerLiteral AllocationSizeLiteral( 2313 Context, AllocationSize.value_or(llvm::APInt::getZero(SizeTyWidth)), 2314 SizeTy, SourceLocation()); 2315 // Otherwise, if we failed to constant-fold the allocation size, we'll 2316 // just give up and pass-in something opaque, that isn't a null pointer. 2317 OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue, 2318 OK_Ordinary, /*SourceExpr=*/nullptr); 2319 2320 // Let's synthesize the alignment argument in case we will need it. 2321 // Since we *really* want to allocate these on stack, this is slightly ugly 2322 // because there might not be a `std::align_val_t` type. 2323 EnumDecl *StdAlignValT = getStdAlignValT(); 2324 QualType AlignValT = 2325 StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy; 2326 IntegerLiteral AlignmentLiteral( 2327 Context, 2328 llvm::APInt(Context.getTypeSize(SizeTy), 2329 Alignment / Context.getCharWidth()), 2330 SizeTy, SourceLocation()); 2331 ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT, 2332 CK_IntegralCast, &AlignmentLiteral, 2333 VK_PRValue, FPOptionsOverride()); 2334 2335 // Adjust placement args by prepending conjured size and alignment exprs. 2336 llvm::SmallVector<Expr *, 8> CallArgs; 2337 CallArgs.reserve(NumImplicitArgs + PlacementArgs.size()); 2338 CallArgs.emplace_back(AllocationSize 2339 ? static_cast<Expr *>(&AllocationSizeLiteral) 2340 : &OpaqueAllocationSize); 2341 if (PassAlignment) 2342 CallArgs.emplace_back(&DesiredAlignment); 2343 CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end()); 2344 2345 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs); 2346 2347 checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs, 2348 /*IsMemberFunction=*/false, StartLoc, Range, CallType); 2349 2350 // Warn if the type is over-aligned and is being allocated by (unaligned) 2351 // global operator new. 2352 if (PlacementArgs.empty() && !PassAlignment && 2353 (OperatorNew->isImplicit() || 2354 (OperatorNew->getBeginLoc().isValid() && 2355 getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) { 2356 if (Alignment > NewAlignment) 2357 Diag(StartLoc, diag::warn_overaligned_type) 2358 << AllocType 2359 << unsigned(Alignment / Context.getCharWidth()) 2360 << unsigned(NewAlignment / Context.getCharWidth()); 2361 } 2362 } 2363 2364 // Array 'new' can't have any initializers except empty parentheses. 2365 // Initializer lists are also allowed, in C++11. Rely on the parser for the 2366 // dialect distinction. 2367 if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) { 2368 SourceRange InitRange(Exprs.front()->getBeginLoc(), 2369 Exprs.back()->getEndLoc()); 2370 Diag(StartLoc, diag::err_new_array_init_args) << InitRange; 2371 return ExprError(); 2372 } 2373 2374 // If we can perform the initialization, and we've not already done so, 2375 // do it now. 2376 if (!AllocType->isDependentType() && 2377 !Expr::hasAnyTypeDependentArguments(Exprs)) { 2378 // The type we initialize is the complete type, including the array bound. 2379 QualType InitType; 2380 if (KnownArraySize) 2381 InitType = Context.getConstantArrayType( 2382 AllocType, 2383 llvm::APInt(Context.getTypeSize(Context.getSizeType()), 2384 *KnownArraySize), 2385 *ArraySize, ArrayType::Normal, 0); 2386 else if (ArraySize) 2387 InitType = 2388 Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0); 2389 else 2390 InitType = AllocType; 2391 2392 InitializedEntity Entity 2393 = InitializedEntity::InitializeNew(StartLoc, InitType); 2394 InitializationSequence InitSeq(*this, Entity, Kind, Exprs); 2395 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, Exprs); 2396 if (FullInit.isInvalid()) 2397 return ExprError(); 2398 2399 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because 2400 // we don't want the initialized object to be destructed. 2401 // FIXME: We should not create these in the first place. 2402 if (CXXBindTemporaryExpr *Binder = 2403 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get())) 2404 FullInit = Binder->getSubExpr(); 2405 2406 Initializer = FullInit.get(); 2407 2408 // FIXME: If we have a KnownArraySize, check that the array bound of the 2409 // initializer is no greater than that constant value. 2410 2411 if (ArraySize && !*ArraySize) { 2412 auto *CAT = Context.getAsConstantArrayType(Initializer->getType()); 2413 if (CAT) { 2414 // FIXME: Track that the array size was inferred rather than explicitly 2415 // specified. 2416 ArraySize = IntegerLiteral::Create( 2417 Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd()); 2418 } else { 2419 Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init) 2420 << Initializer->getSourceRange(); 2421 } 2422 } 2423 } 2424 2425 // Mark the new and delete operators as referenced. 2426 if (OperatorNew) { 2427 if (DiagnoseUseOfDecl(OperatorNew, StartLoc)) 2428 return ExprError(); 2429 MarkFunctionReferenced(StartLoc, OperatorNew); 2430 } 2431 if (OperatorDelete) { 2432 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc)) 2433 return ExprError(); 2434 MarkFunctionReferenced(StartLoc, OperatorDelete); 2435 } 2436 2437 return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete, 2438 PassAlignment, UsualArrayDeleteWantsSize, 2439 PlacementArgs, TypeIdParens, ArraySize, initStyle, 2440 Initializer, ResultType, AllocTypeInfo, Range, 2441 DirectInitRange); 2442 } 2443 2444 /// Checks that a type is suitable as the allocated type 2445 /// in a new-expression. 2446 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc, 2447 SourceRange R) { 2448 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an 2449 // abstract class type or array thereof. 2450 if (AllocType->isFunctionType()) 2451 return Diag(Loc, diag::err_bad_new_type) 2452 << AllocType << 0 << R; 2453 else if (AllocType->isReferenceType()) 2454 return Diag(Loc, diag::err_bad_new_type) 2455 << AllocType << 1 << R; 2456 else if (!AllocType->isDependentType() && 2457 RequireCompleteSizedType( 2458 Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R)) 2459 return true; 2460 else if (RequireNonAbstractType(Loc, AllocType, 2461 diag::err_allocation_of_abstract_type)) 2462 return true; 2463 else if (AllocType->isVariablyModifiedType()) 2464 return Diag(Loc, diag::err_variably_modified_new_type) 2465 << AllocType; 2466 else if (AllocType.getAddressSpace() != LangAS::Default && 2467 !getLangOpts().OpenCLCPlusPlus) 2468 return Diag(Loc, diag::err_address_space_qualified_new) 2469 << AllocType.getUnqualifiedType() 2470 << AllocType.getQualifiers().getAddressSpaceAttributePrintValue(); 2471 else if (getLangOpts().ObjCAutoRefCount) { 2472 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) { 2473 QualType BaseAllocType = Context.getBaseElementType(AT); 2474 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None && 2475 BaseAllocType->isObjCLifetimeType()) 2476 return Diag(Loc, diag::err_arc_new_array_without_ownership) 2477 << BaseAllocType; 2478 } 2479 } 2480 2481 return false; 2482 } 2483 2484 static bool resolveAllocationOverload( 2485 Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args, 2486 bool &PassAlignment, FunctionDecl *&Operator, 2487 OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) { 2488 OverloadCandidateSet Candidates(R.getNameLoc(), 2489 OverloadCandidateSet::CSK_Normal); 2490 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end(); 2491 Alloc != AllocEnd; ++Alloc) { 2492 // Even member operator new/delete are implicitly treated as 2493 // static, so don't use AddMemberCandidate. 2494 NamedDecl *D = (*Alloc)->getUnderlyingDecl(); 2495 2496 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 2497 S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(), 2498 /*ExplicitTemplateArgs=*/nullptr, Args, 2499 Candidates, 2500 /*SuppressUserConversions=*/false); 2501 continue; 2502 } 2503 2504 FunctionDecl *Fn = cast<FunctionDecl>(D); 2505 S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates, 2506 /*SuppressUserConversions=*/false); 2507 } 2508 2509 // Do the resolution. 2510 OverloadCandidateSet::iterator Best; 2511 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { 2512 case OR_Success: { 2513 // Got one! 2514 FunctionDecl *FnDecl = Best->Function; 2515 if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(), 2516 Best->FoundDecl) == Sema::AR_inaccessible) 2517 return true; 2518 2519 Operator = FnDecl; 2520 return false; 2521 } 2522 2523 case OR_No_Viable_Function: 2524 // C++17 [expr.new]p13: 2525 // If no matching function is found and the allocated object type has 2526 // new-extended alignment, the alignment argument is removed from the 2527 // argument list, and overload resolution is performed again. 2528 if (PassAlignment) { 2529 PassAlignment = false; 2530 AlignArg = Args[1]; 2531 Args.erase(Args.begin() + 1); 2532 return resolveAllocationOverload(S, R, Range, Args, PassAlignment, 2533 Operator, &Candidates, AlignArg, 2534 Diagnose); 2535 } 2536 2537 // MSVC will fall back on trying to find a matching global operator new 2538 // if operator new[] cannot be found. Also, MSVC will leak by not 2539 // generating a call to operator delete or operator delete[], but we 2540 // will not replicate that bug. 2541 // FIXME: Find out how this interacts with the std::align_val_t fallback 2542 // once MSVC implements it. 2543 if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New && 2544 S.Context.getLangOpts().MSVCCompat) { 2545 R.clear(); 2546 R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New)); 2547 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); 2548 // FIXME: This will give bad diagnostics pointing at the wrong functions. 2549 return resolveAllocationOverload(S, R, Range, Args, PassAlignment, 2550 Operator, /*Candidates=*/nullptr, 2551 /*AlignArg=*/nullptr, Diagnose); 2552 } 2553 2554 if (Diagnose) { 2555 // If this is an allocation of the form 'new (p) X' for some object 2556 // pointer p (or an expression that will decay to such a pointer), 2557 // diagnose the missing inclusion of <new>. 2558 if (!R.isClassLookup() && Args.size() == 2 && 2559 (Args[1]->getType()->isObjectPointerType() || 2560 Args[1]->getType()->isArrayType())) { 2561 S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new) 2562 << R.getLookupName() << Range; 2563 // Listing the candidates is unlikely to be useful; skip it. 2564 return true; 2565 } 2566 2567 // Finish checking all candidates before we note any. This checking can 2568 // produce additional diagnostics so can't be interleaved with our 2569 // emission of notes. 2570 // 2571 // For an aligned allocation, separately check the aligned and unaligned 2572 // candidates with their respective argument lists. 2573 SmallVector<OverloadCandidate*, 32> Cands; 2574 SmallVector<OverloadCandidate*, 32> AlignedCands; 2575 llvm::SmallVector<Expr*, 4> AlignedArgs; 2576 if (AlignedCandidates) { 2577 auto IsAligned = [](OverloadCandidate &C) { 2578 return C.Function->getNumParams() > 1 && 2579 C.Function->getParamDecl(1)->getType()->isAlignValT(); 2580 }; 2581 auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); }; 2582 2583 AlignedArgs.reserve(Args.size() + 1); 2584 AlignedArgs.push_back(Args[0]); 2585 AlignedArgs.push_back(AlignArg); 2586 AlignedArgs.append(Args.begin() + 1, Args.end()); 2587 AlignedCands = AlignedCandidates->CompleteCandidates( 2588 S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned); 2589 2590 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args, 2591 R.getNameLoc(), IsUnaligned); 2592 } else { 2593 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args, 2594 R.getNameLoc()); 2595 } 2596 2597 S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call) 2598 << R.getLookupName() << Range; 2599 if (AlignedCandidates) 2600 AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "", 2601 R.getNameLoc()); 2602 Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc()); 2603 } 2604 return true; 2605 2606 case OR_Ambiguous: 2607 if (Diagnose) { 2608 Candidates.NoteCandidates( 2609 PartialDiagnosticAt(R.getNameLoc(), 2610 S.PDiag(diag::err_ovl_ambiguous_call) 2611 << R.getLookupName() << Range), 2612 S, OCD_AmbiguousCandidates, Args); 2613 } 2614 return true; 2615 2616 case OR_Deleted: { 2617 if (Diagnose) { 2618 Candidates.NoteCandidates( 2619 PartialDiagnosticAt(R.getNameLoc(), 2620 S.PDiag(diag::err_ovl_deleted_call) 2621 << R.getLookupName() << Range), 2622 S, OCD_AllCandidates, Args); 2623 } 2624 return true; 2625 } 2626 } 2627 llvm_unreachable("Unreachable, bad result from BestViableFunction"); 2628 } 2629 2630 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, 2631 AllocationFunctionScope NewScope, 2632 AllocationFunctionScope DeleteScope, 2633 QualType AllocType, bool IsArray, 2634 bool &PassAlignment, MultiExprArg PlaceArgs, 2635 FunctionDecl *&OperatorNew, 2636 FunctionDecl *&OperatorDelete, 2637 bool Diagnose) { 2638 // --- Choosing an allocation function --- 2639 // C++ 5.3.4p8 - 14 & 18 2640 // 1) If looking in AFS_Global scope for allocation functions, only look in 2641 // the global scope. Else, if AFS_Class, only look in the scope of the 2642 // allocated class. If AFS_Both, look in both. 2643 // 2) If an array size is given, look for operator new[], else look for 2644 // operator new. 2645 // 3) The first argument is always size_t. Append the arguments from the 2646 // placement form. 2647 2648 SmallVector<Expr*, 8> AllocArgs; 2649 AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size()); 2650 2651 // We don't care about the actual value of these arguments. 2652 // FIXME: Should the Sema create the expression and embed it in the syntax 2653 // tree? Or should the consumer just recalculate the value? 2654 // FIXME: Using a dummy value will interact poorly with attribute enable_if. 2655 IntegerLiteral Size( 2656 Context, 2657 llvm::APInt::getZero( 2658 Context.getTargetInfo().getPointerWidth(LangAS::Default)), 2659 Context.getSizeType(), SourceLocation()); 2660 AllocArgs.push_back(&Size); 2661 2662 QualType AlignValT = Context.VoidTy; 2663 if (PassAlignment) { 2664 DeclareGlobalNewDelete(); 2665 AlignValT = Context.getTypeDeclType(getStdAlignValT()); 2666 } 2667 CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation()); 2668 if (PassAlignment) 2669 AllocArgs.push_back(&Align); 2670 2671 AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end()); 2672 2673 // C++ [expr.new]p8: 2674 // If the allocated type is a non-array type, the allocation 2675 // function's name is operator new and the deallocation function's 2676 // name is operator delete. If the allocated type is an array 2677 // type, the allocation function's name is operator new[] and the 2678 // deallocation function's name is operator delete[]. 2679 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName( 2680 IsArray ? OO_Array_New : OO_New); 2681 2682 QualType AllocElemType = Context.getBaseElementType(AllocType); 2683 2684 // Find the allocation function. 2685 { 2686 LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName); 2687 2688 // C++1z [expr.new]p9: 2689 // If the new-expression begins with a unary :: operator, the allocation 2690 // function's name is looked up in the global scope. Otherwise, if the 2691 // allocated type is a class type T or array thereof, the allocation 2692 // function's name is looked up in the scope of T. 2693 if (AllocElemType->isRecordType() && NewScope != AFS_Global) 2694 LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl()); 2695 2696 // We can see ambiguity here if the allocation function is found in 2697 // multiple base classes. 2698 if (R.isAmbiguous()) 2699 return true; 2700 2701 // If this lookup fails to find the name, or if the allocated type is not 2702 // a class type, the allocation function's name is looked up in the 2703 // global scope. 2704 if (R.empty()) { 2705 if (NewScope == AFS_Class) 2706 return true; 2707 2708 LookupQualifiedName(R, Context.getTranslationUnitDecl()); 2709 } 2710 2711 if (getLangOpts().OpenCLCPlusPlus && R.empty()) { 2712 if (PlaceArgs.empty()) { 2713 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new"; 2714 } else { 2715 Diag(StartLoc, diag::err_openclcxx_placement_new); 2716 } 2717 return true; 2718 } 2719 2720 assert(!R.empty() && "implicitly declared allocation functions not found"); 2721 assert(!R.isAmbiguous() && "global allocation functions are ambiguous"); 2722 2723 // We do our own custom access checks below. 2724 R.suppressDiagnostics(); 2725 2726 if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment, 2727 OperatorNew, /*Candidates=*/nullptr, 2728 /*AlignArg=*/nullptr, Diagnose)) 2729 return true; 2730 } 2731 2732 // We don't need an operator delete if we're running under -fno-exceptions. 2733 if (!getLangOpts().Exceptions) { 2734 OperatorDelete = nullptr; 2735 return false; 2736 } 2737 2738 // Note, the name of OperatorNew might have been changed from array to 2739 // non-array by resolveAllocationOverload. 2740 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 2741 OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New 2742 ? OO_Array_Delete 2743 : OO_Delete); 2744 2745 // C++ [expr.new]p19: 2746 // 2747 // If the new-expression begins with a unary :: operator, the 2748 // deallocation function's name is looked up in the global 2749 // scope. Otherwise, if the allocated type is a class type T or an 2750 // array thereof, the deallocation function's name is looked up in 2751 // the scope of T. If this lookup fails to find the name, or if 2752 // the allocated type is not a class type or array thereof, the 2753 // deallocation function's name is looked up in the global scope. 2754 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName); 2755 if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) { 2756 auto *RD = 2757 cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl()); 2758 LookupQualifiedName(FoundDelete, RD); 2759 } 2760 if (FoundDelete.isAmbiguous()) 2761 return true; // FIXME: clean up expressions? 2762 2763 // Filter out any destroying operator deletes. We can't possibly call such a 2764 // function in this context, because we're handling the case where the object 2765 // was not successfully constructed. 2766 // FIXME: This is not covered by the language rules yet. 2767 { 2768 LookupResult::Filter Filter = FoundDelete.makeFilter(); 2769 while (Filter.hasNext()) { 2770 auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl()); 2771 if (FD && FD->isDestroyingOperatorDelete()) 2772 Filter.erase(); 2773 } 2774 Filter.done(); 2775 } 2776 2777 bool FoundGlobalDelete = FoundDelete.empty(); 2778 if (FoundDelete.empty()) { 2779 FoundDelete.clear(LookupOrdinaryName); 2780 2781 if (DeleteScope == AFS_Class) 2782 return true; 2783 2784 DeclareGlobalNewDelete(); 2785 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 2786 } 2787 2788 FoundDelete.suppressDiagnostics(); 2789 2790 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches; 2791 2792 // Whether we're looking for a placement operator delete is dictated 2793 // by whether we selected a placement operator new, not by whether 2794 // we had explicit placement arguments. This matters for things like 2795 // struct A { void *operator new(size_t, int = 0); ... }; 2796 // A *a = new A() 2797 // 2798 // We don't have any definition for what a "placement allocation function" 2799 // is, but we assume it's any allocation function whose 2800 // parameter-declaration-clause is anything other than (size_t). 2801 // 2802 // FIXME: Should (size_t, std::align_val_t) also be considered non-placement? 2803 // This affects whether an exception from the constructor of an overaligned 2804 // type uses the sized or non-sized form of aligned operator delete. 2805 bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 || 2806 OperatorNew->isVariadic(); 2807 2808 if (isPlacementNew) { 2809 // C++ [expr.new]p20: 2810 // A declaration of a placement deallocation function matches the 2811 // declaration of a placement allocation function if it has the 2812 // same number of parameters and, after parameter transformations 2813 // (8.3.5), all parameter types except the first are 2814 // identical. [...] 2815 // 2816 // To perform this comparison, we compute the function type that 2817 // the deallocation function should have, and use that type both 2818 // for template argument deduction and for comparison purposes. 2819 QualType ExpectedFunctionType; 2820 { 2821 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); 2822 2823 SmallVector<QualType, 4> ArgTypes; 2824 ArgTypes.push_back(Context.VoidPtrTy); 2825 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I) 2826 ArgTypes.push_back(Proto->getParamType(I)); 2827 2828 FunctionProtoType::ExtProtoInfo EPI; 2829 // FIXME: This is not part of the standard's rule. 2830 EPI.Variadic = Proto->isVariadic(); 2831 2832 ExpectedFunctionType 2833 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI); 2834 } 2835 2836 for (LookupResult::iterator D = FoundDelete.begin(), 2837 DEnd = FoundDelete.end(); 2838 D != DEnd; ++D) { 2839 FunctionDecl *Fn = nullptr; 2840 if (FunctionTemplateDecl *FnTmpl = 2841 dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) { 2842 // Perform template argument deduction to try to match the 2843 // expected function type. 2844 TemplateDeductionInfo Info(StartLoc); 2845 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn, 2846 Info)) 2847 continue; 2848 } else 2849 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl()); 2850 2851 if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(), 2852 ExpectedFunctionType, 2853 /*AdjustExcpetionSpec*/true), 2854 ExpectedFunctionType)) 2855 Matches.push_back(std::make_pair(D.getPair(), Fn)); 2856 } 2857 2858 if (getLangOpts().CUDA) 2859 EraseUnwantedCUDAMatches(getCurFunctionDecl(/*AllowLambda=*/true), 2860 Matches); 2861 } else { 2862 // C++1y [expr.new]p22: 2863 // For a non-placement allocation function, the normal deallocation 2864 // function lookup is used 2865 // 2866 // Per [expr.delete]p10, this lookup prefers a member operator delete 2867 // without a size_t argument, but prefers a non-member operator delete 2868 // with a size_t where possible (which it always is in this case). 2869 llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns; 2870 UsualDeallocFnInfo Selected = resolveDeallocationOverload( 2871 *this, FoundDelete, /*WantSize*/ FoundGlobalDelete, 2872 /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType), 2873 &BestDeallocFns); 2874 if (Selected) 2875 Matches.push_back(std::make_pair(Selected.Found, Selected.FD)); 2876 else { 2877 // If we failed to select an operator, all remaining functions are viable 2878 // but ambiguous. 2879 for (auto Fn : BestDeallocFns) 2880 Matches.push_back(std::make_pair(Fn.Found, Fn.FD)); 2881 } 2882 } 2883 2884 // C++ [expr.new]p20: 2885 // [...] If the lookup finds a single matching deallocation 2886 // function, that function will be called; otherwise, no 2887 // deallocation function will be called. 2888 if (Matches.size() == 1) { 2889 OperatorDelete = Matches[0].second; 2890 2891 // C++1z [expr.new]p23: 2892 // If the lookup finds a usual deallocation function (3.7.4.2) 2893 // with a parameter of type std::size_t and that function, considered 2894 // as a placement deallocation function, would have been 2895 // selected as a match for the allocation function, the program 2896 // is ill-formed. 2897 if (getLangOpts().CPlusPlus11 && isPlacementNew && 2898 isNonPlacementDeallocationFunction(*this, OperatorDelete)) { 2899 UsualDeallocFnInfo Info(*this, 2900 DeclAccessPair::make(OperatorDelete, AS_public)); 2901 // Core issue, per mail to core reflector, 2016-10-09: 2902 // If this is a member operator delete, and there is a corresponding 2903 // non-sized member operator delete, this isn't /really/ a sized 2904 // deallocation function, it just happens to have a size_t parameter. 2905 bool IsSizedDelete = Info.HasSizeT; 2906 if (IsSizedDelete && !FoundGlobalDelete) { 2907 auto NonSizedDelete = 2908 resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false, 2909 /*WantAlign*/Info.HasAlignValT); 2910 if (NonSizedDelete && !NonSizedDelete.HasSizeT && 2911 NonSizedDelete.HasAlignValT == Info.HasAlignValT) 2912 IsSizedDelete = false; 2913 } 2914 2915 if (IsSizedDelete) { 2916 SourceRange R = PlaceArgs.empty() 2917 ? SourceRange() 2918 : SourceRange(PlaceArgs.front()->getBeginLoc(), 2919 PlaceArgs.back()->getEndLoc()); 2920 Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R; 2921 if (!OperatorDelete->isImplicit()) 2922 Diag(OperatorDelete->getLocation(), diag::note_previous_decl) 2923 << DeleteName; 2924 } 2925 } 2926 2927 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(), 2928 Matches[0].first); 2929 } else if (!Matches.empty()) { 2930 // We found multiple suitable operators. Per [expr.new]p20, that means we 2931 // call no 'operator delete' function, but we should at least warn the user. 2932 // FIXME: Suppress this warning if the construction cannot throw. 2933 Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found) 2934 << DeleteName << AllocElemType; 2935 2936 for (auto &Match : Matches) 2937 Diag(Match.second->getLocation(), 2938 diag::note_member_declared_here) << DeleteName; 2939 } 2940 2941 return false; 2942 } 2943 2944 /// DeclareGlobalNewDelete - Declare the global forms of operator new and 2945 /// delete. These are: 2946 /// @code 2947 /// // C++03: 2948 /// void* operator new(std::size_t) throw(std::bad_alloc); 2949 /// void* operator new[](std::size_t) throw(std::bad_alloc); 2950 /// void operator delete(void *) throw(); 2951 /// void operator delete[](void *) throw(); 2952 /// // C++11: 2953 /// void* operator new(std::size_t); 2954 /// void* operator new[](std::size_t); 2955 /// void operator delete(void *) noexcept; 2956 /// void operator delete[](void *) noexcept; 2957 /// // C++1y: 2958 /// void* operator new(std::size_t); 2959 /// void* operator new[](std::size_t); 2960 /// void operator delete(void *) noexcept; 2961 /// void operator delete[](void *) noexcept; 2962 /// void operator delete(void *, std::size_t) noexcept; 2963 /// void operator delete[](void *, std::size_t) noexcept; 2964 /// @endcode 2965 /// Note that the placement and nothrow forms of new are *not* implicitly 2966 /// declared. Their use requires including \<new\>. 2967 void Sema::DeclareGlobalNewDelete() { 2968 if (GlobalNewDeleteDeclared) 2969 return; 2970 2971 // The implicitly declared new and delete operators 2972 // are not supported in OpenCL. 2973 if (getLangOpts().OpenCLCPlusPlus) 2974 return; 2975 2976 // C++ [basic.stc.dynamic.general]p2: 2977 // The library provides default definitions for the global allocation 2978 // and deallocation functions. Some global allocation and deallocation 2979 // functions are replaceable ([new.delete]); these are attached to the 2980 // global module ([module.unit]). 2981 if (getLangOpts().CPlusPlusModules && getCurrentModule()) 2982 PushGlobalModuleFragment(SourceLocation(), /*IsImplicit=*/true); 2983 2984 // C++ [basic.std.dynamic]p2: 2985 // [...] The following allocation and deallocation functions (18.4) are 2986 // implicitly declared in global scope in each translation unit of a 2987 // program 2988 // 2989 // C++03: 2990 // void* operator new(std::size_t) throw(std::bad_alloc); 2991 // void* operator new[](std::size_t) throw(std::bad_alloc); 2992 // void operator delete(void*) throw(); 2993 // void operator delete[](void*) throw(); 2994 // C++11: 2995 // void* operator new(std::size_t); 2996 // void* operator new[](std::size_t); 2997 // void operator delete(void*) noexcept; 2998 // void operator delete[](void*) noexcept; 2999 // C++1y: 3000 // void* operator new(std::size_t); 3001 // void* operator new[](std::size_t); 3002 // void operator delete(void*) noexcept; 3003 // void operator delete[](void*) noexcept; 3004 // void operator delete(void*, std::size_t) noexcept; 3005 // void operator delete[](void*, std::size_t) noexcept; 3006 // 3007 // These implicit declarations introduce only the function names operator 3008 // new, operator new[], operator delete, operator delete[]. 3009 // 3010 // Here, we need to refer to std::bad_alloc, so we will implicitly declare 3011 // "std" or "bad_alloc" as necessary to form the exception specification. 3012 // However, we do not make these implicit declarations visible to name 3013 // lookup. 3014 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) { 3015 // The "std::bad_alloc" class has not yet been declared, so build it 3016 // implicitly. 3017 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class, 3018 getOrCreateStdNamespace(), 3019 SourceLocation(), SourceLocation(), 3020 &PP.getIdentifierTable().get("bad_alloc"), 3021 nullptr); 3022 getStdBadAlloc()->setImplicit(true); 3023 3024 // The implicitly declared "std::bad_alloc" should live in global module 3025 // fragment. 3026 if (GlobalModuleFragment) { 3027 getStdBadAlloc()->setModuleOwnershipKind( 3028 Decl::ModuleOwnershipKind::ReachableWhenImported); 3029 getStdBadAlloc()->setLocalOwningModule(GlobalModuleFragment); 3030 } 3031 } 3032 if (!StdAlignValT && getLangOpts().AlignedAllocation) { 3033 // The "std::align_val_t" enum class has not yet been declared, so build it 3034 // implicitly. 3035 auto *AlignValT = EnumDecl::Create( 3036 Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(), 3037 &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true); 3038 3039 // The implicitly declared "std::align_val_t" should live in global module 3040 // fragment. 3041 if (GlobalModuleFragment) { 3042 AlignValT->setModuleOwnershipKind( 3043 Decl::ModuleOwnershipKind::ReachableWhenImported); 3044 AlignValT->setLocalOwningModule(GlobalModuleFragment); 3045 } 3046 3047 AlignValT->setIntegerType(Context.getSizeType()); 3048 AlignValT->setPromotionType(Context.getSizeType()); 3049 AlignValT->setImplicit(true); 3050 3051 StdAlignValT = AlignValT; 3052 } 3053 3054 GlobalNewDeleteDeclared = true; 3055 3056 QualType VoidPtr = Context.getPointerType(Context.VoidTy); 3057 QualType SizeT = Context.getSizeType(); 3058 3059 auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind, 3060 QualType Return, QualType Param) { 3061 llvm::SmallVector<QualType, 3> Params; 3062 Params.push_back(Param); 3063 3064 // Create up to four variants of the function (sized/aligned). 3065 bool HasSizedVariant = getLangOpts().SizedDeallocation && 3066 (Kind == OO_Delete || Kind == OO_Array_Delete); 3067 bool HasAlignedVariant = getLangOpts().AlignedAllocation; 3068 3069 int NumSizeVariants = (HasSizedVariant ? 2 : 1); 3070 int NumAlignVariants = (HasAlignedVariant ? 2 : 1); 3071 for (int Sized = 0; Sized < NumSizeVariants; ++Sized) { 3072 if (Sized) 3073 Params.push_back(SizeT); 3074 3075 for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) { 3076 if (Aligned) 3077 Params.push_back(Context.getTypeDeclType(getStdAlignValT())); 3078 3079 DeclareGlobalAllocationFunction( 3080 Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params); 3081 3082 if (Aligned) 3083 Params.pop_back(); 3084 } 3085 } 3086 }; 3087 3088 DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT); 3089 DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT); 3090 DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr); 3091 DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr); 3092 3093 if (getLangOpts().CPlusPlusModules && getCurrentModule()) 3094 PopGlobalModuleFragment(); 3095 } 3096 3097 /// DeclareGlobalAllocationFunction - Declares a single implicit global 3098 /// allocation function if it doesn't already exist. 3099 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name, 3100 QualType Return, 3101 ArrayRef<QualType> Params) { 3102 DeclContext *GlobalCtx = Context.getTranslationUnitDecl(); 3103 3104 // Check if this function is already declared. 3105 DeclContext::lookup_result R = GlobalCtx->lookup(Name); 3106 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end(); 3107 Alloc != AllocEnd; ++Alloc) { 3108 // Only look at non-template functions, as it is the predefined, 3109 // non-templated allocation function we are trying to declare here. 3110 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) { 3111 if (Func->getNumParams() == Params.size()) { 3112 llvm::SmallVector<QualType, 3> FuncParams; 3113 for (auto *P : Func->parameters()) 3114 FuncParams.push_back( 3115 Context.getCanonicalType(P->getType().getUnqualifiedType())); 3116 if (llvm::ArrayRef(FuncParams) == Params) { 3117 // Make the function visible to name lookup, even if we found it in 3118 // an unimported module. It either is an implicitly-declared global 3119 // allocation function, or is suppressing that function. 3120 Func->setVisibleDespiteOwningModule(); 3121 return; 3122 } 3123 } 3124 } 3125 } 3126 3127 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention( 3128 /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true)); 3129 3130 QualType BadAllocType; 3131 bool HasBadAllocExceptionSpec 3132 = (Name.getCXXOverloadedOperator() == OO_New || 3133 Name.getCXXOverloadedOperator() == OO_Array_New); 3134 if (HasBadAllocExceptionSpec) { 3135 if (!getLangOpts().CPlusPlus11) { 3136 BadAllocType = Context.getTypeDeclType(getStdBadAlloc()); 3137 assert(StdBadAlloc && "Must have std::bad_alloc declared"); 3138 EPI.ExceptionSpec.Type = EST_Dynamic; 3139 EPI.ExceptionSpec.Exceptions = llvm::ArrayRef(BadAllocType); 3140 } 3141 if (getLangOpts().NewInfallible) { 3142 EPI.ExceptionSpec.Type = EST_DynamicNone; 3143 } 3144 } else { 3145 EPI.ExceptionSpec = 3146 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone; 3147 } 3148 3149 auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) { 3150 QualType FnType = Context.getFunctionType(Return, Params, EPI); 3151 FunctionDecl *Alloc = FunctionDecl::Create( 3152 Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, FnType, 3153 /*TInfo=*/nullptr, SC_None, getCurFPFeatures().isFPConstrained(), false, 3154 true); 3155 Alloc->setImplicit(); 3156 // Global allocation functions should always be visible. 3157 Alloc->setVisibleDespiteOwningModule(); 3158 3159 if (HasBadAllocExceptionSpec && getLangOpts().NewInfallible) 3160 Alloc->addAttr( 3161 ReturnsNonNullAttr::CreateImplicit(Context, Alloc->getLocation())); 3162 3163 // C++ [basic.stc.dynamic.general]p2: 3164 // The library provides default definitions for the global allocation 3165 // and deallocation functions. Some global allocation and deallocation 3166 // functions are replaceable ([new.delete]); these are attached to the 3167 // global module ([module.unit]). 3168 // 3169 // In the language wording, these functions are attched to the global 3170 // module all the time. But in the implementation, the global module 3171 // is only meaningful when we're in a module unit. So here we attach 3172 // these allocation functions to global module conditionally. 3173 if (GlobalModuleFragment) { 3174 Alloc->setModuleOwnershipKind( 3175 Decl::ModuleOwnershipKind::ReachableWhenImported); 3176 Alloc->setLocalOwningModule(GlobalModuleFragment); 3177 } 3178 3179 Alloc->addAttr(VisibilityAttr::CreateImplicit( 3180 Context, LangOpts.GlobalAllocationFunctionVisibilityHidden 3181 ? VisibilityAttr::Hidden 3182 : VisibilityAttr::Default)); 3183 3184 llvm::SmallVector<ParmVarDecl *, 3> ParamDecls; 3185 for (QualType T : Params) { 3186 ParamDecls.push_back(ParmVarDecl::Create( 3187 Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T, 3188 /*TInfo=*/nullptr, SC_None, nullptr)); 3189 ParamDecls.back()->setImplicit(); 3190 } 3191 Alloc->setParams(ParamDecls); 3192 if (ExtraAttr) 3193 Alloc->addAttr(ExtraAttr); 3194 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc); 3195 Context.getTranslationUnitDecl()->addDecl(Alloc); 3196 IdResolver.tryAddTopLevelDecl(Alloc, Name); 3197 }; 3198 3199 if (!LangOpts.CUDA) 3200 CreateAllocationFunctionDecl(nullptr); 3201 else { 3202 // Host and device get their own declaration so each can be 3203 // defined or re-declared independently. 3204 CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context)); 3205 CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context)); 3206 } 3207 } 3208 3209 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc, 3210 bool CanProvideSize, 3211 bool Overaligned, 3212 DeclarationName Name) { 3213 DeclareGlobalNewDelete(); 3214 3215 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName); 3216 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 3217 3218 // FIXME: It's possible for this to result in ambiguity, through a 3219 // user-declared variadic operator delete or the enable_if attribute. We 3220 // should probably not consider those cases to be usual deallocation 3221 // functions. But for now we just make an arbitrary choice in that case. 3222 auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize, 3223 Overaligned); 3224 assert(Result.FD && "operator delete missing from global scope?"); 3225 return Result.FD; 3226 } 3227 3228 FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc, 3229 CXXRecordDecl *RD) { 3230 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete); 3231 3232 FunctionDecl *OperatorDelete = nullptr; 3233 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete)) 3234 return nullptr; 3235 if (OperatorDelete) 3236 return OperatorDelete; 3237 3238 // If there's no class-specific operator delete, look up the global 3239 // non-array delete. 3240 return FindUsualDeallocationFunction( 3241 Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)), 3242 Name); 3243 } 3244 3245 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, 3246 DeclarationName Name, 3247 FunctionDecl *&Operator, bool Diagnose, 3248 bool WantSize, bool WantAligned) { 3249 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName); 3250 // Try to find operator delete/operator delete[] in class scope. 3251 LookupQualifiedName(Found, RD); 3252 3253 if (Found.isAmbiguous()) 3254 return true; 3255 3256 Found.suppressDiagnostics(); 3257 3258 bool Overaligned = 3259 WantAligned || hasNewExtendedAlignment(*this, Context.getRecordType(RD)); 3260 3261 // C++17 [expr.delete]p10: 3262 // If the deallocation functions have class scope, the one without a 3263 // parameter of type std::size_t is selected. 3264 llvm::SmallVector<UsualDeallocFnInfo, 4> Matches; 3265 resolveDeallocationOverload(*this, Found, /*WantSize*/ WantSize, 3266 /*WantAlign*/ Overaligned, &Matches); 3267 3268 // If we could find an overload, use it. 3269 if (Matches.size() == 1) { 3270 Operator = cast<CXXMethodDecl>(Matches[0].FD); 3271 3272 // FIXME: DiagnoseUseOfDecl? 3273 if (Operator->isDeleted()) { 3274 if (Diagnose) { 3275 Diag(StartLoc, diag::err_deleted_function_use); 3276 NoteDeletedFunction(Operator); 3277 } 3278 return true; 3279 } 3280 3281 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(), 3282 Matches[0].Found, Diagnose) == AR_inaccessible) 3283 return true; 3284 3285 return false; 3286 } 3287 3288 // We found multiple suitable operators; complain about the ambiguity. 3289 // FIXME: The standard doesn't say to do this; it appears that the intent 3290 // is that this should never happen. 3291 if (!Matches.empty()) { 3292 if (Diagnose) { 3293 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found) 3294 << Name << RD; 3295 for (auto &Match : Matches) 3296 Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name; 3297 } 3298 return true; 3299 } 3300 3301 // We did find operator delete/operator delete[] declarations, but 3302 // none of them were suitable. 3303 if (!Found.empty()) { 3304 if (Diagnose) { 3305 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found) 3306 << Name << RD; 3307 3308 for (NamedDecl *D : Found) 3309 Diag(D->getUnderlyingDecl()->getLocation(), 3310 diag::note_member_declared_here) << Name; 3311 } 3312 return true; 3313 } 3314 3315 Operator = nullptr; 3316 return false; 3317 } 3318 3319 namespace { 3320 /// Checks whether delete-expression, and new-expression used for 3321 /// initializing deletee have the same array form. 3322 class MismatchingNewDeleteDetector { 3323 public: 3324 enum MismatchResult { 3325 /// Indicates that there is no mismatch or a mismatch cannot be proven. 3326 NoMismatch, 3327 /// Indicates that variable is initialized with mismatching form of \a new. 3328 VarInitMismatches, 3329 /// Indicates that member is initialized with mismatching form of \a new. 3330 MemberInitMismatches, 3331 /// Indicates that 1 or more constructors' definitions could not been 3332 /// analyzed, and they will be checked again at the end of translation unit. 3333 AnalyzeLater 3334 }; 3335 3336 /// \param EndOfTU True, if this is the final analysis at the end of 3337 /// translation unit. False, if this is the initial analysis at the point 3338 /// delete-expression was encountered. 3339 explicit MismatchingNewDeleteDetector(bool EndOfTU) 3340 : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU), 3341 HasUndefinedConstructors(false) {} 3342 3343 /// Checks whether pointee of a delete-expression is initialized with 3344 /// matching form of new-expression. 3345 /// 3346 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the 3347 /// point where delete-expression is encountered, then a warning will be 3348 /// issued immediately. If return value is \c AnalyzeLater at the point where 3349 /// delete-expression is seen, then member will be analyzed at the end of 3350 /// translation unit. \c AnalyzeLater is returned iff at least one constructor 3351 /// couldn't be analyzed. If at least one constructor initializes the member 3352 /// with matching type of new, the return value is \c NoMismatch. 3353 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE); 3354 /// Analyzes a class member. 3355 /// \param Field Class member to analyze. 3356 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used 3357 /// for deleting the \p Field. 3358 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm); 3359 FieldDecl *Field; 3360 /// List of mismatching new-expressions used for initialization of the pointee 3361 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs; 3362 /// Indicates whether delete-expression was in array form. 3363 bool IsArrayForm; 3364 3365 private: 3366 const bool EndOfTU; 3367 /// Indicates that there is at least one constructor without body. 3368 bool HasUndefinedConstructors; 3369 /// Returns \c CXXNewExpr from given initialization expression. 3370 /// \param E Expression used for initializing pointee in delete-expression. 3371 /// E can be a single-element \c InitListExpr consisting of new-expression. 3372 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E); 3373 /// Returns whether member is initialized with mismatching form of 3374 /// \c new either by the member initializer or in-class initialization. 3375 /// 3376 /// If bodies of all constructors are not visible at the end of translation 3377 /// unit or at least one constructor initializes member with the matching 3378 /// form of \c new, mismatch cannot be proven, and this function will return 3379 /// \c NoMismatch. 3380 MismatchResult analyzeMemberExpr(const MemberExpr *ME); 3381 /// Returns whether variable is initialized with mismatching form of 3382 /// \c new. 3383 /// 3384 /// If variable is initialized with matching form of \c new or variable is not 3385 /// initialized with a \c new expression, this function will return true. 3386 /// If variable is initialized with mismatching form of \c new, returns false. 3387 /// \param D Variable to analyze. 3388 bool hasMatchingVarInit(const DeclRefExpr *D); 3389 /// Checks whether the constructor initializes pointee with mismatching 3390 /// form of \c new. 3391 /// 3392 /// Returns true, if member is initialized with matching form of \c new in 3393 /// member initializer list. Returns false, if member is initialized with the 3394 /// matching form of \c new in this constructor's initializer or given 3395 /// constructor isn't defined at the point where delete-expression is seen, or 3396 /// member isn't initialized by the constructor. 3397 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD); 3398 /// Checks whether member is initialized with matching form of 3399 /// \c new in member initializer list. 3400 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI); 3401 /// Checks whether member is initialized with mismatching form of \c new by 3402 /// in-class initializer. 3403 MismatchResult analyzeInClassInitializer(); 3404 }; 3405 } 3406 3407 MismatchingNewDeleteDetector::MismatchResult 3408 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) { 3409 NewExprs.clear(); 3410 assert(DE && "Expected delete-expression"); 3411 IsArrayForm = DE->isArrayForm(); 3412 const Expr *E = DE->getArgument()->IgnoreParenImpCasts(); 3413 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) { 3414 return analyzeMemberExpr(ME); 3415 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) { 3416 if (!hasMatchingVarInit(D)) 3417 return VarInitMismatches; 3418 } 3419 return NoMismatch; 3420 } 3421 3422 const CXXNewExpr * 3423 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) { 3424 assert(E != nullptr && "Expected a valid initializer expression"); 3425 E = E->IgnoreParenImpCasts(); 3426 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) { 3427 if (ILE->getNumInits() == 1) 3428 E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts()); 3429 } 3430 3431 return dyn_cast_or_null<const CXXNewExpr>(E); 3432 } 3433 3434 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit( 3435 const CXXCtorInitializer *CI) { 3436 const CXXNewExpr *NE = nullptr; 3437 if (Field == CI->getMember() && 3438 (NE = getNewExprFromInitListOrExpr(CI->getInit()))) { 3439 if (NE->isArray() == IsArrayForm) 3440 return true; 3441 else 3442 NewExprs.push_back(NE); 3443 } 3444 return false; 3445 } 3446 3447 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor( 3448 const CXXConstructorDecl *CD) { 3449 if (CD->isImplicit()) 3450 return false; 3451 const FunctionDecl *Definition = CD; 3452 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) { 3453 HasUndefinedConstructors = true; 3454 return EndOfTU; 3455 } 3456 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) { 3457 if (hasMatchingNewInCtorInit(CI)) 3458 return true; 3459 } 3460 return false; 3461 } 3462 3463 MismatchingNewDeleteDetector::MismatchResult 3464 MismatchingNewDeleteDetector::analyzeInClassInitializer() { 3465 assert(Field != nullptr && "This should be called only for members"); 3466 const Expr *InitExpr = Field->getInClassInitializer(); 3467 if (!InitExpr) 3468 return EndOfTU ? NoMismatch : AnalyzeLater; 3469 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) { 3470 if (NE->isArray() != IsArrayForm) { 3471 NewExprs.push_back(NE); 3472 return MemberInitMismatches; 3473 } 3474 } 3475 return NoMismatch; 3476 } 3477 3478 MismatchingNewDeleteDetector::MismatchResult 3479 MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field, 3480 bool DeleteWasArrayForm) { 3481 assert(Field != nullptr && "Analysis requires a valid class member."); 3482 this->Field = Field; 3483 IsArrayForm = DeleteWasArrayForm; 3484 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent()); 3485 for (const auto *CD : RD->ctors()) { 3486 if (hasMatchingNewInCtor(CD)) 3487 return NoMismatch; 3488 } 3489 if (HasUndefinedConstructors) 3490 return EndOfTU ? NoMismatch : AnalyzeLater; 3491 if (!NewExprs.empty()) 3492 return MemberInitMismatches; 3493 return Field->hasInClassInitializer() ? analyzeInClassInitializer() 3494 : NoMismatch; 3495 } 3496 3497 MismatchingNewDeleteDetector::MismatchResult 3498 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) { 3499 assert(ME != nullptr && "Expected a member expression"); 3500 if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl())) 3501 return analyzeField(F, IsArrayForm); 3502 return NoMismatch; 3503 } 3504 3505 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) { 3506 const CXXNewExpr *NE = nullptr; 3507 if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) { 3508 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) && 3509 NE->isArray() != IsArrayForm) { 3510 NewExprs.push_back(NE); 3511 } 3512 } 3513 return NewExprs.empty(); 3514 } 3515 3516 static void 3517 DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc, 3518 const MismatchingNewDeleteDetector &Detector) { 3519 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc); 3520 FixItHint H; 3521 if (!Detector.IsArrayForm) 3522 H = FixItHint::CreateInsertion(EndOfDelete, "[]"); 3523 else { 3524 SourceLocation RSquare = Lexer::findLocationAfterToken( 3525 DeleteLoc, tok::l_square, SemaRef.getSourceManager(), 3526 SemaRef.getLangOpts(), true); 3527 if (RSquare.isValid()) 3528 H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare)); 3529 } 3530 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new) 3531 << Detector.IsArrayForm << H; 3532 3533 for (const auto *NE : Detector.NewExprs) 3534 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here) 3535 << Detector.IsArrayForm; 3536 } 3537 3538 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) { 3539 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation())) 3540 return; 3541 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false); 3542 switch (Detector.analyzeDeleteExpr(DE)) { 3543 case MismatchingNewDeleteDetector::VarInitMismatches: 3544 case MismatchingNewDeleteDetector::MemberInitMismatches: { 3545 DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector); 3546 break; 3547 } 3548 case MismatchingNewDeleteDetector::AnalyzeLater: { 3549 DeleteExprs[Detector.Field].push_back( 3550 std::make_pair(DE->getBeginLoc(), DE->isArrayForm())); 3551 break; 3552 } 3553 case MismatchingNewDeleteDetector::NoMismatch: 3554 break; 3555 } 3556 } 3557 3558 void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc, 3559 bool DeleteWasArrayForm) { 3560 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true); 3561 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) { 3562 case MismatchingNewDeleteDetector::VarInitMismatches: 3563 llvm_unreachable("This analysis should have been done for class members."); 3564 case MismatchingNewDeleteDetector::AnalyzeLater: 3565 llvm_unreachable("Analysis cannot be postponed any point beyond end of " 3566 "translation unit."); 3567 case MismatchingNewDeleteDetector::MemberInitMismatches: 3568 DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector); 3569 break; 3570 case MismatchingNewDeleteDetector::NoMismatch: 3571 break; 3572 } 3573 } 3574 3575 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in: 3576 /// @code ::delete ptr; @endcode 3577 /// or 3578 /// @code delete [] ptr; @endcode 3579 ExprResult 3580 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, 3581 bool ArrayForm, Expr *ExE) { 3582 // C++ [expr.delete]p1: 3583 // The operand shall have a pointer type, or a class type having a single 3584 // non-explicit conversion function to a pointer type. The result has type 3585 // void. 3586 // 3587 // DR599 amends "pointer type" to "pointer to object type" in both cases. 3588 3589 ExprResult Ex = ExE; 3590 FunctionDecl *OperatorDelete = nullptr; 3591 bool ArrayFormAsWritten = ArrayForm; 3592 bool UsualArrayDeleteWantsSize = false; 3593 3594 if (!Ex.get()->isTypeDependent()) { 3595 // Perform lvalue-to-rvalue cast, if needed. 3596 Ex = DefaultLvalueConversion(Ex.get()); 3597 if (Ex.isInvalid()) 3598 return ExprError(); 3599 3600 QualType Type = Ex.get()->getType(); 3601 3602 class DeleteConverter : public ContextualImplicitConverter { 3603 public: 3604 DeleteConverter() : ContextualImplicitConverter(false, true) {} 3605 3606 bool match(QualType ConvType) override { 3607 // FIXME: If we have an operator T* and an operator void*, we must pick 3608 // the operator T*. 3609 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 3610 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType()) 3611 return true; 3612 return false; 3613 } 3614 3615 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc, 3616 QualType T) override { 3617 return S.Diag(Loc, diag::err_delete_operand) << T; 3618 } 3619 3620 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc, 3621 QualType T) override { 3622 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T; 3623 } 3624 3625 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc, 3626 QualType T, 3627 QualType ConvTy) override { 3628 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy; 3629 } 3630 3631 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv, 3632 QualType ConvTy) override { 3633 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 3634 << ConvTy; 3635 } 3636 3637 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, 3638 QualType T) override { 3639 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T; 3640 } 3641 3642 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv, 3643 QualType ConvTy) override { 3644 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 3645 << ConvTy; 3646 } 3647 3648 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 3649 QualType T, 3650 QualType ConvTy) override { 3651 llvm_unreachable("conversion functions are permitted"); 3652 } 3653 } Converter; 3654 3655 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter); 3656 if (Ex.isInvalid()) 3657 return ExprError(); 3658 Type = Ex.get()->getType(); 3659 if (!Converter.match(Type)) 3660 // FIXME: PerformContextualImplicitConversion should return ExprError 3661 // itself in this case. 3662 return ExprError(); 3663 3664 QualType Pointee = Type->castAs<PointerType>()->getPointeeType(); 3665 QualType PointeeElem = Context.getBaseElementType(Pointee); 3666 3667 if (Pointee.getAddressSpace() != LangAS::Default && 3668 !getLangOpts().OpenCLCPlusPlus) 3669 return Diag(Ex.get()->getBeginLoc(), 3670 diag::err_address_space_qualified_delete) 3671 << Pointee.getUnqualifiedType() 3672 << Pointee.getQualifiers().getAddressSpaceAttributePrintValue(); 3673 3674 CXXRecordDecl *PointeeRD = nullptr; 3675 if (Pointee->isVoidType() && !isSFINAEContext()) { 3676 // The C++ standard bans deleting a pointer to a non-object type, which 3677 // effectively bans deletion of "void*". However, most compilers support 3678 // this, so we treat it as a warning unless we're in a SFINAE context. 3679 Diag(StartLoc, diag::ext_delete_void_ptr_operand) 3680 << Type << Ex.get()->getSourceRange(); 3681 } else if (Pointee->isFunctionType() || Pointee->isVoidType() || 3682 Pointee->isSizelessType()) { 3683 return ExprError(Diag(StartLoc, diag::err_delete_operand) 3684 << Type << Ex.get()->getSourceRange()); 3685 } else if (!Pointee->isDependentType()) { 3686 // FIXME: This can result in errors if the definition was imported from a 3687 // module but is hidden. 3688 if (!RequireCompleteType(StartLoc, Pointee, 3689 diag::warn_delete_incomplete, Ex.get())) { 3690 if (const RecordType *RT = PointeeElem->getAs<RecordType>()) 3691 PointeeRD = cast<CXXRecordDecl>(RT->getDecl()); 3692 } 3693 } 3694 3695 if (Pointee->isArrayType() && !ArrayForm) { 3696 Diag(StartLoc, diag::warn_delete_array_type) 3697 << Type << Ex.get()->getSourceRange() 3698 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]"); 3699 ArrayForm = true; 3700 } 3701 3702 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 3703 ArrayForm ? OO_Array_Delete : OO_Delete); 3704 3705 if (PointeeRD) { 3706 if (!UseGlobal && 3707 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName, 3708 OperatorDelete)) 3709 return ExprError(); 3710 3711 // If we're allocating an array of records, check whether the 3712 // usual operator delete[] has a size_t parameter. 3713 if (ArrayForm) { 3714 // If the user specifically asked to use the global allocator, 3715 // we'll need to do the lookup into the class. 3716 if (UseGlobal) 3717 UsualArrayDeleteWantsSize = 3718 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem); 3719 3720 // Otherwise, the usual operator delete[] should be the 3721 // function we just found. 3722 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete)) 3723 UsualArrayDeleteWantsSize = 3724 UsualDeallocFnInfo(*this, 3725 DeclAccessPair::make(OperatorDelete, AS_public)) 3726 .HasSizeT; 3727 } 3728 3729 if (!PointeeRD->hasIrrelevantDestructor()) 3730 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 3731 MarkFunctionReferenced(StartLoc, 3732 const_cast<CXXDestructorDecl*>(Dtor)); 3733 if (DiagnoseUseOfDecl(Dtor, StartLoc)) 3734 return ExprError(); 3735 } 3736 3737 CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc, 3738 /*IsDelete=*/true, /*CallCanBeVirtual=*/true, 3739 /*WarnOnNonAbstractTypes=*/!ArrayForm, 3740 SourceLocation()); 3741 } 3742 3743 if (!OperatorDelete) { 3744 if (getLangOpts().OpenCLCPlusPlus) { 3745 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete"; 3746 return ExprError(); 3747 } 3748 3749 bool IsComplete = isCompleteType(StartLoc, Pointee); 3750 bool CanProvideSize = 3751 IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize || 3752 Pointee.isDestructedType()); 3753 bool Overaligned = hasNewExtendedAlignment(*this, Pointee); 3754 3755 // Look for a global declaration. 3756 OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize, 3757 Overaligned, DeleteName); 3758 } 3759 3760 MarkFunctionReferenced(StartLoc, OperatorDelete); 3761 3762 // Check access and ambiguity of destructor if we're going to call it. 3763 // Note that this is required even for a virtual delete. 3764 bool IsVirtualDelete = false; 3765 if (PointeeRD) { 3766 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 3767 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor, 3768 PDiag(diag::err_access_dtor) << PointeeElem); 3769 IsVirtualDelete = Dtor->isVirtual(); 3770 } 3771 } 3772 3773 DiagnoseUseOfDecl(OperatorDelete, StartLoc); 3774 3775 // Convert the operand to the type of the first parameter of operator 3776 // delete. This is only necessary if we selected a destroying operator 3777 // delete that we are going to call (non-virtually); converting to void* 3778 // is trivial and left to AST consumers to handle. 3779 QualType ParamType = OperatorDelete->getParamDecl(0)->getType(); 3780 if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) { 3781 Qualifiers Qs = Pointee.getQualifiers(); 3782 if (Qs.hasCVRQualifiers()) { 3783 // Qualifiers are irrelevant to this conversion; we're only looking 3784 // for access and ambiguity. 3785 Qs.removeCVRQualifiers(); 3786 QualType Unqual = Context.getPointerType( 3787 Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs)); 3788 Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp); 3789 } 3790 Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing); 3791 if (Ex.isInvalid()) 3792 return ExprError(); 3793 } 3794 } 3795 3796 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr( 3797 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten, 3798 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc); 3799 AnalyzeDeleteExprMismatch(Result); 3800 return Result; 3801 } 3802 3803 static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall, 3804 bool IsDelete, 3805 FunctionDecl *&Operator) { 3806 3807 DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName( 3808 IsDelete ? OO_Delete : OO_New); 3809 3810 LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName); 3811 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); 3812 assert(!R.empty() && "implicitly declared allocation functions not found"); 3813 assert(!R.isAmbiguous() && "global allocation functions are ambiguous"); 3814 3815 // We do our own custom access checks below. 3816 R.suppressDiagnostics(); 3817 3818 SmallVector<Expr *, 8> Args(TheCall->arguments()); 3819 OverloadCandidateSet Candidates(R.getNameLoc(), 3820 OverloadCandidateSet::CSK_Normal); 3821 for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end(); 3822 FnOvl != FnOvlEnd; ++FnOvl) { 3823 // Even member operator new/delete are implicitly treated as 3824 // static, so don't use AddMemberCandidate. 3825 NamedDecl *D = (*FnOvl)->getUnderlyingDecl(); 3826 3827 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 3828 S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(), 3829 /*ExplicitTemplateArgs=*/nullptr, Args, 3830 Candidates, 3831 /*SuppressUserConversions=*/false); 3832 continue; 3833 } 3834 3835 FunctionDecl *Fn = cast<FunctionDecl>(D); 3836 S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates, 3837 /*SuppressUserConversions=*/false); 3838 } 3839 3840 SourceRange Range = TheCall->getSourceRange(); 3841 3842 // Do the resolution. 3843 OverloadCandidateSet::iterator Best; 3844 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { 3845 case OR_Success: { 3846 // Got one! 3847 FunctionDecl *FnDecl = Best->Function; 3848 assert(R.getNamingClass() == nullptr && 3849 "class members should not be considered"); 3850 3851 if (!FnDecl->isReplaceableGlobalAllocationFunction()) { 3852 S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual) 3853 << (IsDelete ? 1 : 0) << Range; 3854 S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here) 3855 << R.getLookupName() << FnDecl->getSourceRange(); 3856 return true; 3857 } 3858 3859 Operator = FnDecl; 3860 return false; 3861 } 3862 3863 case OR_No_Viable_Function: 3864 Candidates.NoteCandidates( 3865 PartialDiagnosticAt(R.getNameLoc(), 3866 S.PDiag(diag::err_ovl_no_viable_function_in_call) 3867 << R.getLookupName() << Range), 3868 S, OCD_AllCandidates, Args); 3869 return true; 3870 3871 case OR_Ambiguous: 3872 Candidates.NoteCandidates( 3873 PartialDiagnosticAt(R.getNameLoc(), 3874 S.PDiag(diag::err_ovl_ambiguous_call) 3875 << R.getLookupName() << Range), 3876 S, OCD_AmbiguousCandidates, Args); 3877 return true; 3878 3879 case OR_Deleted: { 3880 Candidates.NoteCandidates( 3881 PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call) 3882 << R.getLookupName() << Range), 3883 S, OCD_AllCandidates, Args); 3884 return true; 3885 } 3886 } 3887 llvm_unreachable("Unreachable, bad result from BestViableFunction"); 3888 } 3889 3890 ExprResult 3891 Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult, 3892 bool IsDelete) { 3893 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get()); 3894 if (!getLangOpts().CPlusPlus) { 3895 Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language) 3896 << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new") 3897 << "C++"; 3898 return ExprError(); 3899 } 3900 // CodeGen assumes it can find the global new and delete to call, 3901 // so ensure that they are declared. 3902 DeclareGlobalNewDelete(); 3903 3904 FunctionDecl *OperatorNewOrDelete = nullptr; 3905 if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete, 3906 OperatorNewOrDelete)) 3907 return ExprError(); 3908 assert(OperatorNewOrDelete && "should be found"); 3909 3910 DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc()); 3911 MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete); 3912 3913 TheCall->setType(OperatorNewOrDelete->getReturnType()); 3914 for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) { 3915 QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType(); 3916 InitializedEntity Entity = 3917 InitializedEntity::InitializeParameter(Context, ParamTy, false); 3918 ExprResult Arg = PerformCopyInitialization( 3919 Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i)); 3920 if (Arg.isInvalid()) 3921 return ExprError(); 3922 TheCall->setArg(i, Arg.get()); 3923 } 3924 auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee()); 3925 assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && 3926 "Callee expected to be implicit cast to a builtin function pointer"); 3927 Callee->setType(OperatorNewOrDelete->getType()); 3928 3929 return TheCallResult; 3930 } 3931 3932 void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc, 3933 bool IsDelete, bool CallCanBeVirtual, 3934 bool WarnOnNonAbstractTypes, 3935 SourceLocation DtorLoc) { 3936 if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext()) 3937 return; 3938 3939 // C++ [expr.delete]p3: 3940 // In the first alternative (delete object), if the static type of the 3941 // object to be deleted is different from its dynamic type, the static 3942 // type shall be a base class of the dynamic type of the object to be 3943 // deleted and the static type shall have a virtual destructor or the 3944 // behavior is undefined. 3945 // 3946 const CXXRecordDecl *PointeeRD = dtor->getParent(); 3947 // Note: a final class cannot be derived from, no issue there 3948 if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>()) 3949 return; 3950 3951 // If the superclass is in a system header, there's nothing that can be done. 3952 // The `delete` (where we emit the warning) can be in a system header, 3953 // what matters for this warning is where the deleted type is defined. 3954 if (getSourceManager().isInSystemHeader(PointeeRD->getLocation())) 3955 return; 3956 3957 QualType ClassType = dtor->getThisType()->getPointeeType(); 3958 if (PointeeRD->isAbstract()) { 3959 // If the class is abstract, we warn by default, because we're 3960 // sure the code has undefined behavior. 3961 Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1) 3962 << ClassType; 3963 } else if (WarnOnNonAbstractTypes) { 3964 // Otherwise, if this is not an array delete, it's a bit suspect, 3965 // but not necessarily wrong. 3966 Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1) 3967 << ClassType; 3968 } 3969 if (!IsDelete) { 3970 std::string TypeStr; 3971 ClassType.getAsStringInternal(TypeStr, getPrintingPolicy()); 3972 Diag(DtorLoc, diag::note_delete_non_virtual) 3973 << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::"); 3974 } 3975 } 3976 3977 Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar, 3978 SourceLocation StmtLoc, 3979 ConditionKind CK) { 3980 ExprResult E = 3981 CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK); 3982 if (E.isInvalid()) 3983 return ConditionError(); 3984 return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc), 3985 CK == ConditionKind::ConstexprIf); 3986 } 3987 3988 /// Check the use of the given variable as a C++ condition in an if, 3989 /// while, do-while, or switch statement. 3990 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar, 3991 SourceLocation StmtLoc, 3992 ConditionKind CK) { 3993 if (ConditionVar->isInvalidDecl()) 3994 return ExprError(); 3995 3996 QualType T = ConditionVar->getType(); 3997 3998 // C++ [stmt.select]p2: 3999 // The declarator shall not specify a function or an array. 4000 if (T->isFunctionType()) 4001 return ExprError(Diag(ConditionVar->getLocation(), 4002 diag::err_invalid_use_of_function_type) 4003 << ConditionVar->getSourceRange()); 4004 else if (T->isArrayType()) 4005 return ExprError(Diag(ConditionVar->getLocation(), 4006 diag::err_invalid_use_of_array_type) 4007 << ConditionVar->getSourceRange()); 4008 4009 ExprResult Condition = BuildDeclRefExpr( 4010 ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue, 4011 ConditionVar->getLocation()); 4012 4013 switch (CK) { 4014 case ConditionKind::Boolean: 4015 return CheckBooleanCondition(StmtLoc, Condition.get()); 4016 4017 case ConditionKind::ConstexprIf: 4018 return CheckBooleanCondition(StmtLoc, Condition.get(), true); 4019 4020 case ConditionKind::Switch: 4021 return CheckSwitchCondition(StmtLoc, Condition.get()); 4022 } 4023 4024 llvm_unreachable("unexpected condition kind"); 4025 } 4026 4027 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. 4028 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) { 4029 // C++11 6.4p4: 4030 // The value of a condition that is an initialized declaration in a statement 4031 // other than a switch statement is the value of the declared variable 4032 // implicitly converted to type bool. If that conversion is ill-formed, the 4033 // program is ill-formed. 4034 // The value of a condition that is an expression is the value of the 4035 // expression, implicitly converted to bool. 4036 // 4037 // C++2b 8.5.2p2 4038 // If the if statement is of the form if constexpr, the value of the condition 4039 // is contextually converted to bool and the converted expression shall be 4040 // a constant expression. 4041 // 4042 4043 ExprResult E = PerformContextuallyConvertToBool(CondExpr); 4044 if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent()) 4045 return E; 4046 4047 // FIXME: Return this value to the caller so they don't need to recompute it. 4048 llvm::APSInt Cond; 4049 E = VerifyIntegerConstantExpression( 4050 E.get(), &Cond, 4051 diag::err_constexpr_if_condition_expression_is_not_constant); 4052 return E; 4053 } 4054 4055 /// Helper function to determine whether this is the (deprecated) C++ 4056 /// conversion from a string literal to a pointer to non-const char or 4057 /// non-const wchar_t (for narrow and wide string literals, 4058 /// respectively). 4059 bool 4060 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { 4061 // Look inside the implicit cast, if it exists. 4062 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From)) 4063 From = Cast->getSubExpr(); 4064 4065 // A string literal (2.13.4) that is not a wide string literal can 4066 // be converted to an rvalue of type "pointer to char"; a wide 4067 // string literal can be converted to an rvalue of type "pointer 4068 // to wchar_t" (C++ 4.2p2). 4069 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens())) 4070 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) 4071 if (const BuiltinType *ToPointeeType 4072 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) { 4073 // This conversion is considered only when there is an 4074 // explicit appropriate pointer target type (C++ 4.2p2). 4075 if (!ToPtrType->getPointeeType().hasQualifiers()) { 4076 switch (StrLit->getKind()) { 4077 case StringLiteral::UTF8: 4078 case StringLiteral::UTF16: 4079 case StringLiteral::UTF32: 4080 // We don't allow UTF literals to be implicitly converted 4081 break; 4082 case StringLiteral::Ordinary: 4083 return (ToPointeeType->getKind() == BuiltinType::Char_U || 4084 ToPointeeType->getKind() == BuiltinType::Char_S); 4085 case StringLiteral::Wide: 4086 return Context.typesAreCompatible(Context.getWideCharType(), 4087 QualType(ToPointeeType, 0)); 4088 } 4089 } 4090 } 4091 4092 return false; 4093 } 4094 4095 static ExprResult BuildCXXCastArgument(Sema &S, 4096 SourceLocation CastLoc, 4097 QualType Ty, 4098 CastKind Kind, 4099 CXXMethodDecl *Method, 4100 DeclAccessPair FoundDecl, 4101 bool HadMultipleCandidates, 4102 Expr *From) { 4103 switch (Kind) { 4104 default: llvm_unreachable("Unhandled cast kind!"); 4105 case CK_ConstructorConversion: { 4106 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method); 4107 SmallVector<Expr*, 8> ConstructorArgs; 4108 4109 if (S.RequireNonAbstractType(CastLoc, Ty, 4110 diag::err_allocation_of_abstract_type)) 4111 return ExprError(); 4112 4113 if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc, 4114 ConstructorArgs)) 4115 return ExprError(); 4116 4117 S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl, 4118 InitializedEntity::InitializeTemporary(Ty)); 4119 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 4120 return ExprError(); 4121 4122 ExprResult Result = S.BuildCXXConstructExpr( 4123 CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method), 4124 ConstructorArgs, HadMultipleCandidates, 4125 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4126 CXXConstructExpr::CK_Complete, SourceRange()); 4127 if (Result.isInvalid()) 4128 return ExprError(); 4129 4130 return S.MaybeBindToTemporary(Result.getAs<Expr>()); 4131 } 4132 4133 case CK_UserDefinedConversion: { 4134 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!"); 4135 4136 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl); 4137 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 4138 return ExprError(); 4139 4140 // Create an implicit call expr that calls it. 4141 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method); 4142 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv, 4143 HadMultipleCandidates); 4144 if (Result.isInvalid()) 4145 return ExprError(); 4146 // Record usage of conversion in an implicit cast. 4147 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(), 4148 CK_UserDefinedConversion, Result.get(), 4149 nullptr, Result.get()->getValueKind(), 4150 S.CurFPFeatureOverrides()); 4151 4152 return S.MaybeBindToTemporary(Result.get()); 4153 } 4154 } 4155 } 4156 4157 /// PerformImplicitConversion - Perform an implicit conversion of the 4158 /// expression From to the type ToType using the pre-computed implicit 4159 /// conversion sequence ICS. Returns the converted 4160 /// expression. Action is the kind of conversion we're performing, 4161 /// used in the error message. 4162 ExprResult 4163 Sema::PerformImplicitConversion(Expr *From, QualType ToType, 4164 const ImplicitConversionSequence &ICS, 4165 AssignmentAction Action, 4166 CheckedConversionKind CCK) { 4167 // C++ [over.match.oper]p7: [...] operands of class type are converted [...] 4168 if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType()) 4169 return From; 4170 4171 switch (ICS.getKind()) { 4172 case ImplicitConversionSequence::StandardConversion: { 4173 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard, 4174 Action, CCK); 4175 if (Res.isInvalid()) 4176 return ExprError(); 4177 From = Res.get(); 4178 break; 4179 } 4180 4181 case ImplicitConversionSequence::UserDefinedConversion: { 4182 4183 FunctionDecl *FD = ICS.UserDefined.ConversionFunction; 4184 CastKind CastKind; 4185 QualType BeforeToType; 4186 assert(FD && "no conversion function for user-defined conversion seq"); 4187 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) { 4188 CastKind = CK_UserDefinedConversion; 4189 4190 // If the user-defined conversion is specified by a conversion function, 4191 // the initial standard conversion sequence converts the source type to 4192 // the implicit object parameter of the conversion function. 4193 BeforeToType = Context.getTagDeclType(Conv->getParent()); 4194 } else { 4195 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD); 4196 CastKind = CK_ConstructorConversion; 4197 // Do no conversion if dealing with ... for the first conversion. 4198 if (!ICS.UserDefined.EllipsisConversion) { 4199 // If the user-defined conversion is specified by a constructor, the 4200 // initial standard conversion sequence converts the source type to 4201 // the type required by the argument of the constructor 4202 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType(); 4203 } 4204 } 4205 // Watch out for ellipsis conversion. 4206 if (!ICS.UserDefined.EllipsisConversion) { 4207 ExprResult Res = 4208 PerformImplicitConversion(From, BeforeToType, 4209 ICS.UserDefined.Before, AA_Converting, 4210 CCK); 4211 if (Res.isInvalid()) 4212 return ExprError(); 4213 From = Res.get(); 4214 } 4215 4216 ExprResult CastArg = BuildCXXCastArgument( 4217 *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind, 4218 cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction, 4219 ICS.UserDefined.HadMultipleCandidates, From); 4220 4221 if (CastArg.isInvalid()) 4222 return ExprError(); 4223 4224 From = CastArg.get(); 4225 4226 // C++ [over.match.oper]p7: 4227 // [...] the second standard conversion sequence of a user-defined 4228 // conversion sequence is not applied. 4229 if (CCK == CCK_ForBuiltinOverloadedOp) 4230 return From; 4231 4232 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After, 4233 AA_Converting, CCK); 4234 } 4235 4236 case ImplicitConversionSequence::AmbiguousConversion: 4237 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(), 4238 PDiag(diag::err_typecheck_ambiguous_condition) 4239 << From->getSourceRange()); 4240 return ExprError(); 4241 4242 case ImplicitConversionSequence::EllipsisConversion: 4243 case ImplicitConversionSequence::StaticObjectArgumentConversion: 4244 llvm_unreachable("bad conversion"); 4245 4246 case ImplicitConversionSequence::BadConversion: 4247 Sema::AssignConvertType ConvTy = 4248 CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType()); 4249 bool Diagnosed = DiagnoseAssignmentResult( 4250 ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(), 4251 ToType, From->getType(), From, Action); 4252 assert(Diagnosed && "failed to diagnose bad conversion"); (void)Diagnosed; 4253 return ExprError(); 4254 } 4255 4256 // Everything went well. 4257 return From; 4258 } 4259 4260 /// PerformImplicitConversion - Perform an implicit conversion of the 4261 /// expression From to the type ToType by following the standard 4262 /// conversion sequence SCS. Returns the converted 4263 /// expression. Flavor is the context in which we're performing this 4264 /// conversion, for use in error messages. 4265 ExprResult 4266 Sema::PerformImplicitConversion(Expr *From, QualType ToType, 4267 const StandardConversionSequence& SCS, 4268 AssignmentAction Action, 4269 CheckedConversionKind CCK) { 4270 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast); 4271 4272 // Overall FIXME: we are recomputing too many types here and doing far too 4273 // much extra work. What this means is that we need to keep track of more 4274 // information that is computed when we try the implicit conversion initially, 4275 // so that we don't need to recompute anything here. 4276 QualType FromType = From->getType(); 4277 4278 if (SCS.CopyConstructor) { 4279 // FIXME: When can ToType be a reference type? 4280 assert(!ToType->isReferenceType()); 4281 if (SCS.Second == ICK_Derived_To_Base) { 4282 SmallVector<Expr*, 8> ConstructorArgs; 4283 if (CompleteConstructorCall( 4284 cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From, 4285 /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs)) 4286 return ExprError(); 4287 return BuildCXXConstructExpr( 4288 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, 4289 SCS.FoundCopyConstructor, SCS.CopyConstructor, 4290 ConstructorArgs, /*HadMultipleCandidates*/ false, 4291 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4292 CXXConstructExpr::CK_Complete, SourceRange()); 4293 } 4294 return BuildCXXConstructExpr( 4295 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, 4296 SCS.FoundCopyConstructor, SCS.CopyConstructor, 4297 From, /*HadMultipleCandidates*/ false, 4298 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4299 CXXConstructExpr::CK_Complete, SourceRange()); 4300 } 4301 4302 // Resolve overloaded function references. 4303 if (Context.hasSameType(FromType, Context.OverloadTy)) { 4304 DeclAccessPair Found; 4305 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, 4306 true, Found); 4307 if (!Fn) 4308 return ExprError(); 4309 4310 if (DiagnoseUseOfDecl(Fn, From->getBeginLoc())) 4311 return ExprError(); 4312 4313 From = FixOverloadedFunctionReference(From, Found, Fn); 4314 4315 // We might get back another placeholder expression if we resolved to a 4316 // builtin. 4317 ExprResult Checked = CheckPlaceholderExpr(From); 4318 if (Checked.isInvalid()) 4319 return ExprError(); 4320 4321 From = Checked.get(); 4322 FromType = From->getType(); 4323 } 4324 4325 // If we're converting to an atomic type, first convert to the corresponding 4326 // non-atomic type. 4327 QualType ToAtomicType; 4328 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) { 4329 ToAtomicType = ToType; 4330 ToType = ToAtomic->getValueType(); 4331 } 4332 4333 QualType InitialFromType = FromType; 4334 // Perform the first implicit conversion. 4335 switch (SCS.First) { 4336 case ICK_Identity: 4337 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) { 4338 FromType = FromAtomic->getValueType().getUnqualifiedType(); 4339 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic, 4340 From, /*BasePath=*/nullptr, VK_PRValue, 4341 FPOptionsOverride()); 4342 } 4343 break; 4344 4345 case ICK_Lvalue_To_Rvalue: { 4346 assert(From->getObjectKind() != OK_ObjCProperty); 4347 ExprResult FromRes = DefaultLvalueConversion(From); 4348 if (FromRes.isInvalid()) 4349 return ExprError(); 4350 4351 From = FromRes.get(); 4352 FromType = From->getType(); 4353 break; 4354 } 4355 4356 case ICK_Array_To_Pointer: 4357 FromType = Context.getArrayDecayedType(FromType); 4358 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_PRValue, 4359 /*BasePath=*/nullptr, CCK) 4360 .get(); 4361 break; 4362 4363 case ICK_Function_To_Pointer: 4364 FromType = Context.getPointerType(FromType); 4365 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay, 4366 VK_PRValue, /*BasePath=*/nullptr, CCK) 4367 .get(); 4368 break; 4369 4370 default: 4371 llvm_unreachable("Improper first standard conversion"); 4372 } 4373 4374 // Perform the second implicit conversion 4375 switch (SCS.Second) { 4376 case ICK_Identity: 4377 // C++ [except.spec]p5: 4378 // [For] assignment to and initialization of pointers to functions, 4379 // pointers to member functions, and references to functions: the 4380 // target entity shall allow at least the exceptions allowed by the 4381 // source value in the assignment or initialization. 4382 switch (Action) { 4383 case AA_Assigning: 4384 case AA_Initializing: 4385 // Note, function argument passing and returning are initialization. 4386 case AA_Passing: 4387 case AA_Returning: 4388 case AA_Sending: 4389 case AA_Passing_CFAudited: 4390 if (CheckExceptionSpecCompatibility(From, ToType)) 4391 return ExprError(); 4392 break; 4393 4394 case AA_Casting: 4395 case AA_Converting: 4396 // Casts and implicit conversions are not initialization, so are not 4397 // checked for exception specification mismatches. 4398 break; 4399 } 4400 // Nothing else to do. 4401 break; 4402 4403 case ICK_Integral_Promotion: 4404 case ICK_Integral_Conversion: 4405 if (ToType->isBooleanType()) { 4406 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() && 4407 SCS.Second == ICK_Integral_Promotion && 4408 "only enums with fixed underlying type can promote to bool"); 4409 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, VK_PRValue, 4410 /*BasePath=*/nullptr, CCK) 4411 .get(); 4412 } else { 4413 From = ImpCastExprToType(From, ToType, CK_IntegralCast, VK_PRValue, 4414 /*BasePath=*/nullptr, CCK) 4415 .get(); 4416 } 4417 break; 4418 4419 case ICK_Floating_Promotion: 4420 case ICK_Floating_Conversion: 4421 From = ImpCastExprToType(From, ToType, CK_FloatingCast, VK_PRValue, 4422 /*BasePath=*/nullptr, CCK) 4423 .get(); 4424 break; 4425 4426 case ICK_Complex_Promotion: 4427 case ICK_Complex_Conversion: { 4428 QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType(); 4429 QualType ToEl = ToType->castAs<ComplexType>()->getElementType(); 4430 CastKind CK; 4431 if (FromEl->isRealFloatingType()) { 4432 if (ToEl->isRealFloatingType()) 4433 CK = CK_FloatingComplexCast; 4434 else 4435 CK = CK_FloatingComplexToIntegralComplex; 4436 } else if (ToEl->isRealFloatingType()) { 4437 CK = CK_IntegralComplexToFloatingComplex; 4438 } else { 4439 CK = CK_IntegralComplexCast; 4440 } 4441 From = ImpCastExprToType(From, ToType, CK, VK_PRValue, /*BasePath=*/nullptr, 4442 CCK) 4443 .get(); 4444 break; 4445 } 4446 4447 case ICK_Floating_Integral: 4448 if (ToType->isRealFloatingType()) 4449 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, VK_PRValue, 4450 /*BasePath=*/nullptr, CCK) 4451 .get(); 4452 else 4453 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, VK_PRValue, 4454 /*BasePath=*/nullptr, CCK) 4455 .get(); 4456 break; 4457 4458 case ICK_Compatible_Conversion: 4459 From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(), 4460 /*BasePath=*/nullptr, CCK).get(); 4461 break; 4462 4463 case ICK_Writeback_Conversion: 4464 case ICK_Pointer_Conversion: { 4465 if (SCS.IncompatibleObjC && Action != AA_Casting) { 4466 // Diagnose incompatible Objective-C conversions 4467 if (Action == AA_Initializing || Action == AA_Assigning) 4468 Diag(From->getBeginLoc(), 4469 diag::ext_typecheck_convert_incompatible_pointer) 4470 << ToType << From->getType() << Action << From->getSourceRange() 4471 << 0; 4472 else 4473 Diag(From->getBeginLoc(), 4474 diag::ext_typecheck_convert_incompatible_pointer) 4475 << From->getType() << ToType << Action << From->getSourceRange() 4476 << 0; 4477 4478 if (From->getType()->isObjCObjectPointerType() && 4479 ToType->isObjCObjectPointerType()) 4480 EmitRelatedResultTypeNote(From); 4481 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && 4482 !CheckObjCARCUnavailableWeakConversion(ToType, 4483 From->getType())) { 4484 if (Action == AA_Initializing) 4485 Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign); 4486 else 4487 Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable) 4488 << (Action == AA_Casting) << From->getType() << ToType 4489 << From->getSourceRange(); 4490 } 4491 4492 // Defer address space conversion to the third conversion. 4493 QualType FromPteeType = From->getType()->getPointeeType(); 4494 QualType ToPteeType = ToType->getPointeeType(); 4495 QualType NewToType = ToType; 4496 if (!FromPteeType.isNull() && !ToPteeType.isNull() && 4497 FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) { 4498 NewToType = Context.removeAddrSpaceQualType(ToPteeType); 4499 NewToType = Context.getAddrSpaceQualType(NewToType, 4500 FromPteeType.getAddressSpace()); 4501 if (ToType->isObjCObjectPointerType()) 4502 NewToType = Context.getObjCObjectPointerType(NewToType); 4503 else if (ToType->isBlockPointerType()) 4504 NewToType = Context.getBlockPointerType(NewToType); 4505 else 4506 NewToType = Context.getPointerType(NewToType); 4507 } 4508 4509 CastKind Kind; 4510 CXXCastPath BasePath; 4511 if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle)) 4512 return ExprError(); 4513 4514 // Make sure we extend blocks if necessary. 4515 // FIXME: doing this here is really ugly. 4516 if (Kind == CK_BlockPointerToObjCPointerCast) { 4517 ExprResult E = From; 4518 (void) PrepareCastToObjCObjectPointer(E); 4519 From = E.get(); 4520 } 4521 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()) 4522 CheckObjCConversion(SourceRange(), NewToType, From, CCK); 4523 From = ImpCastExprToType(From, NewToType, Kind, VK_PRValue, &BasePath, CCK) 4524 .get(); 4525 break; 4526 } 4527 4528 case ICK_Pointer_Member: { 4529 CastKind Kind; 4530 CXXCastPath BasePath; 4531 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle)) 4532 return ExprError(); 4533 if (CheckExceptionSpecCompatibility(From, ToType)) 4534 return ExprError(); 4535 4536 // We may not have been able to figure out what this member pointer resolved 4537 // to up until this exact point. Attempt to lock-in it's inheritance model. 4538 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4539 (void)isCompleteType(From->getExprLoc(), From->getType()); 4540 (void)isCompleteType(From->getExprLoc(), ToType); 4541 } 4542 4543 From = 4544 ImpCastExprToType(From, ToType, Kind, VK_PRValue, &BasePath, CCK).get(); 4545 break; 4546 } 4547 4548 case ICK_Boolean_Conversion: 4549 // Perform half-to-boolean conversion via float. 4550 if (From->getType()->isHalfType()) { 4551 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get(); 4552 FromType = Context.FloatTy; 4553 } 4554 4555 From = ImpCastExprToType(From, Context.BoolTy, 4556 ScalarTypeToBooleanCastKind(FromType), VK_PRValue, 4557 /*BasePath=*/nullptr, CCK) 4558 .get(); 4559 break; 4560 4561 case ICK_Derived_To_Base: { 4562 CXXCastPath BasePath; 4563 if (CheckDerivedToBaseConversion( 4564 From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(), 4565 From->getSourceRange(), &BasePath, CStyle)) 4566 return ExprError(); 4567 4568 From = ImpCastExprToType(From, ToType.getNonReferenceType(), 4569 CK_DerivedToBase, From->getValueKind(), 4570 &BasePath, CCK).get(); 4571 break; 4572 } 4573 4574 case ICK_Vector_Conversion: 4575 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue, 4576 /*BasePath=*/nullptr, CCK) 4577 .get(); 4578 break; 4579 4580 case ICK_SVE_Vector_Conversion: 4581 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue, 4582 /*BasePath=*/nullptr, CCK) 4583 .get(); 4584 break; 4585 4586 case ICK_Vector_Splat: { 4587 // Vector splat from any arithmetic type to a vector. 4588 Expr *Elem = prepareVectorSplat(ToType, From).get(); 4589 From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue, 4590 /*BasePath=*/nullptr, CCK) 4591 .get(); 4592 break; 4593 } 4594 4595 case ICK_Complex_Real: 4596 // Case 1. x -> _Complex y 4597 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) { 4598 QualType ElType = ToComplex->getElementType(); 4599 bool isFloatingComplex = ElType->isRealFloatingType(); 4600 4601 // x -> y 4602 if (Context.hasSameUnqualifiedType(ElType, From->getType())) { 4603 // do nothing 4604 } else if (From->getType()->isRealFloatingType()) { 4605 From = ImpCastExprToType(From, ElType, 4606 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get(); 4607 } else { 4608 assert(From->getType()->isIntegerType()); 4609 From = ImpCastExprToType(From, ElType, 4610 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get(); 4611 } 4612 // y -> _Complex y 4613 From = ImpCastExprToType(From, ToType, 4614 isFloatingComplex ? CK_FloatingRealToComplex 4615 : CK_IntegralRealToComplex).get(); 4616 4617 // Case 2. _Complex x -> y 4618 } else { 4619 auto *FromComplex = From->getType()->castAs<ComplexType>(); 4620 QualType ElType = FromComplex->getElementType(); 4621 bool isFloatingComplex = ElType->isRealFloatingType(); 4622 4623 // _Complex x -> x 4624 From = ImpCastExprToType(From, ElType, 4625 isFloatingComplex ? CK_FloatingComplexToReal 4626 : CK_IntegralComplexToReal, 4627 VK_PRValue, /*BasePath=*/nullptr, CCK) 4628 .get(); 4629 4630 // x -> y 4631 if (Context.hasSameUnqualifiedType(ElType, ToType)) { 4632 // do nothing 4633 } else if (ToType->isRealFloatingType()) { 4634 From = ImpCastExprToType(From, ToType, 4635 isFloatingComplex ? CK_FloatingCast 4636 : CK_IntegralToFloating, 4637 VK_PRValue, /*BasePath=*/nullptr, CCK) 4638 .get(); 4639 } else { 4640 assert(ToType->isIntegerType()); 4641 From = ImpCastExprToType(From, ToType, 4642 isFloatingComplex ? CK_FloatingToIntegral 4643 : CK_IntegralCast, 4644 VK_PRValue, /*BasePath=*/nullptr, CCK) 4645 .get(); 4646 } 4647 } 4648 break; 4649 4650 case ICK_Block_Pointer_Conversion: { 4651 LangAS AddrSpaceL = 4652 ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); 4653 LangAS AddrSpaceR = 4654 FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); 4655 assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && 4656 "Invalid cast"); 4657 CastKind Kind = 4658 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast; 4659 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind, 4660 VK_PRValue, /*BasePath=*/nullptr, CCK) 4661 .get(); 4662 break; 4663 } 4664 4665 case ICK_TransparentUnionConversion: { 4666 ExprResult FromRes = From; 4667 Sema::AssignConvertType ConvTy = 4668 CheckTransparentUnionArgumentConstraints(ToType, FromRes); 4669 if (FromRes.isInvalid()) 4670 return ExprError(); 4671 From = FromRes.get(); 4672 assert ((ConvTy == Sema::Compatible) && 4673 "Improper transparent union conversion"); 4674 (void)ConvTy; 4675 break; 4676 } 4677 4678 case ICK_Zero_Event_Conversion: 4679 case ICK_Zero_Queue_Conversion: 4680 From = ImpCastExprToType(From, ToType, 4681 CK_ZeroToOCLOpaqueType, 4682 From->getValueKind()).get(); 4683 break; 4684 4685 case ICK_Lvalue_To_Rvalue: 4686 case ICK_Array_To_Pointer: 4687 case ICK_Function_To_Pointer: 4688 case ICK_Function_Conversion: 4689 case ICK_Qualification: 4690 case ICK_Num_Conversion_Kinds: 4691 case ICK_C_Only_Conversion: 4692 case ICK_Incompatible_Pointer_Conversion: 4693 llvm_unreachable("Improper second standard conversion"); 4694 } 4695 4696 switch (SCS.Third) { 4697 case ICK_Identity: 4698 // Nothing to do. 4699 break; 4700 4701 case ICK_Function_Conversion: 4702 // If both sides are functions (or pointers/references to them), there could 4703 // be incompatible exception declarations. 4704 if (CheckExceptionSpecCompatibility(From, ToType)) 4705 return ExprError(); 4706 4707 From = ImpCastExprToType(From, ToType, CK_NoOp, VK_PRValue, 4708 /*BasePath=*/nullptr, CCK) 4709 .get(); 4710 break; 4711 4712 case ICK_Qualification: { 4713 ExprValueKind VK = From->getValueKind(); 4714 CastKind CK = CK_NoOp; 4715 4716 if (ToType->isReferenceType() && 4717 ToType->getPointeeType().getAddressSpace() != 4718 From->getType().getAddressSpace()) 4719 CK = CK_AddressSpaceConversion; 4720 4721 if (ToType->isPointerType() && 4722 ToType->getPointeeType().getAddressSpace() != 4723 From->getType()->getPointeeType().getAddressSpace()) 4724 CK = CK_AddressSpaceConversion; 4725 4726 if (!isCast(CCK) && 4727 !ToType->getPointeeType().getQualifiers().hasUnaligned() && 4728 From->getType()->getPointeeType().getQualifiers().hasUnaligned()) { 4729 Diag(From->getBeginLoc(), diag::warn_imp_cast_drops_unaligned) 4730 << InitialFromType << ToType; 4731 } 4732 4733 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK, 4734 /*BasePath=*/nullptr, CCK) 4735 .get(); 4736 4737 if (SCS.DeprecatedStringLiteralToCharPtr && 4738 !getLangOpts().WritableStrings) { 4739 Diag(From->getBeginLoc(), 4740 getLangOpts().CPlusPlus11 4741 ? diag::ext_deprecated_string_literal_conversion 4742 : diag::warn_deprecated_string_literal_conversion) 4743 << ToType.getNonReferenceType(); 4744 } 4745 4746 break; 4747 } 4748 4749 default: 4750 llvm_unreachable("Improper third standard conversion"); 4751 } 4752 4753 // If this conversion sequence involved a scalar -> atomic conversion, perform 4754 // that conversion now. 4755 if (!ToAtomicType.isNull()) { 4756 assert(Context.hasSameType( 4757 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())); 4758 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic, 4759 VK_PRValue, nullptr, CCK) 4760 .get(); 4761 } 4762 4763 // Materialize a temporary if we're implicitly converting to a reference 4764 // type. This is not required by the C++ rules but is necessary to maintain 4765 // AST invariants. 4766 if (ToType->isReferenceType() && From->isPRValue()) { 4767 ExprResult Res = TemporaryMaterializationConversion(From); 4768 if (Res.isInvalid()) 4769 return ExprError(); 4770 From = Res.get(); 4771 } 4772 4773 // If this conversion sequence succeeded and involved implicitly converting a 4774 // _Nullable type to a _Nonnull one, complain. 4775 if (!isCast(CCK)) 4776 diagnoseNullableToNonnullConversion(ToType, InitialFromType, 4777 From->getBeginLoc()); 4778 4779 return From; 4780 } 4781 4782 /// Check the completeness of a type in a unary type trait. 4783 /// 4784 /// If the particular type trait requires a complete type, tries to complete 4785 /// it. If completing the type fails, a diagnostic is emitted and false 4786 /// returned. If completing the type succeeds or no completion was required, 4787 /// returns true. 4788 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT, 4789 SourceLocation Loc, 4790 QualType ArgTy) { 4791 // C++0x [meta.unary.prop]p3: 4792 // For all of the class templates X declared in this Clause, instantiating 4793 // that template with a template argument that is a class template 4794 // specialization may result in the implicit instantiation of the template 4795 // argument if and only if the semantics of X require that the argument 4796 // must be a complete type. 4797 // We apply this rule to all the type trait expressions used to implement 4798 // these class templates. We also try to follow any GCC documented behavior 4799 // in these expressions to ensure portability of standard libraries. 4800 switch (UTT) { 4801 default: llvm_unreachable("not a UTT"); 4802 // is_complete_type somewhat obviously cannot require a complete type. 4803 case UTT_IsCompleteType: 4804 // Fall-through 4805 4806 // These traits are modeled on the type predicates in C++0x 4807 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as 4808 // requiring a complete type, as whether or not they return true cannot be 4809 // impacted by the completeness of the type. 4810 case UTT_IsVoid: 4811 case UTT_IsIntegral: 4812 case UTT_IsFloatingPoint: 4813 case UTT_IsArray: 4814 case UTT_IsBoundedArray: 4815 case UTT_IsPointer: 4816 case UTT_IsNullPointer: 4817 case UTT_IsReferenceable: 4818 case UTT_IsLvalueReference: 4819 case UTT_IsRvalueReference: 4820 case UTT_IsMemberFunctionPointer: 4821 case UTT_IsMemberObjectPointer: 4822 case UTT_IsEnum: 4823 case UTT_IsScopedEnum: 4824 case UTT_IsUnion: 4825 case UTT_IsClass: 4826 case UTT_IsFunction: 4827 case UTT_IsReference: 4828 case UTT_IsArithmetic: 4829 case UTT_IsFundamental: 4830 case UTT_IsObject: 4831 case UTT_IsScalar: 4832 case UTT_IsCompound: 4833 case UTT_IsMemberPointer: 4834 // Fall-through 4835 4836 // These traits are modeled on type predicates in C++0x [meta.unary.prop] 4837 // which requires some of its traits to have the complete type. However, 4838 // the completeness of the type cannot impact these traits' semantics, and 4839 // so they don't require it. This matches the comments on these traits in 4840 // Table 49. 4841 case UTT_IsConst: 4842 case UTT_IsVolatile: 4843 case UTT_IsSigned: 4844 case UTT_IsUnboundedArray: 4845 case UTT_IsUnsigned: 4846 4847 // This type trait always returns false, checking the type is moot. 4848 case UTT_IsInterfaceClass: 4849 return true; 4850 4851 // C++14 [meta.unary.prop]: 4852 // If T is a non-union class type, T shall be a complete type. 4853 case UTT_IsEmpty: 4854 case UTT_IsPolymorphic: 4855 case UTT_IsAbstract: 4856 if (const auto *RD = ArgTy->getAsCXXRecordDecl()) 4857 if (!RD->isUnion()) 4858 return !S.RequireCompleteType( 4859 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4860 return true; 4861 4862 // C++14 [meta.unary.prop]: 4863 // If T is a class type, T shall be a complete type. 4864 case UTT_IsFinal: 4865 case UTT_IsSealed: 4866 if (ArgTy->getAsCXXRecordDecl()) 4867 return !S.RequireCompleteType( 4868 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4869 return true; 4870 4871 // LWG3823: T shall be an array type, a complete type, or cv void. 4872 case UTT_IsAggregate: 4873 if (ArgTy->isArrayType() || ArgTy->isVoidType()) 4874 return true; 4875 4876 return !S.RequireCompleteType( 4877 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4878 4879 // C++1z [meta.unary.prop]: 4880 // remove_all_extents_t<T> shall be a complete type or cv void. 4881 case UTT_IsTrivial: 4882 case UTT_IsTriviallyCopyable: 4883 case UTT_IsStandardLayout: 4884 case UTT_IsPOD: 4885 case UTT_IsLiteral: 4886 // By analogy, is_trivially_relocatable imposes the same constraints. 4887 case UTT_IsTriviallyRelocatable: 4888 // Per the GCC type traits documentation, T shall be a complete type, cv void, 4889 // or an array of unknown bound. But GCC actually imposes the same constraints 4890 // as above. 4891 case UTT_HasNothrowAssign: 4892 case UTT_HasNothrowMoveAssign: 4893 case UTT_HasNothrowConstructor: 4894 case UTT_HasNothrowCopy: 4895 case UTT_HasTrivialAssign: 4896 case UTT_HasTrivialMoveAssign: 4897 case UTT_HasTrivialDefaultConstructor: 4898 case UTT_HasTrivialMoveConstructor: 4899 case UTT_HasTrivialCopy: 4900 case UTT_HasTrivialDestructor: 4901 case UTT_HasVirtualDestructor: 4902 ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0); 4903 [[fallthrough]]; 4904 4905 // C++1z [meta.unary.prop]: 4906 // T shall be a complete type, cv void, or an array of unknown bound. 4907 case UTT_IsDestructible: 4908 case UTT_IsNothrowDestructible: 4909 case UTT_IsTriviallyDestructible: 4910 case UTT_HasUniqueObjectRepresentations: 4911 if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType()) 4912 return true; 4913 4914 return !S.RequireCompleteType( 4915 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4916 } 4917 } 4918 4919 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op, 4920 Sema &Self, SourceLocation KeyLoc, ASTContext &C, 4921 bool (CXXRecordDecl::*HasTrivial)() const, 4922 bool (CXXRecordDecl::*HasNonTrivial)() const, 4923 bool (CXXMethodDecl::*IsDesiredOp)() const) 4924 { 4925 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 4926 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)()) 4927 return true; 4928 4929 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op); 4930 DeclarationNameInfo NameInfo(Name, KeyLoc); 4931 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName); 4932 if (Self.LookupQualifiedName(Res, RD)) { 4933 bool FoundOperator = false; 4934 Res.suppressDiagnostics(); 4935 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end(); 4936 Op != OpEnd; ++Op) { 4937 if (isa<FunctionTemplateDecl>(*Op)) 4938 continue; 4939 4940 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op); 4941 if((Operator->*IsDesiredOp)()) { 4942 FoundOperator = true; 4943 auto *CPT = Operator->getType()->castAs<FunctionProtoType>(); 4944 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 4945 if (!CPT || !CPT->isNothrow()) 4946 return false; 4947 } 4948 } 4949 return FoundOperator; 4950 } 4951 return false; 4952 } 4953 4954 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT, 4955 SourceLocation KeyLoc, QualType T) { 4956 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); 4957 4958 ASTContext &C = Self.Context; 4959 switch(UTT) { 4960 default: llvm_unreachable("not a UTT"); 4961 // Type trait expressions corresponding to the primary type category 4962 // predicates in C++0x [meta.unary.cat]. 4963 case UTT_IsVoid: 4964 return T->isVoidType(); 4965 case UTT_IsIntegral: 4966 return T->isIntegralType(C); 4967 case UTT_IsFloatingPoint: 4968 return T->isFloatingType(); 4969 case UTT_IsArray: 4970 return T->isArrayType(); 4971 case UTT_IsBoundedArray: 4972 if (!T->isVariableArrayType()) { 4973 return T->isArrayType() && !T->isIncompleteArrayType(); 4974 } 4975 4976 Self.Diag(KeyLoc, diag::err_vla_unsupported) 4977 << 1 << tok::kw___is_bounded_array; 4978 return false; 4979 case UTT_IsUnboundedArray: 4980 if (!T->isVariableArrayType()) { 4981 return T->isIncompleteArrayType(); 4982 } 4983 4984 Self.Diag(KeyLoc, diag::err_vla_unsupported) 4985 << 1 << tok::kw___is_unbounded_array; 4986 return false; 4987 case UTT_IsPointer: 4988 return T->isAnyPointerType(); 4989 case UTT_IsNullPointer: 4990 return T->isNullPtrType(); 4991 case UTT_IsLvalueReference: 4992 return T->isLValueReferenceType(); 4993 case UTT_IsRvalueReference: 4994 return T->isRValueReferenceType(); 4995 case UTT_IsMemberFunctionPointer: 4996 return T->isMemberFunctionPointerType(); 4997 case UTT_IsMemberObjectPointer: 4998 return T->isMemberDataPointerType(); 4999 case UTT_IsEnum: 5000 return T->isEnumeralType(); 5001 case UTT_IsScopedEnum: 5002 return T->isScopedEnumeralType(); 5003 case UTT_IsUnion: 5004 return T->isUnionType(); 5005 case UTT_IsClass: 5006 return T->isClassType() || T->isStructureType() || T->isInterfaceType(); 5007 case UTT_IsFunction: 5008 return T->isFunctionType(); 5009 5010 // Type trait expressions which correspond to the convenient composition 5011 // predicates in C++0x [meta.unary.comp]. 5012 case UTT_IsReference: 5013 return T->isReferenceType(); 5014 case UTT_IsArithmetic: 5015 return T->isArithmeticType() && !T->isEnumeralType(); 5016 case UTT_IsFundamental: 5017 return T->isFundamentalType(); 5018 case UTT_IsObject: 5019 return T->isObjectType(); 5020 case UTT_IsScalar: 5021 // Note: semantic analysis depends on Objective-C lifetime types to be 5022 // considered scalar types. However, such types do not actually behave 5023 // like scalar types at run time (since they may require retain/release 5024 // operations), so we report them as non-scalar. 5025 if (T->isObjCLifetimeType()) { 5026 switch (T.getObjCLifetime()) { 5027 case Qualifiers::OCL_None: 5028 case Qualifiers::OCL_ExplicitNone: 5029 return true; 5030 5031 case Qualifiers::OCL_Strong: 5032 case Qualifiers::OCL_Weak: 5033 case Qualifiers::OCL_Autoreleasing: 5034 return false; 5035 } 5036 } 5037 5038 return T->isScalarType(); 5039 case UTT_IsCompound: 5040 return T->isCompoundType(); 5041 case UTT_IsMemberPointer: 5042 return T->isMemberPointerType(); 5043 5044 // Type trait expressions which correspond to the type property predicates 5045 // in C++0x [meta.unary.prop]. 5046 case UTT_IsConst: 5047 return T.isConstQualified(); 5048 case UTT_IsVolatile: 5049 return T.isVolatileQualified(); 5050 case UTT_IsTrivial: 5051 return T.isTrivialType(C); 5052 case UTT_IsTriviallyCopyable: 5053 return T.isTriviallyCopyableType(C); 5054 case UTT_IsStandardLayout: 5055 return T->isStandardLayoutType(); 5056 case UTT_IsPOD: 5057 return T.isPODType(C); 5058 case UTT_IsLiteral: 5059 return T->isLiteralType(C); 5060 case UTT_IsEmpty: 5061 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5062 return !RD->isUnion() && RD->isEmpty(); 5063 return false; 5064 case UTT_IsPolymorphic: 5065 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5066 return !RD->isUnion() && RD->isPolymorphic(); 5067 return false; 5068 case UTT_IsAbstract: 5069 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5070 return !RD->isUnion() && RD->isAbstract(); 5071 return false; 5072 case UTT_IsAggregate: 5073 // Report vector extensions and complex types as aggregates because they 5074 // support aggregate initialization. GCC mirrors this behavior for vectors 5075 // but not _Complex. 5076 return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() || 5077 T->isAnyComplexType(); 5078 // __is_interface_class only returns true when CL is invoked in /CLR mode and 5079 // even then only when it is used with the 'interface struct ...' syntax 5080 // Clang doesn't support /CLR which makes this type trait moot. 5081 case UTT_IsInterfaceClass: 5082 return false; 5083 case UTT_IsFinal: 5084 case UTT_IsSealed: 5085 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5086 return RD->hasAttr<FinalAttr>(); 5087 return false; 5088 case UTT_IsSigned: 5089 // Enum types should always return false. 5090 // Floating points should always return true. 5091 return T->isFloatingType() || 5092 (T->isSignedIntegerType() && !T->isEnumeralType()); 5093 case UTT_IsUnsigned: 5094 // Enum types should always return false. 5095 return T->isUnsignedIntegerType() && !T->isEnumeralType(); 5096 5097 // Type trait expressions which query classes regarding their construction, 5098 // destruction, and copying. Rather than being based directly on the 5099 // related type predicates in the standard, they are specified by both 5100 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those 5101 // specifications. 5102 // 5103 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html 5104 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 5105 // 5106 // Note that these builtins do not behave as documented in g++: if a class 5107 // has both a trivial and a non-trivial special member of a particular kind, 5108 // they return false! For now, we emulate this behavior. 5109 // FIXME: This appears to be a g++ bug: more complex cases reveal that it 5110 // does not correctly compute triviality in the presence of multiple special 5111 // members of the same kind. Revisit this once the g++ bug is fixed. 5112 case UTT_HasTrivialDefaultConstructor: 5113 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5114 // If __is_pod (type) is true then the trait is true, else if type is 5115 // a cv class or union type (or array thereof) with a trivial default 5116 // constructor ([class.ctor]) then the trait is true, else it is false. 5117 if (T.isPODType(C)) 5118 return true; 5119 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 5120 return RD->hasTrivialDefaultConstructor() && 5121 !RD->hasNonTrivialDefaultConstructor(); 5122 return false; 5123 case UTT_HasTrivialMoveConstructor: 5124 // This trait is implemented by MSVC 2012 and needed to parse the 5125 // standard library headers. Specifically this is used as the logic 5126 // behind std::is_trivially_move_constructible (20.9.4.3). 5127 if (T.isPODType(C)) 5128 return true; 5129 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 5130 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor(); 5131 return false; 5132 case UTT_HasTrivialCopy: 5133 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5134 // If __is_pod (type) is true or type is a reference type then 5135 // the trait is true, else if type is a cv class or union type 5136 // with a trivial copy constructor ([class.copy]) then the trait 5137 // is true, else it is false. 5138 if (T.isPODType(C) || T->isReferenceType()) 5139 return true; 5140 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5141 return RD->hasTrivialCopyConstructor() && 5142 !RD->hasNonTrivialCopyConstructor(); 5143 return false; 5144 case UTT_HasTrivialMoveAssign: 5145 // This trait is implemented by MSVC 2012 and needed to parse the 5146 // standard library headers. Specifically it is used as the logic 5147 // behind std::is_trivially_move_assignable (20.9.4.3) 5148 if (T.isPODType(C)) 5149 return true; 5150 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 5151 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment(); 5152 return false; 5153 case UTT_HasTrivialAssign: 5154 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5155 // If type is const qualified or is a reference type then the 5156 // trait is false. Otherwise if __is_pod (type) is true then the 5157 // trait is true, else if type is a cv class or union type with 5158 // a trivial copy assignment ([class.copy]) then the trait is 5159 // true, else it is false. 5160 // Note: the const and reference restrictions are interesting, 5161 // given that const and reference members don't prevent a class 5162 // from having a trivial copy assignment operator (but do cause 5163 // errors if the copy assignment operator is actually used, q.v. 5164 // [class.copy]p12). 5165 5166 if (T.isConstQualified()) 5167 return false; 5168 if (T.isPODType(C)) 5169 return true; 5170 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5171 return RD->hasTrivialCopyAssignment() && 5172 !RD->hasNonTrivialCopyAssignment(); 5173 return false; 5174 case UTT_IsDestructible: 5175 case UTT_IsTriviallyDestructible: 5176 case UTT_IsNothrowDestructible: 5177 // C++14 [meta.unary.prop]: 5178 // For reference types, is_destructible<T>::value is true. 5179 if (T->isReferenceType()) 5180 return true; 5181 5182 // Objective-C++ ARC: autorelease types don't require destruction. 5183 if (T->isObjCLifetimeType() && 5184 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 5185 return true; 5186 5187 // C++14 [meta.unary.prop]: 5188 // For incomplete types and function types, is_destructible<T>::value is 5189 // false. 5190 if (T->isIncompleteType() || T->isFunctionType()) 5191 return false; 5192 5193 // A type that requires destruction (via a non-trivial destructor or ARC 5194 // lifetime semantics) is not trivially-destructible. 5195 if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType()) 5196 return false; 5197 5198 // C++14 [meta.unary.prop]: 5199 // For object types and given U equal to remove_all_extents_t<T>, if the 5200 // expression std::declval<U&>().~U() is well-formed when treated as an 5201 // unevaluated operand (Clause 5), then is_destructible<T>::value is true 5202 if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 5203 CXXDestructorDecl *Destructor = Self.LookupDestructor(RD); 5204 if (!Destructor) 5205 return false; 5206 // C++14 [dcl.fct.def.delete]p2: 5207 // A program that refers to a deleted function implicitly or 5208 // explicitly, other than to declare it, is ill-formed. 5209 if (Destructor->isDeleted()) 5210 return false; 5211 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public) 5212 return false; 5213 if (UTT == UTT_IsNothrowDestructible) { 5214 auto *CPT = Destructor->getType()->castAs<FunctionProtoType>(); 5215 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5216 if (!CPT || !CPT->isNothrow()) 5217 return false; 5218 } 5219 } 5220 return true; 5221 5222 case UTT_HasTrivialDestructor: 5223 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 5224 // If __is_pod (type) is true or type is a reference type 5225 // then the trait is true, else if type is a cv class or union 5226 // type (or array thereof) with a trivial destructor 5227 // ([class.dtor]) then the trait is true, else it is 5228 // false. 5229 if (T.isPODType(C) || T->isReferenceType()) 5230 return true; 5231 5232 // Objective-C++ ARC: autorelease types don't require destruction. 5233 if (T->isObjCLifetimeType() && 5234 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 5235 return true; 5236 5237 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 5238 return RD->hasTrivialDestructor(); 5239 return false; 5240 // TODO: Propagate nothrowness for implicitly declared special members. 5241 case UTT_HasNothrowAssign: 5242 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5243 // If type is const qualified or is a reference type then the 5244 // trait is false. Otherwise if __has_trivial_assign (type) 5245 // is true then the trait is true, else if type is a cv class 5246 // or union type with copy assignment operators that are known 5247 // not to throw an exception then the trait is true, else it is 5248 // false. 5249 if (C.getBaseElementType(T).isConstQualified()) 5250 return false; 5251 if (T->isReferenceType()) 5252 return false; 5253 if (T.isPODType(C) || T->isObjCLifetimeType()) 5254 return true; 5255 5256 if (const RecordType *RT = T->getAs<RecordType>()) 5257 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 5258 &CXXRecordDecl::hasTrivialCopyAssignment, 5259 &CXXRecordDecl::hasNonTrivialCopyAssignment, 5260 &CXXMethodDecl::isCopyAssignmentOperator); 5261 return false; 5262 case UTT_HasNothrowMoveAssign: 5263 // This trait is implemented by MSVC 2012 and needed to parse the 5264 // standard library headers. Specifically this is used as the logic 5265 // behind std::is_nothrow_move_assignable (20.9.4.3). 5266 if (T.isPODType(C)) 5267 return true; 5268 5269 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) 5270 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 5271 &CXXRecordDecl::hasTrivialMoveAssignment, 5272 &CXXRecordDecl::hasNonTrivialMoveAssignment, 5273 &CXXMethodDecl::isMoveAssignmentOperator); 5274 return false; 5275 case UTT_HasNothrowCopy: 5276 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5277 // If __has_trivial_copy (type) is true then the trait is true, else 5278 // if type is a cv class or union type with copy constructors that are 5279 // known not to throw an exception then the trait is true, else it is 5280 // false. 5281 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType()) 5282 return true; 5283 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { 5284 if (RD->hasTrivialCopyConstructor() && 5285 !RD->hasNonTrivialCopyConstructor()) 5286 return true; 5287 5288 bool FoundConstructor = false; 5289 unsigned FoundTQs; 5290 for (const auto *ND : Self.LookupConstructors(RD)) { 5291 // A template constructor is never a copy constructor. 5292 // FIXME: However, it may actually be selected at the actual overload 5293 // resolution point. 5294 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) 5295 continue; 5296 // UsingDecl itself is not a constructor 5297 if (isa<UsingDecl>(ND)) 5298 continue; 5299 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); 5300 if (Constructor->isCopyConstructor(FoundTQs)) { 5301 FoundConstructor = true; 5302 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); 5303 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5304 if (!CPT) 5305 return false; 5306 // TODO: check whether evaluating default arguments can throw. 5307 // For now, we'll be conservative and assume that they can throw. 5308 if (!CPT->isNothrow() || CPT->getNumParams() > 1) 5309 return false; 5310 } 5311 } 5312 5313 return FoundConstructor; 5314 } 5315 return false; 5316 case UTT_HasNothrowConstructor: 5317 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 5318 // If __has_trivial_constructor (type) is true then the trait is 5319 // true, else if type is a cv class or union type (or array 5320 // thereof) with a default constructor that is known not to 5321 // throw an exception then the trait is true, else it is false. 5322 if (T.isPODType(C) || T->isObjCLifetimeType()) 5323 return true; 5324 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 5325 if (RD->hasTrivialDefaultConstructor() && 5326 !RD->hasNonTrivialDefaultConstructor()) 5327 return true; 5328 5329 bool FoundConstructor = false; 5330 for (const auto *ND : Self.LookupConstructors(RD)) { 5331 // FIXME: In C++0x, a constructor template can be a default constructor. 5332 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) 5333 continue; 5334 // UsingDecl itself is not a constructor 5335 if (isa<UsingDecl>(ND)) 5336 continue; 5337 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); 5338 if (Constructor->isDefaultConstructor()) { 5339 FoundConstructor = true; 5340 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); 5341 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5342 if (!CPT) 5343 return false; 5344 // FIXME: check whether evaluating default arguments can throw. 5345 // For now, we'll be conservative and assume that they can throw. 5346 if (!CPT->isNothrow() || CPT->getNumParams() > 0) 5347 return false; 5348 } 5349 } 5350 return FoundConstructor; 5351 } 5352 return false; 5353 case UTT_HasVirtualDestructor: 5354 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5355 // If type is a class type with a virtual destructor ([class.dtor]) 5356 // then the trait is true, else it is false. 5357 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5358 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD)) 5359 return Destructor->isVirtual(); 5360 return false; 5361 5362 // These type trait expressions are modeled on the specifications for the 5363 // Embarcadero C++0x type trait functions: 5364 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 5365 case UTT_IsCompleteType: 5366 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_): 5367 // Returns True if and only if T is a complete type at the point of the 5368 // function call. 5369 return !T->isIncompleteType(); 5370 case UTT_HasUniqueObjectRepresentations: 5371 return C.hasUniqueObjectRepresentations(T); 5372 case UTT_IsTriviallyRelocatable: 5373 return T.isTriviallyRelocatableType(C); 5374 case UTT_IsReferenceable: 5375 return T.isReferenceable(); 5376 } 5377 } 5378 5379 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 5380 QualType RhsT, SourceLocation KeyLoc); 5381 5382 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc, 5383 ArrayRef<TypeSourceInfo *> Args, 5384 SourceLocation RParenLoc) { 5385 if (Kind <= UTT_Last) 5386 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType()); 5387 5388 // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible 5389 // traits to avoid duplication. 5390 if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary) 5391 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(), 5392 Args[1]->getType(), RParenLoc); 5393 5394 switch (Kind) { 5395 case clang::BTT_ReferenceBindsToTemporary: 5396 case clang::TT_IsConstructible: 5397 case clang::TT_IsNothrowConstructible: 5398 case clang::TT_IsTriviallyConstructible: { 5399 // C++11 [meta.unary.prop]: 5400 // is_trivially_constructible is defined as: 5401 // 5402 // is_constructible<T, Args...>::value is true and the variable 5403 // definition for is_constructible, as defined below, is known to call 5404 // no operation that is not trivial. 5405 // 5406 // The predicate condition for a template specialization 5407 // is_constructible<T, Args...> shall be satisfied if and only if the 5408 // following variable definition would be well-formed for some invented 5409 // variable t: 5410 // 5411 // T t(create<Args>()...); 5412 assert(!Args.empty()); 5413 5414 // Precondition: T and all types in the parameter pack Args shall be 5415 // complete types, (possibly cv-qualified) void, or arrays of 5416 // unknown bound. 5417 for (const auto *TSI : Args) { 5418 QualType ArgTy = TSI->getType(); 5419 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType()) 5420 continue; 5421 5422 if (S.RequireCompleteType(KWLoc, ArgTy, 5423 diag::err_incomplete_type_used_in_type_trait_expr)) 5424 return false; 5425 } 5426 5427 // Make sure the first argument is not incomplete nor a function type. 5428 QualType T = Args[0]->getType(); 5429 if (T->isIncompleteType() || T->isFunctionType()) 5430 return false; 5431 5432 // Make sure the first argument is not an abstract type. 5433 CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 5434 if (RD && RD->isAbstract()) 5435 return false; 5436 5437 llvm::BumpPtrAllocator OpaqueExprAllocator; 5438 SmallVector<Expr *, 2> ArgExprs; 5439 ArgExprs.reserve(Args.size() - 1); 5440 for (unsigned I = 1, N = Args.size(); I != N; ++I) { 5441 QualType ArgTy = Args[I]->getType(); 5442 if (ArgTy->isObjectType() || ArgTy->isFunctionType()) 5443 ArgTy = S.Context.getRValueReferenceType(ArgTy); 5444 ArgExprs.push_back( 5445 new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>()) 5446 OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(), 5447 ArgTy.getNonLValueExprType(S.Context), 5448 Expr::getValueKindForType(ArgTy))); 5449 } 5450 5451 // Perform the initialization in an unevaluated context within a SFINAE 5452 // trap at translation unit scope. 5453 EnterExpressionEvaluationContext Unevaluated( 5454 S, Sema::ExpressionEvaluationContext::Unevaluated); 5455 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true); 5456 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl()); 5457 InitializedEntity To( 5458 InitializedEntity::InitializeTemporary(S.Context, Args[0])); 5459 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc, 5460 RParenLoc)); 5461 InitializationSequence Init(S, To, InitKind, ArgExprs); 5462 if (Init.Failed()) 5463 return false; 5464 5465 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs); 5466 if (Result.isInvalid() || SFINAE.hasErrorOccurred()) 5467 return false; 5468 5469 if (Kind == clang::TT_IsConstructible) 5470 return true; 5471 5472 if (Kind == clang::BTT_ReferenceBindsToTemporary) { 5473 if (!T->isReferenceType()) 5474 return false; 5475 5476 return !Init.isDirectReferenceBinding(); 5477 } 5478 5479 if (Kind == clang::TT_IsNothrowConstructible) 5480 return S.canThrow(Result.get()) == CT_Cannot; 5481 5482 if (Kind == clang::TT_IsTriviallyConstructible) { 5483 // Under Objective-C ARC and Weak, if the destination has non-trivial 5484 // Objective-C lifetime, this is a non-trivial construction. 5485 if (T.getNonReferenceType().hasNonTrivialObjCLifetime()) 5486 return false; 5487 5488 // The initialization succeeded; now make sure there are no non-trivial 5489 // calls. 5490 return !Result.get()->hasNonTrivialCall(S.Context); 5491 } 5492 5493 llvm_unreachable("unhandled type trait"); 5494 return false; 5495 } 5496 default: llvm_unreachable("not a TT"); 5497 } 5498 5499 return false; 5500 } 5501 5502 namespace { 5503 void DiagnoseBuiltinDeprecation(Sema& S, TypeTrait Kind, 5504 SourceLocation KWLoc) { 5505 TypeTrait Replacement; 5506 switch (Kind) { 5507 case UTT_HasNothrowAssign: 5508 case UTT_HasNothrowMoveAssign: 5509 Replacement = BTT_IsNothrowAssignable; 5510 break; 5511 case UTT_HasNothrowCopy: 5512 case UTT_HasNothrowConstructor: 5513 Replacement = TT_IsNothrowConstructible; 5514 break; 5515 case UTT_HasTrivialAssign: 5516 case UTT_HasTrivialMoveAssign: 5517 Replacement = BTT_IsTriviallyAssignable; 5518 break; 5519 case UTT_HasTrivialCopy: 5520 Replacement = UTT_IsTriviallyCopyable; 5521 break; 5522 case UTT_HasTrivialDefaultConstructor: 5523 case UTT_HasTrivialMoveConstructor: 5524 Replacement = TT_IsTriviallyConstructible; 5525 break; 5526 case UTT_HasTrivialDestructor: 5527 Replacement = UTT_IsTriviallyDestructible; 5528 break; 5529 default: 5530 return; 5531 } 5532 S.Diag(KWLoc, diag::warn_deprecated_builtin) 5533 << getTraitSpelling(Kind) << getTraitSpelling(Replacement); 5534 } 5535 } 5536 5537 bool Sema::CheckTypeTraitArity(unsigned Arity, SourceLocation Loc, size_t N) { 5538 if (Arity && N != Arity) { 5539 Diag(Loc, diag::err_type_trait_arity) 5540 << Arity << 0 << (Arity > 1) << (int)N << SourceRange(Loc); 5541 return false; 5542 } 5543 5544 if (!Arity && N == 0) { 5545 Diag(Loc, diag::err_type_trait_arity) 5546 << 1 << 1 << 1 << (int)N << SourceRange(Loc); 5547 return false; 5548 } 5549 return true; 5550 } 5551 5552 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 5553 ArrayRef<TypeSourceInfo *> Args, 5554 SourceLocation RParenLoc) { 5555 if (!CheckTypeTraitArity(getTypeTraitArity(Kind), KWLoc, Args.size())) 5556 return ExprError(); 5557 QualType ResultType = Context.getLogicalOperationType(); 5558 5559 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness( 5560 *this, Kind, KWLoc, Args[0]->getType())) 5561 return ExprError(); 5562 5563 DiagnoseBuiltinDeprecation(*this, Kind, KWLoc); 5564 5565 bool Dependent = false; 5566 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 5567 if (Args[I]->getType()->isDependentType()) { 5568 Dependent = true; 5569 break; 5570 } 5571 } 5572 5573 bool Result = false; 5574 if (!Dependent) 5575 Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc); 5576 5577 return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args, 5578 RParenLoc, Result); 5579 } 5580 5581 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 5582 ArrayRef<ParsedType> Args, 5583 SourceLocation RParenLoc) { 5584 SmallVector<TypeSourceInfo *, 4> ConvertedArgs; 5585 ConvertedArgs.reserve(Args.size()); 5586 5587 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 5588 TypeSourceInfo *TInfo; 5589 QualType T = GetTypeFromParser(Args[I], &TInfo); 5590 if (!TInfo) 5591 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc); 5592 5593 ConvertedArgs.push_back(TInfo); 5594 } 5595 5596 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc); 5597 } 5598 5599 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 5600 QualType RhsT, SourceLocation KeyLoc) { 5601 assert(!LhsT->isDependentType() && !RhsT->isDependentType() && 5602 "Cannot evaluate traits of dependent types"); 5603 5604 switch(BTT) { 5605 case BTT_IsBaseOf: { 5606 // C++0x [meta.rel]p2 5607 // Base is a base class of Derived without regard to cv-qualifiers or 5608 // Base and Derived are not unions and name the same class type without 5609 // regard to cv-qualifiers. 5610 5611 const RecordType *lhsRecord = LhsT->getAs<RecordType>(); 5612 const RecordType *rhsRecord = RhsT->getAs<RecordType>(); 5613 if (!rhsRecord || !lhsRecord) { 5614 const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>(); 5615 const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>(); 5616 if (!LHSObjTy || !RHSObjTy) 5617 return false; 5618 5619 ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface(); 5620 ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface(); 5621 if (!BaseInterface || !DerivedInterface) 5622 return false; 5623 5624 if (Self.RequireCompleteType( 5625 KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr)) 5626 return false; 5627 5628 return BaseInterface->isSuperClassOf(DerivedInterface); 5629 } 5630 5631 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT) 5632 == (lhsRecord == rhsRecord)); 5633 5634 // Unions are never base classes, and never have base classes. 5635 // It doesn't matter if they are complete or not. See PR#41843 5636 if (lhsRecord && lhsRecord->getDecl()->isUnion()) 5637 return false; 5638 if (rhsRecord && rhsRecord->getDecl()->isUnion()) 5639 return false; 5640 5641 if (lhsRecord == rhsRecord) 5642 return true; 5643 5644 // C++0x [meta.rel]p2: 5645 // If Base and Derived are class types and are different types 5646 // (ignoring possible cv-qualifiers) then Derived shall be a 5647 // complete type. 5648 if (Self.RequireCompleteType(KeyLoc, RhsT, 5649 diag::err_incomplete_type_used_in_type_trait_expr)) 5650 return false; 5651 5652 return cast<CXXRecordDecl>(rhsRecord->getDecl()) 5653 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl())); 5654 } 5655 case BTT_IsSame: 5656 return Self.Context.hasSameType(LhsT, RhsT); 5657 case BTT_TypeCompatible: { 5658 // GCC ignores cv-qualifiers on arrays for this builtin. 5659 Qualifiers LhsQuals, RhsQuals; 5660 QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals); 5661 QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals); 5662 return Self.Context.typesAreCompatible(Lhs, Rhs); 5663 } 5664 case BTT_IsConvertible: 5665 case BTT_IsConvertibleTo: { 5666 // C++0x [meta.rel]p4: 5667 // Given the following function prototype: 5668 // 5669 // template <class T> 5670 // typename add_rvalue_reference<T>::type create(); 5671 // 5672 // the predicate condition for a template specialization 5673 // is_convertible<From, To> shall be satisfied if and only if 5674 // the return expression in the following code would be 5675 // well-formed, including any implicit conversions to the return 5676 // type of the function: 5677 // 5678 // To test() { 5679 // return create<From>(); 5680 // } 5681 // 5682 // Access checking is performed as if in a context unrelated to To and 5683 // From. Only the validity of the immediate context of the expression 5684 // of the return-statement (including conversions to the return type) 5685 // is considered. 5686 // 5687 // We model the initialization as a copy-initialization of a temporary 5688 // of the appropriate type, which for this expression is identical to the 5689 // return statement (since NRVO doesn't apply). 5690 5691 // Functions aren't allowed to return function or array types. 5692 if (RhsT->isFunctionType() || RhsT->isArrayType()) 5693 return false; 5694 5695 // A return statement in a void function must have void type. 5696 if (RhsT->isVoidType()) 5697 return LhsT->isVoidType(); 5698 5699 // A function definition requires a complete, non-abstract return type. 5700 if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT)) 5701 return false; 5702 5703 // Compute the result of add_rvalue_reference. 5704 if (LhsT->isObjectType() || LhsT->isFunctionType()) 5705 LhsT = Self.Context.getRValueReferenceType(LhsT); 5706 5707 // Build a fake source and destination for initialization. 5708 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT)); 5709 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 5710 Expr::getValueKindForType(LhsT)); 5711 Expr *FromPtr = &From; 5712 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc, 5713 SourceLocation())); 5714 5715 // Perform the initialization in an unevaluated context within a SFINAE 5716 // trap at translation unit scope. 5717 EnterExpressionEvaluationContext Unevaluated( 5718 Self, Sema::ExpressionEvaluationContext::Unevaluated); 5719 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 5720 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 5721 InitializationSequence Init(Self, To, Kind, FromPtr); 5722 if (Init.Failed()) 5723 return false; 5724 5725 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr); 5726 return !Result.isInvalid() && !SFINAE.hasErrorOccurred(); 5727 } 5728 5729 case BTT_IsAssignable: 5730 case BTT_IsNothrowAssignable: 5731 case BTT_IsTriviallyAssignable: { 5732 // C++11 [meta.unary.prop]p3: 5733 // is_trivially_assignable is defined as: 5734 // is_assignable<T, U>::value is true and the assignment, as defined by 5735 // is_assignable, is known to call no operation that is not trivial 5736 // 5737 // is_assignable is defined as: 5738 // The expression declval<T>() = declval<U>() is well-formed when 5739 // treated as an unevaluated operand (Clause 5). 5740 // 5741 // For both, T and U shall be complete types, (possibly cv-qualified) 5742 // void, or arrays of unknown bound. 5743 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() && 5744 Self.RequireCompleteType(KeyLoc, LhsT, 5745 diag::err_incomplete_type_used_in_type_trait_expr)) 5746 return false; 5747 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() && 5748 Self.RequireCompleteType(KeyLoc, RhsT, 5749 diag::err_incomplete_type_used_in_type_trait_expr)) 5750 return false; 5751 5752 // cv void is never assignable. 5753 if (LhsT->isVoidType() || RhsT->isVoidType()) 5754 return false; 5755 5756 // Build expressions that emulate the effect of declval<T>() and 5757 // declval<U>(). 5758 if (LhsT->isObjectType() || LhsT->isFunctionType()) 5759 LhsT = Self.Context.getRValueReferenceType(LhsT); 5760 if (RhsT->isObjectType() || RhsT->isFunctionType()) 5761 RhsT = Self.Context.getRValueReferenceType(RhsT); 5762 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 5763 Expr::getValueKindForType(LhsT)); 5764 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context), 5765 Expr::getValueKindForType(RhsT)); 5766 5767 // Attempt the assignment in an unevaluated context within a SFINAE 5768 // trap at translation unit scope. 5769 EnterExpressionEvaluationContext Unevaluated( 5770 Self, Sema::ExpressionEvaluationContext::Unevaluated); 5771 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 5772 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 5773 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs, 5774 &Rhs); 5775 if (Result.isInvalid()) 5776 return false; 5777 5778 // Treat the assignment as unused for the purpose of -Wdeprecated-volatile. 5779 Self.CheckUnusedVolatileAssignment(Result.get()); 5780 5781 if (SFINAE.hasErrorOccurred()) 5782 return false; 5783 5784 if (BTT == BTT_IsAssignable) 5785 return true; 5786 5787 if (BTT == BTT_IsNothrowAssignable) 5788 return Self.canThrow(Result.get()) == CT_Cannot; 5789 5790 if (BTT == BTT_IsTriviallyAssignable) { 5791 // Under Objective-C ARC and Weak, if the destination has non-trivial 5792 // Objective-C lifetime, this is a non-trivial assignment. 5793 if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime()) 5794 return false; 5795 5796 return !Result.get()->hasNonTrivialCall(Self.Context); 5797 } 5798 5799 llvm_unreachable("unhandled type trait"); 5800 return false; 5801 } 5802 default: llvm_unreachable("not a BTT"); 5803 } 5804 llvm_unreachable("Unknown type trait or not implemented"); 5805 } 5806 5807 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT, 5808 SourceLocation KWLoc, 5809 ParsedType Ty, 5810 Expr* DimExpr, 5811 SourceLocation RParen) { 5812 TypeSourceInfo *TSInfo; 5813 QualType T = GetTypeFromParser(Ty, &TSInfo); 5814 if (!TSInfo) 5815 TSInfo = Context.getTrivialTypeSourceInfo(T); 5816 5817 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen); 5818 } 5819 5820 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT, 5821 QualType T, Expr *DimExpr, 5822 SourceLocation KeyLoc) { 5823 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); 5824 5825 switch(ATT) { 5826 case ATT_ArrayRank: 5827 if (T->isArrayType()) { 5828 unsigned Dim = 0; 5829 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 5830 ++Dim; 5831 T = AT->getElementType(); 5832 } 5833 return Dim; 5834 } 5835 return 0; 5836 5837 case ATT_ArrayExtent: { 5838 llvm::APSInt Value; 5839 uint64_t Dim; 5840 if (Self.VerifyIntegerConstantExpression( 5841 DimExpr, &Value, diag::err_dimension_expr_not_constant_integer) 5842 .isInvalid()) 5843 return 0; 5844 if (Value.isSigned() && Value.isNegative()) { 5845 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) 5846 << DimExpr->getSourceRange(); 5847 return 0; 5848 } 5849 Dim = Value.getLimitedValue(); 5850 5851 if (T->isArrayType()) { 5852 unsigned D = 0; 5853 bool Matched = false; 5854 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 5855 if (Dim == D) { 5856 Matched = true; 5857 break; 5858 } 5859 ++D; 5860 T = AT->getElementType(); 5861 } 5862 5863 if (Matched && T->isArrayType()) { 5864 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T)) 5865 return CAT->getSize().getLimitedValue(); 5866 } 5867 } 5868 return 0; 5869 } 5870 } 5871 llvm_unreachable("Unknown type trait or not implemented"); 5872 } 5873 5874 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT, 5875 SourceLocation KWLoc, 5876 TypeSourceInfo *TSInfo, 5877 Expr* DimExpr, 5878 SourceLocation RParen) { 5879 QualType T = TSInfo->getType(); 5880 5881 // FIXME: This should likely be tracked as an APInt to remove any host 5882 // assumptions about the width of size_t on the target. 5883 uint64_t Value = 0; 5884 if (!T->isDependentType()) 5885 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc); 5886 5887 // While the specification for these traits from the Embarcadero C++ 5888 // compiler's documentation says the return type is 'unsigned int', Clang 5889 // returns 'size_t'. On Windows, the primary platform for the Embarcadero 5890 // compiler, there is no difference. On several other platforms this is an 5891 // important distinction. 5892 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr, 5893 RParen, Context.getSizeType()); 5894 } 5895 5896 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET, 5897 SourceLocation KWLoc, 5898 Expr *Queried, 5899 SourceLocation RParen) { 5900 // If error parsing the expression, ignore. 5901 if (!Queried) 5902 return ExprError(); 5903 5904 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen); 5905 5906 return Result; 5907 } 5908 5909 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) { 5910 switch (ET) { 5911 case ET_IsLValueExpr: return E->isLValue(); 5912 case ET_IsRValueExpr: 5913 return E->isPRValue(); 5914 } 5915 llvm_unreachable("Expression trait not covered by switch"); 5916 } 5917 5918 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET, 5919 SourceLocation KWLoc, 5920 Expr *Queried, 5921 SourceLocation RParen) { 5922 if (Queried->isTypeDependent()) { 5923 // Delay type-checking for type-dependent expressions. 5924 } else if (Queried->hasPlaceholderType()) { 5925 ExprResult PE = CheckPlaceholderExpr(Queried); 5926 if (PE.isInvalid()) return ExprError(); 5927 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen); 5928 } 5929 5930 bool Value = EvaluateExpressionTrait(ET, Queried); 5931 5932 return new (Context) 5933 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy); 5934 } 5935 5936 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS, 5937 ExprValueKind &VK, 5938 SourceLocation Loc, 5939 bool isIndirect) { 5940 assert(!LHS.get()->hasPlaceholderType() && !RHS.get()->hasPlaceholderType() && 5941 "placeholders should have been weeded out by now"); 5942 5943 // The LHS undergoes lvalue conversions if this is ->*, and undergoes the 5944 // temporary materialization conversion otherwise. 5945 if (isIndirect) 5946 LHS = DefaultLvalueConversion(LHS.get()); 5947 else if (LHS.get()->isPRValue()) 5948 LHS = TemporaryMaterializationConversion(LHS.get()); 5949 if (LHS.isInvalid()) 5950 return QualType(); 5951 5952 // The RHS always undergoes lvalue conversions. 5953 RHS = DefaultLvalueConversion(RHS.get()); 5954 if (RHS.isInvalid()) return QualType(); 5955 5956 const char *OpSpelling = isIndirect ? "->*" : ".*"; 5957 // C++ 5.5p2 5958 // The binary operator .* [p3: ->*] binds its second operand, which shall 5959 // be of type "pointer to member of T" (where T is a completely-defined 5960 // class type) [...] 5961 QualType RHSType = RHS.get()->getType(); 5962 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>(); 5963 if (!MemPtr) { 5964 Diag(Loc, diag::err_bad_memptr_rhs) 5965 << OpSpelling << RHSType << RHS.get()->getSourceRange(); 5966 return QualType(); 5967 } 5968 5969 QualType Class(MemPtr->getClass(), 0); 5970 5971 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the 5972 // member pointer points must be completely-defined. However, there is no 5973 // reason for this semantic distinction, and the rule is not enforced by 5974 // other compilers. Therefore, we do not check this property, as it is 5975 // likely to be considered a defect. 5976 5977 // C++ 5.5p2 5978 // [...] to its first operand, which shall be of class T or of a class of 5979 // which T is an unambiguous and accessible base class. [p3: a pointer to 5980 // such a class] 5981 QualType LHSType = LHS.get()->getType(); 5982 if (isIndirect) { 5983 if (const PointerType *Ptr = LHSType->getAs<PointerType>()) 5984 LHSType = Ptr->getPointeeType(); 5985 else { 5986 Diag(Loc, diag::err_bad_memptr_lhs) 5987 << OpSpelling << 1 << LHSType 5988 << FixItHint::CreateReplacement(SourceRange(Loc), ".*"); 5989 return QualType(); 5990 } 5991 } 5992 5993 if (!Context.hasSameUnqualifiedType(Class, LHSType)) { 5994 // If we want to check the hierarchy, we need a complete type. 5995 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs, 5996 OpSpelling, (int)isIndirect)) { 5997 return QualType(); 5998 } 5999 6000 if (!IsDerivedFrom(Loc, LHSType, Class)) { 6001 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling 6002 << (int)isIndirect << LHS.get()->getType(); 6003 return QualType(); 6004 } 6005 6006 CXXCastPath BasePath; 6007 if (CheckDerivedToBaseConversion( 6008 LHSType, Class, Loc, 6009 SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()), 6010 &BasePath)) 6011 return QualType(); 6012 6013 // Cast LHS to type of use. 6014 QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers()); 6015 if (isIndirect) 6016 UseType = Context.getPointerType(UseType); 6017 ExprValueKind VK = isIndirect ? VK_PRValue : LHS.get()->getValueKind(); 6018 LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK, 6019 &BasePath); 6020 } 6021 6022 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) { 6023 // Diagnose use of pointer-to-member type which when used as 6024 // the functional cast in a pointer-to-member expression. 6025 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect; 6026 return QualType(); 6027 } 6028 6029 // C++ 5.5p2 6030 // The result is an object or a function of the type specified by the 6031 // second operand. 6032 // The cv qualifiers are the union of those in the pointer and the left side, 6033 // in accordance with 5.5p5 and 5.2.5. 6034 QualType Result = MemPtr->getPointeeType(); 6035 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers()); 6036 6037 // C++0x [expr.mptr.oper]p6: 6038 // In a .* expression whose object expression is an rvalue, the program is 6039 // ill-formed if the second operand is a pointer to member function with 6040 // ref-qualifier &. In a ->* expression or in a .* expression whose object 6041 // expression is an lvalue, the program is ill-formed if the second operand 6042 // is a pointer to member function with ref-qualifier &&. 6043 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) { 6044 switch (Proto->getRefQualifier()) { 6045 case RQ_None: 6046 // Do nothing 6047 break; 6048 6049 case RQ_LValue: 6050 if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) { 6051 // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq 6052 // is (exactly) 'const'. 6053 if (Proto->isConst() && !Proto->isVolatile()) 6054 Diag(Loc, getLangOpts().CPlusPlus20 6055 ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue 6056 : diag::ext_pointer_to_const_ref_member_on_rvalue); 6057 else 6058 Diag(Loc, diag::err_pointer_to_member_oper_value_classify) 6059 << RHSType << 1 << LHS.get()->getSourceRange(); 6060 } 6061 break; 6062 6063 case RQ_RValue: 6064 if (isIndirect || !LHS.get()->Classify(Context).isRValue()) 6065 Diag(Loc, diag::err_pointer_to_member_oper_value_classify) 6066 << RHSType << 0 << LHS.get()->getSourceRange(); 6067 break; 6068 } 6069 } 6070 6071 // C++ [expr.mptr.oper]p6: 6072 // The result of a .* expression whose second operand is a pointer 6073 // to a data member is of the same value category as its 6074 // first operand. The result of a .* expression whose second 6075 // operand is a pointer to a member function is a prvalue. The 6076 // result of an ->* expression is an lvalue if its second operand 6077 // is a pointer to data member and a prvalue otherwise. 6078 if (Result->isFunctionType()) { 6079 VK = VK_PRValue; 6080 return Context.BoundMemberTy; 6081 } else if (isIndirect) { 6082 VK = VK_LValue; 6083 } else { 6084 VK = LHS.get()->getValueKind(); 6085 } 6086 6087 return Result; 6088 } 6089 6090 /// Try to convert a type to another according to C++11 5.16p3. 6091 /// 6092 /// This is part of the parameter validation for the ? operator. If either 6093 /// value operand is a class type, the two operands are attempted to be 6094 /// converted to each other. This function does the conversion in one direction. 6095 /// It returns true if the program is ill-formed and has already been diagnosed 6096 /// as such. 6097 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To, 6098 SourceLocation QuestionLoc, 6099 bool &HaveConversion, 6100 QualType &ToType) { 6101 HaveConversion = false; 6102 ToType = To->getType(); 6103 6104 InitializationKind Kind = 6105 InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation()); 6106 // C++11 5.16p3 6107 // The process for determining whether an operand expression E1 of type T1 6108 // can be converted to match an operand expression E2 of type T2 is defined 6109 // as follows: 6110 // -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be 6111 // implicitly converted to type "lvalue reference to T2", subject to the 6112 // constraint that in the conversion the reference must bind directly to 6113 // an lvalue. 6114 // -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be 6115 // implicitly converted to the type "rvalue reference to R2", subject to 6116 // the constraint that the reference must bind directly. 6117 if (To->isGLValue()) { 6118 QualType T = Self.Context.getReferenceQualifiedType(To); 6119 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); 6120 6121 InitializationSequence InitSeq(Self, Entity, Kind, From); 6122 if (InitSeq.isDirectReferenceBinding()) { 6123 ToType = T; 6124 HaveConversion = true; 6125 return false; 6126 } 6127 6128 if (InitSeq.isAmbiguous()) 6129 return InitSeq.Diagnose(Self, Entity, Kind, From); 6130 } 6131 6132 // -- If E2 is an rvalue, or if the conversion above cannot be done: 6133 // -- if E1 and E2 have class type, and the underlying class types are 6134 // the same or one is a base class of the other: 6135 QualType FTy = From->getType(); 6136 QualType TTy = To->getType(); 6137 const RecordType *FRec = FTy->getAs<RecordType>(); 6138 const RecordType *TRec = TTy->getAs<RecordType>(); 6139 bool FDerivedFromT = FRec && TRec && FRec != TRec && 6140 Self.IsDerivedFrom(QuestionLoc, FTy, TTy); 6141 if (FRec && TRec && (FRec == TRec || FDerivedFromT || 6142 Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) { 6143 // E1 can be converted to match E2 if the class of T2 is the 6144 // same type as, or a base class of, the class of T1, and 6145 // [cv2 > cv1]. 6146 if (FRec == TRec || FDerivedFromT) { 6147 if (TTy.isAtLeastAsQualifiedAs(FTy)) { 6148 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); 6149 InitializationSequence InitSeq(Self, Entity, Kind, From); 6150 if (InitSeq) { 6151 HaveConversion = true; 6152 return false; 6153 } 6154 6155 if (InitSeq.isAmbiguous()) 6156 return InitSeq.Diagnose(Self, Entity, Kind, From); 6157 } 6158 } 6159 6160 return false; 6161 } 6162 6163 // -- Otherwise: E1 can be converted to match E2 if E1 can be 6164 // implicitly converted to the type that expression E2 would have 6165 // if E2 were converted to an rvalue (or the type it has, if E2 is 6166 // an rvalue). 6167 // 6168 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not 6169 // to the array-to-pointer or function-to-pointer conversions. 6170 TTy = TTy.getNonLValueExprType(Self.Context); 6171 6172 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); 6173 InitializationSequence InitSeq(Self, Entity, Kind, From); 6174 HaveConversion = !InitSeq.Failed(); 6175 ToType = TTy; 6176 if (InitSeq.isAmbiguous()) 6177 return InitSeq.Diagnose(Self, Entity, Kind, From); 6178 6179 return false; 6180 } 6181 6182 /// Try to find a common type for two according to C++0x 5.16p5. 6183 /// 6184 /// This is part of the parameter validation for the ? operator. If either 6185 /// value operand is a class type, overload resolution is used to find a 6186 /// conversion to a common type. 6187 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS, 6188 SourceLocation QuestionLoc) { 6189 Expr *Args[2] = { LHS.get(), RHS.get() }; 6190 OverloadCandidateSet CandidateSet(QuestionLoc, 6191 OverloadCandidateSet::CSK_Operator); 6192 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 6193 CandidateSet); 6194 6195 OverloadCandidateSet::iterator Best; 6196 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) { 6197 case OR_Success: { 6198 // We found a match. Perform the conversions on the arguments and move on. 6199 ExprResult LHSRes = Self.PerformImplicitConversion( 6200 LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0], 6201 Sema::AA_Converting); 6202 if (LHSRes.isInvalid()) 6203 break; 6204 LHS = LHSRes; 6205 6206 ExprResult RHSRes = Self.PerformImplicitConversion( 6207 RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1], 6208 Sema::AA_Converting); 6209 if (RHSRes.isInvalid()) 6210 break; 6211 RHS = RHSRes; 6212 if (Best->Function) 6213 Self.MarkFunctionReferenced(QuestionLoc, Best->Function); 6214 return false; 6215 } 6216 6217 case OR_No_Viable_Function: 6218 6219 // Emit a better diagnostic if one of the expressions is a null pointer 6220 // constant and the other is a pointer type. In this case, the user most 6221 // likely forgot to take the address of the other expression. 6222 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) 6223 return true; 6224 6225 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) 6226 << LHS.get()->getType() << RHS.get()->getType() 6227 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6228 return true; 6229 6230 case OR_Ambiguous: 6231 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl) 6232 << LHS.get()->getType() << RHS.get()->getType() 6233 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6234 // FIXME: Print the possible common types by printing the return types of 6235 // the viable candidates. 6236 break; 6237 6238 case OR_Deleted: 6239 llvm_unreachable("Conditional operator has only built-in overloads"); 6240 } 6241 return true; 6242 } 6243 6244 /// Perform an "extended" implicit conversion as returned by 6245 /// TryClassUnification. 6246 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) { 6247 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); 6248 InitializationKind Kind = 6249 InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation()); 6250 Expr *Arg = E.get(); 6251 InitializationSequence InitSeq(Self, Entity, Kind, Arg); 6252 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg); 6253 if (Result.isInvalid()) 6254 return true; 6255 6256 E = Result; 6257 return false; 6258 } 6259 6260 // Check the condition operand of ?: to see if it is valid for the GCC 6261 // extension. 6262 static bool isValidVectorForConditionalCondition(ASTContext &Ctx, 6263 QualType CondTy) { 6264 if (!CondTy->isVectorType() && !CondTy->isExtVectorType()) 6265 return false; 6266 const QualType EltTy = 6267 cast<VectorType>(CondTy.getCanonicalType())->getElementType(); 6268 assert(!EltTy->isEnumeralType() && "Vectors cant be enum types"); 6269 return EltTy->isIntegralType(Ctx); 6270 } 6271 6272 static bool isValidSizelessVectorForConditionalCondition(ASTContext &Ctx, 6273 QualType CondTy) { 6274 if (!CondTy->isVLSTBuiltinType()) 6275 return false; 6276 const QualType EltTy = 6277 cast<BuiltinType>(CondTy.getCanonicalType())->getSveEltType(Ctx); 6278 assert(!EltTy->isEnumeralType() && "Vectors cant be enum types"); 6279 return EltTy->isIntegralType(Ctx); 6280 } 6281 6282 QualType Sema::CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS, 6283 ExprResult &RHS, 6284 SourceLocation QuestionLoc) { 6285 LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); 6286 RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); 6287 6288 QualType CondType = Cond.get()->getType(); 6289 const auto *CondVT = CondType->castAs<VectorType>(); 6290 QualType CondElementTy = CondVT->getElementType(); 6291 unsigned CondElementCount = CondVT->getNumElements(); 6292 QualType LHSType = LHS.get()->getType(); 6293 const auto *LHSVT = LHSType->getAs<VectorType>(); 6294 QualType RHSType = RHS.get()->getType(); 6295 const auto *RHSVT = RHSType->getAs<VectorType>(); 6296 6297 QualType ResultType; 6298 6299 6300 if (LHSVT && RHSVT) { 6301 if (isa<ExtVectorType>(CondVT) != isa<ExtVectorType>(LHSVT)) { 6302 Diag(QuestionLoc, diag::err_conditional_vector_cond_result_mismatch) 6303 << /*isExtVector*/ isa<ExtVectorType>(CondVT); 6304 return {}; 6305 } 6306 6307 // If both are vector types, they must be the same type. 6308 if (!Context.hasSameType(LHSType, RHSType)) { 6309 Diag(QuestionLoc, diag::err_conditional_vector_mismatched) 6310 << LHSType << RHSType; 6311 return {}; 6312 } 6313 ResultType = Context.getCommonSugaredType(LHSType, RHSType); 6314 } else if (LHSVT || RHSVT) { 6315 ResultType = CheckVectorOperands( 6316 LHS, RHS, QuestionLoc, /*isCompAssign*/ false, /*AllowBothBool*/ true, 6317 /*AllowBoolConversions*/ false, 6318 /*AllowBoolOperation*/ true, 6319 /*ReportInvalid*/ true); 6320 if (ResultType.isNull()) 6321 return {}; 6322 } else { 6323 // Both are scalar. 6324 LHSType = LHSType.getUnqualifiedType(); 6325 RHSType = RHSType.getUnqualifiedType(); 6326 QualType ResultElementTy = 6327 Context.hasSameType(LHSType, RHSType) 6328 ? Context.getCommonSugaredType(LHSType, RHSType) 6329 : UsualArithmeticConversions(LHS, RHS, QuestionLoc, 6330 ACK_Conditional); 6331 6332 if (ResultElementTy->isEnumeralType()) { 6333 Diag(QuestionLoc, diag::err_conditional_vector_operand_type) 6334 << ResultElementTy; 6335 return {}; 6336 } 6337 if (CondType->isExtVectorType()) 6338 ResultType = 6339 Context.getExtVectorType(ResultElementTy, CondVT->getNumElements()); 6340 else 6341 ResultType = Context.getVectorType( 6342 ResultElementTy, CondVT->getNumElements(), VectorType::GenericVector); 6343 6344 LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat); 6345 RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat); 6346 } 6347 6348 assert(!ResultType.isNull() && ResultType->isVectorType() && 6349 (!CondType->isExtVectorType() || ResultType->isExtVectorType()) && 6350 "Result should have been a vector type"); 6351 auto *ResultVectorTy = ResultType->castAs<VectorType>(); 6352 QualType ResultElementTy = ResultVectorTy->getElementType(); 6353 unsigned ResultElementCount = ResultVectorTy->getNumElements(); 6354 6355 if (ResultElementCount != CondElementCount) { 6356 Diag(QuestionLoc, diag::err_conditional_vector_size) << CondType 6357 << ResultType; 6358 return {}; 6359 } 6360 6361 if (Context.getTypeSize(ResultElementTy) != 6362 Context.getTypeSize(CondElementTy)) { 6363 Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondType 6364 << ResultType; 6365 return {}; 6366 } 6367 6368 return ResultType; 6369 } 6370 6371 QualType Sema::CheckSizelessVectorConditionalTypes(ExprResult &Cond, 6372 ExprResult &LHS, 6373 ExprResult &RHS, 6374 SourceLocation QuestionLoc) { 6375 LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); 6376 RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); 6377 6378 QualType CondType = Cond.get()->getType(); 6379 const auto *CondBT = CondType->castAs<BuiltinType>(); 6380 QualType CondElementTy = CondBT->getSveEltType(Context); 6381 llvm::ElementCount CondElementCount = 6382 Context.getBuiltinVectorTypeInfo(CondBT).EC; 6383 6384 QualType LHSType = LHS.get()->getType(); 6385 const auto *LHSBT = 6386 LHSType->isVLSTBuiltinType() ? LHSType->getAs<BuiltinType>() : nullptr; 6387 QualType RHSType = RHS.get()->getType(); 6388 const auto *RHSBT = 6389 RHSType->isVLSTBuiltinType() ? RHSType->getAs<BuiltinType>() : nullptr; 6390 6391 QualType ResultType; 6392 6393 if (LHSBT && RHSBT) { 6394 // If both are sizeless vector types, they must be the same type. 6395 if (!Context.hasSameType(LHSType, RHSType)) { 6396 Diag(QuestionLoc, diag::err_conditional_vector_mismatched) 6397 << LHSType << RHSType; 6398 return QualType(); 6399 } 6400 ResultType = LHSType; 6401 } else if (LHSBT || RHSBT) { 6402 ResultType = CheckSizelessVectorOperands( 6403 LHS, RHS, QuestionLoc, /*IsCompAssign*/ false, ACK_Conditional); 6404 if (ResultType.isNull()) 6405 return QualType(); 6406 } else { 6407 // Both are scalar so splat 6408 QualType ResultElementTy; 6409 LHSType = LHSType.getCanonicalType().getUnqualifiedType(); 6410 RHSType = RHSType.getCanonicalType().getUnqualifiedType(); 6411 6412 if (Context.hasSameType(LHSType, RHSType)) 6413 ResultElementTy = LHSType; 6414 else 6415 ResultElementTy = 6416 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional); 6417 6418 if (ResultElementTy->isEnumeralType()) { 6419 Diag(QuestionLoc, diag::err_conditional_vector_operand_type) 6420 << ResultElementTy; 6421 return QualType(); 6422 } 6423 6424 ResultType = Context.getScalableVectorType( 6425 ResultElementTy, CondElementCount.getKnownMinValue()); 6426 6427 LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat); 6428 RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat); 6429 } 6430 6431 assert(!ResultType.isNull() && ResultType->isVLSTBuiltinType() && 6432 "Result should have been a vector type"); 6433 auto *ResultBuiltinTy = ResultType->castAs<BuiltinType>(); 6434 QualType ResultElementTy = ResultBuiltinTy->getSveEltType(Context); 6435 llvm::ElementCount ResultElementCount = 6436 Context.getBuiltinVectorTypeInfo(ResultBuiltinTy).EC; 6437 6438 if (ResultElementCount != CondElementCount) { 6439 Diag(QuestionLoc, diag::err_conditional_vector_size) 6440 << CondType << ResultType; 6441 return QualType(); 6442 } 6443 6444 if (Context.getTypeSize(ResultElementTy) != 6445 Context.getTypeSize(CondElementTy)) { 6446 Diag(QuestionLoc, diag::err_conditional_vector_element_size) 6447 << CondType << ResultType; 6448 return QualType(); 6449 } 6450 6451 return ResultType; 6452 } 6453 6454 /// Check the operands of ?: under C++ semantics. 6455 /// 6456 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y 6457 /// extension. In this case, LHS == Cond. (But they're not aliases.) 6458 /// 6459 /// This function also implements GCC's vector extension and the 6460 /// OpenCL/ext_vector_type extension for conditionals. The vector extensions 6461 /// permit the use of a?b:c where the type of a is that of a integer vector with 6462 /// the same number of elements and size as the vectors of b and c. If one of 6463 /// either b or c is a scalar it is implicitly converted to match the type of 6464 /// the vector. Otherwise the expression is ill-formed. If both b and c are 6465 /// scalars, then b and c are checked and converted to the type of a if 6466 /// possible. 6467 /// 6468 /// The expressions are evaluated differently for GCC's and OpenCL's extensions. 6469 /// For the GCC extension, the ?: operator is evaluated as 6470 /// (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]). 6471 /// For the OpenCL extensions, the ?: operator is evaluated as 6472 /// (most-significant-bit-set(a[0]) ? b[0] : c[0], .. , 6473 /// most-significant-bit-set(a[n]) ? b[n] : c[n]). 6474 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, 6475 ExprResult &RHS, ExprValueKind &VK, 6476 ExprObjectKind &OK, 6477 SourceLocation QuestionLoc) { 6478 // FIXME: Handle C99's complex types, block pointers and Obj-C++ interface 6479 // pointers. 6480 6481 // Assume r-value. 6482 VK = VK_PRValue; 6483 OK = OK_Ordinary; 6484 bool IsVectorConditional = 6485 isValidVectorForConditionalCondition(Context, Cond.get()->getType()); 6486 6487 bool IsSizelessVectorConditional = 6488 isValidSizelessVectorForConditionalCondition(Context, 6489 Cond.get()->getType()); 6490 6491 // C++11 [expr.cond]p1 6492 // The first expression is contextually converted to bool. 6493 if (!Cond.get()->isTypeDependent()) { 6494 ExprResult CondRes = IsVectorConditional || IsSizelessVectorConditional 6495 ? DefaultFunctionArrayLvalueConversion(Cond.get()) 6496 : CheckCXXBooleanCondition(Cond.get()); 6497 if (CondRes.isInvalid()) 6498 return QualType(); 6499 Cond = CondRes; 6500 } else { 6501 // To implement C++, the first expression typically doesn't alter the result 6502 // type of the conditional, however the GCC compatible vector extension 6503 // changes the result type to be that of the conditional. Since we cannot 6504 // know if this is a vector extension here, delay the conversion of the 6505 // LHS/RHS below until later. 6506 return Context.DependentTy; 6507 } 6508 6509 6510 // Either of the arguments dependent? 6511 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent()) 6512 return Context.DependentTy; 6513 6514 // C++11 [expr.cond]p2 6515 // If either the second or the third operand has type (cv) void, ... 6516 QualType LTy = LHS.get()->getType(); 6517 QualType RTy = RHS.get()->getType(); 6518 bool LVoid = LTy->isVoidType(); 6519 bool RVoid = RTy->isVoidType(); 6520 if (LVoid || RVoid) { 6521 // ... one of the following shall hold: 6522 // -- The second or the third operand (but not both) is a (possibly 6523 // parenthesized) throw-expression; the result is of the type 6524 // and value category of the other. 6525 bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts()); 6526 bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts()); 6527 6528 // Void expressions aren't legal in the vector-conditional expressions. 6529 if (IsVectorConditional) { 6530 SourceRange DiagLoc = 6531 LVoid ? LHS.get()->getSourceRange() : RHS.get()->getSourceRange(); 6532 bool IsThrow = LVoid ? LThrow : RThrow; 6533 Diag(DiagLoc.getBegin(), diag::err_conditional_vector_has_void) 6534 << DiagLoc << IsThrow; 6535 return QualType(); 6536 } 6537 6538 if (LThrow != RThrow) { 6539 Expr *NonThrow = LThrow ? RHS.get() : LHS.get(); 6540 VK = NonThrow->getValueKind(); 6541 // DR (no number yet): the result is a bit-field if the 6542 // non-throw-expression operand is a bit-field. 6543 OK = NonThrow->getObjectKind(); 6544 return NonThrow->getType(); 6545 } 6546 6547 // -- Both the second and third operands have type void; the result is of 6548 // type void and is a prvalue. 6549 if (LVoid && RVoid) 6550 return Context.getCommonSugaredType(LTy, RTy); 6551 6552 // Neither holds, error. 6553 Diag(QuestionLoc, diag::err_conditional_void_nonvoid) 6554 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1) 6555 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6556 return QualType(); 6557 } 6558 6559 // Neither is void. 6560 if (IsVectorConditional) 6561 return CheckVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc); 6562 6563 if (IsSizelessVectorConditional) 6564 return CheckSizelessVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc); 6565 6566 // C++11 [expr.cond]p3 6567 // Otherwise, if the second and third operand have different types, and 6568 // either has (cv) class type [...] an attempt is made to convert each of 6569 // those operands to the type of the other. 6570 if (!Context.hasSameType(LTy, RTy) && 6571 (LTy->isRecordType() || RTy->isRecordType())) { 6572 // These return true if a single direction is already ambiguous. 6573 QualType L2RType, R2LType; 6574 bool HaveL2R, HaveR2L; 6575 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType)) 6576 return QualType(); 6577 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType)) 6578 return QualType(); 6579 6580 // If both can be converted, [...] the program is ill-formed. 6581 if (HaveL2R && HaveR2L) { 6582 Diag(QuestionLoc, diag::err_conditional_ambiguous) 6583 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6584 return QualType(); 6585 } 6586 6587 // If exactly one conversion is possible, that conversion is applied to 6588 // the chosen operand and the converted operands are used in place of the 6589 // original operands for the remainder of this section. 6590 if (HaveL2R) { 6591 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid()) 6592 return QualType(); 6593 LTy = LHS.get()->getType(); 6594 } else if (HaveR2L) { 6595 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid()) 6596 return QualType(); 6597 RTy = RHS.get()->getType(); 6598 } 6599 } 6600 6601 // C++11 [expr.cond]p3 6602 // if both are glvalues of the same value category and the same type except 6603 // for cv-qualification, an attempt is made to convert each of those 6604 // operands to the type of the other. 6605 // FIXME: 6606 // Resolving a defect in P0012R1: we extend this to cover all cases where 6607 // one of the operands is reference-compatible with the other, in order 6608 // to support conditionals between functions differing in noexcept. This 6609 // will similarly cover difference in array bounds after P0388R4. 6610 // FIXME: If LTy and RTy have a composite pointer type, should we convert to 6611 // that instead? 6612 ExprValueKind LVK = LHS.get()->getValueKind(); 6613 ExprValueKind RVK = RHS.get()->getValueKind(); 6614 if (!Context.hasSameType(LTy, RTy) && LVK == RVK && LVK != VK_PRValue) { 6615 // DerivedToBase was already handled by the class-specific case above. 6616 // FIXME: Should we allow ObjC conversions here? 6617 const ReferenceConversions AllowedConversions = 6618 ReferenceConversions::Qualification | 6619 ReferenceConversions::NestedQualification | 6620 ReferenceConversions::Function; 6621 6622 ReferenceConversions RefConv; 6623 if (CompareReferenceRelationship(QuestionLoc, LTy, RTy, &RefConv) == 6624 Ref_Compatible && 6625 !(RefConv & ~AllowedConversions) && 6626 // [...] subject to the constraint that the reference must bind 6627 // directly [...] 6628 !RHS.get()->refersToBitField() && !RHS.get()->refersToVectorElement()) { 6629 RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK); 6630 RTy = RHS.get()->getType(); 6631 } else if (CompareReferenceRelationship(QuestionLoc, RTy, LTy, &RefConv) == 6632 Ref_Compatible && 6633 !(RefConv & ~AllowedConversions) && 6634 !LHS.get()->refersToBitField() && 6635 !LHS.get()->refersToVectorElement()) { 6636 LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK); 6637 LTy = LHS.get()->getType(); 6638 } 6639 } 6640 6641 // C++11 [expr.cond]p4 6642 // If the second and third operands are glvalues of the same value 6643 // category and have the same type, the result is of that type and 6644 // value category and it is a bit-field if the second or the third 6645 // operand is a bit-field, or if both are bit-fields. 6646 // We only extend this to bitfields, not to the crazy other kinds of 6647 // l-values. 6648 bool Same = Context.hasSameType(LTy, RTy); 6649 if (Same && LVK == RVK && LVK != VK_PRValue && 6650 LHS.get()->isOrdinaryOrBitFieldObject() && 6651 RHS.get()->isOrdinaryOrBitFieldObject()) { 6652 VK = LHS.get()->getValueKind(); 6653 if (LHS.get()->getObjectKind() == OK_BitField || 6654 RHS.get()->getObjectKind() == OK_BitField) 6655 OK = OK_BitField; 6656 return Context.getCommonSugaredType(LTy, RTy); 6657 } 6658 6659 // C++11 [expr.cond]p5 6660 // Otherwise, the result is a prvalue. If the second and third operands 6661 // do not have the same type, and either has (cv) class type, ... 6662 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) { 6663 // ... overload resolution is used to determine the conversions (if any) 6664 // to be applied to the operands. If the overload resolution fails, the 6665 // program is ill-formed. 6666 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc)) 6667 return QualType(); 6668 } 6669 6670 // C++11 [expr.cond]p6 6671 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard 6672 // conversions are performed on the second and third operands. 6673 LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); 6674 RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); 6675 if (LHS.isInvalid() || RHS.isInvalid()) 6676 return QualType(); 6677 LTy = LHS.get()->getType(); 6678 RTy = RHS.get()->getType(); 6679 6680 // After those conversions, one of the following shall hold: 6681 // -- The second and third operands have the same type; the result 6682 // is of that type. If the operands have class type, the result 6683 // is a prvalue temporary of the result type, which is 6684 // copy-initialized from either the second operand or the third 6685 // operand depending on the value of the first operand. 6686 if (Context.hasSameType(LTy, RTy)) { 6687 if (LTy->isRecordType()) { 6688 // The operands have class type. Make a temporary copy. 6689 ExprResult LHSCopy = PerformCopyInitialization( 6690 InitializedEntity::InitializeTemporary(LTy), SourceLocation(), LHS); 6691 if (LHSCopy.isInvalid()) 6692 return QualType(); 6693 6694 ExprResult RHSCopy = PerformCopyInitialization( 6695 InitializedEntity::InitializeTemporary(RTy), SourceLocation(), RHS); 6696 if (RHSCopy.isInvalid()) 6697 return QualType(); 6698 6699 LHS = LHSCopy; 6700 RHS = RHSCopy; 6701 } 6702 return Context.getCommonSugaredType(LTy, RTy); 6703 } 6704 6705 // Extension: conditional operator involving vector types. 6706 if (LTy->isVectorType() || RTy->isVectorType()) 6707 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false, 6708 /*AllowBothBool*/ true, 6709 /*AllowBoolConversions*/ false, 6710 /*AllowBoolOperation*/ false, 6711 /*ReportInvalid*/ true); 6712 6713 // -- The second and third operands have arithmetic or enumeration type; 6714 // the usual arithmetic conversions are performed to bring them to a 6715 // common type, and the result is of that type. 6716 if (LTy->isArithmeticType() && RTy->isArithmeticType()) { 6717 QualType ResTy = 6718 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional); 6719 if (LHS.isInvalid() || RHS.isInvalid()) 6720 return QualType(); 6721 if (ResTy.isNull()) { 6722 Diag(QuestionLoc, 6723 diag::err_typecheck_cond_incompatible_operands) << LTy << RTy 6724 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6725 return QualType(); 6726 } 6727 6728 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy)); 6729 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy)); 6730 6731 return ResTy; 6732 } 6733 6734 // -- The second and third operands have pointer type, or one has pointer 6735 // type and the other is a null pointer constant, or both are null 6736 // pointer constants, at least one of which is non-integral; pointer 6737 // conversions and qualification conversions are performed to bring them 6738 // to their composite pointer type. The result is of the composite 6739 // pointer type. 6740 // -- The second and third operands have pointer to member type, or one has 6741 // pointer to member type and the other is a null pointer constant; 6742 // pointer to member conversions and qualification conversions are 6743 // performed to bring them to a common type, whose cv-qualification 6744 // shall match the cv-qualification of either the second or the third 6745 // operand. The result is of the common type. 6746 QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS); 6747 if (!Composite.isNull()) 6748 return Composite; 6749 6750 // Similarly, attempt to find composite type of two objective-c pointers. 6751 Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc); 6752 if (LHS.isInvalid() || RHS.isInvalid()) 6753 return QualType(); 6754 if (!Composite.isNull()) 6755 return Composite; 6756 6757 // Check if we are using a null with a non-pointer type. 6758 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) 6759 return QualType(); 6760 6761 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) 6762 << LHS.get()->getType() << RHS.get()->getType() 6763 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6764 return QualType(); 6765 } 6766 6767 /// Find a merged pointer type and convert the two expressions to it. 6768 /// 6769 /// This finds the composite pointer type for \p E1 and \p E2 according to 6770 /// C++2a [expr.type]p3. It converts both expressions to this type and returns 6771 /// it. It does not emit diagnostics (FIXME: that's not true if \p ConvertArgs 6772 /// is \c true). 6773 /// 6774 /// \param Loc The location of the operator requiring these two expressions to 6775 /// be converted to the composite pointer type. 6776 /// 6777 /// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type. 6778 QualType Sema::FindCompositePointerType(SourceLocation Loc, 6779 Expr *&E1, Expr *&E2, 6780 bool ConvertArgs) { 6781 assert(getLangOpts().CPlusPlus && "This function assumes C++"); 6782 6783 // C++1z [expr]p14: 6784 // The composite pointer type of two operands p1 and p2 having types T1 6785 // and T2 6786 QualType T1 = E1->getType(), T2 = E2->getType(); 6787 6788 // where at least one is a pointer or pointer to member type or 6789 // std::nullptr_t is: 6790 bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() || 6791 T1->isNullPtrType(); 6792 bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() || 6793 T2->isNullPtrType(); 6794 if (!T1IsPointerLike && !T2IsPointerLike) 6795 return QualType(); 6796 6797 // - if both p1 and p2 are null pointer constants, std::nullptr_t; 6798 // This can't actually happen, following the standard, but we also use this 6799 // to implement the end of [expr.conv], which hits this case. 6800 // 6801 // - if either p1 or p2 is a null pointer constant, T2 or T1, respectively; 6802 if (T1IsPointerLike && 6803 E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 6804 if (ConvertArgs) 6805 E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType() 6806 ? CK_NullToMemberPointer 6807 : CK_NullToPointer).get(); 6808 return T1; 6809 } 6810 if (T2IsPointerLike && 6811 E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 6812 if (ConvertArgs) 6813 E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType() 6814 ? CK_NullToMemberPointer 6815 : CK_NullToPointer).get(); 6816 return T2; 6817 } 6818 6819 // Now both have to be pointers or member pointers. 6820 if (!T1IsPointerLike || !T2IsPointerLike) 6821 return QualType(); 6822 assert(!T1->isNullPtrType() && !T2->isNullPtrType() && 6823 "nullptr_t should be a null pointer constant"); 6824 6825 struct Step { 6826 enum Kind { Pointer, ObjCPointer, MemberPointer, Array } K; 6827 // Qualifiers to apply under the step kind. 6828 Qualifiers Quals; 6829 /// The class for a pointer-to-member; a constant array type with a bound 6830 /// (if any) for an array. 6831 const Type *ClassOrBound; 6832 6833 Step(Kind K, const Type *ClassOrBound = nullptr) 6834 : K(K), ClassOrBound(ClassOrBound) {} 6835 QualType rebuild(ASTContext &Ctx, QualType T) const { 6836 T = Ctx.getQualifiedType(T, Quals); 6837 switch (K) { 6838 case Pointer: 6839 return Ctx.getPointerType(T); 6840 case MemberPointer: 6841 return Ctx.getMemberPointerType(T, ClassOrBound); 6842 case ObjCPointer: 6843 return Ctx.getObjCObjectPointerType(T); 6844 case Array: 6845 if (auto *CAT = cast_or_null<ConstantArrayType>(ClassOrBound)) 6846 return Ctx.getConstantArrayType(T, CAT->getSize(), nullptr, 6847 ArrayType::Normal, 0); 6848 else 6849 return Ctx.getIncompleteArrayType(T, ArrayType::Normal, 0); 6850 } 6851 llvm_unreachable("unknown step kind"); 6852 } 6853 }; 6854 6855 SmallVector<Step, 8> Steps; 6856 6857 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1 6858 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3), 6859 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1, 6860 // respectively; 6861 // - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer 6862 // to member of C2 of type cv2 U2" for some non-function type U, where 6863 // C1 is reference-related to C2 or C2 is reference-related to C1, the 6864 // cv-combined type of T2 and T1 or the cv-combined type of T1 and T2, 6865 // respectively; 6866 // - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and 6867 // T2; 6868 // 6869 // Dismantle T1 and T2 to simultaneously determine whether they are similar 6870 // and to prepare to form the cv-combined type if so. 6871 QualType Composite1 = T1; 6872 QualType Composite2 = T2; 6873 unsigned NeedConstBefore = 0; 6874 while (true) { 6875 assert(!Composite1.isNull() && !Composite2.isNull()); 6876 6877 Qualifiers Q1, Q2; 6878 Composite1 = Context.getUnqualifiedArrayType(Composite1, Q1); 6879 Composite2 = Context.getUnqualifiedArrayType(Composite2, Q2); 6880 6881 // Top-level qualifiers are ignored. Merge at all lower levels. 6882 if (!Steps.empty()) { 6883 // Find the qualifier union: (approximately) the unique minimal set of 6884 // qualifiers that is compatible with both types. 6885 Qualifiers Quals = Qualifiers::fromCVRUMask(Q1.getCVRUQualifiers() | 6886 Q2.getCVRUQualifiers()); 6887 6888 // Under one level of pointer or pointer-to-member, we can change to an 6889 // unambiguous compatible address space. 6890 if (Q1.getAddressSpace() == Q2.getAddressSpace()) { 6891 Quals.setAddressSpace(Q1.getAddressSpace()); 6892 } else if (Steps.size() == 1) { 6893 bool MaybeQ1 = Q1.isAddressSpaceSupersetOf(Q2); 6894 bool MaybeQ2 = Q2.isAddressSpaceSupersetOf(Q1); 6895 if (MaybeQ1 == MaybeQ2) { 6896 // Exception for ptr size address spaces. Should be able to choose 6897 // either address space during comparison. 6898 if (isPtrSizeAddressSpace(Q1.getAddressSpace()) || 6899 isPtrSizeAddressSpace(Q2.getAddressSpace())) 6900 MaybeQ1 = true; 6901 else 6902 return QualType(); // No unique best address space. 6903 } 6904 Quals.setAddressSpace(MaybeQ1 ? Q1.getAddressSpace() 6905 : Q2.getAddressSpace()); 6906 } else { 6907 return QualType(); 6908 } 6909 6910 // FIXME: In C, we merge __strong and none to __strong at the top level. 6911 if (Q1.getObjCGCAttr() == Q2.getObjCGCAttr()) 6912 Quals.setObjCGCAttr(Q1.getObjCGCAttr()); 6913 else if (T1->isVoidPointerType() || T2->isVoidPointerType()) 6914 assert(Steps.size() == 1); 6915 else 6916 return QualType(); 6917 6918 // Mismatched lifetime qualifiers never compatibly include each other. 6919 if (Q1.getObjCLifetime() == Q2.getObjCLifetime()) 6920 Quals.setObjCLifetime(Q1.getObjCLifetime()); 6921 else if (T1->isVoidPointerType() || T2->isVoidPointerType()) 6922 assert(Steps.size() == 1); 6923 else 6924 return QualType(); 6925 6926 Steps.back().Quals = Quals; 6927 if (Q1 != Quals || Q2 != Quals) 6928 NeedConstBefore = Steps.size() - 1; 6929 } 6930 6931 // FIXME: Can we unify the following with UnwrapSimilarTypes? 6932 6933 const ArrayType *Arr1, *Arr2; 6934 if ((Arr1 = Context.getAsArrayType(Composite1)) && 6935 (Arr2 = Context.getAsArrayType(Composite2))) { 6936 auto *CAT1 = dyn_cast<ConstantArrayType>(Arr1); 6937 auto *CAT2 = dyn_cast<ConstantArrayType>(Arr2); 6938 if (CAT1 && CAT2 && CAT1->getSize() == CAT2->getSize()) { 6939 Composite1 = Arr1->getElementType(); 6940 Composite2 = Arr2->getElementType(); 6941 Steps.emplace_back(Step::Array, CAT1); 6942 continue; 6943 } 6944 bool IAT1 = isa<IncompleteArrayType>(Arr1); 6945 bool IAT2 = isa<IncompleteArrayType>(Arr2); 6946 if ((IAT1 && IAT2) || 6947 (getLangOpts().CPlusPlus20 && (IAT1 != IAT2) && 6948 ((bool)CAT1 != (bool)CAT2) && 6949 (Steps.empty() || Steps.back().K != Step::Array))) { 6950 // In C++20 onwards, we can unify an array of N T with an array of 6951 // a different or unknown bound. But we can't form an array whose 6952 // element type is an array of unknown bound by doing so. 6953 Composite1 = Arr1->getElementType(); 6954 Composite2 = Arr2->getElementType(); 6955 Steps.emplace_back(Step::Array); 6956 if (CAT1 || CAT2) 6957 NeedConstBefore = Steps.size(); 6958 continue; 6959 } 6960 } 6961 6962 const PointerType *Ptr1, *Ptr2; 6963 if ((Ptr1 = Composite1->getAs<PointerType>()) && 6964 (Ptr2 = Composite2->getAs<PointerType>())) { 6965 Composite1 = Ptr1->getPointeeType(); 6966 Composite2 = Ptr2->getPointeeType(); 6967 Steps.emplace_back(Step::Pointer); 6968 continue; 6969 } 6970 6971 const ObjCObjectPointerType *ObjPtr1, *ObjPtr2; 6972 if ((ObjPtr1 = Composite1->getAs<ObjCObjectPointerType>()) && 6973 (ObjPtr2 = Composite2->getAs<ObjCObjectPointerType>())) { 6974 Composite1 = ObjPtr1->getPointeeType(); 6975 Composite2 = ObjPtr2->getPointeeType(); 6976 Steps.emplace_back(Step::ObjCPointer); 6977 continue; 6978 } 6979 6980 const MemberPointerType *MemPtr1, *MemPtr2; 6981 if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) && 6982 (MemPtr2 = Composite2->getAs<MemberPointerType>())) { 6983 Composite1 = MemPtr1->getPointeeType(); 6984 Composite2 = MemPtr2->getPointeeType(); 6985 6986 // At the top level, we can perform a base-to-derived pointer-to-member 6987 // conversion: 6988 // 6989 // - [...] where C1 is reference-related to C2 or C2 is 6990 // reference-related to C1 6991 // 6992 // (Note that the only kinds of reference-relatedness in scope here are 6993 // "same type or derived from".) At any other level, the class must 6994 // exactly match. 6995 const Type *Class = nullptr; 6996 QualType Cls1(MemPtr1->getClass(), 0); 6997 QualType Cls2(MemPtr2->getClass(), 0); 6998 if (Context.hasSameType(Cls1, Cls2)) 6999 Class = MemPtr1->getClass(); 7000 else if (Steps.empty()) 7001 Class = IsDerivedFrom(Loc, Cls1, Cls2) ? MemPtr1->getClass() : 7002 IsDerivedFrom(Loc, Cls2, Cls1) ? MemPtr2->getClass() : nullptr; 7003 if (!Class) 7004 return QualType(); 7005 7006 Steps.emplace_back(Step::MemberPointer, Class); 7007 continue; 7008 } 7009 7010 // Special case: at the top level, we can decompose an Objective-C pointer 7011 // and a 'cv void *'. Unify the qualifiers. 7012 if (Steps.empty() && ((Composite1->isVoidPointerType() && 7013 Composite2->isObjCObjectPointerType()) || 7014 (Composite1->isObjCObjectPointerType() && 7015 Composite2->isVoidPointerType()))) { 7016 Composite1 = Composite1->getPointeeType(); 7017 Composite2 = Composite2->getPointeeType(); 7018 Steps.emplace_back(Step::Pointer); 7019 continue; 7020 } 7021 7022 // FIXME: block pointer types? 7023 7024 // Cannot unwrap any more types. 7025 break; 7026 } 7027 7028 // - if T1 or T2 is "pointer to noexcept function" and the other type is 7029 // "pointer to function", where the function types are otherwise the same, 7030 // "pointer to function"; 7031 // - if T1 or T2 is "pointer to member of C1 of type function", the other 7032 // type is "pointer to member of C2 of type noexcept function", and C1 7033 // is reference-related to C2 or C2 is reference-related to C1, where 7034 // the function types are otherwise the same, "pointer to member of C2 of 7035 // type function" or "pointer to member of C1 of type function", 7036 // respectively; 7037 // 7038 // We also support 'noreturn' here, so as a Clang extension we generalize the 7039 // above to: 7040 // 7041 // - [Clang] If T1 and T2 are both of type "pointer to function" or 7042 // "pointer to member function" and the pointee types can be unified 7043 // by a function pointer conversion, that conversion is applied 7044 // before checking the following rules. 7045 // 7046 // We've already unwrapped down to the function types, and we want to merge 7047 // rather than just convert, so do this ourselves rather than calling 7048 // IsFunctionConversion. 7049 // 7050 // FIXME: In order to match the standard wording as closely as possible, we 7051 // currently only do this under a single level of pointers. Ideally, we would 7052 // allow this in general, and set NeedConstBefore to the relevant depth on 7053 // the side(s) where we changed anything. If we permit that, we should also 7054 // consider this conversion when determining type similarity and model it as 7055 // a qualification conversion. 7056 if (Steps.size() == 1) { 7057 if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) { 7058 if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) { 7059 FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo(); 7060 FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo(); 7061 7062 // The result is noreturn if both operands are. 7063 bool Noreturn = 7064 EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn(); 7065 EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn); 7066 EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn); 7067 7068 // The result is nothrow if both operands are. 7069 SmallVector<QualType, 8> ExceptionTypeStorage; 7070 EPI1.ExceptionSpec = EPI2.ExceptionSpec = Context.mergeExceptionSpecs( 7071 EPI1.ExceptionSpec, EPI2.ExceptionSpec, ExceptionTypeStorage, 7072 getLangOpts().CPlusPlus17); 7073 7074 Composite1 = Context.getFunctionType(FPT1->getReturnType(), 7075 FPT1->getParamTypes(), EPI1); 7076 Composite2 = Context.getFunctionType(FPT2->getReturnType(), 7077 FPT2->getParamTypes(), EPI2); 7078 } 7079 } 7080 } 7081 7082 // There are some more conversions we can perform under exactly one pointer. 7083 if (Steps.size() == 1 && Steps.front().K == Step::Pointer && 7084 !Context.hasSameType(Composite1, Composite2)) { 7085 // - if T1 or T2 is "pointer to cv1 void" and the other type is 7086 // "pointer to cv2 T", where T is an object type or void, 7087 // "pointer to cv12 void", where cv12 is the union of cv1 and cv2; 7088 if (Composite1->isVoidType() && Composite2->isObjectType()) 7089 Composite2 = Composite1; 7090 else if (Composite2->isVoidType() && Composite1->isObjectType()) 7091 Composite1 = Composite2; 7092 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1 7093 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3), 7094 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and 7095 // T1, respectively; 7096 // 7097 // The "similar type" handling covers all of this except for the "T1 is a 7098 // base class of T2" case in the definition of reference-related. 7099 else if (IsDerivedFrom(Loc, Composite1, Composite2)) 7100 Composite1 = Composite2; 7101 else if (IsDerivedFrom(Loc, Composite2, Composite1)) 7102 Composite2 = Composite1; 7103 } 7104 7105 // At this point, either the inner types are the same or we have failed to 7106 // find a composite pointer type. 7107 if (!Context.hasSameType(Composite1, Composite2)) 7108 return QualType(); 7109 7110 // Per C++ [conv.qual]p3, add 'const' to every level before the last 7111 // differing qualifier. 7112 for (unsigned I = 0; I != NeedConstBefore; ++I) 7113 Steps[I].Quals.addConst(); 7114 7115 // Rebuild the composite type. 7116 QualType Composite = Context.getCommonSugaredType(Composite1, Composite2); 7117 for (auto &S : llvm::reverse(Steps)) 7118 Composite = S.rebuild(Context, Composite); 7119 7120 if (ConvertArgs) { 7121 // Convert the expressions to the composite pointer type. 7122 InitializedEntity Entity = 7123 InitializedEntity::InitializeTemporary(Composite); 7124 InitializationKind Kind = 7125 InitializationKind::CreateCopy(Loc, SourceLocation()); 7126 7127 InitializationSequence E1ToC(*this, Entity, Kind, E1); 7128 if (!E1ToC) 7129 return QualType(); 7130 7131 InitializationSequence E2ToC(*this, Entity, Kind, E2); 7132 if (!E2ToC) 7133 return QualType(); 7134 7135 // FIXME: Let the caller know if these fail to avoid duplicate diagnostics. 7136 ExprResult E1Result = E1ToC.Perform(*this, Entity, Kind, E1); 7137 if (E1Result.isInvalid()) 7138 return QualType(); 7139 E1 = E1Result.get(); 7140 7141 ExprResult E2Result = E2ToC.Perform(*this, Entity, Kind, E2); 7142 if (E2Result.isInvalid()) 7143 return QualType(); 7144 E2 = E2Result.get(); 7145 } 7146 7147 return Composite; 7148 } 7149 7150 ExprResult Sema::MaybeBindToTemporary(Expr *E) { 7151 if (!E) 7152 return ExprError(); 7153 7154 assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?"); 7155 7156 // If the result is a glvalue, we shouldn't bind it. 7157 if (E->isGLValue()) 7158 return E; 7159 7160 // In ARC, calls that return a retainable type can return retained, 7161 // in which case we have to insert a consuming cast. 7162 if (getLangOpts().ObjCAutoRefCount && 7163 E->getType()->isObjCRetainableType()) { 7164 7165 bool ReturnsRetained; 7166 7167 // For actual calls, we compute this by examining the type of the 7168 // called value. 7169 if (CallExpr *Call = dyn_cast<CallExpr>(E)) { 7170 Expr *Callee = Call->getCallee()->IgnoreParens(); 7171 QualType T = Callee->getType(); 7172 7173 if (T == Context.BoundMemberTy) { 7174 // Handle pointer-to-members. 7175 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee)) 7176 T = BinOp->getRHS()->getType(); 7177 else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee)) 7178 T = Mem->getMemberDecl()->getType(); 7179 } 7180 7181 if (const PointerType *Ptr = T->getAs<PointerType>()) 7182 T = Ptr->getPointeeType(); 7183 else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>()) 7184 T = Ptr->getPointeeType(); 7185 else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>()) 7186 T = MemPtr->getPointeeType(); 7187 7188 auto *FTy = T->castAs<FunctionType>(); 7189 ReturnsRetained = FTy->getExtInfo().getProducesResult(); 7190 7191 // ActOnStmtExpr arranges things so that StmtExprs of retainable 7192 // type always produce a +1 object. 7193 } else if (isa<StmtExpr>(E)) { 7194 ReturnsRetained = true; 7195 7196 // We hit this case with the lambda conversion-to-block optimization; 7197 // we don't want any extra casts here. 7198 } else if (isa<CastExpr>(E) && 7199 isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) { 7200 return E; 7201 7202 // For message sends and property references, we try to find an 7203 // actual method. FIXME: we should infer retention by selector in 7204 // cases where we don't have an actual method. 7205 } else { 7206 ObjCMethodDecl *D = nullptr; 7207 if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) { 7208 D = Send->getMethodDecl(); 7209 } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) { 7210 D = BoxedExpr->getBoxingMethod(); 7211 } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) { 7212 // Don't do reclaims if we're using the zero-element array 7213 // constant. 7214 if (ArrayLit->getNumElements() == 0 && 7215 Context.getLangOpts().ObjCRuntime.hasEmptyCollections()) 7216 return E; 7217 7218 D = ArrayLit->getArrayWithObjectsMethod(); 7219 } else if (ObjCDictionaryLiteral *DictLit 7220 = dyn_cast<ObjCDictionaryLiteral>(E)) { 7221 // Don't do reclaims if we're using the zero-element dictionary 7222 // constant. 7223 if (DictLit->getNumElements() == 0 && 7224 Context.getLangOpts().ObjCRuntime.hasEmptyCollections()) 7225 return E; 7226 7227 D = DictLit->getDictWithObjectsMethod(); 7228 } 7229 7230 ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>()); 7231 7232 // Don't do reclaims on performSelector calls; despite their 7233 // return type, the invoked method doesn't necessarily actually 7234 // return an object. 7235 if (!ReturnsRetained && 7236 D && D->getMethodFamily() == OMF_performSelector) 7237 return E; 7238 } 7239 7240 // Don't reclaim an object of Class type. 7241 if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType()) 7242 return E; 7243 7244 Cleanup.setExprNeedsCleanups(true); 7245 7246 CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject 7247 : CK_ARCReclaimReturnedObject); 7248 return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr, 7249 VK_PRValue, FPOptionsOverride()); 7250 } 7251 7252 if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) 7253 Cleanup.setExprNeedsCleanups(true); 7254 7255 if (!getLangOpts().CPlusPlus) 7256 return E; 7257 7258 // Search for the base element type (cf. ASTContext::getBaseElementType) with 7259 // a fast path for the common case that the type is directly a RecordType. 7260 const Type *T = Context.getCanonicalType(E->getType().getTypePtr()); 7261 const RecordType *RT = nullptr; 7262 while (!RT) { 7263 switch (T->getTypeClass()) { 7264 case Type::Record: 7265 RT = cast<RecordType>(T); 7266 break; 7267 case Type::ConstantArray: 7268 case Type::IncompleteArray: 7269 case Type::VariableArray: 7270 case Type::DependentSizedArray: 7271 T = cast<ArrayType>(T)->getElementType().getTypePtr(); 7272 break; 7273 default: 7274 return E; 7275 } 7276 } 7277 7278 // That should be enough to guarantee that this type is complete, if we're 7279 // not processing a decltype expression. 7280 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 7281 if (RD->isInvalidDecl() || RD->isDependentContext()) 7282 return E; 7283 7284 bool IsDecltype = ExprEvalContexts.back().ExprContext == 7285 ExpressionEvaluationContextRecord::EK_Decltype; 7286 CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD); 7287 7288 if (Destructor) { 7289 MarkFunctionReferenced(E->getExprLoc(), Destructor); 7290 CheckDestructorAccess(E->getExprLoc(), Destructor, 7291 PDiag(diag::err_access_dtor_temp) 7292 << E->getType()); 7293 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) 7294 return ExprError(); 7295 7296 // If destructor is trivial, we can avoid the extra copy. 7297 if (Destructor->isTrivial()) 7298 return E; 7299 7300 // We need a cleanup, but we don't need to remember the temporary. 7301 Cleanup.setExprNeedsCleanups(true); 7302 } 7303 7304 CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor); 7305 CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E); 7306 7307 if (IsDecltype) 7308 ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind); 7309 7310 return Bind; 7311 } 7312 7313 ExprResult 7314 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) { 7315 if (SubExpr.isInvalid()) 7316 return ExprError(); 7317 7318 return MaybeCreateExprWithCleanups(SubExpr.get()); 7319 } 7320 7321 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) { 7322 assert(SubExpr && "subexpression can't be null!"); 7323 7324 CleanupVarDeclMarking(); 7325 7326 unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects; 7327 assert(ExprCleanupObjects.size() >= FirstCleanup); 7328 assert(Cleanup.exprNeedsCleanups() || 7329 ExprCleanupObjects.size() == FirstCleanup); 7330 if (!Cleanup.exprNeedsCleanups()) 7331 return SubExpr; 7332 7333 auto Cleanups = llvm::ArrayRef(ExprCleanupObjects.begin() + FirstCleanup, 7334 ExprCleanupObjects.size() - FirstCleanup); 7335 7336 auto *E = ExprWithCleanups::Create( 7337 Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups); 7338 DiscardCleanupsInEvaluationContext(); 7339 7340 return E; 7341 } 7342 7343 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) { 7344 assert(SubStmt && "sub-statement can't be null!"); 7345 7346 CleanupVarDeclMarking(); 7347 7348 if (!Cleanup.exprNeedsCleanups()) 7349 return SubStmt; 7350 7351 // FIXME: In order to attach the temporaries, wrap the statement into 7352 // a StmtExpr; currently this is only used for asm statements. 7353 // This is hacky, either create a new CXXStmtWithTemporaries statement or 7354 // a new AsmStmtWithTemporaries. 7355 CompoundStmt *CompStmt = 7356 CompoundStmt::Create(Context, SubStmt, FPOptionsOverride(), 7357 SourceLocation(), SourceLocation()); 7358 Expr *E = new (Context) 7359 StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), SourceLocation(), 7360 /*FIXME TemplateDepth=*/0); 7361 return MaybeCreateExprWithCleanups(E); 7362 } 7363 7364 /// Process the expression contained within a decltype. For such expressions, 7365 /// certain semantic checks on temporaries are delayed until this point, and 7366 /// are omitted for the 'topmost' call in the decltype expression. If the 7367 /// topmost call bound a temporary, strip that temporary off the expression. 7368 ExprResult Sema::ActOnDecltypeExpression(Expr *E) { 7369 assert(ExprEvalContexts.back().ExprContext == 7370 ExpressionEvaluationContextRecord::EK_Decltype && 7371 "not in a decltype expression"); 7372 7373 ExprResult Result = CheckPlaceholderExpr(E); 7374 if (Result.isInvalid()) 7375 return ExprError(); 7376 E = Result.get(); 7377 7378 // C++11 [expr.call]p11: 7379 // If a function call is a prvalue of object type, 7380 // -- if the function call is either 7381 // -- the operand of a decltype-specifier, or 7382 // -- the right operand of a comma operator that is the operand of a 7383 // decltype-specifier, 7384 // a temporary object is not introduced for the prvalue. 7385 7386 // Recursively rebuild ParenExprs and comma expressions to strip out the 7387 // outermost CXXBindTemporaryExpr, if any. 7388 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 7389 ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr()); 7390 if (SubExpr.isInvalid()) 7391 return ExprError(); 7392 if (SubExpr.get() == PE->getSubExpr()) 7393 return E; 7394 return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get()); 7395 } 7396 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 7397 if (BO->getOpcode() == BO_Comma) { 7398 ExprResult RHS = ActOnDecltypeExpression(BO->getRHS()); 7399 if (RHS.isInvalid()) 7400 return ExprError(); 7401 if (RHS.get() == BO->getRHS()) 7402 return E; 7403 return BinaryOperator::Create(Context, BO->getLHS(), RHS.get(), BO_Comma, 7404 BO->getType(), BO->getValueKind(), 7405 BO->getObjectKind(), BO->getOperatorLoc(), 7406 BO->getFPFeatures()); 7407 } 7408 } 7409 7410 CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E); 7411 CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr()) 7412 : nullptr; 7413 if (TopCall) 7414 E = TopCall; 7415 else 7416 TopBind = nullptr; 7417 7418 // Disable the special decltype handling now. 7419 ExprEvalContexts.back().ExprContext = 7420 ExpressionEvaluationContextRecord::EK_Other; 7421 7422 Result = CheckUnevaluatedOperand(E); 7423 if (Result.isInvalid()) 7424 return ExprError(); 7425 E = Result.get(); 7426 7427 // In MS mode, don't perform any extra checking of call return types within a 7428 // decltype expression. 7429 if (getLangOpts().MSVCCompat) 7430 return E; 7431 7432 // Perform the semantic checks we delayed until this point. 7433 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size(); 7434 I != N; ++I) { 7435 CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I]; 7436 if (Call == TopCall) 7437 continue; 7438 7439 if (CheckCallReturnType(Call->getCallReturnType(Context), 7440 Call->getBeginLoc(), Call, Call->getDirectCallee())) 7441 return ExprError(); 7442 } 7443 7444 // Now all relevant types are complete, check the destructors are accessible 7445 // and non-deleted, and annotate them on the temporaries. 7446 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size(); 7447 I != N; ++I) { 7448 CXXBindTemporaryExpr *Bind = 7449 ExprEvalContexts.back().DelayedDecltypeBinds[I]; 7450 if (Bind == TopBind) 7451 continue; 7452 7453 CXXTemporary *Temp = Bind->getTemporary(); 7454 7455 CXXRecordDecl *RD = 7456 Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 7457 CXXDestructorDecl *Destructor = LookupDestructor(RD); 7458 Temp->setDestructor(Destructor); 7459 7460 MarkFunctionReferenced(Bind->getExprLoc(), Destructor); 7461 CheckDestructorAccess(Bind->getExprLoc(), Destructor, 7462 PDiag(diag::err_access_dtor_temp) 7463 << Bind->getType()); 7464 if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc())) 7465 return ExprError(); 7466 7467 // We need a cleanup, but we don't need to remember the temporary. 7468 Cleanup.setExprNeedsCleanups(true); 7469 } 7470 7471 // Possibly strip off the top CXXBindTemporaryExpr. 7472 return E; 7473 } 7474 7475 /// Note a set of 'operator->' functions that were used for a member access. 7476 static void noteOperatorArrows(Sema &S, 7477 ArrayRef<FunctionDecl *> OperatorArrows) { 7478 unsigned SkipStart = OperatorArrows.size(), SkipCount = 0; 7479 // FIXME: Make this configurable? 7480 unsigned Limit = 9; 7481 if (OperatorArrows.size() > Limit) { 7482 // Produce Limit-1 normal notes and one 'skipping' note. 7483 SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2; 7484 SkipCount = OperatorArrows.size() - (Limit - 1); 7485 } 7486 7487 for (unsigned I = 0; I < OperatorArrows.size(); /**/) { 7488 if (I == SkipStart) { 7489 S.Diag(OperatorArrows[I]->getLocation(), 7490 diag::note_operator_arrows_suppressed) 7491 << SkipCount; 7492 I += SkipCount; 7493 } else { 7494 S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here) 7495 << OperatorArrows[I]->getCallResultType(); 7496 ++I; 7497 } 7498 } 7499 } 7500 7501 ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, 7502 SourceLocation OpLoc, 7503 tok::TokenKind OpKind, 7504 ParsedType &ObjectType, 7505 bool &MayBePseudoDestructor) { 7506 // Since this might be a postfix expression, get rid of ParenListExprs. 7507 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); 7508 if (Result.isInvalid()) return ExprError(); 7509 Base = Result.get(); 7510 7511 Result = CheckPlaceholderExpr(Base); 7512 if (Result.isInvalid()) return ExprError(); 7513 Base = Result.get(); 7514 7515 QualType BaseType = Base->getType(); 7516 MayBePseudoDestructor = false; 7517 if (BaseType->isDependentType()) { 7518 // If we have a pointer to a dependent type and are using the -> operator, 7519 // the object type is the type that the pointer points to. We might still 7520 // have enough information about that type to do something useful. 7521 if (OpKind == tok::arrow) 7522 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) 7523 BaseType = Ptr->getPointeeType(); 7524 7525 ObjectType = ParsedType::make(BaseType); 7526 MayBePseudoDestructor = true; 7527 return Base; 7528 } 7529 7530 // C++ [over.match.oper]p8: 7531 // [...] When operator->returns, the operator-> is applied to the value 7532 // returned, with the original second operand. 7533 if (OpKind == tok::arrow) { 7534 QualType StartingType = BaseType; 7535 bool NoArrowOperatorFound = false; 7536 bool FirstIteration = true; 7537 FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext); 7538 // The set of types we've considered so far. 7539 llvm::SmallPtrSet<CanQualType,8> CTypes; 7540 SmallVector<FunctionDecl*, 8> OperatorArrows; 7541 CTypes.insert(Context.getCanonicalType(BaseType)); 7542 7543 while (BaseType->isRecordType()) { 7544 if (OperatorArrows.size() >= getLangOpts().ArrowDepth) { 7545 Diag(OpLoc, diag::err_operator_arrow_depth_exceeded) 7546 << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange(); 7547 noteOperatorArrows(*this, OperatorArrows); 7548 Diag(OpLoc, diag::note_operator_arrow_depth) 7549 << getLangOpts().ArrowDepth; 7550 return ExprError(); 7551 } 7552 7553 Result = BuildOverloadedArrowExpr( 7554 S, Base, OpLoc, 7555 // When in a template specialization and on the first loop iteration, 7556 // potentially give the default diagnostic (with the fixit in a 7557 // separate note) instead of having the error reported back to here 7558 // and giving a diagnostic with a fixit attached to the error itself. 7559 (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization()) 7560 ? nullptr 7561 : &NoArrowOperatorFound); 7562 if (Result.isInvalid()) { 7563 if (NoArrowOperatorFound) { 7564 if (FirstIteration) { 7565 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 7566 << BaseType << 1 << Base->getSourceRange() 7567 << FixItHint::CreateReplacement(OpLoc, "."); 7568 OpKind = tok::period; 7569 break; 7570 } 7571 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 7572 << BaseType << Base->getSourceRange(); 7573 CallExpr *CE = dyn_cast<CallExpr>(Base); 7574 if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) { 7575 Diag(CD->getBeginLoc(), 7576 diag::note_member_reference_arrow_from_operator_arrow); 7577 } 7578 } 7579 return ExprError(); 7580 } 7581 Base = Result.get(); 7582 if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base)) 7583 OperatorArrows.push_back(OpCall->getDirectCallee()); 7584 BaseType = Base->getType(); 7585 CanQualType CBaseType = Context.getCanonicalType(BaseType); 7586 if (!CTypes.insert(CBaseType).second) { 7587 Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType; 7588 noteOperatorArrows(*this, OperatorArrows); 7589 return ExprError(); 7590 } 7591 FirstIteration = false; 7592 } 7593 7594 if (OpKind == tok::arrow) { 7595 if (BaseType->isPointerType()) 7596 BaseType = BaseType->getPointeeType(); 7597 else if (auto *AT = Context.getAsArrayType(BaseType)) 7598 BaseType = AT->getElementType(); 7599 } 7600 } 7601 7602 // Objective-C properties allow "." access on Objective-C pointer types, 7603 // so adjust the base type to the object type itself. 7604 if (BaseType->isObjCObjectPointerType()) 7605 BaseType = BaseType->getPointeeType(); 7606 7607 // C++ [basic.lookup.classref]p2: 7608 // [...] If the type of the object expression is of pointer to scalar 7609 // type, the unqualified-id is looked up in the context of the complete 7610 // postfix-expression. 7611 // 7612 // This also indicates that we could be parsing a pseudo-destructor-name. 7613 // Note that Objective-C class and object types can be pseudo-destructor 7614 // expressions or normal member (ivar or property) access expressions, and 7615 // it's legal for the type to be incomplete if this is a pseudo-destructor 7616 // call. We'll do more incomplete-type checks later in the lookup process, 7617 // so just skip this check for ObjC types. 7618 if (!BaseType->isRecordType()) { 7619 ObjectType = ParsedType::make(BaseType); 7620 MayBePseudoDestructor = true; 7621 return Base; 7622 } 7623 7624 // The object type must be complete (or dependent), or 7625 // C++11 [expr.prim.general]p3: 7626 // Unlike the object expression in other contexts, *this is not required to 7627 // be of complete type for purposes of class member access (5.2.5) outside 7628 // the member function body. 7629 if (!BaseType->isDependentType() && 7630 !isThisOutsideMemberFunctionBody(BaseType) && 7631 RequireCompleteType(OpLoc, BaseType, 7632 diag::err_incomplete_member_access)) { 7633 return CreateRecoveryExpr(Base->getBeginLoc(), Base->getEndLoc(), {Base}); 7634 } 7635 7636 // C++ [basic.lookup.classref]p2: 7637 // If the id-expression in a class member access (5.2.5) is an 7638 // unqualified-id, and the type of the object expression is of a class 7639 // type C (or of pointer to a class type C), the unqualified-id is looked 7640 // up in the scope of class C. [...] 7641 ObjectType = ParsedType::make(BaseType); 7642 return Base; 7643 } 7644 7645 static bool CheckArrow(Sema &S, QualType &ObjectType, Expr *&Base, 7646 tok::TokenKind &OpKind, SourceLocation OpLoc) { 7647 if (Base->hasPlaceholderType()) { 7648 ExprResult result = S.CheckPlaceholderExpr(Base); 7649 if (result.isInvalid()) return true; 7650 Base = result.get(); 7651 } 7652 ObjectType = Base->getType(); 7653 7654 // C++ [expr.pseudo]p2: 7655 // The left-hand side of the dot operator shall be of scalar type. The 7656 // left-hand side of the arrow operator shall be of pointer to scalar type. 7657 // This scalar type is the object type. 7658 // Note that this is rather different from the normal handling for the 7659 // arrow operator. 7660 if (OpKind == tok::arrow) { 7661 // The operator requires a prvalue, so perform lvalue conversions. 7662 // Only do this if we might plausibly end with a pointer, as otherwise 7663 // this was likely to be intended to be a '.'. 7664 if (ObjectType->isPointerType() || ObjectType->isArrayType() || 7665 ObjectType->isFunctionType()) { 7666 ExprResult BaseResult = S.DefaultFunctionArrayLvalueConversion(Base); 7667 if (BaseResult.isInvalid()) 7668 return true; 7669 Base = BaseResult.get(); 7670 ObjectType = Base->getType(); 7671 } 7672 7673 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) { 7674 ObjectType = Ptr->getPointeeType(); 7675 } else if (!Base->isTypeDependent()) { 7676 // The user wrote "p->" when they probably meant "p."; fix it. 7677 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 7678 << ObjectType << true 7679 << FixItHint::CreateReplacement(OpLoc, "."); 7680 if (S.isSFINAEContext()) 7681 return true; 7682 7683 OpKind = tok::period; 7684 } 7685 } 7686 7687 return false; 7688 } 7689 7690 /// Check if it's ok to try and recover dot pseudo destructor calls on 7691 /// pointer objects. 7692 static bool 7693 canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef, 7694 QualType DestructedType) { 7695 // If this is a record type, check if its destructor is callable. 7696 if (auto *RD = DestructedType->getAsCXXRecordDecl()) { 7697 if (RD->hasDefinition()) 7698 if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD)) 7699 return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false); 7700 return false; 7701 } 7702 7703 // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor. 7704 return DestructedType->isDependentType() || DestructedType->isScalarType() || 7705 DestructedType->isVectorType(); 7706 } 7707 7708 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base, 7709 SourceLocation OpLoc, 7710 tok::TokenKind OpKind, 7711 const CXXScopeSpec &SS, 7712 TypeSourceInfo *ScopeTypeInfo, 7713 SourceLocation CCLoc, 7714 SourceLocation TildeLoc, 7715 PseudoDestructorTypeStorage Destructed) { 7716 TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo(); 7717 7718 QualType ObjectType; 7719 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 7720 return ExprError(); 7721 7722 if (!ObjectType->isDependentType() && !ObjectType->isScalarType() && 7723 !ObjectType->isVectorType()) { 7724 if (getLangOpts().MSVCCompat && ObjectType->isVoidType()) 7725 Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange(); 7726 else { 7727 Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar) 7728 << ObjectType << Base->getSourceRange(); 7729 return ExprError(); 7730 } 7731 } 7732 7733 // C++ [expr.pseudo]p2: 7734 // [...] The cv-unqualified versions of the object type and of the type 7735 // designated by the pseudo-destructor-name shall be the same type. 7736 if (DestructedTypeInfo) { 7737 QualType DestructedType = DestructedTypeInfo->getType(); 7738 SourceLocation DestructedTypeStart = 7739 DestructedTypeInfo->getTypeLoc().getBeginLoc(); 7740 if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) { 7741 if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) { 7742 // Detect dot pseudo destructor calls on pointer objects, e.g.: 7743 // Foo *foo; 7744 // foo.~Foo(); 7745 if (OpKind == tok::period && ObjectType->isPointerType() && 7746 Context.hasSameUnqualifiedType(DestructedType, 7747 ObjectType->getPointeeType())) { 7748 auto Diagnostic = 7749 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 7750 << ObjectType << /*IsArrow=*/0 << Base->getSourceRange(); 7751 7752 // Issue a fixit only when the destructor is valid. 7753 if (canRecoverDotPseudoDestructorCallsOnPointerObjects( 7754 *this, DestructedType)) 7755 Diagnostic << FixItHint::CreateReplacement(OpLoc, "->"); 7756 7757 // Recover by setting the object type to the destructed type and the 7758 // operator to '->'. 7759 ObjectType = DestructedType; 7760 OpKind = tok::arrow; 7761 } else { 7762 Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch) 7763 << ObjectType << DestructedType << Base->getSourceRange() 7764 << DestructedTypeInfo->getTypeLoc().getSourceRange(); 7765 7766 // Recover by setting the destructed type to the object type. 7767 DestructedType = ObjectType; 7768 DestructedTypeInfo = 7769 Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart); 7770 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 7771 } 7772 } else if (DestructedType.getObjCLifetime() != 7773 ObjectType.getObjCLifetime()) { 7774 7775 if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) { 7776 // Okay: just pretend that the user provided the correctly-qualified 7777 // type. 7778 } else { 7779 Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals) 7780 << ObjectType << DestructedType << Base->getSourceRange() 7781 << DestructedTypeInfo->getTypeLoc().getSourceRange(); 7782 } 7783 7784 // Recover by setting the destructed type to the object type. 7785 DestructedType = ObjectType; 7786 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType, 7787 DestructedTypeStart); 7788 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 7789 } 7790 } 7791 } 7792 7793 // C++ [expr.pseudo]p2: 7794 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the 7795 // form 7796 // 7797 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name 7798 // 7799 // shall designate the same scalar type. 7800 if (ScopeTypeInfo) { 7801 QualType ScopeType = ScopeTypeInfo->getType(); 7802 if (!ScopeType->isDependentType() && !ObjectType->isDependentType() && 7803 !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) { 7804 7805 Diag(ScopeTypeInfo->getTypeLoc().getSourceRange().getBegin(), 7806 diag::err_pseudo_dtor_type_mismatch) 7807 << ObjectType << ScopeType << Base->getSourceRange() 7808 << ScopeTypeInfo->getTypeLoc().getSourceRange(); 7809 7810 ScopeType = QualType(); 7811 ScopeTypeInfo = nullptr; 7812 } 7813 } 7814 7815 Expr *Result 7816 = new (Context) CXXPseudoDestructorExpr(Context, Base, 7817 OpKind == tok::arrow, OpLoc, 7818 SS.getWithLocInContext(Context), 7819 ScopeTypeInfo, 7820 CCLoc, 7821 TildeLoc, 7822 Destructed); 7823 7824 return Result; 7825 } 7826 7827 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, 7828 SourceLocation OpLoc, 7829 tok::TokenKind OpKind, 7830 CXXScopeSpec &SS, 7831 UnqualifiedId &FirstTypeName, 7832 SourceLocation CCLoc, 7833 SourceLocation TildeLoc, 7834 UnqualifiedId &SecondTypeName) { 7835 assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || 7836 FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && 7837 "Invalid first type name in pseudo-destructor"); 7838 assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || 7839 SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && 7840 "Invalid second type name in pseudo-destructor"); 7841 7842 QualType ObjectType; 7843 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 7844 return ExprError(); 7845 7846 // Compute the object type that we should use for name lookup purposes. Only 7847 // record types and dependent types matter. 7848 ParsedType ObjectTypePtrForLookup; 7849 if (!SS.isSet()) { 7850 if (ObjectType->isRecordType()) 7851 ObjectTypePtrForLookup = ParsedType::make(ObjectType); 7852 else if (ObjectType->isDependentType()) 7853 ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy); 7854 } 7855 7856 // Convert the name of the type being destructed (following the ~) into a 7857 // type (with source-location information). 7858 QualType DestructedType; 7859 TypeSourceInfo *DestructedTypeInfo = nullptr; 7860 PseudoDestructorTypeStorage Destructed; 7861 if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) { 7862 ParsedType T = getTypeName(*SecondTypeName.Identifier, 7863 SecondTypeName.StartLocation, 7864 S, &SS, true, false, ObjectTypePtrForLookup, 7865 /*IsCtorOrDtorName*/true); 7866 if (!T && 7867 ((SS.isSet() && !computeDeclContext(SS, false)) || 7868 (!SS.isSet() && ObjectType->isDependentType()))) { 7869 // The name of the type being destroyed is a dependent name, and we 7870 // couldn't find anything useful in scope. Just store the identifier and 7871 // it's location, and we'll perform (qualified) name lookup again at 7872 // template instantiation time. 7873 Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier, 7874 SecondTypeName.StartLocation); 7875 } else if (!T) { 7876 Diag(SecondTypeName.StartLocation, 7877 diag::err_pseudo_dtor_destructor_non_type) 7878 << SecondTypeName.Identifier << ObjectType; 7879 if (isSFINAEContext()) 7880 return ExprError(); 7881 7882 // Recover by assuming we had the right type all along. 7883 DestructedType = ObjectType; 7884 } else 7885 DestructedType = GetTypeFromParser(T, &DestructedTypeInfo); 7886 } else { 7887 // Resolve the template-id to a type. 7888 TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId; 7889 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 7890 TemplateId->NumArgs); 7891 TypeResult T = ActOnTemplateIdType(S, 7892 SS, 7893 TemplateId->TemplateKWLoc, 7894 TemplateId->Template, 7895 TemplateId->Name, 7896 TemplateId->TemplateNameLoc, 7897 TemplateId->LAngleLoc, 7898 TemplateArgsPtr, 7899 TemplateId->RAngleLoc, 7900 /*IsCtorOrDtorName*/true); 7901 if (T.isInvalid() || !T.get()) { 7902 // Recover by assuming we had the right type all along. 7903 DestructedType = ObjectType; 7904 } else 7905 DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo); 7906 } 7907 7908 // If we've performed some kind of recovery, (re-)build the type source 7909 // information. 7910 if (!DestructedType.isNull()) { 7911 if (!DestructedTypeInfo) 7912 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType, 7913 SecondTypeName.StartLocation); 7914 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 7915 } 7916 7917 // Convert the name of the scope type (the type prior to '::') into a type. 7918 TypeSourceInfo *ScopeTypeInfo = nullptr; 7919 QualType ScopeType; 7920 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || 7921 FirstTypeName.Identifier) { 7922 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) { 7923 ParsedType T = getTypeName(*FirstTypeName.Identifier, 7924 FirstTypeName.StartLocation, 7925 S, &SS, true, false, ObjectTypePtrForLookup, 7926 /*IsCtorOrDtorName*/true); 7927 if (!T) { 7928 Diag(FirstTypeName.StartLocation, 7929 diag::err_pseudo_dtor_destructor_non_type) 7930 << FirstTypeName.Identifier << ObjectType; 7931 7932 if (isSFINAEContext()) 7933 return ExprError(); 7934 7935 // Just drop this type. It's unnecessary anyway. 7936 ScopeType = QualType(); 7937 } else 7938 ScopeType = GetTypeFromParser(T, &ScopeTypeInfo); 7939 } else { 7940 // Resolve the template-id to a type. 7941 TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId; 7942 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 7943 TemplateId->NumArgs); 7944 TypeResult T = ActOnTemplateIdType(S, 7945 SS, 7946 TemplateId->TemplateKWLoc, 7947 TemplateId->Template, 7948 TemplateId->Name, 7949 TemplateId->TemplateNameLoc, 7950 TemplateId->LAngleLoc, 7951 TemplateArgsPtr, 7952 TemplateId->RAngleLoc, 7953 /*IsCtorOrDtorName*/true); 7954 if (T.isInvalid() || !T.get()) { 7955 // Recover by dropping this type. 7956 ScopeType = QualType(); 7957 } else 7958 ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo); 7959 } 7960 } 7961 7962 if (!ScopeType.isNull() && !ScopeTypeInfo) 7963 ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType, 7964 FirstTypeName.StartLocation); 7965 7966 7967 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS, 7968 ScopeTypeInfo, CCLoc, TildeLoc, 7969 Destructed); 7970 } 7971 7972 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, 7973 SourceLocation OpLoc, 7974 tok::TokenKind OpKind, 7975 SourceLocation TildeLoc, 7976 const DeclSpec& DS) { 7977 QualType ObjectType; 7978 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 7979 return ExprError(); 7980 7981 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) { 7982 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); 7983 return true; 7984 } 7985 7986 QualType T = BuildDecltypeType(DS.getRepAsExpr(), /*AsUnevaluated=*/false); 7987 7988 TypeLocBuilder TLB; 7989 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T); 7990 DecltypeTL.setDecltypeLoc(DS.getTypeSpecTypeLoc()); 7991 DecltypeTL.setRParenLoc(DS.getTypeofParensRange().getEnd()); 7992 TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T); 7993 PseudoDestructorTypeStorage Destructed(DestructedTypeInfo); 7994 7995 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(), 7996 nullptr, SourceLocation(), TildeLoc, 7997 Destructed); 7998 } 7999 8000 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl, 8001 CXXConversionDecl *Method, 8002 bool HadMultipleCandidates) { 8003 // Convert the expression to match the conversion function's implicit object 8004 // parameter. 8005 ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr, 8006 FoundDecl, Method); 8007 if (Exp.isInvalid()) 8008 return true; 8009 8010 if (Method->getParent()->isLambda() && 8011 Method->getConversionType()->isBlockPointerType()) { 8012 // This is a lambda conversion to block pointer; check if the argument 8013 // was a LambdaExpr. 8014 Expr *SubE = E; 8015 CastExpr *CE = dyn_cast<CastExpr>(SubE); 8016 if (CE && CE->getCastKind() == CK_NoOp) 8017 SubE = CE->getSubExpr(); 8018 SubE = SubE->IgnoreParens(); 8019 if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE)) 8020 SubE = BE->getSubExpr(); 8021 if (isa<LambdaExpr>(SubE)) { 8022 // For the conversion to block pointer on a lambda expression, we 8023 // construct a special BlockLiteral instead; this doesn't really make 8024 // a difference in ARC, but outside of ARC the resulting block literal 8025 // follows the normal lifetime rules for block literals instead of being 8026 // autoreleased. 8027 PushExpressionEvaluationContext( 8028 ExpressionEvaluationContext::PotentiallyEvaluated); 8029 ExprResult BlockExp = BuildBlockForLambdaConversion( 8030 Exp.get()->getExprLoc(), Exp.get()->getExprLoc(), Method, Exp.get()); 8031 PopExpressionEvaluationContext(); 8032 8033 // FIXME: This note should be produced by a CodeSynthesisContext. 8034 if (BlockExp.isInvalid()) 8035 Diag(Exp.get()->getExprLoc(), diag::note_lambda_to_block_conv); 8036 return BlockExp; 8037 } 8038 } 8039 8040 MemberExpr *ME = 8041 BuildMemberExpr(Exp.get(), /*IsArrow=*/false, SourceLocation(), 8042 NestedNameSpecifierLoc(), SourceLocation(), Method, 8043 DeclAccessPair::make(FoundDecl, FoundDecl->getAccess()), 8044 HadMultipleCandidates, DeclarationNameInfo(), 8045 Context.BoundMemberTy, VK_PRValue, OK_Ordinary); 8046 8047 QualType ResultType = Method->getReturnType(); 8048 ExprValueKind VK = Expr::getValueKindForType(ResultType); 8049 ResultType = ResultType.getNonLValueExprType(Context); 8050 8051 CXXMemberCallExpr *CE = CXXMemberCallExpr::Create( 8052 Context, ME, /*Args=*/{}, ResultType, VK, Exp.get()->getEndLoc(), 8053 CurFPFeatureOverrides()); 8054 8055 if (CheckFunctionCall(Method, CE, 8056 Method->getType()->castAs<FunctionProtoType>())) 8057 return ExprError(); 8058 8059 return CheckForImmediateInvocation(CE, CE->getMethodDecl()); 8060 } 8061 8062 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand, 8063 SourceLocation RParen) { 8064 // If the operand is an unresolved lookup expression, the expression is ill- 8065 // formed per [over.over]p1, because overloaded function names cannot be used 8066 // without arguments except in explicit contexts. 8067 ExprResult R = CheckPlaceholderExpr(Operand); 8068 if (R.isInvalid()) 8069 return R; 8070 8071 R = CheckUnevaluatedOperand(R.get()); 8072 if (R.isInvalid()) 8073 return ExprError(); 8074 8075 Operand = R.get(); 8076 8077 if (!inTemplateInstantiation() && !Operand->isInstantiationDependent() && 8078 Operand->HasSideEffects(Context, false)) { 8079 // The expression operand for noexcept is in an unevaluated expression 8080 // context, so side effects could result in unintended consequences. 8081 Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context); 8082 } 8083 8084 CanThrowResult CanThrow = canThrow(Operand); 8085 return new (Context) 8086 CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen); 8087 } 8088 8089 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation, 8090 Expr *Operand, SourceLocation RParen) { 8091 return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen); 8092 } 8093 8094 static void MaybeDecrementCount( 8095 Expr *E, llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) { 8096 DeclRefExpr *LHS = nullptr; 8097 bool IsCompoundAssign = false; 8098 bool isIncrementDecrementUnaryOp = false; 8099 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 8100 if (BO->getLHS()->getType()->isDependentType() || 8101 BO->getRHS()->getType()->isDependentType()) { 8102 if (BO->getOpcode() != BO_Assign) 8103 return; 8104 } else if (!BO->isAssignmentOp()) 8105 return; 8106 else 8107 IsCompoundAssign = BO->isCompoundAssignmentOp(); 8108 LHS = dyn_cast<DeclRefExpr>(BO->getLHS()); 8109 } else if (CXXOperatorCallExpr *COCE = dyn_cast<CXXOperatorCallExpr>(E)) { 8110 if (COCE->getOperator() != OO_Equal) 8111 return; 8112 LHS = dyn_cast<DeclRefExpr>(COCE->getArg(0)); 8113 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 8114 if (!UO->isIncrementDecrementOp()) 8115 return; 8116 isIncrementDecrementUnaryOp = true; 8117 LHS = dyn_cast<DeclRefExpr>(UO->getSubExpr()); 8118 } 8119 if (!LHS) 8120 return; 8121 VarDecl *VD = dyn_cast<VarDecl>(LHS->getDecl()); 8122 if (!VD) 8123 return; 8124 // Don't decrement RefsMinusAssignments if volatile variable with compound 8125 // assignment (+=, ...) or increment/decrement unary operator to avoid 8126 // potential unused-but-set-variable warning. 8127 if ((IsCompoundAssign || isIncrementDecrementUnaryOp) && 8128 VD->getType().isVolatileQualified()) 8129 return; 8130 auto iter = RefsMinusAssignments.find(VD); 8131 if (iter == RefsMinusAssignments.end()) 8132 return; 8133 iter->getSecond()--; 8134 } 8135 8136 /// Perform the conversions required for an expression used in a 8137 /// context that ignores the result. 8138 ExprResult Sema::IgnoredValueConversions(Expr *E) { 8139 MaybeDecrementCount(E, RefsMinusAssignments); 8140 8141 if (E->hasPlaceholderType()) { 8142 ExprResult result = CheckPlaceholderExpr(E); 8143 if (result.isInvalid()) return E; 8144 E = result.get(); 8145 } 8146 8147 // C99 6.3.2.1: 8148 // [Except in specific positions,] an lvalue that does not have 8149 // array type is converted to the value stored in the 8150 // designated object (and is no longer an lvalue). 8151 if (E->isPRValue()) { 8152 // In C, function designators (i.e. expressions of function type) 8153 // are r-values, but we still want to do function-to-pointer decay 8154 // on them. This is both technically correct and convenient for 8155 // some clients. 8156 if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType()) 8157 return DefaultFunctionArrayConversion(E); 8158 8159 return E; 8160 } 8161 8162 if (getLangOpts().CPlusPlus) { 8163 // The C++11 standard defines the notion of a discarded-value expression; 8164 // normally, we don't need to do anything to handle it, but if it is a 8165 // volatile lvalue with a special form, we perform an lvalue-to-rvalue 8166 // conversion. 8167 if (getLangOpts().CPlusPlus11 && E->isReadIfDiscardedInCPlusPlus11()) { 8168 ExprResult Res = DefaultLvalueConversion(E); 8169 if (Res.isInvalid()) 8170 return E; 8171 E = Res.get(); 8172 } else { 8173 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if 8174 // it occurs as a discarded-value expression. 8175 CheckUnusedVolatileAssignment(E); 8176 } 8177 8178 // C++1z: 8179 // If the expression is a prvalue after this optional conversion, the 8180 // temporary materialization conversion is applied. 8181 // 8182 // We skip this step: IR generation is able to synthesize the storage for 8183 // itself in the aggregate case, and adding the extra node to the AST is 8184 // just clutter. 8185 // FIXME: We don't emit lifetime markers for the temporaries due to this. 8186 // FIXME: Do any other AST consumers care about this? 8187 return E; 8188 } 8189 8190 // GCC seems to also exclude expressions of incomplete enum type. 8191 if (const EnumType *T = E->getType()->getAs<EnumType>()) { 8192 if (!T->getDecl()->isComplete()) { 8193 // FIXME: stupid workaround for a codegen bug! 8194 E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get(); 8195 return E; 8196 } 8197 } 8198 8199 ExprResult Res = DefaultFunctionArrayLvalueConversion(E); 8200 if (Res.isInvalid()) 8201 return E; 8202 E = Res.get(); 8203 8204 if (!E->getType()->isVoidType()) 8205 RequireCompleteType(E->getExprLoc(), E->getType(), 8206 diag::err_incomplete_type); 8207 return E; 8208 } 8209 8210 ExprResult Sema::CheckUnevaluatedOperand(Expr *E) { 8211 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if 8212 // it occurs as an unevaluated operand. 8213 CheckUnusedVolatileAssignment(E); 8214 8215 return E; 8216 } 8217 8218 // If we can unambiguously determine whether Var can never be used 8219 // in a constant expression, return true. 8220 // - if the variable and its initializer are non-dependent, then 8221 // we can unambiguously check if the variable is a constant expression. 8222 // - if the initializer is not value dependent - we can determine whether 8223 // it can be used to initialize a constant expression. If Init can not 8224 // be used to initialize a constant expression we conclude that Var can 8225 // never be a constant expression. 8226 // - FXIME: if the initializer is dependent, we can still do some analysis and 8227 // identify certain cases unambiguously as non-const by using a Visitor: 8228 // - such as those that involve odr-use of a ParmVarDecl, involve a new 8229 // delete, lambda-expr, dynamic-cast, reinterpret-cast etc... 8230 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var, 8231 ASTContext &Context) { 8232 if (isa<ParmVarDecl>(Var)) return true; 8233 const VarDecl *DefVD = nullptr; 8234 8235 // If there is no initializer - this can not be a constant expression. 8236 if (!Var->getAnyInitializer(DefVD)) return true; 8237 assert(DefVD); 8238 if (DefVD->isWeak()) return false; 8239 EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt(); 8240 8241 Expr *Init = cast<Expr>(Eval->Value); 8242 8243 if (Var->getType()->isDependentType() || Init->isValueDependent()) { 8244 // FIXME: Teach the constant evaluator to deal with the non-dependent parts 8245 // of value-dependent expressions, and use it here to determine whether the 8246 // initializer is a potential constant expression. 8247 return false; 8248 } 8249 8250 return !Var->isUsableInConstantExpressions(Context); 8251 } 8252 8253 /// Check if the current lambda has any potential captures 8254 /// that must be captured by any of its enclosing lambdas that are ready to 8255 /// capture. If there is a lambda that can capture a nested 8256 /// potential-capture, go ahead and do so. Also, check to see if any 8257 /// variables are uncaptureable or do not involve an odr-use so do not 8258 /// need to be captured. 8259 8260 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures( 8261 Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) { 8262 8263 assert(!S.isUnevaluatedContext()); 8264 assert(S.CurContext->isDependentContext()); 8265 #ifndef NDEBUG 8266 DeclContext *DC = S.CurContext; 8267 while (DC && isa<CapturedDecl>(DC)) 8268 DC = DC->getParent(); 8269 assert( 8270 CurrentLSI->CallOperator == DC && 8271 "The current call operator must be synchronized with Sema's CurContext"); 8272 #endif // NDEBUG 8273 8274 const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent(); 8275 8276 // All the potentially captureable variables in the current nested 8277 // lambda (within a generic outer lambda), must be captured by an 8278 // outer lambda that is enclosed within a non-dependent context. 8279 CurrentLSI->visitPotentialCaptures([&](ValueDecl *Var, Expr *VarExpr) { 8280 // If the variable is clearly identified as non-odr-used and the full 8281 // expression is not instantiation dependent, only then do we not 8282 // need to check enclosing lambda's for speculative captures. 8283 // For e.g.: 8284 // Even though 'x' is not odr-used, it should be captured. 8285 // int test() { 8286 // const int x = 10; 8287 // auto L = [=](auto a) { 8288 // (void) +x + a; 8289 // }; 8290 // } 8291 if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) && 8292 !IsFullExprInstantiationDependent) 8293 return; 8294 8295 VarDecl *UnderlyingVar = Var->getPotentiallyDecomposedVarDecl(); 8296 if (!UnderlyingVar) 8297 return; 8298 8299 // If we have a capture-capable lambda for the variable, go ahead and 8300 // capture the variable in that lambda (and all its enclosing lambdas). 8301 if (const std::optional<unsigned> Index = 8302 getStackIndexOfNearestEnclosingCaptureCapableLambda( 8303 S.FunctionScopes, Var, S)) 8304 S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(), *Index); 8305 const bool IsVarNeverAConstantExpression = 8306 VariableCanNeverBeAConstantExpression(UnderlyingVar, S.Context); 8307 if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) { 8308 // This full expression is not instantiation dependent or the variable 8309 // can not be used in a constant expression - which means 8310 // this variable must be odr-used here, so diagnose a 8311 // capture violation early, if the variable is un-captureable. 8312 // This is purely for diagnosing errors early. Otherwise, this 8313 // error would get diagnosed when the lambda becomes capture ready. 8314 QualType CaptureType, DeclRefType; 8315 SourceLocation ExprLoc = VarExpr->getExprLoc(); 8316 if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, 8317 /*EllipsisLoc*/ SourceLocation(), 8318 /*BuildAndDiagnose*/false, CaptureType, 8319 DeclRefType, nullptr)) { 8320 // We will never be able to capture this variable, and we need 8321 // to be able to in any and all instantiations, so diagnose it. 8322 S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, 8323 /*EllipsisLoc*/ SourceLocation(), 8324 /*BuildAndDiagnose*/true, CaptureType, 8325 DeclRefType, nullptr); 8326 } 8327 } 8328 }); 8329 8330 // Check if 'this' needs to be captured. 8331 if (CurrentLSI->hasPotentialThisCapture()) { 8332 // If we have a capture-capable lambda for 'this', go ahead and capture 8333 // 'this' in that lambda (and all its enclosing lambdas). 8334 if (const std::optional<unsigned> Index = 8335 getStackIndexOfNearestEnclosingCaptureCapableLambda( 8336 S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) { 8337 const unsigned FunctionScopeIndexOfCapturableLambda = *Index; 8338 S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation, 8339 /*Explicit*/ false, /*BuildAndDiagnose*/ true, 8340 &FunctionScopeIndexOfCapturableLambda); 8341 } 8342 } 8343 8344 // Reset all the potential captures at the end of each full-expression. 8345 CurrentLSI->clearPotentialCaptures(); 8346 } 8347 8348 static ExprResult attemptRecovery(Sema &SemaRef, 8349 const TypoCorrectionConsumer &Consumer, 8350 const TypoCorrection &TC) { 8351 LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(), 8352 Consumer.getLookupResult().getLookupKind()); 8353 const CXXScopeSpec *SS = Consumer.getSS(); 8354 CXXScopeSpec NewSS; 8355 8356 // Use an approprate CXXScopeSpec for building the expr. 8357 if (auto *NNS = TC.getCorrectionSpecifier()) 8358 NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange()); 8359 else if (SS && !TC.WillReplaceSpecifier()) 8360 NewSS = *SS; 8361 8362 if (auto *ND = TC.getFoundDecl()) { 8363 R.setLookupName(ND->getDeclName()); 8364 R.addDecl(ND); 8365 if (ND->isCXXClassMember()) { 8366 // Figure out the correct naming class to add to the LookupResult. 8367 CXXRecordDecl *Record = nullptr; 8368 if (auto *NNS = TC.getCorrectionSpecifier()) 8369 Record = NNS->getAsType()->getAsCXXRecordDecl(); 8370 if (!Record) 8371 Record = 8372 dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext()); 8373 if (Record) 8374 R.setNamingClass(Record); 8375 8376 // Detect and handle the case where the decl might be an implicit 8377 // member. 8378 bool MightBeImplicitMember; 8379 if (!Consumer.isAddressOfOperand()) 8380 MightBeImplicitMember = true; 8381 else if (!NewSS.isEmpty()) 8382 MightBeImplicitMember = false; 8383 else if (R.isOverloadedResult()) 8384 MightBeImplicitMember = false; 8385 else if (R.isUnresolvableResult()) 8386 MightBeImplicitMember = true; 8387 else 8388 MightBeImplicitMember = isa<FieldDecl>(ND) || 8389 isa<IndirectFieldDecl>(ND) || 8390 isa<MSPropertyDecl>(ND); 8391 8392 if (MightBeImplicitMember) 8393 return SemaRef.BuildPossibleImplicitMemberExpr( 8394 NewSS, /*TemplateKWLoc*/ SourceLocation(), R, 8395 /*TemplateArgs*/ nullptr, /*S*/ nullptr); 8396 } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) { 8397 return SemaRef.LookupInObjCMethod(R, Consumer.getScope(), 8398 Ivar->getIdentifier()); 8399 } 8400 } 8401 8402 return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false, 8403 /*AcceptInvalidDecl*/ true); 8404 } 8405 8406 namespace { 8407 class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> { 8408 llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs; 8409 8410 public: 8411 explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs) 8412 : TypoExprs(TypoExprs) {} 8413 bool VisitTypoExpr(TypoExpr *TE) { 8414 TypoExprs.insert(TE); 8415 return true; 8416 } 8417 }; 8418 8419 class TransformTypos : public TreeTransform<TransformTypos> { 8420 typedef TreeTransform<TransformTypos> BaseTransform; 8421 8422 VarDecl *InitDecl; // A decl to avoid as a correction because it is in the 8423 // process of being initialized. 8424 llvm::function_ref<ExprResult(Expr *)> ExprFilter; 8425 llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs; 8426 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache; 8427 llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution; 8428 8429 /// Emit diagnostics for all of the TypoExprs encountered. 8430 /// 8431 /// If the TypoExprs were successfully corrected, then the diagnostics should 8432 /// suggest the corrections. Otherwise the diagnostics will not suggest 8433 /// anything (having been passed an empty TypoCorrection). 8434 /// 8435 /// If we've failed to correct due to ambiguous corrections, we need to 8436 /// be sure to pass empty corrections and replacements. Otherwise it's 8437 /// possible that the Consumer has a TypoCorrection that failed to ambiguity 8438 /// and we don't want to report those diagnostics. 8439 void EmitAllDiagnostics(bool IsAmbiguous) { 8440 for (TypoExpr *TE : TypoExprs) { 8441 auto &State = SemaRef.getTypoExprState(TE); 8442 if (State.DiagHandler) { 8443 TypoCorrection TC = IsAmbiguous 8444 ? TypoCorrection() : State.Consumer->getCurrentCorrection(); 8445 ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE]; 8446 8447 // Extract the NamedDecl from the transformed TypoExpr and add it to the 8448 // TypoCorrection, replacing the existing decls. This ensures the right 8449 // NamedDecl is used in diagnostics e.g. in the case where overload 8450 // resolution was used to select one from several possible decls that 8451 // had been stored in the TypoCorrection. 8452 if (auto *ND = getDeclFromExpr( 8453 Replacement.isInvalid() ? nullptr : Replacement.get())) 8454 TC.setCorrectionDecl(ND); 8455 8456 State.DiagHandler(TC); 8457 } 8458 SemaRef.clearDelayedTypo(TE); 8459 } 8460 } 8461 8462 /// Try to advance the typo correction state of the first unfinished TypoExpr. 8463 /// We allow advancement of the correction stream by removing it from the 8464 /// TransformCache which allows `TransformTypoExpr` to advance during the 8465 /// next transformation attempt. 8466 /// 8467 /// Any substitution attempts for the previous TypoExprs (which must have been 8468 /// finished) will need to be retried since it's possible that they will now 8469 /// be invalid given the latest advancement. 8470 /// 8471 /// We need to be sure that we're making progress - it's possible that the 8472 /// tree is so malformed that the transform never makes it to the 8473 /// `TransformTypoExpr`. 8474 /// 8475 /// Returns true if there are any untried correction combinations. 8476 bool CheckAndAdvanceTypoExprCorrectionStreams() { 8477 for (auto *TE : TypoExprs) { 8478 auto &State = SemaRef.getTypoExprState(TE); 8479 TransformCache.erase(TE); 8480 if (!State.Consumer->hasMadeAnyCorrectionProgress()) 8481 return false; 8482 if (!State.Consumer->finished()) 8483 return true; 8484 State.Consumer->resetCorrectionStream(); 8485 } 8486 return false; 8487 } 8488 8489 NamedDecl *getDeclFromExpr(Expr *E) { 8490 if (auto *OE = dyn_cast_or_null<OverloadExpr>(E)) 8491 E = OverloadResolution[OE]; 8492 8493 if (!E) 8494 return nullptr; 8495 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) 8496 return DRE->getFoundDecl(); 8497 if (auto *ME = dyn_cast<MemberExpr>(E)) 8498 return ME->getFoundDecl(); 8499 // FIXME: Add any other expr types that could be seen by the delayed typo 8500 // correction TreeTransform for which the corresponding TypoCorrection could 8501 // contain multiple decls. 8502 return nullptr; 8503 } 8504 8505 ExprResult TryTransform(Expr *E) { 8506 Sema::SFINAETrap Trap(SemaRef); 8507 ExprResult Res = TransformExpr(E); 8508 if (Trap.hasErrorOccurred() || Res.isInvalid()) 8509 return ExprError(); 8510 8511 return ExprFilter(Res.get()); 8512 } 8513 8514 // Since correcting typos may intoduce new TypoExprs, this function 8515 // checks for new TypoExprs and recurses if it finds any. Note that it will 8516 // only succeed if it is able to correct all typos in the given expression. 8517 ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) { 8518 if (Res.isInvalid()) { 8519 return Res; 8520 } 8521 // Check to see if any new TypoExprs were created. If so, we need to recurse 8522 // to check their validity. 8523 Expr *FixedExpr = Res.get(); 8524 8525 auto SavedTypoExprs = std::move(TypoExprs); 8526 auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs); 8527 TypoExprs.clear(); 8528 AmbiguousTypoExprs.clear(); 8529 8530 FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr); 8531 if (!TypoExprs.empty()) { 8532 // Recurse to handle newly created TypoExprs. If we're not able to 8533 // handle them, discard these TypoExprs. 8534 ExprResult RecurResult = 8535 RecursiveTransformLoop(FixedExpr, IsAmbiguous); 8536 if (RecurResult.isInvalid()) { 8537 Res = ExprError(); 8538 // Recursive corrections didn't work, wipe them away and don't add 8539 // them to the TypoExprs set. Remove them from Sema's TypoExpr list 8540 // since we don't want to clear them twice. Note: it's possible the 8541 // TypoExprs were created recursively and thus won't be in our 8542 // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`. 8543 auto &SemaTypoExprs = SemaRef.TypoExprs; 8544 for (auto *TE : TypoExprs) { 8545 TransformCache.erase(TE); 8546 SemaRef.clearDelayedTypo(TE); 8547 8548 auto SI = find(SemaTypoExprs, TE); 8549 if (SI != SemaTypoExprs.end()) { 8550 SemaTypoExprs.erase(SI); 8551 } 8552 } 8553 } else { 8554 // TypoExpr is valid: add newly created TypoExprs since we were 8555 // able to correct them. 8556 Res = RecurResult; 8557 SavedTypoExprs.set_union(TypoExprs); 8558 } 8559 } 8560 8561 TypoExprs = std::move(SavedTypoExprs); 8562 AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs); 8563 8564 return Res; 8565 } 8566 8567 // Try to transform the given expression, looping through the correction 8568 // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`. 8569 // 8570 // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to 8571 // true and this method immediately will return an `ExprError`. 8572 ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) { 8573 ExprResult Res; 8574 auto SavedTypoExprs = std::move(SemaRef.TypoExprs); 8575 SemaRef.TypoExprs.clear(); 8576 8577 while (true) { 8578 Res = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous); 8579 8580 // Recursion encountered an ambiguous correction. This means that our 8581 // correction itself is ambiguous, so stop now. 8582 if (IsAmbiguous) 8583 break; 8584 8585 // If the transform is still valid after checking for any new typos, 8586 // it's good to go. 8587 if (!Res.isInvalid()) 8588 break; 8589 8590 // The transform was invalid, see if we have any TypoExprs with untried 8591 // correction candidates. 8592 if (!CheckAndAdvanceTypoExprCorrectionStreams()) 8593 break; 8594 } 8595 8596 // If we found a valid result, double check to make sure it's not ambiguous. 8597 if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) { 8598 auto SavedTransformCache = 8599 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2>(TransformCache); 8600 8601 // Ensure none of the TypoExprs have multiple typo correction candidates 8602 // with the same edit length that pass all the checks and filters. 8603 while (!AmbiguousTypoExprs.empty()) { 8604 auto TE = AmbiguousTypoExprs.back(); 8605 8606 // TryTransform itself can create new Typos, adding them to the TypoExpr map 8607 // and invalidating our TypoExprState, so always fetch it instead of storing. 8608 SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition(); 8609 8610 TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection(); 8611 TypoCorrection Next; 8612 do { 8613 // Fetch the next correction by erasing the typo from the cache and calling 8614 // `TryTransform` which will iterate through corrections in 8615 // `TransformTypoExpr`. 8616 TransformCache.erase(TE); 8617 ExprResult AmbigRes = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous); 8618 8619 if (!AmbigRes.isInvalid() || IsAmbiguous) { 8620 SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream(); 8621 SavedTransformCache.erase(TE); 8622 Res = ExprError(); 8623 IsAmbiguous = true; 8624 break; 8625 } 8626 } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) && 8627 Next.getEditDistance(false) == TC.getEditDistance(false)); 8628 8629 if (IsAmbiguous) 8630 break; 8631 8632 AmbiguousTypoExprs.remove(TE); 8633 SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition(); 8634 TransformCache[TE] = SavedTransformCache[TE]; 8635 } 8636 TransformCache = std::move(SavedTransformCache); 8637 } 8638 8639 // Wipe away any newly created TypoExprs that we don't know about. Since we 8640 // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only 8641 // possible if a `TypoExpr` is created during a transformation but then 8642 // fails before we can discover it. 8643 auto &SemaTypoExprs = SemaRef.TypoExprs; 8644 for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) { 8645 auto TE = *Iterator; 8646 auto FI = find(TypoExprs, TE); 8647 if (FI != TypoExprs.end()) { 8648 Iterator++; 8649 continue; 8650 } 8651 SemaRef.clearDelayedTypo(TE); 8652 Iterator = SemaTypoExprs.erase(Iterator); 8653 } 8654 SemaRef.TypoExprs = std::move(SavedTypoExprs); 8655 8656 return Res; 8657 } 8658 8659 public: 8660 TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter) 8661 : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {} 8662 8663 ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc, 8664 MultiExprArg Args, 8665 SourceLocation RParenLoc, 8666 Expr *ExecConfig = nullptr) { 8667 auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args, 8668 RParenLoc, ExecConfig); 8669 if (auto *OE = dyn_cast<OverloadExpr>(Callee)) { 8670 if (Result.isUsable()) { 8671 Expr *ResultCall = Result.get(); 8672 if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall)) 8673 ResultCall = BE->getSubExpr(); 8674 if (auto *CE = dyn_cast<CallExpr>(ResultCall)) 8675 OverloadResolution[OE] = CE->getCallee(); 8676 } 8677 } 8678 return Result; 8679 } 8680 8681 ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); } 8682 8683 ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); } 8684 8685 ExprResult Transform(Expr *E) { 8686 bool IsAmbiguous = false; 8687 ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous); 8688 8689 if (!Res.isUsable()) 8690 FindTypoExprs(TypoExprs).TraverseStmt(E); 8691 8692 EmitAllDiagnostics(IsAmbiguous); 8693 8694 return Res; 8695 } 8696 8697 ExprResult TransformTypoExpr(TypoExpr *E) { 8698 // If the TypoExpr hasn't been seen before, record it. Otherwise, return the 8699 // cached transformation result if there is one and the TypoExpr isn't the 8700 // first one that was encountered. 8701 auto &CacheEntry = TransformCache[E]; 8702 if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) { 8703 return CacheEntry; 8704 } 8705 8706 auto &State = SemaRef.getTypoExprState(E); 8707 assert(State.Consumer && "Cannot transform a cleared TypoExpr"); 8708 8709 // For the first TypoExpr and an uncached TypoExpr, find the next likely 8710 // typo correction and return it. 8711 while (TypoCorrection TC = State.Consumer->getNextCorrection()) { 8712 if (InitDecl && TC.getFoundDecl() == InitDecl) 8713 continue; 8714 // FIXME: If we would typo-correct to an invalid declaration, it's 8715 // probably best to just suppress all errors from this typo correction. 8716 ExprResult NE = State.RecoveryHandler ? 8717 State.RecoveryHandler(SemaRef, E, TC) : 8718 attemptRecovery(SemaRef, *State.Consumer, TC); 8719 if (!NE.isInvalid()) { 8720 // Check whether there may be a second viable correction with the same 8721 // edit distance; if so, remember this TypoExpr may have an ambiguous 8722 // correction so it can be more thoroughly vetted later. 8723 TypoCorrection Next; 8724 if ((Next = State.Consumer->peekNextCorrection()) && 8725 Next.getEditDistance(false) == TC.getEditDistance(false)) { 8726 AmbiguousTypoExprs.insert(E); 8727 } else { 8728 AmbiguousTypoExprs.remove(E); 8729 } 8730 assert(!NE.isUnset() && 8731 "Typo was transformed into a valid-but-null ExprResult"); 8732 return CacheEntry = NE; 8733 } 8734 } 8735 return CacheEntry = ExprError(); 8736 } 8737 }; 8738 } 8739 8740 ExprResult 8741 Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl, 8742 bool RecoverUncorrectedTypos, 8743 llvm::function_ref<ExprResult(Expr *)> Filter) { 8744 // If the current evaluation context indicates there are uncorrected typos 8745 // and the current expression isn't guaranteed to not have typos, try to 8746 // resolve any TypoExpr nodes that might be in the expression. 8747 if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos && 8748 (E->isTypeDependent() || E->isValueDependent() || 8749 E->isInstantiationDependent())) { 8750 auto TyposResolved = DelayedTypos.size(); 8751 auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E); 8752 TyposResolved -= DelayedTypos.size(); 8753 if (Result.isInvalid() || Result.get() != E) { 8754 ExprEvalContexts.back().NumTypos -= TyposResolved; 8755 if (Result.isInvalid() && RecoverUncorrectedTypos) { 8756 struct TyposReplace : TreeTransform<TyposReplace> { 8757 TyposReplace(Sema &SemaRef) : TreeTransform(SemaRef) {} 8758 ExprResult TransformTypoExpr(clang::TypoExpr *E) { 8759 return this->SemaRef.CreateRecoveryExpr(E->getBeginLoc(), 8760 E->getEndLoc(), {}); 8761 } 8762 } TT(*this); 8763 return TT.TransformExpr(E); 8764 } 8765 return Result; 8766 } 8767 assert(TyposResolved == 0 && "Corrected typo but got same Expr back?"); 8768 } 8769 return E; 8770 } 8771 8772 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC, 8773 bool DiscardedValue, bool IsConstexpr, 8774 bool IsTemplateArgument) { 8775 ExprResult FullExpr = FE; 8776 8777 if (!FullExpr.get()) 8778 return ExprError(); 8779 8780 if (!IsTemplateArgument && DiagnoseUnexpandedParameterPack(FullExpr.get())) 8781 return ExprError(); 8782 8783 if (DiscardedValue) { 8784 // Top-level expressions default to 'id' when we're in a debugger. 8785 if (getLangOpts().DebuggerCastResultToId && 8786 FullExpr.get()->getType() == Context.UnknownAnyTy) { 8787 FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType()); 8788 if (FullExpr.isInvalid()) 8789 return ExprError(); 8790 } 8791 8792 FullExpr = CheckPlaceholderExpr(FullExpr.get()); 8793 if (FullExpr.isInvalid()) 8794 return ExprError(); 8795 8796 FullExpr = IgnoredValueConversions(FullExpr.get()); 8797 if (FullExpr.isInvalid()) 8798 return ExprError(); 8799 8800 DiagnoseUnusedExprResult(FullExpr.get(), diag::warn_unused_expr); 8801 } 8802 8803 FullExpr = CorrectDelayedTyposInExpr(FullExpr.get(), /*InitDecl=*/nullptr, 8804 /*RecoverUncorrectedTypos=*/true); 8805 if (FullExpr.isInvalid()) 8806 return ExprError(); 8807 8808 CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr); 8809 8810 // At the end of this full expression (which could be a deeply nested 8811 // lambda), if there is a potential capture within the nested lambda, 8812 // have the outer capture-able lambda try and capture it. 8813 // Consider the following code: 8814 // void f(int, int); 8815 // void f(const int&, double); 8816 // void foo() { 8817 // const int x = 10, y = 20; 8818 // auto L = [=](auto a) { 8819 // auto M = [=](auto b) { 8820 // f(x, b); <-- requires x to be captured by L and M 8821 // f(y, a); <-- requires y to be captured by L, but not all Ms 8822 // }; 8823 // }; 8824 // } 8825 8826 // FIXME: Also consider what happens for something like this that involves 8827 // the gnu-extension statement-expressions or even lambda-init-captures: 8828 // void f() { 8829 // const int n = 0; 8830 // auto L = [&](auto a) { 8831 // +n + ({ 0; a; }); 8832 // }; 8833 // } 8834 // 8835 // Here, we see +n, and then the full-expression 0; ends, so we don't 8836 // capture n (and instead remove it from our list of potential captures), 8837 // and then the full-expression +n + ({ 0; }); ends, but it's too late 8838 // for us to see that we need to capture n after all. 8839 8840 LambdaScopeInfo *const CurrentLSI = 8841 getCurLambda(/*IgnoreCapturedRegions=*/true); 8842 // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer 8843 // even if CurContext is not a lambda call operator. Refer to that Bug Report 8844 // for an example of the code that might cause this asynchrony. 8845 // By ensuring we are in the context of a lambda's call operator 8846 // we can fix the bug (we only need to check whether we need to capture 8847 // if we are within a lambda's body); but per the comments in that 8848 // PR, a proper fix would entail : 8849 // "Alternative suggestion: 8850 // - Add to Sema an integer holding the smallest (outermost) scope 8851 // index that we are *lexically* within, and save/restore/set to 8852 // FunctionScopes.size() in InstantiatingTemplate's 8853 // constructor/destructor. 8854 // - Teach the handful of places that iterate over FunctionScopes to 8855 // stop at the outermost enclosing lexical scope." 8856 DeclContext *DC = CurContext; 8857 while (DC && isa<CapturedDecl>(DC)) 8858 DC = DC->getParent(); 8859 const bool IsInLambdaDeclContext = isLambdaCallOperator(DC); 8860 if (IsInLambdaDeclContext && CurrentLSI && 8861 CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid()) 8862 CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI, 8863 *this); 8864 return MaybeCreateExprWithCleanups(FullExpr); 8865 } 8866 8867 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) { 8868 if (!FullStmt) return StmtError(); 8869 8870 return MaybeCreateStmtWithCleanups(FullStmt); 8871 } 8872 8873 Sema::IfExistsResult 8874 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, 8875 CXXScopeSpec &SS, 8876 const DeclarationNameInfo &TargetNameInfo) { 8877 DeclarationName TargetName = TargetNameInfo.getName(); 8878 if (!TargetName) 8879 return IER_DoesNotExist; 8880 8881 // If the name itself is dependent, then the result is dependent. 8882 if (TargetName.isDependentName()) 8883 return IER_Dependent; 8884 8885 // Do the redeclaration lookup in the current scope. 8886 LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName, 8887 Sema::NotForRedeclaration); 8888 LookupParsedName(R, S, &SS); 8889 R.suppressDiagnostics(); 8890 8891 switch (R.getResultKind()) { 8892 case LookupResult::Found: 8893 case LookupResult::FoundOverloaded: 8894 case LookupResult::FoundUnresolvedValue: 8895 case LookupResult::Ambiguous: 8896 return IER_Exists; 8897 8898 case LookupResult::NotFound: 8899 return IER_DoesNotExist; 8900 8901 case LookupResult::NotFoundInCurrentInstantiation: 8902 return IER_Dependent; 8903 } 8904 8905 llvm_unreachable("Invalid LookupResult Kind!"); 8906 } 8907 8908 Sema::IfExistsResult 8909 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc, 8910 bool IsIfExists, CXXScopeSpec &SS, 8911 UnqualifiedId &Name) { 8912 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); 8913 8914 // Check for an unexpanded parameter pack. 8915 auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists; 8916 if (DiagnoseUnexpandedParameterPack(SS, UPPC) || 8917 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC)) 8918 return IER_Error; 8919 8920 return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo); 8921 } 8922 8923 concepts::Requirement *Sema::ActOnSimpleRequirement(Expr *E) { 8924 return BuildExprRequirement(E, /*IsSimple=*/true, 8925 /*NoexceptLoc=*/SourceLocation(), 8926 /*ReturnTypeRequirement=*/{}); 8927 } 8928 8929 concepts::Requirement * 8930 Sema::ActOnTypeRequirement(SourceLocation TypenameKWLoc, CXXScopeSpec &SS, 8931 SourceLocation NameLoc, IdentifierInfo *TypeName, 8932 TemplateIdAnnotation *TemplateId) { 8933 assert(((!TypeName && TemplateId) || (TypeName && !TemplateId)) && 8934 "Exactly one of TypeName and TemplateId must be specified."); 8935 TypeSourceInfo *TSI = nullptr; 8936 if (TypeName) { 8937 QualType T = CheckTypenameType(ETK_Typename, TypenameKWLoc, 8938 SS.getWithLocInContext(Context), *TypeName, 8939 NameLoc, &TSI, /*DeducedTSTContext=*/false); 8940 if (T.isNull()) 8941 return nullptr; 8942 } else { 8943 ASTTemplateArgsPtr ArgsPtr(TemplateId->getTemplateArgs(), 8944 TemplateId->NumArgs); 8945 TypeResult T = ActOnTypenameType(CurScope, TypenameKWLoc, SS, 8946 TemplateId->TemplateKWLoc, 8947 TemplateId->Template, TemplateId->Name, 8948 TemplateId->TemplateNameLoc, 8949 TemplateId->LAngleLoc, ArgsPtr, 8950 TemplateId->RAngleLoc); 8951 if (T.isInvalid()) 8952 return nullptr; 8953 if (GetTypeFromParser(T.get(), &TSI).isNull()) 8954 return nullptr; 8955 } 8956 return BuildTypeRequirement(TSI); 8957 } 8958 8959 concepts::Requirement * 8960 Sema::ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc) { 8961 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, 8962 /*ReturnTypeRequirement=*/{}); 8963 } 8964 8965 concepts::Requirement * 8966 Sema::ActOnCompoundRequirement( 8967 Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS, 8968 TemplateIdAnnotation *TypeConstraint, unsigned Depth) { 8969 // C++2a [expr.prim.req.compound] p1.3.3 8970 // [..] the expression is deduced against an invented function template 8971 // F [...] F is a void function template with a single type template 8972 // parameter T declared with the constrained-parameter. Form a new 8973 // cv-qualifier-seq cv by taking the union of const and volatile specifiers 8974 // around the constrained-parameter. F has a single parameter whose 8975 // type-specifier is cv T followed by the abstract-declarator. [...] 8976 // 8977 // The cv part is done in the calling function - we get the concept with 8978 // arguments and the abstract declarator with the correct CV qualification and 8979 // have to synthesize T and the single parameter of F. 8980 auto &II = Context.Idents.get("expr-type"); 8981 auto *TParam = TemplateTypeParmDecl::Create(Context, CurContext, 8982 SourceLocation(), 8983 SourceLocation(), Depth, 8984 /*Index=*/0, &II, 8985 /*Typename=*/true, 8986 /*ParameterPack=*/false, 8987 /*HasTypeConstraint=*/true); 8988 8989 if (BuildTypeConstraint(SS, TypeConstraint, TParam, 8990 /*EllipsisLoc=*/SourceLocation(), 8991 /*AllowUnexpandedPack=*/true)) 8992 // Just produce a requirement with no type requirements. 8993 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, {}); 8994 8995 auto *TPL = TemplateParameterList::Create(Context, SourceLocation(), 8996 SourceLocation(), 8997 ArrayRef<NamedDecl *>(TParam), 8998 SourceLocation(), 8999 /*RequiresClause=*/nullptr); 9000 return BuildExprRequirement( 9001 E, /*IsSimple=*/false, NoexceptLoc, 9002 concepts::ExprRequirement::ReturnTypeRequirement(TPL)); 9003 } 9004 9005 concepts::ExprRequirement * 9006 Sema::BuildExprRequirement( 9007 Expr *E, bool IsSimple, SourceLocation NoexceptLoc, 9008 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) { 9009 auto Status = concepts::ExprRequirement::SS_Satisfied; 9010 ConceptSpecializationExpr *SubstitutedConstraintExpr = nullptr; 9011 if (E->isInstantiationDependent() || ReturnTypeRequirement.isDependent()) 9012 Status = concepts::ExprRequirement::SS_Dependent; 9013 else if (NoexceptLoc.isValid() && canThrow(E) == CanThrowResult::CT_Can) 9014 Status = concepts::ExprRequirement::SS_NoexceptNotMet; 9015 else if (ReturnTypeRequirement.isSubstitutionFailure()) 9016 Status = concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure; 9017 else if (ReturnTypeRequirement.isTypeConstraint()) { 9018 // C++2a [expr.prim.req]p1.3.3 9019 // The immediately-declared constraint ([temp]) of decltype((E)) shall 9020 // be satisfied. 9021 TemplateParameterList *TPL = 9022 ReturnTypeRequirement.getTypeConstraintTemplateParameterList(); 9023 QualType MatchedType = 9024 Context.getReferenceQualifiedType(E).getCanonicalType(); 9025 llvm::SmallVector<TemplateArgument, 1> Args; 9026 Args.push_back(TemplateArgument(MatchedType)); 9027 9028 auto *Param = cast<TemplateTypeParmDecl>(TPL->getParam(0)); 9029 9030 TemplateArgumentList TAL(TemplateArgumentList::OnStack, Args); 9031 MultiLevelTemplateArgumentList MLTAL(Param, TAL.asArray(), 9032 /*Final=*/false); 9033 MLTAL.addOuterRetainedLevels(TPL->getDepth()); 9034 Expr *IDC = Param->getTypeConstraint()->getImmediatelyDeclaredConstraint(); 9035 ExprResult Constraint = SubstExpr(IDC, MLTAL); 9036 if (Constraint.isInvalid()) { 9037 Status = concepts::ExprRequirement::SS_ExprSubstitutionFailure; 9038 } else { 9039 SubstitutedConstraintExpr = 9040 cast<ConceptSpecializationExpr>(Constraint.get()); 9041 if (!SubstitutedConstraintExpr->isSatisfied()) 9042 Status = concepts::ExprRequirement::SS_ConstraintsNotSatisfied; 9043 } 9044 } 9045 return new (Context) concepts::ExprRequirement(E, IsSimple, NoexceptLoc, 9046 ReturnTypeRequirement, Status, 9047 SubstitutedConstraintExpr); 9048 } 9049 9050 concepts::ExprRequirement * 9051 Sema::BuildExprRequirement( 9052 concepts::Requirement::SubstitutionDiagnostic *ExprSubstitutionDiagnostic, 9053 bool IsSimple, SourceLocation NoexceptLoc, 9054 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) { 9055 return new (Context) concepts::ExprRequirement(ExprSubstitutionDiagnostic, 9056 IsSimple, NoexceptLoc, 9057 ReturnTypeRequirement); 9058 } 9059 9060 concepts::TypeRequirement * 9061 Sema::BuildTypeRequirement(TypeSourceInfo *Type) { 9062 return new (Context) concepts::TypeRequirement(Type); 9063 } 9064 9065 concepts::TypeRequirement * 9066 Sema::BuildTypeRequirement( 9067 concepts::Requirement::SubstitutionDiagnostic *SubstDiag) { 9068 return new (Context) concepts::TypeRequirement(SubstDiag); 9069 } 9070 9071 concepts::Requirement *Sema::ActOnNestedRequirement(Expr *Constraint) { 9072 return BuildNestedRequirement(Constraint); 9073 } 9074 9075 concepts::NestedRequirement * 9076 Sema::BuildNestedRequirement(Expr *Constraint) { 9077 ConstraintSatisfaction Satisfaction; 9078 if (!Constraint->isInstantiationDependent() && 9079 CheckConstraintSatisfaction(nullptr, {Constraint}, /*TemplateArgs=*/{}, 9080 Constraint->getSourceRange(), Satisfaction)) 9081 return nullptr; 9082 return new (Context) concepts::NestedRequirement(Context, Constraint, 9083 Satisfaction); 9084 } 9085 9086 concepts::NestedRequirement * 9087 Sema::BuildNestedRequirement(StringRef InvalidConstraintEntity, 9088 const ASTConstraintSatisfaction &Satisfaction) { 9089 return new (Context) concepts::NestedRequirement( 9090 InvalidConstraintEntity, 9091 ASTConstraintSatisfaction::Rebuild(Context, Satisfaction)); 9092 } 9093 9094 RequiresExprBodyDecl * 9095 Sema::ActOnStartRequiresExpr(SourceLocation RequiresKWLoc, 9096 ArrayRef<ParmVarDecl *> LocalParameters, 9097 Scope *BodyScope) { 9098 assert(BodyScope); 9099 9100 RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(Context, CurContext, 9101 RequiresKWLoc); 9102 9103 PushDeclContext(BodyScope, Body); 9104 9105 for (ParmVarDecl *Param : LocalParameters) { 9106 if (Param->hasDefaultArg()) 9107 // C++2a [expr.prim.req] p4 9108 // [...] A local parameter of a requires-expression shall not have a 9109 // default argument. [...] 9110 Diag(Param->getDefaultArgRange().getBegin(), 9111 diag::err_requires_expr_local_parameter_default_argument); 9112 // Ignore default argument and move on 9113 9114 Param->setDeclContext(Body); 9115 // If this has an identifier, add it to the scope stack. 9116 if (Param->getIdentifier()) { 9117 CheckShadow(BodyScope, Param); 9118 PushOnScopeChains(Param, BodyScope); 9119 } 9120 } 9121 return Body; 9122 } 9123 9124 void Sema::ActOnFinishRequiresExpr() { 9125 assert(CurContext && "DeclContext imbalance!"); 9126 CurContext = CurContext->getLexicalParent(); 9127 assert(CurContext && "Popped translation unit!"); 9128 } 9129 9130 ExprResult 9131 Sema::ActOnRequiresExpr(SourceLocation RequiresKWLoc, 9132 RequiresExprBodyDecl *Body, 9133 ArrayRef<ParmVarDecl *> LocalParameters, 9134 ArrayRef<concepts::Requirement *> Requirements, 9135 SourceLocation ClosingBraceLoc) { 9136 auto *RE = RequiresExpr::Create(Context, RequiresKWLoc, Body, LocalParameters, 9137 Requirements, ClosingBraceLoc); 9138 if (DiagnoseUnexpandedParameterPackInRequiresExpr(RE)) 9139 return ExprError(); 9140 return RE; 9141 } 9142