1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// Implements semantic analysis for C++ expressions. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "TreeTransform.h" 15 #include "TypeLocBuilder.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/ASTLambda.h" 18 #include "clang/AST/CXXInheritance.h" 19 #include "clang/AST/CharUnits.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/ExprCXX.h" 22 #include "clang/AST/ExprConcepts.h" 23 #include "clang/AST/ExprObjC.h" 24 #include "clang/AST/RecursiveASTVisitor.h" 25 #include "clang/AST/Type.h" 26 #include "clang/AST/TypeLoc.h" 27 #include "clang/Basic/AlignedAllocation.h" 28 #include "clang/Basic/DiagnosticSema.h" 29 #include "clang/Basic/PartialDiagnostic.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/Basic/TokenKinds.h" 32 #include "clang/Basic/TypeTraits.h" 33 #include "clang/Lex/Preprocessor.h" 34 #include "clang/Sema/DeclSpec.h" 35 #include "clang/Sema/EnterExpressionEvaluationContext.h" 36 #include "clang/Sema/Initialization.h" 37 #include "clang/Sema/Lookup.h" 38 #include "clang/Sema/ParsedTemplate.h" 39 #include "clang/Sema/Scope.h" 40 #include "clang/Sema/ScopeInfo.h" 41 #include "clang/Sema/SemaInternal.h" 42 #include "clang/Sema/SemaLambda.h" 43 #include "clang/Sema/Template.h" 44 #include "clang/Sema/TemplateDeduction.h" 45 #include "llvm/ADT/APInt.h" 46 #include "llvm/ADT/STLExtras.h" 47 #include "llvm/ADT/StringExtras.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/TypeSize.h" 50 #include <optional> 51 using namespace clang; 52 using namespace sema; 53 54 /// Handle the result of the special case name lookup for inheriting 55 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as 56 /// constructor names in member using declarations, even if 'X' is not the 57 /// name of the corresponding type. 58 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS, 59 SourceLocation NameLoc, 60 IdentifierInfo &Name) { 61 NestedNameSpecifier *NNS = SS.getScopeRep(); 62 63 // Convert the nested-name-specifier into a type. 64 QualType Type; 65 switch (NNS->getKind()) { 66 case NestedNameSpecifier::TypeSpec: 67 case NestedNameSpecifier::TypeSpecWithTemplate: 68 Type = QualType(NNS->getAsType(), 0); 69 break; 70 71 case NestedNameSpecifier::Identifier: 72 // Strip off the last layer of the nested-name-specifier and build a 73 // typename type for it. 74 assert(NNS->getAsIdentifier() == &Name && "not a constructor name"); 75 Type = Context.getDependentNameType( 76 ElaboratedTypeKeyword::None, NNS->getPrefix(), NNS->getAsIdentifier()); 77 break; 78 79 case NestedNameSpecifier::Global: 80 case NestedNameSpecifier::Super: 81 case NestedNameSpecifier::Namespace: 82 case NestedNameSpecifier::NamespaceAlias: 83 llvm_unreachable("Nested name specifier is not a type for inheriting ctor"); 84 } 85 86 // This reference to the type is located entirely at the location of the 87 // final identifier in the qualified-id. 88 return CreateParsedType(Type, 89 Context.getTrivialTypeSourceInfo(Type, NameLoc)); 90 } 91 92 ParsedType Sema::getConstructorName(IdentifierInfo &II, 93 SourceLocation NameLoc, 94 Scope *S, CXXScopeSpec &SS, 95 bool EnteringContext) { 96 CXXRecordDecl *CurClass = getCurrentClass(S, &SS); 97 assert(CurClass && &II == CurClass->getIdentifier() && 98 "not a constructor name"); 99 100 // When naming a constructor as a member of a dependent context (eg, in a 101 // friend declaration or an inherited constructor declaration), form an 102 // unresolved "typename" type. 103 if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) { 104 QualType T = Context.getDependentNameType(ElaboratedTypeKeyword::None, 105 SS.getScopeRep(), &II); 106 return ParsedType::make(T); 107 } 108 109 if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass)) 110 return ParsedType(); 111 112 // Find the injected-class-name declaration. Note that we make no attempt to 113 // diagnose cases where the injected-class-name is shadowed: the only 114 // declaration that can validly shadow the injected-class-name is a 115 // non-static data member, and if the class contains both a non-static data 116 // member and a constructor then it is ill-formed (we check that in 117 // CheckCompletedCXXClass). 118 CXXRecordDecl *InjectedClassName = nullptr; 119 for (NamedDecl *ND : CurClass->lookup(&II)) { 120 auto *RD = dyn_cast<CXXRecordDecl>(ND); 121 if (RD && RD->isInjectedClassName()) { 122 InjectedClassName = RD; 123 break; 124 } 125 } 126 if (!InjectedClassName) { 127 if (!CurClass->isInvalidDecl()) { 128 // FIXME: RequireCompleteDeclContext doesn't check dependent contexts 129 // properly. Work around it here for now. 130 Diag(SS.getLastQualifierNameLoc(), 131 diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange(); 132 } 133 return ParsedType(); 134 } 135 136 QualType T = Context.getTypeDeclType(InjectedClassName); 137 DiagnoseUseOfDecl(InjectedClassName, NameLoc); 138 MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false); 139 140 return ParsedType::make(T); 141 } 142 143 ParsedType Sema::getDestructorName(IdentifierInfo &II, SourceLocation NameLoc, 144 Scope *S, CXXScopeSpec &SS, 145 ParsedType ObjectTypePtr, 146 bool EnteringContext) { 147 // Determine where to perform name lookup. 148 149 // FIXME: This area of the standard is very messy, and the current 150 // wording is rather unclear about which scopes we search for the 151 // destructor name; see core issues 399 and 555. Issue 399 in 152 // particular shows where the current description of destructor name 153 // lookup is completely out of line with existing practice, e.g., 154 // this appears to be ill-formed: 155 // 156 // namespace N { 157 // template <typename T> struct S { 158 // ~S(); 159 // }; 160 // } 161 // 162 // void f(N::S<int>* s) { 163 // s->N::S<int>::~S(); 164 // } 165 // 166 // See also PR6358 and PR6359. 167 // 168 // For now, we accept all the cases in which the name given could plausibly 169 // be interpreted as a correct destructor name, issuing off-by-default 170 // extension diagnostics on the cases that don't strictly conform to the 171 // C++20 rules. This basically means we always consider looking in the 172 // nested-name-specifier prefix, the complete nested-name-specifier, and 173 // the scope, and accept if we find the expected type in any of the three 174 // places. 175 176 if (SS.isInvalid()) 177 return nullptr; 178 179 // Whether we've failed with a diagnostic already. 180 bool Failed = false; 181 182 llvm::SmallVector<NamedDecl*, 8> FoundDecls; 183 llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet; 184 185 // If we have an object type, it's because we are in a 186 // pseudo-destructor-expression or a member access expression, and 187 // we know what type we're looking for. 188 QualType SearchType = 189 ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType(); 190 191 auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType { 192 auto IsAcceptableResult = [&](NamedDecl *D) -> bool { 193 auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl()); 194 if (!Type) 195 return false; 196 197 if (SearchType.isNull() || SearchType->isDependentType()) 198 return true; 199 200 QualType T = Context.getTypeDeclType(Type); 201 return Context.hasSameUnqualifiedType(T, SearchType); 202 }; 203 204 unsigned NumAcceptableResults = 0; 205 for (NamedDecl *D : Found) { 206 if (IsAcceptableResult(D)) 207 ++NumAcceptableResults; 208 209 // Don't list a class twice in the lookup failure diagnostic if it's 210 // found by both its injected-class-name and by the name in the enclosing 211 // scope. 212 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) 213 if (RD->isInjectedClassName()) 214 D = cast<NamedDecl>(RD->getParent()); 215 216 if (FoundDeclSet.insert(D).second) 217 FoundDecls.push_back(D); 218 } 219 220 // As an extension, attempt to "fix" an ambiguity by erasing all non-type 221 // results, and all non-matching results if we have a search type. It's not 222 // clear what the right behavior is if destructor lookup hits an ambiguity, 223 // but other compilers do generally accept at least some kinds of 224 // ambiguity. 225 if (Found.isAmbiguous() && NumAcceptableResults == 1) { 226 Diag(NameLoc, diag::ext_dtor_name_ambiguous); 227 LookupResult::Filter F = Found.makeFilter(); 228 while (F.hasNext()) { 229 NamedDecl *D = F.next(); 230 if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl())) 231 Diag(D->getLocation(), diag::note_destructor_type_here) 232 << Context.getTypeDeclType(TD); 233 else 234 Diag(D->getLocation(), diag::note_destructor_nontype_here); 235 236 if (!IsAcceptableResult(D)) 237 F.erase(); 238 } 239 F.done(); 240 } 241 242 if (Found.isAmbiguous()) 243 Failed = true; 244 245 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) { 246 if (IsAcceptableResult(Type)) { 247 QualType T = Context.getTypeDeclType(Type); 248 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); 249 return CreateParsedType( 250 Context.getElaboratedType(ElaboratedTypeKeyword::None, nullptr, T), 251 Context.getTrivialTypeSourceInfo(T, NameLoc)); 252 } 253 } 254 255 return nullptr; 256 }; 257 258 bool IsDependent = false; 259 260 auto LookupInObjectType = [&]() -> ParsedType { 261 if (Failed || SearchType.isNull()) 262 return nullptr; 263 264 IsDependent |= SearchType->isDependentType(); 265 266 LookupResult Found(*this, &II, NameLoc, LookupDestructorName); 267 DeclContext *LookupCtx = computeDeclContext(SearchType); 268 if (!LookupCtx) 269 return nullptr; 270 LookupQualifiedName(Found, LookupCtx); 271 return CheckLookupResult(Found); 272 }; 273 274 auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType { 275 if (Failed) 276 return nullptr; 277 278 IsDependent |= isDependentScopeSpecifier(LookupSS); 279 DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext); 280 if (!LookupCtx) 281 return nullptr; 282 283 LookupResult Found(*this, &II, NameLoc, LookupDestructorName); 284 if (RequireCompleteDeclContext(LookupSS, LookupCtx)) { 285 Failed = true; 286 return nullptr; 287 } 288 LookupQualifiedName(Found, LookupCtx); 289 return CheckLookupResult(Found); 290 }; 291 292 auto LookupInScope = [&]() -> ParsedType { 293 if (Failed || !S) 294 return nullptr; 295 296 LookupResult Found(*this, &II, NameLoc, LookupDestructorName); 297 LookupName(Found, S); 298 return CheckLookupResult(Found); 299 }; 300 301 // C++2a [basic.lookup.qual]p6: 302 // In a qualified-id of the form 303 // 304 // nested-name-specifier[opt] type-name :: ~ type-name 305 // 306 // the second type-name is looked up in the same scope as the first. 307 // 308 // We interpret this as meaning that if you do a dual-scope lookup for the 309 // first name, you also do a dual-scope lookup for the second name, per 310 // C++ [basic.lookup.classref]p4: 311 // 312 // If the id-expression in a class member access is a qualified-id of the 313 // form 314 // 315 // class-name-or-namespace-name :: ... 316 // 317 // the class-name-or-namespace-name following the . or -> is first looked 318 // up in the class of the object expression and the name, if found, is used. 319 // Otherwise, it is looked up in the context of the entire 320 // postfix-expression. 321 // 322 // This looks in the same scopes as for an unqualified destructor name: 323 // 324 // C++ [basic.lookup.classref]p3: 325 // If the unqualified-id is ~ type-name, the type-name is looked up 326 // in the context of the entire postfix-expression. If the type T 327 // of the object expression is of a class type C, the type-name is 328 // also looked up in the scope of class C. At least one of the 329 // lookups shall find a name that refers to cv T. 330 // 331 // FIXME: The intent is unclear here. Should type-name::~type-name look in 332 // the scope anyway if it finds a non-matching name declared in the class? 333 // If both lookups succeed and find a dependent result, which result should 334 // we retain? (Same question for p->~type-name().) 335 336 if (NestedNameSpecifier *Prefix = 337 SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) { 338 // This is 339 // 340 // nested-name-specifier type-name :: ~ type-name 341 // 342 // Look for the second type-name in the nested-name-specifier. 343 CXXScopeSpec PrefixSS; 344 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data())); 345 if (ParsedType T = LookupInNestedNameSpec(PrefixSS)) 346 return T; 347 } else { 348 // This is one of 349 // 350 // type-name :: ~ type-name 351 // ~ type-name 352 // 353 // Look in the scope and (if any) the object type. 354 if (ParsedType T = LookupInScope()) 355 return T; 356 if (ParsedType T = LookupInObjectType()) 357 return T; 358 } 359 360 if (Failed) 361 return nullptr; 362 363 if (IsDependent) { 364 // We didn't find our type, but that's OK: it's dependent anyway. 365 366 // FIXME: What if we have no nested-name-specifier? 367 QualType T = 368 CheckTypenameType(ElaboratedTypeKeyword::None, SourceLocation(), 369 SS.getWithLocInContext(Context), II, NameLoc); 370 return ParsedType::make(T); 371 } 372 373 // The remaining cases are all non-standard extensions imitating the behavior 374 // of various other compilers. 375 unsigned NumNonExtensionDecls = FoundDecls.size(); 376 377 if (SS.isSet()) { 378 // For compatibility with older broken C++ rules and existing code, 379 // 380 // nested-name-specifier :: ~ type-name 381 // 382 // also looks for type-name within the nested-name-specifier. 383 if (ParsedType T = LookupInNestedNameSpec(SS)) { 384 Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope) 385 << SS.getRange() 386 << FixItHint::CreateInsertion(SS.getEndLoc(), 387 ("::" + II.getName()).str()); 388 return T; 389 } 390 391 // For compatibility with other compilers and older versions of Clang, 392 // 393 // nested-name-specifier type-name :: ~ type-name 394 // 395 // also looks for type-name in the scope. Unfortunately, we can't 396 // reasonably apply this fallback for dependent nested-name-specifiers. 397 if (SS.isValid() && SS.getScopeRep()->getPrefix()) { 398 if (ParsedType T = LookupInScope()) { 399 Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope) 400 << FixItHint::CreateRemoval(SS.getRange()); 401 Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here) 402 << GetTypeFromParser(T); 403 return T; 404 } 405 } 406 } 407 408 // We didn't find anything matching; tell the user what we did find (if 409 // anything). 410 411 // Don't tell the user about declarations we shouldn't have found. 412 FoundDecls.resize(NumNonExtensionDecls); 413 414 // List types before non-types. 415 std::stable_sort(FoundDecls.begin(), FoundDecls.end(), 416 [](NamedDecl *A, NamedDecl *B) { 417 return isa<TypeDecl>(A->getUnderlyingDecl()) > 418 isa<TypeDecl>(B->getUnderlyingDecl()); 419 }); 420 421 // Suggest a fixit to properly name the destroyed type. 422 auto MakeFixItHint = [&]{ 423 const CXXRecordDecl *Destroyed = nullptr; 424 // FIXME: If we have a scope specifier, suggest its last component? 425 if (!SearchType.isNull()) 426 Destroyed = SearchType->getAsCXXRecordDecl(); 427 else if (S) 428 Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity()); 429 if (Destroyed) 430 return FixItHint::CreateReplacement(SourceRange(NameLoc), 431 Destroyed->getNameAsString()); 432 return FixItHint(); 433 }; 434 435 if (FoundDecls.empty()) { 436 // FIXME: Attempt typo-correction? 437 Diag(NameLoc, diag::err_undeclared_destructor_name) 438 << &II << MakeFixItHint(); 439 } else if (!SearchType.isNull() && FoundDecls.size() == 1) { 440 if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) { 441 assert(!SearchType.isNull() && 442 "should only reject a type result if we have a search type"); 443 QualType T = Context.getTypeDeclType(TD); 444 Diag(NameLoc, diag::err_destructor_expr_type_mismatch) 445 << T << SearchType << MakeFixItHint(); 446 } else { 447 Diag(NameLoc, diag::err_destructor_expr_nontype) 448 << &II << MakeFixItHint(); 449 } 450 } else { 451 Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype 452 : diag::err_destructor_expr_mismatch) 453 << &II << SearchType << MakeFixItHint(); 454 } 455 456 for (NamedDecl *FoundD : FoundDecls) { 457 if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl())) 458 Diag(FoundD->getLocation(), diag::note_destructor_type_here) 459 << Context.getTypeDeclType(TD); 460 else 461 Diag(FoundD->getLocation(), diag::note_destructor_nontype_here) 462 << FoundD; 463 } 464 465 return nullptr; 466 } 467 468 ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS, 469 ParsedType ObjectType) { 470 if (DS.getTypeSpecType() == DeclSpec::TST_error) 471 return nullptr; 472 473 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) { 474 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); 475 return nullptr; 476 } 477 478 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype && 479 "unexpected type in getDestructorType"); 480 QualType T = BuildDecltypeType(DS.getRepAsExpr()); 481 482 // If we know the type of the object, check that the correct destructor 483 // type was named now; we can give better diagnostics this way. 484 QualType SearchType = GetTypeFromParser(ObjectType); 485 if (!SearchType.isNull() && !SearchType->isDependentType() && 486 !Context.hasSameUnqualifiedType(T, SearchType)) { 487 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch) 488 << T << SearchType; 489 return nullptr; 490 } 491 492 return ParsedType::make(T); 493 } 494 495 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS, 496 const UnqualifiedId &Name, bool IsUDSuffix) { 497 assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId); 498 if (!IsUDSuffix) { 499 // [over.literal] p8 500 // 501 // double operator""_Bq(long double); // OK: not a reserved identifier 502 // double operator"" _Bq(long double); // ill-formed, no diagnostic required 503 IdentifierInfo *II = Name.Identifier; 504 ReservedIdentifierStatus Status = II->isReserved(PP.getLangOpts()); 505 SourceLocation Loc = Name.getEndLoc(); 506 if (!PP.getSourceManager().isInSystemHeader(Loc)) { 507 if (auto Hint = FixItHint::CreateReplacement( 508 Name.getSourceRange(), 509 (StringRef("operator\"\"") + II->getName()).str()); 510 isReservedInAllContexts(Status)) { 511 Diag(Loc, diag::warn_reserved_extern_symbol) 512 << II << static_cast<int>(Status) << Hint; 513 } else { 514 Diag(Loc, diag::warn_deprecated_literal_operator_id) << II << Hint; 515 } 516 } 517 } 518 519 if (!SS.isValid()) 520 return false; 521 522 switch (SS.getScopeRep()->getKind()) { 523 case NestedNameSpecifier::Identifier: 524 case NestedNameSpecifier::TypeSpec: 525 case NestedNameSpecifier::TypeSpecWithTemplate: 526 // Per C++11 [over.literal]p2, literal operators can only be declared at 527 // namespace scope. Therefore, this unqualified-id cannot name anything. 528 // Reject it early, because we have no AST representation for this in the 529 // case where the scope is dependent. 530 Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace) 531 << SS.getScopeRep(); 532 return true; 533 534 case NestedNameSpecifier::Global: 535 case NestedNameSpecifier::Super: 536 case NestedNameSpecifier::Namespace: 537 case NestedNameSpecifier::NamespaceAlias: 538 return false; 539 } 540 541 llvm_unreachable("unknown nested name specifier kind"); 542 } 543 544 /// Build a C++ typeid expression with a type operand. 545 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, 546 SourceLocation TypeidLoc, 547 TypeSourceInfo *Operand, 548 SourceLocation RParenLoc) { 549 // C++ [expr.typeid]p4: 550 // The top-level cv-qualifiers of the lvalue expression or the type-id 551 // that is the operand of typeid are always ignored. 552 // If the type of the type-id is a class type or a reference to a class 553 // type, the class shall be completely-defined. 554 Qualifiers Quals; 555 QualType T 556 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(), 557 Quals); 558 if (T->getAs<RecordType>() && 559 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) 560 return ExprError(); 561 562 if (T->isVariablyModifiedType()) 563 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T); 564 565 if (CheckQualifiedFunctionForTypeId(T, TypeidLoc)) 566 return ExprError(); 567 568 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand, 569 SourceRange(TypeidLoc, RParenLoc)); 570 } 571 572 /// Build a C++ typeid expression with an expression operand. 573 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, 574 SourceLocation TypeidLoc, 575 Expr *E, 576 SourceLocation RParenLoc) { 577 bool WasEvaluated = false; 578 if (E && !E->isTypeDependent()) { 579 if (E->hasPlaceholderType()) { 580 ExprResult result = CheckPlaceholderExpr(E); 581 if (result.isInvalid()) return ExprError(); 582 E = result.get(); 583 } 584 585 QualType T = E->getType(); 586 if (const RecordType *RecordT = T->getAs<RecordType>()) { 587 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl()); 588 // C++ [expr.typeid]p3: 589 // [...] If the type of the expression is a class type, the class 590 // shall be completely-defined. 591 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) 592 return ExprError(); 593 594 // C++ [expr.typeid]p3: 595 // When typeid is applied to an expression other than an glvalue of a 596 // polymorphic class type [...] [the] expression is an unevaluated 597 // operand. [...] 598 if (RecordD->isPolymorphic() && E->isGLValue()) { 599 if (isUnevaluatedContext()) { 600 // The operand was processed in unevaluated context, switch the 601 // context and recheck the subexpression. 602 ExprResult Result = TransformToPotentiallyEvaluated(E); 603 if (Result.isInvalid()) 604 return ExprError(); 605 E = Result.get(); 606 } 607 608 // We require a vtable to query the type at run time. 609 MarkVTableUsed(TypeidLoc, RecordD); 610 WasEvaluated = true; 611 } 612 } 613 614 ExprResult Result = CheckUnevaluatedOperand(E); 615 if (Result.isInvalid()) 616 return ExprError(); 617 E = Result.get(); 618 619 // C++ [expr.typeid]p4: 620 // [...] If the type of the type-id is a reference to a possibly 621 // cv-qualified type, the result of the typeid expression refers to a 622 // std::type_info object representing the cv-unqualified referenced 623 // type. 624 Qualifiers Quals; 625 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals); 626 if (!Context.hasSameType(T, UnqualT)) { 627 T = UnqualT; 628 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get(); 629 } 630 } 631 632 if (E->getType()->isVariablyModifiedType()) 633 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) 634 << E->getType()); 635 else if (!inTemplateInstantiation() && 636 E->HasSideEffects(Context, WasEvaluated)) { 637 // The expression operand for typeid is in an unevaluated expression 638 // context, so side effects could result in unintended consequences. 639 Diag(E->getExprLoc(), WasEvaluated 640 ? diag::warn_side_effects_typeid 641 : diag::warn_side_effects_unevaluated_context); 642 } 643 644 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E, 645 SourceRange(TypeidLoc, RParenLoc)); 646 } 647 648 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression); 649 ExprResult 650 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, 651 bool isType, void *TyOrExpr, SourceLocation RParenLoc) { 652 // typeid is not supported in OpenCL. 653 if (getLangOpts().OpenCLCPlusPlus) { 654 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported) 655 << "typeid"); 656 } 657 658 // Find the std::type_info type. 659 if (!getStdNamespace()) 660 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); 661 662 if (!CXXTypeInfoDecl) { 663 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info"); 664 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName); 665 LookupQualifiedName(R, getStdNamespace()); 666 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); 667 // Microsoft's typeinfo doesn't have type_info in std but in the global 668 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153. 669 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) { 670 LookupQualifiedName(R, Context.getTranslationUnitDecl()); 671 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); 672 } 673 if (!CXXTypeInfoDecl) 674 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); 675 } 676 677 if (!getLangOpts().RTTI) { 678 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti)); 679 } 680 681 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl); 682 683 if (isType) { 684 // The operand is a type; handle it as such. 685 TypeSourceInfo *TInfo = nullptr; 686 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), 687 &TInfo); 688 if (T.isNull()) 689 return ExprError(); 690 691 if (!TInfo) 692 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); 693 694 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc); 695 } 696 697 // The operand is an expression. 698 ExprResult Result = 699 BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc); 700 701 if (!getLangOpts().RTTIData && !Result.isInvalid()) 702 if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get())) 703 if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context)) 704 Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled) 705 << (getDiagnostics().getDiagnosticOptions().getFormat() == 706 DiagnosticOptions::MSVC); 707 return Result; 708 } 709 710 /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to 711 /// a single GUID. 712 static void 713 getUuidAttrOfType(Sema &SemaRef, QualType QT, 714 llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) { 715 // Optionally remove one level of pointer, reference or array indirection. 716 const Type *Ty = QT.getTypePtr(); 717 if (QT->isPointerType() || QT->isReferenceType()) 718 Ty = QT->getPointeeType().getTypePtr(); 719 else if (QT->isArrayType()) 720 Ty = Ty->getBaseElementTypeUnsafe(); 721 722 const auto *TD = Ty->getAsTagDecl(); 723 if (!TD) 724 return; 725 726 if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) { 727 UuidAttrs.insert(Uuid); 728 return; 729 } 730 731 // __uuidof can grab UUIDs from template arguments. 732 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) { 733 const TemplateArgumentList &TAL = CTSD->getTemplateArgs(); 734 for (const TemplateArgument &TA : TAL.asArray()) { 735 const UuidAttr *UuidForTA = nullptr; 736 if (TA.getKind() == TemplateArgument::Type) 737 getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs); 738 else if (TA.getKind() == TemplateArgument::Declaration) 739 getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs); 740 741 if (UuidForTA) 742 UuidAttrs.insert(UuidForTA); 743 } 744 } 745 } 746 747 /// Build a Microsoft __uuidof expression with a type operand. 748 ExprResult Sema::BuildCXXUuidof(QualType Type, 749 SourceLocation TypeidLoc, 750 TypeSourceInfo *Operand, 751 SourceLocation RParenLoc) { 752 MSGuidDecl *Guid = nullptr; 753 if (!Operand->getType()->isDependentType()) { 754 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs; 755 getUuidAttrOfType(*this, Operand->getType(), UuidAttrs); 756 if (UuidAttrs.empty()) 757 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); 758 if (UuidAttrs.size() > 1) 759 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); 760 Guid = UuidAttrs.back()->getGuidDecl(); 761 } 762 763 return new (Context) 764 CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc)); 765 } 766 767 /// Build a Microsoft __uuidof expression with an expression operand. 768 ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc, 769 Expr *E, SourceLocation RParenLoc) { 770 MSGuidDecl *Guid = nullptr; 771 if (!E->getType()->isDependentType()) { 772 if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 773 // A null pointer results in {00000000-0000-0000-0000-000000000000}. 774 Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{}); 775 } else { 776 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs; 777 getUuidAttrOfType(*this, E->getType(), UuidAttrs); 778 if (UuidAttrs.empty()) 779 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); 780 if (UuidAttrs.size() > 1) 781 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); 782 Guid = UuidAttrs.back()->getGuidDecl(); 783 } 784 } 785 786 return new (Context) 787 CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc)); 788 } 789 790 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression); 791 ExprResult 792 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc, 793 bool isType, void *TyOrExpr, SourceLocation RParenLoc) { 794 QualType GuidType = Context.getMSGuidType(); 795 GuidType.addConst(); 796 797 if (isType) { 798 // The operand is a type; handle it as such. 799 TypeSourceInfo *TInfo = nullptr; 800 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), 801 &TInfo); 802 if (T.isNull()) 803 return ExprError(); 804 805 if (!TInfo) 806 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); 807 808 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc); 809 } 810 811 // The operand is an expression. 812 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc); 813 } 814 815 /// ActOnCXXBoolLiteral - Parse {true,false} literals. 816 ExprResult 817 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { 818 assert((Kind == tok::kw_true || Kind == tok::kw_false) && 819 "Unknown C++ Boolean value!"); 820 return new (Context) 821 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc); 822 } 823 824 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'. 825 ExprResult 826 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) { 827 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc); 828 } 829 830 /// ActOnCXXThrow - Parse throw expressions. 831 ExprResult 832 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) { 833 bool IsThrownVarInScope = false; 834 if (Ex) { 835 // C++0x [class.copymove]p31: 836 // When certain criteria are met, an implementation is allowed to omit the 837 // copy/move construction of a class object [...] 838 // 839 // - in a throw-expression, when the operand is the name of a 840 // non-volatile automatic object (other than a function or catch- 841 // clause parameter) whose scope does not extend beyond the end of the 842 // innermost enclosing try-block (if there is one), the copy/move 843 // operation from the operand to the exception object (15.1) can be 844 // omitted by constructing the automatic object directly into the 845 // exception object 846 if (const auto *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens())) 847 if (const auto *Var = dyn_cast<VarDecl>(DRE->getDecl()); 848 Var && Var->hasLocalStorage() && 849 !Var->getType().isVolatileQualified()) { 850 for (; S; S = S->getParent()) { 851 if (S->isDeclScope(Var)) { 852 IsThrownVarInScope = true; 853 break; 854 } 855 856 // FIXME: Many of the scope checks here seem incorrect. 857 if (S->getFlags() & 858 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope | 859 Scope::ObjCMethodScope | Scope::TryScope)) 860 break; 861 } 862 } 863 } 864 865 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope); 866 } 867 868 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex, 869 bool IsThrownVarInScope) { 870 const llvm::Triple &T = Context.getTargetInfo().getTriple(); 871 const bool IsOpenMPGPUTarget = 872 getLangOpts().OpenMPIsTargetDevice && (T.isNVPTX() || T.isAMDGCN()); 873 // Don't report an error if 'throw' is used in system headers or in an OpenMP 874 // target region compiled for a GPU architecture. 875 if (!IsOpenMPGPUTarget && !getLangOpts().CXXExceptions && 876 !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) { 877 // Delay error emission for the OpenMP device code. 878 targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw"; 879 } 880 881 // In OpenMP target regions, we replace 'throw' with a trap on GPU targets. 882 if (IsOpenMPGPUTarget) 883 targetDiag(OpLoc, diag::warn_throw_not_valid_on_target) << T.str(); 884 885 // Exceptions aren't allowed in CUDA device code. 886 if (getLangOpts().CUDA) 887 CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions) 888 << "throw" << CurrentCUDATarget(); 889 890 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope()) 891 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw"; 892 893 if (Ex && !Ex->isTypeDependent()) { 894 // Initialize the exception result. This implicitly weeds out 895 // abstract types or types with inaccessible copy constructors. 896 897 // C++0x [class.copymove]p31: 898 // When certain criteria are met, an implementation is allowed to omit the 899 // copy/move construction of a class object [...] 900 // 901 // - in a throw-expression, when the operand is the name of a 902 // non-volatile automatic object (other than a function or 903 // catch-clause 904 // parameter) whose scope does not extend beyond the end of the 905 // innermost enclosing try-block (if there is one), the copy/move 906 // operation from the operand to the exception object (15.1) can be 907 // omitted by constructing the automatic object directly into the 908 // exception object 909 NamedReturnInfo NRInfo = 910 IsThrownVarInScope ? getNamedReturnInfo(Ex) : NamedReturnInfo(); 911 912 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType()); 913 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex)) 914 return ExprError(); 915 916 InitializedEntity Entity = 917 InitializedEntity::InitializeException(OpLoc, ExceptionObjectTy); 918 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Ex); 919 if (Res.isInvalid()) 920 return ExprError(); 921 Ex = Res.get(); 922 } 923 924 // PPC MMA non-pointer types are not allowed as throw expr types. 925 if (Ex && Context.getTargetInfo().getTriple().isPPC64()) 926 CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc()); 927 928 return new (Context) 929 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope); 930 } 931 932 static void 933 collectPublicBases(CXXRecordDecl *RD, 934 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen, 935 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases, 936 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen, 937 bool ParentIsPublic) { 938 for (const CXXBaseSpecifier &BS : RD->bases()) { 939 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl(); 940 bool NewSubobject; 941 // Virtual bases constitute the same subobject. Non-virtual bases are 942 // always distinct subobjects. 943 if (BS.isVirtual()) 944 NewSubobject = VBases.insert(BaseDecl).second; 945 else 946 NewSubobject = true; 947 948 if (NewSubobject) 949 ++SubobjectsSeen[BaseDecl]; 950 951 // Only add subobjects which have public access throughout the entire chain. 952 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public; 953 if (PublicPath) 954 PublicSubobjectsSeen.insert(BaseDecl); 955 956 // Recurse on to each base subobject. 957 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen, 958 PublicPath); 959 } 960 } 961 962 static void getUnambiguousPublicSubobjects( 963 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) { 964 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen; 965 llvm::SmallSet<CXXRecordDecl *, 2> VBases; 966 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen; 967 SubobjectsSeen[RD] = 1; 968 PublicSubobjectsSeen.insert(RD); 969 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen, 970 /*ParentIsPublic=*/true); 971 972 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) { 973 // Skip ambiguous objects. 974 if (SubobjectsSeen[PublicSubobject] > 1) 975 continue; 976 977 Objects.push_back(PublicSubobject); 978 } 979 } 980 981 /// CheckCXXThrowOperand - Validate the operand of a throw. 982 bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, 983 QualType ExceptionObjectTy, Expr *E) { 984 // If the type of the exception would be an incomplete type or a pointer 985 // to an incomplete type other than (cv) void the program is ill-formed. 986 QualType Ty = ExceptionObjectTy; 987 bool isPointer = false; 988 if (const PointerType* Ptr = Ty->getAs<PointerType>()) { 989 Ty = Ptr->getPointeeType(); 990 isPointer = true; 991 } 992 993 // Cannot throw WebAssembly reference type. 994 if (Ty.isWebAssemblyReferenceType()) { 995 Diag(ThrowLoc, diag::err_wasm_reftype_tc) << 0 << E->getSourceRange(); 996 return true; 997 } 998 999 // Cannot throw WebAssembly table. 1000 if (isPointer && Ty.isWebAssemblyReferenceType()) { 1001 Diag(ThrowLoc, diag::err_wasm_table_art) << 2 << E->getSourceRange(); 1002 return true; 1003 } 1004 1005 if (!isPointer || !Ty->isVoidType()) { 1006 if (RequireCompleteType(ThrowLoc, Ty, 1007 isPointer ? diag::err_throw_incomplete_ptr 1008 : diag::err_throw_incomplete, 1009 E->getSourceRange())) 1010 return true; 1011 1012 if (!isPointer && Ty->isSizelessType()) { 1013 Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange(); 1014 return true; 1015 } 1016 1017 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy, 1018 diag::err_throw_abstract_type, E)) 1019 return true; 1020 } 1021 1022 // If the exception has class type, we need additional handling. 1023 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 1024 if (!RD) 1025 return false; 1026 1027 // If we are throwing a polymorphic class type or pointer thereof, 1028 // exception handling will make use of the vtable. 1029 MarkVTableUsed(ThrowLoc, RD); 1030 1031 // If a pointer is thrown, the referenced object will not be destroyed. 1032 if (isPointer) 1033 return false; 1034 1035 // If the class has a destructor, we must be able to call it. 1036 if (!RD->hasIrrelevantDestructor()) { 1037 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) { 1038 MarkFunctionReferenced(E->getExprLoc(), Destructor); 1039 CheckDestructorAccess(E->getExprLoc(), Destructor, 1040 PDiag(diag::err_access_dtor_exception) << Ty); 1041 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) 1042 return true; 1043 } 1044 } 1045 1046 // The MSVC ABI creates a list of all types which can catch the exception 1047 // object. This list also references the appropriate copy constructor to call 1048 // if the object is caught by value and has a non-trivial copy constructor. 1049 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1050 // We are only interested in the public, unambiguous bases contained within 1051 // the exception object. Bases which are ambiguous or otherwise 1052 // inaccessible are not catchable types. 1053 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects; 1054 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects); 1055 1056 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) { 1057 // Attempt to lookup the copy constructor. Various pieces of machinery 1058 // will spring into action, like template instantiation, which means this 1059 // cannot be a simple walk of the class's decls. Instead, we must perform 1060 // lookup and overload resolution. 1061 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0); 1062 if (!CD || CD->isDeleted()) 1063 continue; 1064 1065 // Mark the constructor referenced as it is used by this throw expression. 1066 MarkFunctionReferenced(E->getExprLoc(), CD); 1067 1068 // Skip this copy constructor if it is trivial, we don't need to record it 1069 // in the catchable type data. 1070 if (CD->isTrivial()) 1071 continue; 1072 1073 // The copy constructor is non-trivial, create a mapping from this class 1074 // type to this constructor. 1075 // N.B. The selection of copy constructor is not sensitive to this 1076 // particular throw-site. Lookup will be performed at the catch-site to 1077 // ensure that the copy constructor is, in fact, accessible (via 1078 // friendship or any other means). 1079 Context.addCopyConstructorForExceptionObject(Subobject, CD); 1080 1081 // We don't keep the instantiated default argument expressions around so 1082 // we must rebuild them here. 1083 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) { 1084 if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I))) 1085 return true; 1086 } 1087 } 1088 } 1089 1090 // Under the Itanium C++ ABI, memory for the exception object is allocated by 1091 // the runtime with no ability for the compiler to request additional 1092 // alignment. Warn if the exception type requires alignment beyond the minimum 1093 // guaranteed by the target C++ runtime. 1094 if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) { 1095 CharUnits TypeAlign = Context.getTypeAlignInChars(Ty); 1096 CharUnits ExnObjAlign = Context.getExnObjectAlignment(); 1097 if (ExnObjAlign < TypeAlign) { 1098 Diag(ThrowLoc, diag::warn_throw_underaligned_obj); 1099 Diag(ThrowLoc, diag::note_throw_underaligned_obj) 1100 << Ty << (unsigned)TypeAlign.getQuantity() 1101 << (unsigned)ExnObjAlign.getQuantity(); 1102 } 1103 } 1104 if (!isPointer && getLangOpts().AssumeNothrowExceptionDtor) { 1105 if (CXXDestructorDecl *Dtor = RD->getDestructor()) { 1106 auto Ty = Dtor->getType(); 1107 if (auto *FT = Ty.getTypePtr()->getAs<FunctionProtoType>()) { 1108 if (!isUnresolvedExceptionSpec(FT->getExceptionSpecType()) && 1109 !FT->isNothrow()) 1110 Diag(ThrowLoc, diag::err_throw_object_throwing_dtor) << RD; 1111 } 1112 } 1113 } 1114 1115 return false; 1116 } 1117 1118 static QualType adjustCVQualifiersForCXXThisWithinLambda( 1119 ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy, 1120 DeclContext *CurSemaContext, ASTContext &ASTCtx) { 1121 1122 QualType ClassType = ThisTy->getPointeeType(); 1123 LambdaScopeInfo *CurLSI = nullptr; 1124 DeclContext *CurDC = CurSemaContext; 1125 1126 // Iterate through the stack of lambdas starting from the innermost lambda to 1127 // the outermost lambda, checking if '*this' is ever captured by copy - since 1128 // that could change the cv-qualifiers of the '*this' object. 1129 // The object referred to by '*this' starts out with the cv-qualifiers of its 1130 // member function. We then start with the innermost lambda and iterate 1131 // outward checking to see if any lambda performs a by-copy capture of '*this' 1132 // - and if so, any nested lambda must respect the 'constness' of that 1133 // capturing lamdbda's call operator. 1134 // 1135 1136 // Since the FunctionScopeInfo stack is representative of the lexical 1137 // nesting of the lambda expressions during initial parsing (and is the best 1138 // place for querying information about captures about lambdas that are 1139 // partially processed) and perhaps during instantiation of function templates 1140 // that contain lambda expressions that need to be transformed BUT not 1141 // necessarily during instantiation of a nested generic lambda's function call 1142 // operator (which might even be instantiated at the end of the TU) - at which 1143 // time the DeclContext tree is mature enough to query capture information 1144 // reliably - we use a two pronged approach to walk through all the lexically 1145 // enclosing lambda expressions: 1146 // 1147 // 1) Climb down the FunctionScopeInfo stack as long as each item represents 1148 // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically 1149 // enclosed by the call-operator of the LSI below it on the stack (while 1150 // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on 1151 // the stack represents the innermost lambda. 1152 // 1153 // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext 1154 // represents a lambda's call operator. If it does, we must be instantiating 1155 // a generic lambda's call operator (represented by the Current LSI, and 1156 // should be the only scenario where an inconsistency between the LSI and the 1157 // DeclContext should occur), so climb out the DeclContexts if they 1158 // represent lambdas, while querying the corresponding closure types 1159 // regarding capture information. 1160 1161 // 1) Climb down the function scope info stack. 1162 for (int I = FunctionScopes.size(); 1163 I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) && 1164 (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() == 1165 cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator); 1166 CurDC = getLambdaAwareParentOfDeclContext(CurDC)) { 1167 CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]); 1168 1169 if (!CurLSI->isCXXThisCaptured()) 1170 continue; 1171 1172 auto C = CurLSI->getCXXThisCapture(); 1173 1174 if (C.isCopyCapture()) { 1175 if (CurLSI->lambdaCaptureShouldBeConst()) 1176 ClassType.addConst(); 1177 return ASTCtx.getPointerType(ClassType); 1178 } 1179 } 1180 1181 // 2) We've run out of ScopeInfos but check 1. if CurDC is a lambda (which 1182 // can happen during instantiation of its nested generic lambda call 1183 // operator); 2. if we're in a lambda scope (lambda body). 1184 if (CurLSI && isLambdaCallOperator(CurDC)) { 1185 assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && 1186 "While computing 'this' capture-type for a generic lambda, when we " 1187 "run out of enclosing LSI's, yet the enclosing DC is a " 1188 "lambda-call-operator we must be (i.e. Current LSI) in a generic " 1189 "lambda call oeprator"); 1190 assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator)); 1191 1192 auto IsThisCaptured = 1193 [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) { 1194 IsConst = false; 1195 IsByCopy = false; 1196 for (auto &&C : Closure->captures()) { 1197 if (C.capturesThis()) { 1198 if (C.getCaptureKind() == LCK_StarThis) 1199 IsByCopy = true; 1200 if (Closure->getLambdaCallOperator()->isConst()) 1201 IsConst = true; 1202 return true; 1203 } 1204 } 1205 return false; 1206 }; 1207 1208 bool IsByCopyCapture = false; 1209 bool IsConstCapture = false; 1210 CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent()); 1211 while (Closure && 1212 IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) { 1213 if (IsByCopyCapture) { 1214 if (IsConstCapture) 1215 ClassType.addConst(); 1216 return ASTCtx.getPointerType(ClassType); 1217 } 1218 Closure = isLambdaCallOperator(Closure->getParent()) 1219 ? cast<CXXRecordDecl>(Closure->getParent()->getParent()) 1220 : nullptr; 1221 } 1222 } 1223 return ASTCtx.getPointerType(ClassType); 1224 } 1225 1226 QualType Sema::getCurrentThisType() { 1227 DeclContext *DC = getFunctionLevelDeclContext(); 1228 QualType ThisTy = CXXThisTypeOverride; 1229 1230 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) { 1231 if (method && method->isImplicitObjectMemberFunction()) 1232 ThisTy = method->getThisType().getNonReferenceType(); 1233 } 1234 1235 if (ThisTy.isNull() && isLambdaCallWithImplicitObjectParameter(CurContext) && 1236 inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) { 1237 1238 // This is a lambda call operator that is being instantiated as a default 1239 // initializer. DC must point to the enclosing class type, so we can recover 1240 // the 'this' type from it. 1241 QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC)); 1242 // There are no cv-qualifiers for 'this' within default initializers, 1243 // per [expr.prim.general]p4. 1244 ThisTy = Context.getPointerType(ClassTy); 1245 } 1246 1247 // If we are within a lambda's call operator, the cv-qualifiers of 'this' 1248 // might need to be adjusted if the lambda or any of its enclosing lambda's 1249 // captures '*this' by copy. 1250 if (!ThisTy.isNull() && isLambdaCallOperator(CurContext)) 1251 return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy, 1252 CurContext, Context); 1253 return ThisTy; 1254 } 1255 1256 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S, 1257 Decl *ContextDecl, 1258 Qualifiers CXXThisTypeQuals, 1259 bool Enabled) 1260 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false) 1261 { 1262 if (!Enabled || !ContextDecl) 1263 return; 1264 1265 CXXRecordDecl *Record = nullptr; 1266 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl)) 1267 Record = Template->getTemplatedDecl(); 1268 else 1269 Record = cast<CXXRecordDecl>(ContextDecl); 1270 1271 QualType T = S.Context.getRecordType(Record); 1272 T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals); 1273 1274 S.CXXThisTypeOverride = 1275 S.Context.getLangOpts().HLSL ? T : S.Context.getPointerType(T); 1276 1277 this->Enabled = true; 1278 } 1279 1280 1281 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() { 1282 if (Enabled) { 1283 S.CXXThisTypeOverride = OldCXXThisTypeOverride; 1284 } 1285 } 1286 1287 static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) { 1288 SourceLocation DiagLoc = LSI->IntroducerRange.getEnd(); 1289 assert(!LSI->isCXXThisCaptured()); 1290 // [=, this] {}; // until C++20: Error: this when = is the default 1291 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval && 1292 !Sema.getLangOpts().CPlusPlus20) 1293 return; 1294 Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit) 1295 << FixItHint::CreateInsertion( 1296 DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this"); 1297 } 1298 1299 bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit, 1300 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt, 1301 const bool ByCopy) { 1302 // We don't need to capture this in an unevaluated context. 1303 if (isUnevaluatedContext() && !Explicit) 1304 return true; 1305 1306 assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value"); 1307 1308 const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt 1309 ? *FunctionScopeIndexToStopAt 1310 : FunctionScopes.size() - 1; 1311 1312 // Check that we can capture the *enclosing object* (referred to by '*this') 1313 // by the capturing-entity/closure (lambda/block/etc) at 1314 // MaxFunctionScopesIndex-deep on the FunctionScopes stack. 1315 1316 // Note: The *enclosing object* can only be captured by-value by a 1317 // closure that is a lambda, using the explicit notation: 1318 // [*this] { ... }. 1319 // Every other capture of the *enclosing object* results in its by-reference 1320 // capture. 1321 1322 // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes 1323 // stack), we can capture the *enclosing object* only if: 1324 // - 'L' has an explicit byref or byval capture of the *enclosing object* 1325 // - or, 'L' has an implicit capture. 1326 // AND 1327 // -- there is no enclosing closure 1328 // -- or, there is some enclosing closure 'E' that has already captured the 1329 // *enclosing object*, and every intervening closure (if any) between 'E' 1330 // and 'L' can implicitly capture the *enclosing object*. 1331 // -- or, every enclosing closure can implicitly capture the 1332 // *enclosing object* 1333 1334 1335 unsigned NumCapturingClosures = 0; 1336 for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) { 1337 if (CapturingScopeInfo *CSI = 1338 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) { 1339 if (CSI->CXXThisCaptureIndex != 0) { 1340 // 'this' is already being captured; there isn't anything more to do. 1341 CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose); 1342 break; 1343 } 1344 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI); 1345 if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) { 1346 // This context can't implicitly capture 'this'; fail out. 1347 if (BuildAndDiagnose) { 1348 LSI->CallOperator->setInvalidDecl(); 1349 Diag(Loc, diag::err_this_capture) 1350 << (Explicit && idx == MaxFunctionScopesIndex); 1351 if (!Explicit) 1352 buildLambdaThisCaptureFixit(*this, LSI); 1353 } 1354 return true; 1355 } 1356 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref || 1357 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval || 1358 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block || 1359 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion || 1360 (Explicit && idx == MaxFunctionScopesIndex)) { 1361 // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first 1362 // iteration through can be an explicit capture, all enclosing closures, 1363 // if any, must perform implicit captures. 1364 1365 // This closure can capture 'this'; continue looking upwards. 1366 NumCapturingClosures++; 1367 continue; 1368 } 1369 // This context can't implicitly capture 'this'; fail out. 1370 if (BuildAndDiagnose) { 1371 LSI->CallOperator->setInvalidDecl(); 1372 Diag(Loc, diag::err_this_capture) 1373 << (Explicit && idx == MaxFunctionScopesIndex); 1374 } 1375 if (!Explicit) 1376 buildLambdaThisCaptureFixit(*this, LSI); 1377 return true; 1378 } 1379 break; 1380 } 1381 if (!BuildAndDiagnose) return false; 1382 1383 // If we got here, then the closure at MaxFunctionScopesIndex on the 1384 // FunctionScopes stack, can capture the *enclosing object*, so capture it 1385 // (including implicit by-reference captures in any enclosing closures). 1386 1387 // In the loop below, respect the ByCopy flag only for the closure requesting 1388 // the capture (i.e. first iteration through the loop below). Ignore it for 1389 // all enclosing closure's up to NumCapturingClosures (since they must be 1390 // implicitly capturing the *enclosing object* by reference (see loop 1391 // above)). 1392 assert((!ByCopy || 1393 isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && 1394 "Only a lambda can capture the enclosing object (referred to by " 1395 "*this) by copy"); 1396 QualType ThisTy = getCurrentThisType(); 1397 for (int idx = MaxFunctionScopesIndex; NumCapturingClosures; 1398 --idx, --NumCapturingClosures) { 1399 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]); 1400 1401 // The type of the corresponding data member (not a 'this' pointer if 'by 1402 // copy'). 1403 QualType CaptureType = ByCopy ? ThisTy->getPointeeType() : ThisTy; 1404 1405 bool isNested = NumCapturingClosures > 1; 1406 CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy); 1407 } 1408 return false; 1409 } 1410 1411 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) { 1412 /// C++ 9.3.2: In the body of a non-static member function, the keyword this 1413 /// is a non-lvalue expression whose value is the address of the object for 1414 /// which the function is called. 1415 QualType ThisTy = getCurrentThisType(); 1416 1417 if (ThisTy.isNull()) { 1418 DeclContext *DC = getFunctionLevelDeclContext(); 1419 1420 if (const auto *Method = dyn_cast<CXXMethodDecl>(DC); 1421 Method && Method->isExplicitObjectMemberFunction()) { 1422 return Diag(Loc, diag::err_invalid_this_use) << 1; 1423 } 1424 1425 if (isLambdaCallWithExplicitObjectParameter(CurContext)) 1426 return Diag(Loc, diag::err_invalid_this_use) << 1; 1427 1428 return Diag(Loc, diag::err_invalid_this_use) << 0; 1429 } 1430 1431 return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false); 1432 } 1433 1434 Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type, 1435 bool IsImplicit) { 1436 auto *This = CXXThisExpr::Create(Context, Loc, Type, IsImplicit); 1437 MarkThisReferenced(This); 1438 return This; 1439 } 1440 1441 void Sema::MarkThisReferenced(CXXThisExpr *This) { 1442 CheckCXXThisCapture(This->getExprLoc()); 1443 } 1444 1445 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) { 1446 // If we're outside the body of a member function, then we'll have a specified 1447 // type for 'this'. 1448 if (CXXThisTypeOverride.isNull()) 1449 return false; 1450 1451 // Determine whether we're looking into a class that's currently being 1452 // defined. 1453 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl(); 1454 return Class && Class->isBeingDefined(); 1455 } 1456 1457 /// Parse construction of a specified type. 1458 /// Can be interpreted either as function-style casting ("int(x)") 1459 /// or class type construction ("ClassType(x,y,z)") 1460 /// or creation of a value-initialized type ("int()"). 1461 ExprResult 1462 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep, 1463 SourceLocation LParenOrBraceLoc, 1464 MultiExprArg exprs, 1465 SourceLocation RParenOrBraceLoc, 1466 bool ListInitialization) { 1467 if (!TypeRep) 1468 return ExprError(); 1469 1470 TypeSourceInfo *TInfo; 1471 QualType Ty = GetTypeFromParser(TypeRep, &TInfo); 1472 if (!TInfo) 1473 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation()); 1474 1475 auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs, 1476 RParenOrBraceLoc, ListInitialization); 1477 // Avoid creating a non-type-dependent expression that contains typos. 1478 // Non-type-dependent expressions are liable to be discarded without 1479 // checking for embedded typos. 1480 if (!Result.isInvalid() && Result.get()->isInstantiationDependent() && 1481 !Result.get()->isTypeDependent()) 1482 Result = CorrectDelayedTyposInExpr(Result.get()); 1483 else if (Result.isInvalid()) 1484 Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(), 1485 RParenOrBraceLoc, exprs, Ty); 1486 return Result; 1487 } 1488 1489 ExprResult 1490 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo, 1491 SourceLocation LParenOrBraceLoc, 1492 MultiExprArg Exprs, 1493 SourceLocation RParenOrBraceLoc, 1494 bool ListInitialization) { 1495 QualType Ty = TInfo->getType(); 1496 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc(); 1497 1498 assert((!ListInitialization || Exprs.size() == 1) && 1499 "List initialization must have exactly one expression."); 1500 SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc); 1501 1502 InitializedEntity Entity = 1503 InitializedEntity::InitializeTemporary(Context, TInfo); 1504 InitializationKind Kind = 1505 Exprs.size() 1506 ? ListInitialization 1507 ? InitializationKind::CreateDirectList( 1508 TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc) 1509 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc, 1510 RParenOrBraceLoc) 1511 : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc, 1512 RParenOrBraceLoc); 1513 1514 // C++17 [expr.type.conv]p1: 1515 // If the type is a placeholder for a deduced class type, [...perform class 1516 // template argument deduction...] 1517 // C++23: 1518 // Otherwise, if the type contains a placeholder type, it is replaced by the 1519 // type determined by placeholder type deduction. 1520 DeducedType *Deduced = Ty->getContainedDeducedType(); 1521 if (Deduced && !Deduced->isDeduced() && 1522 isa<DeducedTemplateSpecializationType>(Deduced)) { 1523 Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity, 1524 Kind, Exprs); 1525 if (Ty.isNull()) 1526 return ExprError(); 1527 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty); 1528 } else if (Deduced && !Deduced->isDeduced()) { 1529 MultiExprArg Inits = Exprs; 1530 if (ListInitialization) { 1531 auto *ILE = cast<InitListExpr>(Exprs[0]); 1532 Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits()); 1533 } 1534 1535 if (Inits.empty()) 1536 return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_init_no_expression) 1537 << Ty << FullRange); 1538 if (Inits.size() > 1) { 1539 Expr *FirstBad = Inits[1]; 1540 return ExprError(Diag(FirstBad->getBeginLoc(), 1541 diag::err_auto_expr_init_multiple_expressions) 1542 << Ty << FullRange); 1543 } 1544 if (getLangOpts().CPlusPlus23) { 1545 if (Ty->getAs<AutoType>()) 1546 Diag(TyBeginLoc, diag::warn_cxx20_compat_auto_expr) << FullRange; 1547 } 1548 Expr *Deduce = Inits[0]; 1549 if (isa<InitListExpr>(Deduce)) 1550 return ExprError( 1551 Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces) 1552 << ListInitialization << Ty << FullRange); 1553 QualType DeducedType; 1554 TemplateDeductionInfo Info(Deduce->getExprLoc()); 1555 TemplateDeductionResult Result = 1556 DeduceAutoType(TInfo->getTypeLoc(), Deduce, DeducedType, Info); 1557 if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed) 1558 return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_deduction_failure) 1559 << Ty << Deduce->getType() << FullRange 1560 << Deduce->getSourceRange()); 1561 if (DeducedType.isNull()) { 1562 assert(Result == TDK_AlreadyDiagnosed); 1563 return ExprError(); 1564 } 1565 1566 Ty = DeducedType; 1567 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty); 1568 } 1569 1570 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) 1571 return CXXUnresolvedConstructExpr::Create( 1572 Context, Ty.getNonReferenceType(), TInfo, LParenOrBraceLoc, Exprs, 1573 RParenOrBraceLoc, ListInitialization); 1574 1575 // C++ [expr.type.conv]p1: 1576 // If the expression list is a parenthesized single expression, the type 1577 // conversion expression is equivalent (in definedness, and if defined in 1578 // meaning) to the corresponding cast expression. 1579 if (Exprs.size() == 1 && !ListInitialization && 1580 !isa<InitListExpr>(Exprs[0])) { 1581 Expr *Arg = Exprs[0]; 1582 return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg, 1583 RParenOrBraceLoc); 1584 } 1585 1586 // For an expression of the form T(), T shall not be an array type. 1587 QualType ElemTy = Ty; 1588 if (Ty->isArrayType()) { 1589 if (!ListInitialization) 1590 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type) 1591 << FullRange); 1592 ElemTy = Context.getBaseElementType(Ty); 1593 } 1594 1595 // Only construct objects with object types. 1596 // The standard doesn't explicitly forbid function types here, but that's an 1597 // obvious oversight, as there's no way to dynamically construct a function 1598 // in general. 1599 if (Ty->isFunctionType()) 1600 return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type) 1601 << Ty << FullRange); 1602 1603 // C++17 [expr.type.conv]p2: 1604 // If the type is cv void and the initializer is (), the expression is a 1605 // prvalue of the specified type that performs no initialization. 1606 if (!Ty->isVoidType() && 1607 RequireCompleteType(TyBeginLoc, ElemTy, 1608 diag::err_invalid_incomplete_type_use, FullRange)) 1609 return ExprError(); 1610 1611 // Otherwise, the expression is a prvalue of the specified type whose 1612 // result object is direct-initialized (11.6) with the initializer. 1613 InitializationSequence InitSeq(*this, Entity, Kind, Exprs); 1614 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs); 1615 1616 if (Result.isInvalid()) 1617 return Result; 1618 1619 Expr *Inner = Result.get(); 1620 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner)) 1621 Inner = BTE->getSubExpr(); 1622 if (auto *CE = dyn_cast<ConstantExpr>(Inner); 1623 CE && CE->isImmediateInvocation()) 1624 Inner = CE->getSubExpr(); 1625 if (!isa<CXXTemporaryObjectExpr>(Inner) && 1626 !isa<CXXScalarValueInitExpr>(Inner)) { 1627 // If we created a CXXTemporaryObjectExpr, that node also represents the 1628 // functional cast. Otherwise, create an explicit cast to represent 1629 // the syntactic form of a functional-style cast that was used here. 1630 // 1631 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr 1632 // would give a more consistent AST representation than using a 1633 // CXXTemporaryObjectExpr. It's also weird that the functional cast 1634 // is sometimes handled by initialization and sometimes not. 1635 QualType ResultType = Result.get()->getType(); 1636 SourceRange Locs = ListInitialization 1637 ? SourceRange() 1638 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc); 1639 Result = CXXFunctionalCastExpr::Create( 1640 Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp, 1641 Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(), 1642 Locs.getBegin(), Locs.getEnd()); 1643 } 1644 1645 return Result; 1646 } 1647 1648 bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) { 1649 // [CUDA] Ignore this function, if we can't call it. 1650 const FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true); 1651 if (getLangOpts().CUDA) { 1652 auto CallPreference = IdentifyCUDAPreference(Caller, Method); 1653 // If it's not callable at all, it's not the right function. 1654 if (CallPreference < CFP_WrongSide) 1655 return false; 1656 if (CallPreference == CFP_WrongSide) { 1657 // Maybe. We have to check if there are better alternatives. 1658 DeclContext::lookup_result R = 1659 Method->getDeclContext()->lookup(Method->getDeclName()); 1660 for (const auto *D : R) { 1661 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 1662 if (IdentifyCUDAPreference(Caller, FD) > CFP_WrongSide) 1663 return false; 1664 } 1665 } 1666 // We've found no better variants. 1667 } 1668 } 1669 1670 SmallVector<const FunctionDecl*, 4> PreventedBy; 1671 bool Result = Method->isUsualDeallocationFunction(PreventedBy); 1672 1673 if (Result || !getLangOpts().CUDA || PreventedBy.empty()) 1674 return Result; 1675 1676 // In case of CUDA, return true if none of the 1-argument deallocator 1677 // functions are actually callable. 1678 return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) { 1679 assert(FD->getNumParams() == 1 && 1680 "Only single-operand functions should be in PreventedBy"); 1681 return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice; 1682 }); 1683 } 1684 1685 /// Determine whether the given function is a non-placement 1686 /// deallocation function. 1687 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) { 1688 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD)) 1689 return S.isUsualDeallocationFunction(Method); 1690 1691 if (FD->getOverloadedOperator() != OO_Delete && 1692 FD->getOverloadedOperator() != OO_Array_Delete) 1693 return false; 1694 1695 unsigned UsualParams = 1; 1696 1697 if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() && 1698 S.Context.hasSameUnqualifiedType( 1699 FD->getParamDecl(UsualParams)->getType(), 1700 S.Context.getSizeType())) 1701 ++UsualParams; 1702 1703 if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() && 1704 S.Context.hasSameUnqualifiedType( 1705 FD->getParamDecl(UsualParams)->getType(), 1706 S.Context.getTypeDeclType(S.getStdAlignValT()))) 1707 ++UsualParams; 1708 1709 return UsualParams == FD->getNumParams(); 1710 } 1711 1712 namespace { 1713 struct UsualDeallocFnInfo { 1714 UsualDeallocFnInfo() : Found(), FD(nullptr) {} 1715 UsualDeallocFnInfo(Sema &S, DeclAccessPair Found) 1716 : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())), 1717 Destroying(false), HasSizeT(false), HasAlignValT(false), 1718 CUDAPref(Sema::CFP_Native) { 1719 // A function template declaration is never a usual deallocation function. 1720 if (!FD) 1721 return; 1722 unsigned NumBaseParams = 1; 1723 if (FD->isDestroyingOperatorDelete()) { 1724 Destroying = true; 1725 ++NumBaseParams; 1726 } 1727 1728 if (NumBaseParams < FD->getNumParams() && 1729 S.Context.hasSameUnqualifiedType( 1730 FD->getParamDecl(NumBaseParams)->getType(), 1731 S.Context.getSizeType())) { 1732 ++NumBaseParams; 1733 HasSizeT = true; 1734 } 1735 1736 if (NumBaseParams < FD->getNumParams() && 1737 FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) { 1738 ++NumBaseParams; 1739 HasAlignValT = true; 1740 } 1741 1742 // In CUDA, determine how much we'd like / dislike to call this. 1743 if (S.getLangOpts().CUDA) 1744 CUDAPref = S.IdentifyCUDAPreference( 1745 S.getCurFunctionDecl(/*AllowLambda=*/true), FD); 1746 } 1747 1748 explicit operator bool() const { return FD; } 1749 1750 bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize, 1751 bool WantAlign) const { 1752 // C++ P0722: 1753 // A destroying operator delete is preferred over a non-destroying 1754 // operator delete. 1755 if (Destroying != Other.Destroying) 1756 return Destroying; 1757 1758 // C++17 [expr.delete]p10: 1759 // If the type has new-extended alignment, a function with a parameter 1760 // of type std::align_val_t is preferred; otherwise a function without 1761 // such a parameter is preferred 1762 if (HasAlignValT != Other.HasAlignValT) 1763 return HasAlignValT == WantAlign; 1764 1765 if (HasSizeT != Other.HasSizeT) 1766 return HasSizeT == WantSize; 1767 1768 // Use CUDA call preference as a tiebreaker. 1769 return CUDAPref > Other.CUDAPref; 1770 } 1771 1772 DeclAccessPair Found; 1773 FunctionDecl *FD; 1774 bool Destroying, HasSizeT, HasAlignValT; 1775 Sema::CUDAFunctionPreference CUDAPref; 1776 }; 1777 } 1778 1779 /// Determine whether a type has new-extended alignment. This may be called when 1780 /// the type is incomplete (for a delete-expression with an incomplete pointee 1781 /// type), in which case it will conservatively return false if the alignment is 1782 /// not known. 1783 static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) { 1784 return S.getLangOpts().AlignedAllocation && 1785 S.getASTContext().getTypeAlignIfKnown(AllocType) > 1786 S.getASTContext().getTargetInfo().getNewAlign(); 1787 } 1788 1789 /// Select the correct "usual" deallocation function to use from a selection of 1790 /// deallocation functions (either global or class-scope). 1791 static UsualDeallocFnInfo resolveDeallocationOverload( 1792 Sema &S, LookupResult &R, bool WantSize, bool WantAlign, 1793 llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) { 1794 UsualDeallocFnInfo Best; 1795 1796 for (auto I = R.begin(), E = R.end(); I != E; ++I) { 1797 UsualDeallocFnInfo Info(S, I.getPair()); 1798 if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) || 1799 Info.CUDAPref == Sema::CFP_Never) 1800 continue; 1801 1802 if (!Best) { 1803 Best = Info; 1804 if (BestFns) 1805 BestFns->push_back(Info); 1806 continue; 1807 } 1808 1809 if (Best.isBetterThan(Info, WantSize, WantAlign)) 1810 continue; 1811 1812 // If more than one preferred function is found, all non-preferred 1813 // functions are eliminated from further consideration. 1814 if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign)) 1815 BestFns->clear(); 1816 1817 Best = Info; 1818 if (BestFns) 1819 BestFns->push_back(Info); 1820 } 1821 1822 return Best; 1823 } 1824 1825 /// Determine whether a given type is a class for which 'delete[]' would call 1826 /// a member 'operator delete[]' with a 'size_t' parameter. This implies that 1827 /// we need to store the array size (even if the type is 1828 /// trivially-destructible). 1829 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc, 1830 QualType allocType) { 1831 const RecordType *record = 1832 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>(); 1833 if (!record) return false; 1834 1835 // Try to find an operator delete[] in class scope. 1836 1837 DeclarationName deleteName = 1838 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete); 1839 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName); 1840 S.LookupQualifiedName(ops, record->getDecl()); 1841 1842 // We're just doing this for information. 1843 ops.suppressDiagnostics(); 1844 1845 // Very likely: there's no operator delete[]. 1846 if (ops.empty()) return false; 1847 1848 // If it's ambiguous, it should be illegal to call operator delete[] 1849 // on this thing, so it doesn't matter if we allocate extra space or not. 1850 if (ops.isAmbiguous()) return false; 1851 1852 // C++17 [expr.delete]p10: 1853 // If the deallocation functions have class scope, the one without a 1854 // parameter of type std::size_t is selected. 1855 auto Best = resolveDeallocationOverload( 1856 S, ops, /*WantSize*/false, 1857 /*WantAlign*/hasNewExtendedAlignment(S, allocType)); 1858 return Best && Best.HasSizeT; 1859 } 1860 1861 /// Parsed a C++ 'new' expression (C++ 5.3.4). 1862 /// 1863 /// E.g.: 1864 /// @code new (memory) int[size][4] @endcode 1865 /// or 1866 /// @code ::new Foo(23, "hello") @endcode 1867 /// 1868 /// \param StartLoc The first location of the expression. 1869 /// \param UseGlobal True if 'new' was prefixed with '::'. 1870 /// \param PlacementLParen Opening paren of the placement arguments. 1871 /// \param PlacementArgs Placement new arguments. 1872 /// \param PlacementRParen Closing paren of the placement arguments. 1873 /// \param TypeIdParens If the type is in parens, the source range. 1874 /// \param D The type to be allocated, as well as array dimensions. 1875 /// \param Initializer The initializing expression or initializer-list, or null 1876 /// if there is none. 1877 ExprResult 1878 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, 1879 SourceLocation PlacementLParen, MultiExprArg PlacementArgs, 1880 SourceLocation PlacementRParen, SourceRange TypeIdParens, 1881 Declarator &D, Expr *Initializer) { 1882 std::optional<Expr *> ArraySize; 1883 // If the specified type is an array, unwrap it and save the expression. 1884 if (D.getNumTypeObjects() > 0 && 1885 D.getTypeObject(0).Kind == DeclaratorChunk::Array) { 1886 DeclaratorChunk &Chunk = D.getTypeObject(0); 1887 if (D.getDeclSpec().hasAutoTypeSpec()) 1888 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto) 1889 << D.getSourceRange()); 1890 if (Chunk.Arr.hasStatic) 1891 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new) 1892 << D.getSourceRange()); 1893 if (!Chunk.Arr.NumElts && !Initializer) 1894 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size) 1895 << D.getSourceRange()); 1896 1897 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts); 1898 D.DropFirstTypeObject(); 1899 } 1900 1901 // Every dimension shall be of constant size. 1902 if (ArraySize) { 1903 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) { 1904 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array) 1905 break; 1906 1907 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr; 1908 if (Expr *NumElts = (Expr *)Array.NumElts) { 1909 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) { 1910 // FIXME: GCC permits constant folding here. We should either do so consistently 1911 // or not do so at all, rather than changing behavior in C++14 onwards. 1912 if (getLangOpts().CPlusPlus14) { 1913 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator 1914 // shall be a converted constant expression (5.19) of type std::size_t 1915 // and shall evaluate to a strictly positive value. 1916 llvm::APSInt Value(Context.getIntWidth(Context.getSizeType())); 1917 Array.NumElts 1918 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value, 1919 CCEK_ArrayBound) 1920 .get(); 1921 } else { 1922 Array.NumElts = 1923 VerifyIntegerConstantExpression( 1924 NumElts, nullptr, diag::err_new_array_nonconst, AllowFold) 1925 .get(); 1926 } 1927 if (!Array.NumElts) 1928 return ExprError(); 1929 } 1930 } 1931 } 1932 } 1933 1934 TypeSourceInfo *TInfo = GetTypeForDeclarator(D); 1935 QualType AllocType = TInfo->getType(); 1936 if (D.isInvalidType()) 1937 return ExprError(); 1938 1939 SourceRange DirectInitRange; 1940 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) 1941 DirectInitRange = List->getSourceRange(); 1942 1943 return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal, 1944 PlacementLParen, PlacementArgs, PlacementRParen, 1945 TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange, 1946 Initializer); 1947 } 1948 1949 static bool isLegalArrayNewInitializer(CXXNewInitializationStyle Style, 1950 Expr *Init, bool IsCPlusPlus20) { 1951 if (!Init) 1952 return true; 1953 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) 1954 return IsCPlusPlus20 || PLE->getNumExprs() == 0; 1955 if (isa<ImplicitValueInitExpr>(Init)) 1956 return true; 1957 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) 1958 return !CCE->isListInitialization() && 1959 CCE->getConstructor()->isDefaultConstructor(); 1960 else if (Style == CXXNewInitializationStyle::Braces) { 1961 assert(isa<InitListExpr>(Init) && 1962 "Shouldn't create list CXXConstructExprs for arrays."); 1963 return true; 1964 } 1965 return false; 1966 } 1967 1968 bool 1969 Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const { 1970 if (!getLangOpts().AlignedAllocationUnavailable) 1971 return false; 1972 if (FD.isDefined()) 1973 return false; 1974 std::optional<unsigned> AlignmentParam; 1975 if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) && 1976 AlignmentParam) 1977 return true; 1978 return false; 1979 } 1980 1981 // Emit a diagnostic if an aligned allocation/deallocation function that is not 1982 // implemented in the standard library is selected. 1983 void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD, 1984 SourceLocation Loc) { 1985 if (isUnavailableAlignedAllocationFunction(FD)) { 1986 const llvm::Triple &T = getASTContext().getTargetInfo().getTriple(); 1987 StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling( 1988 getASTContext().getTargetInfo().getPlatformName()); 1989 VersionTuple OSVersion = alignedAllocMinVersion(T.getOS()); 1990 1991 OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator(); 1992 bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete; 1993 Diag(Loc, diag::err_aligned_allocation_unavailable) 1994 << IsDelete << FD.getType().getAsString() << OSName 1995 << OSVersion.getAsString() << OSVersion.empty(); 1996 Diag(Loc, diag::note_silence_aligned_allocation_unavailable); 1997 } 1998 } 1999 2000 ExprResult Sema::BuildCXXNew(SourceRange Range, bool UseGlobal, 2001 SourceLocation PlacementLParen, 2002 MultiExprArg PlacementArgs, 2003 SourceLocation PlacementRParen, 2004 SourceRange TypeIdParens, QualType AllocType, 2005 TypeSourceInfo *AllocTypeInfo, 2006 std::optional<Expr *> ArraySize, 2007 SourceRange DirectInitRange, Expr *Initializer) { 2008 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange(); 2009 SourceLocation StartLoc = Range.getBegin(); 2010 2011 CXXNewInitializationStyle InitStyle; 2012 if (DirectInitRange.isValid()) { 2013 assert(Initializer && "Have parens but no initializer."); 2014 InitStyle = CXXNewInitializationStyle::Parens; 2015 } else if (Initializer && isa<InitListExpr>(Initializer)) 2016 InitStyle = CXXNewInitializationStyle::Braces; 2017 else { 2018 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) || 2019 isa<CXXConstructExpr>(Initializer)) && 2020 "Initializer expression that cannot have been implicitly created."); 2021 InitStyle = CXXNewInitializationStyle::None; 2022 } 2023 2024 MultiExprArg Exprs(&Initializer, Initializer ? 1 : 0); 2025 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) { 2026 assert(InitStyle == CXXNewInitializationStyle::Parens && 2027 "paren init for non-call init"); 2028 Exprs = MultiExprArg(List->getExprs(), List->getNumExprs()); 2029 } 2030 2031 // C++11 [expr.new]p15: 2032 // A new-expression that creates an object of type T initializes that 2033 // object as follows: 2034 InitializationKind Kind = [&] { 2035 switch (InitStyle) { 2036 // - If the new-initializer is omitted, the object is default- 2037 // initialized (8.5); if no initialization is performed, 2038 // the object has indeterminate value 2039 case CXXNewInitializationStyle::None: 2040 return InitializationKind::CreateDefault(TypeRange.getBegin()); 2041 // - Otherwise, the new-initializer is interpreted according to the 2042 // initialization rules of 8.5 for direct-initialization. 2043 case CXXNewInitializationStyle::Parens: 2044 return InitializationKind::CreateDirect(TypeRange.getBegin(), 2045 DirectInitRange.getBegin(), 2046 DirectInitRange.getEnd()); 2047 case CXXNewInitializationStyle::Braces: 2048 return InitializationKind::CreateDirectList(TypeRange.getBegin(), 2049 Initializer->getBeginLoc(), 2050 Initializer->getEndLoc()); 2051 } 2052 llvm_unreachable("Unknown initialization kind"); 2053 }(); 2054 2055 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for. 2056 auto *Deduced = AllocType->getContainedDeducedType(); 2057 if (Deduced && !Deduced->isDeduced() && 2058 isa<DeducedTemplateSpecializationType>(Deduced)) { 2059 if (ArraySize) 2060 return ExprError( 2061 Diag(*ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(), 2062 diag::err_deduced_class_template_compound_type) 2063 << /*array*/ 2 2064 << (*ArraySize ? (*ArraySize)->getSourceRange() : TypeRange)); 2065 2066 InitializedEntity Entity 2067 = InitializedEntity::InitializeNew(StartLoc, AllocType); 2068 AllocType = DeduceTemplateSpecializationFromInitializer( 2069 AllocTypeInfo, Entity, Kind, Exprs); 2070 if (AllocType.isNull()) 2071 return ExprError(); 2072 } else if (Deduced && !Deduced->isDeduced()) { 2073 MultiExprArg Inits = Exprs; 2074 bool Braced = (InitStyle == CXXNewInitializationStyle::Braces); 2075 if (Braced) { 2076 auto *ILE = cast<InitListExpr>(Exprs[0]); 2077 Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits()); 2078 } 2079 2080 if (InitStyle == CXXNewInitializationStyle::None || Inits.empty()) 2081 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg) 2082 << AllocType << TypeRange); 2083 if (Inits.size() > 1) { 2084 Expr *FirstBad = Inits[1]; 2085 return ExprError(Diag(FirstBad->getBeginLoc(), 2086 diag::err_auto_new_ctor_multiple_expressions) 2087 << AllocType << TypeRange); 2088 } 2089 if (Braced && !getLangOpts().CPlusPlus17) 2090 Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init) 2091 << AllocType << TypeRange; 2092 Expr *Deduce = Inits[0]; 2093 if (isa<InitListExpr>(Deduce)) 2094 return ExprError( 2095 Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces) 2096 << Braced << AllocType << TypeRange); 2097 QualType DeducedType; 2098 TemplateDeductionInfo Info(Deduce->getExprLoc()); 2099 TemplateDeductionResult Result = 2100 DeduceAutoType(AllocTypeInfo->getTypeLoc(), Deduce, DeducedType, Info); 2101 if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed) 2102 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure) 2103 << AllocType << Deduce->getType() << TypeRange 2104 << Deduce->getSourceRange()); 2105 if (DeducedType.isNull()) { 2106 assert(Result == TDK_AlreadyDiagnosed); 2107 return ExprError(); 2108 } 2109 AllocType = DeducedType; 2110 } 2111 2112 // Per C++0x [expr.new]p5, the type being constructed may be a 2113 // typedef of an array type. 2114 if (!ArraySize) { 2115 if (const ConstantArrayType *Array 2116 = Context.getAsConstantArrayType(AllocType)) { 2117 ArraySize = IntegerLiteral::Create(Context, Array->getSize(), 2118 Context.getSizeType(), 2119 TypeRange.getEnd()); 2120 AllocType = Array->getElementType(); 2121 } 2122 } 2123 2124 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange)) 2125 return ExprError(); 2126 2127 if (ArraySize && !checkArrayElementAlignment(AllocType, TypeRange.getBegin())) 2128 return ExprError(); 2129 2130 // In ARC, infer 'retaining' for the allocated 2131 if (getLangOpts().ObjCAutoRefCount && 2132 AllocType.getObjCLifetime() == Qualifiers::OCL_None && 2133 AllocType->isObjCLifetimeType()) { 2134 AllocType = Context.getLifetimeQualifiedType(AllocType, 2135 AllocType->getObjCARCImplicitLifetime()); 2136 } 2137 2138 QualType ResultType = Context.getPointerType(AllocType); 2139 2140 if (ArraySize && *ArraySize && 2141 (*ArraySize)->getType()->isNonOverloadPlaceholderType()) { 2142 ExprResult result = CheckPlaceholderExpr(*ArraySize); 2143 if (result.isInvalid()) return ExprError(); 2144 ArraySize = result.get(); 2145 } 2146 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have 2147 // integral or enumeration type with a non-negative value." 2148 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped 2149 // enumeration type, or a class type for which a single non-explicit 2150 // conversion function to integral or unscoped enumeration type exists. 2151 // C++1y [expr.new]p6: The expression [...] is implicitly converted to 2152 // std::size_t. 2153 std::optional<uint64_t> KnownArraySize; 2154 if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) { 2155 ExprResult ConvertedSize; 2156 if (getLangOpts().CPlusPlus14) { 2157 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?"); 2158 2159 ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(), 2160 AA_Converting); 2161 2162 if (!ConvertedSize.isInvalid() && 2163 (*ArraySize)->getType()->getAs<RecordType>()) 2164 // Diagnose the compatibility of this conversion. 2165 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion) 2166 << (*ArraySize)->getType() << 0 << "'size_t'"; 2167 } else { 2168 class SizeConvertDiagnoser : public ICEConvertDiagnoser { 2169 protected: 2170 Expr *ArraySize; 2171 2172 public: 2173 SizeConvertDiagnoser(Expr *ArraySize) 2174 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false), 2175 ArraySize(ArraySize) {} 2176 2177 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, 2178 QualType T) override { 2179 return S.Diag(Loc, diag::err_array_size_not_integral) 2180 << S.getLangOpts().CPlusPlus11 << T; 2181 } 2182 2183 SemaDiagnosticBuilder diagnoseIncomplete( 2184 Sema &S, SourceLocation Loc, QualType T) override { 2185 return S.Diag(Loc, diag::err_array_size_incomplete_type) 2186 << T << ArraySize->getSourceRange(); 2187 } 2188 2189 SemaDiagnosticBuilder diagnoseExplicitConv( 2190 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { 2191 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy; 2192 } 2193 2194 SemaDiagnosticBuilder noteExplicitConv( 2195 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 2196 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 2197 << ConvTy->isEnumeralType() << ConvTy; 2198 } 2199 2200 SemaDiagnosticBuilder diagnoseAmbiguous( 2201 Sema &S, SourceLocation Loc, QualType T) override { 2202 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T; 2203 } 2204 2205 SemaDiagnosticBuilder noteAmbiguous( 2206 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 2207 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 2208 << ConvTy->isEnumeralType() << ConvTy; 2209 } 2210 2211 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 2212 QualType T, 2213 QualType ConvTy) override { 2214 return S.Diag(Loc, 2215 S.getLangOpts().CPlusPlus11 2216 ? diag::warn_cxx98_compat_array_size_conversion 2217 : diag::ext_array_size_conversion) 2218 << T << ConvTy->isEnumeralType() << ConvTy; 2219 } 2220 } SizeDiagnoser(*ArraySize); 2221 2222 ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize, 2223 SizeDiagnoser); 2224 } 2225 if (ConvertedSize.isInvalid()) 2226 return ExprError(); 2227 2228 ArraySize = ConvertedSize.get(); 2229 QualType SizeType = (*ArraySize)->getType(); 2230 2231 if (!SizeType->isIntegralOrUnscopedEnumerationType()) 2232 return ExprError(); 2233 2234 // C++98 [expr.new]p7: 2235 // The expression in a direct-new-declarator shall have integral type 2236 // with a non-negative value. 2237 // 2238 // Let's see if this is a constant < 0. If so, we reject it out of hand, 2239 // per CWG1464. Otherwise, if it's not a constant, we must have an 2240 // unparenthesized array type. 2241 2242 // We've already performed any required implicit conversion to integer or 2243 // unscoped enumeration type. 2244 // FIXME: Per CWG1464, we are required to check the value prior to 2245 // converting to size_t. This will never find a negative array size in 2246 // C++14 onwards, because Value is always unsigned here! 2247 if (std::optional<llvm::APSInt> Value = 2248 (*ArraySize)->getIntegerConstantExpr(Context)) { 2249 if (Value->isSigned() && Value->isNegative()) { 2250 return ExprError(Diag((*ArraySize)->getBeginLoc(), 2251 diag::err_typecheck_negative_array_size) 2252 << (*ArraySize)->getSourceRange()); 2253 } 2254 2255 if (!AllocType->isDependentType()) { 2256 unsigned ActiveSizeBits = 2257 ConstantArrayType::getNumAddressingBits(Context, AllocType, *Value); 2258 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) 2259 return ExprError( 2260 Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large) 2261 << toString(*Value, 10) << (*ArraySize)->getSourceRange()); 2262 } 2263 2264 KnownArraySize = Value->getZExtValue(); 2265 } else if (TypeIdParens.isValid()) { 2266 // Can't have dynamic array size when the type-id is in parentheses. 2267 Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst) 2268 << (*ArraySize)->getSourceRange() 2269 << FixItHint::CreateRemoval(TypeIdParens.getBegin()) 2270 << FixItHint::CreateRemoval(TypeIdParens.getEnd()); 2271 2272 TypeIdParens = SourceRange(); 2273 } 2274 2275 // Note that we do *not* convert the argument in any way. It can 2276 // be signed, larger than size_t, whatever. 2277 } 2278 2279 FunctionDecl *OperatorNew = nullptr; 2280 FunctionDecl *OperatorDelete = nullptr; 2281 unsigned Alignment = 2282 AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType); 2283 unsigned NewAlignment = Context.getTargetInfo().getNewAlign(); 2284 bool PassAlignment = getLangOpts().AlignedAllocation && 2285 Alignment > NewAlignment; 2286 2287 if (CheckArgsForPlaceholders(PlacementArgs)) 2288 return ExprError(); 2289 2290 AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both; 2291 if (!AllocType->isDependentType() && 2292 !Expr::hasAnyTypeDependentArguments(PlacementArgs) && 2293 FindAllocationFunctions( 2294 StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope, 2295 AllocType, ArraySize.has_value(), PassAlignment, PlacementArgs, 2296 OperatorNew, OperatorDelete)) 2297 return ExprError(); 2298 2299 // If this is an array allocation, compute whether the usual array 2300 // deallocation function for the type has a size_t parameter. 2301 bool UsualArrayDeleteWantsSize = false; 2302 if (ArraySize && !AllocType->isDependentType()) 2303 UsualArrayDeleteWantsSize = 2304 doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType); 2305 2306 SmallVector<Expr *, 8> AllPlaceArgs; 2307 if (OperatorNew) { 2308 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); 2309 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction 2310 : VariadicDoesNotApply; 2311 2312 // We've already converted the placement args, just fill in any default 2313 // arguments. Skip the first parameter because we don't have a corresponding 2314 // argument. Skip the second parameter too if we're passing in the 2315 // alignment; we've already filled it in. 2316 unsigned NumImplicitArgs = PassAlignment ? 2 : 1; 2317 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 2318 NumImplicitArgs, PlacementArgs, AllPlaceArgs, 2319 CallType)) 2320 return ExprError(); 2321 2322 if (!AllPlaceArgs.empty()) 2323 PlacementArgs = AllPlaceArgs; 2324 2325 // We would like to perform some checking on the given `operator new` call, 2326 // but the PlacementArgs does not contain the implicit arguments, 2327 // namely allocation size and maybe allocation alignment, 2328 // so we need to conjure them. 2329 2330 QualType SizeTy = Context.getSizeType(); 2331 unsigned SizeTyWidth = Context.getTypeSize(SizeTy); 2332 2333 llvm::APInt SingleEltSize( 2334 SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity()); 2335 2336 // How many bytes do we want to allocate here? 2337 std::optional<llvm::APInt> AllocationSize; 2338 if (!ArraySize && !AllocType->isDependentType()) { 2339 // For non-array operator new, we only want to allocate one element. 2340 AllocationSize = SingleEltSize; 2341 } else if (KnownArraySize && !AllocType->isDependentType()) { 2342 // For array operator new, only deal with static array size case. 2343 bool Overflow; 2344 AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize) 2345 .umul_ov(SingleEltSize, Overflow); 2346 (void)Overflow; 2347 assert( 2348 !Overflow && 2349 "Expected that all the overflows would have been handled already."); 2350 } 2351 2352 IntegerLiteral AllocationSizeLiteral( 2353 Context, AllocationSize.value_or(llvm::APInt::getZero(SizeTyWidth)), 2354 SizeTy, SourceLocation()); 2355 // Otherwise, if we failed to constant-fold the allocation size, we'll 2356 // just give up and pass-in something opaque, that isn't a null pointer. 2357 OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue, 2358 OK_Ordinary, /*SourceExpr=*/nullptr); 2359 2360 // Let's synthesize the alignment argument in case we will need it. 2361 // Since we *really* want to allocate these on stack, this is slightly ugly 2362 // because there might not be a `std::align_val_t` type. 2363 EnumDecl *StdAlignValT = getStdAlignValT(); 2364 QualType AlignValT = 2365 StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy; 2366 IntegerLiteral AlignmentLiteral( 2367 Context, 2368 llvm::APInt(Context.getTypeSize(SizeTy), 2369 Alignment / Context.getCharWidth()), 2370 SizeTy, SourceLocation()); 2371 ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT, 2372 CK_IntegralCast, &AlignmentLiteral, 2373 VK_PRValue, FPOptionsOverride()); 2374 2375 // Adjust placement args by prepending conjured size and alignment exprs. 2376 llvm::SmallVector<Expr *, 8> CallArgs; 2377 CallArgs.reserve(NumImplicitArgs + PlacementArgs.size()); 2378 CallArgs.emplace_back(AllocationSize 2379 ? static_cast<Expr *>(&AllocationSizeLiteral) 2380 : &OpaqueAllocationSize); 2381 if (PassAlignment) 2382 CallArgs.emplace_back(&DesiredAlignment); 2383 CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end()); 2384 2385 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs); 2386 2387 checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs, 2388 /*IsMemberFunction=*/false, StartLoc, Range, CallType); 2389 2390 // Warn if the type is over-aligned and is being allocated by (unaligned) 2391 // global operator new. 2392 if (PlacementArgs.empty() && !PassAlignment && 2393 (OperatorNew->isImplicit() || 2394 (OperatorNew->getBeginLoc().isValid() && 2395 getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) { 2396 if (Alignment > NewAlignment) 2397 Diag(StartLoc, diag::warn_overaligned_type) 2398 << AllocType 2399 << unsigned(Alignment / Context.getCharWidth()) 2400 << unsigned(NewAlignment / Context.getCharWidth()); 2401 } 2402 } 2403 2404 // Array 'new' can't have any initializers except empty parentheses. 2405 // Initializer lists are also allowed, in C++11. Rely on the parser for the 2406 // dialect distinction. 2407 if (ArraySize && !isLegalArrayNewInitializer(InitStyle, Initializer, 2408 getLangOpts().CPlusPlus20)) { 2409 SourceRange InitRange(Exprs.front()->getBeginLoc(), 2410 Exprs.back()->getEndLoc()); 2411 Diag(StartLoc, diag::err_new_array_init_args) << InitRange; 2412 return ExprError(); 2413 } 2414 2415 // If we can perform the initialization, and we've not already done so, 2416 // do it now. 2417 if (!AllocType->isDependentType() && 2418 !Expr::hasAnyTypeDependentArguments(Exprs)) { 2419 // The type we initialize is the complete type, including the array bound. 2420 QualType InitType; 2421 if (KnownArraySize) 2422 InitType = Context.getConstantArrayType( 2423 AllocType, 2424 llvm::APInt(Context.getTypeSize(Context.getSizeType()), 2425 *KnownArraySize), 2426 *ArraySize, ArraySizeModifier::Normal, 0); 2427 else if (ArraySize) 2428 InitType = Context.getIncompleteArrayType(AllocType, 2429 ArraySizeModifier::Normal, 0); 2430 else 2431 InitType = AllocType; 2432 2433 InitializedEntity Entity 2434 = InitializedEntity::InitializeNew(StartLoc, InitType); 2435 InitializationSequence InitSeq(*this, Entity, Kind, Exprs); 2436 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, Exprs); 2437 if (FullInit.isInvalid()) 2438 return ExprError(); 2439 2440 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because 2441 // we don't want the initialized object to be destructed. 2442 // FIXME: We should not create these in the first place. 2443 if (CXXBindTemporaryExpr *Binder = 2444 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get())) 2445 FullInit = Binder->getSubExpr(); 2446 2447 Initializer = FullInit.get(); 2448 2449 // FIXME: If we have a KnownArraySize, check that the array bound of the 2450 // initializer is no greater than that constant value. 2451 2452 if (ArraySize && !*ArraySize) { 2453 auto *CAT = Context.getAsConstantArrayType(Initializer->getType()); 2454 if (CAT) { 2455 // FIXME: Track that the array size was inferred rather than explicitly 2456 // specified. 2457 ArraySize = IntegerLiteral::Create( 2458 Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd()); 2459 } else { 2460 Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init) 2461 << Initializer->getSourceRange(); 2462 } 2463 } 2464 } 2465 2466 // Mark the new and delete operators as referenced. 2467 if (OperatorNew) { 2468 if (DiagnoseUseOfDecl(OperatorNew, StartLoc)) 2469 return ExprError(); 2470 MarkFunctionReferenced(StartLoc, OperatorNew); 2471 } 2472 if (OperatorDelete) { 2473 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc)) 2474 return ExprError(); 2475 MarkFunctionReferenced(StartLoc, OperatorDelete); 2476 } 2477 2478 return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete, 2479 PassAlignment, UsualArrayDeleteWantsSize, 2480 PlacementArgs, TypeIdParens, ArraySize, InitStyle, 2481 Initializer, ResultType, AllocTypeInfo, Range, 2482 DirectInitRange); 2483 } 2484 2485 /// Checks that a type is suitable as the allocated type 2486 /// in a new-expression. 2487 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc, 2488 SourceRange R) { 2489 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an 2490 // abstract class type or array thereof. 2491 if (AllocType->isFunctionType()) 2492 return Diag(Loc, diag::err_bad_new_type) 2493 << AllocType << 0 << R; 2494 else if (AllocType->isReferenceType()) 2495 return Diag(Loc, diag::err_bad_new_type) 2496 << AllocType << 1 << R; 2497 else if (!AllocType->isDependentType() && 2498 RequireCompleteSizedType( 2499 Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R)) 2500 return true; 2501 else if (RequireNonAbstractType(Loc, AllocType, 2502 diag::err_allocation_of_abstract_type)) 2503 return true; 2504 else if (AllocType->isVariablyModifiedType()) 2505 return Diag(Loc, diag::err_variably_modified_new_type) 2506 << AllocType; 2507 else if (AllocType.getAddressSpace() != LangAS::Default && 2508 !getLangOpts().OpenCLCPlusPlus) 2509 return Diag(Loc, diag::err_address_space_qualified_new) 2510 << AllocType.getUnqualifiedType() 2511 << AllocType.getQualifiers().getAddressSpaceAttributePrintValue(); 2512 else if (getLangOpts().ObjCAutoRefCount) { 2513 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) { 2514 QualType BaseAllocType = Context.getBaseElementType(AT); 2515 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None && 2516 BaseAllocType->isObjCLifetimeType()) 2517 return Diag(Loc, diag::err_arc_new_array_without_ownership) 2518 << BaseAllocType; 2519 } 2520 } 2521 2522 return false; 2523 } 2524 2525 static bool resolveAllocationOverload( 2526 Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args, 2527 bool &PassAlignment, FunctionDecl *&Operator, 2528 OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) { 2529 OverloadCandidateSet Candidates(R.getNameLoc(), 2530 OverloadCandidateSet::CSK_Normal); 2531 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end(); 2532 Alloc != AllocEnd; ++Alloc) { 2533 // Even member operator new/delete are implicitly treated as 2534 // static, so don't use AddMemberCandidate. 2535 NamedDecl *D = (*Alloc)->getUnderlyingDecl(); 2536 2537 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 2538 S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(), 2539 /*ExplicitTemplateArgs=*/nullptr, Args, 2540 Candidates, 2541 /*SuppressUserConversions=*/false); 2542 continue; 2543 } 2544 2545 FunctionDecl *Fn = cast<FunctionDecl>(D); 2546 S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates, 2547 /*SuppressUserConversions=*/false); 2548 } 2549 2550 // Do the resolution. 2551 OverloadCandidateSet::iterator Best; 2552 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { 2553 case OR_Success: { 2554 // Got one! 2555 FunctionDecl *FnDecl = Best->Function; 2556 if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(), 2557 Best->FoundDecl) == Sema::AR_inaccessible) 2558 return true; 2559 2560 Operator = FnDecl; 2561 return false; 2562 } 2563 2564 case OR_No_Viable_Function: 2565 // C++17 [expr.new]p13: 2566 // If no matching function is found and the allocated object type has 2567 // new-extended alignment, the alignment argument is removed from the 2568 // argument list, and overload resolution is performed again. 2569 if (PassAlignment) { 2570 PassAlignment = false; 2571 AlignArg = Args[1]; 2572 Args.erase(Args.begin() + 1); 2573 return resolveAllocationOverload(S, R, Range, Args, PassAlignment, 2574 Operator, &Candidates, AlignArg, 2575 Diagnose); 2576 } 2577 2578 // MSVC will fall back on trying to find a matching global operator new 2579 // if operator new[] cannot be found. Also, MSVC will leak by not 2580 // generating a call to operator delete or operator delete[], but we 2581 // will not replicate that bug. 2582 // FIXME: Find out how this interacts with the std::align_val_t fallback 2583 // once MSVC implements it. 2584 if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New && 2585 S.Context.getLangOpts().MSVCCompat) { 2586 R.clear(); 2587 R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New)); 2588 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); 2589 // FIXME: This will give bad diagnostics pointing at the wrong functions. 2590 return resolveAllocationOverload(S, R, Range, Args, PassAlignment, 2591 Operator, /*Candidates=*/nullptr, 2592 /*AlignArg=*/nullptr, Diagnose); 2593 } 2594 2595 if (Diagnose) { 2596 // If this is an allocation of the form 'new (p) X' for some object 2597 // pointer p (or an expression that will decay to such a pointer), 2598 // diagnose the missing inclusion of <new>. 2599 if (!R.isClassLookup() && Args.size() == 2 && 2600 (Args[1]->getType()->isObjectPointerType() || 2601 Args[1]->getType()->isArrayType())) { 2602 S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new) 2603 << R.getLookupName() << Range; 2604 // Listing the candidates is unlikely to be useful; skip it. 2605 return true; 2606 } 2607 2608 // Finish checking all candidates before we note any. This checking can 2609 // produce additional diagnostics so can't be interleaved with our 2610 // emission of notes. 2611 // 2612 // For an aligned allocation, separately check the aligned and unaligned 2613 // candidates with their respective argument lists. 2614 SmallVector<OverloadCandidate*, 32> Cands; 2615 SmallVector<OverloadCandidate*, 32> AlignedCands; 2616 llvm::SmallVector<Expr*, 4> AlignedArgs; 2617 if (AlignedCandidates) { 2618 auto IsAligned = [](OverloadCandidate &C) { 2619 return C.Function->getNumParams() > 1 && 2620 C.Function->getParamDecl(1)->getType()->isAlignValT(); 2621 }; 2622 auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); }; 2623 2624 AlignedArgs.reserve(Args.size() + 1); 2625 AlignedArgs.push_back(Args[0]); 2626 AlignedArgs.push_back(AlignArg); 2627 AlignedArgs.append(Args.begin() + 1, Args.end()); 2628 AlignedCands = AlignedCandidates->CompleteCandidates( 2629 S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned); 2630 2631 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args, 2632 R.getNameLoc(), IsUnaligned); 2633 } else { 2634 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args, 2635 R.getNameLoc()); 2636 } 2637 2638 S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call) 2639 << R.getLookupName() << Range; 2640 if (AlignedCandidates) 2641 AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "", 2642 R.getNameLoc()); 2643 Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc()); 2644 } 2645 return true; 2646 2647 case OR_Ambiguous: 2648 if (Diagnose) { 2649 Candidates.NoteCandidates( 2650 PartialDiagnosticAt(R.getNameLoc(), 2651 S.PDiag(diag::err_ovl_ambiguous_call) 2652 << R.getLookupName() << Range), 2653 S, OCD_AmbiguousCandidates, Args); 2654 } 2655 return true; 2656 2657 case OR_Deleted: { 2658 if (Diagnose) { 2659 Candidates.NoteCandidates( 2660 PartialDiagnosticAt(R.getNameLoc(), 2661 S.PDiag(diag::err_ovl_deleted_call) 2662 << R.getLookupName() << Range), 2663 S, OCD_AllCandidates, Args); 2664 } 2665 return true; 2666 } 2667 } 2668 llvm_unreachable("Unreachable, bad result from BestViableFunction"); 2669 } 2670 2671 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, 2672 AllocationFunctionScope NewScope, 2673 AllocationFunctionScope DeleteScope, 2674 QualType AllocType, bool IsArray, 2675 bool &PassAlignment, MultiExprArg PlaceArgs, 2676 FunctionDecl *&OperatorNew, 2677 FunctionDecl *&OperatorDelete, 2678 bool Diagnose) { 2679 // --- Choosing an allocation function --- 2680 // C++ 5.3.4p8 - 14 & 18 2681 // 1) If looking in AFS_Global scope for allocation functions, only look in 2682 // the global scope. Else, if AFS_Class, only look in the scope of the 2683 // allocated class. If AFS_Both, look in both. 2684 // 2) If an array size is given, look for operator new[], else look for 2685 // operator new. 2686 // 3) The first argument is always size_t. Append the arguments from the 2687 // placement form. 2688 2689 SmallVector<Expr*, 8> AllocArgs; 2690 AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size()); 2691 2692 // We don't care about the actual value of these arguments. 2693 // FIXME: Should the Sema create the expression and embed it in the syntax 2694 // tree? Or should the consumer just recalculate the value? 2695 // FIXME: Using a dummy value will interact poorly with attribute enable_if. 2696 QualType SizeTy = Context.getSizeType(); 2697 unsigned SizeTyWidth = Context.getTypeSize(SizeTy); 2698 IntegerLiteral Size(Context, llvm::APInt::getZero(SizeTyWidth), SizeTy, 2699 SourceLocation()); 2700 AllocArgs.push_back(&Size); 2701 2702 QualType AlignValT = Context.VoidTy; 2703 if (PassAlignment) { 2704 DeclareGlobalNewDelete(); 2705 AlignValT = Context.getTypeDeclType(getStdAlignValT()); 2706 } 2707 CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation()); 2708 if (PassAlignment) 2709 AllocArgs.push_back(&Align); 2710 2711 AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end()); 2712 2713 // C++ [expr.new]p8: 2714 // If the allocated type is a non-array type, the allocation 2715 // function's name is operator new and the deallocation function's 2716 // name is operator delete. If the allocated type is an array 2717 // type, the allocation function's name is operator new[] and the 2718 // deallocation function's name is operator delete[]. 2719 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName( 2720 IsArray ? OO_Array_New : OO_New); 2721 2722 QualType AllocElemType = Context.getBaseElementType(AllocType); 2723 2724 // Find the allocation function. 2725 { 2726 LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName); 2727 2728 // C++1z [expr.new]p9: 2729 // If the new-expression begins with a unary :: operator, the allocation 2730 // function's name is looked up in the global scope. Otherwise, if the 2731 // allocated type is a class type T or array thereof, the allocation 2732 // function's name is looked up in the scope of T. 2733 if (AllocElemType->isRecordType() && NewScope != AFS_Global) 2734 LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl()); 2735 2736 // We can see ambiguity here if the allocation function is found in 2737 // multiple base classes. 2738 if (R.isAmbiguous()) 2739 return true; 2740 2741 // If this lookup fails to find the name, or if the allocated type is not 2742 // a class type, the allocation function's name is looked up in the 2743 // global scope. 2744 if (R.empty()) { 2745 if (NewScope == AFS_Class) 2746 return true; 2747 2748 LookupQualifiedName(R, Context.getTranslationUnitDecl()); 2749 } 2750 2751 if (getLangOpts().OpenCLCPlusPlus && R.empty()) { 2752 if (PlaceArgs.empty()) { 2753 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new"; 2754 } else { 2755 Diag(StartLoc, diag::err_openclcxx_placement_new); 2756 } 2757 return true; 2758 } 2759 2760 assert(!R.empty() && "implicitly declared allocation functions not found"); 2761 assert(!R.isAmbiguous() && "global allocation functions are ambiguous"); 2762 2763 // We do our own custom access checks below. 2764 R.suppressDiagnostics(); 2765 2766 if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment, 2767 OperatorNew, /*Candidates=*/nullptr, 2768 /*AlignArg=*/nullptr, Diagnose)) 2769 return true; 2770 } 2771 2772 // We don't need an operator delete if we're running under -fno-exceptions. 2773 if (!getLangOpts().Exceptions) { 2774 OperatorDelete = nullptr; 2775 return false; 2776 } 2777 2778 // Note, the name of OperatorNew might have been changed from array to 2779 // non-array by resolveAllocationOverload. 2780 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 2781 OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New 2782 ? OO_Array_Delete 2783 : OO_Delete); 2784 2785 // C++ [expr.new]p19: 2786 // 2787 // If the new-expression begins with a unary :: operator, the 2788 // deallocation function's name is looked up in the global 2789 // scope. Otherwise, if the allocated type is a class type T or an 2790 // array thereof, the deallocation function's name is looked up in 2791 // the scope of T. If this lookup fails to find the name, or if 2792 // the allocated type is not a class type or array thereof, the 2793 // deallocation function's name is looked up in the global scope. 2794 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName); 2795 if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) { 2796 auto *RD = 2797 cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl()); 2798 LookupQualifiedName(FoundDelete, RD); 2799 } 2800 if (FoundDelete.isAmbiguous()) 2801 return true; // FIXME: clean up expressions? 2802 2803 // Filter out any destroying operator deletes. We can't possibly call such a 2804 // function in this context, because we're handling the case where the object 2805 // was not successfully constructed. 2806 // FIXME: This is not covered by the language rules yet. 2807 { 2808 LookupResult::Filter Filter = FoundDelete.makeFilter(); 2809 while (Filter.hasNext()) { 2810 auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl()); 2811 if (FD && FD->isDestroyingOperatorDelete()) 2812 Filter.erase(); 2813 } 2814 Filter.done(); 2815 } 2816 2817 bool FoundGlobalDelete = FoundDelete.empty(); 2818 if (FoundDelete.empty()) { 2819 FoundDelete.clear(LookupOrdinaryName); 2820 2821 if (DeleteScope == AFS_Class) 2822 return true; 2823 2824 DeclareGlobalNewDelete(); 2825 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 2826 } 2827 2828 FoundDelete.suppressDiagnostics(); 2829 2830 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches; 2831 2832 // Whether we're looking for a placement operator delete is dictated 2833 // by whether we selected a placement operator new, not by whether 2834 // we had explicit placement arguments. This matters for things like 2835 // struct A { void *operator new(size_t, int = 0); ... }; 2836 // A *a = new A() 2837 // 2838 // We don't have any definition for what a "placement allocation function" 2839 // is, but we assume it's any allocation function whose 2840 // parameter-declaration-clause is anything other than (size_t). 2841 // 2842 // FIXME: Should (size_t, std::align_val_t) also be considered non-placement? 2843 // This affects whether an exception from the constructor of an overaligned 2844 // type uses the sized or non-sized form of aligned operator delete. 2845 bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 || 2846 OperatorNew->isVariadic(); 2847 2848 if (isPlacementNew) { 2849 // C++ [expr.new]p20: 2850 // A declaration of a placement deallocation function matches the 2851 // declaration of a placement allocation function if it has the 2852 // same number of parameters and, after parameter transformations 2853 // (8.3.5), all parameter types except the first are 2854 // identical. [...] 2855 // 2856 // To perform this comparison, we compute the function type that 2857 // the deallocation function should have, and use that type both 2858 // for template argument deduction and for comparison purposes. 2859 QualType ExpectedFunctionType; 2860 { 2861 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); 2862 2863 SmallVector<QualType, 4> ArgTypes; 2864 ArgTypes.push_back(Context.VoidPtrTy); 2865 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I) 2866 ArgTypes.push_back(Proto->getParamType(I)); 2867 2868 FunctionProtoType::ExtProtoInfo EPI; 2869 // FIXME: This is not part of the standard's rule. 2870 EPI.Variadic = Proto->isVariadic(); 2871 2872 ExpectedFunctionType 2873 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI); 2874 } 2875 2876 for (LookupResult::iterator D = FoundDelete.begin(), 2877 DEnd = FoundDelete.end(); 2878 D != DEnd; ++D) { 2879 FunctionDecl *Fn = nullptr; 2880 if (FunctionTemplateDecl *FnTmpl = 2881 dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) { 2882 // Perform template argument deduction to try to match the 2883 // expected function type. 2884 TemplateDeductionInfo Info(StartLoc); 2885 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn, 2886 Info)) 2887 continue; 2888 } else 2889 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl()); 2890 2891 if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(), 2892 ExpectedFunctionType, 2893 /*AdjustExcpetionSpec*/true), 2894 ExpectedFunctionType)) 2895 Matches.push_back(std::make_pair(D.getPair(), Fn)); 2896 } 2897 2898 if (getLangOpts().CUDA) 2899 EraseUnwantedCUDAMatches(getCurFunctionDecl(/*AllowLambda=*/true), 2900 Matches); 2901 } else { 2902 // C++1y [expr.new]p22: 2903 // For a non-placement allocation function, the normal deallocation 2904 // function lookup is used 2905 // 2906 // Per [expr.delete]p10, this lookup prefers a member operator delete 2907 // without a size_t argument, but prefers a non-member operator delete 2908 // with a size_t where possible (which it always is in this case). 2909 llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns; 2910 UsualDeallocFnInfo Selected = resolveDeallocationOverload( 2911 *this, FoundDelete, /*WantSize*/ FoundGlobalDelete, 2912 /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType), 2913 &BestDeallocFns); 2914 if (Selected) 2915 Matches.push_back(std::make_pair(Selected.Found, Selected.FD)); 2916 else { 2917 // If we failed to select an operator, all remaining functions are viable 2918 // but ambiguous. 2919 for (auto Fn : BestDeallocFns) 2920 Matches.push_back(std::make_pair(Fn.Found, Fn.FD)); 2921 } 2922 } 2923 2924 // C++ [expr.new]p20: 2925 // [...] If the lookup finds a single matching deallocation 2926 // function, that function will be called; otherwise, no 2927 // deallocation function will be called. 2928 if (Matches.size() == 1) { 2929 OperatorDelete = Matches[0].second; 2930 2931 // C++1z [expr.new]p23: 2932 // If the lookup finds a usual deallocation function (3.7.4.2) 2933 // with a parameter of type std::size_t and that function, considered 2934 // as a placement deallocation function, would have been 2935 // selected as a match for the allocation function, the program 2936 // is ill-formed. 2937 if (getLangOpts().CPlusPlus11 && isPlacementNew && 2938 isNonPlacementDeallocationFunction(*this, OperatorDelete)) { 2939 UsualDeallocFnInfo Info(*this, 2940 DeclAccessPair::make(OperatorDelete, AS_public)); 2941 // Core issue, per mail to core reflector, 2016-10-09: 2942 // If this is a member operator delete, and there is a corresponding 2943 // non-sized member operator delete, this isn't /really/ a sized 2944 // deallocation function, it just happens to have a size_t parameter. 2945 bool IsSizedDelete = Info.HasSizeT; 2946 if (IsSizedDelete && !FoundGlobalDelete) { 2947 auto NonSizedDelete = 2948 resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false, 2949 /*WantAlign*/Info.HasAlignValT); 2950 if (NonSizedDelete && !NonSizedDelete.HasSizeT && 2951 NonSizedDelete.HasAlignValT == Info.HasAlignValT) 2952 IsSizedDelete = false; 2953 } 2954 2955 if (IsSizedDelete) { 2956 SourceRange R = PlaceArgs.empty() 2957 ? SourceRange() 2958 : SourceRange(PlaceArgs.front()->getBeginLoc(), 2959 PlaceArgs.back()->getEndLoc()); 2960 Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R; 2961 if (!OperatorDelete->isImplicit()) 2962 Diag(OperatorDelete->getLocation(), diag::note_previous_decl) 2963 << DeleteName; 2964 } 2965 } 2966 2967 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(), 2968 Matches[0].first); 2969 } else if (!Matches.empty()) { 2970 // We found multiple suitable operators. Per [expr.new]p20, that means we 2971 // call no 'operator delete' function, but we should at least warn the user. 2972 // FIXME: Suppress this warning if the construction cannot throw. 2973 Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found) 2974 << DeleteName << AllocElemType; 2975 2976 for (auto &Match : Matches) 2977 Diag(Match.second->getLocation(), 2978 diag::note_member_declared_here) << DeleteName; 2979 } 2980 2981 return false; 2982 } 2983 2984 /// DeclareGlobalNewDelete - Declare the global forms of operator new and 2985 /// delete. These are: 2986 /// @code 2987 /// // C++03: 2988 /// void* operator new(std::size_t) throw(std::bad_alloc); 2989 /// void* operator new[](std::size_t) throw(std::bad_alloc); 2990 /// void operator delete(void *) throw(); 2991 /// void operator delete[](void *) throw(); 2992 /// // C++11: 2993 /// void* operator new(std::size_t); 2994 /// void* operator new[](std::size_t); 2995 /// void operator delete(void *) noexcept; 2996 /// void operator delete[](void *) noexcept; 2997 /// // C++1y: 2998 /// void* operator new(std::size_t); 2999 /// void* operator new[](std::size_t); 3000 /// void operator delete(void *) noexcept; 3001 /// void operator delete[](void *) noexcept; 3002 /// void operator delete(void *, std::size_t) noexcept; 3003 /// void operator delete[](void *, std::size_t) noexcept; 3004 /// @endcode 3005 /// Note that the placement and nothrow forms of new are *not* implicitly 3006 /// declared. Their use requires including \<new\>. 3007 void Sema::DeclareGlobalNewDelete() { 3008 if (GlobalNewDeleteDeclared) 3009 return; 3010 3011 // The implicitly declared new and delete operators 3012 // are not supported in OpenCL. 3013 if (getLangOpts().OpenCLCPlusPlus) 3014 return; 3015 3016 // C++ [basic.stc.dynamic.general]p2: 3017 // The library provides default definitions for the global allocation 3018 // and deallocation functions. Some global allocation and deallocation 3019 // functions are replaceable ([new.delete]); these are attached to the 3020 // global module ([module.unit]). 3021 if (getLangOpts().CPlusPlusModules && getCurrentModule()) 3022 PushGlobalModuleFragment(SourceLocation()); 3023 3024 // C++ [basic.std.dynamic]p2: 3025 // [...] The following allocation and deallocation functions (18.4) are 3026 // implicitly declared in global scope in each translation unit of a 3027 // program 3028 // 3029 // C++03: 3030 // void* operator new(std::size_t) throw(std::bad_alloc); 3031 // void* operator new[](std::size_t) throw(std::bad_alloc); 3032 // void operator delete(void*) throw(); 3033 // void operator delete[](void*) throw(); 3034 // C++11: 3035 // void* operator new(std::size_t); 3036 // void* operator new[](std::size_t); 3037 // void operator delete(void*) noexcept; 3038 // void operator delete[](void*) noexcept; 3039 // C++1y: 3040 // void* operator new(std::size_t); 3041 // void* operator new[](std::size_t); 3042 // void operator delete(void*) noexcept; 3043 // void operator delete[](void*) noexcept; 3044 // void operator delete(void*, std::size_t) noexcept; 3045 // void operator delete[](void*, std::size_t) noexcept; 3046 // 3047 // These implicit declarations introduce only the function names operator 3048 // new, operator new[], operator delete, operator delete[]. 3049 // 3050 // Here, we need to refer to std::bad_alloc, so we will implicitly declare 3051 // "std" or "bad_alloc" as necessary to form the exception specification. 3052 // However, we do not make these implicit declarations visible to name 3053 // lookup. 3054 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) { 3055 // The "std::bad_alloc" class has not yet been declared, so build it 3056 // implicitly. 3057 StdBadAlloc = CXXRecordDecl::Create( 3058 Context, TagTypeKind::Class, getOrCreateStdNamespace(), 3059 SourceLocation(), SourceLocation(), 3060 &PP.getIdentifierTable().get("bad_alloc"), nullptr); 3061 getStdBadAlloc()->setImplicit(true); 3062 3063 // The implicitly declared "std::bad_alloc" should live in global module 3064 // fragment. 3065 if (TheGlobalModuleFragment) { 3066 getStdBadAlloc()->setModuleOwnershipKind( 3067 Decl::ModuleOwnershipKind::ReachableWhenImported); 3068 getStdBadAlloc()->setLocalOwningModule(TheGlobalModuleFragment); 3069 } 3070 } 3071 if (!StdAlignValT && getLangOpts().AlignedAllocation) { 3072 // The "std::align_val_t" enum class has not yet been declared, so build it 3073 // implicitly. 3074 auto *AlignValT = EnumDecl::Create( 3075 Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(), 3076 &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true); 3077 3078 // The implicitly declared "std::align_val_t" should live in global module 3079 // fragment. 3080 if (TheGlobalModuleFragment) { 3081 AlignValT->setModuleOwnershipKind( 3082 Decl::ModuleOwnershipKind::ReachableWhenImported); 3083 AlignValT->setLocalOwningModule(TheGlobalModuleFragment); 3084 } 3085 3086 AlignValT->setIntegerType(Context.getSizeType()); 3087 AlignValT->setPromotionType(Context.getSizeType()); 3088 AlignValT->setImplicit(true); 3089 3090 StdAlignValT = AlignValT; 3091 } 3092 3093 GlobalNewDeleteDeclared = true; 3094 3095 QualType VoidPtr = Context.getPointerType(Context.VoidTy); 3096 QualType SizeT = Context.getSizeType(); 3097 3098 auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind, 3099 QualType Return, QualType Param) { 3100 llvm::SmallVector<QualType, 3> Params; 3101 Params.push_back(Param); 3102 3103 // Create up to four variants of the function (sized/aligned). 3104 bool HasSizedVariant = getLangOpts().SizedDeallocation && 3105 (Kind == OO_Delete || Kind == OO_Array_Delete); 3106 bool HasAlignedVariant = getLangOpts().AlignedAllocation; 3107 3108 int NumSizeVariants = (HasSizedVariant ? 2 : 1); 3109 int NumAlignVariants = (HasAlignedVariant ? 2 : 1); 3110 for (int Sized = 0; Sized < NumSizeVariants; ++Sized) { 3111 if (Sized) 3112 Params.push_back(SizeT); 3113 3114 for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) { 3115 if (Aligned) 3116 Params.push_back(Context.getTypeDeclType(getStdAlignValT())); 3117 3118 DeclareGlobalAllocationFunction( 3119 Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params); 3120 3121 if (Aligned) 3122 Params.pop_back(); 3123 } 3124 } 3125 }; 3126 3127 DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT); 3128 DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT); 3129 DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr); 3130 DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr); 3131 3132 if (getLangOpts().CPlusPlusModules && getCurrentModule()) 3133 PopGlobalModuleFragment(); 3134 } 3135 3136 /// DeclareGlobalAllocationFunction - Declares a single implicit global 3137 /// allocation function if it doesn't already exist. 3138 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name, 3139 QualType Return, 3140 ArrayRef<QualType> Params) { 3141 DeclContext *GlobalCtx = Context.getTranslationUnitDecl(); 3142 3143 // Check if this function is already declared. 3144 DeclContext::lookup_result R = GlobalCtx->lookup(Name); 3145 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end(); 3146 Alloc != AllocEnd; ++Alloc) { 3147 // Only look at non-template functions, as it is the predefined, 3148 // non-templated allocation function we are trying to declare here. 3149 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) { 3150 if (Func->getNumParams() == Params.size()) { 3151 llvm::SmallVector<QualType, 3> FuncParams; 3152 for (auto *P : Func->parameters()) 3153 FuncParams.push_back( 3154 Context.getCanonicalType(P->getType().getUnqualifiedType())); 3155 if (llvm::ArrayRef(FuncParams) == Params) { 3156 // Make the function visible to name lookup, even if we found it in 3157 // an unimported module. It either is an implicitly-declared global 3158 // allocation function, or is suppressing that function. 3159 Func->setVisibleDespiteOwningModule(); 3160 return; 3161 } 3162 } 3163 } 3164 } 3165 3166 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention( 3167 /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true)); 3168 3169 QualType BadAllocType; 3170 bool HasBadAllocExceptionSpec 3171 = (Name.getCXXOverloadedOperator() == OO_New || 3172 Name.getCXXOverloadedOperator() == OO_Array_New); 3173 if (HasBadAllocExceptionSpec) { 3174 if (!getLangOpts().CPlusPlus11) { 3175 BadAllocType = Context.getTypeDeclType(getStdBadAlloc()); 3176 assert(StdBadAlloc && "Must have std::bad_alloc declared"); 3177 EPI.ExceptionSpec.Type = EST_Dynamic; 3178 EPI.ExceptionSpec.Exceptions = llvm::ArrayRef(BadAllocType); 3179 } 3180 if (getLangOpts().NewInfallible) { 3181 EPI.ExceptionSpec.Type = EST_DynamicNone; 3182 } 3183 } else { 3184 EPI.ExceptionSpec = 3185 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone; 3186 } 3187 3188 auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) { 3189 QualType FnType = Context.getFunctionType(Return, Params, EPI); 3190 FunctionDecl *Alloc = FunctionDecl::Create( 3191 Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, FnType, 3192 /*TInfo=*/nullptr, SC_None, getCurFPFeatures().isFPConstrained(), false, 3193 true); 3194 Alloc->setImplicit(); 3195 // Global allocation functions should always be visible. 3196 Alloc->setVisibleDespiteOwningModule(); 3197 3198 if (HasBadAllocExceptionSpec && getLangOpts().NewInfallible && 3199 !getLangOpts().CheckNew) 3200 Alloc->addAttr( 3201 ReturnsNonNullAttr::CreateImplicit(Context, Alloc->getLocation())); 3202 3203 // C++ [basic.stc.dynamic.general]p2: 3204 // The library provides default definitions for the global allocation 3205 // and deallocation functions. Some global allocation and deallocation 3206 // functions are replaceable ([new.delete]); these are attached to the 3207 // global module ([module.unit]). 3208 // 3209 // In the language wording, these functions are attched to the global 3210 // module all the time. But in the implementation, the global module 3211 // is only meaningful when we're in a module unit. So here we attach 3212 // these allocation functions to global module conditionally. 3213 if (TheGlobalModuleFragment) { 3214 Alloc->setModuleOwnershipKind( 3215 Decl::ModuleOwnershipKind::ReachableWhenImported); 3216 Alloc->setLocalOwningModule(TheGlobalModuleFragment); 3217 } 3218 3219 if (LangOpts.hasGlobalAllocationFunctionVisibility()) 3220 Alloc->addAttr(VisibilityAttr::CreateImplicit( 3221 Context, LangOpts.hasHiddenGlobalAllocationFunctionVisibility() 3222 ? VisibilityAttr::Hidden 3223 : LangOpts.hasProtectedGlobalAllocationFunctionVisibility() 3224 ? VisibilityAttr::Protected 3225 : VisibilityAttr::Default)); 3226 3227 llvm::SmallVector<ParmVarDecl *, 3> ParamDecls; 3228 for (QualType T : Params) { 3229 ParamDecls.push_back(ParmVarDecl::Create( 3230 Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T, 3231 /*TInfo=*/nullptr, SC_None, nullptr)); 3232 ParamDecls.back()->setImplicit(); 3233 } 3234 Alloc->setParams(ParamDecls); 3235 if (ExtraAttr) 3236 Alloc->addAttr(ExtraAttr); 3237 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc); 3238 Context.getTranslationUnitDecl()->addDecl(Alloc); 3239 IdResolver.tryAddTopLevelDecl(Alloc, Name); 3240 }; 3241 3242 if (!LangOpts.CUDA) 3243 CreateAllocationFunctionDecl(nullptr); 3244 else { 3245 // Host and device get their own declaration so each can be 3246 // defined or re-declared independently. 3247 CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context)); 3248 CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context)); 3249 } 3250 } 3251 3252 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc, 3253 bool CanProvideSize, 3254 bool Overaligned, 3255 DeclarationName Name) { 3256 DeclareGlobalNewDelete(); 3257 3258 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName); 3259 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 3260 3261 // FIXME: It's possible for this to result in ambiguity, through a 3262 // user-declared variadic operator delete or the enable_if attribute. We 3263 // should probably not consider those cases to be usual deallocation 3264 // functions. But for now we just make an arbitrary choice in that case. 3265 auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize, 3266 Overaligned); 3267 assert(Result.FD && "operator delete missing from global scope?"); 3268 return Result.FD; 3269 } 3270 3271 FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc, 3272 CXXRecordDecl *RD) { 3273 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete); 3274 3275 FunctionDecl *OperatorDelete = nullptr; 3276 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete)) 3277 return nullptr; 3278 if (OperatorDelete) 3279 return OperatorDelete; 3280 3281 // If there's no class-specific operator delete, look up the global 3282 // non-array delete. 3283 return FindUsualDeallocationFunction( 3284 Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)), 3285 Name); 3286 } 3287 3288 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, 3289 DeclarationName Name, 3290 FunctionDecl *&Operator, bool Diagnose, 3291 bool WantSize, bool WantAligned) { 3292 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName); 3293 // Try to find operator delete/operator delete[] in class scope. 3294 LookupQualifiedName(Found, RD); 3295 3296 if (Found.isAmbiguous()) 3297 return true; 3298 3299 Found.suppressDiagnostics(); 3300 3301 bool Overaligned = 3302 WantAligned || hasNewExtendedAlignment(*this, Context.getRecordType(RD)); 3303 3304 // C++17 [expr.delete]p10: 3305 // If the deallocation functions have class scope, the one without a 3306 // parameter of type std::size_t is selected. 3307 llvm::SmallVector<UsualDeallocFnInfo, 4> Matches; 3308 resolveDeallocationOverload(*this, Found, /*WantSize*/ WantSize, 3309 /*WantAlign*/ Overaligned, &Matches); 3310 3311 // If we could find an overload, use it. 3312 if (Matches.size() == 1) { 3313 Operator = cast<CXXMethodDecl>(Matches[0].FD); 3314 3315 // FIXME: DiagnoseUseOfDecl? 3316 if (Operator->isDeleted()) { 3317 if (Diagnose) { 3318 Diag(StartLoc, diag::err_deleted_function_use); 3319 NoteDeletedFunction(Operator); 3320 } 3321 return true; 3322 } 3323 3324 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(), 3325 Matches[0].Found, Diagnose) == AR_inaccessible) 3326 return true; 3327 3328 return false; 3329 } 3330 3331 // We found multiple suitable operators; complain about the ambiguity. 3332 // FIXME: The standard doesn't say to do this; it appears that the intent 3333 // is that this should never happen. 3334 if (!Matches.empty()) { 3335 if (Diagnose) { 3336 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found) 3337 << Name << RD; 3338 for (auto &Match : Matches) 3339 Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name; 3340 } 3341 return true; 3342 } 3343 3344 // We did find operator delete/operator delete[] declarations, but 3345 // none of them were suitable. 3346 if (!Found.empty()) { 3347 if (Diagnose) { 3348 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found) 3349 << Name << RD; 3350 3351 for (NamedDecl *D : Found) 3352 Diag(D->getUnderlyingDecl()->getLocation(), 3353 diag::note_member_declared_here) << Name; 3354 } 3355 return true; 3356 } 3357 3358 Operator = nullptr; 3359 return false; 3360 } 3361 3362 namespace { 3363 /// Checks whether delete-expression, and new-expression used for 3364 /// initializing deletee have the same array form. 3365 class MismatchingNewDeleteDetector { 3366 public: 3367 enum MismatchResult { 3368 /// Indicates that there is no mismatch or a mismatch cannot be proven. 3369 NoMismatch, 3370 /// Indicates that variable is initialized with mismatching form of \a new. 3371 VarInitMismatches, 3372 /// Indicates that member is initialized with mismatching form of \a new. 3373 MemberInitMismatches, 3374 /// Indicates that 1 or more constructors' definitions could not been 3375 /// analyzed, and they will be checked again at the end of translation unit. 3376 AnalyzeLater 3377 }; 3378 3379 /// \param EndOfTU True, if this is the final analysis at the end of 3380 /// translation unit. False, if this is the initial analysis at the point 3381 /// delete-expression was encountered. 3382 explicit MismatchingNewDeleteDetector(bool EndOfTU) 3383 : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU), 3384 HasUndefinedConstructors(false) {} 3385 3386 /// Checks whether pointee of a delete-expression is initialized with 3387 /// matching form of new-expression. 3388 /// 3389 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the 3390 /// point where delete-expression is encountered, then a warning will be 3391 /// issued immediately. If return value is \c AnalyzeLater at the point where 3392 /// delete-expression is seen, then member will be analyzed at the end of 3393 /// translation unit. \c AnalyzeLater is returned iff at least one constructor 3394 /// couldn't be analyzed. If at least one constructor initializes the member 3395 /// with matching type of new, the return value is \c NoMismatch. 3396 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE); 3397 /// Analyzes a class member. 3398 /// \param Field Class member to analyze. 3399 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used 3400 /// for deleting the \p Field. 3401 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm); 3402 FieldDecl *Field; 3403 /// List of mismatching new-expressions used for initialization of the pointee 3404 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs; 3405 /// Indicates whether delete-expression was in array form. 3406 bool IsArrayForm; 3407 3408 private: 3409 const bool EndOfTU; 3410 /// Indicates that there is at least one constructor without body. 3411 bool HasUndefinedConstructors; 3412 /// Returns \c CXXNewExpr from given initialization expression. 3413 /// \param E Expression used for initializing pointee in delete-expression. 3414 /// E can be a single-element \c InitListExpr consisting of new-expression. 3415 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E); 3416 /// Returns whether member is initialized with mismatching form of 3417 /// \c new either by the member initializer or in-class initialization. 3418 /// 3419 /// If bodies of all constructors are not visible at the end of translation 3420 /// unit or at least one constructor initializes member with the matching 3421 /// form of \c new, mismatch cannot be proven, and this function will return 3422 /// \c NoMismatch. 3423 MismatchResult analyzeMemberExpr(const MemberExpr *ME); 3424 /// Returns whether variable is initialized with mismatching form of 3425 /// \c new. 3426 /// 3427 /// If variable is initialized with matching form of \c new or variable is not 3428 /// initialized with a \c new expression, this function will return true. 3429 /// If variable is initialized with mismatching form of \c new, returns false. 3430 /// \param D Variable to analyze. 3431 bool hasMatchingVarInit(const DeclRefExpr *D); 3432 /// Checks whether the constructor initializes pointee with mismatching 3433 /// form of \c new. 3434 /// 3435 /// Returns true, if member is initialized with matching form of \c new in 3436 /// member initializer list. Returns false, if member is initialized with the 3437 /// matching form of \c new in this constructor's initializer or given 3438 /// constructor isn't defined at the point where delete-expression is seen, or 3439 /// member isn't initialized by the constructor. 3440 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD); 3441 /// Checks whether member is initialized with matching form of 3442 /// \c new in member initializer list. 3443 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI); 3444 /// Checks whether member is initialized with mismatching form of \c new by 3445 /// in-class initializer. 3446 MismatchResult analyzeInClassInitializer(); 3447 }; 3448 } 3449 3450 MismatchingNewDeleteDetector::MismatchResult 3451 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) { 3452 NewExprs.clear(); 3453 assert(DE && "Expected delete-expression"); 3454 IsArrayForm = DE->isArrayForm(); 3455 const Expr *E = DE->getArgument()->IgnoreParenImpCasts(); 3456 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) { 3457 return analyzeMemberExpr(ME); 3458 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) { 3459 if (!hasMatchingVarInit(D)) 3460 return VarInitMismatches; 3461 } 3462 return NoMismatch; 3463 } 3464 3465 const CXXNewExpr * 3466 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) { 3467 assert(E != nullptr && "Expected a valid initializer expression"); 3468 E = E->IgnoreParenImpCasts(); 3469 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) { 3470 if (ILE->getNumInits() == 1) 3471 E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts()); 3472 } 3473 3474 return dyn_cast_or_null<const CXXNewExpr>(E); 3475 } 3476 3477 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit( 3478 const CXXCtorInitializer *CI) { 3479 const CXXNewExpr *NE = nullptr; 3480 if (Field == CI->getMember() && 3481 (NE = getNewExprFromInitListOrExpr(CI->getInit()))) { 3482 if (NE->isArray() == IsArrayForm) 3483 return true; 3484 else 3485 NewExprs.push_back(NE); 3486 } 3487 return false; 3488 } 3489 3490 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor( 3491 const CXXConstructorDecl *CD) { 3492 if (CD->isImplicit()) 3493 return false; 3494 const FunctionDecl *Definition = CD; 3495 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) { 3496 HasUndefinedConstructors = true; 3497 return EndOfTU; 3498 } 3499 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) { 3500 if (hasMatchingNewInCtorInit(CI)) 3501 return true; 3502 } 3503 return false; 3504 } 3505 3506 MismatchingNewDeleteDetector::MismatchResult 3507 MismatchingNewDeleteDetector::analyzeInClassInitializer() { 3508 assert(Field != nullptr && "This should be called only for members"); 3509 const Expr *InitExpr = Field->getInClassInitializer(); 3510 if (!InitExpr) 3511 return EndOfTU ? NoMismatch : AnalyzeLater; 3512 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) { 3513 if (NE->isArray() != IsArrayForm) { 3514 NewExprs.push_back(NE); 3515 return MemberInitMismatches; 3516 } 3517 } 3518 return NoMismatch; 3519 } 3520 3521 MismatchingNewDeleteDetector::MismatchResult 3522 MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field, 3523 bool DeleteWasArrayForm) { 3524 assert(Field != nullptr && "Analysis requires a valid class member."); 3525 this->Field = Field; 3526 IsArrayForm = DeleteWasArrayForm; 3527 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent()); 3528 for (const auto *CD : RD->ctors()) { 3529 if (hasMatchingNewInCtor(CD)) 3530 return NoMismatch; 3531 } 3532 if (HasUndefinedConstructors) 3533 return EndOfTU ? NoMismatch : AnalyzeLater; 3534 if (!NewExprs.empty()) 3535 return MemberInitMismatches; 3536 return Field->hasInClassInitializer() ? analyzeInClassInitializer() 3537 : NoMismatch; 3538 } 3539 3540 MismatchingNewDeleteDetector::MismatchResult 3541 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) { 3542 assert(ME != nullptr && "Expected a member expression"); 3543 if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl())) 3544 return analyzeField(F, IsArrayForm); 3545 return NoMismatch; 3546 } 3547 3548 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) { 3549 const CXXNewExpr *NE = nullptr; 3550 if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) { 3551 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) && 3552 NE->isArray() != IsArrayForm) { 3553 NewExprs.push_back(NE); 3554 } 3555 } 3556 return NewExprs.empty(); 3557 } 3558 3559 static void 3560 DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc, 3561 const MismatchingNewDeleteDetector &Detector) { 3562 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc); 3563 FixItHint H; 3564 if (!Detector.IsArrayForm) 3565 H = FixItHint::CreateInsertion(EndOfDelete, "[]"); 3566 else { 3567 SourceLocation RSquare = Lexer::findLocationAfterToken( 3568 DeleteLoc, tok::l_square, SemaRef.getSourceManager(), 3569 SemaRef.getLangOpts(), true); 3570 if (RSquare.isValid()) 3571 H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare)); 3572 } 3573 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new) 3574 << Detector.IsArrayForm << H; 3575 3576 for (const auto *NE : Detector.NewExprs) 3577 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here) 3578 << Detector.IsArrayForm; 3579 } 3580 3581 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) { 3582 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation())) 3583 return; 3584 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false); 3585 switch (Detector.analyzeDeleteExpr(DE)) { 3586 case MismatchingNewDeleteDetector::VarInitMismatches: 3587 case MismatchingNewDeleteDetector::MemberInitMismatches: { 3588 DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector); 3589 break; 3590 } 3591 case MismatchingNewDeleteDetector::AnalyzeLater: { 3592 DeleteExprs[Detector.Field].push_back( 3593 std::make_pair(DE->getBeginLoc(), DE->isArrayForm())); 3594 break; 3595 } 3596 case MismatchingNewDeleteDetector::NoMismatch: 3597 break; 3598 } 3599 } 3600 3601 void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc, 3602 bool DeleteWasArrayForm) { 3603 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true); 3604 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) { 3605 case MismatchingNewDeleteDetector::VarInitMismatches: 3606 llvm_unreachable("This analysis should have been done for class members."); 3607 case MismatchingNewDeleteDetector::AnalyzeLater: 3608 llvm_unreachable("Analysis cannot be postponed any point beyond end of " 3609 "translation unit."); 3610 case MismatchingNewDeleteDetector::MemberInitMismatches: 3611 DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector); 3612 break; 3613 case MismatchingNewDeleteDetector::NoMismatch: 3614 break; 3615 } 3616 } 3617 3618 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in: 3619 /// @code ::delete ptr; @endcode 3620 /// or 3621 /// @code delete [] ptr; @endcode 3622 ExprResult 3623 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, 3624 bool ArrayForm, Expr *ExE) { 3625 // C++ [expr.delete]p1: 3626 // The operand shall have a pointer type, or a class type having a single 3627 // non-explicit conversion function to a pointer type. The result has type 3628 // void. 3629 // 3630 // DR599 amends "pointer type" to "pointer to object type" in both cases. 3631 3632 ExprResult Ex = ExE; 3633 FunctionDecl *OperatorDelete = nullptr; 3634 bool ArrayFormAsWritten = ArrayForm; 3635 bool UsualArrayDeleteWantsSize = false; 3636 3637 if (!Ex.get()->isTypeDependent()) { 3638 // Perform lvalue-to-rvalue cast, if needed. 3639 Ex = DefaultLvalueConversion(Ex.get()); 3640 if (Ex.isInvalid()) 3641 return ExprError(); 3642 3643 QualType Type = Ex.get()->getType(); 3644 3645 class DeleteConverter : public ContextualImplicitConverter { 3646 public: 3647 DeleteConverter() : ContextualImplicitConverter(false, true) {} 3648 3649 bool match(QualType ConvType) override { 3650 // FIXME: If we have an operator T* and an operator void*, we must pick 3651 // the operator T*. 3652 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 3653 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType()) 3654 return true; 3655 return false; 3656 } 3657 3658 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc, 3659 QualType T) override { 3660 return S.Diag(Loc, diag::err_delete_operand) << T; 3661 } 3662 3663 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc, 3664 QualType T) override { 3665 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T; 3666 } 3667 3668 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc, 3669 QualType T, 3670 QualType ConvTy) override { 3671 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy; 3672 } 3673 3674 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv, 3675 QualType ConvTy) override { 3676 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 3677 << ConvTy; 3678 } 3679 3680 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, 3681 QualType T) override { 3682 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T; 3683 } 3684 3685 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv, 3686 QualType ConvTy) override { 3687 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 3688 << ConvTy; 3689 } 3690 3691 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 3692 QualType T, 3693 QualType ConvTy) override { 3694 llvm_unreachable("conversion functions are permitted"); 3695 } 3696 } Converter; 3697 3698 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter); 3699 if (Ex.isInvalid()) 3700 return ExprError(); 3701 Type = Ex.get()->getType(); 3702 if (!Converter.match(Type)) 3703 // FIXME: PerformContextualImplicitConversion should return ExprError 3704 // itself in this case. 3705 return ExprError(); 3706 3707 QualType Pointee = Type->castAs<PointerType>()->getPointeeType(); 3708 QualType PointeeElem = Context.getBaseElementType(Pointee); 3709 3710 if (Pointee.getAddressSpace() != LangAS::Default && 3711 !getLangOpts().OpenCLCPlusPlus) 3712 return Diag(Ex.get()->getBeginLoc(), 3713 diag::err_address_space_qualified_delete) 3714 << Pointee.getUnqualifiedType() 3715 << Pointee.getQualifiers().getAddressSpaceAttributePrintValue(); 3716 3717 CXXRecordDecl *PointeeRD = nullptr; 3718 if (Pointee->isVoidType() && !isSFINAEContext()) { 3719 // The C++ standard bans deleting a pointer to a non-object type, which 3720 // effectively bans deletion of "void*". However, most compilers support 3721 // this, so we treat it as a warning unless we're in a SFINAE context. 3722 Diag(StartLoc, diag::ext_delete_void_ptr_operand) 3723 << Type << Ex.get()->getSourceRange(); 3724 } else if (Pointee->isFunctionType() || Pointee->isVoidType() || 3725 Pointee->isSizelessType()) { 3726 return ExprError(Diag(StartLoc, diag::err_delete_operand) 3727 << Type << Ex.get()->getSourceRange()); 3728 } else if (!Pointee->isDependentType()) { 3729 // FIXME: This can result in errors if the definition was imported from a 3730 // module but is hidden. 3731 if (!RequireCompleteType(StartLoc, Pointee, 3732 diag::warn_delete_incomplete, Ex.get())) { 3733 if (const RecordType *RT = PointeeElem->getAs<RecordType>()) 3734 PointeeRD = cast<CXXRecordDecl>(RT->getDecl()); 3735 } 3736 } 3737 3738 if (Pointee->isArrayType() && !ArrayForm) { 3739 Diag(StartLoc, diag::warn_delete_array_type) 3740 << Type << Ex.get()->getSourceRange() 3741 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]"); 3742 ArrayForm = true; 3743 } 3744 3745 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 3746 ArrayForm ? OO_Array_Delete : OO_Delete); 3747 3748 if (PointeeRD) { 3749 if (!UseGlobal && 3750 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName, 3751 OperatorDelete)) 3752 return ExprError(); 3753 3754 // If we're allocating an array of records, check whether the 3755 // usual operator delete[] has a size_t parameter. 3756 if (ArrayForm) { 3757 // If the user specifically asked to use the global allocator, 3758 // we'll need to do the lookup into the class. 3759 if (UseGlobal) 3760 UsualArrayDeleteWantsSize = 3761 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem); 3762 3763 // Otherwise, the usual operator delete[] should be the 3764 // function we just found. 3765 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete)) 3766 UsualArrayDeleteWantsSize = 3767 UsualDeallocFnInfo(*this, 3768 DeclAccessPair::make(OperatorDelete, AS_public)) 3769 .HasSizeT; 3770 } 3771 3772 if (!PointeeRD->hasIrrelevantDestructor()) 3773 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 3774 MarkFunctionReferenced(StartLoc, 3775 const_cast<CXXDestructorDecl*>(Dtor)); 3776 if (DiagnoseUseOfDecl(Dtor, StartLoc)) 3777 return ExprError(); 3778 } 3779 3780 CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc, 3781 /*IsDelete=*/true, /*CallCanBeVirtual=*/true, 3782 /*WarnOnNonAbstractTypes=*/!ArrayForm, 3783 SourceLocation()); 3784 } 3785 3786 if (!OperatorDelete) { 3787 if (getLangOpts().OpenCLCPlusPlus) { 3788 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete"; 3789 return ExprError(); 3790 } 3791 3792 bool IsComplete = isCompleteType(StartLoc, Pointee); 3793 bool CanProvideSize = 3794 IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize || 3795 Pointee.isDestructedType()); 3796 bool Overaligned = hasNewExtendedAlignment(*this, Pointee); 3797 3798 // Look for a global declaration. 3799 OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize, 3800 Overaligned, DeleteName); 3801 } 3802 3803 MarkFunctionReferenced(StartLoc, OperatorDelete); 3804 3805 // Check access and ambiguity of destructor if we're going to call it. 3806 // Note that this is required even for a virtual delete. 3807 bool IsVirtualDelete = false; 3808 if (PointeeRD) { 3809 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 3810 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor, 3811 PDiag(diag::err_access_dtor) << PointeeElem); 3812 IsVirtualDelete = Dtor->isVirtual(); 3813 } 3814 } 3815 3816 DiagnoseUseOfDecl(OperatorDelete, StartLoc); 3817 3818 // Convert the operand to the type of the first parameter of operator 3819 // delete. This is only necessary if we selected a destroying operator 3820 // delete that we are going to call (non-virtually); converting to void* 3821 // is trivial and left to AST consumers to handle. 3822 QualType ParamType = OperatorDelete->getParamDecl(0)->getType(); 3823 if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) { 3824 Qualifiers Qs = Pointee.getQualifiers(); 3825 if (Qs.hasCVRQualifiers()) { 3826 // Qualifiers are irrelevant to this conversion; we're only looking 3827 // for access and ambiguity. 3828 Qs.removeCVRQualifiers(); 3829 QualType Unqual = Context.getPointerType( 3830 Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs)); 3831 Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp); 3832 } 3833 Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing); 3834 if (Ex.isInvalid()) 3835 return ExprError(); 3836 } 3837 } 3838 3839 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr( 3840 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten, 3841 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc); 3842 AnalyzeDeleteExprMismatch(Result); 3843 return Result; 3844 } 3845 3846 static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall, 3847 bool IsDelete, 3848 FunctionDecl *&Operator) { 3849 3850 DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName( 3851 IsDelete ? OO_Delete : OO_New); 3852 3853 LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName); 3854 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); 3855 assert(!R.empty() && "implicitly declared allocation functions not found"); 3856 assert(!R.isAmbiguous() && "global allocation functions are ambiguous"); 3857 3858 // We do our own custom access checks below. 3859 R.suppressDiagnostics(); 3860 3861 SmallVector<Expr *, 8> Args(TheCall->arguments()); 3862 OverloadCandidateSet Candidates(R.getNameLoc(), 3863 OverloadCandidateSet::CSK_Normal); 3864 for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end(); 3865 FnOvl != FnOvlEnd; ++FnOvl) { 3866 // Even member operator new/delete are implicitly treated as 3867 // static, so don't use AddMemberCandidate. 3868 NamedDecl *D = (*FnOvl)->getUnderlyingDecl(); 3869 3870 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 3871 S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(), 3872 /*ExplicitTemplateArgs=*/nullptr, Args, 3873 Candidates, 3874 /*SuppressUserConversions=*/false); 3875 continue; 3876 } 3877 3878 FunctionDecl *Fn = cast<FunctionDecl>(D); 3879 S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates, 3880 /*SuppressUserConversions=*/false); 3881 } 3882 3883 SourceRange Range = TheCall->getSourceRange(); 3884 3885 // Do the resolution. 3886 OverloadCandidateSet::iterator Best; 3887 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { 3888 case OR_Success: { 3889 // Got one! 3890 FunctionDecl *FnDecl = Best->Function; 3891 assert(R.getNamingClass() == nullptr && 3892 "class members should not be considered"); 3893 3894 if (!FnDecl->isReplaceableGlobalAllocationFunction()) { 3895 S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual) 3896 << (IsDelete ? 1 : 0) << Range; 3897 S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here) 3898 << R.getLookupName() << FnDecl->getSourceRange(); 3899 return true; 3900 } 3901 3902 Operator = FnDecl; 3903 return false; 3904 } 3905 3906 case OR_No_Viable_Function: 3907 Candidates.NoteCandidates( 3908 PartialDiagnosticAt(R.getNameLoc(), 3909 S.PDiag(diag::err_ovl_no_viable_function_in_call) 3910 << R.getLookupName() << Range), 3911 S, OCD_AllCandidates, Args); 3912 return true; 3913 3914 case OR_Ambiguous: 3915 Candidates.NoteCandidates( 3916 PartialDiagnosticAt(R.getNameLoc(), 3917 S.PDiag(diag::err_ovl_ambiguous_call) 3918 << R.getLookupName() << Range), 3919 S, OCD_AmbiguousCandidates, Args); 3920 return true; 3921 3922 case OR_Deleted: { 3923 Candidates.NoteCandidates( 3924 PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call) 3925 << R.getLookupName() << Range), 3926 S, OCD_AllCandidates, Args); 3927 return true; 3928 } 3929 } 3930 llvm_unreachable("Unreachable, bad result from BestViableFunction"); 3931 } 3932 3933 ExprResult 3934 Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult, 3935 bool IsDelete) { 3936 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get()); 3937 if (!getLangOpts().CPlusPlus) { 3938 Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language) 3939 << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new") 3940 << "C++"; 3941 return ExprError(); 3942 } 3943 // CodeGen assumes it can find the global new and delete to call, 3944 // so ensure that they are declared. 3945 DeclareGlobalNewDelete(); 3946 3947 FunctionDecl *OperatorNewOrDelete = nullptr; 3948 if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete, 3949 OperatorNewOrDelete)) 3950 return ExprError(); 3951 assert(OperatorNewOrDelete && "should be found"); 3952 3953 DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc()); 3954 MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete); 3955 3956 TheCall->setType(OperatorNewOrDelete->getReturnType()); 3957 for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) { 3958 QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType(); 3959 InitializedEntity Entity = 3960 InitializedEntity::InitializeParameter(Context, ParamTy, false); 3961 ExprResult Arg = PerformCopyInitialization( 3962 Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i)); 3963 if (Arg.isInvalid()) 3964 return ExprError(); 3965 TheCall->setArg(i, Arg.get()); 3966 } 3967 auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee()); 3968 assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && 3969 "Callee expected to be implicit cast to a builtin function pointer"); 3970 Callee->setType(OperatorNewOrDelete->getType()); 3971 3972 return TheCallResult; 3973 } 3974 3975 void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc, 3976 bool IsDelete, bool CallCanBeVirtual, 3977 bool WarnOnNonAbstractTypes, 3978 SourceLocation DtorLoc) { 3979 if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext()) 3980 return; 3981 3982 // C++ [expr.delete]p3: 3983 // In the first alternative (delete object), if the static type of the 3984 // object to be deleted is different from its dynamic type, the static 3985 // type shall be a base class of the dynamic type of the object to be 3986 // deleted and the static type shall have a virtual destructor or the 3987 // behavior is undefined. 3988 // 3989 const CXXRecordDecl *PointeeRD = dtor->getParent(); 3990 // Note: a final class cannot be derived from, no issue there 3991 if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>()) 3992 return; 3993 3994 // If the superclass is in a system header, there's nothing that can be done. 3995 // The `delete` (where we emit the warning) can be in a system header, 3996 // what matters for this warning is where the deleted type is defined. 3997 if (getSourceManager().isInSystemHeader(PointeeRD->getLocation())) 3998 return; 3999 4000 QualType ClassType = dtor->getFunctionObjectParameterType(); 4001 if (PointeeRD->isAbstract()) { 4002 // If the class is abstract, we warn by default, because we're 4003 // sure the code has undefined behavior. 4004 Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1) 4005 << ClassType; 4006 } else if (WarnOnNonAbstractTypes) { 4007 // Otherwise, if this is not an array delete, it's a bit suspect, 4008 // but not necessarily wrong. 4009 Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1) 4010 << ClassType; 4011 } 4012 if (!IsDelete) { 4013 std::string TypeStr; 4014 ClassType.getAsStringInternal(TypeStr, getPrintingPolicy()); 4015 Diag(DtorLoc, diag::note_delete_non_virtual) 4016 << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::"); 4017 } 4018 } 4019 4020 Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar, 4021 SourceLocation StmtLoc, 4022 ConditionKind CK) { 4023 ExprResult E = 4024 CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK); 4025 if (E.isInvalid()) 4026 return ConditionError(); 4027 return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc), 4028 CK == ConditionKind::ConstexprIf); 4029 } 4030 4031 /// Check the use of the given variable as a C++ condition in an if, 4032 /// while, do-while, or switch statement. 4033 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar, 4034 SourceLocation StmtLoc, 4035 ConditionKind CK) { 4036 if (ConditionVar->isInvalidDecl()) 4037 return ExprError(); 4038 4039 QualType T = ConditionVar->getType(); 4040 4041 // C++ [stmt.select]p2: 4042 // The declarator shall not specify a function or an array. 4043 if (T->isFunctionType()) 4044 return ExprError(Diag(ConditionVar->getLocation(), 4045 diag::err_invalid_use_of_function_type) 4046 << ConditionVar->getSourceRange()); 4047 else if (T->isArrayType()) 4048 return ExprError(Diag(ConditionVar->getLocation(), 4049 diag::err_invalid_use_of_array_type) 4050 << ConditionVar->getSourceRange()); 4051 4052 ExprResult Condition = BuildDeclRefExpr( 4053 ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue, 4054 ConditionVar->getLocation()); 4055 4056 switch (CK) { 4057 case ConditionKind::Boolean: 4058 return CheckBooleanCondition(StmtLoc, Condition.get()); 4059 4060 case ConditionKind::ConstexprIf: 4061 return CheckBooleanCondition(StmtLoc, Condition.get(), true); 4062 4063 case ConditionKind::Switch: 4064 return CheckSwitchCondition(StmtLoc, Condition.get()); 4065 } 4066 4067 llvm_unreachable("unexpected condition kind"); 4068 } 4069 4070 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. 4071 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) { 4072 // C++11 6.4p4: 4073 // The value of a condition that is an initialized declaration in a statement 4074 // other than a switch statement is the value of the declared variable 4075 // implicitly converted to type bool. If that conversion is ill-formed, the 4076 // program is ill-formed. 4077 // The value of a condition that is an expression is the value of the 4078 // expression, implicitly converted to bool. 4079 // 4080 // C++23 8.5.2p2 4081 // If the if statement is of the form if constexpr, the value of the condition 4082 // is contextually converted to bool and the converted expression shall be 4083 // a constant expression. 4084 // 4085 4086 ExprResult E = PerformContextuallyConvertToBool(CondExpr); 4087 if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent()) 4088 return E; 4089 4090 // FIXME: Return this value to the caller so they don't need to recompute it. 4091 llvm::APSInt Cond; 4092 E = VerifyIntegerConstantExpression( 4093 E.get(), &Cond, 4094 diag::err_constexpr_if_condition_expression_is_not_constant); 4095 return E; 4096 } 4097 4098 /// Helper function to determine whether this is the (deprecated) C++ 4099 /// conversion from a string literal to a pointer to non-const char or 4100 /// non-const wchar_t (for narrow and wide string literals, 4101 /// respectively). 4102 bool 4103 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { 4104 // Look inside the implicit cast, if it exists. 4105 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From)) 4106 From = Cast->getSubExpr(); 4107 4108 // A string literal (2.13.4) that is not a wide string literal can 4109 // be converted to an rvalue of type "pointer to char"; a wide 4110 // string literal can be converted to an rvalue of type "pointer 4111 // to wchar_t" (C++ 4.2p2). 4112 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens())) 4113 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) 4114 if (const BuiltinType *ToPointeeType 4115 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) { 4116 // This conversion is considered only when there is an 4117 // explicit appropriate pointer target type (C++ 4.2p2). 4118 if (!ToPtrType->getPointeeType().hasQualifiers()) { 4119 switch (StrLit->getKind()) { 4120 case StringLiteralKind::UTF8: 4121 case StringLiteralKind::UTF16: 4122 case StringLiteralKind::UTF32: 4123 // We don't allow UTF literals to be implicitly converted 4124 break; 4125 case StringLiteralKind::Ordinary: 4126 return (ToPointeeType->getKind() == BuiltinType::Char_U || 4127 ToPointeeType->getKind() == BuiltinType::Char_S); 4128 case StringLiteralKind::Wide: 4129 return Context.typesAreCompatible(Context.getWideCharType(), 4130 QualType(ToPointeeType, 0)); 4131 case StringLiteralKind::Unevaluated: 4132 assert(false && "Unevaluated string literal in expression"); 4133 break; 4134 } 4135 } 4136 } 4137 4138 return false; 4139 } 4140 4141 static ExprResult BuildCXXCastArgument(Sema &S, 4142 SourceLocation CastLoc, 4143 QualType Ty, 4144 CastKind Kind, 4145 CXXMethodDecl *Method, 4146 DeclAccessPair FoundDecl, 4147 bool HadMultipleCandidates, 4148 Expr *From) { 4149 switch (Kind) { 4150 default: llvm_unreachable("Unhandled cast kind!"); 4151 case CK_ConstructorConversion: { 4152 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method); 4153 SmallVector<Expr*, 8> ConstructorArgs; 4154 4155 if (S.RequireNonAbstractType(CastLoc, Ty, 4156 diag::err_allocation_of_abstract_type)) 4157 return ExprError(); 4158 4159 if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc, 4160 ConstructorArgs)) 4161 return ExprError(); 4162 4163 S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl, 4164 InitializedEntity::InitializeTemporary(Ty)); 4165 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 4166 return ExprError(); 4167 4168 ExprResult Result = S.BuildCXXConstructExpr( 4169 CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method), 4170 ConstructorArgs, HadMultipleCandidates, 4171 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4172 CXXConstructionKind::Complete, SourceRange()); 4173 if (Result.isInvalid()) 4174 return ExprError(); 4175 4176 return S.MaybeBindToTemporary(Result.getAs<Expr>()); 4177 } 4178 4179 case CK_UserDefinedConversion: { 4180 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!"); 4181 4182 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl); 4183 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 4184 return ExprError(); 4185 4186 // Create an implicit call expr that calls it. 4187 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method); 4188 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv, 4189 HadMultipleCandidates); 4190 if (Result.isInvalid()) 4191 return ExprError(); 4192 // Record usage of conversion in an implicit cast. 4193 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(), 4194 CK_UserDefinedConversion, Result.get(), 4195 nullptr, Result.get()->getValueKind(), 4196 S.CurFPFeatureOverrides()); 4197 4198 return S.MaybeBindToTemporary(Result.get()); 4199 } 4200 } 4201 } 4202 4203 /// PerformImplicitConversion - Perform an implicit conversion of the 4204 /// expression From to the type ToType using the pre-computed implicit 4205 /// conversion sequence ICS. Returns the converted 4206 /// expression. Action is the kind of conversion we're performing, 4207 /// used in the error message. 4208 ExprResult 4209 Sema::PerformImplicitConversion(Expr *From, QualType ToType, 4210 const ImplicitConversionSequence &ICS, 4211 AssignmentAction Action, 4212 CheckedConversionKind CCK) { 4213 // C++ [over.match.oper]p7: [...] operands of class type are converted [...] 4214 if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType()) 4215 return From; 4216 4217 switch (ICS.getKind()) { 4218 case ImplicitConversionSequence::StandardConversion: { 4219 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard, 4220 Action, CCK); 4221 if (Res.isInvalid()) 4222 return ExprError(); 4223 From = Res.get(); 4224 break; 4225 } 4226 4227 case ImplicitConversionSequence::UserDefinedConversion: { 4228 4229 FunctionDecl *FD = ICS.UserDefined.ConversionFunction; 4230 CastKind CastKind; 4231 QualType BeforeToType; 4232 assert(FD && "no conversion function for user-defined conversion seq"); 4233 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) { 4234 CastKind = CK_UserDefinedConversion; 4235 4236 // If the user-defined conversion is specified by a conversion function, 4237 // the initial standard conversion sequence converts the source type to 4238 // the implicit object parameter of the conversion function. 4239 BeforeToType = Context.getTagDeclType(Conv->getParent()); 4240 } else { 4241 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD); 4242 CastKind = CK_ConstructorConversion; 4243 // Do no conversion if dealing with ... for the first conversion. 4244 if (!ICS.UserDefined.EllipsisConversion) { 4245 // If the user-defined conversion is specified by a constructor, the 4246 // initial standard conversion sequence converts the source type to 4247 // the type required by the argument of the constructor 4248 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType(); 4249 } 4250 } 4251 // Watch out for ellipsis conversion. 4252 if (!ICS.UserDefined.EllipsisConversion) { 4253 ExprResult Res = 4254 PerformImplicitConversion(From, BeforeToType, 4255 ICS.UserDefined.Before, AA_Converting, 4256 CCK); 4257 if (Res.isInvalid()) 4258 return ExprError(); 4259 From = Res.get(); 4260 } 4261 4262 ExprResult CastArg = BuildCXXCastArgument( 4263 *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind, 4264 cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction, 4265 ICS.UserDefined.HadMultipleCandidates, From); 4266 4267 if (CastArg.isInvalid()) 4268 return ExprError(); 4269 4270 From = CastArg.get(); 4271 4272 // C++ [over.match.oper]p7: 4273 // [...] the second standard conversion sequence of a user-defined 4274 // conversion sequence is not applied. 4275 if (CCK == CCK_ForBuiltinOverloadedOp) 4276 return From; 4277 4278 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After, 4279 AA_Converting, CCK); 4280 } 4281 4282 case ImplicitConversionSequence::AmbiguousConversion: 4283 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(), 4284 PDiag(diag::err_typecheck_ambiguous_condition) 4285 << From->getSourceRange()); 4286 return ExprError(); 4287 4288 case ImplicitConversionSequence::EllipsisConversion: 4289 case ImplicitConversionSequence::StaticObjectArgumentConversion: 4290 llvm_unreachable("bad conversion"); 4291 4292 case ImplicitConversionSequence::BadConversion: 4293 Sema::AssignConvertType ConvTy = 4294 CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType()); 4295 bool Diagnosed = DiagnoseAssignmentResult( 4296 ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(), 4297 ToType, From->getType(), From, Action); 4298 assert(Diagnosed && "failed to diagnose bad conversion"); (void)Diagnosed; 4299 return ExprError(); 4300 } 4301 4302 // Everything went well. 4303 return From; 4304 } 4305 4306 /// PerformImplicitConversion - Perform an implicit conversion of the 4307 /// expression From to the type ToType by following the standard 4308 /// conversion sequence SCS. Returns the converted 4309 /// expression. Flavor is the context in which we're performing this 4310 /// conversion, for use in error messages. 4311 ExprResult 4312 Sema::PerformImplicitConversion(Expr *From, QualType ToType, 4313 const StandardConversionSequence& SCS, 4314 AssignmentAction Action, 4315 CheckedConversionKind CCK) { 4316 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast); 4317 4318 // Overall FIXME: we are recomputing too many types here and doing far too 4319 // much extra work. What this means is that we need to keep track of more 4320 // information that is computed when we try the implicit conversion initially, 4321 // so that we don't need to recompute anything here. 4322 QualType FromType = From->getType(); 4323 4324 if (SCS.CopyConstructor) { 4325 // FIXME: When can ToType be a reference type? 4326 assert(!ToType->isReferenceType()); 4327 if (SCS.Second == ICK_Derived_To_Base) { 4328 SmallVector<Expr*, 8> ConstructorArgs; 4329 if (CompleteConstructorCall( 4330 cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From, 4331 /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs)) 4332 return ExprError(); 4333 return BuildCXXConstructExpr( 4334 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, 4335 SCS.FoundCopyConstructor, SCS.CopyConstructor, ConstructorArgs, 4336 /*HadMultipleCandidates*/ false, 4337 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4338 CXXConstructionKind::Complete, SourceRange()); 4339 } 4340 return BuildCXXConstructExpr( 4341 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, 4342 SCS.FoundCopyConstructor, SCS.CopyConstructor, From, 4343 /*HadMultipleCandidates*/ false, 4344 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4345 CXXConstructionKind::Complete, SourceRange()); 4346 } 4347 4348 // Resolve overloaded function references. 4349 if (Context.hasSameType(FromType, Context.OverloadTy)) { 4350 DeclAccessPair Found; 4351 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, 4352 true, Found); 4353 if (!Fn) 4354 return ExprError(); 4355 4356 if (DiagnoseUseOfDecl(Fn, From->getBeginLoc())) 4357 return ExprError(); 4358 4359 ExprResult Res = FixOverloadedFunctionReference(From, Found, Fn); 4360 if (Res.isInvalid()) 4361 return ExprError(); 4362 4363 // We might get back another placeholder expression if we resolved to a 4364 // builtin. 4365 Res = CheckPlaceholderExpr(Res.get()); 4366 if (Res.isInvalid()) 4367 return ExprError(); 4368 4369 From = Res.get(); 4370 FromType = From->getType(); 4371 } 4372 4373 // If we're converting to an atomic type, first convert to the corresponding 4374 // non-atomic type. 4375 QualType ToAtomicType; 4376 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) { 4377 ToAtomicType = ToType; 4378 ToType = ToAtomic->getValueType(); 4379 } 4380 4381 QualType InitialFromType = FromType; 4382 // Perform the first implicit conversion. 4383 switch (SCS.First) { 4384 case ICK_Identity: 4385 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) { 4386 FromType = FromAtomic->getValueType().getUnqualifiedType(); 4387 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic, 4388 From, /*BasePath=*/nullptr, VK_PRValue, 4389 FPOptionsOverride()); 4390 } 4391 break; 4392 4393 case ICK_Lvalue_To_Rvalue: { 4394 assert(From->getObjectKind() != OK_ObjCProperty); 4395 ExprResult FromRes = DefaultLvalueConversion(From); 4396 if (FromRes.isInvalid()) 4397 return ExprError(); 4398 4399 From = FromRes.get(); 4400 FromType = From->getType(); 4401 break; 4402 } 4403 4404 case ICK_Array_To_Pointer: 4405 FromType = Context.getArrayDecayedType(FromType); 4406 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_PRValue, 4407 /*BasePath=*/nullptr, CCK) 4408 .get(); 4409 break; 4410 4411 case ICK_Function_To_Pointer: 4412 FromType = Context.getPointerType(FromType); 4413 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay, 4414 VK_PRValue, /*BasePath=*/nullptr, CCK) 4415 .get(); 4416 break; 4417 4418 default: 4419 llvm_unreachable("Improper first standard conversion"); 4420 } 4421 4422 // Perform the second implicit conversion 4423 switch (SCS.Second) { 4424 case ICK_Identity: 4425 // C++ [except.spec]p5: 4426 // [For] assignment to and initialization of pointers to functions, 4427 // pointers to member functions, and references to functions: the 4428 // target entity shall allow at least the exceptions allowed by the 4429 // source value in the assignment or initialization. 4430 switch (Action) { 4431 case AA_Assigning: 4432 case AA_Initializing: 4433 // Note, function argument passing and returning are initialization. 4434 case AA_Passing: 4435 case AA_Returning: 4436 case AA_Sending: 4437 case AA_Passing_CFAudited: 4438 if (CheckExceptionSpecCompatibility(From, ToType)) 4439 return ExprError(); 4440 break; 4441 4442 case AA_Casting: 4443 case AA_Converting: 4444 // Casts and implicit conversions are not initialization, so are not 4445 // checked for exception specification mismatches. 4446 break; 4447 } 4448 // Nothing else to do. 4449 break; 4450 4451 case ICK_Integral_Promotion: 4452 case ICK_Integral_Conversion: 4453 if (ToType->isBooleanType()) { 4454 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() && 4455 SCS.Second == ICK_Integral_Promotion && 4456 "only enums with fixed underlying type can promote to bool"); 4457 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, VK_PRValue, 4458 /*BasePath=*/nullptr, CCK) 4459 .get(); 4460 } else { 4461 From = ImpCastExprToType(From, ToType, CK_IntegralCast, VK_PRValue, 4462 /*BasePath=*/nullptr, CCK) 4463 .get(); 4464 } 4465 break; 4466 4467 case ICK_Floating_Promotion: 4468 case ICK_Floating_Conversion: 4469 From = ImpCastExprToType(From, ToType, CK_FloatingCast, VK_PRValue, 4470 /*BasePath=*/nullptr, CCK) 4471 .get(); 4472 break; 4473 4474 case ICK_Complex_Promotion: 4475 case ICK_Complex_Conversion: { 4476 QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType(); 4477 QualType ToEl = ToType->castAs<ComplexType>()->getElementType(); 4478 CastKind CK; 4479 if (FromEl->isRealFloatingType()) { 4480 if (ToEl->isRealFloatingType()) 4481 CK = CK_FloatingComplexCast; 4482 else 4483 CK = CK_FloatingComplexToIntegralComplex; 4484 } else if (ToEl->isRealFloatingType()) { 4485 CK = CK_IntegralComplexToFloatingComplex; 4486 } else { 4487 CK = CK_IntegralComplexCast; 4488 } 4489 From = ImpCastExprToType(From, ToType, CK, VK_PRValue, /*BasePath=*/nullptr, 4490 CCK) 4491 .get(); 4492 break; 4493 } 4494 4495 case ICK_Floating_Integral: 4496 if (ToType->isRealFloatingType()) 4497 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, VK_PRValue, 4498 /*BasePath=*/nullptr, CCK) 4499 .get(); 4500 else 4501 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, VK_PRValue, 4502 /*BasePath=*/nullptr, CCK) 4503 .get(); 4504 break; 4505 4506 case ICK_Fixed_Point_Conversion: 4507 assert((FromType->isFixedPointType() || ToType->isFixedPointType()) && 4508 "Attempting implicit fixed point conversion without a fixed " 4509 "point operand"); 4510 if (FromType->isFloatingType()) 4511 From = ImpCastExprToType(From, ToType, CK_FloatingToFixedPoint, 4512 VK_PRValue, 4513 /*BasePath=*/nullptr, CCK).get(); 4514 else if (ToType->isFloatingType()) 4515 From = ImpCastExprToType(From, ToType, CK_FixedPointToFloating, 4516 VK_PRValue, 4517 /*BasePath=*/nullptr, CCK).get(); 4518 else if (FromType->isIntegralType(Context)) 4519 From = ImpCastExprToType(From, ToType, CK_IntegralToFixedPoint, 4520 VK_PRValue, 4521 /*BasePath=*/nullptr, CCK).get(); 4522 else if (ToType->isIntegralType(Context)) 4523 From = ImpCastExprToType(From, ToType, CK_FixedPointToIntegral, 4524 VK_PRValue, 4525 /*BasePath=*/nullptr, CCK).get(); 4526 else if (ToType->isBooleanType()) 4527 From = ImpCastExprToType(From, ToType, CK_FixedPointToBoolean, 4528 VK_PRValue, 4529 /*BasePath=*/nullptr, CCK).get(); 4530 else 4531 From = ImpCastExprToType(From, ToType, CK_FixedPointCast, 4532 VK_PRValue, 4533 /*BasePath=*/nullptr, CCK).get(); 4534 break; 4535 4536 case ICK_Compatible_Conversion: 4537 From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(), 4538 /*BasePath=*/nullptr, CCK).get(); 4539 break; 4540 4541 case ICK_Writeback_Conversion: 4542 case ICK_Pointer_Conversion: { 4543 if (SCS.IncompatibleObjC && Action != AA_Casting) { 4544 // Diagnose incompatible Objective-C conversions 4545 if (Action == AA_Initializing || Action == AA_Assigning) 4546 Diag(From->getBeginLoc(), 4547 diag::ext_typecheck_convert_incompatible_pointer) 4548 << ToType << From->getType() << Action << From->getSourceRange() 4549 << 0; 4550 else 4551 Diag(From->getBeginLoc(), 4552 diag::ext_typecheck_convert_incompatible_pointer) 4553 << From->getType() << ToType << Action << From->getSourceRange() 4554 << 0; 4555 4556 if (From->getType()->isObjCObjectPointerType() && 4557 ToType->isObjCObjectPointerType()) 4558 EmitRelatedResultTypeNote(From); 4559 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && 4560 !CheckObjCARCUnavailableWeakConversion(ToType, 4561 From->getType())) { 4562 if (Action == AA_Initializing) 4563 Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign); 4564 else 4565 Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable) 4566 << (Action == AA_Casting) << From->getType() << ToType 4567 << From->getSourceRange(); 4568 } 4569 4570 // Defer address space conversion to the third conversion. 4571 QualType FromPteeType = From->getType()->getPointeeType(); 4572 QualType ToPteeType = ToType->getPointeeType(); 4573 QualType NewToType = ToType; 4574 if (!FromPteeType.isNull() && !ToPteeType.isNull() && 4575 FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) { 4576 NewToType = Context.removeAddrSpaceQualType(ToPteeType); 4577 NewToType = Context.getAddrSpaceQualType(NewToType, 4578 FromPteeType.getAddressSpace()); 4579 if (ToType->isObjCObjectPointerType()) 4580 NewToType = Context.getObjCObjectPointerType(NewToType); 4581 else if (ToType->isBlockPointerType()) 4582 NewToType = Context.getBlockPointerType(NewToType); 4583 else 4584 NewToType = Context.getPointerType(NewToType); 4585 } 4586 4587 CastKind Kind; 4588 CXXCastPath BasePath; 4589 if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle)) 4590 return ExprError(); 4591 4592 // Make sure we extend blocks if necessary. 4593 // FIXME: doing this here is really ugly. 4594 if (Kind == CK_BlockPointerToObjCPointerCast) { 4595 ExprResult E = From; 4596 (void) PrepareCastToObjCObjectPointer(E); 4597 From = E.get(); 4598 } 4599 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()) 4600 CheckObjCConversion(SourceRange(), NewToType, From, CCK); 4601 From = ImpCastExprToType(From, NewToType, Kind, VK_PRValue, &BasePath, CCK) 4602 .get(); 4603 break; 4604 } 4605 4606 case ICK_Pointer_Member: { 4607 CastKind Kind; 4608 CXXCastPath BasePath; 4609 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle)) 4610 return ExprError(); 4611 if (CheckExceptionSpecCompatibility(From, ToType)) 4612 return ExprError(); 4613 4614 // We may not have been able to figure out what this member pointer resolved 4615 // to up until this exact point. Attempt to lock-in it's inheritance model. 4616 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4617 (void)isCompleteType(From->getExprLoc(), From->getType()); 4618 (void)isCompleteType(From->getExprLoc(), ToType); 4619 } 4620 4621 From = 4622 ImpCastExprToType(From, ToType, Kind, VK_PRValue, &BasePath, CCK).get(); 4623 break; 4624 } 4625 4626 case ICK_Boolean_Conversion: 4627 // Perform half-to-boolean conversion via float. 4628 if (From->getType()->isHalfType()) { 4629 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get(); 4630 FromType = Context.FloatTy; 4631 } 4632 4633 From = ImpCastExprToType(From, Context.BoolTy, 4634 ScalarTypeToBooleanCastKind(FromType), VK_PRValue, 4635 /*BasePath=*/nullptr, CCK) 4636 .get(); 4637 break; 4638 4639 case ICK_Derived_To_Base: { 4640 CXXCastPath BasePath; 4641 if (CheckDerivedToBaseConversion( 4642 From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(), 4643 From->getSourceRange(), &BasePath, CStyle)) 4644 return ExprError(); 4645 4646 From = ImpCastExprToType(From, ToType.getNonReferenceType(), 4647 CK_DerivedToBase, From->getValueKind(), 4648 &BasePath, CCK).get(); 4649 break; 4650 } 4651 4652 case ICK_Vector_Conversion: 4653 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue, 4654 /*BasePath=*/nullptr, CCK) 4655 .get(); 4656 break; 4657 4658 case ICK_SVE_Vector_Conversion: 4659 case ICK_RVV_Vector_Conversion: 4660 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue, 4661 /*BasePath=*/nullptr, CCK) 4662 .get(); 4663 break; 4664 4665 case ICK_Vector_Splat: { 4666 // Vector splat from any arithmetic type to a vector. 4667 Expr *Elem = prepareVectorSplat(ToType, From).get(); 4668 From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue, 4669 /*BasePath=*/nullptr, CCK) 4670 .get(); 4671 break; 4672 } 4673 4674 case ICK_Complex_Real: 4675 // Case 1. x -> _Complex y 4676 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) { 4677 QualType ElType = ToComplex->getElementType(); 4678 bool isFloatingComplex = ElType->isRealFloatingType(); 4679 4680 // x -> y 4681 if (Context.hasSameUnqualifiedType(ElType, From->getType())) { 4682 // do nothing 4683 } else if (From->getType()->isRealFloatingType()) { 4684 From = ImpCastExprToType(From, ElType, 4685 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get(); 4686 } else { 4687 assert(From->getType()->isIntegerType()); 4688 From = ImpCastExprToType(From, ElType, 4689 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get(); 4690 } 4691 // y -> _Complex y 4692 From = ImpCastExprToType(From, ToType, 4693 isFloatingComplex ? CK_FloatingRealToComplex 4694 : CK_IntegralRealToComplex).get(); 4695 4696 // Case 2. _Complex x -> y 4697 } else { 4698 auto *FromComplex = From->getType()->castAs<ComplexType>(); 4699 QualType ElType = FromComplex->getElementType(); 4700 bool isFloatingComplex = ElType->isRealFloatingType(); 4701 4702 // _Complex x -> x 4703 From = ImpCastExprToType(From, ElType, 4704 isFloatingComplex ? CK_FloatingComplexToReal 4705 : CK_IntegralComplexToReal, 4706 VK_PRValue, /*BasePath=*/nullptr, CCK) 4707 .get(); 4708 4709 // x -> y 4710 if (Context.hasSameUnqualifiedType(ElType, ToType)) { 4711 // do nothing 4712 } else if (ToType->isRealFloatingType()) { 4713 From = ImpCastExprToType(From, ToType, 4714 isFloatingComplex ? CK_FloatingCast 4715 : CK_IntegralToFloating, 4716 VK_PRValue, /*BasePath=*/nullptr, CCK) 4717 .get(); 4718 } else { 4719 assert(ToType->isIntegerType()); 4720 From = ImpCastExprToType(From, ToType, 4721 isFloatingComplex ? CK_FloatingToIntegral 4722 : CK_IntegralCast, 4723 VK_PRValue, /*BasePath=*/nullptr, CCK) 4724 .get(); 4725 } 4726 } 4727 break; 4728 4729 case ICK_Block_Pointer_Conversion: { 4730 LangAS AddrSpaceL = 4731 ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); 4732 LangAS AddrSpaceR = 4733 FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); 4734 assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && 4735 "Invalid cast"); 4736 CastKind Kind = 4737 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast; 4738 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind, 4739 VK_PRValue, /*BasePath=*/nullptr, CCK) 4740 .get(); 4741 break; 4742 } 4743 4744 case ICK_TransparentUnionConversion: { 4745 ExprResult FromRes = From; 4746 Sema::AssignConvertType ConvTy = 4747 CheckTransparentUnionArgumentConstraints(ToType, FromRes); 4748 if (FromRes.isInvalid()) 4749 return ExprError(); 4750 From = FromRes.get(); 4751 assert ((ConvTy == Sema::Compatible) && 4752 "Improper transparent union conversion"); 4753 (void)ConvTy; 4754 break; 4755 } 4756 4757 case ICK_Zero_Event_Conversion: 4758 case ICK_Zero_Queue_Conversion: 4759 From = ImpCastExprToType(From, ToType, 4760 CK_ZeroToOCLOpaqueType, 4761 From->getValueKind()).get(); 4762 break; 4763 4764 case ICK_Lvalue_To_Rvalue: 4765 case ICK_Array_To_Pointer: 4766 case ICK_Function_To_Pointer: 4767 case ICK_Function_Conversion: 4768 case ICK_Qualification: 4769 case ICK_Num_Conversion_Kinds: 4770 case ICK_C_Only_Conversion: 4771 case ICK_Incompatible_Pointer_Conversion: 4772 llvm_unreachable("Improper second standard conversion"); 4773 } 4774 4775 switch (SCS.Third) { 4776 case ICK_Identity: 4777 // Nothing to do. 4778 break; 4779 4780 case ICK_Function_Conversion: 4781 // If both sides are functions (or pointers/references to them), there could 4782 // be incompatible exception declarations. 4783 if (CheckExceptionSpecCompatibility(From, ToType)) 4784 return ExprError(); 4785 4786 From = ImpCastExprToType(From, ToType, CK_NoOp, VK_PRValue, 4787 /*BasePath=*/nullptr, CCK) 4788 .get(); 4789 break; 4790 4791 case ICK_Qualification: { 4792 ExprValueKind VK = From->getValueKind(); 4793 CastKind CK = CK_NoOp; 4794 4795 if (ToType->isReferenceType() && 4796 ToType->getPointeeType().getAddressSpace() != 4797 From->getType().getAddressSpace()) 4798 CK = CK_AddressSpaceConversion; 4799 4800 if (ToType->isPointerType() && 4801 ToType->getPointeeType().getAddressSpace() != 4802 From->getType()->getPointeeType().getAddressSpace()) 4803 CK = CK_AddressSpaceConversion; 4804 4805 if (!isCast(CCK) && 4806 !ToType->getPointeeType().getQualifiers().hasUnaligned() && 4807 From->getType()->getPointeeType().getQualifiers().hasUnaligned()) { 4808 Diag(From->getBeginLoc(), diag::warn_imp_cast_drops_unaligned) 4809 << InitialFromType << ToType; 4810 } 4811 4812 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK, 4813 /*BasePath=*/nullptr, CCK) 4814 .get(); 4815 4816 if (SCS.DeprecatedStringLiteralToCharPtr && 4817 !getLangOpts().WritableStrings) { 4818 Diag(From->getBeginLoc(), 4819 getLangOpts().CPlusPlus11 4820 ? diag::ext_deprecated_string_literal_conversion 4821 : diag::warn_deprecated_string_literal_conversion) 4822 << ToType.getNonReferenceType(); 4823 } 4824 4825 break; 4826 } 4827 4828 default: 4829 llvm_unreachable("Improper third standard conversion"); 4830 } 4831 4832 // If this conversion sequence involved a scalar -> atomic conversion, perform 4833 // that conversion now. 4834 if (!ToAtomicType.isNull()) { 4835 assert(Context.hasSameType( 4836 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())); 4837 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic, 4838 VK_PRValue, nullptr, CCK) 4839 .get(); 4840 } 4841 4842 // Materialize a temporary if we're implicitly converting to a reference 4843 // type. This is not required by the C++ rules but is necessary to maintain 4844 // AST invariants. 4845 if (ToType->isReferenceType() && From->isPRValue()) { 4846 ExprResult Res = TemporaryMaterializationConversion(From); 4847 if (Res.isInvalid()) 4848 return ExprError(); 4849 From = Res.get(); 4850 } 4851 4852 // If this conversion sequence succeeded and involved implicitly converting a 4853 // _Nullable type to a _Nonnull one, complain. 4854 if (!isCast(CCK)) 4855 diagnoseNullableToNonnullConversion(ToType, InitialFromType, 4856 From->getBeginLoc()); 4857 4858 return From; 4859 } 4860 4861 /// Check the completeness of a type in a unary type trait. 4862 /// 4863 /// If the particular type trait requires a complete type, tries to complete 4864 /// it. If completing the type fails, a diagnostic is emitted and false 4865 /// returned. If completing the type succeeds or no completion was required, 4866 /// returns true. 4867 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT, 4868 SourceLocation Loc, 4869 QualType ArgTy) { 4870 // C++0x [meta.unary.prop]p3: 4871 // For all of the class templates X declared in this Clause, instantiating 4872 // that template with a template argument that is a class template 4873 // specialization may result in the implicit instantiation of the template 4874 // argument if and only if the semantics of X require that the argument 4875 // must be a complete type. 4876 // We apply this rule to all the type trait expressions used to implement 4877 // these class templates. We also try to follow any GCC documented behavior 4878 // in these expressions to ensure portability of standard libraries. 4879 switch (UTT) { 4880 default: llvm_unreachable("not a UTT"); 4881 // is_complete_type somewhat obviously cannot require a complete type. 4882 case UTT_IsCompleteType: 4883 // Fall-through 4884 4885 // These traits are modeled on the type predicates in C++0x 4886 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as 4887 // requiring a complete type, as whether or not they return true cannot be 4888 // impacted by the completeness of the type. 4889 case UTT_IsVoid: 4890 case UTT_IsIntegral: 4891 case UTT_IsFloatingPoint: 4892 case UTT_IsArray: 4893 case UTT_IsBoundedArray: 4894 case UTT_IsPointer: 4895 case UTT_IsNullPointer: 4896 case UTT_IsReferenceable: 4897 case UTT_IsLvalueReference: 4898 case UTT_IsRvalueReference: 4899 case UTT_IsMemberFunctionPointer: 4900 case UTT_IsMemberObjectPointer: 4901 case UTT_IsEnum: 4902 case UTT_IsScopedEnum: 4903 case UTT_IsUnion: 4904 case UTT_IsClass: 4905 case UTT_IsFunction: 4906 case UTT_IsReference: 4907 case UTT_IsArithmetic: 4908 case UTT_IsFundamental: 4909 case UTT_IsObject: 4910 case UTT_IsScalar: 4911 case UTT_IsCompound: 4912 case UTT_IsMemberPointer: 4913 // Fall-through 4914 4915 // These traits are modeled on type predicates in C++0x [meta.unary.prop] 4916 // which requires some of its traits to have the complete type. However, 4917 // the completeness of the type cannot impact these traits' semantics, and 4918 // so they don't require it. This matches the comments on these traits in 4919 // Table 49. 4920 case UTT_IsConst: 4921 case UTT_IsVolatile: 4922 case UTT_IsSigned: 4923 case UTT_IsUnboundedArray: 4924 case UTT_IsUnsigned: 4925 4926 // This type trait always returns false, checking the type is moot. 4927 case UTT_IsInterfaceClass: 4928 return true; 4929 4930 // C++14 [meta.unary.prop]: 4931 // If T is a non-union class type, T shall be a complete type. 4932 case UTT_IsEmpty: 4933 case UTT_IsPolymorphic: 4934 case UTT_IsAbstract: 4935 if (const auto *RD = ArgTy->getAsCXXRecordDecl()) 4936 if (!RD->isUnion()) 4937 return !S.RequireCompleteType( 4938 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4939 return true; 4940 4941 // C++14 [meta.unary.prop]: 4942 // If T is a class type, T shall be a complete type. 4943 case UTT_IsFinal: 4944 case UTT_IsSealed: 4945 if (ArgTy->getAsCXXRecordDecl()) 4946 return !S.RequireCompleteType( 4947 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4948 return true; 4949 4950 // LWG3823: T shall be an array type, a complete type, or cv void. 4951 case UTT_IsAggregate: 4952 if (ArgTy->isArrayType() || ArgTy->isVoidType()) 4953 return true; 4954 4955 return !S.RequireCompleteType( 4956 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4957 4958 // C++1z [meta.unary.prop]: 4959 // remove_all_extents_t<T> shall be a complete type or cv void. 4960 case UTT_IsTrivial: 4961 case UTT_IsTriviallyCopyable: 4962 case UTT_IsStandardLayout: 4963 case UTT_IsPOD: 4964 case UTT_IsLiteral: 4965 // By analogy, is_trivially_relocatable and is_trivially_equality_comparable 4966 // impose the same constraints. 4967 case UTT_IsTriviallyRelocatable: 4968 case UTT_IsTriviallyEqualityComparable: 4969 case UTT_CanPassInRegs: 4970 // Per the GCC type traits documentation, T shall be a complete type, cv void, 4971 // or an array of unknown bound. But GCC actually imposes the same constraints 4972 // as above. 4973 case UTT_HasNothrowAssign: 4974 case UTT_HasNothrowMoveAssign: 4975 case UTT_HasNothrowConstructor: 4976 case UTT_HasNothrowCopy: 4977 case UTT_HasTrivialAssign: 4978 case UTT_HasTrivialMoveAssign: 4979 case UTT_HasTrivialDefaultConstructor: 4980 case UTT_HasTrivialMoveConstructor: 4981 case UTT_HasTrivialCopy: 4982 case UTT_HasTrivialDestructor: 4983 case UTT_HasVirtualDestructor: 4984 ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0); 4985 [[fallthrough]]; 4986 4987 // C++1z [meta.unary.prop]: 4988 // T shall be a complete type, cv void, or an array of unknown bound. 4989 case UTT_IsDestructible: 4990 case UTT_IsNothrowDestructible: 4991 case UTT_IsTriviallyDestructible: 4992 case UTT_HasUniqueObjectRepresentations: 4993 if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType()) 4994 return true; 4995 4996 return !S.RequireCompleteType( 4997 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4998 } 4999 } 5000 5001 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op, 5002 Sema &Self, SourceLocation KeyLoc, ASTContext &C, 5003 bool (CXXRecordDecl::*HasTrivial)() const, 5004 bool (CXXRecordDecl::*HasNonTrivial)() const, 5005 bool (CXXMethodDecl::*IsDesiredOp)() const) 5006 { 5007 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 5008 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)()) 5009 return true; 5010 5011 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op); 5012 DeclarationNameInfo NameInfo(Name, KeyLoc); 5013 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName); 5014 if (Self.LookupQualifiedName(Res, RD)) { 5015 bool FoundOperator = false; 5016 Res.suppressDiagnostics(); 5017 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end(); 5018 Op != OpEnd; ++Op) { 5019 if (isa<FunctionTemplateDecl>(*Op)) 5020 continue; 5021 5022 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op); 5023 if((Operator->*IsDesiredOp)()) { 5024 FoundOperator = true; 5025 auto *CPT = Operator->getType()->castAs<FunctionProtoType>(); 5026 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5027 if (!CPT || !CPT->isNothrow()) 5028 return false; 5029 } 5030 } 5031 return FoundOperator; 5032 } 5033 return false; 5034 } 5035 5036 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT, 5037 SourceLocation KeyLoc, QualType T) { 5038 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); 5039 5040 ASTContext &C = Self.Context; 5041 switch(UTT) { 5042 default: llvm_unreachable("not a UTT"); 5043 // Type trait expressions corresponding to the primary type category 5044 // predicates in C++0x [meta.unary.cat]. 5045 case UTT_IsVoid: 5046 return T->isVoidType(); 5047 case UTT_IsIntegral: 5048 return T->isIntegralType(C); 5049 case UTT_IsFloatingPoint: 5050 return T->isFloatingType(); 5051 case UTT_IsArray: 5052 return T->isArrayType(); 5053 case UTT_IsBoundedArray: 5054 if (!T->isVariableArrayType()) { 5055 return T->isArrayType() && !T->isIncompleteArrayType(); 5056 } 5057 5058 Self.Diag(KeyLoc, diag::err_vla_unsupported) 5059 << 1 << tok::kw___is_bounded_array; 5060 return false; 5061 case UTT_IsUnboundedArray: 5062 if (!T->isVariableArrayType()) { 5063 return T->isIncompleteArrayType(); 5064 } 5065 5066 Self.Diag(KeyLoc, diag::err_vla_unsupported) 5067 << 1 << tok::kw___is_unbounded_array; 5068 return false; 5069 case UTT_IsPointer: 5070 return T->isAnyPointerType(); 5071 case UTT_IsNullPointer: 5072 return T->isNullPtrType(); 5073 case UTT_IsLvalueReference: 5074 return T->isLValueReferenceType(); 5075 case UTT_IsRvalueReference: 5076 return T->isRValueReferenceType(); 5077 case UTT_IsMemberFunctionPointer: 5078 return T->isMemberFunctionPointerType(); 5079 case UTT_IsMemberObjectPointer: 5080 return T->isMemberDataPointerType(); 5081 case UTT_IsEnum: 5082 return T->isEnumeralType(); 5083 case UTT_IsScopedEnum: 5084 return T->isScopedEnumeralType(); 5085 case UTT_IsUnion: 5086 return T->isUnionType(); 5087 case UTT_IsClass: 5088 return T->isClassType() || T->isStructureType() || T->isInterfaceType(); 5089 case UTT_IsFunction: 5090 return T->isFunctionType(); 5091 5092 // Type trait expressions which correspond to the convenient composition 5093 // predicates in C++0x [meta.unary.comp]. 5094 case UTT_IsReference: 5095 return T->isReferenceType(); 5096 case UTT_IsArithmetic: 5097 return T->isArithmeticType() && !T->isEnumeralType(); 5098 case UTT_IsFundamental: 5099 return T->isFundamentalType(); 5100 case UTT_IsObject: 5101 return T->isObjectType(); 5102 case UTT_IsScalar: 5103 // Note: semantic analysis depends on Objective-C lifetime types to be 5104 // considered scalar types. However, such types do not actually behave 5105 // like scalar types at run time (since they may require retain/release 5106 // operations), so we report them as non-scalar. 5107 if (T->isObjCLifetimeType()) { 5108 switch (T.getObjCLifetime()) { 5109 case Qualifiers::OCL_None: 5110 case Qualifiers::OCL_ExplicitNone: 5111 return true; 5112 5113 case Qualifiers::OCL_Strong: 5114 case Qualifiers::OCL_Weak: 5115 case Qualifiers::OCL_Autoreleasing: 5116 return false; 5117 } 5118 } 5119 5120 return T->isScalarType(); 5121 case UTT_IsCompound: 5122 return T->isCompoundType(); 5123 case UTT_IsMemberPointer: 5124 return T->isMemberPointerType(); 5125 5126 // Type trait expressions which correspond to the type property predicates 5127 // in C++0x [meta.unary.prop]. 5128 case UTT_IsConst: 5129 return T.isConstQualified(); 5130 case UTT_IsVolatile: 5131 return T.isVolatileQualified(); 5132 case UTT_IsTrivial: 5133 return T.isTrivialType(C); 5134 case UTT_IsTriviallyCopyable: 5135 return T.isTriviallyCopyableType(C); 5136 case UTT_IsStandardLayout: 5137 return T->isStandardLayoutType(); 5138 case UTT_IsPOD: 5139 return T.isPODType(C); 5140 case UTT_IsLiteral: 5141 return T->isLiteralType(C); 5142 case UTT_IsEmpty: 5143 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5144 return !RD->isUnion() && RD->isEmpty(); 5145 return false; 5146 case UTT_IsPolymorphic: 5147 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5148 return !RD->isUnion() && RD->isPolymorphic(); 5149 return false; 5150 case UTT_IsAbstract: 5151 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5152 return !RD->isUnion() && RD->isAbstract(); 5153 return false; 5154 case UTT_IsAggregate: 5155 // Report vector extensions and complex types as aggregates because they 5156 // support aggregate initialization. GCC mirrors this behavior for vectors 5157 // but not _Complex. 5158 return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() || 5159 T->isAnyComplexType(); 5160 // __is_interface_class only returns true when CL is invoked in /CLR mode and 5161 // even then only when it is used with the 'interface struct ...' syntax 5162 // Clang doesn't support /CLR which makes this type trait moot. 5163 case UTT_IsInterfaceClass: 5164 return false; 5165 case UTT_IsFinal: 5166 case UTT_IsSealed: 5167 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5168 return RD->hasAttr<FinalAttr>(); 5169 return false; 5170 case UTT_IsSigned: 5171 // Enum types should always return false. 5172 // Floating points should always return true. 5173 return T->isFloatingType() || 5174 (T->isSignedIntegerType() && !T->isEnumeralType()); 5175 case UTT_IsUnsigned: 5176 // Enum types should always return false. 5177 return T->isUnsignedIntegerType() && !T->isEnumeralType(); 5178 5179 // Type trait expressions which query classes regarding their construction, 5180 // destruction, and copying. Rather than being based directly on the 5181 // related type predicates in the standard, they are specified by both 5182 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those 5183 // specifications. 5184 // 5185 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html 5186 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 5187 // 5188 // Note that these builtins do not behave as documented in g++: if a class 5189 // has both a trivial and a non-trivial special member of a particular kind, 5190 // they return false! For now, we emulate this behavior. 5191 // FIXME: This appears to be a g++ bug: more complex cases reveal that it 5192 // does not correctly compute triviality in the presence of multiple special 5193 // members of the same kind. Revisit this once the g++ bug is fixed. 5194 case UTT_HasTrivialDefaultConstructor: 5195 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5196 // If __is_pod (type) is true then the trait is true, else if type is 5197 // a cv class or union type (or array thereof) with a trivial default 5198 // constructor ([class.ctor]) then the trait is true, else it is false. 5199 if (T.isPODType(C)) 5200 return true; 5201 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 5202 return RD->hasTrivialDefaultConstructor() && 5203 !RD->hasNonTrivialDefaultConstructor(); 5204 return false; 5205 case UTT_HasTrivialMoveConstructor: 5206 // This trait is implemented by MSVC 2012 and needed to parse the 5207 // standard library headers. Specifically this is used as the logic 5208 // behind std::is_trivially_move_constructible (20.9.4.3). 5209 if (T.isPODType(C)) 5210 return true; 5211 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 5212 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor(); 5213 return false; 5214 case UTT_HasTrivialCopy: 5215 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5216 // If __is_pod (type) is true or type is a reference type then 5217 // the trait is true, else if type is a cv class or union type 5218 // with a trivial copy constructor ([class.copy]) then the trait 5219 // is true, else it is false. 5220 if (T.isPODType(C) || T->isReferenceType()) 5221 return true; 5222 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5223 return RD->hasTrivialCopyConstructor() && 5224 !RD->hasNonTrivialCopyConstructor(); 5225 return false; 5226 case UTT_HasTrivialMoveAssign: 5227 // This trait is implemented by MSVC 2012 and needed to parse the 5228 // standard library headers. Specifically it is used as the logic 5229 // behind std::is_trivially_move_assignable (20.9.4.3) 5230 if (T.isPODType(C)) 5231 return true; 5232 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 5233 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment(); 5234 return false; 5235 case UTT_HasTrivialAssign: 5236 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5237 // If type is const qualified or is a reference type then the 5238 // trait is false. Otherwise if __is_pod (type) is true then the 5239 // trait is true, else if type is a cv class or union type with 5240 // a trivial copy assignment ([class.copy]) then the trait is 5241 // true, else it is false. 5242 // Note: the const and reference restrictions are interesting, 5243 // given that const and reference members don't prevent a class 5244 // from having a trivial copy assignment operator (but do cause 5245 // errors if the copy assignment operator is actually used, q.v. 5246 // [class.copy]p12). 5247 5248 if (T.isConstQualified()) 5249 return false; 5250 if (T.isPODType(C)) 5251 return true; 5252 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5253 return RD->hasTrivialCopyAssignment() && 5254 !RD->hasNonTrivialCopyAssignment(); 5255 return false; 5256 case UTT_IsDestructible: 5257 case UTT_IsTriviallyDestructible: 5258 case UTT_IsNothrowDestructible: 5259 // C++14 [meta.unary.prop]: 5260 // For reference types, is_destructible<T>::value is true. 5261 if (T->isReferenceType()) 5262 return true; 5263 5264 // Objective-C++ ARC: autorelease types don't require destruction. 5265 if (T->isObjCLifetimeType() && 5266 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 5267 return true; 5268 5269 // C++14 [meta.unary.prop]: 5270 // For incomplete types and function types, is_destructible<T>::value is 5271 // false. 5272 if (T->isIncompleteType() || T->isFunctionType()) 5273 return false; 5274 5275 // A type that requires destruction (via a non-trivial destructor or ARC 5276 // lifetime semantics) is not trivially-destructible. 5277 if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType()) 5278 return false; 5279 5280 // C++14 [meta.unary.prop]: 5281 // For object types and given U equal to remove_all_extents_t<T>, if the 5282 // expression std::declval<U&>().~U() is well-formed when treated as an 5283 // unevaluated operand (Clause 5), then is_destructible<T>::value is true 5284 if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 5285 CXXDestructorDecl *Destructor = Self.LookupDestructor(RD); 5286 if (!Destructor) 5287 return false; 5288 // C++14 [dcl.fct.def.delete]p2: 5289 // A program that refers to a deleted function implicitly or 5290 // explicitly, other than to declare it, is ill-formed. 5291 if (Destructor->isDeleted()) 5292 return false; 5293 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public) 5294 return false; 5295 if (UTT == UTT_IsNothrowDestructible) { 5296 auto *CPT = Destructor->getType()->castAs<FunctionProtoType>(); 5297 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5298 if (!CPT || !CPT->isNothrow()) 5299 return false; 5300 } 5301 } 5302 return true; 5303 5304 case UTT_HasTrivialDestructor: 5305 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 5306 // If __is_pod (type) is true or type is a reference type 5307 // then the trait is true, else if type is a cv class or union 5308 // type (or array thereof) with a trivial destructor 5309 // ([class.dtor]) then the trait is true, else it is 5310 // false. 5311 if (T.isPODType(C) || T->isReferenceType()) 5312 return true; 5313 5314 // Objective-C++ ARC: autorelease types don't require destruction. 5315 if (T->isObjCLifetimeType() && 5316 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 5317 return true; 5318 5319 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 5320 return RD->hasTrivialDestructor(); 5321 return false; 5322 // TODO: Propagate nothrowness for implicitly declared special members. 5323 case UTT_HasNothrowAssign: 5324 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5325 // If type is const qualified or is a reference type then the 5326 // trait is false. Otherwise if __has_trivial_assign (type) 5327 // is true then the trait is true, else if type is a cv class 5328 // or union type with copy assignment operators that are known 5329 // not to throw an exception then the trait is true, else it is 5330 // false. 5331 if (C.getBaseElementType(T).isConstQualified()) 5332 return false; 5333 if (T->isReferenceType()) 5334 return false; 5335 if (T.isPODType(C) || T->isObjCLifetimeType()) 5336 return true; 5337 5338 if (const RecordType *RT = T->getAs<RecordType>()) 5339 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 5340 &CXXRecordDecl::hasTrivialCopyAssignment, 5341 &CXXRecordDecl::hasNonTrivialCopyAssignment, 5342 &CXXMethodDecl::isCopyAssignmentOperator); 5343 return false; 5344 case UTT_HasNothrowMoveAssign: 5345 // This trait is implemented by MSVC 2012 and needed to parse the 5346 // standard library headers. Specifically this is used as the logic 5347 // behind std::is_nothrow_move_assignable (20.9.4.3). 5348 if (T.isPODType(C)) 5349 return true; 5350 5351 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) 5352 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 5353 &CXXRecordDecl::hasTrivialMoveAssignment, 5354 &CXXRecordDecl::hasNonTrivialMoveAssignment, 5355 &CXXMethodDecl::isMoveAssignmentOperator); 5356 return false; 5357 case UTT_HasNothrowCopy: 5358 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5359 // If __has_trivial_copy (type) is true then the trait is true, else 5360 // if type is a cv class or union type with copy constructors that are 5361 // known not to throw an exception then the trait is true, else it is 5362 // false. 5363 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType()) 5364 return true; 5365 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { 5366 if (RD->hasTrivialCopyConstructor() && 5367 !RD->hasNonTrivialCopyConstructor()) 5368 return true; 5369 5370 bool FoundConstructor = false; 5371 unsigned FoundTQs; 5372 for (const auto *ND : Self.LookupConstructors(RD)) { 5373 // A template constructor is never a copy constructor. 5374 // FIXME: However, it may actually be selected at the actual overload 5375 // resolution point. 5376 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) 5377 continue; 5378 // UsingDecl itself is not a constructor 5379 if (isa<UsingDecl>(ND)) 5380 continue; 5381 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); 5382 if (Constructor->isCopyConstructor(FoundTQs)) { 5383 FoundConstructor = true; 5384 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); 5385 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5386 if (!CPT) 5387 return false; 5388 // TODO: check whether evaluating default arguments can throw. 5389 // For now, we'll be conservative and assume that they can throw. 5390 if (!CPT->isNothrow() || CPT->getNumParams() > 1) 5391 return false; 5392 } 5393 } 5394 5395 return FoundConstructor; 5396 } 5397 return false; 5398 case UTT_HasNothrowConstructor: 5399 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 5400 // If __has_trivial_constructor (type) is true then the trait is 5401 // true, else if type is a cv class or union type (or array 5402 // thereof) with a default constructor that is known not to 5403 // throw an exception then the trait is true, else it is false. 5404 if (T.isPODType(C) || T->isObjCLifetimeType()) 5405 return true; 5406 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 5407 if (RD->hasTrivialDefaultConstructor() && 5408 !RD->hasNonTrivialDefaultConstructor()) 5409 return true; 5410 5411 bool FoundConstructor = false; 5412 for (const auto *ND : Self.LookupConstructors(RD)) { 5413 // FIXME: In C++0x, a constructor template can be a default constructor. 5414 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) 5415 continue; 5416 // UsingDecl itself is not a constructor 5417 if (isa<UsingDecl>(ND)) 5418 continue; 5419 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); 5420 if (Constructor->isDefaultConstructor()) { 5421 FoundConstructor = true; 5422 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); 5423 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5424 if (!CPT) 5425 return false; 5426 // FIXME: check whether evaluating default arguments can throw. 5427 // For now, we'll be conservative and assume that they can throw. 5428 if (!CPT->isNothrow() || CPT->getNumParams() > 0) 5429 return false; 5430 } 5431 } 5432 return FoundConstructor; 5433 } 5434 return false; 5435 case UTT_HasVirtualDestructor: 5436 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5437 // If type is a class type with a virtual destructor ([class.dtor]) 5438 // then the trait is true, else it is false. 5439 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5440 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD)) 5441 return Destructor->isVirtual(); 5442 return false; 5443 5444 // These type trait expressions are modeled on the specifications for the 5445 // Embarcadero C++0x type trait functions: 5446 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 5447 case UTT_IsCompleteType: 5448 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_): 5449 // Returns True if and only if T is a complete type at the point of the 5450 // function call. 5451 return !T->isIncompleteType(); 5452 case UTT_HasUniqueObjectRepresentations: 5453 return C.hasUniqueObjectRepresentations(T); 5454 case UTT_IsTriviallyRelocatable: 5455 return T.isTriviallyRelocatableType(C); 5456 case UTT_IsReferenceable: 5457 return T.isReferenceable(); 5458 case UTT_CanPassInRegs: 5459 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl(); RD && !T.hasQualifiers()) 5460 return RD->canPassInRegisters(); 5461 Self.Diag(KeyLoc, diag::err_builtin_pass_in_regs_non_class) << T; 5462 return false; 5463 case UTT_IsTriviallyEqualityComparable: 5464 return T.isTriviallyEqualityComparableType(C); 5465 } 5466 } 5467 5468 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 5469 QualType RhsT, SourceLocation KeyLoc); 5470 5471 static bool EvaluateBooleanTypeTrait(Sema &S, TypeTrait Kind, 5472 SourceLocation KWLoc, 5473 ArrayRef<TypeSourceInfo *> Args, 5474 SourceLocation RParenLoc, 5475 bool IsDependent) { 5476 if (IsDependent) 5477 return false; 5478 5479 if (Kind <= UTT_Last) 5480 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType()); 5481 5482 // Evaluate ReferenceBindsToTemporary and ReferenceConstructsFromTemporary 5483 // alongside the IsConstructible traits to avoid duplication. 5484 if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary && Kind != BTT_ReferenceConstructsFromTemporary) 5485 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(), 5486 Args[1]->getType(), RParenLoc); 5487 5488 switch (Kind) { 5489 case clang::BTT_ReferenceBindsToTemporary: 5490 case clang::BTT_ReferenceConstructsFromTemporary: 5491 case clang::TT_IsConstructible: 5492 case clang::TT_IsNothrowConstructible: 5493 case clang::TT_IsTriviallyConstructible: { 5494 // C++11 [meta.unary.prop]: 5495 // is_trivially_constructible is defined as: 5496 // 5497 // is_constructible<T, Args...>::value is true and the variable 5498 // definition for is_constructible, as defined below, is known to call 5499 // no operation that is not trivial. 5500 // 5501 // The predicate condition for a template specialization 5502 // is_constructible<T, Args...> shall be satisfied if and only if the 5503 // following variable definition would be well-formed for some invented 5504 // variable t: 5505 // 5506 // T t(create<Args>()...); 5507 assert(!Args.empty()); 5508 5509 // Precondition: T and all types in the parameter pack Args shall be 5510 // complete types, (possibly cv-qualified) void, or arrays of 5511 // unknown bound. 5512 for (const auto *TSI : Args) { 5513 QualType ArgTy = TSI->getType(); 5514 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType()) 5515 continue; 5516 5517 if (S.RequireCompleteType(KWLoc, ArgTy, 5518 diag::err_incomplete_type_used_in_type_trait_expr)) 5519 return false; 5520 } 5521 5522 // Make sure the first argument is not incomplete nor a function type. 5523 QualType T = Args[0]->getType(); 5524 if (T->isIncompleteType() || T->isFunctionType()) 5525 return false; 5526 5527 // Make sure the first argument is not an abstract type. 5528 CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 5529 if (RD && RD->isAbstract()) 5530 return false; 5531 5532 llvm::BumpPtrAllocator OpaqueExprAllocator; 5533 SmallVector<Expr *, 2> ArgExprs; 5534 ArgExprs.reserve(Args.size() - 1); 5535 for (unsigned I = 1, N = Args.size(); I != N; ++I) { 5536 QualType ArgTy = Args[I]->getType(); 5537 if (ArgTy->isObjectType() || ArgTy->isFunctionType()) 5538 ArgTy = S.Context.getRValueReferenceType(ArgTy); 5539 ArgExprs.push_back( 5540 new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>()) 5541 OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(), 5542 ArgTy.getNonLValueExprType(S.Context), 5543 Expr::getValueKindForType(ArgTy))); 5544 } 5545 5546 // Perform the initialization in an unevaluated context within a SFINAE 5547 // trap at translation unit scope. 5548 EnterExpressionEvaluationContext Unevaluated( 5549 S, Sema::ExpressionEvaluationContext::Unevaluated); 5550 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true); 5551 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl()); 5552 InitializedEntity To( 5553 InitializedEntity::InitializeTemporary(S.Context, Args[0])); 5554 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc, 5555 RParenLoc)); 5556 InitializationSequence Init(S, To, InitKind, ArgExprs); 5557 if (Init.Failed()) 5558 return false; 5559 5560 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs); 5561 if (Result.isInvalid() || SFINAE.hasErrorOccurred()) 5562 return false; 5563 5564 if (Kind == clang::TT_IsConstructible) 5565 return true; 5566 5567 if (Kind == clang::BTT_ReferenceBindsToTemporary || Kind == clang::BTT_ReferenceConstructsFromTemporary) { 5568 if (!T->isReferenceType()) 5569 return false; 5570 5571 if (!Init.isDirectReferenceBinding()) 5572 return true; 5573 5574 if (Kind == clang::BTT_ReferenceBindsToTemporary) 5575 return false; 5576 5577 QualType U = Args[1]->getType(); 5578 if (U->isReferenceType()) 5579 return false; 5580 5581 QualType TPtr = S.Context.getPointerType(S.BuiltinRemoveReference(T, UnaryTransformType::RemoveCVRef, {})); 5582 QualType UPtr = S.Context.getPointerType(S.BuiltinRemoveReference(U, UnaryTransformType::RemoveCVRef, {})); 5583 return EvaluateBinaryTypeTrait(S, TypeTrait::BTT_IsConvertibleTo, UPtr, TPtr, RParenLoc); 5584 } 5585 5586 if (Kind == clang::TT_IsNothrowConstructible) 5587 return S.canThrow(Result.get()) == CT_Cannot; 5588 5589 if (Kind == clang::TT_IsTriviallyConstructible) { 5590 // Under Objective-C ARC and Weak, if the destination has non-trivial 5591 // Objective-C lifetime, this is a non-trivial construction. 5592 if (T.getNonReferenceType().hasNonTrivialObjCLifetime()) 5593 return false; 5594 5595 // The initialization succeeded; now make sure there are no non-trivial 5596 // calls. 5597 return !Result.get()->hasNonTrivialCall(S.Context); 5598 } 5599 5600 llvm_unreachable("unhandled type trait"); 5601 return false; 5602 } 5603 default: llvm_unreachable("not a TT"); 5604 } 5605 5606 return false; 5607 } 5608 5609 namespace { 5610 void DiagnoseBuiltinDeprecation(Sema& S, TypeTrait Kind, 5611 SourceLocation KWLoc) { 5612 TypeTrait Replacement; 5613 switch (Kind) { 5614 case UTT_HasNothrowAssign: 5615 case UTT_HasNothrowMoveAssign: 5616 Replacement = BTT_IsNothrowAssignable; 5617 break; 5618 case UTT_HasNothrowCopy: 5619 case UTT_HasNothrowConstructor: 5620 Replacement = TT_IsNothrowConstructible; 5621 break; 5622 case UTT_HasTrivialAssign: 5623 case UTT_HasTrivialMoveAssign: 5624 Replacement = BTT_IsTriviallyAssignable; 5625 break; 5626 case UTT_HasTrivialCopy: 5627 Replacement = UTT_IsTriviallyCopyable; 5628 break; 5629 case UTT_HasTrivialDefaultConstructor: 5630 case UTT_HasTrivialMoveConstructor: 5631 Replacement = TT_IsTriviallyConstructible; 5632 break; 5633 case UTT_HasTrivialDestructor: 5634 Replacement = UTT_IsTriviallyDestructible; 5635 break; 5636 default: 5637 return; 5638 } 5639 S.Diag(KWLoc, diag::warn_deprecated_builtin) 5640 << getTraitSpelling(Kind) << getTraitSpelling(Replacement); 5641 } 5642 } 5643 5644 bool Sema::CheckTypeTraitArity(unsigned Arity, SourceLocation Loc, size_t N) { 5645 if (Arity && N != Arity) { 5646 Diag(Loc, diag::err_type_trait_arity) 5647 << Arity << 0 << (Arity > 1) << (int)N << SourceRange(Loc); 5648 return false; 5649 } 5650 5651 if (!Arity && N == 0) { 5652 Diag(Loc, diag::err_type_trait_arity) 5653 << 1 << 1 << 1 << (int)N << SourceRange(Loc); 5654 return false; 5655 } 5656 return true; 5657 } 5658 5659 enum class TypeTraitReturnType { 5660 Bool, 5661 }; 5662 5663 static TypeTraitReturnType GetReturnType(TypeTrait Kind) { 5664 return TypeTraitReturnType::Bool; 5665 } 5666 5667 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 5668 ArrayRef<TypeSourceInfo *> Args, 5669 SourceLocation RParenLoc) { 5670 if (!CheckTypeTraitArity(getTypeTraitArity(Kind), KWLoc, Args.size())) 5671 return ExprError(); 5672 5673 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness( 5674 *this, Kind, KWLoc, Args[0]->getType())) 5675 return ExprError(); 5676 5677 DiagnoseBuiltinDeprecation(*this, Kind, KWLoc); 5678 5679 bool Dependent = false; 5680 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 5681 if (Args[I]->getType()->isDependentType()) { 5682 Dependent = true; 5683 break; 5684 } 5685 } 5686 5687 switch (GetReturnType(Kind)) { 5688 case TypeTraitReturnType::Bool: { 5689 bool Result = EvaluateBooleanTypeTrait(*this, Kind, KWLoc, Args, RParenLoc, 5690 Dependent); 5691 return TypeTraitExpr::Create(Context, Context.getLogicalOperationType(), 5692 KWLoc, Kind, Args, RParenLoc, Result); 5693 } 5694 } 5695 llvm_unreachable("unhandled type trait return type"); 5696 } 5697 5698 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 5699 ArrayRef<ParsedType> Args, 5700 SourceLocation RParenLoc) { 5701 SmallVector<TypeSourceInfo *, 4> ConvertedArgs; 5702 ConvertedArgs.reserve(Args.size()); 5703 5704 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 5705 TypeSourceInfo *TInfo; 5706 QualType T = GetTypeFromParser(Args[I], &TInfo); 5707 if (!TInfo) 5708 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc); 5709 5710 ConvertedArgs.push_back(TInfo); 5711 } 5712 5713 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc); 5714 } 5715 5716 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 5717 QualType RhsT, SourceLocation KeyLoc) { 5718 assert(!LhsT->isDependentType() && !RhsT->isDependentType() && 5719 "Cannot evaluate traits of dependent types"); 5720 5721 switch(BTT) { 5722 case BTT_IsBaseOf: { 5723 // C++0x [meta.rel]p2 5724 // Base is a base class of Derived without regard to cv-qualifiers or 5725 // Base and Derived are not unions and name the same class type without 5726 // regard to cv-qualifiers. 5727 5728 const RecordType *lhsRecord = LhsT->getAs<RecordType>(); 5729 const RecordType *rhsRecord = RhsT->getAs<RecordType>(); 5730 if (!rhsRecord || !lhsRecord) { 5731 const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>(); 5732 const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>(); 5733 if (!LHSObjTy || !RHSObjTy) 5734 return false; 5735 5736 ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface(); 5737 ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface(); 5738 if (!BaseInterface || !DerivedInterface) 5739 return false; 5740 5741 if (Self.RequireCompleteType( 5742 KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr)) 5743 return false; 5744 5745 return BaseInterface->isSuperClassOf(DerivedInterface); 5746 } 5747 5748 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT) 5749 == (lhsRecord == rhsRecord)); 5750 5751 // Unions are never base classes, and never have base classes. 5752 // It doesn't matter if they are complete or not. See PR#41843 5753 if (lhsRecord && lhsRecord->getDecl()->isUnion()) 5754 return false; 5755 if (rhsRecord && rhsRecord->getDecl()->isUnion()) 5756 return false; 5757 5758 if (lhsRecord == rhsRecord) 5759 return true; 5760 5761 // C++0x [meta.rel]p2: 5762 // If Base and Derived are class types and are different types 5763 // (ignoring possible cv-qualifiers) then Derived shall be a 5764 // complete type. 5765 if (Self.RequireCompleteType(KeyLoc, RhsT, 5766 diag::err_incomplete_type_used_in_type_trait_expr)) 5767 return false; 5768 5769 return cast<CXXRecordDecl>(rhsRecord->getDecl()) 5770 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl())); 5771 } 5772 case BTT_IsSame: 5773 return Self.Context.hasSameType(LhsT, RhsT); 5774 case BTT_TypeCompatible: { 5775 // GCC ignores cv-qualifiers on arrays for this builtin. 5776 Qualifiers LhsQuals, RhsQuals; 5777 QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals); 5778 QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals); 5779 return Self.Context.typesAreCompatible(Lhs, Rhs); 5780 } 5781 case BTT_IsConvertible: 5782 case BTT_IsConvertibleTo: { 5783 // C++0x [meta.rel]p4: 5784 // Given the following function prototype: 5785 // 5786 // template <class T> 5787 // typename add_rvalue_reference<T>::type create(); 5788 // 5789 // the predicate condition for a template specialization 5790 // is_convertible<From, To> shall be satisfied if and only if 5791 // the return expression in the following code would be 5792 // well-formed, including any implicit conversions to the return 5793 // type of the function: 5794 // 5795 // To test() { 5796 // return create<From>(); 5797 // } 5798 // 5799 // Access checking is performed as if in a context unrelated to To and 5800 // From. Only the validity of the immediate context of the expression 5801 // of the return-statement (including conversions to the return type) 5802 // is considered. 5803 // 5804 // We model the initialization as a copy-initialization of a temporary 5805 // of the appropriate type, which for this expression is identical to the 5806 // return statement (since NRVO doesn't apply). 5807 5808 // Functions aren't allowed to return function or array types. 5809 if (RhsT->isFunctionType() || RhsT->isArrayType()) 5810 return false; 5811 5812 // A return statement in a void function must have void type. 5813 if (RhsT->isVoidType()) 5814 return LhsT->isVoidType(); 5815 5816 // A function definition requires a complete, non-abstract return type. 5817 if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT)) 5818 return false; 5819 5820 // Compute the result of add_rvalue_reference. 5821 if (LhsT->isObjectType() || LhsT->isFunctionType()) 5822 LhsT = Self.Context.getRValueReferenceType(LhsT); 5823 5824 // Build a fake source and destination for initialization. 5825 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT)); 5826 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 5827 Expr::getValueKindForType(LhsT)); 5828 Expr *FromPtr = &From; 5829 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc, 5830 SourceLocation())); 5831 5832 // Perform the initialization in an unevaluated context within a SFINAE 5833 // trap at translation unit scope. 5834 EnterExpressionEvaluationContext Unevaluated( 5835 Self, Sema::ExpressionEvaluationContext::Unevaluated); 5836 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 5837 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 5838 InitializationSequence Init(Self, To, Kind, FromPtr); 5839 if (Init.Failed()) 5840 return false; 5841 5842 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr); 5843 return !Result.isInvalid() && !SFINAE.hasErrorOccurred(); 5844 } 5845 5846 case BTT_IsAssignable: 5847 case BTT_IsNothrowAssignable: 5848 case BTT_IsTriviallyAssignable: { 5849 // C++11 [meta.unary.prop]p3: 5850 // is_trivially_assignable is defined as: 5851 // is_assignable<T, U>::value is true and the assignment, as defined by 5852 // is_assignable, is known to call no operation that is not trivial 5853 // 5854 // is_assignable is defined as: 5855 // The expression declval<T>() = declval<U>() is well-formed when 5856 // treated as an unevaluated operand (Clause 5). 5857 // 5858 // For both, T and U shall be complete types, (possibly cv-qualified) 5859 // void, or arrays of unknown bound. 5860 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() && 5861 Self.RequireCompleteType(KeyLoc, LhsT, 5862 diag::err_incomplete_type_used_in_type_trait_expr)) 5863 return false; 5864 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() && 5865 Self.RequireCompleteType(KeyLoc, RhsT, 5866 diag::err_incomplete_type_used_in_type_trait_expr)) 5867 return false; 5868 5869 // cv void is never assignable. 5870 if (LhsT->isVoidType() || RhsT->isVoidType()) 5871 return false; 5872 5873 // Build expressions that emulate the effect of declval<T>() and 5874 // declval<U>(). 5875 if (LhsT->isObjectType() || LhsT->isFunctionType()) 5876 LhsT = Self.Context.getRValueReferenceType(LhsT); 5877 if (RhsT->isObjectType() || RhsT->isFunctionType()) 5878 RhsT = Self.Context.getRValueReferenceType(RhsT); 5879 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 5880 Expr::getValueKindForType(LhsT)); 5881 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context), 5882 Expr::getValueKindForType(RhsT)); 5883 5884 // Attempt the assignment in an unevaluated context within a SFINAE 5885 // trap at translation unit scope. 5886 EnterExpressionEvaluationContext Unevaluated( 5887 Self, Sema::ExpressionEvaluationContext::Unevaluated); 5888 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 5889 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 5890 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs, 5891 &Rhs); 5892 if (Result.isInvalid()) 5893 return false; 5894 5895 // Treat the assignment as unused for the purpose of -Wdeprecated-volatile. 5896 Self.CheckUnusedVolatileAssignment(Result.get()); 5897 5898 if (SFINAE.hasErrorOccurred()) 5899 return false; 5900 5901 if (BTT == BTT_IsAssignable) 5902 return true; 5903 5904 if (BTT == BTT_IsNothrowAssignable) 5905 return Self.canThrow(Result.get()) == CT_Cannot; 5906 5907 if (BTT == BTT_IsTriviallyAssignable) { 5908 // Under Objective-C ARC and Weak, if the destination has non-trivial 5909 // Objective-C lifetime, this is a non-trivial assignment. 5910 if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime()) 5911 return false; 5912 5913 return !Result.get()->hasNonTrivialCall(Self.Context); 5914 } 5915 5916 llvm_unreachable("unhandled type trait"); 5917 return false; 5918 } 5919 default: llvm_unreachable("not a BTT"); 5920 } 5921 llvm_unreachable("Unknown type trait or not implemented"); 5922 } 5923 5924 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT, 5925 SourceLocation KWLoc, 5926 ParsedType Ty, 5927 Expr* DimExpr, 5928 SourceLocation RParen) { 5929 TypeSourceInfo *TSInfo; 5930 QualType T = GetTypeFromParser(Ty, &TSInfo); 5931 if (!TSInfo) 5932 TSInfo = Context.getTrivialTypeSourceInfo(T); 5933 5934 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen); 5935 } 5936 5937 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT, 5938 QualType T, Expr *DimExpr, 5939 SourceLocation KeyLoc) { 5940 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); 5941 5942 switch(ATT) { 5943 case ATT_ArrayRank: 5944 if (T->isArrayType()) { 5945 unsigned Dim = 0; 5946 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 5947 ++Dim; 5948 T = AT->getElementType(); 5949 } 5950 return Dim; 5951 } 5952 return 0; 5953 5954 case ATT_ArrayExtent: { 5955 llvm::APSInt Value; 5956 uint64_t Dim; 5957 if (Self.VerifyIntegerConstantExpression( 5958 DimExpr, &Value, diag::err_dimension_expr_not_constant_integer) 5959 .isInvalid()) 5960 return 0; 5961 if (Value.isSigned() && Value.isNegative()) { 5962 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) 5963 << DimExpr->getSourceRange(); 5964 return 0; 5965 } 5966 Dim = Value.getLimitedValue(); 5967 5968 if (T->isArrayType()) { 5969 unsigned D = 0; 5970 bool Matched = false; 5971 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 5972 if (Dim == D) { 5973 Matched = true; 5974 break; 5975 } 5976 ++D; 5977 T = AT->getElementType(); 5978 } 5979 5980 if (Matched && T->isArrayType()) { 5981 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T)) 5982 return CAT->getSize().getLimitedValue(); 5983 } 5984 } 5985 return 0; 5986 } 5987 } 5988 llvm_unreachable("Unknown type trait or not implemented"); 5989 } 5990 5991 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT, 5992 SourceLocation KWLoc, 5993 TypeSourceInfo *TSInfo, 5994 Expr* DimExpr, 5995 SourceLocation RParen) { 5996 QualType T = TSInfo->getType(); 5997 5998 // FIXME: This should likely be tracked as an APInt to remove any host 5999 // assumptions about the width of size_t on the target. 6000 uint64_t Value = 0; 6001 if (!T->isDependentType()) 6002 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc); 6003 6004 // While the specification for these traits from the Embarcadero C++ 6005 // compiler's documentation says the return type is 'unsigned int', Clang 6006 // returns 'size_t'. On Windows, the primary platform for the Embarcadero 6007 // compiler, there is no difference. On several other platforms this is an 6008 // important distinction. 6009 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr, 6010 RParen, Context.getSizeType()); 6011 } 6012 6013 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET, 6014 SourceLocation KWLoc, 6015 Expr *Queried, 6016 SourceLocation RParen) { 6017 // If error parsing the expression, ignore. 6018 if (!Queried) 6019 return ExprError(); 6020 6021 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen); 6022 6023 return Result; 6024 } 6025 6026 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) { 6027 switch (ET) { 6028 case ET_IsLValueExpr: return E->isLValue(); 6029 case ET_IsRValueExpr: 6030 return E->isPRValue(); 6031 } 6032 llvm_unreachable("Expression trait not covered by switch"); 6033 } 6034 6035 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET, 6036 SourceLocation KWLoc, 6037 Expr *Queried, 6038 SourceLocation RParen) { 6039 if (Queried->isTypeDependent()) { 6040 // Delay type-checking for type-dependent expressions. 6041 } else if (Queried->hasPlaceholderType()) { 6042 ExprResult PE = CheckPlaceholderExpr(Queried); 6043 if (PE.isInvalid()) return ExprError(); 6044 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen); 6045 } 6046 6047 bool Value = EvaluateExpressionTrait(ET, Queried); 6048 6049 return new (Context) 6050 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy); 6051 } 6052 6053 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS, 6054 ExprValueKind &VK, 6055 SourceLocation Loc, 6056 bool isIndirect) { 6057 assert(!LHS.get()->hasPlaceholderType() && !RHS.get()->hasPlaceholderType() && 6058 "placeholders should have been weeded out by now"); 6059 6060 // The LHS undergoes lvalue conversions if this is ->*, and undergoes the 6061 // temporary materialization conversion otherwise. 6062 if (isIndirect) 6063 LHS = DefaultLvalueConversion(LHS.get()); 6064 else if (LHS.get()->isPRValue()) 6065 LHS = TemporaryMaterializationConversion(LHS.get()); 6066 if (LHS.isInvalid()) 6067 return QualType(); 6068 6069 // The RHS always undergoes lvalue conversions. 6070 RHS = DefaultLvalueConversion(RHS.get()); 6071 if (RHS.isInvalid()) return QualType(); 6072 6073 const char *OpSpelling = isIndirect ? "->*" : ".*"; 6074 // C++ 5.5p2 6075 // The binary operator .* [p3: ->*] binds its second operand, which shall 6076 // be of type "pointer to member of T" (where T is a completely-defined 6077 // class type) [...] 6078 QualType RHSType = RHS.get()->getType(); 6079 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>(); 6080 if (!MemPtr) { 6081 Diag(Loc, diag::err_bad_memptr_rhs) 6082 << OpSpelling << RHSType << RHS.get()->getSourceRange(); 6083 return QualType(); 6084 } 6085 6086 QualType Class(MemPtr->getClass(), 0); 6087 6088 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the 6089 // member pointer points must be completely-defined. However, there is no 6090 // reason for this semantic distinction, and the rule is not enforced by 6091 // other compilers. Therefore, we do not check this property, as it is 6092 // likely to be considered a defect. 6093 6094 // C++ 5.5p2 6095 // [...] to its first operand, which shall be of class T or of a class of 6096 // which T is an unambiguous and accessible base class. [p3: a pointer to 6097 // such a class] 6098 QualType LHSType = LHS.get()->getType(); 6099 if (isIndirect) { 6100 if (const PointerType *Ptr = LHSType->getAs<PointerType>()) 6101 LHSType = Ptr->getPointeeType(); 6102 else { 6103 Diag(Loc, diag::err_bad_memptr_lhs) 6104 << OpSpelling << 1 << LHSType 6105 << FixItHint::CreateReplacement(SourceRange(Loc), ".*"); 6106 return QualType(); 6107 } 6108 } 6109 6110 if (!Context.hasSameUnqualifiedType(Class, LHSType)) { 6111 // If we want to check the hierarchy, we need a complete type. 6112 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs, 6113 OpSpelling, (int)isIndirect)) { 6114 return QualType(); 6115 } 6116 6117 if (!IsDerivedFrom(Loc, LHSType, Class)) { 6118 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling 6119 << (int)isIndirect << LHS.get()->getType(); 6120 return QualType(); 6121 } 6122 6123 CXXCastPath BasePath; 6124 if (CheckDerivedToBaseConversion( 6125 LHSType, Class, Loc, 6126 SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()), 6127 &BasePath)) 6128 return QualType(); 6129 6130 // Cast LHS to type of use. 6131 QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers()); 6132 if (isIndirect) 6133 UseType = Context.getPointerType(UseType); 6134 ExprValueKind VK = isIndirect ? VK_PRValue : LHS.get()->getValueKind(); 6135 LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK, 6136 &BasePath); 6137 } 6138 6139 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) { 6140 // Diagnose use of pointer-to-member type which when used as 6141 // the functional cast in a pointer-to-member expression. 6142 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect; 6143 return QualType(); 6144 } 6145 6146 // C++ 5.5p2 6147 // The result is an object or a function of the type specified by the 6148 // second operand. 6149 // The cv qualifiers are the union of those in the pointer and the left side, 6150 // in accordance with 5.5p5 and 5.2.5. 6151 QualType Result = MemPtr->getPointeeType(); 6152 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers()); 6153 6154 // C++0x [expr.mptr.oper]p6: 6155 // In a .* expression whose object expression is an rvalue, the program is 6156 // ill-formed if the second operand is a pointer to member function with 6157 // ref-qualifier &. In a ->* expression or in a .* expression whose object 6158 // expression is an lvalue, the program is ill-formed if the second operand 6159 // is a pointer to member function with ref-qualifier &&. 6160 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) { 6161 switch (Proto->getRefQualifier()) { 6162 case RQ_None: 6163 // Do nothing 6164 break; 6165 6166 case RQ_LValue: 6167 if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) { 6168 // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq 6169 // is (exactly) 'const'. 6170 if (Proto->isConst() && !Proto->isVolatile()) 6171 Diag(Loc, getLangOpts().CPlusPlus20 6172 ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue 6173 : diag::ext_pointer_to_const_ref_member_on_rvalue); 6174 else 6175 Diag(Loc, diag::err_pointer_to_member_oper_value_classify) 6176 << RHSType << 1 << LHS.get()->getSourceRange(); 6177 } 6178 break; 6179 6180 case RQ_RValue: 6181 if (isIndirect || !LHS.get()->Classify(Context).isRValue()) 6182 Diag(Loc, diag::err_pointer_to_member_oper_value_classify) 6183 << RHSType << 0 << LHS.get()->getSourceRange(); 6184 break; 6185 } 6186 } 6187 6188 // C++ [expr.mptr.oper]p6: 6189 // The result of a .* expression whose second operand is a pointer 6190 // to a data member is of the same value category as its 6191 // first operand. The result of a .* expression whose second 6192 // operand is a pointer to a member function is a prvalue. The 6193 // result of an ->* expression is an lvalue if its second operand 6194 // is a pointer to data member and a prvalue otherwise. 6195 if (Result->isFunctionType()) { 6196 VK = VK_PRValue; 6197 return Context.BoundMemberTy; 6198 } else if (isIndirect) { 6199 VK = VK_LValue; 6200 } else { 6201 VK = LHS.get()->getValueKind(); 6202 } 6203 6204 return Result; 6205 } 6206 6207 /// Try to convert a type to another according to C++11 5.16p3. 6208 /// 6209 /// This is part of the parameter validation for the ? operator. If either 6210 /// value operand is a class type, the two operands are attempted to be 6211 /// converted to each other. This function does the conversion in one direction. 6212 /// It returns true if the program is ill-formed and has already been diagnosed 6213 /// as such. 6214 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To, 6215 SourceLocation QuestionLoc, 6216 bool &HaveConversion, 6217 QualType &ToType) { 6218 HaveConversion = false; 6219 ToType = To->getType(); 6220 6221 InitializationKind Kind = 6222 InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation()); 6223 // C++11 5.16p3 6224 // The process for determining whether an operand expression E1 of type T1 6225 // can be converted to match an operand expression E2 of type T2 is defined 6226 // as follows: 6227 // -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be 6228 // implicitly converted to type "lvalue reference to T2", subject to the 6229 // constraint that in the conversion the reference must bind directly to 6230 // an lvalue. 6231 // -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be 6232 // implicitly converted to the type "rvalue reference to R2", subject to 6233 // the constraint that the reference must bind directly. 6234 if (To->isGLValue()) { 6235 QualType T = Self.Context.getReferenceQualifiedType(To); 6236 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); 6237 6238 InitializationSequence InitSeq(Self, Entity, Kind, From); 6239 if (InitSeq.isDirectReferenceBinding()) { 6240 ToType = T; 6241 HaveConversion = true; 6242 return false; 6243 } 6244 6245 if (InitSeq.isAmbiguous()) 6246 return InitSeq.Diagnose(Self, Entity, Kind, From); 6247 } 6248 6249 // -- If E2 is an rvalue, or if the conversion above cannot be done: 6250 // -- if E1 and E2 have class type, and the underlying class types are 6251 // the same or one is a base class of the other: 6252 QualType FTy = From->getType(); 6253 QualType TTy = To->getType(); 6254 const RecordType *FRec = FTy->getAs<RecordType>(); 6255 const RecordType *TRec = TTy->getAs<RecordType>(); 6256 bool FDerivedFromT = FRec && TRec && FRec != TRec && 6257 Self.IsDerivedFrom(QuestionLoc, FTy, TTy); 6258 if (FRec && TRec && (FRec == TRec || FDerivedFromT || 6259 Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) { 6260 // E1 can be converted to match E2 if the class of T2 is the 6261 // same type as, or a base class of, the class of T1, and 6262 // [cv2 > cv1]. 6263 if (FRec == TRec || FDerivedFromT) { 6264 if (TTy.isAtLeastAsQualifiedAs(FTy)) { 6265 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); 6266 InitializationSequence InitSeq(Self, Entity, Kind, From); 6267 if (InitSeq) { 6268 HaveConversion = true; 6269 return false; 6270 } 6271 6272 if (InitSeq.isAmbiguous()) 6273 return InitSeq.Diagnose(Self, Entity, Kind, From); 6274 } 6275 } 6276 6277 return false; 6278 } 6279 6280 // -- Otherwise: E1 can be converted to match E2 if E1 can be 6281 // implicitly converted to the type that expression E2 would have 6282 // if E2 were converted to an rvalue (or the type it has, if E2 is 6283 // an rvalue). 6284 // 6285 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not 6286 // to the array-to-pointer or function-to-pointer conversions. 6287 TTy = TTy.getNonLValueExprType(Self.Context); 6288 6289 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); 6290 InitializationSequence InitSeq(Self, Entity, Kind, From); 6291 HaveConversion = !InitSeq.Failed(); 6292 ToType = TTy; 6293 if (InitSeq.isAmbiguous()) 6294 return InitSeq.Diagnose(Self, Entity, Kind, From); 6295 6296 return false; 6297 } 6298 6299 /// Try to find a common type for two according to C++0x 5.16p5. 6300 /// 6301 /// This is part of the parameter validation for the ? operator. If either 6302 /// value operand is a class type, overload resolution is used to find a 6303 /// conversion to a common type. 6304 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS, 6305 SourceLocation QuestionLoc) { 6306 Expr *Args[2] = { LHS.get(), RHS.get() }; 6307 OverloadCandidateSet CandidateSet(QuestionLoc, 6308 OverloadCandidateSet::CSK_Operator); 6309 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 6310 CandidateSet); 6311 6312 OverloadCandidateSet::iterator Best; 6313 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) { 6314 case OR_Success: { 6315 // We found a match. Perform the conversions on the arguments and move on. 6316 ExprResult LHSRes = Self.PerformImplicitConversion( 6317 LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0], 6318 Sema::AA_Converting); 6319 if (LHSRes.isInvalid()) 6320 break; 6321 LHS = LHSRes; 6322 6323 ExprResult RHSRes = Self.PerformImplicitConversion( 6324 RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1], 6325 Sema::AA_Converting); 6326 if (RHSRes.isInvalid()) 6327 break; 6328 RHS = RHSRes; 6329 if (Best->Function) 6330 Self.MarkFunctionReferenced(QuestionLoc, Best->Function); 6331 return false; 6332 } 6333 6334 case OR_No_Viable_Function: 6335 6336 // Emit a better diagnostic if one of the expressions is a null pointer 6337 // constant and the other is a pointer type. In this case, the user most 6338 // likely forgot to take the address of the other expression. 6339 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) 6340 return true; 6341 6342 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) 6343 << LHS.get()->getType() << RHS.get()->getType() 6344 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6345 return true; 6346 6347 case OR_Ambiguous: 6348 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl) 6349 << LHS.get()->getType() << RHS.get()->getType() 6350 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6351 // FIXME: Print the possible common types by printing the return types of 6352 // the viable candidates. 6353 break; 6354 6355 case OR_Deleted: 6356 llvm_unreachable("Conditional operator has only built-in overloads"); 6357 } 6358 return true; 6359 } 6360 6361 /// Perform an "extended" implicit conversion as returned by 6362 /// TryClassUnification. 6363 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) { 6364 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); 6365 InitializationKind Kind = 6366 InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation()); 6367 Expr *Arg = E.get(); 6368 InitializationSequence InitSeq(Self, Entity, Kind, Arg); 6369 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg); 6370 if (Result.isInvalid()) 6371 return true; 6372 6373 E = Result; 6374 return false; 6375 } 6376 6377 // Check the condition operand of ?: to see if it is valid for the GCC 6378 // extension. 6379 static bool isValidVectorForConditionalCondition(ASTContext &Ctx, 6380 QualType CondTy) { 6381 if (!CondTy->isVectorType() && !CondTy->isExtVectorType()) 6382 return false; 6383 const QualType EltTy = 6384 cast<VectorType>(CondTy.getCanonicalType())->getElementType(); 6385 assert(!EltTy->isEnumeralType() && "Vectors cant be enum types"); 6386 return EltTy->isIntegralType(Ctx); 6387 } 6388 6389 static bool isValidSizelessVectorForConditionalCondition(ASTContext &Ctx, 6390 QualType CondTy) { 6391 if (!CondTy->isSveVLSBuiltinType()) 6392 return false; 6393 const QualType EltTy = 6394 cast<BuiltinType>(CondTy.getCanonicalType())->getSveEltType(Ctx); 6395 assert(!EltTy->isEnumeralType() && "Vectors cant be enum types"); 6396 return EltTy->isIntegralType(Ctx); 6397 } 6398 6399 QualType Sema::CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS, 6400 ExprResult &RHS, 6401 SourceLocation QuestionLoc) { 6402 LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); 6403 RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); 6404 6405 QualType CondType = Cond.get()->getType(); 6406 const auto *CondVT = CondType->castAs<VectorType>(); 6407 QualType CondElementTy = CondVT->getElementType(); 6408 unsigned CondElementCount = CondVT->getNumElements(); 6409 QualType LHSType = LHS.get()->getType(); 6410 const auto *LHSVT = LHSType->getAs<VectorType>(); 6411 QualType RHSType = RHS.get()->getType(); 6412 const auto *RHSVT = RHSType->getAs<VectorType>(); 6413 6414 QualType ResultType; 6415 6416 6417 if (LHSVT && RHSVT) { 6418 if (isa<ExtVectorType>(CondVT) != isa<ExtVectorType>(LHSVT)) { 6419 Diag(QuestionLoc, diag::err_conditional_vector_cond_result_mismatch) 6420 << /*isExtVector*/ isa<ExtVectorType>(CondVT); 6421 return {}; 6422 } 6423 6424 // If both are vector types, they must be the same type. 6425 if (!Context.hasSameType(LHSType, RHSType)) { 6426 Diag(QuestionLoc, diag::err_conditional_vector_mismatched) 6427 << LHSType << RHSType; 6428 return {}; 6429 } 6430 ResultType = Context.getCommonSugaredType(LHSType, RHSType); 6431 } else if (LHSVT || RHSVT) { 6432 ResultType = CheckVectorOperands( 6433 LHS, RHS, QuestionLoc, /*isCompAssign*/ false, /*AllowBothBool*/ true, 6434 /*AllowBoolConversions*/ false, 6435 /*AllowBoolOperation*/ true, 6436 /*ReportInvalid*/ true); 6437 if (ResultType.isNull()) 6438 return {}; 6439 } else { 6440 // Both are scalar. 6441 LHSType = LHSType.getUnqualifiedType(); 6442 RHSType = RHSType.getUnqualifiedType(); 6443 QualType ResultElementTy = 6444 Context.hasSameType(LHSType, RHSType) 6445 ? Context.getCommonSugaredType(LHSType, RHSType) 6446 : UsualArithmeticConversions(LHS, RHS, QuestionLoc, 6447 ACK_Conditional); 6448 6449 if (ResultElementTy->isEnumeralType()) { 6450 Diag(QuestionLoc, diag::err_conditional_vector_operand_type) 6451 << ResultElementTy; 6452 return {}; 6453 } 6454 if (CondType->isExtVectorType()) 6455 ResultType = 6456 Context.getExtVectorType(ResultElementTy, CondVT->getNumElements()); 6457 else 6458 ResultType = Context.getVectorType( 6459 ResultElementTy, CondVT->getNumElements(), VectorKind::Generic); 6460 6461 LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat); 6462 RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat); 6463 } 6464 6465 assert(!ResultType.isNull() && ResultType->isVectorType() && 6466 (!CondType->isExtVectorType() || ResultType->isExtVectorType()) && 6467 "Result should have been a vector type"); 6468 auto *ResultVectorTy = ResultType->castAs<VectorType>(); 6469 QualType ResultElementTy = ResultVectorTy->getElementType(); 6470 unsigned ResultElementCount = ResultVectorTy->getNumElements(); 6471 6472 if (ResultElementCount != CondElementCount) { 6473 Diag(QuestionLoc, diag::err_conditional_vector_size) << CondType 6474 << ResultType; 6475 return {}; 6476 } 6477 6478 if (Context.getTypeSize(ResultElementTy) != 6479 Context.getTypeSize(CondElementTy)) { 6480 Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondType 6481 << ResultType; 6482 return {}; 6483 } 6484 6485 return ResultType; 6486 } 6487 6488 QualType Sema::CheckSizelessVectorConditionalTypes(ExprResult &Cond, 6489 ExprResult &LHS, 6490 ExprResult &RHS, 6491 SourceLocation QuestionLoc) { 6492 LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); 6493 RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); 6494 6495 QualType CondType = Cond.get()->getType(); 6496 const auto *CondBT = CondType->castAs<BuiltinType>(); 6497 QualType CondElementTy = CondBT->getSveEltType(Context); 6498 llvm::ElementCount CondElementCount = 6499 Context.getBuiltinVectorTypeInfo(CondBT).EC; 6500 6501 QualType LHSType = LHS.get()->getType(); 6502 const auto *LHSBT = 6503 LHSType->isSveVLSBuiltinType() ? LHSType->getAs<BuiltinType>() : nullptr; 6504 QualType RHSType = RHS.get()->getType(); 6505 const auto *RHSBT = 6506 RHSType->isSveVLSBuiltinType() ? RHSType->getAs<BuiltinType>() : nullptr; 6507 6508 QualType ResultType; 6509 6510 if (LHSBT && RHSBT) { 6511 // If both are sizeless vector types, they must be the same type. 6512 if (!Context.hasSameType(LHSType, RHSType)) { 6513 Diag(QuestionLoc, diag::err_conditional_vector_mismatched) 6514 << LHSType << RHSType; 6515 return QualType(); 6516 } 6517 ResultType = LHSType; 6518 } else if (LHSBT || RHSBT) { 6519 ResultType = CheckSizelessVectorOperands( 6520 LHS, RHS, QuestionLoc, /*IsCompAssign*/ false, ACK_Conditional); 6521 if (ResultType.isNull()) 6522 return QualType(); 6523 } else { 6524 // Both are scalar so splat 6525 QualType ResultElementTy; 6526 LHSType = LHSType.getCanonicalType().getUnqualifiedType(); 6527 RHSType = RHSType.getCanonicalType().getUnqualifiedType(); 6528 6529 if (Context.hasSameType(LHSType, RHSType)) 6530 ResultElementTy = LHSType; 6531 else 6532 ResultElementTy = 6533 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional); 6534 6535 if (ResultElementTy->isEnumeralType()) { 6536 Diag(QuestionLoc, diag::err_conditional_vector_operand_type) 6537 << ResultElementTy; 6538 return QualType(); 6539 } 6540 6541 ResultType = Context.getScalableVectorType( 6542 ResultElementTy, CondElementCount.getKnownMinValue()); 6543 6544 LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat); 6545 RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat); 6546 } 6547 6548 assert(!ResultType.isNull() && ResultType->isSveVLSBuiltinType() && 6549 "Result should have been a vector type"); 6550 auto *ResultBuiltinTy = ResultType->castAs<BuiltinType>(); 6551 QualType ResultElementTy = ResultBuiltinTy->getSveEltType(Context); 6552 llvm::ElementCount ResultElementCount = 6553 Context.getBuiltinVectorTypeInfo(ResultBuiltinTy).EC; 6554 6555 if (ResultElementCount != CondElementCount) { 6556 Diag(QuestionLoc, diag::err_conditional_vector_size) 6557 << CondType << ResultType; 6558 return QualType(); 6559 } 6560 6561 if (Context.getTypeSize(ResultElementTy) != 6562 Context.getTypeSize(CondElementTy)) { 6563 Diag(QuestionLoc, diag::err_conditional_vector_element_size) 6564 << CondType << ResultType; 6565 return QualType(); 6566 } 6567 6568 return ResultType; 6569 } 6570 6571 /// Check the operands of ?: under C++ semantics. 6572 /// 6573 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y 6574 /// extension. In this case, LHS == Cond. (But they're not aliases.) 6575 /// 6576 /// This function also implements GCC's vector extension and the 6577 /// OpenCL/ext_vector_type extension for conditionals. The vector extensions 6578 /// permit the use of a?b:c where the type of a is that of a integer vector with 6579 /// the same number of elements and size as the vectors of b and c. If one of 6580 /// either b or c is a scalar it is implicitly converted to match the type of 6581 /// the vector. Otherwise the expression is ill-formed. If both b and c are 6582 /// scalars, then b and c are checked and converted to the type of a if 6583 /// possible. 6584 /// 6585 /// The expressions are evaluated differently for GCC's and OpenCL's extensions. 6586 /// For the GCC extension, the ?: operator is evaluated as 6587 /// (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]). 6588 /// For the OpenCL extensions, the ?: operator is evaluated as 6589 /// (most-significant-bit-set(a[0]) ? b[0] : c[0], .. , 6590 /// most-significant-bit-set(a[n]) ? b[n] : c[n]). 6591 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, 6592 ExprResult &RHS, ExprValueKind &VK, 6593 ExprObjectKind &OK, 6594 SourceLocation QuestionLoc) { 6595 // FIXME: Handle C99's complex types, block pointers and Obj-C++ interface 6596 // pointers. 6597 6598 // Assume r-value. 6599 VK = VK_PRValue; 6600 OK = OK_Ordinary; 6601 bool IsVectorConditional = 6602 isValidVectorForConditionalCondition(Context, Cond.get()->getType()); 6603 6604 bool IsSizelessVectorConditional = 6605 isValidSizelessVectorForConditionalCondition(Context, 6606 Cond.get()->getType()); 6607 6608 // C++11 [expr.cond]p1 6609 // The first expression is contextually converted to bool. 6610 if (!Cond.get()->isTypeDependent()) { 6611 ExprResult CondRes = IsVectorConditional || IsSizelessVectorConditional 6612 ? DefaultFunctionArrayLvalueConversion(Cond.get()) 6613 : CheckCXXBooleanCondition(Cond.get()); 6614 if (CondRes.isInvalid()) 6615 return QualType(); 6616 Cond = CondRes; 6617 } else { 6618 // To implement C++, the first expression typically doesn't alter the result 6619 // type of the conditional, however the GCC compatible vector extension 6620 // changes the result type to be that of the conditional. Since we cannot 6621 // know if this is a vector extension here, delay the conversion of the 6622 // LHS/RHS below until later. 6623 return Context.DependentTy; 6624 } 6625 6626 6627 // Either of the arguments dependent? 6628 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent()) 6629 return Context.DependentTy; 6630 6631 // C++11 [expr.cond]p2 6632 // If either the second or the third operand has type (cv) void, ... 6633 QualType LTy = LHS.get()->getType(); 6634 QualType RTy = RHS.get()->getType(); 6635 bool LVoid = LTy->isVoidType(); 6636 bool RVoid = RTy->isVoidType(); 6637 if (LVoid || RVoid) { 6638 // ... one of the following shall hold: 6639 // -- The second or the third operand (but not both) is a (possibly 6640 // parenthesized) throw-expression; the result is of the type 6641 // and value category of the other. 6642 bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts()); 6643 bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts()); 6644 6645 // Void expressions aren't legal in the vector-conditional expressions. 6646 if (IsVectorConditional) { 6647 SourceRange DiagLoc = 6648 LVoid ? LHS.get()->getSourceRange() : RHS.get()->getSourceRange(); 6649 bool IsThrow = LVoid ? LThrow : RThrow; 6650 Diag(DiagLoc.getBegin(), diag::err_conditional_vector_has_void) 6651 << DiagLoc << IsThrow; 6652 return QualType(); 6653 } 6654 6655 if (LThrow != RThrow) { 6656 Expr *NonThrow = LThrow ? RHS.get() : LHS.get(); 6657 VK = NonThrow->getValueKind(); 6658 // DR (no number yet): the result is a bit-field if the 6659 // non-throw-expression operand is a bit-field. 6660 OK = NonThrow->getObjectKind(); 6661 return NonThrow->getType(); 6662 } 6663 6664 // -- Both the second and third operands have type void; the result is of 6665 // type void and is a prvalue. 6666 if (LVoid && RVoid) 6667 return Context.getCommonSugaredType(LTy, RTy); 6668 6669 // Neither holds, error. 6670 Diag(QuestionLoc, diag::err_conditional_void_nonvoid) 6671 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1) 6672 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6673 return QualType(); 6674 } 6675 6676 // Neither is void. 6677 if (IsVectorConditional) 6678 return CheckVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc); 6679 6680 if (IsSizelessVectorConditional) 6681 return CheckSizelessVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc); 6682 6683 // WebAssembly tables are not allowed as conditional LHS or RHS. 6684 if (LTy->isWebAssemblyTableType() || RTy->isWebAssemblyTableType()) { 6685 Diag(QuestionLoc, diag::err_wasm_table_conditional_expression) 6686 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6687 return QualType(); 6688 } 6689 6690 // C++11 [expr.cond]p3 6691 // Otherwise, if the second and third operand have different types, and 6692 // either has (cv) class type [...] an attempt is made to convert each of 6693 // those operands to the type of the other. 6694 if (!Context.hasSameType(LTy, RTy) && 6695 (LTy->isRecordType() || RTy->isRecordType())) { 6696 // These return true if a single direction is already ambiguous. 6697 QualType L2RType, R2LType; 6698 bool HaveL2R, HaveR2L; 6699 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType)) 6700 return QualType(); 6701 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType)) 6702 return QualType(); 6703 6704 // If both can be converted, [...] the program is ill-formed. 6705 if (HaveL2R && HaveR2L) { 6706 Diag(QuestionLoc, diag::err_conditional_ambiguous) 6707 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6708 return QualType(); 6709 } 6710 6711 // If exactly one conversion is possible, that conversion is applied to 6712 // the chosen operand and the converted operands are used in place of the 6713 // original operands for the remainder of this section. 6714 if (HaveL2R) { 6715 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid()) 6716 return QualType(); 6717 LTy = LHS.get()->getType(); 6718 } else if (HaveR2L) { 6719 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid()) 6720 return QualType(); 6721 RTy = RHS.get()->getType(); 6722 } 6723 } 6724 6725 // C++11 [expr.cond]p3 6726 // if both are glvalues of the same value category and the same type except 6727 // for cv-qualification, an attempt is made to convert each of those 6728 // operands to the type of the other. 6729 // FIXME: 6730 // Resolving a defect in P0012R1: we extend this to cover all cases where 6731 // one of the operands is reference-compatible with the other, in order 6732 // to support conditionals between functions differing in noexcept. This 6733 // will similarly cover difference in array bounds after P0388R4. 6734 // FIXME: If LTy and RTy have a composite pointer type, should we convert to 6735 // that instead? 6736 ExprValueKind LVK = LHS.get()->getValueKind(); 6737 ExprValueKind RVK = RHS.get()->getValueKind(); 6738 if (!Context.hasSameType(LTy, RTy) && LVK == RVK && LVK != VK_PRValue) { 6739 // DerivedToBase was already handled by the class-specific case above. 6740 // FIXME: Should we allow ObjC conversions here? 6741 const ReferenceConversions AllowedConversions = 6742 ReferenceConversions::Qualification | 6743 ReferenceConversions::NestedQualification | 6744 ReferenceConversions::Function; 6745 6746 ReferenceConversions RefConv; 6747 if (CompareReferenceRelationship(QuestionLoc, LTy, RTy, &RefConv) == 6748 Ref_Compatible && 6749 !(RefConv & ~AllowedConversions) && 6750 // [...] subject to the constraint that the reference must bind 6751 // directly [...] 6752 !RHS.get()->refersToBitField() && !RHS.get()->refersToVectorElement()) { 6753 RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK); 6754 RTy = RHS.get()->getType(); 6755 } else if (CompareReferenceRelationship(QuestionLoc, RTy, LTy, &RefConv) == 6756 Ref_Compatible && 6757 !(RefConv & ~AllowedConversions) && 6758 !LHS.get()->refersToBitField() && 6759 !LHS.get()->refersToVectorElement()) { 6760 LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK); 6761 LTy = LHS.get()->getType(); 6762 } 6763 } 6764 6765 // C++11 [expr.cond]p4 6766 // If the second and third operands are glvalues of the same value 6767 // category and have the same type, the result is of that type and 6768 // value category and it is a bit-field if the second or the third 6769 // operand is a bit-field, or if both are bit-fields. 6770 // We only extend this to bitfields, not to the crazy other kinds of 6771 // l-values. 6772 bool Same = Context.hasSameType(LTy, RTy); 6773 if (Same && LVK == RVK && LVK != VK_PRValue && 6774 LHS.get()->isOrdinaryOrBitFieldObject() && 6775 RHS.get()->isOrdinaryOrBitFieldObject()) { 6776 VK = LHS.get()->getValueKind(); 6777 if (LHS.get()->getObjectKind() == OK_BitField || 6778 RHS.get()->getObjectKind() == OK_BitField) 6779 OK = OK_BitField; 6780 return Context.getCommonSugaredType(LTy, RTy); 6781 } 6782 6783 // C++11 [expr.cond]p5 6784 // Otherwise, the result is a prvalue. If the second and third operands 6785 // do not have the same type, and either has (cv) class type, ... 6786 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) { 6787 // ... overload resolution is used to determine the conversions (if any) 6788 // to be applied to the operands. If the overload resolution fails, the 6789 // program is ill-formed. 6790 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc)) 6791 return QualType(); 6792 } 6793 6794 // C++11 [expr.cond]p6 6795 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard 6796 // conversions are performed on the second and third operands. 6797 LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); 6798 RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); 6799 if (LHS.isInvalid() || RHS.isInvalid()) 6800 return QualType(); 6801 LTy = LHS.get()->getType(); 6802 RTy = RHS.get()->getType(); 6803 6804 // After those conversions, one of the following shall hold: 6805 // -- The second and third operands have the same type; the result 6806 // is of that type. If the operands have class type, the result 6807 // is a prvalue temporary of the result type, which is 6808 // copy-initialized from either the second operand or the third 6809 // operand depending on the value of the first operand. 6810 if (Context.hasSameType(LTy, RTy)) { 6811 if (LTy->isRecordType()) { 6812 // The operands have class type. Make a temporary copy. 6813 ExprResult LHSCopy = PerformCopyInitialization( 6814 InitializedEntity::InitializeTemporary(LTy), SourceLocation(), LHS); 6815 if (LHSCopy.isInvalid()) 6816 return QualType(); 6817 6818 ExprResult RHSCopy = PerformCopyInitialization( 6819 InitializedEntity::InitializeTemporary(RTy), SourceLocation(), RHS); 6820 if (RHSCopy.isInvalid()) 6821 return QualType(); 6822 6823 LHS = LHSCopy; 6824 RHS = RHSCopy; 6825 } 6826 return Context.getCommonSugaredType(LTy, RTy); 6827 } 6828 6829 // Extension: conditional operator involving vector types. 6830 if (LTy->isVectorType() || RTy->isVectorType()) 6831 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false, 6832 /*AllowBothBool*/ true, 6833 /*AllowBoolConversions*/ false, 6834 /*AllowBoolOperation*/ false, 6835 /*ReportInvalid*/ true); 6836 6837 // -- The second and third operands have arithmetic or enumeration type; 6838 // the usual arithmetic conversions are performed to bring them to a 6839 // common type, and the result is of that type. 6840 if (LTy->isArithmeticType() && RTy->isArithmeticType()) { 6841 QualType ResTy = 6842 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional); 6843 if (LHS.isInvalid() || RHS.isInvalid()) 6844 return QualType(); 6845 if (ResTy.isNull()) { 6846 Diag(QuestionLoc, 6847 diag::err_typecheck_cond_incompatible_operands) << LTy << RTy 6848 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6849 return QualType(); 6850 } 6851 6852 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy)); 6853 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy)); 6854 6855 return ResTy; 6856 } 6857 6858 // -- The second and third operands have pointer type, or one has pointer 6859 // type and the other is a null pointer constant, or both are null 6860 // pointer constants, at least one of which is non-integral; pointer 6861 // conversions and qualification conversions are performed to bring them 6862 // to their composite pointer type. The result is of the composite 6863 // pointer type. 6864 // -- The second and third operands have pointer to member type, or one has 6865 // pointer to member type and the other is a null pointer constant; 6866 // pointer to member conversions and qualification conversions are 6867 // performed to bring them to a common type, whose cv-qualification 6868 // shall match the cv-qualification of either the second or the third 6869 // operand. The result is of the common type. 6870 QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS); 6871 if (!Composite.isNull()) 6872 return Composite; 6873 6874 // Similarly, attempt to find composite type of two objective-c pointers. 6875 Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc); 6876 if (LHS.isInvalid() || RHS.isInvalid()) 6877 return QualType(); 6878 if (!Composite.isNull()) 6879 return Composite; 6880 6881 // Check if we are using a null with a non-pointer type. 6882 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) 6883 return QualType(); 6884 6885 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) 6886 << LHS.get()->getType() << RHS.get()->getType() 6887 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6888 return QualType(); 6889 } 6890 6891 /// Find a merged pointer type and convert the two expressions to it. 6892 /// 6893 /// This finds the composite pointer type for \p E1 and \p E2 according to 6894 /// C++2a [expr.type]p3. It converts both expressions to this type and returns 6895 /// it. It does not emit diagnostics (FIXME: that's not true if \p ConvertArgs 6896 /// is \c true). 6897 /// 6898 /// \param Loc The location of the operator requiring these two expressions to 6899 /// be converted to the composite pointer type. 6900 /// 6901 /// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type. 6902 QualType Sema::FindCompositePointerType(SourceLocation Loc, 6903 Expr *&E1, Expr *&E2, 6904 bool ConvertArgs) { 6905 assert(getLangOpts().CPlusPlus && "This function assumes C++"); 6906 6907 // C++1z [expr]p14: 6908 // The composite pointer type of two operands p1 and p2 having types T1 6909 // and T2 6910 QualType T1 = E1->getType(), T2 = E2->getType(); 6911 6912 // where at least one is a pointer or pointer to member type or 6913 // std::nullptr_t is: 6914 bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() || 6915 T1->isNullPtrType(); 6916 bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() || 6917 T2->isNullPtrType(); 6918 if (!T1IsPointerLike && !T2IsPointerLike) 6919 return QualType(); 6920 6921 // - if both p1 and p2 are null pointer constants, std::nullptr_t; 6922 // This can't actually happen, following the standard, but we also use this 6923 // to implement the end of [expr.conv], which hits this case. 6924 // 6925 // - if either p1 or p2 is a null pointer constant, T2 or T1, respectively; 6926 if (T1IsPointerLike && 6927 E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 6928 if (ConvertArgs) 6929 E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType() 6930 ? CK_NullToMemberPointer 6931 : CK_NullToPointer).get(); 6932 return T1; 6933 } 6934 if (T2IsPointerLike && 6935 E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 6936 if (ConvertArgs) 6937 E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType() 6938 ? CK_NullToMemberPointer 6939 : CK_NullToPointer).get(); 6940 return T2; 6941 } 6942 6943 // Now both have to be pointers or member pointers. 6944 if (!T1IsPointerLike || !T2IsPointerLike) 6945 return QualType(); 6946 assert(!T1->isNullPtrType() && !T2->isNullPtrType() && 6947 "nullptr_t should be a null pointer constant"); 6948 6949 struct Step { 6950 enum Kind { Pointer, ObjCPointer, MemberPointer, Array } K; 6951 // Qualifiers to apply under the step kind. 6952 Qualifiers Quals; 6953 /// The class for a pointer-to-member; a constant array type with a bound 6954 /// (if any) for an array. 6955 const Type *ClassOrBound; 6956 6957 Step(Kind K, const Type *ClassOrBound = nullptr) 6958 : K(K), ClassOrBound(ClassOrBound) {} 6959 QualType rebuild(ASTContext &Ctx, QualType T) const { 6960 T = Ctx.getQualifiedType(T, Quals); 6961 switch (K) { 6962 case Pointer: 6963 return Ctx.getPointerType(T); 6964 case MemberPointer: 6965 return Ctx.getMemberPointerType(T, ClassOrBound); 6966 case ObjCPointer: 6967 return Ctx.getObjCObjectPointerType(T); 6968 case Array: 6969 if (auto *CAT = cast_or_null<ConstantArrayType>(ClassOrBound)) 6970 return Ctx.getConstantArrayType(T, CAT->getSize(), nullptr, 6971 ArraySizeModifier::Normal, 0); 6972 else 6973 return Ctx.getIncompleteArrayType(T, ArraySizeModifier::Normal, 0); 6974 } 6975 llvm_unreachable("unknown step kind"); 6976 } 6977 }; 6978 6979 SmallVector<Step, 8> Steps; 6980 6981 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1 6982 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3), 6983 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1, 6984 // respectively; 6985 // - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer 6986 // to member of C2 of type cv2 U2" for some non-function type U, where 6987 // C1 is reference-related to C2 or C2 is reference-related to C1, the 6988 // cv-combined type of T2 and T1 or the cv-combined type of T1 and T2, 6989 // respectively; 6990 // - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and 6991 // T2; 6992 // 6993 // Dismantle T1 and T2 to simultaneously determine whether they are similar 6994 // and to prepare to form the cv-combined type if so. 6995 QualType Composite1 = T1; 6996 QualType Composite2 = T2; 6997 unsigned NeedConstBefore = 0; 6998 while (true) { 6999 assert(!Composite1.isNull() && !Composite2.isNull()); 7000 7001 Qualifiers Q1, Q2; 7002 Composite1 = Context.getUnqualifiedArrayType(Composite1, Q1); 7003 Composite2 = Context.getUnqualifiedArrayType(Composite2, Q2); 7004 7005 // Top-level qualifiers are ignored. Merge at all lower levels. 7006 if (!Steps.empty()) { 7007 // Find the qualifier union: (approximately) the unique minimal set of 7008 // qualifiers that is compatible with both types. 7009 Qualifiers Quals = Qualifiers::fromCVRUMask(Q1.getCVRUQualifiers() | 7010 Q2.getCVRUQualifiers()); 7011 7012 // Under one level of pointer or pointer-to-member, we can change to an 7013 // unambiguous compatible address space. 7014 if (Q1.getAddressSpace() == Q2.getAddressSpace()) { 7015 Quals.setAddressSpace(Q1.getAddressSpace()); 7016 } else if (Steps.size() == 1) { 7017 bool MaybeQ1 = Q1.isAddressSpaceSupersetOf(Q2); 7018 bool MaybeQ2 = Q2.isAddressSpaceSupersetOf(Q1); 7019 if (MaybeQ1 == MaybeQ2) { 7020 // Exception for ptr size address spaces. Should be able to choose 7021 // either address space during comparison. 7022 if (isPtrSizeAddressSpace(Q1.getAddressSpace()) || 7023 isPtrSizeAddressSpace(Q2.getAddressSpace())) 7024 MaybeQ1 = true; 7025 else 7026 return QualType(); // No unique best address space. 7027 } 7028 Quals.setAddressSpace(MaybeQ1 ? Q1.getAddressSpace() 7029 : Q2.getAddressSpace()); 7030 } else { 7031 return QualType(); 7032 } 7033 7034 // FIXME: In C, we merge __strong and none to __strong at the top level. 7035 if (Q1.getObjCGCAttr() == Q2.getObjCGCAttr()) 7036 Quals.setObjCGCAttr(Q1.getObjCGCAttr()); 7037 else if (T1->isVoidPointerType() || T2->isVoidPointerType()) 7038 assert(Steps.size() == 1); 7039 else 7040 return QualType(); 7041 7042 // Mismatched lifetime qualifiers never compatibly include each other. 7043 if (Q1.getObjCLifetime() == Q2.getObjCLifetime()) 7044 Quals.setObjCLifetime(Q1.getObjCLifetime()); 7045 else if (T1->isVoidPointerType() || T2->isVoidPointerType()) 7046 assert(Steps.size() == 1); 7047 else 7048 return QualType(); 7049 7050 Steps.back().Quals = Quals; 7051 if (Q1 != Quals || Q2 != Quals) 7052 NeedConstBefore = Steps.size() - 1; 7053 } 7054 7055 // FIXME: Can we unify the following with UnwrapSimilarTypes? 7056 7057 const ArrayType *Arr1, *Arr2; 7058 if ((Arr1 = Context.getAsArrayType(Composite1)) && 7059 (Arr2 = Context.getAsArrayType(Composite2))) { 7060 auto *CAT1 = dyn_cast<ConstantArrayType>(Arr1); 7061 auto *CAT2 = dyn_cast<ConstantArrayType>(Arr2); 7062 if (CAT1 && CAT2 && CAT1->getSize() == CAT2->getSize()) { 7063 Composite1 = Arr1->getElementType(); 7064 Composite2 = Arr2->getElementType(); 7065 Steps.emplace_back(Step::Array, CAT1); 7066 continue; 7067 } 7068 bool IAT1 = isa<IncompleteArrayType>(Arr1); 7069 bool IAT2 = isa<IncompleteArrayType>(Arr2); 7070 if ((IAT1 && IAT2) || 7071 (getLangOpts().CPlusPlus20 && (IAT1 != IAT2) && 7072 ((bool)CAT1 != (bool)CAT2) && 7073 (Steps.empty() || Steps.back().K != Step::Array))) { 7074 // In C++20 onwards, we can unify an array of N T with an array of 7075 // a different or unknown bound. But we can't form an array whose 7076 // element type is an array of unknown bound by doing so. 7077 Composite1 = Arr1->getElementType(); 7078 Composite2 = Arr2->getElementType(); 7079 Steps.emplace_back(Step::Array); 7080 if (CAT1 || CAT2) 7081 NeedConstBefore = Steps.size(); 7082 continue; 7083 } 7084 } 7085 7086 const PointerType *Ptr1, *Ptr2; 7087 if ((Ptr1 = Composite1->getAs<PointerType>()) && 7088 (Ptr2 = Composite2->getAs<PointerType>())) { 7089 Composite1 = Ptr1->getPointeeType(); 7090 Composite2 = Ptr2->getPointeeType(); 7091 Steps.emplace_back(Step::Pointer); 7092 continue; 7093 } 7094 7095 const ObjCObjectPointerType *ObjPtr1, *ObjPtr2; 7096 if ((ObjPtr1 = Composite1->getAs<ObjCObjectPointerType>()) && 7097 (ObjPtr2 = Composite2->getAs<ObjCObjectPointerType>())) { 7098 Composite1 = ObjPtr1->getPointeeType(); 7099 Composite2 = ObjPtr2->getPointeeType(); 7100 Steps.emplace_back(Step::ObjCPointer); 7101 continue; 7102 } 7103 7104 const MemberPointerType *MemPtr1, *MemPtr2; 7105 if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) && 7106 (MemPtr2 = Composite2->getAs<MemberPointerType>())) { 7107 Composite1 = MemPtr1->getPointeeType(); 7108 Composite2 = MemPtr2->getPointeeType(); 7109 7110 // At the top level, we can perform a base-to-derived pointer-to-member 7111 // conversion: 7112 // 7113 // - [...] where C1 is reference-related to C2 or C2 is 7114 // reference-related to C1 7115 // 7116 // (Note that the only kinds of reference-relatedness in scope here are 7117 // "same type or derived from".) At any other level, the class must 7118 // exactly match. 7119 const Type *Class = nullptr; 7120 QualType Cls1(MemPtr1->getClass(), 0); 7121 QualType Cls2(MemPtr2->getClass(), 0); 7122 if (Context.hasSameType(Cls1, Cls2)) 7123 Class = MemPtr1->getClass(); 7124 else if (Steps.empty()) 7125 Class = IsDerivedFrom(Loc, Cls1, Cls2) ? MemPtr1->getClass() : 7126 IsDerivedFrom(Loc, Cls2, Cls1) ? MemPtr2->getClass() : nullptr; 7127 if (!Class) 7128 return QualType(); 7129 7130 Steps.emplace_back(Step::MemberPointer, Class); 7131 continue; 7132 } 7133 7134 // Special case: at the top level, we can decompose an Objective-C pointer 7135 // and a 'cv void *'. Unify the qualifiers. 7136 if (Steps.empty() && ((Composite1->isVoidPointerType() && 7137 Composite2->isObjCObjectPointerType()) || 7138 (Composite1->isObjCObjectPointerType() && 7139 Composite2->isVoidPointerType()))) { 7140 Composite1 = Composite1->getPointeeType(); 7141 Composite2 = Composite2->getPointeeType(); 7142 Steps.emplace_back(Step::Pointer); 7143 continue; 7144 } 7145 7146 // FIXME: block pointer types? 7147 7148 // Cannot unwrap any more types. 7149 break; 7150 } 7151 7152 // - if T1 or T2 is "pointer to noexcept function" and the other type is 7153 // "pointer to function", where the function types are otherwise the same, 7154 // "pointer to function"; 7155 // - if T1 or T2 is "pointer to member of C1 of type function", the other 7156 // type is "pointer to member of C2 of type noexcept function", and C1 7157 // is reference-related to C2 or C2 is reference-related to C1, where 7158 // the function types are otherwise the same, "pointer to member of C2 of 7159 // type function" or "pointer to member of C1 of type function", 7160 // respectively; 7161 // 7162 // We also support 'noreturn' here, so as a Clang extension we generalize the 7163 // above to: 7164 // 7165 // - [Clang] If T1 and T2 are both of type "pointer to function" or 7166 // "pointer to member function" and the pointee types can be unified 7167 // by a function pointer conversion, that conversion is applied 7168 // before checking the following rules. 7169 // 7170 // We've already unwrapped down to the function types, and we want to merge 7171 // rather than just convert, so do this ourselves rather than calling 7172 // IsFunctionConversion. 7173 // 7174 // FIXME: In order to match the standard wording as closely as possible, we 7175 // currently only do this under a single level of pointers. Ideally, we would 7176 // allow this in general, and set NeedConstBefore to the relevant depth on 7177 // the side(s) where we changed anything. If we permit that, we should also 7178 // consider this conversion when determining type similarity and model it as 7179 // a qualification conversion. 7180 if (Steps.size() == 1) { 7181 if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) { 7182 if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) { 7183 FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo(); 7184 FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo(); 7185 7186 // The result is noreturn if both operands are. 7187 bool Noreturn = 7188 EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn(); 7189 EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn); 7190 EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn); 7191 7192 // The result is nothrow if both operands are. 7193 SmallVector<QualType, 8> ExceptionTypeStorage; 7194 EPI1.ExceptionSpec = EPI2.ExceptionSpec = Context.mergeExceptionSpecs( 7195 EPI1.ExceptionSpec, EPI2.ExceptionSpec, ExceptionTypeStorage, 7196 getLangOpts().CPlusPlus17); 7197 7198 Composite1 = Context.getFunctionType(FPT1->getReturnType(), 7199 FPT1->getParamTypes(), EPI1); 7200 Composite2 = Context.getFunctionType(FPT2->getReturnType(), 7201 FPT2->getParamTypes(), EPI2); 7202 } 7203 } 7204 } 7205 7206 // There are some more conversions we can perform under exactly one pointer. 7207 if (Steps.size() == 1 && Steps.front().K == Step::Pointer && 7208 !Context.hasSameType(Composite1, Composite2)) { 7209 // - if T1 or T2 is "pointer to cv1 void" and the other type is 7210 // "pointer to cv2 T", where T is an object type or void, 7211 // "pointer to cv12 void", where cv12 is the union of cv1 and cv2; 7212 if (Composite1->isVoidType() && Composite2->isObjectType()) 7213 Composite2 = Composite1; 7214 else if (Composite2->isVoidType() && Composite1->isObjectType()) 7215 Composite1 = Composite2; 7216 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1 7217 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3), 7218 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and 7219 // T1, respectively; 7220 // 7221 // The "similar type" handling covers all of this except for the "T1 is a 7222 // base class of T2" case in the definition of reference-related. 7223 else if (IsDerivedFrom(Loc, Composite1, Composite2)) 7224 Composite1 = Composite2; 7225 else if (IsDerivedFrom(Loc, Composite2, Composite1)) 7226 Composite2 = Composite1; 7227 } 7228 7229 // At this point, either the inner types are the same or we have failed to 7230 // find a composite pointer type. 7231 if (!Context.hasSameType(Composite1, Composite2)) 7232 return QualType(); 7233 7234 // Per C++ [conv.qual]p3, add 'const' to every level before the last 7235 // differing qualifier. 7236 for (unsigned I = 0; I != NeedConstBefore; ++I) 7237 Steps[I].Quals.addConst(); 7238 7239 // Rebuild the composite type. 7240 QualType Composite = Context.getCommonSugaredType(Composite1, Composite2); 7241 for (auto &S : llvm::reverse(Steps)) 7242 Composite = S.rebuild(Context, Composite); 7243 7244 if (ConvertArgs) { 7245 // Convert the expressions to the composite pointer type. 7246 InitializedEntity Entity = 7247 InitializedEntity::InitializeTemporary(Composite); 7248 InitializationKind Kind = 7249 InitializationKind::CreateCopy(Loc, SourceLocation()); 7250 7251 InitializationSequence E1ToC(*this, Entity, Kind, E1); 7252 if (!E1ToC) 7253 return QualType(); 7254 7255 InitializationSequence E2ToC(*this, Entity, Kind, E2); 7256 if (!E2ToC) 7257 return QualType(); 7258 7259 // FIXME: Let the caller know if these fail to avoid duplicate diagnostics. 7260 ExprResult E1Result = E1ToC.Perform(*this, Entity, Kind, E1); 7261 if (E1Result.isInvalid()) 7262 return QualType(); 7263 E1 = E1Result.get(); 7264 7265 ExprResult E2Result = E2ToC.Perform(*this, Entity, Kind, E2); 7266 if (E2Result.isInvalid()) 7267 return QualType(); 7268 E2 = E2Result.get(); 7269 } 7270 7271 return Composite; 7272 } 7273 7274 ExprResult Sema::MaybeBindToTemporary(Expr *E) { 7275 if (!E) 7276 return ExprError(); 7277 7278 assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?"); 7279 7280 // If the result is a glvalue, we shouldn't bind it. 7281 if (E->isGLValue()) 7282 return E; 7283 7284 // In ARC, calls that return a retainable type can return retained, 7285 // in which case we have to insert a consuming cast. 7286 if (getLangOpts().ObjCAutoRefCount && 7287 E->getType()->isObjCRetainableType()) { 7288 7289 bool ReturnsRetained; 7290 7291 // For actual calls, we compute this by examining the type of the 7292 // called value. 7293 if (CallExpr *Call = dyn_cast<CallExpr>(E)) { 7294 Expr *Callee = Call->getCallee()->IgnoreParens(); 7295 QualType T = Callee->getType(); 7296 7297 if (T == Context.BoundMemberTy) { 7298 // Handle pointer-to-members. 7299 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee)) 7300 T = BinOp->getRHS()->getType(); 7301 else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee)) 7302 T = Mem->getMemberDecl()->getType(); 7303 } 7304 7305 if (const PointerType *Ptr = T->getAs<PointerType>()) 7306 T = Ptr->getPointeeType(); 7307 else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>()) 7308 T = Ptr->getPointeeType(); 7309 else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>()) 7310 T = MemPtr->getPointeeType(); 7311 7312 auto *FTy = T->castAs<FunctionType>(); 7313 ReturnsRetained = FTy->getExtInfo().getProducesResult(); 7314 7315 // ActOnStmtExpr arranges things so that StmtExprs of retainable 7316 // type always produce a +1 object. 7317 } else if (isa<StmtExpr>(E)) { 7318 ReturnsRetained = true; 7319 7320 // We hit this case with the lambda conversion-to-block optimization; 7321 // we don't want any extra casts here. 7322 } else if (isa<CastExpr>(E) && 7323 isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) { 7324 return E; 7325 7326 // For message sends and property references, we try to find an 7327 // actual method. FIXME: we should infer retention by selector in 7328 // cases where we don't have an actual method. 7329 } else { 7330 ObjCMethodDecl *D = nullptr; 7331 if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) { 7332 D = Send->getMethodDecl(); 7333 } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) { 7334 D = BoxedExpr->getBoxingMethod(); 7335 } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) { 7336 // Don't do reclaims if we're using the zero-element array 7337 // constant. 7338 if (ArrayLit->getNumElements() == 0 && 7339 Context.getLangOpts().ObjCRuntime.hasEmptyCollections()) 7340 return E; 7341 7342 D = ArrayLit->getArrayWithObjectsMethod(); 7343 } else if (ObjCDictionaryLiteral *DictLit 7344 = dyn_cast<ObjCDictionaryLiteral>(E)) { 7345 // Don't do reclaims if we're using the zero-element dictionary 7346 // constant. 7347 if (DictLit->getNumElements() == 0 && 7348 Context.getLangOpts().ObjCRuntime.hasEmptyCollections()) 7349 return E; 7350 7351 D = DictLit->getDictWithObjectsMethod(); 7352 } 7353 7354 ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>()); 7355 7356 // Don't do reclaims on performSelector calls; despite their 7357 // return type, the invoked method doesn't necessarily actually 7358 // return an object. 7359 if (!ReturnsRetained && 7360 D && D->getMethodFamily() == OMF_performSelector) 7361 return E; 7362 } 7363 7364 // Don't reclaim an object of Class type. 7365 if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType()) 7366 return E; 7367 7368 Cleanup.setExprNeedsCleanups(true); 7369 7370 CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject 7371 : CK_ARCReclaimReturnedObject); 7372 return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr, 7373 VK_PRValue, FPOptionsOverride()); 7374 } 7375 7376 if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) 7377 Cleanup.setExprNeedsCleanups(true); 7378 7379 if (!getLangOpts().CPlusPlus) 7380 return E; 7381 7382 // Search for the base element type (cf. ASTContext::getBaseElementType) with 7383 // a fast path for the common case that the type is directly a RecordType. 7384 const Type *T = Context.getCanonicalType(E->getType().getTypePtr()); 7385 const RecordType *RT = nullptr; 7386 while (!RT) { 7387 switch (T->getTypeClass()) { 7388 case Type::Record: 7389 RT = cast<RecordType>(T); 7390 break; 7391 case Type::ConstantArray: 7392 case Type::IncompleteArray: 7393 case Type::VariableArray: 7394 case Type::DependentSizedArray: 7395 T = cast<ArrayType>(T)->getElementType().getTypePtr(); 7396 break; 7397 default: 7398 return E; 7399 } 7400 } 7401 7402 // That should be enough to guarantee that this type is complete, if we're 7403 // not processing a decltype expression. 7404 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 7405 if (RD->isInvalidDecl() || RD->isDependentContext()) 7406 return E; 7407 7408 bool IsDecltype = ExprEvalContexts.back().ExprContext == 7409 ExpressionEvaluationContextRecord::EK_Decltype; 7410 CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD); 7411 7412 if (Destructor) { 7413 MarkFunctionReferenced(E->getExprLoc(), Destructor); 7414 CheckDestructorAccess(E->getExprLoc(), Destructor, 7415 PDiag(diag::err_access_dtor_temp) 7416 << E->getType()); 7417 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) 7418 return ExprError(); 7419 7420 // If destructor is trivial, we can avoid the extra copy. 7421 if (Destructor->isTrivial()) 7422 return E; 7423 7424 // We need a cleanup, but we don't need to remember the temporary. 7425 Cleanup.setExprNeedsCleanups(true); 7426 } 7427 7428 CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor); 7429 CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E); 7430 7431 if (IsDecltype) 7432 ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind); 7433 7434 return Bind; 7435 } 7436 7437 ExprResult 7438 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) { 7439 if (SubExpr.isInvalid()) 7440 return ExprError(); 7441 7442 return MaybeCreateExprWithCleanups(SubExpr.get()); 7443 } 7444 7445 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) { 7446 assert(SubExpr && "subexpression can't be null!"); 7447 7448 CleanupVarDeclMarking(); 7449 7450 unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects; 7451 assert(ExprCleanupObjects.size() >= FirstCleanup); 7452 assert(Cleanup.exprNeedsCleanups() || 7453 ExprCleanupObjects.size() == FirstCleanup); 7454 if (!Cleanup.exprNeedsCleanups()) 7455 return SubExpr; 7456 7457 auto Cleanups = llvm::ArrayRef(ExprCleanupObjects.begin() + FirstCleanup, 7458 ExprCleanupObjects.size() - FirstCleanup); 7459 7460 auto *E = ExprWithCleanups::Create( 7461 Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups); 7462 DiscardCleanupsInEvaluationContext(); 7463 7464 return E; 7465 } 7466 7467 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) { 7468 assert(SubStmt && "sub-statement can't be null!"); 7469 7470 CleanupVarDeclMarking(); 7471 7472 if (!Cleanup.exprNeedsCleanups()) 7473 return SubStmt; 7474 7475 // FIXME: In order to attach the temporaries, wrap the statement into 7476 // a StmtExpr; currently this is only used for asm statements. 7477 // This is hacky, either create a new CXXStmtWithTemporaries statement or 7478 // a new AsmStmtWithTemporaries. 7479 CompoundStmt *CompStmt = 7480 CompoundStmt::Create(Context, SubStmt, FPOptionsOverride(), 7481 SourceLocation(), SourceLocation()); 7482 Expr *E = new (Context) 7483 StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), SourceLocation(), 7484 /*FIXME TemplateDepth=*/0); 7485 return MaybeCreateExprWithCleanups(E); 7486 } 7487 7488 /// Process the expression contained within a decltype. For such expressions, 7489 /// certain semantic checks on temporaries are delayed until this point, and 7490 /// are omitted for the 'topmost' call in the decltype expression. If the 7491 /// topmost call bound a temporary, strip that temporary off the expression. 7492 ExprResult Sema::ActOnDecltypeExpression(Expr *E) { 7493 assert(ExprEvalContexts.back().ExprContext == 7494 ExpressionEvaluationContextRecord::EK_Decltype && 7495 "not in a decltype expression"); 7496 7497 ExprResult Result = CheckPlaceholderExpr(E); 7498 if (Result.isInvalid()) 7499 return ExprError(); 7500 E = Result.get(); 7501 7502 // C++11 [expr.call]p11: 7503 // If a function call is a prvalue of object type, 7504 // -- if the function call is either 7505 // -- the operand of a decltype-specifier, or 7506 // -- the right operand of a comma operator that is the operand of a 7507 // decltype-specifier, 7508 // a temporary object is not introduced for the prvalue. 7509 7510 // Recursively rebuild ParenExprs and comma expressions to strip out the 7511 // outermost CXXBindTemporaryExpr, if any. 7512 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 7513 ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr()); 7514 if (SubExpr.isInvalid()) 7515 return ExprError(); 7516 if (SubExpr.get() == PE->getSubExpr()) 7517 return E; 7518 return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get()); 7519 } 7520 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 7521 if (BO->getOpcode() == BO_Comma) { 7522 ExprResult RHS = ActOnDecltypeExpression(BO->getRHS()); 7523 if (RHS.isInvalid()) 7524 return ExprError(); 7525 if (RHS.get() == BO->getRHS()) 7526 return E; 7527 return BinaryOperator::Create(Context, BO->getLHS(), RHS.get(), BO_Comma, 7528 BO->getType(), BO->getValueKind(), 7529 BO->getObjectKind(), BO->getOperatorLoc(), 7530 BO->getFPFeatures()); 7531 } 7532 } 7533 7534 CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E); 7535 CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr()) 7536 : nullptr; 7537 if (TopCall) 7538 E = TopCall; 7539 else 7540 TopBind = nullptr; 7541 7542 // Disable the special decltype handling now. 7543 ExprEvalContexts.back().ExprContext = 7544 ExpressionEvaluationContextRecord::EK_Other; 7545 7546 Result = CheckUnevaluatedOperand(E); 7547 if (Result.isInvalid()) 7548 return ExprError(); 7549 E = Result.get(); 7550 7551 // In MS mode, don't perform any extra checking of call return types within a 7552 // decltype expression. 7553 if (getLangOpts().MSVCCompat) 7554 return E; 7555 7556 // Perform the semantic checks we delayed until this point. 7557 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size(); 7558 I != N; ++I) { 7559 CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I]; 7560 if (Call == TopCall) 7561 continue; 7562 7563 if (CheckCallReturnType(Call->getCallReturnType(Context), 7564 Call->getBeginLoc(), Call, Call->getDirectCallee())) 7565 return ExprError(); 7566 } 7567 7568 // Now all relevant types are complete, check the destructors are accessible 7569 // and non-deleted, and annotate them on the temporaries. 7570 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size(); 7571 I != N; ++I) { 7572 CXXBindTemporaryExpr *Bind = 7573 ExprEvalContexts.back().DelayedDecltypeBinds[I]; 7574 if (Bind == TopBind) 7575 continue; 7576 7577 CXXTemporary *Temp = Bind->getTemporary(); 7578 7579 CXXRecordDecl *RD = 7580 Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 7581 CXXDestructorDecl *Destructor = LookupDestructor(RD); 7582 Temp->setDestructor(Destructor); 7583 7584 MarkFunctionReferenced(Bind->getExprLoc(), Destructor); 7585 CheckDestructorAccess(Bind->getExprLoc(), Destructor, 7586 PDiag(diag::err_access_dtor_temp) 7587 << Bind->getType()); 7588 if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc())) 7589 return ExprError(); 7590 7591 // We need a cleanup, but we don't need to remember the temporary. 7592 Cleanup.setExprNeedsCleanups(true); 7593 } 7594 7595 // Possibly strip off the top CXXBindTemporaryExpr. 7596 return E; 7597 } 7598 7599 /// Note a set of 'operator->' functions that were used for a member access. 7600 static void noteOperatorArrows(Sema &S, 7601 ArrayRef<FunctionDecl *> OperatorArrows) { 7602 unsigned SkipStart = OperatorArrows.size(), SkipCount = 0; 7603 // FIXME: Make this configurable? 7604 unsigned Limit = 9; 7605 if (OperatorArrows.size() > Limit) { 7606 // Produce Limit-1 normal notes and one 'skipping' note. 7607 SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2; 7608 SkipCount = OperatorArrows.size() - (Limit - 1); 7609 } 7610 7611 for (unsigned I = 0; I < OperatorArrows.size(); /**/) { 7612 if (I == SkipStart) { 7613 S.Diag(OperatorArrows[I]->getLocation(), 7614 diag::note_operator_arrows_suppressed) 7615 << SkipCount; 7616 I += SkipCount; 7617 } else { 7618 S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here) 7619 << OperatorArrows[I]->getCallResultType(); 7620 ++I; 7621 } 7622 } 7623 } 7624 7625 ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, 7626 SourceLocation OpLoc, 7627 tok::TokenKind OpKind, 7628 ParsedType &ObjectType, 7629 bool &MayBePseudoDestructor) { 7630 // Since this might be a postfix expression, get rid of ParenListExprs. 7631 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); 7632 if (Result.isInvalid()) return ExprError(); 7633 Base = Result.get(); 7634 7635 Result = CheckPlaceholderExpr(Base); 7636 if (Result.isInvalid()) return ExprError(); 7637 Base = Result.get(); 7638 7639 QualType BaseType = Base->getType(); 7640 MayBePseudoDestructor = false; 7641 if (BaseType->isDependentType()) { 7642 // If we have a pointer to a dependent type and are using the -> operator, 7643 // the object type is the type that the pointer points to. We might still 7644 // have enough information about that type to do something useful. 7645 if (OpKind == tok::arrow) 7646 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) 7647 BaseType = Ptr->getPointeeType(); 7648 7649 ObjectType = ParsedType::make(BaseType); 7650 MayBePseudoDestructor = true; 7651 return Base; 7652 } 7653 7654 // C++ [over.match.oper]p8: 7655 // [...] When operator->returns, the operator-> is applied to the value 7656 // returned, with the original second operand. 7657 if (OpKind == tok::arrow) { 7658 QualType StartingType = BaseType; 7659 bool NoArrowOperatorFound = false; 7660 bool FirstIteration = true; 7661 FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext); 7662 // The set of types we've considered so far. 7663 llvm::SmallPtrSet<CanQualType,8> CTypes; 7664 SmallVector<FunctionDecl*, 8> OperatorArrows; 7665 CTypes.insert(Context.getCanonicalType(BaseType)); 7666 7667 while (BaseType->isRecordType()) { 7668 if (OperatorArrows.size() >= getLangOpts().ArrowDepth) { 7669 Diag(OpLoc, diag::err_operator_arrow_depth_exceeded) 7670 << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange(); 7671 noteOperatorArrows(*this, OperatorArrows); 7672 Diag(OpLoc, diag::note_operator_arrow_depth) 7673 << getLangOpts().ArrowDepth; 7674 return ExprError(); 7675 } 7676 7677 Result = BuildOverloadedArrowExpr( 7678 S, Base, OpLoc, 7679 // When in a template specialization and on the first loop iteration, 7680 // potentially give the default diagnostic (with the fixit in a 7681 // separate note) instead of having the error reported back to here 7682 // and giving a diagnostic with a fixit attached to the error itself. 7683 (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization()) 7684 ? nullptr 7685 : &NoArrowOperatorFound); 7686 if (Result.isInvalid()) { 7687 if (NoArrowOperatorFound) { 7688 if (FirstIteration) { 7689 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 7690 << BaseType << 1 << Base->getSourceRange() 7691 << FixItHint::CreateReplacement(OpLoc, "."); 7692 OpKind = tok::period; 7693 break; 7694 } 7695 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 7696 << BaseType << Base->getSourceRange(); 7697 CallExpr *CE = dyn_cast<CallExpr>(Base); 7698 if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) { 7699 Diag(CD->getBeginLoc(), 7700 diag::note_member_reference_arrow_from_operator_arrow); 7701 } 7702 } 7703 return ExprError(); 7704 } 7705 Base = Result.get(); 7706 if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base)) 7707 OperatorArrows.push_back(OpCall->getDirectCallee()); 7708 BaseType = Base->getType(); 7709 CanQualType CBaseType = Context.getCanonicalType(BaseType); 7710 if (!CTypes.insert(CBaseType).second) { 7711 Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType; 7712 noteOperatorArrows(*this, OperatorArrows); 7713 return ExprError(); 7714 } 7715 FirstIteration = false; 7716 } 7717 7718 if (OpKind == tok::arrow) { 7719 if (BaseType->isPointerType()) 7720 BaseType = BaseType->getPointeeType(); 7721 else if (auto *AT = Context.getAsArrayType(BaseType)) 7722 BaseType = AT->getElementType(); 7723 } 7724 } 7725 7726 // Objective-C properties allow "." access on Objective-C pointer types, 7727 // so adjust the base type to the object type itself. 7728 if (BaseType->isObjCObjectPointerType()) 7729 BaseType = BaseType->getPointeeType(); 7730 7731 // C++ [basic.lookup.classref]p2: 7732 // [...] If the type of the object expression is of pointer to scalar 7733 // type, the unqualified-id is looked up in the context of the complete 7734 // postfix-expression. 7735 // 7736 // This also indicates that we could be parsing a pseudo-destructor-name. 7737 // Note that Objective-C class and object types can be pseudo-destructor 7738 // expressions or normal member (ivar or property) access expressions, and 7739 // it's legal for the type to be incomplete if this is a pseudo-destructor 7740 // call. We'll do more incomplete-type checks later in the lookup process, 7741 // so just skip this check for ObjC types. 7742 if (!BaseType->isRecordType()) { 7743 ObjectType = ParsedType::make(BaseType); 7744 MayBePseudoDestructor = true; 7745 return Base; 7746 } 7747 7748 // The object type must be complete (or dependent), or 7749 // C++11 [expr.prim.general]p3: 7750 // Unlike the object expression in other contexts, *this is not required to 7751 // be of complete type for purposes of class member access (5.2.5) outside 7752 // the member function body. 7753 if (!BaseType->isDependentType() && 7754 !isThisOutsideMemberFunctionBody(BaseType) && 7755 RequireCompleteType(OpLoc, BaseType, 7756 diag::err_incomplete_member_access)) { 7757 return CreateRecoveryExpr(Base->getBeginLoc(), Base->getEndLoc(), {Base}); 7758 } 7759 7760 // C++ [basic.lookup.classref]p2: 7761 // If the id-expression in a class member access (5.2.5) is an 7762 // unqualified-id, and the type of the object expression is of a class 7763 // type C (or of pointer to a class type C), the unqualified-id is looked 7764 // up in the scope of class C. [...] 7765 ObjectType = ParsedType::make(BaseType); 7766 return Base; 7767 } 7768 7769 static bool CheckArrow(Sema &S, QualType &ObjectType, Expr *&Base, 7770 tok::TokenKind &OpKind, SourceLocation OpLoc) { 7771 if (Base->hasPlaceholderType()) { 7772 ExprResult result = S.CheckPlaceholderExpr(Base); 7773 if (result.isInvalid()) return true; 7774 Base = result.get(); 7775 } 7776 ObjectType = Base->getType(); 7777 7778 // C++ [expr.pseudo]p2: 7779 // The left-hand side of the dot operator shall be of scalar type. The 7780 // left-hand side of the arrow operator shall be of pointer to scalar type. 7781 // This scalar type is the object type. 7782 // Note that this is rather different from the normal handling for the 7783 // arrow operator. 7784 if (OpKind == tok::arrow) { 7785 // The operator requires a prvalue, so perform lvalue conversions. 7786 // Only do this if we might plausibly end with a pointer, as otherwise 7787 // this was likely to be intended to be a '.'. 7788 if (ObjectType->isPointerType() || ObjectType->isArrayType() || 7789 ObjectType->isFunctionType()) { 7790 ExprResult BaseResult = S.DefaultFunctionArrayLvalueConversion(Base); 7791 if (BaseResult.isInvalid()) 7792 return true; 7793 Base = BaseResult.get(); 7794 ObjectType = Base->getType(); 7795 } 7796 7797 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) { 7798 ObjectType = Ptr->getPointeeType(); 7799 } else if (!Base->isTypeDependent()) { 7800 // The user wrote "p->" when they probably meant "p."; fix it. 7801 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 7802 << ObjectType << true 7803 << FixItHint::CreateReplacement(OpLoc, "."); 7804 if (S.isSFINAEContext()) 7805 return true; 7806 7807 OpKind = tok::period; 7808 } 7809 } 7810 7811 return false; 7812 } 7813 7814 /// Check if it's ok to try and recover dot pseudo destructor calls on 7815 /// pointer objects. 7816 static bool 7817 canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef, 7818 QualType DestructedType) { 7819 // If this is a record type, check if its destructor is callable. 7820 if (auto *RD = DestructedType->getAsCXXRecordDecl()) { 7821 if (RD->hasDefinition()) 7822 if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD)) 7823 return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false); 7824 return false; 7825 } 7826 7827 // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor. 7828 return DestructedType->isDependentType() || DestructedType->isScalarType() || 7829 DestructedType->isVectorType(); 7830 } 7831 7832 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base, 7833 SourceLocation OpLoc, 7834 tok::TokenKind OpKind, 7835 const CXXScopeSpec &SS, 7836 TypeSourceInfo *ScopeTypeInfo, 7837 SourceLocation CCLoc, 7838 SourceLocation TildeLoc, 7839 PseudoDestructorTypeStorage Destructed) { 7840 TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo(); 7841 7842 QualType ObjectType; 7843 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 7844 return ExprError(); 7845 7846 if (!ObjectType->isDependentType() && !ObjectType->isScalarType() && 7847 !ObjectType->isVectorType()) { 7848 if (getLangOpts().MSVCCompat && ObjectType->isVoidType()) 7849 Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange(); 7850 else { 7851 Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar) 7852 << ObjectType << Base->getSourceRange(); 7853 return ExprError(); 7854 } 7855 } 7856 7857 // C++ [expr.pseudo]p2: 7858 // [...] The cv-unqualified versions of the object type and of the type 7859 // designated by the pseudo-destructor-name shall be the same type. 7860 if (DestructedTypeInfo) { 7861 QualType DestructedType = DestructedTypeInfo->getType(); 7862 SourceLocation DestructedTypeStart = 7863 DestructedTypeInfo->getTypeLoc().getBeginLoc(); 7864 if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) { 7865 if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) { 7866 // Detect dot pseudo destructor calls on pointer objects, e.g.: 7867 // Foo *foo; 7868 // foo.~Foo(); 7869 if (OpKind == tok::period && ObjectType->isPointerType() && 7870 Context.hasSameUnqualifiedType(DestructedType, 7871 ObjectType->getPointeeType())) { 7872 auto Diagnostic = 7873 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 7874 << ObjectType << /*IsArrow=*/0 << Base->getSourceRange(); 7875 7876 // Issue a fixit only when the destructor is valid. 7877 if (canRecoverDotPseudoDestructorCallsOnPointerObjects( 7878 *this, DestructedType)) 7879 Diagnostic << FixItHint::CreateReplacement(OpLoc, "->"); 7880 7881 // Recover by setting the object type to the destructed type and the 7882 // operator to '->'. 7883 ObjectType = DestructedType; 7884 OpKind = tok::arrow; 7885 } else { 7886 Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch) 7887 << ObjectType << DestructedType << Base->getSourceRange() 7888 << DestructedTypeInfo->getTypeLoc().getSourceRange(); 7889 7890 // Recover by setting the destructed type to the object type. 7891 DestructedType = ObjectType; 7892 DestructedTypeInfo = 7893 Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart); 7894 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 7895 } 7896 } else if (DestructedType.getObjCLifetime() != 7897 ObjectType.getObjCLifetime()) { 7898 7899 if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) { 7900 // Okay: just pretend that the user provided the correctly-qualified 7901 // type. 7902 } else { 7903 Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals) 7904 << ObjectType << DestructedType << Base->getSourceRange() 7905 << DestructedTypeInfo->getTypeLoc().getSourceRange(); 7906 } 7907 7908 // Recover by setting the destructed type to the object type. 7909 DestructedType = ObjectType; 7910 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType, 7911 DestructedTypeStart); 7912 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 7913 } 7914 } 7915 } 7916 7917 // C++ [expr.pseudo]p2: 7918 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the 7919 // form 7920 // 7921 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name 7922 // 7923 // shall designate the same scalar type. 7924 if (ScopeTypeInfo) { 7925 QualType ScopeType = ScopeTypeInfo->getType(); 7926 if (!ScopeType->isDependentType() && !ObjectType->isDependentType() && 7927 !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) { 7928 7929 Diag(ScopeTypeInfo->getTypeLoc().getSourceRange().getBegin(), 7930 diag::err_pseudo_dtor_type_mismatch) 7931 << ObjectType << ScopeType << Base->getSourceRange() 7932 << ScopeTypeInfo->getTypeLoc().getSourceRange(); 7933 7934 ScopeType = QualType(); 7935 ScopeTypeInfo = nullptr; 7936 } 7937 } 7938 7939 Expr *Result 7940 = new (Context) CXXPseudoDestructorExpr(Context, Base, 7941 OpKind == tok::arrow, OpLoc, 7942 SS.getWithLocInContext(Context), 7943 ScopeTypeInfo, 7944 CCLoc, 7945 TildeLoc, 7946 Destructed); 7947 7948 return Result; 7949 } 7950 7951 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, 7952 SourceLocation OpLoc, 7953 tok::TokenKind OpKind, 7954 CXXScopeSpec &SS, 7955 UnqualifiedId &FirstTypeName, 7956 SourceLocation CCLoc, 7957 SourceLocation TildeLoc, 7958 UnqualifiedId &SecondTypeName) { 7959 assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || 7960 FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && 7961 "Invalid first type name in pseudo-destructor"); 7962 assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || 7963 SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && 7964 "Invalid second type name in pseudo-destructor"); 7965 7966 QualType ObjectType; 7967 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 7968 return ExprError(); 7969 7970 // Compute the object type that we should use for name lookup purposes. Only 7971 // record types and dependent types matter. 7972 ParsedType ObjectTypePtrForLookup; 7973 if (!SS.isSet()) { 7974 if (ObjectType->isRecordType()) 7975 ObjectTypePtrForLookup = ParsedType::make(ObjectType); 7976 else if (ObjectType->isDependentType()) 7977 ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy); 7978 } 7979 7980 // Convert the name of the type being destructed (following the ~) into a 7981 // type (with source-location information). 7982 QualType DestructedType; 7983 TypeSourceInfo *DestructedTypeInfo = nullptr; 7984 PseudoDestructorTypeStorage Destructed; 7985 if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) { 7986 ParsedType T = getTypeName(*SecondTypeName.Identifier, 7987 SecondTypeName.StartLocation, 7988 S, &SS, true, false, ObjectTypePtrForLookup, 7989 /*IsCtorOrDtorName*/true); 7990 if (!T && 7991 ((SS.isSet() && !computeDeclContext(SS, false)) || 7992 (!SS.isSet() && ObjectType->isDependentType()))) { 7993 // The name of the type being destroyed is a dependent name, and we 7994 // couldn't find anything useful in scope. Just store the identifier and 7995 // it's location, and we'll perform (qualified) name lookup again at 7996 // template instantiation time. 7997 Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier, 7998 SecondTypeName.StartLocation); 7999 } else if (!T) { 8000 Diag(SecondTypeName.StartLocation, 8001 diag::err_pseudo_dtor_destructor_non_type) 8002 << SecondTypeName.Identifier << ObjectType; 8003 if (isSFINAEContext()) 8004 return ExprError(); 8005 8006 // Recover by assuming we had the right type all along. 8007 DestructedType = ObjectType; 8008 } else 8009 DestructedType = GetTypeFromParser(T, &DestructedTypeInfo); 8010 } else { 8011 // Resolve the template-id to a type. 8012 TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId; 8013 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 8014 TemplateId->NumArgs); 8015 TypeResult T = ActOnTemplateIdType(S, 8016 SS, 8017 TemplateId->TemplateKWLoc, 8018 TemplateId->Template, 8019 TemplateId->Name, 8020 TemplateId->TemplateNameLoc, 8021 TemplateId->LAngleLoc, 8022 TemplateArgsPtr, 8023 TemplateId->RAngleLoc, 8024 /*IsCtorOrDtorName*/true); 8025 if (T.isInvalid() || !T.get()) { 8026 // Recover by assuming we had the right type all along. 8027 DestructedType = ObjectType; 8028 } else 8029 DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo); 8030 } 8031 8032 // If we've performed some kind of recovery, (re-)build the type source 8033 // information. 8034 if (!DestructedType.isNull()) { 8035 if (!DestructedTypeInfo) 8036 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType, 8037 SecondTypeName.StartLocation); 8038 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 8039 } 8040 8041 // Convert the name of the scope type (the type prior to '::') into a type. 8042 TypeSourceInfo *ScopeTypeInfo = nullptr; 8043 QualType ScopeType; 8044 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || 8045 FirstTypeName.Identifier) { 8046 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) { 8047 ParsedType T = getTypeName(*FirstTypeName.Identifier, 8048 FirstTypeName.StartLocation, 8049 S, &SS, true, false, ObjectTypePtrForLookup, 8050 /*IsCtorOrDtorName*/true); 8051 if (!T) { 8052 Diag(FirstTypeName.StartLocation, 8053 diag::err_pseudo_dtor_destructor_non_type) 8054 << FirstTypeName.Identifier << ObjectType; 8055 8056 if (isSFINAEContext()) 8057 return ExprError(); 8058 8059 // Just drop this type. It's unnecessary anyway. 8060 ScopeType = QualType(); 8061 } else 8062 ScopeType = GetTypeFromParser(T, &ScopeTypeInfo); 8063 } else { 8064 // Resolve the template-id to a type. 8065 TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId; 8066 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 8067 TemplateId->NumArgs); 8068 TypeResult T = ActOnTemplateIdType(S, 8069 SS, 8070 TemplateId->TemplateKWLoc, 8071 TemplateId->Template, 8072 TemplateId->Name, 8073 TemplateId->TemplateNameLoc, 8074 TemplateId->LAngleLoc, 8075 TemplateArgsPtr, 8076 TemplateId->RAngleLoc, 8077 /*IsCtorOrDtorName*/true); 8078 if (T.isInvalid() || !T.get()) { 8079 // Recover by dropping this type. 8080 ScopeType = QualType(); 8081 } else 8082 ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo); 8083 } 8084 } 8085 8086 if (!ScopeType.isNull() && !ScopeTypeInfo) 8087 ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType, 8088 FirstTypeName.StartLocation); 8089 8090 8091 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS, 8092 ScopeTypeInfo, CCLoc, TildeLoc, 8093 Destructed); 8094 } 8095 8096 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, 8097 SourceLocation OpLoc, 8098 tok::TokenKind OpKind, 8099 SourceLocation TildeLoc, 8100 const DeclSpec& DS) { 8101 QualType ObjectType; 8102 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 8103 return ExprError(); 8104 8105 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) { 8106 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); 8107 return true; 8108 } 8109 8110 QualType T = BuildDecltypeType(DS.getRepAsExpr(), /*AsUnevaluated=*/false); 8111 8112 TypeLocBuilder TLB; 8113 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T); 8114 DecltypeTL.setDecltypeLoc(DS.getTypeSpecTypeLoc()); 8115 DecltypeTL.setRParenLoc(DS.getTypeofParensRange().getEnd()); 8116 TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T); 8117 PseudoDestructorTypeStorage Destructed(DestructedTypeInfo); 8118 8119 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(), 8120 nullptr, SourceLocation(), TildeLoc, 8121 Destructed); 8122 } 8123 8124 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand, 8125 SourceLocation RParen) { 8126 // If the operand is an unresolved lookup expression, the expression is ill- 8127 // formed per [over.over]p1, because overloaded function names cannot be used 8128 // without arguments except in explicit contexts. 8129 ExprResult R = CheckPlaceholderExpr(Operand); 8130 if (R.isInvalid()) 8131 return R; 8132 8133 R = CheckUnevaluatedOperand(R.get()); 8134 if (R.isInvalid()) 8135 return ExprError(); 8136 8137 Operand = R.get(); 8138 8139 if (!inTemplateInstantiation() && !Operand->isInstantiationDependent() && 8140 Operand->HasSideEffects(Context, false)) { 8141 // The expression operand for noexcept is in an unevaluated expression 8142 // context, so side effects could result in unintended consequences. 8143 Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context); 8144 } 8145 8146 CanThrowResult CanThrow = canThrow(Operand); 8147 return new (Context) 8148 CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen); 8149 } 8150 8151 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation, 8152 Expr *Operand, SourceLocation RParen) { 8153 return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen); 8154 } 8155 8156 static void MaybeDecrementCount( 8157 Expr *E, llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) { 8158 DeclRefExpr *LHS = nullptr; 8159 bool IsCompoundAssign = false; 8160 bool isIncrementDecrementUnaryOp = false; 8161 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 8162 if (BO->getLHS()->getType()->isDependentType() || 8163 BO->getRHS()->getType()->isDependentType()) { 8164 if (BO->getOpcode() != BO_Assign) 8165 return; 8166 } else if (!BO->isAssignmentOp()) 8167 return; 8168 else 8169 IsCompoundAssign = BO->isCompoundAssignmentOp(); 8170 LHS = dyn_cast<DeclRefExpr>(BO->getLHS()); 8171 } else if (CXXOperatorCallExpr *COCE = dyn_cast<CXXOperatorCallExpr>(E)) { 8172 if (COCE->getOperator() != OO_Equal) 8173 return; 8174 LHS = dyn_cast<DeclRefExpr>(COCE->getArg(0)); 8175 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 8176 if (!UO->isIncrementDecrementOp()) 8177 return; 8178 isIncrementDecrementUnaryOp = true; 8179 LHS = dyn_cast<DeclRefExpr>(UO->getSubExpr()); 8180 } 8181 if (!LHS) 8182 return; 8183 VarDecl *VD = dyn_cast<VarDecl>(LHS->getDecl()); 8184 if (!VD) 8185 return; 8186 // Don't decrement RefsMinusAssignments if volatile variable with compound 8187 // assignment (+=, ...) or increment/decrement unary operator to avoid 8188 // potential unused-but-set-variable warning. 8189 if ((IsCompoundAssign || isIncrementDecrementUnaryOp) && 8190 VD->getType().isVolatileQualified()) 8191 return; 8192 auto iter = RefsMinusAssignments.find(VD); 8193 if (iter == RefsMinusAssignments.end()) 8194 return; 8195 iter->getSecond()--; 8196 } 8197 8198 /// Perform the conversions required for an expression used in a 8199 /// context that ignores the result. 8200 ExprResult Sema::IgnoredValueConversions(Expr *E) { 8201 MaybeDecrementCount(E, RefsMinusAssignments); 8202 8203 if (E->hasPlaceholderType()) { 8204 ExprResult result = CheckPlaceholderExpr(E); 8205 if (result.isInvalid()) return E; 8206 E = result.get(); 8207 } 8208 8209 // C99 6.3.2.1: 8210 // [Except in specific positions,] an lvalue that does not have 8211 // array type is converted to the value stored in the 8212 // designated object (and is no longer an lvalue). 8213 if (E->isPRValue()) { 8214 // In C, function designators (i.e. expressions of function type) 8215 // are r-values, but we still want to do function-to-pointer decay 8216 // on them. This is both technically correct and convenient for 8217 // some clients. 8218 if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType()) 8219 return DefaultFunctionArrayConversion(E); 8220 8221 return E; 8222 } 8223 8224 if (getLangOpts().CPlusPlus) { 8225 // The C++11 standard defines the notion of a discarded-value expression; 8226 // normally, we don't need to do anything to handle it, but if it is a 8227 // volatile lvalue with a special form, we perform an lvalue-to-rvalue 8228 // conversion. 8229 if (getLangOpts().CPlusPlus11 && E->isReadIfDiscardedInCPlusPlus11()) { 8230 ExprResult Res = DefaultLvalueConversion(E); 8231 if (Res.isInvalid()) 8232 return E; 8233 E = Res.get(); 8234 } else { 8235 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if 8236 // it occurs as a discarded-value expression. 8237 CheckUnusedVolatileAssignment(E); 8238 } 8239 8240 // C++1z: 8241 // If the expression is a prvalue after this optional conversion, the 8242 // temporary materialization conversion is applied. 8243 // 8244 // We skip this step: IR generation is able to synthesize the storage for 8245 // itself in the aggregate case, and adding the extra node to the AST is 8246 // just clutter. 8247 // FIXME: We don't emit lifetime markers for the temporaries due to this. 8248 // FIXME: Do any other AST consumers care about this? 8249 return E; 8250 } 8251 8252 // GCC seems to also exclude expressions of incomplete enum type. 8253 if (const EnumType *T = E->getType()->getAs<EnumType>()) { 8254 if (!T->getDecl()->isComplete()) { 8255 // FIXME: stupid workaround for a codegen bug! 8256 E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get(); 8257 return E; 8258 } 8259 } 8260 8261 ExprResult Res = DefaultFunctionArrayLvalueConversion(E); 8262 if (Res.isInvalid()) 8263 return E; 8264 E = Res.get(); 8265 8266 if (!E->getType()->isVoidType()) 8267 RequireCompleteType(E->getExprLoc(), E->getType(), 8268 diag::err_incomplete_type); 8269 return E; 8270 } 8271 8272 ExprResult Sema::CheckUnevaluatedOperand(Expr *E) { 8273 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if 8274 // it occurs as an unevaluated operand. 8275 CheckUnusedVolatileAssignment(E); 8276 8277 return E; 8278 } 8279 8280 // If we can unambiguously determine whether Var can never be used 8281 // in a constant expression, return true. 8282 // - if the variable and its initializer are non-dependent, then 8283 // we can unambiguously check if the variable is a constant expression. 8284 // - if the initializer is not value dependent - we can determine whether 8285 // it can be used to initialize a constant expression. If Init can not 8286 // be used to initialize a constant expression we conclude that Var can 8287 // never be a constant expression. 8288 // - FXIME: if the initializer is dependent, we can still do some analysis and 8289 // identify certain cases unambiguously as non-const by using a Visitor: 8290 // - such as those that involve odr-use of a ParmVarDecl, involve a new 8291 // delete, lambda-expr, dynamic-cast, reinterpret-cast etc... 8292 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var, 8293 ASTContext &Context) { 8294 if (isa<ParmVarDecl>(Var)) return true; 8295 const VarDecl *DefVD = nullptr; 8296 8297 // If there is no initializer - this can not be a constant expression. 8298 const Expr *Init = Var->getAnyInitializer(DefVD); 8299 if (!Init) 8300 return true; 8301 assert(DefVD); 8302 if (DefVD->isWeak()) 8303 return false; 8304 8305 if (Var->getType()->isDependentType() || Init->isValueDependent()) { 8306 // FIXME: Teach the constant evaluator to deal with the non-dependent parts 8307 // of value-dependent expressions, and use it here to determine whether the 8308 // initializer is a potential constant expression. 8309 return false; 8310 } 8311 8312 return !Var->isUsableInConstantExpressions(Context); 8313 } 8314 8315 /// Check if the current lambda has any potential captures 8316 /// that must be captured by any of its enclosing lambdas that are ready to 8317 /// capture. If there is a lambda that can capture a nested 8318 /// potential-capture, go ahead and do so. Also, check to see if any 8319 /// variables are uncaptureable or do not involve an odr-use so do not 8320 /// need to be captured. 8321 8322 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures( 8323 Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) { 8324 8325 assert(!S.isUnevaluatedContext()); 8326 assert(S.CurContext->isDependentContext()); 8327 #ifndef NDEBUG 8328 DeclContext *DC = S.CurContext; 8329 while (DC && isa<CapturedDecl>(DC)) 8330 DC = DC->getParent(); 8331 assert( 8332 CurrentLSI->CallOperator == DC && 8333 "The current call operator must be synchronized with Sema's CurContext"); 8334 #endif // NDEBUG 8335 8336 const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent(); 8337 8338 // All the potentially captureable variables in the current nested 8339 // lambda (within a generic outer lambda), must be captured by an 8340 // outer lambda that is enclosed within a non-dependent context. 8341 CurrentLSI->visitPotentialCaptures([&](ValueDecl *Var, Expr *VarExpr) { 8342 // If the variable is clearly identified as non-odr-used and the full 8343 // expression is not instantiation dependent, only then do we not 8344 // need to check enclosing lambda's for speculative captures. 8345 // For e.g.: 8346 // Even though 'x' is not odr-used, it should be captured. 8347 // int test() { 8348 // const int x = 10; 8349 // auto L = [=](auto a) { 8350 // (void) +x + a; 8351 // }; 8352 // } 8353 if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) && 8354 !IsFullExprInstantiationDependent) 8355 return; 8356 8357 VarDecl *UnderlyingVar = Var->getPotentiallyDecomposedVarDecl(); 8358 if (!UnderlyingVar) 8359 return; 8360 8361 // If we have a capture-capable lambda for the variable, go ahead and 8362 // capture the variable in that lambda (and all its enclosing lambdas). 8363 if (const std::optional<unsigned> Index = 8364 getStackIndexOfNearestEnclosingCaptureCapableLambda( 8365 S.FunctionScopes, Var, S)) 8366 S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(), *Index); 8367 const bool IsVarNeverAConstantExpression = 8368 VariableCanNeverBeAConstantExpression(UnderlyingVar, S.Context); 8369 if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) { 8370 // This full expression is not instantiation dependent or the variable 8371 // can not be used in a constant expression - which means 8372 // this variable must be odr-used here, so diagnose a 8373 // capture violation early, if the variable is un-captureable. 8374 // This is purely for diagnosing errors early. Otherwise, this 8375 // error would get diagnosed when the lambda becomes capture ready. 8376 QualType CaptureType, DeclRefType; 8377 SourceLocation ExprLoc = VarExpr->getExprLoc(); 8378 if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, 8379 /*EllipsisLoc*/ SourceLocation(), 8380 /*BuildAndDiagnose*/false, CaptureType, 8381 DeclRefType, nullptr)) { 8382 // We will never be able to capture this variable, and we need 8383 // to be able to in any and all instantiations, so diagnose it. 8384 S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, 8385 /*EllipsisLoc*/ SourceLocation(), 8386 /*BuildAndDiagnose*/true, CaptureType, 8387 DeclRefType, nullptr); 8388 } 8389 } 8390 }); 8391 8392 // Check if 'this' needs to be captured. 8393 if (CurrentLSI->hasPotentialThisCapture()) { 8394 // If we have a capture-capable lambda for 'this', go ahead and capture 8395 // 'this' in that lambda (and all its enclosing lambdas). 8396 if (const std::optional<unsigned> Index = 8397 getStackIndexOfNearestEnclosingCaptureCapableLambda( 8398 S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) { 8399 const unsigned FunctionScopeIndexOfCapturableLambda = *Index; 8400 S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation, 8401 /*Explicit*/ false, /*BuildAndDiagnose*/ true, 8402 &FunctionScopeIndexOfCapturableLambda); 8403 } 8404 } 8405 8406 // Reset all the potential captures at the end of each full-expression. 8407 CurrentLSI->clearPotentialCaptures(); 8408 } 8409 8410 static ExprResult attemptRecovery(Sema &SemaRef, 8411 const TypoCorrectionConsumer &Consumer, 8412 const TypoCorrection &TC) { 8413 LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(), 8414 Consumer.getLookupResult().getLookupKind()); 8415 const CXXScopeSpec *SS = Consumer.getSS(); 8416 CXXScopeSpec NewSS; 8417 8418 // Use an approprate CXXScopeSpec for building the expr. 8419 if (auto *NNS = TC.getCorrectionSpecifier()) 8420 NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange()); 8421 else if (SS && !TC.WillReplaceSpecifier()) 8422 NewSS = *SS; 8423 8424 if (auto *ND = TC.getFoundDecl()) { 8425 R.setLookupName(ND->getDeclName()); 8426 R.addDecl(ND); 8427 if (ND->isCXXClassMember()) { 8428 // Figure out the correct naming class to add to the LookupResult. 8429 CXXRecordDecl *Record = nullptr; 8430 if (auto *NNS = TC.getCorrectionSpecifier()) 8431 Record = NNS->getAsType()->getAsCXXRecordDecl(); 8432 if (!Record) 8433 Record = 8434 dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext()); 8435 if (Record) 8436 R.setNamingClass(Record); 8437 8438 // Detect and handle the case where the decl might be an implicit 8439 // member. 8440 bool MightBeImplicitMember; 8441 if (!Consumer.isAddressOfOperand()) 8442 MightBeImplicitMember = true; 8443 else if (!NewSS.isEmpty()) 8444 MightBeImplicitMember = false; 8445 else if (R.isOverloadedResult()) 8446 MightBeImplicitMember = false; 8447 else if (R.isUnresolvableResult()) 8448 MightBeImplicitMember = true; 8449 else 8450 MightBeImplicitMember = isa<FieldDecl>(ND) || 8451 isa<IndirectFieldDecl>(ND) || 8452 isa<MSPropertyDecl>(ND); 8453 8454 if (MightBeImplicitMember) 8455 return SemaRef.BuildPossibleImplicitMemberExpr( 8456 NewSS, /*TemplateKWLoc*/ SourceLocation(), R, 8457 /*TemplateArgs*/ nullptr, /*S*/ nullptr); 8458 } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) { 8459 return SemaRef.LookupInObjCMethod(R, Consumer.getScope(), 8460 Ivar->getIdentifier()); 8461 } 8462 } 8463 8464 return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false, 8465 /*AcceptInvalidDecl*/ true); 8466 } 8467 8468 namespace { 8469 class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> { 8470 llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs; 8471 8472 public: 8473 explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs) 8474 : TypoExprs(TypoExprs) {} 8475 bool VisitTypoExpr(TypoExpr *TE) { 8476 TypoExprs.insert(TE); 8477 return true; 8478 } 8479 }; 8480 8481 class TransformTypos : public TreeTransform<TransformTypos> { 8482 typedef TreeTransform<TransformTypos> BaseTransform; 8483 8484 VarDecl *InitDecl; // A decl to avoid as a correction because it is in the 8485 // process of being initialized. 8486 llvm::function_ref<ExprResult(Expr *)> ExprFilter; 8487 llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs; 8488 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache; 8489 llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution; 8490 8491 /// Emit diagnostics for all of the TypoExprs encountered. 8492 /// 8493 /// If the TypoExprs were successfully corrected, then the diagnostics should 8494 /// suggest the corrections. Otherwise the diagnostics will not suggest 8495 /// anything (having been passed an empty TypoCorrection). 8496 /// 8497 /// If we've failed to correct due to ambiguous corrections, we need to 8498 /// be sure to pass empty corrections and replacements. Otherwise it's 8499 /// possible that the Consumer has a TypoCorrection that failed to ambiguity 8500 /// and we don't want to report those diagnostics. 8501 void EmitAllDiagnostics(bool IsAmbiguous) { 8502 for (TypoExpr *TE : TypoExprs) { 8503 auto &State = SemaRef.getTypoExprState(TE); 8504 if (State.DiagHandler) { 8505 TypoCorrection TC = IsAmbiguous 8506 ? TypoCorrection() : State.Consumer->getCurrentCorrection(); 8507 ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE]; 8508 8509 // Extract the NamedDecl from the transformed TypoExpr and add it to the 8510 // TypoCorrection, replacing the existing decls. This ensures the right 8511 // NamedDecl is used in diagnostics e.g. in the case where overload 8512 // resolution was used to select one from several possible decls that 8513 // had been stored in the TypoCorrection. 8514 if (auto *ND = getDeclFromExpr( 8515 Replacement.isInvalid() ? nullptr : Replacement.get())) 8516 TC.setCorrectionDecl(ND); 8517 8518 State.DiagHandler(TC); 8519 } 8520 SemaRef.clearDelayedTypo(TE); 8521 } 8522 } 8523 8524 /// Try to advance the typo correction state of the first unfinished TypoExpr. 8525 /// We allow advancement of the correction stream by removing it from the 8526 /// TransformCache which allows `TransformTypoExpr` to advance during the 8527 /// next transformation attempt. 8528 /// 8529 /// Any substitution attempts for the previous TypoExprs (which must have been 8530 /// finished) will need to be retried since it's possible that they will now 8531 /// be invalid given the latest advancement. 8532 /// 8533 /// We need to be sure that we're making progress - it's possible that the 8534 /// tree is so malformed that the transform never makes it to the 8535 /// `TransformTypoExpr`. 8536 /// 8537 /// Returns true if there are any untried correction combinations. 8538 bool CheckAndAdvanceTypoExprCorrectionStreams() { 8539 for (auto *TE : TypoExprs) { 8540 auto &State = SemaRef.getTypoExprState(TE); 8541 TransformCache.erase(TE); 8542 if (!State.Consumer->hasMadeAnyCorrectionProgress()) 8543 return false; 8544 if (!State.Consumer->finished()) 8545 return true; 8546 State.Consumer->resetCorrectionStream(); 8547 } 8548 return false; 8549 } 8550 8551 NamedDecl *getDeclFromExpr(Expr *E) { 8552 if (auto *OE = dyn_cast_or_null<OverloadExpr>(E)) 8553 E = OverloadResolution[OE]; 8554 8555 if (!E) 8556 return nullptr; 8557 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) 8558 return DRE->getFoundDecl(); 8559 if (auto *ME = dyn_cast<MemberExpr>(E)) 8560 return ME->getFoundDecl(); 8561 // FIXME: Add any other expr types that could be seen by the delayed typo 8562 // correction TreeTransform for which the corresponding TypoCorrection could 8563 // contain multiple decls. 8564 return nullptr; 8565 } 8566 8567 ExprResult TryTransform(Expr *E) { 8568 Sema::SFINAETrap Trap(SemaRef); 8569 ExprResult Res = TransformExpr(E); 8570 if (Trap.hasErrorOccurred() || Res.isInvalid()) 8571 return ExprError(); 8572 8573 return ExprFilter(Res.get()); 8574 } 8575 8576 // Since correcting typos may intoduce new TypoExprs, this function 8577 // checks for new TypoExprs and recurses if it finds any. Note that it will 8578 // only succeed if it is able to correct all typos in the given expression. 8579 ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) { 8580 if (Res.isInvalid()) { 8581 return Res; 8582 } 8583 // Check to see if any new TypoExprs were created. If so, we need to recurse 8584 // to check their validity. 8585 Expr *FixedExpr = Res.get(); 8586 8587 auto SavedTypoExprs = std::move(TypoExprs); 8588 auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs); 8589 TypoExprs.clear(); 8590 AmbiguousTypoExprs.clear(); 8591 8592 FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr); 8593 if (!TypoExprs.empty()) { 8594 // Recurse to handle newly created TypoExprs. If we're not able to 8595 // handle them, discard these TypoExprs. 8596 ExprResult RecurResult = 8597 RecursiveTransformLoop(FixedExpr, IsAmbiguous); 8598 if (RecurResult.isInvalid()) { 8599 Res = ExprError(); 8600 // Recursive corrections didn't work, wipe them away and don't add 8601 // them to the TypoExprs set. Remove them from Sema's TypoExpr list 8602 // since we don't want to clear them twice. Note: it's possible the 8603 // TypoExprs were created recursively and thus won't be in our 8604 // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`. 8605 auto &SemaTypoExprs = SemaRef.TypoExprs; 8606 for (auto *TE : TypoExprs) { 8607 TransformCache.erase(TE); 8608 SemaRef.clearDelayedTypo(TE); 8609 8610 auto SI = find(SemaTypoExprs, TE); 8611 if (SI != SemaTypoExprs.end()) { 8612 SemaTypoExprs.erase(SI); 8613 } 8614 } 8615 } else { 8616 // TypoExpr is valid: add newly created TypoExprs since we were 8617 // able to correct them. 8618 Res = RecurResult; 8619 SavedTypoExprs.set_union(TypoExprs); 8620 } 8621 } 8622 8623 TypoExprs = std::move(SavedTypoExprs); 8624 AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs); 8625 8626 return Res; 8627 } 8628 8629 // Try to transform the given expression, looping through the correction 8630 // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`. 8631 // 8632 // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to 8633 // true and this method immediately will return an `ExprError`. 8634 ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) { 8635 ExprResult Res; 8636 auto SavedTypoExprs = std::move(SemaRef.TypoExprs); 8637 SemaRef.TypoExprs.clear(); 8638 8639 while (true) { 8640 Res = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous); 8641 8642 // Recursion encountered an ambiguous correction. This means that our 8643 // correction itself is ambiguous, so stop now. 8644 if (IsAmbiguous) 8645 break; 8646 8647 // If the transform is still valid after checking for any new typos, 8648 // it's good to go. 8649 if (!Res.isInvalid()) 8650 break; 8651 8652 // The transform was invalid, see if we have any TypoExprs with untried 8653 // correction candidates. 8654 if (!CheckAndAdvanceTypoExprCorrectionStreams()) 8655 break; 8656 } 8657 8658 // If we found a valid result, double check to make sure it's not ambiguous. 8659 if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) { 8660 auto SavedTransformCache = 8661 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2>(TransformCache); 8662 8663 // Ensure none of the TypoExprs have multiple typo correction candidates 8664 // with the same edit length that pass all the checks and filters. 8665 while (!AmbiguousTypoExprs.empty()) { 8666 auto TE = AmbiguousTypoExprs.back(); 8667 8668 // TryTransform itself can create new Typos, adding them to the TypoExpr map 8669 // and invalidating our TypoExprState, so always fetch it instead of storing. 8670 SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition(); 8671 8672 TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection(); 8673 TypoCorrection Next; 8674 do { 8675 // Fetch the next correction by erasing the typo from the cache and calling 8676 // `TryTransform` which will iterate through corrections in 8677 // `TransformTypoExpr`. 8678 TransformCache.erase(TE); 8679 ExprResult AmbigRes = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous); 8680 8681 if (!AmbigRes.isInvalid() || IsAmbiguous) { 8682 SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream(); 8683 SavedTransformCache.erase(TE); 8684 Res = ExprError(); 8685 IsAmbiguous = true; 8686 break; 8687 } 8688 } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) && 8689 Next.getEditDistance(false) == TC.getEditDistance(false)); 8690 8691 if (IsAmbiguous) 8692 break; 8693 8694 AmbiguousTypoExprs.remove(TE); 8695 SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition(); 8696 TransformCache[TE] = SavedTransformCache[TE]; 8697 } 8698 TransformCache = std::move(SavedTransformCache); 8699 } 8700 8701 // Wipe away any newly created TypoExprs that we don't know about. Since we 8702 // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only 8703 // possible if a `TypoExpr` is created during a transformation but then 8704 // fails before we can discover it. 8705 auto &SemaTypoExprs = SemaRef.TypoExprs; 8706 for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) { 8707 auto TE = *Iterator; 8708 auto FI = find(TypoExprs, TE); 8709 if (FI != TypoExprs.end()) { 8710 Iterator++; 8711 continue; 8712 } 8713 SemaRef.clearDelayedTypo(TE); 8714 Iterator = SemaTypoExprs.erase(Iterator); 8715 } 8716 SemaRef.TypoExprs = std::move(SavedTypoExprs); 8717 8718 return Res; 8719 } 8720 8721 public: 8722 TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter) 8723 : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {} 8724 8725 ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc, 8726 MultiExprArg Args, 8727 SourceLocation RParenLoc, 8728 Expr *ExecConfig = nullptr) { 8729 auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args, 8730 RParenLoc, ExecConfig); 8731 if (auto *OE = dyn_cast<OverloadExpr>(Callee)) { 8732 if (Result.isUsable()) { 8733 Expr *ResultCall = Result.get(); 8734 if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall)) 8735 ResultCall = BE->getSubExpr(); 8736 if (auto *CE = dyn_cast<CallExpr>(ResultCall)) 8737 OverloadResolution[OE] = CE->getCallee(); 8738 } 8739 } 8740 return Result; 8741 } 8742 8743 ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); } 8744 8745 ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); } 8746 8747 ExprResult Transform(Expr *E) { 8748 bool IsAmbiguous = false; 8749 ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous); 8750 8751 if (!Res.isUsable()) 8752 FindTypoExprs(TypoExprs).TraverseStmt(E); 8753 8754 EmitAllDiagnostics(IsAmbiguous); 8755 8756 return Res; 8757 } 8758 8759 ExprResult TransformTypoExpr(TypoExpr *E) { 8760 // If the TypoExpr hasn't been seen before, record it. Otherwise, return the 8761 // cached transformation result if there is one and the TypoExpr isn't the 8762 // first one that was encountered. 8763 auto &CacheEntry = TransformCache[E]; 8764 if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) { 8765 return CacheEntry; 8766 } 8767 8768 auto &State = SemaRef.getTypoExprState(E); 8769 assert(State.Consumer && "Cannot transform a cleared TypoExpr"); 8770 8771 // For the first TypoExpr and an uncached TypoExpr, find the next likely 8772 // typo correction and return it. 8773 while (TypoCorrection TC = State.Consumer->getNextCorrection()) { 8774 if (InitDecl && TC.getFoundDecl() == InitDecl) 8775 continue; 8776 // FIXME: If we would typo-correct to an invalid declaration, it's 8777 // probably best to just suppress all errors from this typo correction. 8778 ExprResult NE = State.RecoveryHandler ? 8779 State.RecoveryHandler(SemaRef, E, TC) : 8780 attemptRecovery(SemaRef, *State.Consumer, TC); 8781 if (!NE.isInvalid()) { 8782 // Check whether there may be a second viable correction with the same 8783 // edit distance; if so, remember this TypoExpr may have an ambiguous 8784 // correction so it can be more thoroughly vetted later. 8785 TypoCorrection Next; 8786 if ((Next = State.Consumer->peekNextCorrection()) && 8787 Next.getEditDistance(false) == TC.getEditDistance(false)) { 8788 AmbiguousTypoExprs.insert(E); 8789 } else { 8790 AmbiguousTypoExprs.remove(E); 8791 } 8792 assert(!NE.isUnset() && 8793 "Typo was transformed into a valid-but-null ExprResult"); 8794 return CacheEntry = NE; 8795 } 8796 } 8797 return CacheEntry = ExprError(); 8798 } 8799 }; 8800 } 8801 8802 ExprResult 8803 Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl, 8804 bool RecoverUncorrectedTypos, 8805 llvm::function_ref<ExprResult(Expr *)> Filter) { 8806 // If the current evaluation context indicates there are uncorrected typos 8807 // and the current expression isn't guaranteed to not have typos, try to 8808 // resolve any TypoExpr nodes that might be in the expression. 8809 if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos && 8810 (E->isTypeDependent() || E->isValueDependent() || 8811 E->isInstantiationDependent())) { 8812 auto TyposResolved = DelayedTypos.size(); 8813 auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E); 8814 TyposResolved -= DelayedTypos.size(); 8815 if (Result.isInvalid() || Result.get() != E) { 8816 ExprEvalContexts.back().NumTypos -= TyposResolved; 8817 if (Result.isInvalid() && RecoverUncorrectedTypos) { 8818 struct TyposReplace : TreeTransform<TyposReplace> { 8819 TyposReplace(Sema &SemaRef) : TreeTransform(SemaRef) {} 8820 ExprResult TransformTypoExpr(clang::TypoExpr *E) { 8821 return this->SemaRef.CreateRecoveryExpr(E->getBeginLoc(), 8822 E->getEndLoc(), {}); 8823 } 8824 } TT(*this); 8825 return TT.TransformExpr(E); 8826 } 8827 return Result; 8828 } 8829 assert(TyposResolved == 0 && "Corrected typo but got same Expr back?"); 8830 } 8831 return E; 8832 } 8833 8834 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC, 8835 bool DiscardedValue, bool IsConstexpr, 8836 bool IsTemplateArgument) { 8837 ExprResult FullExpr = FE; 8838 8839 if (!FullExpr.get()) 8840 return ExprError(); 8841 8842 if (!IsTemplateArgument && DiagnoseUnexpandedParameterPack(FullExpr.get())) 8843 return ExprError(); 8844 8845 if (DiscardedValue) { 8846 // Top-level expressions default to 'id' when we're in a debugger. 8847 if (getLangOpts().DebuggerCastResultToId && 8848 FullExpr.get()->getType() == Context.UnknownAnyTy) { 8849 FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType()); 8850 if (FullExpr.isInvalid()) 8851 return ExprError(); 8852 } 8853 8854 FullExpr = CheckPlaceholderExpr(FullExpr.get()); 8855 if (FullExpr.isInvalid()) 8856 return ExprError(); 8857 8858 FullExpr = IgnoredValueConversions(FullExpr.get()); 8859 if (FullExpr.isInvalid()) 8860 return ExprError(); 8861 8862 DiagnoseUnusedExprResult(FullExpr.get(), diag::warn_unused_expr); 8863 } 8864 8865 FullExpr = CorrectDelayedTyposInExpr(FullExpr.get(), /*InitDecl=*/nullptr, 8866 /*RecoverUncorrectedTypos=*/true); 8867 if (FullExpr.isInvalid()) 8868 return ExprError(); 8869 8870 CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr); 8871 8872 // At the end of this full expression (which could be a deeply nested 8873 // lambda), if there is a potential capture within the nested lambda, 8874 // have the outer capture-able lambda try and capture it. 8875 // Consider the following code: 8876 // void f(int, int); 8877 // void f(const int&, double); 8878 // void foo() { 8879 // const int x = 10, y = 20; 8880 // auto L = [=](auto a) { 8881 // auto M = [=](auto b) { 8882 // f(x, b); <-- requires x to be captured by L and M 8883 // f(y, a); <-- requires y to be captured by L, but not all Ms 8884 // }; 8885 // }; 8886 // } 8887 8888 // FIXME: Also consider what happens for something like this that involves 8889 // the gnu-extension statement-expressions or even lambda-init-captures: 8890 // void f() { 8891 // const int n = 0; 8892 // auto L = [&](auto a) { 8893 // +n + ({ 0; a; }); 8894 // }; 8895 // } 8896 // 8897 // Here, we see +n, and then the full-expression 0; ends, so we don't 8898 // capture n (and instead remove it from our list of potential captures), 8899 // and then the full-expression +n + ({ 0; }); ends, but it's too late 8900 // for us to see that we need to capture n after all. 8901 8902 LambdaScopeInfo *const CurrentLSI = 8903 getCurLambda(/*IgnoreCapturedRegions=*/true); 8904 // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer 8905 // even if CurContext is not a lambda call operator. Refer to that Bug Report 8906 // for an example of the code that might cause this asynchrony. 8907 // By ensuring we are in the context of a lambda's call operator 8908 // we can fix the bug (we only need to check whether we need to capture 8909 // if we are within a lambda's body); but per the comments in that 8910 // PR, a proper fix would entail : 8911 // "Alternative suggestion: 8912 // - Add to Sema an integer holding the smallest (outermost) scope 8913 // index that we are *lexically* within, and save/restore/set to 8914 // FunctionScopes.size() in InstantiatingTemplate's 8915 // constructor/destructor. 8916 // - Teach the handful of places that iterate over FunctionScopes to 8917 // stop at the outermost enclosing lexical scope." 8918 DeclContext *DC = CurContext; 8919 while (DC && isa<CapturedDecl>(DC)) 8920 DC = DC->getParent(); 8921 const bool IsInLambdaDeclContext = isLambdaCallOperator(DC); 8922 if (IsInLambdaDeclContext && CurrentLSI && 8923 CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid()) 8924 CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI, 8925 *this); 8926 return MaybeCreateExprWithCleanups(FullExpr); 8927 } 8928 8929 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) { 8930 if (!FullStmt) return StmtError(); 8931 8932 return MaybeCreateStmtWithCleanups(FullStmt); 8933 } 8934 8935 Sema::IfExistsResult 8936 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, 8937 CXXScopeSpec &SS, 8938 const DeclarationNameInfo &TargetNameInfo) { 8939 DeclarationName TargetName = TargetNameInfo.getName(); 8940 if (!TargetName) 8941 return IER_DoesNotExist; 8942 8943 // If the name itself is dependent, then the result is dependent. 8944 if (TargetName.isDependentName()) 8945 return IER_Dependent; 8946 8947 // Do the redeclaration lookup in the current scope. 8948 LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName, 8949 Sema::NotForRedeclaration); 8950 LookupParsedName(R, S, &SS); 8951 R.suppressDiagnostics(); 8952 8953 switch (R.getResultKind()) { 8954 case LookupResult::Found: 8955 case LookupResult::FoundOverloaded: 8956 case LookupResult::FoundUnresolvedValue: 8957 case LookupResult::Ambiguous: 8958 return IER_Exists; 8959 8960 case LookupResult::NotFound: 8961 return IER_DoesNotExist; 8962 8963 case LookupResult::NotFoundInCurrentInstantiation: 8964 return IER_Dependent; 8965 } 8966 8967 llvm_unreachable("Invalid LookupResult Kind!"); 8968 } 8969 8970 Sema::IfExistsResult 8971 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc, 8972 bool IsIfExists, CXXScopeSpec &SS, 8973 UnqualifiedId &Name) { 8974 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); 8975 8976 // Check for an unexpanded parameter pack. 8977 auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists; 8978 if (DiagnoseUnexpandedParameterPack(SS, UPPC) || 8979 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC)) 8980 return IER_Error; 8981 8982 return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo); 8983 } 8984 8985 concepts::Requirement *Sema::ActOnSimpleRequirement(Expr *E) { 8986 return BuildExprRequirement(E, /*IsSimple=*/true, 8987 /*NoexceptLoc=*/SourceLocation(), 8988 /*ReturnTypeRequirement=*/{}); 8989 } 8990 8991 concepts::Requirement * 8992 Sema::ActOnTypeRequirement(SourceLocation TypenameKWLoc, CXXScopeSpec &SS, 8993 SourceLocation NameLoc, IdentifierInfo *TypeName, 8994 TemplateIdAnnotation *TemplateId) { 8995 assert(((!TypeName && TemplateId) || (TypeName && !TemplateId)) && 8996 "Exactly one of TypeName and TemplateId must be specified."); 8997 TypeSourceInfo *TSI = nullptr; 8998 if (TypeName) { 8999 QualType T = 9000 CheckTypenameType(ElaboratedTypeKeyword::Typename, TypenameKWLoc, 9001 SS.getWithLocInContext(Context), *TypeName, NameLoc, 9002 &TSI, /*DeducedTSTContext=*/false); 9003 if (T.isNull()) 9004 return nullptr; 9005 } else { 9006 ASTTemplateArgsPtr ArgsPtr(TemplateId->getTemplateArgs(), 9007 TemplateId->NumArgs); 9008 TypeResult T = ActOnTypenameType(CurScope, TypenameKWLoc, SS, 9009 TemplateId->TemplateKWLoc, 9010 TemplateId->Template, TemplateId->Name, 9011 TemplateId->TemplateNameLoc, 9012 TemplateId->LAngleLoc, ArgsPtr, 9013 TemplateId->RAngleLoc); 9014 if (T.isInvalid()) 9015 return nullptr; 9016 if (GetTypeFromParser(T.get(), &TSI).isNull()) 9017 return nullptr; 9018 } 9019 return BuildTypeRequirement(TSI); 9020 } 9021 9022 concepts::Requirement * 9023 Sema::ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc) { 9024 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, 9025 /*ReturnTypeRequirement=*/{}); 9026 } 9027 9028 concepts::Requirement * 9029 Sema::ActOnCompoundRequirement( 9030 Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS, 9031 TemplateIdAnnotation *TypeConstraint, unsigned Depth) { 9032 // C++2a [expr.prim.req.compound] p1.3.3 9033 // [..] the expression is deduced against an invented function template 9034 // F [...] F is a void function template with a single type template 9035 // parameter T declared with the constrained-parameter. Form a new 9036 // cv-qualifier-seq cv by taking the union of const and volatile specifiers 9037 // around the constrained-parameter. F has a single parameter whose 9038 // type-specifier is cv T followed by the abstract-declarator. [...] 9039 // 9040 // The cv part is done in the calling function - we get the concept with 9041 // arguments and the abstract declarator with the correct CV qualification and 9042 // have to synthesize T and the single parameter of F. 9043 auto &II = Context.Idents.get("expr-type"); 9044 auto *TParam = TemplateTypeParmDecl::Create(Context, CurContext, 9045 SourceLocation(), 9046 SourceLocation(), Depth, 9047 /*Index=*/0, &II, 9048 /*Typename=*/true, 9049 /*ParameterPack=*/false, 9050 /*HasTypeConstraint=*/true); 9051 9052 if (BuildTypeConstraint(SS, TypeConstraint, TParam, 9053 /*EllipsisLoc=*/SourceLocation(), 9054 /*AllowUnexpandedPack=*/true)) 9055 // Just produce a requirement with no type requirements. 9056 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, {}); 9057 9058 auto *TPL = TemplateParameterList::Create(Context, SourceLocation(), 9059 SourceLocation(), 9060 ArrayRef<NamedDecl *>(TParam), 9061 SourceLocation(), 9062 /*RequiresClause=*/nullptr); 9063 return BuildExprRequirement( 9064 E, /*IsSimple=*/false, NoexceptLoc, 9065 concepts::ExprRequirement::ReturnTypeRequirement(TPL)); 9066 } 9067 9068 concepts::ExprRequirement * 9069 Sema::BuildExprRequirement( 9070 Expr *E, bool IsSimple, SourceLocation NoexceptLoc, 9071 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) { 9072 auto Status = concepts::ExprRequirement::SS_Satisfied; 9073 ConceptSpecializationExpr *SubstitutedConstraintExpr = nullptr; 9074 if (E->isInstantiationDependent() || E->getType()->isPlaceholderType() || 9075 ReturnTypeRequirement.isDependent()) 9076 Status = concepts::ExprRequirement::SS_Dependent; 9077 else if (NoexceptLoc.isValid() && canThrow(E) == CanThrowResult::CT_Can) 9078 Status = concepts::ExprRequirement::SS_NoexceptNotMet; 9079 else if (ReturnTypeRequirement.isSubstitutionFailure()) 9080 Status = concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure; 9081 else if (ReturnTypeRequirement.isTypeConstraint()) { 9082 // C++2a [expr.prim.req]p1.3.3 9083 // The immediately-declared constraint ([temp]) of decltype((E)) shall 9084 // be satisfied. 9085 TemplateParameterList *TPL = 9086 ReturnTypeRequirement.getTypeConstraintTemplateParameterList(); 9087 QualType MatchedType = 9088 Context.getReferenceQualifiedType(E).getCanonicalType(); 9089 llvm::SmallVector<TemplateArgument, 1> Args; 9090 Args.push_back(TemplateArgument(MatchedType)); 9091 9092 auto *Param = cast<TemplateTypeParmDecl>(TPL->getParam(0)); 9093 9094 TemplateArgumentList TAL(TemplateArgumentList::OnStack, Args); 9095 MultiLevelTemplateArgumentList MLTAL(Param, TAL.asArray(), 9096 /*Final=*/false); 9097 MLTAL.addOuterRetainedLevels(TPL->getDepth()); 9098 const TypeConstraint *TC = Param->getTypeConstraint(); 9099 assert(TC && "Type Constraint cannot be null here"); 9100 auto *IDC = TC->getImmediatelyDeclaredConstraint(); 9101 assert(IDC && "ImmediatelyDeclaredConstraint can't be null here."); 9102 ExprResult Constraint = SubstExpr(IDC, MLTAL); 9103 if (Constraint.isInvalid()) { 9104 return new (Context) concepts::ExprRequirement( 9105 concepts::createSubstDiagAt(*this, IDC->getExprLoc(), 9106 [&](llvm::raw_ostream &OS) { 9107 IDC->printPretty(OS, /*Helper=*/nullptr, 9108 getPrintingPolicy()); 9109 }), 9110 IsSimple, NoexceptLoc, ReturnTypeRequirement); 9111 } 9112 SubstitutedConstraintExpr = 9113 cast<ConceptSpecializationExpr>(Constraint.get()); 9114 if (!SubstitutedConstraintExpr->isSatisfied()) 9115 Status = concepts::ExprRequirement::SS_ConstraintsNotSatisfied; 9116 } 9117 return new (Context) concepts::ExprRequirement(E, IsSimple, NoexceptLoc, 9118 ReturnTypeRequirement, Status, 9119 SubstitutedConstraintExpr); 9120 } 9121 9122 concepts::ExprRequirement * 9123 Sema::BuildExprRequirement( 9124 concepts::Requirement::SubstitutionDiagnostic *ExprSubstitutionDiagnostic, 9125 bool IsSimple, SourceLocation NoexceptLoc, 9126 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) { 9127 return new (Context) concepts::ExprRequirement(ExprSubstitutionDiagnostic, 9128 IsSimple, NoexceptLoc, 9129 ReturnTypeRequirement); 9130 } 9131 9132 concepts::TypeRequirement * 9133 Sema::BuildTypeRequirement(TypeSourceInfo *Type) { 9134 return new (Context) concepts::TypeRequirement(Type); 9135 } 9136 9137 concepts::TypeRequirement * 9138 Sema::BuildTypeRequirement( 9139 concepts::Requirement::SubstitutionDiagnostic *SubstDiag) { 9140 return new (Context) concepts::TypeRequirement(SubstDiag); 9141 } 9142 9143 concepts::Requirement *Sema::ActOnNestedRequirement(Expr *Constraint) { 9144 return BuildNestedRequirement(Constraint); 9145 } 9146 9147 concepts::NestedRequirement * 9148 Sema::BuildNestedRequirement(Expr *Constraint) { 9149 ConstraintSatisfaction Satisfaction; 9150 if (!Constraint->isInstantiationDependent() && 9151 CheckConstraintSatisfaction(nullptr, {Constraint}, /*TemplateArgs=*/{}, 9152 Constraint->getSourceRange(), Satisfaction)) 9153 return nullptr; 9154 return new (Context) concepts::NestedRequirement(Context, Constraint, 9155 Satisfaction); 9156 } 9157 9158 concepts::NestedRequirement * 9159 Sema::BuildNestedRequirement(StringRef InvalidConstraintEntity, 9160 const ASTConstraintSatisfaction &Satisfaction) { 9161 return new (Context) concepts::NestedRequirement( 9162 InvalidConstraintEntity, 9163 ASTConstraintSatisfaction::Rebuild(Context, Satisfaction)); 9164 } 9165 9166 RequiresExprBodyDecl * 9167 Sema::ActOnStartRequiresExpr(SourceLocation RequiresKWLoc, 9168 ArrayRef<ParmVarDecl *> LocalParameters, 9169 Scope *BodyScope) { 9170 assert(BodyScope); 9171 9172 RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(Context, CurContext, 9173 RequiresKWLoc); 9174 9175 PushDeclContext(BodyScope, Body); 9176 9177 for (ParmVarDecl *Param : LocalParameters) { 9178 if (Param->hasDefaultArg()) 9179 // C++2a [expr.prim.req] p4 9180 // [...] A local parameter of a requires-expression shall not have a 9181 // default argument. [...] 9182 Diag(Param->getDefaultArgRange().getBegin(), 9183 diag::err_requires_expr_local_parameter_default_argument); 9184 // Ignore default argument and move on 9185 9186 Param->setDeclContext(Body); 9187 // If this has an identifier, add it to the scope stack. 9188 if (Param->getIdentifier()) { 9189 CheckShadow(BodyScope, Param); 9190 PushOnScopeChains(Param, BodyScope); 9191 } 9192 } 9193 return Body; 9194 } 9195 9196 void Sema::ActOnFinishRequiresExpr() { 9197 assert(CurContext && "DeclContext imbalance!"); 9198 CurContext = CurContext->getLexicalParent(); 9199 assert(CurContext && "Popped translation unit!"); 9200 } 9201 9202 ExprResult Sema::ActOnRequiresExpr( 9203 SourceLocation RequiresKWLoc, RequiresExprBodyDecl *Body, 9204 SourceLocation LParenLoc, ArrayRef<ParmVarDecl *> LocalParameters, 9205 SourceLocation RParenLoc, ArrayRef<concepts::Requirement *> Requirements, 9206 SourceLocation ClosingBraceLoc) { 9207 auto *RE = RequiresExpr::Create(Context, RequiresKWLoc, Body, LParenLoc, 9208 LocalParameters, RParenLoc, Requirements, 9209 ClosingBraceLoc); 9210 if (DiagnoseUnexpandedParameterPackInRequiresExpr(RE)) 9211 return ExprError(); 9212 return RE; 9213 } 9214